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Abstract

The Tradeoff-Induced Landscapes (TIL) model uses tradeoff be-
tween the costs and benefits of mutations to describe an environment-
dependent fitness landscape through a parameterized function. This
model has been successful in generating highly rugged and highly ac-
cessible landscapes, which are key features observed in a growing body
of experimental results. Recent experimental data was analyzed in this
context, and found to strongly encode diminishing returns epistasis in
the parameters of the fitness function, namely the mutation cost and re-
sistance proxies. While fitness itself showed a dominant positive epista-
sis trend. In an attempt to model the results, the TIL model framework
was used to introduce diminishing returns epistasis into the parameters
of fitness which allowed the emergence of a positive epistasis trend in fit-
ness, this new model will be called the TILME model. The evolutionary
dynamics and the landscape properties of the TILME model have been
studied in two simplified cases. The violations of accessibility as defined
by the TIL model were identified. This study also provides insight into
the landscape ruggedness, where it was found that the number of po-
tential peaks in a landscape decreases with increasing levels of epistatic
interactions.
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1 Introduction

The discovery of Penicillin in the early 20th century brought tremendous suc-
cess to humanity’s battle against pathogens, enabling the treatment of bac-
terial infections. Growing evidence since the 1960s suggests that the antibi-
otics breakthrough is being increasingly compromised by the development of
Antimicrobial Resistance (AMR), posing a threat to humans, livestock, and
crops. The risk to public health and global development is alarming, with ex-
perts fearing that, by 2050, AMR will directly cause up to 10 millions deaths
per year [1], eight times the current annual rate of 1.27 million per year [2].
Furthermore, AMR poses a risk to the global economy with a potential loss
of around 4% of the global annual Gross Domestic Product (GDP) by 2050,
pushing 27 million more people to the verge of extreme poverty [3].

One important mechanism for bacteria to acquire AMR is through the ac-
cumulation of point-mutations. A resistant strain of Staphylococcus aureus is
an example, where S. aureus is a leading cause of skin and soft tissue infec-
tions typically treated by Vancomycin antibiotics. This strain was found to
have developed 35 point-mutations distinguishing it from its sensitive coun-
terpart, and these mutations evolved in just three months within an infected
patient [4].

In recent decades, a growing effort has been made to understand AMR
through developing theoretical models. One class of models that have gained
increasing attention are the fitness landscapes, first introduced by Sewall Wright
in the 1930s [5]. Fitness landscapes describe evolution as a search process on a
high-dimensional sequence space representing mutation scenarios. These mod-
els are now widely applied in optimization problems. In evolutionary biology,
fitness landscapes provide a framework for predictability of evolution through
determinant features such as the abundance of fit genotypes and how accessible
they are from other genotypes [6, 7].

Fitness functions defining the search process on the landscape are of central
importance. They guide evolution and control the structure of the landscapes.
In order to understand environment-driven evolution, we work with a fitness
function that depends on the environment. In the context of AMR, our variable
is the concentration of antibiotics in which the bacterial population grows.

The endangering pressure of antibiotics directs bacterial cultures towards
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the selection of resistant mutants. These resistant mutants are equipped with
mutations that increase the fitness of bacteria in the presence of antibiotics
allowing for adaptation. However, they usually come with a cost in the form
of reduced fitness in the absence of antibiotics. This is due to the fact that
resistant mechanisms developed by the mutant bacteria tend to be costly,
creating a tradeoff that the mutant has to endure. The fitness functions of
interest in this work are those that are parameterized based on this tradeoff
assumption, as described in the Tradeoff-Induced Landscapes (TIL) model [8].

This work is divided into two parts. Chapter 3 is dedicated to the analysis
of an evolution experiment guided by the TIL model framework. Theoreti-
cal modeling of observed fitness is discussed along with the challenges posed
by the experimental setting and the difficulty of extracting a stable measure
for fitness. The novelty in the chapters 4 and 5 lies in the introduction of
diminishing returns epistasis to the existing TIL model.

Diminishing returns epistasis indicates the reduction in the benefit of an
advantageous mutation when it occurs in a relatively fit genotype compared
to its effect in a relatively unfit genotype. Diminishing returns epistasis has
been found to dominate the experimental parameters of fitness. Furthermore,
it is increasingly recognized in the literature as a strong feature of adapta-
tion [9, 10]. TIL landscapes with diminishing returns epistasis of simplified
fitness functions were theoretically studied, in an attempt to understand the
new landscapes properties compared to the TIL model. The fitness functions
studied were simplified by first assuming that all mutations are identical in
terms of carrying the same cost and contributing the same to the resistance,
and later by allowing the cost of mutations to vary randomly.
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2 Fitness Models: TIL Model and Terminol-
ogy

This chapter presents the notation used in the following chapters. In addition,
the key terms are defined and introduced in the context of the TIL model.

2.1 The TIL Model

Figure 1: Dose-response curves of four genotypes representing a full system
of two possible mutations. The intersection points (IPs) between all pairs of
curves are highlighted by light red dots, some of which indicate the change in
the role of the fittest.

In a mixed population of different genotypes, the fittest genotypes will
dominate the population. Genotypes are defined by a binary sequence σσσ, of
length L, indicating the presence or the absence of a set of L mutations. These
mutations are assumed to enhance the resistance of bacteria against a given
antibiotic. The sequence σσσ defines a set of present mutations I+ and a set of
absent mutations I−. Adopting the notation in [11],

I+(σσσ) = {i : σi = 1} (1)

11



and its complement
I−(σσσ) = {j : σj = 0} (2)

where σi ∈ {0, 1}, indicating the absence (σi = 0) or the presence (σi = 1)
of the mutation i.

Fitness, defined as a genotype’s reproductive capacity, is a function of the
environment. The fitness of a bacterial population σσσ growing under different
concentrations of antibiotics is described by a dose-response curve (Fig. 1).
This curve is parameterized by the null-fitness (rσσσ) and the IC50 or the con-
centration at which the fitness reduces by half (mσσσ). The fitness function is a
function of the concentration x and takes the shape of a Hill function [12],

fσσσ(x) = rσσσ

1 + ( x
mσσσ

)α
(3)

where α governs the steepness of the function.
In the Tradeoff-Induced Landscapes (TIL) model [8], each mutation i comes

with an advantage in the IC50 (mi > 1) and a disadvantage in the null-fitness
(ri < 1), a tradeoff between resistance to high concentration and viability in
the absence of antibiotic stress. The units are chosen here so that for the
wild type ri = 1 and mi = 1. In addition, the model assumes that mutations
introduce a non-epistatic effect, meaning that they act independent of each
other. Upon accumulation of mutations the total effect is multiplicative,

mσσσ =
∏

i∈I+

mi and rσσσ =
∏

i∈I+

ri. (4)

Eq (4) ensures that while mσσσ increases rσσσ decreases.
A key term here is fitness landscapes, which are maps from the genotype

sequence to its fitness; f : σσσ ∈ HL
2 → f(σσσ) ∈ R, where H is the Hamming

space of a binary sequence of L loci. In other words, a fitness landscape
induces an acyclic orientation of the sequence space. Fitness landscapes are
visualized through a fitness graph where each edge connecting two neighboring
sequences, differing by a single mutation, is directed towards increasing fitness
(Fig 2).

A bacterial population is assumed to evolve in a strong selection weak
mutation regime of evolution [13]. Populations in this regime are assumed to
evolve by acquiring one mutation at a time, which subsequently dominates the
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Figure 2: Example of a fitness landscape graph with genotype (11101) as a
peak. The color coding refers to the fitness of the genotype.

population. Fitness landscapes portray this selection process, like the example
in Figure 2, where a population takes a single step mutation seeking a fitness
peak in a static environment.

Peakness here is a property of a genotype. A peak is fitter than all neigh-
bouring genotypes which it could reach by acquiring or removing a mutation.
A genotype σσσ is a fitness peak at concentration x if

fσσσ(x) > fσσσ−i(x) and fσσσ(x) > fσσσ+j (x), (5)

where σσσ−i (σσσ+j) is a genotype identical to σσσ except lacking a mutation i ∈ I+

(having an additional mutation j ∈ I−). As the environment changes, so does
the fitness of each genotype (eq. 3) along with the peakness structure of the
fitness landscape.
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Important evolutionary dynamics can be inferred from the fitness land-
scape, such as how frequent fitness peaks are (ruggedness) and how reachable
they are from other genotypes (accessibility).

To study how a population evolves on such graphs we study the case of
pairs competition. Assuming that all genotypes have the same shape of the
dose-response curves following the function fσσσ(x), but differing parameters rσσσ

and mσσσ, it is evident that the role of the fittest between any two neighboring
genotypes σσσ and σσσ+j connected by an edge on the landscape is exchanged once
the two related curves intersect at x∗

σσσ. Assuming at x = 0 that rσσσ > rσσσ+j , the
intersection point (IP) will be given by

x∗
σσσ,+j = mσσσ

 1 − r
σσσ+j

rσσσ
r

σσσ+j

rσσσ
− ( mσσσ

m
σσσ+j

)α

 1
α

, (6)

where it marks the transition between two fitness regimes

fσσσ > fσσσ+j for x < x∗
σσσ,+j (7)

and
fσσσ < fσσσ+j for x > x∗

σσσ,+j. (8)

In the context of the multiplicative growth of the fitness function parame-
ters in the TIL model, the intersection points (IPs) reduce to

x∗
σσσ,+j = mσσσ

 1 − rj

rj − ( 1
mj

)α

 1
α

. (9)

For the intersection to exist between the pair σσσ and σσσ+j, the Hill condition
has to be satisfied

rjm
α
j > 1, i = 1, 2, ..., L. (10)

Otherwise, the mutant genotype equipped with mutation j will never be ad-
vantageous.

