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Abstract
Magnetic skyrmions are topologically non-trivial spin textures that attract great inter-

est, offering a possible avenue towards novel spintronics applications. One of the reasons
for it is the small critical current density of about 106 A/m2 needed to depin the skyrmion
lattice. Pinning by disorder remains arguably one of the most important obstacles for all
skyrmion-based non-equilibrium experiments and the creation of useful skyrmion devices.

In the presence of a current but in the absence of an oscillating magnetic field, only
two phases describe the skyrmion lattice: a pinned phase, where the skyrmions are not
moving and an unpinned phase, where skyrmions are moving. We study the unpinning
process with the help of slowly oscillating tilted magnetic fields, so-called shaking fields.
Strikingly, the depinning happens already at tiny transverse magnetic fields of only a few
mT, which corresponds to a small tilting angle of the magnetic field of around 1◦.

In the first Part of this Thesis, we introduce an elastic model for skyrmion strings in
the bulk of a skyrmion-hosting material in the presence of pinning forces under oscillating
magnetic fields. We study the dynamics of this system using the Thiele-like approach
and provide an analytic solution in the adiabatic limit. Using this model, we predict
three phases and find the signatures of phase transitions in the Time-Involved Small Angle
Neutron scattering Experiment (TISANE). We examine the unpinning process for different
materials, including the metallic systems Mn1−xFexSi, with x = 0, 0.02, 0.04, 0.06 and the
insulator Cu2OSeO3. We find a high degree of universality in the unpinning processes
across all these materials.

In the second Part, we study the dynamics within our model under the simultaneous
application of a shaking field and an external current. A remarkably rich non-equilibrium
phase diagram appears, which includes the so-called "walking" and "running" phases.
Strikingly, the critical current density to depin the lattice drops to zero upon shaking
the MnSi skyrmion lattice, starting from the critical magnetic field amplitude. Results
obtained from this effective model qualitatively reproduce the experimental findings from
the transverse susceptibility measurements on MnSi.

In the third Part, we find, from the symmetry analysis of the skyrmion lattice, the
periodic magnetic driving schemes under which a directed motion of skyrmion strings
becomes possible. We are arguing that counterintuitively, pinning might facilitate a more
efficient motion of skyrmion lines.

This Thesis was conducted in close collaboration with Prof. Christian Pfleiderer’s
group, where most of the relevant experiments were performed. In this Thesis we aim to
show that we have acquired important new insights into the nature of pinning in the bulk
of skyrmion lattices.



Kurzzusammenfassung
Magnetische Skyrmionen sind topologische, nicht-triviale, Spintexturen, welche großes

Interesse erregen und die Möglichkeit bieten, einen Weg zu neuen Spintronikanwendungen
zu ebnen. Einer der Gründe hierfür ist, dass die Stromdichte, welche notwendig ist um
das Skyrmiongitter zu lösen, mit 10 A/m² sehr klein ist. Das „pinning“ durch Unordnung
bleibt einer der wichtigsten zu lösenden Hindernisse für alle auf skyrmion basierenden
Nicht-Gleichgewichtsexperimenten und der Konstruktion brauchbarer Skyrmiongeräte.

In der Anwesenheit eines Stroms und gleichzeitigen Abwesenheit eines oszillierenden
magnetischen Felds, beschreiben nur zwei Phasen das Skyrmiongitter: eine „pinned“ Phase,
in welcher sich skyrmionen nicht bewegen und eine „unpinned“ Phase in welcher Sie es
tun. In dieser Arbeit betrachten wir den unpinning-Prozess mit der Hilfe eines langsam
oszillierenden, gewinkelten, magnetischen Felds, einem sogenannten wackelnden Felds. Er-
staunlicherweise geschieht der unpinning-Prozess bereits bei sehr kleinen Stärken des mag-
netischen Querfelds von nur einigen mT, was einem kleinen Neigungswinkel des magnetis-
chen Felds von ca 1° entspricht.

Innerhalb dieser Arbeit führen wir im ersten Abschnitt ein elstisches Model für skyrmion
Bänder im Inneren eines skyrmionenthaltenden Materials in der Gegenwart von pinning
Kräften unter oszillierenden magnetischen Feldern ein. Wir untersuchen die Dynamik
dieses Sytems in dem wir einen Thiele ähnlichen Ansatz anwenden und leiten eine analytis-
che Lösung im adiabatischen Grenzfall her. Unter der Verwendung dieses Models sagen wir
drei Phasen vorher und finden Signaturen von Phasenübergängen in einem zeitaufgelösten
Kleinwinkel-Neutrino-Streuexperiment (engl. TISANE). Wir untersuchen den unpinning-
Prozess für verschiedene Materialien, einschließlich dem metallischen System Mn1−xFexSi,
mit x = 0, 0.02, 0.04, 0.06 und dem Insulator Cu2OSeO3. Wir finden ein hohen Grad an
Universalität in den unpinning-Prozessen für alle untersuchten Materialien.

In dem zweiten Abschnitt untersuchen wir die Dynamik innerhalb unseres Models unter
der gleichzeitigen Anwendung eines Wackelfelds und eines externen Stroms. Es ergibt sich
ein bemerkenswert reichhaltiges, nicht-gleichgewichts, Phasendiagramm, welches die soge-
nannten „gehenden“ und „laufenden “ Phasen enthält. Erstaunlicherweise fällt die kritische
Strohmdichte, welche notwendig ist, um das Gitter zu depinnen beim Schütteln des MnSi
Skyrmionengitters auf Null, beginnend ab einer kritischen Amplitude des magnetischen
Felds. Die Resultate, welche wir mit unserem effektiven Model berechnet haben, repro-
duzieren qualitativ die experimentellen Ergebnisse von querlaufenden Suszeptibilitätsmes-
sungen auf MnSi.

Im dritten Abschnitt finden wir durch eine Symmetrieanalyse des Skrymiongitters die
periodischen, magnetischen Antreibungschemas, durch welche eine gerichtete Bewegung
eines Skyrmionbands möglich wird. Wir argumentieren dafür, dass, unintuitiver Weise,
pinning eine effizientere Bewegung der Skyrmionline verursachen kann.

Diese Dissertation wurde in enger Zusammenarbeit mit Prof. Christian Pfleiderer’s
Gruppe durchgeführt, welche den Großteil der relevanten Experimente ausgeführt hat.
Mit dieser Arbeit möchten wir demonstrieren, dass wir wichtige neue Erkenntnisse über
die Natur des pinnings im inneren eines Skyrmionengitter erlangt haben.



Героям Слава

Glory to the Heroes
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Introduction
"Where shall I begin, please your Majesty?" he asked. "Begin at the beginning,"

the King said gravely, "and go on till you come to the end; then stop."
Lewis Carroll, Alice in Wonderland

The building blocks of the Standard Model are fundamental particles like electrons,
neutrons, etc. In modern physics, they appear as stable and localised vacuum excitations.
Each of them has a set of fundamental properties, such as mass, electric charge, and
spin, which determine how they interact and propagate through a medium. Fundamental
particles in nature are rarely seen alone: they interact and form the beautiful world around
us, constituted of solids, liquids, gases, etc. The study of emergent phenomena, summarised
in the legendary phrase ‘More is Different’ by Anderson [1], remains to this day a central
theme in condensed matter physics:

"One cannot use the laws learned at a certain scale as building blocks to directly
explain the emergent properties at higher scales. Reality is a collection of layers
of emergence, and all the laws and frameworks needed to understand them share
the same universal and fundamental quality." [2]

In fact, solids are built out of many electrons, protons and neutrons, the latter two being
themselves formed out of other fundamental particles, whose interactions are described by
the Standard Model. Naively, we would be led to believe that any description of a solid
is doomed to fail due to an ever-increasing amount of complexity. In practice, however,
we find that for the description of low-energy phenomena in solids, an understanding of
the collective behaviour of many particles is already sufficient. Furthermore, out of this
collective behavior, a new layer of emergent phenomena may arise, which often turned out
to fundamentally enhance our understanding of solids. One of the primary examples of such
emergent phenomena is the concept of quasiparticles, defined as long-lived and spatially
localised excitations of the host medium. They have particle-like properties and can be
assigned an effective mass, charge, and spin similar to their fundamental counterparts.
Well-known examples include quasielectrons and quasiholes in metals, phonon excitations
travelling through a solid and magnons in a magnet.

Although particle-like objects appear in many different contexts, it turns out to be
a highly non-trivial question of how one can construct an object with emergent particle-
like properties from a field-theory perspective. Many theories in physics are linear and
the superposition principle applies (e.g. Maxwell equations and Schrödinger equation).
Full non-linear theories are often too complicated to be treated exactly and methods of
perturbation theory are applied in order to obtain any kind of approximation to exact
solutions. There do exist however a few cases where non-linearities can be treated exactly,
a primary example of which are exactly integrable models. So-called solitons appear as
exact solutions to certain non-linear partial differential equations. They are localised wave
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packets, which are robust against perturbations and recover their shape even after collisions
with other such wave packets. As such, they are considered to be quasiparticle excitations 1.

Solitons can be realised as excitations of a medium such as localised waves in water,
vortices in superconductors, optical solitons, and many others. While one-dimensional soli-
ton solutions do exist and are well studied for many different non-linear equations, two- or
three-dimensional solitons turn out to be radially unstable for most field theories [3]. Thus,
one requires a mechanism that protects these quasiparticle excitations from collapse onto
a singularity. It was Tony Skyrme, who in the 1960s while working on his aim to construct
an effective theory of the nuclei, found such a stable solution. In his endeavour, he intro-
duced a stabilisation term (higher-order in spatial derivatives), with which certain peculiar
solutions, nowadays known as skyrmions, become radially stable [4,5]. In addition to this,
T. Skyrme discovered that these solutions, which described the nucleons in his model, en-
joy non-trivial topological properties, which are stable against the decay to a topologically
trivial state (such as pions, quantised excitations of the pion field [6]). Skyrmions, in fact,
are part of a larger family of so-called topological solitons. The latter are localised, smooth
solutions of field equations with finite energy which satisfy the following fixed boundary
conditions: the field experiences a topological twist around the centre, and the field value
becomes uniform at infinity. These objects are stable against decay to the trivial solution
under continuous deformations of the field, a mechanism known as topological protection.
We will explore the idea of topological protection, as well as the associated concept of a
topological invariant, in Chapter 1.

What T. Skyrme achieved is quite remarkable: due to the topological protection,
skyrmions show particle-like properties, therefore achieving an emergent particle-like so-
lution from field equations. Although the skyrmion solutions discovered by T. Skyrme
are particles in the empty space, later topological solitons have been predicted to as well
emerge in the context of condensed matter systems. In the end of the 1980s, finite-size solu-
tions for two-dimensional topological solitons, stabilised by a different mechanism (adding
linear terms with respect to the first spatial derivatives, known as Lifshitz invariants [7,8]),
were reported by A. N. Bogdanov and D. A. Yablonskii [9, 10]. They moreover predicted
that these solutions can be realised in systems with broken inversion symmetry such as
chiral magnets, chiral liquid crystals, multiferroics, etc., in the form of a skyrmion crystal.
For chiral magnets, such Lifshitz invariants are realised by so-called Dzyaloshinskii-Moriya
interactions. However, A. N. Bogdanov and D. A. Yablonskii have shown that within the
mean-field analysis, this phase is always higher in free energy than the conical phase for
cubic systems. Later, several different mechanisms of stabilisation have been proposed,
including long-ranged interactions [11,12] or extra phenomenological parameters [13].

It came as a surprise when almost 20 years later the first skyrmion lattice was observed
in experiments, with the help of neutron scattering in a bulk chiral magnet MnSi [14]

1The suffix (-on) was introduced already by Ancient Greek and appears in names of many particle-like
objects, like electrons, photons, magnons etc. Thus, the particle-like properties of ‘solitons’ and ‘skyrmions’
are also reflected in their names.

2
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in a small pocket of temperature and the external magnetic field strength, known pre-
viously as an "A-phase". Remarkably, thermal fluctuations stabilise the skyrmion phase
in these systems [14, 15]. In bulk systems, skyrmions appear in the form of a hexagonal
lattice of skyrmion strings. Already the first studies reported ultralow current densities of
about 106 A/m2, needed to depin skyrmions in these systems, five orders smaller than the
current densities needed to depin, e.g. ferromagnetic domain walls in spin-torque exper-
iments [16]. Single skyrmions are considered to be promising candidates for spintronics,
a field where information can be carried by the electron spin, instead of the usually em-
ployed electron charge. Pinning due to disorder remains one of the outstanding problems
both for fundamental science and for applications. Although it was already clear from the
first experimental studies that the strength of the disorder is relatively weak, the critical
exponents of the transition are still unknown. Moreover, the regimes of plastic depinning
and creep largely complicate the theoretical description.

In this Thesis, we go through a number of complexity layers in magnetism, starting from
single spins to large (as compared to the atomic distance) objects - magnetic skyrmions.
From the single skyrmions, in 3D systems, another emergent objects - skyrmion lines -
appear, which can bend elastically when subject to disorder. We report a study on elastic
bending of skyrmion lines subject to external slowly oscillating "shaking" fields and external
currents.

Here is a short outline of this Thesis. In Chapter 1, we introduce skyrmions and
the concept of topological protection, which is manifested through an energy barrier in
real systems. In Chapter 2, we discuss in more detail how the chirality of the under-
lying crystallographic structure gives rise to a special Dzyaloshinskii-Moriya interaction,
which favours twisted magnetic phases. This interaction is a crucial ingredient to stabilise
skyrmion textures in chiral magnets. Furthermore, we discuss in more detail the resulting
phase diagram and the skyrmion phase in MnSi. In Chapter 3, we sketch some basics of
the pinnining-depinning transitions, a phenomenon studied in many parts of physics as for
example in the context of the Abrikosov vortex lattice in superconductors. In Chapters
5 and 6, we present our study on the dynamics of elastic skyrmion lines under applied
shaking fields using a phenomenological theory of pinning. We compare our results with
the experimental results on measurements with TISANE and susceptibility measurements.
We proceed in Chapter 7 to study the dynamics of skyrmion lines under simultaneous ap-
plication of shaking field and external current. In the final Chapter 8, we move beyond the
model presented in the previous Chapters and study conditions under which a net motion
of skyrmion lattices in transverse oscillating field becomes possible.

3





Part I

Magnetism, Topology and Disorder





1 | Topology in Magnetism
"I rely heavily on the reader’s firm intuitive grasp of the notion of continuity. (...)
Bridges would not be safer if only people who knew the proper definition of a real

number were allowed to design them."
N. D. Mermin, Topological theory of defects [17]

Skyrmions, studied in this Thesis, are part of a larger family of localised topological defects in
ordered phases of matter. Topology is a powerful tool which helps to classify and provide predictions
for the robustness of states even without the full knowledge of the free-energy surface, details of
which are often unknown in experiment or complicated to study, e.g. due to disorder. A key to
it is a topological invariant called the winding number, which does not change whatever continuous
transformations are applied to the system.

We start this Chapter with a short introduction to the concept of topological protection for con-
tinuous magnetisation fields. We proceed to present topological defects for a few low-dimensional
systems, introduce skyrmions and define the corresponding winding numbers. Further, we discuss how
topological protection is realised through energetic stability for magnetic systems. Review articles,
which have been used to create this Chapter: [3, 18, 19]. Moreover, the book [20] covers skyrmions in
condensed matter systems in great depth.

1.1 Topological Protection
In mathematics the field of topology aims to describe and classify the properties of objects
under continuous deformations (for example, bending or twisting) without cutting them.
If two objects can be transformed into each other by a continuous deformation, they are
called homeomorphic to each other. One can build equivalence classes of objects based
on this property and associate topological invariants to them, which can tell if two given
objects lie in the same or different topological classes. A coffee cup and a ring doughnut,
both having one loop, can be smoothly transformed into each other and are therefore
homeomorphic, while an apple and a doughnut are not (see Fig. 1).

Excitingly, there exist deep connections between the rather abstract field of topology

  
 

 

 

(a)

  
 

 

 
(b)

Figure 1: In the prototypical example, a torus (a model for a doughnut) cannot be trans-
formed into a sphere (a model for an apple) under any smooth transformations. In contrast,
a cup and a torus are homeomorphic as both objects have one hole. Here the symbol ∼=
encodes the property of being homeomorphic.



1 Topology in Magnetism

in mathematics and observed phenomena in nature. Topology helps to categorise the
robustness of classical or quantum states under smooth deformations and predict their
static and dynamic properties [18]. In the context of solid-state physics, one of the first
well-studied topological excitations have been singular, localised lattice defects, such as
dislocations and disclinations. They play an important role in material science, the study
of superconducting vortices, liquid crystals, and many other branches of physics [21]. A
huge breakthrough was a discovery by V. Berezinskii, D. J. Thouless and J. M. Kosterlitz of
a new mechanism for phase transitions in 2D due to topological defects (vortex-antivortex
pairs), which can be realised in the 2D XY model (awarded the Nobel Prize in physics
in 2016) [22, 23]. More recently, topology has proven to be especially useful to predict,
engineer, and characterise exotic phases of matter [24].

Topology studies continuous objects, but magnetic systems are built from discrete spins.
Sometimes, however, it can be a good approximation to consider a smooth magnetisation
field instead. Defects in ordered magnetic textures, which cannot be removed under con-
tinuous deformations of the magnetisation field and are thus very stable, are called topo-
logical defects. At first sight, it might be a non-trivial task to tell whether or not a defect
in a complex magnetic texture can be removed under continuous deformation. That’s ex-
actly where ideas of topology can be of help. If a state is topologically inequivalent (has
different topological invariant) to the uniform state (state without a defect), a state with
a topological defect is said to be topologically protected. From the mathematics point
of view, such two states cannot be connected by any continuous transformation, therefore
the word "protected". Topologically protected states which appear in magnetism can have
different nature: some are localised smooth configurations (like domain walls and single
skyrmions), while others are extended textures of ordered phases (like the periodic lattice
of skyrmions). A Néel domain wall is an example of a localised smooth configuration,
which separates two different magnetic orderings (see Fig. 2).

Note that the energetics of a particular magnetic system will determine whether states
with non-trivial topological properties are stable. In real magnetic systems, it might be
more energetically favourable for a system to go to a state with a lower winding number
by creating singularities (for further discussion, see Sec. 1.3). In the next Section, we
proceed to define the topological invariant and study a few important examples of non-
trivial topological states in low dimensions.

Figure 2: A Néel domain wall with a typical length d, smoothly interpolating between two
domains. A spin direction is parametrised by the angle θ(x).

8



1.2 Topological Invariants: Skyrmions

1.2 Topological Invariants: Skyrmions
In this Section our focus is on topologically non-trivial, real-space localised defects that
appear in magnetism. We discuss a topological invariant called the winding number, which
helps to study such states systematically. We then proceed further to introduce so-called
hedgehogs and skyrmions.

Ordered phases of matter are characterised by order parameter space. A magnetisation
field can be seen as a mapping between two spaces: real space to order-parameter space

r ∈ Rd position (base space) 7→ M ∈ Rt magnetisation (target space) . (1.1)

Here d and t are the dimensions of the base and target space, respectively. The length of
the magnetisation vector is constant in a broad temperature range, which is why we switch
to the unit vector in the direction of the local magnetisation, M̂ = M

M
. Therefore, we can

further simplify the target space to a unit sphere of dimension d′ = t− 1

r ∈ Rd 7−→ M̂ ∈ Sd′ . (1.2)

Note that the dimensions of the base and target space are generally independent and are
fixed by the physical problem at hand. Depending on the dimensions of these two spaces,
a large zoo of different topologically non-trivial magnetic defects can appear [25].

We start the discussion by considering a 1D system with the target dimension d′ = 1.
In this case, a topological defect is given by a configuration built out of two (Néel) domain
walls with a constant angular progression, depicted in Fig. 3c. We parameterise the
position by the coordinate x ∈ R1 (because of the periodic boundary conditions equivalent
to the circle S1, see Fig. 3b) and the spin direction by the angle θ(x). The corresponding

(a) (b)

(c)

Figure 3: (a) A topologically trivial state with all spins pointing in one direction θ(x) = 0.
(b) and (c) A pair of Néel domain walls with constant angular progression.

9



1 Topology in Magnetism

map f is then given by
f : r ∈ S1 7−→ M̂ ∈ S1 . (1.3)

The group of such mappings consisting of equivalence classes of maps which can be con-
tinuously deformed into each other is called a homotopy group. In the case at hand, the
homotopy group is the fundamental group π1(S

1), which is isomorphic to the group Z of
integers. The winding number N ∈ Z, which classifies these mappings, is given by

˛
dx

dθ(x)

dx
= 2πN, N ∈ Z , (1.4)

and counts the number of times the target space is covered as one follows a curve through
the position space. The winding number depends on the orientation of this curve: it is
negative if the direction of the curve is clockwise and positive otherwise. For the state
presented on Fig. 3c, spins rotate around the circle once, corresponding to the winding
number N = −1. This state is homotopically distinct from a trivial state (N = 0) with
all spins pointing in one direction (θ(x) = const.), corresponding to a single point on the
target manifold (Fig. 3a). Different winding numbers signify that deforming this state back
to the trivial state is impossible without creating singularities.

One important topologically non-trivial excitation is given by a vortex defect, which
appears, for example, in XY magnets [22]. In 3D with the target space dimension d′ = 2

a defect called hedgehog (or a Bloch point) appear, created by arrows pointing in the
radial direction (the top part of Fig. 4a). The corresponding mapping f is given by

f : r ∈ S2 (a sphere) 7−→ M̂ ∈ S2 (a sphere) . (1.5)

Both spheres can be parametrised with the help of spherical angles f : r(φ, θ) 7→ M̂ (ϕ, ϑ).
The corresponding homotopy group of this map is then π2(S

2), which as in the first ex-
ample, is isomorphic to the group Z of integers. The winding number Q can be defined
as ‹

dΩb
dΩt

dΩb

= 4πQ, Q ∈ Z . (1.6)

Here Ωt and Ωb are the solid angles of the target and base spaces, respectively. As the
total solid angle is 4π, this topological invariant counts the number of times the target
space covers the sphere. It is a non-trivial fact that any continuous transformation of
the vector field will not change this invariant. One may rigorously prove this result in
the coordinate-independent formalism of differential forms 2. For example, if we tilt all
spins in the azimuthal direction as depicted on the top part of Fig. 4b, the winding num-
ber will not change, as it is a homotopic deformation. For both structures, the target
sphere is covered once, Q = 1. The mapping between two spheres can be parametrised

2It is a deep insight from mathematics, that the integral 1
Vol(S2)

´
S2 f

∗ω, where ω = xdy ∧ dz + ydz ∧
dx+zdx∧dy is the volume form of S2, takes values in π2(S

2), i.e. computes the winding number of M . In
fact, every closed integral over closed differential forms is invariant under homotopic deformations of M .
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1.2 Topological Invariants: Skyrmions

as ϑ = θ, ϕ = Qφ + γ, where Q is sometimes called vorticity and is fixed by the topol-
ogy, while γ is the helicity, representing the azimuthal rotation of all spins (γ = 0 or
π for the spin structure on the left, γ = ±π/2 on the right).

If we squash the hedgehog flat by stereographic projection (black arrows on Fig. 4a
and b), it can be accommodated into the 2D space. The resulting topological defect is
called a skyrmion. On the left, a so-called Néel skyrmion is depicted (named so because
if one considers a one-dimensional cut through the diameter of a skyrmion, one obtains
a Néel domain wall, see Fig. 4c). On the right, a Bloch skyrmion is depicted. In both
cases, skyrmions are embedded in a uniform state with the following boundary condition:
in the middle, the magnetisation is kept anti-parallel to the direction of the uniform field
at infinity.

In Cartesian coordinates, the integral for the winding number Q can be rewritten to
yield the expression

Q =
1

4π

¨
dxdy M ·

(
∂M(x, y)

∂x
× ∂M(x, y)

∂y

)
. (1.7)

The quantity which is being integrated is called the skyrmion density.

Figure 4: (a) A spherical projection of a spin configuration, called a hedgehog (or a Bloch
point) with all spins pointing in the radial direction gives a Néel-skrymion. (b) A spin
configuration, obtained from a hedgehog by rotating all spins in the azimuthal direction.
Spherical projection yields a Bloch skyrmion. (c) a Néel and (d) a Bloch domain wall,
created by a 1D cut of corresponding skyrmions in the radial direction. Picture credits (a)
and (b) from Ref. [26], (c) and (d) from Ref. [27].
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1 Topology in Magnetism

1.3 Energetic Stability
In the previous Section, we introduced skyrmions and the associated winding number.
Topological protection, introduced in Section 1.1, means that the system, described by the
continuous magnetisation field, cannot go to the state with a lower winding number under
any continuous transformations without creating singularities. The first limitation is that
magnetic materials are built from discrete spins. The assumption of a continuous magneti-
sation field is valid only if the variation of the spin structure happens over distances much
larger than the distance between single atoms (which is the case, for example, for spin
configurations in helical and skyrmion phases in MnSi [14]). Further, for continuous mag-
netisation fields topological protection in real physical systems shall be rather understood
as "costing a lot of energy" but it is strictly speaking not forbidden. In fact, it might be
more energetically favourable for the system to create a singularity and go to a state with
a lower winding number. Moreover, topological protection breaks down near the edges of
the sample [28].

Let us first explain how topological protection is manifested by a finite-energy barrier in
the example of a 1D domain wall (Fig. 2). The free energy of the ferromagnetic material in
the absence of an external magnetic field is symmetric with respect to the magnetisation
reversal. Therefore, the regions with constant magnetisation, called domains, have the
same energy. A domain wall smoothly interpolates between two such regions. Removing a
domain wall and thus changing the system’s state to a uniform state will cost a large energy
∝ L/2 for a system of size L. Thus, once this excitation is created, it will typically be
very stable. However, if two domain walls with the angular progression of spins in different
directions meet, the total winding number is 0, and these domain walls can annihilate
smoothly, emitting the spin waves [29]. Note that, in contrast to the domain wall case, the
energetic barrier for skyrmion does not scale with the system size.

Skyrmions, depending on magnetic interactions in the system, can arrise as stable or
unstable solutions upon minimising the free energy. There should be a mechanism which
protects skyrmions from expanding or shrinking in the radial direction and eventually
collapsing to a uniform state by creating a singularity. In fact, single skyrmions embedded
in a ferromagnet were found to be valid solutions for the Heisenberg ferromagnets already
back in 1975 [30]. However, they turned out to be only a metastable solution. As we
shall see in the next Chapter, another, more sophisticated magnetic interaction is needed
in order to stabilise skyrmions.

Summary and Outlook
In this Chapter, we discussed the concept of topological protection and introduced 2D Néel
and Bloch skyrmions and hedgehogs. A large family of other topological excitations appear
in 2D, such as merons, bimerons, etc. Moreover, skyrmions in 3D can be extended in many
different ways, such as skyrmion tubes, chiral bobbers, and hedgehog lattices. Even more
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1.3 Energetic Stability

exotic magnetic textures, hopfions (closed loops of skyrmion strings) have been detected
recently in experiments [31]. We will study the skyrmion tubes more closely, while other
structures are out of scope for this Thesis. The interested reader is referred to the review
article [32].
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2 | The Energetics of Twists

In this Chapter, we proceed to discuss how skyrmions introduced in the previous Chapter, can be
stabilised in real materials. Here we concentrate our discussion on a certain class of magnets for
which the unit cell is distinguishable from its mirror image, called chiral magnets. Chirality together
with a weak spin-orbit coupling give rise to an exotic spin interaction called antisymmetric exchange
interaction (or DMI). The competition of DMI with the dominant exchange interaction gives rise to
helical, conical, and skyrmion lattice phases in these materials.

We start this Chapter with a short review of the relevant microscopic spin interactions present
for chiral magnets. Based on symmetry considerations, we proceed to find an expression for the free
energy of this system in the gradient expansion of the continuous magnetisation field. Furthermore,
we will then shortly introduce twisted magnetic textures, such as helical and conical, with an emphasis
on the skyrmion lattice phase.

This Chapter is largely based on the review articles [18, 19].

2.1 Spin Interactions

One of the possible ways to stabilise magnetic skyrmions is chirality. Our hands are
probably the simplest example of chiral objects: the left hand cannot be superposed on
the right hand by any sequence of rotations and translations. This “handedness” in the
world around us is omnipresent. Coils, screws, and springs appear naturally in different
parts of physics, chemistry, and biology. In fact, most molecules relevant to the existence
of life and for pharmaceutical products are chiral.

Crystals can be described by the periodic repetition of their elementary building blocks,
called unit cells. In the context of condensed matter physics, magnetic crystals exist for
which all unit cells lack a centre of inversion symmetry, called chiral magnets. An impor-
tant subclass of them is formed by the transition-metal germanide and silicide compounds,
crystallising in the cubic B20 crystal structure (examples are MnSi, FeGe, MnGe, etc.).
Although they have a cubic structure, their space group P213 contains no inversion sym-
metry. A unit cell of MnSi, which can serve as a neat example of this property, can be
found in Fig. 5 (for more details on physical properties of this material, see Refs. [33,34]).

Spins on periodic lattice structures interact in various ways. Here, we restrict our
discussion to the most relevant spin interactions for the stabilisation of topological spin
textures in chiral magnets. The dominant contribution to the energy comes from the
short-ranged (symmetric) exchange interaction. Although the microscopic origin of
magnetism is quantum mechanical, magnetic spins in solids can often be considered in a
semiclassical limit, where spins are modelled by vectors localised at lattice sites3. The

3This assumption is justified in the large-spin limit: in this case, the spacing between projections of the
spin operator onto a given axis goes to zero as the total spin values grow.



2 The Energetics of Twists

exchange energy can be written as

Hex = −J
∑
⟨i,j⟩

Si · Sj . (2.1)

Here Si denotes a spin localised at the lattice site i, J is the exchange coupling constant,
and we sum over ⟨i, j⟩, the nearest-neighbour sites, reflecting the interaction’s short-ranged
nature. For J > 0 (J < 0), this term is minimised when neighbouring spins align parallel
(antiparallel), as is the case for ferromagnetic (antiferromagnetic) materials.

One of the prominent examples of relativistic effects in solids is the spin-orbit coupling,
which couples the direction of the electronic spin to the system’s crystal axis and therefore,
lifts the spin-direction degeneracy. In particular, this term is allowed for chiral magnets.
However, the strength of spin-orbit coupling λso is typically much weaker than that of other
couplings, as it is of a relativistic nature. The combination of exchange and spin-orbit cou-
plings gives rise to the effective antisymmetric exchange coupling present in chiral magnets.
I.E. Dzyaloshinskii and T. Moriya pioneered the study of this interaction [35, 36], known
nowadays as Dzyaloshinskii - Moriya interaction, short DMI. The corresponding spin
Hamiltonian is

HDM =
∑
⟨i,j⟩

Dij · (Si × Sj) . (2.2)

The direction of the DM vector Dij depends on the details of the induced orbital moments
and is constrained by the symmetries of the underlying crystal system. If the system
is not chiral, there is a centre of inversion symmetry between two spins and this term
automatically vanishes4. For Dij > 0 (Dij < 0), the left-handed (right-handed) twisted

4Note that this argument applies only in the bulk. An interface between two materials cannot be
inverted, which gives rise to a so-called interfacial DMI (for example, at metallic ferromagnet/heavy-metal
interfaces) [37].

Figure 5: A unit cell of MnSi. Silicon atoms occupy four sites, forming a tetrahedron
aligned along the (111) direction. Manganese atoms form a tetrahedron, inverted relative
to Si atoms. Importantly, the resulting structure lacks inversion symmetry. Picture credit
from [33].
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2.2 On the Free Energy of Chiral Magnets

magnetic structures are favoured, therefore introducing the sense of a preferred direction.
If one adds an external magnetic field B, spins experience the Zeeman interaction

HZ = −
∑
i

Si ·B , (2.3)

which pushes them to align with the external magnetic field. This term remains invariant
under the rotation of spins around the magnetic field, as well as under the simultaneous
rotation of spins and magnetic field in space.

