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1. Introduction 

 

Agrin is a large, multidomain, basal lamina protein that plays a key role in the formation 

and maintenance of the vertebrate neuromuscular junction (Ruegg and Bixby, 1998). Like 

other extracellular matrix (ECM) molecules, agrin consists of an array of modules 

homologous to domains found in other ECM proteins. 

The amino acid sequence of agrin encodes a protein with a molecular weight (Mw) of 225 

kDa, yet, SDS-polyacrylamide gel electrophoresis (SDS-PAGE) analysis shows a diffuse 

smear around 400 kDa, indicating extensive glycosylation. Treatment with heparitinase or 

nitrous acid shifts the 400 kDa smear to a focused band of approximately 250 kDa showing 

that agrin belongs to the family of heparan sulfate proteoglycans (HSPGs) (Gesemann et 

al., 1995; Hagen et al., 1993). Agrin is thought to contain three glycosaminoglycan 

attachment sites. In addition to the heparan sulfate (HS) sidechains, agrin contains two 

serine/threonine-rich regions where 0-glycosylation is possible and five potential N- 

glycosylation sites.  

 

  

 

 

 

 

Figure 1 Schematic diagram depicting the domain structure of the agrin core protein. Names and symbols 
used for the different structural motifs are taken from Bork and Bairoch (Bork and Bairoch, 1995). If the 
second LG-like domain contains the four amino acid insert at splice site A/y it binds to heparin and the third 
LG-like domain in conjunction with the B/z site is sufficient to induce aggregation of acetylcholine receptor 
(AchR) on cultured myotubes. High-affinity binding to α-dystroglycan is observed with an agrin fragment 
that lacks the AchR aggregation domain and comprises all EGF-like repeats and the first two LG-like 
domains. Importantly, only those agrin isoforms that have amino acid insert at the B/z site are highly active 
in aggregation of AchR. The SGs as potential attachment sites for glycosaminoglycans are numbered from 1 
to 20; the SGs within a more defined SGXG consensus sequence are underlined. Abbreviations for the 
domains: NtA: N-terminal agrin domain, FS: follistatin-like domains; LE: Laminin EGF-like module; S/T: 
serine/threonine-rich domain; SEA: module first found in sea urchin sperm protein; EG: EGF-like domain; 
Lam G (LG): Laminin G-like domain. The three splice sites of agrin are also indicated.  
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The amino-terminus of agrin contains a signal-sequence necessary for its release into the 

secretory pathway and the N-terminal agrin (NtA) domain, which provides binding to 

basement membrane-associated laminins via laminin-γ1 chains (Denzer et al., 1997; 

Kammerer et al., 1999). The NtA-domain-containing form of agrin is expressed mainly in 

nonneuronal cells or in neurons that project to nonneuronal cells, for example motor 

neurons. An alternative form of agrin lacks the NtA-domain but instead encodes a 49 

amino acid N-terminus, which converts agrin into a type II transmembrane protein. This 

form is expressed mainly in neurons of the central nervous system (Burgess et al., 2000; 

Neumann et al., 2001). Within the N-terminal part of agrin there are nine follistatin-like 

domains which have been implicated in protease resistance (Biroc et al., 1993) and growth 

factor binding (Patthy and Nikolics, 1993). The carboxy-terminal part of agrin was shown 

to be important for its synaptogenic activity. It is sufficient to induce the formation of 

postsynaptic specializations including aggregates of acetylcholine receptors (AchRs) on 

cultured myotubes in vitro (Nitkin et al., 1987; Reist et al., 1992). The induction of the 

synapse between nerve and muscle is initiated by the binding of the neuron-specific form 

of agrin (B/z-isoform) to receptors on the surface of myotubes. Agrin activates a signaling 

complex that includes the muscle-specific kinase (Musk) and other unidentified 

components. Musk-receptor activation alone leads to the aggregation of AchR and other 

proteins of the postsynaptic apparatus. Epidermal growth factor-like (EG) and three 

laminin G-like (LamG; LG) modules are found within the C-terminal part of agrin. While 

LG3 is responsible for AchR-clustering, LG2 has been shown to bind to α-dystroglycan. 

This interaction is not necessary for acetylcholine receptor clustering however, because 

elimination of the LG2-domain does not reduce agrin’s AchR-clustering activity 

(Gesemann et al., 1996; Hopf and Hoch, 1996). 

Targeted inactivation of agrin in mice results in grossly malformed neuromuscular 

junctions (NMJs), which display very few pre- and postsynaptic specializations. These 

mice die at birth because of insufficient activation of respiratory musculature (Gautam et 

al., 1996). 

 

Agrin cDNA is highly homologous throughout the examined species (rat, chick, marine 

ray, and human), and the domain structure of the deduced protein is highly conserved. 
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The agrin gene is subject to alternative mRNA splicing at several sites. Alternative exon 

usage at positions A and B (called y and z in rodents) at the 3’ end of the cDNA has a 

strong influence on the biological activity of agrin. Only those isoforms which have a 

peptide insert in both sites are capable of inducing AchR clustering at the NMJ in vitro and 

in vivo (Burgess et al., 1999; Cohen et al., 1997a; Ferns et al., 1993; Gesemann et al., 

1995; Ruegg et al., 1992). So far only neurons, specifically motor neurons, have been 

shown to express agrin isoforms that contain B/z inserts. The agrin isoforms expressed in 

other tissues such as lung and kidney lack inserts at the B/z site. Because these isoforms 

lack the clustering activity, but still bind with high affinity to α-dystroglycan, it is possible 

they function as adhesive molecules between cells and the ECM.  

Agrin isoforms containing the B/z-insertion are able to induce the phosphorylation of the 

transcription factor cAMP response element binding protein (CREB) in primary 

hippocampal neurons (Ji et al., 1998). 

Agrin binds to a number of known heparin–binding proteins in vitro via its 

glycosaminoglycan-chains (e.g. FGF-2 and thrombospondin) or via its core-protein (e.g. 

laminin-1, merosin and tenascin) (Cotman et al., 1999; Denzer et al., 1998). Previous 

studies using electron microscopy showed a 90 nm distance between the NtA-domain that 

binds to laminin and the last LG domain which was shown to be sufficient to induce AchR 

aggregation (Gesemann et al., 1995).  

 

 

 

 

 

 

 
 
 
Figure 2 Alignment of the domains of agrin to the structure of agrin. The schematic representation of the 
domain organization of agrin and the structure of a selected electron micrograph of agrin are shown. For 
symbols and designations of individual domains, see Figure 1 (picture taken from: Denzer et al., 1998). 

 



1. Introduction 

 - 4 - 

The length of agrin is therefore sufficient to span the entire basal lamina, which is ~50 nm 

between the presynaptic nerve terminal and the postsynaptic muscle fiber.  

Furthermore, agrin has been shown to be a major component of senile plaques in dementia 

of the Alzheimer’s type (Donahue et al., 1999). By using solid-phase immunoassay, an 

interaction between agrin and the amyloidogenic peptide Aβ (1-40) in its fibrillar state was 

shown. This mechanism is GAG chain dependent, as this interaction was prevented after 

agrin was treated with heparitinase. In addition, agrin accelerates Aβ fibril formation and 

contributes to larger fibrils than control samples, in vitro. Furthermore, agrin protects 

protein aggregates from proteolytic degradation in vitro most likely mediated through its 

protease inhibitor domains (Cotman et al., 2000). 

 

1.1 Binding to laminin-1 
 

Agrin was shown previously to bind laminin-1 via its N-terminal agrin (NtA)-domain 

which comprises the first 135 amino acids of agrin (Denzer et al., 1997). Members of the 

laminin family are principle components of basement membranes. Laminins are 

heterotrimers consisting of α, β and γ subunits which are interlinked by an extensive 

coiled-coil domain, forming the long arm of the cruciform shaped molecule (Beck et al., 

1990; Maurer and Engel, 1996; Timpl and Brown, 1994; Timpl and Brown, 1996).  
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Figure 3 Laminin heterotrimer morphologies and functions. Each laminin is a heterotrimer composed of an 
α, β and γ chain subunit joined together in parallel in a coiled-coiled. Although most trimeric combinations 
are allowed, the γ2 chain and β3 chains are found only in association with each other and with the α3-chain. 
Polymerization (self-assembly) sites have been assigned to the LN domains, possibly requiring the 
participation of more distal domains. The nidogen/entactin-binding site lies within γ1(III)-repeat. Heparin 
binding sites are found in the α-chain in both G-domain (major) and the N-terminal LN domain (minor). α-
dystroglycan (αDG) binds to fragment E3 of laminin, corresponding to G4/G5 in laminin-1. Agrin binds to 
the coiled-coil through a conformation-dependent interaction mediated largely through the γ1 chain (picture 
taken from: Colognato and Yurchenco, 2000). 

 

Laminins are known to bind to various β1 and β4 integrins, dystroglycan, a receptor 

tyrosine phosphatase, heparan sulfates, and other cell surface proteins. Agrin binds to the 

central region of the three-stranded coiled-coil oligomerization domain in the long arm of 

laminin-1, which mediates subunit assembly of the native laminin molecule. By a 

combination of electron microscopy and mutational analysis, the binding site of laminin to 

the NtA was localized in the central region of the about 60 nm long arm of laminin-1. The 

agrin-binding site in laminin maps to 20 residues within the γ1-chain of laminin and 

requires the native coiled-coil conformation for binding to agrin (Kammerer et al., 1999). 

Sequences of the chains exhibit the typical heptad repeat (abcdefg)n of coiled-coil 

structures in which residues in position a and d are restricted to the core, while residues in  

other positions are usually of charged and polar nature and are exposed to the surface 

(Cohen and Parry, 1990). 
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Figure 4 Helical wheel representation of residues comprising the agrin-binding site. The sequence starts with 
Glu96 (Glu1296; (Sasaki and Yamada, 1987)) in a heptad d position and ends with Glu115 (Glu1315) in a 
heptad b position. View is from the N-terminus, and heptad repeat positions are labeled a-g. The seven 
surface-exposed residues of the γ1 chain that are not conserved in the γ2 chain are indicated in bold (picture 
taken from: Kammerer et al., 1999). 

 

Because hydrophobic amino acids tend to be oriented towards the center of the superhelix, 

the negatively charged amino acids in position b are facing the outside and are therefore 

available for ionic interactions. Thus, positively charged amino acids within the NtA-

domain of agrin are likely counterparts and could mediate binding. Site-directed 

mutagenesis of positively charged amino acids can be therefore a suitable method to 

identify amino acids involved in the binding mechanism, or required for the correct 

formation of the binding site. Through comparison of human, mouse, and chick protein 

sequences, highly conserved positively charged amino acids were identified and chosen for 

site-directed mutagenesis.  

 

 

The X-ray structure of the chicken NtA-domain at 1.6 Å resolution revealed a β-barrel fold 

flanked by α-helices at both termini which are characterized by a high content of charged 

amino acids (Stetefeld et al., 2001).  
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Figure 5 Structure of the NtA-domain. a, Ribbon diagram of the NtA structure. β-strands are in red and 
labeled sequentially from S1 to S5. α-helices (H1–H3) and the 310-helix in loop L4–5 are in blue. The loops 
connecting strands S1 and S2 (L1–2), strands S3 and S4 (L3–4), and strands S4 and S5 (L4–5) are oriented to 
the same surface of the protein. b, Topology diagram of the secondary structural elements. Red arrows 
represent β-strands, and blue circles depict α-helices. Connections representing loop regions L1–2, L3–4 and 
L4–5 are shown as green lines. All other connections are shown as black lines. c, Stereo Cα trace with every 
10th residue labeled. d, Alignment of known NtA sequences. Sequences are shown as blocks of ten residues, 
and conserved residues are indicated by dots. Sequence numbers correspond to the mature protein. Secondary 
structure elements are indicated above the alignment using the same color code as in (a). Helix H3 contains a 
splice insert, residues Glu 126–Ala 132 (highlighted by the green bar), whose function is yet unknown. All 
figures have been prepared using the program DINO (http://www.biozentrum.unibas.ch/ -
xray/dino/)(Stetefeld et al., 2001). 

 

The C-terminal α-helix (helix 3) contains a 7-residue splice insert comprised of residues 

E126-A132, with yet unknown function. Motor neurons in developing spinal cord contain 

agrin transcripts that include this splice insert. However, the majority of agrin mRNA in 
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non-neuronal tissue is characterized by the absence of the 7-residue insert (Denzer et al., 

1995; Tsen et al., 1995).  

The expressed proteins were purified as described, and their ability to bind laminin-1 was 

determined by a solid phase binding assay. An unmutated agrin fragment consisting of the 

NtA- and 1. Follistatin (FS)-domain, previously described to be sufficient for laminin-1 

binding (Denzer et al., 1997), was used as a control. To verify the results obtained in vitro, 

the binding of agrin and laminin were confirmed by in vivo experiments testing the 

integration of the NtA-domain into basal lamina.  
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1.2 Fusion protein with NGF 
 

The autocrine/paracrine peptide signaling molecules such as growth factors have many 

biologic activities promising for clinical application. Unfortunately, most drug delivery 

systems are not suitable for clinical application with growth factors because of their limited 

target specificity and short half lives in vivo.  

 

To overcome the problem of target specificity, studies have been conducted trying to 

develop novel drug delivery systems that enable the factors to act on restricted target cells. 

A fusion protein from epidermal growth factor (EGF) and the cell-binding domain of 

fibronectin exhibited both cell-adhesive activity and growth factor activity, each of which 

was indistinguishable from that of the corresponding, unfused protein (Kawase et al., 

1992). In a different approach EGF was immobilized on a modified glass surface via star 

poly-(ethylene oxide) (PEO) (Kuhl and Griffith-Cima, 1996). The flexible PEO arms 

permitted the EGF molecule to retain its native conformation and to interact with its 

receptor in a relatively unrestricted manner. As a result, the immobilized EGF (tethered 

EGF) showed biologic activities comparable with those of soluble EGF in vitro. In such 

studies, however, the limited capacity of the cell surface receptors to retain the fusion 

protein (C-EGF) or the use of artificial matrices (tethered EGF) may be a problem for 

clinical applications. 

In a more recent study fusion proteins consisting of the collagen-binding domain (CBD) 

derived from clostridium histolyticum collagenase and growth factor moieties showed that 

the CBD can be used as an anchoring unit, preventing the diffusion of the peptide and 

hence increase its timely presence at a specific site. Another study utilized a fusion protein 

of biologically active EGF and the fibronectin collagen-binding domain (Ishikawa et al., 

2001). This fusion protein substantially stimulated cell growth in vitro and showed wound 

healing inducing properties in vivo.  

