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Abstract

Jupiter’s icy satellite Europa is expected to host a global subsurface ocean underneath
its icy crust. This notion was supported by magnetic field measurements, in which the
electromagnetic response of Europa to Jupiter’s magnetic field has been discovered. Since
then, magnetic field measurements have been used to probe Europa’s interior, as its in-
duction response is a function of the ocean’s depth, thickness, and electrical conductivity.
While Europa’s subsurface ocean is commonly modelled as a radially symmetric layer, it
is expected to be asymmetric in nature, both on a global scale due to tidal deformation,
but also on local scales due to fractures and partial water melt in the icy crust.

In this work, we investigate the detectability of water melt entrapped inside Europa’s
icy crust with magnetic sounding. For that, we first construct an analytical, iterative ap-
proach to solve the coupled induction between the global ocean and a local water reservoir.
We find that the reservoir is strongly coupled to the ocean, i.e., its induction response to
the ocean’s induced dipole must be considered to accurately describe the overall induc-
tion response of the ocean-reservoir system. The ocean is weakly coupled to the reservoir,
i.e., we can neglect its induction response to the reservoir’s dipole within our prescribed
precision. In this study, two scenarios are considered, a hypothetical flyby at 25 km alti-
tude above Europa’s surface and measurements directly at the surface. At 25 km altitude,
reservoirs are not expected to be detectable, as their small induction signature falls off
rapidly and could be obscured by small-scale fluctuations arising from plasma interactions
in Europa’s vicinity. At the surface, reservoirs could be detected by employing a network
of at least two magnetometers, where one is placed directly above the region of interest,
and a second right outside that region to resolve the spatial variability of the reservoir’s
induction response. Assuming a detectability limit of approximately 2 nT, derived from
the strength of the small-scale fluctuations in magnetic field measurements, reservoirs with
a radius larger than 8 km can be resolved, assuming a conductivity of 30 S/m. At larger
radii, the necessary conductivity decreases, with 5 S/m required for a 20 km reservoir.
Since the measurements would be taken at a fixed position, measuring over a long time
period could allow us to better resolve periodic signals such as the reservoir’s induction
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response, potentially enabling the detection of smaller and less conductive reservoirs.

The characterization of Europa’s subsurface ocean with electromagnetic induction results
in a fairly unconstrained parameter space. This is partially due to the non-uniqueness
of the induction method itself, but also due to the complexity of Europa’s magnetic field
environment, which is additionally perturbed by plasma interactions between the Jo-
vian magnetosphere and Europa’s atmosphere. In addition, the magnetospheric field of
Jupiter along the spacecraft’s trajectory is not exactly known, resulting in an unknown
’background’ that is perturbed by the ocean’s induction response and the plasma inter-
actions.

The second part of this thesis characterizes the uncertainties originating from the in-
dividual models for the inducing field, the plasma interaction, and the Jovian background
field. These uncertainties propagate into the ocean’s properties, restricting our ability to
constrain the parameter space span by the ocean’s depth, thickness, and electrical con-
ductivity. We perform a chi-squared analysis, in which the squared deviation between the
modelled magnetic field and the observed magnetic field is weighted against the model
uncertainty. From this approach, uncertainties of the ocean properties are derived in the
form of a range, i.e., we provide upper and lower limits for the depth, thickness, and
conductivity. As this method cannot provide a lower limit on the ocean’s depth, addi-
tional constraints from crater simulations are taken into account, with a minimum depth
of 20 km. Here, we find a minimum conductivity of 0.45 S/m and a minimum thickness of
3.5 km. No upper limit of the conductivity or thickness could be resolved with the induc-
tion method, as the induction amplitude eventually reaches saturation. For the depth,
our analysis yields an upper limit of approximately 90 km, above which the induction
response generated within the ocean does not appropriately reproduce the observations.

In addition, the robustness of the method is tested. For that, we apply small changes
to individual model parameters and compare the resulting limits against the reference
model. Here, we find that the interval length used to calculate the polynomial fit to the
Jovian background field has the most noticeable effect on the resulting limits on the ocean
properties. This notion emphasizes the relevance of the background fit in the exploration
of Europa’s subsurface ocean with electromagnetic induction.
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Introduction

The Jovian satellite Europa is a primary target for the study of ocean worlds. Harbored
below its icy surface layer, the moon is expected to host a global subsurface ocean of
liquid water. This discovery was made during the Galileo mission, a spacecraft that was
in Jupiter orbit from 1995 to 2003 and performed multiple close encounters (flybys) at
Europa, as well the other Galilean satellites — Io, Ganymede, and Callisto. The space-
craft was, among other instruments, equipped with a magnetometer, which continuously
measured the magnetic field along the spacecraft’s trajectory. In the direct vicinity of
Europa, the spacecraft measured strong perturbations in the magnetic field, which have
been attributed to interactions between the icy satellite and its host planet. Primarily,
an electromagnetic response is generated in a shallow, electrically conducting layer below
the surface, for which the only appropriate geological interpretation is a saline subsurface
ocean (Kivelson et al., 1997, 1999, 2000). In addition, plasma interactions between the
Jovian magnetosphere and Europa’s atmosphere further perturb the magnetic field en-
vironment (Neubauer, 1998). Similar perturbations have been measured around Callisto
(Khurana et al., 1997), Ganymede (Kivelson et al., 1996a)1, as well as Io (Kivelson et al.,
1996b), making the Jovian system a crucial example of moon-magnetosphere interactions.

The principle of electromagnetic induction has since then been used to characterize Eu-
ropa’s interior, as the induced magnetic field is a function of the ocean’s properties, i.e.,
its depth, thickness, and electrical conductivity (e.g., Parkinson, 1983; Saur et al., 2009).
Early studies used simple models for Europa’s interior, assuming spherical symmetry, and
suggested only qualitatively derived constraints, i.e., visually from fitting an induced field
to the data, for the ocean’s properties (Zimmer et al., 2000; Schilling et al., 2007). The
values estimated in these studies result in a fairly unconstrained parameter space, leaving
Europa’s interior structure an open question to this day. Since then, quantitative meth-
ods to constrain Europa’s subsurface ocean have been developed (Biersteker et al., 2023;

1Ganymede additionally has its own intrinsic magnetic field.
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2 1. INTRODUCTION

Petricca et al., 2023). Further development to model Europa’s interior was done by Sty-
czinski et al. (2022), who introduced a solution to describe the electromagnetic response
of a subsurface ocean with variable outer radius, i.e., an icy crust with variable thickness
that is likely to exist due to longitudinal and latitudinal variations in tidal heating (Tobie
et al., 2003). Additional irregularities from the spherically symmetric model can occur
due to localized melt in Europa’s icy crust, creating small water reservoirs which are sug-
gested to be involved in the formation of surface disruptions (Schmidt et al., 2011), as
well as tentative cryovolcanism (Sparks et al., 2017; Lesage et al., 2020).

In this work, we investigate whether liquid water reservoirs entrapped in Europa’s icy
crust can be detected using the principle of electromagnetic induction. For that, we first
describe the Jovian magnetosphere and its icy satellite Europa in Chapter 2, providing the
necessary information to further motivate our research and put it into context with the
current state of the knowledge about Europa. In Chapter 3, we introduce the theoretical
framework of electromagnetic induction that is required to understand the method and
the results. There, we also present an analytical approach that has been developed to
describe the coupling feedback introduced by two neighboring conductors, such as is the
case for our model of Europa’s interior, where we assume a radially symmetric, global sub-
surface ocean accompanied by a separate, spherical reservoir of liquid water. Chapter 4
presents the study published in Winkenstern and Saur (2023). There, we first highlight
the physics of a coupled induction system and the coupling strength between Europa’s
ocean and a reservoir. Afterward, we investigate the detectability during a hypothetical
flyby at 25 km altitude, as the Europa Clipper spacecraft will perform multiple flybys
at that altitude during its tour. We additionally study the detectability at the surface,
motivating a potential lander mission on Europa.

The second part of this thesis, Chapter 5, presents a study in which quantitative con-
straints of the ocean properties are derived. For that, we perform an inversion to fit
the modelled magnetic field to spacecraft observations, where we use the uncertainties
introduced by the models to describe the individual contributions to Europa’s magnetic
field environment — the Jovian background field, the ocean’s induction response, and the
magnetic field due to plasma interaction at Europa. We present estimates for the three
considered model uncertainties and perform a chi-squared analysis within a prescribed 3D
parameter space of ocean depth, thickness, and conductivity, which weights the squared
deviation between the modelled and observed magnetic field against the overall uncer-
tainty. Finally, we present and discuss the resulting constraints, providing additional
context with existing estimates for the ocean depth derived from other techniques. Chap-
ter 6 closes this thesis with concluding remarks.



2

Europa and the Jovian System

Jupiter’s icy moon Europa is the second innermost Galilean satellite. This group of four
natural satellites was discovered by Galileo Galilei and Simon Marius independently in
1610. They are the four largest satellites of Jupiter and, with increasing orbital distance,
named: Io, Europa, Ganymede, and Callisto. With a mean radius of RE = 1561 km
(Nimmo et al., 2007), Europa is the smallest of the Galilean satellites. It resides at
an orbital distance of approximately 9.4 Jupiter radii RJ (Jupiter’s equatorial radius
RJ = 71492 km), and is thus embedded in Jupiter’s inner magnetosphere. Europa re-
sponds to the time-varying component of Jupiter’s magnetospheric field in the form of
electromagnetic induction. Additionally, Europa is continuously bombarded by energized
ions and electrons that populate the magnetosphere, causing surface weathering, as well
as ionizing its atmosphere. Capturing the physics of these interactions is pivotal to our
understanding of Europa. In this chapter, the Jovian magnetosphere will be introduced,
especially with regard to its influence on Europa. Afterward, we will describe the current
understanding of Europa’s atmosphere and surface. Finally, we will present the current
knowledge on Europa’s interior, putting an emphasis on the extent of its outer H2O layer
and the partition into frozen and liquid parts.

2.1 Jupiter’s Magnetosphere
Jupiter is the source of the largest planetary magnetosphere in the solar system. At an
orbital distance of 5.9 RJ, Io acts as the strongest plasma source within the Jovian mag-
netosphere (Bolton et al., 2015), producing ions of its SO2 atmosphere, such as S+, S++,
O+, and more. This ion population forms the Io plasma torus, which corotates with the
Jovian magnetosphere and constantly sweeps over Io (Bagenal, 1994). However, parts
of that population move radially outward, which results in iogenic material populating
the entire magnetosphere (Saur et al., 2004), eventually forming the Jovian plasma sheet
around the magnetic equator. At Europa’s orbital distance, the plasma sheet is trapped

3



4 2. EUROPA AND THE JOVIAN SYSTEM

near the centrifugal equator, which is tilted by approximately 7◦ with respect to the ro-
tational equator (Bagenal & Dols, 2020).

The dipole component of Jupiter’s intrinsic field is tilted by 10.25◦ with respect to its
rotational axis (Connerney et al., 2022). In Europa’s rest frame, Jupiter and its magnetic
field rotate with a period of T = 11.23 h, compared to Europa’s orbital period of approx-
imately 85 h. This means that, similar to Io, Europa’s trailing hemisphere is constantly
bombarded by the ambient plasma environment. Furthermore, Europa’s distance to the
plasma sheet oscillates throughout one synodic rotation period. This varying plasma en-
vironment has an effect on Europa’s magnetic field environment, and strong magnetic
field anomalies near the plasma sheet are likely to obscure magnetic field perturbations
generated within Europa, i.e., in its subsurface ocean (e.g., Kivelson et al., 1997).

2.2 Europa
Here, we introduce the icy satellite Europa and review the current state of the research
that is relevant to understand the motivation of our research presented in this thesis.
For that, we first cover Europa’s atmosphere, moving inward to surface observations and
information about its interior thereafter. We emphasize the information retrieved from
electromagnetic induction, as that is the method with which we aim to study Europa’s
interior.

2.2.1 Europa’s Atmosphere
Through HST observations in the ultraviolet (UV) an oxygen atmosphere at Europa
has been detected with molecular oxygen O2 being the dominant species (Hall et al.,
1995). The observed emissions at 130.4 nm and 135.6 nm result from electron-impact dis-
sociation, originating from magnetospheric electrons bombarding Europa’s atmosphere.
Further HST observations of the trailing hemisphere revealed a stable H2O atmosphere
around the subsolar point (Roth, 2021). Cervantes and Saur (2022) combined these HST
observations with magnetometer measurements recorded during Galileo’s E12 flyby to
constrain Europa’s atmosphere, yielding column densities of 1.2 · 1014 cm−2 for O2 and
1.5 · 1015 − 2.2 · 1015 cm−2 for H2O.

Europa’s O2 atmosphere is non-uniform across its global structure. An asymmetry be-
tween Europa’s leading and trailing hemisphere has been observed (Hansen et al., 2005),
shaped by the plasma interactions between the icy moon and the Jovian magnetosphere.
Plainaki et al. (2013) demonstrate a spatial variability of Europa’s O2 atmosphere based
on solar illumination, as a higher surface temperature around the subsolar point increases
the yield of released O2. Such a day-night asymmetry has also been used in a study by
Addison et al. (2024) to describe the magnetic field measurements during Juno’s only
flyby at Europa in September 2022. However, their model suggests a significantly weaker
atmosphere on the night side, with a column density in the order of 109 cm−2. It is worth
noting that this study does not consider electron beams which have been detected during
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the flyby and further perturb the magnetic field (Allegrini et al., 2024).

Local variabilities in atmospheric densities could exist in the form of water vapor plumes,
releasing additional material into Europa’s atmosphere. Local enhancements of line emis-
sions in the UV above Europa’s limb have been implied to result from plume activity.
Such events, however, were not present in every considered HST campaign (Roth et al.,
2014; Sparks et al., 2016). Strong, local magnetic field perturbations measured with the
Galileo spacecraft were discussed to arise from a putative plume crossing during the E12
flyby (Jia et al., 2018), as well as the E26 flyby (Blöcker et al., 2016; Arnold et al., 2019).
Outgassing of endogenic material has been discovered to occur on Saturn’s icy satellite
Enceladus (Hansen et al., 2006). Plume activity on Europa is of great interest due to the
direct link to the subsurface ocean’s composition, marking one of the science goals of the
Europa Clipper mission (Pappalardo et al., 2024).

2.2.2 Surface Observations
Images of Europa’s surface in the visible spectrum, for example Figure 2.1, reveal a vast
number of geological features, which can be categorized into geological units (e.g., Gree-
ley et al., 2000; Leonard et al., 2018). One striking unit are curvilinear bands with a
darker appearance, likely due to a higher concentration of non-ice material compared to
the surrounding surface (Leonard et al., 2024). These bands are expected to form as the
icy surface is pulled apart, owing to lateral surface motions analogous to plate tectonics
on Earth (e.g., Smith et al., 1979; Collins et al., 2022).

In an environment completely shielded from external processes, the upwelling of endo-
genic material due to fractures in the ice would enable us to infer the composition of
Europa’s subsurface ocean1. However, the bombardment of Europa’s surface with elec-
trons and iogenic ions drives radiolytic processes, in which the surface material is broken
down and new compounds are formed (Carlson et al., 1999). This surface weathering
imposes a challenge on the ability to conclusively interpret surface measurements in an
interior context.

Another distinct feature observable on Europa’s surface are chaos regions (Figure 2.2).
These areas of heavily disrupted ice stick out from their surrounding surface due to their
exhibited topography. Together with band material, they form the two dominating geo-
logical units on Europa (Greenberg et al., 1999). The formation mechanism is not exactly
known. Initial theories suggested a melt-through model, where non-uniform tidal heating
causes localized thinning of the icy crust overlying Europa’s subsurface ocean, creating a
surface depression above the local melt. The icy crust can then melt completely, expos-
ing a liquid layer to the surface, which eventually refreezes, causing the surface to rise
again and create a dome-shaped structure (Greenberg et al., 1999). Other models for the
formation of chaos regions include cryovolcanism (Greeley et al., 1998), as well as local
water melt entrapped within Europa’s icy crust (Schmidt et al., 2011). Even though the

1A thorough introduction to Europa’s subsurface ocean and its discovery will follow in Section 2.2.3.
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Figure 2.1: Image of Europa taken by the JunoCam at an altitude of 1521 km. Dark bands
cover Europa’s surface, possibly owing their color to radiolysis of endogenic material that has
been exposed to the surface during the formation of these curvilinear structures. At the day-
night boundary, Annwn Regio can be seen, roughly enclosed in the red ellipse. This large-scale
chaos region could potentially have formed above a shallow source of liquid water, i.e., in the
form of entrapped water melt. The dark circular spot at the bottom right is the Callanish crater.
North is upward. Credit: NASA / JPL-Caltech / SwRI / MSSS / Björn Jónsson
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precise mechanism is not known, all proposed models agree on the potential exposure of
endogenic material during the formation of chaos.

Inferred from near-infrared absorption spectra, a magnesium sulfate dominated interior
has been suggested in early studies (McCord et al., 1998; Dalton et al., 2005). It was,
however, argued that the observed sulfur bearing compounds are a result of iogenic sulfur
impinging on Europa’s icy surface, thus not being representative of endogenic material
(Brown & Hand, 2013). Observations made with the Space Telescope Imaging Spec-
trograph installed on HST show a distinct absorption feature at 450 nm, mapping to
large-scale chaos regions on Europa’s leading hemisphere (Trumbo et al., 2019). This
absorption feature is in agreement with laboratory measurements of irradiated NaCl at
100 K (Poston et al., 2017). As the detection of NaCl occurred on leading hemisphere
chaos, shielded from the plasma bombardment on Europa’s trailing hemisphere, it was
concluded that NaCl is of endogenic origin and potentially the dominant species in Eu-
ropa’s subsurface ocean. Understanding the composition of Europa’s subsurface ocean is
an important question in today’s research, as various saline, aqueous solutions have differ-
ent electrical conductivities at the same salinity. Knowing the constituents that drive the
electrical conductivity of Europa’s ocean would thus narrow down the range of possible
salinities for a given electrical conductivity inferred from magnetic sounding.

Figure 2.2: Topography of the Thera Macula chaos region as shown in Schmidt et al. (2011),
Figure 2. This image highlights the irregularity of chaos regions compared to the surrounding
plains material.
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The recent detection of CO2 with the James Webb Telescope NIRSpec (Near-Infrared
Spectrograph) coincides with the presence of young chaos regions on Europa’s leading
hemisphere, indicating an internal source of carbon (Trumbo & Brown, 2023; Villanueva
et al., 2023). Whether the carbon already exists as CO2 or any other, potentially organic,
material, cannot be decisively concluded from the measurements. There was, however,
no significant detection of organics in the NIRSpec data. The detection of carbon bear-
ing material is of great astrobiological interest due to carbon being a keystone to life as
we know it (Catling, 2013). In addition, CO2 can increase the electrical conductivity of
Europa’s subsurface ocean (Castillo-Rogez et al., 2022).

2.2.3 Europa’s Interior
In the 1990s, the Galileo spacecraft entered the Jupiter system, performing multiple close
encounters at Europa and the other Galilean satellites. Gravitational measurements,
supported by Earth-based radio measurements using the Deep Space Network, found a
differentiated subsurface composed of an outer H2O shell and an underlying silicate man-
tle. This H2O shell extends down to 80 − 200 km, however, a distinction between frozen
and potentially liquid parts was not possible on the basis of these measurements alone
(Anderson et al., 1998). Galileo’s magnetometer recorded crucial data to improve our un-
derstanding of Europa’s interior. As Galileo passed by Europa, large perturbations were
measured in the otherwise slowly changing magnetic field of the Jovian magnetosphere.
In particular, these perturbations were strongest around the time of closest approach
(Figure 2.3). As Jupiter rotates, its magnetic field will change its orientation with re-
spect to Europa. These temporal variabilities induce eddy currents in a conductive layer,
which in turn generate a secondary magnetic field, also referred to as induced magnetic
field or induction response. In Europa’s case, the only geological interpretation for these
perturbations is a shallow, saline subsurface ocean (Khurana et al., 1998; Kivelson et al.,
1999). The existence of an intrinsic magnetic field has been ruled out when Galileo went
into its extended mission and performed a flyby at Europa where the orientation of the
background field was in anti-phase relative to the E04 and E14 flybys (Kivelson et al.,
2000). Induced magnetic fields are also generated in Europa’s putative iron core, their
surface strength however is an order of magnitude smaller than the ocean’s induced mag-
netic field in the presence of a conductive ocean (Seufert et al., 2011).

