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Abstract
It is estimated that around 10% of the global population is affected by chronic kidney disease

(CKD), placing a significant burden on healthcare systems worldwide (Francis et al. 2024).
Among the causes of CKD, 90% are attributed to glomerular diseases, in which podocytes are
damaged and lost (Wiggins 2007). Podocytes are terminally differentiated visceral epithelial
cells, which play a crucial role in establishing the selective permeability in the glomerulus.
Recent large-scale transcriptomic approaches in mice and humans have demonstrated that
alterations in the glomerular transcriptional program are a pivotal feature of numerous diseases
affecting podocytes. In this thesis, I investigate the transcriptional regulation of healthy and
damaged podocytes through multiple approaches. First, I analyzed novel bulk RNA sequencing
data from glomeruli to characterize transcriptional changes resulting from perturbation of the
Wt1 transcription factor, a critical regulator of podocyte biology. I then leveraged novel
ChIP-seq data to explore how podocyte damage rewires the transcriptional network, focusing on
interactions regulated by Wt1 and co-regulated by Tead1. Second, using single-nucleus RNA
sequencing (snRNA-seq), I distinguished podocyte-specific transcriptional changes from shifts in
cellular composition induced by podocyte injury. Third, I developed a universal metric of
podocyte health, termed the podocyte damage score (PDS), using transcriptomic data from
published sources. Applying the PDS to single-cell RNA sequencing datasets from various
podocyte damage models allowed us to identify both universal and model-specific features of the
transcriptional response to injury. Additionally, by integrating these findings with a podocyte
transcriptional regulatory network (TRN) constructed from podocyte-specific ATAC-seq data
and transcription factor motifs, I characterized the transcriptional regulators involved in podocyte
transcriptome rewiring under damage conditions. In conclusion, this research advances our
understanding of gene regulation in healthy and damaged podocytes and establishes
methodologies for studying cell-specific mechanisms of disease at the single-cell level. It is my
hope that these findings will contribute to the development of new therapeutic strategies for
CKD.
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1.1 Overview

Chronic kidney disease (CKD) is a major global health concern, affecting approximately
10% of the world's population and placing a significant burden on healthcare systems worldwide.
The prevalence of CKD has increased by 33% between 1990 and 2017, and it is projected to
continue rising due to factors such as aging populations and increasing rates of diabetes and
hypertension (Kovesdy 2022; Wong et al. 2024; GBD Chronic Kidney Disease Collaboration
2020).

Among the causes of CKD, approximately 90% are attributed to glomerular diseases, where
damage and loss of podocytes play a critical role (Reiser and Sever 2013). Podocytes are
terminally differentiated visceral epithelial cells that are essential for maintaining the selective
permeability of the glomerular filtration barrier in the kidney. They possess a unique architecture
with interdigitating foot processes connected by slit diaphragms, which prevent the leakage of
proteins into the urine (Pavenstädt, Kriz, and Kretzler 2003).

Damage to podocytes disrupts this filtration barrier, leading to proteinuria—a hallmark of
many kidney diseases—and can ultimately result in focal segmental glomerulosclerosis (FSGS),
a severe form of glomerular scarring. FSGS is characterized by the segmental scarring of some
glomeruli and is a frequent pathological event in CKD. The progression of FSGS often leads to
end-stage renal disease, necessitating dialysis or kidney transplantation (Fogo 2015; Reidy and
Kaskel 2007).

Recent large-scale transcriptomic approaches in mice and humans have demonstrated that
alterations in the glomerular transcriptional program are pivotal features of numerous diseases
affecting podocytes. Changes in gene expression within podocytes can influence key cellular
processes such as cytoskeletal organization, cell adhesion, and survival, all of which are essential
for maintaining podocyte structure and function (Fu et al. 2021; Ettou et al. 2020a; Lake et al.
2023; Clair et al. 2024).

Understanding the mechanisms underlying podocyte injury and the progression of glomerular
diseases is essential for developing effective therapies. One crucial aspect is the regulation of
gene expression by transcription factors (TFs), which control the transcriptional programs that
maintain podocyte identity and function. Dysregulation of TFs can lead to aberrant expression of
target genes, contributing to podocyte injury and disease progression (Susan E. Quaggin 2002;
Rascle et al. 2007).

For instance, the Wilms' tumor 1 (WT1) transcription factor is a key regulator of podocyte
gene expression and has been implicated in both the development and maintenance of podocytes.
Mutations in WT1 can lead to a range of kidney diseases, including FSGS (Kann et al. 2015;
Lipska et al. 2014). Similarly, TEA domain transcription factor 1 (TEAD1) has been identified as
a crucial regulator of podocyte biology, influencing cellular pathways involved in podocyte
function and disease (Burt et al. 2022; Chen et al. 2024).

To elucidate the complex gene regulatory mechanisms in podocytes, transcriptional
regulatory networks (TRNs) provide a powerful framework. TRNs represent the interactions
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between TFs and their target genes, allowing for the visualization and analysis of gene regulation
at a systems level. By modeling these networks, researchers can identify key regulatory nodes
and pathways that may be altered in disease states.

Since the advent of high-throughput measurement technologies in the late 1990s,
reconstructing the structure of TRNs has been a central computational problem in systems
biology (Lee et al. 2002; Tan, Tegner, and Ravasi 2008). Significant progress has been made
over the past two decades, with many computational tools now available for network
reconstruction. However, the complexity of biological systems and the limitations of current
technologies mean that fully accurate TRN models are still challenging to obtain (Unger Avila et
al. 2024).

In this thesis, we aim to update a TRN model for podocytes so that it can capture the key
aspects of gene regulation during disease progression at the single-cell level. By integrating data
from various sources, including high-throughput sequencing and chromatin accessibility assays,
we can construct a comprehensive network that reflects the dynamic regulatory landscape of
podocytes under healthy and diseased conditions.

1.2 Podocytes in Health and Disease

1.2.1 Podocytes: Highly Specialized Cells of the Kidney Glomerulus

Podocytes are terminally differentiated visceral epithelial cells that play a crucial role in
establishing the selective permeability of the glomerular filtration barrier in the kidney.
Structurally, podocytes consist of a central cell body and numerous cytoplasmic extensions
known as foot processes (FPs). These foot processes interdigitate with those of adjacent
podocytes, forming specialized cell-cell junctions called slit diaphragms (SDs). The slit
diaphragm is a critical component of the filtration barrier, functioning as a size-selective and
charge-selective filter that prevents the passage of proteins into the urine (Pavenstädt, Kriz, and
Kretzler 2003; K. Tryggvason and Wartiovaara 2001).

The cytoskeleton of podocyte foot processes is composed of microtubules, intermediate
filaments, and a dynamic network of actin filaments. The actin cytoskeleton, in particular, is
essential for maintaining the complex architecture of foot processes and for the contractile
functions of podocytes (Drenckhahn and Franke 1988; Ichimura, Kurihara, and Sakai 2003). The
integrity of the slit diaphragm and foot processes is supported by various structural and signaling
proteins, including nephrin, podocin, and CD2-associated protein (Schwarz et al. 2001; Huber
and Benzing 2005).

Together with the glomerular basement membrane (GBM) and the fenestrated endothelium,
podocytes form the tri-layered glomerular filtration barrier. The GBM is a specialized
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extracellular matrix that provides structural support and contributes to the selective filtration
properties of the barrier through its negatively charged components, such as heparan sulfate
proteoglycans (Haraldsson, Nyström, and Deen 2008; Karl Tryggvason, Patrakka, and
Wartiovaara 2006).

Podocytes express specific markers that reflect their specialized functions. Key podocyte
markers include nephrin (NPHS1), podocin (NPHS2), synaptopodin (SYNPO), and Wilms'
tumor 1 (WT1). These proteins are integral to the structure and signaling mechanisms of
podocytes and are often used to identify podocytes in research and diagnostic settings (Dong et
al. 2015; Schmid et al. 2003).

1.2.2 Podocyte Damage as a Major Cause of Kidney Disease

Podocyte injury is a central event in the pathogenesis of many glomerular diseases, leading to
proteinuria and progressive kidney dysfunction. Damage to podocytes results in the effacement
(flattening and broadening) of foot processes and disruption of the slit diaphragm, compromising
the integrity of the glomerular filtration barrier. This allows proteins, such as albumin, to leak
into the urine—a hallmark of glomerular disease.

Persistent podocyte injury can lead to detachment of podocytes from the GBM and
subsequent loss of these cells, as podocytes are terminally differentiated and have limited
capacity for regeneration. The loss of podocytes triggers a cascade of events, including the
formation of sclerotic lesions and excessive deposition of extracellular matrix components,
culminating in focal segmental glomerulosclerosis (FSGS). FSGS is characterized by segmental
scarring of some glomeruli and is a common pathological finding in chronic kidney disease
(CKD). During the progression of FSGS, the remaining healthy glomeruli undergo
hyperfiltration to compensate for the loss of function, which increases shear stress and can
exacerbate podocyte damage, creating a vicious cycle. If left untreated, FSGS can lead to
end-stage renal disease, necessitating dialysis or kidney transplantation (Kriz, Gretz, and Lemley
1998; Mundel and Shankland 2002)(Kerjaschki 2001; Pavenstädt, Kriz, and Kretzler 2003;
Mundel and Reiser 2010; Rosenberg and Kopp 2017).

Early detection of podocyte injury is crucial for preventing disease progression.
Microalbuminuria, a condition characterized by the excretion of small amounts of albumin in the
urine, is an early indicator of podocyte damage and CKD. Recent studies have linked
microalbuminuria with aging and have demonstrated that interventions targeting the
renin-angiotensin system, such as angiotensin-converting enzyme inhibitors or angiotensin
receptor blockers, can reduce mortality risk and biological age in patients with CKD (Fong et al.
2024).

Current therapeutic strategies for FSGS include the use of corticosteroids and
immunosuppressive agents like calcineurin inhibitors (CNIs). While these treatments can induce
remission of proteinuria in some patients, they are not curative and may have significant side
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effects (Campbell and Tumlin 2018). The narrow window for effective intervention underscores
the need for novel therapies that target the underlying mechanisms of podocyte injury
(Malaga-Dieguez et al. 2015; Trachtman 2020).

Genetic factors play a significant role in the susceptibility to podocyte injury and the
development of FSGS. Mutations in genes encoding key podocyte proteins, such as NPHS1
(nephrin), NPHS2 (podocin), ACTN4 (alpha-actinin-4), and TRPC6 (transient receptor potential
cation channel 6), have been identified in hereditary forms of FSGS (Kaplan et al. 2000; Winn et
al. 2005; Akchurin and Reidy 2015; Hall et al. 2015). These genetic insights highlight the
importance of podocyte-specific pathways in maintaining glomerular function.

1.2.3 Mechanisms in Podocyte Disease: The Role of the Podocyte Nucleus

While extensive research has focused on the structural components of podocytes, emerging
evidence indicates that nuclear processes play a pivotal role in podocyte function and disease.
Transcriptional regulation within the podocyte nucleus orchestrates the expression of genes
critical for maintaining podocyte identity, cytoskeletal integrity, and response to injury (Lake et
al. 2023; Yang et al. 2021).

Mutations in genes encoding nuclear proteins and transcription factors have been implicated
in podocyte diseases. Notably, mutations in WT1 (Wilms' tumor 1), a zinc-finger transcription
factor highly expressed in podocytes, cause a spectrum of glomerular diseases, including
Denys-Drash syndrome, Frasier syndrome, and isolated FSGS. WT1 regulates the expression of
genes involved in podocyte differentiation and function, and its dysregulation leads to podocyte
dysfunction and disease progression (Guo et al. 2002; Morrison et al. 2008).

Other transcription factors, such as LMX1B (LIM homeobox transcription factor 1 beta),
MAFB, FOXC2, and TCF21, have been identified as essential regulators of podocyte
development and maintenance (Rohr et al. 2002; Sadl et al. 2002; White et al. 2010; Maezawa et
al. 2014). Mutations in these factors can result in podocyte abnormalities and glomerular disease.
For example, mutations in LMX1B cause Nail-Patella syndrome, which includes nephropathy
due to podocyte defects (Sato et al. 2005).

Moreover, epigenetic regulators and chromatin remodelers, such as SMARCAL1, have been
associated with podocyte diseases. Mutations in SMARCAL1 lead to Schimke immuno-osseous
dysplasia, characterized by immunodeficiency and nephrotic syndrome due to podocyte
dysfunction (Lefevre et al. 2010; Liu et al. 2020).

Canonical signaling pathways activated upon podocyte damage, such as Notch, Wnt, and
TGF-β pathways, converge in the nucleus to modulate gene expression. Aberrant activation of
these pathways contributes to podocyte injury and sclerosis. For instance, activation of Notch
signaling in podocytes induces dedifferentiation and apoptosis, promoting glomerulosclerosis (H.
Kato and Susztak 2012; D. Wang et al. 2011).
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As mentioned previously, large-scale transcriptomic studies have revealed that changes in
glomerular transcriptional programs are key features of CKD and podocyte disease processes.
These studies highlight the dynamic nature of gene expression changes in podocytes during
disease progression and underscore the importance of nuclear mechanisms in podocyte
pathology. Understanding the transcriptional regulatory networks in podocytes is crucial for
identifying novel therapeutic targets. Investigating the roles of transcription factors and
chromatin modifiers in podocyte health and disease can provide insights into the molecular
mechanisms underlying podocyte injury and suggest strategies for intervention.

1.3 Transcriptional Regulatory Networks

Gene expression in cells is a complex and tightly regulated process. This regulation is
orchestrated by intricate systems known as gene regulatory networks (GRNs), which ensure that
genes are expressed at the right time, location, and levels to maintain proper cellular function.
The control of gene expression is fundamental to all biological processes, from development to
cellular homeostasis, and its dysregulation is implicated in many diseases, including cancer,
neurodegeneration, and chronic degenerative diseases (Macneil and Walhout 2011; Lee et al.
2002).

A transcriptional regulatory network (TRN) is a subset of GRNs that focuses on the role of
transcription factors (TFs) in regulating gene expression. Transcription factors are proteins that
bind to specific DNA sequences, thereby controlling the transcription of genetic information
from DNA to mRNA. TRNs map out the relationships between TFs and their target genes,
representing a directed, causal network. They can reveal how a single transcription factor might
influence multiple downstream targets and how different TFs might work in combination to
regulate complex gene expression patterns (Walhout 2006; Busser, Bulyk, and Michelson 2008;
Qian et al. 2003).

1.3.1 Types of Gene Regulatory Networks

Gene regulatory networks are categorized based on the nature of the interactions they
describe. Three common types of networks are:

● Signal Transduction Networks: These networks represent interactions between
biomolecules that mediate cellular signaling pathways. A classic example is kinase
networks, where proteins interact through phosphorylation to transmit signals. These
signals often lead to changes in the activity of transcription factors, thereby influencing
gene expression (Pawson 1995).

12

https://paperpile.com/c/d3HTZm/oF1P+i8Lh
https://paperpile.com/c/d3HTZm/oF1P+i8Lh
https://paperpile.com/c/d3HTZm/1QcZ+t4TW+VIcJ
https://paperpile.com/c/d3HTZm/1QcZ+t4TW+VIcJ
https://paperpile.com/c/d3HTZm/ZgDq


● Transcription Factor Networks: These networks focus on the direct regulation of genes
by TFs. They map which genes are under the control of specific TFs, which can either
activate or repress gene expression. These networks are critical in understanding cellular
differentiation and response to stimuli (Qian et al. 2003; Bonneau et al. 2007).

● Gene Coexpression Networks: These are statistical networks based on gene expression
data. They model relationships between genes that are coexpressed across different
conditions or tissues. Unlike transcription factor networks, coexpression networks do not
necessarily imply a direct regulatory interaction but suggest that the genes are part of a
common functional module (Stuart et al. 2003).

1.3.2 Building and Interpreting Transcriptional Regulatory Networks

The construction of TRNs is typically data-driven, relying on a variety of high-throughput
technologies. Advances in genomics, transcriptomics, and epigenomics have allowed researchers
to map transcription factor binding sites and correlate these sites with gene expression data
(Villar et al. 2015). Key data sources for constructing TRNs include:

● ChIP-seq (Chromatin Immunoprecipitation Sequencing): This method allows for the
identification of transcription factor binding sites across the genome (Johnson et al.
2007).

● ATAC-seq (Assay for Transposase-Accessible Chromatin Sequencing): Used to
assess chromatin accessibility, indicating potential regulatory regions (Pique-Regi et al.
2011).

● RNA-seq: This is used to measure gene expression levels and can help identify genes
that are regulated by specific TFs based on changes in expression under different
conditions.

The integration of these diverse data types is critical for building accurate and
context-specific TRNs. Computational algorithms such as Inferrelator or SCENIC (Single-cell
regulatory network inference and clustering) can infer regulatory interactions at the single-cell
level, allowing for the analysis of gene regulation in different cell types and disease states (Aibar
et al. 2017; Jackson et al. 2020). These approaches help researchers move beyond simply
identifying which genes are expressed in a cell to understanding how and why these genes are
being expressed.
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1.3.3 Changes in Transcriptional Regulatory Networks in Disease

In many diseases, particularly chronic and degenerative conditions, TRNs undergo
significant alterations. These changes can be triggered by mutations, environmental stress, or
aging, which disrupt the normal regulation of gene expression (Lee and Young 2013). For
example, in cancer, mutations in transcription factors or in the regulatory regions of target genes
can lead to the misregulation of critical cellular processes, such as cell cycle control or apoptosis,
contributing to tumorigenesis (Bradner, Hnisz, and Young 2017; Brach, Kauer, and Herrmann
1996).

In neurodegenerative diseases, such as Alzheimer's or Parkinson's, changes in TRNs can
result in the loss of neuronal function and cell death (Pearl et al. 2019). Similarly, in chronic
kidney disease, alterations in TRNs may disrupt the normal function of podocytes, leading to
proteinuria and glomerulosclerosis (Kann et al. 2015). Identifying these changes in TRNs not
only helps in understanding disease mechanisms but also offers potential therapeutic targets. By
targeting specific TFs or their downstream pathways, it may be possible to restore normal gene
expression patterns and slow or reverse disease progression (Hayashi et al. 2014).

1.3.4 The Role of Transcriptional Regulatory Networks in Therapeutics

Targeting transcriptional regulatory networks offers a promising avenue for developing novel
therapies. Since TFs often regulate multiple genes, modulating a single TF can have broad
effects on cellular function (Fisher and Kelly 2011). Small molecules that inhibit or activate
specific TFs are being explored as potential treatments for various diseases. In cancer, drugs that
target transcription factors such as MYC or p53 are already under investigation (“MYC on the
Path to Cancer” 2012; Hollstein et al. 1991). Additionally, epigenetic therapies, which modify
the accessibility of DNA to transcription factors, are showing promise in the treatment of certain
cancers and genetic diseases (“Cancer Epigenetics: From Mechanism to Therapy” 2012).

In conclusion, TRNs provide a powerful framework for understanding the regulation of gene
expression in both health and disease. Advances in high-throughput technologies and
computational methods are allowing for the construction of increasingly detailed and accurate
TRNs. By studying changes in these networks in disease states, researchers can identify new
therapeutic targets and develop more effective treatments for a wide range of conditions (Konda
et al. 2023).
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1.4 Transcriptional Regulation in Podocytes

1.4.1 The Podocyte Transcription Factor Repertoire

The functionality and identity of podocytes are maintained by a complex network of
transcription factors (TFs) that regulate gene expression essential for their development,
differentiation, and maintenance. Transcription factors often function through cooperation with
other proteins, forming intricate networks that allow for combinatorial regulation of gene
expression (Susan E. Quaggin 2002). This cooperative interaction enhances the regulatory
capacity of TFs, enabling a higher number of unique expression states without necessitating an
increase in the number of distinct TFs (M. Kato et al. 2004). Additionally, such networks provide
robustness to the system, allowing certain regulatory functions to persist even if one TF becomes
non-functional (Macneil and Walhout 2011).

The significance of individual transcription factors in podocyte specification and
differentiation has been established over the past few decades. Pod-1/Tcf21 was one of the first
TFs identified in glomerular epithelial cells during kidney development (S. E. Quaggin, Vanden
Heuvel, and Igarashi 1998). Subsequently, the roles of Wilms' tumor 1 (WT1), LIM homeobox
transcription factor 1 beta (LMX1B), and v-maf musculoaponeurotic fibrosarcoma oncogene
homolog B (MAFB) were elucidated, highlighting their importance in both developing and
mature podocytes (Susan E. Quaggin 2002; Miner et al. 2002; Moriguchi et al. 2006). These TFs,
along with members of the FOXO family, have been confirmed as crucial regulators of podocyte
gene expression (Yang et al. 2021).

Advancements in genomic technologies have allowed for the reconstruction of transcriptional
regulatory networks in podocytes. In Xenopus, WT1 was identified as a master regulator within
such a network (White et al. 2010). Further studies expanded on the role of WT1, revealing a
comprehensive gene regulatory network in podocytes with WT1 at its core (Kann et al. 2015).
Analysis of WT1 chromatin immunoprecipitation sequencing (ChIP-seq) data in mice suggested
that podocytes possess an intricate network of transcription factors, including WT1, TEA domain
transcription factor 1 (TEAD1), MAFB, FOX proteins, TCF21, and LMX1B (Kann et al. 2015;
Rahmatollahi 2020). These transcription factors cooperatively bind to podocyte-specific
enhancers to drive gene expression essential for podocyte function. However, the specific
podocyte pathways co-regulated by these master TFs remain to be fully elucidated.

1.4.2 WT1 as a Core Regulator of Podocyte Transcriptional Programs

WT1 is an indispensable transcription factor for podocyte development and function. It is a
DNA-binding zinc-finger protein belonging to the early growth response (EGR) family. WT1
expression is upregulated early during kidney development, marking the emergence of nephron
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epithelia and podocyte precursors, suggesting its role as a pioneer transcription factor (Dressler
1995; Rascle et al. 2007). Pioneer TFs initiate tissue-specific transcriptional programs by binding
to regulatory regions of target genes and activating their transcription, often leading to the
activation of additional TFs that stabilize the gene expression patterns (Zaret 2020).

In mature podocytes, WT1 expression is maintained at high levels throughout life. Decreased
WT1 levels, due to mutations or disease states, result in failed maintenance of podocyte identity
and function (Guo et al. 2002 (Morrison et al. 2008). Mutations in WT1 lead to various renal
diseases, ranging from severe congenital disorders such as Wilms' tumor (nephroblastoma),
Denys-Drash syndrome, and Frasier syndrome, to less severe but persistent conditions like
minimal change disease and focal segmental glomerulosclerosis (FSGS) (Lipska et al. 2014).

WT1 regulates gene expression by binding to promoters and enhancers of target genes,
functioning as either a transcriptional activator or repressor depending on the recruitment of
co-activators like CBP/p300 or co-repressors such as BASP1 in a chromatin-specific context
(Green et al. 2009). Prior to comprehensive studies, only a few target genes of WT1 in podocytes
had been identified (Guo et al. 2002).

Our group characterized the WT1-dependent transcriptional network in podocytes by
performing ChIP-seq in wild-type mouse kidneys and mRNA sequencing (RNA-seq) of
fluorescence-activated cell sorting (FACS)-sorted mouse podocytes in vivo (Kann et al. 2015;
Rahmatollahi 2020). We identified approximately 14,500 reproducible WT1 binding sites in the
podocyte genome, encompassing all previously known WT1 target genes in podocytes.

We classified WT1 target genes into two categories based on their binding patterns:
● Class 1: Genes bound exclusively at their transcription start site (TSS).
● Class 2: Genes bound at their TSS and additional sites within intronic or intergenic

regions.
Both classes exhibited increased podocyte mRNA expression levels compared to unbound

genes, with class 2 genes displaying higher expression levels. Functional annotation revealed that
class 1 genes predominantly consisted of housekeeping genes, whereas class 2 genes represented
a specialized podocyte gene toolkit essential for podocyte-specific functions.

Analysis of transcription factor binding motifs within non-TSS WT1 peaks (putative
enhancer sites) uncovered a transcriptional network involving WT1 and other TFs with
established roles in podocytes, including FOX proteins, MAFB, TCF21, and LMX1B. This
supports the concept of WT1 functioning as a pioneer TF orchestrating a network crucial for
podocyte identity and function.

Notably, the most significantly enriched TF binding motif within these enhancer regions was
that of TEAD1, a downstream effector of the Hippo signaling pathway. The Hippo pathway is
well-known for its role in regulating organ growth and cell proliferation. TEAD1's involvement
suggests that Hippo signaling may play a significant role in podocyte biology, particularly in
regulating cell-matrix interactions vital for podocyte structure and function (Bonse et al. 2018;
Chen et al. 2024).
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1.4.3 Analysis of Transcriptional Networks in Glomerular Disease

Building upon our understanding of the WT1-dependent transcriptional network in healthy
podocytes, we sought to investigate how this network is altered in podocyte disease. We utilized
a heterozygous WT1 knockout mouse model (WT1^+/–), which serves as a model for genetic
FSGS. In humans, haploinsufficiency of WT1 leads to reduced WT1 expression levels and is
associated with FSGS and other glomerular diseases (Guo et al. 2002).

By backcrossing WT1^+/– mice into an FVB background, we generated a consistent
phenotype characterized by proteinuria, foot process effacement, and histological features of
FSGS beginning at four weeks of age (Kann et al. 2015). We performed WT1 ChIP-seq analyses
on WT1^+/– mice and wild-type controls at eight weeks of age, an early stage of disease
progression.

Our results demonstrated that a 40% reduction in WT1 expression in podocytes led to a
significant loss of WT1 occupancy at approximately one-third of WT1 binding sites in WT1^+/–
mice compared to controls (Kann et al. 2015). This loss of binding was independent of the initial
strength of the binding sites in wild-type mice, suggesting a regulated process rather than random
loss at weaker sites.

Gene ontology analysis of the lost WT1 binding sites revealed significant enrichment of
genes involved in transforming growth factor-beta (TGF-β) and Notch signaling pathways (Kann
et al. 2015). These pathways are known contributors to podocyte injury and glomerulosclerosis.
For instance, WT1 was no longer bound near the promoters of Deltex-2 and Deltex-4, positive
regulators of Notch signaling. The upregulation of these genes upon WT1 loss suggests that
WT1 may normally repress components of the Notch pathway to maintain podocyte integrity
(Kann et al. 2015).

These findings provide evidence that alterations in WT1 binding contribute to the activation
of pathogenic signaling pathways in podocyte disease. They also highlight the dynamic response
of nuclear TFs to podocyte injury, emphasizing the importance of transcriptional regulation in
disease progression. While ChIP-seq experiments have been instrumental in uncovering
transcriptional networks, they are resource-intensive and technically challenging, especially
when profiling multiple TFs in specific cell types like podocytes.
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1.5 Single-Cell RNA Sequencing: A Tool for Studying Cellular Damage

1.5.1 Challenges in Understanding Chronic Kidney Disease

Despite extensive research over several decades, our understanding of the molecular and
cellular processes driving CKD—particularly in relation to personalized diagnostics and
treatment—remains limited (Delrue and Speeckaert 2024). Several factors contribute to this slow
progress.

Firstly, the gradual progression of CKD in non-hereditary cases makes it challenging to study
in humans. The disease often develops over many years or even decades, making it difficult to
capture early-stage molecular events and understand the initiation of the disease process. Animal
models, while invaluable for studying disease mechanisms, frequently represent rare monogenic
conditions and may not adequately reflect the sporadic, slow-progressing nature of CKD in
humans (Eddy et al. 2012; “Using Genetic and Species Diversity to Tackle Kidney Disease”
2020). As a result, findings from these models may have limited applicability to the broader
patient population.

Secondly, CKD involves complex molecular and cellular processes, including poorly
understood interactions between different cells and cell subtypes within the kidney (Kuppe et al.
2019). The kidney's intricate architecture and the dynamic interplay between podocytes,
endothelial cells, mesangial cells, and immune cells add layers of complexity to disease
mechanisms (Kirita et al. 2020). This complexity poses significant challenges in identifying
specific pathways and targets for therapeutic intervention.

Common to all degenerative diseases, including CKD, is the accumulation of damage within
and around cells, leading to a progressive decline in cellular functions accompanied by chronic
inflammatory signals (López-Otín et al. 2013). Over time, this damage results in the loss of
cellular function, cell death, cellular senescence, or neoplastic transformation (Campisi and
d’Adda di Fagagna 2007). In CKD, the progressive decline of kidney filtration capacity can be
traced to damage and loss of podocytes, the specialized epithelial cells that form the glomerular
filtration barrier. For instance, Lake et al. (2023), Menon et al. (2020), Mariani et al. (2023),
McNulty et al. (2022), and Hodgin et al. (2022) have all highlighted the central role of podocyte
damage in CKD progression (Lake et al. 2023; Menon et al. 2020; Mariani et al. 2023; McNulty
et al. 2022; Hodgin et al. 2022). These studies underscore the importance of understanding
podocyte biology and the molecular mechanisms underlying their injury.