Another contribution to the energy comes from the magnetic anisotropies5 and long-
ranged dipolar interaction, which turn out to be relatively weak for skyrmion crystals.
Thus, we omit the detailed discussion of these interactions here.

Competition of the exchange and DMI terms in chiral magnets leads to the formation
of twisted spin structures, which we will discuss in more detail in Section (2.3). The
symmetric exchange interaction is generally much stronger than DMI, causing spins to
point roughly in the same direction when considered locally but start to precess around a
common axis when viewed on large length scales over many unit cells due to the DMI.

Before we proceed to the next Section, we shall introduce one more approximation.
Generally, a microscopic description of a magnetic material based on a single-spin picture
is complicated and material-dependent. The variation of the direction of magnetic spins,
leading to the effects we are interested in, happens over distances much larger than the
separation of atoms. In order to capture the long-wavelength physics one can “coarse-
grain” the lattice of discrete spins and switch to the continuum picture. To achieve this,
a standard procedure is to average over a region much larger than the lattice spacing
(therefore containing a large number of spins) but still much smaller in comparison to the
full size of the system to be able to resolve structures like domain walls and skyrmions. The
information about the smoothly varying spin texture is then encoded in a continuous vector
field, called local magnetisation M(r), which is given by the average of the elementary
spins in the vicinity of the point r (an approximation called micromagnetic limit). In
the next Section we will proceed to write the free energy of chiral magnets in terms of the
continuous magnetisation density.

2.2 On the Free Energy of Chiral Magnets

The standard tool to describe (thermal) phase transitions is the Ginzburg-Landau theory.
Close to the critical temperature, the divergence of the correlation length leads to the
universal behaviour of systems, largely independent of the microscopic details. One can

5Typically, the magnetocrystalline anisotropy is being considered, which describes the effect that spins
favour certain directions in space depending on the symmetry of the crystalline structure due to the spin-
orbit interaction. However, this is a higher-order effect in the spin-orbit interaction compared to the DMI
for cubic chiral magnets. Anisotropies can also arise close to the surface or on interfaces, as well as locally
in bulk from crystal imperfections.
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2 The Energetics of Twists

then classify systems based on their dimensionality and symmetries. This leads to the idea
of universality classes, a central concept in modern condensed matter physics.

For magnetic materials, the relevant order parameter is magnetisation. In the disor-
dered (paramagnetic) phase, above the critical temperature Tc, the magnetisation is zero on
average, while for low temperatures T < Tc, the order parameter develops a non-zero value
and the system is in the ferromagnetic phase. The critical temperature Tc is determined
by the (ferromagnetic) exchange interaction J , the largest energy scale of the problem.
For chiral magnets, the ferromagnetic state is, however, unstable towards a helical spiral
modulation, resulting in different types of ordering below Tc. In order to discuss them, we
first derive the expression for the free energy for such systems based on the knowledge of
relevant symmetries.

A partition sum is a central object needed to study the thermodynamic properties of a
system. It is the integral over all possible magnetisation configurations, weighted with the
respective value of the free energy

Z =

ˆ
DM (r)e−F [M(r)] . (2.4)

This functional integral, however, is a very complicated object to calculate. The conven-
tional method in order to find an approximate solution in the thermal equilibrium is the
saddle-point approximation, also known as a mean-field theory. This method incorpo-
rates a large simplification which, however, still allows useful predictions about the system
to be made. The free energy is therefore minimised by a magnetisation configuration M 0,
which can be found as a minimum of the free energy functional with respect to varying the
magnetisation M

Z ≈ e−F [M0(r)] , F [M0(r)] = min
M(r)

F [M (r)] . (2.5)

The next order of expansion, where quadratic fluctuations around the mean-field value are
considered, is called Gaussian approximation.

Based on the symmetries of the system, we can fix a form of the free energy F [M (r)],
which must obey the same symmetries as the underlying system. We start by considering
the system with the highest symmetry, neglecting DMI and crystal anisotropies (in other
words, in the zeroth order approximation in terms of small relativistic spin-orbit coupling
λso). This theory is well-known as it accurately describes (itinerant) ferromagnets in the
absence of an external magnetic field and higher-order effects. The free energy is written
in terms of a space-dependent local magnetisation M (r) and its gradients must be:

1) invariant under rotations of the magnetisation field around an arbitrary axis
M → RnM ,

2) translation and rotation symmetric in space and invariant under spatial inversion
r → −r.
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2.2 On the Free Energy of Chiral Magnets

The symmetry is lower if the system is in the non-zero external magnetic field B. The
free energy is then invariant under combined rotation of space and magnetisation field
around an axis defined by B and simultaneous inversion of magnetisation and magnetic
fields (M → −M ,B → −B).

Under these symmetry constraints, one can write the free energy F [M (r)] of a ferro-
magnet at a fixed magnetisation field M (r) in the gradient expansion (valid for slowly-
varying magnetisation) as

F [M(r)] =

ˆ
d3r

(
J(∇M )2 + a(M ·M) + U(M ·M)2 −BM + . . .

)
. (2.6)

Here, J , a, and U are phenomenological, material-dependent parameters, the exact values
of which are fixed by the microscopic theory. The first term J(∇M)2 is minimised for
J > 0, when the gradient of magnetisation is zero, corresponding to the ferromagnetic
alignment of spins. The following term with a = a0(T − Tc) is, for a0 > 0, positive in
the paramagnetic and negative in the ferromagnetic phase. Together with the U(M ·M )2

term, which stems from interactions and is essential for the stability of the system at larger
values of M , they are responsible for the creation of the double-well potential (see Fig. 6
for magnetisation in 1D). The Zeeman term, −BM , pushes the magnetisation to align
with the applied magnetic field.

The symmetry of chiral magnets (such as MnSi) is even further reduced, and therefore
the expression for the free energy presented above needs to be modified. A phenomenolog-
ical approach is based on adding Lifshitz invariants (antisymmetric functions of the form
Mi

∂Mj

∂x
−Mj

∂Mi

∂x
[7,8]), which are odd under spatial inversion and linear in the first spatial

derivatives, representing the DMI as discussed in the previous Section. This leads to a
DM · (∇×M ) contribution to the free-energy potential. The most general expression for
the free-energy density of chiral magnets with B20 crystal symmetry, up to second order
in derivatives of M field (and forth in spin interactions), was derived by Bak and Jensen
in 1980 [38]. Up to the second order in the small relativistic spin-orbit coupling λso (and

Figure 6: The free energy for 1D magnetisation field for (a) T > Tc and (b) T < Tc. Picture
credit from [19]. Below Tc, two minima appear.
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neglecting anisotropy terms), the free energy then reads

F [M(r)] =

ˆ
d3r

(
J(∇M )2 +DM · (∇×M ) + a(M ·M ) + U(M ·M )2 −BM

)
.

(2.7)
Competition of the first term in the Eq. (2.7), which favours colinear structures, with the
second term, which gives a negative contribution for certain twisted structures, leads to
the formation of the helical, conical and skyrmion phases in bulk chiral magnets, which we
will discuss in more detail in the upconing section.

Let us comment on the radial stability of a single skyrmion (see Sec. 1.3). Why a
magnetic field is needed to stabilise this structure, can be seen from an intuitive criterion
called Derrick’s theorem. The radius of the skyrmion R determines how fast the rotation
of spins approaches the uniform solution (for exact solutions and schemes of determining
the skyrmion radius R see, for example, Ref. [39]). In order for such a structure to be
radially stable, the free energy given by Eq. (2.7) should have a minimum as a function
of the skyrmion radius R. The DM term gives a negative contribution and scales as R

because of the gradient, while the Zeeman term scales as R2 (the area of a skyrmion,
given by spins which do not point along the field direction). Therefore, the total energy
E ∝ −a1R + a2R

2, where a1 and a2 are positive constants, has a stable minimum with
respect to R [19].

2.3 Helical, Conical, and Skyrmion Phases
In this Section, we focus our discussion on twisted spin textures, which periodically fill the
medium. To study them, we apply a Fourier transformation with M (r) =

∑
q mqe

iq·r to
the free energy for chiral magnets Eq. (2.7), which leads to

F [M (r)] =
∑
q

[
(Jq2 + a)(mq ·m−q) + iDq · (mq ×m−q)−mq ·B

]
(2.8)

+U
∑

q1q2q3q4

[
(mq1

·mq2
)(mq3

·mq4
)δ(3)(q1 + q2 + q3 + q4)

]
. (2.9)

Note, that the Fourier components have the property m∗
q = m−q. The q = 0 compo-

nent corresponds to the ferromagnetic magnetisation. Competition of the first two terms,
quadratic and linear in q, leads to the instability of the ferromagnetic state towards a
helical spiral modulation.

Luckily, there is a way to directly measure Fourier components of these textures.
Diffraction techniques are powerful experimental probes for ordered phases of matter, which
provide complementary information to real-space and imaging techniques.

Neutrons are especially useful for studying periodic spin structures, as they have large
penetration depth and do not experience Coulomb interaction and are scattered by atomic
nuclei and magnetic moments only. The measured scattering Bragg intensity profile gives
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2.3 Helical, Conical, and Skyrmion Phases

the Fourier components of magnetic structure: I(q) ∝ |mq|2. Probing large structures
(compared to the spacing between atoms) means lower q vectors, therefore smaller scat-
tering angles θ. Thus, this technique is called the small angle neutron scattering (SANS).
For more details on this technique and on the setup, which was used to find the skyrmion
phase (see Fig. 7b), the reader is referred to Ref. [14]. The phase diagram of MnSi, which
is obtained with the help of this technique, is depicted in Fig. 7a. Below the critical tem-
perature, Tc ≈ 29K, a number of ordered phases are formed. At high magnetic field values
B, the field-polarised phase appears, in which all spins point in the direction of the applied
field. At smaller magnetic field values, helical, conical, and skyrmion phases appear.

Helical and conical phases
In the absence of a magnetic field and below the transition temperature Tc, the competition
between the first two terms in Eq. (2.9) pushes spins to twist with a constant angle and
align perpendicular to the propagation vector q. This phase is known as a helical phase.
The resulting magnetisation is given by

M (r) = M0
1√
2
(n1 cos(q · r) + n2 sin(q · r)) . (2.10)

Here, the length of the propagation vector q = D/J reflects again the competition of
two energy scales and n1, n2 are orthogonal unit vectors (see Fig. 8). The length of the
magnetisation vector M0 ≡ |M | does not change in a broad temperature range and is equal
to the saturation magnetisation, which is reached at low temperatures. For MnSi, the helix
has a pitch of Lh ≈ 180Å, much larger than a unit cell parameter of a ≈ 4.56Å [33], which
leads to a decoupling of the magnetic and atomic structures. Note that this solution is
degenerate with respect to the direction of the propagation vector q. In order to fix the
direction of this vector, one needs to consider the neglected anisotropy terms in Eq. (2.7)
[14,39]. The propagation vector q is in fact pointing in the easy-axis direction imposed by
the crystal symmetry (which is given by the [111] crystalline direction for MnSi).

Although on the mean-field level the transition from the helical to paramagnetic phase

Figure 7: (A) Phase diagram of MnSi measured with the help of small angle neutron
scattering (SANS). (B) SANS setup used in the [14]. Notably, the applied magnetic field
B was directed parallel to the incident neutron beam.
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2 The Energetics of Twists

for zero magnetic field is of second order, the nature of this transition is more intricate. It
turns out that the interactions between the fluctuations drive a first-order transition [40]
(the mechanism initially proposed by Brazovskii [41]).

In an applied magnetic field, the directional degeneracy of the propagation vector q is
lifted and spins start to cant in the direction of the applied field (see Fig. 8b). This phase
is known as a conical phase.

For these phases, two Bragg spots appear in SANS measurement at momenta q and −q,
parallel to the magnetic field in the conical phase and along [111] in the helical phase [15].

Skyrmion phase
In a small range of temperatures and magnetic fields between conical and paramagnetic

phases, even more exotic spin textures can be stabilised, characterised by a multiple-q
order, where several propagation vectors qi coexist. In the presence of a magnetic field,
one of the components in Eq. (2.9) can be set to its ferromagnetic value q1 = 0, giving the
uniform component of the magnetisation M f . Then the second sum is proportional to the
δ(3)(q2 + q3 + q4) term. Such a term appears in the theory of a liquid to a crystal lattice
transitions. In our case, it gives rise to the so-called skyrmion-lattice phase [14, 19].
The skyrmion-lattice phase is slightly higher in the free energy than the conical phase
in the mean field approximation for 3D systems6. Therefore, the skyrmion lattice was
predicted to be thermodynamically unstable in early studies [9, 10]. However, strikingly,
thermal fluctuations above the mean field stabilise this solution (first calculated in Gaussian
approximation in Ref. [14] and later confirmed in a non-perturbative manner using classical

6Interestingly, the situation is different for 2d films, see [42].

(a) (b) (c)

Figure 8: Schematics of (a) helical, (b) conical and (c) skyrmion phases (magnetisation
vanishes along yellow tubes). Picture credits for subfigures (c) from [15].
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2.3 Helical, Conical, and Skyrmion Phases

Monte Carlo simulations in Ref. [15]). A full calculation shows that the solution can be
approximated by a superposition of three helices

M (r) ≈ M f +
3∑

i=1

Mqi
(r +∆r) . (2.11)

Here, Mqi
(r) is the magnetisation of a single helix as given by Eq. (2.10) with the wave

vector qi and two unit vectors, ni1 and ni2, orthogonal to each other and the corresponding
wave vector. The three propagation vectors q1, q2, q3 are of equal magnitude, have an
angular separation of 2π/3 and lie in the plane perpendicular to the magnetic field. All
three helices have the same chirality. The resulting spin texture has hexagonal symmetry,
reflected in the six Bragg spots, arranged on a regular hexagon in the plane perpendicular to
B (for all directions of B, meaning that the skyrmion lattice is being formed independently
from the underlying crystal structure). Note that the exact solution also contains higher
order modes (for example, the signature of the double wave vector q can be seen in the
neutron scattering data, see Fig. 9). However, the weight of these modes decays rapidly, so
this approximation remains valid. The skyrmion lattice extends to the 3D, forming elastic
tube-like structures, which will be the main focus of this Thesis (see Fig. 8c). This elastic
lattice resembles the one formed by superconducting vortices [43].

One can assign a topological invariant to the skyrmion lattice. A unit vector in the
direction of magnetisation M̂ , integrated over a unit cell (u.c.) of a skyrmion lattice, has
the topological property

1

4π

¨
u.c.

dxdy M̂ ·

(
∂M̂ (x, y)

∂x
× ∂M̂(x, y)

∂y

)
= W , (2.12)

where W = −1 is a winding number of a skyrmion lattice. A distinctive consequence of
this topological protection is that the skyrmion lattice has a very small pinning to the

Figure 9: SANS scattering intensities data from the measurements on MnSi. (a) at B = 0
and T = 27 K a helical phase is measured. (b) at T = 26.77 K a sixfold pattern appears in
the plane perpendicular to magnetic field B. (c) A sixfold pattern is present (in the plane
perpendicular to magnetic field B) for a random orientation of the sample. For (b) and
(c), background measurement above Tc was subtracted. Picture credit from Ref. [14].
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2 The Energetics of Twists

Figure 10: Temperature-magnetic field phase diagram of Cu2OSeO3 determined from mag-
netic susceptibility measurements. Magnetic field is applied along [100] direction. Picture
credit from Ref. [44].

underlying lattice and, therefore, allows for easy manipulation with external current and
drives, as we shall see in the next Chapter.

Summary and Outlook
In this Chapter, we considered magnets with a B20 structure in more detail, such as MnSi,
FeGe, which are weak itinerant ferromagnets and have metallic properties. The origin of
their chirality lies in the asymmetric exchange mechanism, due to which these materials
have helimagnetic structure in the bulk and can host skyrmions. In the next Chapter, we
discuss how skyrmion lattice in these materials can be driven with the help of a external
current.

A high degree of universality exists in temperature-magnetic field phase diagrams across
different cubic chiral magnets [45]. Note, however, that some of these compounds have very
different origins to their chirality. Examples are long-ranged dipolar, frustrated exchange,
or four-spin exchange interactions [46], to name just a few. One important example for this
Thesis is the Mott insulator Cu2OSeO3. It is also chiral but predominantly ferrimagnetic
(formed by two sublattices directed in opposite directions). This material can also host
skyrmions, and its temperature-magnetic field phase diagram looks remarkably similar to
that of MnSi (see Fig. 10). The only significant difference is that its phase diagram features
an additional low-temperature skyrmion phase for magnetic fields applied along the easy
crystallographic (100) directions, which is currently extensively studied [47].
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2.3 Helical, Conical, and Skyrmion Phases

Furthermore, skyrmions exist in real materials not only in the form of periodic lattices
but in many different arrangements, such as single skyrmions in 2D, as a gas of skyrmions
and glassy configurations [48]. However, these systems lie outside of the scope of this
Thesis.
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3 | Pinning and Creep
"Owl explained about flux pinning and creep. He had explained this to Pooh and

Christopher Robin once before, and had been waiting ever since for a chance to do
it again, because it is a thing you can easily explain twice before anybody knows

what you are talking about. "
A.A. Milne, Winnie-the-Pooh, from [43]

The central theme of this Thesis is the pinning-depinning transition due to shaking fields and
external currents. This Chapter discusses how a skyrmion lattice can be manipulated using external
drives, especially by an external current for metallic systems such as MnSi. A crucial ingredient to
understand and control the dynamics of skyrmion lattices under external drive is pinning. Pinning can
have many different microscopic origins, which we discuss more closely.

We start this Chapter with a short introduction to the pinning-depinning transitions, which is a
universal phenomenon across many physical systems. Further, we discuss how emergent electrodynam-
ics arise for non-trivial spin textures and the skyrmion Hall effect, due to which ultralow depinning
current densities were detected. In the next Section we shortly introduce the equation of motion for
skyrmions as rigid particles. Moreover, we discuss the regimes of elastic and plastic depinnings of
skyrmion lattices. We proceed to review several important experimental and numerical studies on the
bending and breaking of skyrmion lines under external drives. At the end of this Chapter, we shortly
introduce the phenomenon of creep.

Review articles, which have been used while writing this Chapter are Refs. [46, 49,50].

3.1 Pinning - Depinning Transitions
In an analogy to second-order equilibrium phase transitions, elastic systems can undergo
nonequilibrium phase transitions between different dynamical phases when subject to ex-
ternal drives. The study of critical exponents and universality classes of these transitions
is an active research field, with a high degree of universality across many different phys-
ical systems, such as vortices in type-II superconductors [43], charge density waves [51],
magnetic domain walls [52,53] and many other (for a broad review article, see Ref. [49]).

Due to their topological stability and solitary particle-like behaviour, skyrmions can be
effectively described as interacting particles (or interacting elastic strings for 3D systems).
This approximation is appropriate as long as weak pinning produces only little distortion on
the shape of the skyrmions (or skyrmion lines). Potential minima in the disorder landscape
(called pinning sites) produce a force on the skyrmions, with the maximum value of this
force called pinning strength. The nature of such pinning sites on the microscopic level can
be naturally occurring atomic impurities, local anisotropy, sample thickness modulations,
missing spins, holes, adatoms at the surface and many other effects. Moreover, in 3D
systems, more extended defects such as grain boundaries or dislocations produce even
stronger pinning forces [49].

The coupling to external drives allows to efficiently move skyrmions and opens a new
area to investigate. Probably the most well-studied one is by applied current due to the
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spin-transfer torques for metallic systems (such as MnSi), which we discuss in detail in the
next Section. This motion can be then deduced from changes in the Hall resistivity [54,55]
or observed in direct imaging experiments [56–58]. Moreover, one can move skyrmions
with the help of temperature gradients [59–62], spin waves [63–65], magnons [66], etc. In
this Thesis, the focus of our attention is on the study of skyrmion line movement due to
the external transverse magnetic fields.

A skyrmion lattice driven over a disorder potential experiences a competition of ordering
effects, favouring a triangular lattice, with random pinning, which tries to disorder the
lattice. This competition gives rise to a rich variety of non-equilibrium phases. Below a
critical threshold Fc, skyrmions stay pinned (called the pinned phase), while above this
threshold, particles start to move (called the moving phase). When skyrmions move,
pinning creates friction for the skyrmion motion under an applied drive. For elastic
depinning (which we will discuss in more depth in Sec. 3.4), the velocity-force curve
takes the form v ∝ (Fd − Fc)

β where Fd is the driving force and β is a critical exponent.
Depending on the value of β, different university classes can be identified. Unfortunately,
the exact value of this critical exponent for the skyrmion lattice remains unknown and is
a hard problem to tackle both theoretically and experimentally [50].

One of the significant breakthroughs in the field of skyrmions was a report of ultralow
electric currents needed to depin the skyrmion lattice [16]. In the next Section, we will
discuss closer how this phenomenon was detected.

3.2 Emergent Electrodynamics. Skyrmion Hall effect

In this Section, we discuss more closely the interplay of spin currents with skyrmion lattices.
This Section is based on a review article, Ref. [46].

Consider conduction electrons passing through a spin texture in a metallic skyrmion
hosting material (e.g. MnSi). We assume that conduction electrons and spins coupled
ferromagnetically at each site by Hund’s coupling (in the strong coupling limit). Spins of
the electrons in this model align with the local magnetization direction M̂(r) adiabati-
cally. The hopping amplitude of an electron between two neighboring sites in a non-planar
skyrmion structure acquires a phase factor, known as a Berry phase. It is also sometimes
called geometric or topological, as it depends only on the path taken, not on time. This
vector potential produces an effective electromagnetic field, which electrons will experience
even in the absence of external fields. The effective fields which arise due to this effect are
called emergent electromagnetic fields. An emergent magnetic field Be is proportional
to the local skyrmion density [54]

Be
i = ϵijk

ℏ
2
M̂ · (∂jM̂ × ∂kM̂ ) . (3.1)
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The magnetic flux corresponding to it is proportional to the topological winding number

ΦB = 2πW . (3.2)

An emergent electric field Ee is given by

Ee
i = ℏ M̂ · (∂jM̂ × ∂tM̂) . (3.3)

Note that the emergent electric field is absent for a static skyrmion, whereas the magnetic
field is present even in the static case. For a derivation of emergent fields and more
detailed discussion, see Ref. [54]. Using ∂tM̂ = ∂xi

∂t
∂xi

M̂ one can rewrite the emergent
electromagnetic field with help of the drift velocity of skyrmion crystal vd as Ee = vd×Be.

Under applied electric E and magnetic B fields, conduction electrons will experience a
Lorentz force −e[(E +Ee) + v × (B +Be)], where −e is the charge and v is the velocity
of electrons. Because of the emergent magnetic field Be, the Hall effect will occur, called
the topological Hall effect (THE). Moreover, due to the spin transfer torque (STT), the
skyrmion lattice will move in the transverse direction to the current, an effect referred to as
skyrmion Hall effect (see Fig. 11). With the help of Hall resistivity measurements, the
skyrmion lattice was found to depin at ultralow critical currents of j ≈ 106A/m2 [54] (see
Fig. 12). Generally, the skyrmion lattice in MnSi is only weakly pinned to the local defects
of the underlying lattice due to its smoothness, large skyrmion lattice constant (for MnSi
skyrmion radius is Rs ≈ 200 Å much larger than the atomic lattice constant a ≈ 4.56 Å)
and clean samples (carrier mean free paths is l ≈ 1000 Å) [54]. This is in contrast to, for
example, a helical phase, which is much more strongly pinned [55]. Moreover, the measured
critical current for the skyrmion lattice in MnSi is approximately 5 orders of magnitude
smaller than the one observed for magnetic domain walls, which can also be moved via

Figure 11: Under the external current, electrons are deflected by the Lorentz force due to
the emergent magnetic field. Because of the spin-transfer torque mechanism, skyrmions
are deflected in (almost) transverse direction to the current direction [46].
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3 Pinning and Creep

Figure 12: The change in the Hall resistivity ρyx as function of current j at B = 250 mT for
several temperatures. The depinning of the skyrmion lattice is deduced from the change
in the Hall resistivity. Picture credit from Ref. [54].

spin-transfer torques [67].
In the next Section, we proceed to discuss an effective equation for rigid skyrmion

motion, which will be used extensively later in this Thesis.

3.3 Skyrmion Dynamics
A skyrmion is a large object which consists of many single spins. Instead of tracking the
dynamics of each individual spin, it is, in many cases, convenient to switch to a description
of skyrmion as a rigid particle. The dynamics of this rigid particle is described by the
so-called Thiele equation, which we will discuss in this Section.

In the continuum approximation, the magnetisation dynamics M (r, t) is governed by
the Landau Lifshitz Gilbert equation (LLG) [68]

Ṁ = γ · (M ×Beff)− γ
α

M
· (M × (M ×Beff)) . (3.4)

The free-energy density gives rise to an effective magnetic field Beff defined from a varia-
tional equation Beff = − δF [M ]

δM
. This field originates from all energetic contributions of the

system, such as exchange interactions, Dzyaloshinskii–Moriya interaction, anisotropies,

30
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etc. (see Eq. (2.7)). The first term gives precession with the gyromagnetic ratio γ =

1.76 · 1011T−1, while the second term is the phenomenologically included relaxation, pro-
portional to a dimensionless damping constant α.

An approximate analytical solution for the dynamics of the skyrmion lattice is often
obtained with the help of the so-called Thiele equation (originally derived by A. Thiele in
1973 [69]). When subject to an external drive, magnetic moments will rearrange coherently,
leading to the skyrmion lattice motion. Therefore, instead of focusing on underlying spin
dynamics, one can switch to a so-called centre of mass coordinate to describe the movement
of a large object (compared to the distance between single atoms) - a skyrmion. The
Thiele equation can be obtained from the LLG equation by projecting the latter to the
translational mode and assuming a rigidity of spin texture during the motion

M(r, t) = M 0(r −R(t)) . (3.5)

Here R(t) is a generalized coordinate. Using this ansatz the time derivative can be rewritten
as Ṁ = −(Ṙ ·∇) ·M . Now we substitute this expression in Eq. (3.4), multiply it with
∂iM and integrate over space. After some computational steps, which are omitted here
(for technical details, see Ref. [70]), one finally arrives at the Thiele equation for forces

G × Ṙ+ αDṘ = F . (3.6)

Here G = (0, 0,G)T is a quantized gyrocoupling vector,

G = ms

ˆ
U.C.

dr M̂ · (∂xM̂ × ∂yM̂ ) = 4πmsW , (3.7)

where M̂ is the local orientation of the magnetisation, U.C. refers to the unit cell of the
skyrmion lattice, W is a quantised topological charge as defined in Eq. (1.7) and ms is the
spin density (with units ℏ per volume). As one can see from this equation, gyrocoupling
is intimately related to the non-trivial topology of skyrmions. The gyrocoupling term
(sometimes called Magnus force) pushes skyrmions perpendicular to the direction of the
velocity. Further, the diagonal dissipation tensor D is given by

D =
ms

2

ˆ
U.C.

d2r(∂xM̂ · ∂xM̂ + ∂yM̂ · ∂yM̂) . (3.8)

In the Thiele equation (3.5), αD is the friction experienced by the skyrmion, proportional
to the damping constant from the LLG equation. Moreover, the force on the right-hand
side can be found as F = − δF

δR
.

One can extend this equation to account for other external forces, such as those which
arise from the currents and pinning. The modified Thiele equation has the form [54]

G × (vd − vs) +D(αvd − βvs) = F p . (3.9)
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In this equation, vd is the drift velocity of the skyrmion lattice and vs is the effective spin
current velocity, which is proportional to the applied current (vs = js

ns
≈ jp

ens
, where p is

the local spin polarisation, p ≈ 0.1 for MnSi). The terms proportional to vs describe the
effect of the adiabatic and non-adiabatic spin torques. Dissipative terms are expected to
be small as α, β arise mainly from spin-orbit effects and spin-flip scattering [54].

The term on the right hand side of this equation is the phenomenological pinning
force F p. This is an effective force on a rigid skyrmion particle, which can have different
microscopic origins, as discussed in Section 3.1. For a skyrmion lattice moving with a
velocity v, the pinning force has a power-law dependence, F p = −f(v)v̂, where v̂ is the
unit vector in the direction of velocity and v = |v|. The strength of this force depends, in
the general case, on the velocity v. However, the precise dependence is not known. In the
limit f(v → 0) = fp, this force should give the critical force from the current needed to
depin the lattice. For the limit of strong forces, a power low dependence f(v → ∞) = v−α

is expected. In Section 5.4, we continue this discussion and introduce the pinning model
used within our theory.

In this Thesis, most of our theoretical results have been obtained within Thiele approach
in the elastic depinning regime. In the next Section, we discuss 3D skyrmion lines in
disorder potentials and consider the regimes of both elastic and plastic depinning.

3.4 Skyrmion Lines in Disorder Potentials
On the theoretical level, pinning effects for 3D skyrmion lattices are not easy to study.
It is clear, however, that the critical force needed to depin the lattice is determined from
the competition between the strength of the pinning potential and the elasticity of the
skyrmion lattice.

If the strength of disorder is weak, above the transition all skyrmions start moving,
preserving the triangular lattice symmetry without breaking the lines and generation of
topological defects, the regime called elastic depinning. For MnSi, the lattice is built
out of 1D skyrmion strings, which can be modelled in the case of weak pinning by a
collection of harmonic springs. A somewhat similar system to skyrmions in which depinning
under applied currents is probably most extensively studied is the vortex lattice in type-II
superconductors. The crucial difference to skyrmion systems comes from the fact that the
dynamics is overdamped (the gyrocoupling term is much weaker than the dissipation in
Thiele equation 3.9). Because of the gyrocoupling term, a single skyrmion can move around
a point pinning site [46], see Fig. 13. A more detailed study of a skyrmion interacting with
a hole showed a combination of a longer-range repulsion with a short-range attraction [71].

A so-called collective pinning limit (which is believed to be relevant for MnSi [50]) is
realised when pinning is relatively weak, and a large number of pinning sites act collectively
so that one can efficiently approximate pinning by a disordered substrate with Gaussian
character [50,72].

Let us start the discussion by considering a single skyrmion line. Here we follow the
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3.4 Skyrmion Lines in Disorder Potentials

Figure 13: Skyrmion (upper panel) and superconducting vortex (bottom panel) interacting
with an attractive point pinning site (green dot). Picture credit from [49].

ideas developed for superconducting vortices in Ref. [43]. Counter-intuitively, infinitely stiff
lines cannot be pinned at all. A minimal lengthscale the skyrmion core is able to resolve
in the transverse direction is the effective correlation length ξ, which is of the order of
skyrmion radius Rs (see Fig. 14). Here, we consider only pinning due to the point defects
on a scale smaller than the effective correlation length ξ. The strength and the directions
of random pinning forces sum up so that only the fluctuations in the density and force of
the defects will pin the skyrmion line. Assuming a density of individual pins acting on
the vortex line to be ni, the mean force from one pinning site fpin, the total pinning force
acting on a segment of length L is given by Fpin(L) ≈ (f 2

pinniξ
2L)1/2. This force competes

with the force from current, which grows linearly, see Eq. (3.9)

F c ≈ −L (G × vs) . (3.10)

For the dimensional estimate, we neglect the relatively small α and β in the Thiele equation
3.9. From the equation above, one can see that for long lines, the force from the current
always wins, and the critical current vanishes in this limit.

However, in reality, lines can bend to find the best position for the pining potential.
For a line u(z), the elastic energy of deformation is simply determined by

Eel =
ϵ

2

ˆ L/2

−L/2

(∂zu)
2dz . (3.11)

Here, ϵ is the skyrmion line tension. Therefore, a line of length L with deviation |u| ≈ ξ

will have an elastic energy Eel ∝ ϵ(ξ/L)2L.
The idea of Larkin for vortices in type-II superconductors was to introduce the domains

of correlated regions with characteristic collective pinning length scale Lc [73]. These
domains interact elastically with the pinning potential and compete independently with
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3 Pinning and Creep

Figure 14: A skyrmion line (or a vortex line) pinned in the collective pinning limit by many
weak pinning centers. The transverse length scale, which skyrmion line is able to resolve
is given by ξ. The collective pinning length is denoted by Lc. Picture credit from [43].

the force from the current. The length scale Lc is obtained from the competition of elastic
energy with the pinning energy Epin ≈ Fpin(L)ξ. From this, one can find the size of the
regions Lc

Eel(Lc) = Epin(Lc) ⇒ Lc ≈
(

ϵ2

f 2
pinni

) 1
3

. (3.12)

Each of the pieces of length Lc competes as an independent unit with the force from the
current, Fc ≈ Fpin. From this condition, we find

vs,c =
ϵ ξ

GL2
c

=
ξ

G

(
f 4
pinn

2
i

ϵ

)1/3

. (3.13)

We see that the critical current jc ∝ vs,c depends inversely on ϵ and goes to zero for
infinitely stiff lines.

