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Abstract

Despite significant advancements in condensed matter physics, analyzing strongly
interacting and disordered systems presents notable challenges that this thesis aims to
address. Divided into two distinct projects, this work investigates strongly interacting
fermion systems and strongly disordered fermion systems independently. However, both
projects share a commonality in the analytical tool employed: the superbosonization
formula introduced in [1, 2].

The first project addresses the lack of methods available for analyzing strongly interacting
systems. We develop a general analytical framework based on the bosonization formula [1,
2] within the functional integral approach. As a specific application, we examine the
one-dimensional strongly interacting Hubbard model at half-filling. However, we encounter
challenges in properly defining the continuum limit in time. Consequently, we incorporate
the concept of renormalization, exploring how it can be integrated into the bosonization
scheme. We acknowledge that the complete execution of these ideas remains a work in
progress, reserved for future research.

The second project centers on investigating strongly disordered fermion systems within
symmetry class D, as outlined by the Altland-Zirnbauer classification of non-interacting
fermions [3]. This research is motivated by the proposal of a novel spontaneous symmetry
breaking (SSB) phenomenon in class A [4, 5, 6], and aims to uncover similar phenomena in
class D systems. We begin with a general formulation of supersymmetric field theory
applied to disordered class D systems, focusing on the strong disorder limit and its
implications. To explore the potential for novel spontaneous symmetry breaking in class D,
we analyze a specific system: monitored free fermions that exhibit measurement-induced
phase transitions. We propose a reformulation of the theory that provides a new perspective
on investigating this system. Nevertheless, a complete investigation of the possibility of
novel SSB phenomena in class D remains an open question for future exploration.
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1 INTRODUCTION TO THE FIRST PROJECT

1 Introduction to the First Project

1.1 Motivation

For almost a century, the field of condensed matter physics has witnessed significant
advances in both the theoretical and experimental domains, driving rapid growth and
development. Its capacity to explain a wide range of fascinating physical phenomena
continues to draw considerable interest. We were drawn to this field to investigate a specific
facet in the first half of the thesis, particularly focusing on strongly correlated electron
systems. We begin by outlining some core concepts in this field, followed by a discussion of
the motivation for studying strongly correlated systems.

Condensed matter physics deals with understanding the macroscopic behavior of a large
collection of simple constituents. The interactions among these constituents can give rise to
complex, emergent phenomena. Most of the time, the degrees of freedom describing the
low-energy physics of the system are not the microscopic ones. As P.W. Anderson
insightfully remarked in his article “More is Different” [7]:

“The ability to reduce everything to simple fundamental laws does not imply the ability to
start from those laws and reconstruct the universe.”
“Instead, at each level of complexity entirely new properties appear, and understanding the
new behaviors requires research which I think is as fundamental in its nature as any other.”
“...the whole becomes not only more than but very different from the sum of its parts.”

In some instances, the mean-field approximation can provide valuable qualitative insights
into physical behavior. For example, the Bardeen-Cooper-Schrieffer (BCS) theory [8]
employs a mean-field approximation to describe low-temperature superconductivity. A
common technique in quantum field theory for studying fluctuations around the mean-field
solution in such scenarios is the Hubbard-Stratonovich (HS) transformation. The core idea
of the Hubbard-Stratonovich transformation [9] is to decouple the four-fermion fields
interaction term (the two-body interaction term) by coupling it to a collective bosonic field.
A schematic representation of the HS transformation is shown below:

ei
1
2
λ(ξ̄σ1 τ⃗σ1σ2ξσ2 )

2 ∼
ˆ

dϕ⃗ e−i
(

1
2
ϕ⃗2 +

√
λϕ⃗ · ξ̄σ1 τ⃗σ1σ2ξσ2

)
. (1)

Here 1
2λ(ξ̄σ1 τ⃗σ1σ2ξσ2)

2 represents the two-body fermion interaction term, where λ is the
strength of the interaction, and ϕ⃗ denotes the bosonic field. It is crucial to note a significant
limitation of this approach. This technique is effective for studying fluctuations in the
collective bosonic field only when λ << 1 (assuming λ is dimensionless), which corresponds
to the weak interaction limit.

However, some of the more challenging and intriguing problems in condensed matter physics
over the past few decades cannot be addressed with perturbative methods. This is
particularly true for systems with strong correlations. By definition, strongly correlated
systems cannot be described straightforwardly as a sum of weakly interacting parts [10].
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1 INTRODUCTION TO THE FIRST PROJECT

Notable examples include high-temperature superconductivity, metal-insulator transitions,
the fractional quantum Hall effect, and frustrated quantum magnetism, among others.

Currently, effective methods for investigating strongly interacting fermionic systems are
scarce. Exact solutions do exist, but only for certain models with strong interactions, such
as those solvable by the Bethe Ansatz [11, 12]. This technique is employed to solve
one-dimensional interacting quantum systems, like the one-dimensional spin-12 Heisenberg
antiferromagnet chain, providing exact results for ground states and excitation spectra.
However, most models cannot be solved exactly.

An alternative strategy is to reformulate complex interacting models to make them weakly
interacting [10]. This idea of bosonization was pioneered by Jordan and Wigner [13] in 1928,
who illustrated the equivalence between a spin-12 anisotropic Heisenberg chain and a model
of interacting fermions.

Bosonization has become a pivotal non-perturbative technique in quantum field theory,
relying on the principle of mapping a system of interacting fermions to an equivalent system
of bosons. This review will briefly outline the historical development of this technique and
its evolution into an essential tool in the field.12

In 1950, Tomonaga [15] posited that the low-energy excitations of an interacting
one-dimensional electron gas could be described in terms of collective bosonic modes.
Luttinger [16] advanced this concept in 1963 by creating a model based on Tomonaga’s
theory. However, this model had flaws, including an unbounded Hamiltonian that lacked a
ground state. This issue was later resolved by Mattis and Lieb [17] in 1965, marking a key
advancement in the development of the bosonization technique.

In 1975, the bosonization method was conceived independently by particle physicists Sidney
Coleman [18] and Sidney Mandelstam [19], as well as condensed matter physicists Daniel
Mattis [20] and Alan Luther [21]. Their analyses focused on the properties of Dirac fermions
in (1 + 1) space-time dimensions.

Using the bosonization method, Haldane [22] provided a low-energy description for a wide
range of one-dimensional quantum many-body systems in 1981.3 Another significant
advancement in the field occurred in the 1980s when Witten solved the non-Abelian version
of bosonization in 1984 [23]. Around the same period, it was also discovered by Polyakov
and Wiegmann [24] in 1983, and Knizhnik and Zamolodchikov [25] in 1984. Subsequently, in
1985, Affleck applied the method of non-Abelian bosonization to the problem of spin chains
[26].

While we could continue, we will now conclude our exploration of the historical development
1This is not a complete list but rather highlights key historical milestones in the development of this field.
2We have consulted [10, 14, 9] to explore the history of bosonization and provide a brief summary here.
3In this paper, Haldane coined the term “Luttinger liquid”, which is sometimes referred to as the “Tomonaga-

Luttinger liquid”.
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1 INTRODUCTION TO THE FIRST PROJECT

of the bosonization technique. To reiterate, this discussion is by no means exhaustive; the
aim was to provide a glimpse into how the technique evolved and influenced various
applications in condensed matter physics.

There have been several recent developments in this field, both in expanding the method
and in applying it to various systems. One example is the work by Huang and Lee [27] in
2021, in which they proposed an extension of Witten’s non-abelian bosonization to two and
three spatial dimensions. They applied this extended framework to various systems,
including the SU(2) gauge theory of the π-flux phase, and twisted bilayer graphene. Many
additional works by different researchers have explored and applied the concept of
bosonization; however, these are not detailed here.

In this thesis, we also utilize bosonization to analyze strongly correlated electron systems.
Our approach is based on the bosonization formula introduced in [1, 2]. The following
section will provide an overview and a brief discussion of this formula.

1.2 Bosonization Formula

The first part of this thesis primarily relies on the bosonization formula introduced in [1, 2].
Using this formula, we develop a method for studying strongly interacting fermionic
systems. In this section, we introduce the bosonization formula following [1]. However, we
do not provide a derivation here; for a more comprehensive explanation, we recommend
consulting [1].

Consider two sets of anti-commuting variables: ξr,σ and ξ̄rσ, with index range r = 1, . . . , R

and σ = 1, . . . , n. Here, r represents the “color” degrees of freedom, while σ indicates the
“flavor” degrees of freedom. The anti-commuting variables ξr,σ can be organized into an
R× n rectangular matrix, denoted as ξ, where each matrix element corresponds to ξr,σ.
Similarly, the variables ξ̄rσ can be structured into a n×R rectangular matrix, denoted as ξ̄,
with elements ξ̄rσ.

Suppose we want to integrate a function f(ξ, ξ̄):
ˆ
ξ
f =

ˆ
Dξ f(ξ, ξ̄), (2)

where the integration measure is given by:

ˆ
Dξ :=

∏
r,σ

∂2

∂ξ̄rσ∂ξr,σ
. (3)

Let f in the integral (2) be an analytic and U(R)-invariant function of the variables ξ, ξ̄:

f(ξ, ξ̄) = f(gξ, ξ̄g−1), g ∈ U(R). (4)

It is further assumed that f extends to a holomorphic function invariant under GL(R,C).
The symmetry relation (4) for this extended function remains valid for all g ∈ GL(R,C), the

4



1 INTRODUCTION TO THE FIRST PROJECT

complexified version of U(R).

The bosonization formula enables us to derive a reduction formula for the integral
´
f of

functions that meet the specified conditions. To present the bosonization formula, the
following components are required:

1. First, we use a result from classical invariant theory [28]. The algebra of
GL(R,C)-invariant polynomial functions in ξ, ξ̄ is generated by invariants that arise
at the quadratic level. We now proceed to construct all quadratic invariants under the
U(R) symmetry group, using the variables ξ and ξ̄:

(ξ̄ · ξ)σσ′ = ξ̄rσξr,σ′ . (5)

The quadratic invariant in equation (5) can be interpreted as an n× n square matrix
represented by ξ̄ · ξ. We have used the Einstein summation convention over the “color”
degrees of freedom in equation (5).

2. Next, consider an n× n square matrix Q whose matrix elements are represented by
Qσσ′ . Impose the following condition on Q:

Q = (Q−1)†, (6)

which implies that Q is a unitary matrix.

We are now prepared to state the bosonization formula. This formula provides a method for
rewriting the integral in equation (2) as an integral over the matrix Q, which has been
defined previously. Specifically, the integral can be expressed as follows:

ˆ
ξ
f =

ˆ
U(n)

dQDet−R(Q)F (Q). (7)

Here, dQ denotes the U(n) Haar measure. F (Q) denotes a function of the unitary matrix Q.
Under the substitution Q → ξ̄ · ξ, the function F (Q) becomes equal to the given function
f(ξ, ξ̄). It is important to note that the choice of the function F is not unique.

The bosonization formula (7) transforms the integration over the Grassmann variables to an
integration over the unitary group U(n) defined over the “flavor” space Cn

flavor. To gain a
better understanding of the bosonization formula, let us examine the simplest scenario
where R = 1, and n = 1. In this case, the bosonization formula simplifies to:

ˆ
ξ
f =

∂2

∂ξ̄∂ξ
f(ξ, ξ̄) =

ˆ 2π

0

dϕ
2π

e−iϕ F (eiϕ)

=

˛
dz
2πiz

1

z
F (z),

(8)

where we have made the substitution z = eiϕ in the last equality. By examining this simple
case, we can interpret the bosonization formula as follows:

5



1 INTRODUCTION TO THE FIRST PROJECT

Instead of taking partial derivatives with respect to the Grassmann fields, one
computes the residue at the poles of the complex contour integral using the
residue theorem.

This concludes our review of the bosonization formula. For a comprehensive explanation
and proof of the formula, we recommend referring to [1].

1.3 Outline of the First Project

We are now set to explore the realm of strongly interacting systems. The following outline
provides a brief roadmap for the first half of this thesis.

In Chapter 2, we describe the functional integral bosonization formalism based on the
bosonization formula discussed above to study strongly interacting fermionic systems. We
illustrate this formalism using a general model, discuss the obstacles encountered, and
outline the strategies employed to overcome them.

In Chapter 3, we apply the formalism to the one-dimensional strongly interacting Hubbard
model at half-filling to confirm the validity of our approach and to reproduce established
results related to this model. We discuss three different attempts at bosonizing the model;
however, we face the persistent challenge of defining a continuum limit in time.

Finally, in Chapter 4, we discuss the concept of renormalization and explore how these ideas
can be incorporated into the bosonization scheme to resolve the issue of establishing a
well-defined continuum limit. It is important to note that while we discuss the theoretical
framework for resolving this issue, the practical execution of these ideas is still a work in
progress.

6



2 A BOSONIZATION FRAMEWORK USING FUNCTIONAL INTEGRAL LANGUAGE

2 A Bosonization Framework Using Functional Integral Lan-
guage

In this chapter, we introduce our proposed method of functional integral bosonization for
investigating strongly correlated electron systems. We begin with the standard steps of
constructing a coherent state path integral for fermions. Traditionally, this process involves
employing a Hubbard-Stratonovich transformation to decouple the fermion interaction term.
However, in this chapter, we will take a different approach by utilizing the bosonization
formula (7).

2.1 Steps Involved in the Formalism

Initially, to illustrate the formalism, we will focus on a quantum system described by a 0 + 1

dimensional quantum field theory (QFT) for simplicity. Later, we will extend our analysis to
a D+1 dimensional QFT, where D denotes the spatial dimensions and the remaining
dimension denotes time.

The single-particle Hilbert space for the system is given by V = CR⊗Cn, where R represents
the total number of “color” degrees of freedom, and n describes the total number of “flavor”
degress of freedom. We assume that the Hamiltonian of the system has the following form:

H ∼
∑
σ,σ′

c†rσ cr,σ′ +
∑

σ,σ′,σ′′,σ′′′

c†r
′

σ c†rσ′cr,σ′′cr′,σ′′′ , (9)

where r denotes the “color” degrees of freedom, and σ denotes the “flavor” degrees of
freedom. We use the Einstein summation convention for the “color” degrees of freedom. The
Hamiltonian consists of two terms: a one-body term and a two-body term. Here, c†rσ denotes
the creation operator for an electron with “color” degree of freedom r and “flavor” degree of
freedom σ.

The object of illustration for the formalism is the partition function4:

Z = Tr
(
ρ(T )

)
= Tr

(
e−

iHT
ℏ ρ(0)e

iHT
ℏ

)
,

(10)

where ρ(t) denotes the density matrix defined at time t, and Tr denotes the trace over the
fermionic Fock space. Diagrammatically, the time evolution of the density matrix can be
represented on the closed-time contour5 (the Schwinger-Keldysh contour) [29, 30, 31] as
follows:

4To compute correlation functions, one approach is to introduce source terms into the partition function
[29, 30]. However, to illustrate our method, we focus on Z as defined in (10).

5The rationale for utilizing the closed-time contour instead of a single time channel will be discussed later
in this chapter.

7



2 A BOSONIZATION FRAMEWORK USING FUNCTIONAL INTEGRAL LANGUAGE

time0 T

+

−

Figure 1: Closed-time contour with + denoting the forward channel and − indicating the
backward channel.

The factor e−
iHT
ℏ corresponds to the evolution along the forward contour (ket, +), while the

factor e
iHT
ℏ corresponds to the evolution along the backward contour (bra, −).

Note. An intuitive way to understand the closed-time contour [32] is to realize that the
expectation value of an operator in real time is given by:

⟨O(T )⟩ = Tr

(
e

iHT
ℏ O e−

iHT
ℏ ρ(0)

)
. (11)

Our first task is to express the partition function as a functional integral and subsequently
apply the bosonization formula (7).

Step 1: Time Discretization

The initial step is to divide the total time T into M discrete time slices:

T = M∆t. (12)

time

. . . .
0 T = M∆ttM−1t1 t2 tk−1

. . . .
tk−2 tk

∆t

Figure 2: Discretization of time T into M discrete intervals.

Different time slices are indexed by tk, where k = 1, 2, ...,M . The time interval between two
consecutive time slices is denoted by ∆t = tk−1 − tk−2.

In this context, we are working within the density matrix path-integral formalism. It is
essential to perform time discretization for both factors in the expression for the partition
function Z: the forward evolution operator e−iHT (discretized on the forward or + channel),
and the backward evolution operator eiHT (discretized on the backward or − channel), as
shown below:

M factors

Z = Tr
(
e−

iTH
ℏ ρ(0) e

iTH
ℏ

)
= Tr

(
e−

i∆tH
ℏ ........e−

i∆tH
ℏ ρ(0) e

i∆tH
ℏ .......e

i∆tH
ℏ

)
.

M factors (13)
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Step 2: Insertion of Resolution of Identity and Replacement of Operators
by Grassmann Fields

The next step is to insert coherent-state resolutions of identity into the time-slice dissection
of Z:

Z = Tr

(
e

iH∆t
ℏ ....... e

iH∆t
ℏ I e−

iH∆t
ℏ ........ e−

iH∆t
ℏ ρ(0)

)
(14)

where I denotes the identity operator, and indicates the insertion of the resolution of
identity.

Following this, we examine the contribution from a single block tk−1 → tk to the partition
function6:

timetk−1tk−2
tk

ξ+

ξ− ξ−

ξ+

+

−

ξ+ ξ+
ξ+

ξ+

ξ−ξ− ξ−ξ−

Figure 3: The purple block tk−1 → tk, whose contribution to the partition function is examined
below.

6Some steps in the coherent-state path integral construction have been omitted in this discussion. Never-
theless, this method is a common tool in quantum field theory and is widely covered in the literature. For
those interested, we mention a few references here [29, 9, 30].
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n∏
σ=1

R∏
r=1

∂2

∂ξ̄r+,σ(tk)∂ξr,+,σ(tk−1)

∂2

∂ξ̄r−,σ(tk−1)∂ξr,−,σ(tk)

exp

{∑
σ

ξ̄r+,σ(tk)ξr,+,σ(tk−1)−
i∆t

ℏ
H(ξ̄r+,σ1

(tk)ξr,+,σ2(tk−1))

}
exp

{
−
∑
σ

(
ξ̄r+,σ(tk)ξr,+,σ(tk) + ξ̄r+,σ(tk−1)ξr,+,σ(tk−1)

)}
exp

{∑
σ

ξ̄r−,σ(tk−1)ξr,−,σ(tk) +
i∆t

ℏ
H(ξ̄r−,σ1

(tk−1)ξr,−,σ2(tk))

}
exp

{
−
∑
σ

(
ξ̄r−,σ(tk)ξr,−,σ(tk) + ξ̄r−,σ(tk−1)ξr,−,σ(tk−1)

)}
.

(15)

A word on the equation. We outline several points to elaborate on the equation above
(15).

1. The variables ξ̄rc,σ and ξr,c,σ represent Grassmann fields introduced during the
construction of the coherent state path integral. Here, r = 1, 2, ..., R signifies the
“color” space CR, while c = +,− and σ = 1, 2, ..., n indicate the enlarged “flavor” space
C2n = C2 ⊗ Cn .

2. We have included all the terms in the partition function that contain the fields
ξ̄r+,σ(tk), ξr,+,σ(tk−1), ξ̄

r
−,σ(tk−1), and ξr,−,σ(tk).

3. The terms in the second and third lines of equation (15) represent contributions to the
partition function from the + contour, while the terms in the fourth and fifth lines
represent contributions from the − contour. Given the assumed form of the
Hamiltonian (9), and by replacing the operators (c†, c) with Grassmann fields (ξ̄, ξ) in
the coherent-state path integral, we can elucidate the following terms in equation (15):

H ≡ : H(c† rσ1
, cr,σ2) :→ H(ξ̄r+,σ1

(tk), ξr,+,σ2(tk−1)) = H(ξ̄r+,σ1
(tk)ξr,+,σ2(tk−1)) on the + contour,

H ≡ : H(c† rσ1
, cr,σ2) :→ H(ξ̄r−,σ1

(tk−1), ξr,+,σ2(tk)) = H(ξ̄r−,σ1
(tk−1)ξr,−,σ2(tk)) on the − contour,

(16)

where : H(c† rσ1 , cr,σ2) : denotes the normal-ordered Hamiltonian. The final equality in
both lines of equation (16) arises because each term in the Hamiltonian (9) can be
expressed as ξ̄r+,σ1

(tk)ξr,+,σ2(tk−1) on the + contour, and ξ̄r−,σ1
(tk−1)ξr,−,σ2(tk) on the

− contour. We demonstrate this below for the + contour, and a similar verification

10
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can be performed for the − contour.∑
σ,σ′

c†rσ cr,σ′ +
∑

σ,σ′,σ′′,σ′′′

c†r
′

σ c†rσ′cr,σ′′cr′,σ′′′

≡: H(c† rσ1
, cr,σ2) :

→ H(ξ̄r+,σ1
(tk), ξr,+,σ2(tk−1))

=
∑
σ,σ′

ξ̄r+,σ(tk)ξr,+,σ′(tk−1) +
∑

σ,σ′,σ′′,σ′′′

ξ̄r
′

+,σ(tk)ξ̄
r
+,σ′(tk)ξr,+,σ′′(tk−1)ξr′,+,σ′′′(tk−1)

=
∑
σ,σ′

(
ξ̄r+,σ(tk)ξr,+,σ′(tk−1)

)
+

∑
σ,σ′,σ′′,σ′′′

(
ξ̄r

′
+,σ(tk)ξr′,+,σ′′′(tk−1)

)(
ξ̄r+,σ′(tk)ξr,+,σ′′(tk−1)

)
= H(ξ̄r+,σ1

(tk)ξr,+,σ2(tk−1)).

(17)

4. The third and fifth lines of equation (15), marked in blue, contain terms that are
“diagonal in time”, specifically of the form ξ̄rc,σ(tk)ξr,c,σ(tk). In contrast, the second and
fourth line of the equation (15), highlighted in brown, include terms referred to as
“off-diagonal in time”, such as ξ̄r+,σ1

(tk)ξr,+,σ2(tk−1), or ξ̄r−,σ1
(tk−1)ξr,−,σ2(tk).

Step 3: Bosonization

The third and final step is the most important in our formalism. Here, we deviate from the
usual strategy of using the Hubbard-Stratonovich transformation to decouple the fermion
interaction term with a local bosonic field. Instead, we apply the bosonization identity (7).

The main idea behind the bosonization method is to rewrite the theory of fermions in terms
of U(R)-invariant “color singlets” formed using the fermionic fields. Referring to the
expression (15) above, there are two choices for forming “color singlets”:(

ξ̄r+,σ(tk)

ξ̄r−,σ(tk−1)

)(
ξr,+,σ′(tk−1) ξr,−,σ′(tk)

)
, (18)

OR(
ξ̄r+,σ(tk)

ξ̄r−,σ(tk)

)(
ξr,+,σ′(tk) ξr,−,σ′(tk)

)
. (19)

Notice that the two different choices arise from the difference in the time arguments of the
fields. Out of these two options, we choose the first one to form color singlets.7

Using the bosonization formula (7), we want to express the chosen “color-singlets” (18) as a
U(2n) unitary matrix Q(tk) in the C2 ⊗ Cn “flavor” space. Let us take a moment to explain
the Q(tk) matrix.

7We choose this option since this combination of fields appears in the terms of the partition function
originating from the Hamiltonian, as shown in equation (16).

11
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Components of the Q(tk) Matrix

The Q(tk) matrix is defined as a 2n× 2n unitary matrix in C2 ⊗ Cn “flavor” space. The
components of the matrix can be understood as follows:

Q(tk) =

[
Q++(tk) Q+−(tk)

Q−+(tk) Q−−(tk)

]
, (20)

where each block in the above matrix is a n× n matrix. The components of the matrix
Q(tk) in terms of the fermionic fields are defined below:

timetk−1tk−2
tk

ξ+

ξ− ξ−

ξ+

+

−

ξ+ ξ+
ξ+

ξ+

ξ−ξ− ξ−ξ−

Q(tk)

Figure 4: The fields within the purple block are used to define the field Q(tk), as demonstrated
below.

(Q++)σσ′(tk) = ξ̄r+,σ(tk)ξr,+,σ′(tk−1),

(Q+−)σσ′(tk) = ξ̄r+,σ(tk)ξr,−,σ′(tk),

(Q−+)σσ′(tk) = ξ̄r−,σ(tk−1)ξr,+,σ′(tk−1),

(Q−−)σσ′(tk) = ξ̄r−,σ(tk−1)ξr,−,σ′(tk).

(21)

We are now almost in a position to reformulate the partition function (15) using the matrix
Q. However, one major obstacle remains: there are a few terms in the partition function

exp

{
−
∑
σ

(
ξ̄r+,σ(tk)ξr,+,σ(tk) + ξ̄r+,σ(tk−1)ξr,+,σ(tk−1)

)}
,

exp

{
−
∑
σ

(
ξ̄r−,σ(tk)ξr,−,σ(tk) + ξ̄r−,σ(tk−1)ξr,−,σ(tk−1)

)}
,

(22)

that cannot be expressed in terms of the U(R)-invariant Q field. The question arises: how
should we handle these terms? A possible solution to this issue is to employ a trick involving
local U(R)-transformations (where “local” refers to transformations that are local in time).
We demonstrate below how this method works.

12



2 A BOSONIZATION FRAMEWORK USING FUNCTIONAL INTEGRAL LANGUAGE

Step 3.1: Local U(R)-Transformations and Linked Cluster Expansion

To express all terms in the partition function in terms of the Q field, we apply the following
local U(R)-transformations:

timetktk−2 tk−1

ξ+

ξ− ξ−

ξ+

+

−

ξ+ ξ+ξ+ ξ+

ξ−ξ− ξ− ξ−

× ××

× : local U(R)− transformation g(.).

tk−1/2 tk+1/2tk−3/2

Figure 5: Local U(R)-transformations applied to the fields, as illustrated below for those
within the purple block.

ξ̄r+,σ(tk) → ξ̄r1+,σ(tk) g
−1(tk− 1

2
)rr1 ,

ξr,+,σ(tk−1) → g(tk− 1
2
)r2r ξr2,+,σ(tk−1),

ξ̄r−,σ(tk−1) → ξ̄r1−,σ(tk−1) g
−1(tk− 1

2
)rr1 ,

ξr,−,σ(tk) → g(tk− 1
2
)r2r ξr2,−,σ(tk).

(23)

Here, g(tk− 1
2
) represents a U(R) matrix, and the Einstein summation convention is applied.

The next step is to perform an average over the U(R)-transformations under the Berezin
integral sign, (

´
ξ̄,ξ):

ˆ
U(R)

∏
t

dg(t) exp
{
−
∑
σ

(
ξ̄r1+,σ(tk) g

−1(tk− 1
2
)rr1 g(tk+ 1

2
)r2r ξr2,+,σ(tk)

+ ξ̄r1+,σ(tk−1) g
−1(tk− 3

2
)rr1 g(tk− 1

2
)r2r ξr2+,σ(tk−1)

)}
exp

{
−
∑
σ

(
ξ̄r1−,σ(tk) g

−1(tk+ 1
2
)rr1 g(tk− 1

2
)r2r ξr2,−,σ(tk)

+ ξ̄r1−,σ(tk−1) g
−1(tk− 1

2
)rr1 g(tk− 3

2
)r2r ξr2,−,σ(tk−1)

)}
≡ e−Sc ,

(24)

13



2 A BOSONIZATION FRAMEWORK USING FUNCTIONAL INTEGRAL LANGUAGE

to obtain the contribution Sc from the terms in equation (22) to the partition function.
Here, dg(t) denotes the Haar measure on U(R). By construction, Sc can be expressed in
terms of the “color-singlet” in (18), which is used to define the Q(tk) field. It admits a
linked-cluster expansion, organized by powers of 1

R .8 Using the following properties of the
U(R)-Haar integrals [33]9:

ˆ
U(R)

∏
t

dg(t) g−1(tp)
r1
r2 g(tq)

r′2
r′1

=
δtp,tq
R

δr1
r′1

δ
r′2
r2 ,

ˆ
U(R)

∏
t

dg(t) g−1(tp− 1
2
)r1r2 g(tp− 1

2
)
r′2
r′1
g−1(tp+ 1

2
)r3r4 g(tp+ 1

2
)
r′4
r′3

=
1

R2 − 1
δr1
r′1

δ
r′2
r1 δr3

r′3
δ
r′4
r4 ,

(25)

we find that the first term S
(1)
c of the linked-cluster expansion contributes zero, while the

first non-zero contribution arises from the second term S
(2)
c of the linked-cluster expansion:

S(2)
c =

1

R2 − 1

∑
σ1,σ2

(
ξ̄r1+,σ1

(tk) ξr1,−,σ2(tk)ξ̄
r2
−,σ2

(tk) ξr2,+,σ1(tk)

+ ξ̄r1+,σ1
(tk−1) ξr1,−,σ2(tk−1)ξ̄

r2
−,σ2

(tk−1) ξr2,+,σ1(tk−1)

)
.

(26)

Note. Here, we perform a linked-cluster expansion in powers of 1
R , assuming R >> 1.

However, it is important to note that we will relax this assumption in our later analysis and
employ a different expansion parameter for the linked-cluster expansion. When applying this
formalism to various systems, we will utilize the fact that we are dealing with strongly
interacting systems and conduct the linked-cluster expansion in a manner that remains valid
in the strong-interaction limit.

For example, when considering the strongly interacting Hubbard model, we will expand in
terms of τh

U , where U represents the interaction strength, and τh denotes the hopping
parameter. In the strong interaction regime, characterized by U >> τh, τh

U serves as a
suitable parameter for expansion.

We previously mentioned that we would explain the reason for using a closed-time contour
soon. Now, we take a moment to discuss why this approach is necessary. Our goal is to
convert the complete set of Grassmann fields into a bosonic field Q(tk), as described in
equation (21), which is “local” in time. However, we face a challenge: not all terms in the
partition function can be directly expressed in terms of this bosonic field.

For example, consider the term ξ̄r+,σ(tk)ξr,+,σ(tk). To address this issue, we perform a local
U(R)-transformation and employ a linked-cluster expansion. Without the closed-time
contour, it is not immediately clear how to pair this term with others in the linked-cluster
expansion to express their product in terms of Q(tk). The additional channel allows us to
pair this term with ξ̄r−,σ(tk)ξr,−,σ(tk) in the linked-cluster expansion (as demonstrated in
equation (26)), facilitating the expression of the combination in terms of Q(tk). This
operational reason explains why we use a closed-time contour to bosonize the complete set
of Grassmann fields into a “time-local” bosonic field.

