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Abstract

Abstract

Embryogenesis in the beetle Tribolium castaneum relies on the morphogenetic movements

of the two extraembryonic membranes, amnion and serosa. It is due to their function and

concerted development that the embryo is able to survive and hatch as a self-dependent

organism. Remarkably, these extraembryonic tissues do not even contribute to the final

form of the embryo. During formation of both membranes, their movements include

tissue expansion, as well as intra-tissue fusion and inter-tissue separation. Thus, the

amnion covers the embryo at its ventral and lateral sides, forming the amniotic cavity,

while the serosa encloses the embryo and the amnion. Besides from serving as a yolk

cover, the serosa provides the embryo with desiccation resistance and contributes to the

innate immune response. In late development, the coordinated withdrawal and subsequent

degeneration of both membranes facilitates embryonic dorsal closure, during which the

amnion replaces the serosa as a transient yolk cover. In serosa-deficient embryos, the

amnion adopts the serosa’s function as an early yolk cover, enabling the embryo to hatch

in a wild type manner.

To learn more about this highly adaptable tissue, the transcription factor Tc pannier

(Tc-pnr), known to be expressed in the amnion at the very onset of blastoderm differ-

entiation, was investigated. The wild type expression pattern of Tc-pnr was determined

via in situ hybridization and the observed defects after parental RNA interference were

analyzed. Tc-pnr deficient embryos display a pronounced hole in the dorsal cuticle and a

characteristic bending of the abdomen and the head towards the dorsal side. This specific

phenotype is the result of a defect during dorsal closure, when Tc-pnr is expressed in the

cells of the dorsal most ectoderm and in the head. In Drosophila melanogaster, the dorsal

hole is due to a loss of Dm decapentaplegic (Dm-dpp) expression in the dorsal most cells of

the ectoderm. It could be shown that in Tribolium, Tc-pnr and Tc-dpp are co-expressed

in corresponding cells of the dorsal ectoderm as well and that Tc-pnr regulates Tc-dpp
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Abstract

expression. This suggests that Tc-pnr has an essential function in dorsal closure and that

its involvement is conserved in Tribolium and Drosophila. Conserved to Drosophila is also

the involvement of Tc-pnr in Tribolium heart formation. Loss of Tc-pnr expression in

the cardioblast cell row impairs its formation and negatively affects the expression of the

heart marker gene Tc midline (Tc-mid). After loss of Tc-pnr expression in the amnion,

where it was shown to be expressed at least until mid embryogenesis, the amnion displays

various defects around the process of dorsal closure. Intriguingly, the amnion ruptures ec-

topically and withdraws independent from the serosa. This is in contradiction to a recent

report that both membranes demonstrate bilayer adhesion during dorsal closure. Thus,

it is assumed that Tc-pnr facilitates this adhesion, and that the adhesion is lost in the

knock down. To investigate the disturbed interplay between the serosa and the amnion,

an existing enhancer trap line expressing EGFP in the amnion was modified, by using a

combination of CRISPR/Cas9 and homology directed repair, to express DsRed2 instead.

The DsRed2 expressing amnion line can now be crossed to another line expressing EGFP

in the serosa, to enable distinct visualization of both tissues and to finish the analysis on

the ectopic amniotic rupture.

Concluding, the results indicate that Tc-pnr effects embryonic and extraembryonic

development in diverse ways around the time of dorsal closure. As dorsal closure in Tri-

bolium is a three-tissue system (amnion, serosa and embryo), investigation of the distinct

regulatory effects of Tc-pnr, will promote the understanding of the concerted development

of the two extraembryonic membranes and the embryo.
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Chapter 1

Introduction

1.1 The new insect model organism Tribolium cas-

taneum

With more than one million documented species, insects exhibit remarkable diversity and

an outstanding species abundance in history [Engel, 2015]. 83% are holometabolous in-

sects (insects with a complete metamorphosis), which are all winged insects (Pterygota).

Within the Holometabola, 12% belong to the Diptera and 38% to the Coleoptera, the

most diverse order [Engel, 2015]. The insect model species Drosophila melanogaster is

a member of the former one, while the red flour beetle Tribolium castaneum belongs to

the latter order. Besides from being a member of the most species rich insect order, Tri-

bolium undergoes short germband development, which is within the Holometabola only

seen in beetles [Roth and Hartenstein, 2008] and likewise observed in most arthropods

[Schröder et al., 2008]. In short germ insects, only the most anterior head anlagen and

the thorax are formed, while the rest emerges subsequently from a segment addition

zone [Nakamoto et al., 2015]. This is in difference to the long germband development of

Drosophila, in which all body segments are formed almost simultaneously at the blasto-

derm stage [Lynch et al., 2012]. The mechanism seen in Tribolium is considered to be the

more ancestral one, similar to vertebrate embryogenesis [Schröder et al., 2008]. However,

most important for the present study is that Tribolium has two distinct extraembryonic

membranes, amnion and serosa. These are retained in most insects and in contrast to the

reduced single complement in Drosophila, the amnioserosa [Panfilio, 2008]. The amnion

and the serosa can also serve as models for epithelia movements in general. This would fit

with Tribolium’s already established role as a model for head development and DV/AP
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axis-patterning, leading away from the Drosophila centric research in insects.

That Tribolium has developed into the new insect model organism next to Drosophila

over the last two decades, would not have been possible without its published genome

[Richards et al., 2008] and the by now exceeding toolkit. Transgenesis is well established

[Berghammer et al., 1999b] and just recently extended by the new genome editing tool

clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9

(CRISPR/Cas9) [Gilles et al., 2015]. For manipulation of gene function, parental RNA in-

terference (pRNAi) is the technique of choice, which works systemic in Tribolium [Bucher

et al., 2002]. A genome-wide insertional mutagenesis and enhancer trapping screen con-

tributed to the imaging possibilities, by yielding over 500 lines with new enhancer trap

patterns [Trauner et al., 2009], as well as the development of a line expressing GFP in

all nuclei [Sarrazin et al., 2012] and the development of a transient fluorescent labeling

method [Benton et al., 2013]. Several of the enhancer trap lines, mostly showing en-

hanced green fluorescent protein (EGFP) expression in the amnion or the serosa, were

already characterized by our group [Koelzer et al., 2014; Hilbrant et al., 2016]. How these

two membranes develop and morphologically change throughout embryogenesis, will be

discussed in the next section.

1.2 Embryonic and extraembryonic development in

Tribolium castaneum and Drosophila melanogaster

In the last section, the difference between the two modes of germband development in

Drosophila and Tribolium has been described. Besides this, basic embryonic movements

are quite similar in both species (see Figure 1.1). Both undergo germband extension,

in which the abdomen of the embryo extends over the posterior pole towards the dorsal

side (Figure 1.1A2 and B3). Subsequently, germband retraction is initiated, when the

extension of the germband has reached its maximum. During this period of development,

the embryo shortens in anterior-posterior (AP) direction and thickens laterally in dorso-

ventral (DV) direction. When the embryo has fully retracted (Figure 1.1B4), again having

the same length as the egg in AP direction, dorsal closure starts (Figure 1.1A3 and B6).

By extension of the flanks towards the dorsal side, the opening in the dorsal epidermis is

closed and the embryo is ready to eclose after a while. Until then, the dorsal opening has

been covered by the amnioserosa in Drosophila. Whereas the amnioserosa of Drosophila is

2
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only covering the embryo’s dorsal side from the late blastoderm on (Figure 1.1A1), until

it has been replaced by the dorsal ectoderm during dorsal closure, development of the two

extraembryonic membranes in Tribolium is much more sophisticated.

Starting with differentiation of the blastoderm, cell fates are determined in Tribolium

(Figure 1.1B1). Cells in an oblique anterior-dorsal region will give rise to the serosa and

the remaining cells in the larger ventral-posterior area of the egg, to the germ rudiment.

The latter one is subdivided into cells giving rise to the amnion and into cells forming

the embryo proper. Thereby, the presumptive amniotic cells are located in the anterior

amniotic fold, which marks the border between serosa and embryo, as well as in a dorsal

area extending into the posterior pole. Around the same time when this differentiation

occurs, easily detectable by the larger and wider spaced nuclei of the serosa, cells at the

posterior pole flatten before they are shifted into the yolk, forming the primitive pit.

Subsequently, a fold is forming at the posterior, stretching ventrally over the involuting

embryonic cells. This goes along with an extension of the serosa to the posterior. As

morphogenesis proceeds, three distinct but at all-time connected tissue movements can

be distinguished. First, involution of the embryo and its elongation emanating from a

posterior segment addition zone. Secondly, extension of the amnion from posterior to

anterior, while it starts to cover the embryo at its ventral and lateral sides. Thirdly,

extension of the serosa from the posterior to the anterior ventral side, enveloping both

embryo and amnion. When the serosa has extended roughly half of the ventral side of the

embryo, the so-called serosal window emerges (Figure 1.1B2). Surrounded by the serosa,

it is only inside this window that the embryo is still visible. The circumference of the

serosal window are actually amniotic cells, which are not yet covered by the serosa. Even-

tually, the window closes and both membranes separate. After serosal window closure, the

two extraembryonic membranes are for the first time discernible as two separate tissues.

The tissue topology, with the serosa lining the inner eggshell and the amnion covering the

embryo partially, persists throughout germband elongation (Figure 1.1B3) and retraction

(Figure 1.1B4). Prior to dorsal closure both membranes rupture (Figure 1.1B4), enabling

this last morphogenetic process. The serosa ruptures at the anterior ventral side, while

the subjacent amnion ruptures in specialized cells of the rupture competence zone in the

same area. Subsequent withdrawal of the serosa to the dorsal side, followed by the amnion

(Figure 1.1B5), first over the head, then the abdomen, results in the formation of two
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Figure 1.1: Schematic of the extraembryonic and embryonic development in
Drosophila and Tribolium . (A1-A3) Development in Drosophila. (B1-B6) Develop-
ment in Tribolium. (A1) At the late blastoderm stage, the extraembryonic amnioserosa
is encompassing only a small region at the dorsal midline, while all other tissue is embry-
onic. The small indentation marks the site of pole cell invagination. (A2) The embryo
has extended around the posterior pole. (A3) After retraction of the germband, the lat-
eral flanks of the epidermis extend to the dorsal side (red arrows), while the amnioserosa
degenerates. (B1) At the differentiated blastoderm stage, the anterior-ventral part gives
rise to the serosa, while the posterior-dorsal part gives rise to the germ rudiment (amnion
and embryo). The small indentation marks the primitive pit, where involution of the
embryo starts. (B2) The embryo extends along with the amnion, while the serosa starts
to encompass both by closing the serosal window (red arrows). (B3) The embryo is fully
extended and lined at its ventral and lateral sides by the amnion. The serosa lines the
inner eggshell. (B4) After retraction of the germband, both membranes rupture in an
anterior-ventral region and withdraw first over the head and shortly after over the ab-
domen (red arrows). (B5) The serosa has withdrawn completely towards the dorsal side,
forming the serosal dorsal organ, while the amnion is still underway, covering the yolk
on the dorsal side. (B6) When the serosa has degenerated and the amnion has formed
the ‘second’ dorsal organ, the embryo is closing its dorsal side, by extension of the lateral
epidermis. Provided by T. Horn and modified from [Rafiqi et al., 2008].

distinct but connected dorsal organs, which are the densely folded extraembryonic mem-

branes. Concomitantly, the lateral epidermis expands dorsally (Figure 1.1B6), following

the retraction movement of the membranes. To facilitate closure of the embryo’s back at

the dorsal midline, both membranes sink down into the yolk (see Figure 1.1B5 for degen-

eration of the serosa only), degenerate and extraembryonic development is finished (the

last two paragraphs are a summary with information out of the following papers: [Han-

del et al., 2000; Panfilio, 2008; Roth and Hartenstein, 2008; Schröder et al., 2008; Lynch

et al., 2012; Strobl and Stelzer, 2014; Hilbrant et al., 2016]). Such complex movements are

not found in Drosophila (see also [Rafiqi et al., 2008; Lynch et al., 2012; Schmidt-Ott and

Kwan, 2016] for a comparison of membrane development in Drosophila and Tribolium).

It is only during dorsal closure in Tribolium, when the serosa is degenerating and the

amnion serves as a transient yolk cover that this organization is comparable to the one

observed in Tribolium (compare Figure 1.1A3 and B6)

Although overall tissue movements during extraembryonic membrane development

are well characterized in Tribolium and the serosa was shown to be involved in dessication

resistance [Jacobs et al., 2013] and to contribute to the innate immune defense [Jacobs
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and van der Zee, 2013; Jacobs et al., 2014], as well as the Tribolium castaneum zerknüllt

1 (Tc-zen1 ) has been shown to be important for serosa specification [van der Zee et al.,

2005; Jacobs et al., 2013; Jacobs and van der Zee, 2013; Panfilio et al., 2013; Koelzer et al.,

2014; Jacobs et al., 2014], the amnion is not as well investigated. Albeit two more recent

publications have shed some light on its function [Panfilio et al., 2013; Hilbrant et al., 2016]

(see also [Panfilio, 2008] for potential functions of the amnion in insects) and consequently

the amnion was identified as the initiator of rupture prior to the onset of dorsal closure

[Hilbrant et al., 2016], genes specifiying the amnion early on are yet to be discovered. To

initiate the search for such genes, in this study the role of the known amniotic marker

gene Tc pannier (Tc-pnr), expressed in amniotic precursor cells in the anterior amniotic

fold at the differentiated blastoderm stage [van der Zee et al., 2005, 2006], was interfered

by pRNAi and the resulting phenotypes investigated via available tools (see 1.1). In

Drosophila it is unclear if Drosophila melanogaster pnr (Dm-pnr) is important for the

amnioserosa (see [Heitzler et al., 1996] contra [Herranz and Morata, 2001]), in which it

is transiently expressed [Winick et al., 1993; Heitzler et al., 1996]. But due to the more

static amnioserosa compared to the coordinated and complex morphogenetic movements

the amnion is performing, Dm-pnr expression is not really meaningful, when it comes to

the amnion in Tribolium, showing again the limitations of Drosophila centric research on

extraembryonic membranes. Additionally, during this study it became clear that distinct

visualization of the amnion as a separate tissue in tight interaction with the serosa is

strongly impeded by currently available fluorescent lines. Therefore, a new transgenic

line expressing Discosoma species red 2 (DsRed2) in the amnion was engineered.

Before introducing the amniotic marker gene pnr and the approach for generating the

transgenic line, heart development and dorsal closure will be described. How these mor-

phogenetic processes work genetically and biologically is important for the understanding

of the data presented in this study.

1.3 The process of dorsal closure

1.3.1 Dorsal closure in Drosophila melanogaster

Dorsal closure is the morphogenetic movement by which a hole in the dorsal epider-

mis is closed by dorsally expanding lateral epithelium and concomitant retraction of the
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amnioserosa. It starts shortly before germband retraction is complete, with an apical

constriction of amnioserosal cells and slight dorso-ventral elongation of the leading edge

cells (the dorsal-most epidermis cells). Subsequently, an actomyosin cable is formed in

these leading edge cells, which stiffens the cells. This enables closing of the dorsal hole, as

the cable contracts to the dorsal midline. When the two opposing leading edges come into

approximate along the anterior-posterior axis, actin protrusions reach out to one another

in a process called ‘zippering’. At the same time, the amnioserosa continues with its

dorsal-medial constriction and the tissue’s surface area over the bulk is further reduced as

individual amnioserosa cells withdraw beneath the surface and undergo apoptosis. Even-

tually, both leading edge cell rows come into physical contact, first forming a seam along

the dorsal midline, before robust adherens junctions are formed, finishing closure of the

dorsal epidermis [Jacinto et al., 2002; Fernández et al., 2007; Wada et al., 2007; Gorfinkiel

et al., 2009; Heisenberg, 2009].

Genetically dorsal closure is initiated by Dm Jun N-terminal kinase (Dm-JNK) sig-

naling. Dm-JNK is activated in the leading edge cells, where it activates Dm decapen-

taplegic (Dm-dpp) expression in the same cells. Dm-dpp gene expression in these cells

is indispensable for dorsal closure, as it triggers downstream pathways, regulating the

whole process [Harden, 2002]. Furthermore, in these most ectodermal cells, Dm-pnr is

an upstream regulator of Dm-dpp [Herranz and Morata, 2001] and loss of Dm-pnr ex-

pression in these cells leads to the dorsal open phenotype, characterized by a hole in the

dorsal cuticle [Jürgens et al., 1984], typically for mutations affecting Dm-dpp expression

[Riesgo-Escovar and Hafen, 1997; Ricos et al., 1999].

1.3.2 Dorsal closure in Tribolium castaneum

Dorsal closure in Tribolium differs in its starting topography, as dorsal closure is a three-

tissue system (amnion, serosa and embryo). At the retracted germband stage, prior

to rupture, the amnion is connected to the dorsal epidermis and the serosa, forming a

bilayer with the latter one. The epidermal border cells connected to the amnion display an

indistinct and irregular border to the amnion, in difference to the regular arrangement of

the leading edge cells in Drosophila. Following rupture of the serosa in an anterior-ventral

area and of the amnion in the same area within a specialized cap region, the membranes

withdraw to the dorsal side. It is assumed that the amnion thereby initiates rupture,
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while the serosa drives the withdrawal, strengthened by the fact that both membranes are

connected throughout the movement to the dorsal side. When the serosa contracts at the

dorsal side, forming the serosal dorsal organ (a square-like, thick and folded structure), the

amnion serves as a provisional yolk cover. It is around this time that the epidermal flanks

of the embryo start to extend dorsally by slight elongation in DV direction. Subsequently,

the serosal dorsal organ degenerates and sinks down into the yolk, with the amnion still

attached. The amnion has by then folded over the serosa and a second, amniotic dorsal

organ has formed. This more transient dorsal organ stretches in AP direction, as the

serosa degenerates and the epidermis is closing in towards the midline. These processes

are concomitant with a general stretching of the embryo in AP direction, as the embryo

bends towards the ventral side. In the closing phase, when the amnion degenerates into

the yolk, the two sides of the epidermis come together in a wavelike fashion, so that

some regions meet before adjacent regions. This irregular closure at the midline is again

different from the more regular zippering observed in Drosophila [Panfilio et al., 2013;

Hilbrant et al., 2016]. Genes known to facilitate dorsal closure in Tribolium are not known.

Overall, dorsal closure in Tribolium and Drosophila display many distinct features,

complicating a comparison between both modes of dorsal closure. As dorsal closure goes

along with the movement of the cardioblast cell row to the dorsal midline, this event will

be described in the next section.

1.4 Heart development in Drosophila melanogaster

The insect heart, known as the dorsal vessel, is a dorsomedial muscular tube that is best

understood in Drosophila and will be described in the following paragraph, including the

level of the underlying cardiac gene regulatory network [Cripps and Olson, 2002].

In Drosophila cardiac tissue arises from the mesoderm. The mesoderm itself is spec-

ified by an enrichment of Dm Dorsal (Dm-Dl) protein in the ventral-most region of the

embryo. When the mesoderm subsequently spreads laterally during invagination, it comes

into the range of Dm-Dpp signaling, a ligand of the bone morphogenetic protein (BMP)

pathway that is secreted by the overlaying ectoderm. Dm-Dpp binds to its membrane

receptor and activates a downstream signaling cascade, resulting in the restriction of Dm

tinman (Dm-tin) expression in the so specified dorsal mesoderm. To further induce the

cardiac mesoderm, Dm Wingless (Dm-Wg) signaling is needed. It is secreted from the
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Figure 1.2: Formation of the Drosophila heart. (A) In the cardiac mesoderm, the
progenitor cells of the dorsal vessel, the myocardial cells and the pericardial cells, are
specified. Latter ones flank the myocardial cells. (B) During dorsal closure, the two rows
of cells from each side of the embryo come together at the dorsal midline. At this time, the
lymph gland is formed, which is later responsible for hematopoiesis (formation of blood
cellular components). (C) When dorsal closure is finished, the two myocardial cell rows
form a central lumen, through which the hemolymph circulates. The dorsal vessel is by
than anchored to the dorsal epidermis via the alary muscles. (alm) alary muscles; (dv)
dorsal vessel; (lg) lymph glands; Modified from [Hartenstein, 1993]
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ectoderm and its downstream target genes act together with the BMP pathway in the

dorsal mesoderm to specifiy the cardiac mesoderm. Thereafter, the three transcriptional

effectors Dm-tin, Dm Dorsocross (Dm-Doc) and Dm-pnr become activated to specify two

distinct subsets of cardiac progenitor cells (myocardial and pericardial cells). These pre-

cursor cells align in the dorsal mesoderm of both sides of the embryo and the cardioblasts

(= myocardial cells) form two continuous cell rows, surrounded by pericardial cells (Fig-

ure 1.2A). Mediated by partially synergistic control of downstream target genes like Dm

midline (Dm-mid) or Dm even-skipped (Dm-eve), expressed in specific subsets, individ-

ual cells are assigned to particular fates as the two rows migrate to the dorsal midline

during dorsal closure of the embryonic flanks (Figure 1.2B). Here they come together and

the dorsal vessel is formed (Figure 1.2C) [Cripps and Olson, 2002; Tao and Schulz, 2007;

Bryantsev and Cripps, 2009]. The cardioblasts are thereby forming the inner contractile

cardiac tube, while the pericardial cells, important for ultrafiltration and excretion of the

haemolymph, form two loose rows at their outside [Rugendorff et al., 1994; Bodmer, 1995;

Medioni et al., 2009].

With this last section the foundations for this study, regarding extraembryonic and

embryonic development, the latter one with emphasis on heart formation and dorsal

closure, have been explained. Therefore, the gene pannier will now be introduced in more

detail, as it is the analysis of this gene that is the main part of this study.

1.5 The extraembryonic marker gene pannier

1.5.1 pannier in Drosophila

Dm-pnr is a GATA transcription factor with two C4 zinc fingers, highly similar to the

vertebrate GATA-1 transcription factor. Thus, it belongs to the family of zinc finger motif

DNA-binding proteins [Ramain et al., 1993; Winick et al., 1993].

In the embryo, Dm-pnr is expressed early in the presumptive amnioserosa and dorsal

epidermis right after cellularization [Winick et al., 1993; Heitzler et al., 1996; Herranz and

Morata, 2001]. The latter expression domain persists throughout germband extension and

retraction until dorsal closure is finished, whereas Dm-pnr expression in the amnioserosa

is lost during germband retraction [Winick et al., 1993; Heitzler et al., 1996; Calleja et al.,

2000; Herranz and Morata, 2001]. Around the time of heart cell specification, which
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is after the germband fully extended, Dm-pnr is additionally expressed in the cardiac

mesoderm [Gajewski et al., 1999]. Subsequently, when the embryo has shortened, Dm-pnr

expression appears in the posterior spiracles [Winick et al., 1993].

Dm-pnr performs many functions during Drosophila embryogenesis. The most im-

portant ones for this study are its involvement in (1) dorsal closure and (2) heart de-

velopment and its more general role in acting as a (3) dorsal-ventral (DV) selector like

gene.

(1) The pnr phenotype (dorsal hole and bending of the head and posterior abdomen

to the dorsal side) was first described in Drosophila in 1984, as part of a large-scale screen

affecting larval cuticle [Jürgens et al., 1984]. The cause of the dorsal hole in the cuticle

was traced back to the regulatory effect of Dm-pnr on Dm-dpp. Dm-pnr is expressed in

the dorsal ectoderm, up-regulating Dm-dpp expression in the same area prior to dorsal

closure [Herranz and Morata, 2001]. As Dm-dpp is known to be essential for dorsal

closure [Affolter et al., 1994; Glise and Noselli, 1997], the dorsal hole is due to a missing

activation of Dm-dpp in Dm-pnr mutants [Herranz and Morata, 2001]. This connects

Dm-pnr to the signaling pathways mediating dorsal closure in Drosophila [Knust, 1997;

Harden, 2002]. Another important factor in dorsal closure is the amnioserosa [Scuderi

and Letsou, 2005]. As Dm-pnr is expressed in the amnioserosa only transiently during

the early development [Heitzler et al., 1996; Herranz and Morata, 2001], a direct effect can

be excluded. Although cell death was reported in the amnioserosa in Dm-pnr mutants

[Heitzler et al., 1996], the membrane expresses the amnioserosal marker Dm u-shaped (Dm-

ush) in the mutant (so the amnioserosa is not absent after loss of Dm-pnr expression)

and none of the investigated Dm-pnr mutants so far adopted the u-shaped morphology,

a characteristic phenotypic trait of genes important for amnioserosa development [Frank

and Rushlow, 1996]. It is rather Dm-pnr’s ectodermal expression in the late embryo

regulating Dm-dpp expression [Herranz and Morata, 2001] that effects dorsal closure.

Dm-dpp is involved in ensuring that the cell shape changes in the epidermis and in the

amnioserosa proceed in a coordinated way, orchestrating dorsal closure [Fernández et al.,

2007; Wada et al., 2007].

(2) Consistent with its expression in the cardiac mesoderm [Gajewski et al., 1999],

Dm-pnr has an important function in heart development. It promotes the development

of all heart cells [Alvarez et al., 2003] and specifies subsets of cells for pericardial or
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myocardial cell fate [Gajewski et al., 1999; Reim and Frasch, 2005]. Accordingly, besides

its effect on other heart genes, Dm-pnr is essential for expression of the myocardial marker

gene Dm-mid [Reim and Frasch, 2005], while the pericardial marker gene Dm-eve is up-

regulated in Dm-pnr mutants, suggesting an inhibitory effect in the latter case.

(3) The role of Dm-pnr as a DV selector like gene is not in connection with early

DV patterning in the embryo but limited to specific compartments/tissues during later

embryogenesis. At the retracted germband stage, Dm-pnr is expressed in the dorsalmost

epidermis, sharing a border with the amnioserosa at the dorsal side and one with the

Dm iroquois (Dm-iro) expression domain at the ventral side. Thus, the dorsal part of

each segment can be subdivided into a medial region, where Dm-pnr is expressed and a

lateral one, where Dm-iro is expressed [Calleja et al., 2000]. In the Dm-pnr null mutant

[Ramain et al., 1993], the lateral region expands at the expense of the medial region,

illustrated by an extension of Dm-iro expression into the former Dm-pnr domain [Calleja

et al., 2000]. In wild type embryos at the extended germband stage, Dm-dpp is expressed

in two stripes, extending from the head to the end of the abdomen [Herranz and Morata,

2001]. The dorsal stripe abuts the amnioserosa, while the more lateral stripe runs along

the lateral side of the embryo. In the null mutant, the dorsal expression is lost, while

Dm-dpp expression in the lateral stripe is unaffected. Measurements of the number of cells

from the lateral Dm-dpp expression stripe to the border with the amnioserosa, showed no

cell loss, supporting for a transformation of the medial into the lateral region. That Dm-

pnr subdivides each segment into a medial and lateral region, is further strengthened by

observations of larval cuticular features of the null mutant. Dorsal triangles, which can be

found only in the medial region of the abdominal region, are replaced by spinules, which

normally appear only in the lateral region [Herranz and Morata, 2001]. Thus, it is likely

that Dm-pnr acts as a selector like gene (genes which function within distinct regions of

the body, where they determine specific developmental pathways), partitioning the dorsal

epidermis into a medial and lateral region through specification of the former [Mann and

Morata, 2000; Herranz and Morata, 2001]. These findings can be expanded to a more

general role in establishing the Drosophila body plan along the DV axis, if considering

the function of Dm-pnr in defining the dorsal eye margin [Oros et al., 2010] and the dorsal

eye fate [Singh et al., 2012]. Another example would be the subdivision into medial and

lateral regions in the adult dorsal thoracic and abdominal segments [Calleja et al., 2000].
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Interestingly, in the latter three publications, Dm-iro is reported as a downstream target

of Dm-pnr regulation.

1.5.2 pannier in Tribolium

The function of Tc-pnr in Tribolium development is unclear. Until this time, Tc-pnr has

been used only as a marker for different tissues throughout embryogenesis. Hence, its

expression pattern is rudimentary known.

When the posterior fold has been formed shortly after differentiation of the blasto-

derm, Tc-pnr is expressed in the presumptive amniotic part of the fold as well as in the

anterior amniotic fold, albeit considerably weaker. Both domains are connected by ex-

pression in the dorsal amnion [van der Zee et al., 2005, 2006]. At the extended germband

stage, Tc-pnr is expressed in the dorsal ectoderm [van der Zee et al., 2006; Nunes da Fon-

seca et al., 2008]. Furthermore, expression in the heart at the retracted germband stage

has been reported [Cande et al., 2009].

Genes regulated by Tc-pnr are not known. Only upstream regulators affecting Tc-

pnr expression and ones which do not affect it have been identified.

Tc-zen1 RNAi does not effect Tc-pnr expression. In Tc-zen1 knock down embryos,

serosal tissue identity is lost and to a certain degree respecified as amnion. It is in the

enlarged amniotic tissue that Tc-pnr is still expressed as well as in the head during

germband extension [van der Zee et al., 2005]. At the onset of differentiation of the

blastoderm, when Tc-pnr is expressed in the presumptive amniotic tissue, Tc-dpp RNAi

abolishes its expression. This is caused by ventralization, indicated by a straight border

between the serosa and the germ rudiment. Also later on, when the embryo has fully

extended its germband, Tc-dpp RNAi leads to a complete loss of Tc-pnr expression in

the ectoderm [van der Zee et al., 2006]. After Tc short gastrulation (Tc-sog) RNAi, the

border has also lost its obliqueness. But in contrast to Tc-dpp RNAi, Tc-pnr is still

expressed in the cells of the border, as well as in the primitive pit. It is only in the

region of the former dorsal amnion, which was respecified to an ectodermal cell fate that

the transcript is lost. It is assumed that this is a secondary effect caused by the effect

of Tc-sog RNAi on Tc-dpp, due to a ventral to dorsal transport of Tc-dpp molecules by

Tc-Sog in the wild type. When Tc-pnr is expressed in the ectoderm, Tc-sog RNAi does

not lead to a loss of expression but a gain of expression in a ventral ectodermal stripe. As
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Tc-dpp is expressed there ectopically as well, this is again assumed to be an indirect effect

mediated by Tc-dpp [van der Zee et al., 2006]. The same is true after Tc-Toll1 RNAi.

Here, Tc-pnr is expressed in the exact same ring-like domains in the extended germband

as Tc-dpp. The expression in the ectoderm along the dorsal side of the embryo is lost.

A possible cause of this is that ectodermal patterning is initiated by activation of Tc-sog

through Tc-Toll1, resulting in Tc-dpp expression along the dorsal midline. Since Tc-dpp is

expressed in the straight border between germ rudiment and serosa after Tc-Toll1 knock

down, this process is started with an AP asymmetry, assumed to lead to the alternative

expression pattern [Nunes da Fonseca et al., 2008].

The during this study generated DsRed2 expressing transgenic line was already used

for the analyses of pnr. Therefore, the adopted CRISPR/Cas9 system will be introduced,

as well as a brief outlook on the benefits of the new line will be provided.

1.6 Transgenesis in Tribolium castaneum

Visualization of amnion and serosa as two separate tissues is difficult throughout embryo-

genesis, as they are either forming a bilayer in close proximity or they are physically in

contact. To build on the existing resource of two recently characterized extraembryonic

marker lines expressing EGFP in the amnion and serosa respectively [Trauner et al., 2009;

Koelzer et al., 2014; Hilbrant et al., 2016], the EGFP transgene in the line labeling the

amnion was replaced by a DsRed2 transgene, using the CRISPR/Cas9 system [Cong et al.,

2013]. Transgenic beetles of the subsequently established new strain termed red HC079

(rHC079) could then be crossed to transgenic beetles expressing EGFP in various tissues,

leading to offspring heterozygous for both markers. This greatly enhanced discrimination

of the two tissues by fluorescent imaging.

In the following two sections a general introduction into the CRISPR/Cas9 system

and how it is used for gene editing will be provided. In the concluding section, the

motivation for the generation of the DsRed2 expressing line will be stated in more detail

and in relation to possible applications for the research on extraembryonic membrane

development.
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1.6.1 The CRISPR/Cas9 system as an endogenous immune de-
fense for Archaea

The CRISPR locus was first discovered in the Escherichia coli genome. The locus is orga-

nized as an alternating series of repeat sequences and spacer sequences [Ishino et al., 1987].