1.5.2 Advancements Through Single-Cell RNA Sequencing
Single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing

(snRNA-seq), collectively referred to as scRNA-seq, have substantially advanced our
understanding of degenerative diseases, including CKD (Tang et al. 2009; Habib et al. 2016).
These technologies enable the profiling of gene expression at the individual cell level, allowing
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for the characterization of different cell types and subpopulations within diseased tissues (Potter
2018).

A key feature of scRNA-seq technologies is their ability to identify genes that are
differentially expressed in specific cell types, aiding in the identification of disease-associated
genes (Villani et al. 2017). For example, Young et al. (2018) utilized scRNA-seq to uncover
cell-type-specific gene expression changes in kidney disease, providing insights into disease
mechanisms. Additionally, scRNA-seq data can be employed to reconstruct transcriptional
regulatory networks using tools like SCENIC (Single-Cell Regulatory Network Inference and
Clustering) (Aibar et al. 2017). The SCENIC algorithm enables the identification of regulatory
events and key transcription factors driving cellular phenotypes by integrating gene expression
data with known transcription factor motifs (Aibar et al. 2017).

Furthermore, scRNA-seq data have been integrated with genome-wide association study
(GWAS) findings to identify subpopulations of cells that potentially contribute to disease
phenotypes (Wang et al. 2022). For instance, Wang et al. (2022) correlated scRNA-seq data with
GWAS results to uncover disease-associated cell types in CKD. This integrative approach
enhances our understanding of the genetic basis of CKD and aids in identifying potential
therapeutic targets.

More recently, analytical approaches developed for scRNA-seq data have been adapted for
spatial transcriptomics, enabling the investigation of molecular mechanisms of degenerative
diseases within the tissue context (Ståhl et al. 2016). Spatial transcriptomics combines gene
expression profiling with spatial information, allowing researchers to study gene expression
patterns while preserving the spatial relationships between cells (Ståhl et al. 2016). This
advancement provides a more comprehensive understanding of cellular interactions and the
microenvironment's role in disease progression.

1.5.3 Limitations of Current Analytical Approaches

Despite the significant progress made possible by scRNA-seq and spatial transcriptomics,
existing analytical approaches have limitations, particularly in their ability to map the gradual
transition of cellular states as they progress from healthy to damaged conditions contributing to
disease phenotypes (Trapnell 2015). Traditional analyses often involve comparing averaged gene
expression levels between populations of cells from diseased and healthy tissues. While useful,
this approach overlooks subtle variations in cellular states within individual samples and fails to
capture the heterogeneity of cell populations (Kiselev, Andrews, and Hemberg 2019).

Over time, virtually all organs develop subpopulations of damaged cells that may serve as
early indicators of emerging diseases (Schumacher et al. 2021). However, current tools lack the
sensitivity to identify such rare cells in scRNA-seq data from clinically healthy subjects. This
limitation hinders early detection and intervention, which are crucial for preventing disease
progression.
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Moreover, many analytical methods focus on identifying differences between predefined
groups (e.g., healthy vs. diseased) rather than capturing continuous transitions between cellular
states. This binary approach does not adequately reflect the dynamic nature of disease processes,
where cells gradually accumulate damage and undergo phenotypic changes (Saelens et al. 2019).

1.5.4 Quantifying Cellular Damage Using Single-Cell Data

To address these challenges, we propose quantifying the damage of individual
disease-causing cells using generic, cross-model molecular markers. By developing a "damage
score" based on the expression of specific marker genes consistently associated with cellular
injury, we can sort cells according to their degree of damage. This approach facilitates the
identification of molecular processes associated with progressive cellular injury and allows for
the analysis of continuous transitions between cellular states.

Utilizing these generic damage markers enables the study of molecular mechanisms in
disease-causing cells across multiple animal models and even under unperturbed control
conditions. This cross-model applicability enhances the generalizability of findings and supports
the identification of common pathways involved in cellular damage.

Our approach also enables the sequential ordering of events, distinguishing early versus
late-stage cellular responses during pathogenesis. By aligning cells along a damage continuum,
we can identify genes and pathways that are activated or repressed at different stages of disease
progression. This temporal resolution is essential for understanding the dynamics of disease
mechanisms and for identifying potential therapeutic targets that may be effective at specific
stages.

For example, in CKD, applying this damage scoring method to podocytes in scRNA-seq data
allows for the detection of early molecular changes preceding overt cellular injury. Identifying
such early changes is critical for developing interventions aimed at preserving podocyte function
and preventing progression to irreversible kidney damage.

Our proposed method addresses the limitations of current analytical approaches by focusing
on the gradual accumulation of cellular damage and the associated molecular changes at the
single-cell level. It provides a powerful tool for dissecting the complex cellular heterogeneity
underlying degenerative diseases and has the potential to advance personalized diagnostics and
therapeutics.
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1.6 Goals of the thesis

The overarching aim of this thesis is to deepen our understanding of the transcriptional
regulatory networks (TRNs) governing podocyte function and their dysregulation during focal
segmental glomerulosclerosis (FSGS). The work is structured around two major goals: (1)
reconstructing the WT1-governed transcriptional network in podocytes and (2) leveraging
podocyte heterogeneity to uncover universal mechanisms of transcriptional dysregulation and
damage across different FSGS models. The research integrates bulk RNA sequencing
(RNA-seq), single-nucleus RNA sequencing (snRNA-seq), chromatin immunoprecipitation
sequencing (ChIP-seq), and assay for transposase-accessible chromatin sequencing (ATAC-seq)
to build a comprehensive map of transcriptional changes in healthy and diseased podocytes.

Goal 1: Reconstruct the Wt1-governed transcriptional regulatory network in podocytes

● Task 1.1: Characterize transcriptional changes in glomeruli during genetic FSGS
○ Perform bulk RNA-seq analysis on glomeruli from Wt1ko/wt and Nphs2mut mice.
○ Assess gene expression changes at both early and late stages of FSGS to understand

the progression of the disease.
● Task 1.2: Investigate the roles of Wt1 and Tead1 in rewiring the podocyte

transcriptional network during damage
○ Conduct ChIP-seq experiments for Wt1 and Tead1 in glomeruli from healthy and

Wt1ko/wt mice at an early stage of FSGS (8 weeks old).
○ Integrate ChIP-seq and RNA-seq data from the Wt1ko/wt experiments to analyze the

transcriptional regulatory network rewiring in podocytes under damage.

Goal 2: Leverage podocyte heterogeneity to study drivers of transcriptional rewiring

● Task 2.1: Characterize transcriptional changes in individual podocytes during
genetic FSGS
○ Perform single-nucleus RNA-seq on glomeruli from Wt1ko/wt and Nphs2mut mice to

investigate podocyte-specific transcriptional changes.
● Task 2.2: Develop a framework to assess podocyte damage in a model-agnostic

manner
○ Derive a universal transcriptomic signature of podocyte damage using public datasets.
○ Test and validate this signature to assess podocyte damage across various FSGS

models.
● Task 2.3: Identify universal mechanisms of transcriptional regulation in FSGS

○ Align podocytes from different models by their Podocyte Damage Score (PDS) to
identify common features of disease progression.

○ Reconstruct the podocyte transcriptional regulatory network with ATACseq and
predict transcriptional regulators involved in the common podocyte damage response.
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Chapter 2. Materials and Methods
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2.1 Biological Materials.

Wt1 and Nphs2 murine models of genetic focal segmental glomerulosclerosis (FSGS) were
used to generate original data for the research. In the Wt1 model podocyte damage and FSGS is
caused by deletion of exon 1 in one of the Wt1 alleles. This hetero-zygous deletion of Wt1 does
not compromise the kidney development as evaluated by the morphological as well as functional
analysis of the mice at the postnatal day 6 (Menke et al. 2003). In the Nphs2 model disease is
caused by Nphs2R231Q/A286V compound heterozygous mutation in the podocin gene (Butt et al.
2020). Mice with this mutation develop progressive albuminuria starting at 2 to 4 weeks of age
with kidney failure at around 20 weeks of age.

Mice were housed and maintained in CECAD in vivo Research Facility. All mouse
experiments were performed with approval from The Animal Care Committee of the University
of Cologne and LANUV NRW (Landesamt für Natur, Umwelt und Verbraucherschutz
Nordrhein-Westfalen, State Agency for Nature, Environment and Consumer Protection North
Rhine-Westphalia) for this study.

All wet lab experimental work and sample preparations for bulk RNA-seq and CHip-seq,
including microscopy, staining assays, measures of kidney function etc., was performed in the
Nephrolab (University of Cologne, Germany) by Mahdieh Rahmatollahi, details on mouse lines
and the experimental protocols can be found in her doctoral thesis (Rahmatollahi 2020). All wet
lab experimental work and sample preparations for bulk ATAC-seq and single nucleus RNA-seq
was performed in the Nephrolab by He Chen; details on mouse lines and experimental protocols
can be found in her doctoral thesis (He Chen. 2024. Transcriptional Regulation and Epigenetic
Landscape of the Glomerulus. Doctoral thesis, University of Cologne, unpublished). Figure 1
below presents an overview of experimental data used in the study.

Figure 1: Overview of experimental data used in the study.
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2.2 Biochemistry and Molecular Biology Methods

2.2.1 Albumin and creatinine (ACR) determination with ELISA

Urines from mice were first analyzed by coomassie urinary analysis to approximate the
dilution for albumin ELISA (usually ranging between 1:100 to 1:100,000). All steps were carried
out at room temperature. First, wells were coated for 1 h with 100 µl of anti-mouse albumin
coating antibody at 1:10,000 in coating buffer (0.05 m carbonate-bicarbonate, pH 9.6), then
washed 5 times with 200 µl of wash solution (50 mm Tris, 210.14 m NaCl, 0.05% Tween-20, pH
8.0) before incubating for 30 min with 200 µl of blocking solution (50 mm Tris, 0.14M NaCl,
1% BSA, pH 8.0). The wells were washed again 5 times with 200 µl of wash solution before
incubation for 1 h with 100 µl of standards or samples diluted in diluent buffer (50 mm Tris, 0.14
m NaCl, 0.05% w/v Tween-20, 1% w/v BSA, pH 8.0). Next, the wells were washed 5 times with
200 µl of wash solution before incubation with 100 µl of HRP detection antibody diluted
1:25,000 in the diluent buffer for 1 h. Finally, the wells were washed 5 times with 200 µl of wash
solution and developed with 100 µl of substrate solution (100 µg/ ml TMB, 48 mm sodium
acetate, 0.01% v/v hydrogen peroxide, pH 5.2) for 15 min in the dark. The reaction was stopped
by adding 100 µl of stop solution (0.18 m sulfuric acid) and the absorbance was measured at 450
nm. For the creatinine urinary colorimetric ELISA, urines were diluted 1:20 in water and assayed
according to the manufacturer’s protocol. All samples were measured in triplicates.

2.2.2 Isolation of the glomeruli from mouse kidney

Glomeruli were isolated from the mouse kidneys as described before (Boerries et al. 2013).
In brief, kidneys were dissected together with the abdominal aorta after cervical dislocation of
the mouse and each kidney was perfused with 1-2 ml of magnetic beads solution consisting of
Magnetic Dynabeads in 1x Hank’s Buffered Salt Solution (HBSS). Renal capsules were
removed, and kidneys were minced in 1-mm 3 pieces using a scalpel. Digestion was done in 3 ml
of the digestion solution in 37 °C for 15 minutes on a plate shaker. To facilitate digestion, kidney
pieces were triturated using a cut pipette filter tip. Digested kidneys were meshed twice through
a 100-μm cell strainer and centrifuged. Glomeruli were collected after re-suspending the pellet
using DynaMag Magnet.

2.2.3 Bulk RNA-seq

Isolated glomeruli were homogenized in 700 µl TRI reagent and 140 µl chloroform was
added to the homogenate. After centrifugation, the aqueous phase was collected, and total RNA
was extracted using the miRNeasy RNA extraction kit. RNA quality was assessed on RNA
screen tape and all the samples showing RNA integrity number (RIN)> 8 were submitted for
sequencing.
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2.2.4 Wt1 chromatin immunoprecipitation

Wt1 chromatin immunoprecipitation (ChIP) was performed by Dr. Maximillian Lenz in
Nephrolab, University of Cologne. Mouse kidneys from 4-week old mice were processed by
dissecting the cortex from medulla and mincing. Crosslinking was performed using 1%
formaldehyde in PBS followed by quenching with 125 mM glycine. Further tissue disruption
was carried out using a rotor-stator homogenizer in sterile 0.3 mM NaCl RIPA supplemented 42
with protease inhibitor. The pellet was sonicated in the sonication buffer on a probe-tip sonicator
to achieve an average chromatin size ranging between 200-600 bp. Sonication efficiency was
checked on a 2% agarose gel for each ChIP round. After sonication, sample was filled up to 1 ml
with 0.3 RIPA, the Protease inhibitor was refreshed, and IP was carried out overnight by adding
3 μg of Wt1 C19 antibody or IgG isotype control. Samples were incubated with Protein G
Dynabeads the next day for 2-3 hours at 4°C. After washing and elution, de-cross linking was
done in SDS elution buffer at 65°C overnight. DNA extraction was completed using phenol/
chloroform/isoamylalcohol 25:24:1. Following centrifugation, the aqueous phase containing the
purified DNA is transferred to clean tubes and DNA is recovered by alcohol precipitation.

2.2.5 Tead1 chromatin immunoprecipitation

Mouse kidneys from 8 to 10-week old mice were used for isolation of glomeruli.
Crosslinking was performed using 1% formaldehyde in PBS followed by quenching with 125
mM glycine. Sonication was completed in the ice-cold fresh nuclear lysis buffer (NLB)
supplemented with protease inhibitors on a Covaris M220 Focused-ultrasonicator for 5 minutes.
A total of 8 mice were used as input per immunoprecipitation round and the sonication efficiency
was checked on a 2% agarose gel per round. Chromatin buffer was added to samples in a 2:3
ratio, protease inhibitor was refreshed, and IP was carried out at 4°C overnight by adding 6 μg of
Tead1 antibody or IgG isotype control priorly bound to Protein G Dynabeads. After washing and
elution, de-cross linking was done in SDS elution buffer at 65°C overnight. DNA extraction was
completed using phenol/chloroform/isoamylalcohol 25:24:1. Following centrifugation, the
aqueous phase containing the purified DNA is transferred to clean tubes and DNA is recovered
by alcohol precipitation.

2.2.6 Single nuclei RNA-seq

Glomeruli were isolated from mice kidneys and subjected to isolation of nuclei using Sigma
EZ lysis buffer supplemented with EDTA-free protease inhibitors and 0.1% murine RNase
inhibitor. Isolated nuclei were washed twice in lysis buffer and counted with a hemocytometer.
After centrifugation at 1000g for 10 min, nuclei were resuspended in PBS supplemented with 2%
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BSA to reach an approximate concentration of 1000 nuclei/ µl. Prior to immediate processing,
the samples were further filtered through a 10 µm cell strainer.

2.2.7 ATAC-seq

ATAC-seq was performed as described in (Buenrostro et al. 2013). Briefly, 50,000 GFP+ or
tdTomato+ nuclei were sorted by FACS into lysis buffer and centrifuged at 1000 g for 10 min at
4 ℃. The pellet was resuspended in 50 µl of transposition reaction mix (25 µl of transposition
buffer, 2.5 µl of TDE1, and 22.5 µl of nuclease-free water). The reaction was carried out at 37℃
for 30 min. Immediately following transposition, DNA was purified using Zymo DNA clean
concentrator-5 per the manufacturer’s instructions. The transposed DNA was eluted in 10 µl of
elution buffer.

2.2.8 Library preparation and sequencing

Library preparation and sequencing of ATAC-seq, Chip-seq, bulk and single-nuclei RNA-seq
experiments were performed by the Cologne Centre of Genomics (CCG). 12 cycles of PCR
amplification were used for ATAC-seq samples. Cycle numbers of PCR amplification used for
Chip-seq samples were determined by qPCR, single-end libraries were constructed according to
the standardized protocols and sequencing was performed using Illumina HISeq sequencer. For
bulk RNA-seq experiments, Ribo-minus libraries were constructed according to the standardized
protocols and paired-end sequencing was done on an Illumina HISeq sequencer. For snRNA-seq,
libraries and sequencings were prepared per the manufacturer’s instructions supported by 10X
Genomics.
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2.3 Computational Methods

Data analysis and visualization was done in R (“Website,” n.d.-a), unless specified otherwise.

2.3.1 Analysis of Sequencing Data

2.3.1.1 Chip-seq

Mapping and peak calling. Quality of raw sequencing data was assessed with FASTQC and
then reads were mapped to the mouse genome mm10 using BWA mem (Li and Durbin 2009)
with default parameters, no trimming is done before mapping. Genomic regions from the
ENCODE blacklist were excluded from the analysis (Li and Durbin 2009; Amemiya, Kundaje,
and Boyle 2019). Chip-seq sample quality was assessed with cross-correlation plots: samples
with relative strand cross-correlation coefficient (RelCC) around or larger than 1 were
considered . Peak calling was done by MACS2 using low-confidence parameters (p-value
<0.01), consistency of peaks was assessed with IDR analysis (T. Bailey et al. 2013). A consensus
peakset was calculated with MSPC software (Jalili et al. 2015): a peak has to be called in
minimum of 2 replicates and the combined q-value has to be smaller than 0.05 to get selected
into the consensus peakset.

Differential binding analysis and plotting was done with the DiffBind R package v3.10.1
using GLM implemented in edgeR method, see Chipseq_DiffBind.r script for the details.

Identification and annotation of target genes. Targets of WT1 and TEAD1 wil-type peaks
were inferred using TFtargetCaller v0.7 R package with ClosestGene method, using TSS
positions of all mouse genes from Ensembl database v.79. Sets of peaks differentially bound in
Wt1ko/wt glomeruli were annotated, due to their limited size, with annotatePeakInBatch() function
from ChIPpeakAnno v3.24.2 R package using the following parameters: multiple = T ,

output="both", maxgap=2000, AnnotationData= EnsDb.Mmusculus.v79. With
this approach each peak is assigned a) the nearest, by the distance to TSS, feature and b) any
features that overlap the peak (maximum gap allowed is 2000 bp ) that are not the nearest
features.

Peaks were classified as cis- and trans-regulatory regions if the log10 distance to the nearest
TSS was smaller or bigger,respectively, than threshold value of 3.5. The threshold was chosen
based on the empirical distribution of distances between all peaks and TSS of their annotated
target genes.

Motif enrichment. Peaks were limited to +/-100 bp around the peak center for the motif
enrichment. De-novo motif analysis was performed with HOMER. Known-motif enrichment was
tested with runAme(method = "fisher”) from memes R package v.0.99.11.9000. Ame was run in
discriminative mode, to discover motifs enriched relative to shuffled input, or a set of provided
control sequences. 110 PWM motifs of TFs expressed in podocytes were tested.
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2.3.1.2 ATAC-seq

Mapping was done using BWA mem with default parameters. Data quality was assessed by
calculating the distance between the R1 and R2 read pairs, so called insert sizes. Peaks were
called using Genrich tool (“GitHub - jsh58/Genrich: Detecting Sites of Genomic Enrichment,”
n.d.). Processed ATACseq data and known transcription factor binding motif was used to
reconstruct the podocyte transcriptional regulatory network.
Generation of podocyte TRN

There are more than thousand mouse genes with annotated transcription factor activity (Sun,
Wang, and Sun 2017) but not all of them are expressed in podocytes and/or detected in
sc/snRNAseq data. To address this issue we selected TFs with detection rate above 5% in at least
one of the analyzed sc/snRNAseq datasets, which resulted in 110 Transcription factors that were
used to construct the podocyte transcription regulatory network (TRN). TRN is a directed graph
representing interactions between transcription factors and their target genes. The TRN was
constructed using the podocyte ATACseq data and known transcription factor binding motifs in
following 3 steps:

Footprinting is performed on the ATACseq peaks with HINT (Yan et al. 2020) to identify
and locate TF binding events more precisely.

Motif scanning is done with the Fimo tool from MEME-suit on ATACseq footprints,
scanning for sequences that are matched by TF position weight matrices (PWM) (T. L. Bailey
1994) .

Associating potential binding events with genes is the last necessary step in generating
TRN, which was done with ClosestGene approach implemented in TFtargetCaller R package
(Sikora-Wohlfeld et al. 2013), Target genes were called for each tested TF and genes q-value
<0.3 were considered putative targets of the respective TF.

2.3.1.3 Bulk RNAseq

Mapping. STAR (Dobin et al. 2013) was used for mapping reads. Alignment of RNAseq
data to the reference genome showed that between 30-40% of reads were mapped to the intronic
regions and 25-30% to the coding exonic regions. According to literature, the changes in the
intronic read counts are not merely due to the technical artifacts. In fact, they directly reflect
changes in transcriptional activity (Gaidatzis et al. 2015). Hence, both exonic and intronic reads
were utilized in bulk and single cell/nuclei transcriptome analyses to increase the statistical
power of detecting transcriptional changes.

Removal of unwanted variation. For the Wt1ko/wt dataset removal of unwanted variation
using replicate samples (RUVs) was done using the RUVseq R package (Risso et al. 2014).
RUVs estimate the factors of unwanted variation using an empirically defined set of invariable
genes, i.e. control genes, and design matrix: it basically removes variation that is not associated
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with conditions of interest. Differential expression analysis was performed on the results of
RUVs, when applied.

2.3.1.4 Single nuclei RNAseq

Mapping. STARsolo v2.7.3 (Dobin et al. 2013) was used to map reads to the mouse genome
and then gene abundances were quantified using both exonic and intronic reads and pre-mRNA
full gene models. Sequence files from 2 sequencing lanes were pulled in one sample.

Removal of ambient RNA. Ambient RNA may be an issue in snRNA-seq data analysis,
masking rare cell-types and affecting the downstream analysis (Caglayan, Liu, and Konopka
2022). Ambient RNA was removed from the raw read count (UMI) matrices using R package
decontX (Dobin et al. 2013; “decontX,” n.d.).

General processing of sc/snRNAseq count tables. Count matrices corrected for ambient
RNA were loaded and analyzed in Seurat v4.0.1 R package (Hao et al. 2021). Cells with less
than 200 non-zero features were filtered out. Cells with more than 1% of mitochondrial RNA
were also filtered out from snRNA-seq samples. Clustering and dimensionality reduction was
performed on the filtered data.

Doublet removal. Cluster-based artificial doublets were identified in pre-processed and
clustered Seurat objects using scDblFinder (“scDblFinder,” n.d.) from the same-named R
package (??). Cells annotated as “singlets” by the algorithm were removed from the downstream
analysis and remaining cells were re-clustered. The resulting object was used for visualization,
cell-type annotation and differential expression (DE) analysis, if needed.

Cell-type annotation was performed on cluster level, manually, by using kidney cell-type
marker sets published by Humphreys lab (“scDblFinder,” n.d.; Kirita et al. 2020).

2.3.2 Differential Expression and Cell-type Abundance Analysis
Differential expression/abundance analysis of original data was done using DESeq(

test="LRT" ) function from R package DEseq2 v.1.42.0 (Love, Huber, and Anders 2014).
Differential cell-type abundance analysis was performed on a cell-type proportion matrix,
calculated after annotating clusters with cell-types.

Effects of genotype in a specific age, general effect of genotype and effect of disease
progression (age:genotype) were tested. Effects of batch and sex were controlled for, when
respective annotations available. Analysis of the disease progression focuses on changes between
control and mutant samples that depend on age of mice. This, combined with the analysis of
genotype effects that do not depend on time, allows to separate, to some extent, primary and
secondary effects of the mutation.
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2.3.3 Gene Set Functional Annotation and Visualization
Gene sets were annotated with Gene Ontology (GO) terms and a collection of pathways,

which includes Reactome (Croft et al. 2011), KEGG (Kanehisa and Goto 2000) pathways and 50
Hallmark mouse gene sets (MSigDB) (Liberzon et al. 2015). Significance of the overlap was
tested with a one-sided Fisher test.

GO annotation was in most cases, unless specified otherwise, performed using a custom R
function sf.clusterGoByGeneset() provided in justGO_ROBERT.r script, developed by Robert
Sehlke. The function addresses redunduncy of significantly enriched GO terms by clustering
terms based on their similarity, cutting the tree at a chosen height and then selecting the most
representative term from each cluster (see the code for details).

Gene set enrichment analysis (GSEA) of the ranked lists was performed with
fgseaMultilevel() function of fgsea v1.17.1 R package (“Fgsea,” n.d.) using aforementioned
collection of pathways.

Visualization
Results of the enrichment were routinely visualized using barplots, where X-axis shows

-log10 p-value of the enrichment test and Y axis shows term labels. Labels of 50 Hallmark
mouse gene sets are marked with prefix H50 on all pathway histograms. Terms are hierarchically
clustered by similarity of genes annotated under each term. Row annotation bar on the right side
of GO histograms always color-code terms by GO category: BP - biological process. MF -
molecular function, CC - cellular component.

In addition, we used a so-called 2D GO plot to highlight differences between results of 2
differential expression tests. To produce a plot for each of the 2 tests being contrasted, we
calculated the average log fold change of genes annotated under each GO term significantly
(p<0.05) enriched in at least one of the 2 DE tests. We then used a scatter plot to compare
average expression changes of GO terms in one test with average expression changes of GO
terms in another DE test against each other. The relationship between test-specific expression
changes of GO terms was modeled using a simple linear model. 2D GO plot highlights
functional differences between the tests by identifying GO terms that deviate significantly from
the expected relationship. Specifically, GO terms located outside the 95% prediction interval of
the regression line exhibit substantially greater average expression changes in either one or the
other DE test.

2.3.4 Podocyte Damage Score Methods

2.3.4.1 Algorithm for generating single-cell damage signature

To generate a universal transcriptome signature of podocyte damage we collected over 50
published transcriptomic datasets that represent different models of podocyte damage and
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include microarray, bulk and single-cell RNAseq datasets. After initial analysis and quality
checks we selected and analyzed 37 datasets, described in Supplementary Table 4. Each selected
dataset was subject to differential expression analysis, always comparing disease versus control
samples. Microarray data was processed and DE tested using the oligo (“Oligo,” n.d.) package .
Non-normalized bulk RNAseq count tables were subject to DE analysis with DEseq2. Single cell
RNAseq UMI count tables were loaded and processed in Seurat: podocytes were extracted based
on cell-type markers, non-parametric Wilcoxon rank sum test was used for robust DE testing of
the damage effect in podocytes.

Results of DE analysis in individual studies were combined to generate a universal gene
signature of podocyte damage. P-values for differential expression may not be comparable
between studies, due to variation in sample numbers and/or variable quality of the data. We
therefore decided to base the selection process on ranks of p-values rather than defining a
common p-value threshold across studies. The damage signature was generated in following
steps:

1. Genes differentially expressed in at least 75% of the studies (N > 27) are selected.
2. Genes are further filtered by the consistency of expression change (disease versus

healthy): the direction of change should be same in at least 75% of the studies
3. Selected genes are ranked in each study by p-value of differential expression.
4. Ranks are aggregated by calculating the average rank of each gene across all studies.
5. Genes are sorted by the average rank, and the top N ( N = 42 for the final score) are

selected as a universal damage signature.
The damage signature is used to calculate the podocyte damage score (PDS) for each individual
cell with AUCell R package (“AUCell,” n.d.). The AUCell score is calculated separately for up
and down- regulated genes and then the latter is subtracted from the former to get the final
podocyte damage score.

2.3.4.2 Gene set activity analysis in sc and sn RNAseq data

AUCell is also used to calculate activity of any gene signature, e.g. pathway genes or
cell-type markers, in individual cells of single cell and single-nuclei RNA-seq data.

To select pathways that change along the podocyte damage axis we calculate Spearman
correlation of pathway activities and PDS (q-value <0.05). For visualization, cells are ordered by
PDS and the pathway activity (PA) signal is smoothed using a moving average window of
width=500 and a step=250 cells. The results are visualized using a heatmap, called pathway
fingerprint, where X-axis show PDS, Y-axis show pathways and smoothed PA is encoded by
color of cells. Alternatively, results are visualized for individual features, which allows to
compare side by side different damage models. Reactome and KEGG pathway databases were
used for the analysis.
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2.3.4.3 Randomisation test

To assess the sensitivity of our approach to the inclusion of low-quality or irrelevant studies,
we implemented a randomization procedure. In this process, a certain percentage of studies had
their p-values and log fold changes (LFCs) shuffled, effectively simulating noise in the
differential expression results. We then generated a signature from this partially randomized data
and used it to calculate a damage score in a test dataset.

Since the choice of which studies to randomize could influence the damage score, we
performed 50 rounds of subsampling for each level of randomness. In each round, different
studies were selected for randomization. After each randomization round, we calculated the
average disease score across both control and experimental samples or cells, resulting in 50 data
points for both control and experimental groups at each level of randomness.

This approach allowed us to evaluate the robustness of the damage score and understand how
randomizing portions of the data affected its reliability. The multiple rounds of randomization
provided a comprehensive view of the variability in score outcomes, ensuring that the results
were not overly dependent on any specific subset of studies.