In order to make an estimate for the skyrmion string lattice, one needs to include the
elastic constants of the skyrmion lattice. Here we assume again that the effective correlation
length and skyrmion lattice constant are of the same order, ξ ∼ a0. Following Ref. [74],
we define a collective pinning volume Vpin = ℓpinϱ

2
pin, where ℓpin and ϱpin are longitudinal

and transversal dimensions, respectively. From Ref. [43] they can be found from

ℓpin ≈ η
L3

pin

a20
, ϱpin ≈ √

η
L3

pin

a20
. (3.14)

Here η = c44/c66 is the ratio of the bend (c44) and shear (c66) elastic constants of the
skyrmion lattice. Further, we rewrite the Thiele equation for the volume element V

−GV × vs = F V
pin . (3.15)
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Here GV = Gℓpinϱ
2
pin/a

2
0 is the net gyrovector of Vpin. The pinning force acting on the

volume V can be found from the pinnning force acting on the single line using the rela-
tion [43],

F V
pin ∼ Fpinη

L4
pin

a40
. (3.16)

Finally, we obtain

vs,c ≈
ϵ ξ

Gη
a40
L6

pin
. (3.17)

We see again that the spin velocity depends inversely on the ratio η of elastic constants.
Upon increasing the strength of the disorder or, for example, in the presence of more

extended objects such as grain boundaries or dislocations7 (especially strong in thin-film
systems, leading to a critical current much stronger than in bulk systems such as MnSi [57])
the next level of complexity occurs: the system might undergo an (irreversible) plastic
depinning. In this case, some portion of skyrmions might remain stuck, while others
can flow around them (as observed in thin films [76]). Moreover, significant lattice distor-
tions are produced (for example, topological defects might appear, see the next Section).
This plasticity remains generally a hard problem to tackle. It is not fully clear if it pos-
sesses universal features, with possibly different types of criticality occurring between single
skyrmions and between emergent topological defects [49].

3.5 Bending and Breaking of Skyrmion Lines
In this Section, we review several important numerical and experimental studies on skyrmion
lines in 3D disorder potentials.

Although for 2D skyrmions in disorder potentials there exists a huge body of literature,
either based on the Thiele equation [77–79] or more precise micromagnetic approaches [80],
the situation is different for 3D systems. Although perfectly stiff 3D skyrmion lines can be
theoretically treated with 2D models, a fully 3D system exhibits much richer phenomena,
as skyrmion lines are emergent objects that can bend or be broken apart. However, the
numerical expense for simulating 3D systems with pinning is large; that’s why most nu-
merical simulations for 3D systems are performed on rather small systems, modelling thin
films.

Already early theoretical studies have suggested that skyrmion lines can break into
pieces by forming singular three-dimensional topological defects known as Bloch points,
identified with emergent monopoles/antiminopoles [81, 83] (see the left panel of Fig. 15).
In the experimental study in Ref. [82], the metastable skyrmion lattice in bulk MnSi was
studied under repeated electric current pulses by measuring the Hall resistivity ρyx. It was
found that, at low current densities j ≈ 106A/m2, the lattice is in the elastic (reversible)
pinning regime, while for larger currents j ≈ 3·106A/m2 it undergoes irreversible processes,

7For a detailed discussion on collective pinning regime along with a strong pinning regime in thin films,
see for example Ref. [75]
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Figure 15: Left panel: the merging of two skyrmion lines. The defect which is created is
an emergent magnetic antimonopole. Right panel: monopoles/antimonopoles (represented
by coloured circles) resulting from partial pinching off/merging of two skyrmion strings.
Picture credits from Refs. [81], [82].

which was attributed to the topological unwinding at higher current densities (see the
right panel of Fig. 15). In numerical studies of skyrmion depinning using micromagnetic
simulations, pinning is often introduced by easy axis anisotropy at randomly selected sites
[55]. It was shown that when a segmented string (with a monopole on one of the sides)
starts to move above the threshold applied current, the length of the skyrmion string
shortens, and the skyrmion strings disappear eventually. Therefore, it was argued that the
length of the skyrmion string is an important parameter to consider when studying current-
induced motion. Although it remains not fully clear how exactly these results relate to
the thermodynamically stable phase in MnSi, one can say for sure that the dynamics of
monopole-like excitations, as well as Dirac stringlike excitations (emergent object where
there is a monopole and antimonopole pair at the two ends) are important factors to
consider [84,85]. Generally, extended defects such as Bloch points or grain boundaries are
more effective than point defects (considered in the previous Section) in pinning skyrmion
lines [49].

These results have been followed by micromagnetic simulations in Ref. [86] of current-
driven dynamics of a skyrmion string in pinning potential as a function of the thickness
of the sample Lz versus the applied current. Authors identified the pinned, depinned
regions and regions where the annihilation of skyrmion string happens (see Fig.16). It is
more difficult to pin longer than shorter strings, which is also supported by lower critical
currents in bulk samples as compared to the thin films [54,57].

There are several experimental studies on the bending of skyrmion lines under external
currents and temperature gradients. In Ref. [87] the nonreciprocal nonlinear Hall response
in MnSi thin plates under external current was studied. It was found from different re-

36



3.5 Bending and Breaking of Skyrmion Lines

sponses to positive and negative currents ±j in the second-harmonic complex resistivity
under applied low-frequency sine-wave AC current. It was argued that this signal, which
emerges above the threshold current only in the skyrmion phase, stems from the current-
induced deformation dynamics of skyrmion strings due to disorder. Under stronger drives,
skyrmions become straighter, and the effect is reduced. The resulting dynamical phase
diagram is shown in Fig. 17, where a pinned phase below the threshold current jth, bent
to straight transition jco can be found as a function of current density and temperature.
Interestingly, we find a bending of skyrmion lines under the application of external currents
within our theory as well (see Sec. 7.1). Further, the effective bending of skyrmion strings
in bulk MnSi in orthogonal thermal gradients was recently measured using small angle
neutron scattering [88].

Moreover, the small-angle neutron scattering experiments of the moving magnetic
skyrmion lattice in bulk MnSi under electric current [89] showed a spatially inhomoge-

Figure 16: Right panel: numerically simulated phase diagram for current-driven skyrmion
string in the disordered system. Lz is the thickness of system, js is the current density.
Left panel: two snapshots of skyrmion line movement for LZ = 100 and (a) js = 0.04, (b)
js = 1.0 using the colour scheme depicted in (c) for an in-plane magnetic moment. Both
pictures are taken from Ref. [86].

Figure 17: Phase diagram of skyrmion lattice subject to external current. For a description
see the text. Picture credit from Ref. [87].
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neous rotation of the skyrmion lattice for current densities greater than a threshold value
as well as significant friction near the sample edges due to pinning. The effect of edges
was further studied in a recent micromagnetic simulation of skyrmion strings near a tilted
surface, which showed that the strings contort towards the surfaces of their confining crys-
tals [90].

The recent development of high-precision experimental techniques, such as holographic
vector-field electron tomography [91] with a sub-10-nanometre resolution and resonant
magnetic x-ray imaging [92] foster further understanding of the three-dimensional mag-
netic texture, depinning and bending of skyrmion lines under external drives. In the next
Section we will briefly introduce another important effect, which appears because of ther-
mal fluctuations.

3.6 Creep
An important effect, which is not captured in the traditional mean-field picture, is the
disorder in the form of thermal fluctuations. The interplay between the static (discussed
in the previous Sections) and thermal disorder is, in general, a hard problem to tackle.
Thermal disorder reduces the effectiveness of the static disorder potential so that skyrmion
lines can move due to the thermally activated jumps over the pinning barriers at the values
of the force (e.g. due to the external current) lower than the critical (the process known
as a thermal depinning).

In Fig. 18, one can see a schematic picture of skyrmion lattice velocity v as a function of
external current. For T = 0 a well-defined depinning transition exists at jc (blue curve). At
finite temperatures, the motion can start already at much lower values at fc∗. In Fig. 18c, a
(distorted) skyrmion lattice is shown, pinned to static pinning centres (blue shaded areas).
In the absence of the current, the potential is given by V (x). It becomes tilted under an
external current. Depending on the strength of the applied current, three phases exist: for
j > jc, the energy barrier ∆U vanishes and skyrmions fully depin. For j ≪ jc, the skyrmion
has an orbital trajectory. For intermediate currents jc∗ ≤ j ≤ jc, creep might occur. If a
skyrmion becomes depinned at some point of time, it will be trapped by the next pinning
centre. The escape rate due to the thermal fluctuations is given by Γ ∝ exp

(
−∆U
kBT

)
, where

kB is the Boltzmann constant.
Creep was predicted using particle models for skyrmions in metallic chiral magnets

[93] and observed for single skyrmions in thin films [94]. However, only recently thermal
creep was detected for bulk skyrmion lattice at ultra-low current densities using resonant
ultrasound spectroscopy—a probe highly sensitive to the coupling between skyrmion and
atomic lattices. It was shown that in MnSi, depinning occurs at j∗c that is only 4% of
the known critical current jc [95]. These results have been in good agreement with the
Anderson-Kim model for creep, introduced originally for superconducting vortices [96]. It
was found that the local pinning potential vanishes linearly with current ∆U = β(j − j∗c ).
The measured stiffening of the skyrmion lattice F (for the details of its definition, see
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Figure 18: Creep in bulk skyrmion lattices. For the description, see the text. Picture credit
from [95].

Ref. [95]) was found to obey the following law

∆F (j)−∆F (j = 0) ∝ exp

(
−β(j − j∗c )

kBT

)
, (3.18)

where β is a material-dependent prefactor.
Further, if thermal fluctuations are strong, they can (partially) disorder the system.

However, in this Thesis we are not interested in this regime.

Summary and Outlook
In the center of this Chapter is the pinning-depinning transition of the skyrmion lattice
under external drives. We considered closer how emergent electric and magnetic fields
arise and why skyrmion lattices can be efficiently driven with external currents. Further,
we discussed the microscopic mechanisms of skyrmion lattice pinning and several regimes,
such as elastic and plastic depinning. Notably, both from theoretical and experimental
points of view, it is clear that an important role in the skyrmion lattice pinnings is played
by defects in the skyrmion lattice structure, such as Bloch points. Moreover, we discussed
several experimental studies in which the bending of skyrmion lines was detected. In the
last Section, we shortly introduced the important phenomenon of thermal creep.

On a microscopic level there are many effects, which contribute to the pinning of
skyrmion lines in bulk materials and it remains one of the outstanding problems on the
way to useful spintronic devices. However, in this Thesis we instead use a simplified,
phenomenological model of pinning, which we introduce and study in the next Chapters.
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Skyrmion Lattice Under External Drives





4 | Skyrmion Lattices under Slow
AC-Drives

In this Chapter, we consider more closely skyrmion lattices under slow periodic drives. Such drives
can be applied either parallel or perpendicular to the static magnetic field, needed to stabilize the
skyrmion lattice. Several different probes can be used to experimentally investigate such systems. We
start with introducing the first important experiment, namely the measurement of AC susceptibilities
in MnSi. Further, we discuss the second experiment, namely the Time-Involved Small-Angle Neutron
Scattering Experiment (TISANE). These are two important experiments, which we will use to validate
our theory in the next Chapters.

This work was conducted in collaboration with a group of Prof. C. Pfleiderer and is currently in
preparation for publication [97]. Experimental results presented in the first Section of this Chapter are
measured by Dr. F. Rucker and in the second by Dr. D. Mettus.

4.1 Transverse AC Magnetic Susceptibility
A powerful experimental technique to study magnetic materials is the application of small,
periodic magnetic fields. This driving field shall be added along with a static magnetic
field needed to stabilize different phases in MnSi.

At a constant temperature of T ≈ 28 K, MnSi undergoes several phase transitions in
a static magnetic field (see Sec. 2.3). The first transition from helical to conical phase
happens at the critical field value Bc1. At the second critical field value Bc2, a transition
from a conical to a field-polarized state occurs. Moreover, in a small temperature range,
the skyrmion phase is observed with the critical field values Ba1 and Ba2 [14, 48].

When both static magnetic field H and small oscillating field ∂Hac are applied, two
possible configurations exist. One possible case is when the driving field is applied in
the direction of the static field. The susceptibility measured in this case is referred to as
longitudinal susceptibility χ∥ (see Fig. 19a)

χ∥ =
∂Mi

∂Hac,j

with i, j, k ∈ {x, y, z} and i = j ∥ k . (4.1)

Here M is the measured magnetisation. This configuration is well-studied, and the mea-
surements on longitudinal susceptibility existed even before the discovery of the skyrmion
phase [99–101].

If the driving field is applied in the direction of the static field, the total field changes the
amplitude but not the direction. Therefore, deep in the ordered phases (helical, conical or
skyrmion states), the direction is fixed and the small changes in the amplitude of the applied
field do not have a large effect on the magnetic order as measured by χ∥ [102–104]. The
situation is drastically different close to the phase transitions at Bc1, Ba1 and Ba2, where
pronounced maxima in χ∥ are observed when the driving frequencies are small [102,105].
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Another configuration is realised, when the driving field is applied perpendicular to
the direction of the static field. In this case, the response of the magnetic order to small
changes in the field orientation instead of the amplitude is being probed. The susceptibility,
measured in this case is called transverse susceptibility χ⊥ (see Fig. 19b):

χ⊥ =
∂Mi

∂Hac,j

with i, j, k ∈ {x, y, z} and i = j ⊥ k . (4.2)

This configuration is much less studied. To the best of our knowledge, the transverse
susceptibility in MnSi was measured for the first time by Dr. F. Rucker [98]. It was done
by means of a bespoke susceptometer comprising a primary coil with a balanced pair of
secondary coils. The sample which was used for this measurement is depicted in Fig. 19c.
In Fig. 20, the susceptibility data for a small oscillating field of ν = 120 Hz is depicted
for a range of transverse magnetic field strengths BAC between 0.03 mT and 12.6 mT.
Remarkably, all phases show strong response under applied transverse magnetic field.

In their work, Dr. F. Rucker and co-authors identified two limits. The first one is the
limit for small magnetic fields BAC. Before reaching the critical value of the transverse
field BAC ≈ 0.63 mT, almost no change is observed in the real part of the transverse
susceptibility. This limit is identified with the pinned phase (denoted as the limit B, see
Fig. 20). We will discuss this statement more closely in the next Chapter. Strikingly,
the depinning starts already at tiny transverse magnetic field values. Further, for large
magnetic fields, the real part of the susceptibility asymptotically approaches another limit,
denoted as the limit A. In this limit, data points in the skyrmion and conical phases nicely

Figure 19: Schematics of longitudinal and transverse susceptibility for MnSi. Picture credit
from [98].

44



4.1 Transverse AC Magnetic Susceptibility

Figure 20: Real and imaginary parts of the transverse susceptibility for varying strength
of the transverse oscillating field BAC. Measured by Dr. F. Rucker [98].

Figure 21: Real part of the transverse susceptibility in MnSi in the static magnetic field
B(T ) and a strong value of the oscillating magnetic field BAC = 12.59 mT. Here H, C,
S, FP refers to helical, conical, skyrmion and field-polarized phases, respectively. Picture
credit from [98].
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Figure 22: Real and imaginary parts of transverse susceptibility in static field B(T ) and
oscillating field BAC for varying strength of the current j. Measured by Dr. F. Rucker [98].
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match the saturation limit
Reχ⊥ =

M

H
, (4.3)

as can be seen in Fig. 21. This result is consistent with the statement that for strong
transverse magnetic fields, the whole skyrmion lattice follows the applied magnetic field.
We will discuss it more closely in the next Chapter.

In addition a combined effect of oscillating transverse magnetic field and external elec-
tric current was studied, see Fig. 22. The geometry which was used for this measurement
is depicted in Fig. 19d. The external current was applied parallel to the direction of the
oscillating field and perpendicular to the direction of the DC field. Because of heating
effects, a complex temperature correction was performed (for the details, see Ref. [98]). As
one can see, only the skyrmion phase shows a response in real and imaginary parts of the
magnetic susceptibility.

In the next Chapter, we will develop a theoretical model, which we will use later on to
explain the observed phenomena in transverse susceptibilities in Chapters 6 and 7.

4.2 Time-Resolved SANS and TISANE
A powerful experimental technique to probe periodic magnetic textures, such as a skyrmion
lattice, is the small-angle neutron scattering (SANS) as discussed in Section 2.3. Being a
momentum space technique, SANS provides complementary information to the direct real-
space imaging techniques, such as Lorentz transmission electron microscopy [48]. Already
the first neutron scattering experiments have shown that due to the magnetic Bragg scat-
tering, a six-fold scattering pattern in the skyrmion phase appears. The skyrmion lattice
is being formed in a plane perpendicular to the direction of the applied magnetic field B,
independent from the underlying atomic crystal for all orientations of B [14].

A number of techniques has been developed on the base of SANS to study dynamic
response of skyrmion lattices under applied oscillating magnetic fields. Using the con-
ventional SANS setup with a continuous neutron beam, one can resolve changes in the
scattering pattern for slow drives, a technique called time-resolved SANS. In the ideal
case, where neutrons have a fixed velocity, the time dependence of the detector follows
the time dependence of the sample modulation. Therefore, these two systems shall be
synchronised so that their periods match. The data is then being recorded at the detector
over many oscillation periods and binned with the period Td. However, in reality, the
velocity selector produces a continuous beam with wavelength λ and wavelength spread
∆λ/λ, which results in the distribution of neutron velocities. Due to this distribution, the
detector signal will be smeared. Therefore, the time resolution of SANS is limited by this
wavelength spread.

A technique called TISANE (time-involved small-angle neutron scattering experiment)
was introduced to improve the resolution in time-resolved SANS [107]. The TISANE
measurements on the depinning of skyrmion lattices used in this Thesis were performed at
the instrument SANS-I at the FRM-II in Garching, Germany, by Dr. D. Mettus, group of
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Prof. C. Pfleiderer. As these measurements provide important experimental evidence to
support the theoretical model, we explain the setup here in a bit more detail (see Fig. 23).

Instead of using a continuous neutron beam as in the time-resolved SANS, a pulsed
beam is used in TISANE. These periodic neutron pulses are generated by a chopper system.
The system uses the unpolarized incident neutrons with a mean wavelength of λ = 6Å and
a wavelength broadening of ∆λ/λ ∼ 10% (FWHM). After this, the neutrons pass through
the sample, which is subject to an AC magnetic field (typical frequencies used ν ≈ 400 Hz).
Finally, neutrons are recorded at a detector with a period of time binning. The resulting
data is, therefore, binned into a discrete number of time frames. An important trick which
is used in TISANE to achieve better time resolution and a larger range of accessible sample
frequencies is called the TISANE condition. This condition is a relation between periods
of neutron pulses TC , sample modulation TS and detector signal binning TD depending on
the distances LCS between pulses of chopper system and sample and LSD between chopper

Figure 23: The schematic depiction of the experimental setup, used for TISANE measure-
ments. Picture credit from Ref. [106].

Figure 24: (a) Schematic of TISANE. Chopper, sample and detector are denoted with C,
S and D. (b) Because of the finite chopper pulse width, the signal will be smeared. Picture
credit from Ref. [106].
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system and detector (see Fig. 24)

TD

TS

=
LCS + LSD

LCS

and
TC

TS

=
LCS + LSD

LSD

. (4.4)

In this case, neutrons from different chopper pulses that arrive at the sample at the same
point of time will reach the detector within the same phase independently of their wave-
lengths [106]. This requires extremely precise synchronization of all parts of the setup,
which is achieved by the master trigger unit. Technical details on all parts of this system
can be found in Ref. [106].

Limitations on the precision of the experimental data of TISANE comes from the finite
width of the chopper pulses (∆tc on Fig. 24b), as well as the finite flight time of the neutrons
across the sample. For the data, presented in this and the next Chapter, spherical samples
were used to ensure rotational invariance and minimise demagnetisation effects. For MnSi,
data was measured at temperature T = 28.0 K, static magnetic field Bdc = 170 mT,
oscillation frequency ν = 403 Hz and sample radius of 5.8 mm.

The TISANE procedure is as follows: First, the oscillating field is applied, and the
intensity of scattering for each orientation of the static field with respect to the neutron
beam, called rocking angle ω (at each detector time frame) is measured (see Fig. 25). Six
spots are being detected because of the hexagonal symmetry of the skyrmion lattice. For
each time step, intensities from two out of six peaks (dubbed Box 1 and Box 2, see left
panel of Fig. 26) are added to obtain a larger intensity (which has a benefit of smaller
mean deviation) and average over a possible error because of the non-perfect alignment of
the detector with respect to the incoming neutron beam.

The resulting rocking curves contain information about the skyrmion lattice response to

Figure 25: The schematic picture of the setup, used for TISANE measurements. The
static magnetic field Bdc and the oscillating magnetic field Bac together constitute the
total magnetic field Btot. The orientation of this field with respect to the static magnetic
field is denoted by ωac, while the orientation of the static field with respect to the neutron
beam is the rocking angle ω. Picture credit from Ref. [106].
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the applied drive. The position of the rocking scan peak gives roughly a general direction
of the skyrmion lattice. As the area remains constant over time, one can assume that the
total skyrmion lattice volume, which responds to the drive, remains unchanged. We can
track the motion of the skyrmion lattice by tracking the movement of the rocking peak.
The experimental rocking curves are being fitted with the Gaussian distribution. In the
absence of the transverse oscillating magnetic field, the intensity as a function of the angle
ω is plotted on the right panel of Fig. 26. The rocking peak centre position was found to
be slightly off from the perfect alignment at ω0 ≈ −1.275◦. This angle was subtracted from
all measurements at non-zero driving field values.

Using this scheme, one obtains time-dependent intensities at fixed rocking angles (see
Fig. 27), which are often presented in the form of the time-resolved rocking angle maps
(see, e.g., Fig. 39 in the next Section). We will discuss in more detail the resulting curves
in Section 5.8.

Figure 26: Left panel: typical SANS intensity pattern of the skyrmion lattice in MnSi in
the absence of driving transverse field. Right panel: Gaussian fit to the summed measured
intensity from Boxes 1 and 2. Picture credit from Ref. [106].

Figure 27: Time-resolved rocking curves, measured by Dr. Denis Mettus on MnSi sample
for several tilting angles ωac. Dotted line: the corresponding value of ac magnetic field.

50



4.2 Time-Resolved SANS and TISANE

Figure 28: Effects of time bining. Picture credit by Dr. D. Mettus.

Note that time bins are not precise cuts in time. Although, in reality, the peak centre
moves continuously (Fig. 28a), the measured data will be sorted in a finite number of time
bins. Therefore, the measured intensity contains the integrated intensity over a finite time,
which leads to smearing effects (Fig. 28b). We will discuss these effects more closely in
the next Chapter.
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5 | Unpinning Skyrmion Lattices with
Shaking Fields

“God made solids, but surfaces were the work of the devil.”
W. Pauli [108]

As discussed in the previous Chapter, already tiny transverse oscillating fields of approximately
1 mT are enough to unpin the skyrmion lattice in MnSi. In this Chapter, we develop a mean-field
description of bulk skyrmion-hosting magnets under slowly oscillating (up to a few hundred Hz) tilted
magnetic fields (dubbed as “shaking fields”). Instead of two phases (pinned and depinned) of a skyrmion
lattice under external current, we predict that at least three phases exist in the shaking field. Further, we
find both transitions and a high degree of universality in unpinning processes across different materials.

We start this Chapter with an introductory Section about the dynamics of skyrmion lines in tilted
magnetic fields. We formulate a model of the low-energy collective excitations of the skyrmion lattice
in terms of an elastic skyrmion string and proceed to derive the corresponding gradient expansion
of the free energy. Further, we introduce a phenomenological pinning force using the effective slip-
stick model to account for disorder in our system. Importantly, we differentiate between the bulk
and surface pinnings and show that including surface pinning is crucial to explain the experimental
data. We use the Thiele equation to find the rescaled parameters of dynamics of the elastic skyrmion
lattice and provide an analytic solution to it in the adiabatic limit. Depending on the strength of
the applied magnetic field, we predict that three dynamic phases appear: pinned, central pinned,
and depinned. Results obtained from this effective model qualitatively reproduce all experimental
findings from the time-resolved small-angle neutron scattering (TISANE) measurements for MnSi,
doped samples Mn1−xFexSi (with x = 0.02, 0.04 and 0.06) and insulator Cu2OSeO3.

This work was conducted in collaboration with the group of Prof. C. Pfleiderer and is currently in
preparation for publication [109]. Experimental results presented in this Chapter are measured by Dr.
D. Mettus.

5.1 Skyrmion Lines Under Tilted Magnetic Fields
Skyrmions in three spatial dimensions are smooth, line-like magnetic textures. Before we
start the discussion of their dynamics in shaking fields, let us quickly recall how they re-
spond to static tilted magnetic fields. For Bloch skyrmions, found in cubic helimagnets,
the magnetisation is perpendicular to the radial direction. The free energy for cubic he-
limagnets (derived in Sec. 2.2) is isotropic, and the pinning to the underlying lattice due
to anisotropies were found to be very small in experiments [14]. Therefore, the skyrmion
lines always align parallel to the applied magnetic field, largely independent of the rela-
tive direction of the magnetic field with respect to the crystalline structure, as depicted
in Fig. 29. Note that this is not the case for the skyrmion line of Néel skyrmions and
antiskyrmions (see Ref. [110] for more details). Therefore, we constrain our discussion to
cubic helimagnets in tilted oscillating fields in the following.

Let us consider the case of a skyrmion lattice subject to a shaking field. It has two
components: the first one is the static magnetic field Bz in z direction, needed to sta-
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Figure 29: A skyrmion line subject to the external tilted magnetic field aligns parallel to
the direction of the field (in the absence of pinning and demagnetisation effects). Picture
credit from Ref. [110].

bilise the skyrmion phase in the bulk skyrmion hosting materials (recall Fig. 7 for the
exemplary MnSi phase diagram). The second one is a tiny transverse oscillating field in
x direction, Bx(t) = b cos(νt) with b ≪ Bz. The total magnetic field is then given by
B(t) = (Bx(t), 0, Bz). Depending on the oscillation frequency of the external field ν, very
different phenomena may occur: for frequencies in the GHz regime, internal excitations of
the skyrmion line or magnon excitations can be created [111,112]. For example, for MnSi
the internal frequency is νint

2π
= 16.7 GHz [112]. In this Thesis, we consider much lower

frequencies of around a few Hz to a few kHz. In this regime, the low energy excitation due
to the driving tilted field is a collective lattice excitation, as depicted in Fig. 30b.

Since we constrain our discussion to the regime where b ≪ Bz, the direction of the
total field B(t) changes only slightly, maximally a few degrees in the relevant experiments,
δθB ≪ 1. These angles might, at first, seem tiny. However, let us consider skyrmion lines
which follow the direction of the applied magnetic field (Fig. 30b). In this case, skyrmions
need to move a long distance of order zδθB, where −L

2
≤ z ≤ L

2
is a coordinate along the

skyrmion string. For example, for a cubic sample with 2mm length under a tilted magnetic
field of the order of δθB = 1◦ = 0.017 from the experiments, the end of the skyrmion line
would need to move ∆x = 0.03 mm, a gigantic distance compared to the typical skyrmion
distance of d ≈ 20 nm [14]. This cannot happen instantaneously for long skyrmion strings
with the length of the order of the sample size, as skyrmions would need to move with
speed ∝ z∂tδθB. Thus, we expect skyrmion lines to bend.

In order to describe this bending, we focus on the low-energy collective excitation of
the skyrmion lattice. If M 0(r) describes the magnetisation of the undistorted periodic
skyrmion lattice in equilibrium, we assume that the magnetisation of the distorted lattice
is approximately described by

M (r, t) ≈ M 0(r − u(z, t)) + δM(r, t) . (5.1)
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Figure 30: Skyrmion lines subject to the external magnetic field B(t) = (Bx(t), 0, Bz).
(a) The lateral distortion of each skyrmion line in a periodic skyrmion lattice is
parametrised by the function u(z, t). (b) In the absence of pinning, skyrmion lines fol-
low the direction of the applied magnetic field B(t).

Further, we introduce a parametrisation of the skyrmion lattice by a displacement function

u(z, t) =

ux(z, t)

uy(z, t)

z

 . (5.2)

This function depends only on z and t and describes the lateral distortion of each skyrmion
line in a periodic skyrmion lattice (see Fig. 30a). Crucially, although skyrmions travel large
distances of order z · δθB, so that u can be much larger than the typical skyrmion distance
and M(r, t)−M 0(r) may be very large, corrections to this collective excitation δM (r, t)

remain tiny. These corrections include several effects such as a shape deformation of single
skyrmions and a distortion of the skyrmion lines in the z direction among others. However,
we expect that these effects are negligible for the discussion of the low-energy dynamics of
the skyrmion lattice. Therefore, we can formulate an effective theory in terms of u(z, t),
which encodes the tilting, the bending and the motion of the skyrmion lattice up to small
local corrections.

Note that Eq. (5.1) does not take into account that the effective distance of skyrmions
may change in the distorted skyrmion lattice. However, it turns out that this effect gives
only higher-order corrections to the energy. Consider a skyrmion lattice distorted by a
small angle γ (see Fig. 31). We denote the distance between skyrmion lines h (h̃) for the
undistorted (distorted) skyrmion lattice. The change of this distance can be estimated
from the geometric considerations

h− h̃ = h− h cos(γ) ≈ h(∂zux)
2 . (5.3)

Here we used a Taylor expansion in the small angle γ and approximated it with a derivative
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Figure 31: A lattice of undistorted (gray) and distorted (red) skyrmion lines.

of the displacement function of the distorted lattice in x direction, γ ≈ ∂zux. As the free
energy should be quadratic in terms of h − h̃, we conclude that this effect will give only
higher-order corrections to the energy (∝ (∂zu)

4) and is therefore ignored in the following.

5.2 Free Energy of Skyrmion Lines in External Oscillat-
ing Field

In this Section, we proceed to derive the free-energy functional for the skyrmion lattice
subject to a shaking field in the absence of pinning.

We parametrise the collective motion of the skyrmion lattice by the unit vector n̂,
oriented parallel to the skyrmion tubes and perpendicular to the plane of the skyrmions. In
the absence of a drive, when only the static field Bz is applied, the uniform magnetisation
per volume is given by m0 = m0n̂, where m0 is the average magnetisation density of
skyrmions in the internal background field B0, oriented parallel to n̂. This corresponds
to an external field Bz = B0 + Nzm0 when the demagnetisation factor Nz, encoding the
sample shape, is considered.

We derive the free energy for the most general case when the oscillating transverse
magnetic fields in both x and y directions are applied, B(t) = (Bx(t), By(t), Bz). The
orientation of the skyrmion lattice will deviate slightly from the z axis, n̂ = (δnx, δny, nz).
Because transverse magnetic fields Bx, By are much smaller compared to the static field in
the z direction, Bx, By ≪ Bz, the bending of the skyrmion lattice in transverse directions
δnx, δny is expected to be small. Thus, we find the z component of this vector nz =√

1− δn2
x − δn2

y ≈ 1− δn2
x

2
− δn2

y

2
.

When a sample is subject to external field B, a demagnetisation field appears, which
reduces the internal effect of the applied field. The exact strength of this field depends
on the shape of the sample [113]. The change of the free-energy density f of a skyrmion
lattice in a fixed magnetic field B and a fixed magnetisation configuration m can be found
in a Taylor expansion around the uniform magnetisation m0. Taking the demagnetisation
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effecs into account and expanding the change of the free-energy density up to quadratic
order, we obtain

f = (m−m0) ·
df0
dm

∣∣∣∣
m=m0

+
1

2χ00
∥
(m−m0)

2 +
1

2χ00
⊥
(m⊥)

2 +
∑

i=x,y,z

Nim
2
i

2
−mB .

