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ABSTRACT

Two novel dual descriptions of d = 4 U(Nc) Yang-Mills theory (YM) are constructed and
studied in this dissertation. We consider a network theory inspired by Budczies-Zirnbauer
model (BZ), which will be abbreviated as BZN, and a continuum field theory, Dirac-Yang-

Mills model (DYM). In either BZN or DYM, the dual theory is obtained by integrating out the
original gluon degrees of freedom, which leads to a strongly-disordered system of some auxiliary
matter fields. We examine the possibilities of applying a modern method, superbosonization (SuB)
formula for disordered systems, in the investigation of the dual theories.

In the first project, we reformulate BZN using Gaussian integral representation, and derive a
master action for gluons and auxiliary matter fields, both of which live on the links of a lattice.
The dual description, dual-BZN, is derived using Cayley parametrisation and a gauge-averaging
trick, and the resulting dual action is a large−Nc series of color-neutral composite operators.
However, using SuB for a direct replacement of these operators by some supermatrix-valued
fields is not possible due to the rank-deficiency in the boson-boson sector of the supermatrix. The
rank-deficiency is a result of the universality condition N f ≥ Nc, which is necessary for BZN to
flow to YM in its continuum-limit.

In the second project, we study both sides of DYM: the induced Yang-Mills (IYM) and its
dual (dual-IYM). The theory of dual-IYM describes a system of massive Dirac bosons and Dirac
fermions constrained by a zero-current condition (ZC). A beautiful connection between gluon
condensates in IYM and matter condensates in dual-IYM inspires a low-energy effective theory
(dual-EFT). We discover the relevant dual symmetry groups and assemble a Lagrangian for
dual-EFT in analogy with the chiral perturbation theory. Furthermore, we explore the ZC solution
space and find out dual-IYM contains all Lorentz-types components, which suggests an energy-
hierarchy scheme where dual-EFT is included as the low-energy sector of dual-IYM. Dual-IYM
is color gauge-invariant. However, Witten’s bosonization method leads to a divergent effective
action for the external field, and hence it is difficult to derive an action for some color-neutral
dual-field. An attempt to directly transform the composite super-meson to the dual-field by SuB
also fails because of rank-deficiency.

In the absence of successful color-neutralisation, we proceed to explore some physical aspects
of dual-BZN and dual-IYM. For dual-BZN, the masses and interaction strength of the composite
operators are identified. We briefly examine the dual symmetry group and the saddle-point
solutions, and point out a challenge to a semi-classical approximation due to the universality
condition. For dual-IYM, we present two possible applications for YM mass gap and quark
confinement. Furthermore, we explain a possibility of a large−Nc analysis, which might lead to a
description of dual-IYM as a gravitational theory and/or a nonlinear sigma model.
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INTRODUCTION

Quantum field theory is the primary theoretic framework for particle physics. To date,

three of the four known fundamental forces, except for gravity, is best explained by

the standard model (SM) of elementary particles. The SM is based on a specific class

of relativistic field theories known as gauge theories, and it can be described in terms of a

Lagrangian which is gauge invariant, i.e., unchanged under local transformations by a Lie group

GSM =SU(3)C ×SU(2)W ×U(1)Y .

In the SM Lagrangian the matter constituents are spin-1/2 fields transforming in the (anti-

)fundamental or singlet representations of the subgroups of GSM, whereas the force carriers are

spin-1 fields transforming in the adjoint representations1. These force carriers are generally

known as the gauge fields of SM, and the strength for each fundamental force is determined by a

gauge coupling parameter.

Among the three fundamental forces in the SM, only the electromagnetic interaction is

long-range. See Table 1.1. The fact that the weak force and the strong force are short-range

suggests their gauge fields have to be massive. However, a naive attempt to include mass terms

for the gauge fields in the classical Lagrangian is forbidden since it would violate the gauge

invariance. A promising solution to this conundrum in the electroweak sector of the SM is the

Brout–Englert–Higgs mechanism [2–4], or in short the Higgs mechanism, which adds a spin-0,

SU(2)W -doublet field (known as the Higgs field) to the model. The well-known “Mexican hat”

potential of the Higgs field shifts the vacuum to a nontrivial one, and by fixing a gauge,2 a part of

the symmetries is hidden away at low temperature (≈ 159.5±1.5 GeV):

SU(2)W ×U(1)Y 7→U(1)em .
1More precisely, adjoint representation of the global group transformations.
2A gauge-invariant description of the Higgs mechanism is explained in [5].
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CHAPTER 1. INTRODUCTION

Force Range (cm) Relative strength

Strong 10−13 1037

Weak 10−15 1024

Electromagnetic ∞ 1035

Gravity ∞ 1

TABLE 1.1. Properties of the fundamental interactions [1].

Consequently, the four massless gauge fields generating SU(2)W ×U(1)Y are replaced by three

massive spin-1 bosons: W, Z bosons are responsible for the short-range weak force, and one

massless photon γ mediates the long-range electromagnetic force. In other words, only an Abelian

gauge invariance of the electroweak interaction survives at low energies, and this U(1)em gauge

theory determines the well-known quantum electrodynamics (QED). As a remark, the recent

discovery of the Higgs boson in the Large Hadron Collider [6, 7] confirmed the Higgs mechanism.

1.1 Mass gap and color confinement

The strong force is studied in the quantum chromodynamics (QCD) sector of the SM, and it is

mediated by the color gauge fields known as gluons. QCD is a non-Abelian gauge theory which

describes the dynamics of quarks and gluons. It is founded on the Yang-Mills theory (YM) [8],

which was originally proposed as a theory only for the non-Abelian gauge fields. A common belief

today is that a gluon has a nonzero “physical” mass, and it can be dynamically generated without

appealing to the Higgs mechanism [9]. At the classical level the QED photons do not interact

among themselves. The QCD gluons, by contrast, have self-interactions due to the non-Abelian

nature of the color gauge group SU(3)C. These self-interactions are underneath the most striking

features of QCD: asymptotic freedom and color confinement.

At very high energies the interactions among gluons and quarks become very weak, that is,

the color charges are asymptotically free [10, 11]. In particular, the gluons are indeed massless

in the ultra-violet regime as indicated by the Lagrangian. As the energy decreases the gauge

coupling grows larger, and the strong force begins to bind gluons and quarks into bound-states.

Up until today, no isolated color charges have been observed in the experiments conducted at

accessible energies, so it is widely accepted that these bound-states must be color-neutral. This

is known as the color confinement conjecture. A crucial implication of the color confinement is

at long-distance the effective mass of a gluon is no longer zero, because it cannot escape from

the other constituent color charges in the composite particle. This eventually explains why the

strong force is also short-range.

Astonishingly, asymptotic freedom and color confinement have different fates. Asymptotic

2



1.2. QUARK CONFINEMENT BY MONOPOLE CONDENSATION

freedom was proven and hence laid the foundation of QCD as a quantum field theory defined up

to arbitrarily high energies. However, it has not yet been observed because the “charge liberation”

energy scale is still too high for physicists to experimentally confirm the existence of gluons and

quarks. On the contrary, while color confinement is consistent with experimental evidences, there

is no analytic proof for this property in QCD. Both theorists and experimentalists will be happy

on the day when a next-generation instrument detects quarks and gluons, but the theorists will

not be satisfied until the low-energy behaviors of QCD is understood appropriately.

In fact, for decades, much effort has been spent on studies of the underlying mechanism of

quark confinement in QCD. These studies usually take place in a simplified model: QCD without

dynamical quarks. The phenomenon of quark confinement is quantified by the static potential

built up between two test quarks added to a purely-gluonic system. The strong force mediated by

the gluons connects the quarks, and qualitatively it can be visualized as a bunch of chromoelectric

flux lines. When the flux lines are squeezed into a tube between the test charges, the strong

force becomes non-decaying as the static potential increases linearly with respect to the distance

between the quarks. Consequently, the test charges cannot escape from each other since it would

require a tremendous amount of energy. In this picture, one has to devise a mechanism of the

formation of flux tubes between quarks.

1.2 Quark confinement by monopole condensation

A compelling proposal is the dual superconductivity description of QCD [12, 13]. In a type-

II superconductor, the electrically charged Cooper pairs [14] condense when the temperature

decreases below a critical value, and the external magnetic flux lines can only penetrate the

condensate if they are squeezed into thin tubes [15–17]. These are known as the Abrikosov vortices

[17]. By the electric-magnetic duality one obtains the model of dual superconductivity, where the

roles of the electric fields and the magnetic fields are exchanged. It is speculated that there are

chromomagnetic charges in QCD, which condense and cause the formation of the chromoelectric

flux tubes. An analytic proof of the existence of a magnetic monopole condensate in QCD still

remains elusive at present, but magnetic monopoles were found in several gauge theories related

to QCD. For example, the compact U(1) lattice pure gauge theory can be described as a system

of magnetic monopoles [18]. Probing the test electric charges in the monopole background, it

was shown that in d = 2+1 the charges are confined at all coupling, whereas in d = 3+1 the

confinement only occurs at strong coupling.

Magnetic monopoles were also discovered in the continuum non-Abelian gauge theories. The

famous ‘t Hooft-Polyakov monopole [19, 20] was brought to light in the SU(2) Georgi-Glashow

model [21] in d = 2+1, where the gauge field is coupled to an adjoint scalar field with a Higgs po-

tential. Via the Higgs mechanism the scalar field induces the so-called electromagnetic projection,

which extracts a massless component from the gauge field to serve as the U(1) photon. Originally,

3



CHAPTER 1. INTRODUCTION

it was expected that the low-energy sector of the Georgi-Glashow model would correspond to the

compact U(1) theory [22], which could entail the same confinement mechanism. However, it was

pointed out by [23] that the remaining massive gauge bosons cannot be simply ignored at large

distances; as the result, the applicability of the argument in [22] is questionable.

The Georgi-Glashow model set the stage for the famed Montonen-Olive duality [24], which is

a version of the electric-magnetic duality, and it has a far-reaching impact on the developments in

fundamental physics. In the Bogomol’nyi–Prasad–Sommerfield (BPS) limit [25, 26] the classical

spectrum of this model contains electric charges and magnetic monopoles. At weak coupling, the

former are point-like and light whereas the latter are heavy solitons; at strong coupling, their

properties are exchanged. In light of this, by the duality it was hoped that the Georgi-Glashow

model at strong coupling could be mapped to a dual theory at weak coupling, where the magnetic

monopoles become the elementary particles.

The first convincing realization of the Montonen-Olive duality in a quantum theory was

presented in the Seiberg-Witten model[27], which is a N = 2 super Yang-Mills (SYM) theory

containing ‘t Hooft-Polyakov monopoles. The BPS mass spectrum is protected by the supersym-

metry (SUSY), so a realization of the duality is promising. A remarkable result in the Seiberg-

Witten model is that its low-energy effective theory can be written as a dual Abelian Higgs model,

where the gauge field is a dual photon coupled to the magnetic monopoles. A soft breaking of the

supersymmetry from N = 2 to N = 1 triggers a condensation of the monopoles and generates a

mass term for the dual photon. Consequently, the electric flux lines are confined. It is believed

that a full duality beyond the low-energy effective theories can be established in a N = 4 SYM

but not the N = 2 theory. Today, the topic of interest in the N = 4 SYM has been shifted from the

electric-magnetic duality to the celebrated AdS/CFT duality [28], also known as the gauge/grav-

ity duality. This duality represents a large-Nc equivalence between the d = 3+1 N = 4 SYM and

the type IIB string theory, which is a gravitational theory living on the space AdS5 ×S5.

Can the picture of dual superconductor truly explain color confinement in QCD? The answer

is positive, at least for the mechanism of the quark confinement. A successful demonstration of

this picture consists of two steps. First, one has to identify magnetic monopoles in the pure YM

without adjoint Higgs fields. Second, one should show that the quark confinement is indeed caused

by the condensation of the monopoles. In the first attempt to extract monopole degrees of freedom

from the YM [29], a purely-gluonic local operator transforming in the adjoint representation

was introduced to substitute the Higgs fields in the Georgi-Glashow model. By analogy with

the electromagnetic projection a specific gauge is employed to diagonalize this operator: the

non-Abelian symmetry is then “broken” to its Cartan subgroup, with respect to which the gauge

fields are decomposed to “photons” and “charged matter fields”. This is known as the Abelian

projection. In this gauge, the magnetic monopoles appear as singularities in the “photon” fields,

and the centers of these solitons are located at the degenerate points of the local operator.

A milestone was reached by the introduction of the maximally Abelian gauge [30]. It can

4



1.3. MODERN APPROACHES TO NON-PERTURBATIVE QCD

be shown that in this gauge the linear static potential and the string tension are indeed dom-

inated by the monopole contributions. This innovative line of research however suffers from

the doubts that the monopoles and the related monopole dominance are nothing but gauge

artefacts. To remedy this concern a gauge-invariant reformulation of the YM known as the

Cho–Duan–Ge–Faddeev–Niemi (CDGFN) decomposition was developed in recent years [31–35].

The upshot of the CDGFN is that it can define the monopoles and demonstrate their dominance

in the quark confinement in a manifestly gauge-invariant way. In addition, the earlier approach

becomes a gauge-fixed version of this modern method. Further investigation on the properties

of the monopoles and their physical effects is an active field of research today. For a thorough

review, see [36].

1.3 Modern approaches to non-perturbative QCD

We now zoom out from the specific mechanism of quark confinement and look at the broader

picture of the low-energy dynamics of QCD. In general, the phenomena in this regime are non-

perturbative because the observables depend on the gauge coupling non-analytically. Apart from

numerical explorations on lattice models, a popular theoretical approach in this regime is by

solving the Dyson-Schwinger equations (DSEs) for the Green’s functions [37–39]. For example,

DSEs were used to study the infra-red properties of gluon propagators and ghost propagators

[40], and the bound-states of QCD such as mesons [41] and glueballs [42]. Since the advent of

functional renormalization group (FRG) [43], it has become another favorable non-perturbative

tool for studying various aspects of QCD. For a comprehensive review, see [44], and a recent FRG

result explaining a connection between the gluon condensates and the effective gluon mass can

be found in [45].

The powerful tools such as DSEs and FRG have indeed revealed much more of the low-energy

realm of QCD to us, there is however an open problem, the Gribov ambiguity [46]. In the studies

of non-Abelian gauge theories, including the aforementioned examples, a step of gauge-fixing

is usually necessary. The conventional Faddeev-Popov (FP) functional method [47] assumes the

uniqueness of the gauge-orbit intersections, which fails to be true in general. To address this

problem, the FP gauge-fixing is improved by restricting the target space of gauge fields to a

so-called fundamental modular region. So far the closest implementation of this idea is the

Gribov-Zwanzigers formalism [48], which is still not a perfect solution. The unsolved Gribov

ambiguity inevitably put a limit on the applicability of the functional methods, which eventually

prevents us from gaining a complete picture of the low-energy physics of QCD.

Generally speaking, modern theoretical investigations of non-perturbative QCD phenomenol-

ogy can be categorized to two different approaches. The first approach is forthright: starting from

the given fundamental degrees of freedom in QCD, one performs sequential functional integration

to derive the correlations among local variables at a certain scale. The second approach relies on

5



CHAPTER 1. INTRODUCTION

a clever change-of-variables recipe, which relates two or more descriptions of the same physical

system. This feature is known as duality, and we have touched upon two exemplary kinds of

duality so far. To advance along the first path, one must continue sharpening the tools like FRG,

and find a way around the inherent complexity of non-Abelian gauge theories such as the Gribov

ambiguity. On the contrary, the main purpose of duality is to allow us to switch to a different

perspective whenever the calculations with the original variables become too involved. It is

hoped that the same observables can be computed using the new variables in an easier and more

transparent way.

The concept of duality have been proved useful in lower dimensions and mostly with Abelian

symmetries. In addition to the compact U(1) lattice gauge theory mentioned above [18, 49, 50],

there are well-known examples such as the Kramers-Wannier duality [51], the Thirring/Sine-

Gordon duality [52], and the particle-vortex duality [53, 54]. In four dimensional gauge theories

a concrete realization of duality usually requires SUSY, because the supersymmetric invariance

restricts the quantum corrections and provides more exact results than non-supersymmetric

theories.

In quantum field theories the most sought-after type of duality is the so-called strong-weak

duality (sometimes also known as S-duality). The presence of S-duality in a physical system

generally means there are two models of this system, and the strongly-coupled phase of one model

is equivalent to the weakly-coupled phase of the other model, and vice versa. A long-standing

quest in physics is to design an S-duality recipe which maps QCD, or even just the pure YM, to an

equivalent model in which the large-scale physics can be accessed by perturbation methods. More

specifically, we hope that such a successful dual description of YM can explain the mechanisms

underlying the color confinement and the mass gap. There is even a million-dollar prize for this

[55]. Can we construct a dual theory of YM without the help from SUSY? This is the question we

hope to answer in this dissertation.

1.4 Induced gauge theory: a dual-pair of descriptions

The new chapter of the search for duality in YM is written in the language of induced gauge

theory. Originally motivated by the notion of induced gravity [56–58], the central idea of this

method is to conceive a master action in which the gauge fields, usually the gluons, are coupled to

some auxiliary “matter” fields with purposely designed dynamics. There is no kinetic term for the

gauge fields in the master action to start with; rather, the desired YM action (in the continuum)

and the Wilson action (on a lattice) [59] describing the gluodynamics are “induced” by explicitly

integrating out the matter fields.

The art of induced gauge theory lies in the properties of the auxiliary fields. In the first wave

of studies of lattice models the common starting point is the Wilson action, and the matter fields

are allowed to propagate across the lattice. Different choices for the matter fields have been
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tested in the pioneer works: fundamental bosons [60], fundamental fermions [61], and adjoint

bosons [62]. By construction, integrating out the matter fields yields gauge-invariant composite

operators in the induced action. However, in order to recover the Wilson action, one must suppress

the large-loop contributions, which is achieved in these works by sending the mass and/or the

number (flavors) of the auxiliary variables to infinity. In parallel with this development the idea

of inducing YM in the continuum was tested in [63], where it was shown that YM is equivalent

to a fermionic system with current-current interaction in the similar infinite-parameter limit.

The approaches in the first wave have two shortcomings. From a practical point of view, they are

difficult to examine by numerical means due to the infinite parameters. Lattice simulations for

observables simply are not accessible in these proposals. From a theoretical point of view, the

existence of a continuum limit of the proposed lattice models was never placed under a rigorous

check, let alone a proof that they lie in the same universality class of the asymptotically-free YM.

A promising resolution to these concerns was brought forth by the Budczies-Zirnbauer model

[64], which launched the second wave of interests towards the induced gauge theory. The major

change in the master action is that the auxiliary fields can only circulate the unit plaquettes

of the lattice. This enhanced “locality” is carried over to the induced gluon action such that the

unwanted non-local terms are automatically suppressed. Consequently, we no longer have to

tune certain parameters to infinity. At first glance, the gluon action in [64] seems very different

from the Wilson action, but they both admit a continuum-limit which corresponds to YM. To

assure the existence of the continuum-limit, it is necessary to use bosonic auxiliary fields in the

Budczies-Zirnbauer model, while inclusion of fermions is also permissible.

In d = 2 and with U(Nc) as the color gauge group, it was proved in [64] that as long as the

number of flavors of the bosons N f exceeds the number of colors Nc, a continuum-limit can be

achieved by tuning the boson mass to a finite critical value. This critical theory is the U(Nc) YM.

A similar statement is expected to hold also in d = 4 based on a universality argument, but a

proper proof will require a comprehensive renormalization group analysis. In recent years, the

Budczies-Zirnbauer model have been tested in [65, 66], where an extension of the model to the

physical gauge group SU(Nc) was presented. Importantly, [65] provides numerical evidences

supporting the conjecture that SU(Nc) YM can also be induced in d = 3 and d = 4, and [66]

presents agreements between Wilson’s model and Budczies-Zirnbauer model in the simulation of

observables.

So far, we have only mentioned one aspect of induced gauge theory: how YM can be induced

from a master action. Ultimately we want to understand the other side of the story, i.e., the dual

description of YM obtained by integrating out the gluons. Preliminary results in all the mentioned

researches, including the Budczies-Zirnbauer model, show that a dual theory of the lattice YM

is a system of color-singlet composite operators built from the auxiliary fields. While the exact

steps leading to the dual theory are usually transparent, the expression of the dual action is

rather complicated and lack of concrete physical meanings, unfortunately. Nevertheless, the
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studies of induced gauge theory did reveal a fascinating resemblance of the master action to the

Hamiltonian of disordered systems. Indeed, the gluons can be viewed as the disordered-couplings

among the auxiliary bosons and/or fermions in the system, and the absence of the kinetic term

corresponds to the limit of infinite disorder. In view of this, the dual theory of YM should be

understood as a strongly-disordered system of the matter fields!

Naturally, this motivates people to apply known analytic tools for disordered systems to

the dual theory at hand. The statistical properties of a quenched disordered system, whose

randomly-distributed parameters are constant in time, is characterized by its disorder ensemble.

The common step of averaging the disorder is done by integrating out the random matrices in this

ensemble, and a mathematically rigorous tool for this step is the supersymmetry method [67, 68]
3. At weak-disorder, the average generating functional can be approximated by a nonlinear sigma

model via the traditional Hubbard-Stratonovich transformation, which is most applicable in

cases of Gaussian ensembles. At strong-disorder or for systems with different disorder ensembles,

one must seek for alternatives. Some proposals in this direction can be found in [69–72], but for

possible applications in QCD we are interested in two exact integral transformation techniques:

color-flavor transformation [73, 74] and superbosonization formula [75, 76].

The color-flavor transformation (CF) was originally invented as a new tool to study systems

with Dyson’s Circular Unitary Ensemble [77], which is not covered by the supersymmetry method

mentioned above. This transformation establishes an exact equality between an integral over

U(Nc) and an integral over some supermatrix space. The most attractive feature of the CF is that

it provides a practical method to directly extract color-neutral entities from lattice QCD, which

could represent the physical hadrons [78, 79]. However, it was soon realized that the CF cannot

be used to induce lattice YM because it is not applicable when N f is greater than Nc.

The superbosonization (SuB) formula is used after the disorder field is integrated out. It

provides a transparent expression of the resulted average generating functional as a supermatrix

field theory. Complementary to the Hubbard-Stratonovich/mean-field approach, this “bosonized”

theory can then be projected to a nonlinear sigma model at strong-disorder. Taking this into

consideration, because the dual theory of YM is probably a strongly-disordered system of some

sort, SuB seems like a promising tool to use.

1.5 Motivation and outline

The main motivation behind this dissertation is to explore a possible application of SuB to

formulate a dual theory of YM. This journey of constructing a dual description began in the

author’s master’s thesis [80]. In the previous work we have examined some lattice network models

and a continuum field theory in the framework of induced gauge theory, and our main focus was

to properly induce the YM action in both models.

3This is closely related to the supersymmetric field theories in high-energy physics, but some of the conventions
used for the disordered systems are different.
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On the lattice-model side, we have concluded that the Budczies-Zirnbauer model (BZ) is still

the most promising lattice model to work with. On the continuum-theory side we have proposed

a novel master action which yields an induced YM theory (IYM). In this dissertation this master

theory will be known as Dirac-Yang-Mills model (DYM). We have also derived a dual theory using

Hubbard-Stratonovich decoupling method. This dual theory remains incomprehensible to us.

Based on these discoveries, in this dissertation we will be working with a network model

inspired by BZ, denoted as BZN, and the same continuum master action with minor modifications.

The spotlight is now on the dual theories obtained by integrating out the gluon degrees of freedom,

and the ultimate goal is to use SuB or SuB-motivated methods to transform these models to some

supermatrix field theories.

Outline
This dissertation is structured as follows:

• In Chapter 2, we derive a dual description of BZN, which we call dual-BZN. After intro-

ducing the BZN partition function, we build a lattice master action by placing BZN in a

Gaussian integral representation. In this representation, auxiliary bosons and fermions

are introduced on the links of the lattice. We then perform the duality transformation using

Cayley parametrisation and a gauge-averaging trick. The resulting dual-BZN action is a

large−Nc series in terms of color-neutral composite operators. We end this chapter by an

early-stage discussion about some physical aspects of dual-BZN, and a possibility of an

application of SuB.

• In Chapter 3, we derive a dual description of IYM, which we call dual-IYM. We first present

the definition of DYM master action, and then explain its resemblance to QCD. Next,

after a revelation of a connection between the gluon condensate in IYM and the matter

condensates in dual-IYM, we define and examine several dual symmetry groups. Based

on this qualitative knowledge, we conjecture an effective field theory (dual-EFT) from

dual-IYM and end the chapter with some potential applications.

• In Chapter 4, we attempt to color-neutralise dual-IYM via some exact transformations. To

derive an action for color-neutral composite variables, we test the applicability of Witten’s

bosonization method. Then we turn our attention to the solution space of ZC, and examine if

there exists a good parametrisation of the solution space such that SuB can be used. Finally,

we propose an energy-hierarchy scheme where dual-EFT is incorporated in dual-IYM, and

point out a possibility to include heavier degrees of freedom. We end the chapter with a

short discussion on a possible large−Nc semi-classical approximation of dual-IYM.

• In Chapter 5 we summarize the discoveries from the studies of BZN and DYM, and point

out some prospects of an NLσM description of dual-IYM and potential connections to a

gravitational theory.
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2
BUDCZIES-ZIRNBAUER NETWORK MODEL AND ITS DUAL

In this chapter a dual theory for Budczies-Zirnbauer Network model (BZN) is established

and studied. First, the original model is reviewed and reformulated in Section 2.1 - Section

2.2. Following a remark in Section 2.3, the main steps of the duality transformation are

explained in Section 2.4 - Section 2.5. Finally, we discuss some physical aspects of the dual

description and explore a possibility of further simplification in Section 2.6 - Section 2.8.

Throughout this chapter we will be adopting the natural units and presenting every variable

in lattice unit, i.e., setting the lattice spacing a ≡ 1.

2.1 Budczies-Zirnbauer lattice model

Consider a d−dimensional complex Λ consisting of oriented k−cells. An example is shown in

Figure 2.1. A gluon field U is a mapping from the 1−cells (links) of Λ to the color group U(Nc):

l 7→U(l)≡ ũl ∈U(Nc). We will refer to ũl as a gluon.

