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Abstract

Observations have revealed that the rapidly warming Arctic is also moistening
in certain regions and seasons. As water vapour is the strongest greenhouse gas,
it contributes to the enhanced warming of the Arctic via the water vapour feed-
back. Water vapour estimates are uncertain in the Arctic due to the low amount
of ground stations and challenges in satellite remote sensing. Thus, it is not
surprising to see uncertainties in water vapour trends across reanalyses, which
use these observations. In contrast to lower latitudes, Arctic humidity profiles
feature inversions where the specific humidity increases with height. The repre-
sentation of humidity inversions in current models and satellite products and the
radiative effect of humidity inversions is poorly studied. Furthermore, the ability
of ground-based microwave radiometers (MWRs) to capture humidity inversions
has yet to be analyzed. The year-long Multidisciplinary drifting Observatory for
the Study of Arctic Climate (MOSAiC) expedition in the Arctic Ocean provides
excellent reference water vapour observations to evaluate the water vapour prod-
ucts of models and satellites. Radiosonde observations are complemented by two
MWRs with complementary water vapour sensitivity.

The first part of this thesis includes two studies to quantify the benefit of
the synergy of the two MWRs for water vapour products compared to the use of
single MWRs. In the first study, the measurements of each MWR were quality
controlled and atmospheric parameters, including coarse humidity profiles and
integrated water vapour (IWV), were retrieved using regression and Neural Net-
works. The single MWR retrievals were evaluated with the MOSAiC radiosondes.
In the second study, measurements from both MWRs were combined in a Neural
Network approach to exploit their complementary moisture sensitivity. The syn-
ergy benefit was determined by comparing the errors computed in the synergy
evaluation to those of the single MWR retrievals. The synergy reduces lower
tropospheric specific humidity errors by 50% and the root mean squared error of
IWV by 15% over a wide atmospheric moisture range. Additionally, the vertical
resolution of the specific humidity profile is improved by a factor of two in the
lower troposphere.

In the second part of the thesis, the water vapour products from the MWR
synergy and the radiosondes were used as reference to evaluate the water vapour
from four state-of-the-art models (two global reanalyses, a regional and a global
weather forecast model) and two satellite products. A particular focus was on
analyzing the representation of humidity inversions with respect to radiosondes.
Strong negative IWV and specific humidity biases in moist conditions were found
for the satellite data. The models underestimate the lower tropospheric specific
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humidity in the cold seasons, except for the lowest 100 m. The presence of surface-
based inversions is well captured by the models and the MWR synergy but not
by the satellite observations. Elevated inversions are missed by both the MWR
synergy and satellite observations. Additionally, all tested data sets tend to
underestimate the number of inversions per profile and the inversion strength but
overestimate the vertical extent (depth) of inversions.

Then, radiative transfer simulations for clear sky cases were used to analyze
the sensitivity of downwelling longwave radiation (DLR) to water vapour within
humidity inversions. Therefore, the radiative effect of humidity inversions was
also quantified. The sensitivity tests with artificial humidity inversion strength
modifications revealed that in most cases the radiation emitted from water vapour
within an inversion only has a notable impact on DLR when the inversion is lo-
cated in the lower troposphere. In most of the clear sky cases, the surface-based
inversion contributed 60–100% to the total radiative effect of humidity inversions,
which can reach up to 16Wm−2. Additionally, we quantified DLR deviations
resulting from using specific humidity profiles of the different models and obser-
vations (ground- and space-based) as input to the radiative transfer simulations.
With the DLR based on the radiosonde profiles as reference, DLR deviations
exceed 5Wm−2 in some cases but are mostly lower. The humidity profiles of
the MWR synergy resulted in one of the smallest DLR deviations, demonstrating
the high quality of the MWR humidity profiles. The deviations could be equally
attributed to differences in lower tropospheric specific humidity and IWV. The
results suggest that the IWV and the lower tropospheric specific humidity, and
therefore the near-surface humidity inversions, are equally important for accurate
DLR calculations.
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Zusammenfassung

Beobachtungen haben ergeben, dass die sich rapide erwärmende Arktis in gewis-
sen Regionen und Jahreszeiten ebenfalls feuchter wird. Wasserdampf, welches das
stärkste Treibhausgas ist, trägt zur schnellen Erwärmung der Arktis durch den
Wasserdampfrückkopplungseffekt bei. Wasserdampfschätzungen sind aufgrund
der geringen Anzahl an Bodenstationen und Schwierigkeiten in der Satelliten-
fernerkundung unsicher. Daher überrascht es nicht, dass Wasserdampftrends
ebenfalls in verschiedenen Reanalysen, die jene Beobachtungen mitverwenden,
unsicher sind. Im Gegensatz zu niedrigeren Breitengraden zeichnen sich ark-
tische Feuchteprofile durch Inversionen aus, bei denen die spezifische Feuchte
mit der Höhe zunimmt. Die Repräsentation von Feuchteinversionen in aktuellen
Modellen und Satellitenprodukten, sowie der Strahlungseffekt von Feuchteinver-
sionen wurde bislang nur wenig untersucht. Des Weiteren wurde die Fähigkeit
von bodengebundenen Mikrowellenradiometern (MWR) Feuchteinversionen zu er-
fassen noch nicht analysiert. Die ganzjährige Multidisciplinary drifting Observa-
tory for the Study of Arctic Climate (MOSAiC) Expedition in der Arktis bietet
exzellente Referenz-Wasserdampfbeobachtungen für die Evaluierung von Wasser-
dampfprodukten von Modellen und Satelliten. Beobachtungen von Radiosonden
werden durch zwei MWR, die komplementäre Feuchtigkeitssensitivitäten haben,
ergänzt.

Der erste Teil der Dissertation umfasst zwei Studien, die zur Quantifizierung
des Vorteils der Synergie der zwei MWR für Wasserdampfprodukte gegenüber der
Verwendung einzelner MWR beitragen. In der ersten Studie wurde die Qualität
der Messungen jedes MWR kontrolliert und atmosphärische Parameter, darunter
grobe Feuchteprofile und der integrierte Wasserdampfgehalt, mithilfe von Re-
gression und neuronalen Netzwerken abgeleitet. Die individuellen MWR Pro-
dukte wurden mittels der MOSAiC Radiosonden evaluiert. In der zweiten Studie
wurden die Messungen beider MWR mit neuronalen Netzwerken kombiniert,
um deren komplementäre Feuchtigkeitssensitivitäten zu nutzen. Der Vorteil der
Synergie wurde durch den Vergleich der durch die Evaluierung bestimmten Fehler
der Synergie mit denen der individuellen MWR ermittelt. Die Synergie reduziert
den Fehler der spezifischen Feuchte in der unteren Troposphäre um 50% und die
Wurzel der mittleren Fehlerquadratsumme des integrierten Wasserdampfgehalt
um 15% über einen weiten atmosphärischen Feuchtebereich. Zudem wurde die
vertikale Auflösung der spezifischen Feuchteprofile in der unteren Troposphäre
um einen Faktor 2 verbessert.

Im zweiten Teil der Dissertation wurden die Wasserdampfprodukte der MWR
Synergie, sowie die Radiosondenbeobachtungen als Referenz genutzt, um Wasser-
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dampf von vier aktuellen Modellen (zwei globale Reanalysen, ein regionales und
ein globales Wettervorhersagemodell) und zwei Satellitenprodukten zu evaluieren.
Ein Schwerpunkt liegt auf der Analyse der Repräsentation von Feuchteinversio-
nen im Vergleich zu Radiosonden. Für die Satellitendaten wurde eine starke
Tendenz zu negativen Abweichungen des integrierten Wasserdampfgehalts und
der spezi-fischen Feuchte in feuchten Bedingungen gefunden. Die Modelle unter-
schätzen die spezifische Feuchte in der unteren Troposphäre, abgesehen von den
untersten 100 m, in den kalten Jahreszeiten. Die Präsenz von bodengebundenen
Inversionen wird von den Modellen und der MWR Synergie gut dargestellt, allerd-
ings nicht von den Satellitenbeobachtungen. Höher liegende Inversionen werden
sowohl von der MWR Synergie, als auch von den Satellitenbeobachtungen nicht
erfasst. Zudem tendieren alle getesteten Datensätze dazu, die Anzahl an Inver-
sionen in einem Profil und die Inversionsstärke zu unterschätzen, während die
vertikale Erstreckung der Inversionen (Tiefe) überschätzt wird.

Anschließend wurden Strahlungstransportsimulationen in wolkenfreien Fällen
verwendet, um die Sensitivität von nach unten gerichteter langwelliger Strahlung
(ULS) zu Wasserdampf innerhalb von Feuchteinversionen zu untersuchen. Somit
wurde ebenfalls der Strahlungseffekt von Feuchteinversionen quantifiziert. Die
Sensitivitätstests mit künstlichen Veränderungen der Feuchteinversionsstärke er-
gaben, dass die Strahlung, die von Wasserdampf innerhalb der Inversion emit-
tiert wurde, in den meisten Fällen nur einen merklichen Effekt auf die ULS
hat, wenn sich die Inversion in der unteren Troposphäre befindet. In den meis-
ten der wolkenfreien Fälle trägt eine bodengebundene Inversion 60–100% zum
gesamten Strahlungseffekt von Feuchteinversionen bei, der Werte bis zu 16Wm−2

erreichen kann. Des Weiteren wurden ULS Abweichungen quantifiziert, die sich
durch die spezifischen Feuchteprofile der verschiedenen Modelle und Beobach-
tungen (bodengebunden und weltraumgestützt) ergeben, wenn diese als Ein-
gangsparameter in den Strahlungstransportsimulationen verwendet werden. ULS
Abweichungen, gegenüber der ULS basierend auf den Radiosondenprofilen,
können in manchen Fällen mehr als 5Wm−2 betragen, liegen aber meist darunter.
Die Feuchteprofile der MWR Synergie ergeben mit die geringsten ULS Ab-
weichungen, was die hohe Qualität der MWR Feuchteprofile demonstriert. Die
Abweichungen konnten gleichermaßen auf Unterschiede in der niedertroposphä-
rischen spezifischen Feuchte und im integrierten Wasserdampfgehalt zurückge-
führt werden. Den Ergebnissen entsprechend sind der integrierte Wasserdampf-
gehalt und die niedertroposphärische spezifische Feuchte, und damit die boden-
nahen Feuchteinversionen, gleichermaßen wichtig für akkurate ULS Berechnun-
gen.
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Chapter 1

Introduction

1.1 Motivation

The Earth is warming rapidly. Throughout the history of Earth, tropospheric
temperatures have changed in response to several factors, including variations in
the Earth’s orbit around the Sun, the distribution of land masses, or changes in
greenhouse gas concentrations. However, the current rate of warming is consid-
erably higher than expected from natural causes. It is scientific consensus that
the warming is attributed to human activities, such as the enhanced emissions of
CO2 (IPCC, 2023).

The hot spot of the current climate change is the Arctic (Screen et al., 2012;
Wendisch et al., 2023). Here, the troposphere has warmed about three times faster
than the global average, a rate that climate models struggle to simulate (Rantanen
et al., 2022; Zhou et al., 2024). The warming is not uniformly distributed in space
or time but especially pronounced in winter (Serreze et al., 2009; Maturilli et al.,
2015; Maturilli and Kayser, 2017a) and in the Barents and Kara Seas (Rantanen
et al., 2022). In these regions, near-surface air temperatures have increased up
to 7K since 1979 (Rantanen et al., 2022). However, in summer, the warming at
the surface is less evident because the heat excess melts the sea ice, keeping the
near-surface temperatures close to the freezing point (Tjernström et al., 2004;
Graversen et al., 2008).

These drastic changes in the Arctic temperatures have implications for the
local climate system and also affect lower latitudes through heat exchange driven
by atmospheric circulation. The most striking effect of the strong warming in the
Arctic is the sea ice decline, thinning and shift to younger sea ice (IPCC, 2022).
The thinner ice is more susceptible to melting over the subsequent summers. In
some Arctic regions, the ecosystem changes drastically as the climate shifts to-
wards current sub-polar conditions (Francis et al., 2009). For example, fish species
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from sub-polar latitudes are expected to migrate into Arctic seas and compete
with local species for food (IPCC, 2022). The Arctic climate change can also
trigger new emissions of greenhouse gases from thawing permafrost. Addition-
ally, thawing permafrost enhances the risk of landslides in mountainous regions,
posing a threat to the local wildlife and inhabitants (IPCC, 2022; IPCC, 2023).
These mentioned impacts are merely the tip of the iceberg of the consequences
of climate change.

A dedicated team of international scientists within the Transregional Collabo-
rative Research Center TRR 172 on "Arctic amplification: Climate Relevant At-
mospheric and Surface Processes and Feedback Mechanisms (AC)3" contributed
significantly to the advancement in understanding the processes causing Arctic
amplification through dedicated measurement campaigns and model experiments
(Wendisch et al., 2023). Despite the scientific advancement in the past years, chal-
lenges remain regarding understanding the Arctic climate system and the correct
representation of individual processes in climate models. Especially clouds and
their radiative impact are not yet well represented in climate models (Pithan
et al., 2014; Sedlar et al., 2020). A particular challenge is posed by mixed-phase
clouds, which contain both ice and supercooled liquid particles and frequently
occur in the Arctic (Nomokonova et al., 2019; Gierens et al., 2020).

Arctic amplification results from several climate responses that amplify an
initial temperature perturbation, known as positive climate feedback loop. The
strongest contributors are the ice albedo1 (Serreze et al., 2009; Screen and Sim-
monds, 2010; Serreze and Barry, 2011; Screen et al., 2012) and the lapse rate2

feedback (Pithan et al., 2014; Feldl et al., 2020; Hahn et al., 2021; Linke et al.,
2023). In autumn, the additional open water regions due to the decline of the sea
ice extent result in strong heat and moisture fluxes from the warm ocean to the
cold atmosphere, providing an additional local moisture source (Brümmer and
Pohlmann, 2000; Alekseev et al., 2019).

Water vapour, which also contributes significantly to the warming of the Arc-
tic (Winton, 2006; Graversen and Wang, 2009; Serreze and Barry, 2011), is the
focus of this thesis. It is the strongest greenhouse gas as it absorbs and re-emits
radiation in a broad spectral range in the thermal infrared (’longwave’ spectrum)
(e.g., Kiehl and Trenberth, 1997; Trenberth, 1998). Ghatak and Miller (2013)
found a large sensitivity of downwelling longwave radiation to the integrated wa-

1Warming results in snow and ice melt, reducing the reflectivity (albedo) of the surface and
allowing more solar radiation to be absorbed. The absorbed radiation heats the darker surface
(open ocean or land), which promotes melting and warming of the near-surface air through
enhanced radiative and turbulent heat fluxes.

2In contrast to the Tropics, where convection distributes heat over the entire troposphere,
the Arctic boundary layer (lowermost part of the troposphere that interacts with the surface)
is strongly stratified, trapping heat near the surface.
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ter vapour (IWV) in the Arctic. The sensitivity is stronger in dry conditions
(low IWV, up to 31Wkg−1) than in humid conditions (high IWV, ≈ 18Wkg−1)
(Ghatak and Miller, 2013). The IWV is defined as the vertical integral of the
specific humidity q, which is the relation of the mass of water vapour to the total
mass of air, over the atmospheric column:

IWV = −1

g

∫ ptop

psfc

q dp, (1.1)

where g is the standard gravitational acceleration, and psfc and ptop are the air
pressure at the surface and the top of the atmosphere, respectively. Typical IWV
values at the Arctic research site in Ny-Ålesund (Svalbard, Norway) range from
2 kgm−2 in winter to 17 kgm−2 in summer (interquartile ranges in Fig. 1.1). In
extreme conditions, IWV can be as low as 0.4 kgm−2 in January and reach up to
34 kgm−2 in July (Fig. 1.1).
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Figure 1.1: Monthly statistics of integrated water vapour (IWV) computed from
radiosonde observations at Ny-Ålesund covering the years 1993–2023 (Maturilli
and Kayser, 2016, 2017b; Maturilli, 2020). The box indicates the interquartile
range and the horizontal line within the box shows the median. Whiskers indicate
the 10th and 90th percentiles. IWV values outside the 10th or 90th percentile
are illustrated as dots.

Water vapour contributes to the rapid warming of the Arctic via the water
vapour feedback loop (Alexeev et al., 2005): According to the Clausius-Clapeyron
equation, a warmer atmosphere can contain more water vapour before saturation
is reached (15% higher water vapour pressure per 1K warming at 200K, and
only 6%K−1 at 300K, Held and Soden, 2000). Thus, higher temperatures and
enhanced evaporation from larger open water regions intensify the longwave ra-
diation at the surface, which radiatively heats the surface and near-surface air,
triggering further ice melt and a temperature increase. According to Zhang et al.
(2001), the IWV has a greater effect on snow melt than the mean atmospheric
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temperature, but both effects are also linked by the Clausius-Clapeyron relation.

Furthermore, water vapour is a key part of the global water cycle (Trenberth,
1998; Bengtsson, 2010) and is strongly connected to the formation of clouds. In
case the air is saturated with water vapour (over liquid water or ice), clouds form
due to condensation, freezing or deposition (Lohmann et al., 2016, Chapter 6.1).
Through clouds, water vapour also has an indirect radiative effect: Clouds scatter
radiation in the visible spectrum of electromagnetic radiation (solar ’shortwave’
radiation) but absorb and emit in the longwave (thermal infrared) (Shupe and
Intrieri, 2004). The net radiative effect of the clouds at the surface compared
to clear sky conditions is known as the cloud radiative effect. Liquid clouds
dominate the longwave emission signal of clouds compared to pure ice clouds
(Hong and Liu, 2015) unless the integrated cloud liquid water content (liquid
water path, LWP) is very small (< 5 gm−2, Ebell et al., 2020). During polar
night, the effect of solar radiation is absent, yet clouds continue to emit longwave
radiation and trap the heat below the clouds, which results in higher surface
and air temperatures. During polar day over sea ice, when both the solar and
the infrared radiative effects play a role, the cloud radiative effect can become
negative in mid-summer when the shading of the shortwave radiation dominates
the longwave emission (Shupe and Intrieri, 2004; Nomokonova et al., 2020). In the
warming Arctic, some observational studies suggest a regional increase in cloud
occurrence (Devasthale et al., 2016; Nomokonova et al., 2020) but the overall
trend is uncertain (Vihma et al., 2016; Wendisch et al., 2023). Because of the
net positive cloud radiative effect (Shupe and Intrieri, 2004), an increase in cloud
cover can contribute to Arctic amplification.

The vertical water vapour distribution is important for direct radiative effects
(Colman, 2001; Devasthale et al., 2011) and the interaction of water vapour with
clouds (Solomon et al., 2011; Sedlar et al., 2012; Brunke et al., 2015). Tjernström
et al. (2019) found that when temperature and specific humidity increase rather
than decrease with height, the surface received additional radiative heating of up
to 25Wm−2. However, the cloud occurrence was also higher. The increase of
specific humidity with height is known as humidity inversion and is characteristic
of the Arctic. Figure 1.2a shows that the specific humidity increases with height at
latitudes north of 60◦N in winter while it decreases with height at lower latitudes.
In the Arctic Ocean, the humidity inversion is very distinct (Fig. 1.2b).

Humidity inversions occur throughout the entire year, with occurrence rates
of 90% in winter and more than 60% in summer (Naakka et al., 2018). Humidity
inversions can be formed by several processes: Strong radiative cooling at the
surface during polar night (Curry, 1983) results in the formation of temperature
inversions and reduces the saturation water vapour pressure according to the
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Clausius-Clapeyron relation. Thus, as the water vapour pressure reaches satura-
tion, the water vapour condenses to the liquid phase, reducing the water vapour
concentration and resulting in the formation of fog (Curry, 1983). The fog can
dissolve due to gravitational settling or precipitation of the condensates. Conden-
sation driven by radiative cooling dries the atmosphere and forms a surface-based
humidity inversion, often coinciding with a temperature inversion (Brunke et al.,
2015; Naakka et al., 2018). Moisture advection from lower latitudes is another
essential mechanism to form humidity (and temperature) inversions in the Arctic
as the lower tropospheric part cools and water vapour condenses (Tjernström
et al., 2004; Brunke et al., 2015). Such elevated temperature and humidity in-
versions are often accompanied by low-level mixed-phase clouds, whose cloud top
is near the inversion top (Sedlar et al., 2012; Brunke et al., 2015). Entrainment
at the cloud top, driven by radiative cooling, and a downward moisture gradient
due to the humidity inversion draws the higher water vapour concentration down-
wards into the cloud (Solomon et al., 2011). Consequently, humidity inversions
serve as a moisture source for low-level mixed-phase clouds, contributing to their
persistence over time.
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Figure 1.2: Specific humidity q latitude–height cross-section of the northern hemi-
sphere for winter 2019/2020 (a). The dashed white box indicates the latitude
range of the research vessel (RV) Polarstern during the MOSAiC expedition
(Sect. 1.3). The white circle at 87◦N indicates the average latitude of RV Po-
larstern during winter 2019/2020, which is the latitude of the mean specific hu-
midity profile shown in (b). The data is based on the European Centre for
Medium-Range Weather Forecast (ECMWF) reanalysis v5 (ERA5).

Arctic amplification has also been related to changes in the global atmospheric
circulation, which affects the transport of moisture into and out of the Arctic:
Crasemann et al. (2017) found that regional changes in atmospheric circulation
patterns could be attributed to sea ice loss using reanalyses and general circulation
models. However, the relation between Arctic amplification and the long-term
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changes of the atmospheric circulation is still under debate (Vavrus, 2018; Lee
et al., 2019). For example, the results from Francis and Vavrus (2015) suggest that
the jet stream, a strong wind band driven by the temperature contrast between
the tropics and the polar regions, tends to meander more in the future because of
the reduced meridional temperature gradient in the lower troposphere. However,
several recent studies using reanalyses and climate models have indicated that the
warming of the tropical upper troposphere and the simultaneous cooling of the
polar lower stratosphere strengthens the jet stream as the meridional temperature
gradient is increased in the upper troposphere (Lee et al., 2019; Stendel et al.,
2021; Blackport and Fyfe, 2022; Nie et al., 2023). Climate simulations performed
by Priestley and Catto (2022) also indicate that the number of cyclones reaching
Svalbard and the Fram Strait in winter will decrease by the end of the 21st
century under high anthropogenic emission scenarios. These results suggest a
reduced waviness of the jet stream.

Past studies identified trends in the occurrence of warm air intrusions (WAIs)
because of decreased meridional temperature gradients (Mewes and Jacobi, 2019)
and increased occurrence of blocking situations (Rinke et al., 2017; You et al.,
2022b). Such trends may be related to the enhanced waviness of the jet stream
observed in recent decades. In the mid-latitudes, an increased occurrence of
blocking situations results in an increase in the number and intensity of heat
waves and droughts on the one hand, but also more cold air outbreaks and floods
on the other hand (Stendel et al., 2021). Additionally, atmospheric blocking and
meandering jets increase the atmospheric exchange of heat and moisture between
the mid-latitudes and the Arctic through warm air intrusions (WAIs) and cold
air outbreaks, which contribute to the large variability of IWV seen in Fig. 1.1.
The findings from Alexeev et al. (2005) and Hahn et al. (2021) indicate that the
increase of poleward heat and moisture transport is an important contributor
to Arctic amplification. However, climate model simulations indicate that the
observed (and simulated) recent positive jet waviness trend will reverse in the
future (Cattiaux et al., 2016).

The strong poleward heat and moisture transport related to WAIs greatly
affect the Arctic. The advected heat and the enhanced greenhouse effect due
to clouds and water vapour result in higher temperatures, enhancing ice melt or
hindering ice formation and growth (Kapsch et al., 2013; Tjernström et al., 2015;
Johansson et al., 2017; Graham et al., 2019c; You et al., 2021, 2022a). WAIs that
passed through the North Atlantic sector of the Arctic, which is a major pathway
of WAIs (Serreze et al., 1995; Mewes and Jacobi, 2019), have contributed to the
warming trend at Ny-Ålesund (especially in winter, Rinke et al., 2017; Dahlke
and Maturilli, 2017). Also in the Barents Sea, trends in the occurrence of WAIs in
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winter could explain half of the temperature trend (Woods and Caballero, 2016).
As the positive trend of WAIs is correlated with positive temperature trends,

and the water vapour amount is related to temperature, it is not surprising that
moistening of the Arctic has been observed (Chen and Liu, 2016; Maturilli and
Kayser, 2017a; Rinke et al., 2019). The moistening trend is mainly confined to
lower altitudes (Maturilli et al., 2013; Allan et al., 2022), where also temperatures
increased the most, and has a strong regional and seasonal variability (Maturilli
and Kayser, 2017a; Parracho et al., 2018). Based on reanalyses, the strongest
relative trends have been identified around Svalbard in late autumn and early
winter (up to 12%decade−1, Rinke et al., 2019), coinciding with the enhanced
sea ice loss (Rantanen et al., 2022). Other regions and seasons also show drying
trends (e.g., eastern Siberia in late winter or northern central Siberia in summer).

Findings from Nygård et al. (2020) indicate a correlation between increased
moisture transport into the Arctic due to changes in the circulation and regional
and seasonal IWV trends. Wang et al. (2024) estimated that enhanced mois-
ture intrusion activity in summer is responsible for more than a third of the
summertime moistening trend in the Arctic. However, different observations or
reanalyses strongly disagree on the regional distribution and the magnitude of
trends (Parracho et al., 2018; Rinke et al., 2019). In summer, the variation across
data sets even exceeds the magnitude of the trend itself, so the sign of the trend is
uncertain. The highest uncertainties occur in summer in the data sparse regions
of the central Arctic, but also Siberia and the North Atlantic sector of the Arctic
(Rinke et al., 2019). Trend estimates in the Arctic are challenging because of the
low accuracy of water vapour observations (Schröder et al., 2018). For example,
Crewell et al. (2021) studied the errors of satellite products and reanalyses during
a field campaign carried out in the vicinity of Svalbard in May–June 2017. In
the central Arctic, the monthly mean IWV varied up to 30% between satellite
products, and for single events the errors can be much higher (also due to the
spatio-temporal variability of water vapour).

Uncertainties in water vapour estimates from reanalyses in the Arctic are
related to the low density of ground observations and difficulties in satellite remote
sensing. Thus, data assimilation is limited in the Arctic, and reanalyses have to
rely more on the underlying model. The options and challenges of water vapour
measurements in the Arctic are elaborated in the following section.

1.2 Water vapour observations in the Arctic

As for most other standard meteorological parameters, water vapour can be mea-
sured by a sensor directly interacting with the air (in-situ) or observing an air
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volume from a distance (remote sensing). Remote sensing is not trivial as water
vapour is not directly measured but only its interaction with electromagnetic ra-
diation. Inverse modelling techniques, which are explained in Chapter 3, must
be used to derive atmospheric parameters from the remote sensing observations.

In the Arctic, in-situ humidity measurements are rare because only a few
ground stations (synoptic stations) exist at the coasts of the Arctic seas (e.g., Ny-
Ålesund, Svalbard; Barrow, Alaska; Eureka and Alert, Canada, Uttal et al., 2016),
and only a fraction of the stations launch radiosondes. Autonomous drifting buoys
(International Arctic Buoy Programme, accessed 16 May 2024) are scattered in
the central Arctic Ocean, but they usually only provide surface measurements
(e.g., temperature, Rigor et al., 2000) and rarely measure humidity.

Nowadays, most ground stations, e.g., at Ny-Ålesund, and nearly all radioson-
des measure humidity with capacitive sensors (capacitive hygrometer) that have
a water vapour absorbent polymer between two electrodes (Maturilli et al., 2013;
Foken, 2021, Chapters 8.3 and 8.4). Capacitive hygrometers have a high accu-
racy (usually 2–5%) and low response time to allow for a high vertical resolution
of soundings (measuring at 1Hz with ascent rates of about 5ms−1). The ra-
diosonde processing software corrects potential biases caused by long response
times of the humidity sensor at low temperatures, radiative heating of the sensor,
or wake effects of the ascending balloon (Foken, 2021, Chapter 46.3). Connell
and Miller (1995) estimated the IWV error due to response times of the tem-
perature and humidity sensors to be generally less than 0.1 kgm−2. The Global
Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN),
which provides high-quality processing of radiosonde measurements, estimates
the IWV uncertainty of the Vaisala RS41 radiosondes used in this thesis to be
less than 0.5 kgm−2 in Arctic conditions (Sommer et al., 2023). It is important
to respect the drift of the radiosonde due to wind during the ascent and descent
when comparing the sounding to other measurements.

In-situ measurements from synoptic stations or radiosondes are often used as
reference data to evaluate other humidity products because of their high accu-
racy (and vertical resolution). However, they only provide point measurements
in space and time that might only be representative for a small area around
the station. The poor spatial coverage and low temporal sampling rates of ra-
diosondes impede an adequate representation of the water vapour variability and
distribution in the Arctic.

Ground-based microwave radiometers (MWRs) also provide highly accurate
IWV, as well as coarse humidity (and temperature) profiles (and LWP, Solheim
et al., 1998; Crewell et al., 2001; Ware et al., 2003; Löhnert et al., 2004). MWRs
have been deployed at different sites around the world, from polar regions to mid-
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latitudes and subtropics (Macke et al., 2010; Steinke et al., 2015; Nomokonova
et al., 2019; Bock et al., 2021). The exploration of the sensitivity of microwave ra-
diance observations to water vapour dates back to 1946, when Dicke et al. (1946)
investigated the absorption strength of water vapour around the 22.235 GHz ab-
sorption line. Combining radiance measurements at strongly absorbing frequen-
cies with weakly absorbing frequencies allows the derivation of IWV, LWP and
coarse humidity profiles (e.g., Solheim et al., 1998). Details on the physics behind
microwave remote sensing follow in Chapter 2. As the 22.235 GHz absorption line
is relatively weak, observations along the much stronger 183.31 GHz absorption
line have been used to enhance the accuracy of water vapour observations in dry
conditions (Cadeddu et al., 2007). By combining low- and high-frequency mi-
crowave radiometers, Cadeddu et al. (2022) achieved IWV uncertainties of only
0.2 kgm−2 and specific humidity profile standard deviations of 0.2–0.3 g kg−1 at
extremely dry Antarctic sites, where IWV did not exceed 9 kgm−2. However,
in the Arctic, the variability of IWV is much higher with values ranging from
less than 1 to more than 30 kgm−2 (see Fig. 1.1). It is more challenging for re-
trievals to be accurate for both extremely dry and relatively humid conditions. A
significant advantage of MWRs over radiosondes is the high temporal resolution
of 1 second, allowing them to better capture water vapour variability during air
mass transitions and storms (Crewell et al., 2021). Furthermore, modern MWRs
are relatively compact, require little power supply and maintenance, and can be
automated, making them suitable for continuous operational monitoring of the
atmosphere (Rose et al., 2005).

Enhanced spatial coverage can be realized through remote sensing based on
the Global Navigation Satellite System (GNSS). GNSS send signals to receiving
stations on Earth at frequencies of about 1–1.5GHz (Ning et al., 2016). Com-
pared to vacuum conditions, the signal is delayed (known as slant total delay)
due to the refractive index of the atmosphere (Foken, 2021, Chapters 36.1 and
36.3). From the slant total delay, the zenith total delay is derived, which mainly
depends on the atmospheric pressure, temperature and humidity. To accurately
derive IWV, pressure and temperature information must be added from addi-
tional observations, assumptions or numerical weather forecast. Compared to
radiosondes, IWV errors are on the order of 1–2 kgm−2 (Ning and Elgered, 2012;
Van Malderen et al., 2014). The advantages of GNSS remote sensing include fully
automated operation and the ability to derive three-dimensional water vapour dis-
tributions by combining multiple GNSS satellites and receiving stations at the
ground (Van Malderen et al., 2014; Foken, 2021, Chapters 36.1 and 36.6). How-
ever, receiving stations are sparse in the Arctic, with no permanent installations
on the sea ice.
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For Arctic-wide coverage, satellite remote sensing observations are needed.
Polar orbiting satellites are on sun-synchronous orbits that sample a region at
roughly the same local time each day. They orbit around Earth at altitudes of
300–1000 km within approximately 90–103min (Foken, 2021, Chapter 37.1). In
the Arctic, the orbits are sufficiently close together to achieve full Arctic cover-
age at least once per day per satellite. Given the numerous polar orbiting satel-
lites from various space agencies (National Aeronautics and Space Administration
(NASA), European Organization for the Exploitation of Meteorological Satellites
(EUMETSAT), Japan Aerospace Exploration Agency (JAXA), etc.), the entire
Arctic can be sampled several times per day with different instruments. However,
all these instruments, operating at different wavelengths of the electromagnetic
spectrum, face distinct challenges in the Arctic:

As an example of the near-infrared spectrum, the Moderate Resolution Imag-
ing Spectrometer (MODIS) IWV retrieval is described. Solar light radiances re-
flected at the Earth’s surface are measured at wavelengths around the 0.94µm wa-
ter vapour absorption line (Gao and Kaufman, 2003). The ratio between strongly
and weakly absorbing channels is used to derive IWV and to cancel out surface
and other atmospheric attenuation effects (e.g., aerosols). This method requires
reflective surfaces (ocean areas with Sun glint, clouds, sea ice) and daylight, and
can therefore only be used from spring to early autumn in the central Arctic.
Additionally, clouds can obscure the lower atmosphere, leading to biases in the
retrieved IWV, and the signal can be weak in very dry conditions (Alraddawi
et al., 2018; Crewell et al., 2021). Errors are typically between 5 and 10% under
ideal conditions (Gao and Kaufman, 2003) but can be much greater in the Arctic.

In the thermal infrared and microwave spectrum, the emission of radiation
from water vapour around resonant rotational or vibrational absorption lines is
used to derive IWV and coarse humidity profiles. In contrast to the visible and
near-infrared spectrum, water vapour observations are possible throughout the
year because of the independence of solar radiation. For example, the Infrared
Atmospheric Sounding Interferometer (IASI, Blumstein et al., 2004) measures
infrared radiances at a high spectral resolution between 3.6 and 15.5µm and
therefore includes the strong water vapour absorption line at around 6µm. As
mentioned for the ground-based MWRs, observations at frequencies with different
absorption strengths can be used to derive water vapour profiles and IWV. In-
frared remote sensing observations are limited to clear sky or partly cloudy scenes
because clouds are strong absorbers in the infrared, attenuating signals below the
clouds. At microwave frequencies, clouds are semi-transparent so that the whole
atmosphere can be sensed in almost all sky conditions. The atmospheric opacity
is generally low in the lower part of the microwave spectrum (1–100GHz), except
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at frequencies close to resonant absorption line centres, and increases with fre-
quency due to the water vapour continuum absorption (see Chapter 2). At low
frequencies and in dry conditions, the microwave radiation emitted by the sur-
face strongly contributes to the total signal received by the satellite sensor. Over
open ocean, the surface emission signal is well known and much smaller than over
sea ice due to lower emissivities (Prigent et al., 2017). Over sea ice, the surface
signal is stronger (generally higher emissivities) and substantially more uncertain
because of the high spatio-temporal variability of the surface emissivity (Willmes
et al., 2014; Lee et al., 2017; Risse et al., 2024). The sea ice emissivity depends on
its dielectric and scattering properties, which may rapidly change (e.g., depending
on sea ice temperature, salinity, and snow properties, Mathew et al., 2008; Wang
et al., 2017). Consequently, water vapour products from satellite-based MWRs
have high uncertainties over sea ice (Crewell et al., 2021) and are usually only
used over open ocean. Over (polar) oceans, IWV errors are typically around 10%
(25%) (Schröder et al., 2018).

The combination of microwave and infrared radiances can significantly reduce
IWV errors compared to pure infrared or microwave retrievals in the Arctic and
is currently one of the most accurate approaches (Roman et al., 2016; Crewell
et al., 2021). For example, on the Metop satellites from EUMETSAT, infrared
radiances (e.g., IASI) are combined with microwave radiances from the Advanced
Microwave Sounding Unit (AMSU-A) and Microwave Humidity Sounder (MHS)
(August et al., 2012; Roman et al., 2016). IWV errors of the combined product
are on the order of 1–1.5 kgm−2 with positive (negative) biases when IWV is
below (above) 10 kgm−2 (Roman et al., 2016; Crewell et al., 2021).

New satellites, for example, the recently launched Arctic Weather Satellite
(launched in August 2024), extend the microwave observations to the sub-milli-
metre range (> 300GHz). Due to the higher atmospheric opacity of the sub-
millimetre spectrum compared to lower microwave frequencies, the measurements
are less affected by the surface, which has been shown to be a source of error
in short-term forecasts over sea ice (Lawrence et al., 2019). Furthermore, the
Polar Radiant Energy in the Far-InfraRed Experiment (PREFIRE) satellite was
launched in May 2024 to close the gap of observations beyond 15µm, exploring
the emission of radiation in the far infrared up to 50µm (L’Ecuyer et al., 2021).

Other methods, such as ground-based (or airborne) active remote sensing
techniques in the visible and near-infrared spectrum, e.g., Raman lidar or differ-
ential absorption lidar (Wirth et al., 2009; Foken, 2021, Chapters 25 and 26), are
also known to provide accurate IWV and water vapour profiles, but are limited
by clouds. Currently, differential absorption radar techniques are also explored
for water vapour profiles inside clouds (Schnitt et al., 2020; Roy et al., 2021).
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However, these active remote sensing techniques are currently only used at a few
ground stations or only during field campaigns.

Due to the low amount of ground stations available in the central Arctic
Ocean, the quality of satellite products is mainly assessed with reanalyses, which
assimilate satellite measurements and are therefore not independent of each other.
Field campaigns provide great opportunities to evaluate satellite products and re-
analyses through high-quality measurements. A particularly valuable field cam-
paign, the Multidisciplinary drifting Observatory for the Study of Arctic Climate
(MOSAiC) expedition (Shupe et al., 2022), will be the focus of this thesis and is
introduced in the following section.

1.3 MOSAiC expedition

The MOSAiC expedition took place in the Arctic Ocean from October 2019 to
September 2020 to study the Arctic climate system for a complete annual cycle
(Shupe et al., 2022). It has been the most extensive Arctic field campaign and pro-
vides the most comprehensive set of atmospheric, sea ice, oceanic, ecosystem and
biogeochemical measurements in the central Arctic to date. The German research
vessel (RV) Polarstern from the Alfred Wegener Institute (AWI), Helmholtz Cen-
tre for Polar and Marine Research, was frozen into the ice and began to passively
drift along with an ice floe on 04 October 2019. The drift started in the northern
Laptev Sea and ended in the marginal ice zone in the Fram Strait on 31 July
2020, with a logistical interruption between 16 May and 19 June (Fig. 1.3).

From January to March 2020, the atmospheric circulation was dominated by
a record-breaking positive phase of the Arctic Oscillation index, which means
that the pressure over the central Arctic was lower while the pressure over the
Atlantic and Pacific Oceans was higher (Lawrence et al., 2020). The atmospheric
conditions and the unusually thin sea ice resulted in a very rapid sea ice drift
(Krumpen et al., 2021) so that RV Polarstern reached the marginal ice zone in
the Fram Strait, where the ice floe disintegrated, earlier than expected. There-
fore, between 31 July and 21 August 2020, the ship transited through the ice
towards the North Pole, where the autumn refreezing was captured. Overall,
the atmospheric conditions were within the interquartile range of the 1979–2019
climatology (Rinke et al., 2021). Thus, the MOSAiC expedition represents the
typical Arctic conditions well. However, also a few record-breaking events were
observed (e.g., the WAI in mid-April 2020, Kirbus et al., 2023). The melting
season along the MOSAiC track was approximately one month longer, related
to changes in the sea ice concentration, and the summer months featured the
highest temperatures and IWV compared to the climatological record (Rinke et
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al. 2021).

Figure 1.3: Track of RV Polarstern in transit (dotted lines) and when passively
drifting with the sea ice (solid lines) during the MOSAiC expedition, separated
into several ’legs’ (colours). Shading shows the sea ice concentration from the
Advanced Microwave Scanning Radiometer (AMSR, Spreen et al., 2008) for 05
March 2020 and the grey line indicates the 15% sea ice concentration on 15
September 2020.

During MOSAiC, extensive humidity measurements were performed using dif-
ferent approaches (Shupe et al., 2022). Near-surface measurements are available
at two locations on the ship and on the sea ice in at least 300m distance. While
the instruments on board RV Polarstern can be influenced by turbulence around
the ship’s structure, the central measurement site on the sea ice (Met City) was
located at a distance where the ship’s influence was estimated to be negligible.
Radiosondes, which were launched at the aft of RV Polarstern at 12m height at
least every 6 hours, measure water vapour (also temperature, pressure and wind)
profiles, from which the IWV can be calculated. Remote sensing water vapour
measurements are available from four MWRs and the Raman lidar Polly-XT. Two
of the MWRs, a two-channel (23 and 31 GHz) and a three-channel (also includes
90 GHz) from the Atmospheric Radiation Measurement (ARM) research facility,
only provide IWV (and liquid water path, LWP). The other two, the Humidity
And Temperature PROfiler (HATPRO) from the Leibniz Institute for Tropo-
spheric Research (Leipzig) and the Microwave Radiometer for Arctic Clouds -
Passive (MiRAC-P) from the University of Cologne, can also be used for coarse
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humidity profiling because they measure at multiple frequencies between 22 and
340GHz. Finally, the Raman lidar Polly-XT provides humidity profiles during
polar night and clear sky conditions or below cloud base height (Engelmann et al.,
2016; Dai et al., 2018). The wealth of measurements from the MOSAiC expedi-
tion allows for detailed studies on inter-instrumental validations and consistency
checks.