(5.4)

Here f0 is the free-energy density in the absence of both the external field and de-
magnetisation factors, m⊥ is the transverse component of the magnetisation, Ni are the
demagnetisation factors encoding the sample shape, and χ00

⊥/∥ are the bare (static) suscep-
tibilities of the skyrmion lattice for a parallel/perpendicular magnetic field (in the absence
of demagnetisation fields), which can be found from measurements.

For the free-energy density in the absence of both the external field and demagnetisation
factors, we find

df0
dm

∣∣∣∣
m=m0

= B0n̂ . (5.5)

We search for the magnetisation configuration m∗, which minimises the density func-
tional f with respect to the magnetisation vector m (the mean-field approximation, see
Eq. (2.5) in Sec. 2.2). We find this minimum by demanding that derivatives of the free
energy with respect to the three components of the magnetisation vector vanish. Moreover,
we are interested in the total free energy, which can be found by integrating the free-energy
density functional over the volume of our system at the previously found point m∗

F = min
m

F =

ˆ
f |m=m∗ d3r . (5.6)

The integral over x, y is straightforward, as the integrand does not depend on these vari-
ables and yields the area per skyrmion As. The remaining z integral runs over the whole
length of the skyrmion line. Further, we switch from the description through the unit vec-
tor n̂ to the description through the displacement function u(z, t). Locally, the direction
of magnetisation in the transverse direction is given by the derivative of the displacement
function u(z, t)

m = m0
1√

1 + (∂zu(z, t))2
(∂zu(z, t), 1)

T . (5.7)

Finally, after some algebraic manipulations (see Appendix A for more details), we arrive
at the exact formula for the free energy of our system in the lowest order of the gradient
expansion

F = −
∑
i=x,y

γi
2
Bi(t)

2 +

ˆ L/2

−L/2

dz
∑
i=x,y

ϵ0,i
2

(
∂zui(z, t)−

Bi(t)

B′
z,i

)2

. (5.8)

Here, several important notations have been introduced. The first one is the effective z
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field

B′
z,i = Bz +m0(Ni −Nz) , (5.9)

which accounts for corrections from demagnetisation factors for non-spherical samples.
At large applied transverse fields and small frequencies, when the pinning is negligible,
B′

z,i provides the saturation value of the susceptibility. Thus, the skyrmion lattice simply
follows the external field:

χ∞
i =

m0

Bz,i

=
m0

Bz +m0(Ni −Nz)
. (5.10)

The susceptibility in the pinned phase, when ∂zui = 0, is given by

χ0
i =

χ00
⊥

1 +Niχ00
⊥

. (5.11)

Finally, we introduce the two remaining constants

γi = Vsχ
∞
i , ϵ0,i = As(χ

∞
i − χ0

i )B
′2
z,i . (5.12)

Here As ≈ 230 nm2 is the area per skyrmion as introduced earlier and Vs = AsL is the
corresponding volume of one skyrmion line. Furthermore, ϵ0 has dimensions energy/length
and has the meaning of the elastic constant of the skyrmion lattice. Importantly, for
MnSi, we can calculate all these constants from the experimentally available data on mag-
netisation measurements and uniform susceptibilities of skyrmion lattices, presented in
Section 4.1. In these experiments the transverse oscillating magnetic field was applied only
in the x direction. In this case we obtain χ0

x ≈ 0.2
µ0

and χ∞
x ≈ 0.3

µ0
, where µ0 is the magnetic

permeability, and

ϵ0,x ≈ 4 · 10−13 J
m

≈ 30K
kB
nm

≈ 600GHz
2πℏ
nm

. (5.13)

Note that Eq. (5.8) was derived under the assumption of smooth and small skyrmion
lattice deformations, hence including only the lowest gradient term. The corrections to
this formula include two types of terms. The first group of correction terms involve higher
powers of ∂zu. These terms are much smaller than the main contribution as we are working
using the assumption of the weakly distorted skyrmion lattice, |∂zu| ≪ 1. Other correction
terms include higher derivatives of the displacement function u. Let us, for example,
consider the bending energy of skyrmion lines, described by

FB =

ˆ L/2

−L/2

dz α0

[
(∂2

zux(z, t))
2 +

(
∂2
zuy(z, t)

)2]
. (5.14)

Here, a prefactor α0 can be found from a dimension of analysis to be of the order of ϵ0R2
s,
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where Rs is the skyrmion radius (the typical length scale of our system in the direction
perpendicular to the applied static field). Now we make a substitution z = z̃L in the
integral and get

FB ≈ ϵ0R
2
s

L3

ˆ 1/2

−1/2

dz̃
[
(∂2

z̃ux(z̃, t))
2 +

(
∂2
z̃uy(z̃, t)

)2]
. (5.15)

In the assumption of a weakly distorted skyrmion lattice, the variations of u occur on the
scale of a fraction of the length of the skyrmion string. The term FB is therefore suppressed
by (Rs/L)

2 ≪ 1, compared to the leading order term presented in the Eq. (5.8). From
similar considerations, we can also neglect other higher derivative corrections to Eq. (5.8)
in this Chapter.

Note that the expression for the free energy is translation invariant with respect to
translations in x and y directions. It is also invariant with respect to space inversion
(r → −r, u(r) → −u(−r) and the magnetic field B is invariant under inversion).
However, the underlying crystal structure is chiral. We will consider the corrections needed
to restore the underlying chirality of the skyrmion lattice in Chapter 8.

In the absence of pinning, the minimum of the free energy, Eq. (5.8), can be easily
obtained. In this case, the skyrmion line is straight and follows the effective magnetic field
(see Fig. 30b):

∂zux(z, t) =
Bx(t)

B′
z,x

, ∂zuy =
By(t)

B′
z,y

⇒ ux(z, t) = z
Bx(t)

B′
z,x

, uy(z, t) = z
By(t)

B′
z,y

. (5.16)

After calculating the expression for the free energy of the skyrmion lines in a shaking
field in the absence of pinning, we can now proceed to introduce the resulting equation of
motion and find the elastic forces acting on the skyrmion line.

5.3 Equation of Motion and Elastic Forces
The expression of the free energy found in Section 5.2 describes the change of energy of the
skyrmion line due to elastic bending in the absence of pinning. However, in real systems,
the dynamics of the skyrmion lines is determined by the competition of the elastic force
with Magnus, dissipative, and pinning forces. Our starting point to find the equation
of motion is the Thiele equation (see Sec. 3.3), which accurately describes the motion
of skyrmions as rigid objects in the presence of weak forces. The skyrmion line is built
from single skyrmions. Therefore, instead of using the 2D version of the Thiele equation,
M (r, t) = M 0(r − R(t)), for the 2D skyrmion coordinate R(t) we identify, for each z,
the coordinate R(t) with the respective coordinate of the displacement function u(z, t).
Therefore, in the absence of an external current, we can write the Thiele equation as

G × u̇(z, t) + αDu̇(z, t) = − δF
δu(z, t)

+ F p . (5.17)
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Here G is a gyrocouping vector, given by G ≈ 4πmsW ẑ, where ms is the spin density (with
units ℏ per volume). This vector is oriented parallel to the skyrmion orientation n̂. How-
ever, we neglect this higher-order effect by setting n̂ = ẑ +O(∂zu). Moreover, W = −1 is
the winding number per unit cell, reflecting the non-trivial topology of skyrmions. Further,
D is the dissipative tensor computed from D = ms

2

´
UC

d2r(∇M̂ )2. Here, M̂ is the local
orientation of the magnetisation, and one integrates over the unit cell of the skyrmion
lattice. We will discuss the last term, the pinning force F p in the next Section.

We constrain the further discussion to the transverse field acting only in the x direction
and take Nx = Ny = Nz = N , valid for spherical samples, used for experiments discussed
in this Chapter. Further, we drop the index x for γx and ϵ0,x so that the free energy
functional reads

F = −γ

2
Bx(t)

2 +

ˆ L/2

−L/2

dz
ϵ0
2

[(
∂zux(z, t)−

Bx(t)

B′
z

)2

+ (∂zuy(z, t))
2

]
. (5.18)

We proceed to evaluate the elastic force − δF
δu(z,t)

in Eq. (5.17) from the expression of the
free energy. To find the force, which acts in the x direction at the point z = z0 at a moment
of time t, we calculate a functional derivative of the free-energy functional with respect to
ux(z0, t) via partial integration

−δF [ux(z, t), uy(z, t)]

δux(z0, t)
= −ϵ0

[
δ(z − z0)

(
∂zux −

Bx(t)

B′
z

)∣∣∣∣z0=L/2

z0=−L/2

− L ∂2
zux

∣∣∣
z=z0

]
. (5.19)

A similar calculation gives the force acting in the y direction. Finally, we obtain that the
elastic force (per length) acting in the bulk is given by

F el,b = − 1

L

δF
δu

= ϵ0 ∂
2
zu , (5.20)

and the elastic force on the surface is

F el,s = −ϵ0

(
∂zu− Bx(t)

Bz

x̂

)
. (5.21)

We can write these two forces in a compact form with the help of two delta functions

− δF
δu(z, t)

= ϵ0 ∂
2
zu− ϵ0

[
δ

(
z − L

2

)
− δ

(
z +

L

2

)](
∂zu− Bx(t)

B′
z

x̂

)
. (5.22)

Note that the elastic force in the bulk is defined as a force per length in contrast to the
surface force; therefore, these two forces have different dimensions.

The driving field, counter-intuitively, enters only as a boundary condition within the
approximations of our theory, so that the ends of the line tend to align parallel to it. This
fact will dramatically affect the depinning and motion of the skyrmion lines, as we shall
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5.4 Pinning Force

see later. In the next Section, we proceed to introduce the effective model for the other
remaining ingredient of the Thiele equation: the pinning force.

5.4 Pinning Force
Pinning forces from defects in the material or from defects in the skyrmion lattice struc-
ture, are crucial to correctly capture the observed phenomena for skyrmion lattices under
external drives, e.g. depinning due to the applied current (see Sec. 3.1 for a more in-depth
discussion). However, these forces substantially complicate the theoretical description.
Within the mean-field theory discussed here, the function u(z) will be, in general, replaced
by a field u(r) with complicated dynamics, especially close to the depinning transition.
Moreover, the exact form of the pinning force and critical exponents of the depinning
transition are unknown [49].

Based on this observations, we use a simple phenomenological model initially proposed
in Ref. [54] to capture the most important disorder effects within the Thiele approach.
This model is consistent with the observed finite critical current jc ≈ 106A/m2 needed to
depin the skyrmion lattice, as well as linear velocity dependence on current strength at
larger currents (see Sec. 3.2). Firstly, skyrmions do not move if the force F (z, t) acting on
them is smaller than a critical value, the so-called depinning force, F p

c , which is defined
as the force per skyrmion and per length needed to depin the skyrmion lattice. In this case,
the pinning force cancels exactly other forces and skyrmions do not move. Secondly, when
skyrmions start to move upon reaching this threshold value, they experience a frictional
force oriented anti-parallel to the direction of motion of the skyrmion. The strength of this
force is again given by F p

c to ensure the continuity of pinning force (Fig. 32). Together,
these two conditions can be written as

F p =

{
−F for F ≤ F p

c ,

−F p
c

u̇(z,t)

| ˙u(z,t)|
for F > F p

c .
(5.23)

In the pinned regime, it is valid that F p+F = 0, so that skyrmions are stuck. At first sight
the form of the pinning force might seem quite simple. However, it is a highly non-linear,
implicit function of the forces on the skyrmion and the skyrmion velocity. When the line is
depinned, it travels the macroscopic distances zθB, which is much larger than the skyrmion
lattice constant. Therefore, F p

c can be understood as a resulting friction force per length,
averaged over many microscopic disorder realisations.

This model was initially proposed to explain the experiments on depinning by a current.
From this, one can estimate the strength of the bulk pinning (see Sec. 7.1).

Now we want to expand this pinning model by introducing the pinning at the ends of
the line z = ±L

2
, dubbed as surface pinning F p,s. The total pinning force is given by

F p = F p,b +

[
δ

(
z − L

2

)
+ δ

(
z +

L

2

)]
F p,s . (5.24)
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5 Unpinning Skyrmion Lattices with Shaking Fields

Figure 32: The pinning force F p has the same strength and is directed anti-parallel to
the applied force F until the force strength reaches the critical value F p

c . After this, the
pinning force F p has a constant value F p

c and is directed anti-parallel to the direction of
the motion.

Here F p,b and F p,s denote a bulk and a surface pinning, respectively. Each of these forces
follow Eq. (5.23) and are again non-linear functions of z and t, which depend on applied
forces and the local skyrmion velocity. Note that the bulk pinning has units of force per
length, while the surface pinning has a unit of force (to match the dimensions of elastic
forces introduced in Sec. 5.3). The dimensionless parameter F̃ p,s = F p,s

LF p,b characterises the
relative strength of surface-to-bulk pinnings. Later in this Chapter, we will find the value
of this parameter from measurements.

The motivation for including the surface pinning on the level of the mean-field theory is
simple: it is crucial to correctly capture a finite strength of the transverse magnetic drive,
bc ≈ 1mT, needed to depin the skyrmion lattice in MnSi by the shaking field (see Sec. 4.1).
We recall that the driving field Bx(t) enters only at the surface (see Eq. (5.22)). In the
pinned phase ∂zu(z, t) = 0, ∂2

zu(z, t) = 0 and the surface pinning force exactly cancels the
magnetic drive as depicted in Fig. 33. Only when the magnetic drive strength overcomes
the critical value of the depinning force on the surface

F p,s
c = ϵ0

bc
B′

z

, (5.25)

the line starts to depin.
Microscopically, there are several mechanisms in which surface pinning might arise.

Currently, no experimental data is available to determine if skyrmion lines are going
through the whole sample or if they are breaking within the sample. If skyrmion lines
end at the surface of the sample, pinning forces arise from surface roughness and surface
defects. In contrast to the atoms inside the solid, which are surrounded by other atoms
forming the crystal structure, surface atoms interact with other atoms from the environ-
ment. Therefore, the surface properties of a solid are quite different from its properties
in the bulk. If skyrmion lines end in the bulk of the material, a Bloch point is formed at
the end of the line (identified with an emergent magnetic monopole in Ref. [81]). Such
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5.5 Rescaled Thiele Equation

Figure 33: (a) Somewhat similar to our model, the static friction force F st prevents the
cupboard from moving under the applied force F , F st = −F . (b) The surface pinning
force F p,s prevents the line from movement under the driving field for ϵ0

b
Bz

≤ F s
c .

large topological defects (compared to the lattice constant) bind much stronger to local
defects in the material in comparison to smooth skyrmion textures where such forces are
suppressed by factors of (a/Rs)

2. Here a is the lattice constant and Rs is the skyrmion
radius [70].

Note that the proposed effective pinning model cannot correctly capture critical ex-
ponents of the depinning transition or effects like thermal creep. Moreover, our theory
does not capture the partial depinning of skyrmion lattice when some parts are depinned,
while other parts remain stuck, the effect which was observed for skyrmion lattices (see
Sec. 3.5). Despite this, the simple model can be used to successfully understand the main
experimental features semi-quantitatively.

5.5 Rescaled Thiele Equation
After calculating the elastic as well as the pinning forces, we return to the Thiele equation,
which governs the motion of the skyrmion line in our effective theory. In the presence of
both bulk and surface pinnings, this equation has the form:

G × u̇(z, t) + αDu̇(z, t) = − δF
δu(z, t)

+ F p,b +

[
δ

(
z − L

2

)
+ δ

(
z +

L

2

)]
F p,s . (5.26)

The elastic force − δF
δu(z,t)

was calculated in Section 5.3. In order to reduce the number of
independent parameters, we rewrite this equation in rescaled, dimensionless variables

ũ = ũ(z̃, t̃) =
ϵ0

F p,bL2
u(z, t), z̃ =

1

L
z, t̃ =

ϵ0
L2G

t . (5.27)

The rescaling of time performed here is equivalent to the rescaling ν̃ = ν
ν0

, ν0 = ϵ0
L2G of

frequency. The coordinate z̃ is bounded as −1
2
≤ z̃ ≤ 1

2
. Interestingly, the squared length
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5 Unpinning Skyrmion Lattices with Shaking Fields

of the skyrmion line enters both the rescaling of the frequency ν and the rescaling of the
displacement field u(z, t). The resulting rescaled Thiele equation reads

ẑ × ˙̃u+
αD
G

˙̃u = ∂2
z̃ ũ−

[
δ

(
z̃ − 1

2

)
− δ

(
z̃ +

1

2

)] (
∂z̃ũ− δB̃ cos(ν̃ t̃)x̂

)
+ F̃

p
, (5.28)

where we introduced a rescaled pinning force F̃
p

and a rescaled driving field δB̃

F̃
p
=

F p,b

F p,b
+

[
δ

(
z̃ +

1

2

)
− δ

(
z̃ +

1

2

)]
F p,s

LF p,b
, (5.29)

δB̃ =
ϵ0

LF p,b

b

B′
z

.

Note that in the rescaled coordinates the modulus of the depinning force in the bulk is
equal to one. In addition, although the tilting angles of the magnetic field θB are small
in the experiments, δθB ≪ 1, the parameter δB̃ does not need to be small as it has a
(potentially) not small prefactor ϵ0

LF p,b , as we shall see later from the experiments.
Therefore, our model has the following (fitting) parameters to be determined from the

experiment:
ν

ν0
=

GL2ν

ϵ0
, ϵ̃0 =

ϵ0
LF p,b

=
Lp

L
, F̃ p,s

c =
F p,s

LF p,b
. (5.30)

Here, the second parameter ϵ̃0 can be rewritten with the help of a parameter with dimen-
sions of length Lp =

ϵ0
F p,b . We call this parameter a typical pinning length.

In the present Chapter, we concentrate on the limit of very slow drives, which is suf-
ficient to explain the main observed effects in the TISANE experiment. We proceed to
discuss intermediate frequencies in the next Chapter.

5.6 Dynamic Phases in the Adiabatic Limit
In general, it is not an straightforward task to find analytic solution for the displacement
function ũ(z̃, t̃) for every driving frequency ν̃ from the rescaled Thiele equation (5.28). As
experiments operate in the regime of few Hz to few kHz, we start by considering the limit
of slow drives, which we call the adiabatic limit. In this Section, we derive a fully analytic
solution for the displacement function ũ(z̃, t̃) and three dynamic phases as a function of
(rescaled) driving field strength δB̃ in the adiabatic limit.

The key to this solution is the realisation that, as the field changes very slowly, elastic
forces and pinning forces in the bulk and at the surface exactly compensate each other at
any given point in time

∂2
z̃ ũ(z̃, t̃) =

F p,b(t̃)

F p,b
c

,
(
∂z̃ũ(z̃, t̃)− δB̃ cos(ν̃ t̃)x̂

)∣∣∣
z̃= 1

2

= F̃
p,s
(t̃) . (5.31)

Based on these equations, we observe that the skyrmion line only moves in the direction
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5.6 Dynamic Phases in the Adiabatic Limit

of the applied drive. Because of the invariance under ũ(z̃, t̃) = −ũ(−z̃, t̃) we restrict our
analysis to the interval z̃ ∈ [0, 1

2
] and then directly obtain the solution for the remainding

interval by inversion.

If the strength of the rescaled driving field δB̃ is smaller than the maximal value of
the surface pinning force F̃ p,s

c , the skyrmion line will stay pinned. As we have defined
in Eq. (5.23), in this regime, the surface pinning force F̃

p,s
(t) exactly cancels the driving

force, which is given by the driving field Bx(t) at the end of the line

F̃
p,s
(t) + δB̃ cos(ν̃ t̃)x̂ = 0 ⇒ ∂z̃ũ = 0 . (5.32)

We call this phase the fully pinned phase. The critical value of the rescaled driving field
δB̃c,1 (which corresponds to the critical tilting angle bc,1

B′
z

in unscaled coordinates), at which
the driving field becomes stronger than the surface pinning, is given by

δB̃c,1 = F̃ p,s
c ⇒ bc,1

B′
z

=
F p,s
c

ϵ0
. (5.33)

After crossing this critical treshhold, the end of the line starts to depin. As the driving
force acts only at the surface, depinning begins from the end of the line. Note that this
transition exists only for a non-zero surface-pinning force. Moreover, the value of the first
critical field δB̃c,1 is independent of the frequency of the drive ν and length of the lines L

within our theory.

We firstly direct our attention to the equation for the derivative at the surface ∂z̃ũ, in
the regime where the line starts to depin, Eq. (5.31). The maximal strength of the surface
pinning is given by F̃ p,s

c so that it is allowed to switch between the two blue dotted lines
in Fig. 34. The direction of this force is always anti-parallel to the direction of the driving
force, if the line is pinned or antiparallel to the direction in which the line is moving. When
the strength of the field is maximal (at t̃ = 0), the line is at the point of its largest deviation
(depicted in the most left picture of Fig. 35). For the finite time ∆t̃0, the surface pinning
force compensates for the change in the driving force so that the derivative stays constant
and the line does not move (we label this part of the period by P). A fraction of the period
during which a skyrmion line stays pinned is given by

∆t̃0

T̃
=

1

2π
arccos

(
1− 2F̃ p,s

c

δB̃

)
for δB̃ ≥ F̃ p,s

c . (5.34)

After time ∆t̃0, the tip of the skyrmion line starts to depin and follow the magnetic field
(this part of the period is denoted as M) until the strength of the field reaches its maximal
value at the point t̃ = T/2 and the line is pinned again. Notably, it is the ratio F̃ p,s

c

δB̃
that

controls which part of the period the line stays pinned.

Until now, we have only discussed the equation for the derivative at the surface. In order
to find the solution for the whole line, we need to consider the first equation in Eq. (5.31).
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5 Unpinning Skyrmion Lattices with Shaking Fields

Figure 34: Schematic picture of the driving field, δB̃ cos(ν̃ t̃), time-dependent surface pin-
ning F̃ p,s(t̃) (the maximum strength of which is F̃ p,s

c ) and derivative of the displacement
function ∂z̃ũ at the surface (z̃ = 1

2
) for the rescaled surface pinning F̃ p,s

c = 0.5 and the
amplitude of the field δB̃ = 2. At t = 0, when the amplitude of the field is the strongest,
the surface pinning force exactly compensates the driving field, and the line is pinned (P).
When the maximal value of the surface pinning force is reached, the line starts to move
(M) until it is pinned again (P) at the extremum of the driving field.

The right-hand side of this equation, F p,b(t̃)

F p,b
c

, can only have two values 1 or −1 depending
on the direction of the movement. If the driving field strength is slightly larger than the
critical value δB̃c,1, at first, only a finite fraction of the line up to a point z̃0 ∈ (0, 1

2
) (which

depends on the strength of the driving field δB̃), becomes depinned, while the rest of the
line remains pinned towards the static field Bz. The solution for the depinned part of the
line at the point of largest deviation (at t̃ = 0) must obey ∂2

z̃ ũx(z̃, t̃) = 1 (or −1 at the
point of largest deviation in the other direction). Therefore, the solution in this case is

Figure 35: Stroboscopic pictures of the movement of the line over one-fourth of the period
with a time step ∆t̃ = 0.05 for the rescaled surface pinning F̃ p,s

c = 0.5 and the amplitude
of the field δB̃ = 0.9 (in the central pinned phase). When the amplitude of the external
field is the strongest, the central piece of line with |z̃| ≤ z̃0 is pinned. During the period of
oscillation, the line is pinned up to the point |z̃| ≤ z̃1(t).
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simply given by the quadratic function

ũx(z̃, t̃) =
1

2
(z̃ − z̃0)

2 . (5.35)

The position of the point z̃0 can be found by matching the derivative at the surface

z̃0 =
1

2
+ F̃ p,s − δB̃ (5.36)

and depends on the relative strength of surface pinning and driving fields.
In order to find a solution for the rest of the period, we notice again that the depinning

beginns from the end of the line. The line becomes depinned up to a point z̃0 ≤ z̃1(t̃) ≤ 1
2
,

which itself depends on the time (see Fig. 35). We separate the solution into two parts,

ũx(z̃, t̃) =

{
ũ>(z̃, t̃) for z ≥ z1

ũ<(z̃, t̃) for 0 ≤ z < z1 .
(5.37)

The pinned part ũ<(z̃, t̃) is given by Eq. (5.35). From the continuity of the displacement
function u(z̃, t̃) and the first derivatives at the point z̃1 we find conditions

ũ>(z̃1, t̃) = ũ<(z̃1, t̃) and ∂z̃ũ
>(z̃1, t̃) = ∂z̃ũ

<(z̃1, t̃) . (5.38)

The depinned part should satisfy ∂2
z̃ ũ

>(z̃, t̃) = −1. The general solution of this equation is
given by ũ>(z̃, t̃) = −z̃2 + a(t̃)z̃ + b(t̃). Moreover, we again demand that the equation on
the derivative at the surface is satisfied. From these conditions, we find the functions a(t̃)

and b(t̃). The resulting stroboscopic pictures of the movement of the line are depicted in
Fig. 35b. As a finite fraction of the line stays pinned during the whole period, we call this
phase the central pinned phase.

The full depinning of the skyrmion line happens after crossing the second critical field
δB̃c,2 (or tilting angle bc,2

Bz
in the unrescaled coordinates). We call this phase depinned

phase (see the upper panel on Fig. 36c for the corresponding stroboscopic picture of the
skyrmion line movement). To find the second critical field, we demand that in the solution
above, the parameter z̃0 becomes zero

δB̃c,2 =
1

2
+ F̃ p,s

c =⇒ bc,2
B′

z

=
LF p,b

c

2ϵ0
+

F p,s
c

ϵ0
. (5.39)

Note that the second transition exists even in the absence of the surface pinning. The
dimensionless combination LF p,b

2ϵ0
has the meaning of the angle of the second critical field

in the absence of surface pinning and characterises the competition between bulk pinning
and elastic energy. Moreover, the following interesting relations hold

1

2

B′
z

(bc,2 − bc,1)
= ϵ̃0 and

1

2

bc,1
(bc,2 − bc,1)

= F̃ p,s
c . (5.40)
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Figure 36: Upper panel: stroboscopic pictures of the skyrmion line movement in three
different phases in increasing strength of the driving field δB̃. Here (a) is the fully pinned
phase, (b) the central pinned phase and (c) the depinned phase. The two critical fields
at which these transitions happen are δB̃c,1 and δB̃c,2. Lower panel: the corresponding
rocking angle maps and (in red) the averaged value of the rocking angle at every time
step. Parameters used to produce this plot: F̃ p,s

c = 0.5, ∆z̃ = 0.0025, ∆t̃ = 0.008 and (a)
δB̃ = 0.4, (b) δB̃ = 0.8, (c) δB̃ = 1.1. Note that the time axis was shifted by t̃0 = T

2
as

compared to Fig. 34.

Using these relations and the data on TISANE measurements of two critical fields bc,1, bc,2
one can estimate two dimensionless parameters in our model: ϵ̃0 = ϵ0

LF p,b and F̃ p,s = F p,s

LF p,b ,
which control the relative strength of elastic energy to bulk pinning and surface to bulk
pinning respectively. From these relations we find the universal scaling parameter

δB̃ − F̃ p,s
c =

1

2

b− bc,1
(bc,2 − bc,1)

. (5.41)

After shifting and rescaling the strength of the magnetic field using this formula, we expect
the bulk skyrmion-hosting materials to follow a universal behaviour.

Interestingly, a very similar mean-field solution for depinning the elastic vortex line
in resonant superconducting radio-frequency cavities was found in Ref. [114]. Normally,
the dynamics of skyrmions under applied forces differs from vortices in superconductors
because of the much stronger gyrocoupling forces, which have their origins in the topological
nature of skyrmions. Because of these forces, the direction of the skyrmion movement is
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perpendicular to the direction of an applied force. However, in the adiabatic limit the
skyrmion line moves in the direction of the applied forces as described by Eq. (5.31). This
fact gives rise to the similarity between vortex and skyrmion line movements.

In the next Section, we propose how to determine the critical fields bc,1, bc,2 from the
experimentally available data on rocking curve measurements.

5.7 Experimental Signatures of Critical Fields
In the previous Section, we presented an analytical solution for the skyrmion line movement
and found three dynamical phases in the adiabatic limit: the pinned, central pinned and
depinned phase. In this Section, we propose how the critical fields can be tracked with the
help of TISANE rocking angle measurements.

The intensity of TISANE rocking curves is proportional to the fraction of the skyrmion
lattice, which is aligned with the respective angle. We expect small tilting angles of the
skyrmion line because of the tiny oscillating fields b ≪ Bz. Within our theory, the tilting
angle of a line is locally approximated by its partial derivative

ω(z, t) = arctan(∂zu(z, t)) ≈ ∂zu(z, t) =
1

ϵ̃0
∂z̃ũ(z̃, t̃) . (5.42)

Using the analytical solution for the displacement function ũ(z̃, t̃) from the Section above,
we calculate numerically the rocking angle maps in every phase. To do so, we numerically
compute the partial derivative of the displacement function with respect to z̃ for every

Figure 37: (a) The average angle of the rocking angle ⟨∂z̃ũx(z̃, t̃)⟩max and the relative
intensity at the origin Iori

Ipin
as functions of the driving field strength δB̃. In the pinned

phase, the rocking angles are zero, and the intensity at the origin is maximal. The first
transition (from pinned to central pinned phase) happens at the critical field strength
δB̃c,1 = 0.5 (denoted by the black arrow). After crossing this value, the average rocking
angle grows, and the intensity at the origin drops linearly. At the second transition from
the central pinned to the depinned phase at δB̃c,2 = 1 (denoted by the green arrow), the
intensity at the origin drops to zero. Here we used F̃ p,s

c = 0.5, ∆z̃ = 0.0025, ∆t̃ = 0.008.
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t̃0 ∈ [0, T ] (with the step ∆t) and z̃0 ∈
[
−1

2
, 1
2

]
(with the step ∆z̃) using the finite-difference

method

∂z̃ũx(z̃0, t̃0) ≈
ũx

(
z̃0 +

∆z̃
2
, t̃0
)
− ũx

(
z̃0 − ∆z̃

2
, t̃0
)

∆z̃
. (5.43)

Further, we calculate the number of elements of data whose values lie in successive bins
[∂z̃ũx − ∆∂z̃ũx

2
, ∂z̃ũx +

∆∂z̃ũx

2
]. The resulting data is being presented for all three phases in

the form of the heat map, see Fig. 36, lower panel. For the remainder of this Thesis we
call these maps “rocking angle maps”.

In the pinned phase, ∂z̃ũx(z̃, t̃) = 0 at any point of the line, leading to the straight line
at the corresponding rocking angle map. In the central pinned phase, a fraction of the
line is depinned. However, during the whole period the finite fraction of the line remains
pinned, resulting in the non-zero values at ∂z̃ũx(z̃, t̃) = 0. In the depinned phase on the
contrary, it hold that during the whole period ∂z̃ũx(z̃, t̃) ̸= 0. Moreover, the fraction of
the period when the line is stuck (the flat part of the curve) becomes smaller at increasing
values of the driving field.