2.1.1 Set-up

In its original form, BZ is a lattice gauge theory described by the partition function

(2.1) Z=
�

DU
∏
p∈Λ

|Det(1c −αFU(∂p))|2N f

|Det(1c −αBU(∂p))|2N f
,

where DU ≡∏
l dũl, p ∈Λ stands for the 2−cells (plaquettes), and U(∂p) is the holonomy around

the boundary ∂p. An example is given in Figure 2.2. The flavor number is denoted by N f and 1c

is the identity operator in the color space.

As pointed out by [64] and supported by [65, 66], we have the following important observation:
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p

l

FIGURE 2.1. A d = 2 complex. The black arrows are the orientations of 1−cells and the blue
arrows are the orientations of 2−cells.

ũl1

ũl2

ũl3
ũl4

ũl5

ũl6

p

FIGURE 2.2. The holonomy around p, which is U(∂p)= ũl1 ũl2 ũl3 ũl4 ũ−1
l5

ũ−1
l6

.

Conjecture 2.1. for d = 4, under the conditions that N f ≥ Nc and αF ̸= 1, a continuum-limit of

BZ exists at αB → 1, where the correlation length of the system diverges. It is conjectured that this

continuum-limit belongs to the same universality class of Yang-Mills.

2.1.2 Reformulation of BZ to BZN

In the framework of induced gauge theory studied in [80], the first step towards a dual description

of the lattice model is to find an alternative but equivalent expression of (2.1) where the gluons

on different links are decoupled from one another. Instead, the gluon field couples to a bosonic

field ϕ and a fermionic field ξ. As we will see in the subsequent sections, this new expression has

an advantage because it allows us to integrate out all the gluons and eventually arrive at an

equivalent description of (2.1) in terms of color-neutral composite particles built from ϕ and ξ.

Let us begin with a paraphrase of (2.1) by rewriting the partition function as

(2.2) Z=
�

DU
∏
p∈Λ

|Det(1−e−mUs(p)Ur(p))|2N f

|Det(1−e−MUs(p)Ur(p))|2N f
,

where we separated the circulating dynamics along each ∂p, described by Us(p), from the color
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transformation, denoted by Ur(p). The definitions of these two operators are

(2.3) Us(p) :=S (p)⊗1c; Ur(p) := ⊕
l∈±∂p

uϵ(p,l)
l .

Importantly, unlike the conventional ũl, ul is an endomorphism of a color space. We still call ul

a gluon. The determinant in (2.2) is now over the product of the link space and the color space,

which will be called the link-color space. In Ur(p), each l ∈Λ is included as long as either l ∈ ∂p
or l ∈ −∂p. This slight abuse of notation means that the 1−cell l is a component of either the

1−chain ∂p or −∂p. Correspondingly, to ensure the correct order of the product of gluons in the

holonomy along ∂p, we introduce an indicator ϵ(p,l) of the relative orientation between l and p,

which takes value ±1 for l ∈±∂p.

As an illustration, we consider an example in Figure 2.3 where the plaquette p is surrounded

by four links li, i = 1,2,3,4. The corresponding operators are

(2.4) S (p)=


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 ; Ur(p)=


ul1 0 0 0

0 ul2 0 0

0 0 ul3 0

0 0 0 u−1
l4

 .

p

l1

l2

l3

l4

FIGURE 2.3. In this plaquette ϵ(p, l4)=−1, so we have u−1
l4

in Ur(p).

To recover the expression (2.1) in terms of holonomies, one uses the formula |DetA|2 =
exp(TrlnA+TrlnA†), expands the logarithms, and then combines the results. We then obtain

Z=
�

DU e−Sind[U];(2.5)

Sind[U]= N f
∑

p∈Λ

∞∑
k=1

e−4mk −e−4Mk

k
[trU(∂p)k + tr(U(∂p)†)k].(2.6)

The constituent gluons of the holonomy U(∂p) in (2.5) are ul. From now on, we choose Λ to be

a d = 4 hyper-cubic lattice which explains the factor 4 in the exponent, because only the terms of

the power of multiples of 4 are non-zero under the trace over the link space. This indeed equals

to the same expansion of (2.1) via the identification αF ≡ e−4m, αB ≡ e−4M , and along with the

substitution ul 7→ ũl. If it is not otherwise specified, “tr” stands for the color space trace whereas
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“Tr” is the trace over the link-color space. Importantly, the continuum-limit in Conjecture 2.1 now

takes place at M → 0 provided that N f ≥ Nc and m ̸= 0. For simplicity, we restrict ourselves to

m > M > 0 in this work.

2.2 Gaussian integral representation

Having convinced ourselves that (2.2) is indeed equivalent to Yang-Mills under appropriate

circumstances as explained in Section 2.1.2, it is time to develop a dual description for it.

2.2.1 Fock space representation

For simplicity, let us consider a single p and set N f = 1. Our first task is to transform the ratio of

determinants

(2.7)
|Det(1−e−mUs(p)Ur(p))|2
|Det(1−e−MUs(p)Ur(p))|2

into a product of a supertrace of a “fermionic” operator and a trace of a “bosonic” operator.

To that end, let H be the link-color space with the natural index of basis n ≡ (l, c), where l

labels l and c is the color index. In the second-quantization of H , we introduce boson creation/an-

nihilation operators b†
n,bn and fermion creation/annihilation operators f †

n, fn, which generate a

bosonic Fock space and a fermionic one. Any g = eX ∈ GL(H ) admits the following Fock space

representations:

σ(eX )= exp
∑
n,n′

f †
n 〈n|X |n′〉 fn′ ≡ exp( f †X f ) (fermionic);(2.8)

ω(eX )= exp
∑
n,n′

b†
n 〈n|X |n′〉bn′ ≡ exp(b†X b) (bosonic).(2.9)

Following [81] we know that by construction these operators satisfy σ(gh)=σ(g)σ(h) ∀g,h ∈
GL(H ) and same for ω. Moreover, the supertrace STrσ(g)=Det(1− g) and Trω(g)=Det−1(1− g),

which is true because e−M guarantees gg† < 1. Consequently, the ratio (2.7) equals to

(2.10) |STrσ(e−mUs(p))σ(Ur(p))|2 · |Trω(e−MUs(p))ω(Ur(p))|2,

which is what we promised.

2.2.2 Gaussian integral representation

We are now ready to introduce the aforementioned bosonic field ϕ and the fermionic field ξ into

the picture, which is essentially rooted in the Gaussian integral representations of σ and ω

introduced in [81]. First, we look into the fermion sector, where one defines an operator

(2.11) Tξ = exp(
∑
n
ξ̄n fn +ξn f †

n)≡ exp(ξ̄ f +ξ f †).
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Here, {ξn, ξ̄n} are Grassmann variables, and by construction ξ̄ transforms in the dual representa-

tion of ξ.

With (2.11), the Gaussian integral representation of σ is defined as:

(2.12) σ(g)=Det(1− g)
�

D(ξ, ξ̄) e−
1
2 ξ̄AgξTξ,

where we have introduced the Cauchy map:

(2.13) A(g)= 1+ g
1− g

.

Applying the formula (2.12) to (2.10) and recognizing

(2.14) |STrσ(e−mUs(p))σ(Ur(p))|2 =STrσ(e−mUs(p))σ(Ur(p)) ·STrσ(Ur(p)†)σ(e−mUs(p)†),

it can be shown that |STrσ(e−mUs(p))σ(Ur(p))|2 equals to (p is omitted)

(2.15) ΩF ·
�

D(ξ+, ξ̄+,ξ−, ξ̄−) e−
1
2 (

∑
α=± ξ̄αAm,αξα) ·e− 1

2 (
∑
α=± ξ̄αAr,αξα),

where

ΩF ≡ |Det(1−e−mUs(p))|2|Det(1−Ur(p))|2;(2.16)

Am,+(p)≡A(g = e−mUs(p)), Am,−(p)≡A(g = e−mUs(p)†);(2.17)

Ar,+(p)≡A(g =Ur(p))=−Ar,−(p).(2.18)

In the derivation of (2.15), we have used the fact STrTξTη = δ(ξ+η). Note that Ar,±(p) is singular,

so one may imagine there is a small regulator e−δ to begin with, which eventually will be removed.

The same story can be told in the boson sector where m and ξ are replaced by M and a

complex-valued field ϕ, respectively. The analogy of (2.11) is the following operator

(2.19) Tϕ = exp(
∑
n
ϕnb†

n − ϕ̄nbn)≡ exp(ϕb† − ϕ̄b),

which obeys TrTϕTφ = δ(ϕ+φ). The field ϕ̄ is the hermitian conjugate of ϕ.

It can be shown that |Trω(e−MUs(p))ω(Ur(p))|2 equals to

(2.20) Ω−1
B ·

�
D(ϕ+, ϕ̄+,ϕ−, ϕ̄−) e−

1
2 (

∑
α=± ϕ̄αAM,αϕα) ·e− 1

2 (
∑
α=± ϕ̄αAr,αϕα),

where ΩB and AM,± are defined in the similar way as ΩF and Am,±.

Finally, we combine (2.15), (2.20) and return the flavor N f and the plaquettes p to the

partition function. We arrive at

Z= C
�

DUD(ξ, ξ̄,ϕ, ϕ̄) e−
∑

p∈ΛΓs(p)+Γr(p);(2.21)

Γs(p)= 1
2

[ ∑
α=±

N f∑
f=1

ϕ̄p,α, f AM,α(p)ϕp,α, f + ξ̄p,α, f Am,α(p)ξp,α, f

]
;(2.22)

Γr(p)= 1
2

TrAr(p)

[ ∑
α=±

N f∑
f=1

αϕp,α, f ϕ̄p,α, f −αξp,α, f ξ̄p,α, f

]
.(2.23)

Importantly, the gluon-dependent factors in ΩF and ΩB cancel out and only a constant C ̸= 1

remains. In Γr(p), the relative minus sign comes from the reshuffling of the Grassmann variables.
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2.2.3 Superanalysis consideration

The bosonic terms and the fermionic terms in the partition function (2.21) are almost identical,

so one expects that the expression can be simplified further using super-variables. To that end,

we re-position all the indices and introduce

(2.24) ξ̄p(l)≡ [
ξ̄p(l)c

]α f ; ξp(l)≡ [
ξp(l)c]

α f .

The idea is to make the “position” information, i.e., p, l explicit, which will help us develop a

diagrammatic analysis later on. At each (p, l), ξ̄p(l) is a 2N f by Nc matrix and ξp(l) is Nc by 2N f .

The same goes for ϕ̄p(l) and ϕp(l).
With these new notations, we introduce a set of Nc supervectors:

(2.25) Ψ̄p(l)c ≡
(
ξ̄p(l)c

ϕ̄p(l)c

)
; Ψp(l)c ≡

(
ξp(l)c ϕp(l)c

)
.

Let us simplify (2.22) first. The Cauchy maps AM,α, Am,α are substituted by a single 4N f by 4N f

(super)matrix for each (p, l, l′):

(2.26) A(p)l,l′ ≡ diag(−Am,+(p)l,l′ ,−Am,−(p)l,l′ ,AM,+(p)l,l′ ,AM,−(p)l,l′)⊗1 f .

In terms of (2.25) and (2.26) we find

(2.27) Γs(p)= 1
2

∑
l,l′∈±∂p

trΨp(l′)A(p)l,l′Ψ̄p(l).

We clarify once and for all that the color indices in the original definitions of the Cauchy maps

(2.17) are no longer present in (2.26); instead, this is accounted for by the color trace “tr” in (2.27).

What remains to do is the simplification of (2.23). As we are going to integrate out the gluons

ul eventually, it is desirable to carry out the trace over the link space first. The result is

(2.28) Γr(p)= 1
2

∑
l∈±∂p

trÃr(p, l)
[
ϕp(l)Jϕ̄p(l)−ξp(l)Jξ̄p(l)

]
,

where the relative orientation ϵ(p,l) and the factor α have been taken into consideration in the

following elements:

(2.29) Ãr(p, l)≡ 1c +uϵ(p,l)
l

1c −uϵ(p,l)
l

; J≡ diag(1 f ,−1 f ).

It is straightforward to recast this in terms of the super-variables:

Γr(p)= ∑
l∈±∂p

trÃr(p, l)

[
1
2
Ψp(l)

(
−J 0

0 J

)
Ψ̄p(l)

]
≡ ∑

l∈±∂p
trÃr(p, l)D̃(p, l).

(2.30)
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2.3 Notion of color invariance

We have successfully massaged the exponents (2.22), (2.23) into the more instructive expression

(2.27), (2.30). In the framework of induced gauge theory, the next step is to integrate out the

gluons to obtain a dual description of (2.21) in terms ofΨ and Ψ̄. This only involves Γr, and we are

going to employ the Cayley parametrisation of the U(Nc) Haar measure [82] for the gluon-integral

because it will greatly simplify the Cauchy maps.

Before we delve into the calculations, it is worth pointing out an important observation about

(2.21). By construction, (2.1) is invariant under

(2.31) ũl 7→ g̃t(l)ũl g̃−1
s(l),

where g̃ is a mapping from all the 0−cells (sites) to the color group U(Nc), and s(l), t(l) are the

starting site and the ending site of l, respectively. See Figure 2.4. We refer to g̃ as the conventional

color gauge-transformation.

ls(l) t(l)

FIGURE 2.4. A link with a starting site and an ending site.

In the original work of BZ [64], the auxiliary bosons and fermions live on the sites as in most

lattice QCD models, and accompanying (2.31) they transform in the (anti)fundamental represen-

tations of U(Nc). There, the dual description is obviously invariant under the conventional color

gauge-invariance.

In BZN, the transformation (2.31) doesn’t apply anymore due to the fact that ul is an

endomorphism. Instead, there exists a new color gauge transformation g, which is a mapping

from the links to U(Nc). This group acts on the gluons and the auxiliary fields by

(2.32) ul 7→ glul g−1
l ; Ψp(l) 7→ glΨp(l); Ψ̄p(l) 7→ Ψ̄p(l)g−1

l .

Our interest now changes to manufacturing the partition function in terms of color-singlets

with respect to this new gauge group. As we are going to see, these color-singlets are composite

particles of the form Ψ̄p(l)Ψp′(l), which are invariant under (2.32). Before doing any calculations,

one can already realize that the integration over gluons

(2.33)
�

DU e−
∑

p∈ΛΓr(p) ≡ e−Seff,G

will automatically generate the color-singlets due to the bi-invariance of the Haar measure. We

will derive the effective action Seff,G in Section 2.4.3. For the Γs sector, however, we will be forced

to make use of a gauge-averaging trick because different links are coupled, as one can see in

(2.27).
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p1

p2

p3

p4
l

FIGURE 2.5. The plaquettes attached to a single link.

2.4 Gluon integral

Now we compute the gluon-integral (2.33).

2.4.1 Cayley parametrisation

Any link l ∈Λ belongs to several plaquettes, which are denoted by p ∈B(l). More precisely, the

set B(l) consists of all the plaquettes p whose boundary ∂p containing either l or −l. See Figure

2.5. In (2.33) the integration involving a single link l is

(2.34)
�

dul e−
∑

p∈B(l) trÃr(p,l)D̃(p,l),

which can be simplified by introducing

(2.35) D(l)≡ ∑
p∈B(l)

ϵ(p, l)D̃(p, l); A(l)≡ 1c +ul
1c −ul

.

With these, (2.34) becomes

(2.36)
�

dul e−trA(l)D(l).

Next, applying the Cayley transformation, i.e., the bijection1 (omitting the index l):

(2.37) u = iM+1c

iM−1c
⇔ iM =−1c +u

1c −u
; M ∈HermNc (C),

we can substitute the integration over U(Nc) in (2.36) by an integration over HermNc (C), known

as the Cayley parametrisation [82]:

(2.38)
�

dul e−trA(l)D(l) = C′
�

dMl

DetNc (1c +M2
l )

eitrMlD(l).

Any constant factor of the integral such as C′ will be dropped from now on, and for simplicity we

are going to omit the index l in the following derivations. As usual, dM ≡∏
i dMii

∏
i< j dRMi jdIMi j.

1We restrict u such that none of its eigenvalues is 1. This won’t affect the gluon integral.
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i

j

Mi j

i

j

l

k

〈Mi jMkl〉
FIGURE 2.6. An external vertex and a propagator.

2.4.2 Ribbon diagrams

To proceed, one first exponentiates the determinant and rescales M → M/
√

Nc such that (2.38)

reads

(2.39) I [D]≡
�

dM e−Nctrln(1c+M2/Nc)+itrMD/
p

Nc ,

which is in a good shape for a large−Nc analysis. To that end, let’s expand the logarithm in the

integrand

(2.40) exp
[
−trM2 +

(
tr

M4

2Nc
− tr

M6

3N2
c
+ . . .

)
+ itrMD/

√
Nc

]
and apply the standard machinery of ribbon diagrams [83]. The idea is to evaluate, order-by-

order, the expectation values of the products of “vertices” with respect to the Gaussian weight

exp(−trM2), and finally assemble an effective action using only the “connected” ribbon diagrams.

The vertices in (2.40) are given by

(2.41) v[2k]≡ (−1)ktrM2k

kNk−1
c

, k = 2,3, . . . ; v[D]≡ itrMD√
Nc

,

and the following identities are used in the computations:

Z0 ≡
�

dM e−trM2
;(2.42)

〈Mi jMkl〉 ≡
1

Z0

�
dM Mi jMkl e−trM2 = 1

2
δilδ jk;(2.43)

〈odd powers of M′s〉 = 0;(2.44)

〈even powers of M′s〉 = ∑
all pairings

∏
pairs

〈MM〉 · · · 〈MM〉.(2.45)

By depicting each vertex v[2k] as a starfish, each v[D] as a pen, and each “propagator” 〈MM〉
as a ribbon (double-line) connecting the branches from the vertices, every term in the integral

I [D] in (2.39) is represented by a ribbon diagram. These diagrammatic tools are depicted in

Figure 2.6 and Figure 2.7. A ribbon diagram can be either connected or disconnected in the usual

sense. By the linked-cluster principle, the effective action Seff[D] defined by

(2.46) Z−1
0 I [D]≡ e−Seff[D]
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i
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j
j

k

k

l

l

tr
(
M4)=∑

i, j,k,l Mi jM jkMkl Ml i

a b

tr(MD)=∑
a,b MabDba

a b

FIGURE 2.7. Interaction vertices.

only contains the connected diagrams.

Our main mission is to figure out the leading terms in Seff [D] in the large−Nc expansion. A

generic connected diagram has the following expression:

(2.47) G(c)(v[2k1], . . . ,v[2kp],v[D], . . . ,v[D]︸ ︷︷ ︸
2q

),

where p, q ∈Z+. We only study even number (2q) of pen-vertices because of (2.44). First of all, as

one can see in (2.41), these vertices carry a factor of

(2.48)
1

N
∑p

i=1 ki−p
c

· 1
Nq

c
.

In addition to this, the contractions of indices via the propagators defined by (2.43) result in

another Nc-dependent factor. For illustration, we draw a bridge connecting two M’s if they are

contracted.

Take a single starfish-vertex v[4] for instance:

(2.49) trMMMM ∼O (N3
c ); trMMMM ∼O (Nc).

When there are two (or more) vertices, we must first build at least one bridge to connect them

and then do the rest of the contractions, for example:

(2.50) trMMMM trMMMM ∼O (N4
c ); trMMMM trMMMM ∼O (N2

c ).

In the D-independent sector (q = 0), the terms like the ones on the left of both (2.49), (2.50)

have the highest power in Nc. In the literature, these are known as the planar diagrams (Figure

2.8), whose bridges can be arranged such that they are non-crossing. Each planar diagram carries

a factor N
∑p

i=1 ki−p+2
c , which counters (2.48) and results in an overall factor of N2

c in this sector.

One way to quickly derive this factor is to exploit the following rule: arbitrarily pick one bridge

that connects two vertices and do the contraction, which effectively removes two M from each
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FIGURE 2.8. A planar diagram (left) and a non-planar one (right).

FIGURE 2.9. A planar diagram with two v[2k] vertices.

vertex and “merge” the remaining vertices in to a single trace. See Figure 2.9. It is straightforward

to compute the factor of the resulting single-trace planar diagram, which yields the factor.

The D-dependent sector is more important. First of all, one can easily read out the factor for

p = 0, q = 1, which is N−1
c , and the contraction of two D’s yields trD2. Indeed, only the part from

(2.48) contributes, from which we know the diagrams with larger q are of smaller order (in fact,

they are all disconnected). In the presence of the v[2k] vertices, we understand that:

1. To stay connected, the M from every v[D] must connect to one of the v[2k] vertices, but not

to another v[D].

2. Any M from a v[2k] vertex, as long as it is contracted with some v[D], cannot be contracted

with another M’s from any v[2k] vertex any more.

An example is given in Figure 2.10. Consequently, in (2.47) there are 2q v[D] vertices and p v[2k]

vertices, so only 2
∑p

i=1 ki −2q “free” M’s are at our disposal. Merging the v[2k] vertices reduces

this number further by 2(p−1). Finally, unlike the D-independent sector, because the overall

trace is absent here, the leading power of Nc is exactly half of the number of the remaining free

M’s. Together with (2.48) we obtain the highest power of Nc in (2.47)

(2.51)
1

N
∑p

i=1 ki−p
c

· 1
Nq

c
·N

∑p
i=1 ki−p−(q−1)

c = 1

N2q−1
c

.
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Again, this leading-order term is described by a non-crossing diagram, and the contraction of

D’s yields trD2q. Importantly, a term such as (trD)2 is a crossing diagram so it is of the next-order.

Take p = q = 1 for example, a non-crossing diagram looks like

(2.52) trMMM · · ·MMM MD MD∼ Nk−1
c .

In comparison, a crossing diagram carries

(2.53) trMMM · · ·MMM MD MD∼ Nk−2
c ,

which indeed has the lower power of Nc.

a b

c d

FIGURE 2.10. A non-crossing contraction of a v[2k] vertex with two v[D] vertices.

2.4.3 Contribution to effective action

Combining these results, we arrive at the large−Nc expansion of Seff [D]:

(2.54) −Seff [D]≈ c0 + c1
1

Nc
trD2 +O (

1
N3

c
).

All the D−independent terms are included in the constant c0, and it can be shown that the

constant c1 < 0. Finally, we substitute (2.54) for (2.36) and go back to (2.33). The effective action

is

(2.55) −Seff,G ≈ C0 +C1
1

Nc

∑
l∈Λ

trD2(l)+O (
1

N3
c

).

All the terms in Seff,G, as promised, are color-singlets with respect to the new gauge group (2.32).

For brevity, from now on we will address (2.32) as the color gauge group.
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2.5 Color averaging

So far we have carried out the gluon-integral in (2.21), written in terms of the supervectors:

Z= C
�

DUD(Ψ,Ψ̄) e−
∑

p∈ΛΓs(p)+Γr(p)

= C′′
�

D(Ψ,Ψ̄) e−Seff,Ge−
∑

p∈ΛΓs(p).
(2.56)

It is obvious that the integrand in (2.56) is not color-neutral yet due to the inter-link coupling in

Γs(p), as one can tell from (2.27). Fortunately, there is a trick of gauge-averaging which can help

us get around this difficulty.

2.5.1 Gauge averaging

First of all, we know the effective action Seff,G defined in (2.55) and the Berezin measure

D(ξ, ξ̄,ϕ, ϕ̄) are both color-invariant. It follows that
�

D(Ψ,Ψ̄) e−Seff,Ge−
∑

p∈ΛΓs(p) ≡
�

D(Ψg,Ψ̄g) e−Sg
eff,Ge−

∑
p∈ΛΓ

g
s (p)

=
�

D g
(
�

D g)

�
D(Ψg,Ψ̄g) e−Sg

eff,Ge−
∑

p∈ΛΓ
g
s (p)

=
�

D(Ψ,Ψ̄) e−Seff,G

�
D g e−

∑
p∈ΛΓ

g
s (p),

(2.57)

where D g ≡∏
l dgl and we have chosen the normalization

�
dgl = 1 for all l. The superscript g

refers to the transformation (2.32), which turns Γs(p) into

(2.58) Γ
g
s (p)= 1

2

∑
l,l′∈±∂p

trgl′Ψp(l′)A(p)l,l′Ψ̄p(l)g−1
l .

The merit of the gauge-averaging, i.e., the integrations over all gl ∈U(Nc) is that the outcome

only consists of color-singlets by construction. This comes with a price, however, because the

averaging-integral in general cannot be solved exactly; rather, the result will be written as a

large−Nc series expansion. Similar to what has been done for Γr, we are going to present each

term by a diagram, and then argue that the effective action Seff,L defined by

(2.59)
�

D g e−
∑

p∈ΛΓ
g
s (p) ≡ e−Seff,L

is built from the connected diagrams.

What is the definition for a diagram? Let’s first expand the exponential function in the

integral:

(2.60)
∞∑

n=0

(−1)n

n!

�
D g

( ∑
p1∈Λ

Γ
g
s (p1)

)
· · ·

( ∑
pn∈Λ

Γ
g
s (pn)

)
.
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Plugging (2.58) in it, the integral for each n can be schematically expressed as

(2.61)
∑

p1,··· ,pn

�
D g

 n∏
i=1

∑
li ,l′i∈±∂p

Ψpi (l
′
i)

ciA(pi)li ,l′iΨ̄pi (li)bi (g−1
li

)bi
di

(gl′i )
di
ci

 ,

where the summations over the color indices are implied. Our task is to solve the integral:

(2.62)
�

D g (gl′1)d1
c1 · · · (gl′n )dn

cn (g−1
l1

)b1
d1

· · · (g−1
ln

)bn
dn

,

and the mathematical tool we will be using is the Weingarten integral over U(Nc) [84, 85]:�
dg gi1

j1
· · · gik

jk
(g−1) j′1

i′1
· · · (g−1)

j′l
i′l
=

0, l ̸= k;∑
σ,τ∈Sk

δ
i1
i′
σ(1)

· · ·δik
i′
σ(k)
δ

j′
τ(1)
j1

· · ·δ j′
τ(k)
jk

W(τσ−1, Nc), l = k.

