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die Ordnung zur Sicherung guter wissenschaftlicher Praxis und zum Umgang mit

wissenschaftlichem Fehlverhalten der Universität zu Köln gelesen und sie bei der
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Abstract

In this dissertation we explore universal structures associated to time translation

symmetry breaking in nonequlibrium O(N)-models. We extend the paradigmatic

model A dynamics of a nonconserved order parameter [1] to include nonconservative

forces driving it manifestly out of equilibrium. These lead to temporal instabilities

towards phases that break time translation symmetry. The ensuing time crystalline

order marks a nonthermal phase of matter beyond the Landau paradigm in equilib-

rium. We identify two different time-crystalline patterns, an oscillating phase and

a rotating phase. Both of them are distinguished by the symmetry generators they

break.

By appropriate expansions of the underlying field theory, we analyse the critical

phenomena associated to the instabilities towards time-crystalline order. This con-

stitutes a generalization of the temporal instabilities defined in the classic work by

Cross and Hohenberg [2] to include noise, the crucial step to determine universal scal-

ing behavior. At the finite frequency instability marking the transition between fully

symmetric phase and a dynamical many-body limit cycle, we find that the critical

degrees of freedom are described by an O(N)×SO(2) model. The additional SO(2)

symmetry is an incarnation of time translations that are spontaneously broken along

the transition. In a perturbative RG analysis in d = 4− ϵ dimensions, we identify a

novel, nonthermal universality class. Notably, even though the effective field theory

could display an emergent thermal equilibrium, infinitesimal deviations from such an

equilibrium suffice to push the system to the nonthermal fixed point on large scales.

The transition between an ordered and the rotating phase is governed by a critical

exceptional point, where a spectral nonanalyticity coincides with criticality. Such

a point is impossible in equilibrium and leads to giant, superthermal fluctuations

with nonanalytic dispersions. We show that these fluctuations can be controlled by

a resummation of the perturbative series and establish that CEP fluctuations lead

to a fluctuation induced first order transition.

The breaking of time translation symmetry in the time crystalline phases leads to

a soft Goldstone mode even in the absence of any internal symmetries. This mode

realises the KPZ universality class leading to subexponential decaying correlations in

low dimensions. The interplay with internal Goldstone modes in the O(N)× SO(2)

model leads to additional novel regimes described by strongly interacting weak scal-

ing fixed points in the one-loop flow equations. This paves the way to a potential

extension of the KPZ phenomenology in higher symmetry groups.

These phenomena can be realised in wide range of systems. We present a general

approach to induce time-crystalline order by parametric pumps in systems that are
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subject to model A type dynamics in equilibrium. We also show that the presented

universal scaling laws also apply in dynamic phases of nonreciprocally coupled mat-

ter. Surprisingly, this phenomenology can also be realised by arbitrarily weak drives.

We demonstrate this for a light irradiated ferrimagnet.
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1
Introduction

The identification of quantitative, universal behaviors of macroscopic observables in

phases and phase transitions is one of the most prominent endeavors in theoretical

physics. It is usually impossible to track the motion of the 1023 and more micro-

scopic particles that constitute the system at hand. Instead, one can build predictive

effective field theories that do not require detailed knowledge of the microscopic par-

ticles, but only rely on a handful of phenomenological parameters that can be fixed

experimentally. For example, the hydrodynamic Navier-Stokes equations accurately

capture the dynamics of liquids without the need of any information about e.g. the

molecules constituting water.

In more abstract words, this is an incarnation of scale separation. The dynamics at

large scales should be determined by the state of the system at these large scales.

The macroscopic degrees of freedom are then continuous, averaged densities ϕ(x, t)

of the microscopic degrees of freedom that vary over distances and times that are

much larger then the respective microscopic scales. Then, an effective equation of

motion, potential or free energy for these densities can be constructed as an ex-

pansion in these densities. The form of this effective field theory is constrained by

the dimension of the system as well as the symmetries and conservation laws that

it needs to respect. In turn, systems of very different microscopic ingredients, can

result in effective models that are of the same shape on macroscopic scales, if they

1



2 CHAPTER 1. INTRODUCTION

share their symmetries. The quantitative values of the parameters of that effective

theory, lifetimes of excitations, diffusion constants and their like, can however not be

fixed by symmetry alone (even with a lot of hand waving) but do depend on the mi-

croscopic details. Their determination requires experiment or ab initio calculations

based on the underlying microscopics.

There are however important exceptions, where the quantitative prediction of ob-

servable quantities by symmetry based effective field theories alone is possible. In

the presence of a divergent correlation length, the system becomes scale invariant

and observables such as correlation functions and susceptibilities of a system take

an algebraic scaling form. The dimensionless exponents of this scaling form do not

depend on any scales but typically only on symmetries and dimensionality. Scale

invariance and universality are naturally of great interest in theoretical physics. It

offers a way to understand complex systems by means of simple scaling laws and

provides predictive power over wide ranges of systems sharing symmetry and dimen-

sionality. But where can we expect to encounter universal scaling laws and how do

we derive the respective universal exponents?

In thermal equilibrium, this is addressed within Landau’s symmetry based classi-

fication of phases, transitions and critical phenomena. At the core of this idea is

a symmetry based, phenomenological expansion of the free energy of the system

in the spirit of effective field theories. The ground state of a phase is determined

by the minimum of this free energy. Different phases can be classified according

to the symmetries that are broken spontaneously by their ground state. Since the

fact that a ground state has a certain symmetry or not is binary and cannot change

continuously, transitions between different phases with different symmetries have to

occur through either discontinuous first order transitions or through critical points

at which the correlation length diverges. Such critical points then display scale in-

variance and the ensuing universal critical exponents constituting its universality

class emerge in any system undergoing a transition characterized by the respective

symmetries. The quantitative exponents of a universality class can be determined by

the renormalisation group (RG). It describes how a system evolves under systematic

coarse graining, by block spinning [3] in real space or integrating out fast modes in

reciprocal space [4]. Over the past decades the powerful toolbox of fluctuating field

theories and RG has been successfully employed to determine a plethora of respective

universality classes [5], including relaxational dynamics around a thermal state [1].

Universal scaling is however not restricted to fine tuning a system to critical points.

Goldstone theorem ensures, that in phases with spontaneously broken continuous

symmetries, there is soft, gapless excitations leading to scale invariance without the
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necessity of any fine tuning. Within field theories, the physics of Goldstone modes

is determined by so called nonlinear sigma models [6].

So far, this discussion has been centered around universality in systems in thermal

equilibrium. But what happens if we leave the realm of thermodynamic equilibrium?

What are phases that cannot be described by an (emergent) thermal equilibrium,

what is the fate of scale invariance and universality within these phases and at their

transitions, and under which conditions can they emerge? The concept symmetry

based effective phenomenological models is not tied to thermal equilibrium. Rather

than modelling a free energy functional, we can directly construct effective equations

of motion and identify phases with the stable late time solutions of these. Critical

points can be identified via instabilities of these solutions [2]. This has been done

successfully in a plethora of systems where the contraints of thermodynamic equilib-

rium are broken, ranging from light driven atomic gases and materials and growth

phenomena, flocking transitions in biological systems over metamaterials and active

matter to the dynamics of human populations [7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

Universality can also emerge in these systems, the crucial technical step to describe it

is the inclusion of noise fluctuations that ’wash out’ any memory of initial conditions

and fuel coarse graining. 1 In many cases, even though drives and dissipation may

break equilibrium conditions (i.e. detailed balance), the system displays an emer-

gent, effective thermal behavior at large scales and the universal exponents belong

to known thermal universality classes [17, 18, 19]. This does however not always

happen. Indeed, nonthermal universality classes have been identified e.g. in wet-

ting transitions falling into the universality class of directed percolation [20, 21],

self-organized criticality in e.g. avalanches [22, 23] or the famous KPZ equation

[24, 7, 25], describing the roughening of surfaces. An overarching principle to clas-

sify nonthermal phases of matter and diagnose the respective scaling laws analogous

to the Landau paradigm is not known. Identifying phases and universal structures

far from equilibrium is a broad and active research field in physics.

A striking instance of a nonthermal phase of matter is a so called time crystal. Its

order parameter is not static, as is usually the case, but continuously traces out

a limit cycle even in the presence of dissipation. It thus breaks time translation

symmetry. It cannot occur in thermal equilibrium [26, 27] as it would constitute

a perpetuum mobile breaking the second law of thermodynamics. It can however

occur as the nonequilibrium stable state of a driven system, where there is a constant

energy influx. Such phases have caught a lot of attention recently in the context of

1Noise is generically present in a coarse grained system coupled to an external bath. Therefore,
neglecting it is an approximation, not including it.
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nonreciprocal matter [28, 29, 30, 31] but also theoretically as well as experimentally

in driven-dissipative quantum gases [32, 33, 34, 35].

Phases and transitions breaking time translation symmetry have so far been un-

charted territory from the stance of universality. In this thesis we set out to un-

derstand universal structures associated to time crystalline order. We extend the

formalism of symmetry based effective field theories for real and vector valued order

parameter fields beyond equilibrium and identify phases breaking time translation

symmetry. At all ensuing transitions, as well as within the time crystalline phases,

we identify the slow degrees of freedom that lead to scale invariant behavior. By sys-

tematic expansions the these degrees of freedom we derive the respective RG flows

determining the universal scaling laws. At the critical points, we discover a novel,

nonthermal universality class and fluctuation-induced first order transitions. Fur-

ther, we identify nonequilibrium scaling laws within the time crystalline phases in

low dimensions. For low symmetries, we find the paradigmatic KPZ universality. In

more symmetric set ups, our analysis points at novel fixed points generalizing KPZ

to O(N) × SO(2) symmetry groups. Since the effective model we use is minimal

and only based on symmetries and dimension, it is expected to emerge for a large

class of microscopic systems with the given symmetries on a coarse grained level,

once driven suitably out of equilibrium. We present a general and one more explicit

proposal, how to realize it in magnetic materials using simple driving schemes. We

further connect to the existing proposal of nonreciprocally coupled matter.



2
The nonthermal O(N) model

We begin our analysis of universality in time-crystalline matter by giving an ex-

tended overview of the key mechanisms and results contained in this thesis. A more

detailed derivation of these follows the ensuing chapters.

We start by introducing the Markovian, nonconservative O(N) model, as the

work horse of this thesis. In the spirit of effective field theories, we want to model

the dynamics of an density ϕ(x, t) of system with an internal O(N) symmetry in d

spatial dimensions. O(N) symmetric theories emerge in a broad range of systems

from atomic gases over magnetic materials to the mesonic degrees of freedom in

QCD. Since we are considering dynamics on length scales ξ much larger than the

microscopic scales a (typically a lattice spacing), it is effectively continuous with

rotational and translation symmetry. We start by considering the equilibrium case,

where the system is coupled to a thermal bath that can exchange energy with the

system and fixes its temperature T (we work in units with kB = 1 throughout the

entire thesis). This manifests in noise and dissipation. Further, we assume that the

coupling to the bath breaks the conservation law associated to the O(N) symmetry

and therefore there are no gapless hydrodynamic modes. If the system is coupled to

5
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a thermal bath, this culminates in model A of Hohenberg and Halperin [1]

2γ∂tϕ(x, t) +
δV [ϕ]
δϕ(x, t)

+ ξ(x, t) = 0 (2.1a)

V [ϕ] =
∫
t,x

1

2
ϕ(x, t)T (r + ∂2t + Z∇2)ϕ(x, t) +

λ

4
ρ(x, t)2 (2.1b)

where ξ is a diagonal gaussian white noise ⟨ξi(x′, t′)ξj(x, t)⟩ = 4γTδijδ(x
′−x)δ(t′−t),

ρ(x, t) = ϕ(x, t) ·ϕ(x, t) is the O(N) invariant field amplitude and V [ϕ] an effective

O(N) symmetric potential. This dynamics satisfies thermal equilibrium conditions

at temperature T , the steady state probability distribution of the random variable ϕ

is P [ϕ] ∼ exp(−βV [ϕ]) [36]. The potential V [ϕ] is of the prototypical sombrero hat

form, where r controls the ordering phase transition from symmetric to long ranged

ordered phase.

We now want to leave the realm of thermodynamic equilibrium and its proximity

and allow the system to relax to stable states that are not described by thermal

distributions. To this end we consider systems where detailed balance conditions

are broken on microscopic scales (in contrast to breaking it on the boundaries by

e.g. bathes with different temperatures). This can for instance be achieved by drives

with external nonthermal sources such as lasers or when the microscopic particles

can themselves can burn energy, i.e. constitute active matter. At this point, we are

not interested in understanding how exactly this happens microscopically, but want

to understand the potential macroscopic impacts of breaking of detailed balance.

Within our effective field theory approach, this means to add additional terms to

(2.1) that are ruled out in equilibrium. The simplest (and most relevant) are non-

conservative force terms beyond the simple dissipation, that do not derive from a

potential. These are, to lowest order in field amplitudes and derivatives, nonconser-

vative damping contributions u ρ(x, t)∂tϕ(x, t) and u
′ϕ(x, t)∂tρ(x, t) and we finally

arrive at the nonthermal O(N) theory(
∂2t + (2γ − Z∇2 + uρ(x, t))∂t

+ r + λρ(x, t)− v2∇2 +
u′

2
∂tρ(x, t)

)
ϕ(x, t) + ξ(x, t) = 0.

(2.2)

While we have added the nonthermal terms on phenomenological basis here, we give

examples how to realise the physics of this model in various set ups in chapter 7.
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2.1 The mean field phase diagram

In a first step to understand the phase structure of the nonthermal O(N) model,

we perform a mean field analysis. This amounts to finding spatially homogeneous

solutions ϕ0(t) to the noiseless equation of motion. The simple most solution is of

course the trivial case, ϕ0(t) = 0. It is however only stable against small fluctuations

if γ > 0, r > 0.

Upon tuning r through zero while keeping a positive damping γ > 0, there is an

instability towards a static, ordered phase with ϕ0,s =
√
−r/λn̂ where n̂ is a unit

vector, whose direction is spontaneously chosen. This phase transition is the ordering

transition induced by the equilibrium potential V taking the famous ”sombrero hat”

shape leading to spontaneous breaking of the O(N) symmetry.

In equilibrium, tuning r through zero, is only meaningful is the presence of the ϕ4

coupling (or a higher order nonlinearity), since else it would lead to an unbound,

unphysical potential. Instead, it allows for a compensation of the negative potential

curvature by means of a finite field expectation value ρ0,s such that r + λρ0,s = 0.

Similarly, without the nonconservative nonlinearities u, u′ a negative damping γ < 0

renders the system unstable and all solutions grow exponentially. This is remedied by

the presence of e.g. the irreversible force uρ∂tϕ, allowing for a finite field expectation

value ρ0,d that compensates for the negative damping, 2γ + uρ0,d. In this case,

however, the equilibrium force term stemming from the potential does not vanish

and the remaining mean field equation of motion reads

∂2tϕ0 + (r + λρd)ϕ0 = 0 (2.3)

(ϕ0)
2 = ρd = −2γ

u
(2.4)

which leads to a perpetual rotation at angular velocity E =
√
r + λρd at fixed

amplitude ρd within a spontaneously picked plane, i.e.

ϕ0,d =
√
ρd (cosEt n̂1 + sinEt n̂2) . (2.5)

Here n̂1, n̂2 are two spontaneously chosen mutually orthognal unit vectors that fix

the plane of rotation.

The rotation is however not the only possible dynamical mean field solution that

emerges when tuning the damping into an anitdamping. Instead of rotating, the

field can also start to oscillate along a spontaneously picked axis, ϕ0,VdP = ϕVdP(t)n̂.

The amplitude oscillations are determined by the the paradigmatic Van der Pol
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γ

r

Symmetric phase
ϕs = 0

Static order

ρ0 ̸= 0, ∂tϕs = 0

Time-crystalline order

ρ0 ̸= 0, ∂tϕs0

A

B

C

Figure 2.1: Mean field phase diagram of the nonthermal O(N) model. Time-
crystalline order emerges for negative values of the damping. Transition line A is
the ordering transition of model A. Transition line B is the direct transition between
no order and time-crystalline order. Its universality class is determined in chapter
4. Transition line C is the critical exceptional transition between ordered and time-
crystalline phase and discussed in chapter 5. The universal scaling of Goldstone
modes within the time-crystalline phase is adressed in chapter 6.

oscillator [37] (
∂2t + (2γ + (u+ u′)ϕ2

VdP)∂t + r + λϕ2
VdP

)
ϕVdP = 0 (2.6)

which is well known to host perpertual oscillatory solutions at γ < 0 and has been

a base model for both classical and quantum limit cycles [38, 39, 40, 41, 42]. These

however contain higher harmonics and have no general closed analytic form. As we

show in 4, whether the rotating or oscillatory state is realised depends on the relative

strenght of u and u′. Clearly, in the special case of N = 1, the dynamics of a real

valued field with Z2 symmetry, the oscillating phase is the only possible dynamic

limit cycle.

This analysis reveals that, on mean field level, the nonthermal O(N) model hosts

phases where the order parameter traces out a limit cycle. It thus breaks the con-

tinuous time translation symmetry of the original model leading to time-crystalline

order. The corresponding mean field phase diagram is depicted in Fig. 2.1.

The full model in d spatial dimensions including noise allows to determine the

impact of fluctuations on the phase diagram. This is the crucial step to determine the

universal scaling laws associated to time translation symmetry breaking in interplay

with an internal O(N) symmetry group. In chapter 3 we briefly introduce the field

theoretic framework adapted throughout this thesis. The universality class of the
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transition between the symmetric and the time-crystalline phase is determined in 4

and the transition between statically ordered phase and time-crystal in 5. Within

the limit cycle phase, there is gapless Goldstone modes due to time translation

symmetry breaking as well as the breaking of the internal O(N) group leading to

universal scaling behavior. We analyse the various symmetry breaking patterns and

the ensuing scaling laws in chapter 6. Finally, we show how this universality class

is realised in various physical set ups, ranging from nonreciprocal active matter over

pumped magnets to driven dissipative spinor gases in chapter 7. Before delving into

the details we present the main results in the remainder of this chapter.

2.2 Transition from symmetric phase

First, we consider the transition from the symmetric phase ⟨ϕ⟩ = 0 into the limit

cycle phases. The detailed analysis is given in chapter 4 which is based on [43]. The

transition occurs, on mean field, when tuning the damping γ to zero while keeping

a finite r > 0, i.e. transition line B in the mean field phase diagram Fig. 2.1 The

first, important question regards the order of this transition. The finite value of

r corresponds to a finite frequency scale at the transition. Indeed, the frequency

at which the order parameter starts to rotate (or oscillate) does not go to zero

close to the transition but jumps, a behavior usually associated to first order phase

transitions.

E =

0 forγ > 0√
r − 2γλ

u
forγ < 0

(2.7)

for the rotating phase. On the other hand, the expectation value of the amplitude

of the rotation does grow continuously at the transition

ϕd =

0 forγ > 0√
−2γ

u
forγ < 0

(2.8)

indicating a second order phase transition. Both behaviors are also depicted in Fig

2.2. A stronger indication for a second order phase transition is the bare correlation

function at the transition point

C(t,q) ∝ q−2e−q
2t cos

√
rt. (2.9)

Next to the oscillations at the finite frequency scale, it displays an algebraic infrared

singularity, indicating a diverging correlation length – a clear signature of a second
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Figure 2.2: The mean field amplitude and angular velocity of the limit-cycle phase
across the transition. While the amplitude grows continuously in with a square root
behavior close to the transition, the angular velocity jumbs.

order phase transition.

Still, the finite frequency scale spoils a direct scaling ansatz for the correlations

and responses and a straightforward RG analysis. As we show in chapter 4, this can

be remedied by identifying the amplitudes of the oscillations as the relevant criti-

cal degrees of freedom. In that framework, time translation symmetry manifests as

an internal SO(2) symmetry and the transition is described by an O(N) × SO(2)

symmetric field theory. This field theory can describe the instabilities to both the

oscillating as well as the rotating phase, and we determine that the sign of u − u′

determines which phase is realised.

A perturbative renormalization group analysis of the O(N) × SO(2)-model deter-

mines, that below the upper critical dimension dc = 4, the transition is described by

a nonequilibrium fixed point. Its nonthermal nature is most strikingly evident by

different anomalous scaling exponents for dynamical correlation and response func-

tions violating fluctuation dissipation relations. One can use the ratio of correlation

and response to define an effective, scale dependent temperature. At the transition

this temperature will however diverge with a universal exponent, a consequence of

the nonthermal nature of the RG fixed point.

The Gaussian fixed point of this transition describes both the instability towards

the rotating as well as the oscillating phase. Below the upper critical dimension, the

interacting fixed point however only describes the transition into the rotating phase

and there is no fixed point for the transition into the oscillating phase. This is a

signature of a so called fluctuation induced first order phase transition, the transition

into the oscillating phase is rendered discontinuous by interacting fluctuations. The

phase diagram at fixed r for varying γ as well as u− u′ is depicted in Fig. 2.3.



2.3. THE CEP TRANSITION FROM THE ORDERED PHASE 11

γ

u′ − u

O(N) symmetric ϕs = 0

Van der Pol phase
O(N) → O(N − 1)

Rotating phase
O(N) → O(N − 2)

B’ B

D

Figure 2.3: Phase transition line B between symmetric and time-crystalline order.
There is an additional axis u′ − u. For u − u′ > 0 there is the transition B into
the rotating phase, that falls into a nonthermal universality class. For u′ − u < 0,
there is the transition B′ into the oscillating van der Pol phase. It occurs through
a fluctuation induced first order transition. Within the time-crystalline regime the
transition between the different symmetry breaking patterns D is of first order.

2.3 The CEP transition from the ordered phase

Next, we turn to the transition between the ordered phase, transition line B in Fig. 2.1

and the rotating phase in chapter 5, which is based on [44]. It has been argued, that

such transitions are described by so called critical exceptional points (CEPs) in the

context of noreciprocal phase transitions [28] and on mean field, this is indeed the

case in our model. Exceptional points have gained a lot of attention in recent years

in the study of nonhermitian Hamiltonians arising in open systems [45, 46, 47, 48, 49,

50, 51, 52, 53, 54, 55, 56, 57]. They arise at points, where the Hamiltonian becomes

nondiagonalizable due to its nonhermiticity and two or more eigenvectors coalesce.

They typically separate purely dissipative, overdamped parts of the spectrum from

underdamped regimes. The simple most example is of course the point separating

over- from underdamped motion of the damped harmonic oscillator. Its dispersions

are given by ω1,2 = −iγ±
√
ω2
0 − γ2 and the exceptional point sits at the branch cut

of the square root at ω2
0 = γ2, highlighting how exceptional points occur at spectral

nonanalyticities.

Let us turn back to the phase transition at hand. The slow dynamics in the statically

ordered phase are dominated by the gapless Goldstone modes, the phase fluctuations

around the static order parameter. In chapter 5 analyse these fluctuations in the

vicinity of the transition into the rotating phase. The transition is triggered by tuning

the effective damping δ = 2γ+uρs of the phase fluctuations to zero, while their mass

vanishes due to their gapless nature. This amounts to indeed tuning an exceptional

point to criticality, realising a CEP. We can thus address the fate of universal scaling
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exponents in a fluctuating theory at a CEP within our field theoretic set up.

The universal theory is dominated by two key aspects of the CEP:

a) Spectral nonanalyticity Close to the CEP, the momentum dependent dispersion

of the phase fluctuations are

ω1,2(q) = −i(δ + Zq2)± v|q|. (2.10)

Here, the scale Z amounts to diffusion while v is the velocity of the propagating

exctiations. The damping δ marks the distance from the critical exceptional point

(CEP). At the CEP, the coexistence of v and Z leads to an inhomogeneous scaling

behavior in time, the real part of the dispersion scales linearly in momenta indicating

a dynamical critical exponent z = 1, while the imaginary part scales quadratically

corresponding to a z = 2 behavior. Furthermore, there is the nonanalyticity at q = 0

typical for a CEP [50, 57].

b) Superthermal mode occupation At a finite noise level D, the statistical occupation

of modes at a CEP is strongly enhanced as compared to thermal equilibrium [29]. It

is measured by the equal time correlation function, which at the CEP scales as

CCEP(t = 0,q) ∝ D

q4
. (2.11)

This strongly exceeds the thermal occupation of a gapless mode at low momenta

C ∼ q−2.

Both effects strongly impact the transition below the upper critical dimension of four.

The superthermal occupation (2.11) of fluctuations leads to an infrared divergence

of fluctuations below four dimensions and thus destroys the ordered phase, pushing

the system back into the symmetric phase, before one even reaches the transition.

On the other hand, if one starts deeply in the ordered phase, nonlinearities con-

spire with the nonanalytic spectrum to cause a fluctuation induced first order phase

transition between static order and rotating time crystal. On the level of the loop

corrections this is remiscent of the seminal work by Brazovskii [58], albeit in a phys-

ically very different setting. The nonanalytic structure of the spectrum leads to a

suppression of two-loop topologies and allows for a controlled resummation of the

entire perturbative series within the framework of Dyson-Schwinger equations re-

vealing the first order transition.

There is a new interacting scale ρ0g, where ρ0 is the strength of the static order and g

of the interactions of the phase fluctuations, which determines wether the superther-

mal occupation destroys the preexisting order pushing the system in the symmetric

phase, or if there is the fluctuation induced first order transition occuring first. The



2.4. SCALING WITHIN THE TIME-CRYSTALLINE ORDER 13
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Symmetric phase
ϕs = 0

Static order

ρ0 ̸= 0, E = 0

Rotating order

ρ0 ̸= 0, E ̸= 0

Figure 2.4: Schematic phase diagram beyond mean-field (d < 4). The CEP line is
replaced by a first-order phase transition where the angular velocity E jumps from
zero in the ordered phase to a finite value in the rotating phase. For initial values of
δ and γ closer to zero, the enhanced fluctuations destroy the order parameter before
reaching the CEP. The symmetric phase has thus an extended stability regime and
the multicritical point moves.

corresponding schematic phase diagram is depicted in Fig 2.4.

2.4 Scaling within the time-crystalline order

The prior results establish the universal phenomoenology associated to critical points

where time translation symmetry breaks spontaneously for a large class of systems,

with any internal O(N) group and no additional hydrodynamic modes. We turn to

universal scaling laws within the time crystalline phases itself in chapter 6. Since

these phases break continuous symmetries, first and foremost time translation sym-

metry, there is gapless Goldstone modes which in turn lead to universal scaling laws

within the phases. These scalings are observable throughout the entire phase and do

not require any fine tunings. We find that the scaling laws within the time crystalline

phase can differ from the ones of thermal equilibrium realising the KPZ universal-

ity class and potentially generalizations thereof. Observation of these scaling laws

is a signature of the time-crystalline orders described by the nonthermal O(N) model.

2.4.1 No internal symmetry

In the case of N = 1, a simple real field, where there is no internal continuous

symmetry, we show how the spontaneous breaking of time translation symmetry
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leads to gapless fluctuations along the limit cycle. Since there is a distinct direction

of growth along the limit cycle, these fluctuations are described by the paradigmatic

KPZ equation, initially designed to describe roughening of growing surfaces. Further,

since time translation symmetry is only broken to discrete translations by the limit

cycle period, the broken symmetry group is R/Z ∼= SO(2). This means, that there

is vortices in low dimensions which can unbind and destroy quasi-long range order

through the BKT mechanism. The KPZ nonlinearity is marginally relevant in two

dimensions and expected to unbind vortices, thus there is no true long quasi long

range order in two-dimensional time crystals. In summary, in a situation with no

continuous internal symmetries, the following scaling behavior is observable in time-

crystalline matter:

One dimension – There is no long range order. However on length scales domi-

nated by phase fluctuations, the decay of the correlation function C(t,x) is

C(t, 0) ∼ e−At
2β

(2.12)

C(0, r) ∼ e−Br
2χ

. (2.13)

where χ is the roughness exponent, and β = χ/z, where z is the dynamical critical

exponents. For thermal diffusion in one dimension z = 2 and β = 1/4. In the KPZ

phase, the exponents are known exactly in one dimension: β = 1/3, χ = 1/2.

Two dimensions – There is nonuniversal length scales ξKPZ and ξBKT determin-

ing the onset of KPZ scaling and vertex unbinding respectively. If ξKPZ ≪ ξBKT

this leads to the following scaling of the equal time correlation function

C(0, r) ∼


e−r/ξBKT for r ≫ ξBKT

e−Br
2χ

for ξKPZ ≪ r ≪ ξBKT

r−α for r ≪ ξKPZ

(2.14)

with the KPZ exponent χ ≈ 0.78 [59]. If ξBKT ≲ ξKPZ , the KPZ scaling regime

vanishes.

Three dimensions – In three spatial dimensions, the Gaussian fixed point of

the phase fluctuations is stable. Therefore, there is a stable time-crystal order with
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gapless diffusive behavior

C(t,x) = x2−dĈ(x2/t). (2.15)

However, there is the KPZ roughening transition predicted in three dimensions at

a finite strength of the nonlinearity. We therefore speculate, that the realisation of

time-crystalline matter in three dimensions can provide a path towards a realization

of this nonequilibrium transition in a physical system.

2.4.2 Time crystalline order in the O(N) model

The situation becomes more cumbersome but also richer in the presence of an in-

ternal O(N) symmetry group. Most strikingly, as we have seen for N ≥ 2 there

is not a single time-crystalline phase but two distinct ones, the oscillating and the

rotating phase. Both of them spontaneously break not only the SO(2) part of time

translation but also the O(N) group, but in different patterns. The oscillating phase

breaks the O(N)× SO(2) group down to O(N − 1) while the rotating phase breaks

it to O(N − 2)× SOd(2). There is a total of N broken symmetry generators (N − 1

associated to the internal O(N) group and one to time translations) and correspond-

ing gapless modes in the oscillating phase. In the rotating phase this number grows

to 2N − 3 broken generators and respective gapless excitations. How do these addi-

tional Goldstone modes impact the scaling behaviors identified above? Does scaling

break down or is there new fixed points, differing from KPZ? To answer these ques-

tions, we develop an effective field theory for the Goldstone modes of the respective

phases. Formally, the Goldstone modes live in the coset spaces of the respective

symmetry breaking pattern O(N) × SO(2)/O(N − 1) for the oscillating phase and

O(N)×SO(2)/(O(N − 2)×SOd(2)) for the rotating phase. We systematically con-

struct the actions for the modes within these symmetry spaces to leading order in

field amplitudes and identify two additional nonlinearities that are marginal in two

dimensions, such as the KPZ coupling, in the oscillating phase and three in the rotat-

ing phase. While the one-loop RG flow equations have been studied in the physically

rather different set up of drifting polymers [60, 61], the ones of the rotating phase

are entirely new to the knowledge of the author.

In a first analysis, we identify various fixed points governing the (sub)exponential de-

cay of correlations in one dimensions. These scalings generalize the results presented

for the case of the single Goldstone mode of time translation above. It turns out,

that for many fixed points, there is only a weak scaling form, where the correlation

functions of the Goldstone modes θ corresponding to the internal symmetry genera-
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tors scale differently than the one of the Goldstone mode of time translations α. We

thus distinguish between the respective exponents zα, zθ, χα, χθ. In the oscillating

phase, for N ≤ 4, there is a parameter regime where the system flows to a strongly

coupled KPZ fixed point where zα = zθ = 3/2 and χα = χθ = 1/2. This fixed point

exists however only for N ≤ 5, and not at all in other parameter regimes, where the

system displays weak scaling zθ ̸= zα with nontrivial scaling laws. In the rotating

phase, we cannot identify a fixed point with strong scaling at all, at least on the

one-loop level employed here. Instead, the system flows to weak scaling with zθ = 2

and zα = 1/2.

These results are restricted to one-loop approximations of the RG flow, but clearly

identify a whole set of novel scaling regimes with nontrivial exponents in time-

crystalline matter.

2.5 Realisations

In the last part of this thesis we present schemes to realise the phases and transitions

described above in physical systems. The key ingredients are an O(N) symmetry, no

relevant conserved charges, and a nonequilibrium pumping contribution that triggers

time translation symmetry. The many nonuniversal aspects of the transitions and

phases, such as for instance the value of critical pump strengths or couplings etc,

depend on the microscopic details of the respective systems and cannot be quantita-

tively predicted from effective field theory. The universal scaling exponents presented

above and derived in detail in the main text of this thesis are however only relying

on symmetry and should be observable in all presented systems.

In the following we will describe two generic ways to create time-crystalline phases

in systems with an O(N) (or Z2) symmetry. First, we consider parametric pumping

at a high frequency of a system with a small damping. Then, we turn to nonrecipro-

cally coupled order parameter fields. We finish by a concrete realisation scheme for

a ferrimagnet driven by oscillating magnetic fields.

2.5.1 Parametrically pumped magnets

Based on symmetry, the question arises, how the time-crystalline phase can be in-

duced in systems whose dynamics is described by an effective O(N) potential theory

in thermal equilibrium by suitable drives. A prime example of such a system are

Heisenberg Antiferromagnet or Ferromagnets, whose long wavelength dynamics are

captured by an SO(3) symmetric theory. Typically, the total magnetization is not

conserved by coupling to e.g. phononic bathes which leads to a Gilbert damping.
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Can we induce a limit cycle phase in such a system by a realistic driving protocol?

The key step to trigger the instability towards a dynamical limit cycle is, as dis-

cussed in the mean field analysis, to generate an antidamping from a pump. This

can in principle be achieved by coupling a system to an inverted bath with a highly

occupied reservoir at high frequencies. This is done for instance in driven-dissipative

exciton polariton condensation [62, 63, 64]. By parametrically pumping an O(N)

order parameter density at a high frequency Ω, a high mode occupation is generated

through parametric resonance at modes with momenta qΩ such that their frequency

is ω(qΩ) = Ω/2. Such a pump can for instance be realised by oscillating electric

fields [65]. These modes now scatter incoherently into the long wavelength regime.

In a closed system this scattering is ultimately responsible for thermalization, we

keep the long wavelength regime however at a finite temperature by coupling to a

cold thermal bath. Under these circumstances, the parametrically excited modes

at large momenta serve as the inverted reservoir and we derive analytically, that it

yields the desired antidamping effect.

The crucial nonlinearities u and u′ are generated, as well, however the reservoir also

heats the system up. This will eventually overcome the antidamping contribution at

very high reservoir occupations and the limit cycle phase can only be realised, if the

equilibrium damping is not too large. We find the rotating phase also numerically

in cubic systems subject to the parametric drive. The resulting schematic phase

diagram is shown in 2.5.

2.5.2 Nonreciprocal Matter

Another general approach to realise time-crystalline phases in nonequilibrium sys-

tems is so-called nonreciprocal matter, a concept that has sparked considerable re-

search activity recently [28, 29, 66, 67, 30, 68, 69, 31, 70, 71]. The basic idea is to

couple to degrees of freedom A and B in a way that is ruled in equilibrium dynamics

by the action-reaction principle through so called nonreciprocal interactions. This

means that the way that A reacts to B is not mirrored by the way B reacts to A.

A simple example in active matter is for instance flocking birds. Within a flock a

bird only sees the bird in front of it and aligns with it but not the one behind it.