Galileo’s magnetometer measurements provided strong evidence for the existence of a
global subsurface ocean below Europa’s icy crust. Since the quantities governing the in-
duced field, induction amplitude A and phase shift ϕph, are functions of the ocean’s depth
d, thickness h, and electrical conductivity σ, magnetic field measurements can be used
to probe Europa’s interior, specifically its ocean. Although this method has been used in
several studies, the characteristics of Europa’s ocean remain not fully constrained. Zim-
mer et al. (2000) provided a lower limit for the ocean’s induction amplitude of A ≥ 0.7,
equalling to a conductivity σ ≥ 0.06 S/m, assuming Europa’s ocean is directly at the
surface. Schilling et al. (2007) constrained the conductivity to be larger than 0.5 S/m,
assuming an ocean with 100 km thickness below a 25 km thick icy crust. For a thin ocean,
h = 25 km, they concluded that conductivities above 1 S/m are required. An upper limit
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Figure 2.3: Magnetometer measurements for Galileo’s E14 flyby. The magnetic field compo-
nents are given in EPhiO coordinates, where z is parallel to Jupiter’s rotation axis, y points
toward Jupiter in a plane perpendicular to z, and x completes the right-handed system (approx-
imately aligning with corotational flow). The vertical black line indicates the time of closest
approach (C/A), which occurred at an altitude of 1648 km.
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on the conductivity cannot be derived from the measurements, as the induction amplitude
goes into saturation at approximately 5 S/m. It is worth noting that these constraints
are derived visually from fitting induction models with various input parameters to the
measurements. Schilling et al. (2004) performed a joint inversion of four Galileo flybys,
suggesting an induction amplitude of A = 0.98 ± 0.02. The given uncertainty does not
consider model uncertainties and is likely an underestimation. Quantitative claims about
the ocean’s characteristics, especially about their uncertainty or range, require us to con-
sider the uncertainties of the various components included in the modelled magnetic field
(see Chapter 5).

Aside from magnetic sounding, other methods are used to estimate the ocean’s depth.
Modelling the tidal heating Europa experiences due to its eccentric orbit yields an ice
shell thickness ranging from 12-25 km (Tobie et al., 2003; Walker & Rhoden, 2022). Im-
pact craters on Europa’s surface provide additional estimates on the icy crust’s thickness,
as the formation of certain crater features, such as central peaks, depends on whether the
impactor reached the ocean. A study of the depth-to-diameter slope shows that Europa’s
icy crust is at least 19-25 km thick (Schenk, 2002). Simulation of impact craters provide
a significantly lower limit of 4 km (Turtle & Pierazzo, 2001). A recent study focussed
on Europa’s two multiring basins, Callanish and Tyre, and simulated impacts that would
form such craters, stating that the icy crust’s thickness must be above 20 km to reproduce
the observed structures (Wakita et al., 2024).



3

Electromagnetic Induction

In this work, Europa’s magnetic field environment is used as a window into its interior.
In particular, the electromagnetic responses of Europa’s subsurface ocean, as well as
putative water reservoirs within its icy crust to Jupiter’s magnetic field, are of interest.
This chapter provides the theoretical background of electromagnetic induction. In the
following, the induced magnetic fields of two neighboring conductors will be considered.
In such a scenario, a coupling feedback between the two conducting bodies occurs, for
which an analytical approach has been developed. After presenting our approach to
describe coupled fields, we shortly discuss the numerical implementation with regard to
the precision of this method.

3.1 Fundamentals
This section provides the necessary tools to describe magnetic fields. Here, the description
differs between conducting bodies with finite conductivity σ ̸= 0 and insulating medium
with σ = 0. At the boundary between two layers of varying conductivity, certain condi-
tions must be applied to ensure physical validity of the magnetic field description across
the entire domain. These boundary conditions will be presented for the models considered
in our work. From the resulting boundary equations, a relationship between the induc-
ing and induced field can be derived. In particular, this relation governs the induction
amplitude A and phase shift ϕph of the induced field.

3.1.1 Induction Equation
Electromagnetic induction describes the generation of electric fields E driven by time-
varying magnetic fields B = B(t). This statement is described by Faraday’s law

∇ × E = −Ḃ. (3.1)

11
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In a medium with electrical conductivity σ ̸= 0, the resulting currents generate magnetic
fields, as described by Ampere’s law

∇ × B = µ0j + 1
c2 Ė, (3.2)

where j are the electric currents and c is the speed of light in vacuum. Assuming that the
conductivity is isotropic and constant, Ohm’s law can be written in its simplest form as

j = σE. (3.3)

Further writing the time-variable part of the electric field as E(r, t) = E(r)e−iωt, Ampere’s
law can be rewritten as

∇ × B =
(

µ0σ − i
ω

c2

)
E. (3.4)

This form of Ampere’s law assumes the relative magnetic permeability µr to be approxi-
mately one, which holds for most para- and diamagnetic materials, so that µ = µrµ0 ≈ µ0.
The RHS of Equation (3.2) is composed of conductive and displacement currents. The
latter arises from temporal variabilities in the electric field and can be neglected if the
following inequality holds

ω ≪ µ0σc2. (3.5)
In Europa’s rest frame, Jupiter’s magnetic field is rotating at a period of T = 11.23 h,
equivalent to Jupiter’s synodic rotation period. Thus, for conductivities σ ≫ 10−15 S/m,
the displacement currents can be neglected. The expected conductivity of Europa’s sub-
surface ocean is orders of magnitude above that lower limit. With this approximation,
Ampere’s law reduces to

∇ × B = µ0σE. (3.6)
By taking the curl, we can plug in Faraday’s law to the RHS of the equation

∇ × [∇ × B] = −µ0σḂ. (3.7)

We can use the vector identity ∇ × [∇ × B⃗] = ∇(∇ · B) − △B, which reduces to −△B.
The first term vanishes, as there are no magnetic monopoles, meaning ∇ · B = 0. Thus
follows

△B = µ0σḂ. (3.8)
Equation (3.8) is known as the induction equation. It is linear in B and has to be solved
if we aim to describe the magnetic field in a conducting body.

3.1.2 Magnetic Field in a Non-Conducting Medium, σ = 0
Throughout this thesis, it is assumed that outside Europa’s subsurface ocean (and water
reservoirs in Chapter 4), the electrical conductivity is σ = 0. In these regions, Ampere’s
Law reads ∇ × B = 0, from which follows the existence of a gradient potential for
B = −∇Φ. From the non-existence of magnetic monopoles, ∇ · B = 0, follows

∇ · (∇Φ) = △Φ = 0, (3.9)
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which is known as the Laplace equation. In spherical coordinates (r, θ, ϕ) with radius r,
colatitude θ, and longitude ϕ, the general solution of the Laplace equation reads

Φ(r, θ, ϕ) = a
∞∑

l=1

l∑
m=0

(
Be,l

(
r

a

)l

+ Bi,l

(
a

r

)l+1
)

Y m
l (θ, ϕ), (3.10)

with complex external (e) and internal (i) coefficients Be,l and Bi,l, reference radius a, and
spherical harmonics

Y m
l (θ, ϕ) = P m

l (cos θ)eimϕ, (3.11)
where P m

l (cos θ) are the associated Legendre polynomials of degree l and order m. Note
that the magnetic field coefficients are specific to the degree l. A derivation of the solution
can be found in Appendix A. The components of the magnetic field are given as the
negative gradient of the magnetic field potential, Equation (3.10), and read

Br(r, θ, ϕ) = −
∞∑

l=1

l∑
m=0

(
lBe,l

(
r

a

)l−1
− (l + 1)Bi,l

(
a

r

)l+2
)

Y m
l (θ, ϕ)

Bθ(r, θ, ϕ) = −
∞∑

l=1

l∑
m=0

(
Be,l

(
r

a

)l−1
+ Bi,l

(
a

r

)l+2
)

∂θY
m

l (θ, ϕ)

Bϕ(r, θ, ϕ) = − 1
sin θ

∞∑
l=1

l∑
m=0

(
Be,l

(
r

a

)l−1
+ Bi,l

(
a

r

)l+2
)

∂ϕY m
l (θ, ϕ).

(3.12)

3.1.3 Magnetic Field in a Conducting Medium, σ ̸= 0
In a conducting medium with constant conductivity σ ̸= 0, Equation (3.8) must be solved
for the magnetic field. First, we transform into frequency domain, as any function of
time can be represented by a superposition of sine waves with various frequencies (see
Parkinson, 1983). Since the induction equation is linear, it suffices to solve for a single
frequency ω, as a superposition of solutions is also a solution. We describe the magnetic
field as the real part of

B(r, t) = B(r)e−iωt, (3.13)
with which the induction equation takes the form

△B = −k2B, (3.14)

where k2 = iωσµ0 is the complex wave number. This equation is known as the Helmholtz
equation and, in spherical coordinates, is solved for the spherical Bessel functions jl(z) =√

π/2zJl+1/2(z) (Abramowitz & Stegun, 1972), as well as j−l(z) =
√

π/2zJ−l−1/2(z) of
degree l and complex argument z = rk. The components of the magnetic field read

Br(r, θ, ϕ) = 1
r

(Cjl(rk) + Dj−l(rk)) l(l + 1)Y m
l (θ, ϕ)

Bθ(r, θ, ϕ) = 1
r

(
C

d
dr

(rjl(rk)) + D
d
dr

(rj−l(rk))
)

∂θY
m

l (θ, ϕ)

Bϕ(r, θ, ϕ) = 1
r sin θ

(
C

d
dr

(rjl(rk)) + D
d
dr

(rj−l(rk))
)

∂ϕY m
l (θ, ϕ).

(3.15)
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A full derivation can be found in Appendix B. Equations (3.12) and (3.15) equip us
with the necessary framework to describe the magnetic fields across the entire system,
i.e., inside Europa’s subsurface ocean, where the conductivity is finite, and anywhere else,
where we assume a conductivity of zero.

3.1.4 Boundary Conditions
To ensure that our solutions for the magnetic field are physically consistent across the
entire system, certain boundary conditions must be met at any boundary between two
layers of varying conductivity:

i. The normal component of the magnetic field must be continuous at the boundary.

ii. The magnetic field must be finite at the center of the conductive body.

iii. At great distances, the magnetic field must be approximately equal to the external
field.

In this work, we consider two models for the conductive body, (i) a homogeneous sphere to
represent water reservoirs within Europa’s icy crust and (ii) a spherical layer to represent
Europa’s subsurface ocean (Figure 3.1). As the number of boundaries varies between the
two models, the solutions are unique to each case and must be calculated separately.

σ≠0 σ≠0

σ=0

σ=0

σ=0

r0
r1

rres

I III II III

Figure 3.1: A sketch of the two models for conducting bodies (blue) considered in this work, as
well as the partition into the respective subdomains. (Left) A homogeneous sphere with radius
rres surrounded by an insulating medium. (Right) A spherical layer with inner radius r1 and
outer radius r0, surrounded by two subdomains with conductivity σ = 0.

Homogeneous Sphere

We describe the magnetic field inside a homogeneous sphere, e.g., a reservoir with radius
rres and constant conductivity σres, using Equation (3.15). As this problem is radially
symmetric, an inducing field of degree l and order m only induces a magnetic field of
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the same degree and order. Thus, to improve readability, we omit the sums and consider
only a single degree and order in the following. Here, we must note that as we reach the
reservoir’s center

lim
rkres→0

j−l(rkres) → ∞, l > 0, (3.16)

which breaks the second boundary condition, thus D must be zero. From the first bound-
ary condition follows

B(I)
r

∣∣∣
r=rres

= B(II)
r

∣∣∣
r=rres

B
(I)
θ

∣∣∣
r=rres

= B
(II)
θ

∣∣∣
r=rres

,
(3.17)

where (I) describes the region outside and (II) inside the reservoir. The second equation
is a result of µ ≈ µ0, in which case the tangential component must be continuous as well.
Applying our descriptions of the magnetic fields, the boundary conditions yield

−(lBe,l − (l + 1)Bi,l) = C

rres
l(l + 1)jl(rreskres)

−(Be,l + Bi,l) = C

rres

d
dr

(rjl(rkres))
∣∣∣
r=rres

.

(3.18)

From that system of equations we can derive the ratio of the magnetic field coefficients,
which governs the strength of the induction response

(
Bi

Be

)
l

= − l

l + 1
Jl+3/2(rreskres)
Jl−1/2(rreskres)

. (3.19)

Spherical Layer

Consider a spherical layer of finite conductivity surrounded by two insulating layers. Such
a three-layer model is commonly used to describe Europa’s interior (e.g., Zimmer et al.,
2000; Saur et al., 2009), i.e., an icy crust (I), subsurface ocean (II), and mantle/core
material (III). We use Equation (3.12) to describe the magnetic field in (I) and (III),
noting that in (III), B

(III)
i,l = 0, as the term would approach infinity for r → 0. Since this

model has two boundaries, applying Equation (3.17) yields two additional equations to
account for the boundary between (II) and (III)

−lB
(III)
e,l = l(l + 1)

r1
(Cjl(r1k) + Dj−l(r1k))

−B
(III)
e,l = 1

r1

(
C

d
dr

(rjl(rk))
∣∣∣
r=r1

+ D
d
dr

(rj−l(rk))
∣∣∣
r=r1

)

−(lB(I)
e,l − (l + 1)B(I)

i,l ) = l(l + 1)
r0

(Cjl(r0k) + Dj−l(r0k))

−(B(I)
e,l + B

(I)
i,l ) = 1

r0

(
C

d
dr

(rjl(rk))
∣∣∣
r=r0

+ D
d
dr

(rj−l(rk))
∣∣∣
r=r0

)
.

(3.20)
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As before, we derive the ratio from the complex magnetic field coefficients as (omitting
the (I) superscript) (

Bi

Be

)
l

= − l

l + 1
ξJl+3/2(r0k) − J−l−3/2(r0k)
ξJl−1/2(r0k) − J−l+1/2(r0k) , (3.21)

with
ξ = r1kJ−l−3/2(r1k)

(2l + 1)Jl+1/2(r1k) − r1kJl−1/2(r1k) . (3.22)

Thorough derivations of Equations (3.19) and (3.21) are presented in Appendix C.

3.1.5 Q-Response and Gauss Coefficients
The ratio between induced and inducing field coefficients (Bi/Be)l can be used to calculate
the induction response to an inducing field. The ratio is also known as the Q-response
and is given as

Ql =
(

Bi

Be

)
l

= Ale
iϕph

l . (3.23)

From this equation, the induction amplitude and phase shift can be directly calculated
as the absolute and argument of the Q-response

Al = abs
(

Bi

Be

)
l

ϕph
l = arg

(
Bi

Be

)
l

.

(3.24)

Note that our definition of the wave number k2 differs from the commonly used k2 =
−iωσµ0 (see, e.g., Zimmer et al., 2000; Arridge and Eggington, 2021). This definition is
adapted from the often cited Parkinson (1983), and should arrive at the modified spherical
Bessel equation. The inconsistent use of the standard spherical Bessel functions results in
the complex conjugate expression for Bi,l/Be,l and thus a positive phase shift, which the
authors negate by a sign change in subsequent calculations. The definition in this work
results in a negative phase in the range of −π/2 ≤ ϕph

l ≤ 0. The induction amplitude
Al can assume values between 0 and l/(l + 1). In the literature, it is common practice
to represent the induction amplitude as A = All/(l + 1), in which case it ranges from
0 to 1. A perfectly conducting body has an induction amplitude of A = 1 and phase
shift ϕph

l = 0. For a poorly conductive, small sphere, i.e., for small values of the complex
argument rk, the induction amplitude can be Taylor approximated as

A ≈ r2ωσµ0

15 . (3.25)

While the complex field coefficients have been used to derive descriptions for the induction
amplitude and phase shift, the magnetic field itself is usually represented in external
Gauss coefficients (qm

l , sm
l ) and internal Gauss coefficients (gm

l , hm
l ). In this work, we use

external Gauss coefficients to describe the inducing field and internal Gauss coefficients
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for the induced field. We can split up the full solution of the Laplace equation into an
inducing field potential

Ψ(r, θ, ϕ, t) = a
∞∑

l=1

l∑
m=0

(
r

a

)l

P m
l (cos θ) (qm

l cos mϕ + sm
l sin mϕ) e−iωt (3.26)

and an induced field potential

Φ(r, θ, ϕ, t) = a
∞∑

l=1

l∑
m=0

(
a

r

)l+1
P m

l (cos θ) (gm
l cos mϕ + hm

l sin mϕ) e−iωt. (3.27)

Here, the real description of the spherical harmonics is used. At the surface of the con-
ducting body, r = a, the induced field potential can be calculated using the Q-response,
Equation (3.23), where we consider each degree l separately

Φl(r, θ, ϕ, t) = QlΨl(r, θ, ϕ, t)

= aAle
iϕph

l

l∑
m=0

P m
l (cos θ) (qm

l cos mϕ + sm
l sin mϕ) e−iωt

= a
l∑

m=0
P m

l (cos θ) (Alq
m
l cos mϕ + Als

m
l sin mϕ) e−i(ωt−ϕph

l
).

(3.28)

From this expression follows, that internal and external Gauss coefficients are related via{
gm

l

hm
l

}
= Al

{
qm

l

sm
l

}
. (3.29)

Furthermore, the induced field lags behind the inducing field by a factor ϕph
l /ω. It is also

worth noting that, as the phase shift is a function of the degree l, each multipole moment
of the induced field has its individual temporal lag.

3.2 Coupled Induction Response
In the previous section, we have learned about the relationship between external and
internal Gauss coefficients, as well as the temporal delay of the induction response due
to a phase shift ϕph

l ̸= 0. We calculated the Q-response for a homogeneous sphere and a
spherical layer of constant conductivity. In both cases, spherical symmetry is required, or
else the derived equations would not apply. In this section, we will consider two neighbor-
ing conducting bodies. As their induced fields, excited by a temporally variable primary
magnetic field, are also time-varying, they will act as inducing fields on the other con-
ducting body, respectively. This process enables a coupling mechanism between the two
bodies, which must be taken into account to describe the magnetic field in their vicinity.

The relevance of such a scenario becomes apparent when considering potential water
melt in Europa’s icy crust. As introduced in Section 2.2.2, such melt features could be
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involved in the formation of chaos regions. Disconnected from Europa’s ocean, such reser-
voirs of liquid water would generate their own induction response to the Jovian magnetic
field. The global subsurface ocean would induce additional fields inside the local water
reservoir and vice versa. While the approach developed in this section applies to any case
of two neighboring bodies, we will put an emphasis on the case of a local water reservoir
and a global subsurface ocean (Figure 3.2). The approach to solve the coupled induction
has also been published in Winkenstern and Saur (2023).

In the following, we will present the first iterations of the induced fields. Here, we
introduce the iteration step n and represent Gauss coefficients in the following way,(
(gm

l )(n), (hm
l )(n)

)
, for the internal Gauss coefficients of degree l, order m, and itera-

tion step n. In this notation, n = 1 corresponds to the induced field excited by the
time-varying component of the Jovian magnetospheric field, n = 2 are the induced fields
generated by the former induced fields, and so on.

