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Abstract

The four-dimensional variational data assimilation system EURAD-IM is
extended for the realisation of CO2 inversions. These analysis techniques
seek to optimise CO2 surface-atmosphere fluxes by the use of atmospheric
CO2 concentration observations and atmospheric transport models. In this
work, CO2 surface-atmosphere fluxes are optimised jointly with atmospheric
CO2 concentrations. The optimisation is characterised by a high degree of
freedom of the optimisation space and by the use of frequent observations.
The system traces location, time, and strength of surface-atmosphere CO2

fluxes due to their weak signal in the atmospheric concentration. This en-
ables new possibilities for the determination of sinks and sources of atmo-
spheric CO2. In order to increase the sensitivity of the assimilation system
for small surface-atmosphere fluxes, the modelling of the background error
variances is improved. Numerical experiments with synthetic observations
demonstrate the benefits of the joint optimisation of CO2 concentrations
and fluxes compared to optimising fluxes only. A long-term simulation of
June 2012 is executed to evaluate the extended data assimilation system. A
significant improvement of analysed concentration time-series is obtained.
The analysed fields of CO2 surface-atmosphere fluxes show spatially inhomo-
geneous structures close to surface measurement stations. This reveals the
high requirements on the modelled CO2 fluxes and their error characterisa-
tion for this optimisation approach, in order to control the high degree of
freedom of the optimisation space. The ability of the system to trace back
and improve biogenic fluxes is shown with the aid of several examples.
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Kurzzusammenfassung

Das vierdimensionale variationelle Datenassimilationssytem EURAD-IM
wurde erweitert für die Realisierung von CO2-Inversionen. Diese
Analysetechniken optimieren CO2-Oberflächen-Atmosphärenflüsse
durch die Verwendung von Messungen der CO2-Konzentration in der
Atmosphäre und von atmosphärischen Transportmodellen. In dieser Arbeit
werden CO2-Fflüsse und CO2-Konzentrationen gemeinsam optimiert.
Die Optimierung ist gekennzeichnet durch einen hohen Freiheitsgrad des
Optimierungsraums und durch die Verwendung zeitlich hoch aufgelöster
Beobachtungen. Das Analysesystem kann den Ort, die Zeit und die Größe
von CO2-Oberflächen-Atmosphärenflüssen aufgrund ihres Fußabrucks in
den atmosphärischen CO2-Konzentrationen zurückverfolgen. Dies eröffnet
neue Möglichkeiten zur Bestimmung von CO2-Quellen und -Senken.
Die Optimierung der CO2-Oberflächen-Atmosphärenflüsse wird von der
absoluten Größe der betreffenden Flüsse beeinflusst. Aus diesem Grund
werden die Hintergrundfehler der Flüsse in Abhängigkeit der Flussgröße
modelliert, wodurch die Analyse von kleinen Flüssen verbessert wird.
Numerische Experimente mit synthetischen Beobachtungen beweisen die
Vorteile der gemeinsamen Optimierung von CO2-Konzentrationen und
-Flüssen gegenüber der alleinigen Optimierung von CO2-Flüssen. Um das
erweiterte Datenassimilationssytem zu testen wurde eine Langzeitstudie
für den Juni 2012 durchgeführt. Die Analyse bewirkt eine deutliche
Verbesserung der modellierten CO2-Konzentrationen. Die optimierten
CO2-Flüsse sind räumlich inhomogen in der Nähe von Messstationen,
die sehr dicht am Boden sind. Für eine verbesserte Analyse mit der
verwendeten Optimierungsstrategie müssen die a priori Flüsse und ihre
Fehlercharakterisierung sehr hohe Ansprüche erfüllen. Die Fähigkeit des
Assimilationssystems biogene Flüsse zurückzuverfolgen und zu verbessern,
wird anhand mehrerer Beispiele gezeigt.
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Chapter 1

Introduction

1.1 The carbon cycle and its impact on cli-

mate

Carbon is by definition the essential element of organic life on earth. The
carbon cycle, the movement of carbon among the reservoirs biosphere, pe-
dosphere, geosphere, hydrosphere, and atmosphere, comprises a sequence of
processes that are decisive for living organisms and influences particularly
the climate of the earth. Carbon in the earth’s atmosphere occurs mainly
as carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO). In
the context of a warming climate system, these greenhouse gases (GHG)
have gained broad attention over the previous decades and urge for a better
understanding of the carbon cycle to provide predictions of future changes.
Carbon dioxide is the second most important GHG after water vapour.
There is clear evidence that the increase in its atmospheric concentration
over the past 200 years from ∼280 ppmV to more than 400 ppmV today
[IPCC, 2014], is mainly caused by anthropogenic emissions and land use
change. This increase in CO2 is unprecedented over the last 650,000 years
[Keeling et al., 2005]. On a global scale, approximately 30% of the anthro-
pogenic emissions are removed by oceans [Wanninkhof et al., 2013] as well
as 30% by terrestrial biosphere [Sitch et al., 2013], the latter showing much
larger variability and uncertainty [Jung et al., 2011], representing also a
critical uncertainty in the global carbon cycle.
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1.2 State of the art inverse modelling of car-

bon fluxes

1.2.1 CO2 inversion from global to regional scale

Global CO2 estimation

Interpretation of atmospheric CO2 observations with the help of transport
models to derive estimates about the global carbon budget dates back to the
late 1980s [Enting and Mansbridge, 1989; Tans et al., 1989] and is commonly
called CO2 inversion. Early studies indicated that the northern hemisphere
acts as a net terrestrial carbon sink, based on the investigation of global
atmospheric CO2 distribution or isotope and oxygen measurements [Tans
et al., 1990; Ciais et al., 1995; Keeling et al., 1996]. Detailed comparisons
[Law et al., 1996; Denning et al., 1999a; Gurney et al., 2002] of different
global inversion studies showed an agreement that the northern hemisphere
is a substantial net sink of 2.0 − 3.5 PgC/yr. Nevertheless the uncertain-
ties for the continents remained large as Gurney et al. [2002] concluded
that “consensus has not yet been reached regarding the size and distribu-
tion of regional carbon fluxes obtained”. On a global scale there is con-
tinuous progress in estimating the net terrestrial carbon flux for the past
decades. Houghton [2001; 2007]; Canadell et al. [2007]; Sarmiento et al.
[2010]; Le Quéré et al. [2015] estimate a global carbon sink ranging from
0.20 PgC/yr to 0.27 PgC/yr before 1988 and 1.15 PgC/yr and 4.70 PgC/yr
for later years.

Error sources for global inversions

Since surface fluxes are mostly inferred from atmospheric CO2 observations,
rather than fluxes itself, it is not surprising that the proper modelling of
atmospheric transport is one of the greatest challenges. On large scales,
additionally to turbulence, many processes are parameterized e.g. convec-
tion, precipitation, and the characterisation of the boundary layer. Errors
of different transport models do not only cause a spread between inversion
studies but may also introduce a systematic bias. Stephens et al. [2007] cor-
rected for systematic errors of the vertical gradient found in earlier studies
and estimated the carbon sink of the northern hemisphere to be 1.5 PgC/yr
weaker. Another transport problem is linked to the strong seasonal and
diurnal cycle of terrestrial CO2 fluxes. If these variations of the CO2 fluxes
are not accounted for properly by atmospheric transport models, “recti-
fication” errors occur, leading to substantial uncertainties [Denning et al.,
1999b; Engelen et al., 2002].
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The coarse resolution of a priori fluxes used in global inversions leads to
aggregation errors [Kaminski et al., 2001], as spatial patterns of CO2 fluxes
are not sufficiently resolved. In dependence of the resolution is also the
representativity error, since inversions implicitly assume that in situ obser-
vations can be used as an average CO2 distribution for one model grid box.
This assumption becomes questionable e.g. over mountainous terrain with
small scale turbulence in combination with coarse resolutions. Gerbig et al.
[2003a] first quantified the representativity error and suggested horizontal
resolutions smaller than 30 km to resolve atmospheric CO2 dispersion in
the boundary layer.
Observations of atmospheric CO2 are often based on in situ measurements
from surface networks, ships, or aircraft measurements. Historically, CO2

measurement towers have been deployed such that atmospheric CO2 back-
ground concentrations are well represented and the influence of local ter-
restrial fluxes and anthropogenic emissions is minimised. Mountain sum-
mits and small islands were often selected as measurement sites [Fan et al.,
1998]. As global inversions often used quite large temporal resolutions (≥ 1
day) they were not capable to analyse the diurnal variability of CO2 surface
fluxes from the biosphere. Hence the contribution to the understanding of
the underlying processes of the carbon cycle is limited: “It has been difficult
for the two communities [of atmospheric inversions and process models] to
even disagree meaningfully” [Kaminski et al., 2002].

Benefits of regional inversions

The resolution of CO2 inversions, which are denoted as regional, ranges
from a few degrees to a few kilometres [Gerbig et al., 2003a;b; Matross
et al., 2006; Lauvaux et al., 2008; 2009b;a; Rödenbeck et al., 2009; Peters
et al., 2010; Gourdji et al., 2010; Broquet et al., 2011]. One of the main
advantages of inversions with smaller scales is the usage of better resolved
atmospheric measurements. A large part of the information in the
signature of the inert CO2 observed in the atmospheric boundary layer,
can only be resolved with relatively small spatio-temporal resolutions
[Van der Molen and Dolman, 2007]. Contrarily to global inversions, the
results of regional top-down inversions can almost directly be compared
with observations at the surface, often called bottom-up measurements (see
the following sections for a discussion of different approaches). Modelling
at this “missing scale”, between global inversions and bottom-up models,
was a large step towards uncertainty reduction of carbon fluxes, because
independent data streams could be compared, which also helped to
improve different approaches [Lauvaux et al., 2008].
Top-down methods are used to identify errors in biogeochemical models
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[Peylin et al., 2005; Desai, 2010] or to validate inventories [Levin and
Karstens, 2007; Desai et al., 2011], making use of different kinds of
observations. On the other hand, surface flux estimates from bottom-up
approaches enable better a priori fluxes needed for detailed atmospheric
inversions [Wang et al., 2009; Turner et al., 2011]. Finally, regional scale
inversion techniques combine many sources of information to gain insight
to the driving processes of the carbon cycle, and thus deliver more reliable
regional budgets on a national level to check national emission reductions
[IPCC, 2014].

Requirements for regional inversions

To solve atmospheric inversion problems successfully, measurements have to
fulfil high-quality requirements. The precision of atmospheric CO2 measure-
ments has to be high in comparison to other trace gases, since the chemical
inert CO2 is just dispersed in the atmosphere and surface fluxes add to a high
background value. Similarly, just CO2 net flux can be measured, consisting
of the juxtaposed larger fluxes of respiration and photosynthesis, usually in-
ferred by eddy covariance methods. Concentration and flux measurements
are discussed in more detail in Sect. 1.2.2 and 1.2.3. The largest part of ob-
servations used in this thesis is provided by the TR32 (http://tr32new.uni-
koeln.de/) project “Patterns in Soil-Vegetation-Atmosphere-Systems”.
Precise information about the surface, orography, changes in vegetation
cover, and many other parameters, which influence the wind patterns and
the atmospheric boundary layer height, are necessary as well. Require-
ments for transport models due to high horizontal resolution are discussed
in Sect. 1.2.3. Rodgers [2000] states that with increasing resolution in CO2

inversions their uncertainty increases, due to ill-conditioning of the inverse
problem and increasing uncertainty of atmospheric transport.

1.2.2 Bottom-up approach

Bottom-up approaches can be classified into two broad categories: process-
based models and empirical models based on upscaling. Process-based
biogeochemical models simulate carbon exchange between ecosystem and
atmosphere by considering the underlying biochemical mechanisms of car-
bon fluxes (e.g photosynthesis, autotrophic/heterotrophic respiration) for
different vegetation types. Early developments of biogeochemistry models
rested on many simplifying assumptions [Potter et al., 1993; Ruimy et al.,
1996] and have been substantially refined to numerous sophisticated mod-
els (e.g. Biosphere Energy-Transfer Hydrology scheme (BETHY) [Knorr
and Heimann, 2001], Community Land Model (CLM) [Oleson et al., 2010],
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Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE)
[Krinner et al., 2005] ), which are discussed e.g in Huntzinger et al. [2012];
Keenan et al. [2012]. Although the understanding of the biogeochemistry of
the carbon cycle increases with process-based models, there are still large
variations of different models for short and long-term predictions [Schwalm
et al., 2010; Dietze et al., 2011], weakening the confidence in current per-
formance.

Empirical models use inventory data-sets of anthropogenic emissions
[Kuenen et al., 2014], (http://carboeurope.ier.uni-stuttgart.de), observed
fluxes from trees and land use change [McKinley et al., 2011; Houghton,
2010], and environmental factors like air temperature, radiation, and
vegetation parameters [Beer et al., 2010; Mahadevan et al., 2008].
Improving design of direct measurement techniques of carbon fluxes
is an ongoing active research area. Over land, the eddy correlation
method [Deacon, 1959; Aubinet et al., 2000] is the most established
method. To realise measurements with this method several requirements
have to be fulfilled (e.g. fully developed turbulence, negligible density
fluctuations [Foken and Wichura, 1996]), leading to problems especially
due to uncertain small scale layering and under lateral flow [Papale and
Valentini, 2003; Alfieri et al., 2011]. Another drawback is the small spatial
representativeness of these measurements (<1 km2). Although there are
currently more than 550 recording flux towers (http://fluxnet.ornl.gov), the
heterogeneity of the biosphere hampers an accurate upscaling. In general,
it can be stated that uncertainty of bottom-up approaches increases with
larger resolutions, as more extrapolation is required.

1.2.3 Top-down approach

Inverse modelling with the top-down approach exploits variations of atmo-
spheric CO2 observations to quantify surface-atmosphere CO2 fluxes with an
atmosphere transport model. The main method, Bayesian synthesis inver-
sion, starts with a priori surface fluxes as an input for atmospheric transport
models to simulate concentrations for a set of observed locations. The goal
is to find a maximum a posteriori distribution of surface fluxes with respect
to the a priori information and the model-data mismatch, usually under the
assumption of multivariate normal distributions.

Observations

One difficulty already mentioned in Sect. 1.2.1 is the sparseness of accurate
measurements. Networks for CO2 tower measurements include e.g Fluxnet



6 Introduction

(http://fluxnet.ornl.gov), NOAA (http://www.esrl.noaa.gov/gmd/dv/site/-
site table2.php), or the CarboEurope atmospheric database
(http://www.ce-atmosphere.lsce.ipsl.fr/database/index database.html).
Although these measurements are used by almost all top-down inversion
studies they do not cover equally all regions. Recent programmes as Global
Atmospheric Watch (GAW) improved the situation for Asia [Thompson
et al., 2016]. Regular aircraft measurements are limited to a few regions, e.g
CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere
on the basis of an Instrument Container) and CONTRAIL (Comprehensive
Observation Network for TRace gases by AIrLiner) [Crevoisier et al.,
2010; Niwa et al., 2012], but allow a more detailed examination of vertical
gradients of atmospheric CO2 [Stephens et al., 2007; Kretschmer et al.,
2014]. To overcome sparse in situ measurements a promising approach is
the use of remote sensing instruments like the Thermal and Near infrared
Sensor for Carbon Observation (TANSO) on Greenhouse gases Observing
SATellite (GOSAT, http://http://www.gosat.nies.go.jp/ ) [Hamazaki et al.,
2004], the Atmospheric Infrared Sounder (AIRS, http://airs.jpl.nasa.gov)
on Aqua [Aumann et al., 2003], the Infrared Atmospheric Sounding
Interferometer (IASI, http://smsc.cnes.fr/IASI ) on Met-Op-1, the former
SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY
(SCIAMACHY) on EnviSAT, and the Orbiting Carbon Observatory-2
(OCO-2, http://oco.jpl.nasa.gov).

Difficulties and unsolved problems

The weak signal of terrestrial CO2 fluxes in atmospheric observations is used
to identify the correct time, location and amount of the fluxes with the us-
age of atmospheric transport models. In combination with the mentioned
limited amount of observations, the CO2 top-down inversion becomes under-
determined (the degree of freedom of terrestrial fluxes is larger than that of
the available observations) and ill-posed (several combinations of fluxes ex-
ist, differing in time, location, or amount, which are in accordance with the
available observations). The ill-posed character of the inversion procedure
can be mitigated by additional information to surface-atmosphere fluxes,
introduced from other tracers or the energy budget [Tolk et al., 2009], and
the combination with bottom-up approaches [Baker et al., 2008; Andres
et al., 2012; Gourdji, 2013; Zhu et al., 2014].
Besides the modelled surface-atmosphere fluxes and measurements them-
selves, the correct specification of their respective uncertainties is highly
important [Engelen et al., 2002; Broquet et al., 2013]. The proper estima-
tion of the covariance between a priori fluxes and the model-data mismatch
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has a comparable influence as the a priori information and the data them-
selves [Lauvaux et al., 2009b]. Different estimation and modelling strategies
for the covariance matrices exist, usually taken from numerical weather
prediction (NWP) methods.
The influence of the atmospheric transport model as a part of the inversion
procedure is often investigated with numerous inter-comparison studies for
global and regional inversions. The transport model should be with low
numeric diffusion, monotone, and numerical efficient. The uncertainty in-
troduced by transport modelling is discussed in detail in Lauvaux et al.
[2009b]. Several other factors are known to influence the inversion results,
e.g. the strategy to update fluxes [Tolk et al., 2011], initial and bound-
ary conditions [Lauvaux et al., 2008; Peylin et al., 2005], and if different
parameters are optimised jointly or step-wise [Peylin et al., 2016].