The interaction between two individual birds is not reciprocal. This leads to models

with so-called vision-cone interactions [72]. The more extreme case occurs when the

reaction from A to B is attractive while the reaction from B to A is repulsive. If,

for example, one considers two spins whose nonreciprocal interaction is such that A

wants to align with B while B wants to antialign with A, there is a parameter regime

where A and B start to perpetually rotate in a sort of ”catch and run”. This behavior
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Figure 2.5: Schematic phase diagram of the parametrically pumped SO(3) model.
Heating competes with antidamping and time-crystalline order emerges in a finite
range of pumping strengths. The universality classes of the transitions are deter-
mined in chapter 7.1.

extends to the case of nonreciprocally coupled fields in d spatial dimensions [28]. In

7.3, we show that the universal long wavelength dynamics of these dynamic phases

and the ’nonreciprocal phase transition’ into that phase are governed by the effective

field theory developed in this thesis. This means that while there is a current effort

to engineer spin systems, such that they interact nonreciprocally on the microscopic

level and realise nonreciprocal phase transitions [30, 71], the macroscopic universal

phenomena associated to time translation symmetry breaking can also be realised

by the pumping scheme laid out above.

2.5.3 Rotating Ferrimagnet

The transition between the ordered and rotating phase can also be realised in princi-

ple by arbitrarily weak drives out of equilibrium in solid state systems. The gapless

nature Goldstone mode makes it very easy to excite by drives. However, usually

it is hard to generate a directed motion along the Goldstone mode, e.g. if it is a

O(2) phase φ induce a coherent rotation ⟨φ⟩ = ω t. Typically, there is at least a Z2

symmetry φ → −φ such that external drives induce a righthanded rotation equally

often as a lefthanded one, and on average ⟨φ⟩ = 0 and the system simply heats

up. This is different, if there is low enough symmetry such that there is a preferred

direction. Time reversal symmetry in thermal equilibrium still prevents a coherent
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directed motion, the same arguments that rule out a continuous time crystal in equi-

librium, but as soon as external drives break equilibrium conditions, directed motion

is possible. This principle has been successfully demonstrated in systems where the

translational symmetries of the microscopic lattice are broken by a large scale pat-

tern, such as shown recently for large magnetic textures that are incomensurate with

the microscopic lattice [73, 74, 75]. The breaking of spatial translation symmetry

leads to a (quasi) gapless (quasi) Goldstone mode that moves the pattern. Since

there is low enough symmetry such that there is a preferred direction, a very fast

external drive can lead to a slow collective rotation of the structure.

In that spirit, we consider a ferrimagnetic system in 7.2. The closed system has

no full SO(3) spin rotation symmetry, but a SO(2) symmetric xy plane and a Z2

symmetry flipping the orthogonal z component of the magnetic moments. Below a

temperature TN it develops an antiferromagnetic order within the xy plane, sponta-

neously breaking the SO(2) symmetry. Upon cooling the system further, there is an

Ising like transition at Tc < TN where the system develops ferromagnetic order along

the z-axis. In this ferrimagnet (coexistence of antiferromagnetic and ferromagnetic

orders), the Ising order parameter singles out a preferred direction of rotation. We

show, that driving the system simply by a rapidly oscillating magnetic field, couples

the xy Goldstone mode φ to the Ising order parameter mz such that ∂tφ = γzmz+ ...

and the staggered magnetization in the xy plane starts to rotate collectively in the

xy-plane. Since γz is proportional to the driving power, this happens already at

arbitrarily small drives. We show, that the transition between the ordered xy phase

into the ferrimagnet at any finite drive strength is indeed governed by the nonther-

mal O(N) model. We can thus predict the critical phenomena observable in the

driven ferrimagnet – a fluctuation induced first order transition, the massive fluc-

tuations close to the CEP, KPZ-scaling within the phase in low dimensions and a

divergent effective ’temperature’ at the transition between paramagnet and rotating

ferrimagnet. The schematic phase diagram is shown in figure 2.6.
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Figure 2.6: Schematic phase diagram of a driven ferrimagnet as function of tem-
perature and the power of an external driving source, e.g., a laser or an oscillating
magnetic field. We assume that in equilibrium the system displays antiferromagnetic
xy order for T < TN and becomes a ferrimagnet for T < Tc < TN by developing an
extra out-of-plane ferromagnetic component. Driving induces in the ferrimagnetic
phase a rotation of the xy order parameter. The transition is governed by a criti-
cal exceptional point (CEP) with its characteristic first-order phase transition (red
line). The enhancement of fluctuations close to the CEP bends the transition line
between paramagnet and xy order down, culminating in a multicritical point where
all transition lines meet. For larger driving strength also a direct transition from
the paramagnetic into the rotating ferrimagnetic phase will occur. Thus, all phases
and phase transitions of the effective model, Fig. 2.1, can be realized. Originally
published in [44]
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Field theory methods

Before turning to the detailed derivations of the results presented above, we briefly

introduce the relevant methodology and notation in this chapter. This first three

sections of this introduction are a modified version of the respective parts of [44].

3.1 MSRJD: From Langevin equations to path in-

tegrals

To systematically study how noise fluctuations in spatially extended systems in

the presence of nonlinearities impact the critical behavior at transitions and within

phases with spontaneously broken transitions, we turn to the powerful framework of

path integrals and generating functionals for fluctuating field theories. For stochas-

tic dynamics like (2.2), this is done via the Martin-Siggia-Rose-Janssen-DeDominicis

(MSRJD) construction [76, 77, 78]. A Langevin equation

L[ϕ]ϕ(t,x) + ξ(t,x) = 0 (3.1)

with Gaussian white noise

⟨ξi(t,x)ξj(t′,x′)⟩ = 2Dδ(t− t′)δ(x− x′)δij. (3.2)

21
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corresponds to a path integral

Z[j, j̃] =

∫
DϕDiϕ̃e−S[ϕ,ϕ̃]+

∫
X j̃

T
ϕ+jT ϕ̃ (3.3)

with the action

S[ϕ̃,ϕ] =

∫
X

ϕ̃
T
(X)L[ϕ]ϕ(X)−Dϕ̃

T
(X)ϕ̃(X). (3.4)

ϕ is the N -component order parameter field also entering the Langevin equation,

and we introduced X = (x, t) to streamline notation. ϕ̃ is an N -component auxiliary

variable, associated to the noise, often referred to as response or quantum field. The

MSRJD action of the nonthermal O(N) model (2.2) is then

S[ϕ, ϕ̃] = S0[ϕ, ϕ̃] + Sint[ϕ, ϕ̃], (3.5a)

S0[ϕ, ϕ̃] =

∫
X

ϕ̃(X)T
(
∂2t + (2γ − Z∇2)∂t + r − v2∇2

)
ϕ(X)−Dϕ̃(X)T ϕ̃(X)

(3.5b)

Sint[ϕ, ϕ̃] =

∫
X

λϕ̃(X)Tϕ(X)ρ(X) + uϕ̃(X)T∂tϕ(X)ρ(X) +
u′

2
ϕ̃(X)Tϕ(X)∂tρ(X).

(3.5c)

The path integral Z[j, j̃] generates the noise averaged correlation and response

functions of the Langevin dynamics by taking derivatives with respect to the source

fields j, j̃, and evaluating at vanishing sources. In particular, the (retarded) two-

point response function and correlation function are, again using a shorthand nota-

tion Q = (q, ω)

χRij(Q,Q
′) =

δ2 lnZ

δj̃i(Q)δjj(Q′)

∣∣∣
j=j̃=0

≡ GR
ij(Q)δ(Q+Q′), (3.6)

Cij(Q,Q′) =
δ2 lnZ

δj̃i(Q)δj̃j(Q′)

∣∣∣
j=j̃=0

≡ GK
ij (Q)δ(Q+Q′), (3.7)

where we used time and space translation invariances. The rotating phase has a

time-dependent stable state which generically breaks this structure, but we will see

that in the proper comoving frame it is recovered.

These objects represent the full two-point Green functions of the theory, includ-

ing all corrections due to nonlinearities and noise. Absent spontaneous symmetry

breaking, they are ∝ δij by O(N) symmetry. The full Green function in Fourier
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space G(Q) is a 2× 2 matrix in the Nambu space Φ = (ϕ, ϕ̃)T and has the form

G(Q) =
(
GK(Q) GR(Q)

GA(Q) 0

)
. (3.8)

We introduce here a notation borrowed from Keldysh field theory, with retarded

(GR), advanced (GA = (GR)†) and Keldysh (GK) component for the Green function.

It highlights the connection to the Keldysh formalism for quantum systems out of

equilibrium, from which the MSRJD path integral emerges as a semiclassical limit,

see e.g. [8] for a review.

3.2 The effective action

While the path integral for the dynamical partition function, Eq. (3.3), encodes all

information of the problem, we transit here to another object – the effective action

(see [79] for an in-depth discussion of this object, and [8, 36] for the nonequilibrium

effective action). It encodes the same information but organizes it in a way that is

beneficial for the analysis of the present problem, both conceptually and in terms

of practical calculations. For example, it allows for a simple proof of Goldstone’s

theorem, and the construction of the associated soft modes including in the rotating

phase. It will also enable us to develop a quantitative potential picture for the

fluctuation induced first order transition.

The effective action functional is defined as the Legendre transform of the gener-

ating functional for connected correlation functions, W [j, j̃] = lnZ[j, j̃]: Γ[φ, φ̃] =

supj,j̃[−W [j, j̃] +
∫
X
jφ̃ + j̃φ]. Similarly to a classical action, the effective action

induces an equation of motion. Its solution φs yields the physical field expectation

value, with φs ̸= 0 signalling macroscopic occupation/condensation, while φ̃ = 0

when evaluated at the physical point due to probability conservation [80]. The full

equation of motion is given by

δΓ

δφ

∣∣∣
φ=⟨ϕ⟩,φ̃=⟨ϕ̃⟩

=
δΓ

δφ̃

∣∣∣
φ=⟨ϕ⟩,φ̃=⟨ϕ̃⟩

= 0. (3.9)

The effective action has an intuitive path integral representation as

Γ[φ, φ̃] = − ln

∫
DϕDiϕ̃e−S[ϕ+φ,ϕ̃+φ̃]+ δΓ

δφ̃
ϕ̃+ δΓ

δφ
ϕ, (3.10)

with j̃ = δΓ
δφ
, j = δΓ

δφ̃
. Eq. (3.10) states that the effective action obtains from the bare

action by summing over all possible configurations of the Nambu field Φ = (ϕ, ϕ̃)T .
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Conversely, omitting fluctuations in a mean-field approximation reproduces the bare

action, Γ[φ, φ̃] = S[φ, φ̃]. The representation makes it transparent that the effective

action shares the symmetries of the bare one absent sources.

The second derivative with respect to the Nambu field (φ(Q), φ̃(Q))T around a

time and space translation invariant solution of the equations of motion satisfies

(
Γ(2)(Q,Q′)

)−1

=

(
0 ΓA(Q)

ΓR(Q) ΓK(Q)

)−1

δ(Q+Q′)

=

(
GK(Q) GR(Q)

GA(Q) 0

)
δ(Q+Q′), (3.11)

and thus gives the full Green function of the theory in q, ω-space including the

retarded and advanced responses GR/A(Q) =
(
ΓR/A(Q)

)−1

and the correlation func-

tion GK(Q) = −GR(Q)ΓK(Q)GA(Q) 1.

Higher order field derivatives of Γ give the full one-particle irreducible (1PI), or

amputated, correlators. To streamline equations in the remainder of the text, we

introduce the following notation for field derivatives of the effective action evaluated

on φ = ⟨ϕ⟩:

Γ
(m,n)
i1...in+m

(X1, ..., Xn+m) ≡
δm+nΓ

δφ̃i1(X1)...δφ̃im(Xm)δφim+1(Xm+1)...δφin+m(Xm+n)
. (3.12)

Similarly, we can write the functional derivatives of the original MSRJD action S(m,n).

In that sense, one can understand the vertices Γ(m,n)(X1, ..., Xm+n) as the fully renor-

malized, spacetime dependent analogs of the original couplings S(m,n). For instance,

in the case of the nonthermal Ising or Van der Pol model, (3.5) but for N = 1, i.e.

a single real field, we have

S(1,3)(Q1, Q2, Q3, Q4)
∣∣∣
φ̃=φ=0

= (6λ− 2i(ω2 + ω3 + ω4)u) δ
(∑

Qi

)
. (3.13)

And we can define the fully renormalised versions λ̄, ū of the couplings λ, u by pro-

jecting on the respective frequency structures of Γ(1,3)(Q1, ..., Q4).

1Note that a breaking of time translation invariance leads to Green functions that are not
diagonal in frequency space.
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Figure 3.1: Basic diagrammatic rules adopted in this thesis.

3.2.1 Diagrammatics

Importantly, the vertices can be represented in a perturbative series in terms of the

microscopic nonlinearities S(m,n) and the bare Green functions. The series can be

represented diagramatically by the respective one-particle irreducible diagrams, see

e.g. [36] or [80] for an introduction on dynamic perturbation theory and diagram-

matic techinques for MSRJD or Schwinger-Keldysh path integrals. Here, we choose

the convention, that straight lines correspond to fields φ while dashed lines corre-

spond to response fields φ̃. Thus, a bare Keldysh Green function is represented by

a straight line, while a bare retarded Green function corresponds to a dashed line

that turns into a full line (and vice versa for the advanced Green function). Vertices

S(m,n) have m dashed and n full lines as sketched in Fig. 3.1

A full resummation of these diagrams yields the Dyson-Schwinger equations for

the respective vertices [6]. For a real field theory whose microscopic action contains

only contains terms up to quartic order in fields the lowest order Dyson-Schwinger

equation (DSE) reads schematically

Γ
(1)
I1

= S
(1)
I1

+
1

2
S
(3)
I1
G− 1

6
S
(4)
I1
GGGΓ(3), (3.14)

where the superscript (n) denotes the total number of field derivatives and I1

denotes a super index containing all internal and external degrees of freedom char-

acterising a field configuration (e.g. space, time and RN vector index and an index

distinguishing fields and response fields for a O(N) symmetric MSRJD field theory).

All internal indices that are traced over are supressed above. Importantly, (3.14) is

valid for any field configuration. We can generate the higher order DSEs by taking

functional derivatives with respect to the fields, using (3.11), i.e.

δ

δϕI1
GI2I3 = −GI2I4Γ

(3)
I4I1I5

GI5I3 (3.15)

with traces over the superindices I4, I5 and only evaluated at the correct saddle point
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(e.g. for an expansion in a symmetric phase φ, φ̃ = 0) in the end. The resulting

equations are exact self consistent equations for the fully renormalized, momentum

and frequency dependent vertices of the theory. There is of course a conservation of

difficulty, and they cannot be simply solved. E.g. iteratively solving the resulting

tower of self consistent equations with the starting Ansatz Γ = S reproduces the

1PI perturbative series. Still, the DSEs will come in handy in 5, where we can solve

them in a controlled manner.

3.3 Thermal equilibrium via a symmetry

So far, we have not explained how exactly we diagnose an (emergent) thermal equi-

librium in our system in practice. If the system is in thermal equilibrium, the full

correlation and response functions obey a Fluctuation Dissipation Relation (FDR),

which reads for the two-point functions (kB = 1)

GK(Q) =
2T

iω

(
GR(Q)−GA(Q)

)
. (3.16)

In thermal equilibrium with global detailed balance, fluctuation-dissipation relation

(FDR)s have to hold not only for the full, renormalized two-point Green functions,

but also for all higher n-point correlations and responses as well. This leads to an

infinite tower of relations to be checked. This can however be elegantly avoided,

as the FDR can be understood as a consequence of a symmetry of the MSRJD (or

Schwinger-Keldysh) action and effective action [78, 81, 82, 83, 8, 84, 85, 86]. Rather

than calculating all full n-point functions, it is sufficient to check if the MSRJD

action has that symmetry to establish if the system is in thermal equilibrium or not.

For O(N) vector fields, this thermal symmetry is given by

φ(x, t) → φ(x,−t),
φ̃(x, t) → φ̃(x,−t) + β∂tφ(x,−t).

(3.17)

There is one parameter in the transformation, which is associated to the tempera-

ture β = 1
T
, shared by all subsystems (all subsystems are in equilibrium with each

other, sometimes referred to as detailed balance). Force terms ∼ ϕ̃(x, t)F [ϕ] in

the Lagrangian generate the following additional contribution under the symmetry
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operation (3.17) ∫
t

ϕ̃(x, t)F [ϕ] →
∫
t

ϕ̃(x, t)F [ϕ] + δS, (3.18)

δS =

∫
t

β∂tϕ(x, t)F [ϕ]. (3.19)

If now the force F [ϕ] is conservative, i.e. F [ϕ] = − δV
δϕ

we have

δS =

∫
t

dV [ϕ]

dt
= 0. (3.20)

Thus, any conservative term is invariant under (3.17). Non-conservative damping

terms are allowed in equilibrium, however only if they come with associated noise

terms with a strict relation for the coefficients, e.g. for the full momentum depen-

dence of the damping

∼
∫
q,t

γ̄(q)φ̃i(∂tφi − T φ̃i), (3.21)

∼
∫
q,t

(2γ̄ + Z̄q2 + . . . )φ̃i(∂tφi − T φ̃i), (3.22)

so that the thermal symmetry is realised. The presence of the thermal symmetry is

then equivalent to the existence of a fixed ratio between dissipative and fluctuating

terms.

In other words, the quadratic part of the action (3.5a) is invariant under this

transformation if the full renormalized damping γ̄(q) and the full renormalized noise

level D̄(q) are proportional to each other with

T =
D̄(q)

2γ̄(q)
, (3.23)

where in a state of true thermal equilibrium the temperature is independent of the

momentum q.

If the system is driven out of equilibrium on a more microscopic level, such a fine

tuning of parameters is unnatural. However, thermal symmetry (i.e. equilibrium)

can emerge under coarse graining at long wavelength, e.g. in the vicinity of phase

transitions [17, 19, 87].
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3.4 Universal scaling and critical phenomena

We now briefly introduce the concepts needed in this thesis to determine the uni-

versal critical exponents. For a more detailed introduction to renormalization group

techniques, we refer to the literature, e.g. [6, 88]. Dynamic scaling and RG for

MSRJD path integrals can be found for instance in [36] and [8].

At critical points, or more generally in the presence of gapless excitations, the cor-

relation length of correlation as well as responses diverges. This leads to algebraic

scaling behavior of physical observables. The exponents of this algebraic scaling are

dimensionless numbers that do not depend on any scale, in fact at a critical point

there is no inherent scale, and only have information about dimension and symme-

tries of the system. In the vicinity of a nonequilibrium critical point, we parametrize

the dynamical correlation and response functions of a complex field as

χR(q, t) ∼ q−2+η′+zχ̃R(tqz, iqη−ηc , qr−ν), (3.24)

C(q, t) ∼ q−2+ηC̃(tqz, iqη−ηc , qr−ν). (3.25)

Here, r is the single parameter that is fine-tuned to zero to reach the critical point.

The exponent ν describes how the correlation length diverges, as one tunes to critical-

ity ξ ∼ r−ν . The dynamical critical exponent z fixes how the life time of excitations

τ diverges at the critical point with the correlation length τ ∼ ξz. The anomalous

dimensions η and η′ determine how interactions alter the singularities of correla-

tion and response function from the ones of the bare, Gaussian theory. In thermal

equilibrium they are tied to each other, η = η′ by the fluctuation dissipation theorem

C(ω,q) = 2T

ω
χR(ω,q). (3.26)

The static exponents ν and η fix the universality class in thermal equilibrium and

are solely determined by symmetry and dimension. Relaxational dynamics towards

the equilibrium additionally depends on the potential presence of conserved currents

and require reversible mode coupling of critical and hydrodynamic modes determin-

ing the dynamical exponent z. For transitions breaking an O(N) symmetry, this

is the paradigmatic classification of Halperin and Hohenberg [1]. Far from thermal

equilibrium fluctuation dissipation relations do not hold and the correlations and

response can attain differing anomalous scaling dimensions. A subtle but important

exponent is ηc, which has been identified in [89]. It is a subleading, anomalous scaling

contribution that describes how an effective thermal equilibrium can emerge under

coarse graining. It essentially captures how a violation of the thermal symmetry laid



3.4. UNIVERSAL SCALING AND CRITICAL PHENOMENA 29

out above can vanish under coarse graining. We will see this in more detail in 4.

To determine these universal critical exponents, one thus needs to calculate the full

inverse Green function Γ(2)(ω,p) of the corresponding MSRJD field theory. This

is of course easier said than done. An exact derivation of the full correlations and

responses at any point in parameter space is usually impossible to begin with, but

if the perturbative expansion in loop corrections may be convergent, so that one

can get controlled, approximate results. At the critical point however, the simple

perturbative loop corrections become singular and we need to something more. For-

tunately, the scaling hypothesis comes to aid. We introduce a finite momentum type

scale µ and evaluate at a point in parameter space where r = µ2r̃ with r̃ the di-

mensionless distance from the critical point. Here, the perturbative corrections are

still finite and we can derive how they gradually change when slowly decreasing µ.

After one such small step, we can replace the bare vertices with the new, updated

vertices and perform a small decrease of µ again. Doing this in infinitesimally small

steps yields a set of coupled differential equations, the dimensionfull perturbative

renormalization group β-functions.

µ∂µgi = βi({gi}) (3.27)

In the last step we introduce dimensionless versions of all coupling parameters gi,

gi = µ∆i g̃i such that βi({gi}) = µ∆iβi({g̃i}). This then immediately gives rise to the

dimensionless RG flow equations

µ∂µg̃i = −∆ig̃i + βi({g̃i}). (3.28)

If we now send µ→ 0 to reach the critical point, we arrive at the fixed points of the

dimensionless RG-equations. We remark that in this procedure we keep reinserting

vertex corrections into the series. This corresponds to a resummation of an infinite

set of perturbative diagrams and is sufficient to remedy the infrared singularity of

bare perturbation theory. Since in the vicinity of the fixed point everything scales,

we can infer the scaling exponents the scaling exponents scaling of the couplings and

the corresponding self energy corrections with µ close to the fixed point. We will see

this at work in 4. This procedure is laid out in more detail, for the equilibrium case

in e.g. [88]. We note, that on the one-loop level rescaling with a momentum scale

µ in the presence of a UV cutoff Λ leads to a UV cutoff Λ/µ for the dimensionless

loop integral. This means that the cutoff dependence of the one-loop corrections

reproduces the same β functions. Deriving RG equations from the dependence on

the UV cutoff of one-loop diagrams corresponds to Wilsonian momentum shell RG
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found in many textbooks.



4
Transition from no order to time crystal

We start our detailed discussion of the universal scaling laws in time-crystalline

matter with an analysis the critical properties of the transition between the fully

symmetric and both time crystalline phases, the rotating as well as the oscillating

one. It is marked by a breaking of time translation symmetry. As discussed in

chapter 2, time translation can be broken either into rotations or oscillations, both

phases differ by their symmetry breaking pattern. The main results of the following

field theoretic analysis are:

• The transitions are governed by an O(N)× SO(2) symmetric field theory

• While both transitions are of second order at mean field and above the upper

critical dimension, fluctuations render one them first order below the critical

dimension

• The other transition is governed by a nonthermal fix point at which no effec-

tive thermal equilibrium emerges. This manifests in critical exponents violating

fluctuation dissipation relations and divergent effective scale dependent tem-

peratures.

This chapter is based on [43] but rewritten and rearranged. The perturbative RG

analysis adopts a slightly different scheme without multiplicative counter terms but

31
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is equivalent at the leading order in perturbation theory considered here. All figures

presented in this section were published in [43].

4.1 MF phases + Symmetry breaking pattern

At the transition between the fully disordered and the time-crystalline order, not

only the internal O(N) symmetry breaks spontaneously, but also time translation.

Continuous time translation however does not break down fully, but only to discrete

translations by the period of the order parameter limit cycle. Thus the part of time

translation that is broken is R/Z ∼= SO(2) and the field theory describing the fixed

point of the transition is characterised by an O(N)× SO(2) symmetry.

This can be derived explictly in the vicinity of the transition, i.e. at γ → 0. The

linearised equation of motion reads(
∂2t + (2γ − Z∇2)∂t + r − v2∇2

)
ϕ(x, t) + ξ = 0. (4.1)

The corresponding bare correlation function reads

⟨ϕi(q, t)ϕi(−q, 0)⟩ ∼ D
e−(Z

2
q2+γ)|t|

Z
2
q2 + γ

cos(
√
rt+

v2

2
√
r
q2t), (4.2)

displaying an algebraic divergence as |q| = q → 0 indicating a divergent correlation

length ξ ∼ γ−
1
2 implying a second order phase transition with mean field critical

exponent ν = 1
2
. There remains, however, a finite frequency scale ω0 ∼ √

r that

spoils full scale invariance. This hinders a straightforward RG analysis to incorporate

the effect of interacting fluctuations.

We first have to absorb this scale to distill the correct critical degrees of freedom. To

this end, let us first consider the solutions to the deterministic, linearised equations

of motion for γ ≪ √
r:

ϕ(x, t) = χ1(x, t) cos
√
rt+ χ2(x, t) sin

√
rt (4.3)

The amplitude fields χ1,2(x, t) ∈ RN vary slowly in space ξ ∼ γ−
1
2 and time τ ∼ γ−1.

Furthermore, it is the amplitudes χ1,2 that develop a finite, static expectation value

in the time-crystalline phase. If χ1 ⊥ χ2 the system is in the rotating phase while

χ1 ∥ χ2 marks oscillations along an axis. The external SO(2) time translation

symmetry becomes internal in these degrees of freedom: A shift of the zero point of

time t → t + α according to the definition 4.3 corresponds to a rotation of χ1 and
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χ2 into each other(
χ1

χ2

)
→ R(α)

(
χ1

χ2

)
, where R(α) ∈ SO(2). (4.4)

Thus, a theory in terms of these amplitudes will display an O(N)×SO(2) symmetry.

It can be derived from the original equations of motion by the following procedure.

First, it is useful to pass to a Hamiltonian formulation of the problem by introducing

the conjugate fields Π(x, t) = ϕ(x,t)√
r
. We then insert the dynamic ansatz (4.3) into

the coupled equations of motion, which now are first order in time. This produces

sinodal terms oscillating at frequencies ω = n
√
r, n = 1, 2, 3. Since these oscillations

are much faster than the time scales of the amplitdue fields χ1,2,
√
r ≫ γ, we can

average over them by means of a rotating wave approximation [90]. This removes all

explicit time dependencies and the fast frequency scale
√
r and we arrive at a fully

O(N)× SO(2) symmetric dynamics for the amplitudes χ1,2.

∂tχa +
δHd

δχa
+ ϵab

δHc

δχb
+ ξa = 0, (a, b) ∈ {1, 2} (4.5)

Hl =

∫
ddx

Zl
2

[
(∇χ1)

2 + (∇χ2)
2]+ γl

2
ρ+

gl
8
ρ2 +

κl
2
τ,

with l ∈ {c, d}, ξa two independent noises, and the two O(N) × SO(2) invariants:

ρ = χ2
1 + χ

2
2 and τ = 1

4
(χ2

1 − χ2
2)

2
+ (χ1 · χ2)

2. where the parameters of (4.5) in

terms of the microscopic model (2.2) γc = 0, γd = γ, Zc = v2/2ω0, Zd = Z/2,

gd = u/2, κd = (u′ − u)/4, gc = λ/2ω0 and κc = λ/4ω0. The equivalent MSRJD

action is

S[χ, χ̃] =

∫
t,x

χ̃a(t,x)

(
∂tχa(t,x) +

δHd

δχa(t,x)
+ ϵab

δHc

δχb(t,x)

)
−Dχ̃2

a. (4.6)

For Hc = 0 this model displays a full O(N)×O(2) symmetry with purely dissipative

dynamics. This case is in fact well known as the effective field theory for some

frustrated magnets in equilibrium [91]. There, the additional O(2) symmetry stems

from a pattern formation on very small scales in space rather than in time.

This O(N)×SO(2) symmetric model may break into to different patterns, resembling

the two possible time crystalline orders. The instability of the symmetric phase

above the upper critical dimension, i.e. where the Gaussian fixed point describes the

transition, occurs at γd = 0. If now κd > 0, the system will condense to finite ρ > 0

but τ = 0 which fixes χ2
1 = χ2

2 and χ1 ⊥ χ2, i.e. the system goes into the rotating

phase. This phase breaks O(N) × SO(2) to O(N − 2) × SOd(2), where SO(2)d
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is a combination of an internal O(N) rotation in the plane of the rotation and a

time translation which compensates for this rotation and there is a total of 2N − 3

Goldstone modes corresponding to the broken generators. If however κd < 0, the

relevant saddle point has τ > 0 and since it has to be extremized it will have χ1 ∥ χ2

resembling the oscillating Van der Pol phase. This phase breaks the symmetry group

to O(N − 1) and thus there is a total of N Goldstone modes. N − 1 stem from the

possible rotations of the oscillating axis. Modulations of the phase of the oscillations

along the axis constitute an additional soft mode stemming from time translation

symmetry breaking. In terms of the microscopic parameters of (2.2), 4κd = u′ − u

and thus for u > u′ there is oscillations, while for u < u′ there is rotations. We will

elaborate on the nature of the soft modes deep within the time crystalline phases

and their universal scaling behavior in chapter 6.

Before turning to the renormalization group analysis, we make a further connection

to known models. We can represent the effective dynamics (4.5) by generalised

complex Gross-Pitaevskii equations by introducing the complex vector valued field

ψ = χ1 + iχ2 ∈ CN . In terms of this field the dynamics becomes

(i∂t − Z∇2 + iγ)ψ +
g

2
(ψ ·ψ∗)ψ +

κ

2
(ψ ·ψ)ψ∗ + ξ = 0, (4.7)

with Z = iZd + Zc, g = igd + gc and κ = iκd + κc. Eq. (4.7) is a generalized

noisy Gross-Pitaevskii equation, where the imaginary parts encode the effect of drive

and dissipation on top of the coherent Hamiltonian dynamics. This shows, that

for N = 1, where ψ reduces to a complex scalar and (4.7) to the normal noisy

Gross-Pitaevskii equation, the transition of the noisy Van der Pol equation in d+ 1

dimensions is identical with the one of driven dissipative Bose condensates [89, 92, 93]

and the noisy Hopf bifurcation of classical oscillators [18, 94].

The RG fixed point of this transition displays emergent thermal equilibrium behavior

and falls into the O(2) model A universality class of Halperin and Hohenberg. The

approach of this fixed point in the RG flow however features an additional exponent

describing the emergence of equilibrium conditions under coarse graining, [89, 92, 36].

4.2 Field theoretic set up

We now turn to quantify the impact of interactions on the scaling behavior of the

correlation and response functions at the critical point between symmetric and time

crystalline phases forN > 1, where the action does not reduce to any known problem.

For this sake we adopt the complex representation (4.7) cast into an MSRJD path
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integral whose action reads

S[ψ̃,ψ] =

∫
t,x

ψ̃
∗ · (Zt∂t − Z∇2 + γ)ψ +

g

2
(ψ̃

∗ ·ψ)(ψ∗ ·ψ)

+
κ

2
(ψ̃

∗ ·ψ∗)(ψ ·ψ) + c.c.− 2Dψ̃
∗ ·ψ.

(4.8)

Here, all couplings λiare complex, i.e. λi = λid + iλic with the exclusion of γ. Its

imaginary part γc can always be absorbed by going into a rotating frame or introduc-

ing a chemical potential in the case of a Bose gas. We have also introduced Zt since

without rescaling, loop corrections can produce real as well as imaginary corrections

to this term.

As we have introduced in chapter 3, we can diagnose the emergence of an (effective)

thermal equilibrium on the level of the path integral via the thermal symmetry. Its

presence is equivalent to thermal fluctuations dissipation relations for all n-point

functions of the respective action. Recasting the symmetry operation (3.17) for

complex fields yields [8]

Ψ(x, t) → Ψ(x,−t)∗, Ψ̃(x, t) → Ψ̃(x,−t)∗ + 1

2T
∂tΨ(x,−t)∗, (4.9)

where T denotes the equilibrium temperature. Evidently, the thermal symmetry of

the original fields is broken in the limit-cycle phases [44]. This propagates to the

effective theory, and Eq. (4.9) is not a symmetry of the action (4.8) either. However,

one can allow for a more general thermal symmetry in the presence of coherent and

dissipative dynamics [92],

Ψ(x, t) → Ψ(x,−t)∗, Ψ̃m(x, t) → Ψ̃m(x,−t)∗ +
1

2T
∂tΨ(x,−t)∗,

where Ψ̃m(x, t) = (1 + ib)Ψ̃(x, t),
(4.10)

with b an additional parameter akin to a chemical potential of bosonic degrees of

freedom. The action Eq. (4.8) is now symmetric under Eq. (4.10) if and only if

Hc = bHd (which fixes the parameter b) with temperature T = D/2 in our units.

This implies a fixed ratio between the real and imaginary parts of the couplings,

rK = gc/gd = κc/κd. There is no condition between the real and imaginary parts

of γ = iγd + γc because we can always shift the value of γc → γc + ∆ω via ψ(t) →
exp(i∆ωt)ψ(t), i.e., a redefinition of the finite frequency parameter ω0 as discussed

above. (This means that the corresponding effective thermal behavior is found in a

rotating frame.)

The presence of this symmetry can be rationalized by noting that, if Hc = bHd,
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we can rewrite the Langevin equation (4.7) as

∂tψ

1− ib
+
δHd

δψ∗ +
ξ

1− ib
= 0, (4.11)

and we in fact recover a purely conservative Hamiltonian dynamics that describe

thermal equilibrium with a noise (i.e., ψ̃) rescaled by (1 − ib), in agreement with

Eq. (4.10).

On the bare, Gaussian level, the correlation function of this action is

C(q, t) = ⟨ψiψ∗
i ⟩(q, t) ∝

D e−(Zdq
2+γ−iZcq2)|t|

Zdq2 + γ
(4.12)

which agrees with the original one, (4.2) up to the oscillating scale
√
r which has

been successfully absorbed by the change of frame. At the transition to the time

cristalline phase γ → 0, the correlation and response function obey a scaling form

defining the universal critical exponents of the transition

χR(q, t) ∼ q−2+η′+zχ̃R(tqz, iqη−ηc , qγ−ν), (4.13)

C(q, t) ∼ q−2+ηC̃(tqz, iqη−ηc , qγ−ν). (4.14)

Here, the exponents ν, η and z defining an equilibrium fixed point are complemented

by the nonthermal anomalous dimensions η′ and η. Fluctuation dissipation theorem

dictates that η = η′ in thermal equilibrium and thus a deviation marks a nonthermal

fixed point violating FDR on the level of universal scalings. In the known case of

driven-dissipative Bose condensation, η = η′ at the fixed point and there is an emer-

gent equilibrium with purely dissipative dynamics, rK = 0. However, the subleading

exponent ηc ̸= η describes how coherent contributions stemming from the nonther-

mal microscopics slowly vanish equilibrium emerges upon coarse graining [89, 93].

4.3 RG analysis

4.3.1 Perturbative RG equations

We now want to derive the fluctuation corrections to the critical exponents below

the upper critical dimension. To that end, we first rescale the response field as

ψ̃ → Z−1
t ψ̃ to get rid of the potentially complex prefactor of the time derivative
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GR(q, ω) =

(a) Retarded propagator

GA(q, ω) =

(b) Advanced propaga-
tor

GK(q, ω) =

(c) Keldysh propagator

g
2
(δa,cδb,d + δa,dδb,c) + κδabδcd =

(d) Four-point vertex

Figure 4.1: Diagrammatic representation of the Feynman rules for the perturbation
theory for the complex action (4.8).

which leads to

D̄ = DZ−2
t , Kd =

ZdReZt + Zc ImZt
|Zt|2

, Kc =
ZcReZt − Zd ImZt

|Zt|2
. (4.15)

We do another rescaling ψ̃ → D̄−1/2K
1
2
d ψ̃, ψ → D̄1/2K

−1/2
d and t→ tK−1

d . Further,

we rescale all couplings with the respective constants to arrive at

S[ψ̃,ψ] =

∫
t,x

ψ̃
∗ · (∂t − (1 + irK)∇2 + γ)ψ +

g

2
(ψ̃

∗ ·ψ)(ψ∗ ·ψ)

+
κ

2
(ψ̃

∗ ·ψ∗)(ψ ·ψ) + c.c.− ψ̃∗ ·ψ. (4.16)

1 Here, rK describes the competition between coherent and dissipative dynamics and

is an additional marginal parameter absent in equilibrium. In terms of the original

bare action parameters it reads

rK =
Kc

Kd

=
ZcReZt − Zd ImZt
ZdReZt + Zc ImZt

. (4.17)

We now need to calculate the self energy corrections to scaling at the critical

point. We turn to the perturbative expansion in terms of loop diagrams to leading

order in the coupling κ, g, see Fig 4.1 for the definition of the diagrammatic rules.