8A brief overview of the linked-cluster expansion used in this context is provided in Appendix A.
9In general, the values of such integrals are expressed in terms of the Weingarten function [33].
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In future analyses, particularly in the next chapter, if we relax the condition that the
bosonic field needs to be “local” in time or if we only bosonize a subset of Grassmann fields,
we may not need the closed-time contour.

Now that we have addressed this point, we are ready to proceed with the bosonization step.
The partition function, in terms of the field Q after bosonization, is given by:
ˆ
U(2n)

dQ(tk) Det−R(Q(tk))

exp

{∑
σ

(Q++)σσ(tk)−
i∆t

ℏ
H(Q++(tk))

}
exp

{∑
σ

(Q−−)σσ(tk) +
i∆t

ℏ
H(Q−−(tk))

}
exp

{
− 1

R2 − 1

∑
σ1,σ2

(
(Q+−)σ1σ2(tk) (Q−+)σ2σ1(tk+1) + (Q+−)σ1σ2(tk−1) (Q−+)σ2σ1(tk)

)}
.

(27)

This completes our three-step procedure for reformulating the partition function, originally
expressed in terms of fermionic fields, in terms of a U(2n) bosonic10 field.

10By “bosonic”, we mean that the components of the U(2n) matrix have commuting variables as entries
because they are formed by the product of two Grassmann fields.
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2.2 Summary

Let us summarize what we have accomplished thus far through a flowchart.

Fermionic system
in 0 + 1 dimension.

Functional integral in
terms of Grassmann fields.

Coherent state
path integral

Partition function rewritten
in terms of U(2n) bosonic field

Q(tk).

Bosonization

Figure 6: Flowchart illustrating the outcomes of the formalism.

By employing the functional integral bosonization technique, we have successfully expressed
the partition function as an integral over a U(2n) bosonic field, thereby bosonizing the
fermionic system. While this approach may initially appear straightforward, it is essential to
note an important caveat. Specifically, we will encounter a technical challenge related to
taking the continuum limit in time during our subsequent analysis, which will begin in the
next chapter. Having established this formalism, we will now focus on applying it to a
specific model in the following chapter.
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STRONGLY INTERACTING ONE-DIMENSIONAL HUBBARD MODEL AT

HALF-FILLING

3 Application: Functional Integral Bosonization Approach to
the Strongly Interacting One-Dimensional Hubbard Model
at Half-Filling

In this chapter, we apply the functional integral bosonization technique, as developed in the
preceding chapter, to the strongly interacting Hubbard model at half-filling in 1+1
space-time dimensions. Our primary objective is to validate this approach by reproducing
well-established results of the Hubbard model. Before proceeding with the analysis, we will
briefly revisit some essential features of the Hubbard model, drawing on [9, 34, 35] to
provide necessary context.

3.1 The Hubbard Model

The Hubbard model is an excellent starting point for studying strongly correlated electron
systems due to its simplicity. Despite its apparent simplicity, the Hubbard model can
exhibit a rich phase diagram with a plethora of interesting phases such as antiferromagnetic
Mott insulator, charge density wave (CDW), spin density wave (SDW), superconductor, and
more. Let us begin our brief review of the Hubbard model by specifying its Hamiltonian.

The Hamiltonian of the one-band Hubbard model is given by:

H =− τh
∑
x,σ

(c†σ(x+ a)cσ(x) + c†σ(x)cσ(x+ a))

+ U
∑
x

c†↑(x)c
†
↓(x)c↓(x)c↑(x)− µ

∑
x,σ

c†σ(x)cσ(x),
(28)

where c†σ(x) creates an electron at site x with spin σ, and a denotes the lattice constant.
The first term in the Hamiltonian represents hopping of electrons between nearest
neighboring sites with hopping parameter τh. The second term represents the on-site
repulsive interaction term between electrons, with interaction strength U > 0, and the last
term represents the chemical potential term with µ denoting the chemical potential. At
half-filling ν = 1

2 , the chemical potential µ is equal to U
2 .

Remark. We denote the hopping parameter as τh instead of the commonly used symbol t,
which we reserve to represent time.

We now outline several prominent features of the Hubbard model.

1. The Hubbard model Hamiltonian is invariant under the following U(1) transformation:

cσ(x) → eiθ cσ(x),

c†σ(x) → c†σ(x) e
−iθ.

(29)

This invariance corresponds to charge conservation.

2. The Hubbard model Hamiltonian is spin-rotation invariant, meaning it remains

17
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STRONGLY INTERACTING ONE-DIMENSIONAL HUBBARD MODEL AT
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unchanged under the following SU(2) transformation:

cσ(x) →
∑
σ′

Uσσ′ cσ′(x),

c†σ(x) →
∑
σ′

c†σ′(x)U
−1
σ′σ,

(30)

where U ∈ SU(2).

3. In the strong interaction limit (U >> τh), and at half-filling ν = 1
2 , the Hubbard

model maps to the spin-12 quantum Heisenberg antiferromagnet. Using
Brillouin-Wigner perturbation theory [9], one can derive the effective Hamiltonian:

Heff =
J

ℏ2
∑
x

∑
j=1,2,3

Sj(x)Sj(x+ a), (31)

where Sj(x) = ℏ
2

∑
σ,σ′ c

†
σ(x)τ

j
σσ′cσ′(x) represents the three components of the spin

operator, and τ j denotes the standard Pauli matrices. The exchange coupling J is
given by 2τ2h

U . This implies that, at half-filling, the charge degrees of freedom are
gapped in the strong interaction limit, leaving the spin degrees of freedom as the
dominant low-energy excitations.

Using a semiclassical treatment [35, 9], one can demonstrate that the system’s
low-energy excitations are spin waves characterized by a linear dispersion relation:

ω(k̃) =
J

ℏ

(
k̃a

2

)
. (32)

Remark. To avoid confusion with the time-slice label used in the coherent-state path
integral construction, we use k̃ to denote the wave-number instead of k.

4. Away from half-filling (ν < 1
2), the effective Hamiltonian takes the form:

H =− τh
∑
x,σ

(c†σ(x+ a)cσ(x) + c†σ(x)cσ(x+ a))

+
J

ℏ2
∑
x

∑
j=1,2,3

Sj(x)Sj(x+ a)
(33)

with the constraint ∑
σ

c†σ(x)cσ(x) = 0 or 1, (34)

which eliminates doubly occupied sites.

That concludes our brief overview of the Hubbard model. In our analysis, we will primarily
focus on the third aspect (32) and aim to rederive the result using our formalism. The
outcome is summarized in the flowchart below.
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Hubbard model at
half − filling.

Spin− 1/2 quantum
Heisenberg antiferromagnet.

Strong interaction

limit

Spin waves
with linear dispersion.

Semiclassical
treatment

Figure 7: Flowchart summarizing the results of the Hubbard model relevant to our analysis
below.

3.2 Attempt I: Reformulation of the Partition Function Using the Q(x, tk) ∈
U(4) Field

We now begin our study of the Hubbard model using the functional integral bosonization
method. In this section, our objective is to derive spin-wave solutions as the low-energy
excitations of the system in the strong interaction limit.

First, we note that we are working with a one-band Hubbard model, meaning that R = 1

(single “color” degree of freedom). The enlarged “flavor” space for this problem is
C2

contour ⊗C2
spin, where C2

contour refers to the two channels (+/−) on the closed-time contour,
and C2

spin refers to the spin.

Next, we apply the three steps of the technique outlined in Section 2.1 to the Hubbard
model. Our goal is to rewrite the partition function in terms of a “local” bosonic field
Q(x, t), which is “local” in both space and time.

The initial step of time discretization remains unchanged. However, there is a noticeable
change in the second step. We retain terms up to order (∆t)2 in the partition function. Let
us explain the rationale behind doing that. Consider the terms in the Hamiltonian of the
Hubbard model. The interaction term is spatially “local”, meaning all fields in the term are
defined at the same spatial point, whereas the hopping term is “non-local” in space. To
express the contribution from the hopping term to the partition function in terms of the
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STRONGLY INTERACTING ONE-DIMENSIONAL HUBBARD MODEL AT
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bosonic field Q(x, t), which is defined to be “local” in space, we encounter a difficulty. To
address this issue, we employ the technique of local U(1) phase rotations. This will result in
a term of order (∆t)2. Therefore, in order to be consistent, we include terms up to order
(∆t)2 in the expression for the partition function.

We will now express the contribution from the block (x, tk−1) → (x, tk) to the partition
function:

time

space

x

x− a

x+ a

tktk−1
tk+1

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

Figure 8: The purple block (x, tk−1) → (x, tk), whose contribution to the partition function
is examined below.
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∏
σ=↑,↓

∂2

∂ξ̄+,σ(x, tk)∂ξ+,σ(x, tk−1)

∂2

∂ξ̄−,σ(x, tk−1)∂ξ−,σ(x, tk)

exp

{∑
σ

ξ̄+,σ(x, tk)ξ+,σ(x, tk−1)−
(
iU∆t

ℏ

)
ξ̄+,↑(x, tk)ξ̄+,↓(x, tk)ξ+,↓(x, tk−1)ξ+,↑(x, tk−1)

+

(
iU∆t

2ℏ

)∑
σ

ξ̄+,σ(x, tk)ξ+,σ(x, tk−1) +

(
U∆t

ℏ

)2

ξ̄+,↑(x, tk)ξ̄+,↓(x, tk)ξ+,↓(x, tk−1)ξ+,↑(x, tk−1)

−
(
U∆t

2ℏ

)2∑
σ

ξ̄+,σ(x, tk)ξ+,σ(x, tk−1)−
(
τh∆t

ℏ

)2∑
σ

ξ̄+,σ(x, tk)ξ+,σ(x, tk−1)

}
exp

{
−
∑
σ

ξ̄+,σ(x, tk)ξ+,σ(x, tk)−
∑
σ

ξ̄+,σ(x, tk−1)ξ+,σ(x, tk−1)

+

(
iτh∆t

ℏ

) ∑
σ,y=x+a,x−a

ξ̄+,σ(x, tk)ξ+,σ(y, tk−1) + ξ̄+,σ(y, tk)ξ+,σ(x, tk−1)

}
exp

{∑
σ

ξ̄−,σ(x, tk−1)ξ−,σ(x, tk) +

(
iU∆t

ℏ

)
ξ̄−,↑(x, tk−1)ξ̄−,↓(x, tk−1)ξ−,↓(x, tk)ξ−,↑(x, tk)

−
(
iU∆t

2ℏ

)∑
σ

ξ̄−,σ(x, tk−1)ξ−,σ(x, tk) +

(
U∆t

ℏ

)2

ξ̄−,↑(x, tk−1)ξ̄−,↓(x, tk−1)ξ−,↓(x, tk)ξ−,↑(x, tk)

−
(
U∆t

2ℏ

)2∑
σ

ξ̄−,σ(x, tk−1)ξ−,σ(x, tk)−
(
τh∆t

ℏ

)2∑
σ

ξ̄−,σ(x, tk−1)ξ−,σ(x, tk)

}
exp

{
−
∑
σ

ξ̄−,σ(x, tk)ξ−,σ(x, tk)−
∑
σ

ξ̄−,σ(x, tk−1)ξ−,σ(x, tk−1)

−
(
iτh∆t

ℏ

) ∑
σ,y=x+a,x−a

ξ̄−,σ(x, tk−1)ξ−,σ(y, tk) + ξ̄−,σ(y, tk−1)ξ−,σ(x, tk)

}
.

(35)

A word on the equation. We present several points to elaborate on the equation above
(35):

1. We retain terms up to order (∆t)2 in the coherent-state path integral construction.
However, certain terms of this order that we have omitted from the expression for the
partition function (35) are considered “non-local” in space. The rationale for their
exclusion is that, as our analysis progresses, these terms will drop out and will not
influence the final expression.

2. The terms highlighted in blue can be classified into two categories: those that are “local”
in space and “diagonal in time”, such as ξ̄+,σ(x, tk) ξ+,σ(x, tk), and those that are
“non-local” in space and “off-diagonal in time”, such as ξ̄−,σ(x, tk−1) ξ−,σ(y, tk). In
contrast, the terms highlighted in brown are “local” in space and “off-diagonal in time”,
exemplified by ξ̄+,σ(x, tk) ξ+,σ(x, tk−1).

We aim to express the above equation (35) in terms of the field Q(x, tk) defined as follows:
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time

space

x

x− a

x+ a

tktk−1
tk+1

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

Q(x, tk)

Figure 9: The fields within the purple block are used to define the field Q(x, tk), as demon-
strated below.

(Q++)σ1σ2(x, tk) = ξ̄+,σ1(x, tk)ξ+,σ2(x, tk−1),

(Q+−)σ1σ2(x, tk) = ξ̄+,σ1(x, tk)ξ−,σ2(x, tk),

(Q−+)σ1σ2(x, tk) = ξ̄−,σ1(x, tk−1)ξ+,σ2(x, tk−1),

(Q−−)σ1σ2(x, tk) = ξ̄−,σ1(x, tk−1)ξ−,σ2(x, tk).

(36)

However, the terms highlighted in blue in the partition function (35) cannot be directly
expressed in terms of the field Q(x, tk). To account for the contributions from these terms,
we perform local U(1) phase rotations. Before doing so, we first rescale all fields by a factor
of ( τhU )

1
4 :

∀ (x, tk), ξ̄c,σ(x, tk) →
(
τh
U

) 1
4

ξ̄c,σ(x, tk),

ξc,σ(x, tk) →
(
τh
U

) 1
4

ξc,σ(x, tk),

(37)

where c ∈ {+,−}, and σ ∈ {↑, ↓}.

The purpose of the rescaling is due to our work in the strong interaction limit (U >> τh). In
this context, the factor ( τhU ) serves as an appropriate parameter for the linked-cluster
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expansion that we will carry out after performing the local phase rotations.

Next, we will perform the following local U(1) phase rotations:

time

space

x

x− a

x+ a

tktk−1
tk+1

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

ξ+ξ+

ξ−ξ−

×

×

×

×

×

×

tk−1/2

× : local U(1) phase rotations eiα(. , .).

tk+1/2

Figure 10: Local U(1) phase rotations applied to the fields, as illustrated below for those
within the purple block.

ξ̄+,σ1(x, tk) → ξ̄+,σ1(x, tk)e
−iα(x,tk−1/2),

ξ−,σ2(x, tk) → eiα(x,tk−1/2)ξ−,σ2(x, tk),

ξ̄−,σ1(x, tk−1) → ξ̄−,σ1(x, tk−1)e
−iα(x,tk−1/2),

ξ+,σ2(x, tk−1) → eiα(x,tk−1/2)ξ+,σ2(x, tk−1).

(38)

The next step is to integrate over all possible phase rotations using the following property of
U(1) integrals:

ˆ 2π

0

∏
x,t

dα(x, t)
2π

e−iα(x1,t1) eiα(x2,t2) = δx1,x2 δt1,t2 , (39)

and subsequently carry out the linked-cluster expansion. This expansion can be organized
by powers of τh

U , which serves as an appropriate expansion parameter in the strong
interaction limit. Here, we conduct the linked-cluster expansion up to second order, yielding
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the resulting expression for the partition function after completing these steps11:

∏
σ=↑,↓

∂2

∂ξ̄+,σ(x, tk)∂ξ+,σ(x, tk−1)

∂2

∂ξ̄−,σ(x, tk−1)∂ξ−,σ(x, tk)

exp

{(
τh
U

) 1
2 ∑

σ

ξ̄+,σ(x, tk)ξ+,σ(x, tk−1)−
(
iτh∆t

ℏ

)
ξ̄+,↑(x, tk)ξ̄+,↓(x, tk)ξ+,↓(x, tk−1)ξ+,↑(x, tk−1)+

(
U

τh

) 1
2
(
iτh∆t

2ℏ

)∑
σ

ξ̄+,σ(x, tk)ξ+,σ(x, tk−1) +

(
U

τh

)(
τh∆t

ℏ

)2

ξ̄+,↑(x, tk)ξ̄+,↓(x, tk)ξ+,↓(x, tk−1)ξ+,↑(x, tk−1)

−
(
U

τh

) 3
2
(
τh∆t

2ℏ

)2∑
σ

ξ̄+,σ(x, tk)ξ+,σ(x, tk−1)−
(
τh
U

) 1
2
(
τh∆t

ℏ

)2∑
σ

ξ̄+,σ(x, tk)ξ+,σ(x, tk−1)

}

exp

{(
τh
U

) 1
2 ∑

σ

ξ̄−,σ(x, tk−1)ξ−,σ(x, tk) +

(
iτh∆t

ℏ

)
ξ̄−,↑(x, tk−1)ξ̄−,↓(x, tk−1)ξ−,↓(x, tk)ξ−,↑(x, tk)−

(
U

τh

) 1
2
(
iτh∆t

2ℏ

)∑
σ

ξ̄−,σ(x, tk−1)ξ−,σ(x, tk) +

(
U

τh

)(
τh∆t

ℏ

)2

ξ̄−,↑(x, tk−1)ξ̄−,↓(x, tk−1)ξ−,↓(x, tk)ξ−,↑(x, tk)

−
(
U

τh

) 3
2
(
τh∆t

2ℏ

)2∑
σ

ξ̄−,σ(x, tk−1)ξ−,σ(x, tk)−
(
τh
U

) 1
2
(
τh∆t

ℏ

)2∑
σ

ξ̄−,σ(x, tk−1)ξ−,σ(x, tk)

}

exp

{(
τh
U

)(
τh∆t

ℏ

)2 ∑
σ1,σ2

∑
y=x+a,x−a

(
ξ̄+,σ1(x, tk)ξ+,σ2(x, tk−1)ξ̄+,σ2(y, tk)ξ+,σ1(y, tk−1)

+ ξ̄−,σ1
(x, tk−1)ξ−,σ2

(x, tk)ξ̄−,σ2
(y, tk−1)ξ−,σ1

(y, tk)

− ξ̄+,σ1
(x, tk)ξ−,σ2

(x, tk)ξ̄−,σ2
(y, tk−1)ξ+,σ1

(y, tk−1)

− ξ̄−,σ1
(x, tk−1)ξ+,σ2

(x, tk−1)ξ̄+,σ2
(y, tk)ξ−,σ1

(y, tk)

)}
exp

{
−
(
τh
U

) ∑
σ1,σ2

(
ξ̄+,σ1(x, tk)ξ−,σ2(x, tk)ξ̄−,σ1(x, tk)ξ+,σ2(x, tk)

+ ξ̄+,σ1
(x, tk−1)ξ−,σ2

(x, tk−1)ξ̄−,σ1
(x, tk−1)ξ+,σ2

(x, tk−1)

)}
.

(40)

With all preparations complete, we are now ready to execute the bosonization step. The
11The rescaling factor τh

U
from equation (37) is implicitly included in the integration measure that follows,

though it is not explicitly shown in the expression.
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partition function, expressed in terms of the field Q after bosonization, is given by:
ˆ
U(4)

dQ(x, tk) Det−1(Q(x, tk))

exp

{(
τh
U

) 1
2 ∑

σ

(Q++)σσ(x, tk)−
(
iτh∆t

ℏ

)
(Q++)↑↑(x, tk)(Q++)↓↓(x, tk)

+

(
U

τh

) 1
2
(
iτh∆t

2ℏ

)∑
σ

(Q++)σσ(x, tk) +

(
U

τh

)(
τh∆t

ℏ

)2

(Q++)↑↑(x, tk)(Q++)↓↓(x, tk)

−
(
U

τh

) 3
2
(
τh∆t

2ℏ

)2∑
σ

(Q++)σσ(x, tk)−
(
τh
U

) 1
2
(
τh∆t

ℏ

)2∑
σ

(Q++)σσ(x, tk)

}

exp

{(
τh
U

) 1
2 ∑

σ

(Q−−)σσ(x, tk) +

(
iτh∆t

ℏ

)
(Q−−)↑↑(x, tk)(Q−−)↓↓(x, tk)

−
(
U

τh

) 1
2
(
iτh∆t

2ℏ

)∑
σ

(Q−−)σσ(x, tk) +

(
U

τh

)(
τh∆t

ℏ

)2

(Q−−)↑↑(x, tk)(Q−−)↓↓(x, tk)

−
(
U

τh

) 3
2
(
τh∆t

2ℏ

)2∑
σ

(Q−−)σσ(x, tk)−
(
τh
U

) 1
2
(
τh∆t

ℏ

)2∑
σ

(Q−−)σσ(x, tk)

}
exp

{(
τh
U

)(
τh∆t

ℏ

)2 ∑
σ1,σ2

∑
y=x+a,x−a

(
(Q++)σ1σ2(x, tk)(Q++)σ2σ1(y, tk)

+ (Q−−)σ1σ2(x, tk)(Q−−)σ2σ1(y, tk)

− (Q+−)σ1σ2(x, tk)(Q−+)σ2σ1(y, tk)

− (Q−+)σ1σ2(x, tk)(Q+−)σ2σ1(y, tk)

)}
exp

{
−
(
τh
U

) ∑
σ1,σ2

(
(Q+−)σ1σ2(x, tk)(Q−+)σ2σ1(x, tk+1)

+ (Q+−)σ1σ2(x, tk−1)(Q−+)σ2σ1(x, tk)

)}
≡
ˆ
U(4)

dQ(x, tk) exp

(
iSeff[Q(x, tk)]

ℏ

)
.

(41)

Before proceeding, let us summarize the steps we have undertaken thus far.
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Hubbard model at
half − filling.

Functional path integral in
terms of Grassmann fields.

Coherent state
path integral

Bosonized theory in terms of
U(4) bosonic field Q(x, tk).

Bosonization

Figure 11: Flowchart summarizing the analysis conducted thus far.

We have reformulated the partition function in terms of the U(4) bosonic field Q(x, tk). Our
next objective is to take the continuum limit in time by letting ∆t → 0. However, as
observed in equation (41), it remains unclear how to proceed with the continuum limit,
particularly regarding the treatment of the determinant term in the partition function.
Furthermore, terms of order (∆t)2 vanish in the straightforward continuum limit as
∆t → 0.12

In light of the difficulties associated with handling the continuum limit at the level of the
action, we refer to the following diagram:

12To clarify, it is important to recognize that the determinant term and the other components of the action
should not be treated separately while taking the continuum limit in time. To illustrate this point, consider
the simpler example of non-interacting fermions at half-filling in one dimension [9]. In this scenario, the
continuum limit in space yields an effective description characterized by a Dirac-like Hamiltonian; however,
this limit is applicable only near the Fermi points. Returning to our original problem, based on insights from
this example, we propose that the determinant term may be interpreted as setting the chemical potential.
This interpretation emphasizes the necessity of viewing Seff as a unified entity when taking the continuum
limit.
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Action in
discrete time.

Action in
continuum time.

Continuum limit

in time

V ariation

Equations of motion
in discrete time.

Continuum limit

in time

V ariation

Take this route.

Equations of motion
in continuum time.

Figure 12: Flow diagram depicting the transition from the action to the equations of motion
to facilitate the continuum limit in time.

We now shift our focus to analyzing the equations of motion. We assume that the
continuum limit in time exists, even though the specific approach to applying this limit to
the action is not immediately clear. Additionally, we assume that the diagram above is
“commutative” in the low-energy limit, allowing us to consider an alternative path, indicated
in brown in Figure 12.

Equations of motion

To derive the equations of motion for (41), we utilize a key property of the Haar measure
[33] associated with the unitary group, which is as follows:

ˆ
U(4)

dQF (gLQ) =

ˆ
U(4)

dQF (Q) =

ˆ
U(4)

dQF (QgR), gL, gR ∈ U(4). (42)

This property indicates that the Haar measure on the unitary group is invariant under both
left and right multiplication. Here, F (Q) denotes a function of Q. Based on this property,
the equations of motion are given as follows13:

d

dλ

∣∣∣∣
λ=0

Seff[e
λXQ(x, tk)] = 0 =

d

dλ

∣∣∣∣
λ=0

Seff[Q(x, tk)e
λX ], (43)

where X represents the generators of the Lie algebra u(4).

13The motivation for deriving the equations of motion from the invariance of the Haar measure is detailed
in Appendix B.
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Using equation (43), we proceed to write down the equations of motion for the matrix
elements of the field Q and attempt to take the continuum limit, ∆t → 0. This can be
accomplished in the following three steps:

1. Choose one of the 16 generators of the Lie algebra u(4), denoted by X.

2. Substitute the chosen X in equation (43):

L
∣∣
x,tk

≡ d

dλ

∣∣∣∣
λ=0

Seff[e
λXQ(x, tk)] = 0,

R
∣∣
x,tk

≡ d

dλ

∣∣∣∣
λ=0

Seff[Q(x, tk)e
λX ] = 0,

(44)

where L
∣∣
x,tk

denotes the equation of motion obtained using the left invariance of the Haar
measure, and R

∣∣
x,tk

denotes the equation of motion obtained using the right invariance of
the Haar measure.

3. Send tk → tk+1 in R
∣∣
x,tk

, and subtract this from L
∣∣
x,tk

. Finally, we take the continuum
limit ∆t → 0.

After executing the three steps outlined above, we observe that the contribution to the
equations of motion from the hopping term vanishes in the continuum limit.14 This outcome
raises concerns, as the presence of the hopping term is crucial for deriving spin waves as
low-energy excitations. Consequently, there exists an inconsistency that must be resolved.

To retain the contribution from the hopping term in the continuum limit, we will explore an
alternative approach in the next section by mapping to a different bosonic field using the
bosonization method.

3.3 Attempt II: Reformulation of the Partition Function Using the Q(x) ∈
U(2M) Field

As previously mentioned, we aim to reattempt the bosonization of the strongly interacting
Hubbard model at filling factor ν = 1

2 . Based on our earlier analysis, certain adjustments
are necessary. In this iteration, we will express the theory in terms of a bosonic field Q(x),
which is “local” in space but not in time. As discussed in Section 2.1, this allows us to
bypass the requirement of working on a closed-time contour.

Our next task is to formulate the partition function as a functional integral over a single
time channel, specifically the forward channel only. The partition function can be expressed
mathematically as follows:

Z = Tr

(
e−

iTH
ℏ

)
, (45)

where Tr denotes the trace over the Fock space, H is the Hamiltonian of the system, and T

14We do not provide the explicit calculations here. For detailed calculations, please refer to Appendix C.
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represents the time period of evolution.

The initial two steps of the formalism remain unchanged; the only difference, as previously
noted, is that we now work with a single time channel instead of the previously used
closed-time contour. Next, let us write down the contribution to the partition function from
the block depicted in Figure 13:

time

. . . . T = M∆ttM−1t1 t2 tk . . . .tk−1 tk+1

. . . . . . . .

space

x− a

x+ a

x
ξξξξ ξξ ξξ ξξ ξξξξ

ξξξξ ξξ ξξ ξξ ξξξξ

ξξξξ ξξ ξξ ξξ ξξξξ

Figure 13: The contribution of the purple block to the partition function is analyzed below.
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M∏
k=1

∏
σ=↑,↓

∂2

∂ξ̄σ(x, tk)∂ξσ(x, tk)

exp

{ M∑
k=2

(∑
σ

(
ξ̄σ(x, tk)ξσ(x, tk−1)− ξ̄σ(x, tk−1)ξσ(x, tk−1)

)
−
(
iU∆t

ℏ

)
ξ̄↑(x, tk)ξ̄↓(x, tk)ξ↓(x, tk−1)ξ↑(x, tk−1)

+

(
iU∆t

2ℏ

)∑
σ

ξ̄σ(x, tk)ξσ(x, tk−1) +

(
U∆t

ℏ

)2

ξ̄↑(x, tk)ξ̄↓(x, tk)ξ↓(x, tk−1)ξ↑(x, tk−1)

−
(
U∆t

2ℏ

)2∑
σ

ξ̄σ(x, tk)ξσ(x, tk−1)−
(
τh∆t

ℏ

)2∑
σ

ξ̄σ(x, tk)ξσ(x, tk−1)

)}

exp

{ M∑
k=2

(
iτh∆t

ℏ

) ∑
σ,y=x+a,x−a

ξ̄σ(x, tk)ξσ(y, tk−1) + ξ̄σ(y, tk)ξσ(x, tk−1)

}
exp

{(∑
σ

(
ξ̄σ(x, t1)(−ξσ(x, tM ))− ξ̄σ(x, tM )ξσ(x, tM )

)
−
(
iU∆t

ℏ

)
ξ̄↑(x, t1)ξ̄↓(x, t1)(−ξ↓(x, tM ))(−ξ↑(x, tM ))

+

(
iU∆t

2ℏ

)∑
σ

ξ̄σ(x, t1)(−ξσ(x, tM )) +

(
U∆t

ℏ

)2

ξ̄↑(x, t1)ξ̄↓(x, t1)(−ξ↓(x, tM ))(−ξ↑(x, tM ))

−
(
U∆t

2ℏ

)2∑
σ

ξ̄σ(x, t1)(−ξσ(x, tM ))−
(
τh∆t

ℏ

)2∑
σ

ξ̄σ(x, t1)(−ξσ(x, tM ))

)}
exp

{(
iτh∆t

ℏ

) ∑
σ,y=x+a,x−a

ξ̄σ(x, t1)(−ξσ(y, tM )) + ξ̄σ(y, t1)(−ξσ(x, tM ))

}
.

(46)

A word on the equation. It is important to note that the boundary terms in the
construction of the coherent state path integral for fermions exhibit a relative minus sign, as
demonstrated in the last five lines of equation (46).

We aim to reformulate the partition function (46) using the Q(x) field, which is represented
as a 2M × 2M unitary matrix. This matrix can be expressed in block form as follows:

Q(x) =

[
Q↑↑(x) Q↑↓(x)

Q↓↑(x) Q↓↓(x)

]
,

(47)

where each block in this matrix is an M ×M matrix. The components of Q(x) in relation to
the fermionic fields are defined as follows:
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time

. . . . T = M∆ttM−1t1 t2 tk . . . .tk−1 tk+1

. . . . . . . .

space

x− a

x+ a

x
−ξξξξ ξξ ξξ ξξ ξξξξ

−ξξξξ ξξ ξξ ξξ ξξξξ

−ξξξξ ξξ ξξ ξξ ξξξξ

Q(x)

Figure 14: The fields within the purple block are used to define the field Q(x), as demonstrated
below.

