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Abstract

The thesis investigates the effect of surface roughness on the atmospheric boundary layer
(ABL) – the lower portion of the atmosphere where humans live. The Earth’s surface is
rough at multiple scales (e.g., ice, mud, plant cover). Surface roughness is a ubiquitous
feature of the ABL, which modifies the mixing and transport properties of the flow and
enhances the drag compared to aerodynamically smooth surfaces. In the ABL, dynamical
processes are governed by atmospheric turbulence, the critical agent in surface–atmosphere
coupling. At the same time, the state of the ABL is primarily influenced by radiative
processes. In the absence of solar irradiation, the surface cools, and the stably stratified
boundary layer (SBL) forms, characterized by reduced turbulence intensity. In large-
scale climate or numerical weather prediction (NWP) models, unresolved processes, such
as turbulence or the effect of surface roughness, are parameterized. In particular, the
very stable regime remains poorly understood and challenges these models with drastic
implications for weather forecasting. Here, process-level insight is gained through direct
numerical simulation (DNS) of turbulent Ekman flow subjected to small-scale surface
roughness (ratio of roughness height to boundary layer depth scale is O(1%)). In DNS,
turbulent motions and three-dimensional roughness elements are explicitly, fully resolved.
Performing DNS at scales relevant to geophysical problems requires a highly optimized

numerical framework. This is prepared as part of the thesis by implementing and validating
an immersed boundary method (IBM) along with a pressure treatment to avoid artificial
oscillations. In Study I, the effect of surface roughness under neutral conditions on the
bulk properties of the flow is investigated. The bottom of the domain is covered with
56 × 56 homogeneously distributed cuboids of varying mean height. The cases range
from the aerodynamically smooth to the verge of the fully rough regime. The total drag
increases with roughness height, along with the friction of velocity and scalar, and is
measured using an integration approach of the budget equations. The enhanced turbulence
intensity results in a deeper logarithmic layer as the friction Reynolds number significantly
increases, and an accurate collapse of data onto the rough wall scaling is observed. Fur-
ther, a pronounced veering of the wind with height from the ground is observed, which
considerably outweighs the typical decrease in veering angle with increasing Reynolds
number under smooth surface conditions. In Study II, a rough case located at the verge
of the fully rough regime is subjected to an incrementally increasing strength of stable
density stratification. Roughness efficiently counteracts buoyancy-induced suppression of
turbulence. It extends the stability regime, where turbulence is in a continuous state, by
inducing flow instabilities and producing detached eddies from sharp edges of roughness
elements. Despite maintaining turbulence at much larger stability, global intermittency
is observed once stratification becomes strong enough. With increasing stability, an over-
veering of the wind appears, with a strong veering already within the roughness. Veering of
the wind in the SBL challenges classical atmospheric surface layer (ASL) theory. However,
it holds within the known limits and agrees with semi-empirical fits from field observations.
The results demonstrate that–based on modern HPC–an extension of the well-established

modelling framework for DNS to rough configurations is possible and allows unveiling
dynamics in the rough surface layer based on first principles.
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1. Introduction

The atmospheric boundary layer (ABL) begins directly at the Earth’s surface and, together
with the free atmosphere, forms the troposphere, the lowest layer of the Earth’s atmosphere
(Stull, 1988). Although a consistent and precise definition of the ABL is lacking, Monin
(1970) defines the ABL in his seminal work as follows:

“In large-scale air currents, the combined action of turbulent friction and Coriolis force
results in the formation, near the surface of a planet, of the atmospheric boundary layer.”

Three characteristic processes govern the boundary layer dynamics: (i) the direct impact
of the Earth’s surface, including friction and exchange processes of mass, heat, moisture
and pollutants with the free atmosphere aloft, (ii) the Earth’s rotation, described by the
Coriolis force, and (iii) the density stratification of the air (Garratt, 1992). The structure of
the ABL is heavily influenced by the diurnal cycle and is, thus, highly variable in time and
space. Usually, the boundary layer depth ranges from hundreds of meters to the kilometer
scale (in the Arctic, ABL depths of O(10m) are observed, Petenko et al., 2019). Most of
our human activities take place within the ABL, such as weather-forming processes and
the direct impact of weather on our societal life (e.g. transportation, aviation, shipping,
agriculture). An accurate representation of the ABL in numerical models is a major
challenge for precise predictions, as is the case in climate models, operational numerical
weather predictions (NWPs) and atmospheric dispersion models of pollutants.
A challenge in earth system models is accurately representing the ABL, particularly

turbulence, which is the main agent of the dynamical system. In recent decades, the
overall forecasting skill significantly increased with the ever-increasing compute power
(cf. skill score on page 4, ECMWF, 2024; Vitart, 2014). Nevertheless, challenges persist
in these general circulation models (GCMs); for example, increasing the total number of
vertical levels in the model from 91 to 137, favored by increased computing power, improves
the overall forecast skill. However, the 10-meter wind and the 2-meter temperature skill
scores degraded, which indicates misrepresenting boundary layer dynamics in the model
(cf. figure 2, Haiden et al., 2021). In particular, the representation of the stably stratified
planetary boundary layer (SBL) during nighttimes, polar nights, and evening/morning
transitions experiences large errors (Sandu et al., 2013; Holtslag et al., 2013; Mahrt,
2014; Steeneveld, 2014). Turbulence closure schemes and parameterizations based on
atmospheric surface layer (ASL) similarity theory that rely on Kolmogorov-type turbulence
(cf. K41 theory, Kolmogorov, 1941) tend to fail due to the increasing anisotropy and local
absence of turbulence with increasing stability in the SBL (Jiménez, 2004; Mauritsen and
Svensson, 2007; Stiperski and Calaf, 2018; Vercauteren et al., 2019). These challenges are
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2 1. Introduction

often tackled in GCMs with highly tuned parameterization coefficients, while a profound
physical concept of the SBL is still lacking.
The direct impact of the surface results in characteristic velocity and temperature

(density) gradients throughout the boundary layer, as the near-surface values must match
those of the surface and, at the upper boundary, those of the free atmosphere. Frictional
forces at the surface decelerate the flow, resulting in wind shear and, thus, a turbulent flow
state caused by the high atmospheric Reynolds number (due to the large vertical extent
of the ABL and the low viscosity of air). In this state, turbulence is mainly generated
mechanically by wind shear in vicinity of the surface, provided that buoyancy is neglected.
Turbulence plays a pivotal role in dynamic processes in the ABL, as it is the primary
agent for the surface–atmosphere coupling and mixing within the ABL. In a turbulent
flow, the transport and mixing properties of heat, momentum, humidity, and pollutants
are enhanced by orders of magnitude compared to a non-turbulent flow, where mixing is
accomplished only by molecular diffusion.
Temperature gradients in the ABL predominantly originate in radiative processes: dur-

ing the day, solar radiation heats the surface, and plumes of warmer air rise, yielding an
overall turbulent mixed layer (ML), whereas in the absence of solar radiation (nighttimes,
long-lasting polar nights), the surface cools and the SBL forms, where buoyant restoring
forces damp turbulent motions. With increasing strength of stratification, turbulence
intensity in the ABL is reduced. A state of reduced continuous turbulence might set in
or turbulence might even locally cease (Mahrt, 1998; Van de Wiel et al., 2012b), with an
associated decoupling of the ABL from the surface. The phenomenon of local cessation of
turbulence in an otherwise turbulent flow is called global intermittency (Mahrt, 1999).
Shear and buoyancy determine if a turbulent state of the ABL sets in, and the surface

structure directly affects the latter. For geophysical flow, the underlying Earth’s surface
is always considered rough, whereby surface roughness has a great variability in length
scale, ranging from the smallest scale as flow over frozen lakes to larger scales as flow over
forests and cities. Roughness is a ubiquitous feature of ABL dynamics, as the transport
of momentum and energy and the turbulent structures in the flow are significantly altered
(Kadivar et al., 2021). Considering surface roughness in idealized ABL studies opens up
the possibility of more realistic approaches compared to canonical flow problems with
smooth walls, but leads to a higher complexity of the considered physical system.
The objective of this dissertation is to examine the wall-bounded rough ABL subjected

to neutral and stable density stratification to gain insights into boundary layer dynam-
ics. Process-level understanding is based on first principles using the paradigm of direct
numerical simulation (DNS), which does not rely on turbulence closure assumptions and
parameterizations.

1.1 The Stable Boundary Layer
During nighttime, longwave radiative cooling of the ground cools the ambient near-surface
air, causing the potential temperature to increase with height. Here, stability is meant
dynamically; and it refers to the fact that colder and dense air near to the ground hampers
velocity perturbations (turbulent motion) to a certain degree by buoyant restoring forces.
In the stable regime, shear mainly produces turbulence, particularly turbulent kinetic
energy (TKE). Depending on the strength of stratification, turbulence is observed to
cease locally or even globally (Mahrt, 1999; Van de Wiel et al., 2012a), whereas a full
laminarization of the flow in the ABL is questionable (Mauritsen and Svensson, 2007).
Commonly, the SBL is classified into three regimes (Mahrt, 1998; Sun et al., 2012): the
weakly stable boundary layer (WSBL), the very stable boundary layer (VSBL) and the
transition in between both, the intermediately stable boundary layer.
The WSBL regime is characterized by reduced but still continuous turbulence and is well

understood using parameterizations such as the omnipresent Monin–Obukhov Similarity
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1.1. The Stable Boundary Layer 3