Next, unique properties to rσσσ and mσσσ are introduced, producing unique
fitness landscapes. For reasons which will be made clear later, the mentioned
parameters and the variable x are transformed to the logarithmic scale:

χ = ln x, uσσσ = − ln rσσσ, vσσσ = ln mσσσ. (11)
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Equations (3) and (6) are rewritten as

fσσσ(χ) = e−(uσσσ)

1 + (eχ−vσσσ)α
(12)

and
χ∗

σσσ,+j = vσσσ + 1
α

ln
(

1 − e−(u
σσσ+j −uσσσ)

e−(u
σσσ+j −uσσσ) − e−α(v

σσσ+j −vσσσ)

)
. (13)

2.1.1 TIL Accessibility Property

The TIL landscapes show a unique high accessibility of peaks, where each peak
is fully accessible from all genotypes of a subset of its mutations (subsets) and
genotypes with additional mutations (super-sets). In [8], this unique accessibil-
ity was proven based on the fact that IPs, defined by placing a mutation j into
different backgrounds in eq. (9), are ordered following the product (∏i∈I+ mi)
or in the logarithmic scale the sum (∑i∈I+ vi), such that

χ∗
σσσ,+j > χ∗

σσσ−i,+j, (14)

for j ∈ I− and i ∈ I+. Two major outcomes of this property are the accessibil-
ity of each peak from the wild type and the full accessibility of the full mutant
once it becomes a peak.

We define rank orders of fitness that break the TIL accessibility property as
forbidden orders. Given the definition of the accessibility property they arise
when a genotype is fitter than its respective subset (super-set) of genotypes
lacking a single mutation (having an additional mutation), but not fitter than
the subsets (super-sets) of its respective subset (super-set). An example of a
forbidden order in a two loci system would be (00 > 11 > 10 > 01). One can
avoid the rise of such orders by ensuring that all IPs are ordered with respect
to the size of the mutational background for a particular new mutation j.

2.1.2 TIL Ruggedness

Ruggedness refers to the number of peaks a landscape displays. A single-
peaked landscape is referred to as smooth, whereas multiple peaks make the
landscape rugged. The TIL model is characterized by smooth landscapes in
extreme conditions such as the absence of antibiotics and high concentration
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of antibiotics. In between, the model exhibits ruggedness where more than one
peak can carry evolution.

Note that smoothness in fitness landscapes facilitates selection of the fittest
[5]. Still, the TIL model shows that a smooth landscape can evolve from a
state of ruggedness and vice versa. Moreover, the model shows that ruggedness
could be accompanied by high accessibility. Ruggedness and accessibility—two
properties that seem to contradict each other were actually observed together
in recent experimental setting [14]. The TIL model achieves this duality by
ensuring that peaks do not fall in the subsets or super-sets of each other. In
[15], it was shown that by satisfying this TIL accessibility condition, an upper
bound on the number of peaks can be derived, which differs from the maximum
number of peaks in an unconstrained landscape only by a polynomial factor.

2.2 Epistasis

To start with, we will define epistasis as the deviation from the additive pic-
ture (in the logarithmic scale). For an effect given by a quantity yi introduced
by a single mutation, the non-epistatic collective quantity of n mutations will
be simply y0

σσσ = ∑
i∈I+ yi, assuming no interactions between mutations. Epis-

tasis in this context will be the difference between the interactions dependent
quantity yσσσ and the non-epistatic quantity:

ϵ = yσσσ −
∑

i∈I+

yi. (15)

Negative epistasis implies that the epistatic quantity grows more slowly than
the additive quantity, while positive epistasis implies the opposite. Both indi-
cate interactions between mutations that affect the magnitude of the collective
effect. Notice here that the TIL model is epsitasis-free in the parameters of
fitness, however as the fitness depends non-linearly on these parameters it is
still expected to show epistasis.

2.2.1 Submodularity Indicates TIL Accessibility

In the context of the TIL model, it was found that TIL orderings are always
preserved in the case of negative epistasis [8]. Dominant negative epistasis
interactions between any genotype and its subset of genotypes is known as
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Universal Negative Epistasis (UNE) [15]. In a fitness model, TIL accessibility
can be achieved by the choice of a fitness function that (itself or a monotonic
transformation of this function) ensures UNE,

f(σσσ ∪ j) − f(σσσ) ≤ f(σ′σ′σ′ ∪ j) − f(σ′σ′σ′) (16)

where σ′σ′σ′ ⊂ σσσ. It was proven in [15] that UNE is guaranteed if pairwise
negative epistasis between neighboring genotypes holds (σ′σ′σ′ = σσσ−i). Here, it
can be proven that UNE is preserved when taking the logarithm of the TIL
fitness function.

Submodularity is a property of set functions equivalent to UNE. A set
function is submodular if an increase in the input sets leads to a shrinking
growth in the output, a phenomenon commonly referred to as a diminishing
returns growth.

2.2.2 Sign Epistasis

In the context of fitness, if mutations are beneficial in one genetic background
but deleterious in another then it is said that the landscape displays sign
epistasis. Sign epistasis is a feature of intermediate concentrations in the TIL
model, where the transition of the fittest from one layer to the next is gradual.
However, sign epistasis that dominates over a wide range of concentrations can
occur when strong magnitude epistasis is present in some backgrounds and not
in others. Such background dependence of epistasis is of interest in this work.

Sign epistasis could be seen as a source of TIL accessibility breaking, where
deleterious effects of mutations in certain backgrounds can render some peaks
inaccessible from their full subsets or super-sets.

In order to understand how epistasis in the parameters of the fitness func-
tion could alter the TIL picture and impact accessibility and ruggedness, Chap-
ters 4 and 5 will explore a simple case of diminishing returns epistasis in these
parameters. The motivation to introduce epistasis in the parameters is based
on experimental results presented in Chapter 3.
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3 Experimental Landscapes of β-Lactam Re-
sistance

Tradeoff-Induced Landscapes (TIL) [8] is a mathematical model that was mo-
tivated by antibiotic dose-response curves of resistance of Escherichia coli
in ciprofloxacin. The model describes evolution in a changing environment
through adaptation-cost tradeoff (Fig. 1). It also assumes a simplified scenario
with negligible interactions between mutations, where only weak epistasis is
typically present—an assumption that requires further empirical validation.

Recent experimental data of evolution of E. coli in the context of β−lactam

resistance are available, which can be used to test the model [16]. How accu-
rate are the assumptions on which the model is based? Is the model a good
description of empirical outcomes in the context of other antibiotics? This
chapter aims to analyze the available data to address these questions.

3.1 Data Overview

The dataset was obtained from the pre-print [16]. The experiment was per-
formed on engineered DH5-α E. coli strains provided by the Weinreich Lab
[17] using a gradient of Cefotaxime. These genotypes represent the full land-
scape of all possible combinations of four point mutations on the β-lactamase
gene. Each point mutation individually increases the resistance of E.coli to
the β-lactam antibiotic Cefotaxime.

Figure 3: Experiment setup overview [16].

After incubating the strains overnight, the experiment was performed on
16 plates, each corresponding to a single genotype. In each plate, 10 columns
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contained a gradient of 10 concentrations prepared using a 5-fold cefotaxime
dilution scheme. One column was antibiotic-free, and another column was
culture-free, serving as a control. The experiment was performed for each
genotype with eight replicates. The growth of the replicates was recorded over
17 hours, with optical density readings taken every 1.5 hours allowing for a
resolution of 9 data points per replicate (Fig. 3).

3.1.1 Background Noise Elimination

(a) (b)

Figure 4: Outliers in the background noise replicates 1, 2 and 7 in (a) were
eliminated in (b). The point-wise average of the background noise was then
subtracted from the raw data.

To minimize the influence of instrumental errors in the results, the back-
ground noise was quantified and eliminated. Investigating the background
column data from the control column in each plate, apparent growth in cul-
ture free wells and single point irregular high readings were detected indicating
contamination and other sources of irregular errors. These irregularities in the
background data (Fig. 4a) were identified by detecting outliers using Tukey’s
fences:

ODoutlier ≥ Q3 + kQ, (17)

where Qi is the ith quartile among OD readings of replicates at a single time
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point and Q is the interquartile range indicating the spread in the middle half,
given by the difference between Q1 and Q3. The coefficient k is usually taken
between 1.5 and 3, in this case chosen to be 2. Every background replicate with
a single time point outlier was eliminated (Fig. 4b). After filtering outliers,
the average background noise was identified at 0.1327 in OD units.

Background data was found to be biased towards higher or lower values
across different plates and time points. Hence, background noise elimination
was done point-wise by subtracting the average among control replicates from
raw data at each time point for each plate following outlier removal.

3.1.2 Raw Data Outliers

Raw growth data was still showing some irregularities that could have resulted
from human or instrumental errors rather than the background noise (Fig.
5). Some replicates started growing from an OD above 0.1, the threshold
below which the culture is considered dead, which indicates that the culture
started to grow before starting the experiment or a potential dilution failure
(replicates 2,3,4,5,6,7 and 8 in Figure 5a and replicates 5,6 and 7 in Figure
5b). Other replicates showed sharp increase in OD for a single time point
(replicate 4 in Fig. 5c). These were identified as extreme outliers and were
systematically eliminated using Tukey’s fences in eq. (17) setting the coefficient
k to 40. Visual examination of the data showed this upper limit to exclude
the irregular replicates. Finding outliers was tricky as the growth curves tend
to fluctuate sharply. In order to avoid eliminating valid growth curves, only
extreme outliers were eliminated. Other outliers resulting from contamination
or a dilution failure that passed through the previous filters were manually
eliminated (replicate 1 in Fig. 5d).

3.1.3 Eliminating Dead Replicas

Dead strains were identified given the last five data points. If two or more
readings among these were below the threshold of 0.09237 ≈ 0.1 in OD units,
the replicate’s growth trajectory is set to zero.

The threshold is a mean of the last five data points when the maximum OD
yield is in the 5.5 early hours or among the four first data points, indicating
the dying out of growth for later time points in the experiment (Fig. 6).
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(a) (b)

(c) (d)

Figure 5: Replicas with outlying behavior in the raw data. Outliers could be
identified as initial growth above 0.1 in OD units in replicates 2,3,4,5,6,7 and
8 in (a) and replicates 5,6 and 7 in (b), sharp increase in a single time point
in replicate 4 in (c) and growth due to probable contamination in replicate 1
in (d).
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(a) (b)

Figure 6: Replicas that eventually die (a) were set to zero growth (b).

3.2 A Suitable Fitness Measure

(a) (b)

Figure 7: Phases of growth in the OD curves. Growth curves change behav-
ior as the concentration increases, identifying three phases of growth. Stable
growth at low concentrations is shown in (a). Fluctuating phase at interme-
diate concentrations is shown in (b), where replicates show unsteady growth
pattern that diverge from one another. The third phase is the death phase
was shown in Figure 6.
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3.2.1 Phases of Growth

(a) (b)

Figure 8: An example of a poor logistic fit of the growth curve in the fluctuating
phase shown in (a). Growth curve cutoff is shown in (b). The section of the
growth curve defined as steady is up to the red mark.