Qσ1σ2 (x; tk, tk′) = ξ̄σ1(x, tk)ξσ2(x, tk′), k ∈ {1, 2, ...,M} , k′ ∈ {1, 2, ...M − 1},

Qσ1σ2 (x; tk, tM ) = ξ̄σ1(x, tk)(−ξσ2(x, tM )), k ∈ {1, 2, ...,M}.
(48)

As before, the terms highlighted in blue in the partition function (46) cannot be directly
expressed in terms of the field Q(x). To resolve this, we perform local U(1) phase rotations
(“localized” only in space) to incorporate the contributions from these terms. Prior to
continuing, we do the same rescaling step as before:

∀ (x, tk), ξ̄σ(x, tk) →
(
τh
U

) 1
4

ξ̄σ(x, tk),

ξσ(x, tk) →
(
τh
U

) 1
4

ξσ(x, tk),

(49)

where σ ∈ {↑, ↓}.

Next, we perform the following local U(1) phase rotations:
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time

. . . . T = M∆ttM−1t1 t2 tk . . . .tk−1 tk+1

. . . . . . . .

space

x− a

x+ a

x
ξξξξ ξξ ξξ ξξ ξξξξ

ξξξξ ξξ ξξ ξξ ξξξξ

ξξξξ ξξ ξξ ξξ ξξξξ

×

×

×

× : local U(1) phase rotations eiα(.) .

Figure 15: Local U(1) phase rotations applied to the fields, as illustrated below for those
within the purple block.

∀ tk, ξ̄σ(x, tk) → ξ̄σ(x, tk) e
−iα(x),

ξσ(x, tk) → eiα(x) ξσ(x, tk).
(50)

Building on the previous analysis, the next step is to integrate over all possible phase
rotations and perform the linked-cluster expansion. We will also expand up to second order
in this case. The resulting expression for the partition function, after completing these steps,
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is:

M∏
k=1

∏
σ=↑,↓

∂2

∂ξ̄σ(x, tk)∂ξσ(x, tk)

exp

{ M∑
k=2

((
τh
U

) 1
2 ∑

σ

(
ξ̄σ(x, tk)ξσ(x, tk−1)− ξ̄σ(x, tk−1)ξσ(x, tk−1)

)
−
(
τh
U

)(
iU∆t

ℏ

)
ξ̄↑(x, tk)ξ̄↓(x, tk)ξ↓(x, tk−1)ξ↑(x, tk−1)

+

(
τh
U

) 1
2
(
iU∆t

2ℏ

)∑
σ

ξ̄σ(x, tk)ξσ(x, tk−1) +

(
τh
U

)(
U∆t

ℏ

)2

ξ̄↑(x, tk)ξ̄↓(x, tk)ξ↓(x, tk−1)ξ↑(x, tk−1)

−
(
τh
U

) 1
2
(
U∆t

2ℏ

)2∑
σ

ξ̄σ(x, tk)ξσ(x, tk−1)−
(
τh
U

) 1
2
(
τh∆t

ℏ

)2∑
σ

ξ̄σ(x, tk)ξσ(x, tk−1)

)}

exp

{((
τh
U

) 1
2 ∑

σ

(
ξ̄σ(x, t1)(−ξσ(x, tM ))− ξ̄σ(x, tM )ξσ(x, tM )

)
−
(
τh
U

)(
iU∆t

ℏ

)
ξ̄↑(x, t1)ξ̄↓(x, t1)(−ξ↓(x, tM ))(−ξ↑(x, tM ))

+

(
τh
U

) 1
2
(
iU∆t

2ℏ

)∑
σ

ξ̄σ(x, t1)(−ξσ(x, tM )) +

(
τh
U

)(
U∆t

ℏ

)2

ξ̄↑(x, t1)ξ̄↓(x, t1)(−ξ↓(x, tM ))(−ξ↑(x, tM ))

−
(
τh
U

) 1
2
(
U∆t

2ℏ

)2∑
σ

ξ̄σ(x, t1)(−ξσ(x, tM ))−
(
τh
U

) 1
2
(
τh∆t

ℏ

)2∑
σ

ξ̄σ(x, t1)(−ξσ(x, tM ))

)}

exp

{(
τh
U

)(
τh∆t

ℏ

)2 M∑
k,k′=2

∑
σ1,σ2

∑
y=x+a,x−a

ξ̄σ1
(x, tk)ξσ2

(x, tk′−1)ξ̄σ2
(y, tk′)ξσ1

(y, tk−1)

}

exp

{(
τh
U

)(
τh∆t

ℏ

)2 M∑
k=2

∑
σ1,σ2

∑
y=x+a,x−a

(
ξ̄σ1

(x, tk)(−ξσ2
(x, tM ))ξ̄σ2

(y, t1)ξσ1
(y, tk−1)

+ ξ̄σ1(y, tk)(−ξσ2(y, tM ))ξ̄σ2(x, t1)ξσ1(x, tk−1)

)}
exp

{(
τh
U

)(
τh∆t

ℏ

)2 ∑
σ1,σ2

∑
y=x+a,x−a

ξ̄σ1(x, t1)(−ξσ2(x, tM ))ξ̄σ2(y, t1)(−ξσ1(y, tM ))

}
.

(51)

With everything in place, we are now ready to proceed with the bosonization step. The
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partition function, expressed in terms of the field Q(x) after bosonization, is given by:
ˆ
U(2M)

dQ(x) Det−1(Q(x))

exp

{ M∑
k=1

((
τh
U

) 1
2 ∑

σ

(
Qσσ(x; tk, tk−1)−Qσσ(x; tk−1, tk−1)

)
−
(
τh
U

)(
iU∆t

ℏ

)
Q↑↑(x; tk, tk−1)Q↓↓(x; tk, tk−1)

+

(
τh
U

) 1
2
(
iU∆t

2ℏ

)∑
σ

Qσσ(x; tk, tk−1) +

(
τh
U

)(
U∆t

ℏ

)2

Q↑↑(x; tk, tk−1)Q↓↓(x; tk, tk−1)

−
(
τh
U

) 1
2
(
U∆t

2ℏ

)2∑
σ

Qσσ(x; tk, tk−1)−
(
τh
U

) 1
2
(
τh∆t

ℏ

)2∑
σ

Qσσ(x; tk, tk−1)

)}

exp

{(
τh
U

) 1
2 ∑

σ

2Qσσ(x; tM , tM )

}

exp

{(
τh
U

)(
τh∆t

ℏ

)2 M∑
k,k′=1

∑
σ1,σ2

∑
y=x+a,x−a

Qσ1σ2(x; tk, tk′−1)Qσ2σ1(y; t
′
k, tk−1)

}

≡
ˆ
U(2M)

dQ(x) exp

(
iSeff[Q(x)]

ℏ

)
,

(52)

where we adopt the notation t0 ≡ tM .

A word on the equation. The factor 2 in the term
∑

σ 2Qσσ(x; tM , tM ) in the third-to-last
line of equation (52) can be explained by the definition of the Q(x) field in equation (48).

Once again, our objective is to take the continuum limit ∆t → 0. However, the procedure
for doing so in equation (52), especially concerning the determinant term, is unclear.
Therefore, we will shift our focus to analyzing the equations of motion.

Equations of motion

Utilizing the left and right invariance of the Haar measure, the equations governing the
components of the matrix Q(x) are given by15 :

[
∂tQσ1σ2(x; t, t

′) + ∂t′Qσ1σ2(x; t, t
′)

]∣∣∣∣∣
t=t′

=

(
τh
ℏ

)2(τh
U

) 1
2 ∑

σ

∑
y=x+a,x−a

ˆ
dt′′
{
Qσ1σ(x; t, t

′′)Qσσ2(y; t
′′, t)−Qσ1σ(y; t, t

′′)Qσσ2(x; t
′′, t)

}
.

(53)

Our aim is to derive spin-wave solutions in the low-energy limit. With this objective in
15By applying the three-step procedure outlined in Section 3.2 with some modifications, we derive the

equations of motion in the continuum limit. Detailed intermediate steps are provided in Appendix D.
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mind, we define the following variables:

S1(x, t) ∼ ℏ
2

(
Q↑↓(x; t, t) +Q↓↑(x; t, t)

)
,

S2(x, t) ∼ ℏ
2i

(
Q↑↓(x; t, t)−Q↓↑(x; t, t)

)
,

S3(x, t) ∼ ℏ
2

(
Q↑↑(x; t, t)−Q↓↓(x; t, t)

)
.

(54)

Note. The definition in equation (54) is motivated by the expression for the spin operator:

Ŝj(x, t) =
ℏ
2

∑
σ,σ′

ĉ†σ(x, t)τ
j
σσ′ ĉσ′(x, t), (55)

where j = 1, 2, 3, and τ j denote the standard Pauli matrices.

Let us now begin the analysis of the equations of motion. First, we note that the lattice we
are working with is bipartite.

a a a a a

: sublattice A

: sublattice BUnit cell

Figure 16: Bipartite lattice illustrating the unit cell.

We propose the following ansatz for the solution of the equations of motion given in (53):

Qσ1σ2(x; t, t
′) = (Qσ1σ2)0(x; t, t

′) + δQσ1σ2(x; t, t
′), (56)

where only the non-zero components of the (Q)0 field are shown below:

(Q↑↑)0 (2x; t, t
′) = m1 δ(t− t′) = (Q↓↓)0 (2x− a; t, t′),

(Q↑↑)0 (2x− a; t, t′) = m2 δ(t− t′) = (Q↓↓)0 (2x; t, t
′),

(57)

where m1, m2 have dimensions of time. We also apply a similar decomposition to Sj :

S3(x, t) = (S3)0(x, t) + δS3(x, t), with

(S3)0(x, t) =
ℏ
2

(
(Q↑↑)0(x; t, t)− (Q↓↓)0(x; t, t)

)
, and

δS3(x, t) =
ℏ
2

(
δQ↑↑(x; t, t)− δQ↓↓(x; t, t)

)
.

(58)

The variables S1 and S2 are decomposed in a similar manner. The proposed solution for the
(Q)0 field resembles the classical Néel-state solution of a Heisenberg antiferromagnet
(polarized along the j = 3 axis).16

16To observe this resemblance quickly, refer to the (Sj)0 variables in conjunction with the chosen solution
for the (Q)0 field in equation (57).
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Next, we substitute the proposed ansatz (56) into equation (53), focusing on terms up to
linear order in the fluctuations δQ. It is also convenient to transition to the following time
coordinates:

(t, t′) → (t̄, δt), with

t̄ =
t+ t′

2
, δt = t− t′.

(59)

We aim to analyze fluctuations in directions perpendicular to the specified polarization
direction of the Néel-state, specifically along j = 1, 2. The governing equation for
δS+ = δS1 + iδS2 is:

∂t̄ δS
+ (2x; t̄) =

(
τh
ℏ

)2(τh
U

) 1
2

(m1 −m2)

{
δS+ (2x+ a; t̄) + δS+ (2x− a; t̄) + 2δS+ (2x; t̄)

}
,

∂t̄ δS
+ (2x− a; t̄) =

(
τh
ℏ

)2(τh
U

) 1
2

(m2 −m1)

{
δS+ (2x; t̄) + δS+ (2x− 2a; t̄) + 2δS+ (2x− a; t̄)

}
.

(60)

An analogous equation can be derived for δS− = δS1 − iδS2. To obtain spin wave solutions
for equation (60), we introduce the following ansatz, using the discrete translational
invariance of the bipartite lattice:(

δS+ (2x− a; t)

δS+ (2x; t)

)
=

(
u

v

)
eik̃(2x)−iωt,

(61)

where u, v ∈ C.

By substituting the ansatz (61) into the equation for δS+ (60), we derive the following
dispersion relation:

ω2 = −(m1 −m2)
2

(
τh
U

)(
4τ4h
ℏ4

)
sin2(k̃a). (62)

Examining the dispersion relation presented in equation (62), we can draw several
conclusions:

1. For the ansatz in equation (61) to correspond to a valid spin-wave solution, the
frequency ω must be a real number. This condition implies that m1 −m2 must take
values in iR.

2. In the long-wavelength limit, we observe a linear dispersion relation, ω ∝ k̃, which is
consistent with the known result in equation (32).

3. A significant limitation of this analysis is that the “velocity” associated with the
dispersion relation remains undetermined. This uncertainty necessitates the
specification of the value of m1 −m2, ensuring it resides in iR. Consequently, we have
not fully reproduced the result in equation (32) through our current approach.
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At this juncture, we found ourselves at a standstill. We have attempted two different
strategies to bosonize the Hubbard model and derive spin-wave solutions as low-energy
excitations. While the second approach showed some potential improvements over the first,
it remains incomplete. Furthermore, we have yet to fully grasp how to handle the continuum
limit at the action level. Consequently, we are preparing to shift our focus and examine an
alternative motivation for the bosonization of the Hubbard model in the following section.

3.4 Attempt III: Reformulation of the Partition Function Using a U(1)

field eiϕ(x,tk)

We make a third attempt to bosonize the strongly interacting Hubbard model using our
formalism. This time, rather than bosonizing all the Grassmann fields, we focus on
bosonizing a specific subset and integrating out the remaining fields. The goal is to
reformulate the theory in terms of a U(1) bosonic field. We begin by outlining the
motivation behind this approach.

3.4.1 Motivation

The motivation for bosonizing the Hubbard model into a U(1) bosonic field theory is
summarized in the flowchart below.

1D Hubbard model at
half − filling.

1D Heisenberg antiferromagnet
(spin− 1/2 chain.)

Strong interaction

limit

SU(2)k=1 WZW
model.

Affleck
(1985)

=!
U(1) free boson
theory at R = 1√

2
.

? Our
objective

Figure 17: Flowchart illustrating the rationale for bosonizing the Hubbard model with a U(1)
field.

1. We previously noted that in the strong interaction limit, and at ν = 1
2 , the 1D

Hubbard model maps to the 1D spin-12 quantum Heisenberg antiferromagnet.

2. In 1985, I. Affleck [26] demonstrated that the critical behavior of the 1D spin-12
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quantum Heisenberg antiferromagnet is described by the SU(2)k=1

Wess-Zumino-Witten (WZW) model.

The action for the SU(2)k=1 WZW model is given by [9, 36]:

S =
k

16π

ˆ
Σ

d2xTr
(
(∂µg)∂

µg−1
)
+

k

24π

ˆ
B

d3x ϵµνλ Tr
(
g−1(∂µg)g

−1(∂νg)g
−1∂λg

)
,

(63)

where the field g is defined by g : Σ → SU(2), and k denotes the level of the SU(2)k

WZW model, which is equal to one in the present case. The second term in the action
(63) is obtained by extending the compactified two-dimensional spacetime Σ to the
interior of a ball B [23].17

The conserved currents of the SU(2)k=1 WZW model are denoted as J(z) = Ja(z)T
a

and J̄(z̄) = J̄a(z̄)T
a, and are given by:

J(z) = −1

2

(
∂zg(z, z̄)

)
g−1(z, z̄),

J̄(z̄) = −1

2
g−1(z, z̄)

(
∂z̄g(z, z̄)

)
,

(64)

and they satisfy the conservation laws, ∂z̄J = 0 and ∂zJ̄ = 0. Here, z = x1 + ix0,
where x1 refers to the spatial coordinate and x0 refers to the time coordinate, and
T a (a = 1, 2, 3) are the generators of SU(2). The currents {Ja}a=1,2,3 satisfy the
SU(2)k=1 Kac-Moody algebra. For a more detailed explanation, see [9, 36, 23].

3. It is possible to rewrite the SU(2)k=1 Wess-Zumino-Witten (WZW) model in
terms of U(1) free bosonic field theory [37].

The action for the U(1) free boson theory (in Euclidean signature) is given by [9, 37]:

S =
1

8π

ˆ
Σ

d2x ∂µϕ∂
µϕ. (65)

The U(1) bosonic field ϕ is compactified, meaning that ϕ and ϕ+ 2πR are identified,
where R is the compactification radius. For solutions of the equation of motion, one
finds that ϕ(z, z̄) = 1

2

(
ϕ(z) + ϕ(z̄)

)
separates into two components, exhibiting only

holomorphic and anti-holomorphic dependence, respectively.

At R = 1√
2
, the currents J3(z) = i∂zϕ(z) and J± = exp(±i

√
2ϕ(z)) have the following

current-current correlation functions:

⟨J3(z) J3(z′)⟩ =
1

(z − z′)2
,

⟨J+(z) J−(z′)⟩ =
1

(z − z′)2
.

(66)

Note. The currents J3(z) = i∂zϕ(z) and J± = exp(±i
√
2ϕ(z)) are invariant under the

17The mapping g must be extended to g : B → SU(2) for the second term in the action (63) [23].
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transformation ϕ → ϕ+ 2πR at R = 1√

2
.

If we define J± = 1√
2
(J1 ± iJ2), it can be shown that the currents {Ja}a=1,2,3 satisfy

the SU(2)k=1 Kac-Moody algebra. For a more detailed explanation, see [9, 36, 37].

Our objective is to rewrite the partition function of the 1D Hubbard model in terms of a
U(1) bosonic field, employing our approach.

3.4.2 Implementation of the Reformulation Strategy

Having previously demonstrated the application of the formalism twice, we aim to avoid
redundancy and maintain reader engagement. Therefore, we present an outline of the steps
in a schematic flowchart (see Figure 18), with detailed calculations included in Appendix E.
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Hubbard model at ν = 1
2 .

Coherent− state path integral
construction : action written in terms

of Grassmann fields S
[
ξσ, ξσ

]
.

Bosonize the following pair of
fermion fields

ξ↑ξ↓ ∼ eiϕ .

Rewrite the action in terms of

Grassmann fields (ξ↓, ξ↑) and

U(1) bosonic field eiϕ.

Integrate over the Grassmann

fields (ξ↓, ξ↑).

Effective action Seff in terms
of the bosonic field

Seff
[
eiϕ
]
.

Figure 18: Flowchart outlining the steps involved in the bosonization of the 1D Hubbard
model. Detailed calculations can be found in Appendix E.

Following the outlined steps, the partition function can be expressed as:

Z =

ˆ 2π

0

∏
x,tk

dϕ(x, tk)
2π

exp
{
iSeff[e

iϕ]

ℏ

}
, (67)
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where Seff[e

iϕ] is given by:

Seff[e
iϕ] = −iℏ

∑
x,tk

{
ln
(
1 + eiϕ(x,tk−1)−iϕ(x,tk)

)

+

((
∆tU

2ℏ

)2

− 2

(
∆tτh
ℏ

)2
)(

1 + eiϕ(x,tk)−iϕ(x,tk−1)

)−1

−
(
∆tτh
ℏ

)2(
1 + eiϕ(x,tk)−iϕ(x,tk−1)

)−1(
eiϕ(x+a,tk−1)−iϕ(x,tk−1) + eiϕ(x−a,tk−1)−iϕ(x,tk−1)

)}
.

(68)

The next step is to determine how to take the continuum limit in time for equation (68).
One approach we considered is the stationary phase approximation. However, for this
approximation to be applicable, a crucial condition must be satisfied.

To illustrate, let us consider the following integral:

∏
x,tk

dϕ(x, tk)
2π

exp
{
iλ
∑
x,tk

eiϕ(x,tk)−iϕ(x,tk−1)

}
. (69)

The stationary phase approximation is valid only in the limit where λ ≫ 1. In this regime,
we can assume that fluctuations in the field ϕ(x, tk) are small, allowing us to expand
eiϕ(x,tk)−iϕ(x,tk−1) using a Taylor series. However, this condition is not satisfied in equation
(68), which precludes the use of this method to establish the continuum limit in time.

3.5 Concluding Remarks

Despite our efforts to apply the bosonization method through three different approaches, the
challenge of establishing the continuum limit in time remains unresolved. With no
alternative solutions at hand18, we have opted to pursue the more complex approach of
performing renormalization on the system before applying the bosonization formula. We
believe this approach may help resolve the difficulties outlined in this chapter and provide a
clearer definition of the continuum limit in time. In the next chapter, we will discuss the
concept of applying renormalization prior to utilizing the bosonization formula.

18We recognize the example of Brownian motion and how the continuum limit in time is defined in this
context [38, 39, 40]. Brownian motion can be described using a path integral formulation. To properly
define the continuum limit in time, one must utilize the property of Brownian motion that the mean squared
displacement is proportional to time. For illustration, consider a simple random walk in one spatial dimension
[38], as Brownian motion can be viewed as the limit of simple random walks. In this model, a walker starts
at an arbitrary origin and takes a fixed length step ∆x at each time step ∆t. The walker can move either
left or right, with each step being independent and uncorrelated. We can examine the normalized probability
density function of the position vector after M steps, i.e., at time M∆t. To demonstrate that this probability
density function approaches the fundamental Gaussian solution of the diffusion equation, we must take the
limits M → ∞, ∆t → 0, while ensuring that (∆x)2 ∝ ∆t and T = M∆t. However, it is important to note
that this framework does not apply to our current problem, as there is no external input that provides an
analogous condition of (∆x)2 ∝ ∆t relevant to our case.
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4 Applying Renormalization to Properly Define the Contin-
uum Limit in Time

In the previous chapter, we explored three approaches to bosonizing the system, each of
which faced the challenge of defining the continuum limit in time. To address this ongoing
issue, we are shifting our approach to renormalization, a key concept in quantum field theory.
We want to clarify from the outset that, while we have not yet resolved the continuum limit
problem, we will outline how renormalization might offer a potential solution.

We will begin by reviewing some fundamental concepts of renormalization [9]. Suppose we
are studying a system described by a general action:

Sbare [{ρbare}], (70)

where {ρbare} denote the “bare” coupling parameters of the system. Assume we are working
on a discretized space-time lattice. The renormalization method can be applied to develop a
low-energy effective description of the system, and the steps to achieve this are outlined
below.

First, we introduce cutoffs in both space and time. This is necessary because, in the
low-energy limit, fluctuations at smaller spatial and temporal scales (which correspond to
higher energy modes) can generally be neglected. Physical observables remain largely
unchanged on scales smaller than these cutoffs. In most condensed matter physics problems,
the spatial cutoff is typically chosen to be the lattice constant a. For a system with a mass
gap Egap, the corresponding cutoff in time can be defined as follows:

tcutoff ∼ 1

Egap
. (71)

The next stage in the renormalization process involves integrating out the high-energy
modes (or, equivalently, the modes associated with short time and length scales). Repeating
this integration process generates the renormalization group flow. During this procedure,
the coupling parameters {ρbare} evolve into {ρphysical}. Additionally, the original action
transforms into an effective action, which is given by:

Seff[{ρphysical}]. (72)

Through this process19, a valid low-energy description of the system is achieved when the
renormalized theory is not directly sensitive to variations in the cutoff. In other words, this
implies that one can modify the cutoff and adjust the coupling parameters accordingly
without altering the low-energy behavior of the system.

Once we have achieved a low-energy description that is independent of the cutoff, we should
be able to take the continuum limit in time, ensuring that this low-energy description stays

19We will not delve into every step of the renormalization process here. Instead, our aim is to review the
underlying concept of renormalization.
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consistent and well-defined.

Following this brief review of renormalization concepts, we aim to outline how to integrate
these concepts with the bosonization formula (7) to analyze the system and derive its
low-energy description. To achieve this, we will utilize the Kadanoff block spin
transformation method [41, 42] for the renormalization process. First, we will summarize the
general idea behind the Kadanoff renormalization scheme, after which we will focus on our
specific problem.

4.1 Kadanoff Block Spin Transformation

In this section, we will illustrate the concept of the Kadanoff block spin transformation [42]
through an example. Consider a real scalar field defined on a two-dimensional lattice:

ϕ : Z2 → R. (73)

The “bare” action for the system is denoted as Sbare[ϕ], and the corresponding partition
function is given by:

Z =

ˆ
Dϕ e−Sbare[ϕ]. (74)

Kadanoff’s approach involves grouping the fields associated with individual sites into blocks
and defining a new variable for each block. Each site of the original lattice belongs to
exactly one block.

b

i

Figure 19: Two-dimensional lattice. To demonstrate Kadanoff’s concept, consider the block
labeled b. All four fields linked to the lattice sites within this block (with one site designated
as i) are grouped together.

The operational method for connecting the new variable to ϕi and subsequently performing
renormalization can be summarized in the following steps:

1. As noted earlier, the first step is to introduce a new variable Φb for each block (labeled
b). The size of this block essentially determines the cutoff for the problem at hand,
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indicating that fluctuations of the field Φb on scales smaller than this cutoff can be
disregarded in the low-energy description of the system.

2. The next step involves inserting the expression

1 =

ˆ
dΦb δ(Φb − Avb[ϕ]) (75)

under the functional integral given in equation (74). Here, δ(.) denotes the Dirac delta
function, and Avb[ϕ] represents an “averaging” procedure applied to the fields ϕi,
where i refers to the sites within the block b. For the current context, Avb[ϕ] can be
defined as:

Avb[ϕ] =
∑
i

ϕi. (76)

3. The final step involves changing the order of integration as shown below:

Z =

ˆ
Dϕ e−Sbare[ϕ] =

ˆ
Dϕ e−Sbare[ϕ]

ˆ
DΦ

∏
b

δ(Φb − Avb[ϕ])

=

ˆ
DΦ

ˆ
Dϕ

∏
b

δ(Φb − Avb[ϕ]) e−Sbare[ϕ] =

ˆ
DΦ e−S

(1)
eff [Φ].

(77)

As indicated by the final equation, the initial iteration of the renormalization step
transforms the original bare action into an effective action, denoted by S

(1)
eff [Φ]. By repeating

this process, one obtains the renormalization group flow. As discussed earlier, a low-energy
description (or, equivalently, a well-defined theory at large distances) is achieved when the
renormalized theory becomes insensitive to variations in the cutoff.

This completes the review of the Kadanoff renormalization scheme, and we will now return
to our specific problem.

4.2 Integrating Renormalization Concepts into the Bosonization Approach

We would now like to outline how we intend to incorporate the previously mentioned
concept of renormalization into the bosonization framework. We will proceed with the
following steps:

1. Start with the fermionic functional integral expression for the partition function in
discrete time:

Z =

ˆ
ξ
e−Sbare[ξ̄,ξ], (78)

with the fields ξ̄, ξ representing the “bare” degress of freedom. Here,
´
ξ denotes the

Berezin integral. Additionally, we are working on a discretized lattice in both space
and time.

2. In the next step, we apply the Kadanoff block spin transformation, as discussed in the
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previous section. Insert

1 =

ˆ
ξ′
δ(ξ̄′b · ξ′b − Avb(ξ̄, ξ)) (79)

under the functional integral. Here, we have introduced new fields (ξ̄′b, ξ
′
b) in the

equation above using the “averaging” procedure Avb(ξ̄, ξ) applied to the “bare” fields.
These new fields are defined over a block on the space-time lattice, with the block size
determining the cutoff in both space and time. The cutoff has the same significance as
before: fluctuations of the fields (ξ̄′b, ξ

′
b) on scales smaller than this cutoff can be

neglected in the low-energy description of the system. The dot product in ξ̄ · ξ
represents the sum over the “color” degrees of freedom, where “color” refers to the sites
of the two-dimensional space-time lattice within the chosen block b.

3. Next, we use the bosonization formula (7) to rewrite the expression in (79) as follows:

1 =

ˆ
U(n)

dUb Det−R (Ub) δ (Ub − Avb(ξ̄, ξ)). (80)

Here n represents the total number of “flavor” degrees of freedom, and R denotes the
total number of “color” degrees of freedom.

4. The final step is to change the order of integration, as is also done in the Kadanoff
block spin transformation.

Z =

ˆ
ξ
e−Sbare[ξ̄,ξ] =

ˆ
ξ
e−Sbare[ξ̄,ξ]

ˆ
U(n)

DU
∏
b

Det−R(Ub) δ(Ub − Avb(ξ̄, ξ))

=

ˆ
U(n)

DU

ˆ
ξ

∏
b

Det−R(Ub) δ(Ub − Avb(ξ̄, ξ)) e−Sbare[ξ̄,ξ] =

ˆ
U(n)

DU e−S
(1)
eff [U ].

(81)

Here, S(1)
eff [U ] denotes the effective action after the first iteration. Repeating this

iteration generates the renormalization group flow.

We have outlined the steps necessary to integrate renormalization and bosonization for an
accurate low-energy description of the system. However, following these steps can be
computationally challenging. While we will mention some key points required to begin the
calculations, we must acknowledge that we have not yet advanced beyond this stage in our
computations for the system of interest, specifically the 1D Hubbard model.

Firstly, it is necessary to define the “averaging” procedure. One possible way to define
Avb(ξ̄, ξ) is given below:

1

2
Tr(τaAvb(ξ̄, ξ)) =

1

2

∑
σ,σ′

(τa)σσ′
∑

(x,t)∈b

(−1)x
ξ̄σ(x, t)ξσ′(x, t)

R
. (82)

Here, Tr denotes the trace over the “flavor” degrees of freedom, corresponding to the two
spin components (n = 2). The matrices τa represents the standard Pauli matrices
(a = 1, 2, 3). The pair (x, t) denotes the space-time lattice sites within the block b. An

45



4 APPLYING RENORMALIZATION TO PROPERLY DEFINE THE CONTINUUM
LIMIT IN TIME

important aspect of this averaging procedure is the staggering factor (−1)x in space.20

An additional important point not covered in the section on the Kadanoff block spin
transformation, but crucial for computations, is that this transformation offers some
flexibility: the Dirac delta function can be replaced by another smooth function. The only
requirement is that this function must have a total mass equal to one, as indicated in
equation (79). The choice of this function is crucial for computational purposes, as a poor
selection can significantly complicate the renormalization process. This concludes our
discussion on how to perform the renormalization step, as we have not advanced beyond this
point in our computations.

Although we have not completed the renormalization process, let us assume for the sake of
discussion that it has been finalized, allowing us to obtain the low-energy effective
description of the system. The next step is to take the continuum limit in time, specifically
as ∆t → 0. Here, ∆t represents the time interval between consecutive time slices introduced
during the path integral construction of the partition function (78) in discrete time.

In the two-dimensional space-time lattice framework, as we take the continuum limit in time
by sending ∆t to zero, the block b will progressively cover an increasing number of lattice
sites, resulting in more fields being included in the “averaging process”. We expect that once
we achieve a low-energy description independent of the cutoff, this description will remain
invariant under this process. Consequently, we anticipate a well-defined continuum limit in
time, which will address the issues encountered in our analysis.

In summary, we have outlined how to incorporate renormalization into the functional
integral bosonization scheme to tackle the technical challenge of taking the continuum limit
in time. The implementation of the ideas discussed here will be explored in future work. For
now, we conclude the first project of this thesis, with a summary of this project provided in
the next chapter.