(2.63)

W(τσ−1, Nc) is known as the Weingarten function2, and Sk denotes the permutation group for k

elements.

2.5.2 Diagrammatic study

It is time to look for a diagrammatic analysis of (2.61), which takes three steps.

Partition of links: to distribute the auxiliary bosons and fermions on the links, we use a solid

circle • for Ψ̄ whereas a hollow circle ◦ for Ψ, see Figure 2.11. One of the conditions indicated

by (2.63) says (2.62) is nonvanishing only if the sets Ln ≡ {l1, · · · ,ln} and L′
n ≡ {l′1, · · · ,l′n} must be

identical (regardless the order). Therefore, on the same link the numbers of • and ◦ must match,

i.e., they form pairs.

Next, because any link has more than one adjacent plaquette, to avoid confusion we always

place the pair of circles on the side of the link indicating which plaquette it belongs to.

Finally, suppose there are n plaquettes on the exemplary d = 2 square-lattice, as shown in

Figure 2.11. The number assigned to each plaquette stands for the number of multiplicity of that

plaquette, which is exactly the number of pairs of circles on that plaquette, and the sum of the

multiplicities is n.

Tunnelling lines: to keep track of different products ΨAΨ̄ in (2.61), we draw a line connecting

one • and one ◦ for each product (Figure 2.12(a)). Obviously a tunnelling line can only connect

circles on the same plaquette.

Once the lines are settled, we can apply the tool in (2.63). Diagrammatically this amounts to

“binding” one • and one ◦ on the same link, which is done by putting an elliptical shade beneath

them (Figure 2.12(b)). This “pig nose” represents a color-singlet.
2See Appendix A.
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1

2 3

1

2

FIGURE 2.11. Plaquettes with numbers of multiplicity.

(a) (b)

FIGURE 2.12. Adding (a) tunnelling lines and (b) pig noses.

In general, as long as the circles are on the same link, all possible bindings are allowed

providing they follow one rule: if the • and ◦ on the same link are connected by a tunnelling line,

then they automatically form a color-singlet and hence are bound together (see the examples

below).

Examples: we present here two computations for a single plaquette, one with a single-

multiplicity and one with a double-multiplicity. See Figure 2.13.

For the single-multiplicity case we have
�

dgl (g−1
l )b

d(gl)d
cΨp(l)cA(p)l,lΨ̄p(l)b =Ψp(l)bA(p)l,lΨ̄p(l)b

=STr
[
Ψ̄p(l)Ψp(l)

]
A(p)l,l ,

(2.64)

where in the second equation we used the cyclicity of supertrace. Note that there is no Nc−dependent

factor generated by the Weingarten integral at this order. For the double-multiplicity case we
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l

l′

l

l′

FIGURE 2.13. Single-multiplicity (left) and double-multiplicity (right).

have a factor of N−1
c :

�
dgldgl′ (g−1

l )b1
d1

(gl′)
d1
c1 (g−1

l′ )b2
d2

(gl)
d2
c2Ψp(l′)c1A(p)l,l′Ψ̄p(l)b1Ψp(l)c2A(p)l′,lΨ̄p(l′)b2

= 1
Nc
Ψp(l′)cA(p)l,l′Ψ̄p(l)bΨp(l)bA(p)l′,lΨ̄p(l)c

= 1
Nc

Str
[
Ψ̄p(l′)Ψp(l′)

]
A(p)l,l′

[
Ψ̄p(l)Ψp(l)

]
A(p)l′,l.

(2.65)

2.5.3 Contribution to effective action

By the linked-cluster principle,3 only the connected diagrams appear in Seff,L. Both the examples

above are connected, and they indeed build the leading-order terms in the effective action:

−S(0)
eff,L = −1

2

∑
p∈Λ

∑
l∈±∂p

STr(Ψ̄p(l)Ψp(l))A(p)l,l;

−S(1)
eff,L = 1

8Nc

∑
p∈Λ

∑
l ̸=l′∈±∂p

STr(Ψ̄p(l′)Ψp(l′))A(p)l,l′(Ψ̄p(l)Ψp(l))A(p)l′,l.

For completeness, we present two higher-order terms in Figure 2.14, which carry N−2
c and

N−3
c , respectively. There might also exist connected diagrams involving more than one plaquette.

FIGURE 2.14. Some examples of higher-order terms in the effective action.

Figure 2.15 shows an example of two adjacent plaquettes which are connected by the pig noses.

However, this particular contribution was found to be zero.

3See Appendix B.
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FIGURE 2.15. A connected digram with adjacent plaquettes.

2.6 Dual theory: a first look

In summary, now we have two equivalent descriptions for BZN:

Z=
�

DU e−Sind[U] =
�

D(Ψ,Ψ̄) e−Seff,G[Ψ,Ψ̄]−Seff,L[Ψ,Ψ̄];(2.66)

Sind[U]= N f
∑

p∈Λ

∞∑
k=1

e−4mk −e−4Mk

k
[trU(∂p)k + tr(U(∂p)†)k];(2.67)

Seff,G[Ψ,Ψ̄]≈−C0 − C1

4Nc

∑
l∈Λ

∑
p,p′∈B(l)

ϵ(p, l)ϵ(p′, l)STr(Ψ̄p′(l)Ψp(l))J̃(Ψ̄p(l)Ψp′(l))J̃

+O (
1

N3
c

);(2.68)

Seff,L[Ψ,Ψ̄]≈ 1
2

∑
p∈Λ

∑
l∈±∂p

STr(Ψ̄p(l)Ψp(l))A(p)l,l

− 1
8Nc

∑
p∈Λ

∑
l ̸=l′∈±∂p

STr(Ψ̄p(l′)Ψp(l′))A(p)l,l′(Ψ̄p(l)Ψp(l))A(p)l′,l

+O (
1

N2
c

).(2.69)

To obtain (2.68), we have defined J̃ ≡ diag(−J, J) and used the cyclicity of supertrace.

2.6.1 Review of Wilson lattice theory

How is BZN related to Wilson pure gauge theory (WGT) [59]? It was demonstrated in [65, 66]

that under the conditions stated in Conjecture 2.1, BZ and WGT share the same continuum-limit,

which is believed to be YM4. The definition for the WGT action used in [64] is

(2.70) SW[U]=− β

2Nc

∑
p∈Λ

[trU(∂p)+ tr(U(∂p)†)].

As a long-lasting exemplary model, WGT is proved to be useful when it comes to simulations of

the infrared physics of QCD, such as the static quark-antiquark potential [86] and the mass-gap

[87]. At the weak-coupling limit (β≫ 1) WGT converges to YM; however, the theory becomes

non-perturbative, so it is challenging to understand the physics in this regime analytically. In

comparison, at the strong-coupling limit (β≪ 1) one can compute the quark-antiquark potential

4The gauge groups U(Nc) and SU(Nc) are both investigated in various dimensions, and the universality condition
is refined.
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by a perturbation method, which is usually done by performing a small−β expansion of a Wilson

loop.

2.6.2 Comparison of BZN and WGT

Turning now to BZN described by (2.67). Let’s try to use it to evaluate the Wilson loop expectation

value for a large rectangular loop C :

(2.71) 〈W[C ]〉 ≡
�

DU
[

1
Nc

trU(C )
]

e−Sind[U] =
�

DU
[

1
Nc

trU(C )
] ∞∑

n=0

(−Sind[U])n

n!
.

Suppose the loop C encloses n′ plaquettes, then according to the Weingarten integral, a generic

nth-order term in (2.71) is non-vanishing only if n ≥ n′. This is because only at the n′th-order or

higher could one find enough distinct plaquettes to assemble a 2d surface enclosed by C .

In WGT, the derivation for the leading-order term of 〈W[C ]〉 is straightforward, which is

built from the plaquettes constituting the minimal surface enclosed by C . For large C , this term

dominates the expectation value and results in the famous area law of 〈W[C ]〉, which supports

the color-confinement hypothesis of a static quark-antiquark pair in QCD. In BZN, the analysis

is more involving due to the series expansion in k in (2.67), and it makes an analytical study less

appealing than a numerical simulation5. Therefore, instead of a rigorous evaluation of (2.71), we

are giving a heuristic explanation below to argue how the same area law could be realized in

BZN as well.

Firstly, we should make sure the series expansion in k is a sensible one. Fixing m > M > 0

and N f ≥ Nc as suggested by Conjecture 2.1 , it follows that the factor (minus sign absorbed)

(2.72) f (k)= N f (e−4Mk −e−4mk)
k

> 0 ∀k.

Now, the sum of traces of the unitary matrices is bounded by 2Nc from above for all k, so as

long as one can show that f (k = 1) is a finite number and f (k) is strictly decreasing, the series

expansion is sensible6. It is clear that f (k = 1) is finite; in addition, the derivative f ′(k) is strictly

negative as long as m > M > 0, so f (k) is strictly decreasing indeed.

For concreteness, from now on we fix the difference ε= m−M as a positive constant, such

that by tuning M alone, we are moving m, M simultaneously. As a matter of fact, f (k) decreases

faster when M is larger; consequently, because the continuum-limit is realized at M → 0, this

means the farther away BZN from the continuum, the better control we have over the series

expansion in k. This same feature is shared by the conventional strong-coupling expansion of

WGT.

Based on the observation above, one can imagine sending M ≫ 1 so that the difference

between the k = 1 terms and the k > 1 terms is deepened. More importantly, let us make M large

5For a numerical result of the Wilson loop expectation value, see [66].
6To a physicist, but not necessarily to a mathematician.
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enough for any given N f , ε such that f (k = 1) < 1. In this scenario, it is likely that the k = 1

terms dominate and f (k = 1) plays the same role as the parameter β in WGT, and hence it seems

promising that the same area-law could be derived using the conventional lattice gauge theory

tools.

2.7 The dual description of Wilson loop

Our next question is what advantages does the dual description (2.68), (2.69), which will be

known as dual-BZN, might have compared to the original one? One classic test is the computation

of Wilson loop expectation value 〈W[C ]〉 in the dual theory, where we hope to gain better control

of this observable when BZN is closer to continuum YM.

2.7.1 Computation for single link

Consider again a large loop C and pick the gluon u from an arbitrary link belonging to C . By

inserting this gluon into the single-gluon integral (2.36), we can compute its contribution to

〈W[C ]〉:

(2.73) W jk ≡
�

U(Nc)

du (u±) jke−tr
(
1c+u
1c−u D

)
,

where the color indices { j,k} are written out explicitly. Note that the possible sign change ±
depends on the relative orientation of the link with respect to C , and without lost of generality it

will always be set to +. Following the similar steps leading to (2.39), the integral is rescaled to

(2.74) W jk =
�

HermNc (C)

dM e−Nctrln(1c+M2/Nc)eitrMD/
p

Nc

 i Mp
Nc

+1c

i Mp
Nc

−1c


jk

.

Firstly, we make use of the expansion

(2.75)

 i Mp
Nc

+1c

i Mp
Nc

−1c


jk

=−δ jk −2
∞∑

p=1

[
(

iM√
Nc

)p

]
jk

together with the equation (summation convention implied)

(2.76)
∂

∂Dkl1

∂

∂Dl1l2

· · · ∂

∂Dlp−2lp−1

∂

∂Dlp−1 j
eitrMD/

p
Nc =

[
(

iM√
Nc

)p

]
jk

eitrMD/
p

Nc

to rewrite (2.74) as

(2.77) W jk =Z0

[
−δ jk −2

(
∂

∂D
+ ∂

∂D
∂

∂D
+ ∂

∂D
∂

∂D
∂

∂D
+·· ·

)
k j

]
e−Seff[D].

In the derivation we have used (2.42) and (2.46).
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The next step is to extract the leading-order term in the large−Nc expansion of W jk. An

immediate observation is that W jk doesn’t have terms independent of D because of (2.73), so we

only have to pay attention to the terms containing D. Now, as we’ve learned in Section 2.4.2 that

any D−dependent term in Seff[D] has the form trD2q for some integer q, a generic term in (2.77)

looks like

(2.78)
∂

∂Dkl1

∂

∂Dl1l2

· · · ∂

∂Dlp−2lp−1

∂

∂Dlp−1 j

[
Dab1Db1b2 · · ·Db2q−2b2q−1Db2q−1a

]
,

which is non-zero only if p ≤ 2q, and any D−dependent term must carry p < 2q. Carrying out

the differentiations and summing over the repeated indices yield a factor of some power of Nc

multiplied by a product of D’s. As a rule of thumb, the highest-power of Nc comes from the

p = 2q−1 terms where the contraction of indices result in a factor of N p−1
c = N2q−2

c , which is

multiplied by D jk.

Finally, we combine this factor with the one from the power-counting (2.51) and find the

leading-term in (2.77):

(2.79) W jk ≈
[

(const)
Nc

D jk +O (
1

N2
c

)
]

e−Seff[D].

2.7.2 Dual holonomy

It is now straightforward to assemble the contributions from all the gluons living on C to the

expectation value:

(2.80) 〈W[C ]〉 ≈ 1
Z

�
D(Ψ,Ψ̄) e−Seff[Ψ,Ψ̄](−1)ρtrD(C )+ (corrections),

where Seff ≡Seff,G +Seff,L, which can be found in (2.68), (2.69). Here, the ordered product of D’s

along the loop C is denoted by D(C ) and hence trD(C ) should be referred to as the dual holonomy.

For simplicity, an overall factor of some power of Nc is omitted, and an factor of (−1)ρ is included

to account for the effect of the relative orientations.

What we have achieved until (2.80) is to lay the groundwork for a computation of W[C ] in the

dual theory. However, it is still too early to say whether or not this approach can improve the

existing strong-coupling results. To that end, one must take a closer look at the effective action

Seff to identify an effective “coupling strength parameter” in terms of M and m, and to figure out

under which circumstances that this parameter permits a sensible perturbation analysis of (2.80).

We will take a look at this in Section 2.8.1.

2.8 Physical aspects

The most important physical information of dual-BZN is hidden in the matrix J̃ in (2.68) and

A(p) in (2.69). While J̃ is by definition constant over the hyper-cubic lattice Λ, the matrix A(p)

acts non-trivially on the link space. As a first step towards a better understanding of dual-BZN,
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we will be focusing on the boson-boson sector in the subsequent discussion, and leave the other

sectors for future work.

2.8.1 Mass and interaction strength

The link-space component of AM,± (omitting 1c) are:

(2.81) AM,+(p)=AM,−(p)† = 1
e4M −1


e4M +1 2eM 2e2M 2e3M

2e3M e4M +1 2eM 2e2M

2e2M 2e3M e4M +1 2eM

2eM 2e2M 2e3M e4M +1

 .

In this representation, the order of the links is determined by the orientation of p, see for example

Figure 2.37.

We can directly make some observations from (2.81). First of all, the diagonal elements are

link-independent and share the same value

(2.82) AM,+(p)l,l =AM,−(p)l,l =
e4M +1
e4M −1

,

which converges to 1 as BZN runs away from the continuum-limit, i.e., M ≫ 1. As this is the

factor of the quadratic term in (2.69), we may refer to it as the mass. In comparison, for l ̸= l′ the

off-diagonal elements are

(2.83) AM,+(p)l,l′ =AM,−(p)l′,l ∈
{

2eM

e4M −1
,

2e2M

e4M −1
,

2e3M

e4M −1

}
,

and all of them approach 0 as M →∞. Since these elements connect the composite particles from

different links, they should be interpreted as the interaction couplings. Similar results can be

found in Am,±.

Substituting (2.82), (2.83) and the parallel Am,± back to the effective action (2.69), it is clear

that for large M,m, dual-BZN is weakly-coupled. Indeed, in this regime Seff,G and the mass

terms from Seff,L dominate the dual-BZN, whereas the interaction terms from Seff,L are the

relatively-small corrections. As a consequence, it seems that we have a better chance to perform

a perturbation analysis, say, for 〈W[C ]〉 when M,m are large. However, this is also true for BZN,

as pointed out in Section 2.6.1. In order to argue that dual-BZN is more useful regarding the

computations of some observables, one has to look into the non-perturbative regime of BZN, i.e.,

when M,m are close to zero.

Taking M → 0 in (2.81), the matrices AM,± obviously diverge due to the denominator (e4M −
1)−1. Moreover, the differences among the matrix elements diminish in this limit because all

numerators approach 2, which tells us that close to the continuum only the large−Nc expansion

is in effect in (2.69). The same feature is shared by Am,±.
7Note that the orientations of the links are irrelevant in the tunnelling, which is only dependent on the orientation

of the plaquette.
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In contrast to the case of large M,m, we see Seff,G become less and less significant than Seff,L

as M,m are closer to 0. This signals the existence of a dual theory to Yang-Mills, whose feature is

probably determined by the naive-continuum limit of Seff,L alone. By construction there are no

color indices in this dual theory, and we hope in the future a comprehensive study of this model

can reveal more interesting information from the dual theory regarding the infra-red physics of

YM.

Back to the original question, could the dual-BZN help us compute some observables? Sup-

pressing Seff,G means at least in the leading-order we don’t have to worry about the inter-plaqutte

couplings, such as Ψ̄p′(l)Ψp(l) anymore. This might simplify the computation of 〈W[C ]〉 as in

(2.80), for instance. Unfortunately, as for now we are not yet able to carry out this calculation.

Based on the preliminary results above, it seems that we should try to “simplify” the dual theory

further before we perform any realistic computation.

2.8.2 Symmetry group

There are certainly other interesting aspects of the dual-BZN that we should explore. For example,

one can try to identify its global (independent of l,p) symmetry groups. Let K ⊆GL(2N f ;C) be

a symmetry group for the boson-boson part of the effective action, Seff|BB, then any k ∈ K maps

ϕ̄ϕ 7→ k†ϕ̄ϕk and ∀l, l′,p,

kAM(p)l,l′k† =AM(p)l,l′ where AM(p)l,l′ ≡
(
AM,+(p)l,l′ 0

0 AM,−(p)l,l′

)
;(2.84)

kJk† = J.(2.85)

The identity matrix 1 f is implied in both equations and we are using the definition (2.29) for

J. Plugging (2.81) to (2.84), it is straightforward to check that K = U(N f )×U(N f ), which is a

compact Lie group. This can be traced back to the original partition function in (2.21). Based on

our current understanding of the diagrammatic derivation for Seff, it is likely that (2.84), (2.85)

apply to the higher-order terms as well.

2.8.3 Saddle-point configuration

Looking at (2.66), we wonder if a large−Nc analysis can open the door to a semi-classical

approximation. A simple rescaling

Ψ 7→ (Nc)1/2Ψ, Ψ̄ 7→ (Nc)1/2Ψ̄

does lead to a nice form Seff ≡ NcS̃eff, at least to the leading-order. Importantly, apart from the

contraction of color indices within the composite operator Ψ̄Ψ, there is no explicit Nc−dependence

in the field-dependent part in S̃eff. If there exists a change-of-variable recipe which replaces the

composite operators by some new variables without any color indices, then large−Nc indeed
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favors the saddle-points of S̃eff in its new appearance. We will examine this possibility in Section

2.8.4.

As for now, we derive the saddle-point configurations of Seff|BB. Differentiating Seff|BB with

respect to ϕp(l), we find the equations of motion to the order O (1/Nc):

(2.86)

1
2

AM(p)l,l −
1

4Nc

∑
l′∈±∂p

l′ ̸=l

AM(p)l′,lϕ̄p(l′)ϕp(l′)AM(p)l,l′

 ϕ̄p(l)

− C1

2Nc

∑
p′∈B(l)

ϵ(p;l)ϵ(p′;l)Jϕ̄p(l)ϕp′(l)Jϕ̄p′(l)≈ 0,

where C1 < 0. Now, to find a ground state it is reasonable to start with an ansatz that the 2N f by

Nc matrix ϕ̄p(l) is constant over p, l,b, where b is the color index. Furthermore, let’s focus on the

case where the last term in (2.86) is negligible, which can be realized by probing the small M

regime as discussed above8. In this limiting case, there exists a saddle-point configuration which

breaks the symmetry group K :

(2.87) ϕ̄p(l)b =
√

sinh(4M)
4+2cosh(2M)

(
v+
v−

)
, v†

+v+ = 1= v†
−v− ∀p, l,b;

where v+, v− are in CN f . In general, these vectors are not invariant under U(N f ) and hence K

doesn’t preserve (2.87).

By relaxing the constraints on ϕ̄, one expects to discover more saddle-points, and in standard

practice we should compare the statistical weights of these solutions to figure out the subset

of true ground-states. If it turns out a true ground-state breaks K , we can study the effect of

the spontaneous symmetry breaking in the dual-BZN. However, due to the complexity of the

higher-order terms in Seff, we do not have a conclusion in this quest so far.

Crucially, the validity of a semi-classical approximation is still questionable. Even in a color-

neutralised expression, the number of flavors is connected to the original Nc via the universality

condition N f ≥ Nc according to Conjecture 2.1. In other words, in order to keep BZN in the

universality class of YM, N f is inevitably “pushed” higher as Nc is taken to infinity.

2.8.4 Application of superbosonization

The preliminary investigations prompt again the importance of a further simplification of the

dual-BZN defined by (2.68), (2.69). Indeed, Seff is already written in terms of color-singlets

Ψ̄p′(l)Ψp(l), which are tensor-products of supervectors; so a natural question is whether or not

one can rewrite the partition function (2.66) directly in terms of some 4N f by 4N f supermatrices

8Under the ansatz this term also vanishes identically if the numbers of ϵ=+1 and of ϵ=−1 are chosen to be the
same. However, this particular choice should not affect the physics.
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Qp′,p(l). Precisely speaking, we would like to carry out the following change of variables:

(2.88) Z=
�

D(Ψ,Ψ̄) e−Seff,G[Ψ,Ψ̄]−Seff,L[Ψ,Ψ̄] ?=
�

DQ e−Seff[Q].

Here, we use the same notation for Seff[Ψ,Ψ̄] and Seff[Q] to emphasize that a successful trans-

formation of the partition function should be conducted by a direct substitution Ψ̄p′(l)Ψp(l) 7→
Qp′,p(l).

There is a promising mathematical tool, the superbosonization formula [75], which states that

given a set of supervectors Ψ̄b, b = 1,2, . . . ,n built from p Grassmann variables and q complex

variables with n ≥ q, we have the following change-of-variables formula:

(2.89)
�

D(Ψ,Ψ̄) f (
∑
b
Ψb ⊗Ψ̄b)= volU(n)

volU(n+ p− q)

�
D

DQ SDetn(Q)F(Q).

The integration domain is D = U(p)×Herm+
q (C). For this formula to work, it is necessary that

the integral on the left exists, and the function F(Q) is any function that equals to f (
∑
Ψ⊗ Ψ̄)

under the substitution
∑
Ψ⊗Ψ̄ 7→Q.

There are two obvious obstructions standing in our way. First of all, in Seff,G (and probably

also in Seff,L) there are color-singlets comprising variables from different plaquettes, so a naive

factorization of the partition function with respect to the plaquettes p cannot work. Instead,

one needs to extend the superspace further to include the plaquette index, in the hope that we

can then apply (2.89) for each link l iteratively. That is, one supermatrix per link. However, our

understanding of the higher-order terms in Seff is not yet complete, so it is too early to say if this

could be a viable approach.

The second obstruction turns out to be more fatal. One of the necessary conditions for BZN

to converge to YM in the continuum-limit is N f ≥ Nc. Now, the color number Nc is n in (2.89),

whereas 2N f is q even before we include the plaquette index; therefore, it is fundamentally

impossible that n ≥ q in the dual-BZN.

We conclude that the superbosonization formula (2.89) is not available to us, unfortunately.

At the time of writing, the author came across a recent paper [88] in which a different super-

bosonization formula was proposed. The case q > n seems to be resolved in this work. A potential

application of this new formula on dual-BZN will be one of the topics of interest in the future.

2.9 Summary and outlook for BZN

The Gaussian-integral reformulation of BZN was studied in this chapter. The master action was

introduced and dual-BZN was derived by integrating out gluon degrees of freedom on the original

lattice. By Cayley parametrisation and a color averaging technique, we were able to complete the

duality transformation, and arrived at a dual theory written in color-neutral composite operators.

The action of dual-BZN is expressed as a large−Nc series; however, with only the leading-order
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terms it seems difficult for us to unravel the hidden physical information. Nevertheless, a few

properties of dual-BZN were explored.

As a comparison with WGT, the Wilson loop expectation value was computed in BZN. In the

large−M limit where BZN is far away from its continuum-limit, the same area law appears. The

same computation was then carried over to the dual side, where the Wilson loop was replaced

by a dual-holonomy. Additionally, in the boson-boson sector, the (dual) mass parameters and the

interaction strength were identified, and a preliminary investigation around its saddle-points and

symmetries was conducted. Overall, it is certainly desirable to express dual-BZN as a theory of

color-neutral variables. A compelling reason is a possible semi-classical analysis in the large−Nc

limit, but the applicability of such an approximation remains questionable due to the universality

condition N f ≥ Nc.

Regarding the color-neutralisation, we considered a possibility of applying the SuB formula

to transform dual-BZN into a more instructive form. There is, however, a conflict between the

applicability of the formula (2.89) and the universality condition, because the latter results in

rank-deficiency of the composite operators. We hope that future developments in the mathematical

tools for SuB will help us transform dual-BZN to a supermatrix theory.
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3
DIRAC-YANG-MILLS MODEL

The construction of dual-BZN was executed by first introducing some auxiliary bosons and

fermions to the partition function of BZN, and then integrating out the gluons. In this

chapter, we hope to carry out the same procedure in the study of a continuum field theory

called Dirac-Yang-Mills model (DYM).

In DYM, the essential element is a master action Smas for a system of color gauge fields

(gluons) and some auxiliary fields, which plays a similar role as the action in (2.21). Following

the definition of the DYM Lagrangian in Section 3.1, it will be shown in Section 3.2 that by

integrating out the auxiliary fields in Smas, the YM action can be induced at least up to the

leading-order. We will refer to this induced theory as induced Yang-Mills (IYM) and the induced

action as SIYM.