As discussed in the previous sections, the raw data required few steps of
filtering to keep the observed growth behavior reasonable. Investigating the
growth behavior, three distinct phases were identified across all genotypes (Fig
7):

1. A stable phase: At low concentrations nearly all replicates follow the
same growth trajectory.

2. A fluctuating phase: At sub-MIC (minimum inhibitory concentration
or the lowest concentration that inhibits the growth of a given genotype) the
genotypes show unsteady growth patterns that diverge among replicates.

3. A death phase: Beyond MIC the growth decays and the culture dies.

3.2.2 AUC or Growth Rate?

Given the growth curves, fitness can be identified through one of two measures.
The first measure can be found by extracting the growth rate (R) by fitting the
growth curve to a logistic function. The second measure is the mean biomass
achieved by the population, approximated by the area under the growth curve
(AUC).
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When estimating R, the fluctuating phase marked by the unsteady growth
of replicates at sub-MIC concentrations led to poor logistic function fits. The
following logistic function was used following the choice in [16]:

OD = OD0 + ODmax

1 + exp[ 4R
ODmax

(tlag − t) + 2]
, (18)

where ODmax is the maximum yield of optical density and tlag is the lag time
before exponential growth, parameterized by the rate R, is activated [18].

The poor logistic function fits had unreasonable error levels. When con-
sidering the fitted growth rate R as a measure of fitness, the fits contributed
to apparent fitness at intermediate concentrations that is higher than the fit-
ness associated with stable growth at lower concentrations. This results in
irregular behavior in the dose-response curves with high error margins during
fitting. As a consequence, fitting the growth curves was not a reliable option
for determining fitness (Fig. 8a).

Instead, the first few hours of growth before fluctuations dominate pre-
sented a more robust, systematic behavior through all concentrations. There-
fore, a cutoff after a few hours of growth was introduced. This part of the
growth curve will be referred to as the steady part in the following discussions
(Fig. 8b). Taking the steady part of the growth curves into account, only
5.5 hours of growth were considered, equivalent to only four data points in
the current experiment (Fig. 8b). One can still attempt to find the maximum
slope among the few data points left to approximate R, however, the AUC was
found to be more robust in terms of considering more data points and hence
being less sensitive than the growth rate to single point errors. More detailed
discussion is provided in the supplementary material.

For comparison, the same following analysis was done employing the AUC
of the entire growth and the main results are summarized in the supplementary
material.

3.3 Results

Using the averaged AUC of the steady parts of the growth curves as a fitness
measure, the dose-response curves were fitted to the Hill function in eq. (12),
where the null-fitness (u) and the IC50 (v), both normalized with respect to
the wild type, were extracted (Fig. 9) for a chosen Hill coefficient of α = 4.

24



The Hill coefficient was chosen as the smallest possible value that maintained
tolerable levels of error. The steepness of the dose-response curves is quite
high here, reflecting the low resolution of the experiment where the gradual
loss of fitness cannot be observed.

Figure 9: Solid lines show the fitted dose-response curves. The average of the
experimentally obtained data is shown in the scatter. The AUC was normal-
ized with respect to the wild type’s null-fitness. χ here is given in units of
log(mg/ml).

3.3.1 Tradeoff Behavior

When investigating the trend of fitness in the dose-response curves averaged
over the number of mutations, tradeoff are apparent (Fig. 10a). On aver-
age, higher the accumulated number of mutations, weaker the fitness at low
concentration but the population dies out at a later stage.

Tradeoff between the null-fitness (u) and IC50 (v) can be directly tested by
finding whether these two quantities anti-correlate across genotypes. In Figure
10b, weak anti-correlation is observed with a weak negative slope between the
two quantities (−0.012) indicating weak tradeoff. The weak tradeoff trend is
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(a) (b)

Figure 10: Dose-response curves averaged over number of mutations in (a).
Tradeoff trend between null-fitness u and IC50 v in (b).

attributed to epistatic interactions between mutations along with the low cost
of some mutations as shown later.

3.3.2 Epistasis

Here, epistasis patterns in the parameters (uσσσ, vσσσ) and in the fitness (fσσσ) is
studied. To quantify epistasis, the non-epistatic value assumed for a parameter
is compared to its experimentally obtained value. For a parameter xσσσ of a
genotype σσσ, the epistasis is found through the definition in eq. (15).

The TIL model was motivated by a dominantly weak epistasis trend de-
tected in the null-fitness and IC50 for E. coli growth in ciprofloxacin [8, 19],
an antibiotic with a different mechanism from β−lactam antibiotics. In the
current results, the epistasis trend in the parameters is notably strong. Null-
fitness r is found to display an increasing positive epistasis (which translates
to a growing negative epistasis in the cost u), the amount of epistasis varies
among mutants, but is mainly responsible for the slow decrease in the null-
fitness compared with the growth in the number of mutations. For example,
the full mutant had lower mutational cost than the average triple mutants
(Fig. 11), indicating that the cost of mutations is not necessarily universal.

On the other hand, IC50 displays sharp negative epistasis that grows with
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(a) (b)

Figure 11: The average cost of mutation trend across number of mutations (a)
and the average epistasis in null-fitness against number of mutations (b).

(a) (b)

Figure 12: The average IC50 trend across number of mutations (a) and the
average epistasis in IC50 (b).

number of mutations, a feature indicating diminishing returns epistasis or re-
duction of benefit in an advantageous background. This trend keeps IC50

around 50 % lower than the levels predicted by the TIL model and makes
resistance comparable for genotypes with two, three, and four mutations in
some cases (Fig. 12).

As a general observation, the data shows a global trend of intrinsic epis-
tasis, where gene-gene interactions govern the impact of mutations on the
null-fitness and IC50 independent of the environment; the null-fitness (IC50)
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Figure 13: The epistasis in fitness for genotypes across different concentrations,
the epistasis was computed using eq. 15. Epistasis detected in the fitness is
dominantly positive. Notice that, at low concentrations epistasis values (blue,
orange, green and red) overlap.

seems to always drop (increase) as mutations accumulate at a rate slower than
the assumed multiplicative way by the TIL model.

In terms of fitness, the results show dominant positive epistasis (Fig. 13).
This non-trivial result shows that magnitude epistasis in the fitness parame-
ters can increase adaptivity. The fitness of dead strains was approximated by
the minimum growth detected and not set to zero. The large jump in epista-
sis values for concentrations where most single mutants are considered dead
(starting at 3.4 µg/ml) creates two different regimes of epistasis. At low con-
centrations the epistasis is weakly positive, while at high concentrations the
epistasis increases with the number of mutations. Note the overlap of epistasis
values at low concentrations, where the fitted fitness values tend to be constant
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for concentrations below the MIC.

3.3.3 Fitness Landscape, Accessibility and Ruggedness

The fitness landscapes (Fig. 14) display a gradual increase in the number of
mutations for peaks as the concentration is increased, which is a feature ex-
pected in the TIL model. All peaks are accessible from the wild type in the
presence of antibiotics, another feature predicted by the model. However, the
fitness vs number of mutations trend is complex beyond the peaks, with epis-
tasis resulting in few mutations being deleterious in their background (subset
of mutations) at high concentrations. For example, the genotype ”1010” dies
before its respective background.

The TIL model assumes a smooth landscape at the extreme values of the
environmental variable. The intermediate transitioning phase between the two
smooth landscapes is assumed to be rugged and dominated by sign epistasis.
The current results show that the landscapes start with a rugged landscape at
low concentrations and transition to a relatively smooth one at high concen-
trations with a single fitness maximum and a lower degree of sign epistasis. At
high concentrations, many genotypes are dead and the few resistant genotypes
serve as a basin of attraction for evolution, the landscape will tend almost
always to be smooth.

The genotype ”0011” exhbits an interesting behavior, where it remains a
peak for a wide range of concentrations. The landscape displays constant
ruggedness at low concentrations with two peaks one of which is always the
genotype ”0011”. At high concentrations, many genotypes are taken to be dead
and only one peak is possible to maintain. The system under study is small.
Therefore, the asymptotic ruggedness behavior of landscapes in the TIL model
should not be expected.

3.3.4 IC50 Landscape and the Accessibility of the Fittest

The fitness landscape in Figure 14 shows that high resistance is associated
with a higher number of mutations. However, it reflects occasional deleterious
effects of some mutations where the mutant carrying them might die before
its subset (genotype 1010 is an example).

Nonetheless, the full mutant has a high level of accessibility with 14 out of
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Figure 14: Full landscapes in a changing environment of antibiotics, the color
of the vertex identifies the genotype’s fitness on a scale of (high - low). White
nodes are genotypes that are assumed dead at this concentration, and the
nodes of bigger size and labeled red are peaks.
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24 direct paths from the wild type being accessible in the fitted IC50 landscape
(Fig. 15a). This result contradicts the results on evolution of E. coli in Cefo-
taxime by Weinreich et al., where only a few accessible paths were reported.
The results from 2006 are for a system of five mutations including the current
four with an additional regulatory mutation [17].

In Weinreich et al., the accessibility of the fittest was defined through an
alternative measure of resistance, which is the MIC. The maximum inhibitory
concentration (MIC) is the highest concentration at which the genotype was
experimentally viable. In the current raw data, different genotypes appear to
have the same MIC values as well. This observation is due to the discrete
nature of the experiment and the intrinsic logarithmic scaling of the concen-
trations in the dilution scheme. The MIC landscape of the current dataset is
shown in Figure 15b for comparison, where we also find multiple genotypes to
die at the same concentration.

(a) (b)

Figure 15: A comparison between the IC50 and the MIC landscapes. The IC50

values in (a) were obtained through the fitted m values in eq. (3), while in (b)
the MIC is the last concentration in the experimental setting where the strain
is viable. In (b), neutral transitions are shown in bidirectional arrows colored
grey. It is notable that the full mutant is accessible in the IC50 landscape
through 14 paths while considering the neutral mutants deleterious in the
MIC landscape means that the full mutant in inaccessible from the wild type.
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In a strong-selection weak-mutation regime of evolution, which is assumed
in this case, neutrality blocks evolution, where neutral mutations have a very
low probability of fixing. Under this assumption, rejecting all paths of apparent
neutral mutations Weinreich et al. found out that 18 out of 120 evolutionary
trajectories were only accessible from the wild type to the full mutant. Apply-
ing the same approach, the MIC landscape in Figure 15b is entirely blocked,
which primarily indicates the low resolution of the experiment.