The present study was aimed at creating a fusion protein that would be able to bind to 

laminin while still displaying properties of the nerve growth factor (NGF). NGF is a 

member of the neurotrophin protein family that promotes the survival, growth and 

maintenance of neurons in the central and peripheral nervous system. In vivo NGF is  
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produced as a pre-pro-protein (Berger and Shooter, 1977; Ullrich et al., 1983). The 18 

amino acid pre-sequence is cleaved off when the protein is translocated into the 

endoplasmatic reticulum. The pro-sequence (103 amino acids) is thought to play a crucial 

role either in the folding of the mature protein, or its secretion out of the cell. The 

biologically active NGF-mature is a homodimer consisting of 118 amino acids per 

monomer.  

The advantage of using NGF in this study is its already well defined biological activity that 

can be demonstrated in neurite outgrowth assays. In this study NtA-domain containing 

protein fragments (PF5 and PF8) were fused to NGF-mature. The purified proteins were 

tested in vitro and in vivo for their laminin-binding ability and the biological activity of the 

fused NGF-moiety. 

 

1.3 Glycosylation of agrin 
 

Proteoglycans (PGs) are proteins with long glycosaminoglycans (GAGs) attached to a core 

protein. They are predominantly found in the extracellular matrix and connective tissues 

and influence a variety of cellular and physiological activities including cell proliferation, 

cell adhesion, blood coagulation, and wound repair (Kjellen and Lindahl, 1991). 

Approximately 30 PG core proteins have been identified with sizes ranging from 10 to 

>500 kDa and the number of attached GAG chains ranging from 1 to >100. The most 

abundant GAGs are heparan sulfate (HS) and chondroitin sulfate (CS). HS and CS are 

synthesized via similar routes involving the stepwise addition of four monosaccharides to 

serine residues.  

Figure 6 Glycosaminoglycan structure (taken from the website: 
http://www.glycoforum.gr.jp/science/word/proteoglycan/PGA06E.html)  
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It has been shown that serine followed by glycine residues are heavily favored acceptors 

for xylosyltransferase (Roden et al., 1985), the key enzyme in the initial step of GAG 

glycosylation.  

The information for priming of GAG synthesis as well as determining the type of 

glycosylation has to be encoded in the core-protein sequence itself, because cells that are 

capable of generating both kinds of GAGs reliably put the correct carbohydrates onto a 

defined core protein. The formation of HS for example, is enhanced when the core protein 

sequence contained two or more serine-glycine (SG)-consensus sequences in close 

proximity to each other, a cluster of acidic amino acids nearby, and a tryptophan residue 

immediately followed a (SG)-GAG attachment site (Dolan et al., 1997; Zhang et al., 1995; 

Zhang and Esko, 1994). However, acidic clusters are also found in CSPGs (Bourdon et al., 

1987; Brinkmann et al., 1997) and thus seem to be necessary but not sufficient for the 

formation of HS. Better knowledge of glycosylation sites of PGs would help to define the 

rule of glycosylation more clearly. 

While the GAG attachment sites of perlecan (Dolan et al., 1997), collagen XVIII (Dong et 

al., 2002) and syndecan have been determined (Zhang et al., 1995), the sites in agrin are 

still unknown. In the present study, the potential (SG) sites were examined for GAG 

priming activity by expressing peptide fragments in eucaryotic cells and analyzing the 

recombinant products for glycosylation. 

 

1.4 Neurite outgrowth inhibition by agrin 
 

While the influence of agrin on postsynaptic differentiation was subject to a number of 

studies, recent experiments have revealed that agrin might work as a “stop-signal” for 

axons from presynaptic neurons. It is known that agrin directly acts on neurons, which may 

be important for the development of the central nervous system as well as for the 

differentiation of the NMJ. In vitro, agrin was shown to inhibit neurite growth and initiate 

vesicle clustering (Campagna et al., 1995; Campagna et al., 1997; Chang et al., 1997; 

Halfter et al., 1997). Previous studies revealed that the interaction of agrin with laminin-1 

has no influence on the neurite inhibition of agrin, because inhibition was shown for 
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neurite growth induced by laminin-2 (Halfter et al., 1997), laminin-1 and N-cadherin 

(Bixby et al., 2002). 

Because agrin is expressed throughout the central nervous system, it seems likely that 

agrin’s effect on neurons is not limited to the NMJ (Cohen et al., 1997b; Halfter et al., 

1997; Ma et al., 1994; O'Connor et al., 1994). It was reported that full-length agrin, as well 

as a N-terminal 150 kDa fragment of agrin inhibited neuron outgrowth of ciliary ganglia 

(CG) neurons in vitro, while a C-terminal 95 kDa fragment had no influence on neurite 

outgrowth (Bixby et al., 2002). These findings imply that the N-terminal domains of agrin 

are responsible for this effect. In the present study various fragments of the N-terminal 

domains of agrin were tested for their inhibitory effect on neurite outgrowth. To test the 

influence of GAG chains in this matter, fragments containing GAG chains, as well as 

mutants of the same fragments without GAG chains were tested in a neurite outgrowth 

assay utilizing dorsal root ganglia (DRG). 

 

1.5 The episomal expression system in human embryonic kidney cells 
(HEK) and choice of Tag module 

 

This system, based on the expression vector pCEP-Pu and HEK293/EBNA cells 

(Invitrogen, Carlsbad, CA), has been used successfully in the expression of many 

extracellular proteins. In this case, the genome of the human embryonic kidney cells 

carries the EBNA-1 gene of the Epstein-Barr Virus (EBV), as well as a resistance to the 

selection marker G 418 (Geneticin). 

The vector used in these studies, is a modified version of the episomal expression vector 

pCEP (Invitrogen). The original vector contains the EBNA-1 gene (Epstein-Barr nuclear 

antigen 1), which encodes a viral DNA binding protein essential for the extra chromosomal 

existence of the plasmid. Another component of the vector is the EBV-replication origin, 

oriP, which is essential for a high vector replication rate independent of proliferation. The 

interaction of EBNA-1 with oriP plays an important role in DNA replication and the stable 

distribution of the episomal vectors in dividing cells. 
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Figure 7 Modified version of the expression vector pCEP-Pu ((Kohfeldt et al., 1997), kindly provided by 
Prof.Dr. Mats Paulsson, Cologne, Germany) 

 

The EBNA-1 gene is present in the genome of the HEK293-cells as well as in the 

expression vector to ensure a high protein expression. The vector also contains genes 

necessary for the amplification in E.Coli, such as the ColE1 replication origin and an 

ampicillin resistance gene. To stimulate high recombinant protein expression the CMV-

promoter (human cytomegalovirus immediate–early gene enhancer-promoter) is included 

as part of the vector. cDNA fragments can be inserted into a multiple cloning site, which is 

followed by a polyadenylation site and the SV40 transcription terminator. The modified 

vector contains a puromycin-resistance cassette instead of a hygromycin-resistance gene 

(pCEP-Pu) (Kohfeldt et al., 1997), and the BM40 signal peptide was added, which is 

sufficient for the secretion of the recombinant protein from the cell.  
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In order to analyze recombinant protein, it is essential to obtain the purest samples 

possible. One way to achieve this is to express the protein as a fusion protein with a 

module that has already been proven to be effective in affinity purification of proteins 

(Ford et al., 1991; Sherwood, 1991).  

The choice of module can vary between whole proteins to stretches of 6-10 amino acids. 

High affinity modules have the drawback of sometimes needing non physiological 

conditions to elute the protein which can lead to denaturation. Larger tags will always bind 

to the affinity column because they cannot be incorporated inside the protein during the 

folding process, which might be a problem with smaller tags. Larger tags, however, usually 

have an impact on the folding ability of the protein and hence alter its properties. These 

tags must then be removed with proteases before use of the protein. Small tags usually 

have a negligible influence on protein folding, although occasional interferences can occur 

(Ledent et al., 1997). In the performed experiments, all proteins were expressed as fusion 

proteins with an N-terminal His6-Myc-FactorX-Tag as well as a BM-40 signalpeptide 

necessary for the release of the protein into the cell supernatant. 

 

MRAWIFFLLCLAGRALA:APLV BM-40 Signalpeptide  

HHHHHH His6   

GPLVDVASN 

EQKLISEEDL Myc-sequence  

ASMTGGQQMGRD 

IEGRG Factor-X sequence 

LA 

The cutting site for the BM-40 signalsequence was being determined by using the SignalP 

V1.1 World Wide Web Server (http://www.cbs.dtu.dk/services/SignalP/) and is most likely 

positioned between alanine (17) and alanine (18). The remaining 48 amino acids of this tag 

encode for a 5.18 kDa peptide, determined using the ProtParamTool World Wide Web 

Server (http://us.expasy.org/tools/protparam.html). 
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The His6-Tag allows purification of the expressed proteins from cell supernatant by affinity 

chromatography using a commercially available purification system. Talon resins 

(Clontech/BD Biosciences, Palo Alto, CA) are cobalt-based IMAC (Immobilized Metal 

Affinitychromatography) resins designed to purify recombinant polyhistidine-tagged 

proteins (Bush et al., 1991). Talon utilizes special tetradentate metal chelator for 

purifying the tagged proteins. The binding pocket is an octahedral structure in which four 

of the six metal coordination sites are occupied by the Talon ligand.  

 

 

 

 

 

 

 

 
 
 

 

Figure 8 Schematic diagram of the TALON IMAC System. Part A. TALON Metal Affinity Resin; A 
Sepharose bead bearing the tetradentate chelator of the Co2+ metal ion. Part B. The polyhistidine-tagged 
recombinant protein binds to the resin (Clontech, 2002).  
 
The Myc-Tag (EQKLISEEDL) allows the detection of the protein with a highly specific 

mouse monoclonal IgG antibody (c-Myc (9E10):sc-40; Santa Cruz Biotechnology, Santa 

Cruz, CA). FactorX (IEGRG) is a protease restriction site, which allows removal of the tag 

in case it should interfere with one of the experiments.  
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1.6 Aim of the project 
 

While the C-terminal domains of agrin have been the subject of a number of studies, very 

little is known about the N-terminal domains of agrin which account for almost 2/3 of the 

protein. The goal of this project was to elucidate some of the functions for these N-

terminal domains. These include 

1. examination of the binding mechanism of the laminin-binding site of agrin 

2. localization of the GAG attachment sites in the core protein  

3. neurite outgrowth inhibition of agrin  

To accomplish this, 9 N-terminal fragments of agrin, expressed in an eucaryotic expression 

system were the subject of in vitro and in vivo binding studies, site-directed mutagenesis 

experiments and neurite outgrowth assays. 
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2. Methods and Materials 

 

2. Chemicals  

If not specifically stated, all chemicals were ordered from Sigma, Invitrogen, or Fluka. 

Enzymes were purchased from New England Biolabs or Promega. 

Cell culture media and chemicals were obtained from Cellgro, Sigma, Gibco, and Bio-

Whittaker. 

Purified water was produced by a Millipore system (Millipore QF, Millipore Corp., 

Bedford, MA) 

 

2.1 Molecular Biology 

2.1.1 PCR 

Plasmid MC1061/P3 (Invitrogen, Carlsbad, CA) containing full-length chick agrin cDNA 

was used as the template to generate the different agrin fragments. 

The following protocol was used to generate constructs PF1-PF9: 

To 100 ng plasmid in 15 µl H2O 

Add  2 µl 10x cloned Pfu DNA polymerase reaction buffer 

  1 µl dNTP’s (25 mM each dNTP) 

  1 µl Sense-Primer (100 ng/µl) 

  1 µl Anti-Sense-Primer (100 ng/µl) 

  0.4 µl PfuTurbo DNA polymerase (2.5 U/µl) 

 

 

The following primers were used to generate constructs PF1-PF9:  

 

PF1 

S: 5’-GTCAGCTAGC(T)AACTGCCCCGAACGGGA-3’   

AS: 5’-TTCTTCTTCAGCGGCCGCGTACTGAGGGGCTGGGTTGA-3’  
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PF2 

S: 5’-GTCAGCTAGC(T)ATGTGGCCTGCCCACCGCAA-3’ 

AS: 5’-TTCTTCTTCAGCGGCCGCGGTGAGGCCATCGGTGCCACA-3’ 

PF3 

S: 5’-GTCAGCTAGC(T)CAGTGCGTGTGTCCCCGCTGT-3’ 

AS: 5’-TTCTTCTTCAGCGGCCGCGCTCCCTTCTGCATCAGCA-3’ 

PF4 

S: 5’-GTCAGCTAGC(T)AACTGTCCGGCTACCAAAGTC-3’ 

AS: 5’-TTCTTCTTCAGCGGCCGCGGCCAGGTAGGACTTGCCA-3’ 

PF5 

S: 5’-GTCAGCTAGC(T)AACTGCCCCGAACGGGA-3’  

As: 5’-TTCTTCTTCAGCGGCCGCCACCTCTGCACAGGGGT-3’  

PF6 

S: 5’-GTCAGCTAGC(T)AAGGACCCCTGTGCAGAGGTG-3’ 

AS: 5’-TTCTTCTTCAGCGGCCGCCTGACTGCAGTGCACAACTGG-3’ 

PF7 

S: 5’-GTCAGCTAGC(T)CCAGTTGTGCACTGCAGTCAG-3’ 

AS: 5’-TTCTTCTTCAGCGGCCGCGCTCCCTTCTGCATCAGCA-3’ 

PF8 

S: 5’-GTCAGCTAGC(T)AACTGCCCCGAACGGGA-3’ 

AS: 5’-TTCTTCTTCAGCGGCCGCGGAGGCTTGGGAGGGGT-3’ 

PF9 

S: 5’-GTCAGCTAGC(T)TCCCAAGCCTCCTGTGTCTGC-3’ 

AS: 5’-TTCTTCTTCAGCGGCCGCCTGACTGCAGTGCACAACTGG-3’ 

NGF-mature 

NGF-S: 5’-TTCTTCTTCA GCGGCCGCT AAG CGC TCA TCC ACC C-3’ 

NGF-AS: 5’-TTCTTCTTCA GCGGCCGC GCC TCT TCT TGT AGC CT-3’  

 

The primers were designed to introduce terminal NheI and NotI restriction sites to the 

fragments. These fragments were then cloned into the pCEP-Pu/EBNA-vector in frame 

with the BM-40 signal peptide and an N-terminal His6-Myc-FactorX-Tag. 



 2.  Materials and Methods    

 - 19 - 

Primers containing an Nhe1 cutting site were protected by 4 nucleotides at the 5’ end and 

contained an additional “T” directly following the cutting site, to keep the insert in frame 

with the preceding tag-module. Primers containing a Not1 cutting site were supplemented 

with 10 additional nucleotides at the 5’ end to achieve optimal cutting efficiency. 

