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1 ABSTRACT 
 

The crosstalk of metabolism and chromatin plays a central role in cellular homeostasis and 

the adaptative response to the environment. Hypoxia is a low oxygen condition developed 

when cells are exposed to oxygen levels below their functional range. These hypoxic 

conditions generate a concomitant metabolic and transcriptional response characterized by 

increasing glucose metabolism and reducing TCA cycle activity. Although the cellular 

response to hypoxia has been extensively characterized, recent studies have revealed a 

more diversified metabolic adaptation to these low oxygen conditions. Here we study how 

hypoxia impacts the interplay between chromatin modifications and intracellular metabolite 

cycling in fibroblasts cultured at 2% O2. Using a multi-omics approach, we found that 

deficiency of the HIF1α-target PDHK1 - a well-known inhibitor of acetyl-CoA synthesis in 

mitochondria - rewires use of glucose-derived acetyl-CoA to enhance FA synthesis and 

diminish H3K27ac. This occurs via a coordinated lipid-specific posttranscriptional response. 

Taken together, our data identify a new role for PDHK1 in the regulation of acetyl-CoA 

metabolism and provides further evidence for a close link between histone acetylation and 

lipid biogenesis.  
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KURZZUSAMMENFASSUNG  
 
 
Das Zusammenspiel von Metabolismus und Chromatin spielt eine zentrale Rolle für die 

zelluläre Homöostase und die Anpassungsfähigkeit von Zellen an ihre Umwelt. Hypoxie ist 

ein sauerstoffarmer Zustand, der entsteht, wenn Zellen einem Sauerstoffgehalt ausgesetzt 

sind, der unter ihrem normalen Funktionsbereich liegt. Diese hypoxischen Bedingungen 

führen zu einer gleichzeitigen Änderung des Stoffwechsels und Genexpression, die durch 

eine Steigerung des Glukosestoffwechsels und eine Verringerung der Zitratzyklusaktivität 

gekennzeichnet ist. Obwohl die zelluläre Reaktion auf Hypoxie bereits umfassend 

charakterisiert wurde, haben neuere Studien eine komplexere metabolische Anpassung an 

diese sauerstoffarmen Bedingungen aufgezeigt. Hier untersuchen wir, wie sich Hypoxie auf 

das Zusammenspiel zwischen Chromatinmodifikationen und intrazellulärem Metabolismus in 

Fibroblasten auswirkt, die bei 2 % O2 kultiviert werden. Mithilfe eines Multi-omics-Ansatzes 

haben wir herausgefunden, dass ein Mangel des HIF1α-Zielmoleküls PDHK1 - ein bekannter 

Inhibitor der Acetyl-CoA-Synthese in Mitochondrien - die Verwendung von aus Glukose 

gewonnenem Acetyl-CoA ändert. Geringere PDHK1 Niveaus erhöhen die FA-Synthese und 

verringern die Histonmodifikation H3K27ac. Interessanterweise wird dies auf 

posttranslationaler Ebene reguliert. Zusammengenommen zeigen unsere Daten eine neue 

Rolle für PDHK1 bei der Regulierung des Acetyl-CoA-Stoffwechsels und liefern weitere 

Beweise für eine enge Verbindung zwischen Histonazetylierung und Lipidbiogenese.   
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2 INTRODUCTION  
2.1 Chromatin and histone PTMs 

Chromatin is the dynamic structure that allows eukaryotic gene regulation and genome 

packaging into the nucleus (Bannister & Kouzarides, 2011). Nucleosomes are chromatin’s 

core unit, consisting of DNA fragments of ∼147 bp wrapped around an octamer of histone 

dimers (H2A, H2B, H3, and H4) (Dombrowski et al., 2022; McGinty & Tan, 2015). Short 

histone-free DNA regions (∼20–50 bp) known as “linker DNA” connect individual 

nucleosomes and form nucleosomal arrays (Chakravarthy et al., 2005; McGinty & Tan, 2015). 

Nucleosomes form stable complexes due to the ionic nature of the phosphate backbone of 

DNA and the high content of basic residues within histones (Korolev et al., 2007). Loosening 

the DNA-histone interaction increases accessibility to the DNA (Korolev et al., 2007; Tessarz 

& Kouzarides, 2014). Accessible DNA allows the interaction with the cellular machinery in 

charge of DNA-templated processes, such as DNA repair, replication, and transcription 

(Adkins et al., 2004; Baldi et al., 2020). The differential accessibility of DNA within the 

nucleosomal configuration is dynamic, responds to internal and external stimuli, and plays 

crucial roles in regulating transcriptional responses (Bannister & Kouzarides, 2011). Hence, 

it is essential for a broad range of adaptive processes that, for instance, regulate cellular 

differentiation or maintenance of cellular identity (Bannister & Kouzarides, 2011). 
 

Histone posttranslational modifications (PTMs) represent one mechanism that regulates 

chromatin structure and function (Adkins et al., 2004; Bannister & Kouzarides, 2011; Tessarz 

& Kouzarides, 2014). With a continuously growing histone PTM catalog, acetylation, 

methylation, and phosphorylation represent the best-characterized PTMs (Bannister & 

Kouzarides, 2011). Based on their chemical nature, location and stability within chromatin, 

histone PTMs mediate a plethora of functions that range from transcriptional 

activation/deactivation at local (e.g., promoter) and distant scales (e.g., enhancers) to 

chromosome condensation as preparation for mitosis (Figure 1) (Andonegui-Elguera et al., 

2022; Ramazi et al., 2020; Zhang et al., 2015; Zhou et al., 2011). Many histone modifications 

are located in the terminal tails of the histone octamer that protrude out of the nucleosome 

core (Ali et al., 2018; Li et al., 2018). However, histone PTMs can also be located at the 

globular histone core (Li et al., 2018). Two main mechanisms, not mutually exclusive, dictate 

how histone PTMs modulate chromatin. The first one comprises a direct structural 
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modification of the histone-DNA or histone-histone contact sites that increases accessibility 

to the DNA and facilitates gene expression (Tessarz & Kouzarides, 2014; Zhang et al., 2015). 

The second one consists of the recruitment of ATP-chromatin remodelers that reorganize the 

nucleosomal architecture through changes in nucleosome positioning (Tessarz & 

Kouzarides, 2014; Zhang et al., 2015).   

 

 
Figure 1. Histone PTMs and their functional outcomes within different chromatin regions 

Schematic of representative histone PTMs associated to (A) promoters, (B) gene bodies, (C) enhancers, and 

(D) large-scale repression regions. Figure obtained from Zhou et al. (Zhou et al., 2011).  

 

Histone acetylation is an abundant and dynamic modification that promotes open chromatin 

and gene activation (Shvedunova & Akhtar, 2022; Zhou et al., 2011). This modification is 

reversible and regulated by histone acetyltransferases (HATs) and histone deacetylases 

(HDACs) (Rye et al., 2011). HATs acetylate lysine residues using acetyl-CoA as cofactor and 

generate coenzyme A (CoA) as coproduct (Rye et al., 2011). The negative charge of the 

acetyl moiety neutralizes the positive charge on lysine, destabilizing the histone – DNA 

electrostatic interaction, and increasing accessibility of the DNA (Grunstein, 1997). Based on 

their most common subcellular localization, HATs are classified in nuclear (type-A) and 

cytoplasmic (type-B) (Bannister & Kouzarides, 2011; Sun et al., 2015). Type-A HATs 

acetylate nucleosomal histones and type-B HATs acetylate newly synthesized histones 

located in the cytoplasm (Bannister & Kouzarides, 2011; Sun et al., 2015). Contrary to the 

function of HATs, HDACs remove the acetyl-moiety from the lysine residues strengthening 

the histone-DNA interaction and restoring chromatin compaction (Grunstein, 1997). Based 

on their cofactor dependency, HDACs are classified in Zn2+-dependent HDACs and NAD+-
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dependent HDACs that are also known as sirtuins (Ali et al., 2018) (Shvedunova & Akhtar, 

2022).   

 

Multiple lysine residues (>40) are known to be acetylated within the lysine-rich histones 

(Table 1) (Ali et al., 2018; Shvedunova & Akhtar, 2022) . However, some of these lysines are 

commonly acetylated in different cell types and organisms. They are considered to be 

evolutionarily conserved (Kurdistani et al., 2004). These conserved acetylated sites are more 

common in histone H3 and H4 and include H3K27ac and H4K5ac as some of their best-

known examples (Kurdistani et al., 2004). H3K27ac is highly enriched in promoter and 

enhancer regions (Hnisz et al., 2013).  In fact, H3K27ac is considered the marker of active 

enhancers as these regulatory regions are characterized by having increased H3K27ac  

(Creyghton et al., 2010; Rada-Iglesias et al., 2011).  

 

Table 1. Representative acetylated lysine residues within histones  
 
HISTONE LYSINE MODIFICATION  
 Tail Domain  Globular Domain  
H2A K5, K9, K13, K15 K36, K118 
H2B K5, K11, K12, K15, K16, K23, K24 K46, K57, K120 
H3 K4, K9, K14, K18, K23, K27  K36, K37, K56, K64, K79, K112, K115 
H4 K5, K8, K12, K16, K20, K31 K77, K79, K91 
H1 *K16, K33 K45, K63, K74, K89, K96, K105, K167 

Table obtained from Ali et al. (Ali et al., 2018).  

 

The interplay between histone acetylation/deacetylation is critical for cellular homeostasis, as 

perturbation of this balance has been considered critical for the onset of diseases such as 

cancer or neurodegeneration (Di Gennaro et al., 2004; Park & Kim, 2020). The dynamic 

regulation of histone acetylation and deacetylation levels depends, in part, on the abundance 

of HATs’ and HDACs’ cofactor’s (Dai et al., 2020; Reid et al., 2017). For instance, the cofactor 

of HATs (acetyl-CoA) is a metabolite synthesized and used by multiple metabolic pathways 

(Li et al., 2018). Thus, the available acetyl-CoA that HATs can use also depends on complex 

metabolic networks. In addition, as most HATs have a low affinity (high KD) for acetyl-CoA, 

the cellular fluctuations of this metabolite directly impact their catalytic activity and, thereby, 

histone acetylation levels (Dai et al., 2020). Another consequence of this fluctuation is the 

fast turnover rate that characterizes histone acetylation compared to other PTMs (e.g., 

histone methylation) (Dai et al., 2020). 
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As pointed out, histone acetylation is a posttranslational modification that integrates 

metabolic and chromatin regulation. Due to its fast turnover rate, histone acetylation allows 

the development of adaptative chromatin responses that enhance cellular plasticity. Although 

this modification has been heavily studied in the chromatin landscape, and its canonical 

functions are described in multiple biological scenarios, understanding how it is co-regulated 

with metabolism has led to the discovery of new regulatory networks and the update of 

previously known ones.  

 

2.2 Chromatin and metabolism  

Metabolism provides the biochemical plasticity that enables organisms to adapt to the ever-

changing intracellular and extracellular environment (Reid et al., 2017; Vander Heiden et al., 

2009). Metabolic pathways are composed of interconnected enzymatic reactions that 

circulate intracellular and extracellular metabolites, processing them through a complex 

network of biochemical reactions that synthesize new metabolic intermediates that cover 

specific cellular needs  (Buescher et al., 2015; Jang et al., 2018; Tanner et al., 2018).  

 

Central carbon metabolism (CCM) is composed of three of the most evolutionary conserved 

metabolic pathways: glycolysis, the tricarboxylic acid cycle (TCA cycle), and the hexosamine 

or pentose phosphate pathway (PPP) (Noor et al., 2010). CCM largely relies on carbohydrate 

metabolism, and glucose is considered its primary carbon source  (Wu et al., 2023). However, 

decades of research have unveiled the importance of fatty acids (FAs) and amino acids as 

alternative CCM’s carbon suppliers that can dampen metabolic transitions or contribute to 

maintain homeostatic states (Johnson & Alric, 2013; Sudarsan et al., 2014).   

 

CCM is highly versatile, meaning that the activity of its pathways can be accelerated or 

reduced depending on context-specific cellular requirements (Noor et al., 2010). Through this 

metabolic rewiring, the energetic resources produced by one pathway (e.g., glycolysis) can 

change in abundance or be relocated to alternative routes that are fine-tuned towards the 

most necessary metabolic pathways (Alam et al., 2023).   
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The intricate network of CCM and its branching pathways generate the cofactors that 

chromatin-modifying enzymes use to regulate critical histone PTMs (Figure 2) (Lu & 

Thompson, 2012).  For instance, the glycolytic-TCA cycle axis supplies a fraction of the 

acetyl-CoA pool used by HATs to acetylate histones (Cai et al., 2011; Evertts et al., 2013). 

Meanwhile, the crosstalk between one-carbon metabolism and methionine metabolism 

generates S-adenosylmethionine (SAM), the universal methyl donor used by histone 

methyltransferases (HMTs) to methylate histones (Locasale, 2013). Hence, the tight 

interaction between CCM-derived metabolites and histone modification enzymes set the 

stage for the communication of changes at CCM level into histone PTMs and gene expression 

programs.  
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Figure 2. CCM and derived metabolites used as cofactors for histone PTMs  

Schematic depicting diverse nutrient sources used by CCM pathways to produce metabolites that are 
subsequently used as cofactors by chromatin-modifying enzymes to establish histone PTMs, Figure obtained 
from Dai et al. (Dai et al., 2020).  

 

A key feature of this metabolic-chromatin interaction is its interdependence, as gene 

expression programs also regulate CCM’s activities through the transcriptional regulation of 

its multiple enzymes (Desvergne et al., 2006; Huether et al., 2014; Li et al., 2018; Lu et al., 

2012). For instance, several studies have shown the activation of glycolytic gene expression 

programs that modify metabolic phenotypes in response to, for instance, environmental 

changes (Desvergne et al., 2006). Whether metabolism or chromatin steers the metabolic-

chromatin axis is context- and cell-type-dependent, and under constant change (Pouikli et 

al., 2021; Pouikli & Tessarz, 2021). As alterations in the metabolic-chromatin crosstalk have 

shown to be involved in a broad range of physiological processes such as tumorigenesis or 

the immune response, studying this interaction represents a highly active research field (Lee 

et al., 2014; Peng et al., 2016).  

2.3 Hypoxia cellular response  

Oxygen delivery and consumption are fundamental to sustaining multicellular life at the 

organismal and cellular level (Melvin & Rocha, 2012; Zenewicz, 2017). Although oxygen is 

vital for a myriad of biochemical pathways, organs, tissues, and cell types are generally 

exposed to a broad range of oxygen concentrations (Carreau et al., 2011; McKeown, 2014). 

In mammalian tissues, oxygen concentration ranges from 0% to 19% (Zenewicz, 2017). 

Within these concentrations, tissues have their specific oxygen sub-range to function 

appropriately (Carreau et al., 2011). For instance, while the intestinal lumen presents oxygen 

concentrations close to zero in a healthy state (Albenberg et al., 2014; Wagner et al., 2011), 

upper airway tissues can present levels of ∼19% O2  under similar physiological conditions 

(Carreau et al., 2011). Even the same cell type can be exposed to a dynamic range of 

functional oxygen concentration (McKeown, 2014), as for immune cells that migrate from 

their low-oxygen bone marrow niche to circulate through the persistently oxygenated blood 

system (Collins et al., 2015; Luster et al., 2005) or during cellular growth in which oxygen 

consumption can have a threefold increase compared to lag phase cells  (Wagner et al., 

2011).  
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Hypoxia represents the oxygen-depleted condition developed when cells are exposed to 

oxygen levels below their functional range (Kaluz et al., 2008). This term contrasts with the 

atmospheric oxygen levels (∼21% O2) that comprises “normoxia,” the term that represents 

the most common culture condition in in vitro tissue culture (McKeown, 2014). As tissues and 

cell types have diverse functional oxygen concentrations, hypoxia is cell-type dependent 

(Place et al., 2017).   For most cell types, research has identified the hypoxia response in 

cells exposed to 0.5% to 5% O2, so culture conditions within this range are considered to 

portray a hypoxic environment (McKeown, 2014).   

 

The molecular response to hypoxia is largely characterized by activation of the oxygen-

sensing transcription factor family named Hypoxia-Inducible Factors (HIFs) (Batie et al., 

2019). HIFs activate a transcriptional program that elicits a metabolic rewiring required for 

cell survival under hypoxic conditions  (Dengler et al., 2014). HIFs constitute a heterodimeric 

complex consisting of HIF1α, an oxygen-labile subunit, and HIF1β, its oxygen-insensitive 

counterpart (Melvin & Rocha, 2012). In normal oxygen conditions, HIF1α and HIF1β are 

located and regulated separately. The HIF1α subunit is located in the cytoplasm, showing a 

short half-life due to continuous proteasomal degradation (Jewell et al., 2001; Weidemann & 

Johnson, 2008). HIF1α is targeted for degradation through prolyl hydroxylation marks 

catalyzed by a specific class of dioxygenases known as prolyl-hydroxylases (PHDs) (Batie et 

al., 2019). These hydroxylation marks are then recognized by the E3 ubiquitin ligase complex 

named tumor suppressor von Hippel Lindau (pVHL) that ubiquitinates HIF1α, targeting it for 

degradation (Vanderhaeghen et al., 2020). HIF1β is located in the nucleus and has a longer 

half-life (Weidemann & Johnson, 2008). When oxygen levels drop, HIF1α is no longer 

hydroxylated and stabilized as consequence (Kaelin & Ratcliffe, 2008). The stabilized HIF1α 

translocates to the nucleus, dimerizing with HIF1β to form a functional transcription factor 

complex named HIF (Kaluz et al., 2008; Liu et al., 2008). HIF then binds to consensus DNA 

sequences collectively known as hypoxia-responsive elements (HREs) that generally occur 

in promoter or enhancer regions (Wenger et al., 2005). In addition, HIF enhances the 

transcription of its target genes by recruiting p300/CBP, a HAT that functions as a 

transcriptional coactivator (Kaluz et al., 2008; Liu et al., 2008). 