The assumption that genotypes dying at the same experimental dose are of
equivalent resistance in the context of a discrete exponential scale is not accu-
rate. In order to solve this issue, Weinreich et al. randomized the ambiguous
MIC values and found that 39 out of 120 trajectories became accessible. As
the general trend is of mutations being beneficial in most backgrounds, the
randomization approach is not the best approximation where a preference for
the mutants should be assumed. This leads to the conclusion that the full
mutant in the context of evolution of E. coli in Cefotaxime has higher accessi-
bility than Weinreich et al. concluded, a finding emphasised by the results of
this experiment.

3.3.5 Dose-Response Curves Intersection

An important indication of the landscape dynamics is the patterns intersection
points (IPs). The TIL model accessibility is ensured whenever dose-response
curves of all genotypes and their respective backgrounds intersect at most once
allowing for a gradual fitness rank-order change among neighboring genotypes
and permitting the smooth evolution of the most resistant genotypes through
various paths.

In order to understand the dynamics of fitness rank order change, the
number of intersections between neighboring genotypes was counted. It was
found that 17 out of 32 neighboring pairs of dose-response curves intersect
once. Among the 15 remaining pairs, there were 9 mutants that were fitter
than their background throughout the experiment protocol of concentrations.

The data in hand showed general preference of higher number of mutations
at high concentrations where many arrows are leading directly to the full mu-
tant. Although, some mutants were already fitter than their backgrounds in
the absence of antibiotics, there is not a single case of switching order that
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allowed a genotype to become fitter than any of its super-sets. Once a mutant
is fitter than its background, it remains fitter for all higher concentrations.
This emphasizes the effective advantage the mutations in most backgrounds
bring, along with the presence of a cost preventing many mutants from being
competitive in the absence of antibiotics but making them beneficial in the
presence of antibiotic stress.

3.3.6 State Transition Graph

Evolutionary trajectories are best visualized by a state transition graph, assum-
ing antibiotic concentration monotonically increases or decreases in a quasi-
static manner. Quasi-static concentration change is slow enough that the pop-
ulation is allowed to fix after each concentration change. In a state transition
graph, the transitions between peaks in a sequence of fitness landscapes are
represented in a single graph [11].

The resulting state transition graph displays transitions among peaks as
the stress of antibiotics is increased (Fig. 16). All peaks are reachable by
greedy and non-greedy walks from the wild type. It is evident that as the con-
centration increases, a gradual increase in the number of mutations leads to
the emergence of the most resistant genotype. The absence of a smooth land-
scape at low concentrations is illustrated in the descending state graph, where
the walk starts from two different originating states, the full mutant ”1111”
and the double mutant ”1100”. The descending walk also has two different
absorbing states, including the double mutant ”0011”, which is exceptionally
fit and a peak throughout a wide range of concentrations and in the absence
of antibiotics. The wild type is inaccessible from the full mutant as the con-
centration decreases in this structure. Reversibility is known to be driven by
the cost of mutations, and as the cost of the current mutations tends to be low
in some cases, this blocks the path to reverse evolution [20].

Results obtained in this chapter can be reproduced through the code posted
on GitHub: (Beta–Lactam-evolution-experiment-data-analysis)
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Figure 16: State transition graph showing transitions in the case of increasing
concentration in blue and in the case of decreasing concentration in red con-
sidering greedy walks, whereas yellow and grey are respectively the increasing
and the decreasing non-greedy walks. Greedy walks follow the path maximiz-
ing fitness in each step, while non-greedy walks follow a path with increasing
fitness that doesn’t necessarily maximize fitness. The order of the genotypes
follows from left to right the order at which these peaks cease being one as the
concentration is increased.
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4 Deterministic Model of Magnitude Epista-
sis

One approach to understanding the experimental picture of evolution of resis-
tance in Chapter 3 is by introducing magnitude epistasis to the framework of
the TIL model. The approach of the TIL model describing fitness in a chang-
ing environment through genotype-specific parameters that display a tradeoff
proved reasonable in the experiment analysis. Additionally, the TIL model
lays the foundation to effectively explain the varying nature of epistasis in fit-
ness in terms of the epistasis trend in either of the two tradeoff parameters
depending on the regime of stress displayed by the environment. Environment
dependence of epistasis in fitness has been reported in the literature [21].

In the framework of eq. (12), the null-fitness is presented by the cost
parameter u. The positive epistasis in the null-fitness can be translated to
diminishing returns epistasis in the cost. Hence, in the following discussion,
diminishing returns epistasis will be introduced to both the cost and the resis-
tance. Diminishing returns epistasis, a form of interaction between mutations
where a mutation effect decreases as the background size to which it is added
increases, is reported in evolution experiments of diverse levels of biological
organisms [9, 10].

4.1 Magnitude Epistasis Introduced (TILME)

In order to properly define the genotype sequence for the purposes of this
section, we define the vector uuuL, as the totally ordered set of the cost of muta-
tions (the logarithmic transform of the inverse of the null-fitness) brought by
L different mutations individually UL = {ui : 1 ≤ i ≤ L},

uuuLLL = (UL, <), u1 < u2 < .. < uL. (19)

Now, we have an ordered vector of L different values from the smallest to
the Largest. This vector will be used as a reference to label our L mutations.
When referring to the mutation 1, it is the mutation with the smallest cost
(largest null-fitness). Mutation 2 has of the second smallest cost and mutation
L is the mutation with the largest cost value. This order will serve in later
analysis.
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Defining σσσ, we will choose the mutation position on the sequence according
to its label (order of uuuL)

σσσ = (σ1, σ2, .., σi, ..σL). (20)

One way to present diminishing returns epistasis is to make the contribution
of a new mutation size-dependent by introducing an exponent,

uσσσ = (
∑

i∈I+

ui)µ, vσσσ = (
∑

i∈I+

vi)ν (21)

where for 0 < µ < 1 and 0 < ν < 1, the diminishing returns effect is
achieved. Diminishing returns here have the effect of positive magnitude epis-
tasis in null-fitness and negative magnitude epistasis in the IC50 (see eq. (11)).

Following the introduction of magnitude epistasis to the TIL model (TILME),
our fitness and IPs will explicitly be written as:

fσσσ(x) = e−(
∑

i∈I+ ui)µ

1 + (eχ−(
∑

i∈I+ vi)ν )α
(22)

and

χ∗
σσσ,+j = (

∑
i∈I+

vi)ν

+ 1
α

ln
 1 − e−((

∑
i∈I+ ui+uj)µ−(

∑
i∈I+ ui)µ)

e−((
∑

i∈I+ ui+uj)µ−(
∑

i∈I+ ui)µ) − e−α((
∑

i∈I+ vi+vj)ν−(
∑

i∈I+ v)ν)

, (23)

where j ∈ I− and i ∈ I+. The current experimental data was used to ex-
tract the values of µ and ν, results can be found in table 2 in the supplementary
material.

In the context of diminishing returns epistasis, dose-response curves in eq.
(22) become steeper as epistasis increases (µ and ν decrease). The lower ν and
µ are, the faster fitness drops, and the lower the concentrations at which IPs
between dose-response curves take place. Consequently, diminishing returns
epistasis accelerates the loss of the advantage in mutant genotypes (Fig. 17)
[22].

4.2 Evolution Condition

For advantageous mutations, the Hill condition in eq. (10) after applying
magnitude epistasis translates to:
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Figure 17: Diminishing returns epistasis has the effect of speeding the loss of
advantage by enhancing the null-fitness of mutants while enforcing a steeper
drop in fitness as concentration increases. The dashed curve for a mutant
(MT) of µ = 0.3 and ν = 0.6 becomes fitter than the wild type (WT) at a
concentration lower than the epistasis free case.

α(
∑

i∈I+

vi + vj)ν − α(
∑

i∈I+

vi)ν > (
∑

i∈I+

ui + uj)µ − (
∑

i∈I+

ui)µ (24)

where j ∈ I−. In the following we assume µ and ν to be constant for simplicity.
This condition ensures the intersection of dose-response curves and hence

evolution. We will refer to both eq. (10) and eq. (24) as the evolution condition
in the TIL and TILME models, respectively.

4.2.1 Evolution Condition of the Deterministic System

In a changing environment, a mutation will bring an evolutionary advantage
at a given stress level or it might always be deleterious. In the TIL model, this
depends on the background to which it is added. The background dependence
complicates analytical and computational efforts to account for advantageous
mutations as the system grows in the number of mutations L. To understand
how magnitude epistasis restricts evolution, the simplest case of deterministic
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evolution is investigated first, where all mutations have the same effect:

ui = u, vi = v. (25)

The evolution condition simplifies to

αvν((n + 1)ν − (n)ν) > uµ((n + 1)µ − (n)µ), (26)

rearranging,
((n + 1)ν − (n)ν)
((n + 1)µ − (n)µ) >

uµ

αvν
. (27)

The LHS is strictly increasing if ν > µ and strictly decreasing for µ > ν.
This indicates that evolution is more likely to take place in the first case. In
the second case, carrying more mutations is seen as a disadvantage because of
the small gain in resistance at a relatively high cost.

For each case, it is straightforward to verify the possibility of evolution by
studying the appropriate bound. In the case of ν > µ, evolution is guaranteed
for arbitrary system size if

αvν > uµ. (28)

On the other hand, if µ > ν, then one has to consider a more restricted
condition dependent on L,

αvν (Lν − (L − 1)ν)
(Lµ − (L − 1)µ) > uµ (29)

which if satisfied, evolution is guaranteed for the full landscape.
Considering the limiting case of eq. (29) for LHS = RHS, one can find the

shape of the bound for deterministic evolution. The deterministic bound is
shown in Figure 18 in black, above which evolution is always guaranteed to
occur if mutations have identical effect.

4.2.2 Locating the Experimental Data Regime

Next, we try to find intervals from which ui and vi could be sampled randomly
allowing evolution. This regime is found to be independent of the size of the
sampling interval, and has a fixed shape for a given system size L and a given
epistasis level (µ and ν) (Fig. 18).