From batch inversions to data assimilation

The simplest approach to solve the inversion problem, which links CO2

surface fluxes and the CO2 atmospheric measurements with a transport
model, is to calculate a set of linear equations, performing the inversion in
one step. This method requires running the atmospheric transport model
either once per observation or once per estimated flux region per period.
Thus, this inversion method is also called batch inversion [Gelb, 1974] or
matrix formulation and is historically widely used, in global inversions. It
is well known that the dimension of the matrices to be inverted is defined
either by the flux space or the observation space [Rodgers, 2000], in order
to decrease the most time consuming calculation step. Still the increasing
amount of observations and spatio-temporal resolution makes this method
computationally infeasible, which brought time stepping approaches into fo-
cus, used in NWP for several decades under the banner of data assimilation.
Advanced data assimilation for stratospheric [Austin, 1992; Fisher and Lary,
1995] and tropospheric chemistry [Elbern et al., 1997], were applied quite
early compared to data assimilation of CO2 flux estimation based on the
sequential [Bruhwiler et al., 2005; Peters et al., 2005] or variational method
[Chevallier et al., 2005; Rödenbeck, 2005]. One of the main advantages is the
feasibility to include more observations from different sources into the sys-
tem. This helps to decrease the under-determination of the inverse problem
[Rayner, 2010]. Finally, assimilation allows also for predictions with optim-
ised fluxes.
The four-dimensional variational assimilation (4D-Var) method requires
the development of the adjoint model, which allows to use information
available in the data backwards in time, see Sect. 2.2.2. The Kalman filter
includes a posterior covariance calculation, which allows a detailed evalu-
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ation of the analysis error, but has additional challenges due to increased
computing time. Both methods are discussed in detail in Chapter 2.

Despite all the progress that has been made, the problem of analysing and
predicting terrestrial carbon fluxes remains challenging. Obvious obstacles
include the spatial heterogeneity of the land use and the different time scales
at which biospheric surface-atmosphere fluxes differ. Firstly, the European
land use is highly fragmented, actively managed by humans, and often em-
bedded in densely populated areas, which hampers reliable biogenic or an-
thropogenic flux inventories. Secondly, CO2 uptake and sequestration by
plants has a strong diurnal and seasonal cycle as well as large inter-annual
variability [Goulden et al., 1996; Hollinger et al., 2004; Urbanski et al., 2007;
Stoy et al., 2009]. Finally, CO2 release from soil to the atmosphere hap-
pens on timescales ranging from seconds to several decades [Ryan and Law,
2005]. Therefore, the uncertainty of inferred terrestrial CO2 fluxes at high
spatio-temporal scale remains large, requiring further progress on inversion
strategies.

1.3 Objectives of this thesis

This work aims to optimise the estimation of anthropogenic emissions, pho-
tosynthesis, and biogenic respiration for each grid cell using the 4D-Var
system EURopean Air pollution Dispersion-Inverse Model (EURAD-IM).
Additionally, the initial states of the atmospheric CO2 concentration are op-
timised jointly with CO2 fluxes. The goal is to address uncertainty of mod-
elled CO2 concentration values introduced by uncertain surface-atmosphere
fluxes and transport modelling during the previous optimisation period
properly, by adjusting the initial CO2 concentration. This allows a more
detailed consideration of uncertainty, but the increased ill-posedness of the
problem has to be controlled.
The potential and limits of an advanced model-data-fusion technique are in-
vestigated to determine to what extent atmospheric CO2 in situ data with
half-hourly temporal resolution can be exploited to analyse CO2 surface-
atmosphere fluxes. As a result, CO2 inversion is making progress by a
broader access to atmospheric CO2 measurements, in the context of in-
creasing spatio-temporal resolution in CO2 inversions. The ability of the
system to trace back surface-atmosphere fluxes due to their signal in the
atmospheric concentration offers new opportunities for the determination
of CO2 sinks and sources.

The main task of this work is the extension of the EURAD-IM for CO2
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inversions to be able to optimise parameters for anthropogenic emissions,
photosynthesis, biogenic respiration, and initial concentration jointly for
each grid cell. For this reason, a biogeochemical model (CLM) is modified
in order to provide a priori CO2 fluxes. To handle the high demands on the
transport model, the absolute monotone Walcek advection scheme [Walcek,
2000] with low numeric diffusion is implemented and investigated. It enables
the analysis of small CO2 flux footprints in the atmospheric background and
provides a better understanding of observed CO2 time series. The adjoint
of the advection scheme is implemented with the same desirable properties.
A stringent relation between the adjoint variable with respect to the initial
values and the surface fluxes is derived. Based on this derivation a new
calculation of the error variances for the CO2 surface fluxes is developed and
implemented into EURAD-IM. This serves for an improved optimisation of
fluxes to restrict the ill-posed nature of the inverse problem. Finally, the
EURAD-IM is modified in order to analyse three fluxes by the usage of
atmospheric observations from one species.

The work is structured as follows: Chapter 2 describes the theory of the
data assimilation method 4D-Var. In Chapter 3 the modified and applied
model system of this work is explained in detail. The model set-up and
used observations are described in Chapter 4. Results of the numerical
experiments with synthetic and real data are presented in Chapter 5 and
final conclusions are given in Chapter 6.





Chapter 2

Theory of Data Assimilation

This chapter gives a short overview of the data assimilation (DA) technique
four-dimensional variational assimilation (4D-Var), which is the most im-
portant theoretical concept used in this work. DA concepts for meteorology
comprise a vast set of methods to analyse and predict the atmosphere, such
that a complete overview of this topic is far beyond the scope of this work,
as there exists also no clear definition for DA, see e.g. Rodgers [2000]; Lahoz
et al. [2010] for an overview.
In general, DA is regarded as an analysis technique to combine different
information sources in an “optimal way” to describe a dynamical system
(in this work the atmosphere) as accurate as possible, usually with the help
of a numerical model, which discretises the atmosphere in space and time.
The most important information sources used are

(i) the physical knowledge about the dynamical, physical, chemical, and
radiative processes, represented by ordinary or partial differential
equations (ODE’s/PDE’s), which are discretised in a numerical
model,

(ii) measurements, which are samples of the atmosphere with a certain
spatial and temporal scale in dependence of the used observation tech-
nique,

(iii) prior knowledge of the current state of the atmosphere, using the in-
formation available up to this time.

As stated, this information is combined in an “optimal way”, what impli-
citly means that all information/data sources have an error. The correct
specification of corresponding errors is a central topic in DA. Thus, math-
ematically all data has to be interpreted in a probabilistic sense as random
variables.
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Figure 2.1: The diurnal time series of photosynthesis (blue line), calculated with
WRF-CLM at 24 July 2012 and spatially averaged. The rescaled photosynthesis
(red line) preserves the diurnal profile, but changes the absolute amount.

2.1 Mathematical formulation of the Prob-

lem

DA in atmospheric sciences was first applied and developed in NWP, which
is regarded as an initial value problem, which is the principal parameter
for optimisation in this area. However, for CO2 the largest uncertainty is
introduced by surface-atmosphere fluxes and thus are the main parameters
which are optimised in CO2 inversions. This study seeks to optimise two
parameters jointly [Elbern et al., 2007]:

I. the initial atmospheric CO2 concentration values (iv)
II. a flux factor (ff), which scales the a priori surface-atmosphere CO2

fluxes for one day, changing the absolute amount of the flux but leaving
the diurnal profile unchanged.

The CO2 surface fluxes are separated into anthropogenic emissions, bio-
genic respiration (both sources for the atmosphere), and photosynthesis
(atmospheric sink). Thus three ff’s are optimised. Figure 2.1 visualises
the concept of ff optimisation, showing the diurnal cycle of the three CO2

fluxes. The main idea [Elbern et al., 2000] of optimising the ff’s is to re-
duce the degree of freedom of the subspace of flux rates, by not optimising
the fluxes at each time step 𝑡𝑖. Rather it is pointed out that, due to the
good knowledge of the diurnal cycle of fluxes (compared to the knowledge
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of the absolute amount), one efficient parameter to optimise is their diurnal
amplitude. This concept decreases substantially the amount of optimisation
parameter such that the problem is less ill-posed than the flux optimisation
for each time step [Elbern et al., 2007].

2.1.1 Notation

The same notation as in [Klimpt et al., 2016] will be used in the following.
Let [𝑡0, 𝑡1, . . . , 𝑡𝑁 ] be the time steps of the simulated time period [𝑡0, 𝑡𝑁 ].
Subscripts will always be used as time indices, (·)𝑖 refers to 𝑡𝑖, (·)𝑖+1/2 to
(𝑡𝑖 + 𝑡𝑖+1)/2, and (·)𝑖,𝑗 to the interval [𝑡𝑖, 𝑡𝑗]. 𝑛 ∈ N is the dimension of the
model space and 𝑝𝑖 ∈ N (𝑖 = 0, . . . , 𝑁) the dimension of the observation
space at 𝑡𝑖. The following notation will be used with small bold letters
indicating vectors and capital bold letters indicating matrices:

x ∈ R𝑛 : model state vec. y𝑖 ∈ R𝑝𝑖 : observation vec.

f ∈ R𝑛 : flux factor vec. U ∈ R𝑛×𝑛 : fluxes

(·)b : background state (·)t : true state

(·)iv : initial value (·)ff : flux factor

(·)o : observation

𝜖 ∈ R𝑛 or R𝑝𝑖 : error term ℳ : Model

ℋ𝑖 : R2𝑛 → R𝑝𝑖 : observation B ∈ R𝑛×𝑛 : background error

operator covariance matrix

R𝑖 ∈ R𝑝𝑖×𝑝𝑖 : observation error K ∈ R𝑛×𝑛 : flux factor

covariance matrix covariance matrix.

For the sake of clarity the flux factor f is defined to have the same dimension
𝑛 as the model state vector x, although f is formally an element of R3𝑛

since three fluxes are regarded (thus formally are U,K ∈ R3𝑛×3𝑛 and ℋ𝑖 :
R4𝑛 → R𝑝𝑖). The flux factor vector f scales the a priori knowledge of the
background flux Ub by an optimisation factor per grid point and per flux
type. For notational convenience Ub ∈ R𝑛×𝑛 is defined to be a diagonal
matrix. The fluxes are thus (diag(a) designates a diagonal matrix with
entries of the vector a)

U𝑖+1/2 = diag(Ub
𝑖+1/2 f) ∈ R𝑛×𝑛, ∀ 𝑖 = 0, . . . , 𝑁 − 1. (2.1)

The actual parameter of optimisation will be g := ln(f) due to two reasons:
(1) The transformation results in the same partial costs for flux factors g
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and 1/g. (2) Since f > 0 it can be described by a log-normal distribution,
resulting in a Gaussian probability density function for g. Fletcher and
Zupanski [2006] and Fletcher [2010] describe 4D-Var systems with hybrid
Gaussian and log-normal distribution in general.
An important step is to use increments of x and g [Courtier et al., 1994] as
they enable an efficient discretisation (see Section 2.2.2):

𝛿x0 := x0 − xb
0, 𝛿g := g − gb. (2.2)

The function ℋ𝑖 allows to compare observations y𝑖 with the model equival-
ent ℋ𝑖(x

b
𝑖 ,g

b). Therefore the innovation vector is defined

d𝑖 := y𝑖 −ℋ𝑖(x
b
𝑖 ,g

b) = y𝑖 −ℋ𝑖ℳ0,𝑖(x
b
0,g

b). (2.3)

2.1.2 Assumptions

True values and perfect model

We assume the existence of probabilistic “true” vectors xt
𝑖 ∈ R𝑛,gt ∈ R𝑛

and yt
𝑖 ∈ R𝑝𝑖 for 𝑖 = 1, . . . , 𝑁 . Our knowledge is represented by determ-

inistic background and observation vectors, which deviate from the true
values by random error vectors for the model state 𝜖iv, the flux factors 𝜖ff,
and the observations 𝜖o𝑖 respectively:

𝜖iv := xb
0 − xt

0, 𝜖ff := gb − gt, 𝜖o𝑖 := ℋ𝑖(x
t
𝑖,g

t)− y𝑖. (2.4)

Further, the perfect model assumption will be used

xt
𝑖 = ℳ𝑖−1,𝑖(x

t
𝑖−1,g

t). (2.5)

It follows directly that the determination of xt
𝑖 reduces to the determination

of xt
0 and gt. To emphasise this fact the notation 𝒢 := ℋ ∘ℳ is used:

𝒢𝑖(x
t
0,g

t) := ℋ𝑖ℳ𝑖−1,𝑖 · · ·ℳ0,1(x
t
0,g

t) = ℋ𝑖(x
t
𝑖,g

t) ∀𝑖 = 1, . . . 𝑁 .

Gaussian distribution and linearity

The random error vectors are assumed unbiased and determine the covari-
ance matrices:

E[𝜖iv] = 0, B :=E
[︀
𝜖iv(𝜖iv)T

]︀
, (2.6)

E[𝜖ff] = 0, K :=E
[︀
𝜖ff(𝜖ff)T

]︀
, (2.7)

E[𝜖o𝑖 ] = 0, R𝑖 :=E
[︀
𝜖o𝑖 (𝜖

o
𝑖 )

T
]︀
,∀𝑖, 1, . . . , 𝑁. (2.8)

Further, Gaussian distribution is claimed for the error vectors 𝜖iv, 𝜖ff, 𝜖o.
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Remark 1 The true vectors xt = xb
0 + 𝜖iv, gt = gb + 𝜖ff as they are defined

in this work, have to be understood as random vectors. The interpretation
in this work is, that the exact realisation of these true vectors can never be
known, but their probability distribution. This should not be confused with
the ”true” value of a state variable of the atmosphere, which is a determin-
istic value by definition.

𝒩 (m,A) designates the multivariate normal distribution with mean m and
covariance matrix A:

𝜖iv ∼ 𝒩 (0,B), 𝜖ff ∼ 𝒩 (0,K), 𝜖o𝑖 ∼ 𝒩 (0,R𝑖), (2.9)

𝑝(xt
0) =

1

(2𝜋)𝑛/2|B|1/2
exp

[︂
−1

2
(xt

0 − xb
0)

TB−1(xt
0 − xb

0)

]︂
, (2.10)

𝑝(gt) =
1

(2𝜋)𝑛/2|K|1/2
exp

[︂
−1

2
(gt − gb)TK−1(gt − gb)

]︂
, (2.11)

𝑝(y𝑖 | xt
0,g

t) =
1

(2𝜋)𝑝𝑖/2|R𝑖|1/2
exp

[︂
−1

2

(︀
y𝑖 − 𝒢𝑖(x

t
0,g

t)
)︀T

R−1
𝑖

(︀
y𝑖 − 𝒢𝑖(x

t
0,g

t)
)︀]︂

.

(2.12)

Because of gt := ln(f t), actually f t is assumed to have a multivariate log-
normal distribution f t ∼ LN(fb,K′) [Fletcher, 2010]. It will be crucial for
the incremental formulation of the cost function, that there exist tangent
linear approximations M and H of ℳ and ℋ (and as a consequence G :=
H ∘M of 𝒢 := ℋ ∘ℳ) for small perturbations of x and g respectively:

ℳ𝑖,𝑖+1(x𝑖 + 𝛿x𝑖,g + 𝛿g) ≈ ℳ𝑖,𝑖+1(x𝑖,g) +M𝑖,𝑖+1

(︂
𝛿x0

𝛿g

)︂
,

ℋ𝑖(x𝑖 + 𝛿x𝑖,g + 𝛿g) ≈ ℋ𝑖(x𝑖,g) +H𝑖

(︂
𝛿x0

𝛿g

)︂
,

𝒢𝑖(x0 + 𝛿x0,g + 𝛿g) ≈ 𝒢𝑖(x0,g) +G𝑖

(︂
𝛿x0

𝛿g

)︂
(2.13)

This assumption must be well verified [Vukicevic, 1991; Courtier et al.,
1994; Bouttier and Courtier, 2002] and will be used for our purposes in
combination with Eqs. (2.2) & (2.3):

y𝑖 − 𝒢𝑖(x0,g) ≈ d𝑖 −G𝑖

(︂
𝛿x0

𝛿g

)︂
. (2.14)

Non-correlation
All random error vectors are assumed to be mutually uncorrelated, for all
𝑖, 𝑗 = 0, . . . , 𝑁, 𝑖 ̸= 𝑗 holds:

E[𝜖iv(𝜖ff)T] = 0, E[𝜖iv(𝜖o𝑖 )T] = 0, E[𝜖ff(𝜖o𝑖 )T] = 0, E[𝜖o𝑗(𝜖o𝑖 )T] = 0. (2.15)
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Uncorrelated random variables which are Gaussian distributed are even in-
dependent.

2.1.3 Bayesian formulation and the cost function

Given the a priori distributions for xt
0 and gt (Eqs. (2.10) & (2.11)) and

the conditional probability of y given xt
0 and gt (Eq. (2.12)), the quantity

of interest can be derived now, the a posteriori distribution. Applying the
Bayesian rule (BR) and the independence (ind.) one gets

𝑝(xt
0,g

t | y1, . . . ,y𝑁) (2.16)

(BR)
=

𝑝(y1, . . . ,y𝑁 | xt
0,g

t) · 𝑝(xt
0,g

t)

𝑝(y1, . . . ,y𝑁)
(2.17)

(ind.)
=

∏︀𝑁
𝑖=1 𝑝(y𝑖 | xt

0,g
t) · 𝑝(xt

0) 𝑝(g
t)

𝑝(y1, . . . ,y𝑁)
(2.18)

∝ exp
[︁
− 1

2

(︁
(xt

0 − xb
0)

TB−1(xt
0 − xb

0) + (gt − gb)TK−1(gt − gb) (2.19)

+
𝑁∑︁
𝑖=1

(︀
y𝑖 − 𝒢𝑖(x

t
0,g

t)
)︀T

R−1
𝑖

(︀
y𝑖 − 𝒢𝑖(x

t
0,g

t)
)︀ )︁]︁

(2.14)
≈ exp

[︁
− 1

2
𝛿xT

0B
−1𝛿x0 −

1

2
𝛿gTK−1𝛿g (2.20)

− 1

2

𝑁∑︁
𝑖=1

[︂
d𝑖 −G𝑖

(︂
𝛿x0

𝛿g

)︂]︂T
R−1

𝑖

[︂
d𝑖 −G𝑖

(︂
𝛿x0

𝛿g

)︂]︂ ]︁
∝ 𝑝(𝛿x0, 𝛿g | d1, . . . ,d𝑁)), (2.21)

which is again a Gaussian distribution. The cost function is now defined as
the negative logarithm of the a posteriori distribution.