 

HIF targets a broad range of genes (>70) that contribute to the cellular adaptation to hypoxia 

(Weidemann & Johnson, 2008; Wenger et al., 2005). These HIF-regulated genes enhance 

oxygen supply (e.g., transferrin, VEGF), glucose metabolism (e.g., GLUT, HK, PFK),  cell 
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growth (e.g., IGFBP-1, CTGF), and pro-apoptotic signaling (NIP3, BNIP3, Noxa), among 

other mechanisms (Kaluz et al., 2008; Kim et al., 2006; Wenger et al., 2005). The HIF-

regulated transcriptional program varies between tissues and cell types (Lombardi et al., 

2022). Hence, the molecular response to hypoxia is adjusted to the cellular background, 

allowing metabolic adaptation towards a less oxygen-dependent phenotype that promotes 

cell survival and diminishes the energetic impact of decreased oxygen supply (Dengler et al., 

2014; Kaluz et al., 2008).  

 

Hypoxia generates a metabolic rewiring characterized by higher glucose consumption and 

glycolytic rates that upregulate lactate production (Figure 3) (Eales et al., 2016). Glycolytic 

pyruvate redirection from mitochondrial oxidation towards lactate synthesis reduces TCA 

cycle activity and oxidative phosphorylation (OXPHOS) (Vander Heiden et al., 2009). This 

reduction in OXPHOS activity drastically decreases ATP synthesis from 36 mol ATP/mol 

glucose (OXPHOS) to 2 mol ATP/mol glucose (glycolysis) (Schiliro & Firestein, 2021). The 

hypoxia-mediated metabolic rewiring also increases lactate excretion to the extracellular 

space, as intracellular lactate accumulation inhibits glycolysis (Eales et al., 2016; Li et al., 

2022).  Another feature of hypoxic metabolism is the reprogramming of glutamine metabolism 

from oxidation towards reductive carboxylation in the TCA cycle (Sun & Denko, 2014).  

 

Interestingly, the main features associated with metabolic reprogramming in hypoxia have 

been identified and extensively studied in cancer cells grown in the presence of oxygen. 

Known as the “Warburg effect,” this metabolic rewiring has been considered one of the 

canonical alterations of tumorigenesis since its discovery in 1923 (Eales et al., 2016; 

Kocianova et al., 2022; Vaupel & Multhoff, 2021). Decades of research have unveiled the 

diversity in the hypoxia response and the “Warburg effect” and how they can deviate from 

their canonical models (Vaupel & Multhoff, 2021). Most corrections in this respect point 

towards maintaining undamaged and functional mitochondria even though glycolysis is 

enhanced in, for instance, most cancer cells (Vaupel & Multhoff, 2021). The hypoxic and 

Warburg’s hypoxic-like metabolic phenotypes are essential in a myriad of cellular processes 

such as embryonic development and proliferation, tissue regeneration, or erythrocyte 

maturation, thus highlighting the role of metabolic reprogramming as a critical driver of 

upscale cellular processes and its importance for adaptation. (Kaluz et al., 2008).  
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Figure 3. Hypoxic metabolic rewiring as revealed by flux measurements  

Schematic representation of CCM’s pathways activity obtained from glucose-derived flux measurements. 

Pathways with higher activity are represented with bold lines. Representative enzymes are colored red. Figure 

obtained from Eales et al. (Eales et al., 2016) 

2.4 Mitochondrial pyruvate metabolism  

During normoxia, the pyruvate dehydrogenase complex (PDC) converts glycolytic pyruvate 

into acetyl-CoA in mitochondria (Byron & Lindsay, 2017; Patel et al., 2014; Saunier et al., 

2016). This reaction allows the critical metabolic transition that links glycolysis to the TCA 

cycle (Gray et al., 2014; Stacpoole, 2017). The generated mitochondrial acetyl-CoA 

conjugates with oxaloacetate, producing citrate (Patel et al., 2014; Pietrocola et al., 2015). 

Citrate can then be metabolized in the TCA cycle or exported to the cytoplasm, where it can 

reconvert to acetyl-CoA (Pietrocola et al., 2015; Sivanand et al., 2018). Cytoplasmic acetyl-
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CoA can then be used for protein acetylation (histone and non-histone proteins) or de novo 

FA synthesis (Pietrocola et al., 2015; Sivanand et al., 2018). 

 

PDC is a multimeric complex located in the inner mitochondrial membrane (DeBrosse & Kerr, 

2016; Forsberg et al., 2020; Reed, 2001; Škerlová et al., 2021). It is constituted by a core of 

three enzymatic subunits, two regulatory enzymes and a scaffolding protein (DeBrosse & 

Kerr, 2016; Forsberg et al., 2020; Reed, 2001; Škerlová et al., 2021). PDC requires five 

coenzymes:  thiamine pyrophosphate (TPP), lipoic acid (LA), coenzyme A (CoA), flavin 

adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (NAD+) (Kishnani & Chen, 

2013). The association of multiple copies of the enzymatic core allows for the formation of a 

large-size (∼6000 kDa) complex (Kishnani & Chen, 2013; Škerlová et al., 2021; Sumegi et 

al., 1987). The enzymatic core of PDC consists of pyruvate dehydrogenase (E1), 

dihydrolipoamide S-acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3) 

(Forsberg et al., 2020; Reed, 2001). A scaffolding protein named E3-binding protein (E3BP) 

recruits E3 to PDC’s catalytic core (Forsberg et al., 2020; Reed, 2001). The E1-E3 subunits 

decarboxylate pyruvate sequentially, forming acetyl-CoA, CO2, and NADH (Patel et al., 

2014). PDC activity is regulated through competitive end product inhibition (acetyl-CoA and 

NADH+ + H+) and reversible phosphorylation (DeBrosse & Kerr, 2016; Kantor et al., 2001; 

Randle & Denton, 1976; Saunier et al., 2016). Pyruvate dehydrogenase kinases (PDHK1-4) 

inactivate the E1 subunit through phosphorylation of up to three serine residues (Ser232, 

Ser293, Ser300)  (Kantor et al., 2001; Rardin et al., 2009). In contrast, pyruvate dehydrogenase 

phosphatases (PDP1-2) dephosphorylate E1 and restore its function (Saunier et al., 2016).  

 

The pyruvate dehydrogenase kinase family comprises four mitochondrial isoforms (PDHK1-

4) (Green et al., 2008; Kuntz & Harris, 2018; Milne, 2013; Rowles et al., 1996). Although 

these isoforms are highly conserved, their regulation, tissue expression, and kinetics (e.g., 

phosphorylation rate and specificity) vary (Kuntz & Harris, 2018; Milne, 2013). Despite these 

differences, the four isoforms are commonly activated by the end product of PDC (e.g., acetyl-

CoA and NADH) and inactivated by PDC’s substrate and coenzymes (e.g., pyruvate, NAD+, 

and CoA) (Green et al., 2008; Kuntz & Harris, 2018). PDHKs can function as homodimers or 

heterodimers, as different isoforms can be co-expressed within a tissue (Kuntz & Harris, 

2018; Milne, 2013).   
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PDHK1 is a downstream target of HIF that is upregulated in hypoxia (Figure 3) (Atas et al., 

2020). PDC inhibition by PDHK1 leads to a decrease in mitochondrial acetyl-CoA synthesis 

that can subsequently diminish TCA cycle activity or cytoplasmic downstream mechanism 

(e.g., protein acetylation and lipogenesis) (Gray et al., 2014). In addition, as pyruvate gets 

diverted from mitochondria, it becomes available for other cytoplasmic reactions, such as 

lactate synthesis (Koltai et al., 2020; Milne, 2013; Vander Heiden et al., 2009). Thus, PDHK1 

function contributes to the high glycolytic rates that characterize the cellular response to 

hypoxia (Chatterjee et al., 2019).  

2.5 Acetyl-CoA metabolism  

Acetyl-CoA is a central metabolite synthesized from glucose, FAs, and amino acid 

metabolism (Shi & Tu, 2015; Zhao et al., 2016). Glucose represents the major carbon source 

for acetyl-CoA in mammals. However, FAs and amino acids are alternative sources that can 

compensate for a decrease in glucose-derived acetyl-CoA metabolism. Acetyl-CoA is 

synthesized in multiple subcellular compartments (Figure 4) (Pietrocola et al., 2015; Sivanand 

et al., 2018). The canonical and extensively studied routes occur in the mitochondria and 

cytosol (Kuna et al.; Zhao et al., 2016). However, recent findings have identified acetyl-CoA 

synthesis in the nucleus and peroxisomal compartments (Sutendra et al., 2014).  

 

Acetyl-CoA is a hydrophobic molecule relatively impermeable to lipid membranes due to the 

thioester bond that links the acetyl moiety to CoA (Guertin & Wellen, 2023; Shi & Tu, 2015). 

Based on this physicochemical restriction, acetyl-CoA requires import/export shuttle systems 

to cross most single-membrane and double-membrane organelles  (Wang et al., 2023). For 

instance, this transport system occurs in the mitochondria and peroxisome but not in the 

nucleus, as nuclear pores allow nuclear-cytosolic acetyl-CoA diffusion (Pietrocola et al., 

2015; van Roermund et al., 1995). In the mitochondrial shuttle system, acetyl-CoA is exported 

in the form of citrate and then, reconverted to acetyl-CoA in the cytosol (Hynes & Murray, 

2010). On the contrary, acetyl-CoA is imported in the form of acetyl carnitine and then, 

reconverted to acetyl-CoA in mitochondria (Lundsgaard et al., 2018; Wang et al., 2023). This 

spatial compartmentalization contributes to the forming of two major acetyl-CoA functional 

pools located in mitochondria and the nuclear-cytosolic space (Pietrocola et al., 2015; 

Sivanand et al., 2018).   
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Figure 4. Acetyl-CoA metabolism in different subcellular compartments.  

Schematic representation of acetyl-CoA metabolism. Precursor metabolites and their associated enzymes are 

showed for the (A) mitochondrial, and (B) nuclear-cytosolic compartments. Pathways and enzymes that use 

acetyl-CoA in (C) mitochondria and the (D) nuclear-cytosolic compartments are also depicted.  Figure obtained 

from Pietrocola et al. (Pietrocola et al., 2015).  

 

2.5.1 Mitochondrial acetyl-CoA metabolism 
Mitochondrial acetyl-CoA metabolism is considered the major source of acetyl-CoA in 

mammals (Pietrocola et al., 2015). Within this organelle, acetyl-CoA metabolism is highly 

flexible, as it can process chemically diverse substrates through a plethora of metabolic 

pathways to generate acetyl-CoA (Figure 4) (Sivanand et al., 2018). The most common 

sources are glucose-derived pyruvate decarboxylation, FA β-oxidation, and branched-chain 

amino acid (e.g., valine, leucine and isoleucine) metabolism (Zhao et al., 2016). The activity 

of these pathways and contribution towards the mitochondrial acetyl-CoA pool fluctuates and 

adapts to the cellular microenvironment to match the bioenergetic requirements. For 

instance, during normoxia, acetyl-CoA's most active sources consist of the glucose-derived 



 15 

pyruvate decarboxylation and FA β-oxidation pathways  (Pietrocola et al., 2015).  However, 

in hypoxic conditions, the contribution of glucose-derived pyruvate towards acetyl-CoA 

synthesis decreases generating a metabolic shift.  

 

Mitochondrial acetyl-CoA serves as substrate of multiple metabolic pathways (Pietrocola et 

al., 2015; Sivanand et al., 2018).  As mentioned previously, mitochondrial acetyl-CoA 

condenses with oxaloacetate forming citrate (Gerlt, 1999; Van der Kamp, 2013). Citrate can 

then fuel the TCA cycle or be exported to the cytosol through the tricarboxylate transport 

protein (SLC25A1) (Tan et al., 2020). In addition, mitochondrial acetyl-CoA can be used for 

mitochondrial protein  acetylation or ketone bodies synthesis (Calder, 2016; Pietrocola et al., 

2015). The interplay between these catabolic and anabolic pathways largely determines 

acetyl-CoA availability within this organelle. Moreover, since mitochondria are a major source 

of the total acetyl-CoA pool, fluctuations or changes in mitochondrial acetyl-CoA regulation 

can impact cellular homeostasis and physiological regulation.  

 

2.5.2 Nuclear-cytosolic acetyl-CoA metabolism 
The nuclear-cytosolic pool of acetyl-CoA derives from diverse pathways partially separated 

in the cytosolic and nuclear compartments (Figure 4) (Pietrocola et al., 2015; Sivanand et al., 

2018). The most known cytosolic pathways consist of the ATP-citrate lyase (ACLY) and 

acetyl-CoA synthetase short-chain family member 2 (ACSS2), which uses citrate and acetate 

as substrates, respectively (Kuna et al.; Zhao et al., 2016) Upon export from mitochondria, 

ACLY converts citrate and CoA into acetyl-CoA and oxaloacetate (Zaidi et al., 2012). ACSS2 

catalyzes the conversion of free acetate to acetyl-CoA using ATP and generating AMP as a 

coproduct (Ling et al., 2022).  

 

Citrate to acetyl-CoA conversion by ACLY is considered the major pathway for acetyl-CoA 

synthesis in mammals, particularly as intracellular acetate abundance and ACSS2 activity 

are usually low and considered to increase only during stress conditions (Liu et al., 2018; 

Zhao et al., 2016).  For instance, it has been shown that the absence of ACLY elicits 

extracellular acetate consumption and ACSS2 upregulation to support acetyl-CoA synthesis 

(Zhao et al., 2016). This metabolic shift compensated for the loss of ACLY-derived acetyl-

CoA and contributed to cell survival and proliferation (Zhao et al., 2016). Thus, the interplay 

of these cytosolic pathways is critical for cellular homeostasis. However, the downstream 
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mechanisms generated by individual ACLY- or ACSS2-derived acetyl-CoA can also lead to 

different cellular outcomes (Wellen et al., 2009). A cell culture model of ACLY downregulation 

showed decreased global histone acetylation levels with no changes in total protein 

acetylation (Wellen et al., 2009). Meanwhile, ACSS2 downregulation showed no effect in 

either histone or non-histone protein acetylation (Wellen et al., 2009). Hence, even though 

these canonical pathways generate acetyl-CoA, their activity and relative contribution 

towards the nuclear-cytosolic acetyl-CoA pool can affect differently other regulatory networks, 

such as chromatin and gene expression.  

 

In the cytosol, acetyl-CoA is the substrate of a dynamic set of pathways that regulate protein 

acetylation, FAs, and steroid synthesis (also known as the mevalonate pathway) (Sivanand 

et al., 2018). The biochemical background of protein acetylation (non-histone proteins and 

histones) is highly similar and was described previously. FAs and steroids are molecules with 

high energetic storage capacity compared to carbohydrates or proteins (Kloska et al., 2020). 

Hence, cytosolic acetyl-CoA is an important facilitator of energy-rich storage and a key 

indicator of the energetic status of the cell when converted to FAs or steroids. These high-

energy storage molecules expand the cell's metabolic flexibility and homeostatic capacity 

since contexts of limited resources activate their catabolism to compensate for energy loss. 

 

De novo FA synthesis or lipogenesis initiates with the conversion of acetyl-CoA to malonyl-

CoA by acetyl-CoA carboxylases (ACCs) (Figure 5) (Batchuluun et al., 2022; Brownsey et 

al., 2006). The association of seven malonyl-CoA molecules and one acetyl-CoA is then used 

by the fatty acid synthase (FASN) to generate palmitate (16:0), one of the most common 

long-chain FAs in mammals (Batchuluun et al., 2022; Kerner et al., 2014). Although 

lipogenesis is a complex process regulated by different enzymatic circuitries such as ACCs 

and FASN, the rate-limiting step is catalyzed by the ACCs (Pietrocola et al., 2015).  

 

ACCs consist of the biotin-dependent isoforms ACC1 (cytosolic localization) and ACC2 (outer 

mitochondrial membrane localization), that function as homodimers regulated by 

phosphorylation (Brownsey et al., 2006; Wang et al., 2022). When the energetic status of the 

cell decreases, as in contexts characterized by elevated AMP:ATP ratios, ACCs are 

phosphorylated (ACC1-Ser79 and ACC2-Ser212) by the AMP-activated protein kinase (AMPK) 

(Galic et al., 2018). ACCs phosphorylation (P-ACC1/2) decreases FAs elongation, which 

increases lipolysis and β-oxidation (potentially increasing mitochondrial acetyl-CoA) and the 



 17 

abundance of cytosolic acetyl-CoA (Chow et al., 2014; Galdieri & Vancura, 2012; McDonnell 

et al., 2016). Thus, P-ACC1/2 can severely impact levels of protein acetylation. How specific 

does P-ACC1/2 affect this PTM? Recent findings using a yeast model to analyze histone 

acetylation upon ACC1 downregulation reported global histone hyperacetylation (Galdieri & 

Vancura, 2012). The association of ACC1 downregulation and histone hyperacetylation also 

demonstrated that FAs and HATs utilize the same acetyl-CoA pool (Galdieri & Vancura, 

2012). In contrast to these findings, mouse hepatocytes carrying a liver-specific double 

knockout (ACC1-/-/ACC2-/-) showed a differential effect on the acetylation of mitochondrial 

and nonmitochondrial proteins (Chow et al., 2014). While mitochondrial proteins were 

hypoacetylated, nonmitochondrial proteins were hyperacetylated. Although with different 

outcomes, these studies confirm (in different biological models) the recently discovered 

coordination of lipid metabolism and protein/histone acetylation. These findings also 

demonstrate the dynamic regulation (e.g., subcellular compartments) of this scarcely known 

system, opening the door to the discovery of new regulators and regulatory pathways.     

 

 
Figure 5. Metabolic pathways involved in de novo fatty acid synthesis  
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Schematic representation of de novo FA synthesis or lipogenesis. Depicted in bright colors are the initial steps 
of lipogenesis, that starts with the conversion of acetyl-CoA to malonyl-CoA, and continues to generate fatty 
acids of different lengths.  Figure obtained from Batchuluun et al.,  (Batchuluun et al., 2022).  