We work around the critical value of γ which to leading order in perturbation theory

1The rescaling of the couplings γ, g and κ with the wavefunction renormalisations pops up in
a full RG treatment when connencting the vertex renormalizations back to the couplings. In the
perturbative scheme we adopt here, this only leads to subleading contributions however, and we
drop them right away for brevity.
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is

γc =

(
g
N + 1

2
+ κR

)∫
q,ω

GK(q, ω, γ = 0) =

(
g
N + 1

2
+ κ

)∫
q

1

q2
. (4.18)

and absorb this into a shift of γ, such that the critical point indeed occurs at γ =

0 + O(g2). We now look at the leading order loop corrections for γ as well as the

renormalized vertices gR and κR in the vicinity of the critical point. We are interested

in the scaling of these as γ → 0. For this we introduce a scaling variable µ such

that γ = µ2γ̂,q = µq̂ within the loops and study how the corrections behave as we

send µ → 0. The one-loop contributions are depicted in Fig 4.2. Importantly, the

different contractions of the tensor structures of the O(N) indices lead to factors of

N everytime there is an unconstrained trace over an internal O(N) index within the

loops. All external frequencies and momenta are set to zero and the momentum as

well as frequency integrations can be performed straight forwardly. We first note a

few important points:

• In a perturbative expansion, for all couplings λi = γ, g, κ we have λRi = λi +

O(g, κ) and we can thus interchange them

• The momentum rescaling sends any possibly existing cut off Λ to infinity as

µ→ 0

• All loops carry a UV divergence as ϵ → 0 which manifests as a simple pole.

This is the leading order term in an ϵ-expansion

• Treating both gR and κR as a perturbation is justified if at the RG fixed point

gR, κR = O(ϵ) which we will verify a post.

Using all this information, to leading order in ϵ the loop contributions read

γR =γ −
(
g
N + 1

2
+ κ

)
µ−ϵγ

(4π)2ϵ
+O(κ2, g2, ϵ) (4.19)

gR =g − µ−ϵ

2(4π)2ϵ

(
(N + 3)g

2
(g + g∗) + 2κκ∗ + 2gκ+ g∗κ+ gκ∗ +

1

1 + irK
gg

)
+O

(
(g, κ)3

)
(4.20)

κR =κ− µϵ

2(4π)2ϵ

(
2gκ+ g∗κ+ gκ∗ +

1

1 + irK
(Nκκ+ 2κg)

)
+O

(
(g, κ)3

)
. (4.21)

We now differentiate these corrections with respect to µ to arrive at the dimensionfull
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(a) (b) (c)

(d)

Figure 4.2: Loop diagrams considered in the text. The first three graphs renormalize
the self-energies. (a) and (b) correct the retarded part of the action Γ

(2)

ψ̃∗
aψa

, while (c)

corrects the noise part Γ
(2)

ψ̃∗
aψ̃a

. The one-loop diagrams (d) renormalize the interac-

tion. The red arrows indicate that diagrams with both arrow directions have to be
considered.

β-functions

µ∂µγ
R =

(
g
N + 1

2
+ κ

)
µ−ϵγ

(4π)2
(4.22a)

µ∂µg
R =

µ−ϵ

(4π)2

(
(N + 3)g

2
(g + g∗) + 2κκ∗ + 2gκ+ g∗κ+ gκ∗ +

1

1 + irK
(g)2

)
(4.22b)

µ∂µκ
R =

µ−ϵ

(4π)2

(
2gκ+ g∗κ+ gκ∗ +

1

1 + irK
(Nκκ+ 2κg)

)
. (4.22c)

These flow equations can be rendered dimensionless by the scaling Ansatz γ =

µ2γ̂, g = µϵĝ, κ = µϵκ̂ and by identifying γ̂, ĝ, κ̂ with γ̂R, ĝR, κ̂R at leading order in

perturbation theory. This identification, is where the nontrivial difference between

simple one-loop perturbation theory and perturbative RG flow equations arises. By

integrating the flow only infenitesimally and reinserting the result into the perutrba-

tive loop expansion, we effectively resum a whole class of diagrams [88]. We arrive
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at the dimensionless one-loop RG beta functions

βγ = µ∂µγ̂ = −2γ̂ +

(
g
N + 1

2
+ κR

)
γ̂

(4π)2
(4.23)

βg = µ∂µĝ = −ϵĝ (4.24)

+
1

(4π)2

(
(N + 3)ĝ

2
(ĝ + ĝ∗) + 2κ̂κ̂∗ + 2ĝκ̂+ ĝ∗κ̂+ ĝκ̂∗ +

1

1 + irK
ĝ2
)

βκ = µ∂µκ̂ = −ϵκ̂+
1

(4π)2

(
2ĝκ̂+ ĝ∗κ̂+ ĝκ̂∗ +

1

1 + irK
(Nκ̂2 + 2κ̂ĝ)

)
. (4.25)

We are interested in the limit µ → 0 which is given by the fixed points βi = 0 and

the scaling close to the fixed points. The fixed point for γ̂ will always be γ̂∗ = 0.

We can already see, that the fixed point for the interactions κ̂ and ĝ will be of

order ϵ justifying their perturbative treatment close to the upper critical dimension.

However, at one loop level we cannot fix rK and thus we need to including leading

two-loop corrections to determine its own beta function.

To that end, we consider the corrections to the marginal action parameters Zt, Zd,

Zc, D, which we all rescaled at the level of the bare action. After loop corrections,

they thus read

Zt = 1 + i∂ωΣ
R(ω = 0,q = 0) (4.26)

Zd = 1− Re ∂q2ΣR(ω = 0,q = 0) (4.27)

Zc = rK − Im ∂q2ΣR(ω = 0,q = 0) (4.28)

D = 1− ΣK(ω = 0,q = 0) (4.29)

where ΣR denotes the retarded part of the self energy and ΣK the noise part. To

this end we need to calculate the sunset loop integrals depicted in Fig. 4.2. The

corresponding frequency and momentum dependent contributions to the retarded

inverse propagator read

∆Γ(1,1)(ω,p) =− (g2
N + 1

2
+Nκ2 + 2gκ)I1(ω,p)

− 1

2
(gg∗

N + 1

2
+ κκ∗ + gκ∗ + g∗κ)I2(ω,p)

(4.30)
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with

I1(ω,p) =

∫
Q1,Q2

GR(−Q1 −Q2 + P )GK(Q1)G
K(−Q2) (4.31)

I2(ω,p) =

∫
Q1,Q2

GR(Q1 +Q2 − P )GK(Q1)G
K(Q2). (4.32)

where we used the shorthand notation Qi = (ωi,qi). Similarly, the sunset diagram

renormalizing the

∆Γ(2,0)(0, 0) =

(
g̃g̃∗

(N + 1)

2
+ κ̃κ̃∗N + g̃κ̃∗ + κ̃g∗

)
×∫

Q1,Q2

(
GK(−Q1 −Q2)G

K(Q1)G
K(−Q2) +GK(Q1 +Q2)G

K(Q1)G
K(Q2)

)
(4.33)

The frequency and momentum integration itself coincides with the ones done in

[94, 93] and we refer for there for the detailed calculation. To leading order in ϵ we

thus arrive at

∂q2ΣR =
µ−2ϵ

2ϵ(4π)4

[
(g2

N + 1

2
+Nκ2 + 2gκ)

2− irK
4(3− irK)

− 1

2
(gg∗

N + 1

2
+ κκ∗ + gκ∗ + g∗κ)

1− irK
6− 2irK

]
, (4.34)

i∂ωΣ
R =

µ−2ϵ

(4π)42ϵ

[ log ( 4
(3−irK)(1+irK)

) (
κg∗ + gκ∗ + 1

2
|g|2(N + 1) +N |κ|2

)
2(1− irK)2

−
log
(

4
3−irK

) (
1
2
g2(N + 1) + 2gκ+ κ2N

)
(1 + irK)2

]
(4.35)

for the spectral parts and

ΣK =
µ−2ϵ

(
1
2
g̃g̃∗(N + 1) + κ̃κ̃∗N + g̃κ̃∗ + κ̃g∗

)
8ϵ(4π)4 (1 + r2K)

[
3 log

(
16

(9 + r2K)(1 + r2K)

)
+2rK

(
arctan(rK) + arctan

(rK
3

)) ]
(4.36)

for the noise level. We note that the spectral parts are only dimensionless if rescaling

the external momenta and frequencies with their canonical dimension, i.e. p =

µp̃, ω = µ2ω̃. The respective dimensionless RG-flow derivatives µ∂µZt, µ∂µ(Zd+iZc)

and µ∂µD can now straightforwardly obtained by first taking µ derivatives of the

self-energy contributions and then plugging in the dimensionless couplings, as before.
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We are left to find the RG β-function for rK . To that end, we need to rescale the

full effective action as we did in the beginning with the bare action and use (4.17)

to find at leading order in perturbation theory, that

βrK ≡ µ∂µrK = µ∂µZc − rKµ∂µZd − (1 + r2K)µ∂µ ImZt. (4.37)

Summing all the respective β- functions is straightforward but however yields a very

long expression whose exact form does not give any insight to the reader but can be

handled easily with the computer algebra tool of choice.

4.3.2 Fixed point structure

We are now finally in a position to derive the RG-fixed points describing the tran-

sition between the disordered phase ⟨ϕ⟩ = 0 and the time-crystalline phases with

rotating or oscillating long range order. To that end we need to solve for the zeroes

of the RG flow equations (4.22) and (4.37) . While the fixed point of βγ is always

γ∗ = 0, the remaining system of coupled equations cannot be solved analytically but

only numerically.

First, we consider the equilibrium fixed point as a limiting case. As shown above,

an emergent equilibrium emerges, if at the fixed point there is an effective thermal

symmetry, which is the case if

rK =
gc∗
gd∗

=
κc∗
κd∗

. (4.38)

Restricting oneself to that plane in parameter space, i.e. fixing gc = rKgd and

κc = rKκd, then solving the one-loop flow equations βg, βκ for rK dependent fixed

points gd∗ and κd∗ and plugging this into βrK = 0 yields

β∗(rK) =
1

2

(
4g̃∗dκ̃

∗
d + (N + 1)g̃∗2d + 2Nκ̃∗2d

)
f(rK), (4.39)

f(rK) =
(
rK log

(
16

(r2K + 1)(r2K + 9)

)
(4.40)

+
(
r2K − 1

)
arctan (rK) +

(
r2K + 3

)
arctan

(rK
3

))
.

If we set N = 1, where we expect to recover the case of the noisy, complex Gross

Pitaevskii equation or Hopf-bifurcation, we indeed do [93]. Since f(rK) is monoton-

ically increasing and crosses zero at rK = 0, all stable equilibrium fixed points have

rK∗ = gc∗ = κc∗ = 0, which entails they display an emergent O(N)×O(2) symmetry
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Figure 4.3: RG flow diagram of the O(N)× SO(2) model. In the equilibrium plane
there is the Guassian fixed point G, the O(2N) symmetric Wilson-Fisher fixed point
WF at gc = κc = κd = 0 and the two O(N) × O(2) equilibrium fixed points
C±. The equilibrium plane is shaded in grey. Infinitesimal deviations out of the
equilibrium plane from the Gaussian fixed point are however enough to drive the
flow to the stable, complex conjugated nonthermal fixed points N±. Figure was
originally published in [43]

rather than O(N) × SO(2). The universality class of O(N) × O(2) also describes

transitions in some frustrated magnetic systems, and we recover the leading order in

ϵ flow equations in the rK = 0, equilibrium plane [95].

These equilibrium fixed points are however not stable if one allows for deviations

from equilibrium. The full stable fixed point comes in a pair of complex conjugated

fixed points which have the same critical exponents and importantly do not obey

the thermal constraint (4.38). Thus, the O(N) × SO(2) theory is one of the rare

cases, where deviations from equilibrium constitute a relevant perturbation out of

the equilibrium plane, and coarse graining will enhance nonequilibrium effects rather

than washing them out.

At the fixed point, we have κ∗d > 0 for all N > Nc ≈ 1.6 and it therefore describes the

transition between the symmetric phase and the rotating phase. There is no fixed

point left, that describes the transition between symmetric and oscillating phase, a

signature of a fluctuation induced first order phase transition [79].

At the fixed point, we can now derive the critical exponents from the RG flow

equations straightforwardly. The rescalings used above together with the scaling

ansatz (4.13) imply

ν−1 = −µ∂µ ln(γ̂), η = µ∂µ lnZψ, z = 2− µ∂µ lnK
−1
d ,

η′ = µ∂µ ln(Zt) + µ∂µ lnK
−1
d , ηc = η − µ∂µ ln(rK).

(4.41)
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N Phase ν−1 − 2 η z − 2 η′ ηc

22, eq. Rot. −27/50ϵ 0.0207ϵ2 0.0207cϵ2 η −0.0207c′ϵ2

22, neq. Rot. −0.942ϵ −0.142ϵ2 0.0055ϵ2 (0.00030 + 0.018i)ϵ2 η

3, eq. None X X X X X

3, neq. Rot. −1.27ϵ −1.49ϵ2 −0.017ϵ2 (−0.035 + 0.067i)ϵ2 η

2, eq. vdP −ϵ/2 ϵ2/48 cϵ2/48 η −c′ϵ2/48
2, neq. Rot. −0.853ϵ −0.353ϵ2 0.0072ϵ2 (0.010 + 0.0070i)ϵ2 η

Table 4.1: Critical exponents for different values of N in- and out-of-equilibrium to
lowest nontrivial order in ϵ. The equilibrium static results are reproduced, see [95].
The column “Phase” indicates the transition into which phase (rotating or Van der
Pol (vdP)) is second order, while the other one is fluctuations induced first-order.
For the N = 3 equilibrium case, no attractive fixed point exists, and both phase
transitions are first-order. We use c = (6 log(4/3) − 1) and c′ = (4 log(4/3) − 1).
This table was originally published in [43]

where all the µ derivatives are evaluated at the fixed point and to leading order, i.e.

we always use that Zd = ReZt = D̄ = 1+O(ϵ2), Zc = rK+O(ϵ2) and Im(Zt) = O(ϵ2)

and then plug in the one-loop β function for ν and the two-loop corrections for all the

anomalous exponents. Since the fixed point values at leading order are only available

numerically, the same holds for the critical exponents. The results are summarised

in table 4.1.

Note, that at the stable fixed points Im η′ ̸= 0. This indicates of oscillatory

behavior of the RG flow towards the fixed point. Remarkably, η ̸= Re η′, i.e. the

anomalous scaling corrections to dynamical correlations and responses differ. This

is in violation of fluctuation dissipation relations. If one in turn uses FDR to define

an effective scale dependent temperature

Teff =
ωC(ω,q)

ImχR(ω,q)
(4.42)

it would diverge as Teff ∼ qRe η′−η at the phase transition between symmetric and

rotating phase. Such an effective temperature can in principle be measured by probes

for the frequency dependence of the mode occupation, for instance comparing Stokes-

and Anti-Stokes-peaks in Raman spectroscopy. In this way the nonthermal nature

of the phase transition is directly observable experimentally. Altogether, this leads

to the phase diagram depicted in the introduction Fig. 2.3.



5
Critical Exceptional Points

After determining the universality class of the transition between the symmetric

and the limit cycle phase, we turn to the transition between statically ordered and

rotating phase in this chapter. To that end we focus on the case ofN ≥ 2 components

and the transition into the rotating phase. As outlined in the introduction, this

transition occurs through a so called critical exceptional point. This puts us in the

position to determine the universal behavior associated to a CEP. The main results

are

• Critical exceptional points lead to superthermal occupation of long wavelength

modes and nonanalytic spectra.

• The superthermal mode occupation melts down any order before reaching the

CEP below for dimensions.

• Interactions and the nonanalytic spectrum can lead to a fluctuation induced

first order phase transition before the meltdown of order.

• The competition of meltdown and first order transition is determined by an

emerging interaction scale

The contents and figures of this chapter have been published in a modified version

of sections IV-VI of [44].

45
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5.1 EPs and CEPs

Before delving into the analysis of loop contributions of critical fluctuations at the

transition, that we have claimed to be a critical exceptional point in the introduction,

let us define what we exactly mean by that word in this context and how it fits into

the discussion of exceptional points in nonhermitian systems.

5.1.1 Modes, dispersions and critical points

First, we briefly fix some further basic conventions and nomenclature for the remain-

der of this work. We can access the mode spectrum around a given stable state φs
by linearizing the coarse grained equation of motion around its solution∑

j

ΓRij(q, t)
∣∣∣
φ=φs

δφj(q, t) = 0, (5.1)

where we have assumed that the equation of motion is Markovian, i.e. depends only

on one time variable, as it is the case for this work. The set of linearly independent

solutions
(
δφα(q, t)

)
α=1,..

are the excitation modes. Put differently, the modes span

the kernel of the inverse Green function in time and momentum space ΓR(q, t). If

ΓR(q, t) is not explicitly time dependent but only contains time derivative operators,

the modes usually take the δφα(q, t) = e−iωα(q)tδφα(q, 0), where ωα(q) are the mode

dispersions. The dispersions are also the roots of det ΓR(ω,q) = 0 and equivalently

the poles of the retarded Green function in frequency space. The real part of a

dispersion gives the frequency or inverse period at which the corresponding mode

oscillates, while the imaginary part yields how fast the mode dissipates, i.e. its

inverse life time. See also Fig. 5.1 for an illustration.

For the solution φs to be stable, no dispersion can have a positive imaginary

part since this corresponds to an exponentially growing fluctuation. Therefore, an

instability towards a new phase occurs if one tunes some parameter such that a

dispersion is at the verge of moving into the upper complex half plane, i.e. when the

imaginary part of the dispersion goes to zero. The system reaches a critical point

and a continuous phase transition takes place, indicated by a divergence of e.g. the

two-point correlation function at equal-time GK(q, t = 0). Typically, continuous

transitions occur for a vanishing dispersion ω(q) = 0 but an instability at finite

frequency can however occur, too. This corresponds, for example, to the cases I0

(qc = 0) and III0 (qc ̸= 0) in the classification of instabilities in noiseless systems

by Cross and Hohenberg [2].

In the simplest case of a single scalar field variable, the linearized renormalized
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equation of motion at low frequencies reduces to the damped harmonic oscillator(
∂2t + 2γ̄(q)∂t + r̄(q)

)
δφ(q, t) = 0 (5.2)

or, equivalently

ΓR(q, ω) = (−ω2 − 2γ̄(q)ω + r̄(q)). (5.3)

The modes are

δφ1,2(q, t) = e−iω1,2(q)t (5.4)

with dispersions

ω1,2(q) = −iγ̄(q)±
√
r̄(q)− γ̄(q)2, (5.5)

As an example at the mean-field level, we have r(q) = v2q2 + r and γ(q) = γ + Z
2
q2

using (2.2).

Stability, i.e. a finite lifetime for both modes, demands that r > 0, γ > 0. If

one tunes the mass term r to zero, one dispersion becomes gapless ω1 = 0 while

the other remains decaying ω2 = −2iγ̄(q). The first becomes unstable upon tuning

the mass r negative. In our case, we reach the critical point describing the phase

boundary A of the phase diagram Fig. 2.1. Tuning the damping γ negative also

induces an instability. However, it does not proceed through a point where the

dispersions vanish in the complex plane, but both dispersions maintain a finite real

part ω1,2 = ±√
r at γ = 0. It corresponds to the phase transition B in Fig. 2.1, as

discussed in chapter 4.

5.1.2 (Critical) exceptional point

We first consider the case of a single damped oscillator, N = 1. A special point occurs

when there is a wavevector q∗ at which γ̄2(q∗) = r̄(q∗) and both formerly indepen-

dent modes coalesce. At this point a new linearly independent solution emerges:

δφEP (q
∗, t) = te−iω(q

∗)tδφEP (q
∗, 0). This marks an exceptional point. The damped

harmonic oscillator’s EP separates a purely dissipative, overdamped regime, where

both dispersions are imaginary without a real part, and an underdamped regime

where excitations oscillate due to a finite real part of their dispersions. Clearly, at

an EP the square root appearing in (5.5) vanishes and therefore the EP occurs at a

nonanalyticity of the dispersion relations.
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Equivalently, it is also possible to rewrite Eq. (5.2) as a first-order linear differ-

ential equation of the form ∂tδφ =Mδφ. An exceptional point, i.e. a coalescence of

modes, is then defined as a point in parameter space where the 2 × 2 matrix M is

not diagonalizable in internal indices, making contact with the more usual definition

of EP [46, 50, 57].

We say that there is a critical exceptional point, if the dispersion at which the

EP occurs is gapless, i.e. when γ̄(q∗) = r̄(q∗) = 0. For q∗ = 0, we then have, at the

CEP,

ΓR(q∗ = 0, ω) = −ω2, (5.6)

underlying the necessity to keep the second order time derivative. We emphasize

again that a CEP is hence a property of the full renormalized inverse retarded Green

function.

We now generalize the notion of a CEP to the dynamics of N component fields.

A full retarded Green function that can be diagonalized in field space,

ΓRij(Q) = ΓRi (Q)δij, (5.7)

where ΓRi are of the form (5.3) therefore displays a CEP if and only if the full

diagonalized inverse Green function has at least one element ΓRi which verifies (5.6).

We show later that the case of a CEP occurring through a nondiagonalizable Green

function can always be mapped to this case in the vicinity of the CEP. Since the

dynamics is diagonal and thus decoupled, we now drop the index i and concentrate

on the pair of modes becoming critical and exceptional simultaneously. In our case

at mean-field, the inverse Green function is diagonal and all its elements take the

form

ΓR(q, ω) = −ω2 − Ziωq2 + v2q2, (5.8)

and the dispersions at the CEP are

ω1,2(q) = −iZ
2
q2 ± v|q|. (5.9)

Reaching a CEP generically requires two fine tunings, both γ̄(q = 0) and r̄(q = 0)

have to be tuned to zero. We will show however in Sec. 5.2 that the transition between

the static and the rotating phase constitutes a CEP. There is only one fine tuning

necessary as the vanishing of r̄(q = 0) for phase fluctuations in the static ordered

phase is guaranteed by Goldstone’s theorem. The idea to generate CEPs with only
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one fine-tuning by considering systems with a Goldstone mode was first put forward

in [66, 28].

5.1.3 Superthermal mode occupation

The discussion of (critical) exceptional points above makes it clear that these are

spectral properties, related to the retarded Green function. Now, we study the

consequences of such points for the statistical properties, i.e. mode occupation num-

bers. These are encoded in the full equal-time correlation function or Keldysh Green

function. The CEP is signalled by a vanishing of two coalescing modes ω1,2(q) as

q → 0. Near the CEP, the Keldysh Green function associated to the coalescing

critical modes takes the form

GK(Q) =
2D̄(Q)

|ω − ω1(q)|2|ω − ω2(q)|2
, (5.10)

where D̄(Q) ≡ ΓK(Q) is a generic frequency and momentum dependent noise kernel

of the respective field direction.

To determine the physics at low frequencies and momenta, we can restrict the

discussion to D̄(Q → 0) ≡ D̄, which absent fine tuning is larger than zero, corre-

sponding to a generic Markovian noise level 1.

This general property of a CEP reproduces the structure pointed out in [66].

There are two poles at ω = 0 that multiply, causing a significantly enhanced infrared

divergence of the correlation function, irrespective of the precise forms of the disper-

sions. This can be easily seen by inspecting the equal-time Keldysh Green-function

obtained from (5.10),

GK(q, t = 0) ∼ D̄

γ̄(q)r̄(q)
, (5.11)

since both γ and r go to zero precisely at the CEP.

With the mean-field dispersions (5.9), the equal-time correlation function is given

1The constant noise level also distinguishes the CEP from the Goldstone fixed point of models
with conserved currents such as in the Hohenberg-Halperin E, F and G [1, 36], where the spectrum
of the Goldstone excitations in the ordered phase coincide with that of a CEP. However, their
noise kernel has to vanish as D(q) ∼ q2 due to conservation laws and thus there is no enhanced
fluctuations as at a CEP transition. These scaling regimes do not describe transitions but the fixed
points of symmetry broken phases itself.
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(a) (b)

(c) (d)

Figure 5.1: Position of the poles of the retarded response of a scalar field in the
complex plane. The dispersions are parametrized as ω1,2 = − i

2
(2γ + Zq2) ±√

r + v2q2 − (2γ + Zq2)2/2, with v = Z = 1. a) Purely underdamped motion
r = 2γ, all poles have a finite distance from the real and imaginary axis. b) Un-
derdamped excitations exist, constituting a line of poles on the imaginary axis. The
gap between real axis and the pole spectrum remains finite r = 0.4γ. At large
enough wavevectors, there is an EP separating the underdamped from the over-
damped regime. It can be clearly detected by the pole lines with finite real part
terminating nonanalytically in the line of overdamped excitations. c) Gapless (crit-
ical) excitation spectrum, 2γ > 0, r = 0. The line of underdamped poles touches
the zero in the complex plane. At finite damping, a gapless spectrum always has
an underdamped regime at low momenta. d) CEP spectrum, 2γ = r = 0. The EP,
where the underdamped motion terminates sits at the zero in the complex plane. At
finite momenta, all excitations are underdamped. Real and imaginary parts of the
dispersions scale differently with momentum.
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by

GK(q, t = 0) ∼ D

q4
, (5.12)

which has a significantly stronger infrared divergence as in the vicinity of a usual

(Gaussian) critical point where GK(q, t = 0) ∼ q−2 e.g. at the phase boundary A

and B of the phase diagram Fig. 2.1, where respectively r and γ are fine-tuned to

0. In particular, it is superthermal: the fluctuation-dissipation relation (see next

subsection) implies generally that GK(q, t = 0) ∼ q−2. This is a hint that a CEP is

a genuine non-equilibrium feature.

5.1.4 Critical Exceptional Points of N-component fields

We now elaborate on how any CEP occurring in noisy Markovian dynamics of a

vector valued field can be mapped to the damped harmonic oscillator case discussed

above.

We first note that we can always map a system of N differential equations of

second order in time derivatives into a set of 2N first order differential equations

by introducing π = ∂tϕ as an independent variable. In physics terminology we

pass from a Lagrangian to a Hamiltonian representation. Using this, the (diagonal)

linearized equation of motion or inverse Green function ΓR(q, t) of the N -component

damped harmonic oscillator discussed in 5.1.2, can always be written as

(∂t1 +M(q))δΦ = 0 (5.13)

where Φ is a 2N component vector and 1 and M(q) are 2N × 2N matrices. The

eigenvalues of M(q) are the dispersions iωα(q) and the corresponding eigenvectors

the 2N linearly independent modes. In this representation an exceptional point (EP),

where two modes coalesce, occurs if and only if M(q) is not diagonalizable at q∗,

and therefore has at least one 2× 2 Jordan block

M(q∗) =

(
iωEP 1

0 iωEP

)
. (5.14)

The dynamics of excitations close to a CEP at q∗ = 0 is governed by an inverse

Green function that is block diagonal with blocks that are at most of size 2× 2 and



52 CHAPTER 5. CRITICAL EXCEPTIONAL POINTS

with at least one block taking the form

(
∂t12 +

(
iω1(q) 1

0 ω2(q)

))
δΦCEP = 0 (5.15)

where δΦCEP are the fluctuations contributing to the CEP and ω1(q = 0) = ω2(q =

0) = 0. This structure also implies the superthermal mode occupation in the presence

of generic Markovian noise as shown in [66].

Reciprocally, by reverting this procedure, any system that has a CEP arising

from the structure (5.15) can generically be brought back to the form of a damped

harmonic oscillator with a diagonalizable inverse Green-function even in presence of

noise. This done explicitly in the discussion of nonreciprocal field theories in 7.3.

5.1.5 CEP exists only out-of-equilibrium

Here we show that indeed a CEP cannot occur at thermal equilibrium. In that

circumstance, the full correlation and response functions obey a FDR, which reads

for the two-point functions (kB = 1)

GK(Q) =
2T

iω

(
GR(Q)−GA(Q)

)
. (5.16)

In thermal equilibrium with global detailed balance, FDRs have to hold not only

for the full, renormalized two-point Green functions, but also for all higher n-point

correlations and responses as well. As we have discussed in chapter 3.3, this is

equivalent to a symmetry of the MSRJD action. Requiring thermal equilibrium at

a temperature T of the quadratic sector thus amounts to

T =
D̄(q)

2γ̄(q)
(5.17)

where γ̄(q) is the renormalized momentum dependent damping

γ̄(q) ≡ ∂−iωΓ
R(ω = 0,q) (5.18)

and D̄(q) the renormalized noise level

D̄(q) ≡ ΓK(ω = 0,q). (5.19)
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We have argued in chapter 3.3, that typically, this defines an effective temperature

at low scales, where both γ̄ and D̄ are some finite constants.

This reasoning however breaks down as a matter of principle as one tunes γ

through zero entering the rotating phase. Intuitively, this phase is clearly nonther-

mal, as it has a time dependent stable state and such a perpetuum mobile cannot

occur in equilibrium. This behavior should extend to phase boundaries of the rotat-

ing phase, and therefore in particular at a CEP.

More formally, for the damped harmonic oscillator (5.3) with γ̄(q = 0) ̸= 0,

it is always possible to realize the thermal symmetry (3.17) with a temperature

T = D(q)
2γ(q)

. But, by definition of a CEP where the full renormalized damping at

zero momentum is tuned to zero, γ̄(q → 0) ∼ |q|α with α > 0, in the presence of

a finite noise level D̄(q → 0) ∼ D̄, the dynamics has to break thermal equilibrium

conditions. Indeed, (5.17) does not hold and the quadratic action does not respect

thermal symmetry at a CEP.

5.2 Gaussian Theory and Symmetry restoration

Spectra

After these general considerations about modes EPs and CEPs, we now turn back to

the transition from ordered to rotating phase. To that end, we analyse the linearised

spectra close to the transition. We write the action of fluctuations around their re-

spective mean-field solutions φs which also serve as a low frequency, long wavelength

description of the phases. That is, we expand the action to quadratic order

S[ϕs +∆ϕ, ϕ̃] ≈
∫
x,t

(∆ϕ(x, t), ϕ̃(x, t))G−1
0

(
∆ϕ(x, t)

ϕ̃(x, t)

)
. (5.20)

We note that, by reversing the MSRJD construction, this corresponds to expanding

the Langevin equation to linear order around a respective mean-field solution. This

allows us to access the spectrum of dispersions ωi(q), to derive the inverse bare Green

function G−1
0 of fluctuations in the various phases, and to identify the CEPs and their

properties. In the static phase, we pass to a phase-amplitude representation

ϕ =
√
ρ0 + δρ exp(

N∑
i=2

θiT1,i)ê1,

ϕ̃ =
√
ρ0 exp(

N∑
i=2

θiT1,i)χ̃, (5.21)



54 CHAPTER 5. CRITICAL EXCEPTIONAL POINTS

where χ̃ ∈ RN is parametrized as χ̃ = (δ̃ρ, θ̃2, . . . , θ̃N), and expand to quadratic

order. The amplitude sector is

S0
ρ = ρ0

∫
x,t

ρ̃(∂2t + (δ + u′ρ0 − Z∇2)∂t

+ 2λρ0 − v2∇2)ρ−Dρ̃2,

(5.22)

with the relative amplitude fluctuation ρ = δρ
2ρ0

while the Gaussian fluctuations of

the phases θ2, ..., θN are described by

S0
θ = ρ0

∫
x,t

θ̃i(∂
2
t + (δ − Z∇2)∂t − v2∇2)θi −Dθ̃2i . (5.23)

This action also serves as a starting point for an effective long wavelength theory

describing the transitions out of the statically ordered phase.

Using the phase-amplitude description of the broken phases, we can approach the

transition from the static into the rotating phase. It occurs upon tuning the effective

damping

δ = 2γ − ur

λ
(5.24)

through zero. This marks it as a CEP as defined in Sec. 5.1.1, since the modes

becoming critical have no mass-like contribution to begin with due to their Goldstone

nature.

Furthermore, the amplitude fluctuations remain gapped and damped for any

u′ > 0

ωρ(q = 0) = −iδ + u′ρ0
2

± (8λρ0 − (δ + u′ρ0)
2)1/2

2
. (5.25)

They can thus be discarded from an effective long wavelength description. See

App. 8.3 for a discussion of the transition into the oscillating phase at u′ < 0.

At the phase transition, there is a ’condensation’ of ∂tθi = E (i.e., the angular veloc-

ity picks up a finite value), while the choice which mode θi starts to rotate is made

spontaneously. The equal-time correlator of the phase fluctuations

Cθ(t = 0,q) =
D

ρ0v2q2(Zq2 + δ)
(5.26)

displays an enhanced divergence ∼ q−4 at δ = 0, as expected in the vicinity of a

CEP.



5.2. GAUSSIAN THEORY AND SYMMETRY RESTORATION 55

This CEP transition does not fall into any known universality class a priori. We

thus first discuss the scaling behavior of the linear fluctuations in the vicinity of the

CEP in more detail. This discussion is exact above the upper critical dimension of

the transition, which we determine also to be dc = 4 in Sec. 5.3. There, we will also

analyze the problem beyond Gaussian fluctuations.

In the following, v sets the highest momenta, i.e. we work at q ≲ v, where our

effective field theory at low momenta is valid. We are also close to the CEP i.e. we

work with δ1/2 ≲ v, Z. In this regime for finite damping δ > 0, the dispersions of

the phase fluctuations are

ω1,2(q) = − i

2
(δ + Zq2)±

√
v2q2 − δ2

4
. (5.27)

There is thus a non-critical EP at a finite momentum scale qEP = δ
2v2

. It only affects

the dynamics, separating overdamped, purely dissipative modes from underdamped,

propagating modes. This translates to a length scale

ξEP ∼ v/δ, (5.28)

separating both regimes. In contrast to a critical length scale, it does not signal the

divergence of a correlation function. The correlation function displays an enhanced

divergence ∼ q−4 as expected for a CEP. The additional divergence as the damping

gap δ is tuned to zero generates is indeed not controlled by ξEP, but by a divergent

length scale

ξc = δ−1/2, (5.29)

indicating a critical exponent

ν =
1

2
(5.30)

for the mean-field transition.