1.4 Goals of this thesis

As outlined in the previous sections, water vapour plays a crucial role in the
Arctic climate system. Due to the sparsity of ground stations and challenges in
satellite remote sensing, water vapour observations are highly uncertain in the
central Arctic. It is especially challenging to correctly capture the vertical humid-
ity structure, which typically features humidity inversions. In such data-sparse
regions, highly accurate reference observations from field campaigns are crucial
for improving operational ground-based and satellite remote sensing products
and models by identifying current limitations and exploring the benefit of new
methods. The importance of humidity inversions for the downwelling longwave
radiation at the surface has not been sufficiently explored. Consequently, it is also
unclear how misrepresentations of humidity inversions by remote sensing obser-
vations and models influence the downwelling longwave radiation at the surface.
Fortunately, the MOSAiC expedition provides unique, high-quality measurements
that are well-suited to address these issues and assess Arctic water vapour for the
complete annual cycle.

In this thesis, new retrievals are developed using modern machine learning
techniques to derive highly accurate IWV and humidity profiles (as well as LWP
and temperature profiles) for the full annual cycle, covering a wide range of water
vapour conditions. Radiosonde observations and synthetic evaluation data sets
are used to explore the capabilities and limitations of low- and high-frequency
MWRs for humidity profiling, especially regarding the ability to resolve humidity
inversions. The high temporal resolution IWV product from the MWRs and the
vertically detailed radiosonde observations of the MOSAiC expedition are used
as reference for assessing the quality of the IWV and specific humidity profiles
of state-of-the-art models and satellite products. Particular emphasis is placed
on the detectability and representation of humidity inversions in these data sets,
including the MWR humidity profiles. For the first time, the impact of humidity
inversions on downwelling longwave radiation is quantified without the influence
of clouds or temperature changes. Specifically, the following research questions
(RQs) are answered:
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RQ1: What is the benefit of combining low- and high-frequency MWRs with dif-
ferent moisture sensitivity for humidity profiling compared to more common
single-MWR measurements?

RQ2: How well can ground-based MWRs capture the main features of the Arctic
humidity profile, especially concerning humidity inversions? Can MWRs be
used to correctly detect and monitor Arctic humidity inversions over long
times in regions where radiosonde measurements are missing?

RQ3: Can the reference measurements from the MOSAiC expedition be used to
identify biases in the humidity profile representation in satellite products
and reanalyses? What are the capabilities of space-based remote sensing
for humidity profiling as assessed by MOSAiC?

RQ4: How well do humidity inversions have to be represented to avoid biases in
downwelling longwave radiation?

An overview of the studies addressing these RQs is given below. Afterwards,
the microwave radiative transfer for ground-based MWRs is introduced in Chap-
ter 2. Chapter 3 explains how atmospheric parameters are derived from measured
microwave radiances. These two theory chapters are followed by the three stud-
ies (Chapters 4, 5, and 6), two of which are already published or accepted for
publication. Finally, Chapter 7 answers the research questions by concluding the
findings and provides an outlook for future research.

1.5 Overview of the studies

Study 1: Single microwave radiometer retrievals

The first study (Chapter 4, Walbröl et al., 2022) is the first step towards a high-
accuracy reference IWV data set for the central Arctic, using the measurements
of the low-frequency Humidity and Temperature Profiler (HATPRO) and the
high-frequency Microwave Radiometer for the study of Arctic Clouds - Passive
(MiRAC-P) during the MOSAiC expedition. The measurements of the MWRs
were processed and quality controlled in preparation to derive atmospheric param-
eters. Standardized regression retrievals were used to derive coarse temperature
and humidity profiles, as well as IWV and LWP from the HATPRO radiance
measurements. For MiRAC-P, the standardized regression retrievals did not suf-
ficiently capture the nonlinear relationship between the radiance measurements
at high frequencies and IWV. To better capture the nonlinear relationship, we
developed a new IWV retrieval using Neural Networks. The IWV, as well as the
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humidity and temperature profile retrievals were evaluated using the radiosonde
observations from the MOSAiC expedition. The errors of the retrieved humidity
and temperature profiles are generally similar to findings from earlier studies but
face challenges in the lower troposphere due to inversions. Regarding IWV, the
evaluation showed that HATPRO and MiRAC-P perform well in a complemen-
tary sense. However, none of the IWV retrievals were accurate over the entire
range of IWV conditions. This study revealed the potential for improved water
vapour products by combining the low- and high-frequency measurements from
HATPRO and MiRAC-P.

Study 2: Synergistic microwave radiometer retrievals

The findings of the first study and Cadeddu et al. (2022) motivated us to combine
HATPRO and MiRAC-P measurements in a synergistic approach for enhanced
IWV and humidity profiles (Chapter 5, Walbröl et al., 2024). With the experience
from the first study, we developed new retrievals of IWV, specific humidity pro-
files and temperature profiles using Neural Networks. The synergistic retrievals
were evaluated with a synthetic data set and MOSAiC radiosondes. To quan-
tify the benefit of the synergy compared to single-MWR retrievals from the first
study (addressing RQ1), the errors of the retrievals were compared. Additionally,
the vertical information content and vertical resolution were computed for the
humidity profiles of the synergy and the single-MWR retrievals.

Study 3: Evaluation of water vapour products and assessing the im-
portance of humidity inversions

The third study addresses RQ2 to RQ4 (Chapter 6). The IWV from the MWR
synergy from the second study and radiosonde observations were used as ref-
erence to evaluate state-of-the-art models and satellite products. Root mean
squared deviations and biases were computed to quantify the performance of the
water vapour products of all data sets to answer parts of RQ3. One part of
the evaluation focused on the detectability of humidity inversions and the rep-
resentation of their characteristics in the models, satellite observations and the
ground-based MWRs. Comparing the inversion characteristics of the radiosondes
with those of all other data sets allowed us to assess how well humidity inver-
sions are represented, addressing RQ2 and RQ3. RQ4 is answered in three steps:
Firstly, radiative transfer simulations were used to estimate the effect of humidity
inversions at different altitudes on the downwelling longwave radiation. The find-
ings help to get a sense of the heights at which humidity inversions are relevant
for downwelling longwave radiation. Secondly, the radiative effect of humidity
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inversions was quantified without the influence of clouds or temperature changes.
Thirdly, the impact of different representations of humidity inversions on down-
welling longwave radiation was analyzed by using the humidity profiles of the
different data sets in the radiative transfer simulations. With the results from
the simulations, we estimated to what extent the vertical water vapour distri-
bution, characterized by inversions, affects the downwelling longwave radiation
compared to the IWV.
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Chapter 2

Microwave radiative transfer

The electromagnetic radiation emitted, absorbed and scattered by the Earth’s
atmosphere and surface can be used for remote sensing of meteorological param-
eters. In this thesis, the focus lies on the microwave spectrum (wavelengths λ:
1–100 mm, frequencies ν: 3–300 GHz) and parts of the sub-millimetre spectrum
(λ < 1mm, ν > 300GHz). In contrast to the visible, ultraviolet or (near and ther-
mal) infrared spectrum, clouds are semitransparent in the microwave spectrum,
allowing instruments to sense the entire atmosphere even in cloudy conditions.
In this chapter, an overview of the interaction of microwave radiation with the
atmosphere from a ground-based perspective is provided, following the works of
Liou (2002) with some additional remarks from Janssen (1993), Petty (2006) and
Foken (2021), to understand what a microwave radiometer (MWR) measures and
which meteorological parameters can be derived. The MWR only measures at-
mospheric radiation and does not emit a beam itself (as a radar does). For this
reason, this type of observation is often called passive microwave remote sensing.

2.1 Emission and absorption

Electromagnetic radiation is emitted when an atom or molecule changes from
one of its higher energy states (quantized energy states) to a lower state given
the energy difference ∆E = ∆nhν, where ∆n is the change of the quantum
number, h the Planck constant and ν the frequency of the emitted radiation.
The idealized perfect absorber and emitter of electromagnetic radiation is known
as black body. When a black body is in thermodynamic equilibrium with its
surroundings at temperature T , it emits spectral radiance (or radiant energy
intensity) at a certain frequency according to Planck’s law (Liou, 2002, Chapter
1.2)

Bν(T ) =
2hν3

c2
(
e

hν
kBT − 1

) , (2.1)
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where c and kB are the velocity of light in vacuum and the Boltzmann constant,
respectively. The spectral radiance is given in units of energy per time, area, solid
angle and frequency (Wm−2 sr−1 s). In thermodynamic equilibrium, an emitting
body absorbs the same amount of radiation for a given frequency according to
Kirchhoff’s law (emissivity ϵν equals absorptivity αν , Kirchhoff, 1860). If the
emissivity or absorptivity is less than one, the absorbing or emitting body is
referred to as a grey body, which emits less spectral radiance (ϵνBν(T )) than a
black body at the same temperature and frequency.

Similar to emission, absorption occurs when incident radiation, where each
photon has a certain energy E = hν, changes the quantized energy state of
an atom or a molecule to a higher level (from a ground state to an excited
state). In the microwave spectrum, the main absorbing gases are oxygen (O2)
and water vapour (H2O), and energy state changes are realized by rotational
transitions. Due to the structure of H2O (isosceles triangle between the hydrogen
and oxygen atoms), the molecule has three different moments of inertia Ii (i ∈
{0, 1, 2}) and a permanent electric dipole moment (Liou, 2002, Chapter 3.2). The
diatomic oxygen molecule O2 is linear and therefore has two equal moments of
inertia and negligible inertia along the axis connecting the oxygen atoms. Due to
symmetric charge distributions, the oxygen molecule has no permanent electric
dipole moment but a weak magnetic dipole moment because of two unpaired
electrons. Either electric or magnetic dipole moments are needed for rotational
transitions (Petty, 2006, Chapter 9.2). Otherwise, an incident electromagnetic
wave cannot apply torque to change the angular momentum of the molecule.

In the following, the energy levels of rotational transitions are outlined for a
linear rigid rotor, which can be used as an approximation for O2: During rota-
tional transitions, the rotational energy state, governed by the angular momentum
L of the molecule, is changed. The angular momentum and moments of inertia
are related by L = Iω, where ω is the angular velocity. For the rotating molecule,
the angular momentum takes discrete values according to the quantized energy
states

L =
h

2π

√
J (J + 1), (2.2)

where J is the rotational quantum number. Using Eq. 2.2 and ω = L/I, the
energy E = Lω/2 of the rotating dipole for a certain rotational quantum number
is then given by

EJ = BhJ (J + 1) , (2.3)

with the rotational constant B = h/(8π2I) (Janssen, 1993, Chapter 2.2). The
molecule mostly transitions from one energy state to the next higher or lower
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state (∆J = ±1). For example, to excite the molecule from the lower energy
state EJ to a higher energy state EJ+1, the frequency of the incident photon
must be

ν =
EJ+1 − EJ

h
=

Bh (J + 1) (J + 2)−BhJ (J + 1)

h
= 2B (J + 1) . (2.4)

Thus, resonant absorption lines for this rigid rotor example are separated by
∆ν = 2B. The absorption lines are generally not monochromatic because of
natural, pressure (or collisional) and Doppler broadening (Petty, 2006, Chapter
9.3). Natural broadening occurs due to Heisenberg’s uncertainty principle and
the finite time a molecule stays in an excited state before returning to a lower
energy state and emitting radiation (Janssen, 1993, Chapter 2.1). The energy of
the emitted photon is uncertain according to Heisenberg’s uncertainty principle,
broadening the frequency spectrum of the emitted photon. Pressure broadening
is caused by collisions between molecules, which can modify the natural time
the molecule is in the excited state before returning to its ground state. Doppler
broadening is observed when molecules have a velocity component in the direction
of observation, causing Doppler frequency shifts. The direction of motion of a
molecule is arbitrary, and its velocity depends on its temperature. Due to the high
abundance of molecules in the troposphere, pressure (or collisional) broadening
dominates. All three effects together are often referred to as line broadening.

For this thesis, the essential resonant absorption lines are those for water
vapour at 22.235 GHz and 183.31 GHz, and those for oxygen around 60 GHz
(Liou, 2002, Chapter 7.5). Figure 2.1 shows the transmissivity of the atmosphere
in the microwave spectrum from a ground-based perspective. The transmissiv-
ity of the atmosphere indicates the fraction of radiation intensity reaching the
sensor (here, at the surface) to the radiation intensity at the top of the atmo-
sphere. Section 2.3 provides a formal definition of the transmissivity. Due to
line broadening, numerous oxygen absorption lines at 60 GHz overlap, forming
a strong absorption complex with high atmospheric opacity and, therefore, low
transmissivity (Fig. 2.1). Frequency ranges with low opacity have a high trans-
missivity and are called atmospheric windows. Atmospheric windows are found
at low frequencies between resonant absorption lines (e.g., at about 30 GHz). The
transmissivity decreases with frequency as the opacity increases due to the wa-
ter vapour continuum absorption, whose origin is not fully explored. The water
vapour continuum absorption has been related to the formation of H2O molecule
clusters and to broadening due to collisions of water molecules with other wa-
ter molecules or other gases (nitrogen, oxygen, etc.) (Rosenkranz, 1998; Turner
et al., 2009). Due to the dependence of the water vapour continuum absorption

20



2.1. EMISSION AND ABSORPTION

50 100 150 200 250 300 350
Frequency (GHz)

0

20

40

60

80

100

Tr
an

sm
iss

iv
ity

 (%
)

HATPRO MiRAC-P

Winter
Summer
Winter
Summer

Figure 2.1: Calculated transmissivity of microwave radiation between 10 and
380 GHz simulated with MOSAiC radiosondes averaged over summer (01 May–31
August 2020, integrated water vapour: 13.3 kgm−2) and winter (01 October 2019–
30 April 2020 and 01–30 September 2020, integrated water vapour: 3.9 kgm−2).
Blue (green) lines indicate the frequencies of the microwave radiometer HATPRO
(MiRAC-P).

on the amount of water vapour, the atmospheric transmissivity is low at frequen-
cies above 300 GHz in humid conditions (Petty, 2006, Chapter 7.4). Figure 2.1
illustrates that the transmissivity at high frequencies is much lower in the Arctic
summer than in winter because of the higher water vapour amount. However,
as the transmissivity is not 0, remote sensing of the entire atmosphere is still
possible.

As oxygen is a well-mixed gas whose concentration is known, temperature
profiles can be derived by combining observations at frequencies close to the
centre of the oxygen absorption complex (low transmissivity) with frequencies at
the wings (high transmissivity). Similarly, observations along the water vapour
absorption lines can be used to derive humidity profiles and the integrated water
vapour (IWV). As the 183.31 GHz absorption line is much stronger than the
22.235 GHz line (see also transmissivity in Fig. 2.1), the former is favoured for
ground-based microwave remote sensing in dry conditions (e.g., Kerber et al.,
2014). At window frequencies, where the resonant absorption by water vapour
and oxygen is weak, the emission from liquid hydrometeors (e.g., cloud droplets) is
pronounced. The emission strength also increases with frequency. By combining
observations at frequencies where liquid emission dominates (e.g., 30 GHz) with
those where water vapour absorption dominates (e.g., the 22.235 GHz resonant
absorption line), the total amount of cloud liquid water (liquid water path, LWP)
can be derived (Crewell et al., 2001). The observation at a frequency with strong
water vapour absorption is needed to account for the water vapour emission signal
when deriving LWP.
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2.2 Scattering

Scattering is another form of interaction of electromagnetic radiation with matter,
where the radiation is redirected. The scattering properties of a particle strongly
depend on its relative size to the wavelength of the radiation. This relationship is
expressed by the size parameter X = 2πa/λ, where a is the radius of the particle
(Liou, 2002, Chapter 1.1). Typically, three forms of scattering are distinguished:

• Rayleigh scattering: a≪ λ =⇒ X ≪ 1,

• Mie scattering: a ≃ λ =⇒ X ≳ 1,

• Geometric optics: a≫ λ =⇒ X ≫ 1.

In the frequency range considered in this thesis (20–350 GHz), only Rayleigh and
Mie scattering are relevant and have been respected in the radiative transfer sim-
ulations to prepare the retrievals of atmospheric parameters (see Chapters 4 and
5). At low frequencies (< 100GHz) and in the absence of large precipitating
hydrometeors (rain, graupel, snow or hail), scattering is negligible compared to
absorption by gases and hydrometeors (Janssen, 1993, Chapter 1.2 and 3.2). In
the Mie scattering regime (higher frequencies and/or larger hydrometeors), scat-
tering dominates the total extinction of radiation (extinction includes absorption
and scattering) (Petty, 2006, Chapter 12.3).

In the following, Rayleigh scattering for a spherical particle will be briefly out-
lined to understand the underlying processes of scattering. As the wavelength of
the incident radiation is significantly larger than the scattering particle, it can be
assumed that the electric field of the incident radiation is homogeneous through-
out the particle, which may have an electric field by itself. Due to the incident
radiation, all dipoles within the scattering particle experience torque, realigning
the dipoles along the electric field. Thus, as the electric field of the radiation
propagates over time, the dipoles in the particle oscillate at the frequency of the
incident radiation. The acceleration of the particle’s oscillating dipole moments
produces the electric field of the scattered radiation. The squared absolute value
of the electric field then yields the intensity of the scattered radiation. If the in-
cident radiation is unpolarized, the intensity of the Rayleigh-scattered radiation
is relatively uniform in all directions around the scattering particle with slight
maxima in the forward (propagation direction of the incident radiation) and back-
ward direction. Thus, an upward-looking ground-based sensor (e.g., MWR) can
also detect radiation from particles and molecules not directly in the line of sight.
However, in the Rayleigh scattering regime, the contribution of scattering is small
compared to the emission signal (Petty, 2006, Chapter 12.3).
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When approaching the Mie scattering regime, scattering can no longer be
neglected as the extinction efficiency of a particle gets more and more dominated
by scattering compared to absorption. As the wavelength approaches the size of
the scattering particles, the electric field inside the particle cannot be assumed
to be homogeneous. Therefore, the Rayleigh theory no longer applies, and the
intensity of the scattered radiation is computed using Mie theory instead. In
contrast to Rayleigh scattering, radiation is scattered much more in the forward
direction (Petty, 2006, Chapter 12.3). Thus, for an upward (zenith) looking
ground-based sensor, the downwelling microwave radiation emitted by gases and
hydrometeors is rather scattered in the downward direction than in the horizontal
or upward direction. The scattering intensity highly depends on the frequency of
the radiation, as well as the size, shape, density, orientation and complex index
of refraction of the particle (e.g., Hong et al., 2009; Foken, 2021, Chapter 41.3).

2.3 Radiative transfer equation

The radiative transfer equation explains how (microwave) radiation propagates
through the atmosphere. Here, the radiative transfer equation will be derived
for an upward-looking ground-based sensor (MWR), assuming a plane-parallel
atmosphere (horizontally homogeneous). However, we start from the perspective
of the downwelling radiation, looking down towards the surface from a certain
height in the atmosphere. Absorbing (and therefore emitting) and scattering
particles in the atmosphere change the intensity Iν of radiation at each distance
step ds according to

dIν
ds

= −S +O. (2.5)

While absorption is a clear sink S and emission O is a source of radiation, scat-
tering can be both, depending on whether radiation is scattered towards (source)
or away (sink) from the direction of the observer. For simplification, low mi-
crowave frequencies are considered here so that scattering can be disregarded.
Equation 2.5 can therefore be written as

dIν
ds

= βa,ν (−Iν +Bν(T )) , (2.6)

forming Schwarzschild’s equation, where Bν is the emitted radiation according to
Planck’s law and βa,ν is the volume absorption coefficient (Petty, 2006, Chapter
8.1). The volume absorption coefficient can be rewritten in terms of the mass ab-
sorption coefficient ka,ν and the density of the absorbing medium ρ: βa,ν = ka,νρ.
Note that the density ρ(z) of the absorbing medium is only known for well-mixed
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gases such as oxygen or carbon dioxide. In contrast, the water vapour density is
unknown and has a high spatio-temporal variability. Here, the absorbing medium
is air (dry air combined with water vapour), where water vapour and oxygen con-
tribute most to the absorption. The mass absorption coefficient is obtained by
summing over the product of all absorption line strength and shape functions,
which depend on the pressure and temperature (Liou, 2002, Chapter 4.2). As
the shape function depends on the pressure (line broadening), which depends on
the height according to the hydrostatic equation, the absorption coefficient also
varies with height.

As radiation propagates through the atmosphere, it is continuously attenu-
ated through absorption (scattering is neglected). Beer-Bouguer-Lambert’s law
describes that an initial radiation intensity Iν(0) decreases exponentially with
distance, given by

Iν(s1) = Iν(0)e
−

∫ s1
0 ka,ν(s)ρ(s) ds, (2.7)

where s1 > 0. The term τ(s) =
∫ so
s

ka,ν(s)ρ(s) ds is often referred to as the optical
depth or optical thickness and is a measure of the absorption strength between
any point s and the observer so (Chandrasekhar, 1960, Chapter 1.7). Therefore,
the optical depth is 0 at the position of the observer. Further, t(s) = e−τ(s)

is known as the transmissivity, which describes to what fraction the radiation
intensity is reduced (by absorption) between so and s. Over an infinitesimal
distance ds, the absorption coefficient and density can be considered constant.
Using the differential form of the optical depth dτ = −ka,νρ ds and multiplying
Eq. 2.6 with e−τ yields

−ka,νρ
dIν
dτ

e−τ = ka,νρ (−Iν +Bν(T )) e
−τ . (2.8)

Note that the mass absorption coefficient and the density have replaced the vol-
ume absorption coefficient. Rearrangement and integration over dτ with integra-
tion limits 0 and τ ′ yields

Iν(0) = Iν(τ
′)e−τ ′ +

∫ τ ′

0

Bν(T )e
−τ dτ. (2.9)

For the zenith-looking ground-based MWR, the distance ds of the initially con-
sidered perspective (looking down from a given height) corresponds to the height
difference −dz. Thus, the optical depth is now given by τ(z) =

∫ z

zo
ka,ν(z)ρ(z) dz,

where zo is the altitude of the MWR. The upper integration limit τ ′ is now chosen
to be the top of the atmosphere zTOA so that τ ′ = τ(zTOA). In the microwave spec-
trum, measured radiation intensities are often expressed in terms of the brightness
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temperature Tb, which would be the physical temperature of a black body if it
emitted the same radiation that was measured. For low frequencies, Planck’s law
can be simplified to a term that linearly depends on the temperature using the
Rayleigh-Jeans approximation (hν ≪ kBT ), and the radiation intensity Iν can
be similarly scaled (Liou, 2002, Chapter 7.5):

Bν(T ) ≈
2kBν

2

c2
T, Iν ≡

2kBν
2

c2
Tb,ν (2.10)

At frequencies above 200 GHz, the Rayleigh-Jeans approximation produces errors
of a few percent (Janssen, 1993, Chapter 1.2) and the inverse of Planck’s law
should be used instead (Petty, 2006, Chapter 6.2). Using dτ = ka,νρ dz and the
Rayleigh-Jeans approximation, Eq. 2.9 can be written as

Tb,ν(zo) = Tb,ν(zTOA)e
−τ(zTOA) +

∫ zTOA

zo

T (z)ka,ν(z)ρ(z)e
−τ(z) dz. (2.11)

This equation describes what a ground-based microwave radiometer observes
when scattering is neglected. The first term on the right-hand side of Eq. 2.11 is
the cosmic background radiation Tb,cos = 2.73K, which is attenuated while prop-
agating through the entire atmosphere according to Beer-Bouguer-Lambert’s law
(Foken, 2021, Chapter 29.3). At frequencies and in atmospheric conditions where
the transmissivity is high (e.g., around 30 GHz), the contribution of the cosmic
background radiation is significant. The second term describes the emission of
radiation from an atmospheric layer at any height between the surface (zo) and
the top of the atmosphere, which is also attenuated by absorption before reaching
the MWR at zo. The information to derive, for example, the water vapour profile,
is hidden in the second term, which can be rewritten as

ka,ν(z)ρ(z)e
−τ(z) = ka,ν(z)ρ(z)

t(z)︷ ︸︸ ︷
e−

∫ z
0 ka,ν(z′)ρ(z′) dz′ = −dt(z)

dz
≡ W (z). (2.12)

W (z) is the so-called weighting function for temperature, which depends on the
density of the absorbing medium (e.g., air) and the absorption coefficient. The
weighting function indicates how the transmissivity t changes with each height
layer dz. If the transmissivity, which is always 1 at the sensor, strongly decreases
in a height layer, radiation is strongly absorbed and emitted. Conversely, if the
transmissivity is constant over that height layer (W (z) = 0), radiation is neither
absorbed nor emitted.

The weighting function thus indicates the absorption rate within a certain
atmospheric height layer at a given frequency and provides information about
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the height from which an emission signal originates. Figure 2.2 illustrates the
weighting functions for temperature for the frequencies of the two ground-based
microwave radiometers HATPRO and MiRAC-P. From a ground-based perspec-
tive, the weighting functions are highest near the surface. For a frequency near
the centre of an absorption line (e.g., around 58 GHz for oxygen or 183.31 GHz for
water vapour), the absorption coefficient is high, resulting in a strong peak of the
weighting function near the surface (e.g., Fig. 2.2b, c). Away from the centre of an
absorption line, the absorption coefficient is smaller and the transmissivity higher,
resulting in higher weighting function values at higher altitudes. For example, at
altitudes above 1.5 km, the weighting function at 190.81 GHz is stronger than the
weighting function at 183.81 GHz (Fig. 2.2c). Thus, the frequency away from the
absorption line is more sensitive to water vapour absorption above 1.5 km than
the frequency in the centre of the absorption line.

0.000 0.005 0.010
W(z) (km 1)

0

2

4

6

8

10

He
ig

ht
 (m

)

a) 22.24 GHz
23.04 GHz
23.84 GHz
25.44 GHz
26.24 GHz
27.84 GHz
31.40 GHz

0 1 2 3
W(z) (km 1)

b) 51.26 GHz
52.28 GHz
53.86 GHz
54.94 GHz
56.66 GHz
57.30 GHz
58.00 GHz

0.0 0.5 1.0 1.5
W(z) (km 1)

c) 183.91 GHz
184.81 GHz
185.81 GHz
186.81 GHz
188.31 GHz
190.81 GHz

0.0 0.2 0.4
W(z) (km 1)

d) 243.00 GHz
340.00 GHz

Figure 2.2: Calculated weighting functions for temperature W (z) for the frequen-
cies of the microwave radiometers HATPRO (a–b) and MiRAC-P (c–d) based on
the mean of the MOSAiC radiosondes between 01 October 2019 and 30 Septem-
ber 2020.

If weighting functions were narrow peaks and did not overlap with height for
adjacent frequencies (e.g., along an absorption line wing), the average density of
the absorbing medium over the height range of the weighting function could be
directly estimated (Petty, 2006, Chapter 8.3). However, in a real atmosphere,
weighting functions are broad, which means that measurements at adjacent fre-
quencies are highly correlated and contain similar information. Consequently,
the information content of microwave observations is smaller than the number of
frequency channels of an instrument. For example, the microwave observations at
the seven frequency channels between 22.24 and 31.4 GHz show broad weighting
functions (Fig. 2.2a), which provide only 1–3 independent pieces of information
for humidity profiles (Löhnert et al., 2009). Extracting an absorber density pro-
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file from correlated observations is not straightforward. The challenges of this
problem and the theory of the methods to overcome them are presented in the
following chapter.
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Chapter 3

Retrieval theory

Chapter 2 explained that passive microwave observations contain information on
atmospheric parameters, such as temperature and humidity profiles, liquid wa-
ter path, and integrated water vapour. This chapter focuses on the methods to
infer atmospheric parameters from the information hidden in the highly corre-
lated microwave observations. The derivation of atmospheric parameters from
(microwave) remote sensing observations is often referred to as retrieval.

3.1 Inverse modelling problem

Deriving a state vector x (e.g., humidity profile) from measurements y (e.g.,
brightness temperatures) is known as the inverse problem. The inverse problem
is the opposite of the forward problem where a state vector is used to simulate
measurements. The forward problem is formally defined as y = F (x, b)+ϵ, where
F is the forward model (e.g., radiative transfer equation) based on the physical
understanding and ϵ is the measurement error vector (Rodgers, 2000, Chapter
2.1). b contains additional parameters that affect the measurements but are not
derived in the inverse problem.

In the forward problem, one set of measurements is simulated for a given at-
mospheric state. The simulated measurements agree with the true measurements
within the range of the measurement and model errors. Therefore, within an
uncertainty range, it is known what measurements to expect for a given atmo-
spheric state. However, the inverse case is not as trivial in passive microwave
remote sensing because one set of highly correlated brightness temperature mea-
surements (e.g., at 7 frequency channels) can generally be caused by an infinite
amount of atmospheric states. As the atmospheric state is generally a continu-
ous function, the inverse problem is under-determined and possesses either no or
non-unique solutions (Rodgers, 2000, Chapter 2.1). Usually, the state vector is
discretized to a height grid with N levels. If the number of unknown state vector
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elements N was smaller than the number of measurements M the problem would
no longer be under-determined (except for mixed-determined conditions, which
are not discussed here). However, due to the weighting function overlap discussed
in the previous chapter, the M measurements provide less than M independent
pieces of information (Petty, 2006, Chapter 8.3). It is therefore more accurate
to state that the number of independent pieces of information in the measure-
ments must be ≥ N to avoid the problem being under-determined. One exact
solution for the inverse problem only exists if M = N (well-determined) and the
measurements also provide M independent pieces of information (Rodgers, 2000,
Chapter 2.2).

In real passive microwave remote sensing applications, the inverse problem is
typically under-determined and additionally ill-conditioned, meaning that mea-
surement errors can be greatly amplified in the derived state vector (Rodgers,
2000, Chapter 1.3). In this thesis, statistical retrievals are used to overcome the
inverse problem. Statistical retrievals require large data bases to derive coef-
ficients that relate measurements (brightness temperatures) to the atmospheric
state (e.g., humidity profile). To perform well, the data base should be represen-
tative of the conditions of the region where the retrieval is applied (here, Arctic
Ocean). Here, the coefficients are obtained via the least squares approach as
shown for the regression in Sect. 3.2 and by training Neural Networks as pre-
sented in Sect. 3.3.

Physical approaches, such as Optimal Estimation (Rodgers, 2000, Chapters 4
and 5), yield accurate and physically consistent solutions to the inverse problem
and provide error estimates. This thesis does not consider such retrievals because
modern statistical approaches provide similarly accurate results when trained
carefully while being computationally much cheaper (Solheim et al., 1998). Due
to the low computational costs, statistical retrievals are also easier to apply to
other sites (especially for continuous operation) with the same instrumentation
and similar atmospheric conditions. Additionally, this thesis includes microwave
observations at frequencies where scattering from ice particles is relevant. Thus,
the retrieval would require assumptions on the ice crystal properties (shape, size,
concentration, ...) or further observations. Assumptions about the ice crystal
properties could increase retrieval errors due to the ill-conditioned nature of the
inverse problem.

3.2 Regression

When the inverse problem is linear or nearly linear and a large data base (ns

data samples) is available, regression coefficients between the observations and
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each state vector element can be derived, and yield accurate results. Slight non-
linearities between observations and the state can be handled by adding non-linear
terms to the regression (Rose et al., 2005). In this thesis, multiple regression with
linear and quadratic terms is used. The i-th element (e.g., i-th height level) and
k-th sample of the state vector xi,k (i = 1, 2, ..., N , k = 1, 2, ..., ns) can be related
to the observations yl,k (l = 1, 2, ...,M) as follows:

xi,k = ai +
M∑
l=1

bi,l yl,k +
M∑
l=1

ci,l y
2
l,k + ϵ (3.1)

ϵ is the error between the true state (left side of Eq. 3.1) and the predicted
state (right side of Eq. 3.1 without the error term). Thus, we have ns equations
to solve 2M + 1 unknown coefficients (ai, bi,1, ..., bi,M , ci,1, ..., ci,M) for the i-th
element of the state vector. If the data base is sufficiently large ns ≥ 2M +

1, the inverse problem is formally over-determined. Usually, ns ≫ 2M + 1 to
improve the accuracy over a wider range of (atmospheric) conditions and to be
less susceptible to noise (Rodgers, 2000, Chapter 6.2). The solution would only
be exact if neither the observations nor the state vectors of the data base had any
errors or uncertainties (Rodgers, 2000, Chapter 2.2). For example, two identical
atmospheric states can result in two slightly different sets of observations due to
measurement errors.

Equation 3.1 must be solved for each data sample k and element i of the
state vector, resulting in a total of ns × N equations to obtain the N(2M + 1)

regression coefficients. For convenience, the equations can be summarized over
all data samples using matrix notation

xi = Gmi + ϵ, (3.2)

where mi = (ai, bi,1, ..., bi,M , ci,1, ..., ci,M)T contains the regression coefficients and
G is the sensitivity of the state vector to the coefficients for element i ( ∂xi/ ∂mi)
(Oliver et al., 2008, Chapter 3.1). More specifically, G is a ns× (2M +1) matrix
that contains the measurements

G =



1 y1,1 · · · yM,1 y21,1 · · · y2M,1
...
1 y1,k · · · yM,k y21,k · · · y2M,k
...
1 y1,ns · · · yM,ns y21,ns

· · · y2M,ns


. (3.3)

In general, the error term ϵ = xi −Gmi in Eq. 3.2 is large without the trained
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coefficients (e.g., using random values for each coefficient). Thus, to obtain useful
regression coefficients, the squared error between the true state vector xi and the
predicted one Gmi is minimized using

∇m

(
(xi −Gmi)

T (xi −Gmi)
)
= 0, (3.4)

where ∇m = ( ∂/ ∂mi,1, ∂/ ∂mi,2, ..., ∂/ ∂mi,2M+1)
T is the gradient with respect

to the regression coefficient vector mi (Oliver et al., 2008, Chapter 3.2). This
approach is known as the least squares approach as it minimizes the squared
errors. Solving Eq. 3.4 yields

mi =
(
GTG

)−1
GTxi (3.5)

for the i-th element of the state vector if GTG is non-singular (Oliver et al., 2008,
Chapters 3.1 and 3.2), which is usually the case. Once all N(2M +1) coefficients
have been determined, Eq. 3.2 can be applied to unseen data by inserting the
new observations in G to obtain the new predicted state vector x.

3.3 Neural Networks

With increasing computational power and simpler implementation methods (e.g.,
via the Python libraries Keras or tensorflow, Chollet et al., 2015; Abadi et al.,
2015), Neural Networks (NNs) have become a popular tool in science for a mul-
titude of problems (e.g., pattern recognition, classification, clustering, regression,
etc., Aires et al., 2001; Chatterjee et al., 2023; Jozef et al., 2024). The idea of a
NN is to imitate the neurons of the human brain, which are connected with a cer-
tain strength to exchange information (Haykin, 1998; Mas and Flores, 2008). In a
NN, weights w represent the strength of the neuron connection. NNs can capture
non-linearities much better than linear or quadratic regression (see Sect. 3.2). In
fact, Tang and Yang (2021) showed that NNs can approximate any continuous
function to a given accuracy if the network has a sufficient number of neurons.

This thesis uses multilayer perceptron NNs (Haykin, 1998) to solve the regres-
sion problems of deriving atmospheric parameters from brightness temperature
measurements. A multilayer perceptron consists of an input layer, at least one
hidden layer and an output layer. An example with two hidden layers is illus-
trated in Fig. 3.1. If the NN has more than one hidden layer, it is usually called a
deep NN. Each layer consists of a certain number of neurons (e.g., a23 in Fig. 3.1),
which are connected to all neurons of the next and previous layer by the weights
w, if the NN is fully connected (dense). The number of neurons in the input
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Figure 3.1: Schematic of a multilayer perceptron with an input layer consisting
of 2 neurons, two hidden layers with 3 and 2 neurons, respectively, and an output
layer with 1 neuron. The weight wl+1

j,k connects neuron alk of layer l with neuron
al+1
j of layer l+ 1, which is also influenced by the bias value bl+1

j (see text). nl is
the number of neurons of layer l.

layer corresponds to the size of the input vector (e.g., brightness temperatures
at different frequencies), while the output layer has the size of the desired state
vector.

The NN learns the relationship between the input (measurement vector y)
and output (state vector x) by iterating through the training data set (e.g., a
radiosonde climatology with simulated brightness temperatures) and updating
the network parameters w and b. The network parameters are initialized with
random values. Each training data sample (e.g., one sounding with corresponding
brightness temperatures) is then processed by the NN in the forward direction
(input → output) to estimate how well the computed output f(y) (predicted
state vector) compares to the true output x (true state vector). This process is
referred to as the feedforward pass.

Consider a multilayer perceptron with L layers, including the input and output
layers. The k-th element of the input vector (measurement) yk is provided to the
neuron a1k of the input layer and is forwarded to the next layer using a weighted
sum of the input and an additional bias term b (Fig. 3.1). alk represents the
information stored in neuron k for layer l. The propagation from layer l to the
next layer l + 1 is given by

zl+1
j =

nl∑
k=1

wl+1
j,k alk + bl+1

j (3.6)

al+1
j = σ

(
zl+1
j

)
, (3.7)

where wl+1
j,k connects neuron k of layer l with neuron j of layer l+1 and nl is the
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number of neurons of layer l (using the notation style of Tang and Yang, 2021).
bl+1
j is the bias term of neuron al+1

j (Fig. 3.1). The result of the weighted sum
and the addition of the bias term is forwarded to an activation function σ, which
is used to increase the non-linearity of the network or limit the value of a neuron
to a certain value. Once the feedforward pass reaches the output layer l = L for
the training sample i, the error L (or loss) between the truth xj and prediction
f(y)j = aLj is computed, for example, using

L(i) =
N∑
j=1

(xj(i)− aLj (i))
2 ≡

N∑
j=1

(ϵj(i))
2, (3.8)

where N is the number of state vector elements (Haykin, 1998, Chapter 4.3).
The error information of the feedforward pass is used to update the weights and
biases of the NN in the backpropagation pass (input ← output). The sensitivity
of the weights and biases to the loss is given by

∂L
∂wl

j,k

= δlj
∂σ(zlj)

∂zlj
al−1
k and (3.9)

∂L
∂blj

= δlj
∂σ(zlj)

∂zlj
with (3.10)

δlj =


2ϵj if l = L
nl+1∑
k=1

δl+1
k

∂σ(zl+1
k )

∂zl+1
k

wl+1
k,j else

(3.11)

with l = 2, 3, ..., L (Haykin, 1998, Chapter 4.3). Note that the training data
sample index i (learning step) has been omitted for clarity. The factor of 2 in
Eq. 3.11 if l = L originates from the derivative of the loss function.

The goal of the NN training procedure is to minimize the loss function L. The
minimization is usually realized by gradient descent methods (and optimizations
thereof) so that the step to update the weights and biases after processing training
sample i is given by

∆wl
j,k(i) = −η

∂L(i)
∂wl

j,k(i)
+ α∆wl

j,k(i− 1) and (3.12)

∆blj(i) = −η
∂L(i)
∂blj(i)

+ α∆blj(i− 1), (3.13)

where η is the learning rate to control the update rate of the weights and biases,
and α is the momentum constant (Haykin, 1998, Chapter 4.3). High learning rates
may cause oscillations around the minimum while low learning rates generally
result in smoother weight and bias update paths towards the minimum. However,
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learning rates that are too small are more likely to find a local instead of the
global minimum. The terms associated with the momentum constant improve the
learning process by respecting the weight or bias update of the previous learning
step i− 1. For example, if the weight update step ∆wl

j,k had the same sign over
consecutive training samples (steps during learning), the weight update would
increase, and a minimum would be approached faster. The learning process is
therefore less likely to be stuck in a local minimum when including the momentum
term (e.g., α > 0). Conversely, if the weight update step changes sign over
consecutive samples, the weight update steps would become smaller, dampening
the oscillation around a minimum.

The iteration through the training data continues when the weights and biases
are updated according to

wl
j,k(i+ 1) = wl

j,k(i) + ∆wl
j,k(i) and (3.14)

blj(i+ 1) = blj(i) + ∆blj(i). (3.15)

Once the network has processed the last training data sample to adapt the weights
and biases, one epoch of the training process is completed. Usually, the train-
ing data set is cycled through multiple times, given by the number of epochs,
until some stopping criterion is fulfilled. Common stopping criteria include a
maximum number of epochs or a sufficiently small change in the loss function,
indicating that the network is converging to a minimum. Above, the weights and
biases were updated after processing each training data sample i. However, it is
more common to evaluate the loss and update the weights and biases after a cer-
tain number of training data samples (batch of samples) have been processed by
the network rather than after each sample (Aggarwal, 2023, Chapter 2.6). This
training approach is known as mini-batch stochastic gradient descent and im-
proves the accuracy of the loss function gradients with respect to the weights and
biases but uses more memory. The number of training data samples processed
before the weights and biases are updated is known as the batch size. Similar to
regression, the NN can be applied to new data once the training of the NN has
been completed according to the stopping criteria.

In modern NN tools, such as Python’s Keras library, all the above-mentioned
parameters and many more can be easily adapted to optimize the learning process.
The learning rate, batch size, epoch number, activation function, loss function,
but also the architecture (number of neurons and hidden layers) are common
tuning parameters. The retrieval setups for the applications in this thesis are
explained in the appropriate sections of Chapters 4 and 5.
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Chapter 4

Single microwave radiometer
retrievals

In this study, the microwave radiometer measurements from the MOSAiC ex-
pedition are quality controlled and atmospheric parameters are derived using
statistical retrievals. This study has been published in:

Walbröl, A. et al., 2022: Atmospheric temperature, water vapour and liquid water
path from two microwave radiometers during MOSAiC, Scientific Data, 9, 534,
10.1038/s41597-022-01504-1.