 

2.5.3 Nuclear acetyl-CoA metabolism 
Recent studies have detected acetyl-CoA synthetases in the nuclei that were initially 

considered purely cytosolic or mitochondrial (Sutendra et al., 2014; Wellen et al., 2009). The 

detection of a nuclear ACLY showed the possibility that citrate could be converted to acetyl-

CoA within the nuclei, which could be used directly by HATs to acetylate core histones 

(Wellen et al., 2009). A functional PDC was also identified in this organelle in response to 

diverse extracellular and intracellular stressors (Sutendra et al., 2014). PDC’s inhibitor 

(PDHK1) did not colocalize in this organelle. Thus, pyruvate can generate acetyl-CoA directly 

in the nuclei but is deprived of PDC’s regulator (Sutendra et al., 2014). In cellular contexts 

with high glycolytic rates and, thereby, high pyruvate production, which functional outcome 

does a nuclear PDC have? The underlying mechanisms of this finding (e.g., intracellular 

translocation) are not understood but will expand our knowledge of the noncanonical 

pathways of the critical metabolite acetyl-CoA.  

2.6 Metabolomics  

The interplay between metabolism and chromatin regulation has been unraveled as a critical 

component of healthy and diseased cellular states (Etchegaray & Mostoslavsky, 2016; 

Nativio et al., 2020; Wong et al., 2017). The emergence and constant improvement of high-

throughput “omics” technologies have been fundamental to demonstrate the importance of 

this association (Blankenburg et al., 2009; Tebani et al., 2016). The combination of 

chromatography (e.g., HPLC, LC, GC) with mass-spectrometry (MS) techniques has 

provided the analytical tools required by “omics” technologies to study chemically diverse 

samples by separating complex mixtures into individual molecules that are subsequently 

identified and quantified (Alseekh et al., 2021; Coskun, 2016; Zaikin & Borisov, 2021) . Based 

on this technological foundation, metabolomics and proteomics analysis have enabled the 

identification of thousands of molecules and the characterization of multiple cellular 

phenotypes (Alseekh et al., 2021). Next-generation sequencing (NGS) and chromatin-

profiling methods (e.g., ChIP-seq, ATAC-seq, CUT&RUN) have allowed the characterization 

of genomes, transcriptomes, and their functional states (Buenrostro et al., 2015; Dai et al., 

2020). Despite being sources of comprehensive information that is very difficult to obtain 
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using smaller-scale techniques, these “omics” technologies impose multiple technical 

challenges regarding sample preparation, bioinformatics analysis, and datasets integration. 

Rather than representing an obstacle, acknowledging these limitations contributes to 

establishing realistic boundaries to the results derived from “omics”-based research. 

 

Characterizing metabolic pathway activity and abundance is essential to determine metabolic 

phenotypes (Dai & Locasale, 2017; Jang et al., 2018). Metabolic flux analysis is one of the 

most common techniques for measuring pathway activity (Buescher et al., 2015; Zamboni et 

al., 2009). This technique heavily relies on the use of tracing experiments that utilize stable 

isotopes (e.g., C13, H2, N15, O18) as substrates to target a metabolic network of interest 

(Buescher et al., 2015; Zamboni et al., 2009). Through this strategy, it is possible to calculate 

the turnover of the labeled substrate within a myriad of biochemical reactions that can be 

tested in multiple experimental conditions (e.g., nutrients (scarce/abundant), oxygen tension 

(high/low), differentiation state (pluripotent/differentiate)) (Buescher et al., 2015; Zamboni et 

al., 2009).  On the contrary, to quantitatively determine metabolic abundances or pool sizes, 

stable isotopes are not required. The combination of these experimental strategies provides 

a comprehensive overview of the general metabolic state.  
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3 RESEARCH AIMS  
 

The crosstalk of metabolism and chromatin is essential for cellular homeostasis and 

adaptation. On the one hand, metabolism provides the cofactors used by chromatin-

modifying enzymes to establish diverse histone PTMs. On the other hand, gene expression 

regulates metabolism by modulating the transcriptional activity of the enzymatic circuitry. 

Hypoxia is a low oxygen condition developed when cells are exposed to oxygen levels below 

their functional range (Kaluz et al., 2008). These hypoxic conditions generate a concomitant 

metabolic and transcriptional response characterized by increasing glucose metabolism and 

reducing TCA cycle activity.  

 

In mammals, glucose is considered the main source of acetyl-CoA, the intermediate 

metabolite used by HATs as cofactor for histone acetylation.  Although the cellular response 

to hypoxia has been extensively characterized, recent studies have revealed a more complex 

metabolic adaptation to these low oxygen conditions. Furthermore, the link between glucose 

metabolism and histone acetylation has recently emerged as driven by an intricate circuitry 

of pathways related to acetyl-CoA metabolism. Thus, the mechanistic background that 

determines the glucose -> acetyl-CoA -> histone acetylation axis remains to be fully 

understood. Therefore, this thesis project aims to:  

 

1) Characterize the impact of hypoxia on glucose metabolic flux to acetyl-CoA and 

histone acetylation. 

2) Investigate the role of PDHK1 as a central gatekeeper of glucose-to-acetyl-CoA flux 

on the observed effects under hypoxia.  
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4 MATERIALS AND METHODS  
4.1 Materials  

Table 2.  Cell culture lines, reagents, growth media, antibiotics 
 

Name Supplier Cat. Number 

DMEM (-Phenol Red) Gibco A14430 

DMEM + Glutamax medium Gibco 61965 

Seahorse XF DMEM medium, pH 

7.4 
Agilent 103575-100 

Dulbecco’s modified PBS (DPBS) Gibco 14190 

Fetal Bovine Serum (FBS) Gibco 10500-064 

D-Glucose -13C6 Sigma-Aldrich 389374 

L-Glutamine - 13C5 Sigma-Aldrich 605166 

HEK293T cells  ATCC  

Seahorse XF Glucose Solution (1M) Agilent 103577 

Seahorse XF Glutamine Solution 

(200 mM) 
Agilent 103579 

MEM Alpha medium + Glutamax (a-

MEM) 
Gibco 32561-037 

NIH-3T3 cells  DSMZ ACC 59 

Opti-MEM Reduced Serum Media  Gibco 31985 

Penicillin/Streptomycin 

(10.000 U/ml) 
Gibco 15140-122 

Polybrene  Santa Cruz sc-134220 

Puromycin-Dihydrochlorid (10 

mg/mL) 
Gibco A11138 

QIAzol Lysis Reagent   Qiagen 79306 

Sodium Pyruvate (100 mM) Gibco 11360 

TransIT-X2® Dynamic Delivery 

System 
Mirus  MIR6000 
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Trypan Blue Solution  Sigma-Aldrich T8154 

0.05% Trypsin-EDTA (1x) Gibco 25300-054 

 
 

Table 3. Antibodies used for Western Blot and immunofluorescence  
 

Name Supplier Cat. Number 
Dilution  

(WB) 

ACC1 ProteinTech  21923-1-AP 1:1000 

P-ACC1 (Ser79)  Cell Signaling 3661 1:1000 

ACLY, pAb Proteintech 5421-1 AP 1:1000 

AceCS1 (D19C6), mAb Cell Signaling  3658S 1:1000 

β--actin- HRP Conjugate, mAb Cell Signaling 12262S 1:1000 

Alexa-Fluor 488 Thermo Fischer  A11001 -- 

Alexa-Fluor 594 Thermo Fischer A11012 -- 

Histone H3 (1B1B2), mAb Cell Signaling 14269S 1:10,000 

Histone H3K27ac, pAb Active Motif 39133 1:1000 

Histone H3K14ac, pAb Active Motif 39616 1:1000 

Histone H3K27me3, pAb Active Motif 39155 1:1000 

Histone H3K9me3, pAb Active Motif 39161 1:1000 

Histone H3K4me3, pAb Active Motif 39159 1:1000 

Histone H3ac (pan-acetyl), 

pAb 
Active Motif 39139 1:1000 

Histone H4K16ac, pAb Active Motif 39168 1:1000 

Histone H4K5ac, pAb Active Motif 39700 1:1000 

Histone H4ac, pAb  Sigma-Aldrich 06-866 1:1000 

LDHA / LDHC (C28H7), mAb Cell Signaling 3558S 1:1000 

PDHA Cell Signaling 2784 1:1000 

P-PDHA (Ser 293) Cell Signaling 31866 1:1000 

PDHK1 (C47H1), mAb Cell Signaling 3820S 1:1000 

anti-mouse IgG HRP-linked  Cell Signaling 7076S 1:1000 
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anti-rabbit IgG HRP-linked Cell Signaling 7074S 1:1000 

TOMM20 Sigma Aldrich WH0009804M1 1:1000 

αTubulin  Cell Signaling 2144 1:1000 

Vinculin (E1E9V) Cell Signaling 13901 1:100 

 

4.1.1 Chemicals  
Chemicals used in this study were purchased from the companies Sigma-Aldrich 

(Steinheim, Germany), ROTH (Karlsruhe, Germany), Roche (Mannheim, Germany), Life 

Technologies (Darmstadt, Germany) and Thermo Scientific (Waltham, USA). Plastic 

supplies were ordered from Sarstedt (Nümbrecht, Germany), and VWR International 

(Darmstadt, Germany). 

 

4.1.2 Commercial kits  
• Amersham Hyperfilm ECL (Sigma-Aldrich, GE28-9068-37)  

• cOmplete EDTA-free Protease Inhibitor Cocktail (Sigma-Aldrich, 11836170001) 

• Direct-zol RNA Miniprep Kit (Zymo Research, R2052) 

• 100 bp DNA ladder (Thermo Scientific, 15628019) 

• ECL Western Blotting Substrate (Promega, W1001) 

• FastStart Essential DNA Green Master (Roche, 06402712001) 

• GelGreen® Nucleic Acid Gel Stain, 10,000X in Water (Biotium, 41005) 

• GoScript Reverse Transcriptase (Promega, A5003) 

• GoTaq Hot Start Polymerase (Promega, M5001) 

• NucleoSpin DNA RapidLyse kit (Macherey Nagel, 740100) 

• Pierce BCA Protein Assay Kit (Thermo Scientific, 23227) 

• PureYield Plasmid Maxiprep System (Promega) 

• Random Hexamer Primer (Thermo Scientific, SO142) 

• RNA ScreenTape (Agilent, 5067-5576) 

• RNA ScreenTape Ladder (Agilent, 5067-5578) 

• RNA ScreenTape Sample Buffer (Agilent, 5067-5577) 

• Seahorse XF Mito Fuel Flex Test Kit (Agilent, 103260-100) 

• Seahorse FluxPaks (Agilent, 102416-100) 

• SuperSignal West Femto Substrate (Thermo Scientific, 34095) 
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• Trans-Blot Turbo Transfer Kit Nitrocellulose (Bio-Rad, 1704270) 

 

4.1.3 Electronic equipment  
• Balance (Sartorius, Göttingen, Germany) 

• Benchtop pH meter (VWR, Darmstadt, Germany) 

• Centrifuge Mega Star 1.6R (VWR, Darmstadt, Germany) 

• Centrifuge Pico21 and Fresco21 (Thermo Scientific, Waltham, USA) 

• DiaMag Rotator (Diagenode, Liege, Belgium) 

• Freezer -80°C (VWR, Darmstadt, Germany) 

• Freezer -20°C (Liebheer, Bulle, Germany) 

• Fridge 4°C (Liebheer, Bulle, Germany) 

• Hypoxia incubator (Binder, Tuttlingen, Germany) 

• Ice machine (Scotsman, Mailand, Italy) 

• Led Illuminator BL star16 (Biometra, Jena, Germany) 

• Microwave (Severin, Sundern, Germany) 

• Rocking platform (VWR, Darmstadt, Germany) 

• Roller 6 basic (IKA, Königswinter, Germany) 

• TC automated cell counter (Bio Rad, Munich, Grermany) 

• Thermal cycler T100 (Bio Rad, Munich, Grermany) 

• Thermomixer basic (CellMedia, Zeitz, Germany) 

• Vortex 2 genie (Scientific Industries, New York, USA) 

• Water bath VWB18 (VWR, Darmstadt, Germany) 

 

4.1.4 Instruments  

• Agilent 2200 TapeStation (Agilent)  

• Chemostar PC ECL and Fluorescer Imager (Instas)  

• Gel electrophoresis system (Bio Rad, Munich, Germany) 

• Light Cycler 96 System (Roche) 

• NanoPhotometer N60/N50 (Implen) 

• Seahorse XFe96 Extracellular Flux Analyzer (Agilent)  

• Trans-Blot Turbo Transfer System (Bio-Rad, 1704150)   
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4.2 Methods  

4.2.1 Experimental models   

4.2.1.1 Cell lines  

NIH-3T3 (DSMZ) and HEK293T (ATCC) cells were cultured in Dulbecco’s modified eagle 

medium with high glucose (DMEM Glutamax, 4.5 g/L glucose, Gibco) supplemented with 

10% fetal bovine serum (Gibco) and 1% Penicillin/Streptomycin (Gibco). Cells were 

incubated at 37 °C in a humidified 5% CO2 incubator and were routinely tested for 

Mycoplasma spp. infection. For hypoxia treatments, cells were maintained at 2% O2 in a 

hypoxia incubator (Binder) for 24 h, unless otherwise indicated.    

 

NIH-3T3 cells were used as the main experimental model while HEK293T cells were used 

only for lentiviral transfection. Therefore, NIH-3T3 are referred as “cells”, unless otherwise 

stated.  

 

4.2.2 Cell culture 

4.2.2.1 Cell harvesting and passaging  

Cells were passaged when confluency reached 80-100%. Culture medium was removed and 

cells were washed twice with Dulbecco’s modified PBS (DPBS, Gibco). Cells were harvested 

with 0.05% Trypsin-EDTA (Gibco) during 4 min at 37 °C in a humidified 5% CO2 incubator. 

Detached cells were resuspended in pre-warmed (37 °C) culture medium and centrifuged at 

300 x g for 5 min. The cell pellet was resuspended twice in DPBS and centrifuged at 300 x g 

for 5 min. After the second resuspension, 10 μL of cell suspension were used to determine 

total cell number and percent viability using an automated cell counter (Bio-Rad) and Trypan 

Blue Exclusion (Sigma-Aldrich), respectively. Then, the cell pellet was resuspended in pre-

warmed culture medium and 1.5 x106 cells were passaged to a new T-175 (Sarstedt) culture 

vessel containing fresh culture medium.   

 

4.2.2.2 Cell thawing and freezing   

Cells were harvested as described in section 3.2.2.1 and resuspended in freezing medium 

(DMEM Glutamax, 4.5 g/L glucose, supplemented with 10% FBS and 10% DMSO). From 1 

to 2 x106 cells were transferred to cryogenic storage vials (Sarstedt), stored in a Cell Camper 

container (Neolab) at -80 °C for 24 h and transferred to a vapor-phase liquid nitrogen 

container for long-term storage.   
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For thawing cryopreserved cells, cryovials were removed from the liquid nitrogen storage 

container and placed directly into a 37 °C water bath until 20% of ice was left in the vial. 

Thawed cells were transferred to a 15 mL centrifuge tube (Sarstedt) containing pre-warmed 

(37 °C) culture medium and centrifuged at 1300 rpm for 5 min. The cell pellet was 

resuspended in pre-warmed (37 °C) culture medium, total cell number and percent viability 

was performed as described in section 3.2.2.1. Then, cells were transferred to a new T-75 

(Sarstedt) culture vessel containing fresh culture medium.  

 

4.2.3 Biochemistry and molecular biology  

4.2.3.1 Mycoplasma PCR detection  

 Genomic DNA was isolated from cell pellets obtained as described in 4.2.2.1 using the 

NucleoSpin DNA RapidLyse kit (Macherey Nagel). Then, 75 ng of DNA were PCR-amplified 

using the GoTaq Hot Start Polymerase (Promega) according to manufacturer’s instructions. 

The Mycoplasma-genus specific primer set MGSO (van Kuppeveld et al., 1993) (forward, 5’ 

-TGCACCATCTGTCACTCTGTTAACCTC- 3’; reverse, 5’- 

GGGAGCAAACAGGATTAGATACCCT -3’) targeting the 16S rRNA gene was used for 

detection. PCR products were separated on 1.5% agarose gels pre-mixed with the 

fluorescent GelGreen DNA stain (Biotium), compared against 100 bp DNA ladder (Thermo 

Scientific) as a size marker and, detected using a UV transilluminator.  

 

4.2.3.2 RNA isolation 

 Total RNA was isolated from an 80-90% confluent well of a 6-well plate using the Direct-zol 

RNA Miniprep kit (Zymo Research) according to manufacturer’s instructions. Briefly, culture 

medium was removed and cells were washed twice with Dulbecco’s modified PBS (DPBS, 

Gibco). Then, cells were lysed in QIAzol (Qiagen) by pipetting, followed by the addition of an 

equal amount of 99.8% ethanol to the lysate and, transfer into a spin column with a 

subsequent washing step. Genomic DNA was removed by using an in-column DNase I 

digestion. After several washing steps, the RNA was eluted in Nuclease-free water and 

quantified using a Nanophotometer (Implen). RNA was either used directly for downstream 

applications or stored at -80°C.     

 



 27 

4.2.3.3 RT-PCR and qRT-PCR  

Total RNA was isolated as described in section 4.2.3.2. Then, 200 ng of RNA were 

retrotranscribed using the GoScript Reverse Transcriptase kit (Promega) and Random 

Hexamer Primers (Thermo Scientific) according to manufacturer’s instructions. 

Subsequently, 10 ng of complementary DNA (cDNA) were used as template for qRT-PCR 

using the FastStart Essential DNA Green Master Mix (Roche). All reactions were performed 

in triplicate using the LightCycler 96 (Roche) detection system.  

 

Fold change in gene expression was calculated with the ΔCq method using β-Actin as 

housekeeping gene. Primers were designed to span exons using the Primer-Blast designing 

tool (NCBI). Primer sequences are provided in Table 4.  