2.3.4.4 Unsupervised damage signatures

As an alternative to the supervised approach of aggregating DE results, the gene signature
can be generated in an unsupervised fashion, by trajectory analysis of single cell data, where
trajectory reflects progression of the underlying biological process - extent of a cell damage. To
this end we extracted podocytes from 8 scRNAseq damage models (see Supplementary Table 1),
integrated the data and inferred the trajectory by fitting a single principal curve with slingshot R
package (“Slingshot,” n.d.) a cluster of control cells was treated as a cluster of origin, cells of
each damage model were treated as a cluster. Next we test for significant differences in gene
expression with respect to pseudotime. The “pseudotime” is a number describing the relative
position of a cell along the trajectory, i.e. cells with larger values are considered to be more
damaged than cells with smaller values.

2.3.4.5 Protein expression analysis

PXD016238 and PXD018326 proteomics datasets were used to analyze expression of podocyte
damage markers on the protein level. Both datasets were generated in the Nephrolab. The LFQ
data was processed with the R package DEP (Arne Smits [cre, aut], Wolfgang Huber [aut] 2017).
Only proteins expressed in more than 50% of replicates of at least one condition were analyzed.

2.3.4.6 Spatial transcriptomics analysis

Both sequence- (10X visium) and image-based (Slide-seqV2) transcriptomic datasets were
used to validate the podocyte damage score in murine and human samples. Spatial coordinate
and count tables were loaded and analyzed with Seurat.
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Slide-seqV2 spatial transcriptomics mouse dataset (Marshall et al. 2022) was retrieved from
GEO database entry GSE190094. Only BTBR and control samples of sufficient quality were
used for correlation analysis of PDS and glomerular morphological features. Podocyte KNN
filtration, glomerular identification and size estimation was performed using the publication
code.

10X visium spatial transcriptomics data for sample S-1905-017750 (patient 29-10282) was
retrieved from the public database of kidney precision medicine project. The results here are in
whole or part based upon data generated by the Kidney Precision Medicine Project (“Website,”
n.d.-b).

2.3.4.7 Analysis of mouse kidney circadian transcriptome

To identify kidney specific circadian genes we used bulk kidney RNAseq data from young
and old mice that was previously produced and analyzed by the Nephrolab. Cycling genes were
identified from the count matrix with meta2d(cycMethod = "JTK") function from MetaCycle
v1.2.0 R package (“GitHub - gangwug/MetaCycle: An Integrated R Package to Evaluate
Periodicity in Large Scale Data,” n.d.). Overall 317 genes with BH adjusted p-value <0.01 in
either young or old mice were called circadian. Estimation of acrophase and acrophase
uncertainty for circadian genes was done by fitting a cosinor model with cglmm( Y ~ amp_acro(
time_col=Time, period = 24 )) function of GLMMcosinor 0.2.0.9 R package (Hercz 2013;
“GitHub - ropensci/GLMMcosinor: An R Package for Flexible Cosinor Modelling Using the
glmmTMB Framework,” n.d.), where Y is rlog-normalised expression values of a gene.

2.3.4.8 Analysis of circadian regulation in snRNA-seq

Circadian rhythm disruption (CRD) in individual podocytes was calculated using
cal_CRDscore() from the CRDscore R package (He et al. 2022). A set of cycling genes
identified from the kidney circadian bulk RNAseq was used to calculate CRD.

Estimation of circadian time in individual podocytes was done using a Tempo algorithm,
implemented as a python package (Auerbach, FitzGerald, and Li 2022). Estimates of gene
acrophases, required by the algorithm, were taken from the analysis of bulk circadian RNAseq
data from the mouse kidney dataset. Clock or Arntl were used as reference genes.
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Chapter 3. A Wt1 Transcriptional
Regulatory Network in Podocytes

34



3.1 Introduction

WT1 is a core regulator of the podocyte transcriptional programs

The critical role of specific transcription factors in podocyte specification and differentiation
has been well established over the past few decades. Research in the early 2000s identified
transcription factors such as TCF21, WT1, LMX1B, MAFB, and members of the FOX family as
crucial regulators of podocyte gene expression (S. E. Quaggin et al. 1999; Palmer et al. 2001;
Rohr et al. 2002; Moriguchi et al. 2006). Advancements in our understanding of individual
factors and methodological innovations led to the reconstruction of the core transcription factor
regulatory network in podocytes of Xenopus by the end of the 2000s, where WT1 emerged as a
master regulator .

Further expanding on the role of WT1, Kann et al. (2015) (Kann et al. 2015) revealed a
comprehensive Wt1 gene regulatory network in podocytes by using chromatin
immunoprecipitation followed by sequencing (ChIP-seq). Chip-seq provides direct evidence of
transcription factor (TF) binding to DNA and is a powerful tool for reconstructing transcriptional
regulatory networks by identifying genes directly targeted by TFs of interest (Johnson et al.
2007). Kann et al. (2015) also demonstrated that Tead1, a downstream effector in the hippo
signaling pathway and an important regulator of the podocyte transcriptome, is a target of WT1
binding. Overall, the results suggested that WT1 together with several pioneer TFs initiate a
tissue-specific TF network by binding to further TF genes and subsequently activating their
transcription.

Building on insights into the WT1-dependent transcriptional regulatory network (TRN) in
healthy podocytes in vivo, we aimed to modulate this system and investigate its response in the
context of focal segmental glomerulosclerosis (FSGS), a podocyte disease. To this end, we
investigated rewiring of glomerular and podocyte gene regulation in heterozygous Wt1
knock-out murine model of genetic FSGS, further denoted as Wt1ko/wt, using both Chip-seq and
RNA-seq experiments. In addition, we profiled the glomerular transcriptome of Nphs2 mutant
murine model of genetic FSGS, further denoted as Nphs2mut, to delineate common and
model-specific features of transcriptome remodeling under FSGS. Figure 3.1 gives an overview
of the experimental data generated for this chapter. All wet lab experimental work for this
chapter was performed by Mahdieh Rahmatollahi.

Chapter 3 is split into several parts, according to a specific research question and an
experiment performed to address it. Below is a short summary of each part.
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Figure 3.1: Overview of experimental data used in chapter 32.

Transcriptomic analysis of Wt1ko/wt model of genetic FSGS

To characterize transcriptional changes in glomeruli caused by heterozygous deletion of Wt1,
we performed a bulk RNA-seq experiment on glomeruli samples from wild-type and Wt1ko/wt

mice. This published (Johnson et al. 2007; Menke et al. 2003) murine model of genetic FSGS
has a normal embryonic development and shows consistent phenotype of proteinuria, foot
process effacement and histologic features of FSGS starting at age 4 weeks, with advanced
proteinuria observed at age 12 weeks. We therefore attempted to differentiate early and late
effects of Wt1 perturbation on transcriptome by generating and analyzing control and mutant
samples from 4 (early FSGS) and 12 (late FSGS) week old mice.

Additionally, we sought to distinguish primary effects of Wt1 perturbation from secondary
effects due to disease progression by comparing Wt1ko/wt with another published model of genetic
FSGS in which disease is caused by Nphs2 R231Q/A286V mutation in the podocin gene (Butt et
al. 2020). Murine kidneys with this mutation, further referred as Nphs2mut, undergo normal
embryonic development, start showing FSGS features between 2 and 4 weeks of age and suffer
from advanced glomerulo-sclerosis by the age of 8 weeks, which makes Nphs2mut mutation more
aggressive than Wt1ko/wt.

Transcriptomic analysis of the disease stages showed progressive alteration of glomerular
transcriptome with changes mostly consistent between 2 stages and the magnitude of changes
being higher at the later disease stage. Comparison of Wt1ko/wt and Nphs2mut models of genetic
FSGS showed that the overall effect of Nphs2mutmutation on glomerular transcriptome is much
stronger, compared to Wt1ko/wt, but it affects mostly the same biological processes. Overall,
results of differential expression analysis shed some light on transcriptional rewiring in sick

2 All samples were taken from murine glomeruli.
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podocytes but also showed intrinsic limitations of bulk glomerular RNAseq transcriptomics in
studying podocyte gene regulatory network.

Chip-seq analysis of transcriptional rewiring in damaged podocytes

To overcome the limitations of bulk transcriptomic analysis and gain insights into binding
dynamics of podocyte transcription factors (TFs), we employed chromatin immunoprecipitation
followed by sequencing (ChIP-seq) (Johnson et al. 2007; P. J. Park 2009). In this method,
proteins are cross-linked to DNA within the cell, the chromatin is fragmented, and an antibody
specific to the TF of interest is used to immunoprecipitate the TF-DNA complexes. The bound
DNA is then sequenced and mapped back to the genome, providing a comprehensive profile of
TF binding sites. Chip-seq is a powerful tool for reconstructing transcriptional regulatory
networks by identifying genes directly targeted by TFs of interest.

Previous ChIP-seq analyses of WT1 binding in healthy podocytes established WT1 as a
master regulator of the podocyte transcriptional regulatory network (TRN) (Guo et al. 2002;
Kann et al. 2015). These studies also showed that TEAD1, a downstream effector in the Hippo
signaling pathway and another key regulator of the podocyte transcriptome, is a target of WT1
binding. Building on this knowledge, we investigated transcriptional rewiring in the
heterozygous Wt1 knock-out mouse model of genetic FSGS by conducting WT1 and TEAD1
ChIP-seq experiments in both wild-type and Wt1ko/wt glomeruli of 8 week old mice, at which age
kidneys of mutant animals show signs of the early stage of FSGS. Our results demonstrated that
nuclear TFs in podocytes respond dynamically to injury, with changes in binding patterns
reflecting functional adaptations or maladaptations. Importantly, our study confirms that
ChIP-seq analysis of disease-affected podocytes is both feasible and informative, providing
valuable insights into the molecular mechanisms driving disease progression.

We also predicted target genes of differential binding, which allowed us to elaborate the link
between rewiring of Wt1-controlled TRN and changes in podocyte biology associated with
FSGS. By integrating the functional analyses of Chip-seq from both wild-type and FSGS
glomeruli, we gained a better understanding of how transcriptional regulation by WT1 and
TEAD1 maintains podocyte function under normal conditions and how alterations in their
binding contribute to disease pathology.

In the final part of this chapter, we aimed to further differentiate the primary effects of Wt1
knockdown from secondary effects due to disease progression by integrating our ChIP-seq data
with RNA-seq data. We correlated changes in gene expression with changes in WT1 and TEAD1
binding in Wt1ko/wt mice. Additionally, we compared the functional annotations of differentially
expressed genes (DEGs) and differentially bound genes (DBGs).

Our integrative analysis revealed that targets of differential binding are more enriched in
podocyte-specific biological processes, whereas the glomerular transcriptome may reflect signals
from various cell types within the glomerulus. Importantly, the integration of RNA-seq and
ChIP-seq data demonstrated that altered binding of WT1 and TEAD1 in the podocytes of
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Wt1ko/wt mice directly affects the glomerular transcriptome by modulating key biological
processes, ultimately leading to podocyte injury.

These findings highlight the critical roles of WT1 and TEAD1 in regulating gene expression
related to podocyte structure and function. Moreover, our study underscores the value of
integrating different data modalities to gain a comprehensive understanding of the molecular
mechanisms underlying podocyte damage and FSGS progression.
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3.2 Transcriptomic Analysis of Wt1ko/wt Model of Genetic FSGS

To study effects of Wt1ko/wt mutation and ensued progression of focal segmental
glomerulosclerosis on glomerular transcriptome, we performed bulk RNA sequencing of isolated
mouse glomeruli from wild-type and Wt1ko/wt mice, sampled at 4 weeks (early, non-sclerotic
FSGS) and 12 weeks (late, sclerotic FSGS), in 3 biological replicates per group. Experimental
design is visually summarized in Figure 3.2.1.A, complete information for bulk RNA-seq
samples is provided in Supplementary Table 2. Principal component analysis (PCA) of RNA-seq
data from Wt1 heterozygous knock-outs and control mice at day 4 and day 12 age analysis
showed that PC1 represents age differences and accounts for most variation in the data, whereas
the effect of Wt1ko/wt mutation is best represented by PC3. PC2 could not be attributed to any
experimental factor and, since the batch information was not available, was likely representing a
batch effect. Upon removal of unwanted variation (see Material and methods 2.3.2) and
performing PCA on the corrected data, the 2nd PC separates samples by the genotype (Figure
3.2.1 panel B). DE analysis of the denoised counts showed an improvement in distribution of
p-values and increase in statistical power, yielding a comparable number of genes differentially
expressed at 4 and 12 weeks (Suppl.Fig.3.1 B).

Differential expression analysis revealed that the effect of Wt1ko/wt mutation on the
transcriptome is relatively minor compared to the effect of age: 738 and 7725 genes are
significantly differentially expressed (FDR adjusted p-value <0.05) while testing the respective
effects. Comparison of mutant and control samples separately in 2 disease stages found 623 and
751 genes differentially expressed in 4 and 12 week old mice, respectively, of which 332 genes
are common for both comparisons. Notably, the mutation effect on the glomerular transcriptome
gets slightly bigger at the later stage of FSGS (12 week), as reflected by a slightly wider
distribution of LFC values on Figure 3.2.1 D. Overall, the genotype effect is relatively mild and
consistent across both FSGS stages, as indicated by high correlation between vectors of gene
expression log2 fold changes (LFC), Pearson correlation coefficient = 0.75. These results are in
line with Albumin/Creatinine measures of kidney function in mice of matching age and genotype
that show a strong increase in Alb/Cre between 1 and 4 week-old and then no change between 4
and 12 week old Wt1ko/wt mice (see Suppl.Fig.3.1 A).

To analyze the effect of disease progression, while accounting for the effect of normal
glomerular maturation and aging, we tested an interaction between age and genotype. Interaction
analysis revealed just 9 genes that are differentially affected by Wt1 knock-down depending on
age (Suppl.Fig.3.1 B), among which Lamc2 and P4ha3 are much stronger upregulated in Wt1ko/wt

mice at 4 weeks, compared to 12 weeks. These few genes are involved in collagen fibril
organization and extracellular matrix organization GO terms.
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C D
Figure 3.2.1: Analysis of bulk RNAseq data from glomeruli of Wt1 ko/wt mice.

(A) Scheme of the experimental design, arrows show pairwise comparisons between the groups. (B)
Principal component analysis of the counts after RUV correction. (C) Comparison of sets of differentially
expressed genes (in rows), where columns show number of unique or shared genes. (D) distribution of
log2 fold changes of gene expression in the analysis of early and late FSGS.

3.2.1 Progressive FSGS is Characterized by Cell Junction Disassembly and
Increased Immune Activation

To characterize functional consequences of transcriptional changes in glomeruli of Wt1ko/wt

mice, we annotated respective sets of differentially expressed genes with gene ontologies (GO)
and molecular functions (Material and Methods 2.3.3), including KEGG, Reactome and focal
adhesion 3 pathways. Results confirmed a high degree of functional similarity of genes perturbed
at 4 and 12 weeks of FSGS (Fig.3.2.2 A). The strongest down-regulated function is focal
adhesion in podocytes, as seen in (Fig.3.2.2 B), which is especially strongly affected in late
FSGS and reflects podocyte detachment. Most other significantly enriched functions are

3 A set of genes encoding podocyte-enriched focal adhesion complex is taken from (Schell et al. 2017) (Figure 1e)
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upregulated at both stages of FSGS. Strongly enriched and upregulated are genes related to
immune function, like cytokine activity and humoral immune response. Traditionally, immune
system involvement in FSGS is associated with the adaptive immune system and T-cells.
However, podocytes express Toll-like receptors which recognize pathogens, certain exo- and
endogenous signals and are an integral part of the cellular innate immune defense system. It has
been proposed that the podocyte’s role in innate immunity may predispose it to injury, depending
on chronicity (Issa et al. 2024; Burke et al. 2023).

A

B
Figure 3.2.2: Histogram of GO (A) and pathway (B) annotations of genes differentially expressed in early
(4 weeks) and late (12 weeks) stages of FSGS, compared to the wild-type. X-axis shows strength of the
enrichment -log10(p-value), color of the bars shows average expression log2FC (panel A) or normalized
enrichment score of GSEA (panel B). Union of top 10 most significantly enriched categories in each
comparison was used for each figure. Terms are clustered by similarity of genes annotated under each
term. Row annotation bar on the right side of GO histogram (panel B) color-code terms by GO category:
BP - biological process. MF - molecular function, CC - cellular component.

Another group of upregulated processes, including metalloendopeptidase activity, contains
terms related to the integrity of the extracellular matrix. Alteration in matrix metalloproteinase
(MMP) activity was previously described in a number of renal diseases (Tveita, Rekvig, and
Zykova 2008), it is also an important predictor of early diabetic nephropathy (Ghazala and
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Taghreed U. Mohammdb, n.d.). An increase in MMP activity can be triggered by inflammation
signals and, in turn, continuous matrix degradation propagates inflammation signals, leading to
chronic inflammation. Among other functions affected by Wt1 knock-down are calcium ion
binding and heparin binding. Tight Ca2+ regulation is necessary for maintaining glomerular
integrity and filtration barrier (Vassiliadis et al. 2011) while specific endothelial heparin-binding
EGF-like factor is a critical mediator in the initiation and progression of chronic kidney diseases
caused by transactivation of EGF receptor (EGFR) by angiotensin II (Zeng et al. 2016). At the
same time, studies have shown that the formation of stress fibers, which is necessary for normal
podocyte function, is directly dependent on binding of syndecan-4 through its HS chains to the
heparin-binding domain of fibronectin (Saoncella et al. 1999).

Upon general description of functions affected by the mutation we wanted to focus on
differences between 2 stages of FSGS. Although only 9 individual genes were found to be
significantly affected by the mutation in a disease stage specific manner, there might be a
cumulative change on the level of functions and processes, detectable with the same dataset.To
test this hypothesis, we performed what we called "2D GO analysis" (Material and Methods
2.3.3). First we calculated the average log fold change (LFC) of genes annotated under each
Gene Ontology (GO) term, effectively summarizing the collective expression changes of genes
within each biological category. We then compared these average expression changes of GO
terms between early-stage and late-stage FSGS. By plotting the average LFCs of GO terms from
the early stage against those from the late stage, we modeled the relationship between
stage-specific expression changes using a simple linear regression. The figure 3.2.3 below
illustrates results of this analysis: labeled terms have much greater average expression change in
early or in late FSGS, correspondingly, and characterize FSGS progression in terms of immunity,
developmental processes, extracellular matrix and other categories. Close inspection of 2D GO
plot shows that Vascular endothelial growth factor receptor binding and laminin complex are
stronger upregulated at the early FSGS. Several immune-related terms, like complement
activation, and cell junction disassembly are stronger upregulated in late FSGS. Fatty acid
derivative biosynthetic processes are stronger downregulated in late FSGS. Some developmental
terms, such as cell proliferation or regulation of metanephros development are stronger
upregulated at 4 weeks, while mesenchymal cell development is more downregulated at 12
weeks. Below we attempt to interpret observed functional changes in the context of FSGS
progression.

VEGF is crucial for maintaining glomerular endothelial cell function and the integrity of the
glomerular filtration barrier. Laminin complex is a member of GBM, its interaction with
dystroglycan controls the shape of podocyte foot processes (Kojima and Kerjaschki 2002).
Increased VEGF receptor binding and laminin complex expression in glomeruli of 4 week old
mutants may represent attempts to compensate for Wt1 haploinsufficiency and maintain
glomerular integrity in early genetic FSGS. On the other hand, increase in the activity of cell
junction disassembly and innate immunity genes in glomeruli at 12 weeks (late FSGS) likely
contributes to podocyte detachment later in the disease progression. Downregulation of fatty acid
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derivative biosynthetic processes at 12 weeks may also reflect progressive glomerular sclerosis,
as certain fatty acid derivatives regulate the expression and activity of matrix metalloproteinases
(MMPs), affecting integrity of the ECM and cell adhesion. Upregulation of cell-proliferation and
levels of mesenchymal markers was previously associated with podocyte damage and was
suggested to be mediated by Tead1 transcription factor (Xie et al. 2019). Interestingly, the
magnitude of the effect is stronger earlier in the disease in the Wt1 FSGS model.

Figure 3.2.3: 2D GO plot compares 2 stages of FSGS, combining results of DE and functional annotation.
Each circle represents a GO term, its color and size show GO category and -log10 of the enrichment
significance (max), respectively. X and Y axes show average LFC of genes in the GO term at early (4w)
and late (12w) FSGS, respectively. The blue ribborn depicts the 99% prediction interval (PI) of the
regression line: terms located outside the PI have greater than expected expression change of the
contributing genes either in early or in late FSGS.

In summary, the GO terms exclusively enriched in early-stage FSGS likely reflect processes
linked to Wt1 haploinsufficiency, while those enriched in late-stage FSGS are indicative of the
increasing inflammation and sclerosis associated with advanced podocyte damage. GO terms
enriched at both early and late stages may represent processes broadly involved in podocyte
injury. As expected, the majority of the annotated GO terms align with key functions previously
established as critical for podocyte biology.
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3.2.2 Wt1 and Nphs2 Models of Genetic FSGS Share Transcriptional Changes

The Nphs2 R231Q/A286V mutation in the podocin gene induces podocyte damage and
serves as a genetic model for FSGS. Mice with this mutation develop progressive albuminuria
starting at 2 to 4 weeks of age with kidney failure at around 20 weeks of age. To investigate
consequences of the mutation and ensued disease progression on transcriptional level, we
generated and analyzed bulk RNA-seq data from glomeruli of healthy and Nphs2mut mice,
sampled at 4 weeks (early, non-sclerotic FSGS) and 8 weeks (late, sclerotic FSGS) of age. 3 and
5 biological replicates per genotype were generated from 4 and 8 week old mice,
correspondingly. Complete information for bulk RNA-seq samples is provided in Supplementary
Table 2. PCA analysis of rlog-normalized RNA-seq counts showed that samples are well
separated by age and condition with 2 first PCs and that 8 weekers are substantially different
from both control and 4 week old experimental samples (Suppl.Fig3.2 A).

Differential expression analysis revealed 6704 genes that are significantly differentially
expressed (FDR adjusted p-value <0.05) between all control and Nphs2mut samples.
Comparison of mutant and control samples separately in 2 disease stages found 4252 and 6954
genes differentially expressed in 4 and 8 week old mice, respectively, of which 2106 genes are
common for both stages (Suppl.Fig3.2 B). The high number of DE genes reflect a strong effect
of Nphs2 mutation on glomerular transcriptome, while higher number of DE genes at the later
stage of FSGS reflects the effect of disease progression.

Mice with the Nphs2 mutation develop severe phenotype faster compared to Wt1ko/wtmice, so
that at the age of 4 weeks they are already very proteinuric. The faster disease progression in
Nphs2mut, compared to Wt1ko/wtmice, is clearly reflected on the transcriptome level by a greater
number of DEGs and a greater magnitude of changes (broader distributions of LFC) in the
respective tests (Fig.3.2.4 A).

Despite a different degree of the transcriptome remodeling, caused by each mutation, patterns
of gene expression changes (log2FC vectors) significantly correlate between 2 models (Fig.3.2.4
B). Interestingly, there is convergence of the models at the later disease stage . log2 fold changes
of gene expression in Nphs2mut at 8 weeks (late FSGS) correlate stronger with LFCs from
corresponding analysis of Wt1ko/wt experiment, than with LFCs in Nphs2 at 4 weeks.

Analysis of interaction between genotype and age showed that 3332 genes are associated
with the disease progression, i.e. the effect of Nphs2 mutation on their expression significantly
(q-value < 0.05) depends on the age of mice. This is different from Wt1ko/wt model where the
effect of disease progression on the glomerular transcriptome is relatively mild. Interestingly,
decrease of Wt1 expression at the age of 4 weeks (early FSGS) does not reach the significance
level (FDR-adjusted p-value < 0.05) in either of 2 models (Fig.3.2.4 C). Similarly, Nphs2 gene
expression is significantly decreased in Nphs2mut mice only at the later and not at the early stage
of FSGS where it even increases (Fig.3.2.4 C).
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C

Figure 3.2.4: Comparison of differential expression in Wt1ko/wt and Nphs2mut bulkRNA-seq datasets.
(A) Distributions of log2 fold changes in the 4 comparisons. (B) Correlation heatmap of differential
expression results, calculated using spearman correlation of shrunk log2FC, only the top 30% of variable
genes was used. Early and late FSGS is denoted by light and dark red annotation bars, correspondingly.
(C) Expression of Wt1 and Nphs2 genes, denoted by red and yellow, in glomerular samples of 2 models
(panel row) at 2 disease stages (panel columns). Adjusted p-values show results of DEseq2 test between
control and mutant samples.

To compare functional consequences Wt1 and Nphs2 mutations, we annotated genes
differentially expressed between mutant and control mice, at 4 and at 12 weeks, with biological
pathways and GO terms. Results show that many biological processes related to extracellular
matrix, collagen biology and immunity are affected in both disease stages of Wt1 and Nphs2
models (Fig.3.2.5 A,B). There are common trends of increased innate and adaptive immune
responses and a striking downregulation of podocyte-enriched focal adhesion genes in late
FSGS, in both models. These trends may reflect a positive feedback loop among the glomerulus,
platelets, and immune cells that may contribute to persistent glomerular damage. At the same
time, there are pathways and ontologies that differentiate 2 FSGS models. For instance,
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cell-cycle related gene sets are stronger upregulated at early FSGS or at late FSGS in Wt1ko/wt
and Nphs2mut, correspondingly (Fig.3.2.5 B). There is also a difference in ranking of significant
terms: innate and adaptive immune responses are much stronger in Nphs2mut glomeruli, which
reflects their infiltration by immune cells already in 4 week old mice, while collagen-containing
extracellular matrix has higher rank and upregulation in Wt1ko/wt glomeruli at both disease
stages (Fig.3.2.5 A).

A

B
Figure 3.2.5: Functional annotation of differentially expressed genes.

Histograms of GO (A) and biological pathway (B) annotations of genes differentially expressed in early
(4 weeks) and late (4 weeks) stages of FSGS in Wt1ko/wt and Nphs2mut models of FSGS. X-axis shows
-log10 p-value of the enrichment test, color of the bars shows average expression log2 fold change (panel

A) or normalised enrichment score of GSEA (panel B). Union of top 10 most significantly enriched
categories in each comparison was used for each figure.

To highlight differences in biological effects of Nphs2 and Wt1 perturbations on glomerular
transcriptome we performed 2D GO analysis (see the previous sub-chapter) and visualized the
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result on Figure 3.2.6. GO terms that best differentiate effects of genotypes on glomerular
transcriptome can be split in 3 groups: 1) processes related to innate immunity and 2)
mitochondria-related processes that are stronger up- and down-regulated in Nphs2mut,
correspondingly; 3) functions related to morphogenesis and glomerular development that are
upregulated in Wt1ko/wt.

Figure 3.2.6: 2D GO plot shows functional comparison of transcriptomic changes in glomeruli of
Wt1ko/wt and Nphs2mut mice. X and Y axis show mean gene expression log2FC of GO terms, where log2FC
are taken from the analysis of the genotype effect of Wt1ko/wt and Nphs2mu mutations, respectively. Each
circle represents one GO term, color and size of the circle show its GO category and significance of the
Fisher test, correspondingly, GO terms significant (pval < 0.05 ) in early and/or late FSGS are used. The
blue ribborn depicts the 99% prediction interval (PI) of the regression line: terms located outside the PI
have greater than expected expression change of the contributing genes in a respective model.

Early activation of innate immunity in Nphs2mut is expected and caused by the mutation in
the podocin gene that disrupts the slit diaphragm, leading to exposure of antigens.
Downregulated mitochondrial processes are more difficult to interpret, it may reflect impaired
energy metabolism contributing to podocyte injury and apoptosis. Upregulation of
developmental and morphogenesis pathways in Wt1ko/wt data emphasizes transcriptional
dysregulation caused by Wt1 haploinsufficiency and may represent an attempt by podocytes to
compensate for WT1 deficiency but may also be an artifact of non-podocyte signal in bulk
glomerular RNAseq. To sum up, the functional annotation of differentially expressed genes in
the two genetic models of FSGS reveals lots of commonalities and some distinctions in the
molecular pathways and functions affected. Alterations in ECM and collagen biology in both
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models indicate shared mechanisms of GBM remodeling and scarring. Increased immune
response and podocyte detachment suggest that inflammation and loss of adhesion contribute to
disease progression in both models. Nphs2mut is characterized by strong innate immune activation
and mitochondrial dysfunction, which contributes to inflammatory damage and energy deficits.
Wt1ko/wt exhibits upregulation of developmental and morphogenesis pathways, reflecting
transcriptional dysregulation due to WT1 haploinsufficiency.