This critical length scale diverges less quickly than the exceptional length scale

ξEP close to the transition, so that in the critical regime x ≪ ξc fluctuations are

underdamped. The critical regime is therefore found for momenta satisfying

q ≫ δ
1
2 ≫ qEP. (5.31)

At the CEP δ = 0 however, the coexistence of dissipation and propagation persists
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Figure 5.2: The dispersions of the phase fluctuations close to the critical exceptional
point. a) and c) show the imaginary (dissipative) and real (propagating) part of
the dispersion at a finite damping with δ/v2 = 1. The exceptional point separating
purely dissipative dynamics from underdamped motion is clearly visible. At vanish-
ing momenta one mode becomes gapless marking its Goldstone nature, whereas the
other mode maintains a gap δ. As one approaches the CEP δ = 0 shown in b) and
d), the egg-shaped structure in the dissipative part shrinks to zero, both modes dis-
sipate as ∼ q2 and display a linear scaling in their real parts, indicating propagation
at a constant velocity in real space.

down to vanishing momentum, where

ω1,2 = − i

2
Zq2 ± v|q|, (5.32)

see Fig. 5.2. The linear scaling of the real part of the dispersion in momentum space

will manifest as spherical propagation of excitations at constant velocity v, whereas

the dissipative part will lead to diffusive decay in real space around the mean position

|x| = vt. This is also seen by inspecting the correlation function in (q, t) space

GK(q, t) ∝ D

v2Zq4
exp− 1

2
Zq2t cos(|vqt|). (5.33)

Hence, there is no unique dynamical z exponent: the lifetime of a critical fluctuation

scales as τd ∼ q−2 at the CEP, and its oscillation period in momentum space as

τc ∼ q−1. These two scaling behaviors coexist, controlling different properties of the

dynamics of excitations, and inhibit the existence of a homogeneous scaling solution

of the action and a true scale invariance of correlation functions even at the Gaussian

fixed point 2.

2One may then be tempted to keep only the lowest order power in momenta in the disper-
sion (5.32) arriving at a dynamical exponent z = 1. This would amount to neglecting the damping
term Z in Eq. (5.23). This is non-physical, because the system would only receive energy from the
noise without any dissipation. More formally, Eq. (5.33) would be infinite for Z → 0. We are thus
forced to keep the lowest power in momenta for both imaginary and real part of the dispersions.
This has to be contrasted with the quantum case, where there is no dissipation but where also the
noise vanishes as |ω| → 0.
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5.2.1 Symmetry Restoration

We now provide a simple argument stating that the enhancement of fluctuations in

the vicinity of a CEP renders it impossible to reach below four dimensions if interac-

tions are not taken into account. We will see that the fluctuations either restore the

full symmetry before the CEP is reached, or render the transition between statically

ordered and rotating phase first order. We use the phase-amplitude decomposi-

tion (5.21). As we have seen, the phase fluctuations become critically exceptional at

the transition, and the static correlation function is

⟨θi(q, t0)θj(−q, t0)⟩ = GK
0,ij(q, t = 0) ∼ Dδij

ρ0v2q2(Zq2 + δ)
. (5.34)

The CEP is reached as the damping δ → 0. This implies in the Gaussian approxi-

mation

GK
θ,ii(q, t = 0)

δ→0−−→ 1

q4
. (5.35)

Thus, the Gaussian correlation function GK
0,ii(x = 0, t = 0) develops an infrared

divergence in d < 4 spatial dimensions in the vicinity of the CEP, which is regularized

by the damping:

⟨θi(x0, t0)θi(x0, t0)⟩ = GK
0,ii(x = 0, t = 0) = C

δ
d−4
2

ρ0
. (5.36)

Here C > 0 is a non-singular constant that depends on the dimension and the ultra-

violet cutoff of the theory. Its exact value is not important for our argument, we only

rely on the fact that it is positive and finite. We see that when the damping van-

ishes, the Gaussian fluctuations of the Goldstone modes diverge and would destroy

any order. Indeed, neglecting amplitude fluctuations,

⟨φ(x0, t0)⟩ =
√
ρ0⟨exp

( N∑
i=2

θi(x0, t0)T1,i

)
⟩ê1 (5.37)

=
√
ρ0 exp

(
2tr⟨θi(x0, t0)θj(x0, t0)⟩T1,iT1,j

)
ê1

=
√
ρ0 exp

(−2(N − 1)Cδ
d−4
2

ρ0

)
ê1

δ→0−−→ 0,

and the enhanced Gaussian fluctuations due to the CEP alone destroy the order

parameter before one can reach the CEP at δ = 0 below four dimensions. The order

parameter is suppressed when the argument of the exponential in Eq. (5.37) is of



58 CHAPTER 5. CRITICAL EXCEPTIONAL POINTS

order one, i.e. at a symmetry restoring scale

δsym
Z

∼
(
v2Z

D
ρ0

) 2
d−4

, (5.38)

restoring all parameters previously absorbed in C. This argument is reminiscent of

the Mermin-Wagner theorem, which prevents the existence of symmetry breaking in

and below two dimensions in the usual case. However, it applies only to the critical

point here, not to the entire phase. On the other hand, the rotating phase exists and

is not destroyed by fluctuations above two dimensions.

This leaves three scenarios for the transition upon including the effect of fluctu-

ations and interactions :

(i) There is no direct transition between static and rotating phases, but a fully sym-

metric, disordered regime in between. This is the expectation solely based on the

exceptional Gaussian fluctuations.

(ii) There is a (weakly) first order transition, induced by interactions. A non-trivial

scaling regime close to the transition may still emerge in principle.

(iii) The phase transition is second order. This is only possible, if nonlinear effects

reduce fluctuations by generating a sufficiently large anomalous dimension. In equi-

librium this happens, for example, for the 2d Ising model, where the anomalous

dimension shift the naive lower critical dimension from two to one.

The third scenario will be ruled out by our analysis. We will show, that indeed

a first order transition occurs for sufficiently large ρ0. For smaller ρ0 the interaction

effects do not have room to build, and as one approaches the CEP the enhanced

fluctuations push the system back in the symmetric phase through the model A

transition.

The same mechanism has to arise while approaching the CEP line from the

rotating phase and the symmetry restoring nature of the enhanced fluctuations will

therefore strongly move the phase boundaries as sketched in Fig. 2.4.

5.3 Fluctuation induced first order

We now show how a first order phase transition into the rotating phase at finite δ

can occur.

As we have seen in Sec. 5.2, the amplitude fluctuations around the stable state

in the broken phase remain damped and gapped in the vicinity of the CEP at δ = 0,

and can be integrated out. For N = 2, this yields the effective Gaussian action for
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the phase field (5.23),

S0 =

∫
t,x

θ̃(∂2t + (δ − Z∇2)∂t − v2∇2)θ −Dθ̃2. (5.39)

We rescaled the fields θ → θ/
√
ρ0 and θ̃ → θ̃/

√
ρ0.

The symmetry O(2) ∼= SO(2)⋉ Z2 acts on the phase field as

SO(2) : θ → θ + α, Z2 : (θ, θ̃) → −(θ, θ̃). (5.40)

This approach assumes that the fluctuations of the amplitude modes are small

δρ ≪ ρ0 and thus breaks down once the renormalized amplitude becomes small.

Approaching the CEP below four dimensions, this will be the case if we reach the

scale δ ∼ ρ
(d−4)/2
0 , signalling that we instead reach a regime where the symmetry

gets restored as we have shown above. In the following we work in a regime with

sufficiently large ρ0, assuming that the scale at which the symmetry gets restored

is not reached. This yields a criterion, whether symmetry restoration occurs or the

scenario laid out below is realized.

We first discuss in greater detail how the transition is explained from this action

above the upper critical dimension, and develop an effective potential picture which

will turn out to be useful in the following. When crossing the phase transition by

tuning δ through zero, the order parameter starts to rotate at a finite angular velocity

and the Z2 symmetry is spontaneously broken. In terms of the phase variable, it

corresponds to the ‘condensation’ of Π = ∂tθ, which evolves in an effective Ising like

potential

Veff(Π) =
δ

2
Π2 +

g1
4!
Π4, (5.41)

where the fourth order term has been added to make the mean-field theory well-

defined in the rotating phase (δ < 0). In that phase, we obtain Π =
√
ρ0E =√

−6δ/g1 and recover the square root behavior of the angular velocity encountered

in mean field in chapter 2. Therefore, this potential picture works despite the

out-of-equilibrium nature of the problem. Beyond mean-field, we will get an effec-

tive equation of motion for the dressed order parameter using the effective action

formalism (see Eq. (3.9)). The potential picture will in turn remain applicable.

Since a Z2 is broken spontaneously along the transition, it is natural to compare

it to the Ising universality class. Indeed, on the mean-field level, the phase transition

is reminiscent to some extent to the usual Ising transition, where the role of the Ising

field is played by ∂tθ. This can be rationalized by noting that the Ising model is

recovered when v = 0. However, recall from the shape of the correlation function
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(5.33), that setting v to zero would destabilize the entire theory and our model and

transition differs from the Ising field theory.

5.3.1 Beyond Gaussian Fluctuations

We now determine how interactions lead to a fluctuation induced first order scenario

below the upper critical dimension for sufficiently large ρ0. To this end, we approach

the CEP from the statically ordered phase. The broken SO(2) symmetry, Eq. (5.40),

ensures that the field θ can only appear with derivatives, while invariance under Z2

excludes cubic – or higher odd powers – interactions; in particular, it rules out the

Kardar-Parisi-Zhang nonlinearity θ̃(∇θ)2 and the cubic nonlinearity θ̃(∂tθ)
2. The

lowest order local interaction terms that one can add to the quadratic action within

these bounds are

Sint =
g1
6

∫
x,t

θ̃(∂tθ)
3 +

g2
2

∫
x,t

θ̃∂tθ(∇θ)2. (5.42)

These are the most relevant allowed couplings in an renomalization group (RG)

sense. The existence of two time scalings in the Gaussian Green functions, as dis-

cussed in Sec. 5.2, renders a simple power counting analysis at the Gaussian fixed

point impossible. Therefore, we will instead calculate the diagrams renormalizing

the various couplings, and infer their scaling dimensions from the associated infrared

divergences. These two time scalings also suggest that, for non-static quantities, not

only δ but also the quantity δ/v2 shall control the form of correlation functions. We

will see that this scale indeed explicitly appears in the renormalization corrections

beyond mean-field.

Perturbative corrections

The diagrammatic rules associated to the four-point vertices (5.42) and the per-

turbative corrections to two-point functions (self-energies) up to two loop-order are

presented in Fig. 5.3. One-loop corrections to the four-point functions are given in

Fig. 5.4.

Interactions – We now discuss how the parameters of the effective action are

renormalized perturbatively, and how they are impacted by the presence of the non-

analyticity of the CEP in the spectrum. For this sake we first take a look at the

one-loop diagrams renormalizing the four point vertices displayed in Fig. 5.4, but

the phenomenology will go beyond this particular example. First, we consider the
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(a) (b)

(c) (d)

Figure 5.3: Self-energies up to two loop-order. The first three graphs correct the
retarded part of the action Γ(11), and the last one the noise term Γ(20). The solid
line denotes the bare Keldysh Green function GK , and the solid-to-dashed line the
retarded Green function GR. The four-point vertices can be either g1 or g2 defined
in (5.42).

Figure 5.4: One-loop corrections to Γ(13) renormalizing the interactions, Pi = (pi, ωi).
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case where g1 is renormalizing itself. The first diagram in Fig. 5.4 with g1 as vertices

is equal to ω2ω3ω4 I1l,I with

I1l,I(p, ωp) =

∫
q,ω

i(ω + ωp)ω
2GR(q+ p, ω + ωp)G

K(q, ω), (5.43)

where p = p1 + p2, ωp = ω1 + ω2 and
∫
q,ω

≡
∫
dqdω/(2π)(d+1). The two other

diagrams are obtained by permutation of momenta. We now are interested in the

infrared behavior of this loop as one tunes δ → 0, i.e. approaches the CEP. When

δ/v2 becomes small, we find that it diverges as

I1l,I(p, ωp) ∼ δ
d−4
2 , (5.44)

for small dimensionless momenta p̃ = p√
δ
≪

√
δ/v, but that this IR divergence is

smaller for finite dimensionless momenta

I1l,I(p, ωp) ∼ δ
d−4
2 (

δ

v2
)
d−1
4 h(p, ωp), (5.45)

with h some nonsingular scaling function, and therefore become subleading. This

implies a very sharp non-analytic behavior as shown in Fig. 5.5. This is due to the

peculiar form of the dispersions at the CEP which induces a resonance condition in

the integral to get the highest divergence, as discussed below and in App. 8.4 where

Eqs. (5.44) and (5.45) are also proven.

Similar scaling shapes hold for all combinations of the vertices g1,2. From (5.44),

we can infer that the upper critical dimension is dc = 4. Above it, all interactions

are irrelevant and the Gaussian theory is exact asymptotically at long wavelengths.

(5.45) implies, that only loops with transfer momentum p̃ ≪
√
δ
v

δ→0−−→ 0 contribute

to the renormalization of the vertices as we approach the CEP. We can thus regard

all finite transfer momenta to lead to subleading contributions.

This means, that divergences of vertex corrections depend on the momentum

configuration of the respective vertex in a highly non-analytic way and a derivative

expansion around p = 0 is not possible. In particular, we find that the two limits

p̃ → 0 and δ → 0 cannot be exchanged, see Fig. 5.5. This non-analytic structure can

be related to the nonanalyticity of the exceptional point. Intuitively, this is indicated

by the EP momentum scale qEP = δ
v
already seen in the linear spectrum in Sec. 5.2

above which dimensionful transfer momenta p are cut off (since the critical regime

is described by q/
√
δ ∼ 1, we are generally interested in momenta q ≫ qEP ).

We now illuminate the origin of these different scalings, which result from a

resonance condition on the external momentum. In a nutshell, after frequency inte-
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Figure 5.5: I1l,I(p̃ = p/δ1/2, ωp = 0) defined by Eq. (5.43) in d = 3 for v = 0 (solid
line) for v = 1 and different values of δ (dashed/dotted lines). For v = 0, the rescaled
integral is independent of δ and diverges as δ−1/2. For v ̸= 0, this divergence is found
only for smaller and smaller p̃ ≲ δ1/2/v as δ → 0, and the integral is more and more
peaked around zero. For δ → 0, I1l,I therefore becomes non-analytic and is non
negligible only at p̃ = 0.

gration, rescaling of momenta by introducing q̃ = q/δ1/2, and for small values of δ,

the diagram 5.3c at zero external frequency reduces to

I1l,I =

δ
d−4
2

2

∫
q̃

f1(q̃, p̃) +O (δ)
v2

δ
(p̃2 + 2p̃ · q̃)2∆(q̃2) + f1(p̃, q̃)∆ (q̃2) (∆ (q̃2) + ∆ ((p̃+ q̃)2)) +O (δ)

.

(5.46)

In this expression, we use ∆(y) = y+1, and f1(q̃, p̃) = (p̃+q̃)2∆(q̃2)+q̃2∆((p̃+q̃)2).

In the denominator, we keep a higher order in terms of δ since it becomes the

dominant term in the expansion as soon as v2 (p2 + 2p · q) is small. This is always

true for p = 0, but only occurs for special configuration of momenta when p ̸= 0.

When this is fulfilled the integrand behaves as δd/2−2 and only as δd/2−1 when it is

not: there is a resonance condition to get the highest divergence. Mathematically,

the integrand in (5.46) becomes non-analytic and behaves as a Dirac distribution in

the δ/v2 → 0 limit to still give the stronger divergence. This behavior can in turn

be used to compute the integrals, see App. 8.4.

This is in sharp contrast with more standard renormalization corrections, where

the leading momentum dependent term scales accordingly to the momentum in-

dependent part, and where higher order terms in momentum are negligible in the

infrared in the spirit of a gradient expansion. This expansion in momentum cannot

be used here because of the non-analytic structure. Indeed, we show in App. 8.6 that
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such an expansion generates spurious divergences with arbitrarily high power in δ.

This also illustrates why standard power counting does not work: the presence of

the additional scale v2/δ allows for a more complex scaling of integrals, which breaks

the generic scaling behavior.

Self-energies – This structure also strongly impacts the perturbative corrections

at higher loop orders. We now discuss that matter for the two-point vertex Γ(2).

We will see that it makes sunset diagrams 5.3c and 5.3d less divergent than the

tadpoles one 5.3a and 5.3b. We begin the analysis with the tadpole diagrams. They

are linear in the external frequency, and momentum independent. They therefore

only renormalize the momentum independent damping coefficient δ. The one-loop

tadpole gives

I1l =
Kd

2
(g1 + g2)

∫
dq

qd−1

q2 + δ
, (5.47)

where Kd = Sd/(2π
d) with Sd the surface of the d-dimensional sphere. In these

expressions, new dimensionless quantities have been introduced via the following

rescaling: δ → δZ, g1 → g1Z
2/D and g2 → g2Z

2v2/D. Performing the integral over

momentum gives

δ = δ′ −K ′
d

g1 + g2
2

δ
d−2
2 , (5.48)

with K ′
d = −Kdπ/(2 sin(πd/2)) > 0, and δ′ = δ + (g1 + g2)Kd/2

∫ Λ

0
dq/q2. Here, Λ

denotes the UV cutoff used to regularize the loops. This is consistent with dc = 4,

since the perturbative corrections in (5.48) to the damping become non-negligible

below four dimensions. The contribution of the two-loop tadpole diagram 5.3a is

simply given by the square of Eq. (5.47) and behaves as δd−3.

We now turn our attention to the loop integrals of the sunset diagrams Fig. 5.3c

(for two g1 vertices going into the loop, the same however holds for all vertex com-

binations) at vanishing external momenta. It can be written as

I2l = g21

∫
q,ω′

ω′2GK(q)I1l,I(q, ω). (5.49)

I.e. the bubble diagram analysed earlier reappears as a subgraph of the sunset dia-

grams and their transfer momentum is integrated over. Since the point of vanishing

transfer momentum at which the resonance occurs is a zero measure set, only the

subleading scaling of I1l(q, ω) contributes to the sunset diagram. Thus the whole

sunset diagram, even at finite momentum or frequency, is subleading when compared

to the other terms in the renormalized two-point function at small damping. Indeed,
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while I2l scales as δ
d−3 for δ/v2 ≫ 1 (like the tadpole diagram 5.3b), it is suppressed

in the critical regime δ/v2 ≪ 1 where

I2l ∼ δd−3
( δ
v2

) d−1
4 ≪ δd−3. (5.50)

Eq. (5.50) is proven in App. 8.4, and a similar result is found for diagram 5.3d

with δd−3 replaced by δd−4. At finite external momentum, the sunsets are even less

divergent since they display the same non-analytic structure in their p dependencies

than the one found for the one-loop diagrams (see Fig. 5.5). More details can be

found in App. 8.4.

This shows that the presence of the EP leads, for d > 1 and in particular for

the dimensions of interest d ≥ 2, to smaller infrared divergences in two-loop sunset

diagrams, which in turn indicates that they will contribute only subdominantly in the

critical regime and can be neglected. Only one-loop contributions without transfer

momentum survive and the corrections to v, K, and D associated to anomalous

dimensions and z exponents all vanish.

Formally, this is a valid assumption if I2l(p) remains very small compared to all

terms in Eq. (5.48) i.e. to the renormalized damping δ̄. Because I2l diverges when

the damping becomes small, this necessarily implies a condition on the prefactor of

the loop i.e. on the interactions g1 + g2, which have to be sufficiently small. This

condition can only be self-consistently checked once we have computed δ̄, and we

therefore defer its discussion to Sec. 5.3.2.

In principle, one has to check that higher loop terms for the self-energies and for

interactions follow a similar pattern and are also negligible. The discussed pattern

however extends to all diagrams in the perturbative series that contain loops with

more than one momenta. Thus, only graphs with a one-loop structure i.e. graphs

that are products of one-loop graphs, and without momentum transfer survive when

δ/v2 becomes small. Alternatively, this is elegantly recovered in the DSE framework

since the full effective action can be computed solely from (dressed) tadpole and

sunset diagrams, see App. 8.5.

Self-consistent equations and first-order phase-transition

Because of the emergent one-loop structure, with negligible higher loop effects, it is

possible to resum the entire perturbation series, or equivalently to solve the corre-

sponding DSE, see Fig. 5.6 for a diagrammatic representation.

For the reason laid out above, we neglect the sunset topology of the DSE. Then the

DSE for the for the damping of the retarded two-point function (i.e. the renormalized
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(a) DSE for Γ(11) (b) One-loop DSE for Γ(13)

(c) One-loop DSE for Γ(15)

Figure 5.6: Diagrammatic representation of the DSE. The solid and solid-to-dashed
lines correspond respectively to the full Keldysh and retarded Green functions. The
vertices correspond also to the full vertices Γ(13) and Γ(15), except for those that are
represented with a square box, which correspond to the bare vertices S(13). Diagrams
obtained by permutation of external legs attached to θ fields (solid line legs) are not
shown.

control parameter of the transition δ̄) reads

δ = δ′ −K ′
d

g1 + g2
2

δ̄
d−2
2 . (5.51)

We have to do a little more work and consider some momentum dependency of

the fully renormalized vertices ḡ1,2(p1,p2,p3). First, we write out the diagrammatic

DSE for the four-point vertex in terms of the vertices of the full effective action Γ

and the bare action S and the Green’s function G:

Γ(13)(P4, P1, P2, P3) = S(13)(P4, P1, P2, P3)×(
1−

∫
Q

GK(Q)GR(Q+ P1 + P2)Γ
(13)(−(Q+ P1 + P2), Q, P1, P2)

)
+ perm.,

(5.52)

where P4 = −(P1 + P2 + P3) and where the permutations apply on the set P1, P2

and P3. We know from our previous analysis, that only the constellations where

there is no momentum transfer through loop contribute close to the transition and

thus on the right hand site only the vertex Γ(13)(P1,−P1, P2,−P2) enters the self

consistency equation. We thus make the Ansatz, that only the following momentum

constellations or ”hot spots” contribute to the flow. We parametrize them as

g1,a ≡ ḡ1(−p,q,−q,p), p,q ̸= 0,p ̸= q (5.53)
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for which only one of the momentum permutation in 5.4 contributes,

g1,b ≡ ḡ1(−p,p,−p,p), p ̸= 0 (5.54)

for which two permutations contribute and

g1,c ≡ ḡ1(0, 0, 0, 0) (5.55)

for which all three diagrams contribute. Carrying out the frequency integration leads

to the self consistency equations for the full macroscopic couplings,

g1,a = g1 −
g1 + g2

2
g1,a

∫
q

1

(q2 + δ)2
, (5.56a)

g1,b = g1 − 2
g1 + g2

2
g1,a

∫
q

1

(q2 + δ)2
, (5.56b)

g1,c = g1 − 3
g1 + g2

2
g1,a

∫
q

1

(q2 + δ)2
. (5.56c)

The integral that appears in Eqs. (5.56) can be calculated and the equations can be

inverted to give

g1,a =
g1

1 + α2δ
d−4
2

, (5.57a)

g1,b = g1
1− α2δ

d−4
2

1 + α2δ
d−4
2

, (5.57b)

g1,c = g1
1− 2α2δ

d−4
2

1 + α2δ
d−4
2

, (5.57c)

with α2 = (g1 + g2)K
′
d(d − 2)/2 > 0. We see that, while the coupling g1,a at finite

momenta is always positive, the couplings g1,c with zero incoming momenta can be

negative for sufficiently small δ. This therefore opens the route to a fluctuation

induced first-order phase transition since a potential with a negative quartic term

typically displays a first-order transition [79]. The fourth-order is now momentum

dependent, and one has to specify which quartic couplings should enter the effective

potential Eq. (5.41) for the order parameter E = ∂tθ/
√
ρ0 and check if it is negative.

The condensation mechanism occurs at zero momenta, and E is given by minimizing

the effective equation of motion Γ(10) with a constant order parameter ∂tθ(x, t) = E.
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Figure 5.7: One-loop contribution to the six-point function Γ(15). The diagrams
obtained by permutation of external and internal lines are not shown.

It translates, in momentum space, to

∂tθ(p, ω) = EΠ(p, ω) =
√
ρ0Eδ(p)δ(ω). (5.58)

In the effective equation of motion for E, the fourth order term is proportional to

g1(0, 0, 0)∂tθ(p = 0, ω = 0)3 = g1,c(
√
ρ0E)

3. The coupling that fixes the limit cycle

rotation frequency E is therefore g1,c which can indeed turn negative because of

Eq. (5.57c). This will drive the first-order phase transition. The coupling g1,b can

also turn negative (see Eq. (5.57b)) which could indicate some instability at finite

momentum close to the transition. However, it is larger than g1,c and turns negative

for even smaller damping, for which the first-order transition we discussed has already

taken place. It therefore does not alter the first-order scenario we describe. Since

the renormalized coupling ḡ2 does not enter its flow, but only its bare version, we

do not give its analog self consistent solution here but refer to the appendix 8.5. We

note the structural similarity of these slef consistent equations to the mechanism of

fluctuation induced first order transitions for systems with pattern formation [58, 96].

Now, to have a well defined potential, we need to add a sextic term in the

potential, i.e. u1θ̃(∂tθ)
5/5! in the action. Exactly as for the quartic couplings, there

are several hotspot configurations of momenta for which only one-loop diagrams

contribute. One has to consider different couplings associated to each of these hotspot

regions. To describe the effective potential, we however only need the value of this

coupling at zero external momenta,

u1,e = u1(0, 0, 0, 0, 0). (5.59)

Being an irrelevant coupling, its value is entirely set by the quartic couplings at small

δ̄. Its renormalization is then given by the one-loop diagram displayed in Fig. 5.7.

The resummed expression is obtained by using dressed propagators and interactions.
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This leads to

u1,e = 15g21
α3δ

d−6
2

(1 + α2δ
d−4
2 )3

, (5.60)

where α3 = (g1 + g2)K
′
d(d− 2)(4− d)/8.

We are now in the position to solve the resulting equations, and discuss in greater

details how the first-order transition takes place.

5.3.2 Solution of self-consistent equations

The resulting system of equations constituted by Eqs. (5.51), (5.57) and (5.60) is

solved by extracting the damping δ̄ from the first equation, and inserting it into the

others.

Asymptotically, the system does not reach any fixed-point, ruling out the second-

order phase transition scenario (iii) of Sec. 5.1.2. We find that the (∂tθ)
4 coupling

becomes negative and the effective potential describes a first-order transition for

sufficiently small δ as shown in Fig. 5.9: new minima appear for a finite ∂tθ = E,

and the order parameter jumps from zero to a finite value. From Eq. (5.57c), the

phase transition happens approximately when the quartic term becomes negative,

i.e. at a first order transition scale

(g1 + g2)δ
(d−4)/2

fo ∼ 1, (5.61)

giving

δfo ∼ (g1 + g2)
2/(4−d). (5.62)

We are left to compare this scale for the onset of a first order transition to our

previous result on the symmetry restoration δsym via the suppression of ρ0. The

system displays a new scale (in terms of the original non rescaled variables)

δfo
δsym

= ρ0
Z(g1 + v2g2)

v2
≡ ρ0g, (5.63)

which sets whether there is symmetry restoration (ρ0g ≪ 1) or a fluctuation in-

duced first order transition (ρ0g ≫ 1) separated by the multicritical point (ρ0g ∼ 1)

where both transition lines meet. The resulting qualitative phase diagram is shown

in Fig. 2.4. Furthermore we remark, that the first order transition scale δfo coincides

with the Ginzburg criterion where non-Gaussian fluctuations are expected to play

a role. (The Ginzburg criterion can be simply derived by comparing one-loop con-

tributions to the order parameter fluctuations to the bare one). This means that in
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q
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Goldstone regime
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GK(q, t = 0) = q−4GK(q, t = 0) = q−2

(ρ−1
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(a) First-order scenario

q
(ρ−1
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Escape of CEP

Model A physics GK(q, t = 0) = q−4

g2/(4−d)

(b) Symmetry restoration scenario

Figure 5.8: Summary of scales for the two different scenarios obtained while ap-
proaching the CEP. (a) The first-order scenario occurs before reaching the point
where the symmetry get restored since ρ−1

0 ≫ g, and the system ends up in the
rotating phase. (b) The symmetry gets restored at large distances, and the system is
in the disordered phase. In both cases the red dashed area indicates the scale which
is never reached because the other scenario takes place first.

a situation close to the weakly first-order situation, i.e. 1 ≫ δ > δsym, δfo, one can

observe the Gaussian scaling behavior described in Sec. 5.2 on length scales ξ <
√

Z
δ

but there is no intermediate regime where one can observe interaction corrections to

that scaling, including anomalous dimensions, before reaching the regime of either

symmetry restoration or first order transition. This is different from e.g. driven-

dissipative condensates below the lower critical dimension, where one can observe

KPZ scaling at finite length scales smaller than the length scales at which order

breaks down [8, 97]. The different possible scenarios are summarized on Fig. 5.8.

To get a complete picture describing all regimes, one needs a method that can

describe both the broken phase within which the first-order transition occurs and

the regime in which the amplitude goes to zero. One possible route would be to use

the functional RG (FRG) which is known to describe both the phase transition and

the broken phase in equilibrium [98].

Validity – Let us finally assess the validity of the assumptions made, and discuss

quantitatively under which conditions the subleading corrections are negligible. The

sunset contribution Eq. (5.50) (using the renormalized damping in the loop) to δ̄

can be neglected when it is small compared to all terms in Eq. (5.51). The most
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Figure 5.9: The effective potential as a function of Π = ∂tθ obtained by solving
Eqs. (5.51), (5.57) and (5.60) becomes characteristic of a first-order phase transition
at a finite renormalized damping δ̄. The results are presented for d = 3, g1 = g2 =
10−1 and v = 1.

stringent condition is obtained by demanding it to be negligible with respect to the

zero-order term δ̄. It gives the following condition,

(g1 + g2)
2δ̄d−4δ̄(d−1)/4 ≪ 1. (5.64)

The one-loop diagrams with momentum transfer can be neglected when (5.45) is

way smaller than g1 + g2, and the sunset 5.3d when it is way smaller than D, which

both lead to the very same condition. Equivalently, the condition (5.64) is recovered

nonperturbatively using DSE as discussed in App. 8.5.

The condition (5.64) becomes, using Eq. (5.62), (g1 + g2)
(d−1)(4−d)/8 ≪ 1, which

is satisfied in 2 < d < 4 for sufficiently small values of the bare coupling constants,

i.e. for a microscopic theory not too far away from the Gaussian fixed-point. In

that case, δ is generically small close to the transition because of Eq. (5.51). The

transition is then weakly-first order and the condition δ/v2 ≪ 1 is in turn also not

violated, and our calculation is fully justified in this regime.

One can formally still try to solve the equations for even smaller values of δ̄ i.e

deep in the ordered phase where the true damping is instead defined at the nonzero

minima. This always gives a solution with δ̄ > 0, and the minimum at ∂tθ = 0

does not disappear. Note that this issue also arises in Brazovskii’s phase-transitions

scenario [96]. However, the condition (5.64) is not satisfied in this regime, and the

solution does not apply anymore. We are however interested in the critical regime

here. We analyse the nature of the phase fluctuations deep in the phase in chapter

6.
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5.3.3 Z2 symmetry breaking and SO(2) ≃ U(1) case

Explicit Z2 breaking – We now discuss the case where the symmetry is SO(2) or

U(1) instead of the O(2) symmetry discussed so far. In that case the Z2 symmetry is

explicitly broken, and a linear term ∂tθ = µ0 + ... is allowed in (5.39), together with

the cubic non-linearity θ̃(∂tθ)
2 and the Kardar–Parisi–Zhang (KPZ) non-linearity

θ̃∇θ ·∇θ. This induces an explicit rotation of the order parameter, and thus no static

phase. Since there is no unbroken internal symmetry left that could be spontaneously

broken, no second-order phase transition can occur at the mean-field level, and no

CEP is found. This is equivalent to adding a magnetic field µ0 in the Ising case:

the effective potential for ∂tθ generically does not display spontaneous symmetry

breaking anymore, but rather describes a first-order phase transition at the mean-

field level already between phases with different rotation speeds. There is thus no

divergent correlation length occurring, and there is no way to get the enhancement

of the fluctuations found at the CEP.

The CEP transition can still be reached by tuning only one additional parameter:

µ0 can be chosen such that there is an emergent additional Z2 symmetry at the

critical point, where our model is then recovered. There is thus a first-order phase

transition line whose end point is exactly the CEP described in this work. This

is the transition discussed in [66]. However, their study of fluctuations include the

cubic and KPZ non-linearity, while their values are zero at the CEP because of the

additional fine-tuning. It therefore does not describe the CEP transition of interest

here. All of this is analogous to the second order transition found at the endpoint of

the liquid-gas transition that falls in the Ising universality class with upper critical

dimension dc = 4. It has an emergent Z2 symmetry at the transition, and one does

not consider the cubic non-linearities.

5.3.4 O(N > 2) case

We now turn to the generic O(N) case. We first discuss the corresponding action

and the additional interactions that arise between Goldstone modes for N > 2 that

add some complexity. We then explain how we can generalize the previous results

for the first-order scenario even in the presence of these new interactions.

The model one obtains after phase-amplitude decomposition and integration of

the amplitude mode, defines what is often referred to as non-linear σ model (NLσM).

The Gaussian part of the action in the static phase is given by

S0 =

∫
x,t

π̃ · (∂2t + (−K∆+ δ)∂t − v2∆)π −Dπ̃ · π̃, (5.65)
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where π = (θ2, . . . , θN). Beyond mean-field, we need to consider the generalization

of (5.42),

Sint =
g1
6

∫
x,t

π̃ · ∂tπ(∂tπ)2 +
g2
2
π̃ · ∂tπ(∇π)2. (5.66)

However, contrary to the O(2) case, there are higher order terms that do not

only involve derivative terms for N > 2 as usual for NLσM [6]. This is due to the

fact that the O(N) symmetry does not act anymore as a shift symmetry for the

Goldstone modes when N > 2 [99]. For example, the term ϕ̃
T
∂tϕ leads, following

the procedure explained in Sec. 5.2, to

ϕ̃
T
∂tϕ = π̃ · ∂tπ +

ρ−1
0

6
((π · π)π̃ − (π̃ · π)π) · ∂tπ + . . . , (5.67)

where the neglected terms are irrelevant. A similar pattern arises for every operator

present in (5.65) and (5.66). The coefficients of these new operators are not inde-

pendent from the one in (5.65) and (5.66) because they are generated by the same

operator. This originates from the underlying O(N) symmetry of the model and

therefore remains true even beyond mean-field. It is then common to refer to ρ−1
0

as a coupling constant in the NLσM. The new operators then lead to a non-trivial

(self-)renormalization of the amplitude which is absent in the O(2) case. Within

the statically ordered phase, the renormalized amplitude is finite, and at sufficiently

small scale, the higher order terms can be neglected and the action reduces to its

Gaussian part. Indeed, for large ρ0, only fluctuations with |π| ≲ 1 contribute to the

functional integral and higher order terms become negligible since they come with

powers of ρ−1
0 [6] 3.

We are now ready to discuss the situation when approaching the CEP. From

previous subsections, we expect g1 and g2 but also ρ
−1
0 to have dimension 4−d. This

can be checked diagrammatically. Mean-field results can then be used above four

dimension sufficiently deep in the ordered phase 4 and we start by discussing it since

it will be useful below. It turns out that we can generalize the potential picture

developed for the O(2) case. Omitting the addtional terms coming from (5.67), we

3This argument can be made quantitative by the RG. The coupling ρ−1
0 goes to zero in di-

mensionless units at the Goldstone fixed point associated to the ordered phase [6] and the action
reduces to its Gaussian part at low-energy.

4The irrelevance of ρ−1
0 does not preclude the existence of non-trivial corrections above four

dimensions (by analogy with the usual equilibrium NLσM above two dimensions).
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again have a potential of the form

VN,eff(ρπ = (∂tπ)
2) =

δ

2
ρπ +

g1
4!
ρ2π. (5.68)

This potential is simply the generalization of Eq. (5.41). It would display the typical

spontaneous symmetry breaking of O(N − 1) down to O(N − 2). Here, we have

additional terms of the form (5.67) that prevent our model from reducing to the

equilibrium O(N) case for ∂tπ even when v = 0. However, they are present to ensure

that the O(N) symmetry is intact, and they fix the value of the amplitude. We can

therefore expect that they do not play any role when it comes to the rotational

angular velocity. Again, extremising this potential yields the mean field expextation

for the angular velocity E ∼
√
δ. In addition, one can also study the fluctuations

around the rotating order by writing the field as π = (
√
ρ0Et+ θ∥,θ⊥), with θ∥ the

longitudinal mode and θ⊥ ∈ RN−2 the transverse modes of the broken O(N − 1)

symmetry. Their respective action matches (8.9) and (8.7) obtained directly from

the expansion around the rotating phase in appendix 8.3.1. This fully justifies our

assertion that the potential picture works also in the O(N) case. We therefore again

rely on it also beyond mean-field as we discuss now.