 

Table 4.  Primer sequences used for qRT-PCR 

Gene Forward Sequence Reverse Sequence 

Pdk1 TCCCCCGATTCAGGTTCAC CCCGGTCACTCATCTTCACA 

Acss2 ACTTGGCGACAAAGTTGCTTTT ACCCTTCTGAATGCCCTGTTTA 

Acly GCTAAAACCTCGCCTGGGAC GAACTCCTCCGCCTGACTGT 

β-Actin GCTGTATTCCCCTCCATCGTG CACGGTTGGCCTTAGGGTTCAG 

 

cDNA synthesis reaction (RT-PCR)  

Experimental RNA (200 ng / reaction)   X μL 

Random primer (0.5 μg) 2.5 μL 

GoScript Reaction Buffer (5x) 4.0 μL 

MgCl2 (3 mM) 2.4 μL 

PCR nucleotide mix (0.5 mM) 1.0 μL 

GoScript Reverse Transcriptase 1.0 μL 

adjusted to 20 μL with Nuclease- free water 

 

cDNA synthesis program  

25 °C for 5 min            

42 °C for 1h            

70 °C for 15 min         

hold at 4 °C, cDNA was stored at -20 °C  
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qRT-PCR reaction  

(Reactions were performed in triplicates) 

cDNA (10 ng) 

Primers F + R (10 μM) 

FastStart Essential DNA Green Master 

(2x)  

Nuclease-free water  

1 μL 

1 μL 

5 μL 

3 μL 

 

4.2.3.4 RNA sequencing (RNA-seq)  

Total RNA was isolated and quantified as described in section 4.2.3.2. RNA quality was 

assessed using the Agilent 2200 TapeStation System (Agilent) according to manufacturer’s 

instructions. For non-transfected NIH-3T3 cells, RNA library preparation was performed by 

M.Sc. Jenniffer Maßen and sequencing was carried out at the Cologne Center for Genomics 

(CCG). For shRNA-PDHK1 NIH-3T3 cells, 2 μg of total RNA were used to perform paired-

end RNA sequencing by using the 2x100-bp protocol and three replicates per condition. 

Library preparation and sequencing were performed at the CCG.  

 

The RNA-seq analysis of NIH-3T3 cells was performed by M.Sc. Jenniffer Maßen.  

The RNA-seq analysis of shPDHK1 cells was performed by M.Sc. Ayesha Iqbal from the 

Bioinformatics Core Facility of the Max Planck Institute for Biology of Ageing.  

 

4.2.3.5 Western Blot  

Whole cell protein extract was isolated either from an 80-90% confluent well of a 6-well plate 

or from cell pellets obtained as described in section 4.2.2.1. Cells were lysed in RIPA buffer 

containing proteases and histone deacetylases inhibitors, followed by a 30 min incubation at 

4 °C. Then, lysates were centrifuged at 21,000 x g for 20 min at 4 °C to remove cell debris. 

The supernatant containing the whole cell protein extract was collected and used directly for 

Western Blotting or stored at -20 °C. 

 

Protein concentration was quantified using the BCA Protein Assay Kit (Thermo Scientific). 

Laemmli Buffer (LB) and DTT (350 mM) were added to the protein extract and samples were 

heated to 90 °C for 5 min. 15-30 μg of total protein were separated by SDS-PAGE 
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electrophoresis performed at 130 V for ~1.5 h using 8% (>120 kDa), 12% (<120 kDa) or 15% 

(<15 kDa) hand-casted gels. Then, proteins were transferred to a nitrocellulose membrane 

using the Trans-Blot Turbo Transfer System (Bio-Rad) and the manufacturer’s pre-

programmed protocols. Membranes were incubated in Ponceau S staining for 5-10 min to 

confirm protein transfer. Subsequently, membranes were incubated in blocking buffer for 1 h 

at 4 °C, followed by primary antibody incubation performed overnight at 4 °C. After three 

washing steps with TBST that lasted 5 min each, membranes were incubated with the 

appropriate horseradish peroxidase (HRP)-conjugated secondary antibody for 2 h at RT. 

Followed by another round of three washing steps with TBST for 5 min each, 

chemiluminescence was performed using the ECL Western Blotting Substrate (Promega) or 

SuperSignal West Femto Substrate (Thermo Scientific) to detect low concentrated proteins. 

The chemiluminescent signal was detected either by using the Amersham Hyperfilm ECL 

(Sigma-Aldrich) or the Chemostar PC ECL Imager System (Instas). The antibodies used and 

their respective dilutions in blocking buffer are listed in Table 3.  

 

RIPA buffer  

150 mM NaCl 

5 mM EDTA 

50 mM Tris (pH 8.0) 

1% NP-40  

0.5% Sodium deoxycholate  

0.1% SDS 

1x cOmplete EDTA-free Protease Inhibitor Cocktail (Sigma-Aldrich)   

 

Blocking buffer  

5% non-fat dried milk powder  

Tris-buffered saline (TBS) with 0.1% Tween-20 (TBS-T) 

 

4.2.3.6 Histone extraction for western blotting  

NIH-3T3 cells were seeded at a density of 8 x106 cells on a T-175 flask and cultured in 

normoxia (21% O2) and hypoxia (2% O2) for 24 h as described in 4.2.1.1. Then, cells were 

harvested and pelleted as described in 4.2.2.1. The cell pellet was used directly for histone 

extraction or stored at -80 °C.      
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Histones were purified using acid extraction adapted from (Leidecker et al., 2016). Briefly, 

pelleted cells were lysed in 0.1 M H2SO4 for 2 h at 4 °C with gentle rotation. The lysate was 

centrifuged at 3500 rpm for 20 min at 4 °C. The supernatant was collected and neutralized 

with 1 M Tris-HCl (pH 8.0) using the same volume of H2SO4. Subsequently, histones were 

precipitated overnight with 4% HClO4 at 4 °C and centrifuged at 21,000 x g for 45 min at 4 

°C. The supernatant was carefully removed by pipetting and the histone pellet was washed 

twice with 4% HClO4. After each washing step of this protocol, pellets were centrifuged at 

21,000 x g for 45 min at 4 °C. The histone pellet was washed twice with 0.2% HCl diluted in 

acetone and twice with 100% acetone. The pellet was dried for 20 min at RT and 

resuspended in Nuclease- free water supplemented with 1x cOmplete EDTA-Protease 

Inhibitors (Sigma-Aldrich). Samples were stored at -80 °C until ready for western blotting, 

performed as described in 3.2.3.6.     

 

4.2.3.7 shRNA knockdown 

Mission shRNA bacterial glycerol stock (Sigma-Aldrich) containing the plasmid pLKO.1-

Puromycin-PDK1 or a nontargeting shRNA-containing plasmid were propagated on LB plates 

with ampicillin. The shRNA sequences are provided in Table 5. Plasmids were extracted 

using the PureYield Plasmid Maxiprep System (Promega) according to manufacturer’s 

instructions. Lentiviral particles were generated by co-transfection of the shRNA-expressing 

viral vectors with the lentiviral envelope pMD2.G (Addgene) and packaging psPAX2 

(Addgene) plasmids into HEK293T cells. Specifically, 1 x106 cells were plated in 10 cm plates 

24 h prior to transfection to be 70% confluent at plasmid delivery. The next day, a transfection 

complex containing 2x HBS, 2 M CaCl2, 10 μg pLKO.1-Puromycin-PDK1 / nontargeting 

shRNA-containing plasmid, 5.2 μg pMD2.G and 5.2 μg psPAX2 was incubated for 30 min at 

RT and subsequently added to the cells. After 17 h, the transfection medium was removed 

and fresh culture medium prepared as described in 3.2.1.1 was added to the cells. Then, 72 

h post-transfection the virus-containing supernatant was collected and cleared of cellular 

debris after centrifugation at 500 x g for 5 min and 0.45 μm filtration.  

 

For lentiviral vector transduction, NIH-3T3 cells were plated at 1.5 x105 cells per well of a 6-

well plate 24 h before transduction to reach 50% confluency at virus delivery. Next day, cells 

were transduced with 1mL of virus suspension diluted in 1 mL culture medium with 4 μg/mL 



 31 

Polybrene (Santa Cruz). After 18 h, transduction medium was replaced with fresh culture 

medium. Then, 72 h post-transduction cells were subjected to antibiotic selection with 1.2 

μg/mL puromycin until all cells of the uninfected control were eliminated.  

 

Table 5.   shRNA sequences used for PDK1 knockdown  

shRNA Target sequence Supplier Cat. Number 

shRNA-

PDK1_1 GCGGCTTTGTGATTTGTATTA Sigma-Aldrich TRCN0000078811 

shRNA-

PDK1_2 CGGCTTTGTGATTTGTATTAT Sigma-Aldrich TRCN0000078812 

 

4.2.3.8 ACC inhibition  

CP-640186 (Sigma-Aldrich), the inhibitor of ACC1 and ACC2, was diluted (20 μM) in water, 

and added fresh to shRNA cells followed by 48 h incubation. DMSO-treated cells were used 

as negative control. ACC1 and ACC2 activity was assessed by Western blot.  

 

4.2.4 Metabolomics and metabolic assays  

4.2.4.1 [13C6]-glucose and [13C5]-glutamine tracing  

NIH-3T3 cells were seeded at a density of 5 x105 cells per well of a 6-well plate in fresh 

culture medium prepared as described in 3.2.1.1. Five technical replicates seeded in 

separate plates were used to perform 13C-metabolite measurements in normoxia (21% O2) 

and hypoxia (2% O2). After 24 h, culture medium was removed, followed by two washing 

steps with DPBS and replaced by tracing media consisting on DMEM without glucose, 

glutamine and phenol red (Gibco), supplemented with 4.5 mM [13C6]-glucose (Sigma-Aldrich), 

2 mM glutamine and, 10% dialyzed FBS (Gibco) prepared on-site. Cells were incubated in 

tracing media for 1 and 2 h at 37 °C in the culture conditions described in 3.2.1.1. Cells 

harvested before addition of labeling media were used as tracing negative control. 

Metabolites were extracted as described in 4.2.4.2.  

 

For experiments using lentiviral transduced NIH-3T3 cells, cells were seeded at a density of 

7 x105 cells per well of a 6-well plate in fresh culture medium prepared as described in 4.2.1.1. 

Five technical replicates were used to perform 13C-metabolite measurements in hypoxia (2% 

O2). After 24 h, culture medium was replaced with [13C6]-glucose-tracing media as indicated 
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previously. For [13C5]-glutamine-tracing experiments, media consisted on DMEM without 

glucose, glutamine and phenol red (Gibco), supplemented with 4.5 mM glucose (Sigma-

Aldrich), 2 mM [13C5]-glutamine (Sigma-Aldrich) and, 10% dialyzed FBS (Gibco) prepared on-

site. Cells were incubated in tracing media for 1 h, 2 h, and 8 h at 37 °C in the culture 

conditions described in 3.2.1.1. Cells harvested before addition of labeling media were used 

as tracing negative control. Metabolites were extracted as described in 4.2.4.2.  

 

4.2.4.2 Extraction of polar metabolites and CoA compounds  

Cellular metabolism was quenched after two washing steps using 50 mM Ammonium 

Carbonate (pH 7.4, adjusted with acetic acid) at RT. Then, cells were placed on ice, followed 

by the addition of 400 μl of pre-chilled (-20 °C) extraction buffer consisting on 40:40:20 

acetonitrile:methanol:water (v/v) and a subsequent incubation step performed at -20 °C for 

10 min. After the supernatant was collected and maintained at -20 °C, additional 400 μl of 

pre-chilled (-20 °C) extraction buffer was added to each well as described previously. After 

incubation at -20 °C for 10 min, cells were placed on ice and scraped in extraction buffer. The 

supernatant was collected and pooled with the first obtained extract. Samples were 

centrifuged at 21,000 x g for 10 min at 4 °C to spin down proteins and cell debris. The 

supernatant was collected and split in two subsamples used for polar metabolites and CoAs 

quantification each. Samples were dried in a speed vacuum concentrator and stored at -80 

°C. Samples were further processed at the Metabolomics Core Facility of MPI AGE for LC-

MS/MS analysis.  

 

Relative metabolite quantification was performed on samples obtained from [13C6]-glucose 

tracing experiments; hence, no internal standards were added to the extraction buffer.  For 

lentiviral transduced NIH-3T3 cells, absolute metabolite quantification was performed by 

adding CoA, citric acid, amino acids, and malonyl CoA calibration standards to the extraction 

buffer. Samples were further processed at the Metabolomics Core Facility of MPI AGE for 

LC-MS/MS analysis.  

 

4.2.4.3 Phase separation of lipids, metabolites and proteins 

Cellular metabolism was quenched after two washing steps using 50 mM Ammonium 

Carbonate (pH 7.4, adjusted with acetic acid) at RT. Plates were frozen in liquid nitrogen by 

short (3 s) immersion, and stored at -80 °C until extraction. Exctaction  
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MTBE extraction of lipids, metabolites and proteins was performed under the hood. For this 

procedure, 400 μl of pre-chilled (-20 °C) initial extraction buffer were added to each well of 

the plate. Then, the plate was incubated -20 °C for 10 min. After incubation, plates were 

placed on ice, scraped and transferred to a 2 mL Eppendorf tube containing 900 μl of pre-

chilled (-20 °C) lipid extraction buffer. This solution was maintained at -20 °C. Then, additional 

400 μl of pre-chilled (-20 °C) initial extraction buffer were added to each well, followed by an 

incubation at -20 °C for 10 min. After incubation, plates were scraped and transferred to the 

first MTBE-containing extracts. Then, samples were incubated in a thermomixer at 4°C for 

30 min and 1500 rpm. Samples were centrifuged at 21,000xg for 10 min at 4°C. The 

supernatant was collected by decantation and mixed with 200 μl of LCMS-grade H2O. The 

pellet was stored for proteomic analysis. The supernatant was incubated in a thermomixer at 

15°C for 10 min and 1500 rpm. Samples were centrifuged at 16,000xg for 5 min at 15°C. 

Then, 700 μl of the upper phase (lipids) were collected, dried in a speed vacuum concentrator 

and stored at -80 °C until analysis. The residual lipid phase was removed by pipetting. Then, 

the lower phase (polar metabolites) was collected, split in two subsamples used for polar 

metabolite and malonyl-CoA quantification each.   Samples were dried in a speed vacuum 

concentrator and stored at -80 °C. All samples were further processed at the Metabolomics 

Core Facility of MPI AGE for LC-MS/MS analysis. 

 

Initial extraction buffer  

100 mL of 60% MeOH was prepared using LCMS-Ultra grade wáter. The following standards 

were added:  

10 μl of 2.5 mM U-13C15N-amino acids  

10 μl of 1 mg/mL 13C10 ATP  

10 μl of 1 mg/mL 13C1015N5 AMP 

10 μl of 1 mg/mL 15N5 ADP 

20 μl of 100 μg/mL citric acid D4 

 

Lipid extraction buffer  

50 mL MTBE  

20 μl of EquiSPLASH LIPIDOMIX  
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4.2.4.4 Oxygen consumption and extracellular acidification rate 

The Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) were 

measured using a Seahorse XFe96 Extracellular Flux Analyzer (Agilent). To maintain sample 

temperature during the assay, the Seahorse XFe96 analyzer was equilibrated overnight at 

37 °C. Next, the Seahorse XFe96 FluxPak cartridge was hydrated in Seahorse XF Calibrant 

solution, wrapped in plastic and incubated overnight in a 37 °C non-CO2 incubator. NIH-3T3 

cells were plated on XF96 well plates (Agilent) in standard culture medium. Two separate 

plates were used to perform analysis in normoxia (21% O2) and hypoxia (2% O2).  

 

The following day, cells were washed twice with assay medium (Seahorse XF DMEM medium 

(Agilent) supplemented with 10 mM glucose, 1 mM Sodium Pyruvate, 2 mM L-Glutamine and 

incubated for 1 h in a 37 °C non-CO2 incubator. The Seahorse Mito Fuel Flex Test Kit (Agilent) 

was used to measure metabolic pathway dependency. The test compounds BPTES (3.0 μM) 

Etomoxir (4.0 μM) and, UK5099 (2.0 μM) were diluted and loaded into the cartridge according 

to manufacturer’s instructions. Injection strategies, OCR and ECAR measurements were 

recorded using the manufacturer’s pre-programmed protocol. After the assay, protein 

concentration per well was quantified using the BCA Protein Assay Kit (Thermo Scientific) 

and subsequently used to normalize OCR and ECAR measurements. Seahorse data were 

collected using Wave Controller 2.6 (Agilent) and analyzed using GraphPad Prism (version 

9.5.1).  

 

4.2.5 Proteomics  

4.2.5.1 Protein and peptide sample preparation  

Protein pellets were obtained from samples prepared for metabolomics studies as described 

in 4.2.4.1. Pellets were resuspended in Guanidium chloride (GuHCl) lysis buffer and heated 

at 95°C for 10 min. Then, the lysate was sonicated using a Bioruptor sonicator (Diagenode) 

(10 cycles, 30s sonication, 30s break, high performance mode). The lysate was centrifuged 

at 20,000xg for 20 min. The supernatant was kept, and 2 µl were used for 1:10 dilution in 

20mM Tris. Protein concentration of the diluted supernatant was assessed with Nanodrop. 

Then, 300 µg of non-diluted supernatant were diluted 1:10 in 20mM Tris and digested with 

Trypsin-Gold (Promega) using a 1:200 dilution. Trypsin digestion was performed overnight at 

37 °C. On the following day, trypsin digestion was stopped using 1% formic acid (Thermo 

Fisher Scientific). Peptides were centrifuged at 20,000xg for 10 min, and cleaned with 
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custom-packed C18-SD STAGE tips (Rappsilber et al., 2003). Peptides were further 

processed at the Proteomics Core Facility of MPI AGE by Xinping Li and Illian Atanassov.  

 

 

Guanidium chloride (GuHCl) lysis buffer  

6M GuHCl 

2.5mM TCEP 

10mM CAA  

100mM Tris-HCl 

 

4.2.5.2 TMT labeling, Mass Spectrometry (MS) and analysis   

 

The procedure described this section was performed at the Proteomics Core Facility of the 

Max Planck Institute for Biology of Ageing, particularly by Dr. Xinping Li and Dr. Ilian 

Atanassov. 

 

Four micrograms of desalted peptides were labeled with tandem mass tags (TMT10plex, 

Thermo Fisher) using a 1:20 ratio of peptides to TMT reagent. TMT labeling was carried out 

according to manufacturer's instruction with the following changes: dried peptides were 

reconstituted in 9μL 0.1M TEAB to which 7μL TMT reagent in acetonitrile (ACN) was added 

to a final ACN concentration of 43.75%, after 60 min of incubation at room temperature the 

reaction was quenched with 2μL 5% hydroxylamine. Labeled peptides were pooled, dried, 

resuspended in 0.1% formic acid (FA), split into two samples, and desalted using home-made 

C18 STAGE tips (Rappsilber et al., 2003).  