Let n be the number of mutations in I+(σσσ). To simplify the condition in
eq. (24), two intervals are defined from which random variables ui and vi are
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Figure 18: The parameters shown are sampled uniformly from the interval
(0,8). Four parameter pairs (vi, ui) are sampled together representing four
mutations, then evolution is tested in different background combinations rep-
resenting all paths on a landscape. Parameters for mutations allowing for
evolution in all possible backgrounds to take place are scattered in green, but
whenever evolution is blocked in at least a single background they are scattered
in red. The black line defines the deterministic bound for which vi = v and
ui = u, where above the line evolution deterministically takes place according
to the limiting case of eq. (29). Whereas the blue line defines the boundary
above which evolution is guaranteed sampling randomly from ranges that have
c = 8 according to eq. (30). Here, µ = 0.4 and ν = 0.7.

sampled. The condition is then restricted to test intervals by considering the
values minimizing the left-hand side and maximizing the right-hand side,

α(n max(vi) + min(vi))ν − α(n max(vi))ν >

(n min(ui) + max(ui))µ − (n min(ui))µ. (30)

Now a bound case for the stochastic picture exists taking the eq. in (30) as-
suming vmax = c, a constant, and umin = 0 as two known limits. The variables
of interest here are umax and vmin, which have the following dependency:
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v =
(

uµ

α
+ (Lc)ν

)1/ν

− Lc, (31)

defining the boundary above which evolution always takes place.
In Figure 18, ui and vi can be sampled from the part above the blue line

(defined by eq. (31)) with absolute confidence in evolution regardless of the
background. It is important to mention that eq. (31) defines the limiting case
of absolute confidence, where evolution might take place for most sampled
parameters from below the blue line. The parameter regime related to the
experimental data in Table 1 is found to guarantee evolution.

4.3 TIL Accessibility Property in TILME

When evolution is guaranteed in landscapes ruled by diminishing returns epis-
tasis, one can ask now whether the TIL accessibility still holds, allowing for
highly accessible peaks in the landscapes. This question is mathematically
equivalent to asking whether eq. (23) is always an increasing function upon
adding a mutation j. This cannot be guaranteed for all choices of (vj, uj, µ, ν).
Therefore, it is expected that the TIL accessibility property is not always sat-
isfied.

4.3.1 Fitness Function Analysis

To develop an idea about the conditions under which accessibility breaking
is expected, we will study the deterministic fitness function in the number of
mutations n in the continuous limit,

f(n) = e−(nu)µ

1 + (eχ−(nv)ν )α
. (32)

Bear in mind that a monotonically increasing or decreasing function along
with a strictly concave function will have peaks in a single layer which will
be accessible from all other layers, guaranteeing the TIL accessibility property
(Fig. 19).

In the following, we work with the logarithm of the fitness function (ln(f(n)))
for it to simplify the analysis.

The first derivative of the logarithm of eq. (32) is given by
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Figure 19: Fitness function shapes of TIL accessibility. (a), (c) and (e) are
the fitness function shapes which conserve TIL accessibility property namely
decreasing, concave and increasing functions. (b), (d) and (f) are respective
deterministic fitness landscapes displaying the TIL accessibility property.
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d(ln(f(n))
dn

= αν(nv)ν

n(1 + eα((nv)ν−χ)) − µ(un)µ

n
, (33)

which indicates two shapes of the function f(n) as n is varied. In the case
χ is small enough, the derivative is negative and f(n) always decreases. In
this case, the wild type is the only peak. In the other case, χ is large enough
so that the derivative starts positive but eventually becomes negative as n

increases. This represents the concave case where a layer beyond n = 0 hosts
the peaks while being accessible from the other layers. The derivative suggests
a perfectly TIL accessible picture however, this analysis has a blind spot, that
is, the derivative being undefined around the wild type (n = 0).

Figure 20: As χ changes, the shape of the fitness function changes. At low
concentration, the fitness function hosts two layers of fitness peaks, indicating
a persistent genotype. The system featured is for parameters (u = v = 1, µ =
0.3, ν = 0.9).

The TIL accessibility property will be broken if the wild type fitness f(0) is
greater than the fitness of the first mutants f(1) for a concentration χ that is
sufficiently large where f(n) is concave; a scenario satisfied with the following
inequalities:

ln(f(0)) > ln(f(1)) ,
df(n)

dn
> 0. (34)
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Figure 21: Diminishing returns epistasis breaks TIL accessibility by featuring
another layer of peaks alongside a persistent wild type, making the second
peak inaccessible from the wild type.

The regime of parameters satisfying these inequalities allows for the wild
type to persist as a peak while another layer of peaks is propagating through
the higher layers of the landscape. Such a regime will be referred to as the
regime of a persistent wild type (Fig. 20 and 21). Persistence occurs for low
values of IC50, conditioned by µ < ν. The lower the value of v the larger the
concentration range of persistence. The larger the concentration range, the
more robust is the persistence upon introducing stochasticity in u and v. The
persistence of the wild type could be justified by the fact that diminishing
returns epistasis speeds up the loss of advantage of mutants with low number
of mutations, creating peaks of their super-sets. This happens before the wild
type loses its advantage, leading to the split of the landscape into two parts of
evolution bias.
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The result above is found at the continuous limit of the fitness function
(limn→∞ f(n)). Since a landscape is a discrete fitness function of n, we expect
the accessibility breaking to occur at the wild type but with a varying basin
of attraction. The basin of attraction is, in this context, the number of layers
whose adaptive walk is directed towards the wild type.

In a landscape with a second layer of fitness peaks, the number of layers
n in the basin of attraction of the wild type can be found by minimizing the
discrete fitness function, f(n − 1) > f(n) and f(n) < f(n + 1),

ln
(

1+eα(χ−((n−1)v)ν )

1+eα(χ−((n)v)ν )

)
nµ − (n − 1)µ

< uµ <
ln
(

1+eα(χ−((n)v)ν )

1+eα(χ−((n+1)v)ν )

)
(n + 1)µ − (n)µ

(35)

where the LHS is an increasing function in n while the RHS is a decreasing
function in n. This makes TIL accessibility breaking by a basin of attraction
more likely to be confined within layers with a low number of mutations n.

A result that is interesting to feature is the fact that as χ goes to infinity,
there is a regime of parameters for which the fitness function is strictly convex
with two peaks at the wild type and the full mutant, where

0 < µ = ln(αvν)
ln(u) < 1. (36)

In most cases, the adaptation walks remain largely skewed towards the full
mutant.

4.4 Fitness Epistasis in the TILME model

In the special case of deterministic TILME model discussed above, the TIL ac-
cessibility was found to hold beyond the wild type. A more general conclusion
about TIL accessibility in the TILME model can be derived from the epistasis
trend in fitness. Given the fitness function definition in eq. (22), the epistasis
in fitness is given by:

ϵ(fσσσ) = − (
∑

i∈I+

ui)µ − ln(1 + (eα(χ−(
∑

i∈I+ vi)ν)))

+
∑

i∈I+

(ui)µ +
∑

i∈I+

ln(1 + (eα(χ−(vi)ν))) (37)
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which is always positive for µ < 1. This is a Universal Positive Epistasis
picture which allows for forbidden orders to arise violating TIL accessibility.
This theoretical result matches the experimental outcome in Figure 13. Ap-
proaching a rigorous description of the landscape dynamics in the the stochas-
tic TILME landscapes, a semi-deterministic landscape is discussed next.
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5 Semi-Deterministic Model of Magnitude Epis-
tasis

After introducing magnitude epistasis to a deterministic version of the TIL
model, in this chapter, a more realistic picture is approached by assuming
stochasticity in the null-fitness inspired by the quantized TIL model (Q-TIL).
In the Q-TIL model, each mutation contributes a constant advantage to the
resistance, making the genotypes carry quantized values of resistance. The
Q-TIL model was initially conceived in notes by Suman Garaub Das, Joachim
Krug, and Muhittin Mungan to investigate the dynamics of adaptive walks
on fitness landscapes. In this chapter, the Q-TIL model is approached from
the perspective of the ordering rules of the IPs. In Subsection 5.1.1, results
already found by Das et al. are presented along with the interesting features
of the strong path and the long-lived peaks. After understanding the evolu-
tion dynamics of what will be referred to as the Q-TIL class of landscapes,
diminishing returns epistasis adds a few layers of complexity to the landscape
dynamics, which is studied in Section 5.2.

5.1 Q-TIL Class Landscapes

In the Q-TIL model, it is assumed that all mutations contribute to the IC50

equally
vi = v, vσσσ = nv, (38)

where n is the size of the set of mutations I+. The IPs between the wild type
000 and the single mutants 000+j are defined as

χ∗
000,+j = ln

(
1 − e−uj

e−uj − e−αv

) 1
α

. (39)

In the regime of interest (where uj, v > 0), these IPs carry the same order as
the null-fitness vector in eq. (19),

χ∗
000,+1 < χ∗

000,+2 < ... < χ∗
000,+L. (40)

As n increases, the IPs between genotypes with n mutations and genotypes
with n + 1 mutations will always hold the same order, but with a shift of size
nv compared to the IPs values of the wild type (Fig. 22),
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χ∗
σσσ,+j = nv + ln

(
1 − e−uj

e−uj − e−αv

) 1
α

. (41)

IPs are only dependent on n and the proxy of the cost of the mutation
j, uj. The identity of the background σσσ is irrelevant but merely the number
of the mutations a genotype carries. Hence, σσσ is simply indicated here by nnn.
Practically speaking, due to quantizing vσσσ, all IPs between genotypes of the
same background size and a genotype differing by a single mutation j occur
at the same concentration χ∗

nnn,j.

n = 0

n = 1

n = 2

χ

χ000,1 χ000,2 χ000,3

χ000,4

χ000,5

χ111,1 χ111,2 χ111,3

χ111,4

χ111,5

χ222,1 χ222,2 χ222,3

χ222,4

χ222,5

χ000,1 χ000,2

χ111,1

χ111,2

χ222,1...

v

2v

Figure 22: In the Q-TIL model, IPs (χnnn,+j) have the same order in each layer
n shifted to higher concentrations by nv. IPs from the same layer were given
a distinct color.