Below four dimensions, g1, g2 and also ρ−1
0 become relevant. They have the same

dimension around the Gaussian fixed-point and therefore grow at the same rate next

to it. We can use the same strategy as in the O(2) case: We expect the g1 and g2

couplings to again favour the first-order phase transition. Sufficiently deep in the

ordered phase at the bare scale, we can therefore neglect the restoring effect linked

to ρ−1
0 since its contribution to loops will become non-negligible only at larger scale.

In that case, we get the generalizations to O(N − 1) field of the different diagrams

discussed in Sec. 5.3.1. This only adds N dependent prefactors in front of the loop

integrals but leaves the integrals involved unchanged, and therefore their momentum

structures and divergences.

The self-consistent equations are therefore similar to the O(2) case. The same

mechanism for first-order transition apply again because the structure pointed out for

the quartic couplings g1,c which led to this scenario in the O(2) also arises. Explicitly,

we find (see App. 8.5) that

g1,c = g1
(9− 4α2δ̄

d−4
2 (α2δ̄

d−4
2 (N ′ + 2) + 3))

(2α2 + 3)(α2δ̄
d−4
2 (N ′ + 2) + 3)

, (5.69)
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with N ′ = N − 1. We can conclude that g1,c turns negative when

δ̄ =

(
2α22(N

′ + 2)

3(
√
3 +N ′ − 1)

) 2
4−d

, (5.70)

i.e. at the same scale we have in the O(2) case, given by (5.62), up to a N -dependent

factor.

In the opposite limit, the ρ−1
0 coupling grows first and we approach the point

where the symmetry gets restored first. In a generic situation, the NLσM will break

down again. We reach the same conclusion as for the O(2) case, and also obtain the

qualitative phase diagram Fig. 2.4.

5.4 Summary

Let us briefly summarize this long, and technical chapter. We have considered the

transition between the ordered and the rotating time-crystalline phase. It is purely

dominated by the fluctuations of the gapless phase fluctuations and on the Gaussian

level occurs through a critical exceptional point. The ensuing diagrammtic analysis

thus also constitutes a general study of fluctuations at such a CEP. The CEP induces

nonanalytic momentum dependencies of loop corrections. And while complicates

matters in the first step it turns out to be a very useful feature, suppressing a large

class of diagrams. This allowed us to determine in a controlled resummation of

the diagrammatics, that the strongly enhance fluctuations at a CEP do not always

destroy preexisting order and make a direct transition between static order and

rotation impossible. Instead, there occurs a fluctuation induced first order transition,

if preexisitng order is strong enough.

This finishes our discussion of criticality at the onset of time crystalline order.



76 CHAPTER 5. CRITICAL EXCEPTIONAL POINTS



6
Time-crystalline matter

In this chapter we focus on the universal scaling laws emerging within phases with

time translation symmetry breaking. Scaling at the transitions into the limit cycle

phases emerges due to the finetuning to criticality exactly at the transition. Within

the phases, the spontaneous breaking of time translation symmetry ensures the ex-

istence of gapless modes through the mechanism of Goldstone theorem leading to

universal scaling behavior throughout the entire phase without requiring any fine

tuning. In the case of an additionally broken O(N) symmetry with N ≥ 2, there is

additional Goldstone modes that couple to the one arising from time translations.

Below, we first formally show how a soft mode indeed arises around a time depen-

dent stable state of time translation invariant dynamics. We then argue and show

for concrete examples that this soft mode is subject to a KPZ nonlinearity, which

will impact its scaling in low dimensions

The results presented in this section are unpublished so far. They are results of

discussions of Romain Daviet, Sebastian Diehl and Carl Zelle. The derivations have

been carried out in collaboration by Romain Daviet and Carl Zelle. The numerical

simulations presented in 6.2.3 where performed by Armin Asadohalli for his Bachelor

thesis under supervision of Romain Daviet, Sebastian Diehl and Carl Zelle.
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6.1 Time translation symmetry breaking

First we consider the case where there is no continuous internal symmetry present

and thus soft modes solely arise due to the breaking of time translation symmetry

and thus have no equilibrium counter part. This establishes how critical scaling can

emerge in an entire phase far from equilibrium without breaking any internal sym-

metries. Let us first define, in what sense we consider a system to display continuous

time translation symmetry and how it may be spontaneously broken. We consider

MSRJD generating functionals of the form

Z[j, j̃] =

∫
DϕDiϕ̃e−S[ϕ,ϕ̃]+

∫
t,x j̃·ϕ+j·ϕ̃ (6.1)

S[ϕ, ϕ̃] =

∫
t,x

ϕ̃(t, x) · F [ϕ̈(t, x), ϕ̇(t, x),∇αϕ(t, x), ϕ(t, x)] + 2ϕ̃(t, x) ·D[ϕ, ∂µ] · ϕ̃(t, x)

(6.2)

The dependence of the deterministic part F on spatial gradients is not restricted to

any power in derivatives. The noise kernel D may also depend on ϕ, i.e. contain mul-

tiplicative noises, as well include derivative operators, i.e. colored (time derivatives)

or conserved (gradients) noise. We are interested in the dynamics of fluctuations in

a stable state where all information on initial condition is lost. In that case the time

integration runs over the whole time domain t ∈ (−∞,∞) and there is no boundary

contribution to the integral. This dynamics is time translation invariant, if both

deterministic as well as noise kernel do not depend on time explicitly, i.e. ∂tF = 0,

and only implicitly through the time depends of the field(s). Then, shifting time

t → t+ t0 ≡ τ leaves the action invariant, as such a simple shift of variables has no

Jacobian and ∂tϕ = ∂τϕ and boundary terms do not contribute. The latter would

not be true in a case with information on initial conditions singling out a time frame.

Since the path integral measure is also time translation invariant, invariance of the

action implies invariance of the effective action Γ[ϕ̃, ϕ], the Legendre transform of

the logarithm of the MSRJD path integral. As shown in 3.1, its second derivatives

w.r.t. the fields yields the full Green Functions of the theory, i.e. correlator as well

as retarded and advanced response while its first derivative gives access to the fully

noise averaged order parameter ϕEoM through a generalized equation of motion.

δΓ[ϕ̃, ϕ]

δϕ̃(t)

∣∣∣∣∣
ϕ̃=0,ϕ=ϕEoM (t)

= 0. (6.3)
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A system is in a phase with time translation symmetry breaking, if the noise averaged

expectation value of the field is time dependent

∂tφ(t) = ∂t⟨ϕ(t)⟩ξ ̸= 0. (6.4)

or, in terms of the effective action, if the solution generalized equation of motion (6.3)

is time dependent. Since we identify phases with stable states of noisy, dissipative

dynamics and all information on initial states is lost, time translation invariance of

the effective action itself implies that if φ(t) is a solution to (6.3), so is φ(t+α). We

thus have a continuous set of equivalent stable states, fluctuations between which

are soft Nambu-Goldstone modes. We now translate this in more concrete technical

terms. First, recap the shorthand notation

Γ(mn)(t1, x1; t2, x2; ...; tm+n, xm+n)

≡ δm

δϕ̃(t1, x1)...δϕ̃(tm, xn)

δn

δϕ(tm+1, xm+1)...δϕ(tm+n, xm+n)
Γ[ϕ̃, ϕ]. (6.5)

For small time shifts we have ϕ(t + ϵ) = ϕ(t) + ϵ∂tϕ(t) and equivalently for the

response field. Since time translation is a symmetry, we have:

0 = Γ[ϕ̃, ϕ]− Γ[ϕ̃+ ϵ∂tϕ̃, ϕ+ ϵ∂tϕ]

= ϵ
(
Γ(01)[ϕ̃, ϕ; t,x]∂tϕ(t,x) + Γ(10)[ϕ̃, ϕ; t,x]∂tϕ̃(t,x)

)
(6.6)

Evaluating this on the physical saddle point in field space, φ(t), this does not yield

any information, since there the first functional derivatives of Γ vanish by definition.

We can however take another derivative, before evaluating on the saddle point. We

immediately drop all terms that vanish trivially on the saddle point and arrive at

ϵ

∫
t′,x′

Γ(11)(t′,x′; t,x)∂tϕEoM(t) = 0 (6.7)

where Γ(11) is now also evaluated on the saddle point, i.e. it constitutes the physical

spectral part of the fully renormalized inverse Green function. Note that this is only

a nontrivial statement if we are indeed in a phase with time translation symmetry

breaking, i.e. if ∂tϕEoM ̸= 0. In that case, given in tact translational symmetry in

space and using the fact that ϵ is arbitrary we have∫
t′,x′

Γ(11)(t′, t;x′ − x)∂tϕEoM(t) =

∫
t′
Γ(11)(t′, t;q = 0)∂tϕEoM(t) = 0. (6.8)
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This formally shows, that the full, nonperturbative Green function has indeed a

pole corresponding to a nondecaying mode at vanishing momenta in a phase with

spontaneously broken time translation symmetry. If we can go into a frame that is

comoving with the limit cycle where ∂tϕEoM(t) = vê∥, we have

Γ
(11)
∥ (ω = 0,q = 0) = 0, (6.9)

the standard Goldstone mode as a pole of the full Green function at vanishing fre-

quency and momenta. This extends the paradigm of soft Nambu-Goldstone modes

arising in phases with broken spontaneous symmetries to nonthermal time crystalline

phases even absent internal symmetries.

6.2 Time translation symmetry breaking - KPZ

and BKT

We now consider the case of a limit cycle or time crystalline order without any further

continuous internal symmetries in more detail. We are interested in the fluctuations

of the Goldstone mode along the limit cycle at very long time scales, much larger

than the period of the limit cycle itself. We can thus average over the limit cycle

period to eliminate explicit time dependencies in a phase expansion and arrive in

the case of (6.9).

6.2.1 Scaling predictions from EFT

Before carrying this procedure out explicitly, we develop an effective field theory

solely based on symmetry and dimension predicting the respective scaling behaviors.

This has also been done in [100] but without the crucial step to analyse the impact

of nonlinearities on the scaling behavior of the Goldstone mode. As already shown

in chapter 4, spontaneous time translation symmetry breaking through a limit cycle

order parameter is described by an SO(2) symmetry breaking. Thus, all terms of the

equilibrium theory of an SO(2) ∼= U(1) Goldstone mode θ are present in an effective

field theory for phase fluctuations along the limit cycle. On top of that, the only

possibly relevant nonlinearity, that is not compatible with equilibrium conditions

is the KPZ coupling ∼ λKPZ θ̃(∇θ)2. The KPZ nonlinearity breaks equilibrium

conditions, as it does not derive from a potential, and is furthermore disallowed

if there is a Z2 symmetry (θ, θ̃) → −(θ, θ̃). Thermal equilibrium conditions are
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necessarily broken to generate time dependent ground state behaviors to begin with.

Because there is a notion of directionality – the phase θ grows continuously in one

direction – there is also no Z2 symmetry and the KPZ coupling will be generated.

Putting all of this together, the action of the Goldstone mode of time translation in

a comoving frame takes the form

S =

∫
x,t

θ̃

(
X[θ]∂tθ(x, t)− Z[θ]∇2θ(x, t) +

λ

2
(∇θ(x, t))2

)
−D[θ]θ̃2. (6.10)

Here, X[θc], Z[θc] are the equilibrium couplings of the SO(2) Goldstone action. Their

functional shape is fixed by the nonlinear realisation of the symmetry. We still need

to discuss the noise kernel D[θc]. Since there is no conservation law or other sym-

metry restriction, the leading order contribution to it will be simply a constant,

corresponding to a Gaussian white noise. Since all other contributions come with

higher order derivatives, due to the shift symmetry and are thus less relevant, we

ignore them.

We now briefly recapitulate the power counting of this action at the Gaussian fixed

point. The dynamical exponent of time at the Gaussian fixed point is z = 2. De-

manding that the noise kernel is marginal for stability and dimensionlessness of the

action yields

[θ̃] =
d+ 2

2
, [θ] =

d− 2

2
. (6.11)

This leads to

[λ] =
2− d

2
. (6.12)

In three dimensions and higher, the KPZ nonlinearity λ is power counting irrelevant

at the Gaussian fixed point. Since this is also true for all equilibrium nonlinearities

captured in X[θ] and Z[θ], the Gaussian fixed point captures the universal scaling

behavior of phase fluctuations of a limit cycle. This predicts universal algebraic

scaling of correlations and responses in time crystalline phases at large time and

length scales in three dimensions

C(ω,q) = q−2Ĉ
(
ω

q2

)
(6.13)

χ(ω,q) = χ̂

(
ω

q2

)
. (6.14)
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In one dimension, long range order is washed out by the massive fluctuations of the

gapless Goldstone modes, as expected from Mermin-Wagner theorem. The correla-

tion function can however still be dominated by the phase fluctuations. For the field

itself, these fluctuations show up as

C(x, t) = ⟨ϕ(x, t)ϕ(0, 0)⟩ ∼ e−
1
2
⟨(θ(x,t)−θ(0,0))2⟩. (6.15)

1 The dominance of the phase fluctuations is true for intermediate scales until

the gapped amplitude fluctuations are activated as well. Since the KPZ nonlinearity

is relevant in 1D, the correlation function of θ is expected to obey the exactly known

KPZ scaling exponents in one dimension

C(0, t) ∼ e−At
2β

(6.16)

C(r, 0) ∼ e−Br
2χ

. (6.17)

where χ is the roughness exponent, and β = zχ, where z is the dynamical critical

exponents. In the KPZ phase, the exponents are known exactly in one dimension:

β = 1/3, χ = 1/2. In regimes where thermal diffusion dominates, i.e. when the

initial KPZ coupling is so small that at intermediate scales the Gaussian fixed point

dominates the θ correlation function, or if the correlation is already dominated by

the gapped amplitude fluctuations, we have χ = 1/2 and β = 1/4.

In two spatial dimensions the phenomenology is somewhat richer. Restricting to the

equilibrium case, there is a quasi long range ordered phase with algebraic equal time

correlation function

C(r, 0) ∼ r−α (6.18)

with a noise dependent exponent

α ∼ D. (6.19)

Upon increasing the noise level topological defects, the vortices, unbind through the

BKT transtion and disorder the system leading to exponentially decaying correla-

tions.

The KPZ coupling in two dimensions is marginally relevant. Thus, starting from the

QLRO phase, it grows slowly under RG and ultimately destroys the QLRO above

1This form can be shown explicitly for sinodal limit cycles. It follows from the rational of acting
with eθ(t,x)T , with T the symmetry generator, on the ground state and using that envelope of the
very long time dynamics is governed by the phase fluctuations.
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a length scale ξKPZ leading to subexponentially decaying correlation functions with

β ≈ 0.24 and χ ≈ 0.78 for r ≪ ξKPZ and t ≪ ξ
β/χ
KPZ [101]. From one-loop beta

functions, one can estimate

ξKPZ ∝ e−8π/λ0 (6.20)

where λ0 is the bare KPZ coupling. Further, the KPZ nonlinearity is expected to

’activate’ vortices leading to defect unbinding and ultimately the full breakdown of

QLRO and exponentially decaying correlations [102]. In summary, for limit cycle

order in two spatial dimensions, we expect no QLRO at very long distances. If

however the microscopic KPZ nonlinearity is small, such that ξKPZ is large, there is

algebraically decaying correlation functions for distances r ≪ λKPZ. If on the other

hand ξKPZ is small, but the noise level is also small, such that the length scale ξBKT

at which vortices unbind and lead to exponential correlations, one can observe the

scaling exponents of two-dimensional KPZ for distances ξKPZ ≪ r ≪ ξBKT. On the

one hand this scaling behavior is a testable prediction of effective field theory for any

system with time crystalline order and no other broken continuous symmetries. On

the other, it also points at new experimental platforms that realize two-dimensional

KPZ scaling, e.g. large arrays of synchronized and noisy oscillators conceivable for

instance in electrical circuits or the ’magnon condensates’ introduced in chapter 7.

In three dimensional systems, there is true long range order and topological defects

are not expected to play a similarly important role as in two dimensions. This may

give a new angle to realise the strong coupling roughening transition of the three-

dimensional KPZ equation, a task so far elusive in experiment.

6.2.2 N = 1 as an explicit example

We now turn from the general, symmetry based arguments and predictions from

above to a more concrete expample. We consider the Z2 version of the nonthermal

O(N) model (2.2) for a real field ϕ(t,x) ∈ R(
∂2t + (2γ + uϕ2 − Z1∇2)∂t + ω2

0 + λϕ2 − Z2∇2
)
ϕ+ ξ = 0, (6.21)

which is a generalisation of the paradigmatic van der Pol oscillator to spatially ex-

tended fields. In chapter 4, we have shown, that it captures the transition of

driven dissipative Bose condensation described by a noisy, complex Gross-Pitaevskii

equation. Just below the transition γ < 0, |γ| ≪ ω0, its mean field solutions are
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approximately sinudal

ϕ0(t) = A cosωDt (6.22)

with A =
√

−4γ/u and ω2
D = ω2

0−2λγ/u. To derive this solution, one has to average

over the oscillation period, to wit

cos2 ωDt ≈
ωD
2π

∫ 2π/ωD

0

cos2(ωDt)dt =
1

2
. (6.23)

This is justified, as ω−1
D ≫ −γ−1 is a very fast scale by assumption.

We parametrize fluctuations around the mean field as

ϕ(t,x) = (A+ a(t,x)) cos(ωDt+ θ(t,x)). (6.24)

Here, θ(t,x) is assumed to by a slow fluctuation, such that ∂2t θ ≈ 0 and we anticipate

that the amplitude fluctuations a(t,x) are overdamped, as well ∂ta ≈ 0. Plugging

this Ansatz into the equation of motion and using (6.23) yields(
−ωDȧ− 2uA2ωDa− Z1AωD(∇θ)2 + Z2A∇2θ

)
sin(ωDt+ θ) + ξ =0 (6.25)(

−2ωDAθ̇ + Z2A(∇θ)2 − Z2∇2a+ 2λAa
)
cos(ωDt+ θ) + ξ =0. (6.26)

Here we have also restricted to the linear level in a(t,x). We can now project these

equations on the sin and cos contribution respectively and thus generating to in-

dependent noises with equal noise level. Furthermore, we see that the amplitude

fluctuations decay exponentially for long wavelengths and will follow the phase flu-

cutations adiabatically. We can then use the first equation to adiabatically eliminate

a (i.e. ∂µa = 0 and solve for a(∂µθ)) and plug into the second equation to arrive at

an effective noisy equation of motion

∂tθ − Z∇2θ + g(∇θ)2 + ξθ = 0. (6.27)

We have explicitly derived the KPZ equation for the phase fluctuations of the van

der Pol limit cycle with

Z =
λZ2

2uω2
DA

, g =
1

2ωD

(
λZ1

2uA
− Z2

)
(6.28)

and ξθ(t,x) is again delta correlated white noise with noise level Dθ = (2ωDA)
−1D,

where D is the noise level of the original microscopic noise.
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In the above derivation, we have relied on the van der Pol limit cycle having an

approximately sinodal form. This is not true deep within the oscillating phase. The

derivation can however be generalized to generic limit cycles. To that end we switch

again to a Hamiltonian or phase space representation Φ = (ϕ,Π)T . In the case of

a generic limit cycle, we have Φ0(t) = (f(t), f ′(t)). We now introduce a generalized

comoving frame given by the tangent vector of the limit cycle in phase space T⃗ (t)

and its normal N⃗(t)

T⃗ (t) = (f ′(t), f ′′(t))T , N⃗(t) = (−f ′′(t), f ′(t))T . (6.29)

We then parametrize fluctuations around the mean field as

Φ(t,x) =

(
ϕ(t,x)

Π(t,x)

)
=

(
f(t+ θ(t,x))

f ′(t+ θ(t,x))

)
+ a(t,x)N⃗(t+ θ(t,x)). (6.30)

Since ϕ = f(t + θ) solves the equation of motion, the gaplessness of the phase

fluctuations θ is ensured. The general procedure is now the following. First, one plugs

this parametrization into the equation of motion and then projects on T⃗ (t+ θ(t,x))

and N⃗(t,x). Since ∇2 operators will generate terms ∼ (∇θ)2 when they hit f

or f ′ KPZ couplings are already seeded. There will however remain explicit time

dependencies through f and f ′. Since deep in the phase the fluctuations of θ persist

on time scales much larger than the limit cycle period τ of f(t), one can use the

method of averaging over the period τ [90] to eliminate these time dependencies.

6.2.3 Numerics

Above, we have argued on a formal level as well as derived within controlled approx-

imations, that in phases where time translation symmetry is broken by a limit cycle

there are universal scaling regimes governed by the KPZ equation for a compact

variable without relying on any continuous internal symmetries. In this section we

aim to confirm this by numerical simulation of the van der Pol equation (6.21) on

one- and tow-dimensional lattices. We then compute the correlation function C(t,x)
on these lattices and test the predicted scaling behavior from section 6.2.1.

These simulations have been carried out by Armin Asadollahi for his Bachelor thesis

under the supervision of Romain Daviet and the author of this thesis. We indeed

find subexponential decay of the autocorrelation function in one dimension with a

dynamical critical exponent 1/z = 0.62 for a chain of length L = 128, close to the

exact value 1/z = 2/3, see left panel of Fig. 6.1. We note that in the similar case

of KPZ in a Bose condensate, the numerically found value for 1/z from the auto-
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Figure 6.1: KPZ scaling of the of the correlation function of a one-dimensional noisy
Van der Pol oscillator arrays. Left panel: Envelope of the autocorrelation function of
a 1d oscillator chain with L = 128 sites (blue points). We clearly see subexponential
decay as described by (6.16) and find 1/z ≈ 0.62, red line. Right panel: analogeous
analysis of the equal time correlation function of a square lattice with 128×128 sites.
We find 2χ ≈ 0.73
.

correlation function is also smaller than the exact result , 1/zBC ≈ 0.614 [103]. In

two dimensions, we find algebraically decaying correlations with a noise dependent

exponent, with a crossover to a exponentially decaying regime, a clear signature of

a BKT crossover at finite system sizes, as predicted above in (6.18) and (6.19), see

Fig. 6.2. For a different set of initial parameters, increasing the value of the bare

KPZ nonlinearity, we find subexponential decay in the equal time correlation func-

tion with an exponent 2χ ≈ 0.73 which is again in good agreement with numerical

simulations of the KPZ equation 2χKPZ ≈ 0.78 [101], see right panel of Fig. 6.1. A

similar analysis has been performed for the complex Gross-Pitaevskii equation for

driven dissipative exciton-polariton condensation [104] where one can exactly elimi-

nate the limit cycle frequency. They observe a regime where vortices do not destroy

order and find KPZ scaling in two dimensions, analogeously to the results presented

here. Their numerical result 2χ ≈ 0.72 agrees very well with the one we identify for

the Van der Pol oscillator.

6.3 Goldstone modes of the O(N)× SO(2) model

While we have shown that the Goldstone mode of time translation symmetry realizes

the known, nonthermal universality class of the KPZ equation, entirely new scaling

laws are seem possible if the Goldstone mode of time translation couples to Goldstone
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Figure 6.2: Noise dependence of the exponent α of the correlation function C(t =
0, x) ∼ x−α in the QLRO regime of the Van der Pol square lattice (L×L = 128×128).
We observe the linear noise dependence of the scaling exponent and breakdown of
algebraic scaling at high noise strength, as expected.

modes from other internal symmetries. I.e. in the time crystalline phases of the

nonthermal O(N)-model. In this section we systematically develop the Goldstone

actions for these phases.

6.3.1 Effective actions

Before delving into the RG analysis we systematically construct the effective long

wavelength field theories for the Goldstone modes of the oscillating and the rotat-

ing phase respectively. To that end, we analyse the symmetry breaking pattern to

determine the number of modes and how the unbroken part of the symmetry group

restricts their interactions

Oscillating Phase The oscillating phase is characterised by an order parameter

field that oscillates along a spontaneously picked direction in field space. WLOG we

choose this to be the 1-axis and write

⟨ϕ⟩ = ϕ0(t)(1, 0, ..., 0)
T . (6.31)

In the amplitude bases that absorbs the explicit time dependence introduced in

chapter 4, this corresponds to

⟨χ1⟩ = ϕ0(1, 0, ..., 0)
T , ⟨χ2⟩ = 0. (6.32)

As already argued in 4, this phase breaks the SO(2) part of time translation sym-

metry and also breaks the internal O(N) symmetry down to the unbroken subgroup
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O(N − 1). We thus have a total of N broken symmetry generators giving rise to

gapless Goldstone mode. Their equation of motion is constraint by the nonlinear

realisation of the broken symmetry generators as well as by the way these modes

transform under the unbroken subgroup O(N − 1). Formally speaking they live in

the coset

O(N)× SO(2)/O(N − 1). (6.33)

First, we consider the Goldstone mode from time translation which we call α(t,x).

Time translation acting on ⟨ϕ⟩ as defined in (6.31) only acts nontrivially on the first

component of ⟨ϕ⟩. The elements of the unbroken subgroup rotate the 2nd through

N th component of ⟨ϕ⟩ into each other and thus time translation and the unbroken

subgroup commute. Therefore, α(t,x) transforms as a scalar under O(N − 1).

The broken O(N) generators are the ones that rotate the first component of ⟨ϕ⟩ into
the remaining N − 1 components. Clearly, the unbroken O(N − 1) group rotates the

broken O(N) generators into each other. Thus, the N − 1 corresponding Goldstone

modes transform as a vector under O(N − 1) and we can write them as θ(t,x) =

(θ1(t,x), ..., θN−1(t,x))
T ∈ RN−1. We can now construct an effective equation of

motion by the following rules The rules to construct the effective field theory are:

• α is a scalar without a Z2 symmetry.

• θ → Rθ, with R ∈ O(N − 1).

• To implement the nonlinear symmetry to lowest order, all the Goldstone modes

have a shift symmetry, and only derivative interactions are allowed.

The resulting equations of motion are given by

∂tα− Zα∇2α + λα(∇α)2 + λθ(∇θ)2 + ξα = 0, (6.34)

∂tθ − Zθ∇2θ + g∇α∇θ + ξθ = 0. (6.35)

or an equivalent MSRJD action

Sosc =

∫
t,x

α̃
(
α− Zα∇2α + λα(∇α)2 + λθ(∇θ)2 − γαα̃

)
+θ̃ ·

(
∂tθ − Zθ∇2θ + g∇α∇θ − γθθ̃

)
. (6.36)

Notably, this model has been studied within perturbative RG in [60, 61] in the
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physically very different context of drifting polymers. We will refer to the respective

results in our RG analysis.

Rotating phase We perform the same analysis for the rotating phase, where

WLOG we choose the 1− 2 plane as the plane of rotation

⟨ϕ⟩ = ϕ0(cosEt, sinEt, ..., 0)
T . (6.37)

or in the language of the O(N)× SO(2) field theory

⟨χ1⟩ = ϕ0(1, 0, ..., 0)
T , ⟨χ2⟩ = ϕ0(0, 1, 0, ..., 0)

T . (6.38)

This phase breaks the O(N) × SO(2) symmetry to the unbroken subgroup H =

O(N−2)×SO(2)d. The O(N−2) part of H rotates the N−2 vanishing components

of ⟨ϕ⟩ into each other. The SO(2)d is a combination of time translation symmetry,

which rotates the mean field along the circle in the 1− 2 combined with an internal

O(N) rotation in the 1− 2 plane that exactly compensates for this rotation. Thus,

there is one broken SO(2) generator corresponding to rotations along the limit cycle,

leading to one Goldstone that we again call α(t,x). We note that a rotation in the

1−2 plane generated by α, commutes with SO(2)d and also with the rotations of the

3rd to N th component of ⟨ϕ⟩ that constitute O(N−2). Thus α(t,x) again transforms

as a scalar under the unbroken group H.

The remaining 2(N − 2) broken generators are the N − 2 generators that rotate

the first component into the 3rd to N th component and we call the ensuing modes

θ+,1,...,N−2 and the N−2 generators that rotate the second component into the 3rd to

N th component correspinding to modes θ−,1,...,N−2. As the unbroken O(N −2) group

only acts on the 3rd to N th component, it rotates the θ+ modes into each other and

the θ− modes respectively, it does however not mix the two sets. Thus, the two sets

θ± = (θ±,1, ..., θ±,N−2)
T ∈ RN−2 transform as vectors under O(N − 2). On the other

hand, since SO(2)d rotates the first and second component and thus mixes θ+,i with

θ−,i and thus the σ = ± component transforms as a vector under SO(2)d. We arrive

at the following rules to construct the EFT for the 2N − 3 Goldstone modes θ±, α

• α is a scalar without a Z2 symmetry.

• θ± → Rθ±, with R ∈ O(N − 2). The only allowed tensor to contract the

O(N − 2) indices of θσ,i is δij.

• The allowed tensors to contract the SO(2) σ = ± indices are δσ,σ′ and ϵσ,σ′ .
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• Only derivative terms are allowed, and we only keep the possibly relevant ones.

The equations of motion read as

∂tα− Zα∇2α + λα(∇α)2 + λθ
(
(∇θ+)2 + (∇θ−)2

) )
+ ξα = 0, (6.39)

∂tθσ − (Zθδσσ′ + Zcϵσσ′)∇2θσ′ + (gdδσσ′ + gcϵσσ′)∇α∇θσ′

)
+ ξθσ

= 0. (6.40)

Here, gc constitutes a genuinely new cubic nonequilibrium coupling impacting the

scaling behavior.

6.3.2 One-loop RG analysis

We now analyse how the scaling of the Goldstone modes in limit cycle phases is

impacted by the cubic nonlinearities in a perturbative one-loop expansion. Since we

restrict ourselves to one-loop, we can do a simple momentum shell RG, where we

consecutively integrate out small momentum shells. To that end, we first calculate

the self energy corrections to the Goldstone modes at vanishing frequencies with a

UV cutoff Λ for the loop integrals. There is an intimate connection between the

diagrammatics of the rotating and the oscillating phase, which becomes clearer by

again introducing a complexfield θ = θ+ + iθ− ∈ CN−2 where the MSRJD action of

the soft modes of the rotating phase takes the form

Srot =

∫
t,x

α̃
(
α− Zα∇2α + λα(∇α)2 + λθ|∇θ|2 − γαα̃

)
(6.41)

+θ̃
∗ ·
(
∂tθ − (Zd + iZc)∇2θ + (gd + igc)∇α∇θ − γθθ̃

)
. (6.42)

We thus have a generalization of the oscillating case to a complex vector field θ with

N − 2 complex components. Note that α remains a real field and thus Zα, λα, λθ

remain real couplings. Thus, we can treat oscillating and rotating phase to some

extent on the same level diagrammatically. When computing the diagrams, we have

to be careful about dealing with real parameters or complex ones. The corresponding

one loop diagrams are depicted in Figures 6.4 and 6.3.
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Scaling solutions in the oscillating phase

β-functions We start by discussing the derivation of the flow equations in the

oscillating phase. In the oscillating phase, the diagrams for the spectral part read

ΣR
α (ω = 0,p) = 4λ2α

∫
q,ω

(q · (q− p))(p · (q− p))GR
α (ω,q)G

K
α (ω,q− p)

(q · (p− q))(q · p)GR
α (ω,q− p)GK

α (ω,q)

+2(N − 1)λθg

∫
q,ω

(q · (q− p))(p · (q− p))GR
θ (ω,q)G

K
θ (ω,q− p)

(q · (p− q))(q · p)GR
θ (ω,q− p)GK

θ (ω,q) (6.43)

and

ΣR
θ (ω = 0,p) = g2

∫
q,ω

(q · (q− p))(p · (q− p))GR
θ (ω,q)G

K
α (ω,q− p)

(q · (p− q))(q · p)GR
θ (ω,q− p)GK

α (ω,q)

+2λθg

∫
q,ω

(q · (q− p))(p · (q− p))GR
α (ω,q)G

K
θ (ω,q− p)

(q · (p− q))(q · p)GR
α (ω,q− p)GK

θ (ω,q). (6.44)

The noise contributions read

ΣK
α (0, 0) =2λ2α

∫
q,ω

q4GK
α (ω,q)

2 + 2λ2θ(N − 1)

∫
q,ω

q4GK
θ (ω,q)

2 (6.45)

ΣK
θ (0, 0) =g

2

∫
q,ω

q4GK
α (ω,q)G

K
θ (ω,q). (6.46)

where the Green’s functions are

GR
θ,α(ω,q) =

1

−iω + Zθ,αq2
(6.47)

GK
θ,α(ω,q) =

2γθ,α
ω2 + Z2

θ,αq
4
. (6.48)

We can perform the frequency integrations analytically and project the momentum
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dependence of the spectral self energy and arrive at

∂p2ΣR
α (0, 0) =

(
2λ2α

γα
Z2
α

+ 2(N − 1)λθg
γθ
Z2
θ

)
2− d

2d
Ωd

∫ Λ

0

dqqd−3 (6.49)

∂p2ΣR
θ (0, 0) =− gΩd

(Zθ + Zα)2
(6.50)(

g
γα((d− 1)Zα + dZθ)

dZα
+ 2λθ

γθ((d− 1)Zθ + dZα)

dZθ

)∫ Λ

0

dqqd−3

ΣK
α (0, 0) =

(
λ2α
γ2α
Z3
α

+ λ2θ(N − 1)
γ2θ
Z3
θ

)
Ωd

∫ Λ

0

dqqd−3 (6.51)

ΣK
θ (0, 0) =

g2γαγθ
ZαZθ(Zθ + Zα)

Ωd

∫ Λ

0

dqqd−3 (6.52)

where Ωd is the area of the sphere in d-dimensions divided by (2π)d. For the spectral

contribution, one needs to take care to also include the p dependence stemming from

the propagators and also use
∫
ddq(q · p)2f(q2) = (p/d)2

∫
ddqq2f(q2). These self

energies are the one-loop corrections of Zθ,α, 2γθ,α. From this, we can derive the

dimensionfull β-functions by simply taking a cutoff derivative 2:

Λ∂ΛZα =

(
2λ2α

γα
Z2
α

+ (N − 1)λθg
γθ
Z2
θ

)
d− 2

2d
ΩdΛ

d−2 (6.53)

Λ∂ΛZθ =
gΩd

(Zθ + Zα)2

(
g
γα((d− 4)Zα + dZθ)

dZα
+ λθ

2γθ((d− 4)Zθ + dZα)

dZθ

)
Λd−2

(6.54)

Λ∂Λγα = −
(
λ2α
γ2α
Z3
α

+ λ2θ(N − 1)
γ2θ
Z3
θ

)
ΩdΛ

d−2 (6.55)

Λ∂Λγθ = − g2γαγθΩd

ZαZθ(Zθ + Zα)
Λd−2 (6.56)

We are left to calculate the vertex corrections to get the flow equations for the

couplings. Importantly, if all three internal propagator lines belong to the same

field, these diagrams cancel out. In the pure KPZ case, this is due to the Galilean

invariance of the KPZ equation and holds also at strong coupling. Following the

2This is equivalent to a Wilsonian momentum shell RG with sharp cutoffs, which only works at
the one-loop level.