 

One of the two samples was fractionated on a 150mm, 300μm, 2μm C18, AcclaimPepMap 

(Thermo Fisher) column using a Ultimate3000 (Thermo Fisher). The column was maintained 

at 30°C. Buffer A was 5% acetonitrile 0.01M ammonium bicarbonate, buffer B was 80% 

acetonitrile 0.01M ammonium bicarbonate. Separation was performed using a segmented 

gradient from 1% to 50% buffer B, for 90min and 50% to 95% for 20 min with a flow of 

4μL/min. Fractions were collected every 150 sec and combined into nine fractions by pooling 

every ninth fraction. Pooled fractions were dried in Concentrator plus (Eppendorf), 

resuspended in 2μL 0.1% FA for mass spectrometric analysis. Peptides were separated on 
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a 50cm, 75μm Acclaim PepMap column (Thermo Fisher) using a 120min linear, 6% to 31% 

buffer B; buffer A was 0.1% FA, buffer B was 0.1% FA, 80% ACN. The column was 

maintained at 50°C. Eluting peptides were analyzed on an Orbitrap Lumos Tribrid mass 

spectrometer (Thermo Fisher). Synchronous precursor selection based MS3 was used for 

TMT reporter ion signal measurements. Proteomics data was analysed using MaxQuant 

version 1.5.2.8 (Cox & Mann, 2008). Differential expression analysis was performed using 

limma in R (Ritchie et al., 2015). 

 

4.2.6 Imaging  

4.2.6.1 Histone PTMs immunofluorescence staining  

Cells were seeded in 8-well chamber slides (Ibidi) following the experimental treatment 

indicated accordingly. Upon treatment completion, cells were fixed in pre-warmed (37°C) 

fixation buffer for 15 min on a rocking platform. Unless otherwise stated, all imaging 

preparation steps were performed on a rocking platform. Cells were washed 1x in PBS for 5 

min, at room temperature. Then, cells were permeabilized with 0.1% Triton X-100 diluted in 

PBS for 5 min. Cells were blocked using 5% BSA diluted in 0.1% Triton X-100 diluted in PBS 

for 45 min at RT. Cells were then incubated with the indicated primary antibodies (Table 3) 

diluted 1:100 in blocking buffer.  Primary antibody incubation was performed overnight at 4°C. 

Cells were washed 3x in PBS for 5 min at RT. Cells were then incubated with the 

corresponding fluorescent secondary antibodies diluted 1:500 in blocking buffer.  Secondary 

antibody incubation was performed for 1 h at RT protected from light. The subsequent steps 

were performed protected from light. Cells were washed 2x with PBS for 5 min. DAPI staining 

was performed using a 1:1000 dilution in methanol for 5 min. Cells were washed 2x with PBS 

for 5 min. Then, immersion oil (Ibidi) was added to the slides. Cells were stored at 4°C until 

imaging.  

 

Fixation buffer  

3.7% formaldehyde diluted in MEMα (Thermo Fisher Scientific) 

 

Blocking buffer 

1% BSA in PBS 
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4.2.6.2  Histone PTMs immunofluorescence microscopy 

Fluorescent images were obtained using laser scanning confocal microscopy (Leica TCS 

SP8 DLS), with the integrated Leica Application Suite software. Images were acquired at 

room temperature using the 63x glycerol immersion objective. Image acquisition was 

performed using the same settings in all experiments.   

 

4.2.6.3  Histone PTMs immunofluorescence analysis 

Images were analyzed using Fiji  (Schindelin et al., 2012). Quantification of fluorescent 

intensities was performed using background subtraction (rolling ball radius: 50) and noise 

despeckle. Imaging experiments were performed using n=3/4 biologically independent 

replicates, and 2 technical replicates including 180 cells per condition.  

 

4.2.7 Data and statistical analysis  

4.2.7.1 GO enrichment analysis  

Metascape was used for GO analysis (Zhou et al., 2019) using Mus musculus as input 

species.  

 

4.2.7.2 Semi-targeted liquid chromatography-high-resolution mass spectrometry-based (LC-

HRS-MS) analysis of amine-containing metabolites 

 

The procedure described this section was performed at the Metabolomics Core Facility of the 

Max Planck Institute for Biology of Ageing.  

 

The LC-HRMS analysis of amine-containing compounds was performed using an adapted 

benzoylchlorid-based derivatization method (Wong et al., 2016). In brief: The polar fraction 

of the metabolite extract was re-suspended in 200 µL of LC-MS-grade water (Optima-Grade, 

Thermo Fisher Scientific) and incubated at 4°C for 15 min on a thermomixer. The re-

suspended extract was centrifuged for 5 min at 16.000 x g at 4°C and 50 µL of the cleared 

supernatant were mixed with 25 µl of 100 mM sodium carbonate (Sigma), followed by the 

addition of 25 µl 2% [v/v] benzoylchloride (Sigma) in acetonitrile (Optima-Grade, Thermo 

Fisher Scientific). Samples were vortexed and kept at 20°C until analysis. After a 5 min 

centrifugation at 16.000 x g at 20°C, the cleared supernatant was transferred to glass 

autosampler vials with 300 µl glass inserts (Chromatography Accessories Trott, Germany). 
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For the LC-HRMS analysis, 1 µl of the derivatized sample was injected onto a 100 x 2.1 mm 

HSS T3 UPLC column (Waters) with 1.8 µm particle size. The flow rate was set to 400 µl/min 

using a binary buffer system consisting of buffer A (10 mM ammonium formate (Sigma), 

0.15% [v/v] formic acid (Sigma) in LC-MS-grade water (Optima-Grade, Thermo Fisher 

Scientific). Buffer B consisted solely of acetonitrile (Optima-grade, Thermo Fisher-Scientific). 

The column temperature was set to 40°C, while the LC gradient was: 0% B at 0 min, 0-15% 

B 0- 4.1min; 15-17% B 4.1 – 4.5 min; 17-55% B 4.5-11 min; 55-70% B 11 – 11.5 min, 70-

100% B 11.5 - 13 min; B 100% 13 - 14 min; 100-0% B 14 -14.1 min; 0% B 14.1-19 min; 0% 

B. The mass spectrometer (Q-Exactive Plus, Thermo Fisher Scientific) was operating in 

positive ionization mode recording the mass range m/z 100-1000. The heated ESI source 

settings of the mass spectrometer were: Spray voltage 3.5 kV, capillary temperature 300°C, 

sheath gas flow 60 AU, aux gas flow 20 AU at a temperature of 330°C and the sweep gas to 

2 AU. The RF-lens was set to a value of 60.  

 

Thermo raw data files were converted to mzXML files by MSConvert from Proteowizard 

(http://proteowizard.sourceforge.net) (Chambers et al., 2012). The semi-targeted LC-MS 

data analysis was performed using the El Maven software (Version v0.10.0, Elucidata) 

(Agrawal et al., 2019). Chromatographic peaks were automatically picked and matched to an 

In-House database (5 ppm, 0.2 min). The identity of each compound was in addition validated 

by authentic reference compounds, which were measured at the beginning and the end of 

the sequence. 

 

4.2.7.3 Targeted liquid chromatography triple quad mass spectrometry (LC-TQ-MS) analysis 

of fatty acyl Coenzyme A species (Acyl-CoAs) metabolites 

 

The procedure described this section was performed at the Metabolomics Core Facility of the 

Max Planck Institute for Biology of Ageing.  

 

The LC-TQ-MS analysis of Acyl-CoAs was performed using an adapted protocol based 

(Abrankó et al., 2018). In brief: The polar fraction of the metabolite extract was re-suspended 

in 50 µL of LC-MS-grade water (Optima-Grade, Thermo Fisher Scientific). After 15 min 

incubation on a thermomixer at 4°C and a 5 min centrifugation at 16.000 x g at 4°C, the 
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cleared supernatant was transferred to glass autosampler vials with 300 µl glass inserts 

(Chromatography Accessories Trott, Germany). 

 

For the LC-TQMS analysis, 4 µl of the sample was injected onto a 100 x 2.1 mm BEH Amide 

UPLC column (Waters) with 1.7 µm particle size. The flow rate was set to 450 µl/min using a 

quaternary buffer system consisting of buffer A 5 mM ammonium acetate (Sigma) in LC-MS-

grade water (Optima-Grade, Thermo Fisher Scientific). Buffer B consisted of 5 mM 

ammonium acetate (Sigma) in 95% acetonitrile (Optima-grade, Thermo Fisher-Scientific). 

Buffer C consisted of 0.1% phosphoric acid (85%, VWR) in 60% acetonitrile (acidic wash) 

and buffer D of 50% acetonitrile (neutral wash). The column temperature was set to 30°C, 

while the LC gradient was: 95-20% B 0- 7min; 100% C 7.1 – 17 min, 100% D 17.1 - 22 min; 

followed by re-equilibration 95% B 22.1 - 30 min. The mass spectrometer (TQs, Waters) was 

operating in positive ionization mode recording the mass transitions for Coenzyme A as 

quantifier was used 768 to 261 m/z; for Acetyl CoA as quantifier was used 810 to 303 m/z; 

for Butyryl-CoA as quantifier was used 838 to 428 m/z; for Malonyl-CoA as quantifier was 

used 854 to 303 m/z, for Succinyl-CoA as quantifier was used 868 to 428 m/z for 13C2-Acetyl 

CoA as quantifier was used 812 to 305 m/z; for 13C3-Malonyl-CoA as quantifier was used 857 

to 305 m/z. Identity of all Acyl-CoAs were validated by authentic reference compounds. The 

heated ESI source settings of the mass spectrometer were: Capillary voltage 1.5 kV, Source 

temperature 150°C, Desolvation temperature 500°C, Cone gas flow 150 L/HR, Desolvation 

gas flow 800 L/HR.  

 

Waters raw data files were converted to mzXML files by MSConvert from Proteowizard 

(http://proteowizard.sourceforge.net) (Chambers et al., 2012). The targeted LC-MS data 

analysis was performed using the El Maven software (Version v0.12.0, Elucidata (Agrawal et 

al., 2019). Chromatographic peaks were manually picked and matched to an In-House 

database. The identity of each compound was validated by authentic reference compounds. 

 

4.2.7.4 Anion-Exchange Chromatography Mass Spectrometry (AEX-MS) for the analysis of 

anionic metabolites  
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The procedure described this section was performed at the Metabolomics Core Facility of the 

Max Planck Institute for Biology of Ageing.  

 

Extracted metabolites were re-suspended in 200 µl of Optima UPLC/MS grade water (Thermo 

Fisher Scientific). After 15 min incubation on a thermomixer at 4°C and a 5 min centrifugation 

at 16.000 x g at 4°C, 100 µl of the cleared supernatant were transferred to polypropylene 

autosampler vials (Chromatography Accessories Trott, Germany). The samples were 

analysed using a Dionex ionchromatography system (Integrion, Thermo Fisher Scientific) as 

described previously (Schwaiger et al., 2017). . In brief, 5 µL of polar metabolite extract were 

injected in full loop mode using an overfill factor of 1, onto a Dionex IonPac AS11-HC column 

(2 mm × 250 mm, 4 μm particle size, Thermo Fisher Scientific) equipped with a Dionex IonPac 

AG11-HC guard column (2 mm × 50 mm, 4 μm, Thermo Fisher Scientific). The column 

temperature was held at 30°C, while the auto sampler was set to 6°C. A potassium hydroxide 

gradient was generated using a potassium hydroxide cartridge (Eluent Generator, Thermo 

Scientific), which was supplied with deionized water. The metabolite separation was carried 

at a flow rate of 380 µL/min, applying the following gradient conditions: 0-3 min, 10 mM KOH; 

3-12 min, 10−50 mM KOH; 12-19 min, 50-100 mM KOH, 19-21 min, 100 mM KOH, 21-22 

min, 100-10 mM KOH. The column was re-equilibrated at 10 mM for 8 min.  

 

For the analysis of metabolic pool sizes the eluting compounds were detected in negative ion 

mode using full scan measurements in the mass range m/z 50 – 750 on a Q-Exactive HF 

high resolution MS (Thermo Fisher Scientific). The heated electrospray ionization (ESI) 

source settings of the mass spectrometer were: Spray voltage 3.2 kV, capillary temperature 

was set to 275°C, sheath gas flow 70 AU, aux gas flow 15 AU at a temperature of 350°C and 

a sweep gas flow of 0 AU. The S-lens was set to a value of 50.  

 

Thermo raw data files were converted to mzXML files by MSConvert from Proteowizard 

(http://proteowizard.sourceforge.net) (Chambers et al., 2012). The semi-targeted LC-MS 

data analysis was performed using the El Maven software (Version v0.10.0, Elucidata) 

(Agrawal et al., 2019). Chromatographic peaks were automatically picked and matched to an 

In-House database (5 ppm, 0.2 min). The identity of each compound was in addition validated 

by authentic reference compounds, which were measured at the beginning and the end of 

the sequence. Isotopomer distribution was corrected for natural abundant isotopes with the 

IsoCorrectoR package in R (Heinrich et al., 2018).  
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4.2.7.5 Statistical analysis    

Statistical analysis was performed using GraphPad Prism (version 9.5.1). Figure legends 

indicate the statistical test used for the specified dataset, and obtained p values.  

 

 

5 RESULTS 
To address the interplay of metabolism and chromatin and to assess how differences in 

metabolite cycling directly impact chromatin modifications, we used alterations in oxygen 

tensions as a model. We shifted NIH-3T3 from normoxia (21% O2) to hypoxia (2% O2) for 24 

h. When cells are exposed to lower oxygen conditions, glucose metabolism is enhanced 

through a higher glucose uptake from the extracellular space and increased glycolytic rate, 

followed by the redirection of glucose-derived pyruvate towards lactate production instead of 

entrance into the tricarboxylic acid (TCA) cycle (Eales et al., 2016; Vander Heiden et al., 

2009). We first evaluated the formation kinetics of glucose-derived metabolites in the context 

of central carbon metabolism (CCM) using stable isotope tracing to determine metabolic 

pathway activity. We pulsed cells with uniformly labeled [13C6]-glucose as the sole source of 

glucose and harvested metabolites at 1 h after the switch to determine incorporation of the 

label (Zamboni et al., 2009) (Figure 6A). We aimed to reduce exogenous sources of glucose 

by adding dialyzed FBS to the media. Using liquid chromatography coupled with high-

resolution mass spectrometry (LC-HRMS), we measured the incorporation of 13C isotopes 

into CCM (Violante et al., 2019) (Figure 6B). We could measure a significant [13C6]-glucose 

uptake and 13C incorporation into downstream glycolytic intermediates (Figure 6C). At this 

time point, we noted a similar enrichment in hypoxia compared to normoxia. Consistent with 

these results, we found comparable enrichment in [13C3]-pyruvate and [13C3]-lactate for both 

oxygen conditions. In contrast, enrichment in [13C3]-serine and [13C3]-glycine decreased in 

hypoxia (Figure 6D). As a further evaluation of glucose metabolism, we monitored 13C 

incorporation into the pentose phosphate pathway (PPP) and observed similar kinetics in 

hypoxia compared to normoxia (Figure 6E). Together, these findings suggest that glycolytic 

intermediates and the PPP maintained their glucose-derived carbon flux after cells were 

exposed to hypoxia for 24h.    
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Next, we aimed to investigate whether glycolysis-derived [13C3]-pyruvate continued to supply 

the TCA cycle during hypoxia. In contrast to our observations for glycolysis and the PPP, 13C 

incorporation into TCA cycle intermediates (Figure 6F), and their derived amino acids (Figure 

6G) decreased. Collectively, our results indicate a reduced activity in the TCA cycle, 

confirming its dependence on oxygen concentration and confirming [13C2]-citrate as a critical 

reduction step of 13C incorporation in the transition from glycolysis to the TCA cycle.   
 

 
 
Figure 6. TCA cycle intermediates are downregulated in hypoxic-cultured cells.  

(A) Experimental design of [13C6]-glucose tracing assays in NIH-3T3 cells cultured in hypoxia (2% O2) for 24 h. 
Cells grown in normoxia (21% O2) were used as negative control. (B) Schematic depicting the 13C-labeling 
pattern derived from [13C6]-glucose metabolism in glycolysis, pentose phosphate pathway (PPP), and first-turn 
TCA cycle metabolites. Empty circles represent 12C-atoms, and filled circles represent 13C-atoms. Mass 
isotopomers are represented as m+. (C)13C-incorporation into glycolytic metabolites, (D) glycolysis-derived 
amino acids, (E) PPP metabolites, (F) TCA cycle metabolites and, (G) TCA cycle-derived amino acids. Data is 
represented as individual values ± S.E.M. Significance was defined as follows: n.s. (not shown abbreviation) > 
0.05; *p≤ 0.05; **p≤ 0.01; ***p≤ 0.001; and ****p ≤ 0.001, as assessed by multiple paired t-test.  Abbreviations: 
G6P – Glucose-6-phosphate, F6P – Fructose-6-phosphate, F(1,6)BP – Fructose-1,6-bisphosphate, G3P – 
Glyceraldehyde-3-phosphate, 3PG – 3-phosphoglycerate, Pyr – Pyruvate, Lac – Lactate, R5P -Ribose-5-
phosphate, S7P – Sedoheptulose-7-phosphate, αKG – alpha-ketoglutarate.  
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5.1 Levels of acetyl-CoA and histone acetylation increase in hypoxia  

Intracellular metabolite concentrations can regulate chromatin structure and function as some 

chromatin-modifying enzymes use metabolites as cofactors to establish a diverse set of 

histone post-translational modifications (PTMs) (Dai et al., 2020; Li et al., 2018). Histone 

acetylation is an abundant PTM that alters chromatin structure by neutralizing the positive 

charge of histone tails and destabilizing the physical contact between histones and DNA 

(Bannister & Kouzarides, 2011; Zhou et al., 2011). Therefore, histone acetylation increases 

chromatin accessibility and is fundamental for transcriptional activation and gene expression 

control.  