20This choice of averaging procedure with staggering is motivated by the derivation of the O(3) non-linear
sigma model from the 1D Heisenberg antiferromagnet [43, 44, 45, 46].
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5 Conclusion from the First Project

This chapter concludes the first project of this thesis by summarizing the key findings and
suggesting potential directions for future research. The focus of this project has been on
strongly interacting fermion systems, motivated by the lack of analytical methods available
to describe such systems effectively. One widely used tool in quantum field theory is the
Hubbard-Stratonovich (HS) transformation, which has proven valuable in many applications
but is limited to weakly interacting systems. Consequently, the primary goal of this project
was to develop an analytical method for studying strongly interacting systems.

The method introduced in this thesis builds on the bosonization formula presented in [1],
which has seen limited exploration in the literature. By utilizing this formula within the
functional integral framework, we reformulated the theory, originally described in terms of
fermion fields, into one based on a unitary matrix in “flavor” space. This reformulation aims
to provide a more accurate description of strongly interacting systems.

To validate our method, we applied it to the one-dimensional Hubbard model at half-filling
in the strong interaction limit. This model is well-studied, and we used its established
results as benchmarks to test the accuracy of our approach. However, a persistent challenge
throughout the project has been defining the continuum limit in time. Despite
demonstrating three different approaches to bosonizing the system, this issue remained
unresolved. While we have not previously discussed them, we also explored alternative
approaches by adjusting how we set up the functional integral in an attempt to address this
challenge. Although these attempts did not succeed, they are briefly outlined here for
completeness.

The first alternative approach involved a different choice of reference state in the
construction of the coherent-state functional integral [47]. While the vacuum state (all
states unoccupied) is the “standard choice”, given that we are working with the
one-dimensional Hubbard model at half-filling and strong interactions, a more suitable
reference might be the Néel-state. Thus, we formulated the functional integral using the
Néel-state as the reference. The second attempt utilized the Glauber P-representation for
fermionic operators, as introduced by Cahill and Glauber in [48, 49]. The third attempt
followed the idea proposed by Affleck in [26], where the fermion field in one-dimensional
space is split into left- and right-moving components near the two Fermi points. Despite
these different setups, the issue with taking the continuum limit in time persisted in all
three cases. As such, we do not present them here, but we mention them for completeness.

Recognizing the difficulty of the problem, we ultimately adopted a more intricate approach,
as discussed earlier in the thesis: applying renormalization to the system before using the
bosonization formula. Renormalization enables us to derive a low-energy description that
does not require taking the continuum limit. After obtaining this low-energy description, as
outlined in Chapter 4, we expect that the continuum limit can be more effectively
addressed. However, as acknowledged, the full execution of this approach remains a topic for
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future work.

In conclusion, we hope that the functional integral bosonization method (along with the
incorporation of renormalization) can contribute to our understanding of intriguing physical
phenomena, such as the physics of high-temperature superconductors [50]. For example,
applying this formalism to models describing doped Mott insulators [51] could yield valuable
insights. Overall, we hope that this method may pave the way for further exploration in the
realm of strongly interacting electron systems.
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A LINKED-CLUSTER EXPANSION

A Linked-cluster expansion

We illustrate the linked-cluster expansion discussed in Chapter 2. Starting with the equation

⟨e−λO(g)⟩U(R) := e−Sc , (83)

our goal is to express Sc using the linked-cluster expansion method. In this context, λ is a
small parameter (λ ≪ 1). The term ⟨e−λO(g)⟩U(R) represents the integration of e−λO(g) with
respect to the Haar measure on U(R), where O(g) is a function of g ∈ U(R). The expression
given in (83) can be rewritten as:

−Sc = ln
(
⟨e−λO(g)⟩U(R)

)
. (84)

Expanding the expression given in (84) in powers of λ, we obtain the following linked-cluster
expansion:

Sc = λS1
c + λ2S2

c + . . . , (85)

where S1
c and S2

c represent the first and second orders of the linked-cluster expansion,
respectively. The ellipsis indicates the higher-order terms that are not detailed here. The
expressions for S1

c and S2
c are provided below:

S1
c = ⟨O(g)⟩U(R),

S2
c = −1

2

(
⟨O(g)2⟩U(R) − ⟨O(g)⟩2U(R)

)
.

(86)

This concludes the explanation of the linked-cluster expansion that was used in Chapter 2.
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B Equations of Motion from Haar Measure Invariance

Within this appendix, we outline how the equations of motion (43) from Section 3.2 are
obtained using Haar measure invariance under left and right multiplication. We focus on the
derivation related to left invariance here, noting that a similar approach applies to the
derivation from right invariance.

Using the left invariance of the Haar measure, we obtain the following equation:

ˆ
U(4)

dQ(x, tk) exp

(
iSeff[Q(x, tk)]

ℏ

)
=

ˆ
U(4)

dQ(x, tk) exp

(
iSeff[e

λXQ(x, tk)]

ℏ

)
, (87)

where X denotes a generator of the Lie algebra u(4), and λ is a scalar in R. The above
equation implies that

ˆ
U(4)

dQ(x, tk) exp

(
iSeff[e

λXQ(x, tk)]

ℏ

)
(88)

is independent of λ. Another way to express this is:

d

dλ

∣∣∣∣
λ=0

ˆ
U(4)

dQ(x, tk) exp

(
iSeff[e

λXQ(x, tk)]

ℏ

)
= 0. (89)

The above equation (89) leads to:

ˆ
U(4)

dQ(x, tk) exp

(
iSeff[Q(x, tk)]

ℏ

)
d

dλ

∣∣∣∣
λ=0

Seff[e
λXQ(x, tk)] = 0. (90)

Similarly, by applying the right invariance of the Haar measure, one obtains:

ˆ
U(4)

dQ(x, tk) exp

(
iSeff[Q(x, tk)]

ℏ

)
d

dλ

∣∣∣∣
λ=0

Seff[Q(x, tk)e
λX ] = 0. (91)

Thus, we have established that the equation of motion (43), as outlined in Section 3.2, is
valid within the integral and is derived from the invariance of the Haar measure.
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C Derivation of the Equations of Motion for the Matrix Com-
ponents of the Field Q(x, tk) in Section 3.2

In the accompanying appendix, we detail the three-step procedure described in Section 3.2
to derive the equation of motion in the continuum time limit for a specific matrix
component of the field Q(x, tk), specifically (Q++)↑↑(x, tk). The equations of motion for the
other matrix components can be obtained following the same steps.

1. The first step is to specify the generator X. To derive the equation of motion for
(Q++)↑↑(x, tk), we adopt the following generator:

X =


i 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 . (92)

Observe that X = −X†, as expected for a generator of the u(4) Lie algebra.

2. The second step involves deriving the equations of motion by exploiting the left and right
invariance properties of the Haar measure. The equation

L
∣∣
x,tk

≡ d

dλ

∣∣∣∣
λ=0

Seff[e
λXQ(x, tk)] = 0, (93)

which is derived using the left invariance of the Haar measure, is presented below:

− 1 +

(
τh
U

) 1
2

(Q++)↑↑(x, tk) −
(
iτh∆t

ℏ

)
(Q++)↑↑(x, tk)(Q++)↓↓(x, tk)

+

(
U

τh

) 1
2
(
iτh∆t

2ℏ

)
(Q++)↑↑(x, tk) +

(
U

τh

)(
τh∆t

ℏ

)2

(Q++)↑↑(x, tk)(Q++)↓↓(x, tk)

−
(
U

τh

) 3
2
(
τh∆t

2ℏ

)2

(Q++)↑↑(x, tk)−
(
τh
U

) 1
2
(
τh∆t

ℏ

)2

(Q++)↑↑(x, tk)

+

(
τh
U

)(
τh∆t

ℏ

)2∑
σ

∑
y=x+a,x−a

(
(Q++)↑σ(x, tk)(Q++)σ↑(y, tk)− (Q+−)↑σ(x, tk)(Q−+)σ↑(y, tk)

)
−
(
τh
U

)∑
σ

(Q+−)↑σ(x, tk)(Q−+)σ↑(x, tk+1)

= 0.

(94)

The equation

R
∣∣
x,tk

≡ d

dλ

∣∣∣∣
λ=0

Seff[Q(x, tk)e
λX ] = 0, (95)
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which is derived using the right invariance of the Haar measure, is presented below:

− 1 +

(
τh
U

) 1
2

(Q++)↑↑(x, tk) −
(
iτh∆t

ℏ

)
(Q++)↑↑(x, tk)(Q++)↓↓(x, tk)

+

(
U

τh

) 1
2
(
iτh∆t

2ℏ

)
(Q++)↑↑(x, tk) +

(
U

τh

)(
τh∆t

ℏ

)2

(Q++)↑↑(x, tk)(Q++)↓↓(x, tk)

−
(
U

τh

) 3
2
(
τh∆t

2ℏ

)2

(Q++)↑↑(x, tk)−
(
τh
U

) 1
2
(
τh∆t

ℏ

)2

(Q++)↑↑(x, tk)

+

(
τh
U

)(
τh∆t

ℏ

)2∑
σ

∑
y=x+a,x−a

(
(Q++)σ↑(x, tk)(Q++)↑σ(y, tk)− (Q−+)σ↑(x, tk)(Q+−)↑σ(y, tk)

)
−
(
τh
U

)∑
σ

(Q+−)↑σ(x, tk−1)(Q−+)σ↑(x, tk)

= 0.

(96)

3. In the third step, we replace tk with tk+1 in R
∣∣
x,tk

, subtract this from L
∣∣
x,tk

, and then
take the continuum limit as ∆t → 0. The resulting equation of motion is:

∂t(Q++)↑↑(x, t) = 0. (97)

In the continuum limit, tk is replaced by t, and ∂t(Q++)↑↑(x, t) represents

(Q++)↑↑(x, tk+1)− (Q++)↑↑(x, tk)

∆t
. (98)

Based on equation (97), we observe that the contribution from the hopping term vanishes in
the continuum limit. This completes our detailed calculation of the equations of motion in
this limit. As previously mentioned, a similar approach can be used to derive the equations
of motion for the other matrix components, where it is also noted that the hopping term
does not contribute. For further discussion, readers are invited to refer back to Section 3.2
in the main body of the thesis.
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D Derivation of the Equations of Motion for the Matrix Com-
ponents of the Field Q(x) in Section 3.3

In the following appendix, we present the detailed calculations for the equations of motion
(53) for the matrix components of the field Q(x). We will adhere to the three-step method
outlined in Section 3.2, though with some modifications. Let’s begin with the derivation.

1. The first step follows the procedure outlined in Section 3.2, except that we now select a
generator from the Lie algebra u(2M) instead of u(4). In this appendix, we detail the
calculations for a specific generator X of the u(2M) algebra. This matrix X is a 2M × 2M

matrix, characterized by having a single non-zero matrix element, as specified below:

X↑↑(tv, tv) = i. (99)

As a reminder, in the time discretization step of the coherent-state path integral
construction, the time slices are denoted by k, where k = 1, .....,M . In this context, we
choose v in equation (99) to be between 1 and M , specifically choosing v ̸= 1 and v ̸= M .

2. The second step closely follows the method detailed in Section 3.2. In this step, we derive
the equations of motion by exploiting the left and right invariance properties of the Haar
measure. The equation

L
∣∣
x
≡ d

dλ

∣∣∣∣
λ=0

Seff[e
λXQ(x)] = 0, (100)

which is derived using the left invariance of the Haar measure, is presented below:

− 1 +

(
τh
U

) 1
2 (
Q↑↑(x; tv, tv−1)−Q↑↑(x; tv, tv)

)
−
(
τh
U

)(
iU∆t

ℏ

)
Q↑↑(x; tv, tv−1)Q↓↓(x; tv, tv−1)

+

(
τh
U

) 1
2
(
iU∆t

2ℏ

)
Q↑↑(x; tv, tv−1) +

(
τh
U

)(
U∆t

ℏ

)2

Q↑↑(x; tv, tv−1)Q↓↓(x; tv, tv−1)

−
(
τh
U

) 1
2
(
U∆t

2ℏ

)2

Q↑↑(x; tv, tv−1)−
(
τh
U

) 1
2
(
τh∆t

ℏ

)2

Q↑↑(x; tv, tv−1)

+

(
τh
U

)(
τh∆t

ℏ

)2 M∑
k=1

∑
σ

∑
y=x+a,x−a

Q↑σ(x; tv, tk−1)Qσ↑(y; tk, tv−1)

= 0.

(101)

The equation

R
∣∣
x
≡ d

dλ

∣∣∣∣
λ=0

Seff[Q(x)eλX ] = 0, (102)
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which is derived using the left invariance of the Haar measure, is presented below:

− 1 +

(
τh
U

) 1
2 (
Q↑↑(x; tv+1, tv)−Q↑↑(x; tv, tv)

)
−
(
τh
U

)(
iU∆t

ℏ

)
Q↑↑(x; tv+1, tv)Q↓↓(x; tv+1, tv)

+

(
τh
U

) 1
2
(
iU∆t

2ℏ

)
Q↑↑(x; tv+1, tv) +

(
τh
U

)(
U∆t

ℏ

)2

Q↑↑(x; tv+1, tv)Q↓↓(x; tv+1, tv)

−
(
τh
U

) 1
2
(
U∆t

2ℏ

)2

Q↑↑(x; tv+1, tv)−
(
τh
U

) 1
2
(
τh∆t

ℏ

)2

Q↑↑(x; tv+1, tv)

+

(
τh
U

)(
τh∆t

ℏ

)2 M∑
k=1

∑
σ

∑
y=x+a,x−a

Qσ↑(x; tk, tv)Q↑σ(y; tv+1, tk−1)

= 0.

(103)

3. In the third step, we subtract R
∣∣
x

from L
∣∣
x
, and then take the continuum limit as

∆t → 0. This process yields the following equation of motion:[
∂tQ↑↑(x; t, t

′) + ∂t′Q↑↑(x; t, t
′)

]∣∣∣∣∣
t=t′

=

(
τh
ℏ

)2(τh
U

) 1
2 ∑

σ

∑
y=x+a,x−a

ˆ
dt′′
{
Q↑σ(x; t, t

′′)Qσ↑(y; t
′′, t)−Q↑σ(y; t, t

′′)Qσ↑(x; t
′′, t)

}
.

(104)

In the continuum limit, tv is replaced by t, and tk is replaced by t′′. The expression

∂tQ↑↑(x; t, t
′)

∣∣∣∣∣
t=t′

denotes

Q↑↑(x; tn+1, tn)−Q↑↑(x; tn, tn)

∆t
, (105)

while ∂t′Q↑↑(x; t, t
′)

∣∣∣∣∣
t=t′

denotes

Q↑↑(x; tn, tn)−Q↑↑(x; tn, tn−1)

∆t
, (106)

in the limit ∆t → 0. Here, we have derived the equations of motion for Q↑↑ as stated in
equation (53) in Section 3.3. For the other components, Q↑↓, Q↓↑, and Q↓↓, the same
procedure can be applied to derive their respective equations of motion, which are also given
in equation (53). To continue the discussion, readers should consult Section 3.3 in the main
body of the thesis.
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E Detailed Calculations for Attempt-III from Section 3.4

In this appendix, we elaborate on the calculations that were omitted in Section 3.4, where
we reformulate the partition function of the 1D Hubbard model using a U(1) bosonic field.
The calculations presented here assume a 1D lattice with periodic boundary conditions
imposed in the spatial direction.

We begin with the expression for the partition function using the coherent-state path
integral formulation, as introduced earlier in equation (46). Therefore, we take equation (46)
as our starting point. The first step is to perform the same rescaling as done previously in
equation (49). Following that, we apply the following transformation to the fields:

∀x, tk,

(
ξ↑(x, tk)

ξ̄↑(x, tk)

)
→

(
0 1

1 0

)(
ξ↑(x, tk)

ξ̄↑(x, tk)

)
. (107)

This means swapping the fields ξ↑(x, tk) and ξ̄↑(x, tk). This step does not affect the
integration measure. In this third attempt at bosonization, we focus on bosonizing only a
subset of the Grassmann fields, as indicated below:

∀x, tk, ξ̄↑(x, tk)ξ↓(x, tk) ∼ eiϕ(x,tk), (108)

and integrate over the remaining fields ξ↓(x, tk) and ξ̄↓(x, tk). However, as has been
encountered previously, there is an obstacle: not all terms in the partition function can be
directly expressed in terms of the U(1) bosonic field. To address this, we use a method we
have applied before, performing a local U(1) phase rotation:

∀x, tk, ξ̄↑(x, tk) → ξ̄↑(x, tk) e
−iα(x,tk),

ξ↓(x, tk) → eiα(x,tk) ξ↓(x, tk).
(109)

We then integrate over all possible local U(1) phase rotations. Additionally, we perform
another local U(1) phase rotation:

∀x, tk, ξ̄↓(x, tk) → ξ̄↓(x, tk) e
−iβ(x,tk),

ξ↑(x, tk) → eiβ(x,tk) ξ↑(x, tk).
(110)

Again, we integrate over all possible local U(1) phase rotations. The next step is to carry
out a linked-cluster expansion, taking into account terms up to (∆t)2 and τh

U , while
disregarding terms of higher order. We do not detail all the steps here, as this has been
addressed in previous bosonization attempts, and we aim to avoid redundancy.

Following the linked-cluster expansion, we then carry out the bosonization step outlined in
(108) and integrate over the remaining Grassmann fields. The resulting expression for the
partition function, after completing these steps, is:

Z =

ˆ 2π

0

∏
x,tk

dϕ(x, tk)
2π

e−iϕ(x,tk) Det(O). (111)
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Here, O = O0 + O1, where O0 and O1 are defined as follows:

(O0)x,x′;tk,tk′
=

τh
U

δx,x′ δtk,tk′

[
eiϕ(x,tk−1) + eiϕ(x,tk)

]
,

(O1)x,x′;tk,tk′
=

τh
U

δx,x′ δtk,tk′

[(
U∆t

2ℏ

)2

eiϕ(x,tk−1)

−
(
τh∆t

ℏ

)2(
2eiϕ(x,tk−1) + eiϕ(x+a,tk−1) + eiϕ(x−a,tk−1)

)]
,

(112)

where a represents the lattice constant in space. We have adopted the notation tM ≡ t0.
The next step is to express Det(O) as follows:

Det(O) = exp[Tr ln(O)]

= exp[Tr ln(O0 +O1)]

=Det(O0) exp[Tr ln(1 + (O0)
−1O1)]

≈Det(O0) exp[Tr((O0)
−1O1)],

(113)

where we have approximated the expansion of Tr ln(..) in the last equality, retaining only
terms up to (∆t)2 and discarding higher-order terms. After completing these steps, we
arrive at the expression for the partition function in terms of a U(1) bosonic field, as given
in equation (67) in the main text. This concludes the discussion of the calculations that
were omitted in Section 3.4, and the reader can now refer back to Section 3.4 in the main
body of the thesis.

57





Project 2

Investigation into Strong Disorder in Fermionic
Systems



6 INTRODUCTION TO THE SECOND PROJECT

6 Introduction to the Second Project

6.1 Motivation

An enduring challenge in condensed matter physics is understanding how interactions and
disorder influence a system’s properties. The interplay between these factors produces a
variety of phenomena, including the quantum Hall effect, metal-insulator transitions, and
superconductor-insulator transitions. The first half of this thesis explores systems with
strong interactions and negligible disorder. In contrast, the second half examines systems
dominated by strong disorder, either neglecting electron interactions or treating them
through mean-field approximations.

In condensed matter physics, disorder refers to lattice imperfections, such as vacancies,
dislocations, or interstitial atoms. These disruptions break the lattice symmetry, making it
difficult to use momentum space and complicating the study of disordered systems.
Nonetheless, disorder is essential to consider, as it can significantly alter a system’s physical
properties and even induce new phases. One notable phenomenon where disorder plays a
crucial role is the Anderson transition, which will be the subject of the following
discussion.21

In 1958, Philip Anderson [54] published a pivotal paper in which he introduced the concept
of localization of mobile electrons in disordered materials. This phenomenon, known as
Anderson localization, describes how disorder causes the wavefunction to become
exponentially localized in position space. Building on this work, the concept of the
Anderson transition was subsequently developed. The Anderson transition [52] is a quantum
phase transition observed in disordered systems. As disorder increases (depending on spatial
dimensionality), the system transitions from a metallic state, where the wavefunction is
extended or delocalized, to an insulating state, where the wavefunction becomes localized in
position space.

In 1979, the “gang of four” researchers proposed a one-parameter scaling hypothesis [55] for
the Anderson transition, suggesting that a single relevant parameter is sufficient to describe
the universal behavior at criticality. Subsequently, the nonlinear sigma model by Wegner
[56] and Efetov [57] was proposed as an effective field theory to explain the critical behavior
of Anderson transitions. This model validated the one-parameter scaling hypothesis for
Anderson transitions near two-dimensional space. However, the accurate description of
Anderson transitions in higher dimensions remained unclear. Although some argue [58] that
Wegner and Efetov’s nonlinear sigma model can also account for the critical behavior in
higher dimensions, there are skeptics [59] who believe this might not provide the complete
picture.

Most studies on Anderson transitions have focused on the weak disorder regime, leaving the
strong disorder regime relatively underexplored. However, recent investigations into strong

21The following discussion draws on insights from [6, 52, 53, 5, 4].
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disorder have provided new insights. We mention two studies below [4, 5, 6] that challenge
the conventional perspective and offer a new description of Anderson transitions, which
forms the basis for our study.

The first study, although in a somewhat different context, was published in 2019 [4]. While
examining the scaling behavior near the transition between plateaus of the integer quantum
Hall (IQH) effect in two dimensions, a novel scenario of spontaneous symmetry breaking
(SSB) was proposed. The second study, from 2023 [5, 6], observed this novel SSB scenario
again while investigating the Anderson transition in the Wegner N-orbital model, revealing a
new phase beyond the two previously recognized phases in Anderson transitions. Here, we
provide a concise overview of the novel SSB mechanism detailed in these studies.

First, let us revisit the classical perspective on Anderson localization through the lens of
spontaneous symmetry breaking (SSB). Traditionally, Anderson localization involves two
distinct phases: metallic and insulating. In the insulating phase, the symmetry group of the
non-linear sigma model remains intact. Conversely, in the metallic phase (in
three-dimensional space), spontaneous symmetry breaking occurs. This symmetry breaking
occurs because, under renormalization, the stiffness of the non-linear field, which is a
scale-dependent parameter, flows to infinity [4].

Now, the novel SSB scenario proposed in [6, 5, 4] is partial symmetry breaking (PSB). In
this scenario, the symmetry is partially broken. Specifically, under renormalization, the field
stiffness flows to infinity for some of the field degrees of freedom, while for the remaining
degrees of freedom, the stiffness flows to a finite value. This indicates the presence of a
non-trivial renormalization-group fixed point. As detailed in [6], in this scenario, the field
extends along some “light-like” directions of the target space, which corresponds to the
restoration of symmetry for a subgroup of the symmetry group. Conversely, the field
becomes confined in the transverse “space-like” directions, signifying symmetry breaking for
the group elements that act transversally. This novel concept of partial symmetry breaking
(PSB) has been a key inspiration for the second project of this thesis.

The systems studied in these works fall under symmetry class A in the Altland-Zirnbauer
classification [3]. Anticipating that the PSB scenario might occur for a variety of Anderson
transitions at strong disorder [6], this thesis shifts focus to systems within a different
symmetry class, specifically symmetry class D22, to explore whether this scenario also
applies to these systems.

Before concluding this introduction, it is essential to emphasize another key point. Since we
are working in the strong disorder regime, the conventional Hubbard-Stratonovich
transformation is not employed, as it is more suited for weak disorder scenarios. Instead, we
utilize the superbosonization method [1, 2], which is briefly reviewed in the following section.

22The following chapter will outline important details regarding this class of systems.
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6.2 Superbosonization Formula

The superbosonization technique was introduced in [1, 2]. We previously encountered a
segment of this formula in the first part of this thesis (see Section 1.2), where we applied
bosonization to functions involving only anti-commuting Grassmann variables. In this
section, we present the complete superbosonization formula following [1]. However, we will
state the formula without delving into its proof. For a detailed derivation and proof, the
reader is referred to [1].

Consider a set of complex variables zr,a and their complex conjugates z̃a,r := z̄r,a, where
indices are in the range r = 1, ..., R and a = 1, ...., Ã. Alongside these, we have two sets of
anti-commuting variables: ξr,b and ξ̃b,r, with index range r = 1, ..., R and b = 1, ...., B̃. Here,
r represents the “color” degrees of freedom, while a and b indicate the number of bosonic
and fermionic replicas, respectively.

The complex variables zr,a can be organized into an R× Ã rectangular matrix, denoted as z,
with each matrix element corresponding to zr,a. Similarly, the variables z̃a,r can be
structured into an Ã×R rectangular matrix, denoted as z̃, with elements z̃a,r. In the same
manner, the sets of anti-commuting variables ξr,b and ξ̃b,r can be arranged into rectangular
matrices ξ and ξ̃ with dimensions R× B̃ and B̃ ×R, respectively.

Suppose we want to integrate a function f(z, z̃; ξ, ξ̃):
ˆ

f =

ˆ
D(z, ξ) f(z, z̃; ξ, ξ̃), (114)

where the integration measure is given by:

D(z, ξ) :=
∏
r,a,b

dz̃a,rdzr,a
π

∂2

∂ξ̃b,r∂ξr,b
. (115)

Let f in the integral (114) be an analytic and O(R)-invariant function23 of the variables
z, z̃, ξ, ξ̃:

f(z, z̃; ξ, ξ̃) = f(gz, z̃g−1; gξ, ξ̃g−1), g ∈ O(R). (116)

It is further assumed that f extends to a holomorphic function invariant under O(R,C)
when z and z̃ are treated as independent complex matrices. The symmetry relation (116) for
this extended function remains valid for all g ∈ O(R,C), the complexified version of O(R).

The superbosonization formula enables us to derive a reduction formula for the integral
´
f

of functions that satisfy the conditions specified above. To introduce the superbosonization
formula, the following components are required:

1. First, we use a result from classical invariant theory [28]. The algebra of
O(R,C)-invariant polynomial functions in z, z̃, ξ, ξ̃ is generated by invariants that

23The superbosonization formula is defined for the three groups U(R), O(R), and USp(R) [1]. However, in
this second part of the thesis, we will focus exclusively on the O(R) case.
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arise at the quadratic level. We now proceed to construct all quadratic invariants
under the O(R) symmetry group, using the variables z, z̃, ξ, ξ̃:

(z̃ · z)aa′ =
∑
r

z̃a,rzr,a′ , (z̃ · z̃T )aa′ =
∑
r

z̃a,rz̃
T
r,a′ =

∑
r

z̃a,rz̃a′,r,

(zT · z)aa′ =
∑
r

zTa,rzr,a′ =
∑
r

zr,azr,a′ , (zT · z̃T )aa′ =
∑
r

zTa,rz̃
T
r,a′ =

∑
r

zr,az̃a′,r,

(z̃ · ξ)ab′ =
∑
r

z̃a,rξr,b′ , (z̃ · ξ̃T )ab′ =
∑
r

z̃a,r ξ̃
T
r,b′ =

∑
r

z̃a,r ξ̃b′,r,

(zT · ξ)ab′ =
∑
r

zTa,rξr,b′ =
∑
r

zr,aξr,b′ , (zT · ξ̃T )ab′ =
∑
r

zTa,r ξ̃
T
r,b′ =

∑
r

zr,aξ̃b′,r,

(ξ̃ · z)ba′ =
∑
r

ξ̃b,rzr,a′ , (ξ̃ · z̃T )ba′ =
∑
r

ξ̃b,rz̃
T
r,a′ =

∑
r

ξ̃b,rz̃a′,r,

(ξT · z)ba′ =
∑
r

ξTb,rzr,a′ =
∑
r

ξr,bzr,a′ , (ξT · z̃T )ba′ =
∑
r

ξTb,rz̃
T
r,a′ =

∑
r

ξr,bz̃a′,r,

(ξ̃ · ξ)bb′ =
∑
r

ξ̃b,rξr,b′ , (ξ̃ · ξ̃T )bb′ =
∑
r

ξ̃b,r ξ̃
T
r,b′ =

∑
r

ξ̃b,r ξ̃b′,r,

(ξT · ξ)bb′ =
∑
r

ξTb,rξr,b′ =
∑
r

ξr,bξr,b′ , (ξT · ξ̃T )bb′ =
∑
r

ξTb,r ξ̃
T
r,b′ =

∑
r

ξr,bξ̃b′,r,

(117)

where T denotes transpose. All these quadratic invariants can be organized into a
supermatrix, as demonstrated below:

z̃ · z z̃ · z̃T z̃ · ξ z̃ · ξ̃T

zT · z zT · z̃T zT · ξ zT · ξ̃T

ξ̃ · z ξ̃ · z̃T ξ̃ · ξ ξ̃ · ξ̃T

ξT · z ξT · z̃T ξT · ξ ξT · ξ̃T

 . (118)

2. Next, consider a supermatrix Q with the following structure:

Q =

(
QBB QBF

QFB QFF

)
, (119)

where the blocks QBB and QFF are square matrices of size 2Ã× 2Ã and 2B̃ × 2B̃,
respectively, with commuting variables as entries. Meanwhile, QBF and QFB are
rectangular matrices of size 2Ã× 2B̃ and 2B̃ × 2Ã, respectively, with anti-commuting
entries. Then, impose on Q the symmetry relation:

Q = γ̃ QsT γ̃−1, (120)

where γ̃ is given by: 
0 1Ã 0 0

1Ã 0 0 0

0 0 0 −1B̃
0 0 1B̃ 0

 , (121)

with 1Ã and 1B̃ denoting the identity matrix of dimensions Ã× Ã and B̃ × B̃,
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respectively. QsT denotes the supertranspose of the supermatrix Q, which is defined as
follows:

QsT =

(
QT

BB QT
FB

−QT
BF QT

FF

)
. (122)

We are now prepared to present the O(R)-superbosonization formula. This formula provides
a method for rewriting the integral in equation (114) as an integral over the supermatrix Q,
which has been defined previously. Specifically, the integral can be expressed as follows:

ˆ
f =

ˆ
dµ(Q) SDet

R
2 (Q)F (Q). (123)

Here, F (Q) represents a function of the supermatrix Q. Under the substitution

Q →


z̃ · z z̃ · z̃T z̃ · ξ z̃ · ξ̃T

zT · z zT · z̃T zT · ξ zT · ξ̃T

ξ̃ · z ξ̃ · z̃T ξ̃ · ξ ξ̃ · ξ̃T

ξT · z ξT · z̃T ξT · ξ ξT · ξ̃T

 , (124)

the function F (Q) becomes equal to the given function f(z, z̃; ξ, ξ̃). It is important to note
that the choice of the function F is not unique.