Eq (41) implies the following ordering rules,

χ∗
nnn,+j > χ∗

n−1n−1n−1,+j (42)

and
χ∗

nnn,+j > χ∗
nnn,+(j−1). (43)

The first rule is a special case of eq. (14). Therefore, the TIL accessibility
applies in this case as well. These two inequalities are the defining rules of the
Q-TIL class landscapes, and help reveal the dynamics of evolution on such a
landscape.
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5.1.1 Long-lived Peaks and the Strong Path

To picture the dynamics on a Q-TIL landscape, one keeps in mind the require-
ment for a genotype σσσ to be a fitness peak at a concentration χ,

max
i

(χ∗
nnn,−i) < χ < min

j
(χ∗

nnn,+j) (44)

or namely, χs have to be between all mutation-decreasing IPs and all mutation-
increasing IPs relative to a genotype σσσ (Fig. 23). Mutation-decreasing IPs
(χ∗

nnn,−i) are defined as the ones reporting the intersection events between the
dose-response curves of a genotype (σσσ) with n mutations (|I+| = n) and geno-
types of size n−1 lacking the mutation i, while mutation-increasing IPs (χ∗

nnn,+j)
will indicate intersections between a genotype σσσ and genotypes of size n + 1
having an additional mutation j.

n = 4

n = 3

n = 2

(a) (b) (c)

max(χ∗
n,−i) min(χ∗

n,+j)

Figure 23: Conditions for gaining and losing peakness. (a) Concentration doses
below the minimum required for mutation-decreasing edges (dashed) to flip.
(b) All mutation-decreasing edges (blue) flipped, creating a fitness peak. (c)
The minimum mutation-increasing edge (blue) flipped with which the node
loses its peakness.

Now we define key terms in the Q-TIL class dynamics. We start with
peaks intervals, or intervals of concentration where peaks carry a specific
mutations number. In such an interval, a long-lived peak refers to a fitness
peak that emerges the first and loses peakness the last. In this context, a
strong evolution path is the greedy walk path or the path maximizing
fitness in each step from the wild type to the full mutant on a landscape.

In the following we claim that:
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- Fitness peaks emerge in disjoint peaks intervals of a unique number of
mutations. These intervals, while disjoint, cover the whole concentration axis.
This result was already observed in the notes of Das et al.

- In each of these intervals, a long-lived peak dominates the interval being
also the fittest among all peaks.

- There exists a direct path between the long-lived peaks of all intervals,
creating a strong evolution path to the full mutant.

In order to build up arguments for the above stated claims we start by
asking the following question: In an increasing concentration scheme and in
a layer of genotypes with n mutations, which genotype obtains peakness the
first? This genotype must have all the mutation-decreasing edges flipped in
its direction the earliest. Consequently, the associated set of mutations I+,
corresponds to the set of n smallest IPs.

Now to complete the picture, we ask the opposite question: Which genotype
loses its peakness the latest? For a fitness peak to lose peakness, it takes one
of the mutation-increasing edges to flip, pointing away. In other words, we are
looking for the complement set I− of size L−n whose smallest element j maps
to the largest χ∗

nnn,+j. The search for the smallest I+, and I− with the largest
minimum j, leads to a single genotype which we call for the above mentioned
properties the long-lived peak (σσσl).

Keeping eq. (43) in mind, we look at subsets of size n of a finite set of size
L. The subset carrying the smallest possible maximum element, has always
its complement of size L − n with the largest possible minimum among all
complements. Namely, among all the subsets and their complements,

I+ ∈ SSSn, SSSn = {I+ : |I+| = n}, (45)

I− ∈ SSSL−n, SSSL−n = {I− : |I−| = L − n}. (46)

A long-lived peak is a genotype σσσl such that,

ilmax = min
I+∈SSSn

(max
i∈I+

(i)) (47)

and
jlmin = max

I−∈SSSL−n

(min
j∈I−

(j)) (48)
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where I−(σσσl) ∩ I+(σσσl) = ∅. From now on, we will use the generalized symbol
σσσ to refer to genotypes that are not long-lived peaks.

In order to build the set I+(σlσlσl) of n elements from the set I = {1, 2, .., L},
the smallest possible maximum must be n. The complement of this set has
to start with n + 1. All other mutation sets I+(σσσ) of size n have to have at
least one element i > n, and their complements I−(σσσ) must contain at least
one element j < n + 1. Therefore, in a layer n

ilmax = n, and jlmin = n + 1, (49)

where I+(σσσl) = {1, 2, .., n} and I−(σσσl) = {n + 1, n + 2, .., L}, and

I−(σσσl) ∩ I+(σσσl) = ∅. (50)

Long-lived peaks dominate the layer they belong to, being the fittest peak
and a fitness peak throughout the concentration interval through which mu-
tants with n mutations are candidates for peakness, where for ∀ σ ̸= σl in a
layer n

max(I+(σσσl)) < max(I+(σσσ)), max(i) ∈ I+(σσσ) > n (51)

. and
min(I−(σσσl)) > min(I−(σσσ)), min(j) ∈ I−(σσσ) < n + 1. (52)

The peaks interval in which genotypes with n mutions are candidates of
being peaks has width w(n) defined by jlmin and ilmax ,

w(n) = χ∗
nnn,+jlmin

− χ∗
nnn,−ilmax

(53)

marking the difference between the concentrations at which the long-lived
peaks emerge in layers n + 1 and n.

It is worthwhile to explicitly state that the genotype σσσl losing peakness in
layer n is the sign of the emergence of the long-lived peak in the layer n + 1,

max
I+∈SSSn+1

(i) = min
I−∈SSSL−n

(j). (54)

Furthermore, eq. (54) implies that these intervals of long-lived peak, while
disjoint, are covering the entire concentration axis.

It follows from eq. (54) and the structure of σσσl, that the long-lived peaks
are easily identified and connected by a direct path. At n = 1, the long-
lived peak has the mutation set I+(σσσl) = {1}, at n = 2, the mutation set is
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I+(σσσl) = {1, 2}, at n = a, the mutation set is I+(σσσl) = {1, 2, .., a}, and so on
up to n = L. This direct path of connected long-lived peaks will be the unique
path for evolution from the wild type to the full mutant under a quasi-static
concentration protocol. This path will be referred to as the strong path.

5.1.2 Ruggedness of the Q-TIL Landscapes

Due to the fact that increasing-mutation edges will start flipping away be-
fore all decreasing-mutation edges flip, pointing towards σσσ, genotypes with
max(χ∗

σσσ,−i) > χ∗
σσσ,+jlmax

will never become peaks.
The opposite case, with all χ∗

σσσ,−i < χ∗
σσσ,+jlmin

, indicates the case of maximum
ruggedness with each layer having a window of concentration for which all
genotypes are peaks. Minimum ruggedness can also be directly inferred from
maximizing the overlap between IPs from different layers

χ∗
nnn,−n < χ∗

nnn,+n < χ∗
nnn,−(n+1) < χ∗

nnn,+(n+1), (55)

where this arrangement allows only for the rise of a single peak. The
IP marking the transition of the long-lived peak χ∗

nnn,+(n+1) (from layers n to
n + 1) always appears after χ∗

nnn,−(n+1). It is clear that while χ∗
nnn,−(n+1) could

potentially give rise to additional peaks, the arrangement in eq. (55) ensures
that one mutation-increasing edge for these potential peaks has already flipped
allowing no peaks alongside σσσl.

Ruggedness depends on the spread of the IPs. If the spread of the IPs
in a layer n covers a range less than v, the shift unit, the landscape achieves
maximum ruggedness. If the spread is greater than v, the overlap of the IPs
from different layers increases with the number of mutations n. Landscapes
can be thought of as a symmetric configuration of genotypes with respect
to the central layer, where the structure below the central layer is a mirror
image of the structure above. When v is constant, the number of peaks in
both structures is the same. For a shrinking v, the number of peaks in the
upper half can be less than in the lower half as the peaks intervals shrink with
increasing n.

Now we motivate the largest number of fitness peaks in the interval n at
arbitrary concentration. It can be found through identifying the mutation
related to the largest mutation-decreasing IP less than χ∗

nnn,+jlmin
, we call the

index of this mutation K defined as
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K = argmax
i

(χ∗
nnn,−i) < χ∗

nnn,+jlmin
. (56)

In order to take care of potential overlap between the intervals spanning
mutation-increasing IPs and mutation-decreasing IPs, we define the largest
mutation index related to mutation-increasing IPs less than χ∗

nnn,−K , labeled as
k. The index k is given by

k = argmax
j

(χ∗
nnn,+j) < χ∗

nnn,−K . (57)

The maximum number of fitness peaks in the nth peak interval is then given
by the following binomial,

M(n) =
(

K − k

n − k

)
≥ 1. (58)

Note that this binomial counts all possible sequences σσσ made up of n mutations,
which satisfy the relation in eq. (44). At a concentration χ, defining the
number of fitness peaks one has to find n for which

χ∗
nnn,+n < χ < χ∗

n+1n+1n+1,+(n+1). (59)

Identifying n, now one has to adjust the right-hand sides of the inequalities in
(56) and (57) to χ. We will call the values resulting from this adjustment K̃

and k̃ respectively. The number of peaks in such a landscape is

m(χ) =
(

K̃ − k̃

n − k̃

)
. (60)

Notice that all results in section (5.1) follow from inequalities (42) and
(43). Any model satisfying these inequalities will have the properties described
above. All such models fall into the Q-TIL class.

Now that we understand how a simple landscape with additive parameters
and a constant IC50 behaves, it is time to introduce magnitude epistasis.

5.2 Magnitude Epistasis in Q-TIL Landscapes (Q-TILME)

Adding magnitude epistasis to the Q-TIL model (Q-TILME), we follow the
scheme in section (4.1):

uσσσ = (
∑

i∈I+

ui)µ, vσσσ = (nv)ν (61)

52



where diminishing returns epistasis is attained for 0 < µ < 1 and 0 < ν < 1.
Our key formulas for fitness and IPs will be given by;

fσσσ(x) = e−(
∑n

i
ui)µ

1 + (eχ−(nv)ν )α
(62)

and

χ∗
σσσ,+j = (nv)ν + 1

α
ln
 1 − e−((

∑n

i
ui+uj)µ−(

∑n

i
ui)µ)

e−((
∑n

i
ui+uj)µ−(

∑n

i
ui)µ) − e−α(((n+1)v)ν−(nv)ν)

, (63)

where j ∈ I− and i ∈ I+.
IPs here are constructed out of two parts, one is the shift part (nv)ν . The

shift part reduces with n. The second part resembles the wild type IPs function
in eq. (39), except it depends on the difference ((∑n

i ui+uj)µ−(∑n
i ui)µ). Let’s

call this part χ̃∗
nnn,+j, a fictional IP which will be both dependent on uj and the

background uσσσ.