The main part of this chapter is devoted to a dual-description of IYM, or dual-IYM, which is

derived by integrating out the gluons in Smas. While the integration itself is straightforward, the

resulting theory for the auxiliary fields is quite intriguing and a complete understanding of its

physical content is still at large. To see behind the veil, we are going to study some qualitative

features of dual-IYM based on its close relation to QCD and its symmetries, which are illustrated

in Section 3.3 - Section 3.4. At the end, a proposal for a low-energy effective description of

dual-IYM is presented.

With everything learned from this chapter, we will be able to take on a more ambitious and

quantitative approach to dual-IYM in Chapter 4.
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3.1 Dirac-Yang-Mills model

3.1.1 Master action for DYM

In the program of induced gauge theory, the definition for the master action Smas is an art in itself.

In one aspect, Smas should be designed in such a way that the induced SIYM is a regular functional

and it indeed “approximates” YM. As a common fact, in a generic quantum field theory there are

usually some ultra-violet divergences in the effective action derived by integrating out part of

the field components; therefore, we expect to face some singular terms in SIYM. Our proposal to

“regularize” the theory is using both bosonic and fermionic auxiliary fields. See Section 3.2.

More significantly, because our main interest lies in developing a dual theory of YM, we would

like to tailor Smas such that the induced dual-IYM shares some of the iconic features of QCD by
construction. One of the advantages in this approach is that the tremendous amount of existing

literature on QCD and effective field theories are now at our disposal, which will assist us with

the understanding of the physical aspects of dual-IYM.

Taking these into consideration, we propose a d = 4 Euclidean field theory [80] with the action

Smas =
�

d4x LB +LF , where

LB = iTr[φ̄(Γµ)T(∂µ+ Aµ)φ+MBφ̄Ω
Tφ]+ϵTrφ̄φ;(3.1)

LF =−iTr[ψ̄(Γµ)T(∂µ+ Aµ)ψ+MFψ̄Ω
Tψ].(3.2)

The gluon is denoted by the field Aµ(x) ∈Lie(U(Nc)), and the auxiliary Dirac fermions and Dirac

bosons1 by ψ,ψ̄ and φ, φ̄ respectively, both of which carry mass parameters denoted by MB, MF .

In DYM we always set MB > MF .

As usual, Γµ ≡ γµ⊗1N f and γµ are the Euclidean Dirac matrices obeying

(3.3) {γµ,γν}=−2δµν14,

where we have chosen all γµ to be skew-Hermitian. In addition, we also need γ5 ≡ γ0γ1γ2γ3. The

mass matrix Ω is designed to be Hermitian and

(3.4) {Ω,Γµ}= 0 ∀µ; Ω2 =14N f .

For example, Ω=Γ5 ≡ γ5 ⊗1N f is a valid choice. The exact matrix representations for Γµ and Ω

are not specified explicitly, and they will only be fixed when necessary.

Both φ and ψ live in the fundamental representation of the color group U(Nc) and the dual

representation2 of the flavor group U(N f ), so they carry color vector-indices c = 1, . . . , Nc along

with flavor covector-indices f = 1, . . . , N f ; in addition, they also have the usual Dirac spinor index

s. The convention we follow here is to treat φ≡φc
s f as an Nc ×4N f matrix and accordingly its

hermitian conjugate φ† ≡ φ̄≡ φ̄s f
c as an 4N f ×Nc matrix. The fermion ψ (resp., ψ̄) has the same

1This is not a physical field, so it can be interpreted as a ghost degrees of freedom if one prefers.
2The complex-conjugate of the fundamental representation of U(N f ).
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index structure as φ (resp., φ̄), but they are essentially two mutually independent variables, so it

isn’t necessary for ψ̄ to transform in the conjugate representation of ψ. The matrices Γµ ≡ (Γµ)s f
s′ f ′

andΩ≡Ωs f
s′ f ′ are both 4N f ×4N f and their transposes (Γµ)T,ΩT are used in (3.1), (3.2) such that

the standard contraction of matrix indices applies. By definition, they act trivially on the color

space. To illustrate our convention of indices, carrying out the trace “Tr” over the spinor-flavor

space yields for instance

(3.5) Tr[φ̄(Γµ)T Aµφ]≡ φ̄s f
c[(Γµ)T] s′ f ′

s f (Aµ)c
c′φ

c′
s′ f ′ .

We observe in (3.1), (3.2) that the massive Dirac operators

DB ≡ (Γµ)T(∂µ+ Aµ)+MBΩ
T;(3.6)

DF ≡ (Γµ)T(∂µ+ Aµ)+MFΩ
T(3.7)

are both Hermitian, and their spectra are unbounded on both sides of the real axis. Hence, the

only way to make the DYM partition function

(3.8) ZDYM =
�

DADφ̄DφDψ̄Dψ e−Smas[A,φ,ψ]

non-singular is to “Wick rotate” the Dirac operators to the imaginary axis, which is done by

multiplying them by a factor of i as in (3.1), (3.2). Rigorously speaking, the integral in the bosonic

sector makes sense only if a small “damping” component is added, which is the ϵ term in (3.1);

this term is eventually taken to be infinitesimal so it will be dropped from now on.

3.1.2 A dual pair of theories

Having introduced all the elements in DYM, we would like to give a teaser of the main results. In

Section 3.2, it will be shown that the integration over the auxiliary fields induces an effective

action

(3.9) SIYM[A]≈SYM,g[A]+corrections,

where the definition for YM action is chosen to be

(3.10) SYM,g[A]≡− 1
g2

�
d4x trFµνFµν.

Here g is the gauge coupling and the field strength Fµν is given by

(3.11) Fµν ≡ ∂µAν−∂νAµ+ [Aµ, Aν].

The lower-case trace “tr” is always over the color space, if not otherwise specified.

By putting back the dynamics of the gluons, i.e., adding another YM action SYM,g′ with

a different g′ to Smas, we obtain a pseudo-super QCD action. This simply changes the gauge

coupling in the induced action (3.9):

(3.12) SYM,g′′[A]+corrections←−SYM,g′[A]+Smas[A,φ,ψ],
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where g′′−1 = g−1 + g′−1. To derive a dual description of IYM, we integrate out the gluons Aµ in

the pseudo-super QCD action, which results in an induced dual theory for the auxiliary fields.

In analogy with the connection between QCD and some low-energy effective field theories for

hadrons, we expect this dual theory to flow to a pseudo-super version of some of these effective

theories in the infra-red. We will take a closer look at this in Section 3.4.

As a clarification, the word pseudo-super was used not only to emphasize the difference

in the mass parameters MB > MF , but also the fact that (3.12) is not necessarily in the same

universality class of the conventional QCD. Indeed, the additional gauge coupling g′ is chosen

to be large such that SYM,g′ is infinitesimal; by contrast, the QCD bare coupling must be small
due to asymptotic freedom3. One should always keep this remark in mind, but throughout this

work, we still assume that the effective degrees of freedom at low-energy are alike to the ones in

QCD. In the subsequent sections, the gauge coupling g′ will be sent to infinity; that is, we will be

investigating the dual pair of theories

SIYM[A]←→Sdual[φ,ψ]

induced from the DYM partition function (3.8), which corresponds to the infinite-coupling limit of

the pseudo-super QCD. The main advantage of studying this limit is that the integral over Aµ can

be evaluated without the need of perturbation methods and gauge-fixings because SYM,g′[A] is

now absent. As the result, the induced dual-IYM seems like a good prototype of a dual description

of YM. Nevertheless, it is still a challenging task to build a concrete understanding of this dual

theory, as we will discuss in Chapter 4.

3.2 Induced Yang-Mills

In this section, the integration over the auxiliary fields in (3.8) is presented. The original

calculations for the case where the background field Aµ(x) ∈Lie(U(Nc)) was already completed in

[80], but in what follows, we are going to work out a generalized case where one adds another

field Bµ to the action. The reason for this generalization and the application of the result will

be elaborated in Section 4.1. At the end of this section, the induced action SIYM is recovered by

removing Bµ.

As we will explain in Section 4.1, the field Bµ is valued in the Lie algebra of a dual symmetry

group which acts on the spinor-flavor space. Therefore, unlike the gluon Aµ, it doesn’t commute

with the matrices Γµ (see Section 3.2.1). This feature greatly complicates the derivation of the

effective action for the new background field and leads to an intriguing singularity under certain

conditions.

3The asymptotic freedom in the ultra-violet limit is necessary in QCD because one wishes to keep the effective
coupling and/or some observables in the lower-energy regime finite. We do not ask for the same in DYM.
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3.2.1 Pauli-Villars regularization

Consider Xµ ≡ Aµ+BT
µ where Aµ is the usual Lie(U(Nc))−valued color gauge field and Bµ is

chosen such that BµΓ
ν+ΓνB†

µ = 0 ∀µ,ν, BµΩ+ΩB†
µ = 0 ∀µ. Since Aµ commutes with (Γν)T and

ΩT and it is skew-Hermitian, the new background field Xµ obeys

X †
µ(Γν)T + (Γν)TXµ = 0 ∀µ,ν;(3.13)

X †
µΩ

T +ΩTXµ = 0 ∀µ.(3.14)

Replacing Aµ in (3.6) and (3.7) by Xµ, we are now dealing with the following Dirac operators:

D̃B ≡ (Γµ)T(∂µ+ Xµ)+MBΩ
T;(3.15)

D̃F ≡ (Γµ)T(∂µ+ Xµ)+MFΩ
T.(3.16)

Both operators are Hermitian as well because

(3.17) [(Γµ)TXµ]† =−X †
µ(Γµ)T = (Γµ)TXµ,

where we have used (Γµ)† =−Γµ and (3.13).

As reviewed in Section 3.1, the reality of the spectra allows us to integrate out φ, ψ in (3.8)

with Xµ as the background field, and the outcome is

(3.18) e−Sind[X ] ≡
�

Dφ̄DφDψ̄Dψ e−Smas[X ,φ,ψ] = (constant) · DetD̃F

DetD̃B
(ϵ→ 0).

Some comments are in order:

1. We included both Dirac fermions and Dirac bosons in DYM to achieve the ratio of determi-

nants in (3.18), because it grants the cancellations of the ultra-violet divergences from D̃B

and D̃F . This recipe is in alignment with the famous Pauli-Villars method [89].

2. Away from the ultra-violet regime, the spectrum of D̃B differs from the one of D̃F due to the

choice MB > MF . This gap between the mass parameters ensures that the induced theory

described by Sind[X ] is not going to be empty.

The first step in the derivation of Sind[X ] is implementing a proper ultra-violet regulator in

(3.18). Following [80], since D̃2
F , D̃2

B are both positive-definite, we can make use of the heat-kernel

regularization:

Sind[X ]=−1
2

(T̃rlnD̃2
F − T̃rlnD̃2

B)

= 1
2

lim
δ→0

� ∞

δ

dt
t

T̃r
(
e−tD̃2

F −e−tD̃2
B

)
,

(3.19)

where “T̃r” also contains the trace over space-time. Taking δ → 0 amounts to removing the

ultra-violet regulator, which should be done after the contributions to Sind[X ] from fermionic

sector and bosonic sector are combined. In this small−δ limit, only the lowest-order terms in t

are important, hence we are going to study the small−t expansion of (3.19) in the next section.
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3.2.2 Small−t expansion

The bosonic and the fermionic contributions are identical except for their mass parameters, so in

this section, only the computation in the bosonic sector is presented. For brevity, we will skip the

steps similar to the ones in [80] and only summarise the intermediate results.

Firstly, we evaluate the trace over space-time in (3.19) using the equality

(3.20)
�

d4x 〈x|e−tD̃2
B |x〉 =

�
d4x

�
d4k

(2π)4 eikxe−tD̃2
B e−ikx.

The square of the Dirac operator (3.15) reads

D̃2
B = M2

B −δµν(∂µ− X †
µ)(∂ν+ Xν)

+ 1
2

(Γµ)T(Γν)T[∂µXν−∂νXµ− X †
µ∂ν+ X †

ν∂µ− X †
µXν+ X †

νXµ]

+2MBΩ
T(Γµ)TR(Xµ).

(3.21)

To obtain this expression we have used the relations (3.3), (3.4), (3.13), (3.14), and denoted the

real part of Xµ by R(Xµ)≡ 1
2 (Xµ+ X †

µ).

Following [80], the conjugation by exp(ikx) replaces any ∂µ by ∂µ − ikµ, which turns the

k−integral in (3.20) into

e−tM2
B ·
�

d4k
(2π)4 e−tk2+tF(k);(3.22)

F(k)≡−2MBΩ
T(Γµ)TR(Xµ)+δµν(∇̃µ∇ν− ikµ∇ν− ikν∇̃µ)

− 1
2

(Γµ)T(Γν)T[∂µXν−∂νXµ− X †
µ∂ν+ X †

ν∂µ− X †
µXν+ X †

νXµ

− ikµXν+ ikνXµ+ ikνX †
µ− ikµX †

ν].(3.23)

Here, k2 ≡ δµνkµkν and ∇µ ≡ ∂µ+ Xµ, ∇̃µ ≡ ∂µ− X †
µ.

The integral (3.22) is computed by the standard Wick’s theorem for Gaussian integrals:

�
d4k

(2π)4 e−tk2 = 1
16π2t2 =: C,

�
d4k

(2π)4 kµkνe−tk2 = Cδµν
2t

,
�

d4k
(2π)4 kµkνkλkρ e−tk2 = C

(2t)2 (δµνδλρ+δµλδνρ+δµρδνλ).

In addition, any integral with odd-powers of kµ in the integrand vanishes. Taking these into

account, in order to find the O (C · t) terms in the small−t expansion, we only need to evaluate the

integrals up to the quadratic order in F(k). To see that, one expands the k−integral:

(3.24)
�

d4k
(2π)4 e−tk2+tF(k) ≈O (F0)+O (F1)+O (F2)+·· · .
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As shown in (3.23), the highest-order of k in F(k)n is n itself. Hence, the contributions to O (C · t)
are either from the O (k0) terms in O (F1), which can be easily read out, or from the O (k2) terms in

O (F2). As we’ll see below, the main outcome is that in the general case where the background field

Xµ has a non-vanishing real part R(Xµ), the O (C · t) terms are non-vanishing. This observation

by itself is intriguing because it prevents us from taking the δ→ 0 limit, and plays a crucial role

in the discussion in Section 4.1.

Let us now explain the important ingredients in the derivation of the O (C · t) terms. Firstly,

the integration of the O (k2) terms in O (F2) yields

(3.25)
Ct
4

·



−δµν(∇µ+∇̃µ)(∇ν+∇̃ν)

+ (Γα)T(Γβ)T(∇µ+∇̃µ)(δµαR(Xβ)−δµβR(Xα))

+ (Γα)T(Γβ)T(δαµR(Xβ)−δβµR(Xα))(∇µ+∇̃µ)

+ (Γα)T(Γβ)T(Γγ)T(Γλ)T[−δαγR(Xβ)R(Xλ)+ (γ↔λ)

+ (α↔β)− (γ↔λ,α↔β)]


,

where we have used δµν (resp., δµν) to raise (resp., lower) the indices. The sum of covariant

derivatives ∇µ+∇̃µ equals to 2(∂µ+I(Xµ)), where 2I(Xµ)≡ Xµ− X †
µ.

Using (3.13), (3.14), one observes that R(Xµ) anticommutes with (Γµ)T, ΩT, whereas I(Xµ)

commutes with (Γµ)T, ΩT. This proves to be useful for permuting the factors of (Γµ)T. More

importantly, when we carry out the partial trace over spinor-flavor space (denoted by “Tr”) in “T̃r”

in (3.19), we need the fact that for any I which commutes with all (Γµ)T, there is the following

identity:

(3.26) Tr(Γα)T(Γβ)T(Γγ)T(Γλ)TI = (δαβδγλ−δαγδβλ+δαλδβγ)TrI.

After contracting the indices, we write (3.25) as

(3.27)
Ct
4

·



− (∇µ+∇̃µ)(∇µ+∇̃µ)

+2(Γµ)T(Γν)T[∂µR(Xν)−∂νR(Xµ)

+I(Xµ)R(Xν)+R(Xν)I(Xµ)

−I(Xν)R(Xµ)−R(Xµ)I(Xν)]

+12R(Xµ)R(Xµ)


.

The contribution from the O (k0) terms in O (F1) is

(3.28) Ct ·

−2MBΩ
T(Γµ)TR(Xµ)+∇̃µ∇µ

− 1
2

(Γµ)T(Γν)T(∂µXν−∂νXµ− X †
µXν+ X †

νXµ)

 .

Finally, after some tedious algebra, the combination of (3.27) and (3.28) gives us the O (C · t) term:

(3.29) Ct ·


−2MBΩ

T(Γµ)TR(Xµ)

+∂µR(Xµ)+I(Xµ)R(Xµ)−R(Xµ)I(Xµ)+2R(Xµ)R(Xµ)

− 1
2

(Γµ)T(Γν)T(∂µI(Xν)−∂νI(Xµ)+ [I(Xµ),I(Xν)]− [R(Xµ),R(Xν)])

 .
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Taking the partial trace “Tr” of this result, we notice that because the factor in the last line

(3.30) ∂µI(Xν)−∂νI(Xµ)+ [I(Xµ),I(Xν)]− [R(Xµ),R(Xν)]=: Yµν

commutes with any (Γµ)T, we have

(3.31) Tr(Γµ)T(Γν)TYµν =−δµνTrYµν.

By this relation and the fact that Yµν is anti-symmetric in µ↔ ν, the partial trace of the last line

in (3.29) turns out to be zero. Moreover, the trace of the commutator [I(Xν),R(Xν)] also vanishes.

However, the rest of the terms generally survive unless R(Xµ)= 0. We will revisit this result and

examine it in detail in Section 4.1.

3.2.3 Background field in Lie(U(Nc))

Back to our original task of inducing YM. Now, instead of Xµ we set the background field back to

the color gauge field Aµ(x) ∈Lie(U(Nc)), which is skew-Hermitian. Consequently, R(Aµ) vanishes,

which in turn sends the O (C · t) term (3.29) to zero. Hence, one moves forward and compute the

O (C · t2) terms from the k−integral. We have already concluded the calculations in [80], and the

final result for the induced action (3.9) is

SIYM[A]≈ (constant)−N f

� M2
Bδ

M2
Fδ

dt
48π2t

�
d4x trFµνFµν+O (t)

δ→0−→ (constant)− N f ln(M2
B/M2

F )

48π2

�
d4x trFµνFµν.

(3.32)

This is indeed a YM action, where the induced gauge coupling can be defined according to the

convention (3.10)

(3.33)
1
g2 ≡ N f ln(M2

B/M2
F )

48π2 .

Importantly, the reason we chose MB > MF was to ensure that SIYM is positive semi-definite.

It is expected that in (3.32) the correction O (t) consists of higher-order terms in Aµ. Rigorously

speaking, one needs to check if the spacetime integrals of these terms are “non-singular” enough,

such that the regulator δ in the heat-kernel integral can be removed without running into any

trouble. This analysis is however beyond the scope of this dissertation, and we can only give the

following supportive argument.

Consider the large−N f limit of DYM. By rescaling Aµ to (N f )−1 Aµ, the higher-order terms are

suppressed due to the N f −dependent factors they carry, and we hope that by sending N f →∞,

the step of taking δ→ 0 becomes legitimate. It is worth pointing out that this observation is

compatible with the N f ≥ Nc condition in Conjecture 2.1 for BZ; consequently, we will always

apply the same condition N f ≥ Nc in the subsequent sections.
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We conclude this section with a remark. So far we have been considering Aµ as a fixed

background field. When IYM is promoted to a quantum field theory, a functional integration over

various configurations of Aµ is introduced. In fact, if the regulator δ in DYM can be safely sent to

0, then the energy of Aµ is unbounded in the ultra-violet limit. In order to make sure IYM, like

YM, is also asymptotically free, we should send the ratio MB/MF arbitrarily close to the infinity,

which corresponds to g → 0 in (3.33).

3.3 Dual theory of IYM: a first look

Having seen how YM action can be induced from the master action Smas, we would like to explore

the dual side of DYM. Let’s return to the partition function (3.8) and try to integrate out the

gluon Aµ. To that end, one introduces a supervector

(3.34) Ψ≡
(
ψ φ

)
; Ψ̄≡

(
ψ̄

φ̄

)

to write the interaction part of the DYM Lagranigan (3.1)+(3.2) as

(3.35) iSTrΨ̄(Γ̃µ)T AµΨ= itr[ΨΓ̃µΨ̄]Aµ,

where (Γ̃µ)T ≡12⊗ (Γµ)T and the cyclicity of the supertrace was used for its alternative expression

as a color trace. One then identifies ΨΓ̃µΨ̄≡ Jµ as the color current.

Since Aµ ∈Lie(U(Nc)), the integration of Aµ yields the following zero-current condition (ZC):

(3.36) [ΨΓ̃µΨ̄]c
c′ = (Jµ)c

c′
!= 0 ∀µ, c, c′.

Substituting this condition back to (3.8), we arrive at the preliminary definition of dual-IYM:

(3.37) ZDYM ≡Zdual =
�

J=0

Dφ̄DφDψ̄Dψ e−Sfree[φ,ψ].

The action Sfree is nothing but Smas with the gluon Aµ removed:

(3.38) Sfree =
�

d4x iTr[φ̄(Γµ)T∂µφ+MBφ̄Ω
Tφ]− iTr[ψ̄(Γµ)T∂µψ+MFψ̄Ω

Tψ],

hence it is just a pseudo-super extension of the free Dirac action. In fact, the mystery of dual-IYM

is mainly rooted in ZC, whose solution space defines the target space of the auxiliary fields φ, ψ.

In the past, the same ZC has already been observed in a purely fermionic system [63], but a

complete picture of its solution space is still unrevealed to the best of our knowledge. In Chapter 4,

we are going to undertake the derivation of the ZC solutions, which turns out to be a challenging

task. Fortunately, to the extent of a qualitative study of (3.37), it seems that a comprehensive

understanding of the solution space is not required. In the remaining part of this section, we will

demonstrate some enlightening observations on (3.37) and use them to motivate our studies of

different aspects of dual-IYM in the subsequent sections.
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3.3.1 Qualitative features of dual-IYM

In Section 2.6, we have studied a possible dual description for BZN, which is known as dual-BZN.

The effective action for dual-BZN was manufactured in a specific way such that it only consists of

color-singlets, and one of the main reasons for doing so was to find a more attainable formalism of

the dual theory. In addition to the potential computational advantage, we have more incentives

in DYM to build dual-IYM as a system of color-neutral entities.

First of all, the color gauge invariance of ZDYM is inherited by dual-IYM. Indeed, as it was

pointed out in [63], any color gauge transformation in (3.37) of Sfree[φ,ψ] vanishes because

J = 0. Therefore, intuitively we would like to find a new expression for Zdual such that the color

invariance becomes manifest. On top of this, most derivations of observables in non-Abelian

gauge theories require a gauge fixing, which generally complicates the calculations. If the same

observables could be studied in dual-IYM, where the color degrees of freedom are hidden away, it

is likely for us to have a computational advantage and even gain some new perspectives.

In Section 3.1.2, we emphasized that dual-IYM is the infinite-coupling limit of the pseudo-

super QCD. Now, in reality QCD itself does NOT directly describe the hadronic physics. Instead,

it is generally believed that in the infra-red regime the suitable degrees of freedom are no longer

the gluons and quarks in QCD, but some color-neutral fields such as mesons and baryons. Over a

few decades, various theories have been developed to explain the dynamics of these color-singlets,

and many of them are interpreted as low-energy effective field theories4 of QCD. As explained in

Chapter 1, we hope a dual theory of YM can take us deeper into the infra-red regime of the gluon

dynamics; therefore, it is reasonable to first understand the low-energy physics of dual-IYM.

In view of the resemblance of DYM to QCD, we are interested in an effective field theory for

some color-neutral degrees of freedom. Heuristically speaking, this theory is expected to be a

pseudo-super version of some effective field theory for QCD.

Condensates
To navigate ourselves in the vast ocean of the theory space, we compute the derivatives of

lnZDYM with respect to the mass parameters, which give us:

〈Trφ̄ΩTφ〉dual-IYM ∝ 1
ZDYM

∂ZDYM

∂MB
∝〈 N f

MB
trFµνFµν〉IYM;(3.39)

〈Trψ̄ΩTψ〉dual-IYM ∝ 1
ZDYM

∂ZDYM

∂MF
∝〈 N f

MF
trFµνFµν〉IYM.(3.40)

The brackets stand for vacuum expectation values (VEVs). The ones for IYM were derived using

(3.32), and the ones for dual-IYM could be directly read out from (3.37). Note that ∝ is used here

because we omitted some irrelevant constants.

A crucial observation can now be made. On the right hand side of (3.39) and (3.40), the VEV

〈trFµνFµν〉IYM has been studied extensively in QCD, which is conjectured to be a nonvanishing

4A modern text on this is [90].

46



3.4. DUAL SYMMETRIES AND EFFECTIVE FIELD THEORY

quantity known as the gluon condensate [91–93]. Despite the absence of an analytical proof,

there are recent FRG evidences for its existence (see e.g. [94] and references therein). Under the

premise that IYM flows to YM, we may assume this VEV to be nonzero in IYM as well.

Moving to the left hand side. The VEV 〈Trψ̄ΩTψ〉dual-IYM (and its boson-partner) and the well-

known chiral condensate in QCD [95, 96] are only distinguished by the mass matrix Ω! Similar

to the gluon condensate, there is no theoretical proof for the chiral condensate; nevertheless, its

existence is well-accepted (see e.g. [97] and references therein). Motivated by this, we presume the

VEVs in dual-IYM are nonvanishing and refer to them as the boson (resp., fermion) condensates.

We also point out there is a theoretical analysis on a gauged Thirring model in d = 3+1 sharing

the same current-current interaction as dual-IYM, which also supports the existence of a chiral

condensate [98].