Detailed author contributions: Susanne Crewell, Kerstin Ebell and An-
dreas Walbröl conceptualized the study. Ronny Engelmann, Hannes Griesche,
Martin Radenz, Julian Hofer and Dietrich Althausen collected the microwave
radiometer data and maintained the instruments onboard RV Polarstern during
the MOSAiC expedition. Marion Maturilli provided the radiosonde data. Kerstin
Ebell and Andreas Walbröl quality controlled the HATPRO brightness tempera-
ture measurements. Kerstin Ebell derived atmospheric parameters (integrated
water vapour, liquid water path, temperature profiles and absolute humidity
profiles) using the regression coefficients trained with Ny-Ålesund radiosondes
and synthetic brightness temperatures computed with radiative transfer simula-
tions. Andreas Walbröl quality controlled the MiRAC-P brightness temperature
measurements. Emiliano Orlandi provided the MiRAC-P training data. An-
dreas Walbröl developed the integrated water vapour retrieval from MiRAC-P
observation, supported by discussions with Emiliano Orlandi. Furthermore, An-
dreas Walbröl evaluated all derived products (with scientific input from Susanne
Crewell, Kerstin Ebell and Emiliano Orlandi) and wrote the majority of the
manuscript. Parts of Sect. 4.3.1 and 4.3.2 were written by Kerstin Ebell and
Andreas Walbröl together. All authors reviewed the manuscript.
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Atmospheric temperature, water vapour and liquid
water path from two microwave radiometers during
MOSAiC

Andreas Walbröl1, Susanne Crewell1, Ronny Engelmann2, Emiliano Orlandi3,
Hannes Griesche2, Martin Radenz 2, Julian Hofer2, Dietrich Althausen2, Marion
Maturilli4, Kerstin Ebell1

1Institute for Geophysics and Meteorology, University of Cologne, Cologne, 50969, Germany
2Leibniz Institute of Tropospheric Research (TROPOS), Leipzig, 04318, Germany
3RPG Radiometer Physics GmbH, Meckenheim, 53340, Germany
4Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, 14473 Potsdam,

Germany

Corresponding author(s): Andreas Walbröl (a.walbroel@uni-koeln.de)

4.1 Abstract

The microwave radiometers HATPRO (Humidity and Temperature Profiler) and
MiRAC-P (Microwave Radiometer for Arctic Clouds - Passive) continuously mea-
sured radiation emitted from the atmosphere throughout the Multidisciplinary
drifting Observatory for the Study of the Arctic Climate (MOSAiC) expedition
on board the research vessel Polarstern. From the measured brightness tem-
peratures, we have retrieved atmospheric variables using statistical methods in a
temporal resolution of 1 s covering October 2019 to October 2020. The integrated
water vapour (IWV) is derived individually from both radiometers. In addition,
we present the liquid water path (LWP), temperature and absolute humidity pro-
files from HATPRO. To prove the quality and to estimate uncertainty, the data
sets are compared to radiosonde measurements from Polarstern. The comparison
shows an extremely good agreement for IWV, with standard deviations of 0.08 –
0.19 kg m−2 (0.39 – 1.47 kg m−2) in dry (moist) situations. The derived profiles of
temperature and humidity denote uncertainties of 0.7 – 1.8 K and 0.6 – 0.45 g m−3

in 0 – 2 km altitude.

4.2 Background & Summary

Observations show that the Arctic is warming at a greater rate than the global
average, a feature known as Arctic Amplification (Serreze et al., 2009; Screen
and Simmonds, 2010; Serreze and Barry, 2011). Complex mechanisms that are
not yet fully understood contribute to the enhanced warming. Water vapour is
the strongest greenhouse gas and plays a major role in several processes related
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to the amplification, but yet to an uncertain degree (i.e., downward longwave
radiation flux, clouds, precipitation) (Graversen and Wang, 2009; Serreze and
Barry, 2011; Ghatak and Miller, 2013). The enhanced sea ice loss in the Arctic in
summer and autumn causes a greater evaporation, increasing the water vapour
load of the warmed atmosphere, which can contain more moisture (Graversen and
Wang, 2009; Screen and Simmonds, 2010). Moist air frequently intrudes into the
Arctic, impeding sea ice formation and driving the retreat of the sea ice edge by
increased net radiative warming and mechanical forcing (Woods and Caballero,
2016; Graham et al., 2019c; Komatsu et al., 2018). Strong moisture transports
with a filamentary geometry are called Atmospheric Rivers (Newell et al., 1992),
where information with a high temporal resolution is needed to capture the water
vapour variability.

Within the past decades, a robust increase of moisture has been detected in
the Arctic for certain regions and seasons (Maturilli and Kayser, 2017a; Parracho
et al., 2018; Rinke et al., 2019). The increase of moisture content enhances the
downward longwave radiation flux and therefore contributes to warming. Espe-
cially the autumn and winter months in the Barents Sea and Arctic Ocean are
affected by positive moisture trends (Rinke et al., 2019). However, inconsistencies
in the moistening trend among reanalyses call for reliable reference data to evalu-
ate them in the data sparse region of the central Arctic. Radiosonde and satellite
data are assimilated in reanalyses and therefore not suitable for independent eval-
uation. Additionally, water vapour estimations from different satellites disagree
among each other, partly due to different measurement principles (Crewell et al.,
2021). Despite the accuracy and high vertical resolution of water vapour and
temperature profiles from radiosondes, low sampling rates (one to four sondes
per day) and the poor spatial coverage of launch sites in the Arctic impede an
adequate representation of the water vapour variability. Remote sensing in the
microwave spectrum (satellite- or ground-based) is generally less accurate (lower
vertical resolution) and faces several difficulties but has the potential to fill the
gaps: Microwave radiometers (MWRs) on board polar orbiting satellites can
sample the entire Arctic more than once per day even in cloudy conditions but
suffer from uncertainties, for example, due to the lack of knowledge of the highly
variably sea ice emissivity (Scarlat et al., 2017) and coarse vertical resolution.

Robust reference water vapour data sets are required for process studies and
to evaluate reanalyses and satellite products in the Arctic. The Multidisciplinary
drifting Observatory for the Study of the Arctic Climate (MOSAiC) expedition
(Shupe et al., 2020, 2022) from September 2019 to October 2020 offers a unique
set of detailed measurements in the central Arctic. During the expedition the
research vessel (RV) Polarstern (Knust, 2017) from the Alfred Wegener Insti-
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tute, Helmholtz Centre for Polar and Marine Research (AWI) drifted with the
sea ice to investigate coupled atmosphere-ice-ocean processes in the central Arc-
tic to ultimately improve climate models. In this data descriptor, we focus on
measurements from the two MWRs MiRAC-P (Microwave Radiometer for Arc-
tic Clouds - Passive), a high frequency MWR especially tailored for low water
vapour conditions, and HATPRO (Humidity and Temperature Profiler), a stan-
dard MWR commonly used for monitoring of integrated water vapour (IWV).
The multi-frequency HATPRO also allows for thermodynamic profiling. MWRs
are the the only measurement systems to derive the total cloud liquid (liquid
water path (LWP)) in all cloud conditions. From the MiRAC-P observations, we
only present the IWV but humidity profiling and LWP derivation will be explored
in the future.

The data introduced in this descriptor will be the base of upcoming studies
within the Transregional Collaborative Research Centre TR 172 “Arctic Am-
plification: Climate Relevant Atmospheric and Surface Processes, and Feedback
Mechanisms (AC)3" (Wendisch et al., 2017) to study the influence of water vapour
and its variability on Arctic Amplification. They can support process studies with
high quality IWV and LWP, as well as examinations of boundary layer develop-
ments with temperature and humidity profiles with a temporal resolution of one
second. Furthermore, the data sets can be used as reference for the evaluation of
satellite water vapour products and reanalyses.

4.3 Methods

In this section, we describe the two MWRs HATPRO and MiRAC-P and their
measuring principles. Both radiometers were manufactured by RPG-Radiometer
Physics GmbH (RPG). In the following, the regression for HATPRO and Neural
Network for MiRAC-P to derive meteorological quantities from the raw sensor
data are elaborated.

4.3.1 Microwave radiometers on board Polarstern

The RPG HATPRO G5 (Rose et al., 2005) from the Leibniz Institute of Tropo-
spheric Research (TROPOS) was mounted on the OCEANET-Atmosphere con-
tainer, which is routinely operated aboard RV Polarstern since 2009 (e.g., Kanitz
et al., 2011, 2013; Engelmann et al., 2021). Its two receivers measure radiation
emitted from atmospheric gases and liquid water in the microwave spectrum as
brightness temperatures (TBs) in 14 channels with an absolute accuracy of 0.5 K.
The half-power beam-widths of the receivers are in the range 2 – 4◦. Seven of the
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channels detect radiation at frequencies between 22.24 and 31.4 GHz (K-band,
first receiver) and the remaining ones between 51.26 and 58.0 GHz (V-band, sec-
ond receiver). The lower frequency band lies along the wing of a weak rotational
water vapour absorption line at 22.24 GHz. Channels further away from the
absorption line feature lower opacities and are therefore associated with the at-
mospheric window (e.g., at 31.4 GHz). Henceforth, these channels will be referred
to as window channels. Despite the proximity of the 22.24 GHz channel to the
water vapour absorption line, the opacity is still quite low so that radiance from
all tropospheric layers contribute to the recorded signal (TBs are in the range of
10 – 40 K). Coarse water vapour profiles can be derived from the shape of the
pressure broadened water vapour absorption line. Löhnert et al. (2009) found
that 1 to 3 independent pieces of information (degrees of freedom) could be re-
solved in a central European and humid tropical climate. The emission of liquid
water is more prominent in window channels and increases with frequency in the
microwave spectrum (Janssen, 1993; Foken, 2021). Signals from ice clouds can
be neglected because they are transparent in the range of HATPRO frequencies.
Apart from humidity profiles, we use the K-band TBs to derive the integrated
water vapour (IWV) and liquid water path (LWP). The higher frequency band
covers a wing of the oxygen absorption complex at 60 GHz, allowing for temper-
ature profile retrievals because the vertical distribution of the well-mixed oxygen
is known (Foken, 2021). Channels close to the absorption line (58 GHz) feature
a high opacity, sensing the radiation emitted from oxygen in the vicinity of the
instrument. About 1 to 4 independent pieces of information can be resolved for
temperature profiling (Löhnert et al., 2009), depending on the climate and scan-
ning strategy. Most of the time the instrument operated in zenith mode with
the elevation angle remaining at 90.0◦. The zenith measurements were carried
out with a temporal resolution and integration time of 1 s and were interrupted
every 30 minutes for 110 s to perform so-called boundary layer (or elevation) scan,
sensing the atmosphere at elevation angles of 5.4, 6.6, 8.4, 11.4, 14.4, 19.2, 30.0,
and 90.0◦. This elongates the instrument’s line of sight through the atmosphere
and therefore increases the sensitivity in the atmospheric boundary layer. With
this scanning method, we can derive temperature profiles with improved vertical
resolution in the lower troposphere (adding about 2 independent pieces of infor-
mation) resulting in more distinctly resolved height levels when combined with
the zenith mode (Löhnert et al., 2009; Löhnert and Maier, 2012). HATPRO can
operate in nearly all weather conditions, except during heavy precipitation. A dry
blower keeps the radome dry even during slight precipitation, which is recorded
by a simple yes/no sensor. Since the measurements are not reliable when the
radome is wet, a rain flag has been applied to the data when necessary. Absolute
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calibrations, where the receivers point at a built-in target at ambient tempera-
ture and a target cooled with liquid nitrogen, need to be performed about every
3 months to ensure the TB accuracy. Additionally, a gain calibration is per-
formed automatically to avoid TB drifts (during MOSAiC, the interval of gain
calibrations was 315 seconds).

The Univsersity of Cologne’s MiRAC-P (Mech et al., 2019a) (RPG-LHUMPRO-
243-340 G5) is a passive MWR that measures atmospheric radiances as TBs at a
temporal resolution of 1 s with six channels along the 183.31 GHz (G-band) water
vapour absorption line and two window channels centered at 243 and 340 GHz. It
was mounted next to HATPRO during the MOSAiC expedition. The six double-
sided G-band channels are located at 183.31 ± 0.6, ±1.5, ±2.5, ±3.5, ±5.0, and
±7.5GHz and, together with the window channels, can be used to derive IWV,
LWP, and humidity profiles. The window channels at 243 and 340 GHz feature
much higher opacities than the HATPRO window channels because the water
vapour continuum absorption strength increases with frequency in the microwave
spectrum (Janssen, 1993). At these frequencies, ice particles in clouds scatter
atmospheric radiation causing uncertainties in radiative transfer modelling. The
G-band water vapour absorption line is significantly stronger than the 22.24 GHz
line and can get saturated if the water vapour load is sufficiently high, making the
atmosphere opaque. Then, the TBs in the inner G-band (close to the 183.31 GHz
line) are in the range of about 240 – 280 K, depending on the low-tropospheric
temperature and moisture distribution. As it will be pointed out later, we can
exploit the different absorption line strengths for a complementary usage of HAT-
PRO and MiRAC-P. All MiRAC-P channels use a double side band heterodyne
receiver design and have a half-power beam-width ranging from 1 to 1.3◦. The off-
axis parabolic mirror allows to point the radiometer to 0 – 180◦ elevation for sky
view or to the internal ambient temperature calibration target (accuracy 0.2 K).
During MOSAiC, MiRAC-P operated in zenith mode only. The measurement
noise is below 0.5 K for all channels at one second integration time.

4.3.2 HATPRO: Retrieval via regression

In order to apply the regression with linear or quadratic terms, an example of
the latter is given in equation (4.1), coefficients that map TBs to the desired me-
teorological quantities (IWV, LWP, absolute humidity and temperature profiles)
need to be derived by training (c0, c1, and c2). The IWV of the k-th sample in
the training data set (N samples in total) is computed by

IWVk = c0 +
m∑
i=1

(
c1,i TBk,i + c2,i TB

2
k,i

)
with k = 1, . . . ,N, (4.1)

40



4.3. METHODS

where m is the number of MWR channels considered for this retrieval (7 K-
band channels in this case). Here we use coefficients (Ebell, 2022) determined
by Nomokonova et al. (2019) who applied them to HATPRO data at an Arctic
site (Ny-Ålesund, Svalbard). The climatology behind the regression consists of
N = 2744 radiosondes launched daily at 12 UTC in Ny-Ålesund covering the
period 2006-05-21 to 2017-03-31 (Ebell and Walbröl, 2021). The radiosondes
have been processed with the GRUAN version 2 algorithm (Sommer et al., 2012;
Maturilli and Kayser, 2017a). For the regression, simulated TBs from the atmo-
spheric state given by the radiosonde data were obtained with a one-dimensional
radiative transfer model that only respects absorption and emission. Since ra-
diosondes cannot measure the liquid water content of clouds, a simple cloud
model was applied. Following Karstens et al. (1994), a liquid cloud is detected
when the relative humidity in a height layer is greater than 95 % for temperatures
above 253.15 K and the liquid water content is computed with a modified adia-
batic approach. Ice clouds are transparent at HATPRO frequencies and therefore
not taken into account. The radiative transfer model follows Rosenkranz (1998)
for oxygen absorption, Ellison (2006) for liquid cloud absorption, Turner et al.
(2009) for water vapour continuum absorption, Rüeger (2002) for air mass cor-
rections, and Liljegren et al. (2005) for the water vapour line width modelling.
Random numbers with a normal distribution multiplied by 0.5 have been added
to the TBs to imitate instrument noise with a strength of 0.5 K to match the
instrument specifications given by RPG. For the retrievals of IWV, LWP, abso-
lute humidity and temperature profiles from HATPRO’s zenith operation mode,
the regression includes both linear and quadratic terms (Löhnert and Crewell,
2003) and only linear terms for the temperature profile based on the boundary
layer mode. The evaluation with the test data (identical to training data as in
Nomokonova et al., 2019) yields overall negligible biases, and standard deviations
of 0.37 kgm−2 and 14.3 gm−2 for IWV and LWP, respectively. The humidity pro-
file standard deviation over the entire test data set is 0.65 gm−3 at the surface
and decreases to 0.17 gm−3 at 5 km altitude. Temperature profiles retrieved from
zenith and elevation mode feature the lowest standard deviation at low altitudes,
e.g. 250 m (1.5 K) and 150 m (1.0 K), respectively, increasing with altitude.

4.3.3 MiRAC-P: Retrieval via Neural Network

Given the saturated 183 GHz line, the retrieval problem is strongly non-linear for
MiRAC-P. Therefore, we developed a Neural Network (NN), which is described
following the published script (Walbröl, 2022), based on Python’s tensorflow and
keras modules to retrieve IWV. The idea of a NN is to process a given input

41



CHAPTER 4. SINGLE MICROWAVE RADIOMETER RETRIEVALS

(e.g., TBs) through one or more hidden layers, connected by so-called activation
functions, to generate an output (e.g., IWV). We have refrained from using the
Ny-Ålesund radiosonde data for the training of the MiRAC-P IWV retrieval be-
cause the dry conditions, where the sensitivity of this instrument is best, were
not sufficiently represented. Instead, the training and test data consist of the
ERA-Interim (ERA-I) reanalysis from the European Centre for Medium-Range
Weather Forecasts (ECMWF) (Dee et al., 2011) and simulated TBs. The to-
tal number of samples is 24835, distributed over 8 virtual stations (certain grid
points) north of 84.5◦ N and a period from 2001-01-01 to 2017-12-31 with data
samples at 00, 06, 12, and 18 UTC (Orlandi and Walbröl, 2022). A subset of
12 years from the entire data set, which has been provided by the instrument
manufacturer RPG, has been randomly selected as training and the remaining
5 years as test data. Each double side band frequency of the simulated G-band
TBs has been averaged to be comparable to the measurements of MiRAC-P.

To obtain a more robust result from the training, we performed the training
and evaluation (with the test data) 20 times with different random number seeds.
The 20 random seeds were obtained by producing a set of 20 random numbers
that lie between 0 and 1000 (boundaries have been chosen arbitrarily). At the
beginning of the loop, the seeds of numpy’s and tensorflow’s random number
generator were set to the random value. This random value affects the choice
of training and test years because a permutation of an index ranging over all
years (0 – 16) defines which ones are selected for training and testing. Of the 17
permuted indices, the first 12 (last 5) mark the training (test) years, respectively.
For example, the test data can be 2002, 2006, 2007, 2010, 2016 with the remain-
ing years being used for training. Furthermore, the initialization of the weights
in the NN is affected by the seed of tensorflow’s random number generator. As
for HATPRO, we also added a random Gaussian noise to the synthetic TBs with
a strength of 0.75 K for the G-band channels, 4.2 K for the 243 GHz, and 4.5 K
for the 340 GHz channel, as recommended by the manufacturer. The higher noise
for the two window channels reduced their weights in the retrieval and therefore
diminishes the impact of signals from sources other than water vapour, such as
cloud liquid emission or radiation scattered at ice particles. In correspondence
with RPG, we chose the input vector of the NN to consist of all MiRAC-P TBs of
a time step and the cosine and sine of the day of the year as additional informa-
tion. The input was scaled to a feature range of -3 to 1 using the MinMaxScaler
of the sklearn.preprocessing module. The input layer is connected to the only
hidden layer, which has 32 nodes, with an exponential activation function. A
linear activation function then links the hidden with the output layer, which only
consists of the retrieved IWV. All layers are fully connected. The kernels of the
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layers are initialized with the default Glorot uniform distribution. Similar to a
regression approach, the goal of the training procedure is to adapt the weights of
the NN to minimize a loss function that evaluates the predicted with the target
IWV. In our case, the mean squared error is used as loss function, minimized with
the Adam optimizer (Kingma and Ba, 2017). The maximum number of training
epochs (number of times the entire training data is cycled through) is 100 with
a batch size (number of samples to estimate error gradient before weights are
updated) of 64.

During the optimization process, the mean squared error of the test data is
monitored to avoid overfitting. Once the test loss did not improve for at least 20
epochs, the training was stopped and the weights that resulted in the lowest test
loss were saved. As mentioned before, the training procedure was performed with
20 different randomly chosen seeds to assess the robustness of the NN. Hence, we
get the mean and spread of the retrieval performance, quantified by the standard
deviation (see equation (4.2)), from the test data (0.55 ± 0.03 kgm−2). This
value is also noted as a comment in each published retrieval file of the MiRAC-P
(Walbröl et al., 2022b) and computed as the square root of the bias corrected test
loss

σ̃ =

√√√√ 1

N

N∑
k=1

(
IWVpred,k −Bias− ÎWVk

)2

, (4.2)

with ÎWVk being the test data and IWVpred,k the predicted IWV of the k-th
sample. The bias is the mean difference between the target (in this case, ERA-I)
and predicted IWV. After training, the model is applied to the observed TBs
from MiRAC-P with the random seed that produced the lowest overall test loss
(seed value: 558).

4.4 Data records

In this section, the data for the retrieval developments, the measured TBs, and
retrieved products are presented for both HATPRO and MiRAC-P. The files for
the retrieval development (Ebell and Walbröl, 2021; Ebell, 2022; Orlandi and
Walbröl, 2022) have been uploaded to Zenodo, while the remaining files (Engel-
mann et al., 2022; Ebell et al., 2022; Walbröl et al., 2022a,b) have been published
on PANGAEA. All data files are in netCDF format and summarized in Table 4.1.

The retrieval training data for HATPRO (Ebell and Walbröl, 2021) consists
of one file that contains the entire training and test data for the retrieval of
temperature (variable name in the file: ta) and humidity (hua) profiles, IWV
(prw), and LWP (clwvi) from TBs (tb) measured by HATPRO. The data set is
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composed of meteorological observations from radiosondes, and simulated TBs.
Elevation angles (ele) lower than 90◦ are only needed for the boundary layer
temperature profile. Nomokonova et al. (2019) created the regression coefficients
(Ebell, 2022) for zenith temperature (tze) and humidity (hze) profiles, boundary
layer temperature (tel) profiles, and for IWV (iwv) and LWP (lwp) with this
training data set.

The retrieval training data for MiRAC-P (Orlandi and Walbröl, 2022) has
been provided by the manufacturer RPG and consists of one file that contains
the entire training and test data for the retrieval of IWV (prw) from TBs (tb)
measured by the MiRAC-P. The sine and cosine of the day of the year, computed
from the time variable, are also included. The outline of the data set has been
given in the previous section.

The HATPRO TB data set (Engelmann et al., 2022) contains daily files of
atmospheric radiance measured as TBs (tb) during zenith (file name contains
mwr00) and elevation (file name contains mwrBL00) mode. The retrieved prod-
ucts from HATPRO TBs include daily files of IWV (prw), LWP (clwvi), temper-
ature (ta) and humidity (hua) profiles (Ebell et al., 2022). Temperature profiles
have been retrieved from both zenith (filename contains mwr00) and elevation
(filename contains mwrBL00) modes. The uncertainties of the variables are de-
noted by the expected standard error (prw_err, clwvi_err, hua_err, ta_err).
The measured and retrieved data cover the period 2019-10-19 to 2020-10-02. Flag
values indicate the quality of the data. The latitude and longitude coordinates
of both instruments have been taken from RV Polarstern track data (Rex, 2020;
Haas, 2020; Kanzow, 2020; Rex, 2021a,b).

The MiRAC-P TB data set (Walbröl et al., 2022a) is likewise structured
as daily files of atmospheric radiation measured as TBs (tb). The TBs of the
double side band frequencies (G-band) are averaged and labeled with the upper
part of the band (e.g., 190.81 GHz instead of 183.31 ± 7.5GHz). Similar to the
training data (Orlandi and Walbröl, 2022), the sine and cosine of the day of
the year are included for the NN retrieval. The retrieved IWV (prw) (Walbröl
et al., 2022b) from MiRAC-P TBs is also compiled into daily files. The IWV
uncertainty computed from the retrieval test data is noted as a comment to the
retrieved variable and is also given in three categories (dry: [0, 5), intermediate:
[5, 10), moist: [10, 100) kg m−2).

4.5 Technical Validation

In this section, we first discuss the accuracy of TBs and subsequently demon-
strate the quality of the derived products — IWV, LWP, absolute humidity and
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temperature profiles — by comparing them, where possible, to radiosonde obser-
vations. Since there is no direct measurement for LWP, we refer to past studies
that show the quality of LWP derived from HATPRO (Rose et al., 2005; Toporov
and Löhnert, 2020). Additionally, we compare our LWP with that from the At-
mospheric Radiation Measurement (ARM) research facility MWR. The codes to
analyze the derived products and generate Figures 4.1–4.5 are openly available
(Walbröl, 2022) (see also Table 4.3).

The retrieved temperature and humidity profiles, as well as the IWV, will
be compared with radiosonde measurements that have been gathered during the
MOSAiC expedition (Maturilli et al., 2021). The radiosondes have been launched
from RV Polarstern at least four times per day. We have converted the relative
humidity to specific and absolute humidity by using the saturation water vapour
pressure method suggested by Hyland and Wexler (1983). Then, we integrated
the specific humidity over the pressure levels and divided by the standard gravi-
tational acceleration to obtain IWV. For the comparison of the temperature and
humidity profiles with HATPRO, we interpolated each radiosonde onto the height
grid of HATPRO profiles. Radiosondes that did not reach at least 10 km altitude
and that contained missing values have been rejected in the analysis (23 out of
1522). Drifts of the radiosondes with wind and uncertainties of the temperature,
relative humidity, and pressure sensors, which are 0.2 – 0.4 K, 3 – 4 %, and 0.6 –
1.0 hPa, respectively (Maturilli et al., 2021), are error sources for the comparison
with MWR data.

4.5.1 Brightness temperatures

Before the retrievals are applied, the quality of the measured TBs was checked
following the procedure suggested by Löhnert et al. (2009). This involved the flag-
ging of time steps when the rain flag is set, when the sun is within ±7◦ (elevation
and azimuth) of the line of sight of the instrument, when TBs exceed the range
2.7 – 330.0 K, and when a receiver sanity check fails. The receiver sanity check is
based on status flags of an internal procedure implemented by the manufacturer
RPG in the housekeeping files of the MWRs, respecting also the receiver stability.
Besides automated checks, a manual inspection of the TB data was performed
to flag those time steps that show obvious artifacts not related to atmospheric
signals (i.e., the crane at the bow of RV Polarstern causing sudden leaps in the
TBs). In the following examinations, only time steps with good quality (flag = 0

or nan) have been used. The dates when the MWRs were calibrated with liquid
nitrogen (Rose et al., 2005), to ensure the absolute accuracy of the TBs, are given
in Figure 4.1. On 2019-10-19, 06:30 UTC, the first calibration of MiRAC-P was
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carried out but yielded values that differed significantly from previous tests or ex-
pectations because the calibration integration time exceeded the maximum value
supported by the software. Therefore, the calibration was repeated on 2019-10-
22, 05:40 UTC. The MiRAC-P did not require as many calibrations as HATPRO
because it showed a negligible drift of TBs over time whereas HATPRO is a stan-
dardized instrument recommended to be calibrated every 3 months (Rose et al.,
2005). Slight jumps in the retrieved data can be found around calibration times.
For example, the most noticeable and concurrently the highest absolute jump in
IWV is 0.3 kgm−2 on 2020-03-01, 11:00 UTC in the HATPRO data.

4.5.2 Derived products

After applying the retrieval algorithms, the meteorological quantities were in-
spected whether or not they lie within a reasonable range. LWP must be within
[−200, 3000] gm−2, IWV in [0.0, 100.0] kgm−2, temperature in [180.0, 330.0] K,
and absolute humidity in [−0.5, 30] gm−3, otherwise a flag value was set. The
lower end of the thresholds for LWP and absolute humidity are chosen to respect
slightly negative values that might result from the regression. For LWP, a further
processing step is done. Potential offsets in LWP can be partly corrected using
a clear-sky offset correction. Under clear-sky, i.e. here liquid-free, conditions,
the LWP should be zero. To determine if a scene is liquid-free, the standard
deviation of LWP within a 2-min time interval was analyzed. If this value is
below a certain threshold, we assume that no liquid occurs. The threshold de-
pends on the instrument and climate of the location. Based on visual inspection
of the derived LWP and also cloud radar reflectivity, the best offset correction
was achieved with a LWP standard deviation threshold of 1.5 gm−2 for almost
the entire MOSAiC period. Only on 2020-07-10, -11, and -12 we used 0.9 gm−2

because the other value resulted in highly negative LWP. If all 2-min intervals
within a 20-min time window indicate liquid-free conditions, the mean value of
the retrieved LWP is calculated and subtracted from the original values. For
cloudy periods, the estimated offset values during clear-sky periods are linearly
interpolated and subtracted from the retrieved LWP.

Integrated water vapour

The MOSAiC expedition gave the opportunity for high quality water vapour
measurements in the central Arctic for an entire year. This allows to capture the
vast contrasts between winter (polar night) and summer (polar day). The contrast
is nicely reflected in the IWV time series over all five MOSAiC expedition legs
(measurement periods with a certain scientific crew) from both MWRs and the
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radiosonde data (see Figure 4.1). In winter, the net outgoing longwave radiation
and missing energy input from the sun can cause temperatures to drop to values
below -35 ◦C (Rinke et al., 2021) making the air extremely dry due to the Clausius-
Clapeyron relation. IWV is frequently below 4 kgm−2 from December 2019 to
mid-April 2020 and can even be as low as 0.8 kgm−2 (February and March 2020).
Only during occasional storms the IWV peaks above 5 kgm−2 (i.e., mid February
2020). As soon as the melt season commences in late spring (May 2020), the IWV
shows much higher values (up to 30 kgm−2) and a greater variability on synoptic
scales (few days). In general, when merely considering the time series, all three
data sets capture the extreme differences between winter and summer very well,
proving the capability of the MWRs to capture the full range of IWV conditions.
During synoptic events, such as cold air outbreaks or moist air intrusions, the
benefit of the MWRs compared to the radiosondes is obvious. The MWRs capture
the temporal evolution of IWV much better with their resolution of 1 s than the
radiosondes, which were mainly launched four times a day during the expedition.
IWV variabilities, gradients and extreme values, of which the latter might be
missed by radiosondes, can be resolved at time scales of minutes or even seconds
(Steinke et al., 2015). The extraordinarily strong moist air intrusion that occurred
in mid-April 2020 is shown in greater detail in the Usage Notes as an example of
the retrieved products.
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Figure 4.1: IWV time series from radiosondes (orange circles), HATPRO (blue),
and MiRAC-P (cyan) covering the entire MOSAiC expedition (2019-09-20 – 2020-
10-12). A 5-minute running mean has been applied to HATPRO and MiRAC-P
data for smoothing. The calibration times of the MWRs are indicated as dashed
vertical lines in their respective colours with the exact times noted in the legend.
The MOSAiC legs are marked as black vertical lines.

To analyze the differences between radiosondes and the MWRs, the data sets
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are displayed against each other in Figure 4.2. For the comparison, the MWR
data has been averaged over 15 minutes starting from the radiosonde launch
times. The standard deviation of these 15-minute periods are shown as error
bars and indicate the noise but also the variability of the retrieved products.
When we omit radiosondes that failed the quality check (as noted above) and
MWR data where the flag value does not indicate good quality, a total of 1327
(1404) radiosonde launches are left to compare to HATPRO (MiRAC-P) data.
From Figure 4.2, the complementary nature of HATPRO and MiRAC-P is visible.
The MiRAC-P agrees better with radiosondes in dry conditions compared to
HATPRO, which indicates the superior sensitivity of the strong G-band water
vapour absorption line. To point out the complementary precision of MiRAC-P
and HATPRO, Table 4.2 summarizes the standard deviations (computed as in
equation (4.2), but with ÎWVk representing the radiosonde and IWVpred,k the
MWR), biases, and root mean squared errors with respect to the radiosonde
IWV for three IWV classes (dry: [0, 5), intermediate: [5, 10), moist: [10, 100)

kg m−2). On average, HATPRO shows a bias of 0.35 kgm−2 for IWV smaller
than 5 kgm−2 (see Table 4.2). Below 3.5 kgm−2, the bias ranges from 0.25 to
0.75 kgm−2. Here, higher biases occur in the drier conditions (lower IWV). Due
to the superior sensitivity of MiRAC-P in dry conditions, a bias nearly three
times lower (0.12 kgm−2 instead of 0.35 kgm−2) can be seen for IWV smaller
than 5 kgm−2. In the dry regime, the MiRAC-P features a considerably lower
standard deviation (0.08 kgm−2) than HATPRO, which shows 0.19 kgm−2. Even
in the range 5 – 10 kgm−2, the majority of the MiRAC-P data denotes differences
to the radiosondes within [−0.25,+0.25) kgm−2 resulting in a bias of 0.0 kgm−2,
while the standard deviations of both MWR retrievals are similar (≈ 0.3 kgm−2)
in that IWV range. When the IWV is greater than 10 kgm−2, the retrieved IWV
from MiRAC-P starts to scatter because the atmosphere becomes opaque to the
G-band channels close to the absorption line. In other words, these channels
become saturated and an increase in IWV does not change the TB any longer
(e.g. Cadeddu et al., 2007, 2009). The higher the IWV, the more channels further
away from the absorption line are affected by this saturation effect. The radiative
transfer simulations of the training data have shown that the 183.31 ± 7.5 and
243 GHz channels are the only frequencies that can still detect IWV increases
through TB changes for IWV above 15 kgm−2. But in these frequencies and moist
conditions, many TBs map to the same IWV so that no clear relation between
the TBs and IWV can be inferred. This could explain the strong scattering of
IWV from MiRAC-P when compared to the radiosonde measurements in moist
conditions as seen in Figure 4.2, resulting in a standard deviation of 1.47 kgm−2

(see Table 4.2). HATPRO shows the opposite behaviour for high IWV, having an
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uncertainty of 0.39 kgm−2, which is almost a factor of 4 lower than the uncertainty
of MiRAC-P.
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Figure 4.2: Comparison of the IWV from MOSAiC radiosondes (see text for
details) with retrieved IWV from HATPRO (a) and MiRAC-P (b). The MWR
data has been averaged over 15 minutes starting from each radiosonde launch
time. The error bars denote the standard deviations of the 15-minute periods.
A linear fit has been determined for both radiometers (coloured solid line) and a
perfect fit is provided for orientation. Additionally, the number of samples (N),
mean, bias, root mean squared error (RMSE), standard deviation (std.), and
Pearson correlation coefficient (R) are given.

When considering the entire IWV range, the bias of the MiRAC-P (HATPRO)
product is −0.11 kgm−2 (0.02 kgm−2), with a standard deviation of 0.82 kgm−2

(0.46 kgm−2). Compared to the Global Navigation Satellite System (GNSS) IWV
retrieval performed by Männel et al. (2021), who found a bias of 0.08±0.04 kgm−2

and a root mean squared error of 1.47 kgm−2, the two MWRs yield more precise
estimates of IWV, and HATPRO also a higher accuracy, when considering the
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IWV range
(kg m−2)

Instrument N RMSE
(kg m−2)

bias (kg m−2) σ (kg m−2)

[0, 5) HATPRO 651 0.40 0.35 0.19
MiRAC-P 730 0.15 0.12 0.08

[5, 10) HATPRO 279 0.33 −0.14 0.29
MiRAC-P 276 0.35 0.00 0.35

[10, 100) HATPRO 397 0.61 −0.47 0.39
MiRAC-P 398 1.49 −0.23 1.47

Table 4.2: Root mean squared error (RMSE), bias, standard deviation (σ) of IWV
between HATPRO or MiRAC-P and radiosondes, divided into three categories of
low, intermediate and high moisture load. Additionally, the number of samples
(N) of the respective subclass and instrument is given.

entire range. The ARM research facility also derived IWV from their two-channel
MWR, which was also located onboard RV Polarstern (Atmospheric Radiation
Measurement (ARM) user facility, 2019). Their retrieval (MWRRET) combines
a statistical and physical approach (Optimal Estimation), that also takes surface
observations and radiosonde IWV into account, to generate a best estimate IWV
data set (for a detailed description, please see Gaustad et al., 2011). ARM’s
MWR provides a IWV record with a lower temporal resolution (26 seconds on
average) and a roughly 20-day long data gap in August 2020. Both the lower
resolution and the gap have to be taken into account when comparing their prod-
uct with ours from HATPRO and MiRAC-P. Reducing the radiosonde and the
three MWR data sets to a common time grid, where all quality flags indicate good
quality, leaves us with 813 radiosondes to compare. The MWRRET best estimate
yields a bias (standard deviation) of −0.21 kgm−2 (0.44 kgm−2), while our prod-
ucts show −0.01 kgm−2 (0.44 kgm−2) and −0.08 kgm−2 (0.75 kgm−2) for HAT-
PRO and MiRAC-P, respectively. Below 5 kgm−2 (10 kgm−2), the performance
of our products is especially good, having a standard deviation of 0.19 kgm−2

(0.29 kgm−2) and 0.07 kgm−2 (0.28 kgm−2) for HATPRO and MiRAC-P, respec-
tively, while it is 0.40 kgm−2 (0.48 kgm−2) for the MWRRET best estimate.

Liquid water path

The LWP is an important quantity for the evaluation of reanalyses and radia-
tion balance. HATPRO, MiRAC-P and the two MWRs from the Atmospheric
Radiation Measurement research facility (of which the three-channel MWR did
not operate during most of the time Shupe et al., 2022) are the only instru-
ments onboard RV Polarstern capable of retrieving LWP in all cloud conditions.
Throughout the MOSAiC expedition, the LWP features a distinct seasonal vari-
ability (see Figure 4.3) with seasonally averaged daily mean LWP of 8, 25, 91,
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Filename Purpose
NN_retrieval_miracp.py Neural Network retrieval training and appli-

cation
data_tools.py Module containing data analysis routines

called by other scripts
import_data.py Module containing various importer routines

called by other scripts
met_tools.py Module containing meteorological computa-

tions (humidity conversion, ...) called by
other scripts

my_classes.py Classes called by other scripts
case_study_overview_mwr_radiosonde.py Script to generate Figure 4.6
mwr_pro_output_add_geoinfo.py Adding Polarstern track data (Rex, 2020;

Haas, 2020; Kanzow, 2020; Rex, 2021a,b) to
HATPRO files

PANGAEA_tab_to_nc.py Script to convert PANGAEA radiosonde (Ma-
turilli et al., 2021) and Polarstern track data
(Rex, 2020; Haas, 2020; Kanzow, 2020; Rex,
2021a,b) to netCDF format

plot_mwr_level_2a_radiosonde.py Script to generate Figures 4.1, 4.2, and 4.3
plot_mwr_level_2bc_radiosonde.py Script to generate Figures 4.4, and 4.5

Table 4.3: First block: Neural network retrieval development and application
on MiRAC-P TB data (Walbröl et al., 2022a), generating the derived product
(Walbröl et al., 2022b). Second block: Auxiliary modules called by other scripts.
Third block: Visualization and data processing scripts. The codes are freely
available (Walbröl, 2022).

and 40 gm−2 for winter (December – February), spring (March – May), summer
(June – August), and autumn (September – November). Also the variability of
the daily mean within a season, computed as seasonal standard deviations of
the daily mean LWP, shows an annual cycle with 15, 38, 67, and 49 gm−2 for
winter, spring, summer, and autumn, respectively. In summer, daily average
LWP can exceed 250 gm−2. This seasonality was also seen at Ny-Ålesund by
Nomokonova et al. (2019). Higher values of LWP frequently occur in conjunction
with high IWV because the moister air masses tend to generate more or deeper
clouds. Former studies have proven the quality of the retrieved LWP, having an
uncertainty of merely 14 – 23 gm−2 (Rose et al., 2005; Toporov and Löhnert,
2020). In winter, when LWP is frequently within the uncertainty range (see Fig-
ure 4.3), the LWP estimates must be considered with care. Although retrieval
noise might still result in slightly negative LWP, the clear-sky offset correction
improved LWP biases. Comparing LWP derived from HATPRO with the best
estimate from ARM’s two-channel MWR (MWRRET) (Atmospheric Radiation
Measurement (ARM) user facility, 2019), we find that more than 81% of the data
values agree within ±17.5 gm−2 and 93% within ±27.5 gm−2. For the compari-
son both data sets have been merged onto the same time grid due to differences
in temporal resolution and data availability (as for IWV, see above).
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Figure 4.3: Time series of daily mean LWP (black) and IWV (blue dashed) values
retrieved from HATPRO TBs for the entire MOSAiC period. The HATPRO data
availability (red bars) shows the fraction of good quality (flag = 0) to the total
number of data points on that day. A full red bar reaching from 0 to 100 % means
that no data without a set flag is available on that day. The absence of red bars
implies 100 % data availability with high quality.

The data availability in Figure 4.3 shows the fraction of non-flagged (flag = 0

or nan) values to the total number of data points of a day. During MOSAiC
leg 1 (2019-09-20 – 2020-12-13), the internal sanity check of HATPRO frequently
indicated a problem with the receiver of the V-band channels. The problem did
not persist beyond the calibration on 2019-12-14, 18:30 UTC from where on the
fraction of flagged values decreased significantly.

Humidity profiles

Humidity profiling from HATPRO data is more challenging than estimating the
integrated amount because of the low information content (usually 1 to 3 inde-
pendent pieces of information Löhnert et al., 2009). The dry conditions of the
Arctic and the frequent occurrence of strong vertical gradients and moisture in-
versions (Devasthale et al., 2011; Nygård et al., 2014; Devasthale et al., 2016;
Naakka et al., 2018) impede it further. The retrieved absolute humidity profile
may still contain slightly negative values in high altitudes because of retrieval
noise but flags are set for values below −0.5 gm−3.