We propose two quantities with the help of which we track the two transitions, from
pinned to the central pinned and from the central pinned to depinned phase, experimentally.
First, we consider the weighted average of the derivative ∂z̃ũx(z̃, t̃) at every point of time
during the oscillation period ⟨∂z̃ũx⟩ (red lines in Fig. 36). The quantity of interest then
is ⟨∂z̃ũx⟩max, the largest weighted average value of the derivative over the period (reached
at the point, when the line has the largest deviation). This quantity is equal to zero if
the strength of the driving field is lower than δB̃c,1, denoted by the black arrow on Fig.
37a. Above this value, the skyrmion line is in the central pinned regime and this quantity
starts to grow. As such, it provides a great tool to track the first transition. After reaching
the second critical value δB̃c,2 (marked with the green arrow), the growth is approximately
linear (in the limit of the strong driving field, the line follows the shaking field). For large
values of driving field δB̃ ≫ F̃ p,s

c , the solution is an approximately straight line, as can be

Figure 38: Rocking angle map and (in red) the weighted averaged value of the rocking
angle for large value of driving field δB̃ ≫ F̃ p,s

c at every time step. Parameters used to
produce this plot: F̃ p,s

c = 0.5, ∆z̃ = 0.0025, ∆t̃ = 0.008, δB̃ = 5.
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5.8 Tracking Dynamic Phase Transitions with TISANE

seen from the rocking angle map in Fig. 38. Mathematically, this is the case because the
first derivative grows linearly with increasing the driving field ∂z̃ũx(z̃, t̃) ≈ δB̃ cos(ν̃ t̃) (see
the boundary condition in Eq. (5.31)), while the absolute value of the second derivative
|∂2

z̃ ũx(z̃, t̃)| = 1 stays constant. Therefore, the derivative is almost constant along the line
and is proportional to the amplitude of the skyrmion line motion. Importantly, even
at strong values of the driving field, the line is stuck for a finite time during each period
(flat region of the curve at Fig. 38). We will discuss the consequences of this fact in the
next Chapter.

The second quantity of interest is the intensity at the origin (relative to the maximum
intensity at the pinned phase), Iori

Ipin
. Within the theoretical description, this quantity is

equal to 1 in the pinned phase. We predict that it has a drop at δB̃c,1 (denoted again with
the black arrow) and then linearly decreases until δB̃c,2 (denoted with the green arrow), at
the transition from the central pinned to the depinned phase. This linear dependence can
be easily explained with the help of Eq. (5.36).

In the next Section, we find both transition fields bc,1, bc,2 from the TISANE measure-
ments in MnSi, as well as the fitting parameters of our theory ϵ̃0 and F̃ s,p.

Figure 39: Time-resolved rocking angle maps at selected values of angles of the tilted
driving field ωac as found from TISANE measurements on MnSi. The dashed line is the
time-dependent angle of the magnetic field at the corresponding time step, and the red
line is the theoretically calculated derivative at the surface ∂z̃ũ(z̃, t̃). For the white dashed
and red lines, parameters are: shift in time ∆ϕ = 0.57 and F̃ p,s

c /ϵ̃0=0.8
◦ ≈ 0.0014.
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5 Unpinning Skyrmion Lattices with Shaking Fields

5.8 Tracking Dynamic Phase Transitions with TISANE

Excitingly, the two phase transitions described in the previous Sections can be tracked
from the experimentally available data on TISANE (see Sec. 4.2 and Ref. [106] for more
details on this technique). This data was measured by Dr. D. Mettus in the group of Prof.
C. Pfleiderer.

The data on time-resolved rocking curves for MnSi at Bz = 170 mT, T = 28 K and
frequency of 404 Hz for a few selected tilting fields is presented in Fig. 39 (note that
angles are given in degrees ωac = b

B′
z

180
π

◦). We subtracted the angle ω0 = −1.275◦, at
which the skyrmion lattice is directed in the absence of driving field from all measurements
(see Sec. 4.2). We observe that the angle of the skyrmion lattice tilting is always smaller
than the angle of the driving field ωac for the measured range. Moreover, at small driving
field amplitudes, all intensity is concentrated at the origin and the rocking curves do not
change with the increasing driving field strengths, meaning that the skyrmion lattice is
pinned. The rocking peaks start moving just above the tiny tilting angle ωc,1

ac ≈ 1◦. For
example, for ωc,1

ac = 1.2◦, a finite intensity is still concentrated at the origin, meaning that
a finite fraction of the skyrmion lattice is still pinned, while the finite intensity away from
the origin signifies that a fraction of the lattice is depinned. At even higher values of the
driving field, the whole lattice is depinned during the entire period of oscillation. Finally,
at high applied magnetic fields, the rocking peak splits into two peaks (motion of skyrmion
lattice develops bimodal character), see the rocking scans for ωac = 2.46◦ in Fig. 40a. In
TISANE, the changes over time are partially smeared out due to the finite chopper opening
time. It turns out that this smearing in time is enough to explain the bimodal distribution
in the observed rocking scans and they are considered to be an instrumental artifact (see
the next Section and Ref. [106] for more details). Moreover, we observe that flat regions
exist for all measured driving fields, meaning that the skyrmion lattice is stuck for a finite
time during each oscillation period.

The exact phase of the magnetic field (corresponding to the time shift on the t/T axis)
is unknown. We find a fit, both for the shift in time ∆ϕ = 0.57 and the rescaled parameter
F̃ p,s
c /ϵ̃0 = 0.8

◦ from our model. In Fig. 39, the white dotted line denotes the resulting
angle of the applied magnetic field over one oscillation period, while the red line is the
theoretically calculated derivative at the surface ∂z̃ũ(z̃, t̃) (note that it is governed by a
single parameter F̃ p,s

c /ϵ̃0). Although we can already capture some trends such as flat parts
of the distribution and an increase in the amplitude, it is clear that skyrmion lines are not
straight in the experiment but rather have a more complicated spatial distribution.

In order to explain this data further, we use our theoretical model which includes two
phase transitions, introduced in the previous Sections. We find the rocking peak position
and intensity at the centre of motion from the measured rocking curves. The rocking peak
position is the angle corresponding to the point of maximum intensity of the rocking curve
at every time step (denoted by arrows at the Fig. 40a for the data set at ωac = 2.46◦).
It measures the angle at which the largest fraction of the skyrmion lattice is directed at
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5.8 Tracking Dynamic Phase Transitions with TISANE

a given time step. Further, we define the amplitude of motion, ωSL, as the maximum
rocking peak position angle over time. This quantity is presented in red as a function
of ωac on Fig. 40b. The onset of ωSL indicates the first transition, as discussed in the
previous Section. For the experimental data, we define the first critical field ωc,1

ac as the
first data point, where the value of ωSL is larger than the experimental error. For MnSi, we
find ωc,1

ac = 0.83◦, which corresponds to bc,1 = 2.45 mT. We recall that until the skyrmion
line is pinned due to the surface pinning until reaching the first critical field with the
corresponding angle ωc,1

ac . After crossing this threshold value the motion starts at the
surface, while the skyrmion string stays pinned at its centre (pinned to the central pinned
transition). At larger values of the driving field, ωSL grows approximately linearly, as
predicted by the theory. Interestingly, from the experimental data, one can see that the
slope of the curve is less than unity even far from the transition (compared it to the slope
of the dashed red line ωSL = ωac, which serves as a guide to the eye).

In order to track the second transition (from central pinned to depinned phase), we
first find Iori, the intensity at the origin (at the point when ω = ω0) for every time step
(see Fig. 40a). This quantity measures the phase volume of skyrmions aligned towards
the static field Bz. We are, however, interested in the value of the minimal intensity Iori

Figure 40: (a) Rocking scans for ωac = 2.46◦ over the oscillation period T as function of
the angle ω. For every time step, we find the angle ωSL in which the largest fraction of the
skyrmion lattice is directed. Moreover, from the intensity at ω = ω0, we find the fraction
of the line directed towards the applied static field Iori. (b) For every ωSL, we plot the
maximum angle ωSL and the minimal value of the intensity at the origin Iori (normalised
by the corresponding curve area) over the oscillation period. Two critical fields, at which
the transition from the pinned to central pinned to depinned phase happens, are denoted
as Bc1 and Bc2, respectively.
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5 Unpinning Skyrmion Lattices with Shaking Fields

over the period, denoted as Min(Iori). The minimal value of the intensity over the period
Min(Iori) gives the volume fraction of the skyrmion lattice, which remains pinned towards
Bz during the whole period of driving field oscillation, therefore presenting a perfect tool
to determine the second phase transition. The found value of Min(Iori) at every angle
of the tilting field ωac is normalised by the total area under the rocking curve in order to
compensate for the loss of the skyrmion phase volume at higher values of tilting angles. The
observed dependence of this quantity on the tilting angle ωac is depicted in blue in Fig. 40b.
It starts to decrease after reaching the first transition at ω = ωc,1

ac and decreases towards
larger values of magnetic fields. In theory, however, its dependence on the magnetic field
is predicted to be a straight line and after the second transition at ω = ωc,2

ac it shall drop
to zero (compare to Fig. 37b). However, as one can see in the data, the drop of Min(Iori)
is not linear but instead shows a prolonged tail towards larger values of the tilting fields.
In order to capture the critical value of the second transition, we make a linear fit to the
curve region with the steepest slope directly after the transition ωc,1

ac , as depicted by the
blue dotted line. After that we extrapolate this line to cross with the x axis (point of zero
intensity). We propose to find the second transition from the corresponding value of the
tilting field, which gives ωc,2

ac = 1.7◦ (bc,2 = 5 mT) for MnSi. The reasons for finding ωc,2
ac

using this scheme are explained in the next Section.

The tail in Min(Iori) for higher angles of the driving field in experimental data can be
caused by several effects. In the next Section we discuss how the distribution of skyrmion
line lengths and time binding effects might explain the deviation of experimental data from
the theory prediction.

Figure 41: (a) The weighted average angle of the rocking angle ⟨∂z̃ũx(z̃, t̃)⟩max and (b) the
relative intensity at the origin Iori

Ipin
as functions of the driving field strength δB̃ for a few

values of σ. Parameters used F̃ p,s
c = 0.5, ∆z̃ = 0.0025, ∆t̃ = 0.008.
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5.9 Effects of Time Binning and Domain Length Distribution

5.9 Effects of Time Binning and Domain Length Distri-
bution

In our theory of skyrmion lattices in tilting fields discussed in this Chapter, we made a
number of approximations. One of the approximations was that all skyrmion lines (which
describe the deviation of every line in the skyrmion lattice) have the same length L. This
approximation corresponds to having a single domain in the material. However, we do
not know if this condition is satisfied in the experiments. Therefore, we make a rough
estimation here on the effect of domain length distribution on the two phase transitions.

To do so, we take the lengths of the lines to be Gaussian distributed with parameters
µ and σ: N (µ, σ2). Further, the measured intensity of the signal at a given angle will be
proportional to the product of the probability density function of the skyrmion line having
certain length times the number of bins in the interval

[
∂z̃ũx − ∆∂z̃ũx

2
, ∂z̃ũx +

∆∂z̃ũx

2

]
. From

this data, we calculate again the weighted average angle of the rocking angle ⟨∂z̃ũx(z̃, t̃)⟩max

and the relative intensity at the origin Iori
Ipin

as functions of the driving field strength δB̃

for a few values of σ. This data is depicted in Fig. 41. We observe almost no change in
⟨∂z̃ũx(z̃, t̃)⟩max. However, a prominent difference is present in Iori

Ipin
. Similar to experiments,

we see a broadening around the second critical field (denoted with the green arrow). At
values just after the first critical field (denoted with the black arrow), almost no change
is observed. Therefore, we propose to find the value of the second phase transition from
fitting the values after the transition with a linear fit and extrapolating these curves to the
x axis, as was done in the Section above.

Moreover, because of the details of the experiment, the curve for Min(Iori) will be even
more smeared out. We recall that although in reality the movement of the peak centre
during the experiment is continuous, the measured intensity is sorted into ten time bins
(see Sec. 4.2). Every single of these time bins contains a time-integrated intensity over one-
tenth part of the period of oscillation. We call this effect time smearing. Experimentally,
the time smearing originates from the finite chopper pulse width ∆tc. The parameter Dc,
which is called a chopper duty cycle, characterises the ratio of chopper pulse width to the
repetition time of chopper Tc

Dc =
∆tc
Tc

, (5.44)

see Fig. 24 for a graphical representation. The value of the parameter Dc in the TISANE
experiment, presented in this Thesis, is Dc = 0.352. The effect on TISANE rocking inten-
sities (modelled as Gaussian curves that follow a sinusoidal driving field) due to binning
for different values of Dc was simulated in Ref. [106] and is depicted in Fig. 42. As can be
seen from this Figure, a broadening of rocking curves occurs for higher values of Dc. More-
over, for Dc = 0.35 a bimodal distribution is observed. Intuitively, one can understand
this artifact from Fig. 43a. A normalised sum of Gaussian intensity profiles originating
at different times within the pulse results in the black line, which will be measured in the
TISANE experiment. For more details of this effect, see Ref. [106].
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5 Unpinning Skyrmion Lattices with Shaking Fields

Although the effects of time smearing were simulated for Gaussian curves that follow
a sinusoidal driving field in the paper above, we believe that it has a similar influence on
the movement of the line with pinning. Therefore, the bimodal distribution, observed in
Fig. 40 is considered to be an experimental artifact. Moreover, we include the effects of
time smearing in our model and produce corresponding plots of the amplitude of motion
ωSL and intensity at the origin, Iori. These are depicted in Fig. 44. This data was produced
by Dr. D. Mettus and is currently prepared for publication in joint work (Ref. [109]). As
one can see, although the parameter Dc has almost no influence on the amplitude of the
motion ωSL, the intensity at the origin, Min(Iori), is strongly affected. This quantity does
not reach zero even for large values of the applied driving field. Moreover, we observe the
angle of the curve directly after the first transition is affected.

Time smearing and domain length distribution considerably influence intensity at the
origin Min(Iori). Therefore, we conclude that we can successfully explain the discrepancies
between the experimental data on TISANE and our theoretical model. In the next Section,
we compare the unpinning processes across different materials.

Figure 42: Simulated TISANE rocking intensities (Gaussian curves that follow a sinusoidal
driving field) due to binning for different duty cycles (a) Dc = 0, (b) Dc = 0.15 and
(c) Dc = 0.15. The effect of time smearing becomes prominent for high values of the duty
cycle. Picture credit from Ref. [106]

.
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Figure 43: (a) Sum of Gaussian intensity profiles that originate at different times for one
time frame at t/T = 0.3. Picture credit from [106]. (b) The shape of the observed rocking
curve (black line) is not what we thought it was. “My drawing was not a picture of a hat.
It was a picture of a boa constrictor digesting an elephant. Then, I drew the inside of the
boa constrictor so that the grownups could see it clearly. They always need to have things
explained.” Taken from "The Little Prince" by Antoine de Saint Exupéry. Picture credit
from Ref. [115].

Figure 44: Effects of the time bining (controlled by the parameter Dc) on the simulated
amplitude of motion ωSL and intensity at the origin Min(Iori). Produced by Dr. D. Mettus.
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5 Unpinning Skyrmion Lattices with Shaking Fields

5.10 Universality of Depinning Transitions in Different
Materials

Apart from the conductor MnSi, the unpinning transition was tracked in the doped systems
Mn1−xFexSi (with x = 0.02, 0.04 and 0.06) and in the insulator Cu2OSeO3. For Cu2OSeO3,
a high-temperature skyrmion phase was probed. Every material was brought into the
skyrmion lattice phase by applying a corresponding static magnetic field Bz and temper-
ature T. The observed values of the amplitude of motion, ωSL and the minimal intensity
at the origin over the period, Min(Iori), normalised by the curve area, can be found in
the upper panel of Fig. 45 (different colours indicate different materials). From ωSL one
can see directly that larger tilted magnetic field amplitudes (ωc,1

ac ≈ 3◦ for doped systems
Mn1−xFexSi and ωc,1

ac ≈ 8◦ for Cu2OSeO3) are needed to depin the skyrmion lattice. These
larger threshold amplitudes indicate stronger surface pinning forces. For doped systems
one possible explanation is that Fe atoms act as pinning centres. However, the depen-
dence on the doping concentration x is rather unintuitive, as shown in Fig. 59 in the next
Chapter.

Moreover, when one compares two measurements of the same sample Mn98Fe02Si but
different oscillation frequencies (403 Hz and 377 Hz), one can see that the depinning field
for these samples is slightly different. This signifies that the depinning might depend not
only on material properties but also on the frequency of the applied driving field. However,
the data was recorded only for two different frequencies. Therefore, further experimental

Figure 45: Comparison of unpinning transitions in different materials. (a) The amplitude
of the rocking peak motion ωSL and (b) intensity as the origin as a function of the angle of
the tilted field ωac. MnSi was measured at driving field frequency 404 Hz, static magnetic
field Bz = 170 mT and temperature T = 28 K, the blue line is Mn0.98Fe0.02Si with 404
Hz, Bz = 180 mT, T = 20.5 K, the green line is Mn0.98Fe0.02Si at 377 Hz, Bz = 180 mT,
T = 20.5 K, Mn0.96Fe0.04Si at 404 Hz, Bz = 190 mT, T = 14 K, Mn0.94Fe0.06Si at 404 Hz,
Bz = 200 mT, T = 9 K, Cu2OSeO3 at 409 Hz, Bz = 200 mT, T = 9 K, Bz = 17 mT,
T = 57 K.
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studies are needed. Note that this effect is not captured within our mean-field theory: if
the maximal strength of the force from the magnetic field at the ends of the line is less
than the critical value, proportional to the surface pinning, the line will stay pinned.

Interestingly, the minimal intensity at the origin Min(Iori) increases before and just
after the first transition at ω = ωc,1

ac for all samples, but is especially strong for the doped
samples. This implies that the skyrmion lattice volume fraction towards the direction of
the static field increases with the application of an oscillating field. This effect also cannot
be captured within our mean-field theory. Arguably, it can be explained with the help of
the following considerations. Because of the pinning, skyrmion lines are trapped in the
metastable state. Doped samples generally exhibit a more complicated energy landscape
with many local minima. During the motion under the oscillating field, skyrmion lines
move through many disorder configurations. Effectively this corresponds to averaging over
the disorder. Therefore, applying a driving field helps the skyrmion lattice to order even
faster at or around the first transition.

The measured strength of the driving field for most samples is, unfortunately, less or
just above the critical value for the second transition ωc,2

ac . Therefore, we cannot comment
on the effects of time binning and domain length distribution for other materials.

From the measurements of two critical fields, we can finally find the two dimensionless
parameters which control our theory in the adiabatic limit, namely ϵ̃0 and F̃ p,s

c using
Eq. 5.40. This data is plotted in Fig. 46a and Fig. 46b, respectively. Remarkably, one
can see that the parameter ϵ̃0, which measures the relative strength of the pinning length
Lp = ϵ0

F p,b to the length of skyrmion lines L, turns out to be much larger than unity for
all materials, ϵ̃0 ≫ 1. Because of this, tiny transverse magnetic fields suffice to depin
the skyrmion lattice. Moreover, we observe that the value of ϵ̃0 is an order of magnitude

Figure 46: Fit of two parameters, (a) ϵ̃0 and (b) F̃ p,s
c , which control our theory. These

parameters have been found from the critical fields bc,1 and bc,2 for the respective materials
using the fitting scheme described in the previous Sections.
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Figure 47: Universal behaviour of unpinning transitions in different materials using the
rescaling procedure from our theory (see the text). The colour code and experimental
parameters are the same as in the Figure above.

different for MnSi and Cu2OSeO3. At the same time, the ratio of surface pinning to bulk
pinning, F̃ p,s

c , is of order one for all materials. More precisely, we obtain F̃ p,s
c ≈ 0.5 for

MnSi and F̃ p,s
c ≈ 0.85 for Cu2OSeO3. We conclude that including surface pinning is crucial

to capture the observed unpinning processes in the tilting field correctly.
Further, using Eq. 5.41 for the rescaling of the magnetic field and Eq. 5.42 for the

rescaling of the rocking angle ω, we plot the data for unpinning transitions in different
materials in the rescaled coordinated in Fig. 47. We observe that the unpinning transition
has a universal character for these materials, as predicted by our theory.

Summary and Outlook
In this Chapter, we developed a Thiele-like description for the unpinning of skyrmion
lattices with slow oscillating magnetic fields in bulk chiral magnets. We consider the
collective response of the lattice, where we concentrate on a single skyrmion line, which
encodes the distortion of every skyrmion line within the lattice. Contrary to what one
might intuitively expect, we find that a magnetic field only enters at the ends of the line.
We use a simple yet effective phenomenological slip-stick model for pinning, where we
treat bulk and surface pinnings separately. In the limit of very slow drives (adiabatic
limit), we find an exact solution for the movement of the line and three dynamic phases
in the increasing tilting field: fully pinned, central pinned, and depinned. Our theory in
this adiabatic limit is controlled by two dimensionless parameters: the relative strengths of
surface to bulk pinnings and elastic to bulk pinnings (equivalently, the ratio of the typical
pinning length to the length of the line). We explained the main features observed in the
TISANE data for MnSi and identified the critical fields for both transitions.

Moreover, we compare the unpinning processes in different materials, namely doped
samples Fe1−xCoxSi for x = 0, 0.02, 0.04, 0.06 and the insulator Cu2OSeO3 and observe a
high degree of universality across these samples. From the critical fields, we find that the
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ratio of surface to bulk pinnings is roughly of order one for all measured materials, while
the ratio of the typical pinning length to the length of the line varies across the materials.
Because of the very weak pinning of the skyrmion lattice, already tiny tilting fields are
enough to depin the skyrmion lattice as measured in the experiment.

Although our theory successfully captured the main experimental phenomena, it has
several limitations. First of all, it is a mean-field result and does not describe critical
properties close to the depinning transition. We describe a single domain while, in reality,
skyrmion hosting materials may contain several domains with possibly different lengths of
skyrmion lines. Therefore, the measured data contains, in fact, an average of signals from
domains of various lengths, which affects both the resonance frequency and the depinning
field. Furthermore, our theory does not describe the possible fragmentation of the domains
under oscillating fields. Our elastic theory is written only to the lowest order of the gradient
expansion and does not correctly capture elastic constants for compression, tilt, and shear
of the skyrmion lattice.

Despite these limitations, the simple yet effective universal model, which we have devel-
oped for the skyrmion lattice depinning and motion under shaking fields, correctly captures
the main observed phenomena from TISANE measurements.
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6 | Slow and Fast Shaking

“An expert is a person who has found out by his own painful experience all the
mistakes that one can make in a very narrow field.”

N. Bohr [116]

In the previous Chapter we presented an exact solution of skyrmion lattice motion in shaking fields
in the adiabatic limit. Moreover, we discovered three dynamic phases: a pinned, a central pinned, and
a depinned phase. However, in reality the shaking of skyrmion lines happens at finite, even though
small frequencies. In this Chapter, we study the regime of intermediate frequencies more closely and
find a new wave-like solution for a skyrmion-line motion for large frequencies, for which we predict
the appearance of additional resonances. Moreover, we compare the transverse susceptibility data for
MnSi for theory and experiment. In order to account for the observed discrepancies, we introduce an
anisotropic surface pinning to our model and study a resulting rich phase diagram.

6.1 On a Search for Solution of Thiele’s Equation

In the previous Chapter, we discussed how the solution of the Thiele equation can be ob-
tained fully analytically in the adiabatic limit (limit of small frequencies) which is governed
by two dimensionless parameters ϵ̃0 = ϵ0

LF p,b and F̃ p,s = F p,s

LF p,b . In this Chapter, we aim to
find the dynamics of the skyrmion line in the shaking field for arbitrary frequencies. Note
that from now on we denote the frequency of the transverse field oscillation with ω instead
of ν, Bx(t) = b cos(ωt). We recall that the rescaled Thiele equation with pinning is given
by

ẑ × ˙̃u+
αD
G

˙̃u = ∂2
z̃ ũ−

[
δ

(
z̃ − 1

2

)
− δ

(
z̃ +

1

2

)] (
∂z̃ũ− δB̃ cos(ω̃t̃)x̂

)
+ F̃

p
, (6.1)

F̃
pin

=
F p,b

F p,b
+

[
δ

(
z̃ +

1

2

)
+ δ

(
z̃ − 1

2

)]
F p,s

LF p,b
,

see Section 5.5 for a detailed discussion. Pinning forces in bulk and at the surface are
defined in Eq. (5.23) and depend on the applied forces and local skyrmion velocity. In
order to simplify the notation, in this Section we will write F = F el. More precisely,
F = F el has two components: F b = ∂2

z̃ ũ in the bulk and F s = ∓
(
∂z̃ũ− δB̃x̂

)
on the

top and bottom of the surfaces, respectively. If, at a given time, the elastic forces F are
locally not strong enough to depin the line (F b ≤ 1 in the bulk and F s ≤ F̃ p,s

c at the
surface in rescaled coordinates), its velocity at this moment is equal to zero. If it is larger
than the respective critical value, the line starts to depin. Locally, the velocity of a line as
function of elastic forces can be found analytically from the Thiele equation and is given



6 Slow and Fast Shaking

by ( ˙̃ux = vx, ˙̃uy = vy, αD
G = α̃)

vx =
K(F )Fx − Fy

1 +K(F )2
θ(F − F̃ p

c ) , vy =
Fx +K(F )Fy

1 +K(F )2
θ(F − F̃ p

c ) . (6.2)

Here θ(F − F̃ p
c ) is the Heaviside-step-function (F̃ p

c = 1 in the bulk and F̃ p
c = F̃ p,s

c on the
surface) and K(F ) is a non-linear function of the force F . K(F ) can be found in the bulk
as a solution of the equation

(F 2 − 1)K2 − (2α̃F 2)K + α̃2 − 1 = 0 . (6.3)

Note that K(F ) depends only on the modulus of the applied force but not on its direction.
Plots for velocity v as a function of Fx for several values of Fy can be found in Fig. 48.
Depinning happens always at the point Fx =

√
1− F 2

y . The dynamics just after the
transition is strongly nonlinear, but at large values of Fx, shows an almost linear behaviour.

Let us discuss two limits of Eq. (6.2), which can be treated analytically. If the acting
force is large (F ≫ F p

c ), one can neglect pinning, and we obtain a well-known solution of
the Thiele equation in the limit of strong forces

vx =
α̃Fx − Fy

1 + α̃2
, vy =

Fx + αFy

1 + α̃2
. (6.4)

The resulting velocity is directed approximately perpendicular to the direction of the force.
These equations are linear and therefore one can obtain an analytic solution for a small
damping constant α̃, which will be given in Section 6.2.

Another limit, for when K is very large, corresponds to the case when forces are just
enough to depin the skyrmion (F 2 ≈ 1 or F 2 ≈ F̃ p,s

c ). This case is realised, for example,
in the adiabatic limit (treated analytically in Sec. 5.6). The formula for velocities in the
bulk then simplifies to

v = F
(√

F 2(1 + α̃2)− 1− α̃
)
. (6.5)
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Figure 48: Velocities vx and vy as functions of x component of the force force Fx for several
values of Fy. Parameters used: F̃ p

c = 1, α̃ = 0.1.
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6.2 Exact Solution for Large Frequencies

From this equation we see that in this limit where K becomes large, the velocity is parallel
to the direction of the applied force, in contrast to the other limit we considered. However,
in this case, finding an analytic solution is quite tricky because of the F

√
F 2 − 1 term.

As argued in the previous Chapter, pinning is essential in order to capture the main
experimental observations. With pinning, Eq. 6.2 is a highly nonlinear equation in par-
tial derivatives of the displacement function ũ(z̃, t̃). We therfore aim to find its solution
numerically. The basic idea is to discretise both z̃ and t̃ variables such that, instead of a
continuous line, we are dealing with a set of N points with coordinates ũi

n (i = x, y and
n = 1 . . . N). The goal is to find the positions of these points for every time step (Nstep up-
dates in time in total). The spatial derivatives in Thiele’s equation are then approximated
with the help of finite-difference formulas (where the error of derivatives is ∝ 1

N2 ). Fur-
thermore, we solve Eq. (6.2) using Heun’s method (also called the two-stage Runge–Kutta
method) for solving ordinary differential equations. Note, that the presence of non-analytic
forces make it necessary not to use a standard one-stage Runge–Kutta method [117]. The
chosen initial value is simply given by the deviation of every point of the line from being

zero. The error of time truncation is expected to be of the order of
(

1
Nsteps

)2
[118]. In

our code, we typically use Nsteps = 106, N = 60 and wait around 20 periods to obtain
a periodic solution in the long-time limit (when all initial effects have vanished). More
details on the numerical implementation can be found in the Appendix B.

In the next Section, we consider more closely the regime of strong forces given by
Eq. (6.4), which is, as we shall see, realised for large frequencies.

6.2 Exact Solution for Large Frequencies
In order to get some intuition for the dependence of the skyrmion line motion on the driving
frequency, we first consider the case when both pinning and damping constants are absent.
Practically, this case is realised if elastic forces are much larger than pinning, F el ≫ F p.
Damping is, however, always present in real materials. We will discuss the influence of
damping on our results later. The Thiele equation for the bulk can be written in unscaled
coordinates as {

G ∂uy(z,t)

∂t
= ε0

∂2ux(z,t)
∂z2

−G ∂ux(z,t)
∂t

= ε0
∂2uy(z,t)

∂z2
.

(6.6)

The boundary equation on the (top) of the line is given by
G ∂uy(z,t)

∂t

∣∣∣
z=L/2

= − ε0
L

(
∂ux(z,t)

∂z
− b

B′
z
cos(ωt)

)∣∣∣
z=L/2

−G ∂ux(z,t)
∂t

∣∣∣
z=L/2

= − ε0
L

∂uy(z,t)

∂z

∣∣∣
z=L/2

.
(6.7)

Note that the 1
L

prefactor on the boundary appears because of the delta function on the
boundary. Under the assumption that for both functions ux(z, t) and uy(z, t) continuity
conditions are satisfied, we can partially differentiate the second equation in Eq. (6.6) with
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6 Slow and Fast Shaking

respect to t and exchange the order of derivatives in z and t

−G ∂2ux(z, t)

∂t2
= ε0

∂2

∂z2
∂uy(z, t)

∂t
. (6.8)

Now we partially differentiate the first equation twice with respect to z and substitute
∂2

∂z2
∂uy(z,t)

∂t
from the second equation. After doing so, we finally obtain

∂2ux(z, t)

∂t2
+

ϵ20
G2

∂4ux(z, t)

∂z4
= 0 . (6.9)

This allows us to reduce a system of coupled equations in partial derivatives to a set of
decoupled equations. Because the drive is periodic, the movement of the line will also
be periodic in time. Thus, we solve the equation with the help of the Fourier transform
in time ux(z, t) =

∑∞
n=1(A(z, ω) sin(nωt) + B(z, ω) cos(nωt)). Here, the zeroth coefficient

does not appear because our system is inversion symmetric. Furthermore, we introduce a
new variable β =

√
Gω
ε0

and obtain

∂4A(z, ω)

∂z4
− n2β4A(z, ω) = 0,

∂4B(z, ω)

∂z4
− n2β4B(z, ω) = 0 . (6.10)

The normal modes of the equation are the functions sin(
√
nβz), cos(

√
nβz), sinh(

√
nβz)

and cosh(
√
nβz). Moreover, based on equations, we know that the solution has the prop-

erty u(z, t) = −u(−z, t). Because of this condition, the coefficients of cos(
√
nβz) and

cosh(
√
nβz) vanish. We finally obtain the solution of Eq. (6.6) in the bulkux(z, t) =

∑∞
n=1

(
c
(n)
1 sin(kz)− c

(n)
2 sinh(kz)

)
sin(nωt) +

(
c
(n)
4 sin(kz) + c

(n)
3 sinh(kz)

)
cos(nωt))

uy(z, t) =
∑∞

n=1

(
c
(n)
3 sinh(kz)− c

(n)
4 sin(kz)

)
sin(nωt) +

(
c
(n)
1 sin(kz) + c

(n)
2 sinh(kz)

)
cos(nωt)).

(6.11)
Here k =

√
nβ. We can see that the higher time harmonics vanish by substituting this

equation to the boundary condition, Eq. (6.7). From matching the solution at the bound-
ary, we findux(z, t) = − 1

2β
b
B′

z

(
sinh(βz)

cosh(Lβ/2)+Lβ sinh(Lβ/2)
+ sin(βz)

cos(Lβ/2)−Lβ sin(Lβ/2)

)
cos(ωt)

uy(z, t) = − 1
2β

b
B′

z

(
sinh(βz)

cosh(Lβ/2)+Lβ sinh(Lβ/2)
− sin(βz)

cos(Lβ/2)−Lβ sin(Lβ/2)

)
sin(ωt) .