5.2.1 Background Independent Q-TILME Landscapes

Here, the IP’s background dependence is assumed to be negligible. The effect
of a shift of a changing size in the IPs in each layer is the way magnitude
epistasis will introduce deviations from the simple Q-TIL model.

Note that χ∗
000,+j, in the context of magnitude epistasis, are ordered like in

the Q-TIL case,

χ∗
000,+j = 1

α
ln
(

1 − e−(uj)µ

e−(uj)µ − e−α(v)ν

)
. (64)

In addition, weak background dependence in each layer n will guarantee that
χ̃∗

nnn,+j will follow the same order as χ∗
000,+j. This picture is Q-TIL with a shrink-

ing positive shift of IPs as n increases, which still satisfies the Q-TIL class
inequalities in (42) and (43). As a consequence, such a landscape will have
long-lived peaks and a strong path. Another consequence is peaks intervals
which are exclusive for peaks with a unique mutation number n. The only
difference between this case and the Q-TIL will be the width of the interval,
where for the Q-TIL the width is greater than v,

w(n) = χ∗
n+1n+1n+1,+jlmin

− χ∗
nnn,+ilmax

= v + χ∗
000,n+1 − χ∗

000,n (65)
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Negligible

Dependence
Background

Figure 24: The configurations of IPs for different epistasis levels in the cost
of mutations. Background dependence plays a role at high level of magnitude
epistasis (low values of µ ) where the dispersion of IPs is more pronounced.
The IPs in this graph are for ν = 0.7, v = 6 and u = 0.3. Each layer n has a
distinct color.

whereas the width in the Q-TILME case with weak background dependence
can be less than v,

w̃(n) = χ∗
σσσ,+jlmin

− χ∗
σσσ,−ilmax

= ((n + 1)ν − nν)vν + χ̃∗
000,n+1 − χ̃∗

000,n. (66)

Landscapes here are expected to have a lower ruggedness than the epistasis-
free case as the shrinking shift in the IPs order brings a higher chance of overlap
of IPs from different layers, especially at high n. At low epistasis levels, a Q-
TILME with weak background dependence is expected (Fig. 24).
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n = 3, µ = 1

n = 3, µ < 1
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χσ9σ9σ9,3

χσ3σ3σ3,4

χσ6σ6σ6,4
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χσ10σ10σ10,4

χσ10σ10σ10,5

χ

(a)

(b)

First peak candidate

j = 1 j = 3

j = 5

µ

Figure 25: The background dependence makes each IP unique creating a dis-
persion effect from a point to a cluster of

(
L−1

n

)
points. (a) Q-TIL order of n

points. (b) Q-TILME order of
((

L−1
n

)
L
)

points. Notice that each cluster is
given a distinct color here.

5.2.2 Background Dependent Q-TILME

In order to study diminishing returns epistasis with strong background de-
pendence in the context of Q-TILME model, the changes in the configuration
of the IPs are first introduced. The following arguments focus on mutation-
increasing IPs describing dose-response curves intersections between any two
neighboring genotypes. One of these two genotypes acquired an additional
mutation j on top of the mutation set of the other genotype σσσ. This latter
genotype will be referred to as the background genotype. The (+) sign in
mutation increasing IPs (χ∗

σσσ,j) is dropped for simplicity.
In the absence of epistasis, the identity of the background σσσ to which a

mutation is added was irrelevant in defining IPs. IPs between a genotype (σσσ)
and a genotype differing by a single mutation j (σσσ+j) occur at an order solely
dependent on the identity of the mutation j. In Figure 25 (a), multiple IPs
overlap projecting

((
L−1

n

)
L
)

IPs on L points for no or weak epistasis levels.
In Figure 25 (b), the background dependence recovers the full

((
L−1

n

)
L
)

IPs, as the contribution from the background sum (∑n
i ui) results in a unique

point for each pair of genotypes. The background effect will be referred to
as the dispersion of IPs. Notice that this dispersion effect is centered around
the values where IPs overlap in the absence of epistasis. This dispersion effect
is proportional to the epistasis level. Stronger the epistasis, further apart
are the IPs related to a particular mutation j. The resulting picture is IPs of
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different backgrounds clustering together in groups. These clusters are ordered
depending on the uj. The effect of these clusters overlapping on the landscape
dynamics will be one source of deviation from the Q-TIL picture.

5.2.3 The Impact of Cluster Overlap

The dispersion of the IPs lead to the rise of clusters of points, whose chance
of overlapping increases with the increase in epistasis levels, both in the cost
of mutations and the resistance they bring (Fig. 24 and 27). Assuming IPs
from different layers do not overlap, the main source of deviation from the
Q-TIL class dynamics here will be overlap of clusters. The clusters will also
be labelled by the identity of the added mutation defining the IPs, namely j.

In each cluster j, the IPs are ordered depending on the background, where
χσσσ,j is a decreasing function of the sum (∑n

i ui). These background genotypes
defining the order of the IPs in each cluster will be labelled σkσkσk, where σ1σ1σ1 is the
genotype of the largest sum (∑n

i ui) and σNσNσN is the genotype of the minimum
sum in the cluster, where N =

(
L
n

)
.

χσ3σ3σ3,4

χσ6σ6σ6,4

χσ7σ7σ7,4

χσ5σ5σ5,5

χσ8σ8σ8,5

χσ9σ9σ9,5

χσ10σ10σ10,4

χσ10σ10σ10,5

j = 5

χ

j = 4

llp CandidateFirst peak

n = 3 χσN−1σN−1σN−1,n+1 < χσNσNσN ,n

Figure 26: The overlap of two clusters, where cluster 4 is given in yellow
and cluster 5 is given in green. the first peak emerges after χσσσ9,5 before the
emergence of the long-lived peak (llp) at χσσσ10,4. Overlap of clusters can cause
peaks intervals overlap, leading to the emergence of peaks from different layers
at the same concentration.

Now we have a picture of L clusters of IPs ordered directly with respect
to uj. In each of these clusters there are

(
L−1

n

)
points ordered following the

background sum. Looking into the key landscape dynamics, we know that
the long-lived peak candidate has to be the one with the mutation set I+ =
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(1, 2, .., n). This candidate becomes a peak between the IPs χσNσNσN ,n and χσNσNσN ,n+1.
Due to the direct dependence on uj, it is the case in the layer n + 1 that

χσkσkσk,j < χσNσNσN ,n+1 (67)

for all j ≤ n + 1, making this candidate the peak that loses peakness the last.
However, it is not guaranteed that this candidate will be the first to become

a peak, since in layer n for j > n, and due to the inverse dependence on the
sum (∑n

i ui), the inequality χσkσkσk,j < χσNσNσN ,n can be true. Notice here that if
χσNσNσN ,n is preceded by χσN−1σN−1σN−1,n+1 in layer n, another peak will emerge before the
long-lived peak transition occurs in layer n, creating an overlap between peaks
intervals. Peaks from different layers can now occur at the same concentration,
and the notion of a long-lived peak is irrelevant (Fig. 26).

Figure 27: The configurations of IPs for different epistasis levels in the IC50.
The overlap of layers plays a role at high level of magnitude epistasis (low
values of ν) where the shifts are insufficient to create separate regimes for IPs
from different layers. The IPs in this graph are for µ = 0.4, v = 6, and u = 0.3.

On the other hand, the strong path will survive the clusters overlap as the
genotypes forming the strong path will always be the fittest in their layers
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and the last to transition to the next layer. Since we are not considering
layers overlap, the TIL accessibility will still hold. As for the ruggedness, the
dispersion level controls the spread of IPs. Higher the dispersion the less likely
a genotype will fulfill peakness conditions.

These results assume no layers overlap. The overlap of layers occur at
higher levels of magnitude epistasis, especially in the IC50 (Fig. 27). The
strong path property will only fail if the overlap of IPs from different layers is
strong enough such that the IP candidate to create a long-lived peak (χσNσNσN ,n)
from a higher layer precedes the one from a lower layer. As a consequence,
some peaks intervals could vanish since some layers may carry no peaks. In
this scenario, the TIL accessibility will be violated and ruggedness is expected
to be low.
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6 Discussion and Outlook

In Chapter 3, the assumptions of the TIL model, being a parameterized fitness
function with interesting properties, were tested in the context of experimental
data of β-lactam resistance. This discussion starts by outlining the deviations
found in the experimental results compared to the theory in an attempt to
map developments on the model.

A remarkable observation was that the growth curves fell into different
phases, one of which imposed a significant challenge in this analysis. The fluc-
tuating phase compared to the stable phase in Figure 7 had irregular unsteady
growth curves in each replicate around the MIC concentrations, where the
population was stressed. This might be explained by the fact that in response
to stress, E. coli filaments sometimes, enhancing tolerance through delayed
cell division [23]. The elongated cells burst once the growing pressure cannot
be held within the cell wall. This mechanism might justify the spike in the
OD followed in few hours layer by a drop. It might also be the case that
the replicates were not clonal leading to varying response paces, creating the
divergent behavior among replicates.

In all cases, the logistic function describing the exponential growth of a
population up to the environment capacity was not reflective of the observed
growth curves. Therefore, the area under the curve (AUC) was preferred over
a growth rate extracted from an exponential fit.

Being careful not to take into account apparent growth that might result
from a cell response rather than a cell division, only few hours of initial ex-
ponential growth was considered. Even after the cutoff, one could notice that
many genotypes experienced higher level of growth in the presence of stress
compared to the stress free case, posing the need to investigate further the
behavior of populations under pressure and to revise the basic model of the
dose-response curves.

Having a stable measure of fitness now, the raw data was translated into
tangible results by fitting the dose-response curves to the usual Hill function in
eq. (12) (Fig. 9). While the data carried dose-response curves of pronounced
epistasis that weakened tradeoff, the fitness mostly increased or remained rel-
atively the same as the concentration of the antibiotic increased, compared to
genotypes with a subset of mutations. This monotonic behavior allowed for
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an abundance of accessible evolutionary paths to the full mutant, a general
behavior expected in the context of the TIL model.