As for the comparison of IWV from HATPRO and radiosondes, the HATPRO
data has been averaged over 15 minutes, starting from each radiosonde launch
time, to evaluate the retrieved absolute humidity profiles. Systematic differences
(bias) are expressed as the mean difference of absolute humidity over time on
each height level (∆ρv = ρv,HATPRO − ρv,radiosonde) in absolute and relative terms
(Figure 4.4a). The latter has been normalized by the mean absolute humidity
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from radiosondes after averaging. The standard deviation of absolute humidity
with radiosonde data as reference is also given in relative and absolute terms. As
above, the relative term of absolute humidity standard deviation shown in Fig-
ure 4.4b has been computed by normalization with the mean radiosonde absolute
humidity after determining the absolute term. While this procedure (normaliz-
ing after averaging) may not capture the individual relative differences for each
radiosonde (normalizing before averaging), it is sufficient to give an idea of the
relative uncertainty of the retrieved humidity profiles. We computed the bias and
standard deviation for each MOSAiC leg so that Figure 4.4 displays the mean
(standard deviation) of these quantities over the legs as black lines (shading).
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Figure 4.4: Bias (a) and standard deviation (σ) (b) of absolute humidity (ρv)
profiles between radiosondes (RS) and HATPRO in absolute (solid) and relative
(dashed) terms. Shading in blue (grey) indicates the variability over the MO-
SAiC legs as standard deviation in absolute (relative) terms (see text for details).
The relative terms have been normed with the mean radiosonde absolute humid-
ity. HATPRO data has been averaged over 15 minutes starting from radiosonde
launch times.

In the lowest 1.5 km, HATPRO overestimates the absolute humidity with the
highest bias (0.6 gm−3 or 25 %) at the surface. Further above, the bias becomes
negative, up to about −0.1 gm−3 at 2 – 3 km height, and approaches zero in
the remaining atmospheric column (up to 10 km). This is a typical behaviour
when humidity inversions or strong moisture gradients are smoothed out in the
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retrieved profile. The integrated humidity content (IWV) stays free of bias when
a positive bias at the surface is balanced by a negative one in greater heights.
In winter, when the humidity is low, the relative bias is usually higher than in
summer.

At the surface, the standard deviation is 0.59 gm−3 or 25 % in absolute or
relative terms, respectively (see Figure 4.4b). Because of the general decrease
of absolute humidity with height, the standard deviation in absolute values also
approaches zero with values of 0.41 gm−3 at 2 km height and 0.02 gm−3 at 8 km
height. However, the relative standard deviation increases to 27 % and 58 % at
those heights, respectively. Therefore, above 5 km altitude, when the standard
deviation is near 50 %, the retrieved profile from HATPRO must be considered
with care.

Past studies have found standard deviations of HATPRO-retrieved to ra-
diosonde profiles of 0.9 – 0.6 gm−3 in the lowest 2 km (Ebell et al., 2013, 2017),
which are slightly higher than those found here (0.59 – 0.41 gm−3). However,
their studies were carried out with data in the mid-latitudes, where the water
vapour load is much higher. Ebell et al. (2013) found a relative uncertainty of
12% in the lowest 2 km, while our analysis shows 22 – 27%. To reduce humidity
profile uncertainties and improve the information content, we are thus working on
a synergetic retrieval of IWV and humidity profiles combining the measurements
of both HATPRO and MiRAC-P.

Temperature profiles

HATPRO temperature profiles from the zenith mode have been averaged the same
way as absolute humidity profiles for the comparison with radiosonde data. The
measurements in boundary layer mode, performed only once every 30 minutes,
were averaged over ±30 minutes around radiosonde launch times due to the lower
sampling rate. In Figure 4.5, the bias and standard deviation profiles can be seen
for both measurement modes. Shading indicates the variability over the MOSAiC
legs as described in the previous section and also shown in Figure 4.4. In the
lowest 800 m, both modes show biases that quickly change with height (zenith:
1.2 to 2.0 to −2.8K, elevation: −1.4 to 0.2 to −1.2K). Radiative cooling over sea
ice causes strong surface temperature inversions persisting almost throughout the
entire winter (Tjernström and Graversen, 2009; Devasthale et al., 2010; Maturilli
and Kayser, 2017a). The presence of low clouds may also generate inversions due
to cloud top cooling (Sedlar et al., 2012; Devasthale et al., 2016). In summer,
when the solar energy is used to melt the snow and sea ice (Graversen et al.,
2008), temperatures remain close to the freezing point at the surface despite the
possible presence of warmer air masses aloft. Therefore temperature inversions
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are weaker and located at greater heights in summer (Tjernström and Graversen,
2009). Although the rapid changes of temperature over a few hundred metres
below 1 km altitude cannot be resolved by HATPRO, the boundary layer mode
denotes lower biases (standard deviations) than the zenith mode by up to 2 K
(0.5 K). The standard deviation in 0 – 2 km height is 0.7 – 1.7 K (1.2 – 2.7 K) for
the boundary layer (zenith) mode and therefore higher than the values found by
Löhnert and Maier (2012) (0.5 – 1.4 K). This is likely due to the nearly permanent
presence of inversions in the low Arctic troposphere. The switching signs of the
biases up to 2 km height suggest that the inversions are smoothed out with a
warm bias at their lower and a cold bias at their upper end for the zenith mode.
Averaged over height and time, the boundary layer mode features a consistent
cold bias.
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Figure 4.5: Bias (a) and standard deviation (σ) (b) of temperature (T) profiles
between radiosondes (RS) and HATPRO zenith (solid) and boundary layer (BL,
dashed) modes. Shading in blue (grey) indicates the variability over the MO-
SAiC legs as standard deviation for the zenith (boundary layer) mode (as in
Figure 4.4). HATPRO zenith measurements have been averaged over 15 minutes
starting from radiosonde launch times while the boundary layer scans range ±30
minutes around radiosonde launch times due to the lower sampling rate.

Above 2 km altitude, the bias of the zenith mode is smaller compared to the
boundary layer scan (−1.0 to 0.4K vs. −2.6 to 0.0 K). Up to about 4.5 km
altitude, the standard deviations are similar, increasing from 1.4 to 1.8 K (see
Figure 4.5). In greater heights, the standard deviation of the zenith tempera-
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ture profile increases (up to 2.5 K in 8 km) because information comes from more
height levels at once (broader weighting functions) providing less distinctly re-
solved levels in these altitudes. At heights between 2 and 4 km, we found similar
uncertainties as in Löhnert and Maier (2012), who identified standard deviations
of 1.4 – 1.7 K.

4.6 Usage Notes

In this section, we give some recommendations on handling the MWR data and
provide an example of their capabilities for using them in a case study. When
importing either the TB data or the retrieved products, data where the flag is not
0 or nan must be considered with care (remark: Python library xarray converts
the good quality indicator to nan while netCDF4 leaves it at the fill value 0).
Importing the zenith temperature and humidity profiles from HATPRO over a
long time period might result in large memory usage when using a library like
numpy (one month of zenith temperature profiles results in roughly 100 million
data points of type float32). Therefore, downsampling or the usage of a library like
xarray, which compresses the data, is highly recommended. The comparisons of
the HATPRO temperature and humidity profiles with radiosonde measurements
is just one example of downsampling. Regarding the IWV, MiRAC-P should
be used for values lower than 5 kgm−2 and HATPRO for values greater than
10 kgm−2 to optimally exploit the data sets. A transition zone from MiRAC-P
to HATPRO IWV could be established in the range 5 – 10 kgm−2 where both
instruments work similarly well. For temperature profiles, a combination of zenith
and boundary layer modes (0 – 2 km: boundary layer mode, 2 – 10 km: zenith
mode) yields the best estimate.

The MOSAiC data policy requires a moratorium for the TB and retrieved
data products until 2023-01-01. Only researchers that are a part of the MOSAiC
community will have access before that date.

Moist air intrusion case

During the MOSAiC expedition a record breaking moist air intrusion was cap-
tured in April 2020 (Rinke et al., 2021). The codes used for importing, processing,
and visualizing the data as seen in Figure 4.6 are published on Zenodo (Walbröl,
2022). Time stamps where the flag indicates bad quality have been filtered out
and the radiosonde data was interpolated to a height grid with 5 m resolution,
ranging from 0 to 15 km altitude. We have resampled HATPRO humidity and
zenith temperature profiles to one-minute averages to reduce the number of data
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points. In Figure 4.6, the time series of IWV, temperature and humidity profiles
of the moist air intrusion case are shown. Since this was considered an intensive
observation period due to the anomalous conditions, radiosondes were launched
up to 7 times per day, which translates to a temporal resolution of 3 to 4 hours.
However, despite the unusually high number of radiosonde launches, the full vari-
ability of IWV cannot be caught as well as with HATPRO and MiRAC-P. It is
likely that the radiosonde data missed the maximum of 14.3 kgm−2 (HATPRO)
IWV on 2020-04-19 by 0.8 kgm−2. On that day, the radiosondes also experienced
a strong horizontal drift due to high wind speeds, which could explain the dis-
crepancy between HATPRO and radiosondes as well. Additionally, the MWRs
detect the steep temporal gradient of the IWV much clearer than the radiosondes
(i.e., between 2020-04-19 00 and 06 UTC). In the humidity profiles, the limited
vertical resolution and biases at the surface of the HATPRO product are obvious.
Even the strong humidity inversions that were detected by the radiosondes from
2020-04-19 00 UTC until 2020-04-21 12 UTC are not resolved. Also lifted layers
of dry air with strong humidity inversions at their upper end (e.g., 2020-04-16 08
UTC) cannot be identified in the HATPRO humidity profiles. Below 2 km, small
temperature inversions like the one seen in the radiosonde profile on 2020-04-16
are, at least, seen as isothermal layers in the HATPRO temperature profiles. The
benefit of the boundary layer over the zenith mode is more distinct on 2020-04-18
00 UTC and 2020-04-19 00 – 12 UTC when the strong temperature inversion in
0 – 2 km height is clearly resolved.

Code availability

Almost all parts of this study have been coded with Python (version 3.8.10) using
the following libraries: tensorflow (2.5.0), keras (2.5.0), numpy (1.17.4 and 1.19.5
(latter for NN retrieval)), sklearn (0.24.2), netCDF4 (1.5.3 and 1.5.7 (latter for
NN retrieval)), matplotlib (3.4.3), and xarray (0.18.2). The codes of the NN
retrieval, the visualization scripts for the Technical Validation and Usage Notes
are openly accessible (Walbröl, 2022) and listed in Table 4.3. The scripts for
HATPRO retrievals and processing of TB data of both instruments, written in the
programming language IDL, are also available on Github and Zenodo (Walbröl,
2022).
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Figure 4.6: Overview of a moist air intrusion case during the MOSAiC expedi-
tion from 13th to 23rd April 2020 showing the IWV as in Figure 4.1 (a), absolute
humidity (ρv) profiles from radiosondes (b) and HATPRO (c), as well as temper-
ature (T) profiles from radiosondes (d), HATPRO zenith (e) and boundary layer
(BL) (f) modes. HATPRO humidity and zenith temperature profiles have been
resampled to one-minute averages.
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Synergistic microwave radiometer
retrievals

In this study, new retrievals of advanced water vapour products from the synergy
of two microwave radiometers with complementary moisture sensitivity are devel-
oped, evaluated and compared to the single instrument retrievals. This study has
been published in Atmospheric Measurement Techniques (see reference below).
Here, the accepted version of the manuscript (03 September 2024) is presented.

Walbröl, A. et al. 2024: Combining low- and high-frequency microwave ra-
diometer measurements from the MOSAiC expedition for enhanced water vapour
products, Atmospheric Measurement Techniques, 17, 6223-6245, 10.5194/amt-17-
6223-2024.
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dreas Walbröl conceptualized this study. Mario Mech prepared the radiative
transfer simulations on the Levante HPC System of the Deutsches Klimarechen-
zentrum (DKRZ). Andreas Walbröl modified the prepared scripts for his use to
generate the training, test and evaluation data for this study. Andreas Walbröl
also developed the retrievals, created all visualizations, analyzed the results and
wrote all parts of the manuscript with scientific input from Susanne Crewell, Ker-
stin Ebell, Hannes Griesche and Mario Mech. Susanne Crewell, Kerstin Ebell,
Hannes Griesche and Andreas Walbröl discussed the results. All authors reviewed
the manuscript.
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5.1 Abstract

In the central Arctic, high quality water vapour observations are sparse due to
the low density of meteorological stations and uncertainties in satellite remote
sensing. Different reanalyses also disagree on the amount of water vapour in the
central Arctic. The Multidisciplinary drifting Observatory for the Study of the
Arctic Climate (MOSAiC) expedition provides comprehensive observations that
are suitable for evaluating satellite products and reanalyses. Radiosonde obser-
vations provide high quality water vapour estimates with a high vertical but a
low temporal resolution. Observations from the microwave radiometers (MWRs)
onboard the research vessel Polarstern complement these observations through
high temporal resolution. In this study, we demonstrate the high accuracy of the
combination of the two MWRs HATPRO (Humidity and Temperature Profiler)
and MiRAC-P (Microwave Radiometer for Arctic Clouds - Passive). For this pur-
pose, we developed new retrievals of integrated water vapour (IWV) and profiles
of specific humidity and temperature using a Neural Network approach, including
observations from both HATPRO and MiRAC-P to utilize their different water
vapour sensitivity. The retrievals were trained with the European Centre for
Medium-Range Weather Forecasts (ECMWF) reanalysis version 5 (ERA5) and
synthetic MWR observations simulated with the Passive and Active Microwave
radiative TRAnsfer tool (PAMTRA). We applied the retrievals on the synthetic
and real observations and evaluated them with ERA5 and radiosondes launched
during MOSAiC, respectively. To assess the benefit of the combination of HAT-
PRO and MiRAC-P compared to single MWR retrievals, we compared the errors
with respect to MOSAiC radiosondes and computed the vertical information con-
tent of the specific humidity profiles. The root mean squared error (RMSE) of
IWV was reduced by up to 15%. Specific humidity biases and RMSE were re-
duced by up to 75 and 50%, respectively. The vertical information content of
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specific humidity could be increased from 1.7 to 2.4 degrees of freedom. We also
computed relative humidity from the retrieved temperature and specific humidity
profiles and found that RMSE was reduced from 45 to 15%. Finally, we show a
case study demonstrating the enhanced humidity profiling capabilities compared
to the standard HATPRO based retrievals. The vertical resolution of the retrieved
specific humidity profiles is still low compared to radiosondes but the case study
revealed the potential to resolve major humidity inversions. To which degree the
MWR combination detects humidity inversions, also compared to satellites and
reanalyses, will be part of future work.

5.2 Introduction

The amplified warming of the Arctic, known as Arctic amplification, is a well
established phenomenon and has been discussed in several studies (e.g., Screen
et al., 2012; Screen and Simmonds, 2010; Rantanen et al., 2022; Wendisch et al.,
2023). Arctic amplification is caused by several positive climate feedback mecha-
nisms, such as the ice albedo and the lapse rate feedback (Serreze and Barry, 2011;
Wendisch et al., 2023). Following the Clausius Clapeyron relation, a warmer at-
mosphere can contain more water vapour before condensation occurs. Higher wa-
ter vapour loads enhance the greenhouse effect (stronger emission in the thermal
infrared) and thus increase temperatures at the surface (Held and Soden, 2000;
Graversen and Wang, 2009; Ghatak and Miller, 2013). This positive feedback
loop is known as the water vapour feedback and its role in Arctic amplification
is still under investigation.

In the past decades, a moistening trend has been observed on a global scale
(Chen and Liu, 2016; Allan et al., 2022) and also regionally in the Arctic (Ghatak
and Miller, 2013; Maturilli and Kayser, 2017a; Parracho et al., 2018; Rinke et al.,
2019; Serreze et al., 2012). The relative increase of the vertically integrated water
vapour (IWV) is strongest in the Arctic (Chen and Liu, 2016). However, IWV
trends have a high spatial heterogeneity and depend on the season (Parracho
et al., 2018; Rinke et al., 2019). Many studies relied on atmospheric reanalyses,
which assimilate measurements from synoptic stations, particularly radiosondes,
satellites, etc. However, ground-based observations are sparse and satellite obser-
vations have different challenges in the Arctic (Crewell et al., 2021): The deriva-
tion of water vapour products from visible and infrared observations is hindered
by darkness or clouds, and satellite products from microwave observations are
uncertain due to the high and variable sea ice emissivity (Mathew et al., 2008;
Wang et al., 2017; Scarlat et al., 2017). The lack of ground-based observations
and difficulties in satellite remote sensing in the Arctic lead to high uncertainties
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in water vapour products in reanalyses (Crewell et al., 2021; Parracho et al., 2018;
Chen and Liu, 2016; Graham et al., 2019b). Therefore, it is not surprising to find
a large spread of the IWV trend among reanalyses, often larger than the median
trend itself for certain seasons and regions (Rinke et al., 2019).

A special feature of the Arctic is the high occurrence of humidity inversions,
which are height layers where the water vapour concentration increases with
height (Devasthale et al., 2011; Vihma et al., 2011; Nygård et al., 2014; Ma-
turilli and Kayser, 2017a; Naakka et al., 2018). Humidity inversions are strongly
coupled with temperature inversions (Tjernström et al., 2004), which form due
to radiative cooling in clear sky conditions in winter, or due to sea ice melt or
advection of warm and moist air above the boundary layer in summer (Graversen
et al., 2008; Devasthale et al., 2010; Tjernström et al., 2019). Humidity inver-
sions are a moisture source for the formation and maintenance of clouds through
entrainment at the cloud top (Nygård et al., 2014). It is therefore important to
have humidity observations with a sufficiently high vertical resolution that allows
to capture this characteristic feature of the Arctic humidity profile. Additionally,
the vertical water vapour distribution affects the downward thermal infrared ra-
diation. Tjernström et al. (2019) showed that in cases when humidity inversions
were present, the downward thermal infrared radiation was higher fostered by fog
or low cloud formation.

Current reanalyses have difficulties in correctly representing the stable strat-
ification of Arctic winter conditions (Wang et al., 2019; Yu et al., 2021; Graham
et al., 2019a). For example, the widely used European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis version 5 (ERA5) (Hersbach et al.,
2020), which is among the best performing global reanalyses in the Arctic, still
shows positive near-surface air temperature and humidity biases (Graham et al.,
2019a; Avila-Diaz et al., 2021; Loeb et al., 2022; Yu et al., 2021). The biases
are highest in cold stable conditions found over sea ice in winter and smaller in
summer or over the open Arctic Ocean (e.g., Fram Strait, Wang et al., 2019;
Graham et al., 2019b). Herrmannsdörfer et al. (2023) suggested that ERA5 does
not sufficiently represent sea ice thickness and snow depth. Difficulties in the
representation of the stable conditions and positive biases of temperature and
humidity at the surface result in errors in the temperature and humidity profiles
of ERA5 (and other reanalyses).

It follows that reanalyses and satellite products struggle with the representa-
tion of water vapour in the Arctic. To evaluate the accuracy of water vapour in
current reanalyses and satellite products, we need reference measurements. How-
ever, reliable and high quality water vapour measurements in the central Arctic
are currently only available through field campaigns. The Multidisciplinary drift-
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ing Observatory for the Study of the Arctic Climate (MOSAiC, Shupe et al.,
2022) expedition, where the research vessel (RV) Polarstern (Knust, 2017) was
frozen into the ice to observe the Arctic climate for a full annual cycle, provides
unique observations for this purpose. Radiosonde measurements (Maturilli et al.,
2021) yield IWV and humidity profiles with a high vertical but low temporal
resolution (3–6-hourly). Additionally, water vapour products have been derived
from upward looking microwave radiometers (MWRs) that were mounted on the
OCEANET container (Macke et al., 2010; Engelmann et al., 2021) at the bow
of RV Polarstern: Walbröl et al. (2022) created retrievals of IWV and profiles of
absolute humidity and temperature from the low frequency Humidity and Tem-
perature Profiler (HATPRO, Rose et al., 2005) and an IWV product specifically
designed for dry conditions from the high frequency Microwave Radiometer for
Arctic Clouds - Passive (MiRAC-P, Mech et al., 2019a). The MWR products have
a high temporal resolution (almost every second) but the humidity profile from
HATPRO is coarse with less than 2 degrees of freedom (Löhnert et al., 2009).

The high frequency observations from MiRAC-P have a high sensitivity to
atmospheric water vapour in dry conditions (IWV < 10 kgm−2) but get satu-
rated in humid conditions (IWV ≥ 10 kgm−2, Cadeddu et al., 2007, 2022; Fionda
et al., 2019). In contrast, the low frequency observations from HATPRO have a
high sensitivity in humid conditions but a weak signal in the dry conditions of
the Arctic in winter. The complementary moisture sensitivity of HATPRO and
MiRAC-P motivates the synergy of both instruments, as it has been done for
IWV in e.g., Cadeddu et al. (2009).

In this study, we develop retrievals of water vapour products combining ob-
servations from HATPRO and MiRAC-P to improve the vertical resolution of
specific humidity profiles and reduce errors compared to single MWR retrievals.
We retrieved specific humidity instead of absolute humidity because it is a more
commonly used humidity measure in atmospheric reanalyses and satellite prod-
ucts. Specifically, we answer the following questions:

1. How much are IWV and humidity profile errors reduced compared to single
instrument retrievals and what is the influence of using different retrieval
setups?

2. What is the vertical information content benefit for humidity retrievals
when combining two MWRs with different moisture sensitivity?

3. Is the vertical information content sensitive to cloud presence, temperature
or water vapour amount?

The manuscript is structured as follows: In Sect. 5.3, we start with a descrip-
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tion of the data used for the retrieval development and the measurements from
the MOSAiC expedition, which will be used for the application and evaluation
of the retrieval. In Sect. 5.4, we elaborate on the preparation of the retrieval
development data before giving details on the retrieval setup and vertical infor-
mation content estimation. Afterwards, we evaluate the retrieval in Sect. 5.5 and
estimate the information benefit in Sect. 5.6 before concluding the manuscript in
Sect. 5.7 by answering the questions raised above.

5.3 Data sets

5.3.1 Retrieval development data

Radiosondes are commonly used for the evaluation of temperature and humidity
profile retrievals because of the high vertical resolution and accuracy (e.g., Cimini
et al., 2010; Löhnert and Maier, 2012). Due to the lack of radiosonde stations and
uncertain water vapour observations from satellites, we selected the ERA5 reanal-
ysis (Hersbach et al., 2020) as a data source for the retrieval development. With a
horizontal resolution of 31 km and 137 vertical levels, it has the highest horizontal
and vertical resolution of all current global reanalyses. The high vertical resolu-
tion might be beneficial for developing humidity profile retrievals because a low
vertical resolution could constrain the retrieval from reaching its true potential.
ERA5 data is available for 1940–present with an hourly resolution. Despite hav-
ing slightly higher biases in near-surface air temperatures and humidity in cold
stable conditions over sea ice than other reanalyses, ERA5 overall performs best
in the Arctic, especially concerning the representation of clouds and precipitation
(Graham et al., 2019a). The better representation of clouds and precipitation is
beneficial for the simulation of microwave radiances for the retrieval development
(described in Sect. 5.4.1). Also, extreme precipitation and temperature events are
better captured by ERA5 than other reanalyses (Avila-Diaz et al., 2021; Wang
et al., 2019; Loeb et al., 2022).

5.3.2 MOSAiC observations for retrieval application and

evaluation

RV Polarstern drifted with an ice floe from 04 October 2019 in the Laptev Sea
across the central Arctic Ocean until it approached the marginal ice zone in
the Fram Strait on 31 July 2020. Between mid-May and mid-June 2020, RV
Polarstern had to leave the floe for logistical reasons. To capture the refreezing
period of the ice, RV Polarstern drifted with a second ice floe close to the North
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Pole from 21 August to 20 September 2020. In early October 2020, RV Polarstern
left the sea ice.

Radiosondes

Throughout MOSAiC, Vaisala RS41 radiosondes have been launched from RV
Polarstern at the standard synoptic times (00, 06, 12, and 18 UTC). The actual
launch time is usually around 1 hour before the respective synoptic time due to
the relatively slow ascent rates of about 5ms−1. During intense observation peri-
ods, additional radiosondes were launched at 03, 09, 15 and 21 UTC. Here, we use
all radiosonde level 2 data from 01 October 2019 to 01 October 2020 (Maturilli
et al., 2021). Radiosondes provide temperature, pressure, and relative humid-
ity with accuracies of 0.2–0.4K, 0.04–1.0 hPa, and 3–4%, respectively. With a
measurement frequency of 1Hz, the vertical resolution is about 5m. For the
comparison with the retrievals, the radiosonde data has been interpolated onto
the retrieval height grid (see Sect. 5.4.1).

Cloudnet and surface meteorology measurements

To evaluate the presented retrievals in different atmospheric conditions, we in-
cluded additional data sets from the MOSAiC expedition: To distinguish between
freezing and non-freezing conditions at the surface (temperatures below and above
273.15K), the 2m temperature measurements from the tower at the Met City site
(Cox et al., 2023a) were used. The Met City site was located within the central
observatory, only a few hundred metres away from RV Polarstern. Addition-
ally, we identified cloudy scenes using the Cloudnet retrieval products (Griesche
et al., 2024b). Cloudnet uses a synergy of passive and active atmospheric remote
sensing to provide profiles of cloud macro- and microphysical properties (liquid
and ice water content, effective radii of liquid droplets and ice crystals) with a
time and height resolution of 30 s and 30m, respectively (Illingworth et al., 2007;
Tukiainen et al., 2020).

Cloudnet delivers, e.g., a classification of the atmospheric conditions, dis-
tinguishing between clear sky, different cloud types (ice, liquid, mixed-phase),
and the presence of aerosols and insects, for each time-height pixel. Because
of technical limitations, the Cloudnet product starts at a height of 182m and
can therefore miss the presence of low-level stratus clouds, which are common in
the Arctic (Gierens et al., 2020; Griesche et al., 2020). The additional low-level
stratus detection developed by Griesche et al. (2020) was used to mask these
cases.

In this study, clear sky conditions were identified using Cloudnet target clas-
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sification data (Engelmann et al., 2023) and the low-level stratus mask (Griesche
et al., 2023) where quality flags indicated good quality (including also the Cloud-
net issue dataset, Griesche and Seifert, 2023). As we compare our retrievals
with radiosonde measurements, we selected Cloudnet data at times from the
radiosonde launch to 15 minutes after the launch. A radiosonde launch is con-
sidered clear sky when no low-level stratus were present and the Cloudnet target
classification indicated either clear sky, aerosols, or insects.

Microwave radiometers

The two upward-looking microwave radiometers HATPRO and MiRAC-P mea-
sure radiation emitted from water vapour, oxygen and hydrometeors. Measured
radiances are typically expressed as brightness temperatures (TB). HATPRO de-
tects radiances in seven channels between 22.24 and 31.4GHz (K–band) and in
seven channels between 51.26 and 58GHz (V–band). MiRAC-P has a double-
sideband receiver that measures radiances at six frequencies from 183.31 ± 0.6

to 183.31 ± 7.5GHz (G–band) and a two-channel receiver for 243 and 340GHz.
At MiRAC-P frequencies, the scattering of radiation by hydrometeors is rele-
vant, and the contribution of the continuum water vapour absorption is stronger
(Rosenkranz, 1998).

Figure 5.1 shows TBs simulated with the Passive and Active Microwave ra-
diative TRAnsfer tool (PAMTRA, Mech et al., 2020), using two clear sky ra-
diosondes from MOSAiC (winter: 05 March 2020, 06 UTC, summer: 06 August
2020, 00 UTC). A higher atmospheric opacity generally results in higher TBs in
the zenith. In the K–band channels of HATPRO and the G–band channels of
MiRAC-P, which are located around resonant water vapour absorption lines, the
different water vapour loads of winter and summer can be well distinguished by
their large TB differences of up to 40K in the K–band and more than 100K in the
G–band. Also in MiRAC-P’s high frequency channels at 243 and 340GHz, TB
differences are larger than at K–band frequencies (up to 200K) due to continuum
water vapour absorption. At the K–band frequencies, the relation between TBs
and IWV is rather linear and becomes more nonlinear for the higher frequencies
(G–band and above).

Observations along resonant water vapour absorption lines are well suited
to derive IWV and humidity profiles (Crewell et al., 2001; Cadeddu et al., 2007;
Cimini et al., 2010; Perro et al., 2016, e.g.,). Because of the high water vapour sen-
sitivity, most of the G–band channels are saturated in the summer case, meaning
they do not observe radiances from the entire atmospheric column. In contrast,
the K–band channels show almost no water vapour signal in the extremely dry
winter case (IWV of 0.9 kgm−2) while there is still a strong signal in the G–band.
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Furthermore, higher TBs in summer compared to winter are caused by higher
temperatures of the emitting gases and hydrometeors (Fig. 5.1). The V–band
channels of HATPRO lie around the oxygen absorption complex and can be
used for temperature profiling (Rose et al., 2005; Löhnert and Maier, 2012). As
explained in Walbröl et al. (2022), HATPRO also measured atmospheric radiances
at different elevation angles every 30 minutes during MOSAiC, allowing for more
detailed temperature profile retrievals in the lower troposphere (boundary layer
temperature profiles).

0 50 100 150 200 250 300 350 400
Frequency (GHz)

0

50

100

150

200

250

TB
 (K

)

K V G 243 340Freq. bands

Winter, IWV = 0.9 kg m 2

Summer, IWV = 16.1 kg m 2

HATPRO frequencies
MiRAC-P frequencies

Figure 5.1: Brightness temperatures (TBs) from 1 to 400GHz simulated with
PAMTRA for two radiosondes launched from RV Polarstern during MOSAiC
(winter: 05 March 2020, 06 UTC, summer: 06 August 2020, 00 UTC). The
dashed (solid) black line shows the TBs simulated with meteorological data from
the winter (summer) radiosonde. The blue (cyan) lines indicate the frequencies
at which HATPRO (MiRAC-P) measures. The labels K, V, G, 243, and 340
represent abbreviations for sets of frequency channels (bands) of HATPRO and
MiRAC-P.

In this study, we generally used TB measurements where flags indicate good
quality (Walbröl et al., 2022). We identified a few rain events between late-May
and late-June 2020 that were not flagged by visual inspection. The quality flags
have been updated. Additionally, we checked whether other flag values could be
accepted and found that a receiver sanity flag was often set although the data
looked reasonable. Therefore, we also included that data in our analysis. Times
before the first successful calibration of both MWRs (22 October 2019, 05:40
UTC) have been excluded.

For the information benefit analysis, we compared the new synergistic re-
trievals to the single instrument retrievals developed by Walbröl et al. (2022), i.e.,
the two IWV products (HATPRO and MiRAC-P), and profiles of temperature
and absolute humidity from HATPRO (Ebell et al., 2022; Walbröl et al., 2022b).
We converted the retrieved absolute to specific humidity using the retrieved tem-
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perature profiles and air pressure from radiosondes. All retrieved quantities were
averaged over 15 minutes, starting at the launch time of each radiosonde, for the
comparison with MOSAiC radiosondes. For boundary layer temperature profiles,
we extended the averaging window to 30 minutes before to 30 minutes after each
radiosonde launch due to the lower sampling rate.

5.4 Methods

The retrieval of an atmospheric state vector x (e.g., specific humidity profile) from
an observation vector y (e.g., TBs at different frequencies) is an inverse problem.
In its simplest form, the inverse problem can be formulated as x = F−1(y) where
F is the forward operator (e.g., radiative transfer model, here, PAMTRA). In
atmospheric remote sensing, inverse problems are often ill-conditioned because
small changes in observations can lead to large changes in the retrieved state
vector and many different atmospheric states can lead to the same observations.
Furthermore, the inverse problem is ill-posed because the radiative transfer equa-
tion cannot be inverted in a direct way.

The challenge is to find the most probable and realistic state of the atmo-
sphere that fits the observations. In physical retrievals (e.g., Optimal Estima-
tion, Rodgers, 2000; Ebell et al., 2017), the state vector x is adapted as long as
the forward simulated observations F (x) do not agree with the actual observa-
tions y within a given uncertainty range. Physical retrievals are computationally
expensive but provide physically consistent state vectors and uncertainty estima-
tion. However, at the high frequencies of MiRAC-P, the scattering of radiation
by frozen hydrometeors cannot be neglected and may therefore introduce uncer-
tainties in the radiative transfer calculations needed for the forward simulation
F (x). The retrieval would require assumptions on hydrometeor properties (con-
centration, size, shape, orientation) or further hydrometeor observations, making
it dependent on the availability of such observations.

Statistical retrievals are computationally cheap approaches that are also well
established and provide similarly good results as physical retrievals (Solheim
et al., 1998). In statistical retrievals, empirical relations are used to map ob-
servations to the state vector. The statistical relationship between observations
and state vector must be trained with large data sets covering the conditions of
the area of interest. Regression or deep learning algorithms are examples of sta-
tistical retrievals. In this study, we use Neural Networks (NNs) because they can
deal better with the nonlinear relationship between IWV and TB measurements
in the G–band compared to regression. During the development of the MiRAC-
P-only retrieval (Walbröl et al., 2022), tests showed that the IWV retrieved with
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a multiple nonlinear regression had a significantly higher spread than when re-
trieved with NNs.

5.4.1 Retrieval preparation

For the NN retrievals of IWV, specific humidity and temperature profiles during
MOSAiC, a training data set is needed that covers the variability of the environ-
mental conditions in the central Arctic over an annual cycle. We selected ERA5
data for 2001–2018 with 6-hourly temporal resolution at 12 grid points, of which
9 are located in the central Arctic and 3 in the Fram Strait (see Fig. 5.2). The
grid points in the Fram Strait cover more humid conditions as this is a typical
pathway for warm and moist air intrusions (Mewes and Jacobi, 2019).

Simulated HATPRO and MiRAC-P observations are needed in conjunction
with the ERA5 data to train the NN. Meteorological data (temperature, relative
humidity, geopotential height, pressure, 10m wind) and vertical hydrometeor dis-
tributions from ERA5 (specific cloud liquid, ice, rain and snow content) have been
used as input to simulate TBs with PAMTRA. The ERA5 skin temperature was
used for the sea ice and sea surface temperatures. The TBs were simulated with
PAMTRA’s default gaseous absorption, hydrometeor absorption and scattering
models as described in Mech et al. (2020).

Four years of simulated TBs and ERA5 data (2001, 2006, 2011, and 2015)
were held back from the retrieval development for the final evaluation (ERA5
evaluation data set). With the remaining 14 years of data, we trained the NN
and validated its performance (11 and 3 years for the training and validation
data sets, respectively). The number of training (validation) samples is roughly
192000 (52000). To avoid training near-surface temperature and humidity biases
from ERA5 into the retrieval, a small subset of about 5% of level 2 MOSAiC
radiosondes (Maturilli et al., 2021) was also included in the validation process.
For the retrieval development and evaluation, atmospheric profiles have been
interpolated onto the same height grid used in the standard HATPRO retrieval
(Löhnert, 2023; Marke et al., 2024) and in Walbröl et al. (2022), ranging from
0 to 10000m with the vertical spacing increasing from 50m at the surface to
500m at the top. The height grid was limited to 8000m for temperature profiles
to avoid the tropopause. Additionally, to imitate measurement uncertainties,
random Gaussian noise with a mean of 0 and standard deviations of 0.5, 0.75,
and 2.5K has been added to the simulated TBs at K–V, G, and 243–340GHz,
respectively. We intentionally used a higher noise level for the higher frequencies
to account for the higher PAMTRA simulation uncertainties due to scattering
from hydrometeors and water vapour continuum absorption.
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Figure 5.2: Mean sea ice concentration in the Arctic over the years 2001—2018
based on daily ERA5 data at 12 UTC. Light blue circles mark the position of the
12 grid points selected for the retrieval development. The MOSAiC drift track is
marked as coloured line with black outline.

5.4.2 Retrieval setup

This study used multilayer perceptron NNs (fully connected layers) to retrieve
IWV, specific humidity, and temperature profiles. To optimally use HATPRO’s
boundary layer observations, we retrieved temperature profiles from zenith and
boundary layer observations separately. The challenge is to develop retrievals that
are not overfitted and can therefore adapt well to new data. Overfitting occurs
when the retrieval does not only learn the relation between the observations and
the atmospheric state but also the (synthetic) noise. Additionally, we wanted
to ensure that the retrievals are robust by training an ensemble of 20 NNs with
identical settings but with different random number seeds. The random number
seeds affect the selection of years for the training and validation data, as well as
the NN initialization (weight coefficients). The NNs are considered robust when
the errors in the validation data show a small spread over the ensemble of 20
NNs. For example, the spread should be smaller than a given threshold (e.g.,
0.2 kgm−2 for IWV) or smaller than the magnitude of the error.
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To meet the retrieval performance requirements, we developed four NNs with
different settings (see Appendix 5.A), one for each retrieved quantity (IWV, spe-
cific humidity, and temperature profiles from zenith and boundary layer observa-
tions). The retrievals of profiles required deeper networks and stronger regular-
ization measures (e.g., dropout layers, batch normalization, see Appendix 5.A)
to avoid overfitting and to achieve a good performance. Besides TBs at different
frequencies, we also included seasonal information in the form of the cosine and
sine of the day of the year as input to all NNs except for the boundary layer
temperature profile (inspired by Billault-Roux and Berne, 2021). Additionally,
adding the 2m temperature and the retrieved IWV as input to the specific hu-
midity profile retrieval slightly reduced errors during validation. Therefore, the
specific humidity retrieval can only be performed after the IWV retrieval. For the
boundary layer temperature profile, the input vector consists of V–band TBs at
various elevation angles (90.0, 30.0, 19.2, 14.4, 11.4, 8.4, 6.6 and 5.4◦), which are
measured during HATPRO’s boundary layer scan. TBs at other frequencies were
not included because they were not measured at these elevation angles. Also,
adding other parameters to the input vector did not improve errors. Therefore,
the input vector is identical to the one used in the HATPRO regression retrieval
described in Walbröl et al. (2022). Further details of the NN retrieval principles
and settings can be found in Appendix 5.A.

5.4.3 Metrics for retrieval evaluation and vertical informa-

tion content

The retrieved state vector x (e.g., specific humidity profile) is evaluated using
the reference x̃ provided by ERA5 (ERA5 evaluation data set) or MOSAiC ra-
diosondes (MOSAiC evaluation data set). For each component j of the state
vector (i.e., j-th height level), we calculate the bias, the root mean squared error
(RMSE) and the bias-corrected RMSE:

Biasj =
1

Ns

Ns∑
i=0

(xij − x̃ij) (5.1)

RMSEj =

√√√√ 1

Ns

Ns∑
i=0

(xij − x̃ij)2 (5.2)

RMSEcorr j =

√√√√ 1

Ns

Ns∑
i=0

((xij − Biasj)− x̃ij)2 (5.3)
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Ns is the number of data samples of the respective evaluation data set. For IWV,
we also compute the Pearson product-moment correlation coefficient

R =

∑Ns

i=0 (x̃i − ˜̄x)(xi − x̄)√∑Ns

i=0 (x̃i − ˜̄x)2
∑Ns

i=0 (xi − x̄)2
, (5.4)

where x̄ (˜̄x) is the mean retrieved (reference) state vector.

The vertical information content of passive microwave observations was com-
puted following the ideas of physical retrievals of Rodgers (2000). Due to compu-
tation time, the information content was only computed for a randomly selected
subset of 4% of the ERA5 evaluation data set (2803 samples). Firstly, we in-
terpolated the vertical grid from the ERA5 model levels to the retrieval height
grid and simulated new reference observation vectors y (here, TBs) with PAM-
TRA. For these simulations, the retrieval grid has been extended to 45000m to
simulate emissions from gases (mainly oxygen) beyond the retrieval height grid.
Secondly, each state vector component is perturbed step by step. We multi-
ply the respective height level by 1.01 for specific humidity profiles, similar to
Ebell et al. (2013). Thirdly, we simulate new TBs with PAMTRA for each per-
turbed state vector. Fourthly, the Jacobian Matrix K is calculated with entries
Kaj = ∂yia/ ∂xij where ∂yia is the a-th component of the difference between the
perturbation-based and reference observation vector of the i-th data sample. ∂xij

is the j-th component (j-th height level) of the difference between the perturbed
and reference state vector. Fifthly, the Averaging Kernel matrix A is computed
with A =

(
KTS−1

ε K+ S−1
a

)−1
KTS−1

ε K where Sa and Sε are the covariance ma-
trices of the state and observation vectors, respectively. Sε contains the TB noise
on the main diagonal while the remaining entries are 0. Sa is calculated as full
covariance matrix from the ERA5 evaluation data set. Finally, the degrees of
freedom (DOF) are inferred from the trace of the Averaging Kernel A.

5.5 Retrieval evaluation

We applied the retrievals to both the ERA5 evaluation data set and MOSAiC
observations (MOSAiC evaluation data set), for which the radiosondes serve as
the reference data set. The retrieval evaluation with respect to the ERA5 data
allows us to assess the retrievals’ theoretical best performance because it is an
idealized world without measurement problems. Here, we compute errors for all
20 NNs to get an idea of the spread among the NNs. For the evaluation with
the MOSAiC radiosondes, we selected the NN that has a low RMSE and bias in
the validation data set while also having the lowest RMSE in the 5% MOSAiC
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radiosonde subset that we included in the validation process. Hereafter, this NN
is referred to as the final NN.

5.5.1 IWV

The performance of the IWV retrieval applied to the ERA5 and MOSAiC evalu-
ation data sets can be seen in Fig. 5.3. For the ERA5 data, we can evaluate the
robustness of the NN through the spread of the errors among all 20 NNs. The
RMSE of IWV varies little over the 20 NNs for IWV up to 24 kgm−2, indicated
by the low spread (< 0.3 kgm−2). Only for higher IWV, the spread increases
significantly to 0.8 kgm−2. However, only 41 of 70080 (< 0.1%) of the synthetic
data set samples have an IWV above 24 kgm−2. Therefore, errors are computed
over a very low fraction of the data and tend to vary more for different NNs.
Most importantly, statistical retrievals such as NNs struggle to capture extreme
conditions not well represented in the training data set. This can also be seen
in the bias, which is close to zero for IWV below 20 kgm−2 as expected for a
well trained NN, but deviates from zero for higher IWV. However, biases are still
small for both the ERA5 and MOSAiC evaluation data sets, staying below 2%.