 

In the case of NGF-mature, full-length NGF in a Bluescript-vector was used as the 

template to generate cDNA encoding NGF-mature (366 bp). Primers were designed to 

introduce terminal NotI restriction sites to the fragment. Because the 5’-end and the 3’-

end contain the same restriction site, ligation into the NotI-cut vector generated two 

different products. The correct insert orientation was verified by sequencing. 

 

Program used for generating the different PCR constructs: 

Step Repeats Temperature Time 

1 1 95°C 2’ 

 

2 

 

30 

95°C 

PrimerTm - 5°C 

72°C 

30’’ 

30’’ 

1’per kb for targets < 10kb 

2’ per kb for targets > 10kb

3 1 72°C 10’ 

 

2.1.2 Site-directed mutagenesis 

The cDNAs of fragments PF7 and PF9 in pCEP-Pu/EBNA were used for site-directed 

mutagenesis experiments to determine the location of the SG consensus sequences for 

GAG glycosylation. The cDNA of PF5 in pCEP-Pu/EBNA was used for site-directed 

mutagenesis experiments to investigate the laminin-binding site of agrin. Single point 

mutations were introduced by designing primers according to the Quick Change site-

directed mutagenesis kit (Stratagene, La Jolla, CA) user's manual. Multiple point 

mutations were introduced by additional site-directed mutagenesis on single and double-

mutant cDNAs. The following oligonucleotides were used to introduce mutations 
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(mutated bases are shown in lower case letters): only the sense-primers are shown below. 

Antisense-primers were the inverted and complementary oligonucleotides. 

Primers used for glycosylation studies: 

M 4: 5’- GGA CGA ATG TGG CgC AGG GGG CTC AGG CTC TGG -3’ 

M 5: 5’- GTG GCT CAG GGG GCg CAG GCT CTG GTG ATG GG -3’ 

M 6: 5’- CAG GGG GCT CAG GCg CTG GTG ATG GGA GTG AGT G -3’ 

M 4+5: 5’- GTG GCg CAG GGG GCg CAG GCT CTG GTG ATG GG -3’ 

M 5+6: 5’- CAG GGG GCg CAG GCg CTG GTG ATG GGA GTG AGT G -3’ 

M 8: 5’- GCC TCC CTA CGC TGA AgC GGG Cgc TGC AGA AGG C -3’ 

M 9: 5’- GCA GTG CAG AAG GCg cTG GGG ACC AGG AGA TGA GC -3’  

M 10: 5’- CCA GGA GAT GAG CAT Cgc TGG GGA CCA GGA ATC C -3’ 

M 10c: 5’- CCA GGA GAT GAG CAT Cgc TGG GGA CCA GGA AgC C -3’ 

M 11: 5’- GGA CCA GGA AgC Cgc TGG GGC AGG CgC TGC TGG GGA AGA G -3’ 

 

Primers used for laminin-binding studies: 

M 5: 5’- GCT AAC TGC CCC GAA gcG GAG CTG CAG-3’ 

M9,10: 5’- AAC GGG AGC TGC AGg cCg cGG AGG AGG CCA AC –3’ 

M 43: 5’- GGT GAG AGT GTG Ggc TTA CCT GAA AGG C-3’ 

M 84: 5’- CGA CCG GGG ACA CAg cGA TAT TCT TTG TCA ACC CAG CCC-3’ 

M 111: 5’- CAA CTC CAG CCT GAT Ggc GAT CAC GCT GCG CAA C-3’ 

M 115: 5’- GAT GCG GAT CAC GCT Ggc CAA CCT GGA GGA GGT G-3’ 

M 128,129: 5’- GCG TGG AAG AAC ATg cGg cGC TTC TTG CTG ACA AG-3’ 

 

All sequences were verified by sequencing in the universities sequencing facility. The 

sequences were analyzed using the Sequencher-Software (DNA Codes Inc., Ann Arbor, 

MI). Amino acid sequences were deduced from the DNA sequences using the same 

software. 
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Protocol for site-directed mutagenesis according to the manufacturers recommendation: 

 1 µl DNA (25-50 ng/µl) 

 2 µl 10x Reaction Buffer 

 0.25 µl Sense-Primer (10 µM) 

 0.25 µl Antisense-Primer (10 µM) 

 1 µl dNTP (10 mM) 

 15.5 µl H2O 

 0.4 µl Pfu-Turbo  

 

The following program was used in a single-block thermocycler: 

 

Step Repeats Temperature Time 

1 1 95°C 30’’ 

 

2 

 

18 

95°C 

55°C 

68°C 

30’’ 

1’ 

2’ per kb target DNA 

3 1 68°C 10’ 

 

2.1.3 Agarose gel electrophoresis 

For the performed experiments, a 1% agarose gel was used. 

For this purpose 0.5 g agarose was heated in 50 ml TAE-buffer, and ethidiumbromide 

was added to a final concentration of 0.5 µg/ml. After polymerization, the gel was 

transferred to an electrophoresis gel-chamber and submerged in TAE-buffer. The samples 

were mixed with Gel Loading Solution (Sigma, St. Louis, MO) and loaded into the gel. 

The Ready-Load1 kb DNA Ladder (Invitrogen, Carlsbad, CA) or the EZ-Load1 kb 

Molecular Ruler (Bio-Rad, Hercules, CA) was used as molecular weight standard, 

depending on the expected DNA size. Electrophoresis was carried out at constant voltage 

that did not exceed 5 V/cm Gel-length. 
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2.1.4 DNA gel elution 

Elution from DNA-fragments from agarose gels was performed by using the QiaexII-

Gel extraction Kit from Qiagen (Qiagen, Valencia, CA) according to the manufacturer’s 

recommendations.  

 

2.1.5 Endonuclease digestion  

Protocol for digestions with 2 restriction enzymes: 

1 µg DNA 

2 µl 10x Restriction Buffer 

0.2 µl BSA (100x) 

2-5 U Enzyme 1 

2-5 U Enzyme 2 

Incubation occurred at 37°C for at least 1 hour. 

 

2.1.6 DNA quantification 

To determine the concentration of a given DNA sample, the optical density of the DNA 

sample was measured at 260 and 280 nm with a UV–Spectrometer. To verify the purity 

of the sample, the ratio of OD260 to OD280 was calculated. 

 

2.1.7 Dephosphorylation 

After restriction digestion, the solution was heated to 65°C for 20 minutes to inactivate 

the restriction enzymes. 

To prevent religation of linearized vector-DNA, it was treated with alkaline phosphatase 

(from calf intestine; Roche, Indianapolis, IN) to remove the 5’-phosphates of the DNA. 

10 µl DNA (cut) 

0.9 µl 10x Buffer 

1 µl SAP (= 1 U) 
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Incubation was carried out for 1 hour at 37°C. The preparation was then purified by 

agarose gel electrophoresis using 1% agarose. The desired bands were excised, and the 

DNA was eluted from the gel using the QiaexII-Gel extraction Kit from Qiagen 

according to the manufacturer’s recommendations.  

 

2.1.8 Ligation 

5x pmol  Insert 

x pmol Vector 

1 µl 10x T4-Ligase Buffer 

1 µl T4-Ligase 

The ligation of linearized, dephosphorylated vector and double stranded PCR fragment 

that have been cut with the same restriction enzymes, was performed over night at 14°C. 

T4 Ligase catalyzes the reaction between the 5’phosphate- of the DNA insert and the 3’ 

hydroxyl- group of the vector to form a phosphodiester bond. 

 

2.1.9 Production of competent bacteria 

500 ml of LB medium was inoculated with 5 ml overnight bacteria culture. The solution 

was shaken at 37°C until it reached an OD595 of 0.4-0.7. All of the following steps were 

performed on ice. The solution was cooled for 15 minutes and then centrifuged at 3000 g 

for 10 minutes. The pellet was resuspended in 100 ml TFB I (30 mM KAc pH 5.8, 50 

mM MnCl2, 100 mM RbCl, 10 mM CaCl2, 15% glycerol (w/v)) and incubated on ice for 

10 minutes. Then the solution was centrifuged for 10 minutes at 3000 g. The pellet was 

resuspended in 20 ml TFB II (10 mM MOPS pH 7.0, 75 mM CaCl2, 10 mM RbCl, 15% 

Glycerol (w/v)). The competent bacteria were then stored in 100 µl aliquots at -80°C. 
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2.1.10 Bacterial “heat shock” -transformation 

Plasmid DNA was transformed into 100 µl XL1-Blue or MC1061/P3 cells by heat shock 

transformation. 1 ng DNA or 5 µl of the ligation was incubated with bacteria for 20 

minutes on ice while mixing the solution every 5 minutes. Afterwards the mixture was 

placed into a 42°C water-bath for 1 minute and immediately put on ice for 2 minutes. The 

cells were suspended 900 µl of LB-medium and shaken at 37°C for 1 hour. Then, 200 µl 

of the solution was plated on plates containing 100 µg/ml ampicillin or plates containing 

100 µg/ml tetracycline and incubated overnight at 37°C. 

 

2.1.11 DNA-purification 

DNA-purification was performed using the Wizard Plus Miniprep DNA Purification 

System (Promega, Madison, WI). The Kit was used as recommended in the user’s 

manual. 

2.1.12 Sequencing 

All sequences were verified by sequencing in the universities sequencing facility. The 

DNA Sequencing Core Facility at the University of Pittsburgh utilizes two ABI PRISM® 

3100 Genetic Analyzers. Each unit incorporates a multi-color fluorescence-based DNA 

analysis system using the proven technology of capillary electrophoresis with 16 

capillaries operating in parallel. The 3100 Genetic Analyzers are fully automated from 

sample loading to data analysis. 

Samples were prepared as followed: 

1.5 µg DNA  

add H2O to 12 µl 

 

1 µl Primer (320 pmol/µl) The sequences were analyzed using the Sequencher-

Software (DNA Codes Inc., Ann Arbor, MI). Amino acid sequences were deduced from 

the DNA sequences using the same software. 
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2.2 Protein biochemistry 
 

2.2.1 SDS gel electrophoresis 

Samples were treated with SDS-sample buffer, boiled for 5 minutes and analyzed by 

SDS-polyacrylamide gel electrophoresis. A 4% upper gel and depending on the sample, 

10%, 12% or 3.5-15% gradient gels were used. Gels were run at a constant voltage of 120 

V. The prestained SDS-PAGE Standards, Broad Range Marker (BioRad, Hercules, CA) 

were used as molecular weight standard. 

 

2.2.2 Western blotting 

Proteins were transferred to a nitrocellulose membrane (Millipore, Bedford, MA) using a 

semi-dry blotting system (BioRad, Hercules, CA). Unspecific binding was prevented by 

incubating the membrane with blocking solution (TBS + 5% dry milk powder) for 30 

minutes. The membrane was then incubated for 1 hour with the primary antibody in 

blocking solution. After three washes with blocking solution, the blot was incubated with 

the alkaline phosphatase conjugated secondary antibody in blocking solution for 1 hour. 

The membrane was washed three times with blocking solution and then thoroughly with 

water. The blot was incubated for 10 minutes in developing buffer (0.1 M Tris, 0.1 M 

NaCl, 0.05 M MgCl2). The blot was developed by adding a mix of developing buffer, 

NBT (4-nitro blue tetrazolium chloride) and BCIP (5-bromo-4-chloro-3-indolyl- 

phosphate) (Roche, Indianapolis, IN).  

 

2.2.3 Construction, expression and purification of recombinant protein 

The digested DNA inserts were isolated from 1% agarose gels and ligated into the 

Nhe1/Not1 cut and dephosphorylated mammalian episomal expression vector pCEP-Pu 

(Kohfeldt et al., 1997)(kindly provided by Prof. Dr. Mats Paulsson, University of 

Cologne, Cologne, Germany). pCEP-Pu contains a puromycin resistance for convenient 

cell selection, as well as a His6-Myc tag followed by a Factor-X cleavage site just 
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preceding the multiple cloning site. HEK293/EBNA cells (Invitrogen, Carlsbad, CA) 

were electroporated with the constructs and stable transfection achieved by selection with 

puromycin (see 2.3.4). The protein expression was carried out like described in 2.3.5. The 

fusion proteins were purified by affinity chromatography on a cobalt column (Talon, 

BD Biosciences, Palo Alto, CA) as described in the manufacturer’s instructions: 

For purification, 200 ml of the tagged proteins was thawed and dialyzed over night 

against His-1-buffer (50 mM NaH2PO4, 20 mM Tris, 100 mM NaCl, pH 8). The solution 

was applied to the His-1-buffer equilibrated column at a flow rate of 1 ml/min. After all 

solution was applied the column, the column was washed with 15 ml His-1-buffer. To 

eliminate unspecific background binding, the column was washed with 5 bed volumes of 

His-2-buffer (His-1-buffer + 10 mM Imidazol). Bound protein was eluted with 3 times 5 

ml of His-3-buffer (His-1-buffer + 250 mM Imidazol). Fractions containing pure protein 

were identified by SDS-PAGE, pooled and dialyzed against 1/10 PBS. The dialyzed 

samples were concentrated 10 times by using the Ultrafree-15 Centrifuge Filter Device 

(Millipore, Billerica, MA), checked for purity by SDS-PAGE and stored in aliquots at –

80°C.  

The column was regenerated by stripping the column with 10 bed volumes of 20 mM 

MES-buffer (2-(N-morpholine)-ethanesulfonicacid). Next, the column was rinsed with 5 

bed volumes of dd-H2O and equilibrated with His-1-buffer. Columns were then reused or 

stored in 20% Ethanol containing 0.1% sodiumazide at 4°C. 