Almost 20 years later, it was discovered that CRISPR spacers have identical sequences to

that of mobile genetic elements (MGEs) [Bolotin et al., 2005; Mojica et al., 2005; Pourcel

et al., 2005] and in cooperation with Cas proteins act as part of the adaptive immune

system in bacteria and archaea [Barrangou et al., 2007]. How the CRISPR/Cas9 system

(type II of the five CRISPR/Cas types [Makarova et al., 2015]) works in prokaryotes, is

thoroughly described in an array of publications [Kirchner and Schneider, 2015; van der

Oost et al., 2014; Peng et al., 2015; Rath et al., 2015]. Below, the three main steps of the

system are shortly summarized.

1) Acquisition: The DNA of an invading MGE is fragmented into individual spacer

sequence stretches (26 bp - 72 bp in length) by Cas nucleases. Subsequently, those spacers

are integrated into the CRISPR array (combination of CRISPR locus and Cas genes)

within the host genome.

2) Expression: The CRISPR array is transcribed into precursor CRISPR RNA

(pre-crRNA) and trans-activating crRNA (tracrRNA). The tracrRNA binds to a 25 nt

long complementary sequence within the repeat sequence of the pre-crRNA. This binding

results in a double-stranded region, which is cleaved by the ribonuclease RNase III. The

now mature crRNA (the spacer was trimmmed to a ∼20 nt long stretch) still forms a

duplex with the tracrRNA, the tracrRNA:crRNA complex, which is also called guide RNA

(gRNA). Interaction of the gRNA with the endonuclease Cas9, leads to the formation of

the Cas9 ribonucleoprotein (Cas9-RNP) complex, needed for target interference.

3) Interference: The gRNA guides the Cas9 to specific loci (protospacers; 20 nt

long complementary sequences to the crRNA) on invading MGEs. This is facilitated

by scanning the MGEs for a protospacer adjacent motif (PAM), a three nucleotide long

binding motif, which is directly adjacent to the protospacer. Subsequently, first the PAM

sequence binds to the gRNA and secondly, base pairing between the protospacer and the

crRNA occurs. Triggered by these binding events, the Cas9 cleaves both strands of the

bound DNA, leading to target degradation.

These three steps together form a strong defense mechanism of the immune sys-

15



Introduction

tem against invading viruses like bacteriophages and other MGEs. In this regard, it

is worth noting that viruses have developed sophisticated countermeasures against the

CRISPR/Cas system in diverse ways [Bondy-Denomy et al., 2013; Deveau et al., 2008;

Pawluk et al., 2014; Seed et al., 2013].

1.6.2 Gene editing via CRISPR/Cas9

In 2012 Jinek and colleagues published the first experimental evidence for applying CRIS-

PR/Cas9 as a tool for gene editing [Jinek et al., 2012]. They showed that it is possible

to combine crRNA and tracrRNA via an artificial tetraloop into a chimeric RNA that is

necessary to direct Cas9 to specific DNA targets. This gRNA has a 20 nt sequence at its 5’

end provided by the crRNA for DNA binding, whereas the tracrRNA provides stem-loops

required for formation of a complex with Cas9 [Jinek et al., 2012; Nishimasu et al., 2014].

Additionally, the PAM sequence was identified as indispensable for specific target DNA

binding by Cas9 [Jinek et al., 2012; Sternberg et al., 2014]. In CRISPR/Cas9 systems,

the canonical sequence of the PAM is NGG (the sequence is specific to the CRISPR/Cas

type, while the CRISPR/Cas types are grouped based on their individual set of Cas genes

[Mojica et al., 2009; Makarova et al., 2015]) and located upstream (at the 5’ end) of the

protospacer [Anders et al., 2014].

This breakthrough in CRISPR research was accompanied by a wave of publications,

improving not only our understanding of the underlying biology and mechanics [Makarova

et al., 2015; Nishimasu et al., 2014] but also of the usability of CRISPR/Cas9 as a system

for gene editing [Cong et al., 2013; Mans et al., 2015; Mali et al., 2013; Ran et al., 2013].

Hence, in the last years CRISPR/Cas9 has become the leading genome engineering tool,

boosted by its easy and cost-efficient application, as well as by the availability of online

tools for fast and easy design of specific gRNAs.

In the course of advancing CRISPR research and the accompanied spread of use of

this new gene editing technique, the number of animal species in which the CRISPR/Cas9

system could successfully be implemented increased greatly. Not only organisms with an

already huge set of tools for genome engineering like mouse [Zhou et al., 2014], Drosophila

[Xue et al., 2014] or zebrafish [Auer et al., 2014] could benefit from this development,

but also organisms with smaller research communities, like the mosquito Aedes aegypti

[Kistler et al., 2015], the flea Daphnia magna [Nakanishi et al., 2014], the cricket Gryllus
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bimaculatus [Awata et al., 2015], the nematode Pristionchus pacificus [Witte et al., 2015],

the silkworm Bombyx mori [Ma et al., 2014], the crustacean Parhyale hawaiensis [Martin

et al., 2016] and the beetle Tribolium castaneum [Gilles et al., 2015].

1.6.3 Application of CRISPR/Cas9 in Tribolium castaneum :
advancing research on extraembryonic membranes

In 2015 M. Averof and his group showed that CRISPR/Cas9 is feasible in T. castaneum

[Gilles et al., 2015]. By injection of either in vitro transcribed Cas9 and a specific gRNA or

by injection of two plasmids harboring the corresponding sequences, they achieved consid-

erable transgenesis efficiencies, both for knock-out (loss of gene expression) and knock-in

(gain of foreign gene expression) experiments. Different promoters driving expression of

the CRISPR toolkit in plasmids were tested regarding their efficiency. Endogenous loci

were targeted via specific gRNAs and the resulting phenotypes compared to those ob-

tained by RNAi. Altogether, they provided the Tribolium community with a good starter

set for further gene editing.

Of special interest for the present study was the use of a gRNA designed for guiding

Cas9 specifically to EGFP [Auer et al., 2014]. Injected in combination with a plasmid

harboring a DsRed2 transgene, replacement of EGFP via initiation of the homology

directed repair mechanism was achieved [Gilles et al., 2015]. Considering that up to now

all transgenic lines available in Tribolium are using GFPs [Sarrazin et al., 2012; Trauner

et al., 2009] as fluorescent markers, this approach could easily change this by editing the

existing lines.

The largest source of transgenic lines in Tribolium is a collection of enhancer trap

lines, generated via insertional mutagenesis, known as the GEKU lines [Trauner et al.,

2009]. Our lab already characterized some of these lines, leading amongst others to

the discovery of two ‘serosa lines’ (G12424 and KT650) [Koelzer et al., 2014] and an

‘amnion line’ (HC079) [Hilbrant et al., 2016], expressing EGFP in the serosa and amnion,

respectively. An enhancer trap line with EGFP expression in the cardioblast cell row

(G04609) was characterized, too [Koelzer et al., 2014]. Via the use of the transgenic lines

for both extraembryonic membranes (HC079, G12424 and KT650), it was actually just

recently reported by our lab [Hilbrant et al., 2016] that both membranes have a distinct

tissue identity during germband retraction and are not intercalating (contra [van der Zee
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et al., 2005]) and are both still fully present (contra [Panfilio et al., 2013]). Now, to better

understand the development of the two membranes during embryogenesis, it is not only

necessary to look at them as separate tissues but also to examine how they interact. For

the process of dorsal closure, this has been done in great detail [Panfilio et al., 2013].

Still, until the end of this highly dynamic morphogenetic process, both membranes stay

connected as apposed epithelial sheets, hampering examinations of tissue borders or cell

affiliation in those regions. To cite Panfilio et al. 2013 ‘...the exact structural nature of the

relationship between the amnion and the serosa is difficult to visualize at these stages...’

[Panfilio et al., 2013]. For an adequate investigation of these tissue regions, differential

fluorescent labeling of the two membranes is necessary, which cannot be achieved with the

current GEKU lines only expressing EGFP. By CRISPR/Cas9 mediated replacement of

EGFP with DsRed2 in the amnion line, amnion and serosa can be separately visualized

by EGFP and DsRed2. This will enable us to not only investigate the morphogenetic

movements and tissue changes of the separate membranes, but also their interplay during

the highly dynamic phase of late Tribolium extraembryonic development.

1.7 Objectives

With this study two goals should be achieved: First, a detailed description of the wild

type expression pattern of Tc-pnr and of the resulting phenotypes after parental RNA in-

terference. Second, the replacement of an EGFP transgene in the amnion line HC079 with

a DsRed2 transgene, to enhance distinct visualization of both extraembryonic membranes

in a heterozygous cross.
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Chapter 2

Material & Methods

2.1 Fundamental beetle work

2.1.1 Tribolium castaneum husbandry

For experiments performed with T. castaneum, the following strains were used: the wild

type San Bernardino strain [Brown et al., 2009], a transgenic line expressing GFP in all

nuclei (nGFP line) [Sarrazin et al., 2012], three of the GEKU lines characterized by our

lab [Koelzer et al., 2014; Hilbrant et al., 2016], the two GEKU lines characterized in this

study (Figure 3.22), or the rHC079 line(s) generated during this project (see 3.1).

The beetles were kept at 30 ◦C and a relative humidity (RH) of 50% in the dark at all

time. For stock keeping, a mixture of 2 kg ”Weizenmehl Extra Type 405” (Diamant), 1 kg

”Weizen Mehl Type 1050” (Goldkrone) and 1 g of the anti fungal powder ”Fumagilin-B”

(Medivet Pharmaceuticals Ltd.), termed ”full flour”, was used. On a weekly basis, adult

beetles were separated from the flour via a 710 µm sieve and transferred back on full flour

and a tablespoon of Springaline® inactive dried yeast (Biospringer) was added. Firstly

this weekly stock keeping assured that populations did not overgrow, since the larvae are

still small enough to fit through a 710 µm mesh and secondly it kept the flour from getting

too dirty.

After a period of three months, an overnight egg lay (EL) was set up on ”EL flour”,

which is ”Instant Mehl Type 405” (Diamant) pre-sieved in a 300 µm sieve (discarding all

particles with a diameter bigger than 300 µm). To do so, adult beetles were separated

from full flour and transferred on EL flour. On the following day, beetles were again

separated from EL flour and transferred back onto full flour. Subsequently eggs from this

overnight collection were sieved out of EL flour via a 300 µm mesh and also transferred
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on full flour. This procedure guaranteed that the used beetle populations were always

very young and healthy and should therefore provide the experimenter with a consistently

large amount of eggs.

2.1.2 Egg collection and fixation

To obtain embryos for experiments, adult beetles were put on EL flour for a specific time

span. Depending on the desired developmental stage, eggs were either processed directly

or transferred into EL baskets (self-made; approximately 3 cm tall piece of a plastic tube

with an inner diameter of 22 mm and a wire gauze made from polyamide with a mesh

size of 125 µm (Cat#510-9529, VWR) clued to one side of the open tube) on top of a

flour filled petri dish (thereby preventing dessication of the eggs) and further incubated

like this under normal culturing conditions. In the latter case, the minimum age of the

embryos corresponds to the incubation time and the maximum age to the starting time

of the EL plus the incubation time.

For techniques other than live imaging, embryos were fixed at specific times to pre-

serve its tissue shape and molecular composition at the subcellular level. But first of all,

the EL baskets were rinsed under gently flowing tap water to remove flour particles. Sub-

sequent dechorionation and dissolving of residual yeast particles was achieved by putting

the eggs in 100% DanKlorix (Colgate-Palmolive), which contains sodium hypochlorite, for

5 min with rinsing and agitation. Eggs were rinsed again in water and transferred with

a paintbrush into a 1:2 phosphate-buffered saline (PBS):heptane solution in a glass vial,

where they swim in the interphase. Remaining dirt particles were removed by exchanging

the lower PBS phase once. For fixation, a 5% formaldehyde solution (4 ml heptane, 2 ml

PBS and 2 ml 10% formaldehyde (Cat#04018, Polysciences, Inc.)) was used. The glass

vial was strapped to a shaker and fixation was performed for 60 min at room temperature

(RT) and shaking at ∼ 100 rpm. After this time, the lower phase was removed, 3 ml

methanol was added and the whole glass vial was shaken for ∼ 1 min by hand. Due to

the methanol shock (osmotic shock), the vitelline membrane bursts open and the eggs

sink down to the bottom, from where they were transferred into a 1.5 ml tube. These

steps were repeated several times, until all eggs were collected. Thereafter the eggs were

washed three times with methanol and stored at -20 ◦C.

Tribolium embryos older than ∼ 20 h need a special treatment, since until ∼ 64 h,
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the vitelline membrane cannot be removed by methanol shock and therefore needs to be

dissected off of the embryo. This special fixation is only needed if an in situ hybridization

or an antibody staining is planned. For nucleic acid stains like fuchsin, whose molecules

are much smaller and can penetrate cracks in the vitelline membrane, it is not necessary.

The special fixation used the same fixation solution as the normal one but fixation was

performed for 2 h. Preparatory, a double-sided tape was stuck to the inner surface of a

small petri dish lid and a Whatman® gel blotting paper (Cat#Z613916-25EA, Sigma-

Aldrich®) of corresponding size was cut. After 2 h the eggs were pipetted onto the blotting

paper and gently pressed on the double sided tape. 1 x PBS was used to submerge the

eggs, to prevent dessication. Further processing can be delayed for several days by covering

the petri dish and storage at 4 ◦C. Manual removal of the vitelline membrane was done by

using a set of fine forceps (Cat#LH79.1, Carl Roth®). Devitellinized eggs were collected

in a 1.5 ml tube containing 1 x PBS, postfixed for 20 min in 5% formaldehyde, washed

two times in PBS plus 0.1% Tween®20 (PBT; Cat#P3563, Sigma-Aldrich®) and stored

for up to four weeks in PBT at 4 ◦C. Longterm storage is possible in methanol at -20 ◦C.

2.2 Fundamental techniques of molecular biology

2.2.1 Isolation of genomic DNA

Three beetles were transferred into 200 µl HOM-buffer (80 mM ethylenediaminetetraacetic

acid (EDTA) pH 8.0, 100 mM Tris(hydroxymethyl)aminomethane (Tris) pH 8.0, 0.5%

sodium dodecyl sulphate (SDS), aseptic filtrated). 1 µl proteinase K (20 mg/ml) was

added and digestion was conducted at 55 ◦C for 1 h. Every 20 min, the mixture was

vortexed for 1 min. Phase separation at RT was achieved by addition of 200 µl 5M

sodium chloride (NaCl) pH 5.2 and 300 µl chloroform and centrifugation for 15 min at

14k rpm. The DNA containing upper phase (∼ 300 µl) was transferred by pipetting into

a new tube. Precipitation was done by addition of 30 µl sodium acetate (NaOAc) and 600

µl 100% ethanol. After mixing and incubation at -20 ◦C for 1 h, the DNA was pelleted

through 20 min centrifugation at 4 ◦C and 14k rpm. The supernatant was discarded, the

pellet washed with 700 µl 70 % ethanol and centrifuged for 5 min. Subsequently the

DNA was dried directly in the tube for ∼ 5 min after discarding the supernatant again.

Resuspension was done in 20 µl nuclease-free water (Cat#AM9937, AmbionTM). Prior

21



Material & Methods

to storage at -20 ◦C, quality and concentration were determined using a NanoDrop 2000c

(Thermo Scientific) spectrophotometer.

2.2.2 RNA extraction and cDNA synthesis

Eggs were handled according to 2.1.2. After bleaching and rinsing, the eggs were trans-

ferred with a paintbrush into a 1:1 PBS:heptane solution in a glass vial. The lower PBS

phase was exchanged several times until it was clear and free of particles. All eggs were

then transferred into a 1.5 ml tube, washed with PBS to get rid of any residual heptane,

which evaporates while the embryos do not dry out in the lower PBS phase and washed

again several times with distilled water. 300 µl TRIzol® reagent (Cat#15596-026, In-

vitrogen) was added, the eggs were smashed using a pestle (Cat#47747-358, VWR) and

additional 200 µl TRIzol® reagent was added. If required, the homogenate can now be

stored at -20 ◦C several days for short-term or at -80 ◦C for long-term. The aqueous phase

was separated from the debris and transferred into a new tube after centrifugation for

10 min at 4 ◦C and 12k rcf. 100 µl chloroform was added and incubated for 10 min at

RT. Phase separation was done by 15 min of centrifugation at 4 ◦C and 12k rcf (upper

phase-RNA; middle phase-DNA; lower phase-protein). The RNA-containing upper phase

was transferred into a new tube and mixed with 250 µl isopropanol by careful inversion of

the tube. Another round of centrifugation for 10 min at 4 ◦C and 12k rcf lead to pelleting

of the RNA. All supernatant was removed and 500 µl 75% ethanol was used for washing

the pellet. Centrifugation for 5 min at 4 ◦C and 12k rcf was peformed, the supernatant

discarded and the washing step repeated. Subsequently the RNA was dried directly in the

tube for 5 to 10 min, resuspended in 30 µl nuclease-free water and incubated for 15 min at

60 ◦C to dissolve the RNA completely. After this the RNA concentration was measured

using the NanoDrop 2000c spectrophotometer, aliquots were made and stored at -80 ◦C.

In order to synthesize copy DNA (cDNA) from RNA, the SuperScript® VILO cDNA

Synthesis Kit (Cat#11754-050, Invitrogen) was used to reverse transcribe 2 µg of the

isolated RNA via the enzyme reverse transcriptase into double stranded DNA, called

cDNA. The procedure was executed as described in the manufacturer’s protocol.
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2.2.3 Design of primers

All primers were either designed using available coding sequence (CDS) data from the

official gene set (OGS) of the Tribolium genome browser by M. Stanke (http://bioinf.

uni-greifswald.de/gb2/gbrowse/tribolium/, last access: 24.08.2016), using sequence

information obtained via the National Center for Biotechnology Information (NCBI)

search page (http://www.ncbi.nlm.nih.gov/, last access: 24.08.2016) or using sequence

information supplied by other research groups.

The web page Primer3Plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/

primer3plus.cgi, last access: 24.08.2016) was used for primer design with the default

settings. If primers were designed in order to make probes for use in the Tribolium

in situ hybridization protocol (see 2.4.2), the product size range was set to 700-850

bp (product sizes had to be reduced in some cases, if only shorter CDS were avail-

able). For all other applications this range was adapted to fit determining factors.

Obtained primer sets were tested for potential self-complementarity via the web page

Oligo Calc (http://biotools.nubic.northwestern.edu/OligoCalc.html, last access:

24.08.2016).

2.2.4 Polymerase chain reaction

The polymerase chain reaction (PCR) is a method to amplify stretches of DNA in vitro

via denaturation of the double strand (ds), subsequent binding (annealing) of specific

primers and elongation mediated by a DNA polymerase. The PCR product is the newly

synthesized dsDNA strand identical to specific parts of the template DNA strand with

the forward (fwd) primer and reverse (rev) primer as its border sequences.

All PCR reactions were conducted using the REDTaq® ReadyMixTM PCR Reaction

Mix (Cat#R2523, Sigma-Aldrich®). In Table 2.1 the volumes for a standard 25 µl PCR

reaction and in Table 2.2 the cycling parameters of a standard PCR are provided.

The elongation time depends on the size of the PCR product, where the rule of

thumb is 1 min for 1 kb. Depending on the needed specificity, the second parameter to be

adjusted is the annealing temperature, normally ranging from 50 ◦C to 60 ◦C, affecting the

binding specificity of the primers to the DNA. Higher temperatures lead to an increased

specificity, lower temperatures to a decrease in specificity.
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Table 2.1: Standard PCR reaction
Volume Reagent Comment

12.5 µl REDTaq ReadyMix final concentration: 1 x

1 µl fwd primer working concentration: 10 µM

1 µl rev primer working concentration: 10 µM

x µl template DNA -

10.5 µl - x µl nuclease free water -

Table 2.2: Standard PCR cycling conditions

Step Time Temperature Comment

1 95 ◦C 2 min initial denaturation

2 95 ◦C 30 sec denaturation

3 58 ◦C 30 sec annealing

4 72 ◦C 1 min elongation

5 - - repeat step 2-4 34 times

6 72 ◦C 7 min final elongation

2.2.5 Agarose gel electrophoresis

To verify the correct product size after PCR, agarose gel electrophoresis was conducted.

Due to the negative charge of DNA molecules and an applied electrical field in the gel

chamber, all DNA fragments (PCR products) migrate toward the positively charged an-

ode. Thus it is possible to separate DNA fragments by size only. Consequently, large

fragments migrate more slowly through the gel matrix compared to small ones.

A 1% agarose gel was used for all runs and 1 x Tris-acetate-EDTA (TAE) buffer

(50 x TAE: 2 M Tris, 0.05 M EDTA, pH 8.0, in water) was used as running buffer.

Either 1 - 2 µl of PCR product was loaded (loading buffer is already included in the

REDTaq® ReadyMixTM) or 3 µl were loaded when mixed (15 µl total volume) with a

pre-made loading buffer (5 x loading buffer: 5x TAE, 17.5% glycerol, in water, 0.01 g of

Orange G (Cat#O3756-25G, Sigma-Aldrich®)). In both cases 100 V were applied for 20

min. By addition of one drop of an 0.025 % ethidium bromide solution (Cat#HP47.1,

Carl Roth®) independent of the gel size, those different fragments were visualized at an
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Molecular Imager® Gel DocTM XR+ Imaging System (Bio-Rad Laboratories), where the

large fragments showed up at the top of the gel and small ones more to its bottom. Either

the SmartLadder (Cat#MW-1700-10, Eurogentec) or the Quick-Load® Low Molecular

Weight DNA Ladder (Cat#N0474S, New England Biolabs) for small molecules served as

size standards.

2.3 Cuticle preparation

For morphological analyses at the end of Tribolium embryonic development, cuticle prepa-

ration is the technique of choice. It dissolves all non-cuticle matter, leaving behind the

epidermal cuticle and the outer eggshell. Therefore it is essential that the embryos can

develop until the stage when the epidermis secretes this cuticle, which is for Tribolium

around three days after deposition of the egg.

First, all dirt particles were dissolved by bleaching (see 2.1.2), next the EL basket

harboring the embryos/larvae was transferred to a water filled petri dish, so that the

embryos/larvae were floating on the water surface. Two drops of 1:1 Hoyer’s medium (50

ml distilled water, 20 ml glycerol, 200 g chloral hydrate, 30 g gum arabic):lactic acid were

dropped separately on a microscope slide (76 mm x 26 mm). The embryos/larvae were

taken out of the baskets via a paintbrush, equally distributed between both drops and

spaced out so the embryos/larvae were not laying on top of each other. This would have

impaired inspection at the microscope later on. Next the two drops were covered with

one cover slip (24 mm x 24 mm) each and the whole microscope slide was incubated at

50 ◦C over night. Inspection was performed at a microscope with darkfield illumination.

2.4 Whole mount in situ hybridization

in situ hybridization is a staining method in molecular biology that utilizes nuclear

acid hybridization to facilitate binding of a labeled single stranded nucleic acid molecule

(probe) to a specific and complementary DNA/RNA sequence in a portion of a tissue. If

the probe is applied to an entire tissue, in the present case the complete Tribolium embryo,

this is called a whole mount in situ hybridization. Also, only RNA probes were used for

hybridization to messenger RNA (mRNA) in the present case and all were labeled with

digoxigenin (DIG) for subsequent visualization of the localized probe.
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2.4.1 Probe synthesis

Primers were designed according to 2.2.3. A linker sequence was added to the 5’ end of

the gene specific forward primer (ggccgcgg) and to the 5’ end of the gene specific reverse

primer (cccggggc) (see Table 2.3 for a list of all used gene specific primer sequences without

the linker sequence).

The first PCR was performed using both gene specific primers following Table 2.1

and Table 2.2. As template for this PCR served 1 µl cDNA originated from an Tribolium

EL ranging from 0 - 72 h (see 2.1.2).

Table 2.3: Gene specific primers used for in situ hybridization

common name Tribolium ID fwd sequence (5’ Ý 3’) rev sequence (5’ Ý 3’)

Tc-dpp TC008426 GTGGCATGTTGTTGGGGTAA TGTGGTCTGGAATGGGGTAC

Tc-eve TC009469 CACACCGAAATACCCATTCC TTTGAACAACTTGGGCTGCT

Tc-iro TC003632 CCCGAAGTGTCGGTGTCTAC TCCCGTTTGTCCTCTTCATC

Tc-mid TC014296 AGTTCAACGAATTGGGAACG TCAGAAACAACTGCGACCTG

Tc-mirr TC003634 ACCAAGCCCCCTTCTACACT TATAGCGAGGAGGCGGTAGA

Tc-pnr TC010407 ATGCTTGTGGGCTTTACCAC GCAGTAACGTGGTGTTGGTG

Tc-zen1 TC000921 TCCCAATTTGAAAACCAAGC CGTTCCACCCTTCCTGATAA

Table 2.4: T7 universal primer sequences

primer sequence

3’ T7 universal primer AGGGATCCTAATACGACTCACTATAGGGcccggggc

5’ T7 universal primer GAGAATTCTAATACGACTCACTATAGggccgcgg

For the second PCR, either the gene specific forward primer and a 3’ T7 universal

primer (template for antisense probe) or the gene specific reverse primer and a 5’ T7

universal primer (template for sense probe) were used. These universal primers contain

a complementary linker sequence and the sequence for the T7 promoter (see Table 2.4),

which enabled in vitro synthesis of a RNA probe from the PCR product in the next step.

PCR conditions were the same as before, with 1 µl of the first PCR as template. The

PCR product of this second PCR was diluted with 25 µl nuclease free water. Both the
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first and the second PCR were checked on an agarose gel (see 2.2.5) before the respective

next step.

6 µl of the diluted template together with 8 µl nuclease free water, 2 µl transcription

buffer, 2 µl T7 RNA polymerase (both Cat#10881767001, Roche) and 2 µl DIG RNA

labeling mix (Cat#11277073910, Roche) were pipetted into a tube. The reaction was

incubated for 4 h at 37 ◦C. For the last 10 min 1 µl DNAse was added and stopped by

addition of 30 µl nuclease free water and 50 µl 2 x stop solution (0.2 M NaAc, 1% acetic

acid, pH 6.0). 2 µl were extracted and stored to perform an agarose gel electrophore-

sis (see 2.2.5) later on. 5 µl transfer RNA (tRNA) were added to prevent degradation

and facilitate the precipitation, which was started by addition 10 µl lithium chloride

(MEGAscript® Kit, Ambion) and 300 µl 100% ethanol (carefully invert reaction tube 2

times). After precipitation for 30 min at -20 ◦C, the probe was pelleted by centrifugation

for 20 min at 4 ◦C with 14k rpm. The supernatant was removed, 300 µl 70% ethanol was

added and centifuged again for 10 min. Subsequently the supernatant was removed and

the pellet was dried for up to 5 min. Finally the RNA probe was resuspended in 100 µl

probe resuspension solution (50% formamid, 2 x saline-sodium citrate (SSC) (20 x SSC:

3 M sodium chloride and 300 mM trisodium citrate, pH 7.0)) and stored at -20 ◦C.

2.4.2 Protocol for in situ hybridization in Tribolium castaneum

Embryos were collected and fixed as described in 2.1.2 and transferred into 500 µl fresh

methanol, prior to this three day protocol. The embryos were stepwise transferred into

PBT ((1) 2:1 methanol:PBT, (2) 1:2 methanol:PBT). After the last step supernatant

was removed and the embryos were washed two times in 500 µl PBT. Subsequently the

embryos were first washed in 1:1 PBT:hybridization solution I (Hyb I) (25 ml formamide,

12.5 ml 20 x SSC pH 7.0, 50 µl heparin (50 mg/ml), filled up to 50 ml with millipore

water) and secondly in Hyb I only, before the prehybridization in hybridization solution

II (Hyb II) (Hyb I plus 500 µl salmon sperm DNA (100 µg/ml)) for 1 h at 63 ◦C. The

salmon sperm DNA in Hyb II hybridizes to single strand nucleic acids in the embryo and

therefore prevents unspecific binding of the probe. After removal of Hyb II, 100 µl Hyb II

plus 1 - 2 µl probe were added to the embryos and incubated over night at 58 ◦C. During

this hybridization period only specific binding should occur, as at the same time the probe

will replace the salmon sperm DNA specifically bound during prehybridization. Note, all
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steps until now were performed in tubes while rotating.

On the next day all embryos were transferred into handmade small baskets, deposited

in a 24 well plate. The embryos were quickly washed four times in prewarmed (58 ◦C) Hyb

I and another four times for 15 min each in Hyb I on a shaker (as all following steps) at

58 ◦C. Stepwise transfer into PBT was performed ((1) 2:1 Hyb I:PBT, (2) 1:2 Hyb I:PBT,

each one for 10 min at 58 ◦C). After removal of the supernatant, embryos were washed

once for 5 min in PBT at RT and three more times for 10 min each in PBT. Subsequently

the embryos were washed two more times for 30 min each in blocking solution (100 µl

10% bovine serum albumin (BSA) in PBS, 30 µl normal goat serum (NGS; 60 mg/ml),

filled up to 1 ml with PBT) to block all antibody binding sites and were incubated in

500 µl blocking solution plus 1 µl 1:10 in water prediluted Anti-DIG-AP Fab fragments

(Cat#11093274910, Roche) over night at 4 ◦C. This antibody binds to the digoxigenin-

11-uridine-5’-triphosphate (UTP) on the probe sequence, enabling the color reaction later

on.

On the third and last day embryos were washed three times in PBT at RT, three more

times for 15 min in PBT and additional three times in alkaline phosphatase (AP)-buffer

(1 ml 1 M Tris hydrogen chloride (HCl) solution pH 9.5, 500 µl 1 M magnesium chloride

(MgCl2), 320 µl 5 M NaCl, 100 µl 20% Tween®20, filled up to 10 ml with millipore

water). Next the embryos were transferred with a glass pipette into 1 ml AP-buffer plus

20 µl NBT/BCIP stock solution (Cat#11681451001, Roche) in an glass bottom dish. In

these dishes the progressing color reaction (triggered by the DIG antibody and the AP that

converts nitro blue tetrazolium (NBT)/5-Bromo-4-chloro-3-indolyl phosphate (BCIP) into

a purple dye) can easily be observed under a light microscope. During this the embryos

should be covered, as the NBT/BCIP stock solution is sensitive to light. When the

background started to increase (antisense and sense probe labeled embryos were always

stopped at the same time as the ‘unspecific’ sense probe was used as background control,

thereby the specific staining can be distinguished from the unspecific one), the color

reaction was stopped by washing the embryos five times in PBT after the transfer into

tubes. To reduce the background, which is the unspecific staining, embryos were stepwise

transferred into ethanol while rotating ((1) 2:1 PBT:ethanol, (2) 1:2 PBT:ethanol) and

after removal of the supernatant, the destaining was performed in 100% ethanol for up

to 10 min and at all times observed under the microscope. After this the embryos were
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stepwise transferred back to PBT ((1) 2:1 ethanol:PBT, (2) 1:2 ethanol:PBT) and washed

three times in PBT. For lone time storage and to add a nuclear stain, the embryos

were incubated for 1 h to equal parts in Vectashield antifade mounting medium with

4’,6-diamidino-2-phenylindole (DAPI; Cat#H-1200, Vector Laboratories) and PBT to

facilitate mixing and afterwards stored at 4 ◦C in this mixture.

2.5 Parental RNA interference

RNAi is a mechanism of gene silencing first identified in Caenorhabditis elegans and

conserved throughout eukaryotic organisms. Triggered by double strand RNA (dsRNA)

the RNAi pathway is initiated and subsequently complementary mRNA molecules are

cleaved [Fire et al., 1998; Meister and Tuschl, 2004; Mello and Conte, 2004]. If injection

of dsRNA into the female leads to a knock down of zygotic genes in its offspring, this is

called parental RNAi (pRNAi). In Tribolium it was described to function in 2002 [Bucher

et al., 2002].

In this work dsRNA complementary to a gene of interest was injected into virgin

female beetles and by examination of knock down effects on their offspring, the gene was

characterized.

2.5.1 Synthesis of dsRNA

To make template for the synthesis of dsRNA, two PCRs were performed according to

2.4.1. Instead of using any gene specific primer (see Table 2.5 for a complete list of all

used primers for synthesis of dsRNA), both universal primers were used in the second

PCR (see Table 2.4).