SDet(Q) denotes the superdeterminant of the supermatrix Q and is defined as:

SDet(Q) =
Det(QBB)

Det(QFF −QFBQ
−1
BBQBF )

. (125)

The measure in equation (123) is given by:

dµ(Q) = DQ SDet−
1
2 (Q). (126)

where DQ denotes the flat measure. It is crucial to emphasize that the
O(R)-superbosonization formula holds true only if the condition R ≥ 2Ã is met.

This concludes the presentation of the O(R)-superbosonization formula. For a detailed
discussion and proof, we recommend consulting [1]. For a simpler discussion, please refer to
[60].

6.3 Outline of the Second Project

We are now set to explore the realm of strongly disordered systems. The following outline
provides a brief roadmap for the second half of this thesis.

In Chapter 7, we discuss the supersymmetric field theory framework for studying disordered
class D systems. We analyze the strong disorder limit of a general system, not restricted to
any specific model, using the superbosonization method and explore its implications.
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In Chapter 8, we focus specifically on the study of monitored free fermions within symmetry
class D that exhibit measurement-induced phase transitions. We discuss a method based on
the supersymmetry technique, which differs from the more common replica trick used in the
literature, to analyze the system. We propose a reformulation of the theory, utilizing
concepts from universality and scaling, which provides a novel perspective for system
analysis. Finally, we suggest possible avenues for future research based on the concepts
discussed here.
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7 Supersymmetric Field Theory Approach to Strongly Disor-
dered Class D Systems

In this chapter, we introduce the supersymmetric field theory framework for analyzing
disordered class D systems and investigate their behavior under strong disorder. Rather
than relying on the traditional Hubbard-Stratonovich transformation, which is suitable for
weak disorder, we adopt the superbosonization technique to effectively address the
challenges posed by strong disorder. Before delving into the main analysis, we provide an
overview of class D systems, following the classification in [3].

7.1 Symmetry Class D

Class D is one of the ten symmetry classes in the Altland-Zirnbauer classification [3] for
non-interacting fermions. Systems in this symmetry class describe superconductors that
break time-reversal symmetry and lack spin-rotation invariance. For these systems, the
Bardeen–Cooper–Schrieffer (BCS) Hamiltonian, in the Hartree-Fock-Bogoliubov mean-field
approximation, is given by:

Ĥ =
∑
i,j

hijc
†
icj +

1

2
∆ijc

†
ic

†
j +

1

2
∆ijcjci, (127)

where (i, j) refers to the physical space C2N = CN ⊗ C2 (which includes both orbitals and
spin).

The second-quantized Hamiltonian (Ĥ) can be expressed in an equivalent first-quantized
form (H) through the Bogoliubov-deGennes formalism:

Ĥ =
1

2

∑
i,j

(
c†i ci

) (
hij ∆ij

−∆ij (−hT )ij

) (
cj

c†j

)
+ const. , (128)

where the first-quantized Hamiltonian H =

(
h ∆

−∆ −hT

)
is a 4N × 4N matrix defined in

the enlarged physical space C4N = C2
BdG ⊗ C2N . Here, C2

BdG represents the additional
“particle-hole” degree of freedom.

The Hermiticity of Ĥ, along with the canonical anti-commutation relations for fermions,
impose a specific “symmetry” on the Hamiltonian:

h = h†, ∆ = −∆T . (129)

Note. “Symmetry” is placed in quotes because it is not exactly a symmetry but rather a
structure imposed on the Hamiltonian by the canonical anti-commutation relations for
fermions.

These two conditions can be combined into a single equation:

H† = H = −Σ1H
TΣ1, (130)
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where Σ1 = σ1 ⊗ 12N . Here, σ1 =

(
0 1

1 0

)
is the standard Pauli matrix in C2

BdG space, and

12N is the identity matrix in C2N space.

Using the above equation (130), it is evident that XH = iH belongs to so(4N,R) Lie
algebra:

−X†
H = XH = −Σ1X

T
HΣ1. (131)

This identification of XH with the so(4N,R) Lie algebra becomes clearer when applying a
change of basis given by XH → X̃H = U0XHU−1

0 , where

U0 =
1√
2

(
1 1

i −i

)
⊗ 12N . (132)

After this transformation, one obtains:

X̃H = X̃H = −X̃H
T
, (133)

which is the standard defining equation for the so(4N,R) Lie algebra.

We will now conclude our overview of Class D systems, noting that the key aspect to focus
on is the constraint on the Hamiltonian specified in equation (130), which will be crucial for
the analysis in the following section.

Remark. This class of systems, in two spatial dimensions, exhibits the thermal quantum
Hall effect [61].

7.2 Supersymmetric Field Theory

We begin with the exposition of the supersymmetric field theory formalism [62] applied to
disordered class D systems. To illustrate the method, we examine the generating function,
which is given by the average ratio of spectral determinants24:

Z (λ0, λ1) =E
(

Det (λ1 −H)

Det (λ0 −H)

)
, (134)

where λ0, λ1 are complex numbers, H denotes the Hamiltonian belonging to symmetry class
D, and E represents the disorder average.25 We will provide more details about how to
perform the disorder average later in this section. For now, we first express the above
formula as a supersymmetric functional integral, i.e., an integral over both bosonic and
fermionic variables.

Since a Gaussian integral over complex (bosonic) variables yields an inverse determinant
term, and a Gaussian Berezin integral over complex Grassmann (fermionic) variables results

24The generating function can be used to calculate the trace of the resolvent operator, from which the
density of states can be derived [62].

25For the generating function to be well-defined, we also require that λ0 is not in the spectrum of H.
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in a determinant term, the generating function in equation (134) can be reformulated as an
integral over both complex (bosonic) variables and complex Grassmann (fermionic)
variables. Specifically, this can be written as:

Z (λ0, λ1) = Z (Λ) =E
(

Det (λ1 −H)

Det (λ0 −H)

)
=E

(ˆ
Ψ
exp

{
− i
∑
µ,ν

∑
ic,jc

(−1)µ Ψ̃µ;ic (Λνµδicjc − δνµHicjc)Ψjc;ν

})

=E
(ˆ

Ψ
exp

{
− iSTrC1|1

(
Ψ̃ΨΛ − Ψ̃HΨ

)})
.

(135)

Here, (µ, ν) denotes the space C1|1, which is a Z2−graded sum WB ⊕WF , where WB = C
represents the bosonic space, and WF = C represents the fermionic space.

The variables Ψic;µ=0 = zic are complex bosonic variables, and Ψ̃µ=0;ic = z̄ic denote their
complex conjugates. The variables Ψic;µ=1 = ξic and Ψ̃µ=1;ic = ξ̃ic are independent complex
Grassmann (fermionic) variables. Here, the index ic denotes the composite index ic = (τ, i),
where τ = p, h represents the “particle-hole (p-h)” space C2

BdG, and i refers to the physical
space C2N .

The matrix Λ = diag (λ0, λ1) is a diagonal matrix in the C1|1 space. The matrix δicjc

denotes the Kronecker delta in the space C2
BdG ⊗ C2N , while δνµ represents the Kronecker

delta in the space C1|1.

The integration measure for the integral in the preceding equation (135) is given by:

ˆ
Ψ

:=

ˆ ∏
ic

dz̄icdzic
π

∂2

∂ξ̃ic∂ξic
. (136)

We require the imaginary part of λ0 to be negative, Im(λ0) < 0, to ensure the convergence
of the bosonic integral.

Lastly, the supertrace denoted as STrC1|1 over the C1|1 space is defined by the expression:

STrC1|1(O) =
∑
µ

(−1)µOµµ, (137)

where O represents an arbitrary matrix within this space.

To advance our analysis, we aim to utilize the fact that H is Hermitian and satisfies the
“symmetry” condition outlined in equation (130). We will incorporate this information into
the expression given in equation (135). To achieve this, we apply the idea presented in [62].
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Let us begin by examining the following expression:

STrC1|1⊗C2
flavor

(Ψ̃HΨ) =
∑
µ

∑
f

∑
ic,jc

(−1)µ Ψ̃µ,f ;ic Hicjc Ψjc;µ,f ,

=
∑
ic,jc

∑
µ

∑
f

Hicjc Ψjc;µ,f Ψ̃µ,f ;ic ,

= TrC4N
color

(HΨΨ̃).

(138)

In this equation, we introduce an additional two-dimensional “flavor” space, denoted as
C2

flavor, with f = 1f , 2f indexing this space. We will justify shortly why this space must have
a minimum dimension of two. The first equality defines the supertrace over the C1|1 ⊗C2

flavor

space. In the second equality of equation (138), we utilize the property that the Grassmann
variables (µ = 1) anticommute. Additionally, it is noted that C4N

color = C2
BdG ⊗ C2N .

To avoid confusion, it is essential to clarify that, despite using the same notation for the
fields in equations (135) and (138), we do not initially assume any specific relationships
between these fields. Moreover, the fields Ψ and Ψ̃ in equation (138) are treated as
independent variables, in contrast to equation (135), where Ψ̃µ=0;ic represents the complex
conjugate of Ψic;µ=0. As the analysis progresses, we will elucidate the relationships between
the fields described in equations (135) and (138).

To proceed, we will analyze the two terms below, which pertain to the bosonic and fermionic
spaces separately:

TrC4N
color

(HΨΨ̃) = TrC4N
color

(Hzz̃) + TrC4N
color

(Hξξ̃), (139)

where TrC4N
color

(Hzz̃) is defined as:

TrC4N
color

(Hzz̃) =
∑
ic,jc

∑
f

Hicjc zjc;f z̃f ;ic , (140)

and a similar definition follows for the fermionic term.

Bosonic sector

Examining the term TrC4N
color

(Hzz̃), and considering the “symmetry” of H given by (130), we
aim for X = zz̃ to adhere to the same structure:

X = −Σ1X
TΣ1. (141)

We implement the above structure on X in the following manner.

C4N
color C2

flavor

z̃

z (142)

Here, z̃ : C4N
color → C2

flavor and z : C2
flavor → C4N

color. Then, X = zz̃ ∈ End(C4N
color) obeys (141) if
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we define z to be:

z = Σ1z̃
T (iσ2). (143)

Here, σ2 =

(
0 −i

i 0

)
is the standard Pauli matrix in C2

flavor space. We observe that the

“flavor” space must have a minimum dimension of two for X = z ⊗ z̃ to comply with the
conditions outlined in equation (141).

CHECK. −Σ1X
TΣ1 = −Σ1(zz̃)

TΣ1 = −Σ1z̃
T zTΣ1 = − (Σ1z̃

T iσ2)(−iσ2z
TΣ1) =

−(z)(−z̃) = zz̃ = X.

Another feature of H is that it is Hermitian. Considering the term TrC4N
color

(HX), we require
that X also be Hermitian, i.e., X = X†. This is implemented by z = z̃†σ3.

CHECK. X† = (zz̃)† = z̃†z† = zσ3σ3z̃ = zz̃ = X.

To summarize, for X to be Hermitian and satisfy equation (141), z must fulfill the following
conditions:

z = Σ1z̃
T (iσ2),

z = z̃†σ3.
(144)

Fermionic sector

The discussion presented here closely parallels that of the bosonic sector. Examining the
term TrC4N

color
(Hξξ̃), and considering the “symmetry” of H given by (130), we want Y = ξξ̃ to

obey the same structure:

Y = −Σ1Y
TΣ1. (145)

The above structure on Y is implemented in the following manner.

C4N
color C2

flavor

ξ̃

ξ (146)

Here, ξ̃ : C4N
color → C2

flavor and ξ : C2
flavor → C4N

color. Then, Y = ξξ̃ ∈ End(C4N
color) obeys (145) if

we define ξ to be:

ξ = Σ1ξ̃
Tσ1, (147)

where σ1 =

(
0 1

1 0

)
is the standard Pauli matrix in C2

flavor space.

CHECK.
−Σ1Y

TΣ1 = −Σ1(ξξ̃)
TΣ1 = − Σ1(−ξ̃T ξT )Σ1 = (Σ1ξ̃

Tσ1)(σ1ξ
TΣ1) = ξξ̃ = Y.
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Using the discussion above, we can now incorporate the fact that H belongs to symmetry
class D and satisfies the constraints specified in equation (130) into the expression for the
generating function given in (135). We will first present the resulting expression and then
explain how to verify its equivalence to the expression in equation (135). The reformulated
expression for the generating function is as follows:

Z(Λ) = E
(ˆ

Ψ
exp

{
− i
∑
µ,ν

∑
f,f ′

∑
ic,jc

(−1)µ

2
Ψ̃µ,f ;ic (Λνµ,f ′fδicjc − δνµ,f ′fHicjc)Ψjc;ν,f ′

})
,

(148)

with the following definitions:

z̃1f ;τ,i := z̄τ,i, zτ,i;1f := zτ,i,

ξ̃1f ;τ,i := ξ̃τ,i, ξτ,i;1f := ξτ,i,
(149)

and incorporating the relations provided in equations (144) and (147). The matrix
Λ = diag(λ0,−λ0, λ1,−λ1) in equation (148) represents a diagonal matrix in the
C1|1 ⊗ C2

flavor space, and δνµ,f ′f denotes the Kronecker delta in this same space. The
integration measure in equation (148) remains the same as in equation (136).

Based on the definitions provided in equation (149) and the relations obtained in equations
(144) and (147), we can express the relations between the fields in equations (135) and (138)
as follows:

z̃1f ;τ,i = z̄τ,i, zτ,i;1f = zτ,i,

z̃2f ;τ,i = −z−τ,i, zτ,i;2f = z̄−τ,i,

ξ̃1f ;τ,i = ξ̃τ,i, ξτ,i;1f = ξτ,i,

ξ̃2f ;τ,i = ξ−τ,i, ξτ,i;1f = ξ̃−τ,i,

(150)

where the notation −τ denotes −p ≡ h and −h ≡ p.

Using the relations specified in equation (150), it is straightforward to demonstrate that the
generating functions described in equations (135) and (148) are equivalent. From this point
onward, we will work with the expression in equation (148). Let us now outline the
Hamiltonian governing the system under investigation.

7.2.1 Model: Hamiltonian

The Hamiltonian for the model we aim to study consists of two components:

H = Hdet + Hdis, (151)

where Hdet represents the deterministic component of the model, and Hdis denotes the
disorder component. We will discuss several important points regarding this Hamiltonian.

First, to ensure that the Hamiltonian falls within symmetry class D, it must satisfy the
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conditions specified in equation (130). Additionally, the component Hdet is diagonal in
momentum space, while Hdis is diagonal in position space. We do not specify the exact form
of Hdet here, as we aim to keep it general. In this chapter, we will focus on the overarching
formalism.

For the disorder component, Hdis, we assume the following structure:

Hdis =

(
hdis ∆dis

−∆dis −hTdis

)
, (152)

where:

(hdis)ij(x, y) = (hdis)ijδ(x, y),

(∆dis)ij(x, y) = (∆dis)ijδ(x, y).
(153)

Here, (i, j) refers to indices in the physical space C2N , and δ(x, y) denotes the Dirac-delta
function in D-dimensional space. Additionally, we have:

(hdis)ij = (hdis)ji,

(∆dis)ij = −(∆dis)ji,
(154)

which ensures that Hdis complies with the “symmetry” condition specified in equation (130).

7.2.2 Disorder Averaging

Having described the Hamiltonian for the model, we now turn our attention to the process
of taking the disorder average E. In this context, disorder is modeled such that all matrix
elements of Hdis are assumed to be Gaussian-distributed random variables with zero mean
and the following variance:

E
(
(hdis)ij (hdis)kl

)
= U δil δjk,

E
(
(∆dis)ij (∆dis)kl

)
=

U

2
(δik δjl − δil δjk),

(155)

where U denotes the strength of the disorder.

Next, we perform the disorder average E on equation (148) with respect to the Gaussian
probability distribution defined in equation (155). After carrying out this average, we obtain:

Z(Λ) =

ˆ
Ψ
exp

{
− i
∑
x

∑
µ,ν

∑
f,f ′

∑
ic

(−1)µ

2
Ψ̃µ,f ;ic(x)Ψic;ν,f ′(x) Λνµ,f ′f

}

exp

{
− i
∑
x,y

∑
µ

∑
f

∑
ic,jc

(−1)µ

2
Ψ̃µ,f ;ic(x) (Hdet)icjc(x, y)Ψjc;µ,f (y)

}

exp

{
− U

∑
x

∑
µ,ν

∑
f,f ′

∑
ic,jc

(−1)µ Ψ̃µ,f ;ic(x)Ψic;ν,f ′(x)Ψ̃ν,f ′;jc(x)Ψjc;µ,f (x)

}
.

(156)
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7.2.3 Superbosonization

At this stage, it is essential to reiterate the primary objective of this chapter: to study the
system in the strong disorder regime. As outlined in the introduction (see Section 6.2), we
apply the O(4N)-superbosonization method to investigate the system under these
conditions. Consequently, the next step is to reformulate the generating function in equation
(156) in terms of the field:

(Qµν)ff ′(x) =
1

4N

∑
ic

Ψ̃µ,f ;ic(x)Ψic;ν,f ′(x), (157)

using the superbosonization technique.

Before proceeding with the superbosonization, we will discuss some aspects of the field
Q(x). The field Q(x) is a 4× 4 matrix in the space C1|1 ⊗ C2

flavor, exhibiting the following
block structure:

Q(x) =

[
QBB(x) QBF (x)

QFB(x) QFF (x)

]
, (158)

where each block is a 2× 2 matrix. Below, we will examine the QFF (x) and QBB(x) blocks
in more detail.

Fermion-Fermion (FF ) sector

The components of the FF block of the Q(x) matrix, expressed in terms of “color singlets”,
are as follows:

(QFF )ff ′(x) =
1

4N

∑
ic

ξ̃f ;ic(x)ξic;f ′(x). (159)

This block satisfies the following conditions:

(QFF )
−1† = QFF = −σ1(QFF )

Tσ1. (160)

The first equality reflects the condition of unitarity, while the second equality can be
confirmed by applying relation (147).

CHECK. −σ1(QFF )
Tσ1 = − 1

4N σ1(ξ̃ξ)
Tσ1 = 1

4N (σ1ξ
TΣ1)(Σ1ξ̃

Tσ1) = 1
4N ξ̃ξ = QFF .

A possible representation for QFF is given by QFF = σ3e
iθ, where θ is a real parameter.

Symmetry group of FF sector

Next, we aim to identify the group that leaves the relations in equation (160) invariant
under the adjoint action QFF → gFQFF g

−1
F . The group in question is gF ∈ O(2,R). To

confirm this, we substitute QFF with gFQFF g
−1
F in (160) and derive the conditions that gF
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must satisfy. The resulting conditions are:

g−1
F = g†F ,

gF = σ1g
−1T

F σ1.
(161)

These relations constrain gF to belong to O(2,R).

Boson-Boson (BB) sector

The components of the BB block of the Q(x) matrix, expressed in terms of “color-singlets”,
are as follows:

(QBB)ff ′(x) =
1

4N

∑
ic

z̃f ;ic(x)zic;f ′(x). (162)

This block satisfies the following conditions:

σ3Q
†
BBσ3 = QBB = −σ2Q

T
BBσ2. (163)

The above relations can be verified using equation (144).

CHECK. σ3Q
†
BBσ3 = 1

4N σ3(z̃z)
†σ3 = 1

4N (σ3z
†)(z̃†σ3) = 1

4N z̃z = QBB.

−σ2Q
T
BBσ2 = − 1

4N σ2(z̃z)
Tσ2 = 1

4N (iσ2z
TΣ1)(Σ1z̃

T iσ2) = 1
4N z̃z = QBB.

Using equation (163), we conclude that iQBB is an element of the Lie algebra su(1, 1). A
possible representation of QBB is given by: (

r b

−b −r

)
,QBB =

(164)

where r > 0, and r2 ≥ |b|2. This can be verified by applying the definition of QBB (162)
along with the following properties:

1. The condition ||u|| > 0 for any non-zero vector u implies r > 0.

2. The inequality r2 ≥ |b|2 follows from the Cauchy-Schwarz inequality:
|⟨u, v⟩| ≤ ||u|| ||v|| for any two vectors u, v.

The parameterization of QBB involves three real parameters: r, Re(b), and Im(b) (where
b = Re(b) + iIm(b)).

Symmetry group of BB sector

Next, we will address a question similar to the one explored in the FF sector above.
Specifically, under what conditions does QBB → gBQBBg

−1
B preserve the relations in

equation (163)? The answer is gB ∈ SU(1, 1) ∼= SL(2,R ∼= Sp(2,R). To see this, we
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substitute QBB with gBQBBg
−1
B in equation (163) and obtain the following relations on gB:

gB = σ3g
−1†

F σ3,

gB = σ2g
−1T

F σ2.
(165)

These relations constrain gB to be an element of SU(1, 1). It is important to note that the
symmetry group in the BB sector is a non-compact group.

Having explored the field Q(x), we are now ready to proceed with the superbosonization
step. However, there is a challenge in expressing the generating function in equation (156) in
terms of the field Q(x). Specifically, not all terms in the partition function can be directly
expressed using the Q(x) field, particularly the contribution from Hdet (highlighted in blue
in equation (156)). For these terms, one possible resolution is to employ a trick (which we
also encountered in the first half of the thesis). This trick involves performing a local
O(4N)-transformation as follows:

Ψ̃µ,f ;ic(x) →
∑
i′c

Ψ̃µ,f ;i′c(x)g
−1(x)i′cic ,

Ψjc;µ,f (x) →
∑
j′c

g(x)jcj′cΨj′c;µ,f (x),
(166)

where g(x) ∈ O(4N). We then integrate over all possible local O(4N) transformations.
After applying these transformations, we refer to the contribution from the deterministic
component of the Hamiltonian to the generating function as e−Sc .26 The terms in Sc can be
expressed in terms of the field Q(x).

We are now ready to perform superbosonization. After this procedure, the generating
function, expressed in terms of the field Q(x), is given by:

Z(Λ) =
ˆ ∏

x

DQ(x) SDet
4N−1

2 (Q(x)),

exp

{
− i(2N) S̃TrC1|1⊗C2

flavor
(QΛ)

}
exp

{
− 16N2U S̃TrC1|1⊗C2

flavor
(Q2)

}
exp

{
− Sc[Q]

}
:=

ˆ ∏
x

DQ(x) exp{−Seff[Q(x)]}.

(167)

Here, S̃TrC1|1⊗C2
flavor

also includes a trace over the position space. For example, the expanded
form of the supertrace in one of the terms is given below:

S̃TrC1|1⊗C2
flavor

(Q2) =
∑
x

∑
µ,ν

∑
f,f ′

(−1)µ (Qµν)ff ′(x) (Qνµ)f ′f (x). (168)

26In this chapter, we adopt a general form for Hdet and thus do not conduct explicit calculations.
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The field Q(x) satisfies the following condition:

Q = −γ QsT γ−1 (169)

where γ =

(
iσ2 0

0 σ1

)
.

Note. One might observe that the condition on the field Q in equation (169) differs from the
condition in equation (120) (for Ã = 1 = B̃) presented in the superbosonization formula
from the introduction chapter 6.2. Nevertheless, it is not difficult to understand how one
equation transforms into the other. To see this, start with equation (169) and apply the
following transformation to Q:

Q → Q′ = QΓ3, (170)

where Γ3 =

(
σ3 0

0 −σ3

)
. This transformation does not alter the integration measure.

Consequently, it is straightforward to see that Q′ satisfies equation (120) with Ã = 1 = B̃:

Q′ = γ̃ (Q′)sT γ̃−1. (171)

CHECK. Q′ = QΓ3 = (−γ QsT γ−1)Γ3 = −γ (Q′Γ3)
sTγ−1Γ3 = −(γΓ3)(Q

′)sT (γ−1Γ3) =

−(−γ̃)(Q′)sT (γ̃−1) = γ̃ (Q′)sT γ̃−1.

To summarize our work thus far, we have reformulated the generating function using the
superbosonization method, expressing it in terms of the field Q(x). We are now prepared to
explore the system within the strong disorder regime.

7.3 Understanding the Strong Disorder Limit

Upon examining equation (167), we find that the strong-disorder limit (where U is large)
imposes the following constraint:

STrC1|1⊗C2
flavor

(Q2
0) = TrC2

flavor
(Q2

BB,0) − TrC2
flavor

(Q2
FF,0) + 2TrC2

flavor
(QBF,0QFB,0) ≈ 0,

(172)

where the exact equality holds in the limit as U approaches infinity. The notation Q0

signifies that we are in the strong-disorder limit. From this point forward, we will use Tr to
denote TrC2

flavor
.

Assuming we eliminate the Grassmann variables (specifically, the last term Tr(QBF,0QFB,0)

in expression (172)) by performing the Berezin integral, we obtain:

Tr(Q2
BB,0) − Tr(Q2

FF,0) ≈ 0. (173)

Next, we recall that the superbosonization step for the fermion-fermion sector (see Section
1.2) can be interpreted as replacing the Berezin integral with the evaluation of residues at
the poles of a complex contour integral, according to the residue theorem. We apply this
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concept in conjunction with Cauchy’s idea that the value of the contour integral remains
unchanged when the contour is rescaled, provided that the rescaling occurs in a region
where the function is holomorphic. This approach allows us to further simplify the
constraint in expression (172).

pole at
holomorphic
everywhere else

Rescale

ε

Figure 20: Cauchy’s idea: the value of the contour integral remains unchanged when the
contour is rescaled, provided that the rescaling occurs in a region where the function is holo-
morphic.

We rescale the radius of the contour integral to ε, where ε is infinitesimally small. This
results in:

Tr(Q2
FF,0) ≈ 0. (174)

Combining all the elements, the constraint now takes the form:

Tr(Q2
BB,0) ≈ 0,

=⇒ r2 − |b|2 ≈ 0,
(175)

where we have used the parametrization of QBB specified in equation (164). For the
solution QBB,0, we can parametrize b as b = reiϕ.
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r

Im(b)

Re(b)

r = |b|

Figure 21: The solution space of the bosonic sector is parametrized by three parameters: r,
Im(b), and Re(b), with the constraint r ≥ |b|. The “light-cone”, defined by the surface r = |b|,
is highlighted in green.

By plotting the graph using the three parameters r, Im(b), and Re(b) that parametrize
QBB, and based on equation (175), we observe that in the strong-disorder limit, the primary
contributions to the field integral arise from the region near the “light-cone”. The
“light-cone” is represented by the surface defined by r = |b|, which is highlighted in green in
the figure above.

To further our understanding, let us explore additional insights into the solution space within
the strong-disorder limit.27 First, it is important to note that the matrix QBB,0 is nilpotent,
implying Q2

BB,0 = 0. The symmetry group gB ∈ SU(1, 1), associated with the boson-boson
sector, acts on iQBB,0 through the adjoint action of the Lie group on its Lie algebra:

iQBB,0 → gB (iQBB,0) g
−1
B

= gB (hB iQBB,0 h
−1
B ) g−1

B .
(176)

The adjoint action generates the orbit of iQBB,0, with hB ∈ U(1) representing the isotropy
group of iQBB,0. This orbit can be identified with the homogeneous space

27From this point onward, we will closely follow the analysis presented in [4].
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SU(1, 1)/U(1) ∼= H2 (hyperboloid).

The SU(1, 1)-invariant metric tensor on this homogenoeus space SU(1, 1)/U(1) is
proportional to28:

−Tr(dQBB,0)
2 ∝ r2 (dϕ)2 + 0 · (dr)2. (177)

We note that this metric is degenerate, specifically vanishing along the r direction. It
separates into “stiff” degrees of freedom along ϕ and “stiffness-free” degrees of freedom along
r.

In the strong disorder limit, we observe that the dominant contributions to the field integral
come from the nilpotent orbit on which the invariant metric degenerates. This observation is
promising, as a similar finding in a different class of systems (symmetry class A) served as
the foundation for the novel spontaneous symmetry breaking phenomenon proposed in [4, 5,
6]. However, to ascertain whether this phenomenon can also manifest in class D systems, it
is essential to move beyond the general formalism and apply these concepts to a specific
system, thoroughly examining its phases. In the next chapter, we will specifically focus on
the study of measurement-induced phase transitions in free fermions belonging to class D.

28The numerical constant that precedes the expression for the metric tensor has not been specified.
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8 Application: Measurement-Induced Phase Transitions in Free
Fermions of Class D

8.1 Introduction

Building upon the general framework of supersymmetry applied to class D systems discussed
in the previous chapter, we now turn our attention to the study of a specific model.
Specifically, we focus on a current and active research area concerning measurement-induced
entanglement phase transitions in free fermion systems, which has attracted significant
attention in recent literature. Several significant contributions in this area have been made,
including [63, 64, 65, 66, 67, 68, 69, 70, 71]. The objective of this work is to introduce a
novel perspective to this problem. Before delving into the analysis, we will briefly introduce
the problem of measurement-induced entanglement phase transitions in free fermion
systems, drawing from [70, 64], and subsequently proceed with the analysis.

Measurement-induced phase transitions arise from the interplay between two fundamental
quantum mechanical processes: unitary time evolution and measurement. To illustrate this,
consider a lattice of free fermions evolving according to a quadratic hopping Hamiltonian. In
addition to this unitary evolution, the system is subjected to continuous monitoring through
repeated measurements at short time intervals, denoted by {tk}, at all lattice sites {j}.
These measurements involve local fermion bilinears, and the random measurement
outcomes, denoted by {mk,j}, influence the system’s evolution, defining a quantum
trajectory {tk, j,mk,j}.

The measurement process can be described using the formalism of generalized measurements
[64]. Without delving into the full details of this formalism, we emphasize a key point: each
quantum trajectory is assigned a statistical weight determined by the Born-rule probability
associated with the measurement outcomes. To study the universal properties of the system,
one can consider a statistical ensemble of quantum trajectories and perform an average over
all such trajectories in the ensemble.

Alternatively, as outlined in [70] and as we adopt here, the system can be modeled using a
non-Hermitian “Hamiltonian” that describes non-interacting fermions. This “Hamiltonian”
has two components: a quadratic hopping term responsible for unitary dynamics and a
non-Hermitian term representing the effects of the measurements. The non-Hermitian term
is parameterized by random variables to reflect the stochastic nature of the measurement
outcomes. For simplicity, one can also assume that the quadratic hopping term is random in
space and time, an assumption we adopt in our analysis as well.

