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Introduction

Ever since the digital revolution and related emerging technologies data have become
increasingly relevant. This phenomenon stretches out to scientific data as well (Diebold,
2003) and the increase in data availability coined the term “Big Data”, initially defined
as data sets that are too large to be handled by existing machinery and analysis tools
(Fan and Bifet, 2013), but now loosely understood as a vast amount of data in the general
public and academia while lacking a general definition (see, e.g., Kitchin and McArdle,
2016). Large data sets provide research opportunities in practice, for instance, by new
data insights, making applications of limit theorems feasible or improving parameter
estimation due to larger sample sizes. Simultaneously, large data sets call for novel
analysis tools, e.g., to handle the data computationally or to select subsets from the data
in a sophisticated way for subsequent research.

This doctoral dissertation consists of three essays dealing with methods suitable for
application on data sets that can be considered large within the econometrics and finance
literature.1 In the respective methods covered here, data quantity has two different
origins. On the one hand, the theory developed in Chapter 1 is suitable for data sets
with a short cross-section but large time series component. The latter is exploited by a
central limit theorem and used to monitor the structural stability of a data model, namely
systems of cointegrating regressions, with a sequential hypothesis test. The monitoring
is investigated for panels with up to 30 cross-sections and between 500 and 1,000 time
periods on three variables where asymptotic results generally allow for more time periods.
On the other hand, the approaches to use reference classes established in Chapters 2
and 3 are suited for data sets that are at least moderate-sized in time dimension and
large in cross-section dimension. Here, the amount of data enables a general approach
to (distributional) forecasting. Moreover, the theory simultaneously offers a method for
data reduction in order to select a relevant subset from the data. Reference classes are
selected, i.a., according to recency and, thus, time series information are only relevant

1Compared to other scientific areas we deal with rather small data sets, for example, the CERN
released roughly 800 terabytes of data in December 2023 that were collected by Large Hadron Collider
experiments in 2011 and 2012 (see https://home.cern/news/news/experiments/lhcb-experiment-
releases-all-its-run-1-proton-proton-data).
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if the observations are close enough to the forecast case. Reference class forecasting is
examined on a data set with 21,808 cross-sections and 70 time periods on 28 variables
while the method can handle even larger data sets in general due to its computational
simplicity. The remainder of the introduction includes a more detailed description of the
chapters.

While the first two chapters are joint work with Dominik Wied (c.f. Theising and Wied,
2023, published in Econometris and Statistics) and Dominik Wied as well as Daniel
Ziggel (c.f. Theising et al., 2023, published in Journal of Forecasting), the last chapter is
based on a single-author paper (c.f. the working paper Theising, 2024).

Chapter 1 covers new residual-based monitoring statistics for structural changes in
systems of cointegrating relationships. Reviewing the structural stability of time series
models is crucial and the approach is based on parameter estimation over a calibration
period as in Chu et al. (1996) while the date of the potential breakpoint does not need to
be known a priori. In case of homogenous systems and cross-sectional independence the
pooled fully modified OLS estimator (PFM-OLS, Phillips and Hansen, 1990) takes into
account the effects of error serial correlation and regressor endogeneity. Cross-sectional
dependence is allowed for by using the pooled fully modified GLS estimator (PFM-GLS)
for homogenous systems and the fully modified SUR estimator (FM-SUR, Moon, 1999) for
inhomogenous systems. The monitoring procedure for systems of cointegrating regressions
is an extension of the single equation monitoring by Wagner and Wied (2017). Three
detectors for each estimation technique are proposed and the limiting distributions of
the monitoring statistics under the null hypothesis are derived. The monitoring statistics
show decent behaviour under the null hypothesis with controlled rejection probabilities
and power against two alternatives for different data generating processes. An empirical
application investigates deviations from the triangular arbitrage parity condition for
three bivariate panels of exchange rate triplets including Bitcoin. The procedures detect
breakpoints between May and August 2014 and between January and May 2015 indicating
an instability in arbitrage parities. Following this, a promising portfolio trading strategy
based on the breakdates is constructed and compared to a simple buy-and-hold strategy.

A similar topic, but limited to PFM-OLS detectors, was covered in my master the-
sis “Monitoring Cointegration in a System of Homogeneous Cointegrating Regressions”
(Theising, 2018). In particular, Lemma 3 is already stated there but the simulation
results using PFM-OLS detectors presented here are new. During my doctoral studies, I
made the following contributions to Chapter 1: I wrote and revised the main body of text
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along with the appendix. Further, I proposed to use PFM-GLS and FM-SUR estimators
to relax the assumptions allowing for cross-sectional dependence and heterogeneous
parameters and worked out the technical details thereof including nontrivial theoretical
results. All R code used throughout the project was authored by me. I worked out how
to simulate critical values, implemented this and conducted the simulation study. For the
application, I collected the necessary data and carried out both the empirical application
on exchange rate triplets and the portfolio trading strategy.

Chapter 2 presents a general method to handle forecasts exposed to behavioural
bias by finding appropriate outside views. In this case, corporate sales suffer from
low predictability (see Chan et al., 2003) and forecasts of analysts are often based on
heuristics and were empirically shown to be biased as well as overoptimistic (see, e.g.,
Tversky and Kahneman, 1974; Kahneman and Tversky, 1973). The idea is to construct
reference classes, similar to peer groups, for each examined company separately. Elements
of the reference class should be similar to an examined firm in terms of a specific co-
variate, here called reference variable, that serves implicitly as a predictor. The reference
classes then offer statistical information by the empirical distribution of sales growth
of these similar firms which can be used to identify bias if the forecasts seem extreme
compared to the distribution within the reference classes (Kahneman and Tversky, 1979).
Reference classes are regarded to be optimal if the sales distributions within them match
the distributions of realized future sales growth as closely as possible. Additionally, the
empirical distribution within the reference class can be seen as a distributional forecast
and the respective quality is measured by applying goodness-of-fit tests on the estimated
probability integral transform values and by comparing the predicted quantiles thereof
with a novel measure ∆q. The method is out-of-sample backtested on a data set consisting
of 21,808 US firms over the time period from 1950 to 2019. It appears that in particular
the past operating margins are good reference variables for the reference class selection
of future sales growth. A case study compares the outside view of constructed reference
classes, issued as distributional forecasts, with actual analysts’ forecasts and emphasizes
the relevance of the approach in practice.

Throughout Chapter 2, I conceptualized the theoretical framework and obtained and
preprocessed the Compustat, CRSP and inflation rate data sets. I combined them
and described the resulting data set. All R code for this project was written by me
and I conducted the backtest and empirical application. Further, I contributed to
the description of backtest and application results and wrote parts of the manuscript,
including the introduction and conclusion.
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Chapter 3 extends the approach to reference class selection in distributional forecasting
from Chapter 2 to using several co-variates as reference variables in view of the general
reference class problem in statistics (Venn, 1888; Reichenbach, 1949). A general framework
for including multiple variables is described and the focus lies on distributional forecasts
that arise from reference classes. Rank-based algorithms are proposed for reference class
selection including an optional preprocessing data dimension reduction via principal
components analysis. Here, ranks robustify against skewness and outlier effects in the
underlying data. A review of methods to evaluate distributional forecasts, such as
probabilty integral transform values (proposed by Dawid, 1984; Diebold et al., 1998),
statistical goodness-of-fit tests and proper scoring rules (Gneiting and Raftery, 2007),
places the measure ∆q from Chapter 2 in the literature. As an illustrative application,
forecasting corporate sales growth rates is revisited to allow for a meaningful evaluation of
the results based on multiple reference variables compared to the findings in Chapter 2 on
the same data set following the prequential principle (Dawid, 1984). Again, probability
integral transform values determine ∆q which ranks the distributional forecast capability
of different reference variable sets and algorithms in a backtest using a forward selection
and a brute force approach on selected reference variable subsets. Particularly, algorithms
on dimension reduced variables perform well using contemporaneous balance sheet and
financial market parameters along with past sales growth rates and past operating margin
changes. Finally, the practical use of the method is illustrated by predictions of interval
probabilities, a comparison between historic distributional sales growth forecasts and
realized sales growth, and two comparisons of actual analysts’ estimates and distributional
one-year ahead sales growth forecasts.
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Chapter 1.

Monitoring Cointegration in Systems of Cointegrating
Relationships

1.1. Introduction

This chapter proposes residual based self-normalized monitoring procedures for structural
change in a system of homogeneous cointegrating regressions. Such procedures might
be useful to detect deviations from stable economic relationships, e.g., macroeconomic
equations for housing prices or financial equations for exchange rates. There is recent
empirical evidence that such relationships might collapse (Anundsen, 2015, for the
subprime bubble, Reynolds et al., 2021, and Reynolds et al., 2018, for cryptocurrencies)
and we provide a methodological contribution to formally detect such collapses as early
as possible. This is relevant from an economic point of view, but also for potential
subsequent econometric analyses (see, e.g., Arsova and Örsal, 2021). As we assume that
the number of cross-sections N is small and the number of time periods T is large, our
procedure is typically most relevant for financial data.

Our asymptotically valid panel data method is an extension of the single equation moni-
toring procedure of Wagner and Wied (2017). Specifically, on the one hand, we assume
homogeneous parameters and cross-sectional independent and identically distributed
errors. On the other hand, we discuss extensions to the cases of heterogenous parameters
and cross-sectional dependence. Our procedures are consistent if the cointegrating rela-
tionship turns to a spurious regression or if there is a break in the trend and/or slope
parameters. The date of the potential change points does not need to be known a priori.
Our monitoring procedures require parameter estimates and a monitoring statistic. We
follow the ideas of Chu et al. (1996) and base the parameter estimates on a break-free
(or assumed to be break-free) calibration period as a fraction of the whole sample size.
The monitoring procedures use residuals calculated from these parameter estimates
to calculate cointegration test statistics over expanding windows. Since the limiting
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distributions of our test statistics depend on the fraction of the calibration period, we in
fact propose “closed-end” monitoring procedures, i.e., the monitoring horizon has to be
specified beforehand.

We use the pooled fully modified OLS (PFM-OLS) estimator by Phillips and Moon (1999)
to obtain nuisance parameter free null limiting distributions of the monitoring statistics1

and, newly, a pooled fully modified feasible GLS (PFM-GLS) estimator as well as the
fully modified SUR (FM-SUR) estimator by Moon (1999) in case of cross-sectionally
dependent cointegrating regressions. The limiting distributions also depend on the choice
of deterministic regressors as well as the number of I(1)-regressors. Our monitoring
statistics are based on the properly scaled partial sum process of FM-OLS-type residuals
and are inspired by the statistics in Wagner and Wied (2017) which are based on the
statistic of the Shin (1994) test. We analyze our approach with respect to different
transformations from a multivariate partial sum process to a scalar test statistic.

A simulation study assesses the performance of the PFM-OLS procedure in terms
of rejection probabilities under the null hypothesis as well as power and detection
delays under various alternatives, including influence of regressor endogeneity and serial
correlation, sample size and fraction of the calibration period m. Under the null hypothesis
the procedures work well in terms of null rejection probabilities close to the chosen
significance level. We further investigate how the PFM-GLS and FM-SUR procedures
work under cross-sectional dependence assumptions. For a variety of alternatives we
investigate both power and detection times, which serve as natural estimates of potential
breakpoints. Finally, we provide simulations which indicate that, in terms of null rejection
probabilities, it is advisable to choose a monitoring period as long as possible such that
the calibration period is as little a fraction of the whole period as possible.

We provide a test for stability in bivariate systems of homogeneous cointegrating rela-
tionships in triangular arbitrage parities for logarithmic exchange rate triplets including
Bitcoin as an illustrative application example. We apply the procedures to a stochastic
variant of the aforementioned parity arising from no-arbitrage assumptions between
triplets of currency exchange rates such that there is no profit in instantaneous circular
transactions. We assume that violations of triangular arbitrage parities under normal
market conditions are stationary and a turn to non-stationary deviations is a sign of
mispricing not due to financial frictions – also referred to as financial market dislocation.
Reynolds et al. (2021) find empirical evidence of such mispricing in currency triplets

1Partially covered in my master thesis (Theising, 2018).
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including Bitcoin using the Wagner and Wied (2017) monitoring for single equation
cointegrating relationships and use their results for a currency portfolio strategy. Our
sample ranges from 1 May 2013 until 31 December 2015, while the calibration period
stretches until 8 November 2013, assuming a break free calibration period due to stable
Bitcoin prices. The monitoring statistics indicate structural change between May and
August 2014 and between January and May 2015 for some pairs of exchange rate triplets.
Important dates during monitoring and prior to the detected breaks are the ending of the
cap on euro-swiss franc exchange rates by the Swiss National Bank in January 2015 and,
in February 2014, the closing of Mt. Gox, a Japanese Bitcoin exchange where 70% of
all tradings took place up to its closing (Decker and Wattenhofer, 2014), which in turn
resulted in the loss of 850, 000 Bitcoin with a total value of 473 million USD at that
time (Fink and Johann, 2014). Reynolds et al. (2021) do not account for testing several
cointegrating relationships at a time, in contrast, these monitoring procedures do. We
apply our results to construct a portfolio trading strategy using the detected breaks as a
sign of currency market instabilities.

Section 1.2 presents the model, the assumptions as well as the monitoring statistics.
Section 1.3 presents the results of the simulation study, whilst Section 1.4 is dedicated to
the application. Section 1.5 briefly summarizes and concludes. Three appendices follow
the main text: Appendix 1.A contains all proofs, Appendix 1.B describes the simulation
of critical values and Appendix 1.C shows additional results on error covariances of the
application and selected simulation cases.

1.2. Monitoring Systems of Cointegrating Regressions

We consider monitoring the structure in a system of N cointegrating relationships (also
referred to as cointegrating regressions or cointegrating equations) with a potential change
point

yn,t =

D′
tθD,n + X ′

n,tθX,n + un,t , t = 1, . . . , [rT ],

D′
tθD,1,n + X ′

n,tθX,1,n + un,t , t = [rT ] + 1, . . . , T,
(1.1)

and

∆Xn,t = vn,t, t = 1, . . . , T, (1.2)

for n = 1, . . . , N , i.e., the setting from Wagner and Wied (2017) extended to multiple
cointegrating equations. Throughout the paper, we assume a break-free calibration period
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0 T[mT]

Calibration

[mT]+1

Monitoring

[rT] [rT]+1

Cointegration

Parameter Change
 or

 No Cointegration

Break

Figure 1.1.: Illustration of the monitoring procedure

of length [mT ] at the sample beginning and consider the case of small N and large T ,
i.e., for asymptotics N is fixed and T → ∞. yn,t is scalar, Dt ∈ Rp is the deterministic
trend function, Xn,t is a non-cointegrated k-dimensional random vector of I(1) regressors,
un,t is a zero mean error process and 0 < m ≤ r < 1. We allow endogeneous regressors
and serial correlation in the zero mean errors vn,t = [vn,t,1, . . . , vn,t,k]′ of Xn,t as well as
correlation across k and n. Let θn = [θ′

D,n, θX,n]′ and θ1,n = [θ′
D,1,n, θX,1,n]′.

We test the following pair of hypotheses:

H0 :

θn = θ1,n for all m ≤ r < 1, n = 1, . . . , N, and

{un,t}t=1,...,T is I(0) for all n = 1, . . . , N
(1.3)

and

H1 :


θn ̸= θ1,n for some m ≤ r < 1, n ∈ {1, . . . , N} or

{un,t}t=1,...,[rT ] is I(0) and {un,t}t=[rT ]+1,...,T is I(1)

for some m ≤ r < 1, n ∈ {1, . . . , N}

(1.4)

There is no structural change under the null hypothesis, i.e., θD,n = θD,1,n, θX,n = θX,1,n

and {un,t}t=1,...,T is I(0) for all n = 1, . . . , N . Under the alternative either a change
in the parameter occurs or cointegration turns to spurious regression in at least one
cointegrating relationship at a sample fraction [rT ] greater or equal to [mT ] and our
procedures test for all potential breakpoints uniformly. A crucial question is how to
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choose m in practice. The decision might be based on economic arguments and it is
possible to support such a choice with a retrospective panel cointegration test as reviewed
in Breitung and Pesaran (2008). Our simulations (Figures 1.4 and 1.5) indicate that m

should be rather small to have good size properties and it might be good practice to
choose an integer multiple of 1/10 such as 0.2 or 0.3.

The following assumption regarding the trend function is typical in fully-modified estima-
tion:

Assumption 1. There exists a sequence of p × p scaling matrices GD,T > 0, satisfying
||GD,T || → 0 for T → ∞ (|| · || any matrix norm), and a p-dimensional vector of functions
D(z) with 0 <

∫ s
0 D(z)D(z)′dz < ∞ for 0 ≤ s ≤ 1, such that

lim
T →∞

sup
0≤s≤1

∣∣∣∣∣∣T 1/2GD,T D[sT ] − D(s)
∣∣∣∣∣∣

2
= 0 (1.5)

for || · ||2 the Euclidean norm.

This assumption is essentially the same as in Phillips and Hansen (1990, p. 102)
and ensures a well defined limit of the scaled deterministic regressors. In case of
a polynomial trend Dt = [1, t, t2, . . . , tp−1]′ the assumption is satisfied by GD,T =
diag

(
T −1/2, T −1, . . . , T −p/2

)
and D(s) = [1, s, s2, . . . , sp−1]′.

Let ηt := [u′
t, vt]′ be the stacked errors with ut = [u1,t, . . . , uN,t]′ and vt = [v′

1,t, . . . , v′
N,t]′.

Regarding the error process {ηt} we assume that a functional central limit theorem
holds:

Assumption 2.
(a): The stationary process {ηt} fulfills

T −1/2
[sT ]∑
t=1

ηt = T −1/2
[sT ]∑
t=1

[
ut

vt

]
⇒ B(s) := BM(Ω) = Ω1/2W (s) (1.6)

with W (s) = [Wu·v(s)′, Wv(s)′]′ an N(k+1)-dimensional vector of standard Brownian
motions and 0 < Ω < ∞, where

Ω =
[
Ωuu Ωuv

Ωvu Ωvv

]
:=

∞∑
h=−∞

E(η0η′
h). (1.7)
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(b): Denoting Sη
t :=

∑t
j=1 ηj it holds that

T −1
[sT ]∑
t=1

Sη
t η′

t ⇒
∫ s

0
B(r)dB(r)′ + ∆ (1.8)

with ∆ :=
∑∞

h=0E(η0η′
h).

(c): (a) and (b) hold jointly.

Wu·v(s) = [Wu·v,1(s), . . . , Wu·v,N (s)]′ is an N -dimensional vector of standard Brownian
motions and Wv(s) = [Wv,1(s)′, . . . , Wv,N (s)′]′ consists of N different k-dimensional
vectors of standard Brownian motions. We partition B(s) = [Bu(s)′, Bv(s)′]′, where
Bv(s) = [Bv,1(s)′, . . . , Bv,N (s)′]′ and Bv,n(s) is a k-dimensional vector of Gaussian pro-
cesses for n = 1, . . . , N . The decomposition B(s) = Ω1/2W (s) holds with

Ω1/2 :=

(Ωuu − ΩuvΩ−1
vv Ωvu)1/2 ΩuvΩ−1/2

vv

0kN×N Ω1/2
vv

 , (1.9)

where 0kN×N is a kN by N matrix of zeros. The assumption Ωvv > 0 excludes cointegra-
tion among the regressors Xt which is typically assumed for FM-OLS estimation.

In order to relate Assumption 2 to the pair of hypotheses (1.3) and (1.4), we call a univari-
ate stochastic process {ξt}t∈Z I(0) if it fullfills (potentially after demeaning) a functional
central limit theorem, that means, if it holds for 0 ≤ s ≤ 1 that T −1/2∑[sT ]

t=1 ξt ⇒ ωW (s),
where W (s) denotes a standard Brownian motion and 0 < ω < ∞ is the long-run variance
ω2 :=

∑∞
t=−∞E(ξ0ξt) of {ξt}t∈Z. Therefore, an I(1) process {ζt}t∈Z with ζt − ζt−1 = ξt,

that is, a summed up I(0) process, fulfills T −1/2ζ[sT ] ⇒ ωW (s) for all 0 ≤ s ≤ 1 and ω

and W (s) as above.

The monitoring procedures are based on consistent estimators of the parameter vectors
θn and (co-)variance parameters. Similar to Chu et al. (1996) we assume that structural
change occurs only after a break-free calibration period of size [mT ] (0 < m < 1) at
the beginning of the monitoring in all N cointegrating regressions (c.f. Figure 1.1). We
obtain residuals via an estimator θ̂m of the fully modified type, which has been studied
in detail with regards to panel data structures, based on the calibration period and
the corresponding N -dimensional residuals û+

t;m. The monitoring procedure evaluates
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whether the properly scaled partial sum process of these residuals

T −1/2
[sT ]∑
t=1

û+
t;m (1.10)

becomes “too large”. In view of Assumption 2, the partial sum process (1.10) serves as a
natural basis for our monitoring procedure. We show that (1.10) converges to a mixture
of Gaussian processes with nuisance parameters. The number of nuisance parameters and
the precise limiting distribution depend on the set of considered assumptions. Further,
the limiting distribution depends on m, the deterministic trend Dt and the number of
regressors k as well.

The bases of scalar test statistics are three detectors constructed by different real-valued
transformations of the N -dimensional residual process (i.e., mappings from R

N to R)
and we derive their asymptotic behaviour. The detectors2 are

Ĥm,+
1 (s) :=

∣∣∣∣∣∣T −1/2∑[sT ]
t=[mT ]+1 û+

t;m

∣∣∣∣∣∣2
2∣∣∣∣∣∣T −1/2∑[mT ]

t=1 û+
t;m

∣∣∣∣∣∣2
2

=
∑N

n=1

(
T −1/2∑[sT ]

t=[mT ]+1 û+
n,t;m

)2

∑N
n=1

(
T −1/2∑[mT ]

t=1 û+
n,t;m

)2 , (1.11)

Ĥm,+
2 (s) :=

T −1∑[sT ]
i=[mT ]+1

∣∣∣∣∣∣T −1/2∑i
t=1 û+

t;m

∣∣∣∣∣∣2
2

T −1∑[mT ]
i=1

∣∣∣∣∣∣T −1/2∑i
t=1 û+

t;m

∣∣∣∣∣∣2
2

=
∑N

n=1 T −1∑[sT ]
i=[mT ]+1

(
T −1/2∑i

t=1 û+
n,t;m

)2

∑N
n=1 T −1∑[mT ]

i=1

(
T −1/2∑i

t=1 û+
n,t;m

)2

(1.12)

and

Ĥm,+
3 (s) :=

∣∣∣∣∣∣T −1∑[sT ]
i=[mT ]+1 T −1/2∑i

t=1 û+
t;m

∣∣∣∣∣∣2
2∣∣∣∣∣∣T −1∑[mT ]

i=1 T −1/2∑i
t=1 û+

t;m

∣∣∣∣∣∣2
2

=
∑N

n=1

(
T −1∑[sT ]

i=[mT ]+1 T −1/2∑i
t=1 û+

n,t;m

)2

∑N
n=1

(
T −1∑[mT ]

i=1 T −1/2∑i
t=1 û+

n,t;m

)2 ,

(1.13)

with û+
t;m = [û+

1,t;m, . . . , û+
N,t;m]. Clearly, the numerator in (1.12) turns into the detector

used by Wagner and Wied (2017) by setting n = 1 and into the Shin (1994) statistic by
additionally setting m = 0 and s = 1.

In the following Sections 1.2.1 – 1.2.3 we derive the limiting distribution Wu·v(s) of the

2A selection from my master thesis (Theising, 2018).
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partial sum process (1.10), such that

1√
T

[sT ]∑
t=1

û+
t;m ⇒ Wu·v(s), (1.14)

where Wu·v(s) = [Wu·v,1, . . . , Wu·v,N]′ is a functional of Brownian motions and depends
on the set of assumptions specified in the respective sections. All detectors are continuous
mappings of the scaled partial sum process (1.10) and we use (1.14) along with the
continuous mapping theorem to construct statistical hypothesis tests by the following
Lemma 1 which is valid for three sets of assumptions and refers to three different
convergence results for (1.14), Lemma 3 in Section 2.1 for homogeneity and cross-sectional
independence, Lemma 5 in Section 2.2 for homogeneity and cross-sectional dependence
and Lemma 7 in Section 2.3 for heterogeneity and cross-sectional dependence.

Lemma 1. Let the assumptions of Lemma 3, 5 or 7 be in place, respectively, and let N

be fixed. Then it holds that

Ĥm,+
1 (s) ⇒

∑N
n=1 (Wu·v,n(s) − Wu·v,n(m))2∑N

n=1 Wu·v,n(m)2
=: Hm,+

1 (s), (1.15)

Ĥm,+
2 (s) ⇒

∑N
n=1

∫ s
m (Wu·v,n(t))2 dt∑N

n=1
∫m

0 (Wu·v,n(t))2 dt
=: Hm,+

2 (s) (1.16)

and

Ĥm,+
3 (s) ⇒

∑N
n=1 (

∫ s
m Wu·v,n(t)dt)2∑N

n=1 (
∫m

0 Wu·v,n(t)dt)2 =: Hm,+
3 (s), (1.17)

for T → ∞, where the specific form of Wu·v,n(s) depends on which of the three situations
is considered. (1.15) - (1.17) are only valid provided the denominators of (1.11) - (1.13)
and their respective limits are invertible.

A monitoring procedure rejects the null hypothesis if the weighted detector Ĥm,+(s)
g(s)

exceeds a critical value for the first time, where Ĥm,+(s) is any of the above detectors
and g(s) is a weighting function that has to be chosen. This point in time is

τm := min
s:[mT ]+1≤[sT ]≤T

{
Ĥm,+(s)

g(s) > c

}
(1.18)

and called detection time. If Ĥm,+(s)
g(s) ≤ c for all m ≤ s ≤ 1, we set τm := ∞. Hence, a

finite value of τm implies a rejection of the null hypothesis and serves as an immediate
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estimate of the potential breakpoint. The critical value c and the weighting function g(s)
have to be chosen such that under the null hypothesis it holds that

lim
T →∞

P (τm < ∞) = lim
T →∞

P

(
min

s:[mT ]+1≤[sT ]≤T

{
Ĥm,+(s)

g(s) > c

}
< ∞

)

= lim
T →∞

P

(
sup

s:[mT ]+1≤[sT ]≤T

Ĥm,+(s)
g(s) > c

)

= P

(
sup

m≤s≤1

Hm,+(s)
g(s) > c

)
= α,

(1.19)

where α denotes the chosen significance level (c.f. Wagner and Wied, 2017). We only
allow for continuous, positive and bounded weighting functions. Clearly, τm and c depend
on the chosen detector as well as on m, the deterministic trend Dt and the number of
regressors k. According to (1.19), the decision rule to reject the null hypothesis if τm < ∞
is equivalent to rejecting the null hypothesis if sups:[mT ]+1≤[sT ]≤T

Ĥm,+(s)
g(s) > c.

Using the limits established above and the continuous mapping theorem we derive (see
Wagner and Wied, 2017):

Theorem 1. Let the assumptions of Lemma 1 be in place and assume that g(s) is
continuous with 0 < g(s) < ∞ for m ≤ s ≤ 1. Then, under the null hypothesis there exist
for any 0 < α < 1 critical values c = c(α, g, Ĥm,+

i ), such that

lim
T →∞

P

(
τm(g, c(α, g, Ĥm,+

i )) < ∞
)

= α, (1.20)

for i = 1, . . . , 3.

We calculate the order of the expected value of the three limit processes to motivate our
choice of g(s) for intercept and linear trend since optimal weighting functions, for example,
in the sense of minimum detection delay, are in general not deducible (see Chu et al.,
1996). Hence, we use the monoms matching the respective detector displayed in Table 1.1
for the cases intercept only or linear trend, and arbitrary number of regressors k. In
order to obtain critical values c(α, g, Ĥm,+

i ) we need to simulate the limiting distribution
Hm,+

i (s)
g(s) by approximating functionals of Brownian motions by the corresponding functions

of random walks (see Appendix 1.B for details).

Finally, we introduce some additional notation. With the stacked errors ηn,t := [un,t, v′
n,t]′

associated to individual cointegrating regressions we define long-run and one-sided long-
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Detector Dt = 1 Dt = [1, t]′

E(Hm,+
1 (s)) s2 s4

E(Hm,+
2 (s)) s3 s5

E(Hm,+
3 (s)) s4 s6

Table 1.1.: Order of the expected values of the limiting distributions (1.15) - (1.17) in the
case of intercept only (Dt = 1) or linear trend (Dt = [1, t]′) and no regressors,
dim Xt = 0.

run covariances of ηn,t as

Ωm,n =
(

Ωm,n
uu Ωm,n

uv

Ωm,n
vu Ωm,n

vv

)
:=

∞∑
h=−∞

E(ηm,0η′
n,h),

∆m,n =
(

∆m,n
uu ∆m,n

uv

∆m,n
vu ∆m,n

vv

)
:=

∞∑
h=0

E(ηm,0η′
n,h),

Ωm,·
ij := [Ωm,1

ij , . . . , Ωm,N
ij ]

and

∆m,·
ij := [∆m,1

ij , . . . , ∆m,N
ij ]

for i, j ∈ {u, v} and m, n = 1, . . . , N . In what follows we denote consistent estimators of
the (one-sided) long-run variance based on the calibration period with a subscript m and
“∧” on top. By (A)n,· we denote the n-th row of a matrix A. In is an n × n unity matrix
and 1n×m is an n × m matrix of ones.

1.2.1. Uncorrelated Homogeneous Cointegrating Regressions

We revert to homogeneous cointegrating relationships by imposing the following additional
assumption of cross-sectionally identical parameters:

Assumption 3. θD = θD,n and θX = θX,n for all n = 1, . . . , N .

Assumption 3 implies

yn,t =

D′
tθD + X ′

n,tθX + un,t, t = 1, . . . , [rT ],

D′
tθD,1,n + X ′

n,tθX,1,n + un,t, t = [rT ] + 1, . . . , T,
(1.21)
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and

∆Xn,t = vn,t, t = 1, . . . , T, (1.22)

for n = 1, . . . , N , and simplifies the null hypothesis and alternative with regards to the
parameters θD and θX . Under the null hypothesis no structural change occurs, i.e.,
θ := [θ′

D, θ′
X ]′ = [θ′

D,1,n, θ′
X,1,n]′ =: θ1,n, and under the alternative there is a change in at

least one cointegrating regression. Consequently,

H0 :

θ = θ1,n for all m ≤ r < 1, n = 1, . . . , N, and

{un,t}t=1,...,T is I(0) for all n = 1, . . . , N
(1.23)

and

H1 :


θ ̸= θ1,n for some m ≤ r < 1, n ∈ {1, . . . , N} or

{un,t}t=1,...,[rT ] is I(0) and {un,t}t=[rT ]+1,...,T is I(1)

for some m ≤ r < 1, n ∈ {1, . . . , N}

(1.24)

Note that under the alternative of a parameter change the system may turn heterogeneous,
i.e., θ1,i ≠ θ1,j for some i, j ∈ {1, . . . , N}, or stay homogeneous with θ1,i = θ1,j for all
i, j ∈ {1, . . . , N}.