The RMSE of the final NN, which was selected based on errors in the valida-
tion data set, is about 2% of the IWV, and therefore also at the lower end of the
20 NN ensemble for the ERA5 evaluation data set. This shows that the retrieval
is well trained because it performs similarly well on the evaluation data set as on
the validation data set. For the comparison with MOSAiC observations, where we
also use the final NN, the RMSE is slightly higher in most IWV regimes, reaching
up to 3–4%. In absolute terms, the RMSE increases from 0.1 to 0.7 kgm−2 with
IWV increasing from 1 to 29 kgm−2. Here, the additional uncertainties in the
radiosonde measurements and matching with the MWR data must be considered.

5.5.2 Specific humidity profiles

We evaluate the retrieved specific humidity profiles (q) in terms of bias and
RMSEcorr for the ERA5 and MOSAiC evaluation data sets (Fig. 5.4). The RMSE
values are similar to RMSEcorr because of a small bias. For the MOSAiC data,
the RMSEcorr increases from 0.25 g kg−1 at the surface to 0.5 g kg−1 at 1500m,
which is 15 to 30% of the mean specific humidity (Fig. 5.4b). At higher altitudes,
the RMSEcorr is lower but the relative error increases because the mean specific
humidity also decreases. While the RMSEcorr are generally smaller for the ERA5
data, the shape is similar with the highest RMSEcorr of about 0.25 g kg−1 (15%
of the mean q) at 1000m and even lower values at the surface with 0.15 g kg−1

(8%). The RMSEcorr spread across all 20 NNs is negligible, mostly ranging from
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Figure 5.3: IWV errors (RMSE and bias) for certain bins of reference IWV (0–
2, 2–4, ..., 22–24, 24–35 kgm−2). IWV errors based on the ERA5 (MOSAiC)
evaluation data set are displayed in black (yellow). The maximum and minimum
spread of RMSE and bias over the 20 Neural Networks are indicated by grey
shading. The RMSE (bias) of the mean over the 20 Neural Networks is displayed
as a thin solid (dashed) black line. The RMSE (bias) of the final NN is shown as
a thick solid (dashed) black line.

0.01 to 0.02 g kg−1.

The mean MOSAiC radiosonde q profile shows the maximum value about
250m lower than the mean retrieved q profile (Fig. 5.4). Because of the different
heights of the humidity inversion, we find the highest RMSEcorr and bias slightly
above the height level of the maximum q value (at 1500m). At this height, the
retrieved q profile overestimates the radiosonde measurement by up to 0.15 g kg−1

(see bias in Fig. 5.4a). Above 3500m, the bias remains negative with values up
to −0.04 g kg−1 at 5500m. On the ERA5 evaluation data set, the final NN, which
was also used to derive the q profile for MOSAiC, denotes much smaller biases
and is slightly negative for all heights (only up to −0.025 g kg−1). However, in
the lowest 2000m, the bias varies much more than the RMSEcorr, ranging from
−0.1 to +0.1 g kg−1 depending on the chosen NN.

The smaller magnitude of the error profiles in the ERA5 evaluation data set is
likely due to the lower complexity of q profiles in ERA5 compared to radiosonde
observations. Specific humidity profiles in reanalyses are typically much smoother
and do not resolve small inversions (Chellini and Ebell, 2022). Passive microwave
observations cannot resolve small inversions and average out strong vertical gradi-
ents. Therefore, errors of retrieved profiles are large when compared to radiosonde
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data in the presence of strong vertical gradients (i.e., humidity inversions), while
the smoother profiles of reanalyses can be captured better. As the retrieval has
been trained with reanalysis data, it is also expected to perform best when ap-
plied to the same reanalysis. Furthermore, the errors of the evaluation based on
real observations can be higher due to measurement errors of radiosondes (noise,
sonde drift, systematic errors due to sensor response time, etc.) and of the MWRs
(noise, systematic errors).
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Figure 5.4: Specific humidity q error profiles showing (a) the bias and (b) the
bias-corrected RMSE with respect to the reference from the ERA5 and MOSAiC
evaluation data sets. The dashed black line in each panel shows the mean over the
20 Neural Networks while shading indicates the min–max spread. The prediction
of the final Neural Network is indicated by the thick black (yellow) lines for
the ERA5 (MOSAiC) evaluation data set. The mean MOSAiC radiosonde (RS)
profile and ERA5 profile are shown as yellow and black dotted lines, respectively,
and serve as reference for the absolute error values. The mean retrieved profile
from MOSAiC microwave radiometer observations (MWR) is also included as
blue dotted line.

5.5.3 Temperature profiles

For the evaluation of the retrieved temperature profiles, we also analyze the bias
and RMSEcorr (Fig. 5.5) but distinguish between profiles retrieved from zenith
observations (henceforth, zenith temperature profiles) and boundary layer scan
(henceforth, BL temperature profiles). As for specific humidity, the spread over
the 20 NNs is larger for the bias than for RMSEcorr but generally quite small
(especially for BL temperature profiles).
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Firstly, we evaluate the zenith temperature profiles: The biases and RMSEcorr

of zenith temperature profiles are larger for the MOSAiC compared to the ERA5
evaluation data set below 1500m but mostly similar at higher altitudes (see
Fig. 5.5a and b). Within the lowest 150m, the MOSAiC data RMSEcorr decreases
rapidly from 2.9 to 1.4K. This large RMSEcorr is associated with near-surface
temperature inversions that typically occur in the Arctic. In the ERA5 evalua-
tion data set, this steep error gradient is less pronounced because near-surface
temperature inversions over sea ice are not well represented in ERA5. Between
about 200 and 2000m, the RMSEcorr is between 1.2 and 1.6K for the MOSAiC
and between 0.8 and 1.6K for the ERA5 evaluation data set. At the top of the
retrieval grid at 8000m, the RMSEcorr increases to 2.5K for MOSAiC and 3K
for ERA5.

In the lowest 500m, the bias of the zenith temperature profiles lies between −1
and +1K for the MOSAiC and between −0.2 and +0.2K for the ERA5 evaluation
data set (final NN, see Fig. 5.5a). Here, also the strong surface temperature
inversions, which are not well resolved by the retrieved profile, are responsible
for the large bias. Above 1500m, the bias in both data sets is generally smaller
than ±0.2K. However, the MOSAiC observation bias varies over the seasons: In
winter (22 October 2019–30 April 2020), the bias is mostly negative in the mid-
troposphere, ranging from −0.4 to −0.8K, while they are positive in summer (01
May–01 October 2020), ranging from +0.5 to +0.9K (not shown).

As expected, biases and RMSEcorr are smaller for the BL temperature profiles
in the lowest 1500m compared to the zenith temperature profiles (see Fig. 5.5c
and d). This result is consistent with the findings of Crewell and Löhnert (2007).
For the MOSAiC data, the RMSEcorr is 2K at the surface (0.9K at 100m) and
smaller than 1.2K up to 1 km height. The error is therefore 1K (0.5–0.6K) lower
compared to the zenith temperature profile error. Based on the ERA5 evaluation
data set, the near-surface RMSEcorr values are only 0.4–0.5K, which is lower
than for the MOSAiC data because of the less complex temperature profile and
the absence of measurement uncertainties. In the lowest 1500m, also the bias is
reduced, being nearly 0K in the ERA5 evaluation data set (with the final NN),
and between −0.6 and +0.4K in the MOSAiC data. Also, the seasonal variation
of the MOSAiC BL temperature profile bias is smaller than that of the zenith
temperature profiles. Above 2000m, the RMSEcorr is similar for both the zenith
and BL temperature profiles but the bias above 2000m is stronger (more negative)
in BL temperature profiles, especially for the MOSAiC data (up to −2K).

We conclude that if the 30 minute temporal resolution is sufficient for the user,
a combination of BL profiles and zenith profiles provides optimal performance.
We recommend that BL temperature profiles should be used in the lowest 1500m,
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followed by a linear transition to the zenith temperature profile between 1500 and
2000m and only the zenith temperature profile above 2000m.
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Figure 5.5: Error profiles of (a,b) zenith and (b,d) boundary layer temperature T
profiles. Panels (a) and (c) show the bias and panels (b) and (d) the bias-corrected
RMSE with respect to the reference from the ERA5 and MOSAiC evaluation data
sets. Shading and different line types are similar to Fig. 5.4.

5.6 Information benefit analysis

After introducing the combined HATPRO and MiRAC-P retrieval, it still has
to be demonstrated that the synergy is beneficial compared to single instrument
retrievals. The benefit is quantified through error reduction and gain in vertical
information content. We compare the errors of the synergy with the single instru-
ment retrievals by Walbröl et al. (2022) for MOSAiC observations to present the
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improvements for actual observations. As the retrieval methods also differ, we
also analyzed the influence of different retrieval architectures (i.e., NN instead of
regression) and training data sets (ERA5 instead of Ny-Ålesund radiosondes) on
the error reduction compared to HATPRO-only retrievals. This helps to isolate
the pure benefit of the combination of low and high frequency microwave obser-
vations from potential effects due to different retrieval methods. In Sect. 5.6.1
and 5.6.2, the error estimates for the synergy correspond to the ones shown with
respect to MOSAiC radiosondes in Sect. 5.5.1 and 5.5.2.

5.6.1 IWV

Figure 5.6 shows the RMSE and bias of IWV obtained from single instrument
observations (HATPRO-only, MiRAC-P-only) and from the synergy of both in-
struments, with radiosonde IWV as reference. As found in Walbröl et al. (2022),
the HATPRO-only IWV retrieval denotes high relative errors and a positive bias
(> 20%) for IWV below 5 kgm−2, while having lower relative errors (2–4%)
for IWV greater than 10 kgm−2. For MiRAC-P, the error behaviour is reversed:
Small biases and RMSE are found for extremely dry conditions and errors become
much larger than the HATPRO-only retrieval for IWV greater than 10 kgm−2.

As expected, the synergy performs similarly well or even better than the
single instrument retrievals. For IWV below 5 kgm−2, the RMSE of the synergy
is reduced by 75% compared to HATPRO while being similar to MiRAC-P. The
RMSE of the synergy is also smaller by up to 0.2 kgm−2 compared to HATPRO-
only when IWV is above 5 kgm−2, corresponding to a RMSE reduction of 15–
50%. However, the improvement of RMSE for high IWV is mainly due to the
bias reduction from more than −0.5 for HATPRO to −0.1 to −0.5 kgm−2 for
the synergy. When considering the bias-corrected error (RMSEcorr), the synergy
shows up to 20% higher errors than the HATPRO regression retrieval for IWV
above 10 kgm−2 (not shown). The error reduction compared to MiRAC-P is even
higher in this IWV range.

To study the influence of the different retrieval methods and training data sets,
we trained one NN with identical settings as used in the final synergy (see Ap-
pendix 5.A, Table 5.1), but included only K–band TBs as input vector. Therefore,
the only difference between this NN and the HATPRO regression is the training
data (ERA5 vs. Ny-Ålesund radiosondes) and the retrieval type (regression vs.
NN). With this NN, we find that RMSE and biases of the retrieved IWV are
similar to those of the HATPRO regression retrieval in almost the entire IWV
range (see Appendix 5.B, Fig. 5.11). Only in very dry conditions (IWV below
2 kgm−2, the K–band only NN shows 0.1 kgm−2 smaller bias and RMSE. Thus,
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including the higher frequencies by MiRAC-P dominates the improvement of the
error.
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Figure 5.6: RMSE (solid lines) and bias (dashed lines) of IWV retrieved from
MOSAiC MWR observations for certain bins of radiosonde IWV (0–2, 2–4, ...,
22–24, 24–35 kgm−2). Yellow lines indicate retrieved IWV from the synergy of
HATPRO and MiRAC-P, dark blue lines show HATPRO-only and cyan lines
show MiRAC-P-only retrievals.

5.6.2 Specific humidity profiles

In Fig. 5.7, the bias and RMSEcorr for the specific humidity profiles of the HAT-
PRO regression retrieval and the synergy NN retrieval are shown with respect to
MOSAiC radiosondes. At altitudes below 1500m altitude, the RMSEcorr is much
smaller for the synergy compared to HATPRO. At the surface, the reduction of
RMSEcorr is most prominent, decreasing from 0.5 g kg−1 to less than 0.25 g kg−1

in absolute terms, and from 30% to less than 15% in relative terms (Fig. 5.7b).
Above 1500m, the RMSEcorr difference between HATPRO and the synergy is
marginal and the relative RMSEcorr gradually increases from 25 to 80% until the
top of the retrieval grid (10000m). Between the surface and 1000m, the synergy
also shows a much smaller bias (−0.05 to +0.1 g kg−1) than HATPRO (0.1 to
0.4 g kg−1). The strongest improvement was found near the surface, where the
bias is reduced by up to 75%. Above 1000m, the bias reduction of the synergy
compared to HATPRO is less pronounced: The bias of HATPRO (the synergy)
lies between −0.1 and +0.1 g kg−1 (−0.05 and +0.15 g kg−1). Therefore, combin-
ing both instruments is most beneficial in altitudes below 1500m in the real-world
application.
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Because of the different magnitude of specific humidity and the different per-
formances of HATPRO and MiRAC-P over the seasons, we also investigated
seasonal differences in error reduction (not shown): In winter (here, 22 October
2019–30 April 2020), the RMSEcorr is lower for both HATPRO and the synergy
as also the water vapour amount is lower. However, the relative RMSEcorr of the
synergy is similar to the error for the full MOSAiC year in the lowest 1000m while
the relative error of the HATPRO retrieval is increased. Therefore, the benefit
of the synergy in the lower troposphere is even more pronounced. The synergy
also shows smaller errors than HATPRO in the middle and upper troposphere,
which was not found for the entire MOSAiC year. The bias reduction of the
synergy compared to HATPRO-only is also stronger in winter. In summer (here,
01 May–01 October 2020), the overall picture of the error profiles is similar to
the full MOSAiC year, except that the RMSEcorrs (relative RMSEcorr) for both
retrievals are shifted to slightly higher (lower) values. The bias reduction of the
synergy compared to HATPRO is also a little less pronounced.

As in Sect. 5.6.1, to identify whether the error reduction is mainly due to
the inclusion of the higher frequencies or due to the different training data and
retrieval method, we trained one NN with the same setup as the final synergistic
retrieval but used only K–band TBs as input. We applied this K–band-only NN
retrieval and the HATPRO regression to the ERA5 and MOSAiC evaluation data
sets as in Sect. 5.5.2 and found that the RMSEcorr was almost identical for both
retrievals in all height levels (see Appendix 5.B, Fig. 5.12b). Only the bias is
closer to 0 for the K–band-only NN than for the regression (Fig. 5.12a). As the
results for both retrieval architectures are mostly similar when using the same
input vector (K–band TBs), it follows that the inclusion of the higher frequencies
contributes most to the overall error reduction.

We also investigated the influence of the additional input parameters (2m
temperature, IWV, day of the year) on the retrieved specific humidity profile. In
one experiment, we excluded the MiRAC-P TBs from the input vector of the NN
but kept the HATPRO TBs, as well as the day of the year, the IWV and the 2m
temperature. The resulting retrieved specific humidity also shows lower errors
than the HATPRO-only regression at the surface (not shown). However, the ver-
tical extent of the benefit is smaller, being mainly confined to the lowest 500m,
compared to the synergistic retrieval including the MiRAC-P TBs. Another ex-
periment, where we used HATPRO and MiRAC-P TBs, as well as the IWV and
day of the year as input but excluded the 2m temperature, showed higher errors
in the lowest 100m. These experiments demonstrate that the MiRAC-P observa-
tions are needed to have a higher vertical extent of the error reduction and that
the 2m temperature effectively reduces errors at the surface.
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Figure 5.7: Specific humidity q error profiles showing (a) the bias and (b) the
bias-corrected RMSE in absolute (solid lines) and relative terms (dashed lines)
with respect to MOSAiC radiosondes. Specific humidity errors of the synergy
(HATPRO) retrieval are shown in yellow (blue).

To quantify the synergy benefit, it is interesting to analyze not only the error
of the retrieved profiles but also their vertical information content. This also
offers the opportunity to investigate the impact of the different frequency bands.
Thus, we computed the degrees of freedom (DOF) as a measure of the vertical in-
formation content for various frequency combinations as described in Sect. 5.4.3.
In Fig. 5.8, the statistics of the DOF over a 4% subset of the ERA5 evalua-
tion data set are visualized. When using only K–band frequencies, the specific
humidity profile has about 1.7 DOF. Adding the V–band TBs only has a small
effect as these frequencies are hardly sensitive to the water vapour amount. The
largest increase in the DOF (from 1.7 to 2.4) is caused by the addition of G–band
frequencies to the K–band frequencies. This increase is even more pronounced in
cold, dry, and clear sky conditions, where the DOF is increased from 1.9–2.1 to
2.7–3.0 (Fig. 5.8). In contrast, the DOF hardly improved from 1.6 to 1.8–2.0 in
warm and humid conditions. Clear sky scenes are typically associated with cold
and dry conditions during the Arctic winter. The DOF are larger during cold and
dry conditions than during warm and humid conditions because the G–band TBs
are partly saturated. This means they no longer observe the entire tropospheric
column and cannot add as much information. Adding V–band or the 243 and
340GHz frequencies to K– and G–band TBs only has a minor impact on the DOF
distribution.
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Ebell et al. (2013) and Löhnert et al. (2009) analyzed the vertical information
content of absolute humidity profiles from ground-based MWRs using K–band
TBs at different mid-latitude sites and found 2.4 and 1.6 DOF, respectively.
Additionally, Löhnert et al. (2009) obtained 2.7 DOF for a tropical site with
a much higher mean IWV. Thus, the DOF depends strongly on the frequencies
used to derive the humidity profile and the atmospheric conditions. In the Arctic,
humidity profiling is more challenging with K–band frequencies due to the lower
sensitivity, which is why the higher frequency observations are needed to obtain
similar DOF (see also Fig. 5.1).

Based on the Averaging Kernel and the vertical height grid spacing, we can also
estimate the theoretical vertical resolution of the specific humidity profiles (e.g.,
dzj/Ajj where dz is the height grid spacing and Ajj the diagonal entries of the
Averaging Kernel at height level j). In Fig. 5.9, the estimated vertical resolution
(effective resolution) is shown for K–band only and for all frequencies. The other
frequency combinations are not discussed as their Averaging Kernel values lie
in between those of the K–band and all frequencies. The effective resolution at
a certain height level indicates to which vertical resolution the specific humidity
profile is smoothed by the microwave observations. Generally, larger values of the
effective resolution are found at higher altitudes, consistent with the decreased
sensitivity of ground-based microwave observations at these altitudes. The jump
of the effective resolution at 5000m height is due to a strong change in height grid
spacing. At the surface, using all frequencies instead of just the K–band improves
the effective resolution by a factor of 2 (from 1200m for K–band to 600m for all
frequencies). At higher altitudes, the relative improvement is smaller, but the
absolute resolution improvement is still mostly between 1000 and 2000m.

5.6.3 Relative humidity profiles

Relative humidity is an important parameter, particularly for cloud processes,
and a desired variable for the modeling community. We computed relative hu-
midity from the retrieved temperature, specific humidity profiles and surface air
pressure measured by the weather station attached to HATPRO using the hyp-
sometric equation. For HATPRO, the conversion from absolute humidity to rel-
ative humidity profiles was straight forward. Due to the bias reduction that we
achieved with the new NN retrievals in both the retrieved temperature and spe-
cific humidity profiles, we also expect to see lower biases in relative humidity. In
the following, we compare the relative humidity bias and RMSEcorr of HATPRO
and the synergy with respect to the MOSAiC radiosondes, which are shown in
Fig. 5.10.
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The bias of the synergy (5%) is much smaller compared to HATPRO (40%)
in the lowest 1000m (Fig. 5.10a). Similarly strong improvements can be found in
the lowest 1000m of the RMSEcorr profile (Fig. 5.10b), where errors are reduced
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from more than 60 to 15% at the surface and from 35–45 to 15% at higher
altitudes. Above 2000m, the RMSEcorr of HATPRO and the synergy are similar
(about 20%), but the bias is closer to 0% while HATPRO shows a negative bias
up to −10%.

In cold and clear sky conditions, where IWV and 2m temperatures were
below 10 kgm−2 and 273.15K, respectively, and no clouds were detected by
Cloudnet as described in Sect. 5.3.2, the bias reduction is even stronger below
1500m (Fig. 5.10a). In warm conditions (IWV ≥ 10 kgm−2, 2m temperature
≥ 273.15K), both retrievals perform similarly well, suggesting no benefit of the
synergy compared to the HATPRO-only retrieval. If low-level stratus clouds were
not respected in the clear sky detection, the RMSEcorrs of the HATPRO retrieval
are up to 10 percentage points higher in the lowest 1000m, while the errors of
the synergy only slightly increased (not shown). In general, the relative humidity
errors of the synergy are much less sensitive over these two types of atmospheric
conditions (or over the seasons, not shown).
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Figure 5.10: Relative humidity error profiles showing (a) the bias and (b) the
bias-corrected RMSE with respect to MOSAiC radiosondes. Relative humidity
errors of the synergy (HATPRO) retrieval are shown in yellow (blue). Errors are
also displayed for different atmospheric conditions: Cold and clear sky (integrated
water vapour (IWV) < 10 kgm−2, 2m temperature (T2m) < 273.15K) as dotted
lines and warm (IWV ≥ 10 kgm−2, T2m ≥ 273.15K) as dashed lines.
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5.7 Conclusions

In this study, we demonstrate the benefit of combining low (22–58GHz, HAT-
PRO) and high frequency (175–340GHz, MiRAC-P) microwave radiometer (MWR)
observations for humidity profiling and integrated water vapour (IWV) estimates
in Arctic conditions. The newly developed Neural Network (NN) retrievals for
IWV and for specific humidity and temperature profiles have been applied to
synthetic measurements based on ERA5 and real observations from the MOSAiC
expedition. Subsequently, they have been evaluated with ERA5 data and MO-
SAiC radiosondes, respectively, and compared to the retrievals by Walbröl et al.
(2022). Retrieved temperature and specific humidity profiles were used to com-
pute relative humidity together with the surface air pressure from the weather
station attached to HATPRO.

We illustrate the sensitivity of the NN to random perturbations with an ensem-
ble of 20 NNs. The spread of errors over the 20 NNs is generally small, except for
specific humidity biases. We selected one NN, whose errors were on the lower end
of the spread during the retrieval development, as the final NN. Also in the final
evaluation, the final NN denoted one of the smallest errors of all 20 NNs. In the
following paragraphs, we only summarize retrieval errors with respect to MOSAiC
radiosondes as these errors are typically larger than the theoretical ones based on
the ERA5 evaluation data set: For IWV, the RMSE is about 3–4% and biases
are smaller than 2% over a wide range of IWV conditions. Specific humidity is
overestimated by up to +0.15 g kg−1 at 1500m relative to radiosondes. In other
height levels, the biases are smaller. The bias-corrected RMSE (RMSEcorr) is also
highest at 1500m with 0.5 g kg−1 (about 30%). Temperature profile RMSEcorr

(biases) from zenith MWR observations lie between 1.4 and 2.9K (−1 and +1K)
in the lowest 1500m. Temperature profiles retrieved from boundary layer MWR
observations showed much smaller errors in that height range, which is consistent
with the findings of Crewell and Löhnert (2007).

In the next step, we compared the errors of the new synergistic NN retrievals
to the single MWR retrievals of Walbröl et al. (2022) to estimate the information
benefit. Additionally, we computed the vertical information content of specific
humidity profiles as degrees of freedom (DOF). The information benefit is only
shown for MOSAiC observations to obtain the benefit for the real measurements.
IWV errors of the synergy are generally smaller than or similar to those of the
single MWR retrievals. In cases when IWV is greater than 10 kgm−2, the RMSE
of the synergy is at least 15% smaller than the HATPRO-only retrieval, which is
mainly due to the lower biases of the synergy.

For specific humidity profiles, the largest information benefit was found. The
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combination of HATPRO and MiRAC-P increased the DOF from 1.7 to 2.4 and
reduced the RMSEcorr by up to 50%. Through the synergy, strong positive biases
below 1000m could also be reduced by up to 75%. The benefit is most distinct
in the lowest 1500m because here, the error reduction is the strongest. At these
heights, the synergy enhanced the effective vertical resolution of the specific hu-
midity profile by a factor of up to 2 compared to the HATPRO-only retrieval
(from 1200m to 600m). In cold and dry conditions, the DOF increase and the
error reduction were even more pronounced.

We also analyzed the influence of additional NN input parameters (2m tem-
perature, day of the year, and IWV) on the specific humidity profile errors and
found that including the 2m temperature is important to minimize errors at the
surface. Because of the improvements in specific humidity (and temperature)
profiles, the synergy also results in lower relative humidity errors compared to
the HATPRO-only retrieval, which is particularly evident in the lowest 1500m.
Additionally, the errors of the relative humidity profiles from the synergy vary
much less over different atmospheric conditions than those from the HATPRO-
only retrieval.

Coming back to the research questions listed in Sect. 5.2, we can conclude:

1. For specific humidity profiles, the bias-corrected RMSE could be reduced by
up to 50%. Bias reductions are partly even higher. The information benefit
is mainly attributed to the combination of HATPRO and MiRAC-P. The
different retrieval training data and methods only had a small influence.

2. The vertical information content in the specific humidity profile was in-
creased by 40%.

3. The combination of HATPRO and MiRAC-P frequencies increased the ver-
tical information content in particular during cold and dry conditions and
the least during moist and warm conditions.

HATPROs are used at different sites worldwide (polar, mid-latitude, and sub-
tropical regions). In dry regions (high altitude or polar sites), the observation
network would clearly benefit from an instrument that includes the G–band fre-
quencies for IWV and humidity profiling (relative and specific humidity) as these
frequencies increased the DOF the most. It is planned to install MiRAC-P at
Ny-Ålesund again in 2025 to enhance the continuous atmospheric observations
at the German–French research station AWIPEV. We are confident that adding
MiRAC-P to the already installed HATPRO will improve humidity profiling sim-
ilarly as demonstrated for the MOSAiC expedition. The low specific humidity
profile errors give us confidence that the synergy is suitable for gaining insights
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into the general structure of Arctic humidity profiles (i.e., inversions). However,
a detailed analysis of the ability of the synergy to identify humidity inversions is
still missing.

In the next step, the enhanced water vapour products from the synergy of
HATPRO and MiRAC-P, as well as the radiosonde measurements from MOSAiC,
will be used to quantify IWV and specific humidity errors of satellite products
and reanalyses. As reanalyses assimilated the MOSAiC radiosonde observations,
this comparison likely does not reflect the true performance of the reanalyses in
the central Arctic. With the considerable specific humidity profile improvements
of the synergy compared to HATPRO, the question arises how well humidity
inversions, which are important for cloud formation and maintenance, are cap-
tured. This question will be answered with a statistical analysis for the entire
MOSAiC period. We will then evaluate the representation of humidity inversions
in satellite products and reanalyses compared to observations from the MWRs
and radiosondes. Radiative transfer simulations allow us to assess how biases in
humidity inversion characteristics affect the downwelling thermal infrared radia-
tion.

Code and data availability

The retrieved synergistic profiles of temperature, specific humidity and relative
humidity, as well as integrated water vapour are available on PANGAEA (Walbröl
et al., 2024b,a). The retrievals are based on brightness temperature observations
from HATPRO (Engelmann et al., 2022) and MiRAC-P (Walbröl et al., 2022a).
We used the single instrument retrievals of temperature, absolute humidity and
IWV from HATPRO (Ebell et al., 2022) and IWV from MiRAC-P (Walbröl et al.,
2022b) for the benefit estimation. Radiosonde measurements from MOSAiC (Ma-
turilli et al., 2021) and the Polarstern track data (Rex, 2020; Haas, 2020; Kanzow,
2020; Rex, 2021a,b) are also available on PANGAEA. Cloudnet target classifica-
tion, as well as the low-level stratus mask and the additional quality flag data,
are available and can be accessed via Engelmann et al. (2023), Griesche et al.
(2023) and Griesche and Seifert (2023), respectively. Met City observations have
been downloaded from Cox et al. (2023a). On Zenodo, we published the retrieval
training, test and evaluation data (Walbröl and Mech, 2024), the information
content estimation output (Walbröl, 2024b), and the ERA5 evaluation data pre-
dictions and reference (Walbröl, 2024a). A snapshot of the GitHub repository
containing the scripts is also archived (Walbröl, 2024d). The PAMTRA code can
be accessed via Mech et al. (2019b). The simulated brightness temperatures of
the two radiosoundings shown in Fig. 5.1 can be found at Walbröl (2024c).
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5.A Neural Network retrieval details

As noted in Sect. 5.4.2, all NNs in this manuscript are multilayer perceptrons
(fully connected layers), but some include dropout layers and batch normalization
(see Table 5.1), and have been created with Python’s Keras module (contained in
Tensorflow, Abadi et al., 2015). The forward propagation of a simple, fully con-
nected NN starts with an input layer whose number of nodes equals the number
of components of the input vector. The mathematical operations to propagate
to the next layer of the network are similar to multiple linear regression: Each
node is multiplied by a randomly initialized weight before being summed up and
a bias coefficient is added. Afterwards, the result is used as input to a so-called
activation function (e.g., exponential or rectified linear unit, also known as relu).
The output of the activation function is then forwarded to each node of the next
layer where the process is repeated until the output layer is reached. We always
use a linear activation function between the last hidden layer and the output
layer. The output layer represents the prediction of the NN and is compared to
the truth of the training and validation data sets using a certain loss function
(here, mean squared error).

To minimize the loss function, an optimization algorithm (e.g., gradient de-
scent) adapts the weights of each node in a backpropagation process. In this
study, we used the Adam optimization algorithm (Kingma and Ba, 2017). The
learning rate can be adjusted to reduce or enhance the magnitude of the gradi-
ent during backpropagation, leading to slower and smoother or faster and more
erratic learning. The NN typically processes a specific number of training data
samples, determined by the chosen batch size, before updating the weights. The
epoch number determines the maximum number of times the training data set is
cycled through. In our retrievals, we activated the EarlyStopping function imple-
mented in Keras that monitors the loss of the validation data set over the epoch
numbers. The training was terminated if the validation loss did not improve by
more than the minimum delta value for a certain number of epochs (callback
patience).

Dropout and batch normalization layers are tools to regularize the NN to make
it less prone to overfitting. If batch normalization is set to True for a retrieval
(see Table 5.1), we included a batch normalization layer after each hidden layer.
It normalizes the output of the preceding hidden layer so that its mean (standard
deviation) is close to 0 (1). The dropout chance noted in Table 5.1 indicates the
chance that the value of a node is set to 0 during training. If the dropout chance
is > 0.0, we added a dropout layer after each hidden layer or, if applicable, after
each batch normalization layer.
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Table 5.1: Neural Network settings for each retrieved variable (IWV, specific
humidity (q), zenith and boundary layer temperature profiles (Tzenith, TBL)).
DOY_1 and DOY_2 are the cosine and sine of the Day Of the Year and T2m is
the 2m air temperature. Details can be found in the text.

Settings IWV q Tzenith TBL

Input vector
TBs at
K,G,243,340,
DOY_1,
DOY_2

TBs at
K,V,G,243,340,
T2m, IWV,
DOY_1, DOY_2

TBs at
K,V,243,340,
DOY_1,
DOY_2

TBs at V, differ-
ent elevation an-
gles

N hidden layers 2 3 2 2
N nodes per
layer (16,16) (64,64,64) (256,256) (256,256)

Activation
function exponential softmax relu linear

Dropout 0.0 0.2 0.1 0.0
Batch
normalization False True True True

Batch size 64 256 256 256
Epoch number 15 100 150 800
Learning rate 0.0005 0.0005 0.0003 0.00005
Callback
patience 3 30 15 80

Minimum Delta 0.001 0 0 0

5.B Information benefit: Influence of different

method

Figure 5.11 shows the IWV error with respect to MOSAiC radiosondes for the
old single instrument retrievals (HATPRO regression, MiRAC-P only NN) and
the new NN retrieval. However, in this case, the input vector of the NN consists
of K–band TBs only. This demonstrates that the different retrieval method and
training data compared to the HATPRO regression is not responsible for the error
reduction in dry conditions seen in Fig. 5.6 and discussed in Sect. 5.6.1.

Similarly, the specific humidity error profiles for the HATPRO regression and
the NN using only K–band TBs are shown in Fig. 5.12. The RMSEcorr of both
retrievals is comparable for all height levels but the lower tropospheric bias of
the NN, labeled as synergy, is smaller. Therefore, the strong RMSEcorr reduction
is solely caused by including the higher frequencies in the retrieval. However,
the different method and training data set seem to contribute a little to the bias
reduction.
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Figure 5.11: As Fig. 5.6 but using only K–band TBs as input vector to the new
NN retrieval.
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Figure 5.12: As Fig. 5.7 but using only K–band TBs as input vector to the NN
retrieval (yellow).

5.C Comparison with smoothed radiosonde pro-

files

For a fair comparison of the retrieved and the radiosonde specific humidity pro-
files, the latter can be smoothed to the retrieval height resolution when the Aver-
aging Kernel (AK) is available. Following Löhnert and Maier (2012), we compute
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the smoothed specific humidity profiles

qsmoothed = qret +A (qrs − qret) , (5.5)

where qret and qrs are the retrieved and radiosonde specific humidity profiles, re-
spectively, and A is the AK. In Fig. 5.13, the specific humidity errors with respect
to the smoothed radiosonde profiles are shown. The displayed errors are therefore
resolution-corrected. For HATPRO, the smoothing-based errors are much smaller
compared to the true errors shown in Fig. 5.7 because the smoothing filtered out
the humidity inversions. At the resolution of the retrieved HATPRO profile,
the HATPRO-only retrieval can extract more information than the synergistic
retrieval at the resolution of the synergy profile because the errors are slightly
smaller (yellow and blue solid lines in Fig. 5.13a, b). However, when compar-
ing the specific humidity from HATPRO with the radiosonde profile smoothed
with the synergy (thus, slightly higher resolution), the errors are again similar
to Fig. 5.7. Thus, the radiosonde profile smoothed with the synergy seems to
represent the average true radiosonde profile relatively well. At the surface, the
resolution-corrected RMSEcorr (Fig. 5.13b) of the synergy is similar to the true
RMSEcorr (Fig. 5.7b). At heights where the resolution-corrected errors are lower
than the true errors, e.g., around 1500m, the low vertical resolution of the re-
trieval is a significant limitation.

In the specific humidity profile example (Fig. 5.13c), the effect of the different
smoothing strengths can be seen. The synergistic retrieval and the radiosonde
profile at the resolution of the synergy can both identify the inversion observed
by the radiosonde well. However, the specific humidity retrieved by HATPRO
does not sense a strong humidity inversion near the surface. The strong overesti-
mation of the HATPRO specific humidity compared to the HATPRO-smoothed
radiosonde profile near the surface suggests that the resolution could only partly
explain this deviation to the true radiosonde profile.
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Figure 5.13: Specific humidity q error profiles showing (a) the bias, (b) the bias-
corrected RMSE of q retrieved from HATPRO (blue) and the synergy (yellow),
and (c) an example specific humidity profile from 27 December 2019 at 10:50
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Acknowledgements

We gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) for the ArctiC amplification: Climate Rel-
evant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3

Project Number 268020496 — TRR 172 within the Transregional Collaborative
Research Center. Data used in this manuscript was produced as part of the
international Multidisciplinary drifting Observatory for the Study of the Arctic
Climate (MOSAiC) with the tag MOSAiC20192020 and the Polarstern expedition
AWI_PS122_00. We thank all those who contributed to MOSAiC and made this
endeavour possible (Nixdorf et al., 2021). The microwave radiometer HATPRO
was funded by Federal Ministry of Education and Research (BMBF) under FKZ:
01LKL1603A. We acknowledge the support from the OCEANET-Atmosphere
project, funded by the German Federal Ministry for Education and Research
(BMBF) via the SCiAMO project (MOSAIC-FKZ 03F0915A), in which frame
the two microwave radiometers were operated. Radiosonde data were obtained
through a partnership between the leading Alfred Wegener Institute (AWI), the
atmospheric radiation measurement (ARM) user facility, a US Department of En-
ergy facility managed by the Biological and Environmental Research Program,
and the German Weather Service (DWD). ERA5 data (Hersbach et al., 2018)
were downloaded from the Copernicus Climate Change Service (C3S) Climate

94



5.C. COMPARISON WITH SMOOTHED RADIOSONDE PROFILES

Data Store. The results contain modified Copernicus Climate Change Service
information 2022. Neither the European Commission nor ECMWF is responsible
for any use that may be made of the Copernicus information or data it contains.
This work used resources of the Deutsches Klimarechenzentrum (DKRZ) granted
by its Scientific Steering Committee (WLA) under project ID bb1320. Finally, I
appreciate the discussions within the working group and with my coauthors.

95



Chapter 6

Evaluation of water vapour
products and assessing the
importance of humidity inversions

6.1 Introduction

Incoming radiation from the sun (solar or shortwave radiation) is partly absorbed
and partly scattered by the Earth’s surface and atmosphere. The absorption of
solar radiation heats the Earth’s surface (and, to a lesser extent, the atmosphere),
which then emits thermal infrared radiation according to its temperature (ter-
restrial or longwave radiation). If the atmosphere was absolutely transparent in
the thermal infrared, the radiative equilibrium temperature of the Earth would
be approximately 255 K (Liou, 2002, Chapter 4.1). However, due to the pres-
ence of gases in the atmosphere that strongly absorb in the thermal infrared
(Tyndall, 1861), radiation emitted by the surface (and lower atmosphere) is ab-
sorbed and re-emitted back towards the surface, trapping a part of the emitted
infrared radiation (e.g., Raval and Ramanathan, 1989). This effect is known
as the greenhouse effect, which is responsible for rather habitable global aver-
age temperatures of 288 K (Liou, 2002, Chapter 4.1). The strongest greenhouse
gas is water vapour, which absorbs infrared radiation at several resonant ab-
sorption lines (most importantly the vibrational-rotational band at 6.25µm and
two purely vibrational bands at around 2.7µm) and due to the water vapour
continuum absorption (Liou, 2002, Chapter 4.2). Even in dry conditions, water
vapour dominates the downwelling longwave radiation (DLR) compared to other
greenhouse gases (Town et al., 2005).

Due to the high reflectivity of the sea ice and missing solar radiation during
polar night, the surface and tropospheric temperatures in the Arctic Ocean are
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mainly governed by advection and longwave radiation. Therefore, strong correla-
tions between the DLR, water vapour, temperature and cloud cover are expected
and have been confirmed by several studies (Doyle et al., 2011; Ghatak and Miller,
2013; Maturilli et al., 2015; Clark et al., 2021). For example, intrusions of warm
and moist air (e.g., due to extratropical cyclones) can increase the DLR on the
order of 50–100Wm−2 (Woods and Caballero, 2016; Bresson et al., 2022), which
enhances sea ice melt in spring or reduces sea ice growth in winter (Tjernström
et al., 2015; Johansson et al., 2017; Graham et al., 2019c). Kapsch et al. (2013)
found the sea ice extent at the end of the melt season to be lower because of
warm air intrusions during winter and spring. Further, Alekseev et al. (2019)
found a clear negative correlation between sea ice extent and DLR over the years
1979–2014. All these findings demonstrate the importance of DLR for the Arctic
climate system and the strong connection between DLR and water vapour.

DLR increases approximately logarithmically with the integrated water vapour
(IWV), but quantification of this relationship significantly varies between studies
(e.g., Zhang et al., 2001; Ghatak and Miller, 2013). Ghatak and Miller (2013)
estimated the IWV–DLR relationship with reanalyses over the years 1979–2011
and found ∆DLR/∆IWV of 18–31Wkg−1 in dry conditions (Arctic winter) and
much lower values in humid conditions due to a saturation of this relationship.
As their analysis also included temperature changes, they expect the relationship
to be overestimated. Zhang et al. (2001) obtained even larger ∆DLR/∆IWV

values (up to 100Wkg−1) with radiative transfer calculations but considered a
wider IWV range, including also drier conditions than Ghatak and Miller (2013).
Their results also suggest that even in humid conditions, the sensitivity of DLR
to a unit change in IWV is greater than the sensitivity of DLR to a unit change
in the mean atmospheric temperature. Zhang et al. (2001) concluded that the
IWV impacts snow melt more than the mean atmospheric temperature.

Throughout the Arctic, the vertical water vapour distribution is character-
ized by the frequent presence of inversions, where the water vapour concentra-
tion (here, specific humidity) increases with height (Devasthale et al., 2011).
Surface-based humidity inversions are formed due to radiative cooling in clear
sky conditions during polar night, resulting in the condensation of water vapour
(Curry, 1983; Brunke et al., 2015). The condensates are then removed from the
atmosphere by gravitational settling. Due to the strong connection between the
water vapour concentration and the temperature through the Clausius-Clapeyron
equation, such surface-based temperature and humidity inversions often coincide
(Sedlar et al., 2012; Nygård et al., 2014). Elevated inversions, which occur more
frequently in summer, are mainly formed by moisture advection from lower lat-
itudes and the air mass transformation processes in the boundary layer. As a
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warm and moist air mass propagates from the relatively warm ocean over the
sea ice, the low altitude air is cooled and condensation occurs (Tjernström et al.,
2019). The resulting low-level clouds release latent heat and increase the down-
welling longwave radiation, warming the sub-cloud layer (Tjernström et al., 2019;
You et al., 2021). Humidity (and temperature) inversions are usually located near
the top of the cloud layer (Tjernström et al., 2004; Brunke et al., 2015) and act
as a moisture source for such low-level clouds via entrainment (Solomon et al.,
2011). Naakka et al. (2018) found that temperature inversions rarely occurred
above 2 km, while humidity inversions did occur due to moist air advection.

Humidity inversion characteristics have a seasonal cycle due to the different
formation mechanisms: In winter, inversions occur most frequently (> 90% of the
time) and are often surface-based while in summer, inversions tend to occur less
frequently (70–90%), and are elevated and stronger (higher difference between
minimum and maximum specific humidity) (Devasthale et al., 2011; Nygård et al.,
2014; Naakka et al., 2018). The frequency of occurrence of humidity inversions
generally decreases with height (e.g., < 40% above 2 km, Naakka et al., 2018).
Devasthale et al. (2011) found that radiosonde profiles frequently denoted 2–3
humidity inversions (up to 8), of which the weak ones were usually missed by
coarse resolution products (e.g., satellites).