For synthesis of the dsRNA the MEGAscript T7 transcription kit (Cat#AM1334,

Ambion) was used and the protocol was adapted from the manual. First, 2 µl of each

nucleoside triphosphate (NTP), 2 µl 10 x reaction buffer, 2 µl enzyme mix and 8 µl product

of the second PCR as DNA template were pipetted into a tube and incubated for at least

4 h at 37 ◦C. The reaction was stopped by adding 115 µl nuclease free water and 15 µl

ammonium acetate stop solution (provided with the kit). Purification of the synthesized

dsRNA was performed by addition of 150 µl Roti®-Phenol/Chloroform/Isoamylalcohol

(Cat#A156.1, Carl Roth®), rigorous shaking for 1 min and subsequent centrifugation for

5 min at 5 k rpm. The upper phase containing the dsRNA was transferred into a new
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Table 2.5: Gene specific primers used for pRNAi

common name Tribolium ID fwd sequence (5’ Ý 3’) rev sequence (5’ Ý 3’)

Tc-iro TC003632 CCCGAAGTGTCGGTGTCTAC TCCCGTTTGTCCTCTTCATC

Tc-mirr TC003634 ACCAAGCCCCCTTCTACACT CGTCATCTTGTTCTCCTTCTTG

Tc-pnr TC010407 ATGCTTGTGGGCTTTACCAC GCAGTAACGTGGTGTTGGTG

Tc-pnr fragment 2 TC010407 GTTCCATACAAGCGGTGGTG CCGAACTGAAACTCCATGCT

Tc-Toll1 TC000176 GCCGTTTCGCTCGTAACTCT GTAGGGTCAAGTCGGGACATAA

tube. Precipitation was performed by adding 150 µl isopropanol, incubation at -20 ◦C

for 1 h and again centrifugation for 15 min at 14 k rcf and 4 ◦C. The supernatant was

removed and 300 µl 70% ethanol was added. The mixture was centrifuged for 5 min at

14 k rcf and 4 ◦C. Ethanol was removed and the pellet was dried on ice for up to 10

min. The dsRNA was resuspended in 50 µl nuclease free water and its concentration was

determined with a NanoDrop 2000c spectrophotometer. Before it was stored at -20 ◦C, 1

µl was checked on an agarose gel (see 2.2.5).

2.5.2 Obtaining virgin females and injection of dsRNA

A culture of the desired Tribolium line was put on EL flour for four to eight hours. The

eggs were collected as described in 2.1.1 and transferred into a 180 ml Drosophila vial

(Nerbe plus), filled with full flour and yeast and incubated at 30 ◦C. 27 days later a

mixture of mostly pupae and some adults and larvae were separated from the flour, the

pupae were sexed and both females and males put back on full flour separately. One

week later the now adult virgin females were anesthetized by incubation on ice until they

stopped moving. Numb beetles were than stuck to a double sided tape, the elytra and

one of the wings were spread and stuck to the tape. 2 µl of the specific dsRNA was

front-loaded into a borosilicate glass capillary (World Precision Instruments) (settings for

needle pulling at the laser-based micropipette puller P-2000 (Sutter Instruments): heat

= 700, filament = 4, velocity = 60, delay = 155 and pull = 175) and used to inject five

beetles (∼ 0.4 µl each) into the exposed, soft, dorsal abdomen. As a positive control

served the injection of Tc-Toll1 and as a negative one the injection of nuclease free water.

Injected beetles were transferred directly onto full flour with yeast. After two days of
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recovery the surviving females were counted and crossed to the previously sorted males

(4:1 females:males). Collection of eggs was performed for a period of one to two weeks,

depending on when the knock down penetrance was decreasing.

2.6 Microscopy and image processing

Stained embryos from in situ hybridization (see 2.4.2) were directly mounted on micro-

scope slides in a drop of Vectashield mounting medium using a fine brush. Two cover

slips (22 mm x 22 mm) were cut in half using a diamond cutter and the two halves were

stuck on top of each other via 70% glycerol in PBS at the ends of a microscope slide. A

coverslip (24 mm x 50 mm) was carefully stuck on top of these cover slips, whereby the

mounting medium gets in contact with it. By moving the cover glass slightly in one of

four directions, this set up permits rotation of the embryos and inspection from different

angles.

Embryos expressing one or more fluorescent proteins were either handled as described

in 2.7 or fixed prior to inspection (see 2.1.2). In the latter case fixation was performed

without subsequent cracking of the vitelline membrane, as methanol could degrade the

fluorophores within hours or days. Instead, embryos were directly mounted in PBT or

in Vectashield mounting medium. As DAPI within the mounting medium cannot pass

the vitelline membrane, it had to be removed by hand (see 2.1.2) or at least partially cut

open with a razor blade.

Embryos used for cuticle preparation could be inspected directly, as the embryos

were already mounted on a microscope slide (see 2.3).

Microscopy was performed either with an AxioImager.Z2 with an Apotome.2 module

for structured illumination (Zeiss), a SteREO Lumar.V12 (Zeiss) or a LSM710 scanning

confocal microscope (Zeiss) and image acquisition was done using different versions of the

imaging software Zen (Zeiss). Z-stacks were acquired with this software and merged ap-

plying the volume rendering method ‘maximum intensity projection’ (MIP; for all images

but brightfield ones) or ‘wavelets’ (for brightfield images only). If structured illumination

was used during acquisition, an ‘ApoTome RAW convert’ was performed before, to merge

the individual images of this method again. Further image processing was done using

the free image processing program ImageJ (version 1.50e) [Schneider et al., 2012] and

the raster graphics editor Adobe® Photoshop® (version 12.1 x64). Brightfield images
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acquired with the AxioImager.Z2 black and white camera were recolored using Adobe®

Photoshop® (color balance set to: cyan - red: +20, magenta -green: -20, yellow - blue:

+30 ).

2.7 Live imaging

Embryos used for time-lapse recordings were dechorionated as described in 2.1.2 but not

fixed. Instead the embryos were transferred back into tepid water within the EL basket

after removal of the chorion. Using a fine brush, the embryos were arranged on a high

precision microscope coverslip (Cat#0107222, Marienfeld-Superior), either as pairs of two

or in rows for single embryo imaging. Halocarbon oil 700 (Cat#H8898, Sigma-Aldrich®)

was used to cover the embryos to prevent desiccation. Next four cover slips were cut in

half with a diamond cutter. Four halves were stuck on top of each other via 70% glycerol

on a microscope slide on both ends. On top of the fourth coverslip the cover glass with

the embryos was stuck in such a way that the oil did not touch the microscope slide. This

setup could be mounted on the microscope stage for live imaging.

Two different microscopes were used for time-lapse recordings, the DeltaVisionTM

RT widefield microscope (Applied Precision/GE Healthcare) and the AxioImager.Z2. All

images were acquired as z-stacks, with an interval of 5 to 10 min. The imaging was either

performed at 30 ◦C using the temperature controlled chamber of the DeltaVisionTM mi-

croscope or at RT, as such a chamber was not available for the AxioImager.Z2. Processing

was performed using the Zen software and ImageJ. Specifically for movies recorded at the

DeltaVisionTM, an additional macro supplied by Thorsten Horn for z-stack merging and

file conversion was used. This macro was modified to be used with two color movies by

Maarten Hilbrant and myself (see 6.1).

Cell tracking was performed as described in [Koelzer et al., 2014].

2.8 Knock-in via CRISPR/Cas9 and homology di-

rected repair

The enhancer trap line HC079, expressing EGFP under the control of an 3xP3 promoter

in the amnion and in the eyes was targeted for knock-in [Trauner et al., 2009; Hilbrant

et al., 2016]. Three components were co-injected as separate plasmids. Cas9 was in
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vivo transcribed from the plasmid p(bshp68-Cas9) [Gilles et al., 2015] (Genbank accession

number KR732918). gRNA targeting EGFP in the enhancer trap line HC079 was in vivo

transcribed from p(U6b-eGFP1.gRNA) [Gilles et al., 2015] (Genbank accession number

KR732920). Vector plasmid pBac[3xP3DsRedattP] [Yonemura et al., 2013] (Genbank ac-

cession number AB779766) served as template for homology directed repair, guided by

the arms of the piggyBac transposon flanking the DsRed2 transgene (see Figure 3.2).

Injected beetles were crossed and the resulting offspring was screened for DsRed2 expres-

sion in the eyes. The plasmid pBac[3xP3DsRedattP] harbours an artificial 3xP3 promoter

driving expression in the eyes [Sheng et al., 1997] and therefore could be used as marker

for successful integration. After identification of those DsRed2 positive beetles, a series

of crossings was performed to obtain homozygous red HC079 (rHC079) lines, each one

originating from a single DsRed2 positive beetle (see Figure 3.3). Subsequently, all four

like this generated rHC079 lines, namely #F, #W1, #W13 and #N, were analyzed by

PCR and Sanger sequencing to validate the integration of the transgene. Further live

imaging experiments were set up to compare the individual DsRed2 signal strength in the

four lines.

2.8.1 Preparation of plasmids prior to injection

For replication purposes, all plasmids were transformed into One Shot® TOP10 Chemi-

cally Competent E.coli (Invitrogen) according to the manual. 1 µl of plasmid was added

to the One Shot® cells, 10 µl and 50 µl were plated on lysogeny broth (LB) agar plates

containing 100 µg/ml ampicillin. Cultures were picked from 10 µl plates and transferred

into 50 ml LB medium containing 100 µg/ml ampicillin. This preparatory culture was

incubated at 37 ◦C over night. Following the manual, purification of all plasmids was

performed with NucleoBond PC 100 kit (Macherey-Nagel). In step 8 of the protocol (edi-

tion November 2011/Rev. 09), instead of using only isopropanol, also 0.1 volumes of ice

cold 3 M NaAc were added, as isopropanol alone was not able to precipitate the plasmid

DNA. Plasmid DNA was resuspended in 10 µl nuclease free water and concentration was

determined with a NanoDrop 2000c spectrophotometer. The intact sequence was veri-

fied by Sanger sequencing (LightrunTM sequencing service, GATC biotech; https://www.

gatc-biotech.com/de/produkte/sanger-services/lightrun-sequenzierung.html,

last access: 24.08.2016). Subsequently, all plasmids were diluted to a concentration of
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1500 ng/µl and pooled, to achieve a final working concentration of 500 ng/µl. To further

remove all particles from this aqueous solution, Ultrafree®-MC-HV centrifugal filter units

with a Durapore® PVDF 0.45 µm membrane (Millipore) were used.

2.8.2 Production of needles for plasmid injection

Borosilicate glass capillaries with filiment (Warner Instruments) were pulled at the laser-

based micropipette puller P-2000 with the following settings: heat = 400, filament = 4,

velocity = 50, delay = 125 and pull = 30. Wrongly pulled needles (laser needs more than

two laser pulses or tip of one the two pulled needles is shorter than the other one) were

discarded, all other needles were polished on the microgrinder EG-44 (Narishige) for 15

min at an angle of 30 ◦ and speed set to 80.

2.8.3 Preparation of embryos and injection procedure

Adult beetles of the HC079 line were sieved, transferred on EL flour and put back

to 30 ◦C. After an EL period of 1 h, freshly laid eggs were separated and transferred

into an EL basket, embedded in a flour filled petri dish and incubated for one more hour

at 30 ◦C. After this 2 h period, eggs were rinsed under warm, gently flowing tap water,

removing most of the flour particles sticking to the eggs. Embryos were then mounted on

a purpose-built set up (see Figure 2.1), with the anterior attached to the upper glass slide.

Figure 2.1: Set up for lining up the eggs prior to embryonic injection. Two glass
slides were shifty attached to each other via a double sided tape, leaving enough space
to line a single row of eggs (represented by white ovals) on top of the lower one. The
anterior of each egg is in contact with the upper glass slide.
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Normal drying of the before wet embryos was sufficient for adherens to the glass slide. The

whole set up was fixed under a light microscope at RT. Prepared plasmid mix was shortly

centrifuged prior to back loading into injection needles and connected to the FemtoJet®

microinjector with pressure supply (Eppendorf). Injection at the posterior pole (next to

the germ cells) was achieved by short pulses of pressure, triggered by the operator. After

injection of all embryos (∼ 120 per set up), the glass slides were transferred into a box

filled with 15% NaCl, placed in an incubator at 30 ◦C and a RH of 50%. Placing the

embryos in this environment should locally increase humidity, simulating conditions in

the midst of flour in a normal culture box.

2.8.4 Crossing procedure and stock keeping

From the fourth to the sixth day after egg laying (AEL), hatched larvae were transferred

twice daily with a fine brush into 30 ml Drosophila vials (Nerbe plus), filled with full flour.

After pupariation, pupae were sexed, females and males were separated and incubated

further until eclosion. Single crosses with uninjected adults of the HC079 line (P1 cross)

were set up (see Figure 3.3) in large blocks (built after [Berghammer et al., 1999a]). Eggs

were collected in weekly intervals for three weeks, thereby increasing the number of po-

tential heterozygous offspring. Embryos and larvae from those collections were left on EL

flour plus added yeast until eclosion. Using a fluorescent microscope, adult beetles were

screened for red fluorescence in the eyes, which served as a marker for proper integra-

tion of the DsRed2 transgene into the germline. Heterozygous offspring expressing both

DsRed2 and EGFP were subsequently sexed and single pair sibling crosses (F1 cross) were

set up in large blocks. Offspring of this F1 cross were screened for homozygous DsRed2

expression. To verify on-target integration, embryos were additionally checked for expres-

sion of DsRed2 in the amniotic tissue, using a fluorescent microscope. Randomly picked

beetles of these verified homozygous ones were sexed and single pair sibling crossed again

(F2 cross). Progeny of one these crosses was used to establish the transgenically modified

rHC079 lines (#F, #W1, #W13, #N). As some of the offspring (in all cases only a small

subset of the respective offspring is actually heterozygous for DsRed2 expression) of five

of the P1 crosses showed red fluorescence in the eyes, potentially five new lines could

have established in the end. Due to the fact that one of these crosses lead to exactly one

DsRed2 expressing beetle (the injected beetle already died after some days, leading to
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an overall reduction in offspring), it was decided not to use this one further (another ‘P1

cross’ would have to be set up), since after all just one successful integration event was

needed to set up the new rHC079 line. So even with one loss the remaining four were

assumed to be sufficient.

2.8.5 Verification of the exchanged transgene in the rHC079
lines

To verify the correct insertion of the transgene and simultaneously to test if the original

transgene harboring EGFP was replaced by homology directed repair (original insertion

took place at the piggyBac target site ”TTAA” [Cary et al., 1989] at ChLG3:11827734..118

27737 (assembly 4.0 of the Tribolium genome; mapped by a former member of the lab)),

various primers were designed to check the four rHC079 lines for different integration

events. Primers are listed in Table 2.6 without product sizes, since these may vary de-

pending on the Tribolium line and primer combination.

As template for PCR reactions, gDNA from the respective lines (wild type, HC079,

#F, #W1, #W13, #N and a heterozygous cross between HC079 and #W13) was isolated

as described in 2.2.1. PCR itself was performed according to 2.2.4. As product sizes up

to ∼ 4 kb had to be expected when using the primers ‘HC079 gDNA 5’ fwd’ and ‘HC079

gDNA 3’ rev’ (‘TTAA’ site spanning primer set) to amplify the whole transgene, the

extension time (step 4) (see Table 2.2) was increased to 5 min. Agarose gel electrophoresis

(see 2.2.5) was performed to visualize the amplified PCR products. A 1% gel was used

for the ‘TTAA’ site spanning primer set, for all others a 2% gel. Of the 25 µl total PCR

reaction volume, 15 µl were applied onto the gels. The dye included in the REDTaq®

ReadyMixTM PCR Reaction Mix was used to time the termination of the run.

As the presence of the whole construct at the expected location in the genome of

all four rHC079 lines was now verified, the next step was to verify the sequences of

different parts of the transgene by Sanger sequencing, to check for errors in the sequence

introduced by the homology directed repair machinery. Most important was the transition

from transgene to genome, as errors could be expected in this region. Primers ‘iPCR#9’

and ‘HC079 gDNA 5’ fwd’ were used for the left border (defined by the left homology

arm of the piggyBac transposon) and primers ‘iPCR#14’ and ‘HC079 gDNA 3’ rev’ for

the right border. Secondly, the attP site had to be checked using the primers ‘attP gap
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region fwd’ and ‘attP gap region rev’, as its intact sequence is the prerequisite for future

site-specific recombination via the ΦC31 integrase system. The last bit to be checked

was the DsRed2 transgene itself. Since red fluorescence was already used as the selection

marker in the crossing procedure (see 2.8.4), an intact sequence was assumed. Because

of this only two of the four rHC079 lines (#W13 and #N) were checked to verify this.

Primers ‘universal fwd’ and ‘universal rev’ were used.

PCR reactions were performed according to the standard PCR cycling conditions

in Table 2.2 and amplification of the product with the expected size was checked by

gel electrophoresis (see 2.2.5). Still on the same day cloning of the PCR products into

the pCR®II vector according to the manual of the TA Cloning® Kit Dual Promoter

(pCR®II) (Invitrogen) was done. The Thermus aquaticus Taq polymerases adds a sin-

gle deoxyadenosine (A) to the 3’ ends of the PCR products, allowing the product to be

ligated into the vector efficiently. As this 3’ overhang degrades over time, thereby re-

ducing ligation efficiency, cloning should be done on the same day as the initial PCR

reaction. For each reaction 3 µl PCR product was used. Following the manual of One

Shot® Mach1TM-TaR Chemically Competent E.coli (Invitrogen), 2 µl ligation reaction

were used for integration by transformation into Escherichia coli (E. coli) cells. 200 µl

transformation mix were spread out on LB agar plates containing 100 µg/ml ampicillin

and 40 µg/µl 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal), in which X-gal

was added to perform a blue-white screen. Selective plates were stored at 37 ◦C. On the

next day five ‘white’ colonies from every plate were picked and each clone transferred into

a separate bacterial culture tube, filled with 3 ml LB medium containing 100 µg/ml ampi-

cillin. Before this transfer all clones were shortly dipped into a PCR premix (50 µl total

volume (see Table 2.1), 1 µl of each 10 µM M13 fwd and rev primer (see TA Cloning®

Kit Dual Promoter (pCR®II) manual for primer sequences)) and a colony-PCR was per-

formed with an elongation time of 1 min 30 sec (see Table 2.2). Based on the resulting

agarose gel electrophoresis (5 µl PCR product loaded (see 2.2.5)), those clones were cho-

sen that showed a band of the expected size. All bacterial culture tubes containing a

clone showing no band and therefore do not harbor any PCR insert, were dismissed. The

remaining tissue culture tubes (two clones of each sample) were transferred to 37 ◦C and

incubated while rotating over night. Plasmid purification was performed according to the

manual of ZR Plasmid MiniprepTM-Classic (Zymo Research), using 2.8 ml of the over
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night culture as starting material. Plasmids were eluted in 20 µl nuclease free water and

DNA concentration was determined with a NanoDrop 2000c spectrophotometer. Sanger

sequencing was performed (see 2.8.1) and the resulting sequences were analyzed using the

DNA sequence analysis software SequencherTM (version 4.9, Gene Codes Corporation).

Table 2.6: Primers designed for detection of the transgene via PCR

PrimerID Primers (5’ Ý 3’) product size (HC079) product size (rHC079)

attP gap region fwd TGGTTTGTCCAAACTCATCAA no product 405 bp

attP gap region rev CCGAGTCTCTGCACTGAACA

DsRed2 fwd GAAGCTGAAGGTGACCAAGG no product 506 bp

DsRed2 rev GCTCCACGATGGTGTAGTCC

EGFP A B fwd CTTGTACAGCTCGTCCATGC

EGFP A rev ACGTAAACGGCCACAAGTTC 653 bp no product

EGFP B rev GCATCGACTTCAAGGAGGAC 335 bp no product

HC079 gDNA 5’ fwd AGCTGGCGTGTTACTTCACC 3764 bp 3276 bp

HC079 gDNA 3’ rev ACGTTCCCTAACCCGAGAAT

iPCR#9 CGCGCTATTTAGAAAGAGAGAG 563 bp 563 bp

iPCR#14 CGATAAAACACATGCGTCAATT

universal fwd TAAACAAGCGCAGCTGAACA 888 bp 858 bp

universal rev GGGAGGTGTGGGAGGTTT

2.8.6 Comparison of the relative DsRed2 signal in all four rHC079
lines

To test if the four rHC079 lines (#F, #W1, #W13 and #N) differ from each other in

regard of their fluorescent signal strength, at what time in embryogenesis this signal is

first detectable and how it progresses, live imaging experiments were performed.

First of all five individual ELs were set up, one for each of the rHC079 lines and one

for the nGFP line, which served as a control in all experiments. After an EL period of

1 h, the eggs were transferred into EL baskets and incubated for 18 h at 30 ◦C (see also

2.1.2). Subsequently, eggs were prepared for live imaging as described in 2.7. Imaging

38



Material & Methods

was started ≈ 20 - 21 h AEL, which is shortly before germ band extension has finished

and the time when the fluorescent signal should rise over background levels [Hilbrant

et al., 2016]. 12 images (z-stack thickness ∼ 88 µm, spacing = 8 µm) were taken every

10 min for 40 h at 30 ◦C, leading to a recording of 241 time-points. This means that

embryogenesis was recorded from 20.5 h +/- 0.5 h to 60.5 h +/- 0.5 h AEL. The executed

four discrete live imaging experiments (each one with all five lines) were performed with

the DeltaVisionTM. As recommended in the manual for DsRed2, the ‘mcherry’ filter (part

of the live cell filter set) was used and the exposure time was set to 200 ms. Image

resolution was set to 640 x 480 and a binning of 2 x 2 used. After acquisition all image

files were processed using ImageJ, executing a macro supplied by Thorsten Horn (see

6.1). This macro makes a z-projection of all images at each time-point and transforms

the original file format into a tiff-file. All movies were surveyed and only those were used

for further analyses, in which the embryo showed wild type development and was oriented

in a complete lateral view. The latter restriction was chosen to preserve comparability

between individual embryos. Next the new file was opened in ImageJ. Using ‘polygon

selections’ the region of interest (ROI), which was the complete egg for this analysis, was

defined and by ‘fit spline’ refined. The ROI was scanned using the ‘ROI manager’ and the

preselected value ‘integrated density’, which is the sum of the values of the pixels in the

selection, was displayed. The integrated density values were plotted as relative DsRed2

signal over the time-points to create the graph seen in Figure 3.7.

39



Results

Chapter 3

Results

3.1 Targeted knock-in via CRISPR/Cas9 and homol-

ogy directed repair

In order to enable distinct visualization of different tissues in heterozygous Tribolium

embryos generated by crossing of two fluorescent lines, the enhancer trap line HC079

[Hilbrant et al., 2016] was modified by replacing the EGFP transgene (part of the plas-

mid pBac[3xP3-EGFPaf] [Trauner et al., 2009]) with DsRed2. This replacement was per-

formed via a combination of the CRISPR/Cas9 gene editing technique, introducing a

double strand break in the EGFP transgene, and the homology directed repair (HDR)

mechanism triggered by homology between the EGFP transgene construct of the line

HC079 [Trauner et al., 2009] and a donor plasmid harboring the DsRed2 gene. The donor

plasmid pBac[3xP3DsRedattP] [Yonemura et al., 2013] contains DsRed2 under the con-

trol of an artificial 3xP3 promoter. This promoter drives expression in the eyes [Sheng

et al., 1997], which was used as a transformation marker during screening of adult bee-

tles in the process of establishing a homozygous DsRed2 line. 3xP3 is also responsive to

nearby chromosomal enhancers [Lorenzen et al., 2003] and has been used for the original

GEKU screen [Trauner et al., 2009]. Consequently, the newly introduced DsRed2 con-

struct should drive the same amniotic expression in the red HC079 (rHC079) line as it

did in the original HC079 line [Hilbrant et al., 2016]. Cas9 protein translated from an

injected expression vector was used to create a double strand break in the EGFP se-

quence, guided there by an EGFP -specific gRNA. In zebrafish this gRNA achieved the

highest efficiency in disrupting the EGFP open reading frame compared to other tested

gRNAs [Auer et al., 2014]. By co-injection of the donor plasmid harboring only slightly
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shorter homology arms than the original piggyBac transposon of the GEKU lines [Horn

and Wimmer, 2000; Trauner et al., 2009], HDR was initiated and the DsRed2 transgene

was successfully integrated into the germ line.

3.1.1 Replacement of the EGFP transgene with a DsRed2 trans-
gene in the line HC079

To estimate how many embryos of the HC079 line would survive the stress caused by

physical penetration of the egg and the subsequent treatment (see 2.8.3), eggs were mock

injected with water. The enhancer trap line G12424 [Koelzer et al., 2014] served as a

control, as it was originated from the same enhancer trap screen [Trauner et al., 2009].

For each line 400 eggs were injected and all larvae that hatched four to six days after

injection were counted. The survival rate was 70% and 62% for the HC079 and G12424

lines, respectively (Figure 3.1).

Figure 3.1: Survival rate of mock injected embryos in the lines HC079 and
G12424. Eggs of both transgenic lines were handled as described in 2.8.3 but injected
with water. The survival rate is the mean number of hatched larvae in four discrete
experiments conducted on different days. Treated the same way, HC079 (n = 400) shows
a 8% higher survival rate than G12424 (n = 400).

The replacement of EGFP with DsRed2 is shown schematically in Figure 3.2. It
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shows the double strand break induced by the Cas9 endonuclease, after it was guided

to EGFP by the specific gRNA. Subsequently, the homology directed repair machinery

starts to repair the broken DNA strand by searching for homologous sequences on other

DNA strands. Normally this is the sister chromatid but it can also be a co-injected donor

[Moehle et al., 2007]. In this case the homology is between the two piggyBac arms on each

side of the respective construct (700 bp on the left side and 1300 bp on the right side of

both constructs) and an internal 300 bp stretch within piggyBac. Thus, the homology

directed repair machinery uses the part between the homology arms of the donor plasmid

to repair the broken EGFP construct within the HC079 line, integrating the DsRed2

construct into the genome of the injected beetle.

The donor plasmid pBac[3xP3DsRedattP] was modified from the fluorescent transfor-

mation marker pBac[3xP3DsRed afm] [Horn et al., 2002] by insertion of an attP sequence

[Yonemura et al., 2013]. The attP sequence is part of the ΦC31 integrase system, used for

site-specific integration [Bischof et al., 2007; Huang et al., 2009], providing a landing site

for subsequent insertion of additional constructs. Another benefit of using this plasmid
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Figure 3.2: Schematic illustration for replacing the EGFP construct with the
DsRed2 construct. The donor plasmid harbors two piggyBac arms (left (L) and right
(R)), an attP sequence, the 3xP3 promoter and the DsRed2 transgene. The EGFP
construct of the original HC079 line harbors somewhat longer piggyBac arms, a 3xP3
promoter and the EGFP transgene. Homology between the two constructs is supplied
via 700 bp of the left piggyBac arm and 1300 bp on the right side of the construct by
the 3xP3 promoter sequence and the complete right piggyBac arm. Additional 300 bp
of homologous sequence are between the transgene and the attP sequence. The different
homologous parts are the result of the fact that both constructs derived from the same
source [Horn and Wimmer, 2000]. The double strand break, induced by co-operation of
the gRNA and Cas9 (black arrowhead) is indicated by the jagged line. In the next step
the homology directed repair machinery uses the donor plasmid as a template for the
repair of the double strand break, thereby replacing the complete construct. Distances
are not to scale.

is the homology of the piggyBac arms to the ones of the target construct. Slight differ-

ences in the size of the left piggyBac arm are due to the removal of approximately 800 bp

in the transposase open reading frame via restriction enzymes, to inhibit any potential

relocation of the transposon [Horn and Wimmer, 2000].

1992 embryos of the HC079 line were injected, of which 11.5% hatched but only 7.9%

survived to adulthood (Figure 3.3A) and were back-crossed to beetles of the HC079 line

(P1 cross). The offspring of these crosses were examined for DsRed2 expression in their

eyes, which is driven by the 3xP3 promoter [Sheng et al., 1997] and can therefore be used as

a marker for successful integration of the transgene into the genome [Horn and Wimmer,

2000]. Offspring of 5 out of 157 embryos (3.2%) showed DsRed2 and EGFP expression in

the eyes (Figure 3.3B), confirming that the DsRed2 construct was successfully integrated

into the germ line of the injected P0 embryos. However, one P1 cross yielded only one single

DsRed2 positive offspring before the parents prematurely died. To obtain homozygous

beetles of the four remaining lines, an intercross between siblings was set up (F1 cross).

Consistent with the second law of Mendelian inherence (Law of Independent Assortment),

roughly 25% of the offspring showed only DsRed2 expression in the eyes (Figure 3.3C).

These homozygous embryos were again sibling crossed in an incross, to establish four

individual rHC079 lines (named #F, #W1, #W13 and #N) (Figure 3.3D).

Already the heterozygous offspring of the P1 cross was checked for on-target inte-

gration of the transgene under the control of the expected amniotic enhancer. This is

necessary, although DsRed2 expression is not a reliable sign for on-target integration in
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Figure 3.3: Screening procedure to establish homozygous lines, using DsRed2
expression in the eyes as a transformation marker. (A) 1992 eggs of the amniotic
line HC079 homozygous for EGFP expression in the amnion were injected at the posterior
pole, next to the germ cells. 7.9% eclosed to become adult beetles. (B) All adult beetles
were back-crossed into the original HC079 line in single pair matings. The offspring of this
P1 cross was screened for DsRed2 expression in the eyes, which served as a transformation
marker. In total, five mate pairs (3.2%) produced offspring heterozygous for both markers
in the eyes. (C) Single pair F1 sibling crosses between heterozygote offspring were set up
for four of the five lines (see main text). As expected, an approximate ratio of 1:2:1 (ho-
mozygous EGFP:heterozygous EGFP/DsRed2:homozygous DsRed2) was obtained. (D)
In order to establish four independent lines homozygous for DsRed2 expression in the
amnion, the F2 cross between DsRed2 only beetles was set up as a series of single pair
sibling crosses. All progeny were homozygous for DsRed2 and were used to establish the
new rHC079 lines (named #F, #W1, #W13 and #N).
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Figure 3.4: EGFP and DsRed2 expression in the amnion of a heterozygous
embryo. Two images taken from the same embryo, which is an offspring derived from a
cross of the HC079 line with the rHC079 line #W13. The one on top visualizes DsRed2
expression in the amnion and the one in the middle EGFP expression in the same amniotic
tissue. The lowest picture is an overlay of DsRed2 and EGFP expression in the amnion,
confirming that DsRed2 is under control of the same amniotic enhancer as EGFP. Scale
bars are 100 µm.

this step, as 3xP3 can drive eye expression even if integrated elsewhere, leading to a false-

positive signal. For this, heterozygous beetles were crossed and their embryos investigated

for DsRed2 expression in the amnion. Figure 3.4 shows an example embryo with successful

on-target integration expressing both EGFP and DsRed2. In the upper picture DsRed2 is

clearly expressed in the amnion, similar to EGFP in the middle picture, which represents

the original expression in the line HC079. The overlay of both transgenes‘ expression

patterns in the lower picture shows that DsRed2 truly is expressed in the amnion, as both

expression patterns encompass the exact same area within the egg, with exactly the same

border towards the yolk.

3.1.2 Verification of the newly integrated DsRed2 construct

Although in all four rHC079 lines DsRed2 was shown to be expressed in the amnion, it was

tested if a complete replacement of the EGFP construct and also a complete insertion

of the DsRed2 construct had taken place. To verify this, several distinct primer pairs

(Figure 3.5) were applied in different PCR reactions using gDNA isolated from each line

(Figure 3.6).

Figure 3.5 illustrates all primer pairs and their location within the genome/construct

of each individual line used for the analyses. The wild type San Bernardino strain, as well

as the original HC079 line were used as negative and positive controls.