With regards to the errors we assume a naive i.i.d. setting at first, namely:

Assumption 4. The stacked error processes {ηn,t := [un,t, v′
n,t]′}t=1,...,T are independent

and identically distributed for all n.

Note that by Assumption 4

Ωn,n = Ων,ν ,

∆n,n = ∆ν,ν

for all n, ν = 1, . . . , N and

Ωn,ν = ∆n,ν = 0

for all n, ν = 1, . . . , N, n ̸= ν. Due to the above implication the decomposition of B(s)
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collapses to

B(s) = Ω1/2W (s) =
[
IN ⊗ Ω1,1

uu IN ⊗ Ω1,1
vu

IN ⊗ Ω1,1
uv IN ⊗ Ω1,1

vv

]1/2

W (s),

a simpler linear transformation of standard Brownian motions where

Ω1/2 :=
[

IN ⊗ ωu·v IN ⊗ λuv

IN ⊗ 0k×1 IN ⊗ Ω1/2
vv

]
and

(
Ω1,1

)1/2
:=
[

ωu·v λuv

0k×1 (Ω1,1
vv )1/2

]
(1.25)

with ω2
u·v := Ω1,1

uu − Ω1,1
uv (Ω1,1

vv )−1Ω1,1
vu and λuv := Ω1,1

uv (Ω1,1
vv )−1/2. Then Ω1/2

(
Ω1/2

)′
= Ω

and[
IN ⊗ ωu·v IN ⊗ λuv

IN ⊗ 0k×1 IN ⊗ (Ω1,1
vv )1/2

] [
IN ⊗ ωu·v IN ⊗ λuv

IN ⊗ 0k×1 IN ⊗ (Ω1,1
vv )1/2

]′

=
[
IN ⊗ Ω1,1

uu IN ⊗ Ω1,1
vu

IN ⊗ Ω1,1
uv IN ⊗ Ω1,1

vv

]

hold, respectively. Here, the assumption Ω1,1
vv > 0 suffices to exclude cointegration among

the regressors Xn,t for fixed n which is typically assumed for FM-OLS estimation. Then,
Assumption 4 implies no cointegration across Xt.

In order to obtain nuisance parameter free asymptotic distributions of the monitoring
statistics we use the PFM-OLS estimator of Phillips and Moon (1999, Section 5.2) for
systems of homogeneous cointegrating regressions.3

Define Zn,t := [D′
t, X ′

n,t]′ and Zt := [Z1,t, . . . , ZN,t] and we have

yt =


y1,t

...
yN,t

 =


D′

t X ′
1,t

...
...

D′
t X ′

N,t


[
θD

θX

]
+


u1,t

...
uN,t

 = Z ′
tθ + ut

due to Assumption 3. Since we assume cross-sectional homogeneity and independence,
we modify the dependent variables by using

y+
n,t;m :=yn,t − Ω̂1,1

uv;m(Ω̂1,1
vv;m)−1∆Xn,t (1.26)

and

∆̂+
vu;m :=∆̂1,1

vu;m − ∆̂1,1
vv;m(Ω̂1,1

vv;m)−1Ω̂1,1
vu;m, (1.27)

3The following discussion on the PFM-OLS estimator was partially covered in my master thesis (Theising,
2018).
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where all estimators indicate the arithmetic mean of the respective non-parametric ker-
nel estimators based on individual cointegrating regressions and the pre-break sample
1, . . . , [mT ], e.g., Ω̂1,1

vv;m = N−1∑N
n=1 Ω̂1,1

vv,n;m, where Ω̂1,1
vv,n;m is based solely on cointe-

grating regression n. Long-run variances are estimated from the stacked error processes
η̂n,t := [ûn,t;m, v′

n,t]′ for t = 2, . . . , [mT ] where ûn,t;m are the OLS residuals resulting from
equation-wise estimation using the calibration period. We assume that long-run variances
are estimated consistently, e.g., under the assumptions of Jansson (2002). The PFM-OLS
estimator is given by

θ̂m,PFM :=

[mT ]∑
t=1

N∑
n=1

Zn,tZ
′
n,t

−1[mT ]∑
t=1

N∑
n=1

Zn,ty
+
n,t;m − N [mT ]

[
0p×1

∆̂+
vu;m

]
=
( [mT ]∑

t=1
ZtZ

′
t

)−1( [mT ]∑
t=1

Zty
+
t;m − N [mT ]

[
0p×1

∆̂+
vu;m

])
,

(1.28)

where y+
t;m = [y+

1,t;m, . . . , y+
N,t;m]′.

Note, that Phillips and Moon (1999) consider a panel structure with simultaneously
{T, N} → ∞, while we confine ourselves to the case T → ∞ and N fixed. Another
methodological difference is that they work with random linear error processes (VMA(∞)-
processes with random coefficients) and show that they fulfill a panel functional central
limit theorem (their Lemma 3) under certain assumptions on the random coefficients
(Assumption 1 and 2 in their paper, mainly an i.i.d. assumption and moment conditions;
for homogeneous panel cointegration they impose non-random coefficients). Therefore,
Phillips and Moon (1999) work with “low-level” assumptions on the error structure while
here the “high-level” Assumption 2 states that the errors follow a functional central limit
theorem, which in fact is a result based on structural assumptions on the errors. Any set
of assumptions that implies Assumption 2 is suitable for our purpose.

Concerning the asymptotic properties of the PFM-OLS estimator we derive the following
Lemma (c.f. Phillips and Hansen, 1990):

Lemma 2. Let the data be generated by (1.21) and (1.22) with Assumptions 1 - 4 in
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place. Then

G−1
T

(
θ̂m,PFM − θ

)
⇒ ωu·v

(
N∑

n=1

∫ m

0
Jn(r)Jn(r)′dr

)−1

×
(

N∑
n=1

∫ m

0
Jn(r)dWu·v,n(r)

)
,

(1.29)

as T → ∞ with Jn(r) := [D(r)′, Bv,n(r)′]′, GT := diag(GD,T , GX,T ) and GX,T := T −1Ik.

The corresponding N -dimensional residuals are given by û+
t;m,PFM := y+

t;m − Z ′
tθ̂m,PFM =

ut − V ′
t (Ω̂1,1

vv;m)−1Ω̂1,1
vu;m − Z ′

t(θ̂m,PFM − θ) with Vt := [v1,t, . . . , vN,t] and we obtain the
following limiting distribution for the scaled partial sum process:4

Lemma 3. Let the data be generated by (1.21) and (1.22) with Assumptions 1 - 4 in
place. Then it holds under the null hypothesis and for 0 ≤ s ≤ 1

T −1/2
[sT ]∑
t=1

û+
t;m,PFM ⇒ ωu·v

{
Wu·v(s) −

∫ s

0
JW (r)′dr

(
N∑

n=1

∫ m

0
JW

n (r)JW
n (r)′dr

)−1

×
(

N∑
n=1

∫ m

0
JW

n (r)dWu·v,n(r)
)}

=: ωu·vŴu·v(s)

(1.30)

for T → ∞ with JW (r) := [JW
1 (r), . . . , JW

N (r)] and JW
n (r) := [D(r)′, Wv,n(r)′]′.

Note that the process Ŵu·v(s) depends on m, the deterministic trend Dt and the number
of regressors k as well but we do not reflect this in our notation.

Under Assumptions 3 and 4 self-normalization cancels out the long-run variance in
the detector limit. Hence, we get rid of the well-known and unwanted finite sample
size distortions induced by long-run variance estimation. A crucial ingredient here is
the homogeneity of long-run variances. Assume for this paragraph that ω2

u·v,n is the
conditional long-run variance in cointegrating relation n and that the conditional long-run
variances are not homogeneous across cointegrating relations, i.e., ω2

u·v,1 ≠ ω2
u·v,n for some

4This result and the subsequent discussion on homogeneous conditional long-run variances are already
part of my master thesis (Theising, 2018).
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n ∈ {2, . . . , N}. Then, (1.29) changes to

G−1
T (θ̂m,PFM − θ) ⇒

(
N∑

n=1

∫ m

0
JW

n (r)JW
n (r)′dr

)−1( N∑
n=1

ωu·v,n

∫ m

0
JW

n (r)dWu·v,n(r)
)

for T → ∞, and the j-th component of (1.30), T −1/2∑[sT ]
t=1 û+

j,t;m,PFM, converges weakly
to

ωu·v,jWu·v,j(s)

−
∫ s

0
JW

j (r)′dr

(
N∑

n=1

∫ m

0
JW

n (r)JW
n (r)′dr

)−1( N∑
n=1

ωu·v,n

∫ m

0
JW

n (r)dWu·v,n(r)
)

for T → ∞, where the convergence still holds jointly for all j = 1, . . . , N . The nuisance
parameters ωu·v,n cannot be scaled out in the detectors due to their heterogeneity.

Homogeneous parameters are a crucial assumption for (1.30) as in case of heterogeneous
parameters (1.29) is no longer valid and θ̂m,PFM is only consistent for the average
parameter across all equations (c.f. Phillips and Moon, 1999, p. 1080, remark (c), and
recall we do not consider random, but fixed parameters).

Based on Lemma 3 the limiting distributions supm≤s≤1
Hm,+

i (s)
g(s) , i = 1, 2, 3, depend

on different parameters and we obtain critical values for a selection of them, namely
Dt = 1 or Dt = [1, t]′, using the weighting function corresponding to Dt and the
respective detector (c.f. Table 1.1), m-values ranging from 0.1 to 0.9 with mesh 0.01,
N = 1, 2, 3, 5, 10, 20, 30 and k = 1, . . . , 4. We provide further details on simulating the
critical values in Appendix 1.B.

1.2.2. Correlated Homogeneous Cointegrating Regressions

As in Section 1.2.1, the data are generated by (1.21) and (1.22) as we consider mon-
itoring homogeneous cointegrating relationships. Regarding the errors we abandon
Assumption 4 of independent and identically distributed error vectors ηt but allow for
arbitrary dependence among the regressors – except cointegration among the regres-
sors, i.e., Ωn,n

vv > 0 and Ωvv > 0 hold. In this case, the modified dependent variable is
y+

t;m,GLS := yt − Ω̂uv;mΩ̂−1
vv;m∆Xt and due to cross-sectional dependence we use the bias
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correction term

δ̂m :=
N∑

n=1

[
0p×1

(∆̂n,·
vu;m)((Ω̂−1

u·v;m)n,·)′ − ∆̂n,·
vv;m((Ω̂−1

u·v;mΩ̂uv;mΩ̂−1
vv;m)n,·)′

]
. (1.31)

Ω̂u·v;m is an estimator of Ωu·v := Ωuu−ΩuvΩ−1
vv Ωvu, the long-run covariance of the modified

system error u+
t;m,GLS := ut − Ω̂uv;mΩ̂−1

vv;m∆Xt. In order to deal with an arbitrary error
structure, we use the pooled feasible GLS estimator

θ̂m,PFM-GLS :=
( [mT ]∑

t=1
ZtΩ̂−1

u·v;mZ ′
t

)−1( [mT ]∑
t=1

ZtΩ̂−1
u·v;my+

t;m,GLS − [mT ]δ̂m

)
(1.32)

of the modified system.

Lemma 4. Let the data be generated by (1.21) and (1.22) with Assumptions 1 - 3 in
place. Then

G−1
T (θ̂m,PFM-GLS − θ) ⇒

(∫ m

0
J(r)Ω−1

u·vJ(r)′dr

)−1 (∫ m

0
J(r)Ω−1/2

u·v dWu·v(r)
)

(1.33)

as T → ∞ with GT = diag(GD,T , GX,T ), GX,T = T −1Ik, J(r) := [J1(r), . . . , JN (r)] and
Jn(r) = [D(r)′, B(r)′

v,n]′.

Here, the residual vector is û+
t;m,PFM-GLS := y+

t;m,GLS −Z ′
tθ̂PFM-GLS = ut − Ω̂uv;mΩ̂−1

vv;mvt −
Z ′

t(θ̂PFM-GLS − θ) and the following Lemma holds for the scaled partial sum process:

Lemma 5. Let the data be generated by (1.21) and (1.22) with Assumptions 1 - 3 in
place. Then it holds under the null hypothesis and for 0 ≤ s ≤ 1

T −1/2
[sT ]∑
t=1

û+
t;m,PFM-GLS ⇒ Ω1/2

u·v Wu·v(s)−
∫ s

0
J(r)′dr

(∫ m

0
J(r)Ω−1

u·vJ(r)′dr

)−1

×
(∫ m

0
J(r)Ω−1/2

u·v dWu·v(r)
) (1.34)

as T → ∞ with J(r) = [J1(r), . . . , JN (r)] and Jn(r) = [D(r)′, B(r)′
v,n]′.

Taking Lemma 5 into account, the limiting distributions supm≤s≤1
Hm,+

i (s)
g(s) , i = 1, 2, 3,

do not only depend on the deterministic trend Dt, the weighting function g and the
parameters m, N and k but on the long-run covariance structure as well. This renders
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tabulating simulated critical values infeasible. In order to perform hypotheses tests
we need to estimate Ω consistently and replace nuisance parameters in the limiting
distribution by consistent estimators. Then, we simulate critical values under the null
hypothesis based on independent copies of W (s) that we can easily transform into B(s)
to calculate independent copies of J(s) by plugging in covariance estimates performed on
the calibration period (see Appendix 1.B).

1.2.3. Seemingly Unrelated Cointegrating Regressions

Suppose now that the cointegrating regressions have individual parameters and the error
vectors are not cross-sectionally independent, i.e., we abandon Assumptions 3 and 4 and
the data are generated by (1.1) and (1.2). By defining Zt := diag(Z1,t, . . . , ZN,t) and
θ := [θ′

1, . . . , θ′
N ]′ we have

yt = Z′
tθ + ut. (1.35)

For fully modified estimation we use the GLS modified dependent variable y+
t;m,GLS and

the bias correction term ϕ̂m := [ϕ̂′
1;m, . . . , ϕ̂′

N ;m]′ with ϕ̂n;m := [0p×1
′, ((∆n,·

vu;m)+)′]′ and

(∆n,·
vu;m)+ := (∆̂n,·

vu;m)((Ω̂−1
u·v;m)n,·)′ − ∆̂n,·

vv;m((Ω̂−1
u·v;mΩ̂uv;mΩ̂−1

vv;m)n,·)′. (1.36)

Moon (1999) discusses three different estimators for this model where the fully modified
SUR estimator

θ̂FM-SUR :=

[mT ]∑
t=1

ZtΩ̂−1
u·v;mZ′

t

−1[mT ]∑
t=1

ZtΩ̂−1
u·v;my+

t;m,GLS − [mT ]ϕ̂m

 , (1.37)

is the feasible GLS estimator and efficient among those three estimators (c.f. Park and Ogaki,
1991, for additional details on its efficiency).

Lemma 6. Let the data be generated by (1.1) and (1.2) with Assumptions 1 and 2 in
place. Then

G−1
T (θ̂FM-SUR − θ) ⇒

(∫ m

0
J(r)Ω−1

u·vJ(r)′dr

)−1 (∫ m

0
J(r)Ω−1/2

u·v dWu·v(r)
)

(1.38)

as T → ∞ with Jn(r) = [D(r)′, Bv,n(r)′]′, J(r) := diag(J1(r), . . . JN (r)) and GT :=
IN ⊗ diag(GD,T , GX,T ), GX,T = T −1Ik.
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Here, the residual vectors are given by û+
t;m,FM-SUR := y+

t;m,GLS − Z′
tθ̂FM-SUR = ut −

Ω̂uv;mΩ̂−1
vv;mvt − Z′

t(θ̂FM-SUR − θ) and the scaled partial sum process of the modified
residuals has the following probability limit:

Lemma 7. Let the data be generated by (1.1) and (1.2) with Assumptions 1 and 2 in
place. Then it holds under the null hypothesis and for 0 ≤ s ≤ 1

T −1/2
[sT ]∑
t=1

û+
t;m,FM-SUR ⇒ Ω1/2

u·v Wu·v(s)−
∫ s

0
J(r)′dr

(∫ m

0
J(r)Ω−1

u·vJ(r)′dr

)−1

×
(∫ m

0
J(r)Ω−1/2

u·v dWu·v(r)
) (1.39)

as T → ∞ with J(r) = diag(J1(r), . . . JN (r)) and Jn(r) = [D(r)′, B(r)′
v,n]′.

Note that,
∑[mT ]

i=1
∑i

t=1 û+
t,FM-SUR = 0 if the regression contains an intercept and a linear

trend, and
∑[mT ]

t=1 û+
t,FM-SUR = 0 if the regression contains an intercept. Thus, (1.15) and

(1.17) are not valid in the respective cases.

Lemma 7 yields that the limiting distributions of supm≤s≤1
Hm,+

i (s)
g(s) , i = 1, 2, 3, depend on

the long-run covariance structure as in Section 1.2.2, hence, tabulating simulated critical
values is infeasible. Again, we estimate Ω consistently, replace nuisance parameters in
the limiting distribution by consistent estimators and simulate critical values under the
null hypothesis based on independent copies of W (s) and covariance estimates from the
calibration period.

1.3. Finite Sample Performance

We investigate the finite sample properties of the monitoring procedures based on the
different detectors and estimators by means of a simulation study. First, we consider the
detectors from Section 2.1 for cross-sectional independence and homogenous parameters,
then we move to the detectors from Section 2.2 and 2.3. We extend the data generating
process used by Vogelsang and Wagner (2014) and Wagner and Wied (2017):

yn,t = µ + γt + xn,t,1β1 + xn,t,2β2 + un,t,

xn,t,i = xn,t−1,i + vn,t,i, xn,0,i = 0, i = 1, 2,
(1.40)
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where

un,t = ρ1un,t−1 + εn,t + ρ2(en,t,1 + en,t,2), un,0 = 0,

vn,t,i = en,t,i + 0.5en,t−1,i, i = 1, 2,
(1.41)

for t = 1, . . . , [mT ]. εn,t, en,t,1 and en,t,2 are i.i.d. standard normal random variables
and independent of each other. We choose parameter values µ = 3, β1, β2, γ = 1 and
ρ1, ρ2 ∈ {0.3, 0.6}. The parameter ρ2 controls the serial correlation in the regression
error un,t and is set to ρ1 = 1 under the alternative of I(1) errors, while the parameter ρ2

governs regressor endogeneity (ρ2 ̸= 0) or exogeneity (ρ2 = 0).

By this simulation study we investigate which of the detectors Ĥm,+
1 , Ĥm,+

2 and Ĥm,+
3 is

best in the sense of finite sample size control under the null hypothesis as well as power
and detection delay under different alternatives. We are interested in how heterogeneous
parameters affect the detectors and investigate what happens if we consider alternatives
with different regression parameters cross-sectionally by using alternative parameter
estimators discussed in Sections 1.2.2 and 1.2.3. An additional important question is how
the detectors perform if structural breaks occur only in a fraction of the cointegrating
regressions.

We consider different versions (or in some cases modifications) of (1.40) and (1.41) for
t = [mT ] + 1, . . . , T to answer the posed questions. In some scenarios we vary the model
in the calibration period t = 1, . . . , [mT ] as well. All hypothesis tests are performed on
a 5% significance level and we consider combinations of m ∈ {0.10, 0.11, . . . , 0.89, 0.90}
and N ∈ {2, 3, 5, 10, 20, 30}. Note that Ĥm,+

1,PFM and Ĥm,+
3,PFM do not work for N = 1 due

to the presence of an intercept and a linear trend in Dt (see Lemma 1 and the remark
after Lemma 7 which holds for PFM-OLS and N = 1 as well).

1.3.1. Null Rejection Probability in Uncorrelated Homogeneous Cointegrating
Regressions

In this section, we analyze the behavior of the detectors from Section 2.1 based on
PFM-OLS estimation. We additionally assume (1.40) and (1.41) for t = [mT ] + 1, . . . , T

to investigate the finite sample performance under the null hypothesis. In particular we
examine if the null rejection probability is reasonably close to the chosen significance
level of 5%.
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Figure 1.2.: Null rejection probability in uncorrelated homogeneous cointegrating re-
gressions (Section 1.3.1) with T = 500, ρ1 = ρ2 = 0.3 and PFM-OLS
estimation. The lines represent Ĥm,+

1,PFM (solid), Ĥm,+
2,PFM (dashed) and Ĥm,+

3,PFM
(dotdashed).
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Figure 1.3.: Null rejection probability in uncorrelated homogeneous cointegrating re-
gressions (Section 1.3.1) with T = 500, ρ1 = ρ2 = 0.6 and PFM-OLS
estimation. The lines represent Ĥm,+

1,PFM (solid), Ĥm,+
2,PFM (dashed) and Ĥm,+

3,PFM
(dotdashed).

25



In general the null rejection probability is close to the significance level. The detectors
suffer from larger long-run variances induced by higher regressor endogeneity and higher
error serial correlation. For N = 2, 3, 5 the detectors work reasonably well and the null
rejection probability decreases in m, size distortions come up for N = 10 and get even
larger for N = 20, 30. All size distortions we observe decrease in m as we use [mT ]
observations for estimation in the calibration period. Ĥm,+

1,PFM seems to perform best in
the sense of null rejection probability in this case.

In Figure 1.2 the case T = 500 and ρ1 = ρ2 = 0.3 is shown. The detectors behave
similarly well and the null rejection probabilities are close to the significance level ranging
between 0.04 and 0.07. In the case of T = 500 and ρ1 = ρ2 = 0.6 (Figure 1.3) Ĥm,+

1,PFM and
Ĥm,+

3,PFM behave similarly and Ĥm,+
2,PFM is slightly oversized for N = 2, 3. For N = 5, 10, 20

Ĥm,+
2,PFM and Ĥm,+

3,PFM work similarly, slightly above the chosen significance level, only
Ĥm,+

1,PFM has a lower null rejection probabilty, closer to the significance level. In case of
N = 30 Ĥm,+

1,PFM is closer to the significance level as Ĥm,+
2,PFM which is closer than Ĥm,+

3,PFM.
In all cases of N size distortions vanish for larger m.5

1.3.2. Null Rejection Probability with Fixed Calibration Period

We looked at finite sample performance by fixing the combined calibration and monitoring
period T and compared different sets of parameter values, e.g., the influence of m on the
performance of the procedure. This is only helpful in a case of retrospective analysis
where we have to specify this value ex post. In the practical case of having a data set
and a stream of newly incoming data we cannot specify m a priori independently of T .
Merely, we have an assumed to be break free calibration period of a fixed length [mT ].
Thus, we need to figure out how to specify m and T jointly since there are, in principle,
uncountably infinite combinations possible.

In this scenario we simulated under (1.40) and (1.41) for t = 1, . . . , T and applied the
detectors from Section 1.2.1. We fixed the value [mT ] and simulated time series using
pairs (m, T ) such that the length of the calibration period is constant displayed in
Figures 1.4 and 1.5. The smaller m and consequently the larger T is, the better the
performance is in the sense of small size distortion (level 5%). Larger values of T yield
better approximations of the test statistics’ asymptotic distributions since the procedure

5Additional results for T = 1, 000 in Theising (2018) show a similar pattern with overall smaller size
distortions.
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Figure 1.4.: Null rejection probability in uncorrelated homogeneous cointegrating re-
gressions with a fixed calibration period (Section 1.3.2) with [mT ] = 25,
ρ1 = ρ2 = 0.3 and PFM-OLS estimation. The lines represent Ĥm,+

1,PFM (solid),
Ĥm,+

2,PFM (dashed) and Ĥm,+
3,PFM (dotdashed).
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is built on large T asymptotics and m is a fixed parameter. That means, we recommend
choosing T as large as possible for monitoring newly incoming data.

1.3.3. Null Rejection Probability in Correlated Homogeneous Cointegrating
Regressions

We abandon Assumption 4 of independent cointegrating regressions and consider the
detectors from Sections 1.2.2 and 1.2.3 based on PFM-GLS and FM-SUR estimation,
respectively. We use a data generating process that has a similar covariance and long-run
covariance structure as the data in the application section, namely

yn,t = µ + xn,t,1β1 + xn,t,2β2 + un,t,

xn,t,i = xn,t−1,i + vn,t,i, xn,0,i = 0, i = 1, 2,
(1.42)

where

un,t = ρ1un,t−1 + (εn,t + ρ2(en,t,1 + en,t,2))/10, un,0 = 0,

vn,t,i = (en,t,i + 0.5en,t−1,i + 0.25en,t−2,i)/103/2, i = 1, 2,
(1.43)

for t = 1, . . . , [mT ]. εn,t is an i.i.d. standard normal random variable independent of et =
[e1,t,1, e1,t,2, e2,t,1, . . . eN,t,2]′. et is serially independent and follows a multivariate normal
distribution with expected value 0 and covariance matrix Cov(et) = (1 − ρ̃)IN + ρ̃1N×N,
where 1N×N is the N ×N matrix of ones. ρ̃ controls the instantaneous correlation among
regressors vn,t and error term un,t for a single cointegrating regression as well as the
instantaneous correlation of regressors and error terms in the cross-section dimension.
Further, it holds that Ωuu = (1−ρ1)−2((1+2ρ2

2(1+ ρ̃)−4ρ̃ρ2
2)IN +4ρ̃ρ2

21N×N)10−2, Ωvv =
3.0625((1 − ρ̃)IkN + ρ̃1kN×kN)10−3 and Ωuv = 1.75ρ2(1 − ρ1)−1((1 − ρ̃)Ik ⊗ 11×N +
2ρ̃1N×kN)10−5/2.

We choose µ = 3 and β1 = β2 = 1 again as well as ρ̃ = 0.9. The errors are scaled such
that they mimic the magnitude and covariance structure of the errors in the application
in Section 1.4.

This data generating process violates the assumption of independence across cointegrating
relations. By allowing for cross-sectional dependence and heterogeneous (co-)variances
the number of additional long-run variance parameters increases from 1

2(k + 1)(k + 2) to
1
2(N + 1)k((N + 1)k + 1). A feasible simplification to reduce the number of parameters
for large values of N or k is to assume homogeneous long-run variances across un,t and
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Figure 1.5.: Null rejection probability in uncorrelated homogeneous cointegrating re-
gressions with a fixed calibration period (Section 1.3.2) with [mT ] = 50,
ρ1 = ρ2 = 0.3 and PFM-OLS estimation. The lines represent Ĥm,+

1,PFM (solid),
Ĥm,+

2,PFM (dashed) and Ĥm,+
3,PFM (dotdashed).
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Figure 1.6.: Null rejection probability in correlated homogeneous cointegrating regressions
(Section 1.3.3) with T = 500, ρ1 = ρ2 = 0.3, ρ̃ = 0.9 and PFM-GLS and
FM-SUR estimation. The lines represent Ĥm,+

1,PFM-GLS (solid), Ĥm,+
2,PFM-GLS

(dashed), Ĥm,+
3,PFM-GLS (dotdashed), Ĥm,+

2,FM-SUR (long-dashed) and Ĥm,+
3,FM-SUR

(two-dashed).
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Figure 1.7.: Null rejection probability in correlated homogeneous cointegrating regressions
(Section 1.3.3) with T = 500, ρ1 = ρ2 = 0.6, ρ̃ = 0.9 and PFM-GLS and
FM-SUR estimation. The lines represent Ĥm,+

1,PFM-GLS (solid), Ĥm,+
2,PFM-GLS

(dashed), Ĥm,+
3,PFM-GLS (dotdashed), Ĥm,+

2,FM-SUR (long-dashed) and Ĥm,+
3,FM-SUR

(two-dashed).
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Table 1.2.: Power in uncorrelated homogeneous cointegrating regressions (Section 1.3.4)
with T = 200, ρ1 = ρ2 = 0.3, N = 5 and PFM-OLS estimation. The number
of breaks is 2 in the first six rows and 4 in the last six rows.

breaks Ĥm,+
1,PFM Ĥm,+

2,PFM Ĥm,+
3,PFM

2

m = 0.25 r = 0.25 0.14 0.20 0.16
r = 0.50 0.09 0.11 0.08
r = 0.75 0.06 0.07 0.07

m = 0.50 r = 0.50 0.42 0.61 0.45
r = 0.75 0.18 0.19 0.10

m = 0.75 r = 0.75 0.57 0.64 0.43

4

m = 0.25 r = 0.25 0.22 0.35 0.25
r = 0.50 0.12 0.16 0.11
r = 0.75 0.08 0.08 0.07

m = 0.50 r = 0.50 0.68 0.87 0.72
r = 0.75 0.30 0.33 0.13

m = 0.75 r = 0.75 0.81 0.87 0.67

homogeneous long-run variances across vn,t,i. Further, assuming Ωi,j
uu = Ωh,l

uu, Ωi,j
uv = Ωh,l

uv ,
Ωi,i

uv = Ωh,h
uv , Ωi,j

vv = Ωh,l
vv and Ωi,i

vv = Ωh,h
vv for i ̸= j, h ̸= l ∈ {1, . . . , N} results in

1
2(3k2 + 5k + 4) parameters to be estimated. We realize the estimation of the simplified
long-run variance structure for N > 2 by pairwisely estimating the long-run variance of
all bivariate systems of cointegrating regressions n1, n2 ∈ {1, . . . , N} and averaging over
all possible pairs.