𝒥 (𝛿x0, 𝛿g) := − log(𝑝(𝛿x0, 𝛿g | d1, . . . ,d𝑁))

=
1

2
𝛿xT

0B
−1𝛿x0 +

1

2
𝛿gTK−1𝛿g+

1

2

𝑁∑︁
𝑖=0

[︂
d𝑖 −G𝑖

(︂
𝛿x0

𝛿g

)︂]︂T
R−1

𝑖

[︂
d𝑖 −G𝑖

(︂
𝛿x0

𝛿g

)︂]︂
. (2.22)

The aim is to find xa
0 and ga, which maximise the a posteriori distribution

(xa
0,g

a) := argmax
x0,g

(︀
𝑝(x0,g | y1, . . . ,y𝑁)

)︀
, (2.23)
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or equivalently minimise 𝒥 . Thus xa
0 and ga can be calculated by setting

the gradient of 𝒥 to 0

∇𝒥 (𝛿x0, 𝛿g) =

(︂
B−1𝛿x0

K−1𝛿g

)︂
−

𝑁∑︁
𝑖=0

GT
𝑖 R

−1
𝑖

[︂
d𝑖 −G𝑖

(︂
𝛿x0

𝛿g

)︂]︂
, (2.24)

where GT
𝑖 = (M0,𝑖)

THT
𝑖 is the adjoint operator, with (M0,𝑖)

T modelling
backwards in time from 𝑡𝑖 to 𝑡0. Since the construction of the adjoint model
uses the derivative with respect to the optimisation parameter, we have
to distinguish between the adjoint model related to initial values x0 and
flux factors g. See Appendix A.1 for a detailed derivation of (M0,𝑖)

T with
respect to the initial values and flux factors.
Calculating xa

0 and ga explicitly gives(︂
xa
0

ga

)︂
=

(︂
xb
0

gb

)︂
+ ̃︀Kd̂, d̂ := (d𝑇

0 , . . . ,d
𝑇
𝑁)

𝑇 , (2.25)

with ̃︀K being the gain (sometimes also Kalman gain) matrix

̃︀K =

(︂(︂
B−1 0
0 K−1

)︂
+ Ĝ

𝑇
R̂

−1
Ĝ

)︂−1

Ĝ
𝑇
R̂

−1
(2.26)

(*)
=

(︂
B 0
0 K

)︂
Ĝ

𝑇
(︂
Ĝ

(︂
B 0
0 K

)︂
Ĝ

𝑇
+ R̂

)︂−1

, (2.27)

Ĝ : =

⎛⎜⎜⎜⎝
H0

H1M0,1
...

H𝑁M0,𝑁

⎞⎟⎟⎟⎠ , R̂ :=

⎛⎜⎜⎜⎝
R0 0 · · · 0

0 R1
. . .

...
...

. . . . . . 0
0 · · · 0 R𝑁

⎞⎟⎟⎟⎠ , (2.28)

here (*) uses the “Sherman-Morrison-Woodbury formula” to calculate the
inverse matrix. The analysis values xa and ga are called ”Best Linear
Unbiased Estimator” (BLUE). It is called the “best” estimate, because it
minimises the variance. The linearity is clear from Eq. (2.25) and unbiased
is a consequence of the assumption that the random error vectors 𝜖 are
unbiased.

2.2 Overview of CO2 DA concepts

A short overview of the variety of methods to solve the BLUE, the unbiased
linear combination of a priori knowledge and observations with minimal
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variance, is given. As already mentioned in Section 1.2.3 one widely used
simple method is the so- called batch inversion, which solves Eq. (2.25)
in one step. If the observation error matrix R̂ can be inverted with low
numerical costs (e.g. R̂ is diagonal) and the optimisation state space is

small, the gain matrix ̃︀K can be calculated with Eq. (2.26). Contrarily,
if the observation space is quite small compared to the model space, it is
preferential to use Eq. (2.27) to calculate ̃︀K. However, for large model
state and observation dimensions, the inversion of the matrices becomes
infeasible and the cost function has to be minimised by the use of more
efficient minimisation methods.

Two basic approaches exist for DA: sequential methods, using observations
made in the past of the analysis and variational assimilation, taking also ob-
servations from the future into account. Another classification distinguishes
between the processing of observations: intermittent analysis, processing at
each time point, or continuous analysis, processing the observations for
longer periods [Bouttier and Courtier, 2002]. Figure 2.2 used from Bouttier
and Courtier [2002] visualises the principal differences.

Figure 2.2: Classification of DA methods from Bouttier and Courtier [2002].
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2.2.1 Sequential DA

TheKalman f ilter (KF) (panel one of Fig. 2.2) [Kalman, 1960] was designed
for linear problems and is an intermittent method, solving a variation of Eq.
(2.25) which uses background error covariance matrices at each time step
(the formulae is written for one optimisation parameter only)

xa
𝑖 = xb

𝑖 +K𝑖 (y𝑖 −ℋ𝑖(x𝑖)) , (2.29)

K𝑖 = B𝑖H
𝑇
𝑖 (H𝑖B𝑖H

𝑇
𝑖 +R𝑘)

−1, xb
𝑖+1 = ℳ𝑖,𝑖+1(x

a
𝑖 ). (2.30)

The extended KF (EKF) [Kalman and Bucy, 1961] allows also nonlinear
operators ℋ and ℳ. KF and EKF give also the analysis error covariance
matrices for each time step but cannot be practically implemented due to
the large dimensions in real applications, which make an inversion of the
error matrices impracticable.
A significant step forward towards computational feasibility for real applic-
ations was the development of the ensemble KF (EnKF) by Evensen [1994].
It provides an approximation method for the error covariance estimation,
based on Monte Carlo methods. Instead of using background error covari-
ance matrices with the size of the model space (B ∈ R𝑛×𝑛), a rank reduction
to the size of an ensemble of differing model runs is performed, which can
be chosen much smaller than 𝑛 for atmospheric applications. This method
is applicable to non-linear optimisation and several variations of this tech-
nique exist, using deterministic or stochastic filters, see Evensen [2009] for
a detailed review of methods. As the EnKF is easy to implement and is
applicable to a wide range of problems, it is used in nearly all fields of earth
science. The first usage of EnKF methods for CO2 flux inversion was as
recently as 2005 [Peters et al., 2005].
The Kalman Smoother (KS), (panel two of Fig. 2.2) is described in es-
timation theory books, e.g. Gelb [1974] and is a generalisation of the KF
which assimilates also future observations. It is a classic result that the KS
is equivalent to the weak constraint four-dimensional variational method if
the same information statistics are used [Ménard and Daley, 1996].

2.2.2 Variational methods

Variational DA [Sasaki, 1970a;b; Lorenc, 1986; Talagrand and Courtier,
1987] comprises a class of methods which uses optimisation parameters
explicitly as minimiser for the cost function Eq. (2.22). The calculation of

the gain matrix ̃︀K is avoided, instead the minimum of the cost function 𝒥
(Eq. (2.22)) is sought iteratively with the gradient of 𝒥 (Eq. (2.24)).
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The minimisation is done efficiently with the help of the adjoint
approach [Errico, 1997] using M𝑇 and H𝑇 : Talagrand [2010] points out
that the determination of ∇𝒥 requires one forward run of the model
(x𝑁 = ℳ0,𝑁(x0)) and one backwards run of the adjoint model M𝑇 . It
does take at most four times more arithmetic operations for the calculation
of ∇𝒥 , than the calculation of 𝒥 . “It is this fact” [the efficient calculation
of ∇𝒥 with the adjoint method] “that made variational assimilation
possible at all in the first place” [Talagrand, 2010]. Quasi-Newton methods
approximate the inverse Hessian of 𝒥 with a sequence of its gradient
and minimise poorly conditioned problems much faster than methods of
steepest descent.
Three-dimensional variational assimilation (3D-Var) (panel three of Fig.
2.2) comprises the observations of a certain time interval at one time
point, which is a reasonable assumption if the interval is short enough or
the driving processes are almost stationary [Daley and Barker, 2001]. The
time dependency for the cost function (Eq. (2.22)) is eliminated and the
development of an adjoint model is not necessary.
The 4D-Var method (panel four of Fig. 2.2) minimises the misfit between
a sequence of model states and observations for a certain assimilation
window. “As such, and contrary [. . .] to sequential algorithms for
assimilation, it propagates the information contained in the data both
forward and backwards in time” [Talagrand, 2010]. Thus the usage of the
adjoint model allows an estimation of the influence of observations on
the analysis [Cardinali et al., 2004], as well as on the forecast [Langland
and Baker, 2004]. The development of the incremental approach (Eq.
(2.2)) by Courtier et al. [1994] is of great importance for the practical
implementation of 4D-Var. The idea is to simplify the dynamical model
ℳ not directly, but its tangent linear version (Eq. (2.13)) to facilitate
the calculation of the adjoint model. “It is the incremental method
which, after the adjoint method, makes variational assimilation feasible”
[Talagrand, 2010].
Variational assimilation was first used for operational forecasts at the
European Centre for Medium-Range Weather Forecasts (ECMWF)
[Klinker et al., 2000] and improved predictions remarkably. Meteorological
services of France, Japan, United Kingdom, Canada, and China followed.
Variational assimilation is applied in oceanography [Thacker and Long,
1988; Bennett, 1992], surface hydrology [Calvet et al., 1998], seismology
[Tromp et al., 2005], atmospheric chemistry [Fisher and Lary, 1995; Elbern
et al., 1997], and CO2 flux inversion [Chevallier et al., 2005; Engelen and
McNally, 2005].
Several properties make the 4D-Var method attractive for such a wide field
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of applications. 4D-Var acts as smoother during the assimilation window
[Thepaut and Courtier, 1991]. Abandoning the perfect model assumption
allows to account for model errors, which is denoted as weak constraint
4D-Var [Trémolet, 2007] and allows the use of longer assimilation windows.
An extension to non-Gaussian distributions [Fletcher, 2010] allows the
handling of a larger class of problems. Elbern et al. [2007] developed
the combined estimation of initial values and flux factors. The principal
benefit of this method is shown in Fig. 2.3. The main drawback of the

Figure 2.3: Given the background run (dashed line without markers) and the
observations (crosses) three analysis runs are compared with respect to the optimal
state (solid line). Optimising only initial values (dashed line with circles) leads
to strong forcing at the start of the assimilation window. Optimising only flux
rates (dashed line with triangles) can not change the initial values and may force
the analysis to give more weight at the starting time than desirable. The joint
optimisation (dashed line with quadrats) combines the benefits of both approaches,
leading to a smoother analysis.

4D-Var method is the large effort for development and testing of the
adjoint model [Talagrand, 2010], which leaves only a few groups using
4D-Var compared to EnKF. The reward of this effort is a consistent
analysis of the CO2 dispersion, by quantifying the amount of CO2 sinks
and sources backwards in time. This cannot be achieved by KF methods,
only the KS is theoretical equivalent to weak constraint 4D-Var.





Chapter 3

Model description

This chapter gives an overview of the used models in this work, illustrated
in Fig. 3.1. The main model is the 4D-Var system EURAD-IM (Sect. 3.4),
optimising CO2 fluxes and concentration values. It requires meteorological
input from WRF (Sect. 3.1) to simulate the atmospheric transport. Bio-
genic fluxes are provided by the land surface model CLM (Sect. 3.2) and
anthropogenic emissions by a database of TNO (Sect. 3.3). The simula-
tions are compared with observations to derive optimised fluxes and initial
concentration values.

3.1 Meteorological model WRF

The Weather Research and Forecasting (WRF) model version 3.6.1
[Skamarock et al., 2008] is used as the meteorological driver for the
EURAD-IM in this work. WRF is a mesoscale NWP system which
uses fully compressible non-hydrostatic Euler equations in flux-form.
In this study WRF processes six-hourly ECMWF reanalysis data [Dee
et al., 2011], interpolated to 0.225∘ × 0.225∘ grid resolution. The
terrain-following vertical 𝜎-coordinates [Laprise, 1992] are used up to a
height of 100 ℎ𝑃𝑎 in 23 layers. Several preprocessing systems are included
in WRF, which prepare external data and the ECMWF reanalysis for the
numerical processing. To process MODIS Leaf Area Index (LAI) and
land use categories with the land surface model CLM (see next Section),
minor changes in five subroutines were necessary. The most important
prognostic variables for this work are hourly horizontal and vertical
wind components, moisture, perturbation potential temperature, and
perturbation geopotential.
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Figure 3.1: Overview of the used models and data in this work. Models are
presented as rectangles, data as ellipsoids.

3.2 Land surface model CLM

The Community Land Model (CLM) 4.0 [Oleson et al., 2010] is the land
surface model of the Community Climate System Model (CCSM), which
combines models for the atmosphere, land surface, oceans, and glaciers to
simulate the earth’s climate. The CLM is a combination of three land mod-
els simulating the biophysical processes for soil-snow-vegetation columns. In
addition to climate simulations, it is also suitable for regional applications
with high temporal resolution. The version CLM 4.0 is available as land sur-
face scheme in WRF, but the modules Dynamic Global Vegetation Model
(DGVM) and Carbon-Nitrogen (CN) module cannot be applied directly.
These two modules allow for the enhanced modelling of carbon processes in
soil and biosphere, focusing on long time periods (months to decades).
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In this work several changes in the source code are implemented to allow the
usage of MODIS LAI and land use categories as the standard-version uses
simplified table values. Leaf respiration and soil respiration are additionally
implemented in this work according to Collatz et al. [1991] (implementa-
tion taken from Markus Übel) and to Lloyd and Taylor [1994] respectively.
The main concept of CLM is the calculation of the corresponding biological,
chemical, and physical processes at different hierarchical levels, which define
soil properties and plant physiology up to the stomatal structure of single
leaves.

3.2.1 Modelling of photosynthesis and leaf respiration

Photosynthesis is a biochemical process which converts low energy
molecules in combination with sunlight into high energy biomolecules. It
is performed by plants, most algae, and cyanobacteria and is globally the
largest flux of CO2 from the atmosphere into ecosystems. In the first
step photosynthesis consists of the transformation of light energy with
chlorophyll into chemical energy. In the second step a light-independent
reaction (Calvin Cycle) converts CO2 and H2O into carbohydrates and
oxygen. The net carbon dioxide assimilation at leaf-level is determined
by photosynthesis (CO2 flux into the leaf), photorespiration, and
mitochondrial respiration (CO2 flux out of the leaf) [Bernacchi et al.,
2013].
Farquhar et al. [1980] described a mechanical leaf model, which played a
fundamental role (more than 5000 citations up to now) in understanding
and quantifying photosynthesis of C3 plants (about 95 % of all land
plants). This model is used in CLM to calculate photosynthesis. The
classification of plants into C3 and C4 (e.g. sugarcane, maize) species
distinguishes the stomata behaviour for different climatological situations.
In this work only C3 plants are regarded. These are predominant in
temperate zones and perform less photosynthesis than C4 plants under
warm and dry conditions to avoid drying out.
The model of Farquhar et al. [1980] limits the assimilation of CO2 by leaves
either through the (i) available amount of radiation 𝑤𝑗 or the (ii) enzyme
RibUlose-1,5-BIphoSphate-/Carboxylase/-Oxygenase (RUBISCO) 𝑤𝑐.
(iii) Sharkey [1985] and Collatz et al. [1991] determined another limit 𝑤𝑒,
the rate at which inorganic phosphate is utilised. The photosynthesis is
the minimum of these three quantities

𝐴 = min(𝑤𝑗, 𝑤𝑐, 𝑤𝑒). (3.1)
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The light limited rate 𝑤𝑗 (i) depends on the CO2 concentration inside
the leaf 𝐶𝑖, the compensation point Γ* (the concentration at which pho-
tosynthetic carbon uptake is equal to photorespiratory CO2 release), the
PhotosyntheticActiveRadiation 𝐼𝑃𝐴𝑅 [Wm−2], and the quantum efficiency

𝛼
[︁

mol(CO2)

mol(photons)

]︁
𝑤𝑗 =

4.6 (𝐶𝑖 − Γ*) 𝐼𝑃𝐴𝑅 𝛼

𝐶𝑖 + 2Γ* . (3.2)

The RUBISCO limited photosynthesis 𝑤𝑐 (ii) depends also on the internal
O2 concentration 𝑂𝑖, the Michaelis-Menten constants [Dowd and Riggs,
1965] for CO2 and O2 𝐾𝑐, and 𝐾𝑜, and on the maximum rate of carboxyla-
tion 𝑉𝑐,𝑚𝑎𝑥

𝑤𝑐 =
𝑉𝑐,𝑚𝑎𝑥 (𝐶𝑖 − Γ*)

𝐶𝑖 +𝐾𝑐(1 +𝑂𝑖/𝐾𝑜)
. (3.3)

𝑤𝑒 (iii) is simply estimated to be

𝑤𝑒 = 0.5𝑉𝑐,𝑚𝑎𝑥. (3.4)

The proper estimation of the parameters used in Eqs (3.2)-(3.4), which
are highly dependent on temperature, is decisive for the mechanistic leaf
model. See Bernacchi et al. [2013] for an overview of the different estim-
ation approaches. Finally, the net CO2 leaf assimilation 𝐴𝑛 subtracts the
mitochondrial leaf respiration 𝑅𝑑 = 0.015𝑉𝑐,𝑚𝑎𝑥 from the photosynthesis

𝐴𝑛 = 𝐴−𝑅𝑑 = min(𝑤𝑗, 𝑤𝑐, 𝑤𝑒)− 0.015𝑉𝑐,𝑚𝑎𝑥. (3.5)

The upscaling of CLM from leaf-level to larger areas uses the LAI and distin-
guishes between sunlit and shaded leaves in the processing. The simulated
photosynthesis and leaf respiration rates show thus similar pattern like the
MODIS LAI, see Figure 3.2.

3.2.2 Modelling of soil respiration

This work parameterises the heterotrophic soil respiration with a simple
temperature function introduced by Lloyd and Taylor [1994] which is equal
for all soil types. The cited work showed that the best unbiased fit to 15
different data sets was obtained with an Arrhenius type equation, which
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includes temperature dependence of the activation energy (𝐸0). The respir-
ation is obtained by

𝑅 = 𝑅10 exp

{︂
𝐸0

ℛ

(︂
1

56.15
− 1

𝑇 − 𝑇0

)︂}︂
, (3.6)

with 𝑅10 being the respiration rate at reference temperature 10∘C, ℛ the
universal gas constant, 𝑇0 equals 227∘K and 𝑇 the soil temperature. The
temperature of soil layer four is used in the CLM model (15 layers in total),
which lies approximately in 12 cm depth and has a thickness of 7.5 cm. The
parameter 𝑅10 is one optimisation parameter of the 4D-Var analysis, since
the flux factor scales the respiration linearly.

Figure 3.2 shows the three simulated biogenic fluxes and the net ecosystem
exchange (NEE), as the sum of soil and leaf respiration minus photosyn-
thesis.