 

Acetyl-CoA is the acetyl donor used by histone acetyltransferases (HAT) to acetylate lysine 

residues on histones (Pietrocola et al., 2015; Sivanand et al., 2018). Nevertheless, a growing 

catalog of small acyl-CoAs with similar chemical properties to acetyl-CoA has been 

characterized as cofactors for newly discovered histone PTMs (i.e., butyrylation, 

malonylation, and succinylation) (Bannister & Kouzarides, 2011; Shvedunova & Akhtar, 

2022). Hence, we were prompted to characterize the metabolic pool size of small acyl-CoAs 

using targeted metabolite analysis. Since the metabolic pool size indicates the absolute or 

relative amount of a metabolite, it is independent and complementary to the information 

obtained from stable isotope tracing that measures metabolic turnover rates (Jang et al., 

2018). Therefore, for metabolic pool size quantification, isotope labeling is unnecessary. We 

thus extracted whole-cell level small intracellular acyl-CoAs from normoxia-cultured and 

hypoxia-cultured cells grown in standard media supplemented with non-dialyzed FBS. Next, 

we quantified small acyl-CoAs pool size using LC-MS. Acetyl-CoA levels increased during 

hypoxia, as opposed to the other acyl-CoAs, whose levels remained stable (Figure 7). We 

were surprised to find that acetyl-CoA levels increased since our findings on [13C6]-glucose 

tracing revealed lower labeling incorporation into citrate, a metabolite synthesized from 

acetyl-CoA and oxaloacetate in mitochondria. Acetyl-CoA is distributed into separate 

mitochondrial and nuclear-cytosolic pools that generate distinctive functional roles (Pietrocola 

et al., 2015; Sivanand et al., 2018). Since our data showed a higher acetyl-CoA pool size but 

a lower citrate synthesis, we hypothesized the metabolic fate of acetyl-CoA might enrich the 

nuclear-cytosolic pool and, potentially, influence histone acetylation.  
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Taken together, these data indicate a specific increase in whole-cell acetyl-CoA levels upon 

hypoxia, suggesting that the higher availability of this metabolite might impact histone 

acetylation in the nuclei.  

 

 

 

 
 

Figure 7. Acetyl-CoA is upregulated in hypoxia.   

Acyl-CoA compounds were quantified by liquid chromatography – mass spectrometry (LC-MS) from NIH-3T3 
cells cultured in normoxia (21% O2) and hypoxia (2% O2) for 24 h. Measurements correspond to MS peak area 
normalized to cell number. Data is represented as individual values ± S.E.M. Significance was defined as 
follows: n.s. (not shown abbreviation) > 0.05; and ****p ≤ 0.001, as assessed by multiple paired t-test. 
 

To gain insight into how hypoxia impacts histone PTMs, we first purified histones from NIH-

3T3 using acid extraction. We next evaluated the acetylation and methylation enrichment on 

global and particular lysine residues of histone H3 and histone H4 via immunoblotting (Figure 

8A). Interestingly, only H3K27ac was discernibly enriched in hypoxia-cultured cells. We 

confirmed H3K27ac enrichment by immunofluorescence (Figure 8B). Since H3K27ac is a 

histone PTM associated with active enhancers and promoters (Zhang et al., 2020), our 

results suggest that increased chromatin accessibility and potentially higher active 

transcription might play an important role in the adaptation to hypoxia.  
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Figure 8. H3K27ac levels are increased upon exposure to hypoxia.  

(A) Representative immunoblots for histone PTMs from NIH-3T3 cells cultured in normoxia (21% O2) and 
hypoxia (2% O2) for 24 h. (B) Representative immunofluorescence images and quantification of H3K27ac 
(yellow), H3 (magenta), and nuclear (DAPI, cyan) from normoxia-cultured and hypoxia-cultured NIH-3T3 cells. 
H3 was used as internal control for H3K27ac signal normalization. Data is represented as individual values ± 
S.E.M. Significance was defined as follows: ****p ≤ 0.001, as assessed by paired t-test. Scale bar 20 µm.  
 

 

5.2 Hypoxia remodels the proteome enhancing glycolysis and suppressing the TCA 
cycle  

Harvesting metabolites with a monophasic solvent system (acetonitrile:methanol:water) 

allowed us to separate proteins from cells incubated in uniformly labeled [13C6]-glucose 

(Prasannan et al., 2018). To assess quantitative changes in protein concentration during 

hypoxia, we then examined the extracted proteins by LC-MS using tandem mass tags (TMT). 

We identified 7573 proteins in total, with 819 proteins upregulated and 744 downregulated in 

hypoxia versus normoxia (Figure 9A). We then performed a gene ontology (GO) enrichment 

for biological processes (BP) to allocate functional categories to upregulated and 

downregulated proteins separately. Analysis of upregulated proteins revealed enrichment in 

proteins implicated in the generation of precursor metabolites, actin cytoskeleton 

organization, and glucose catabolic processes (Figure 9B). On the other hand, analysis of 

downregulated proteins showed enrichment of proteins involved in ribosome biogenesis, 

DNA metabolic process, and regulation of chromosome organization (Figure 9C).  

 

To further allocate hypoxia-responsive proteins to functional categories, we manually 

annotated CCM protein enrichment. We identified that the enrichment of glycolytic enzymes 
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was upregulated, as opposed to our observations on the TCA cycle that showed enzymatic 

downregulation (Figure 9D). In contrast, PPP enzymes showed comparable enrichment in 

hypoxia compared to normoxia. Since these data suggested a metabolic rewiring towards 

upregulation of glycolysis and downregulation of the TCA cycle, we reasoned that enzymes 

involved in pyruvate metabolism could play fundamental roles in the observed adaptation to 

hypoxia, as pyruvate directly connects glycolysis to the TCA cycle. To address this question, 

we analyzed the expression of enzymes related to downstream pathways of pyruvate 

metabolism, explicitly focusing on lactate and acetyl-CoA metabolism. Interestingly, LDHA, 

ACSS2, and PDHK1 were upregulated in hypoxia as detected by LC-MS (Figure 9E) and 

further confirmed by immunoblotting (Figure 9F).   
 

 
 
Figure 9. Hypoxia upregulates protein expression of enzymes related to glycolysis and acetyl-CoA 
metabolism. 

(A) Volcano plot of significantly enriched proteins in hypoxia detected by LC-MS. Differentially expressed 
proteins are colored red. (B) Gene Ontology (GO) term analysis for biological processes (BP) of upregulated 
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proteins, and (C) downregulated proteins. (D) Schematic of protein enrichment in CCM. Upregulated enzymes 
and downregulated enzymes are colored red and blue, respectively. Non-differentially enriched enzymes are 
colored grey. (E) Enrichment of enzymes related to downstream pathways of pyruvate metabolism and, (F) its 
representative immunoblotting. β-ACTIN is used as protein loading control.  
 

5.3 Hypoxia activates a glycolytic gene-expression program  

To comprehensively determine the molecular mechanisms involved in the hypoxia response, 

we sought to characterize the transcriptome using RNA-sequencing (RNA-seq). Surprisingly, 

we only found 146 differentially expressed genes, with 101 genes upregulated and 45 genes 

downregulated (Figure 10A). GO term analysis for BP of upregulated genes identified genes 

that play a role in glycolysis, protein hydroxylation, and cellular response to hypoxia as the 

most enriched BP (Figure 10B). Interestingly, BP involved in downstream pathways of 

glucose metabolism, such as PPP, fructose, and pyruvate metabolism, were also 

upregulated. Intriguingly, we detected no clear signature on transcriptome rewiring of TCA 

cycle genes. Given the relatively small number of downregulated genes, we further analyzed 

the upregulated transcriptomic dataset. We found that Pdk1 was one of the most responsive 

genes to hypoxia (Figure 10C), similarly to our previous observations on the proteome that 

also detected PDHK1 upregulation. Collectively, our data suggest a moderate transcriptomic 

response to hypoxia characterized by a substantial enhancement of glucose metabolism 

without a clear TCA cycle remodeling signature.   
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Figure 10. Hypoxia redirects the transcriptome towards glucose metabolism.  

(A) Volcano plot of significantly enriched genes in hypoxia (2% O2) vs normoxia (21% O2) Upregulated genes 
and downregulated genes are colored red and blue, respectively (padj< 0.05).  (B) Gene Ontology (GO) term 
analysis for biological processes (BP) of upregulated genes. (C) Enrichment of the most upregulated genes in 
hypoxia. logFC of hypoxia was adjusted to logFC in normoxia.  
 

5.4 PDHK1 deficiency maintains proliferation and mitochondrial respiration  

 PDHK1 is a protein kinase that inhibits the pyruvate dehydrogenase complex (PDC), the 

multienzyme complex that synthesizes acetyl-CoA from pyruvate in mitochondria (Figure 

11A) (Kantor et al., 2001; Rardin et al., 2009). Condensation of acetyl-CoA and oxaloacetate 

generates citrate and fuels the TCA cycle; thus, PDH inhibition by PDHK1 can decrease 

acetyl-CoA levels and diminish TCA cycle activity. Interestingly, our observations on PDHK1 

upregulation as part of the hypoxia response showed lower TCA cycle activity but higher 

levels of acetyl-CoA. Thus, we next aimed to dissect how PDHK1 might regulate acetyl-CoA 

synthesis in hypoxia. To test this, we depleted PDHK1 using stable lentiviral shRNA delivery 

in hypoxia-cultured NIH-3T3 cells (Figure 11B). Proliferation under PDHK1 depletion 

remained stable in KD cells compared to the control (Figure 11C).   
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Figure 11. Proliferation remains stable upon PDHK1 deficiency.  

(A) Schematic of PDHK1 function in mitochondria. (B) Representative immunoblots depicting the endogenous 
PDHK1 and β-ACTIN protein levels in hypoxia-cultured NIH-3T3 cells expressing short hairpin PDHK1 
(shPDHK1 and shPDHK1-2) and scramble RNA (shScramble). C) Proliferation curve of PDHK1-depleted cells 
and control cells cultured in hypoxia. Error bars represent mean ± S.E.M of three independent biological 
replicates (n=3) run in triplicates.  
 

Mitochondrial-derived acetyl-CoA is mainly synthesized from pyruvate, fatty acid (FA) 

oxidation and glutamine metabolism (Zhao et al., 2016). To characterize the activity of these 

pathways under PDHK1 depletion, we conducted Seahorse assays. For this, we inhibited 

each pathway separately using BPTES (inhibits glutamine to glutamate conversion), etomoxir 

(inhibits FA cytosolic-to-mitochondrial translocation), and UK5099 (inhibits pyruvate import 

into the mitochondria) (Figure 12A). Oxygen consumption rate (OCR) and extracellular 

acidification rate (ECAR) were measured to assess mitochondrial respiration and glycolytic 

activity, respectively.   

 

We first characterized basal respiration measuring OCR and ECAR values prior to inhibitor 

injection. While the OCR showed no difference between KD cells compared to the control 

(Figure S1A), we observed higher ECAR upon PDHK1-KD (Figure 12B), suggesting that 

PDHK1 depletion does not affect mitochondrial respiration but generates a glycolytic 

response in basal conditions.  

 

We next examined the metabolic activity of each pathway evaluating the OCR and ECAR 

profiles after pathway inhibition. We observed a moderately affected OCR in KD cells 

compared to the control (Fig S1B-D) and higher ECAR upon the inhibition of glutamine, lipid 

and glucose oxidation in mitochondria (Figure 12C-E). Since we observed similar ECAR 

values for the inhibitors evaluated, we hypothesize that the effect of PDHK1 depletion 
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generates an acute glycolytic response that does not depend on the oxidation of the 

evaluated metabolites under our specific testing conditions.  

 

Taken together, our data indicate that PDHK1 depletion has no significant impact on 

mitochondrial respiration when glutamine, lipid, or glucose oxidation is blocked. On the 

contrary, glycolytic activity increased robustly after the utilization of these metabolic sources 

was impaired. Therefore, given that glycolysis is restricted to the cytosol, we hypothesize 

PDHK1 depletion might exacerbate a cytosolic rather than mitochondrial response upon fuel 

oxidation blockage in mitochondria.   

 

Figure 12. Mitochondrial respiration remains constant upon PDHK1 deficiency.  
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(A) Schematic of the metabolic pathways and inhibitors used to identify metabolic dependency from Seahorse 
assays. Mitochondria is depicted in yellow. (B) Extracellular acidification rate (ECAR) measured in basal 
respiration, (C) glutaminolysis inhibition, (D) FAO inhibition, and (E) glucose oxidation inhibition from hypoxia-
cultured NIH-3T3 cells expressing short hairpin PDHK1 (shPDHK1 and shPDHK1-2) and scramble RNA 
(shScramble). Abbreviations: FAO – fatty acid oxidation. Data is represented as individual values ± S.E.M. 
Significance was defined as follows: *p≤ 0.05; **p≤ 0.01; and ***p≤ 0.001; ****p ≤ 0.001, as assessed by two-
way ANOVA.  
 

5.5 Glucose-derived TCA cycle and acetyl-CoA synthesis is restored upon PDHK1 
deficiency   

Next, we aimed to identify the predominant carbon sources contributing to the acetyl-CoA 

pool under PDHK1 depletion. Since glucose-derived acetyl-CoA synthesized within 

mitochondria is considered the predominant source of acetyl-CoA in mammalian cells 

(Pietrocola et al., 2015), we conducted stable isotope tracing using [13C6]-glucose in PDHK1-

KD cells cultured in hypoxia (2% O2) for 24 h.   

 

We found that [13C6]-glucose uptake and labeling into downstream glycolytic intermediates 

remained stable or showed minor changes upon PDHK1-KD as compared to control cells 

(Figure S2A). Glycolysis-derived amino acids showed scarce or undetectable labeling (Figure 

S2B). Since PDHK1 function is downstream of glycolysis, we reasoned that 13C incorporation 

into TCA cycle metabolites could be restored upon PDHK1 depletion. In accordance, labeling 

into most TCA cycle metabolites and derived amino acids was higher in KD cells compared 

to the control (Figure 13A,B). Similarly, flux into acetyl-CoA increased in PDHK1-depleted 

cells (Figure 13C).  Interestingly, the pool size of acetyl-CoA remained stable upon PDHK1-

KD (Figure 13D). We next tested whether PDHK1 depletion affected the pool size of other 

CoA compounds, and found no differences between KD and control cells (Figure S3A-C). 

Thus, our data indicate that under PDHK1 depletion, glucose-derived metabolism activates 

the TCA cycle and its contribution to acetyl-CoA synthesis leaving glycolytic activity and the 

acetyl-CoA pool size unchanged.  

 

 



 52 

 
Figure 13. PDHK1 deficiency increases glucose contribution towards TCA cycle and acetyl-CoA 
synthesis without altering acetyl-CoA pool size.   

(A) [13C6]-glucose-derived labeling in TCA cycle metabolites, (B) TCA cycle-derived amino acids, and C) acetyl-
CoA from hypoxia-cultured NIH-3T3 cells expressing short hairpin PDHK1 (shPDHK1 and shPDHK1-2) and 
scramble RNA (shScramble). D) Metabolic pool size of acetyl-CoA. Data is represented as individual values ± 
S.E.M. Significance was defined as follows: n.s. (not shown abbreviation) > 0.05; *p≤ 0.05; **p≤ 0.01; ***p≤ 
0.001; and ****p ≤ 0.001, as assessed by two-way ANOVA. Mass isotopomers represented are: Citrate (m+2), 
αKG (m+2), Succinate (m+2), Fumarate (m+2), Malate (m+2), Glutamate (m+2), Proline (m+2), Aspartate 
(m+2), Asparagine (m+2), acetyl-CoA (m+2). (A) Y-max = 0.5; (B) Y-max = 0.10; (C) Y-max = 1.0).  
 

Given that acetyl-CoA can be synthesized from diverse carbon sources other than glucose, 

we examined the contribution of other metabolites to the acetyl-CoA pool.  Since one of the 

hallmarks of the cellular response to hypoxia is the metabolic rewiring that promotes 
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glutamine metabolism within mitochondria, we performed metabolite tracing experiments 

using [13C5]-glutamine (Figure 14).  

 

 
 
 

Figure 14. Isotope tracing model of glutamine labeling into the TCA cycle.  

Schematic depicting the 13C-labeling pattern derived from [13C5]-glutamine metabolism in the TCA cycle. Empty 
circles represent 12C-atoms, and filled circles represent 13C-atoms. Black circles represent mass isotopomers 
produced by the glutamine – αKG axis. Brown circles represent mass isotopomers produced by oxidative 
metabolism and grey circles represent mass isotopomers produced by reductive metabolism. The 13C-labeling 
pattern represents one round of the TCA cycle.  
 

We first analyzed the 13C incorporation of [13C5]-glutamine into the glutamine - αKG axis, and 

observed a similar uptake in KD cells compared to the control (Figure 15). Interestingly, in 

the following enzymatic steps where glutamine is converted to glutamate and αKG, PDHK1-

depleted cells showed lower labeling compared to the control. As αKG represents the entry 

point of glutamine-derived metabolites into the TCA cycle, our results suggest that glutamine-

derived fueling into the TCA cycle diminishes upon PDHK1-KD. 
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Figure 15. PDHK1 deficiency decreases glutamine conversion into glutamate and αKG.  

[13C5]-glutamine-derived labeling in the glutamine - αKG axis from hypoxia-cultured NIH-3T3 cells expressing 
short hairpin PDHK1 (shPDHK1 and shPDHK1-2) and scramble RNA (shScramble). Data is represented as 
individual values ± S.E.M. Significance was defined as follows: n.s. (not shown abbreviation) > 0.05; *p≤ 0.05; 
and ****p ≤ 0.001, as assessed by two-way ANOVA. Mass isotopomers represented are: glutamine (m+5), 
glutamate (m+5), and αKG (m+5).  
 

αKG fuels the TCA cycle following oxidative glutaminolysis or reductive carboxylation (Sun & 

Denko, 2014). Since the predominance of either pathway has been shown to be context-

specific, we examined the labeling that occurred in both directions. Oxidative metabolism 

showed lower 13C incorporation into most metabolites and derived amino acids in KD cells 

compared to the control (Figure 16A,B). On the contrary, labeling into the reductive direction 

remained stable for most metabolites and amino acids upon PDHK1 depletion (Figure 

17A,B). Next, we analyzed the incorporation of glutamine-derived carbons into acetyl-CoA, 

and observed a lower contribution in PDHK1-depleted cells compared to the control (Figure 

17C). Hence, these data indicate that PDHK1 depletion rewires glutamine metabolism by 

decreasing the carbon supply of the oxidative pathway and acetyl-CoA synthesis, leaving 

reductive metabolism mostly unaffected.  
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Figure 16. Oxidative glutaminolysis is downregulated upon PDHK1 deficiency.  