(6.12)

For every fixed value of z in Eq. (6.12), the trajectory of a skyrmion line in the x, y plane
is an ellipse. To see this, we rewrite ux(z, t) = S(z) cos(ωt), uy(z, t) = H(z) sin(ωt) and
obtain a parametric equation of an ellipse(

ux(z, t)

S(z)

)2

+

(
uy(z, t)

H(z)

)2

= 1 . (6.13)
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6.3 Transverse Susceptibility

This ellipse has a major axis 2G(z) and a minor axis 2H(z), both proportional to the
strength of the applied transverse magnetic field b and inversely proportional to β.

Note that this equation has in general infinitely many resonant frequencies. Two dif-
ferent regimes exist depending on the value of the parameter Lβ

2
. For Lβ

2
≪ 1, the leading

order of the solution for ux coordinate is given by ux(z, t) ≈ b cos(ωt)z (where the lines are
following the shaking field) and remain suppressed for another coordinate uy ∝ β2z3. For
Lβ
2

≥ π
2

instead of following a magnetic field, the skyrmion line forms a wave in z direction
with a wave vector 2π

β
.

We think this solution becomes relevant for our model with pinning in the limit of
large magnetic fields b and large oscillation frequencies ω (since in this limit the elastic
force ∂2

zu ∝ ω is much larger than the pinning force and Eq.6.6 is valid). Stroboscopic
pictures of the movement of the line in this limit are depicted in Fig. 49. For a model
with pinning we find resonant frequencies at cos

(
Lβ
2

)
= 0, which corresponds to Lβ

2
= Nπ

2

(or ω
ω0

= (Nπ)2, where N ∈ N), see Section 6.4 for a further discussion.
One might follow a similar procedure as described above, in order to obtain an analytic

solution in the bulk for the case of non-zero damping. When doing so, we however find
that the solution is a highly complicated expression (see Appendix C).

6.3 Transverse Susceptibility

A standard technique to probe the response of magnetic systems are magnetic transverse
susceptibility measurements. In this Section, we discuss, in more detail, how these trans-
verse susceptibilities can be obtained within our theory.

The magnetisation of the skyrmion lattice under transverse oscillating field Bx(t) = b cos(ωt)

in the direction of an applied oscillating field for small amplitudes b can be expressed in a

Figure 49: (a) The trajectories of the skyrmion line in the ũx(z̃, t̃) plane for z̃ = 0.17 (green),
z̃ = 0.25 (blue) and z̃ = 0.33 (red). (b) Stroboscopic pictures of displacement u(z, t) of
the skyrmion line. The following parameters have been used: ω/ω0 = 60, αD/G = 0.1,
F p,st/(LF p,b) = 0.2.
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6 Slow and Fast Shaking

Fourier expansion

m⊥(ω, t) =
∞∑
n=1

(
Rem⊥

n cos(nωt) + Imm⊥
n sin(nωt)

)
= b

∞∑
n=1

(
Reχ⊥

n cos(nωt) + Imχ⊥
n sin(nωt)

)
.

(6.14)
Here χ⊥

n are the (complex) susceptibilities. With the help of the magnetisation, the real
and imaginary parts can then be found to be

Reχ⊥
n =

1

πb

ˆ 2π

0

m⊥
n cos(nωt) d(ωt), Imχ⊥

n =
1

πb

ˆ 2π

0

m⊥
n sin(nωt) d(ωt) . (6.15)

The higher harmonics (n ≥ 2) of the complex susceptibility are often referred to as non-
linear susceptibilities.

Going further, we recall that the expression of the free energy which describes the dis-
placement of the skyrmion lines due to the slowly oscillating shaking field B = (Bx(t), 0, Bz)

can be written as

F = −γ

2
Bx(t)

2 +

ˆ L/2

−L/2

dz
ϵ0
2

[
]

(
∂zux(z, t)−

Bx(t)

B′
z

)2

+ (∂zuy(z, t))
2

]
. (6.16)

For a derivation see Section 5.2. From this expression we can easily obtain the transverse
magnetization, m⊥ per volume

m⊥(t) = − 1

Vs

dF
dBx(t)

=
γ

Vs

Bx(t) +
ϵ0

VsB′
z

ˆ L/2

−L/2

dz ∂zux(t)

= χ0
⊥Bx(t) + (χ∞

⊥ − χ0
⊥)B

′
z

ux(L/2, t)− ux(−L/2, t)

L
. (6.17)

Remarkably, the transverse magnetisation is obtained from the displacement of the ends
of the skyrmion line only. Transverse susceptibility can be found from this expression
by integrating the transverse magnetisation over one oscillation period T = 2π/ω, see
Eq. (6.15)

χ⊥
n =

2

Tb

ˆ t0+T

t0

m⊥
n (t)e

inωt dt .

Here t0 is an arbitrarily chosen point in time8. Rewritten in dimensionless variables
ũ(z̃, t) = ϵ0

F p,bL2u(z, t), z̃ = z
L
, t̃ = ϵ0t

L2G , δB̃ = ϵ0
LF p,b

b
B′

z
(for a detailed discussion, see

Sec. 5.5) we find the complex transverse susceptibility within our theory to be

χ⊥
n = χ0

⊥ + (χ∞
⊥ − χ0

⊥)
2

T̃

ˆ t̃0+T̃

t̃0

ũx

(
1
2
, t̃
)
− ũx

(
−1

2
, t̃
)

δB̃
einω̃t̃dt̃ . (6.18)

8For the numerical implementation, it is important to wait sufficiently long until all initial state effects
have vanished.
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6.4 Transverse Susceptibility in the Case of Isotropic Pinning

For the regime where the skyrmion lattice is pinned, one obtains a transverse susceptibility
χ0
⊥ as expected. We define

∆b→0χ
⊥
n = χ⊥

n − χ0
⊥ , (6.19)

as the increase of susceptibility, which is due to the oscillating field compared to the
pinned phase. In the limit of an infinitely strong transverse magnetic field, the skyrmion
lattice will follow the driving field ũx = z δB̃(t̃) = zB̃ cos(ωt). In this case the change of the
real part of the linear susceptibility Re∆b→0χ

⊥
1 reaches the saturation value χ∞

⊥ , while the
imaginary part Im∆b→0χ

⊥
1 and all nonlinear susceptibilities vanish. For the intermediate

driving magnetic field strength, higher harmonics will appear in the solution (see Sec. 6.6
for further discussion).

In the next Section, we compare the data on the increase of linear susceptibility avail-
able from experiments on MnSi with data produced using our theoretical model. For the
remainder of this thesis, we drop the index for linear susceptibility unless stated otherwise
and simply write ∆b→0χ

⊥.

6.4 Transverse Susceptibility in the Case of Isotropic
Pinning

The data on the increase of the linear transverse susceptibility ∆b→0χ
⊥ in MnSi, was

measured by Dr. F. Rucker and published in his PhD thesis [98]. This data for an
oscillation frequency of ω = 120 Hz, applied static magnetic field of Bz = 0.22 T and
temperature of T = 28 K as a function of the strength of transverse magnetic field b, is
depicted on a semi-logarithmic scale on Fig. 50a. Measurements were conducted on a cubic
sample with an edge length of 2 mm.

The increase of linear transverse susceptibility ∆b→0χ
⊥ from the experimental data on

χ⊥ was obtained using the following procedure. Firstly, we performed a fit with a horizontal
line for points with b ≤ 0.5 mT in order to account for the measurement errors in the pinned
phase. From this we found Reχ0

⊥ = 0.205 and Imχ0
⊥ = 0.005. Secondly, we subtracted this

value from all measured χ⊥. As shown in Fig. 50a, the real part of transverse susceptibility
is approximately equal to zero before reaching the critical strength bc ≈ 0.5 mT of the
transverse field. It then increases monotonically and approaches a saturation value at
strong values of the driving field. The imaginary part of transverse susceptibility starts to
increase approximately at the same value of bc ≈ 0.5 mT, has a pronounced peak at b ≈ 5

mT and decreases with a steep slope after this value. Strikingly, the imaginary part of
transverse susceptibility is stronger than the real part for all measured data points.

In order to compare this data to our theoretical prediction, we solve the rescaled Thiele
equation (7.3) using Heun’s method of finding numerical solutions to ordinary differential
equations (see Appendix B for more details on numerical technique and implementation).
Using the numerically found solution for the skyrmion line ũ(z̃, t̃) we are able to find with
the help of Eq. (6.18) the transverse magnetic susceptibility.
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Figure 50: Change of the real (red) and imaginary (blue) parts of transverse susceptibility
in the bulk of MnSi as a function of the amplitude of the oscillating field b as found from
(a) experiment and (b) our theoretical model. The experimental data was measured by
F. Rucker. The experiment was conducted at Bz = 0.22 T and temperature T = 28 K;
for further details on experimental measurements, see Ref. [98]. For the theoretical model,
the following parameters have been used: ω/ω0 = 1.26, αD/G = 0.1, F p,st/(LF p,b) = 0.2.

From the data of the magnetisation we calculated χ∞
⊥ = 0.254, which leads to the

saturation value of ∆b→0Reχ⊥ = 0.049. The real and imaginary parts of the transverse
susceptibility as a function of the rescaled magnetic field B̃, which we calculated, are
presented on the semi-logarithmic scale in Fig. 51. We plot these quantities for a few
values of the rescaled surface pinning F̃ p,s = 0.2, 2, 10. We identify the signatures of both
phase transitions, found in Section 5.6, in the susceptibility data. As one can see from
Fig. 51, there exists a general trend for all values of the rescaled surface pinning F̃ p,s.
Before reaching the critical value of the transverse field δB̃c,1 = F̃ p,s (the first arrow),
both susceptibilities are zero, corresponding to the pinned phase. After the depinning,
the skyrmion lines enter the central-pinned phase and both susceptibilities start to grow.
Shortly after reaching the second value of the critical field, δB̃c,2, the imaginary part
of the susceptibility peaks and then decreases. In the limit of very strong transverse
magnetic fields, the skyrmion line simply follows the magnetic field ux(z, t) ≈ z b cos(ωt)

and the imaginary part of the susceptibility decreases, while the real part approaches its
saturation value. Moreover, we observe that at the point of the second transition, the
second derivative of the real part of the susceptibility changes its sign. Importantly, the
relative distance between first and second transitions, which is the same in rescaled and
unrescaled coordinates δB̃c,2−δB̃c,1

δB̃c,1
= bc,2−bc,1

bc,1
, decreases for stronger surface pinnings. From

this, we deduce that the data from the experiment is in the regime of lower values of F̃ p,s.

In order to quantitatively compare the theoretical data with data from measurements,
we recall that our theory posesses in general three fitting parameters (for a detailed dis-
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6.4 Transverse Susceptibility in the Case of Isotropic Pinning

cussion, see Sec. 5.5), which can be found by fitting the experimental data

ω

ω0

=
GL2ω

ϵ0
, ϵ̃0 =

ϵ0
LF p,b

=
Lp

L
, F̃ p,s =

F p,s

LF p,b
. (6.20)

The second scaling parameter, ϵ̃0, simply gives the rescaling of the x axis δB̃ = ϵ̃0
b
B′

z
.

Rescaling of the frequency ω0 has a more complicated influence on the dynamics, which we
will discuss at the end of this Section. We find the best fit for the following parameters:
ω/ω0 = 1.26, ϵ̃0 = 36.7, F̃ p,s = 0.2. The corresponding transverse susceptibility is plotted
in Fig. 50. These values are in good agreement with values found from TISANE on MnSi
(ϵ̃0 = 34, F̃ p,s = 0.5, see the Sec. 5.10). Note, however, that the measurements of transverse
susceptibilities and TISANE have been performed on two different samples with different
sizes and shapes. Therefore, we found that the parameters are slightly different.

Using these three parameters, we can estimate the typical length of skyrmion lines in
MnSi. From our fit, we obtain a size of domains, L ≈ 0.2 mm, which is approximately an
order of magnitude smaller than the sample size.

Within our theory, we are able to explain the overall shape of the real part of transverse
susceptibility as found from measurements quite well. The only difference is that in the
experiment, depinning starts already for slightly lower values of the driving field. This can
be explained through a number of different effects. The first possible explanation is that
due to thermal creep (which is not included in our theory, see Sec. 3.6), depinning starts
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Figure 51: Change of real and imaginary parts of the transverse susceptibility as a function
of the rescaled amplitude of the oscillating field δB for different strengths of anisotropic
surface pinning (parameters used ω/ω0 = 0.63, αD/G = 0.1).
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6 Slow and Fast Shaking

already at a bit lower values of the shaking field. Moreover, real materials posses a domain
structure. Thus, instead of having a single value of a length of domain L and a surface
pinning parameter F̃ p,s, the measured data contains an averaged value of a distribution of
domains with different parameters. It is therefore natural to expect that depinning might
start at slightly lower values in the applied field than those predicted by our single-domain
theory.

Moreover, our theory correctly captures the overall shape and peak of the imaginary
part of the transverse susceptibility. There is, however, a significant difference, as the
magnitude of the imaginary part found from the presented theory is approximately 5 times
lower than the one found in experiment. Note that there are effects, for example caused
by heating, which contribute to the measured imaginary part, which lie outside the realm
of our theory. We did find that one possible explanation lies within the anisotropic surface
pinning. We will discuss this effect and the new phases which appear in this case in the
next Section.

Let us now discuss the frequency dependence of Re∆b→0χ
⊥ and Im∆b→0χ

⊥ within our
theory. The data for F̃ p,s = 0.2 is presented on the right panel in Fig. 52. First of all, we
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Figure 52: Frequency dependence of ∆b→0χ
⊥ as measured in experiments on MnSi and

found from our theory. The green line on the left panel denotes the frequency at which
experimental data, presented in Fig. 50, was measured. The experimental data was mea-
sured by F. Rucker. The experiment was conducted at Bz = 0.22 T and temperature
T = 28 K; for further details on experimental measurements, see Ref. [98]. For the plot
on the right we used αD/G = 0.1, F p,st/(LF p,b) = 0.2. Here, the green line denotes the
frequency at which the transverse susceptibility was calculated in Fig. 50.
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6.4 Transverse Susceptibility in the Case of Isotropic Pinning

see that at larger values of the driving field ˜δB ≳ 1.2, the resonant frequency ω/ω0 ≈ π2

found in the previous Section for the clean limit, becomes very prominent. For smaller
applied driving fields ˜δB ≲ 1.2 almost no resonance is observed, instead we observe a
small gradual decrease in Re∆b→0χ

⊥ and almost no change in Im∆b→0χ
⊥. We therefore

conclude that the resonance is pronounced in the regime where the driving field is much
stronger than the surface pinning.

There exist two limits that can be treated analytically. For small driving frequencies,
ω

π2ω0
→ 0, the solution found in the adiabatic limit is valid, see Sec. 5.6. For strong driving

fields far away from the depinning transition, δB̃ ≫ F̃ p,s, the real part of the susceptibility
asymptotically reaches its saturation value Re∆b→0χ

⊥ ≈ 0.05, while the imaginary part
Im∆b→0χ

⊥ decreases. For large driving frequencies, ω
π2ω0

≫ 1 the solution found in the
previous Section for the clean limit is valid. We plot the data for larger frequencies in
Fig. 53. We see that, in addition, resonances at higher frequencies of ω

π2ω0
≈ 32, 52, . . .

appear. We note, however, that when frequencies are close to the GHz regime, other
phenomena become more relevant and our theory loses its validity. Interestingly, we predict
that slightly negative values of Re∆b→0χ

⊥ might occur just after the resonance for stronger
driving fields.

In order to find the correct regime for the rescaled frequency ω
ω0

in which our experiments
are operating, we compare this data with the data obtained from experiments. On the left
panel of Fig. 52 the measured dependence of Re∆b→0χ

⊥ and Im∆b→0χ
⊥ on the driving

frequency ω is presented for a few values of the driving field b. The green vertical line
shows the frequency at which the data discussed earlier in this Section (Fig. 50) was
measured. Unfortunately, the frequency dependence was recorded only for three selected
values of b. We can therefore not find the corresponding values of the depinning field for
each frequency. What we can see, however, is that at b = 0.63 mT there is almost no
change in Re∆b→0χ

⊥ or Im∆b→0χ
⊥ for all measured frequencies. Therefore, we conclude

that the skyrmion lattice is pinned at this value of the driving field. Looking at the data
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Figure 53: Frequency dependence of ∆b→0χ
⊥ at higher frequencies. Here we used αD/G =

0.1, F p,st/(LF p,b) = 0.2.
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for b = 12.59 mT, we see a slight decrease in the Re∆b→0χ
⊥ and an increase in Im∆b→0χ

⊥.
This behaviour can be explained within our theory for the values of the rescaled field at
δB̃ ≈ 1.2. Furthermore, the b = 2.52 mT data shows more complicated behaviour. At
frequencies ω ≲ 120 Hz there is a strong upturn in both Re∆b→0χ

⊥ and Im∆b→0χ
⊥. As

this value of the depinning field is still rather close to the depinning transition, we expect
that, at slow frequencies, it might be strongly affected by creep. This effect is not captured
within our mean-field theory. Moreover, we observe that Re∆b→0χ

⊥ has slightly negative
values at frequencies above ω ≈ 500 Hz.

We do not find signatures of resonance in the experiment. One possible explanation
of this comes from the fact that the resonance frequency ω = π2ω0 is proportional to L2.
A distribution of domains with different lengths L in real materials contributes to the
signal. Therefore, the resonance frequency will be smeared. From the absolute values of
the measured Re∆b→0χ

⊥ or Im∆b→0χ
⊥ we conclude that experiment operates at small

values of the parameter ω
π2ω0

. In the fit above, we used a value ω
ω0

= 1.26 (green line on the
right panel of Fig. 52). Moreover, we see again that at the measured frequency ω = 120

Hz, the absolute value of Im∆b→0χ
⊥ is much higher than predicted by our theory. One

possible explanation is anisotropic surface pinning, which we will introduce in the next
Section.

6.5 Anisotropic Surface Pinning
In the previous Chapter, we introduced an effective slip-stick model for pinning, which
takes into account that pinning forces at the end of a skyrmion line can be different from
bulk pinning forces (see Sec. 5.4). With the help of the isotropic surface pinning model,
we could already explain the main features in the transverse susceptibility data. However,
the magnitude of the change of the imaginary part of surface pinning found in experiments
is approximately 5 times larger than that from theory (see Fig. 50). In this Section,
we propose extending our model to account for anisotropic surface pinning, which might
explain the mismatch between measured and theoretical values.

For a crystal on a substrate, for example, the pinning on the top and bottom surface
will generally be very different. Furthermore, as was observed in experiments, skyrmion
lines may break within the sample, see Sec. 3.5. A Bloch point is being formed at the
end of the line (identified with an emergent magnetic monopole, see Ref. [81]). In this
case, we expect that, while one end of the line experiences pinning from surface roughness
and surface defects at the sample boundary, another end might have a completely different
strength of pinning force. We thus introduce different pinnings at the top and at the
bottom of the line (dubbed as anisotropic surface pinning) in our phenomenological
pinning theory

F̃
p
=

F p,b

F p,b
+ δ(z̃ + 1/2)

F p,st

LF p,b
+ δ(z̃ − 1/2)

F p,sb

LF p,b
. (6.21)

Let us assume in the following (without the loss of generality) that a bottom of line has a
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6.5 Anisotropic Surface Pinning

weaker pinning, compared to the top, F p,sb ≤ F p,st. The parameter, which quantifies the
asymmetry of the surface pinnings is

ASP =
F p,st

F p,st + F p,sb
. (6.22)

For a symmetric pinning F p,st = F p,sb we obtain ASP = 1
2
. Note, that for strong asymmetry

F p,st ≫ F p,sb this parameter goes to one.

For this asymmetric case, we obtain five phases (depending on the strength of asym-
metry and the strength of an effective magnetic field) instead of three phases in the case
of symmetric pinning. Skyrmion strings are in the fully-pinned phase (FP) for weak fields,
as depicted in Fig. 54A. Starting from the critical field, one (or both) ends of the string
start to move, while some part (or just one point) of the line remain pinned. We find
three different pinned phases, depending on where the pinned region lies. The first pinned
phase is the center-pinned phase (dubbed as PP.C). In this phase, both ends of the line are
depinned; however, a finite fraction remains pinned. This phase was already present for
symmetric pinning and depicted with yellow (see Fig. 54C for stroboscopic pictures). If the
asymmetry is higher, only one end of the line is depinned, while the finite fraction of the
line and the other end is pinned. We call this phase partially pinned at one end (PP.E).
This phase is depicted with a blue colour (stroboscopic pictures depicted in Fig. 54B).
Furthermore, if both the magnetic field and the asymmetry are high, only one point of the
line remains pinned during the whole oscillation period. We call this phase partially pinned
at one endpoint (PP.1EP), depicted in pink (stroboscopic pictures depicted on Fig. 54E).
If the line is depinned during the whole period of oscillations, we call this phase depinned
or walking (W) for reasons which we will make clear later (see Fig. 54D). The character-
istic signatures of each of the phases, which we used to determine them numerically, are

top of SL
moving

bottom of SL
moving

SL moving (up
to one point)

fully-pinned
(FP)

- - -

center-pinned
(PP.C)

+ + -

partially-pinned
at one end
(PP.E)

- + -

partially-pinned
at one endpoint
(PP.1EP)

- + +

walking (W) + + +

Table 1: Dynamic phases of skyrmion line (SL) movement with anisotropic surface pinning.
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Figure 54: Bottom panel: phase diagram for the case of anisotropic pinning. Depending
on the strength of asymmetry, quantified by the parameter ASP and strength of transverse
magnetic field δB̃, a number of phases appear. Upper panel: stroboscopic pictures of
skyrmion line movement in different phases (positions of the letters inside of the phase
diagram denote the values used to produce these pictures). Fully pinned phase (A), (B)
partially pinned at one end, (C) center-pinned, (E) partially pinned at one endpoint and
(D) depinned. Parameters ω/ω0 = 2.32, αD/G = 0.1, F p,st/(LF p,b) = 0.7.

summarised in Table 1.

Several transition lines can be found analytically. First of all, the phase transition from
FP to PP.C phase and from FP to PP.E (the first vertical line) happens at a critical field
δB̃c,1 = F̃ p,sb. Furthermore, the critical value for the transition from PP.E to PP.1EP
phase (the second vertical line) can be found from Eq. (5.36) to be at δB̃c,2 = F̃ p,sb+1 (by
setting z0 = −1

2
). Moreover, the transition line from PP.C to PP.E (red line on Fig. 54)

can be found by demanding δB̃c,2 = F̃ p,st

Acr
SP =

δB̃

δB̃ + F p,sb
. (6.23)

The real and imaginary transverse susceptibilities for the case of anisotropic pinning
are depicted in Fig. 55. The red dashed line marks the transition from FP to PP.E phase,
while the arrows point to the rescaled magnetic field value at PP.1EP to W transition. We
observe that while the real part of transverse susceptibility has only a slight change, even
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Figure 55: Change of the real and imaginary parts of the susceptibility as a function of
the rescaled amplitude of the oscillating field δB̃ for a different strength of anisotropic
surface pinning. The red dashed line marks the transition from FP to PP.E phase (Fig.
54 A→B). Arrows point to the corresponding value of the rescaled magnetic field value at
PP.1EP to W transition (Fig. 54 E→ D). The colours of the arrows encode the values of
anisotropic surface pinnings. Parameters, used to produce this plot ω/ω0 = 2.32, αD/G =
0.1, F p,st/(LF p,b) = 0.7, βD/G = 0.07.

for strong surface pinning anisotropy, the imaginary part experiences a dramatic increase.
We recall that a similar trend can be seen in the experimental data (Fig. 50a). We find
the best fit for stronger values of assymetry ω/ω0 = 2.32, αD/G = 0.1, F p,st/(LF p,b) = 0.7,
F p,sb/(LF p,b) = 10.5 (ϵ̃0 = 190). The corresponding plot can be found in Fig. 56. Therefore,
we believe it might be a strong indication that surface pinning in MnSi has an anisotropic
nature. Note, however, that the observed peak in experiments is much more smeared.
We expect this might be a consequence of a domain structure (see the discussion in the
previous Section).

With this, we conclude our discussion on the linear susceptibilities in MnSi. In the next
Section, we briefly discuss the nonlinear susceptibilities.
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Figure 56: (a) The change of the real parts of transverse susceptibility as a function of the
amplitude of the oscillating field b as measured in bulk MnSi (red) and from our anisotropic
pinning model (grey). (b) The change of the imaginary part of transverse susceptibility
as a function of the amplitude of the oscillating field b is measured in bulk MnSi (blue)
and calculated from our theory (grey). The experimental data was measured by Dr. F.
Rucker. The experiment was conducted at Bz = 0.22 T and temperature T = 28 K; for
further details on experimental measurements, see Ref. [98]. For theoretical model, the
following parameters have been used: ω/ω0 = 2.32, αD/G = 0.1, F p,st/(LF p,b) = 0.7,
F p,sb/(LF p,b) = 10.5.

6.6 Non-Linear Susceptibilities

So far we have discussed only the linear susceptibilities. However, one may also ask if
non-linear pinning force leads to interesting signatures of dynamic phases in the nonlinear
susceptibilities.

We start the discussion with even nonlinear susceptibilities ∆b→0χ
⊥
2m, where m ≥ 1.

The equations of motion are invariant under simultaneous rotation around z axis by π

and shift in time by T/2, u
(
z, t+ T

2

)
= −u (z, t) (for a derivation and discussion see the

Chapter 8). We now split the integral in Eq. 6.18 in two parts and obtain

ˆ t0+T̃ /2

t̃0

(
ũx(

1
2
, t̃)− ũx(−1

2
, t̃)

δB̃

)
ei2Nω̃t̃dt̃+

ˆ t0+T̃ /2

t0

(
ũx(

1
2
, t̃+ T̃

2
)− ũx(−1

2
, t̃+ T̃

2
)

δB̃

)
ei2Nω̃t̃dt̃ = 0.

(6.24)
Therefore, all even nonlinear susceptibilities χ⊥

2m(ω) vanish.
However, we do expect strong uneven nonlinear susceptibilities χ⊥

2m+1(ω) to appear.
Let us consider the limit of strong but finite transverse magnetic field strengths. From the
solution in the adiabatic limit, we find that the line is almost straight. The corresponding
time-dependent direction of the line is given by the derivative at the surface ∂z̃ux(z̃, t̃)|z̃= 1

2

(red line on the Fig. 38). In Fig. 57, one can see the plots for ∂z̃ux(z̃, t̃) for two different
strengths of the applied magnetic field. Interestingly, the skyrmion line stays stuck for

98
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Figure 57: Schematic picture of the driving field, δB̃ cos(ω̃t̃), time-dependent surface pin-
ning F̃ p,s(t̃) (the maximum strength of which is F̃ p,s

c ) and derivative of the displacement
function ∂z̃ũ at the surface (z̃ = 1

2
) for two different strength of magnetic field δB̃ = 2,

δB̃ = 5 in the adiabatic limit. Here F̃ p,s
c = 0.5.
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Figure 58: Real and imaginary parts of nonlinear susceptibilities for MnSi. Parameters
used ω/ω0 = 1.26, αD/G = 0.1, F p,st/(LF p,b) = 0.7 .

a finite time even for large magnetic field strengths δB̃ ≫ F̃ p,s
c . This time is given by

Eq. (5.34) in the previous Chapter. Because the line is stuck for a finite amount of time
during every period of oscillation, even for arbitrarily large but finite values of the applied
driving field, we expect strong signatures in the nonlinear susceptibility.

In Fig. 58, we present the nonlinear susceptibilities for the parameters from MnSi. As
discussed earlier, even nonlinear susceptibilities vanish, so we are left with only uneven
susceptibilities. We find that the strongest amplitude of the third harmonic relative to
the linear one is of order ∆b→0Reχ⊥

3

∆b→0Reχ⊥
1

≈ 7.5% and ∆b→0Imχ⊥
3

∆b→0Imχ⊥
1

≈ 28%. We predict that this
strong response can be measured with the help of nonlinear susceptibility measurements.
Moreover, it would be interesting to investigate closer in the future why the negative
relative nonlinear susceptibilities appear.
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Summary and Outlook
In this Chapter, we studied the unpinning process of skyrmion lattices under shaking fields
for different frequencies using transverse susceptibility. We compared results from our
theory with the data from measurements on MnSi and found an overall good agreement
with some limitations, which we discuss below. The found values for the (rescaled) surface
pinning δB̃ and the ratio of pinning length to the length of skyrmion ϵ̃0 agree well with
the values from TISANE measurements. Moreover, based on the susceptibility data, we
propose an extension of our model with anisotropic surface pinning, which might explain
the higher observed values of the increase in imaginary susceptibility. Furthermore, we
predict that strong signatures in nonlinear susceptibility will appear.

Similar to the previous Chapter, a number of effects cannot be captured with our mean-
field description. For the measured real part of transverse susceptibility, depinning starts
already at lower values of applied field b. The imaginary part of transverse susceptibility
has a higher and more smeared peak compared to the theoretically found one. Moreover,
no clear indication of the resonance peak is observed. We attribute all these effects to the
limitations of our mean-field theory. First of all, our theory describes only a single domain
of length L. In reality, a measured signal is an average of domains of varying widths, which
affect the resonance frequency (which scales ∝ L2) and depinning fields. Moreover, our
theory does not describe the domain fragmentation, e.g. for different frequencies. Further-
more, with our theory, we cannot capture correctly critical properties, which might be of
importance close to transition. In addition, we do not include the effects of temperature,
such as thermal creep. Despite these, we have been able to capture the main observed
effects using our phenomenological model.
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In the previous Chapters we have studied how skyrmion lattices respond to shaking fields. In this
Chapter, we study the dynamics of a skyrmion lattice under simultaneous application of a shaking field
together with the "pushing" by an electric current. Already the first studies yielded a very low critical
current jc ≈ 106 A/m2, needed to depin the skyrmion lattice [16]. Under the applied current we find
in total five phases with only two (dubbed as "walking" and "running" for reasons explained later in
this Chapter) showing a net translational velocity. With the help of this phase diagram we explain
the striking experimental observation that the critical current, needed to depin the skyrmion lattice,
vanishes at tiny transverse field amplitude of b ≈ 5 mT.

We start this Chapter with a discussion on the phases of elastic skyrmion lattices under external
current in the absence of a shaking field. We proceed with a discussion on phases under pushing
and shaking for isotropic and anisotropic surface pinnings. We compare the dependence of depinning
currents on applied transverse field for all of these cases.

This work was conducted in collaboration with the group of Prof. C Pfleiderer and is currently
in preparation for publication [119]. Experimental results presented in this Chapter are measured by
Dr. F. Rucker and can be found in his PhD thesis [98].

7.1 Skyrmion Lattice Under External Current
In this Section, we discuss how the electric current enters the Thiele equation and which
phases exist for skyrmion lattice with surface pinning.

An electric current gives rise to a spin current with velocity vs, oriented approximately
parallel (or antiparallel) to the external current. The modified Thiele equation for the
skyrmion lattice subject to both a shaking field and a current takes the form

G × (u̇(z, t)− vs) +D(αu̇(z, t)− βvs) = − δF
δu(z, t)

+ F p . (7.1)

See Sec. 3.3 for a more detailed discussion of this equation. The forces on the right hand
side of this equation are defined in Sec. 5.3 and Sec. 5.4. In the absence of an oscillating
field and in the absence of surface pinning, only two phases exist: the pinned and depinned
phase. In the first phase, the strength of the applied current is not strong enough to depin
the lattice. In the second phase, skyrmion lines flow without bending. The critical value
of the current needed to depin the lattice can be found from

|G × vs| = F p,b . (7.2)

Here we neglected a relatively small non-adiabatic term, proportional to β. For MnSi, the
value of the critical current is jc ≈ 106 A/m2. From it, we estimate vs ≈ 1.6 · 10−4 m/s
and F p,b ≈ 3 · 10−10 N/m.