3.3 Anthropogenic CO2 emission inventory

Anthropogenic emissions, introduced as a first guess for inversion, are taken
from Toegepast Natuurwetenschappelijk Onderzoek (TNO) inventory (H.
Denier van der Gon, personal communication, May 2013), following the
methodology outlined in Kuenen et al. [2014] and Pouliot et al. [2012] for
air pollutants. European national reports per source sector are evaluated,
afterwards a gap filling and an error correction are executed. TNO provides
point and area (1/8∘ × 1/16∘ lon-lat horizontal resolution) sources of CO2

split into ten source categories over Europe for the years 2000-2011. A
correction factor from 2011 to 2012 (the modelled time period of this work
is June 2012) is applied. Annual values are disaggregated for each source
category in dependence of month, day and hour (see also Memmesheimer
et al. [1995] for details). Hourly values are interpolated to model time step
which is 300 s, 120 s and 60 s in dependence of the model resolution (15,
5, and 1 km horizontal resolution). Besides time-profiles, emissions are
also splitted vertically, in accordance to plume-rise estimations for different
source categories [EMEP, 2013]. Area sources are scaled down horizontally
to 5 km and 1 km resolution, using land cover and infrastructure information
with the Geographic Information System (GIS), shown in Figure 3.3 for the
CO2 emissions from road traffic.
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(a) photosynthesis (b) leaf respiration

(c) soil respiration (d) NEE

Figure 3.2: Biogenic fluxes modelled with CLM 4.0. Fluxes are temporal mean
values of June 2012 at 12 UTC. The horizontal resolution is 5 km. Photosyn-
thesis and leaf respiration reflect the spatial structure of the LAI, while the soil
respiration is in dependence of the shallow soil temperature. Photosynthesis is
opposed to the other fluxes.

3.4 4D-Var system EURAD-IM

The EURopeanAir pollutionDispersion-InverseModel (EURAD-IM) [El-
bern et al., 2007; Goris and Elbern, 2015], is an Eulerian mesoscale non-
hydrostatic chemistry transport model, for the simulation of gas phase,
aerosols and pollen. It is used for operational analyses in 3D-Var mode and
for campaign analyses in 4D-Var mode. A nesting configuration with 15 , 5,
and 1 km horizontal resolution is used in order to derive enhanced bound-
ary values. Detailed information about the nested model domains and the
set-up of initial and boundary values can be found in Chapter 4.
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Figure 3.3: Map of CO2 emissions including source category 1 (power gener-
ation, brown dots) and source category 7 (road traffic, green to red area plots).
The emissions from road traffic are scaled down to 1 km horizontal resolution.
The emissions from power generation are given as point sources. The largest
power plants depicted are Weisweiler, Niederaußem, Frimmersdorf, and Neurath
(all brown coal) located within the Aachen, Köln, Düsseldorf triangle. Figure
courtesy of Erna Bem.

3.4.1 Forward model of EURAD-IM for CO2

The transport-diffusion equation describes the dispersion of the mixing ratio
of CO2 as a passive tracer 𝐶(r, 𝑡) in dependence of spatial location r ∈ R3

and time 𝑡 ∈ [𝑡0, 𝑡𝑁 ]. It can be written as [Elbern and Schmidt, 2001]

𝜕𝐶

𝜕𝑡
+ (u · ∇)𝐶⏟  ⏞  

advection

− 1

𝜚
∇ (𝜚Ke∇𝐶)⏟  ⏞  

turbulent diffusion

= 𝑒⏟ ⏞ 
flux

. (3.7)

The equation includes terms for advection, turbulent diffusion, and addi-
tional fluxes. Here u designates the wind field, 𝜚 the air density and Ke is
the eddy diffusion tensor. Sinks and sources to the atmosphere, consisting
of anthropogenic emissions, biogenic respiration, and photosynthesis, are
aggregated to the flux 𝑒.
Physical and chemical processes in EURAD-IM are implemented by an op-
erator split method, due to different numerical characteristics of the major
transport processes advection (hyperbolic) and turbulent diffusion (para-
bolic) [Yanenko, 1971]. The operators for advection and diffusion are pro-
cessed for time periods 𝑡𝑖 to 𝑡𝑖+1/2 and 𝑡𝑖+1/2 to 𝑡𝑖+1 while fluxes are inserted
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instantaneously at time points 𝑡𝑖+1/2. A symmetric order of the operators
A1

𝑖,𝑖+1/2 ∈ R𝑛×𝑛 (advection in sequence x-y-z), A2
𝑖+1/2,𝑖+1 ∈ R𝑛×𝑛 (advec-

tion in sequence z-y-x), D𝑖,𝑖+1/2,D𝑖+1/2,𝑖+1 ∈ R𝑛×𝑛 (turbulent diffusion),
and Ff

𝑖+1/2 ∈ R𝑛×𝑛 (fluxes) is chosen to suppress numerical approximation
errors:

x𝑖+1 = A2
𝑖+1/2,𝑖+1D𝑖+1/2,𝑖+1F

f
𝑖+1/2D𝑖,𝑖+1/2A

1
𝑖,𝑖+1/2x𝑖. (3.8)

The flux operator Ff is defined by the background flux Ub times the flux
factor f (△𝑡 := 𝑡𝑖+1 − 𝑡𝑖)

Ff
𝑖+1/2(D𝑖,𝑖+1/2A

1
𝑖,𝑖+1/2x𝑖) := (D𝑖,𝑖+1/2A

1
𝑖,𝑖+1/2x𝑖) +△𝑡Ub

𝑖+1/2 f . (3.9)

It may again be noted, that Ub
𝑖+1/2 f represents three fluxes, each with an

independent flux factor for anthropogenic emissions, photosynthesis, and
respiration respectively.

Remark 2 The correct writing for the flux operator and Eq. (3.9) is (F f

is not a linear operator in Eq. (3.8) and (3.9))

̃︀F𝑖+1/2 : =

(︂
I △𝑡Ub

𝑖+1/2

0 I

)︂
∈ R2𝑛×2𝑛 (3.10)

̃︀F𝑖+1/2

(︂
D𝑖,𝑖+1/2A

1
𝑖,𝑖+1/2x𝑖

f

)︂
=

(︂
D𝑖,𝑖+1/2A

1
𝑖,𝑖+1/2x𝑖 +△𝑡Ub

𝑖+1/2 f

f

)︂
. (3.11)

An extension to three fluxes is straightforward with this notation, compare
also with Eq. (A.3) in Appendix A.1.

In the case of strong spatial gradients of the wind speed, numerical ex-
periments performed in this work with a non-monotone advection scheme,
display strong deterioration of CO2 mixing ratio, see Fig. 3.4. To ac-
count for this problem, the Walcek scheme [Walcek, 2000] is implemented
in this work to solve the advection process. This scheme specifies dimen-
sional dependent densities, which allows splitting of the forward equation
into one-dimensional realisations. The Walcek scheme solves the transport
equation for one dimension

𝜕𝐶

𝜕𝑡
= −𝜕 (𝑢 · 𝐶)

𝜕𝑥
(3.12)

based on the van Leer algorithm [Van Leer, 1977] with monotonic con-
straints and a flux adjustment around local mixing ratio extrema. Therefore
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(a) non monotone advection scheme (b) Walcek advection scheme

Figure 3.4: Zoom of the 5 km horizontal resolution grid, started with constant
mixing ratio after four hour run-time at vertical layer 19 (∼ 4775 − 6100 m)
barely influenced from surface fluxes. The wind field is normalised to 30 m/s.

mass is aggregated numerically around the extrema and numerical diffusion
is reduced. The Walcek scheme is absolute monotone, positive definite, of
order two, produces only low numeric diffusion, and is numerical efficient.
Although an exact parallelisation of the Walcek scheme is numerically not
efficient, a good approximation with a small overlap of two grid cells is
implemented in this work, which preserves the numerical efficiency.

3.4.2 Adjoint EURAD-IM model

The adjoint modelMT discretises the adjoint of the forward PDE, Eq. (3.7).
Let 𝐶* designate the adjoint variable, then the adjoint PDE has the form

−𝜕𝐶*

𝜕𝑡
−∇(u𝐶*)−∇

(︂
𝜚Ke∇𝐶*

𝜚

)︂
= 0. (3.13)

The flux factor f = eg remains constant during the application of the for-
ward model. The adjoint model (M)T instead, changes the adjoint flux
factor f* during the background run. In contrast to Eq. (3.8), x*

𝑖 and
f*𝑖 change with the innovation forcing. The EURAD-IM backward model
applies again an operator splitting to solve Eq. (3.13):

(M𝑖,𝑖+1)
T

(︂
x*
𝑖+1

f*𝑖+1

)︂
=

(︂
(T𝑖,𝑖+1)

Tx*
𝑖+1

△𝑡Ub
𝑖+1/2 (T𝑖+1/2,𝑖+1)

Tx*
𝑖+1 + f*𝑖+1

)︂
, (3.14)
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with T𝑖,𝑖+1 merging the transport operators from time 𝑡𝑖 to 𝑡𝑖+1

T𝑖,𝑖+1 := A2
𝑖+1/2,𝑖+1D𝑖+1/2,𝑖+1D𝑖,𝑖+1/2A

1
𝑖,𝑖+1/2,

T𝑖+1/2,𝑖+1 := A2
𝑖+1/2,𝑖+1D𝑖+1/2,𝑖+1.

(3.15)

See Appendix A.1 for a detailed derivation of Eq. (3.14).
The adjoint diffusion operator DT and adjoint flux operator (Ff )T are con-
structed with the automatic differentiation tool Tapenade [Hascoet and Pas-
cual, 2013] from the discretisation of the forward PDE Eq. (3.7): The de-
rivatives of the functions specified by D and Ff are calculated applying the
chain rule to achieve the tangent linear of the forward operators. After-
wards, the linearised code is transposed resulting in DT and (Ff )T.
To construct the adjoint of the advection operators (A1)T and (A2)T a dif-
ferent approach has been chosen. The Walcek scheme is not differentiable
due to the monotonicity and automatic differentiation is not directly applic-
able to obtain the adjoint code. Following the suggestion of Gou and Sandu
[2011], the continuous adjoint for advection has been used. The adjoint
PDE of Eq. (3.12)

−𝜕𝐶*

𝜕𝑡
=

𝜕 (𝑢 · 𝐶*)

𝜕𝑥
(3.16)

can also be approximated by the forwardWalcek scheme, if the reverse winds
and a rescaling for 𝐶* is used. For 4D-Var optimisation problems Gou and
Sandu [2011] also suggest to construct adjoint routines for diffusion and
advection as it is done here: automatic differentiation for diffusion and the
continuous adjoint for advection.

3.4.3 Preconditioning of the cost function and min-
imisation

The background error covariance matrices (BECM) B and K are designed
to capture the spatial correlation between initial values and surface fluxes
respectively. Increasing radii of influence leads to larger condition numbers
of B, which make efficient minimisation more difficult. Using the incre-
ments 𝛿x0 and 𝛿g multiplied with the inverse square roots of B and K, a
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formulation of 𝒥 equivalent to Eq. (2.22) is possible:

v :=B−1/2𝛿x0 = B−1/2(x0 − xb
0) and w := K−1/2𝛿g = K−1/2(g − gb),

𝒥 (v,w) =
1

2
vTv +

1

2
wTw+ (3.17)

1

2

𝑁∑︁
𝑖=0

[︂
d𝑖 −H𝑖M0,𝑖

(︂
v
w

)︂]︂T
R−1

𝑖

[︂
d𝑖 −H𝑖M0,𝑖

(︂
v
w

)︂]︂
.

The gradient of 𝒥 with respect to v and w reads then

∇𝒥 (v,w) =

(︂
v
w

)︂
−
(︂
BT/2 0
0 KT/2

)︂ 𝑁∑︁
𝑖=0

(M0,𝑖)
THT

𝑖 R
−1
𝑖

[︂
d𝑖 −H𝑖M0,𝑖

(︂
v
w

)︂]︂
.

(3.18)

One iteration cycle of the 4D-Var system EURAD-IM to jointly analyse
initial values and flux factors consists of:

1. The forward run, solving Eq. (3.7). Our a priori knowledge xb
0, g

b is
used as first guess, allowing to apply only B1/2, K1/2 and BT/2, KT/2.

2. The calculation of the gradient of 𝒥 during the backward time loop
and its preconditioning, resulting in:(︂
BT/2 0
0 KT/2

)︂ ∑︀𝑁
𝑖=0(M0,𝑖)

THT
𝑖 R

−1
𝑖

[︂
d𝑖 −H𝑖M0,𝑖

(︂
v
w

)︂]︂
.

3. The application of limited memory quasi-Newton minimiser L-BFGS
[Liu and Nocedal, 1989; Nocedal, 1980], modified for parallel usage,
which calculates a new vector (vT,wT)T and saves it for the next
iteration.

4. The determination of improved initial states x0 = B1/2v−xb
0 and flux

factors g = K1/2w − gb that can now be used for step 1.

Steps 1 to 4 are repeated until the convergence criterion is fulfilled. As stop
criterion, the two most recent evaluations of the cost function must differ
by less than 1.0E−6 for all model domains.

3.4.4 Modelling of background error covariance
matrices

Both BECM’s B and K are modelled using the diffusion approach. Follow-
ing Weaver and Courtier [2001] a generalised diffusion equation (GDE) is
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formulated with a polynomial in the Laplacian, which is self-adjoint. This
allows a factorisation of B into B1/2BT/2 and analogue for K. Anisotropic
and inhomogeneous spatial radii of influence can be modelled in this manner
as well.

3.4.4.1 Initial value background error covariance matrix

Modelling of B follows the method in Elbern et al. [2007] and is given in
short form here for convenience. The background error standard deviation
depends on a constant 𝑐iv and the initial concentration (𝑟 specifies the loc-
ation): √︁

(B𝑟,𝑟) = xb
0(𝑟) · 𝑐iv. (3.19)

Elbern et al. [2007] use an additional height dependent factor which increases
the error exponentially with model height. This factor is not applicable
for CO2, as the lower layers, influenced by surface fluxes, are much more
heterogeneous than better mixed high model layers.
The decomposition of B (and analogue for K) is given by

B = ΣCΣ (3.20)

(@)
= ΣC1/2CT/2Σ (3.21)

= (ΣΛL1/2
𝑣 L

1/2
ℎ W−1/2)(W−1/2L

T/2
ℎ LT/2

𝑣 ΛΣ) (3.22)

= B1/2BT/2, (3.23)

where Σ is the diagonal matrix of standard deviations, C is the correlation
matrix with Λ a diagonal normalisation matrix and L𝑣,ℎ the vertical and
horizontal diffusion operator. W is a diagonal matrix accounting for the
variable extension of each vertical layer 𝑘 = 1, . . . , 𝑘max = 23. To accom-
plish the factorisation of the correlation matrix (@), it is crucial that the
Laplacian, which describes the diffusion operator, is self-adjoint.
Due to the incremental formulation of the cost function, solely a multi-
plication of B1/2, K1/2 and BT/2, KT/2 is needed. The diffusion approach
provides the background error covariances as operators. One crucial advan-
tage of this approach consists in obtaining the square root and its transposed
of B by adjustment of two defining parameters for the diffusion operator,
the diffusion coefficient 𝜅 and the integration time 𝑇 . Using half of the
integration time yields the square root of B.
The horizontal influence radius 𝐿 is approximated in Weaver and Courtier
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[2001] as

𝐿2 ≈ 2𝜅𝑇, (3.24)

stating for example that two model grid points with distance 𝐿 have a
mutual correlation of exp(−1/2). Various influence radii for initial values,
anthropogenic emissions, and biogenic fluxes have been implemented. The
horizontal influence radii for initial values and emissions increase linearly
with model height with a kink at the PBL [Elbern et al., 2007]. The ver-
tical correlation length is estimated by Eq. (3.24) with the vertical diffusion
coefficient 𝜅𝑣 which is calculated from WRF. This ensures that a well mixed
boundary layer is reflected by the vertical correlation length without addi-
tional computational effort [Elbern et al., 2007].