In Figure 3.6A the two genomic primers spanning the original integration site of the

EGFP construct (marked by the “TTAA” target motif of the piggyBac transposon [Cary

et al., 1989]; see also black arrows in Figure 3.5) were used to test if the EGFP construct

was replaced by the DsRed2 construct. This could be verified for three of the lines (#F,

#W1 and #N) but not for #W13. However, genomic DNA isolated from a cross between

the HC079 line and the #W13 line yielded bands for both inserts. Despite the results

with genomic DNA from #W13 only, this indicated successful integration of the whole
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Figure 3.5: Positions of the primers used for verification of the DsRed2 con-
struct. Illustrated are the wild type genome, the EGFP construct located in the original
HC079 genome and the DsRed2 construct inserted in the rHC079 genome. The sequence
‘TTAA’ marks the genomic location in which the EGFP construct was inserted in the
HC079 line [Trauner et al., 2009] (see main text). The black arrows are a genomic primer
pair (‘HC079 gDNA 5’ fwd’ and ‘HC079 gDNA 3’ rev’) to test the integration of the whole
insert (see Figure 3.6A). The two white arrow pairs are spanning the border between the
genome and the DsRed2 construct on either the left (L; ‘iPCR#9’ and ‘HC079 gDNA 5’
fwd’) or the right (R; ‘iPCR#14’ and ‘HC079 gDNA 3’ rev’) side of the DsRed2 construct
(see Figure 3.6B). The colored arrows directly correspond to the respective colors used in
Figure 3.6C and were used for testing of individual sequences of the constructs. The green
and yellow arrows are all three located within the EGFP sequence, in which the mixed
arrow is associated with the both the green (‘EGFP A B fwd’ and ‘EGFP B rev’) and the
yellow (‘EGFP A B fwd’ and ‘EGFP A rev’) primer. The red primer pair (‘DsRed2 fwd’
and ‘DsRed2 rev’) and the blue primer pair (‘attP gap region fwd’ and ‘attP gap region
rev’) were used for verification of the DsRed2 and attP sequence, respectively.
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Figure 3.6: Verification of all parts of the DsRed2 construct in the four rHC079
lines via PCR. (A) Genomic primer pair (see also black arrows in Figure 3.5) encom-
passing the whole insert, to check for its complete integration. In the original HC079
line (4473 bp), in the three rHC079 lines #F, #W1 and #N (3985 bp), as well as in
the cross (HC079 line x #W13 line) the respective construct(s) were detected. In the
San Bernardino strain (wt), a band of the expected size is detected (no insert control).
(B) In A, integration of the whole insert in the #W13 line could not be proven directly
but indirectly in the cross. To verify the result, two primer pairs were used to check the
integration of the insert at its left and right construct border (see also white arrows in
Figure 3.5). In both cases bands of the expected size were yielded and integration of
the insert in the #W13 line at the right genomic spot proven. (C) Single PCR reaction
with four different primer pairs to verify the presence of the two transgenes and the attP
sequence (see also colored arrows in Figure 3.5). The four rHC079 lines show two bands of
corresponding size, one for DsRed2 and one for the attP sequence. In the HC079 control
three bands are visible. One for long EGFP, stretching over the double strand break and
short EGFP, which does not stretch over the break (see main text). The third band at
573 bp is due to binding between two primers of different primer pairs (‘attP gap region
fwd’ and ‘EGFP B rev’). In the cross all four (and weakly the fifth) bands are detected
at the expected size, in contrast to the no insert control (wt).

DsRed2 construct. To verify the result, two primer pairs, each one spanning the border

between the genome and the DsRed2 construct on either side (see also white arrows in

Figure 3.5), were used for #W13 only (Figure 3.6B). The distinct bands confirmed the

integration of the DsRed2 construct at the correct genomic location in the #W13 line.

This leaves the possibility that the PCR performed in Figure 3.6A did not work well or

at all with the line #W13, even though it was repeated several times. A possible reason

for this could be degradation of the genomic DNA isolated from the #W13 line.

The results in Figure 3.6A and B already indicated that in all rHC079 lines the

complete DsRed2 construct was inserted at the right genomic location, while replacing

the EGFP construct (further supported by expression of DsRed2 under the control of

the amniotic enhancer (see Figure 3.4)). To further confirm these results and specifically

verify the insertion of the DsRed2 sequence and the loss of the EGFP sequence, as well

as the attP sequence, four distinct primer pairs were designed (see also the colored arrows

in Figure 3.5). The two EGFP primer pairs were used to assess the possibility that

during the process of homology directed repair EGFP was at least partially not replaced.

Figure 3.6C illustrates that in the rHC079 lines indeed all expected sequences are present.

Likewise, the EGFP sequences could not be detected in the rHC079 line but in the original
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HC079 line and the cross.

To conclude this part of the analysis and check for possible errors done by the ho-

mology directed repair machinery, specific parts of the DsRed2 construct were amplified

in PCR reactions and the products were sent for sequencing (see 2.8.5). The complete

DsRed2 sequence, the attP sequence and the transition from construct sequence to ge-

nomic sequence on both ends were sequenced. This was done for all four rHC079 lines

(in the case of the genome - construct border the original HC079 line was sequenced as

a control as well; the DsRed2 sequence was sequenced in the lines #W13 and #N only).

In none of the sequenced PCR products was any error in the DNA sequence detected

(data not shown). This implies that perfect integration of the whole DsRed2 construct

by concurrent removal of the EGFP construct in the rHC079 lines was achieved.

3.1.3 Comparison of the DsRed2 signal strength between the
four rHC079 lines

On the sequence level there is no difference between the four rHC079 lines, each one orig-

inating from a distinct knock-in event in a single embryo. As these lines were established

for live imaging purposes, the signal strength of DsRed2 was tested in four discrete live

imaging experiments (one recording of an embryo of the #W13 rHC079 line is included

on the DVD; see 6.7 movie 1).

In each experiment all four lines have been imaged simultaneously, to control for

inter-experiment variations. The integrated density (relative DsRed2 signal * region of

interest; [Koelzer et al., 2014; Hilbrant et al., 2016]) was measured and plotted against the

developmental age relative to amniotic rupture, which happens almost simultaneously

with serosal rupture [Hilbrant et al., 2016]. The resulting curves are shown in Figure 3.7.

All rHC079 lines display an overall similar progression of their signal intensity. It rises

until rupture, after which it declines (more pronounced in #W1 and #N; the surface

area of the amnion decreases after rupture, therefore the signal gets weaker), rises again

until it reaches its maximum (formation of the amniotic dorsal organ goes along with

an increase of the signal) and declines (when the amnion sinks down into the yolk and

degenerates, the signal decreases again) in each of the lines. Except in the very onset

of expression and after amniotic rupture, where #F becomes transiently stronger than

#N, the order of the lines regarding the signal strength is very constant. #W1 exhibit
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Figure 3.7: Comparing the signal strength of DsRed2 in all four rHC079 lines.
In four discrete experiments, all lines were imaged simultaneously. The DsRed2 signal
was recorded for 35 hours during development. Imaging started 20.5 h +/- 30 min after
egg laying. The embryos were imaged at a constant temperature of 30 ◦C. All individual
recordings were aligned by amniotic rupture. The integrated density (relative DsRed2
signal) was plotted against time. Error bars represent the mean standard deviation.
GBE = germband extension; GBR = germband retraction; AR = amniotic rupture.
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the strongest DsRed2 signal strength, followed by #N and #F. Only the weakest line,

#W13, is considerably different, as the increase of the slope is slower throughout germband

extension and retraction. Considering the intra- and inter-slide variation, these results

indicate that lines #F, #W1 and #N possess similar expression strength, while line #W13

seems to be weaker.

3.1.4 Cross of the rHC079 line with different EGFP expressing
lines

To show the potential of the new rHC079 lines for multiple-labeling experiments, the

line #W13 was crossed to the EGFP expressing lines G12424, G04609 and G04910 (Fig-

ure 3.8).

In Figure 3.8A, the rHC079 line (red) is crossed with the line G12424 (green), which

expresses EGFP in the serosa [Koelzer et al., 2014]. The images visualize both mem-

branes at the start of extraembryonic membrane rupture (two movies of the heterozygous

embryo expressing DsRed2 in the amnion and EGFP in the serosa are included on the

DVD; see 6.7 movies 2A and 2B). In Figure 3.8B, the rHC079 line is crossed with the

line G04609, which expresses EGFP amongst other in the cardioblast cell row [Koelzer

et al., 2014] (white arrow; see also Figure 3.25 for a description of the other expression

domains). As evident from the two cardioblast cell rows, which did come together at the

dorsal midline and the residual DsRed2 expression on top of them, the embryo is just

finishing dorsal closure. Figure 3.8C is the same cross but a different embryo, where the

amnion is withdrawing over the lateral flank of the embryo. In Figure 3.8D, the rHC079

line is crossed with the line G04910 (characterized in this study; see Figure 3.24). The

amnion hast just withdrawn over the posterior pole and forms the amniotic dorsal organ.
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Figure 3.8: Visualization of different crosses, using two fluorescent proteins.
(A) Cross of the rHC079 line with the G12424 line. The left image shows the DsRed2
channel only, the middle one the EGFP channel only and the right image is an overlay of
both channels. The site of rupture in the amnion is marked by the white arrows (opening
in tissue) and the anterior cap region is separated from the rest of the amniotic tissue
via the white dashed line. (B and C) Cross of the rHC079 line with the G04609 line.
EGFP expression within the cardioblast cell row(s) is marked by the white arrows. C
was imaged at a higher magnification than B. (D) Cross of the rHC079 line with the
G04910 line. The orientation of the embryo in A is as indicated in the image, while B is
a dorso-lateral view, C a lateral view and D a dorsal view. Scale bars are 100 µm in A,
B and D and 50 µm in C

3.2 Phenotypic analyses of the amniotic marker gene

Tc-pnr after knock-down

The function of Tc-pnr in embryonic and extraembryonic development of Tribolium is

not known. So far it has been used solely as a marker for the amnion [van der Zee et al.,

2005, 2006; Nunes da Fonseca et al., 2008] and to a lesser extent as a marker for the heart

[Cande et al., 2009]. However its expression in the early amnion makes it a promising

target for the research on extraembryonic membrane formation of the amnion. This is

especially true, as no other gene known to be expressed in the amnion was investigated

functionally so far.

Therefore, the following analyses provide the first complete description of its expres-

sion pattern throughout embryonic development, as well as the description of its main

phenotype after parental RNA interference (pRNAi). In depth functional analyses also

revealed its impact on the morphological structure and integrity of the amnion. Further-

more conservation of its role during heart formation and dorsal closure compared to its

Drosophila ortholog, as well as for its regulatory function on Tc-iro, was proven.

3.2.1 Expression pattern of Tc-pnr throughout Tribolium de-
velopment

Tc-pnr was used mainly as a marker for the dorsal and the anterior amnion at the differ-

entiated blastoderm stage [van der Zee et al., 2005, 2006; Nunes da Fonseca et al., 2008]

and to stain the heart in retracted germband embryos. Additionally, Tc-pnr expression

was reported in an unspecified extraembryonic tissue domain during germband extension
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[Cande et al., 2009]. In order to complete the Tc-pnr expression pattern until early ex-

traembryonic membrane formation and to verify the sparse information on subsequent

development, Tc-pnr expression was investigated throughout the complete embryonic de-

velopment of Tribolium (Figure 3.9 - Figure 3.12).

Tc-pnr is first expressed at the onset of the differentiated blastoderm stage in the

dorsal part of the anterior amniotic fold, in the dorsal amnion and in amniotic cells

around the developing primitive pit (Figure 3.9A and A`). At the onset of involution,

Tc-pnr expression persists in the anterior amniotic fold (in some embryos weak Tc-pnr

expression expands along the ventral part of the fold) and in the progressed posterior

fold (Figure 3.9B and B`). When the serosal window has formed, Tc-pnr is expressed in

amniotic cells around its edge and in the amnion over the segment addition zone (former

growth zone; [Nakamoto et al., 2015]) (Figure 3.9C and C`). At this stage, the Tc-pnr

expressing amniotic cells at the rim are not yet covered with serosal cells but are already

mostly curving around the edge of the serosal window (Figure 3.9C``). The expression in

the rim itself is discontinuous and consists out of two domains over the developing head

lobes and one larger domain at its posterior border. As the serosal window is closing,

the three domains come together except at the anterior (Figure 3.9D and D`). At the

same time Tc-pnr expression expands in the amnion over the head lobes, as those start to

develop. Just anterior of Tc-pnr expression in the amnion covering the segment addition

zone, another expression domain within the amnion (see Figure 3.9D``) arises during

constriction of the serosal window.

When the serosal window has almost closed, Tc-pnr is still expressed around its

entire circumference, except its most anterior rim (Figure 3.10A and A`), most similar

to Figure 3.9D and D`. Note that in Figure 3.10A fewer cells around the serosal window

are stained compared to Figure 3.9D. The reason for this is that the number of stained

cells is different in each embryo and that the shape of the serosal window is subject to

minor variability. When the serosal window has closed, the Tc-pnr expressing cells then

form a characteristic y-shape (Figure 3.10B and B`). From anterior to posterior, until

the head has extended over the anterior pole, the middle part of this y is 17 +/- 1 Tc-

pnr stained cells long (n=10; standard deviation = 0.84) (Figure 3.10B``). At this time

Tc-pnr expression spreads greatly in the amnion covering the head lobes. This expansion

continues throughout germband extension (Figure 3.10C-D and C`-D`). A new feature
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Figure 3.9: Early dynamic expression pattern of Tc-pnr . (A-E) Embryos stained
for Tc-pnr via in situ hybridization, in which (E) was the background control (using Tc-
pnr sense probe). (A`-E`) Respective DAPI counterstain. (D``) Overlay of one optical
slice of the images D and D` in black and white. (A) Embryo at the differentiated
blastoderm stage, where Tc-pnr is expressed in the dorsal half of the anterior amniotic
fold, in the dorsal amnion and in amniotic cells around the developing primitive pit. (B)
Discontinuous expression of Tc-pnr persists in the anterior amniotic fold as the two other
expression domains start to involute within the posterior fold. (C) After formation of
the serosal window, Tc-pnr is strongly expressed in the rim of the serosal window in
three distinct domains. Tc-pnr expression is also detected in the amnion covering the
segment addition zone (right arrow) and weakly just anterior to this domain (left arrow).
The area within the white rectangle is enlarged in C``. It shows three cells (marked by
white arrows), which start to curve around the rim of the serosal window. (D) While the
serosal window closes, Tc-pnr expression in its posterior rim extends slightly more into
the posterior amnion and all three domains are now connected except in the anterior rim.
As the head lobes develop, Tc-pnr starts to be expressed in the amnion covering those.
Compared to C, the expression domain of Tc-pnr (left arrow) is now clearly distinct from
the expression in the segment addition zone (right arrow). An orthogonal section along
the whole egg length (black line) is enlarged in D``. It shows the expression of Tc-pnr
in its three expression domains in the posterior margin of the serosal window (pm), in
the segment addition zone (saz) and in amniotic cells (am) right between these two (sw
= serosal window). Black arrows point to some serosal cells in the outermost cell layer.
(E) The background control of an embryo at a developmental stage between C and D
indicates that even the thick embryonic tissue does not lead to any unspecific staining.
Scale bars are 100 µm. A and B are lateral views, C-E are ventral views.
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of the amnion starting shortly after closure of the serosal window that was visualized

via Tc-pnr staining, is the nuclei free spaces within the tissue (Figure 3.10E-E``and

Figure 3.11A). This characteristic feature can be detected at least until full extension of

the germband. Thus, the amnion looks perforated, although there are no actual holes in it.

Neither are there unstained amniotic cells (see also Figure 3.11A-A```). In all investigated

embryos these nuclei free spaces could be seen (n=15). Biological interpretation of this

feature is difficult, as these ‘holes’ do not correspond to any obvious embryonic structure,

nor are they solely located in areas of the amnion which are exposed to strong tension,

as one could consider it is the case around the curved poles (see also Figure 3.10B-C).

Expression of Tc-pnr in the amnion covering the segment addition zone is constant and

is detected distinct from its anterior expression domain throughout germband extension

(Figure 3.10A-D). The distinct small expression domain anterior to the segment addition

zone is lost up to closure of the serosal window (compare Figure 3.9D and Figure 3.10A-

B). Meanwhile, a new embryonic expression domain arises within cells of the head anlagen

of the embryo (Figure 3.10A and C-D).

When the embryo has extended completely, Tc-pnr expression is seen in the whole

amnion covering the embryo (Figure 3.11A and A`). Tc-pnr expression at this stage is

clearly stronger in the most anterior part of the amnion, as compared to the rest of its

expression throughout the amnion (Figure 3.11A``and A```). This is due to the larger

cells in this region, which are known to have a bigger cytoplasmic volume and there-

fore, a higher amount of Tc-pnr transcript is found in these cells (see also Figure 3.11C;

within an oblique domain of the anterior-ventral amnion, cells of the accordingly named

anterior cap region mark the site of amniotic rupture prior to dorsal closure [Hilbrant

et al., 2016]). During the following retraction of the germband, Tc-pnr gains expression

in the cardioblast cell row, while expression in the amnion persists (Figure 3.11B-B``).

Throughout these developmental stages, Tc-pnr is expressed in the tip of the legs, the ini-

tial appendages covering the pleuropodia and various head structures, namely the labrum,

the labial appendages, the antennae and in a domain besides the latter one (Figure 3.11B-

B`and D-D`).

After rupture and the subsequent withdrawal of both extraembryonic membranes,

Tc-pnr is expressed in the dorsal most cells of the ectoderm and in a segmentally iterated

fashion just ventral to the tracheal openings in all segments but T1 to T3 and in various
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Figure 3.10: Dynamic amniotic expression pattern of Tc-pnr during germband
extension. (A-E) Embryos stained for Tc-pnr via in situ hybridization. (A`-E`) Re-
spective DAPI counterstain. (E``) Overlay of a single section of the projections in E and
E`. (A) Embryo with an almost closed serosal window, similar to Figure 3.9D. Tc-pnr
expression starts to expand in the amnion covering the head lobes. Expression in the
amnion covering the segment addition zone is unchanged but the expression domain just
anterior decreases to a small spot (black arrow). A new Tc-pnr expression domain arises
in cells of the developing head (white arrow). (B) The small expression domain anterior
to the segment addition zone is not visible as a distinct domain anymore at this stage,
as the more posterior expression in the segment addition zone expanded anteriorly. Fol-
lowing closure of the serosal window Tc-pnr is expressed in an anterior amniotic stripe
along the ventral midline of the embryo and expends greatly within the amnion cover-
ing the head lobes, forming a y-shape. The middle part of this y is around 17 Tc-pnr
stained cells long (n=10; minimal cell count is 16, maximal cell count is 18), measured
in an anterior-posterior direction. B`` is an enlargement of the white rectangle in B,
exemplarily showing yellow marked cells between two borders, which were used for the
length measurement. Only fully stained cells were counted and only small overlaps in
anterior-posterior direction were allowed. (C-D) Same embryo. The embryo extends over
both poles and Tc-pnr expression broadens in the amnion covering the anterior embryo.
In D, the embryo has an intact amnion but the serosa was removed manually, so that
Tc-pnr expression towards the anterior and the posterior can be identified as of amni-
otic origin. A characteristic feature detected for the first time by Tc-pnr staining is the
perforated looking amnion (see also Figure 3.11A), which becomes visible shortly after
serosal window closure (B-C and E). The embryo in E shows the same perforation of the
amnion as C but is a little bit younger, as apparent from the length of the germband. The
region within the dashed rectangle is enlarged in E``, showing that within the purple
area encompassing a ‘hole’, no nuclei are present. The white arrows in C and D point to
the expression domain in the head. Scale bar is 100 µm. A-C and E are ventral views,
D is a lateral view.
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Figure 3.11: Expression pattern of Tc-pnr at the fully extended germband
stage and during germband retraction. (A-D) Embryos stained for Tc-pnr via in
situ hybridization. (A`-B` and D`) Respective DAPI counterstain. The images in C-D
below the dashed black line contain supporting information for the images in A-B. (A)
Tc-pnr is expressed in the whole amnion covering all but the dorsal side of the embryo
at the fully extended germband stage. The amnion is partially ripped apart owing to the
dissecting method used. A`` and A``` show enlargements of the respective areas as
indicated in A, both at the same magnification. Tc-pnr is clearly stronger expressed in
the most anterior amniotic cells (A``), whereas its expression is weaker in the rest of the
amnion (A```). If looking at the embryo in C, which also has a fully extended germband
but was stained without removing the vitelline membrane and the serosa, the stronger
stain in the larger anterior cells compared to the smaller cells of the posterior amnion
becomes more obvious. The dashed white line in C, approximately marks the border
between the amniotic cells of the anterior cap region with strong Tc-pnr expression and
the remaining cells with weaker expression. This distinction is further strengthened, if
comparing the cell shapes. The cells left to the border have a more relaxed roundish shape,
while the cells to its right are more stretched along the dorsal-ventral axis (see also the
white and yellow dashed rectangles, which are enlarged in C` and C``, respectively).
Both cell shapes are characteristic for the respective region within the amnion. (B)
Embryo during germband retraction. Tc-pnr is expressed in the cardioblast cell row and
the remaining amniotic tissue, which partially covers this expression (see also B`` for
an enlargement of the area within the dashed black rectangle in B; the two black arrows
confine the cardioblast cell row; the four red arrows mark for individual cells of the amnion,
covering the cardioblast cell row). For description of the embryonic expression domains,
which are only weakly stained in B, the embryo in D is used. The embryo in D is slightly
younger as the one in B but the head structures are already visibly developed (D`).
Therefore, one can detect Tc-pnr expression in the labrum (black arrow), the antennae
(yellow arrow), the labial appendages (blue arrow) and in two dot-like domains besides
the antennae (asterisks). Further expression is seen in the tip of the legs (white arrows)
and in the appendages still covering the pleuropodia (magenta arrows). Scale bars are
100 µm. A - D are ventral views.
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Figure 3.12: Tc-pnr expression pattern around the period of membrane rupture
and the onset of dorsal closure. (A-D) Embryos stained for Tc-pnr via in situ
hybridization. (A`-D`) Respective DAPI counterstain. (A, B) Same embryo. Prior to
dorsal closure Tc-pnr is expressed in the most dorsal ectoderm and in a two patch pattern
just ventral to the tracheal openings in all but the three most anterior segments (T1-T3).
Expression in the head and in the legs persists (see main text). Black arrows point to
unspecific staining within the pleuropodia. The black dashed rectangle encompasses four
sets of the segmentally iterated Tc-pnr expression pattern, enlarged in A``. Thereby,
the numbers 1 and 2 iterative label the two expression patches in each segment. (C)
Slightly younger embryo as A, presumably just before rupture, where Tc-pnr expression
is better visible in the dorsal ectoderm but all other expression is weaker compared to A,
due to a reduced staining period. (D) Flat mounted embryo, comparative to C, in which
Tc-pnr expression is shown in the outer most cell row, which corresponds to the dorsal
most ectodermal cell row. Towards the posterior the expression pattern broadens, which
is due to the bending of the embryo, so that more cells of the ectoderm come into view
(compare to C). The area encompassed by the black dashed rectangle, is shown in D``,
imaged with a higher magnification. (D``). Focus on the outer most cell row, which is
delimited by the black dashed line to the inner mesoderm. Scale bars are 100 µm in A-D
and 50 µm in D``. A and C are lateral views, B is a ventral view and D is a dorsal
view.

domains in the head and the legs (Figure 3.12A-D and A`-D``). The latter two expression

domains were confirmed by looking at other embryos stained for Tc-pnr and probably

correspond in part to the expression pattern seen in extended germband embryos (see

Figure 3.11D).

3.2.2 Knock down penetrance of Tc-pnr

As Tc-pnr has no reported gene function, pRNAi was used to assess the role of Tc-pnr

in extraembryonic and embryonic development. Triggering pRNAi, injection of dsRNA

into the abdomen of females leads to the knock down of zygotic Tc-pnr expression in the

offspring, facilitating analyses of the resulting phenotypes [Bucher et al., 2002].

Tc-pnr dsRNA was injected in concentrations ranging from 900 ng/µl to 1400 ng/µl,

without major differences in the penetrance of the knock down phenotypes, in eight dis-

crete experiments. The penetrance was assessed by cuticle preparation (Figure 3.13A)

and live imaging (Figure 3.13B). In both cases injection of water served as a negative

control. For the analysis by cuticle preparation additionally Tc-Toll1 was used to con-

firm that this procedure is providing valid and reproducible data. Injection with Tc-Toll1
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dsRNA resembled its specific phenotype in all embryos [Nunes da Fonseca et al., 2008].

Injection with water (control) resembled in 91.8% - 94.1% the wild type phenotype (Fig-

ure 3.14A). Knock down of Tc-pnr produced a strong dorsal open phenotype (82.4%),

easily detectable by the characteristic bending of head and posterior abdomen towards its

dorsal side and a hole in the dorsal cuticle (Figure 3.14B). Noteworthy, the penetrance

of the two other phenotypes empty egg (intact egg shell but no embryonic cuticle inside;

Figure 3.14C) and cuticle crumbs (intact or broken egg shell and partial cuticle detectable

(mostly antenna or tip of the leg); Figure 3.14D) is doubled after Tc-pnr pRNAi com-

pared to the control (from 5.1% to 10.0% in the case of empty egg and from 3.1% to 6.3%

for cuticle crumbs). The wild type phenotype is constant at a low percentage (1.3% and

1.5% by cuticle preparation and live imaging, respectively) in the knock down.

To conclude that the phenotypes observed after injection of Tc-pnr dsRNA reflect the

function of Tc-pnr and are not due to an off-target effect of the dsRNA on another gene,

a second Tc-pnr dsRNA was made. The new primer pair used for it does not overlap with

the original primer pair on the Tc-pnr coding sequence. Subsequently, the new dsRNA

named Tc-pnr fragment 2 was injected at a concentration of 1000 ng/µl into beetles, which

were used in a single pRNAi experiment. The knock down penetrance of Tc-pnr fragment

2 was assessed for about three weeks by cuticle preparation (Figure 3.13C). Four days

after injection, Tc-pnr fragment 2 resembled in 46.8% the dorsal open phenotype from

the original Tc-pnr fragment but in 52.7% the empty egg phenotype, while the cuticle

crumbs phenotype was insignificant with only 0.7%. When comparing these results to the

ones of the negative control, it becomes apparent that these values are not representative.

The penetrance of the wild type phenotype (which is normally over 90%; see Figure 3.13A

and B) is strongly reduced by roughly 35% to 57.6%. Like-wise the empty egg phenotype

is increased to 36.4% (5.1% in Figure 3.13A), as well as the cuticle crumbs phenotype

(3.1% in Figure 3.13A, compared to 6.1% in Figure 3.13C). 12 days and 19 days after

injection the penetrance of the dorsal open phenotype in the Tc-pnr fragment 2 knock

down rised to 77.2 and 68%, respectively. Accordingly, the empty egg phenotype declined

to 22% and 31.1%, respectively. The cuticle crumbs is still insignificant at 0.4% and 0.8%,

respectively. In the control, the wild type phenotype is 81.2% 12 days after injection and

71.1% 19 days after injection of the dsRNA. Empty egg phenotype and cuticle crumb

phenotype are 7.6% and 11.2% 12 days after injection and 6.3% and 22.5% 19 days after
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Figure 3.13: Knock down penetrance of Tc-pnr pRNAi. (A) Comparison of the
penetrance after Tc-pnr and Tc-Toll1 pRNAi with a water injection (control), assessed
via cuticle preparation of three to six days old larvae. 91.8% of the controls offspring
developed a wild type cuticle, which is in contrast to the 82.4% showing the dorsal open
phenotype and 100% showing the Tc-Toll1 specific phenotype of the respective knock
down. Furthermore in the control 5.1% did not develop any embryonic cuticle (empty
egg phenotype) and 3.1% showed some cuticle crumbs. In the Tc-pnr knock down this
values were doubled (10.0% empty egg and 6.3% cuticle crumbs). 1.3% developed wild
type like in this knock down. (B) Comparison of the penetrance between the control
and Tc-pnr knock down, assessed by three separate live imaging recordings. Embryonic
development was recorded for at least 25 hours starting shortly before rupture, thereby
assuring that the dorsal open phenotype could be detected. Strikingly its penetrance
was again 82.4%. Almost the same was the wild type phenotype with 1.5% and the not
assignable phenotype added the remaining 16.2%. The latter phenotypic class includes
all embryos which cannot be assigned to one of the other classes due to the limitations
of live imaging. Presumably, it resembles the 16.3% of the empty egg and cuticle crumbs
phenotype in A. The control produced 88.2% wild type phenotype, most similar to the
result in A. (C) Knock down penetrance of the non-overlapping Tc-pnr fragment 2 and
a control at three different time-points throughout a single experiment. In the control,
the wild type phenotype fluctuated from 57.6% 4 days after injection, to 81.2% after 12
days and 71.1% after 19 days. The same was true for the dorsal open phenotype of the
knock down (46.6%, 77.2% and 68%, respectively). The empty egg phenotype was highly
increased in both the knock down and the control (36.4%, 7.6%, 6.3% and 52.7%, 22%,
31.1%, respectively), compared to Figure 3.13A. The same was true for the cuticle crumbs
phenotype in the control (6.1%, 11.2% and 22.5%) but not for the knock down, in which
it decreased (0.7%, 0.4% and 0.9%), compared to Figure 3.13A. General differences to
Figure 3.13A are probably caused by seasonal fluctuations effecting the health of cultured
Tribolium lines and the reduced robustness of the data set (see main text).
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Figure 3.14: Observed phenotypes after Tc-pnr pRNAi. (A-D) Cuticle prepa-
rations of three to six days old larvae and eggs after Tc-pnr pRNAi, showing all four
distinct phenotypic categories. (A) First instar larva with wild type cuticle. (B) Embryo
showing the characteristic bending of the dorsal open phenotype, in which the head and
the posterior abdomen almost come in touch on the dorsal side. The yellow dashed area
encompasses the dorsal hole that is the actual eponym of this phenotype. Within this
area no cuticle was produced. Although the eggshell is broken and it appears as if the
embryo did at least try to hatch, this is an artifact due to the pressure applied on the egg
during the mounting process. All embryos showing this phenotype die while they try to
close their back. (C) The empty egg phenotype does not produce any cuticle but has an
intact egg shell. (D) In the cuticle crumbs phenotype mostly the pretarsus or a tip of the
antenna, as in the present picture, are the only visible cuticle remnants of the embryo.
D` is an enlargement of the yellow rectangle in D, zooming in on an antenna, which is
most likely still attached to some other cuticle. Scale bars are 100 µm.
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injection, respectively.

One important consideration has to be taken into account when looking at the data

from Tc-pnr fragment 2. The beetles used for the pRNAi experiment were taken from

Tribolium lines with overall bad health (high mortality rate and reduced life span), as it

was the case for most of all other Tribolium lines cultured in the lab at this time. This is

a known phenomena within the Tribolium community, probably due to seasonal changes

effecting the health of the population. This could explain the high rate of the empty egg

and cuticle crumb phenotype, even in the wild type. In addition, as the data shown in

Figure 3.13C was collected from a single experiment only, its informative value is limited.

3.2.3 Comparing the topography of a normal developing embryo
to one going to show the dorsal open phenotype

It is only shortly after serosal rupture and prior to dorsal closure that measurable and

visible differences between a wild type embryo and an embryo going to show the dorsal

open phenotype after Tc-pnr RNAi can be detected (see Figure 3.15; one movie for

showing the development of the wild type embryo and one movie showing the development

of the Tc-pnr knock down embryo are included on the DVD; see 6.7 movies 3A and 3B,

respectively)).

Therefore, embryos in Figure 3.15 are synchronized to the first time point during

imaging when the serosa visibly withdraws from the anterior (Figure 3.15A1 and B1).

While the serosa has fully withdrawn from the abdomen in wild type embryos after 30

min (n=7; standard deviation is 10 min) (Figure 3.15A2), this process is not as fast in

Tc-pnr knock down embryos (Figure 3.15B2). In those the duration is doubled to 60 min

(n=20; standard deviation is 30 min). When the serosa is then degenerating within the

yolk and the flanks of the embryo are almost coming together in the wild type embryo

(Figure 3.15A3), the knock down embryo has already started to bend towards its dorsal

side (Figure 3.15B3). At this time the serosa starts degenerating in an atypical way so

that even at the end of imaging of the here shown knock down embryo reminant serosal

cells are still detectable (Figure 3.15B3-B5). While the flanks of the wild type embryo

expand towards the dorsal midline in a more even anterior-to-posterior fashion (compare

dashed light blue line in Figure 3.15A1-A3), this is not the case in the Tc-pnr knock down.