 

2.2.4 Solid phase binding assay 

All of the following steps were performed at room temperature. Laminin-1 was diluted to 

10 µg/ml with 50 mM sodium bicarbonate pH 9.6 (coupling buffer) and immobilized on 

96-well plates (100 µl/well; Maxisorb plates, Nunc, Roskilde, Denmark and Falcon 

regular 96-well plates) by incubation over night. To prevent nonspecific interactions, 

remaining binding sites were saturated by incubation with 5% dry milkpowder in TBS 

(400 µl/well) for 2 hours. After blocking, the wells were incubated for 2 hours with the 

recombinant proteins at different concentrations (1 nM - 100 nM) in TBS containing 0.03 

mg/ml κ-casein (Sigma, St. Louis, MO). As a control, laminin-1 coated wells were 
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incubated with casein at the same concentrations (1 mM – 100 mM). Next, the wells were 

washed 3 times with TBS containing 0.05% Tween-20. To detect bound antigen, a 

monoclonal antibody against the fused myc-tag was used (mouse monoclonal IgG 

antibody (c-Myc (9E10): sc-40; Santa Cruz Biotechnology, Santa Cruz, CA; Dilution: 

1:2500 in TBS containing 0.03 mg/ml κ-casein; 100 µl per well; incubation: 1 hour). The 

wells were washed 3 times with TBS containing 0.05% Tween-20 (100 µl/well), 

followed by incubation with secondary peroxidase-conjugated antibody (Peroxidase goat-

anti mouse; Dilution 1:2500) in TBS containing 0.03 mg/ml κ-casein for 1 h. Finally, the 

wells were washed 3 times with TBS containing 0.05% Tween-20 (100 µl/well) and three 

times with water (100 µl/well). The enzyme reaction was started with 3,3’,5,5’-

Tetramethylbenzidine (TMB) Liquid Substrate for ELISA (Sigma; 100 µl/well), which in 

the presence of peroxidase produced a pale blue soluble product. This reaction was 

stopped by adding 20% H2SO4 (100 µl/well) which converted the solution to yellow in 

color. Extinction was then measured at 450 nm using a spectrophotometer. The extinction 

values were plotted against the protein concentration in nM and the EC50-value was 

determined by using the Origin-software using a sigmoidal fit. 
 

2.2.5 N-Glycanase treatment 

100 µg protein was diluted in 20 mM sodium phosphate pH 7.5, containing 0.02% 

sodium azide. The protein was then denatured at 100°C for 5 minutes in the presence of 

0.1% SDS, and 50 mM β-mercaptoethanol. After cooling, NP-40 was added to a final 

concentration of 0.75% and 5 mU N-Glycanase (Glyko, Inc.) was added to the reaction 

mixture and incubated for 2 hours to overnight at 37°C. 
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2.2.6 Chondroitinase ABC digestion 

To remove chondroitin sulfate chains from recombinant proteins, the samples were 

dialyzed against PBS pH 8.0 and treated with chondroitinase ABC (Seikagaku, Rockville, 

MA) (1-2 milliunits/µg of proteoglycan).  

To minimize the risk of core protein self-aggregation upon glycosaminoglycan chain 

removal, the reaction was stopped after 2 hours at 37°C by adding SDS-sample buffer 

and boiling the samples for 5 minutes. Samples were run on a 10%- or a 3.5-15% linear 

gradient SDS-PAGE gel and transferred to a nitrocellulose membrane. Proteins were then 

detected using a monoclonal antibody against the fused myc-tag. 

 

2.2.7 Heparitinase digestion 

To remove heparansulfate chains from recombinant proteins, the samples were dialyzed 

against PBS pH 7.0 containing 3 mM CaCl2 and treated with heparitinase (Sigma, St. 

Louis, MO) (0.125 milliunits/µl).  

To minimize the risk of core protein self-aggregation upon glycosaminoglycan chain 

removal, the reaction was stopped after 2 hours at 37°C by adding SDS-sample buffer 

and boiling the samples for 5 minutes. Samples were run on a 10%- or a 3.5-15% linear 

gradient SDS-PAGE gel and transferred to a nitrocellulose membrane. The protein was 

detected using a monoclonal antibody against the fused myc-tag. 

 

2.2.8 Limited tryptic digestion 

Protein samples (5-20 µM) were incubated with 5U trypsin/µmol of protein at room 

temperature in 50 mM Tris-HCl containing 200 mM NaCl. The reaction was stopped 

after one hour by adding SDS-sample buffer and boiling the samples for 5 minutes at 

95°C. The proteins were analyzed by SDS-PAGE and visualized by silver staining. 
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2.3 Cell Culture 
 

The equipment used in cell culture was either autoclaved glassware or sterile packed 

plastic equipment. The used solutions were either autoclaved, sterile filtered or obtained 

as sterile solutions. Cells were cultured at 37°C in a water-saturated atmosphere with a 

CO2-content of 5%. All work was performed in a sterile-hood. 

2.3.1 Cells 

HEK293/EBNA cells (Invitrogen, Carlsbad, CA) were cultured in DMEM supplemented 

with 10% fetal calf serum (Gibco Life Technologies Inc., Rockville, MA), 1% L-

glutamine, penicillin, streptomycin and 350 µg/ml Geneticin (G418, Gibco, stock: 50 

mg/ml,) at 37°C in a 5% CO2 atmosphere. Medium was changed every other day and the 

cells were passaged every 4-5 days. 

 

2.3.2 Trypsinization 

Medium was discarded and the cells washed with 1x PBS. 2 ml trypsin was added and 

the cells incubated at 37°C. The cells were spun down, resuspended in EBNA-medium 

and distributed to new plates. 

 

2.3.3 Transfection 

The cells were washed 3 times with TBS, trypsinized, centrifuged and resuspended in 

EBNA-medium. Cell density was measured with a hemacytometer (Fisher Scientific, 

Pittsburgh, PA). 

2.5 x 105 cells in 500 µl Medium were incubated with 4–5 µg of DNA for 5 minutes. 

Electroporation was performed at 220 Volts, with a single 10 ms pulse using the 

ElectroSquarePorator ECM 830 (BTX/Genetronics, San Diego, CA). 
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2.3.4 Selection 

Transfectants were grown in EBNA-medium for 2 days and then selected by adding 1 

µg/ml puromycin to the medium. Selection was carried on for 14-18 days in DMEM, 

10% FCS, 100x L-glutamine (200mM), 100x penicillin/streptomycin, 1 µg/ml puromycin 

(stock: 5 mg/ml) 

 

2.3.5 Protein expression 

Cells were then grown to confluency, washed three times with TBS, then 20 ml serum 

free medium (DMEM/F12-Nutrient Mix 1:1, 100x L-glutamine (200 mM), 100x 

penicillin/streptomycin, 1 µg/ml puromycin (stock: 5 mg/ml)) was added per 150 mm by 

25 mm dish (“Integrid”; Falcon 353025). Supernatant was collected every other day for 

10 days, spun down to remove dead cells (which over time could release proteases into 

the solution and thus degrade the desired proteins), and stored at –20°C until purification. 

 

2.3.6 Neurite outgrowth assays 

Tissue culture dishes were coated with nitrocellulose, dissolved in methanol as described 

(Lagenaur and Lemmon, 1987). 3 µl of the various agrin peptides at the concentration of 

~360 nM were applied as a small stripe on a dish. After 5 minutes of incubation, the 

coated stripe was washed twice with PBS. The stripe plus the adjacent nitrocellulose area 

were then coated with 10 µl of 20 µg/ml laminin. After 5 minutes of incubation the 

coated area was washed with DMEM/5% FCS.  

Dorsal root ganglia were dissected from E8 chick embryos and transferred onto the 

coated dishes. To promote the adhesion of the ganglia, the medium was removed and the 

ganglia incubated on the moist substrate for 1 hour. Finally 100 µl of DMEM with 5 

ng/ml NGF was carefully added to the cultures. After 30 hours of incubation, 1 µl of the 

anti-myc-antibody was added to the cultures, followed by fixation 1 hour later with 4% 

para-formaldehyde (PFA). The cultures were stained with a monoclonal antibody (MAb) 

to tubulin (MAb 6G7) followed by alkaline-phosphatase labeled goat anti-mouse 

secondary antibody. Myc-labeled substrate and axons were visualized with BCIP/NBT.   
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2.4 Histology 

 

Heads of chick embryos were fixed in 4% paraformaldehyde in 0.1M potassium 

phosphate buffer (pH 7.4) for 1 h. After washing in CMF and cryoprotecting with 30% 

sucrose for 4 h, the specimens were embedded in O.C.T. compound (Miles, Elkhart, IN) 

and sectioned in a horizontal plane with a cryostat at 25 mm. Sections were mounted on 

Superfrost slides (Fisher Scientific, Pittsburgh, PA). The sections were permeabilized 

with 0.05% Triton X-100 and 1% BSA for 10 min and incubated with the first antibody 

for 1 h. After three rinses, the sections were incubated with 1:500 Cy3-labeled goat-anti 

mouse or goat-anti rabbit antibodies (Jackson ImmunoResearch, West Grove, PA) for 

another hour. After two final rinses, the specimens were mounted in 90% glycerol and 

examined with an epifluorescence microscope (Zeiss, Thornwood, NY) or a confocal 

microscope (Fluoview; Olympus, Lake Success, NY).  

 

2.4.1 Disruption and regeneration of the retinal basal lamina  

For basal lamina regeneration experiments, 0.5–1 ml of 100 U/ml (~70 mg/ml) 

collagenase (Sigma, St. Louis, MO) was injected into E3–E5 eyes (Halfter, 1998), and 

the collagenase was chased with 1 ml of laminin-1 (Gibco/BRL) at 1 mg/ml. The 

embryos were sacrificed 24 h after the laminin-1 chase, and sections through the heads 

were stained with chick specific antibodies to laminin-1 and agrin to determine the 

presence of an intact retinal basal lamina.  
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2.5 Equipment 
 

Electrophoresis Equipment: 

 Amplifier: Techware PS 500-1, Sigma Aldrich, St. Louis, MO, USA 

 Vertical: SE 260 Mighty Small, Hoefer Scientific Instruments, San Francisco, 

CA, USA  

 Horizontal: HE 33 Mini Horizontal, Hoefer Scientific Instruments, San Francisco, 

CA, USA  

 Electrotransfer: Trans-Blot SD, Semi-Dry Transfer Cell, BioRad, Hercules, CA, 

USA 

 

Electroporation: ElectroSquarePorator ECM 830, BTX/Genetronics, San Diego, CA, 

USA 

 

Shaker: Red Rocker, Hoefer Scientific Instruments, San Francisco, CA, USA 

 

Peristaltic Pump: Econopump, BioRad, Hercules, CA, USA 

 

pH-Meter: Digital Ionalyzer/501, Orion Research, Beverly, MA, USA 

 

Photometer: GeneQuantII RNA/DNA Calculator, Pharmacia Biotech, Cambridge, 

UK 

PCR:  

 PCR-Sprint:  HyBaid, Teddington, Middlesex, UK  

 Mastercycler Gradient: Eppendorf-Netheler-Hinz GmbH, Hamburg, Germany 

  

Centrifuges: 

 Eppendorf 5415C: Eppendorf-Netheler-Hinz GmbH, Hamburg, Germany 

 Beckmann CS-6: Beckmann Instruments Inc., Fullerton, CA, USA 
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Scales:  

 PM300  Mettler-Toledo AG, Greifensee, Germany 

 R 160 D  Sartorius Research, D-37075 Goettingen, Germany 

Transluminator: TW-26, VWR, NJ,  

Microscope: TMS, Nikon, Japan 

 

2.6 Solutions, buffers, and media 
 

10x SDS-Sample buffer 

 0.1 M Tris (1.21 g in 50 ml, pH to 6.8) 

 10% SDS (add 10 g, bring to 70 ml) 

 10 ml of Bromphenolblue (from 0.4% Stock) 

 20 ml Glycerol 

 for reducing conditions, add 50 µl β-mercaptoethanol per ml sample buffer 

 

SDS-electrophoresis buffer 

 25 mM Tris 

 192 mM Glycine 

 0.1% SDS 

 

Transfer buffer 

 25 mM Tris 

 192 mM Glycine 

 0.01% SDS 

 

1xCMF-PBS 

 8 g NaCl 

 0.2 g KCl 

 1.15 g Na2HPO4 

   0.2 g KH2PO4 
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Alkaline phosphatase developing buffer: 

 0.1 M  Tris 

 0.1 M NaCl 

 0.05 M MgCl2 

 

1x TBS 

 50 mM Tris 

 150 mM NaCl 

 → adjust pH to 7 

 

TAE-Buffer (50x) 

 242 g Tris Base  

 57.1 ml glacial acetic acid 

 37.2 g Na2EDTAx2H2O 

 → add H2O to 1 Liter ≈ pH 8.5 

 ⇒ 1x working solution 

 40 mM Tris acetate 

 2 mM EDTA  

 

TE  

 10 mM Tris/HCl pH 7.4 

 1 mM EDTA pH 8 

 

LB-Medium 

 21 g NZY-Broth 

 → add 1 liter dd-H2O 

 → autoclave 

 

Bacterial plates: 

25 g LB + 15 g Bacto-Agar 

ad 1 L with water 
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autoclave 

Tetracycline: Stock: 12.5 mg/ml⇒EK 12.5 µg/ml 

Ampicillin: Stock: 100 mg/ml⇒EK 100 µg/ml 

 
Coomassie Blue 

0.5% Coomassie/MeOH 

2.5 g Coomassie + 497.5 g MeOH 

→ stir over night 

→ filter 

→ before usage mix 1:1 with 20% HAc 

 

2.7 Antibodies 

2.7.1 Primary antibodies 

Rabbit anti-NGF 2.5 S (Sigma, St. Louis, MO) 

Mouse monoclonal IgG antibody (c-Myc (9E10): sc-40; Santa Cruz Biotechnology, Santa 

Cruz, CA) 

Mouse monoclonal antibody to chick laminin (3H11, provided by Prof. Willi Halfter, 

Univ. of Pittsburgh) 

Mouse monoclonal antibody to tubulin (6G7, provided by Prof. Willi Halfter, Univ. of 

Pittsburgh) 

 

2.7.2 Secondary antibodies 

Cy3-labeled goat-anti mouse or goat-anti rabbit antibodies (Jackson ImmunoResearch, 

West Grove, PA) 

Peroxidase conjugated goat-anti mouse (Jackson ImmunoResearch, West Grove, PA) 

Alkaline phosphatase conjugated goat-anti mouse (Jackson ImmunoResearch, West 

Grove, PA,) 

Alkaline phosphatase conjugated goat-anti rabbit (Jackson ImmunoResearch, West 

Grove, PA,) 



3.  Results 

 - 36 - 

3. Results 

 
In order to investigate the properties of the N-terminal domains of agrin, 9 different fragments 

and a total of approximately 30 mutants were investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Schematic diagram depicting the domain structure of the agrin core protein. The fragments (PF1 to 
PF9) that were expressed for the present study are listed below. The SGs as potential attachment sites for GAGs 
are numbered from 1 to 20; the SGs within a more defined SGXG consensus sequences are underlined. 
Abbreviations for the domains: NtA: N-terminal agrin domain, FS: follistatin-like domains; LE: laminin EGF-
like module; S/T: serine/threonine-rich domain; SEA: module first found in sea urchin sperm protein; EG: EGF-
like repeat; Lam G (LG): laminin G-like domains. The three splice sites of agrin are also indicated. The domain 
borders were assigned based on results from the ProDom-NCBI-BlastP 2.0.8 World Wide Web server in may of 
2000 (www.prodes.toulouse.inra.fr/cgi-bin/). In the meantime, there is a newer version of this software (BlastP 
2.2.1) which gives rise to slightly different assignments, which have no impact on this study. 
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Table 1 Overview over the protein fragments expressed and investigated in this study. 