Averaging over quantum trajectories, as mentioned earlier, corresponds to averaging over the
random variables in the Hamiltonian using a probability distribution [63, 64]. It is
important to incorporate the Born-rule into this averaging process, as detailed in [70, 64,
69]. Later in this chapter, we will also demonstrate, following [70], how the statistics of the
random variables describing the measurement process in the “Hamiltonian” are influenced by
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the Born rule.

A key quantitative measure for analyzing different phases of a system subjected to
measurements is entanglement entropy. The scaling behavior of entanglement entropy with
system size reveals distinct phases. In free fermion systems, the volume-law phase, where
entanglement entropy scales proportionally with the system’s volume, is typically destroyed
even by very weak measurements [72]. It was argued in [72] that the area-law phase, where
entanglement entropy scales proportionally with the area, always persists in the presence of
measurements. However, several studies [63, 67, 65, 66, 68] suggest that within certain
ranges of measurement rates, entanglement entropy may exhibit power-law or logarithmic
scaling, which is referred to as a “critical phase” in the literature. The observation of this
“critical phase” motivated us to further investigate these systems, applying the methods and
ideas discussed in the previous chapter to gain deeper insights into this phase and explore
the potential for novel spontaneous symmetry breaking phenomena.29

In the literature, the study of measurement-induced phase transitions often relies on the
replica trick, a method also employed in [70], which we follow closely to set up the model
describing the system. In this work, however, we propose replacing the replica trick30 with
supersymmetry techniques to analyze the system.

Before beginning the analysis, it is important to recognize that free fermion systems can be
classified according to the symmetry properties of their Hamiltonians, as outlined in the
Altland-Zirnbauer classification of non-interacting fermions [3]. In the context of
measurement-induced phase transitions, the literature has explored at least two distinct
categories: symmetry class A and symmetry class D. Here, we specifically focus on systems
within symmetry class D.

We will now proceed with the analysis by first describing the model that will be the central
focus of our investigation.

8.2 Model: Hamiltonian

Consider a one-dimensional chain of Majorana fermions undergoing continuous monitoring,
i.e., subject to repeated measurements in the regime where the measurements are both
highly frequent and weak. Following the framework established by [70], we model the
dynamics of this system using the following time-dependent “Hamiltonian”31:

Ĥτh,M (t) =
L∑

j,l=1

2N∑
r,r′=1

(
τh(t)

rr′
jl + iM(t)rr

′
jl

)
iγ̂j,rγ̂l,r′

= Ĥτh(t) + ĤM (t).

(178)

29We are grateful to Prof. Alexander Altland for bringing the topic of measurement-induced phase transi-
tions to our attention and suggesting it as a potential application of the formalism presented in Chapter 7.

30Given the general criticisms of the replica trick (for example, [73]), we adopt an alternative method in
this work.

31In this chapter of the thesis, operators are denoted with a “hat”, unlike the notation used in earlier chapters.
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Here, γ̂j;r represents standard Majorana fermion operators that satisfy the following
anti-commutation relations:

{γ̂j,r, γ̂l,r′} = 2δjlδrr′I, (179)

where I is the identity operator, and γ̂†j,r = γ̂j,r, implying that each Majorana fermion is its
own Hermitian conjugate. The indices j, l denote the site positions, with j, l = 1, . . . , L.
Additionally, the Majorana fermions are indexed by r, which ranges from 1 to 2N ,
indicating that we are considering 2N Majorana modes at each lattice site.

Now, let us describe the two terms in the Hamiltonian (178):

1. Hermitian Part Contributing to Unitary Dynamics: The term

Ĥτh(t) =
L∑

j,l=1

2N∑
r,r′=1

τh(t)
rr′
jl iγ̂j,rγ̂l,r′ , (180)

in the “Hamiltonian” (178) represents the Hermitian component, which governs the
unitary evolution of the system. The Hermiticity of this term, combined with the
anti-commutation relations of the Majorana fermions, impose certain “symmetry”
constraints on the coefficients τh(t)

rr′
jl :

τh(t)
rr′
jl = τh(t)

rr′
jl ,

τh(t)
rr′
jl = − τh(t)

r′r
lj .

(181)

Additionally, we assume that the only non-zero elements of τh(t)rr
′

jl arise from
nearest-neighbor interactions on the lattice, meaning they contribute only when
l = j + 1 or l = j − 1, and for any r and r′. By defining J(t)rr

′
j := 2τh(t)

rr′
j,j+1, the

Hamiltonian Ĥτh(t) can be rewritten as ĤJ(t), which takes the following form3233:

ĤJ(t) =
L∑

j=1

2N∑
r,r′=1

J(t)rr
′

j iγ̂j,rγ̂j+1,r′ . (182)

There exists an alternative representation of ĤJ(t) in terms of complex fermions rather
than Majorana fermions. For the purposes of our analysis, we choose to work with
complex fermions. To construct complex fermions from Majorana fermions, we use a
well-established procedure. Specifically, for each lattice site j, where there are 2N

Majorana fermions, we divide these 2N Majorana fermions into two sets as follows:

η̂j,r := γ̂j,r, r = 1, ...., N,

ˆ̃ηj,r := γ̂j,r+N , r = 1, ...., N.
(183)

32Here, we omit explicit details of the boundary conditions. For simplicity, we assume periodic boundary
conditions.

33This is the form in which it is presented in [70].
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{γ̂j,r}2Nr=1
γ̂j,Nγ̂j,2γ̂j,1 ..............................

≡

γ̂j,2Nγ̂j,N+2γ̂j,N+1 ..............................

η̂j,Nη̂j,2η̂j,1 ..............................

ˆ̃ηj,Nˆ̃ηj,2ˆ̃ηj,1 ..............................

Figure 22: Division of 2N Majorana fermions into two sets.

Using the two sets of Majorana fermions defined above, the complex fermion operators
can be constructed as follows:

ĉj,r :=
η̂j,r + iˆ̃ηj,r

2
, r = 1, ...., N,

ĉ†j,r :=
η̂j,r − iˆ̃ηj,r

2
, r = 1, ...., N.

(184)

By applying (179) and (183), it can be confirmed that the complex fermion operators
constructed above obey the standard canonical anti-commutation relations:

{ĉj,r, ĉ†l,r′} = δjlδrr′I,

{ĉj,r, ĉl,r′} =0,

{ĉ†j,r, ĉ
†
l,r′} =0.

(185)

For simplicity, we assume

J(t)r,N+r′

j = 0 = J(t)N+r,r′

j for r, r′ = 1, ..., N. (186)

The Hamiltonian ĤJ(t) in equation (182) can be expressed using the complex fermions
defined in equation (184) as follows:

ĤJ(t) =
1

2

L∑
j=1

N∑
r,r′=1

(
ĉ†j,r ĉj,r

)(AJ(t)
rr′
j,j+1 BJ(t)

rr′
j,j+1

CJ(t)
rr′
j,j+1 AJ(t)

rr′
j,j+1

)(
ĉj+1,r′

ĉ†j+1,r′

)
. (187)

The matrix elements of the matrix J̃(t) =

(
J̃(t)pp J̃(t)ph

J̃(t)hp J̃(t)hh

)
=

(
AJ(t) BJ(t)

CJ(t) AJ(t)

)
are
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given by:

AJ(t)
rr′
j,j+1 =2iJ(t)rr

′
j + 2iJ(t)N+r,N+r′

j ,

BJ(t)
rr′
j,j+1 =2iJ(t)rr

′
j − 2iJ(t)N+r,N+r′

j ,

CJ(t)
rr′
j,j+1 =2iJ(t)rr

′
j − 2iJ(t)N+r,N+r′

j .

(188)

The indices η = {p, h} represent the “particle-hole” space, adhering to the
Bogoliubov-de Gennes notation.

2. Non-Hermitian Part Leading to Nonunitary Dynamics: The “Hamiltonian” in
equation (178) has a non-Hermitian extension given by:

ĤM (t) = −
L∑

j,l=1

2N∑
r,r′=1

M(t)rr
′

jl γ̂j,rγ̂l,r′ , (189)

which models the measurement protocol in the system. We will outline some features
of ĤM (t). First, we assume that M(t)rr

′
jl is real:

M(t)rr
′

jl =M(t)rr
′

jl . (190)

The anticommutation relations of the Majorana fermions impose the following
constraints on M(t)rr

′
jl :34

M(t)rr
′

jl = − M(t)r
′r

lj . (191)

It is clear that ĤM (t) is not Hermitian, i.e. ĤM (t)† ̸= ĤM (t). We assume that the
only non-zero terms in M rr′

jl (t) are the diagonal terms in space, specifically when l = j,
for any r and r′, under the condition that r ̸= r′.35 Under this assumption, the
expression for ĤM (t) becomes:

ĤM (t) = −
L∑

j=1

2N∑
r,r′=1

M(t)rr
′

j γ̂j,rγ̂j,r′ . (192)

In the equation above, and henceforth, we denote M(t)rr
′

jj ≡ M(t)rr
′

j .

There exists an alternative representation of ĤM (t) using complex fermions instead of
Majorana fermions. Based on the definitions given in (184), ĤM (t) can be expressed
as follows:

ĤM (t) =
1

2

L∑
j=1

N∑
r,r′=1

(
ĉ†j,r ĉj,r

)(AM,j(t)
rr′ BM,j(t)

rr′

CM,j(t)
rr′ −AT

M,j(t)
rr′

)(
ĉj,r′

ĉ†j,r′

)
, (193)

where T represents the transpose in the CN space, and the matrix elements of the
34For j = l and r = r′, the term in ĤM (t) is M(t)rrjj · I, using γ̂2

j,r = I. For simplicity, we can assume
M(t)rrjj = 0.

35This choice differs from that in [70], where the non-zero contributions to M(t)rr
′

jl arise from adjacent sites,
specifically for l = j + 1 or l = j − 1.
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matrix M̃j(t) =

(
M̃j(t)pp M̃j(t)ph

M̃j(t)hp M̃j(t)hh

)
=

(
AM,j(t) BM,j(t)

CM,j(t) −AT
M,j(t)

)
are as follows:

AM,j(t)
rr′ = − 2M(t)rr

′
j − 2M(t)N+r,N+r′

j − 2iM(t)N+r,r′

j + 2iM(t)r,N+r′

j ,

BM,j(t)
rr′ = − 2M(t)rr

′
j + 2M(t)N+r,N+r′

j − 2iM(t)N+r,r′

j − 2iM(t)r,N+r′

j ,

CM,j(t)
rr′ = − 2M(t)rr

′
j + 2M(t)N+r,N+r′

j + 2iM(t)N+r,r′

j + 2iM(t)r,N+r′

j .

(194)

It is straightforward to observe that:

BT
M,j(t) = −BM,j(t),

CT
M,j(t) = −CM,j(t).

(195)

This indicates that M̃j(t) belongs to so(2N,C) Lie algebra. Additionally, the block
components of the matrix M̃j(t) satisfy the following conditions:

AM,j(t)
† = −AM,j(t),

BM,j(t)
† = − CM,j(t).

(196)

From equations (195) and (196), it can be concluded that M̃j(t) belongs to so(2N,R)
Lie algebra (class D). As a preview, we would like to highlight that this characteristic
of the matrix M̃j(t) will be significant in our analysis, as will be demonstrated later in
this chapter.

From this point onward, we will refer to Ĥτh,M (t) as ĤJ,M (t). To complete our description
of the system’s modeling, it is important to mention one additional detail. The quantities
J(t)rr

′
j and M(t)rr

′
j are treated as random variables, and we must define probability

distributions for both in order to carry out an average over these variables. Further
information regarding the choice of probability distributions for these random variables will
be provided later in this chapter.

8.3 Supersymmetry-Based Analysis of the Model

Having outlined the model, we will now begin our analysis by exploring how the state
represented by the density matrix ϱ̂J,M (t) evolves along a quantum trajectory determined by
the couplings J = {J(t′)rr′j | t′ ∈ [0, t], j = 1, . . . L, r, r′ = 1, . . . , N} and the measurement
outcomes M = {M(t′)rr

′
j | t′ ∈ [0, t], j = 1, . . . L, r, r′ = 1, . . . , N}, beginning from the initial

state ρ̂(0). The density matrix ϱ̂J,M (t) represents the unnormalized density matrix. To
obtain the physical density matrix ρ̂J,M (t), we need to normalize ϱ̂J,M (t), such that
ρ̂J,M (t) =

ϱ̂J,M (t)
Tr ϱ̂J,M (t) . The expression for ϱ̂J,M (t) is given by:

ϱ̂J,M (t) = K̂J,M (t)ρ̂(0)K̂J,M (t)†, (197)

where K̂J,M (t) is a non-unitary “time-evolution” operator due to the non-Hermitian nature
of the “Hamiltonian” ĤJ,M (t). The expression for K̂J,M (t) is:

K̂J,M (t) = T exp

(
− i

ˆ t

0
dt′ ĤJ,M (t′)

)
, (198)
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where T denotes time-ordering.36

To continue, let us revisit the discussion introduced at the beginning of this chapter. The
main objective of examining monitored free fermion systems is to explore the entanglement
within the system and to characterize the various phases of the system based on its
entanglement properties. With this in mind, we aim to compute the system’s entropy as a
measure of entanglement. Following [70], we use the nth Rényi entropy, denoted by Sn to
quantify the entanglement. For simplicity, we start with n = 2 to illustrate our method. The
expression for second Rényi entropy is given by:

E
[
e−S2(t)

]
= E

[
Tr ρ̂J,M (t)2

]
. (199)

Here, E
[
(.)
]

represents the average of the quantity (.) with respect to the probability
distributions of the couplings J and the measurement outcomes M , treating these variables
as random. The specific probability distributions will be discussed in more detail later in
this chapter. For the moment, it is important to emphasize a key aspect of the averaging
process related to measurement outcomes, as highlighted in [70, 64, 69].

In particular, the normalization factor Tr ϱ̂J,M (t) must be incorporated into the averaging
procedure. This factor is crucial as it represents the probability of observing a given
measurement record M according to Born’s rule. Therefore, the expression for E

[
(.)
]

is
given by:

E
[
(.)
]
= EJ,M

[
(.) Tr ϱ̂J,M (t)

]
, (200)

where EJ,M indicates averaging over the probability distributions for J and M . The
normalization factor Tr ϱ̂J,M (t) ensures that the quantum trajectories are sampled in
accordance with Born’s rule.

Using equation (200) and ρ̂J,M (t) =
ϱ̂J,M (t)

Tr ϱ̂J,M (t) , we can rewrite the expression for second
Rényi entropy as:

E
[
e−S2(t)

]
= EJ,M

[
Tr ϱ̂J,M (t)2

Tr ϱ̂J,M (t)

]
. (201)

Having written the second Rényi entropy in the aforementioned manner, we will proceed to
work with it from here. Up to this point, we have been closely following the discussion in
[70]. However, from here, we diverge significantly from the method used in [70]. Instead of
applying the replica trick as done in [70] to compute the Rényi entropy, we will utilize the
supersymmetry technique. The following discussion is a prelude to the supersymmetry
technique that will be used in our analysis.

36ℏ is set to 1.
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8.3.1 Prelude

To apply the supersymmetry technique, let us first review some key results that will be
useful in our analysis.

Let us consider a quadratic Hamiltonian that describes a system of fermions, expressed
within the framework of second quantization as follows:

ĤF =

N∑
u,v=1

c†uHuvcv, (202)

where c†u and cv represent the fermionic creation and annihilation operators associated with
the single-particle states labeled by u and v, respectively.

Next, we will calculate the trace of e−βĤF over the fermionic Fock space, where β represents
a scalar quantity. It can be verified that the trace is given by:

Tr (e−βĤF )

∣∣∣∣
Fermion

= Det (1 + e−βH). (203)

Comment. To verify the expression in the equation above, one can diagonalize the
Hamiltonian H and express ĤF in this diagonal basis. This simplifies the computation of the
trace of e−βĤF over the fermionic Fock space, allowing us to confirm that it is equal to
Det (1 + e−βH).

Now, let us replace the fermionic creation and annihilation operators in equation (202) with
the bosonic operators, denoted as b† for creation and b for annihilation:

ĤB =
N∑

u,v=1

b†uHuvbv. (204)

We will compute the supertrace (as opposed to the trace—this difference will be clarified
shortly) of e−βĤB over the bosonic Fock space, as demonstrated below:

STr (e−βĤB )

∣∣∣∣
Boson

:= Tr
(
(−1)n̂B e−βĤB

)∣∣∣∣
Boson

, (205)

where n̂B is the total number operator for bosons. It can be shown that the supertrace is
given by:

STr (e−βĤB )

∣∣∣∣
Boson

= Det−1 (1 + e−βH). (206)

Comment. To confirm the result in the equation above, one can follow a similar procedure:
diagonalize the Hamiltonian H and express ĤB in this diagonal basis. This makes it easier
to compute the supertrace of e−βĤB over the bosonic Fock space, and it can be confirmed that
it equals Det−1 (1 + e−βH).

The main takeaway from the above discussion, which serves as a guiding principle for
applying supersymmetry, is that the trace of e−βĤF over the fermionic Fock space can be
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expressed as the supertrace of e−βĤB over the bosonic Fock space, as demonstrated below:

STr(e−βĤB )

∣∣∣∣
Boson

= Det−1(1 + e−βH) =

(
Tr(e−βĤF )

∣∣∣∣
Fermion

)−1

. (207)

Note. We can now elucidate the rationale for selecting the supertrace over the trace on the
bosonic side. When we perform the trace, we arrive at the following expression:

Tr (e−βĤB )

∣∣∣∣
Boson

= Det−1(1−e−βH), (208)

which reveals the presence of the − sign in the final result. To facilitate a comparison with
the calculations conducted on the fermionic side, we compute the supertrace on the bosonic
side.

The preceding discussion focused on Hamiltonians classified under symmetry class A in the
Altland-Zirnbauer classification [3] for non-interacting fermions. However, our interest lies in
quadratic Hamiltonians that are categorized as belonging to class D, expressed in the
following form:

ĤF =
1

2

N∑
u,v=1

(
ĉ†u ĉu

)
Huv

(
ĉv

ĉ†v

)
, (209)

where

H =

(
A B

C −AT

)
(210)

is a 2N × 2N matrix with the properties B = −BT and C = −CT . This structure indicates
that H satisfies the relation H = −Σ1H

TΣ1, where Σ1 = σ1 ⊗ 1N , placing it within the
so(2N,C) Lie algebra. Furthermore, the Hamiltonian ĤF is Hermitian, which enforces the
condition H = H†. Consequently, it follows that iH belongs to so(2N,R) Lie algebra. One
can confirm that the trace of e−βĤF over the fermionic Fock space is given by:

Tr (e−βĤF )

∣∣∣∣
Fermion

= Det
1
2 (1 + e−βH). (211)

Comment. To verify (211), we utilize the fact that iH belongs to so(2N,R) Lie algebra,
allowing it to be transformed into a diagonal form as follows:

H → gHg−1 =

(
λ 0

0 −λ

)
, (212)

where λ = diag (λ1, λ2, ......, λN ) is a N ×N diagonal matrix with λr ∈ R ∀ r, and g

satisfies:
(g−1)† = g = Σ1(g

−1)TΣ1. (213)

By expressing ĤF in this diagonal basis (essentially performing a Bogoliubov transformation
for fermions), we simplify the computation of the trace of e−βĤF over the fermionic Fock
space, confirming that it equals Det

1
2 (1 + e−βH).
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The next step involves substituting fermionic creation and annihilation operators with
bosonic ones, similar to what we did previously. However, this process presents some
challenges for class D systems, unlike the class A systems we examined earlier. Specifically,
we need to address two main issues:

1. The first issue arises because the off-diagonal blocks B and C of the matrix H are
antisymmetric. Since bosonic operators follow canonical commutation relations, in
contrast to the fermionic operators that adhere to canonical anticommutation
relations, the contributions from these off-diagonal blocks become zero. This is
expressed mathematically as:

N∑
u,v=1

b†uBuvb
†
v = 0,

N∑
u,v=1

buCuvbv = 0.

(214)

Therefore, we cannot simply replace the fermionic operators with bosonic ones.

2. The second issue is that class D Hamiltonians are not particle-conserving; they do not
commute with the particle number operator. Thus, to derive results analogous to
those for class A Hamiltonians, we must clarify the interpretation of supertrace in the
bosonic context for this situation.

We begin by addressing the second problem, recalling the oscillator representation for
bosons [74].

Consider an element from the symplectic Lie group in 2N dimensions, represented as

gS = exp

(
A′ B′

C ′ −A′T

)
, where each block in

(
A′ B′

C ′ −A′T

)
is a N ×N matrix, and both B′

and C ′ are symmetric, meaning B′ = B′T and C ′ = C ′T . Now, consider the transformation:

gS → ρ̂B(gS) = exp
[
1

2

N∑
u,v=1

(
b̂†u −b̂u

) (A′
uv B′

uv

C ′
uv (−A′T )uv

) (
b̂v

b̂†v

)]
. (215)

This defines a representation that satisfies the following property:

ρ̂B (gS hS) = ρ̂B (gS) ρ̂B (hS), (216)

where gS and hS are elements of the symplectic Lie group. It can be confirmed that the
trace of ρ̂B(gS) over the bosonic space is given by:

Tr ρ̂B(gS)
∣∣∣∣
Boson

= (±i)N Det−
1
2 (1−gS). (217)

Comment. To verify (217), the concept of the Bogoliubov transformation for bosons can be

employed to diagonalize the matrix

(
A′ B′

C ′ −A′T

)
. This allows for the expression of ρ̂B(gS)

in the diagonal basis. By computing the trace of ρ̂B(gS) over the bosonic Fock space, it can
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be confirmed that the result is equal to (±i)N Det−
1
2 (1−gS).

As observed earlier in the case of class A Hamiltonians, we aim to define a supertrace such
that the − in the expression (217) is replaced with a +. To achieve this, we utilize the
property of the representation ρ̂B outlined in equation (216).

Let us consider

ρ̂B (−1) = exp
[
1

2

N∑
u,v=1

(
b̂†u −b̂u

) (+iπδuv 0

0 −iπδuv

) (
b̂v

b̂†v

)]
, (218)

where δuv denotes the Kronecker delta. It can be verified that

ρ̂B (−1) = (−1)n̂B (±i)N , (219)

with n̂B representing the total number operator for bosons.

By applying the property from (216), we find that:

Tr ρ̂B (−1) ρ̂B (gS)

∣∣∣∣
Boson

= Tr ρ̂B (−gS)

∣∣∣∣
Boson

= (±i)N Det−
1
2 (1 + gS). (220)

Using the above equation and (219), we are now ready to define the supertrace over the
bosonic Fock space as follows:

STr ρ̂B(gS)
∣∣∣∣
Boson

:= Tr (−1)n̂B ρ̂B(gS)

∣∣∣∣
Boson

= Det−
1
2 (1 + gS). (221)

After addressing the understanding of the supertrace, we will now turn our attention to the
first issue outlined earlier: the antisymmetric off-diagonal blocks B and C of the matrix H,
which complicate the substitution of fermionic operators with bosonic ones. To overcome
this challenge, we will proceed as follows.

Consider two copies of the fermionic system, denoted by α = 1f , 2f , both described by the
same Hamiltonian ĤF given in equation (209). The Hamiltonian ˆ̃HF for the combined
system is defined as follows:

ˆ̃HF =
1

2

N∑
u,v=1

∑
α=1f ,2f

(
ĉ†u,α ĉu,α

)
Huv

(
ĉv,α

ĉ†v,α

)
. (222)

This expression can be rewritten in a more compact form:

ˆ̃HF =
1

2

N∑
u,v=1

(
ĉ†u ĉu

) (Auv ⊗ 12 Buv ⊗ 12

Cuv ⊗ 12 −(AT )uv ⊗ 12

) (
ĉv

ĉ†v

)
, (223)
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where 12 represents the 2× 2 identity matrix, and(
ĉ†u ĉu

)
≡
(
ĉ†u,1f ĉ†u,2f ĉu,1f ĉu,2f

)
,

(
ĉv

ĉ†v

)
≡


ĉv,1f
ĉv,2f
ĉ†v,1f
ĉ†v,2f

 .
(224)

It can be verified that

T̃r (e−β ˆ̃HF )

∣∣∣∣
Fermion

=

(
Det

1
2 (1 + e−βH)

)2

= Det (1 + e−βH), (225)

where T̃r denotes the trace over the enlarged space, which arises from considering the two
fermionic copies labeled 1f and 2f .

We are now set to substitute the fermionic creation and annihilation operators with their
bosonic counterparts in equation (223). Besides replacing the operators, an additional
substitution must be made in (223), as illustrated below:(

Auv ⊗ 12 Buv ⊗ 12

Cuv ⊗ 12 −(AT )uv ⊗ 12

)
→

(
Auv ⊗ 12 Buv ⊗ ε

Cuv ⊗ ε−1 −(AT )uv ⊗ 12

)
, (226)

where ε =

(
0 1

−1 0

)
. The expression for the Hamiltonian in the bosonic case is as follows:

ˆ̃HB =
1

2

N∑
u,v=1

(
b̂†
u −b̂u

) ( Auv ⊗ 12 Buv ⊗ ε

Cuv ⊗ ε−1 −(AT )uv ⊗ 12

) (
b̂v

b̂†
v

)
. (227)

where (
b̂†
u −b̂u

)
≡
(
b̂†u,1b b̂†u,2b −b̂u,1b −b̂u,2b

)
,

(
b̂v

b̂†
v

)
≡


b̂v,1b
b̂v,2b
b̂†v,1b
b̂†v,2b

 .
(228)

Here, for the bosonic side, we also consider two copies of bosons denoted by α = 1b, 2b. It is
important to note that the off-diagonal blocks in the matrix from equation (227) are
symmetric:

[(B ⊗ ε)T ]uv,αα′ =(BT )uv(ε
T )αα′ = (−Buv)(−εαα′) = [(B ⊗ ε)]uv,αα′ ,

[(C ⊗ ε−1)T ]uv,αα′ =(CT )uv((ε
−1)T )αα′ = (−Cuv)(−ε−1

αα′) = [(C ⊗ ε−1)]uv,αα′ ,
(229)

which is the outcome we aimed for. Thus, we have resolved the issue of the contributions
from the off-diagonal blocks vanishing in the bosonic scenario. The expression for ˆ̃HB can
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be rewritten as follows:

ˆ̃HB =
1

2

N∑
u,v=1

(
b̂†u,1b −b̂u,2b

) (Auv Buv

Cuv −(AT )uv

) (
b̂v,1b
b̂†v,2b

)

+
1

2

N∑
u,v=1

(
b̂†u,2b b̂u,1b

) (Auv Buv

Cuv −(AT )uv

) (
b̂v,2b
−b̂†v,1b

)
.

(230)

We will utilize this form in our analysis later within this chapter. It’s worth noting that ˆ̃HB

is not Hermitian, but this does not influence the forthcoming result we will present. The
following relation can be verified:

S̃Tr
(
e−β ˆ̃HB

)∣∣∣∣
Boson

= Det−
1
2

[
1 + exp

{
−β

(
A⊗ 12 B ⊗ ε

C ⊗ ε−1 −AT ⊗ 12

)}]
= Det−1 (1+ e−βH),

(231)
where S̃Tr denotes the supertrace over the enlarged space, which arises from considering two
copies of bosons designated by 1b and 2b.

Comment. The first equality in (231) can be confirmed by referring to the result in (221).
To establish the second equality, we can perform a Taylor expansion of

exp
{
− β

(
A⊗ 12 B ⊗ ε

C ⊗ ε−1 −AT ⊗ 12

)}
, and apply the following determinant property:

Det

(
P Q

R S

)
= Det (S)Det (P −QS−1R). (232)

By following these steps, the second equality can be demonstrated.

After all these efforts, we have arrived at the key takeaway from this discussion, which acts
as a guiding principle for using the supersymmetry technique in our analysis of class D
systems:

S̃Tr (e−β ˆ̃HB )

∣∣∣∣
Boson

:= T̃r ((−1)n̂B e−β ˆ̃HB )

∣∣∣∣
Boson

=Det−1 (1 + e−βH)

=

(
T̃r (e−β ˆ̃HF )

∣∣∣∣
Fermion

)−1

.

(233)

In words, the inverse of the trace of e−β ˆ̃HF calculated in the fermionic Fock space is
equivalent to the supertrace of e−β ˆ̃HB evaluated in the bosonic Fock space.

Note. It is crucial to emphasize that caution is required when dealing with expressions
involving bosons, as opposed to fermions. Specifically, one must ensure that the expressions
involving bosons are convergent and well-defined, which may impose additional constraints.
This consideration will be significant in our analysis later on.

We have now reached the conclusion of this prelude. Even if the reader has overlooked the
mathematical details in between, it is important to remember equation (233) from this
discussion. We will use this equation in the next section to express the trace of the density
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matrix over fermions governed by a quadratic Hamiltonian as the supertrace of the density
matrix defined over bosons.

8.3.2 Supersymmetry Approach to the Second Rényi Entropy

We are now prepared to express the second Rényi entropy using the concepts discussed in
the previous section. Before proceeding, however, it is important to recall the measurement
process. Since measurements are taken at very short time intervals, it is more appropriate to
work in a discrete-time formulation.

With this in mind, we can now write the expression for Tr ϱ̂J,M (t) in discrete time. To do so,
we will use the following identity [70, 75]:

Tr (Ô1 Ô2) =
∑
m,n

⟨n| Ô1 |m⟩ ⟨m| Ô2 |n⟩

=
∑
m,n

(⟨n| ⊗ ⟨m|) (Ô1 ⊗ Ô2) (|m⟩ ⊗ |n⟩)

=
∑
m,n

(⟨n| ⊗ ⟨m|) (Ô1 ⊗ Ô2) Ŝ(|n⟩ ⊗ |m⟩)

= T̃r

(
(Ô1 ⊗ Ô2)Ŝ

)
.

(234)

Let us clarify the above equation. First, {|n⟩} represents a complete set of states in Fock
space. The operator Ŝ refers to the swap operator, which acts as follows:

Ŝ(|n⟩ ⊗ |m⟩) := |m⟩ ⊗ |n⟩ . (235)

Essentially, in equation (234), we have rewritten the trace over the original space as a trace
over an enlarged space, formed by taking two copies of the original space. The trace in this
enlarged space is denoted by T̃r.