6.3. GOLDSTONE MODES OF THE O(N)× SO(2) MODEL 93

same steps as above, we arrive at the following dimensionfull flow equations

Λ∂Λλα =0 (6.57)

Λ∂Λλθ =2λθΩdΛ
d−2 (Zαg − 2Zθλα)(2γθZαλθ − γαZθg)

dZ2
αZ

2
θ (Zα + Zθ)

(6.58)

Λ∂Λg =gΩdΛ
d−2 (g − 2λα)(γαZθg − 2γθZαλθ)

dZαZθ(Zα + Zθ)2
(6.59)

We now introduce dimensionless couplings to find scaling fixed points and connect

to the scaling exponents:

λ̃α =

√
Ωdγα
Z3
αΛ

2−dλα, λ̃θ =

√
Ωdγ2θ

ΩdγαZ3
θΛ

2−dλθ, g̃ =

√
Ωdγα

Z2
αZθ,dk

2−d g, r =
Zθ
Zα
.

(6.60)

With these, we arrive at the dimensionless flow equations

να = −Λ∂ΛZα
Zα

=
2− d

2d

(
λ̃θg̃(N − 1) + 2λ̃2α

)
(6.61)

νθ = −Λ∂ΛZθ
Zθ

= −g̃2λ̃θ(d+ r(d− 4)) + g̃(d(1 + r)− 4)

2d(1 + r)2
(6.62)

ηα = −Λ∂Λγα
γα

= λ̃2α + (N − 1)λ2θ (6.63)

ηθ = −Λ∂Λγθ
γθ

=
g̃2

1 + r
(6.64)

βλ̃α =
1

2
(d− 2− ηα + 3να)λ̃α (6.65)

βλ̃θ =
1

2
λ̃θ

(
d− 2− 2ηθ + ηα + 3νθ −

(g̃ − 2λ̃θ)(g̃ − 2
√
rλα)

d(1 + r)

)
(6.66)

βg̃ =
1

2
g̃

(
d− 2 + 2να + νθ − ηα −

√
r(g̃ − 2λ̃θ)(g̃

√
r − 2λ̃α)

d(1 + r)2

)
(6.67)

βr = r(νθ − να) (6.68)

We note, that we have reproduced the one-loop flow equations from [60, 61], where

the focus was put on the one-dimensional case. In the limit N = 1, where there is

no additional Goldstone mode next to the one from trime translation α, we recover

the one-loop KPZ flow equations and are back in the scenario 6.2.
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(a) Retarded self energy contributions to α

(b) Retarded self energy contributions to θ

(c) Noise contributions to γα (d) Noise contributions to
γθ

Figure 6.3: Diagrammatic one-loop contributions to the couplings of the Goldstone
modes within the rotating phase

Fixed points and scaling exponents We now turn to the fixed point solutions

of the large N flow equations and the ensuing scaling exponents. In analogy to

the scaling form of the KPZ mode arising in the case without internal symmetries

discussed in 6.2, we define the scaling exponents of the fields via the asymptotic

scaling of their correlation function as follows

Cα(t,x) ∼ |x|2χα Ĉα(|x|zα/t) (6.69)

Cθ(t,x) ∼ |x|2χθ Ĉθ(|x|zθ/t). (6.70)

Here we allow for a weak scaling where there is no unique scaling of time if zα ̸= zθ.

From the definitions above, it is straightforward to identify

zα,θ = 2− να,θ (6.71)

2χα,θ = 2− d− να,θ + ηα,θ. (6.72)

In the flow equations, at a strong scaling fixed point r takes finite values, which fixes

νθ = να, while it either grows to 0 or infinity at a fixed point with weak scaling.

The scaling in inferred from the d = 1 fixed point determines the exponential decay

of the correlations of the oscillating fields itself, equivalently to the Van der Pol

oscillator field discussed previously in 6.2.

Following [60, 61] for the flow equations of the oscillating phase in d = 1, we note

that the one-loop flow equations, the couplings do not change their sign. WLOG
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(a) Contributions to λα

(b) Contributions to λθ

(c) Contributions to gd − igc

Figure 6.4: Diagrammatic one-loop contributions to the couplings of the Goldstone
modes within the rotating phase
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we can set λα ≥ 0. Then, the phase diagrams can be separated into four quadrants

determined by the sign of λθ and g. In the case λθ > 0, g > 0, there is a KPZ fixed

point where g̃ = 2λ̃θ and νθ = να = ηθ = ηα = 1/2 and thus

zα,θ =
3

2
, χα,θ =

1

2
. (6.73)

This fixed point however only exists, if N ≤ 5, as also found by numerical simulations

of the original equations of motion [60, 61]. A glance at the flow equations shows,

that indeed as long as g̃ = 2λ̃θ, να = 1/2 requires that g̃2 has to decrease as (N−1)−1

for growing N while νθ = 1/2 bounds it from below. We see that for too large N ,

we expect να ≥ νθ and thus weak scaling with r → 0. Therefore, the flow equation

for g̃ at r = 0 demands

−1 + 2να + νθ − ηα = 0. (6.74)

Since να ≥ νθ, this means that

−1 + 2να + νθ − ηα ≥ 0 (6.75)

and we see from βλαthat λα = 0 is stable at this fixed point. The fixed point still

has g̃ = 2λ̃θ and therefore from βλθ = 0 follows

−1 + ηα − 2ηθ + 3νθ = 0. (6.76)

and we find

(να − ηα) = (νθ − ηθ). (6.77)

With λ̃α = 0 and g̃ = 2λ̃θ, the flow equations for να and ηα imply να = ηα and thus

νθ = ηθ. Using all this, from the flow equations of ηθ and να, we can immediately

deduce να = (N − 1)/4ηθ. Now plugging everything together, we have

να = ηα =
N − 1

N + 3
, νθ = ηθ =

4

N + 3
(6.78)

We have assumed να ≥ νθ which holds for N ≥ 5. For N ≤ 5 the KPZ fixed point

remains stable. At N = 5 both coincide and may only be distinghuished beyond the

one-loop level. We thus have arrived at a new scaling form, for large N , where there
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is only weak scaling and with exponents

zα = 2− N − 1

N + 3
, zθ = 2− 4

N + 3
, χα = χθ =

1

2
. (6.79)

In a similar fashion, we turn to the case g̃ < 0, λ̃θ > 0 and identify a weak scaling

fixed point with να > νθ and thus r = 0. In this case, there remains a loop correction

to the flow of λ̃θ while the one to g̃ vanishes again due to r = 0. The resulting fixed

point equations can be solved analytically and yield the following scaling exponents

for any value of N :

zα = zθ = 2− 3N − 1

5N − 3
, χα =

3N − 1

5N − 3
, χθ =

2N − 2

5N − 3
(6.80)

We do not find a stable fixed point for g̃ > 0, λθ < 0. The weak scaling behaviors

we identified here have been observed numerically in [60].

Scaling solutions in the rotating phase

In an analogous way, we calculate the dimensionfull β-functions for the rotating

phase. In their full glory, they are lengthy and we refer to appendix 8.7 for their full

form. Any finite value of gc has an important qualitative impact on the RG flows.

The loops contributing to the flow of the KPZ coupling λα do not cancel entirely

anymore. Using the same rescaled couplings as above, we arrive at the dimensionless

β-function for λα:

βλα =
1

2
λ̃α (2− d− ηα + 3να) +

4g2cλθ(N − 2)√
r

. (6.81)

We can already anticipate the impacts of this. The strong scaling fixed point where

both α and θ fields display KPZ behavior destabilized by any finite gc and indeed

we do not find such a fixed point anymore. Further, at weak scaling r → 0, the

rescaled couplings 6.60 are not leading to well behaved flows anymore as the novel

contribution becomes singular at r → 0. This can however be remedied, by using a

different ansatz for the rescaled couplings introducing λ̂θ, ĝc, ĝd via

λ̃θ = r1/6λ̂θ, g̃c,d = r1/6ĝc,d. (6.82)
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Within these variables, we can safely go to a weak scaling fixed point r → 0, where

the flow equations take the form

νd ≡ −Λ∂ΛZd = 0 (6.83)

νc ≡ −Λ∂ΛZc = 0 (6.84)

ηθ = 0 (6.85)

να = ηα = λ̃2α (6.86)

βλ̃α =
1

2
(d− 2− ηα + να) λ̃α + 4(N − 2)λ̂θĝ

2
c (6.87)

βλ̂θ =
1

2
(d− 2 + ηα − 2ηθ + 8/3νd + 1/3να) λ̂θ (6.88)

βĝc,d =
1

2
(d− 2− ηα + 7/3να + 2/3νd) ĝc,d (6.89)

If now λα and λθ have the same sign, we can identify a fixed point where all couplings

are finite. We clearly have

να = ηα =
3

2
(6.90)

implying the scaling exponents

zα =
1

2
, zθ = 2 χα = χθ =

1

2
. (6.91)

We thus have identified yet another scaling regime with weak scaling and a field with

the somewhat exotic dynamical critical exponent z = 1/2.

6.4 Summary

This concludes our discussion of the scaling behavior in time-crystalline phases. We

have seen, that time translation symmetry breaking leads to the presence of soft

Goldstone modes and thereby algberaic scaling behavior of this mode. It is generi-

cally described by a KPZ equation but may additionally lead to topological defects

and a BKT transition in d = 2. In low dimensions, where no true long range order,

and no true long range time crystal, is expected, the decay of the correlation and

response functions can still be governed by this KPZ mode, as demonstrated analyt-

ically as well as numerically.

This scaling behavior is impacted by the presence of additional Goldstone modes

due to the breaking of an additional O(N) group. We have developed an effec-

tive field theory governing these fluctuations. The one-loop RG analysis revealed
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that there is novel fixed points with weak scaling altering the behavior identified for

time-crystalline order with no internal symmetries. This analysis will be extended to

higher dimensions with true long range order in future work. We also remark, that

the identified fixed points are strongly interacting and the perturbative loop expan-

sion thereby not controlled. Other than in the case of the KPZ equation there is no

additional symmetries fixing the scaling laws. A quantitatively reliable prediction

requires the use of more sophisticated nonperturbative methods, like the functional

renormalisation group, and numerical simulation of the underlying dynamics.
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7
Realisations

In the prior chapters we derived the universal scaling laws emerging in nonequilib-

rium systems with O(N) symmetries when they break time translation symmetry

and develop a dynamical long range order. We now turn to the question what phys-

ical systems can realize such phases. The key ingredient is Z2 or O(N) symmetry

and a sufficient drive out of equilibrium. Since this is very basic, we anticipate that

this physics can be realized in a broad range of set ups, underscoring the universality

of the mechanism.

A prominent route to realize dynamical limit cycle phases that has drawn a lot of

attention recently is utilizing nonreciprocity [28, 68, 29, 30, 31, 71] . While in equi-

librium Newton’s laws dictate that interactions between different classical degrees of

freedom has to be symmetric under exchange – every action causes an equal opposite

reaction – this reciprocity can be broken in active matter. As a plastic example one

can consider birds that flock – while a bird will align with the bird in front, the

individual in front is not affected by what happens behind it. Such nonreciprocity

can occur in plethora of active systems and metamaterials. It is easily imaginable,

that if it is strong enough, one can engineer phases where a subgroup tries to align

with the other while the other tries to antialign and a stable, dynamical catch and

run phase emerges. While various set ups to realize such phases have been proposed,

we show in 7.3 that on the universal level it is indeed captured by the field theory

101
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analysed above.

Engineering microscopic interactions to be suitably nonreciprocal is however not the

only way to generate time crystalline order. The field theory suggests, that if one

pumps the system in such a way, that pump exceeds dissipation into the environ-

ment and one effectively tunes a damping into an antidamping, the dynamical order

emerges. A single particle pump that exceeds loss is the origin of driven-dissipative

Bose condensation where the – unobservable – phase of the condensate rotates [62].

We have already encountered a close connection to driven-dissipative condensates

on the level of the universal effective field theory in 4. In 7.1, we propose a similar

driving scheme for magnets, or other systems described by an O(N) symmetric den-

sity. Using parametric resonance at high frequencies, we generate a highly occupied,

inverted bath that serves as an effective pump for the long wavelength degrees of

freedom. We show analytically, as well as through numerical simulations, how this

indeed triggers a slow rotation of the overall magnetization. The driving protocol

may be viewed as a generalization of driven dissipative Bose condensation to systems

with a higher symmetry group.

In a more specific set up, we show how oscillating magnetic fields, can induce mov-

ing order in ferrimagnets with an O(2) symmetry 7.2. We then elaborate on the

connection to nonreciprocal field theories in more detail and finish with a quantum

mechanical description using Lindbladian dynamics for pumped bosonic spinors.

7.1 Pumped Magnets

The contents of this section are prepared for publication by Carl Zelle, Romain

Daviet, Andrew J. Millis and Sebastian Diehl in parallel to completion of this thesis.

In this section we present a quite general scheme to induce a limit cycle order.

The idea is to use parametric drives that do not break any internal symmetry to cre-

ate an inverted bath. While the laid out theory works for O(N) models at arbitrairy

N we focus on N = 3 as it describes the universal long wavelength dynamics in mag-

netic systems with full spin symmetry, for instance fully spin symmetric Heisenberg

models.

Below we first briefly introduce the equilibrium models for SO(3) symmetric (anti)

ferromagnets. We show explicitly, how the inverted bath created by parametric

resonance leads to an antidamping contribution by integrating out the bath and

computing the leading order self energy contributions. It does however also increase

the overall noise level of the system, heating it up and eventually destroying any or-
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der. Therefore, a fine tuning is necessary to truly induce the time crystalline phase,

too strong drives will simply lead to a hot, fully symmetric paramagnet.

There is an important difference between ferro- and antiferromagnet: While the

effective field theory for the AFM is O(3) symmetric, the ferromagnet only has a

SO(3) symmetry allowing for an additional cubic coupling term. This leads to a

different mean-field picture of the dynamical phases. While the staggered magneti-

zation of the antiferromagnet rotates as discussed above, the magnetisation of the

ferromagnet precesses around a spontaneously picked axes. The SO(3) cubic nonlin-

earity also impacts the loop analyses carried out throughout this section and alters

the universality class of the transition between ferromagnet and limit cycle.

Equilibrium Dynamics We consider the effective dynamics of a (staggered) mag-

netization density ϕ(t,x) of an (anti)ferromagnet with full SO(3)-spin symmetry. If

the system is solely coupled to a thermal bath, it follows model A type dynamics

α∂tϕ(t,x) + κϕ(t,x)× ∂tϕ(t,x) +
δV [ϕ]
δϕ(t,x)

+ ξ(t,x) = 0 (7.1)

where, as usual, the temperature is set by noise strength and dissipation α. V [ϕ] is
an O(3) symmetric effective potential which can be expanded in field amplitudes as

V [ϕ] =
∫
t,x

1

2
ϕ(t,x)T

(
∂2t + r − Z∇2

)
ϕ(t,x) +

λ

4
(ϕ(t,x) · ϕ(t,x))2 . (7.2)

Such a dynamics can for instance be derived by coarse graining a noisy LLG equation

for Heisenberg spins and is also the expected low energy effective field theory based

on symmetries. The equilibrium transition from para- to ordered (anti)ferromagnet

is controlled by the reduced temperature r = T−Tc
Tc

. Since the staggered magneti-

zation has an direction but no orientation, i.e. ϕ and −ϕ describe the same state,

κ = 0 for the AFM and there is full O(3) symmetry.

Pumping Scheme We now drive this system symmetrically. The simplest way is

a parametric drive at large frequencies r → r(t) = r0 + rD cos 2Ωt. Following the

theory of parametric resonance, after averaging over fast drive oscillations, this will

lead to a large occupation of fluctuations at momenta qΩ where the frequency of

the excitations equals half the drive frequency ω(qΩ) = Ω. Let’s briefly recapitulate

the theory of parametric resonance. To that end, focus on a single underdamped
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harmonic oscillator subject to a parametric drive

∂2t ϕ+ 2γ∂tϕ+ (ω2
0 + rD cosΩt) = 0. (7.3)

Standard analysis reveals, that if the driving frequency is close to twice the oscillators

eigenfrequency ω2
d = ω2

0 − γ2, Ω2 ≈ ω2
d, the damping of the solutions of (7.3) is

reduced to

γ̄ = γ − rDΩ

4
+O(∆ω) (7.4)

where ∆ω = ω − Ω/2 is the detuning from resonance [105]. At this level, for γ̄ > 0,

the system either decays to ϕ = 0 or blows up exponentially. Above the threshold of

the driving amplitude, the unbound growth of the resonant oscillator is remedied by

nonlinearities, that are generically present in a physical system. In the deterministic

case, there is still a threshold behavior, below a critical pumping strength the drive

has no effect on the time averaged occupation. This changes as one includes noise

fluctuations, which constantly kick the system out of its equilibrium. The life time

of these excitations is now decreased by the drive to τ−1 = γ̄ which leads to an

increasing occupation with drive amplitude also below threshhold in the presence of

noise, see Fig. 7.1.

This leads to the following picture visualized in Fig. 7.2: The low frequency

excitations are occupied thermally while there is a high, sharply peaked occupation

at frequencies Ω. These occupations can now scatter into the low frequency regime,

effectively acting as a pumping reservoir. We aim to show that this manifests in a

negative shift of the damping (i.e. an antidamping) of the low frequency excitations.

If this overcomes the bare damping due to dissipation of the low frequency modes,

the instability discussed in the previous chapters is triggered. This is in spirit very

similar to the pumping protocols put forward for driven dissipative Bose condensation

of exciton polaritons [64, 62, 89, 106, 102] which has been experimentally realised

[97]. In fact, also the nonthermal nonlinearities u and u′ of the nonthermal O(N)

model (2.2) are generated.

We now want to derive this effect. To this end we split the modes into the low

frequency modes ϕ< and the large frequency modes that are highly occupied ϕ>.

Since the occupation of the fast modes is strongly peaked at a momentum shell qΩ

with width δq, we can write the Keldysh Green function of the fast modes as

GK
> (ω,q) = Pδ(q − qΩ)δq G

R(ω,q) ·GA(ω,q) (7.5)
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(a) (b)

Figure 7.1: Parametric pump of a single damped, noisy oscillator subject to para-
metric driving and a nonlinear force term ∼ ϕ3. Left: occupation of the oscillator at
constant drive frequency as a function of the oscillator’s eigenfrequency. Clearly, on
top of a thermal distribution there is a sharply peaked occupation at high frequencies
due to the drive. Right: Occupation at resonance as a function of drive amplitude
for increasing noise levels. At vanishing noise, there is a clear threshold behavior,
as explained in the text. As expected, the occupation increase due to pumping is
smooth in the presence of noise.

Figure 7.2: Schematic pumping scheme. The parametric drive leads to a sharply
peaked, high occupation at all momenta |q| = qΩ (red band). This reservoir then
pumps the slow degrees of freedom through incoherent scattering processes.
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where we fix P by demanding that only integrating over frequencies yields the oc-

cupation of a single pumped resonator
∫
ω
GK(ω,q) = nbath δqδ(q − qΩ). We assume

for the spectral Green function, that

GR =
−1

(ω + i(γ + Z1q2))2 − Z2
2q

4
(7.6)

i.e. that the frequency at zero momentum can be neglected at the relevant momenta

ω ≪ Ω. We stress that the exact momentum dependence of the Green functions is

not of crucial importance for our mechanism. It has to be adapted for a concrete

material to get the correct fully nonuniversal numbers.

7.1.1 Self-energy contributions

The antidamping impact on ϕ< modes is given by the self energy contributions

stemming Σp stemming from integrating out ϕ>, i.e. all internal loop propagators

are associated to the fast fields ϕ>. The Green function of the slow modes ϕ<

including the Keldsyh structure then is G−1
< (ω,q) = G−1

0 (ω,q) − Σp(ω,q). We are

interested in the shift of the damping caused by Σp, i.e. ∂ωΣ
R
p (ω = 0,q = 0).

Antiferromagnet In the case of an antiferromagnet, where κ = 0, we have the

usual model A type O(N) theory to start with. The leading order contribution to

the frequency dependence of the self energy is the sunset diagram stemming from

the λϕ4 coupling. The loop integral reads

Isunset(ω,q = 0) = (2π)−2d−2

∫
q1,q2,q3

∫
ω1,ω2,ω3

δ(ω1 + ω2 + ω3 + ω)δ(q1 + q2 + q3)

GK
> (ω1,q1)G

K
> (ω2,q2)G

R(ω3,q3)

(7.7)

Using a Fourier representation of the δ distributions, we rewrite

Isunset(ω, 0) =(2π)−3d−3

∫
s,t

eitω
(∫

q1,ω1

eis·q1+itω1GK
> (ω1,q1)

)
(7.8)(∫

q2,ω2

eis·q2+itω2GK
> (ω2,q2)

)(∫
q3,ω3

eis·q3+itω3GR(ω3,q3)

)
. (7.9)

Now we use rotational invariance of the Greens functions, i.e. that they only de-

pend on q ≡ |q| and restrict ourselves to d = 3 to perform the angular momentum
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integrations. To this end we use∫
d3q eis·qF (q) = 2π

∫ ∞

−∞
q2dq

sin qs

qs
F (q) (7.10)

where s = |s|. We can now straightforwardly perform the integration over s by∫
d3ss−3 sin3(sqΩ) = π2. We now compute the subintegrals I1 =

∫
dω
∫
qdqeitωGR(ω, q)

and I2 =
∫
dω
∫
qdqeitωGK

> (ω, q). Since G
R has only poles in the lower complex half

plane, I1 is proportional to θ(−t). Performing the frequency as well as momentum

integration yields

I1 =
4eγtπ2 arctanZ2/Z1

Z2

θ(−t) (7.11)

For I2 we can use the momentum shell constraint of 7.5 to wit, for t < 0

I2 = 4πqΩδqnbath

∫
ω

eitω
2iγΩ

(γ2Ω + (ω − Ω)2)(γ2Ω + (ω + Ω)2)

= −4πqΩδqnbathe
γΩt(γΩ sinΩt− ΩcosΩt)

Ω
.

(7.12)

where γΩ is the decay rate into the bath of excitations at qΩ. In three dimensions,

we thus arrive at

Isunset(ω, 0) = 2−6π−3

∫ ∞

−∞
dteiωtI1I

2
2 . (7.13)

We are only interested in the frequency derivative at ω = 0:

∂ωIsunset(ω = 0,q = 0) = 2−6π−3

∫ ∞

−∞
dt iteiωtI1I

2
2 (7.14)

This integral can be performed analytically. For Ω ≫ γΩ ≫ γ it yields

∂ωIsunset(ω = 0,q = 0) ≈ −i(qΩδq nbath)
2 arctanZ2/Z1

256Z2γ2Ω
(7.15)

The full self energy contains additional factors of (λ/4)2, the bare scattering of the

original theory, a combinatorial factor of 2 · 3 and a factor N from the traces over

the internal O(N) indices and thus

∂ωΣ
R
p (ω = 0,q = 0) =

3Nλ2

8
∂ωIsunset(ω = 0,q = 0) (7.16)
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The shift of the damping is, by definition for the AFM (N = 3)

δγ = Im ∂ωΣ
R
p (ω = 0,q = 0) ≈ −Nγ

(qΩδq nbath)
2

γ2Ω
< 0 (7.17)

proving that the pumping effectively leads to an antidamping contribution. Here

Nγ =
arctanZ2/Z1

256Z2
.

Equivalently, the pumped bath will also lead to a noise increase ∆D in the low

energy modes that will counteract ordering instabilities. This also manifests in a self

energy contribution stemming from a sunset diagram with three internal Keldysh

Green functions,

∆D = Nλ22−5π−3

∫ 0

−∞
dtI32 ≈ 5(qΩδq nbath)

3

32Ω2
(7.18)

where we symmetrised the t integration which initially runs from −∞ to ∞ and

again used γΩ ≪ Ω.

Ferromagnet In the case of a ferromagnet, there is an interaction κϵijkϕ̃i∂tϕjϕk
and thus the leading contribution to ∂ωΣ

R
p stems from a one loop integral. We

however have to be careful with contracting the antisymmetric vertices. The con-

figuration, where the time derivative of the vertex hits an external leg leads to a

contribution to the damping

κ2ϵijk
1

(2π)4
(ϵjik + ϵkij)

∫
ω,q

(−iω)GR(q, ω)GK
> (q, ω) = 0. (7.19)

The remaining contributions are

∂ωΣ
R
p =

κ2

(2π)4
∂ω

∣∣∣∣∣
ω=0

ϵijk

(
ϵkji

∫
ν,q

(−i(ν − ω))2GK
> (ν − ω,q)GR(ν,q)

+ ϵjki(−i(ν − ω))GK
> (ν − ω,q)(−iν)GR(ν,q)

)
=− κ2

∫
ν,q

νGK
> (ν,q)G

R(ν,q) = −inbathq
2
Ωδq

4π3γΩ
. (7.20)

As above, we have established, that the slow spin waves experience an effective

antidamping contribution due to the reservoir modes.

Similarly to the case of the antiferromagnet, there is also a self energy contribution

to the noise, which reads
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∆D = 2κ2
∫
ω,q

GK
> (ωq)

2 ≈ (nbathq
2
Ωδq)

2

2πγΩ
. (7.21)

7.1.2 Nonlinear dampings

As elaborated in the discussion of the phase diagram of the nonthermal O(N) model

in 2, the nonlinear damping contributions to the MSRJD Lagrangian u(ϕ̃·∂tϕ)(ϕ·ϕ)
and u′/2(ϕ̃ ·ϕ)∂t(ϕ ·ϕ) are crucial to stabilize the limit cycle phases. Since they are

RG relevant in the vicinity of the transition into the rotating and oscillating phases

below four dimensions, as the prior analysis showed, we expect them to be generated

as soon as symmetries allow them upon coarse graining close to the antidamping

instability. Here we show explicitly how they are generated on the one-loop level as

above.

To that end we first look at the full frequency dependence, at vanishing external

momenta, of the vertex in leading order perturbation theory

Γ(13)(ω1, ω2, ω3) =
δ4Γ

δϕ̃a(−
∑
ωi)ϕa(ω1)ϕb(ω2)ϕb(ω3)

=λ− λ2(2π)−d−1

∫
q,ω

(
N2GK

> (ω − ω2 − ω3)G
R
>(ω)

+GK
> (ω − ω1 − ω3)G

R
>(ω) +GK

> (ω − ω1 − ω2)G
R
>(ω)

)
+O(λ3)

(7.22)

Now, we identify

u = i∂ω1Γ
(13)(ω1, ω2, ω3)

∣∣∣
ωi=0

(7.23)

u′ =
i

2
(∂ω2 + ∂ω2) Γ

(13)(ω1, ω2, ω3)
∣∣∣
ωi=0

(7.24)

to find that

u = i
2λ2

(2π)d+1

∫
q,ω

(
∂ωG

K
> (ω)

)
GR
>(ω) +O(λ3) (7.25)

u′ = i
(N2 + 1)λ2

(2π)d+1

∫
q,ω

(
∂ωG

K
> (ω)

)
GR
>(ω) +O(λ3). (7.26)
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The loop integral over the reservoir Green’s functions can be performed straightfor-

wardly, in the same manner as in the self energy contributions and we find

u =
λ2(Ω2 + 5γ2Ω)q

2
Ωnbathδq

4γΩ(Ω2 + γ2Ω)
2(2π)3

> 0 (7.27)

u′ =
N2 + 1

2
u (7.28)

We thus have established, that the nonlinearities stabilizing the limit cycle phases

are genereted with the correct signs by integrating out the pumping reservoir. Fur-

thermore, u′ > u at leading order perturbation theory and the system will go into

the rotating phase rather than show amplitude oscillations.

7.1.3 The fate of SO(3)

We have shown how the effective field theory described and analysed in the chapters

2, 4, 5, 6 emerges in magnets that are pumped parametrically at high frequencies.

There is however one key difference in the ferromagnetic case; the coupling force

term κ∂tϕ × ϕ is not fully O(3) but only SO(3) symmetric and therefore absent

in the O(N) theories above. This alters the mean field phase itself: rather than

rotating aroung a grand circle of the sphere, the magnetization precesses around a

spontaneously picked axis (here the z-axis)

⟨ϕ(t)⟩ = ϕ0 (sinΩ cosω0t, sinΩ sinω0t, cosΩ)
T (7.29)

with field amplitude ϕ2
0 = −2γ

u
, angular velocity, ω2

0 = r + (λ + κ2)ρ0 and tilt angle

tanΩ =
√

r+λρ0
κρ0

, see figure 7.3 for a visualization of the different patterns. The

precession still breaks all three generators of SO(3) and the generator of broken

time translations coincides with the generator of rotations along the precession axis,

as in the case of the rotating phase of O(3). We now discuss the impact of κ ̸= 0 on

the universal exponents.

SO(3) paramagnet to limit cycle We now consider the transtion between para-

magnet and time crystal, characterised by SO(3)× SO(2) symmetry breaking. The

field theory describing O(3)×SO(2) symmetry breaking into a time crystalline phase

was discussed in Chapter 4 and [43]. We thus have to check if the terms distinguish-

ing SO(3)×SO(2) from O(3)×SO(2) are contributing to the perturbative RG flow.

The relevant degrees of freedom are the ampitude vectors χ⃗1,2. In index notation
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Figure 7.3: Limit cycle orders in driven magnets. Left: precession of a ferromagnet.
Right: rotation of an antiferromagnet. The planes of rotation and precession are
chosen spontaneously. There are two soft modes associated to tilting them. There
is one soft mode associated to spatial modulations of the phase along the precession
and rotation respectively

we write χiα where upper Roman indices i = 1, 2, 3 are the SO(3) indices while the

lower Greek indices α = 1, 2 are the SO(2) ones. The simplemost SO(3) × SO(2)

invariants that are not also invariant under O(3)× SO(2) are of the form(
ϵijkχ̃

α
i δ

αβχβj χ
γ
k

)
δγγ

′
(
ϵmno

(
∇2χα

′
m

)
δα

′β′
χβ

′
mχ

γ′
n

)
(7.30)

and permutations thereof. These are thus of second order in derivatives and sextic

order in fields and therefore highly irrelevant. Hence, they will not impact the uni-

versal exponents in a perturbative expansion and the universal exponents coincide

with those of O(3)× SO(2).

Ferromagnet to limit cycle WLOG, we assume the magnetic order to lay in the

z axis and expand fluctuations around the mean field solution ϕ = (m1,m2, σ + σ0).

The longitudinal fluctuations σ0 are gapped and we restrict ourselves to the dynamics

of the Goldstone modes m1,2. At linear level, we have

∂2tmi + (δ − Z1∇2)∂tmi + σ0κϵij∂tmj − Z2∇2mi + ξ = 0. (7.31)

Here, δ = 2γ + uσ2
0 is the tuning parameter which triggers the transition between

static (δ > 0) and rotating (δ < 0) phase and ϵij is the totally antisymmetric tensor.

The gapless nature of the Goldstone modes implies that m can only appear with

derivatives acting on it, while the unbroken subgroup U(1) has to be linearly realised,
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restricting the mixing of m1,2. To study the transition, it turns out to be useful to

switch to a ”Hamiltonian” description of the dynamics, introducing a conjugate field

momentum π to wit

∂tπi + (δ −K∇2)πi + σ0κϵijπj − Z∇2mi + ξ = 0 (7.32)

∂tmi = πi. (7.33)

We now write the real, two component fields (π1, π2)
T , (m1,m2)

T as complex numbers

π = π1 + iπ2 ∈ C, m = m1 + im2 ∈ C. The equation of motion becomes

∂tπ + (δ + iσ0κ− Z∇2)π − Z∇2m+ ξ = 0 (7.34)

∂tm = π. (7.35)

This reveals that the universal fluctuations are captured by a noisy Hopf bifurcation

or complex Gross-Pitaevskii equation coupled to a Goldstone mode. Recasting the

Langevin dynamics presented in the main text, (7.34), into an MSRJD action reads

S0 =

∫
t,x

π̃∗(t,x)
(
∂tπ(t,x) + (δ + iσ0κ− Z1∇2)π(t,x)− Z2∇2m(t,x)

)
+ c.c.

− 2Dπ̃∗π̃ + m̃∗(t,x) (∂tm(t,x)− π(t,x)) + c.c. (7.36)

The critical point is reached upon tuning δ = 0. The finite imaginary part σ0κ is

absorbed by going to a rotating frame, as usual for complex GPEs and can thus

be set to zero. This however spoils a straightforward canonical power counting

from the second line in the action. This breakdown of canonical power counting is

frequently occuring at time translation symmetry breaking transitions as we have

seen in chapters 4 and 5 of this thesis. First, we take a look at the pole structure of

the Gaussian action in momentum and frequency space. To that end, we collect the

coherent and dissipative couplings into complex ones µ = δ+ iσ0κ, K1 = Z1K2 = Z2

where K1,2 may also pick up imaginary parts under RG. The frequency poles are

ω1,2(q) =
i(µ+K1q

2)

2
±
√

−(µ+K1q2)2

4
+K2q2. (7.37)

At the Hopf bifurcation, µ ∼ k2 is relevant while K1 ∼ k0 is marginal (where k

is a momentum scale). Evidently, full scale invariance is only maintained if K2 was

relevant as well, turning the point multicritical. At dynamical transitions, there may

not be a single dynamical exponent z [44] and we may fix K2 to be marginal and

expand the frequencies to leading order in momentum scales, bearing in mind that
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the imaginary part of µ stays finite at the transition due to κ ̸= 0 to wit

ωHopf (q) = −i(δ − iσ0κ)− i(Z1 − iZ2)q
2 (7.38)

ωGM(q) = −i(Z1 − iZ2)q
2. (7.39)

We thus have the poles of a diffusive Goldstone mode together with a Hopf bifurcation

at finite frequency as δ is tuned to criticality. We now want to check to which

extend the coupling to the gapless field m changes the universal behavior of the

Hopf bifurcating π. To that end, we consider the lowest order coupling between both

degrees of freedom, which is the following interaction in the MSRJD Lagrangian

λm(π̃∗π)∇m∗ · ∇m (7.40)

Since canonical power counting does not work, we consider the one loop corrections

to λm generated λm itself. This leads to a dimensionfull RG β function

k∂kλm = λ2mIλ (7.41)

where Iλ contains all the loop integrals. Here k denotes an momentum shell, a reg-

ularization of frequency integrals is not necessary. Clearly, this flow is becoming

dimensionless, if λm ∼ k∆λ and Iλ ∼ k−∆λ , i.e. the RG-scaling of λm can be read of

the momentum scaling of the loop integral. For this, one has to use the scaling of

the Gaussian action parameters discussed above and perform the frequency integral

analytically via residue theorem.

Inverting the Gaussian part of the action to get the free Green functions and the

performing the frequency integrals of the respective loops, is straightforward fol-

lowing e.g. [36] and using (7.38) but lengthy and with no important information.

Importantly, all contributions to Iλ diverge as

Iλ ∼ kd−2 +O(kd−1) (7.42)

and thus the scaling dimension of λm is 2 − d and it is irrelevant for dimensions

d ≥ 2. We can thus treat m on the Gaussian level. As usual for a criticality

at a single finite frequency, we go into a rotating frame, π → eiEtπ, m → eiEtm

with E = σ0κ. This gives a mass like contribution to the mode m and it can be

integrated out adiabatically. This exactly reproduces the action of a noisy complex



114 CHAPTER 7. REALISATIONS

Gross Pitaevskii equation for π in the rotating frame

Seff0 [π̃, π] =

∫
t,x

π̃∗ (∂tπ + δπ + (Z1 − iZ2/E)∇2π
)
+ h.c.+ 2Dπ̃∗π (7.43)

where canonical power counting is possible again and the standard RG machinery

can be employed and consequently the universal critical exponents in d = 4−ϵ remain

those of the Hopf bifurcation. This shows that the universal exponents of transition

between ferromagnet and time-crystal is described by the Hopf universality class

[18, 89, 93]

This is consistent mean field picture of a precession, at the transition we see a finite

frequency condensation of the conjugate spin wave momentum

π⃗ = π0(cos
√
σ0κt, sin

√
σ0κt, 0)

T . (7.44)

Plugging this back into ϕ⃗ = (m1,m2, σ + σ0), ∂tϕ⃗ = π⃗ yields exactly the precessing

phase from 7.29. This RG fix-point is known [18, 89, 93], in fact we have encountered

it in chapter 4, it has an effective emergent temperature, i.e. η = η′. However, the

subleading exponent ηc describing the emergence of equilibrium conditions under

coarse graining distinguishes it from the Model A dynamical universality class in the

classification of Hohenberg and Halperin [1].