In dry conditions (IWV < 5 kgm−2), humidity inversions can contain up to
50% of the IWV and are therefore expected to strongly contribute to the DLR
(Devasthale et al., 2011). Tjernström et al. (2019) also found that the presence of
humidity inversions increased the surface energy budget by 10–25Wm−2 due to
increased turbulent and longwave radiative heat fluxes. However, in their analysis,
humidity inversions were accompanied by clouds and higher IWV, which likely
dominated the surface energy budget response. Nygård et al. (2014) suggested
that weak inversions have an indirect radiative effect on the DLR due to cloud
formation and maintenance.

Several studies have investigated the effect of water vapour at different alti-
tudes on longwave radiation but instead focused on upwelling longwave radiation
at the top of the atmosphere (TOA) instead of the DLR (e.g., Shine and Sinha,
1991; Colman, 2001; Held and Soden, 2000; Inamdar et al., 2004). However, due
to the stable stratification in the Arctic, the DLR is much more sensitive to low
altitude changes in greenhouse gas concentrations than the upwelling longwave
radiation at TOA (Colman, 2001; Graversen and Wang, 2009; Bintanja et al.,
2011). Ohmura (2001) quantified the contribution of different atmospheric lay-
ers to the DLR (60% from the first 100 m, 90% from the first 1 km) but did
not disentangle the effects of temperature and water vapour. Thus, an inves-
tigation of the impact of the vertical water vapour distribution on the DLR in
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the Arctic is missing. Considering the high occurrence of humidity inversions,
such an investigation is important to understand the radiative effect of humidity
inversions.

Current reanalyses and forecast systems still struggle with the representation
of the stable boundary layers in polar regions (Ganeshan and Yang, 2019; Gra-
ham et al., 2019a; Solomon et al., 2023), resulting in biases of the near-surface
thermodynamic profiles. Additionally, reanalyses have higher uncertainties in the
Arctic Ocean due to the sparsity of ground stations and difficulties in satellite ob-
servations (Gelaro et al., 2017; Avila-Diaz et al., 2021). For example, the monthly
mean IWV varies by 30% across satellite products and by 20% across four mod-
ern reanalyses in the central Arctic in early summer (Crewell et al., 2021). When
estimating IWV trends with reanalyses, the differences across reanalyses can even
exceed the magnitude of the trend itself in specific regions and seasons (especially
summer) (Rinke et al., 2019).

The European Centre for Medium-Range Weather Forecast (ECMWF) reanal-
ysis v5 (ERA5) is one of the best-performing global reanalysis, especially concern-
ing cloud representation. However, over sea ice, ERA5 has a distinct warm bias
near the surface in cold and stable conditions during polar night (partly > 3K
Graham et al., 2019a; Wang et al., 2019; Di Biagio et al., 2021; Herrmannsdörfer
et al., 2023). The warm bias is caused by the lack of snow on the sea ice and
an underestimation of the sea ice thickness, leading to excessive conductive heat
fluxes from the warm ocean through the sea ice to the much colder lower atmo-
sphere (Batrak and Müller, 2019). For the Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2) from NASA’s Global Mod-
eling and Assimilation Office (GMAO), Gelaro et al. (2017) and Graham et al.
(2019a) also found a warm bias of 1.2–3 K over sea ice in winter compared to field
campaign data. Graham et al. (2019a) and Di Biagio et al. (2021) also identi-
fied longwave radiation biases in current reanalyses (also ERA5 and MERRA-2),
which were related to uncertainties in cloud and surface temperature inversion
representations.

The detailed water vapour measurements gathered during the Multidisci-
plinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expe-
dition provide excellent reference data to evaluate state-of-the-art models and
satellite products in all seasons. This study particularly focuses on the rep-
resentation of humidity inversions and their longwave radiative effect. High-
quality measurements from radiosondes, as well as the two microwave radiome-
ters (MWRs) HATPRO (Humidity and Temperature PROfiler) and MiRAC-P
(Microwave Radiometer for Arctic Clouds - Passive) are used as reference data.
To our knowledge, humidity inversions have not yet been studied from ground-
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based MWRs due to their limited vertical resolution. However, in our past study,
we improved the resolution by a factor of 2 compared to standard single-MWR
retrievals (Chapter 5 of this thesis or Walbröl et al., 2024), providing a better
framework to resolve the main humidity inversion. Thus, the following research
questions are addressed:

1. How well do current models represent the IWV and the vertical water
vapour distribution?

2. Are water vapour profiles and the typical Arctic humidity inversions suffi-
ciently well captured by satellite and ground-based remote sensing to cor-
rectly assess the DLR?

3. Is an accurate IWV estimate sufficient to calculate DLR? To what extent
does the vertical water vapour distribution, especially with regard to inver-
sions, affect the DLR?

The models evaluated in this study include the reanalyses ERA5 and MERRA-
2, as well as two state-of-the-art weather forecast systems: The ICOsahedral
Non-hydrostatic (ICON) model developed by the German Weather Service and
the Max Planck Institute for Meteorology is a global weather forecast model that
is also frequently used in Arctic research (Kretzschmar et al., 2019; Schemann and
Ebell, 2020; Bresson et al., 2022). The Coupled Arctic Forecast System (CAFS)
model from the National Oceanic and Atmospheric Administration Physical Sci-
ences Laboratory is a regional forecast model specialized for Arctic conditions
(Solomon et al., 2023, 2024). From the satellite perspective, we evaluate the
sounding product of the Metop satellite series, which performed best over sea ice
(Crewell et al., 2021), because it combines microwave and infrared observations.
For the IWV comparison, we also include a new multi-parameter retrieval based
on microwave radiances from AMSR2 that is a step towards tackling the sea ice
problem in satellite-based microwave remote sensing.

After describing the reference data, as well as the evaluated models and satel-
lite products in Sect. 6.2 and the methods in Sect. 6.3, the results of the IWV and
specific humidity evaluation are presented in Sect. 6.4. Subsequently, Sect. 6.5
follows with an analysis of the detectability of humidity inversions and the rep-
resentation of inversion characteristics with respect to radiosondes. Finally, ra-
diative transfer simulations are used to analyze the sensitivity of DLR to water
vapour within humidity inversions in Sect. 6.6.
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6.2 Data

In this study, we analyze water vapour products from satellite observations and
different types of numerical models with respect to reference observations from
the MOSAiC expedition. Additional MOSAiC observations are used as input
to a radiative transfer model to validate the setup and to distinguish clear sky
from cloudy conditions. Therefore, it is convenient to separate the data sets
into MOSAiC observations (radiosondes, MWRs, lidar), numerical models and
satellite products. The data sets are presented in the following sections.

6.2.1 MOSAiC observations

Radiosondes

In contrast to Chapters 4 and 5, an advanced radiosonde product developed
by Dahlke et al. (2023) is used in this study. The radiosonde observations at
30m height are merged with measurements at 0, 2, 6 and 10m of the tower
(Shupe et al., 2022) that has been operated on the sea ice during most parts of
the MOSAiC expedition. The tower was located at the measurement site ’Met
City’, which was established in 300–600m distance from RV Polarstern to mini-
mize the influence of the ship on the measurements (Shupe et al., 2022). Vaisala
PTU300 and HMT330 were deployed for temperature and relative humidity mea-
surements at the different heights of the tower. According to the manufacturer,
measurement uncertainties in the conditions encountered during MOSAiC (near-
surface air temperatures down to -40 ◦C) are not higher than ±0.4K and ±1.5%
for temperature and relative humidity, respectively (Vaisala, 2023b,a). Dahlke
et al. (2023) also corrected unrealistic heat and moisture peaks in the lowest
100m, caused by the ship and its exhaust. The extended radiosonde profile bet-
ter represents the boundary layer structure than the level 2 data used in previous
chapters. The need for a good boundary layer representation to better capture
surface-based humidity inversions motivated the use of this data set.

Microwave radiometer synergy

We use the IWV and specific humidity profiles retrieved from the synergy of
HATPRO and MiRAC-P (Chapter 5, Walbröl et al., 2024). The high quality
of the retrieved IWV, which was demonstrated in the same chapter, and its
high temporal resolution of approximately 1 s are beneficial for the evaluation of
other data sets compared to the 6-hourly resolution of the radiosondes. With the
higher temporal resolution, more temporal IWV variability (e.g., due to storms)
is resolved, and more temporal overlaps with satellite data can be identified. We
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only use data where quality flags indicate good quality, as discussed in Sect. 5.3.2.

PollyXT Raman lidar

During MOSAiC, the multiwavelength Raman lidar PollyXT (Portable Lidar sys-
tem, next generation) from the Leibniz Institute for Tropospheric Research (TRO-
POS) was operated on board RV Polarstern in the OCEANET container to mea-
sure optical properties of clouds and aerosols, and for water vapour profiling at
the bow of the ship, where also HATPRO and MiRAC-P were installed (Engel-
mann et al., 2016, 2021). The lidar’s laser emits linear polarized radiation at 355,
532 and 1064 nm with a pulse repetition rate of 20Hz at an off-zenith angle of
5◦. When electromagnetic radiation with an initial frequency ν0 interacts with
e.g., a water vapour molecule, the rotational and vibrational energy state of the
molecule is changed to a lower or higher level, resulting in a frequency increase or
decrease of the scattered radiation, respectively (Raman frequency shift, Chap-
ter 25.1 and 25.3 of Foken, 2021). Two receivers, one near-range (for altitudes
between 120 m and a few kilometres) and one far-range (800 m to 40 km), are
installed to extend the range of the derived profiles (Engelmann et al., 2021).
PollyXT receives the radiation backscattered from nitrogen at 387 nm and wa-
ter vapour at 407 nm. The backscattered radiation can be used to derive water
vapour mixing ratio profiles (Dai et al., 2018). The inelastic Raman backscat-
tering is weak compared to the elastic backscattering e.g., from cloud droplets
(no frequency shift of the radiation Diaz et al., 2017). Therefore, measurements
based on Raman backscattering have a lower signal-to-noise ratio and are only
available below cloud base and in the dark season during the MOSAiC expedition
(28 September 2019–29 February 2020). The lowest height above the instrument
is limited to 30 m because of the overlap of the laser beam and the receivers. The
range or height resolution of the lidar water vapour profile is 7.5 m but has been
averaged over 5 height bins in the data set used in this study (Engelmann et al.,
2023). The data has also been temporally smoothed over 10 minutes.

Cloudnet

For the clear sky detection, we use the same Cloudnet products (target classifi-
cation, low-level stratus mask, Cloudnet issue data set, Engelmann et al., 2023;
Griesche et al., 2023; Griesche and Seifert, 2023) that were described in Sect. 5.3.2.
For this study, Dr. Hannes Griesche provided us with an experimental data set of
the cloud microphysical properties (liquid and ice water content (LWC and IWC),
and effective radii of liquid droplets and ice crystals) via personal communication.
This data set extends the Cloudnet retrieval by the microphysical properties of
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low-level stratus not detected in the original retrieval (Illingworth et al., 2007;
Griesche et al., 2024b). In Cloudnet, the presence of liquid water inside the cloud
is detected using the attenuated backscatter coefficient of the lidar. The LWC
and droplet effective radii are derived from cloud radar reflectivities, which can
miss the low-level stratus when located below the lowest cloud radar height bin
(Griesche et al., 2024a). Cloudnet does not identify a liquid phase if the lidar
signal is completely attenuated below the lowest cloud radar height bin (inte-
grated LWC would be 0). With the near-range receiver of PollyXT, the presence
of low-level stratus can be determined, and LWC is scaled to the HATPRO liquid
water path (LWP). Griesche et al. (2024b) found a linear relationship to estimate
the liquid droplet effective radius from LWP for the low-level stratus case.

Thermal infrared radiative flux measurements

Several stations measuring solar and thermal infrared (shortwave and longwave)
radiation, but also surface conductive heat flux and turbulent heat fluxes (indi-
rectly), were installed on the sea ice during MOSAiC. Their goal was to study
the surface energy budget for the full life cycle of an ice floe and to capture
the kilometre-scale spatial variability at the surface around RV Polarstern (Cox
et al., 2023b). While the Met City site provides detailed radiation observations
in the ’Central Observatory’ close to RV Polarstern (Shupe et al., 2022), three
autonomous Atmospheric Surface Flux Stations (ASFS-30, ASFS-40, ASFS-50)
were deployed at a distance of 12 km in a triangular pattern around the ship. In
this study, we mainly use the DLR measurements performed with Eppley Preci-
sion Infrared Radiometer pyrgeometers at Met City, which measure the radiative
flux of the hemisphere in the spectral range of 4.5–40µm every second with an
uncertainty of 2.6Wm−2 (Cox et al., 2023b).

However, the Met City radiation observations were temporarily unavailable
due to power outages (e.g., caused by sea ice dynamics), maintenance or other
logistical reasons. Sea ice dynamics, the harsh Arctic weather and wildlife attacks
caused breakdowns of the ASFS stations, which were then brought back to RV
Polarstern for maintenance (Cox et al., 2023b). As some ASFS stations were
not returned to their original measurement sites but stayed within the Central
Observatory, their data could be used to close most of the Met City data gaps.
For spring and summer 2020, we use data from ASFS-30 and ASFS-50 when
Met City data was unavailable and the respective ASFS station was within the
Central Observatory.

The DLR measurements of the ASFS were performed with Hukseflux IR20
pyrgeometers, which have a similar uncertainty but a higher measurement rate
and slightly different spectral range (4–50µm). The pyrgeometers were internally
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or externally ventilated and heated to reduce biases originating from the heating
of the sensor and icing (Cox et al., 2021). In the data set used in this study,
radiative flux observations have been averaged over 1 min (Cox et al., 2023a).
From the downwelling and upwelling longwave radiation observations, Cox et al.
(2023b) also computed the surface skin temperature following the procedure of
Persson et al. (2002).

6.2.2 Numerical models

Reanalyses

Section 5.3.1 already provided a brief overview of the European Centre for Medium-
Range Weather Forecast (ECMWF) reanalysis v5 (ERA5). In addition, it is es-
sential to mention that MOSAiC radiosondes have been assimilated with a 4D-Var
assimilation scheme (Hersbach et al., 2020). In this study, we used the hourly
temperature, pressure, specific humidity and ozone profiles on the 137 vertical
model levels (up to a height of 0.01 hPa, approximately 80 km) as well as IWV
for the entire MOSAiC period.

The global Modern-Era Retrospective Analysis for Research and Applications,
Version 2 (MERRA-2) is produced by NASA’s Global Modeling and Assimilation
Office (GMAO) with a horizontal resolution of 0.5◦× 0.625◦ (latitude, longitude)
and 72 vertical levels up to a height of 0.01 hPa (Gelaro et al., 2017). MERRA-2
uses a 3D-Var assimilation scheme and therefore does not respect the exact time
of a measurement when collected for the analysis. Also, MERRA-2 assimilates
only clear sky satellite radiances while ERA5 includes all-sky scenes (Gelaro et al.,
2017; Hersbach et al., 2020). The temporal resolution of the data is 1-hourly for
single level data (such as IWV) and 3-hourly for model level data (temperature,
specific humidity profiles).

Coupled Arctic Forecast System

The National Oceanic and Atmospheric Administration Physical Sciences Labora-
tory (NOAA-PSL) developed the Coupled Arctic Forecast System (CAFS), which
is a fully coupled atmosphere–ocean–ice–land regional forecast model for the Arc-
tic and based on the climate model ’Regional Arctic System Model’ (RASM)
(Solomon et al., 2023, 2024). Initial and boundary conditions are provided by the
National Centers for Environmental Prediction (NCEP) Global Forecast System
(GFS), as well as satellite data for sea ice concentration and sea surface temper-
atures. A direct assimilation of atmospheric observations is not implemented in
CAFS. CAFS is initialized at 00 UTC daily and produces 6-hourly output for
forecast lead times of up to 10 days. The horizontal resolution is 10 km, and 40
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vertical levels are distributed between 12 m and about 19 km. In this study, we
used CAFS output published on the data repository PANGAEA at 6, 12, 18 and
24-hour forecast lead times to achieve a 6-hourly resolution (Solomon and Jozef,
2024).

Global ICOsahedral Non-hydrostatic model

The ICON model developed by the German Weather Service (Deutscher Wet-
terdienst, DWD) and the Max Planck Institute for Meteorology (MPI-M) is a
state-of-the-art model for numerical weather prediction and climate modelling
(Zängl et al., 2015). The global weather forecast configuration uses a 3D-Var
assimilation scheme and provides a 7.5 day forecast and 1-hourly output on an
icosahedral-triangular grid with a horizontal resolution of 13 km and 90 vertical
levels between 10 m and 75 km (Zängl et al., 2022; Reinert et al., 2024). By using
6–17 hour forecast lead times of the model runs initialized at 00 and 12 UTC
each day, we obtain an hourly output while allowing for a 6-hour model spin-up
time. The data were downloaded from the Arctic Data Centre (Frank, 2023).

6.2.3 Satellite products

IASI combined sounding product

IASI measures radiances in the thermal infrared between 3.7 and 15.5µm with
a high spectral resolution and a spatial resolution of 12 km at nadir on board
the polar orbiting (sun-synchronous) Metop-A, -B and -C satellites (Blumstein
et al., 2004). The European Organisation for the Exploitation of Meteorologi-
cal Satellites (EUMETSAT) Central Facility derives various surface parameters
and profiles, including IWV, temperature and humidity profiles in the combined
sounding product IASI Level 2 Product Processing Facility (PPF) v6 (PPF v5
is presented in August et al., 2012). For the combined sounding product, the
infrared radiances are combined with microwave observations at frequencies be-
tween 23 and 190 GHz from the Advanced Microwave Sounding Unit (AMSU)
and the Microwave Humidity Sounder (MHS), which are also on board the Metop
satellites. Temperature and humidity profiles are stored on 101 pressure levels
between 1100 and 0.005 hPa according to the product documentation (EUMET-
SAT, 2017).

Initially, a first guess statistical retrieval (piecewise linear regression) is per-
formed using the microwave and infrared observations from IASI, AMSU and
MHS. The cloud conditions are assessed with observations from IASI and the
Advanced Very High Resolution Radiometer (AVHRR), and numerical weather

105

https://adc.met.no/


CHAPTER 6. EVALUATION OF WATER VAPOUR PRODUCTS

prediction. In clear sky scenes, a physical (optimal estimation) retrieval is at-
tempted, incorporating the IASI radiances to improve the accuracy and vertical
resolution of the derived temperature and humidity profiles. The physical re-
trieval is initiated with the first guess of the statistical retrieval. If the physical
retrieval does not converge to a solution or fails other quality criteria (e.g., valid
range), the first guess is used. The data has been obtained from EUMETSAT
(2024).

Integrated water vapour from AMSR2

Rückert et al. (2023a) developed a physical (optimal estimation) retrieval of at-
mospheric (IWV and LWP), sea ice (sea ice concentration, multi-year ice frac-
tion, snow depth, snow-ice interface temperature and snow-air interface temper-
ature), and open ocean parameters (sea surface temperature and wind speed)
from microwave radiances (6.9–89 GHz) measured by the Advanced Scanning
Microwave Radiometer 2 (AMSR2). The AMSR2 instrument is on board the
Japan Aerospace Exploration Agency (JAXA) Global Change Observation Mis-
sion 1st-Water (GCOM-W1) satellite in a sun-synchronous sub-recurrent orbit
and measures with a horizontal resolution between 62×35 km at 6.9 GHz and
5×3 km at 89 GHz. Combining surface and atmospheric parameters allows the
retrieval to adapt the parameters more freely to obtain a physically consistent
solution. Compared to fixed surface properties, the retrieval can thus better dis-
tinguish the signal contribution from the surface and the atmosphere. Currently,
their retrieval is only designed for Arctic winter conditions, partly due to high
uncertainties in the surface parameters during the melt season and because melt
ponds on the sea ice could not be distinguished from open ocean (Rückert et al.,
2023a). The retrieved IWV colocated with RV Polarstern has been provided by
Janna E. Rückert, the author of the retrieval, via personal communication.

6.3 Methods

6.3.1 Data processing

For the humidity comparisons and radiative transfer simulations, temporal and
spatial overlaps of the tested data sets with the MOSAiC observations are needed.
The temporal overlap criteria depend on the data set and application and will
be briefly described in the following. ERA5 and MERRA-2 were selected at the
nearest grid point to RV Polarstern following the recent example of Solomon
et al. (2023). The output of CAFS was produced for the first floe of the MOSAiC
expedition and therefore did not always follow RV Polarstern, e.g., during the
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logistical interruption from mid-May to mid-June 2020 or when the first floe had
to be abandoned as it dissolved at the end of July 2020. The ICON output of
the data set used in this study was generally colocated for RV Polarstern, but
the distance could be large during transit. ICON and CAFS data were therefore
limited to cases when the geodesic distance to RV Polarstern was less than 50 km.
When temporal overlaps with the radiosonde data were asked (Sect. 6.4.2, 6.5 and
6.6.3), the nearest time step after each radiosonde launch was used if the time
step was within a certain range (60 minutes for ERA5 and ICON, 90 minutes for
CAFS and MERRA-2).

IASI data has been averaged over all pixels within a 50 km radius of RV
Polarstern and over 60 minutes around each radiosonde launch for the temporal
overlaps. We also computed height levels for the retrieved profiles, stored on
pressure levels, using the radiosonde data. Specific humidity profiles derived with
the optimal estimation procedure have been included where they were available
(see description in Sect. 6.2.3). However, the first guess profiles had to be used
more than two-thirds of the time. The creator of the AMSR2 IWV product
performed the same spatial overlap we did for IASI.

Consistent with the preceding chapters, we confine the MWR data to times
when quality flags indicate good quality, applied a 5-minute running mean to
the IWV, and averaged the specific humidity profiles over 15 minutes (starting
at the time of each radiosonde launch) for comparisons with radiosondes. For
the humidity inversion characteristics, specific humidity profiles with a 5-minute
running mean are taken every 15 minutes (compromise between resolution and
data amount).

The lidar data were averaged over only 5 minutes, from the time of each
radiosonde, to avoid including more artefacts and outliers near the surface and
above 2000 m that escaped the quality control of Engelmann et al. (2023). Further
lidar data processing would be required to distinguish outliers and artefacts from
actual signals. The processing would include the identification of RV Polarstern’s
exhaust using additional wind data and filtering unrealistically strong vertical
moisture gradients. As the lidar data was mainly used to cross-validate the
radiosonde data, the additional processing was not performed at this point but
may be considered in the future.

Furthermore, the lidar data were limited to heights between 30 and 4000 m
because of the low data availability above 4000 m, caused by the low signal-
to-noise ratio above this height level. We considered lidar data only at times
when no cloud was detected below 4000 m with the Cloudnet target classification
and the low-level stratus mask (as described in Sect. 5.3.2). For the humidity
inversion analysis, the radiosonde and lidar profiles were interpolated to a height
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grid with 50 m spacing using weighted averages to keep the vertical water vapour
distribution close to the original profile (see Appendix 6.A). The relatively coarse
height grid filters out most of the smaller fluctuations in the humidity data to
enhance the focus on the main vertical features (here, inversions).

6.3.2 Humidity inversion detection

Specific humidity q inversions can be detected with different methods and different
minimum strength and depth thresholds (e.g., Devasthale et al., 2011; Vihma
et al., 2011; Nygård et al., 2013; Brunke et al., 2015; Maturilli and Kayser, 2017a;
Naakka et al., 2018). The basic principle is to find heights where the specific
humidity increases with height. While this method is straightforward for ’smooth’
profiles (e.g., numerical models, microwave and infrared retrievals), more work
is needed to distinguish small humidity fluctuations of a radiosonde profile from
inversions.

This study has revised the humidity inversion detection algorithm of Chellini
and Ebell (2022). Figure 6.1 illustrates the detection algorithm. The iteration
through the height grid starts at the surface and ends at 7000 m. Initially, the
lowest height index where q increases with height is determined (inversion base
height zbase and specific humidity at the base qbase). Then, the next height level
above the base where q falls below qbase again marks the ’extended inversion top’
(ztop,ext, see Fig. 6.1). The formally defined inversion top (ztop and qtop), where
q starts decreasing with height again, is the maximum q between the base zbase

and the extended top ztop,ext. The search for the next inversion starts at the
extended inversion top of the current inversion. If the next inversion was based
above 7000 m, the detection would be aborted. Once all inversions have been
determined, the depth (ztop − zbase), extended depth (ztop,ext − zbase), strength
(qtop − qbase) and relative strength ((qtop − qbase) /qtop) of each inversion is calcu-
lated. As in Nygård et al. (2013), an inversion is considered surface-based if the
base height is equal to or below 50 m.

Small-scale specific humidity fluctuations are filtered out by minimum strength,
relative strength, depth and extended depth thresholds. For humidity inversion
detection with radiosondes, the minimum inversion strength threshold depends
on the specific humidity error determined via error propagation of the measured
relative humidity, air temperature and air pressure. If the maximum specific hu-
midity error of a profile is less than 0.5 g kg−1 (always fulfilled during MOSAiC),
the maximum humidity error is used as a threshold for the minimum inversion
strength. Otherwise, the minimum strength threshold is 0.5 g kg−1 for radiosondes
and 0.05 g kg−1 for the remote sensing products, reanalyses and forecast models,
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whose profiles are usually much smoother.
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Figure 6.1: Demonstration of the humidity inversion detection scheme for a spe-
cific humidity profile measured by the radiosonde launched on 01 November 2019
at 10:56 UTC. Green, blue and red squares indicate the inversion base zbase, top
ztop and extended top ztop,ext, respectively.

The minimum relative strength, depth and extended depth thresholds were
chosen to be 5%, 100 m and 200 m, respectively. The depth thresholds filter
specific humidity fluctuations while enabling more precise base height and top
estimates because we use a finer height grid of 50 m spacing. The relative strength
threshold is similar to the absolute threshold used by Vihma et al. (2011) in winter
conditions. For further filtering, inversions are separated into two types: Firstly, if
the inversion depth is < 100m, the (relative) inversion strength must be equal to
or exceed twice the minimum (relative) strength threshold (allowing very shallow
but strong inversions). Secondly, if the inversion depth is ≥ 100m, the (relative)
inversion strength must be equal to or exceed the minimum (relative) strength
threshold (allowing deeper but weaker inversions).

This algorithm focuses more on the main humidity inversions than other al-
gorithms. Here, smaller inversions nested within a larger one are not identified
as single inversions. For example, other algorithms may consider the humidity
increase at approximately 2600–3000 m (between the top and extended top of the
second lowest inversion, Fig. 6.1) as a single inversion while it is nested within the
main inversion in this algorithm. Thus, inversion number and depth statistics will
differ from previous studies. This algorithm tends to determine smaller inversion
numbers but greater depths. This algorithm also respects the humidity contained
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between the inversion top and the extended top, allowing us to consider the total
amount of water vapour within an inversion (fraction of the IWV between zbase

and ztop,ext). This water vapour amount is obviously higher than that between
the base and the formal inversion top (zbase and ztop) and will therefore have a
greater radiative effect in the thermal infrared.

6.3.3 Contingency table for inversion detectability

Contingency tables are often used to compare the occurrence or absence of an
event in a reference data set to another data set that should be evaluated (e.g., oc-
currence of strong precipitation, Saouabe et al., 2020). Therefore, it is a valuable
tool for assessing the ability of the different observational or model data sets to
detect humidity inversions with respect to radiosondes. Table 6.1 shows the setup
of the contingency tables for this study. Correct positives (cp) refer to inversions
that are identified by both the radiosonde and the tested data (e.g., IASI), while
false positives (fp) indicate that no inversion is present in the radiosonde data
but exists in the tested data. False negatives (fn) correspond to cases where
the tested data does not show an inversion while the radiosonde does. Correct
negatives (cn) occur when neither the tested data nor the radiosonde detects an
inversion. Several statistics, whose meanings will be discussed in the analysis,
are computed from the contingency table to assess the performance of the tested
data set:

• Accuracy = (cp+ cn) /total

• Bias = (cp+ fp) / (cp+ fn)

• Probability of false detection POFD = fp/ (cn+ fp)

• Success ratio SR = cp/ (cp+ fp)

• Heidke skill score HSS = (cp+ cn− ec) / (total − ec)

with ec = ((cp+ fn)(cp+ fp) + (cn+ fn)(cn+ fp)) /total

6.3.4 Radiative transfer model

In this study, DLR is simulated with the Tropospheric Research (TROPOS)
Cloud and Aerosol Radiative effect Simulator (T-CARS) (Barlakas et al., 2020;
Barrientos-Velasco et al., 2022)). T-CARS is a Python-based version of the 1-D
rapid radiative transfer model for general circulation models (RRTMG) (Mlawer
et al., 1997; Iacono et al., 2008) and calculates broadband upwelling and down-
welling fluxes in the solar and infrared spectrum (wavelength ranges of 0.2–12µm
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Table 6.1: Contingency table used to assess the detectability of humidity inver-
sions in a test data set compared to the reference data set (here, radiosondes).
True and false indicate the occurrence and absence of humidity inversions, re-
spectively.

Radiosonde
True False Total

Test data
True Correct

positives
False

positives True in test data

False False
negatives

Correct
negatives False in test data

True in
radiosondes

False in
radiosondes Total

and 3–1000µm). Although the focus lies on DLR, parameters affecting the up-
welling and solar spectrum fluxes are also included.

The simulations were set up similarly to Barrientos-Velasco et al. (2022) with
the help of Dr. Carola Barrientos-Velasco. However, slightly different input data
is used: The radiosonde data described in Sect. 6.2.1 provide the profiles of air
temperature, pressure and specific humidity. The specific humidity has been
converted to volume mixing ratio. Skin temperature estimates are taken from
the Central Observatory. The Cloudnet LWC, IWC, and effective radii of liquid
droplets and ice crystals were implemented following Barrientos-Velasco et al.
(2022). Ozone mass mixing ratio profiles from ERA5 model level data, colocated
with RV Polarstern, are also converted to volume mixing ratios. Other trace
gas volume mixing ratios (carbon dioxide (CO2), methane (CH4), nitrous ox-
ide (N2O), chlorofluorocarbon gases (CFC-11, CFC-12) and carbon tetrachloride
(CCl-4)) are taken from measurements performed by the NOAA Global Mon-
itoring Laboratory and historical records (Lan et al., 2022b,a; Dutton et al.,
2023a,c,d,b). Carbon monoxide and CFC-22 volume mixing ratios are used from
Anderson et al. (1986). All profile data has been interpolated onto the Cloud-
net height grid (30 m spacing), which has been extended with similar spacing to
20 km.

The solar zenith angle at RV Polarstern at a given time is determined using
Python’s skyfield module (Rhodes, 2019). The surface emissivity is assumed to
be 0.9999 throughout the expedition, although Barrientos-Velasco et al. (2022)
noted that 0.9907 should be used when the sea ice concentration around RV
Polarstern is below 50%. The surface albedo (near-infrared, visible and ultra-
violet spectrum) was set to 0. These assumptions do not affect our results as the
surface albedo, as well as the solar zenith angle and surface emissivity, do not
influence the simulated DLR.

111



CHAPTER 6. EVALUATION OF WATER VAPOUR PRODUCTS

An example of the simulated thermal infrared radiative fluxes is given in
Fig. 6.2. The simulated radiative fluxes overall agree well with the observations at
Met city. Clouds clearly influence the DLR until approximately 06 UTC and after
21 UTC in the observations, and after 22 UTC in the simulations. The sudden
peaks during the cloudy periods in the simulated DLR are caused by missing or
0 values of LWC in the Cloudnet data set. Thus, further data processing would
be required when this analysis is extended to all sky conditions. The relatively
constant clear sky bias (≈ −5Wm−2) in DLR between 06 and 21 UTC can be
partly attributed to the neglect of aerosols in the simulations (Barrientos-Velasco
et al., 2022), but may also be due to errors in the near-surface temperature and
humidity data. However, as the focus lies on the differences between simulations
with original and modified humidity profiles, the clear sky bias cancels out.
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Figure 6.2: Simulated and measured downwelling thermal infrared radiative fluxes
(DLR) on 13 November 2019. Measured (simulated) radiative fluxes are shown
as blue (black) solid lines, and simulated clear sky radiative fluxes are displayed
as red dotted lines. Blue patches indicate clear sky according to Cloudnet.

6.3.5 Specific humidity profile modifications

To analyze the sensitivity of DLR to water vapour within humidity inversions,
the strength and base heights of humidity inversions are modified. Figure 6.3
illustrates each of the modifications for an elevated inversion whose original base
was located at approximately 1800 m height. In the following, the procedure of
inversion modifications between its base and extended top are described:

• Strength: The strength factor a determines by what magnitude the strength
of the inversion is modified. Between the base and the extended top, the spe-
cific humidity profile is modified according to q′inv = qbase + a (qinv − qbase),
and thus depends on the difference between the specific humidity within
the inversion (qinv) and at base (qbase). The dependence on the difference
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ensures a smooth transition at the base and extended top of the inversion
while accurately modifying the inversion strength. For example, at the for-
mal inversion top, where q is maximum within the inversion, the difference
qinv−qbase equals the inversion strength, which is therefore directly changed
according to the required strength factor. Figure 6.3a presents the inversion
modifications for strength factors a between 0 and 1.

• Base height: The inversion base height is shifted according to an offset
∆z. Initially, the height indices of the original and perturbed bases and
the original extended top are determined. The specific humidity profile is
shifted using the height index difference between the perturbed and original
base. If ∆z is positive (base height increased), the specific humidity between
the original and perturbed base height is set to the value at the original base
qbase. At the extended top of the perturbed inversion, a linear transition
zone with a height of 250 m is used to merge the perturbed and original
profiles. Compared to a fine height grid, the actual perturbed base heights
may differ more from the target base heights on a coarser height grid because
the height grid is unchanged. For example, ∆z = 65m will not shift the
inversion by 65 m on a 50 m grid. Figure 6.3b shows base height shifts ∆z

between −500 and +500m.
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Figure 6.3: Specific humidity profile with modifications of the inversion strength
(a) and base height (b). In the example (radiosonde launched on 26 February
2020, at 10:55 UTC), only the strongest inversion with a base height above 1000m
is modified.
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6.4 Water vapour comparison

Due to the strong relationship between DLR and water vapour (e.g., Ghatak
and Miller, 2013), it is important to first identify the water vapour biases of
each data set. The findings will be used to interpret the DLR sensitivity to
the different specific humidity profiles of the data sets in Sect. 6.6.3. With the
reference measurements from MOSAiC, biases and root mean squared deviations
(RMSD) of the IWV and specific humidity profiles were calculated using Eq. 5.1
and 5.2. All data sets have been restricted to times between 22 October 2019 and
05 August 2020 because of the data availability and the spatial overlap constraint
of CAFS. Therefore, we ensure a similar time range in the comparison. However,
most data sets are available for the entire MOSAiC expedition. Data sets may
include different numbers of samples in the comparison due to different temporal
resolutions. For example, IASI has fewer temporal overlaps with radiosondes than
ERA5 due to orbit limitations.

For the IWV evaluation, the synergistic retrieval of HATPRO and MiRAC-
P was used as reference because of the high quality and temporal resolution.
The high temporal resolution allows the inclusion of more samples (especially for
ERA5, ICON, AMSR2 and IASI) and thus more IWV variability in the compar-
ison. Additionally, the MWRs provide point measurements of IWV, while the
radiosondes can drift tens of kilometres during ascent and descent. The PollyXT

was excluded from the IWV comparison because of biases due to the limited
height range, which was affected by the sensitivity. Specific humidity profiles of
the data sets were evaluated against the radiosonde observations.

6.4.1 Integrated water vapour comparison

The MOSAiC expedition featured a large range of IWV conditions, from less than
1 kgm−2 to approximately 30 kgm−2 as shown in the IWV histogram (Fig. 6.4a).
For more than 50% of the time, IWV was below 5 kgm−2, while only 10% of the
IWV data was above 15 kgm−2. Consequently, fewer data samples were included
in the error computation for moist conditions than for dry conditions.

All data sets generally denote higher RMSD with increasing IWV, while the
relative RMSD is constant or even decreases (Fig. 6.4b). Throughout the entire
IWV range, ERA5 shows the smallest RMSD with < 0.2 kgm−2 (in relative
terms, 15%) at the lower IWV limit and up to 1.2 kgm−2 (< 5%) at the upper
IWV limit. At the dry limit, the RMSD of ERA5 is within the uncertainty
range of the MWR synergy. However, the 4D-Var assimilation of the MOSAiC
radiosondes is likely responsible for the good performance. MERRA-2 and ICON,
who use 3D-var assimilation, partly have twice as high RMSD as ERA5 with
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0.3 kgm−2 or 20% at the lower IWV limit and up to 2.4 kgm−2 or 10% at the
upper limit. Despite not being directly influenced by the MOSAiC radiosondes,
CAFS shows similarly low RMSD as ICON and MERRA-2. For IWV below
10 kgm−2, IASI performs similarly well regarding the RMSD as ICON, MERRA-2
and CAFS. However, for larger IWV, the RMSD of IASI is about 5–10 percentage
points higher than the models. With more than 20%, the AMSR2 retrieval
shows the highest RMSD among all presented data sets for IWV below 12 kgm−2,
which demonstrates the persisting challenges regarding satellite-based microwave
remote sensing. Also, during moist air intrusions in summer, when IWV increased
to values above 20 kgm−2, the AMSR2 retrieval denotes the highest deviations.
However, the retrieval was designed for the cold season and was not specifically
optimized for IWV. Rapid changes of the sea ice emissivity during and after such
intrusions can explain increased uncertainties during melting conditions (Rückert
et al., 2023b).

The biases of the models are mostly smaller than ±0.5 kgm−2, except for
CAFS, where it is up to ±0.8 kgm−2 (Fig. 6.4c). For IASI, a distinct negative
bias was identified, with a magnitude of −3 kgm−2 (in relative terms, −15%)
at an IWV of 20 kgm−2. When considering only IASI’s physical retrieval (with
good quality flags), the RMSD and magnitude of the negative biases of IASI is
up to 5 percentage points smaller for IWV between 5 and 20 kgm−2 (not shown).
However, the number of samples included in the comparison with the MWR data
is reduced by two-thirds. The AMSR2 IWV retrieval also underestimates IWV
by 5–15% in scenes where IWV exceeds 3 kgm−2. Vaquero-Martínez et al. (2020)
also found that all of the satellite products they included in their comparison,
none of which are included here, underestimate the IWV in humid conditions.
The strong positive bias of up to 1 kgm−2 for IWV below 3 kgm−2 and a time
series analysis (not shown) revealed that 3 kgm−2 seems to be the sensitivity limit
of the AMSR2 IWV retrieval. Around 15 kgm−2, the AMSR2 retrieval performs
best and has smaller biases than IASI.

When applying 7-day running means to all data sets to smooth out higher
frequency IWV variability (e.g., due to storms), all models show much smaller
RMSD (< 5%) but similar biases for almost the entire IWV range (Appendix 6.B,
Fig. 6.18). With the 7-day running mean, potential errors, which can be caused by
missing the exact timing of moisture intrusions (related to storms, Viceto et al.,
2022), are removed. Thus, a significant fraction of the RMSD of the models is
caused by synoptic-scale variability of IWV. For example, the timing and strength
of IWV changes during storms are often not well represented (Crewell et al., 2021).
Despite using the assimilated radiosondes and filtering IWV variability, MERRA-
2, ERA5 and ICON still have one of the strongest negative biases of −5 to −10%
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for IWV below 5 kgm−2. IASI also has a similarly strong negative bias in humid
conditions as in the unfiltered IWV comparison. More details regarding the IWV
evaluation with a 7-day running mean can be found in Appendix 6.B.

The most distinct deviations, which also appeared in the 7-day running mean,
were found for the satellite data in humid conditions. The deviations are likely
related to clouds and the rapidly changing sea ice characteristics during the melt
period. The fraction of the data with IWV above 15kgm−2 may seem low (10%),
but as we included almost the entire MOSAiC expedition, 10% of data represents
about 30 days. Additionally, all models except CAFS showed slightly negative
biases when IWV was below 10 kgm−2. It is important to stress that ERA5,
MERRA-2 and ICON are likely strongly influenced by the MOSAiC radiosondes.
A comparison without the assimilation of MOSAiC radiosondes would be of high
interest but is not possible at the time of writing this study.

6.4.2 Specific humidity profile comparison

Specific humidity profiles were evaluated for each season with the bias, RMSD
and relative RMSD for each height level, as shown in Fig. 6.5. Higher absolute
deviations were generally found in the warmer seasons because of higher specific
humidity values. Due to the exclusion of data after 05 August 2020 (see above),
summer only spans from 01 June to 05 August 2020, and autumn ranges from 22
October to 30 November 2019. More than 1050 radiosondes were incorporated
in the comparison and interpolated onto the other data sets’ height grids. The
vertical spacing of the height grids is illustrated in Fig. 6.19 in Appendix 6.C.
Lidar profiles were included for clear sky scenes up to 4000 m height until 29
February 2020 for cross-validation of the radiosonde humidity measurements.