Theory (MOST) in earth system models (cf. the seminal work of Monin and Obukhov,
1954). The validity of MOST in the WSBL regime is proven based on extensive observa-
tional data from large measurement campaigns (Nieuwstadt, 1984; Högström, 1988, 1996;
Sorbjan and Grachev, 2010; Grachev et al., 2012). Moreover, the WSBL is accurately
represented in numerical models, including the large-eddy simulation (LES) approach and
single-column models (Beare et al., 2006; Svensson et al., 2011; Huang and Bou-Zeid, 2013;
Holtslag, 2014).
Meanwhile, the VSBL, characterized by weak wind and weak turbulence conditions,

remains a significant challenge in numerical models and observations. Observational
studies reveal the inability of MOST to correctly relate turbulent surface fluxes to mean
gradients with universal stability functions. In this regime, turbulence is observed to
drastically change and locally collapse in time and space (global intermittency; cf. Ha et al.
(2007); Van de Wiel et al. (2012a); Vignon et al. (2017)). Conceptual studies of the VSBL
exist (Derbyshire, 1999; Van de Wiel et al., 2002, 2012b), although a general framework
of the SBL still needs to be developed. Covering the VSBL in numerical experiments
is hard to achieve since intermittent and anisotropic turbulence reduces confidence in
the validity of turbulent subgrid closures. Consequently, due to an over-dependence on
closure assumptions, the LES approach fails to simulate intermittent turbulence in the
VSBL. The numerical artefact called runaway cooling is observed in LES and results in
unrealistic cooling at the surface (Jiménez and Cuxart, 2005). The VSBL is, therefore,
assigned to the regime in which classical turbulence closures break down, as the title of
Mahrt’s (1998) study emphasizes.
In contrast, the DNS approach is free of turbulence closure assumptions. DNS was

proven to cover the intermittent state of the VSBL in simplified canonical flow problems
at reduced Reynolds number. The real-world VSBL dynamics were investigated by many
researchers using either a stably stratified Poiseuille flow in the form of an open or closed
turbulent channel flow or a stably stratified Couette flow, i.e. a shear-driven flow between
two plates (Zonta and Soldati, 2018). These setups have in common that the effects of
the Coriolis force and surface roughness are often neglected. Global intermittency in the
VSBL was successfully simulated by Garćıa-Villalba and del Álamo (2011), Flores and
Riley (2011), Brethouwer et al. (2012), Deusebio et al. (2015) and He (2016). Flores
and Riley (2011) define a Reynolds number based on the Obukhov length (a measure of
stability that describes the available scale separation) as a criterion of turbulence collapse
rather than criteria based on Richardson numbers (Garg et al., 2000; Garćıa-Villalba and
del Álamo, 2011). Furthermore, the computational domain size must be large enough for
laminar and turbulent patches to coexist (cf. effect of finite domain size on stable stratified
shear layers, Watanabe and Nagata, 2021). Otherwise, an artificial full laminarization of
the flow is observed (Garćıa-Villalba and del Álamo, 2011). The effect of heterogeneous
surface temperature is investigated in closed channel flow by Bon and Meyers (2022) (more
recently for the WSBL, Bon et al., 2023) and in Couette flow by Mironov and Sullivan
(2023). Both studies observe a higher level of turbulence in the presence of heterogeneous
surface temperature and, thus, a regime shift from the VSBL to the state of continuous
turbulence (WSBL).
One approach to studying the ABL dynamics of higher complexity is turbulent Ekman

flow (Ekman, 1905), the flow over a flat plate subjected to steady system rotation and
driven by a constant pressure gradient, respectively constant geostrophic wind (free-stream
velocity). DNS of turbulent Ekman flow was initially studied by Coleman et al. (1990) for
neutral density stratification. Ekman flow exhibits, in contrast to channel flow, no symme-
try in the spanwise direction due to the rotation of the reference frame. Furthermore, the
rotation results in a height-dependent wind turning and a quasi-stationary boundary layer
height. DNS of stable Ekman flow was studied by Coleman et al. (1992), Ansorge and
Mellado (2014, 2016), Deusebio et al. (2014), Shah and Bou-Zeid (2014), Lee et al. (2020)

3



4 1. Introduction

and Stefanello et al. (2022). Ansorge and Mellado (2014) demonstrated the suitability of
Ekman flow for studying the global intermittency of the VSBL compared to the channel
flow analogue. Moreover, they prove that intermittency is an inherent flow feature and
appears without external triggering mechanisms.
In the present study, DNS of the turbulent stratified Ekman layer as a canonical flow that

resembles the ABL. This relatively concise overview is supplemented by a comprehensive
and detailed introduction in Study II (chapter 5).

1.2 The Aerodynamically Rough Boundary Layer
The ABL is exposed to the rough surface of the Earth, e.g. agricultural areas, snow,
grass, and forests. The influence of surface roughness on the boundary layer is of crucial
importance and affects drag, mixing and transport properties of the flow (Garratt, 1992),
and is reviewed by Raupach et al. (1991), Finnigan (2000) and Jiménez (2004) among
others (Flack and Schultz, 2010; Piomelli, 2019; Kadivar et al., 2021; Chung et al., 2021).
The relevant roughness length scales in the ABL must be considered from two sides.

On the one hand, the vertical extent of the ABL–the boundary layer thickness–is large,
on the order of 102 − 103m, whereas typical surface roughness is relatively small, on the
order of 10−3 − 101m (e.g. from frozen lake to trees). Hence, the ratio of characteristic
roughness length to boundary layer thickness is small, on the order of ≲ 1%. On the other
hand, the impact of roughness in the near-wall region depends on the ratio of roughness
length to viscous length scale (a roughness Reynolds number), which is relatively large in
the ABL, due to the low viscosity of air. The latter ratio defines the different regimes of
rough wall-bounded flows, ranging from the aerodynamically smooth to the transitionally
rough to the fully rough regime, where the ABL is commonly located in. Both length
scale considerations of the rough ABL are contradictory at first sight but result in the
necessity of a large scale separation between the small-scale viscous length and the large-
scale boundary layer thickness, expressed in terms of a large atmospheric Reynolds number.
The requirement for a large scale separation makes DNS of the ABL with surface roughness
challenging.
DNS of turbulent channel flow with wall roughness is a widely studied problem in

engineering while neglecting the Coriolis force. There are studies with roughness in the
form of cubes (Coceal et al., 2006; Leonardi and Castro, 2010), transverse bars (Leonardi
et al., 2003; Nagano et al., 2004; Ashrafian et al., 2004), irregular roughness (Ma et al.,
2021; Jelly et al., 2022), and studies focussing on secondary motions (Hwang and Lee,
2018; Schäfer et al., 2019; Stroh et al., 2020b; Castro et al., 2021). The roughness setup
of the latter ones consist of streamwise aligned ribs to study the occurrence of persistent
secondary flows of Prandtl’s second type (Prandtl, 1952) and the influence of the rib
geometry on the strength of secondary motions. DNS studies of rough turbulent channel
flow subject to stable density stratification are scarce. Urban flows are intentionally not
considered in this dissertation, as they have a high ratio of roughness height to boundary
layer thickness and are understood as flows over obstacles or through canopies rather than
surface roughness.

Lee et al. (2020) performed DNS of the neutral and very stable ABL with periodic
smooth bumps on the lower wall of the simulation domain in the transitionally rough
regime. They noticed a minor influence of wall roughness on the neutrally stratified flow
but a more substantial impact on the very stable ABL. Surface roughness efficiently coun-
teracts the suppression of turbulence, and an increase in the thickness of the near-surface
layer is observed. Moreover, they observed a regime shift from the VSBL to the WSBL
in the presence of surface roughness. To the author’s knowledge, apart from the study by
Lee et al. (2020), there are no other DNS studies on the very stable turbulent Ekman flow
over roughness elements. The lack of systematic studies on the VSBL with heterogeneous
surface conditions motivates the current investigation. This overview is supplemented by

4



1.3. Representation of Roughness in DNS 5

DS DF

ΓS
ΓF

Fig. 1.1 An object with the solid region DS and the boundary ΓS is immersed in a Cartesian
grid with the fluid region DF and the boundary ΓF.

a comprehensive and detailed introduction in Studies I & II (chapters 4,5).

1.3 Representation of Roughness in DNS
A key research topic in computational fluid dynamics (CFD) is the consideration of
complex geometries in the flow, intending to achieve increasingly realistic simulations.
Achieving such realism involves the representation of moving bodies and deforming bound-
aries due to fluid-solid interactions. However, the present dissertation focuses on the
flow interactions of fixed objects with rigid boundaries and simple geometric shapes.
Nevertheless, the transition from fluid flow over smooth walls to rough flow is challenging:
On the one hand, the numerical framework of the used CFD code must be reconsidered to
cope with objects in the flow. On the other hand, surface roughness offers a vast parameter
space for research (e.g. distribution of roughness elements, roughness type and density,
mean height of roughness elements).

Decomposition of the computational domain and boundary definition. The computational
domain D is decomposed into a fluid DF and a solid region DS for methods to represent
objects in the flow. Corresponding interfaces of the fluid region are ΓF and of the solid
region ΓS (Fig. 1.1). The velocity boundary condition of the immersed object is u|ΓS

= uS,
where uS denotes the velocity vector of a moving object. Here, the physical velocity
boundary condition uS = 0 is used for fixed objects and rigid boundaries. It ensures the
impermeability of the walls un|ΓS

= 0, where un is the wall-normal velocity vector and
the no-slip boundary condition ut|ΓS

= 0, where ut the tangential velocity vector at the
interfaces. An indicator function ϵ(xi) is introduced as a descriptive geometry field for the
decomposition of the computational domain into a solid and fluid part and is defined as

ϵ(xi) =

{
1, if xi ∈ DS,

0, if xi ∈ DF, with xi = (x, y, z)T ,
(1.1)

where xi are Cartesian coordinates. Grid points on the interface are included in the solid
domain since the physical boundary conditions hold here.

Two different approaches exist in general to represent solid bodies in the computational
domain. The conventional approach (Ferziger et al., 2020; Roy et al., 2020) consists of
the following steps: First, a surface mesh of the solid boundary ΓS is generated, then a
body-fitted mesh of the fluid domain DF is created, and finally the governing equations are
discretized in the fluid domain DF (Fig. 1.1). It is emphasized that no equations are solved

5



6 1. Introduction

inside the solid body DS since the geometry information and boundary conditions are
directly imposed by the use of a body-conform mesh and thus D = DF. An example is the
DNS study by Lee et al. (2020) of a stably stratified Ekman layer over sinusoidal-shaped
hills. They used a topography-conforming grid to transform the governing equations to
curvilinear coordinates (Gayen and Sarkar, 2011). A major disadvantage of the conven-
tional approach is that it is very time-consuming and expensive to generate the grids.
Besides, the geometry cannot be changed once the body-fitted mesh is generated, and
sophisticated numerical methods are needed. Certain limitations exist regarding possible
roughness types in the case of topography following grids, as sharp edges are barely feasible,
and thus, mainly undulating surfaces are possible.
Another promising method for using DNS as a modelling paradigm is to represent

complex geometries in the flow using grids that do not conform to the solid regions
(Fig. 1.1). The associated methods are called immersed boundary methods (IBMs), where
objects are immersed in the regular grid. These methods are primarily applied to Cartesian
grids since grid generation costs are negligible. The review of Mittal and Iaccarino (2005)
presents a comprehensive overview of the various existing IBMs from the last decades. The
essence of an IBM is to maintain the existing grid and its associated numerical framework
while indirectly introducing the boundary conditions of an immersed object. Usually, the
effect of solid boundaries in the Cartesian grid is simulated by adding a new source or sink
term to the governing flow equations, which ideally preserves computational efficiency and
gives flexibility in positioning the fluid-solid interface concerning the grid nodes. The
interface does not necessarily have to match the positions of the grid nodes. In contrast
to the conventional approach, the IBM solves the equations on the entire computational
domain D = DF + DS, including the solid region. The numerical impact of an IBM and
the correct imposition of boundary conditions are not straightforward (cf. section 2.5).