Here the bending of the head and tail towards the dorsal side, forming the characteristic
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Figure 3.15: Onset of the dorsal open phenotype after serosal rupture. Live
imaging of a wild type embryo (A1-A5) and a Tc-pnr knock down embryo (B1-B5)
using the nuclear GFP (nGFP) line [Sarrazin et al., 2012]. In all pictures the orientation
of the head is marked by a purple line, using two landmarks in the head. The light blue
dashed line marks roughly the most dorsal tissue of the closing flanks. (A1 and B1)
Both embryos are synchronized to the first time point in which serosal rupture is visible.
The dashed line separates the part of the embryo still encompassed by the serosa (to
its right) and the part where the serosa has withdrawn (to its left). (A2 and B2) In
wild type the serosa has withdrawn towards the dorsal side, forming the dorsal organ
(yellow arrow). After the same time in the knock down, the serosa still encompasses a
large posterior part of the embryo. (A3 and B3) The serosa has sunken into the yolk,
while its knock down counterpart is partially still on top of the yolk (yellow arrows). In
the knock down the bending of the head and the posterior abdomen towards the dorsal
side has visibly proceeded. (A4 and B4) The wild type embryo has finished dorsal
closure and the head has reached its final orientation. On the contrary, the serosa is
still undergoing degeneration in the knock down. A5 and B5 show the last imaged time
point of the respective embryos. The wild type embryo has not changed its appearance
but is performing periodic muscle twitching due to the activity of the longitudinal body
muscles [Koelzer et al., 2014] (not visible in A5). The dorsal open phenotype is now
apparent in the knock down and the extent of the dorsal opening can be seen. Even
though dorsal closure has failed in the knock down, the embryo’s flanks have extended
significantly towards its dorsal side. The bright spots within the dorsal hole have been
traced throughout the recording and could be identified as remaining serosal nuclei. In the
Tc-pnr knock down the head is almost bent 180 ◦ clock wise compared to the orientation
of the wild type’s head. Scale bars are 100 µm. Time stamp is in h:min. The embryos
have been imaged at a constant temperature of 30 ◦C.
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basket shape, leads to a narrowing furrow, the dorsal hole. This narrowing is further

increased, as the lateral sides of the embryo do not come up as much as in wild type

(compare dashed light blue line in Figure 3.15B2-B4). It is only at the final dorsal open

topography that it becomes best visible that the flanks do expand dorsally, while the

embryo tries to close its back (Figure 3.15B5). The extent of the dorsal hole is quite

variable at this stage. While the embryo in Figure 3.15B5 is a good representative for

most other knock down embryos, in some embryos the dorsal opening is much smaller in

anterior-posterior extent. This is due to an increased bending of both the head and the

posterior abdomen. In Figure 3.15 the purple line indicates the orientation of the head,

as introduced in Panfilio et al. 2013. Compared to the wild type, an almost 180 ◦ clock

wise turnover has occurred (compare Figure 3.15A5 and B5), which can even extend 180 ◦

in knock down embryos with a more narrow dorsal hole.

3.2.4 Tc-pnr regulates Tc-dpp expression in the dorsal epider-
mis during dorsal closure

The cause of the dorsal hole in Dm-pnr mutants of Drosophila has been traced back to

its regulatory role on Dm-dpp [Herranz and Morata, 2001], which is an essential signaling

molecule during dorsal closure [Affolter et al., 1994; Glise and Noselli, 1997].

In Tribolium it is known that Tc-dpp is expressed in cells of the dorsal most ecto-

derm in extending germband embryos [Sanchez-Salazar et al., 1996; Giorgianni and Patel,

2004; Ober and Jockusch, 2006]. Figure 3.16A-B``shows that this expression persists

in the dorsal most cells of the ectoderm in retracted germband embryos, resembling the

expression in Drosophila [Arquier et al., 2001; Chen et al., 2002]. Dm-pnr expression in

the ectoderm shares the same dorsal limit like Dm-dpp [Winick et al., 1993; Herranz and

Morata, 2001]. The same applies for Tc-pnr (see Figure 3.12A and C), compared to

Tc-dpp. These similarities led to the assumption that Tc-pnr may regulate Tc-dpp, like

its ortholog in Drosophila [Herranz and Morata, 2001]. Indicated by the dorsal hole in

Tc-pnr knock down embryos, which is a specific feature of dorsal closure mutants in

Drosophila [Byars et al., 1999], this could help to clarify the role of Tc-pnr during dorsal

closure. Experimentally, Tc-pnr knock down embryos were stained with a Tc-dpp probe

(Figure 3.16).

In Tc-pnr knock down embryos, Tc-dpp expression is unaffected in the proctodeum,
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Figure 3.16: Tc-dpp expression in the dorsal most ectoderm depends on Tc-
pnr . (A-F) Embryos stained for Tc-dpp via in situ hybridization. (A`-F`) Respective
DAPI counterstain. (B and E) The same embryos as in A and D, respectively but
imaged at a higher magnification. (A) Tc-dpp is in wild type expressed in cells along
the dorsal most ectoderm. Additional expression domains are seen in the proctodeum
(black arrow) and in various domains within the developing head (asteriks). Along the
lateral flank weak expression within a patchy stripe is detectable (white arrows point to
some of the its expression; the latter expression pattern is stronger in extending germband
embryos [Giorgianni and Patel, 2004; Ober and Jockusch, 2006] but could be verified in
the developmental stage seen in A by looking at other embryos stained for Tc-dpp as
well). (B) The projection focuses on the dorsal most ectoderm of the posterior part of
the embryo in A, where Tc-dpp is expressed in a row of cells, directly adjacent to the yolk.
B`` is an enlargement of the area within the rectangle seen in B and B`. The border
between the yolk and the ectoderm is visualized by the dashed black line. Dorsal to the
line is the yolk and ventral to it the ectoderm. Tc-dpp is expressed in the ectodermal
border cells. (C) Different embryo stained for Tc-dpp, where its expression is seen in the
patchy lateral stripe in T1-T3 (white arrows). The black arrows point to expression in the
dorsal most ectoderm. (D) In the knock down, Tc-dpp expression is absent in the dorsal
most row of cells in the ectoderm but still expressed in all other domains (this might not
be apparent from this embryo, as all other expression domains beside in the proctodeum
stain not very strong for Tc-dpp in general but it has been verified by looking at other
embryos that only the Tc-pnr expression within the dorsal most ectoderm is consistently
absent after Tc-pnr pRNAi). (E) The projection focuses on the dorsal most ectoderm
of the posterior part of the embryo in D, where Tc-dpp is no longer expressed. (F) The
same embryo as in D, showing the loss of Tc-dpp expression along the dorsal most cells
in the ectoderm. A, B, D and E are lateral views, C and F are ventral views. Scale bars
are 100 µm.

74



Results

the head and along the lateral flank (Figure 3.16D and F; see figure legend). It is only

the expression in the cells of the dorsal most cell row that is absent in the knock down

(Figure 3.16D and E). This finding suggests that Tc-dpp is indeed a downstream target

of Tc-pnr in these cells.

3.2.5 Tc-pnr regulates Tc-iro at the differentiated blastoderm
stage and represses it in the dorsal epidermis during dorsal
closure

In Tribolium, Tc-iro is primarily used as a marker for the amnion at the differentiated

blastoderm stage [Nunes da Fonseca et al., 2008, 2010]. At this stage, both Tc-iro and

Tc-pnr are expressed in the anterior amniotic fold, the dorsal amnion and in cells of the

posterior fold, whereas Tc-iro expression extends more ventral in the latter one (Fig-

ure 3.17A and G). To check if Tc-iro is regulated by Tc-pnr, the expression of Tc-iro was

investigated in Tc-pnr knock down embryos until germband extension (Figure 3.17).

When the posterior fold has formed and involution of the embryo has begun, Tc-iro

is expressed in the anterior amniotic fold, the dorsal amnion stretching into the posterior

fold and the posterior part of the involuting embryo (Figure 3.17A and A`). In the Tc-

pnr knock down Tc-iro expression is lost, even in the embryonic part, where Tc-pnr is

normally not expressed (Figure 3.17B and B`and compare to Figure 3.17G). By the time

the serosal window has formed, Tc-iro is expressed in its margins, the amnion covering the

segment addition zone, as well as the segment addition zone itself and in streaky domains

within the ectoderm (Figure 3.17C and C`). Again, the complete Tc-iro expression is

lost in the knock down except weakly in two separate domains in the amnion over the

head lobes. Here its expression is diminished but faintly visible (Figure 3.17D and D`and

compare to Figure 3.17H). The residual Tc-iro expression in the amnion was verified by

repeated in situ stainings in different Tc-pnr knock down experiments. By the time the

amnion and serosa separated and the embryo extended over both poles, Tc-iro is expressed

in the amnion and in an segmental-like repeated pattern within the embryo (Figure 3.17E

and E`). The knock down expression pattern could not be validated to 100%, even

after repeating the staining with embryos from different experiments. Probably, Tc-iro

expression in the embryo is not affected but its expression within the amnion is diminished

(Figure 3.17F and F`and compare to Figure 3.17I and J). These results indicate that Tc-
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Figure 3.17: Dynamic effect of Tc-pnr knock down on Tc-iro expression until
mid germband extension. (A-F) Embryos stained for Tc-iro via in situ hybridization.
(G-I) Embryos stained for Tc-pnr via in situ hybridization (for details on the expression
pattern, see Figure 3.9 and Figure 3.10). (J) Background control (using Tc-iro sense
probe. (A`-F`) Respective DAPI counterstain. (A, C, E, G, H and I) Wild type
embryos. (B, D, F and J) Tc-pnr knock down embryos. (A) Tc-iro is expressed in the
anterior amniotic fold, the dorsal amnion and in cells around the posterior fold. (B) Tc-
iro expression is absent in the Tc-pnr knock down embryo. (C) When the serosal window
has formed, Tc-iro is expressed in the whole amnion at its circumference, in the segment
addition zone and the overlaying amnion, as well as in the ectoderm (black arrows). (D)
In the knock down, only weak expression in two domains in the amnion covering the head
lobes is still present (black arrows). (E) During germband extension Tc-iro is expressed
in segmental-like stripes and in the complete amnion (black arrowheads). (F) Tc-iro
expression in the embryo is not affected in the knock down but its expression in the
amnion is diminished (black arrowheads point to weak Tc-iro expression in the amnion).
The area within the black rectangle is enlarged in F``. The black arrow points to weak
expression in the outermost cell layer, which is the amnion. A, B, E, F, G, I and J are
lateral views, C, D and H are ventral views. Scale bar is 100 µm.

pnr regulates Tc-iro expression to a certain degree not only in tissues where both genes are

expressed both also in embryonic tissue, where Tc-pnr is not expressed. Additionally, this

regulation of Tc-iro by Tc-pnr seems to weaken from differentiation of the blastoderm,

until halfway through germband extension.

Interestingly, the knock down of Tc-iro does result in an early defect, which is not

observed in Tc-pnr knock down embryos. In the severe occurrence of the Tc-iro phenotype

after pRNAi, differentiation of the blastoderm is defective, as well as formation of the

primitive pit. Still, a posterior fold like structure is able to form and cells of potential

serosal origin try to envelope a tissue cluster with tentacle-protrusions, reminiscent of a

kraken (Figure 3.18A1 and A2). In the mild occurence, the embryo is able to form but not

completely in a wild type manner (Figure 3.18B). Nonetheless, the embryo does undergo

a movement reminiscent of germband extension (inferred also by live imaging data; three

movies are included on the DVD, showing wild type development and the mild and severe

phenotype after Tc-iro pRNAi in the nGFP line genetic background (the latter one also

shows the absence of proper primitive pit formation); see 6.7 movies 4A-4C, respectively).

Investigation of the knock down penetrance (Figure 3.18D), showed that 66.4% (n=1895)

of the embryos develop a wild type cuticle, which is in contrast to 91.7% (n=1975) in the

control embryos. This indicates that the observed defects only affect a subset of the knock
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Figure 3.18: Phenotypes after Tc-iro parental RNAi. (A-B) After Tc-iro pRNAi,
the observed phenotype can be divided into two main groups, depending on its severeness:
In the severe phenotype, differentiation of the blastoderm fails and a single tissue cluster
with tentacle-like cell protrusions forms (A1). A posterior fold like structure does form
(white arrow in A2). The yellow arrows point to some of the presumptive serosal cells.
In the mild phenotype, an embryonic structure with clearly distinct head lobes (marked
by the two yellow asteriks) does form, reminiscent of a normal wild type embryo (B).
(C) Embryo stained for Tc-iro via in situ hybridization. Tc-iro is expressed at the
late undifferentiated blastoderm stage in a broad band in cells of the presumptive serosa
and, towards the posterior, in the presumptive anterior amniotic fold. (C`) Respective
DAPI counterstain. (D) Comparison of the penetrance after Tc-iro pRNAi with a water
injection (control) derived from five discrete experiments, assessed by cuticle preparation.
In the control, 91.7% of the controls offspring develop a wild type cuticle. In the knock
down, 66.4% develop wild type like. The empty egg phenotype is increased from 5.1% in
the wild type, to 25.5% in the knock down. The cuticle crumbs phenotype is increased
from 3.2% to 8.1%, respectively. The embryo in A1 is a potential ventral view and the
same embryo as in A2, which is a potential lateral view. The embryo in B is a potential
ventral view. Scale bar is 100 µm.

down embryos, which is in accordance with overall observations during the experiments.

The main phenotype is the empty egg phenotype, which is quintupled in the knock down

(25.5%) compared to the wild type (5.1%). The cuticle crumbs phenotype is increased to

8.1% from 3.2%, respectively.

These findings indicate that Tc-iro is important for processes before differentiation

of the blastoderm, when Tc-pnr is not yet expressed but Tc-iro already is (Figure 3.18C)

[Sharma et al., 2013a]. The observed impaired formation of the primitive pit could point

to a need for Tc-iro for its formation, even though the subsequent movement arising

from the posterior fold does happen in the knock down. As a defect in the formation

of the primitive pit is not observed in Tc-pnr knock down embryos, it could be due to

Tc-iro expression around the posterior fold, where its expression extends more ventral

than Tc-pnr expression (compare Figure 3.17A and G).

In accordance with previous findings in Drosophila that the dorsal epidermis at the

retracted germband stage is divided into a medial and lateral region, marked by Dm-pnr

and Dm-iro expression, respectively [Calleja et al., 2000], it was reported that loss of Dm-

pnr expression leads to a transformation of the medial region into the lateral one [Herranz

and Morata, 2001]. This is accompanied by an expansion of the Dm-iro expression domain

into the dorsal medial region [Calleja et al., 2000].
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Figure 3.19: Tc-pnr represses Tc-iro expression in the dorsal ectoderm at the
retracted germband stage. (A-D) Embryos stained for Tc-iro via in situ hybridiza-
tion. (E) Embryo stained for Tc-pnr via in situ hybridization. (A`-D`) Respective
DAPI counterstain. (A`` and B``) Overlay of a single section of the projections in A,
A` and B, B`. (A, C and E) Wild type embryos. (B and D) Tc-pnr knock down
embryos. (A and C) Tc-iro is expressed in the lateral ectoderm (investigated by relating
the DAPI counterstain to the specific Tc-iro stain in the single sections of the projec-
tion, which is in the outermost cell layer, the ectoderm) in a segmental repeated pattern
that extends into the head region and ventral to this expression in a similar pattern in
embryonic tissue. Small areas of expression are also seen in the legs in C. (B and D)
The two latter expression domains persist in the Tc-pnr knock down, whereas Tc-iro
expression in the lateral ectoderm is extended dorsally. A`` and B`` are enlargements
of the respective areas in A, A` and B, B`, which illustrate this extension more clearly.
The yellow dots roughly indicate unstained cells from the most dorsal Tc-iro expression
to the dorsal margin of the embryo. In the knock down, this Tc-iro expression free area
is approximately halved compared to the wild type. (E) Same embryo as in Figure 3.12.
Scale bar is 100 µm.

To check if Tc-iro expression in the lateral ectoderm expands more dorsally in Tc-

pnr knock down embryos and therefore would be conserved to Drosophila, wild type and

knock down embryos were stained for Tc-iro expression (Figure 3.19).

Figure 3.19A, A`and C, C`show that Tc-iro is expressed in the lateral ectoderm, as

well as in other embryonic domains. Furthermore, expression of Tc-iro expands in the

Tc-pnr knock down towards the dorsal ectoderm (Figure 3.19B and D and B`and D`),

where Tc-pnr is normally expressed (compare to Figure 3.19E). Albeit the expansion of

the Dm-iro expression domain is more pronounced in the Dm-pnr mutant [Calleja et al.,

2000], the tendency of Tc-iro to extend more dorsally could be shown. This indicates that

the expression of Tc-iro in the ectoderm dorsal to its normal expression pattern is due to

Tc-pnr induced repression in this domain in wild type, what seems to be conserved to a

certain degree in both Tribolium and Drosophila.

3.2.6 Different defects in the amnion after Tc-pnr pRNAi

Tc-pnr is a consistent marker of the amnion throughout most of Tribolium embryonic de-

velopment. Its expression starts at the differentiation of the blastoderm (see Figure 3.9A)

and persists until the embryo finishs germband extension (see Figure 3.11A). At the re-

tracted germband stage, it is still expressed in the amnion (see Figure 3.11B). In later
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stages accessibility of the extraembryonic membranes by in situ hybridization is pro-

foundly impeded by the vitelline membrane and resulting dissecting methods, so that re-

liable statements about its expression are not possible anymore with whole mount staining

procedures.

In Drosophila, Dm-pnr is expressed starting at the cellular blastoderm in the precur-

sor cells of the amnioserosa. Expression in the amnioserosa is constant until mid germband

extension. Afterwards, it starts to weaken until it is no longer detectable at the end of

germband extension [Winick et al., 1993; Heitzler et al., 1996].

That Tc-pnr is permanently expressed in the extraembryonic tissue, suggests a more

important function in Tribolium than in Drosophila, where only a potential early cell

death was reported (compare [Heitzler et al., 1996] and [Herranz and Morata, 2001]).

To check if the amnion is affected in Tribolium, Tc-pnr pRNAi was performed and

the resulting phenotype visualized by the HC079 line, in which EGFP is expressed in the

amnion starting shortly after germband extension [Hilbrant et al., 2016]. The development

of 15 Tc-pnr knock down embryos was recorded. 10 showed the dorsal open phenotype

and eight of this subset of embryos (80%) displayed different defects in the amnion directly

or passively during the process of rupture (Figure 3.20; five movies showing the respective

defect in the amnion of the embryos in Figure 3.20A-E are included on the DVD; see

6.7 movies 5A-5E, respectively). The other five embryos belong to the ‘not assignable

phenotype’, introduced in Figure 3.13. In Figure 3.20A the most frequent defect is seen

(three out of eight; 38%). The amnion withdraws significantly more slowly over the

posterior abdomen (ranging from 2h40min in the first, up to 5h10min in the second

embryo; in the third embryo the extraembryonic tissue is not able to withdraw over the

abdomen) than in control embryos (compare to 3.2.3). This leads to a constriction of

the embryo, as indicated by the area between the blue dashed line and the purple dashed

line. The amnion in Figure 3.20B has several small holes (one out of eight; 13%), even

though only one is visualized in the figure. All holes which are visible in the amniotic

dorsal organ, are already seen prior to rupture. Consequently, these holes neither impair

rupture, nor the following withdrawal. Ectopic amniotic rupture of the amnion (two

out of eight; 25%) in Figure 3.20C, is initiated within the hole enclosed by the yellow

dashed line. Interestingly, the hole is getting smaller prior to rupture. In another embryo,

ectopic rupture was recorded at the posterior (not shown). Normal rupture together with
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Figure 3.20: Different amniotic defects after Tc-pnr pRNAi. (A-E) Embryos of
the HC079 line, showing defects during amniotic rupture or in the amnion itself after Tc-
pnr pRNAi. (F) Cross of the rHC079 line (magenta) and the enhancer trap line G04910
(green) (see Figure 3.22). (A) The amnion retracts very slow over the abdomen, squeezing
the abdomen during this time strongly. The dashed yellow line follows the shape of the
eggshell and the blue one the embryo, visualizing the constriction caused by the slow
propagation of amniotic withdrawal over the abdomen. (B) The amnion has withdrawn
to the dorsal side. At its lateral flank a hole is visible, outlined by the dashed yellow
line. (C) The dashed yellow line reconstructs a large hole in the amnion, where ectopic
rupture will take place. (D) The amnion does not withdraw over the abdomen but due
to an additional ectopic rupture at the posterior, a constriction has formed in the middle
of the embryo. Here the amnion will start to degenerate and subsequently withdraw to
the dorsal side. (E) The outline of the amnion is visible to a certain degree, while the
organization of amniotic nuclei is abnormal. Expression in the amnion is partially lost.
(F) Similar defect to the embryo in E. After Tc-pnr knock down, the amnion is not
recognizable in its normal form and only in the more ventral anterior cap region as well as
slightly posterior, the red fluorescence can be assigned to its amniotic origin. Its normal
outlines separating it at the dorsal side towards the yolk are completely gone. The embryo
itself has at least formed an extending germband and seems rather wild type like. A-D
and F are lateral views, E is a dorsal view. Scale bars are 100 µm.

ectopic rupture at the posterior pole (one out of eight; 13%) lead to the constriction in

Figure 3.20D. The last recorded defect is the one seen in Figure 3.20E. In this dorsal view

the normal cell arrangement in the amnion is disordered (one out of eight; 13%). While

there is cell accumulation in the anterior cap region, other areas look rather cell free.

Another single Tc-pnr knock down embryo imaged in a separate experiment, showed a

similar defect (Figure 3.20F). Again, there is an accumulation of cells, this time in the

ventral part of the anterior cap region. It is only directly posterior of these cells that

additional cells bear a strong enough signal to be identified as of amniotic origin. The

rest of the ‘amniotic region’ (if it exists) is indistinguishable from the background. A clear

border between the amnion and the yolk cannot be identified.

In all eight recorded embryos, the amnion is always able to rupture and in six of

them the amnion is able to withdraw to the dorsal side, where it degenerates as described

in Figure 3.15. It is only in an embryo exhibiting slow withdrawal of the amnion and in

the embryo shown in Figure 3.20E that complete withdrawal is not happening. In case

of the first embryo, the amnion is not able to withdraw over the abdomen. Still, amnion

withdrawal is slowed down already before. In the second embryo, imaging was stopped
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Figure 3.21: Normal morphology of the amnion is disturbed in Tc-pnr knock
down embryos. Cross of the rHC079 line (magenta) with the line G04910 (A1, B1)
and G04609 (C1, D1) (both in green). Embryos in A2-D2 are the same embryos as in
A1-D1 respectively but imaged at higher magnification. (A1, C1) Wild type embryos.
(B1, D1) Tc-pnr knock down embryos. (A2) Focus on the anterior cap region (anterior
to the dashed yellow line), for comparison with B2. (B2) The cell shapes of the normally
large cells of the anterior cap are disturbed and the borders between individual cells
cannot be identified easily. Visualized by DsRed2 expression, the nuclei look different
from the wild type (compare A2` and B2`, which are enlargements of the respective
white dashed rectangles). The border between the anterior cap region and other amniotic
tissue as drawn in A2, can not be found. (C2) Focus on the amnion in the middle of
the embryo, for comparison with D2. (D2) The overall organization is disturbed and the
expression shows dark gaps with no expression (more pronounced towards the posterior),
if compared to the wild type. Hole-like structures are visible (D2`) and connections
between the DsRed2 labeled ‘protrusions’ seem to be broken (D2``; normal connection
is indicated by the white line). Scale bars in A2-D2 are 50 µm and 100 µm in A1-D1.

shortly after rupture, so that it can not be assessed if the amnion withdraws over the

abdomen.

To investigate the observed amniotic defects in more detail, the rHC079 line was

crossed either to the line G04609 [Koelzer et al., 2014] or the in this study characterized

enhancer trap line G04910 [Trauner et al., 2009] (Figure 3.21; see also Figure 3.22A1-A3;

one movie showing the progression of the EGFP signal in the line G04910 and one showing

the progression of the EGFP signal in the line G09423 are included on the DVD; see 6.7

movies 6A and 6B, respectively). The two EGFP expressing lines were used to provide

positional information, by using the specific expression in the cardioblast cell row in the

line G04609 (therefore also referred to as the ‘heart’ line) and the segmentally repeated

expression in the line G04910 as embryonic landmarks. After Tc-pnr pRNAi, the anterior

cap region, where the amnion will rupture prior to dorsal closure [Hilbrant et al., 2016], is

not distinguishable from other regions within the amnion (Figure 3.21). The nuclei have

changed their morphology from roundish to a blob-like shape (compare Figure 3.21A2`and

B2`). Cells within the specialized cap region seem to be more often affected than other

cells. Dark areas in between individual cells are visible. These can be either actual holes

in the tissue or they are due to a localized reduction in the DsRed2 signal. In the non-cap

region, these dark areas are also apparent (Figure 3.21D2). Additionally, small hole-like

structures are visible (Figure 3.21D2`). Protrusion, which seem to connect different nuclei
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Figure 3.22: Expression pattern of the enhancer trap lines G04910 and G09423.
(A1-B2) Embryos of the two GEKU lines G04910 and G09423 [Trauner et al., 2009],
characterized during this study. (A1-A3) Embryos of the enhancer trap line G04910.
EGFP expression in a segmentally repeated fashion from the head towards the abdomen,
in the openings of the tracheal system (white asteriks) and in the legs (white arrows). The
EGFP signal is stronger in the upper half of T1-T3. During embryogenesis, the EGFP
signal comes up around mid germband retraction. (B1-B2) Embryos of the enhancer trap
line G09423. EGFP expression in somatic muscles, similar to the transgenic line pBA19
[Lorenzen et al., 2003; Stappert et al., 2016]. No expression is visible in the heart and in
the brain (black longitudinal space in the dorsal view in B2, marked by white arrows).
The EGFP signal in this lines comes up very late during embryogenesis, approximately
towards the end of dorsal closure. A1-A3 and B1 are lateral views, B2 is a dorsal view.
Scale bars are 100 µm.
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and/or marking cell borders and which are visualized by DsRed2 expression, are normally

running in a relatively straight DV direction (Figure 3.21C2). In the knock down however,

these connections are either rippled or absent, indicated by the loss of DsRed2 expression.

Some of these protrusions seem also broken (Figure 3.21D2``). If looking at the different

defects within the amniotic tissue, it becomes apparent that the overall morphology of

the amnion is disturbed in Tc-pnr knock down embryos. This indicates that Tc-pnr

expression in the amnion is normally needed for maintaining this morphology.

3.2.7 Tc-pnr knock down does not effect the serosa and does
not cause a defect during early embryogenesis

In order to check if the early Tc-pnr expression in the anterior amniotic fold effects

the serosa, the expression of Tc-zen1 in Tc-pnr knock down embryos was investigated

(Figure 3.23).

Tc-zen1 is expressed in the prospective cells of the serosa in an oblique anterior

domain, just before the onset of the first visible differentiation of the blastoderm into

Figure 3.23: Tc-zen1 expression at the late undifferentiated blastoderm stage is
not affected in Tc-pnr knock down embryos. (A, B) Embryos stained for Tc-zen1
via in situ hybridization. (A`, B`) Respective DAPI counterstain. (A) In the wild type,
Tc-zen1 is expressed in cells of the prospective serosa. (B) After knock down of Tc-pnr,
Tc-zen1 expression is not altered. Scale bar is 100 µm.
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germ rudiment and serosa (Figure 3.23A and A`). That the distinction between cells

giving rise to the serosa and cells of the presumptive amnion is not completely accessible,

was shown by a double in situ hybridization analysis of Tc-zen1 and Tc-iro [Sharma

et al., 2013a]. The authors showed that at the late undifferentiated blastoderm, as well

as at the very beginning of the differentiated blastoderm stage, both genes are partially

expressed in the same cells [Sharma et al., 2013a]. As the knock down of Tc-pnr resulted

in a loss of Tc-iro expression in domains where Tc-pnr is expressed and in some where

it is not expressed (see Figure 3.17), Tc-zen1 expression in the Tc-pnr knock down was

checked. Figure 3.23B shows that Tc-zen1 expression is not altered. However, a partial

loss of Tc-zen1 expression at its posterior border towards the germ rudiment, can not be

excluded.

To test if loss of Tc-pnr expression does effect early embryogenesis (late undifferen-

tiated blastoderm until extended germband) at all, 18 knock down embryos were imaged

using the nGFP line. None of them exhibited any detectable defect (data not shown).

To conclude the analysis of the serosa during late embryogenesis (retracting germband

until completion of dorsal closure), Tc-pnr knock down embryos were imaged in a cross

of the ‘serosa’ line G12424 (EGFP expression in the serosa starting before germband

extension [Koelzer et al., 2014]) and the ‘heart’ line G04609 (EGFP expression in the

cardioblast cell row starting during retraction of the germband [Koelzer et al., 2014]). 27

Tc-pnr knock down embryos were imaged, of which 21 showed the dorsal open phenotype

(77.8%). In three embryos serosal rupture was greatly delayed (11.1%) but probably it

did happen after the recording was stopped, as the serosa started to contract, a typical

movement prior to rupture. In comparison, the withdrawal of the serosa in the embryos

exhibiting the dorsal open phenotype, serosal withdrawal was not delayed (Tc-pnr knock

down embryos: 30 min; n = 21; standard deviation is 20 min; control embryos: 30 min; n

= 6; standard deviation is 20 min; time in minutes is the mean value it takes the serosa to

withdraw over the abdomen after rupture), which is in opposition to 3.2.3. In the three

remaining embryos, embryonic tissue was present, although development did not proceed

(11.1%). Interestingly, in none of the embryos exhibiting the dorsal open phenotype, the

serosa did rupture ectopically, despite the reported physical connection of both tissues

[Hilbrant et al., 2016].
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3.2.8 The amnion and the serosa withdraw partially indepen-
dent from each other after rupture of both extraembryonic
membranes

In the last two sections it was shown that the amnion ruptures ectopically after Tc-

pnr pRNAi, while the serosa seems to be mostly unaffected (see also Figure 3.15 for

slow withdrawal of the serosa). To investigate this further, knock down embryos of the

nGFP line were used for live imaging. In the nGFP line, GFP is localized to the nuclei

[Sarrazin et al., 2012] and therefore should illuminate both serosal and amniotic nuclei.

Unfortunately, the GFP signal in the amnion was very hard to distinguish from any other

signal, whereas the serosa was at all time easily discernible.

27 Tc-pnr knock down embryos were imaged, of which 24 show the dorsal open

phenotype (88.9%). The remaining three embryos are counted as not assignable phenotype

(11.1%). From the 24 embryos, only one embryo shows ectopic rupture of the amnion

at the posterior, while the serosa ruptures and withdraws wild type like (Figure 3.24;

the movie showing the Tc-pnr knock down embryo exhibiting ectopic amniotic rupture

is included on the DVD; see 6.7 movie 7). In this embryo, the serosa ruptures normally

at the anterior side and withdraws to form the dorsal organ, before it sinks down into

the yolk and degenerates (Figure 3.24; blue dashed lines/areas). A small opening in a

tissue at the ventral side becomes apparent in the movie, approximately 140 min after

rupture of the serosa (Figure 3.24A4). This tissue is believed to be the amnion, which

did not rupture together with the serosa. As visualization of the amnion is very difficult,

not to mention the small opening, the expanding opening in the amnion is encirceled by

an orange dashed line (Figure 3.24A4-A10). This hole in the amnion increases over time

towards the anterior and dorsal side, until it adopts a triangular shape (Figure 3.24A10).