The PollyXT agrees very well with the radiosonde observations in the lowest
2 km as the RMSD is less than 10% (Fig. 6.5c, f) and therefore within the uncer-
tainty range of PollyXT (Dai et al., 2018). Above 2 km, radiosonde drifts and lidar
measurement outliers (artefacts), which were not caught in the quality control,
contribute to the increasing errors. As the strength of the Raman lidar signal de-
pends on the amount of water vapour and the distance to the instrument (mainly
due to extinction), higher altitudes can only be sensed in more humid conditions.
Consequently, the comparison between radiosondes and lidar observations above
3 km is limited to the more humid cloud-free conditions, while lower altitudes can
also be sensed in dry conditions. Together with the outliers and the radiosonde
drift, this may explain the considerable increase in (relative) RMSD with height
in winter. Near the surface, the plume of the ship’s exhaust may be responsible
for the sharp RMSD and bias peak. Dahlke et al. (2023) corrected this poten-
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Figure 6.4: IWV histogram of the MWR data showing the frequency of occurrence
(solid) and cumulative occurrence (dashed) (a), and IWV root mean squared
deviation (RMSD, b) and biases (c) of different data sets with respect to the
MWR data. ERA5, MERRA-2, IASI and AMSR2 errors are shown as solid
black, dark blue, pink and green lines. CAFS and ICON are shown as dashed red
and light blue lines. Relative error lines are included as grey dotted lines in the
background of the RMSD and bias panels.

tial source of error in the radiosonde data set. However, this error has not been
corrected in the lidar data.

In all seasons, the synergy of HATPRO and MiRAC-P shows similar or even
lower RMSD than MERRA-2, ICON and CAFS below 4 km with relative RMSD
of 10–30% (Fig. 6.5c, f, i, l). These low deviations demonstrate that the specific
humidity profiles from the MWR are, on average, at least as good as the models
considered, despite the assimilation of the radiosonde data in ICON and MERRA-
2. Relative errors generally increased with height due to the decreasing specific
humidity. However, it is likely that radiosonde drifts also contributed to the
increase in relative deviations with height because all other data sets represent
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point measurements or spatial averages. The MWR profiles also show biases with
magnitudes smaller than most other data sets in the lowest 1 km in all seasons
except summer. In winter, the MWR synergy has the smallest biases among all
data sets (except the lidar). Above 1 km, the MWR synergy overestimates the
specific humidity more than the models in autumn, spring and summer (Fig. 6.5a,
d, g, j). These enhanced biases are related to the representation of humidity
inversions, as already discussed in Sect. 5.5.2 and shown later.

All models, including ERA5, but to a lesser extent, slightly underestimate the
specific humidity between a few hundred meters above the surface and 2 km in
all seasons except summer. For ERA5 and MERRA-2, this is in accordance with
the findings of Graham et al. (2019a) in cold conditions (their Fig. 4). Because
a high fraction of the IWV is located at these heights, this result is consistent
with the negative IWV bias that we have identified in dry conditions. In spring
and summer, CAFS overestimates the near-surface specific humidity by up to
0.15 g kg−1. MERRA-2 has a considerable positive specific humidity bias of up
to 0.1 g kg−1 at the surface in spring, and above 1.5 km in summer. The latter
findings agree with the results of Graham et al. (2019b). ERA5 also overestimates
the near-surface specific humidity in summer.

The MWR synergy has lower relative RMSD below 3 km (10–25%) than IASI
(15–30%) in all seasons. Above 3 km, IASI has smaller relative RMSD than the
MWR synergy and similar RMSD as MERRA-2 and ICON (30–45%). In the
cold seasons, IASI overestimates the specific humidity in the lowest 1 km but
underestimates it at higher altitudes. In summer, IASI is strongly negatively
biased in the lowest 5 km (up to −0.35 g kg−1), except for a ≈ 250m deep layer
of strong positive bias at the surface (up to +0.5 g kg−1). This underestimation
is consistent with the negative IWV bias seen for humid conditions in Fig. 6.4c.
When confining the IASI data to the physical retrieval, which reduces the number
of samples in the comparison from 645 to 140, the specific humidity bias is much
smaller in summer (not shown).

Figure 6.6 provides an example of a specific humidity profile in winter to il-
lustrate the origin of specific humidity biases. The strong surface-based humidity
inversion seen by the radiosonde (0–2500 m height according to the detection al-
gorithm) is generally captured by all data sets, but its strength is underestimated.
Due to the inversion strength underestimation, CAFS, MERRA-2 and ICON un-
derestimate the specific humidity in the lowest 2000 m. MERRA-2 and ERA5
slightly overestimate the specific humidity in the lowest 100 m, which can be
found for many profiles in winter, resulting in the positive bias seen in Fig. 6.5d.
IASI strongly overestimates q in the lowest 1000 m, while the MWR denotes one
of the highest deviations above 4500 m. The lidar profile shows higher specific
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Figure 6.5: Specific humidity biases (left column), root mean squared deviation
(RMSD, middle column) and relative RMSD (right column) of different data sets
compared to radiosonde measurements for autumn (SON, a–c), winter (DJF, d–f),
spring (MAM, g–i) and summer (JJA, j–l). The PollyXT lidar, ERA5, MERRA-
2, IASI and MWR data are visualized as solid green, black, dark blue, pink and
yellow lines, while ICON and CAFS are indicated as dashed light blue and red
lines. The inset axis in panel (d) zooms into the biases of the lowest 1 km.

humidity than the radiosondes at the top of the lidar profile (3500–4000 m), which
is an artefact rather than an atmospheric signal.

The specific humidity evaluation shows that ERA5 generally has the smallest
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the radiosonde launched on 01 January 2020 at 05:44 UTC. Colours are similar
to Fig. 6.5 with the addition of the radiosonde profile, which is illustrated with a
black dashed line. The radiosonde profile was interpolated to a vertical grid with
50 m resolution for the visualization.

RMSD. All models are negatively biased in the lower troposphere during the
cold seasons, except near the surface. The synergy of HATPRO and MiRAC-P
denotes similarly low RMSD as MERRA-2, ICON and CAFS in the lowest 4 km
in all seasons despite the limited vertical resolution.

6.5 Humidity inversions

6.5.1 Inversion detectability

Before analyzing the humidity inversion characteristics of the data sets, it is of
interest to test the ability to detect inversions compared to radiosondes using
the contingency table and statistics described in Sect. 6.3.3. Due to the temporal
overlap constraints (similar to the Sect. 6.4.2), the number of cases for each tested
data set is often lower than the total number of radiosondes considered in this
comparison (1096). In total, 98% (in numbers: 1076) of the 1096 radiosonde
launches contain at least one humidity inversion. Similarly high fractions of cases
with at least one inversion (Ninv/N , see Table 6.2) are achieved by the models
with 91% for ERA5 and MERRA-2, 93% for CAFS and 95% for ICON.
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Table 6.2 summarizes the contingency table statistics for the different data
sets. The highest accuracy was found for the models (> 0.92), followed by the
lidar (0.82) and the MWR synergy (0.66), while IASI has the lowest accuracy
(0.53). Therefore, the MWR synergy identifies the presence and absence of in-
versions better than IASI but worse than the models. If the tested data set (e.g.,
ICON) detects more (less) inversions than the radiosondes, the bias values are
> 1 (< 1). Bias values close to 1 indicate that the number of inversions in the
tested data is similar to that in the radiosonde data. Surprisingly, CAFS, ICON
and MERRA-2 have similar or even better accuracy and bias values than ERA5
despite having coarser vertical resolutions. As for the IWV and specific humidity
profile evaluation, CAFS performs well compared to the other models despite
the disadvantage regarding the assimilation of MOSAiC radiosondes. Thus, it is
unclear to what extent the assimilation of the radiosondes contributes to the high
accuracy and good bias values of ERA5, MERRA-2 and ICON.

The MWR shows the lowest and therefore best probability of false detection
(0.0) among all data sets, followed by IASI (0.14) and ERA5 (0.15). These data
sets identify the absence of inversions well. However, IASI and the MWR also
miss numerous inversions (hence the low bias values). Consequently, it is likely
that the low probability of false detection is due to random chance rather than
skill in detecting the absence of inversions. As each of the 114 cases included
in the comparison with PollyXT features at least one inversion, the probability
of false detection could not be computed (therefore set to not a number, nan).
CAFS and ICON perform worst regarding the probability of false detection as
they predict an inversion in 50% of the cases when no inversion is observed in the
radiosonde profile. All data sets show high success ratios (≥ 0.99) due to the small
number of false positive cases (the tested data set detected an inversion when the
radiosonde did not). For example, when the MWR identified an inversion, an
inversion was also present in the radiosonde profile in 100% of the cases.

The Heidke skill score, which expresses the accuracy of the detection over
random chance of correct detection, is generally low for all data sets because
of the relatively high number of false negatives (misses) compared to correct
negatives. Typically, the Heidke skill score is low when the number of false
predictions (misses and false positives) is high compared to the number of true
positives (hits) or true negatives. For PollyXT, the fraction of misses to the hits
dominates the skill score because no false positives or correct negatives occurred.
Thus, due to the relatively high fraction of misses to the hits (21 to 93) the Heidke
skill score is the lowest (0.0). Although MWR and IASI have a higher fraction
of misses to all cases, their skill score is slightly higher (0.02 and 0.05) because
they were also able to correctly detect the absence of inversions. ERA5 has the

121



CHAPTER 6. EVALUATION OF WATER VAPOUR PRODUCTS

Table 6.2: Statistics computed from the contingency table (Table 6.1) to assess the
detectability of humidity inversions in a tested data set compared to radiosondes.
N, Ninv, POFD, SR and HSS refer to the number of cases, number of cases where
the tested data set detected inversions, probability of false detection, success ratio
and the Heidke skill score.

N Ninv Accuracy Bias POFD SR HSS
MWR 1064 682 0.66 0.65 0.00 1.00 0.05
PollyXT 114 93 0.82 0.82 nan 1.00 0.00
IASI 645 336 0.53 0.53 0.14 1.00 0.02
ERA5 1096 1000 0.93 0.93 0.15 1.00 0.27
MERRA-2 1096 1001 0.92 0.93 0.25 1.00 0.24
CAFS 991 917 0.93 0.93 0.50 0.99 0.10
ICON 1075 1018 0.95 0.96 0.50 0.99 0.20

highest Heidke skill score with 0.27 as it has the lowest fraction of misses and
false positives to the true positives and negatives.

The presence of inversions is mostly missed when the relative strength and
extended depth are low (< 40% and < 1500m), and when no surface inver-
sion occurred (not shown). However, all data sets also missed some strong, deep
and surface-based inversions. The contingency table statistics yield similar re-
sults when incorporating the entire MOSAiC year where possible (i.e., MWR,
ERA5, MERRA-2, IASI, ICON). A comparison between the MWR synergy and
the HATPRO-only retrieval (Appendix 6.D) demonstrates that the profiling ca-
pabilities concerning humidity inversions were significantly improved through the
synergy.

6.5.2 Inversion characteristics

In this part, humidity inversion characteristics (number of inversions in a profile,
base height, relative strength, extended depth) of the models, MWR and IASI
were compared to radiosondes to identify biases in the representation of humid-
ity inversions. Here, all data sets were analyzed using their native height grids
(except the radiosondes and lidar, which were interpolated to a grid with 50 m
spacing) and were colocated with radiosondes as in the previous analyses. The
PollyXT data was included for completeness but biases may exist with respect to
the other data sets due to the low data coverage. However, the lidar data can
still be used to verify the radiosonde statistics.

Figure 6.7 shows the statistics of the number of inversions per profile, relative
strength, base height and extended depth for each data set and each inversion.
The radiosondes and the lidar detect the highest number of inversions, mostly
1–4 and 0–3, respectively, which is expected due to the higher vertical resolution
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(Fig. 6.7a). The limited height range and data coverage of PollyXT may explain
the lower number of inversions compared to radiosondes because this bias also
occurs when limiting the radiosondes to the times when the lidar was available
(not shown). All models similarly underestimate the occurrence of cases with 2
or more inversions and show almost no occurrences of 4 or more inversions per
profile. IASI and MWR rarely observed more than 1 inversion (Fig. 6.7a). They
also seem unable to resolve elevated inversions with bases above 600 m (Fig. 6.7b).
Additionally, IASI misses more inversions than any other data set, showing the
highest fraction of 0 inversions (consistent with the contingency table statistics
shown before). All data sets agree that most inversion bases are near or at the
surface (Fig. 6.7b). However, the fraction of elevated inversions with base heights
between 1500 and 7000 m is underestimated by all data sets compared to the
radiosondes.
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Figure 6.7: Histograms showing the distributions of the number of inversions per
profile (a), the inversion base heights (b), their relative strengths (c) and extended
depths (d) of different data sets. ERA5, MERRA-2, IASI, MWR and PollyXT

are illustrated as solid black, dark blue, pink, yellow and green lines, while the
radiosondes, CAFS and ICON are indicated by dashed black, red and light blue
lines. The inset axis in (b) zooms into the distribution of the base heights between
1000 and 7000 m.

The inversions detected by the radiosondes mostly have relative strengths
between 15 and 65% (Fig. 6.7c). Relative strengths outside this range occur less
frequently. Compared to the radiosondes, all data sets tend to underestimate the
inversion strength (Fig. 6.7c). However, the models have a smaller bias towards
weaker inversions than MWR and IASI. ICON and CAFS perform slightly better
concerning the representation of inversion strengths (especially relative strengths
> 50%) than ERA5 and MERRA-2. Inversions are weakest in IASI with relative
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strengths mostly between 10 and 40% and no relative strengths above 55%. The
disagreement between the radiosondes and PollyXT was also found when limiting
the radiosonde data to the lidar time grid. Therefore, it is likely that PollyXT

underestimates the strength because of its limited height range, missing upper-
level inversions, which tend to have higher relative strengths (see also Fig. 6.8).

The radiosondes show a high occurrence of low extended depths of 500–1000 m
and a gradual decrease of the occurrence of higher depths (Fig. 6.7d). Extended
depths above 4500 m were rarely observed by the radiosondes. All data sets
(except PollyXT) underestimate the occurrence of inversions with extended depths
below 1000 m but instead slightly overestimate the occurrence of higher depths
(Fig. 6.7d). The distribution of the inversion extended depth is similar among
the models and generally closer to the radiosondes than the depth distributions
of IASI and the MWR. Despite the higher vertical resolution and a potential
advantage regarding the assimilation of radiosondes, ERA5 does not perform
better than the other models. Possibly, a much higher vertical resolution over a
wider height range is needed (e.g. on the order of 10 m) to better represent sharp
inversions.

If the relative strength was replaced by absolute strength in Fig. 6.7, the
results would be similar to Nygård et al. (2014) (their Fig. 6) and Devasthale et al.
(2011) (their Fig. 10) with some notable discrepancies. In their studies, 2–3 more
inversions per profile were detected, and the depths were much smaller. Different
vertical resolutions in the data sets and detection methods likely explain most
differences. As mentioned in Sect. 6.3.2, this detection algorithm focuses more
on the major inversions and therefore tends to detect less but deeper inversions.

Figure 6.8 shows the seasonal statistics of the frequency of occurrence, ex-
tended depth and relative strength of inversions split into height layers of 1 km
depth following Chellini and Ebell (2022) and Naakka et al. (2018). Throughout
the year, the radiosondes denote a high frequency of occurrence of near-surface
inversions (base height below 1 km) with a slight maximum in winter (95%)
compared to the other seasons (85–90%). Devasthale et al. (2011) and Naakka
et al. (2018) also found that the highest occurrence of inversions is in winter and
near the surface. The differences between PollyXT and the radiosondes mainly
result from the limitation to cloud-free scenes and heights below 4 km. Most dif-
ferences could be eliminated when removing radiosonde data above 4 km height
and restricting them to the lidar times (not shown). The only remaining no-
table disparity is that the extended depths of humidity inversions for PollyXT are
200–600 m smaller than those in the radiosondes observations (not shown).

In winter, all data sets except IASI and PollyXT agree best with the radioson-
des regarding the occurrence of near-surface inversions, with occurrence rates
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above 90% (Fig. 6.8d). The excellent agreement of the occurrence, extended
depth and strength between the MWR synergy and the radiosondes in winter is
consistent with the small biases in the specific humidity profiles (see Fig. 6.8d–f,
and Fig. 6.5d). In spring and summer, the MWR synergy (IASI) underestimates
the occurrence of near-surface inversions by up to 50 (60) percentage points,
which explains the relatively low accuracy of humidity inversion detection shown
in Sect. 6.5.1.

In all seasons, the occurrence of inversions generally decreases with height
(Fig. 6.8a, d, g, j). For radiosondes, the occurrence ranges from < 50% for in-
versions with base heights between 1 and 2 km to < 10% for inversions between
6 and 7 km. The highest (smallest) occurrence of inversions with base heights
above 1 km was found in summer (winter and autumn). Thus, the seasonal cy-
cle of the occurrence of elevated inversions contrasts with that of near-surface
inversions. The models underestimate the occurrence of elevated inversions by
10–30 percentage points, which is consistent with the findings of Naakka et al.
(2018) for other reanalyses (their Fig. 7). Both IASI and MWR detect almost
no inversion above 1 km and therefore underestimate the occurrence by up to 45
percentage points, likely due to the coarse vertical resolution. In summer, the
high occurrence of elevated inversions, which the MWR and IASI do not capture,
could explain the stronger specific humidity biases detected in Sect 6.4.2.

The median of the extended depth of the radiosonde inversions lies between
600 and 2200 m in all seasons (Fig. 6.8b, e, h, k). The highest extended depths
were found for near-surface inversions and those in the upper troposphere (above
5 km). Inversions with bases between 1 and 2 km show the smallest median ex-
tended depths in all seasons. The seasonal cycle of the extended depth is small
compared to the intraseasonal variability (within a season, indicated by shading
in Fig. 6.8). As already seen in Fig. 6.7, the extended depths of PollyXT and
the radiosonde are lower than for the other data sets, probably due to the higher
resolution (Fig. 6.8b, e, h, k). All data sets generally overestimate the extended
depth by at least 500–1000 m (up to 2000 m) compared to the radiosondes, except
for autumn and winter where most data sets capture the depth of near-surface
inversions well. Data sets with coarser vertical resolution (CAFS, MWR) tend to
overestimate the extended depth more than those with a finer resolution (ERA5,
ICON).

The relative strength generally increases with height as the specific humidity
drops (Fig. 6.8c, f, i, l). However, in winter, the water vapour concentration
is also low at the surface, and radiative cooling can generate strong surface in-
versions (Brunke et al., 2015; Naakka et al., 2018), resulting in a high relative
strength. The relative strength of near-surface inversions observed by radioson-
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Figure 6.8: Seasonal frequency of occurrence (left column), extended depth (mid-
dle column) and relative strength (right column) of specific humidity inversions
for 1000m thick height layers. The inversion characteristics are shown for au-
tumn (SON, a–c), winter (DJF, d–f), spring (MAM, g–i) and summer (JJA, j–l),
respectively. The seasonal medians of the data sets are illustrated as in Fig. 6.7.
Shading indicates the intraseasonal standard deviation.

des has a clear seasonal cycle with the highest values in winter (55%) and lowest
values in summer (25%). The models and MWR show a similar seasonal cycle
for the near-surface inversions. Near the surface, the relative strength agreement
between models and radiosondes is within 10% in spring and summer and slightly
worse in winter and autumn. The bias towards weaker inversions seen in Fig. 6.7c
can partly be explained by underestimating the frequency of occurrence of high
altitude inversions, which often have a higher relative strength. However, a gen-

126



6.6. DOWNWELLING LONGWAVE RADIATION SENSITIVITY

eral underestimation of the relative strengths by 5–30 percentage points above
3000 m was also found for all seasons except winter. Consistent with the findings
above, ICON and CAFS perform slightly better regarding the relative strength,
being closer to the radiosonde data, than ERA5 and MERRA-2.

Biases regarding the humidity inversion characteristics can partly explain spe-
cific humidity biases. For example, underestimating the strength while correctly
capturing the extended depth and frequency of occurrence results in negative
specific humidity biases, which can be seen for ERA5 in winter (Fig. 6.8d–f and
Fig. 6.5d). In summer, IASI and the MWR synergy underestimate the occurrence
and strength of inversions, causing negative specific humidity biases within the
inversion layer and positive biases below or in between inversions due to smooth-
ing.

The findings above suggest that inversions are smoother (lower strength,
higher depth) in the models, MWR and IASI than in the radiosondes. Mod-
els with a finer vertical resolution (ERA5, ICON) capture the extended depth
of inversions slightly better than coarse resolution models (CAFS). The number
of inversions above 1 km is underestimated by all data sets, especially by MWR
and IASI, which may also be attributed to the vertical resolution as suggested by
Naakka et al. (2018) and Devasthale et al. (2011). However, despite the coarser
vertical resolution, CAFS represents the strength of the inversions better than
or at least similarly well as ERA5 and MERRA-2. Thus, the vertical resolution
is probably not the only important aspect, but model physics and parametriza-
tions associated with the formation of humidity inversions may also play a role
(mostly atmospheric dynamics and moist physics, Brunke et al., 2015). Naakka
et al. (2018) found that uncertainties in surface latent and sensible heat fluxes in
reanalyses could be attributed to inversion strength underestimations. Further
research would be needed to analyze the cause of the different performances of
the models.

6.6 Downwelling longwave radiation sensitivity

After having analyzed the humidity inversion characteristics during the MOSAiC
expedition, the question is to what extent humidity inversions affect the down-
welling longwave radiation (DLR). It was also shown that humidity inversion
characteristics differ across the data sets, resulting in specific humidity biases.
Therefore, this sensitivity study also quantifies the DLR discrepancy resulting
from the different specific humidity profiles of the data sets.

The T-CARS radiative transfer model (Sect. 6.3.4) was used to simulate DLR
with modified specific humidity profiles as input. All DLR simulations were
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performed in clear sky conditions and for cases when the Met City or ASFS
skin temperature measurements were available within 5 minutes of a radiosonde
launch. Cloudy scenes were excluded as their emitted radiation could conceal the
water vapour changes (Curry et al., 1995). In total, 120 cases, most of which
are in winter and early spring, are suitable for the simulations. The T-CARS
input (e.g., temperature profiles) was not altered except for the specific humidity
profiles. The radiative effect of humidity inversion modifications is quantified by
the difference between the DLR based on the modified specific humidity profile
and DLR simulated with the original profile ∆DLR = DLRmod − DLRorig. The
sensitivity studies start with an analysis of the DLR changes for humidity in-
versions at different altitudes. Next, the radiative effect of humidity inversions
is quantified for all of the clear sky cases. Finally, the specific humidity profiles
of the other observations (except the lidar) and models are used to estimate the
direct DLR changes due to the different IWV and humidity profiles.

6.6.1 Sensitivity to inversion height and strength

To get a feeling how the DLR is affected by modifying the humidity inversion
strength of inversions at different heights, a detailed analysis is presented for one
case (04 February 2020 at 05 UTC). Initially, radiative transfer simulations were
performed for a surface-based inversion, where the strength was modified as de-
scribed in Sect. 6.3.5. Subsequently, the inversion base was shifted upwards in
500 m steps until 6500 m, and the same strength modifications were applied for
each step. This procedure may be physically questionable, causing unrealistic
super-saturation as the temperature profile was not altered. Therefore, this anal-
ysis is rather theoretical but helps to understand the relationship between DLR
and water vapour within and below an inversion.

Figure 6.9 illustrates the modified specific humidity profiles. Below the in-
version, the specific humidity is set to the value at the inversion base (q(zbase) =
qbase), resulting in a deep layer of constant specific humidity for high inversion
bases (e.g., Fig. 6.9d). As IWV is not conserved in the first part of this analy-
sis, IWV increases when the inversion is either shifted to higher altitudes or the
strength of the inversion is increased (see IWV values in Fig. 6.9).

The resulting DLR deviations (∆DLR) due to the inversion strength and
height modifications, simulated with T-CARS, are shown in Fig. 6.10. Without
IWV conservation, ∆DLR clearly becomes more positive when increasing the
inversion strength because the IWV increases (Fig. 6.10a). Similarly, the IWV
increases when shifting the inversion to higher altitudes, causing more positive
∆DLR (vertical direction in Fig. 6.10a). However, when the inversion is lo-
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Figure 6.9: Specific humidity profiles q of a selected radiosounding (04 February
2020 at 05 UTC) with a distinct humidity inversion, whose strength and base
height are modified. Only every fourth base height shift is visualized. Strength
modifications with certain strength factors are indicated by colours while different
base heights zbase are shown in each panel. Additionally, the IWV of the profiles
with strength factors 0.0, 1.0 and 2.0 are displayed in their respective colours.
The original q profile measured by the radiosonde is indicated with a dotted black
line. The original IWV of this sounding is 1.3 kgm−2.

cated at the surface (zbase = 0m), the increase of ∆DLR with inversion strength
is much more pronounced than for an inversion with a base height of 6500 m.
This behaviour is consistent with the expectations from radiative transfer: For
an upward-looking ground-based observer, the transmissivity of the atmosphere,
which is the fraction of an initial radiation intensity reaching the observer, de-
creases with height due to absorption and scattering (here, absorption) (Petty,
2006, Chapters 7.2 and 7.4). Thus, when the inversion is situated at high alti-
tudes, only a small fraction of the emission signal from the water vapour within
the inversion reaches the surface.

The sensitivity of ∆DLR to the water vapour amount within the inversion
(IWVinv, integrated from the base to the top) clearly decreases with height,
as indicated by the weaker gradients in Fig. 6.10b. For the surface inversion,
the ∂∆DLR/ ∂IWVinv gradient is approximately 14.4Wkg−1 and is reduced to
2.1Wkg−1 for the elevated inversion at 6500 m (see also Table 6.3). The gra-
dient decreases approximately exponentially with height and explains to what
extent lower tropospheric water vapour contributes to the DLR compared to the
upper tropospheric water vapour. This relationship can thus be used to weight
specific humidity deviations between an original and a modified profile with a
higher emphasis on near-surface deviations. With the two anchor points at the
base heights 0 and 6500 m (Table 6.3), the weights w̃ at a given altitude zi can
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be approximated by

w̃(zi) = 14.4Wkg−1 exp

(
ln( 2.1

14.4
)zi

6500m

)
, (6.1)

w(zi) =
w̃(zi)∑
i w̃(zi)

, (6.2)

where w(zi) is the normalized weight at altitude zi. Note that the weights may
only be valid for this rather theoretical case study because the ∂∆DLR/ ∂IWVinv

gradient also depends on the IWV and the temperature. Nevertheless, the
weights will prove to be useful to vertically weight specific humidity deviations
in Sect. 6.6.3 to explain DLR deviations.

Table 6.3: Changes of ∆DLR per change of the integrated water vapour within
the inversion (IWVinv) without IWV conservation (as in Fig. 6.10b) for seven
base heights zbase.

Base height zbase (m) 0 1000 2000 3000 4000 5000 6000 6500
∂∆DLR
∂IWVinv

(Wkg−1) 14.4 11.1 7.9 5.8 4.3 3.2 2.3 2.1
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Figure 6.10: Downwelling longwave radiation differences (∆DLR) between simu-
lations with modified and original specific humidity profiles. The humidity profile
modifications include humidity inversion base height shifts (colours) and strength
modifications as shown in Fig. 6.9. ∆DLR is once illustrated against the relative
inversion strength and strength factor (a) and once against the total amount of
water vapour between the base and the top of the inversion IWVinv (b). In the
latter, the inversion strength is indicated by the size of the markers. The dotted
line in (b) indicates the IWV of the original specific humidity profile.

The following part focuses on the vertical water vapour distribution to iden-
tify the height at which the water vapour emission signal of the inversion is minor
compared to the water vapour below the inversion (between the surface and the
base of the inversion). The effect of the IWV on the DLR is eliminated by con-
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serving the IWV during humidity inversion modifications. The humidity inversion
modifications illustrated in Fig. 6.11 are similar to those shown in Fig. 6.9 but the
IWV is 1.3 kgm−2 for all profiles. IWV was conserved by removing or adding the
excess or deficit of water vapour uniformly over all heights while ensuring that no
negative specific humidity values occurred. For example, to conserve IWV for an
inversion with a high base height (zbase) and whose strength has been doubled,
the specific humidity has to be reduced below and above the inversion (e.g., 0–2
and 3–8 km height in Fig. 6.11b).
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Figure 6.11: Specific humidity profiles q with humidity inversion modifications
similar to those shown in Fig. 6.9 but with IWV conservation. IWV is 1.3 kgm−2

for all profiles.

Figure 6.12 shows ∆DLR for the humidity inversion modifications with IWV
conservation. When considering inversions with base heights below 1500 m, ∆DLR

also increases for higher inversion strengths (Fig. 6.12a), as found for the inversion
modifications with varying IWV (Fig. 6.10a). However, the increase of ∆DLR

with inversion strength is generally less pronounced because IWV does not in-
crease. In fact, positive ∆DLR is mainly due the redistribution of water vapour
to altitudes of higher temperatures. Appendix 6.E provides further details on the
effect of the temperature inversion.

For inversions at altitudes above 2000 m, the differences between the simu-
lations with and without IWV conservation are even more distinct. In contrast
to the experiments with varying IWV, increasing the strength of elevated in-
versions results in more negative ∆DLR (Fig. 6.12a). The decrease of ∆DLR

with increasing inversion strength can be explained by the vertical redistribution
of water vapour and the amount of water vapour located below the inversion
(Fig. 6.12b). An example is given for the inversion shifted to the highest altitude
(6500 m): When the relative strength of the high altitude inversion is increased
from 0 to twice the original strength (strength factor of 0.0 to 2.0), the amount of
water vapour below the inversion is reduced from 1.15 to 0.9 kgm−2 (increasing
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dot size and reduced IWV below inversion in Fig. 6.12b). Thus, the redistribution
of water vapour reduces the water vapour concentration in the lower troposphere,
which has the highest radiative effect as known from radiative transfer. The re-
duction of lower tropospheric water vapour due to the increased inversion strength
therefore causes more negative ∆DLR (Fig. 6.12a).
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Figure 6.12: As Fig. 6.10 but showing ∆DLR for inversion modifications with
IWV conservation. In (b), the relation between ∆DLR and the total amount
of water vapour integrated from the surface to the inversion base (IWV below
inversion) is illustrated instead of the IWV within the inversion.

In summary, the sensitivity of ∆DLR to the water vapour within the inversion
decreases approximately exponentially with height, as expected from radiative
transfer. For the inversion at 6500 m, most of the emission signal of the water
vapour modifications within the inversion is attenuated before reaching the sur-
face. This result is based on the findings of the first experiments (with varying
IWV), where ∆DLR was barely sensitive to water vapour concentration changes
within such a high-altitude inversion (see Table 6.3 and Fig. 6.10a–b).

The experiments with fixed IWV were used to identify the altitude until which
the humidity inversion has a strong radiative effect at the surface. These experi-
ments showed that at approximately 2000 m, the water vapour changes below the
inversion dominate the DLR signal compared to the water vapour changes within
the inversion (Fig. 6.12a). Thus, the radiative effect of inversions at 2000 m or
higher is small compared to the water vapour below the inversion. In the next
part, strength modifications are used for all clear sky cases to quantify the radia-
tive effect of humidity inversions.

6.6.2 Radiative effect of humidity inversions

To obtain a statistical estimate of the radiative effect of humidity inversions
in clear sky conditions, all 120 cases with available Metcity or ASFS measure-
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ments were simulated with original and modified specific humidity profiles. In
the modified profiles, the strength of specific humidity inversions were changed
with strength factors between 0 and 1 (in steps of 0.1). A strength factor of 1
corresponds to the original inversion strength, while a strength factor of 0 re-
moves the inversion. Humidity inversion modifications were performed once with
varying and once with conserved IWV to disentangle the effect of the IWV on
the DLR. The simulations with varying IWV provide the direct radiative effect
of the water vapour within the inversion and therefore of the inversion itself. In
contrast, the simulations with fixed IWV quantify the effect of the redistribution
of water vapour from the humidity inversion to the entire profile. The simulations
with fixed IWV thus imitate a data set which accurately captures the IWV but
misses inversions.

In this analysis, IWV conservation is physically more consistent than in Sect. 6.6.1
to mimic more realistic specific humidity profiles. IWV is conserved by adding
more of the lost water vapour (due to inversion strength reductions) at low al-
titudes than at high altitudes using the shape of a standard specific humidity
profile: The standard specific humidity profile is computed using the air tem-
perature of the International Civil Aviation Organization (ICAO) standard at-
mosphere (NOAA, NASA, and USFS, 1976), the air pressure computed via the
barometric height formula and a relative humidity profile decreasing linearly from
the global mean of 75% at the surface (Peixoto and Oort, 1996) to 0% at the
standard tropopause (11 km).

In Fig. 6.13, ∆DLR is separately shown for near-surface (zbase < 1000m) and
the strongest elevated (zbase ≥ 1000m) inversions to respect the influence of the
inversion base height on the ∆DLR. Note that some of the 120 cases did not have
an inversion with a base above 1000 m and two cases did not feature a near-surface
inversion. Thus, 118 near-surface and 99 elevated inversions are included in the
analysis. Initially, simulations with varying IWV are considered (Fig. 6.13a, b). A
nearly linear increase of ∆DLR with inversion strength (similar to Sect. 6.6.1) for
the individual cases is observed. As water vapour is removed from the respective
specific humidity profiles when reducing the strength, illustrated by the changing
colours of each case (e.g., trace the outlier in Fig. 6.13b for different relative
strengths), ∆DLR becomes more negative.

When the water vapour is completely removed from the near-surface inversions
(relative strength set to 0), ∆DLR is up to −13Wm−2 (see boxplot in Fig. 6.13a).
The most negative ∆DLR could be identified for near-surface inversions in dry
conditions in winter when both the relative strengths and extended depths were
high (≥ 70% and > 2.5 km, respectively). For most of the 118 near-surface
inversions, ∆DLR lies between −1 and −7Wm−2 when setting the strength to
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0 (interquartile range (IQR) in Fig. 6.13a), with a median of approximately
−3Wm−2.

0 20 40 60 80 100

12

10

8

6

4

2

0

DL
R 

(W
m

2 )

a)

Without IWV conservation
Near-surface inversions

Modified strength
Original strength

0 20 40 60 80 100

12

10

8

6

4

2

0
b)

Strongest elevated inversions

0 20 40 60 80 100
Relative strength (%)

2

0

2

4

6

DL
R 

(W
m

2 )

c)

With IWV conservation
Near-surface inversions

0 20 40 60 80 100
Relative strength (%)

2

0

2

4

6 d)
Strongest elevated inversions

0

2

4

6

8

10

12

14

16

18

IW
V 

(k
gm

2 )
Figure 6.13: DLR deviations (∆DLR) due to specific humidity inversion strength
modifications with respect to the original specific humidity profiles for all available
clear sky cases (see text for details). ∆DLR is shown separately for near-surface
inversions (a, c) and the strongest elevated inversions (b, d). The modifications
have been performed without (a–b) and with (c–d) IWV conservation. Original
(modified) inversion strengths are indicated by "x" ("o"). Colours display the
IWV of each case. The boxplot in each panel illustrates the distribution of ∆DLR
when removing the inversion (strength set to 0%, dotted line). The box indicates
the interquartile range (IQR, 1–3rd quartile) of the distribution and the horizontal
line within the box shows the median. The whiskers extend from below the 1st
and above the 3rd quartile by 1.5×IQR, respectively.

For the 99 elevated inversions, the DLR response to strength changes is weaker,
consistent with the results from Sect. 6.6.1. Especially the IQR of ∆DLR is
much smaller, spanning only from approximately 0 to −2Wm−2 with a median
of −0.5Wm−2 (Fig. 6.13b). Outliers indicate that elevated inversions can also
have a radiative effect of more than 4Wm−2. Such cases mainly occurred in
spring and summer, where most elevated inversions were found (Sect. 6.5.2) and
when the relative strength and depth were above average.

Due to the strong relationship between DLR and IWV (up to 31Wm−2 per
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1kgm−2 IWV change, Ghatak and Miller, 2013), simulations with varying IWV
generally yield higher ∆DLR magnitudes than those with fixed IWV (Fig. 6.13a–
b vs. c–d). In the following, the results for the simulations with fixed IWV
are discussed. When eliminating the near-surface inversions with IWV conserva-
tion, the IQR of ∆DLR only extends from −0.25 to −1Wm−2 with a median of
−0.5Wm−2 and is therefore much lower compared to the simulations with vary-
ing IWV (Fig. 6.13c). Even in the most extreme case, ∆DLR does not exceed
−3Wm−2 and is therefore just outside the uncertainty range of the pyrgeometers,
which is 2.6Wm−2 (Cox et al., 2023b).

For the strongest elevated inversions, the relationship between ∆DLR and
inversion strength is generally reversed when conserving IWV (Fig. 6.13d) as
observed in Sect. 6.6.1. When decreasing the inversion strength of an elevated
inversion, ∆DLR is more positive because the IWV conservation method adds
more water vapour to low altitudes to compensate for the loss within the inversion.
In extreme cases, when the original inversion contains high amounts of water
vapour, e.g., through a combination of high relative strength, depth and high
specific humidity values, ∆DLR is up to +6Wm−2 (Fig. 6.13d). However, in
most cases, ∆DLR is negligible with values smaller than 1Wm−2. Thus, the
effect of the water vapour redistribution is negligible in most cases but can lead
to considerable DLR deviations in some extreme cases.

So far, only the DLR effect of either the lowest or strongest elevated inversion
has been discussed. To compute the total radiative effect of humidity inversions,
all inversions of each radiosonde profile must be removed. The DLR difference
between simulations with the original specific humidity profiles (with inversion,
DLRorig) and those where all inversions are removed (DLRno inv) yields the radia-
tive effect of humidity inversions

Rinv = DLRorig −DLRno inv. (6.3)

Figure 6.14 shows the radiative effect of humidity inversions Rinv for all 120 cases.
Rinv is mainly between 1 and 9Wm−2 but can be up to 16Wm−2. Comparing
Rinv to the ∆DLR when removing only the lowest inversion reveals that the lowest
inversion explains 60–100% of the radiative effect of the inversions for all cases
in winter and early spring (not shown). However, for the summer cases, which
generally have more elevated inversions, the contribution of the lowest inversion
is minor (20–30%) compared to the elevated inversions, which contribute about
70–80% in these cases (not shown). Higher Rinv occurred when either the total
water vapour amount within all inversions (IWVinv) is high, or when IWVinv

is high relative to the total IWV (Fig. 6.14b). Here, the results suggest that
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the inversions can contain up to 70% of the total IWV, which is much higher
than the values found by Devasthale et al. (rarely more than 40% 2011). The
discrepancies can be attributed to the different integration limits and inversion
detection methods.
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Figure 6.14: Frequency of occurrence (solid) and cumulative occurrence (dashed)
of the radiative effect of humidity inversions (Rinv) for the 120 clear sky cases
(a). Additionally, the relationship between the water vapour within all inversions
(IWVinv) and Rinv is visualized (b). Colours in (b) indicate the relative IWVinv

to the total IWV.

In summary, the results showed that near-surface inversions have a radia-
tive effect of 1–9Wm−2 in most cases and up to 16Wm−2 for very deep and
strong inversions. The radiative effect of elevated inversions is minor compared
to the lowest inversion, except for summer when elevated inversions frequently
occur. Additionally, these sensitivity studies were used to investigate the effect
of the redistribution of water vapour (from a humidity inversion to the entire
profile) on the DLR. The results confirm the expectation that the redistribution
of water vapour generally has a negligible effect on DLR (mostly < 1Wm−2)
and mainly depends on the water vapour distribution in the lower troposphere.
However, in some cases with high amounts of water vapour within the inversion,
the mere redistribution of water vapour can also result in DLR changes of more
than 4Wm−2. For example, if a model or remote sensing observation correctly
captures the IWV but misses such an inversion, DLR simulations would be biased
by 4Wm−2. Having analyzed the effect of humidity inversions on DLR with syn-
thetic specific humidity profile deviations, the next step is to quantify the effect of
the actual specific humidity profile deviations of the different data sets on DLR.

6.6.3 Radiative impact of specific humidity deviations of

different observations and models

The evaluation of the different models (ERA5, MERRA-2, ICON and CAFS) and
remote sensing observations (IASI and MWR) revealed certain specific humidity
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biases with respect to the radiosondes (Sect. 6.4.2), as well as discrepancies re-
garding the representation of humidity inversions (Sect. 6.5). This part explores
the impact of the data sets’ specific humidity deviations on DLR for all 120 clear
sky cases (mostly winter and early spring). Here, the PollyXT data was excluded
because of low availability and limited height range. By using the different data
sets’ specific humidity profiles as input to T-CARS, the combined effect of differ-
ent vertical water vapour distributions and IWV values is examined with respect
to the radiosonde profiles. As the radiosonde profiles were used as reference, IWV
differences were also computed with respect to the radiosonde IWV (contrasting
Sect. 6.4.1). No other T-CARS input parameters were altered.

Figure 6.15 shows the DLR deviations (∆DLR) of the different data sets,
as well as IWV and specific humidity deviations with respect to the radiosonde
observations. The IWV deviation (∆IWV) histogram (Fig. 6.15c) focuses on
the main deviations and was therefore cut at ±2 kgm−2. Note that the IWV
for the MWR was computed with the retrieved specific humidity profile instead
of using the dedicated IWV retrieval for consistency, which results in slightly
larger deviations with respect to the radiosondes. Specific humidity deviations
∆q were vertically averaged using the weights computed in Eq. 6.2 to emphasize
lower tropospheric deviations (Fig. 6.15d). High correlations between ∆q and
∆DLR (0.55–0.87, Fig. 6.15e) demonstrate that these exponential weights are
a good approximation to account for the higher sensitivity of ∆DLR to lower
tropospheric specific humidity changes.

The ∆DLR resulting from the different specific humidity profiles of the data
sets are mostly within ±2Wm−2, as indicated by the interquartile ranges (IQRs)
in Fig. 6.15a, and are therefore within the typical uncertainty range of the pyr-
geometers used during MOSAiC (2.6Wm−2 Cox et al., 2023b). However, it is
important to look at the details because some specific humidity and IWV biases
are systematic and could therefore result in systematic DLR biases.