1.4 Objectives and Research Questions
This dissertation aims to investigate the characteristics of the neutral, weakly and very
stably stratified ABL exposed to heterogeneous surface conditions. As a virtual laboratory
to study the ABL dynamics by first principles, DNS of the rough, turbulent Ekman flow is
chosen. The DNS approach is as accurate as possible in numerically solving the governing
flow equations without a subgrid model for turbulence, apart from the inevitable numerical
errors (Moin and Mahesh, 1998). Moreover, previous DNS studies of the turbulent Ekman
flow with smooth walls have proven the suitability of this setup to capture the VSBL
dynamics with global intermittency.
The fundamental ingredient to DNS is resolving the entire cascade of turbulent motion,

from the largest energy-containing eddies to the smallest scales, where energy dissipates.
Resolving turbulent motions in their entirety requires fine grid resolution, resulting in
a highly demanding computational problem. This effort comes at the price of only low
to moderate Reynolds numbers being affordable. In contrast to the engineering context,
DNS is relatively new in geophysics. With the increasingly powerful high-performance
computing (HPC) facilities of the last years, a state is now reached where geophysically
relevant domain sizes and simulation durations can be attained. Nevertheless, it is nowa-
days impossible to simulate all scales of a real-world ABL.
Typical realistic scales are a boundary layer thickness of δ ∼ 103m, wind velocity of

u ∼ 1m/s and air viscosity of νair ∼ 10−5m2/s (cf. scaling arguments by Mellado et al.
(2018) and Dimotakis (2005)). Following Kolmogorov’s theory (Kolmogorov, 1941), which
states that the largest eddies are of O(1) domain scale, leads to a characteristic Reynolds
number for the largest motion of ReABL = δu/νair = 108. The scale separation between
smallest (determined by the Kolmogorov length scale η = (ν3air/ϵdis)

1/4 = 10−3m, with the
dissipation rate ϵdis = u3/δ) and largest eddies covered by the DNS in this case is given

with η/δ ∼ Re
−3/4
ABL ∼ 10−6. Currently, DNS of stratified Ekman flow with a Reynolds
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1.4. Objectives and Research Questions 7

number of ∼ 104 is possible (Ansorge, 2019), leaving a separation in the Reynolds number
between DNS and real-world ABL of four orders of magnitude. Nevertheless, the concept
of Reynolds number similarity is routinely employed here, which according to Townsend
(1976, p.53–54) states:

“Perhaps the most significant fact about turbulent flows is that, while geometrically similar
flows are expected to be dynamically and structurally similar if their Reynolds numbers are
the same, their structures are also very nearly similar for all Reynolds numbers which are
large enough to allow turbulent flow.”

At sufficiently high Reynolds number, certain flow statistics are observed to become
independent of the Reynolds number and can be extrapolated to the geophysical limit
(cf. section 2.3.2).

The three-dimensional roughness elements on the ground of the computational domain
are fully resolved using an IBM, whereby physical boundary conditions are ensured on all
rigid walls. Furthermore, the length scale ratio of the roughness and the boundary layer
thickness of atmospheric relevance is small, viz. of O(1%). Hence, the term small-scale
surface roughness is used throughout this dissertation. Performing these simulations with
small-scale, fully resolved surface roughness requires large Reynolds numbers in the DNS
context and, thus, a cutting-edge algorithmic framework. As preliminary work, an IBM
compatible with the optimized numerics of the DNS code is implemented and validated to
pave the way for highly computationally demanding simulations.
The following published studies address open questions in land-atmosphere interactions

in the form of turbulent Ekman flow subject to small-scale surface roughness, unveiling
for the first time processes within the roughness sublayer. Study I investigates the effects
of small-scale surface roughness on bulk properties of the flow with neutral stratification.
The following research questions are addressed (cf. introduction of chapter 4):

• What is the impact of a controlled and fully resolved surface roughness on bulk
parameters and mean flow properties?

• Do vertical velocity and temperature profiles in the near-wall region follow the
expected and widely-used scaling approaches in MOST for neutral conditions? More-
over, can we arrive at meaningful estimates for the corresponding scaling parameters
(zero-plane displacement height, roughness length for momentum and scalar) com-
pared to widely accepted values?

• How different is the enhanced mixing of the momentum and the scalar in the presence
of surface roughness?

Study II investigates the competing interplay of small-scale surface roughness, turbulence
and stable stratification. The following research questions are addressed (cf. introduction
of chapter 5):

• Does the presence of roughness affect the transition from the weakly stable regime,
in which turbulence is in a continuous state, to the very stable regime, in which
global intermittency is observed?

• Does large-scale intermittency occur in the very stable regime, and are its effects
comparable to those in aerodynamically smooth flow?

• Are common stability corrections for MOST applicable to our data, and do the
associated parameter values (e.g., von Kármán constant, roughness length, displace-
ment thickness) match expectations based on observational data from atmospheric
measurement campaigns?

7



8 1. Introduction

The structure of the current dissertation is as follows. The following chapter 2 gives an
overview of the fundamentals needed for the understanding of the conducted ABL analyses,
including the governing equations and their assumptions, the theory of wall-bounded flows,
and a description of the numerical framework of the used algorithm. Afterwards, chapter 3
presents the implementation and validation of the numerical methods to introduce surface
roughness in the DNS. In chapters 4, 5, the rough ABL is studied with neutral and stable
density stratification. Both studies are reproduced in the form they were published in the
Journal of Fluid Mechanics and Boundary-Layer Meteorology. Hence, minor repetitions in
the present and following chapters could not be avoided. Finally, a concluding statement
is given in chapter 6.

8



2. Theoretical Foundation and Numerics

This chapter introduces the theoretical framework required for DNS of turbulent Ek-
man flow over a rough surface. First, the governing equations (section 2.1), underlying
assumptions and simplifications (section 2.2), and thereafter the non-dimensionalization
(section 2.3) of the flow problem are presented. Section 2.4 describes the characteris-
tics of wall-bounded turbulent Ekman flow. Section 2.5 concludes this chapter with an
explanation of the numerical framework of the DNS code.

2.1 Governing Equations of Geophysical Fluid Dynamics

The governing equations of fluid motion (section 2.1) and the corresponding derivation of
assumptions and boundary conditions (section 2.2) are based on the textbooks of Tritton
(1977), Cushman-Roisin and Beckers (2011) and Vallis (2017).
The conservation equation of mass in differential form reads as

1

ρ

Dρ

Dt
= −∂uj

∂xj
, with

D (·)
Dt

=
∂ (·)
∂t

+ ui
∂ (·)
∂xi

(2.1a,b)

the total derivative D(·) /Dt, while neglecting mass sources or sinks in the system. The
continuity equation states that the sum of mass flowing into and out of a control volume
equals the mass change within the volume. The spatial coordinates xi = (x, y, z)T are the
streamwise, spanwise and wall-normal directions. The corresponding velocity vector field
is u = (u, v, w)T = (u1, u2, u3)

T and the fluid density ρ. The indices i, j and k run from
one up to three.
Fluid motions are characterized by the chaotic nature of turbulence and described

with sufficient accuracy by the non-linear Navier–Stokes equations (NSE) (Batchelor,
1967) while considering the Coriolis force due to a rotation of the reference frame. The
conservation equations of momentum can be written as

Dρuj
Dt

= − ∂p

∂xj
+

∂

∂xj

[
2ρν

(
eij −

1

3

∂uk
∂xk

δij

)]
− 2ρϵijkΩiuk − ρggravδ3j , (2.2)

where p is the pressure scalar field, ν the kinematic viscosity, ggrav the gravitational
acceleration in the wall-normal direction, Ωi the rotation vector, δij the Kronecker delta
and ϵijk the Levi–Civita symbol. The symmetric rate-of-strain tensor is defined as

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.3)

9



10 2. Theoretical Foundation and Numerics

The conservation equation of energy can be written as

Dρ (cp −R)T

Dt
= −p∂ui

∂xi
+ 2νρ

[
eijeij −

1

3

(
∂ui
∂xi

)2
]
+

∂

∂xi

(
κdρcp

∂T

∂xi

)
, (2.4)

where κd is the thermal diffusivity, T the temperature, cv and cp the specific heat capacities
at constant volume and pressure, and R the specific gas constant. The energy equation is
complemented with the equation of state for an ideal gas

p

ρ
= RT, with R = cp − cv. (2.5a,b)

2.2 General Assumptions Underlying the Simulations of
Turbulent Flow

The conservation equations of mass (2.1), momentum (2.2), energy (2.4) and the equation
of state (2.5a) form a closed coupled set of partial differential equations (PDEs). Gen-
eral assumptions are required and introduced in the following to solve this set of PDEs
numerically.

2.2.1 Continuum Hypothesis
The fundamental assumption of geophysical fluid dynamics is the continuum hypothesis,
according to which the smallest fluid volume under consideration still consists of many
molecules. As a result, the volume dimensions are considerably larger than the mean free
path of the molecules. In this finite volume, field variables are defined (i.e. macroscopic
quantities such as pressure, density, velocity, and temperature), which are continuous
functions in space and time and obtained by averaging the properties of the molecules.
The discontinuous nature of such values on the atomic scale is disregarded; thus, the fluid
is treated as a continuous medium. Moreover, in the present study, the fluid is considered
as a Newtonian fluid with a constant viscosity, which is independent of the strain rate.