Two implications follow. Firstly, the chiral condensate in QCD breaks the (approximate) chiral

symmetry down to a smaller group, and this spontaneous symmetry breaking (SSB) phenomenon

is the foundation of one of the popular low-energy descriptions of QCD, the chiral perturbation

theory (ChPT) [99]. Motivated by this, the effective field theory for dual-IYM should be assembled

in the same way as how ChPT was developed, i.e., based on SSB. In the following, this is called

the chiral-type effective theory, which will be covered in Section 3.4.

On top of this, the correspondence (3.39), (3.40) also shed light on the famous YM mass

gap problem. To this day, there is no satisfying analytical derivation for the mass gap, which

amounts to proving there are no massless excited states in YM. The lightest ones are known as

glueballs [100]. By studying dual-IYM, we hope to provide a fresh point of view on this problem. In

particular, it was argued that the value of glueball mass can be explained by the gluon condensate

[45]. Therefore, if we could compute the VEVs in dual-IYM and show that either the boson

condensate or the fermion condensate is formed, then the corresponding gluon condensate would

support the mass gap conjecture.

As a side remark, by proving either one of the VEVs in dual-IYM is nonzero, the other VEV is

automatically nonzero due to the connections between (3.39) and (3.40).

3.4 Dual Symmetries and effective field theory

In any quantum field theory, the symmetry groups always play a prominent role, if not the most

important one. It is the same for dual-IYM, so the first step towards a better knowledge of this

model is to understand what kinds of symmetry groups it has and their properties.

In this section, we are going to study several symmetry groups in dual-IYM. Different types

of symmetries were defined and examined in Section 3.4.1 - Section 3.4.3. These symmetries are

extremely useful; for example, they can be applied in the study of the solution space of ZC, which

will be covered in Section 4.2. We conclude this section with another important application: a

construction of a chiral-type effective theory for dual-IYM.
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3.4.1 Definitions for symmetry groups

First and for most, the dual symmetry groups of interest to us are the ones acting on the spinor-

flavor space, because according to the blueprint for dual-IYM depicted in Section 3.3, all the

variables should eventually be combed into color-singlets. If not otherwise specified, we will only

consider the global symmetry groups.

A fundamental feature of DYM is there are Dirac bosons and Dirac fermions, so apart from

the usual bosonic symmetries which act on the boson-boson sector and the fermion-fermion sector,

it is natural to expect some fermionic symmetries which map bosons to fermions and vice versa.

In this section, only the bosonic symmetries are covered, and the fermionic symmetries or any

topics related to supersymmetries will be saved for future studies. In particular, most of the

discussions will be around symmetries in the boson-boson sector because as we will explain, they

appear again in the fermion-fermion sector. A dual symmetry group in the boson-boson sector is a

subgroup of GL(4N f ;C).

In a field theory, an internal group action only acts on the target space of the field. In this case,

any k ∈GL(4N f ;C) transforms the bosons by sending φ(x) 7→φ(x)k, φ̄(x) 7→ k†φ̄(x). Substituting

this into the boson-boson sector of ZC, which is

(3.41) φΓµφ̄= 0 ∀µ,

it is straightforward to check that if

(3.42) kΓµk† =ΛµνΓν for some Λµν ∈GL(4;R) ∀µ,

k is a symmetry transformation on the solution space of ZC. We denote the group defined in

(3.42) by the symbol K . One can easily check that K possesses the group associativity and the

invertibility as long as the matrix Λ is invertible as specified in the definition.

Knowing K will greatly improve our knowledge of the solution space of ZC, because the

latter may be interpreted as a space of K−orbits. See Section 4.2. Moreover, K partially defines a

symmetry of the functional measure, which in turn shapes a quantum symmetry of the theory.

Note that the topic of symmetries of a functional measure is a subtle one because of quantum

anomalies, which cannot be fully captured by a group definition such as (3.42). We will elaborate

on this in Section 3.4.4.

Let’s turn our attention to the free action (3.38). In the massless limit, MB = MF = 0, and Sfree

is nothing but a free action with massless Dirac bosons and Dirac fermions. It is well-known that

the massless QCD action has a global symmetry U(N f )L ×U(N f )R [90], but in order to build a

dual theory, we would like to reveal additional symmetry transformations to the greatest extent.

In the presence of the partial derivatives in Sfree, it is more appropriate to consider an external

group action φ(x) 7→φ(k−1 · x)k, φ̄(x) 7→ k†φ̄(k−1 · x), i.e., the domain of the field is transformed as

well. Taking this into consideration, we propose again the same definition (3.42) for the symmetry

group of Sfree in the massless limit. As we are going to discuss in Section 3.4.2.1, by choosing the
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representation of K for k−1 · x properly, the factor Λµν can be countered such that the action is

invariant. From now on, K is known as the massless (dual) symmetry group.

In Section 3.3, it was argued that the effective field theory of dual-IYM should be a general-

ization of ChPT. Briefly speaking, ChPT is defined by the SSB of its massless symmetry group

due to the chiral condensate. This condensate is only invariant under a massive symmetry group,

which preserves the QCD action in the presence of the non-vanishing Dirac mass. By the same

strategy, in dual-IYM, we will first commit ourselves to the study of K , and then turn on the mass

parameters MB, MF . Apart from (3.42), to preserve Sfree with masses, the new massive (dual)

symmetry group elements must also obey

(3.43) kΩk† =Ω.

This group is named H, which is a subgroup of K . By definition, the properties of H heavily

depends on the choice for Ω, which is not unique as pointed out in Section 3.1. In Section 3.4.4 we

are going to use the knowledge of K and H to construct the effective field theory, and during the

process a reasonable decision for Ω will be made.

3.4.2 Massless symmetry group K

What kinds of elements does K contain? To the best of our knowledge, the definition (3.42) cannot

be found in the literature, so it is worth devoting a substantial part of this section to the analysis

of K . We will first present a derivation for Lie(K), followed by a discussion of the exponential

map of this Lie algebra5, and then conclude this section with some exceptional elements of K

which are not covered by the exponential map.

Lie algebra of K We follow the standard prescription to define Lie(K). Any X ∈Lie(K) gener-

ates a one-parameter subgroup

(3.44) kX (t)≡ {exp(tX )|t ∈R},

which represents a curve passing the identity element 1K ≡ kX (t = 0). The group definition (3.42)

poses the following condition

(3.45) kX (t)ΓµkX (t)† =Λµν(t)Γν,

and by linearising this equation around t = 0, we find that Lie(K) consists of matrices X which

are subject to

(3.46) XΓµ+ΓµX † = Λ̇µν(0)Γν ∀µ.

Note that the time derivative Λ̇µν(0) is not necessarily an invertible matrix even though Λµν is.

5More precisely, the Lie algebra of the maximal subgroup of K which is a Lie group.
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In order to solve (3.46), we employ the following unique decomposition for any X ∈Mat(4N f ;C):

(3.47) X ≡14 ⊗ X1+γλ⊗ Xλ+γαγβ⊗ Xαβ (α<β)+γσγ5 ⊗ Xσ5 +γ5 ⊗ X5,

where each factor X• is a matrix in the flavor space. In other words, the (4N f )2 components of X

in the linear space Mat(4N f ;C) is divided to 16 disjoint linearly-independent subsets, labelled by

the basis elements in the spinor space built from products of γ−matrices. This decomposition is

useful because one can split X to its Γ5−even (resp., Γ5−odd) part, denoted by XE (resp., XO) in

the following way:

XE ≡14 ⊗ X1+γαγβ⊗ Xαβ (α<β)+γ5 ⊗ X5;(3.48)

XO ≡ γλ⊗ Xλ+γσγ5 ⊗ Xσ5.(3.49)

By construction, XE (resp., XO) consists of the components of X which commute (resp., anticom-

mute) with Γ5. This Γ5−parity divides (3.46) to the following equations,

XEΓ
µ+ΓµX †

E = Λ̇µν(0)Γν ∀µ;(3.50)

XOΓ
µ+ΓµX †

O = 0 ∀µ.(3.51)

Lemma 3.1. XO = 0.

Proof. Plugging (3.49) into (3.51), we obtain

(3.52) γλγµ⊗ Xλ+γσγ5γ
µ⊗ Xσ5 −γµγλ⊗ X †

λ
−γµγ5γ

σ⊗ X †
σ5 = 0 ∀µ.

The linear-independence among the components guarantees that it suffices to analyse the sector

for an arbitrary λ−component and the one for an arbitrary σ−component separately. For the

former, we have to solve

(3.53) γλγµ⊗Y −γµγλ⊗Y † = 0 ∀µ,

where we used Y to denote Xλ for the fixed λ to avoid confusion. It follows that

(3.54)

 Y −Y † = 0, for µ=λ.

Y +Y † = 0, for µ ̸=λ.

Since (3.53) holds for all µ, we know Y ≡ Xλ
!= 0 for the fixed λ. This applies to any λ; that is,

Xλ = 0 ∀λ. Similarly for the latter, it is necessary that Xσ5 = 0 ∀σ due to

(3.55)

 γσγ5γ
µ = γµγ5γ

σ, for µ=σ.

γσγ5γ
µ =−γµγ5γ

σ, for µ ̸=σ.

Combining the results, we conclude that the solution to (3.51) is XO = 0. ■
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Lemma 3.2. XE =14⊗X1+ rαβγαγβ⊗1N f (α<β)+γ5⊗X5 where X1+X †
1
= r1N f for some r ∈R,

rαβ ∈R and X5 = X †
5.

Proof. Following the same chain of reasoning in Lemma 3.1, we look at different components

separately. If we set XE =14 ⊗ X1 in (3.50), the only solutions are the X1
′s such that X1+ X †

1
=

r1N f for some r ∈R. Next, the component γ5 ⊗ X5 must obey

(3.56) γ5γ
µ⊗ X5 +γµγ5 ⊗ X †

5 = 0 ∀µ

because no γµγ5 terms can appear on the right hand side of (3.50). Consequently, X5 − X †
5

!= 0.

Finally, for the component with arbitrarily chosen α<β, γαγβ⊗Y ′ is subject to

(3.57) γαγβγµ⊗Y ′+γµγβγα⊗Y ′† = (Λ̇µν(0)γν)⊗1N f .

We observe that

(3.58)

 Y ′+Y ′† = r′1N f for some r′ ∈R, for µ ∈ {α,β};

Y ′−Y ′† = 0, for µ ̸∈ {α,β},

which shows Xαβ = rαβ1N f ∀α<β, where rαβ ∈R. ■

To clarify the structure of Lie(K), we split X1 ≡R(X1)+I(X1). The Hermitian part R(X1) is

proportional to 1N f according to Lemma 3.2. As summarized in Theorem 3.1, the matrix R(X1)

represents an overall scaling, and the skew-Hermitian I(X1) becomes an element of Lie(U(N f )).

Theorem 3.1. For any N f , the solution space to (3.46) is a real vector subspace of Mat(4N f ;C)

defined by the following direct sum

(3.59) Lie(K)≡R ·14N f ⊕ (Cl2(R4)⊗1N f )⊕ (14 ⊗Lie(U(N f )))⊕ (γ5 ⊗ iLie(U(N f )))

where Cl2(R4) is the Lie algebra of the spin group Spin(4).

3.4.2.1 Exponential map

With the complete knowledge of the Lie algebra, we can directly work out the group elements in

the identity component of K , denoted by K0. By definition, K0 is the maximal connected subgroup

of K which contains the unity ≡ 14N f , and it is known that any element in K0 is a product of

some exponential maps of Lie(K). Since the first two components in (3.59) are in the center of

Lie(K), we are entitled to factorize any k ∈ K0 to

(3.60) k = r+ · ũs ·e14⊗a+γ5⊗b

where the dot · is the matrix multiplication. The factors r+ ∈R+, ũs ∈Spin(4)⊗1N f , are known

as the scaling and spin rotation respectively, both of which act trivially on the flavor space. The
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interesting physics is mainly encoded in exp(14 ⊗a+γ5 ⊗b) with a =−a†, b = b†, which will be

referred to as the mixing part, because in general an element in this part is indecomposable, i.e.,

it cannot be written as a Kronecker product of a spinor matrix and a flavor matrix.

The group K0 defined in (3.60) is closely related to some well-known symmetry groups in the

conventional Dirac field theory for massless fermions. For instance, the spin group Spin(4) is an

external symmetry group for Seff when we use the rotation group SO(4) to represent its action on

space-time:

ũsΓ
µũ†

s =ΛµνΓν for some Λµν ∈SO(4);

φ(x) 7→φ′(x) := ũsφ(x′), x′µ =Λµνxν.

Here, the rotation matrix Λµν represents ũ−1
s = ũ†

s.

More importantly, the mixing part exp(14 ⊗a+γ5 ⊗b) forms a subgroup which resembles the

global symmetry group U(N f )L ×U(N f )R in QCD. Following the conventional language, we say

a generates the vector symmetry and b generates the axial symmetry. The difference is that in

QCD, another skew-Hermitian matrix a′ takes place of the Hermitian matrix b. To show that

the elements exp(14 ⊗a+γ5 ⊗a′) constitute U(N f )L ×U(N f )R , one makes use of the spinor-space

projection operators

(3.61) PR ≡ 1
2

(14 +γ5); PL ≡ 1
2

(14 −γ5)

to write

(3.62) e14⊗a+γ5⊗a′ = PR ⊗ea+a′ +PL ⊗ea−a′
.

Let the set of a be spanned by {Vk} and the one of a′ be spanned by {Ak}, where {Vk} and {Ak} are

two sets of basis elements of Lie(U(N f )) associated with the same structure constants, then the

2N2
f vector space can be divided to two subspaces with basis elements

(3.63) Rk ≡
1
2

(Vk + Ak), Lk ≡
1
2

(Vk − Ak); k = 1,2, . . . , N2
f .

It follows that {Rk} (resp., {Lk}) generate Lie(U(N f )R) (resp., Lie(U(N f )L)), and these two Lie

algebras commute with each other.

Back to K0, we also have a similar “splitting”:

(3.64) e14⊗a+γ5⊗b = PR ⊗ea+b +PL ⊗ea−b.

However, the same linear combinations (3.63) won’t give us two mutually commuting Lie algebras

because b is Hermitian. Instead, there is a more straightforward approach to the mixing part.

Starting with the following observation:

Lemma 3.3. Denote the mixing-part subgroup of K0 by N. There is a Lie algebra isomorphism

between Lie(N) and Lie(GL(N f ;C)), the real Lie algebra of N f ×N f complex matrices.
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Proof. Let {Tl} be a set of basis-elements for Lie(U(N f )) ≡ h and {tl ≡ iTl} be a set of basis-

elements for iLie(U(N f ))≡ p. By definition

[Tl ,Tk]= f m
lk Tm ∈ h;(3.65)

[tl , tk]=− f m
lk Tm ∈ h;(3.66)

[Tl , tk]= f m
lk tm ∈ p.(3.67)

Now, introduce T̃l ≡14 ⊗Tl and t̃l ≡ γ5 ⊗ tl , and define h̃≡ spanR{T̃l} along with p̃≡ spanR{t̃l}. It

is easy to verify that

[T̃l , T̃k]= f m
lk T̃m ∈ h̃;(3.68)

[t̃l , t̃k]=− f m
lk T̃m ∈ h̃;(3.69)

[T̃l , t̃k]= f m
lk t̃m ∈ p̃.(3.70)

From (3.68)-(3.70) and (3.65)-(3.67), we recognize the bijection T̃l ↔ Tl , t̃l ↔ tl , which in turn

indicates the isomorphism between Lie(GL(N f ;C))= h⊕p and Lie(N)= h̃⊕ p̃. ■

Finally, since the exponential map from Lie(GL(N f ;C)) to GL(N f ;C) is surjective, there is a

natural group isomorphism between N and GL(N f ;C). This motivates the following realization of

the standard polar decomposition:

Corollary 3.1. Any A ∈N admits a unique decomposition

(3.71) A = PU with some P = eγ5⊗b, U = e14⊗a.

This decomposition will be used in the construction of a chiral-type effective field theory in

Section 3.4.4.

3.4.2.2 Exceptional elements

The identity component K0 is going to play the central role in the subsequent sections on the

topics of effective field theories and solutions of ZC. Just like the conventional Dirac field theory,

there exist other symmetry transformations which are not covered by K0. For future use, we

briefly summarize two kinds of these exceptional elements here.

The first kind is a set of odd-products of Γ−matrices:

(3.72) KO := {Γµ,ΓµΓνΓα (µ< ν<α)},

which is obviously not a subgroup. None of the elements in KO belongs to K0 because they

anticommute with Γ5, by contrast, according to Theorem 3.1 all elements in K0 commute with

Γ5. On the contrary, the even-products of Γ−matrices such as ΓαΓβ or Γ5 are already included

in Spin(4)⊗1N f . These product-elements can be interpreted as parity, time-reversal, charge

conjugation when their actions on φ are accompanied by some additional transformations.
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The second kind of the exceptional elements is more bizarre. These elements form a group:

KN := {14 ⊗F +γ5 ⊗F5} with F,F5 ∈Mat(N f ;C) that

FF† −F5F†
5 = r1N f for some r ∈R; FF†

5 −F5F† = 0.(3.73)

While the associativity of KN is coded in the defining relations of F and F5, we should impose

the invertibility of the group elements by embedding the group in GL(4N f ;C). Importantly, the

mixing part R is a proper subgroup of KN because any element as in (3.64) equals to

(3.74) e14⊗a+γ5⊗b = 1
2

[14 ⊗ (h+ (h−1)†)+γ5 ⊗ (h− (h−1)†)]

where h ≡ exp(a+b). One can verify that for any h ∈GL(N f ;C), the corresponding element (3.74)

belongs to KN. On the contrary, there exist exceptional elements such as 14 ⊗2σ1 +γ5 ⊗1N f in

KN, which is not contained in N.

It is without doubt that there are other symmetry transformations in K , which solve (3.42),

but have not been identified in this work. On the one hand, knowing all the elements of K can

certainly improve our understanding of the solution space to ZC as we break it down to several

K−orbits. On the other hand, as far as an effective description of dual-IYM goes, the identity

component K0 should play the most prominent role, because the Goldstone modes come from

SSB of continuous symmetries. In the subsequent sections, we are going to study the effect of the

mass matrix Ω on the symmetry groups, and then apply the results to speculate a chiral-type

effective theory for dual-IYM.

3.4.3 Massive symmetry group H

In Section 3.1, the mass matrix Ω≡Γ5 was introduced as an exemplary solution to (3.4), which in

turn empowers DYM to induce YM. In this section and the next, we are going to inspect various

aspects of dual-DYM with Ω=Γ5 and then use them to motivate an effective theory on the basis

of SSB.

We start with the following observation about the massive symmetry group H defined by

(3.42) and (3.43) where Ω=Γ5.

Lemma 3.4. The Lie algebra of H is a Lie sub-algebra of Lie(K) given by

(3.75) Lie(H)≡ (Cl2(R4)⊗1N f )⊕ (14 ⊗Lie(U(N f ))).

Proof. In addition to (3.46), any element X of Lie(H) is constrained by the linearisation of (3.43),

which reads

(3.76) XΓ5 +Γ5X † = 0.

By a direct inspection of different components of X in (3.59), the result follows. ■
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An immediate indication is that the identity component of H, denoted by H0, is nothing but the

unitary group Spin(4)⊗U(N f ).

It is worth noting that under the discrete massless symmetry operations in Section 3.4.2.2,

the mass term φ̄Γ5φ transforms as

φ̄Γ5φ 7→ φ̄(Γµ)†Γ5(Γµ)φ=−φ̄Γ5φ ∀µ;(3.77)

φ̄Γ5φ 7→ φ̄(Γ5Γ
µ)†Γ5(Γ5Γ

µ)φ=−φ̄Γ5φ ∀µ.(3.78)

Conventionally this mass term is understood as a pseudo-scalar because of the minus sign.

There exist other choices of Ω which also obey (3.4). For example, in the case of N f = 2, one

can also use Ω′ = γ5 ⊗σ3. However, it is clear that Ω′ is unitarily equivalent to Γ5, so the effect of

using Ω′ can be “absorbed” by going to a unitarily equivalent representaion of the Γ−matrices.

Therefore, we are not very interested in testing different choices for Ω, and in the rest of the

dissertation Ω will always be Γ5.

3.4.4 Effective theory from SSB

Finally, it is time to develop a chiral-type effective theory for dual-IYM. We start with a review of

some aspects of ChPT which are essential in the construction of the theory.

The global symmetry group of interest in massless QCD is U(N f )L ×U(N f )R , which we have

encountered. However, this group is reduced in the construction of ChPT because one must

account for the quantum anomaly and omit the U(1)V for baryon numbers. The relevant anomaly

is carried by the axial subgroup U(1)A of the classical symmetry group U(N f )L ×U(N f )R as it

doesn’t preserve the functional measure; rather, in the presence of a background color gauge field

in the Dirac operator, a Jacobian factor is generated by U(1)A [101]6.

Removing U(1)V and U(1)A from U(N f )L ×U(N f )R , it turns out SU(N f )L ×SU(N f )R is the

relevant massless symmetry group. The Dirac mass term in QCD is however only invariant under

SU(N f )V , the diagonal subgroup. Usually the elements in SU(N f )L ×SU(N f )R are represented

as the matrices introduced in (3.62), in which case SU(N f )V consists of the matrices with a ≡ a′.
Today, the existence of chiral condensate is widely-accepted in QCD, which is the VEV of the

Dirac mass. Consequently, it induces the following SSB pattern

(3.79) SU(N f )L ×SU(N f )R
SSB−→SU(N f )V .

Conventionally, the ChPT Lagrangian is first formulated in the massless limit, where the SSB

is exact, and the effective field takes values in the quotient space of the two groups. This field

carries the degrees of freedom of pions, which are realized as the Goldstone bosons produced by

the SSB. Putting back the quark masses in QCD means the SSB becomes soft, and accordingly

6In fact, any unitary chiral transformation corresponding to (3.62) with a = 0 generates a Jacobian in the measure,
but only U(1)A has a non-trivial contribution [102].
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some associated terms have to be added to the ChPT Lagrangian via a spurion trick, which will

be discussed below.

As explained in Section 3.3.1 our objective is to transform (3.37) into an equivalent par-

tition function in terms of some color-neutral variables, especially when we are interested in

the low-energy physics. In the low-energy regime, ChPT has proven itself to be a successful

phenomenological model for mesons and baryons, which are the typical color-singlets formed by

quarks. In light of this, it is worthwhile to search for a SSB pattern in dual-IYM and use it to

speculate a chiral-type effective theory.

In dual-IYM, the condensates 〈Trφ̄ΓT
5φ〉dual-IYM, 〈Trψ̄ΓT

5ψ〉dual-IYM are only invariant under

H0 ⊂ K0. In analogous with (3.79), a subject of interest would be

(3.80) K0
SSB−→ H0.

At the first glance, this is a reasonable proposal. First of all, K0 is by definition a symmetry for

Sfree in the massless limit, and for the solution space of ZC as well. The main obstacle for the full

K0 group to be a quantum symmetry would be the anomaly.

To take a closer look, we go back to DYM. The master theory (3.8) has K0 as a massless

symmetry and H0 as a massive symmetry. Importantly, one recognizes in (3.60) that K0 contains

a subset

(3.81) A := {eγ5⊗b|b ∈ iLie(U(N f ))},

which is the set of chiral transformations. Any element k ∈A is Hermitian and sends φ 7→ φk,

φ̄ 7→ kφ̄, so we expect A to give rise to a Jacobian factor in the transformed boson measure.

Fortunately, the same transformation in the fermion measure yields an inverse Jacobian factor

which cancels out the bosonic one. We conclude that A is a quantum symmetry7 in the massless

DYM and hence so is K0, when it acts on the bosons and the fermions in the same way. This

corresponds to the subgroup “diagonal” in the superspace, and within the scope of this dissertation,

only this subgroup will be discussed.

At this point, it is worth noting that due to the independence between ψ̄ and ψ, the following

transformation is allowed and it is also a massless symmetry:

(3.82) ψ 7→ψeγ5⊗a; ψ̄ 7→ eγ5⊗aψ̄, a ∈Lie(U(N f )).

This symmetry is however anomalous because there is no counterpart in the bosonic sector. Hence,

we will not consider (3.82) when constructing an effective field theory.

Collecting all the observations above, we propose a more concrete SSB pattern

(3.83) N
SSB−→U; U :=14 ⊗U(N f )

7A is however not a group.
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because the Spin(4) group is unbroken. The scaling part of K0 also dropped out because DYM

should share the same trace anomaly in QCD8.

We are now ready to assemble a chiral-type effective theory for dual-IYM. In the massless

limit MB → 0, MF → 0, one expects to find a supersymmetry in DYM. Therefore, rigorously

speaking the full massless dual symmetry group should be a supergroup represented by some

supermatrices. According to the relations (3.39), (3.40), we also expect the fermionic symmetries

to be broken by the condensates in dual-IYM because MB > MF in DYM. Consequently, there

might exist some Goldstone fermions in the full chiral-type effective theory as well.

Nevertheless, we believe a supersymmetry-related discussion is best postponed until a color-

neutral formalism of dual-IYM is ready. In this work, we will only examine the SSB of the bosonic

symmetries, which are introduced in (3.83). This SSB shall create a set of Goldstone bosons, and

the corresponding effective variables are color-neutral fields valued in the coset space N/U. As

suggested by Corollary 3.1, the natural choice for these fields is

(3.84) P(x)= eγ5⊗b(x), b(x) ∈ iLie(U(N f )).

Following the conventions, we shall call P(x) the principal chiral field as in ChPT, and refer the

effective field theory in terms of P(x) dual-EFT.

A natural description of dual-EFT is a quotient-space nonlinear sigma model (NLσM). In

the massless-limit, the Lagrangian density must be invariant under N, which is a non-compact

Lie group. In [80], we have reviewed the construction of such density, so it is straightforward to

implement the result from there to write

(3.85) LEFT,kin[P]≡ F2Tr
[
(P−1∂µP)|p̃(P−1∂µP)|p̃

]
,

where p̃ is a subspace of Lie(N) = h̃⊕ p̃, which was defined in Lemma 3.3. The factor F has

mass dimension +1 because P is dimensionless. LEFT,kin is well-defined as a function of the

coset-valued field P, i.e.,

LEFT,kin[P]=LEFT,kin[Pu]

for any U−valued field u. It is also positive-definite since p̃ consists of Hermitian matrices.