(A) [13C5]-glutamine-derived labeling in the oxidative glutamine pathway of TCA cycle metabolites and, (B) TCA 
cycle-derived amino acids from hypoxia-cultured NIH-3T3 cells expressing short hairpin PDHK1 (shPDHK1 and 
shPDHK1-2) and scramble RNA (shScramble). Data is represented as individual values ± S.E.M. Significance 
was defined as follows: n.s. (not shown abbreviation) > 0.05; and ****p ≤ 0.001, as assessed by two-way 
ANOVA. Mass isotopomers represented are: succinate (m+4), fumarate (m+4), malate (m+4), citrate (m+4), 
cis-Aconitate (m+4), aspartic acid (m+4), asparagine (m+4).  
 

 



 56 

 
 

 
Figure 17. PDHK1 depletion has no impact on glutamine reductive carboxylation but downregulates 
glutamine contribution to acetyl-CoA synthesis. 

(A) [13C5]-glutamine-derived labeling in the reductive glutamine pathway of TCA cycle metabolites, (B) TCA 
cycle-derived amino acids, and (C) acetyl-CoA from hypoxia-cultured NIH-3T3 cells expressing short hairpin 
PDHK1 (shPDHK1 and shPDHK1-2) and scramble RNA (shScramble). Data is represented as individual values 
± S.E.M. Significance was defined as follows: n.s. (not shown abbreviation) > 0.05; **p≤ 0.01; and ****p ≤ 0.001, 
as assessed by two-way ANOVA.  Mass isotopomers represented are: cis-Aconitate (m+5), citrate (m+5), 
malate (m+3), fumarate (m+3), succinate (m+3), aspartate (m+3), asparagine (m+3), acetyl-CoA (m+2).  
 

5.6 PDHK1 depletion decreases H3K27ac levels  

Our observations on the metabolic profile of PDHK1-depleted cells indicated that rather than 

modifying the acetyl-CoA pool size, PDHK1 depletion increased the contribution of glucose 

as a carbon source for acetyl-CoA synthesis. To investigate whether this metabolic rewiring 

affected histone acetylation and transcriptional-related histone PTMs, we measured levels of 
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H3ac and H3K27ac by immunofluorescence (Figure 18A,B). Given that glucose is considered 

the main carbon source of acetyl-CoA, we hypothesized that H3ac and H3K27ac could be 

enriched upon PDHK1-KD in hypoxic conditions. Interestingly, levels of H3ac showed minor 

changes in KD cells compared to control, while H3K27ac enrichment decreased upon 

PDHK1-KD. Thus, our results suggest that under hypoxic conditions, PDHK1 KD impacts 

levels of H3K27ac rather than altering the global histone acetylation scale. Hence, PDHK1 

depletion might contribute to chromatin compaction and lower transcriptional activity as 

means of decreased H3K27ac enrichment. In addition, as we observed unchanged levels of 

H3ac but lower H3K27ac, we hypothesized the surplus of glucose-derived acetyl-CoA might 

be oriented towards mechanisms other than histone acetylation.  
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Figure 18. H3K27ac is downregulated in PDHK1-KD cells.  

(A) Representative immunofluorescence images and quantification of H3ac (yellow), and (B) H3K27ac (yellow), 
H3 (magenta), and nuclear (DAPI, cyan) from hypoxia-cultured NIH-3T3 cells expressing short hairpin PDHK1 
(shPDHK1 and shPDHK1-2) and scramble RNA (shScramble). H3 was used as internal control for H3ac and 
H3K27ac signal normalization. Data is represented as individual values ± S.E.M. Significance was defined as 
follows: n.s. (not shown abbreviation) > 0.05; *p≤ 0.05; ****p ≤ 0.001, as assessed by one-way ANOVA. Scale 
bar 20 µm.  
 

 

5.7 PDHK1 initiates a fatty-acid synthesis protein program facilitated by malonyl-
CoA pool size upregulation 

To identify pathways implicated in acetyl-CoA catabolism, we conducted whole-cell protein 

quantification in hypoxia-cultured PDHK1-KD cells. We identified 268 overlapping DE 

proteins between KD cells, with 155 proteins commonly upregulated and 113 downregulated 

compared to the control (Figure 19A). We then conducted a GO analysis on BP to the DE 

proteins, and found FA metabolism as highly enriched (Figure 19B). Acetyl-CoA is an 

essential intermediate for de novo FA synthesis (Batchuluun et al., 2022). Since de novo FA 

synthesis is a dynamic process that responds to metabolic demands and environmental cues 

(Batchuluun et al., 2022), we reasoned that acetyl-CoA might be redirected from histones 

towards FAs upon PDHK1 depletion in hypoxia.  
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Figure 19. PDHK1 depletion initiates a lipid-specific protein program and increases malonyl-CoA pool 
size.   

(A) Number of differentially expressed proteins (DEP) detected in PDHK1-depleted cells compared to control 
cells. (B) Gene Ontology (GO) term analysis for biological processes (BP) of differentially expressed (DE) 
proteins in PDHK1-depleted cells. (C) Schematic of the initial steps of de novo fatty-acid synthesis, and (D) 
representative immunoblotting of key enzymes. β-ACTIN is used as protein loading control. (E) Malonyl-CoA 
pool size quantification of hypoxia-cultured NIH-3T3 cells expressing short hairpin PDHK1 (shPDHK1 and 
shPDHK1-2) and scramble RNA (shScramble). Data is represented as individual values ± S.E.M. Significance 
was defined as follows: **p≤ 0.01; and ****p ≤ 0.001, as assessed by two-way ANOVA.  
 

5.8 Glucose contribution to lipid synthesis increases upon PDHK1 depletion  
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We next aimed to further investigate the hypothesis that PDHK1 depletion redistributes 

acetyl-CoA towards FA synthesis. Since the first committed step of lipogenesis involves the 

conversion of cytosolic acetyl-CoA to malonyl-CoA (Figure 19C), we evaluated levels of 

cytosolic acetyl-CoA and malonyl-CoA synthetases by immunoblotting (Figure 19D). 

Interestingly, we observed similar expression levels between KD cells and control. We next 

measured the metabolic pool size of malonyl-CoA (Figure 19E), and observed higher levels 

of malonyl-CoA in KD cells compared to the control. Thus, confirming our hypothesis of FA 

synthesis upregulation upon PDHK1 depletion in hypoxia.  

 

We then tested whether glucose was used to supply the observed lipogenesis. For this, we 

again used metabolic labeling with [13C6]-glucose in hypoxia-cultured KD cells. We harvested 

lipids at 8 h after the switch to tracer media, and observed that glucose contribution to PC 

(34:1), CoQ9, Sm (36:1), and TG (48:0) increased upon PDHK1 depletion compared to the 

control (Figure 20A,B). Thus, our data indicate that lipid biosynthesis is supported by glucose 

upon PDHK1 depletion in hypoxia.   
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Figure 20. Glucose contribution to lipid synthesis increases upon PDHK1 depletion.   

A) [13C6]-glucose-derived labeling in PC, and (B) representative lipid species compounds from hypoxia-cultured 
NIH-3T3 cells expressing short hairpin PDHK1 (shPDHK1 and shPDHK1-2) and scramble RNA (shScramble). 
Data is represented as individual values ± S.E.M. Significance was defined as follows: n.s. (not shown 
abbreviation) > 0.05; *p≤ 0.05; ***p≤ 0.001; and ****p ≤ 0.001, as assessed by two-way ANOVA. (A) Y-max = 
3x108; (B) Y-max = 5x106.  
 

Given that FAs can also be synthesized from pathways related to amino acid metabolism, we 

examined glutamine contribution to lipogenesis using [13C5]-glutamine. In contrast to our 

observations on glucose carbon supply, we observed minor differences for most lipids 

species between KD and control cells (Figure 21A,B). Only glutamine flux into CoQ9 

decreased upon PDHK1 depletion. Thus, our results showed that glutamine contribution to 

FA synthesis remained stable upon PDHK1-KD.  
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Figure 21. Glutamine contribution to lipid synthesis remains constant upon PDHK1 deficiency.  

A) [13C5]-glutamine-derived labeling in PC, and (B) representative lipid species compounds from hypoxia-
cultured NIH-3T3 cells expressing short hairpin PDHK1 (shPDHK1 and shPDHK1-2) and scramble RNA 
(shScramble). Data is represented as individual values ± S.E.M. Significance was defined as follows: n.s. (not 
shown abbreviation) > 0.05; *p≤ 0.05; **p≤ 0.01, as assessed by two-way ANOVA. (A) Y-max = 1.5x108; (B) Y-
max = 5x106.  
 

5.9 ACC1 inhibition restores H3K27ac levels upon PDHK1 deficiency  

We further investigated the molecular mechanisms that might account for PDHK1-dependent 

acetyl-CoA redistribution from histone acetylation towards FA synthesis. For this, we inhibited 

FA synthesis treating hypoxia-cultured KD cells with CP-640186 hydrochloride for 48 h 

(Harwood et al., 2003).  This pharmacological compound inhibits ACC1 and ACC2, the key 

enzymes that initiate FA synthesis by generating malonyl-CoA from acetyl-CoA (Figure 22A) 

(Harwood et al., 2003; Wang et al., 2022). We first characterized the expression of the active, 

non-phosphorylated, form of ACC1 (Brownsey et al., 2006; Harwood et al., 2003), and noted 

the CP-treatment selectively increased levels of ACC1 upon PDHK1 depletion (Figure 22B). 
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We then evaluated levels of phosphorylated (Ser79) ACC1, the inactive form of the enzyme, 

by immunoblotting (Figure 22B) (Brownsey et al., 2006; Fullerton et al., 2013). Interestingly, 

we observed the CP-treatment had no impact on phosphorylated ACC1 (P-ACC1) in KD cells 

compared to control. Taken together, our data suggest that ACC1 inhibition might elicit a 

positive-feedback loop on ACC1 expression to further upregulate FA synthesis upon PDHK1 

depletion.   

 

 
 
Figure 22. ACC1 inhibition restores H3K27ac levels in PDHK1-KD cells.  

(A) Schematic of ACCs inhibition by CP-640186.  (B) Representative immunoblots depicting the endogenous 
phospho-ACC1 (P-ACC1), ACC1 and α-Vinculin protein levels in hypoxia-cultured NIH-3T3 cells expressing 
short hairpin PDHK1 (shPDHK1 and shPDHK1-2) and scramble RNA (shScramble). (C) Representative 
immunofluorescence images and quantification of H3ac (yellow), and (D) H3K27ac (yellow), H3 (magenta), and 
nuclear (DAPI, cyan) from CP-treated hypoxia-cultured NIH-3T3 cells expressing short hairpin PDHK1 
(shPDHK1 and shPDHK1-2) and scramble RNA (shScramble). H3 was used as internal control for H3ac and 
H3K27ac signal normalization. DMSO-cultured cells were used as treatment control. Data is represented as 
individual values ± S.E.M. Significance was defined as follows: n.s. (not shown abbreviation) > 0.05, and ****p 
≤ 0.001, as assessed by one-way ANOVA. Scale bar 20 µm.  
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To finally test whether FA synthesis and histone acetylation compete for the nuclear-cytosolic 

acetyl-CoA pool in a PDHK1-dependent manner in hypoxia, we measured H3ac and 

H3K27ac enrichment in CP-treated cells (Figure 22C,D). On the one hand, we observed the 

CP-treatment had no impact on H3ac levels in comparison with our control treatment. On the 

other hand, we found that CP-640186 supplementation increased H3K27ac enrichment in 

shPDHK1-1 cells compared to the control treatment. Thus, H3K27ac levels are reconstituted 

upon FA synthesis inhibition in PDHK1 depleted cells, further confirming the role of PDHK1 

in acetyl-CoA usage redistribution from histone acetylation to FAs.   

 

Although several studies had shown that FAs can become the major acetyl-CoA depot over 

histone acetylation, little was known about the role of PDHK1 within this mechanism. Thus, 

our data provided one of the first lines of evidence that PDHK1 depletion elicits a redistribution 

response of acetyl-CoA from histone acetylation towards FA synthesis in hypoxia  (Figure 

23A,B).   

 

 
 
Figure 23. Model for PDHK1-dependent distribution of acetyl-CoA between FAs and H3K27ac  

(A) In hypoxia, PDHK1 upregulation inhibits PDH function, thereby hindering pyruvate-derived acetyl-CoA 
synthesis in mitochondria. In this context, H3K27ac is upregulated and fatty-acid synthesis remains unaffected. 
(B) In hypoxia, PDHK1 depletion permits PDH function, thereby facilitating pyruvate-derived acetyl-CoA 
synthesis in mitochondria. Upon PDHK1 deficiency, H3K27ac levels are downregulated while fatty-acid 
synthesis increased.  
 

To assess whether PDHK1 depletion exerted a transcriptomic response, we performed RNA-

sequencing in hypoxia-cultured KD cells. Interestingly, we observed a mild transcriptomic 

response characterized by having a reduced number of  upregulated and downregulated 
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genes (Figure S4). No statistical test nor functional allocation analysis was performed on this 

small dataset. Thus, our data suggest the transcriptome remained stable upon PDHK1 

depletion in hypoxia.   

 

5.10 PDH subcellular location remains stable upon PDHK1 depletion  

Recent studies have shown that the PDH complex can be translocated from mitochondria to 

the nucleus, where acetyl-CoA can be directly synthesized from pyruvate (Sutendra et al., 

2014). Since this pathway provides a new route for nuclear acetyl-CoA synthesis that can 

impact the nuclear-cytosolic acetyl-CoA pool size, we next tested whether PDHK1 depletion 

impact PDH subcellular location in hypoxia (Figure 24A). We first evaluated active PDH 

(PDH) expression and noted its presence only in the cytosolic fraction, with similar levels 

between KD and control cells. Next, we assessed the levels of phosphorylated PDH (P-PDH), 

the inactive form of PDH. We hypothesized that P-PDH expression would decrease upon 

PDHK1 depletion. However, our results showed that mitochondrial P-PDH remains stable in 

KD cells compared to control. Interestingly, we observed that cytosolic P-PDH is upregulated 

in PDHK1-depleted cells.  

 

Taken together, our data indicate that in hypoxia, PDHK1 depletion impacts cytosolic PDH’s 

function rather than altering its mitochondrial/cytosolic subcellular location. First, in our 

model, PDH was mainly cytosolic and not mitochondrial for KD and control cells.  Given that 

cytosolic PDH remained stable upon PDHK1 depletion, we consider that PDHK1 KD did not 

alter PDH’s subcellular location. Second, P-PDH was detected in the mitochondria and 

cytosol of KD and control cells (Figure 24B).  However, in contrast to our hypothesis, PDHK1-

KD did not alter P-PDH enrichment in mitochondria but in the cytosol. Thus, PDHK1-KD in 

hypoxia upregulates the inhibition of cytosolic PDH. Different compensatory mechanisms 

might be accountable for these observations and should be further tested. For instance, 

functional assays of the other pyruvate dehydrogenase kinases (PDHK2-4) or phosphatases 

(PDP1-2). Furthermore, since we used a KD rather than a knockout (KO) approach, non-

silenced PDHK1 mRNA might still be functional and phosphorylate PDH. Thus, using a 

PDHK1 KO would contribute to examine further the impact of PDHK1 absence in PDH 

subcellular location and functional status. 

 



 66 

 

 
Figure 24. PDH subcellular location remains constant in PDHK1-KD cells.  

(A) Representative immunoblots depicting the endogenous phospho-PDH (P-PDH), PDH, PDHK1, Tomm20 
and, α-Tubulin from subcellular fractions of hypoxia-cultured NIH-3T3 cells expressing short hairpin PDHK1 
(shPDHK1 and shPDHK1-2) and scramble RNA (shScramble).  (B) Schematic of P-PDH location in 
mitochondrial and cytosolic fractions of control (purple) and KD cells (green).  
 

6 DISCUSSION 
 
The coordination of chromatin and metabolism plays a central role in cellular homeostasis 

and the adaptative response to the environment (Lee et al., 2014; Peng et al., 2016). Here 

we study how hypoxia impact the interplay between chromatin modifications and intracellular 

metabolite cycling. Using a multi-omics approach, we found that deficiency of the HIF1α-

target PDHK1 - a well-known inhibitor of acetyl-CoA synthesis in mitochondria - rewires use 

of glucose-derived acetyl-CoA to enhance FA synthesis and diminish histone acetylation. This 

occurs via a coordinated lipid-specific proteomic response deprived of a transcriptomic 

signature. Taken together, our data identify a new role for PDHK1 in the regulation of acetyl-

CoA metabolism and provides further evidence for a close link between histone acetylation 

and lipid biogenesis.   

 

The development of this research project was conducted in two successive phases that will 

be discussed accordingly. First, we performed a comprehensive screening of the cellular 

response to hypoxia that allowed us to understand the impact of low oxygen conditions at 

metabolic, proteomic, and transcriptomic level in our model and culture conditions. This 

screening allowed us to observe an unexpected response related to acetyl-CoA metabolism 

and identify PDHK1 as a potential candidate accountable for this shift. As a result, in the 

second phase of the project, we analyzed the hypoxia response in the absence of PDHK1, 

focusing on acetyl-CoA metabolism and its connection to downstream processes.  
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Characterizing the cellular response to hypoxia using an “omics” approach to identify 
a metabolic signature and chromatin response. 
 

Several studies have reported the impact of hypoxia in cellular metabolism (Batie et al., 2019; 

Dengler et al., 2014; Sun & Denko, 2014; Wheaton & Chandel, 2011). With key molecular 

players of the hypoxia response being continuously identified, the general model of hypoxia 

metabolism has been vastly refined. Nevertheless, these new findings have also showed the 

flexibility in the hypoxia response and have opened new perspectives on how metabolic 

pathways adjust their activities to low oxygen conditions (Kocianova et al., 2022; Vaupel & 

Multhoff, 2021). For example, the canonical response to hypoxia described as the “Warburg 

effect”, characterized by aerobic glycolysis activation and TCA cycle downregulation, was 

considered the signature of the adaptation to acute hypoxia (Vander Heiden et al., 2009). 