Than, approximately 300 min after rupture of the serosa, the hole rips open in a rupture

like movement and the amnion withdraws over the abdomen (Figure 3.24A11; direction

of withdrawal is indicated by the orange arrow). Withdrawal over the anterior part of

the amnion seems not to take place, rather the amnion gets stuck next to the original

opening, which is presumably just over the tip of the T3 leg (Figure 3.24A11; amnion

withdrawal does not exceed the orange dashed line). This could provide a sufficient

barrier, especially if the force to facilitate amniotic rupture is not strong enough anymore

after amnion withdrawal over the abdomen. In this case the amnion would still cover the
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Figure 3.24: The site of rupture of the amnion and the serosa differ after Tc-
pnr parental RNAi. Tc-pnr knock down embryo of the nGFP line. Live imaging was
started 40.5 h +/- 2 h after egg laying, which corresponds to the time stamp 00:00 in A1.
(A1) . The embryo has fully retracted and the serosa encloses embryo and yolk (indicated
by the blue dashed line for the anterior part). (A2) The serosa has ruptured wild type
like at the anterior (indicated by the blue dashed line). (A3) The serosa has withdrawn to
the dorsal side, forming the serosal dorsal organ (encircled by the blue dashed line). (A4)
The orange dashed line roughly encircles a hole in the amniotic tissue. (A5-A9) The hole
has increased in size towards the anterior and slightly towards the dorsal side. (A10)
The hole has widened to the dorsal side, now forming a triangle, while the serosa sinks
down into the yolk. (A11) The amnion has ripped wide open and has withdrawn over
the abdomen (indicate by orange arrow). Towards the anterior ventral side, the amnion
got stuck (this position is marked by the orange dashed line). Time stamp is in h:min.
The embryo has been imaged at a constant temperature of 30 ◦C. Scale bar is 100 µm.

embryo over the head and the thorax region.

Although only one embryo out of 24 (4.2%) embryos, which showed the dorsal open

phenotype, showed ectopic rupture of the amnion, it is believed to occur more often, as

in another live image experiment, 80% of the affected embryos exhibited ectopic rupture

(see 3.2.6). One reason for this could be that visualization of the amnion is very difficult

in the nGFP line. Therefore, it could well be that defects in the amnion were overlooked.

3.2.9 The severeness of different defects after Tc-pnr parental
RNAi is affected by the strength of the knock down

The images in Figure 3.20F and Figure 3.21 were taken from knock down embryos, which

were injected with degraded dsRNA. This resulted in a reduced concentration, which

in turn lead to a more mild dorsal open phenotype as reported (see Figure 3.15). The

penetrance of the phenotype, which is the percentage of all embryos showing the dorsal

open phenotype (here 82.4%), was not affected. However, the dorsal open phenotype is

not as pronounced as in the severe (normal) dorsal open phenotype. Figure 3.25 compares

the mild and severe dorsal open phenotype, to one showing wild type development (One

movie for of each of the three embryos showing their development, is included on the

DVD; see 6.7 movies 8B, 8C and 8A, respectively). All imaged embryos resulted from

a cross of the rHC079 line (DsRed2) with the ‘heart’ line G04609 (EGFP) but only the

EGFP channel is visualized (and leakage from the DsRed2 signal into the EGFP channel;

see yellow arrows), as DsRed2 expression in the amnion would have impeded the view on
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Figure 3.25: Comparing the mild and severe phenotype after Tc-pnr pRNAi,
while introducing normal heart formation using the ‘heart’ line G04609. Live
imaging of a wild type embryo (A1-A4) and two Tc-pnr knock down embryos (B1-D4),
using a cross of the heart line (EGFP) and the rHC079 (DsRed2) line. Visualized is only
the EGFP channel. The yellow arrows point to (weak) DsRed2 signal emitting from the
amnion, due to a crosstalk between the EGFP and DsRed2 channel. All three embryos are
synchronized to the first time point in which amniotic rupture is visible. (A1-A4) Normal
developing embryo, where the two cardioblast cell rows (blue arrows) come together at
the dorsal midline, as the embryo completes dorsal closure. The green arrows mark the
EGFP expression in the head/eyes, the white arrow marks the proctodeum and the red
arrows point to the segmental muscle blocks. (B1-B4) Mild dorsal open phenotype, in
which the cardioblast cell rows come together rather wild type like at the midline but are
unable to form a straight bicellular heart row. Notably, the head and abdomen bend only
slightly towards the dorsal side. (B1-B5) Severe dorsal open phenotype, which shows the
characteristic bending of the head and the abdomen towards the dorsal side. The two
heart rows do not come together at the midline but seem to get drawn to the dorsal center
of the embryo. All embryos are dorsal views. Time stamp is in h:min. The embryos have
been imaged at a constant temperature of 30 ◦C. Scale bars are 100 µm.
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the cardioblasts (blue arrows). What becomes apparent, besides from the characteristic

bending (visualized by EGFP expression in segmental muscle blocks (red arrows), in the

proctodeum (white arrow) and in the head/eyes (green arrows) [Koelzer et al., 2014]), is

the effect on the cardioblast cell row (investigated in more detail in the following section),

in which Tc-pnr is expressed (see Figure 3.11B). The normal formation of the heart

row is shown in Figure 3.25A1-A4. In the mild phenotype (Figure 3.25B1-B4), the two

cardioblast cell rows almost come together and the expression is only slightly affected.

Additionally, the bending of the head and tail towards the dorsal side is not as severe.

The severely affected embryo (Figure 3.25C1-C5) shows the characteristic strong bending,

while heart formation is heavily impaired. These results point to the assumption that the

effect of Tc-pnr may be dosage dependent.

3.2.10 Tc-pnr is involved in heart development in Tribolium

The ‘heart’ line G04609 was used to provide positional information in Tc-pnr knock down

embryos. By doing so, it became apparent that EGFP expression in some cardioblasts (=

myocardial cells) is lost and that the overall expression in the cardioblasts is diminished,

compared to the wild type (Figure 3.26). If this visible loss of EGFP expression in some

cardioblasts is really due to a loss of expression or if the cardioblasts itself are lost, is not

known, as in both cases no EGFP expression would be detectable. EGFP expression in

the segmental muscle blocks and in the head is not affected. Note that in the wild type

embryo shown in Figure 3.26 (left image), the EGFP expression within the cardioblast

cell row is not continuous. This specific feature of the G04609 line was already reported

and is because not all cardioblasts are labeled in this line [Koelzer et al., 2014].

To identify the cause for the loss of EGFP expression in the G04609 line, a knock down

embryo was imaged on the cell level and compared to a wild type embryo (Figure 3.27).
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Figure 3.26: EGFP expression is partially lost in the cardioblast cell row of Tc-
pnr knock down embryos of the G04609 line. Comparison of a wild type embryo
(left image) and a Tc-pnr knock down embryo (right image) from the G04609 line. In
the image to the right, the two yellow arrows point to some of the residual EGFP expres-
sion within cells of the cardioblast cell row. The exposure time of EGFP was increased to
achieve better visualization of the remaining EGFP expression in the cardioblasts. There-
fore, the expression in the segmental muscle blocks and in the head is stronger compared
to the wild type and due to the resulting overexposure in these expression domains, the
shape of the domains appears different (compare roundish segmental muscle blocks in the
right image, to the more slender ones in the left image). Scale bars are 100 µm.
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Figure 3.27: The normal organization of the cardioblast cell row is impaired
after Tc-pnr pRNAi. Comparison of a wild type embryo (A) and a Tc-pnr knock
down embryo (B), using the G04609 line as a marker for the cardioblasts (green) and the
DAPI counterstain to label all nuclei (magenta). A` is a single section of the area within
the white dashed rectangle of the projection in A but imaged with a higher magnification.
B` is a single section of the area within the white dashed rectangle of the projection in
B but imaged with a higher magnification. (A) Wild type embryo, stained with DAPI.
(B) Knock down embryo, stained with DAPI. The cut at the posterior of this embryo was
artificially introduced and is not in relation to any phenotype. (A`) The white dashed line
separates the small roundish ectodermal cells (below the line), from the bigger and cell
shape wise more variable mesodermal cells (above the line). Within the two yellow dashed
lines, the cardioblast cell row is discernible as a well structured row of cells. (B`) The
three yellow arrows point to residual EGFP expression in cells with potential cardioblast
identity. The cardioblast cell row is not discernible anymore from other mesodermal cells.
The white dashed line separates the mesoderm from the ectoderm. Scale bars are 100 µm
in A and B and 50 µm in A` and B`.

Figure 3.27A`shows a wild type embryo of the G04609 line, expressing EGFP in

some of the cardioblasts (less cardioblasts express EGFP, as the embryo was exposed

to methanol for too long, negatively effecting the expression of the fluorescent protein).

Distinctive to other cells in Figure 3.27A`, is the cardioblast cell row (between the two

yellow dashed lines). It is the dorsal most row of cells of the mesoderm, located slidely

ventral to the dorsal most ecotdermal cell row and ‘behind’ the ectoderm, if looking from

the lateral side. The cardioblasts are evenly organized and therefore well distinguishable

from the adjacent mesodermal cells. In the Tc-pnr knock down embryo, the cardioblast

cell row is no longer visible as a well structured row of cells (Figure 3.27B`). However, the

cells which still do express EGFP, are located in the dorsal most mesoderm, as it would be

expected for cells within the cardioblast cell row. Interestingly, the ‘shape’ of the EGFP

expression is rather atypically stretched in AP direction in the knock down, compared to

the slightly in DV orientation stretched EGFP expression of the wild type cardioblasts

(compare EGFP expression in Figure 3.27A`, to the EGFP expression in Figure 3.27B`,

marked by the middle yellow arrow). By careful investigation of each individual section of

the knock down embryo, it is assumed that this atypical AP stretched EGFP expression is

due to an accumulation of three to five cells, which is typically not observed in a normal

structured cardioblast cell row. The Tc-pnr knock down embryo in Figure 3.26 (right

image) supports this assumption, as the AP stretched ‘shape’ of EGFP expression can be
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observed there as well.

The loss of EGFP expression could be traced back to the lack of normal organization

of the cardioblast cell row after Tc-pnr pRNAi. If the cardioblasts are degraded subse-

quently to the knock down of Tc-pnr or if the gene driving the EGFP expression in the

G04609 line is affected, remains unclear.

It was reported that the EGFP expression in the cardioblast cell row in the enhancer

trap line G04609 is due to a partial trapping of the enhancer driving Tc-midline (Tc-

mid) expression [Koelzer et al., 2014]. Partial, as in contrast to the EGFP expression

in the cardioblasts in G04609, Tc-mid is expressed in all cardioblasts (Figure 3.28A,

A``and B). Tc-mid is also expressed in segmentally repeated muscle blocks, in a similar

pattern along the ventral midline and in the head and the legs. In Tc-pnr knock down

embryos, the expression of Tc-mid in the cardioblast cell row is mostly lost, while all

other expression domains remain unaffected (Figure 3.28C and D). This suggests that

Tc-mid is a regulatory target of Tc-pnr for this subset of heart cells (the cardioblast cell

row consists out of myocardial cells (cardioblasts) only, whereas the heart consists out of

myocardial and pericardial cells). Interestingly, in some cells of the cardioblast cell row

Tc-mid expression persists, meaning that the knock down does not effect all cardioblasts.

This is also true for the EGFP expression in the G04609 line, after Tc-pnr pRNAi. Based

on the assumption that G04609 traps partially the Tc-mid enhancer [Koelzer et al., 2014],

these results may emphasize this assumption.

To further investigate the effects on heart development caused by Tc-pnr pRNAi,

individual cardioblasts within the cardioblast cell row were tracked in a normal devel-

oping embryo and a Tc-pnr knock down embryo (Figure 3.29; the movie showing the

development of the Tc-pnr knock down embryo is included on the DVD; see 6.7 movie 9;

the wild type embryo is the same as in the movie 8A). The line G04609 was used for this

analysis (the knock down embryo is a cross of the line G04609 with the line G12424).

Tracking of the cardioblasts starts, when both cardioblast cell rows are first visible

in dorsal aspect (Figure 3.29‘Start’) and stops, when the cardioblasts do not move signif-

icantly anymore (Figure 3.29‘End’). The track of each individual cardioblast during this

time is retained in the image (Figure 3.29‘End-tracked’). In the wild type embryo, car-

dioblasts located at different starting positions, have specific routes to cover. Cardioblasts

located most anterior next to the head (tracks: light green, red and orange), move signif-
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Figure 3.28: Tc-mid expression in the cardioblast cell row is affected after Tc-
pnr pRNAi. (A-D) Embryos at the late retracted germband stage stained for Tc-mid
via in situ hybridization. (A`-D`) Respective DAPI counterstain. (A, B) Wild type
embryo in lateral (A) and ventral (B) orientation. (C, D) Tc-pnr knock down embryo
in lateral (C) and ventral (D) orientation. (A, B) Tc-mid is expressed in the cardioblast
cell row (the black arrows mark the cardioblast cell row) in the dorsal most mesoderm of
the embryo, in an segmentally repeated pattern along the ventral midline (the two red
arrows point to some of this expression) and in segmental muscle blocks (the two green
arrows point to some of this expression). The blue arrows point to dirt particles, resulting
in unspecific staining in both tips of the T3 legs. Tc-mid is also expressed in the legs
and in the head. The area encompassed by the black dashed rectangle in A is enlarged
in A``, showing localized Tc-mid expression in cells of the cardioblast cell row, in the
dorsal most region of the dorsal mesoderm. (C, D) Most of the Tc-mid expression in
the cardioblast cell row is lost after Tc-pnr pRNAi. Residual expression is marked by
the yellow arrows. Comparison of the two ventral views shows that Tc-mid expression in
other tissue domains is unaffected by Tc-pnr pRNAi. Scale bar is 100 µm.
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Figure 3.29: Cardioblast cell tracking in a wild type embryo and a Tc-pnr
knock down embryo. Live imaging in a wild type embryo (left row; start of recording
(00:00) is approximately 57h +/- 2h after egg laying) and a Tc-pnr knock down embryo
(right row; start of recording (00:00) is approximately 62h +/- 2h after egg laying) of
the G04609 line. Cardioblast tracking in both embryos was started as the cardioblast
cell row ascended visibly (‘Start’) and was stopped approximately as the embryos head
reached its final position (‘End’). In the wild type, the cardioblasts located most anterior
are moving towards the anterior pole, while the embryo closes its back. Expression of the
‘red’ marked cardioblast was lost when the head bent to the ventral side and could not
be tracked further. Cardioblasts located posterior within the cell row move transiently
towards the posterior pole, before the two cardioblast cell rows come together at the
midline. Cardioblasts located more in the middle of the embryo, show overall a reduced
movement in AP direction. In the Tc-pnr knock down, the anterior cells move only
towards the posterior, whereas this movement is reversed for the posterior cardioblasts.
The overall covered path by the posterior cardioblasts is slightly longer than the one of
the anterior located cardioblasts. Movement of the ‘light green’, the ‘dark green’ and the
‘beige’ cells could not be tracked until the end, as the expression of all three cells faded
away during imaging. Both embryos are dorsal views. The wild type embryo has been
imaged at room temperature and the knock down embryo at a constant temperature of
30 ◦C. Scale bars are 100 µm.

icantly in an anterior direction, as the head bends towards the ventral side at the same

time. Cardioblasts located more in the middle of the embryo, do not change their position

much, if at all, in AP direction (tracks: purple, light blue, green and blue). Apparent

is the slight transient shift towards the posterior of the two more posterior cardioblasts

(tracks: green and blue). This movement is even more pronounced in the two most pos-

terior cardioblasts (tracks: pink and beige), before both cells do a complete u-turn and

move back anteriorly towards their original position. In the Tc-pnr knock down embryo,

no such diverse set of movements could be identified. All cardioblasts move more or less

straight to the same area in the middle of the dorsum. This implies that the movement

of the cardioblast cell row is secondary caused by the bending of the embryo towards

the ventral side, to achieve its final form at the dorsal midline. Strengthened is this, by

the finding that the head of the embryos reaches its final position (see Figure 3.15) ap-

proximately at the same time, when the cardioblast cell rows come together at the dorsal

midline.

An important finding of this analysis is as well that three of the eight tracked car-

dioblasts could not be tracked as long as the other five cardioblasts. This is due to a
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decrease in the EGFP signal below trackable values. By checking other Tc-pnr knock

down embryos (data not shown), it became obvious that this is a conserved feature after

Tc-pnr pRNAi. This could indicate degeneration of cardioblasts or a delayed effect of the

loss of Tc-mid expression on the EGFP signal, as a result of the loss of Tc-pnr expression

in the cardioblast cell row, where Tc-pnr is expressed before dorsal closure starts.
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Chapter 4

Discussion

4.1 The rHC079 line(s): Benefits and implications

for their use

The original enhancer trap line HC079 was shown to express EGFP in the amnion, starting

shortly before the onset of germ band extension [Hilbrant et al., 2016]. By investigating

this line and another line expressing EGFP in the serosa (G12424), the amnion was

identified as the ‘initiator’ of rupture of both extraembryonic membranes, while the serosa

was identified as the ‘driver’ of the subsequent membrane withdrawal [Hilbrant et al.,

2016]. However, these findings were only based on live imaging data of both lines recorded

separately, as only EGFP was available in both lines. To continue this analysis, with

emphasis on the interactions between the two extraembryonic membranes, we need to be

able to observe both tissues separately within one embryo. Unfortunately, this was not

possible with the existing lines, both expressing EGFP, as both membranes are either

physically connected or in very close proximity to each other during later development

[Hilbrant et al., 2016]. Therefore, the EGFP transgene in the line HC079 was replaced by

a DsRed2 transgene. This enabled distinct visualization of both amnion and serosa in a

heterozygous cross of the respective lines.

Methodically, the replacement of EGFP with DsRed2 in the original HC079 line was

achieved by using a combination of CRISPR/Cas9 [Cong et al., 2013], targeting the EGFP

transgene and homology directed repair (HDR). By injection of a donor plasmid, harboring

the DsRed2 transgene, into embryos prior to cellularization, successful integration of the

transgene into the germ line was achieved in 5 (3.2%) of the 157 eclosed beetles, which

is 0.3% of the initial 1992 injected embryos. Subsequently, four lines (#F, #W1, #W13
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and #N) homozygous for the DsRed2 transgene were established. To distinguish the new

lines from the original HC079 line, the lines were termed red HC079 (rHC079) lines, in

which ‘red’ is the synonym for red fluorescence.

All rHC079 lines were subsequently validated for seamless integration of the complete

donor-plasmid and their DsRed2 signal strength was characterized.

4.1.1 Factors influencing the efficiency of transgenesis

The efficiency of transgenesis (here, the integration of the transgene into the germline) is

not only influenced by the general uptake of the transgene into pre-blastoderm cells, the

efficiency of the CRISPR/Cas9 system and the subsequently activated HDR mechanism,

which are all factors which could not be determinded in this study but also by other

factors. Those will be discussed in the following paragraphs.

While 69.5% (n = 400) of mock (water) injected embryos of the original HC079 line

hatched, only 11.5% (n = 1992) did when injected with the plasmid mix (donor-plasmid,

Cas9-plasmid and gRNA-plasmid). This can be explained by two possibilities. First, the

plasmid solution itself was toxic [Wei-Ti et al., 2016], enhanced by undesired impurities,

such as bacterial genomic DNA, a well known problem after plasmid purification [Ti-

etze, 2009]. Secondly, the induced double strand break itself can cause cell death, if left

unrepaired [Bennett et al., 1993; Mehta and Haber, 2014].

In a recent study, exactly the same plasmids for Cas9 and the gRNA for targeting

EGFP in the enhancer trap line Pig-19 but a different donor-plasmid for recombination

were used to knock-in a DsRed2 transgene [Gilles et al., 2015]. The authors reported a

survival rate of injected larvae of 24% (n = 1866), more than two times the one I achieved

(11.5%; n = 1992). This may be due to differences in injection parameters, like the speed

of injection (reduced amount of dried-out eggs) or the handling of the needle (reduced

back-flow when pulling out the needle from the egg).

The use of different lines targeted for injection could also make a difference, as indi-

cated by the initial comparison of mock injected embryos of the G12424 and HC079 line.

61.5% (n = 400) and 68.5% (n = 400) of injected embryos hatched as larvae, respectively.

Albeit it is not a significant difference, it is in so far interesting, as both lines originated

from the same enhancer trap screen and should only differ in the genomic location of the

EGFP transgene [Trauner et al., 2009]. This could point to effects caused by the initial
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insertion of the EGFP transgene (for example that an enhancer can not ‘reach’ its target

gene anymore), which do not cause lethality per se but lead to a reduced tolerance to

influences from the outside (injection procedure), secondarily effecting the survival rate.

Unfortunately, the authors of the study mentioned in the last paragraph, did not provide

any data on mock injected embryos, to detect such differences [Gilles et al., 2015]. Of the

24% (= 444 of 1866) surviving larvae in their study, 70.9 % (= 315; n = 444) survived and

eclosed. Of the 11.5% (= 230 of 1992) surviving larvae in this study, only 68.2% (= 157,

n = 230) eclosed. The authors and I did follow the same protocol [Berghammer et al.,

2009] but they cultured the beetles at all time at 32 ◦C, whereas I cultured the beetles

at 30 ◦C. It was reported that at 32.5 ◦C, compared to 30 ◦C, the mortality rate of the

larvae is 4% higher (see [Bucher, 2009]). This may point to others, unknown factors that

effected the reduced survival rate.

The number of knock-in events obtained by this group was 6% (n = 315) [Gilles et al.,

2015], which is two times higher than the one I obtained (3.2%; n = 157). This difference

in knock-in efficiency may be caused by the different donor-plasmids used, effecting the

efficiency of the HDR mechanism. The length of their homology arms flanking the double

strand break is 0.7 kb and 1.0 kb [Gilles et al., 2015], while the homology arms used in

this study are 0.3 kb and 1.3 kb, respectively. A third homology arm of 0.7 kb length

is approximately 300 bp farther away from the double strand break than the 0.3 kb

homology arm. How this second homology arm on one side of the transgene effects the

HDR mechanism, is not known. However, a decrease in the length of at least one of

the homology arms is known to negatively effect the frequency of insertion of a transgene

[Pfander et al., 2011; Li et al., 2014]. Available guidelines for improving insertion frequency

by using CRISPR/Cas9 and HDR, recommend the use of at least 0.8 kb long homology

arms, if the insert is larger than 100 bp [Shen, 2016; Cong, 2016]. This difference in the

size of one of the homology arms could account for the reduced knock-in efficiency in this

study.

4.1.2 The four rHC079 lines may not be interchangeable

All four established rHC079 lines harbor the complete DsRed2 construct without any

errors, integrated at the correct position within the genome, as validated by PCR and

sequencing. Therefore, it is surprising that the relative DsRed2 signal strength varies
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between the four lines. The line #W13 shows the weakest signal of all lines during em-

bryogenesis. This is especially pronounced after germ band retraction. Likewise, the lines

#W1 and #N show a much more pronounced decrease in their relative signal intensity

right after amniotic rupture, before it aligns again with the intensities of the lines #W13

and #F. Based on the genetics, these different intensities of the DsRed2 signal cannot

be explained. The high degree of variation within each line (see the mean standard de-

viation) on the other hand, is probably caused by inter-embryonic variation, which was

already described for two other extraembryonic GEKU lines [Koelzer et al., 2014].

During one year of stock keeping, three lines (#F, #W1 and #N) displayed random

periods of larval and pupal lethality, usually affecting all individuals of a given egg lay

collection. Only #W13 did not show any of these defects and therefore was used for all

subsequent experiments. The survival defects seen in the other lines, could be due to

potential off-target cutting of the Cas9, since it is a general feature of engineered gRNAs

that they can tolerate several mismatches in the target sequence [Peng et al., 2015]. Off-

target cutting was found to occur in zebrafish, using the same EGFP targeting gRNA

used in this study [Auer et al., 2014]. In Tribolium, off-target effects of the gRNA were

not investigated but are believed to take place [Gilles et al., 2015].

Interestingly, the #W13 yields the weakest DsRed2 signal intensity but is the health-

iest line. If considering that fluorophores are toxic [Jensen, 2012], weak expression of

DsRed2 would directly lead to an increased health and account for this relation. How-

ever, why DsRed2 expression in this line is weaker in the first place, cannot be explained.

These results indicate that there are differences between the individual rHC079 lines.

Interestingly, these can be expanded to the original HC079 line. The EGFP expression

time course for this line is published and shows a steady increase of the relative EGFP

signal after germband extension [Hilbrant et al., 2016], compared to the rHC079 lines. The

relative DsRed2 signal in the rHC079 lines rather shows a plateau for several hours after

germband extension. This is probably caused by the longer maturation time of DsRed2

(approximately six hours), compared to the maturation time of EGFP (approximately

one hour) [Day and Davidson, 2009]. This would mean that after the enhancer activates

expression of DsRed2 in the amnion, it takes several hours before the fluorescent protein

matures, meaning that it is not fluorescent, even if expressed. This relates back to the fact

that the maturation time is important for multiple-labeling experiments. In this regard it
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would be a drawback, if one tissue can already be visualized, while another tissue cannot

be visualized at the same time. This would decrease the time window for imaging of both

tissues and should be avoided by choosing the appropriate fluorescent proteins.

4.1.3 DsRed2 and EGFP expression in the same embryo gener-
ates undesired crosstalk

The red fluorescent protein DsRed is the commercial variant of the wild type DsRed

(drFP583), which was edited by insertion of a valine after the start codon [Matz et al.,

1999; Bevis and Glick, 2002]. DsRed2, which was used in this study, is a mutant of

the wild type DsRed (E57 mutant) [Terskikh et al., 2002; Yanushevich et al., 2002] and

commercially available since 2001 [Living ColorsTM DsRed2, 2001]. Compared to DsRed,

it has a reduced maturation time of about six hours, making it more useful for multiple-

labeling experiments [Day and Davidson, 2009], as performed in this study. Originally,

DsRed2 was suggested to be well suitable for two-color detection in combination with

EGFP [Living ColorsTM DsRed2, 2001], the fluorescent protein expressed in all GEKU

lines [Trauner et al., 2009]. Albeit it was known that the emission spectra of EGFP

and DsRed2 overlap (see Figure 4.1), it became more clear during image analyses that

the emission of DsRed2 ‘leaks’ into the EGFP channel. This crosstalk of the DsRed2

signal can be advantageous when imaging at low resolution, as for example the DsRed2

expression in the amniotic dorsal organ can be used as a topographical landmark, not

interferring in a cross with the G04609 line with the ‘real’ EGFP signal. However, in high

resolution imaging the undesired crosstalk of the red and green fluorescent protein can

become a problem. This is especially true, when distinct visualization of the amnion and

serosa in tight connection is needed for a proper analysis [Hilbrant et al., 2016].

As an alternative to DsRed2, the red fluorescent protein monomer cherry (mCherry)

could be employed. It possesses a superior photostability, critical for long-term imaging

[Shaner et al., 2005]. Its intrinsic brightness level is approximately 50% that of EGFP

[Day and Davidson, 2009], whereas DsRed2 is several times weaker compared to EGFP, as

indicated by the performed imaging experiments (to achieve equal brightness levels when

imaging at the AxioImager.Z2, the exposure time of DsRed2 was set to an approximately

seven times higher value than the one of EGFP). Most important for multiple-labeling

experiments however, is the reduction of crosstalk between the excitation and emission
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Figure 4.1: Excitation and emission spectra of the three fluorescent proteins
EGFP, DsRed and mCherry. Visualization of the spectral overlap of the excitation
and emission of the fluorescent proteins EGFP, DsRed2 (DsRed is visualized in default of
the ones for DsRed2 in this spectral viewer) and mCherry. DsRed has an excitation and
emission maxima of 558 nm and 583 nm, respectively. This is highly similar to the ones
of DsRed2 (563 nm and 582 nm, respectively). The short bar on top of a peak belongs
in all cases to the excitation maxima and the long bar to the emission maxima. The
faint color represents the excitation area, while the more intense color the emission area,
respectively of EGFP, DsRed and mCherry. (Ex) Excitation, (Em) Emission. Modified
from [Chroma, 2016].
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channels [Shaner et al., 2005] (Figure 4.1). EGFP has an excitation maximum of 488 nm

and an emission maximum of 507 nm. The ones of DsRed2 are 563 nm and 582 nm,

respectively (please note that in Figure 4.1, the spectra of DsRed and not DsRed2 is

shown, due to the unavailability of all three spectra (EGFP, DsRed2 and mCherry) in

this or any other spectra viewer). The maxima of mCherry are shifted more towards the

red spectra of the visible light (587 nm and 610 nm, respectively) [Day and Davidson,

2009]. Hence, mCherry is presumably the best choice, as an alternative for DsRed2 in

multiple-labeling experiments.

4.1.4 Use of the rHC079 line in this study and an outlook on
its further application

In the first place, the rHC079 line was generated to be used in a cross with the serosa

line G12424 [Koelzer et al., 2014]. Due to the nature of their connection during embryo-

genesis, both extraembryonic membranes were hard to visualize as distinct tissues in a

heterozygous cross, with EGFP as the only fluorescent marker [Hilbrant et al., 2016]. This

problem was solved, by generation of the DsRed2 expressing rHC079 lines. How these

lines already have contributed to research on extraembryonic membrane development in

Tribolium and how this will proceed, will be discussed in the following paragraphs.

In a recently published study, it was shown that the amnion ruptures before the

serosa, acting as the initiator of rupture [Hilbrant et al., 2016]. Besides from the distinct

morphology of the anterior cap region of the amnion, this result was based on a set of

measurements, using homozygous beetles of the amnion line HC079 and the serosa line

G12424 [Hilbrant et al., 2016]. The direct validation of this result is now possible using

the line rHC079 in a cross with the line G12424.

In general, a heterozygous cross between both extraembryonic lines, will permit to

simultaneously examine any effect on their development and on their interaction, caused

by the knock down of extraembryonic marker genes or other target genes. Beneficial in

this regard is that the fluorescent signal is not localized to the nuclei [Trauner et al., 2009;

Koelzer et al., 2014], so that effects on cell shapes can be detected as well.

For the investigation of the knock down phenotypes after Tc-pnr pRNAi, the rHC079

line was crossed to enhancer trap lines with non-extraembryonic expression patterns.

Thereby, the effects on the amnion and the cardioblast cell row (by using the GEKU
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line G04609 [Trauner et al., 2009; Koelzer et al., 2014]) could be investigated, likewise

taking advantage of multiple-labeling imaging. Similarly, the in this study characterized

enhancer trap lines G04910 and G09423 were used in single crosses with rHC079, to

distinctly visualize embryonic and extraembryonic defects. Even if the EGFP-expressing

tissues in these other lines did not show any defect, their expression could still be useful

as a landmark, as it was already reported for the G04609 line [Koelzer et al., 2014].

A drawback of the rHC079 is the crosstalk of DsRed2 and EGFP that was discussed

in a previous section. As indicated in that section, the red fluorescent protein mCherry

would be a better partner in multiple-labeling imaging. To study the interaction between

the serosa and amnion on the level of individual cells in more detail, it will be necessary

to minimize that crosstalk. Therefore, the next step will be to replace DsRed2 with

mCherry. This could be done either by generation of a completely new rHC079 line via

injection of a donor-plasmid harboring a mCherry transgene into the initial HC079 line

or via insertion of mCherry into the rHC079 line using the attP site and simultaneously

removing the DsRed2 transgene via CRISPR/Cas9.

In general, the attP site enables site-specific recombination, mediated by the serine

integrase ΦC31, between itself and a donor, harboring the attB site [Groth and Calos,

2004]. Via a ‘cut-and-paste’ approach, both sites attach to each other in such a way

that the donor construct is integrated precisely into the attP site, thereby interrupting

its sequence, as well as the attB sequence [Groth and Calos, 2004]. As this recombination

event generates a stable integration, the ΦC31 integrase system is frequently used in

insect transgenics [Huang et al., 2009; Long et al., 2013]. Therefore, future applications

using the attP side include also the insertion of fluorescent markers labeling specific cell

structures like nuclei, membranes or actin [Benton et al., 2013]. This will help to locate

and characterize defects after the knock down of specific genes in more detail, than it is

possible with the original GEKU lines alone.

In light of the analyses of the extraembryonic membranes in Tc-pnr knock down

embryos, the cross of the G12424 serosa line and the rHC079 amnion line, will be an

important tool here, too. Given that ectopic rupture of the amnion and normal rupture of

the serosa in the same embryo was only shown in the nGFP line, which lacks the properties

for distinct visualization of the two membranes, the cross provides these properties. The

described defects in the amnion can be directly related to secondary derived effects within
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the serosa, if such have been missed on the level of individual cells so far. Likewise, the

potential delayed (ectopic) rupture of the amnion can be visualized and the effects of the

subsequent withdrawal on serosa organization can be characterized in the same embryo.

How the knock down of Tc-pnr then affects the interplay between the two normally

connected dorsal organs, will be interesting to investigate as well.