Boc,dip

Bres,dip

Bres,co
Bprim

Figure 3.2: Sketch of Europa’s interior considered in this section, as shown in Winkenstern
and Saur (2023). Embedded in a primary field Bprim, a dipole is induced in both the ocean
and reservoir, respectively, represented by green field lines. The induced dipoles act as inducing
fields, resulting in coupled induction responses (purple).
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3.2.1 Calculating the Induced Dipole, n = 1
As we assume the Jovian magnetospheric field is homogeneous in Europa’s vicinity, the
induction response is a pure dipole (Saur et al., 2009), i.e., only Gauss coefficients of
degree l = 1 are induced. Due to the homogeneity, the external Gauss coefficients of
the Jovian field BJ(t) = (BJ,x(t), BJ,y(t), BJ,z(t)) are qJ = q1

1(t) = −BJ,x(t) and sJ =
s1

1(t) = −BJ,y(t), respectively. We assume that q0
1 = 0, as temporal variabilities in the

Bz-component are negligible (Kivelson et al., 1999), confining Jupiter’s inducing field to
the xy-plane. Embedding the temporal variability of the magnetic field into the Gauss
coefficients, for example qm

l (t) = qm
l e−iωt, we obtain the induced field at a time t from the

external coefficients at an earlier time t + ϕph
1 /ω as{

(g1
1)(1)(t)

(h1
1)(1)(t)

}
= A1

{
qJ(t + ϕph

1 /ω)
sJ(t + ϕph

1 /ω)

}
, (3.30)

for the ocean and reservoir, respectively. From that, the induced field potentials can be
calculated, where we employ two coordinate systems, one with center in Europa, (r, θ, ϕ),
to describe the ocean’s induced fields, and a second with center in the reservoir, (r′, θ′, ϕ′),
to describe its induced fields

Φ(1)
oc (r, θ, ϕ, t) = r0

(
r0

r

)2
sin θ

((
g1

1

)(1)

oc
(t) cos ϕ +

(
h1

1

)(1)

oc
(t) sin ϕ

)
Φ(1)

res(r′, θ′, ϕ′, t) = rres

(
rres

r′

)2
sin θ′

((
g1

1

)(1)

res
(t) cos ϕ′ +

(
h1

1

)(1)

res
(t) sin ϕ′

)
,

(3.31)

where r0 is the ocean’s outer radius rres the reservoir’s radius.

3.2.2 Solving the Coupling Feedback
In the next iteration step, n = 2, we have to account for higher degrees in the potential
description, as the inducing fields cannot be assumed to be homogeneous anymore. If
we were to continue the calculation from the prior iteration step, with internal Gauss
coefficients at the time t, we would obtain the internal Gauss coefficients of the second
iteration at a later time t − ϕph

l /ω. We are, however, interested in the total induction
response at one time t. Thus, we must first calculate the external coefficients of the Jovian
field at a time t + (ϕph

1,oc + ϕph
l,res)/ω to obtain the ocean’s internal Gauss coefficients of first

iteration as (g1
1)(1)

oc (t + ϕph
l,res/ω)

(h1
1)

(1)
oc (t + ϕph

l,res/ω)

 = A1,oc

{
qJ(t + (ϕph

1,oc + ϕph
l,res)/ω)

sJ(t + (ϕph
1,oc + ϕph

l,res)/ω)

}
, (3.32)

from which the induced field potential Φ(1)
oc (r, θ, ϕ, t + ϕph

l,res) can be obtained, analogous
to Equation (3.31). To calculate the external Gauss coefficients and describe the ocean’s
induced dipole as an inducing field, the radial component of the magnetic field across
the reservoir’s surface is required. The ocean’s induced field B(1)

oc , however, is given in
Europa-centered coordinates. In this reference frame, the reservoir is not spherically
symmetric. Thus, it is required to first transform the ocean’s induction response into
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reservoir-centered coordinates B(1)
oc (r′, θ′, ϕ′). A detailed description of the coordinate

transformation is given in Appendix D. After performing the transformation, we can
use the radial component of the ocean’s induction response across the reservoir’s surface
B

(1)
oc,r′(r′ = rres, θ′, ϕ′) to calculate the corresponding external Gauss coefficients via
{

(qm
l )(1)

oc (t + ϕph
l,res/ω)

(sm
l )(1)

oc (t + ϕph
l,res/ω)

}
= − 2l + 1

4πl∫ π

0

∫ 2π

0
dϕ′dθ′ sin θ′P m

l (cos θ′)B(1)
oc,r′(θ′, ϕ′)

{
cos mϕ′

sin mϕ′

}
.

(3.33)

As before, we can use the relationship between internal and external Gauss coefficients to
obtain the reservoir’s induction response of iteration n = 2{

(gm
l )(2)

res (t)
(hm

l )(2)
res (t)

}
= Al,res

{
(qm

l )(1)
oc (t + ϕph

l,res/ω)
(sm

l )(1)
oc (t + ϕph

l,res/ω)

}
, (3.34)

as well as the resulting induced field potential

Φ(2)
res(r′, θ′, ϕ′, t) = rres

lmax∑
l=1

l∑
m=0

(
rres

r′

)l+1
P m

l (cos θ′)(
(gm

l )(2)
res (t) cos mϕ′ + (hm

l )(2)
res (t) sin mϕ′

)
.

(3.35)

Analogously, the ocean’s induced potential Φ(2)
oc (r, θ, ϕ, t) due to the reservoir’s induced

dipole B(1)
res can be calculated by following the above steps. Note that the sum over degree

l does not go to infinity, but rather up to a prescribed degree lmax due to numerical limita-
tions. The choice of the maximum degree is a compromise between accurately describing
the physical processes and runtime, and will be discussed in Section 3.2.3.

Calculating the induction response of iteration step n = 3 adds an additional layer of
complexity. Before, only the internal coefficients (g1

1)(1) and (h1
1)(1) had to be considered

to obtain the inducing field and its external Gauss coefficients (qm
l )(1) and (sm

l )(1), re-
spectively. Since the induction response of second iteration is not a pure dipole, each
multipole moment generates its own full set of external Gauss coefficients after coordi-
nate transformation. We label those external Gauss coefficients (qm

l′ )(2) and (sm
l′ )(2), with

l′ ∈ [1, 2, ..., lmax]. We follow the same steps as in iteration step n = 2, calculating external
Gauss coefficients for each degree of (gm

l )(2) and (hm
l )(2), which results in lmax subsets of

external Gauss coefficients (qm
l′ )(2) and (sm

l′ )(2), each corresponding to a specific multipole
moment. The overall external Gauss coefficients are obtained by taking the sum over all
subsets

(qm
l )(2) =

lmax∑
l′=1

(qm
l′ )(2)

(sm
l )(2) =

lmax∑
l′=1

(sm
l′ )(2).

(3.36)
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With each additional iteration, the induced field is further delayed by a factor determined
by the phase lag of each individual degree ϕph

l /ω. Assuming an induction amplitude A < 1,
with each iteration the induced field is bound to be weaker than its inducing field. This
effect is additionally increased by the distance term r−l−1 in the magnetic field potential.
The continuous decrease of the inducing field strength eventually results in a convergence
to the full solution, where additional iteration steps add negligible contributions to the
overall description of the induction response.

3.2.3 Numerical Precision
In its most precise form, the magnetic field potential is a sum over l ∈ [1, 2, ..., ∞). In
the numerical implementation, the transformed radial component of the magnetic field
is thus only approximated by a finite set of Gauss coefficients. To assess the maximum
degree lmax, we calculate the root-mean-square (RMS) between the transformed radial
component Br,transformed and its Gauss description Br,gauss across the reservoir’s surface

RMS =

√√√√∑i,j (Br,transformed(θi, ϕj) − Br,gauss(θi, ϕj))2

Nij

, (3.37)

where Nij is the number of grid points. As the magnetic field strength lies in the order
of 400 nT, with perturbations in the range of 10 to 100 nT, we prescribe a precision
of 10−2 nT, below which the RMS must lie to obtain a sufficiently accurate solution.
Signatures and deviations below this limit will likely not be resolved with magnetometer
measurements and provide no detectable information. Figure 3.3 shows the RMS as a
function of maximum degree lmax used for the Gauss description of the radial component
and was used to assess the necessary maximum degree for an RMS below 10−2 nT. For
this assessment, the largest reservoir considered in this study (rres = 20 km) was used,
as the inhomogeneity of the inducing field increases with the size of the reservoir. From
the figure, we derive lmax = 3. Figure 3.4 compares the transformed radial component
of the ocean’s induction response B

(1)
oc,r′ against its Gauss description up to degree 3. We

see, that the inducing field is well represented across the reservoir’s surface by its Gauss
representation with lmax = 3.

3.2.4 Mauersberger-Lowes Spectrum
As previously mentioned, the coupling feedback converges after a certain amount of itera-
tion steps, as each coupled induction response is weaker than the previous one. To control
the required number of iterations to describe the induction coupling with a prescribed pre-
cision, we introduce the Mauersberger-Lowes spectrum, which shows the magnetic power
per degree and iteration (Rl)(n) as (Langel & Estes, 1982)

(Rl)(n) = (l + 1)
l∑

m=0

[(
(gm

l )(n)
)2

+
(
(hm

l )(n)
)2
]

. (3.38)

Considering the previously prescribed precision of 10−2 nT for the overall induction, for a
dipole this value correlates to a magnetic power on the order of 10−4 nT2. Thus, iterations
where the magnetic power lies below 10−4 nT2 for all degrees are excluded.
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Figure 3.3: RMS according to Equation (3.37) as a function of maximum degree lmax used in
the Gauss description of the magnetic field potential. The dashed line indicates the required
precision of 10−2 nT. The calculation of the RMS was performed across the reservoir’s surface
with radius rres = 20 km and conductivity σres = 30 S/m.
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Figure 3.4: Transformed radial component of the ocean’s induction response across the reser-
voir’s surface at θ = 90◦ (black, solid) and its Gauss representation with lmax = 3 (orange,
dashed) as a function of longitude ϕ.



4

Detectability of Liquid Water Reservoirs

This chapter presents the study published in Winkenstern and Saur (2023), which inves-
tigates the potential detectability of local water melt entrapped in Europa’s icy crust.
Such water melt could be involved in the formation of chaos regions, though the exact
formation mechanism of these disrupted ice regions is not exactly known. The underlying
assumption is that the reservoir is disconnected from the global subsurface ocean, creat-
ing its own induction response. As both induced fields generated within the ocean and
reservoir are time-varying fields, they will also act as inducing fields on the water body,
respectively. This enables a coupling mechanism between ocean and reservoir, which must
be taken into account to accurately describe the system. The theoretical background of
the coupled induction is introduced in Section 3.2. The study is based on an idea proposed
by Joachim Saur and has been developed together from there on. The original manuscript
was fully written by Jason Winkenstern and revised with the co-author and referees, ex-
cept Section 4.3.5, which was written by Joachim Saur. Sections 1 and 2 (Introduction
and Methods) of the publication are not included in this chapter to avoid redundancy.

4.1 Model Implementation

In this section, we describe the model setup and its implementation. First, the equation
for the inducing field is introduced, followed by a discussion of existing values for the ice
shell thickness and the ocean’s conductivity to motivate the prescribed parameter space of
reservoir radii and conductivities. Finally, we explore additional inducing periodic signals
in Europa’s rest frame and the reservoir’s induction response at those compared to the
synodic rotation period.

23
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4.1.1 Inducing Background Field
We approximate the inducing part of the Jovian background field BJ(t) to be elliptically
polarized (see Figure 1 in Khurana et al., 1998) with

BJ,x(t) = B0,x cos(ωt + ϕph
x )

BJ,y(t) = B0,y cos(ωt + ϕph
y ) (4.1)

BJ,z(t) = 0,

in Europa IAU coordinates, where B0 = (−217, 64, 0) nT, ϕph
x = 0, and ϕph

y = −π/2.
Note that the magnetic field in Khurana et al. (1998) is given in EPhiO coordinates,
which correspond approximately to x → y and y → −x in IAU coordinates. For the
purpose of this paper, we neglect the small misalignment of unit vector directions in
EPhiO and Europa IAU coordinates. We will choose ωtobs = π in Section 4.2, where we
show the results of our coupled model. This choice leads to the maximum background
field for our induction studies.

4.1.2 Geometric Parameters
As chaos terrain is mostly found near equatorial regions (Greenberg et al., 1999), we
assume a reservoir position in the xy-plane. We choose a position parallel to the x-axis,
which also aligns with the magnetic background field at the chosen time. As the main
focus of this work lies on the induction signature of a reservoir of different sizes and con-
ductivities, the ocean’s induction amplitude remains constant to ensure similar induction
responses throughout the study. We assume a fixed sea floor depth of 150 km, correspond-
ing to an inner radius r1 = 1410 km1. The outer radius will be changed accordingly to
the radius of the reservoir so that the reservoir spans across the entire icy crust, but still
does not overlap with the global ocean. In this way, our study gives an upper limit to
the expected small signals. The only exceptions to this geometry are Figures 4.2 and 4.3,
where a small gap is added to highlight additional effects of the ocean-reservoir system. As
changing the outer radius effects the ocean’s induction amplitude, its conductivity must
be adjusted accordingly (see Section 4.1.4). It should be noted that while this method
keeps the induction amplitude constant, this does not hold true for the phase shift. We
will consider reservoir radii ranging from 5−20 km, accordingly to crust thicknesses found
in literature.

4.1.3 Ice Shell Thickness
The thickness of Europa’s icy crust is a crucial parameter in the description of its induction
response, as the ratio (r0/rm)3 governing the induced dipole field is larger for a shallow
ocean compared to a deep one, resulting in a stronger induced magnetic field around
Europa. Different methods have been used to infer the crust’s thickness, yielding varying
estimates. A range of those estimates is summarized in Table 4.1. It is noteworthy that, as
a consequence of the non-uniqueness of the induction problem and unknown conductivity,
the bounds found with the induction method are less constraining than other methods.

1In this manuscript, RE = 1560 km was used for Europa’s radius.
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Table 4.1: A collection of literature values for the ice shell thickness h.

h /km Reference Method
≤ 15 Hand and Chyba (2007) Induction
≤ 100 Zimmer et al. (2000) Induction
≥ 4 Turtle and Pierazzo (2001) Impact crater modelling

5 − 10 Silber and Johnson (2017) Impact crater modelling
> 19 Schenk (2002) Impact crater observation

20 − 25 Tobie et al. (2003) Tidal dissipation model
≤ 3 Lee et al. (2005) Cycloid crack formation
≈ 25 Prockter et al. (2000) Crustal cycling

4.1.4 Electrical Conductivity
The electrical conductivity driven by dissolved ions can generally be expressed as a func-
tion of pressure, temperature, and concentration of the respective salt (McCleskey et al.,
2012; Pan et al., 2020, 2021). A key issue about Europa’s ocean is the uncertainty about
its chemical composition (McKinnon & Zolensky, 2003; Ligier et al., 2016; Trumbo et
al., 2019, 2022). As recent UV observations favor an ocean composition rich in sodium
chloride, we focus on the conductivity range achieved with it. Hand and Chyba (2007)
inferred conductivities of up to 30 S/m. It should, however, be noted that they used a fit
for sea salt, of which the main contributor is sodium chloride at approximately 90%. For
our parameter study, values ranging from 0.5−30 S/m will be considered for the reservoir,
covering a low conductivity limit as well as the conductivity at saturation. As we vary
the ocean’s outer radius, keeping a fixed ocean conductivity σoc throughout all simula-
tions would result in different induction amplitudes for the ocean and thus influence the
reservoir’s induction differently between individual runs. Thus, we adapt the conductivity
of the ocean so that the induction amplitude remains constant at Aoc = 0.91. This is
done by computing the induction amplitude prior to the study and adjusting the con-
ductivity until Aoc reaches 0.91, corresponding to a conductivity of σoc ≈ 0.5 ± 0.1 S/m
for ocean thicknesses in the range of 110 − 140 km, which has been derived in Schilling
et al. (2007). Other values for the ocean’s conductivity are plausible, as is evident by the
broad conductivity range found in literature cited within this section. This is due to the
non-uniqueness of the problem, where different choices for the ocean’s thickness, depth,
and conductivity can result in the same induction amplitude.

4.1.5 Frequency of the Inducing Field
In addition to Jupiter’s synodic rotation period, Europa is subject to further periodicities
with various magnetic field amplitudes, which allow for electromagnetic sounding at mul-
tiple frequencies (Seufert et al., 2011). This is of particular interest for the detection of a
shallow reservoir, as its induction amplitude increases with frequency, for example, higher
order harmonics of Jupiter’s synodic period at 5.62 h and 3.33 h, respectively. However,
the amplitudes of the inducing field at those frequencies are one to two orders of mag-
nitudes lower compared to the amplitude at the 11.23 h period, resulting in an overall
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weaker induction response at these frequencies. This is shown in Figure 4.1, where the
reservoir’s induction response in spherical coordinates is given for various periodicities.
In addition to the synodic periods, we also present the induction signals at 85.22 h and
641.90 h, corresponding to Europa’s orbital period and the solar rotation period. The
induced fields resulting from these signals are weaker. Thus, we will only consider the
magnetic fields induced by the synodic period T = 11.23 h throughout calculations in this
work.
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Figure 4.1: Magnetic field amplitudes of the periodic signals in System III coordinates (top).
Induction response of a 20 km-diameter reservoir (σres = 10 S/m) as a function of period (mid-
dle). Resulting induction responses of the reservoir to the magnetic field amplitudes at their
respective periods (bottom).
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4.2 Results
To highlight the effects of the coupled induction, we present the physics in the illustrative
case of a perfectly conducting ocean and reservoir, before showing the effects of coupled
induction in finite cases. Afterward, we investigate the detectability of reservoirs with
radii and conductivities discussed in Sections 4.1.2 and 4.1.4 at 25 km altitude and at the
surface.

4.2.1 Physics of the Coupled System
Figure 4.2 visualizes the magnetic field components in the xy-plane in the vicinity of a
perfectly conducting reservoir, with and without coupling effects. It is apparent that only
with consideration of coupled induction, the reservoir behaves like a perfectly conducting
body, i.e., the inducing field does not penetrate the body. We added a small gap between
the ocean and reservoir in the example shown in Figure 4.2. This is to highlight that in
addition to not permitting the magnetic field to penetrate the conducting bodies, due to
σ → ∞, the area between reservoir and ocean is also nearly completely shielded from the
magnetic field at a close distance.

In a realistic scenario, the ocean’s and reservoir’s induction amplitudes are smaller than
one. In addition to this, their phase shift is non-zero, resulting in induction responses that
are no longer antiparallel to the inducing field, which is shown in Figure 4.3. Here, the
total magnetic field is stronger than in the perfectly conducting case due to the weaker
induction response and the xy-components are not aligned along the y-axis as a result of
the phase shift.

4.2.2 Coupling Interaction Strength
To obtain a sufficiently accurate and numerically efficient description of the coupling pro-
cesses, it is important to look at the contributions of each coupling iteration. Figure 4.4
shows the Mauersberger-Lowes spectrum calculated with Equation (3.38) for both the
ocean and reservoir induced fields up to the first coupled field (iteration step n = 2).
For the ocean, the main contribution is generated by the dipole response to the Jovian
background field with a magnetic power of approximately 104 nT2. Due to the geometry,
the reservoir induces higher degrees in the ocean, where the power reaches a maximum of
approximately 10−6 nT2 at degree l = 7 and decreases thereafter. Compared to the dipole
term of first iteration n = 1 with 104 nT2, the coupling from the ocean to the reservoir,
i.e., the induced field of second iteration n = 2, is negligible, with a radial component in
the order of 10−2 nT at the surface of the reservoir. It is thus excluded in any further
calculations and results, as such weak induced fields will not be detectable.