From the formula above, we see that the critical current and the bulk pinning are
proportional to each other, jc ∝ F p,b. Using our theory and data on two critical fields
from TISANE measurements (see Section 5.10), we can obtain an estimate for the relative
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(a) (b)

Figure 59: Left panel: 1
ϵ̃0

= LF p,b

ϵ0
as found from TISANE mesaruments (see Sec.4.2). Right

panel: measurements of the critical current with the help of Hall resistivity measurements
in these materials from Ref. [120]

strength of the bulk pinning 1
ϵ̃0

= LF p,b

ϵ0
for different concentrations of Fe doping x in

MnSi (Mn1−xFexSi with x = 0, 0.02, 0.04 and 0.06). This data is presented in Fig. 59a.
For comparison, the critical current jc measured in these materials by Dr. C. Schnarr is
presented on the right hand side of Fig. 59b [120]. Both quantities exhibit a similar trend,
which agrees well with Eq. (7.2). For x = 0.02, the value of critical current and bulk
pinning are higher than the one for MnSi. At higher values of dopping, we observe a drop
in both quantities. Note, however, that one needs to take into account that the lengths of
lines and elasticity constants might change depending on the doping.

In order to find the dynamics in the presence of (isotropic) surface pinning, we write
the rescaled Thiele equation in the dimensionless variables ũ = ũ(z̃, t̃) = ϵ0u

F p,bL2 , z̃ = z
L
,

t̃ = ϵ0t
L2G

ẑ × ˙̃u+
αD
G

˙̃u = ṽs + ∂2
z̃ ũ−

[
δ

(
z̃ − 1

2

)
− δ

(
z̃ +

1

2

)] (
∂z̃ũ− δB̃ cos(ω̃t̃)x̂

)
+ F̃

p
, (7.3)

F̃
p
=

F p,b

F p,b
+

[
δ

(
z̃ +

1

2

)
+ δ

(
z̃ − 1

2

)]
F p,s

LF p,b
,

with
ṽs =

1

F p,b
(G × vs + βDvs) , δB̃ =

ϵ0
LF p,b

b

B′
z

. (7.4)

For a detailed discussion on Thiele equation see Section 5.5. Pinning forces in the bulk
and at the surface are defined in Eq. 5.23 and depend on applied forces (an elastic force
and a force from external current) and the local skyrmion velocity.

In the absence of a magnetic field but in the presence of (isotropic) surface pinning
we already obtain three phases under external current instead of two, see Fig. 60. If
the current is smaller than a critical value ṽc,1

s = 1, the line is fully pinned due to the
bulk pinning (phase A). At stronger values of ṽs, a new phase appears: the middle of the
skyrmion becomes depinned, while both ends of the line are still pinned (phase B). This
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Figure 60: Phases of skyrmion lattice in the presence of current, but in the absence of
shaking field with our model. The right panel: stroboscopic pictures of the skyrmion
lattice movement. Positions of letters on the phase diagram signifies the values of respective
parameters. Here αD/G = 0.1, βD/G = 0.07.

is a static configuration, i.e. no dependence on time for the displacement function ũ(z̃)

is present. In the bulk we obtain ∂2
z̃ ũ + ṽs = F p,b

F p,b , while at the ends of the line surface
pinning F̃ p,s keeps the line pinned ∓∂z̃ũ z=± 1

2
= F p,s

LF p,b . In this phase the solution is given
by quadratic function

ũ(z̃) =
a(ṽs)

2

(
z̃ − 1

2

)(
z̃ +

1

2

)
. (7.5)

The dependence of the depinning current on the surface pinning is approximately linear,
see the right panel of Fig. 60.

In the third phase, the line is moving at every point in time with a net translational
velocity v ∝ ṽs. We call this phase a running phase. In the next Section, we discuss how
a shaking field affects each of these phases.

7.2 Phases Under Pushing and Shaking: Isotropic
Surface Pinning

In this Section, we explore phases of skyrmion lattices under simultaneous application of
shaking field and external current, when both are applied perpendicular to the direction
of the static magnetic field B′

z (see Fig. 22 for the schematic picture of the experiment).
We start our discussion with the phase diagram in the absence of a surface pinning,

depicted in Fig. 61. If surface pinning is absent, arbitrarily weak magnetic oscillating fields
depin the ends of the skyrmion line. Therefore, only two phases exist: central pinned and
depinned (see Sec. 5.6). These two phases have very different responses to the applied
current. In the central pinned phase, a finite fraction of the line is still pinned. Under
application of the weak current the line will stay pinned and a (partially) pinned phase
(depicted with yellow) appears on the phase diagram for weak fields and weak currents. In
the depinned phase, the skyrmion line is fully depinned during the part of the oscillation
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Figure 61: Theoretical phase in the absence of surface pinning (parameters ω/ω0 = 2.32,
αD/G = 0.1, F̃ p,s = 0, βD/G = 0.07). In this case, we predict a pinned (yellow), walking
(blue), and running (green) phase.

period and remains stuck when local forces become smaller than the depinning force. In
contrast to the center-pinned phase, during the part of the period where the full skyrmion
line moves, the application of an arbitrarily weak current will be enough to set the skyrmion
line to move with a net translational velocity v. The skyrmion line, however, will remain
stuck during the other part of the period. We call this phase the walking phase as
“walking” (in contrast to “running”) implies that at least one foot is always on the ground
(and thus not moving). This phase is depicted in blue in the phase diagram. If the force
from the current is larger than the strength of the bulk pinning, ṽs ≥ 1, the line will never
be pinned during the oscillation period independently of the strength of the magnetic field
and a running phase emerges (color green in the phase diagram).

For the case of a finite surface pinning, which is present in real materials as we have
argued in the previous Chapters, we obtain five phases instead of three phases under
both the current and shaking field. The phase diagram for this case with parameter
values obtained from fitting the increase of real and imaginary susceptibilities for MnSi
(see Sec. 6.4) is presented in Fig. 62. Instead of one (partially) pinned phase in the absence
of surface pinning, here we obtain three (partially) pinned phases: (A) trivial fully pinned
phase, (B) both ends pinned, while bulk part depinned due to the current phase and
(C) central pinned phase. Moreover, we again obtain walking (D) and running phases
(E), in which the skyrmion line moves with a net velocity v. We predict that the critical
current jc, needed to depin the skyrmion lattice, will drop along the phase transition from
the pinned to the walking phase (blue line).

The quantity of interest is the relative increase of real and imaginary parts of magnetic
susceptibility as compared to the value of a given magnetic field in the absence of a current

∆j=0χ
T (b, j)(%) =

χT (b, j)− χT (b, j = 0)

χT (b, j = 0)
. (7.6)

We predict that (partially) pinned phases show fundamentally different response to the
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Figure 62: Lower panel: phases of skyrmion lattice under driving field b and an electrical
current density j, applied perpendicular to the skyrmion lines. Upper panel: stroboscopic
pictures of skyrmion line movement (illustrated by decreasing color saturation). Position
of letters on the phase diagram denote the values of b and j used to produced the pic-
tures. (A) - (C) phases are pinned phases with no net velocity. In (D) and (E) phases,
a net translational velocity v is observed. Parameters used: ω/ω0 = 1.26, ϵ̃0 = 36.67,
F p,st/(LF p,b) = 0.2, αD/G = 0.1 and βD/G = 0.07.

application of an electric current when compared to the walking or running phases. Fully
pinned and both-ends pinned phases are static and will show no response in magnetic
susceptibility. In the central pinned phase, the ends of the skyrmion line do move. However,
in this phase, the current causes a static deformation ∆ũ(z̃), which satisfies ∂2

z̃∆ũ(z̃) = ṽs.
This deformation is time-independent even in the presence of an oscillating magnetic field.
Therefore, the difference χT (b, j) − χ⊥(b, j = 0), vanishes exactly in this phase. Only
in the walking (or running) phase, the response measured by ∆j=0χ

T (b, j) is affected by
the current. Therefore, ∆j=0χ

T (b, j) can be used as a tool to identify the transition from
(partially) pinned into the walking phase. The corresponding plot of ∆j=0χ

T (b, j) for
several values of b, obtained from our theory is shown in the right panel of Fig. 63. As one
can see, the increase of the transverse susceptibility (marked with red triangles) coincides
with the values of pinned to the walking phase transition from the phase diagram in Fig. 62.

In order to probe this phase diagram experimentally, ∆j=0χ
T (b, j) has been measured

by Dr. F. Rucker in MnSi (Ref. [98]). This data is depicted on the left panel of Fig. 63 as
a function of the current strength j for several measured values of a driving field b. As one
can see from this Figure, ∆j=0Re χT (b, j) has an increase at the value of current, denoted
with red triangles (for the detailed explanation how these values have been determined
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7 Pushing and Shaking

from the measured data see Ref. [98]). This increase is associated with the depinning of
the skyrmion lattice. The critical current jc, at which this depinning happens, is depicted
in the left panel of Fig. 64. As one can see, strikingly, the critical current drops to zero at
the critical value of the applied driving field b ≈ 5 mT. On the right panel of Fig. 64, we
see the theoretically calculated plot for the critical current jc, which shows a similar drop
at b ≈ 5 mT. Note, however, that the decrease of the critical current, calculated from our
model is much more gradual than the abrupt drop in the experiment. Because of this, it
is harder to determine the value of jc at which the depinning starts from the experiment.

Although our theory successfully explains the drop of the critical current, there are
a few significant differences in ∆j=0χ

T (b, j) between theory and experment. First of all,
as we have already noted, the drop is much more steep in the experiment. Note that
the increase of ∆j=0χ

T (b, j) is predicted to be very gradual, therefore, the values of jc
which we estimated from the experiment most probably are larger than the real values.
Secondly, we observe non-analytic behaviour of |j| type for ∆j=0χ

T (b, j) at higher values
of b in experimental data. This effect cannot be captured within our mean-field theory.
One possible explanation for it may lie in the fact, that under applied current some parts
of the skyrmion lattice are moving, while others are not (see Sec. 3.5 for a discussion).
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Figure 63: ∆j=0χ
T (b, j)(%) found from experiment (left panel) and from theory (right

panel) for several values of transverse magnetic field strength b. Here we used ω/ω0 = 1.26,
ϵ̃0 = 36.67, F p,st/(LF p,b) = 0.2, αD/G = 0.1 and βD/G = 0.07.
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Figure 64: Drop of the critical current jc as function of applied trasverse magnetic field
b as (a) measured in MnSi (b) calculated theoretically. Parameters used for theory plot
ω/ω0 = 1.26, ϵ̃0 = 36.67, F p,st/(LF p,b) = 0.2, αD/G = 0.1 and βD/G = 0.07.
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Figure 65: Panel A-G shows the stroboscopic pictures of ux(t) at times t = nδt. The
theoretical phase diagram (parameters ω/ω0 = 2.32, αD/G = 0.1, F p,sb/(LF p,b) =
0.7, F p,st/(LF p,b) = 3.5, βD/G = 0.07). The position of letters on the phase diagram
correspond to the parameters chosen for panel A-G.
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7 Pushing and Shaking

7.3 Phases Under Pushing and Shaking: Anisotropic
Surface Pinning

In this Section, we study the phases of a skyrmion lattice under simultaneous application
of the shaking field and pushing with a current for an anisotropic surface pinning model.
We recall that in this case, the surface pinning acquires the form

F p = F p,b + F p,s = F p,b + δ(z + L/2) F p,st + δ(z − L/2) F p,sb , (7.7)

where F p,b denotes a bulk, F p,st a top surface and F p,sb a bottom surface pinning. The
dimensionless parameters F̃ p,st = F p,st

LF p,b , F̃
p,sb = F p,sb

LF p,b characterise the relative strengths of
the surface to bulk pinnings.

Instead of five phases, which we obtained for the isotropic surface pinning, for the
anisotropic pinning case we obtain seven different phases. Five of them are (partially)
pinned phases, see panels A-G in Fig. 65. Phases A and B we have already encountered
for the symmetric pinning case. We do have, however, new phases C-E. In the phase
C, the skyrmion line is pinned at the original position (zero deviation) for one end, but
it has a non-zero, although static, deviation for the rest of the line. Note that since
this phase is static it will show no response in the transverse susceptibility. Phase D is
similar to the phase C from the symmetric pinning case, with the only difference being
that only one end is moving instead of both ends moving. Although a finite fraction of
the line remains pinned in this phase, it will have a non-zero response in the transverse
susceptibility χT (b, j). Finally, in phase E, one end remains to be pinned, while the rest of
the line oscillates back and forth. Even under the application of an infinitesimally small
current, this phase will remain pinned. However, it is different for the walking (F) and
running phases (G), which are similar to the symmetric pinning model. In this phases the
skyrmion lattice has net velocity v. Therefore, a non-zero increase of the ∆j=0χ

T (b, j) will
be measured for a (partially) pinned to walking phase transition.

In Fig. 66 we show how the asymmetric pinning affects the current dependence of
∆j=0χ

T (b, j) for two different strengths of the surface pinning (F p,st/(LF p,b) = 3.5 and
F p,st/(LF p,b) = 10.5 for the left and right panels, respectively). Comparing the plot in
Fig. 66a shows only minor changes in comparison to the case of symmetric pinning (Fig. 63).
However, for stronger values of the asymmetry, as depicted on Fig. 66b, ∆j=0χ

T (b, j)

develops a negative sign, which is not confirmed in experiments. The resulting drop of
critical current is depicted on Fig. 67. In this case, we obtain a much steeper decrease at
around 5 mT in comparison to the symmetric surface pinning model. Therefore, we argue,
that one further possible reason for a steeper decrease of the critical current observed in
experiments might be due to the coexistence of domains with stronger anisotropic pinnings.
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7.3 Phases Under Pushing and Shaking: Anisotropic Surface Pinning

Figure 66: Relative change of the real part of the transverse susceptibility in the case of
asymmetric surface pinning as a function current density j for different δB̃. Left panel:
F p,st/(LF p,b) = 3.5. Right panel: F p,st/(LF p,b) = 10.5. Parameters used: ω/ω0 = 2.32,
αD/G = 0.1, F p,sb/(LF p,b) = 0.7, βD/G = 0.07.
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Figure 67: Drop of the critical current for the anisotropic surface pinning model. Red
squares denote the experimental data taken from Ref. [98], grey circles is the theoretical
data with parameters F p,st/(LF p,b) = 10.5, ω/ω0 = 2.32, αD/G = 0.1, F p,sb/(LF p,b) = 0.7,
βD/G = 0.07.
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7 Pushing and Shaking

Summary and Outlook
In this Chapter, we have thoroughly studied the rich non-equilibrium phase diagram of a
skyrmion lattice under simultaneous application of a shaking field and external current.
We show that because of the shaking pinning is effectively gone so the depinning current
for the translational motion of a skyrmion lattice vanishes. In order to explain this striking
phenomenon theoretically, we used an effective slip–stick model for the bending and motion
of the skyrmion lines, which turns out to be sufficient to explain the main experimental
findings. We predict the existence of walking and running phases, in which skyrmion lines
are depinned due to the shaking field. It is for this reason, that the critical current drops
to zero in these phases. We compare our findings with the measurements on the increase
of the real part of transverse susceptibility in MnSi. Although we can qualitatively capture
the drop of the critical current, the exact shape of the transverse susceptibility at small
currents does not match our predictions. More precisely, a non-analyticity of |j| type
appears. This effect lies outside our mean-field description, so further theoretical and
experimental studies are needed to better understand this phenomenon.
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Part III

Net Motion Under Oscillating Fields





8 | Onset of a Net Motion Under
Oscillating Fields

“Nothing happens until something moves.”

Albert Einstein

In the last Chapters, we have modelled the motion of the skyrmion line under the inversion-
symmetric part of the free energy for the displacement of elastic lines. Therefore, no directed motion
of the skyrmion line was possible within this theory even in the unpinned phase. One may, however, ask
if it is possible to make use of the intrinsic non-reciprocity of the skyrmion-hosting materials to make
skyrmions walk under the applied oscillating magnetic fields. In this Chapter, we find the conditions
under which such motion becomes possible, therefore paving the way for the creation of a non-reciprocal
dynamic state of matter. Further, we argue that the non-linearity of the Thiele equation is crucial for
this motion to exist. This nonlinearity can be implemented with the help of either higher-order gradient
terms or with the help of pinning. We claim that motion due to pinning is, rather unintuitively, more
efficient than motion due to higher-order gradient terms. Therefore, pinning turns out to be a friend
instead of being a foe.

Some parts of the work presented in this Chapter has been conducted in collaboration with Hannah
Dürschmidt in the context of her Bachelor Thesis, co-supervised by the author of this Thesis.

8.1 Symmetries of the Skyrmion Lattice

When speaking about symmetries of the skyrmion lattice, we need to be careful to dif-
ferentiate between symmetries of the free energy (which must respect the symmetries of
underlying microscopic Hamiltonian) and symmetries of the equations which describe dy-
namics, in our case the Thiele equation. The first relevant symmetry is the translation
invariance: if the skyrmion lattice moves in space, the energy shall remain unchanged.
It is a Goldstone mode of the system. Due to this constraint, solely terms including only
derivatives of the displacement function, such as ∂zu(z, t), ∂2

zu(z, t), . . . , are allowed. More-
over, the microscopic Hamiltonian is invariant under combined rotations of real and spin
spaces around the z-axis [121]. Furthermore, in the presence of a transverse magnetic field
the combined application of rotation around the y axis by π and time reversal is a valid
symmetry.

Importantly, the complete expression of the free energy is not invariant under the inver-
sion symmetry for chiral magnets. However, both the free energy functional in the lowest
gradient expansion, as well as the respective equations of motion (see Sec. 5.5) are invariant
under inversion for the case of isotropic pinning. This can be seen via direct computation
by substituting r → −r, u → −u:
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G × u̇(z, t) + αDu̇(z, t) = −δF(u(z, t),B(t))

δu(z, t)
+ F p(u(z, t))

Inversion−−−−−→ G × (−u̇(−z, t)) + αD(−u̇(−z, t)) = −δF(−u(−z, t),B(t))

δ(−u(−z, t))
+ F p(−u(−z, t)) .

We treat the terms on the right hand side of this equation separately. The free energy is
unchanged, as can be shown via direct calculation

−δF(−u(−z, t),B(t))

δu(−z, t)
= ϵ0

∂2(−u)

∂(−z)2
− ϵ0

[
δ
(
−z − L

2

)
− δ

(
−z + L

2

)](−∂u

−∂z
− Bx(t)

Bz

)

= −δF(u(z, t),B(t))

δu(z, t)
.

We use the expression for the pinning force in the bulk from Eq. (5.24) and use the definition
F p,b(u(z, t)) = −F p,b

c
u̇(z,t)
|u̇(z,t)| to obrain

F p,b(−u(−z, t)) = −F p(u(z, t)) . (8.1)

The total pinning force can then be found from

F p(−u(−z, t)) = −F p(u(−z, t))

= −
(
F p,b + δ

(
−z − L

2

)
F p,s + δ

(
−z + L

2

)
F p,s

)
= −

(
F p,b + δ

(
z + L

2
)F p,s + δ

(
z − L

2

)
F p,s

)
= −F p(u (z, t)) . (8.2)

Thus, every term in the Thiele equation receives a minus sign. After canceling this minus
sign we obtain the original Thiele equation. Because of this inversion symmetry, no directed
motion of skyrmion lines in space is possible in the case of an isotropic pinning. For
anisotropic pinning, inversion symmetry is explicitly broken, because the two ends of the
line experience different pinning. Still, even in this case there is no directed motion possible
under cos(ωt) drive, as we shall see in the upcoming Section. We proceed to define the
velocities of the directed motion of skyrmion lines and reveal one additional symmetry
which hinders its motion.

8.2 Directed Motion of Skyrmion Lines
In the previous Section we have shown, that the equation of motion for skyrmion lines is
invariant under inversion for the case of symmetric pinning, so that no net motion in space
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8.2 Directed Motion of Skyrmion Lines

is possible. In order to examine when such motion becomes possible, we introduce two
definitions of the average velocity, ⟨v⟩, of a line for a general drive with period T . The first
one is the local velocity

⟨v⟩t = lim
t0→∞

1

T

ˆ t0+T

t0

v(z, t) dt . (8.3)

Here t0 is an arbitrarily chosen point of time9. If this quantity is non-zero for every point
of the line, a skyrmion line will move in space. Another definition of the average velocity
⟨v⟩2 is given by

⟨v⟩z,t = lim
t0→∞

1

T

ˆ t0+T

t0

dt
1

L

ˆ L
2

−L
2

v(z, t) dz , (8.4)

where we integrate both over one period and length of a skyrmion line. In the following
we consider the average velocity separately for the case of (i) isotropic and (ii) anisotropic
pinnings.

(i) Isotropic surface pinning
From our previous discussion it is already clear, that if the dynamics of the line is invariant
under inversion r → −r and u(z, t) → −u(−z, t) (note that magnetic field does not
change under inversion B(t) → B(t)), the directed motion of the line is impossible. We
show explicitly with the help of direct calculation that the average velocity in the second
definition, given by Eq. (8.4), vanishes:

ˆ L
2

−L
2

v(z, t) dz =

ˆ 0

−L
2

v(z, t) dz +

ˆ L
2

0

v(z, t) dz =

ˆ 0

−L
2

v(z, t) dz −
ˆ 0

−L
2

v(−z, t) d(−z) = 0 .

=⇒ ⟨v⟩z,t =
1

T

ˆ t0+T

t0

dt
1

L

ˆ L
2

−L
2

v(z, t) dz = 0 .

We therefore conclude that for the case of symmetric pinning, no motion of the skyrmion
line in space is possible.

(ii) Anisotropic pinning
Anisotropic pinning explicitly breaks the inversion symmetry. However, even in this case no
directed motion under cos(ωt) drive is possible due to a hidden symmetry of the equation of
motion. This symmetry is a rotation with π around z axis Rz,π, together with a translation
in time with a half period T

2
, Tt,T

2
. Let us check, if the Thiele equation obeys this symmetry.

9For the numerical implementation, it is important to wait sufficiently long until all initial state effects
have vanished, hence limt0→∞.
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After rotation with π around z axis Rπ,z we obtain from the Thiele equation

G × (−u̇(z, t)) + αD(−u̇(z, t)) = −δF(−u(z, t),B(t))

δ(−u(z, t))
− F p(−u(z, t)) .

Using the previously discussed relations Eq (8.1) we find

G × u̇(z, t) + αDu̇(z, t) = −δF(−u(z, t),B(t))

δu(z, t)
− F p(u(z, t)) .

The free energy can be dealt with separately. First, we notice F(−u(z, t),Bx(t)) =

F(u(z, t),−Bx(t)) and then calculate

F(u(z, t),−B(t)) = −γ

2
(−Bx(t))

2 +
ϵ

2

ˆ L
2

−L
2

dz

(
∂zu(z, t)−

(−Bx(t))

B′
z

)2

= −γ

2

[
Bx

(
t+

T

2

)]2
+

ϵ

2

ˆ L
2

−L
2

dz

(
∂zu(z, t)−

Bx(t+
T
2
)

B′
z

)2

.

Thus, we obtain

G × u̇(z, t) + αDu̇(z, t) = −
δF(u(z, t),B(t+ T

2
))

δu(z, t)
− F p(u(z, t)) .

If the magnetic field has the property Bx(t) = −Bx

(
t+ T

2

)
, we conclude that the free

energy is invariant under the combined transformation Rz,π · Tt,T
2
.

Furthermore, if the magnetic field has this property, the velocity obeys

v

(
z, t+

T

2

)
= −v(z, t) . (8.5)

Then one can prove using the first definition of average velocity ⟨v⟩t that a net motion is
not possible:

ˆ t0+T

t0

v(z, t) dt =

ˆ t0+
T
2

t0

v(t) dt+

ˆ t0+
T
2

t0

v(z, t− T

2
) dt

=

ˆ t0+
T
2

t0

v(z, t) dt+

ˆ t0+
T
2

t0

v(z, t+
T

2
) dt = 0

=⇒ ⟨v⟩1 =
1

T

ˆ t0+T

t0

v(z, t) dt = 0 .

Therefore, the net movement in space is possible only if this symmetry is broken. This
can be achieved if the magnetic field BxB(t) has non-zero higher harmonics. The simplest
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example of such field is the oscillation field of the form Bx(t) = b1 cos(ωt) + b2 cos(2ωt),
which we will use later in Section 8.5 to find numerically a movement of the line.

Note that for the rest of this Chapter, we concentrate only on the case of isotropic
pinning.

8.3 Higher Order Terms in the Free Energy

As was shown in the previous Section, if one considers only the lowest gradient term of the
free energy, no net motion in space is possible because of the inversion symmetry for the
isotropic pinning case. However, there are higher-order terms in the free energy expansion,
which break the inversion symmetry. Some of the higher-order terms have been already
introduced in Section 5.2. However, it was argued that they are suppressed by the powers
of large length of skyrmions L. In this Section, we find the form of the low-order non-linear
terms and find their scaling with L.

To find all symmetry-allowed terms for higher gradient expansion of the free energy,
there are two possible paths one can take. The first path is based on searching the invariants
and the second path is from the microscopic Hamiltonian. In both cases, the higher order
terms should obey the symmetries of the underlying Hamiltonian.

The first path in order to find the higher order terms in free energy expansion, is based
on finding all the quantities, which do not change under the symmetry transformations,
discussed earlier in Sec. 8.1. We recall, that we have chosen a parametrisation of the
displacement of the skyrmion lines u(z, t) given byux(z)

uy(z)

z

 = u(z) ∈ R3 . (8.6)

Equivalently, one can choose another parametrization of the line, such as u(λ). Geometric
invariants, such as length, curvature, etc. do not change under different parametrisations.
Our goal is to find the geometric invariants, which obey the symmetries of the underlying
spin system. Note however, that we will not be able to find the exact value of prefactors
using this method, but rather the general form of these terms.

1. The first invariant is the length of the line. For two different parametrisations u(λ),
u(λ′) we obtainˆ √(

∂u

∂λ

)2

dλ =

ˆ √(
∂u

∂λ′
∂λ′

∂λ

)2
∂λ

∂λ′ dλ
′ =

ˆ √(
∂u

∂λ′

)2

dλ′ . (8.7)

Therefore, this term is invariant under change of parametrization. For the parametri-
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sation given by Eq. (8.6) one getsˆ √
1 + (u′

x)
2 + (u′

y)
2 dz ≈

ˆ (
1 +

1

2

(
u′2
x + u′2

y

)
− 1

8

(
u′2
x + u′2

y

)2)
dz . (8.8)

Here it is important to differentiate a single skyrmion line versus a lattice of skyrmion
lines. For a single skyrmion line, this term will produce a tension for non-spherical
samples: under an applied magnetic field, competition between a line following the
magnetic field and one returning to the position of zero deviation will be created.
The length, rather counter-intuitively, is not an invariant for a lattice of skyrmion
lines. If the lattice, for example, rotates under the applied shaking field, the length
of skyrmion lines changes. This will produce a change in the energy density, which
breaks the rotational invariance. We therefore believe that this term is not present
for bulk skyrmion lattices.

2. The second invariant is the total magnetisationˆ
B

∂u

∂λ
dλ = B(ut − ub) , (8.9)

where ut and ub are the positions of the top and at the bottom of the line. As one
can see, this term produces only a surface term.

3. The third important invariant is given byˆ (
B ∂u

∂λ

)2√(
∂u
∂λ

)2 dλ . (8.10)

For the parametrisation given by Eq. (8.6) and By = 0 we obtainˆ (
B ∂u

∂λ

)2√(
∂u
∂λ

)2 dλ ≈

ˆ
(Bx(t)u

′
x +Bz)

2

(
1− 1

2
|u′| 2

)
dz . (8.11)

This invariant produces the free energy at lowest order which was derived in Sec. 5.2.

4. The forth invariant is related to the curvature of the lineˆ √(
∂u
∂λ

× ∂2u
∂λ2

)2√(
∂u
∂λ

)2 dλ . (8.12)
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It is invariant because of the property

∂2u

∂λ2
=

∂

∂λ

(
∂u

∂λ′
∂λ′

∂λ

)
=

∂2u

∂λ′2
∂λ′

∂λ
+

∂u

∂λ′
∂2λ′

∂λ2
. (8.13)

The cross product with the second term vanishes. Using the parametrisation from
Eq. (8.6) we obtain ˆ √(

∂u
∂λ

× ∂2u
∂λ2

)2√(
∂u
∂λ

)2 dλ ≈
ˆ

|u′′|2dz . (8.14)

5. The fifth invariant is given byˆ
B
(

∂u
∂λ

× ∂2u
∂λ2

)
√(

∂u
∂λ

)2 dλ . (8.15)

For By = 0 and Eq. (8.6) we get
ˆ (

−Bxu
′′
y +Bz(u

′
xu

′′
y − u′

yu
′′
x)
)
dz =

ˆ (
−Bxu

′′
y +Bzẑ · (u′ × u′′)

)
dz . (8.16)

From the invariants above we conclude that up to quadratic order, terms of the form |u′|2,
[u′ × u′′]z and |u′′|2 will appear. Using these invariants we may also predict the general
form of the nonlinear terms. Up to fourth order, the increase of the free energy due to a
bending in the shaking field reads

F = π ·
ˆ L/2

−L/2

(
F (1) + F (2) + F (3) + F (4) + . . .

)
dz , (8.17)

F (1) = b̃(c11u
′
x + c12u

′′
y) ,

F (2) = c21|u′|2 + c22[u
′ × u′′]z + c23|u′′|2 ,

F (3) = b̃(c31u
′
x|u′|2 + c32u

′′
y|u′|2 + c33u

′
x[u

′ × u′′]z) ,

F (4) = − c41|u′|4 − c42|u′|2[u′ × u′′]z .

Note that this free energy contains all terms allowed by symmetry for skyrmion lines.
In the equations before it holds that b̃ = b

B′
z
. From F (1) we only obtain surface terms after

integration, while all other terms produce the forces in the bulk. Moreover, in the absence
of a transverse magnetic field, the resulting expression has only the second and fourth
order terms. This can be explained by the symmetry of the Hamiltonian with respect to
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8 Onset of a Net Motion Under Oscillating Fields

arbitrary rotations within the xy-plane. If the magnetic field is present, this symmetry is
broken. The leading fourth order term has a negative sign, as can be seen, for example,
from fluctuations of the stiffness in second-order perturbation theory [121].

Note that the presence of inversion-symmetry-breaking terms, such as [u′×u′′]z, reflects
the non-reciprocity of the skyrmion lattice [121, 122]. It was predicted theoretically [123]
and observed experimentally [124], for example in magnon dispersion. It thereby provides
a direct way to determine the strength of the DMI in non-centrosymmetric magnets.

Interestingly, one can obtain the same expansion using the approach taken in Ref. [122].
In this paper, the nonlinear terms for a single skyrmion line dynamics has been studied.
The idea is to derive this terms starting from magnetic interactions present for cubic
chiral magnets. For the precise form of the coefficients obtained using this method, see
Appendix D.

In the next Section, we investigate if net motion of the lattice under oscillating magnetic
fields is possible due to nonliner terms in the free energy without pinning.

8.4 Net motion Without Pinning
In this Section, we discuss the motion of skyrmion lattices in transverse oscillating magnetic
field in the absence of pinning.

Let us first consider only the second-order terms in the free energy

F = −γ

2
Bx(t)

2 +

ˆ L
2

−L
2

dz

[
ϵ0
2

(
∂zu− Bx(t)

Bz

)2

+ ϵ3ẑ ·
(
∂zu× ∂2

zu
)
+ ϵ4(∂

2
zu)

2

]
. (8.18)

Here the second term ẑ · (∂zu× ∂2
zu) explicitly breaks the inversion symmetry. In the

absence of pinning, the resulting equations of motion are linear. To see this, we calculate
first the functional derivative − δF(u(z,t)

δu(z,t)
. The corresponding forces are presented in the

second column of Table 2. The Thiele equation then reads

G × u̇(z, t) + αDu̇(z, t) = 2c21u
′′ + 2c22ẑ × u(3) − 2c23u

(4) . (8.19)

Here u(3) and u(4) denote the third and fourth derivative with respect to z, respectively.
The resulting equation is linear in u(z, t). Therefore, under the external periodic drive
Bx(t) =

∑
n b

(n)einωtx̂, the solution will be given by ux(z, t) ∝
∑

n u
(n)
x einωt, uy(z, t) ∝∑

n u
(n)
y einωt and no directed motion is space is possible.