Figures 1.6 and 1.7 display the null rejection probability for T = 500, ρ1 = ρ2 =
0.3, 0.6, ρ̃ = 0.9 and N ∈ {2, 3, 5, 10, 20, 30} of the detectors based on PFM-GLS and
FM-SUR estimation. We focus on the detectors which have reasonable empirical sizes.
The size distortions are larger than in the case of the PFM-OLS estimator and they
depend on which particular estimator is used. The size curves show the interesting
pattern that the empirical size declines linearly in m. To some extent, this effect could
be expected due to the necessity to estimate nuisance parameters. Still, we believe that
the detectors are useful as the size distortions are moderate.
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Table 1.3.: Power in uncorrelated homogeneous cointegrating regressions (Section 1.3.4)
with T = 200, ρ1 = ρ2 = 0.3, N = 10 and PFM-OLS estimation. The number
of breaks is 2 in the first six rows and 4, 6, 8, 10 for each of the following six
rows.

breaks Ĥm,+
1,PFM Ĥm,+

2,PFM Ĥm,+
3,PFM

2

m = 0.25 r = 0.25 0.18 0.24 0.21
r = 0.50 0.10 0.10 0.08
r = 0.75 0.07 0.07 0.06

m = 0.50 r = 0.50 0.58 0.61 0.55
r = 0.75 0.23 0.15 0.11

m = 0.75 r = 0.75 0.68 0.55 0.39

4

m = 0.25 r = 0.25 0.35 0.45 0.40
r = 0.50 0.15 0.15 0.12
r = 0.75 0.06 0.07 0.06

m = 0.50 r = 0.50 0.86 0.88 0.82
r = 0.75 0.46 0.30 0.16

m = 0.75 r = 0.75 0.91 0.82 0.64

6

m = 0.25 r = 0.25 0.49 0.64 0.56
r = 0.50 0.20 0.22 0.17
r = 0.75 0.08 0.08 0.07

m = 0.50 r = 0.50 0.96 0.97 0.93
r = 0.75 0.63 0.44 0.21

m = 0.75 r = 0.75 0.98 0.93 0.79

8

m = 0.25 r = 0.25 0.62 0.76 0.68
r = 0.50 0.28 0.29 0.21
r = 0.75 0.09 0.08 0.08

m = 0.50 r = 0.50 0.99 0.99 0.97
r = 0.75 0.77 0.56 0.29

m = 0.75 r = 0.75 1.00 0.97 0.88

10

m = 0.25 r = 0.25 0.72 0.85 0.78
r = 0.50 0.34 0.35 0.26
r = 0.75 0.13 0.10 0.09

m = 0.50 r = 0.50 1.00 1.00 0.99
r = 0.75 0.86 0.70 0.36

m = 0.75 r = 0.75 1.00 0.99 0.93
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1.3.4. Power under Slope Breaks in Uncorrelated Homogeneous Cointegrating
Regressions

Now, we turn to power evaluation6 under slope breaks by which we mean a change in the
parameters β1 or β2. We consider the detectors from Section 1.2.1 and simulate under
(1.40) and (1.41) for t = 1, . . . , [rT ] and from [rT ] + 1 on a subset of the parameters in
(1.40) changes. More precisely, there is a break in a different number of the cointegrating
relationships and β1 and β2 change to β1,n = β2,n = 1 − δ in the first half of the breaking
cointegrating relationships and change to β1,n = β2,n = 1 + δ in the second half with
δ = 0.05. Thus, the system is no longer homogeneous after the structural break. Note
that we consider T = 200 under this alternative as the power is 1 in almost all the cases
we study below for T = 500 (as under the null hypothesis).

In Table 1.2, we see that Ĥm,+
2,PFM has higher power than the other detectors. Keeping in

mind that Ĥm,+
2,PFM has higher size distortions than Ĥm,+

1,PFM and Ĥm,+
3,PFM this is no surprise.

Between Ĥm,+
1,PFM and Ĥm,+

3,PFM there is no clear ranking visible regarding power in this
scenario. In general, power is increasing in m and higher in the case m = r than in the
case m < r, i.e., the monitoring works most succesfully when the structural break occurs
directly after the end of the calibration period.

Table 1.3 underlines that in most cases Ĥm,+
2,PFM has the highest power. The weakness

of this detector lies in the case m = 0.25, r = 0.75 (or generally in breaks “long” after
the calibration period). In this case, Ĥm,+

1,PFM has higher power than Ĥm,+
2,PFM and Ĥm,+

3,PFM.
All detectors get higher power for higher breakpoint counts where Ĥm,+

3,PFM has the worst
performance.

1.3.5. Power and Detection Time under Breaks in Uncorrelated Homogeneous
Cointegrating Regressions

In this scenario, we consider the detectors from Section 1.2.1 and (1.40) holds for
t = 1, . . . , T and (1.41) holds for t = 1, . . . , [rT ] where the parameter ρ1 changes to ρ1 = 1
from t = [rT ] + 1 on for a subset of the cointegrating relationships. Thus, a fraction of
the error processes {un,t}t=[rT ]+1,...,T are random walks and, therefore, the corresponding
cointegrating relationships are no longer valid.

6Tables on power of PFM-OLS detectors in 1.3.4 and 1.3.5 are displayed for T = 200 in order to
allow for a comparison to results for PFM-GLS and FM-SUR in 1.3.6 as opposed to T = 100 in
Theising and Wied (2023).
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Table 1.4.: Power in uncorrelated homogeneous cointegrating regressions (Section 1.3.5)
with T = 200, ρ1 = ρ2 = 0.3, N = 5 and PFM-OLS estimation. The number
of breaks is 1 in the first six rows and 2, 3, 4, 5 for each of the following six
rows.

breaks Ĥm,+
1,PFM Ĥm,+

2,PFM Ĥm,+
3,PFM

1

m = 0.25 r = 0.25 0.79 0.86 0.73
r = 0.50 0.42 0.46 0.28
r = 0.75 0.12 0.09 0.06

m = 0.50 r = 0.50 0.88 0.91 0.79
r = 0.75 0.48 0.46 0.21

m = 0.75 r = 0.75 0.80 0.81 0.63

2

m = 0.25 r = 0.25 0.94 0.97 0.91
r = 0.50 0.65 0.73 0.50
r = 0.75 0.18 0.14 0.08

m = 0.50 r = 0.50 0.98 0.99 0.96
r = 0.75 0.73 0.73 0.37

m = 0.75 r = 0.75 0.96 0.96 0.84

3

m = 0.25 r = 0.25 0.99 1.00 0.98
r = 0.50 0.78 0.85 0.62
r = 0.75 0.24 0.16 0.09

m = 0.50 r = 0.50 0.99 1.00 0.99
r = 0.75 0.87 0.86 0.49

m = 0.75 r = 0.75 0.99 0.99 0.94

4

m = 0.25 r = 0.25 1.00 1.00 0.99
r = 0.50 0.88 0.93 0.72
r = 0.75 0.29 0.20 0.09

m = 0.50 r = 0.50 1.00 1.00 1.00
r = 0.75 0.93 0.92 0.58

m = 0.75 r = 0.75 1.00 1.00 0.98

5

m = 0.25 r = 0.25 1.00 1.00 1.00
r = 0.50 0.93 0.97 0.81
r = 0.75 0.37 0.25 0.10

m = 0.50 r = 0.50 1.00 1.00 1.00
r = 0.75 0.96 0.96 0.65

m = 0.75 r = 0.75 1.00 1.00 0.99
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Table 1.5.: Mean detection delay in uncorrelated homogeneous cointegrating regressions
(Section 1.3.5) provided the monitoring procedure detects a break point with
T = 200, ρ1 = ρ2 = 0.3, N = 5 and PFM-OLS estimation. The number of
breaks is 1 in the first six rows and 2, 3, 4, 5 for each of the following six rows.

breaks Ĥm,+
1,PFM Ĥm,+

2,PFM Ĥm,+
3,PFM

1

m = 0.25 r = 0.25 39.86 41.97 53.55
r = 0.50 43.46 52.71 57.54
r = 0.75 -7.86 -6.73 -24.19

m = 0.50 r = 0.50 31.28 34.36 46.47
r = 0.75 25.94 30.69 31.29

m = 0.75 r = 0.75 21.42 25.99 32.90

2

m = 0.25 r = 0.25 27.67 27.79 42.75
r = 0.50 43.44 49.94 59.96
r = 0.75 6.29 4.23 -16.11

m = 0.50 r = 0.50 22.25 24.63 38.74
r = 0.75 24.97 29.42 33.47

m = 0.75 r = 0.75 17.28 21.71 29.93

3

m = 0.25 r = 0.25 21.20 21.45 35.76
r = 0.50 39.82 46.53 58.54
r = 0.75 12.94 14.60 -5.63

m = 0.50 r = 0.50 17.06 19.83 33.15
r = 0.75 22.74 28.25 35.24

m = 0.75 r = 0.75 14.07 18.86 27.91

4

m = 0.25 r = 0.25 16.85 17.51 30.09
r = 0.50 38.14 43.68 58.03
r = 0.75 20.78 21.27 1.86

m = 0.50 r = 0.50 14.35 17.20 29.52
r = 0.75 21.09 26.01 34.10

m = 0.75 r = 0.75 12.14 16.92 26.32

5

m = 0.25 r = 0.25 13.82 15.15 26.55
r = 0.50 34.57 40.35 56.70
r = 0.75 21.50 23.35 1.95

m = 0.50 r = 0.50 12.20 15.45 27.00
r = 0.75 19.51 24.78 33.73

m = 0.75 r = 0.75 10.61 15.35 24.61
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In Table 1.4 Ĥm,+
2,PFM has the highest power in most cases, Ĥm,+

1,PFM and Ĥm,+
3,PFM behave

similarly with some exceptions where Ĥm,+
3,PFM has substantially less power. Overall,

Ĥm,+
1,PFM has power not far off Ĥm,+

2,PFM and keeping in mind the size distortions of Ĥm,+
2,PFM

makes Ĥm,+
1,PFM favourable. In general, the power is higher for a higher number of

cointegrating relationships with breaks. A weakness lies in the case m = 0.25 and
r = 0.75 where the power is low.

In Table 1.5 we display the mean detection delay conditional on detecting a break point
and see that the detection delay is negative in some cases of m = 0.25 and r = 0.75,
suggesting that a lot of false alarms in comparison to correct alarms occur in these cases.
The negative delays get closer to 0 or get positive when the number of breaks is greater
indicating that the rate of correct alarms gets higher. Given fixed r, the detection delay
declines in m with the exception of m = 0.25, r = 0.75. Note that the detection delay is
bounded by (m − r)T and (1 − r)T . The smaller detection delay in the case m = r = 0.75
is not contributed to the fact that there are fewer observations left in this case than in
the case m = r = 0.25 because we see in Table 1.4 that the power is nearly identical
in the two cases. Overall, we can say the more breaks occur the smaller the detection
delay is. When m < r the detection delay is lower but the power is substantially lower as
well. In almost all cases Ĥm,+

1,PFM has a smaller detection delay than Ĥm,+
2,PFM and Ĥm,+

3,PFM.
Ĥm,+

2,PFM detects with a smaller delay than Ĥm,+
3,PFM for almost all combinations of m and

r with an exception when m = 0.25 and r = 0.75.

1.3.6. Power and Detection Time under Breaks in Correlated Homogeneous
Cointegrating Regressions

We consider the detectors from Sections 1.2.2 and 1.2.3 based on PFM-GLS and FM-SUR
estimation, respectively, and revisit the data generating process (1.42) for t = 1, . . . , T

and (1.43) for t = 1, . . . , [rT ] with cross-sectionally dependent errors. From [rT ] + 1
onwards for a fraction of the cointegrating relationships the parameter ρ1 changes to
ρ1 = 1 such that a fraction of the error processes {un,t}t=[rT ]+1,...,T are random walks.

We display our results in Tables 1.6 and 1.7.7 The PFM-GLS detectors have higher
power than the FM-SUR ones, but it should be kept in mind that the empirical size is
also higher. Similarly as in the case of Table 1.4, the power is higher for a higher number
of cointegrating relationships with breaks and the power is rather low for m = 0.25 and

7This table is an additional result for this dissertation and not included in Theising and Wied (2023).
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Table 1.6.: Power in correlated homogeneous cointegrating regressions (Section 1.3.6)
with T = 200, ρ1 = ρ2 = 0.3, ρ̃ = 0.9, N = 5 and PFM-GLS and FM-SUR
estimation. The number of breaks is 1 in the first six rows and 2, 3, 4, 5 for
each of the following six rows.

breaks Ĥm,+
1,PFM-GLS Ĥm,+

2,PFM-GLS Ĥm,+
3,PFM-GLS Ĥm,+

2,FM-SUR Ĥm,+
3,FM-SUR

1

m = 0.25 r = 0.25 0.86 0.90 0.81 0.68 0.48
r = 0.50 0.69 0.72 0.55 0.44 0.25
r = 0.75 0.35 0.31 0.21 0.21 0.14

m = 0.50 r = 0.50 0.90 0.94 0.84 0.81 0.59
r = 0.75 0.60 0.62 0.34 0.34 0.11

m = 0.75 r = 0.75 0.79 0.79 0.62 0.80 0.55

2

m = 0.25 r = 0.25 0.97 0.98 0.96 0.89 0.70
r = 0.50 0.88 0.90 0.75 0.63 0.32
r = 0.75 0.47 0.36 0.22 0.24 0.15

m = 0.50 r = 0.50 0.99 1.00 0.97 0.97 0.85
r = 0.75 0.84 0.84 0.51 0.56 0.20

m = 0.75 r = 0.75 0.96 0.96 0.85 0.96 0.79

3

m = 0.25 r = 0.25 0.99 1.00 0.99 0.97 0.84
r = 0.50 0.95 0.97 0.88 0.74 0.41
r = 0.75 0.56 0.46 0.25 0.22 0.15

m = 0.50 r = 0.50 1.00 1.00 0.99 1.00 0.94
r = 0.75 0.94 0.92 0.61 0.70 0.25

m = 0.75 r = 0.75 0.99 0.99 0.94 0.99 0.90

4

m = 0.25 r = 0.25 1.00 1.00 1.00 0.99 0.91
r = 0.50 0.98 0.99 0.94 0.84 0.48
r = 0.75 0.67 0.56 0.26 0.25 0.13

m = 0.50 r = 0.50 1.00 1.00 1.00 1.00 0.96
r = 0.75 0.97 0.96 0.69 0.81 0.27

m = 0.75 r = 0.75 1.00 1.00 0.97 1.00 0.96

5

m = 0.25 r = 0.25 1.00 1.00 1.00 1.00 0.94
r = 0.50 0.99 1.00 0.96 0.89 0.53
r = 0.75 0.75 0.63 0.28 0.27 0.16

m = 0.50 r = 0.50 1.00 1.00 1.00 1.00 0.99
r = 0.75 0.98 0.99 0.81 0.87 0.34

m = 0.75 r = 0.75 1.00 1.00 0.98 1.00 0.98
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r = 0.75. Mean detection delay in Table 1.7 is again conditional on detecting a break
point. Generally, the PFM-GLS detectors have similar detection delay where Ĥm,+

3,PFM-GLS
is slightly more delayed. Keeping in mind the better empirical behaviour of Ĥm,+

2,PFM-GLS
under the null hypothesis, this seems to be the favourable detector. All PFM-GLS
detectors have smaller detection delay than the FM-SUR counterparts where Ĥm,+

2,FM-SUR
performs better.

1.4. Application

We consider the cointegrating relation between triplets of logarithmic currency exchange
rates. On that account, we calculated exchange rates between Bitcoin and real-world
non-cryptocurrencies (USD, EUR, AUD, RUB, etc.) and perform three distinct bivariate
analyses meaning that we consider two cointegrating relationships a time. In the analyses,
we first consider the detectors from Section 1.2.1. There is statistical evidence that the
assumption of cross-sectional independence is not fulfilled, but simulations for robustness
using the same data generating process as in Section 1.3.3 indicate that it might still
be appropriate to use these detectors (see Appendix 1.C). Under the assumption of
cross-sectional dependence, we could use the detectors from Section 1.2.2 and 1.2.3, but
would have to estimate additional parameters. Nevertheless, we run the analyses also for
the other estimators and observe slightly different results which are also presented.

We use our methods to simultaneously search for instabilities in multiple parities and to
our best knowledge there exists no such analysis in the literature, yet. Other authors only
consider one currency triplet at a time and therefore just one cointegrating regression.
We assume violations of triangular arbitrage parity under normal market conditions to
be stationary and a turn to non-stationary deviations or a change in parameters is a
sign of mispricing not due to financial frictions – also referred to as financial market
dislocation. We find empirical evidence of such mispricing in currency triplets including
Bitcoin and use our results in a portfolio trading strategy.

Financial market dislocations are difficult to define and measure, yet arbitrage parities
are a less controversial matter (Pasquariello, 2014) and were investigated, for instance,
by Yu and Zhang (2017) with a focus on Bitcoin and the relationship between triangular
arbitrage parity deviations and cross-country differences in capital controls which can be
linked to different demand on foreign currency across countries. Corbet et al. (2018) link
Bitcoin prices to fundamentals that seem to drive the price until 2017; after that their
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Table 1.7.: Mean detection delay in correlated homogeneous cointegrating regressions
(Section 1.3.6) with T = 200, ρ1 = ρ2 = 0.3, ρ̃ = 0.9, N = 5 and PFM-GLS
and FM-SUR estimation. The number of breaks is 1 in the first six rows and
2, 3, 4, 5 for each of the following six rows.

breaks Ĥm,+
1,PFM-GLS Ĥm,+

2,PFM-GLS Ĥm,+
3,PFM-GLS Ĥm,+

2,FM-SUR Ĥm,+
3,FM-SUR

1

m = 0.25 r = 0.25 55.75 57.41 66.98 85.10 95.08
r = 0.50 46.89 53.01 60.06 65.32 69.23
r = 0.75 9.08 7.89 -0.56 11.17 10.54

m = 0.50 r = 0.50 38.07 42.38 53.31 55.68 65.51
r = 0.75 26.44 30.39 33.81 36.89 34.45

m = 0.75 r = 0.75 24.35 29.40 35.64 30.49 36.62

2

m = 0.25 r = 0.25 40.47 42.12 55.70 73.67 86.48
r = 0.50 42.47 48.92 60.65 66.62 69.11
r = 0.75 15.56 11.94 1.95 12.13 12.84

m = 0.50 r = 0.50 27.22 31.38 43.68 46.18 60.62
r = 0.75 24.42 29.27 35.57 35.47 36.51

m = 0.75 r = 0.75 19.40 25.18 32.53 26.13 34.38

3

m = 0.25 r = 0.25 32.21 33.40 46.08 63.23 80.35
r = 0.50 37.82 43.45 57.10 64.50 69.99
r = 0.75 19.45 18.70 7.84 13.39 12.32

m = 0.50 r = 0.50 21.87 25.96 38.12 38.89 55.34
r = 0.75 22.90 27.44 35.00 35.82 37.64

m = 0.75 r = 0.75 15.93 22.19 30.47 22.74 31.84

4

m = 0.25 r = 0.25 26.63 28.28 40.30 53.38 71.99
r = 0.50 35.39 40.42 56.46 61.93 67.99
r = 0.75 20.48 23.33 16.27 17.35 13.98

m = 0.50 r = 0.50 19.14 23.70 35.68 35.04 51.99
r = 0.75 20.83 26.03 34.42 34.81 37.13

m = 0.75 r = 0.75 14.42 20.20 28.87 20.35 30.30

5

m = 0.25 r = 0.25 23.56 25.69 36.29 49.41 69.52
r = 0.50 30.97 36.77 52.81 59.81 68.26
r = 0.75 20.59 23.08 12.77 18.17 10.43

m = 0.50 r = 0.50 17.09 21.41 32.52 31.91 48.67
r = 0.75 17.70 23.80 34.32 33.71 38.75

m = 0.75 r = 0.75 12.81 18.52 26.94 18.70 28.61
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model signals bubble-type behaviour. Such bubble-type behaviour can be modeled using
the theory of Cretarola and Figà-Talamanca (2021). Cheah and Fry (2015) link Bitcoin
prices to fundamentals as well, show that Bitcoin prices are prone to speculative bubbles
and find empirical evidence that the fundamental price of Bitcoin is zero; Dong and Dong
(2014) conclude that Bitcoin is an immature currency; and Lintilhac and Tourin (2017)
use Bitcoin to construct portfolio strategies. Reynolds et al. (2021) investigate the time
series properties of Bitcoin and fiat currency logarithmic exchange rates. Their findings
suggest that these are unit root processes and they consider univariate cointegrating
relationships between triplets of logarithmic currency exchange rates. They present
empirical evidence of mispricings in currency triplets including Bitcoin investigating one
cointegrating relation at a time and use their result for a currency portfolio strategy.

The law of one price is implied by the assumptions of arbitrage-free markets in modern
financial theory meaning prices of related assets are fundamentally linked and should
inhibit arbitrage parities. Consider a currency triplet (A-V-B) consisting of three
currencies A, B and V (the vehicle currency). Let SA/B,t denote the units of currency A

received for one unit of currency B. In the absence of arbitrage, for any triplet of spot
exchange rates the triangular arbitrage parity

SA/B,t = SA/V,tSV/B,t ⇔ ln SA/B,t = ln SA/V,t + ln SV/B,t (1.44)

holds. In real data we never observe the validity of (1.44). This is suspectedly due to
market frictions such as transactions cost. In order to compensate for these frictions
we include a stationary error term in (1.44) and assume that deviations from triangular
arbitrage parity are stationary transforming (1.44) to

ln SA/B,t = ln SA/V,t + ln SV/B,t + ut, (1.45)

where ut is the stationary error due to market frictions.

Currency triplets sharing more than one currency imply identical regressors and therefore
we cannot apply our monitoring procedures: On the one hand, cross-sectional indepen-
dence would be outruled by construction, on the other hand, a fixed correlation of one
would not allow for simplifying the estimator of the long-run variance as described in
Section 1.3.3. We consider three examples of two currency triplets a time with Bit-
coin (XBT) as vehicle currency V in every triplet. US Dollar (USD) and Euro (EUR)
are fixed currencies in each of the two triplets while the third currency varies among
Australian Dollar (AUD), Canadian Dollar (CAD), Pound Sterling (GBP), Russian
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Ruble (RUB) and Swedish Krona (SEK). This choice is motivated by the fact that
USD and EUR can be considered as global leading currencies from large economies
and that the chosen currencies are most actively traded in our sample period. The
triplets are (USD-XBT-CAD)–(EUR-XBT-GBP), (USD-XBT-SEK)–(GBP-XBT-EUR)
and (USD-XBT-AUD)–(RUB-XBT-EUR).

We use daily spot exchange rates among fiat currencies as reported by the Pacific
Exchange Rate Service (Bank of Canada, c.f. Antweiler, 2015).The exchange rates are
the averages of transaction prices or price quotes from financial institutions between
11:59 a.m. and 12:01 p.m. Eastern time (ET). We use Bitcoin transaction prices between
11:59 a.m. and 12:01 p.m. ET as reported by Bitcoincharts (2017) to calculate noon
exchange rates between Bitcoin and fiat currencies.

The chosen triplets leads to three bivariate systems of cointegrating relationships,
namely

yt =
[
ln SUSD/CAD,t

ln SEUR/GBP,t

]
=
[
1 ln SUSD/XBT,t ln SXBT/CAD,t

1 ln SEUR/XBT,t ln SXBT/GBP,t

]
θ + ut = X ′

tθ + ut, (1.46)

yt =
[

ln SUSD/SEK,t

ln SGBP/EUR,t

]
=
[
1 ln SUSD/XBT,t ln SXBT/SEK,t

1 ln SGBP/XBT,t ln SXBT/EUR,t

]
θ + ut = X ′

tθ + ut, (1.47)

and

yt =
[
ln SUSD/AUD,t

ln SRUB/EUR,t

]
=
[
1 ln SUSD/XBT,t ln SXBT/AUD,t

1 ln SRUB/XBT,t ln SXBT/EUR,t

]
θ + ut = X ′

tθ + ut, (1.48)

where θ = [0, 1, 1]′ in each of them. The homogeneity of these three systems is a direct
consequence of the triangular arbitrage parities.

The sample starts at 1 May 2013 and stretches up to 31 December 2015 due to high
Bitcoin trading frequency and thus more reliable Bitcoin prices in this time frame, leading
to a small N = 2, large T = 667 setting. We choose m = 0.2, that means calibration
ends at 8 November 2013, in order to have a rather small calibration period, compare
the discussion after equation (1.4), and assume the cointegrating relation to be break
free due to rather stable Bitcoin prices. For a further discussion of this matter the
reader is referred to Reynolds et al. (2021). They investigate the time series properties
of logarithmic Bitcoin exchange rates and demonstrate that logarithmic exchange rates
including Bitcoin behave like I(1) processes. They perform unit root tests (Augmented-
Dickey-Fuller and Phillips-Perron) and the KPSS test on logarithmic exchange rates
including Bitcoin indicating that they indeed have a unit root. Furthermore, they perform
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Table 1.8.: Breakpoint detection dates in the three pairs of currency triplets
(USD-XBT-CAD) (USD-XBT-SEK) (USD-XBT-AUD)
(EUR-XBT-GBP) (GBP-XBT-EUR) (RUB-XBT-EUR)

Ĥm,+
1,PFM - - -

Ĥm,+
2,PFM - 09-05-2014 12-02-2015

Ĥm,+
3,PFM - 11-07-2014 -

Ĥm,+
1,PFM-GLS - - -

Ĥm,+
2,PFM-GLS - 13-08-2014 -

Ĥm,+
3,PFM-GLS - 19-01-2015 -

Ĥm,+
2,FM-SUR 07-05-2015 16-04-2015 08-05-2015

Ĥm,+
3,FM-SUR - - -

the same tests on the series of first differences illustrating that these can be assumed to
be stationary. For logarithmic exchange rates among fiat currencies I(1) behaviour is
well established in the literature.

For monitoring we apply Ĥm,+
1,PFM, Ĥm,+

2,PFM and Ĥm,+
3,PFM for the PFM-OLS-case, Ĥm,+

1,PFM-GLS,
Ĥm,+

2,PFM-GLS and Ĥm,+
3,PFM-GLS for the PFM-GLS-case and Ĥm,+

2,FM-SUR and Ĥm,+
3,FM-SUR for

the FM-SUR-case. In all cases, we use Dt = 1 and g(s) according to Table 1.1. We
detect structural breaks in all three pairs of currency triplets (c.f. Table 1.8), whereas
most breaks can be found for the second triple. Figure 1.8 displays the observed process
of all test statistics for all triplets. Important dates for the Bitcoin and financial market
during our monitoring and prior to the detected breaks are the shut down of Mt. Gox, a
Tokyo-based Bitcoin exchange, in February 2014 (Decker and Wattenhofer, 2014) and
the ending of the cap on euro-swiss franc exchange rates by the Swiss National Bank on
15 January 2015.

Given the entanglement of exchange rates the question of independent cointegrating
regressions arises naturally. An application of Breusch and Pagan (1980) gives statistical
evidence that the assumption of cross-sectional independence might not be reasonable.
Similarly as in Section 1.3.3, we have conducted a robustness check investigating the
PFM-OLS detectors for dependent cointegrating regressions of the form (1.42) and (1.43).
It shows that the detectors work for N = 2 even under violation of the independence
assumption and behave similarly to the PFM-GLS and FM-SUR detectors for N = 2 in
this case. In the application examples, the long-run correlation among the first differences
of the regressors of different cointegrating regressions ∆X1,t and ∆X2,t varies from 0.85
to 0.99 in absolute value and the longrun correlation in (1.43) is 0.9 among these first
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Figure 1.8.: Processes of the test statistics divided by critical values for (1.46) -
(1.48). Bold lines represent test statistics based on Ĥm,+

1,PFM (solid), Ĥm,+
2,PFM

(dashed) and Ĥm,+
3,PFM (dotdashed), and non-bold lines represent test statistics

based on Ĥm,+
1,PFM-GLS (solid), Ĥm,+

2,PFM-GLS (dashed), Ĥm,+
3,PFM-GLS (dotdashed),

Ĥm,+
2,FM-SUR (long-dashed) and Ĥm,+

3,FM-SUR (two-dashed). Dashed vertical lines
indicate a detected breakpoint in the system of cointegrating relationships.
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Table 1.9.: Returns of buy-and-hold strategy compared to monitoring based portfolio
strategy for the three breakpoints
currency triplet breakdate benchmark return excess return

(USD-XBT-CAD) 07-05-2015 −0.0655 −0.0713
(EUR-XBT-GBP)
(USD-XBT-SEK) 09-05-2014 −0.0581 +0.1211
(GBP-XBT-EUR) 11-07-2014 +0.2148

13-08-2014 +0.2386
19-01-2015 −0.0940
16-04-2015 −0.1100

(RUB-XBT-EUR) 12-02-2015 −0.1377 −0.0908
(USD-XBT-AUD) 08-05-2015 −0.0451

differences while the variances are of a similar magnitude of 0.0025 in the finite sample
case and 0.004 to 0.006 in the application cases. The correlation between the errors
u1,t and u2,t in the simulation is 0.2 while the estimated correlation in the applications
is between 0.5 and 0.8. The correlations between the first differences of the regressors
and the errors u1,t and u2,t vary beween 0.01 and 0.15 in the applications while they are
roughly 0.5 in the simulation study. The longrun covariance and correlation matrices
of the application examples and details about the econometric test for cross-sectional
independence can be found in Appendix 1.C.

We use our results to implement a portfolio trading strategy and compare, first, the
three different pairs of triplets and, second, each of the different pairs to a benchmark
portfolio using a simple buy-and-hold strategy. Each of the portfolios is equally-weighted
among the five currencies included in a pair of currency triplets. USD serves as the
domestic currency and we exchange one fifth of the portfolio volume to each of the
four foreign currencies present in the respective pair of currency triplets at the start of
monitoring on 12 November 2013. We assume that we earn the local risk free rate in
each of the currencies which we proxy by the local deposit interest rate given by Euribor
(European Money Markets Institute, 2020) as EUR deposit interest rate and LIBOR
(Board of Governors of the Federal Reserve System, 2020) as USD deposit interest rate
while we obtained AUD, CAD and RUB deposit interest rates from the World Bank
(2020) and GBP and SEK deposit interest rates from the Bank of England (2020) and
Statistics Sweden (2020), respectively.

The buy-and-hold benchmark portfolios hold the foreign currencies until the end of
monitoring on 31 December 2015 and exchange them back to USD. The monitoring
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based portfolios exchange the foreign currencies back to USD on the detected breakdates
and earn the local risk free USD rate until the end of monitoring. We neglect the
effects of trading costs. In Table 1.9 we see that in case of the pair (USD-XBT-SEK)–
(GBP-XBT-EUR) the monitoring based strategy achieves a substantial excess return
compared to the benchmark strategy if we exchange back to USD on any of the first
three breaks detected in 2014. Interestingly, trading back to USD on the later detected
breaks in 2015 leads to less return compared to the benchmark strategy. As for the pairs
(USD-XBT-CAD)–(EUR-XBT-GBP) and (USD-XBT-AUD)–(RUB-XBT-EUR), where
only some detectors signal a break, the benchmark strategy generates more return for all
three breakdates.