3.4.4.2 Flux factor background error standard deviation

In the following the variance modelling for the flux factor BECM K, de-
veloped in this work, is presented. Joint optimisation of initial values and
flux factors requires a distinction between the adjoint models with respect to
these two optimisation parameters. Although the flux factor f = exp(g) is
constant during one iteration, the adjoint flux factor f* changes with (M)T

depending on the background flux strength Ub. The influence of Ub on ∇𝒥
is investigated hereinafter. Using Eq. (3.14) iteratively and the transport
operator T (Eq. (3.15)), we derive

(M0,𝑖)
T

(︂
x*
𝑖

0

)︂
=

(︂
(T0,𝑖)

Tx*
𝑖∑︀𝑖

𝑗=1△𝑡Ub
𝑗−1/2 (T𝑗−1/2,𝑖)

Tx*
𝑖

)︂
, (3.25)

with an equidistant time interval [𝑡0, . . . , 𝑡𝑁 ]: △𝑡 := 𝑡𝑖+1 − 𝑡𝑖 for 𝑖 =
0, . . . , 𝑁 − 1. See Appendix A.1 for a detailed derivation. Thus, the adjoint
model with respect to the flux factor is proportional to Ub (T)T.
With regard to Eq. (3.18) the quantity KT/2Ub(T)T is proportional to the
observational part of the gradient of the preconditioned cost function. We
want to construct the diagonal of K such that we achieve the following
properties of the 4D-Var system:

1. Priority of optimisation of fluxes is ordered according to their strength.

2. Satisfactory sensitivity of the optimisation system to fluxes with small
absolute amount.

3. Robustness of the system.
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A compromise between counteracting properties 2 and 3 has to be accom-
plished. Identical twin experiments (see Sect. 5.1.1.1) demonstrate that
with a constant diagonal of K, the 4D-Var system EURAD-IM shows a
tendency to optimise only the largest fluxes, but is too conservative for
smaller fluxes and property 2 is not satisfied. This especially holds true for
anthropogenic emissions, dominated by few very large point sources.
Using a specific construction for the standard deviation of K in dependence

of ̂︁Ub :=
∑︀𝑁

𝑖=1U
b
𝑖−1/2

√︀
K𝑟,𝑟 = c

𝑁

△𝑡

[︁
max

𝑠

̂︂|Ub(𝑠)|
]︁− 1

𝑙
[︁̂︂|Ub(𝑟)|

]︁− 𝑙−1
𝑙
, 𝑙 ≥ 1, (3.26)

enables an approximation of ∇𝒥 which fulfils the three properties above:

∇𝒥 (v,w) ≈
(︂
v
w

)︂
−⎛⎝BT/2 0

0 c
(︁ ̂︁Ub

max|̂︁Ub|

)︁ 1
𝑙

⎞⎠ 𝑁∑︁
𝑖=0

[︂
(T0,𝑖)

T∑︀𝑖
𝑗=1(T𝑗−1/2,𝑖)

T

]︂
HT

𝑖 R
−1
𝑖

[︂
d𝑖 −H𝑖M0,𝑖

(︂
v
w

)︂]︂
,

(3.27)

see Appendix A.2 for a derivation of Eqs. (3.26) and (3.27). Equation (3.26)
is implemented for each of the three fluxes considered, thus the constant c

and max𝑠̂︂|Ub(𝑠)| are with respect to anthropogenic emissions (cant), pho-
tosynthesis (cphot), and respiration (cresp) respectively.
Thus, for 𝑙 = 1 (i.e. the diagonal of K is constant) the right hand side of
Eq. (3.27) depends linearly on Ub. With increasing 𝑙 the sensitivity of the
system to smaller fluxes increases, while the robustness decreases.
After several tests 𝑙 = 4 has been chosen for anthropogenic emissions and
𝑙 = 2 for photosynthesis and respiration, which is caused by different spatial
heterogeneity of the three fluxes. The off-diagonal elements of K are cal-
culated with the diffusion approach analogue to the technique outlined for
matrix B. A correlation of 0.4 between photosynthesis and respiration has
been chosen empirically after several identical twin experiments with the
EURAD-IM (Sect. 5.1). No correlation is assumed between anthropogenic
emissions and the two biogenic fluxes.
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Model set-up and observations

4.1 Model set-up

4.1.1 Model domain and nesting configuration

In this study EURAD-IM and WRF model use a Lambert conformal
projection, where the centre of the coarse domain is located at 51∘ N
latitude, 12.5∘ E longitude. The initial background concentration values of
CO2 for all domains are assumed to be constant 386 ppmV.
Two nesting configurations have been chosen in this study: For real-data
cases a horizontal resolution sequence of 15×15 km2, 5×5 km2 and 1×1
km2 is used. The mother domain (Fig. 4.1(a)) covers almost whole Europe.
The sub-model domains are depicted in Fig. 4.1(c) (5 km) and 4.1(d)
(1 km). For identical twin experiments the same mother domain as for
the real-data case is used and only one sub-domain with 5 km horizontal
resolution (Fig. 4.1(b)).
Boundary values for the mother domain are assumed to be constant for
identical twin experiments (see Sect. 5.1). For real case studies (see
Sect. 5.2) global atmospheric CO2 values from “MACC-III greenhouse
gases inversions” (http://apps.ecmwf.int/datasets/data/macc-ghg-inver-
sions/?version=v10 ) is used to interpolate boundary values for the mother
domain. This global data has 3.75∘ longitude and 2.0∘ latitude horizontal
resolution, the vertical grid includes 22 layers up to the upper boundary of
the EURAD-IM at 100 hPa, and the temporal resolution is three hours.
Boundary values from each parent domain are written out every hour and
are interpolated temporally for the next smaller daughter domain.
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(a) Coarse Grid, Δ𝑥 = 15 km (b) Identical twin domain, Δ𝑥 = 5 km

(c) Real case domain, Δ𝑥 = 5 km (d) Real case domain, Δ𝑥 = 1 km

Figure 4.1: Mother domain (a) with the daughter domain for identical twin
experiments (blue rectangle shown in (b)) and the real case study (red rectangle
shown in (c) and (d)). Red crosses indicate the location of the measurement
stations according to Table 4.1. Black crosses show the location of the four biggest
power plants Weisweiler, Niederaußem, Frimmersdorf, and Neurath, see Table
5.5.

4.1.2 Different CO2 tracers in EURAD-IM

To allow a detailed assessment of the model, six different tagged tracers
of CO2 are simulated. The first is the total CO2 amount. The second is
the atmospheric background concentration, influenced only from the global
boundary values from MACC-III, but not from anthropogenic or biogenic
fluxes of the simulated domains in this work.
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Four additional CO2 tracers are simulated driven by the surface-atmosphere
fluxes to aid budget analysis: one comprises the CO2 concentration re-
moved by photosynthesis, and the latter three comprise the concentration
introduced by anthropogenic emissions, leaf respiration, and soil respira-
tion. These four tracers are initialised with 0 ppmV for all domains and
the boundary values of the mother domain are constantly set to 0 ppmV
as well. Figure 4.2 shows a detailed time series of observations at station
Rollesbroich and the six tracers of the background run of the 5 km domain
for the real case on 6 and 7 June 2012. The four tracers, which represent

Figure 4.2: Time series of six tagged CO2 tracers in EURAD-IM and the ob-
servations at the station of Rollesbroich from 6 to 7 June 2012 of the real case
domain with 5 km horizontal resolution.

the surface-atmosphere fluxes, are added to the initial CO2 concentration
(386 ppmV) to enable a comparison of these tracers with the total atmo-
spheric CO2 amount. Soil respiration and photosynthesis introduce large
variations. Leaf respiration and anthropogenic emissions are much smaller
with less amplitudes in this case.
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4.2 Observations

4.2.1 Available measurements

This work uses in situ atmospheric concentrations measurements of seven
ground stations and net ecosystem exchange (NEE) flux measurements of
five stations for a real case study (Sect. 5.2). Concentration observations
are compared with the total atmospheric CO2 concentration, NEE with
the sum of soil and leaf respiration subtracted by the photosynthesis. An
overview of the used stations for real and synthetic experiments is given in
Table 4.1.
The data of the stations Merzenhausen (MER) [Graf et al., 2013],
Rollesbroich (ROL) [Post et al., 2015], and Selhausen (SEL) [Langensiepen
et al., 2012; Mauder et al., 2013] is collected by the SFB-TR32 ”Pattern
in Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling, and Data
Assimilation“. Within the TERENO project (http://teodoor.icg.kfa-
juelich.de/overview-de) the data at Wuestebach (WUE) site is collected
(provided by Patrizia Ney, FZ Jülich, IBG-3). These stations have
turbulence sensors to measure the CO2 flux with the eddy covariance
method, by measuring concentration values at a frequency of 20 Hz. Flux
and concentration measurements are averaged over 30 minutes and are
only used for evaluation or assimilation if the data has the highest quality
flag as recommended (personal communication by M. Schmidt and A.
Graf). Records of instruments at MER, ROL, SEL, and WUE are not
primarily taken for their absolute accuracy. Instead, the instruments are
very precise with regard to the high frequent change of CO2 concentration,
which is more relevant for optimisation of fluxes in this work. To ensure
the high precision, calibration of the instruments deployed at those stations
is performed with the same reference gas (personal communication by A.
Graf).
The concentration measurements of the stations MER, ROL, SEL, and
WUE are given in mmol

m3 and are converted to ppmV with the observed
temperature and pressure and the ideal gas equation:

𝜒CO2 =𝑛CO2/𝑛Air =
𝑛CO2

𝑉
·𝑅gas ·

𝑇

𝑃
(4.1)[︂

10−3mol

m3
· kg ·m2

s2 ·K ·mol
· K ·m · s2

102 kg
=

1

105

]︂
.

Here 𝜒CO2 is the volume mixing ratio, 𝑛CO2 the amount of CO2 in mmol, 𝑉

the volume in m3, 𝑅gas the universal gas constant in
kg·m2

s2·K·mol
, 𝑇 the temper-

ature in K, and 𝑃 the pressure in hPa = 102 kg
K·m·s2 .
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Measurements of the Jülich tower (JUE), operated by the FZ Jülich GmbH,
(provided by Marc von Hobe, FZ Jülich, IBG-3) are used only in 100 m
height, as confidence in measurements of lower altitudes is not high enough
during June 2012 (personal communication by M. von Hobe). The con-
centration measurements are averaged 10 minute values and are further
averaged to 30 minutes for assimilation. Concentration measurements from
Cabauw (CBW) [Vermeulen et al., 2011] are taken at 4 different heights in
20, 60, 120, and 200 m above ground layer (a.g.l.). Hesse Forest Sarrebourg
(HFS) [Longdoz et al., 2007] and CBW measurements are also averaged to
30 minutes. Both stations use an infrared gas analyser for CO2 concen-
tration measurements and additionally an ultrasonic anemometer to infer
fluxes.

4.2.2 Observation error covariance matrices

The method to estimate R𝑖 ∈ R𝑝𝑖×𝑝𝑖 (𝑖 = 0, . . . , 𝑁 , 𝑝𝑖= number of observa-
tions at 𝑡𝑖) presented here is similar to the method in Elbern et al. [2007].
The covariance matrices R𝑖 are assumed to be diagonal, such that obser-
vation errors are not correlated. The total error is given as the sum of a
measurement error and a representativeness error

R𝑖(𝑗, 𝑗) = 𝑟meas + 𝑟repr𝑗 , 𝑗 = 1, . . . , 𝑝𝑖. (4.2)

The measurement error 𝑟meas is assumed to have a constant value of 0.25
ppmV for all stations. Except from station HFS all measurements are
provided with information about the standard deviation of averaged CO2

concentration data 𝑟std𝑗 , 𝑗 = 1, . . . , 𝑝𝑖. The representativeness error is
defined in dependence on the grid resolution Δ𝑥 [km] and this standard
deviation

𝑟repr𝑗 :=
√
Δ𝑥 𝑟std𝑗 , 𝑗 = 1, . . . , 𝑝𝑖. (4.3)

The standard deviation of the measurements at HFS are estimated with
y𝑖,𝑗/1000.0, being on average close to the standard deviations of the other
measurements.
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Simulation results

In this chapter ,the main results of the executed data assimilation model
runs are presented. In the first part, results from identical twin experiments
are shown. In the second part, a real case study spanning one month is
presented.

5.1 Identical twin experiments

Identical twin experiments are used to evaluate the performance of the data
assimilation system under simplifying assumptions. Contrary to real case
experiments, they use synthetic observations which are generated by a for-
ward model run. This run is commonly called nature run. The first guess
(or background) run relies on disturbed initial values and flux rates. During
the assimilation, the 4D-Var cost function measures the distance between
the first guess and the synthetic observations generated by the nature run.
The identical twin analysis aims to assess how well the 4D-Var system is
able to reconstruct the perturbed parameters. The model run with op-
timised parameters is called the analysis run. The forward model used in
identical twin experiments is presumed to be perfect (with respect to the
synthetic observations, compare Eq. 2.5), which is a severe simplification
of reality. Daley [1991] concludes that identical twin experiments “err on
the optimistic side”. However, identical twin experiments deliver valuable
information about the potential performance of the assimilation system and
they are widely used in CO2 inversions [Lauvaux et al., 2008; Carouge et al.,
2010; Broquet et al., 2011]. The selection of observations can be chosen with
realistic space and time distribution. The use of real meteorological data
shows the ability of the adjoint model to reconstruct dispersion of atmo-
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spheric CO2 backwards in time (see Sect. 5.1.2). The effect of observation
errors can be simulated by adding noise to the artificial observations.

5.1.1 Experiments with one-dimensional version of
EURAD-IM

A spatially one-dimensional version of the EURAD-IM with 100 grid cells
is used to address two aspects of the optimisation approach:

(i) influence of the variance of K to the analysis of the flux factors,
(ii) ill-posedness of the joint optimisation of initial values and flux factors.

Although a one-dimensional model is far from reality, both aspects can
be illustrated in this framework to investigate limits of the optimisation
approach. The ill-posedness is indeed the major difficulty for real case
assimilation in this work. A one-dimensional model implies the usage of
constant winds (here always from left to right), since the wind field has to
be divergence free.

5.1.1.1 Influence of modelling the variance of K to the flux factor
optimisation

To quantify the influence of the variance of K on the flux factor analysis,
the following scenario is investigated: Six emitting grid cells are defined,
located at position 5, 20, 35 50, 65 and 80, each using the same diurnal
cycle of industrial combustion split into 96 time steps. The total amount
of emissions of each emitting grid cell is always the half of the left neigh-
boured emitting grid cell (see Table 5.1). Synthetic observations are taken
at every time step at six stations, such that each measurement station is
influenced only by one emitting grid cell. The experiment setup is visualised
in Fig. 5.1. Observation errors are 1/1000 of the measured concentration
(∼ 0.4 ppmV) and the observation error covariance matrices R𝑖 are diag-
onal. The background run starts with an emission factor of 0.5 at each grid
cell.

√︀
(K𝑟,𝑟) is modelled according to Eq. (3.26), once with 𝑙 = 1 leading

to a constant diagonal of K and once with 𝑙 = 4 giving smaller emissions a
smaller error compared to 𝑙 = 1. The two cases will be called K𝑙4 and K𝑙1

in the following.
The analysed flux factor for the largest emitting grid cell is almost identical
for K𝑙1 and K𝑙4 (Fig. 5.2(a)). For grid cells with smaller emissions, the ana-
lysed flux factor gets also smaller. The decrease of the analysed flux factor
is much faster for K𝑙1 compared to K𝑙4, see Table 5.1 and Fig. 5.2(b). For
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Figure 5.1: Overview of the experiment setup of Sect. 5.1.1.1. The green line
represents the CO2 concentration after 96 time steps at the end of the assimilation
window. Brown and red arrows indicate the location of the emissions and the
measurement stations respectively. Each measurement station is influenced only
by one emitting grid cell.
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Figure 5.2: Identical twin experiment, showing the background run (black),
nature run (green) and the analysis differing in

√︀
K𝑟,𝑟 modelled according to Eq.

(3.26) once with 𝑙 = 4 (blue) and once with 𝑙 = 1 (pink). On the left panel a zoom
of the emissions introduced by the largest source is shown, the emission strength
in the right panel is 8 times smaller.

both cases the properties 1.-3. of Section 3.4.4.2 are fulfilled due to the
construction of the diagonal of K, with K𝑙4 being more sensitive for smaller
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Table 5.1: Analysed flux factors (ff) and variance of K (both without units) for
K𝑙4 and K𝑙1 corresponding to Fig. 5.2.

position of emitting grid cell 5 20 35 50 65 80
avg. emitted amount [𝜇g/s] 1.0 1/2 1/4 1/8 1/16 1/32
background ff 0.5 0.5 0.5 0.5 0.5 0.5
analysed ff for K𝑙1 0.95 0.88 0.74 0.54 0.52 0.51
analysed ff for K𝑙4 0.95 0.95 0.94 0.87 0.74 0.70√︀

K𝑟,𝑟 for K
𝑙1 0.99 0.99 0.99 0.99 0.99 0.99√︀

K𝑟,𝑟 for K
𝑙4 0.99 1.67 2.80 4.72 7.93 13.3

emissions than K𝑙1.

5.1.1.2 Ill-posedness of the problem of joint optimisation

The following experiment assesses further limits of the assimilation system
due to the ill-posedness of the problem. It is a step towards a more real-
istic set-up as it uses ten neighboured grid cells with biogenic fluxes and
one with anthropogenic emissions, each with disturbed flux factor of 1/2.
Additionally, initial values are disturbed by 2 ppmV at 20 grid cells. Mea-
surements are taken only at one station, located downwind of the perturbed
parameters, see Fig. 5.3. The analysis is performed twice (called S1 and
S2 hereinafter), differing only in the BECM’s for initial values B and flux
factors K:

BS1 =
1

2
BS2, KS1 = 2KS2. (5.1)

Table 5.2: RMSE and bias of the flux factors (without units) of the analysis
runs S1 and S2 and the background run with respect to the nature run.

(S1, Nature) (S2, Nature) (Background,Nature)
RMSE flux factors 0.13 0.38 0.5
bias flux factors 1.21 6.3 10.5

Contrary to the three dimensional case, the current set-up simplifies with
respect to two aspects substantially: vertical diffusion is excluded and the
complete time series of all flux cells can be observed, although there is
only one measurement station. In combination with the knowledge of the
location of the flux cells, an optimisation of flux factors only is not ill-posed
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(a) S1 at time step 𝑡0
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(b) S1 at time step 𝑡𝑁
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(c) S2 at time step 𝑡0
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(d) S2 at time step 𝑡𝑁

Figure 5.3: Identical twin experiments S1 (upper row) and S2 (lower row)
which differ by their background matrices according to Eq. (5.1). Background run
(black), nature run (green) and analysis run (blue) are shown at first time step
(left column) and last time step (right column). At grid cells 21-30 photosynthesis
and respiration (dark-green bulk) are introduced, anthropogenic emissions (brown
small bulk) at grid cell 25. Initial values are disturbed for grid cells 20-39.

in this set-up, if initial values are undisturbed. The good properties of the
adjoint advection routine (see Section 3.4.2) enable a robust optimisation
of the corresponding flux factors (not presented here).
The joint optimisation, however, allows several combinations of flux factors
and initial values, which reproduce the synthetic observations. This can be
seen by a comparison of Fig. 5.3(b) and 5.3(d). The initial values are able
to adjust for perturbed flux factors in the case of S2 as can be seen in Fig.
5.3(c). The cost function for both cases S1 and S2 decreases similarly. As a
consequence, to evaluate the performance of the analysis of S1 and S2, the
RMSE and BIAS of the analysed flux factors are given in Table 5.2. Here,
it can be seen that the analysis of the flux factors of S1 is much better
compared to S2. This illustrates that the inferred CO2 surface-atmosphere
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fluxes are highly sensitive with respect to B and K. In other words, the
ratio of the BECM’s is decisive for a successful analysis of CO2 fluxes.

5.1.2 Experiments with EURAD-IM 5.8.1

The following experiments are published in Klimpt et al. [2016] and use
an input of real meteorology, anthropogenic emissions, photosynthesis, and
respiration as described in Chapter 3. Numerical experiments are executed
with four different background configurations, as listed in Table 5.3. For
each configuration two experiments are executed. One optimising only
flux factors for anthropogenic emissions, biogenic respiration, and photo-
synthesis and another optimising initial values and flux factors jointly for
each grid cell. We call the first case hereinafter ”only flux factor analysis“
and the second case “joint analysis“.