The reservoir’s induction response of first iteration n = 1 is the dipole response to Jupiter’s
background field, and thus only has a degree l = 1 contribution. The magnetic power of
the induced dipole in the reservoir is around two orders of magnitude smaller than the
ocean’s induction response. This is a direct consequence of the reservoir’s small extension
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Figure 4.2: Magnetic field components in the xy-plane in the ocean-reservoir environment
with radius rres = 20 km, assuming both ocean and reservoir are perfectly conducting. The
left panel shows the vector field only after the first iteration, i.e., a superposition of the induced
dipole fields in the ocean and reservoir, whereas the right panel visualizes the field after coupling
iteration n = 2. The arrows representing the magnetic field are normalized in length and do
not represent the strength of the magnetic field, which is instead color coded in the background.
The arrows in the center indicate the orientations of the background field (black), ocean induced
field (green), and reservoir induced field (cyan), where the length indicates the strength relative
to the background field. The dashed black line visualizes the surface boundary.
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Figure 4.3: Magnetic field components in the xy-plane in the ocean-reservoir environment
after mutual induction coupling for a reservoir with radius rres = 20 km and finite conductivity
σres = 30 S/m, where the induction response of the system follows Equation (4.2). The arrows
representing the magnetic field are normalized in length and do not represent the strength
of the magnetic field, which is instead color coded in the background. The arrows in the
center indicate the orientations of the background field (black), ocean induced field (green), and
reservoir induced field (cyan), where the length indicates the strength relative to the background
field. The dashed black line visualizes the surface boundary.
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Figure 4.4: Mauersberger-Lowes spectrum for the ocean (black) and reservoir (violet) for
multipole degrees up to lmax = 120. Upward triangles show the dipoles induced by the Jovian
background field. Downward triangles represent the induced fields of second iteration.

and thus induction amplitude, as following from Equation (3.25). However, the reservoir
induced field of second iteration n = 2 has significant contributions at degrees l = 1 and
l = 2 due to the inhomogeneous nature of the inducing field from the ocean and must
be considered to describe the mutual feedback and to meet the prescribed precision of
10−2 nT introduced in Section 3.2.3. Thus, the reservoir is strongly coupled to the ocean,
whereas the influence from the reservoir on the induction response of the ocean is overall
negligible (see small R values for l > 1 for the ocean in Figure 4.4). The total induction
response of the system can be described as a sum of three induction responses

Bind,tot = B(1)
oc + B(1)

res + B(2)
res. (4.2)

For the geometries considered in this model, the reservoir is coupled to the ocean and
reacts considerably to its induced dipole. The coupling of the ocean to the reservoir is
negligibly small due to the difference in size.

4.2.3 Detectability at 25 km Altitude
With Europa Clipper, multiple encounters with an altitude of 25 km at closest approach
are planned (Campagnola et al., 2019). For that purpose, we investigate the induction
strength of a coupled system at 25 km in comparison to a radially symmetric system dur-
ing a hypothetical flyby above the reservoir. Here, two effects that contribute to magnetic
field perturbations in Europa’s vicinity, additionally to induction by a subsurface ocean
and reservoir, need to be considered, as they can potentially obscure the weak induction
signal of a reservoir. The first is plasma interactions in Europa’s ionosphere, which are
largest when Europa is in the plasma sheet and can generate perturbations on the order
of 100 − 200 nT. Additional perturbations can be present in magnetometer measurements
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if the spacecraft crosses the Europan Alfvén wings (Schilling et al., 2007, 2008). The
second phenomenon is apparently random small-scale fluctuations which occur on short
time scales (Blöcker et al., 2016).

To estimate the maximum amplitude that can be distinguished from these fluctuations,
we superimpose several artificial amplitudes of reservoir induction signals onto the mag-
netometer data from the E14 flyby at an altitude of 25 km. We specifically chose this
encounter, as the fluctuations were small compared to other flybys. It is also one of the
few Galileo orbits that are exempt from large-scale plasma effects. The E14 flyby also does
not show any signs of plume activity, which can result in anomalies on the order of 100 nT
(Jia et al., 2018; Arnold et al., 2019). Thus, the E14 orbit offers clear identification of
induction signals generated within Europa’s subsurface. We added artificial dipole signals
as generated by a perfectly conducting reservoir with various amplitudes 5, 10, and 20 nT
at 25 km to the measurements and found an induction response with a 5 nT amplitude
to be distinguishable from most fluctuations within the measurements, which lie at an
average of 3 nT (see Figure 4.5). However, individual fluctuations with amplitudes above
5 nT exist in the E14 data and occur on time scales similar to the induction response
of a reservoir. Multiple flybys across the same region would be needed to verify such a
weak perturbation due to induction from the reservoir, assuming the other small-scale
fluctuations are random. An induction signal of 20 nT would be clearly distinguishable
from fluctuations, which is also valid for an amplitude of 10 nT. The bottom panel of
Figure 4.5 displays a zoom-in of the time interval around the passage of the reservoir.
Here, the dipole character of the reservoir’s induction response is visible, which is differ-
ent from the other fluctuations. This might additionally help to separate the apparently
random fluctuations from perturbations caused by a reservoir. In future measurements,
where indications of an induced signal from a reservoir are present, a number of statistical
tests based on the detailed structure of the RMS fluctuations will need to be applied to
quantitatively assess such signals.

In Figure 4.6, we present the radial component of the magnetic field Br that would be
measured during a 25 km flyby above a reservoir with a radius of 20 km and a conductivity
σres = 30 S/m. The radial component Br is given as the sum of inducing field BJ,r(t),
given by Equation (4.1), and induced field in ocean and reservoir Bind,r, which is given by
Equation (4.2). For comparison, we also include the radial component if no reservoir was
present and if there was no coupling between ocean and reservoir. We see the induction
signal of the reservoir as a small-scale perturbation overlaying the induction signal of the
ocean. In this scenario, the coupling effects cause a small enhancement of the reservoir’s
induction response, resulting in a deviation of approximately 1 nT compared to the in-
duction response of a radially symmetric interior. We calculate the maximum deviation
between these two models to obtain information about the potential detectability of local
asymmetries within the parameter space discussed in Section 4.1 (Figure 4.7). For large
reservoirs, its induction response ranges from 10−1 − 10−2 nT. The induction signature
decreases for smaller reservoirs down to orders of 10−4 nT. In the low conductivity limit,
the induction response at 25 km lies below 10−2 nT for all radii. For all reservoir radii and
conductivities considered in Figure 4.7, the respective induction responses lie below 5 nT.
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Figure 4.5: Magnetometer measurements of the By component during the Galileo E14 flyby
(black). Additionally, artificial signals of a perfectly conducting reservoir with 5 nT (red), 10 nT
(green), and 20 nT (violet) amplitude at 25 km altitude have been superimposed to the data to
test if these signals are distinguishable from the fluctuations. The bottom panel shows a zoom
into the 1000 km around C/A to show the reservoir’s induction characteristic.

Based on Figure 4.7, at 25 km closest approach, the magnetic field perturbation caused
by a local reservoir of liquid water between the ocean and icy surface is too weak to be
resolved, as the field strength lies below 5 nT across the entire parameter space consid-
ered in this study. Additionally, this induction response will likely not be distinguishable
from overlaying plasma effects in the measurements described, for example, in Saur et al.
(1998), Schilling et al. (2007, 2008), Blöcker et al. (2016), or Arnold et al. (2020), which
are generated by ionospheric interactions with the Jovian magnetosphere and perturb
the magnetic field. As the values for all discussed induction responses from the reservoir
lie below 5 nT, increasing the limit of detection to account for distinct identification of
reservoir signals has no impact on our conclusions.
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Figure 4.6: Radial component of the sum of inducing and induced magnetic field Br = Bind,r +
BJ,r, where Bind,r follows Equation (4.2) and BJ,r is obtained by considering Equation (4.1) at
ωt = π, during a hypothetical flyby with 25 km altitude at closest approach with reservoir
parameters σ = 30 S/m and rres = 20 km.
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Figure 4.7: Magnetic induction signature caused by reservoir at 25 km altitude as a function
of radius for conductivities ranging from 0.5 to 30 S/m. The dashed horizontal line at 5 nT
represents the minimum at which reservoirs could be detected with multiple flybys.
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4.2.4 Detectability at the Surface

Another potential option for the detection of local asymmetries could be the deployment
of stationary magnetometers on Europa’s surface, specifically on interesting targets such
as chaos regions. This method requires the use of multiple magnetometers to obtain ref-
erence values outside the reservoir’s reach, e.g., one magnetometer atop the reservoir and
a second magnetometer which is positioned at a distance close to the reservoir, where
the induction signal of the reservoir is approaching negligible values. For the results pre-
sented within this section, the first magnetometer is positioned at θ = 90◦, ϕ = 0◦ in
Europa-centered coordinates, directly above the reservoir. The second magnetometer is
stationed at θ = 90◦, ϕ = 359◦, which corresponds to a distance of 27.2 km between the
two magnetometers. The use of magnetometers allows the recording of time series, which
are shown in Figure 4.8. As a comparison, we evaluate the different magnetic fields two
magnetometers would measure if only an ocean is present (see Figure 4.9), and find that
the deviation is smaller, with a maximum of 1 nT compared to approximately 9 nT if a
reservoir with σres = 30 S/m and rres = 20 km is present.

While this difference in measurements of two nearby magnetometers primarily arises due
to the rapid decrease of the reservoir’s induction response, the spatial variation of the
ocean’s induction response contributes approximately up to 1 nT to the measured dif-
ference. In addition, the plasma effects can be large. We estimate the magnetic field
gradient from Europa’s plasma interaction based on simulations by Schilling et al. (2008)
during the E04 flyby. While simulations made by other authors (see, e.g., Blöcker et al.,
2016; Arnold et al., 2020) would allow for such estimates as well, the model conditions
assumed in Schilling et al. (2008) resemble our conditions the most due to the similarities
between the E04 and E14 flyby, i.e., Galileo performed the flyby near the equatorial plane
and Europa was well outside the plasma sheet. Near Europa’s equatorial plane, the field
varies by approximately 100 nT across one Europan radius, which for this flyby is mostly
attributed to the induced field of the subsurface ocean. Thus, the plasma interactions
appear to be smaller than induction effects outside the plasma sheet, with a gradient
< 1 nT/km. Inside the plasma sheet, the gradient by plasma interactions is larger, up to
approximately 200 nT/RE.

With the recording of temporal variation at a fixed position, random fluctuations will
tend to average out over a long term, e.g., months of observations. To still account for
such fluctuations in the measurements, we fit a polynomial of order 4 to 2 hours of E14
data outside the time region of closest approach and find an RMS error of 2.3 nT. How-
ever, during times in which Europa is within high density plasma regions, the magnetic
field perturbations due to plasma interactions will make any induction signal unresolv-
able in the measurements. Outside the current sheet, we find that reservoirs with radius
below 8 km cannot be detected for all conductivities considered and that reservoirs larger
than 8 km require conductivities above 3 − 30 S/m to lie above the gradient caused by the
ocean’s induction response (see Figure 4.10). For reservoirs below 12 km, the difference
measured by two magnetometers is smaller than the RMS of the fluctuations in the data.
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Figure 4.8: Time series of the radial component of the sum of induced and inducing magnetic
field (solid, black) on top of a reservoir and 1◦ in longitude outside a reservoir (dash dotted) for
rres = 20 km and σres = 30 S/m. The solid red curve and y-axis show the difference between the
two calculations.
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Figure 4.9: Same setup as Figure 4.8, except that in this model only an ocean is present, i.e.,
there are no local asymmetries.
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The three limits for the detectability of a reservoir due to gradients in the induction signal
of the ocean, the plasma interaction and small-scale fluctuations discussed in the previ-
ous paragraph should be considered upper limits and smaller induction signatures of a
reservoir are expected to be detectable. On long time series, periodic contributions can
be filtered out and therefore suppressed within a statistically distributed noise, while the
gradients due to the plasma interactions and the induced magnetic field from the ocean
can be partially accounted for by numerical simulations.
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Figure 4.10: Maximum difference caused by the reservoir’s induction response between surface
measurements taken above a reservoir and 1◦ in longitude (27.2 km) away from the first mag-
netometer as a function of reservoir radius for conductivities ranging from 0.5 to 30 S/m. Here,
the ocean’s induction response has been subtracted from the difference. The dashed horizontal
lines mark perturbations caused by the gradient over 27.2 km distance of the ocean’s induction
response (1 nT) and the RMS at 2.3 nT from random noise in the data, respectively.
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4.3 Discussion
We briefly summarize our analytical model and afterward discuss the results presented in
Section 4.2, especially with regard to the detectability of reservoirs with future missions.

4.3.1 Analytical Model for Coupled Induction
We constructed an analytical model that accurately describes the electromagnetic cou-
pling and the resulting induced fields between two neighboring spherically symmetric
bodies, in this case a global subsurface ocean and a small-scale reservoir within the icy
crust. This model is solved numerically using an iterative method to account for the
mutual induction between ocean and reservoir. The implementation of coupling effects is
crucial for the physical correctness of the calculated fields, and our work provides a new
approach to describing these coupled fields. The equations used in this approach assume
both conductors to be radially symmetric with a constant conductivity. It is important
to consider each multipole moment of the induced field separately as the phase shift is
a function of degree l, thus each contribution to the multipole is induced with a vary-
ing temporal delay ϕph

l /ω. It should be noted that real reservoirs or local conductivity
anomalies will not be perfectly spherically symmetric. For complex and arbitrarily shaped
conductive structures, no analytical solution of the induction response exists, and the in-
duction response needs to be calculated with full numerical solvers. Such calculations are
outside the scope of this work.

4.3.2 Detectability at 25 km Altitude
The detectability of a small-scale reservoir faces multiple challenges. First, the low am-
plitude of a reservoir due to its small size, as the induction amplitude varies with the
square of the radius via Equation (3.25). For a reservoir with radius rres = 20 km and
conductivity σ = 30 S/m, its induction amplitude is still just Ares = 0.15, while for an
ocean such large conductivities would result in a near-perfectly conducting response. If we
now assume a perfectly conducting reservoir with A = 1 to test its detectability at 25 km,
this illustrative scenario highlights the challenge imposed by the coupling processes be-
tween ocean and reservoir. Here, the reservoir’s dipole response to the Jovian background
field gets obscured by the coupled induction response to the ocean’s dipole, resulting in a
significantly lower induction signature by the reservoir. At 25 km altitude, one would mea-
sure a deviation to the symmetric model of approximately 1 nT after coupling processes
instead of 8 nT if only the superposition is assumed (superposition refers to considering
just the n = 1 iteration for both ocean and reservoir). The third issue is the distance to
the reservoir, as its induced fields experience a rapid decrease due to its small extension.
These fields are dipole dominant and decrease with (rres/r)3, where r > 2rres for our cases.

A reservoir might be detectable if its properties lie outside our considered range, i.e.,
if the reservoir has a higher conductivity or a radius larger than 20 km. A conductivity
above the upper limit of 30 S/m could hint at a higher temperature or pressure within
the water melt, resulting in an increased conductivity of saline water containing sodium
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chloride (Guo & Keppler, 2019). Although past studies argued for a magnesium sulfate
rich ocean (Kargel et al., 2000; McKinnon & Zolensky, 2003), its conductivities are lower
than sodium chloride assuming near-saturation conditions (Hand & Chyba, 2007), and
would thus generate weaker magnetic field perturbations. A larger radius will be bene-
ficial for its detectability due to a larger induction amplitude and the slower decrease of
the resulting induced field. However, this also implies a deeper ocean, as the icy crust
thickness has to be adjusted accordingly. As a deep subsurface ocean lies outside of many
of the estimates presented in Section 4.1, we chose not to consider such cases in our study.

4.3.3 Detectability at the Surface
A reservoir can be detected if magnetometers are deployed on Europa’s surface, which
would be a valuable experiment to include in future missions. For that, one magnetome-
ter would be positioned directly on the region of interest, for example a chaos region. A
second magnetometer would be placed right outside the chaos region, where the induction
signal of a local water melt below it would approach negligible values. This method allows
distinguishing local features from the global depth variabilities of the ocean as considered
by Styczinski et al. (2022). While surface measurements also eliminate one of the chal-
lenges mentioned in Section 4.3.2 in detecting a reservoir, i.e., the rapid decrease of the
induction response with distance, the induction amplitudes remain limited to low values.
Thus, in our most conservative case, only reservoirs with a radius larger than rres ≈ 12 km
and conductivities σ > 7 S/m are able to generate an induction response where the dif-
ference measured by two magnetometers at 27.2 km distance lies above the RMS inferred
from the data at times around Galileo’s E14 flyby. The recording of temporal variability
at a fixed position could, however, allow us to obtain a more profound understanding
of the periodicity of the various electromagnetic effects and distinguish them from each
other in the time series. With this information, large-scale plasma effects can potentially
be subtracted from measurements using numerical models, which would then allow for
detection of reservoir signals even in larger-plasma-density regions. Model calculations,
where the reservoir placements resemble those of chaos regions on Europa, can be made
to compare future measurements with the theoretical results.

4.3.4 Outlook to Future Spacecraft and Lander Missions
Finally, we will discuss our results in the context of the planned Europa Clipper and
JUICE spacecraft, as well as highlight the advantages of a surface lander.

Detectability with JUICE

For the JUICE mission, only two flybys at Europa are planned, with altitudes around
400 km (Cappuccio et al., 2022). Assuming a reservoir with a radius of 20 km, its induced
field decreases to about 1/8000 of its amplitude at the planned altitude, assuming a simple
dipole, equaling to 4 · 10−3 nT for σres = 30 S/m. Thus, JUICE will not be able to detect
reservoirs of liquid water with its magnetometer measurements.
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Detectability with Europa Clipper

In this work, Europa Clipper has served as a motivation in choosing an altitude of 25 km
during a hypothetical flyby, as multiple encounters at that distance are planned. However,
assuming a sensitivity limit of 5 nT, the induction signals of a reservoir are too weak to be
resolved with magnetometer measurements. If the measurements would have significantly
smaller fluctuations than those measured during the E14 flyby, then the sensitivity could
be lower than 5 nT as well. This potentially allows the detection of large and highly
conductive reservoirs.

Detectability with Landers

We have shown that reservoirs are expected to be detectable at the surface if Europa is
outside the plasma sheet, providing additional scientific capabilities to consider for future
plans for lander missions, which have been the subject of discussion over the last years
(see, e.g., Pappalardo et al., 2013; Blanc et al., 2020; Hand et al., 2022). Additionally, the
idea of a magnetometer network across Europa’s surface offers an interesting approach to
map spatial variabilities, e.g., depth variabilities between the polar and equatorial regions.
Such a network of surface magnetometers would be highly valuable to investigate multiple
chaos regions suspect to the existence of water pockets and help in the understanding of
their formation.

4.3.5 Concluding Remarks
In this work, we investigated the joint induction response of two spherically symmetric,
electrically conducting bodies, i.e., an ocean and a reservoir. We provided an analytical
model that is solved using a numerical, iterative method and calculated the total induc-
tion response of the coupled system across the chosen parameter space for the reservoir’s
radius and conductivity. These induced magnetic fields have been investigated for their
detectability at altitudes equal to the planned JUICE and Europa Clipper spacecraft fly-
bys, where for Europa Clipper the minimum flyby altitude of 25 km has been chosen. With
the JUICE spacecraft, reservoirs cannot be detected with magnetometer measurements,
whereas Europa Clipper might be able to resolve large and highly conductive reservoirs
assuming small random fluctuations at the time of the flybys. Liquid water reservoirs
are likely detectable at Europa’s surface using a network of magnetometers, offering a
valuable outlook to future lander missions. The presented study is therefore a first step
toward understanding the induction response and the detectability of local near-surface
anomalies within Europa’s icy crust by induction sounding.
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5

A Quantitative Approach to Constrain Europa’s
Ocean

In Chapter 3, we have described how the induction method can be used to indirectly probe
Europa’s interior, specifically its subsurface ocean, as its electromagnetic response to the
time-varying component of Jupiter’s magnetic field is a function of its depth, thickness,
and electrical conductivity. In this chapter, we present a method with which we quantita-
tively characterize these three properties and their constraints. This is done by performing
an inversion of magnetic field measurements recorded with the Galileo spacecraft. Here,
we also take into account the model uncertainties introduced by the models for the indi-
vidual contributions to the magnetic field model, the inducing magnetic field, the Jovian
magnetospheric background field, and the magnetic field due to Europa’s plasma inter-
action. These uncertainties are estimated before the inversion is performed. Afterward, we

The study in this chapter is a manuscript that is currently in preparation, with Jason
Winkenstern as leading author and Joachim Saur and Sebastian Cervantes as co-authors.
The research objective has been developed together with Joachim Saur. The MHD sim-
ulations needed to describe the magnetic field due to Europa’s plasma interaction were
carried out by Sebastian Cervantes.