Positive and negative ∆DLR of more than ±5Wm−2 were found for MERRA-
2, ICON, CAFS and IASI (Fig. 6.15a). For ICON, positive and negative ∆DLR

occur similarly often, resulting in a median ∆DLR of nearly 0Wm−2. The
strongest median ∆DLR, which can be interpreted as DLR bias, were found for
MERRA-2 (−1Wm−2) and IASI (0.5Wm−2, Fig. 6.15a). The DLR deviations
can be explained by the IWV and weighted specific humidity deviations: Here,
for the simulated cases, MERRA-2 (IASI) show more negative (positive) IWV
deviations and even more pronounced negative (positive) ∆q than the other data
sets (Fig. 6.15c, d). The low inversion detection accuracy of IASI due to numer-
ous misses (only 0.34 for the 120 cases simulated here, not shown) can explain
the positive specific humidity deviations: When missing the humidity inversions,
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which are mostly surface-based, IASI typically overestimates the specific humid-
ity in the lower part and at the extended top of the inversion and only slightly
underestimates the maximum specific humidity (not shown), resulting in overall
positive ∆q.
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Figure 6.15: Difference between modified and original DLR (∆DLR) for 120
clear sky cases using the specific humidity profiles of different data sets (ERA5,
MERRA-2, CAFS, ICON, MWR and IASI). ∆DLR is visualized as boxplots
(a) and scatter plots (b), where colours indicate IWV differences ∆IWV to the
radiosonde observations. Additionally, histograms of ∆IWV (c) and the weighted
vertically averaged specific humidity deviations ∆q (d) are shown. Additionally,
the Pearson correlation coefficients between ∆IWV and ∆DLR, as well as between
∆q and ∆DLR are given for each data set. The different data sets in (c) and (d)
are illustrated using the same colours as in Fig. 6.8.

∆DLR outliers of MERRA-2, ICON, CAFS and IASI exceed ±5Wm−2 and
are mostly related to the strongest IWV deviations (−2 to +3kgm−2, Fig. 6.15b).
However, strong IWV deviations cannot explain all ∆DLR outliers: For example,
MERRA-2 has two outliers of +5Wm−2, which are associated with minor IWV
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deviations of only 0.5 kgm−2. In these cases, MERRA-2 strongly overestimates
the specific humidity in the lowest 2 km, resulting in one of the highest ∆q of
0.17 g kg−1, but agrees well with the radiosonde specific humidity or even under-
estimates it at higher altitudes. For IASI, the highest positive ∆DLR outlier
can also be explained by the overestimation of the specific humidity in the lower
troposphere.

Data sets with a more centered ∆IWV and ∆q distribution (e.g., ERA5,
ICON, MWR and CAFS) have a nearly 0Wm−2 median ∆DLR. ERA5 and the
MWR synergy denote the smallest IQRs of ∆DLR with values less than 0.5 and
1Wm−2, respectively (Fig. 6.15a), as well as the smallest ∆DLR outliers (below
±3.5Wm−2) and the smallest IWV deviations of all data sets (Fig. 6.15c). Thus,
the MWR synergy yields similarly accurate DLR as ERA5 despite having much
coarser specific humidity profiles. As the MWR synergy resolves surface-based
inversion well, ∆q is similar to that of ICON and CAFS and therefore only slightly
higher than that of ERA5 (Fig. 6.15d).

∆IWV and ∆q are both highly correlated with ∆DLR (Fig. 6.15c, d) because
they contain similar information and are also well correlated with each other
(0.61–0.95 for the data sets, not shown). However, it was shown that ∆IWV
could not explain all ∆DLR. Thus, a good representation of the near-surface
specific humidity, which often features an inversion, is equally important as the
IWV to avoid DLR biases.

In summary, for the 120 clear sky cases, specific humidity profile and IWV
deviations from the radiosonde profiles mostly result in relatively small ∆DLR

of less than ±2Wm−2 for all data sets. However, in cases when either the IWV
or the lower tropospheric specific humidity is strongly over- or underestimated,
∆DLR can exceed ±5Wm−2. Despite the coarse specific humidity profiles of the
MWR, the ∆DLR are similarly small as for ERA5, which showed the smallest
∆DLR.

6.7 Conclusion

Humidity estimates in the Arctic Ocean are highly uncertain due to the lack
of ground stations and challenges in satellite remote sensing, which also lead
to uncertain IWV trends in that region. The humidity measurements from the
MOSAiC expedition provide an excellent opportunity to assess the quality of
water vapour products of models and satellite products in the Arctic Ocean.
This study evaluated IWV, specific humidity and the characteristics of humidity
inversions of four state-of-the-art models (ERA5, MERRA-2, ICON, CAFS) and
satellite observations (IASI combined sounding product, and a new AMSR2-based
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IWV retrieval) using reference data from radiosondes and the synergy of the
MWRs HATPRO and MiRAC-P. Then, the impact of humidity inversions on the
DLR was analyzed using the radiative transfer tool T-CARS.

The numerical models generally show excellent IWV agreement regarding bi-
ases and RMSD compared to the reference IWV given by the MWR synergy,
except for negative biases of up to −10% (−5%) that were found for MERRA-
2 (ICON and ERA5) in dry conditions. The IASI combined sounding product
(henceforth, IASI) performs well in dry conditions but underestimates IWV by
10–15% for IWV above 10 kgm−2. The underestimation of IWV in humid condi-
tions is likely related to clouds and rapidly changing surface characteristics during
the melt season. In contrast to the findings of Roman et al. (2016), IASI shows
no positive biases in dry conditions. AMSR2 overestimates IWV below 3 kgm−2,
which appears to be the sensitivity limit, and underestimates IWV in more hu-
mid conditions. Some of the IWV deviations of the tested data sets could be
attributed to intraweek IWV variability (e.g., related to storms), whose timing
and magnitude were not always well caught by the satellite products due to orbit
limitations.

Concerning the RMSD of the specific humidity profiles, the MWR synergy
performs similarly well as or even better than MERRA-2, ICON and CAFS at
0–4 km height in all seasons (RMSD of 10-30%). IASI shows higher RMSD at
altitudes below 3 km but agrees slightly better with radiosondes than the MWRs
above 3 km. The smallest RMSD was found for ERA5 at all heights and in all
seasons (< 25%). Specific humidity profiles in the numerical models are mostly
negatively biased in the lowest 2 km during the cold seasons with respect to
the radiosondes. IASI tends to overestimate the specific humidity in the lowest
1 km and underestimates it at higher altitudes in the cold seasons. MERRA-2
has the overall strongest and the MWR synergy the smallest bias in the lower
troposphere in winter. Note that the assimilation of the MOSAiC radiosondes
likely improved the performance of MERRA-2, ICON and especially ERA5, which
uses an advanced assimilation scheme (4D-Var). Thus, these results may not
reflect the actual performance over sea ice when there is no field campaign data
for assimilation.

In this study, a new specific humidity inversion detection scheme was devel-
oped, focusing more on the major inversions than other studies (e.g., Devasthale
et al., 2011; Nygård et al., 2014). Nygård et al. (2014) stressed that inversion
characteristics, especially inversion base height, strength and depth, are sensitive
to the chosen data (resolution) and methods (i.e., detection scheme, minimum
strength and depth thresholds). Thus, the presented results are not directly com-
parable with those of previous studies. At first, the detectability of inversions

140



6.7. CONCLUSION

of the different data sets was tested. Due to the high occurrence of inversions
(98% of all radiosondes), the accuracy value calculated from the contingency ta-
ble represents a reasonable estimate of the detectability of inversions. The MWR
synergy detects the presence of inversions with an accuracy of 0.66, which is bet-
ter than IASI but worse than the models. In addition, the synergy of HATPRO
and MiRAC-P results in a significant improvement in the detectability of inver-
sions compared to the HATPRO-only retrievals (accuracy of 0.66 vs. 0.03). All
models detect the presence of inversions well with accuracy values above 0.92 but
sometimes miss the absence of an inversion (especially ICON and CAFS).

Then, humidity inversion characteristics were compared. The number of in-
versions in a profile is mostly between 1 and 4 in the radiosonde data. All other
data sets strongly underestimate the occurrence of cases with 2 or more inver-
sions because elevated inversions are often missed. IASI and the MWR synergy
rarely detect more than 1 inversion due to their coarse vertical resolution and
generally miss inversions with bases above 600 m or predict them as surface in-
versions. In winter, the presence of near-surface inversions, which occurred 95%
of the time, is well caught by all models and the MWR. In other seasons, all data
sets underestimate the occurrence of near-surface inversions. All data sets tend
to slightly underestimate the inversion strength of elevated inversions and overes-
timate the extended depth compared to the radiosondes. The magnitude of the
depth overestimation is mostly between 500 and 1000 m and is highest for CAFS
and the MWR and smallest for ICON and ERA5. The results suggest that ERA5
does not represent humidity inversions better than the other models (regarding
occurrence, strength and depth) despite having the highest vertical resolution.
Model physics (e.g., turbulent fluxes) have also been related to discrepancies in
humidity inversion characteristics (Naakka et al., 2018). More detailed research
is needed to examine the origin of the discrepancies.

To estimate the sensitivity of the DLR to water vapour within humidity in-
versions, the humidity inversion strength was modified in clear sky scenes. The
accordingly modified specific humidity profiles were used as input to the radiative
transfer model T-CARS. No other parameter was altered to focus on the effect
of water vapour. The sensitivity tests started with a single inversion, which was
progressively shifted to higher altitudes and whose strength was changed at each
step. The sensitivity of DLR to the water vapour within the inversion decreases
nearly exponentially with height, as expected from radiative transfer. When the
inversion is shifted to 2000 m or higher, specific humidity changes within the in-
version (strength modifications) have a smaller effect on the DLR than humidity
changes below the inversion.

The second part of the DLR simulations provides a statistical estimate of the
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radiative effect of humidity inversions in clear sky conditions, which has been
quantified for the first time, isolated from the effects of clouds and temperature.
The radiative effect of humidity inversions was computed for 120 cases as the
difference between the DLR based on the original specific humidity profile (with
inversion) and the DLR based on the profile without inversion. For most of the
cases, the radiative effect of humidity inversions is between 1 and 9Wm−2 but
can also reach 16Wm−2. In winter and early spring, the lowest (surface-based)
inversion contributes more than 60% to the total radiative effect. In summer,
when the occurrence of elevated inversions is higher, elevated inversions dominate
the total radiative effect.

The additional DLR provided by humidity inversions is likely only relevant
in clear sky conditions because the longwave radiative effect of clouds is usually
much larger, obscuring the DLR effect of the humidity inversions (≈ 50Wm−2

Shupe and Intrieri, 2004). Additionally, the presence of clouds prevents the strong
radiative cooling at the surface and therefore terminates one of the main formation
mechanisms of surface-based humidity inversions. The isolated radiative effect of
humidity inversions in cloudy conditions has yet to be analyzed in detail by
modifying those humidity inversions that are not related to the cloud layer (for
physical consistency).

In the final part of the DLR simulations, specific humidity profiles of each data
set were used as input to T-CARS to estimate the uncertainty of DLR due to
different specific humidity profiles and IWV. Lower tropospheric specific humidity
and IWV deviations with respect to the radiosondes caused DLR differences of
±2Wm−2 in most of the 120 clear sky cases. The specific humidity profiles from
ERA5 and MWR resulted in the smallest DLR deviations, where even the outliers
lie within±3.5Wm−2. The results demonstrate that the specific humidity profiles
of the MWR synergy are similarly well suited for longwave radiation calculations
as the ERA5 profiles. MERRA-2, ICON, CAFS and IASI denote DLR deviations
of more than ±5Wm−2 because of greater IWV and specific humidity deviations.
Both the near-surface specific humidity and the IWV must be well represented to
avoid DLR biases. As the near-surface specific humidity is usually characterized
by an inversion, the characteristics of the near-surface inversions (occurrence,
strength and depth) should be captured accurately.

With the findings of this study, the research questions posed in the introduc-
tion (Sect. 6.1) can be answered:

1. How well do current models represent the IWV and the vertical water
vapour distribution?
IWV estimates of the models agree well with the MWR reference data, ex-
cept for the negative biases of MERRA-2 and, to a lower extent, of ICON
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and ERA5 in dry conditions. Specific humidity RMSD with respect to
radiosondes are similar for all models (10–30%) except ERA5, which has
the smallest RMSD. All models underestimate the specific humidity in the
lowest 2 km in the cold seasons, except a shallow surface layer. It must
be stressed that the evaluation of ERA5, MERRA-2 and ICON is likely
strongly influenced by the assimilated radiosondes.

2. Are water vapour profiles and the typical Arctic humidity inversions suffi-
ciently well captured by satellite and ground-based remote sensing to cor-
rectly assess the DLR?
In winter, the MWR errors are small in the lowest 4 km and surface inver-
sions are well detected. As most inversions are surface-based, and surface-
based inversions are radiatively most important, the humidity profiles de-
rived from MWR synergy are suitable for accurate DLR calculations in
winter. Radiative transfer simulations confirmed that DLR estimates from
MWR profiles are accurate. Humidity profiles from IASI resulted in signif-
icantly more uncertain DLR estimates because of higher errors in the lower
troposphere and missing inversions.

3. Is an accurate IWV estimate sufficient to calculate DLR? To what extent
does the vertical water vapour distribution, especially with regard to inver-
sions, affect the DLR?
Radiative transfer simulations showed that the radiative effect of humidity
inversions can be up to 16Wm−2 if the water vapour within the inversions
is removed. Sensitivity studies showed that IWV deviations could explain
most but not all DLR deviations. In many cases, good representations of
IWV and the near-surface specific humidity, and therefore the characteris-
tics of surface-based inversions, are equally important.

As a next step, the DLR sensitivity tests could be extended to cloudy scenes to
assess to what extent clouds conceal the direct DLR effect of humidity inversions.
It would also be of interest to analyze the origin of misrepresentations of humid-
ity inversions to understand why ICON and CAFS represent humidity inversions
equally well as ERA5 despite their coarser vertical resolution. As humidity in-
version characteristics vary across the Arctic (e.g., Devasthale et al., 2011), our
inversion characteristics and DLR sensitivity analyses could be extended to other
field campaigns and ground stations (e.g., Ny-Ålesund on Svalbard, Norway)
to analyze regional differences. The long-term radiosonde observations at Ny-
Ålesund are suitable to investigate trends in humidity inversion characteristics.

143



CHAPTER 6. EVALUATION OF WATER VAPOUR PRODUCTS

6.A Weighted average interpolation

Linear interpolation can lead to considerable errors in the presence of strong
gradients, which can add up to an error in integrated quantities. Figure 6.16
demonstrates different vertical interpolation options for a specific humidity pro-
file and the resulting IWV. Unweighted vertical averaging and weighted vertical
averaging yield more accurate results because the vertical distribution is better
represented. However, the unweighted vertical averages can also result in signifi-
cant errors (Fig. 6.16).
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Figure 6.16: Example specific humidity profile shown for different height grids.
The original profile (black) has been linearly interpolated (cyan), vertically av-
eraged without (green dotted) and with weighting (orange) to a coarser height
grid.

The goal of the weighted average interpolation is to keep the vertical distri-
bution of data, which is on a base height grid z, as close to the original profile as
possible while changing to a target height grid zip with a lower or higher vertical
resolution. For the averaging, height layers of the base and target grid (zlay and
zip,lay, respectively) are considered. Height levels and layers at level i are generally
related by zlay,i = 0.5 (zi−1 + zi+1) if height level i is not at the top or bottom of
the height grid, where grid boundaries must be respected.

The vertical averaging, visualized in Fig. 6.17, will be explained with an exam-
ple. Initially, height levels of the base grid z, whose layers zlay partly or fully lie
within the current height layer of the target grid (zip,lay,4–zip,lay,5), are identified
(here, z index 14, 15 and 16, coloured boxes in Fig. 6.17). Each base grid height
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layer (coloured box) is then weighted according to its area (or fractional length)
that lies within the current target grid layer. As only a small fraction of the base
grid layer zlay,14–zlay,15 (yellow box) overlaps with the current target grid layer
(zip,lay,4–zip,lay,5), its weight is small. The other two base grid layers, zlay,15–zlay,16
(green box) and zlay,16–zlay,17 (blue box), are fully or mostly within the target grid
layer and therefore stronger weighted. In this example, an unweighted vertical
average would only include z15 and z16 although the associated height layer of z16
(zlay,16–zlay,17) partly lies outside the target grid layer. The unweighted vertical
average would completely ignore the data from z14.

The weight w of each identified height level is computed by the fraction
of its associated layer to the thickness of the current target grid layer, e.g.,
w15 = (zlay,16 − zlay,15) / (zip,lay,5 − zip,lay,4) for height level 15 (green box). For
height levels whose layers do not fully lie within the current target grid layer,
the boundaries of the target grid layer are respected. Once all weights are deter-
mined, the interpolation is performed with a weighted sum xip =

∑
i wixi where

x and xip is the data on the base and target grid, respectively.
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Figure 6.17: Visualization of a weighted average to interpolate data from a base
height grid with levels z (blue crosses) and layers zlay (blue dashed lines) to a
target height grid with levels zip (red circles) and layers zip,lay (red dashed lines).
Coloured boxes indicate which layers of the base grid are considered to compute
data at zip,4. Faded colours illustrate which height layer parts of z14 and z16 are
not included in the weighed average (for details, see text).

6.B Integrated water vapour comparison with 7-

day running mean

To evaluate the IWV without the sub-weekly IWV variability, which may be
caused by storms or other synoptic events, a 7-day running mean has been ap-
plied to all data sets. The resulting deviations are shown in Fig. 6.18 and are gen-
erally smaller than in the evaluation without running mean. The running mean
helps to identify the main deviations and eliminate errors due to uncertainties
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regarding the exact timing of storms. Despite using the assimilated radiosondes,
MERRA-2, ERA5 and ICON denote one of the strongest negative biases of −5 to
−10% for IWV below 5 kgm−2, and positive biases up to 4% for above 5 kgm−2.
The negative bias of IASI (here, about −10%) and its relatively strong RMSD
(also about 10%) remain, although the RMSD has a slightly smaller magnitude
compared to the unfiltered comparison. RMSD and biases of AMSR2 also seem
to be strongly affected by sub-weekly IWV variability because filtering them out
results in significantly smaller RMSD and biases, even smaller than for IASI for
IWV above 13 kgm−2.
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Figure 6.18: As Fig. 6.4 b) and c), but a 7-day running mean has been applied
to all data sets.

6.C Vertical grid spacing of all data sets

The vertical grid spacing of each data set used in the specific humidity profile
evaluation (Sect. 6.4.2) is illustrated in Fig. 6.19. The grid spacing may not be
representative of the actual vertical resolution in some data sets (e.g., MWR and
IASI) but shows the resolution to which radiosonde profiles were reduced for the
comparison using the weighted vertical mean (Appendix 6.A). Before interpolat-
ing the radiosonde data to the other data sets’ height grids, the radiosondes were
brought to a height grid with 5 m spacing (Fig. 6.19). For the specific humidity
profile evaluation, PollyXT data were interpolated to a grid with 50 m spacing.
All other data sets feature height grids whose spacing increases with height. For
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example, ERA5 has a resolution (grid spacing) of about 25 m at the surface and
about 250 m at 8 km height (Fig. 6.19). IASI has the coarsest grid in the low-
est 1 km, while CAFS’s height grid is coarsest at higher altitudes and similar to
MERRA-2 at 8 km.
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Figure 6.19: Vertical grid spacing of each data set (radiosonde: black dashed,
PollyXT: green solid, MERRA-2: blue solid, ERA5: black solid, CAFS: red
dashed, ICON: blue dashed, MWR: yellow solid, IASI: pink solid).

6.D Benefit of the microwave radiometer synergy

for humidity inversion detection

The improvement of the humidity inversion detectability can be assessed by com-
paring the contingency table statistics of the synergy of HATPRO and MiRAC-P
to HATPRO-only. Table 6.4 shows the same statistics as Table 6.2 in Sect. 6.5.1.
While the synergy correctly detected the presence and absence of humidity in-
versions in 66% of the time, HATPRO observed the correct situation only in 3%
of the time. All cases when no inversion was observed in the radiosonde were
correctly captured by both retrievals (probability of false detection is 0). As both
the synergy and HATPRO did not have a false alarm (false positive) the success
ratio is 1.00 for both. The Heidke skill score of the synergy is better than HAT-
PRO’s score (0.05 vs. 0.00) because the fraction of misses to the correct negatives
is lower. The results are similar when using the entire MOSAiC year instead of
the limited time range until 05 August 2020.
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Table 6.4: As Table 6.2 but comparing only the MWR synergy and HATPRO.

N Ninv Accuracy Bias POFD SR HSS
Synergy 1064 682 0.66 0.65 0.00 1.00 0.05
HATPRO 1087 12 0.03 0.01 0.00 1.00 0.00

6.E Downwelling longwave radiation sensitivity:

Influence of temperature inversion

In addition to the sensitivity analysis of the downwelling longwave radiation
(DLR) to specific humidity inversion modifications (Sect. 6.6.1), the effect of the
temperature inversion is explained. Here, inversion modifications have also been
performed with IWV conservation. Figure 6.20 shows the respective modified
specific humidity profiles and the original temperature profile.
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Figure 6.20: As Fig. 6.11 but showing different inversion base heights (zbase) in
(b) and (c), and the temperature profile of the radiosounding in (d).

The simulated DLR of a modified specific humidity profile is compared against
the DLR based on the original specific humidity profile by computing the differ-
ence ∆DLR = DLRmod − DLRorig as in Sect. 6.6. Note that the small ∆DLR

jumps with inversion strength increase (e.g., at strength factor 1.2–1.4 for the
base height of 5000 m, Fig. 6.21a) are partly caused by vertically varying temper-
ature, and partly by additional humidity profile corrections performed to avoid
negative specific humidity.

Positive ∆DLR (up to +1.5Wm−2) occurred only for inversions with base
heights at or below 2500 m (Fig. 6.21a) and are related to the near-surface tem-
perature inversion, whose maximum temperature is at 1000 m height (Fig. 6.20d).
For example, when the humidity inversion is at the surface (Fig. 6.20a), positive
∆DLR are found for high relative strengths (Fig. 6.21a). Then, more water
vapour is located at the altitudes of the highest temperatures. In contrast, for
elevated inversions, e.g., with a base height of 2000 m, low inversion strength
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is required to obtain positive ∆DLR (Fig. 6.21a). In this case, lower relative
strengths resulted in a higher water vapour concentration below the inversion
base, and thus at heights of the maximum temperature.

In contrast to Sect. 6.6.1, the temperature profile was modified in a second
set of simulations to remove the effect of the vertical temperature distribution on
DLR. Figure 6.21b shows ∆DLR for an isothermal temperature profile (273.15 K
at all heights) where the same humidity inversion modifications have been per-
formed as before. When using the isothermal temperature profile, positive ∆DLR

are mostly eliminated. ∆DLR does not exceed +0.1Wm−2 and only occurs when
the inversion is at the surface (Fig. 6.21). This finding supports that positive
∆DLR are mainly caused by the temperature inversion and less by the vertical
water vapour distribution. However, similar to the original temperature profile,
increasing the base height also led to a sign change of the relationship between
inversion strength and ∆DLR from positive to negative (Fig. 6.21b). Thus, this
behaviour is caused by the vertical water vapour distribution rather than the
temperature profile.
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Figure 6.21: ∆DLR visualized against inversion strength modifications with IWV
conservation using the original temperature profile (a) and an isothermal tem-
perature profile withe 273.15 K at all heights (b). The results shown in (a) are
identical to Fig. 6.12a.
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Chapter 7

Conclusions and Outlook

Accurate water vapour observations in the Arctic are challenging. Only a few
ground stations exist at the coasts of the Arctic seas where high-quality water
vapour observations are available. Arctic-wide coverage is only achieved by satel-
lite remote sensing, which faces distinct challenges in the Arctic. Reanalyses,
which assimilate parts of these observations, also disagree on water vapour es-
timates. As a result, the true amount of water vapour is often unclear in the
data-sparse central Arctic due to significant uncertainties. Therefore, accurate
and precise water vapour observations from field campaigns are crucial to iden-
tify deviations in satellite observations and numerical models in otherwise poorly
sampled regions.

This thesis uses data from the largest and most comprehensive Arctic field
campaign to date, the Multidisciplinary drifting Observatory for the Study of Arc-
tic Climate (MOSAiC) expedition. We particularly focus on the measurements
of two microwave radiometers (MWRs), the low-frequency HATPRO and the
high-frequency MiRAC-P, installed on the German icebreaker RV Polarstern. A
substantial part of this thesis was dedicated to creating high-quality water vapour
products by synergizing the low- and high-frequency MWR measurements, ex-
ploiting their complementary moisture sensitivity.

With the highly temporally resolved integrated water vapour (IWV) retrieved
from the MWRs and the radiosondes’ vertically detailed specific humidity profiles,
the performance of state-of-the-art satellite observations and numerical models
could be assessed. The assessment also estimates the capability and limitations
of ground-based MWRs and satellite-based remote sensing for monitoring Arctic
humidity profiles, especially concerning the frequently occurring humidity inver-
sions. Humidity inversions have important indirect effects on the downwelling
longwave radiation (DLR) by influencing cloud formation and maintenance. How-
ever, the direct effect of humidity inversions on DLR, isolated from cloud or
temperature influences, is unknown. We close this knowledge gap and thus im-
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prove our understanding of the importance of humidity inversions using radiative
transfer simulations.

The first challenge of this thesis was retrieving IWV and humidity profiles, as
well as temperature profiles and liquid water path (LWP), from the MWR ob-
servations. Chapter 2 explained the physical basics of ground-based microwave
remote sensing to understand how microwave radiances are sensitive to these pa-
rameters. Microwave observations only provide little information on vertical pro-
files but can be used in nearly all sky conditions. The derivation of atmospheric
parameters is an inverse problem whose challenges are discussed in Chapter 3.
In this thesis, the inverse problem is tackled using regression and Neural Net-
work techniques. Statistical retrievals, such as regression and Neural Networks,
are computationally much cheaper than physical approaches and are similarly
accurate if carefully prepared. The main achievements are summarized in the
following section. Afterwards, perspectives for future studies, which may benefit
from the data sets generated with the MWR measurements, are presented.

7.1 Summary and conclusions

Study 1: Single microwave radiometer retrievals

The first study focused on the processing and quality control of the measurements
of HATPRO and MiRAC-P during MOSAiC. Standardized regression retrievals
were used to derive IWV, LWP, and temperature and humidity profiles from
HATPRO. For the high-frequency MiRAC-P, regression approaches did not suf-
ficiently capture the nonlinear relationship between the measurements and IWV.
Thus, a Neural Network retrieval, specialized for the high-frequency observations
of MiRAC-P, was developed. The retrieved LWP from HATPRO agrees well with
the LWP from a two-channel MWR, which was also on board RV Polarstern. IWV
and temperature and humidity profiles were evaluated with radiosonde observa-
tions from MOSAiC. The agreement of the temperature and humidity profiles is
generally good and similar to previous studies, except for the lower troposphere.
The frequent occurrence of temperature and humidity inversions increased the
errors in the lower troposphere. Additionally, humidity profiling using only HAT-
PRO observations proved to be challenging because of the dry conditions of the
Arctic. The IWV comparison also showed that MiRAC-P’s IWV retrieval is
significantly more accurate and precise than HATPRO in dry conditions. In con-
trast, HATPRO excels in humid conditions where MiRAC-P’s observations are
partly saturated. The results showed that the large variability of humidity condi-
tions, ranging from IWV < 1 to > 30 kgm−2, is challenging for the single-MWR
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retrievals. Additionally, this study revealed the limitations of humidity profiling
from HATPRO observations in the Arctic. The results motivated the synergy of
the low-frequency HATPRO with the high-frequency MiRAC-P.

Study 2: Synergistic microwave radiometer retrievals

The goal of the second study was to create enhanced IWV and humidity profile
retrievals by combining HATPRO and MiRAC-P observations and to quantify
the benefit compared to the single-MWR retrievals. For each of the derived pa-
rameters, IWV and profiles of specific humidity temperature, a dedicated Neural
Network retrieval was developed using the experience from the previous study.
Tests with different input parameters in the Neural Network showed that includ-
ing the 2 m temperature and the day of the year further improved the retrievals.

The Neural Network retrievals were found to be robust against random ini-
tialization by evaluating it for 20 runs with a synthetic evaluation data set based
on the ERA5 reanalysis and simulated brightness temperatures. To quantify the
benefit of the synergy compared to single-MWR retrievals, the errors of the IWV
and specific humidity profiles with respect to radiosondes were compared. Addi-
tionally, the gain of the vertical information content was computed. The synergy
of HATPRO and MiRAC-P achieves an excellent agreement with the radiosonde
IWV, with root mean squared errors (RMSE) of only 2–3% over almost the en-
tire range of IWV conditions. In dry conditions, the synergy performs similarly
well as MiRAC-P and even outperforms the HATPRO-only retrieval in humid
conditions. The most significant improvement was found for specific humidity
profiles. Low-altitude RMSE and biases were reduced by up to 50 and 75%,
respectively, and the vertical information content was strongly improved. The
vertical information gain and the error reduction were most pronounced in dry
conditions. The main achievements of the second study can be summarized by
answering the first research question (RQ1):

RQ1: What is the benefit of combining low- and high-frequency MWRs
with different moisture sensitivity for humidity profiling compared to more
common single-MWR measurements?

The synergy provides highly accurate and precise IWV over a much larger
range of IWV conditions than the single-MWR retrievals. Additionally, the
RMSE was reduced by at least 15%.
In the lower troposphere, the RMSE of specific humidity was improved by
up to 50% and the vertical resolution was enhanced by a factor of 2. The
vertical information content was increased by 40%.
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Study 3: Evaluation of water vapour products and assessing the im-
portance of humidity inversions

The third study assessed the quality of IWV and specific humidity profiles of
state-of-the-art reanalyses (ERA5 and MERRA-2), weather forecast systems
(ICON and CAFS) and satellite observations (combined sounding product us-
ing IASI, MHS and AMSU observations; hereafter referred to as IASI) in the
Arctic during MOSAiC. The highly temporally resolved IWV from the MWR
synergy and the radiosondes’ vertically detailed specific humidity profiles were
used as reference. All models generally show excellent agreement with the IWV
from the MWR synergy, except for dry biases of 5–10% in dry conditions for
MERRA-2, ERA5 and ICON. IASI performs similarly well as the models in dry
conditions but has a strong dry bias of 15% in humid conditions. For the data
sets with coarser temporal resolution, the errors could be partly attributed to
intraweek IWV variability (e.g., due to storms).

Root mean squared deviations (RMSD) of specific humidity profiles with re-
spect to radiosondes lie between 10 and 30% in the lowest 4 km for ICON, CAFS,
MERRA-2. In all seasons, the MWR synergy denotes similarly small or even
smaller RMSD compared to these models. In winter, the MWR synergy has the
smallest bias of all data sets. All models generally underestimate the specific
humidity in the lower troposphere in the cold seasons. IASI overestimates the
specific humidity near the surface and underestimates it at higher altitudes in all
seasons. In summer, the negative bias is especially pronounced (consistent with
the strong negative IWV bias). ERA5 has the smallest IWV and specific hu-
midity profile errors but uses the most advanced assimilation technique (4D-var).
Radiosondes launched during MOSAiC were assimilated by all models, except
CAFS, and therefore influence the performance to an uncertain degree.

Most biases in the data sets can be related to humidity inversions, which
occurred in 98% of all radiosoundings during MOSAiC. A new humidity inver-
sion detection method was developed to analyze the representation of humidity
inversions, focusing more on the major inversions than previous methods. The
presence of humidity inversions near or at the surface is well captured by the
models in all seasons and by the MWR synergy in winter. Elevated inversions
(base height > 1 km) are frequently missed by all data sets and not resolved at all
by IASI and the MWR synergy. The comparison of the humidity inversion char-
acteristics revealed that all data sets tend to underestimate the inversion strength
and overestimate the inversion depth with respect to the radiosondes. The depth
overestimation is slightly higher for data sets with a coarser vertical resolution
(MWR, CAFS) than those with a finer vertical resolution (ICON, ERA5).
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The results of the evaluation of water vapour products and the representation
of humidity inversions answer RQ2 and RQ3:

RQ2: How well can ground-based MWRs capture the main features of the
Arctic humidity profile, especially concerning humidity inversions? Can
MWRs be used to correctly detect and monitor Arctic humidity inversions
over long times in regions where radiosonde measurements are missing?

In winter, the ground-based MWRs excellently capture the presence and
characteristics of surface-based and near-surface humidity inversions, lead-
ing to small specific humidity errors. In spring and autumn, the occurrence
of inversions is slightly underestimated. In summer, the high occurrence of
elevated inversions, which cannot be resolved, impairs the accurate moni-
toring of humidity inversions.

RQ3: Can the reference measurements from the MOSAiC expedition be
used to identify biases in the humidity profile representation in satellite
products and reanalyses? What are the capabilities of space-based remote
sensing for humidity profiling as assessed by MOSAiC?

The comparison of the reanalysis data with the radiosonde observations
from MOSAiC revealed overall small biases. The most notable biases are
the dry biases of MERRA-2 and, to a lesser extent, ERA5 in the lower
troposphere in the cold seasons. However, the results of the reanalyses
are affected by the assimilation of the MOSAiC radiosondes and therefore
represent an optimal performance. The errors are expected to be higher if
the radiosondes were not assimilated. However, it is difficult to quantify
the influence of the assimilation.
Humidity profiling proved particularly challenging from a satellite perspec-
tive (here, IASI) due to the near-permanent presence of humidity inver-
sions. Surface-based inversions are frequently missed, leading to positive
biases in the specific humidity profile near the surface and negative biases
aloft. However, the specific humidity RMSD of IASI are mostly similar
to the weather forecast models (ICON and CAFS) at low altitudes and
smaller at high altitudes.

To assess the importance of the correct representation of humidity inversions,
we first quantified the effect of humidity inversions on the DLR with radiative
transfer simulations in clear sky conditions. The radiative effect of humidity
inversions was found to range from 1 to 9Wm2 in most cases but can also reach
up to 16Wm2. Surface-based inversions contribute most to the radiative effect
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in winter, while elevated inversions dominate the radiative effect in the summer
cases. However, the number of summer cases included in the analysis was small.

Subsequently, the specific humidity profiles of the different data sets were used
as input in the radiative transfer model and compared to the DLR simulated with
the radiosonde profiles. The largest DLR deviations were found for the specific
humidity profiles of ICON, MERRA-2, CAFS and IASI, with several deviations of
more than ±5Wm2. In contrast, the specific humidity profiles of ERA5 and the
MWR synergy yield much lower DLR deviations where even outliers are within
±3.5Wm2. Thus, the specific humidity profiles from the MWR synergy are well
suited to accurately compute DLR despite the coarse vertical resolution.

The results of the radiative sensitivity tests can be used to answer RQ4.

RQ4: How well do humidity inversions have to be represented to avoid
biases in downwelling longwave radiation?

The radiative transfer simulations showed that it is most important to ac-
curately capture the IWV and lower tropospheric specific humidity and,
therefore, the near-surface humidity inversions. Elevated inversions are ra-
diatively much less relevant in most cases, except for summer. The specific
humidity profiles of the MWR were sufficiently accurate to avoid significant
DLR biases.

Concluding remarks

This thesis has demonstrated that the synergy of low- and high-frequency MWRs
is highly beneficial for Arctic water vapour assessments. The evaluation with ra-
diosonde observations has shown that the IWV retrieval has a high accuracy over
a wide range of conditions and that the retrieved specific humidity resolves the
main humidity inversion well. Radiative transfer simulations enhanced the un-
derstanding of the radiative effect of humidity inversions in clear sky conditions.
Near-surface humidity inversions have been found to dominate the longwave ra-
diative effect in the cold season cases. Cloudy conditions have yet to be tested.

The evaluation of state-of-the-art models and satellite products with the ref-
erence observations from MOSAiC was essential to identify the quality of current
water vapour products in a region where these data sets are known to be uncer-
tain and where high-quality observations are missing. However, as the results are
partly influenced by the assimilation of the MOSAiC radiosondes, they can be
interpreted as representing the best possible performance of these data sets. An
option to exclude campaign data in reanalyses would be beneficial for an inde-
pendent and more representative evaluation. The identified biases reveal current
limitations and help to improve the models and satellite observations. Future
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reanalyses and improved satellite retrievals can be tested against the products
analyzed in this thesis and evaluated with the MOSAiC observations.

As the ground-based MWR retrievals have been designed to be independent
of measurements other than those from the two MWRs (the MWRs usually
also include a weather station with air temperature measurements), and the re-
trievals are computationally cheap, they can be easily applied to other Arctic sites
and field campaigns. Therefore, the retrievals are suitable to produce reference
data beyond MOSAiC, which can be used to evaluate observations from recently
launched and upcoming satellite missions (e.g., Arctic Weather Satellite) and re-
analyses (e.g., ERA6). The ability of the MWRs to capture the surface-based
humidity inversions in the cold seasons is promising for monitoring humidity pro-
files with a high temporal resolution at Arctic sites where no radiosondes are
launched. Thus, the observations of the low- and high-frequency MWRs and the
retrieval setup are valuable for future research on water vapour in the Arctic.
The following section presents ideas to extend the current work.

7.2 Outlook

The highly temporally resolved MWR data can be used for a detailed analysis of
the spatio-temporal water vapour variability in the Arctic. For example, during
a strong warm air intrusion, the IWV can increase by a factor of 4 within a few
hours (e.g., Crewell et al., 2021). The peak IWV, whose greenhouse effect can be
critical for snow and ice melt onset, is often missed by observations and models
with coarse temporal resolution (e.g., satellite observations, radiosondes). It may
be quantified how much of the IWV variability is missed by different observations
and models. The MOSAiC observations are valuable for investigating to what
extent the missing IWV variability affects the surface energy budget through the
greenhouse effect of water vapour.

Further, the water vapour products of the MWRs may be synergized with
other observations (radiosondes, the Raman lidar PollyXT, cloud radar, Met City)
for detailed case studies on air mass transformation (e.g., during moist air intru-
sions). These combined observations with high temporal resolution are valuable
to assess the impact of moist air intrusions on different atmospheric parameters
(thermodynamics, cloud characteristics, precipitation, surface energy budget).
The MWRs provide temporally detailed information on the atmospheric state in
almost all sky conditions. The radar and the Raman lidar provide information
on the cloud micro- and macrophysical properties and vertically detailed water
vapour profiles below the cloud base, respectively. Such an observational analysis
could be compared to the high-resolution model output created by Schnierstein
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et al. (2024).

During the development of the synergistic retrieval, the idea came up to merge
radiosonde and MWR observations for enhanced water vapour products. The
IWV retrieved from the MWRs could be used to improve the linear interpolation
of radiosonde observations between two launches. However, such an approach
would not be able to capture the temporal evolution of humidity profiles cor-
rectly. Combining the radiosonde and MWR observations in a machine learning
approach may be more appropriate for extracting information on the evolution of
humidity profiles. This approach was only briefly tested and the results showed
that the method generally worked. However, the information gain on the vertical
profile between radiosonde launches seemed lower compared to the independent
synergistic MWR retrievals. Additionally, such a synergistic approach would
always require the presence of radiosonde observations. Nevertheless, the com-
bination of radiosonde and MWR observations may yield an even better water
vapour data set when carefully incorporated into machine learning frameworks.

To improve the knowledge of the spatial differences of the water vapour
amount and trends at different Arctic sites during field campaigns or for continu-
ous operation, low- and high-frequency MWRs (such as HATPRO and MiRAC-P)
can provide useful insights. The MWRs can be deployed in regions where ra-
diosonde observations are missing or only sparsely available. As Illingworth et al.
(2019) states, ground-based MWRs improve weather forecasts (if assimilated) in
regions where radiosonde observations are sparse by providing information on
the thermodynamic state of the atmosphere. The operation of the MWRs can
be automated, requires only little power supply, and is cheaper than launching
radiosondes in the long-term perspective. To ensure high-quality observations,
absolute calibrations are needed every 3–6 months (Küchler et al., 2016). As the
retrievals developed in this thesis are computationally cheap, they are ideal for
operational use.

Another advantage of the MWRs compared to the radiosondes is their high
temporal resolution. Thus, low- and high-frequency MWR observations are also
beneficial at Arctic sites where radiosondes are already launched regularly (e.g.,
Ny-Ålesund). The MWR observations complement the vertically detailed ra-
diosondes by adding information on the temporal variability of the atmospheric
state. MiRAC-P is expected to join HATPRO again at Ny-Ålesund in 2025 and
will therefore improve the monitoring of humidity profiles and IWV, especially
in the cold seasons. When HATPRO and MiRAC-P measure together at Ny-
Ålesund, the performance of the retrievals developed in this thesis can be tested
in the atmospheric conditions of an Arctic fjord.

While the MOSAiC expedition is the most extensive Arctic field campaign

157



CHAPTER 7. CONCLUSIONS AND OUTLOOK

so far, it cannot capture interannual variability. Thus, the long-term radiosonde
measurements and observations from HATPRO and MiRAC-P (when available)
at Ny-Ålesund or during further field campaigns are valuable to analyze the
variability of water vapour over broader spatio-temporal scales. For example,
measurements from radiosondes, as well as HATPRO and MiRAC-P during the
Polarstern expedition PS131 (ATWAICE) provide further insights into the vari-
ability of water vapour in the marginal ice zone in summer. At Ny-Ålesund, the
30 years of radiosonde observations may be used to investigate interseasonal and
interannual variability and trends of humidity inversion characteristics.

Recent and future satellite missions, such as the Arctic Weather Satellite, will
further improve weather forecasts in the Arctic. The radiosonde observations and
the retrieved products from HATPRO and MiRAC-P at Ny-Ålesund (in 2025) and
onboard RV Polarstern during the currently ongoing cruise PS144 (ArcWatch 2)
will be critical for the evaluation of the Arctic Weather Satellite observations. For
the evaluation, the MWRs’ high temporal resolution and good quality in almost
all weather conditions are particularly important to maximize spatio-temporal
overlaps with the satellite observations.
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