Analysis of transcription factor expression
Finally, to investigate the broader spectrum of possible regulators of expression changes we

scrutinized expression of individual transcription factors (TF) in our bulk RNAseq samples.
Among 110 TFs that were previously found expressed in podocytes, Wt1 and Zfp423 are
significantly downregulated in both models at both stages (Fig.3.2.7), supporting the crucial role
of Wt1 in the podocyte gene regulatory network. Interestingly, transcription factor Zfp423 is
differentially expressed in all 4 comparisons, this TF has been previously shown to control
proliferation and differentiation of neural precursors (Alcaraz et al. 2006) but not much
information is available regarding its role in glomerular damage response. At later FSGS stages
in both models E2f1, Lmx1b, Tcf21 and Foxd1 are downregulated while Maff and Egr1 are
upregulated. Egr1 is a TF that shows consistent stage dependent behavior in both models:
downregulated in early and upregulated in late FSGS

Figure 3.2.7: Overlap of transcription factors expressed in wild-type podocytes and significantly
differentially expressed (q-value <0.1) in 2 disease stages of 2 FSGS models.

Overall results of differential expression analysis of bulk glomerular RNA-seq in 2 models of
genetic FSGS shed some light on transcriptional rewiring in damaged podocytes, highlighting
similarity of transcriptional responses but also presenting features specific to each individual
mutation. Despite the progress, the mixture of signals from various cell types in bulk glomerular
samples makes it difficult to disentangle transcriptional changes in podocytes from
transcriptional changes happening in other glomerular cells, from changes in cell-type
composition. This issue is addressed in the following chapters by performing Chip-seq (Chapter
3.3) and single-nuclei RNAseq (Chapter 4.2) experiments.
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3.3 Chip-seq Analysis of Transcriptional Rewiring in Damaged

Podocytes

Differential expression analysis of Wt1ko/wt bulk RNA-seq glomerular data has several
limitations when used to characterize remodeling of Wt1 transcriptional regulatory network
(TRN) in damaged podocytes, as it is likely confounded by (1) changes in cell-type composition
in the damaged glomeruli and (2) a mixture of signals from primary and secondary, down-stream
effects, mediated via other transcription factors or coming from other cell-types. To address these
limitations and characterize rewriting of podocyte TRN, we performed Chip-seq analysis of
WT1 itself and TEAD1 in wild-type and Wt1ko/wtglomeruli.

The heterozygous Wt1 knockout mouse model aka Wt1ko/wt, a murine model of genetic
FSGS, has a consistent phenotype of proteinuria, foot process effacement and histologic features
of FSGS starting at the age of 4 weeks. We conducted WT1 and TEAD1 ChIP-seq experiments
on glomeruli from Wt1ko/wt and wild-type mice at the early disease stage, at the age of 8 weeks. 3
replicates per each condition per protein and corresponding mock IPs were sequenced. Peaks in
individual replicates were called with MACS2 and subject to cross-correlation analysis. Results
of clustering of individual peak-sets show grouping of biological replicates by the genotype in
both TF experiments with the exception of replicates #2 from WT1 experiment (Figure 3.3.1 A).
Results of cross-correlation and clustering analysis prompted us to exclude replicates #2 from the
downstream analysis due to the low quality. On the other note, in both experiments samples from
Wt1ko/wt mice have higher biological variability than the wild-type samples.

A B

Figure 3.3.1: Quality of WT1 and TEAD1 Chip-seq experiments.
(A) Hierarchical clustering of biological samples from WT1 and TEAD1 experiments. Spearman
correlation of Chip signals is used as the distance measure and reflected by the heatmap color, signal is
normalized by input control. (B) Density of Wt1 and Tead1 primary motifs around centers of WT1 and
TEAD1 peaks called by MACS2 in wild-type and Wt1ko/wt samples.
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Consensus peak-sets were derived with MSPC software and were used for motif analysis and
peak annotation. 16402 and 8278 consensus WT1 peaks were called in wild-type and Wt1ko/wt

background; 31382 and 9206 consensus TEAD1 peaks were called in wild-type and Wt1ko/wt

background, correspondingly. Despite a smaller number of consensus peaks for Wt1ko/wt samples,
due to higher variability, de-novo motif analysis of wild-type and Wt1ko/wt consensus peaks shows
similarity of their motif composition in WT1 and TEAD1 experiments (Suppl.Fig.3.4).
Moreover, the most enriched de-novo motif in each consensus peakset have the highest similarity
with the known primary motifs of the corresponding IP-ed protein. Densities of primary Wt1 and
Tead1 motifs around centers of WT1 and TEAD1 peaks from wild-type and Wt1ko/wt samples are
shown on Figure 3.3.1 B. Consensus Chip-seq peak sets are provided in the github folder
(“Website,” n.d.-c). Overall, initial analysis of the peak-sets showed that WT1 and TEAD1
Wt1ko/wt experiments worked as intended and the data is suitable for differential binding analysis.

3.3.1 WT1 and TEAD1 Chip-seq Analysis Reveal Coordinated and Independent
Gene Regulation in Healthy Podocytes

Understanding the transcriptional regulatory network governed by Wt1 in the context of
healthy podocytes is essential for appreciating how its disruptions might lead to disease. Upon
identification of peaks and before differential binding analysis of FSGS samples, we performed
comparative analysis of WT1 and TEAD1 peaks identified in wild-type glomeruli, which we
further refer to as WT1wt and TEAD1wt peaks.

To get a visual impression of the TFs binding behavior we manually screened several
individual podocyte genes in a genome browser, visualizing input-normalized Chip-seq signals
from the two transcription factors. An example of WT1 and TEAD1 signals over the podocin
gene in healthy glomeruli is shown on Figure 3.3.2 A and is representative of several other
podocyte genes. As evident from the example, both TFs often exhibit similar binding profiles,
with overlapping peaks of similar intensities and closely located summits. Checked globally, we
found a significant overlap between WT1wt and TEAD1wt peak sets resulting in 10640 shared
peaks (Fig.3.3.2 B), which suggests co-binding of these TFs.

Next, we have seperately analyzed sites co-bound by two TFs and uniquely bound by each of
the TFs. Genome region annotation shows that co-bound regions are more enriched in
promoters/exons/5-prime-UTR (different annotation levels), compared to solo WT1 and TEAD1
binding sites that are mostly positioned in intronic and intergenic space, i.e. putative enhancers
(Fig.3.3.2 C,D). Analysis of Chip signal with the aid of metagene plots shows that co-bound
regions have strong and perfectly centered IP signals from both proteins (Fig.3.3.2 D, 2nd row),
providing additional evidence of WT1 and TEAD1 co-binding. Interestingly, regions uniquely
bound by WT1 or TEAD1 have, beside a strong signal from the corresponding IP-ed protein, a
very weak signal from the other TF protein (Fig.3.3.2 D, 3rd row). The nature of this weak signal
is interesting, especially in the case of non-specific TEAD1 signals in regions bound only by
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WT1, as these peaks are not enriched in the TEAD1 motif (Fig.3.3.6 A). We hypothesize that if
not directly co-binding, one TF can affect or be affected by the chromatin state, allowing a
low-level binding of another TF at the same position: a molecule of a primary TF can be
connected, possibly via cofactor, to a molecule of a secondary TF, which physically binds at a
region distant from the site of the primary TF binding. In this scenario, a residual binding of the
second TF at a given location is a “shadow” of a primary binding event at another location. It
may as well be an artifact of the experiment or the analysis pipeline.

A B

C D
Figure 3.3.2: Integrative analysis of Wt1 and Tead1 Chip-seq datasets.

(A) Input-normalized Chip signal of WT1 and TEAD1 binding around the podocin gene shows clear
overlap of signals from both TFs at Nphs2 promoter. (B) Overlap of Tead and Wt1 peaks in the wild-type
glomeruli. (C) Genome region annotation of wild-type and differentially bound peaks. (D) Chip signal in
sets and subsets of Wt1 and Tead1 Chip-seq peaks.

Motif analysis of differentially bound regions
Figure 3.3.3 depicts results of known-motif enrichment analysis of regions co-bound and

uniquely bound by WT1 and TEAD1. Results show that all 3 sets of regions have similar motif
compositions and are enriched in Wt1 and other homeobox TFs, several members of Fox, Irf and
Ets families, Rela and other primary motifs. At the same time, regions uniquely bound by each
TF also exhibit unique characteristics. Regions bound only by TEAD1 lack enrichment in
Lmx1b and a number of Hox motifs and are more enriched in Jun/Fos motifs, compared to

51



regions co-bound and bound only by WT1. Regions bound only by WT1 and co-bound by both
TFs are characterized by lack of enrichment in Tead1 and Nfia motifs, correspondingly.

Strong association of TEAD1 with Jun/Fos motifs implies its role in enabling podocytes to
respond to mechanical stress and environmental changes since Jun/Fos proteins form the AP-1
transcription factor complex, regulating genes involved in response to stress and extracellular
stimuli. Lack of Lmx1b and Hox Motifs in regions bound only by TEAD1 indicates that TEAD1
regulates genes independently of the developmental pathways governed by Lmx1b and Hox
genes. Hence TEAD1 may focus on dynamic cellular processes rather than maintaining podocyte
identity. Lack of Tead1 motif in regions bound only by WT1 suggests that WT1 can
independently regulate genes without TEAD1's involvement, focusing on the core aspects of
podocyte structure and function. Overall, the absence of certain motifs in regions bound by one
TF suggests that WT1 and TEAD1 can independently regulate distinct sets of genes, allowing for
specialized control over different cellular processes. Regions co-bound by both TFs may
represent a critical set of genes regulated collaboratively, potentially essential for fundamental
podocyte functions. This specialization within the transcriptional network enables podocytes to
maintain their unique structural and functional properties while adapting to physiological
demands.

Additional angle of the analysis was provided by classifying peaks as cis- or trans-regulatory
elements, based on distance to TSS, and testing motif enrichment separately in these subsets.
Results of such analysis are shown on heatmap in Figure 3.3.3 B, where pink and green colors
show motif enrichment in regions bound by the TF and classified as cis or trans-regulatory
elements, respectively. The heatmap presents a similar pattern of cis/trans motif enrichment in
WT1 and TEAD1 peaks, except for the striking difference in Wt1 and Klf6/15 TF motifs that are
relatively enriched in trans- and cis-regulatory regions in WT1wt and TEAD1wt regions,
correspondingly. This observation is supporting the role of WT1 as a cofactor necessary for
expression of the core TEAD1 target gene.

A

B

Figure 3.3.3: Known motif enrichment analysis of genomic regions co- and uniquely bound by TEAD1
and WT1 in wild-type glomeruli, (A) tested against the shuffled background, (B) tested in cis- and
trans-regulatory elements in a discriminative mode. Color on the first heatmap shows the normalized
rank of enrichment and color on the second heatmap shows the difference between enrichments, i.e. pink
and green colors show relative enrichment in cis and trans-regulatory peaks, respectively.
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In summary, ChIP-seq analysis revealed a complex interaction between WT1 and TEAD1 in
healthy podocytes and provided necessary context for analysis of TRN rewiring under podocyte
damage, which is described in the next sub-chapter.
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3.3.2 WT1 Knock-Down Differentially Impacts WT1 and TEAD1 Binding

Having analyzed WT1-dependent transcriptional network in healthy podocytes in the
previous chapter, here we investigated rewiring of the network in Wt1ko/wt mouse model of
genetic FSGS. To this end we performed differential binding analysis of WT1 and TEAD1
transcription factors in Wt1ko/wt mice. PCA analysis of biological samples (Fig. 3.3.4 A,B)
confirmed genotype as the main grouping variable, both in WT1 and TEAD1 experiments, so we
proceeded with differential binding analysis using DiffBind R package (“Website,” n.d.-c; Rory
Stark<rory. stark@cruk. cam. ac. uk>, Gord Brown<gdbzork@gmail.com> 2017) and identified
2106 WT1 and 655 TEAD1 peaks that are significantly (q-value < 0.05) differentially bound in
Wt1ko/wt compared to wild-type mice. WT1 and TEAD1 differentially bound regions are further
referred to as WT1db and TEAD1db, correspondingly. Sets of Differentially bound peaks are
provided in the supplementary github folder.

A C

B D
Figure 3.3.4: Effect of Wt1 ko/wt on WT1 and TEAD1 binding.

PCA plots show grouping of wild-type and Wt1ko/wt samples in WT1 (A) and TEAD1 (B) experiments,
plots are made using RPKM of ChIP divided by RPKM of input, dots are labeled by replicates and
coloured by genotype. MA plots of changes in normalized Chip signal show that a number of WT1 (C)
and TEAD1 (D) binding sites undergo significant change upon Wt1 knock-down. Sites identified as
significantly differentially bound (FDR-adjusted p-value <0.05) shown in magenta.
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Analysis of MA plots, showing log2 fold change of reads (Y-axis) relative to the total number
of reads (X-axis) at the given peak, suggests that the overall effect of Wt1 knock-down on WT1
binding is stronger than on TEAD1 binding, as can be seen on Figure 3.3.4 C,D. There is also a
difference in the ratio of up and down-bound regions: the absolute majority of WT1db peaks
(1931 of 2106) lose Chip signal while the bias towards down-binding is weaker for TEAD1db
where 428 and 227 peaks lose and gain binding, respectively. In addition, the average Chip
signal in peaks that lose WT1 binding is higher than the average signal in all WT1 peaks
(Fig.3.3.4 C), whereas Chip signal in TEAD1 peaks that lose binding is lower compared to all
TEAD1 peaks (Fig.3.3.4.D).

Distribution of distances from peaks to the nearest TSS (Figure 3.3.5, panel A,B) implies that
most changes in binding of both TFs occur in trans-regulatory regions. Indeed, genome region
annotation of differentially bound peaks reveals depletion in promoter and enrichment in
intronic/intergenic regions (Supplementary Figure 3.4), compared to the wild-type. This bias is
relatively stronger in WT1db compared to TEAD1db: only 6% and 16% of differentially bound
peaks are annotated as promoter regions, compared to 32% and 23% of wild-type binding in
WT1 and TEAD1 experiments, respectively. Separate analysis of subsets of differentially bound
peaks that gain (up-bound) and lose (down-bound) Chip signal show differences in their genomic
composition, especially strong in WT1 experiment: up-bound peaks are more similar to
wild-type binding while down-bound peaks are more enriched in trans-regulatory regions (Figure
3.3.5 C,D).

A B

E
C D

Figure 3.3.5: Annotation of WT1 and TEAD1 differential binding in wild-type vs Wt1ko/wt glomeruli.
Distribution of distances between the center of each peak and the nearest annotated TSS for all
differentially bound peaks (A,B) and for Up- Down-bound subsets (C,D) of TEADdb and WT1db,
respectively. (E) Normalized WT1 and TEAD1 Chip signals in wild-type and differentially bound peaks.
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The analysis of wild-type WT1 and TEAD1 ChIP-seq signals in regions differentially bound
by these TFs upon Wt1 knock-down (Figure 3.3.5 E) reveals several findings. First, it is evident
that signals from both TFs are present in WT1db and in TEAD1db regions, with higher signal
from the corresponding IP-ed protein. Second, both signals are markedly diminished in WT1db,
compared to the average wild-type levels, while in TEAD1db both signals are approximately on
the wild-type levels. Moreover, an additional layer of complexity is observed when comparing
peaks down- and up-bound in Wt1ko/wt glomeruli: down-bound regions exhibit relatively weaker
ChIP signals compared to up-bound regions, with a much stronger difference in the case of WT1.

Motif analysis of differentially bound regions
Further characterisation of podocyte TRN rewiring under damage involved motif analysis of

differentially bound regions. Figure 3.3.6 A shows density of primary Wt1 and Tead1 motifs in
regions differentially bound by WT1 and TEAD1 in glomeruli of Wt1ko/wt mice. Results show
that TEAD1db regions are enriched in both primary motifs, while WT1db regions are enriched
only in Wt1 motif. In both sets of db regions the peak of Wt1 motif enrichment is shifted
~100b.p. from the center. To find other transcription factors that may be involved in rewiring of
podocyte TRN upon damage we performed motif enrichment analysis of differentially bound
regions using known motifs of TFs expressed in podocytes. Results show that motif composition
of genomic regions differentially bound by WT1 upon Wt1 knock-down resembles motif
composition of WT1 wild-type peaks but has notable differences. Both sets of genomic regions
are enriched in zinc finger protein motifs like Wt1, Sp2, Klf, Zfp637 etc (Fig.3.3.6 B) and both
have unique motifs, e.g. Nr6a1 motif is enriched only in WT1db and Tead1 - only in WT1wt.

To investigate these differences further we tested motif enrichment of differentially bound
regions in a discriminative mode, using a subset of WT1wt peaks selected to have the same
peak-to-TSS distance distribution as WT1db peakset. This was done to control for genomic
element composition differences between WT1db and all WT1wt peaks. Results on Figure 3.3.6
C reveal that most motifs are differentially enriched between the peaksets: Wt1, Klf and similar
motifs are depleted (blue bars) while Lmx1b, Zfp637, Fox and Hox motifs are enriched (orange
bards) in WT1db, compared to the matched WT1wt peaks. Motif enrichment of TEAD1db peaks
is quite similar to TEAD1wt peaks: both are enriched in Tead1, Klf, Etv6, Fox, Wt1 motifs
(Fig.3.3.6 B). Motif enrichment of TEAD1db in a discriminative mode against matched
TEAD1wt peak-set (see explained for WT1 above) shows almost no differences in enrichment
between wild-type and differential bound peaks, except for a relative enrichment in the primary
Tead1 motif.

Comparative enrichment of up- and down-bound peaks against each other reveal minor
differences between these subsets both in WT1db and in TEAD1db peaks. Up-bound peaks are
relatively enriched in the corresponding primary motifs (Fig.3.3.6 C,D yellow bars) and
down-bound - in motifs of other podocyte-expressed TFs, like Lmx1b, Zfp637, Foxc2 etc
(Fig.3.3.6 C,D green bars).
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Figure 3.3.6: Motif analysis of differentially bound peaks.
(A) Density of selected primary motifs around centers of differentially bound regions. (B) Heatmap of
motifs most enriched in regions bound by WT1 and TEAD1 in wild-type and differentially bound in
Wt1ko/wt glomeruli. The enrichment is tested against the shuffled input, color shows the normalized rank of
enrichment, motifs are clustered by the PWM simmilarity. Union of 20 motifs per peak-set is used for the
figure. Barplots show relative motif enrichment of WT1 (C) and TEAD1 (D) differentially bound regions.
Colors of bars represent various tests performed: black color shows motif enrichment of differentially
bound regions compared to shuffled input, orange and blue denote motif enrichment or deplition of
differentially bound relative to wild-type bound regions, green and yellow show motif enrichment of up-
and down-bound regions relative to each other. X-axis shows log10 transformed e-value of enrichment
(p-value divided by the number of motifs tested), rows show TF motifs tested, union of top 10 enriched
motifs per test is shown.

To sum up, both TEAD1 and, especially, WT1 binding are affected by Wt1 knock-down but
in different ways. Given that majority of WT1db regions are 1) annotated as trans-regulatory
elements (Fig.3.3.5 A,B,E), 2) lose WT1 signal (Fig.3.3.5 F), 3) depleted in Wt1 while enriched
in other podocyte specific TF motifs (Fig.3.3,6 C), compared to WT1wt, we can assume that
decrease in WT1 concentration preferentially affects WT1 target genes that are regulated via
podocyte specific enhancers collaboratively bound by WT1 and other TFs, such as Lmx1b,
Zfp637 and Foxc2. This would imply that gene regulatory circuits under control of these TFs are
directly affected by the Wt1 knock-down. Lmx1b and Foxc cooperatively regulate podocin
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expression through a shared enhancer motif (https://doi.org/10.1681/ASN.2012080823). Overall,
these TFs can regulate actin-related genes to maintain cytoskeletal dynamics.

In contrast, there is no global loss of TEAD1 binding upon Wt1 knock-down, TEAD1db is
relatively enriched in the Tead1 primary motif and not much different in motif composition,
compared to TEAD1wt. This suggests that podocyte-specific enhancer regions under control of
TEAD1 may play a compensatory role in transcriptome remodeling upon the induced podocyte
damage. This hypothesis is further explored in the next subchapter by analyzing the functional
impact of differential binding.

3.3.3 WT1 and TEAD1 have Common and Distinct Functions in Regulating
Podocyte Structure and Survival in Podocyte Injury

To build on results of motif analysis and further speculate which biological functions are
controlled by WT1 and TEAD1 in healthy podocytes and what aspects of podocyte biology may
be directly affected by the binding changes of TFs in Wt1ko/wt model of genetic FSGS, we first
inferred target genes of wild-type and differential binding of both TFs (Materials and Methods
2.3.1.1) and then performed functional annotation of the target gene sets with GO and collection
of pathways, using the whole genome as background.

Results of the analysis show that genes predicted as targets of co-binding and individual
binding of WT1 and TEAD1 in wild-type glomeruli mostly share functional annotations
(Fig.3.3.7, first three columns), including a group of GO terms related to actin cytoskeleton
organization and remodeling, regulation of cell adhesion and cell-junction organization,
morphogenesis and response to growth factor stimuli and glomerulus development. When
focusing on differences, co-binding targets are characterized by higher enrichment in genes
involved in focal adhesion - a core podocyte function, targets of solo WT1 binding are more
enriched in genes related to Rho GTPase binding and glomerulus development, targets of solo
TEAD1 binding are more enriched in genes involved in blood vessel morphogenesis and in
regulation of cell adhesion genes. Rho GTPases are pivotal regulators of the actin cytoskeleton
and influence cell shape, motility, and differentiation. WT1 may independently regulate genes
that control cytoskeletal dynamics and podocyte morphogenesis, underscoring its crucial role in
the development and maintenance of podocyte architecture. TEAD1 may specifically regulate
genes that facilitate interactions between podocytes and endothelial cells or contribute to the
vascularization processes within the glomerulus. Additionally, by controlling genes related to
cell adhesion, TEAD1 might influence podocyte adherence and communication with neighboring
cells.

Functions enriched in predicted targets of differential binding of WT1 and TEAD1 in Wt1ko/wt

are more heterogeneous (Fig.3.3.7, columns 4-7): some functions are shared with targets of
wild-type binding but there are also unique enrichments. One of the most enriched and uniquely
significant terms for TEAD1db is negative regulation of anoikis. Anoikis is a cell death
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mechanism which occurs when the integrin-mediated interaction between a cell and the
extracellular matrix (ECM) is disrupted, causing cells to no longer be anchored to the ECM, and
apoptosis to be triggered (Frisch and Francis 1994). Focal adhesion is enriched in targets of
wild-type binding and TEAD1db but not WT1db.

Figure 3.3.7: Functional annotation of predicted target genes of wild-type and Wt1ko/wt differential
binding of WT1 and TEAD1.Y-axis show GO terms, X-axis shows -log10 p-value of the enrichment, bar
color shows log2 enrichment score. Union of top 10 most significantly enriched categories in each test
was used for the figure.

Increasing complexity of the picture, we found differences in functional annotation of genes
affected by up or down-binding of each TF. Postsynaptic density, cell-junction organization are
more enriched in genes down-bound, regulation of Ras protein transduction are more enriched in
genes up-bound by both TFs. Regulation of epithelial cell differentiation, ephrin receptor
signaling pathway, protein folding chaperone are enriched only in targets up-bound by WT1.
Pseudopodium and regulation of toll-like receptor 3 signaling pathways are enriched only in
targets up-bound by TEAD1. Complex also seems to be regulation of genes related to actin
cytoskeleton organization: they are relatively enriched in targets down-bound by WT1 and
up-bound by TEAD1 in glomeruli of Wt1ko/wt mice. The increased binding of TEAD1 to genes
involved in focal adhesion, and actin cytoskeleton organization suggests that TEAD1 may
partially compensate for the loss of WT1 function to maintain podocyte survival and attachment.
Up-binding of genes involved in survival signaling pathways (e.g., Ras signaling, regulation of
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anoikis, regulation of TLR) reflect cellular response to stress and indicate attempts to regulate
apoptosis. On the other hand, enhanced regulation of TLR3 signaling by TEAD1 may lead to
increased inflammatory responses within the glomerulus, potentially exacerbating podocyte
injury.

To summarize, co-binding and shared functional annotations of TEAD1 and WT1 target
genes highlight their collaborative roles in essential podocyte functions, such as maintaining the
cytoskeleton, cell adhesion, and responding to growth factors. This collaboration ensures the
preservation of podocyte structure and the integrity of the glomerular filtration barrier. The
distinct enrichment patterns in their individually bound targets suggest that WT1 and TEAD1
also have specialized roles.WT1 appears to have a dominant role in regulating genes associated
with cytoskeletal dynamics and glomerular development, which are crucial for podocyte
differentiation and morphological maintenance. TEAD1 seems to focus on genes involved in
vascular interactions and the modulation of cell adhesion, potentially affecting how podocytes
interact with the glomerular capillary network and adapt to physiological changes. The
differential binding patterns of WT1 and TEAD1 in the Wt1 model of genetic FSGS highlight a
complex interplay between these transcription factors in the context of podocyte injury. WT1
Haploinsufficiency leads to decreased regulation of genes essential for podocyte structure and
function which results in impaired cytoskeletal organization, cell adhesion, and differentiation
processes. TEAD1 response shows increased binding to genes involved in survival, adhesion,
and cytoskeletal maintenance. It may represent an adaptive response to preserve podocyte
integrity in the face of WT1 deficiency.

To conclude, change in WT1 concentration causes rewiring of the podocyte TRN by
alteration in binding of WT1 and TEAD1 in podocyte-specific enhancer regions, which pushes
the podocyte transcriptome away from the wild-type state. Distinct sequence and genomic
characteristics of WT1 and TEAD1 differentially bound regions, including the difference
between up and down-bound regions, indicate that these regions mediate specific effects of Wt1
knock-down on the gene expression and hence cellular phenotypes. These specific regulatory
functions are realized through binding changes at intergenic and intronic regions of putative
podocyte-specific enhancers. By integrating the functional analyses of Chip-seq from both
wild-type and FSGS glomeruli, we gained a better understanding of how transcriptional
regulation by WT1 and TEAD1 maintains podocyte function under normal conditions and how
alterations in their binding contribute to disease pathology.
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3.3.4 Integrative Analysis of Chip-seq and RNA-seq: Altered Binding of WT1 and
TEAD1 in Podocytes Affects Glomerular Transcriptome

To get an integrated view of GRN rewiring upon genetically induced FSGS we combined
transcriptomic and Chip-seq evidence in multiple ways presented below. First, we tested overlaps
between sets of differentially expressed and TF target genes. We found that genes differentially
expressed in Wt1ko/wt and Nphs2mut models of FSGS significantly overlap with genes bound by
WT1 and TEAD1 in wild type glomeruli and with genes differentially bound by both TFs under
Wt1 haploinsufficiency. There is a couple of specific observations: 1) overlap between TF target
genes and DEGs is greater at the later stage of the disease, in both FSGS models; 2) genes
differentially bound by both TFs have more significant overlap with Nphs2mut DEG compared to
Wt1ko/wt DEG.

Next, we analyzed expression of TFs and their targets, identified in Chip-seq experiments.
We observed that Wt1 and Tead1 glomerular mRNA levels respond differently to the podocyte
damage (Fig.3.4.1 A-B, upper row): Wt1 mRNA level is decreased at both stages of FSGS in
both models, while Tead1 mRNA level is increased at both FSGS stages of Wt1ko/wt and
increased at the later FSGS stage in Nphs2mut. We also checked how expression of TF mRNA
correlates with average expression of predicted TF targets. Average expression of all WT1 target
genes follow expression of Wt1 gene in both genetic models of FSGS (Fig.3.4.1 A, upper and
middle row), while all TEAD1 targets don’t follow expression of TF’s mRNA (Fig.3.4.1 B,
upper and middle row). Correlation between expression of the WT1 coding gene and all WT1
targets implies that Wt1 is indeed the master regulator of the identified WT1 target genes. Lack
of correlation between expression of TEAD1 coding gene and TEAD1 target genes, implies that
either identification of target genes has failed or, more likely, that these genes are co-regulated by
other TFs. Expression of genes predicted to be coregulated by the 2 TF correlates with
expression of Wt1 but weaker than expression of genes bound only by WT1 (Suppl.Fig.3.5).
This makes sense as Tead1 is also involved in regulation of these genes and, since its mRNA lvl
is changing in the direction opposite to Wt1 mRNA, it would compensate, to some extent, for
changes in expression of co-bound genes caused by the decrease in WT1 level.

Interestingly, the behavior of targets of differential binding is reversed: WT1db targets
change (Fig.3.4.1 A, bottom row) in the direction opposite to changes in Wt1 mRNA level, while
TEAD1db targets change (Fig.3.4.1 B, bottom row) in the same direction as Tead1 mRNA level
in both FSGS models. To interpret behavior of differential binding targets we should consider
changes in TF mRNA levels together with changes in IP signal at the differentially bound sites
(Fig.). Given that expression of Wt1 mRNA dicreases and most WT1db regions lose WT1 IP
signal in podocytes, the increased expression of WT1db targets in glomeruli of both FSGS
models may have following explanations: 1) WT1 acts as a repressor at WT1db regions, so
removal of Wt1 activates WT1db targets; 2) another TF binds WT1db regions and activates
expression of the targets; 3) podocyte signature in bulk glomerular RNA-seq is heavily
confounded so the observed increase in WT1db targets expression comes from another cell-type.
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Situation is different for TEAD1: expression of Tead1 mRNA increases, a significant amount of
TEAD1db regions gain IP signal and targets of these regions exhibit increased expression in
glomeruli of FSGS mice (Fig.3.4.1.B, bottom row). This implies that Tead1 is recruited to a
number of TEAD1db sites and plays an active role in rewiring of GRN under podocyte damage.