2.2.2 Incompressibility
The fluid density ρ (xi, t) = ρ0 (z)+ρ

′ (xi, t) is decomposed into a reference density ρ0 and
a fluctuating part ρ′, assuming that the density changes in the fluid, which are mainly due
to pressure perturbations, are negligible small:

ρ′

ρ0
≪ 1. (2.6)

Consequently, density changes have no impact on the mass balance since ρ ≈ ρ0 and thus
Dρ/Dt = 0. The continuity equation (2.1a) simplifies to the requirement of a solenoidal
velocity field ∂uj/∂xj = 0 (Vallis, 2017). The divergence-free constraint simplifies the
viscous term on the right-hand side (RHS) of the NSE (2.2) (∂uk/∂xk = 0) and the
energy equation (2.4), where the dissipative heating on the RHS is zero (∂ui/∂xi = 0).
Furthermore, the incompressibility assumption implies that the fluid velocity cu is far away
from the speed of sound cs and, therefore, expressed in non-dimensional numbers, a small
Mach number (Ma)2 = (cu/cs)

2 ≪ 1 is required (Batchelor, 1967; Tritton, 1977).

2.2.3 Hydrostatic Equilibrium
In geophysical flows, particularly in the ABL, the pressure field is assumed to be in
hydrostatic equilibrium, i.e., the pressure at a certain height equals the weight of the fluid
column above it (Holton, 2004). Analogously to the density, the pressure is decomposed
into a reference and fluctuating part, with p (xi, t) = p0 (z) + p′ (xi, t). For a statistically
steady background state, the hydrostatic balance is

dp0
dz

= −ρ0ggrav. (2.7)

10



2.2. General Assumptions Underlying the Simulations of Turbulent Flow 11

With the concept of hydrostasy, the pressure and gravitational terms on the RHS of the
vertical component of the NSE (2.2) are

−
[
∂p

∂z
+ ρggrav

]
= −

[
∂ (p0 + p′)

∂z
+
(
ρ0 + ρ′

)
ggrav

]
= −ρ0

[
1

ρ0

∂p′

∂z
+
ρ′

ρ0
ggrav

]
. (2.8)

2.2.4 Potential Temperature

The potential temperature Θ, is the temperature of a fluid parcel when moved adiabatically
to a reference state (pref , T ) and is defined as

Θ = T

(
pref
p

) R
cp

, (2.9)

with the typical value of the standard pressure of pref = 105 Pa. The potential temperature
is thus a conserved quantity for adiabatic processes DΘ/Dt = 0 and directly related to
the entropy s, with (ds = cpd lnΘ) (Vallis, 2017, p.25).

2.2.5 Boussinesq Approximation

The Boussinesq approximation is an extension of the incompressible NSE (2.2) to take
buoyancy effects in the boundary layer due to density changes into account (for a com-
prehensive derivation, the reader is referred to Spiegel and Veronis (1960)). In the flow
system, density perturbations are assumed to be small compared to the reference state,
i.e. ρ′ ≪ ρ0. Density perturbations are solely considered in the gravitational term of
the vertical momentum equation. Otherwise, a constant reference state is assumed with
ρ ≈ ρ0. In the atmosphere, the density changes drastically between the ground and the
troposphere, but this effect is attributed to the hydrostatic equilibrium (2.7). The pressure
and gravitational term of the RHS of the vertical component of the NSE (2.2, 2.8) are

−
[
1

ρ0

∂p′

∂z
+
ρ′

ρ0
ggrav

]
= −∂π

∗

∂z
+

Θ′

Θ0
ggrav = −∂π

∗

∂z
+ b, with b =

Θ′

Θ0
ggrav. (2.10a,b)

Here, π∗ = p′/ρ0 is the modified non-hydrostatic pressure, and b is the buoyancy variable,
while using the relation ρ′/ρ0 ≈ −Θ′/Θ0 from perturbation analysis of the ideal gas law
(cf. chapter 3.3.1, Stull, 1988). In the following, the hydrostatic pressure is also subtracted
from the pressure in the horizontal components of the NSE (2.2) since the reference pressure
p0 is only a function of the wall-normal direction z.

2.2.6 Coriolis Acceleration and f-Plane Approximation

The Earth rotates; therefore, geophysical flow problems are generally analyzed with rotat-
ing reference frames. The sphericity of the Earth is neglected by considering a tangential
plane on the Earth’s surface at a particular latitude ϕ so that the problem is amenable
to Cartesian coordinates. The Coriolis acceleration (RHS of equations 2.2) is of crucial
importance for the dynamics of geophysical flows and is defined as

−2ϵijkΩiuk = −2Ω



w cos (ϕ)− v sin (ϕ)

u sin (ϕ)
−u cos (ϕ)


, with Ω ≡ |Ωi| =

∣∣∣∣∣∣




0
cos (ϕ)
sin (ϕ)



∣∣∣∣∣∣
, (2.11a,b)

where Ωi is the angular velocity vector of the Earth in the tangential plane. The thin layer
approximation states that the horizontal extent of geophysical flow problems is significantly
larger than the vertical. Hence, |u|, |v| > |w| and w cos (ϕ) is neglected in equation (2.11a)
(cf. Kundu et al., 2015). The effect of the Coriolis acceleration is confined to the horizontal
components of the momentum equations (2.2), a limitation that is valid at high latitudes,

11



12 2. Theoretical Foundation and Numerics

and thus the equation (2.11a) reduces to

−2ϵijkΩiuk =




fv
−fu
0


, with f = 2Ω sin (ϕ) , (2.12a,b)

the Coriolis parameter. By choosing f = const. (e.g. at the poles, where f = 2Ω or at
a fixed latitude ϕ0), the f-plane approximation applies. The associated time scale is the
inertial period 2π/f .

2.2.7 Pressure Decomposition and Geostrophic Balance

The total, non-hydrostatic pressure gradient of the system is decomposed into a large-scale
geostrophic and an ageostrophic contribution

∂π∗

∂xk
=
∂πgeo
∂xk

+
∂π

∂xk
, (2.13)

where ∂πgeo/∂xk is an external parameter of the flow problem. Above the ABL, the
pressure gradient term is in equilibrium with the Coriolis acceleration, assuming a large-
scale flow, which is stationary, inviscid (frictionless) and shear-free. The geostrophic
balance in the horizontal direction is defined as

fGj = ϵjk3
∂πgeo
∂xk

, (2.14)

with the geostrophic wind vector G = (G1, G2, 0)
T . In this study, the flow is driven by a

constant geostrophic wind, e.g., a constant geostrophic pressure gradient perpendicular to
the flow. If not stated otherwise, the direction of the geostrophic wind is in the streamwise,
and the pressure gradient is in the spanwise direction.

2.2.8 Simplified Set of Equations and Boundary Conditions

The conservation equations of mass (2.1), momentum (2.2) and energy (2.4) are simpli-
fied, under consideration of the above assumptions, to the divergence-free constraint, the
incompressible NSE under the Boussinesq approximation on an f-plane and the advection-
diffusion equation for buoyancy:

∂uj
∂xj

= 0, (2.15a)

∂uj
∂t

+ ui
∂uj
∂xi

= − ∂π

∂xj
+ ν

∂2uj
∂x2i

+ fϵjk3(uk −Gk) + bδj3, (2.15b)

∂b

∂t
+ uj

∂b

∂xj
= κd

∂2b

∂x2j
, (2.15c)

where π is the ageostrophic and non-hydrostatic modified pressure of the system (2.13)
and b is the buoyancy variable (2.10b). This set of equations is valid for a Newtonian fluid
with constant fluid properties. The fluid motion is driven by the external parameter of the
flow problem, the constant geostrophic wind. The boundary conditions for the velocity
fields are no-slip and impermeability on solid walls, e.g. the lower domain boundary and
roughness elements attached to it, with

ui|z=wall = 0. (2.16)

12



2.3. Non-dimensionalization 13

Free-slip boundary conditions are applied on the upper domain boundary such that

∂u

∂z

∣∣∣∣
z=top

=
∂v

∂z

∣∣∣∣
z=top

= 0. (2.17)

From the divergence-free condition (2.15a), it follows w|z=top = 0. The use of Dirichlet
boundary conditions instead of Neumann boundary conditions (2.17) by matching the
horizontal velocities with the geostrophic wind at the upper domain boundary would
converge to similar results, according to the considerations of Deusebio et al. (2014).
Provided that the vertical extent of the domain is sufficiently large. Dirichlet boundary
conditions are used for the buoyancy fields on the upper and lower domain boundaries,
with a constant difference ∆B = B0 − 0, so:

b|z=wall = 0, b|z=top = B0. (2.18a,b)

2.3 Non-dimensionalization

Dimensional analysis is a powerful tool in fluid dynamics for reducing complexity and
developing similarity theories. The underlying physical principles of the flow systems under
consideration are independent of units. Therefore, describing flow problems with non-
dimensional parameters is mathematically possible, resulting in a reduced set of relevant
variables (Kundu et al., 2015). The concept of hydrodynamic similarity can be applied
with the Buckingham-Π theorem (Buckingham, 1914) when rescaling a real-world flow
problem for numerical or laboratory experiments. In the following, the governing equa-
tions (2.15) are non-dimensionalized and leading dimensionless parameters are identified
(section 2.3.1). The parameter space spanned by the set of non-dimensional numbers of
the flow problem is then investigated (section 2.3.2).