5.1 Methods
The magnetic field at Europa Bmodel can be described as the sum of three contributions

Bmodel = Bbg + Bind + Bplasma, (5.1)

where Bbg is the Jovian magnetospheric background field, Bind is the induced magnetic
field generated within Europa’s subsurface ocean, and Bplasma is the magnetic field due to

41
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Europa’s plasma interaction. The modelled magnetic field is compared against observa-
tions recorded along the spacecraft’s trajectory Bobs(r). A phenomenological sketch of the
problem is shown in Figure 5.1. Subtracting the background and plasma fields from the
observed magnetic field, we assume the residual field represents the induced field within
the measurements, referred to as the "observed induction response" Bobs,ind in this study

Bobs,ind = Bobs − Bbg − Bplasma. (5.2)

Using the ocean properties as model parameters, we perform an inversion to determine
which combinations of (d, h, σ) appropriately reproduce the measurements. Here, we do
not only provide a "best-fit", i.e., the ocean properties where ||Bmodel(d, h, σ) − Bobs||2
is minimum, but also characterize their uncertainties. This is done by performing a chi-
squared analysis, in which ||Bmodel(d, h, σ)−Bobs||2 is weighted against a given uncertainty.
Rather than the uncertainty in the spacecraft measurements, it is the assumptions in the
model descriptions of the individual contributions that control the overall uncertainty
used to calculate chi-squared. A prescribed criterion of χ2 ≤ 1 provides uncertainties
on the ocean properties in the form of a range, e.g., d ∈ [dlower, dupper], in which these
properties can lie.

In this section, we introduce the models with which we describe the individual contri-
butions to the modelled magnetic field. Due to assumptions made within each model,
these descriptions are not an exact representation of the real magnetic field in Europa’s
environment. We quantify the uncertainties that are introduced as a consequence of our
assumptions. Afterward, we present the chi-squared analysis with which these uncer-
tainties are used to characterize both the ocean properties and their uncertainties in a
quantitative manner.

5.1.1 Inducing and Induced Magnetic Field Model
The induced field is the direct electromagnetic response to the inducing field. As such,
any uncertainty in the model of the inducing field directly propagates into the induced
field. Here, we present the inducing field model and quantify its underlying uncertainty.
Afterward, we investigate the uncertainty propagation into the induced field.

Inducing Field Model

Considering only the inducing frequency ω corresponding to the synodic rotation period
T = 11.23 h, we assume that the inducing field is confined to the xy-plane and homoge-
neous in Europa’s vicinity. This leads to the following description of the external Gauss
coefficients (q, s) of the inducing field

q(t) = ℜ
{
q0e

i(ωt−ϕ0−ϕx)
}

s(t) = ℜ
{
s0e

i(ωt−ϕ0−ϕy)
}

,
(5.3)

with the inducing amplitudes q0 = −B0,x and s0 = −B0,y, phase of the inducing field
ϕ0 = 200◦ (Schilling et al., 2007), and additional phases of the individual components
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Figure 5.1: Sketch of the problem. The tilt of Jupiter’s dipole component with respect to
its rotational axis Ω induces a magnetic field within Europa’s subsurface ocean (dark blue)
Bind(d, h, σ), which is surrounded by a non-conductive icy crust (bright blue) and underlying
mantle material (brown). The induced field is a function of the ocean properties investigated in
this work. Besides the induced field, Jupiter’s background field Bbg is additionally perturbed by
the plasma interaction between Europa’s atmosphere (gray layer) and the Jovian magnetosphere
Bplasma, where the strength varies with the O2 column density NO2 , among other factors. These
three contributions build our magnetic field model, as described by Equation (5.1). To quantify
the ocean properties, we perform an inversion with the goal to minimize the misfit between
the model and measurements made by the Galileo spacecraft along its trajectory Bobs(r) (black
line). Due to assumptions in the model descriptions of background field, inducing field, and
plasma interaction, uncertainties are introduced, which are characterized and utilized to derive
the ocean properties and their constraints by employing a chi-squared analysis.
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Table 5.1: Inducing amplitude at the synodic rotation period. Values between the two refer-
ences vary as different models for the internal and external contributions to Jupiter’s magnetic
field have been used.

Seufert et al. (2011) Vance et al. (2021)
Bx [nT] 66.3 75.55
By [nT] 216.6 209.78

ϕx = 90◦, ϕy = 0◦. We employ the EPhiO coordinate system, where z is parallel to
Jupiter’s rotational axis, y points toward Jupiter, and x completes the right-handed sys-
tem (pointing approximately in the direction of corotational flow). We note that recent
work favors the use of Europa IAU coordinates (e.g., Styczinski et al., 2022; Biersteker
et al., 2023), however, with past studies on the Galileo flybys also performed in EPhiO
coordinates, we follow that approach.

This study focuses on the measurements recorded during the E14 flyby. As such, we
chose values for q0 and s0 that best reproduce the values obtained with the magneto-
spheric model by Khurana (1997) at the System III longitude at which the E14 flyby
occurred (λIII = 184.3◦). From this approach, it follows q0 = −37 nT and s0 = −222 nT.

Uncertainty of the Inducing Field

The values for the inducing field amplitudes q0 and s0 are estimated using a magneto-
spheric model which includes both Jupiter’s intrinsic field, as well as contributions from
magnetospheric currents, rather than exclusively the dipole term of Jupiter’s intrinsic
field. The strength of the inducing amplitude at a given period can be determined by per-
forming a Fourier analysis of the modelled magnetic field over a long time series (Seufert
et al., 2011; Vance et al., 2021). The values for the inducing amplitude at the synodic
rotation period are given in Table 5.1. We approximate the uncertainty of the inducing
amplitude at the synodic rotation period (σq0 , σs0) as the difference between the values
obtained by Seufert et al. (2011) and Vance et al. (2021), which yields σq0 = 9.3 nT and
σs0 = 6.3 nT. From that, the uncertainty of the external coefficients can be calculated as

σq(t) = ℜ
{
σq0ei(ωt−ϕ0−ϕx)

}
σs(t) = ℜ

{
σs0ei(ωt−ϕ0−ϕy)

}
.

(5.4)

Induced Field Description

The internal Gauss coefficients (g1
1, h1

1) of the induced field are related to the external
Gauss coefficients via

g1
1 = Qq

h1
1 = Qs,

(5.5)

with the Q-response Q = Aeiϕph . For a conductive shell with outer radius r0 and inner
radius r1, the induction amplitude A and phase shift ϕph can be obtained by considering
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the ratio between the complex coefficients of the induced and inducing field Bi,l and Be,l

(Zimmer et al., 2000 for degree l = 1, Saur et al., 2009 for arbitrary l)
(

Bi

Be

)
l

= − l

l + 1
ξJl+3/2(r0k) − J−l−3/2(r0k)
ξJl−1/2(r0k) − J−l+1/2(r0k) , (5.6)

with
ξ = r1kJ−l−3/2(r1k)

(2l + 1)Jl+1/2(r1k) − Jl−1/2(r1k) , (5.7)

where k is the complex wave number with k2 = iµ0ωσ and Jν(z) are the Bessel functions
of first kind and order ν with complex argument z. We note that the use of the wave
number k2 = −iµ0ωσ in Parkinson (1983) results in the modified Bessel differential equa-
tion, for which the solutions are the modified Bessel functions Iν(z). Parkinson (1983),
however, used the standard Bessel functions, resulting in positive values for the phase
shift. From Equation (5.6), the induction amplitude and phase shift can be calculated as
A = abs(Bi/Be)(r0/rm)3 and ϕph = arg(Bi/Be), respectively. The induction amplitude
ranges from 0 to l/(l + 1), or 0 to 1 after multiplying with (l + 1)/l, which is how the
induction amplitude is commonly given in the literature. With our definition of the wave
number k, the phase shift is negative, ranging from −π/2 to 0. For a conductor extending
to the surface of the satellite with radius rm and σ → ∞, A = 1 and ϕph = 0.

Assuming that the induced field is transported via the electromagnetic mode, i.e., the
conductivity in Europa’s icy crust and the surrounding environment is σ = 0, it can be
described by a potential Φ of the form

Φ(r, θ, ϕ) = RE

(
RE

r

)2
sin θ

(
g1

1 cos ϕ + h1
1 sin ϕ

)
, (5.8)

with Europa’s mean radius RE = 1561 km (Nimmo et al., 2007), colatitude θ, and longi-
tude ϕ. The individual components are calculated via Bind = −∇Φ and read

Bind,r(r, θ, ϕ) = 2
(

RE

r

)3
sin θ

(
g1

1 cos ϕ + h1
1 sin ϕ

)
Bind,θ(r, θ, ϕ) = −

(
RE

r

)3
cos θ

(
g1

1 cos ϕ + h1
1 sin ϕ

)
Bind,ϕ(r, θ, ϕ) =

(
RE

r

)3 (
g1

1 sin ϕ − h1
1 cos ϕ

)
(5.9)

Uncertainty of the induced field

Assuming Gaussian error propagation, the uncertainty of the external Gauss coefficients
forward propagates into the internal Gauss coefficients via Equation (3.29) as

σg = Qσq

σh = Qσs.
(5.10)
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Their uncertainty propagates further into the induced magnetic field. The uncertainty
for the j-th component of the induced field reads

σind,j(r, θ, ϕ) =

√√√√(∂Bind,j(r, θ, ϕ)
∂g1

1

)2

σ2
g +

(
∂Bind,j(r, θ, ϕ)

∂h1
1

)2

σ2
h. (5.11)

For the System III longitude of the E14 flyby, λIII = 184.3◦, the internal Gauss coefficients
g1

1 and h1
1 and their associated uncertainties are given in conductivity-thickness space for

a depth of 0 km, i.e., an ocean directly at the surface, in Figure 5.2 (c-f). In Figure 5.2 (a)
and (b), we also show the induction amplitude A and phase shift ϕph to highlight their
aforementioned non-uniqueness.

5.1.2 Jovian Magnetospheric Background Field

To compare the modelled induced magnetic field with the data, the Jovian background
field must be removed from the measurements. We approximate Jupiter’s contribution
to the measured magnetic field by fitting a third degree polynomial to the portions of
the flyby in which the perturbations due to induction and plasma interaction are smaller
than 1.5 nT (Figure 5.3), motivated by the precision of the Europa Clipper magnetometer
(Kivelson et al., 2023). While this work does not relate directly to Europa Clipper, this
value provides a benchmark. Values larger than 1.5 nT would result in more remnant
plasma magnetic fields in the fitting window, thus less representative background fits. A
lower value would extend the overall time span of considered measurements, thus decreas-
ing the quality of our fit, as a polynomial fit cannot reproduce the periodicity of the Jovian
background field. To assess the length of the intervals used to calculate the background
fit, we consider the root-mean-square deviation (RMS) between the data and background
fits calculated with varying interval lengths from 15 to 60 minutes (Figure 5.4)

RMSbg(∆t) =

√√√√ 1
3N

N∑
i=1

(Bobs(ri) − Bbg(ri, ∆t))2, (5.12)

where N is the number of measurements, ri is the spacecraft position at the i-th mea-
surement, and Bbg(ri, ∆t) is the background fit calculated with interval length ∆t. We
do not consider intervals shorter than 15 minutes, as they would produce background fits
that are not representative of the variabilities of the Jovian background field on scales
of the flyby. In addition, remnant plasma interaction in the fitting window might not
be averaged out if the chosen interval length is smaller, as our criterion only limits the
strength of the plasma interaction field to less than 1.5 nT, but not strictly zero. This
could result in a fit that is not solely controlled by the Jovian background field. This
investigation shows that a polyfit with 15-minute window length produces the best-fit
background, i.e., the one with minimal RMS. The resulting background fit is shown in
Figure 5.5, with RMSbg = 0.64 nT across all three components. The RMS characterizes
the uncertainty of the background model, σbg = RMSbg.
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Figure 5.2: In conductivity-thickness space, for an ocean depth d = 0 km, we show (a) induction
amplitude A for degree l = 1 and (b) phase shift ϕph for l = 1, given in degrees. The internal
Gauss coefficients (c) g1

1 and (d) h1
1, as well as their uncertainties (e) σg and (f) σh are given

in nT. The Gauss coefficients and their uncertainties were calculated for System III longitude
λIII = 184.3◦.
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Figure 5.3: Modelled magnetic field due to plasma interaction with Europa’s atmosphere
(purple) and induction response (red) for the E14 flyby. Moving outward from closest approach
(black vertical line), the green intervals begin when the magnetic field signatures are smaller
than 1.5 nT and cover a range of 15 minutes.
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Figure 5.4: Root-mean-square deviation (RMS) of background fits with varying window length
∆t for the E14 flyby. The RMS has been calculated across all three components of the magnetic
field.



5.1. METHODS 49

20

0

20

40

B x
 [n

T]

230

220

210

200

190

180

B y
 [n

T]

12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15
UTC

440

420

400

380

360

B z
 [n

T]

Figure 5.5: Polynomial fit (green) to the components of the measured magnetic field (blue).
The light green area indicates the respective 15-minute windows used to calculate the fit.
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5.1.3 Plasma Interaction Model
To model the plasma interaction at Europa, we solve the three-dimensional single-fluid
magnetohydrodynamic (MHD) equations for the conditions during the E14 flyby using
the PLUTO code (Mignone et al., 2007). This code has been used by Duling et al. (2022)
to model the plasma interaction of Ganymede.

Model Setup

The MHD equations govern the plasma mass density ρ, plasma bulk velocity v, magnetic
field B, and the total energy Et. For each variable, an evolution equation is stated

∂ρ

∂t
+ ∇ · (ρv) = Pmn − LmL, (5.13)

∂ρv
∂t

+ ∇ ·
[
ρvv − 1

µ0
BB + I

(
p + 1

2
B2

µ0

)]
= − (LmL + νnρ) v, (5.14)

∂B
∂t

− ∇ × (v × B) = 0, (5.15)

∂Et

∂t
+ ∇ ·

[(
Et + p + 1

2
B2

µ0

)
v − 1

µ0
B (v · B)

]
= −1

2 (LmL + νnρ) v2

−3
2 (LmL + νnρ) p

ρ
(5.16)

+3
2 (Pmn + νnρ) kBTn

mn
.

with plasma production and loss rates P and L, respectively, ion-neutral collision fre-
quency νn, and thermal pressure p. The initial values of the magnetic field and bulk
velocity are B0 = (5, −213, −409) nT and v0 = 100 km/s in corotational direction. Our
model includes electron impact ionization as the dominant ionization process in Europa’s
atmosphere (Saur et al., 1998), and we assume an ionization rate of fimp = 10−6 s−1, in
the lower limit of the range provided by Smyth and Marconi (2006). This results in a
production rate P of

P = fimpnn, (5.17)

where nn is the neutral O2 number density. Therefore, in the model we take into account
the production of singly charged O+

2 and furthermore assume mn = mL = 32 u. We
consider a radially symmetric atmosphere and describe its number density profile nO2(z)
as

nO2(z) = n0,O2e− z
H , (5.18)

with surface number density n0,O2 , height z, and scale height H. We consider plasma
loss due to dissociative recombination between ions and electrons, where we employ a
recombination rate coefficient of

αrec,O+
2

= 2 · 10−7
(300

Te

)0.7
cm3/s, (5.19)
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which has also been used in, e.g., Saur et al. (1998) and Blöcker et al. (2016). For the
electron temperature Te, we use the ionospheric electron temperature of 0.5 eV. Analogous
to Duling et al. (2022), we employ the following expression for the loss rate L

L =
αρ (ρ − ρ0) m−2

L for ρ > ρ0

0 for ρ < ρ0
. (5.20)

We model collisions between ions and neutrals using the collision frequency

νO2 = σO2v0nO2 , (5.21)

where σO2 = 2 · 10−15 cm2 is the O2 cross section, similar to Saur et al. (1998). Lastly,
the MHD model includes electromagnetic induction in Europa’s subsurface ocean through
boundary conditions given by Duling et al. (2014). These boundary conditions state that
toroidal contributions to the magnetic field need to vanish at the insulating boundary and
furthermore state a first order differential equation for the poloidal contributions.

As Figure 5.3 indicates, the perturbations in the Bz-component are dominated by plasma
interaction. This is because the inducing field is confined to the xy-plane and the E14
flyby occurred near the equatorial plane. As such, we use the Bz-component to assess
which column density, NO2 = n0,O2H, best describes the measurements of the E14 flyby.
This approach yields an O2 column density of NO2 = 4 · 1014 cm−2.

Uncertainty of the Plasma Interaction

Similar to our approach of using the Bz-component to determine which column density
yields the best agreement with the observations, we use it as a proxy to estimate the
model uncertainty of the MHD model by calculating the RMS between the "observed
plasma perturbation" Bobs,plasma = Bobs − Bbg − Bind and the model

σ2
plasma = 1

N

N∑
i=1

(Bobs,plasma,z(ri) − Bplasma,z(ri))2 , (5.22)

where N is the number of measurements. We confine the calculation of the MHD model
uncertainty to measurements where Galileo was within four Europa radii relative to the
satellite’s center. In a first order approximation, the uncertainty is assumed to be symmet-
rical, i.e., it is equal in all three components. Note that this uncertainty measure requires
us to specify the ocean properties to subtract the induced field in the Bz-component. As
such, the estimate for the plasma uncertainty will change as a function of the ocean model.
We first use a reference ocean model with depth d = 25 km, thickness h = 100 km, and
conductivity σ = 1 S/m to calculate the induced field, similar to values used in Schilling
et al. (2007). After performing the chi-squared analysis, we recalculate the plasma uncer-
tainty, using the induction response of a "best fit" ocean, i.e., where the deviation to the
data is minimum (see Section 5.1.4).
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5.1.4 Chi-Squared Analysis
After evaluating the uncertainties of our models for the individual contributions to Eu-
ropa’s magnetic field environment in Equations (5.11), (5.12), and (5.22), we perform a
chi-squared analysis to find all induction models that appropriately reproduce the ob-
served induction response described by Equation (5.2). We construct a 3D parameter
space for the ocean’s depth d, thickness h, and conductivity σ. For each combination
of (d, h, σ), we calculate the ocean’s induction amplitude, phase shift, and the resulting
induced magnetic field. We evaluate the corresponding chi-squared value using

χ2(d, h, σ) = 1
2N − m

N∑
i=1

(
(Bobs,ind,x(ri) − Bind,x(d, h, σ, ri))2

σ2
bg,x + σ2

plasma + σ2
ind,x(ri)

+ (Bobs,ind,y(ri) − Bind,y(d, h, σ, ri))2

σ2
bg,y + σ2

plasma + σ2
ind,y(ri)

)
,

(5.23)

where N is the number of measurements and m = 3 the number of model parameters.
We only use the Bx and By-components to evaluate χ2 and we only include measurements
where Galileo was within four Europa radii relative to Europa’s center, as suggested by
Kivelson et al. (2023). Any combination of values for (d, h, σ) that results in χ2 ≤ 1 is
labelled a good fit to the data, given the considered uncertainties (Bevington & Robin-
son, 2003). Assuming Gaussian distributed errors, a χ2 ≤ 1 will mean that our fit, on
average, deviates less than one standard deviation from the measurements. The resulting
parameter space for (d, h, σ) that fulfills χ2 ≤ 1 gives us constraints on the properties of
Europa’s subsurface ocean. The combination of (d, h, σ), where χ2 is minimum yields the
best-fit, i.e., the ocean model that yields the best agreement with the observations within
our prescribed parameter space.

5.1.5 Parameter Space (d, h, σ)
We calculate χ2 as a function of the ocean properties (d, h, σ). We do so in a prescribed
parameter space, spanning a 3D grid with depth d ∈ [1, 150] km, thickness h ∈ [1, 150] km,
and electrical conductivity σ ∈ [0.01, 10] S/m. We employ 50 log-spaced grid points along
the thickness and conductivity axes and 100 along the depth axis. The parameter space
is aimed to explore the range of existing estimates of the total thickness of the H2O shell
(Anderson et al., 1998), as well as the ocean’s electrical conductivity (Zimmer et al., 2000;
Schilling et al., 2007; Pan et al., 2020, 2021; Vance et al., 2021). Our prescribed depth
covers a broad range of estimates (e.g., Turtle and Pierazzo, 2001; Tobie et al., 2003;
Wakita et al., 2024). We note that conductivities above 10 S/m are possible if the salt
content of Europa’s ocean is near the solubility limit (Hand & Chyba, 2007), the required
salinity however lies above 100 g/kg.