7.1.4 Phase Diagram

We now collect all analyses carried out above into a phase diagram of the pumped

ferro- and antiferromagnet. The physical tuning parameter that we use for the pump

strength is the occupation of the reservoir. At small pumping strengths, i.e. positive

effective dampings γ > 0, there is the usual (anti)ferromagnetically ordered phase

at low bath temperatures, corresponding to the symmetric phase of the nonthermal

O(N) model, see 2.1. Upon increasing the bath temperature through the critical

temperature, magnetic order is destroyed, the critical point is described by model A

[1]. As we have shown above, the pumping reservoir leads to a shift of the effective

damping, γ = α − δγ. If δγ surpasses the Gilbert damping α, there is an effective

antidamping triggering an instability towards a phase with periodically moving av-

erage (staggered) magnetization ⟨ϕ⃗(t)⟩. As we have shown, the heating contribution

of the pumping reservoir always exceeds the antidamping at large reservoir occupa-

tions, δγ/∆D ∼ nbath. Therefore, at too large pumping strengths, noise fluctuations

destroy any order pushing the system back into a thermal paramagnet. If the Gilbert

damping is too large, the required driving strength to overcome it is too large and
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Figure 7.4: At small drives there are the two static phases, paramagnet and antiferro-
or ferromagnet for positive or negative Heisenberg J respectively. At suitably strong
drives and low noise levels, time crystalline order emerges. Too strong drives push
the system back in a thermal paramagnetic state.

the limit cycle phase cannot be reached. The resulting schematic phase diagram is

depicted in figure 7.4.

The transition between paramagnet and the rotational limit cycle of the order

parameter falls into the universality class of the O(3)×SO(2) model discussed above

and is thus marked by the respective nonthermal exponents. As shown above, the

transition between antiferromagnet and time-crystal is governed by the CEP phe-

nomenology established in 5. There is giant fluctuations, melting antiferromagnetic

order close to the transition, and for low bath temperatures a first order transition.

The transition between ferromagnet and limit cycle is captured by the universality

class of the complex noisy Gross-Pitaevskii equation [89, 93].

7.1.5 Numerics

The field theoretical prediction of an emergent limit cycle behavior is confirmed by

numerical simulations of the original model (7.1) with parametrically driven poten-

tial as described above. Simulations of a 3-dimensional cubic model of size L = 32

show, that indeed initially a sufficient drive induces a high occupation of modes at

momenta qΩ. This however quickly scatter into the low momentum regime and lead

to a macroscopic occupation at q = 0, and at a finite frequency. There is a coherent,

long range ordered rotation of the order parameter, as predicted and visualized in
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Figure 7.5: Numerical simulations of Eq. (7.1) with r = −1, λ = 0.5, 2γ = 10−3 and
κ = 0 (antiferromagnetic case). The driving frequency Ω = 2.15 is chosen to have
a parametric resonance of the longitudinal mode around momentum qΩ ∼ π/2. (a)
Large time solutions with rD = 2.4 is given by the orange solid line. The blue dashed
line shows the same trajectories averaged over the fast amplitude oscillations (with
frequency Ω). The order parameter indeed traces out a circle. (b) Frequency of the
limit cycle ω0 and its averaged amplitude over the fast oscillations ρ as a function of
the driving power rD. c) and d) show the same for the ferromagnetic case κ = 1.
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Fig 7.5. Along the transition between antiferromagnet and time crystalline order, the

mapping to the critical exceptional point of driven O(N) models predicts a decrease

of the amplitude at the transition due to the exceptionally enhanced fluctuations

and a square root behavior of the angular velocity going deeper into the rotating

phase from the transition. Both is confirmed by the numerical simulations as shown

in panel b) of Fig 7.5.

7.2 Ferrimagnet

In the parametric pumping scheme developed above, we have essentially created

an antidamping overcoming the intrinsic damping of the system. Most solid state

systems show however fas relaxation rates mainly due to coupling to thermal phonon

reservoirs, and thus one needs strong pumps which can in turn heat the system up

too quickly and destroy any order. In contrast, in the following, we will show that

it is possible to create the rotating time-crystalline phase in a ferrimagnetic system

with arbitrarily weak drives. A modified version of the following section including

figures has been published in Sec VII of [44]. The driving protocol was designed by

Achim Rosch.

7.2.1 Rotating order and CEP transition in the driven fer-

rimagnet

We consider an equilibrium spin system on a cubic lattice. The system is assumed to

have an anisotropy breaking the SO(3) spin symmetry down to U(1) rotations within

an easy xy plane and a Z2 reflection symmetry along the z-axis. We assume the sys-

tem spontaneously orders in the easy plane for equilibrium temperatures T < TN

constituting an xy (anti)ferromagnet. Furthermore it can undergo a ferrimagnetic

Ising like transition below a temperature Tc < TN where an out of plane magneti-

zation along the z-axis develops. Instances of systems showing such type of phase

transitions are, for example, found in Refs. [107, 108, 109]. In the vicinity of this

phase transition the slow, long wavelength dynamics is captured by the U(1) Gold-

stone mode of the order in the xy plane, θ, and an Ising variable mz describing the

ferrimagnetic order parameter. We thus construct the effective dynamics for these

degrees of freedom. Since there is no additional conserved charge, there is no hy-

drodynamic modes that need to be considered on top of them. The symmetries act
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as

U(1) : θ → θ + α,

Z2 : θ → −θ, mz → −mz.
(7.45)

Since the reflection and U(1) rotation do not commute the symmetry group of this

system is U(1) ⋉ Z2
∼= O(2). We now drive the system out of thermal equilibrium

by applying a rapidly oscillating magnetic field with amplitude B0. Since the drive

is very fast, the effective dynamics of θ and mz is still Markovian and the drive

effectively couples the Ising and the Goldstone mode. The O(2) symmetry of the

system, the absence of conserved currents and the markovianity of the long time

dynamics indicate, that its coarse grained dynamics will be described the O(N = 2)

model discussed above. We derive the effective dynamics of the spatially averaged

collective Goldstone and Ising modes ⟨θ⟩, ⟨m⟩ explicitly from a microscopic model

in Sec. 7.2.1. Since the correlation length ξ is orders of magnitude larger than the

microscopic lattice spacing, ξ ≫ a, the spatial fluctuations of the dynamics can be

treated in a continuum limit with emergent rotational symmetry in space, as usual for

the effective dynamics close to a critical point. We thus model the spatial fluctuations

beyond the effective single mode with phenomenological constants Kθ, K0, Km at

order ∇2. This procedure yields the following effective dynamics

αθ∂tθ =αθγzmz +Kθ∇2θ − ∂tmz + ξθ,

αm∂tmz =− δV

δmz

+ ∂tθ +K0∇2θ + ξm,
(7.46)

where αθ,mz stem from the Gilbert damping of the original spin system. ξθ, ξm are

respective Gaussian white noises which close to equilibrium are set by temperature

and αθ,mz . V is an Ising potential for the ferrimagnetic order parameter, which can

be parametrised as

V =

∫
x,t

1

2

(
rm2

z +Km(∇mz)
2
)
+
λ

4!
m4
z (7.47)

with r = T − Tc the distance from the equilibrium ferrimagnetic transition. The

effect of the drive are nonvanishing values of K0 and |γ| ∝ B2
0 which do not exist in

equilibrium. We give a microscopic derivation of these dynamics below. Evidently,

the presence of a finite γ indicates that a build up of ferrimagnetic order ⟨mz⟩ ≠ 0

immediately induces a finite angular velocity for the xy order causing it to rotate in

the easy plane. For time and length scales above (αθγ)
−1 the effect of ξθ in the first

equation get suppressed, and we can use this first equation of motion to eliminate
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mz and plug it into the second to indeed reproduce the nonlinear σ model for the

N = 2 CEP discussed in Sec. 5.3,(
∂2t + (δ − Z∇2)∂t − v2∇2

)
θ +

g

6
(∂tθ)

3 + ξ = 0. (7.48)

Since the spin damping coefficients αm,θ are typically very small, we can restrict

ourselves to leading order contributions in these. We then have δ = γzαθ(r−γz)
r

, and

thus there is a transition into a rotating phase occuring at r = γz rendered first order

by CEP fluctuations as discussed above for all finite drivings γz. In the vicinity of

the transition, r ≈ γz, the remaining parameters are Z = Kθ

αθ
, v2 = Kθγz+K0αθγz ≈

Kθγz, g = αθλ
γ2z
, ξ = γz

αθ
ξm. In these units, we have ρ0 = 1 and thereby, by the

criterion found in the field theoretic analysis (5.63), there is a first order phase

transition between xy order and rotating ferrimagnet if

λα2
θ

γz
≫ 1, (7.49)

and the xy order is destroyed in the opposite limit.

Finally we remark on the connection to the equilibrium case γz, K0 → 0, where

there is an Ising transition into a static ferrimagnet. At the Ising fixed point however,

the nonequilibrium coupling γz is relevant, so that once it is allowed via the breaking

of equilibrium conditions in terms of the drive, it will flow to a value of O(1) under

the RG for sufficiently large system sizes. In that sense the equilibrium transition

constitutes a multicritical point which will not impact the transition phenomenology

once one drives the system out of equilibrium.

Our results are summarized in the phase diagram sketched in Fig. 7.6, which

explores the phases as function of temperature T and driving power PD. Here T

is the equilibrium temperature of the undriven system which in experiments is set

by phonon or electron baths and their coupling to a cryostat. The phase diagram

is based on the assumption, that in equilibrium, PD = 0, the system undergoes a

sequence of two phase transitions upon lowering T , first into an xy ordered phase and

then into the ferrimagnetic phase as discussed above. Driving the system has, first,

the effect that the effective temperature and thus the fluctuations grow linearly in the

driving power PD for small PD. Importantly, the coupling γz linear in PD emerges in

the effective field theory, Eq. (7.46), which is highly relevant in the renormalization

group sense. Due to γz, the static ferrimagnetic order is transformed into a rotating

ferrimagnet for arbitarily small PD as discussed above. Arbitrarily small, but finite

driving also destabilizes the second-order phase transition and one obtains instead

a weak fluctuation-induced first order transition characteristic of the CEP as for
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Figure 7.6: Schematic phase diagram of a driven ferrimagnet as function of tem-
perature and the power of an external driving source, e.g., a laser or an oscillating
magnetic field. We assume that in equilibrium the system displays antiferromagnetic
xy order for T < TN and becomes a ferrimagnet for T < Tc < TN by developing an
extra out-of-plane ferromagnetic component. Driving induces in the ferrimagnetic
phase a rotation of the xy order parameter. The transition is governed by a criti-
cal exceptional point (CEP) with its characteristic first-order phase transition (red
line). The enhancement of fluctuations close to the CEP bends the transition line
between paramagnet and xy order down, culminating in a multicritical point where
all transition lines meet. For larger driving strength also a direct transition from the
paramagnetic into the rotating ferrimagnetic phase will occur. Thus, all phases and
phase transitions of the effective model, Fig. 2.1, can be realized. This figure is also
shown in chapter 6.
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small γz, the condition of Eq. (7.49) is always obeyed. At larger driving, γz ∼ α2
θλ,

the line of first-order transition ends when the xy order is destroyed by the strong

fluctuations arising from the superthermal mode occupation in the vicinity of the

CEP. We therefore expect, as sketched in Fig. 7.6, that the long-ranged xy-order

melts most easily just above the transition temperature Tc. In the figure, we also

took into account that a finite PD always leads to a net heating of the system

proportional to PD, thus all transition lines bend to the left in Fig. 7.6.

Let us finally compare the symmetry U(1) ⋉ Z2, Eq. (7.45), to the symmetry

U(1)×Z2, realized by replacing the second line of that equation bymz → −mz, while

leaving θ invariant. In this case, on the right hand side of the first line of (7.46), a

field-independent constant (as well as a KPZ non-linearity) is also symmetry allowed,

and will be generically non-vanishing once the drive is switched on. The system

is thus always in a rotating phase for finite drive, and no phase transition of the

above type would be realized. In other words, time translation invariance is broken

explicitly, as opposed to spontaneously as in our case.

Microscopic derivation

In the following, we provide a microscopic theory to show how a rotation of Goldstone

modes is induced at a ferrimagnetic transition if the system is driven out of thermal

equilibrium by an oscillating magnetic field Bz(t). We consider classical spins Si,

|Si| = 1, on a three-dimensional cubic lattice with

H =J
∑
⟨i,j⟩

Sxi S
x
j + Syi S

y
j −∆Szi S

z
j

+
∑
i

δ2S
z
i
2 + δ4S

z
i
4 − giBz(t)S

z
i . (7.50)

The model is invariant under global spin rotations around the z axis and we assume

J,∆, δ4 > 0. The sign in front of ∆ is chosen to obtain a ferrimagnet. At T = 0,

Bz = 0, the system orders antiferromagnetically in the xy-plane for δ2 > zJ(∆− 1)

(z = 6 is the number of nearest neighbors) but the spins tilt out of the plane for

δ2 < zJ(∆− 1) developing a uniform out-of-plane magnetization. By tuning δ2, one

can thus describe the transition from an xy antiferromagnet to a ferrimagnet.

The dynamics of the system is obtained from the Langevin (or, equivalently,

Landau-Lifshitz-Gilbert) equation

∂tSi = −Si ×
(
∂H

∂Si
+ α∂tSi + ξi(t)

)
, (7.51)
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Figure 7.7: Average precession rate ∂tθ as function of the anisotropy δ2 for the model
defined in Eqs. (7.50) and (7.51). For sufficiently large δ, the magnet develops an
out-of-plane magnetization and, simultaneously, the spins start to rotate. Solid lines:
mean-field numerics (i.e., for a noiseless model) for three different amplitudes B0 of
the oscillating field, dashed line: analytical result valid close to the phase transition
for small B0 using Eq. (7.46), Eq. (7.55) and the mean-field order parameter |mz| =√

−δ2−zJ(1−∆)
δ4

. The parameters are Bz(t) = B0 cos(ωt), ω = 7.2 J , α = 0.2, gA = 1,

gB = 2, ∆ = 0.9, δ4 = 6 J .

where the Gilbert damping α allows for a relaxation of the magnetization.

To obtain an equation for the time-dependence of the angle θ parametrizing the

Goldstone mode, Eq. (7.46), and thus for γz, it is most convenient [75] to compute

first the time-dependence of the relevant conservation laws, i.e., of the total mag-

netization Mz =
∑

i S
z
i . Due to the damping terms, the magnetization Mz is not

conserved and one obtains

∂Mz

∂t
= −α

∑
i

(Si × ∂tSi)z = −α
∑
i

(
1− Szi

2
)
∂tθi, (7.52)

where θi is the angle describing the in-plane orientation of Si and we ignored contri-

butions from ξi(t) which at low temperature will only give rise to small corrections

to the value of γz. Next, we average Eq. (7.52) over time in the presence of an

oscillating magnetic field Bz(t). The time average of ∂tMz vanishes, ∂tMz = 0, as

it is a total derivative of a bounded quantity. In contrast, ∂tθi can be finite, as

the angle is not bounded and can have a net growth in each oscillation period T ,

∂tθi = (θi(t + T ) − θi(t))/T . Thus, we obtain a remarkably simple equation for the
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Figure 7.8: Coupling γz defined in Eq. (7.46) as function of the driving frequency ω
(points: numerics for B0 = 0.25 J , line: analytical result, Eq. (7.55)). The parame-
ters are α = 0.2, gA = 1, gB = 2, ∆ = 0.9, δ2 = −0.66 J , δ4 = 6 J .

average angle θ = ⟨θi⟩ = 1
N

∑
i θi which is independent of the friction constant α

∂tθ = ⟨Szi 2∂tθi⟩, (7.53)

where ⟨. . . ⟩ denotes the average over different sites i. Assuming that our system is

weakly driven out of thermal equilibrium by a small, time-dependent field Bz(t), we

evaluate Eq. (7.53) in second-order perturbation theory and linear in the uniform

magnetization mz = ⟨Szi ⟩. Comparing to Eq. (7.46), we find

γz = 2⟨Szi ∂tθi⟩c, (7.54)

where we omitted corrections from ⟨Szi 2⟩ ∂t⟨θi⟩ as they are of higher order in either

mz or Bz. Eq. (7.54) should be evaluated at the critical point, i.e., for δ2 = zJ(∆−1).

The contribution to second order in Bz(t) can be obtained by evaluating both Szi and

∂tθi to first order and we find for an oscillating field of the form Bz(t) = B0 cos(ωt)

γz ≈
B2

0(gA − gB)
2zJω2

2 (ω2(1 + α2)− 4(zJ)2∆)2 + α28(zJ)2ω2(∆ + 1)2
, (7.55)

where gA, gB are the g factors on the two sublattices.

In Fig. 7.7 the precession rate ∂tθ obtained from a noiseless solution, ξi(t) = 0, of

the equation of motions, Eq. (7.51), is shown in comparison to the analytical results.
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In the noiseless case (or, equivalently, in a T = 0 mean-field theory) one can use

translational symmetry and simulate only the equation of motion of two spins, one

on each sublattice of the antiferromagnet. Close to the phase transition and for small

amplitudes of the oscillating fields, excellent agreement of numerics and analytics is

obtained. The frequency dependence of γz is shown in Fig. 7.8. The analytical result

fits the numerical result for all frequencies. For ω ≈ 2zJ
√
∆ the oscillating field

resonantly couples to a magnon mode, giving rise to a pronounced peak in γz as a

function of ω.

Our analytical and numerical results confirm that a rotation of the Goldstone

mode (and thus also a critical exceptional point) can be induced by driving the sys-

tem only weakly away from thermal equilibrium. In our specific (noiseless) model,

we used an oscillating magnetic field and different g factors on the two sublattices

to induce a non-equilibrium state. General symmetry arguments suggest, however,

that the coupling γz defined in Eq. (7.46) is always finite when the system is not in

thermal equililbrium. For example, one could instead use a laser tuned to an elec-

tronic resonance. In this case an absorbed photon will trigger a complex cascade of

electronic, spin and phonon excitations which are difficult to describe quantitatively.

We expect, however, that their net effect can be absorbed in an effective parameter

γz which describes that the spins will start to precess in the ferrimagnetic phase.

7.3 Nonreciprocal matter

Recently much attention has been devoted to systems with nonreciprocal interactions

on the microscopic level [28, 31, 69, 29, 30, 71, 68]. Nonreciprocity in that context

means, that there are at least to degrees of freedom ϕA and ϕB whose coupling is not

symmetric under switching A↔ B. These interactions have been shown to give rise

to dynamical limit cycle and oscillating phases [28, 68] and inspired varios proposals

to realise this for instance in spin systems [30, 71]. The basic intuition is that if ϕA

wants to align with ϕB while ϕB wants to antialign with ϕA, there is a ”dynamic

frustration” that can lead to a continuous motion of ϕA and ϕB around each other

like a dog hunting its own tail.

All the above cases consider nonreciprocity on the level of the linearised dynamics

for two fields ϕa ∈ RN , a = A,B

∂tϕa = Kabϕb + ξa (7.56)
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with noise ξa. This dynamics is nonreciprocal if Kab ̸= Kba. One should think of

this dynamics as an expansion around a stable solution of some more complicated

dynamics. Then, stability demands that the eigenvalues λi of the matrix K have

negative real values

Reλi < 0 ∀λi ∈ specK. (7.57)

An instability towards a new phase then occurs, if the real part of at least one of

these eigenvalues is tuned through zero. Importantly, there is an instability towards

a dynamical phase, if the imaginary part of the respective eigenvalue remains finite.

This is indeed what happens at the finite frequency critical point discussed in 4. In

that sense it is a generalisation of Type III0 instabilities of Cross and Hohenbergs

classification [2] to include noise.

Let us look at a simple two-component nonreciprocal model with

K =

(
−m1 g1

g2 −m2

)
(7.58)

where nonreciprocity implies that g1 ̸= g2. The eigenvalues of K are

λ1,2 = −m1 +m2

2
±
√

(m1 −m2)2

4
+ g1g2. (7.59)

Clearly, to induce an instability towards a dynamical phase, i.e. tune the real part

of the eigenvalues through zero while maintaining a finite imaginary part , g1 and g2

have to have opposite signs. In other words, there has to be a strong nonreciprocity

in the sense of competing aligning and antialigning forces. The instabiliy mirrors the

behavior of the gap at the finite frequency criticality of the nonthermal O(N) model.

At the instabilities, there is a pair of critical eigenvalues with complex conjugated

imaginary value λc1,2 = ±i√−g1g2. The connection can be made more explicitly by

using that if either g1 or g2 ̸= 0 (WLOG we choose g1 ̸= 0) and solve the equation

of motion of ϕA for ϕB:

ϕB =
(m1 + ∂t)ϕA + ξA

g1
(7.60)

This can then in turn be plugged into the second equation of motion to wit

∂2t ϕ+ 2γ∂tϕ+ rϕ+ ξ = 0 (7.61)
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with

2γ = m1 +m2, r = m1m2 − g1g2, ξ = g1ξB + (∂t − g2m2)ξA. (7.62)

If the noises ξA,B are now white and Gaussian to begin with (which generically is

the case) and we consider long times, where the frequency dependence stemming

from ∂tξA is negligible, we have exactly reproduced the linear part of the nonthermal

O(N) model.

This can be generalized to the case of spatially extended and potentially vector

valued order parameter fields ϕA,B(t,x) ∈ RN with a common O(N) symmetry

ϕA,B → R · ϕA,B with R ∈ O(N) moving in O(N) symmetric ϕ4 potentials that are

nonreciprocally coupled:

∂tϕA + (m1 −K1∇2)ϕA + λA(ϕA)
2ϕA − g1ϕB + ξA = 0 (7.63)

∂tϕB + (m2 −K2∇2)ϕB + λB(ϕB)
2ϕB − g2ϕA + ξB = 0 (7.64)

Following the same procedure as before, we eliminate ϕB utilizing g1 ̸= 0 in the first

equation and arrive at the nonthermal O(N) model (2.2) after neglecting higher

order terms in field amplitudes and derivatives, which are irrelevant in an RG sense.

We remark that one could also include nonreciprocal nonlinearities. This may make

the solution of the first equation of motion cumbersome, but assuming analyticity

one the microscopic level one can expand everything in derivatives and field ampli-

tudes and arrive again at the form of (2.2).

Nonreciprocal models of the type (7.63) have been studied numerically in two spatial

dimensions with N = 2 in [28]. While after eliminating ϕB the static aligned and

antialigned phases cannot be distinguished anymore, all other phases can be iden-

tified with the ones presented in this thesis. The ’chiral’ phase, where ϕA and ϕB

circle around each other at a constant angle, maps to the rotating phase. The van

der Pol or oscillating phase corresponds to the ’swap phase’ of [28].

This clearly shows, that the field theory analysis above does apply to nonrecip-

rocal phase transitions and vice versa engineering nonreciprocal matter is a route

to realise the phenomena laid out above. From the perspective of the effective field

theory paradigm of Landau and Halperin and Hohenberg, this does not come all to

surprising. After all both models share the same symmetry group O(N), break ther-

mal equilibrium conditions and have no conserved currents that lead to additional

hydrodynamic modes.
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7.4 Driven Open Quantum Matter

This subsection has been published as section VII.B. of [44]. The model (2.2) can also

emerge as a semiclassical limit of driven dissipative bosons subject to Lindbladian

time evolution. We consider the dynamics of N spatially extended bosonic fields with

creation operators a†i (x, t) which is symmetric under O(N) rotations of the bosonic

fields. Based on symmetry, it is to be expected that the universal phenomenology of

the vector valued expectation value of these bosons after coarse graining is captured

by the model (2.2). We now give an explicit example for Lindblad jump operators

together with an O(N) symmetric Hamiltonian time evolution, where the coarse

graining procedure to obtain (2.2) can be done analytically. This has to be under-

stood as a proof of principle, that given the right symmetries (2.2) emerges as an

effective theory and is expected to happen for different microscopic setups where the

coarse graining is not straightforward, as well. To generate the nonlinear dampings,

two-body or higher order loss terms are necessary while the negative damping or

pumping required for the rotating phase can be obtained by an effective single par-

ticle pump.

We consider a Lindbladian time evolution for the density matrix ρ̂

∂tρ̂ =− i[Ĥ, ρ̂]

+
∑
α

γα

(∫
x

L̂α(x)ρ̂L̂
†
α(x)−

1

2
{L̂†

α(x)L̂α(x), ρ̂}
)
.

(7.65)

The Hamiltonian is split into a quadratic and an interacting part Ĥ = Ĥ0 + Ĥint

with

Ĥ0 =
N∑
i=1

∫
q

rc(q)â
†
i (q)âi(q), (7.66)

and we add a generic O(N) symmetric ϕ4 interaction

Ĥint = λc
∑
ij

∫
x

ϕ̂i(x)
2ϕ̂j(x)

2 (7.67)

with canonical field variable ϕ̂j = i√
2
(âj − â†j). We consider local single parti-

cle pump and loss L̂1(x) = â†i (x) and L̂2(x) = âi(x) with respective rates γ1 ≡
γin, γ2 ≡ γout, where the identical rates forall i = 1, ..., N ensure a weak O(N) sym-

metry. Furthermore, we include O(N) symmetric two body pump and loss processes

L̂3(x) =
∑

i ϕ̂i(x)âi(x) and L̂4(x) =
∑

i ϕ̂i(x)â
†
i (x) with rates γ3 ≡ λd, γ4 ≡ λp
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similar to the case of the single mode quantum van der Pol oscillator [110]. We

now perform the following steps: pass to the equivalent Keldysh path integral de-

scription of the Lindbladian time evolution, introduce the canonical field momentum

π̂j(t,x) =
1√
2
(âj(t,x)+ â

†
j(t,x)) and take the semiclassical limit to obtain an MSRJD

action, see [8] for a review. Since the conjugate momentum appears only quadrati-

cally, we can perform the Gaussian integration over it, analogously to passing from

a Hamiltonian path integral to a Lagrangian in equilibrium (quantum) field theory.

Neglecting irrelevant terms that are higher order in field amplitudes or derivatives

acting on noise fields, we arrive at the MSRJD action (3.5a) with the couplings

γ = γout − γin, r = γ2 + r2c , u = 2λp, u
′ = 3λd − λp, λ = λc + (3λd + λp)γ, D =

1
2
(γin + γout)(r

2
c + 2γ2).

The choice of interaction and Lindblad operators, involving ϕ operators, while

giving simple expressions for the parameters of Eq. (3.5a), is somewhat artificial.

However, the calculation can be done analogously when including squeezing terms

∼ câiâi + h.c. that the bosonic U(1) symmetry to Z2 on the quadratic level, and

again one arrives at our effective model description: By symmetry, we expect the

same effective long wavelength model to emerge.



8
Summary and Outlook

8.1 Summary

In this thesis we have analysed time crystalline order as a stable phase of nonequlib-

rium matter. We focused on determining the universal scaling laws emerging at

the critical transitions into time crystalline order and within the phase and gave

examples on how these phases may be realised in physical systems. The starting

point of the entire analysis is the nonthermal O(N) model introduced in chapter

2. It is a generalization of model A of the Halperin and Hohenberg classification to

include irreversible force terms. As such, it is a minimal field theory solely based

on symmetries which results in a certain structural simplicity. We have shown, that

in these models, for any internal O(N) symmetry group, next to the transition into

a statically ordered phase already present in equilibrium, there is a time-crystalline

phase, where an order parameter traces out a limit cycle, for suitably strong drives.

We employed the tool box of nonequilibrium field theory, to determine the univer-

sality classes of the transitions into the time crystal. We have identified a novel,

nonthermal universality class for the onset of time-crystalline order from a fully

symmetric phase. The nonthermal nature of the critical scaling at this transition is

most pronounced, when looking at an effective temperature defined by fluctuation-

dissipation relations and observable through probes of the spectral occupation of
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fluctuations. Such a ’temperature’ (there is of course no true thermodynamic tem-

perature in such a set up), diverges as one tunes to the critical point. Notably, the

effective field theory governing the critical point in principle allows for the emergence

of an effective equilibrium. The corresponding fixed point is however unstable to any

perturbation away from equilibrium and in principle an infinitesimal deviation from

an effective equilibrium suffices for the RG flow to carry the system to the nonther-

mal fixed point upon coarse graining. The transition between the statically ordered

phase and the rotating phase is governed by a critical exceptional point, leading to a

superthermal occupation of low frequency fluctuations. This is poised to melt down

any preexisitng order before reaching the transition into the limit cycle phase. By

means of a controlled solution of the Dyson-Schwinger equations at this transition,

we have shown, that symmetry restoration is not the ultimate fate of the CEP, but

that there is a fluctuation induced first order transition between ordered and rotating

phase for sufficiently large order. Within the time-crystalline ordered phase, next to

the Goldstone modes of broken internal symmetry generators, there is a Goldstone

mode of time translation. We have shown, that this Goldstone mode is generically

described by the KPZ universality class impacting the scaling behavior within the

phase. On top, in low dimensions, there is vertices destroying quasi long range or-

der at large distances. In the presence of internal Goldstone modes, a one-loop RG

analysis shows, that next to KPZ scaling there is novel weak scaling fixed points

possible.

The structural simplicity of the nonthermal O(N) model, the fact that it is solely

based on symmetry considerations, suggests, that it emerges for any system meet-

ing the symmetry conditions, i.e. a weak O(N) symmetry and breaking of detailed

balance, upon coarse graining. The crucial question is, whether one can drive a

system reasonably, such that the effective antidamping transition is triggered with-

out simply heating the system up. We have shown four different routes to achieve

that. Pumping systems that in equilibrium fall into the universality class of model

A by a parametric drive at high frequencies leads to a highly occupied reservoir at

half the drives frequency through parametric resonance. This reservoir pumps the

slow, long wavelength degrees of freedom and can trigger the instability towards time

crystalline order. It however also heats the system up and thus a low equilibrium

damping of the slow modes is necessary to realize the time-crystal. In contrast, an

arbitrarily weak drive is sufficient to induce the rotating phase in the O(2) ferri-

magnet described in chapter 7.2. Extending the basic principle of driven-dissipative

exciton-polariton condensation [64, 111] to bosonic spinors that transform under an

additional O(N) group also realises the universality classes presented in this thesis.
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We also connect to the case of nonreciprocally coupled order parameter fields studied

in active matter.

In summary, we have developed a field theoretical framework to determine universal

phenomena associated to spontaneous breaking of time translation symmetry. For

all identified transitions as well as the time-crystalline phases, we have derived first

results for the respective scaling exponents. These scaling behaviors are predict to

emerge in nonequilibrium systems meeting the respective symmetry conditions and

developing time-crystalline order. Further, we developed new mechanisms to realize

time-crystalline order in magnetic systems inspired by the field-theoretic framework.

8.2 Discussion Outlook

At this point we want to collect and comment on open ends and caveats of the pre-

sented results and point to future directions. One of the key steps in the study of

time-crystalline order is to make it accessible in realistic set-ups. While the paramet-

ric pumping scheme put forward here provides a general pathway towards realization

in magnetic systems, the mechanism has to be adapted for a concrete system, us-

ing accurate, quantitative values for spin wave dispersions, life-times and scattering

length to fine tune the equilibrium model A type model to capture a realistic ma-

terial. A parametric driving may be induced by oscillating electric fields, i.e. laser

irradiation, as in [65]. To derive its exact strength therefore requires knowledge of

the light-matter coupling in the respective material. An important next step would

be the large scale simulation of more microscopic spin models subject to parametric

drives. One should however not be discouraged, a similar driving scheme was suc-

cessfully employed experimentally to induce a ’magnon condensation’ in microwave-

pumped Yttrium iron garnet (YIG) films [112, 113]. We expect that the universal

properties of YIG can be captured by the field theoretic tools at hand, however the

spin wave dispersions in YIG have minima at finite wavevectors and the condensation

occurs at such a finite wavevector leading to pattern formation. A careful analysis

of the consequences of this for the effective field theory is subject of future work.

Measuring the scaling behavior in these systems (most likely in large scale simula-

tions), puts the field theoretic predictions developed in this thesis to the test. A first

example are the numerical simulations of one-dimensional Van der Pol arrays pre-

sented in 6.2 which indeed display the predicted KPZ scaling. The theory predictions

for the novel universal exponents at the transition into the limit cycle are however

less quantitatively reliable, as they are derived in a perturbative expansion ϵ = 4−d.
This expansion is obviously not controlled in three dimensions and a quantitative
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prediction of the exponents calls for the use of more sophisticated nonperturbative

methods, such as the functional RG [98]. The qualitative features such as the break-

ing of equilibrium conditions leading to violations of fluctuation-dissipation relations

are however expected to hold.

The exponents describing the behavior of the Goldstone modes within the time crys-

talline ordered phase is much more accessible than the critical exponents of the

transition, as they do not require fine-tuning to the critical point. Time-crystalline

systems without any internal symmetries may prove a viable route to realize KPZ

physics in large systems, allowing to access the strong coupling fixed point of the

two-dimensional KPZ equation and even the roughening transition in three dimen-

sions experimentally. A task that remained elusive so far. Next to the pumped

magnetic systems put forward in this thesis, modern metametarials seem to provide

a promising avenue in that direction. The single Van der Pol oscillator was for in-

stance designed to describe stable oscillations in driven electrical circuits and one

may realise the Van der Pol lattices by building lattices out of such electrical circuits

subject to noise in the spirit of topolectrics [114].

The analysis of the Goldstone modes of the larger O(N) × SO(2) group indicates

that there is fixed points with entirely novel, albeit weak, scaling exponents. This

is very promising, but should be taken with a grain of salt. The scaling results pre-

sented in this thesis hold in one dimension at strong coupling fixed points. In the

case of the KPZ equation its special symmetries render the one-loop exponents exact

even on the nonperturbative level. This is not the case for the generalized equations

of motion of the Goldstone modes of the O(N) × SO(2) model. While in principle

there may be a hidden or emergent symmetry rendering exponents exact in the cases

where the system flows to a KPZ fixed point, the results for the novel fixed points

should not be trusted too much, the numerical simulations reported in [61] however

support the results for the oscillating phase. On top of that, the effective theory is

built on the assumption, that the decay of the correlation functions of the original

order parameter field is dominated by gapless phase fluctuations. This clearly breaks

down at long scales both in one and two dimensions for the O(N)×SO(2) such that

low dimensional fixed points are only observable up to a length scale which has to

be determined. For d ≥ 2, there may be entirely new nonequilibrium transitions

beyond the KPZ transition, motivating a more thorough investigation.
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Appendix

8.3 Transition between static order and oscilla-

tions

In chapter 5, we have focused on the transition between static order and rotating

phase and have swept the transition between static order and the oscillating Van der

Pol phase under the rug. The appendix may be the right place to peek under that

rug.