We are now prepared to express Tr ϱ̂J,M (t) in discrete time. To do this, we discretize time t

into n intervals, denoted as tk, where k ranges fron 1 to n. The time interval between two
successive time slices is given by ∆t = tk − tk−1. The resulting expression is:

Tr ϱ̂J,M (t) = Tr (K̂J,M (t) ρ̂(0) K̂J,M (t)†)

= T̃r

(
(K̂J,M (t) ρ̂(0)⊗ K̂J,M (t)†) Ŝ

)
=T̃r

(
e−i∆tĤJ,M,+(tn) .............. e−i∆tĤJ,M,+(t2) e−i∆tĤJ,M,+(t1) ρ̂(0)+

ei∆tĤJ,M,−(t1)† ei∆tĤJ,M,−(t2)† .............. ei∆tĤJ,M,−(tn)†Ŝ+,−
)
.

(236)

In the second equality, we apply the identity outlined in equation (234). To differentiate
between the two copies of fermions in the enlarged space, we introduce indices c = {+,−}.
Furthermore, we introduce a superscript on the swap operator Ŝ+,− to indicate its action
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within this enlarged space. The Hamiltonian represented in the equation above is given by:

ĤJ,M,c(tk) =
1

2

L∑
j=1

N∑
r,r′=1

(
ĉ†c,j,r ĉc,j,r

) (AJ(tk)
rr′
j,j+1 BJ(tk)

rr′
j,j+1

CJ(tk)
rr′
j,j+1 AJ(tk)

rr′
j,j+1

) (
ĉc,j+1,r′

ĉ†c,j+1,r′

)

+
1

2

L∑
j=1

N∑
r,r′=1

(
ĉ†c,j,r ĉc,j,r

) (AM,j(tk)
rr′ BM,j(tk)

rr′

CM,j(tk)
rr′ −AT

M,j(tk)
rr′

) (
ĉc,j,r′

ĉ†c,j,r′

)
= ĤJ,c(t) + ĤM,c(t),

(237)

where the matrix elements are specified in equations (188) and (194). The terms labeled
with + and − in equation (236) arise from the discretization of the operators K̂J,M (t) and
K̂J,M (t)†, respectively.

For our analysis, we assume that ρ̂(0)+ ∝ 1̂. We can express Tr ϱ̂J,M (t) in a more compact
form as follows:

Tr ϱ̂J,M (t) = T̃r

{( n∏
k=1

e−i∆tĤJ,M,+(tk) ei∆tĤJ,M,−(tk)
†
)
ρ̂(0)+Ŝ

+,−
}

∼ T̃r

{( n∏
k=1

∏
c=+,−

e−i∆tĤM,c(tk)e−ic∆tĤJ,c(tk)

)
ρ̂(0)+Ŝ

+,−
}
.

(238)

Here, we have disregarded terms of order (∆t)2 and higher. Furthermore, we have utilized
the properties ĤM,c(tk)

† = − ĤM,c(tk) and ĤJ,c(tk)
† = ĤJ,c(tk) relevant to our model.

Having rewritten the trace of the density matrix in discrete time, we will now revisit the
expression for the second Rényi entropy. To refresh our memory, the expression is given by:

E
[
e−S2(t)

]
=EJ,M

[
Tr ϱ̂J,M (t)2

Tr ϱ̂J,M (t)

]
=EJ,M

[
Tr ϱ̂J,M (t)2 Tr ϱ̂J,M (t)

(Tr ϱ̂J,M (t))2

]
.

(239)

In the second equality, we have introduced a factor of 1 =
Tr ϱ̂J,M (t)
Tr ϱ̂J,M (t) to exploit the discussion

presented in Section 8.3.1 about creating two copies of fermions. This allows us to
reformulate the trace over the fermionic Fock space in the denominator as a supertrace over
the bosonic Fock space, as demonstrated in equation (233).

We simplify the analysis by initially focusing on the measurement-only model, where J = 0.
We will illustrate how to express the second Rényi entropy using the supersymmetry
technique specifically for this model, highlighting the essential ideas involved. Henceforth,
we will denote ϱ̂J=0,M (t) ≡ ϱ̂M (t).37

Equation (239) contains three terms that need to be represented in discrete time. We will
examine each of these terms one at a time.

37The analysis presented here can be generalized to include the case where J ̸= 0.
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1. The term Tr ϱ̂M(t)2 in the numerator

One can express Tr ϱ̂M (t)2 in the following manner [70, 75]:

Tr ϱ̂M (t)2 = Tr(K̂M (t) ρ̂(0) K̂M (t)† K̂M (t) ρ̂(0) K̂M (t)†)

=
∑

n1,n2,m1,m2

(
⟨n1| K̂M (t)ρ̂(0) |n2⟩ ⟨n2| K̂M (t)† |m1⟩

⟨m1| K̂M (t)ρ̂(0) |m2⟩ ⟨m2| K̂M (t)† |n1⟩
)

=
∑

n1,n2,m1,m2

(
(⟨n1| ⊗ ⟨n2| ⊗ ⟨m1| ⊗ ⟨m2|)

(K̂M (t)ρ̂(0)⊗ K̂M (t)† ⊗ K̂M (t)ρ̂(0)⊗ K̂M (t)†)

(|n2⟩ ⊗ |m1⟩ ⊗ |m2⟩ ⊗ |n1⟩)
)

=
∑

n1,n2,m1,m2

(
(⟨n1| ⊗ ⟨n2| ⊗ ⟨m1| ⊗ ⟨m2|)

(K̂M (t)ρ̂(0)⊗ K̂M (t)† ⊗ K̂M (t)ρ̂(0)⊗ K̂M (t)†)

Ĉ1→4(|n1⟩ ⊗ |n2⟩ ⊗ |m1⟩ ⊗ |m2⟩)
)

=T̃r

(
(K̂M (t)ρ̂(0)⊗ K̂M (t)† ⊗ K̂M (t)ρ̂(0)⊗ K̂M (t)†)Ĉ4→1

)
,

(240)

where T̃r indicates the trace over the enlarged space, and Ĉ1→4 is a permutation
operator defined as follows:

Ĉ1→4(|n1⟩ ⊗ |n2⟩ ⊗ |m1⟩ ⊗ |m2⟩) := |n2⟩ ⊗ |m1⟩ ⊗ |m2⟩ ⊗ |n1⟩ . (241)

Using equations (238) and (240), we can express Tr ϱ̂M (t)2 in discrete time as:

Tr ϱ̂M (t)2 ∼ T̃r

{( n∏
k=1

∏
µ=1f ,2f

∏
c=+,−

e−i∆tĤM,µ,c(tk)

)
ρ̂(0)1f ,+ρ̂(0)2f ,+Ĉ

(1f ,+),(1f ,−),(2f ,+),(2f ,−)
1→4

}
.

(242)

In this expression, we have introduced indices
(µ, c) = {(1f ,+), (1f ,−), (2f ,+), (2f ,−)} to differentiate the four copies of fermions
in the enlarged space. Additionally, a superscript has been added to the permutation
operator Ĉ

(1f ,+),(1f ,−),(2f ,+),(2f ,−)
1→4 to indicate its operation in this enlarged space. The

Hamiltonian ĤM,µ,c(tk) is expressed as follows:

ĤM,µ,c(tk) =
1

2

L∑
j=1

N∑
r,r′=1

(
ĉ†µ,c,j,r ĉµ,c,j,r

) (AM,j(tk)
rr′ BM,j(tk)

rr′

CM,j(tk)
rr′ −AT

M,j(tk)
rr′

) (
ĉµ,c,j,r′

ĉ†µ,c,j,r′

)

=
1

2

L∑
j=1

N∑
r,r′=1

∑
η,η′=p,h

ˆ̃
Ψµ,c;j,η,rM̃j(tk)

rr′
ηη′Ψ̂j,η′,r′;µ,c .

(243)
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The definitions of ˆ̃
Ψµ,c;j,η,r and Ψ̂j,η′,r′;µ,c can be determined by comparing the two

forms of ĤM,µ,c(tk) presented above, and applying the relation:(
M̃j(t)pp M̃j(t)ph

M̃j(t)hp M̃j(t)hh

)
=

(
AM,j(t) BM,j(t)

CM,j(t) −AT
M,j(t)

)
. (244)

2. The term Tr ϱ̂M(t) in the numerator

We have previously expressed Tr ϱ̂M (t) in discrete time in equation (238). Here, we
present it again with a slight modification: we introduce an additional index 3f for the
fermionic operators, as shown below:

Tr ϱ̂M (t) ∼ T̃r

{( n∏
k=1

∏
c=+,−

e
−i∆tĤM,3f ,c(tk)

)
ρ̂(0)3f ,+Ŝ

3f ;+,−
}
. (245)

In this expression, we have added a superscript to the swap operator Ŝ3f ;+,− to
indicate that it operates within this enlarged space.

3. The term (Tr ϱ̂M(t))2 in the denominator

We have reached the point where we will utilize the discussion in Section 8.3.1 to
express (Tr ϱ̂M (t))2 in the denominator as a trace over bosonic Fock space, applying
the result from (233) as demonstrated below3839:

(Tr ϱ̂M (t))−2 ∼ T̃r

{( n∏
k=1

∏
c=+,−

e−i∆tĤM,B,c(tk)

)
ρ̂(0)B,+ (−1)n̂B,− ŜB;+,−

}
. (246)

Here, T̃r represents the trace over the enlarged bosonic Fock space created by taking
two copies, denoted as + and −, while ŜB;+,− denotes the swap operator acting within
this space. Using equation (227), the Hamiltonian ĤM,B,c(tk) in the equation above
can be expressed as follows:

ĤM,B,c(tk) = ĤM,1B ,c(tk) + ĤM,2B ,c(tk), (247)

38It is worth noting that the “Hamiltonian” needs to be quadratic for the result (233) to be applicable, and
that condition is met in this instance.

39To utilize the result, we also assume that the measurement process is independent across different time
slices and lattice sites, and that the averaging EM employs the same probability distribution for these different
time slices and lattice sites, as will be discussed in the following Section 8.3.3.
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where ĤM,1B ,c(tk) and ĤM,2B ,c(tk) are defined as:

ĤM,1B ,c(tk) =
1

2

L∑
j=1

N∑
r,r′=1

(
b̂†1b,c,j,r −b̂2b,c,j,r

) (AM,j(tk)
rr′ BM,j(tk)

rr′

CM,j(tk)
rr′ −AT

M,j(tk)
rr′

) (
b̂1b,c,j,r′

b̂†2b,c,j,r′

)

=
1

2

L∑
j=1

N∑
r,r′=1

∑
η,η′=p,h

ˆ̃
Ψ1B ,c;j,η,rM̃j(tk)

rr′
ηη′Ψ̂j,η′,r′;1B ,c ,

ĤM,2B ,c(tk) =
1

2

L∑
j=1

N∑
r,r′=1

(
b̂†2b,c,j,r b̂1b,c,j,r

) (AM,j(tk)
rr′ BM,j(tk)

rr′

CM,j(tk)
rr′ −AT

M,j(tk)
rr′

) (
b̂2b,c,j,r′

−b̂†1b,c,j,r′

)

=
1

2

L∑
j=1

N∑
r,r′=1

∑
η,η′=p,h

ˆ̃
Ψ2B ,c;j,η,rM̃j(tk)

rr′
ηη′Ψ̂j,η′,r′;2B ,c .

(248)

By combining all three terms, we can now express the second Rényi entropy in a concise
form as follows:

E
[
e−S2(t)

]
= EM

[
T̃r

{( n∏
k=1

e
− i

2
∆t

∑L
j=1

∑N
r,r′=1

∑
η,η′=p,h

∑
κ

ˆ̃
Ψκ;j,η,rM̃j(tk)

rr′
ηη′ Ψ̂j,η′,r′;κ

)
ρ̂(0)F,+ ρ̂(0)B,+ (−1)n̂B,− Ĉ

(1f ,+),(1f ,−),(2f ,+),(2f ,−)
1→4 Ŝ3f ;+,− ŜB;+,−

}]
,

(249)

where the summation over κ encompasses the set
{(1f ,+), (1f ,−), (2f ,+), (2f ,−), (3f ,+), (3f ,−), (1B,+), (1B,−), (2B,+), (2B,−)} and
accounts for the contributions from all three terms mentioned above. Additionally, ρ̂(0)F,+
is a shorthand for ρ̂(0)1f ,+ρ̂(0)2f ,+ρ̂(0)3f ,+, and n̂B = n̂1b + n̂2b . Here T̃r represents the
trace over the enlarged space that combines all the fermionic and bosonic species.

Having expressed the second Rényi entropy using the supersymmetry technique in discrete
time, the next step is to perform the average over the measurements, denoted by EM , which
will be addressed in the following section.

8.3.3 Averaging Over Random Measurement Outcomes

Up until now, we have delayed discussing the procedure for performing EM , which entails
specifying the probability distribution associated with averaging the random measurement
outcomes. A review of the literature reveals that the Gaussian probability distribution is the
most frequently employed choice, primarily due to its mathematical tractability. This choice
is generally acceptable within the context of the replica trick, where the focus is solely on
expressions involving fermionic operators. In contrast, our approach uses supersymmetry
techniques, which require careful consideration of convergence when dealing with expressions
involving bosons. Specifically, in our case, since the measurement process is non-unitary,
utilizing a Gaussian probability distribution is inappropriate, as it can result in divergent
expressions. To clarify this point, we first examine a simpler example before addressing our
main problem.
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Example

Consider the following expression:

Tr e−Eb̂†b̂

∣∣∣∣
Boson

, (250)

where E is a real-valued random variable (E ∈ R). Suppose the probability distribution of
E is Gaussian, which allows E to take both positive and negative values. However, negative
values of E lead to a divergent sum. To demonstrate this, we explicitly compute the trace:

Tr e−Eb̂†b̂

∣∣∣∣
Boson

= 1 + e−E + e−2E + e−3E + . . . . (251)

For the series to converge, the following condition must be satisfied:

e−E < 1. (252)

This inequality holds only when E > 0. Consequently, for E < 0, the series diverges,
indicating that a Gaussian distribution is inappropriate in this context due to its support
over negative values of E.

To avoid this divergence, the probability distribution for E should exclude negative values.
One potential solution is to truncate the negative part of the Gaussian distribution. For
example, a chi-squared distribution [76] with parameter χ could be considered. However,
even this distribution proves inadequate for our specific case.

To explain why, let us first outline the chi-squared distribution. Consider the following
expression:

Tr e−
∑N

u,v=1 b̂†u Huv b̂v

∣∣∣∣
Boson

, (253)

where H is a Hermitian matrix and is treated as a random variable. Following the reasoning
from the previous example, we require H > 0 for the above trace to converge. Thus, we
adopt a chi-squared distribution with the following probability measure:

(const.)Detχ (H) exp
(
− TrH

2σ2

)
dµ(H), (254)

where (const.) denotes the normalization factor, and σ is a scalar. In this probability
measure, H = H† > 0 and the integration measure dµ(H) is defined over GL(N,C)/U(N)

[1]. This can be understood as follows. One way to realise H = H† > 0 is to express it as
H = gg† > 0, where g ∈ GL(N,C). However, this is not the full picture. We can perform
the transformation g → gh, where h ∈ U(N), without altering H, as shown below:

(gh)(gh)† = g(hh†)g† = g(1)g† = gg†. (255)

Thus, the integration domain for H is GL(N,C)/U(N). While this probability measure may
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be appropriate for systems in symmetry class A, it is not suitable for symmetry class D. One
characteristic of Hamiltonians in symmetry class D is that they are traceless, implying the
absence of the exponential decay factor in the probability measure. This factor is crucial for
normalizing the distribution, meaning this probability measure cannot be applied in our
case. Nonetheless, the insights from this discussion will guide us as we construct the
probability measure suited to our problem.

Following the discussion of the two examples above, we now revisit the main problem. The
key assumption here is that the measurement process is uncorrelated between different time
slices and lattice sites. Under this assumption, we will outline the averaging process for the
measurement random variables at a single chosen lattice site and time slice, with the
understanding that the same procedure applies uniformly across all other lattice sites and
time slices. Thus, we proceed by performing the averaging on the following expression:

EM

(
e
−i∆t

∑N
r,r′=1

∑
η,η′=p,h

∑
κ

ˆ̃
Ψκ;j,η,rM̃j(tk)

rr′
ηη′ Ψ̂j,η′,r′;κ

)
. (256)

The matrix iM̃j(tk) belongs to i · so(2N,R). Based on the discussion in the previous
examples, to ensure that the above expression is convergent in the context of bosons, we
must impose certain constraints on the Lie algebra space that the matrix iM̃j(tk) can
explore. Specifically, it must be restricted to the positive convex cone within i · so(2N,R),
meaning that iAM,j(tk) > 0.

Additionally, it is necessary to ensure that the off-diagonal blocks iBM,j(tk) and iCM,j(tk)

remain sufficiently small compared to the diagonal block iAM,j(tk), in order to preserve the
matrix’s position within the positive convex cone in i · so(2N,R).

Let us now formalize these conditions with an explicit mathematical description. Before
proceeding, we introduce a slight change in notation: henceforth, we will omit the time
index tk and the lattice site index j to avoid excessive indexing.

The matrix iM̃ =

(
iAM iBM

−iB†
M −iAT

M

)
is in i · so(2N,R), and can be diagonalized using a

matrix g that satisfies the condition (g−1)† = g = Σ1(g
−1)TΣ1. This transformation can be

expressed as follows:

iM̃ = MH =

(
iAM iBM

−iB†
M −iAT

M

)
= g

(
λ 0

0 −λ

)
g−1 = gDg−1, (257)

where λ = diag. (λ1, . . . , λN ). To ensure that MH resides in the positive convex cone of
i · so(2N,R), and that the expression in (256) is well-defined, the following condition must
be satisfied:

λr > 0, r = 1, . . . , N. (258)

Given the aforementioned constraint, and drawing inspiration from the discussion on the
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chi-squared distribution, we propose the following probability measure for the computation
of the average EM :

(const.)Detχ (MH) exp
(
− 1

2σ2
TrM2

H

)
dµ(MH)

∣∣∣∣
λ>0

. (259)

The key observation here is that instead of using TrMH in the exponential, we are using
TrM2

H . This change is necessary because, as previously noted, TrMH = 0. To ensure the
probability measure has a decaying factor that allows for proper normalization, one obvious
choice is to substitute TrMH with TrM2

H .

The expression for TrM2
H is given by:

TrM2
H =

N∑
r=1

2 (B†
MBM −A2

M )rr. (260)

Another important point to note is that the measure in equation (259) is constrained by the
condition specified in (258). For the measure dµ(MH), we use the fact that the Lie algebra
can be regarded as a vector space, allowing us to use the Lebesgue measure [77, 74, 78] to
define dµ(D):

dµ(D) =
N∏
r=1

dλr. (261)

By using the expression for dµ(D) along with the expression for MH as provided in (257),
the Lebesgue measure [77, 74, 78] with respect to the variables MH reads:

dµ(MH) = dg
N∏
r=1

dλr

∏
r<r′

(λ2
r − λ2

r′)
2, (262)

where dg represents the Haar measure on SO(2N,R). We can now proceed to define the
expression in equation (256) as follows:

EM

(
e
−∆t

∑N
r,r′=1

∑
η,η′=p,h

∑
κ

ˆ̃
Ψκ;η,r(MH)rr

′
ηη′ Ψ̂η′,r′;κ

)
= (const.)

ˆ
SO(2N,R)

dg

ˆ
λ>0

N∏
r=1

dλr

∏
r<r′

(λ2
r − λ2

r′)
2 Detχ (MH) exp

(
− 1

2σ2
TrM2

H

)
e
−∆t

∑N
r,r′=1

∑
η,η′=p,h

∑
κ

ˆ̃
Ψκ;η,r(MH)rr

′
ηη′ Ψ̂η′,r′;κ .

(263)

The argument of the exponential
∑N

r,r′=1

∑
η,η′=p,h

∑
κ
ˆ̃
Ψκ;η,r(MH)rr

′
ηη′Ψ̂η′,r′;κ can be
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reformulated as follows:

N∑
r,r′=1

∑
η,η′=p,h

∑
κ

ˆ̃
Ψκ;η,r(MH)rr

′
ηη′Ψ̂η′,r′;κ =

N∑
r,r′=1

∑
η,η′=p,h

∑
κ

(MH)rr
′

ηη′Ψ̂η′,r′;κ Ψ̂κ;η,r = Tr (MH P )

= Tr ( gDg−1 P ),

(264)

where Ψ̂κ;η,r is defined by taking ˆ̃
Ψκ;η,r and multiplying all the fermionic operators within it

by −1. In the last equality, we have used equation (257). The matrix P has elements
defined by:

Pη′η,r′r =
∑
κ

Ψ̂η′,r′;κ Ψ̂κ;η,r. (265)

It can be shown that P belongs to so(2N,C) Lie algebra.

By substituting the expression (264) into equation (263), and applying the identities
Detχ (MH) = Detχ (gDg−1) = Detχ (D) and TrM2

H = TrD2, we can reformulate equation
(263) as follows:

EM

(
e
−∆t

∑N
r,r′=1

∑
η,η′=p,h

∑
κ

ˆ̃
Ψκ;η,r(MH)rr

′
ηη′ Ψ̂η′,r′;κ

)
= (const.)

ˆ
λ>0

N∏
r=1

dλr

∏
r<r′

(λ2
r − λ2

r′)
2 Detχ (D) exp

(
− 1

2σ2
TrD2

) ˆ
SO(2N,R)

dg e−∆tTr ( gDg−1 P ).

(266)

The integral over g can be evaluated using the Itzykson-Zuber integral40 for SO(2N,R) [80,
81, 78, 79]. This integral is expressed as follows:

ˆ
SO(2N)

dg e−∆tTr ( gDg−1 P ) = (const.)
∑

π̂∈W [SO(2N,R)]

(−1)|π̂| e−∆tTr ( gDg−1 π̂(P ) )

V (D)V (P )
, (267)

where W [SO(2N,R)] represents the Weyl group41. The action of π̂ on P is defined as:
π̂P := πPπ−1, with π ∈ SO(2N,R). The notation |π̂| = 0, 1 denotes the parity of π̂. V (D)

and V (P ) denote the generalized Vandermonde determinants of D and P , respectively.42 For
a diagonal matrix D, the Vandermonde determinant simplifies to V (D) =

∏
r<r′ (λ

2
r − λ2

r′).

The right-hand side of equation (267) can be represented as a function of P , denoted by
f
(
Pη′η,r′r

)
= f

(∑
κ Ψ̂η′,r′;κ Ψ̂κ;η,r

)
. Based on this, we assert two key points:

40An interpretation of the Itzykson-Zuber integral is as follows [79]: the right-hand side of integral (267) may
be regarded as the stationary-phase approximation for the left-hand side, with stationary points represented
by the elements π̂ ∈ W [SO(2N,R)].

41Let G denote a connected compact semisimple Lie group. Let T be a maximal torus in Lie(G). The
normalizer of T is defined as: NG(T ) = {g ∈ G | gtg−1 ∈ T , ∀ t ∈ T }. The centralizer of T is defined as:
ZG(T ) = {g ∈ G | gtg−1 = t, ∀ t ∈ T }. The Weyl group W [G] [82] of G is defined as the quotient of the
normalizer of the Cartan subalgebra by its centralizer: W [G] = NG(T )/ZG(T ).

42It is noteworthy that the Vandermonde determinant is invariant under conjugation by elements of the Lie
group; specifically, V (P ) = V (gPg−1), for g ∈ SO(2N,R).
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1. On general grounds43, one anticipates the existence of a function F of quadratic
invariants

∑
r,η Ψκ;η,r Ψη,r;κ′ such that

f

(∑
κ

Ψη′,r′;κΨκ;η,r

)
= F

(∑
r,η

Ψκ;η,r Ψη,r;κ′

)
. (268)

2. Furthermore, note that in equation (268), the bosonic and fermionic operators have
been replaced with complex bosonic and fermionic variables (i.e.,
Ψ̂κ;η,r Ψ̂η,r;κ′ → Ψκ;η,r Ψη,r;κ′). We assume that in the large N -limit, these operators
can be approximated by complex bosonic and fermionic variables, with corrections of
the order of 1

N , stemming from the (anti-)commutation relations, which are neglected
in the first approximation.

The immediate question arises: what is the precise form of the function F? Although we do
not possess an exact answer, we argue that determining the precise form of F is not crucial.
The ultimate objective is to capture the universal physics of entanglement phase transitions
in class D systems. According to the principle of universality, the result should not depend
heavily on the microscopic details of the model. Therefore, we propose choosing a function
F of the quadratic invariants

∑
r,η Ψκ;η,r Ψη,r;κ′ that provides a sufficiently accurate

description of the problem, without requiring its exact form. However, care must be taken
to ensure that the function is well-defined and free from convergence issues. Under these
conditions, it should be possible to employ the superbosonization technique, as F is a
function of quadratic invariants, and reformulate the theory using the new variables
introduced by this formula.

At this point, we acknowledge that further progress has not been made, and we leave this
for future investigation. What we have accomplished is a suggestion for reformulating the
theory, providing a different starting point for analyzing the system. The way forward would
involve selecting an appropriate form for the function F and using it to explore the phase
diagram of the system in relation to entanglement phase transitions. Below, we summarize
the main results of this chapter.

8.4 Summary

In this chapter, we investigated monitored free fermion systems belonging to symmetry class
D by utilizing the supersymmetry technique. The second Rényi entropy served as the focus
for illustrating our method, which we expressed in terms of bosonic and fermionic operators.
We then focused on the measurement-only model case (J = 0)44, and introduced a new
approach for averaging over the measurement outcomes. By “new”, we refer to employing a

43We draw upon a result from classical invariant theory [28], which is also mentioned in the discussion of
the superbosonization formula in Section 6.2, and assume that the function f is invariant under O(2N,C),
which implies the existence of F .

44To extend this analysis to the case where J ̸= 0, we suggest following the approach outlined in this
chapter. For averaging over the random variables J , we propose using a Gaussian distribution, as it does
not encounter convergence problems. The reason is that this part of the Hamiltonian contributes to unitary
evolution, unlike the measurement part, which affects “non-unitary” evolution and requires more caution. We
specifically examined the measurement-only model to illustrate our ideas, but the core discussion remains
valid when J ̸= 0.
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probability distribution different from the conventional Gaussian one commonly used in the
literature, motivated by the need to avoid divergence issues when working with bosons.

Finally, by utilizing the concepts of universality and scaling, we proposed a reformulation of
the theory, which offers an alternative method for analyzing the system and examining its
phase diagram. We plan to address the further development of this approach in future
research.
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9 Conclusion from the Second Project

This chapter concludes the second project of this thesis, providing a summary of the key
findings and suggesting potential avenues for future research. The focus of this project has
been on strongly disordered systems within symmetry class D, as defined by the
Altland-Zirnbauer classification [3] for non-interacting fermions. This exploration was
inspired by prior work in [4, 5, 6], which proposed a novel spontaneous symmetry breaking
phenomenon in disordered systems of symmetry class A. Our goal was to investigate
whether similar phenomena could also be observed in class D systems.

The primary analytical tool employed in this study was the superbosonization formula,
introduced in [1, 2], which has not been extensively explored in the literature. This approach
was chosen as an alternative to the more conventional Hubbard-Stratonovich transformation,
which is typically applied to weakly disordered systems. Given the strongly disordered
nature of the systems we studied, superbosonization proved more suitable for our analysis.

We began by formulating the supersymmetric field theory for general strongly disordered
class D systems without focusing on a specific model. This allowed us to explore the
solution space in the limit of strong disorder, or more precisely, as the disorder strength
approaches infinity. In this regime, we observed that the dominant contributions to the field
integral arise from the nilpotent orbit, where the invariant metric degenerates. This result
aligns with previous findings in symmetry class A systems, which served as the foundation
for the proposed novel spontaneous symmetry breaking phenomenon in those systems [4, 5,
6]. However, to conclusively observe such symmetry breaking in class D, further
investigation using a specific model is needed to examine the associated phases.

Subsequently, we focused on a particular system to continue investigating the potential for a
novel spontaneous symmetry breaking phenomenon in class D. Specifically, we studied
monitored free fermions within this symmetry class that exhibit measurement-induced
entanglement phase transitions. Our approach differed from traditional methods like the
replica trick by utilizing supersymmetry. Finally, we proposed a reformulation of the theory
through the introduction of new variables based on the original model’s variables, offering a
fresh perspective for analyzing the system. Future work will involve applying this
reformulated theory to study the phase diagram in greater depth, with the goal of offering
new insights into the “critical phase” discussed in the literature.

In summary, this thesis has introduced an alternative approach based on superbosonization
for examining disordered systems within symmetry class D. Although the progress made
toward uncovering a potential novel spontaneous symmetry breaking phenomenon has been
modest, the groundwork has been laid, and we believe this approach holds promise for
further exploration. While much remains to be understood, the methods discussed here offer
a fresh perspective that could prove valuable not only in this context but also in tackling
other challenging problems. For instance, the two-dimensional random bond Ising model,
which has primarily been explored under weak disorder [83, 84], could gain from these new
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perspectives, especially with the growing interest [85] in studying disorder beyond just the
weak regime. We remain hopeful that the ideas presented in this thesis will inspire deeper
investigation and provide a foundation for advancing our understanding of strongly
disordered class D systems.

105





References



REFERENCES

References

[1] P. Littelmann, H.J. Sommers, and M.R. Zirnbauer. “Superbosonization of Invariant
Random Matrix Ensembles.” In: Commun. Math. Phys. 283, 343–395 (2008). url:
https://doi.org/10.1007/s00220-008-0535-0.

[2] J. E. Bunder et al. “Superbosonization Formula and its Application to Random
Matrix Theory”. In: J Stat Phys 129, 809–832 (2007). url:
https://doi.org/10.1007/s10955-007-9405-y.

[3] Alexander Altland and Martin R. Zirnbauer. “Nonstandard symmetry classes in
mesoscopic normal-superconducting hybrid structures”. In: Phys. Rev. B 55 (2 Jan.
1997), pp. 1142–1161. doi: 10.1103/PhysRevB.55.1142. url:
https://link.aps.org/doi/10.1103/PhysRevB.55.1142.

[4] Martin R. Zirnbauer. “The integer quantum Hall plateau transition is a current
algebra after all”. In: Nuclear Physics B 941 (2019), pp. 458–506. issn: 0550-3213. doi:
10.1016/j.nuclphysb.2019.02.017. url:
https://www.sciencedirect.com/science/article/pii/S0550321319300458.

[5] J. Arenz and M. R. Zirnbauer. Wegner model on a tree graph: U(1) symmetry breaking
and a non-standard phase of disordered electronic matter. 2023. arXiv: 2305.00243
[cond-mat.dis-nn]. url: https://arxiv.org/abs/2305.00243.

[6] Martin R. Zirnbauer. Wegner model in high dimension: U(1) symmetry breaking and a
non-standard phase of disordered electronic matter, I. One-replica theory. 2023. arXiv:
2309.17323 [cond-mat.dis-nn]. url: https://arxiv.org/abs/2309.17323.