A

B

Figure 3.4.1: Correspondence between bulk RNA-seq and Chip-seq analysis of genetic FSGS models.
(A) Overlap between genes differentially expressed in bulk RNAseq (columns) and target genes of TFs
inferred from Chip-seq (rows). (B) Expression of Wt1 and its target genes in glomerular bulk RNA-seq.
Y-axis shows rlog-normalised expression of transcription factor mRNA, mean expression of their target
genes (TF t.genes) or mean expression of targets of differential binding (db t.genes), as was defined based
on Chip-seq. X-axis shows the genotype of samples. Complete results see in Supplementary Figure 3.5.

One putative TF-targets-function link that we found in the data was correlation between
Tead1 mRNA, TEAD1 differentially bound genes (Figure 3.4.1 B) and cell-cycle genes (Figure
3.2.5 B). There is upregulation of all three components in glomerular transcriptome of both

62



FSGS models, but at different disease stages: early in Wt1ko/wt and late in Nphs2mut. It has
been previously described that injury may cause podocytes to re-enter the cell cycle, which was
at least partly mediated by YAP/TEAD1 signaling. One of the consequences of re-entry into the
cell cycle was over-expression of mesenchymal markers in podocytes(Xie et al. 2019). Our
results firmly support this observation, albeit leaving a puzzle of different timing of cell cycle
upregulation in different genetic models.

Finally, to systematically understand functional relation between FSGS-induced changes in
glomerular transcriptome and changes in Wt1/Tead1 podocyte TRN, we compared functional
annotations of genes differentially expressed in FSGS glomeruli with functional annotations of
genes predicted as differentially bound by WT1/TEAD1 in podocytes of FSGS glomeruli (Figure
3.4.2).

Figure 3.4.2: Integration of RNA-seq and ChIP-seq functional annotations highlights key GO terms
contributing to FSGS. X-axis shows -log10 p-value of the enrichment test, color of the bars shows log2
enrichment score. Union of top 10 GO terms most significantly enriched in each test was used.

Results presented on the Figure can be summarized in following points: 1) many
podocyte-related GO annotations are significant and highly ranked in all 4 tests, including
processes, like actin cytoskeleton organization and regulation of cell migration. 2) Certain
podocyte-specific processes, such as focal adhesion and post-synaptic density ( protein complex
that regulates cellular adhesion and controls receptor clustering), show much higher rankings in
the differentially bound compared to the differentially expressed gene sets. 3) There are several
functions, like innate immune response, heparin binding and mitochondrial function, that are
significantly enriched only in genes differentially expressed and not in differentially bound
genes. The fact that sets of DEG and DBG have overlapping but non-identical functions can be
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due to (1) a mixture of primary and secondary effects of podocyte damage on transcription
and/or (2) due to a mixture of signals from various cell-types in glomerular transcriptome. This
confirms the earlier observation (Chapter 3.2) about limitations of bulk glomerular
transcriptomics in capturing podocyte-specific transcriptional effects of FSGS .

To sum up, altered binding of WT1 and TEAD1 in Wt1ko/wt model of FSGS directly affects
glomerular transcriptome, modulating key biological processes, leading to podocyte injury,
detachment, and eventual glomerulosclerosis. Furthermore, integrating bulk RNA-seq with
ChIP-seq improved our understanding of podocyte-specific effects of Wt1 mutation on
transcription. The results further highlight the critical roles of WT1 and TEAD1 in regulating
gene expression related to podocyte structure and function upon the podocyte damage.
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3.4 Discussion

Our study provides an in-depth investigation into the WT1 transcriptional regulatory network
(TRN) in podocytes, especially under pathological conditions like focal segmental
glomerulosclerosis (FSGS). WT1 is a central transcription factor that orchestrates
podocyte-specific gene expression, playing a vital role in the development, differentiation, and
maintenance of podocyte structure and function. The loss or dysfunction of WT1 leads to
podocyte injury, glomerular damage, and the progression of kidney diseases like FSGS.

Key findings and their implications
WT1 as a Master Regulator of Podocyte Function: WT1 emerged as a core regulator of

podocyte differentiation and maintenance. In healthy podocytes, WT1 controls essential genes
related to the slit diaphragm, focal adhesion, and extracellular matrix (ECM). These components
are crucial for maintaining the glomerular filtration barrier and ensuring proper kidney function.
WT1 haploinsufficiency in the Wt1ko/wt FSGS model leads to disrupted transcriptional control
over these podocyte-enriched proteins, resulting in impaired cytoskeletal organization, cell
adhesion and podocyte differentiation. This disruption causes podocyte detachment and foot
process effacement, culminating in proteinuria and glomerulosclerosis.

Dynamic Response of WT1 and TEAD1 to Podocyte Damage: Our ChIP-seq analyses
revealed that both WT1 and TEAD1, another important transcription factor, show significant
changes in DNA binding during podocyte injury. WT1 binding is globally diminished in the
Wt1ko/wt FSGS model, leading to the loss of regulation over essential podocyte genes.
Interestingly, TEAD1, which is part of the Hippo signaling pathway, demonstrated increased
binding at regions regulating cell adhesion, cytoskeletal maintenance, and survival genes. To
hypothesize, TEAD1 may play a compensatory role, attempting to maintain podocyte integrity in
the face of WT1 dysfunction. Alternatively, binding of TEAD1 to the genomic sites vacated by
Wt1 could be a non-adaptive, side-effect of losing Wt1.

Progressive Alterations in ECM and Immune Response: In both the Wt1ko/wt and Nphs2mut
FSGS models, we observed significant transcriptional changes in genes related to the
extracellular matrix (ECM) and collagen biology. This may reflect an attempt to repair the
glomerular basement membrane (GBM) following injury, or maladaptive remodeling of GBM or
combination of both. As FSGS progresses, the innate immune response is also upregulated, with
increased complement activation and immune cell infiltration in damaged glomeruli. These
immune-mediated pathways exacerbate podocyte damage, promoting fibrosis and
glomerulosclerosis.

Limitations of Bulk RNA-Seq in Capturing Podocyte-Specific Changes: Through RNA-seq
analyses, we identified global transcriptional changes in FSGS glomeruli. However, these
findings underscored the limitation of bulk glomerular transcriptomics, where the signal reflects
contributions from various glomerular cell types. Despite the insights gained into
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podocyte-specific injury, bulk RNA-seq data obscures more subtle changes in the
podocyte-specific transcriptome. Integrating ChIP-seq data with RNA-seq partially addressed
this issue by showing how binding changes in WT1 and TEAD1 directly affect the glomerular
transcriptome, particularly genes involved in podocyte biology.

Findings in the context in FSGS etiology and treatment
Podocyte-Centric Pathogenesis of FSGS: The findings from the Wt1ko/wt model highlight

the central role of transcriptional dysregulation in podocyte biology as a driving force in FSGS.
WT1 deficiency impairs the expression of key podocyte genes, triggering a cascade of cellular
dysfunction that leads to progressive glomerular injury. Additionally, the compensatory response
of TEAD1 suggests that podocytes attempt to adapt to WT1 loss, although these efforts are
ultimately insufficient to prevent disease progression. TEAD1 may, therefore, represent a novel
target for therapeutic interventions aimed at reinforcing podocyte resilience under stress.

Potential Therapeutic Approaches for WT1-Related FSGS: Targeting the WT1 transcriptional
network offers a promising approach for managing FSGS. Gene therapies or small molecules
that restore WT1 function or enhance its downstream effects could help maintain podocyte
integrity. The intersection of ECM remodeling and immune activation suggests that therapeutic
strategies must address both structural and inflammatory aspects of the disease. Perhaps
anti-inflammatory drugs that modulate immune responses could help alleviate ongoing
glomerular damage and delay the progression to chronic kidney disease.

Limitations of the Research
Model-Specific Insights: Although the Wt1ko/wt and Nphs2mut models provide valuable

insights into the molecular mechanisms of FSGS, they represent genetic models of the disease,
which may not capture the full spectrum of sporadic or secondary FSGS in humans. The findings
from these models should be validated in additional genetic and environmental contexts to better
understand the heterogeneity of FSGS.

Incomplete Understanding of Compensatory Mechanisms: While TEAD1 showed increased
binding at critical gene loci in WT1-deficient podocytes, the role of TEAD1 remains
incompletely understood. Further studies are needed to clarify whether TEAD1 activation can
genuinely prevent disease progression or merely delays podocyte injury. The role of other
transcription factors and signaling pathways in this compensatory network should also be
explored.

Bulk RNA-Seq Limitations: The use of bulk RNA-seq in glomeruli limits our ability to fully
dissect podocyte-specific transcriptional changes from those occurring in other glomerular cells.
While integrating RNA-seq with ChIP-seq data improved our understanding of podocyte-specific
effects, single-cell transcriptomics would offer a more refined view of transcriptional changes in
individual cell types within the glomerulus.
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Conclusion
Our research provides insights into the WT1 transcriptional network in podocytes and how

its dysregulation contributes to the pathogenesis of FSGS. WT1 is essential for maintaining
podocyte differentiation and function, and its loss leads to widespread transcriptional and
structural defects in podocytes, culminating in glomerular sclerosis. The compensatory role of
TEAD1, ECM remodeling, and immune activation further highlight the complex network of
processes that drive FSGS progression. These findings suggest avenues for novel therapeutic
strategies targeting WT1 function, TEAD1-mediated compensatory mechanisms, and the
ECM-immune feedback loop to protect podocytes and slow the progression of FSGS. However,
the limitations of genetic models and bulk transcriptomic approaches underscore the need for
further research to refine our understanding of FSGS etiology.

67



Chapter 4. Single-cell Analysis of
Podocyte Transcriptional Response
to Damage
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4.1 Introduction

In the preceding chapter, we employed bulk RNA sequencing (RNA-seq) to analyze the
glomerular transcriptomes of genetically engineered mouse models of focal segmental
glomerulosclerosis (FSGS): the Wt1 heterozygous knockout (Wt1^ko/wt) and the Nphs2 mutant
(Nphs2^mut) mice. While bulk RNA-seq provided valuable insights into global gene expression
changes associated with podocyte injury and disease progression, it lacked the resolution to
discern cell-type-specific transcriptional dynamics due to the heterogeneity of glomerular cell
populations. Understanding the molecular mechanisms underlying podocyte dysfunction
necessitates a focused examination of podocyte-specific transcriptomic alterations. Therefore, in
this chapter, we transition to single-nucleus RNA sequencing (snRNA-seq) to dissect the
transcriptional reprogramming occurring specifically within podocytes during FSGS progression.
Specifically, we performed snRNA-seq analysis of previously described Nphs2 mutant and Wt1
heterozygous knockout mouse models of genetic FSGS (Figure 4.1, red). All experimental wet
lab work necessary to generate data for this chapter was performed by He Chen.

Figure 4.1: Experimental data used in chapter 4. Samples were taken from glomeruli of control,
Wt1ko/wt and Nphs2mut experimental animals.

Single-cell transcriptomics is a rapidly evolving technology that allows for the quantification
of gene expression at the individual cell level, capturing cellular heterogeneity and revealing rare
cell populations. This technology has been instrumental in renal research, enabling the
characterization of complex cell types within the kidney and their responses to injury.
Specifically, single cell RNA-seq has already provided insights into the transcriptional alterations
of podocytes and their interactions with other glomerular cells in FSGS (J. Park et al. 2018). By
comparing healthy and diseased states at single-cell resolution, researchers could identify
specific pathways and regulatory networks implicated in podocyte dysfunction. Furthermore,
single-cell transcriptomics can aid in the development of personalized medicine approaches by
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identifying population and patient-specific molecular signatures. However, existing analytical
approaches for scRNA-seq and spatial transcriptomics data have limitations, particularly in
mapping the gradual transition of cellular states from healthy to diseased phenotypes. Analyses
that rely on averaged gene expression levels between populations of cells from diseased and
healthy tissues may overlook subtle variations within individual samples. Over time, virtually all
organs develop subpopulations of damaged cells that may serve as early indicators of emerging
diseases. Yet, few tools are currently available to identify such rare cells in scRNA-seq data from
clinically healthy subjects.

In the second part of this chapter we address these limitations and, capitalizing on publically
available data, we derived a universal transcriptomic signature of podocyte damage that can be
applied to (spatial)single-cell/nuclei RNA-seq to quantify damage at the level of individual
podocytes. We then applied this podocyte damage score (PDS) to our snRNA-seq data and public
scRNA-seq datasets to delineate both model-specific and universal features of transcriptional
dysregulation in damaged podocytes. Furthermore, using bulk ATAC-seq data from FACS-sorted
podocytes, we constructed a podocyte transcriptional regulatory network (Figure 4.1, green)..
This network was instrumental in interpreting the results of the PDS analysis and in identifying
novel transcription factors involved in the rewiring of the podocyte transcriptome during FSGS
progression. Below is a short summary of each of the 2 parts of Chapter 4.

snRNA-seq allows in-depth characterization of transcriptional regulation in podocytes.
Single-nuclei (sn) RNAseq is a variation of single-cell (sc) RNA-seq method which allows to

sequence RNA molecules contained in nuclei (Grindberg et al. 2013). Studies comparing sc and
sn RNA-seq report that the two technologies, although profile different RNA fractions, correlate
well with each other and detect sufficient genes for adequate representation of cell populations.
However, snRNA-seq reduces cellular and stress response biases and provides enhanced
detection of nuclear transcripts, compared to scRNA-seq, making it a better suited technology to
study transcriptional regulation(Wu et al. 2019; Bakken et al. 2018). These considerations
motivated our choice in favor of single-nuclei sequencing.

We conducted snRNA-seq on isolated glomeruli from wild-type, Wt1ko/wt, and Nphs2mut
mice to achieve a high-resolution, cell-type-specific transcriptome analysis. A critical
observation was the alteration in cell-type composition associated with FSGS progression.
Specifically, there was a significant reduction in the proportion of podocytes in both mutant
models compared to wild-type controls, which closely paralleled the decline in kidney function.
In particular, podocyte loss was more rapid and plateaued earlier in Nphs2 mutant mice, reaching
a critical threshold by week 8, whereas the Wt1 knockout mice demonstrated a slower, more
gradual podocyte depletion, stabilizing by week 12. This loss of podocytes was strongly
associated with the development of proteinuria, highlighting the direct relationship between
podocyte integrity and glomerular dysfunction.

At the transcriptional level, both models displayed a substantial number of differentially
expressed genes (DEGs) involved in key biological processes such as cytoskeletal organization,
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cell adhesion, and stress response pathways. Strikingly, despite their distinct genetic mutations,
the transcriptional profiles of podocytes converged at later stages of disease progression in both
models. This convergence underscores the potential for diverse genetic insults to elicit common
maladaptive or adaptive responses in podocytes as the disease advances. These findings not only
elucidate the molecular mechanisms driving podocyte injury but also identify transcriptional
changes that may serve as therapeutic targets to preserve podocyte function in glomerular
diseases.

Finally, by integrating our snRNA-seq data with the bulk RNA-seq results, described in
Chapter 3, we assessed the limitations of bulk transcriptomics in capturing cell-type-specific
changes. Principal component analysis (PCA) demonstrated that sequencing technology and
sample type (bulk vs. single-nucleus; glomerular vs. podocyte) were major sources of variation,
with cell-type-specific transcriptomic changes potentially masked in bulk analyses due to the
heterogeneous cell populations. This underscores the importance of single-cell approaches in
accurately delineating the molecular events within specific cell types, such as podocytes, during
disease progression.

Single-cell damage score in podocytes
One of the important results of bulk RNAseq analysis that we confirmed in single-nuclei

RNAseq was a high degree of similarity between Wt1 and Nphs2 models of FSGS on the
transcription regulation level. Advanced transcriptome analyses, particularly single-cell RNA
sequencing, have revealed that injured podocytes, regardless of the underlying cause, activate
common genetic programs leading to alterations in cell structure, function, and survival. For
instance, Kuppe et al. (2021) identified a shared profibrotic transcriptional signature in podocytes
from patients with various kidney diseases, suggesting a universal maladaptive response
mechanism (Kuppe et al. 2021). These transcriptional changes often involve the upregulation of
stress response genes, cytoskeletal remodeling proteins, and extracellular matrix components,
contributing to podocyte dysfunction and loss (J. Park et al. 2018).

With this in mind, we hypothesized that different causes of FSGS converge on common
mechanisms of transcriptional regulation. We propose that a compact transcriptome signature can
be used to calculate damage in individual podocytes, regardless of the underlying disease
etiology. We also assumed that this gene signature can be derived in a supervised manner, by
meta-analysis of transcriptomic data of various models of kidney damage. To test our hypothesis,
we collected studies of various podocyte damage models, performed their differential expression
analysis and combined results from multiple models using ranks into a single gene signature.
This universal transcriptomic signature of FSGS was then applied to single cell RNA-seq data to
calculate damage score of individual podocytes, so called podocyte damage score. Rounds of
validation showed that this score is applicable for a wide range of podocyte damage models and
that it correlates with measures of podocyte morphology, glomerular and kidney health in mice
and in Human data..
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Characterizing Cellular Changes in Disease Progression with PDS
To demonstrate the potential of PDS in characterizing cellular changes in disease

progression, we applied PDS to eight diverse models of podocyte damage, each profiled with
single cell RNA sequencing. Among the models are Nphs2 and Wt1 datasets analyzed in the
previous chapter; conditional podocyte Pdss2 knockout snRNA-seq data generated by the
Nephrolab; and four models of podocyte damage from a published study (GEO accession
GSE146912) (Chung et al. 2020). The dataset includes models of diabetic nephropathy (Btbr),
conditional podocyte Cd2ap knockout (Cd2ap), the Adriamycin toxicity model (Doxo), and
nephrotoxic serum nephritis (Nephritis), each representing distinct mechanisms of podocyte
injury (Supplementary Table 1).Here is a short summary of the models:Wt1ko/wt model results
in podocyte injury, proteinuria, and glomerulosclerosis, mimicking human syndromes like
Denys-Drash and Frasier, which lead to nephrotic syndrome and kidney failure. Mutations in
Nphs2 disrupt the slit diaphragm, causing podocyte injury, proteinuria, and rapid progression to
FSGS, similar to autosomal recessive FSGS in humans. Loss of Pdss2 in podocytes causes
mitochondrial dysfunction, leading to FSGS-like phenotypes with progressive podocyte injury
and glomerular damage. The Btbr mouse develops insulin resistance and hyperglycemia, leading
to progressive kidney damage and glomerulosclerosis, similar to human diabetic nephropathy.
Cd2ap knockout disrupts the slit diaphragm, causing podocyte detachment, proteinuria, and
severe glomerulosclerosis resembling FSGS. Adriamycin Toxicity Model induces podocyte
damage through Adriamycin toxicity, leading to nephrotic syndrome, podocyte loss, and
glomerulosclerosis. In Nephritis model the damage is Induced by nephrotoxic serum, this
model causes immune-mediated podocyte injury, proteinuria, and glomerular damage,
mimicking immune-related glomerulonephritis.

By sorting cells according to their extent of damage, we can more effectively identify
molecular processes involved in progressive cellular injury. Employing these generalized
damage markers enables the study of disease-related molecular mechanisms in affected cells
across various animal models, as well as in unperturbed control conditions. Results of our
analysis presented in this chapter shows that this approach allows for the sequential mapping of
molecular events, facilitating the distinction between early and late-stage cellular responses
during pathogenesis, which is crucial for the rational development of targeted therapies.
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4.2 Single Nuclei RNA-seq Allows in-depth Characterization of

Transcriptional Response to Podocyte Damage

To study effects of genetically-caused podocyte damage and ensued progression of focal
segmental glomerulosclerosis on podocyte transcriptome, we performed single-nuclei RNA
sequencing of isolated mouse glomeruli from wild-type, Wt1ko/wt mice and Nphs2mut mice. Wt1
ko/wt snRNA-seq experiment includes a total of 10 samples from 4, 12-13 and 25 week old
mice. Nphs2 het.mut. snRNA-seq experiment includes a total of 14 samples from 4, 6, 8 and 12
week old mice. Complete information for single-nuclei RNA-seq samples is provided in
Supplementary table 3.

After mapping reads to mouse genome and quantification of gene expression, we removed
ambient RNA from raw counts (Material and Methods 2.3.1.4), the corrected count matrices
were used to produce QC plots (Supplementary Figure 4.1). QC plots confirmed good quality of
individual samples: low levels of mitochondrial and ribosomal RNAs and an average of 1800
features being expressed per cell. After filtering out a small number of low quality cells and
dublets (Material and Methods 2.3.1.4) we ended up with a total of 72133 and 96789 cells in
Wt1ko/wt and Nphs2mut datasets, respectively. The processed data underwent a dimensionality
reduction, the results of which are visualized in Figure 4.2.1. These UMAP plots present a
two-dimensional view of the Wt1ko/wt (panels A, C) and Nphs2mut (panels C, D) snRNA-seq
datasets, wherein each dot represents an individual cell. Panels A and B depict cells labeled by
the combination of age and genotype (group-level labels), These panels show that, in both
datasets, variation between batches does not dominate cell clustering and that data integration is
not necessary.

A B
Figure 4.2.1: UMAPs of the pre-processed and filtered glomeruli snRNA-seq data from Wt1ko/wt (A)

and Nphs2mut (B) experiments. Cells are coloured by combination of genotype and age information.
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4.2.1 Cell-type Composition of Glomeruli is Changed by FSGS Progression.

Next step of the analysis was annotation of cell clusters with known glomerular cell-types.
The annotation was performed manually, by visual inspection of expression of published kidney
cell-type markers (Kirita et al. 2020). Results of cell-type annotation (Fig.4.2.2 A,B) show a
similar cell-type composition of both datasets with three biggest clusters of cells representing
endothelial, mesangial and podocyte cells of glomeruli. Another identified glomerular cell-type
is parietal epithelial cells (PEC). Non-glomeruli kidney cells are presented by cells of
juxtaglomerular apparatus (JGA) and by a substantial population of cells from collecting ducts:
proximal tubule (PT), thick ascending limb (TAL), Intercalated (IC) and principal (PC) cells.
Notably, there is also a cluster of immune cells and a small cluster of proliferating cells in both
datasets. We summarized cell-type annotations by calculating the proportion of each cell type in
individual samples in Supplementary Figure 4.2. Results show that three most abundant
glomerular cell-types comprise up to 92% all cells in glomerular snRNA-seq samples. Another
observation is a systematic difference in detection rate of specific cell-types between Wt1 and
Nphs2 experiments. For instance, the average podocyte fraction in sequenced controls of
Wt1ko/wt and Nphs2mut experiments is 0.39 and 0.2, correspondingly, - almost 2 fold
difference. Given the same genotype, similar sequencing depth and quality of samples in both
experiments, this bias likely represents a technical batch effect or a strain difference. We should
also keep in mind systematic differences in cell-type detection rates between scRNA-seq and
snRNA-seq (Denisenko et al. 2020). These technical and methodological biases make it difficult
to give a biological interpretation of cell-type composition for specific samples. However, we
expect that the change in cell-type composition between samples, caused by genotype or disease
progression, should not be affected by a technical factor to a great extent.

To describe changes in cellular composition caused by genetic FSGS we performed
differential cell-type abundance analysis (Material and Methods 2.3.2). The analysis failed to
identify the significant effect of disease progression on detection rates of glomerular cell-types,
likely due to insufficient statistical power. However, results show an insignificant in Wt1ko/wt and
a highly significant in Nphs2mut samples decrease in podocyte detection rate, compared to
wild-type samples (Fig.4.2.2 C). There is also a significant increase in detection rates of immune
and proliferating cells in Nphs2mut, compared to wild-type samples (Fig.4.2.2 C), which is likely
related to the highly inflammatory properties of the podocin mutation.

We further investigated changes in podocyte detection rate over FSGS progression by
visualizing podocyte fraction in glomerular snRNA-seq samples. Figure 4.2.2 D (left side) shows
virtually no change of the podocyte fraction in Wt1ko/wt and 2 fold decrease in Nphs2mut mice at
the age of 4 weeks (early FSGS). Both models exhibit a further decrease in podocyte fraction
later in the disease, though the loss is much faster in Nphs2mutmice, plateauing at the 8th week of
the disease, at which point podocytes are only 2% of all sequenced cells. The loss is much slower
in Wt1wt/ko model, where the podocyte fraction decreases 2 times by 12th week and then stays
almost unchanged till 25th week of mutants age.

74

https://paperpile.com/c/d3HTZm/Vo2X5
https://paperpile.com/c/d3HTZm/255N5


A B

C D
Figure 4.2.2: Cell-type analysis of glomeruli snRNA-seq samples.

UMAPs of Wt1ko/wt (A) and Nphs2mut (B) experiments where cells are coloured by kidney cell-types. (C)
Results of differential cell-type abundance analysis show log2 fold change (X-axis) in a cell-type (Y-axis)
abundance caused by genotype or disease progression (age:gtype), only significant results (q-value<0.1)
are shown. (D) Proportion of podocyte cells (Y-axis) in snRNA-seq samples depending on age or
proteinuria (X-axes). Blue line depicts results of linear regression, spearman correlation was calculated.
Cell-type labels assigned per cluster: Endo - endothelial, IC - intercalated, Immune, JGA -
juxtaglomerular apparatus, Mes - mesangium, PC - principal, PEC - parietal epithelial, Pod - podocyte,
Prolif - prolifirating, PT - proximal tubule, TAL - thick ascending limb cells.

Lastly, to test how much of FSGS phenotype can be explained by the observed total podocyte
fraction we have correlated it with Albumin/Creatinine measure of kidney function (Figure 4.2.2
D, right side), available for some of the sequenced mice (see last column in Supplementary table
3, last column). The observed spearman correlation of -0.73 is highly significant, suggesting that
a total fraction of podocyte cells in a glomerular snRNA-seq sample may serve as a reliable
proxy of podocyte damage in FSGS study.

Overall, results of cell-type analysis show changes in cell-type composition of glomerular
snRNA-seq samples in mice with genetic FSGS. The observed decrease in podocyte fraction
correlates with kidney function and likely reflects transformation and loss of damaged
podocytes.
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4.2.2 Transcriptional Changes in Podocytes of Wt1 and Nphs2 FSGS models.

Podocytes identified in both analyzed datasets were subject to differential expression (DE)
analysis to test effects of genotype and disease progression, while controlling for effects of batch
and sex, when applicable. DE analysis revealed 636 and 2139 genes that are significantly (FDR
adjusted p-value <0.05) affected by genotype in podocytes of Wt1 and Nphs2 snRNA-seq
experiments, correspondingly. The higher number of genes whose expression is affected in
podocytes by Nphs2 mutation, is in line with the functional phenotype.

DE analysis of FSGS stages was done by testing genotype effects in samples from control
and mutant mice of the same age, ages matching analysis of bulk glomerular transcriptome
(Chapter 3.2). There are 469 (4 weeks) and 1377 (12 weeks) differentially expressed genes
(DEG) in Wt1ko/wt podocytes; 912 (4 weeks) and 1589 (12 weeks) DEG in Nphs2mut
podocytes. Higher number of DE genes at the later stage of FSGS reflects the effect of disease
progression in both models.

Analysis of the effect size of the mutation on the podocyte transcriptome shows that it is
indeed smaller at the earlier stage of FSGS, in both models, but the difference is bigger in
Wt1ko/wt (Figure 4.2.3 B). It seems that at the age of 4 weeks the podocyte transcriptome is
significantly transformed in Nphs2mut and only starts changing in Wt1ko/wt mice. However, at the
later disease stage the degree of transcriptome remodeling in both models becomes comparable
(Figure 4.2.3 A, dashed lines). This is confirmed by correlation analysis of gene expression
changes (log2FC) in podocytes, caused by mutation. As can be seen on Figure 4.2.3 B, Wt1 and
Nphs2 mutation effects significantly correlate at different disease stages, showing convergence
of the effects at the later disease stage (Fig.4.2.3 B). Incidentally, this replicates results of bulk
glomerular transcriptome analysis.

Analysis of interaction between genotype and age found 260 and 426 genes that are
significantly associated with the disease progression in podocytes of Wt1 and Nphs2
experiments. The results are in line with the analysis of podocyte fraction and functional Alb/Cre
measures of kidney function (see Figure 4.2.2 D), confirming faster progression of disease in
Nphs2 mutants on transcriptome level. Analysis of the disease progression focuses on changes
between control and mutant samples that specifically depend on age of mice. This, combined
with the analysis of general genotype effect, which does not depend on time, allows to separate,
to some extent, primary and secondary effects of the mutation.