2.3.1 Non-dimensional Parameters

The set of the governing, dimensional flow equations (2.15) is non-dimensionalized with the
following characteristic scales of the flow problem: the geostrophic wind G =

√
G2

1 +G2
2,

the Coriolis parameter f , the Rossby radius ΛRo = G/f , the dynamical reduced pressure
G2 and the buoyancy difference between the upper and lower domain boundary ∆B = B0

(cf. equations 2.18). Using these characteristic scales, the non-dimensional set of flow
equations is as follows

∂uj
∂xj

= 0, (2.19a)

1

RoΛ

∂uj
∂t

+ ui
∂uj
∂xi

= −EuΛ
∂π

∂xj
+

1

ReΛ

∂2uj
∂x2i

+
1

RoΛ
ϵjk3(uk − gk) +RiΛbδj3, (2.19b)

1

RoΛ

∂b

∂t
+ uj

∂b

∂xj
=

1

ReΛPr

∂2b

∂x2j
, (2.19c)

with the non-dimensional geostrophic wind vector g = (g1, g2, 0)
T , with g = G/G (by con-

struction g = ∥g∥ = 1). Hats over non-dimensional variables are omitted for convenience.
Unless otherwise noted, variables are always non-dimensional from this point onwards.
Five dimensionless numbers determine the flow problem, including the Prandtl number,
which is fixed to unity in this study and is therefore close to the value for air Prair ≈ 0.71.
The Rossby number RoΛ and Euler number EuΛ are equal to unity due to the choice of
scales since

Pr =
ν

κd
= 1, RoΛ =

G

ΛRof
= 1, EuΛ =

G2

G2
= 1, (2.20a,b,c)
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14 2. Theoretical Foundation and Numerics

and are therefore not considered further. The remaining two relevant non-dimensional
numbers are

ReΛ =
GΛRo

ν
=
G2

fν
, RiΛ =

∆BΛRo

G2
=

∆B

Gf
, (2.21a,b)

with the Reynolds number ReΛ = Ek−1
Λ , which is the inverse of the Ekman number

EkΛ, and with the Richardson number RiΛ = Fr−2
Λ , which is the squared inverse of the

Froude number FrΛ. In the absence of buoyancy, i.e. RiΛ = 0, the buoyancy term in the
NSE (2.19b) is omitted and the buoyancy equation (2.19c) becomes an advection-diffusion
equation of a passive scalar s (e.g. tracer gas, pollutant concentration), which is non-
dimensionalized with the scalar difference ∆S = S0 between the upper and lower domain
boundary. The passive scalar conservation equation is

∂s

∂t
+ uj

∂s

∂xj
=

1

ReΛSc

∂2s

∂x2j
, (2.22)

where Sc =̂Pr is the Schmidt number. In that case, the dynamics of the neutrally stratified
boundary layer is solely governed by the Reynolds number ReΛ.

2.3.2 Parameter Space and Regime Transitions

The neutral Ekman flow is governed by one single dimensionless number, the Reynolds
number, which results from the non-dimensionalization of the governing equations in
section 2.3.1. The Richardson or Froude numbers enter the problem as a second parameter
if stratification is considered additionally. Surface heterogeneity is introduced by inserting
obstacles into the flow domain using suitable boundary conditions. A plethora of parame-
ters exist to describe surface roughnesses (cf. Kadivar et al., 2021). In the present study, the
type and statistical properties of the surface roughness are constant, except for the mean
height of the roughness elements, which is fixed in time and varies only among obstacles.
Since the focus of this study is on the logarithmic region (section 2.4.4) and surface layer
similarity (section 2.4.5), the effect of roughness is typically condensed into one single
parameter, the aerodynamic or hydraulic roughness length z+0 (non-dimensionalized with
the viscous scale, which equals to a roughness Reynolds number). Potentially, further
roughness parameters exist relating to the roughness pattern, but are ignored consciously
in accordance with surface layer similarity. The flow problem is therefore determined by
the three-dimensional parameter space spanned by Re, Ri and z+0 (cf. Figs. 2.1).
According to Monin and Yaglom (1971), the laminar regime is characterized by a smooth,

quiet flow in space and time, whereby some canonical flow problems are amenable to
analytical solutions. In contrast, turbulent flow is characterized by irregular fluctuations in
all flow quantities. The transition from laminar to turbulent flow–the onset of turbulence–
without density stratification is attributed to the seminal work of Reynolds (1895). The
laminar flow turns turbulent if the Reynolds number exceeds a critical value Re > Recrit.
For neutral Ekman flow, it is Recrit = 115 (Lilly, 1966).
Nevertheless, a Reynolds number close to Recrit is undesirable since a fully-developed

turbulent flow demands a large enough Reynolds number (cf. discussion: How high a
Re is high enough?, Moin and Mahesh, 1998; Dimotakis, 2000). Meanwhile, dynamical
similarity, which requires matching the Reynolds numbers of an atmospheric flow and the
DNS, is practically impossible (cf. discussion in Mellado et al., 2018). Here, the principle
of Reynolds number similarity comes into play despite the mismatch in the Reynolds
numbers (several orders of magnitude). The core of the Reynolds number similarity is the
assumption that certain statics of the flow become independent of Re at sufficiently high
Re, i.e. viscous effects are negligible (Monin and Yaglom, 1971; Tennekes and Lumley,
1972; Wyngaard, 2010). Reynolds number similarity is applicable if the scale separation
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2.3. Non-dimensionalization 15

Re

Ri

Recrit

laminar

turbulent

intermittent

ReΛ=const.

(z+0 ≈ 0.1, smooth) (a)

z+0

Ri

R
i Λ

=
co
n
st
.

Recrit≈0.1 transitionally rough ≈2 fully rough

laminar

turbulent

intermittent

(Re>Recrit=const.) (b)

Returb

z+0

Recritz+0 ≈0.1 transitionally rough . . . 2 . . . fully rough
≈0.1

≈2

(Ri = 0, neutral)

(Re>Recrit=const.)

(c)

Fig. 2.1 Schematic of the three-dimensional parameter space of the stratified turbulent
Ekman flow over a rough surface. Spanned by the Reynolds number Re, Richardson
number Ri and the aerodynamic roughness length in viscous units z+0 . The red dotted
lines exemplify the expected regime changes for (a) fixed external Reynolds number and
increasing stability and (b) fixed Richardson number but increasing aerodynamic roughness
length. The exact shapes of the regions are unknown and, therefore, depicted with straight
dashed lines.

between large and small scales is sufficiently large to exhibit a fully-developed inertial
subrange in the theory of Kolmogorov (1941). Moreover, it is a useful concept since the
focus of interest is often the asymptotical behavior of certain statistics with the Reynolds
number.
Stable density stratification suppresses turbulence production, and if the latter is strong

enough, it leads to a collapse of turbulence and a relaminarization of the flow. Global
intermittency is observed in the VSBL, a process in time and space where turbulent and
quasi-laminar fluid patches coexist (Mahrt, 1999). A flow at constant external Reynolds
number, e.g. ReΛ = const., and increasing stability would experience a regime transition
from the turbulent (WSBL) via the intermittent (VSBL) to the laminar regime (cf. red
dotted line in Fig. 2.1a). Theoretical and conceptual studies have explored the collapse
of turbulence for qualitative understanding of the phenomenon (Derbyshire, 1999; Van de
Wiel et al., 2002), alongside the concept of the maximum sustainable heat flux (MSHF)
(Van de Wiel et al., 2012a,b; Van Hooijdonk et al., 2018). Numerical studies of stably
stratified flow discovered the relevance of the Obukhov length (another measure of stability
beside Ri) either scaled with the boundary layer thickness (Nieuwstadt, 2005) or scaled
in viscous units (equal to an Obukhov–Reynolds number) as a criterion for the collapse
of turbulence (Flores and Riley, 2011; Deusebio et al., 2015). Coleman et al. (1992)
give a critical surface Richardson number for the relaminarization of the flow, whereas
Shah and Bou-Zeid (2014) observed a Reynolds number dependence of this criterion.
According to Ansorge and Mellado (2014), global intermittency is an intrinsic feature
of the VSBL without needing external triggering mechanisms, apart from requiring large-
scale structures to be sufficiently represented in the computational domain.
Lee et al. (2020) performed DNS of the stably stratified Ekman flow over a smooth and

rough wall with a periodic hill. A constant large-scale forcing drives their cases, and the
roughness setup is located in the transitionally rough regime. When comparing the smooth
and rough case, they observe a regime shift from the VSBL with intermittent turbulence
to the WSBL with continuous turbulence in the near-wall region of the flow. Hence,
roughness effectively counteracts buoyancy-induced stability through enhanced mixing and
an increased vertical velocity. Similar destabilizing effects are investigated by Mironov and
Sullivan (2023), who studied very stable stratified Couette flow (flow between two periodic
horizontal plates, one at rest and the other moving at a constant speed, which drives
the flow) with a heterogeneous surface temperature. Here, convective instabilities enable
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turbulence to survive in contrast to a laminar flow over a surface with a homogeneous
temperature. Therefore, a system with constant stratification (and Reynolds number) is
expected to experience a regime shift for an increasing aerodynamic roughness length (cf.
red dotted line in Fig. 2.1b).
The apparent effect of surface roughness is enhanced mixing and transport of the

turbulent flow and an increasing drag (drag-reducing riblets are irrelevant to geophysical
flows and thus not considered; Soleimani and Eckels, 2021). It is expected that a turbulent
Reynolds number (based on a turbulent velocity scale, e.g. square root of TKE) increases
with increasing roughness height, respectively z+0 (cf. Fig. 2.1c).

2.4 Wall-bounded Turbulent Ekman Flow
Most technical and geophysical flows are turbulent flows bounded by at least one solid
(impermeable) wall. A condition that also applies to atmospheric flows, which are confined
below by the Earth’s surface. The wind decelerates towards the lower wall, where it
comes to rest due to friction, resulting in vertical wind shear and mixing. Turbulence
is mainly mechanically produced in the vicinity of the wall by wind shear and in the
presence of unstable stratification by buoyancy. In the near-wall region, the viscosity is
essential to enforce the no-slip boundary condition at the wall (cf. chapter 5., Tennekes
and Lumley, 1972). Within the ABL, the dominant dynamical processes are fluid-wall
interactions by drag, rotation of the reference frame (Coriolis force) and stratification
caused by a mean temperature gradient in the boundary layer. In this study, the canonical
Ekman flow is a surrogate for studying the dynamics of the ABL. The statistical tools for
analyzing turbulent flow are briefly outlined in the first section (section 2.4.1), followed
by the presentation of the analytical solution of the laminar Ekman flow (section 2.4.2).
Afterwards, the important scales of turbulent motion (section 2.4.3), the logarithmic law
of the wall (section 2.4.4) and the Monin–Obukhov Similarity Theory (section 2.4.5) are
presented.