 

a Comprising amino acids starting from Asn 25 of chick agrin (U 35613), consistent with the first amino acid 
after the proposed signal sequence cleavage site (Denzer et al, 1997).  
b Theoretical molecular weights of the proteins as determined by using the ProtParamTool World Wide Web 
Server (http://us.expasy.org/tools/protparam.html) 
 

 

All proteins were expressed in a eucaryotic expression system utilizing HEK293/EBNA cells. 

The recombinant proteins were purified over a cobalt-based column utilizing the fused His6-

tag.  The purity of all fragments was checked by SDS-PAGE. 

Fragment

PF1

PF2

PF3

PF4

PF5

PF6

PF7

PF8

PF9

AA 1-172

AA 169-744

AA 1-229

AA 594-1116

AA 1117-1376

AA 223-744

AA 738-1116

AA 95-616 1.-7. FS domain

AA 1-94

comprising AAa

1.FS - 8. FS including 1. pot. GAG 
attachment site

Mw [kDa]b 

61.7

44.5

24.7

67.5

NtA + 1.FS

SEA domain-beginning LamG

NtA

comprising domains

30.8

15.8

61.9

60.2

33.7

7.FS-beginning SEA domain including 2 
pot. multiple GAG attachment sites

1/2 NtA

2. FS - 8.FS including 1. pot multiple 
GAG attachment site

LE domain-beginning SEA including 2. 
pot. multiple GAG attachment site
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Figure 10 Western blot showing the various agrin fragments after separation by SDS-PAGE. The diagram of 
agrin and the expressed agrin fragments are listed below. Four of the fragments: PF3, PF6, PF7 and PF9 show 
long trails of immunoreactivity typical for peptides connected to GAGs. The stars indicate the core proteins; 
double-headed arrows indicate the size range of the glycosylated peptides. All other fragments (PF1, PF2, PF4, 
PF5 and PF8) appear as defined bands indicating that these peptides are not GAG glycosylated. 
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Discrepancies between apparent masses and calculated masses can be explained with multiple 

N-glycosylation sites within the agrin protein. There are 5 consensus sequences for N-

glycosylation in agrin. In other proteins, these N-X-S/T “sequons” were shown to carry sugars 

in 90% of the investigated cases (Bause, 1983; Gavel and von Heijne, 1990; Imperiali and 

Rickert, 1995). 

 

 

 

 

 

 

 

Figure 11 Western blot of N-glycanase treatment of PF5. 
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3.1 Binding to laminin-1 
 

Previous studies utilizing 1. full-length agrin, 2. an agrin fragment comprising the NtA and 

the 1. FS-domain (NtA-FS) and 3. a full length agrin fragment that lacks the first 130 amino 

acids from the N-terminus  (c∆N agrin) were able to pinpoint the laminin-binding site to the 

very N-terminal domain of agrin (NtA) (Denzer et al., 1997; Denzer et al., 1995; Denzer et 

al., 1998). Because the NtA-domain containing fragment used in the former studies was fused 

to the 1. FS domain, it was actually never shown that the NtA-domain alone is sufficient for 

laminin binding. In accordance with the results obtained from ProDom-NCBI-BlastP 2.0.8, a 

fragment consisting of the amino acids upstream from the first FS-domain (amino acids 1-

172) was expressed in HEK293/EBNA cells. Furthermore a fragment comprising the N-

terminal half of the NtA-domain (amino acids 1-94; PF1), a fragment containing the C-

terminal half of the NtA (amino acids 95-616; PF2), and the previously described NtA-FS 

fragment (amino acids 1- 229; PF5) were expressed and purified utilizing the fused His6–tag. 

The purity of the used proteins was checked on SDS-PAGE. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12 Protein fragments used for investigating the laminin-binding property of agrin  
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The binding affinity to laminin-1 was determined using a solid phase binding assay.  

Laminin-1 was coated to a 96-well plate and incubated with the different fragments in a 

concentration gradient. A color reaction of the peroxidase-conjugated secondary antibody 

with ready-to-use TMB-liquid was used to quantify the binding of the various fragments to 

laminin. The reaction was stopped with H2SO4 resulting into a yellow solution and its 

extinction was measured at 450 nm with an ELISA-reader. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13 Dose-response curve of the binding of different agrin constructs to laminin-1. The binding curves 
shown are results of one representative experiment with the corresponding background (laminin-1 coated wells 
incubated with κ-casein) subtracted. Half-maximal binding was determined using the Origin-software and 
using the sigmoidal fitting option. Values shown are the mean +- SD from two measurements. All experiments 
were repeated at least 4 times. Note that EC50 values varied up to 100% between independent measurements.  

 

1 10 100
0

50

100

150

200
Binding PF1 to Laminin-1

EC50 xxx +- xxx

E
45

0

Concentration [nM]

1 10 100
0

100

200

300

400

500

600
Binding PF5 to Laminin-1

EC50 4.58 +- 0.57

E
45

0

Concentration [nM]
1 10 100

0

100

200

300

Binding PF8 to Laminin-1

EC50 9.41 +- 0.45

E
45

0

Concentration [nM]

1 10 100
0

50

100

150

200 Binding PF2 to Laminin-1

EC50 xxx +- xxx

E
45

0

Concentration [nM]



3.  Results 

 - 42 - 

Table 2 Different protein fragments containing the NtA-domain or parts of this domain and their affinity to 
laminin-1  

 

a the concentration (nM) required to achieve half maximal binding determined by ELISA 
b relative binding refers to the ratio of half maximal binding of mutant/NtA-FS  
 

Because EC50 values varied up to 100% between independent measurements each peptide was 

measured at least 4 times. The values depicted in the tables are the mean value of the obtained 

results. On immobilized laminin-1, PF5 reached half-maximal binding (EC50) at ~5 nM 

(Figure 13) consistent with previous studies that have shown a strong binding of full-length 

agrin to laminin-1 with a EC50 of ~5 nM (Denzer et al., 1997). This indicates that the 

additional His6-Myc-Tag does not interfere with the binding property of the recombinant 

protein. The work of Mascarenhas et al. showed that the results obtained in this assay 

matched the results obtained in a competition assay with 125I labeled NtA-FS protein 

(Mascarenhas et al., 2003).  

The data show similar binding activities for both NtA (EC50 ~10 nM) and NtA-FS (EC50 ~5 

nM) while no binding activity was detected for PF1 and PF2, indicating that the binding 

activity of agrin is located in the NtA alone (Figure 13). Furthermore, parts of this domain are 

not sufficient for this property suggesting that the 3-dimensional structure of the domain has 

to remain intact for the laminin-binding to occur.  

To verify the laminin-binding results in vivo, fragments PF1 and PF8 were injected into 

embryonic day 8 (E8) chick embryos vitreous body at a concentration of 0.3 mg/ml. After the 

fragment PF8 remained in the vitreous for 24 hours, the retinal basal lamina as well as the 

basal lamina of the lens showed anti-myc staining (Figure 14), while no staining was 

detectable for PF1 (data not shown). This indicates that fragment PF8 bound to the laminin 

present in the basal lamina.  

Furthermore an experiment was conducted in which the basal lamina was dissolved by 

injection of collagenase into the vitreous of embryonic chick eyes. Its regeneration was 

induced by a chase with mouse laminin-1. The regeneration occurred within 6 h after the 

Fragment
PF5
PF8
PF1
PF2

AA 1-172 (NtA) 10 2
AA 1-94

AA 95-616
no binding
no binding

5 1

no binding
no binding

Relative BindingbHalf maximal bindinga

AA 1-229 (NtA-FS)
comprising AA
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laminin-1 chase by forming a morphologically complete basal lamina that included all known 

basal lamina proteins from chick embryos, such as laminin-1, nidogen-1, collagens IV and 

XVIII, perlecan, and agrin (Halfter et al., 2001). In the present study laminin-1 (final 

concentration: 1 mg/ml) was pre-incubated for 1 hour with 0.15 mg/ml (final concentration) 

of either PF1 or PF8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14 Upper left: PF8 injected into intact eye (anti-myc staining) retinal basal lamina, upper right: control 
untreated eye, middle left: PF8 injected into intact eye (anti-myc staining) Lens, middle right; control untreated 
eye, bottom row from the left: laminin-chase experiment, the eye was injected with collagenase at E4, and 
chased 10 hours later with mouse laminin-1 plus PF8 or PF1; laminin-1 (conc: 2mg/ml, mixed 1:1 with the 
peptide). The embryo was sacrificed 24 hours later. Staining with MAb 3H11 to chick laminin (Halfter, 1993) 
and staining with a polyclonal antiserum to mouse laminin-1 shows that the injected mouse laminin-1 caused the 
reconstitution of the chick retinal basal lamina. Staining with a MAb to c-myc shows that PF8 but not PF1 got 
incorporated into the newly formed basal lamina. 

 

The newly generated retinal basal lamina showed anti-myc staining co-localized with staining 

against mouse laminin-1 in the case of PF8 but not for PF1, indicating that PF8 bound to 

mouse laminin-1 during the pre-incubation process and the complex of laminin-1 and PF8 got 
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incorporated into the newly formed basal lamina (Figure 14). All these experiments prove that 

the NtA (PF8) is the critical domain for agrin’s laminin-binding activity. These in vivo results 

are consistent with in vitro findings established by the solid phase binding. 

To investigate the laminin-binding site in more detail, PF5 (NtA-1.FS) was used as template 

for site-directed mutagenesis experiments. Because previous experiments in this thesis 

revealed that the NtA alone is the crucial domain for laminin binding, mutations were only 

performed within the NtA-domain. To determine the amino acids necessary for the binding 

mechanism, highly conserved positively charged amino acids (R and K) that were conserved 

in the NtA-domains of agrin’s from different species, were chosen for site-directed 

mutagenesis.  

The deduced amino acid sequences of mouse, chick, and human NtA are highly homologous 

to each other. The homology starts at residue 26 of chick agrin, which corresponds to the 

predicted cleavage site for the signal sequence (Denzer, 1995). From AA 26 to 149, 96% of 

the amino acids are identical between mouse and human and 90% are identical between chick 

and the mammalian sequences. 

 
chick NCPERELQRREEEANVVLTGTVEEIMNVDPVHHTYSCKVRVWRYLKGKDIVTHEILLDGGNKVV 
human TCPERALERREEEANVVLTGTVEEILNVDPVQHTYSCKVRVWRYLKGKDLVARESLLDGGNKVV 
mouse TCPERALERREEEANVVLTGTVEEILNVDPVQHTYSCKVRVWRYLKGKDVVAQESLLDGGNKVV 
 
chick IGGFGDPLICDNQVSTGDTRIFFVNPAPQYMWPAHRNELMLNSSLMRITLRNLEEVEHCVEEHR 
human ISGFGDPLICDNQVSTGDTRIFFVNPAPPYLWPAHKNELMLNSSLMRITLRNLEEVEFCVE--- 
mouse IGGFGDPLICDNQVSTGDTRIFFVNPAPPYLWPAHKNELMLNSSLMRITLRNLEEVEFCVE--- 
 
chick KLLADKPNSYFTQTPPTPRDAC 
human ----DKPGTHFTPVPPTPPDAC 
mouse ----DKPGIHFTAAPSMPPDVC 
 

Figure 15 Alignment of the laminin-binding domain of chick, human and mouse. The sequences were aligned to 
the first 150 amino acids of chick agrin starting after the proposed signal sequence cleavage site (Denzer et al., 
1997). Amino acids between Cys 2 and Glu 125 are almost 90% identical between the examined species. Highly 
conserved, positively charged amino acids (R and K) were depicted in bold/red letters. Bold/blue letters indicate 
substitutions of similar amino acids. The sequences were derived from the GenBank/EMBL/DDBJ with the 
following accession numbers: U35613 (chick), U 84406 (human) and U84407 (mouse). Underlined amino acids 
depict potential N-glycosylation sites  

 
In total, 8 mutants were investigated in the laminin-binding study and various other mutants 

were investigated by another research group working on the same subject. All mutated 

proteins were obtained from serum-free culture medium of transfected HEK293/EBNA cells 

and purified using the His6-tag over a cobalt-based column. The purity of all mutant proteins 

was checked by SDS-PAGE and proper folding was tested performing a limited tryptic digest. 
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All the examined proteins showed resistance to treatment with trypsin (data not shown) 

indicating proper folding of the peptides. The binding affinity of the different mutants to 

laminin-1 was determined using a solid phase binding assay.  

 

 

 

 

 

 

 

 
 

Figure 16 Dose-response curve of the binding of different PF5 mutants to laminin-1. The binding curves shown 
are results of one representative experiment with the corresponding background (laminin-1 coated wells 
incubated with κ-casein) subtracted. Half-maximal binding was determined using the Origin-software and 
using the sigmoidal fitting option. Values shown are the mean +- SD from two measurements. All experiments 
were repeated at least 4 times. Note that EC50 values varied up to 100% between independent measurements. 

 

Table 3 Effect of mutations of the NtA-FS domain on its laminin-1 binding activity 

 

a the concentration (nM) required to achieve half maximal binding determined by ELISA 
b relative binding refers to the ratio of half maximal binding of mutant/NtA-FS  
 

Of all point mutations, only replacement of R43 and R111 showed notable effects. While the 

mutation of R43 led to a 80-fold decrease in the binding affinity towards laminin-1, mutation 

of R111 led to an extreme decrease in the protein expression rate of the protein, which could 

indicate that the expressed protein is not stable. This fragment also did not show any binding 

in the solid phase binding assay. To analyze a possible influence of the splice insert on the 
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binding affinity, the two positively charged amino acids R128 and K129 were changed to 

alanines. These mutations showed no effect on the laminin-binding property of the NtA-FS 

fragment. These results are consistent with the finding that a mutant protein lacking the splice 

insert (∆ splice) showed the same affinity to laminin-1 as the fragment containing the 7-

residue insert (Mascarenhas et al., 2003). Also, single mutations in the most N-terminal α-

helix (helix 1; R5, R9, R10) did not show any major effect on the laminin-binding ability of 

the NtA. This is consistent with a previous publication in which a deletion of the N-terminal 

helix did not alter the laminin-binding affinity of agrin (Stetefeld et al., 2001). 