In this sense, the rHC079 line already contributed to the live imaging possibillities of

Tribolium but as the research questions are changing, the rHC079 line in particular and

the live imaging toolkit in general, have to be adopted to these questions.

4.2 The wild type expression pattern of Tc-pnr

In this section the wild type expression pattern of Tc-pnr will be presented. It will help to

bring the different defects after parental RNAi into context and will serve as a guideline

for the discussion of these defects in the following sections.

The transcription factor Tc-pnr starts to be expressed in extraembryonic tissue at the

differentiation of the blastoderm. It is expressed in the dorsal part of the anterior amniotic

fold and the dorsal amnion, from where its expression extends into the primitive pit.

During formation of the posterior fold and its subsequent progression towards the ventral

posterior side, the two latter expression domains involute together with the embryo, as

the amnion starts to cover the embryo on its ventral side. When the serosal window has

formed, Tc-pnr is expressed in separate domains in its margin, which have arisen from

its expression in the anterior amniotic fold. During closure of the serosal window, Tc-pnr

expression extends into the amnion covering the head lobes. The most posterior amniotic

expression covers the segment addition zone, while a transient expression domain arises

in the amnion just posterior to the serosal window. Accompanied by the final closure

of the serosal window, the Tc-pnr expression domains in its margins come together,

forming a characteristic y-shape. During germband extension, Tc-pnr expression spreads

in the complete amnion covering the anterior part of the embryo, before it extends to the

posterior. It is shortly before the embryo has fully extended that Tc-pnr is expressed in the

whole amnion. When the embryo has started to retract, Tc-pnr is additionally expressed

in the cardioblast cell row and in separate domains within the head and the legs. In

difference to its expression in the head and the legs, Tc-pnr expression in the cardioblast

cell row does not persist, when the embryo is fully retracted. Potential amniotic expression
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can not be verified at this late stages, due to limitations in staining [Koelzer et al., 2014].

Prior to dorsal closure, Tc-pnr expression arises in the dorsalmost ectoderm. Expression

in the cardioblast cell row is absent.

4.3 Tc-pnr is not important for early processes dur-

ing extraembryonic membrane formation

Tc-pnr and Tc-iro are both expressed in the early amnion at the differentiated blastoderm

stage, which makes them potential interaction partners. To test this prediction, Tc-

pnr knock down embryos were stained for Tc-iro via in situ hybridization. Amniotic

Tc-iro expression is completely lost at the differentiated blastoderm stage and is only

weakly detected in the amnion at the margins of the serosal window and in the amnion

during germband extension, where Tc-iro is expressed in the wild type. Interestingly,

although Tc-pnr itself is not normally expressed in embryonic tissue, early embryonic

Tc-iro expression is also lost. During germband extension, this downregulation of Tc-

iro expression in embryonic tissue is not observed anymore. This indicates that Tc-

iro expression depends on the activation by Tc-pnr in all tissues throughout the early

differentiated blastoderm stage but later on, Tc-iro is co-regulated by another gene in the

amnion, whereas Tc-iro does not rely on Tc-pnr regulation in the embryo after closure

of the serosal window.

To test if Tc-pnr knock down embryos show any defect during early embryogenesis,

live imaging was performed. Unexpectedly, based on the expression pattern of Tc-pnr and

its regulatory role on Tc-iro, no defect was observed through the completion of germband

extension (which is the time the recording was stopped). Indirectly, this finding could

imply that Tc-iro is also not needed for early embryogenesis and membrane formation.

To verify this, Tc-iro pRNAi was performed. Albeit not at high penetrance (only 33.6%

of the embryos show any defect and when considering that 8.3% of the wild type embryos

show defects of the same categories, this value decreases to 25.3%), the knock down of

Tc-iro does affect early embryogenesis and formation of the amnion, while the serosa

seems to be largely unaffected. As none of the defects is seen in the Tc-pnr knock down,

these defects are likely due to Tc-iro’s early expression in the region of the presumptive

serosa (which refines over time into Tc-iro expression only in the anterior amniotic fold

[Sharma et al., 2013a]) at the undifferentiated blastoderm stage. Therefore, loss of Tc-iro
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expression after blastoderm differentiation is potentially compensated by other genes, or

subtle knock down phenotypes could not be detected with the used methods. The via

live imaging observed defect in the formation of the primitive pit in Tc-iro knock down

embryos, cannot easily be explained. Tc-pnr is expressed in the same region around the

primitive pit as Tc-iro, whose expression extends also into more ventral cells. As the

knock down of Tc-pnr results in a loss of this complete expression pattern, it is more

likely that an early Tc-iro signal affects downstream target genes, triggering a signaling

pathway involved in formation of the primitive pit. Otherwise, the Tc-pnr knock down

acting on Tc-iro expression may not be a complete one and the residual Tc-iro expression

may be below detection rate via in situ hybridization staining. The direct and probably

more complete knock down of Tc-iro on the other hand, could then explain the impaired

formation of the primitive pit.

When the serosal window forms, Tc-pnr is expressed in the amnion at its margin.

During subsequent closure of the window, Tc-pnr expression spreads in a distinct pattern

around the site of closure. This could indicate a potential function of Tc-pnr for the

detachment of the serosa and the amnion or serosal window closure in general. Such

a function was recently reported for Tc-Doc [Horn and Panfilio, 2016]. Tc-Doc is also

expressed in the amnion at the margin of the serosal window and was shown to be a key

regulator of its closure, as its knock down impaired closure of the serosal window [Horn

and Panfilio, 2016]. However, the loss of Tc-pnr expression did not cause any defect. The

same is true after Tc-iro pRNAi [Horn and Panfilio, 2016], even though Tc-iro expression

in the margin of the serosal window is affected after Tc-pnr knock down and Tc-Doc

knock down [Horn and Panfilio, 2016]. The two genes Tc-dpp and Tc hindsight (Tc-hnt)

on the other hand did show similar defects to the ones induced by Tc-Doc pRNAi, after

embryonic RNAi, which was used to circumvent the earlier defects caused by the loss

of these two genes, which may have masked their involvement in serosal window closure

[Horn and Panfilio, 2016]. This could indicate that in the case of Tc-iro, a potential

function in serosal window closure is as well concealed by the earlier defects shown in this

study. In the case of Tc-pnr, it could be that a different gene, such as Tc-dpp, known

to affect early Tc-pnr expression [van der Zee et al., 2006], compensates for the loss of

Tc-pnr expression. In this regard, Tc-Doc is a rather unlikely direct upstream regulator

of Tc-pnr, as Tc-pnr expression is unaffected after Tc-Doc pRNAi [Horn and Panfilio,
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2016].

4.4 The specialized anterior amniotic cap region is

specified early in development

It was recently reported that the amnion ruptures in a rupture competence zone in a

specialized anterior amniotic cap region [Hilbrant et al., 2016]. Tc-pnr staining at the

extended germband stage revealed that this anterior cap region is specified at least during

germband extension. The shown stronger staining by a Tc-pnr probe in these cells,

compared to more posterior ones in the amnion, is probably due to a higher concentration

of is transcript. Thus, Tc-pnr expression would be higher expressed in cells of the anterior

amniotic cap. That the increased stain by a Tc-pnr probe is due to the reported larger

cells with a higher volume of cytoplasm [Hilbrant et al., 2016], can probably be neglected.

A larger volume does not necessarily lead to a stronger staining, rather it should lead to an

equal intense staining in a larger area of the cell, when assuming proportional expression.

This finding suggests that Tc-pnr is indeed stronger expressed in the cells of the anterior

amniotic cap region. Together with the shown defects in the whole amnion and the loss

of a distinct cap region in retracted germband embryos after Tc-pnr pRNAi (discussed

in a later section), it is likely that Tc-pnr is involved in the specification of the amniotic

cap region. That a defect in this rupture competence zone [Hilbrant et al., 2016] leads to

ectopic rupture within the amnion, further strengthens this assumption.

4.5 Tc-pnr is involved in the formation of the car-

dioblast cell row

The enhancer trap line G04609 was characterized and shown to express EGFP in the

cardioblast cell row, therefore also referred to as the ‘heart line’ [Koelzer et al., 2014]. In

this study, the heart line was used to examine a potential defect of the heart, as Tc-pnr

is expressed in the cardioblast cell row during germband retraction.

Knock down of Tc-pnr in the heart line genetic background, resulted in a loss of

most of the cardioblast-specific EGFP expression. Other EGFP expressing domains of

the G04609 line were not affected. A consistent pattern, regarding in which cardioblasts

EGFP expression is lost, could not be identified. The analysis of the role of Tc-pnr
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was extended on Tc-mid, which is expressed in all cardioblasts and was reported to be

partially trapped by the enhancer driving EGFP expression in the G04609 line [Koelzer

et al., 2014]. Tc-mid expression was partially lost, again without observing a specific

pattern. This result boosts the conclusion that Tc-mid is indeed partially trapped in the

heart line.

In Drosophila, Dm-pnr is important for specification of the cardiac mesoderm, where

it is expressed [Alvarez et al., 2003; Reim and Frasch, 2005]. The loss of heart cells in

Dm-pnr mutant embryos is therefore indirectly via an earlier defect in the specification

of the cardiac mesoderm [Alvarez et al., 2003]. As a consequence, the majority of cardiac

progenitor cells are not specified and the dorsal vessel fails to form [Tao and Schulz, 2007].

To test if the formation of the cardioblast cell row in Tribolium is impaired due to the

loss of Tc-pnr expression in these cells, Tc-pnr knock down embryos were investigated

on the individual cell level, using the heart line as a marker for the cardioblast cell row

and DAPI as an ubiquitous nuclear stain. The results clearly showed that the cardioblast

cell row is lost as a morphologically distinct row of cells after Tc-pnr pRNAi. This result

indicates that Tc-pnr is necessary for the specification of the cardioblast cell row. Similar

to Drosophila, it may be that this function of Tc-pnr is achieved in cooperation with other

genes like Tc-tin or Tc-Doc. Such an interaction of different genes for the specification

of the cardioblasts would explain that some cardioblasts still express Tc-mid. Thus, it

cannot be stated with certainty that Tc-pnr regulates Tc-mid expression or that Tc-mid

is not expressed in the cardioblasts as these cells lost their cardioblast identity. If the line

G04609 trapped the Tc-mid enhancer partially, this conclusion would also apply for the

loss of EGFP expression in the heart line.

Interestingly, by cell tracking of individual cardioblasts in Tc-pnr knock down em-

bryos of the heart line, it was shown that EGFP expression is lost over time in some of

these cells. This may result from the loss of normal organization of the cardioblast cell

row, so that cell adhesion and therefore vital signaling is lost and individual cardioblasts

degenerate. Another explanation may be that the gradual loss of EGFP expression is

then again a secondary cause but due to the loss of Tc-mid expression. Assuming that

the Tc-mid enhancer is trapped in the heart line. If the enhancer in the G04609 line is

activated and starts expression of Tc-mid, then EGFP expression will start not at the

same time but it is delayed, depending on its maturation time. The same is true when
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Tc-mid is no longer transcribed, as EGFP will still be expressed for some time, while its

fluorescence decreases. To determine which of the two potential explanations is true, the

nuclear GFP line (nGFP), which expresses GFP localized to the nuclei [Sarrazin et al.,

2012], could be crossed to the G04609 line. By this, cardioblasts can be tracked and it can

be monitored if individual cardioblasts loose their EGFP expression due to degeneration,

which would result in a loss of the nGFP expression. Thus, it could be easily answered,

if only the gene driving its expression is affected or if individual cardioblasts are absent.

In Drosophila it was reported that Dm-pnr specifies the pericardial cells [Alvarez

et al., 2003; Reim and Frasch, 2005] and negatively regulates Dm-eve [Gajewski et al.,

1999], which is expressed in a subset of these cells [Gajewski et al., 1999; Alvarez et al.,

2003; Klinedinst and Bodmer, 2003]. In Tribolium, Tc-Eve has been used as a marker for

a subset of the pericardial cells [Cande et al., 2009]. However, during this study performed

in situ hybridizations for visualization of its transcript in wild type and in Tc-pnr knock

down embryos, resulted in an unclear expression pattern (data not shown). This was

mainly caused by an overall weak staining, interfering with the identification of Tc-eve

positive cells within the dorsal mesoderm. Making a new Tc-eve probe or trying different

primers for making these probes will help to handle this problem. Subsequently, it can

be tested if the effect of Tc-pnr is conserved in Tribolium, compared to Drosophila.

A starting point for the more detailed investigation of heart development in Tribolium

are certainly four publications, which deal with heart aspects in a broader sense. In the

first one to name, the G04609 line was characterized and Tc-mid and Tc-H15 expression in

the cardioblast cell row described [Koelzer et al., 2014]. A more recent publication already

presents data on the genes Tc heartless (Tc-htl) and Tc down of FGF receptor (Tc-dof )

that shows that the knock down of each gene individually impairs EGFP expression in

the heart line [Stappert et al., 2016]. The remaining two publications provide a source

for more genes expressed in different subsets of heart cells [Janssen and Damen, 2008;

Cande et al., 2009]. These resources and available literature from Drosophila (the gene

regulatory network of heart formation is strikingly well conserved in distinct phyla [Cripps

and Olson, 2002]), will provide sufficient starting material for an investigation of Tribolium

heart development.
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4.6 The amnion and the serosa rupture and withdraw

independently after Tc-pnr parental RNAi

Based on the continuous expression of Tc-pnr in the amnion, it is likely that Tc-pnr is

important for extraembryonic membrane development at some point during embryoge-

nesis. Given that the knock down of Tc-pnr did not show any early defects, the later

development advanced into focus, as Tc-pnr is still expressed in the amnion of retract-

ing germband embryos. During late development, the accessibility of the extraembryonic

membranes is strongly impaired by the secretion of the serosal cuticle and subsequent

secretion of the larval cuticle [Koelzer et al., 2014]. Therefore, the characterization of the

enhancer trap line HC079, which expresses EGFP in the amnion shortly before the onset

of germband extension until its degeneration [Hilbrant et al., 2016], was published at the

right time to circumvent this problem.

To investigate potential defects within the amnion, its morphology was examined

using a cross of the subsequently established rHC079 line and either one of two GEKU

lines (G04609 and G04910; to visualize embryonic landmarks) for distinct visualization of

the DsRed2 and EGFP signal, respectively.

In Tc-pnr knock down embryos of a cross of the ’amnion’ line rHC079, the mor-

phology of the amnion is clearly abnormal. The anterior cap region cannot easily be

distinguished from other amniotic tissue anymore. Still, DsRed2 expression in the nuclei

of this specialized region seems to be stronger, as compared to control embryos. Nuclei

in the cap region display an abnormal shape and borders between individual cells cannot

be identified as such anymore. More general, cell outlines, labeled by DsRed2 expression

in the wild type, display gaps (in the DsRed2 expression), small holes and black areas in

the amnion (potentially also due to a loss of DsRed2 expression) arise.

In order to survey how and if these defects in amnion morphology are reflected in

general tissue movements of the amnion, live imaging was performed.

Using the HC079 line, 15 Tc-pnr knock down embryos were recorded around the

time of dorsal closure and different defects could be observed. 10 embryos exhibited the

characteristic bending of the dorsal open phenotype after Tc-pnr pRNAi (66.7%; n = 15).

In three of these embryos the amnion did withdraw very slow over the abdomen (30%; n =

10; ranging from 2h40min to 5h10min), compared to control embryos (deduced from the
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withdrawal of the serosa, as both membranes are connected; serosal withdrawal over the

abdomen takes around 30 min (n = 7)). Another three embryos showed ectopic rupture

of the amnion (30%). One single embryo displayed several holes in the amnion (or only

the EGFP expression was affected, so it would look like a hole to the investigator), which

did not impair amnion rupture or withdrawal. In the last affected embryo, the normal

morphogenesis of the amnion was severely affected. This last defect could partially reflect

the unhatched phenotype or the cuticle crumbs phenotype (together 17.6%), obtained by

cuticle preparation. These phenotypes will be discussed in more detail in the next section.

The two remaining embryos, which did display the dorsal open phenotype, showed no

amniotic defect (20%).

The ectopic rupture of the amnion was a very intriguing finding. It was recently

reported that the amnion and the serosa form a bilayer during membrane withdrawal,

tightly connected everywhere but in the anterior rupture competence zone [Hilbrant et al.,

2016]. This would imply that the serosa ruptures ectopically as well. To test this, the

development of Tc-pnr knock down embryos in a cross of the serosa line G12424 with the

heart line G04609 was imaged during dorsal closure. 21 of the 27 knock down embryos

displayed the dorsal open phenotype (78%). Of these 21 embryos, none showed an affected

serosa. From the six embroys which did not display the characteristic bending, three

exhibited slow serosal withdrawal (11%), while embryonic development in the remaining

three embryos did not proceed visibly (11%; possibly contributing to the empty egg and

cuticle crumbs phenotype). Withdrawal of the serosa was not delayed in embryos showing

the dorsal open phenotype (withdrawal in 30 min (n = 21), compared to withdrawal in

30 min (n = 6) in control embryos).

The observed ectopic rupture of the amnion and the normal rupture of the serosa,

may point to the conclusion that the serosa and the amnion are no longer connected after

Tc-pnr pRNAi. However, such a conclusion based on separate experiments is limited in

its significance. Defects occurring at low precentages could be artifacts, due to the prepa-

ration of the embryos prior to imaging or may represent normal occurring variations in the

highly complex morphogenetic movements during extraembryonic membrane withdrawal

and subsequent degeneration. Furthermore, each live imaging experiment was performed

only once and should be repeated for validation of the results.

In this regard and to verify that the ectopic and normal rupture of the respective
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extraembryonic membrane can be observed in the same embryo, live imaging with Tc-pnr

knock down embryos in the genetic background of the nGFP line was performed. 27

embryos were imaged, whereby 24 displayed the dorsal open phenotype (89%). The three

remaining embryos died during filming and probably represent the normal loss rate during

imaging. The serosa could be visualized well but unfortunately the amnion could not.

However, it was possible to identify one embryo (4%, n=24), in which ectopic rupture

of the amnion at a ventral position in the center of the embryo and normal rupture

of the serosa at the anterior side occurred. In contrast to the live imaging experiment

performed using a cross of the serosa and the heart line, withdrawal of the serosa in

Tc-pnr knock down embryos was delayed, compared to control embryos. In embryos

showing the dorsal open phenotype, withdrawal of the serosa over the abdomen took

60 min (n = 20), while it took only 30 min (n = 7) in the control embryos. Albeit this

results are contradictory to the results obtained with the cross (here, 30 min for each set of

embryos), the standard deviation of the Tc-pnr knock down embryos in the nGFP genetic

background is 30 min, compared to 20 min in the cross. This indicates that assumptions

about the speed of extraembryonic membrane withdrawal are not easy to make. In order

to find such differences between Tc-pnr knock down and wild type withdrawal, rather the

time interval of image acquisition during live imaging should be narrowed down to 1-3

min, from the so far used 10 min interval in all recordings. This should provide enough

temporal resolution for valid statements about a potential delay in membrane withdrawal.

To obtain more meaningful data regarding the potential uncoupled rupture of the

amnion and the serosa, while at the same time reducing the imaging interval, the next step

in this analysis would be to repeat the live imaging experiments in Tc-pnr knock down

embryos, with a cross of the rHC079 and the G12424 line. Distinct visualization of both

membranes could confirm the previous findings and the potential impaired interaction

of the amnion and the serosa could be investigated in more detail. Unfortunately, due

to time constrictions, I was not able to perform this concluding experiment anymore. A

cross of the nGFP line with the rHC079 line will also be of potential use, to resolve if the

observed gaps and holes in the DsRed2 expression of Tc-pnr knock down embryos are

due to an actual loss of the nuclei. Otherwise an apoptosis stain could be used [Panfilio

et al., 2013].

The provided results for the effects of Tc-pnr on amnion morphology are intriguing,
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as it is the first gene in Tribolium that causes such changes in the amnion. However,

further analyses on the cell level will be needed, to confirm that the amnion and the

serosa are no longer attached during membrane withdrawal. That both extraembryonic

membranes are attached is based on a rupture analysis using either the amnion and the

serosa line individually in a cross with the G04609 line, limiting its informative value.

For this analysis, the rHC079 line in a cross with the G12424 line will also be beneficial,

connecting the analyses of Tc-pnr once more to the newly generated red HC079 line. To

investigate how the dorsal hole effects the amnion and how the connection between the

dorsal ectoderm and the amnion is affected after Tc-pnr pRNAi, the in the last para-

graph recommended cross of the nGFP line with the rHC079 line will provide additional

information.

Concluding, it should be mentioned that despite of the in this study described ec-

topic rupture of the amnion after Tc-pnr pRNAi, withdrawal of the amnion to the dorsal

side mostly takes place. This suggests high plasticity of extraembryonic membrane rup-

ture/withdrawal during late embryogenesis, which was also reported after Tc-zen1 pRNAi

[Panfilio et al., 2013] and Tc-Doc pRNAi [Horn and Panfilio, 2016].

4.7 The empty egg and cuticle crumbs phenotype

The dorsal hole in the cuticle is the main phenotype after Tc-pnr pRNAi and goes along

with a characteristic dorsal bending of the embryo. However, two other phenotypes can be

observed after the knock down as well. No cuticle is produced in the empty egg phenotype

(10%), leaving an empty eggshell. In the cuticle crumbs phenotype (6.3%), only partial

cuticle is produced. This means that in the latter case at least partial tissue is produced.

Based on the embryonic body parts still covered by cuticle (antennae, pretarsus), it is also

very likely that embryogenesis proceeds for a long time, before tissue degeneration starts.

In turn, this could indicate that the embryos which produce no cuticle, likewise die late in

embryogenesis but before any cuticle secretion starts. This assumption is strengthened by

the data obtained by live imaging. The not assignable phenotype is mainly a collection of

embryos which die during imaging, but in all cases embryogenesis proceeds at least until

full germ band extension and often until the onset of dorsal closure (data not shown).

Strikingly, the penetrance of the not assignable phenotype, resembles almost entirely the

penetrance of empty egg phenotype and cuticle crumbs phenotype together (17.6% and
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16.3%, respectively).

These observations may point to an effect of Tc-pnr on embryogenesis, before it is

functioning in the process of dorsal closure. The cause of the dorsal hole in the cuticle,

will be discussed in the following section.

4.8 The dorsal open phenotype occurs in Drosophila

and Tribolium

Dorsal closure, the process in which a hole in the dorsal epidermis is closed by extension of

the lateral ectoderm, [Panfilio et al., 2013], is impaired in Tc-pnr knock down embryos and

becomes apparent by a hole in the dorsal cuticle. This dorsal open phenotype also occurs

in Dm-pnr mutants of Drosophila embryos [Jürgens et al., 1984; Herranz and Morata,

2001], where Dm-pnr expression is lost in the dorsal ectoderm [Herranz and Morata,

2001]. In Drosophila, this loss of ectodermal Dm-pnr expression results in a loss of Dm-

dpp expression in the leading edge cells of the ectoderm [Herranz and Morata, 2001], which

then causes the defect in dorsal closure [Jacinto et al., 2002]. These data from Drosophila

provided the motivation to undertake similar analyses in Tribolium. Tc-dpp expression in

the dorsalmost ectoderm of extended germband embryos was already reported [Sanchez-

Salazar et al., 1996; Giorgianni and Patel, 2004; Ober and Jockusch, 2006] and it was

shown in this study that this very same expression pattern persists in retracted germband

embryos and that this expression is lost after Tc-pnr pRNAi. Albeit efficient Tc-dpp

pRNAi leads to a ventralization of the blastoderm [van der Zee et al., 2006], it was already

shown in another publication that Tc-dpp pRNAi leads in 85% (n = not known, see [Ober

and Jockusch, 2006]) of the affected embryos, to a defect in dorsal closure [Ober and

Jockusch, 2006]. It is assumed by me that this is due to a reduced efficiency, so that this

late phenotype is no longer masked by the early defect in DV patterning. On the level of

individual cells, the reason of the dorsal hole, triggered by Tc-dpp pRNAi, was reported to

be a loss of the dorsalmost cell row in the ectoderm [Ober and Jockusch, 2006]. This was

discovered by more narrow extended germband embryos, compared to control embryos

and a loss of the distinct morphology of the most dorsal cells of the ectoderm. Also, the

expression of Tc-wg in Tc-dpp knock down embryos is no longer one cell row apart from

the dorsal edge of the embryo but directly adjacent to it [Ober and Jockusch, 2006]. This

could be a result from the loss of the dorsal most cell row as well. If cells are lost in
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Tc-pnr knock down embryos or if the expression of genes directly adjacent to the dorsal

most cell row is absent, was not tested. However, in Drosophila such a cell loss in Dm-pnr

and Dm-dpp mutants was not reported. This could indicate that Tc-dpp is necessary for

the formation of the dorsal most cell row, whereas in Drosophila, Dm-dpp specifies the

leading edge cells. Even when acting differently in both species, in either case, dpp is

indispensible for dorsal closure.

Based on the available data in this study and published data, it is assumed that the

loss of Tc-pnr expression in the dorsal most ectoderm results in a loss Tc-dpp expression

in these cells and causes the dorsal open phenotype. In Drosophila Dm-pnr mutants only

the dorsal most Dm-dpp expression is affected, while the more lateral one persists. This

is probably also the case in Tribolium, albeit due to the weak Tc-dpp staining in this

region this cannot be stated with 100% certainty and has to be repeated. Alternatively,

an antibody against Tc phosphorylated mothers against dpp (Tc-pMAD), which is the

downstream effector of Tc-dpp [Horn and Panfilio, 2016], could be used to verify the effect

of the loss of Tc-pnr expression on Tc-dpp expression. This is important, as Dm-pnr was

reported to act as a DV selector like gene [Mann and Morata, 2000; Herranz and Morata,

2001], what will be discussed in the following section.

4.9 Tc-pnr interacts with Tc-iro during embryoge-

nesis and might have a function in determining

dorsal fates

In Drosophila, Dm-pnr is assumed to act as a DV selector like gene, which is a gene that

functions within distinct regions of the body, where it determines specific developmental

pathways. In the case of Dm-pnr, this is the determination of dorsal fates [Mann and

Morata, 2000; Herranz and Morata, 2001].

The involvement of Tc-pnr during embryogenesis has been well conserved in the

process of dorsal closure and during heart formation so far, compared to Drosophila.

Therefore, it was investigated if Tc-pnr specifies dorsal fates as well. Based on the ex-

periment performed in Drosophila that loss of Dm-pnr expression in the dorsal ectoderm

leads to a dorsal expansion of the Dm-iro expression domain [Calleja et al., 2000] and en-

couraged that both genes interact during early embryogenesis in Tribolium [van der Zee
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et al., 2006], the experiment was repeated in Tribolium. Wild type expression of Tc-iro

was found to be conserved in a dorsal-lateral domain within the ectoderm at the late re-

tracted germband stage. After Tc-pnr pRNAi, this expression domain extended dorsally,

albeit not as pronounced as in Drosophila [Calleja et al., 2000]. This finding indicates

that Tc-pnr normally supresses Tc-iro in the dorsal epidermis, which is in contrast to

the loss of Tc-iro expression after Tc-pnr knock down in early development. Thus, both

genes seem to interact throughout embryogenesis and Tc-pnr may actually be important

for dorsal fates, by restricting gene expression or promoting gene expression in dorsal do-

mains. The latter case might apply for its regulatory role on Tc-dpp, as it was discussed

in the previous section. In the dorsalmost ectoderm, Tc-pnr might promote Tc-dpp ex-

pression, while a yet unknown gene restricts Tc-dpp expression to the dorsalmost cell

row, as Tc-pnr expression expands more ventral than Tc-dpp. Thus, it could well be

that without Tc-pnr expression, the dorsalmost ectoderm is not specified due to a loss of

Tc-dpp expression, resulting in a dorsal hole. To verify this assumption, an antibody stain

for Tc-pMAD will be needed. Performed in wild type embryos, the Tc-pMAD stain will

resolve the question if the BMP ligand Tc-dpp is actually effecting the dorsal most cells

via its effector Tc-pMAD. Similarly, in Tc-pnr knock down embryos, loss of Tc-pMAD

will clearly show, if Tc-pnr effects the Tc-Dpp signalling cascade in the dorsal most cell

row. That Tc-pnr might be important for dorsal bristle patterning (bristles along the

larval body are arranged in a precise pattern in Tribolium [Schinko et al., 2008]), could

strengthen its role as a DV selector gene further. In the supplements of this study (6.4),

it is reported that the dorsal most macrochaetes of the A1-A8 segments are missing (as-

suming that this is not a secondary effect due to the dorsal hole in the cuticle), which

was similarly reported in Drosophila [Heitzler et al., 1996; Calleja et al., 2000]. In the fly,

it is concluded that this relates to the establishment of dorsal fates by Dm-pnr [Calleja

et al., 2000]. Although the analysis performed in Tribolium was very rudimentary, it is

yet another example that could point to the role of Tc-pnr as a DV selector like gene,

but this will need further verification. Either, embryos exhibiting the mild phenotype

could be used for such a continuing analysis, as the extend of the dorsal hole is not as

pronounced in these embryos or the potential loss of dorsal cells could be investigated by

cell counting or similar approaches. With both analyses it could be verified, if the loss

of the dorsal most macrochaetes is due to ventralization of the dorsal tissue after loss of
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Tc-pnr expression or if the cells developing these bristles are missing. It will be interesting

to see in the future, if such effects can be observed in other tissues as well. Therefore,

genes with expression ventral to Tc-pnr’s expression could be the starting point (possible

restriction of the gene’s expression) or genes expressed in the same cells (promoting the

gene’s expression). For the latter case, Tc-tin might be an interesting target gene, as

it is expressed in the cardiac mesoderm [Cande et al., 2009], connecting it directly to a

possible future investigation of genes interacting with Tc-pnr during heart formation. In

Drosophila, loss of Dm-pnr expression results in a loss of Dm-tin expression in the cardiac

mesoderm, while a more ventral expression domain of Dm-tin in the visceral mesoderm

is unaffected [Klinedinst and Bodmer, 2003]. Albeit this approach is very Drosophila

centric, at least for the investigation of the role of Tc-pnr during embryogenesis it might

be the right method, in light of the possible strong conservation between Drosophila and

Tribolium.

4.10 Possible explanations for the dorsal bending of

Tc-pnr knock down embryos

The cause of the dorsal bending of the embryo after Tc-pnr pRNAi was not directly

investigated in this study. However, it is an intriguing movement of the embryo, which

was reported before in Tribolium. None or only weak bending of the embryo (a valid

statement about the degree of the bending cannot made, as the provided pictures in the

respective publications do not provide enough information but the bending is clearly not

as pronounced as in Tc-pnr knock down embryos) is observed in Tc fibroblast growth

factor 1b (Tc-fgf1b) and Tc-dpp knock down embryos, which in both cases display a

dorsal hole [Sharma et al., 2013b; Ober and Jockusch, 2006]. However, if the dorsal

hole is also smaller compared to less bended Tc-fgf1b and Tc-dpp knock down embryos

and if therefore a correlation between both defects exists, is unclear. A hint for such a

correlation may be the observation that in less affected Tc-pnr knock down embryos, the

dorsal bending and the extent of the dorsal hole is not as pronounced (deduced from the

almost straight and complete cardioblast cell rows at the dorsal midline) as in stronger

affected embryos. A possible explanation for such a correlation may be that the embryo

tries to attenuate the extent of the dorsal hole by the dorsal bending. The embryo

would thereby potentially also try to prevent yolk to ooze out of the hole, after the two
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extraembryonic membranes degenerated, which normally serve as transient yolk covers

until the completion of dorsal closure. This assumption is reflected by the observation

that only in a few Tc-pnr knock down embryos (8.3%; n=24; data from a single live

imaging experiment), the yolk oozes out. In the embryos where the yolk oozes out, this

happens in all cases around the time when the embryo reached its maximum bending,

which is at a time when the extraembryonic membranes do not cover the yolk anymore.

Another explanation for the bending could well be that the amnion is still attached

to embryonic tissue at the anterior and posterior dorsal edges of the embryo. In these

regions the amnion does not form a bilayer with the serosa (see [Hilbrant et al., 2016] for

images visualizing the partial bilayer configuration of the amnion and the serosa). The

amnion would then pull the embryo towards the dorsal side. This model would also fit

with a possible role of the amnion in providing the properties for the adhesion to the

serosa, which is presumably the case in Tc-pnr knock down embryos. If such adhesion

properties are disturbed, it may be that the amnion is not able to separate from the

embryo when dorsal closure proceeds.