2.4.1 Statistical Analysis

The flow is turbulent once the Reynolds number exceeds a critical value, Re > Recrit
(cf. section 2.3.2), which is generally the case in the ABL. The characteristic chaotic,
turbulent nature of the atmospheric flow is described by the deterministic, non-linear NSE,
which are highly sensitive to unavoidable initial perturbations. The exact prediction and
reproducibility of a hydrodynamic variable φ (xi, t) (e.g. u, π, Θ) at a specific instance
in time and space is impossible, even in the best controlled experimental surroundings
(Lorenz, 1963, 1969). Thus, hydrodynamic variables in the turbulent flow are treated as
random variables. However, turbulent flows behave similarly under the same conditions
and are therefore studied in the mean by statistical methods rather than examining
individual realizations of the random flow variables. The ensemble mean is the arithmetic
average of a large number of samples from experiments with similar external conditions,
though hard to achieve in practice. The ergodicity hypothesis circumvents this issue and
implies that time averages of a steady flow and space averages of a homogeneous flow
converge for sufficient large measurement intervals (in space/time) to the ensemble mean
(Monin and Yaglom, 1971; Wyngaard, 2010).
The Reynolds decomposition (Reynolds, 1895) splits the instantaneous random flow

variable φ into a mean part φ and fluctuating part φ′, the departure from the mean, and
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is defined for a statistically stationary flow as

φ (xi, t) = φ (xi) + φ′ (xi, t) , with φ (xi) = lim
∆t→∞

1

∆t

t+∆t/2∫

t−∆t/2

φ
(
xi, t̃

)
dt̃. (2.23a,b)

Throughout this study, periodic boundary conditions are used in the horizontal directions.
The mean is considered a space-time estimated mean, given that the simulations are
conducted on a discrete Cartesian grid [nx, ny, nz] for a limited time interval ∆t, with
nt statistically independent samples, under the assumption of a quasi-steady state of the
flow. Hence, the computed mean is a function of the vertical grid node positions xk and
given by

⟨φ⟩ (zk) =
1

nxnynt

nx∑

i=1

ny∑

j=1

nt∑

l=1

φ (xi, yj , zk, tl) . (2.24)

Here, ⟨(·)⟩ is used for spatial averaging in the horizontal and (·) for temporal averaging.
If roughness is present in the computational domain, intrinsic averaging is applied

for first-order and second-order statistical moments of the flow variables. This method
excludes any values inside the solid objects from averaging, as the focus of interest is on
the statistical properties of the fluid and is based on the framework of conditional averaging
(Pope, 2000). Therefore, the computational domain is decomposed into a solid and fluid
part according to the indicator function ϵ(xi) (equation 1.1), where ϵ(xi) = 1 in the solid
and ϵ(xi) = 0 in the fluid part of the domain. Taking the horizontal average of ϵ(xi) results
in height-dependent volume fractions γ (z), with the corresponding superscript (·)0,1 for
fluid/solid, which reads as

1 = γ0 (z) + γ1 (z) = [1− ⟨ϵ (xi)⟩] + ⟨ϵ (xi)⟩ . (2.25)

The first and second order statistical moments are decomposed as follows

⟨φi⟩ex = γ0 ⟨φi⟩0 + γ1 ⟨φi⟩1 , (2.26a)
〈
φ′
iφ

′
j

〉ex
= γ0

〈
φ′
iφ

′
j

〉0
+ γ1

〈
φ′
iφ

′
j

〉1
+ γ0γ1

[
⟨φi⟩0 − ⟨φi⟩1

] [〈
φj

〉0 −
〈
φj

〉1]
, (2.26b)

where
〈
(·)
〉ex

are extrinsic averages. Extrinsic averages consider all values across the
domain equally and correspond to equation (2.24) applied to a flow with roughness. Hereby
the values of ⟨(·)⟩1 must be known in advance and statistical moments ⟨(·)⟩0 are of interest.
The conditional averaging is further advanced in study I (cf. chapter 4).

2.4.2 The Laminar Ekman Solution

Inspired by the fact that ice in the Arctic Ocean drifts not in the direction of the mean
wind, but rather at an angle of 20◦ − 40◦, Ekman (1905) presented in his seminal work at
the beginning of last century an analytical solution of the laminar problem. In his honor,
this flow problem is named after him. The flow is considered stationary and horizontal ho-
mogeneous, subsidence is neglected, and the flow is in the Boussinesq limit and geostrophic
balance. Regarding these assumptions, the horizontal momentum equations (2.15b) of the
mean flow by applying Reynolds averaging are as follows:

0 = −f (G2 − v) + ν
∂2u

∂z2
− ∂u′w′

∂z
, (2.27a)

0 = f (G1 − u) + ν
∂2v

∂z2
− ∂v′w′

∂z
. (2.27b)
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Fig. 2.2 The laminar Ekman spiral (cf. equations 2.29). The velocities are normalized
by the magnitude of the geostrophic wind vector G = G1 (red arrow). The surface shear
stress τ⃗w (green arrow) has an angle of 45◦ with respect to G⃗.

Note that the equations are in dimensional form. The turbulent shear stress is approxi-
mated using the eddy-diffusivity approach with a constant eddy viscosity νe, which was
initially mentioned by Boussinesq (cf. § 3.4.1 on p.171, Rotta, 1972) and reads as

∂

∂z

(
ν
∂ui
∂z

− ∂u′iw
′

∂z

)
=

∂

∂z

(
ν
∂ui
∂z

+ νe
∂ui
∂z

)
= νeff

∂2ui
∂z2

, (2.28a)

with νeff = ν + νe = const. , (2.28b)

where νeff is the constant effective viscosity. The boundary conditions are no-slip at the
ground ui|z=wall = 0 and a constant geostrophic wind above the boundary layer u|z→∞ =
G1 while aligning the geostrophic wind with the x-axis, viz. G = G1 and v|z→∞ = 0. The
solution of the coupled second-order differential equation is the Ekman spiral (Fig. 2.2):

u

G
(z̃) = 1− e−z̃ cos (z̃) , (2.29a)

v

G
(z̃) = e−z̃ sin (z̃) , (2.29b)

where the dimensionless height z̃ = z/D, is the height normalized by the laminar Ekman
layer depth D =

√
2νeff/f . The associated Reynolds number is ReD = DG/νeff and is

commonly used for the comparison of numerical studies, whereby ReD ∝ ν
−1/2
eff . The

height-dependent turning of the wind is 45◦ between the surface shear stress and the
geostrophic wind.

2.4.3 The Scales of Neutrally Stratified Turbulent Ekman Flow
Ekman flow is, according to Spalart (1989), the “[. . . ] simplest situations that can produce
a boundary layer with three-dimensional statistics”. The author refers to the decisive
term in the NSE, the Coriolis term, which renders the turbulent Ekman flow truly three-
dimensional with non-zero components of the Reynolds stress tensor u′iu

′
j . In other words,

the steady system rotation leads to a loss of symmetry in the spanwise direction compared
to turbulent channel flow. After sufficient time for the initial transient phase, when the
flow is decorrelated from the initial conditions, the system reaches a statistically steady
state. Once the flow is turbulent, the boundary layer thickness δ is the relevant length
scale rather than the laminar scale D (cf. equations 2.29). In turbulent Ekman flow, the

18



2.4. Wall-bounded Turbulent Ekman Flow 19

boundary layer thickness is δ = uτ/f (non-dimensional: δ⋆ = δ/ΛRo), with the friction
velocity uτ (non-dimensional: u⋆ = uτ/G) and Coriolis parameter f . The relevant time
scale is the eddy-turnover time δ/uτ = f−1, emerging from the ratio of turbulent scales
for the boundary layer thickness δ and velocity uτ . The steady system rotation stabilizes
the boundary layer thickness, which is constant in contrast to a boundary layer flow over
a flat plate, where the boundary layer spatially evolves with δ(x).
In the vicinity of the wall, the relevant parameters are: the viscosity ν, the wall

shear stress τw (non-dimensional: |τ ⋆| = |τw| /
(
ρG2

)
) and the density ρ. With these

parameters, the friction velocity u⋆, the viscous length scale and the friction Reynolds
number are defined as

u2⋆ =
1

ReΛ

√(
∂ ⟨u⟩
∂z

∣∣∣∣
z=0

)2

+

(
∂ ⟨v⟩
∂z

∣∣∣∣
z=0

)2

= |τ ⋆| , δν =
ν

uτ
, Reτ =

uτδ

ν
. (2.30a-c)

The friction Reynolds number can be rewritten to Reτ = δ/δν , as the scale separation
between the largest and the smallest possible length scale of the flow problem. The angle
of the surface wind to the geostrophic wind, respectively, the surface shear stress alignment,
is given by

α⋆ = ∢ (−τ ⋆,g) . (2.31)

In turbulent Ekman flow, the scales u⋆, α⋆ (and δ⋆) are inherent flow parameters and
therefore unknown a priori. They are weak functions of the Reynolds number ReD
according to the higher-order theory of Spalart (1989) and Coleman et al. (1990). In
contrast, the friction velocity is an external parameter in turbulent channel flow since
the imposed streamwise pressure gradient equals the total shear stress. A dual scaling
system is used to consider different dominant processes depending on the wall distance.
The viscous scaling (·)+ is used in the inner layer, with the relevant scales uτ and δν .
Moreover, the outer scaling (·)− is used in the outer layer, with the relevant scales G and
δ. Limits of the flow regions are z− = z/δ < 0.1 for the inner layer and z+ = z/δν > 50 for
the outer layer according to Pope (2000). The given limits are valid for turbulent channel
flow and are also a good approximation for turbulent Ekman flow.
Analogously to the friction velocity, the friction of the buoyancy parameter is

b⋆ =
q⋆
u⋆
, with q⋆ =

1

ReΛPr

∂ ⟨b⟩
∂z

∣∣∣∣
z=0

, (2.32a,b)

where b⋆ is the friction value and q⋆ the buoyancy surface flux. This procedure applies
similarly to the passive scalar. The given definitions of u⋆ (equation 2.30a), and b⋆
(equation 2.32a) are valid for smooth walls. In the presence of surface roughness, the
friction velocity (buoyancy) is evaluated from the total surface shear stress (total surface
buoyancy flux).