Additional studies have shown that the N-glycosylation within the NtA-domain is not 

essential for this effect (Mascarenhas et al., 2003). 
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3.2 Fusion protein with NGF 
 

In an approach to create a fusion protein that would exhibit both, binding to laminin and 

growth factor properties, PF5 as well as PF8 were fused to the biological active form of 

mouse-NGF, giving rise to peptides N5 and N8. The fusion proteins were expressed with an 

N-terminal His6-Myc-tag, which allowed easy purification over a cobalt-based column and 

easy detection with an anti-myc monoclonal antibody. 

 

 

 

 

 

Figure 17 Western blot of PF5 fused to NGF-mature (N5) using the anti–myc monoclonal antibody  (lane 1) and 
using a polyclonal anti-NGF antibody (Rabbit anti-NGF 2.5 S, Sigma, St. Louis, MO; lane 2). 

 
To evaluate whether the fused NGF interfered with the laminin-binding ability of these two 

fragments, a solid phase binding assay was performed. The experiments were conducted 

under the same conditions as the experiments in chapter 3.1 to allow comparison of the 

resulting EC50-values. 

 

 

 

 

 

 

 

 

Figure 18 Dose-response curve of the binding of NGF-fused agrin peptides to laminin-1. The binding curves 
shown are results of one representative experiment with the corresponding background (laminin-1 coated wells 
incubated with κ-casein) subtracted. Half-maximal binding was determined using the Origin-software and 
using the sigmoidal fitting option. Values shown are the mean +- SD from two measurements. All experiments 
were repeated at least 4 times. Note that EC50 values varied up to 100% between independent measurements 
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While in the case of N5, NGF does not seem to interfere with the laminin-binding property of 

the peptide (Figure 18), N8 (EC50 ~25 nM) exhibits a slight decrease in laminin-binding 

activity compared to the unfused protein PF8 (EC50 ~10 nM) (Figure 18 and Figure 13).  

To verify the results obtained in the solid-phase binding assay, N8 was subject to 

collagenase/laminin-chase experiments in vivo.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19 Laminin-chase experiment, the eye was injected with collagenase at E4, and chased 10 hours later 
with mouse laminin-1 plus N8; laminin-1 (conc: 2mg/ml, mixed 1:1 with the peptide). The embryo was 
sacrificed 24 hours later. Staining of the experimental eye with a monoclonal antibody (MAb) to c-myc shows 
that N8 got incorporated into the newly formed basal lamina until the complex of laminin-1 and N8 was 
depleted. Staining against mouse laminin-1 shows that mouse laminin-1 got incorporated during the whole 
regeneration process. 

 
The retinal basal lamina was dissolved by collagenase and its regeneration was induced by the 

injection of laminin-1 pre-incubated with N8.The final concentration of laminin-1 was 1 

mg/ml that of N8 was 0.15 mg/ml. 24 hours after injection a new basal lamina had been 

established over the whole surface of the retina as shown by anti-mouse laminin-1 staining 

(Figure 19b). Anti-myc staining revealed that N8 was incorporated into the new basal lamina 

indicating a stable complex between N8 and laminin-1 (Figure 19a). The pattern of the anti-

Control
Anti-mouse 
laminin-1
staining

Eye treated
with collagenase,
chased with mix
laminin-1+ N8

Control
Anti-mouse 
laminin-1
staining

Eye treated
with collagenase,
chased with mix
laminin-1+ N8

Control
Anti-mouse 
laminin-1
staining

Eye treated
with collagenase,
chased with mix
laminin-1+ N8



3.  Results 

 - 49 - 

myc staining with a strong staining in the center and a trailing staining towards the periphery 

of the retina (arrows) indicated that the N8/laminin-1 complex was preferentially incorporated 

as compared to laminin alone. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

 

 

Figure 20 A closer look at the newly generated basal lamina after collagenase treatment and laminin-1 chase. In 
the treated eye (upper row) the anti-chick laminin staining reveals the position of the newly formed basal lamina. 
The anti-myc and the anti-NGF staining of peptide N8 reveal that the fusion protein was incorporated into the 
newly generated basal lamina.  Anti-myc and anti-NGF staining are co-localized showing that the myc- as well 
as the NGF-Tag is immunoreactive. 

 
A detailed look at the newly generated basal lamina revealed that peptide N8 got incorporated 

into the newly formed basal lamina. The myc-tag as well as the fused NGF-moiety on the 

peptide remained immunoreactive (Figure 20). A neurite outgrowth assay to determine the 

biological activity of the fused NGF moiety failed because the unfused proteins already 

displayed neurite outgrowth promoting activity. 
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3.3 Glycosylation of agrin 
 

3.3.1 Expression of N-terminal agrin fragments 

The coding sequence of agrin includes 20 SG sequences as potential GAG glycosylation sites. 

Of these, sites 5, 6, 11, 13, 16 and 20 are part of a more defined SGXG consensus sequences 

as candidate sites for GAG attachment. One of the SG sites, located between the 7th and 8th 

follistatin-like (FS) domain, and another in a serine/threonine-rich (S/T) domain, have 

multiple consensus sequences (Figure 1). In both sites, the SGs are separated by not more 

than 5 amino acids, with the exception of SG #10 which is separated from SG #9 by 7 amino 

acids. To determine which sites actually carry GAG chains, overlapping agrin fragments were 

expressed in eucaryotic cells, and the expressed peptides were investigated for GAG 

glycosylation. Three criteria were used to determine the presence of GAGs in the peptides: 

First, GAG-containing peptides usually run on SDS-PAGE as long smears rather than sharp 

bands. Second, digestion with heparitinase or chondroitinase should result in a major drop of 

the molecular weight that is clearly evident after SDS-PAGE. Third, the GAG glycosylated 

peptides should bind to anion exchange beads and elute only at ionic strength equal or higher 

than 1 M NaCl. Efforts were concentrated on agrin segments from the N-terminus to the first 

LG domain, because previous studies have already shown that the C-terminal LG domains of 

agrin are not GAG glycosylated (Denzer et al., 1995). A diagram of agrin with its different 

domains is shown in. The peptide fragments (PF1-9) expressed for this study are also listed in  

Figure 9. They included the N-terminal half of the N-terminal agrin domain (NtA) (PF1), the 

C-terminal half of the NtA and FS modules 1 to 6 (PF2), FS 7 to the end of the S/T domain 

(PF3), the module first found in sea urchin sperm protein (SEA) up to the first epidermal 

growth factor like module (EGF)(PF4), the NtA and the first FS domain (PF5), FS domains 2 

to 8 (PF6), the laminin EGF-like module (LE) up to the end of the first S/T domain (PF7), the 

NtA alone (PF8) and FS 1-8 (PF9).  

 

The recombinant proteins were purified from cell culture supernatants of transfected EBNA cells 
and analyzed by SDS-PAGE followed by Western blotting. The protein sizes ranged from 25 to 
200 kDa (Figure 10). Four of the fragments, PF3, PF6, PF7 and PF9, showed the high molecular 
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weight smear typical for proteoglycans (Figure 10). All 4 fragments included at least one of the 
two clusters of tightly spaced SG consensus sequences found in the deduced amino acid 
sequence of the agrin cDNA sequence (Figure 1). In contrast to PF3, PF6, PF7 and PF9, the 
other fragments ran as sharp bands, according to their calculated molecular weights. Thus 
candidate sites for GAG attachment were indeed the clusters of SG consensus sequences 
between the 7th and 8th FS domain (site 1) and the end of the S/T domain further C-terminal 
(site 2).  

The expressed PF7 and PF9 peptides, each of which carried one of the two multi-SG sequences, 
were fractionated on Q-Sepharose yielding 3 fractions: a flow-through, a low salt eluate and a 
high salt eluate. The flow-through was further purified using a cobalt based affinity column to 
absorb the His6-tagged peptides. SDS-PAGE revealed that the peptides had a molecular weight 
of about 65 kDa, representing the core proteins of PF9 and PF7 (Figure 21, lanes 3 and 6). The 
0.5 M low salt eluate showed a broad band that ranged from 65 to 180 kDa and represents a 
mixture of core protein, hypoglycosylated and fully glycosylated peptides (Figure 21, lane 1 and 
4). The 1.5 M salt eluate appeared on the Western blots as long smears with molecular weights 
between 90 and 200 kDa, most likely representing the peptides with their attached GAGs (Figure 
21, lanes 2 and 5). Quantification of the 3 fractions showed that approximately 30% of the 
expressed peptide was non-glycosylated core peptide, 30% was GAG-peptide and 40% was 
hypoglycosylated peptide.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21 Western blot showing that the recombinant agrin peptides, PF9 (lanes 1-3) and PF7 (lanes 4 to 6), 
derived from the supernatants of HEK293/EBNA cells can be separated into three fractions by binding to Q-
Sepharose. The flow-through (lanes 3 and 6) represents the core peptide of PF9 and PF7. The 0.5 M salt eluate 
(lanes 1 and 4) is a mixture of core protein, hypoglycosylated peptide and GAG glycosylated peptide. The 1.5 M 
salt eluate runs as a broad smear and represents the peptide with the GAG sidechains attached (lanes 2 and 5). A 
small amount of core protein was also detected in this fraction for PF9 (lane 2). 
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Evidence that GAGs were attached to PF9 and PF7 came from experiments digesting the 
peptides with heparitinase and chondroitinase. When the high salt eluate of PF9 was digested 
with heparitinase its molecular weight dropped and the labeled band became much more defined 
(Figure 22, compare lanes 1 and 3). Digestion of PF9 with chondroitinase showed no major drop 
in molecular weight relative to the undigested peptide (Figure 22, compare lanes 1 and 2), 
indicating that PF9 carries heparan sulfate sidechains.  

When PF7 was treated with the enzymes, its molecular weight dropped after treatment with 
chondroitinase (Figure 22, compare lanes 4 and 5) but not after heparitinase treatment (Figure 
22, compare lanes 4 and 6). A slight increase in the amount of core protein after heparitinase 
treatment indicates that a minor part of the peptides carry HS sidechains. This shows that PF7 
carries CS sidechains with a minor contribution of HS. In comparison, agrin from chick vitreous 
body showed a drop in molecular weight after heparitinase but not after chondroitinase 
treatment, confirming previous data (Denzer et al., 1995; Tsen et al., 1995) showing that agrin is 
a heparan sulfate proteoglycan  (Figure 22, lanes 7-9).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22 Western blot confirming that the high salt fraction of agrin fragments PF9 and PF7 are indeed 
proteoglycans. The untreated peptides ran as long smears as shown in lanes 1 and 4. Treatment of PF9 peptide 
with chondroitinase does not lead to a major change in the banding pattern relative to the untreated control 
(compare 1 and 2), whereas treatment with heparitinase leads to a major drop in the molecular weight of the 
labeled peptide (lane 3). Treatment the PF7 peptide with chondroitinase leads to a drop in molecular weight and 
a sharpening of the labeled band (lane 5), whereas treatment with heparitinase has no effect on the banding 
pattern of the peptide (lane 6). However, there was a slight increase in the amount of core protein (lane 6), 
suggesting a minor part of the GAG of PF7 being HS. Agrin from vitreous body runs as a diffuse band at 400 
kDa (lane 7). The diffuse banding remains after treatment with chondroitinase (lane 8), whereas treatment with 
heparitinase results in a major drop of agrin immunoreactivity to 200 kDa (lane 9). The band at 90 kDa is a 
naturally occurring C-terminal agrin fragment in vitreous body (arrow). The stars indicate the core proteins. 
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3.3.2 Localization of the GAG attachment sites in PF9 

To locate the SGs responsible for the GAG attachment in PF9 the serines of the triple SG 
consensus sequences of PF9 were changed to alanines by site-directed mutagenesis, and the 
mutated peptides were expressed in HEK293/EBNA cells. SDS-PAGE followed by Western 
blotting showed that the exchange of individual serines in the triple SG cluster did not alter the 
molecular weight of the core protein (Figure 23). Further, every mutated peptide showed a long 
smear above the core protein indicating GAG glycosylation of every mutant peptide as well as 
the unmutated peptide (Figure 23, lanes 1-4). However, the trail of glycosylated peptide was 
reduced in size from 200 to 150 kDa in all mutations (Figure 23, lanes 2-4). Double-mutations of 
serines in any permutation did not cause an additional shift in the molecular weight (Figure 23, 
lanes 5-7), indicating that any of the SGs is equally capable of carrying the GAG sidechains. 
Absence of the GAG glycosylation trail of the protein was only observed after the elimination of 
all 3 serines in the SG cluster (Figure 23, lane 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 Western blot showing PF9s after site-directed mutagenesis to exchange various serines in the SG 
cluster. The non-mutated peptide is shown in lane 1. Lanes 2 to 4 show the peptides after the mutation of the 
individual S to alanines. The diagrams below show the location of the mutations and the presence of the 
remaining SGs. Lanes 5 to 7 show the peptides expressed after double-mutation of two of the three serines. Lane 
8 shows the peptide after the mutation of all 3 serines in the SG cluster. The GAG glycosylated smear only 
disappears after the mutation of all three serines in the PF9 peptide. The stars indicate the core proteins. 
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To identify the type of GAGs attached to PF9 and in each of the serine-to-alanine mutations, 

the peptides were digested with chondroitinase or heparitinase. Molecular weight changes 

were observed after heparitinase treatment (Figure 24, lanes 3 and 6) but not after treatment 

with chondroitinase (Figure 24, lanes 2 and 5), showing that the GAGs in the mutations of 

PF9 were HS and not CS sidechains. That was true for all single and double mutations (Table 

4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 24 Western blots defining the GAG sidechains attached to FP9 and its mutated versions. The non-mutated 
peptide is shown in lane 1. Treatment of the peptide with chondroitinase had no effect on the banding pattern, 
whereas heparitinase led to a major reduction of the high molecular smear, indicating that PF9 is a HSPG. The 
digestion of the double-mutant peptide (lane 4) with chondroitinase (lane 6) and heparitinase (lane 6) showed 
that the high molecular smear was unaffected by chondroitinase (lane 5), but was greatly reduced after 
heparitinase treatment (lane 6). The triple mutated peptide that has no GAG chains is shown in lane 7 for 
comparison. The band indicated by the arrow most likely represents the peptide dimer (Wiberg et al., 2001) and 
was detected in both the heparitinase-digested as well as in the fully mutated version of the peptide (compare 
lane 6 and 7).  
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Table 4 Amino acid sequence of the SG clusters in the expressed PF9 peptide and its mutations. The sensitivity 
to heparitinase and chondroitinase is shown in the right columns. A scale from 0-5 was used to describe the 
sensitivity of the peptides to treatment with the corresponding enzyme (with 5 meaning: very sensitive and 0: no 
effect at all). 