Furthermore, any global N− action which sends P 7→ kPu for constant k ∈N, u ∈U is a symmetry

of LEFT,kin.

While the definition for LEFT,kin in (3.85) is transparent, there exists an alternative expression

which comes in handy in calculations. To see that, one simply makes use of the identity

(P−1∂µP)|p̃ ≡
1
2

[
(P−1∂µP)+ (P−1∂µP)†

]
= 1

2
[
(P−1∂µP)+ (∂µP)P−1](3.86)

8The classical scale invariance in the chiral-limit of QCD is broken by quantum effects.

57



CHAPTER 3. DIRAC-YANG-MILLS MODEL

to write

(3.87) LEFT,kin =−1
4

F2Tr
[
∂µP2∂µP−2]

.

Note that P2 transforms under K (and in particular N) as

(3.88) P2 7→ kP2k† ∀k ∈ K .

Our next task is to introduce a symmetry-breaking term to the Lagrangian of dual-EFT.

Following the conventional spurion trick [103], we first postulate a spurion, a matrix field M

which has the same transformation property as P2, i.e., M 7→ kMk† for k ∈N. A term such as

TrMP−2 is certainly N−invariant under the postulate. From now on, M no longer has to be a

spurion, but it is just an undetermined matrix. Moreover, we also want to preserve the discrete

transformation property (3.77), which sends

(3.89) P−2 7→ΓµP−2(Γµ)† = P2

where we have used (3.84). Taking this into consideration, we make the following proposal for

the symmetry-breaking term

(3.90) LEFT,M ≡ F2RTrM
[
P−2 −P2]

,

The trick now kicks in by setting M ≡ MBΓ5 in the boson-boson sector and M ≡ MFΓ5 in the

fermion-fermion sector, such that LEFT,M is no longer N−invariant but only U−invariant. The

presence of Γ5 is compatible with (3.89) because alternatively one could use (Γµ)†MΓµ = −M

to show LEFT,M is odd as in (3.77). Importantly, LEFT,M is well-defined due to P = P† and

[u,Γ5]= 0, ∀u ∈U; however, it is not necessarily positive-definite9. To match up the dimension,

we introduced another factor of mass dimension +1, R, into LEFT,M .

The combined density LEFT,kin +LEFT,M indeed shares the same symmetry feature as dual-

IYM, but certainly there are higher-order terms composed of P, M which is invariant under

N when M is a spurion. According to the standard Weinberg’s power counting scheme (see e.g.

[97]), one can assign to each term in the Lagrangian a chiral-order, which increases10 along with

the number of derivatives and the power in M. In the low-energy regime, the combined density

dominates because it carries the lowest chiral-order:

(3.91) LEFT,c=2 ≡−1
4

F2Tr
[
∂µP2∂µP−2]+F2RTrM

[
P−2 −P2]

,

where c = 2 denotes the chiral-order.

What do we mean by “low-energy regime”? On the side of IYM, we want to explore the

infra-red physics, which is typically defined by E <ΛQCD, where the QCD scale ΛQCD ≈ 1 GeV.

9Whether or not it is disastrous depends on the exact definition of the partition function.
10Conventionally, each derivative carries a chiral-order +1 whereas each M carries a chiral-order +2.
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Accordingly, a good dual-EFT should be an effective description in the same energy regime

E <ΛQCD and hence we must demand MB <ΛQCD. Now, recall the remark at the end of Section

3.2.3 that it is necessary that MB/MF ≫ 1 to forge IYM to an asymptotically free theory, so it

seems only reasonable for us to keep a finite MB <ΛQCD while sending MF arbitrarily close to 0.

The last pillar of dual-EFT is its interaction with an external gauge field. In QCD, the

low-energy physics are captured by the chiral Ward identities of Green functions, which are

time-ordered products of color-neutral composite operators of the light quarks. Typically these

are the conserved vector current vµ and axial-vector current aµ associated with the massless

symmetry group, along with the scalar density s and pseudo-scalar density p. In the common

approach, one extracts the chiral Ward identities from a generating functional Z[vµ,aµ, s, p],

which is by construction invariant under local transformations of the massless group. To ensure

this local symmetry, one allows the external fields vµ,aµ, s, p to transform accordingly like gauge

fields, thereby the name.

In dual-IYM, a similar promotion of N to a gauge group can be achieved. Indeed, there are

vector current and axial current generated by N, and we can couple both of them to a single

Lie(N)−valued external field Bµ, which reads

(3.92) Bµ(x)=14 ⊗aµ(x)+γ5 ⊗bµ(x); aµ(x), ibµ(x) ∈Lie(U(N f )).

In the presence of the source terms Trφ̄(Γµ)TBT
µφ, Trψ̄(Γµ)TBT

µψ in (3.37) and taking the massless-

limit (MB = 0 = MF ), we have Zdual,0[Bµ]. By construction, this generating functional does not

change when Bµ transforms like a gauge field under N,

(3.93) Bµ 7→ kBµ ≡ kBµk−1 −k(∂µk−1) ∀k ∈N;

that is, Zdual,0[Bµ]=Zdual,0[kBµ]. In addition to Bµ, one can also introduce external scalar and

pseudo-scalar fields, which are encapsulated into

(3.94) B(x)=14 ⊗a(x)+γ5 ⊗b(x); a(x), ib(x) ∈Lie(U(N f )).

With Trφ̄BTφ, Trψ̄BTψ inserted in Zdual,0[Bµ] above, we obtain Zdual[Bµ,B], which is invariant

under (3.93) along with

(3.95) B 7→ kB ≡ kBk†.

That is, Zdual[Bµ,B] = Zdual[kBµ, kB]. Heuristically, the field B “replaces” the original mass

matrix.

Generally speaking, one may use different external fields in the boson-boson sector and

the fermion-fermion sector; moreover, one can couple the conserved current with respect to the

fermionic symmetries to some Grassmann-valued fields. These interesting aspects of dual-EFT

will however only be investigated in the future. Our objective here is to incorporate Bµ and B

into LEFT by lifting N to a “gauge group”. This can be done straightforwardly by replacing ∂µ by
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Dµ ≡ ∂µ−Bµ in (3.85) as reviewed in [80], but it requires some modifications of (3.90). To check

the former, we implement a local transformation P(x) 7→ k(x)P(x)u(x) together with (3.93) and

find

(3.96) P−1DµP|p̃ 7→ u−1P−1DµP|p̃u.

For the latter, (3.90) should be replaced by

(3.97) BP−2 +R2B−1P2 7→ kBP−2k−1 + (k†)−1R2B−1P2k†,

which is also invariant under (3.89). The factor R2 is added to balance the mass dimension.

Based on this observation, we make the following proposal for the gauged effective Lagrangian

at the lowest chiral-order:

(3.98) LEFT,c=2[Bµ,B]≡ F2Tr
[
(P−1DµP)|p̃(P−1DµP)|p̃

]+F2RTr
[
BP−2 +R2B−1P2]

.

While (3.98) is manifestly gauge-invariant under K and in particular N, there exists a more

convenient expression in terms of P2. To derive such an expression, one again expands

(3.99) (P−1DµP)|p̃ =
1
2

[
(P−1∂µP)− (P∂µP−1)−P−1BµP −PB†

µP−1
]

and plug this into the kinetic term. The following cross term (and its Hermitian conjugate) can

be simplified further as

Tr
[
(P−1∂µP)− (P∂µP−1)

]
P−1BµP

=Tr
[
(∂µP)P−1 −P2(∂µP−1)P−1]

Bµ

=Tr{(∂µP)P−1 −P2 [
(∂µP−2)−P−1(∂µP−1)

]
}Bµ

=−TrP2(∂µP−2)Bµ.

(3.100)

The final result reads

LEFT,c=2[Bµ,B]≡−F2

4
Tr

[
∂µP2∂µP−2]+F2RTr

[
BP−2 +R2B−1P2]

+ F2

2
Tr

[
(P2(∂µP−2)Bµ−P−2(∂µP2)B†

µ)
]

+ F2

4
Tr

[
BµBµ+B†

µ(Bµ)† +2P2(Bµ)†P−2Bµ
]

.

(3.101)

This Lagrangian will be brought up again at the end of Section 4.1.

3.4.5 Effective theory: applications

Having spending so much time developing a reasonable effective Lagrangian for dual-IYM, we

would like to inspect dual-EFT for some possible physical applications. In ChPT, the gauged

Lagrangian can be used to study hadron dynamics such as pion decay and pion-pion scattering.
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While it is tempting to dive deeper into dual-EFT to search for analogous dynamics, we must

remind ourselves that dual-IYM itself is not a theory for real-world particle physics. More

specifically, unlike ChPT, there are no experimental inputs available to us to set values for

undetermined parameters such as F, R in dual-EFT.

The main reason to establish dual-EFT is to use it as a guidance for a color-neutral represen-

tation of dual-IYM. More specifically, if dual-EFT is shown to be a valid infra-red effective theory

for dual-IYM, we then have a good reason to “project” dual-IYM itself as a NLσM in terms of

some color-singlets. This challenging task will be the main theme in Chapter 4. We conclude this

section by explaining another reason to study dual-EFT: there exist a few interesting physical

applications!

YM mass gap
One of the most sought after features of YM is the mass gap. Typically one examines the decay-

ing behaviour of gluon propagators in the infra-red regime, which usually requires sophisticated

non-perturbative methods. By introducing a source field jµ into the DYM partition function (3.8)

and again integrating out the auxiliary fields, we find the generating functional

ZDYM[ jµ]≡
�

DADφ̄DφDψ̄Dψ e−Smas[A,φ,ψ]+Sint[A, j]

=
�

DA e−SIYM[A]+Sint[A, j],
(3.102)

where Sint[A, j] ≡ i
�

d4x tr jµAµ. The dual expression of the same generating functional is

obtained by integrating out the gluon field,

(3.103) ZDYM[ jµ]≡
�

J= j

Dφ̄DφDψ̄Dψ e−Sfree[φ,ψ].

In other words, the source field jµ “lifts” the conserved current up from the ZC domain. As a

side remark, while it is trivially true for the Nc = 1 theory that ZDYM[g jµg−1]=ZDYM[ jµ] for all

g ∈ U(1), the same identity generally breaks down for Nc ≥ 2, the non-Abelian theories [104].

Consequently, jµ does not have to be a conserved current when Nc ≥ 2.

The correlation functions of Aµ can be calculated by differentiating ZDYM[ jµ] with respect to

jµ; in particular, the gluon propagators are

(3.104) 〈Aν(x)Aρ(y)〉IYM ∝ 1
ZDYM[ jµ]

δ

δ jν(x)
δ

δ jρ(y)
ZDYM[ jµ]

∣∣∣
j=0

.

In YM, the evaluation of (3.104) turns out to be difficult because of the non-Abelian nature of the

color group. In dual-IYM, the color group is no longer around, but the same differential operators

act on the domain of integration, which is the solution space to Jµ = jµ ∀µ.

For the time being, it is unclear to us how to perform such differentiations. Nevertheless, we

may be able to examine the existence of a mass gap by studying dual-EFT. As a first attempt, we
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follow the footsteps of ChPT and introduce a (pseudo-)Goldstone boson field ϕ as

(3.105) P2(x)≡ exp
(ϕ
F

)
.

In terms of ϕ, at the leading-order (3.91) reads

(3.106) LEFT,c=2[ϕ]≈−1
4

Tr
[
∂µϕ∂

µϕ
]−FRTr

[
2Mϕ

]+O (F−1).

Importantly, the factor (P−2 −P2) in (3.90) forbids terms that are even in ϕ; in particular, the

mass term which is quadratic in ϕ is missing!

This crucial observation distinguishes dual-EFT from ChPT, because it tells us even though

there are masses MB, MF in dual-IYM, we cannot find a mass term for the color-neutral field

ϕ in dual-EFT at the Lagrangian level. Nevertheless, it is possible that a mass term can be

“generated” through quantum effects, which are captured by the higher-order terms in ϕ. At this

early stage, we can only point out that YM is a quantum field theory with such feature: the gluon

field is classically massless, but it acquires a dynamical mass through self-interactions.

Dual description of Wilson loop expectation value
An equally significant property as the mass gap is the area-law of Wilson loop expectation

value in YM, which is denoted as 〈W[C ]〉. A naive way to compute this observable by stipulating

a loop-current ĵµ such that

(3.107) W[C ]≡ 1
Nc

tr

P exp

�
C

dµx Aµ

 ?≡ 1
Nc

exp
(�

d4x tr ĵµAµ

)

generally fails, because the last expression is not gauge-invariant [104]. Hence, the approach

(3.103) seems like a dead end. Perhaps a better way to study 〈W[C ]〉 is to recall that it is

determined by the static potential between a “quark” Q and an “anti-quark” Q̄, both of which are

infinitely heavy. Schematically, it equals to the following ratio

(3.108) 〈W[C ]〉 = ZDYM[Q,Q̄]
ZDYM[0]

.

As for now we stay close to QCD and take Q, Q̄ to be static Grassmann-valued sources, and

require the following condition:

Assumption 3.1. In Smas[Q,Q̄], the static fields Q, Q̄ are not directly coupled to the dynamical

fields φ, φ̄,ψ,ψ̄. That is, they only interact with the gluon field Aµ.

Under this assumption, the addition of Q, Q̄ doesn’t affect the integration over the dynamical

fields. Now, let the rectangular loop C sits on a x0−xk plane for any k = 1,2,3, where its temporal-

span and spatial-span are denoted by T, R, respectively. On the side of IYM and in the large−T
limit, the static potential of the Q− Q̄ pair is

(3.109) E(R)=− lim
T→∞

1
T

ln〈W[C ]〉,
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Meson type Composite fields

Light φ̄φ, ψ̄ψ, φ̄ψ, ψ̄φ

Heavy Q̄φ, Q̄ψ, φ̄Q, ψ̄Q

TABLE 3.1. Available color-neutral bound-states.

Time

R

Q

Q

φ,ψ

φ,ψ

Heavy meson

Light meson

FIGURE 3.1. A simplified d = 1+1 illustration of color-neutral states in dual-EFT. The space
should be condensely populated by light mesons but we only show a few of them.

and just as in YM, we conjecture that E(R)∝R when R is large. This is known as the area-law

of 〈W[C ]〉 with a large loop C [105].

On the side of dual-IYM, the integration over Aµ should also induce interactions between

the heavy field and the light field; a direct evaluation of (3.108) seems formidable. Fortunately,

at the level of dual-EFT, one may speculate the effects of Q, Q̄ as some additional color-neutral

degrees of freedom added to LEFT. There have been proposals categorised as Heavy Hadron

Chiral Perturbation Theories (HChPT) [106] as extensions of ChPT including heavy quarks, which

seem helpful regarding the realization of 〈W[C ]〉 in dual-EFT. We provide a heuristic argument

below.

Imaging we place Q and Q̄ in the background of the dynamical fields, and separate the

infinitely heavy Q,Q̄ by the fixed distance R. In the low-energy regime, not only the dynamical

fields form light mesons, we should also expect to see heavy mesons comprised a static source and

a dynamical field. In comparison with ChPT where the light mesons (e.g. pions) are Lorentz-scalar

fields, the heavy mesons in HChPT also have vector-components. All the color-neutral effective

degrees of freedom available to us are summarized in Table 3.1. The color-singlet Q̄Q is excluded

since we are probing the behaviour of 〈W[C ]〉 at large R, so it is unlikely for the far-apart Q̄, Q to

form a bound-state.

In this scenario, dual-EFT might be described by Figure 3.1, which in turn can be studied
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using HChPT. The heavy mesons Q̄ψ, ψ̄Q are represented by additional color-singlet matrix-

valued fields [106], and a direct extension to include Q̄φ, φ̄Q seems straightforward. Even though

we are not going to construct such a theory here, it is worthwhile to think about the physical

implications, e.g. how the linear growth relation E(R) ∝ R can be observed in a system like

Figure 3.1. This will be one of the interesting topics of dual-EFT to investigate in the future.
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COLOR NEUTRALISATION OF DUAL-IYM

We took a leap of faith to conjecture the model of dual-EFT in Section 3.4. Indeed, the

field contents and the Lagrangian of the effective theory are both determined by the

proposed SSB pattern (3.83), which in turn was suggested by the relations among

condensates (3.39), (3.40) and our knowledge of ChPT. The fundamental difference between

ChPT (and its generalizations) and dual-IYM is that the former is a phenomenological model

for hadronic physics but the latter is not. In fact, to consolidate the claim that “dual-EFT is an

effective theory for dual-IYM in the infra-red regime”, one must first understand dual-IYM itself;

in particular, we have to verify the existence of the VEVs.

In this chapter, we are going to examine various aspects of dual-IYM closely. As it was pointed

out in Section 3.3.1, the ultimate objective is to construct dual-IYM as a quantum theory for some

color-neutral fields (the dual-field). To reach that goal, in Section 4.1 we will first discuss various

attempts to color-neutralise dual-IYM and explain the challenges, and then we will present an

extensive study of the solution space to ZC in Section 4.2.
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4.1 Color neutralisation

4.1.1 Hubbard-Stratonovich decoupling

Our previous attempt to color-neutralise dual-IYM in [80] relies on the well-known Hubbard-

Stratonovich (HS) decoupling method. Schematically, the procedure can be summarized below

ZDYM = lim
σ→0

�
DΨ̄DΨ e−Sfree[Ψ̄,Ψ]− 1

σ2 J·J

∝ lim
σ→0

�
DΨ̄DΨ e−Sfree[Ψ̄,Ψ]− 1

σ2 J̃·J̃

∝
�

DΨ̄DΨDB̃ e−Sfree[Ψ̄,Ψ]+iB̃·J̃

∝
�

DB̃ e−Sold[B̃].

(4.1)

The Fierz rearrangement was used to “exchange” the color current J for the spinor-flavor current

J̃ in the second line, and the quartic term J̃ · J̃ was then decoupled by the Hubbard-Stratonovich

field B̃ in the third line. Finally, we integrate out the original fields Ψ̄, Ψ to arrive at the

expression in terms of B̃, which is a color-neutral variable by construction. In this context, B̃ is

the dual-field.

This decoupling method is often used to study the low-energy physics of QCD, see [107] and

the references therein. Formally, the integration over the gluon field in QCD yields an effective

action of the color currents jµ, which is written as a power series of jµ. Within the approximation

where only the quadratic term j · j is kept, which coincides with (4.1), one proceeds by rearranging

j · j to several channels which transform in different representations of SU(Nc)×U(N f )×SO(4)1.

The channel of particular interest is the so-called quark-antiquark interaction2, which has the

following form [107]

(4.2) q̄ΛαA qq̄ΛαA q; ΛαA ≡1Nc ⊗Sα⊗TA,

where {TA} span Lie(U(N f )), Sα ∈ {14, iγµ, iγµγ5, iγ5}. The effective meson field η is exactly the

HS field introduced to decouple the interaction (4.2); importantly, η has components of all Lorentz-

types except for the tensor component ∝ γµγν, as indicated by the set of the spinor matrices Sα.

This feature was also discovered in [80].

In principle, the old approach (4.1) can be carried out in exact steps3; however, it is unlikely

that the resulting Sold describes a system in strong-weak duality to IYM. A quick way to see this

is to recall the fact that in DYM (3.8), the integration of Aµ is by itself a “Fourier transformation”,

and the HS decoupling provides a second one. Consequently, we do not expect the theory of B̃ to

be a desired dual theory of IYM.

1SO(4) is replaced by SO(1,3) in Minkowski spacetime.
2The other one is the diquark channel, which is suppressed in the large−Nc limit.
3There are some non-trivial aspects of the target space of B̃, which was briefly discussed in [80].
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4.1.2 Non-Abelian bosonization

Perhaps a more promising strategy is to color-neutralise dual-IYM by the superbosonization

(SuB) formula (2.89) described in Section 2.8.4. The process of SuB is essentially a change of

variables and there is no Fourier transformation involved, so the original duality is not spoiled

by this manipulation on dual-IYM.

Super-meson field
Just like in dual-BZN, the first step of SuB is to identify a color-neutral matrix field in dual-

IYM. The color group in DYM is U(Nc), so the only color-singlet composite operator available to

us is the so-called super-meson matrix:

(4.3) Q̃(x)≡ Ψ̄(x)Ψ(x).

By construction, Q̃(x) is indeed color-neutral because a color gauge transformation g(x) ∈U(Nc)

maps

Ψ̄(x)Ψ(x) 7→ Ψ̄(x)gg†Ψ(x)= Ψ̄(x)Ψ(x).

Note that the general action of U(Nc) on the fermions ψ̄ 7→ ψ̄g, ψ 7→ g̃ψ contains the specific

transformations chosen here, which correspond to g̃ ≡ g†.

Our first question is which relation between N f and Nc favors the SuB formula reviewed

in Section 2.8.4. Let us denote the boson-boson block of Q̃ as the meson matrix Q ≡ φ̄φ. As a

4N f ×4N f matrix, the rank of Q is at most Nc; hence, a naive SuB of (3.37) as a functional

integral over Q̃ is likely to fail due to the condition N f ≥ Nc chosen in Section 3.2.3. To even the

odds, from now on we set N f ≡ Nc ≡ N to minimize the rank-deficiency in Q while preserving the

universality of IYM.

Witten’s bosonization
The next question is if it is at least possible to rewrite the action in (3.37) using only Q̃. The

answer is no, if one attempts to do this directly. An apparent difficulty can be seen in Sfree

in (3.38) where the partial derivatives prevent us from manipulating the variables to build

composite operators such as φ̄φ, ψ̄ψ. In particular, a gauge-averaging trick like the one used

for BZN doesn’t work here. Our proposal to circumvent this obstacle is by employing Witten’s

method of non-Abelian bosonization [108].

The essence of Witten’s non-Abelian bosonization is to make an “educated guess” of an action

for some boson fields which share the same symmetries with the original fermionic theory. More

precisely, the classical symmetry of the bosonic theory coincides with the quantum symmetry

of the fermionic one. In d = 1+1, the original paper [108] proves the equivalence between a

free field theory of N massless Majorana fermions and a system of O(N)−valued bosons with

a Wess-Zumino-Witten (WZW) action. Before long, the same result was demonstrated in the
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path-integral framework for a different symmetry group [109–111], and some applications of this

technique on two-dimensional QCD were put forward [112–115].

While non-Abelian bosonization is well-established and successful in two dimensions, the same

powerful method cannot be generalized to four dimensions. Nevertheless, it is still worthwhile

applying the same strategy in dual-IYM. Following the path-integral approach [110], we have a

three-step plan:

1. Identify all the conserved currents in dual-IYM and couple them to appropriate external

background fields valued in the spinor-flavor space.

2. Integrate out the original auxiliary degrees of freedom to obtain an effective action for the

external fields.

3. Speculate a “color-neutralised” partition function where some color-singlets are coupled

to the same external field, such that the same effective action is produced once the color-

singlets are integrated out.

The bosonization equivalence was first verified for massless fermionic theories, and the mass

terms were accounted for by adding corresponding terms in the bosonized theory [108, 109]. This

procedure also aligns with the spurion trick implemented in Section 3.4.4, so we are motivated to

pursue the same route. Since we haven’t acquired enough knowledge of ZC for integrating over

its solution space, in the first step we go back to DYM and send MB → 0, MF → 0, such that N

is a good dual symmetry in both the boson-boson sector and the fermion-fermion sector. We call

them NB and NF , and introduce external background fields to couple the conserved currents

respectively.

The inclusion of the external fields was done in Section 3.2, and (3.15), (3.16) are adapted as

follows

D̃B ≡ (Γµ)T(∂µ+ XB,µ)+MBΩ
T;(4.4)

D̃F ≡ (Γµ)T(∂µ+ XF,µ)+MFΩ
T.(4.5)

Here, XB/F,µ ≡ Aµ+BT
B/F,µ. In the massless limit and taking only the internal group actions into

consideration, we require

(4.6) BB/F,µΓ
ν+ΓνB†

B/F,µ = 0 ∀µ,ν,

so BB/F,µ contains a vector component and a axial-vector component as in (3.92). The integrations

over the auxiliary fields can be carried out exactly as in Section 3.2, and we don’t expect to find

an empty theory as long as BB,µ is not the same as BF,µ.

There is one caveat in the naive massless-limit, though. Without the mass terms, the infra-red

divergences from the Dirac operators are out of control, and hence the heat-kernel regularization

(3.19) is not well-defined when the upper-limit of the t−integral is taken to ∞. To stay on the safe
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side, we include finite mass parameters all along but still insert the same BB/F,µ to DYM. Strictly

speaking the mass breaks N down to U, or equivalently

(4.7) BB/F,µΓ5 +Γ5B†
B/F,µ = 0 ∀µ,

is only solved by the vector component but not the axial-vector component. Consequently, an

effective action for BB/F,µ should share the same symmetry-breaking feature, which hopefully

will be encoded in some “mass terms” in the color-neutralised partition function from the final

step.

We proceed to the second step. In both sectors some O (C · t) terms are presented, which can

be extracted from (3.29):

(4.8) Ct
[
∂µR(XB/F,µ)+2R(Xµ

B/F )R(XB/F,µ)
]
.

The axial-vector component in (3.92) is Hermitian, so R(XB/F,µ) ̸= 0; moreover, the contributions

from the boson-boson sector and the fermion-fermion sector do not cancel each other out4.

Eventually, this non-vanishing O (C · t) terms will result in a polynomial divergence as the ultra-

violet regulator δ→ 0, hence we cannot obtain a well-defined effective action for BB/F,µ in the

presence of the axial-vector components.

Perhaps the best we can do is to derive an effective action for BB/F,µ with only the vector

components. As one can see in (3.92), the vector component commutes with the Γ−matrices, so it

is straightforward to derive the contributions from both sectors [80]:

LF = lim
δ→0

� ∞

δ

dt
32π2t3 e−MF t2

t̃r
(
1Nc −

t2

6
XF,µνXµν

F +O (t3)
)
;(4.9)

LB =− lim
δ→0

� ∞

δ

dt
32π2t3 e−MB t2

t̃r
(
1Nc −

t2

6
XB,µνXµν

B +O (t3)
)
,(4.10)

where XB/F,µν is the field-strength tensor of XB/F,µ, and t̃r is over the color-spinor-flavor space.