1.5. Summary and Conclusions

We proposed extensions of the monitoring procedures by Wagner and Wied (2017).
Again, these extensions are closed-end monitoring procedures designed for a system of
cointegrating relationships. Inspired by Chu et al. (1996)parameters are estimated on a
break-free calibration period, our procedures are based on the properly scaled partial sum
process of residuals and rely on a functional central limit theorem. We use pooled fully
modified OLS estimation in order to construct detectors with nuisance parameter free
limiting distributions despite error serial correlation and regressor endogeneity in case of
homogeneous parameters and independent cointegrating relations. On the one hand, for
dependent cointegrating regressions we utilize a pooled fully modified GLS estimator and
on the other hand for dependent and heterogeneous cointegrating regressions we employ
the fully modified SUR estimator.

In a simulation study it turns out that the detectors show decent behaviour under the null
hypothesis with controlled size and have power against two alternatives under different
data generating processes. Self-normalization mitigates the impact of long-run variance
estimation on the performance of the detectors based on PFM-OLS estimation. Note
that, although no estimator of the long-run variance is necessary in these detector, we
still need one to perform pooled FM-OLS estimation and obtain residuals. The detectors
depend on the assumption of homogeneous parameters and independent cointegrating
regressions and under violation of these assumptions PFM-GLS and FM-SUR estimation
based detectors show proper behaviour under the null hypothesis as well as under the
alternative hypothesis. Note that a higher number of parameters must be estimated for
the detectors based on the latter estimators.
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As an illustrative application we test for stability in systems of homogeneous cointegrat-
ing relationships in triangular arbitrage parities for logarithmic exchange rate triplets
including Bitcoin. We use PFM-OLS based detectors as well as PFM-GLS and FM-SUR
detectors for monitoring three different examples of bivariate systems of cointegrating
relationships in a sample ranging from 1 May 2013 until 31 December 2015 to see if a
stochastic version of the triangular arbitrage parity between currency triplets is stable. In
one of the cointegrating relationships almost all detectors indicate breakpoints between
May 2014 and April 2015. For the other two cointegrating relationships only a small
fraction of detectors indicate breaks. Connected events prior to the detected breaks are
the closing of Mt. Gox in February 2014 and the ending of the cap on euro-swiss franc
exchange rates by the Swiss National Bank in January 2015. We apply these results to
construct a portfolio trading strategy using the detected breaks as a sign of currency
market instabilities.

Some extensions to this procedure are possible. Insights on the impact of the weighting
function on the performance of monitoring procedures are yet to gain. Advantages
and disadvantages of the detectors regarding power under specicific alternatives could
be analyzed in more detail. The multivariate procedures for monitoring cointegration
work best for a small number of cointegration relations and a large number of time
periods. Thus, extending the applicability by improving the performance for more
cross-sections and fewer time periods is attractive. The self-normalized detectors work
better in the multivariate setting and a revisit of the univariate procedure could reveal
potential improvements. Finally, methods to deal with non-constant variances, especially
in financial applications, are particularly interesting.
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1.A. Mathematical Appendix

Proof of Lemma 1.
The lemma follows directly from the continuous mapping theorem and our subsequent
results Lemma 3, 5 or 7, respectively.

Proof of Theorem 1.
For all detectors Ĥm,+

i , i = 1, . . . , 3 the limits Hm,+
i are well defined under the respective

assumptions of Sections 1.2.1 – 1.2.3. Analogusly, the limits for Ĥm,+
i

g(s) are well defined
since 0 < g(s) < ∞ and g(s) continuous for 0 ≤ s ≤ 1. Therefore, critical values for given
g(s) can be found for all versions of the detectors (c.f. the proof in Wagner and Wied,
2017).

Proof of Lemma 2:
The result is stated for dim Dt = 0 in Phillips and Moon (1999, p. 1085) in the first
equation after (5.16). Using arguments of Phillips and Hansen (1990) it extends easily
to the case of arbitrary deterministic trend Dt satisfying Assumption 1.

Proof of Lemma 3:8

Recall the definition of the N -dimensional PFM-OLS residuals

û+
t;m,PFM =y+

t;m,PFM − Z ′
tθ̂m,PFM = yt − V ′

t (Ω̂1,1
vv;m)−1Ω̂1,1

vu;m − Z ′
tθ̂m,PFM

=ut − V ′
t (Ω̂1,1

vv;m)−1Ω̂1,1
vu;m − Z ′

t(θ̂m,PFM − θ).
(1.49)

Consider the decomposition of the PFM-OLS residuals into the above three summands.
The limits

T −1/2
[sT ]∑
t=1

ut ⇒


ωu·vWu·v,1(s) + Ω1,1

uv (Ω1,1
vv )−1/2Wv,1(s)

...
ωu·vWu·v,N (s) + Ω1,1

uv (Ω1,1
vv )−1/2Wv,N (s)

 , (1.50)

T −1/2
[sT ]∑
t=1

V ′
t (Ω̂1,1

vv;m)−1Ω̂1,1
vu;m ⇒


Ω1,1

uv (Ω1,1
vv )−1/2Wv,1(s)

...
Ω1,1

uv (Ω1,1
vv )−1/2Wv,N (s)

 (1.51)

for T → ∞ are due to Assumption 2 and the consistency of the nonparametric long-run

8Revised compared to an incorrect proof in my master thesis Theising (2018).
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variance estimators. For the last part, we have

T −1/2
[sT ]∑
t=1

Z ′
t(θ̂m,PFM − θ) = T −1/2

[sT ]∑
t=1

(G′
T Zt)′G−1

T (θ̂m,PFM − θ)

=

T −1
[sT ]∑
t=1

[
T 1/2GD,T Dt . . . T 1/2GD,T Dt

T 1/2X1,t . . . T 1/2XN,t

]′G−1
T (θ̂m,PFM − θ)

⇒ ωu·v

∫ s

0
JW (r)′dr

(
N∑

n=1

∫ m

0
JW

n (r)JW
n (r)′dr

)−1( N∑
n=1

∫ m

0
JW

n (r)dWu·v,n(r)
)

.

(1.52)

for T → ∞. Thus, the asymptotic behaviour of the scaled partial sum process of the
PFM-OLS residuals is given by

T −1/2
[sT ]∑
t=1

û+
t;m,PFM ⇒ ωu·v

{
Wu·v(s) −

∫ s

0
JW (r)′dr

(
N∑

n=1

∫ m

0
JW

n (r)JW
n (r)′dr

)−1

×
(

N∑
n=1

∫ m

0
JW

n (r)dWu·v,n(r)
)}

= ωu·vŴu·v(s)

(1.53)

as T → ∞.

Proof of Lemma 4:
The proof is similar to the proof of Lemma 2 with an additional transformation typical
for generalized least squares estimators, here by the long-run covariance of the modified
system error u+

t;m,GLS. We consider the limit of G−1
T (θ̂m,PFM-GLS − θ) as T → ∞. Recall

y+
t;m,GLS := yt − Ω̂uv;mΩ̂−1

vv;mvt and yt = Z ′
tθ + ut, then we have

θ̂m,PFM-GLS =
( [mT ]∑

t=1
ZtΩ̂−1

u·v;mZ ′
t

)−1( [mT ]∑
t=1

ZtΩ̂−1
u·v;my+

t;m,GLS − [mT ]δ̂m

)

=
( [mT ]∑

t=1
ZtΩ̂−1

u·v;mZ ′
t

)−1( [mT ]∑
t=1

ZtΩ̂−1
u·v;m(Z ′

tθ + ut − Ω̂uv;mΩ̂−1
vv;mvt) − [mT ]δ̂m

)

= θ +
( [mT ]∑

t=1
ZtΩ̂−1

u·v;mZ ′
t

)−1( [mT ]∑
t=1

ZtΩ̂−1
u·v;m(ut − Ω̂uv;mΩ̂−1

vv;mvt) − [mT ]δ̂m

)
.

(1.54)

The limiting result

[mT ]∑
t=1

GT ZtΩ̂−1
u·v(GT Zt)′ ⇒

∫ m

0
J(r)Ω−1

u·vJ(r)′dr (1.55)
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for T → ∞ is analogously obtained as Lemma 3.1 (b) in Phillips and Durlauf (1986)
combined with arguments from Phillips and Hansen (1990) for the deterministic part (or
c.f. Moon, 1999).

Define Σ := E(η0η′
0) and ∆1 :=

∑∞
h=1E(η0η′

h) with the same partitions and notations
as for Ω and ∆ (see Section 1.2) for the parts that involve bias corrections. In order
to handle the GLS transformation in

∑[mT ]
t=1 GT ZtΩ̂−1

u·v;mut we consider one entry of the
vector Ω̂−1

u·v;mut at a time. Hence, we examine the n-th row of Ω̂−1
u·v;m and the n-th column

of the matrix GT Zt which we split into its deterministic and random part. Then, we
have

[mT ]∑
t=1

T −1Xn,t

(
Ω̂−1

u·v;m

)
n,·

ut

=
[mT ]∑
t=1

T −1/2Xn,t−1T −1/2u′
t

((
Ω̂−1

u·v;m

)
n,·

)′
+ T −1

[mT ]∑
t=1

vn,tu
′
t

((
Ω̂−1

u·v;m

)
n,·

)′

⇒
∫ m

0
Bv,n(r)dBu(r)′

((
Ω̂−1

u·v;m

)
n,·

)′
+ m∆n,·

1;vu

((
Ω̂−1

u·v;m

)
n,·

)′
+ mΣn,·

vu

((
Ω̂−1

u·v;m

)
n,·

)′

=
∫ m

0
Bv,n(r)

(
Ω̂−1

u·v;m

)
n,·

dBu(r) + m∆n,·
vu

((
Ω̂−1

u·v;m

)
n,·

)′

(1.56)

for T → ∞ where we use ∆ = Σ + ∆1. The convergence result is part of the proof of
Theorem 3.1 (e) in Phillips and Durlauf (1986). Further, we obtain

[mT ]∑
t=1

T 1/2GT DtT
−1/2u′

t

((
Ω̂−1

u·v;m

)
n,·

)′
⇒
∫ m

0
D(r)

(
Ω̂−1

u·v

)
n,·

dBu(r) (1.57)

as T → ∞. Summing these intermediate results up is equivalent to the initial matrix
vector product and we have

[mT ]∑
t=1

GT ZtΩ̂−1
u·v;mut

⇒
∫ m

0

N∑
n=1

Jn(r)(Ω−1
u·v)n,·dBu(r) + m

N∑
n=1

 0p×1

∆n,·
vu

((
Ω−1

u·v
)

n,·

)′


=
∫ m

0
J(r)Ω−1/2

u·v dWu·v(r) +
∫ m

0
J(r)Ω−1

u·vΩuvΩ−1/2
vv dWv(r) + m

N∑
n=1

 0p×1

∆n,·
vu

((
Ω−1

u·v
)

n,·

)′


(1.58)
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for T → ∞ where we use
∑N

n=1 Jn(r)(Ω−1
u·v)n,· = J(r)Ω−1

u·v and Bu(r) = Ω1/2
u·v Wu·v(r) +

ΩuvΩ−1/2
vv Wv(r). By similar matrix manipulation regarding Ω̂−1

u·v;mΩ̂uv;mΩ̂−1
vv;mvt we

show

[mT ]∑
t=1

GT ZtΩ̂−1
u·v;mΩ̂uv;mΩ̂−1

vv;mvt

⇒
∫ m

0
J(r)Ω−1

u·vΩuvΩ−1
vv dBv(r) + m

N∑
n=1

 0p×1

∆n,·
vv

((
Ω−1

u·vΩuvΩ−1
vv

)
n,·

)′


=
∫ m

0
J(r)Ω−1

u·vΩuvΩ−1/2
vv dWv(r) + m

N∑
n=1

 0p×1

∆n,·
vv

((
Ω−1

u·vΩuvΩ−1
vv

)
n,·

)′


(1.59)

as T → ∞ where we, again, use Theorem 3.1 (e) of Phillips and Durlauf (1986) and
Bv(r) = Ω1/2

vv Wv(r). Lastly, we have

GT [mT ]δ̂m = [mT ]
T

N∑
n=1

[
0p×1

(∆̂n,·
vu;m)((Ω̂−1

u·v;m)n,·)′ − ∆̂n,·
vv;m((Ω̂−1

u·v;mΩ̂uv;mΩ̂−1
vv;m)n,·)′

]

⇒ m
N∑

n=1

 0p×1

∆n,·
vu

((
Ω−1

u·v
)

n,·

)′
− ∆n,·

vv

((
Ω−1

u·vΩuvΩ−1
vv

)
n,·

)′

 (1.60)

for T → ∞. Combining all limits completes the proof

G−1
T (θ̂m,PFM-GLS − θ) ⇒

(∫ m

0
J(r)Ω−1

u·vJ(r)′dr

)−1 (∫ m

0
J(r)Ω−1/2

u·v dWu·v(r)
)

(1.61)

for T → ∞.

Proof of Lemma 5:
Besides the different estimation technique using generalized least squares transformation
the proof is similar to the proof of Lemma 3. The decomposition of the N -dimensional
residual vector in this case is û+

t;m,PFM-GLS = ut − Ω̂uv;mΩ̂−1
vv;mvt − Z ′

t(θ̂m,PFM-GLS − θ).
Then,

T −1/2
[sT ]∑
t=1

ut ⇒ Ω1/2
u·v Wu·v(s) + ΩuvΩ−1/2

vv Wv(s) (1.62)

and

T −1/2
[sT ]∑
t=1

Ω̂uv;mΩ̂−1
vv;mvt ⇒ ΩuvΩ−1/2

vv Wv(s) (1.63)
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hold as T → ∞. For the last part we multiply by GT G−1
T again and obtain the result

T −1/2
[sT ]∑
t=1

Z ′
t(θ̂m,PFM-GLS − θ) = T −1/2

[sT ]∑
t=1

(GT Zt)′G−1
T (θ̂m,PFM-GLS − θ)

⇒
∫ s

0
J(r)′dr

(∫ m

0
J(r)Ω−1

u·vJ(r)′dr

)−1 (∫ m

0
J(r)Ω−1/2

u·v dWu·v(r)
) (1.64)

as T → ∞ by using Lemma 4. Adding all three parts completes the proof.

Proof of Lemma 6:
This result is stated for dim Dt = 0 in Moon (1999) and is easily extended to the case of
arbitrary deterministic trend fulfilling Assumption 1 by arguments of Phillips and Hansen
(1990).

Proof of Lemma 7:
The proof is similar to the proof of Lemma 5.

1.B. Simulating Critical Values

In order to obtain asymptotically size controlled monitoring procedures we need critical
values. Therefore, we simulate quantiles of supm≤s≤1{H(s)

g(s) }, where H(s) is any of the
limiting distributions of the detectors in Lemma 1 and g(s) is the corresponding weighting
function (see Table 1.1). The limiting distributions of the detectors are functionals of the
limit processes Wu·v(s) of the scaled partial sum process 1√

T

∑[sT ]
t=1 û+

t;m. Consider the
case of PFM-GLS estimation in Section 1.2.2. Then, the limit process is

Ω1/2
u·v Wu·v(s) −

∫ s

0
J(r)′dr

(∫ m

0
J(r)Ω−1

u·vJ(r)′dr

)−1 (∫ m

0
J(r)Ω−1/2

u·v dWu·v(r)
)

,

c.f. (1.34) and Lemma 5. This process is a functional of vectors of independent stan-
dard Brownian motions Wu·v(s) and Wv(s) independent of each other (recall J(s) =
[J1(s), . . . , JN (s)], Jn(s) = [D(s)′, B(s)′

v,n]′ and Bv(s) = Ω1/2
vv Wv(s)). We approximate

functionals of standard Brownian motions using the corresponding functions of random
walks of length 1,000 generated from i.i.d. standard normal random variables. We justify
this by the functional central limit theorem Wv,n(s) := T −1/2∑[sT ]

j=1 Xj,v,n ⇒ Wv,n(s)
for T → ∞, where Xj,v,n are k-dimensional i.i.d. random vectors with independent
standard normal entries and Wv,n(s) is a k-dimensional standard Brownian motion for
n = 1, . . . , N . We argue that T = 1, 000 should be large enough in order for Wv,n(s) to
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behave approximately like a k-dimensional vector of independent standard Brownian
motions.

Turning to the three integrals, consider the components of the first integral
∫ s

0 Jn(r)′dr =∫ s
0 [D(r)′, Bv,n(r)′]′dr. Since we know the deterministic function D(s) beforehand we can

calculate the integral
∫ s

0 D(r)′dr analytically but
∫ s

0 Bv,n(r)′dr needs to be approximated
numerically as well as

∫m
0 J(r)Ω−1

u·vJ(r)′dr. Because we have approximated Wv(s) =
[Wv,1(s)′, . . . , Wv,N (s)′]′ by random walks of length 1,000 we take these 1, 000m (or
1, 000s in the first integral) discrete points as sampling points for an approximation of the
integral by Riemann sums. To this end, we replace all (co)variance terms by consistent
estimator based on the calibration period, i.e., we replace Ωvv by Ω̂vv;m and Ωu·v by
Ω̂u·v;m. More precisely, with Wv(s) = [Wv,1(s)′, . . . , Wv,N (s)′], Xj,v = [X ′

j,v,1, . . . , X ′
j,v,N ]

and Ω̂1/2
vv;mWv(s) =: B̂v(s) = [B̂v,1(s)′, . . . , B̂v,N (s)′]′ we use

T −1
[sT ]∑
r=1

B̂v(r/T ) = T −1
[sT ]∑
r=1

Ω̂1/2
vv;mWv(r/T ) = T −1

[sT ]∑
r=1

T −1/2
r∑

j=1
Ω̂1/2

vv;mXj,v ⇒
∫ s

0
Bv(r)dr,

(1.65)

as T → ∞ and

T −1
[mT ]∑
r=1

[
D(r/T ) . . . D(r/T )

B̂v,1(r/T ) . . . B̂v,N (r/T )

]
Ω̂−1

u·v;m

[
D(r/T ) . . . D(r/T )

B̂v,1(r/T ) . . . B̂v,N (r/T )

]′

⇒
∫ m

0
J(r)Ω−1

u·vJ(r)′dr,

(1.66)

as T → ∞ and again argue for T = 1, 000 being large enough for a satisfying ap-
proximation. For the third integral define Wu·v(s) := [Wu·v,1(s), . . . , Wu·v,N (s)]′ and
Wu·v,n(s) := T −1/2∑[sT ]

j=1 Xj,u·v,n, where Xj,u·v,n are i.i.d. standard normal random vari-
ables. Then, Wu·v(s) converges weakly to a vector of independent standard Brownian
motions Wu·v(s). By the definition of the Itō-Integral we have

[mT ]∑
r=1

[
D(r/T ) . . . D(r/T )

B̂v,1(r/T ) . . . B̂v,N (r/T )

]
Ω̂−1/2

u·v;m{Wu·v(r/T ) − Wu·v((r − 1)/T )}

⇒
∫ m

0
J(r)Ω−1/2

u·v dWu·v(r)

(1.67)

for T → ∞. In case of PFM-OLS estimation (Section 1.2.1) the limit process does not
depend on (co)variance terms (see Lemma 3) except the conditional long-run covariance
ω2

u·v that cancels out due to self-normalization of the detectors. Thus, the (co)variance
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matrices are left out in the simulation of critical values and convergence to Wv(s) instead of
Bv(s) in (1.65) is the result. Additionally replacing B̂v,n(s) by Wv,n(s) yields convergence
to
∫m

0 JW (r)JW (r)′dr in (1.66) and
∫m

0 JW (r)dWu·v(r) in (1.67). In order to handle
FM-SUR estimation from Section 1.2.3 we need to ensure convergence to J(r) instead of
J(r) in all limits above. To this end, we replace

[
D(r/T ) . . . D(r/T )

B̂v,1(r/T ) . . . B̂v,N (r/T )

]
by diag

([
D(r/T )

B̂v,1(r/T )

]
, . . . ,

[
D(r/T )

B̂v,N (r/T )

])

in equations (1.66) and (1.67).

Using numerical integration it is easy to approximate integrals of Wu·v(s) and, hence,
any of the limiting distributions of the detectors H(s) by, say, Happrox(s). Comput-
ing maxs=−[−mT ],...,T {Happrox(s)

g(s) } generates one simulated observation of the monitoring
statistic. Replicating this, for example, 1,000,000 times we approximate the distribution
of supm≤s≤1{H(s)

g(s) } and store the 90.0%, 90.1%, . . . , 99.9% quantiles. For both, FM-SUR
and PFM-GLS estimation, the limiting distribution depends on the covariance structure,
thus, critical values cannot be tabulated in general and have to be simulated for each
application of the test seperately. Therefore, the number of replications might be reduced
depending on available computational power. If we use PFM-OLS estimation the limiting
distribution of H(s) is independent of the long-run covariance structure for all detectors
covered here. Consequently, we are able to tabulate critical values.

1.C. Longrun Covariance and Correlation Matrices

In this section we display the longrun covariance and longrun correlation matrices of
the three application examples as well as the respective matrices of the data generating
process used in Section 1.3.3 and in a robustness check of the detectors based on PFM-
OLS against violations of Assumption 4. Figure 1.9 displays an excerpt of the robustness
check for PFM-OLS based detectors and small N . The data generating process is the
same as in Section 1.3.3 for the PFM-GLS and FM-SUR based detectors and the results
show that the PFM-OLS based detectors have reaonable empirical size here.

For our choice of ρ1 = ρ2 = 0.3 and ρ̃ = 0.9 the longrun correlation matrix of the errors
ηt = [u1,t, u2,t, v1,t,1, v1,t,2, v2,t,1, v2,t,2]′ in the data generating process (1.42) and (1.43)
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Figure 1.9.: Null rejection probability in correlated homogeneous cointegrating regressions
(Section 1.3.3) with T = 500, ρ1 = ρ2 = 0.3, ρ̃ = 0.9 and PFM-OLS
estimation. The lines represent Ĥm,+

1,PFM (solid), Ĥm,+
2,PFM (dashed) and Ĥm,+

3,PFM
(dotdashed).

is

Corr(ηt) =


1.000 0.241 0.492 0.492 0.466 0.466
0.241 1.000 0.466 0.466 0.492 0.492
0.492 0.466 1.000 0.900 0.900 0.900
0.492 0.466 0.900 1.000 0.900 0.900
0.466 0.492 0.900 0.900 1.000 0.900
0.466 0.492 0.900 0.900 0.900 1.000

. (1.68)

and the estimated longrun correlation matrices in the three application examples are

Ĉorr(ηt) =


1.000 0.508 0.074 −0.093 0.088 −0.074
0.508 1.000 0.130 −0.157 0.143 −0.136
0.074 0.130 1.000 −0.948 0.980 −0.947

−0.093 −0.157 −0.948 1.000 −0.945 0.910
0.088 0.143 0.980 −0.945 1.000 −0.938

−0.074 −0.136 −0.947 0.910 −0.938 1.000

 for
(

USD-XBT-SEK
EUR-XBT-GBP

)
,

(1.69)

Ĉorr(ηt) =


1.000 0.818 −0.039 −0.010 −0.041 0.016
0.818 1.000 −0.019 0.023 −0.043 −0.019

−0.039 −0.019 1.000 −0.926 0.900 −0.965
−0.010 0.023 −0.926 1.000 −0.869 0.905
−0.041 −0.043 0.900 −0.869 1.000 −0.880

0.016 −0.019 −0.965 0.905 −0.880 1.000

 for
(

USD-XBT-CAD
GBP-XBT-EUR

)
,

(1.70)
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and

Ĉorr(ηt) =


1.000 0.768 0.018 0.037 −0.052 0.011
0.768 1.000 0.058 −0.024 −0.064 −0.025
0.018 0.058 1.000 −0.975 0.958 −0.991
0.037 −0.024 −0.975 1.000 −0.961 0.976

−0.052 −0.064 0.958 −0.961 1.000 −0.959
0.011 −0.025 −0.991 0.976 −0.959 1.000

 for
(

USD-XBT-AUD
RUB-XBT-EUR

)
.

(1.71)

With a χ2-test in the style of Breusch and Pagan (1980), it is possible to test for cross-
sectional independence of the systems. The null hypothesis is H0 : Corr(u1,t, u2,t) = 0
and the test statistic is T0 · Ĉorr(u1,t, u2,t), where T0 = 134 is the length of the calibration
sample. The test statistic is asymptotically χ2

1-distributed under the null hypothesis and
in all three cases, the p-value of the test is smaller than 10−8.

The long-run covariance matrix of the errors ηt in the data generating process (1.42) and
(1.43) in Section 1.3.3 for ρ1 = ρ2 = 0.3 and ρ̃ = 0.9 is

Cov(ηt) =


22.759 1.984 4.506 4.506 4.269 4.269
1.984 22.759 4.269 4.269 4.506 4.506
4.506 4.269 3.063 2.756 2.756 2.756
4.506 4.269 2.756 3.063 2.756 2.756
4.269 4.506 2.756 2.756 3.063 2.756
4.269 4.506 2.756 2.756 2.756 3.063

× 10−3. (1.72)

and the estimated long-run covariance matrices in the three application examples are

Ĉov(ηt) =


39.803 49.693 1.076 −1.389 1.293 −1.108
49.693 240.68 4.641 −5.761 5.164 −4.975
1.076 4.641 5.260 −5.128 5.215 −5.126

−1.389 −5.761 −5.128 5.560 −5.172 5.063
1.293 5.164 5.215 −5.172 5.382 −5.133

−1.108 −4.975 −5.126 5.063 −5.133 5.565

× 10−3 for
(

USD-XBT-SEK
EUR-XBT-GBP

)
,

(1.73)

Ĉov(ηt) =


40.111 25.945 −0.536 −0.134 −0.615 0.220
25.945 25.105 −0.207 0.245 −0.508 −0.208

−0.536 −0.207 4.683 −4.287 4.557 −4.650
−0.134 0.245 −4.287 4.574 −4.349 4.313
−0.615 −0.508 4.557 −4.349 5.471 −4.586

0.220 −0.208 −4.650 4.313 −4.586 4.961

× 10−3 for
(

USD-XBT-CAD
GBP-XBT-EUR

)
,

(1.74)
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and

Ĉov(ηt) =


28.007 83.582 0.231 0.492 −0.690 0.145
83.582 423.098 2.995 −1.222 −3.301 −1.255
0.231 2.995 6.201 −6.066 6.026 −6.083
0.492 −1.222 −6.066 6.237 −6.063 6.006

−0.690 −3.301 6.026 −6.063 6.378 −5.972
0.145 −1.255 −6.083 6.006 −5.972 6.078

× 10−3 for
(

USD-XBT-AUD
RUB-XBT-EUR

)
.

(1.75)

The difference in estimated long-run variances of u1,t and u2,t in each of the currency
triplets (USD-XBT-SEK)-(EUR-XBT-GBP) and (USD-XBT-AUD)-(RUB-XBT-EUR)
does not correspond to the simplification proposed in Section 1.3.3 but the number of
estimated parameters remains reasonably low without any simplification as N = k = 2
are small.
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Chapter 2.

Reference Class Selection in Similarity-Based Forecasting of
Corporate Sales Growth

2.1. Introduction

The forecasting of future cashflows and an appropriate discount rate is pivotal for the
valuation of companies and active management of equity investments (e.g., Guerard et al.,
2015, in portfolio construction). In order to tackle this task, analysts have to forecast
performance indicators like corporate sales or operating margins for different periods of
time. However, in general there is low predictability of growth rates (see Chan et al., 2003)
and forecasts are often based on heuristics and were empirically shown to be biased as well
as overoptimistic (see, e.g., Tversky and Kahneman, 1973, 1974; Kahneman and Tversky,
1973; Cooper et al., 1988). In our context, survey results of Kunte (2015) among financial
market practitioners show that herding (34%), confirmation (20%), overconfidence (17%),
availability (15%) and loss aversion (13%) are the behavioral biases that affect investment
decisions the most. Lim (2001) reviews analysts’ bias, Jones and Johnstone (2012) find
proof for overoptimism while Löffler (1998) unravels overconfidence and underreaction
to news and Lee et al. (2008) identify negligence of buisness cycles as a source of bias.
Ashton and Cianci (2007) discuss differences between buy-side and sell-side analysts’
forecasts and Stotz and von Nitzsch (2005) analyze reasons for analysts’ overconfidence.

A large part of the distorted forecasts is due to the fact that forecasts are often solely
based on the so called inside view, which considers each forecasting challenge as unique
and neglects statistical information, as well as results of similar forecast challenges
(Kahneman and Lovallo, 1993). Thus, it can be very helpful to use empirical data and
existing experience, the so called outside view, in order to identify and reduce the afore-
mentioned biases (Tetlock and Gardner, 2016). The basic idea of the outside view is
the definition of a reference class which includes objects of comparison similar to the
initial object (Kahneman and Tversky, 1979; Lovallo and Kahneman, 2003). By means
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of this objective data set the forecaster becomes empowered to challenge and improve his
forecast (Kahneman and Tversky, 1979). Adjusting or correcting forecasts is an already
established tool in the financial and forecasting literature in terms of judgementally ad-
justing model based forecasts by experts (Wolfe and Flores, 1990; Sanders and Ritzman,
2001; De Bruijn and Franses, 2017), combining statistical forecasts with analysts’ predic-
tions (Lobo, 1991; Bunn and Wright, 1991) and combining analysts’ forecasts or using
consensus forecasts (Butler and Saraoglu, 1999; Ramnath et al., 2005; Jame et al., 2016).
However, Du and McEnroe (2011) examine reports by research firms with multiple ana-
lysts’ forecasts. Similar forecasts leads to overconfidence while highly varying forecasts
diminish confidence. Further, Du and Budescu (2018) show that the hit rates of analysts
for earnings per share in 2014 range from 37% to 52%, depending on the forecast horizon.
Our contribution will add to the toolbox of analysts and investors by the property to
directly calculate prediction intervals.

The concepts of the outside view and reference classes are well known in literature
and practice, e.g., in infrastructure projects (Flyvbjerg, 2006, 2008; Themsen, 2019)
or software development (Shmueli et al., 2016). Moreover, the use of base rates, i.e.,
distributional information, is recommended by Armstrong (2005) and is part of profes-
sional forecasters and analysts’ training (Tetlock and Gardner, 2016) which is shown
to improve their performance (Chang et al., 2016). Especially Karvetski et al. (2021)
show that the use of base rates has a positive effect on forecast accuracy but in general
there has been paid more attention to the biases than to debiasing (Chang et al., 2016).
Green and Armstrong (2007) describe a procedure to include analogies in the forecasting
process and Lovallo et al. (2012) conduct an empirical study using the outside view
to forecast stock returns but both suffer from a subjective choice of similar objects
such that the resulting reference classes are prone to the availability bias described
by Tversky and Kahneman (1973). Noteworthy, Knudsen et al. (2017) construct peer
groups of comparable companies for corporate valuation objectively by using a measure of
similarity but these reference classes consist of only six elements elevating the probability
of bias again. Surprisingly, there is a lack of studies which investigate how to construct
optimal reference classes for the forecasting of future cash flows and the related perfor-
mance indicators. To the best of our knowledge, the only existing concept is proposed by
Mauboussin and Callahan (2015). They define 11 reference classes based on the size of
the actual sales level in order to derive base rates for the growth rate of sales. However,
the defined reference classes are neither theoretically derived nor empirically backtested.
Thus, the quality of the reference classes and the added value for the analysts remain
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vague.