Analysis of Wt1 and Nphs2 mRNA levels in podocytes shows that Wt1 expression is
strongly decreased in older mice in both mutants, compared to controls, while it is less decreased
(Nphs2mut) or even increased (Wtko/wt) in 4 week old mice (Fig.4.2.3 C). Interestingly, Nphs2
gene expression is not significantly decreased in mutants, compared to controls, at any stage of
FSGS. Moreover, Nphs2 expression is strongly up-regulated in Nphs2mut in 4 week old mice.
These results are at odds with bulk glomerular transcriptome analysis, where we observed much
stronger differences between controls and mutants (Fig.3.2.4 C), or even different direction of
change of the knocked-out genes. This discrepancy is likely caused by the decrease in the
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podocyte fraction (Fig.4.2.2 D) in bulk glomerular samples from sick mice, which would
confound expression changes in podocyte cells.

A B

C

Figure 4.2.3: Results of differential expression analysis of snRNA-seq podocyte samples.
(A) Distribution of log2 fold changes of gene expression. LFCs are calculated between control and mutant
podocyte samples in Wt1 and Nphs2 models of FSGS from 4 (early FSGS) and 8/12 (late FSGS) week
old mice.. Model is denoted by the line color, the stage of FSGS is denoted by the line type.
(B) Correlation heatmap of differential expression results, calculated using spearman correlation of
shrunk log2FC, only the top 30% of variable genes was used. Early and late FSGS is denoted by light and
dark red, correspondingly. (C) Expression of Wt1 and Nphs2 genes, denoted by red and yellow, in
podocytes, aggregated per sample. Panel rows and columns separate samples by model and disease stage.
Adjusted p-values show results of DEseq2 comparison of control and mutant samples.

The observed up-regulation of knocked-out Wt1 and Nphs2 in the podocyte transcriptome
earlier in disease progression can be explained in the paradigm of transcriptional network. My
explanation invokes the notion of an adaptive response that goes rogue in a maladaptive
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environment. Let’s assume that deficiency of functional Wt1 or Nphs2, key podocyte genes,
elicits a damage response program that normally, in healthy podocytes, increases production of
functional Nphs2 and Wt1. Attempts to execute this transcriptional program in a disease context,
when restoration of functional Nphs2 or Wt1 levels is not attainable, results in disbalance of
expressed proteins, which results in further dysregulation of the podocyte TRN, thus feeding the
vicious cycle of disease. This explanation has other published experimental evidences that
support it (Ettou et al. 2020b). Since decrease in Wt1 expression is quite a universal feature of
podocyte damage of any etiology, an increase in expression of functional Wt1, or it’s targets, in
the damaged cells may help to restore TRN state and, arguably, have a protective effect against
podocyte damage.

Functional annotation of DE genes
To characterize effects of Wt1 and Nphs2 mutations on podocyte cellular functions, we

annotated respective sets of differentially expressed genes with biological pathways and GO
terms. Results show that general mutation and disease progression effects on the podocyte
transcriptome share multiple annotations (Supplementary Figure 4.3) but also have many
functions specific to each genotype and disease course (Fig.4.2.4). In addition, the average
expression of multiple common GO terms and biological pathways may change in different
directions (Supplementary Figure 4.3 , Fig.4.2.4). Below we attempt to untangle these nuances.

Figure 4.2.4: Functional annotations of genes associated with general effect of genotype and disease
progression (FSGS prog) in podocytes of Nphs2mut and Wt1ko/wt snRNA-seq experiments. Barplot shows
results of pathway GSEA. Color shows normalized enrichment score. X-axis on both plots show -log10
p-value of fisher test for enrichment.
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A closer look at GO term enrichment (Supplementary Figure 4.3) reveals a significant
overlap in functions related to cell junctions, actin cytoskeleton, cell morphogenesis, regulation
of cell migration, and angiogenesis between both models. These biological processes are key in
maintaining podocyte structure and function, as they are heavily involved in the regulation of
cell shape, motility, and interactions with the glomerular basement membrane—all critical
functions for podocyte health and the integrity of the glomerular filtration barrier. Interestingly,
genes involved in post-synaptic membrane organization are significantly enriched and
upregulated specifically in the Wt1 knockout model, suggesting a model-specific effect on
synaptic-like structures involved in podocyte cell-cell interactions. Given that many of these
genes are implicated in tight-junction organization, this finding is particularly important for
understanding how Wt1 loss affects podocyte integrity and contributes to disease progression.
2D GO analysis in Supplementary Figure 4.4 provides an additional view into differences
between Wt1 and Nphs2 mutation effects on the podocyte transcriptome.

The results of Gene Set Enrichment Analysis (GSEA) (Fig. 4.2.4) provide further insights
into the functional consequences of these genetic mutations on podocyte biology. The focal
adhesion complex and trafficking and processing of endosomal TLR are consistently
downregulated, while epithelial-mesenchymal transition (EMT) is stably upregulated in both
models. This suggests a common pathophysiological response of podocytes to both mutations,
where impairment of adhesion complexes and enhanced EMT are indicative of podocyte
detachment and phenotypic shift, which are known to contribute to podocyte depletion and
glomerular dysfunction.

We also observed notable divergence in pathways between the two models, indicating
differential transcriptional responses to podocyte damage. Specifically, TNF-alpha signaling via
NFkB and innate immune response pathways showed opposing patterns of regulation: both were
downregulated in the Wt1 model but upregulated in the Nphs2 model. This suggests that
although both mutations contribute to FSGS progression, they do so via distinct inflammatory
responses, potentially driven by differences in how each mutation affects podocyte resilience and
signaling cascades.

Further, antigen processing and presentation, protein processing in the endoplasmic
reticulum (ER), fluid shear stress, cellular response to heat stress, and HSF1 activation were all
downregulated in the Wt1 mutation model, reflecting a general impairment in stress response
mechanisms and ER function. These processes are essential for proper protein folding and
cellular stress management, indicating that the absence of Wt1 disrupts cellular homeostasis and
contributes to podocyte vulnerability. In contrast, the Nphs2 mutation specifically led to the
downregulation of N-glycan biosynthesis, which is a necessary step for producing functional
podocin and other tight junction proteins. The disruption of N-glycosylation likely reflects a
substrate limitation caused by the mutation, contributing to compromised podocyte junctions
(Reily et al. 2019).

Interestingly, several functions, such as muscle contraction, platelet homeostasis, and
nervous system development, were continuously upregulated in the Nphs2 model but not in the
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Wt1 model. This suggests that Nphs2 mutations may induce broader systemic changes in cellular
signaling that are absent in the Wt1 context. These upregulated pathways could represent
compensatory mechanisms or maladaptive changes contributing to the progression of FSGS in
Nphs2 mutants. Additionally, chromatin modifying enzymes, which regulate gene expression
epigenetically, were consistently downregulated in Nphs2 mutants, potentially reflecting altered
chromatin architecture and transcriptional regulation as part of the podocyte response to the loss
of functional podocin.

In summary, our analysis highlights both convergent and divergent biological effects of Wt1
and Nphs2 mutations on podocyte cellular function, particularly regarding signaling pathways,
immune response, and cellular stress adaptation. Shared disruptions in adhesion, EMT, and
cytoskeleton dynamics underscore common pathways leading to podocyte dysfunction.
However, the contrasting regulation of inflammatory pathways and stress responses between the
two models reveals genotype-specific effects, providing insights into how different podocyte
injuries can differentially drive disease progression.

4.2.3 Limitations of Glomerular Transcriptomics for Studying Podocyte Damage

PCA analysis of bulk and single-nuclei RNA-seq samples
To get a holistic view of differences between glomerular and podocyte samples, we generated

pseudo-bulk glomerular and podocyte RNA-seq from snRNA-seq and compared them to bulk
glomerular RNA-seq. We used PCA as the main tool for comparison and analysis of variation
between the samples. PCA plot on Figure 4.2.5 A shows that the sequencing technology, as
expected, is a largest source of variation, clearly separating bulk and pseudo-bulk samples along
PC1. More interestingly, PC1 also separates podocyte and glomerular pseudo-bulk samples,
showing that the sample type explains a great deal of variation in the data. This distinction
suggests that despite the similarity in sequencing technology used for the pseudo-bulk samples,
the underlying biology of podocytes and the glomerular compartment drives a significant portion
of the observed variation.

To decide how many principal components to consider, we performed an analysis of variation
(Camargo 2022) for the first 20 PCs, which showed that the first seven contain non-random
levels of variation (Suppl.Fig.4.5 A). We correlated loadings of the first 7 PCs with sample-level
experimental variables to understand how much each variable contributes to the variation in the
data. Results on Figure 4.2.5 B shows that the first principal component, which accounts for
51.2% of variation in the data, represents a combination of a sample type (glomerular VS
podocyte) and a sequencing type (bulk vs single-nuclei). The second PC, which accounts for
14,7% of variation, mostly represents the effect of a sample type. The third PC mostly explains
experimental (Wt or Nphs2) effects, the 4th - age of mice, PC5 to PC7 mostly represent the
overall genotype effect (wild-type or mutant).
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A B

C D
Figure 4.2.5: Comparison of bulk and single-nuclei glomerular RNAseq datasets.

(A) PCA analysis of bulk glomerular, pseudo-bulk glomerular and pseudo-bulk podocyte samples.
Pseudo-bulk was generated from snRNA-seq. (B) Spearman correlation heatmap of sample level
covariates and PCs. “Genotype” variable has 2 classes: control or mutant, “experiment” variable also has
2 classes: Nphs2 or Wt1. (C) Functional annotation of the 7 first loadings with KEGG and Reactome
pathways using gene set enrichment test. Significant results (q-value<0.05) are marked with an asterix.
Color shows normalized enrichment score (NES). (D) Bootstrapped and randomized percentage of
variation for the first 20 PC's of PCA analysis of bulk and pseudo-bulk single-nuclei RNA-seq. Whiskers
show 95% CI.

In order to understand which aspects of biology are reflected in the analyzed PCs and, by
extension, in the experimental variables, we performed pathway annotation of PC loadings
(Suppl.Fig.4.5 B). The results show that genes contributing to the first PC (sequencing and
sample type effects) are enriched in metabolic functions, like glycolysis, in fatty acid metabolism
and autophagy. This suggests that differences in cellular metabolic activities are not only a
consequence of sequencing artifacts but also may reflect distinct metabolic states of podocytes
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versus glomerular cells. The second PC (sample type effect) is represented by metabolism of
Angiotensinogen to Angiotensin, Hippo, MAPK, Calcium signaling pathways and genes related
to synapses. The enrichment of these pathways in PC2 suggests that podocytes and other
glomerular cells have distinct roles in maintaining kidney function, particularly with regard to
signaling processes that regulate cell communication, stress responses, and homeostasis. The
presence of synapse-related genes may also indicate the importance of specialized cell-cell
contacts and signaling mechanisms that are unique to podocytes, which contribute to their ability
to adapt and respond to changes in the glomerular environment. 3rd PC (batch and model effects)
is represented only by one term Processing of Capped Intron-Containing Pre-mRNA. PC 4 (age
effect) and PCs 5-7 (genotype/damage effect) are enriched in immune function genes.
Additionally, PC 4 is enriched in synapse and potassium channel genes; PC 5 is enriched in
Cytokine-cytokine receptor interaction; PC6, which also represents a model effect, is enriched in
glycolysis and potassium channels. PC6 is particularly interesting, as it correlates both with the
experimental condition (Nphs2 or Wt1) and the genotype (control or mutant). This dual
correlation suggests that PC6 may represent the differential effects of Wt1 and Nphs2 mutations
on the transcriptomes of glomerular and podocyte samples. The enrichment observed in
glycolysis and potassium channel pathways for PC6 highlights potential shared and distinct
metabolic and ion channel-related changes that are characteristic of these specific genetic
mutations.

In conclusion, our PCA analysis highlights the complex interplay of sequencing technology,
biological sample type, experimental batch, and genotype in shaping the transcriptional
landscape of glomerular and podocyte samples. By integrating pathway analysis, we were able to
link specific PCs to meaningful biological processes. Results show that differences in underlying
biology of podocytes and the glomerular compartment drives a significant portion (PC1 and
PC2) of the observed variation in analyzed samples, significantly exceeding effects of mutation
and highlighting the intrinsic biological differences between these two cell populations.

Comparison of bulk and snRNA-seq differential expression
In this analysis, we compared the effects of Wt1 and Nphs2 mutations on glomerular and

podocyte transcriptomes using differential expression analysis across bulk glomerular,
single-nuclei glomerular, and podocyte RNA-seq samples. Our goal was to determine whether
these mutations induce unique or overlapping transcriptional changes in podocytes and the
broader glomerular compartment.

Comparing the results of differential expression (DE) analysis between mutant and control
cells (Suppl. Fig. 4.5 B) showed that the number of differentially expressed genes (DEGs) due to
the Nphs2 mutation in podocytes and all glomerular cells was comparable. In contrast, the Wt1
mutation resulted in fewer DEGs in all glomerular cells compared to podocytes, where the
number of DEGs was similar to that observed in the Nphs2 experiment. This suggests that Wt1
mutation effects are more pronounced in podocytes than in the broader glomerular population,
whereas Nphs2 effects are consistently evident across both podocytes and glomerular cells.
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An analysis of effect sizes, presented in Figure 4.2.6 A, further supports these findings by
comparing log fold changes (LFC) in gene expression. The results indicated that the Nphs2
mutation had a greater impact on both the glomerular and podocyte transcriptomes compared to
the Wt1 mutation. Moreover, changes in the podocyte transcriptome were more pronounced than
changes in the glomerular transcriptome in the Wt1 experiment, while the opposite pattern was
observed for the Nphs2 mutation, where glomerular changes surpassed those observed in
podocytes. These observations suggest that the effects of the Wt1 mutation are primarily driven
by changes in podocytes, while the Nphs2 mutation affects multiple cell populations within the
glomerulus.

A

B

Figure 4.2.6: Comparison of bulk and single-nuclei glomerular RNA-seq datasets.
(A) Distributions of LFC values show effect size of genotypes (panel rows) in bulk glomerular,
snRNA-seq glomerular and podocyte samples (panel columns), as estimated by differential expression
analysis. Line colors show ages of mice. (B) Heatmap of Spearman correlation between LFCs from DE
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analysis of control and mutant cells(samples) in mice of specific age. 1249 genes within the upper
variance quartile were used.

Taken together, the evidence suggests that differential expression observed in the bulk
glomerular transcriptome in response to the Wt1 mutation is largely driven by podocytes, where
the mutation occurs. This interpretation is supported by the higher number of DEGs and larger
effect sizes seen specifically in podocytes compared to all glomerular cells. Conversely, the
changes in the glomerular transcriptome due to the Nphs2 mutation appear to reflect a more
complex combination of signals from different cell populations, indicating that multiple cell
types within the glomerulus contribute to the observed transcriptomic changes.

To further explore these relationships, we performed a correlation analysis of DE results
between glomerular and podocyte transcriptomes using log2 fold change vectors (Fig 4.2.6 B).
The results showed that the Wt1 mutation effects in the glomerular transcriptome correlated
more strongly with those in the podocyte transcriptome, which is consistent with the notion that
podocytes are the primary source of transcriptomic changes under Wt1 mutation. In contrast, the
correlation between glomerular and podocyte transcriptomes for the Nphs2 mutation was
weaker, suggesting that the transcriptomic response in glomerular cells involves contributions
from multiple cell types, resulting in a more heterogeneous signal.

To conclude, this analysis suggests that bulk glomerular transcriptome may be a reasonable
proxy of the podocyte transcriptome in FSGS studies but only when the primary podocyte
damage is relatively mild and the expected rate of disease progression is low. However, for
studies of specific aspects of podocyte TRN we strongly recommend using FACS sorted
podocytes or single-cell technology. The latter also allows analysis of cell-type interactions and
analysis of podocyte damage trajectories.
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4.2.4 Discussion

In this chapter we employed single-nucleus RNA sequencing (snRNA-seq) to dissect the
transcriptional landscape of podocytes in two genetic mouse models of focal segmental
glomerulosclerosis (FSGS): the heterozygous Wt1 knockout (Wt1ko/wt) and the Nphs2 mutant
(Nphs2mut) mice. By analyzing isolated glomeruli from these models at various stages of
disease progression, we aimed to understand how genetically induced podocyte damage
influences cellular composition and gene expression within the kidney, thereby contributing to
the pathogenesis of FSGS.

Findings and their implications for Podocyte Biology and Kidney Disease
Cell-type annotation revealed a consistent cellular composition across both models, with the

major glomerular cell types—podocytes, endothelial cells, and mesangial cells—forming the
largest clusters. Notably, we observed a significant decrease in the proportion of podocytes in the
Nphs2^mut mice compared to wild-type controls, even at early disease stages. This reduction
was less pronounced in the Wt1^ko/wt mice and became more evident at later stages. The
decline in podocyte numbers correlated strongly with measures of kidney function, such as the
albumin-to-creatinine ratio, underscoring the critical role of podocyte integrity in maintaining
glomerular filtration. These findings provide valuable insights into the cellular dynamics
underlying FSGS progression. The differential rates of podocyte loss between the two models
reflect the severity and kinetics of disease manifestation associated with each genetic mutation.
In Nphs2^mut mice, the rapid decline in podocyte numbers suggests a more aggressive disease
course, likely due to the critical role of podocin in maintaining slit diaphragm integrity. The
Wt1^ko/wt mice exhibited a slower progression, consistent with the role of WT1 as a
transcription factor essential for podocyte differentiation and maintenance.

The differential expression (DE) analysis of podocytes further highlighted the distinct and
shared molecular pathways affected by each mutation. In Nphs2^mut podocytes, a higher
number of genes were differentially expressed compared to Wt1^ko/wt podocytes, aligning with
the observed phenotypic severity. Interestingly, already at the age of 4 weeks Nphs2^mut
podocytes showed significant transcriptional changes, whereas Wt1^ko/wt podocytes exhibited
fewer alterations, suggesting that the Nphs2 mutation induces earlier and more profound
transcriptomic disruptions.

Functional annotation of DE genes revealed common pathways implicated in cytoskeletal
organization, cell adhesion, and stress responses—processes vital for podocyte function and
survival. Both models demonstrated upregulation of epithelial-mesenchymal transition (EMT)
pathways and downregulation of focal adhesion components, indicating a shared maladaptive
response contributing to podocyte detachment and loss. However, there were notable differences;
for instance, inflammatory pathways such as TNF-alpha signaling via NF-κB were upregulated
in Nphs2^mut podocytes but downregulated in Wt1^ko/wt podocytes, suggesting
mutation-specific inflammatory responses.
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The expression patterns of the mutated genes themselves provided additional insights. The
upregulation of Wt1 and Nphs2 transcripts in early disease stages may reflect a compensatory
mechanism attempting to restore functional protein levels. However, the lack of functional
protein due to the mutations could lead to further dysregulation of the podocyte transcriptional
regulatory network (TRN), exacerbating the disease process. This notion aligns with the concept
of a maladaptive feedback loop, where initial compensatory responses become detrimental in the
context of persistent genetic defects.

Limitations of Bulk Transcriptomics and Advantages of Single-Cell Approaches
Our comparative analysis between bulk glomerular RNA-seq and snRNA-seq data

underscored the limitations of bulk transcriptomics in resolving cell-type-specific changes.
Principal component analysis revealed that sample type (glomerular or podocyte) and sequencing
technology were major sources of variation, with the inherent heterogeneity of glomerular
samples potentially masking podocyte-specific transcriptional alterations. The bulk RNA-seq
data showed discrepancies in the expression of Wt1 and Nphs2 genes, compared to the
snRNA-seq data, likely due to changes in cell-type composition and the proportion of podocytes
in diseased glomeruli.

The snRNA-seq approach allowed us to isolate and analyze podocyte-specific
transcriptomes, providing a clearer picture of the molecular events occurring within this critical
cell type during FSGS progression. By controlling for cell-type composition, we could more
accurately attribute observed transcriptional changes to podocyte-specific responses rather than
to shifts in the overall cellular makeup of the glomerulus.

Broader Context in Kidney Disease Research
Our study contributes to the broader understanding of podocyte biology in the context of

glomerular diseases. Podocyte loss is a hallmark of many forms of CKD, and understanding the
mechanisms driving this loss is essential for developing effective therapies. The identification of
shared pathways between different genetic models suggests the existence of common therapeutic
targets that could be exploited across various forms of FSGS. For instance, interventions aimed
at stabilizing the cytoskeleton or enhancing cell adhesion might mitigate podocyte detachment
and loss.

Moreover, the mutation-specific differences observed highlight the importance of
personalized approaches in treating kidney diseases. Understanding the distinct molecular
responses elicited by different genetic mutations can inform the development of targeted
therapies that address the specific pathways disrupted in each case.

Limitations of the Study
Despite the valuable insights gained, our study has several limitations. Technical biases

inherent to snRNA-seq, such as differences in cell-type capture efficiency and transcriptional
dropout, may affect the interpretation of cell-type proportions and gene expression levels. The
observed discrepancies in podocyte fractions between the two models' control samples suggest
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potential batch effects or strain differences that could influence results. While we attempted to
account for these factors, they may still impact the generalizability of our findings.

The sample sizes, particularly for certain age groups and genotypes, may have limited the
statistical power of our analyses. The inability to detect significant changes in some cell-type
abundances could be due to insufficient numbers of replicates or cells captured. Future studies
with larger cohorts and more uniform sampling across disease stages would strengthen the
conclusions drawn.

Additionally, while our functional annotations provide hypotheses about the pathways
involved in podocyte damage, further experimental validation is necessary to confirm the roles of
specific genes and pathways. In vitro studies or in vivo models with targeted interventions could
elucidate the causal relationships between gene expression changes and podocyte dysfunction.

Future Directions
Building on our findings, future research could explore the therapeutic potential of

modulating the shared pathways identified, such as EMT and focal adhesion signaling.
Investigating the upstream regulators of these pathways may reveal novel drug targets.
Moreover, longitudinal studies tracking individual podocytes over time could provide insights
into the temporal dynamics of gene expression changes during disease progression.

Integrating additional omics data, such as proteomics or epigenomics, could offer a more
comprehensive understanding of the molecular alterations in podocytes. Employing spatial
transcriptomics would also enable the examination of podocyte interactions with neighboring
cells within the glomerular architecture, shedding light on the microenvironmental factors
contributing to disease.

Conclusion
This study underscores the value of single-cell transcriptomic approaches in unraveling the

complex molecular underpinnings of podocyte injury in FSGS. By dissecting the
cell-type-specific responses to genetic mutations, we have highlighted both common and distinct
mechanisms driving disease progression. These insights improve our understanding of podocyte
biology and may, potentially, assist development of targeted therapies aimed at preserving
podocyte function and preventing CKD progression.
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4.3 Single Cell Damage Score in Podocytes

Based on results of our analysis, described in previous chapters, and published research on
transcriptional dysregulation in damaged podocytes, we hypothesized that different causes of
podocyte damage converge on common mechanisms of transcriptional regulation. Cellular
damage can be defined in various ways. In this study, we adopt an operational definition tailored
to our specific objectives. We define cellular damage as a pathological cellular state that is not
specific to any one disease-causing mechanism but rather represents a common endpoint
resulting from a broad spectrum of disease entities and mechanisms. Such cellular damage states
are well established in histopathology. Here, we develop an approach for the molecular
characterization of these states.

4.3.1 Deriving Universal Podocyte Damage Signature
We propose that a unified transcriptome signature can be used to calculate damage in

individual podocytes, regardless of the underlying disease etiology. We also assumed that this
gene signature can be derived in a supervised manner, by meta-analysis of transcriptomic data of
various models of kidney damage (Figure 4.3.1, development). To test our concept, we
developed a Podocyte Damage Score (PDS)—a single-cell damage metric for podocytes—to
track cellular damage during the progression of focal segmental glomerulosclerosis (FSGS). The
key idea behind the PDS is to identify genes whose expression is associated with increasing
damage across a wide range of kidney damage models. By incorporating diverse disease models
in the gene selection process, we ensure that the marker genes are not merely indicative of one
specific intervention but reflect damage to the target cell type in general. Furthermore, our
approach guarantees that the selected marker genes are expressed within podocytes themselves,
thereby excluding genes specific to tissue-resident immune cells that might only indicate
inflammation rather than direct podocyte damage.

Figure 4.3.1: Damage score generation and application schemes.
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To generate the damage score we collected and analyzed gene expression data from 37
studies covering multiple FSGS disease models, limiting our selection to the glomerular and
podocyte specific data, when possible (see Suppl.Table 4). We performed differential expression
analysis in each of these models, always comparing the diseased/experimental condition versus
the respective control. Using results of DE analysis we first ranked genes by their p-values for
differential expression in each of these models and then averaged ranks across all disease models
to obtain one global gene ranking for podocytes. Next, we applied two additional filters: first, we
removed genes that were not expressed in the target cell type, i.e. podocytes. Second, we only
kept genes with a consistent fold change (same sign) in at least 75% of all studies. Finally, we
chose the top n genes as podocyte damage marker genes. In order to quantify the damage of an
individual cell (or bulk sample) we tested the ranking of the marker genes in a given cell using
AUCell (Aibar et al. 2017). Scores for genes with positive and negative log-fold changes were
combined considering the direction of effects so that experimental samples/cells from damaged
kidneys are expected to have a higher podocyte damage score than controls (Figure 4.3.1,
application).

4.3.2 Testing and Validating the Podocyte Damage Score
Figure 4.3.2 shows an example of the score application to single-nuclei RNA-seq data, Wt1

model of genetic FSGS, and illustrates the ability of the score to show gradient of the damage,
consistent with the genotype labels. Next, we ensured robustness of the score by extensive
testing and validation.

Figure 4.3.2: UMAPs of podocytes from Wt1ko/wt snRNAseq data show application of podocyte
damage score (PDS) to single cell RNA-seq. Black and orange colors on the left panel denote control and
experimental conditions, correspondingly. On the right panel cells are coloured by PDS.

Robustness tests
To establish the robustness of our approach we first confirmed that varying the number of top

genes used for the damage scores had little influence on the outcome. Varying the top n genes
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between 10 and 100 genes affected the damage scores only minimally. Actually, using as little as
5 genes allows to differentiate populations of healthy and sick podocytes but results are less
stable, with high variance and many outliers within the groups. On the other hand, using more
than 100 genes actually decreases correlation between PDS and proteinuria as we shown in the
results of functional validation. To conclude, gene set size to use with AUCell for calculating
PDS can be picked in the range between 10 and 100 genes

Likewise, randomizing (Material and methods 2.3.4.2) parts of the input data had little
influence on the ability of the damage scores to distinguish healthy from diseased samples
(Figure 4.3.3 A). Even when randomizing (by shuffling the p-values and LFC of the
differentially expressed genes per disease model) up to 70% of all input studies, the resulting
damage scores were still able to distinguish experimental from control samples in disease models
that were not used for developing the damage scores. Thus, the damage scores are remarkably
robust to changes of the number of marker genes and variation in the training data - the choice of
the top n genes used for computing the damage scores is to an extent arbitrary. We decided to
continue all subsequent work with the top 42 marker genes, listed in the Supplementary table 5.

Model Cross-validation
A central aim of our study was to develop scores that measure cellular damage across disease

conditions instead of reflecting molecular adaptations in specific disease models. We tested this
notion using a ‘leave one model out’ cross validation: first we removed all samples of one
disease model from the training data, then performed the procedure described above to determine
damage marker genes on the remaining samples and, finally, tested the resulting damage scores
on the left out disease model samples. In this way we cross-validated 4 models of podocyte
damage that had 5 or more datasets available, Namely, diabetic, slit diaphragm damage,
transcription factor perturbation and toxic damage models. In each of the cross-validation rounds
the damage score was able to separate experimental samples from control samples in the unseen
disease model samples (Figure 4.3.3 B).

A B

Figure 4.3.3: Robustness tests of the podocyte damage score.
(A) Results of the damage signature randomisation test, X-axis shows levels of randomisation - percent of
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the datasets randomized. Boxplots show results of 50 rounds of randomisation at the respective
randomness level. scRNAseq nephritis data from GSE146912 was used as a test dataset. In both panel A
and B the Y-axis shows PDS; black and orange colors denote control and experimental conditions,
respectively. (B) Model cross validation of PDS, each dot represents mean score across all samples/cells
of a study, scores are scaled and centered per study, p-values of Wilcoxon rank test are shown..

In addition we cross-validated transcriptome quantification technologies, to make sure the
signature is not specific to any transcriptomic platform: Supplementary Figure 4.7 shows that
transcriptome quantification platform has a very little effect. Altogether, these results
demonstrated that the damage scores are remarkably robust against diverse variations in the data
and that they capture generic molecular changes operating across disease models.

Supervised VS unsupervised damage signatures
As an alternative to the supervised approach of aggregating DE results, the gene signature

can be generated in an unsupervised fashion, by trajectory analysis of single cell data (Material
and methods 2.3.4.3). Damage score calculated with the pseudo-time, unsupervised damage
signature performs comparably to the original damage score, generated in a supervised fashion
(Supplemental Figure 4.8 A). Moreover, the pseudotime damage signature is similar to the
supervised podocyte damage signature, showing convergence of the approaches (Supplemental
Figure 4.8 B). We speculate that unsupervised approaches may become more powerful, as more
single cell/nuclei studies of podocyte damage become available. For now, the unsupervised
approach for the signature generation has drawbacks: the pseudo-time signature is affected by the
data integration process, and it poses difficulties for combining bulk and single cell studies.