5.2. RESULTS 53

5.2 Results
In this section, we present the results from our chi-squared analysis. First, we provide a
short overview of the E14 flyby, followed by a review of the uncertainty estimates for that
flyby. Taking into account these uncertainties, we show the observed induction response
and all induced magnetic fields that lie within χ ≤ 1. Afterward, we investigate the
parameter space of ocean properties (d, h, σ) and derive constraints. We take additional
geophysical estimates of the ocean’s depth and electrical conductivity into account to
further limit our initial solution volume. Finally, we test the robustness of our method
by slightly varying the model setup and compare the resulting constraints against the
reference model.

5.2.1 The E14 Flyby
During the E14 flyby, Galileo approached Europa upstream, flying near its equatorial
plane with a closest approach (C/A) altitude of 1684.1 km (Figure 5.6). Europa was situ-
ated above the plasma sheet during the encounter, with a magnetic latitude of Ψm = 9.1◦

(Kurth et al., 2001). To assess the flyby for the purposes of our quantitative analysis,
we fit the induction response of a perfectly conducting ocean with A = 1 and ϕph = 0 to
the measurements (Figure 5.7). The Bx-component is well reproduced by only taking the
ocean’s induced field into account. While we expect the plasma interaction to contribute
noticeably to the By-component, the conditions of the E14 flyby are ideal for our quanti-
tative study, despite its large altitude. Thus, in the following, we will focus solely on the
E14 flyby.
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Figure 5.6: Trajectory of the Galileo spacecraft during the E14 encounter in the xy (left) and
yz-plane (right), respectively. The blue dot marks the time and location of closest approach.
The yellow arrow points toward the sun.
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Figure 5.7: Magnetic field measurements of the E14 flyby (blue) and the induction response
of a perfectly conducting ocean with A = 1 and ϕph = 0 (red). The vertical black line marks
the closest approach.

The same assessment has been done for the flybys E04, E12, E19, and E26. The measure-
ments are presented in Appendix E. For the cases of the E12 and E26 flybys, the induc-
tion response is obscured by strong plasma magnetic fields of up to 100 nT, hampering the
possibility to quantitatively constrain Europa’s subsurface ocean, as our model would be
primarily controlled by Europa’s plasma interaction, rather than its ocean characteristics.
During the E19 flyby, the magnetometer stopped recording shortly after closest approach.
This complicates the fitting of the Jovian background field and thus the overall inversion
process. The E04 flyby was a wake crossing and had plasma magnetic fields on a similar
strength to the induced field. Of the five flybys discussed, the E04 was deemed the second
most suitable for the exploration of Europa’s ocean. However, we refrain from performing
a joint inversion of the E04 and E14 flybys due to stronger high-frequency fluctuations
in the E04 measurements. As these are not accounted for in our model, the goodness of
our fits would degrade as a result. A joint inversion would be of interest if multiple flybys
with conditions similar to the E14 flyby existed, i.e., a low C/A altitude (< 1800 km),
large distance to the plasma sheet, magnetic field perturbations dominated by the induced
field, and small high-frequency fluctuations throughout the measurements.
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5.2.2 Uncertainty Estimates
In Section 5.1, we have stated the equations used to estimate the uncertainties introduced
within our individual model descriptions for the induced magnetic field, Jupiter’s back-
ground field, and the plasma interaction at Europa (see Equations (5.11), (5.12), and
(5.22), respectively). We present the values for all three uncertainties in Figure 5.8, as
well as the resulting total uncertainty

√
σ2

bg + σ2
plasma + σ2

ind(ri). As we only use the Bx

and By-components to perform our analysis, we only show the uncertainties for these
two components. The plasma uncertainty is the dominating contribution to the overall
uncertainty, with σplasma = 1.72 nT. Furthermore, the plasma uncertainty is the same in
both components, as we assume that the uncertainty in the Bz-component translates to
Bx and By. The uncertainty of the background field is calculated for each component
individually and is constant across the entire flyby, with σbg = (0.56, 0.59) nT. While the
plasma and background fields uncertainties are calculated once and are assumed to be
a constant value throughout the flyby, the uncertainty of the induced field is calculated
along the spacecraft’s trajectory and is thus approximately zero for most measurements
due to the distance term in the induced dipole. Having obtained our uncertainty esti-
mates, we can now perform the chi-squared analysis to derive the ocean properties and
their constraints.
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Figure 5.8: Uncertainty estimates during the E14 flyby for the induced field (red, Equa-
tion (5.11)), the Jovian background field (green, Equation (5.12)), and the plasma magnetic
field (purple, Equation (5.22)). The black line is the total uncertainty of the system, used in
the denominator of Equation (5.23).
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5.2.3 Chi-Squared Analysis

Figure 5.9 shows the "observed induction response" Bobs,ind as calculated with Equa-
tion (5.2). In addition, all induction models that lie within χ < 1 are presented. We
are able to reproduce the trend of the observed induction response in the Bx and By-
components, although underestimating the amplitude of the perturbation in the Bx-
component around closest approach. The best fit to the measurements is a highly con-
ductive, shallow ocean (d = 1 km, h = 7 km, σ = 10 S/m), indicated as a red solid line
in Figure 5.9. This work, however, does not only provide the best fit for (d, h, σ), but
also the possible range for these values derived from the chi-squared analysis. The χ ≤ 1
criterion provides a direct method to obtain upper and lower limits for (d, h, σ), above or
below which χ2 would be greater than one, and thus not an appropriate fit. The limits
are derived by considering the χ = 1 isocontour.
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Figure 5.9: Observed induction response Bobs,ind (blue) for the E14 flyby. The light red band
shows all induction models with a χ ≤ 1. The red solid line is our best fit with χ2 ≈ 0.6 at
d = 1 km, h = 7 km, and σ = 10 S/m. The interval of the trajectory where Galileo was within 4
Europa radii relative to Europa’s center is highlighted in light blue.
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In Figure 5.10, we show the χ-isocontours in conductivity-thickness space for three given
depths. The solution for depth d = 1 km yields lower constraints on the subsurface ocean’s
conductivity of σ > 0.3 S/m and a thickness of h > 3 km. Within the prescribed parame-
ter space, we are unable to resolve an upper limit on both the conductivity and thickness
of Europa’s ocean. The existence of an ocean directly at the surface is unlikely. Thus,
we investigate the conductivity-thickness space at 20 km depth. This corresponds to the
minimum depth suggested by Wakita et al. (2024). As the induction amplitude decreases
with increasing depth, the space of possible values for (h, σ) below the χ = 1 isocontour
decreases, with a minimum conductivity around 0.45 S/m. The minimum thickness at
20 km depth changed slightly, with h > 3.5 km. The lowest depth that still lies within
χ ≤ 1 is approximately 90 km. However, the required conductivity at that depth lies above
8 S/m. This conductivity would require a highly saline ocean above 100 g/kg, considering
temperatures around 273 K (Pan et al., 2020, 2021; Vance et al., 2021).
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Figure 5.10: χ-isocontours in conductivity-thickness space for (left) d = 1 km, (middle) d =
20 km, and (right) d = 90 km. The blue shaded region marks the χ < 1 solution space.

5.2.4 Robustness of Our Method
The constraints derived in this work are a result of the assumptions in our individual
models for the inducing field, the background field, and the magnetic field due to Europa’s
plasma interaction, as well as the values for the input parameters, e.g., the degree of the
background fit and the O2 column density. In three additional runs, we introduce slight
changes to our model parameters to assess the robustness of our derived constraints, only
varying one parameter at a time. These model changes do not vary the respective magnetic
field contributions significantly and, should this approach be robust, should also result in
similar limits on the ocean properties compared to the reference model. The variations
to our model that we consider are

i. a background fit of degree n = 2,
ii. a background fit with interval length ∆t = 20 min,
iii. and an asymmetric O2 atmosphere that includes both upstream-downstream asym-

metry and a day-night asymmetry.
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Figure 5.11: χ-isocontours of the reference model presented in Section 5.2.3 (solid), a model
with degree n = 2 background fit (dash dotted), a model with interval length ∆t = 20 min
background fit (dashed), and a model with asymmetric O2 atmosphere (dotted). The left figure
presents the isocontours in depth-thickness space, highlighting variations in the derived depth
constraints. The right figure shows the isocontours in conductivity-thickness space to highlight
the robustness of our derived conductivity constraints.

In each case, we estimate the resulting uncertainties and calculate χ2 across the prescribed
parameter space. The resulting χ-isocontours for all four runs are shown in Figure 5.11 in
depth-thickness and conductivity-thickness space, respectively. The constraints derived
from the χ = 1 isocontour are listed in Table 5.2. It should be noted that the listed
constraints do not take into account additional limitations on the ocean’s depth. In the
following subsections, we will compare the resulting background and plasma interaction
fields and provide possible explanations for the observed robustness.

Table 5.2: Limits on Europa’s subsurface ocean properties derived under varying model as-
sumptions

d [km] h [km] σ [S/m]
Reference model 90 3.0 0.32
n = 2 fit 77 3.3 0.40
∆t = 20 min fit 61 4.0 0.59
Asymmetric atmosphere 85 3.3 0.38
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Robustness Against Background Field Variations

Figure 5.12 shows the three background fits used in this study compared to the measured
data. The deviation between the 15-minute background fit and 20-minute fit appears
the most noticeable since particularly in the Bx-component the 20-minute fit is around
1 nT smaller than our reference fit around closest approach. This in turn will result in an
"observed induction response" that is approximately 1 nT larger than in the reference case.
As a consequence, the required induction amplitude (and phase) to stay within χ < 1
increases (decreases), resulting in more restrictive constraints on the ocean properties. In
contrast, the background fit with degree n = 3 is shown to be fairly robust against changes
in the degree of the polynomial fit compared to n = 2, as all three components follow
either fairly linear or parabolic trends within the considered frame of measurements. This
notion holds specifically for the considered interval length of ∆t = 15 min, and might not
be applicable at longer timeframes, where the polynomials no longer fit to the periodicity
of Jupiter’s background field. We thus motivate a short interval length for the optimal
background fit.
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Figure 5.12: Magnetic field measurements (blue) and background fits calculated with (solid
green) degree n = 3 and window length ∆t = 15 min, (dashed green) n = 3 and ∆t = 20 min,
and (dotted green) n = 2 and ∆t = 15 min. The light green area indicates the respective 15-
minute intervals.
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Robustness Against Variations in the Atmospheric Model

While a radially symmetric atmosphere was used to obtain the results in Section 5.2.3,
simulations by Plainaki et al. (2013) on the generation of Europa’s exosphere show a spa-
tial variability due to the time-varying orientations of solar illumination and the incident
plasma direction. Additional variabilities between the trailing and leading hemispheres
of Europa have been observed (Hansen et al., 2005). In this section, we employ an at-
mosphere model that includes both an upstream-downstream and day-night asymmetry
to test how a varying atmosphere model influences the derived limits of Europa’s ocean
properties. For that, the surface density is described with a longitudinal variability fol-
lowing

nO2(ϕ) =


n0,O2(1 + k sin ϕ)(1 + k′ cos(ϕ − ϕsp)) if π

2 < ϕ < 3π
2 ∧ |ϕ − ϕsp| < π

2
n0,O2(1 + k sin ϕ) if π

2 < ϕ < 3π
2 ∧ |ϕ − ϕsp| > π

2
n0,O2(1 + k′ cos(ϕ − ϕsp)) if − π

2 < ϕ < π
2 ∧ |ϕ − ϕsp| < π

2
n0,O2 else,

(5.24)
with n0,O2 resulting in a column density of NO2 = 1014 cm−2 and ϕsp being the longitude
of the subsolar point. Here, we use k = 1 and k′ = 1 to reproduce the perturbations in the
Bz-component from the symmetric model, which results in a maximum column density
of 4 · 1014 cm−2, assuming the subsolar point aligns with the trailing hemisphere apex. As
the Bz-component does not vary much between both model runs, the uncertainty σplasma
of our MHD model changes by only 7%, with σplasma = 1.71 nT in the reference model
and σplasma = 1.60 nT for the asymmetric atmosphere model, using our best fit ocean to
calculate σplasma. Since the uncertainty is slightly smaller in the asymmetric description
of Europa’s atmosphere, we would expect tighter constraints on the ocean properties,
assuming the Bx and By-components are unchanged. If the plasma interaction fields from
the asymmetric case would be in better agreement with the observations in the Bx and
By-component, the misfit between Bmodel and Bobs would decrease, thus increasing the
combination of ocean properties that fulfill χ2 ≤ 1. From the slightly tighter constraints
on the ocean properties in the asymmetric case compared to the reference model, we con-
clude that this not the case.

The changes in the magnetic field of plasma perturbations, which were introduced by
consideration of an asymmetric atmosphere, yield minor changes in our derived con-
straints for the ocean properties, indicating that our method is robust with changes to
our atmospheric model. We emphasize that these findings are specific to the atmosphere
model considered in this study, and furthermore a result of the chosen strength of the
asymmetry, with k = 1 and k′ = 1. Consideration of other longitudinal variabilities or
a stronger/weaker asymmetry will have an effect on the robustness. Thus, our results
cannot be extrapolated to such cases.
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Figure 5.13: Plasma perturbed magnetic field resulting from (solid) a symmetric atmosphere
with column density NO2 = 4·1014 cm−2 and (dashed) an asymmetric atmosphere with upstream-
downstream and day-night asymmetries, following Equation (5.24).

5.3 Discussion
Here, we summarize the estimated uncertainties and discuss the quantitative constraints
on Europa’s interior derived with the chi-squared analysis of the E14 flyby. We also
present the application of this approach to Galileo’s E04 flyby and compare the results
against the E14 flyby.

5.3.1 Uncertainty Estimates
In this work, we estimated the uncertainties that are introduced by our models for the
inducing field at Europa, the Jovian magnetospheric background field, and the magnetic
field due to plasma interaction in Europa’s vicinity. These uncertainties are specific to the
conditions of a given flyby. The uncertainty of the inducing field, and thus of the induced
field, varies with System III longitude, as described by Equation (5.4). We characterized
the uncertainty of the inducing field amplitudes (σq0 , σs0) as the difference of the induc-
ing amplitude of the synodic rotation period obtained from two various models. This
approach provides only a rough approximation. Additional uncertainties of the phase of
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the dipole component of Jupiter’s intrinsic field, ϕ0, were not taken into account.

The uncertainties of the background field and the plasma magnetic field are characterized
by the RMS, following Equations (5.12) and (5.22). As such, an increased misfit between
our model and the observations will naturally increase these two uncertainties as well.
Such increased misfits can occur during flybys where small-scale fluctuations are larger
than, for example, during the E14 flyby, as they are not included in our model description
of Europa’s magnetic field environment (see Section 5.3.3).

We estimate the uncertainty of the plasma model using the Bz-component and assume
that this uncertainty translates into the Bx and By-components. While this is only an
assumption, it provides a first order estimate of the uncertainty introduced by our MHD
model and highlights the necessity to consider such uncertainties when analyzing existing
and future spacecraft data.

It should be noted that this work does not cover all uncertainties and is confined to
single-frequency magnetic sounding. While the consideration of additional frequencies,
e.g., higher order synodics and Europa’s orbital period, can provide useful additional
insights (Biersteker et al., 2023), we consider these outside the scope of this work.

5.3.2 Application to the E14 Flyby
Here, we discuss the results obtained in Section 5.2.3. We first review the constraints on
Europa’s interior derived from the chi-squared analysis and follow with an evaluation of
their robustness against changes to the model setup.

Interior Constraints

The primary motivation of this work is to characterize and constrain the depth, thick-
ness, and electrical conductivity of Europa’s subsurface ocean. As most existing con-
straints originating from electromagnetic induction have been derived qualitatively from
visual comparison, this study emphasizes the development of a method using a quantita-
tive measure, in the form of a chi-squared analysis, where the squared deviation between
the modelled induction response Bind and the observed induction Bobs,ind, described by
Equation (5.2), is weighed against the sum of our model uncertainties described by Equa-
tions (5.11), (5.12), and (5.22). Due to its ideal conditions for magnetic sounding, i.e., a
strong inducing field and quiet plasma environment, we applied this method to the E14
flyby. Here we found a minimum conductivity of approximately 0.45 S/m, assuming the
icy crust is at least 20 km thick (Wakita et al., 2024). This value is slightly lower than the
constraint obtained by Schilling et al. (2007), who estimated the minimum conductivity to
be 0.5 S/m. Zimmer et al. (2000) suggested a minimum conductivity of 0.06 S/m. Com-
pared to the value derived in this study, σ ≥ 0.45 S/m, our method provides a tighter
constraint on the conductivity. It is worth noting that the cited constraints were not
derived quantitatively, but only qualitatively on the basis of visually comparing various
ocean models to the measurements.
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While our inversion motivated an ocean that lies at a shallow depth, with d = 1 km for the
best fit, such small values conflict with geological estimates from tidal heating and crater
simulations, where larger icy crust thicknesses in the range of 20-35 km are suggested.
Assuming a conductivity of 10 S/m, we derived a depth constraint on Europa’s ocean,
according to which it lies at most 90 km below the icy surface. This value lies outside the
uncertainties on the icy crust thickness derived by Petricca et al. (2023), who suggested
a thickness of at most 35 km. In their work, induction amplitudes of A = 0.97 ± 0.02 and
A = 0.92 ± 0.02 were considered. The uncertainty of the induction amplitude is taken
from Schilling et al. (2004), who, however, did not perform a systematic analysis of their
model uncertainties. The cited value thus likely underestimates the range of possible
values for the induction amplitude. As a comparison, our lowest value for the induction
amplitude is A = 0.81. This comparison highlights the varying constraints that can be
derived under consideration of different uncertainties and, more importantly, emphasizes
the necessity of a systematic error analysis.

Robustness of Our Method

To study the robustness of our method, we considered slight changes in our setup for the
background fit, as well as an asymmetric atmosphere in our plasma interaction model.
The background field has been modelled by fitting a polynomial to the measurements out-
side the region, where perturbations caused by the induced field and plasma interaction
with Europa’s atmosphere are non-negligible. While this method was also used in, e.g.,
Zimmer et al. (2000) and Schilling et al. (2004), its degree, interval length, and excluded
window were not specified. In this work, we found that these specifications have a no-
ticeable impact on our fits to the data and thus on the derived constraints on Europa’s
interior. Our method appeared least robust against changes to the interval length of the
background fit, as here, the resulting background field changed the most. The background
fit is involved in multiple instances of our method, i.e., its uncertainty σbg, the uncertainty
of the plasma interaction σplasma, and the observed induction response. Thus, variations
to the background field noticeably influence the derived constraints. Particularly the last
point is not exclusive to our work, but pertains to the principle of magnetic sounding in
general, and emphasizes the importance of the fit of Jupiter’s background field. In this
work, we proposed a background fit of 15 minute interval length and degree n = 3 to be
the optimal fit. This assessment was done on the basis of calculating the RMS within the
fitting window. We note, however, that the minimum lies at the lower limit of the con-
sidered interval lengths. Thus, a polyfit of 14 minute interval length could have a smaller
RMS, and be deemed a better background fit on the basis of RMS alone. While we mo-
tivate a fitting window of at least 15 minutes to average out remnant plasma interaction
fields and not ’overfit’ the data, more work is required to find the ’best’ background fit,
as well as a criterion to assess the goodness of the fit.

The derived constraints experienced a small change when we used an asymmetric at-
mosphere instead of a radially symmetric atmosphere. While we interpret this result as a
robustness of the ocean properties to variations in our asymmetric model, we prescribed
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a specific strength of the asymmetry. We cannot extrapolate this conclusion to changes
in the overall setup of our MHD model, as we kept additional parameters affecting the
plasma interaction (e.g., ionization frequency fimp) unchanged. Therefore, additional tests
would be required to study the robustness of the retrieved ocean properties to changes
in the various input parameters of the MHD model. In general, the results of any inver-
sion will be specific to the plasma interaction model used in the description of Europa’s
magnetic field environment.