This chapter fills the previously mentioned gap in literature. On the one hand, we propose
a method to find appropriate outside views for sales forecasts of analysts in Section 2.2.
Hence, we define reference classes for each analyzed company separately by means of
additional companies that share similarities to the firm of interest with respect to a
specific co-variate, here called reference variable. This approach is easy to implement
and interpret as we deliberately restrict the analysis to exactly one reference variable
at once, which also ensures that only a parsimonious amount of data is required. Thus,
the proposed method is well suited for practical applications. On the other hand, we
describe a data set consisting of 21,808 US firms over the time period from 1950 to 2019 in
Section 2.3 that we use to evaluate different reference variables. To this end, we backtest
their quality in Section 2.4 by means of goodness-of-fit tests and by calculating a novel
measure ∆q based on predicted quantiles of probability integral transform values. This
analysis yields that in particular the past operating margins are good reference variables
for the distribution of future sales. Moreover, a case study in Section 2.5 compares
our forecasts to actual analysts’ estimates in order to show the practical usefulness and
demonstrates how to apply the results of our approach. Lastly, Section 2.6 concludes.

2.2. Reference Class Selection

The notion of reference class forecasting is based on ideas of Princeton psychologist and
Nobel prize winner Daniel Kahneman and his co-author Amos Tversky. It originates in
theories of planning and decision-making under uncertainties and is motivated by the
fact that forecasts are often based on heuristics and were empirically shown to be biased
as well as overoptimistic. In order to overcome this issue it is advisable to contrast the
inside view, that is, information on the specific case at hand, with the outside view, that
is, information on a class of similar cases. This may include, for example, statistical or
empirical distributional information as well as base rates and is a promising approach to
overcome overoptimism, wishful thinking or strategic misrepresentations.

Kahneman and Tversky (1979) have introduced a corrective procedure for biases of
predictions which involves five steps. First, the forecaster has to identify a set of similar
cases which define the reference class and provide the distribution of outcomes to be
predicted. This distribution has either to be assessed directly or to be estimated within
the next step. At this point the expert uses their available information on the case for
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an inside prediction. In the fourth step the expert needs to assess the predictability of
their forecasts. In case of linear prediction, this may be the correlation between their
predictions and the outcomes. Finally, the inside prediction is corrected and adjusted
towards the mean of the reference class.

While each of the five steps has its own pitfalls in practice, we focus on the first one
and provide guidance on how to select an appropriate reference class. This is of major
importance as Kahneman and Tversky (1979) gave no guideline how to build reference
classes apart from the general rule to use similar cases. Moreover, there is a fundamental
conflict of objectives in defining the reference class. On the one hand, it would be
desirable to take as many cases into account as possible. However, it is crucial that
heterogeneity does not become too large and each object is still comparable to the initial
one. On the other hand, each element within the reference class should be similar to the
initial object, whereby the risk arises that the class becomes too small and the objects
too similar. In this case the probability of a biased forecast is elevated again. Based
on this fact Lovallo and Kahneman (2003) state: “Identifying the right reference class
involves both art and science.”

In literature, there are several studies dealing with reference class building. For example,
Lovallo et al. (2012) report two case studies with respect to private-equity investment deci-
sions and film revenue forecasts. However, and to the best of our knowledge, there is a gap
with respect to reference classes for the forecasting of future cash flows and the related per-
formance indicators. The only existing concept is proposed by Mauboussin and Callahan
(2015). They state that sales growth is the most important driver of corporate value and
define reference classes by sorting the firms’ real sales in 10 deciles as well as an 11th
class for the top one percentile. To this end they use historical data of the S&P1500 from
1994-2014. In total they show the distribution of growth rates for 55 reference classes (11
size ranges multiplied by five time horizons) but give neither a theoretical justification for
nor an empirical backtest of their proposed procedure. Thus, the quality of the proposed
reference classes and the added value for the analysts remain open questions, especially
as they use clustered data which has a substantial problem in general. As an example,
Figure 2.1 shows three clusters constructed by the k-means algorithm for a simulated
data cloud and highlights the pitfall that an element on the border of one cluster may
be closer to the elements of another cluster than to the majority of elements in its own
cluster – a general drawback of procedures using cluster algorithms.

In order to overcome this drawback we will present an alternative method which does

61



−1 0 1 2 3 4

0

5

10

x

y

●

●

●

●
●

●
● ●

●
●●

●

Why should the reference class
for this observation not contain

the encircled observations?

Figure 2.1.: These three clusters constructed by the k-means algorithm for a simulated
data cloud highlight the risk that elements on the border of one cluster may
be closer to the elements of another cluster than to the majority of elements
in their own clusters.

not rely on cluster algorithms and finds reference classes for each analyzed company
separately whereby the approach is easy to implement and interpret. Moreover, we
evaluate the resulting reference classes out-of-sample on a data set ranging from 1950
to 2019 in order to be able to make a meaningful quality valuation. The following two
subsections provide the theoretical foundations.

2.2.1. Theoretical Framework

We aim to forecast Yi,t+h, that is, an h-step ahead forecast of the random variable {Yi,t}
for firm i at time t. In the following applications this is sales growth but basically it
could be any other quantity of interest. At this point we assume that a sufficient amount
of historical data of additional firms is available in order to assess the distribution of
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Yi,t+h. We base the reference class on a specific reference variable {Xi,t}.1 The idea is
now to build a reference class R by finding firms j in the past which are similar to firm i

with respect to the reference characteristic and in some norm || · ||, that means,

||{Xi,t} − {Xj,s}||

shall be small, where s + h ≤ t ensures that the realization of Yj,s+h is available. For
example, we could use all companies which had an operating margin ±1 percentage
points in comparison to the actual margin of firm i during the last 10 years. Figure 2.1
illustrates the difference of our approach to a classical cluster analysis. We do not try to
find disjoint clusters of firms, but aim at finding neighbors for each firm separately. A
forecast for the distribution of Yi,t+h, which is used as an outside view, is now given by
the empirical distribution of the values Yj,s+h, (j, s) ∈ R.

The first assumption behind the approach is the existence of a market mechanism, say
a smooth function fh such that Yi,t+h ∼ fh({Xi,t}). Moreover, we need some kind of
stationarity assumption so that this mechanism works similarly over time and we have
Yj,s+h ∼ fh({Xj,s}), (j, s) ∈ R, for the outcomes within the reference class. If {Xi,t} is
close to {Xj,s}, which is supposed to be provided by finding suitable reference classes,
fh({Xi,t}) is close to fh({Xj,s}) and the empirical distribution function of Yj,s+h is a
good approximation for the distribution of Yi,t+h. Note, the goal of this study is not to
get information about fh, but to get information about how suitable reference classes
are.

2.2.2. Performance of Procedure

By means of the resulting distributional information we can assess predictions (e.g., by
experts or analysts or model based forecasts) or we can assess the suitability of the
reference class as a distributional forecast. To this end, a direct comparison to the
outcome is not possble as, e.g., in the case of point forecasts. Here, we evaluate the
empirical cumulative distribution function of the reference class at the (known) realization,

1The reference variables are also called reference characteristics or predictor variables in
Kahneman and Tversky (1979) and Theising et al. (2023) but we stick to the term ‘reference variable’
as they are random variables here, used for reference class selection and do not predict directly but
only implicitly through the selection.
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that is, we calculate

P(Yi,t+h ≤ yi,t+h) ≈ n−1 ∑
(j,s)∈R

1{Yj,s+h ≤ yi,t+h}, (2.1)

where n = |R|. Repeating this for multiple firms and points in time results in a sample
of size m, whereas the values lie in the interval [0, 1]. If the approximation of the
distribution is valid, (2.1) is roughly the probability integral transform and consequently
we approximately have realizations from a uniform distribution on [0, 1]. To assess the
forecast ability of the different reference variables, we consider measures that determine
how close this approximation is. This is done with classical statistical goodness-of-fit
tests as well as a comparison of quantiles.

Let Gm be the empirical distribution function of these frequencies {pk}k=1,...,m and
let G be the true distribution function of the counterparts of these frequencies in the
population. Let G0 be the distribution function of the uniform distribution on [0, 1]. The
considered pair of hypotheses is H0 : G = G0 vs. H1 : G ̸= G0 and the corresponding
two test statistics are given by

√
m supx∈[0,1] |Gm(x) − G0(x)| (Kolmogorov-Smirnov) and

m
∫ 1

0 [Gm(x) − G0(x)]2dG0(x) (Cramer-von-Mises).

However, we do not consider the actual tests’ decisions. Working with sample sizes
between 100, 000 and 300, 000, depending on hyper parameters, we face the problem
pointed out by Berkson (1938): “Any consistent test will detect any arbitrary small
change in the [distribution] if the sample size is sufficiently large”. Thus, most p-values
would be very small or even get reported as 0 by software. Avoiding this problem, we
focus on the value of the test statistics and rank the different combinations of reference
variable and hyper parameters based on these values.

A third and new measure of ranking the models consists of comparing the quantiles of
probability integral transform values. This means that for a finite number of quantile
levels, we consider the absolute difference ∆q between the quantiles of {pk}k=1,...,m and
the quantiles of the uniform distribution on [0, 1]. These differences are summed up and
ranked.

2.3. Data Set

In order to find the best reference variable and appropriate hyper parameters we an-
alyze their performance on an historic data set with regards to finding optimal refer-
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Figure 2.2.: This figure displays the time series properties of firms. Each horizontal line
represents one of the 21,808 firms ordered from bottom to top by three
criteria: 1. the first year of appearance in the data set, 2. the number of
observations of the firm, 3. the number of consecutive observations of the
firm.
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Figure 2.3.: This barplot shows the number of observations per firm in the data set, that
is the empirical distribution of time series length.
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Figure 2.4.: Number of companies over time. The left vertical axis shows the number
of firms (i.e., observations) per year and the right vertical axis covers the
number of firms as a proportion of the total number of firms.

ence classes. We use Compustat North America fundamentals annual data from 1950
to 2019 by S&P Global Market Intelligence (2020) and limit our analysis to US firms
excluding companies from the financial and real-estate sector. Firms without sales
information or only one observation are discarded due to our interest in predicting
distributions of sales growth. We merge these data with stock-exchange information
from the Center for Research in Security Prices (CRSP, 2020) daily stock of the Uni-
versity of Chicago Booth School of Business. All variables collected in US dollar are
inflation adjusted to 1982 – 1984 US dollar using monthly inflation rate data from the
consumer price index for all urban consumers (all items in US city average) by the
U.S. Bureau of Labor Statistics (2020).

The data set consists of 303,628 observations on 21,808 firms with CRSP stock exchange
market information on 206,221 observations of 17,099 firms in total. The length of the
time series of the different firms varies considerably (c.f. Figures 2.2 and 2.3) as well as
the number of observations per year (c.f. Figure 2.4). To put this in perspective, there is
an influence of survivorship in the data set. Our later backtest focusses on one-, three-,
five- and 10-year predictions and the survivorship rates are 97.25% for one year, 89.61%
for three years, 76.12% for five years and 48.20% for 10 years.

We select and investigate the most common metrics used for fundamental analysis as
possible reference variables whereby some of them relate to the company directly while
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Table 2.1.: Description of reference variables. EBIT is earning before interest and taxes,
market cap. is market capitalization and pp is percentage points. A variable
summary can be found in Table 2.2.

Abbreviation Reference Variables Description

at total assets in million USD
opmar operating margin EBIT divided by sales (in %)
– sales in million USD
seq shareholder equity total assets minus total liabilities

(in million USD)
– major group first two digits of SIC, 63 groups
– industry group first three digits of SIC, 250 groups
– β slope of regressing daily return on market

return
P/B price-to-book ratio market cap. divided by shareholder equity
P/E price-to-earnings ratio market cap. divided by net income
salesGRτ τ -year past sales growth current sales divided by sales τ years ago (in %)
opmar∆τ τ -year past operating current operating margin minus operating

margin delta margin τ years ago (in pp)

some others are market parameters. To be more precise, observed key figures for all
companies are sales, operating margin, total assets, shareholder equity, the SIC (standard
industrial classification), β, the price-to-earnings ratio and the price-to-book ratio. Using
sales and operating margin information over time, we construct one- to 10-year past
sales growth and one- to 10-year past operating margin delta as additional possible
reference variables where the necessary data are available. Instead of SIC itself, we derive
a firm’s major and industry group and use these groups to construct reference classes
as a benchmark of the typical current practice. In Table 2.1 we provide a description
and in Table 2.2 a summary of the reference variables used to construct reference classes
including relevant quantiles, their means and the number of missing values in the data
set.

We aim to forecast distributions of future sales growth while using exactly one of the
reference variables to construct reference classes. To be more precise, we construct one-,
three-, five- and 10-year future sales growth forecasts using temporal information in the
data set. Table 2.3 displays the base rates for the full universe of data, i.e., the historical
sales compound annual growth rate (CAGR). Here, the tails of the distribution get lighter,
the (2.5%-trimmed) standard deviation declines, the (2.5%-trimmed) mean gets closer to
the median and the distribution more centered the longer the forecast horizon is, as it
is visible in Figure 2.5 as well. By a 2.5%-trimmed mean or standard deviation we are
referring to the arithmetic mean or standard deviation, respectively, where the largest
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Table 2.2.: Summary of reference variables (ref.var.) as in Table 2.1, where qu. is quantile.
salesGR is compound annual growth rate in % in this table and opmar∆ is the mean
annual past operating margin delta in this table to simplify comparison across lags.
The summary on major and industry groups covers the group sizes.

Ref. Var. 2.5% qu. 25% qu. Median Mean 75% qu. 97.5% qu. Missings

at 0.27 11.82 62.31 877.65 337.77 6767.24 2714
opmar -827.80 -1.19 6.01 -402.68 12.27 34.49 18532
sales 0.00 10.67 67.60 721.10 337.74 5345.51 0
seq -9.65 3.58 24.00 319.76 128.97 2478.79 19811
major group 10 895 2646 4819.49 5295 25617 0
industry group 38 283 622 1214.51 1248 6793 0
β -0.28 0.37 0.77 0.83 1.21 2.31 97469
P/B -6.00 0.59 1.34 2.65 2.57 11.70 100318
P/E -70.39 -3.45 8.34 11.24 17.69 104.99 98786
salesGR1 -100 -5.39 4.93 115.70 19.24 1465000 31591
salesGR2 -100 -4.18 4.55 17.07 16.33 19090 52164
salesGR3 -100 -3.31 4.32 10.41 14.51 3862 71103
salesGR4 -100 -2.71 4.21 7.90 13.17 1794 88572
salesGR5 -100 -2.22 4.13 6.52 12.23 1019 104702
salesGR6 -100 -1.87 4.05 5.62 11.44 609.50 119372
salesGR7 -100 -1.55 4.00 5.02 10.82 435.80 132772
salesGR8 -100 -1.29 3.98 4.59 10.38 333.90 145044
salesGR9 -100 -1.06 3.95 4.28 9.97 277.10 156300
salesGR10 -100 -0.87 3.91 4.03 9.58 205.30 166682
opmar∆1 -2824000 -2.73 0.04 -10.15 2.57 2823000 41527
opmar∆2 -1412000 -1.96 -0.03 -11.85 1.71 681300 62660
opmar∆3 -374800 -1.54 -0.07 4.04 1.26 951200 81829
opmar∆4 -326200 -1.27 -0.08 3.89 1.00 691100 99288
opmar∆5 -260800 -1.09 -0.08 3.19 0.82 523200 115291
opmar∆6 -217300 -0.95 -0.09 0.42 0.69 204400 129585
opmar∆7 -107800 -0.84 -0.09 3.81 0.60 185700 142583
opmar∆8 -89290 -0.76 -0.08 2.25 0.53 190800 154449
opmar∆9 -81610 -0.69 -0.08 3.21 0.46 335300 165288
opmar∆10 -75350 -0.64 -0.08 3.44 0.41 301700 175265
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Table 2.3.: Compound annual sales growth rates for the whole data set. Mean and
standard deviation are 2.5% trimmed on both tails, the respective quantiles
are in the table.

Full Universe Base Rates

CAGR (%) 1-Yr 3-Yr 5-Yr 10-Yr

≤ -25 8.70 5.44 4.00 2.38
]-25,-20] 2.19 1.69 1.28 0.68
]-20,-15] 3.18 2.65 2.13 1.37
]-15,-10] 4.53 4.27 3.71 2.68
]-10,-5] 7.06 7.28 7.11 6.12
]-5,0] 10.92 13.20 14.29 15.64
]0,5] 13.59 17.82 21.17 27.25
]5,10] 11.65 14.33 16.34 20.09
]10,15] 8.24 9.06 9.70 9.95
]15,20] 5.65 5.86 5.77 5.38
]20,25] 4.08 3.95 3.61 2.92
]25,30] 3.05 2.71 2.54 1.76
]30,35] 2.31 2.04 1.73 1.14
]35,40] 1.78 1.54 1.26 0.69
]40,45] 1.46 1.17 0.93 0.48
> 45 11.58 6.99 4.42 1.46

mean 10.62 7.01 5.75 4.62

median 4.93 4.32 4.13 3.91

std 32.30 19.08 14.21 9.20

q0.025 -60.01 -44.75 -36.52 -23.91

q0.975 206.31 95.19 62.75 35.85

2.5% and the smallest 2.5% of the data are excluded.2 The (2.5%-trimmed) means of
sales CAGR are larger than the respective medians because the growth rates are left
bounded and right unbounded and we observe a substantial amount of high values one
could characterize as outliers which make the ordinary mean and standard deviation
uninformative. In order to restrain the influence of these outliers and to keep the mean
and standard deviation informative we use the trimmed versions of these measures. The
summary statistic of the sales CAGR can be found in Table 2.1 as the distribution of
future and past growth rates in the full data set are identical.

2For a vector of sorted observations {xi}i=1,...,n we compute any α-trimmed measure, 0 < α < 1, based
on the trimmed vector of observations {xi}i=[αn]+1,...,n−[αn], where [·] is the floor function.
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Figure 2.5.: Estimated densities of compound annual sales growth for horizons one, three,
five and 10 years. For density estimation on support [−100, ∞) we used the
Gaussian kernel with Silverman’s rule of thumb as bandwidth.

Table 2.4.: (Hyper) Parameters in single reference variable approach.
Name Description

reference variable see Table 2.1
class size relative size ∈ {0.050, 0.025, 0.010}
window number of past years ∈ {5, 10, 20, 30}

2.4. Backtest

By means of a backtest we compare the performance of our new procedure to forecast
distributions of sales growth rates to the performance of the benchmark approach by
Mauboussin and Callahan (2015) and the typical practice of using industry classifications,
here the first two and three digits of SIC, respectively. We include three (hyper) parameters
in the backtest where all methods depend on the number of past years to use for reference
class construction and only our new procedure depends additionally on the reference
variable as well as the size of the reference class (see Table 2.4). Forecast horizons
investigated are one, three, five and 10 years.

The parameter window w defines the number of past years to provide candidates of
historical observations to construct a reference class. All observations from this window
period with known outcomes (i.e., available h-year future sales growth) are candidates
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for the reference class. In order to backtest out-of-sample, given an initial case firm i

at time t, the parameters w and h determine the years of historical data to serve as
candidates, namely starting in t − h − w + 1 and ending in t − h (assuming that at time t

all information of the financial year t is available). That means we consider all firms j at
times s as candidates for the initial case’s reference class, where t − h − w + 1 ≤ s ≤ t − h

and the reference variable and h-year sales growth are available.

The size of the reference class, that is, the number of observations it contains, is relative
to the number of candidates and defined by the size parameter c ∈ (0, 1) determining
which of the candidates Xj,s lie closely enough to the initial case Xi,t to be a member of
the reference class. To be more precise, this means c assesses for which candidate firms j

at time s the value ||Xi,t − Xj,s|| is considered as small. Here, we order the candidates by
the reference variable and take the c/2 fraction smaller than the initial case’s observation
and the c/2 fraction larger than the initial case’s observation. More theoretically, let
F̂cand be the empirical distribution function of all candidates and F̂ −1

cand be the associated
empirical quantile function of all candidates. Then, all candidate firms j at time s with
|F̂ −1

cand(Xi,t) − F̂ −1
cand(Xj,s)| ≤ c/2 are chosen as members of the reference class. The

parameter c is only relevant for our new approach. To keep the class size constant even
if the initial case’s reference variable is at the tail of the candidates’ distribution, we
choose the top or bottom fraction c of the candidates regarding the reference variable if
F̂ −1

cand(Xi,t) > 1 − c/2 or F̂ −1
cand(Xi,t) < c/2, respectively. Moreover, the reference class of

each case has to consist of at least 20 elements or members in order to make reasonable
distribution forecasts and to be considered within our backtest. This requirement applies
to the benchmark methods as well.

The benchmark models are the approach of Mauboussin and Callahan (2015) and a
simple approach using the major and industry group of a firm and set the bar for our
new method. Mauboussin and Callahan (2015) define the reference classes by sorting
the candidates’ real sales in 10 deciles as well as an 11th class for the top one percentile.
We use the major and the industry group in a typical straightforward way to construct a
reference class from the set of candidates. In both cases, all candidate firms that are in
the same major or industry group, respectively, as the initial case are members of the
reference class. Thus, there is no size parameter in either of the benchmark approaches.

Our new approach is analyzed with regards to 27 reference variables, three different
class sizes and four different window lengths, thus resulting in 324 different combinations
for each forecast horizon. The approach of Mauboussin and Callahan (2015) uses one
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reference variable and four different window sizes and the typical industry classification
approach uses two reference variables and four different window sizes, that are 12
benchmark combinations overall. In total we have 336 different combinations for each
forecast horizon.

For each approach and combination of (hyper) parameters we consider each observation
in the data set as an initial case, i.e., each firm i at each point in time t (where the
firm is in the data set). We construct a reference class if several criteria are met. The
reference variable and the full window length of historical data must be available, i.e.,
t ≥ 1950 + w + h − 1 since our data set starts in 1950. The h-year future sales growth
must be available, so at least t ≤ 2019 − h. Moreover, firm i must be in the data set at
time t + h and the reference class has to consist of at least 20 elements.

After obtaining the reference class for an initial case (i, t) we evaluate the empirical
distribution function of the sales growth rates of the reference class elements (base rates)
at the realized sales growth rate of firm i at time t. Doing this for all initial cases of
a parameter combination provides a sample of forecasted probabilities {pk}k=1,...,m of
being less or equal to the realized sales growth of the initial case. The sample size m

depends on the availability of the reference and forecast variable, the window length
and the forecast horizon. If the approximation of the distribution by the reference class
is valid we roughly have realizations from a uniform distribution on [0, 1]. We then
use the Kolmogorov-Smirnov (KS) test statistic and the Cramer-von-Mises (CvM) test
statistic to measure the accuracy of the distributional approximation. As a third and
novel measure of accuracy, we calculate the differences of the 1%, 5%, 10%, 25%, 50%,
75%, 90%, 95% and 99% quantiles of {pk}k=1,...,m and of the uniform distribution on
[0, 1], respectively, and sum up the absolute values of these differences to obtain ∆q.

2.4.1. Results of Backtest

Tables 2.5 - 2.8 show an excerpt of our results3. We display the best three parameter
combinations according to the quantile deviation ∆q and as a comparison the benchmark
approach of Mauboussin and Callahan (2015) for the best window length. Moreover, we
present the benchmark approaches using industry classification through SIC’s major
and industry group with the best window length, respectively. The best combinations
are in all cases various combinations of the reference variable past operating margin

3Full results are available upon request.

72



delta followed next by the reference variable operating margin which is why we included
the best parameter combination for the operating margin as well. As a comparison
to the simpler approach by Mauboussin and Callahan (2015) we also included the best
parameter combination for the reference variable sales. All reference variables which
include only contemporaneous information have the common advantage not to rely on
(a lot) of historical information of the initial case.4 The best parameter combinations
all involve a window length of 30 which may be hard to achieve in practice. Hence,
we added the best parameter combinations for window lengths five and 10 to get an
impression of the influence of historical information. Thus, we report 10 results for each
forecast horizon except for one-year sales growth. Here, the best parameter combination
for window length 10 and the best parameter combination for reference variable operating
margin coincide.

In order to get a sense of the measure ∆q, we consider the best reference variable six-year
operating margin delta for forecasting one-year ahead sales growth from Table 2.5. Here we
have ∆q = 0.0155, which is the sum of the absolute quantile deviations for nine quantiles.
So, the mean absolute deviation of these quantiles is 0.17 percentage points. Therefore,
the backtest shows that we miss the quantile levels of the underlying distribution of
one-year ahead sales growth on historical data by only 0.17 percentage points on average.
Assuming that a practitioner constructs, for example, a 95% prediction interval from the
reference class the error in coverage rate should be negligible.

The results are consistent across the accuracy measures and the relative class size does
not influence the results substantially. All goodness-of-fit measures generally improve
with a shorter forecast horizon. The past operating margin deltas are the best reference
variables using a window of length 30. In contrast, the best reference variables for window
lengths of five and 10 are the operating margin for forecast horizons one and three while
the price-to-earnings ratio is best for the forecast horizon five. For forecast horizon
10 price-to-earnings ratio is optimal for the window length five and the 10-year past
operating margin delta for a window length of 10.

Constructing reference classes by the benchmark procedure using major or industry
groups yields the worst results for horizons one, three and five. Only for a 10-year horizon
the industry classification by groups results in more accurate distributional forecasts.

4The necessity of historical information to use the past operating margin deltas as reference variables
reduces the amount of data and produces the risk of survivorship bias causing the better accuracy.
We performed a robustness check where we limited the data set for each forecast horizon to the
observations with available best reference variable of this backtest. The past operating margin deltas
still performed best. Results are available upon request.
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Table 2.5.: Comparison of reference variables for forecasting one-year ahead sales growth
Reference Variable Window Size ∆q (rank) KS (rank) CvM (rank)

opmar∆6 30 0.025 0.0155 (1) 1.874 (4) 0.8265 (3)
opmar∆7 30 0.025 0.0157 (2) 2.1986 (10) 1.0815 (8)
opmar∆6 30 0.01 0.0161 (3) 2.4469 (14) 1.3149 (13)
operating margin 10 0.05 0.0279 (24) 4.1606 (50) 6.1461 (74)
operating margin 5 0.05 0.0303 (26) 4.4720 (74) 4.8603 (43)
sales (Mauboussin) 5 – 0.0516 (125) 6.3825 (213) 12.7518 (199)
sales 5 0.05 0.0524 (133) 6.3939 (214) 13.4453 (212)
major group 5 – 0.0653 (201) 8.6576 (274) 22.5482 (256)
industry group 5 – 0.0935 (295) 10.7868 (302) 36.6514 (291)

Table 2.6.: Comparison of reference variables for forecasting three-year ahead sales growth
Reference Variable Window Size ∆q (rank) KS (rank) CvM (rank)

opmar∆7 30 0.025 0.0286 (1) 3.2227 (8) 2.8868 (10)
opmar∆8 30 0.025 0.0301 (2) 1.9903 (2) 1.0989 (1)
opmar∆8 30 0.01 0.0302 (3) 1.9878 (1) 1.2532 (4)
operating margin 30 0.01 0.0598 (29) 6.9177 (65) 16.7632 (63)
operating margin 5 0.05 0.0697 (38) 10.4675 (160) 33.6971 (119)
operating margin 10 0.05 0.0877 (73) 11.8366 (200) 55.6297 (200)
sales (Mauboussin) 5 – 0.1028 (143) 13.4856 (247) 61.3185 (211)
sales 5 0.05 0.1057 (155) 13.8816 (253) 63.7592 (213)
major group 5 – 0.1423 (274) 17.9423 (311) 106.9768 (292)
industry group 30 – 0.1863 (309) 16.9141 (302) 117.9496 (302)

Table 2.7.: Comparison of reference variables for forecasting five-year ahead sales growth
Reference Variable Window Size ∆q (rank) KS (rank) CvM (rank)

opmar∆10 30 0.01 0.0312 (1) 2.204 (3) 1.3081 (2)
opmar∆10 30 0.025 0.0341 (2) 1.7507 (1) 0.9922 (1)
opmar∆6 30 0.01 0.0361 (3) 2.4614 (6) 2.0039 (9)
operating margin 30 0.01 0.0851 (37) 9.4868 (89) 32.0685 (84)
P/E 5 0.05 0.1096 (55) 9.2194 (88) 41.3370 (93)
P/E 10 0.025 0.1485 (128) 12.5293 (133) 79.8237 (152)
sales (Mauboussin) 5 – 0.1600 (170) 19.0380 (277) 137.3941 (261)
sales 5 0.05 0.1650 (187) 19.5103 (279) 147.1779 (269)
major group 30 – 0.2136 (289) 16.7058 (243) 106.9918 (231)
industry group 30 – 0.2179 (296) 17.6483 (261) 127.3253 (255)
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Table 2.8.: Comparison of reference variables for forecasting 10-year ahead sales growth
Reference Variable Window Size ∆q (rank) KS (rank) CvM (rank)

opmar∆6 30 0.025 0.0432 (1) 3.7904 (5) 4.1498 (5)
opmar∆7 30 0.025 0.0456 (2) 3.5849 (3) 3.8386 (2)
opmar∆5 30 0.025 0.0478 (3) 4.0971 (15) 5.0842 (9)
operating margin 30 0.01 0.1112 (36) 7.4423 (80) 20.6308 (88)
opmar∆10 10 0.025 0.2033 (113) 8.5930 (103) 31.8499 (106)
sales 30 0.01 0.2099 (115) 10.0584 (112) 42.9767 (118)
sales (Mauboussin) 30 – 0.2270 (128) 11.2416 (130) 50.6546 (128)
major group 30 – 0.2561 (146) 12.0198 (131) 61.4773 (134)
P/E 5 0.01 0.2842 (168) 17.4874 (183) 136.6147 (192)
industry group 30 – 0.2859 (169) 13.4787 (141) 75.4007 (145)

The approach by Mauboussin and Callahan (2015) performs in a very similar way to
using sales as a reference variable in our approach. For forecast horizons one, three and
five their approach is slightly better than ours using sales and for a 10-year horizon it is
vice versa. Nonetheless, their approach performs clearly worse than the best parameter
combinations according to our accuracy measures.