Table 5.3: Configuration of background initial states and flux factors, applied
for anthropogenic emissions, photosynthesis, and respiration.

background background
configuration initial state flux factor

1 nature run +2 ppmV 0.8
2 nature run − 2 ppmV 0.8
3 nature run +2 ppmV 1.2
4 nature run − 2 ppmV 1.2

The model domain encompasses central Europe with 5 km horizontal res-
olution (see Fig. 4.1(b)). After a model spinup time of 30 h spanning 23
July 00 UTC to 24 July 2012 06 UTC, a 12 h 4D-Var analysis run is ini-
tialised from 06-18 UTC. Synthetic measurements from the nature run are
taken every 30 minutes (the model time step is 120 s) at eleven stations (see
Fig. 4.1(b) and Table 4.1). The observation errors are constantly 2 ppmV
and the error covariance matrices R𝑖 are diagonal. In order to balance the
analysis run with respect to background errors of initial values and flux
factors, several values 𝑐iv of Eq. (3.19) and 𝑐ant (anthropogenic emissions),
𝑐phot (photosynthesis), and 𝑐resp (respiration) of Eq. (3.26) have been tested
for all four configurations. Empirically 𝑐iv = 0.0025, 𝑐ant = 1.4, 𝑐phot = 0.6,
and 𝑐resp = 0.8 have been chosen. The matrix K is modelled with 𝑙 = 4
(see Sect. 3.4.4) for anthropogenic emissions and with 𝑙 = 2 for biogenic
fluxes. This is due to the fact, that the spatial distribution of flux variations
is much smoother for biogenic fluxes compared to anthropogenic emissions.
While the amount of biogenic fluxes at different grid cells has mostly the



5.1 Identical twin experiments 49

same order of magnitude, the main contribution to anthropogenic emissions
is caused by very few power plants, e.g. Weisweiler and Niederaußem in the
Rur catchment area.
The off-diagonal entries of B and K are calculated using an influence radius
of 30 km at the bottom layer, 45 km at the top of the modelled planetary
boundary layer (PBL) and 60 km at the top of the model domain. The
L-BFGS optimisation is carried out for at most 30 iterations, showing only
minor changes of the cost function for the last iterations (Fig. 5.6).
Analysis configuration 4 is evaluated in the following. Figure 5.4 shows
the difference of initial values for different vertical layers between the NmA
(nature run minus joint analysis run). White areas indicate compliance
of the analysis and nature run. The initial value correction is always to-
wards the nature run, showing small overestimation easterly of Hesse Forest-
Sarrebourg, the TR32 region, and Ochsenkopf at lower layers. Due to the
set-up of the experiment with sparse observations, the meteorology is de-
cisive for the distribution of corrections in the analysis run. Since westerly
winds are predominant during the assimilation window, correction of the
initial values occurs at all measurement stations and to the east of these.
Correction of initial values can be seen up the top the vertical boundary
layer at ∼ 2000 m (Fig. 5.4 (h)). Artificial overestimation can be seen in
layer 12 (Fig. 5.4 (g)) south-east of station Ochsenkopf. Additional tests
not presented here, show that a longer assimilation window increases this
artificial deterioration of the analysis. Due to temporal high frequent mea-
surements and the diffusive nature of atmospheric transport, the LBFGS
amplifies small wiggles, primarily during later iterations, resulting in an ar-
tificial over- and underestimation.
A comparison of the assimilated flux factors for configuration 4, calculated
once with joint analysis and once with only flux factor analysis, illustrates
the benefits of the joint analysis. The results of the joint analysis in the left
column of Fig. 5.5 are discussed first. Flux factors of the nature run are
set to 1.
The flux factor analysis of anthropogenic emissions is dominated by a few
but large point sources. In the Rur catchment area, due to westerly winds,
the power plant Niederaußem is captured by the observation sites Jülich
and Selhausen and is better reanalysed than Weisweiler, which is located a
few kilometres upstream from both observation sites. The optimised flux
factors of biogenic respiration (Fig. 5.5 (c)) and photosynthesis (Fig. 5.5
(e)) comply with the nature run very well. Although slight underestimation
persists, the flux factors of the joint analysis are mainly between background
(1.2) and nature run (1.0).
The analysis of the only flux factor optimisation has a stronger overestim-
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(a) ly01 (0-38 m) (b) ly02 (38-76 m)

(c) ly04 (115-153 m) (d) ly06 (231-309 m)

(e) ly08 (427-546 m) (f) ly10 (708-802 m)

(g) ly12 (1081-1294 m) (h) ly16 (2196-2581 m)

Figure 5.4: Zoom of the 5 km domain for the initial values NmA (nature run
minus joint analysis run) of configuration 4 for different layers on 24 July, 06
UTC. Black crosses show synthetic observation sites. The given heights are valid
for the U.S. standard atmosphere.



5.1 Identical twin experiments 51

Figure 5.5: Analysed flux factors of anthropogenic emissions (first row), bio-
genic respiration (second row), and photosynthesis (third row). The analysis at
the left column shows results of the joint initial value and flux factor assimilation
while the right column shows an analysis which optimised only flux factors. The
two biogenic fluxes are shown at surface level, while anthropogenic emissions are
given at ≈ 270 m height, which is the layer with the highest impact due to power
plants. Black crosses show synthetic observation sites. Green plus signs in the
first row indicate the location of the two biggest power plants Niederaußem and
Weisweiler.

ation of anthropogenic emissions than the joint analysis (Fig. 5.5 (a), (b)),
due to 2 ppmV higher initial values of the background run. Both biogenic
fluxes (Fig. 5.5 (d), (f)) are underestimated in large areas, as observations
at the beginning of the assimilation window result in a too strong forcing
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of photosynthesis. The underestimation of photosynthesis causes higher
concentration values than observed during the late afternoon, which forces
a decrease of the atmospheric source biogenic respiration. In the area of
the observation stations Jülich and Selhausen, biogenic respiration is also
overestimated (Fig. 5.5 (d)), a clear deterioration of analysis performance
compared to the joint analysis.
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Figure 5.6: Calculated cost function (without units) for joint (jo) and flux
factor (ff) analysis of the four configurations listed in Table 5.3. Filled markers
use joint optimisation. Only flux factor optimisation is indicated with empty
markers, showing hardly any decrease of the cost function after 15 iterations.

A comparison of the cost reduction for the four configurations for joint op-
timisation and only flux factor optimisation is shown in Fig. 5.6. For each
configuration the cost function shows a stronger decrease (by a factor of ≈
20) for the joint optimisation compared to the flux factor optimisation.
Time series of CO2 concentrations for configuration 4 (Table 5.3) are de-
picted in Fig. 5.7. In general, a good compliance of the nature run and
joint analysis at the observation sites is seen. The CO2 concentration of the
background run and the only flux factor analysis at the initial time is always
2 ppmV lower than the nature run. Surprisingly, also the only flux factor
analysis is often in accordance with the nature run, except at Selhausen,
Jülich, and Hegyhatsal. As can be seen from Fig. 5.5, the correction of the
flux factors close to Wuestebach, Cabauw, and Ochsenkopf, by optimising
only flux factors is poor. This shows clearly that solely an evaluation of the
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(a) Wuestebach surface layer (b) Selhausen surface layer

(c) Jülich surface layer (d) Cabauw layer 05

(e) Hegyhatsal layer 02 (f) Hegyhatsal layer 04

(g) San Rossore surface layer (h) Ochsenkopf layer 02

Figure 5.7: Time series of CO2 concentration of configuration 4 at synthetic ob-
servation sites for nature run (red), background run (black), joint analysis (blue)
and flux factor (ff) analysis (green).

time series does not imply an adequate analysis.
The vertical concentration profiles at the last hour of the assimilation win-
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(a) Jülich (b) Cabauw

(c) Hegyhatsal (d) Ochsenkopf

Figure 5.8: Vertical profile of CO2 concentration of configuration 4 at obser-
vation sites with measurements also in higher layers for the nature run (red),
background run (black), joint analysis (blue) and flux factor (ff) analysis (green)
at the end of the assimilation window on 24 July 2012 at 18 UTC.

dow of the towers with measurements in higher layers are shown in Fig. 5.8.
The vertical profiles of Cabauw, Ochsenkopf and Jülich display a slightly
better concentration correction of the joint analysis compared to the flux
factor analysis. Although the vertical profile of Hegyhatsal (Fig. 5.8(c)) is
very similar for the joint and the flux factor analysis, the temporal evolution
(Fig. 5.7(e) and 5.7(f)) towards the last hour of the assimilation interval
is quite different, indicating again that the analysed flux factors are not
sufficiently well estimated by the flux factor analysis.
The present study shows the beneficial effect of joint optimisation for the
analysis of CO2 fluxes. Accounting for errors from initial values has a
smoothing effect on the inferred fluxes. The optimisation of only flux factors
results in a strong forcing of fluxes due to observations especially at the be-
ginning of the assimilation interval. Even a small deviation of background
initial values of 2 ppmV has the potential to disturb the analysis of fluxes
severely, if the initial value uncertainty is not taken into account.
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5.2 Real case study for TR32 domain

The numerical experiments presented in Sect. 5.1.2 provide an upper bound-
ary of the developed optimisation strategy. However, the experiments sim-
plify substantially with respect to the forward model performance and im-
portant input parameters e.g. meteorology or the CO2 fluxes themselves.
To evaluate the performance of the presented 4D-Var system, a long lasting
period is simulated to gather reliable statistical model data. A case study
of 38 days lengths is presented, spanning the time from 24 May to 30 June
2012. EURAD-IM is applied with the nested model domain set-up, depicted
in Figure 4.1(a), 4.1(c), and 4.1(d). The boundary values for the mother
domain with 15 km horizontal resolution are taken from the global reana-
lysis MACC-III greenhouse gases inversions. The simulation of the mother
domain was executed by a forward run of the EURAD model. Forward runs
for the complete 38 days are also executed for the daughter nests with 5
km and 1 km horizontal resolution, using boundary values from the coarser
domain. These runs are called hereinafter background runs.
Afterwards, 4D-Var assimilation runs are executed for the domains of 5 and
1 km horizontal resolution, which are called analysis runs. The assimila-
tion window of each analysis run is 24 h from midnight to midnight. The
analysis run of each day calculates first guess initial values and flux factors
for the following day. The boundary values for the 5 km analysis run are
the same as used by the forward run. The 1 km analysis run uses boundary
values from the 5 km analysis run.
This study assimilates half hourly atmospheric CO2 concentration measure-
ments. The analysis results are validated with concentration measurements
of CO2, which were withheld from the assimilation procedure. Further CO2

flux measurements of NEE, independent from the analysis, are used for val-
idation. An overview of all observations used in this study is given in Table
4.1. To evaluate the analysis results only the last 30 days from 1 to 30 June
are used, the first 8 days are required for the model spinup.
The meteorology for June 2012 is characterised by several low-pressure sys-
tems passing the model domain. The jet stream was often within the 1
km model domain, alternating frequently from north to south. Hence, the
domain is situated on both sides of the jet stream characterised by cold
and warm air, respectively. There is no long lasting dry phase in June 2012
for the model domain, such that plants do not suffer from water stress.
The mean temperature of this month is slightly below long-time average for
North Rhine-Westphalia, which implies good conditions for photosynthesis
and respiration. Mowing of the meadow at ROL was done on 15 May, allow-



56 Simulation results

ing a recovery of the grassland for photosynthesis and respiration until the
beginning of June, and on 5 July, such that no inconsistencies can be seen
in the observed time series. At SEL sprouting of potatoes began around 15
May and a little earlier at MER (winter wheat). At neither station was har-
vested during June, such that the considered period represents a continuous
growing season.

5.2.1 5 km domain

Three different setups are simulated and validated for the 5 km analysis run
differing by the selection of measurement stations, either taken for assimila-
tion or taken for evaluation. Additionally, the empirical parameters for the
BECM’s civ, cant, cphot, and cresp are modified slightly. The influence radii
for the calculation of the non-diagonal entries for the initial values are 15
km at the surface layer, 25 km at the PBL, and 40 km at top of the model
domain at 100 hPa. The influence radius for photosynthesis and respiration
is 40 km at the surface layer in order to analyse many grid cells. For an-
thropogenic emissions, dominated by point sources of power plants, small
influence radii of 5 km (surface layer), 10 km (PBL) and 20 km (at 100 hPa)
are chosen. Table 5.4 gives an overview of the assimilated measurements
of stations for the 5 km analysis run. The measurement data with more
than 100 m a.g.l. (CBW and JUE) are assimilated to enlarge the area of
optimised biogenic fluxes. The lower measurement data of CBW are for
evaluation, since flux data at CBW was not available for this study. HFS
was chosen for assimilation due to its location in the south of the model
domain. Since SEL and MER are very close together, the almost complete
time series data of MER is used for assimilation, while the measurements at
SEL, having a gap between 07-16 June, are used for evaluation. ROL and
WUE are also close to each other, but are located in different vegetation
types (grassland and forest). Therefore the data of ROL and WUE are used
for assimilation and evaluation in different configurations.

Table 5.4: Configurations of stations whose data is used for assimilation (X)
or evaluation (×) for the 5 km analysis runs.

CBW at height a.g.l.
conf. 20 60 120 200 HFS JUE MER ROL SEL WUE
1 × × X X X X X X × ×
2 × × X X X X X X × X
3 × × X X X X X × × X
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Concentration evaluation

To evaluate the analysis runs the mean differences (bias) and root mean
square errors (RMSE) analysed concentrations are shown in Fig. 5.9. The

Figure 5.9: Bias (left) and RMSE (right) between the concentration observa-
tions to the background run (black) and the analysis runs of configuration 1 (blue),
2 (light-blue), and 3 (violet) for June 2012. For each configuration the stations
whose measurements are not assimilated are shown with a green bar, respectively
with a red bar if the measurements are assimilated.

absolute bias of the three analysis configurations reduces at all stations com-
pared to the background bias, except at JUE. The RMSE shows a decrease
for most of the stations of the analysis runs compared to the background
run. For Selhausen, Merzenhausen, and Jülich the analysis RMSE increases
for at least one configuration.

In the following configuration 1 will be evaluated in more detail. The time
series of atmospheric concentration is presented in Fig. 5.10 at SEL and
WUE which are not assimilated and at HFS and CBW which are not
situated in the 1 km domain.
At SEL (Fig. 5.10(a)), during the nights of 18, 19, 23, 24, and 26-30 June
2012 high concentration peaks are observed which are not simulated by
the background run, resulting in a model-observation mismatch up to
90 ppmV. These high concentration peaks from observations cannot be
reproduced by the analysis run although similar observations of the nearby
station MER (not plotted) are assimilated. One reason is that the surface
layer of EURAD-IM (∼ 0 − 38 m vertical extension) is too coarse for the
quite low measurement height of 3 m above ground level (a.g.l.) of SEL
and MER during these nights with extremely low PBL height. Thus, the
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measurements are not representative for the model during these nights.
In the case of WUE (Fig. 5.10(b)) we see in general a closer fit of the
analysis run to the observations compared with the background run. The
remarkable distribution of the background run between 19 and 21 June is
also visible at ROL (not plotted). At ROL, there are also strikingly similar
observations compared to WUE during this time period, explaining the
good fit of the analysis run to the observations between 19 and 21 June
2012.
The best fit of the analysis run to the observation time series compared
to the background run can be seen at HFS (Fig. 5.10(c)), which has
the highest reduction of the RMSE (Fig. 5.9). The measurement height
of 22 m a.g.l. is representative for the EURAD-IM surface layer also
during nights with low PBL on 21 and 28 June 2012. The observed high
concentration peaks, that appeared due to an accumulation of respired
CO2, are well reproduced by the analysis during these two nights.
Similarly, the observed high concentration peaks of CBW at 20 (Fig.
5.10(d)) and 60 m a.g.l. (Fig. 5.10(e)) on 27 and 28 June 2012 are
well reproduced by the analysis, although these observations are not
assimilated. The assimilated observations of CBW at 120 (not plotted)
and 200 m a.g.l. (Fig. 5.10(f)) do not show such high concentration values
during the nights of 27 and 28 June 2012, indicating a good performance
of the analysis for this period due to independent observations.

A detailed evaluation of different CO2 tracers at CBW at 200 m a.g.l (Fig.
5.10(f)) reveals a surprisingly good analysis on 15 June 2012. Hereby
the background time series shows much higher concentration values than
the observations. Figure 5.11 shows that the high background values
(concentration peak on 15 July 02 UTC) are due to a combination of
three factors: concentration values up to 60 ppmV originating from soil
respiration, are emitted already at the previous day and are transported to
CBW in model layer 5 (153-231 m) on 15 June 02 UTC (Fig. 5.11 (a)-(c)).
At the same time, additional 10 ppmV from anthropogenic emissions are
transported to CBW (Fig. 5.11(d)) and total atmospheric CO2 is hardly
reduced by photosynthesis (Fig. 5.11(e)), resulting in the background peak
on 15 June at 02 UTC.
A comparison between the background and analysis of the tagged CO2

tracers shows significant smaller analysed soil respiration (Fig. 5.12(b))
and slightly increased anthropogenic emissions (Fig. 5.12(a)). The
analysis performance for this period is remarkably well due to two
reasons. First, the fluxes which influence the CO2 concentration at
CBW in model layer 5 (153-231 m are emitted during the previous
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(a) soil resp. surface
layer, 14 June 20 UTC

(b) soil resp. layer 3 (76-
115 m), 14 June 23 UTC

(c) soil resp. layer 5 (153-
231 m), 15 June 02 UTC

(d) ant. emis. layer 5 (153-231 m),
15 June 02 UTC

(e) phot. layer 5 (153-231 m),
15 June 02 UTC

Figure 5.11: Zoom of the 5 km domain of different tagged CO2 tracers around
the Cabauw tower, indicated by the green cross. The green circle shows the loc-
ation of the concentration reaching Cabauw tower on 15 June, 02 UTC. Tagged
CO2 tracer for soil respiration (a-c) at three different times. Tagged CO2 tracers
for anthropogenic emissions (d) and photosynthesis (e) on 15 June 2012, 02 UTC.

(a) ant. emis. (b) soil resp.

Figure 5.12: Background run minus analysis run (BmA) at model layer 5 (153-
231 m) of anthropogenic emissions (left) and soil respiration (right) is shown on
15 June 2012, 02 UTC. Same area as plotted in Figure 5.11 (green cross indicates
CBW).

assimilation window, thus the correction shown in Fig. 5.12(b) is not
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due to the observations on 15 June 2012. Second, it can also be seen
from Fig. 5.12 that the corrections of analysed anthropogenic emissions
and soil respiration are opposed to each other regarding the background.
This indicates also that the correction of both fluxes is independent of the
observations on 15 June 2012 and shows that the benefit of 4D-Var persists
longer the assimilation window.