Gene expression of the podocyte damage markers
The majority of marker genes (39 from 42) were found to be downregulated in response to

damage, according to the differential expression analysis conducted on public datasets to
generate the damage signature (Supplementary Table 5). We also characterized expression levels
of the 42 damage markers in our bulk and single-nuclei RNA-seq profiles of Wt1 and Nphs2
models of genetic FSGS (Supplementary Figure 4.6). Among the damage signature genes, only
Ankrd1, F2r, Nexn were consistently upregulated in public datasets, and only Nexilin (Nexn) was
consistently upregulated in our data. The set of downregulated genes includes known regulators
of podocyte biology, such as Wt1 and Mafb, and other essential podocyte genes that show high
expression levels in podocytes at the transcript and protein levels. Notably, the marker set is
enriched in highly cell type-specific genes. These results suggest that cellular damage in
podocytes proceeds in conjunction with cell identity loss.

Protein expression of the podocyte damage markers
To explore behavior of podocyte damage markers on the protein level we analyzed (Material

and Methods 2.3.4.4) two proteomics datasets: a study of Nphs2mut model of podocyte damage
and a protein atlas of glomerular cells (Butt et al. 2020) (Hatje et al. 2021)). Results of the
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analysis are visualized with expression plots, where we show detected proteins of the damage
markers, whose transcripts are downregulated in damaged podocytes according to the damage
signature (Supplementary Table 5). Figure 4.3.4 shows expression of the damage markers on
protein level in the Podocin mutant mice Not surprisingly, upon damage many damage markers
change on protein level in the same direction as on the transcript level. For example, Magi2 and
Ddn and other damage markers are consistently down-regulated on the protein level upon
podocyte damage.

Figure 4.3.4: Expression (X-axis) of podocyte damage score markers (Y-axis) on the protein level. Data
from PXD018326.

Supplemental Figure 4.9 shows protein expression levels of PDS markers across 3 main
cell-types of healthy glomeruli ((Hatje et al. 2021). Notably most of the damage markers have
higher expression levels in the podocyte cell, compared to mesangial and endothelial.

Morphological validation

To validate the association of the PDS with histologically detectable damage we used two
morphological features: first, the slit diaphragm length is a proxy for damage to the primary
filtration barrier, with shorter length indicating greater damage. Second, podocyte damage leads
to a swelling of glomeruli, thus larger glomeruli being indicative of greater damage.

We used STED imaging to assess and localize expression of Thsd7a, a member of the PDS
signature and a slit-diaphragm protein marker, which confirmed the association of this PDS gene
with podocyte damage (Supplementary figure 4.10). Second, we used spatial transcriptomic data
from mouse kidney to calculate and then test a link between glomerular area and glomerular
PDS. We observed a significant correlation between the two measures on the individual sample
level (Figure 4.3.5) and then confirmed a highly significant correlation between PDS and the
area-adjusted glomerular count both in control and damaged glomeruli (Supplementary Figure
4.11) by analyzing multiple samples from healthy and damaged kidneys (Materials and Methods
2.3.4.5).
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Figure 4.3.5: Spatial validation of PDS using murine kidney Slide-seqV2 spatial transcriptomics data.
Spatial plot shows a section of the diabetic mouse kidney (GSM5713367 GEO sample (PMID:

35372810)), where glomeruli are colored by the estimated PDS. Correlation analysis of PDS and
glomerular morphological metrics see in Supplementary Figure 4.11.

Functional validation
To test if the PDS also reflects functional decline of podocytes, we correlated the PDS with

albuminuria measurements in mice. The Albumin/Creatinine ratio in Mg/Mg units (ACR)
quantifies excess proteins in the urine and is an effective and established measure of kidney
function and podocyte damage in particular(Hoefield et al. 2011). We analyzed 11 mouse studies
with combined bulk tissue transcriptomic and Albumin/Creatinine measurements, and found a
significant positive correlation (Spearman=0.65) between PDS and proteinuria (Supplementary
Figure 4.12 A). The correlation was even stronger (Spearman=0.8) for our single nuclei data,
where we aggregated PDS across cells of each sample and then correlated these pseudo-bulk
PDS with proteinuria (Figure 4.3.6 A) .

Validation in Human data
Next, we tested if the PDS that was developed on mouse data could also be applied to human

data. To transfer the damage signature to humans we restricted the 42 marker genes from mouse
to 40 one-to-one orthologous genes in humans. We used publicly available sc/snRNA-seq data
and anonymised patient data from the Kidney Precision Medicine Project (KPMP) to calculate
and correlate PDS with clinical endpoints. This analysis resulted in a significant correlation
between the PDS and Albuminuria measurements (ACR) in a diverse (by sex, age, race) human
population (Figure 4.3.6 B). In addition, we showed that it is possible to calculate PDS in human
urine scRNAseq data (NEPTUNE study, GEO accession GSE176465) (Latt et al. 2022) and that
it correlates with a measure of kidney function called Urinary Protein Excretion Estimation
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(UPCR) (Supplementary Figure 4.12 C). Our finding is in line with the recent publication
showing that monitoring urinary podocyte markers can help determine the level of current
disease activity and response to therapy in progressive glomerular diseases (Fukuda et al. 2024).
To conclude, PDS developed on mouse data discriminates between control and experimental
samples and reflects kidney function in the human data.

Morphological validation in Human data
Lastly, we examined the relationship between the podocyte damage signature (PDS) and

glomerular morphology using human data. We downloaded and analyzed 10X Visium spatial
transcriptomics data from a human kidney exhibiting signs of FSGS (Materials and Methods
2.3.4.5). Glomeruli were annotated manually, and the PDS was calculated for all glomerular
regions. We then overlaid the calculated PDS on the corresponding histological image, revealing
a correlation between PDS and glomerular morphology at the level of the sequenced glomerular
spots (Figure 4.3.6 C). A meta-analysis of all glomerular spots confirmed a highly significant
correlation between PDS and the extent of glomerular damage (Supplementary Figure 4.12 D).
A B

C
Figure 4.3.6: Functional and morphological validation of PDS in mouse and human data.

(A) Association of albuminuria (Y-axis) with the PDS (X-axis) for three different disease models (Nphs2,
Pdss2, Wt1). Cells of each sample were aggregated (‘pseudo-bulk’), dot color and shape represent the
study and experimental status of the sample, correspondingly. (B) Spearman correlation between PDS and
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clinical traits for AKI and CKD patients, asterisks denote correlations with p-value < 0.05. In 54 samples
with available albuminuria measurements and sc (N=17) and/or snRNA-seq (N=37) data were used.
(C) Histological image with overlaid results of PDS analysis shows damage gradient in individual human
glomeruli, annotated manually. 10x visium spatial transcriptomics of a kidney sample from a human with
FSGS, patient 29-10282, KPMP. See the full image in Supplementary Figure 4.13.

The established correlations between the podocyte damage score and both glomerular
function and morphology demonstrate that the PDS developed on murine data can be effectively
applied to human datasets. Building on this, we next characterized the cellular changes that occur
in various mouse models of FSGS, using the PDS as a proxy for podocyte damage.

4.3.3 Characterizing Cellular Changes in Disease Progression with PDS

Podocyte damage score offers an unprecedented ability to compare transcriptomic changes in
podocytes across various datasets and models of podocyte injury. To harness this potential, we
used PDS as a damage metric to compare eight diverse models of podocyte damage, each
profiled with single cell RNA sequencing. The list includes the Nphs2 and Wt1 datasets analyzed
in the previous chapter; conditional podocyte Pdss2 knockout snRNA-seq data generated by the
Nephrolab; and four models of podocyte damage from a published study (GEO accession
GSE146912) (Chung et al. 2020). The dataset includes models of diabetic nephropathy (Btbr),
conditional podocyte Cd2ap knockout (Cd2ap), the Adriamycin toxicity model (Doxo), and
nephrotoxic serum nephritis (Nephritis) (see description of models in Supplementary Table 1).
Each model represents a distinct mechanism of podocyte injury, ranging from genetic mutations
to toxic or immune-mediated damage, offering valuable insights into different pathways leading
to glomerular disease.

Changes in activity of pathways under podocyte damage
We processed and analyzed Pdss2 and public datasets using Seurat, extracted podocytes from

all control and experimental samples and calculated podocyte damage score for all podocyte
cells. By calculating PDS and sorting cells according to their extent of damage, we were aiming
to compare damage-related changes in various pathways in an unbiased way, within and between
models. Towards this goal we calculated pathway activities (PA) using AUCell (Methods 2.3.4.2)
for all KEGG and Reactome pathways in 8 datasets of (Supplementary Table 1). We then sorted
all cells in each study along the PDS axis (PDS is increasing from left to right) and colored cells
by changes in activity of a specific pathway. Next we combine results for several pathways in
so-called “pathway fingerprint” heatmaps, to get a comprehensive view of pathway changes in a
particular model of podocyte damage. Extended pathway fingerprints for all 8 analyzed podocyte
damage models can be viewed in Supplementary Figure 4.14.
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Figure 4.3.7 A shows pathway fingerprints of Nphs2, Wt1 and Pdss2 models of podocyte
damage and provide a rich source of information, allowing us to discern common and unique
patterns of pathway changes across the models. Multiple pathways have the same direction of
change with increasing podocyte damage across 3 models: Ephrin signaling, Hippo-signaling,
MAPK, Cell-adhesion are down- while Oxidative phosphorylation, Translation elongation are
up-regulated in 3 datasets. However, several pathways show model specific behavior. For
instance, “Regulation of actin cytoskeleton” (KEGG) is upregulated in Nphs2 but downregulated
in Pdss2 and Wt1 models upon the damage. Interestingly, two similar pathways may behave
concordant in one model but discordant in another. An example would be behavior of
Thermogenesis and Oxidative phosphorylation KEGG pathways: both are increasing in Pdss2
model but have different directions of change in Nphs2 and Wt1 models.

A

B

Figure 4.3.7: Analysis of changes in pathway activities caused by podocyte damage.
(A) "pathway fingerprint" heatmaps of Nphs2mut, Wt1ko/wt and Pdss2pko KFO models of FSGS. Rows are
pathways, columns are PDS bins and the heatmap color shows z-score of pathway activity. A selection of
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KEGG and Reactome pathways, each significantly (q-value<0.1) correlated with PDS in at least one of
the 3 studies, is used. Rows are clustered by pathway similarity. Columns of the heatmap are ordered from
low (left) to high (right) PDS. Column annotation shows albuminuria (AlbCr) and PDS, averaged across
cells of each bin. Heatmaps for all studied podocyte damage models are shown in Supplementary Figure
4.14. (B) Comparison of pathway activity changes in individual pathways shows response to the damage (
x-axis ) in various FSGS models ( y-axis ). The heatmap color shows the z-score of pathway activity.
Only experimental cells are shown for FSGS models.

When focusing on one pathway or gene at a time, PDS allows to align podocytes with very
different degree and etiology of damage and to compare side by side multiple different damage
models. Figure 4.3.7 B illustrates this concept by comparing activities (dot color) of individual
pathways in podocytes aligned by PDS (X-axis) across 8 models (Y-axis). Results reinforce our
earlier findings by showing that Neutrophil degranulation and oxidative phosphorylation are
upregulated while Ephrin signaling is downregulated across all 8 models, therefore supporting
the hypothesis of convergent podocyte transcriptome remodeling under damage. Strangely, Focal
adhesion did not exhibit consistent behavior across models, despite its genes being strongly
implicated in the response to podocyte damage. This seemingly contradictory result may be
attributed to the nature of pathway-level analysis, which aggregates signals from multiple genes
into a single value per cell. While this approach offers an overview, it may obscure finer details,
particularly when gene-specific responses vary within the same pathway. This realization
prompted us to investigate the behavior of individual genes within the Focal adhesion pathway,
aiming to uncover more granular insights that could explain the observed inconsistencies.

To investigate gene-level changes in biological processes induced by podocyte damage, we
first calculated the Spearman correlation between PDS and the expression levels of individual
genes, separately for control and experimental cells. In the next step, we mapped these
correlations onto the nodes of pathway diagrams, as illustrated for the Focal Adhesion network
(Figure 4.3.8). This representation allows us to compare FSGS models at the gene level, while
keeping the pathway context. Analysis of Focal adhesion pathway shows that some genes
behave consistently across all models either being up- (Vim, Actn1) or down-regulated (Itgb5,
Itga3, Dpp4, Mme, Epb41I5, Parva, Arhgap24) as PDS increases. However, other genes, like
Itga2 or Cd151, show model specific behavior.
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Figure 4.3.8: Integration of Focal adhesion PPI network from C.Shell et.al with PDS analysis shows
damage-related gene level change in pathway context. Bars inside each node show spearman correlation
(rho) between PDS and expression level of the gene. Red and blue colors depict positive and negative
correlations, correspondingly. Saturation of the color and length of the bar reflect the strength of the

correlation. Each bar represents, from top to bottom: an average over controls, Wt1het.del, Nphs2.mut,
Pdss2, Lmx1b, doxorubicin, Cd2ap, Btbr, Nephritis_day1 and day5 models of FSGS. Examples of

integrating PDS gene-level analysis with Slit Diaphragm PPI network and KEGG Focal adhesion diagram
are shown in Supplementary Figure 4.15 A and B, respectively.

In summary, our analysis of pathway changes using podocyte damage score (PDS) across
eight different models of podocyte injury allowed for a comprehensive examination of
pathway-level and gene-specific responses. Highlighting convergent and divergent responses to
podocyte damage on both levels of analysis, providing valuable insights for understanding the
mechanisms underlying FSGS and potential therapeutic targets.

Gene-correlation analysis of podocyte damage using PDS
The number of genes that significantly (q-value < 0.1) correlate with PDS differs greatly

between studies and between samples within each study. Generally, the number of genes that
correlate with PDS (Npds.cor) depends on a specific dataset. Trivially, the number of significant
PDS correlates scales with the sample size of a dataset, as statistical power increases. Further, we
calculated Npds.cor in individual biological samples and correlated with other sample-level
estimates. The analysis showed that Npds.cor correlates with expression variance but only
between control samples, not between damaged samples (Supplementary Figure 4.16). The other
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variable that predicts the Npds.cor is a damage effect size. For example, both the damage and
Npds.cor in Wt1ko/wt samples are much lower than in Nephrotoxic Nephritis samples. From this
analysis we may once again conclude that the level of transcriptome perturbation upon podocyte
damage, measured by PDS, directly depends on severity of the damage phenotype.

To further characterize mechanisms of divergent transcriptional response to podocyte damage
we selected genes that significantly (q-value < 0.1) correlate with PDS across the majority of all
analyzed studies. Based on these results we selected 157 genes that correlate with PDS in 7 and
more tests, where correlations were tested separately in control and experimental podocytes of
each study. To further characterize this extended damage signature we clustered the genes based
on their correlation in control and experimental cells and visualized the result as a heatmap
(Figure 4.3.9 A). Hierarchical clustering produced 4 major clusters: a middle-size cluster
containing the majority of PDS markers, a small and a big cluster with mixed correlations in
control and experimental cells and one small cluster with genes correlating only in experimental
cells. Note that this comparison would not be possible with conventional differential expression
analysis, as no differential expression can be revealed for cells of one sample.

Next we characterize 4 clusters of the extended damage signature by annotating them with
Gene Ontologies (Figure 4.3.9 B). Overall, enrichments were often shared between clusters.
Since the “damage signature” cluster consists mostly of the 42 universal damage signature genes,
it is expectedly enriched in core podocyte functions and implicated in podocyte damage
response. “Mixed big” cluster is enriched in cell junction assembly, regulation of actin
cytoskeleton, regulation of cell shape and motility, glycosylation. Genes from the “Mixed small”
cluster correlate more with PDS in healthy podocytes and are slightly enriched in Actin
depolymerisation, interleukin 1 etc. Finally, “experiment only” cluster contains genes that
correlate with PDS only in podocytes from damaged samples, it is enriched in cell-cell adhesion,
regulation of inflammation, leukocyte regulation etc. By identifying and clustering genes that
significantly correlate with PDS across multiple studies, we uncovered distinct gene clusters
enriched in specific biological functions, offering deeper insights into the mechanisms
underlying podocyte damage and FSGS progression.
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B

Figure 4.3.9: PDS reveals mechanisms of FSGS
(A) The count heatmap shows genes (in columns) that correlate with PDS in more than 7 conditions
colored by the number of studies in which they correlate, results split into control and experimental
samples (in rows). (B) GO functional annotation of clusters of genes that highly correlate with PDS.
Annotation was performed with ClusterProfiler v4.0 and results summarized in a network diagram by
enrichplot R packages (Yu 2018; Yu et al. 2012).
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Transcription factors involved in rewiring of podocyte transcriptome under damage

Finally, we aimed to identify the transcription factors (TFs) driving the transcriptional
changes in key podocyte pathways and gene sets correlated with the podocyte damage score
(PDS). To gain an unbiased perspective on gene regulation in podocytes, we first reconstructed a
podocyte transcriptional regulatory network (TRN) using ATAC-seq data and transcription factor
motifs (see Material and Methods 2.3.1.2). This network was then used to identify regulators of
transcriptional changes associated with disease progression.

To streamline the analysis, we clustered highly similar TF motifs (Supplementary Figure 4.17
A), which reduced the number of motifs used to interpret PDS-related results. We combined the
predicted target genes for all motifs within each cluster, forming a TF regulon, and named the 14
resulting regulons after a representative transcription factor for each cluster.

Next, to predict potential regulators of the gene sets of interest, we tested the significance of
their overlap with the target gene sets of these TFs. The results, shown in Figure 4.3.10, indicate
that TFs from the Wt1, Vezf, and Irf1 motif clusters are predicted to bind regulatory elements of
most genes involved in key podocyte functions as well as genes correlated with PDS. Notably, it
is primarily the gene sets correlated with PDS that show statistically significant enrichment in TF
targets. Furthermore, these genes are regulated by multiple TFs, both cell-type-specific and
general, with the strongest enrichment observed in the Fos TF cluster.

Figure 4.3.10: Results of the podocyte TRN (left) and motif enrichment (right) analysis show putative TF
regulators of key podocyte functions. Heatmap color intensity shows the fraction of genes in genesets
(rows) regulated by TF clusters (columns). Significance of the overlap was calculated with Fisher exact
test, FDR adjusted, and depicted on the heatmap with asterisks: *** q < 0.001 , ** q < 0.01, * q < 0.1.
Genes expressed in sc/sn RNA-seq podocyte data were used as the background for the test. Row and
column annotation bars reflect size of gene sets, darker color means bigger.
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Based on Figure 4.3.10, we also identified a cluster of motifs representing a family of nuclear
receptor TFs related to circadian regulation as potential regulators of several key podocyte
functions involved in FSGS progression. Circadian regulation has recently been linked to
podocyte damage, though this connection is still emerging (L. Wang et al. 2024). Given its
potential importance, we decided to investigate this link further.

We performed analysis of circadian (dis)-regulation in FSGS. Using 2 independent methods
(Materials and Methods 2.3.4.8) we detected the increase in circadian dysregulation (Figure
4.3.11 A) and an increase in the error of estimated circadian time (Figure 4.3.11 B) with increase
in PDS. Our results suggest that circadian dysregulation may be one of the common mechanism
involved in rewiring transcription regulatory network under podocyte damage

A B

Figure 4.3.11: Association between podocyte damage and circadian regulation
(A) Scatterplot shows significant spearman correlation between circadian rhythm disruption (CRD) and
PDS in a sample of Nphs2 mut. snRNAseq study; the dotplot to the right shows correlation coefficients
over all individual samples. CRD was calculated using a CRD score algorithm (He et al. 2022).
(B) Scatterplot shows significant spearman correlation between the deviation from predicted circadian
time and PDS in an individual sample; the dotplot to the right shows correlation coefficients in all
analysed samples. Circadian time was calculated using a Tempo algorithm (Auerbach, FitzGerald, and Li
2022), Clock was used as a reference gene. Results with Arntl as the reference are in Supplementary
Figure 4.17 C..

Our exploration of circadian dysregulation as a novel mechanism involved in FSGS
progression offers new avenues for understanding how transcriptional reprogramming under
podocyte damage may be influenced by disruptions in circadian rhythms. These findings
contribute valuable knowledge to the understanding of podocyte damage and suggest potential
therapeutic targets for treating glomerular diseases like FSGS.
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4.3.4 Discussion
In this chapter, we developed and validated a universal Podocyte Damage Score (PDS) to

quantify podocyte injury at the single-cell level across diverse models of podocyte damage. By
integrating data from multiple datasets and employing both supervised and unsupervised
approaches, we demonstrated that the PDS is a robust and generalizable metric that reflects the
severity of podocyte damage irrespective of the underlying disease etiology.

Summary of Findings
We hypothesized that different causes of podocyte damage converge on common

mechanisms of transcriptional regulation, leading to a shared pathological cellular state. To test
this, we derived a universal podocyte damage signature by performing a meta-analysis of
transcriptomic data from 37 studies encompassing various focal segmental glomerulosclerosis
(FSGS) models. This resulted in the identification of 42 marker genes consistently associated
with podocyte damage.

Using these markers, we developed the PDS and validated its robustness through extensive
testing. The score remained effective even when varying the number of marker genes or
randomizing portions of the input data. Cross-validation across different disease models
confirmed that the PDS could distinguish between healthy and damaged podocytes in unseen
datasets. Additionally, we showed that the PDS is not platform-specific and performs
consistently across different transcriptomic technologies.

Functional validation demonstrated a strong correlation between the PDS and albuminuria
levels, a key clinical indicator of kidney function. Morphological validation using spatial
transcriptomics and proteomics data further supported the association between high PDS values
and structural damage in podocytes. Importantly, we extended the applicability of the PDS to
human data, confirming its relevance across species.

By applying the PDS to eight diverse models of podocyte damage profiled by single-cell
RNA sequencing, we compared damage-related changes in various pathways and genes. We
observed both convergent and divergent responses across models. Pathways like oxidative
phosphorylation and translation elongation were consistently upregulated with increasing
podocyte damage, suggesting common adaptive or maladaptive responses. Conversely, pathways
such as focal adhesion exhibited model-specific behaviors, highlighting the complexity of
podocyte responses to different injury mechanisms.

Gene-level analysis revealed clusters of genes that correlated with PDS across multiple
studies. These clusters were enriched in specific biological functions, such as core podocyte
activities, cell junction assembly, actin cytoskeleton regulation, and immune responses. This
provided deeper insights into the molecular mechanisms underlying podocyte damage and FSGS
progression.

Finally, we reconstructed a podocyte transcriptional regulatory network (TRN) using
ATAC-seq data and identified key transcription factors (TFs) potentially driving the
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transcriptional changes associated with podocyte damage. Notably, we found that TFs related to
circadian regulation may play a significant role. Subsequent analysis revealed increased
circadian dysregulation correlating with higher PDS values, suggesting that disruptions in
circadian rhythms may contribute to the transcriptional reprogramming of damaged podocytes.

Broader Context and Implications
Our findings have significant implications for understanding podocyte biology and the

pathogenesis of glomerular diseases like FSGS. The development of the PDS provides a tool for
quantifying podocyte damage at the single-cell level, enabling comparisons across different
disease models and species. This contributes to a more unified understanding of the molecular
responses to podocyte injury, which is crucial given the heterogeneity of causes leading to
podocyte damage.

The consistent upregulation of pathways like oxidative phosphorylation across multiple
models suggests a universal metabolic response to podocyte injury. This could reflect increased
energy demands or compensatory mechanisms in damaged cells. Targeting such convergent
pathways may offer therapeutic opportunities applicable to a range of glomerular diseases.

Conversely, the model-specific behaviors observed in certain pathways, such as the divergent
regulation of the actin cytoskeleton and focal adhesion, underscore the importance of context in
disease mechanisms. These differences highlight the need for personalized approaches when
developing therapeutic interventions, as treatments effective for one type of podocyte injury may
not be suitable for another.

The identification of circadian dysregulation as a potential mechanism in podocyte damage
introduces a novel aspect to glomerular disease research. Circadian rhythms regulate numerous
physiological processes, and their disruption has been linked to various pathologies. Our findings
suggest that circadian genes may be integral to maintaining podocyte homeostasis, and their
dysregulation could exacerbate or even initiate damage. This opens new avenues for research and
potential therapeutic strategies targeting circadian pathways.

Limitations
Because we construct the damage signature by selecting genes that consistently change

across models and techniques, the damage score may be principally limited in the abilities (1) to
characterize model-specific changes in the early or late stages of FSGS and (2) to detect model
specific changes that drive expression in the direction opposite to the damage-score axis. We also
expect that with a sufficient amount of high quality datasets, one can optimize the damage
signature using unsupervised ML techniques. However, an unsupervised approach necessitates
integration and normalization of the datasets, which introduces another source of bias. There are
few more general limitations of our study that we should point:

Transcriptomic Focus: The PDS is based on gene expression data and may not capture
post-transcriptional modifications, protein activity, or cellular functions that are critical in
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podocyte biology. Gene expression changes do not always correlate directly with protein levels
or functional outcomes.

Marker Gene Set: The 42-marker gene set, while effective, may not encompass all relevant
genes involved in podocyte damage. As new data emerge, the damage signature may need to be
updated to remain comprehensive and accurate.

Computational Predictions: The identification of TFs and the role of circadian dysregulation
are based on computational analyses and correlations. Experimental validation is necessary to
confirm these associations and understand the underlying mechanisms.

Sample Size and Diversity: Some analyses, particularly those involving human data, were
limited by sample size. Larger and more diverse datasets would strengthen the conclusions and
enhance the generalizability of the findings.

Future Directions
Experimental Validation: Functional studies are needed to validate the roles of identified TFs,

especially those related to circadian regulation, in podocyte damage. This could involve
manipulating these TFs in podocyte cultures or animal models and assessing the effects on gene
expression and cellular function.

Proteomic and Epigenetic Integration: Incorporating proteomic and epigenetic data could
provide a more comprehensive understanding of podocyte damage mechanisms. This
multi-omics approach would help link gene expression changes to protein function and
regulatory modifications.

Therapeutic Exploration: The consistent pathways identified across models, such as oxidative
phosphorylation, present potential targets for therapeutic intervention. Investigating compounds
or treatments that modulate these pathways could lead to new strategies for preventing or
mitigating podocyte damage.

Circadian Rhythm Research: Further exploration of circadian dysregulation in podocytes is
warranted. Understanding how circadian genes influence podocyte function and how their
disruption contributes to disease could reveal novel treatment approaches, possibly involving
chronotherapy or circadian rhythm modulators.

Clinical Application of PDS: Applying the PDS to larger, more diverse human cohorts could
enhance its utility as a diagnostic or prognostic tool. Correlating PDS with clinical outcomes
may aid in patient stratification and personalized medicine approaches in nephrology.

Expansion to Other Cell Types: While our focus was on podocytes, the methodology is
currently being adapted to study damage in other parenchymal cell types. Developing
cell-type-specific damage scores could improve our understanding of complex organ pathologies.

Conclusion
In conclusion, we successfully developed a universal Podocyte Damage Score that quantifies

podocyte injury at the single-cell level across various disease models and species. Our
comprehensive analysis revealed both convergent and divergent molecular responses to podocyte
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damage, providing insights into the underlying mechanisms of glomerular diseases like FSGS.
The identification of circadian dysregulation as a potential contributor to podocyte injury
introduces a novel aspect to kidney disease research, highlighting new potential therapeutic
targets. While limitations exist, our study advances the understanding of podocyte biology and
offers a foundation for future research aimed at developing effective treatments for glomerular
diseases.
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General Discussion

The podocyte is a specialized epithelial cell integral to the kidney's glomerular filtration
barrier. Damage to podocytes is a critical event in the pathogenesis of various glomerular
diseases, notably focal segmental glomerulosclerosis (FSGS). This thesis presents a
comprehensive investigation into the molecular mechanisms underlying podocyte injury,
focusing on transcriptional regulatory networks (TRNs) and employing both bulk and single-cell
genomic approaches.

Integrative Analysis of Podocyte Transcriptional Networks
Our studies leveraged bulk glomerular RNA sequencing (RNA-seq) and chromatin

immunoprecipitation sequencing (ChIP-seq) to explore the transcriptional landscape of
podocytes under pathological conditions. The findings solidified the role of Wilms' tumor 1
(WT1) as a master regulator of podocyte function. WT1 is crucial for podocyte differentiation
and maintenance, regulating genes associated with the slit diaphragm, cytoskeletal organization,
and extracellular matrix (ECM) components essential for glomerular filtration barrier integrity .

In the Wt1 FSGS mouse model, WT1 haploinsufficiency led to a global reduction in WT1
DNA binding activity, resulting in impaired transcriptional control over key podocyte-specific
genes. This disruption manifested as cytoskeletal disorganization, loss of cell adhesion, and
dedifferentiation of podocytes, ultimately leading to foot process effacement and proteinuria.