Although it is not the aim of this work to give a theoretical framework of the drivers of
sales growth, we try to give some intuition behind the results presented above, especially as
the operating margin or its past delta are not commonly known as drivers of sales growth.
Both figures are cumulative metrics which condense a lot of information, for example, the
competition within the industry (see, e.g., Porter, 1979) or the competitive position of
the company (see, e.g., Porter, 1985) which both significantly affect the operating margin
(deltas) as well as the future development of a company. Intuitively, the more a company’s
operating margin grows the better its market position is and it is natural to expect a
higher sales growth. This corresponds to the results in Table 2.9 discussed below. Thus,
it is not too surprising that the reference variables operating margin and past operating
margin deltas perform better than other variables including much less information. With
respect to the benchmark approach of Mauboussin and Callahan (2015) the superior
performance could be partly explained by Gibrat’s law which basically states that the
proportional rate of growth of a company is independent of the absolute size (Gibrat,
1931).

To get a feeling for the influence of the reference variable in our new approach on the
shape of the distribution forecast provided by the reference class, we consider the year
2018 as an example in view of the later application in practice. For each forecast horizon
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Table 2.9.: Influence of the best reference variables on median, mean and standard
deviation of the reference classes for forecasting compound sales growth for
different forecasting horizons. Mean and standard deviation are 2.5% trimmed
on both tails. opmar∆τ is measured in percentage points per year in this
table.

one-year forecast horizon three-year forecast horizon
qu. opmar∆6 median mean std opmar∆7 median mean std

10% -3.50 -0.04 1.65 26.72 -2.74 0.43 0.43 17.66
20% -1.44 0.66 1.28 17.58 -1.19 0.81 0.86 11.83
30% -0.74 1.39 1.97 14.62 -0.62 1.68 2.12 10.17
40% -0.33 2.39 3.04 13.98 -0.28 1.93 2.20 10.03
50% -0.03 3.40 4.64 12.47 -0.02 2.55 3.06 9.57
60% 0.27 3.16 4.18 12.62 0.23 2.48 3.01 9.43
70% 0.68 3.77 4.93 14.07 0.58 2.92 3.73 9.73
80% 1.44 3.66 5.23 17.69 1.20 3.34 4.34 12.28
90% 4.48 4.67 7.36 28.57 3.51 4.16 5.31 17.88

five-year forecast horizon 10-year forecast horizon
qu. opmar∆10 median mean std opmar∆6 median mean std

10% -1.74 0.40 0.59 11.84 -2.68 1.49 1.32 10.82
20% -0.83 1.27 1.20 9.58 -1.19 2.37 2.68 6.75
30% -0.47 2.31 2.48 8.55 -0.63 1.58 1.78 6.36
40% -0.22 1.44 1.56 8.57 -0.27 2.46 2.68 6.25
50% -0.04 2.04 2.15 7.14 0.00 2.73 2.59 5.96
60% 0.14 3.24 3.40 8.44 0.27 3.02 3.42 6.16
70% 0.37 1.87 2.49 7.96 0.63 2.96 3.28 6.49
80% 0.75 2.69 3.21 8.81 1.27 3.04 3.58 7.19
90% 2.05 3.15 4.55 13.36 3.59 4.82 4.97 10.55

we use the best parameter combination, according to the measure of quantile deviations
∆q and construct artificial initial cases by calculating the 10% to 90% quantiles of the
reference variable. After that, we use our new approach to construct reference classes
based on these initial cases. Table 2.9 displays the value of the reference variables and
the median, mean and standard deviation of the distributional forecast of the associated
quantiles.

The location and scale parameters behave similarly for all forecasting horizons. The
standard deviation is smallest for medial reference variables and rises towards the tails
reflecting the uncertainty in the tails of the distributions by this v-shape. The mean and
median are monotone in the reference variable quantiles besides few exceptions indicating
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that higher past margin deltas coincide with higher sales growth.

2.5. The Outside View in Practice

In the last section we systematically investigated the accuracy of constructing reference
classes using a single reference variable. In practice, we are able to assess a prediction by
evaluating the empirical distribution function of the reference class. Thus, we can use
the distributional information, that is, the outside view, of the reference class to correct
a potentially flawed or biased prediction. Moreover, we can calculate point forecasts
based on the median or mean of the reference class, confidence intervals based on the
quantiles of the distributional forecast, or similarity-based forecasts using the outcomes
of the reference class by weighting them according to a measure of similarity to the initial
case.

However, in order to demonstrate how to use our method in practice, we compare the
resulting outside view with experts’ forecasts and calculate base rates for two examples –
3M and Amazon. To be more precise, for both companies we forecast the distribution of
one-year annual sales growth based on the best combination of reference variable and
hyper parameters. These results are compared to analysts’ forecasts which were obtained
from the FactSet (2021) estimates database, whereby for both estimates 2018 is the base
year.5 The results are presented in Figures 2.6 and 2.7.

For 3M there are 15 expert forecasts and Figure 2.6 illustrates that these forecasts vary
between -2.35% and 3.26% and lie slightly below the median of our forecasted distribution.
Thus, there is no indication of overoptimistic forecasts as in- and outside views coincide.
Both views classify 3M as an average company with respect to sales growth. However,
the low variability of forecasts may lead investors to overconfidence in the reported range
of forecasts. The outside view uncovers higher sales growth variability, thus preventing
the overconfidence pitfall.

Figure 2.7 shows the results for Amazon, based on 43 expert forecasts, which differ
considerably. On the one hand, the forecasts are more heterogeneous and vary between
13.93% and 22.82%. On the other hand, the forecasts are much more optimistic and
correspond to quantiles between 76.87% and 88.25%. This means that for the most

5We also calculated the distribution for the three-year sales growth but the results are very similar with
respect to the basic statement, thus we only report the one-year results. Moreover, we could not take
longer prediction horizons into account as there were far too few observations available.
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Figure 2.6.: Forecasted density of one-year sales growth for 3M based on six-year op-
erating margin delta (1.77 percentage points) and with hyper parameters
window = 30 and size = 0.025 compared to experts’ estimates. For density
estimation on support [−100, ∞) we used the Gaussian kernel with Silver-
man’s rule of thumb as bandwidth.
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Figure 2.7.: Forecasted density of one-year sales growth for Amazon based on six-year
operating margin delta (4.16 percentage points) and with hyper parameters
window = 30 and size = 0.025 compared to experts’ estimates. For density
estimation on support [−100, ∞) we used the Gaussian kernel with Silver-
man’s rule of thumb as bandwidth.
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Table 2.10.: Comparison of base rates for 3M based on reference classes of our approach
using the respective best reference variable and hyper parameters, and of
Mauboussin and Callahan (2015). Mean and standard deviation are 2.5%
trimmed on both tails.

3M Base Rates

CAGR (%) 1-Yr 1-Yr MC 3-Yr 3-Yr MC 5-Yr 5-Yr MC 10-Yr 10-Yr MC

≤ -25 4.13 4.64 2.12 1.53 1.16 0.97 0.57 0.41
]-25,-20] 1.50 1.71 1.77 2.39 0.66 0.83 0.43 0.26
]-20,-15] 2.71 2.92 1.58 4.11 2.64 2.07 1.42 1.31
]-15,-10] 4.01 4.42 3.89 5.40 3.31 4.77 2.83 2.90
]-10,-5] 7.86 8.72 8.87 10.67 8.43 11.20 6.02 9.65
]-5,0] 16.16 19.37 18.04 26.13 18.51 27.37 17.08 27.77
]0,5] 20.17 24.17 24.25 26.07 32.23 29.72 35.79 35.65
]5,10] 14.95 15.95 15.57 13.62 15.70 15.41 20.55 15.72
]10,15] 9.96 6.46 9.41 5.09 8.43 3.87 8.79 4.11
]15,20] 6.36 3.48 5.47 2.21 4.63 2.07 3.97 1.32
]20,25] 3.73 2.48 3.65 1.10 2.64 0.76 1.63 0.51
]25,30] 2.15 1.55 1.53 0.67 0.66 0.41 0.57 0.27
]30,35] 1.58 1.16 1.43 0.18 0.99 0.35 0.14 0.09
]35,40] 1.05 0.77 0.59 0.18 0.00 0.14 0.14 0.02
]40,45] 0.45 0.72 0.69 0.12 0.00 0.00 0.07 0.00
> 45 3.24 1.49 1.13 0.49 0.00 0.07 0.00 0.00

mean 4.30 1.59 3.54 -0.45 2.57 0.29 3.18 0.89

median 3.33 1.73 2.53 -0.04 2.38 0.31 3.02 0.92

std 12.89 11.31 10.09 7.80 7.66 6.32 6.30 5.13

optimistic forecast, roughly only one out of 10 companies within the reference class
managed to reach the forecasted growth of Amazon. This big difference between in-
and outside views should at least exhort the analysts to scrutinize their forecasts and to
question the arguments for the optimistic assessment. Although Amazon is well known
to be a high-growth company the analysts should have good reasons for such optimistic
forecasts.

Tables 2.10 and 2.11 are inspired by Mauboussin and Callahan (2015) and show the
base rates for 3M and Amazon. At this point it is worthwhile mentioning that our
method yields different base rates for each company while the method of Mauboussin
and Callahan results only in 11 clusters with one set of base rates for each. Furthermore,
it is noteworthy that for both companies, and every forecast horizon, the mean, median
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Table 2.11.: Comparison of base rates for Amazon based on reference classes of our
approach using the respective best reference variable and hyper parameters,
and of Mauboussin and Callahan (2015). Mean and standard deviation are
2.5% trimmed on both tails.

Amazon Base Rates

CAGR (%) 1-Yr 1-Yr MC 3-Yr 3-Yr MC 5-Yr 5-Yr MC 10-Yr 10-Yr MC

≤ -25 4.37 3.31 1.72 1.23 1.16 2.08 1.06 0.35
]-25,-20] 1.74 0.55 1.77 3.68 0.83 0.00 0.57 0.71
]-20,-15] 2.39 3.87 1.72 4.29 2.31 4.17 1.63 2.36
]-15,-10] 4.50 2.76 3.55 4.29 2.81 3.47 2.20 2.60
]-10,-5] 8.95 8.29 7.93 11.04 8.60 15.97 6.87 10.64
]-5,0] 14.54 17.68 19.02 19.02 18.35 16.67 20.84 30.02
]0,5] 18.47 26.52 22.77 28.22 33.06 32.64 32.67 33.33
]5,10] 13.69 16.02 18.43 17.79 15.87 19.44 20.77 16.31
]10,15] 10.04 6.63 9.96 5.52 9.09 4.17 6.52 2.84
]15,20] 6.97 4.42 5.32 3.07 2.98 0.00 4.46 0.71
]20,25] 3.93 5.52 2.37 1.23 2.31 0.69 1.35 0.12
]25,30] 2.59 1.66 1.38 0.61 1.32 0.69 0.50 0.00
]30,35] 1.94 1.10 1.28 0.00 0.50 0.00 0.50 0.00
]35,40] 1.26 1.10 0.84 0.00 0.50 0.00 0.00 0.00
]40,45] 1.09 0.55 0.34 0.00 0.17 0.00 0.00 0.00
> 45 3.52 0.00 1.58 0.00 0.17 0.00 0.07 0.00

mean 4.93 2.75 3.72 0.00 2.55 0.03 2.65 0.16

median 3.70 2.27 2.88 0.39 2.16 1.23 2.50 0.49

std 14.11 10.73 9.74 8.23 7.62 7.01 6.46 5.15
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as well as standard deviation are higher for our reference classes. This is due to the fact
that small firms are included within our reference classes. This observation is in line
with the results presented in Mauboussin and Callahan (2015) where these figures also
increase with decreasing sizes of companies. As 3M and Amazon are relatively large
companies with sales of 32.7 billion USD and 232.9 billion USD in 2018, respectively,
small companies are not included in the reference classes of Mauboussin and Callahan.
As a further consequence, the base rates of our approach are less concentrated in the
range -5% to 10% and imply a wider range of possible outcomes which appears realistic.
However, we do not want to make an assessment of the procedures as this point as this
was already done within the last section.

2.6. Conclusion and Outlook

In this chapter, we have extended financial analysts and investors’ toolbox by a general
method to provide outside views for forecasting sales growth and we have provided an
extensive backtest on sales data from the USA over several decades. Additionally, we
have compared the method to several benchmark approaches used in practice and applied
it to real world examples of 3M and Amazon. The new approach delivers very reasonable
results, needs only a parsimonious amount of data and is easy to interpret. Thus, it is
well suited to applications in practice and lays a sound foundation for further research as
several extensions of our approach are possible.

First, the method itself can be extended by including multiple reference variables or time
series characteristics. In our approach, we focus on the case of one variable having an
easy interpretation and a direct extension of the approach by Mauboussin and Callahan
(2015) in mind. Clearly, it would be interesting to see if better reference classes could be
constructed with more than one reference variable.

Within our method, the crucial part is to find orderings of the forecast ability of the
different reference variables based on several quality criteria. We have not answered
the question in which sense the different forecasts are statistically significantly different.
Moreover, it is still an open question which reference variables are actually acceptable for
generating appropriate outside views and which not. That means, it would be interesting
to know in which numerical regions the goodness-of-fit measures may or may not lie,
especially for the new ranking based on ∆q. Perhaps, a testing approach for relevant
differences like Dette and Wied (2016) could be helpful here. The thresholds could
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be determined by potential losses induced by correcting the experts’ forecasts which
Kahneman and Tversky (1979) propose.

Finally, several stress tests of our method are possible. One could perform a simulation
study to assess how well reference classes can uncover true underlying distributions of any
variable in order to better understand the mechanics of reference classes. Furthermore, a
formal approach of correcting potentially biased expert forecasts with the similarity-based
outside views can be worked out and backtested. This means that one would consider
point forecasts based on the median or mean of the forecasted distributions, combine
them suitably with the experts’ views and backtest whether these combinations lead to
better overall forecasts.
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Chapter 3.

Distributional Reference Class Forecasting of Corporate Sales
Growth With Multiple Reference Variables

3.1. Introduction

A major aspect of statistics is to make projections and forecasts of future events which
should be probabilistic in nature to reduce uncertainty (Dawid, 1984). To this end,
we extend the method for distributional forecasts with reference classes proposed in
Chapter 2 to allow for reference class construction based on several co-variates. In this
context, a reference class supplies the outside view, that is, statistical information or
empirical data on similar past forecast challenges where the outcomes have been observed
(Kahneman and Tversky, 1979). The outside view then provides a distributional forecast
based on the distribution of outcomes within the reference class. Additionally, the result-
ing reference classes may be used to make interval predictions (c.f. Zarikas and Kitsos,
2015) or point forecasts (e.g., using the framework by Gilboa et al., 2006). In con-
trast to reference class forecasting, a forecast based on the inside view concentrates on
the uniqueness and specificity of the given forecast challenge (Kahneman and Lovallo,
1993).

In forecasting practice, the use of base rates, that is, distributional information, is
recommended (Armstrong, 2005) and reference classes and outside views are known
in the literature; for example, Bordley (2014) uses distributional information from a
reference class as a Bayesian prior in the context of healthcare cost. Chapter 2 reviews
the literature on reference class selection, quintessentially, there is a lack of studies that
systematically investigate the objective choice of reference classes. Such investigation is
necessary from an optimality point of view and, further, because Kent et al. (2018) discuss
risks arising from ill-advised reference class selection in the context of randomized clinical
trials. In this chapter, we revisit forecasting corporate sales growth to allow for a direct
comparison of new results to the findings in Chapter 2. Sales growth rate predictions,
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often by experts with an inside view, suffer from low predictability and overoptimism
(Chan et al., 2003). Possible further applications of reference class forecasting in finance
include corporate bankruptcy prediction (Hull, 2020), stock returns (Bordalo et al., 2019)
or cash flow items (Guerard et al., 2015) that are pivotal features in fundamental analysis
of firms, key drivers of stock selection models and in general challenging forecasting tasks
where long forecast horizons increase the level of complexity.

In general, constructing a reference class of comparable objects is known as the reference
class problem in statistics. While forecasting probabilities with respect to a given object,
Venn (1888) notes that each object has several characteristics to determine a set of similar
objects from which to derive these probabilities. Reichenbach (1949) first called such a
set a reference class. Here, we consider firms and can imagine plenty of possible reference
classes, e.g., all US firms, all S&P500 firms, or firms with similar cash flow or stock
market metrics. Thus, we are challenged to find a reference class that is best in the sense
of forecasting the distribution of, e.g., three-year sales growth.1 Clearly, the search for a
reference class is paired with a specific forecast challenge in mind and a good reference
class always depends on this forecast challenge.

We propose a framework for reference class selection based on multiple co-variates, here
called reference variables, and examine several approaches to find outside views to forecast
corporate sales growth. Hence, we construct reference classes of additional observations
that share similarities to the company at hand with respect to multiple reference variables
based on new rank-based algorithms that allow for an optional preprocessing data
dimension reduction through principal component analysis. These approaches are easy
to implement and we choose interpretable algorithms to build the reference classes.
Thus, the proposed methods are well suited for practical application, the more so as
the outside view is straightforwardly provided by the realized sales growth rates within
the reference class. In line with Chapter 2, we recommend distributional forecasts in
terms of the empirical cumulative distribution function (ECDF) of the reference class
outcomes to reduce uncertainty. ECDFs are easy to calculate, non-parametric and
include no assumptions on the underlying distribution. Their simple structure empowers
practitioners to investigate the reference class for a given company and discuss the nature
of forecasts highlighting the procedure’s interpretability. Alternatively, a parametric
model for sales growth distributions is discussed in Stanley et al. (1996).

1Venn (1888) originally describes an example of a fifty-year-old consumptive Englishman with many
possible reference classes, for example, all humans, all males, all at least fifty-year-old Englishmen
or all consumptive patients, that could be used for a distributional forecast of, e.g., remaining life
expectancy.
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The forecast performance of the new rank-based algorithms using different sets of
reference variables is backtested on the same data set as in Chapter 2 (see Section 2.3)
and calibration is ranked by ∆q as well. A review of distributional forecast evaluation
places ∆q, a measure based on probability integral transform values, within the context of
the literature thereon. In the backtest, especially past operating margins and past sales
growth rates are the best performing variables for reference class building with respect
to future sales growth rates and a subsequent distributional forecast thereof. Dimension
reduction using principal component analysis allows for using more variables, for example,
contemporaneous balance sheet and financial market parameters, and shorter lags of past
variables while simultaneously improving the results substantially by between 38% and
71%, depending on the forecast horizon. Further, an application of the new algorithms
on sales growth demonstrates distributional reference class forecasting in practice, shows
how to forecast intervals and compares distributional forecasts to analysts’ estimates,
thus, illustrating the utility of reference classes and how to apply their results in practice.
We additionally illustrate the retrospective use of historic distributional forecasts of sales
growth rates in comparison to realized values.

This chapter is organized as follows: Section 3.2 contains the theoretical framework of
reference class selection with multiple reference variables and the newly proposed algo-
rithms. Section 3.3 reviews relevant literature on performance measures for distributional
forecasts. Further, Section 3.4 presents the backtest along with the variable and model
selection procedure. Illustrative practical applications are demonstrated in Section 3.5.
Finally, Section 3.6 concludes and gives an outlook on future research.

3.2. Distributional Reference Class Forecasting

The aim of reference class forecasting as proposed by Kahneman and Tversky (1979)
is to obtain well-behaved predictions with respect to an initial forecast case that are
based on a reference class. For this purpose, a reference class consists of past forecast
cases similar to the inital case which need to provide statistical information on the
variable to be predicted, i.e., the outside view. Then, the reference class forecast may
be used to assess expert or model-based forecasts and to potentially correct them (see
Tetlock and Gardner, 2016). Expert forecasts often take an inside view, based on the
specific characteristics of the forecast case. Thus, reference class forecasting provides a
data driven method to overcome negative impacts of the inside view such as overoptimism,
wishful thinking or strategic misrepresentations (see, e.g., Tversky and Kahneman, 1974;
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Kahneman and Tversky, 1973). Intending to reduce uncertainty, we prefer to use reference
classes for distributional forecasts.

In literature, there are several studies dealing with reference class forecasting; e.g.,
Batselier and Vanhoucke (2016), Servranckx et al. (2021) and Natarajan (2022) select
reference classes in project planning or Lovallo et al. (2012) for stock returns where all
selections are based on data availability and at most subjective categories (see Chapter 2
for an extended literature review). Notably, Knudsen et al. (2017) discuss an objective
choice of peer groups in corporate valuation based on similarity but choose only six firms
as peers which makes the reference classes prone to bias. Chapter 2 provides a systematic
analysis of reference class forecasting by backtesting different but only a single reference
variable. In view of the reference class problem (Venn, 1888; Cheng, 2009, for a more
recent review) and in strive for optimal reference class forecasts it is self-evident that
the considerations should not be limited to similarity with respect to a single co-variate
of the initial case. Here, we extend the existing framework from Chapter 2 to select
appropriate reference classes for distributional forecasts to the case of multiple reference
variables. However, a careful assessment thereof is necessary. If reference classes consist
only of elements extraordinarily similar to the initial object, there is a risk of undersized
and little informative reference classes producing likewise biased forecasts.

For a multiple variable reference class selection, we propose different rank-based algorithms
that allow for using multiple reference variables including an optional dimension reduction.
The approaches are easy to implement and interpret and find reference classes for each
examined company separately. Then, an assessment of the distribution within the
reference classes follows directly from the outcomes within the reference class in shape
of their ECDF that serves as a distributional forecast. In order to demonstrate the
advantages of the new rank deviation procedures, we consider forecasting sales growth
and compare the new approaches to the method from Chapter 2. To this end, we
identify optimal combinations of reference variables and algorithm options for reference
class selection and evaluate them within a backtest on the same data set as described
in Section 2.3 for a meaningful quality comparison. Table 2.1 describes all potential
reference variables. Note that Table 2.2 displays compound annual sales growth rates
and annual means of operating margin deltas but we use non-averaged sales growth rates
and operating margin deltas for reference class selection. The following two subsections
extend the theoretical foundation of Chapter 2 and propose algorithms to select reference
classes.
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Figure 3.1.: Illustration of reference class and prediction timeline. Firms j at times s
denote the set of potential members (candidates) for the reference class of
individual i at time t. Note, τ ≤ t − h is possible as well if τ ≥ h.

3.2.1. Theoretical Framework for Multiple Reference Variables

The framework given in Section 2.2.1 extends naturally to the case of multiple reference
variables. For a firm i at time t, we construct a reference class to generate a forecast of
the distribution of Yi,t+h, that is a distributional h-step ahead forecast of the random
variable Yi,t, here sales growth, for individual i at time t.2 To this end, we assume that
a sufficient amount of historical data on firms is available to assess the distribution of
Yi,t+h. We base the reference class on reference variables Xi,τ :t := {Xi,t′}t′=τ,...,t and
build a reference class R by finding firms j in the past which are similar to individual i

at time t with respect to the reference variables. Similarity can be measured in multiple
ways, for mathematical purposes it is convenient to view similarity according to some
distance measure d : D2 → [0, ∞). Then, d(Xi,τ :t, Xj,ζ:s) shall be small, where s + h ≤ t

ensures that the realization of Yj,s+h is available and D is the domain of Xi,τ :t (c.f.
Figure 3.1). d could be a metric, e.g., based on some norm. A non-parametric forecast for
the distribution of Yi,t+h is now given by the empirical cumulative distribution function
of the values Yj,s+h, (j, s) ∈ R and serves as an outside view.

Reference class forecacsting requires the assumptions of Chapter 2 regarding the depen-
2We phrase the theoretical framework with a specific application in mind, namely forecasting corporate

sales growth. For a general purpose the term ‘firm’ can be replaced by ‘object’ and the term ‘sales
growth’ can be replaced by ‘predictand’.
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dence of Yi,t on Xi,τ :t and the stability of this dependence over time. These are a data
generating mechanism3 modeled by a continuous function fh such that Yi,t+h ∼ fh(Xi,τ :t)
and a stationarity assumption such that Yj,s+h ∼ fh(Xj,ζ:s), (j, s) ∈ R, within the
reference class. If d(Xi,τ :t, Xj,ζ:s) is small, then fh(Xi,τ :t) is close to fh(Xj,ζ:s) and the
empirical distribution of Yj,s+h, (j, s) ∈ R, is a good approximation for the distribution
of Yi,t+h. Moreover, fh(Xi,τ :t) can be interpreted as the conditional distribution of Yi,t

given Xi,τ :t and stationarity ensures a stable data generating process over time.

3.2.2. Proposed Algorithms for Reference Class Selection

Algorithms for constructing a reference class from a given sample need to implement
the aforementioned assumption regarding the stable dependence of sales growth Yi,t on
reference variables Xi,τ :t and need to decide which past firm observations are similar
enough with respect to the reference variables. A window length parameter w common to
all algorithms defines the number of past years to use for a specific forecast challenge. w

selects observations from the sample to constitute a set of candidates C for the reference
class from a limited time period and thereby accounts for the degree of stability regarding
the dependence. Assessing the similarity to the firm of interest and deciding whether it
is part of the reference class or not is the essential feature of each algorithm.

The decision problem of labeling each candidate ‘belonging to reference class’ and ‘not
belonging to reference class’ makes the reference class selection a binary classification.
The selection is based on available co-variates (reference variables) only and not on the
outcome of the candidate firms because the outcome is naturally not observed for the
initial firm at hand. Thus, we use unsupervised learning techniques to find firms that are
sufficiently similar to the initial firm by algorithms. The decision on sufficient similarity
is part of the reference class problem as it chooses a subset of candidates to form the
reference class.

In the application on firms we encounter skewed reference variables including outliers
(see Table 2.2)4 and use rank-based methods to be robust against these data features.
Unsupervised cluster algorithms share the property to split the set of candidates in a

3In case of a finance application like here, such a data generating mechanism may be called market
mechanism.

4In addition to Table 2.2, negative skew occurs for the reference variables operating margin, β, one-
and two-year operating margin delta and price-to-earnings ratio which has the smallest skew with
roughly −167. All other reference variables have a positive skew with up to roughly 400 in the case of
price-to-book ratio. This supports the use of rank-based methods to reduce skewness effects.
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fixed number of clusters and due to continuity of reference variables in our case we argue
that it does not necessarily make sense to find candidates that are closest to the given
firm in this manner (c.f. Figure 2.1)5.

We proceed with the following definition that a reference class has to consist of at least
20 elements or members in order to make reasonable distributional forecasts.

Definition 1. Reference Class
Let C be a set of reference class candidates. We call any set R ⊂ C of observations j at
times s reference class if the reference variables Xj,ζ:s = {Xj,s′}s′=ζ,...,s and the outcomes
Yj,s+h are observed and |R| ≥ 20.

The set of candidates for a reference class is the largest possible reference class (in sense
of cardinality). It includes all objects that could potentially be a member of the reference
class and additionally serves as a market climate reference class that captures the overall
market sentiment for the time period of candidate firms. The resulting ECDF may serve
as an estimate of the marginal distribution neglecting any confounding variables.

The new rank deviation procedures using multiple reference variables take the backtest
against the market climate reference class, the method presented in Chapter 2 for single
reference variables, the approach of Mauboussin and Callahan (2015) basing similarity
on fixed sets of sales levels (see Section 2.2) and the group approach (see Section 2.4)
using the major or industry group of a firm to select all candidate firms for the reference
class that are in the same respective group as the initial firm. Thus, membership in the
same major or industry group is said to fulfill the assumption of sufficient similarity. The
approach is in line with common practice in corporate valuation to form peer groups
based on industry classification due to the assumption that firms in the same industry
are similar in terms of value determinants (Bhojraj and Lee, 2002; Marozzi, 2011).

3.2.2.1. Rank Deviations

We introduce a novel method using rank deviations that assesses similarity of candidate
firms based on multiple reference variables and extends the approach in Section 2.2.1

5This applies to the special case here. The proposed procedures do not account for ‘natural’ clusters
that might occur. For example, there might be only 20 observations ‘very similar’ to the initial
case. But the algorithm may choose the most similar 25 observations and, thus, five less informative
observations. Hence, there is no general conclusion and the algorithms must be adapted to the specific
forecast challenge.
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which uses an arbitrary but single reference variable. Time series data in discrete time
can be incorporated by treating each point in time as an additional reference variable.
The novel method is rank-based to mitigate skewness effects as well as outlier influence
on the selection and constructs custom reference classes seperately for each forecast
challenge, i.e., each inital firm here.

Sufficient similarity is measured based on ranks and a size parameter c ∈ (0, 1) that
controls the size of the reference class as a fraction of the candidate set exploiting the
continuity of reference variables. Consequently, the parameter c determines which of
the candidates’ reference variables Xj,ζ:s lie closely enough to the initial firm’s reference
variables Xi,τ :t to be a member of the reference class. Thus, c assesses for which candidate
firms j at time s the value d(Xi,τ :t, Xj,ζ:s) is considered as small. The case of a single
reference variable illustrates the method. We select a fraction c of candidates (j, s) ∈ C

for the reference class with the least absolute rank deviation |R(Xi,t) − R(Xj,s)| as
sufficiently similar to the initial firm. Here, the rank function R : R → [1, |C| + 1]
calculates the rank of a single reference variable in the set of candidate firms and the
initial firm. This is equivalent to the procedure in Section 2.4 where candidate firms are
selected by a single variable and the reference class consists of the fraction c of candidates
closest to the initial firm’s observation with respect to the empirical quantile function of
all candidate firms.

We propose three ways of combining κ > 1 reference variables by intersecting or unifying
the reference classes obtained from several single reference variables or by using the
candidate firms that have least absolute rank deviation (LARD) inspired by Knudsen et al.
(2017). The two set-theoretic operations both involve first constructing κ reference classes
based on each reference variable seperately. On the one hand, we combine the reference
classes by intersecting them with the possibility of having few or none observations left.
Constructing the initial reference classes with an adjusted cinter = min{cκ, 0.25} may
avoid an insufficient amount of remaining observations. On the other hand, we combine
the reference classes by union where selecting too many candidates may be solved by
constructing the initial reference classes with an adjusted cunion = c/κ. Unifying the
reference classes has the additional advantage that not all reference variables must be
observed for each reference class candidate. The application of LARD requires a ranking
of candidate firms and inital firms according to each reference variable resulting in
rank vectors ri,t = R(Xi,τ :t) for the initial case and rj,s = R(Xj,ζ:s) for all candidates
(j, s) ∈ C, where R is the rank function applied on each entry of the reference variables
seperately. Then, the fraction c of observations with the least absolute rank deviation
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LARD union intersection

Figure 3.2.: Illustration of the three rank deviation methods for reference class selection
based on κ = 2 reference variables on them same candidate set with size
N = 500 and reference class size c = 0.1. Ranks of the reference variables
between 100 and 400 are displayed on the horizontal and vertical axes. The
triangle shows the initial firm, circles are selected as reference class members
and crosses are the remaining observations.

dj,s = |rj,s − ri,t| in L1 norm ||dj,s||1 constitutes the reference class. The algorithm
is related to the k nearest neighbors algorithm where k = cN is chosen relative to
the number of candidates N and proximity is measured by L1-norm of ranks without
subsequent regression or classification but with a distribution forecast. Other norms
could be used but L1 is a natural choice in combination with ranks. Further, intersecting
κ reference classes is related to the supremum norm of the vectors of absolute rank
deviations dj,s and the union of κ reference classes is comparable to selecting reference
classes by the minimum entries of dj,s (c.f. Figure 3.2 for both).