5.3.3 Application to the E04 Flyby
While this work focussed primarily on the magnetic field measurements of the E14 flyby,
we also applied our chi-squared analysis to the E04 flyby at Europa. This flyby occurred
at a C/A altitude of 696 km while Europa was outside the Jovian plasma sheet. A notice-
able difference to the E14 flyby is that the E04 was a downstream flyby, crossing Europa’s
wake. Figure 5.14 compares the plasma magnetic field and the induced magnetic field,
similar to Figure 5.3 for the E14 flyby. While the induced field is the primary source
of magnetic field perturbation in the Bx and By-components, plasma magnetic fields are
larger for the conditions of the E04 flyby compared to those of the E14 flyby. Here, a col-
umn density of NO2 = 1014 cm−2 was used to model the plasma interaction. Expectedly,
the induced field is stronger compared to the E14 flyby, due to the lower altitude. Using
Equation (5.22), we derive a plasma uncertainty of σplasma ≈ 7.4 nT, approximately five
times higher than our estimate for the E14 flyby. To fit the background field, we used a
polynomial fit of degree n = 3 and window length ∆t = 27 min. This deviates from the
15 minutes used in the E14 flyby, as for the E04, the RMS was minimum at 27 minutes.
The resulting background fit is shown in Figure 5.15.

Figure 5.16 shows the observed induction response obtained for the E04 flyby. Com-
paring the observed induction to that of the E14 flyby (Figure 5.9), larger residuals in
the Bz component become apparent. These indicate that the plasma interaction model
used here is less representative of the ’real’ environment than compared to the E14 flyby.
In addition, small-scale fluctuations are stronger throughout the encounter compared to
those of the E14 flyby. These, seemingly random, high frequency perturbations can be
seen throughout the measurements and are possibly a result of kinetic effects (see Blöcker
et al., 2016). Another noteworthy feature is the continuous offset in the Bx component
while approaching Europa, in the order of 10-20 nT. These strong deviations from our
model result in an RMS of approximately 11 nT for our best fit model obtained in the
analysis of the E04 flyby. This value is ten times larger than that of the E14 flyby, 1.14 nT.
Figure 5.17 shows the residuals ∆B = Bobs,ind − Bind in all three components for the E04
and E14 flybys. If our model were to perfectly describe the measurements, the residuals
would be zero. Non-zero residuals are visible in both flybys across all components, al-
though for the E04 flyby they are on the order of 10 nT. In comparison, the residuals for
the E14 flyby consistently lie below 10 nT throughout the flyby. This direct comparison
emphasizes that the observations during the E04 flyby have stronger contributions from
effects that are not considered in our model for Europa’s magnetic field environment. It
is for that reason that a joint inversion was not performed in this work. A smaller pool
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Figure 5.14: Modelled magnetic field due to plasma interaction with Europa’s atmosphere
(purple) and induction response (red) for the E04 flyby. Moving outward from closest approach
(black vertical line), the green regions begin when the magnetic field signatures are smaller than
1.5 nT and cover a range of 27 minutes, respectively.

of measurements that is described well by our model allows for better retrieval of ocean
properties than a larger sample size, where our model partially fails to account for the
measured magnetic field, resulting in larger residuals.

Our chi-squared analysis for the E04 flyby results in χ2 > 1 across the entire param-
eter space, with a minimum of approximately 1.6. Two possible explanations for this
result are (i) underestimating our uncertainties and (ii) our description of the Europa’s
magnetic field environment does not fully capture the measured magnetic field. Par-
ticularly, the latter reason plays a role during the E04 flyby, as shown in Figure 5.17.
Residuals oscillating around zero indicate that our model describes the general structure
of the observations well, with the exception of the small-scale fluctuations, as is the case
for the E14 flyby. However, in the E04 flyby, these fluctuations are not only stronger, but
there are also noticeable offsets from the zero line on the order of 10 nT, indicating that
larger structures of the observations are mismodelled. This could result from an incom-
plete plasma interaction model. Thus, the E04 flyby is an ideal example to emphasize the
need for accurate modelling of the plasma perturbed magnetic fields around Europa to
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gain quantitative insights about Europa’s interior from magnetometer measurements. For
that reason, the Europa Clipper spacecraft is equipped with the PIMS (Plasma Instrument
for Magnetic Sounding) instrument, monitoring the plasma environment to correct the
magnetometer measurements for plasma perturbed fields (Westlake et al., 2023). These
corrections should allow for better removal of plasma magnetic fields from observations,
which in turn will improve retrieval of ocean properties, but also increase the number of
measurements that can be used in the inversion. The multitude of flybys performed by
the Europa Clipper spacecraft will generate an unprecedented amount of measurements
and fill gaps in System III longitudinal coverage as well, providing a great opportunity to
apply this method in a joint inversion of multiple flybys.
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Figure 5.15: Polynomial fit (green) to the components of the measured magnetic field (blue).
The light green area indicates the respective 27-minute windows used to calculate the fit.
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Figure 5.16: Observed induction response Bobs,ind (blue) for the E04 flyby. The red solid line
shows the best fit induced magnetic field obtained from our analysis of the E14 flyby. The blue
region highlights the portion of the trajectory where Galileo was within 4 Europa radii relative
to the moon’s center.
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Figure 5.17: Residuals ∆B = Bobs,ind − Bind for (left) the E04 flyby and (right) the E14 flyby.

5.4 Conclusion
In this study, we developed a method to quantitatively derive the depth, thickness, and
electrical conductivity of Europa’s subsurface ocean, as well as constraints on these prop-
erties. For that, we performed an inversion where we compared the modelled magnetic
field against the observations of the Galileo spacecraft. The magnetic field model in this
work is described as the sum of the Jovian background field, the induced magnetic field
generated within Europa’s subsurface ocean, and the plasma magnetic field, as described
by Equation (5.1). Each contribution to the magnetic field was modelled individually and
has an uncertainty associated with it, for which we introduced estimates. These estimates
were used in a chi-squared analysis to derive the ocean properties, which were used as
model parameters in the analysis. Any combination of depth, thickness, and conductivity
that resulted in a magnetic field model with χ > 1 was classified as an inappropriate fit to
the observations and thus considered outside the regime of possible values for the ocean
properties. This way, the χ = 1 isocontour provided constraints on the range of (d, h, σ).
The combination of (d, h, σ) where chi-squared is at minimum yields the best fit to the
measurements.

We showcased the method using the magnetic field measurements of Galileo’s E14 flyby,
as the plasma environment was ’quiet’ during the encounter and the inducing field was
near its maximum, resulting in a strong electromagnetic response. While the observations
of four other flybys, E04, E12, E19, and E26, were also discussed as potential candidates
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for the inversion, we ultimately decided against further consideration of those measure-
ments for varying reasons, as stated in Section 5.2.1.

After performing the chi-squared analysis, we found that the measurements are best
reproduced by a subsurface ocean that is preferably shallow and highly conductive. The
best fit lies at d = 1 km, h = 7 km, and σ = 10 S/m. We took additional estimates of
the ocean’s depth into account to further constrain the electrical conductivity and thick-
ness. For that, we considered a minimum depth of 20 km (Wakita et al., 2024). Under
consideration of the additional depth constraint, we derived a minimum conductivity of
0.45 S/m. An upper limit on the conductivity could not be resolved, as the induction am-
plitude saturates. For the thickness, no upper constraint was found within our prescribed
parameter space, considering thicknesses up to 150 km. However, our analysis yielded a
minimum thickness of 3.5 km.

The Jovian background field is commonly approximated by a polynomial fit to the mea-
surements of the specific flyby considered. The degree of the fit, as well as the interval
length and its start and end, however, are ambiguous and usually not well documented in
the previous literature. In this work, we have shown the effect that varying background fits
have on the derived ocean properties, emphasizing the need for adequate documentation
of background fitting in future work to ensure reproducibility. Additionally, we suggest
the consistent use of one background model across various studies once the observations of
both the JUICE and Europa Clipper spacecrafts become available, as this would greatly
increase the comparability of the obtained results. While we motivated a background fit
with interval length of 15 minutes and degree n = 3, we could not with full certainty
claim that this is the "best fit". It is worth noting that, measured by the RMS, the opti-
mal interval length varies between flybys, i.e., the RMS is minimal at 27 minutes for the
E04 flyby. This further motivates that the RMS might not be the ideal criterion to assess
the ’best’ background fit, and to instead decide on one specific window length for all flybys.

We also compared the constraints resulting from two different descriptions for Europa’s
atmosphere, showing minor changes in both the magnetic field due to the plasma in-
teraction, and in the constraints of the ocean properties. While the conditions of the
E14 resulted in comparably small plasma magnetic field contributions in the Bx and By-
components, this does not hold for any arbitrary flyby, as shown in our application to the
E04 flyby. The framework we present in this study provides a useful method to analyze
existing and future spacecraft data, such as will be recorded with ESA’s JUICE spacecraft
and NASA’s Europa Clipper, and quantify uncertainties introduced by our models for the
individual contributions to Europa’s magnetic field environment.
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Conclusion

In this work, we first considered the induction response that would be generated by small
pockets of water melt entrapped in Europa’s icy crust. Such liquid water reservoirs could
exist during the formation of chaos regions. As their exact formation mechanism, how-
ever, is unclear, the potential identification of reservoir induction signals in magnetic field
measurements could improve our understanding of Europa’s interior and the processes
that generate surface chaos. The inclusion of a local water reservoir in the model of Eu-
ropa’s interior enables electromagnetic coupling between the global subsurface ocean and
the reservoir, as the induced fields also act as inducing fields. To solve this induction
coupling, we developed an analytical, iterative approach. With that, the coupled induced
fields of both ocean and reservoir can be calculated to a prescribed maximum degree lmax
and iteration step nmax. We found that the reservoir has a negligible inducing effect on
the global ocean. The ocean’s induction response to the reservoir was thus excluded from
further calculations in this work. On the contrary, the ocean’s dipole induced by the
time-varying component of Jupiter’s magnetic field induces a magnetic field within the
reservoir. This contribution is non-negligible and, since the ocean’s induction response
cannot be assumed to be homogeneous around the reservoir, consists of higher degrees
as well. We found that, for our prescribed parameter space of reservoirs with radii up
to 25 km and conductivities up to 30 S/m, degrees up to l = 3 must be considered in
the multipole description to describe the total induction response of the system with a
precision of 10−2 nT.

We applied this method to a hypothetical 25 km flyby directly above a reservoir and cal-
culated its induction response. Here, we found values for the reservoir induction response
below 1 nT across the entire parameter space. Due to additional small-scale fluctuations
in the measured magnetic field, such small induction signatures are likely not detectable,
as they would be indistinguishable from these fluctuations. Employing a lander and mea-
suring the magnetic field directly at the surface would negate the rapid fall-off of the
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reservoir’s induction response. In this scenario, reservoirs would likely be detectable, even
at smaller radii of rres = 8 km, assuming a conductivity of σres = 30 S/m. For a single sta-
tionary magnetometer, the problem is underdetermined. Therefore, two magnetometers
on the surface with sufficient distance from each other are necessary to disentangle the
induction responses from the ocean and the reservoir.

In the second part of this thesis, we performed an inversion of magnetic field measure-
ments recorded with the Galileo spacecraft, with the goal to explore Europa’s subsurface
ocean and describe its properties, i.e., its depth, thickness, and electrical conductivity. For
that, we first introduced our models for Jupiter’s magnetospheric field, the induced field,
and the magnetic field due to Europa’s plasma interaction. We performed a systematic
error analysis, estimating the model uncertainties that are introduced by our individual
model descriptions. Through the model uncertainty, we could derive constraints on the
ocean properties by employing a chi-squared analysis. As any combination of ocean prop-
erties resulting in a χ > 1 is classified as an inappropriate fit to the measurements, the
χ = 1 isocontour provides the upper and lower limits on depth, thickness, and electrical
conductivity.

In our inversion, we considered only the observations of Galileo’s E14 flyby and found
that the observations were best explained by a subsurface ocean that is preferably shal-
low and highly conductive, with a best fit of d = 1 km, h = 7 km, and σ = 10 S/m. As
such shallow depths are in conflict with other geological estimates, i.e., from tidal heating
and crater simulations, we took additional estimates of the ocean’s depth into account to
further constrain the electrical conductivity and thickness.

The interior of the icy satellite Europa remains an active research question, more than
25 years after the discovery of its subsurface ocean. This year, on October 14th, the
Europa Clipper spacecraft successfully launched, embarking on its journey to the Jovian
system, where it will enter Jupiter orbit in 2030. During its mission, the spacecraft will
perform 49 flybys at Europa, collecting an unprecedented amount of data. Besides the
sheer volume of data, Europa Clipper will be closer to the icy satellite than any other
spacecraft before, performing multiple flybys in the range of 25 to 100 km altitude. These
low altitude encounters enable the exploration of new science objectives. The work car-
ried out in this thesis provides an approach to characterize the coupled induction response
between a global ocean and local water reservoir, and estimates the possibility to detect
such melt pockets, especially with the Europa Clipper spacecraft but also future lander
missions. We furthermore provide a quantitative framework to describe Europa’s subsur-
face ocean and constrain its properties. This method should prove useful in the analysis
of future spacecraft data, especially as we provide a systematic error analysis of the model
uncertainties in the magnetic field model.
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Appendix

A Laplace Equation
In a medium with no electrical conductivity, the magnetic field can be described by a
gradient potential Φ with B = −∇Φ. As there are no magnetic monopoles, ∇ · B = 0,
the magnetic field potential Φ fulfills the Laplace equation

∇ · (∇Φ) = △Φ = 0, (A.1)

for which the solution will be derived in this appendix. In spherical coordinates, (r, θ, ϕ),
the Laplace equation reads

1
r2 ∂r

(
r2∂rΦ

)
+ 1

r2 sin θ
∂θ (sin θ∂θΦ) + 1

r2 sin2 θ
∂2

ϕΦ = 0. (A.2)

We rewrite the potential using a product ansatz, Φ(r, θ, ϕ) = R(r)Y (θ, ϕ), which separates
radial and angular variabilities. These variables are separated in Equation (A.2) to obtain
the following expression after dividing by RY/r2

1
R

d
dr

(
r2 d

dr
R

)
= −

( 1
Y sin θ

∂θ(sin θ∂θY ) + 1
Y sin2 θ

∂2
ϕY
)

. (A.3)

The LHS is solely a function of r, while the RHS is a function of (θ, ϕ). As the equation
must hold for any combination of (r, θ, ϕ), both sides must equal the same constant, i.e.,
for the LHS we get

1
R

d
dr

(
r2 d

dr
R

)
= l(l + 1). (A.4)

This equation is solved for R(r) = Arl + B−l−1, where A and B are constants.

The RHS of Equation (A.3) reads

1
Y sin θ

(
∂θ(sin θ∂θY ) + 1

sin θ
∂2

ϕY
)

= −l(l + 1). (A.5)

81



82 APPENDIX

Using the product ansatz Y (θ, ϕ) = Θ(θ)φ(ϕ) and multiplying with sin2 θ yields

sin θ

Θ
d
dθ

(
sin θ

dΘ
dθ

)
+ sin2 θl(l + 1) = − 1

φ

d2φ

dϕ2 . (A.6)

Again, both sides depend on separate variables and thus must be equal to a constant,
which is here set to m2. For φ follows

d2φ

dϕ2 = −m2φ, (A.7)

which is solved for φ(ϕ) = Ceimϕ, with constant C.

Multiplying Equation (A.6) with Θ/ sin2 θ yields the associated Legendre differential equa-
tion

d2Θ
dθ2 + cos θ

sin θ

dΘ
dθ

+
(

l(l + 1) − m2

sin2 θ

)
Θ = 0, (A.8)

which is solved for the associated Legendre polynomials

P m
l (cos θ) = Nm

l sinm θ
dm

d (cos θ)m Pl(cos θ), (A.9)

where Pl are the Legendre polynomials and Nm
l is a normalization constant. In geomag-

netism, the associated Legendre polynomials are commonly Schmidt quasi-normalized
(Winch et al., 2005), i.e., the normalization constant is set to

Nm
l =

√√√√(2 − δm
0 ) (l − m)!

(l + m)! . (A.10)

Finally, the general solution to the Laplace equation can be written as

Φ(r, θ, ϕ) =
∞∑

l=0

l∑
m=−l

(
Alr

l + Blr
−l−1

)
Y m

l (θ, ϕ), (A.11)

with spherical harmonics Y m
l (θ, ϕ) = P m

l (cos θ)eimϕ of degree l and order m. In the
context of magnetic fields, the sum over the degree starts at l = 1, as there are no magnetic
monopoles. Furthermore, the sum over m is usually written from 0 to l, especially in the
context of using real Gauss coefficients (qm

l , sm
l ) and (gm

l , hm
l ).

B Helmholtz Equation
Inside a conductive layer, ∇×B ̸= 0, the potential description for the magnetic field does
not hold anymore. Here, the induction equation must be solved

△B = σµ0∂tB, (B.12)
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which, in frequency space with B(r, t) = B(r)e−iωt, can be rewritten as

△B = −k2B. (B.13)

This is the Helmholtz equation with complex wave number k2 = iωσµ0. Before the
Helmholtz equation is solved, the description of the magnetic field is considered first.
Since ∇ · B = 0 holds, the magnetic field can be fully described by a vector potential A
with B = ∇ × A. This vector field can be split into contributions perpendicular and
parallel to r, so that

A = Tr + ∇ × (Pr), (B.14)
where T and P are the toroidal and poloidal potentials, respectively. For the magnetic
field follows

B = ∇ × A = ∇ × (Tr) + ∇ × [∇ × (Pr)]. (B.15)
Since the curl of a vector is perpendicular to that vector, and r = rêr, that means that
the toroidal part of the magnetic field has no radial component. Specifically, toroidal
contributions to the magnetic field cannot be observed outside the conductor, i.e., they
would not be measured by a spacecraft flying by a planetary body. As such, we will only
consider the poloidal parts, which can be described by (Parkinson, 1983)

P =
∞∑

l=1

l∑
m=0

ClFl(r)Y m
l (θ, ϕ). (B.16)

In the following, we will consider only a single degree l and order m. After applying the
curl twice, the magnetic field B = ∇ × [∇ × (Pr)] reads

Br = − 1
r sin θ

(
∂θ(sin θ∂θP )) + 1

sin θ
∂2

ϕP
)

Bθ = 1
r

∂r(∂θ(Pr))

Bϕ = 1
r sin θ

∂r(∂ϕ(Pr))

(B.17)

The Br component is recognized as the RHS of Equation (A.3) after multiplying with
P/r, and can thus be rewritten as Br = P/rl(l + 1). Plugging Equation (B.16) into our
description for the magnetic field yields

Br(r, θ, ϕ) = C

r
F (r)l(l + 1)Y m

l (θ, ϕ)

Bθ(r, θ, ϕ) = C

r

d
dr

(rF (r))∂θY
m

l (θ, ϕ)

Bϕ(r, θ, ϕ) = C

r sin θ

d
dr

(rF (r))∂ϕY m
l (θ, ϕ).

(B.18)

As we are only solving for a scalar function F (r), it is sufficient to solve the Helmholtz
equation for one component, e.g., the Br component

(△B)r = △Br − 2Br

r2 − 2
r2 sin θ

∂θ(sin θBθ) − 2
r2 sin θ

∂ϕBϕ = −k2Br (B.19)
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We first consider the term including the Bθ-component, which can be written as

− 2
r2 sin θ

∂θ

(
sin θ∂θ

(
C

r

d
dr

(rF )Y m
l

))
= 2

r3 l(l + 1)C d
dr

(rF )Y m
l

+ 2
r3 sin2 θ

d
dr

(rF )∂2
ϕY m

l .

(B.20)

The second term can be rewritten as Bϕ, so that

2C

r3 l(l + 1)FY m
l + 2C

r2
dF

dr
l(l + 1)Y m

l + 2
r2 sin θ

∂ϕBϕ = 2Br

r2 + 2C

r2
dF

dr
l(l + 1)Y m

l

+ 2
r2 sin θ

∂ϕBϕ.