Of course, both explanations for the dorsal bending are intellectual games only. It

could well be that none of the explanations applies and a yet unknown mechanism is

regulating the dorsal bending (whereas it is known that a dorsal closure in the head

region does contribute to the normal ventral bending [Posnien et al., 2010; Panfilio et al.,

2013]), which is affected after Tc-pnr pRNAi or that it is an interplay of both provided

models.

4.11 Conclusion

The analysis of the function of the transcription factor Tc-pnr revealed that it is necessary

to combine different tools for the investigation of a given gene, to obtain a more complete

picture of its function. Albeit the rather simple cuticle preparation technique provided the

first hint for the Tc-pnr dorsal open phenotype, it was the augmented set of live imaging

tools, which enabled a more sophisticated analysis of its function. Investigation of the

morphogenetic movements of the three-tissue system (amnion, serosa and embryo) during

dorsal closure, affected by Tc-pnr pRNAi, would have been not possible without the com-

bined use of different fluorescent lines. Each of the fluorescent lines provided information

about a different aspect of Tc-pnr gene function. Linking these aspects, revealed then the
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real complexity of the interplay between the three tissues. The like this obtained informa-

tion provided the initial clue of what are the functions of Tc-pnr, guiding to the question

of how Tc-pnr is facilitating these functions. Thus, on the level of genes, potential in-

teraction partners of Tc-pnr were investigated, to start the analysis on the level of gene

regulation. The gene level is the starting level of different levels of biological organization

[Horn et al., 2015]. Genes then effect individual cells, the next level of biological organiza-

tion. On this level it will be important to understand which cell properties of the amnion

and the heart precursor cells were affected. The loss of cell identities lead in the case of

the amnion to ectopic rupture and other defects affecting the morphogenetic movements

of the amniotic tissue. Likewise, heart tissue formation was impaired. Thus, the level

of tissue organization is affected. Given that two tissues of the three-tissue system were

directly affected by Tc-pnr pRNAi, it is then necessary to start thinking globally. How

does loss of tissue integrity influence the serosa and how is inter-tissue adhesion affected.

With this the asked questions reached the last level of organization, which is the global

egg level. Interestingly, on this level the embryo showed a high degree of plasticity. The

embryo was able to maintain overall tissue movements, enabling withdrawal and degener-

ation of the two extraembryonic membranes during dorsal closure, while exhibiting a hole

in the dorsal embryonic tissue. It is this combination of information on different levels

of biological organization that is important for a developmental biologist, as he tries to

understand developmental processes in its whole.

By looking into other organisms, in the present case mainly Drosophila, it is then

also possible to add the evolutionary component. Despite the differences in extraembry-

onic and embryonic development in Tribolium and Drosophila, which are due to the fact

that both species adapted to inhabit distinct environments, the respective pnr gene is in-

volved in heart development and dorsal closure in both species and likely shares the same

interaction partners. Thus, there seems to be a certain degree of conservation between

the gene regulatory networks regulating these complex processes, even if the particular

function of the respective pnr gene may differ.

4.12 Outlook

The provided data in this study opens up the possibility for more detailed analyses in

several distinct directions. One is to continue research on the development of the heart.
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Studying the Tribolium heart will enable a comparison with the gene regulatory network

necessary for formation of the well studied Drosophila heart and thereby offer a glimpse

into potential evolutionary changes in regulation of heart development in insects. This

will lead away from the insect heart model organism Drosophila and potentially verify

that heart development is strongly conserved between insects and vertebrates, as it is

assumed [Medioni et al., 2009]. The process of dorsal closure will be another intriguing

research topic. As dorsal closure in Tribolium is a three-tissue system (amnion, serosa

and embryo), which is in difference to Drosophila (amnioserosa and embryo only), re-

search on the system of dorsal closure in Tribolium will provide new insights into tissue

movements and epithelial reorganization in general. Connected with this research direc-

tion is the further investigation of the amnion. It is known that the amnion and serosa

are connected throughout their withdrawal to the dorsal side [Hilbrant et al., 2016] and

the observed defects within the amnion in Tc-pnr knock down embryos permit now to

investigate the function of the amnion in more detail. Especially if and how the amnion

is potentially facilitating the adhesion between both membranes. The last major research

direction regards the potential function of Tc-pnr as a DV selector gene, which seems

to be conserved to Drosophila. So it is now up to following researchers, to built up on

the provided foundation and choose one of these research questions, as in depth analysis

on each of them is a major task for itself. In the preceding sections of the discussion,

individual approaches for such investigations were already provided.

What was not discussed so far is that research on Tc-pnr can also be a starting

point for a more evolutionary perspective. In the non-drosophilid species [Wotton et al.,

2014], the scuttle fly Megaselia abdita (Diptera), the expression pattern of Megaselia ab-

dita pnr (Ma-pnr) is already published and similar to Tribolium, Ma-pnr is expressed in

the amnion [Rafiqi et al., 2008]. This is in so far interesting in an evolutionary perspective

of extraembryonic membrane development, as Megaselia has two extraembryonic mem-

branes, amnion and serosa. The development of the serosa is thereby similar to the one

observed in Tribolium, while the amniotic tissue is reduced, similar to its Drosophila com-

plement [Rafiqi et al., 2008; Wotton et al., 2014]. Another species for evolutionary com-

parisons of pnr function is the milkweed bug Oncopeltus fasciatus (Hemiptera). It shows

a sophisticated set of movements during extraembryonic development, while having two

complete extraembryonic membranes [Panfilio, 2008]. A resource which will contribute
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more general to the analysis of gene evolution is the i5K project for genome sequencing

[i5K Consortium, 2013]. 703 Hexapoda, 63 Chelicerata, 20 Crustacea and 6 Myriapoda

were initially nominated for sequencing [i5K Consortium, 2013]. With those genomes, a

comparative analyses of the properties of individual genomes can be conducted (genome

size, overall gene number or gene lengths) but also synteny analyses (see 6.6) and it is an

easy way for an initial check if homologous genes exist in different species.

Besides from the investigation of the function of Tc-pnr in this study, the two genes

Tc-iro (see 3.2.5 and 6.5) and Tc mirror (Tc-mirr ; data not shown) were investigated as

well. Their wild type expression pattern in Tribolium was described and pRNAi experi-

ments were performed to investigate their function. Although the analyses on both genes

needs to be continued, especially Tc-iro seems to be a promising target for the investi-

gation of extraembryonic membrane development. Tc-iro knock down embryos showed

an early defect during differentiation of the blastoderm, which may result in the loss of

proper amnion and serosa formation. Defects which arised during later development were

also observed (amongst others an impaired heart formation) but not investigated further.

Tc-mirr on the other hand is potentially functioning before the egg is leaving the ovaries

of the female, as indicated by a reduction in the number of deposited eggs. Thereby, both

genes offer the possibility to investigate different aspects during Tribolium embryogenesis.

Analyses on both genes can also be expanded to Oncopeltus, in which initial experiments

in wild type embryos were already performed.
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Chapter 6

Supplements

6.1 ImageJ plugin to process data generated by multiple-

labeling imaging

The ImageJ plugin ‘DVfiles2MIP.ijm’, used for processing DeltaVisionTM multiple-color

imaging files (see 2.7), is included on the DVD.

6.2 EGFP expression in the legs of embryos of the

G04609 line is lost after Tc-pnr fragment 2 parental

RNAi

Although pRNAi with dsRNA from the Tc-pnr fragment 2 did not show any other phe-

notype than pRNAi with the original Tc-pnr dsRNA, it has been observed that EGFP

expression in the legs of a Tc-pnr fragment 2 knock down embryo of the G04609 line is

lost (Figure 6.1). This is in difference to the knock down induced with the original Tc-pnr

dsRNA, where it has been not observed that this expression is lost. However and due to

experimental limitations, this has been observed only in a single embryo. Therefore, this

finding needs further confirmation.
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Figure 6.1: Loss of EGFP expression in the legs of the G04609 line after Tc-
pnr fragment 2 pRNAi. (A) Wild type embryo of the G04609 line, in which EGFP is
expressed in the tip of all three legs (encompassed by dashed yellow line; for a description
of other expression domains, see Figure 3.25). (B) In the knock down, EGFP expression
is absent in the legs, whereas its expression persists in all other domains (note that the
anterior part of the embryo is slightly turned, so that not all expression domains in this
area are at the same location or in view, compared to the wild type). Both embryos are
ventral views. Scale bar is 100 µm.
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6.3 Tc-dpp is expressed in the dorsal most ectoderm

Figure 6.2A shows Tc-dpp expression in an embryo prior to the onset of dorsal clo-

sure. Figure 6.2B is an high magnification single section of the projection in Figure 6.2A,

focusing on the dorsal most ectoderm. In both embryos, the purple arrows mark some of

the point-like Tc-dpp expression in ectodermal cells.

Figure 6.2: Tc-dpp expression in the dorsal most ectoderm. (A, B) Wild type
embryo stained for Tc-dpp via in situ hybridization. (A`, B`) Respective DAPI coun-
terstain. B is a single section of the embryo in A, focusing on the dorsal most ectoderm,
with a higher magnification. Purple arrows point to some of the Tc-dpp expression in
cells of the dorsal most ectoderm. Both embryos are lateral views. Scale bars are 100 µm.
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6.4 Tc-pnr parental RNAi impairs normal bristle pat-

tern

In Drosophila it is known that loss of Tc-pnr expression effects the pattern of the sensory

bristles in adult flies [Heitzler et al., 1996]. To check if the bristel pattern of Tribolium

embryos/larvae are affected as well, cuticle preparations (see 2.3) have been performed.

Dorsal to the tracheal openings in a wild type larvae, three macrochaetes are located

on the A1-A8 segments. Two are forming a pair just adjacent to a tracheal opening,

while the third one is located separately more dorsally. This third machrochaete is absent

in Tc-pnr knock down embryos (the Tc-pnr knock down embryos do not hatch, due

to the failure in dorsal closure; still, a cuticle with a distinct bristle pattern is secreted

everywhere but in the dorsal hole; data not shown). Additionally, the most dorsally

located microchaetes seem to be missing as well (data not shown). These findings are

based on dark field microscopy only. Even though these results need further validation,

they are in accordance with the assumption that Tc-pnr may be important for establishing

dorsal fates, acting as a DV selector gene.

6.5 Expression pattern of Tc-iro throughout Tribolium

development

The homeodomain transcription factor Tc-iro [Kerner et al., 2009] is expressed in the

presumptive anterior amniotic fold during the onset of differentiation of the blastoderm

[Sharma et al., 2013a]. This expression made it an interesting target for a deeper investi-

gation, in respect to be a potential candidate gene involved in amnion formation (see also

3.2.5).

The expression pattern of Tc-iro during embryogenesis is already published to a

certain degree [Nunes da Fonseca et al., 2008, 2010; Sharma et al., 2013b] and especially

its early expression from early nuclear divisions until the progression of the posterior fold

was investigated in great detail [Sharma et al., 2013a]. Therefore, recapitulation of the

expression pattern of Tc-iro will be done in a condensed fashion.

Figure 6.3 shows the expression of Tc-iro from the late undifferentiated blastoderm

on until the beginning of the serosal window stage and Figure 6.4 shows its expression in

an extending embryo until full germ band retraction.
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Figure 6.3: Tc-iro expression in different domains during early embryogenesis.
(A-F) Embryos stained for Tc-iro via in situ hybridization. (A`-F`) Respective DAPI
counterstain. (A) During the late undifferentiated blastoderm stage, Tc-iro is expressed
in an anterior domain. (B) When the primitive pit is forming, this expression shifts
towards the posterior, forming a ring like and tilted domain. (C) At the onset of blas-
toderm differentiation, the ring like Tc-iro expression domain refines into a small stripe
of expression along the presumptive anterior amniotic fold and Tc-iro expression in the
dorsal amnion and around the primitive pit arises. (D) These expression domains persist
when the posterior fold progresses. (E) Around that time, Tc-iro expression arises in
embryonic tissue, which is not yet covered by the serosa (this expression is marked by
the white arrow). (F) When the serosal window has formed, Tc-iro is expressed in its
margins (black arrows), in different and distinct domains within the embryo and in the
amnion covering the segment addition zone (white arrow). The angle of A is unknown,
B-E are lateral views and F is a ventral view. Scale bar is 100 µm.

During late undifferentiated blastoderm stages, Tc-iro is expressed in an anterior

domain (Figure 6.3A and A`), which will give rise to the serosa later on [Sharma et al.,

2013a]. This expression domain is shifted towards the posterior shortly before the onset of

blastoderm differentiation (Figure 6.3B and B`) and refines to a small stripe of expression

in the presumptive anterior amniotic fold (Figure 6.3C and C`). It is then that Tc-iro

expression arises in and around the primitive pit and in the dorsal amnion (Figure 6.3C

and C`). When involution of the embryo has started and the posterior fold has progressed,

these expression domains persist (Figure 6.3D-E and D`-E`). Expression in the posterior

fold becomes very intense at this developmental time and in difference to reports in other

publications [Nunes da Fonseca et al., 2008, 2010; Sharma et al., 2013b], Tc-iro is not

only expressed in the dorsal ectoderm but in the whole embryonic tissue ‘in between’ its

expression in the posterior fold and in the anterior amniotic fold (Figure 6.3E and E`; the

white arrow in Figure 6.3E marks this expression). When the serosal window has formed,

Tc-iro is expressed in its margins, in distinct domains in the embryo and in the amnion

covering the segment addition zone.

During extension of the germ band, Tc-iro is expressed in segmentally repeated

stripes in the embryo and it is expressed in the head (Figure 6.4A-C and A`-C`) and in

the amnion (black arrows in Figure 6.4B). When the embryo has fully extended its germ

band, an additional expression domain in two broad lateral domains arises, which persists

until full germ band retraction (see black arrowheads in Figure 6.4C-E). At the time of

full germ band extension, the segmentally repeated expression is not forming a continuous
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Figure 6.4: Tc-iro expression throughout extension and retraction of the germ
band. (A-E) Embryos stained for Tc-iro via in situ hybridization. (A`-E`) Respective
DAPI counterstain. (A) During extension of the germ band, Tc-iro is expressed in seg-
mentally repeated stripes within the embryo, in the head and in the segment addition zone.
(B) Additionally, Tc-iro is expressed in the whole amnion (black arrows). (C) When the
embryo has fully extended, Tc-iro expression arises in two broad lateral domains (black
arrowheads), while gaps of expression within some of the segmentally repeated stripes
appear (white arrows point to two of these gaps). (D). During germ band retraction, Tc-
iro expression arises in small segmentally repeated expression domains ventral to the two
broad lateral expression domains. Distinct Tc-iro expression in different head structures
arises as well. All of these expression domains persist in the fully retracted germ band
embryo in E. A and C-E are ventral views of flat mounted embryos and B is a lateral
view. Scale bars are 100 µm.

stripe anymore but gaps become visible in the middle of most of the stripes (Figure 6.4C

and C`; the white arrowheads in Figure 6.4 point to two of these gaps). At least until the

embryo has fully retracted, distinct and segmentally repeated expression domains more

ventral to the initial two broad lateral expression domains persist, as well as expression

in several distinct head domains (Figure 6.4C-E and D`-E`).

6.6 Bioinformatic analysis and gene expression of the

genes of the Iroquois complex in Oncopeltus fas-

ciatus

In the course of annotating the newly assembled genome of the milkweed bug Oncopeltus

fasciatus (Hemiptera) (see https://i5k.nal.usda.gov/Oncopeltus_fasciatus), which

is one of the species within the i5K project for sequencing 5000 arthropod genomes [i5K

Consortium, 2013], its genome was searched in order to identify the coding sequences of

the three genes Oncopeltus fasciatus iro (Of-iro), Of-mirr and Of-pnr.

The transcription factor araucan (ara), caupolican (caup) and mirr belong to the

TALE superclass of homeodomain proteins [Burglin, 1997] and form the Iroquois complex

(Iro-C) in Drosophila [Gomez-Skarmeta et al., 1996; Gomez-Skarmeta and Modolell, 2002],

what is a unique property of the Drosophilids in general [Irimia et al., 2008]. It is already

known that in this lineage ara and caup arose due to a tandem duplication of the gene

iro [Cavodeassi et al., 2001], which together with mirr forms the Iro-C cluster, ancestral

to crustaceans and insects. In vertebrates, one can find two to four of the Irx (vertebrate
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equivalent of Iro) clusters, with up to three genes per cluster. More basal branching

metazoans like cnidarians or the placozoans but also nematodes, which are much closer

to insects, have only a single Irx gene [Kerner et al., 2009]. These examples show the high

degree of conservation of the Iro/Irx cluster throughout the animal kingdom. Therefore,

identification of the cluster in Oncopeltus may be as well used to assay the quality of its

assembled genome.

The search for Of-iro and Of-mirr in Oncopeltus revealed its conserved synteny. Like

in Drosophila and Tribolium (data not shown), Of-iro is transcriptionally upstream of Of-

mirr and on the same scaffold (scaffold 82) in the genome assembly. Phylogenetic analyses

of the Iro-C protein sequences from representative species within the insects (Figure 6.5),

confirmed the expected branching of Of -Iro with other Iro proteins from different species

(Figure 6.6). The same is true for Of -Mirr. By expansion of the analysis towards other

predicted gene models of hemipteran species within the i5K project, namely the bed bug

Cimex lectularius and the brown marmorated stink bug Halyomorpha halys, iro and mirr

were identified on the scaffolds 47 and scaffold 1096 with conserved synteny, respectively.

This synteny can in most bilaterians but not in vertebrates, extended to the ankyrin

Figure 6.5: Cladogram with the species used for the analyses of the Iro-C clus-
ter. All species, except the nematode Trichinella spiralis, which served as an outgroup
(Irx cluster outgroup), are insect species. Oncopeltus fasciatus belongs to the basally
branching Hemiptera, whereas the other species encompass the four major insect clades,
namely Hymenoptera, Coleoptera, Lepidoptera and Diptera (from top to bottom; see also
[Savard et al., 2006]).
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Figure 6.6: Phylogenetic analysis of the Iro-C cluster in Oncopeltus . Of -Iro
and Iro-Mirr group together with the respective proteins of the other insect species,
strengthening the assumption that the curated gene models in the Oncopeltus genome
assembly actually present the respective gene. Ts-Irx served as an outgroup. Species
abbreviations are according to Figure 6.5. Note that the support values on the Iro branch
starting with Nv-iro, are very low (under 50) and that the support value separating the Iro
and the Mirr branch is 0, which is probably due to the comparison with the outgroup. The
scale bar represents the evolutionary change over time (counted in nucleotide substitutions
per site that is the number of changes or substitutions divided by the length of the sequence
(the number of changes per 100 nucleotide sites)).
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repeat-containing gene sosondowah (sowah), which is known to be associated with the

Iro-C [Irimia et al., 2008; Maeso et al., 2012]. In all investigated insect, sowah is located

5`to the Iro-C and has an opposite reading direction [Kerner et al., 2009].

In the Oncopeltus genome assembly, Of-sowah was found on scaffold 1078, so it is

unclear if the synteny is conserved. However, an indirect hint provided the gene Of

ceramide transfer protein (Of-cerf ), which was found in the same reading direction on

scaffold 1078. In Drosophila, Dm-cert is located on chromosome 3L, together with Dm-

sowah and all three genes of the Drosophila Iro-C. That both Of-sowah and Of-cert were

found to have the same reading direction and the same transcriptional orientation in

Oncopeltus, compared to Drosophila, might indicate conserved synteny for Of-sowah as

well.

Initial experiments, investigating the gene expression pattern of Of-iro and Of-mirr

via in situ hybridization, showed a similar gene expression pattern during extension of
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Figure 6.7: Expression pattern of iro and mirr in Oncopeltus and Tribolium
during germband extension. (A-D) Embryos stained for iro (A and B) and mirr (C
and D) via in situ hybridization. (A`-D`) Respective DAPI counterstain. Of-iro (A)
and Of-mirr (C) are similarly expressed in the head and in segmentally repeated stripes.
This expression pattern is similarly found in Tribolium (B and D, respectively), whereat
Tc-iro is also expressed in the segment addition zone. All embryos are ventral views.
Scale bars are 100 µm.

the germband in relation to their respective homologs in Tribolium (Figure 6.7).

These analyses show that both Of-iro and Of-mirr were found in the assembled

genome and based on the reported high degree of conservation of the Iro-C and its asso-

ciated genes, they strengthen the quality of the Oncopeltus genome assembly in general.

When searching for the Of-pnr sequence, only its two zinc finger DNA binding do-

mains were potentially identified on scaffold 2229. A manually curated gene model using

the two domains as the starting point, was used to design a set of primers for making a

probe for in situ hybridization. Unfortunately, the product size of this probe was only 464

bp long and did not result in any specific staining in an initially performed experiment.

This is most likely due to the incomplete gene model, which does not provide enough

sequence information for the design of a distinct Of-pnr primer pair to be used for in situ

hybridization.

6.6.1 Material & Methods: Iro/Irx protein sequences and phy-
logenetic analyses

Iro-C and Irx protein sequences were retrieved using TBLASTN and BLASTP algorithms

on the corresponding databases/genome browsers listed in Table 6.1. The sequences of the

three Iro-C genes in Drosophila melanogaster was used as the query for all other species.

Predicted gene models within the Oncopeltus fasciatus genome assembly were manually

curated (see https://i5k.nal.usda.gov/content/rules-web-apollo-annotation-i5k\

-pilot-project and https://i5k.nal.usda.gov/manual-curation-example) to ob-

tain the full sequence.

The phylogeny shown in Figure 6.5 was first obtained via NCBI’s taxonomy browser

(see https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi), refined with

findings from Savard et al. 2006 and rebuilt and edited with the free software INKSCAPE

(version 0.91). The protein phylogeny Figure 6.6 was build with the free software MEGA
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Table 6.1: Protein sequences used for phylogenetic analyses

Species database Ara/Caup ID Iro ID Mirr ID

Bombyx mori NCBI - XP 004929820.1 XP 004929953.1

Drosophila melanogaster NCBI AAF49896.1/AAF49895.1 - AGB94471.1

Nasonia vitripennis NCBI - XP 008216675.1 XP 001604937.1

Oncopeltus fasciatus i5K - iroquois mirror

Tribolium castaneum Beetle Base - TC003632 TC003634

Trichinella spiralis NCBI - XP 003372666.1 -

6 (Build#6140226), using ClustalW for the alignment and Maximum Likelihood for phy-

logenetic tree construction. For the analyses preferences the default settings were used,

except the number of bootstrap replications, which was set to 1.000.

6.6.2 Material & Methods: Oncopeltus fasciatus husbandry,
egg collection and egg fixation

The bugs were kept in large boxes at 25 ◦C and supplied with de-hulled sunflower seeds

and water. Detailed husbandry conditions are described in Liu and Kaufman 2009.

The females laid their eggs in pre-supplied cotton wool (100% viscose), from where

the eggs could be collected into 1.5 ml tubes filled with distilled water prior to fixation.

Subsequently, the eggs were boiled for 3 min in water and immediately transferred onto

ice for 5 min. The distilled water was removed and each 600 µl heptane and fix solution

(FIX-S; 4% formaldehyde in 1 x PBS) was added for pre-fixation. After shaking for 5

min, the lower FIX-S phase was removed and 1 ml methanol was added. This washing

with methanol was performed several times, thereby cracking the chorion and the vitelline

membrane, which are tightly connected in Oncopeltus. Subsequently, residual methanol

was removed and the eggs were fixed for 1 h in 1 ml FIX-S. Fixed eggs were stored in

methanol at -20 ◦C.
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6.6.3 Material & Methods: Protocol for in situ hybridization
in Oncopeltus fasciatus

Embryos were collected and fixed as described in 6.6.2 and the subsequently performed in

situ hybridization (probes were synthesized according to 2.4.1, using the primers listed in

Table 6.2; note that the listed primer pair for Ofas-pnr did not result in a specific stain but

is listed for the sake of completeness) was mainly following the protocol described in Liu

and Kaufman 2004. A different antibody blocking solution was used (2% blocking reagent

(Invitrogen), 1% BSA and 10% NGS in PBT (with 1% Tween®20), the NBT/BCIP stock

solution (Roche) was diluted in fresh prepared AP-buffer (0.1 M Tris-HCl, 50 mM MgCl2,

100 mM NaCl, pH 9.5) and levamisole hydrochloride (Cat#31742, Sigma) was added to

the AP-buffer (final concentration is 1mM) to reduce the background. Coloration was

developed at RT in the dark for up to two days.

Table 6.2: Gene specific primers used for in situ hybridization performed in Oncopeltus

common name fwd sequence (5’ Ý 3’) rev sequence (5’ Ý 3’)

Ofas-iro CAGGCGACACTAGACACCAA ACACAACCATGAACGAACGA

Ofas-mirr GAAGAATGCCACAAGGGAAA GTCGTATTTCGGCTGGATGT

Ofas-pnr GGACTACCAGGCTCACCAGA TCGTCTGGATACCGTCCTTC

6.7 List of movies included on the DVD

The in Table 6.3 listed movies are included on the DVD.
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Table 6.3: Movies included on the DVD
ID Reference Comment

Movie 1 3.1.3 WT embryo of the #W13 rHC079 line

Movie 2A 3.1.4 Separate visualization of DsRed2 (amnion) and EGFP (serosa) channel

Movie 2B 3.1.4 Merge of DsRed2 and EGFP channel

Movie 3A 3.2.3 Development of a WT embryo (nGFP)

Movie 3B 3.2.3 Development of a Tc-pnr knock down embryo (nGFP)

Movie 4A 3.2.5 WT embryo (nGFP)

Movie 4B 3.2.5 Mildly affected Tc-iro knock down embryo (nGFP)

Movie 4C 3.2.5 Severely affected Tc-iro knock down embryo (nGFP)

Movie 5A 3.2.6 Tc-pnr knock down embryo; slow amnion withdrawal

Movie 5B 3.2.6 Tc-pnr knock down embryo; holes in the amnion

Movie 5C 3.2.6 Tc-pnr knock down embryo; ectopic amniotic rupture

Movie 5D 3.2.6 Tc-pnr knock down embryo; two sites of rupture

Movie 5E 3.2.6 Tc-pnr knock down embryo; disturbed organization of the amnion

Movie 6A 3.2.6 WT embryo of the G04910 line

Movie 6B 3.2.6 WT embryo of the G04923 line

Movie 7 3.2.8 Tc-pnr knock down embryo exhibiting ectopic amniotic rupture

Movie 8A 3.2.9 WT embryo of the G04609 line

Movie 8B 3.2.9 Mildly affected Tc-pnr knock down embryo (G04609 line)

Movie 8C 3.2.9 Severely affected Tc-pnr knock down embryo (G04609 line)

Movie 9 3.2.10 Tc-pnr knock down embryo used for the tracking of cardioblasts
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Zusammenfassung

Die Embryogenese des Käfers Tribolium castaneum ist auf die gestaltgebenden Bewegun-

gen der beiden extraembryonalen Membranen, Amnion und Serosa, angewießen. Durch

deren Funktion und einer aufeinander abgestimmten Entwicklung, ist es dem Embryo

möglich zu überleben und als voll ausgebildeter Organismus aus dem Ei zu schlüpfen.

Bemerkenswerterweiße tragen die beiden Membranen letztendlich nicht zur Bildung des

Embryo selbst bei. Für die Ausbildung der Membranen müssen diese erst expandieren,

mit sich selbst fusionieren und abschließend voneinander trennen. Danach umgibt das

Amnion den Embryo ventral und lateral, wodurch der Amnion-Hohlraum geformt wird.

Das Serosa hingegen umschließt sowohl das Amnion, als auch den Embryo und den Eidot-

ter. Somit schützt es den Embryo vor dem Austrocknen und trägt zu seiner Immunabwehr

bei. Im Laufe der späteren Embryogenese ermöglichen die Membranen dem Embryo seinen

Rücken zu schließen, indem sie sich koordiniert zurückziehen und degenerieren. Während

sich das Serosa zurückzieht und bevor sich der Rücken schließen kann, wird der Eidotter

kurzfristig vom Amnion bedeckt. In Embryos die kein Serosa besitzen, kompensiert das

Amnion dessen Verlust, indem es die Funktion des Serosa übernimmt und den Eidotter

bereits von Beginn an bedeckt. Dadurch kann sich der Embryo normal entwickeln und

überleben.

Um nun mehr über das Amnion zu erfahren, wurde der Transkriptionsfaktor Tc pan-

nier (Tc-pnr) untersucht, welcher zur Zeit der Differenzierung des Blastoderm im Amnion

exprimiert ist. Mittels in-situ-Hybridisierung wurde das Expressionsmuster von Tc-pnr

komplettiert und durch gezieltes Ausschalten der Genexpression mittels parentaler RNA

Interferenz, Rückschlüsse auf seine Funktion gezogen. Embryos die kein Tc-pnr mehr

exprimieren, weißen ein Loch in der dorsalen Kutikula auf und biegen sich zur dorsalen

Seite hin. Dieser spezifische Phänotyp resultiert aus einem Defekt beim Schließen des

embryonalen Rückens. Zur dieser Zeit ist Tc-pnr normalerweiße im dorsalen Ektoderm
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und im Kopf des Embryos exprimiert. In der Fliege Drosophila melanogaster entsteht das

dorsale Loch dadurch, dass die Expression von Tc decapentaplegic (Tc-dpp) im dorsalen

Ektoderm gehemmt wird. Darauf aufbauend konnte in Tribolium gezeigt werden, dass

Tc-pnr und Tc-dpp in überlappenden Bereichen im dorsalen Ektoderm exprimiert sind

und Tc-dpp dort von Tc-pnr reguliert wird. Das deutet darauf hin, dass Tc-pnr am

Schließen des embryonalen Rückens beteiligt ist und dies in Tribolium und Drosophila

konserviert ist. Auch die Funktion von Tc-pnr während der Entwicklung des Herzens

scheint in beiden Spezies konserviert zu sein. Hier führt der Verlust der Tc-pnr Ex-

pression in der kardialen Herzreihe dazu, dass sich diese nicht formieren kann und zur

Inhibition des Gens Tc midline. Ist die späte Expression von Tc-pnr im Amnion inhi-

biert, treten eine Vielzahl von Defekten im Amnion auf. Besonders interessant dabei ist,

dass das Amnion ektopisch reißt und sich offenbar nicht mehr zusammen mit dem Serosa

zurückzieht, wenn der Embryo versucht seinen Rücken zu schließen. Das ist im Wider-

spruch zu einem vor Kurzem veröffentlichten Bericht in dem beschrieben wird, dass beide

Membranen zu dieser Zeit miteinander verbunden sind. Deswegen wird vermutet, dass

Tc-pnr für diese Adhäsion verantwortlich ist und das Serosa und Amnion nach der Inhib-

tion von Tc-pnr nicht mehr verbunden sind. Damit dieser Defekt im Detail untersucht

werden kann, wurde eine transgene Tribolium Linie derart verändert, dass sie nicht mehr

EGFP im Amnion exprimiert, sondern DsRed2. Dazu wurde das CRISPR/Cas9 Sys-

tem in Verbindung mit dem Homologie gelenkten Reparaturmechanismus benutzt. Die

neue Linie exprimiert nun DsRed2 im Amnion und kann mit einer weiteren transgenen

Linie gekreuzt werden, die EGFP im Serosa exprimiert, wodurch der Nachwuchs beide

Fluorophore exprimiert. Somit können beide Membranen im selben Embryo getrennt

voneinander visualisiert werden und die Analyse der gefundenen Defekte im Amnion in

Relation zum Serosa abgeschlossen werden.

Zusammengefasst deuten die Resultate darauf hin, dass Tc-pnr auf vielfältige Art

und Weiße die Entwicklung der embryonalen und extraembryonalen Membranen zur der

Zeit beeinflusst, wenn der Embryo versucht seinen Rücken zu schliessen. Da dieser Prozess

in Tribolium ein Dreikomponentensystem ist (Amnion, Serosa und Embryo), wird die ge-

trennte Betrachtung der regulatorischen Effekte von Tc-pnr dazu beitragen, die Interak-

tionen der zwei extraembryonalen Membranen untereinander und gegenüber dem Embryo,

besser zu verstehen.
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