Therefore, we need some form of non-linearity in order to make skyrmion lines move in
space. Let us first consider all non-linear terms which appear in Eq. (8.17). The resulting
forces in the bulk can be found again in the second column of the Table 2. However, not all
terms are equally important. To see this, we introduce the following rescaling of variables
u = u0ũ, z = Lz̃. The resulting prefector of each term is given in the third column of
Table 2. The variables ũ and z̃ are dimensionless. From equating the prefactors before the
terms which come from the leading second order force |u′|2 and the leading forth order force
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8.4 Net motion Without Pinning

Term Force in the bulk Prefactor u0 =
√

c21
2c41

L

|u′|2 2c21u
′′ 2c21

u0

L2 c21

√
2c21
c41

1
L

[u′ × u′′]z 2c22ẑ × u(3) 2c22
u0

L3 c22

√
2c21
2c41

1
L2

|u′′|2 −2c23u
(4) −2c23

u0

L4 −c23

√
2c21
2c41

1
L3

u′
x|u′|2 b̃c31

(
(3u′2

x + u′2
y )

′x̂+ 2(u′
xu

′
y)

′ŷ
)

2b̃c31
u2
0

L3 b̃c31
c21
c41

1
L

u′′
y|u′|2 2b̃c32(u

′
xẑ × u′′)′ 2b̃c32

u2
0

L4 b̃c32
c21
c41

1
L2

u′
x[u

′ × u′′]z 3b̃c33(u
′
xẑ × u′′)′ 3b̃c33

u2
0

L4 b̃c33
3c21
2c41

1
L2

|u′|4 −4c41(u
′|u′|2)′ −4c41

u3
0

L4 −4c41(
c21
2c41

)3/2 1
L

|u′|2[u′ × u′′]z −4c42(ẑ × u′′|u′|2)′ −4c42
u3
0

L5 −4c42(
c21
2c41

)3/2 1
L2

Table 2: Nonlinear terms from the expression of the free energy. In the third column the
prefactor after rescaling is given.

|u′|2, we obtain the relation u0 =
√

c21
2c41

L. Using this relation, we obtain a final prefactor
for every term in the fourth column of Table 2. For long skyrmions lines, most of the terms
will be suppressed in higher powers of 1

L
. The three leading order terms are the terms

proportional to 1
L
. Furthermore, the third-order term is suppressed with b̃. Therefore, we

finally obtain

ẑ × ˙̃u(z̃, t̃) +
αD

G
˙̃u(z̃, t̃) = ũ′′ − (ũ′|ũ′|2)′ .

Here we used the rescaling of time t0 = GL2

2c21
. This equation defines the dynamics of

skyrmions for long skyrmion strings. Surprisingly, no net motion of the skyrmion lattice is
possible only with the help of nonlinearities, which come from terms of the free energy of the
form − δF(u(z,t)

δu(z,t)
. The fundamental reason for this is that in this case, the total momentum

of the skyrmion lattice is conserved. In Ref. [125] we find the following expression for the
momentum

P skyr
α =

4πℏ
a2

ϵ0αβRβ . (8.20)

Here R is the skyrmion coordinate and a is a typical distance between the magnetic
moments. The Thiele equation (without the pinning) can be rewritten in the following
form

Ṗ
skyr

= F , (8.21)

where F describes the forces, which act on the skyrmions. However, there is no flow of
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8 Onset of a Net Motion Under Oscillating Fields

momentum to the skyrmion lines because of the terms produced from the free energy from
oscillating magnetic field. Thus, we again conclude that in this case any directed motion
is prohibited.

To set skyrmions into motion, we require another type of nonlinearity. Let us consider
the nonlinearity, which comes from the gyroscopic G and dissipation D tensors. These
corrections are functionals of u′(z, t) and u′′(z, t), multiplied by the velocity u̇(z, t) in the
Thiele equation. The exact form of these corrections can be found in Ref. [122]. We argue
that, although a net motion will be possible in this case, the nonlinearity, which comes
from the third and fourth order of the gradient expansion, will be relatively weak and it
is suppressed by powers of 1

L
. On the contrary, a net motion in the theory with pinning

is possible already for terms of second order of the free energy, as we will see in the next
Section.

8.5 Numerical Results for the Net Motion
In this Section, we present numerical evidence for the net motion of the skyrmion line
under an oscillating transverse magnetic field in a system with phenomenologically included
pinning.

We return to Eq. (8.19) and consider the second order terms only. In addition we now
introduce pinning to this equation. In rescaled variables ũ = ϵ0F p,b

L2 u, ω̃ = ωL2G
ϵ0

the Thiele
equation in the bulk up to second order reads

ẑ × ˙̃u+
αD

G
˙̃u = ũ

′′
+ ϵ3ẑ × ũ(3) − ϵ4ũ

(4) −
˙̃u

| ˙̃u|
. (8.22)

Here ϵ3 = 2c22
ϵ0L

and ϵ4 = c23
ϵ0L2 . The drive again only enters at the boundary with a ∂z̃ũ −

δB̃ cos(ω̃t̃)x̂ term. Here the rescaled field is δB = ϵ0
LF p,b

Bx(t)
Bz

. Note, that there are also
other more complicated boundary terms, which come from − δF(u(z,t)

δu(z,t)
. They can be found

in Appendix D.
We solve the dynamics of this equation numerically using the method introduced in

Section 6.1. For it, we approximate the higher-order derivatives using the finite-difference
method. Moreover, from the Thiele equation we see that the third and the forth derivatives
terms, ϵ3 = 2c22

ϵ0L
and ϵ4 = c23

ϵ0L2 are suppressed by powers of 1
L
. This does not come as a

surprise since we have already seen this in Table 2. Thus, we choose a small numerical
value for both ϵ3 and ϵ4.

We define the step of the skyrmion line in one period as ∆ũ =
√

∆ũ2
x +∆ũ2

y, where
∆ũx and ∆ũy indicate how far the skyrmion line is moved in one period. Because of the
broken inversion symmetry due to the term proportional to ϵ3, a movement of the line is
possible even for symmetric surface pinning. For our numerical implementation, we set
the surface pinning to zero, F p,st

LF p,b = F p,sb

LF p,b = 0. Furthermore, we use αD
G = 0.1, number of

descretisation points in z direction N = 50 and number of time steps Nsteps from 2 · 106 to
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Figure 68: Dependence of step ∆ũ for the driving function (a) δB̃
(
sin(ω̃t̃) + sin(2ω̃t̃)

)
and

(b) δB̃
(

sin(ω̃t̃)

2+sin(ω̃t̃)

)
for several values of magnetic field. Here ϵ4 = 0.0002, ω

ω0
= 1.26.

4 · 106 (see Appendix B for more details on the convergence). Moreover, we note that the
term proportional to ϵ4 is crucial in order to avoid the instability in dispersion of c2k2+c3k

3

type for large k.
We used two different functions to model the the time drive. The first function is simply

δB̃(sin(ω̃t̃) + sin(2̃ωt̃)), while the second function is δB̃
(

sin(ω̃t̃)

2+sin(ω̃t̃)

)
. The first function has

only non-zero second harmonics, while the second has infinitely many higher harmonics.
The step per period ∆ũ as a function of the inversion-breaking parameter ϵ3 for several
magnetic fields is depicted in Fig. 68 (left for the first function and right for the second).
In the absence of the inversion-symmetry-breaking term (ϵ3 = 0), no motion is observed
(∆ũ = 0) for both driving fields. For non-zero values of ϵ3 we observe approximately linear
behaviour with ∆ũ ≈ 0.25ϵ3 for the first drive and much larger ∆ũ ≈ 1.5ϵ3 for the second.

Further, in Fig. 69 we plot the dependence of steps in x and y directions, as well as the
total step ∆ũ for varying strength of magnetic field δB̃ under the first drive. Although the
form of the free energy is different from the one discussed in Sec. 5.6, there exist central
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Figure 69: Dependence of steps ∆ũx, ∆ũy and ∆ũ for the drive δB̃
(
sin(ω̃t̃) + sin(2ω̃t̃)

)
for (a) ω/ω0 = 1.26 (b)ω/ω0 = 0.63. Parameters used: ϵ3 = 0.0025 and ϵ4 = 0.0001.
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Figure 70: Dependence of step ∆ũ for the drive δB̃
(

sin(ω̃t̃)

2+sin(ω̃t̃)

)
for (a) ω

ω0
= 1.26 (b)

ω
ω0

= 0.63. ϵ3 = 0.0025 and ϵ4 = 0.0001.

pinned phase for small magnetic field strength δB̃. For intermediate fields the dependence
is rather complicated with two sharp peaks, which might be because of the resonances in
the system. However, we have not been able to develop an analytic solution for this case.
Moreover, for large magnetic fields the value of ∆ũ decreases. We expect, that in this
regime skyrmion lines become straighter and the effect of higher-order derivatives becomes
negligible. However, the movement happens because of these terms. Therefore, we see that
the step ∆u decays. Moreover, we observe that for stronger fields line moves in x direction.

In Fig. 70 we present the dependence of the total step ∆ũ for varying strength of the
magnetic field δB̃ for the second function. In this case, the absolute values are much larger.
Moreover, we see that the general behavior is rather similar to the other drive. Although
two peaks for intermediate field values are present, they are much less pronounced.

Now let us estimate the size of the step, which a skyrmion line will make in one period
in the unscaled coordinates, ∆ũ = ϵ0

F p,bL2∆u. We estimate

∆u = ∆ũ
F p,bL2

ϵ0
=

ϵ3
ϵ0

∆ũ

ϵ3

F p,bL2

ϵ0
∼ const.

RsF
p,bL

ϵ0
≈ const. · 0, 03 ·Rs .

For this estimate we replaced ∆ũ
ϵ3

with a constant because of the approximately linear
dependence of the step size ∆ũ on the parameter ϵ3 (see Fig. 68). The value of this term
can be estimated as 0, 1 . . . 1 from the numerical simulations in the previous Section. We
continue by replacing ϵ3

ϵ0
with the skyrmion radius Rs from dimensional analysis. Moreover,

F p,bL
ϵ0

≈ 0.03 as found from the experimental data (see Fig. 46).

We can now compare this velocity to the velocity of the end of the line. If the line
follows the magnetic field, we obtain

∆ =
Bx

Bz

L .
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From the rescaling δB̃ = ϵ0
LF p,b

Bx

Bz
we obtain

∆ =
L2F p,b

ϵ0
δB̃ ≈ 0, 03 · L · δB̃ .

Using the parameters, found in the previous Chapter we obtain

∆u

∆
≈ const.

Rs

δB̃L
≈ const. · 10−5 · 1

δB̃
≈ 10−3 . . . 10−5 . (8.23)

We conclude that the velocity of the end of the line during its motion is much larger than
the velocity of the net motion of the skyrmion lattice in the presence of the symmetry
breaking terms.

Summary and Outlook
In order to understand when a net motion of skyrmion lines in the presence of an applied,
oscillating magnetic field becomes possible, we started by analysing the symmetries of the
skyrmion lattice. Apart from the inversion symmetry, which can prohibit such motion,
we have found one hidden symmetry, constituted by a combination of π−rotation around
the z axis and translation in time by a half period T

2
. If these symmetries are broken, for

example by an external magnetic field drive with higher harmonics, a net motion becomes
possible. Furthermore, the Thiele equation of dynamics needs to contain nonlinear terms to
activate such motion. Counter-intuitively, we argue that this motion will be more efficient
with pinning due to the suppression of higher gradient terms in powers of the length of
long skyrmion strings L. It will be interesting to understand the nature of the resonances,
which appear for certain values of the driving field, in the future.
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Conclusions
In this Thesis, we studied a new type of unpinning transition of skyrmion lattices under
slowly oscillating transverse magnetic fields and external electric currents. We find that
the skyrmion lattice exhibits an extremely rich non-equilibrium phase diagram already in
mean-field approximation. Crucially, we find that the skyrmion lattice is in a weak pinning
regime, consistent with ultralow critical current observations.

In the first Part of this Thesis, we described the low-energy collective excitation of
the elastic skyrmion lattice using a Thiele-like approach to its dynamics. In doing so, we
included pinning forces, due to disorder, by using a phenomenological model, as well as
a surface pinning in our description of the dynamics of the skyrmion line. The surface
pinning turned out to be a crucial ingredient to explaining the experimental observations
of depinning with a transverse magnetic field. We have shown that within our model,
the transverse magnetic field enters only at the boundary and competes with the surface
pinning in order to depin the line. Already in the adiabatic limit (limit of slow drives),
three phase transitions appear, the signatures of which we extracted from the experimental
data from the group of Prof. Pfleiderer. The unpinning process exhibits a high degree of
universality across metallic, as well as insulating skyrmion-hosting materials. Further, we
speculate that the surface pinning might have an anisotropic nature.

In the second Part of this Thesis, we studied the dynamics of the skyrmion lattice in
the presence of shaking fields and external currents. In this regime we have discovered two
more phases, namely the walking and the running phases, where the skyrmion lattice is
fully depinned and set into motion. Using our theoretical model, we successfully explained
the striking observation that for a critical magnetic amplitude, the critical external current,
needed to depin the skyrmion lattice via the shacking field, drops to zero.

In the third Part of the Thesis, we have shown that directed motion of skyrmion lines
solely under periodic magnetic fields is possible due to intrinsic non-reciprocity of the
skyrmion-hosting materials. This way an exotic non-reciprocal dynamic state of matter
can be created. In order for such movement to be possible, nonlinearity needs to be present
in the equations of motion. We argue that nonlinearity due to the pinning is an efficient
mechanism to make such movement possible. Moreover, we discuss conditions on the
periodic magnetic field for such state to exist.

Despite its success in capturing the main experimental observations in a qualitative
manner, our mean-field theory has a number of limitations. First of all, our theory describes
only a single domain, while in a real skyrmion-hosting material we expect that a number
of domains can coexist. Our theory does not capture the possible breaking of skyrmion
lines under oscillating fields and plastic depinning under strong currents. Similarly, some
observed phenomena, such as the coexistence of pinned and depinned regions within the
sample, are beyond the scope of this Thesis and might contribute to the observed non-
analytic behaviour of the increase of the real susceptibility due to the current. Crucially,
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we do not include temperature effects such as creep. Temperature effects might explain
the observed mismatch between the intensities at the origin for doped materials for theory
and experiment. Moreover, in our theory, the critical value of the transverse magnetic field
is independent of frequency, which differs from experimental observations.

Although in this Thesis we mainly discussed the regime of very slow drives, the interme-
diate regime of 10− 105 kHz might be of interest as well. Based on our theoretical studies
we predicted the experimental observation of strong nonlinear harmonics in the skyrmion
lattices. We hope that in the future, both this effect and the net motion of skyrmion lines
solely due to a periodic magnetic field, will be detected in experiments.

Summarizing, during the course of this Thesis, we have been able to gain important
new insights in the process of depinning of skyrmion lattices due to external drives.
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A | Derivation of the free energy
In order to find the free energy of the elastic skyrmion line when subject to external slowly
oscillating magnetic magnetic field B, we substitute the expression for the orientation of
the skyrmion lattice n̂ = (δnx, δny, nz), where nz =

√
1− δn2

x − δn2
y ≈ 1− δn2

x

2
− δn2

y

2
into

the expression for the change of the free energy f , given by

f = (m−m0) ·
df0
dm

∣∣∣∣
m=m0

+
1

2χ00
∥
(m−m0)

2 +
1

2χ00
⊥
(m⊥)

2 +
∑
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Nim
2
i

2
−mB .

(A.1)

Further, we Taylor expand this experssion with respect to δnx, δny up to quadratic order
and obtain

f =
Nzm

2
0

2
+
∑

i=x,y,z

Nim
2
i

2
−m ·B + qB0 +mzB0
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1− δn2
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2
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1
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z
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+

1
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⊥mz − 2q)
)
,

(A.2)

where we denoted δn⊥ = (δnx, δny), m⊥ = (mx,my), q = δn⊥ ·m⊥.
The magnetisation configuration m∗, which minimises the density functional f can be

found by setting partial derivatives of the free energy with respect to the three components
of the magnetisation vector to zero. The result is given by

m∗
j =

Bjχ
00
⊥

1 +Njχ00
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+ δn⊥,j
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for j = x, y and
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. (A.4)

We are interested in the total free energy, which can be found by integrating the free-
energy density functional over the volume of our system at the previously found point
m∗:

F = min
m

F =

ˆ
f |m=m∗ d3r . (A.5)

After substituting Eqs. (A.3), (A.4) in the expression (A.2) we obtain an exact formula for
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A Derivation of the free energy

the free energy of our system in the lowest order of the gradient expansion

F = −
∑
i=x,y

γi
2
Bi(t)

2 +

ˆ L/2

−L/2

dz
∑
i=x,y

ϵ0,i
2

(
∂zui(z, t)−

Bi(t)

B′
z,i

)2

. (A.6)

For the definitions of γi, ϵ0,i and B′
z,i see the main text.
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B | Numerics
As discussed in the main text, the Thiele equation for the dynamics of the skyrmion
line becomes a highly non-linear two-dimensional differential equation due to pinning.
Therefore, we find its solution numerically.

In order to solve the dynamics, we parametrize the line with N points with coordi-
nates ũi

n (i = x, y and n = 1 . . . N) and distance ∆z̃ = 1
N−1

between them in z direction,
z̃ ∈

(
−1

2
, 1
2

)
.

Given the positions of all points ũi
n , we use the second-order centered difference approxi-

mation (which gives error for calculation of derivatives of the order ( 1
N
)2), to calculate the

free energy functional:

F =
∑
i=x,y

n=N−1∑
n=1

1

2
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ũi
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The elastic forces (per length) f i
n = 1

∆z̃
∂F
∂ũi

n
are given by:
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Therefore, the elastic forces acting on each point can be found by calculating the first
and the second numerical spacial derivatives (for the first/last point and all intermediate
points, respectively).
In order to depinn the skyrmion line, one needs to apply the magnetic field large enough
to overcome the surface pinning. If we start from the pinned skyrmion line ũi

n = 0, at
the critical magnetic field δB̃cr

1 (without the current) the following condition should be
satisfied

1

∆z̃
δB̃cr =

1

∆z̃

F p,s

LF p,b
, (B.2)

giving the prefactor for the surface pinning in the descritised version.
Time is also descritized, so that during each period Tperiod = 2π

ω̃
of the oscillation of

external magnetic field Nsteps updates are performed, with the time step of dt̃ =
Tperiod

Nsteps
.

Effectively the problem of solving the dynamics of the system simplifies to finding coor-
dinates of N points at every time step, which is done by integrating the rescaled Thiele’s
equation. For this the Heun’s method of finding numerical solutions to ordinary differential
equations was used with the initial condition of straight line (zero displacement of every
point).

In order to find the evolution in time of our system, we calculate total forces F i
n acting

on every point, consisting of elastic forces and forces from applied current

F i
n = f i

n + ṽis . (B.3)
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B Numerics

(a) (b)

Figure 71: The convergence of solution for (a) Tp = 5, δB̃ = 6, ϵ3 = 0.0025, ϵ4 = 0.0001,
(b) Tp = 10, δB̃ = 6, ϵ3 = 0.0025, ϵ4 = 0.0001.

At the first step, we check for every point if the total force Fn acting on it is smaller than
the pinning force (which is equal to 1 in rescaled variables for the points with i = 2 . . . N−1

and 1
∆z̃

F p,st

LF p,b , 1
∆z̃

F p,sb

LF p,b for the first and the last point, respectively). If yes, then the point
stays pinned and no update is needed.
If the total force on the point is larger than the critical pinning force value, we obtain a
nonlinear equation for the velocity vin = ∂tu

i
n (nonlinear due to the 1/|∂tũi

n| term in the
Thiele equation). Luckily, this equation can be solved analytically (see Sec.6.1), giving the
velocities ∂tũ

i
n as function of forces F i

n acting on this point. The resulting velocity is used

within Heun’s method of integration with a truncation error of the order ∼
(

1
Nsteps

)2
.

In our code, we typically use Nsteps = 3 · 106, N = 60 and wait around 20 periods to
obtain a periodic solution in the long-time limit.

Further, for the higher order terms in the last Part of this Thesis we used the following
finite difference formulas. For the term ẑ × ũ(3) we use

∆z̃

n=N−2∑
n=1

1

∆z̃

(
ũy
n+2 − 2ũy

n+1 + ũy
n

∆z̃2

)(
ũx
n+2 − ũx

n

2∆z̃

)
− 1

∆z̃

(
ũx
n+2 − 2ũx

n+1 + ũx
n

∆z̃

)(
ũy
n+2 − ũy

n

2∆z̃2

)
.

(B.4)

And for the term ũ(4) we use

∆z̃
∑
i=x,y

n=N−1∑
n=1

(
ũi
n+2 − 2ũi

n+1 + ũi
n

∆z̃

)2

. (B.5)

On the Fig.71, we show the convergence of the step ∆ũ as function of number of time
steps Nsteps.
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C | Solution with damping
Similarly to Sec.6.2, the Thiele equation for the bulk can be written in unscaled coordinates
as {

G ∂uy(z,t)

∂t
+ αD ∂ux(z,t)

∂t
= ε0

∂2ux(z,t)
∂z2

−G ∂ux(z,t)
∂t

+ αD ∂uy(z,t)

∂t
= ε0

∂2uy(z,t)

∂z2
.

(C.1)

From the first equation we find ∂uy(z,t)

∂t
and substitute it in the second equation:{

∂uy(z,t)

∂t
= ε0

G
∂2ux(z,t)

∂z2
− αD

G
∂ux(z,t)

∂t

−G ∂ux(z,t)
∂t

+ ε0αD
G

∂2ux(z,t)
∂z2

− αD2

G
∂ux(z,t)

∂t
= ε0

∂2uy(z,t)

∂z2
.

(C.2)

Further, we partially differentiate the first equation twice with respect to z and partially
differentiate the second equation with respect to t once. We obtain

−G ∂2ux(z, t)

∂t2
+

ε0αD
G

∂

∂t

∂2ux(z, t)

∂z2
− αD2

G
∂2ux(z, t)

∂t2
= ε0

∂

∂t

∂2uy(z, t)

∂z2
. (C.3)

Now we use from before

∂4ux(z, t)

∂z4
− 2αD

ε0

∂

∂t

∂2ux(z, t)

∂z2
+

G2 + αD2

ε20

∂2ux(z, t)

∂t2
= 0 . (C.4)

We find a solution
(
c = ϵ0

G , a = αD
G , ã =

√
1− a2, k =

√
noã√
c

)
:

ux(z, t) =
∞∑
n=1

√
c

2
√
noã3

(
cos(not) (sin(kz) (ãc1,n − ac2,n − c4,n) + sinh(kz) (ãc1,n + ac2,n + c4,n))+

sin(not) ((ac1,n + ãc2,n + c3,n) sin(kz)− (ac1,n − ãc2,n + c3,n) sinh(kz))

)
,

uy(z, t) =
∞∑
n=1

√
c

2
√
noã3

(
cos(not) ((c2,n + ãc3,n + ac4,n) sin(kz)− (c2,n − ãc3,n + ac4,n) sinh(kz))+

sin(not) (− (c1,n + ac3,n − ãc4,n) sin(kz) + (c1,n + ac3,n + ãc4,n) sinh(kz))

)
.

Unfortunately, we haven’t been able to determine all constants from boundary conditions.
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D Nonlinear terms

D | Nonlinear terms

Let us consider the termˆ (
B ∂u

∂λ

)2√(
∂u
∂λ

)2 dλ ≈

ˆ
(Bx(t)u

′
x +Bz)

2

(
1− 1

2

(
u′2
x + u′2

y

))
dz . (D.1)

For parametrisation chosen in Eq.8.6 this invariant produces the terms of the lowest order,
which were derived in Sec.5.2. However, in higher order expansion one obtains other
nonlinear terms

B2
z

ˆ
1 +

Bx

Bz

u′
x +

(
Bx

Bz

u′
x

)2

− 1

2
(u′2

x + u′2
y )−

1

2
(u′2

x + u′2
y )

Bx

Bz

u′
x −

1

2
(u′2

x + u′2
y )

(
Bx

Bz

u′
x

)2

dz .

(D.2)

Similarly, another important invariant is given byˆ
B
(

∂u
∂λ

× ∂2u
∂λ2

)
√(

∂u
∂λ

)2 dλ . (D.3)

For this term we obtain

ˆ −Bxu
′′
y +Byu

′′
x +Bz(u

′
xu

′′
y − u′

yu
′′
x)√

(u′
x)

2 + (u′
y)

2 + 1
dz ≈

ˆ (
−Bxu

′′
y +Byu

′′
x +Bz(u

′
xu

′′
y − u′

yu
′′
x)
)(

1− 1

2
(u′2

x + u′2
y )

)
dz (D.4)

Bz

ˆ
(u′

xu
′′
y − u′

yu
′′
x)−

1

2
(u′2

x + u′2
y )(u

′
xu

′′
y − u′

yu
′′
x)−

Bx

Bz

u′′
y +

1

2

Bx

Bz

(u′2
x + u′2

y )u
′′
y dz . (D.5)

In the following table, we present all nonlinear terms (without the prefactors) which can
be generated using such expansions of relevant invariants, preseneted in Section 8.3.
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Term Bulk δ(z − L
2
)− δ(z + L

2
) ∂zδ(z− L

2
)−∂zδ(z+

L
2
)

u′
x - −ux -

u′′
y - −u′

y -
|u′|2 2u′′ −2u′ -
[u′ × u′′]z 2ẑ × u′′′ −2ẑ × u′′ ẑ × u′

|u′′|2 −2u′′′′ 2u′′′ −2u′′

u′
x|u′|2 (3u′2

x + u′2
y )

′x̂ +

2(u′
xu

′
y)

′ŷ

−(3u′2
x + u′2

y )x̂− 2u′
xu

′
yŷ -

u′′
y|u′|2 2(u′

xẑ × u′′)′ −2(u′
xẑ × u′′) −(u′2)ŷ

u′
x[u

′ × u′′]z 3(u′
xẑ × u′′)′ −3(u′

xẑ × u′′) u′
xẑ × u′

|u′|4 4(u′|u′|2)′ −4(u′|u′|2) -
|u′|2[u′×u′′]z 4(ẑ × u′′|u′|2)′ −4ẑ × u′|u′|2 ẑ × u′|u′|2

In order to find prefectors of these terms (see Sec.8.3, where this prefactors are intro-
duced) we follow Ref. [122]. Obtained prefactors are functionals of θ0(ρ̃), the skyrmion
profile in a 2D magnet, and g(ρ̃), which controls the magnitude of rotation (see Ref. [122]
for further explanation). We obtain

c0 =

ˆ ∞

0

dρ̃ (−2ρ̃ cos[θ0]),

c11 =

ˆ ∞

0

dρ̃ 2ρ̃ cos[θ0](−1 + g(ρ̃)),

c12 =

ˆ ∞

0

dρ̃ (−ρ̃3 sin[θ0]),

c21 =

ˆ ∞

0

dρ̃ ρ̃g(ρ̃) cos[θ0](−2 + g(ρ̃))

c22 =

ˆ ∞

0

dρ̃ ρ̃2 sin[θ0](−1 + g(ρ̃)),

c31 =

ˆ ∞

0

dρ̃ ρ̃ cos[θ0](−1 + g(ρ̃))g(ρ̃),

c32 =

ˆ ∞

0

dρ̃ ρ̃2 sin[θ0],

c33 =

ˆ ∞

0

dρ̃
1

2
ρ̃2 sin[θ0](−2 + g(ρ̃))g(ρ̃),

c41 =

ˆ ∞

0

dρ̃
1

4
ρ̃ cos[θ0]g(ρ̃)

(
−4 + 4g(ρ̃)− g(ρ̃)3

)
,

c42 =

ˆ ∞

0

dρ̃
1

2
ρ̃2(2− g[ρ])(1− g(ρ̃)) sin[θ0].
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E Derivation of forces

E | Derivation of forces

Here we provide an example of an calculation of a partial derivative for the term

Fϵ3 = ϵ3

ˆ L
2

−L
2

dz
(
∂zux∂

2
zuy − ∂zuy∂

2
zux

)
. (E.1)

We obtain:

− 1

ϵ3

δFϵ3 [ux(z), uy(z)]

δux(z0)
=

= − lim
ε→0

1

ϵ

(ˆ L
2

−L
2

dz
(
∂z(ux(z) + ϵδ(z − z0))∂

2
zuy(z)− ∂zuy(z)∂

2
z (ux(z) + ϵδ(z − z0))

)
− 1

ϵ3
Fϵ3

)

= − lim
ε→0

1

ϵ

ˆ L
2

−L
2

dzϵ∂zδ(z − z0)∂
2
zuy(z) + lim

ε→0

1

ϵ

ˆ L
2

−L
2

dz∂zuy(z)ϵ∂
2
zδ(z − z0)

= −
ˆ L

2

−L
2

dz∂zδ(z − z0)∂
2
zuy(z) +

ˆ L
2

−L
2

dz∂zuy(z)∂
2
zδ(z − z0)

= −∂2
zuy(z)δ(z − z0)

∣∣∣∣L2
−L

2

−

(
−
ˆ L

2

−L
2

dzuy(z)δ(z − z0)

)
+ ∂zuy(z)∂zδ(z − z0)

∣∣∣∣L2
−L

2

−
ˆ L

2

−L
2

dz∂2
zuy(z)∂zδ(z − z0)

= −∂2
zuy(z)δ(z − z0)

∣∣∣∣L2
−L

2

+ ∂3
zuy(z0)

+ ∂zuy(z)∂zδ(z − z0)

∣∣∣∣L2
−L

2

− ∂2
zuy(z)δ(z − z0)

∣∣∣∣L2
−L

2

−

(
−
ˆ L

2

−L
2

dz∂3
zuy(z)δ(z − z0)

)

= −∂2
zuy(z)

(
δ(z − L

2
)− δ(z + L

2
)
)
+ ∂3

zuy(z0) + ∂zuy(z)

(
∂zδ(z −

L

2
)− ∂zδ(z +

L

2
)

)
− ∂2

zuy(z)
(
δ(z − L

2
)− δ(z + L

2
)
)
+ ∂3

zuy(z0)

= ∂zuy(z)
(
∂zδ(z − L

2
)− ∂zδ(z +

L
2
)
)
− 2∂2

zuy(z)
(
δ(z − L

2
)− δ(z + L

2
)
)
+ 2∂3

zuy(z0).

For the functional derivative with respect to uy we obtain:

− 1

ϵ3

δFϵ3 [ux(z), uy(z)]

δuy(z0)
=

= −∂zux(z)(∂zδ(z − L
2
)− ∂zδ(z +

L
2
)) + 2∂2

zux(z)(δ(z − L
2
)− δ(z + L

2
))− 2∂3

zux(z0).
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Therefore, the elastic force can be written as

F el
Fϵ3

= 2ϵ3ẑ × ∂3
zu+ ϵ3[∂zu(∂zδ(z − L

2
)− ∂zδ(z +

L
2
))]× ẑ

+ϵ3ẑ × [2∂2
zu(δ(z − L

2
)− δ(z + L

2
))].

For the term

Fϵ31 = ϵ31

ˆ L
2

−L
2

dz
(
∂zux((∂zux)

2 + (∂zuy)
2)
)

(E.2)

we obtain

− 1

ϵ31

δFϵ3 [ux(z), uy(z)]

δux(z0)
=

= −(δ(z − L
2
)− δ(z + L

2
))(3(∂zux)

2 + (∂zuy)
2) + 2(3∂zux∂

2
zux + ∂zuy∂

2
zuy)

∣∣∣∣
z=z0

for x direction and

− 1

ϵ31

δFϵ3 [ux(z), uy(z)]

δuy(z0)
=

= −2(δ(z − L
2
)− δ(z + L

2
))(∂zux∂zuy) + 2(∂zuy∂

2
zux + ∂zux∂

2
zuy)

∣∣∣∣
z=z0

in y direction.
Similarly we calculate all elastic forces for other terms.
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