Unfortunately, as long as we keep BB,µ to be different from BF,µ, there is no way to combine LF ,

LB as in Section 3.2. As a compromise, we set BB,µ ≡ BF,µ by considering NB ≡NF , which yields

(4.11) LF +LB ≈− ln(M2
B/M2

F )

192π2

�
d4x t̃rXµνXµν.

Finally, using the fact that BT
µ commutes with Aµ one can expand

(4.12) t̃rXµνXµν = 4
[
N f trFµνFµν+Nctr f KµνKµν+2trFµνtr f Kµν

]
where tr f is over the flavor space and Kµν is the flavor field-strength tensor analogous to Fµν.

To derive the effective action for BB,µ ≡ BF,µ, we integrate out Aµ, which is still a non-trivial

calculation due to the crossover term trFµνtr f Kµν. Note that in the physical YM one uses SU(Nc)

4They do when MB = MF and BB,µ and BF,µ are tailored to be the same field, but then the induced theory is
empty.
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instead of U(Nc), in which case this crossover term vanishes, and the final result is nothing but a

flavor YM action.

In summary, the first two step do not work out. So far, the most concrete result is obtained

only when we refrain ourselves from including the axial-vector components of the external field,

and consider the diagonal subgroup of the full NB ×NF symmetry. It is possible to envision a

dual theory which, when the dual degrees of freedom are only coupled to the vector external field,

induces the same effective action derived from (4.11). Such a theory should be a supermatrix

theory such that a similar Pauli-Villars regularization can take effect. Following this, one may

add in axial-vector external fields to the dual theory, which will hopefully induce an effective

action with the same behavior of divergence as in (4.8).

A promising starting point could be the gauged dual-EFT Lagrangian (3.101), and most likely

more terms are required to fully capture the degrees of freedom in dual-IYM. It is likely that the

methods for HChPT can be used to include heavier degrees of freedom (see Section 3.4.5), but

this seems like a formidable task. We end this section with two observations from the polynomial

divergence due to (4.8), which might assist us continuing down this path:

• In general, an attempt to induce a YM action by the method in Section 3.2 is likely to fail

when the gauge group is non-compact. This is indeed the case when we insert XB,µ ≡ XF,µ

with a Hermitian axial-vector component. As we have reviewed in [80] and in Section 3.4, a

proper action for a non-compact gauge field requires a NLσM field, which is not available

to us in DYM from the very beginning. Therefore, one has to either modify DYM itself or to

consider a different type of action. Interestingly, the same non-compactness doesn’t cause

much trouble in the conventional d = 1+1 models. The fermion determinant can still be

computed exactly even with the presence of a Hermitian axial-vector component in the

external gauge field. In d = 1+1, only two out of four conserved currents are independent

[108]; consequently, the axial current can be included as part of the skew-Hermitian vector

current.

• It is possible to conceive a partition function for some color-neutral dual-field coupled to

BB,µ, BF,µ, such that the same polynomial divergence emerges when we integrate out

the dual-field. A promising candidate is a gravitational theory. Usually such a theory is

non-renormalisable, which in turn signals a break-down of a regularization scheme such as

the one caused by (4.8). This idea is still an early-stage speculation, and a short discussion

on this can be found in Chapter 5.

4.2 Zero-current condition

We faced substantial difficulties trying to analytically derive an effective action for the super-

meson field Q̃. Nevertheless, in this section we hope to disclose as much information as possible

from the partition function (3.37), where most of the intriguing physics is hidden in the target
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space of the fields, i.e., the solution space of ZC defined by (3.36). Our first priority is the boson-

boson sector of ZC, which was defined in (3.41), and this will be the only sector studied in this

dissertation5.

4.2.1 Two different points of view

We found it convenient to explore the solution space of (3.41) through two parallel approaches:

Bottom-Up (BU)
Treating φ ≡

(
φ+1 φ+2 φ−1 φ−2

)
as a full-rank6 N ×4N matrix (φ̄ ≡ φ†) and employ the

Euclidean-Weyl representation of the γ−matrices:

γ0 =
(

0 i12

i12 0

)
; γk =

(
0 σk

−σk 0

)
; γ5 =

(
12 0

0 −12

)
,

we reduce (3.41) to {
φ+1φ

†
−1 +φ−2φ

†
+2 = 0;(4.13a)

φ+2φ
†
−1 −φ−2φ

†
+1 = 0.(4.13b)

To ascertain that the solution space is not empty nor “boring”, we present two exemplary solutions:

φch =
(
φ+1 = 0 φ+2 = 0 φ−1 φ−2

)
;(4.14)

φnch =
(
φ+1 φ+2 = 0 φ−1 φ−2 = 0

)
; φ+1φ

†
−1 = 0.(4.15)

Clearly, any chiral mode φch is non-propagating in dual-IYM because its kinetic energy in Sfree is

zero no matter the fluctuations of the nonzero submatrices.

When N = 1, it is easy to see that the only solutions are chiral modes, so dual-IYM is trivial in

a sense. In this case the induced gauge theory might not be an appropriate tool for constructing

a dual theory of the Abelian gauge theory, which is a well-understood field anyway7. For an

interesting case where N ≥ 2, there always exists a full-rank non-chiral mode φnch with

(4.16) φ+1 =
(
ϕq 0

0 0

)
, φ−1 =

(
0 0

0 ϕN−q

)
,

where ϕq, ϕN−q are full-rank square matrices with size q, N − q respectively, and N > q > 0.

However, the kinetic energy of φnch given by (4.16) is again identically zero. For N = 2, a non-chiral

5We hope to explore the other sectors in future works.
6A common assumption made in random matrix theories because the set of rank-deficient elements has measure

zero.
7See the literature mentioned in Chapter 1. A further study of the implications seems interesting, but they are

not included in this dissertation.
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mode a nonzero contribution to Sfree is given by

φ+1(x)=
(
a(x) b(x)

0 0

)
, φ−1(x)=

(
0 0

c(x) d(x)

)
;

a(x)c̄(x)+b(x)d̄(x) != 0 but a(x)(∂µ c̄(x))+b(x)(∂µd̄(x)) ̸= 0.(4.17)

We have established the fact that dual-IYM, being a dual theory of the non-Abelian YM

when N ≥ 2, is worth investigating. This is the very first step to place dual-EFT on solid ground.

This program of directly solving N ×N submatrices for (4.13a), (4.13b) is the Bottom-Up (BU)

approach.

Top-Down (TD)
While BU in principle can offer us a complete set of solutions to ZC, at the moment we have no

clue how to portray them in a physically meaningful way. This is where the second method, the

Top-Down (TD) approach, comes in. The starting point is the fact that for any complex matrix X ,

X = 0⇔TrX X † = 0, which can be used to transform (3.41) to an equivalent form:

(4.18) TrQΓµQΓµ = 0 ∀µ⇐⇒TrQΓµQΓν = 0 ∀µ,ν.

This color-neutral form of ZC is very instructive because it directly places the conditions on the

meson matrix Q ≡ φ̄φ, so if it turns out Q̃ is the appropriate dual-field, we can already use (4.18)

to define the target space of its boson-boson submatrix field Q. Instead of directly dealing with

ZC, we solve for Q in TD. The same procedure can also be done when the color group is SU(2), in

which case there are baryon matrices in addition to Q. The results can be found in Appendix C.

For the purpose of consistency, the subsequent discussions will be exclusively on the case where

the color group is U(N).

There is however an caveat. In addition to (4.18), one has to impose another condition that Q

must be a positive-semidefinite rank N square matrix of size 4N. With this constraint considered,

there is a simple set of rules transforming φ to Q and vice versa:

• Given any full-rank (N) ZC solution φ, the matrix Q ≡ φ̄φ is positive-semidefinite, rank N,

and it solves (4.18).

• Given any positive-semidefinite rank N matrix Q solving (4.18), there exists a decomposi-

tion Q = φ̄φ where φ is a full-rank N ×4N matrix. Plugging this back to (4.18), it follows

that φ is a ZC solution.

Obviously, for any Q the constituent matrix φ is determined up to color U(N) transformations.

Having explained the equivalence between BU and TD, we now point out that the place where

TD shines is to rephrase ZC and make the hidden physical information manifest. What kinds of

information are we looking for? In the real world, the hadron spectrum is very complex, partially
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because of the dependence of the hadron mass on multiple factors such as the constituent quark

masses and the total angular momentum. In fact, there are observed hadrons which do not fit

into the state-of-the-art quark models [116, 117]. The situation is much simpler in dual-IYM,

where we assign the same mass to the auxiliary fields regardless which flavors they carry. This

highlights the critical role played by the spin degrees of freedom, and as we will see below, the

condition (4.18) is ideal for partitioning the ZC solutions according to their spinor components.

4.2.2 Lorentz components

To motivate our plan, we revisit the general scheme of effective theories for hadron physics which

we have encountered in Section 3.4.4 and Section 3.4.5. Starting from the low-energy regime, the

lightest mesons are Lorentz-scalars, which are captured by ChPT. Increasing the energy means

the inclusion of heavier bound-states is necessary, which is done by adding more color-neutral

fields to ChPT. Depending on the types of the heavy hadrons, the resulting generalized models

have many different forms. Nevertheless, in the meson sector a general rule of thumb is that

given the same constituent quarks, the Lorentz-vector bound-state is generally heavier than the

the Lorentz-scalar one due to a spin-spin interaction8. From now on, we will denote this feature

of spin-induced differentiation in mass the energy-hierarchy.

Can we observe such energy-hierarchy in dual-IYM? As a first step, recall that any Q ∈
Mat(4N;C) admits the unique decomposition given by (3.47):

(4.19) Q ≡14 ⊗ Q̂1+ iγλ⊗ Q̂λ+ iγαγβ⊗ Q̂αβ (α<β)+γσγ5 ⊗ Q̂σ5 +γ5 ⊗ Q̂5.

For convenience, Q is already taken to be Hermitian, so the identity

Q = 1
2

(Q+Q†)

“projects” every Q̂• to be also Hermitian. In total there are 16 flavor matrices Q̂• of various

Dirac-types (scalar, vector, tensor, axial-vector, pseudo-scalar). A quick way to justify these names

is to consider

(4.20) Q 7→ (s⊗1N )†Q(s⊗1N ) s ∈Pin(4).

The action of Pin(4) on the products of γ−matrices was explained in Section 3.4.2, where we

discussed the continuous and the discrete transformations separately.

Plugging (4.19) back to (4.18) and making use of the basic identities

Trsγ
µ1γµ2 · · ·γµk =

±4 for µ1 =µ2 = ·· · =µk

0 otherwise
,

8An explanation can be found in [118], where the two-body system is treated in the non-relativistic limit. In this
approximation the vector boson carries spin 1 whereas the scalar boson carries spin 0.
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we arrive at 

−X1+X5 +X2 +X3 −X25 −X35 −X23 +X01 = 0;(4.21a)

−X1+X5 +X0 +X1 −X05 −X15 −X01 +X23 = 0;(4.21b)

−X0 +X1 +X05 −X15 +X02 +X03 −X12 −X13 = 0;(4.21c)

−X2 +X3 +X25 −X35 +X02 +X12 −X03 −X13 = 0.(4.21d)

To simplify the notations, we are using Tr f Q̂2• ≡X•. We noticed an interesting pattern in these

equations: any X• is paired with its γ5−dual. These pairs are given by

Y0 ≡−X0 +X05; Y1 ≡−X1 +X15; Y2 ≡−X2 +X25; Y3 ≡−X3 +X35;

Y1 ≡−X1+X5; Y01 ≡−X01 +X23; Y02 ≡−X02 +X13; Y03 ≡−X03 +X12,

and the equations (4.21a)-(4.21d) now read

Y1 = 1
2 (Y0 +Y1 +Y2 +Y3);(4.22a)

Y01 = 1
2 (Y0 +Y1 −Y2 −Y3);(4.22b)

Y02 = 1
2 (Y0 −Y1 +Y2 −Y3);(4.22c)

Y03 = 1
2 (Y0 −Y1 −Y2 +Y3).(4.22d)

The nice thing about rewriting (4.18) this way is that it reveals eight hyperboloids/light-cones.

For example, Y0 ≡−X0 +X05 reads

Y0 = (−q2
1 −·· ·− q2

N )+ (p2
1 +·· ·+ p2

N );

where q j, p j ∈ R are the eigenvalues of Q̂1 and Q̂5, respectively. Depending on the value of Y0,

the solution space has the geometry of a hyperboloid or a light cone. By analogy with the special

theory of relativity, we call the eight real scalars Y• the “invariant masses”. In summary, there

is one set of equations for the invariant masses given by (4.22a)-(4.22d), and once an arbitrary

solution is fixed, each component Y• defines a hyperboloid/light-cone of a certain Dirac-type

determined by •.

We are ready to perform a first test on the energy-hierarchy in dual-IYM. Specifically, we are

going to check if some of the Lorentz-components of Q are suppressed by ZC. At first glance the

answer is negative, because any Q̂• = 0⇔X• = 0 and the hyperbolic nature of the solution spaces

for Y• obviously allow nonvanishing X•. More concretely, there are 4 linear equations for 16 X•,
so the best we could do it to set 4 of the components to zeros. For instance, suppose all vector

components Xλ are zeros, the axial-vector components X5λ, which are also Lorentz-vectors, are

not necessarily constrained to be zeros.

In addition to ZC, however, we still have to consider the conditions that Q must be rank N

and positive-semidefinite, which did not come with the Hermiticity. Unfortunately there are no

straightforward ways to add these conditions to TD. To overcome this shortcoming, we turn to
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BU and simply take an exemplary solution φnch such as (4.17) to make

(4.23) Qnch ≡ φ̄nchφnch =


φ̄+1φ+1 0 φ̄+1φ−1 0

0 0 0 0

φ̄−1φ+1 0 φ̄−1φ−1 0

0 0 0 0

 .

Now, every component Q̂• can be obtained by partially tracing over the spinor space of the product

of Q with some Γ−matrices. For example, the vector components are

Q̂λ∝TrsΓ
λQnch ∝ φ̄−1φ+1 ± φ̄+1φ−1,

and all of which vanish for (4.17) because φ̄−1φ+1 = 0.

There exists other solutions, of course. In fact, simply by replacing

φ−1(x)=
(

0 0

c(x) d(x)

)
−→φ−1(x)=

(
c(x) d(x)

c(x) d(x)

)

in (4.17), we obtain another ZC solution but this time it is possible that φ̄−1φ+1 ̸= 0. Consequently,

the associated matrix Q has vector components. In the similar way, for any given Q one can check

whether or not some of its components vanish. For instance, the tensor component Q̂12 could be

nonzero for the case of (4.17).

What we have observed is that ZC does not suppress any particular Lorentz-component

of the meson matrix. Hence, dual-IYM should contain color-singlets of all Lorentz-types. To

elaborate on this conclusion, note that ZC should already encompass all the gluon-induced

effects, which in turn play the role of the potential energy in the formulation of bound-states.

Suppose the kinetic-energy effect is less significant9, then ZC alone could indeed determine the

properties of the bound-states. Eventually, this implies that because dual-EFT only contains

scalar and pseudoscalar degrees of freedom, it can at most cover a “subset” of dual-IYM as a

theory of color-neutral dual-fields. We close this section with a remark. As reviewed in Section

4.1.1, the color-neutral theory obtained via the HS decoupling method does not have Lorentz-

tensor components due to the Fierz rearrangement. On the contrary, dual-IYM does contain the

Lorentz-tensor components. This comparison signals a fundamental difference between the HS

approach and the bosonization approach.

4.2.3 Parametrisation of ZC solution space by BU

Until now we have acquired some pieces of the puzzle, but they are not enough for us to assemble

the complete solution space for ZC. In this section and the next, we are going to develop a

parametrisation of the solution space. The general strategy adopted here is the common one: use

9This is no more than a guess. A direct examination is however beyond the scope of this dissertation.
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the symmetries of ZC to bring every solution to a canonical form, which hopefully will allow us to

solve the equations in a simpler setting.

Let us first practice this concept in BU by revisiting the original ZC (3.41):

φΓµφ̄= 0 ∀µ.

Given any solution φ̄, every element in the

(4.24) GL(N;C)−orbit := {φ̄(g)≡ φ̄g|g ∈GL(N;C)}

is also a solution obviously. Here we continue working with a full-rank φ̄, which is composed of N

mutually linearly-independent column vectors in C4N . Geometrically speaking, φ̄ represents an

N−plane in C4N spanned by the column vectors, and any right-action of GL(N;C) simply maps

this set of basis vectors to another set but preserves the N−plane. By the right-actions every φ̄

can be brought to its reduced column echelon form φ̄0, where N rows of φ̄0 make up an identity

matrix.

For example, when φ0 =
(
(φ0)+1 =1N (φ0)+2 (φ0)−1 (φ0)−2

)
, the equations (4.13a), (4.13b)

become {
(φ0)†

−1 + (φ0)−2(φ0)†
+2 = 0;(4.25a)

(φ0)+2(φ0)†
−1 − (φ0)−2 = 0.(4.25b)

In this simplified case, one actually has to solve only one self-anti†congruence equation:

(4.26) (φ0)+2(φ0)†
−1(φ0)†

+2 =−(φ0)†
−1,

for (φ0)†
−1 and (φ0)+2, and then automatically (φ0)−2 = (φ0)+2(φ0)†

−1.

For arbitrary (φ0)−1, (φ0)+2 ∈Mat(N;C), there seems to be no easy way to solve (4.26), so we

now seek help from the massless symmetry group K acting on the spinor-flavor space, which was

introduced in Section 3.4.2. Recall that any element in the

(4.27) K −orbit := {φ̄(k)≡ kφ̄|k ∈ K}

of the same solution φ̄ is a ZC solution. Consequently, the φ̄0 from above can be further sim-

plified by a combination of a left-action by K and a right-action by GL(N;C). To demonstrate

this, we consider the mixing subgroup N in (3.74) and write them out in the Euclidean-Weyl

representation:

(4.28) N≡
{

k(h)≡


h 0 0 0

0 h 0 0

0 0 (h−1)† 0

0 0 0 (h−1)†


∣∣∣∣h ∈GL(N;C)

}
.
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By combining an element k(h) ∈N with a color matrix h−1 ∈ GL(N;C), we transform φ̄0 while

preserving the identity matrix:

(φ0)†
+1 =1N 7→1N ; (φ0)†

+2 7→ h(φ0)†
+2h−1;

(φ0)†
−1 7→ (h−1)†(φ0)†

−1h−1; (φ0)†
−2 7→ (h−1)†(φ0)†

−2h−1.

We are now free to choose h. A possibility is to use h to reduce (φ0)†
+2 to its Jordan normal form;

or instead we can rotate (φ0)†
−1 along its †congruence-orbit to a canonical form [119]. Neither of

the choices offers us a straightforward way to solve (4.26), unfortunately.

Looking at the broader picture. While working in the functional-integral formalism, it is

important to check if the target space of the field splits to several path-connected regions. The

integration over continuous field configurations in each sector has to be carried out individually.

Since our understanding of the ZC solution space is incomplete, we prefer a less ambitious

approach by partitioning the target space to different group-orbits. More precisely, we are

interested in the orbits of some continuous symmetry groups, because the continuity assures all

solutions in such an orbit must belong to the same path-connected region. Now, each solution φ̄

belongs to one and only one

(4.29) double-orbit := {φ̄(k, g)≡ kφ̄g|k ∈ K , g ∈GL(N;C)},

and ultimately we hope to partition the ZC solution space to several double-orbits. Practically

speaking, instead of testing all φ̄ against ZC and then classifying them to different orbits, it

is faster to start with the set of N−planes and test each plane against ZC. This is because the

right-action of GL(N;C) preserves every N−plane, while K is the group which can change the

N−planes. Furthermore, the group GL(N;C) is path-connected, so it suffices to pick only one φ̄

from each GL(N;C)−orbit anyway. Taking this into account, from now on we will be exclusively

studying the K−orbits.

In Section 3.4.2 we identified the identity component K0 and some exceptional elements

from the symmetry group K . By definition, K0 is a continuous symmetry group containing the

identity, so the K0−orbits are the orbits of interest. The existence of the exceptional elements

(and other unknown symmetry transformations in K) suggests that there are many K0−orbits

populating the target space, and it is also possible that two distinct K0−orbits belong to the same

path-connected region. Nevertheless, we believe that understanding the K0−orbits can already

teach us much about the ZC solution space.

Let us first review the elements of K0 given by (3.60). Apart from the mixing elements in

(4.28), there are the scaling factor and the Spin(4)⊗1N elements. Altogether, an element k ∈ K0

looks like

(4.30) k =
(
r+us ⊗h 0

0 r+vs ⊗ (h−1)†

)
; r ∈R+, us,vs ∈SU(2).
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When N = 1, the whole group of K is homogeneous (either Γ5−even or Γ5−odd). This is related to

the fact that when N = 1, all ZC solutions are chiral. We present a proof in Appendix D. For N ≥ 2,

all the known elements in K are homogeneous; in particular, the K0 elements are Γ5−even and

hence they preserve the homogeneity. That is, φch and φnch must belong to different K0−orbits.

Within the chiral sector, it is clear that K0 also preserves the chirality. The right-handed

φch,R and the left-handed φch,L are not in the same K0−orbit; rather, they are connected via

the discrete transformations in KO from (3.72). In the physically more interesting non-chiral

sector, however, the situation is more complicated. Under the assumption that all K elements are

homogeneous, the sector of block diagonal matrices and the one of block off-diagonal matrices

cannot be path-connected. This is due to the fact that any path starting from the identity matrix

must always be block diagonal, and hence it cannot take any element from either sector to the

other one. If this were true, then we could also use KO to obtain more K0−orbits in the non-chiral

sector. Unfortunately, the homogeneity of K is only proven for the case of N = 1, so we refrain

ourselves from applying the same argument here.

We point out that for N = 2, there exists φnch which doesn’t belong to the K0−orbit of the

non-chiral mode in (4.17). This solution is

φnch =
(
φ+1 φ+2 φ−1 φ−2 = 0

)
;

φ+1 =
(
a b

0 0

)
, φ+2 =

(
0 0

a b

)
, φ−1 =

(
0 0

c d

)
.(4.31)

The scalars a,b, c,d are chosen to obey the same equation in (4.17) such that φnch solves ZC.

Since we have demanded φ+1 and φ+2 to be linearly-independent, it follows that r+hφ̄+1 and

r+hφ̄+2 are also linearly-independent for any r+,h. As the result, because none of the us ∈SU(2)

can send (
φ̄+1

φ̄+2

)
to

(
φ̄+1

0

)
due to the linear independence between the submatrices, we conclude that (4.31) belongs to a

different K0−orbit. A generalization to higher N is straightforward.

Continuing down this road, one should be able to discover more K0−orbits, but this doesn’t

seem like an economic way to understand the physics of dual-IYM. From the mathematical point

of view, each GL(N;C)−orbit is represented by a unique point on the complex Grassmannian

GrN,4N (C). In this interpretation, the task is to figure out how to partition GrN,4N (C) to several

K0−orbits. In the next section, however, we would like to take a practical point of view and try to

designate physical meaning to the K0−orbits.

4.2.4 Parametrisation of ZC solution space by TD

Confronting the parametrisation seems easier by TD. First and foremost, Q = φ̄φ is color-neutral

by birth, so it represents an N−plane rather than a set of basis vectors coincide with the column
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vectors of φ̄. Therefore, we no longer need to consider the group GL(N;C) acting on the color

space in TD. Starting from the reformulation of ZC in terms of (4.22a)-(4.22d): the solution space

is a R4 subspace embedded in R8. One can use the “Γ5−odd” coordinates (Y0,Y1,Y2,Y3) or the

“Γ5−even” coordinates (Y1,Y01,Y02,Y03) to describe this R4. They are equivalent, and we proceed

with the “Γ5−odd” one.

At any point (Y0,Y1,Y2,Y3), there are eight hyperboloids/light-cones defined by the in-

variant masses Y•. These substructures are mutually disjoint, and the integration over the

hyperboloid/light-cone for each Y• is straightforward. Without loss of generality, we look at the

Lorentz-scalar sector:

(4.32) X5 −X1 =Y1; X1 =Tr f Q̂2
1, X5 =Tr f Q̂2

5.

First, by construction Q̂2
1, Q̂2

5 are Hermitian matrices in the flavor space. The integration over,

say Q̂2
1, can be carried out in the standard way:

dQ̂2
1 = |∆(Λ1)|2dΛ1du1,

where Λ1 = diag(q1, · · · , qN ), du1 is the Haar measure over the flavor U(N), and ∆(Λ1) is the Van-

dermonde determinant. The similar measure can be obtained for Q̂2
5 with Λ5 = diag(p1, · · · , pN ).

Putting everything together, the integration over the space of (Q̂1,Q̂5) breaks down to an integra-

tion of the eigenvalues q1, · · · , qN , p1, · · · , pN constrained by the Y1−hyperboloid/light-cone and

weighted by the Vandermonde determinants, plus two integrations du1, du5 over U(N).

To summarize, as far as ZC goes, TD does provide us a clean view of the solution space. One

first integrates over R4, and then over eight hyperboloids/light-cones by the recipe explained

above. This can be done exactly. However, in order to bridge BU and TD, the final target space

of Q must be the intersection of the space of positive-semidefinite, rank N matrices, with the

solution space we just derived. Since neither of these conditions can be directly imposed on the

decomposition (4.19), this approach seems like an dead end.

The hopes are placed on group-orbits again. In Section 4.2.3, we discussed the possibility of

partitioning the target space of φ̄ to several K0−orbits, and we would like to test the same strategy

in TD. A challenge immediately appears when we try to transform the original integral of the

supervector fields Ψ̄(x),Ψ(x) to an integral over the supermeson field Q̃(x): the rank-deficiency in

Q makes the SuB formula inapplicable, as explained in Section 4.1.2. To circumvent this obstacle,

one may consider implementing SuB in each K0−orbit, hoping that every K0−orbit contains a

representative which has one and only one N×N submatrix. If this were true, the representative

matrix can be substituted by a full-rank positive-definite matrix field via SuB.