 

construct

PF9

9M4

9M5

9M6

9M4+5

9M4+6

9M5+6

9Mc
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EDECGA648GGA651GA653GDGSECEQD no GAG no GAG
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0
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3.3.3 Localization of the GAG attachment sites in PF7 

Similar to PF9, switches of individual serines in the SG cluster of PF7 to alanines did not 

cause a major shift in molecular weight of PF7 and did not result in a loss of the high 

molecular weight smear typical for the presence of GAGs (Figure 25, lanes 1 to 5). However, 

a reduction in size was observed in double (Figure 25, lane 6) and triple mutations of the 4 

serines (Figure 25, lane 7). A total loss of the carbohydrate smear was only observed after 

mutating all 4 serines in the SG cluster of PF7 (Figure 25, lane 8).  

Digestion of PF7 and the individual mutant peptides showed that the GAG attached to this 

fragment was predominantly CS with a minor contribution of HS (Figure 26; Table 5). The 

HS sidechain was no longer detectable in single, double and triple mutations affecting serine 

# 11 (Table 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 25 Western blot showing PF7s after site-directed mutagenesis to exchange various serines in the SG 
cluster. The non-mutated peptide is shown in lane 1. Lanes 2 to 5 show the peptides after the mutation of the 
individual serines to alanines. The diagrams below show the location of the mutations and the presence of the 
remaining SGs. Lanes 6 to 7 show the peptides expressed after the mutation of 2 and 3 of the 4 serines. Lane 8 
shows the peptide after the mutation of all four serines in the SG cluster. The GAG glycosylated smear only 
disappears after the mutation of all four serines in the PF7 peptide. The star indicates the core proteins. 
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Figure 26 Western blots defining the GAG sidechains attached to FP7 and its mutated versions. The non-mutated 
peptide is shown in lane 1. Treatment of the peptide with chondroitinase led to a major reduction of the high 
molecular smear (lane 2), whereas treatment with heparitinase had little effect on the banding pattern of the 
peptide (lane 3). However, a slight increase of core protein (arrows) after enzyme treatment was detectable. The 
peptide with an exchange of serine 8 to alanine ran as a long smear (lane 4) that was reduced only after treatment 
with chondroitinase digestion (lane 5), but not after treatment with heparitinase (lane 6). A minor increase of 
core protein was detectable after heparitinase treatment. The mutation of serine 11 to alanine also appeared a 
long smear (lane 7) that disappeared after chondroitinase (lane 8) but not after heparitinase (lane 9) treatment. 
Treatment with heparitinase did not result in an increase of core protein for this mutation and all mutations 
affecting this particular serine. 

 
Table 5 Amino acid sequence of the SG clusters in the expressed PF7 peptide and its mutations. The sensitivity 
to heparitinase and chondroitinase is shown in the right columns. A scale from 0-5 was used to describe the 
sensitivity of the peptides to treatment with the corresponding enzyme (with 5 meaning: very sensitive and 0: no 
effect at all). 
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3.4 Neurite outgrowth inhibition by agrin 
 

Previous studies have shown that full-length agrin, as well as a N-terminal 150 kDa fragment 

of agrin inhibited neuron outgrowth of ciliary ganglia (CG) neurons in vitro, while a C-

terminal 95 kDa fragment had no influence on neurite outgrowth (Bixby et al., 2002). These 

findings imply that the N-terminal domains of agrin are responsible for this effect. To 

determine the domains of agrin responsible for neurite outgrowth inhibition, various 

fragments of the N-terminal domains of agrin (Figure 9) were subject to an in vitro assay 

utilizing dorsal root ganglia (DRG). To test the influence of GAG chains in this matter, 

fragments containing GAG chains, as well a mutant of the same fragment without GAG 

chains were tested in this assay.  

For these experiments dissected DRGs were cultured on a laminin-1 (LN) substrate (20 µg/ml 

laminin-1) adjacent to a “stripe” of test substrate (20 µg/ml laminin-1 plus 3 µl peptide (360 

nM)). On the LN substrate alone, DRG neurites grew extensively. When neurites passed from 

one LN substrate to an adjacent LN substrate the outgrowth pattern was indistinguishable ( 

Figure 27; LN/LN). No change in the neurite-promoting effect was visible when the neurites 

reached the test-stripe containing PF5/LN (Figure 27; PF5). The same was true for peptides 

PF1-, PF2-, PF4-, PF5-, and PF8/LN. A stripe containing fragments PF3-, PF7-, and PF9/LN 

however, showed inhibitory effects on the dorsal root ganglia neurites (see Figure 27 and 

Figure 28). PF3 contains the two multiple SG-consensus sequences shown to be able to carry 

glycosaminoglycan sidechains (see chapters 3.3 and 4.3) while PF7 and PF9 each just contain 

one of these sites. To determine if in fact the GAG chains are the determining factor for this 

effect fragments 9Mc and 7Mc (the mutated fragments that are not capable of carrying GAG 

chains, see Figure 23 and Figure 25) were used in the test-substrate. Deletion of the GAG-

attachment sites in PF9 led to a loss of neurite inhibition for this peptide. The same was true 

for the mutation of GAG attachment sites in PF7 (Figure 28; PF7 mutant). 
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Figure 27 Neurite outgrowth assay. Upper left: PF5 was used as control at a concentration of 360 nM. Upper 
right: another control showing that the laminin-strip without a peptide does not change the neurite outgrowth 
pattern. Middle and bottom row: PF3 in different concentrations, showing that PF3s capability to inhibit neurite 
outgrowth is strongest at a concentration of 360 nM and no inhibition was found for a concentration of 45 nM. 
Bottom right: showing that the findings are also true for the use of ciliary ganglia.  
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Figure 28 Neurite outgrowth assay. Top row: PF9 and the mutated 9Mc at a concentration of 360 nM. Bottom 
row: PF7 and the mutated 7Mc at a concentration of 360 nM. 
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4. Discussion 

4.1 Binding to laminin-1 
 

The interaction between laminin-1 and agrin is essential for synapse formation in the 

peripheral nervous system and in particular in muscle (Burgess et al., 2000). It may also 

play a role in other places of the extracellular matrix for stabilization and interactions of 

basement membranes (Burkin et al., 2000; Sugiyama et al., 1997). The agrin-binding site 

was determined to be located in the central region of the long arm of laminin-1. The 

binding site maps to 20 residues within the γ1-chain of laminin-1 and requires the native 

coiled-coil conformation (Kammerer et al., 1999). It may be expected from these data, 

that agrin binds to all laminins containing the γ1 chain with variations in affinity imposed 

by the other chains. Laminin-1 is an embryonic form of the laminins (Ekblom, 1981), 

whereas laminin-2 and -4 are found in later stages of skeletal myogenesis. These three 

laminins contain the γ1-chain (Timpl and Brown, 1994). No binding is therefore expected 

to laminin-5 with its γ2 chain or to laminin-12 with its γ3 chain (Koch et al., 1999), 

because of the non-conserved binding motif in γ2 and γ3. Furthermore binding was 

shown to be strongest to laminin-4 followed by laminin-1 and laminin-2 (Denzer et al., 

1997). 

To demonstrate that the NtA-domain is sufficient to mediate laminin-1 binding, binding 

activities of single NtA and NtA-FS were compared and revealed identical values for 

both proteins. Together with the mutation that prevented N-glycosylation of the NtA- 

domain these experiments clearly indicate that the high affinity protein-protein 

interaction (EC50 ~5 nM) is mediated exclusively by the NtA, without involvement of the 

carbohydrate chains (Mascarenhas et al., 2003). In vivo experiments involving injection 

of the laminin-binding protein fragments into the vitreous of chick embryos as well as 

collagenase/laminin-1 chase experiments verified the results obtained from the in vitro 

studies. Another observation was that a complex of laminin-1 with PF8 (NtA) was 

preferably incorporated into the newly formed basal lamina.  
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Examination of the conformation of the 20 amino acid stretch of the γ1-chain within the 

coiled-coil domain of laminin-1 revealed that there are a number of negatively charged 

amino acids on the surface of the coiled-coil domain, which would be available for ionic 

interactions. Therefore the assumption of an interaction with positively charged amino 

acids within the NtA-domain seems likely. For this approach highly conserved positively  

charged amino acids (K and R) within the NtA were chosen for site-directed mutagenesis. 

The discrepancy of up to 100% between independent measurements in the solid phase 

binding assay can be explained with inaccuracies during the preparation of the dilution 

series (which is very sensitive in nM range). A definite decrease of binding activity was 

found for mutations M43 (R43A) and M111 (R111A). Mutation M4,5,9  

(RRR4,5,9AAA) showed a slight decrease of binding activity as well, which seems a 

contradiction to the findings of Mascarenhas. et al., that showed that deletion of helix1 

does not have an influence on NtA’s binding property. But assuming that the triple 

mutation within helix-1 destroys its 3-D structure (even though not detectable by limited 

tryptic digest) and therefore could interfere with the underlying “groove” between the β-

barrel fold and helix3 may explain this phenomenon.    

 R111 is one of the center amino acids of the linkage-arm between the β-barrel core and 

the α-helix3. This linkage is probably important to arrange helix-3 in the right position 

and assure correct distance between the helix-3 and the core to form the groove that is 

necessary for laminin binding. It remains unclear if the function of R111 is to assure 

correct 3D structure of the NtA, or if it serves as binding partner in an ionic interaction 

with negatively charged amino acids of the laminin coiled-coil domain. The very low 

expression rate of the protein could indicate that this protein is not stable, which would 

emphasize the importance of the amino acids in the linker region between β-barrel core 

and helix-3. One way to address the open questions in this case would be to co-crystallize 

the NtA-domain and a protein fragment containing the relevant part of the laminin coiled-

coil domain.  

 

The data obtained from this work can be discussed best with the knowledge of the results 

of an overlapping study, which was conducted at the same time by Mascarenhas et al. 

The mutagenesis experiments performed by the researchers were based on the knowledge 
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of the exact three dimensional structure of the NtA-domain and commenced on the basis 

of potential sites proposed in the work of Stetefeld et al. (Stetefeld et al., 2001).   

The interpretation of the mutagenesis data in context with the crystal structure of chicken 

NtA indicated a major primary effect for the mutation of 2 hydrophobic amino acids in α-

helix 3 (L117 and V124) and a minor secondary effect for mutations of charged amino 

acids (lower part of a cluster of charged amino acids and R43) on the surface of the β-

barrel fold facing the groove between the β-barrel core and α-helix 3. While single 

mutations of the hydrophobic amino acids in α-helix 3 resulted in strong decrease of 

binding (60-100 fold), the influence of the charged amino acids seemed rather weak (20-

40 fold decrease). The two crucial amino acids are located on the same site of α-helix 3, 

facing the groove between the β-barrel core and α-helix3 (“barrel face”). 

A comparison of laminin sequences of γ-chains from mouse, rat and human within the 

mapped binding region of the NtA shows that this region is highly conserved for γ1-, but 

rather divergent for γ2- and γ3-chains (Mascarenhas et al., 2003). Previous studies have 

demonstrated that the γ2-chain of laminin is not effective in competition assays with 

laminin-1 (Kammerer et al., 1999).  

Using a computer-model it was shown that the distance between L117 and V124 (10.6 Å) 

matches the distance of the 7-residue interspace between A1305 and A1312 (10.7 Å)  of 

the laminin γ1-chain. Therefore an interaction seems quite possible. Based on this 

assumption, D1308 and E1315 would be placed in close proximity to R43 and R40 of the 

NtA-domain, which would support the idea of an ionic interaction. Based on these data 

the laminin binding is due to a combination of hydrophobic and ionic interactions.    

It cannot be excluded that other interactions of the NtA-domain with either the α- or β-

chain of laminin exist.                                                                                       



4.   Discussion 

 - 64 - 

4.2 Fusion protein with NGF 
 

 

The use of peptide signaling molecules such as growth factors for clinical applications is 

extremely limited by the low target specificity of these molecules and their short half-

lives in vivo. Some efforts have been made to create fusion proteins that would make 

those molecules more convenient for clinical applications. The present study was aimed 

to utilize the laminin-binding domain of agrin (NtA) as an anchoring unit for the nerve 

growth factor. 

For this purpose NGF-mature was fused to the C-terminal end of the laminin-binding 

peptides PF5 (NtA + FS) and PF8 (NtA) of agrin. In the case of PF5 + NGF (N5) no 

difference between the binding activity of PF5 and N5 were notable. In the case of N8 

however a slight decrease in binding activity to laminin-1 was detectable. This may be 

caused by spherical interference between NGF and the NTA-domain. In N5 the 

additional FS-domain may function as a spacer between the NtA and NGF and hence 

prevent interference between these two domains. In vivo experiments confirmed the 

findings established in the solid phase binding assay, showing that the NtA-domain can 

be used for anchoring molecules to the basal lamina.  

The growth factor activities of the fusion proteins were not stronger than the activity of 

the unfused PF5 or PF8. The impaired growth factor activity of the fusion proteins may 

be caused by interference between the laminin-binding domain and the NGF receptor 

and/or misfolding of the NGF moiety itself. This problem may be correctable with the 

insertion of additional amino acids that act as a “spacer” between the laminin-binding 

coiled-coil domain and the growth factor moiety.  
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4.3 Glycosylation of agrin 
 

4.3.1 GAG attachment sites of agrin 

The present study localized the GAG attachment sites of agrin to two sites of the protein. 

Both sites have clusters of three and four closely spaced SGs next to each other. Only 

three out of seven sites are consistent with the SGXG consensus sequence that was 

supposed to predict the presence of GAG attachment sites in a core protein. Three other 

SGXG sites of agrin were not GAG glycosylated, questioning the validity of this 

consensus sequence as a predictor for the presence of GAG in a protein. By comparing 

the identified GAG attachment sites of agrin with the GAG attachment sites in perlecan 

(Dolan et al., 1997) and collagen XVIII (Dong et al., 2002), the other two basement 

membrane HSPGs, several rules for the prediction of GAG attachment sites could be 

established. First, repetitive SGs in short sequence are excellent candidate sites for HS 

attachment. Second, a series of acidic amino acids in front and/or the back of a SG cluster 

is another indicator for GAG glycosylation. Finally, by comparing the amino acid 

sequences for all attachment sites of agrin, perlecan and collagen XVIII, the most 

common consensus sequence associated with a HS sidechain was Gly (Ala)-Ser-Gly ( 

Figure 29).  
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Figure 29 Amino acid sequences of all 20 potential GAG attachment sites of agrin. The SG sites are 
aligned; the acidic amino acids are depicted in red. SGXG consensus sequences are underlined, and the 
confirmed GAG attachment sites are marked with a star. Every last amino acid in a line is numbered 
starting from the amino-terminal methionine. For comparison the consensus sequences for GAG attachment 
sites in collagen XVIII and perlecan are also shown. 