3.2.2.2. Principal Component Analysis Rank Deviation

In order to use information from a large number of co-variates, we first apply principal
component analysis (PCA) to reduce the dimensionality of the problem and then use the
rank deviation procedures on the rotated data to identify the reference class. Combing
several reference variables by LARD is related to the k nearest neighbors algorithm which
is used in algorithmic pipelines with PCA, e.g., in facial recognition (Marcialis and Roli,
2004; Parveen and Thuraisingham, 2006). Although the union procedure allows for
different sets of reference class candidates for each co-variate, this is no longer the case
for PCA preprocessing. Constructing the reference class based on principal components
(PCs), all variables must be available in order to rotate the original data matrix.
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PCA is carried out on the original reference variables, a transformed set of reference
variables Xj,ζ:s or a subset C ′ of the candidate set C obtained by one of the following four
initial transformations: a) no inital transformation, that is, Xj,ζ:s = Xj,ζ:s and Xi,ζ:t =
Xi,τ :t; b) use the initial transformation Xj,ζ:s = X

1/5
j,ζ:s and Xi,τ :t = X

1/5
i,ζ:t to mitigate

skewness effects in the data; c) compute ranks Xj,ζ:s = R(Xj,ζ:s) and Xi,τ :t = R(Xi,τ :t)
for each reference variable seperately; or d) trim the data for each reference variable
across the candidate set by 2.5% on each tail and then reduce the candidate set C by all
candidates that get trimmed in at least one reference variable such that all observations
are complete in the subset of remaining candidates C ′ ⊂ C, |C ′| = N ′.

Let X be the N × κ data matrix containing the potentially transformed reference
variables from the set of (remaining) candidates C, and let W be the κ × κ weight matrix
whose columns are the eigenvectors of the correlation matrix (N − 1)−1X̃ ′X̃ of X (for
transformation d) replace N by N ′ and C by C ′). Here, X̃ = D−1/2(X −M) is the column-
wise centered and scaled data matrix where D = diag(σ̂2

1, . . . , σ̂2
κ) is the κ × κ diagonal

matrix of empirical column variances σ̂2
l of X , l = 1, . . . , κ, M = [X̄1, . . . , X̄κ] ⊗ 1N

centers the data matrix by columns with the empirical column means X̄l, l = 1, . . . , κ,
and 1N is a column vector of N ones. The transformation X̃ W maps the κ reference
variables to a new κ-dimensional space. As we use the correlation matrix, the largest
variance by scalar projection of X , standardized to variance 1 for each column, lies on the
first column of X̃ W , the second largest variance lies on the second column of X̃ W and
so forth up to the smallest variance on the last column (Jolliffe, 2002, p. 30). Finally, we
use W1:L, the matrix of the first L columns of W , to perform the rank deviation based
reference class selection on the dimension reduced matrix obtained as XL = X̃ W1:L for
initial transformations a) - c), and XL = X̃W1:L for initial transformation d), where
X̃ = D−1/2(X − M) is the N × κ matrix of the original reference variables column-wise
scaled and centered as above. Naturally, we need to calculate X̃i,tW1:L for the (potentially)
transformed reference variables of the inital firm to assess the rank deviations where
X̃i,t = D−1/2(Xi,t − [X̄1, . . . , X̄κ]′) is demeaned as above.

The number of principal components L is chosen by different strategies. On the one
hand, for the sake of interpretation we investigate simply using two or three PCs. On
the other hand, data driven criteria select the number of PCs that explain at least 75%
or 90% of the total variability, or that explain more variability than the mean variability
across all PCs Varµ.
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3.3. On Performance Measures of Distributional Forecasts

The resulting distributional information from a reference class serve as forecasts and
the suitability of reference classes is assessed by the distributional forecast accuracy.
Typically, forecast performance is evaluated by measuring the distance between a forecast
and the realized outcome according to a loss function, taking the average loss across
all forecast instances and comparing forecast models by their mean loss. Distributional
forecasting renders this method infeasible as the realized outcome is not a cumulative
distribution function and a distance to the forecast cannot be calculated. We need
to evaluate the forecast performance with measures for this specific setting and place
the measure ∆q from Chapter 2 in the literature thereon. In line with the prequential
principle (Dawid, 1984) we base the evaluation of the forecast model only on forecasts
it actually performed and the subsequent realized outcomes in a backtest on historical
data.

Here, we must evaluate the forecast quality based on the forecast distribution F ∗
i,t;h :=

n−1∑
(j,s)∈R 1{Yj,s+h ≤ yi,t+h} and the observed outcome yi,t+h of Yi,t+h with distribution

function Fi,t;h for a fixed forecast horizon h. As we used in Chapter 2, Dawid (1984) and
Diebold et al. (1998) propose to use the transformation

F ∗
i,t;h(yi,t+h) = n−1 ∑

(j,s)∈R

1{Yj,s+h ≤ yi,t+h} ≈ Fi,t;h(yi,t+h) (2.1 revisited)

for forecast evaluation, where n = |R|. For an ideal forecast F ∗
i,t;h = Fi,t;h, (2.1) holds

exactly and F ∗
i,t;h(yi,t+h) is the probability integral transform (PIT) and thus uniformly

distributed on [0, 1]. Assuming a good forecast, (2.1) should at least hold approximately
which makes a near uniform distribution of F ∗

i,t;h(yi,t+h) a necessary condition for a good
forecast.

Repeatedly obtaining F ∗
i,t;h(yi,t+h) in a backtest for multiple individuals i and points in

time t results in a sample of PIT values {pk}k=1,...,m in [0, 1], where m is the number
of forecast instances. If the distribution forecast is valid, (2.1) implies approximate
realizations from a uniform distribution on [0, 1]. The PIT is useful for absolute assessment
whether a predictive distribution is suitable by diagnosing misspecification (Diebold et al.,
1998; Gneiting et al., 2007; Held et al., 2010) because uniformity of the PIT values is
essentially calibration (probabilistic calibration in Gneiting et al., 2007) and refers to the
statistical consistency between observations and the respective distributional forecast.
To assess distributional forecast ability, we measure how close this approximation is by
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checking if it is reasonable to maintain the hypothesis that {pk}k=1,...,m stem from a
uniform distribution.

The absolute quantile difference ∆q used in Section 2.2.2 compares the {αj}j=1,...,l

quantiles of {pk}k=1,...,m and of the uniform distribution on [0, 1], is bounded and enables
us to easily calculate an interpretable mean deviation from the theoretical quantiles but
is not adjusted for sample size. Admittedly, independent of the number of quantiles
there are plenty of distributions that have the same quantiles as the uniform distribution.
However, we are more interested in giving suitable reference classes and if a practitioner
is particularly interested in certain quantiles of the distribution and not so much in
anything else, the absolute quantile difference is feasible. The free choice of quantile levels
permits a flexible approach to highlight certain areas of the distribution that researchers
or forecasters are interested in most. A visual inspection of histograms of the PIT values
is a common forecast assessment (Hamill, 2001) and equivalent to the absolute quantile
difference with bins chosen according to the quantile levels. But, while the PIT histogram
might be handy if a forecaster only considers a handful of models and/or variable sets,
the visual inspection remains qualitative in nature and is infeasible for large scale model
and variable selections.

As in Section 2.2.2, statistical goodness-of-fit tests for uniformity are not applicable in
this particular backtest as even the smallest forecast errors cause very small p-values due
to the large sample sizes. Reporting the value of Kolmogorov-Smirnov (KS) and Cramer-
von-Mises (CvM) test statistics avoids this problem and offers a different perspective
on the complete distribution in addition to the absolute quantile difference. However,
the counterpart to a quantile comparison would be a χ2 goodness-of-fit test. Tests
for continuous distributions might not be suitable if, by construction, the distribution
forecast is based on the same number of observations for each forecast instance such that
{pk}k=1,...,m has a discrete distribution. In such cases and if Yi,t+h is discrete, a χ2-test
is more suitable to assess performance.

Given the difficulty of forecasting corporate sales growth we are mainly interested in
finding calibrated distributional forecasts if any exist and do not focus on maximizing the
sharpness subject to calibration by sharpness measures or proper scoring rules. Sharpness
refers to the concentration of the forecast characterized by scale parameters, is a property
of the distributional forecast itself and can be measured by the distances between certain
quantiles of the distribution, boxplots, or scale parameters (Bremnes, 2004). A scoring
rule is a real-valued function that assigns a loss to a probabilistic forecast F ∗

i,t;h if the value
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Table 3.1.: Hyper parameters for general algorithms in reference class selection.
Name Abbreviation Description

reference variables ref.var. see Tables 2.1
class size c relative size ∈ {0.050, 0.025, 0.010}
window length w number of past years ∈ {5, 10, 20, 30}

yi,t+h is observed (Gneiting et al., 2007). If a scoring rule is proper, the true distribution
has a smaller loss than any other forecast distribution such that we check the equality
of forecast distributions to the true distribution (Diebold et al., 1998). Scoring rules
are suitable for comparative assessment of multiple forecasting schemes if they refer to
exactly the same set of forecast situations (Gneiting and Raftery, 2007). Given the vast
number of different reference variables and overall frequency of missing values in our data
set (see Table 2.2, e.g., more than 50% of the data for 10-year sales growth) providing
the same set of forecast instances for each set of reference variables would distort the
data set systematically and lead to potentially biased conclusions in the backtest due to
survivorship influence. Thus, scoring rules are infeasible here.

3.4. Backtesting Multiple Reference Variables

This backtest evaluates the performance of the new rank-based methods to construct
reference classes of sales growth rate forecasts on the firm data set used in Chapter 2
ranging from 1950 to 2019 for forecast horizons one, three, five and 10. Apart from
distributional reference class forecasts based on the novel rank deviations and PCA rank
deviations, we include the market climate reference class forecast and compare these to
results from Chapter 2. Algorithm parameters are shown in Tables 3.1 and 3.2 and, for
fixed reference variables, the rank deviation method has 60 possible option combinations
and there are 1,200 possible combinations for PCA rank deviation. Backtesting as a
special case of cross-validation in time series settings is out-of-sample by construction.

Firms i at time t from the data set are initial firms in the backtest if they are observed at
time t + h, all used reference variables are observed and 1950 + w + h − 1 ≤ t ≤ 2019 − h.
Hence, h-year future sales growth and the full timeframe of candidates are available. For
a fixed t, all firms j at times s serve as candidates for the initial case’s reference class if
they are within the window period of candidates, that means, t − h − w + 1 ≤ s ≤ t − h,
and if the reference variables and h-year sales growth are available (see Figure 3.3).
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Table 3.2.: Different algorithm options and parameters (see Table 3.1). Param. is pa-
rameters, #PC is the criterioin to choose principal components and MC is
Mauboussin and Callahan (2015). Combination methods union and intersec-
tion additionally offer to correct the reference class size by the number of
reference variables. Transformation for PCA rank deviation is the pre PCA
transformation, the subsequent transformation uses ranks.

Algorithm Param. Ref.Var. Transformation Combination #PC

market climate w - - - -
group approach w SIC first two or - -

three digits
MC w sales - - -
rank deviations w, c all ranks LARD, union, -

intersection
PCA rank w, c all none, ranks, LARD, union, 2, 3, 75%
deviations trim, x1/5 intersection 90%, Varµ

Thus, for given reference variables and forecast horizon, the data set is restricted to all
observations without missing values of these variables where the union of single reference
classes in the rank deviation procedure is the exception to the rule (see Section 3.2.2.1).
Depending on the set of candidates, the size parameter c and the algorithm we construct
a reference class of at least 20 elements. Throughout, we assume that at time t all
information of the financial year is available.

For each initial firm (i, t) we obtain a reference class, derive the ECDF of sales growth
rates of the reference class elements {yj,s+h}(j,s)∈R and the PIT value (2.1). In total, all
inital cases produce a sample of PIT values {pk}k=1,...,m where the sample size m depends
on the forecast horizon h, the window length w, the algorithm and the availability of
reference variables. As our main measure of accuracy, we calculate ∆q based on the PIT
values for quantile levels 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95% with 0 ≤ ∆q ≤ 4.5,
here. The choice of quantiles is motivated by an emphasis on the distribution tails in
contrast to a set of equidistant quantile levels. Further, we report KS and CvM test
statistics as accuracy measures of the whole distributional approximation.

3.4.1. Variable and Model Selection Procedure

Finding appropriate reference classes is in essence a variable and model selection problem.
We systematically explore which reference variables contain information for a calibrated
distributional forecast based on rank deviations. To this end, we use a forward selection
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for evaluation

necessary data for
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Figure 3.3.: Illustration of the backtest timeline. Note, τ ≤ t − h is possible as well.

and brute force approaches on all contemporaneous reference variables and on selected
reference variable subsets. PCA rank deviation applied on selected reference variable
subsets completes the procedure and we backtest 67, 080 different variable and rank
deviation options for each forecast horizon.

For a systematic backtest of the rank deviation algorithm on multiple reference variables
we use a forward selection to reduce the number of possible reference variable combinations.
We begin with the best three reference variables according to ∆q from results in Chapter 2
for each forecast horizon and combine them with each of the remaining reference variables
using 60 different algorithm options. We continue with the three best reference variable
pairs from the previous stage with two reference variables and combine them with each of
the remaining reference variables and all possible algorithm options. Then, we repeat this
for every stage by choosing the three best sets of reference variables from the previous
stage. We stop if adding another reference variable does not improve the results anymore.
However, if the forward selection comes to an early halt we continue in order to protect
against finding a local minimum. The forward selection terminates when results for none
of the forecast horizons improve, that is, after using six reference variables. Thus, we
backtest 21, 780 different combinations.

Further, we explore using exclusively contemporaneous reference variables due to the
lower data requirements opposed to lagged variables that are chosen by the forward
selection. Therefore, we brute force all combinations of seven contemporaneous reference
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variables (except SIC) and additionally combine the balance sheet variables (i.e., sales,
operating margin, total assets and shareholder equity) and the full set of contemporaneous
variables with up to one-, three-, five- and 10-year past sales growth and past operating
margin delta, respectively. This results in 127 variable combinations in the brute force
approach and eight sets of variables with different degrees of lagged variables and, thus,
8, 100 different combinations for each forecast horizon.

Finally, we investigate the influence of dimension reduction on forecast performance
using PCA on different sets of reference variables before applying the rank deviation
methods. The 31 reference variable subsets under consideration are all four balance sheet
variables, all contemporaneous variables, each of these variable sets combined with up to
one-, three-, five- and 10-year lagged variables, the combination of the four, five and six
best reference variables, respectively, from the single reference variable approach, and
each at a time the three best sets of four, five, and six best reference variables from the
brute force approach and from the forward selection.6 This results in 37, 200 different
combinations for each forecast horizon.

3.4.2. Results of Backtesting Multiple Reference Variables

Tables 3.3 - 3.6 show a selection of our results7 on forecast horizons one, three, five and
10 years, each ranked by ∆q to compare the novel methods to results from Chapter 2.
The rank deviation (RD) results reported are the three best overall combinations, the
best combination of contemporaneous reference variables and for both, in view of the
necessary data, the best combination using a five- and 10-year window, respectively.
For PCA rank deviation (PCARD) we show the same selection of results as for RD.
We additionally report the best market climate window, the best results for the group
approach, the best window for the method in Mauboussin and Callahan (2015) and the
best single reference variable overall as well as for a five- and 10-year window. Some of
these cases coincide, thus, each table has at most 22 rows. We give details on algorithm
options according to Tables 3.1 and 3.2 and on reference variables (see Table 2.1).8

Across all forecast horizons the algorithms using several reference variables improve
distributional forecast performance and reduce ∆q by between 38% and 71%. This
implies that the mean error for quantile levels of the distribution of, for example, one-year

6Results for these variable subsets can be found in Tables 3.9 - 3.16 in Appendix 3.A.
7Full results are available upon request.
8Here, contemp. refers to all contemporaneous reference variables and in subscript s:t is {s, . . . , t}.
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Table 3.3.: Comparison of reference variables (ref. var.) and algorithms for forecasting
one-year ahead sales growth. Alg. is algorithm, transf. is pre PCA transfor-
mation, comb. is combination of reference variables and cor. is correction.

Alg. Ref. Var. Transf. #PC Comb. Cor. w Size ∆q KS CvM

PCA contemp., ranks 3/ union yes 30 0.01 0.0045 1.2002 0.1703
salesGR1, Varµ

opmar∆1
PCA contemp., ranks 3/ union yes 30 0.01 0.0046 1.3626 0.1857

salesGR1, Varµ

opmar∆1
PCA contemp., ranks 3/ union yes 30 0.025 0.0047 1.4200 0.1755

salesGR1, Varµ

opmar∆1
RD salesGR3,5:7, – – union no 30 0.05 0.0065 0.7191 0.0407

opmar∆5
RD salesGR5:7, – – union no 30 0.01 0.0066 0.7408 0.0448

opmar∆5
RD salesGR5:8, – – union no 30 0.05 0.0072 0.6475 0.0698

opmar∆5
PCA contemp., ranks 2 union no 10 0.01 0.0094 1.6183 0.5917

salesGR1,
opmar∆1

PCA contemp. trim 75% union no 30 0.025 0.0102 1.2817 0.1950
single opmar∆6 – – – – 30 0.025 0.0157 1.8644 0.8265
RD β, P/E – – union no 5 0.025 0.0158 2.7215 1.8060
PCA contemp., ranks 2 unio yes 5 0.025 0.0164 2.3868 1.3622

salesGR1,
opmar∆1

RD β, P/E – – union no 10 0.05 0.0213 3.9850 4.9765
PCA sales, at, seq, x1/5 90% union no 10 0.025 0.0217 2.6242 2.4904

P/E, P/B
PCA sales, opmar, trim 2/ union yes 5 0.025 0.0233 5.6027 7.1741

at, seq 75%
single opmar – – – – 10 0.05 0.0284 4.1500 6.1454
single opmar – – – – 5 0.05 0.0309 4.4533 4.8490
market – – – – – 5 – 0.0454 6.0073 11.1804
MC sales – – – – 5 – 0.0516 6.3825 12.7518
group major group – – – – 5 – 0.0653 8.6576 22.5482
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sales growth reduces on average to 0.05 percentage points when predicting on historical
data. Generally, the reduction is greater with shorter forecast horizons and overall
the results improve with a shorter forecast horizon. For all forecast horizons the best
results are delivered by PCARDs with a fixed number of PCs based on contemporaneous
reference variables combined with different degrees of lagged past operating margin deltas
and past sales growth rates. However, past reference variables do not exceed a lag of five
years. All reference variables should be either 2.5% trimmed on both tails before PCA or
one should use ranks for PCA. While combining reference variables by union, a window
length of 30 years is best overall, besides a 20-year window for three-year forecast horizon.
Notably, the choices of reference class size and correction vary across the best results.
Under some constraints, LARD and intersection are among the best combination versions
and the number of PCs gets chosen by a data driven criterion although the overall best
results still use a fixed number of PCs and union for combination.

All contemporaneous variables are used for the best combination and under certain
constraints the market parameters β, price-to-earnings ratio and price-to-book ratio
are important. An exception is the 10-year forecast horizon where only balance sheet
variables are selected with a possible interpretation that market parameters better reflect
short term expectations. The importance of past operating margin deltas supports the
results in Section 2.4.1 and is discussed there. However, the excellent performance of
past sales growth rates contradicts the part of Gibrat’s law that claims growth rates are
uncorrelated in time (Gibrat, 1931). Stanley et al. (1996) also show that sales growth
depends on past growth rates and that sales growth distributions are similar across
diverse firms which corresponds to the poor results of the group approach here.

Using multiple reference variables with RD improves the results by between 58% and
12% compared to the single variable use. The past operating margin deltas and past
sales growth rates dominate the forward selection with lags mainly between three and
eight years, partially up to 10 years, a window length of 30 years and the number of
used reference variables in the best combination varies from two to five (c.f. Tables 3.9,
3.11, 3.13 and 3.15 in Appendix 3.A). Indeed, taking more reference variables into
consideration does not yield better results in general. This seems to be a feature of the
specific rank-based algorithms used here as, for example, combining contemporaneous
variables with past sales growth rates and past operating margin deltas up to different lags
performs substantially worse compared to single reference variables where ∆q is between
1.7 and 3.7 times higher depending on forecast horizon (see Table 3.8 in Appendix 3.A).
However, this may partially explain the outstanding performance of PCARD using a
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small fixed number of PCs. As for PCARD, the best RD options vary across size and
correction but all combine the reference variables by union. To put this into perspective,
union means that the reference class members are similar to the initial firm in at least
one reference variable in contrast to similarity across variables when using LARD or
intersection. This superiority reflects the fact that the outside view, often seen as
relying on only superficially similar instances, produces more accurate predictions than
a narrow-minded focus on the uniqueness and complexity of a forecast challenge (c.f.
Lovallo and Kahneman, 2003). The benchmarks of market climate and group approach
as well as of Mauboussin and Callahan (2015) are clearly outperformed across all forecast
horizons. There are some different rankings of algorithms across accuracy measures
which is natural as there is no universal ranking of forecasts regardless of the accuracy
measure (see Diebold et al., 1998) and given the focus of KS and CvM on the complete
distribution.

With practical application in mind the amount of necessary data is important and consists
of two components, namely the years used to select a window of candidates and the
lags of past sales growth and past operating margin delta. Collecting a smaller data
basis is easier to achieve in practice and further takes into account that practitioners
might want to assume a stable data generating mechanism of sales growth for only a few
years. However, smaller windows generate smaller candidate sets and ultimately smaller
reference classes in general. In particular, past operating margin deltas and past sales
growth rates turn out to be best in the forward selection but depend on a rather large
amount of data. The best performances by PCARDs need between 23 and 35 years of
data while the best RD and the best single variable combinations need between 36 and
40 years of data despite performing worse. Remarkably, the use of dimension reduction
via PCA enables us to incorporate more reference variables while simultaneously needing
less data and improving the results substantially.

Further, the following results in Tables 3.3 - 3.6 stand out, where changes are reported
with respect to the best single reference variable for the respective forecast horizon. For
one-year forecast horizon (see Table 3.3) PCARD improves ∆q by 71% and RD improves
∆q by 58% while using five years less and one year more of data, respectively. There
is even a 39% improvement for PCARD with 25 years of necessary data less. Notably,
RD using β and price-to-earnings ratio performs roughly the same as the best single
reference variable but needs only five instead of 36 years of data. Interestingly, for the
three best PCARD combinations the results for three PCs and all PCs that explain at
least the mean variance are identical. When forecasting three years ahead, Table 3.4
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Table 3.4.: Comparison of reference variables (ref. var.) and algorithms for forecasting
three-year ahead sales growth. Alg. is algorithm, transf. is pre PCA transfor-
mation, comb. is combination of reference variables, cor. is correction and
inters. is intersection.

Alg. Ref. Var. Transf. #PC Comb. Cor. w Size ∆q KS CvM

PCA contemp., trim 3 union yes 20 0.01 0.0146 2.2379 1.3913
salesGR1:3,
opmar∆1:3

PCA contemp., trim 3 union yes 20 0.01 0.0163 1.9873 1.1432
salesGR1:5,
opmar∆1:5

PCA contemp., trim 3 union no 20 0.05 0.0165 2.2956 1.4306
salesGR1:5,
opmar∆1:5

RD salesGR10, – – union no 30 0.01 0.0223 1.7135 0.7237
opmar∆8,9

RD salesGR10, – – union yes 30 0.01 0.0233 1.7000 0.6886
opmar∆8,10

PCA sales, opmar, trim Varµ union yes 30 0.01 0.0238 3.1099 2.3311
seq, β,
P/E, P/B

RD salesGR10, – – union yes 30 0.01 0.0239 1.4898 0.5776
opmar∆8

PCA opmar∆6:8,10 – 75% inters. no 10 0.01 0.0282 1.3639 0.3202
single opmar∆7 – – – – 30 0.025 0.0290 3.2390 2.8895
RD β, P/E, P/B – – LARD – 10 0.05 0.0319 4.7188 6.6191
RD β, P/E, P/B – – LARD – 5 0.025 0.0334 4.0785 3.7155
PCA opmar∆6:10 – 75% inters. no 5 0.025 0.0373 3.0515 2.6985
PCA sales, opmar, x1/5 2 union yes 5 0.05 0.0460 6.6272 12.6316

β, P/E
PCA sales, opmar, x1/5 2 union yes 10 0.05 0.0486 6.5503 12.6209

seq, β,
P/E, P/B

single opmar – – – – 30 0.01 0.0603 6.9167 16.7652
single opmar – – – – 5 0.05 0.0707 10.4687 33.6970
single opmar – – – – 10 0.05 0.0883 11.8219 55.6199
market – – – – – 5 – 0.0924 11.3359 45.3895
MC sales – – – – 5 – 0.1028 13.4856 61.3178
group major group – – – – 5 – 0.1423 17.9423 106.9768
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Table 3.5.: Comparison of reference variables (ref. var.) and algorithms for forecasting
five-year ahead sales growth. Alg. is algorithm, transf. is pre PCA transfor-
mation, comb. is combination of reference variables, cor. is correction and
inters. is intersection.

Alg. Ref. Var. Transf. #PC Comb. Cor. w Size ∆q KS CvM

PCA contemp., trim 2 union yes 30 0.01 0.0179 1.0948 0.2297
salesGR1:5,
opmar∆1:5

PCA contemp., trim 2 LARD – 30 0.01 0.0186 1.5236 0.8604
salesGR1:5,
opmar∆1:5

PCA contemp., trim 2 union yes 30 0.025 0.0207 1.1641 0.3481
salesGR1:5,
opmar∆1:5

RD salesGR10, – – union yes 30 0.01 0.0230 2.2279 1.0487
opmar∆6

RD salesGR10, – – union no 30 0.01 0.0261 2.1110 1.0450
opmar∆6

PCA sales, opmar, trim 90% union no 30 0.05 0.0261 3.0871 1.7590
seq, β,
P/E, P/B

RD salesGR6,10, – – union yes 30 0.01 0.0264 1.5280 0.6581
opmar∆6

single opmar∆10 – – – – 30 0.01 0.0320 2.2045 1.3087
PCA sales, opmar, trim Varµ inters. no 5 0.025 0.0394 1.3993 0.1071

at, seq,
salesGR1:5
opmar∆1:5

PCA opmar∆4:7,9,10 – Varµ inters. no 10 0.025 0.0399 4.2461 5.1859
PCA sales, opmar, trim 75% inters. yes 5 0.025 0.0484 1.2470 0.1948

β, P/E, P/B
RD β, P/E – – LARD – 30 0.05 0.0492 5.1695 6.0082
PCA sales, opmar, trim 2 inters. no 10 0.01 0.0559 1.7647 0.3353

β, P/E, P/B
RD opmar, – – inters. yes 5 0.01 0.0634 2.1629 0.4439

opmar∆6
RD opmar, – – inters. yes 10 0.01 0.0794 2.4536 0.3912

opmar∆10
RD β, P/E, P/B – – LARD – 5 0.05 0.0716 6.7605 12.5422
single opmar – – – – 30 0.01 0.0856 9.4768 32.0558
RD opmar, P/B – – inters. no 10 0.05 0.0863 1.3772 0.3369
single P/E – – – – 5 0.05 0.1113 9.1733 41.2639
market – – – – – 5 – 0.1428 15.2365 96.8583
single P/E – – – – 10 0.05 0.1497 13.1570 84.6791
MC sales – – – – 5 – 0.1600 19.0380 137.3940
group major group – – – – 30 – 0.2136 16.7058 106.9918
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Table 3.6.: Comparison of reference variables (ref. var.) and algorithms for forecasting 10-
year ahead sales growth. Alg. is algorithm, transf. is pre PCA transformation,
comb. is combination of reference variables, cor. is correction and inters. is
intersection.

Alg. Ref. Var. Transf. #PC Comb. Cor. w Size ∆q KS CvM

PCA sales, opmar, trim 2 union yes 30 0.01 0.0275 1.5735 0.6993
at, seq,
salesGR1:5
opmar∆1:5

PCA sales, opmar, trim 2 LARD – 30 0.01 0.0284 1.7164 0.8456
at, seq,
salesGR1:5
opmar∆1:5

PCA sales, opmar, trim 2 union yes 30 0.025 0.0296 1.9586 0.7830
at, seq,
salesGR1:5
opmar∆1:5

PCA sales, opmar, trim Varµ inters. no 20 0.01 0.0323 1.5376 0.4871
at, seq, β

RD salesGR6,7, – – union yes 30 0.01 0.0388 3.0820 3.2019
opmar∆5,7

RD salesGR6, – – union yes 30 0.01 0.0401 3.1193 3.2598
opmar∆7

RD salesGR6:8, – – union yes 30 0.01 0.0403 2.9479 2.9308
opmar∆5,7,8

single opmar∆6 – – – – 30 0.025 0.0441 3.7773 4.1454
PCA opmar, β, trim 90% inters. no 5 0.05 0.0584 1.1665 0.2001

P/E, P/B
RD β, P/E – – LARD – 30 0.025 0.0679 4.1868 4.2020
PCA opmar, β, trim 3 inters. yes 10 0.01 0.0705 1.2347 0.4220

P/E, P/B
RD β, salesGR5, – – LARD – 10 0.05 0.0785 6.0266 10.9679

opmar∆7
RD salesGR7, – – inters. no 5 0.025 0.0998 1.0023 0.1382

opmar∆3,5,6
single opmar – – – – 30 0.01 0.1126 7.4249 20.6290
RD opmar, β, P/E – – LARD – 10 0.05 0.1147 8.6451 17.1154
RD opmar, β, P/E – – LARD – 5 0.05 0.1154 9.5327 24.3167
single opmar∆10 – – – – 10 0.025 0.2053 8.5536 31.8502
MC sales – – – – 30 – 0.2270 11.2416 50.6546
group major group – – – – 30 – 0.2561 12.0198 61.4773
market – – – – – 30 – 0.2845 14.4029 74.5287
single opmar∆10 – – – – 5 0.025 0.2926 14.5939 94.3775
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shows a reduction of ∆q by 50% and by 23% for PCARD and RD with 14 years less and
three years more of data, respectively. Even PCARD using 17 years of information less
is slightly better and additionally, PCARD on contemporaneous variables only with a
30-year window is better than the single variable method as well. Moreover, findings
on five-year ahead forecasting in Table 3.5 show an improvement of ∆q by 44% and
by 28% for PCARD and RD while needing five years less and the same amount of
past data. In contrast, a PCARD combination with contemporaneous variables and a
30-year window improves results by 18% while needing 10 years of data less. Finally,
in Table 3.6 on 10-year forecast horizon, contemporaneous balance sheet variables and
past variables are best for PCARD and reduce ∆q by 38% needing similar years of data.
While the best RD combinations have a comparable data demand as the single variable
approach and improve ∆q by 12%, notably, a PCA combination using intersection on
only contemporaneous variables from a 20-year window improves results by 27% despite
using 16 years of information less.