However, our isotope tracing data showed a stable glycolysis and lower TCA cycle activity 

after 24 h exposure to hypoxic conditions. Thus, our results support the idea that aerobic 

glycolysis activation and TCA cycle downregulation can function as uncoupled mechanisms 

that respond to hypoxic conditions at a different pace.  

 

A reduced TCA cycle activity is normally associated with decreased levels of acetyl-CoA. 

However, our data identify lower synthesis of glucose-derived citrate and a higher acetyl-CoA 

pool size. Different mechanisms associated with acetyl-CoA synthesis could explain these 

intriguing results. If we consider previous studies on ACLY and ACCS2 expression 

modulation (Zhao et al., 2016), where the genetic deletion of ACLY elicits the upregulation 

and enzymatic activity of ACSS2, a plausible explanation for our contradicting observations 

of low citrate but high acetyl-CoA would be ACLY upregulation. Nevertheless, our results 

showed no impact on ACLY expression upon exposure to hypoxia. Therefore, another 

possible explanation pointed towards upregulation of mitochondrial acetyl-CoA metabolism. 

However, we found stable levels of PDH and upregulated expression of its inhibitor PDHK1. 

The absence of changes in the expression of the canonical acetyl-CoA synthetases in our 

observations suggests that other processes could be involved and remained to be elucidated.   

 

Levels of acetyl-CoA are intricately associated with histone acetylation (Dai et al., 2020). 

Although the metabolic pathways for acetyl-CoA synthesis and downstream processes are 

diverse (Pietrocola et al., 2015), several studies have shown that levels of acetyl-CoA and 
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histone acetylation are reciprocal (Cai et al., 2011; Lee et al., 2014). However, emerging 

evidence suggest otherwise and highlights the impact of downstream acetyl-CoA metabolism 

(i.e., intracellular transport) in histone acetylation levels (Izzo et al., 2023; Pouikli et al., 2021).  

For instance, a decline in acetyl-CoA synthesis have been reported to do not impact global 

histone acetylation in a model of ACLY deficiency (Zhao et al., 2016). Also, an impaired export 

of citrate from mitochondria to the cytosol caused histone hypoacetylation in a murine 

mesenchymal stem cell model (Pouikli et al., 2021).  Our data shows that hypoxia increases 

levels of acetyl-CoA and H3K27ac. Thus, in our system and culture conditions acetyl-CoA 

and H3K27ac respond as coupled mechanisms. Investigating the effect of hypoxia in a larger 

number of histone acetylation PTMs would contribute to further understand the link between 

acetyl-CoA and histone acetylation levels.  

 

Overall, the multi-omics data presented here suggest a differential adaptive response to 

hypoxia at metabolic, proteomic and transcriptome level (Figure 25). On the one hand, the 

metabolome remained mostly stable and showed most differences in TCA cycle 

downregulation. The proteome indicated a more comprehensive rewiring characterized by a 

higher expression of glycolytic-enzymes and lower expression of the TCA-cycle ones. On the 

other hand, the transcriptome revealed an unexpectedly mild response to hypoxia with a clear 

reconfiguration towards aerobic glycolysis upregulation and no TCA cycle remodeling 

signature. Considering that we only observed the canonical “Warburg effect” features at 

proteomic level, suggests that hypoxia impact these regulatory layers differently, and open 

new possibilities to identify more than one hypoxic phenotype  (Kocianova et al., 2022; 

Vaupel & Multhoff, 2021). Investigating the mechanisms behind those regulatory differences 

and asking how can they be interconnected using different cell lines, organismal models and 

oxygen concentrations would contribute to further elucidate the diversity in the hypoxia 

response.    
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Figure 25. Cellular regulatory layers show a differential response to hypoxia.  

(A) Schematic representation of the hypoxia response detected at metabolic, (B) proteomic, and (C) 
transcriptomic level. Upregulated and downregulated metabolites are colored red and blue, respectively. 

Metabolites with no change in hypoxia are colored black.  

 

Investigating the hypoxic cellular response upon PDHK1 depletion as a potential link 
of chromatin and metabolism.   
 
Regulation of the metabolic transition from glycolysis to the TCA cycle has been reported to 

determine physiological processes involved in cancer metabolism and cellular differentiation 

(Kishnani & Chen, 2013). In line with these findings, we observed the larger remodeling 

signatures of the hypoxia response corresponded to the glycolysis-to-TCA cycle axis, and 

were associated to a concomitant upregulation of acetyl-CoA and histone acetylation. Our 

data also revealed the upregulation of PDHK1, a highly recognized HIF1α-target that hinders 

acetyl-CoA synthesis in mitochondria. Although PDHK1 upregulation is part of the canonical 

hypoxic response model (Kaluz et al., 2008; Kim et al., 2006; Wenger et al., 2005)., we tested 

the possibility that PDHK1 might be mediating the interplay between acetyl-CoA and histone 

acetylation levels. Could PDHK1 have a role integrating chromatin and metabolism?   

 

PDHK1 depletion using chemical inhibition has been reported to decrease cell survival in 

normal and cancer cell line models due to a remarkable loss on mitochondrial membrane 

polarization (Chatterjee et al., 2019). In contrast to these findings, our data suggest no effect 

on cellular proliferation upon lentiviral PDHK1 depletion, and no significant impact on 

mitochondrial metabolism that would point towards a membrane depolarization process. 

These contrasting results indicate that more work is needed to further understand the effects 

of PDHK1 depletion on cellular physiology. Furthermore, acknowledging the potential off-

target effects of different inhibitory techniques would contribute to restrain technical artifacts 

from the analysis and delineate the underlying biological mechanisms.  

 

Prior studies have shown that changes in metabolic phenotypes can derive from a rewiring 

of the contribution of the precursor metabolites that fuel a metabolite pool rather than a 

change in the metabolic pool size (Forny et al., 2023). Indeed, our findings show no change 

in acetyl-CoA pool size but a rewiring of its precursor metabolites instead. Using isotope 
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tracing, we observed that glucose contribution to the acetyl-CoA pool increases in the 

absence of PDHK1 whereas glutamine-carbon supply shortens under these conditions. Our 

data highlight the role of metabolic supply reprogramming as part of the functional metabolic 

adaptations that shape the hypoxia response in the absence of PDHK1. Future studies will 

contribute to elucidate the impact of metabolic supply reprogramming for multiple metabolic 

phenotypes.  

 

Acetyl-CoA is a metabolic hub that connects multiple pathways and contributes to chromatin 

regulation through histone acetylation (Martínez-Reyes & Chandel, 2018; Takahashi et al., 

2006; Wellen et al., 2009). Interestingly, when we measured the impact of PHDK1 depletion 

on this histone PTM, we observed a differential response at global and local scales since 

H3ac remains constant while H3K27ac decreases. The loss on H3K27ac represents a 

specific response on chromatin derived from PDHK1 depletion. Investigating whether 

H3K27ac location within chromatin is also rearranged in the absence of PDHK1 would 

contribute to further dissect the direct effect of this genetic depletion.  

 

An observation that we found challenging to reconcile is the increase in glucose-derived 

acetyl-CoA and the coincident H3K27ac downregulation. Which pathways could be using the 

higher glucose-derived acetyl-CoA? Some of the most recognized vias for acetyl-CoA 

catabolism involve processes related to non-histone protein acetylation, fatty-acid synthesis, 

and the mevalonate pathway (Guertin & Wellen, 2023). The relative importance of each of 

these pathways is dynamic as it usually responds to context-specific cellular requirements. 

Our results pointed towards the initiation of a fatty-acid synthesis program, since we observe 

a higher malonyl-CoA pool size and a clear proteomic response into that direction. In line with 

this idea, our lipidomic analysis using isotope tracing showed a higher contribution of glucose 

toward newly synthesized fatty-acids.   

 

These results suggest PDHK1 depletion changes the balance of acetyl-CoA usage to 

enhance fatty-acid synthesis and inhibit H3K27ac. These findings would support the idea that 

fatty-acids and histone acetylation compete for the same acetyl-CoA pool (Galdieri & 

Vancura, 2012). Prior findings have reported this metabolic crosstalk; however,  an active 

role for PDHK1 within this balance mechanism was scarcely explored. We found that levels 

of H3K27ac were partially restored upon ACC1 inhibition, demonstrating a PDHK1-

dependent modulation of acetyl-CoA distribution between fatty-acids and H3K27ac. Testing 
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this mechanism using a higher concentration (20 µM) of CP-640186 would help to exacerbate 

the fatty-acid and histone acetylation imbalance and definitively determine PDHK1 role within 

it.  

 

In sum, our data reveals PDHK1 as a modulator of chromatin and metabolism in hypoxia. In 

specific, our work supports a model where PDHK1 depletion redistributes glucose-derived 

acetyl-CoA use from H3K27ac to fatty-acid synthesis. Future studies would further dissect 

the impact of PDHK1 depletion in hypoxia and would contribute to refine our understanding 

on the dynamic interplay between chromatin and metabolism.   

7 CONCLUSION AND PERSPECTIVES  
 
Dissecting the activity of individual metabolic pathways is essential to characterize the 

metabolic phenotypes of healthy and disease states. However, this is a technically 

challenging endeavor due to the subcellular compartmentalization of diverse metabolites, 

their differential abundance in whole-cell or compartmentalized extracts, and their distinct 

stability upon extraction (Andresen et al., 2022; Lee et al., 2019).  

 

Studying acetyl-CoA metabolism using a subcellular compartment resolution permits the 

estimation of the mitochondrial and nuclear-cytosolic pool sizes or pathways activities 

accountable as separate entities (Trefely et al., 2022). Nowadays, the most common 

approaches to dissect metabolic pathway activity in general and acetyl-CoA metabolism in 

particular, rely on stable isotope labeling to perform metabolic flux measurements (Zamboni 

et al., 2009; Zamboni et al., 2015). The flux analysis's power is enhanced by continuously 

optimized techniques that allow a fast metabolic quenching at the subcellular compartment 

level and the subsequent separation of the targeted organelles (Chen et al., 2017; Dietz, 

2017; Lee et al., 2019). Although these approaches have been at the forefront of metabolic 

studies, new techniques have emerged aiming to diminish the challenges imposed by current 

subcellular fractionation techniques (e.g., fraction purity, inter-organellar metabolic leakage) 

(Trefely et al., 2022). One of the most remarkable approaches is named SILEC-SF, a labeling 

method that cultures mammalian cells using the stable isotope of 15N113C3 -pantothenate, the 

precursor of CoA, to generate endogenous internal standards of acyl-CoA compounds 

(Trefely et al., 2022). SILEC cells are generated to match an experimental cell line (e.g., 

SILEC-NIH-3T3 and NIH-3T3) that will share similar experimental conditions (Trefely et al., 
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2022). Once the experiment is completed, SILEC cells and experimental cells are mixed, 

forming a solution that is subsequently lysed, fractionated, and analyzed by LC-MS (Trefely 

et al., 2022). While this approach is financial and time-consuming regarding the generation 

of the SILEC cells and continuous comparison with the experimental cell line, to whom SILEC 

cells should match the most, it is particularly useful for in vitro studies focused on acyl-CoA 

metabolism (Trefely et al., 2022). Further investigation implementing SILEC-SF would 

contribute to refine our understanding of the metabolic rewiring of acyl-CoAs at subcellular 

compartment level.  

 

The stability of short acyl-CoAs compounds (e.g., acetyl-CoA and malonyl-CoA) in solution 

is a considerable restriction that hinders its accurate identification and quantification by LC-

MS (Liu et al., 2015; Tan et al., 2023). In addition, the differential abundance of acetyl-CoA 

and malonyl-CoA impedes their extraction from the same sample source. For instance, the 

samples prepared for the metabolic measurements of this thesis required an extra set 

whenever malonyl-CoA aimed was measured, which means that several preparation steps 

had to be included to quantify this metabolite. Recent studies have aimed to decrease these 

technical disadvantages by adding stabilizing compounds (e.g., butylated hydroxytoluene, 

caffeine) to the extraction solvent (Tan et al., 2023) or using different chromatography 

techniques (e.g., reversed-phase chromatography) that allow the simultaneous detection of 

multiple acyl-CoAs (Yang et al., 2017). Testing these innovative approaches would facilitate 

the high-throughput extraction of metabolites, reduce compound degradation, and improve 

data analysis and interpretation.    

 

Assessing chromatin accessibility is essential to identify differentially regulated chromatin 

regions and characterize their associated transcriptional products  (Henikoff et al., 2020). 

Many techniques are currently available for different experimental conditions, sample 

availability, and financial situations (Kaya-Okur et al., 2019). For instance, ChIP-seq and 

CUT&Tag methods target protein-chromatin associations (Kaya-Okur et al., 2019). However, 

CUT&Tag requires fewer cells and lower sequencing depth than ChIP-Seq, diminishing 

sequencing-associated costs (Kaya-Okur et al., 2019). Since CUT&Tag accurately detects 

histone PTMs (e.g., H3K27ac), this technique would allow targeting different histone PTMs 

to get a comprehensive overview of chromatin’s functional status. 
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Given the importance of the glycolysis to TCA cycle transition controlled by PDC and PDHK1, 

several studies have associated their deregulation with pathological conditions related to 

cancer, neurological and muscular disorders, and cardiovascular diseases (Kishnani & Chen, 

2013). For instance, PDC deficiency is associated with lactic acidemia, so under these 

circumstances, glycolytic tissues like the brain accumulate large amounts of lactic acid that 

can severely damage the nervous system (Bhagavan, 2002; Meirleir, 2013). Pharmacological 

treatments for PDC deficiency are scarce, so most therapeutical interventions to treat this 

disorder use ketogenic diets or thiamine (vitamin B1) supplementation to increase PDC 

activity and thereby reduce lactic acidosis (DeBrosse & Kerr, 2016; Meirleir, 2013; Singer et 

al., 2016). Ongoing research studies using  dichloroacetate (DCA), a PDHK1 chemical 

inhibitor, to address PDC deficiency caused by PDHK1 upregulation (DeBrosse & Kerr, 2016; 

Meirleir, 2013). PDHK1 is upregulated in diverse cancers, in some cases associated with 

poor prognosis (e.g., breast cancer, gastric and colon carcinoma) or chemoresistant (e.g., 

bladder carcinoma) outcomes (Atas et al., 2020; Golias et al., 2019; He et al., 2018; Lu et al., 

2011; Peng et al., 2018; Stacpoole, 2017; Woolbright et al., 2018). Thus, PDHK1 is 

considered a potential target for cancer treatment. Small molecule-based approaches 

targeting the binding sites for pyruvate, nucleotides, lipoamide, and allosteric regulation are 

currently under investigation (Saunier et al., 2016; Stacpoole, 2017).  

 

The development of diverse “omics” technologies has enabled the high-throughput study of 

multiple cellular regulatory layers (e.g., metabolomics, proteomics, transcriptomics, 

genomics) (Athieniti & Spyrou, 2023; Cao & Gao, 2022). In most cases, these large datasets 

are generated and analyzed separately, due to the complex experimental setup intrinsic to 

each “omic” technology, their structurally different databases and distinct computational 

methods required to analyze them (Athieniti & Spyrou, 2023; Cao & Gao, 2022). However, 

integrating the results of different “omics” technologies opens the possibility to unveil far-

reaching regulatory networks that can closely depict a comprehensive cellular functional state  

(Athieniti & Spyrou, 2023; Cao & Gao, 2022; Fraunhoffer et al., 2022). In addition, multi-omics 

data integration allows model developing, which contributes to generating mechanistic 

predictions on specific cellular processes that can be used for different purposes such as 

medical prognosis and therapeutics (Fraunhoffer et al., 2022). Therefore, integrating diverse 

“omics” technologies could improve our understanding on multiple cellular processes in 

healthy and disease states, to potentially design better therapeutic strategies.  
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9 SUPPLEMENTARY MATERIAL  
 

 
Figure S1. The oxygen consumption rate (OCR) remains constant in PDHK1-KD cells.  
(A) OCR measured in basal respiration, (B) glutaminolysis inhibition, (C) FAO inhibition, and (E) glucose 

oxidation inhibition from hypoxia-cultured NIH-3T3 cells expressing short hairpin PDHK1 (shPDHK1 and 

shPDHK1-2) and scramble RNA (shScramble). Data is represented as individual values ± S.E.M. Significance 

was defined as follows: n.s. (not shown abbreviation) > 0.05; *p≤ 0.05, and **p≤ 0.01, as assessed by two-way 

ANOVA.  

 

 
Figure S2. PDHK1 deficiency has no impact on glycolytic-metabolites synthesis.  
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(A) [13C6]-glucose-derived labeling in glycolytic intermediates and, (B) glycolysis-derived amino acids from 

hypoxia-cultured NIH-3T3 cells expressing short hairpin PDHK1 (shPDHK1 and shPDHK1-2) and scramble 

RNA (shScramble). Data is represented as individual values ± S.E.M. Significance was defined as follows: n.s. 

(not shown abbreviation) > 0.05; *p≤ 0.05; **p≤ 0.01; and ***p≤ 0.001, as assessed by two-way ANOVA. 

Abbreviations: G6P – Glucose-6-phosphate, F(1,6)BP – Fructose-1,6-bisphosphate, 3PG – 3-

phosphoglycerate, Pyr – Pyruvate, Lac – Lactate. Mass isotopomers represented are: G6P(m+6), F(1,6)BP 

(m+6), 3PG (m+3), Pyr (m+3), Lac (m+3), Serine (m+3), Glycine (m+2), Alanine (m+2). (A) Y-max = 1.0; (B) Y-

max = 0.010.   

 

 
Figure S3. PDHK1 depletion has no impact on small CoA compounds pool size.     
(A) Metabolic pool size of CoA, (B) butyryl-CoA, and (C) succinyl-CoA from hypoxia-cultured NIH-3T3 cells 

expressing short hairpin PDHK1 (shPDHK1 and shPDHK1-2) and scramble RNA (shScramble). Data is 

represented as individual values ± S.E.M. Significance was defined as follows: n.s. (not shown abbreviation) > 

0.05, as assessed by two-way ANOVA.  

 
 
 

 
Figure S4. The transcriptome is not affected upon PDHK1 depletion.  
(A) XXX. (B) XXX 
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E1 pyruvate dehydrogenase subunit  
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ChIP-Seq Chromatin Immunoprecipitation Sequencing  
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PDH pyruvate dehydrogenase  
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