With all the knowledge of dual-IYM we have at hand, it is reasonable to check this conjecture

against previous results. In the chiral-sector, the K0−orbit of any solution φ̄ has a definite

chirality. Take φch,R =
(
φ+ φ− = 0

)
for example, it generates a chiral meson

(4.33) Qch,R ≡ φ̄ch,Rφch,R =
(
φ̄+φ+ 0

0 0

)
,
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where φ̄+φ+ is an arbitrary 2N ×2N positive-semidefinite matrix of rank N. Using (4.30), an

element k ∈ K0 sends

(4.34) Qch,R 7→ kQch,Rk† = (r+)2

(
(us ⊗h)(φ̄+φ+)(us ⊗h)† 0

0 0

)
.

For N ≥ 2, in general φ̄+φ+ cannot be rotated to a certain kind of desired representatives, e.g.

φ̄+φ+
?−→ diag(q,0), for some q ∈Herm+

N (C) by a clever choice for (us,h). The reason is again the

linear independence between the N ×N submatrices of φ̄+φ+. However, it is not immediately

clear whether or not φ̄+φ+ and a “mixing”-type representative matrix are in the same orbit. When

N = 2, a typical mixing-type matrix is

(4.35)


0 · · · 0
... q

...

0 · · · 0


where q ∈Herm+

2 (C). A generic matrix of this type cannot be decomposed as a Kronecker product

of a spin matrix and a flavor matrix, and hence it must belong to a different K0−orbit associated

with the one of diag(q,0), which is decomposable. Note that the other representative diag(0,q) is

in the same orbit of diag(q,0).

All things considered, we may split the right-handed-sector to a “non-mixing” orbit of diag(q,0)

and a “mixing” orbit of (4.35). The SuB formula can then be applied to each orbit. At present, this

statement is no more than a conjecture. The water is even deeper in the non-chiral sector, where

an identification of a submatrix q is complicated. Take Qnch from (4.23) for instance, it is not

clear to us if a single mixing-type representative as in (4.35) can be brought to the same orbit

where the non-chiral meson belongs. This task can also be rephrased differently: being rank N

and positive-semidefinite, Q is U(4N) equivalent to a representative, which itself contains only

one diagonal N ×N matrix. However, there is no guarantee that the U(4N) element needed for

this job also belongs to K0 (or K).

It seems that the SuB formula cannot be used here as an exact transformation of the whole ZC

solution space. Instead, one may argue on physical grounds that “some” solutions φ̄ dominates the

low-energy phenomenon of dual-IYM, and then check if the mesons built from these favourable

fields can be computed with SuB. In the next section, we are going to give a brainstorming on

this topic.

4.2.5 Physical aspects

In Section 3.3.1, we have pointed out the possible existence of the condensates 〈Trφ̄ΓT
5φ〉dual-IYM,

〈Trψ̄ΓT
5ψ〉dual-IYM by connecting these VEVs to the gluon condensate 〈trFµνFµν〉IYM. The dual-

IYM condensates are pseudo-scalars because of the Γ5. In the massless-limit, the action of

dual-IYM coincides with QCD in the infinite-coupling limit, and we learned from QCD that there
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should also be chiral condensates, which are scalars. Hence, at least at the heuristic level we are

convinced that Lorentz-scalar condensates, pseudo or not, exist in dual-IYM.

As usual the physical vacuum should be Lorentz-invariant, and hence there are no conden-

sates of Lorentz-scalar type nor Lorentz-tensor type. In view of this, we expect the lowest-energy

regime to be populated by the Lorentz-scalar bound-states only. As an extension of this argument,

we would like to know if it makes sense to partition the target space of the fields in dual-IYM to

three different Lorentz-sectors: Lorentz-scalar, vector, and tensor. One concern is that if there are

elements in K mapping a solution in one sector to a different one, then this postulate fails. Here,

we examine this property for the continuous subgroup K0.

Since all elements in K0 are homogeneous, we have the following result:

Lemma 4.1. Let Q1 ≡ 14 ⊗ Q̂1 and Q5 ≡ γ5 ⊗ Q̂5. For all k ∈ K0, kQ1k† has no Lorentz-vector

components and neither does kQ5k†.

Proof. The vector-component and the axial-vector component of any Q are TrsQΓλ, TrsQΓσΓ5,

respectively (up to normalization). Since k preserves the homogeneity of Q, both kQ1k† and

kQ5k† are (Γ5−)even. However, Γλ and ΓσΓ5 are odd, and hence the partial-traces over spinor

space both vanish. ■

This argument doesn’t apply to the Lorentz-tensor components, though. Nevertheless, with

the help of the Euclidean-Weyl representation of γ−matrices and (4.30), a second statement can

be made:

Lemma 4.2. For all k ∈ K0, kQ1k† has no Lorentz-tensor components and neither does kQ5k†.

Proof. By (4.30) we see

kQ1k† ∝
(
us ⊗h 0

0 vs ⊗ (h−1)†

)(
12 ⊗ Q̂1 0

0 12 ⊗ Q̂1

)(
u†

s ⊗h† 0

0 v†
s ⊗h−1

)

=
(
12 ⊗hQ̂1h† 0

0 12 ⊗ (h−1)†Q̂1h−1

)
.

The Lorentz-tensor matrices γαγβ have Pauli matrices on the diagonal, which are traceless.

Therefore, Trs(kQ1k†)ΓαΓβ = 0 for any α<β. The same argument obviously holds for kQ5k† as

well. ■

These lemmas assure that none of the K0 − orbits runs across the border between different

Lorentz-sectors. As a consequence, it is safe to parametrise the solutions in one sector by K0 −
orbits.

In combination with the proposal at the end of Section 4.1.2, we hereby conclude the quest

for the energy hierarchy in dual-IYM with a plan to fulfil: first, we partition the target space of

the dual-field to three sectors distinguished according to their Lorentz-types. Each sector is a
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collection of K0−orbits. Next, we extend the dual-EFT action by including Lorentz-vector and

Lorentz-tensor components systematically. A possible strategy is to follow the footsteps of HChPT.

Stationary phase approximation?
We take a last look at the color-neutralisation. For the same argument around (4.34)-(4.35),

even if we drop the Lorentz-vector and tensor components in Q, in general Q =14 ⊗ Q̂1+γ5 ⊗ Q̂5

cannot be rotated to a desired representative by K0. Certainly, more information is needed in order

to address the question posted at the end of Section 4.2.4, i.e., how to properly color-neutralise

dual-IYM. We end this section by a short survey of the free action Sfree in dual-IYM.

Let us temporarily ignore the condition of Nc = N f = N, which was devised for the benefit of

color-neutralisation. By the design of DYM, Sfree is nothing but a free Dirac action with tachyonic

masses MΓ5, mΓ5, and in our setting the weight factor exp(−Sfree) is oscillating. As an exercise,

we solve the equations of motion in dual-IYM below, which is a tachyonic Dirac equation subject

to ZC.

The boson-sector equation of motion is

(4.36) 0 != ((Γµ)T∂µ+MΓT
5 )φ≡ (∂µφ)Γµ+MφΓ5.

Note that φ(x) is a Nc ×4N f matrix. It suffices to consider a “plane-wave”:

(4.37) φp(x)= u(p)e−ipµxµ ,

where xµ ∈R but we need pµ ∈C, because it obeys the consistency equation:

(4.38) pµpµ ≡ p0 p0 + p1 p1 + p2 p2 + p3 p3
!=−M2 < 0.

Up to normalization, the solution reads

(4.39) u(p)=
(
ξ(−p0 − ipkσ

k) ξM
)

with an arbitrary Nc ×2N f matrix ξ. Now, the Spin(4)-covariance invites us to pick a convenient

reference frame and a natural choice is the “rest frame” (p0 = iM,0,0,0). Plugging (4.37) back to

(3.41) and let ξ≡
(
ξ1 ξ2

)
where ξ1, ξ2 are Nc ×N f , the ZC equations become

{
ξ1ξ

†
2 = 0= ξ2ξ

†
1;(4.40a)

ξ1ξ
†
1 = ξ2ξ

†
2.(4.40b)

These equations indicate the following fact which helps us find exemplary solutions:

Lemma 4.3. Let r(ξ1), r(ξ2) (n(ξ1), n(ξ2)) be the ranks (nullities) of ξ1, ξ2 respectively, then

(4.41) r(ξ1)= r(ξ2)≤ N f

2
.
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Proof. Both ξ1, ξ2 are linear maps from CN f →CNc . Equation (4.40a) tells us r(ξ2)= r(ξ†
2)≤ n(ξ1);

by the rank-nullity theorem n(ξ1)= N f − r(ξ1) so we have r(ξ1)+ r(ξ2)≤ N f (same under 1↔ 2).

Next, equation (4.40b) shows r(ξ1)= r(ξ1ξ
†
1)= r(ξ2ξ

†
2)= r(ξ2), and together with the previous result

we obtain (4.41). ■

There are non-trivial zero-current classical solutions. When N f = 2= Nc, there exists a solution ξ

that

(4.42) ξ1 =
(
0 a

0 b

)
; ξ2 =

(
c 0

d 0

)
. |a|2 = |c|2; |b|2 = |d|2; ab̄ = cd̄.

A naive stationary phase approximation via rescaling doesn’t work at this stage, unfortunately,

because φ itself depends on both Nc and N f . Ideally, this step should be carried out after a

properly color-neutralised dual-IYM is obtained, and the appropriate large parameter to

use will be Nc. This aligns with the similar observation made in dual-BZN, see Section 2.8.3.

We would like to point out the fascinating possibility of a large−Nc analysis on the both sides

of DYM. In IYM, the conventional large−Nc diagrammatic technique [120] is a powerful tool

to study the strong-coupling dynamics of YM. In a color-neutralised dual-IYM, the large−Nc

may grant us a valid semi-classical approximation. This blueprint is in agreement with the

celebrated gauge/gravity duality mentioned in Section 1.2. See also [121]. We would however like

to emphasize again the universality condition N f ≥ Nc mentioned in Section 2.8.3. If it turns

out a similar condition is needed to keep IYM in the YM universality class, then the implicit

Nc−dependence will certainly compromise the stationary phase approximation. On the contrary,

if N f can be “decoupled” from Nc in DYM, then such an approximation does look promising in

the color-neutralised dual-IYM.

An interesting, but ambitious query would be to look at a certain subset of the gluon field

Aµ in IYM. As reviewed in Section 1.2, the CDGFN decomposition of the gauge field singles out

some monopole degrees of freedom, which are believed to be responsible for quark confinement.

Inspired by this, instead of integrating out all possible configurations of Aµ, one can try to only

integrate over the monopole-domain. Intuitively, the ZC should be replaced by a new, “softer”

condition because less degrees of freedom of the Dirac fields are constrained. We haven’t done

anything in this direction so far.

4.3 Summary and outlook for DYM

In Chapter 3, we have reviewed the model of DYM and derived again the IYM action, and

then we embarked on a research of dual-IYM. Inspired by some resemblances of dual-IYM to

QCD, we envisioned that dual-IYM should describe a system of color-neutral composite fields.

A remarkable connection between the gluon condensate in IYM and the boson/fermion field

condensates in dual-IYM suggests a spontaneous breaking of some symmetry group. On the
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basis of this postulate, we first defined the relevant dual symmetry groups and revealed their

properties, and then we established a theory of dual-EFT by consulting the original derivations

of ChPT. Only the bosonic symmetries were taken into consideration, and the effects of fermionic

symmetries were left for future studies.

In this chapter, we attempted to go beyond dual-EFT and explicitly derive a color-neutral

version of dual-IYM. To color-neutralise the action, a d = 4 functional-integral formalism of

Witten’s non-Abelian bosonization method was considered. The non-compactness of the dual

symmetry group inevitably results in a polynomial divergence in the effective action for the

external fields. Consequently, we could not advance any further in the derivations. Nevertheless,

some features of the resulting effective action might be useful references when it comes to

speculating an appropriate action for some dual-field.

A natural candidate for the dual-field is the super-meson field, but due to the rank-deficiency

of its boson-boson submatrix, the meson field, a direct application of the SuB formula is not viable.

To resolve this, we devoted much effort to solving ZC. First, it was shown that unlike the N = 1

case, the N ≥ 2 dual-IYM contains dynamical fields. More significantly, every Lorentz component

of the dual-field has a role to play in dual-IYM, which suggests the limited applicability of

dual-EFT. The project of parametrizing the ZC solution space however is not yet completed. As a

compromise, we developed a reasonable recipe to partition the solution space to several K0−orbits,

which in turn supports the idea of energy hierarchy in dual-IYM.

The issue of rank-deficiency is still unsolved. Several proposals were tested but failed. Con-

sequently, it seems that the ultimate goal of an exact color-neutralisation has to wait until a

suitable generalization of SuB is available to us. In our vision, an ideal form of dual-IYM is an

NLσM for some supermatrix fields. This NLσM should include all Lorentz-types mesons, which

are arranged according to the energy-hierarchy scheme. In this scenario, the scalar-field coupling

should have a negative mass dimension which makes dual-IYM non-renormalizable. This favors

the possibility that the coupling, in opposition to the gauge-coupling of YM, decreases as the

energy-scale is reduced. If this turns out to be true, we will be able to argue that there is a

S-duality between IYM and dual-IYM. For the time being, this still seems like a dream to us, and

the presence of the vector mesons most likely will complicate the situation, of course.
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CONCLUSION

In this dissertation, we have applied the concept of induced gauge theory to construct dual

descriptions of U(Nc) YM in d = 4. We have considered a lattice-regularized model (BZN)

and a heat-kernel-regularized model (DYM). In both cases, the induced actions for the

gluons can be derived by integrating out auxiliary matter fields in the respective master actions.

Under suitable conditions, we believe that the induced actions lie in the same universality class of

YM. For either BZN or DYM, our main objective is to understand the induced theory for the matter

fields, which is equivalent to YM by design. This is known as a dual theory of YM. Significantly,

the master action shows resemblance to a disordered system of the matter fields, where the gluon

degrees of freedom play the role of the disordered couplings. In this interpretation, the dual

theory is a strongly-disordered system. Motivated by this, we have examined the dual theories in

both models by some modern mathematical methods developed for strongly-disordered systems.

Master action
At the core of induced gauge theory is a thoughtfully invented master action. For the construc-

tion of a master action for BZN, we have used Gaussian-integral representation to introduce

auxiliary bosons and fermions. To ensure BZN flows to YM in a continuum-limit, we have de-

manded N f ≥ Nc and m > M > 0, where m and M are the fermion mass and the boson mass. The

continuum-limit is attained as M → 0. For DYM, the master action consists of Dirac bosons and

Dirac fermions coupled to the same gluon field. Both Dirac fields have tachyonic mass terms,

and as long as the boson mass MB is greater than the fermion mass MF , integrating out these

auxiliary fields yields the YM action at least to the leading-order. This induced theory is known

as IYM, and we have argued that the approximation may become exact in the large−N f limit.
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Duality transformation
The concrete results in this work are two recipes for duality transformations. For BZN, the

presence of both bosons and fermions makes the integration of the gluons accessible. We have

demonstrated how to use the Cayley parametrisation to transform the U(Nc) Haar measure into

a measure over the space of Hermitian matrices. By the standard ribbon-diagrammatic technique,

the gluon-integral results in a large−Nc series of composite variables in the effective action. For

DYM, integrating out the gluon field projects the Dirac fields to a configuration space with zero

color current in the case where U(Nc) is the color group. If the color group were SU(Nc), the color

current would be valued in the one-dimensional subspace generated by the identity matrix. We

have only studied the U(Nc)−induced theory in this dissertation, and this theory is known as

dual-IYM.

Color neutralisation
To fully comprehend the dual theories in both BZN and DYM, we have tried to perform exact

transformations of the original matter fields to some color-neutral variables. For BZN, we have

utilized the fact that the auxiliary variables live on the links, and performed a color-averaging

trick. In combination with the gluon-integral contributions, we have obtained a dual action

written explicitly in terms of composite particles built from the original bosons and fermions. This

theory is known as dual-BZN. For dual-IYM, while there is a natural choice for the color-neutral

object, the super-meson field, so far we have not successfully turned the action into a color-neutral

form. The attempt of devising a dual action using Witten’s non-Abelian bosonization method

leads to a divergent effective action for the external field, which makes even an educated guess

for the dual action difficult.

To complete the color neutralisation program, a promising machinery to use is the SuB

formula. For dual-BZN, we have explained the conflict between the universality condition N f ≥ Nc

and the SuB condition q ≤ n. For dual-IYM, we have explored the boson-boson sector of the

ZC solution space by two parallel methods: BU and TD. With the help from the massless

symmetry group, the computations in both BU and TD can be greatly simplified, but a complete

parametrisation of the solution space has not yet been found. Based on the few exemplary

solutions we have discovered, it seems that the SuB formula is not directly applicable in dual-

IYM either due to a similar rank-deficiency in the composite operator. Nevertheless, there is hope

that in the advent of a new version of SuB, we can revisit the results obtained in this work and

carry out the task of color-neutralisation.

Physical perspectives
Even without exact color neutralisation, it is possible to unravel some useful information

from the dual theories. For dual-BZN, we have developed a method to compute the Wilson

loop expectation value on the dual side. In the boson-boson sector, we have also identified the

masses and the interaction strength from the dual action; furthermore, we have obtained some
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preliminary results regarding symmetry breaking. So far, our understanding of dual-BZN is

quite limited due to the unknown higher-order terms in the dual action. Moreover, while the dual

action suggests an application of a large−Nc analysis in a properly color-neutralised version of

dual-BZN, it may not be a semi-classical approximation due to the universality condition.

For dual-IYM, we have manufactured a low-energy effective field theory, known as dual-EFT,

based on a chiral-type symmetry breaking. Using the DYM master action, we have postulated a

possible “coexistence” of a gluon condensate in IYM and boson/fermion condensates in dual-IYM.

Then by analogy with ChPT, we have recognized a pattern of spontaneous symmetry breaking

in the massless symmetry group, and built an action for dual-EFT around it. There are two

possible applications of dual-EFT: YM mass gap and quark confinement, and we have presented

some early-stage results. Based on a further study on the massless symmetry group and ZC, we

have conjectured that dual-IYM describes a system of color-neutral mesons of all Lorentz-types.

Since dual-EFT only contains the Lorentz-scalar mesons, we believe that it only captures the

low-energy dynamics.

Outlook
The evidences we have collected in this work are not enough to ascertain these conjectures of

different aspects of dual-IYM. Nevertheless, we would like to portray the final shape of dual-IYM,

which seems most fascinating to us. Being a color-neutral theory, it is unlikely that dual-IYM is a

suitable model for a potential realization of the dual superconductivity. The reason is that the

chromomagnetic monopoles also carry color indices. In comparison, the possibility of dual-IYM

being a gravitational theory is higher.

First of all, a consideration of large−Nc expansion in DYM seems straightforward. In IYM we

would have a planar-diagram series expansion, whereas in dual-IYM (after color-neutralisation)

a semi-classical approximation might be accessible. Under the assumption that the universality

condition in DYM might be “softer” than the one in BZN, this planar-diagram versus semi-

classical scenario bridges a strongly-coupled gauge theory to a semi-classical dual theory. This is

compatible with the framework of AdS/CFT-duality. One should however be reminded that, in

our current understanding, the prospective IYM/dual-IYM pair of theories both live in a d = 4

spacetime, which is different from the conventional AdS/CFT.

More specifically, if dual-IYM turns out to be an NLσM, two good things could happen. In

the sector of dual-EFT, the NLσM coupling in d = 4 generally has a negative mass dimension.

Therefore, in opposition to the YM coupling, it might decreases in the IR. In this case, there

is hope that dual-IYM is in S-duality with IYM. However, the fact that dual-IYM contains all

Lorentz-types composite operators would certainly introduce more terms to dual-EFT. With regard

to this, we have developed an energy-hierarchy scheme, which can be improved by a further

renormalisation-group analysis. On a related note, there has been a claim of some analogies

between the theory of general relativity and a NLσM [122], which seems like an interesting

direction to consider in the future.
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We hope that our work did provide a fresh point of view for a better understanding of the

low-energy physics of YM. Certainly, there is still a long road ahead of us 1.

1Towards the truth, and/or towards the one-million dollar prize.
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A
WEINGARTEN FUNCTIONS

We borrowed the notations and examples from [123]. The Weingarten function W(α, Nc) only

depends on the cyclic structure of α ∈Sk. For instance, in S3, the permutations α= (1,2)(3) and

β= (1,3)(2) share the same cyclic structure “[2,1]”: a transposition and a fixed point. Therefore,

they contribute the same Weingarten function W([2,1], Nc).

The following values were originally taken from [84], but we only used the first three of them

for this dissertation (Nc ≡ N).

W([1], N)= 1
N

;

W([1,1], N)= 1
N2 −1

;

W([2], N)= −1
N(N2 −1)

;

W([1,1,1], N)= N2 −2
N(N2 −1)(N2 −4)

;

W([2,1], N)= −1
(N2 −1)(N2 −4)

;

W([3], N)= 2
N(N2 −1)(N2 −4)

.
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B
LINKED-CLUSTER EXPANSION

Although the linked-cluster principle is well-known, we present a version tailored to BZN here.

The following derivation is adapted from [124].

First we write

(B.1)
�

D g e−
∑

p∈ΛΓ
g
s (p) ≡

∞∑
n=0

1
n!

∑
p1,···pn

G(p1, . . . ,pn),

where G(p1, . . . ,pn) stands for all diagrams involving the configuration of plaquettes (p1, . . . ,pn).

Next, decompose every G to a product of connected components Gc and transform (B.1) to

1+
∞∑

n≥1

1
n!

n∑
k=1

1
k!

∑
m1,...,mk≥1;

m1+···+mk=n

n!
m1! · · ·mk!

∑
p1,···pn

Gc(pi1 , . . . ,pim1
) · · ·Gc(pik , . . . ,pimk

),

(B.2)

where 1/k! is needed to prevent over-counting.

Finally, by the re-summation formula

1+
∞∑

n≥1

1
n!

n∑
k=1

1
k!

∑
m1,...,mk≥1;

m1+···+mk=n

= 1+
∞∑

k=1

∑
n≥k

∑
m1,...,mk≥1;

m1+···+mk=n

= 1+
∞∑

k=1

∑
m1≥1

· · · ∑
mk≥1

we arrive at

1+
∞∑

k=1

1
k!

[ ∞∑
m=1

1
m!

∑
p1,···pm

Gc(p1, . . . ,pm)

]k

≡ e−Seff,L .

Or

(B.3) Seff,L =
∞∑

m=1

1
m!

∑
p1,···pm

Gc(p1, . . . ,pm).
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SU(2)−INDUCED CONDITION ON COLOR-CURRENT

When the color group is SU(2), the integration of Aµ in (3.35) only takes out the components of

Jµ in Lie(SU(2)). Using the fact that

X =−ε−1XTε ∀X ∈Lie(SU(2)),

where ε≡ iσ2, the Lie(SU(2)) components of Jµ are (Jµ−ε−1(Jµ)Tε)/2 and hence ZC becomes

(C.1) Jµ−ε−1(Jµ)Tε
!= 0 ∀µ.

In the boson-boson sector, (C.1) is equivalent to (∀µ)

0 != tr(Xµ−ε−1(Xµ)Tε)(Xµ−ε−1(Xµ)Tε)†

∝ trXµ(Xµ)† − trε−1(Xµ)Tε(Xµ)†,
(C.2)

where Xµ ≡φΓµφ̄.

Introducing one meson matrix Q ≡ φ̄φ and two baryon matrices B ≡ φ̄ϵ−1φ̄, C ≡φϵφ, we can

rewrite (C.2) as

(C.3) TrΓµQ(Γµ)†Q−Tr(Γµ)TC(Γµ)†B = 0.

To simplify the equations further, we can incorporate the “baryon number” into the spinor-flavor

space by defining

Γ̃µ ≡12 ⊗Γµ;

T ≡ τ⊗12, τ≡ diag(ε,ε);

Q ≡
(

Q BT

T −1C −T −1QTT

)
.
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Then (C.3) is written in the following compact form

(C.4) T̃rΓ̃µQΓ̃µQ = 0 ∀µ.

By construction, Q has the following properties:

Q = (Q)†, Q =−Σ−1QTΣ,

where Σ≡ iσ2 ⊗T . One can say iQ lives in Lie(USp(8)).

94



A
P

P
E

N
D

I
X

D
SINGLE-FLAVOR MASSLESS SYMMETRY GROUP

A proof regarding the homogeneity of the full symmetry group K for the case of N f = 1 is presented

here.

Decompose any k ∈ K into the even part (commuting with γ5) and the odd part (anticommuting

with γ5) k ≡ kE +kO. In the Euclidean-Weyl representation they look like

(D.1) kE ≡
(
k+ 0

0 k−

)
; kO ≡

(
0 k̃+

k̃− 0

)
.

Lemma D.1. When N = N f = 1, any k ∈ K is homogeneous. That is, either k = kE, or k = kO.

Proof. Any k ∈ K is invertible and it satisfies

(D.2) kγµk† =Λµνγν ∀µ.

Since the RHS of (D.2) is always odd, it is necessary that

(D.3) kEγ
µk†

O +kOγ
µk†

E = 0 ∀µ.

Using (D.1), (D.3) reads

(D.4) k+k̃†
++ k̃+k†

+ = 0; k+σl k̃†
+− k̃+σl k†

+ = 0 ∀l.

and likewise for k−, k̃−. Here, k+, k̃+ are 2×2 matrices, so the algebra is easy and one concludes

that for (D.4) to be true, either k+ = 0 or k̃+ = 0. Similarly we also need either k− = 0 or k̃− = 0. As

the result, if one insists that kE ̸= 0 and kO ̸= 0, then for (D.3) to hold it is necessary that we turn

one (and only one) out of the two blocks in kE to zero and same for kO, which in turn results in

(D.5) kEγ
µk†

E = 0; kOγ
µk†

O = 0 ∀µ.

This contradicts that fact that the RHS of (D.2) must be invertible (hence nonvanishing). ■
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