 

The current data are consistent with a previous study postulating similar criteria to predict a 
potential HS attachment site, such as tightly packed repetitive SGs, and a nearby cluster of 
acidic amino acids (Zhang et al., 1995). 

While the criteria listed above make a particular site a good candidate, an unequivocal 
prediction for GAG attachment site is not possible. Several SG sequences in collagen XVIII 
that fulfill the above criteria are not glycosylated, and the prediction of CS versus HS 
attachment site is even more ambiguous. Evidence for the actual presence of a GAG at a 
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particular site requires site-directed mutagenesis combined with in vitro expression of the 
mutant proteins. Yet, two more factors complicate the analysis. Expression of peptides 
instead of the entire protein may not replicate the GAG assembly that occurs in the intact 
protein. In vitro expression of agrin peptides, for example, led only in one of the two sites to 
the correct GAG. While one of the peptides containing one of the GAG attachment sites is 
connected to HS, the other one is incorrectly connected to CS, since agrin from embryos and 
full-length agrin expressed in vitro is a HSPG with no contribution of CS sidechains. It 
appears that sites distant to the SG clusters are additional determinants for the correct 
glycosylation confirming previous findings in perlecan and glypican (Chen and Lander, 
2001; Dolan et al., 1997). Another complicating factor is that the GAG glycosylation in vivo 
is not always correctly repeated in vitro. In the case of collagen XVIII, the in vitro expressed 
protein is a hybrid HSPG/CSPG, whereas the in vivo-derived collagen XVIII is exclusively 
a HSPG. In addition, it was found that the culture conditions for the HEK293 cells to 
express the recombinant proteins, such as addition of fetal calf serum, may also be an 
important factor in promoting glycosylation. This was, however, not the case for agrin, 
where agrin peptide expressed in serum-free or serum-containing medium was equally well 
glycosylated. Based on the limitations provided by protein expression systems in vitro, the 
final verdict for the precise identification of a PG must also include the analysis of the in-
vivo-derived protein.  

Site-directed mutagenesis of individual or several of the SGs in the two agrin SG-clusters 
revealed two more interesting aspects. First eliminating 2 out of 3 or 3 out of 4 serines in the 
SG-clusters still primed the synthesis of HS sidechains. This implies that SG clustering is 
not an absolute requirement for HS priming. The clustering of SG might be a means to 
ensure glycosylation at these particular sites of the protein. This could have evolutionary 
reasons, to guarantee that even in case of a random point mutation of one of the serines, 
another serine in the cluster could carry the GAG.  

Furthermore, the mutations experiments showed that all serines in a SG cluster are capable 
of carrying a GAG sidechain. There was no preference of glycosylation for a particular 
serine in any of the two SG clusters in agrin. In collagen XVIII, however, it was only the 
first serine in a cluster of three SGs that was glycosylated. The second serine in the collagen 
XVIII SG cluster was only important to direct the glycosylation for HS instead of CS and 
the third SG was not important to GAG priming at all (Dong et al., 2002). An effect of 
adjacent SGs on the type of GAG glycosylation was not observed for the first multiple SG –
site (PF9), since the GAG sidechains remained the same after mutations of the adjacent 
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serines. A minor shift of HS to CS was, however, observed for the second multiple SG site 
(PF7). 

 

A question that was not resolved in the current project is whether the GAGs in a SG cluster 
of in vivo-derived agrin are connected to one particular SG or any of the SGs. The presence 
of glycosaminoglycan in all mutant peptides indicates that in the case one serine is missing 
the glycosyltransferases glycosylated the next best serine. It is also possible that each SG 
cluster of agrin carries just one GAG, and this GAG sidechain is randomly attached to any 
of the three or four serines. In the last case one would expect equal amounts of the three or 
four different glycosylation isoforms. The minimal size difference between non-mutated, 
singly and doubly-mutated peptides of PF9 indicates that each of the SG clusters carries 
only one GAG sidechain in the range of up to 100 kDa. In the case of PF7, the size of 
glycosylation is reduced in the double and triple mutations, suggesting that more than one 
GAG chain could be attached to the peptide. This is consistent with the fact that the size 
difference between glycosylated agrin and its core protein suggests 3-4 HS sidechains 
(Denzer et al., 1995; Halfter et al., 1997). 

 



4.   Discussion 

 - 69 - 

4.3.2 Function of GAGs in agrin 

Agrin is a component of the extracellular matrix that is important for the organization of 

the neuromuscular junction during development. Targeted elimination of agrin results in 

neonatal death due to inability of mice to breath. Histological studies showed that in the 

absence of agrin, neuromuscular junctions do not form and nerve fibers do not innervate 

muscle fibers but show excessive growth into the tissues (Gautam et al., 1996). Studies 

using a recombinant mini-agrin composed of the 3 C-terminal LG-domains and the NtA –

domain was already sufficient to induce clustering of the AchRs (Meier et al., 1998), 

showing that the GAG sidechains of agrin are not necessary for receptor aggregation. 

This raises the question of the purpose of the GAG chains in agrin. It has been shown 

previously that the binding of agrin to a series of ligands, receptors and growth factors is 

mediated by its HS sidechains. These include FGF-2, thrombospondin and receptor 

tyrosine phosphatase (Aricescu et al., 2002; Cotman et al., 1999).  

Interestingly, agrin is a major component of senile plaques in dementia of the 

Alzheimer's type. By using solid-phase immunoassay, an interaction between agrin and 

the amyloidogenic peptide Aβ (1-40) in its fibrillar state was shown. This mechanism is 

GAG chain dependent. In addition, agrin accelerates Aβ fibril formation and contributes 

to larger fibrils than control samples. It can be hypothesized that agrin’s GAG chains 

shield agrin and its associated proteins from proteolytic degradation, and may be 

responsible for the slow turnover of amyloid peptide aggregates (Cotman et al., 2000). 

 

Tissue culture studies have shown that agrin, when used as a substrate, inhibits neurite 

outgrowth (Bixby et al., 2002; Campagna et al., 1995; Halfter et al., 1997). It is 

conceivable that the inhibitory activity of agrin contributes to the localization and 

termination of axons at particular sites of the muscle basement membrane by slowing the 

rate of axons outgrowth down. The neurite outgrowth inhibitory activity was localized to 

the N-terminal part of agrin, and it might be the heparan sulfate sidechains that provided 

the neurite outgrowth inhibitory function. This may explain the excessive growth of 

axons into the diaphragm in agrin knockout mice. The GAG chains may also prevent 

agrin from degradation, to ensure a long half-life of this protein at the NMJ. 
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4.4 Neurite outgrowth inhibition by agrin 
 

The present study was aimed at determining the domains of agrin responsible for its 

neurite inhibitory effect. In vitro agrin is adhesive to neurons, can initiate synaptic vesicle 

clustering and can inhibit neurite outgrowth (Burg et al., 1995; Campagna et al., 1995; 

Campagna et al., 1997; Chang et al., 1997; Halfter et al., 1997). It is conceivable that the 

inhibitory activity of agrin contributes to the localization and termination of axons at 

particular sites of the muscle basal lamina by slowing down the rate of axons outgrowth. 

This may explain the excessive growth of axons into the diaphragm in agrin knock-out 

mice. The neurite outgrowth inhibitory activity was localized to the N-terminal part of 

agrin, and it might be the GAG sidechains that provide this function.  

Using various fragments of the N-terminal domains of agrin, DRGs were cultured on 

laminin-substrate adjacent to a stripe consisting of laminin-1 and the test-peptide. 

Neurites grew very well on the laminin-1 substrate and no inhibition induced by the test-

stripe was found for protein fragments PF1, PF2, PF4, PF5 and PF8. For peptides PF3, 

PF7, and PF9 however, the test-stripe acted as a barrier for neurites. All three of these 

peptides possessed at least one of the two multiple GAG consensus sequences shown to 

be able to carry GAG sidechains (see chapters 3.3 and 4.3). To determine the influence of 

the GAG chains on this effect, the peptides PF7 and PF9 as well as the corresponding 

mutated peptides without the GAG chains (7Mc and 9Mc) were tested in the outgrowth 

assay. The mutated, unglycosylated peptides showed no neurite inhibition while the 

unmutated proteins functioned as barriers for neurites. This was true for both multiple 

GAG attachment sites of agrin. These results indicate that the GAG sidechains are the 

crucial factor for the neurite inhibition. These results are consistent with previous studies 

showing that the neurite outgrowth inhibition property of collagen IX is located in its CS 

sidechains (Halfter et al., 1997). This study also investigated the influence of heparitinase 

treatment of agrin on its neurite outgrowth promoting activity. In contrast to the finding 

in the present study, Halfter et al. did not find a difference in the inhibitory properties of 

agrin after removal of the GAG sidechains. One explanation might be the incomplete 

removal of the GAG chains by the heparitinase.  
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The type of carbohydrate attached to the core protein does not seem to be an important 

factor for the neurite outgrowth inhibitory effect. PF9 was shown to carry solely HS 

sidechains, while PF7 was shown to carry a mix of HS and CS sidechains (see chapter 3.3 

and 4.3) and collagen IX carries only CS sidechains.  
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6. Zusammenfassung 

 

Agrin ist ein ca. 200 kDa großes Protein und Hauptbestandteil fast aller 

Basalmembranen. Es besteht aus verschiedenen Domänen und trägt einen hohen Anteil 

an Kohlenhydratseitenketten und wurde bereits als Heparansulfat-Proteoglykan (HSPG) 

identifiziert. Agrin ist essentiell an der Entstehung neuromuskulärer Verbindungen 

beteiligt, wie aus dem Phänotyp der knock-out Mäuse zu erkennen ist. 

Während die C-terminale Hälfte des Moleküls bereits detailliert untersucht wurde, ist 

über die N-terminale Hälfte des Moleküls wenig bekannt. Es ist bekannt, dass Agrin mit 

der N-terminalen Domäne (NtA) an das Basalmembranprotein Laminin-1 bindet. 

Darüberhinaus wurde gezeigt, dass in der N-terminalen Hälfte des Proteins die 

Bindungsstellen für die HS-Seitenketten lokalisiert sind  

In der vorliegenden Arbeit wurde die NtA-Domäne exprimiert und ihre Wechselwirkung 

mit Laminin-1 in ELISA-Assays untersucht. Da die Wechselwirkung zwischen Agrin und 

Laminin vermutlich ionoischer Natur ist, wurden positiv geladene Aminosäuren in der 

NtA mittels site-directed mutagenesis in neutrale Aminosäuren umgewandelt. Hierbei 

zeigte sich, dass 2 Aminosäuren einen besonders grossen Einfluss auf die Laminin-

bindung haben. In Zusammenarbeit mit dem Biozentrum in Basel wurden die 

Aminosäuren, die an der Interaktion zwischen Laminin und Agrin beteiligt sind genau 

bestimmt. Es konnte gezeigt werden, dass an der Bindung des Laminins nicht nur 

geladene Aminosäuren sondern auch hydrophobe Aminosäuren beteiligt sind. 

Die Fusion der NtA-Domäne mit dem Nerve growth factor (NGF) ergibt ein 

Fusionsprotein, das mit hoher Affinität an Laminin bindet. Dies zeigt, dass die NtA-

Domäne als target-Modul in Fusionsproteinen verwendet werden kann.  

Der Hauptteil der vorliegenden Arbeit befasste sich mit der Lokalisierung der HS-

Seitenketten innerhalb des Poteins. Die Expression verschiedener Agrin-fragmente, 

kombiniert mit site-directed mutagenesis Experimenten zeigte, dass von über 20 SG-

Konsensussequenzen nur 7 in der Lage sind HS-Ketten zu tragen. Diese 7 

Konsensussequenzen sind in 2 Clustern konzentriert. Ein Vergleich mit anderen 

Proteoglykanen zeigte, dass eine Glykosylierungsstelle und der Typ der Seitenkette mit 
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relativ hoher Wahrscheinlichkeit, aber nicht absoluter Sicherheit vorhergesagt werden 

kann. 

Desweitern konnte mit Hilfe von neurite outgrowth assays gezeigt werden, dass diese 

Glycosaminoglykan (GAG) Seitenketten für den inhibitorischen Effekt von Agrin auf 

Neuriten verantwortlich sind.  
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7. Abstract 

 

Agrin, a major component of all basal membranes, is a key organizer of acetylcholine 

receptor (AchR) clustering at the vertebrate neuromuscular junction (NMJ). Agrin 

deficient mice are paralyzed and die at birth due to malfunctioning NMJs in the 

diaphragm. Agrin is highly glycosylated and it has been identified as a heparan sulfate 

proteoglycan (HSPG). 

While extensive studies have been conducted on the C-terminal half of the molecule, 

rather little is known about the N-terminal half of the protein. Previous studies have 

shown that the N-terminal domain (NtA) is required for the laminin-binding property of 

agrin, but the mechanism underlying this high affinity interaction remains elusive.  

In the present study, the NtA-domain of agrin was expressed and its interaction with 

laminin was examined by solid phase binding assays. Because the binding mechanism is 

thought to involve ionic interactions between positively charged amino acids of the NtA 

and negatively charged amino acids of the laminin coiled coil domain, site directed 

mutagenesis experiments were conducted. In cooperation with the biocenter in Basel, this 

study was able to show that the interaction between laminin-1 and agrin is solely 

conducted by the NtA-domain. It was revealed that charged as well as hydrophobic 

amino acids are involved in the mechanism. 

Utilizing the laminin-binding property of this domain, this study attempted to create a 

fusion protein of NGF and the NtA-domain of agrin. The results showed that the NtA-

domain can in fact be used to target NGF to specific locations, e.g. the basal lamina.   

 

The main focus of this work was on localizing the attachment sites for the heparan sulfate 

sidechains of agrin. Recombinant expression of agrin fragments and site-directed 

mutagenesis experiments showed that of all 20 SG-consensus sequences within the agrin 

core-proteins, only 7 are capable of carrying glycosaminoglycan (GAG) side chains. 

These 7 SGs are concentrated within 2 major clusters. A comparison with other 

proteoglycans revealed that a combination of acidic amino acids preceding a cluster of 

SG-dipeptides promotes the priming of HS side chains in a core protein. However 
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glycosylation cannot be predicted with absolute certainty based on the current knowledge 

of GAG priming.  

Neurite outgrowth assays with various fragments and mutants of agrin revealed that the 

GAG sidechains are responsible for the neurite outgrowth inhibition of agrin. 
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