Epistatic interactions between mutations were a major observation that the
TIL model neglects. Diminishing returns epistasis was dominant in the IC50,
where the resistance growth with mutations was weaker than multiplicative.
However, fitness was actually amplified by the positive epistasis in the null-
fitness at low concentrations. This boosts fitness at absent or weak pressure
due to the low cost mutations bring. The effect of low mutation cost was
illustrated in the irreversible evolution trajectory shown by the state transition
graph in Figure 16 . Epistasis trend in fitness was found to be dominantly
positive. Given that diminishing returns in the cost of mutations boosts fitness,
this is not surprising. However, the shrinking of the IC50 didn’t impact the
acceleration in adaptivity, both in the experimental results (Fig 13) and the
theoretical model proposed (eq. (37)).

The detailed results of this experiment should not be considered conclusive
as the resolution of the data was low, where a cutoff needed to be introduced to
the growth curves. Moreover, the gradient of concentrations used to produce
these data was high, where out of 11 concentrations all genotypes were already
dead in the last two. This shifts the range of experiment out of the informative
regime. However, the dominant trends of magnitude epistasis both in the null-
fitness and the IC50, that laid the ground for dominant positive epistasis trend
in fitness, are major deviations from the TIL model, that are interesting to
theoretically investigate.

Chapter 4 was dedicated to introducing magnitude epistasis to the frame-
work of the TIL model. Applying a diminishing returns TIL fitness function,
the mathematical parameters indicating the level of epistasis in the cost of mu-
tations (µ) and the IC50 (ν ) were then extracted from the experimental data.
Diminishing returns epistasis was stronger in the cost of mutations compared
to the IC50 in the experiment analyzed here.

Moving away from the experimental constraints, the impact of magnitude
epistasis on the highly rugged, highly accessible TIL landscapes was investi-
gated. In the deterministic limit of the model, it was found that landscapes
characterized with low resistance advantage and levels of diminishing returns
in the cost higher than those in the resistance, the wild type could persist. This
means creating a landscape with two basins of attraction where it is unlikely

60



to reach the fittest layer of genotypes from the wild type. In the experimental
results shown in Chapter 3, the landscapes in the absence and at low levels
of stress displayed a similar feature. Due to the absent cost of mutations, a
second peak emerged along with the wild type and the single mutants peaks.

Approaching a more realistic picture, diminishing returns epistasis in semi-
deterministic landscapes was studied in chapter 5. Semi-deterministic land-
scapes that are epistasis free hold characteristic dynamics along with trivially
guaranteeing the TIL-accessibility. Employing the ordering rules of the IPs,
one can define general properties of the dynamics of evolution on a resistance
quantized landscape (Q-TIL). Intervals of peaks of unique number of mutations
dominated by long-live peaks are two features that enable the emergence of a
strong path of evolution in which the greedy evolutionary trajectory from the
wild type to the full mutant on a landscape is explicitly known. Introducing
epistasis of the diminishing returns nature, the Q-TIL properties show depen-
dence on the level of epistasis. For weak levels of epistasis, all the properties
mentioned above continue to hold.

Increasing epistasis levels reveals two different regimes. The first regime
is when the clusters structure of the IPs in a given layer n starts to over-
lap. This endangers the properties of peaks intervals along with the long-lived
peaks, however the strong path along with the TIL-accessibility are still guar-
anteed. The second regime is at higher epistasis levels that derive IPs from
different layers to overlap, all the above mentioned properties including the
TIL-accessibility, are compromised. This later case points out that the grad-
ual growth in the number of mutations for the peaks as the pressure is increased
is not the case whenever epistasis is very high. The random arrangement of
IPs makes it more likely that few genotypes will dominate the landscapes as
the environment changes.

As for ruggedness, the IP’s spread controls how many peaks a layer could
develop. It was found that the spread of IPs depends on the epistasis pa-
rameters, indicating a decreasing ruggedness with increasing levels of epistasis
compared to the epistasis free case. The main result in Chapter 5 was dis-
covering the IPs ordering rules and their role in identifying systemic behavior
in landscape dynamics along with revealing the accessibility and ruggedness
nature of the landscapes.

For further studies, the data analyzed here suggests that the Hill functions
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are an oversimplification of the dose-response behavior in bacteria. Rigorous
experiments along with a better understanding of the response mechanisms of
bacteria to pressure should help in formalizing more realistic models. Theo-
retically, it would be interesting to approach the ordering rules of the IPs and
the underlying evolution dynamics from a fully stochastic picture, where the
tradeoff parameters are sampled from pre-identified distributions. A better
understanding of the nature of interactions between mutations, and the influ-
ential factors in this context like the size of the system or the environment,
could enable the approach of more realistic models.
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Supplementary Material

AUC Vs. Growth Rate (extended discussion)

This section is an extension of Subsection(3.2.2), here the growth rate and the
AUC in the context of the given data as measures of fitness are compared to
determine which is more appropriate to use and whether one corresponds to
the other. The following discussion follows the order of the questions worked
through to decide which measure of fitness to use.

The steady part of the growth considered in this analysis corresponds to
the exponential phase of growth, so the extraction of the growth rate (R) from
the four available data points was done by finding the maximum slope in the
log scale between any two data points. The growth rate measure introduces
a shape to the dose-response curves where a significant increase is observed
prior to the decrease in fitness, which is poorly modeled by the Hill function
(Fig. 28).

Figure 28: The dose-response curves taking the growth rate (R) in the steady
part as a measure of fitness. The curves tend to have the highest fitness point
at intermediate concentration. The Hill coefficient α was a fitted parameter
here and took different values to enhance the fits. R is normalized with respect
to the wild type’s null-fitness and χ here is given in units of log(mg/ml).
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The biomass defined by the area under the growth curve should be equiv-
alent to the exponential growth rate in rank order, if all growth curves have
the same behavior and are represented by the same logistic function. The area
under the logistic curve (AUC) in eq. 18 was found:

AUC = (ODmax − OD0)T +
OD2

max log(1 + exp[ 4R
ODmax

(tlag − T ) + 2])
4R

+
OD2 log(exp[ 4R

ODmax
(tlag) + 2])

4R
(68)

where T is the total growth time of 5.5h. The analytical AUC is a monoton-
ically increasing function in R, which allows for the two measures to indicate
fitness rank order interchangeably. In Figure (29), a range of R = [0,2] in units
of OD growth per hour (the range of the present experiment) has been plotted
against the AUC for parameters of OD0 = 0.021 and ODmax = 0.5, vary-
ing these parameters within the detected range doesn’t change the monotonic
trend.

Figure 29: The monotonic behavior of AUC as a function of the growth rate
R.

To test the theoretical assumption of interchangeability in the context of
the current data, the correspondence between the two rank orders obtained
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from the two fitness measures can be quantified through the rank correlation
coefficient [24]:

Γ =
∑n

i,j=1 aijbij√∑n
i,j=1 aij

∑n
i,j=1 bij

, (69)

where aij and bij are the difference between the rank of the ith and the jth
genotype in the first order and second order respectively. Γ in the context of the
fitness extracted from the current data considering growth rate and the AUC
have a value of 0.622 averaged over all concenetrations (with 1 corresponding to
perfect correlation). Measuring the same rank order for concentrations below
1µ/mL for which most strains are viable, the rank correlation coefficient falls
to 0.263 (Fig. 30). These results indicate weak correspondence between the
two measures of fitness which contradicts theory.

Investigating how the resolution of data affects the correspondence between
the two measures of fitness, the AUC as a function of the slope is found by

AUC = ∆t2[n2 s̄ +
n−1∑
j=1

j∑
i=1

si] (70)

where si is the slope of the ith segment (Fig. 31). Taking only few segments
into account, the AUC is sensitive to the slope of the first segment, which is
in most cases not the provider of the maximum slope (the growth rate). This
might explain the poor correlation between the logarithm of the maximum
slop and the AUC for the current case.

The weak resolution of the data with only few segments making up the
growth curve renders the data a poor representation of the logistic function
as already seen in Figure 8. For the same reason, the correspondence of the
AUC and the growth rate fails. In the current case, the AUC seems the best
option in hand as a measure of fitness because it considers more data points
and hence is less sensitive than the growth rate to single point errors.
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(a) (b)

(c) (d)

Figure 30: Rank order correlation between AUC rank order and growth rate
rank order for the current data. The correlation is weak, where two clusters
of genotypes seem to be correlated separately. These two groups of genotypes
don’t have a trend of common mutations, however it is more likely that the
shape of the OD curve and which of the three segments provide the maximum
slope are factors in determining the nature of the AUC vs growth rate corre-
lation trend.
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Time [hr]

OD

Figure 31: The area under the steady curve (AUC) explained. The part of the
data considered create three segements of the shape of a trapezoids.
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Experiment results

Mutation u v

{1} 0.13 ± 0.011 4.1 ± 0.067
{2} 0.18 ± 0.000035 5.2 ± 0.050
{3} 0.25 ± 0.0066 5.5 ± 0.076
{4} 0.34 ± 0.021 7.7 ± 0.044

Table 1: Fitted values of u and v for α = 4

µ ν

0.397 ± 0.221 0.709 ± 0.083

Table 2: Fitted values of µ and ν for α = 4
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The AUC of the full growth curve as the measure of
fitness

The analysis of evolution considering the area under the whole curve, including
the fluctuating phase, is presented here. The rank orders of the genotypes are
different from that considering only the area under the steady part of the
curve. Moreover, fitness values of genotypes under intermediate pressure are
greater than that in the absence of pressure. That’s a general feature, however
it is more pronounced here due to the fact that in the fluctuating phase some
replicates increased their biomass significantly despite the presence of pressure.

The fitted null-fitness values sometime increased above the wild type’s level.
The epistasis trend is affected here, where the cost of mutations could either
be boosted or damped as in Figure 33 compared to a dominant trend of nega-
tive epistasis in cost when the steady phase is only considered. The full AUC
landscape is shown in Figure 34, where three genotypes dominate the evolu-
tion dynamics throughout the concentration protocol compared to a relatively
gradual growth in the number of mutations of peaks when only the steady part
of the curve is considered.

Figure 32: The fitted dose-response curves with the AUC of the full growth
curve as a measure of fitness. AUC is normalized with respect to the null-
fitness of the wild type and χ is in units of log(µ g/ml).
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(a) (b)

Figure 33: The epistasis in the null-fitness trend across genotypes considering
AUC of the full growth curve (a) vs that of the steady part in (b).
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Figure 34: Full landscapes in a changing environment of genotypes consider-
ing the entire growth curve including the fluctuating part. Notice how three
genotypes dominate the evolution drift throughout the experiment.
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