[7] P. W. Anderson. “More Is Different”. In: Science 177.4047 (1972), pp. 393–396. doi:
10.1126/science.177.4047.393. eprint:
https://www.science.org/doi/pdf/10.1126/science.177.4047.393. url:
https://www.science.org/doi/abs/10.1126/science.177.4047.393.

[8] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. “Theory of Superconductivity”. In:
Phys. Rev. 108 (5 Dec. 1957), pp. 1175–1204. doi: 10.1103/PhysRev.108.1175. url:
https://link.aps.org/doi/10.1103/PhysRev.108.1175.

[9] Eduardo Fradkin. Field Theories of Condensed Matter Physics. 2nd ed. Cambridge
University Press, 2013.

[10] A.O. Gogolin, A.A. Nersesyan, and A.M. Tsvelik. Bosonization and Strongly
Correlated Systems. Cambridge University Press, 2004. isbn: 9780521617192. url:
https://books.google.de/books?id=BZDfFIpCoaAC.

[11] H. Bethe. “Zur Theorie der Metalle.” In: Z. Physik 71, 205–226 (1931). url:
https://doi.org/10.1007/BF01341708.

[12] Murray T. Batchelor. “The Bethe ansatz after 75 years”. In: Physics Today 60.1 (Jan.
2007), pp. 36–40. issn: 0031-9228. doi: 10.1063/1.2709557. eprint:
https://pubs.aip.org/physicstoday/article-

pdf/60/1/36/16652607/36\_1\_online.pdf. url:
https://doi.org/10.1063/1.2709557.

108

https://doi.org/10.1007/s00220-008-0535-0
https://doi.org/10.1007/s10955-007-9405-y
https://doi.org/10.1103/PhysRevB.55.1142
https://link.aps.org/doi/10.1103/PhysRevB.55.1142
https://doi.org/10.1016/j.nuclphysb.2019.02.017
https://www.sciencedirect.com/science/article/pii/S0550321319300458
https://arxiv.org/abs/2305.00243
https://arxiv.org/abs/2305.00243
https://arxiv.org/abs/2305.00243
https://arxiv.org/abs/2309.17323
https://arxiv.org/abs/2309.17323
https://doi.org/10.1126/science.177.4047.393
https://www.science.org/doi/pdf/10.1126/science.177.4047.393
https://www.science.org/doi/abs/10.1126/science.177.4047.393
https://doi.org/10.1103/PhysRev.108.1175
https://link.aps.org/doi/10.1103/PhysRev.108.1175
https://books.google.de/books?id=BZDfFIpCoaAC
https://doi.org/10.1007/BF01341708
https://doi.org/10.1063/1.2709557
https://pubs.aip.org/physicstoday/article-pdf/60/1/36/16652607/36\_1\_online.pdf
https://pubs.aip.org/physicstoday/article-pdf/60/1/36/16652607/36\_1\_online.pdf
https://doi.org/10.1063/1.2709557


REFERENCES

[13] P. Jordan and E. Wigner. “Über das Paulische Äquivalenzverbot”. In: Z. Physik 47
(1928), pp. 631–651. doi: 10.1007/BF01331938.

[14] M. Stone. Bosonization. Bosonization. World Scientific, 1994. isbn: 9789810218478.
url: https://books.google.de/books?id=PFx-tWFiEBcC.

[15] Sin-itiro Tomonaga. “Remarks on Bloch’s Method of Sound Waves applied to
Many-Fermion Problems”. In: Progress of Theoretical Physics 5, 4 (1950), pp. 544–569.
doi: https://doi.org/10.1143/ptp/5.4.544.

[16] JM Luttinger. “An exactly soluable model of a many-fermion system”. In: J Math Phys
4, 9 (1963). doi: https://doi.org/10.1063/1.1704046.

[17] DC Mattis and EH Lieb. “Exact Solution of a Many-Fermion System and Its
Associated Boson Field”. In: J Math Phys 6, 2 (1965), pp. 544–569. doi:
https://doi.org/10.1063/1.1704281.

[18] Sidney Coleman. “Quantum sine-Gordon equation as the massive Thirring model”. In:
Phys. Rev. D 11 (8 Apr. 1975), pp. 2088–2097. doi: 10.1103/PhysRevD.11.2088.
url: https://link.aps.org/doi/10.1103/PhysRevD.11.2088.

[19] S. Mandelstam. “Soliton operators for the quantized sine-Gordon equation”. In: Phys.
Rev. D 11 (10 May 1975), pp. 3026–3030. doi: 10.1103/PhysRevD.11.3026. url:
https://link.aps.org/doi/10.1103/PhysRevD.11.3026.

[20] Daniel C Mattis. “New wave-operator identity applied to the study of persistent
currents in 1D”. In: Journal of Mathematical Physics 15.5 (1974), pp. 609–612.

[21] A. Luther and I. Peschel. “Single-particle states, Kohn anomaly, and pairing
fluctuations in one dimension”. In: Phys. Rev. B 9 (7 Apr. 1974), pp. 2911–2919. doi:
10.1103/PhysRevB.9.2911. url:
https://link.aps.org/doi/10.1103/PhysRevB.9.2911.

[22] F D M Haldane. “‘Luttinger liquid theory’ of one-dimensional quantum fluids. I.
Properties of the Luttinger model and their extension to the general 1D interacting
spinless Fermi gas”. In: J. Phys. C: Solid State Phys. 14, 2585 (1981). doi:
10.1088/0022-3719/14/19/010.

[23] E. Witten. “Non-abelian bosonization in two dimensions”. In: Commun. Math. Phys.
92 (1984), pp. 455–472. doi: 10.1007/BF01215276.

[24] A. Polyakov and P.B. Wiegmann. “Theory of nonabelian goldstone bosons in two
dimensions”. In: Physics Letters B 131.1 (1983), pp. 121–126. issn: 0370-2693. doi:
10.1016/0370-2693(83)91104-8. url:
https://www.sciencedirect.com/science/article/pii/0370269383911048.

[25] V.G. Knizhnik and A.B. Zamolodchikov. “Current algebra and Wess-Zumino model in
two dimensions”. In: Nuclear Physics B 247.1 (1984), pp. 83–103. issn: 0550-3213.
doi: 10.1016/0550-3213(84)90374-2. url:
https://www.sciencedirect.com/science/article/pii/0550321384903742.

109

https://doi.org/10.1007/BF01331938
https://books.google.de/books?id=PFx-tWFiEBcC
https://doi.org/https://doi.org/10.1143/ptp/5.4.544
https://doi.org/https://doi.org/10.1063/1.1704046
https://doi.org/https://doi.org/10.1063/1.1704281
https://doi.org/10.1103/PhysRevD.11.2088
https://link.aps.org/doi/10.1103/PhysRevD.11.2088
https://doi.org/10.1103/PhysRevD.11.3026
https://link.aps.org/doi/10.1103/PhysRevD.11.3026
https://doi.org/10.1103/PhysRevB.9.2911
https://link.aps.org/doi/10.1103/PhysRevB.9.2911
https://doi.org/10.1088/0022-3719/14/19/010
https://doi.org/10.1007/BF01215276
https://doi.org/10.1016/0370-2693(83)91104-8
https://www.sciencedirect.com/science/article/pii/0370269383911048
https://doi.org/10.1016/0550-3213(84)90374-2
https://www.sciencedirect.com/science/article/pii/0550321384903742


REFERENCES

[26] I. Affleck. “Critical Behavior of Two-Dimensional Systems with Continuous
Symmetries”. In: Phys. Rev. Lett. 55, 1355 (1985). doi:
10.1103/PhysRevLett.55.1355. url:
https://link.aps.org/doi/10.1103/PhysRevLett.55.1355.

[27] Yen-Ta Huang and Dung-Hai Lee. “Non-abelian bosonization in two and three spatial
dimensions and applications”. In: Nuclear Physics B 972, 0550-3213 (2021), p. 115565.
doi: https://doi.org/10.1016/j.nuclphysb.2021.115565. url:
https://www.sciencedirect.com/science/article/pii/S0550321321002625.

[28] R. Howe. “Remarks on classical invariant theory”. In: TAMS 313, 539–570 (1989).

[29] Alexander Altland and Ben D. Simons. Condensed Matter Field Theory. 2nd ed.
Cambridge University Press, 2010.

[30] Alex Kamenev. Field Theory of Non-Equilibrium Systems. Cambridge University
Press, 2011.

[31] J. Rammer. Quantum Field Theory of Non-equilibrium States. Cambridge University
Press, 2007.

[32] Yoni BenTov. Schwinger-Keldysh path integral for the quantum harmonic oscillator.
2021. arXiv: 2102.05029 [hep-th]. url: https://arxiv.org/abs/2102.05029.

[33] B. Collins and P. Śniady. “Integration with Respect to the Haar Measure on Unitary,
Orthogonal and Symplectic Group”. In: Commun. Math. Phys. 264 (2006),
pp. 773–795. doi: 10.1007/s00220-006-1554-3.

[34] Subir Sachdev. “The Landscape of the Hubbard Model”. In: String Theory and Its
Applications. WORLD SCIENTIFIC, Nov. 2011, pp. 559–620. doi:
10.1142/9789814350525_0009. url:
http://dx.doi.org/10.1142/9789814350525_0009.

[35] Fabian H. L. Essler et al. The One-Dimensional Hubbard Model. Cambridge University
Press, 2005.

[36] P. Di Francesco, P. Mathieu, and D. Sénéchal. Conformal Field Theory. Graduate
texts in contemporary physics. Island Press, 1996. isbn: 9781461222576. url:
https://books.google.de/books?id=mcMbswEACAAJ.

[37] Paul Ginsparg. Applied Conformal Field Theory. 1988. arXiv: hep-th/9108028
[hep-th]. url: https://arxiv.org/abs/hep-th/9108028.

[38] elements of nonequilibrium statistical mechanics. Ane Books. isbn: 9789380156255.
url: https://books.google.de/books?id=TTxONJRNgFQC.

[39] J. Zinn-Justin and Oxford University Press. From Random Walks to Random
Matrices. Oxford graduate texts. Oxford University Press, 2019. isbn: 9780191829840.
url: https://books.google.de/books?id=v0E7yQEACAAJ.

[40] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Graduate Texts
in Mathematics (113) (Book 113). Springer New York, 1991. isbn: 9780387976556.
url: https://books.google.de/books?id=ATNy_Zg3PSsC.

110

https://doi.org/10.1103/PhysRevLett.55.1355
https://link.aps.org/doi/10.1103/PhysRevLett.55.1355
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2021.115565
https://www.sciencedirect.com/science/article/pii/S0550321321002625
https://arxiv.org/abs/2102.05029
https://arxiv.org/abs/2102.05029
https://doi.org/10.1007/s00220-006-1554-3
https://doi.org/10.1142/9789814350525_0009
http://dx.doi.org/10.1142/9789814350525_0009
https://books.google.de/books?id=mcMbswEACAAJ
https://arxiv.org/abs/hep-th/9108028
https://arxiv.org/abs/hep-th/9108028
https://arxiv.org/abs/hep-th/9108028
https://books.google.de/books?id=TTxONJRNgFQC
https://books.google.de/books?id=v0E7yQEACAAJ
https://books.google.de/books?id=ATNy_Zg3PSsC


REFERENCES

[41] Leo P. Kadanoff. “The application of renormalization group techniques to quarks and
strings”. In: Rev. Mod. Phys. 49 (2 Apr. 1977), pp. 267–296. doi:
10.1103/RevModPhys.49.267. url:
https://link.aps.org/doi/10.1103/RevModPhys.49.267.

[42] M. R. Zirnbauer. “Quantum Field Theory II”. In: Lecture Notes (2020/21). url:
https://www.thp.uni-koeln.de/zirn/011_Website_Martin_Zirnbauer/3_

Teaching/MZ_lecture_notes.html.

[43] F.D.M. Haldane. “Continuum dynamics of the 1-D Heisenberg antiferromagnet:
Identification with the O(3) nonlinear sigma model”. In: Physics Letters A 93.9 (1983),
pp. 464–468. issn: 0375-9601. doi: 10.1016/0375-9601(83)90631-X. url:
https://www.sciencedirect.com/science/article/pii/037596018390631X.

[44] F. D. M. Haldane. “Nonlinear Field Theory of Large-Spin Heisenberg
Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional
Easy-Axis Néel State”. In: Phys. Rev. Lett. 50 (15 Apr. 1983), pp. 1153–1156. doi:
10.1103/PhysRevLett.50.1153. url:
https://link.aps.org/doi/10.1103/PhysRevLett.50.1153.

[45] FDM Haldane. ““Θ physics”and quantum spin chains”. PhD thesis. American Institute
of Physics, 1985.

[46] Ian Affleck. “The quantum Hall effects, σ-models at Θ = π and quantum spin chains”.
In: Nuclear Physics B 257 (1985), pp. 397–406. issn: 0550-3213. doi:
10.1016/0550-3213(85)90353-0. url:
https://www.sciencedirect.com/science/article/pii/0550321385903530.

[47] A Perelomov. “Generalized Coherent States and their Applications". Berlin:
Springer-Verlag, 1986.

[48] Kevin E. Cahill and Roy J. Glauber. “Density operators for fermions”. In: Phys. Rev.
A 59 (2 Feb. 1999), pp. 1538–1555. doi: 10.1103/PhysRevA.59.1538. url:
https://link.aps.org/doi/10.1103/PhysRevA.59.1538.

[49] “Glauber P-representations for fermions”. In: Physica Scripta 98.4 (Mar. 2023),
p. 044006. doi: 10.1088/1402-4896/acc432. url:
https://dx.doi.org/10.1088/1402-4896/acc432.

[50] Patrick A. Lee, Naoto Nagaosa, and Xiao-Gang Wen. “Doping a Mott insulator:
Physics of high-temperature superconductivity”. In: Rev. Mod. Phys. 78 (1 Jan. 2006),
pp. 17–85. doi: 10.1103/RevModPhys.78.17. url:
https://link.aps.org/doi/10.1103/RevModPhys.78.17.

[51] Zheng Zhu, D. N. Sheng, and Ashvin Vishwanath. “Doped Mott insulators in the
triangular-lattice Hubbard model”. In: Phys. Rev. B 105 (20 May 2022), p. 205110.
doi: 10.1103/PhysRevB.105.205110. url:
https://link.aps.org/doi/10.1103/PhysRevB.105.205110.

[52] Ferdinand Evers and Alexander D. Mirlin. “Anderson transitions”. In: Rev. Mod. Phys.
80 (4 Oct. 2008), pp. 1355–1417. doi: 10.1103/RevModPhys.80.1355. url:
https://link.aps.org/doi/10.1103/RevModPhys.80.1355.

111

https://doi.org/10.1103/RevModPhys.49.267
https://link.aps.org/doi/10.1103/RevModPhys.49.267
https://www.thp.uni-koeln.de/zirn/011_Website_Martin_Zirnbauer/3_Teaching/MZ_lecture_notes.html
https://www.thp.uni-koeln.de/zirn/011_Website_Martin_Zirnbauer/3_Teaching/MZ_lecture_notes.html
https://doi.org/10.1016/0375-9601(83)90631-X
https://www.sciencedirect.com/science/article/pii/037596018390631X
https://doi.org/10.1103/PhysRevLett.50.1153
https://link.aps.org/doi/10.1103/PhysRevLett.50.1153
https://doi.org/10.1016/0550-3213(85)90353-0
https://www.sciencedirect.com/science/article/pii/0550321385903530
https://doi.org/10.1103/PhysRevA.59.1538
https://link.aps.org/doi/10.1103/PhysRevA.59.1538
https://doi.org/10.1088/1402-4896/acc432
https://dx.doi.org/10.1088/1402-4896/acc432
https://doi.org/10.1103/RevModPhys.78.17
https://link.aps.org/doi/10.1103/RevModPhys.78.17
https://doi.org/10.1103/PhysRevB.105.205110
https://link.aps.org/doi/10.1103/PhysRevB.105.205110
https://doi.org/10.1103/RevModPhys.80.1355
https://link.aps.org/doi/10.1103/RevModPhys.80.1355


REFERENCES

[53] Ilya Gruzberg. “Supersymmetry method in the study of disordered systems”. In: (Jan.
1998).

[54] P. W. Anderson. “Absence of Diffusion in Certain Random Lattices”. In: Phys. Rev.
109 (5 Mar. 1958), pp. 1492–1505. doi: 10.1103/PhysRev.109.1492. url:
https://link.aps.org/doi/10.1103/PhysRev.109.1492.

[55] E. Abrahams et al. “Scaling Theory of Localization: Absence of Quantum Diffusion in
Two Dimensions”. In: Phys. Rev. Lett. 42 (10 Mar. 1979), pp. 673–676. doi:
10.1103/PhysRevLett.42.673. url:
https://link.aps.org/doi/10.1103/PhysRevLett.42.673.

[56] F. Wegner. “The mobility edge problem: Continuous symmetry and a conjecture”. In:
Z. Physik B 35, 207-210 (1979). doi: 10.1007/BF01319839. url:
https://doi.org/10.1007/BF01319839.

[57] K.B. Efetov. “Supersymmetry and theory of disordered metals”. In: Advances in
Physics 32.1 (1983), pp. 53–127. doi: 10.1080/00018738300101531. eprint:
https://doi.org/10.1080/00018738300101531. url:
https://doi.org/10.1080/00018738300101531.

[58] Alexander D. Mirlin. “Distribution of local density of states in disordered metallic
samples: Logarithmically normal asymptotics”. In: Phys. Rev. B 53 (3 Jan. 1996),
pp. 1186–1192. doi: 10.1103/PhysRevB.53.1186. url:
https://link.aps.org/doi/10.1103/PhysRevB.53.1186.

[59] Nigel Goldenfeld and Roger Haydock. “Phase diagram for Anderson disorder: Beyond
single-parameter scaling”. In: Phys. Rev. B 73 (4 Jan. 2006), p. 045118. doi:
10.1103/PhysRevB.73.045118. url:
https://link.aps.org/doi/10.1103/PhysRevB.73.045118.

[60] Hans-Jürgen Sommers. Superbosonization. 2007. arXiv: 0710.5375
[cond-mat.stat-mech]. url: https://arxiv.org/abs/0710.5375.

[61] A. Mildenberger et al. “Density of quasiparticle states for a two-dimensional
disordered system: Metallic, insulating, and critical behavior in the class-D thermal
quantum Hall effect”. In: Phys. Rev. B 75 (24 June 2007), p. 245321. doi:
10.1103/PhysRevB.75.245321. url:
https://link.aps.org/doi/10.1103/PhysRevB.75.245321.

[62] Martin R. Zirnbauer. “Riemannian symmetric superspaces and their origin in
random-matrix theory”. In: Journal of Mathematical Physics 37.10 (Oct. 1996),
pp. 4986–5018. issn: 0022-2488. doi: 10.1063/1.531675. eprint:
https://pubs.aip.org/aip/jmp/article-

pdf/37/10/4986/19056249/4986\_1\_online.pdf. url:
https://doi.org/10.1063/1.531675.

[63] Chao-Ming Jian et al. “Criticality and entanglement in nonunitary quantum circuits
and tensor networks of noninteracting fermions”. In: Phys. Rev. B 106 (13 Oct. 2022),
p. 134206. doi: 10.1103/PhysRevB.106.134206. url:
https://link.aps.org/doi/10.1103/PhysRevB.106.134206.

112

https://doi.org/10.1103/PhysRev.109.1492
https://link.aps.org/doi/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.42.673
https://link.aps.org/doi/10.1103/PhysRevLett.42.673
https://doi.org/10.1007/BF01319839
https://doi.org/10.1007/BF01319839
https://doi.org/10.1080/00018738300101531
https://doi.org/10.1080/00018738300101531
https://doi.org/10.1080/00018738300101531
https://doi.org/10.1103/PhysRevB.53.1186
https://link.aps.org/doi/10.1103/PhysRevB.53.1186
https://doi.org/10.1103/PhysRevB.73.045118
https://link.aps.org/doi/10.1103/PhysRevB.73.045118
https://arxiv.org/abs/0710.5375
https://arxiv.org/abs/0710.5375
https://arxiv.org/abs/0710.5375
https://doi.org/10.1103/PhysRevB.75.245321
https://link.aps.org/doi/10.1103/PhysRevB.75.245321
https://doi.org/10.1063/1.531675
https://pubs.aip.org/aip/jmp/article-pdf/37/10/4986/19056249/4986\_1\_online.pdf
https://pubs.aip.org/aip/jmp/article-pdf/37/10/4986/19056249/4986\_1\_online.pdf
https://doi.org/10.1063/1.531675
https://doi.org/10.1103/PhysRevB.106.134206
https://link.aps.org/doi/10.1103/PhysRevB.106.134206


REFERENCES

[64] Chao-Ming Jian et al. “Measurement-induced entanglement transitions in quantum
circuits of non-interacting fermions: Born-rule versus forced measurements”. In: arXiv:
2302.09094 [cond-mat.stat-mech] (2023). url: https://arxiv.org/abs/2302.09094.

[65] M. Buchhold et al. “Effective Theory for the Measurement-Induced Phase Transition
of Dirac Fermions”. In: Phys. Rev. X 11 (4 Oct. 2021), p. 041004. doi:
10.1103/PhysRevX.11.041004. url:
https://link.aps.org/doi/10.1103/PhysRevX.11.041004.

[66] O. Alberton, M. Buchhold, and S. Diehl. “Entanglement Transition in a Monitored
Free-Fermion Chain: From Extended Criticality to Area Law”. In: Phys. Rev. Lett. 126
(17 Apr. 2021), p. 170602. doi: 10.1103/PhysRevLett.126.170602. url:
https://link.aps.org/doi/10.1103/PhysRevLett.126.170602.

[67] Adam Nahum and Brian Skinner. “Entanglement and dynamics of
diffusion-annihilation processes with Majorana defects”. In: Phys. Rev. Res. 2 (2 June
2020), p. 023288. doi: 10.1103/PhysRevResearch.2.023288. url:
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023288.

[68] Xhek Turkeshi et al. “Measurement-induced entanglement transitions in the quantum
Ising chain: From infinite to zero clicks”. In: Phys. Rev. B 103 (22 June 2021),
p. 224210. doi: 10.1103/PhysRevB.103.224210. url:
https://link.aps.org/doi/10.1103/PhysRevB.103.224210.

[69] Igor Poboiko et al. “Theory of Free Fermions under Random Projective
Measurements”. In: Phys. Rev. X 13 (4 Dec. 2023), p. 041046. doi:
10.1103/PhysRevX.13.041046. url:
https://link.aps.org/doi/10.1103/PhysRevX.13.041046.

[70] Michele Fava et al. “Nonlinear Sigma Models for Monitored Dynamics of Free
Fermions”. In: Phys. Rev. X 13 (4 Dec. 2023), p. 041045. doi:
10.1103/PhysRevX.13.041045. url:
https://link.aps.org/doi/10.1103/PhysRevX.13.041045.

[71] K. Chahine and M. Buchhold. “Entanglement phases, localization, and multifractality
of monitored free fermions in two dimensions”. In: Phys. Rev. B 110 (5 Aug. 2024),
p. 054313. doi: 10.1103/PhysRevB.110.054313. url:
https://link.aps.org/doi/10.1103/PhysRevB.110.054313.

[72] Xiangyu Cao, Antoine Tilloy, and Andrea De Luca. “Entanglement in a fermion chain
under continuous monitoring”. In: SciPost Phys. 7 (2019), p. 024. doi:
10.21468/SciPostPhys.7.2.024. url:
https://scipost.org/10.21468/SciPostPhys.7.2.024.

[73] Martin R. Zirnbauer. Another critique of the replica trick. 1999. arXiv:
cond-mat/9903338 [cond-mat.mes-hall]. url:
https://arxiv.org/abs/cond-mat/9903338.

[74] W. Fulton and J. Harris. Representation theory, Series “Graduate Texts in
Mathematics”. Vol. 129. Springer, 1991.

113

https://arxiv.org/abs/2302.09094
https://doi.org/10.1103/PhysRevX.11.041004
https://link.aps.org/doi/10.1103/PhysRevX.11.041004
https://doi.org/10.1103/PhysRevLett.126.170602
https://link.aps.org/doi/10.1103/PhysRevLett.126.170602
https://doi.org/10.1103/PhysRevResearch.2.023288
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023288
https://doi.org/10.1103/PhysRevB.103.224210
https://link.aps.org/doi/10.1103/PhysRevB.103.224210
https://doi.org/10.1103/PhysRevX.13.041046
https://link.aps.org/doi/10.1103/PhysRevX.13.041046
https://doi.org/10.1103/PhysRevX.13.041045
https://link.aps.org/doi/10.1103/PhysRevX.13.041045
https://doi.org/10.1103/PhysRevB.110.054313
https://link.aps.org/doi/10.1103/PhysRevB.110.054313
https://doi.org/10.21468/SciPostPhys.7.2.024
https://scipost.org/10.21468/SciPostPhys.7.2.024
https://arxiv.org/abs/cond-mat/9903338
https://arxiv.org/abs/cond-mat/9903338


REFERENCES

[75] C. Sünderhauf, L. Piroli, and XL. et al. Qi. “Quantum chaos in the Brownian SYK
model with large finite N : OTOCs and tripartite information”. In: J. High Energ.
Phys. 38 (2019). url: https://doi.org/10.1007/JHEP11(2019)038.

[76] Morris H. DeGroot and Mark J. Schervish. Probability and Statistics. 4th. Pearson,
2012.

[77] M.L. Mehta. Random Matrices. Academic Pr., 1991.

[78] A. Prats Ferrer, B. Eynard, and P. et al. Di Francesco. “Correlation Functions of
Harish-Chandra Integrals over the Orthogonal and the Symplectic Groups”. In: J Stat
Phys 129, 885–935 (2007). url: https://doi.org/10.1007/s10955-007-9350-9.

[79] Martin R Zirnbauer. “Supersymmetry for systems with unitary disorder: circular
ensembles”. In: Journal of Physics A: Mathematical and General 29.22 (Nov. 1996),
p. 7113. doi: 10.1088/0305-4470/29/22/013. url:
https://dx.doi.org/10.1088/0305-4470/29/22/013.

[80] Harish-Chandra. “Differential Operators on a Semisimple Lie Algebra”. In: American
Journal of Mathematics 79.1 (1957), pp. 87–120. issn: 00029327, 10806377. url:
http://www.jstor.org/stable/2372387 (visited on 09/28/2024).

[81] C. Itzykson and J.-B. Zuber. “The planar approximation. II”. In: Commun. Math.
Phys. 21 411–421 (1980).

[82] Brian C. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary
Introduction, Graduate Texts in Mathematics. Vol. 222. Springer, 2015.

[83] Sora Cho and Matthew P. A. Fisher. “Criticality in the two-dimensional random-bond
Ising model”. In: Phys. Rev. B 55 (2 Jan. 1997), pp. 1025–1031. doi:
10.1103/PhysRevB.55.1025. url:
https://link.aps.org/doi/10.1103/PhysRevB.55.1025.

[84] Ilya A. Gruzberg, N. Read, and Andreas W. W. Ludwig. “Random-bond Ising model
in two dimensions: The Nishimori line and supersymmetry”. In: Phys. Rev. B 63 (10
Feb. 2001), p. 104422. doi: 10.1103/PhysRevB.63.104422. url:
https://link.aps.org/doi/10.1103/PhysRevB.63.104422.

[85] Guo-Yi Zhu et al. “Nishimori’s Cat: Stable Long-Range Entanglement from
Finite-Depth Unitaries and Weak Measurements”. In: Phys. Rev. Lett. 131 (20 Nov.
2023), p. 200201. doi: 10.1103/PhysRevLett.131.200201. url:
https://link.aps.org/doi/10.1103/PhysRevLett.131.200201.

114

https://doi.org/10.1007/JHEP11(2019)038
https://doi.org/10.1007/s10955-007-9350-9
https://doi.org/10.1088/0305-4470/29/22/013
https://dx.doi.org/10.1088/0305-4470/29/22/013
http://www.jstor.org/stable/2372387
https://doi.org/10.1103/PhysRevB.55.1025
https://link.aps.org/doi/10.1103/PhysRevB.55.1025
https://doi.org/10.1103/PhysRevB.63.104422
https://link.aps.org/doi/10.1103/PhysRevB.63.104422
https://doi.org/10.1103/PhysRevLett.131.200201
https://link.aps.org/doi/10.1103/PhysRevLett.131.200201

	blueProject 1: Investigation into Strong Interactions in Fermionic Systems
	Introduction to the First Project
	Motivation
	Bosonization Formula
	Outline of the First Project

	A Bosonization Framework Using Functional Integral Language
	Steps Involved in the Formalism
	Summary

	Application: Functional Integral Bosonization Approach to the Strongly Interacting One-Dimensional Hubbard Model at Half-Filling
	The Hubbard Model
	Attempt I: Reformulation of the Partition Function Using the Q(x, tk) U(4) Field
	Attempt II: Reformulation of the Partition Function Using the Q(x) U(2M) Field
	Attempt III: Reformulation of the Partition Function Using a U(1) field ei(x,tk)
	Motivation
	Implementation of the Reformulation Strategy

	Concluding Remarks

	Applying Renormalization to Properly Define the Continuum Limit in Time
	Kadanoff Block Spin Transformation
	Integrating Renormalization Concepts into the Bosonization Approach

	Conclusion from the First Project
	Appendices
	Linked-cluster expansion 
	Equations of Motion from Haar Measure Invariance 
	Derivation of the Equations of Motion for the Matrix Components of the Field Q(x,tk) in Section 3.2
	Derivation of the Equations of Motion for the Matrix Components of the Field Q(x) in Section 3.3
	Detailed Calculations for Attempt-III from Section 3.4
	blueProject 2: Investigation into Strong Disorder in Fermionic Systems
	Introduction to the Second Project
	Motivation
	Superbosonization Formula
	Outline of the Second Project

	Supersymmetric Field Theory Approach to Strongly Disordered Class D Systems
	Symmetry Class D
	Supersymmetric Field Theory
	Model: Hamiltonian
	Disorder Averaging
	Superbosonization

	Understanding the Strong Disorder Limit

	Application: Measurement-Induced Phase Transitions in Free Fermions of Class D
	Introduction
	Model: Hamiltonian
	Supersymmetry-Based Analysis of the Model
	Prelude
	Supersymmetry Approach to the Second Rényi Entropy
	Averaging Over Random Measurement Outcomes

	Summary

	Conclusion from the Second Project
	References