(B.21)

It becomes clear that the first and last term cancel with two terms in Equation (B.19).
We write △Br as

1
r2 ∂r(r2∂rBr)+ 1

r2 sin θ
∂θ(sin θ∂θBr)+ 1

r2 sin θ2 ∂2
ϕBr = 1

r2 ∂r(r2∂rBr)− l(l + 1)
r2 Br, (B.22)

reducing Equation (B.19) to

C

r

d2F

dr2 l(l + 1)Y m
l − C

r2 Fl2(l + 1)2Y m
l + 2C

r2
dF

dr
l(l + 1)Y m

l = −k2C

r
F l(l + 1)Y m

l . (B.23)

Multiplication with r and rewriting yields the spherical Bessel differential equation

d2F

dr2 + 2
r

dF

dr
+
(

k2 − l(l + 1)
r2

)
F = 0, (B.24)

which is solved for the spherical Bessel functions jl(rk) and j−l(rk).

C Solving Boundary Conditions
This appendix provides the necessary steps to solve the system of equations obtained
from the boundary conditions introduced in Section 3.1.4. The resulting equation system
depends on the shape of the conducting body. In this work, a homogeneous sphere and a
spherical shell surrounded by two insulating regions (three-layer model) were used. Thus,
the boundary equations are solved specifically for these cases.

C.1 Homogeneous Sphere
In the case of a homogeneous sphere, our domain is divided into two subdomains, (I) the
surrounding insulator with σ = 0 and (II) the conducting sphere with σ = const. Inside
the conducting region, Equation (3.15) is used to describe the magnetic field components,
where D must be zero, or else the solution diverges for r → 0. Equation (3.17) results
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from the required continuity of the normal and tangential component of the magnetic
field at the boundary, from which follows for a sphere with radius a and wave number k

−(lBe − (l + 1)Bi) = C

a
l(l + 1)jl(ak)

−(Be + Bi) = C

a
F+(a),

(C.25)

where we define a help function F+(a) as

F+(a) = d
dr

(rjl(rk))
∣∣∣
r=a

. (C.26)

From the first equation an expression for C in terms of Bi and Be can be obtained

C = −rres(lBe − (l + 1)Bi)
l(l + 1)jl(ak) , (C.27)

which can then be used in the second equation

−(Be + Bi) = − lBe − (l + 1)Bi

l(l + 1)jl(ak) F+(a). (C.28)

The complex magnetic field coefficients are split up to each side of the equation as

Bi

(
1 + 1

ljl(ak)F+(a)
)

= −Be

(
1 − 1

(l + 1)jl(ak)F+(a)
)

, (C.29)

from which a preliminary expression for their ratio is obtained

Bi

Be
= −

1 − 1
(l+1)jl(ak)F+(a)

1 + 1
ljl(ak)F+(a)

= −
1

(l+1)jl(ak) ((l + 1)jl(ak) − F+(a))
1

ljl(ak) (ljl(ak) + F+(a))

= − l

l + 1
(l + 1)jl(ak) − F+(a)

ljl(ak) + F+(a) .

(C.30)

In the next step, F+(a) = d
dr

(rjl(rk))
∣∣∣
r=a

must be calculated, with

jl(rk) =
√

π

2rk
Jl+1/2(rk). (C.31)

Note that the factor
√

π/2 will be omitted throughout this appendix, as it cancels out at
the end of our derivation. To solve the differential, we apply the product and chain rules

d
dr

(rjl(rk)) = d
dr

(√
r

k
Jl+1/2(rk)

)
= d

dr

(√
r

k

)
+
√

r

k

d
drk

Jl+1/2(rk) d
dr

(rk). (C.32)



86 APPENDIX

For the differential of the Bessel function, the following identity is used (Parkinson, 1983)
d
dz

Jl(z) = Jl−1(z) − l

z
Jl(z), (C.33)

with which Equation (C.32) can be rewritten as

d
dr

(rjl(rk)) = 1
2

√
1
rk

Jl+1/2(rk) +
√

rk

(
Jl−1/2(rk) − l + 1/2

rk
Jl+1/2(rk)

)

=
√

rkJl−1/2(rk) − l

√
1
rk

Jl+1/2(rk).
(C.34)

Plugging Equation (C.34) with r = a into Equation (C.30) yields

Bi

Be
= − l

l + 1
(l + 1)

√
1

ak
Jl+1/2(ak) −

√
akJl−1/2(ak) + l

√
1

ak
Jl+1/2(ak)

l
√

1
ak

Jl+1/2(ak) +
√

akJl−1/2(ak) − l
√

1
ak

Jl+1/2(ak)

= − l

l + 1

√
ak
(

2l+1
ak

Jl+1/2(ak) − Jl−1/2(ak)
)

√
akJl−1/2(ak)

.

(C.35)

Using the recursive identity of the Bessel functions (Parkinson, 1983)

Jl+1(z) = 2l

z
Jl(z) − Jl−1(z), (C.36)

we obtain the ratio between the induced and inducing field coefficients as given in Equa-
tion (3.19)

Bi

Be
= − l

l + 1
Jl+3/2(ak)
Jl−1/2(ak) . (C.37)

C.2 Three-Layer Model
The three-layer model is constructed by (I) an insulating surrounding region, (II) a con-
ductive layer, and (III) an insulating inner region. Here, we have two boundaries at the
inner radius of the conductive layer r1 and the outer radius r0, respectively, resulting in
a system of four equations

−lB(III)
e = l(l + 1)

r1
(Cjl(r1k) + Dj−l(r1k))

−B(III)
e = 1

r1
(CF+(r1) + DF−(r1))

−(lB(I)
e − (l + 1)B(I)

i ) = l(l + 1)
r0

(Cjl(r0k) + Dj−l(r0k))

−(B(I)
e + B

(I)
i ) = 1

r0
(CF+(r0) + DF−(r0)) ,

(C.38)

where F−(a) is defined analogously to F+(a) as

F−(a) = d
dr

(rj−l(rk))
∣∣∣
r=a

. (C.39)
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In subdomain (III), B
(III)
i must be zero, as else the magnetic field approaches infinity for

r → 0. Unlike in the case of the homogeneous sphere, D is now non-zero due to the
inner boundary. The RHS of the first equations can be set equal to obtain a relationship
between C and D, independent of B(III)

e

(l + 1)(Cjlr1k + Dj−l(r1k)) = (CF+(r1) + DF−(r1)) , (C.40)

which can be rewritten as

D ((l + 1)j−l(r1k) − F−(r1)) = C (F+(r1) − (l + 1)jl(r1k)) , (C.41)

from which an expression for D can be obtained

D = F+(r1) − (l + 1)jl(r1k)
(l + 1)j−l(r1k) − F−(r1)

C (C.42)

The differential of rjl(rk) has been calculated in the previous derivation. The expression
cannot be used analogously for j−l, instead follows

d
dr

(rj−l(rk)) = 1
2

√
1
rk

J−l−1/2(rk) +
√

rk

(
J−l−3/2(rk) − −l − 1/2

rk
J−l−1/2(rk)

)

= (l + 1)
√

1
rk

J−l−1/2(rk) +
√

rkJ−l−3/2(rk),
(C.43)

where we used Equation (C.33) for the derivative of the Bessel function. From that follows
for D

D =
√

r1kJ−l−1/2(r1k) − l
√

1
r1k

Jl+1/2 − (l + 1)
√

1
r1k

Jl+1/2(r1k)

(l + 1)
√

1
r1k

J−l−1/2(r1k) − (l + 1)
√

1
r1k

J−l−1/2(r1k) −
√

r1kJ−l−3/2(r1k)
C

= (2l + 1)Jl+1/2(r1k) − r1kJl−1/2(r1k)
r1kJ−l−3/2(r1k) C.

(C.44)

To improve readability throughout the rest of the derivation, we set

ξ = (2l + 1)Jl+1/2(r1k) − r1kJl−1/2(r1k)
r1kJ−l−3/2(r1k) , (C.45)

with which follows D = ξC. We use the derived expression for D in the third equation of
our system (Equation (C.38)), where the superscript (I) is omitted for Be and Bi as B(III)

e
does not occur anymore

−(lBe − (l + 1)Bi) = l(l + 1)
r0

C(jl(r0k) + ξj−l(r0k)). (C.46)

As before, we derive an expression for C as

C = − r0

l(l + 1)
lBe − (l + 1)Bi

jl(r0k) + ξj−l(r0k) , (C.47)
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which is used in the fourth equation, writing

Be + Bi = 1
l(l + 1)

lBe − (l + 1)Bi

jl(r0k) + ξj−l(r0k) (F+(r0) + ξF−(r0)) . (C.48)

Separating the coefficients Be and Bi yields

Bi

(
1 + 1

l

F+(r0) + ξF−(r0)
jl(r0k) + ξj−l(r0k)

)

= −Be

(
1 − 1

l + 1
F+(r0) + ξF−(r0)
jl(r0k) + ξj−l(r0k)

)
,

(C.49)

from which the ratio follows as

Bi

Be
= −

1 − 1
l+1

F+(r0)+ξF−(r0)
jl(r0k)+ξj−l(r0k)

1 + 1
l

F+(r0)+ξF−(r0)
jl(r0k)+ξj−l(r0k)

=
1

l+1
1

jl(r0k)+ξj−l(r0k) ((l + 1)(jl(r0k) + ξj−l(r0k)) − F+(r0) − ξF−(r0))
1
l

1
jl(r0k)+ξj−l(r0k) (l(jl(r0k) + ξj−l(r0k)) + F+(r0) + ξF−(r0))

= − l

l + 1
(l + 1)(jl(r0k) + ξj−l(r0k)) − F+(r0) − ξF−(r0)

l(jl(r0k) + ξj−l(r0k)) + F+(r0) + ξF−(r0)
.

(C.50)

Calculating the differentials, the numerator reads

ξ(l + 1)
√

1
r0k

J−l−1/2(r0) + (l + 1)
√

1
r0k

Jl+1/2(r0k) −
√

r0kJl−1/2(r0k)

+ l

√
1

r0k
Jl+1/2(r0k) − ξ

√
r0kJ−l−3/2(r0k) − ξ(l + 1)

√
1

r0k
J−l−1/2(r0)

= (2l + 1)
√

1
r0k

Jl+1/2(r0k) −
√

r0kJl−1/2(r0k) − ξ
√

r0kJ−l−3/2(r0k)

=
√

r0k

(
2l + 1
r0k

Jl+1/2(r0k) − Jl−1/2(r0k) − ξJ−l−3/2(r0k)
)

=
√

r0k
(
Jl+3/2(r0k) − ξJ−l−3/2(r0k)

)
,

(C.51)

where we used the recursive formula for the Bessel functions. For the denominator, we
get

lξ

√
1

r0k
J−l−1/2(r0k) + l

√
1

r0k
Jl+1/2(r0k) +

√
r0kJl−1/2(r0k)

−l

√
1

r0k
Jl+1/2(r0k) + ξ

√
r0kJ−l−3/2(r0k) + ξ(l + 1)

√
1

r0k
J−l−1/2(r0k)

=
√

r0k

[
ξ

(
2l + 1
r0k

J−l−1/2(r0k) + J−l−3/2(r0k)
)

+ Jl−1/2(r0k)
]

=
√

r0k
(
Jl−1/2(r0k) − ξJ−l+1/2(r0k)

)
.

(C.52)
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Here, special attention must be paid to the application of the recursive formula, as it is
applied with an opposite sign, but as the degree −l−1/2 is negative, the term −(−2l−1) =
2l + 1 remains positive. Plugging the results from Equations (C.51) and (C.52) into
Equation (C.50) gives our final expression for the ratio

Bi

Be
= − l

l + 1
Jl+3/2(r0k) − ξJ−l−3/2(r0k)
Jl−1/2(r0k) − ξJ−l+1/2(r0k) , (C.53)

from which we obtain Equation (3.21) by rewriting ξ → 1/ξ, as it is used in literature
(see, e.g., Zimmer et al., 2000; Saur et al., 2009)

Bi

Be
= − l

l + 1
ξJl+3/2(r0k) − J−l−3/2(r0k)
ξJl−1/2(r0k) − J−l+1/2(r0k) , (C.54)

with ξ now defined as

ξ = r1kJ−l−3/2(r1k)
(2l + 1)Jl+1/2(r1k) − r1kJl−1/2(r1k) . (C.55)

D Coordinate Transformation

As mentioned in Section 3.2, two coordinate systems must be employed to solve the cou-
pling feedback between two conducting bodies to ensure spherical symmetry within each
system. This appendix covers the coordinate transformation that is performed between
the two systems shown in Figure D.1, and has also been published as the appendix to
Winkenstern and Saur (2023).

We assume two spherical coordinate systems, (r, θ, ϕ) to describe the ocean’s induced
fields, and (r′, θ′, ϕ′) for the reservoir’s induction response, respectively. We introduce
the transformation vector rc = (rc,x, rc,y, rc,z), which spans from Europa’s center to that
of the reservoir. As we align our reservoir with the x-axis in this study, rc = (rc, 0, 0).
In Europa-centered Cartesian coordinates, we describe the surface of the reservoir with
radius rres as

x = rc + rres sin θ cos ϕ

y = rres sin θ sin ϕ

z = rres cos θ,

(D.56)

and, respectively, describe the ocean’s surface with outer radius r0 in reservoir-centered
Cartesian coordinates as

x′ = −rc + r0 sin θ′ cos ϕ′

y′ = r0 sin θ′ sin ϕ′

z′ = r0 cos θ′.

(D.57)
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Afterward, we transform from Cartesian into spherical coordinates via

r =
√

x2 + y2 + z2

θ = atan2(
√

x2 + y2, z)
ϕ = atan2(y, x),

(D.58)

and calculate the ocean’s induction response across the reservoir’s surface using the poten-
tial description (Equation (3.31)). This induction response, however, is given in Europa-
centered coordinates. For correct application, the radial component in reservoir-centered
coordinates Br′ is required, thus transforming the induced field as follows

Bx′ = Br sin θ cos ϕ + Bθ cos θ cos ϕ − Bϕ sin ϕ

By′ = Br sin θ sin ϕ + Bθ cos θ sin ϕ + Bϕ cos ϕ

Bz′ = Br cos θ − Bθ sin θ.

(D.59)

Finally, we calculate the radial component via

Br′ = Bx′ sin θ′ cos ϕ′ + By′ sin θ′ sin ϕ′ + Bz′ cos θ′, (D.60)

which is used in Equation (3.33) to calculate the external Gauss coefficients of the inducing
field (qm

l , sm
l ). Equation (D.60) can be derived analogously for the radial component of

the reservoir’s induction response across the ocean’s surface.

z

x

y

x'

y'

z'

r

r'
rc'

Figure D.1: Sketch of the two coordinate systems with origin in Europa’s center (x, y, z) and
with origin in the reservoir (x′, y′, z′), respectively. The scale and position of the reservoir are
chosen arbitrarily. The green vectors visualize the transformation between the two systems.
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E Flyby Discussion
The second part of the thesis pertains to the inversion of magnetometer (MAG) measure-
ments recorded with the Galileo spacecraft, with the goal to characterize the properties
of Europa’s subsurface ocean. As such, we first ensure that the selected flybys are ap-
propriate for a quantitative study of Europa’s subsurface ocean. For that, flybys with an
altitude larger than 1800 km at closest approach are filtered out (Schilling et al., 2004).
At that altitude, Europa’s induction response will decrease to less than 10% of its initial
amplitude. This leaves the flybys E04, E12, E14, E19, and E26 (see Table E.1). The
trajectories during these five encounters are given in Figure E.2.

Table E.1: Summary of Galileo flybys with existing MAG data. Altitude is given for closest
approach with RE = 1561 km. Values for the magnetic latitude are from Schilling et al. (2004).

Flyby Altitude [km] Sys3 Long. [°] Europa Lat. [°] Mag. Lat. [°]
E04 696.1 156.8 -1.2 6.5
E11 2047.3 222.7 25.5 8.7
E12 205.0 117.7 -9.1 0.9
E14 1648.1 184.3 11.8 9.2
E15 2518.5 292.9 14.9 -0.5
E17 3586.4 139.9 -42.4 3.8
E19 1443.4 260.7 30.6 4.8
E26 347.4 2.3 -47.0 -9.5

Figure E.2: Trajectories of the Galileo spacecraft in the xy-plane (left) and xz-plane (right)
during its five closest encounters at Europa, namely E04 (blue), E12 (orange), E14 (green),
E19 (red), and E26 (purple). Colored arrows indicate the direction of the spacecraft during the
respective encounters.
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E.1 The E12 Flyby
The E12 flyby occurred when Europa was situated close to the plasma sheet, resulting in
strong plasma perturbations which obscure the ocean’s induction response. In addition,
this flyby has been identified as a putative plume crossing (Jia et al., 2018), further
enhancing non-inductive magnetic field signatures. Figure E.3 shows the magnetic field
measurements and the induction response of a perfectly conducting ocean with amplitude
A = 1 and phase ϕph = 0. Attributing any remaining perturbations to plasma interaction,
we can see that these significantly outweigh the electromagnetic response of the ocean,
with perturbations above 100 nT in all three components. While a domination of plasma
interaction fields is expected in the Bz-component, given our inducing field is confined to
the xy-plane and the flyby occurred near Europa’s equatorial plane, the perturbations in
the Bx and By-components overshadow the ocean’s induction response and render this
flyby unsuitable for our quantitative study of Europa’s interior.
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Figure E.3: Magnetic field measurements of the E12 flyby (blue) and the induction response
of a perfectly conducting ocean with A = 1 and ϕph = 0 (red). The vertical black line marks
the closest approach.
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E.2 The E26 Flyby
While Europa was well below the plasma sheet during the E26 flyby, it is also discussed to
be a plume crossing (Arnold et al., 2019; Huybrighs et al., 2020; Jia et al., 2021), giving
rise to large perturbations in all three components (Figure E.4), of which some appear on
very local scales. Although the Galileo spacecraft made its closest encounters during the
E12 and E26 flybys, the strength of the plasma magnetic field would result in a scenario,
where the goodness of our fit to the observations is primarily controlled by our model
for Europa’s plasma interaction, rather than by the induced magnetic field and thus the
properties of the ocean. It is for that reason that we do not consider an inversion of the
measurements of these two flybys.
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Figure E.4: Magnetic field measurements of the E26 flyby (blue) and the induction response
of a perfectly conducting ocean with A = 1 and ϕph = 0 (red). The vertical black line marks
the closest approach.



94 APPENDIX

E.3 The E04 Flyby

Of the five flybys discussed in this section, the E04 flyby was the only one where Galileo
flew downstream of Europa, crossing its wake. In this region, plasma perturbations are
particularly irregular compared to the upstream hemisphere (Figure E.5). While the
ocean’s induced magnetic field contributes significantly to the measured perturbation in
the Bx and By-components, small-scale fluctuations appear to be particularly strong dur-
ing the E04 flyby, compared to measurements during other flybys. While we do not present
the E04 flyby in our primary results, we do apply our method to these measurements in
Section 5.3.3 to assess how such fluctuations not accounted for in our model description
affect our analysis.
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Figure E.5: Magnetic field measurements of the E04 flyby (blue) and the induction response
of a perfectly conducting ocean with A = 1 and ϕph = 0 (red). The vertical black line marks
the closest approach.
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E.4 The E19 Flyby
The E19 flyby occurred at a System III longitude of λIII = 260.7◦. Here, the inducing
field is comparably weaker than during, e.g., the E04 or E14 flyby. Furthermore, the
E19 flyby has the second largest C/A altitude with 1443.4 km. This results in a faint
induction response with an amplitude of approximately 10 at the spacecraft’s position
(Figure E.6). Furthermore, the magnetometer stopped recording around 20 minutes after
closest approach. The lack of measurements well after C/A could complicate the fitting of
the Jovian background field. Thus, we decide to exclude the E19 flyby from our analysis.
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Figure E.6: Magnetic field measurements of the E19 flyby (blue) and the induction response
of a perfectly conducting ocean with A = 1 and ϕph = 0 (red). The vertical black line marks
the closest approach.
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Data Availability Statement

This thesis discussed and analyzed magnetic field measurements recorded with the Galileo
spacecraft. These measurements are archived in the Planetary Data System: Planetary
Plasma Interactions node both in high resolution (Kivelson et al., 2024a), and low reso-
lution (Kivelson et al., 2024b). Measurements were downloaded in SYS3 coordinates and
then transformed to EPhiO. The source code to solve the coupled induction response is
publicly available in a repository (Winkenstern, 2023).
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