Flux evaluation

Flux observations are available at 5 different stations (HFS, MER, SEL,
ROL, WUE) and are always independent from the analysis runs. The
RMSE and the bias are presented in Fig. 5.13. An improvement of the

Figure 5.13: Bias (left) and RMSE (right) of the not assimilated flux obser-
vations to the background run (black) and the analysis runs of configuration 1
(blue), 2 (light-blue), and 3 (violet) for June 2012.

bias of the analysis run with configuration 1 can be seen at SEL, MER, and
HFS. The RMSE is only improved for the analysis at station HFS, whereas
the analysis RMSE deteriorates for SEL, MER, ROL, and WUE compared
to the background RMSE. One reason for this is the heterogeneous spatial
distribution of analysed flux factors, which are shown in Fig. 5.14 for the
entire 5 km domain for 14 June 2012. In the TR32 region (measurement
stations are shown as green crosses) a strong alteration of photosynthesis
can be seen, whereas the analysis leaves respiration quite stable in this re-
gion for this day. A reduction of respiration and photosynthesis can be seen
approximately 20 km north-east and 30 km south-west of the TR32 meas-
urement stations. A similar structure can be seen at HFS, but only with
increased respiration and quite constant photosynthesis at the region close
to the station.
The correction of biogenic flux factors influenced by the measurements at
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(a) ff of biogenic respiration (b) ff of photosynthesis

Figure 5.14: Analysed flux factor (ff) at 5 km domain for 14 June 2012. Meas-
urement stations are plotted as green crosses. The black solid line defines the
location for the vertical cross section in Fig. 5.15 and 5.16.

CBW is much more homogeneous and does not show strong gradients along
the main wind axis from south-west to north-east. The higher position of
the assimilated measurements at 120 and 200 m a.g.l. enables a smoother
analysis field of flux factors.
One reason for the spatial high gradients of analysed flux factors is the ill-
posedness of the flux optimisation problem in general, which is intensified
by optimising three flux factors and initial values for each grid cell separ-
ately in this work. Atmospheric transport modelling acts as a smoother for
the optimisation of flux factors or initial values. Therefore, a tendency of
the 4D-Var system can be seen to overestimate photosynthesis close to the
assimilated measurements from the surface stations MER, ROL, and HFS.
In contrast, the observations at CBW, are at higher altitudes and thus in
higher model layers. The adjoint model simulates therefore smoother gradi-
ents with respect to the biogenic flux factors, resulting in a spatially more
homogeneous analysed flux field around this station (Fig. 5.14).
For the examination of the composition of the total atmospheric concentra-
tion, a vertical cross section of differently tagged CO2 tracers is presented in
Fig 5.15, crossing the TR32 region from south-west to north-east. During
the morning hours, soil respiration increases CO2 concentrations up to 40
ppmV in low layers, as vertical transport is quite low due to a low PBL
(Fig. 5.15(a) and 5.15(g)). After sunrise photosynthesis (juxtaposed to the
other tracers) is becoming more and more dominant compared to biogenic
respiration. Until 12 UTC the increase of the PBL in vertical extent leads
to lower concentrations between the surface and up to 2000 m due to pho-



64 Simulation results

(a) Total CO2 at 04 UTC (b) Total CO2 at 12 UTC

(c) Ant. emitted CO2 at 04 UTC (d) Ant. emitted CO2 at 12 UTC

(e) Photosynthesis CO2 at 04 UTC (f) Photosynthesis CO2 at 12 UTC

(g) Soil respiration CO2 at 04 UTC (h) Soil respiration CO2 at 12 UTC

Figure 5.15: Vertical cross section of different tagged CO2 tracers of the back-
ground run along the black solid line in Fig. 5.14 from south-west to north-east.
Left column at 04 UTC 14 June, right column at 12 UTC 14 June 2012. Photo-
synthesis (third row) is opposed to the other tracers.
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tosynthesis (Fig. 5.15(b) and 5.15(f)). Anthropogenic emissions, leading to
concentration increase of the same magnitude as caused by biogenic fluxes,
are observed only locally due to large power plants, as can be seen in Fig.
5.15(d), induced by Weisweiler. Increased total concentration at 12 UTC
between grid cell 90 and 105 is due to a combination of high anthropogenic
emissions and soil respiration, respectively low photosynthesis in this region
(Fig 5.15(d), 5.15(f) and 5.15(h)).
The difference of the BmA along the same cross section shown in Fig. 5.16
reveals the problem of spatially inhomogeneous optimised flux factors. The

(a) BmA: total CO2 at 04 UTC (b) BmA: total CO2 at 12 UTC

(c) BmA: soil respiration CO2 at 04 UTC (d) BmA: photosynthesis CO2 at 12 UTC

Figure 5.16: Vertical cross section of background minus analysis run (BmA) of
different tagged CO2 tracers on 14 June 2012 at 04 UTC (left column) and 12
UTC (right column). Photosynthesis (d) is opposed to the other tracers.

TR32 region lies approximately between grid cells 80 and 115 in Fig. 5.16.
The analysis of flux factors for photosynthesis is overestimated in this re-
gion (Fig. 5.16(d)), leading to a decrease of atmospheric CO2 compared
to the background run in the TR32 region (Fig. 5.16(b)). South-west and
north-east of the TR32 region the photosynthesis has lower analysed flux
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factors compared to the background, leading to higher concentration values
outside the TR32 region. The analysis of soil respiration reveals increased
atmospheric CO2 values compared to the background run south-west and
north-east of the TR32, which is mainly visible in Fig. 5.16(a) and 5.16(c)
at 04 UTC before sunrise.

Finally, the NEE time series is shown in Fig. 5.17 at ROL, WUE, and
HFS. The fairly low observed photosynthesis at WUE (needle leaf forest,
Fig. 5.17(b)) compared to ROL (grassland, Fig. 5.17(a)) is surprising. An
overestimation of photosynthesis, which has its maximum in the early af-
ternoon hours, can be seen in comparison to the observed NEE at several
days at ROL and WUE. Respiration during night is often underestimated
by the background run compared to the observations and is not sufficiently
increased by the analysis.
The NEE time series at HFS (Fig. 5.17(c)) shows a better compliance of
the analysis run with the observations compared to the background run.
NEE fluxes during afternoon reveal the best fit of the analysis to the ob-
servations. The underestimation of the analysis run compared to observed
NEE time series during night, is not confirmed by the concentration time
series. Analysed concentration time series at HFS show barely lower values
compared to the observations in Fig. 5.10(c).
The temporal mean of the biogenic fluxes of June 2012 is shown in Fig.
5.18, showing a very similar structure as the analysed flux factors on 14
June (Fig. 5.14). The analysis photosynthesis rate is estimated to be larger
in the TR32 region compared to the background. North-east and south-west
of the TR32 region analysed photosynthesis and respiration rates are lower.
At HFS analysed respiration is larger and photosynthesis lower, compared
to the background. A slight increase of all biogenic fluxes is seen in the area
of CBW, resulting in a slightly lower NEE for this region. Therefore it is
very likely, that simulated background NEE is slightly overestimated close
to CBW tower for June 2012.

5.2.2 1 km domain

The analysis runs of the 1 km domain assimilate the measurements of the
TR32 region, which are also used in configuration 1 of the 5 km analysis
run: JUE, MER, and ROL. The stations SEL and WUE are used for inde-
pendent evaluation. Three analysis runs are executed, differing slightly by
parameters civ, cant, cphot, and cresp to model the BECM’s B and K.
The RMSE and the bias of the background run and analysis configurations
for concentration and flux observations are presented in Fig. 5.19 in order
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(a) Photosynthesis background (b) Photosynthesis analysis

(c) Leaf respiration background (d) Leaf respiration analysis

(e) Soil respiration background (f) Soil respiration analysis

(g) NEE background (h) NEE analysis

Figure 5.18: Mean biogenic CO2 fluxes of the background (left column) and
analysis run (right column) for June 2012. Photosynthesis (first row) is opposed
to the other fluxes. Measurement stations are plotted as white crosses.
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to evaluate the analysis performance. Regarding the concentrations, the

Figure 5.19: Bias (left) and RMSE (right) of the concentration observations
(upper row) and flux observations (lower row) to the background run (black) and
the analysis runs of configuration 1 (blue), 2 (light-blue), and 3 (violet) with 1
km horizontal resolution for June 2012. The concentration measurements at SEL
and WUE are not assimilated for all analysis configurations.

bias for all analysis configurations is improved compared to the background
run for all stations except JUE (Fig. 5.19 upper left panel). The RMSE of
all analysis configurations shows a slight reduction compared to the back-
ground run, except from configuration 3 at WUE and configuration 1 and
2 at JUE (Fig. 5.19 upper right panel).
To evaluate the analysis performance with respect to the flux observations,
analysis configurations 1 and 2 are assessed first. At stations SEL and MER
the bias shows a good improvement (Fig. 5.19 lower left panel), the RMSE
a slight improvement (Fig. 5.19 lower right panel). This is opposed to ROL
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and WUE, where a clear deterioration of the analysis performance for the
bias and RMSE is seen. This deterioration is due to an overestimation of
photosynthesis and will be discussed later.
Analysis configuration 3 is not able to improve either the bias nor the RMSE
at the four stations. The reason is an underestimation of respiration and
photosynthesis at SEL and MER and an overestimation of the two biogenic
fluxes in the area of ROL and WUE, which is not further evaluated here.

Analysis configuration 2, showing on average the best improvement, is eval-
uated in more detail in the following. Time series of June 2012 are plotted
for concentrations in Fig. 5.20 and for NEE in Fig. 5.21 at MER, ROL,
and WUE. MER is presented instead of SEL since the time series at both
stations show similar structures, but an observation gap at SEL between
6 and 15 June hampers evaluation. A comparison of background and ob-
servation NEE (Fig. 5.21(a)) reveals an underestimation of photosynthesis,
which is improved slightly for several days by the analysis. Consequently,
concentration time series at MER show lower observations compared to the
model during afternoon hours of several days (Fig. 5.20(a)).The observed
concentration peaks during nights e.g. on 26-29 June are due to a combina-
tion of underestimated respiration and the low measurement height of 3 m
a.g.l., which is discussed in the case of the 5 km domain.
The concentration time series at ROL (Fig. 5.20(b)) shows the strongest
bias of observations and background model (bias=14.3 ppmV), which is
one reason for the overestimation of analysed photosynthesis seen in Fig.
5.21(b). The concentration time series of the analysis also overestimates
the observations (bias=3.8 ppmV), except on 10, 14 and 26 June. Together
with the strong negative bias of analysed NEE at ROL (bias=-11.7 𝜇mol

m2s
),

this indicates also a too coarse vertical model resolution for the measure-
ment height of 3 m a.g.l.
At WUE the non-assimilated concentration observations and the analysis
agree well until 22 June 2012 (Fig. 5.20(c)). The observed concentrations
of the following days show a weak daily amplitude compared to earlier days.
The observed fluxes in contrast (Fig. 5.21(c)), do not show a weaker daily
amplitude for NEE between 22 and 30 June. This can be explained by
an increase of observed friction velocity 𝑢* on 22 June, which indicates en-
hanced mixing between vertical layers. This increase of turbulent mixing
can be seen as well in the EURAD-IM. The strong diurnal amplitude of
the fluxes is reflected by the modelled concentrations of the 5 lowest model
layers (0 − 230 m), leaving the question open why model and observation
time series differ between 22 and 30 June at 38 m a.g.l..

The overestimation of photosynthesis at ROL and WUE is mainly caused
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(a) ff of biogenic respiration (b) ff of photosynthesis

Figure 5.22: Analysed flux factor (ff) of the 1 km domain for biogenic respira-
tion (left panel) and photosynthesis (right panel) on 26 June 2012. Measurement
stations are plotted as black crosses.

by the boundary values of the 5 km analysis run. A much shorter assimila-
tion window or the optimisation of boundary values is required to improve
the analysis. The 5 km analysis run estimated low photosynthesis and res-
piration rate outside the 1 km domain (Fig. 5.14). Inside the 1 km domain,
photosynthesis was analysed to be higher compared to the background run.
Due to the small spatial extent, the atmospheric CO2 concentration of the
1 km is strongly determined by its boundary values. Therefore, the analysis
of the flux factors for photosynthesis and respiration of the 1 km domain
(Fig. 5.22) is similar to that of the inner 5 km domain, which holds also
true for the mean biogenic fluxes for June 2012.

The analysis of the four biggest power plants of the 1 km domain, Weis-
weiler, Niederaußem, Frimmersdorf, and Neurath, is presented in Fig. 5.23.
Since these four point sources accumulate to more than 25 % of all an-
thropogenic CO2 emissions in Northrine-Westfalia, a large part of GHG
emissions of the model domain is analysed. Emissions of all four sources
are corrected downwards. The gradient of the fluxes reveals during which
days the emissions are observed by one of the measurement stations. Using
the temporal mean of the flux factors, the total amount of CO2, induced by
these power plants for June 2012, is presented in Table 5.5.

Since the 1 km domain is heavily influenced by the boundary values of the
simulations at the 5 km domain, the analysed biogenic fluxes with 1 km
resolution reveal a similar spatial pattern as the analysed fluxes at the 5 km
domain. Therefore photosynthesis is overestimated in the TR32 region and
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Figure 5.23: Analysed flux factors for Weisweiler, Niederaußem, Frimmersdorf,
and Neurath for June 2012.

Table 5.5: CO2 emissions of Weisweiler, Niederaußem, Frimmersdorf, and
Neurath for June 2012 in tonnes per month.

Power plant Background Analysis
Emissions CO2 [t/m] Emissions CO2 [t/m]

Weisweiler 1.87 E+06 1.83 E+06
Niederaußem 2.63 E+06 2.31 E+06
Frimmersdorf 1.34 E+06 1.22 E+06

Neurath 1.72 E+06 1.60 E+06

underestimated in areas north-east and south-west of this region. Respira-
tion is underestimated outside of the TR32 region as well. The reasons for
the spatial gradients of analysed biogenic were already discussed in detail
in Sect. 5.2.1, with regard to the vertical resolution of the model, the low
measurement height within the TR32 region, and the missing smoothing
properties of the atmospheric transport.



Chapter 6

Summary and Outlook

6.1 Summary

This study investigated the possibilities and limits of CO2 flux estimation by
assimilating concentration time series with the 4D-Var system EURAD-IM.
CO2 surface-atmosphere fluxes anthropogenic emissions, photosynthesis,
and biogenic respiration are optimised jointly with the initial atmospheric
concentration at high spatio-temporal resolution for each grid cell.
This approach involves a high degree of freedom of the optimisation para-
meters. On the one hand, this provides new opportunities to infer surface-
atmosphere CO2 fluxes from concentration observations. On the other hand,
the increased ill-posedness of the CO2 inversion problem must be controlled.

To enable CO2 inversion with the EURAD-IM by optimising four paramet-
ers jointly, the following developments and modifications were implemented.
Biogenic fluxes are simulated with the land surface model CLM 4.0, whose
diurnal cycle is optimised in EURAD-IM. Anthropogenic CO2 emissions of
the TNO inventory are scaled down with additional land use information
to 5 km and 1 km horizontal resolution. To interpret the quite weak signal
of surface-atmosphere fluxes in atmospheric CO2 concentration time series
the absolute monotone Walcek [Walcek, 2000] advection scheme has been
implemented. The adjoint advection routine is implemented such that the
properties of the forward advection scheme are preserved. This allows also
a precise processing of the gradient of the optimisation parameters back-
wards in time. The ratio of the different gradients with respect to the initial
values and flux factors is derived. Based on this derivation the variance of
the background error covariance matrix for flux factors K is modelled in a
new manner.
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Identical twin experiments reveal a higher sensitivity for the optimisation
of small fluxes by the new modelling compared to earlier implementations
of K. Further experiments with a spatial one-dimensional version of the
EURAD-IM show the impact of the choice of the background error covari-
ance matrices B and K to the joint analysis result. It is possible to re-
produce measured time series by several combinations of initial values and
flux factors. The error covariance matrices determine to which extent initial
values and flux factors for photosynthesis, respiration, and anthropogenic
emissions are adjusted by the analysis.
Identical twin experiments with the EURAD-IM present the influence of
disturbed initial values for the analysis of CO2 fluxes. Concentration time
series at the location of the observations may still show a sufficient compli-
ance between synthetic measurements and the analysis of optimising flux
factors only. Nevertheless, the optimised flux factors show severe deterior-
ation, if the uncertainty of initial values is not taken into account. Joint
optimisation leads to a substantially better analysis of flux factor compared
to that of optimising flux factors only. The minimum of the cost function
is 20 times smaller on average for the joint analysis compared to the flux
factor analysis.

An experiment to analyse surface-atmosphere CO2 fluxes for the TR32 re-
gion during June 2012 was executed. 4D-Var data assimilation is performed
for the domain with 5 km and 1 km horizontal resolution. The evaluation of
concentration time series at Selhausen demonstrates that the vertical model
resolution has to be refined for a better analysis of measurements positioned
3 m a.g.l.. Observed concentration peaks, by accumulated respiration dur-
ing night, are difficult to analyse due to the coarse model surface layer.
Time series at Hesse Forest Sarrebourg and Cabauw show a good compli-
ance of the analysis to the observation. The analysis run shows a significant
improvement compared to the background run for high observed concentra-
tion peaks during night at these stations.
The analysed flux factors for photosynthesis and respiration show strong
spatial gradients in the area of the measurement stations, which are located
in the surface layer. Fluxes close to these stations are over- or underes-
timated by the 4D-Var system. The main cause is the ill-posed nature of
the CO2 inversion problem, which is intensified by the chosen optimisation
strategy. A better analysis of fluxes is seen close to the Cabauw tower, where
measurements are assimilated at 120 m and 200 m a.g.l.. The smoothing
properties of atmospheric transport result in smooth analysed flux factors,
where less over- or underestimation can be seen.
An example of the long term impact of 4D-Var is investigated in detail. A
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high peak of background concentrations on 15 June 02 UTC at Cabauw
tower, is reduced by the analysis in compliance with the observations. It is
shown that the high background peak is due to fluxes released in the pre-
vious assimilation window, which are corrected by the analysis. It could be
shown that elevated concentrations due to soil respiration are traced back
and corrected by the EURAD-IM.

The 4D-Var System EURAD-IM demonstrated the ability to infer CO2

fluxes from temporal high resolved concentration time series, with a large
degree of freedom for the optimisation space. The main obstacle for the
chosen optimisation strategy of this work is the ill-posedness of the prob-
lem. High requirements have to be fulfilled to analyse surface-atmosphere
fluxes successfully regarding the modelling of atmospheric transport, the
a priori fluxes themselves, the initial CO2 concentration, and the correct
specification of error covariance matrices.