2.4.4 Viscous Sublayer and Logarithmic Law of the Wall

The logarithmic Law of the Wall (log-law) provides a universal velocity profile in the
near-wall region of a turbulent flow and was initially postulated by Von Kármán (1930)
and Prandtl (1932) and experimentally measured by Nikuradse (1932). The following
derivations for a flow over a smooth and rough surface are based on the books of Monin
and Yaglom (1971) and Pope (2000).
The relevant scales for turbulent flow are identified as {δ, uτ , ν, ρ} (resp. τw instead of

uτ ) and dimensional analysis (e.g. Buckingham Π-Theorem, Buckingham, 1914) yields

d ⟨u⟩
dz

=
uτ
z
Ψ

(
z

δν
,
z

δ

)
, (2.33)
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with the velocity gradient as a universal non-dimensional function Ψ of the non-dimensional
length scales for the inner and outer layer z+=z/δν , z

−=z/δ (section 2.4.3). In the near-
wall region, viscous effects dominate; thus, the only relevant scale is δν for z/δ ≪ 1 and
z+ ≫ 1 (Prandtl, 1925). This necessity implies no contradiction since the ratio of both
length scales equals to the friction Reynolds number

Reτ =
z+

z−
=
uτδ

ν
. (2.34)

Hence, a sufficiently large Reynolds number, i.e. a scale separation between the inner and
outer length scale, is required for a properly developed logarithmic layer in the flow. The
logarithmic layer is commonly assumed to be located at z/δ < 0.1 and z+ > 50, and thus
Reτ > 500 is necessary. The dimensionless velocity gradient and the velocity are

d ⟨u⟩+
dz+

=
1

z+
Ψw

(
z+
)
, (2.35a)

⟨u⟩+ = ψ
(
z+
)
=

∫ z+

0

1

z′
Ψw

(
z′
)
dz′. (2.35b)

Away from the wall, z+ ≫ 1, viscosity is negligible and Ψw = const. = 1/κ, with the von
Kármán constant κ. The logarithmic law of the wall is defined as

⟨u⟩+ =
1

κ
ln
(
z+
)
+A, (2.36)

with the commonly accepted values of the integration constant of A ≈ 5 and κ ≈ 0.4,
although the exact values are under debate. In the close vicinity of the wall, the flow is
assumed to be laminar and viscous drag dominates the wall shear stress τw. Integration of
τw with the no-slip boundary condition ψ′|z+=wall = 1 and Taylor-series expansion, gives

⟨u⟩+ = z+, (2.37)

the linear velocity profile in the viscous sublayer, valid for z+ < 5.
The above derivations are valid for an ideal, smooth wall. In contrast, roughness in

turbulent flows appears at a characteristic length scale hR (e.g. mean height of the
roughness) and is an omnipresent feature of real-world applications. In his pioneering
work, Nikuradse (1933) studied wall roughness by measuring the friction of rough pipe
flow. The pipe walls were covered with uniform sandpaper roughness, specified by the
sand grain diameter ks. In general, the roughness scale hR/δν = h+R is identified as a
relevant length scale for the effect of roughness on the law of the wall, and with z ≪ δ
the velocity gradient is a non-dimensional universal function ΨI (z/δν , hR/δν). Roughness
impacts the flow dependent on the scale h+R , provided that the Reynolds number of the
flow is sufficiently high; (i) if hR ≪ δν is small, the log-law (equation 2.36) is retained;
(ii) if the roughness Reynolds number uτhR/ν = h+R ≫ 1 is large, momentum transport
is dominated by pressure drag. Hence, ν and δν , are not relevant and the function ΨI is
rewritten to ΨR (z/hR). The influence of roughness vanishes for z ≫ hR, and a constant
asymptotic is reached with ΨR = const. = 1/κ. The velocity profile in this regime is

⟨u⟩+ =
1

κ
ln

(
z

hR

)
+AR, (2.38)

where AR is a universal constant. (iii) If hR is O (δν), the integration constant is a function
of the roughness scale

⟨u⟩+ =
1

κ
ln

(
z

hR

)
+ ÃR

(
h+R
)
. (2.39)
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The associated roughness regimes are: (i) hydraulically (aerodynamically) smooth for k+s ≤
5, with ÃR

(
h+R
)
= A+ κ−1 ln

(
h+R
)
; (ii) fully rough for k+s ≥ 70, with ÃR (∞)=B2=8.5;

(iii) transitionally rough, with ÃR

(
h+R
)
and 5 < k+s < 70 (cf. Monin and Yaglom, 1971,

Fig. 28). Roughness shifts the logarithmic region of the velocity profile downwards by the

roughness function ∆
〈
U
〉+

(Hama, 1954; Clauser, 1954), which can be interpreted as a
momentum loss due to deceleration of the flow by roughness. An alternative way to write
the rough log-law (equation 2.39) is

⟨u⟩+ =
1

κ
ln
(
z+
)
+A−∆

〈
U
〉+
, with ∆

〈
U
〉+

=
1

κ
ln
(
h+R
)
+A− ÃR

(
h+R
)
.

(2.40a,b)

In the meteorological context, the rough log-law is commonly formulated as

⟨u⟩+ =
1

κ
ln

(
z

z0

)
, with z+0 = e

κ
(
∆⟨U⟩+−A

)
, (2.41a,b)

where z0 is the aerodynamic roughness length, which is not a physical length scale but
instead describes the dynamical impact of roughness on the logarithmic region with one
single parameter. The roughness length for an aerodynamically smooth flow is z+0 ≈ 0.1,
for a fully rough flow z+0 ≳ 2 and the transitionally rough flow at 0.1 < z+0 < 2.
So far, the reference level z = 0 was used equally for the smooth and rough surfaces.

Surface roughness leads to a shift in the origin of the vertical axis by the zero-plane
displacement height dR, introduced by (Paeschke, 1937). Therefore, the rough log-laws
derived above are extended using (z − dR) instead of z. The displacement thickness 0 ≤
dR ≤ hR depends on the roughness type and configuration, but a common estimate is given
with dR ≈ 2

3hR. Height-dependent veering of the wind (Ekman spiral, cf. section 2.4.2) is
an intrinsic feature of Ekman flow, which results in the use of the total horizontal wind

⟨uh⟩ =
√

⟨u⟩2 + ⟨v⟩2 instead of ⟨u⟩ in the log-law.
Analogously to the above derivation for the velocity, the viscous sublayer and logarithmic

layer are present for the non-dimensional temperature Θ+ (Kader and Yaglom, 1972) with
the universal profiles

〈
Θ
〉+

= Pr z+, and
〈
Θ
〉+

=
1

κ
ln
(
z+
)
+B (Pr) , (2.42a,b)

accordingly for the passive scalar s with Schmidt number Sc, instead of the Prandtl number
Pr. The derivation of the rough log-law for the temperature (passive scalar) follows the
above-described steps.

2.4.5 Monin–Obukhov Similarity Theory

The Monin–Obukhov Similarity Theory (Obukhov, 1946; reprinted in the Boundary-Layer
Meteorology journal: Obukhov, 1971; Monin and Obukhov, 1954; Foken, 2006) provides
a natural extension of the log-law by considering buoyancy effects in the surface layer.
The underlying assumptions of the MOST are a steady, horizontally homogeneous flow
in the Boussinesq limit over a flat surface (cf. discussion in Monin and Yaglom, 1971).
The theory is valid in the surface layer, representing the lower part of the ABL near the
ground, in which turbulent fluxes vary less than 10 % of their peak value. Therefore, this
layer is commonly referred to as the constant flux or Prandtl layer, where τ ⋆ = q⋆ = const.
(Garratt, 1992). In the constant flux layer, the effect of the Coriolis force and, thus, the
veering of the wind with height is neglected (v = 0). Consequently, the channel flow
analogy is typically used to study the surface layer.
The parameters governing the dynamics of the surface layer are identified as (cf. Wyn-

gaard, 2010): the distance from the wall z, the friction velocity uτ , the buoyancy parameter
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ggrav/Θsfc, and the heat flux
〈
w′Θ′〉. Under consideration of these parameters, the dimen-

sionless parameter z/LO is formed with a new length scale, the Obukhov length1, which
is defined as

LO = − u3⋆
ggrav
Θsfc

〈
w′Θ′〉∣∣

z=sfc

=
u2⋆
b⋆
. (2.43)

Here,
〈
w′Θ′〉∣∣

z=sfc
is the surface heat flux and Θsfc the reference temperature in the

surface layer. Physically, LO is the height where the TKE production by shear equals
the buoyant production (destruction) of TKE (Wyngaard, 2010). Flores and Riley (2011)
proposed the Obukhov length scaled in wall units L+

O = LO/δν = ReL as the relevant
scale in a stably stratified flow over a smooth surface. L+

O is a buoyancy Reynolds number
ReL (Obukhov–Reynolds number), describing the scale separation between the largest and
smallest possible turbulent structures. Furthermore, they suggest LO/hR as the relevant
scale in the presence of surface roughness.
By using the Buckingham Π-theorem, the non-dimensional gradient of a flow variable F

(e.g. the streamwise velocity u, temperature Θ, respectively buoyancy b) is described
exclusively by a function of the non-dimensional stability parameter ζF , and thus

ΦF (ζF) =
κF (z − dR)

F⋆

∂F
∂z

, with ζF =
κF (z − dR)

LO
, (2.44a,b)

where dR is the zero-plane displacement thickness (smooth surface dR = 0), κF the von
Kármán constant of the log-layer of the variable F , and F⋆ the friction value of F . The
stability parameter is ζF < 0 for unstable, ζF > 0 for stable, and |ζF | → 0 for neutral
conditions. Without density stratification, the log-law is recovered with ΦF (ζF = 0) = 1.
If stratification is present, the universal stability correction function ΦF is used, which
is determined experimentally. For stable conditions, the linear Businger–Dyer relation
(Businger et al., 1971; Dyer, 1974) are widely accepted, with

ΦF (ζF) = αF + βFζF . (2.45)

The empirical parameters for the velocity profile are αm = 1 and βm ≈ 5 (Högström,
1988).

2.5 Numerical Framework of the DNS Code

DNS is the approach of numerically solving the NSE (2.2) by resolving all turbulent scales
without parameterization for unrepresented processes. Hence, the size of the computa-
tional domain must be sufficient to capture the large energy-containing eddies, and the grid
resolution must be fine enough to resolve the smallest scales for dissipation to represent the
entire turbulent energy cascade. The fundamental flow equations with the four primitive
variables pressure p and the three velocity components u = (u, v, w)T are abbreviated as

∂u

∂t
= F (u, p) , with F ∈ R4 and u ∈ R3, (2.46)

where the temporal evolution of the flow is described by ∂tu with the physical time t and
a function F , representing the RHS of the NSE (2.2). This term includes the advection,
diffusion, pressure gradient and other source or sink terms. Moreover, it can be decomposed
into a function F̃ , with F (u, p) = F̃ (u) +∇p, which solely acts on the velocity vector
field u.