Interestingly, ChIP-seq analyses revealed that TEA domain transcription factor 1
(TEAD1) exhibited increased DNA binding in response to WT1 deficiency. TEAD1, a
component of the Hippo signaling pathway, may play a compensatory role by regulating genes
involved in cell adhesion and survival. This suggests that podocytes might activate alternative
transcriptional programs to mitigate the effects of WT1 loss, although the efficacy of such
compensation requires further investigation.

However, the bulk RNA-seq approach presented limitations. While it provided insights into
global transcriptional changes within the glomerulus, it lacked the resolution to distinguish
cell-type-specific alterations, particularly subtle changes within podocytes. This limitation
underscored the need for single-cell approaches to dissect the complex cellular heterogeneity of
the kidney.

Single-Cell Resolution of Podocyte Injury
To address this, we employed single-nucleus RNA sequencing (snRNA-seq) to analyze

podocyte-specific transcriptional changes in Wt1 and Nphs2 mouse models of genetic FSGS.
The Nphs2 gene encodes podocin, a critical component of the slit diaphragm, and mutations in
Nphs2 are associated with steroid-resistant nephrotic syndrome in humans(Boute et al. 2000).
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Our snRNA-seq analyses revealed a significant decrease in podocyte numbers in
Nphs2<sup>mut</sup> mice compared to wild-type controls, correlating with elevated
albuminuria levels. This decline was evident even at early disease stages, highlighting the
aggressive nature of the disease caused by Nphs2 mutations. In contrast, the
Wt1<sup>ko/wt</sup> mice showed a less pronounced reduction in podocyte numbers, with
changes becoming more apparent at later stages.

Differential expression analyses indicated that Nphs2<sup>mut</sup> podocytes exhibited
more extensive transcriptional alterations than Wt1<sup>ko/wt</sup> podocytes, aligning with
the observed phenotypic severity. Both models demonstrated dysregulation in pathways critical
for podocyte structure and function, such as cytoskeletal organization, cell adhesion, and stress
responses. Notably, epithelial-mesenchymal transition (EMT) pathways were upregulated,
suggesting a maladaptive response contributing to podocyte detachment and loss.

However, there were distinct differences between the models. Inflammatory pathways, such
as TNF-alpha signaling via NF-κB, were upregulated in Nphs2<sup>mut</sup> podocytes but
downregulated in Wt1<sup>ko/wt</sup> podocytes. This indicates mutation-specific
inflammatory responses that may influence disease progression and severity.

The snRNA-seq approach provided a higher resolution of the transcriptional changes
occurring in podocytes, overcoming the limitations of bulk RNA-seq. By isolating nuclei, we
could focus on podocyte-specific gene expression without the confounding effects of other
glomerular cell types.

Development of a Universal Podocyte Damage Score

Recognizing the need for a quantitative measure of podocyte injury, we developed a
Podocyte Damage Score (PDS). By performing a meta-analysis of transcriptomic data from 37
studies encompassing various FSGS models, we identified a set of 42 marker genes consistently
associated with podocyte damage. The PDS proved to be a robust and generalizable metric,
effectively distinguishing between healthy and damaged podocytes across multiple datasets,
disease models, and species.

Functional validation demonstrated a strong correlation between the PDS and clinical
indicators of kidney function, such as albuminuria levels. Morphological validation using spatial
transcriptomics and proteomics data further supported the association between high PDS values
and structural damage in podocytes.

Applying the PDS to diverse models of podocyte damage profiled by single-cell RNA
sequencing allowed us to compare damage-related changes in various pathways and genes. We
observed both convergent and divergent responses across models:

● Convergent Responses: Pathways like oxidative phosphorylation and translation
elongation were consistently upregulated with increasing podocyte damage. This
suggests a universal metabolic response to injury, possibly reflecting increased energy
demands or stress adaptation mechanisms.
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● Divergent Responses: Pathways such as focal adhesion and actin cytoskeleton
regulation exhibited model-specific behaviors. These differences highlight the
complexity of podocyte responses to different injury mechanisms and the importance of
context in disease progression.

Furthermore, we reconstructed a podocyte transcriptional regulatory network using
ATAC-seq data and identified key transcription factors potentially driving the observed
transcriptional changes. Notably, transcription factors related to circadian regulation emerged
as significant, suggesting that circadian dysregulation may contribute to the transcriptional
reprogramming of damaged podocytes.

Implications for Podocyte Biology and FSGS Pathogenesis

Our findings have significant implications for understanding podocyte biology and the
pathogenesis of glomerular diseases:

Podocyte-Centric Pathogenesis: The central role of podocyte injury in FSGS underscores
the importance of maintaining podocyte health to prevent disease progression. The distinct
transcriptional responses observed in different genetic models emphasize the need for
personalized therapeutic approaches.

Therapeutic Targets: The consistent upregulation of metabolic pathways across models
suggests potential targets for therapeutic intervention. Modulating them may help mitigate
podocyte damage. Additionally, targeting TF compensatory mechanisms, such as TEAD1
activity, increasing levels of Wt1 or its targets, could reinforce podocyte resilience.

Circadian Dysregulation: The association between circadian rhythm disruptions and
podocyte damage introduces a novel aspect to kidney disease research. Circadian genes regulate
various physiological processes, and their dysregulation may exacerbate podocyte injury.
Targeting circadian pathways could offer new therapeutic avenues.

Limitations of Bulk Transcriptomics: Our work highlights the limitations of bulk RNA-seq
in capturing cell-type-specific changes in heterogeneous tissues like the kidney. Single-cell
approaches are essential for dissecting the complex cellular interactions and identifying precise
molecular targets.

Limitations of the Study

While our research provides valuable insights, several limitations should be acknowledged:
Transcriptomic Focus: Our analyses are based on gene expression data and may not capture

post-transcriptional modifications or protein-level changes. Integrating proteomic data could
provide a more comprehensive understanding.

Marker Gene Set: The 42-marker gene set used for the PDS may not include all relevant
genes associated with podocyte damage. As new data emerge, the marker set may need
refinement.
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Technical Biases: Single-cell sequencing technologies have inherent biases, such as varying
capture efficiencies and transcriptional dropout, which could affect cell-type proportion
estimations and gene expression measurements.

Computational Predictions: The identification of transcription factors and pathways is
based on computational analyses. Experimental validation is essential to confirm their roles in
podocyte injury.

Future Research Directions

Experimental Validation: Functional studies to validate the roles of identified transcription
factors, particularly those related to circadian regulation, in podocyte injury.

Multi-Omics Integration: Incorporating proteomic, epigenetic, and metabolomic data to
provide a holistic view of podocyte biology and disease mechanisms.

Therapeutic Exploration: Investigating compounds or interventions that modulate
convergent pathways identified, such as oxidative phosphorylation, to develop effective
treatments.

Studying very early stages of the damage: Tracking gene expression changes over very
early stages of disease development would facilitate understanding the temporal dynamics of
podocyte injury and identify early biomarkers.

Clinical Application of PDS: Applying the PDS in clinical settings, especially to urinary
samples, may aid in patient stratification, prognosis, and personalized medicine approaches in
nephrology.

Conclusion

In conclusion, this thesis advances the understanding of podocyte injury mechanisms in
FSGS by integrating bulk and single-cell transcriptomic analyses. The characterisation of WT1
master regulator and the development of a universal Podocyte Damage Score provide valuable
tools for studying podocyte biology. Our findings highlight both common and distinct molecular
responses to podocyte damage, emphasizing the complexity of glomerular diseases and the need
for tailored therapeutic strategies.

The discovery of circadian dysregulation's potential role in podocyte injury opens new
avenues for research and underscores the intricate interplay between cellular processes and
disease. Addressing the limitations of current approaches and expanding upon these findings will
be crucial for developing effective therapies to preserve podocyte function and prevent chronic
kidney disease progression.
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Appendix A: Supplementary Figures

A B

C

Supplementary Figure 3.1: Effect of FSGS progression in Wt1 ko/wt mice.
(A) Albumin/Creatining ratio measures kidney function in healthy (turquoise) and Wt1ko/wt (red) mice at
the age of 1, 4 (early FSGS) and 12 (late FSGS) weeks. Each dot represents a biological sample, samples
were not used for sequencing. (B) Comparison of sets of differentially expressed genes (in rows), where
columns show number of unique or shared genes. (C) Expression of genes that have significantly different
Wt1ko/wt effect at 4 and 12 weeks, compared to controls. Counts are sample-wise normalized by the library
size.
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A

B

Supplementary Figure 3.2:. Analysis of bulk RNAseq data from glomeruli of Nphs2 mutant mice.
(A) PCA plot of Nphs2mut bulk RNAseq samples, counts were log transformed, top 30% of variable genes
were used. (B) Overlap of genes differentially expressed (FDR adjusted p-value < 0.05) in 4 comparisons:
effect of the genotype (Nphs2mut) at 4 weeks, effect of the genotype at 8 weeks, effect of the age, and
interaction between the age and the genotype.
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Supplementary Figure 3.3: 2D GO plot shows functional comparison of early and late FSGS in
Nphs2mut model. Size of a circle reflects the number of genes in the term, color of a circle and a label
reflects type of ontology. GO annotation was performed using the Roberts function to address the
redundancy issue.

Supplementary Figure 3.4: Genome region annotation of wild-type and differentially bound peaks.
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Supplementary Figure 3.5: Expression of WT1 and TEAD1 transcription factors and their target
genes in glomerular bulk RNA-seq. Y-axis shows rlog-normalised mRNA expression levels of
transcription factors (TF mRNA) or mean expression of unique and common TF target genes, mean
expression of targets of up and down-bound regions (db t.genes up, db t.genes down), as was defined
based on Chip-seq. X-axis shows sample genotype.
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A B
Supplementary Figure 4.1: Various QC plots of count matrices of (A) Wt1ko/wt and (B) Nphs2mut

snRNA-seq samples (rows). Left and right columns show results before and after ambient RNA removal.

A B
Supplementary Figure 4.2: Cell-type composition of individual samples from Wt1ko/wt (C) and
Nphs2mut (B) datasets, correspondingly. Color encodes cell-types, X and Y axes show sample IDs and
cell-type proportion. Columns and rows of panels separate genotype and age of samples, respectively.
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A
Supplementary Figure 4.3: GO annotation of genes associated with general effect of genotype and

disease progression (interaction of time and genotype) effect in Nphs2mut and Wt1ko/wt experiments. Color
shows mean LFC of all genes of the term.

Supplementary Figure 4.4: 2D GO plots of genotype effects in podocytes of Wt1ko/wt (X-axis) and
Nphs2mut (Y-axis). Change of activity in GO term is calculated as the mean LFC of all genes included in
the term.
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A B

Supplementary Figure 4.5: Differential expression analysis of bulk and snRNA-seq data.
of Wt1 and Nphs2mut models of genetic FSGS.

(A) Overlap of genes differentially expressed (FDR adjusted p-value < 0.05) between mutant and
control podocytes in snRNA-seq samples from 4 (early FSGS) and 8/12 (late FSGS) week old mice, from
Wt1 and Nphs2 models of FSGS. (B) Numbers of significantly (q-value <0.05) up and down-regulated
genes across age specific test of genotype effect in bulk and sn RNA-seq samples.
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Supplementary Figure 4.6: DE expression between control and experimental samples of 42 podocyte
damage markers in bulk and snRNAseq datasets from Wt1ko/wt (green) and Nphs2mut (red) datasets.
Y-axis shows log fold-change of genes, obtained with lfcShrink() from results of DEseq2 analysis, x-axis
shows groups of samples.
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Supplemental Figure 4.7: Damage score robustness tests: cross-validation of various transcriptome
abundance measurement platforms.

A

B
Supplemental Figure 4.8: Comparison of PDS with an unsupervised sling pseudo-time trajectory.

(A) UMAPs showing application of PDS and pseudotime to scRNA-seq datasets. (B) GSEA, testing
enrichment genes differentially expressed along the pseudotime in podocyte damage markers.
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Supplemental Figure 4.9: Expression (Y-axis) of podocyte damage markers (X-axis) on protein level
in 3 types of mouse glomerular cells (color-coded). Non-scaled protein expression values (LFQ) plotted
for each sample (dot). Data taken from PXD016238 (Hatje et al. 2021).

Supplementary Figure 4.10: STED images of nephrin and Thsd7a co-localization at the podocyte slit
diaphragm in control and 12-week Wt1 het.del animals. The localization of Thsd7a is similar to that of
nephrin.
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A B
Supplementary Figure 4.11: Spatial validation of PDS.

(A) Correlation heatmap of PDS and glomeruli metrics estimated from Slide-seqV2 spatial
transcriptomics mouse dataset GSE190094 (PMID: 35372810). Podocyte stands for podocyte spot count,
nFeatures - average number of features detected in podocyte spots, PodoFrct - fraction of podocyte spots
to other glomerular cell-type spots, normPodo - podocyte count adjusted by the glom area. (B)
Scatterplot shows correlation between the PDS and glomerular morphology in control (black) and diabetic
(orange) mice, based on the same dataset as in the previous panel.
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A C

B D

Supplemental Figure 4.12: Functional validation of PDS in mouse and human data.
(A) Correlation of proteinuria and PDS in bulk microarray and bulkRNAseq data. (B) Heatmap of

spearman correlation between PDS and clinical traits from patients with acute kidney injury (AKI) and
CKD. Anonymised patient data, sc and sn RNA-seq data used in the analysis are taken from KPMP. Stars
denote cells with p-value of spearman correlation < 0.05. (C) Relation between PDS and a clinical trait
called Urinary Protein Excretion Estimation (UPCR) in patients from GSE176465. (D) Boxplot shows
PDS in different types of glomeruli, based on KPMP spatial transcriptomics dataset, patient ID 29-10282.
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Supplementary Figure 4.13: Morphological validation of PDS in Human data. PDS gradient in Individual
human glomeruli of a human kidney sample. KPMP spatial transcriptomics dataset, patient 29-10282.
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Supplemental Figure 4.14: Pathway fingerprints of the 8 models of FSGS. Rows are pathways, columns
are PDS bins and the heatmap color shows normalized pathway activity score. Pathway activities are
calculated with AUCell, cells are ordered by PDS and moving average window is used to smooth the
signal. Columns of the heatmap are bins of the averaged pathway activity scores, ordered from low (left)
to high (right) PDS. Union of 5 most correlated with PDS pathways (KEGG and Reactome) across all
studies is used. Column annotation shows smoothed PDS.
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B
Supplementary Figure 4.15: Damage-associated gene level changes in pathway context

(A) PDS mapped on Slit Diaphragm PPI network: bars inside nodes reflect correlation of the gene
expression with the score across FSGS models. (B) KEGG Focal adhesion pathway map. Vertical bars
inside nodes reflect correlation of the gene expression with the score across FSGS models.
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Supplementary Figure 4.16: Scatter plots show relation between the number of genes that significantly
(FDR.adj. p<0.1) correlate with PDS and varios sample metrics.

A

B C
Supplementary Figure 4.17: Circadian gene analysis in podocyte damage context.

(A) Hierarchical Clustering of PWM motifs of 110 transcription factors expressed in podocytes. Red line
shows the height at which the tree was cut. (B) Acrophase estimate and expression of highly circadian
genes in sc and snRNAseq datasets.(C) Correlations between the variation in circadian time and PDS.
Circadian time was calculated using a Tempo algorithm with Arntl or Clock as a reference gene.
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Appendix B: Supplementary Tables
Model
colloquial

Explanation Abbre-
viation

Full description for
methods

Datasets Description of the model

Nphs2 Nphs2R231Q/A
286V mutant

Nphs2mu
t

Nphs2R231Q/A286V
compound
heterozygous
mutant mice
(PMID: 32694662)

BulkRNA-seq,
snRNA-seq

The Wt1 gene encodes the Wilms' tumor 1 protein, a
transcription factor critical for podocyte development
and function. Heterozygous knockout of Wt1 in
podocytes leads to podocyte injury, resulting in
proteinuria and progressive glomerulosclerosis. This
model mimics human conditions like Denys-Drash
and Frasier syndromes, which are associated with
WT1 mutations and lead to nephrotic syndrome and
kidney failure.

Wt1 Wt1
heterozygou
s

Wt1ko/wt Wt1 heterozygous
whole-body
knockout (PMID:
12898605)

BulkRNA-seq,
Chip-seq,
snRNA-seq

Nphs2 encodes podocin, a protein essential for the
structure and function of the slit diaphragm in
podocytes. Mutations in Nphs2 disrupt podocin
function, leading to structural defects in the filtration
barrier, which causes podocyte injury, proteinuria,
and rapid progression to FSGS-like
glomerulosclerosis. This model mimics autosomal
recessive forms of FSGS seen in humans with
NPHS2 mutations

Pdss2 Conditional
podocyte
Pdss2
knock-out

Pdss2pko Nphs2Cre x Pdss2fl/fl
conditional
podocyte knockout
mice

snRNA-seq
(KFO)

This model involves the conditional knockout of the
Pdss2 gene, which is crucial for coenzyme Q
biosynthesis. Loss of Pdss2 function in podocytes
leads to mitochondrial dysfunction, resulting in
podocyte injury, proteinuria, and progressive
glomerular damage, ultimately leading to FSGS-like
phenotypes.

Btbr Diabetic
nephropathy

Btbrob/ob BTBR.Cg-Lepob/Wi
scJ, Data taken from
Chung et al. (PMID:
32651223)

scRNA-seq
(public)

The Btbr (black and tan brachyury) mouse model is
used to study type 2 diabetic nephropathy. These
mice develop insulin resistance, hyperglycemia, and
progressive kidney damage, including
glomerulosclerosis and podocyte loss, mimicking the
chronic kidney disease observed in human diabetic
nephropathy.

Cd2ap Conditional
podocyte
Cd2ap
knock-out

Cd2appk
o

Nphs2Cre x Cd2apfl/fl
,data taken from
Chung et al. (PMID:
32651223)

scRNA-seq
(public)

The Cd2ap gene is essential for maintaining the
integrity of the slit diaphragm in podocytes.
Conditional knockout of Cd2ap leads to podocyte
detachment and loss, resulting in proteinuria and
severe glomerulosclerosis, closely resembling FSGS
phenotypes.

Doxo Adriamycin
toxicity
model

Adria Data taken from
Chung et al. (PMID:
32651223)

scRNA-seq
(public)

The Doxo model, induced by the administration of
Adriamycin (doxorubicin), causes podocyte damage
due to direct cytotoxic effects. It is used to model
nephrotic syndrome and leads to podocyte loss,
proteinuria, and glomerulosclerosis.

Nephritis Nephrotoxic
serum
nephritis

NTSN Data taken from
Chung et al. (PMID:
32651223)

scRNA-seq
(public)

This model is induced by administering nephrotoxic
serum to mice, which triggers an immune response
that causes inflammation and podocyte injury. It
mimics immune-mediated glomerulonephritis,
characterized by proteinuria, podocyte loss, and
glomerular damage.

Supplementary table 1. Podocyte damage models used in the podocyte damage score study.
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Eartag CCG Sample ID Age weeks Genotype Alb/Cre measures
AKK192 49346 4 mut
AKK193 49347 4 wt 0,03271186
AKK194 49348 4 wt
AKK195 49349 4 mut 0,486439025
AKK196 49350 4 wt
AKK197 49351 4 mut
AKK179 49359 12 wt 0,019362681
AKK178 49360 12 wt 0,019057877
AKK180 49361 12 mut 0,506674524
AKK181 49362 12 mut 0,514788289
AKK183 49363 12 mut 0,534743659
AKK185 49364 12 wt
BDP_1 109583 4 wt
BDP_3 109585 4 wt
BDP_242 109587 4 wt
BDP_255 109589 4 mut
BDP_256 109591 4 mut
BDP_266 109593 4 mut
BDP_226 109619 8 wt
am-913 109621 8 wt
am-916 109623 8 wt
BDP_207 109625 8 mut
BDP_210 109627 8 mut
BDP_227 109629 8 mut
BDP_229 109631 8 mut
BDP_231 109633 8 mut

Supplementary table 2. Glomeruli samples subjected to bulk RNA sequencing.
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CCG
Sample
ID

Sample
Name Genotype line Strain run Age in

weeks Gender Alb/Cr
Ratio

143483 CDD_177 CoQ2 Coq2.S96N/Podocin2A-iCre2A-mT C57BL6/Nrj 1 6 f
143484 CDD_190 CoQ2 Coq2.S96N/Podocin2A-iCre2A-mT C57BL6/Nrj 1 6 m
143485 CDC_46 Pdss2 Pdss2.V117M/Podocin2A-iCre2A-mT C57BL6/Nrj 1 6 m 0.108
143486 CDC_47 Pdss2 Pdss2.V117M/Podocin2A-iCre2A-mT C57BL6/Nrj 1 6 f 0.108
143487 CDD_188 wt Coq2.S96N/Podocin2A-iCre2A-mT C57BL6/Nrj 1 6 f
143488 CDD_192 wt Coq2.S96N/Podocin2A-iCre2A-mT C57BL6/Nrj 1 6 m
143489 BDP_399 wt Podocin.R231Q/Podocin.A286V C57BL6/Nrj 1 6 m
143490 BDP_401 Nphs2 Podocin.R231Q/Podocin.A286V C57BL6/Nrj 1 6 f
146985 BWV_175 Pdss2 Pdss2.V117M C57BL6/Nrj 2 21 f 10.944
146986 BWV_170 Pdss2 Pdss2.V117M C57BL6/Nrj 2 21 m 10.944
146987 BWV_180 wt Pdss2.V117M C57BL6/Nrj 2 21 m
146988 BWV_187 wt Pdss2.V117M C57BL6/Nrj 2 21 f
154921 BWV_292 Pdss2 Pdss2.V117M C57BL6/Nrj 3 12 m 1.853
154922 BWV_294 Pdss2 Pdss2.V117M C57BL6/Nrj 3 12 f 2.561
154923 Am_7855 wt breeder C57BL6/Nrj 3 14 m 0.010
154924 Am_7856 wt breeder C57BL6/Nrj 3 14 f 0.007
154925 Ac_7788 wt breeder CD1 3 16 f 0.014
154926 Ac_7789 wt breeder CD1 3 16 f 0.008
154927 BDP_483 Nphs2 Podocin.R231Q/Podocin.A286V C57BL6/Nrj 3 8 m 1.752
154928 BDP_495 Nphs2 Podocin.R231Q/Podocin.A286V C57BL6/Nrj 3 6 m 1.667
140739 BDP398 wt Podocin wt/wt C57BL6/Nrj 4 4 f 0.0084
140738 BDP397 Nphs2 Podocin R231Q/A286V C57BL6/Nrj 4 4 f 0.368
140740 BDP396 Nphs2 Podocin R231Q/A286V C57BL6/Nrj 4 4 m 2.542
140741 BDP392 wt Podocin wt/wt C57BL6/Nrj 4 4 m 0.034
139919 BDP352 Nphs2 Podocin R231Q/A286V C57BL6/Nrj 4 8 f
139917 BDP351 wt Podocin wt/wt C57BL6/Nrj 4 8 f 0.001
139921 BDP342 Nphs2 Podocin R231Q/A286V C57BL6/Nrj 4 12 f 10.280
139913 BDP341 Nphs2 Podocin R231Q/A286V C57BL6/Nrj 4 12 m 5.584
139915 BDP340 wt Podocin wt/wt C57BL6/Nrj 4 12 m 0.016
139911 BDP339 wt Podocin R231Q/wt C57BL6/Nrj 4 12 m 0.045
121173 AKK_834 wt Wt1_KO FVB/N 5 13 m 0.007
121174 AKK_835 wt Wt1_KO FVB/N 5 13 m 0.007
121175 AKK_843 Wt1het.del. Wt1_KO FVB/N 5 12 m 1.270
121176 AKK_844 Wt1het.del. Wt1_KO FVB/N 5 12 m 0.223
121177 AKK_827 Wt1het.del. Wt1_KO FVB/N 5 25 m 0.888
121178 AKK_830 Wt1het.del. Wt1_KO FVB/N 5 25 m 1.715
155914 AKK957 wt Wt1_KO FVB/N 6 4 m 0.005
155915 AKK962 wt Wt1_KO FVB/N 6 4 m 0.011
155916 AKK963 Wt1het.del. Wt1_KO FVB/N 6 4 m 0.011
155917 AKK964 Wt1het.del. Wt1_KO FVB/N 6 4 m 0.007

Supplementary table 3. Glomeruli samples subjected to single nuclei RNA sequencing.
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GSE ID
Seq.
type Model Model group sample type

GSE138774 bulk Arhgef7 knockout actin cytoskeleton glomeruli

GSE136138 bulk aged mice ageing podocytes

GSE43061 MA Ercc1 progeria ageing / DNA damage glomeruli

GSE134327 bulk

streptozotocin eNOS-/- - samples
GSM3942312-3 control, GSM3942314-6
streptozotocin, GSM3942320-1 control diabetes glomeruli

GSE123853 bulk
db/db datasets GSM3514331-6 control,
GSM3514343-8 disease diabetes glomeruli

GSE77717 bulk db/db diabetes glomeruli

GSE79291 bulk streptozotocin diabetes
glomeruli,
podocytes

GSE106841 MA ob/ob (leptin), 4,8,12,16 weeks ! diabetes glomeruli

GSE112116 MA streptozotocin diabetes glomeruli

GDS3992 MA OVE26 diabetes glomeruli

GSE131266 MA ob/ob mice - only datasets GSM3768235-40 diabetes glomeruli

GSE36209 MA OVE26 diabetes podocytes

GSE168676 bulk
streptozotocin + podocyte-specific Dach1
knockout

diabetes (STZ), transcription factor
(Dach1), combined damage ( TF +
Diabetes) glomeruli

GSE104624 MA CD151 knockout focal adhesion glomeruli

GSE181690 bulk Parva KO focal adhesion glomeruli

GSE126217 bulk Cosmc KO glycan metabolism glomeruli

GSE117987 bulk HIV adriomycin HIV-mediated damage + toxic damage glomeruli

GSE56236 MA anti-GBM nephritis / nephrotoxic serum immunologic damage glomeruli

GSE119049 bulk

light chain deposition disease (_GLO_FRA
datasets: disease, _GLO_WT dataset control,
_GLO_DH datasets control) light chain deposition glomeruli

GSE164273 sn Pdss KO metabolism, oxidative phosphorylation whole kidney

KFO bulk Nphs2-R231Q/A286V slit diagphragm glomeruli

KFO sc Nphs2-R231Q/A286V slit diagphragm

GSE123179 bulk Cd2apFyn slit diaphragm glomeruli

GSE110092 bulk shroom3 knockdown slit diaphragm glomeruli

GSE63272 MA Cd2ap Slit diaphragm podocytes

GSE154955 bulk adriamycin toxic damage podocytes

KFO bulk adriamycin toxic damage glomeruli

GSE108629 MA NEP25 toxic damage podocytes
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KFO sc Wt1 het.del Transciption factor podocytes

GSE96044 bulk MafB KO Transciption factor glomeruli

GSE174102 sc CTCF KO Transciption factor all glom cells

KFO bulk Wt1 het.del Transciption factor glomeruli

GSE18358 MA Dendrash Wt1 mut Transciption factor glomeruli

GSE117571 MA Foxc1/2 Transciption factor
glomeruli, primiry
podocytes

GSE17709 MA PTIP KO Transciption factor glomeruli

GSE146912 sc
4 models: nephrotoxic serum nephritis, diabetes,
doxorubicin toxicity, CD2AP deficiency

various groups depending on the
dataset. all glom cells

Supplementary table 4. Transcriptomic datasets used to generate universal podocyte damage signature.
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gene_symbol mean_rank direction_foldchange
Thsd7a 88.6847826086957 -1
Aifm3 90.0652173913043 -1
Metrnl 105.282608695652 -1
Nap1l1 108.195652173913 -1
Magi2 108.95652173913 -1
F2r 109.521739130435 1
Pak1 109.673913043478 -1
Robo2 113.065217391304 -1
Gja3 114.739130434783 -1
Astn2 116.684782608696 -1
Plce1 116.739130434783 -1
Sulf1 116.913043478261 -1
Clic3 119.173913043478 -1
Shisa3 119.902173913043 -1
Ankrd1 120.29347826087 1
C1qtnf7 120.804347826087 -1
Spats2l 121.391304347826 -1
Lrrc1 122.260869565217 -1
Nexn 123.010869565217 1
Optn 123.217391304348 -1
Cldn5 123.282608695652 -1
Tspan15 124.217391304348 -1
Ptpro 125.804347826087 -1
Angptl2 126.804347826087 -1
Sema3g 128.608695652174 -1
Smarca2 128.826086956522 -1
Fgfbp1 129.163043478261 -1
Itgb8 129.45652173913 -1
Pard3b 130.304347826087 -1
Sncaip 130.369565217391 -1
Dusp15 132.413043478261 -1
Ephb1 132.434782608696 -1
Wt1 132.478260869565 -1
Nek1 134.869565217391 -1
Ddn 136.282608695652 -1
Mafb 136.554347826087 -1
Mtss1 136.95652173913 -1
Zfp423 137.423913043478 -1
Enpep 138.271739130435 -1
Sema3e 138.434782608696 -1
Dach1 139.45652173913 -1

Supplementary table 5. First 42 markers of the podocyte damage signature, used for calculation of
podocyte damage score.
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