For N = 1, this is the only available phase, but for N > 2, it competes with the

rotating phase. The transition from the statically ordered to the oscillating phase

does not occur via a CEP. Indeed, the linearized equation of motions in the static

phase are given by, see Sec. 5.2,

∂2t δρ+ (δ + 2u′ρ0 − Z∇2)∂tδρ+ 2λρ0 − v2∇2)δρ = 0, (8.1)

for the amplitude and

∂2t θi + (δ − Z∇2)∂t − v2∇2)θi = 0, (8.2)

for the Goldstone modes. When u′ > 0, upon tuning δ to zero, the damping of the

amplitude mode remains positive, while the Goldstone modes become unstable and

start to rotate in order to compensate for the negative damping. However, when

u′ < 0, the first instability occurs for the amplitude mode, which starts to display

van der Pol oscillation. At the critical point, u′ρ0 + δ = 0, the dispersion of the

amplitude modes are

ω1,2 = ±
√

2λρ0, (8.3)

indicating that this transition occurs through a finite frequency instability as anal-

ysed for the direct transition in chapter 4. It is however not N but the single

amplitude mode δρ that becomes critical. This leads to the hypothesis that the
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transition is described by the finite frequency criticality of the d-dimensional Van

der Pol oscillator. From a symmetry point of view, this seems plausible, as in the

transition from static order to oscillations only time translation symmetry is sponta-

neously broken. The unbroken internal group O(N − 1) is the same in both phases.

But do we expect the N − 1 additional Goldstone modes that exist on both sides of

the transition to change the critial theory? We found in chapter 4, that the critical

theory of the Van der Pol oscillator is captured by a complex field ψ(t,x) ∈ C that

becomes critical. Couplings this field minimally to the phase fluctuations θ⃗ ∈ RN

leads to couplings of the form

SθΨ =

∫
t,x

gψ̃∗ψ(∇θ⃗)2 (8.4)

which has canonical dimension [g] = (d − 2)/2 and is thus irrelevant close to the

upper critical dimension and we thus deduce that the transition between static order

and oscillating phase is governed by the N = 1 Van der Pol universality, which as

determined in 4 falls into the universality class of the noisy, complex Gross-Pitaevskii

equation. A more thorough field theoretic analysis can substantiate or falsify this

expectation in the future.

The careful reader might have noted, that at the transition between symmetric order

and limit cycle phase the sign of u−u′ determines the competition between oscillat-

ing and rotating phase, whereas for the transition between order and limit cycle it is

the sign of u′. This can be connected by analytically deriving the dispersions of the

fluctuations in the rotating phase and check for instabilities. This is done in 8.3.1

and from (8.8), we can analytically extract the dispersions of the modes involving the

amplitude fluctuations. There is indeed a mode that becomes unstable, for values of

the parameters which agree with numerical simulations. The exact expression of this

dispersion is rather complicated but simplifies in some limits. In particular, deep in

the rotating phase, i.e at large E, the threshold is found to be u′ > u. It confirms

that u tends to stabilize the swap phase and u′ the rotating phase. On the contrary,

for E → 0, the rotating phase is stable for any positive value of u′.

8.3.1 Phase-amplitude representation

In this appendix, we give detailed derivations of the action describing the fluctuations

around the static and rotating orders obtained by writing the fields in a phase-
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amplitude decomposition

ϕ =
√
ρ0 + δρ exp(ET1,2t) exp(

N∑
i=2

θiT1,i)ê1, ϕ̃ =
√
ρ0 exp(ET1,2t) exp(

N∑
i=2

θiT1,i)χ̃,

(8.5)

where χ̃ ∈ RN is parametrized as χ̃ = (δ̃ρ, θ̃2, . . . , θ̃N). The static ordered phase

is included as a special case E = 0. For simplicity we drop summation indices in

the following, and use T⃗ = θiT1,i. The derivative terms like ϕ̃
T
∂tϕ generate terms

exp(−T⃗ )∂t exp(T⃗ ) and higher orders in derivatives, which have to be evaluated using

the infinitesimal form of the Baker Campbell Hausdorff formula. Since we are only

interested in the quadratic action at this point, one can however truncate to

exp(−T⃗ )∂nt exp(T⃗ ) =
∑
i

(∂nt θi)T1,i +O(θ2) (8.6)

and equivalently for the gradient terms. In the case of the statically ordered phase

we thus arrive at the quadratic action displayed in the main text in Sec 5.2. In

the rotating phase, i.e. at finite angular velocity E, we immediately arrive at the

quadratic action for the perpendicular phase fluctuations S0
⊥

S0
⊥ = ρ0

∫
x,t

θ̃i(∂
2
t − Z∇2∂t − v2∇2 + E2)θi −Dθ̃2i . (8.7)

The parallel (θ) and amplitude (ρ = δρ
2ρ0

) fluctuations however mix on the quadratic

level:

S0
ρθ = ρ0

∫
X

ρ̃(∂2t + (2u′ρ0 − Z∇2)∂t − v2∇2)ρ+ θ̃(∂2t − Z∇2∂t − (v2 + ZE)∇2)θ

− 2Eρ̃∂tθ + θ̃(2uρ0E + 2E∂t)ρ− 2D(θ̃2 + ρ̃)2

(8.8)

This action clearly violates the thermal symmetry conditions since the coupling be-

tween phase and amplitude are not symmetric. We can access the dynamics of the

slow phase fluctuations alone by performing the Gaussian integration over the gapped

amplitude field on the level of the path integral. This yields the following effective

Gaussian action for the phase field (after proper rescaling of the field)

S0
∥ = ρ0

∫
X

θ̃(∂2t + (δ̄ − Z̄∇2)∂t − v̄2∇2)θ − 2Dθ̃2 (8.9)
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where the shifted couplings close to the transition, i.e. for small angular velocities

E are

δ̄ = |δ|+O(E2), Z̄ = Z +O(E), v̄2 = v2 +O(E). (8.10)

This procedure of integrating out the amplitude mode (i.e passing to a NLσM) can

be carried beyond the quadratic level to derive the nonlinearities for the interacting

theory. For the case N = 2, this can be done without any truncation in θ, while for

N > 2, a truncation in θi leads to terms of the form (5.67) discussed in the main text.

The precise coefficients obtained through this procedure do not really matter as they

will not remain intact in the RG flow once one starts coarse graining the dynamics.

The important point is that with the rescaled fields used in (5.42), there is always

a contribution of order one in a ρ−1
0 expansion that therefore does not vanish in the

large ρ0 limit.

8.4 Explicit loop calculations

A slightly modified version of this appendix has been published as an appendix in

[44].

In this appendix, we compute the integrals arising from loop corrections which are

given in the main text. We start by the two-loop sunset diagram because there is no

momentum running through the loop which simplifies the analysis and then discuss

the one-loop integral with momentum transfer.

8.4.1 Two-loop sunset

Let us prove Eq. (5.50) which gives the correction to δ induced by g1 and comes

from the diagram 5.3c. In the following, all integrals are considered to be suitably

regularized in the UV when divergent. It reads

I2l =

∫
Q1,Q2

ω2
1G

K(Q1)ω
2
2G

K(Q2)i(ω1 + ω2)G
R(Q1 +Q2). (8.11)

The frequency integrals can be performed, and after rescaling of momenta q1,2 →
q1,2δ

1/2, we obtain
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I2l =
δd−3

4

∫
q1,q2

f1(q1,q2) +O(δ)

A(q1,q2)∆(q1
2)∆(q2

2)

A(q1,q2) =
v2

δ

[
(q1 · q2)

2 − (q1q2)
2
]2

+ f2(q1,q2)
[
∆(q1

2) + ∆(q2
2) + ∆((q1 + q2)

2)
]
+O (δ)

(8.12)

In this expression, we defined f1 and f2, two functions independent of v whose precise

forms are not important for the argument. The only property we will use is that

f1(q1,q2) = f2(q1,q2) when q1 and q2 are aligned. We neglected the subleading

terms in δ which do not contribute to the leading infrared divergence. However, as

discussed in the main text for the one-loop integral (5.46), we keep a higher order

term in the denominator because the leading term can in fact become small under

certain conditions. This is the case for every momentum if δ/v2 is large. In this

regime, the integral reduces to

I2l =
δd−3

2

∫
q1,q2

1

∆(q1
2) + ∆(q2

2) + ∆((q1 + q2)2)

1

∆(q1
2)∆(q2

2)
, (8.13)

and behaves as δd−3, i.e. exactly as the tadpole diagram 5.3b. Now, approaching

the CEP where δ/v2 becomes small, the first term in the denominator of Eq. (8.12)

dominates for generic momenta, but still vanishes when q1 and q2 are aligned. The

integrand thus behaves as δd−3 when the momenta are almost aligned, But only as

δd−2 when they are not, giving a subleading contribution to the integral. We thus

have a resonance condition to get the highest divergence. This is shown in figure 8.1a.

Formally, the denominator of the integrand in (8.15) behaves as a Dirac distribution.

To make it apparent, we rewrite the integral over q2 using hyperspherical coordinates

around q1,

I2l ∼
δ→0

δd−3

4

∫
q1

∫
qd−1
2 dq2dΩ

q2
d−1

1

∆(q21)∆(q22)
Isub, (8.14)

where

Isub =

∫
dθ sin(θ)d−2f1(q1, q2, cos(θ))

v2

δ
(q1q2)2 [cos(θ)2 − 1]2 + f2(q1, q2, cos(θ)) [∆(q21) + ∆(q22) + ∆((q1 + q2)2)]

,

(8.15)

where θ is the angle between q1 and q2.
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This last integral (8.15) can be brought to the following form,

Isub = η2
∫

dθ sin(θ)d−2 a(cos(θ))

[cos(θ)2 − 1]2 + η2b(cos(θ))2
, (8.16)

with η =
√
δ/v2 and a, b smooth non-vanishing functions around ±1. We dropped

all the dependencies in momentum for the sake of clarity. Using x = cos(θ), the

fraction in (8.16) is of the form

F (x) =
1

(x2 − 1)2 + η2b(x)2
= Im

(
1

((x2 − 1)− iηb(x)

)
(8.17)

=
1

2
Im

(
1

x− 1− iη
2
b(x)

− 1

x+ 1 + iη
2
b(x)

)
−−→
η→0

π

2
(δ(x− 1) + δ(x+ 1)) . (8.18)

It indeed behaves as a Dirac distribution, reflecting the resonance condition. At small

but finite η, the Dirac distributions are slightly extended, and while performing the

integral in (8.15), we can use that η2F (x) is essentially equal to one for | cos(θ)±1| <
η and zero otherwise. It means that only small deviations of cos(θ) around ±1 of

order η contribute to the integral, i.e. only small deviations of θ of order
√
η around

zero and π, and we can only keep the leading terms in a series expansion around

these points for the other terms. Integration then yields

Isub ∼
∫ √

η

0

dθθd−2a(1) +

∫ π

π−√
η

dθ(π − θ)d−2a(−1), (8.19)

∼ Cη
d−1
2 = C(

δ

v2
)
d−1
4 , (8.20)

where C is a multiplicative constant, proving Eq. (5.50), I2l ∼ δd−3( δ
v2
)
d−1
4 since the

remaining integrals are free of any parameters. We emphasise that the additional

variable δ/v2 enters the corrections, reflecting the absence of a full scaling solution at

the CEP. This is confirmed by numerical integration over the momenta presented in

Fig. 8.1b in two and three dimensions: I2l/δ
d−3 is indeed a function of δ/v2 only, and

the power law behaviors found at small δ agree quantitatively with the analytical

results.

The same structure arises for the other sunset integrals (e.g. with g2 instead of

g1 as vertices or the sunset obtained from diagram 5.3d), and they can be computed

using the same procedure.

It is also instructive to rephrase this discussion using (q, t) variables in the loops.

The corresponding expressions are obtained by Fourier transform with respect to
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Figure 8.1: (a) The integrand of (8.12), denoted A(x), is plotted as a function of
x = cos(θ) where θ is the angle between p1 and p2, p̃1 = 1/2, p̃2 = 1, v = 1 and
different values of δ. At small δ, it becomes sharply peaked around x = ±1, reflecting
the resonance condition. (b) I2l/δ

d−3, plotted in d = 2, 3 is a function of δ/v2 only.
At large δ/v2 ≪ 1 the integral behaves as δd−3 but gets suppressed by an additional
power law when the ratio δ/v2 is small. The power law behaviors (indicated by the
dashed lines) agree quantitatively with (8.19).
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time to their (q, ω) counterparts. The integral I2l becomes

I2l =

∫
t

∫
q1

GK
D(q1, t)

∫
q2

GK
D(q2, t)G

R
D(q1 + q2, t) cos(v|q1|t) cos(v|q2|t) cos(v|q1 + q2|t),

(8.21)

where we denoteGR
D(q, t) = Θ(t) exp(−∆(q2)t) andGK

D(q, t) = exp(−∆(q2)|t|)/∆(q2),

purely dissipative Green’s functions which are also those that appear in model A.

Absent the oscillating terms associated to v, this integral scales as δd−3 and dis-

plays a typical z = 2 behavior. Now, the oscillating terms (seen as perturbation

of this scenario) oscillate faster and faster at finite t in the scaling regime where

we choose t ∼ q−2. In the spirit of a Rotating Wave Approximation (RWA), we

can keep only the non-oscillating terms. Since the oscillating terms are of the form

exp(ivt(±|q1 + q2| ± |q1| ± |q2|)), we recover our resonance condition, q1 and q2

have to be aligned to yield a significant contribution.

8.4.2 One-loop integral

We now discuss Eqs. (5.44) and (5.45), involved in the corrections of the quartic

interactions coming from the diagrams displayed in Fig. 5.4. The calculation is

closely related to the one done for the sunset integral above, and a similar resonance

conditions arises. The diagrams read, with ωp the frequency and p the momentum

entering the loop,

I1l,I(p, ωp) =

∫
q,ω

i(ω + ωp)ω
2GR(q+ p, ω + ωp)G

K(q, ω)

=

∫
q,t

GK
D(q, t)G

R
D(q+ p, t) cos(v|q|t) cos(v|q+ p|t) exp(iωpt),

(8.22)

respectively in q, ω and q, t variables.

Before discussing the finite momentum case, we note that for p = 0, after per-

forming the integral over the frequency and rescaling of momentum q → qδ1/2, the

integral reduces to

I1l,I(p = 0) ∼ δ
d−4
2

∫
q

1

∆(q2)(−iω̃e +∆(q2))
, (8.23)

in the scaling regime where ω̃p = ωp/δ ∼ 1. We also again use ∆(y) = y+ 1. This is

in line with formula (5.44).

Now at finite momentum, there is several resonances that can arise depending

on the precise value of the external frequency and momentum. The first resonance
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is found for frequencies close to ωp ∼ ±v|p|, and exactly corresponds to the one

we have in the sunset integral: p and q have to be aligned. Intuitively, this can

be understood from the RWA argument we developed above: the oscillating terms

in (8.22) are, when ωp = ±v|p|, of the form

exp(ivt(±|q+ p| ± |q| ± ωe)) = exp(ivt(±|q+ p| ± |q| ± ±v|p|), (8.24)

which is the same form we got for the sunset diagram. They are not oscillating again

exactly when p and q are aligned. This peculiar resonance directly originates from

the non-vanishing real part of the relation dispersions at the CEP, and it can be

checked explicitly that the highest divergences of the Gaussian Green’s functions in

(q, ω) coming from (5.23) are obtained exactly for ω = ±v|q|. In a sense, while the

divergence occurs through the imaginary part of the dispersion relations, the real part

acts to some extent like a finite frequency scale (because it goes infinitely slower to

zero for small momenta) around which the divergences occur. This is technically very

reminiscent of the role of a finite momentum scale in the Brazvoskii’s scenario [58]

where it is also the reason why loops with momentum transfer are negligible.

To make the link with the sunset diagram explicit, the integral with ωe = ±v|p|
can be written as

I1l,I(p, ωp = ±v|p|) ∼ δ
d−4
2

∫
q̃

[
π|p̃| (p̃ · q̃+ q̃2) +O(δ)

∆ (q̃2)(
i
v√
δ

[
(p̃ · q̃)2 − p̃2q̃2

]
+ |p̃|

(
p̃ · q̃+ q̃2

) [
∆
(
q̃2
)
+∆

(
(p̃+ q̃)2

)]
+O (δ)

)−1
]
.

(8.25)

Its real part is exactly the integral over q2 in Eq. (8.12), with p playing the role

of q1. This renders the intuition developed around Eq. (5.49) rigorous, and we can

thus use the analysis done in the previous section. Again, we have to keep a higher

order term in the denominator because its contribution can dominate the integral in

some cases. When approaching the CEP, δ is small with respect to v2. In that case,

the second term dominates only when v2/δ[(p̃ · q̃)2 − p̃2q̃2]2 is sufficiently small. It

is again true for every momenta q when p̃2v2/δ is small i.e. for small dimensionless

momentum p̃≪ δ1/2/v and the integral behaves as δ(d−4)/2, proving Eq. (5.44). But

for a finite dimensionless momentum p̃ ∼ 1, the resonance condition appears, and the

integrand in (8.25) behaves again as a Dirac distribution: the highest divergence is

found when q and p are aligned, as in the sunset integral. This allows us to perform

the integral, and using the result of the previous section, it leads to (5.45).
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Interestingly, there is another type of resonance. In particular, at zero frequency

and finite dimensionless momentum, see Eq. (5.46) where we got a different reso-

nance condition: the highest divergence is found when v2 (p2 + 2p · q) is small. This

resonance condition also shows up as very sharp and non-analytic behavior which

allows us to get the scaling of the integral with δ in a similar fashion. We find, for

some p̃ not too large, a slightly different behavior, I1l,I ∼ δ(d−4)/2(δ/v2)1/2 when δ is

small. We can expect the frequency and momentum contributing the most to the

loops to sit on the highest divergences and thus to involve the first scaling (5.45).

Anyway, this cannot change the conclusions of the main text because both behaviors

lead to smaller divergences at finite momentum for any frequency, no matter the

precise power law we get.

To conclude, we found that for a finite frequency but at zero momentum, the loop

is given by (8.23), and thus assume a usual scaling form with frequency ω̃ = ω/δ.

Therefore, we do not need to use specific frequency dependencies of the different

couplings as we do for the momentum dependencies.

8.5 Dyson-Schwinger equations

A slightly modified version of this appendix has been published as an appendix in

[44].

8.5.1 N = 2 case

The DSE constitute an exact hierarchy of equations between the 1PI vertices. It

emerges as consequence of the shift invariance of the effective action. It is discussed

for the usual ϕ4 case e.g. in [115] but the method can be applied directly within the

MSRJD framework. The effective action can be written using the shift invariance

with respect to to both fields, see (3.10),

Γ[ϑ, ϑ̃] =

∫
Diθ̃Dθe−S[ϑ+θ,ϑ̃+θ̃]+ δΓ

δϑ
θ+ δΓ

δϑ̃
θ̃. (8.26)

The DSE can be obtained by taking functional derivatives with respect to the

fields of this equation. To simplify notation in the following, we use the Nambu fields

Θ = (ϑ, ϑ̃) and introduce

Γ
(n)
I1...In

[Θ] =
δnΓ

δΘin(Xn) . . . δΘi1(X1)
[Θ], (8.27)
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with Ij a super-index including internal and external indices, Ij = {ij, Xj}. Func-

tional derivatives with brackets e.g. Γ
(n)
I1...In

[Θ] denote functional derivatives before

any evaluation on the equation of motion. The formalism can be readily extended to

an N -component field by including the resulting indices within the internal indices.

Since the action does not contain any term independent of θ̃ which would break

conservation of probability, we define the master DSE by taking a derivative with

respect to the response field which yields

Γ(10)[ϑ̃, ϑ;X1] = ⟨S(10)[ϑ̃+ θ̃, ϑ+ θ;X1]⟩. (8.28)

This equation tells us that the dressed equation of motion is given by the expectation

value of the bare equation of motion. In the following we work with the bare action

given by (5.39) and (5.42),

S =

∫
x,t

θ̃(∂2t + (−K∇2 + δ)∂t − v2∇2)θ −Dθ̃2 +
g1
6
θ̃(∂tθ)

3 +
g2
2
θ̃∂tθ(∇θ)2, (8.29)

which describes the fluctuations of the Goldstone mode for N = 2. It is a fourth

order polynomial, so a series expansion in the fluctuating fields θ and θ̃ stops at finite

order and gives

Γ
(1)
I1

= S
(1)
I1

+
1

2
S
(3)
I1
G− 1

6
S
(4)
I1
GGGΓ(3), (8.30)

where sums over indices and Θ dependencies are implicit.

This master DSE gives relations between the full 1PI vertices and involves the

renormalized propagator, making it a non-perturbative method. By taking addi-

tional functional derivatives with respect to the fields, one can generate equations

for higher order vertices. Approaching the transition from the phase where ⟨∂tθ⟩ = 0

i.e the static ordered phase in our case, we can concentrate on the 1PI vertices eval-

uated at Θ = 0. If a series expansion around ϑ̃ = 0 and ϑ = 0 is valid, this also

describes the broken phase. We expect it to be the case close to the first-order phase

transition. Note that this is also the case in Brazovskii scenario where the calcula-

tions done around zero and around a finite order parameter agree well [96]. For the

retarded inverse Green-function, we get

Γ(1,1)(P,Θ = 0) = S(1,1)(P ) +
1

2

∫
Q

S(12)(P,−P,Q)GR(Q)

− 1

2

∫
Q1,Q2

S(13)(P,Q1, Q2,−(P +Q1 +Q2))

×GK(Q1)G
K(Q2)G

R(Q1 +Q2 + P )Γ(13)(−Q1,−Q2, (P +Q1 +Q2),−P ),

(8.31)
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(a) DSE for Γ(11) (b) One-loop DSE for Γ(13)

(c) One-loop DSE for Γ(15)

Figure 8.2: Diagrammatic representation of the DSE. The solid and solid-to-dashed
lines correspond respectively to the full Keldysh and retarded Green functions. The
vertices correspond also to the full vertices Γ(13) and Γ(15), except for those that are
represented with a square box, which correspond to the bare vertices S(13). Diagrams
obtained by permutation of external legs attached to θ fields (solid line legs) are not
shown.

where we neglected contribution coming from four point vertices that are higher

order in ϑ̃. They are irrelevant at the Gaussian CEP for all dimensions of interest

2 < d < 4 and only lead to subleading divergences in the following. More generally,

all couplings that are irrelevant at the Gaussian CEP fixed point induce smaller

loop divergences (it is even the way we define and operator to be irrelevant at the

Gaussian fixed-point because of the absence of a full scaling solution). Since the

DSE will become one-loop exact in the regime we are interested in, any irrelevant

operator brings subleading divergences in the DSE. Diagrammatically, Eq. (8.31)

can be represented by Fig. 8.2a.

In the DSE framework, the renormalized effective action is obtained only from

dressed tadpole and sunset diagrams. The main difference with the two-loop expres-

sion obtained from Fig. 5.3 is that the sunset involves the full fourth-point vertex

Γ(13) instead of S(13), and we have to specify the form of the vertices used to solve

the DSE. As discussed in the main text, the effective action can be parameterize us-

ing effective couplings g1 and g2 that become momentum dependent upon including

interactions because of structure of the loops as discussed in the main text. To be

specific, the renormalization depends on the number of pair of momenta that sum to

zero, but not on the precise values of these momenta. Based on these considerations,
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the four-point vertices can be parameterized as

Γ(13)(−p2,p1,−p1,p2, ω4, ω1, ω2, ω3) =iω1ω2ω3g1,a − iω3p
2
1g2,a − i(ω1 − ω2)p1 · p2g2,b,

Γ(13)(−p2, 0, 0,p2, ω4, ω1, ω2, ω3) =iω1ω2ω3g1,a

Γ(13)(−p1,p1,−p1,p1, ω4, ω1, ω2, ω3) =iω1ω2ω3g1,b − i(ω1 − ω2 + ω3)p
2
1g2,c,

Γ(13)(0, 0, 0, 0, ω4, ω1, ω2, ω3) =iω1ω2ω3g1,c,

(8.32)

where p1 and p2 are different finite momenta p1,2 ∼
√
δ and ω4 = −(ω1 + ω2 + ω3).

All other configurations do not get renormalized.

Anticipating that all couplings will only decrease or stay constant (which can

be checked a posteriori), the condition for neglecting the two-loop contributions is

therefore given by replacing Γ(13) by S(13) in (8.31). The loop diagrams are then

computed exactly as in Sec. 5.3.1 and App. 8.4. The condition Eq. (5.64) is thus

recovered non-perturbatively, only by considering the sunset topology. When it is

fulfilled, the DSE have only one-loop contributions which simplify them considerably,

and they can be solved. In particular, from (8.31), the renormalized damping δ̄

satisfies the self-consistent equation (5.51).

The DSE equation for the four-point vertex Γ(13) is represented diagrammatically

in Fig. 8.2b. We neglected two-loop contributions and the effect of all irrelevant

vertices. The corresponding equation is, as in the main text

Γ(13)(P4, P1, P2, P3) = S(13)(P4, P1, P2, P3)

−
∫
Q

GK(Q)GR(Q+ P1 + P2)Γ
(13)(−(Q+ P1 + P2), Q, P1, P2) + perm.,

(8.33)

where P4 = −(P1+P2+P3) and where the permutations apply on the set P1, P2 and

P3. When the condition (5.64) is met, the loop in the right hand side is subleading

and negligible whenever there is a running momentum going into the loop. Injecting

the forms (8.32) into Eq. (8.33) then allows us to get equations for the different cou-

plings. In particular, we get back Eqs. (5.56a) and (5.56c). The resulting equations

form a linear system that can be inverted. The complete solution reads

g1,a =
g1

1 + α2δ
d−4
2

, g1,b = g1
1− α2δ

d−4
2

1 + α2δ
d−4
2

, g1,c = g1
1− 2α2δ

d−4
2

1 + α2δ
d−4
2

, (8.34)

g2,a =
g2

1 + α2δ
d−4
2

, g2,b =
g2

1 + αdδ
d−4
2

, g2,c =
4

3

g2

1 + αdδ
d−4
2

+
2

3

g2

1 + α2δ
d−4
2

− g2,

(8.35)
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with α2 = (g1 + g2)K
′
d(2− d)/2 and αd = g2K

′
d(2− d)/d.

The possibility of a negative quartic coupling (which induces the first-order tran-

sition) is cured by taking into account the renormalized six-point vertex Γ(15). Being

irrelevant, its value is set by the four-point vertex Γ(13). Again, its renormalization

depends on the configuration of incoming momenta. There are five different config-

urations which get renormalized differently. We however only need this vertices for

vanishing momenta,

Γ(15)(p1 = 0, . . . ,p5 = 0,−
∑
i

ωi, ω1, . . . , ω5) = iω1ω2ω3ω4ω5u1,e, (8.36)

with

u1,e = 15(g1 + g2)g
2
1,a

∫
q

1

(q2 + δ̄)3
− 5

2
u1,e(g1 + g2)

∫
q

1

(q2 + δ̄)2
, (8.37)

found using the DSE diagrammatically represented in Fig. 8.2c. It leads immediately

to Eq. (5.60).

8.5.2 N > 2 case

For N > 2, the DSE equations discussed above can be directly used in the N -

component case by adding the O(N) indices in the internal indices. As discussed in

Sec. 5.3.4, in the regime where the bare condensate is large, the action is simply the

generalization of (8.29) to a vector field π ∈ RN−1 with an O(N − 1) symmetry. It

is given by

S0 =

∫
x,t

π̃·(∂2t+(−K∆+δ)∂t−v2∆)π−Dπ̃·π̃+g1
6

∫
x,t

π̃·∂tπ(∂tπ)2+
g2
2
π̃·∂tπ(∇π)2.

(8.38)

The loops that appear in the perturbative expansion or in the DSE equations (Fig. 8.2)

and their scaling properties are therefore the same. The additional O(N) structure

only changes the prefactors (sometimes called symmetry factors) of the loops which

become N -dependent. The O(N) symmetry factors are the standard O(N) ones and

can be found in e.g. [116].

We now show that the quartic coupling controlling the value of the order param-

eter i.e. the generalization of g1,c also becomes negative and that there is again a

first order phase transition. We will therefore concentrate on the renormalization of
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g1, which at the bare level generates the following vertex:

δΓ(4)

δπ̃a(P4)δπb(P1)δπc(P2)δπd(P3)
= iω1ω2ω3Γ

′(13)
abcd (P4, P1, P2, P3) = iω1ω2ω3g1Tabcd,

(8.39)

where we define

Tabcd =
1

3
(δabδcd + δacδbd + δadδbc), (8.40)

and Γ′(13) which denotes the part of Γ(13) encoding the renormalization of g1.

We first look at the set of momenta which corresponds to what we called the g1,a

coupling above. In perturbation theory, the diagrams 5.4 lead to

Γ
′(13)
abcd (−p1,p1,−p2,p2, ω4, ω1, ω2, ω3)

= g1Tabcd − α2δ̄
d−4
2
g21
9
((N ′ + 4)δabδcd + 2δacδbd + 2δadδbc),

(8.41)

where N ′ = N − 1. However the different Kronecker delta functions get different

coefficient because only one diagram among the three of Fig. 5.4 contributes. We

thus see that the ansatz done for the vertex using g1,a in (8.32) is not sufficient to

self-consistently solve the DSE. We need to parametrize it as

Γ
′(13)
abcd (−p1,p1,−p2,p2, ω4, ω1, ω2, ω3) =(gs1,aδabδcd + gt1,aδacδbd + gu1,aδadδbc). (8.42)

The DSE equation then gives

gs1,a = g1
1 + α2

2(N ′+2)
9

δ
d−4
2

(1 + α2
2
3
δ

d−4
2 )(1 + α2

N ′+2
3
δ

d−4
2 )

, gt1,a = gu1,a =
g1

1 + α2
2
3
δ

d−4
2

. (8.43)

Using again the DSE for the four point function at zero momenta we find

Γ(13)(0, 0, 0, 0, ω4, ω1, ω2, ω3) ≡ g1,cTabcd =

(
g1 − α2δ̄

d−4
2
(N + 4)gs1,a + 4gt1,a

9

)
Tabcd,

(8.44)

where we define g1,c, underlying the fact that we do not need an extra parameter in

that case. This gives, using (8.43),

g1,c = g1
(9− 4α2δ̄

d−4
2 (α2δ̄

d−4
2 (N ′ + 2) + 3))

(2α2 + 3)(α2δ̄
d−4
2 (N ′ + 2) + 3)

. (8.45)
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For N = 2, we recover the same result we got for g1,c in (8.34). We indeed see

that the couplings g1,c turns negative for sufficiently small damping for all N . By

inspecting Eq. (8.37), we see that the sextic coupling u1,e is clearly positive no matter

the precise N -factor of the loops, and we therefore find the same first-order scenario.

8.6 Scaling and the breakdown of the gradient ex-

pansion

This appendix has been published as an appendix in [44].

We now elaborate in a bit more detail how the scaling of various operators is inferred

in the vicinity of the CEP given that canonical power counting does not work due

to the breakdown of gradient expansions and the different scaling of coherent period

and lifetime of excitations

ωCEP(q) = −iKq2 ± v|q|. (8.46)

The scaling is then fixed by finding an ansatz that renders the dimensionfull RG β-

functions dimensionless. It is on first sight possible to make a homogeneous scaling

ansatz for the effective action of the phase fluctuations by choosing a dynamical

critical exponent zs = 1 and thus being forced to have [K] = −1, i.e. (dangerously)

irrelevant. This however yields Green functions that diverge for all momenta at the

Gaussian fixed point.

One therefore has to analyse the divergences of loop contributions to infer the

scaling dimensions of various couplings. Due to the breakdown of the derivative

expansion it is not possible to infer the scaling of momentum dependent operators

by taking momentum derivatives of loops renormalizing for instance the self energy.

We demonstrate this explicitly for the case where one allows a cubic interaction

∼ λθ̃(∂tθ)
2 breaking O(2) to SO(2) as in [66] for comparison. Note, that this coupling

is absent at a fixed point with (emergent) O(2) symmetry. This is analogous to the

Z2 symmetric endpoint of the liquid gas transition described by the Ising universality

class. Regardless, the loop integral through which such a coupling renormalizes the

damping (i.e. the part of the self energy linear in frequencies) is exactly the loop

analysed in the main text which renormalizes interactions, cf Fig. 5.4. The following

result about the breakdown of the gradient expansion thus also immediately applies

to the couplings discussed in the main text. At vanishing momenta, it implies a

scaling dimension 6− d for this cubic coupling, like for the ϕ3 coupling in the Ising

case. However, as discussed, the infrared divergence of the loop is lowered at finite
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transfer momenta and there is no convergent derivative expansion of this loop close

to the fixed point.

If one takes momentum derivatives of this loop, as one would in a derivative expansion

of the self energy corrections, one generates spurious singularities as the dependence

on dimensionless momenta becomes nonanalytic at p̃ = 0, see App. 8.4.2. Now

trying to enforce a scaling form for such an expansion of the self energy, as it usually

emerges in equilibrium critical phenomena, leads to operators with apparently larger

and larger upper critical dimensions. This is an artifact of the break down of the

derivative expansion due to the nonanalyticity of the CEP.

Explicitly, such an expansion to fourth order in dimensionless momenta p̃ yields

∂ωΓ
(2) = k2(Zp̃2 +

δ

k2
+ α′

1λ
2kd−6 + α′

2λ
2kd−8p̃2 + α′

3λ
2kd−10p̃4 +O(p̃4)). (8.47)

Cutting this expansion at order p̃2 would imply that there is an operator
√
α′
2λ with

dimension [
√
α′
2λ] =

8−d
2

inferring an upper critical dimension dc = 8 [66]. Going to

order p̃4 one would then however diagnose dc = 10 from the operator
√
α′
3λ. Clearly

arbitrarily large upper critical dimensions are generated within such an expansion,

demonstrating again that a standard derivative expansion is inapplicable in this case.

8.7 Flow equations within the rotating phase

Here, we give the dimensionfull flow equations for the complex action of the Gold-

stone modes of the rotating phase analysed in chapter 6.3. They are derived equiv-

alently to the ones of the oscillating phase given in the main text, by evaluating the
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Feynman diagrams 6.3,6.4. Using Zθ = ZD + iZc and g = gd + igc they read:

Λ∂ΛZα =Λd−2 (d− 2) (2γαZ
2
dλ

2
α + (N − 2)γθZ

2
αgdλθ)

dZ2
αZ

2
d

(8.48)

Λ∂ΛZθ =Λd−2
(g2γα(4Zα − d(Zα + Zθ))

dZα(Zα + Zθ)2
− 2γgλθ(Zα + Z∗

θ − 4Zd)

Zd(Zα + Z∗
θ )

2

)
(8.49)

Λ∂Λγα =Λd−2
(γ2αλα
Z3
α

+ 2(N − 2)
γ2θλθ
Z3
d

)
(8.50)

Λ∂Λγθ =Λd−2 |g|2γαγθ(Zα + Zd)

ZαZd(Z2
c + (Zα + Zd)2)

(8.51)

Λ∂Λλα =Λd−24(N − 2)g2cλθ
Z3
d

(8.52)

Λ∂Λλθ =
λθΛ

d−2

Z2
αZ

2
d(Z

2
c + (Zα + Zd)2)

(8.53)(
2γαZd

(
2λαZd(gcZc + gd(Zα + Zd))− |g|2Zα(Zα + Zd)

)
+ 4γθZαλθ

(
gdZα(Zα + Zd)− gcZαZc − 2λαZd(Zα + Zd)

))

Λ∂Λg =Λd−2g∗

(
2g∗γα(2λα − g)

Zα(Zα + Z2
θ )

(8.54)

− 4γθλθ
(Zα + Z∗

θ )
2(gdZd + igc(Zα + Zd + Zθ)) + 2Zd(Zα + Zθ)

2λα
Z2
d(Z

2
c + (Zd + Zα)2)2

)
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[105] Wolfgang Demtröder. Experimentalphysik 1 - Mechanik und Wärme. Springer-
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