3.5. Practical Application

In any application, a distributional forecast can be used to provide a comparison to
existing forecasts and prediction intervals, point forecasts or probabilities for intervals of
possible outcomes can be directly calculated from the ECDF of the reference class. Point
forecasts, for example, model based or by experts, are assessed by calculating the PIT
value P(Yi,t+h ≤ yi,t+h) ≈ n−1∑

(j,s)∈R 1{Yj,s+h ≤ yi,t+h} for n = |R|. PIT values close
to either 0 or 1 can serve as a warning signal to check for arguments that may justify the
forecast relative to the reference class or possibly correct the prediction. Here, we provide
an application of the reference class approach on forecasting sales growth over multiple
years and additionally assess expert forecasts. The results are compared to those from
Chapter 2.

Here, the distributional reference class forecasts of sales growth based on multiple
variables for the example firms 3M and Amazon show similar results compared to the
distributional forecasts based on a single variable from Section 2.5. For both companies,
the distributional one-year sales forecasts based on year 2018 are compared to analysts’
forecast from the FactSet (2021) estimates database and Figures 3.4 and 3.5 present
density functions in comparison to these estimates. The reference classes for one-year
sales growth forecasts in this section are constructed according to the best result of our
backtest in Table 3.3 using all contemporaneous variables, one-year past sales growth and
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Figure 3.4.: Forecasted density of one-year sales growth for 3M based on the best algorithm
options from Table 3.3 compared to experts’ estimates. Density estimation
on support [−100, ∞) is based on the Gaussian kernel and Silverman’s rule
of thumb provides the bandwidth.
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Figure 3.5.: Forecasted density of one-year sales growth for Amazon based the best al-
gorithm options from Table 3.3 compared to experts’ estimates. Density
estimation on support [−100, ∞) is based on the Gaussian kernel and Silver-
man’s rule of thumb provides the bandwidth.

106



one-year past operating margin delta as reference variables. The selection is based on a
PCA rotation of the reference variables’ ranks with 3 PCs where candidates are chosen
from a 30-year window period. All reference classes for individual PCs have size 0.33%
of the candidate set due to the size correction and, then, the three reference classes are
unified.

For 3M, expert forecasts range from the 28.31% to the 43.02% quantile within the reference
class and, similar to the single variable approach, indicate no sign of overoptimism. Inside
and outside view roughly agree for the new method as well and classify 3M as an average
company regarding sales growth. However, the reference class predicts a probability of
only 14.71% that sales growth lies within the range of expert forecasts. Thus, the outside
view can protect against overconfidence in expert forecasts. In case of Amazon, forecasts
correspond to quantiles of the distributional forecast between 72.79% and 80.34% and
are more optimistic than for 3M since only one out of five firms in the reference class
achieved the maximum predicted growth of Amazon. The new method indicates that the
expert forecasts are not as optimistic as the single variable method suggests. However,
such a result should still prompt forecasters to justify or correct their predictions, even
though Amazon is known for its capability of high growth. This way the outside view
may yield protection against extreme and unrealistic predictions

To put the size of the reference classes into context, there are 271,548 firm observations
before 2018 available in the data set and restricting them to all firms providing the
necessary reference variables in a 30-year window shrinks these to a set of 109,792
candidate firms. Out of these candidates, the algorithm chooses roughly 0.98% of the
candidates or 1,074 and 1,073 observations for the reference classes of 3M and Amazon,
respectively. To put this into perspective, the best combination with a 10-year window
in Table 3.3, a set of options that needs 20 years of data less, operates on a set of 27,346
candidates and selects only about 1.98% of the candidates or 541 and 542 observations,
respectively. Note that the former algorithm option used a size correction and the latter
not, resulting in a reference class twice as big as the size parameter suggested as there
are few observations that are chosen according to both PCs.

Table 3.7 shows base rates for one-, three-, five- and 10-year forecasting horizons for 3M
and Amazon and underlines the higher growth chances of Amazon. We demonstrate
the usefulness of these base rates by considering the example of an entity that wants to
invest their money in rising businesses that have the highest probability of a long term
sales growth above 5% per year. Assuming 10 years to be long term, we can directly use
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Table 3.7.: Comparison of reference classes for forecasting compound annual sales growth
rates of 3M and Amazon with base year 2018. The choice of algorithm for
each forecast horizon is based on the results of the backtests in Tables 3.3 –
3.6. Mean and standard deviation are 2.5% trimmed on both tails.

Base Rates

1-Yr 3-Yr 5-Yr 10-Yr
CAGR (%) 3M Amazon 3M Amazon 3M Amazon 3M Amazon

≤ −25 7.54 10.81 2.70 5.45 1.51 2.57 0.60 1.40
] − 25, −20] 2.05 2.52 1.98 1.64 1.06 0.76 0.20 0.40
] − 20, −15] 1.58 3.45 1.98 2.73 2.57 1.81 1.20 1.00
] − 15, −10] 4.00 3.45 5.41 2.73 3.78 4.23 2.80 3.00
] − 10, −5] 7.45 7.83 9.19 7.27 9.23 5.74 9.00 7.00
] − 5, 0] 11.17 13.05 17.84 11.45 19.97 14.50 23.80 18.80
]0, 5] 14.25 16.50 20.36 18.55 28.74 21.75 38.20 27.00
]5, 10] 10.89 9.23 13.15 13.09 16.34 15.26 14.00 14.80
]10, 15] 8.94 7.08 9.73 10.18 8.17 12.69 6.00 11.80
]15, 20] 6.15 4.75 6.67 6.91 4.39 6.50 2.40 5.40
]20, 25] 4.56 2.61 3.24 4.18 2.12 4.68 0.60 5.20
]25, 30] 3.91 2.52 0.90 3.27 1.06 3.47 0.60 1.80
]30, 35] 1.86 1.49 1.44 3.27 0.45 2.72 0.40 1.00
]35, 40] 2.33 1.21 1.44 2.00 0.30 0.60 0.20 0.40
]40, 45] 1.86 1.03 1.26 2.00 0.15 0.45 0.00 0.40
> 45 11.45 12.49 2.70 5.27 0.15 2.27 0.00 0.60

mean 10.63 11.98 4.13 7.16 2.23 6.16 1.63 4.57

median 5.99 2.73 2.81 5.08 2.36 4.65 1.38 3.21

std 26.40 47.85 12.57 16.95 8.09 11.55 5.85 8.75
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Figure 3.6.: One-year sales growth for Amazon from 1995 to 2017 compared to quantiles
of the reference class outcomes selected using the best algorithm options
from Table 3.3. The bold lines from bottom to top represent the 10%, 25%,
50%, 75% and 90% quantiles of one year sales growth within the reference
class. The circles represent sales growth of Amazon which is 2,891% and
823% for base years 1995 and 1996, respectively, and therefore not displayed
in this graph.

the base rates in Table 3.7 to predict such a probability for both companies by adding
up the relevant cells in the most right columns. That results in predicted probabilities of
24.2% and 41.4% for more than 5% compound annual sales growth for 3M and Amazon,
respectively. For all forecast horizons, especially the base rates for larger sales growth are
higher for Amazon than for 3M, and, in general, the predicted distribution has a higher
variability for Amazon. This may be interpreted as the higher risk that contemplates the
higher potential reward. Overall, the standard deviation declines with the forecast horizon
as we display compound annual growth rates. Interestingly, for one-year forecast horizon
the base rates for 3M show less probability for sales decline than for Amazon and, except
for growth above 45%, 3M has higher base rates for sales increase. This contemplates
Figure 3.4 where the expert forecasts are roughly centered at unchanged sales but the
distributional reference class forecast shows a tendency to sales increase. However, the
base rates for one-year sales growth exhibit by far the most uncertainty, as can be seen
by the trimmed standard deviation, and also the highest predicted probabilites for sales
growth exceeding 45% and more than 25% probability of sales decline.

Moreover, we stick to the example of Amazon and present another useful application of
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reference classes. Figure 3.6 follows Amazon’s one year ahead distributional sales growth
forecasts through the base years 1995 to 2017 and compares these forecasts to the realized
sales growth. Here, it shows that Amazon is outperforming its reference class massively
in the first three years. After that, the realized sales growth rate is close to the 75%
quantile for most of the years, with some fluctuations between the 50% and 90% quantile
of its reference classes. With respect to the situation in Figure 3.5 this may serve as a
validation of expert forecasts. More general, the dependence of reference class selection
on historic data gets evident as the distributional forecasts’ uncertainty increases in
the aftermath of well-known times of financial distress, here, the dotcom crisis in 2000,
the subprime bubble in 2007 and 2008, and the European debt crisis in 2009 and 2010.
Overall, a practitioner might conclude Amazon performs well compared to peers and is
in a good overall market position. On the one hand, this seems like old news, but on the
other hand it serves as an affirmation and a proof of concept: Distributional reference
class forecasting is well behaved and meets practical expectations in this case.

3.6. Concluding Remarks

In this chapter, we extend the analysis of distributional reference class forecasting of
corporate sales growth with a focus on reference class selection. We provide a practical
solution to the well-known reference class problem (Venn, 1888) that arises in any
application of reference class forecasting as described in Kahneman and Tversky (1979).
The novel rank-based methods enable the use of several reference variables and include
the option of a dimension reduction based on principal components. In an extensive
backtest on corporate data from the USA covering several decades we conclude that
especially principal component analysis reduces the amount of necessary past data while
simultaneously improving the results from Chapter 2 substantially by between 38% and
71% depending on forecast horizon. Further, we illustrate the practical usefulness of
the new methods by forecasting distributional sales growth for two example firms, 3M
and Amazon. The novel approaches need less historic observations compared to existing
methods, are easy to interpret and deliver reasonable results making them useful for
practical applications. However, there are further extensions possible.

The method itself can be extended by using additional algorithms for reference class
selection. Other methods for dimension reductions are possible, for example, the self-
organizing map (Kohonen, 1982), an artificial neural network using a two dimensional
grid of neurons for dimension reduction. On data sets with a cluster structure we could
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use the neurons of the self-organizing map as cluster centers or other cluster algorithms.
A parametric model for the distribution of sales growth within the reference classes (as
in Stanley et al., 1996) could be used for distributional reference class forecasting.

Within our method, it is crucial to rank the forecast ability of the different algorithms
and reference variables. We have not answered whether the results on calibration
differ statistically significantly between the forecasts. The only indication on acceptable
numerical regions of the accuracy measures for generating appropriate reference classes
is given by the results of the market climate approach that can be interpreted as a
prediction of the marginal distribution. But it would be quite useful to know which
forecasts are in fact calibrated. Given a data set with less missing values, we could then
use scoring rules that additionally assess the sharpness of forecasts and are more suitable
for comparative assessment of distributional forecasts (Gneiting and Raftery, 2007).

It is yet open whether reference classes can identify underlying distributions which
could be answered in a simulation study to deepen the unterstanding of the mechanism
behind reference class selection. A study on similarity based forecasting using a weighted
mean of reference class outcomes to issue point forecasts is also possible (Gilboa et al.,
2006). On a similar line of thought, correcting potentially biased expert (or model based)
forecasts with outside views is yet to be investigated as the original corrective procedure in
Kahneman and Tversky (1979) suggested. This means that expert forecasts are combined
with a reference class forecast and a backtest checks for forecast improvement.

Investigations on other data sets beyond the presented case are necessary to further
advocate the utility of the approach. Additional possible applications are characterized
by availability of sufficient data on past outcomes and by the fact that forecasts should
typically be hard to issue. Ideally, no models producing calibrated (distributional)
forecasts directly should be known in the literature or existing models should be very
complicated and/or not accepted by a broad audience of practitioners and thus sparsely
used. In the field of finance, forecasting of cash flow items (in corporate value theory),
bankruptcy probabilities (or credit rating) and financial returns to assess value at risk
may be possible further applications.
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3.A. Supporting Tables

This section contains tables with supporting results of the backtest in Section 3.4.
Table 3.8 shows that more reference variables do not necessarily improve reference class
selection based on rank deviation (c.f. the discussion in Section 3.4.2). Tables 3.9, 3.11,
3.13 and 3.15 contain the best results of the forward selection of the rank deviation
procedure for all considered forecast horizons as described in Section 3.4.1. The best
three sets of four, five and six reference variables of the forward selection are used in
backtesting PCA rank deviation, see Section 3.4.1. Tables 3.10, 3.12, 3.14 and 3.16
contain the best results of the brute force backtest of rank deviation on contemporaneous
reference variables for all considered forecast horizons as described in Section 3.4.1. The
best three sets of four, five and six reference variables from the brute force approach are
used in the backtest of PCA rank deviation as well, see Section 3.4.1.

Table 3.8.: Best results for combining contemporaneous reference variables with past
sales growth rates and past operating margin deltas up to different lags for
forecast horizons one, three, five and ten.

Horizon Ref.Var. Comb. Cor. w Size ∆q KS CvM

1
contemp., union no 30 0.05 0.0584 7.0061 15.9007
salesGR1,
opmar∆1

3
contemp., union no 30 0.01 0.0773 8.0135 24.0522
salesGR1,
opmar∆1

5
contemp., union yes 30 0.01 0.0886 8.4625 26.1944
salesGR1,
opmar∆1

10
contemp., union yes 30 0.01 0.0758 4.7809 6.7344
salesGR1:5,
opmar∆1:5
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Table 3.9.: Forward selection results for forecasting one-year sales growth. The three
best sets of four, five and six reference variable, respectively, are used in the
backtest of PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best single

opmar∆6 – – 30 0.025 0.0157 1.8644 0.8256
opmar∆7 – – 30 0.025 0.0159 2.2179 1.0808
opmar∆5 – – 30 0.01 0.0171 2.3873 1.2154
opmar∆9 – – 30 0.025 0.0187 2.4281 1.1636
opmar∆10 – – 30 0.01 0.0188 2.0381 0.7830
opmar∆3 – – 30 0.01 0.0202 2.5357 1.6515

Best 2

salesGR7, union no 30 0.05 0.0114 1.6476 0.5886
opmar∆5
salesGR8, union no 30 0.05 0.0114 1.5929 0.5830
opmar∆6
salesGR5, union yes 30 0.05 0.0115 0.9091 0.1290
opmar∆7

Best 3

salesGR5,6, union yes 30 0.01 0.0087 0.8496 0.1021
opmar∆7
salesGR5,7, union no 30 0.025 0.0098 0.8259 0.0843
opmar∆5
salesGR5,7, union yes 30 0.01 0.0098 0.9199 0.1943
opmar∆7

Best 4

salesGR5:7, union yes 30 0.01 0.0066 0.7408 0.0448
opmar∆5
salesGR5,7,8, union no 30 0 0.0072 0.6538 0.0717
opmar∆5
salesGR3,5,6, union no 30 0 0.0086 0.8131 0.1163
opmar∆7

Best 5

salesGR3,5:7, union no 30 0.05 0.0065 0.7191 0.0407
opmar∆5
salesGR5:8, union no 30 0.05 0.0072 0.6475 0.0698
opmar∆5
salesGR3:6, union no 30 0.05 0.0084 0.6955 0.0546
opmar∆7

Best 6

salesGR3:7, union no 30 0.05 0.0076 0.7212 0.0628
opmar∆5
salesGR3:7, union no 30 0.025 0.0093 0.7668 0.1116
opmar∆7
salesGR5:8, union no 30 0.05 0.0093 0.8306 0.1569
opmar∆5,6
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Table 3.10.: Brute force results for forecasting one-year sales growth. The three best sets
of four, five and six reference variable, respectively, are used in the backtest
of PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best
β, P/E union yes 5 0.05 0.0158 2.7215 1.8060
β, P/E, P/B union no 5 0.05 0.0199 2.4706 1.5982
P/E, P/B union no 5 0.05 0.0251 3.0271 2.8965

Best 4
at, β, P/E, P/B union no 5 0.05 0.0306 4.3259 4.4872
seq, β, P/E, P/B union no 5 0.05 0.0316 4.1763 4.4604
at, seq, β, P/E union no 5 0.05 0.0320 5.0380 6.2068

Best 5
at, seq, β, P/E, P/B union no 5 0.05 0.0323 4.6028 5.0844
sales, at, seq, P/E, P/B union no 5 0.05 0.0374 5.0118 6.1482
sales, at, β, P/E, P/B union yes 5 0.01 0.0379 5.4581 7.0826

Best 6

sales, at, seq, β union no 5 0.05 0.0377 4.9120 6.0955
P/E, P/B
sales, opmar, at, β, union yes 5 0.01 0.0437 5.2103 7.8767
P/E, P/B
sales, opmar, at, seq, union yes 5 0.01 0.0447 5.2960 8.0278
P/E, P/B
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Table 3.11.: Forward selection results for forecasting three-year sales growth. The three
best sets of four, five and six reference variable, respectively, are used in the
backtest of PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best single

opmar∆6 – – 30 0.025 0.0157 1.8644 0.8256
opmar∆8 – – 30 0.025 0.0296 2.0007 1.0991
opmar∆10 – – 30 0.01 0.0319 2.0996 1.1686
opmar∆7 – – 30 0.01 0.0321 3.4675 3.4485
opmar∆9 – – 30 0.01 0.0348 2.1389 1.1537
opmar∆5 – – 30 0.01 0.0363 5.5770 8.9425

Best 2

salesGR10, union yes 30 0.01 0.0239 1.4898 0.5776
opmar∆8
opmar, inters. no 30 0.05 0.0242 1.8007 0.7059
opmar∆7
opmar∆8,10 union no 30 0.05 0.0260 2.0310 1.0684

Best 3

salesGR10, union yes 30 0.01 0.0223 1.7135 0.7237
opmar∆8,9
salesGR10, union yes 30 0.01 0.0255 1.7001 0.6329
opmar∆8,10
opmar∆8:10 union no 30 0.05 0.0261 1.9815 0.9914

Best 4

salesGR10, union yes 30 0.01 0.0233 1.7000 0.6886
opmar∆8:10
salesGR9, union yes 30 0.01 0.0257 1.8971 0.7147
opmar∆8:10
salesGR8, union no 30 0.01 0.0269 1.7087 0.7064
opmar∆8:10

Best 5

salesGR9,10, union yes 30 0.01 0.0268 1.6305 0.6640
opmar∆8:10
salesGR8,9, union yes 30 0.01 0.0279 1.7261 0.6208
opmar∆8:10
salesGR8,10, union yes 30 0.025 0.0283 1.6882 0.7032
opmar∆8:10

Best 6

salesGR8:10, union yes 30 0.01 0.0293 1.7441 0.8076
opmar∆8:10
salesGR7,9,10, union yes 30 0.01 0.0299 2.5688 1.7311
opmar∆8:10
salesGR7,8,10, union yes 30 0.01 0.0306 2.5785 1.8136
opmar∆8:10
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Table 3.12.: Brute force results for forecasting three-year sales growth. The three best
sets of four, five and six reference variable, respectively, are used in the
backtest of PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best
β, P/E, P/B LARD – 10 0.05 0.0319 4.7188 6.6191
β, P/E LARD – 30 0.05 0.0388 4.5036 6.1123
opmar, β union yes 30 0.01 0.0392 4.7713 7.8706

Best 4
at, β, P/E, P/B union no 5 0.05 0.0594 9.4340 23.8707
sales, β, P/E, P/B union no 5 0.05 0.0655 9.1517 21.6102
sales, opmar, β, P/E union yes 30 0.01 0.0670 7.0775 18.7256

Best 5

at, seq, β, P/E, P/B union no 5 0.05 0.0680 9.9804 28.7600
sales, at, β, union no 5 0.05 0.0688 10.1119 27.1444
P/E, P/B
sales, opmar, β, union no 5 0.05 0.0738 9.3260 24.5716
P/E, P/B

Best 6

sales, at, seq, β, union no 5 0.05 0.0753 10.4470 30.4821
P/E, P/B
sales, opmar, at, β, union no 5 0.05 0.0769 10.2567 29.2024
P/E, P/B
sales, opmar, seq, β, union yes 30 0.01 0.0816 8.8320 28.1591
P/E, P/B
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Table 3.13.: Forward selection results for forecasting five-year sales growth. The three
best sets of four, five and six reference variable, respectively, are used in the
backtest of PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best single

opmar∆6 – – 30 0.025 0.0157 1.8644 0.8256
opmar∆10 – – 30 0.025 0.0337 1.7525 0.9926
opmar∆5 – – 30 0.01 0.0371 3.8690 4.0986
opmar∆9 – – 30 0.01 0.0375 2.0446 1.4290
opmar∆7 – – 30 0.01 0.0409 2.5724 1.7135
opmar∆4 – – 30 0.01 0.0417 4.9117 7.5028

Best 2

salesGR10, union yes 30 0.01 0.0230 2.2279 1.0487
opmar∆6
salesGR9, union yes 30 0.01 0.0271 1.9119 0.9894
opmar∆6
salesGR10, union yes 30 0.01 0.0272 1.7697 1.0131
opmar∆10

Best 3

salesGR6,10, union yes 30 0.01 0.0264 1.5280 0.6581
opmar∆6
salesGR8,10, union yes 30 0.01 0.0265 1.7605 0.7962
opmar∆6
salesGR7,10, union yes 30 0.01 0.0275 1.5368 0.6862
opmar∆6

Best 4

salesGR5,8,10, union yes 30 0.01 0.0265 2.3651 1.4054
opmar∆6
salesGR5,6,10, union yes 30 0.05 0.0267 2.4667 1.6128
opmar∆6
salesGR5,7,10, union yes 30 0.01 0.0267 2.5496 1.5178
opmar∆6

Best 5

salesGR5:7,10, union yes 30 0.05 0.0271 2.3006 1.3987
opmar∆6
salesGR5,6,8,10, union yes 30 0.025 0.0271 2.1439 1.2915
opmar∆6
salesGR5,6,9,10, union yes 30 0.01 0.0279 2.1598 1.2389
opmar∆6

Best 6

salesGR5,6,9,10, union yes 30 0.01 0.0275 2.5795 1.5061
opmar∆6,8
salesGR5:7,9,10, union yes 30 0.01 0.0277 1.9939 1.2312
opmar∆6
salesGR5:7,10, union yes 30 0.01 0.0279 2.5866 1.6759
opmar∆6,8
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Table 3.14.: Brute force results for forecasting five-year sales growth. The three best sets
of four, five and six reference variable, respectively, are used in the backtest
of PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best
β, P/E LARD – 30 0.05 0.0492 5.1695 6.0082
opmar, β union yes 30 0.01 0.0525 5.7728 10.7982
opmar, seq, P/B inters. no 30 0.025 0.0543 0.6534 0.0646

Best 4

sales, opmar, union yes 30 0.025 0.0781 7.6348 21.5909
β, P/E
sales, opmar, union yes 30 0.01 0.0864 8.0867 26.1398
seq, P/E
sales, opmar, union yes 30 0.01 0.0871 9.0112 25.3800
β, P/B

Best 5

sales, opmar, β, union yes 30 0.01 0.0894 8.8936 25.6606
P/E, P/B
sales, opmar, at, union yes 30 0.01 0.0931 8.5649 29.8700
β, P/E
sales, opmar, seq, union yes 30 0.01 0.0943 8.2488 29.5979
β, P/E

Best 6

sales, opmar, seq, union yes 30 0.01 0.0975 9.0194 30.8282
β, P/E, P/B
sales, opmar, at, union yes 30 0.01 0.1000 9.3992 31.4917
β, P/E, P/B
sales, opmar, at, union yes 30 0.01 0.1045 9.0507 36.2843
seq, β, P/E
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Table 3.15.: Forward selection results for forecasting 10-year sales growth. The three
best sets of four, five and six reference variable, respectively, are used in the
backtest of PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best single

opmar∆6 – – 30 0.025 0.0157 1.8644 0.8256
opmar∆7 – – 30 0.025 0.0461 3.5950 3.8367
opmar∆5 – – 30 0.025 0.0482 4.1254 5.0874
opmar∆4 – – 30 0.01 0.0510 4.7700 6.4086
opmar∆8 – – 30 0.025 0.0520 3.8959 4.4523
opmar∆9 – – 30 0.05 0.0585 3.8342 4.8646

Best 2

salesGR6, union yes 30 0.01 0.0401 3.1193 3.2598
opmar∆7
opmar∆5,6 union yes 30 0.05 0.0415 4.1217 4.9332
salesGR5, union yes 30 0.01 0.0424 3.2929 3.3610
opmar∆7

Best 3

salesGR6, union yes 30 0.05 0.0409 3.5038 3.7480
opmar∆5,7
salesGR7, union yes 30 0.05 0.0410 3.5776 3.9702
opmar∆5,6
salesGR6, union yes 30 0.01 0.0416 3.6444 3.8220
opmar∆5,6

Best 4

salesGR6,7, union yes 30 0.01 0.0388 3.0820 3.2019
opmar∆5,7
salesGR7, union yes 30 0.05 0.0411 3.4968 3.5954
opmar∆5:7
salesGR5,6, union yes 30 0.01 0.0423 3.4630 3.6062
opmar∆5,6

Best 5

salesGR5:7, union yes 30 0.025 0.0419 3.2042 3.3900
opmar∆5,7
salesGR6:8, union yes 30 0.01 0.0422 3.0932 3.3684
opmar∆5,7
salesGR5,6, union yes 30 0.01 0.0425 3.7850 4.3952
opmar∆4:6

Best 6

salesGR6:8, union yes 30 0.01 0.0403 2.9479 2.9308
opmar∆5,7,8
salesGR5:7, union yes 30 0.025 0.0420 3.4675 3.5151
opmar∆5:7
salesGR6:9, union yes 30 0.01 0.0432 3.0288 3.4022
opmar∆5,7
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Table 3.16.: Brute force results for forecasting 10-year sales growth. The three best sets
of four, five and six reference variable, respectively, are used in the backtest
of PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best
β, P/E LARD – 30 0.025 0.0680 4.1868 4.2020
opmar, P/E union yes 30 0.01 0.0698 4.5438 7.8400
at, β, P/E, P/B LARD – 30 0.05 0.0774 6.1698 10.9065

Best 4

opmar, β, P/E, LARD – 20 0.025 0.0804 9.2137 19.5756
P/B
opmar, at, β, P/E LARD – 20 0.05 0.0941 11.6692 31.5442
sales, β, P/E, P/B LARD – 30 0.05 0.0956 7.3187 16.8942

Best 5

opmar, at, β, LARD – 20 0.05 0.0989 8.7529 21.4948
P/E, P/B
sales, opmar, at, inters. yes 30 0.05 0.1059 4.1239 6.7161
seq, β
sales, opmar, β, union yes 30 0.01 0.1217 8.2634 22.2247
P/E, P/B

Best 6

sales, opmar, at, union yes 30 0.01 0.1389 9.1815 26.8634
β, P/E, P/B
sales, opmar, seq, union yes 30 0.025 0.1414 9.7186 28.1473
β, P/E, P/B
sales, opmar, at, union yes 30 0.01 0.1443 9.2700 28.0870
seq, P/E, P/B
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Appendix A.

Software and Data

All computations in this dissertation were implemented in R (https://www.r-project.org/).
The simulations and backtests were parallelized and performed using CHEOPS, a scientific
High Performance Computer at the Regional Computing Center of the University of
Cologne funded by the DFG (Funding number: INST 216/512/1FUGG).

The data that support the findings in Chapter 1 of this dissertation are available
from the following sources under stated restrictions. The Bitcoin data are openly
available from Bitcoincharts at https://bitcoincharts.com/ and were downloaded on 16
October 2017. Restrictions apply to the use of these data to non commercial purpose
only. The exchange rate data of fiat currencies are openly available from the Pacific
Exchange Rate Service at http://fx.sauder.ubc.ca/. Restrictions apply to the use of these
data to research purpose only. The Eurodollar deposit rates data are openly available
from the Federal Reserve Bank of St. Louis at https://fred.stlouisfed.org/, reference
DED1. The Euribor rate data are openly available at https://www.euribor-rates.eu/
and were downloaded on 30 September 2020. Restrictions apply to the use of these
data to non commercial purpose only. The GBP and SEK deposit interest rate data
are available from TheGlobalEconomy.com and were downloaded on 30 September 2020.
Restrictions apply to the availability of these data, which were used under license for
this dissertation. Data are available at https://www.theglobaleconomy.com/ with the
permission of TheGlobalEconomy.com. The AUD, CAD and RUB deposit interest rate
data are openly available from the World Bank at https://data.worldbank.org/ and were
downloaded on 30 September, 2020. The data were used under a “Creative Commons
Attribution 4.0 International License”.

Moreover, the data that support the findings in Chapters 2 and 3 of this dissertation
are available from the following sources under stated restrictions. Wharton Research
Data Services (WRDS) was used in preparing these chapters. This service and the
data available thereon constitute valuable intellectual property and trade secrets of

130



WRDS and/or its third-party suppliers. The “CRSP daily stock” and “Compustat daily
updates - fundamentals annual” data are available from WRDS and were downloaded
on 28 and 30 January, 2020, respectively. Restrictions apply to the availability of
these data, which were used under license for this dissertation. Data are available at
https://wrds-www.wharton.upenn.edu/ with the permission of WRDS. The consumer
price index data are openly available at FRED (Federal Reserve Economic Data) at
https://fred.stlouisfed.org/, reference CPIAUCSL, and were downloaded on 29 January,
2020. The “Core company data - estimates data” were provided by colleagues at Flossbach
von Storch AG, are available from FactSet and were downloaded on 7 January, 2021.
Restrictions apply to the availability of these data, which were used under license for this
dissertation. Data are available at http://factset.com/ with the permission of FactSet.
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