6.2 Outlook

To facilitate the solution of the ill-posed top-down CO2 inverse problem
the degree of freedom of the solution space has to be reduced or further
constraints, i.e. more observations, are needed. Measurements from radon
and measurements for the closure of the energy budget were used by Tolk
et al. [2009] to account for boundary layer characteristics. The bottom-up
approach, which uses direct measurement of NEE, can be applied to obtain
more reliable a priori fluxes for EURAD-IM. This allows for smaller back-
ground errors for biogenic fluxes, which reduces the solution space.
A further improvement of the analysed fluxes could be achieved by an en-
largement of the assimilation window. Measurements at high model layers
contain often signals from surface fluxes, which are released more than 24
hours ago. Using longer assimilation windows requires also the treatment
of transport errors, as it is feasible with weak constraint 4D-Var.





Appendix A

A.1 The adjoint model MT

To derive the adjoint model we combine Eq. (3.8) and (3.9) of the forward
run and introduce the following notation (remember that the transport oper-
ator (see Eq. (3.15)) T merges the advection and diffusion operator consid-
ering the operator splitting of the EURAD-IM: T𝑖,𝑖+1/2 = D𝑖,𝑖+1/2A

1
𝑖,𝑖+1/2,

T𝑖+1/2,𝑖+1 = A2
𝑖+1/2,𝑖+1D𝑖+1/2,𝑖+1)

̃︀T𝑖,𝑖+1/2 :=
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0 I
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, ̃︀T𝑖+1/2,𝑖+1 :=

(︂
T𝑖+1/2,𝑖+1 0
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)︂
∈ R2𝑛×2𝑛,

(A.1)

̃︀F𝑖+1/2 :=
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I △𝑡Ub

𝑖+1/2

0 I

)︂
∈ R2𝑛×2𝑛. (A.2)

We can now write in accordance with Eq. (3.8) and (3.9)(︂
x𝑖+1

f

)︂
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, (A.3)

as ̃︀F is equivalent to Eq. (3.9). Using Eq. (A.3), the adjoint model can be
derived
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which is Eq. (3.14). Equation (A.6) can now be used iteratively for
the calculation of (M0,𝑖)

T. For the sake of shorter notation we write

HT
𝑖 R

−1
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which is Eq. (3.25).

A.2 Derivation of the diagonal of K

In this Sect. the specific construction of the diagonal of K (Eq.(3.26)) and
an approximation of the gradient of the cost function (Eq. (3.27)) is shown.
First an approximation for the flux factor part of

∑︀𝑁
𝑖=0(M0,𝑖)

T (Eq. (3.18))
is derived with the crude approximation
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Using Eq. (A.9) and the notation [·]FF as the flux factor part we can write[︃
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Using additionally the construction of diag(K) (c designates a constant
number)

√︀
𝐾𝑟,𝑟 = c

𝑁

△𝑡

[︁
max

𝑠

̂︂|Ub(𝑠)|
]︁− 1

𝑙
[︁̂︂|Ub(𝑟)|

]︁− 𝑙−1
𝑙
, (A.13)
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the gradient of the preconditioned cost function can be approximated

∇𝒥 (v,w)
(3.18)
=

(︂
v
w

)︂
−
(︂
BT/2 0
0 KT/2

)︂ 𝑁∑︁
𝑖=0

(M0,𝑖)
T

(︂
x*
𝑖

0

)︂
(A.14)

(A.9)
=

(︂
v
w
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−
(︂
BT/2 0
0 KT/2
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(T0,𝑖)

Tx*
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Tx*
𝑖
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)︂
,

(A.17)

such that we get Eq. (3.27). As already mentioned in Sect. 3.4.2 and 3.4.4.2
the notation presented here is straightforward to apply also for three fluxes
but is avoided here for the sake of clarity.
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Bréon, A. Chédin and P. Ciais, Inferring CO2 sources and sinks from
satellite observations: Method and application to TOVS data, Journal of
Geophysical Research: Atmospheres, 110, (D24), 2005.

Ciais, P., P. P. Tans, J. W. White, M. Trolier, R. J. Francey,
J. A. Berry, D. R. Randall, P. J. Sellers, J. G. Collatz and
D. S. Schimel, Partitioning of ocean and land uptake of CO2 as in-
ferred by 𝛿13C measurements from the NOAA Climate Monitoring and
Diagnostics Laboratory Global Air Sampling Network, Journal of Geo-
physical Research: Atmospheres, 100, (D3), 5051–5070, 1995.

Collatz, G., J. Ball, C. Grivet and J. A. Berry, Physiological and
environmental regulation of stomatal conductance, photosynthesis and
transpiration: a model that includes a laminar boundary layer, Agric.
For. Meteorol., 54, (24), 107 – 136, 1991.

Courtier, P., J.-N. Thépaut and A. Hollingsworth, A strategy for
operational implementation of 4D-Var, using an incremental approach,
Q. J. R. Meteorol. Soc., 120, (519), 1367–1387, 1994.

Crevoisier, C., C. Sweeney, M. Gloor, J. L. Sarmiento and P. P.
Tans, Regional US carbon sinks from three-dimensional atmospheric CO2
sampling, Proceedings of the National Academy of Sciences, 107, (43),
18348–18353, 2010.

Daley, R., Atmospheric data analysis, Cambridge atmospheric and space
science series, Cambridge University Press, 6966, 25, 1991.

Daley, R. and E. Barker, NAVDAS: Formulation and diagnostics,
Monthly Weather Review, 129, (4), 869–883, 2001.

Deacon, E., The measurement of turbulent transfer in the lower atmo-
sphere, Advances in Geophysics, 6, 211–228, 1959.



86 BIBLIOGRAPHY

Dee, D., S. Uppala, A. Simmons, P. Berrisford, P. Poli, S. Kobay-
ashi, U. Andrae, M. Balmaseda, G. Balsamo, P. Bauer et al.,
The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Quarterly Journal of the royal meteorological society,
137, (656), 553–597, 2011.

Denning, A. S., M. Holzer, K. R. Gurney, M. Heimann, R. M.
Law, P. J. Rayner, I. Y. Fung, S.-M. FAN, S. Taguchi, P. Fried-
lingstein et al., Three-dimensional transport and concentration of SF6,
Tellus B, 51, (2), 266–297, 1999a.

Denning, A. S., T. Takahashi and P. Friedlingstein, Can a strong
atmospheric CO2 rectifier effect be reconciled with a reasonable carbon
budget?, Tellus B, 51, (2), 249–253, 1999b.

Desai, A. R., Climatic and phenological controls on coherent regional in-
terannual variability of carbon dioxide flux in a heterogeneous landscape,
Journal of Geophysical Research: Biogeosciences, 115, (G3), 2010.

Desai, A. R., D. J. Moore, W. K. Ahue, P. T. Wilkes, S. F.
De Wekker, B. G. Brooks, T. L. Campos, B. B. Stephens, R. K.
Monson, S. P. Burns et al., Seasonal pattern of regional carbon bal-
ance in the central Rocky Mountains from surface and airborne mea-
surements, Journal of Geophysical Research: Biogeosciences, 116, (G4),
2011.

Dietze, M. C., R. Vargas, A. D. Richardson, P. C. Stoy, A. G.
Barr, R. S. Anderson, M. A. Arain, I. T. Baker, T. A. Black,
J. M. Chen et al., Characterizing the performance of ecosystem
models across time scales: A spectral analysis of the North American
Carbon Program site-level synthesis, Journal of Geophysical Research:
Biogeosciences, 116, (G4), 2011.

Dowd, J. E. and D. S. Riggs, A comparison of estimates of michaelis-
menten kinetic constants from various linear transformations, J. biol.
Chem, 240, (2), 863–869, 1965.

Elbern, H. and H. Schmidt, Ozone episode analysis by four-dimensional
variational chemistry data assimilation, J. Geophys. Res.: Atmospheres
(1984–2012), 106, (D4), 3569–3590, 2001.

Elbern, H., H. Schmidt and A. Ebel, Variational data assimilation
for tropospheric chemistry modeling, Journal of Geophysical Research:
Atmospheres, 102, (D13), 15967–15985, 1997.



BIBLIOGRAPHY 87

Elbern, H., H. Schmidt, O. Talagrand and A. Ebel, 4D-variational
data assimilation with an adjoint air quality model for emission analysis,
Environ. Ecol. Stat., 15, (67), 539 – 548, 2000.

Elbern, H., A. Strunk, H. Schmidt and O. Talagrand, Emission
rate and chemical state estimation by 4-dimensional variational inversion,
Atmos. Chem. Phys., 7, (14), 3749–3769, 2007.

EMEP, E., EEA air pollutant emission inventory guidebook 2013,
European Environment Agency, Copenhagen, 2013.

Engelen, R. J. and A. P. McNally, Estimating atmospheric CO2
from advanced infrared satellite radiances within an operational four-
dimensional variational (4D-Var) data assimilation system: Results and
validation, Journal of Geophysical Research: Atmospheres, 110, (D18),
2005.

Engelen, R. J., A. S. Denning and K. R. Gurney, On error estim-
ation in atmospheric CO2 inversions, Journal of Geophysical Research:
Atmospheres, 107, (D22), 2002.

Enting, I. and J. Mansbridge, Seasonal sources and sinks of atmospheric
CO2 direct inversion of filtered data, Tellus B, 41, (2), 1989.

Errico, R. M., What is an adjoint model?, Bulletin of the American Met-
eorological Society, 78, (11), 2577–2591, 1997.

Evensen, G., Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error statistics,
Journal of Geophysical Research: Oceans, 99, (C5), 10143–10162, 1994.

Evensen, G., Data assimilation: the ensemble Kalman filter, Springer Sci-
ence & Business Media, 2009.

Fan, S., M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Taka-
hashi and P. Tans, A large terrestrial carbon sink in North America
implied by atmospheric and oceanic carbon dioxide data and models,
Science, 282, (5388), 442–446, 1998.

Farquhar, G., S. v. von Caemmerer and J. A. Berry, A biochemical
model of photosynthetic co2 assimilation in leaves of c3 species, Planta,
149, (1), 78–90, 1980.



88 BIBLIOGRAPHY

Fisher, M. and D. J. Lary, Lagrangian four-dimensional variational data
assimilation of chemical species, Quarterly Journal of the Royal Meteor-
ological Society, 121, (527), 1681–1704, 1995.

Fletcher, S., Mixed Gaussian-lognormal four-dimensional data assimila-
tion, Tellus A, 62, (3), 266–287, 2010.

Fletcher, S. J. and M. Zupanski, A hybrid multivariate normal and
lognormal distribution for data assimilation, Atmos. Sci. Lett., 7, (2),
43–46, 2006.

Foken, T. and B. Wichura, Tools for quality assessment of surface-based
flux measurements, Agricultural and forest meteorology, 78, (1), 83–105,
1996.

Gelb, A., Applied optimal estimation, MIT press, 1974.

Gerbig, C., J. Lin, S. Wofsy, B. Daube, A. Andrews, B. Stephens,
P. Bakwin and C. Grainger, Toward constraining regional-scale fluxes
of CO2 with atmospheric observations over a continent: 1. Observed spa-
tial variability from airborne platforms, Journal of Geophysical Research:
Atmospheres, 108, (D24), 2003a.

Gerbig, C., J. Lin, S. Wofsy, B. Daube, A. Andrews, B. Stephens,
P. Bakwin and C. Grainger, Toward constraining regional-scale fluxes
of CO2 with atmospheric observations over a continent: 2. Analysis of
COBRA data using a receptor-oriented framework, Journal of Geophys-
ical Research: Atmospheres, 108, (D24), 2003b.

Goris, N. and H. Elbern, Singular vector based targeted observations of
chemical constituents: description and first application of the EURAD-
IM-SVA, Geoscientific Model Development Discussions, 8, (8), 6267–
6307, 2015.

Gou, T. and A. Sandu, Continuous versus Discrete Advection Adjoints
in Chemical Data Assimilation with CMAQ, Atmos. Env., 45, 4868–4881,
2011.

Goulden, M. L., J. W. Munger, S.-M. Fan, B. C. Daube and S. C.
Wofsy, Exchange of carbon dioxide by a deciduous forest: response to
interannual climate variability, Science, 271, (5255), 1996.

Gourdji, S. M., North American CO2 exchange: Inter comparison of
modeled estimates with results from a fine scale atmospheric inversion,
Biogeosciences, 2013.



BIBLIOGRAPHY 89

Gourdji, S., A. Hirsch, K. Mueller, V. Yadav, A. Andrews and
A. Michalak, Regional-scale geostatistical inverse modeling of North
American CO2 fluxes: a synthetic data study, Atmospheric Chemistry
and Physics, 10, (13), 6151–6167, 2010.

Graf, A., J. Werner, M. Langensiepen, A. van de Boer,
M. Schmidt, M. Kupisch and H. Vereecken, Validation of a min-
imum microclimate disturbance chamber for net ecosystem flux measure-
ments, Agricultural and Forest Meteorology, 174, 1–14, 2013.

Gurney, K. R., R. M. Law, A. S. Denning, P. J. Rayner, D. Baker,
P. Bousquet, L. Bruhwiler, Y.-H. Chen, P. Ciais, S. Fan et al.,
Towards robust regional estimates of CO2 sources and sinks using atmo-
spheric transport models, Nature, 415, (6872), 626–630, 2002.

Hamazaki, T., A. Kuze and K. Kondo, Sensor system for greenhouse
gas observing satellite (GOSAT), in Optical Science and Technology, the
SPIE 49th Annual Meeting, 275–282, International Society for Optics and
Photonics, 2004.

Hascoet, L. and V. Pascual, The Tapenade Automatic Differentiation
tool: principles, model, and specification, ACM Transactions on Math-
ematical Software (TOMS), 39, (3), 20, 2013.

Hollinger, D., J. Aber, B. Dail, E. Davidson, S. Goltz, H. Hughes,
M. Leclerc, J. Lee, A. Richardson, C. Rodrigues et al., Spatial and
temporal variability in forest-atmosphere CO2 exchange, Global Change
Biology, 10, (10), 1689–1706, 2004.

Houghton, R. A., Counting terrestrial sources and sinks of carbon, Cli-
matic Change, 48, (4), 525–534, 2001.

Houghton, R. A., Balancing the global carbon budget, Annu. Rev. Earth
Planet. Sci., 35, 313–347, 2007.

Houghton, R. A., How well do we know the flux of CO2 from land-use
change?, Tellus B, 62, (5), 337–351, 2010.

Huntzinger, D. N., W. M. Post, Y. Wei, A. Michalak, T. O. West,
A. Jacobson, I. Baker, J. M. Chen, K. Davis, D. Hayes et al.,
North American Carbon Program (NACP) regional interim synthesis:
Terrestrial biospheric model intercomparison, Ecological Modelling, 232,
144–157, 2012.



90 BIBLIOGRAPHY

IPCC, Climate change 2014: Synthesis report, 2014.

Jung, M., M. Reichstein, H. A. Margolis, A. Cescatti, A. D.
Richardson, M. A. Arain, A. Arneth, C. Bernhofer, D. Bonal,
J. Chen et al., Global patterns of land-atmosphere fluxes of carbon di-
oxide, latent heat, and sensible heat derived from eddy covariance, satel-
lite, and meteorological observations, J. Geophys. Res.: Biogeosciences
(2005–2012), 116, (G3), 2011.

Kalman, R. E., A new approach to linear filtering and prediction prob-
lems, Journal of Basic Engineering, 82, (1), 35–45, 1960.

Kalman, R. E. and R. S. Bucy, New results in linear filtering and
prediction theory, Journal of Basic Engineering, 83, (1), 95–108, 1961.

Kaminski, T., P. J. Rayner, M. Heimann and I. G. Enting, On
aggregation errors in atmospheric transport inversions, Journal of Geo-
physical Research: Atmospheres, 106, (D5), 4703–4715, 2001.

Kaminski, T., W. Knorr, P. Rayner and M. Heimann, Assimilating
atmospheric data into a terrestrial biosphere model: A case study of the
seasonal cycle, Global Biogeochemical Cycles, 16, (4), 2002.

Keeling, R. F., S. C. Piper, M. Heimann et al., Global and hemi-
spheric CO2 sinks deduced from changes in atmospheric O2 concentra-
tion, Nature, 381, (6579), 218–221, 1996.

Keeling, C. D., T. P. Whorf et al., Atmospheric CO2 records from sites
in the SIO air sampling network, Trends: a compendium of data on global
change, 16–26, 2005.

Keenan, T., I. Baker, A. Barr, P. Ciais, K. Davis, M. Dietze,
D. Dragoni, C. M. Gough, R. Grant, D. Hollinger et al., Ter-
restrial biosphere model performance for inter-annual variability of land-
atmosphere CO2 exchange, Global Change Biology, 18, (6), 1971–1987,
2012.

Klimpt, J., E. Friese and H. Elbern, Joint CO2 state and flux estima-
tion with the 4D-Var system EURAD-IM, Geoscientific Model Develop-
ment Discussions, 2016, 1–24, 2016.

Klinker, E., F. Rabier, G. Kelly and J.-F. Mahfouf, The ECMWF
operational implementation of four-dimensional variational assimilation.
III: Experimental results and diagnostics with operational configuration,



BIBLIOGRAPHY 91

Quarterly Journal of the Royal Meteorological Society, 126, (564), 1191–
1215, 2000.

Knorr, W. and M. Heimann, Uncertainties in global terrestrial bio-
sphere modeling: 1. A comprehensive sensitivity analysis with a new
photosynthesis and energy balance scheme, Global Biogeochemical Cycles,
15, (1), 207–225, 2001.

Kretschmer, R., C. Gerbig, U. Karstens, G. Biavati, A. Vermeu-
len, F. Vogel, S. Hammer and K. Totsche, Impact of optimized
mixing heights on simulated regional atmospheric transport of CO2, At-
mos. Chem. Phys., 14, (14), 7149–7172, 2014.

Krinner, G., N. Viovy, N. de Noblet-Ducoudré, J. Ogée, J. Pol-
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verloren gegangen. Weiterhin konnte ich mich immer auf ein offenes Ohr
und einen guten Rat von Elmar bei komplizierten Problemen verlassen. Mi-
chael Memmersheimer danke ich für seine Erklärungen zur Meteorologie,
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das Gleiche.



Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig ange-
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