1By tradition, the Obukhov length includes the von Kármán constant κ, which is omitted here. The
conversion is L46

O = κ−1LO, where L46
O is the original Obukhov length defined in Obukhov (1946).
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The first step of numerically solving the continuous PDEs (2.46) is discretizing the
fundamental flow problem in space and time with appropriate schemes (section 2.5.1).
The focus of the next section 2.5.2 is on an adequate pressure treatment to avoid spurious
numerical oscillations in the resulting flow fields efficiently. The last section 2.5.3 describes
the IBM for inserting flow obstacles in the computational domain.

2.5.1 Temporal and Spatial Discretization Strategy

Temporal and spatial discretization strategies for numerically solving the governing flow
equations are inevitable since no analytical solution for turbulent flow is known yet.
With the underlying objective of accessing moderate to high Reynolds numbers, DNS of
turbulent flow is computationally highly demanding with the need for massively parallel
computation on HPC infrastructures. The discretization schemes need close attention to
accuracy, stability, and efficiency to keep the simulation expenses within feasible limits
and precisely represent small-scale processes.

Spatial discretization with compact finite difference schemes. Realizations of the three-
dimensional flow are computed on a Cartesian mesh with an orthogonal coordinate system
xi = (x, y, z)T throughout the present work. The grid is uniformly spaced in the horizontal
directions and only stretched in the vertical direction. A one-dimensional uniform distri-
bution of nx grid nodes in the periodic domain of [0, Lx] is considered here. Grid node
positions are given by xi = (i− 1)∆x with 1 ≤ i ≤ nx and a uniform spacing between two
neighboring grid nodes of ∆x = Lx/ (nx − 1). A continuous function f , representing any
flow variable, is discretized as fi = f (xi), with the approximate first and second derivatives
f ′i , f

′′
i on the grid nodes.

The present DNS code uses compact Padé schemes of sixth-order accuracy for the
evaluation of the spatial derivatives, first described in the seminal work of Lele (1992).
They are written for the first derivative in general form as follows:

c11f
′
i+2 + c21f

′
i+1 + f ′i + c21f

′
i−1 + c11f

′
i−2 = c31

fi+1 − fi−1

2∆x
+c41

fi+2 − fi−2

4∆x

+c51
fi+3 − fi−3

6∆x
.

(2.47)

By choosing the prefactors to c11 = 0, c21 = 1/3, c31 = 14/9, c41 = 1/9 and c51 = 0 a
sixth-order accurate scheme is defined. Analogously, the second-order derivative is given
by

c12f
′′
i+2 + c22f

′′
i+1 + f ′′i + c22f

′′
i−1 + c12f

′′
i−2 = c32

fi+1 − 2fi + fi−1

∆x2
+c42

fi+2 − 2fi + fi−2

4∆x2

+c52
fi+3 − 2fi + fi−3

9∆x2
.

(2.48)

Again, choosing the prefactors to c12 = 0, c22 = 2/11, c32 = 12/11, c42 = 3/11 and c52 = 0
results in a sixth-order accurate scheme. The unknown derivative values of neighboring
grid nodes are located on the left-hand side (LHS), and known function values are on the
RHS of the equations (2.47,2.48). The linear equation systems of the compact schemes
(2.47, 2.48) are written as

Axf
′ =

1

∆x
Bxf, Cxf

′′ =
1

(∆x)2
Dxf, (2.49a,b)

with the square matrices Ax, Bx, Cx and Dx, which are narrow banded, but circulant
for periodic problems. The matrix Ax (Cx) on the LHS couples all grid points needed
to solve for f ′ (f ′′) based on f . Hence, these schemes are considered as non-local or
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global operators, which act on complete lines of data in every single direction in which
the derivative of a field is evaluated. For that purpose, costly global transpositions of
data between computational cores are necessary to solve the linear equation systems of
the compact schemes. For solving these equations, the computationally efficient Thomas
algorithm (solving tridiagonal equation systems on the basis of Gaussian elimination, cf.
Thomas, 1949) with an operation count of O (n) in contrast to the pseudo-spectral codes
with O (n log n) is applied.

Up to here, uniformly spaced grids with periodic boundary conditions are considered.
For non-periodic boundary conditions, biased schemes of lower order are used at the two
boundary points closest to the wall (Carpenter et al., 1993). If a non-uniform grid in
the vertical direction is used, the physical coordinate needs to be mapped first on a
computational coordinate, which is uniformly spaced (Laizet and Lamballais, 2009).
On the one hand, second-order (central difference) schemes are computationally very

cheap but suffer from significant errors at small scales; on the other hand, spectral schemes
are considered exact, with the drawback of unfavorable computational costs and low
flexibility concerning the choice of grids and compatibility of implementing an IBM.
Compact schemes combine the benefits of both approaches: higher accuracy at small scales,
affordable computational costs, high flexibility in terms of possible domain configurations
and the ability to use IBMs. However, this comes at the price of costly global data
transpositions.
Modified wavenumber analysis is applied to assess the resolution properties of a spatial

discretization scheme (Lele, 1992). Here, the modified wavenumbers for the first k′(k)
and second derivatives k′′(k) of a specific differencing scheme are compared to the exact
wavenumbers k of the spectral scheme (Figs. 2.3) and read as

k′ (k) =
c31 sin (k) + (c41/2) sin (2k) + (c51/3) sin (3k)

1 + 2c21 cos (k) + 2c11 cos (2k)
, (2.50a)

k′′ (k) =
2c32 [1− cos (k)] + (c42/2) [1− cos (2k)] + (2c52/9) [1− cos (3k)]

1 + 2c22 cos (k) + 2c12 cos (2k)
. (2.50b)

Coefficients for the second-order and tenth-order schemes can be found in Lele (1992). If
a sixth-order compact scheme (equation 2.47) is used instead of a second-order central
difference scheme (with f ′i = (fi+1 − fi−1)/(2∆x)) for a fixed physical problem size and
a 90% accurate resolution of the first derivative at small scale, only approximately 36%
(0.25/0.7) of the grid nodes are required in one direction to obtain a similar resolution (cf.
Fig. 2.3b).

Temporal advancement with an explicit low-storage Runge-Kutta scheme. With the
endeavor of reaching the high Reynolds number regime with DNS, the need for preferably
stable, efficient and accurate time-marching schemes arises due to limited computing
resources. These requirements translate into a large time increment τ , a memory-efficient
computation and a small discretization error. Therefore, an explicit low-storage Runge–
Kutta scheme (RK) is taken to integrate the set of PDEs (2.46) in time, starting from
the state un = u (tn) to un+1 = u(tn + τ) with M intermediate stages. Low-storage
RK schemes demand only 2N memory per grid node, with N being the number of flow
variables. The underlying idea is to leave valuable data in the memory and gradually
overwrite it at the sub-stages. First, schemes up to third-order accuracy with three-stages
were introduced by Williamson (1980), which read in general form as

un+1 = un + τ
M∑

j=1

bjkj , with (2.51a)

k1 = F (tn, un) , (2.51b)

24



2.5. Numerical Framework of the DNS Code 25

0.0 0.2 0.4 0.6 0.8 1.0

actual wavenumber k/π

0.0

0.2

0.4

0.6

0.8

1.0

m
o
d

ifi
ed

w
av

en
u

m
b

er

k
′ (
k
)/
π

an
d
√
k
′′ (
k
)/
π

(a)
1st−derivative

2nd−derivative

spectral

10th−order

6th−order

6th−order int.

2nd−order

0.0 0.2 0.4 0.6 0.8 1.0

actual wavenumber k/π

k
′ (
k
)/
k

an
d
√
k
′′ (
k
)/
k

(b)

Fig. 2.3 (a) Modified wavenumber analysis for second-order central differences and sixth-/
tenth-order compact scheme, plotted against the actual wavenumber. (b) Relative devia-
tion from the exact solution. The grey shaded area depicts the 90% resolution range.

kj = F


tn + ciτ, un + τ

i−1∑

j=1

aijki


 and i ∈ {2, . . . ,M} ⊂ N, (2.51c)

with the set of RK coefficients aij , bj , cj ∈ R. The sub-stages ci, with i ∈ {1, . . . ,M} ⊂ N,
are defined as ci =

∑M
j=1 aij , with c1 = 0, where aij represents the weights of the sub-

stages. The coefficients bj , with j ∈ {1, . . . ,M} ⊂ N, are the weights of the final sub-
stage. Here, a low-storage fourth-order RK scheme is used with five sub-stages (RK45),
introduced by Carpenter and Kennedy (1994). Compared to the conventional RK4 scheme,
one additional stage is needed to maintain storage efficiency and gain a better stability
envelope.
The criterion based on the Courant–Friedrichs–Lewy number (CFL, Courant et al., 1928)

gives the maximum stable time step size for an advection problem, which is discretized
with an explicit time marching scheme. The idea is that the numerical velocity (∆xi)/τ
should not exceed the advection velocity |ui| by far. Nevertheless, implicit schemes as
well as some RK schemes, can have larger values than CFLmax = 1. The advection
Courant–Friedrichs–Lewy number (CFL) number reads as

CFLa = τ

∥∥∥∥
ui
∆xi

∥∥∥∥
∞
, (2.52)

where ∥.∥∞ is the infinity norm, representing the maximum ratio between the velocity
component ui and the corresponding grid spacing ∆xi. Similar to the advection problem,
a diffusion CFL number is given by

CFLd = τ

∥∥∥∥
ν

(∆xi)2

∥∥∥∥
∞
, (2.53)

with the viscosity ν. Wilson et al. (1998) provides values for the advection and diffusion
constraints, with values of CFLa,max ≈ 1.7 and CFLd,max ≈ 0.7 for a RK45 temporal
scheme and a sixth-order compact scheme. To retain numerical stability and also keeping
numerical errors small, CFLa ≈ 1.2 with a safety factor of 30% and CFLd = 0.25 ×
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CFLa ≈ 0.3 (with this choice of CFLd, dissipative and diffusive errors are of O(1%), cf.
Ansorge (2017)) are used in this study. The simulation time step τ is adapted according
to both constraints.

2.5.2 Pressure Treatment

The pressure problem and the fractional-step method. The fundamental equations for
an unsteady and incompressible flow without a scalar are a set of four equations (three
momentum equations (2.19b), one continuity equation 2.19a) with the same number of un-
known variables (p,u), but without an explicit evolution equation for the pressure. In the
primitive variable formulation, pressure implicitly couples the continuity and momentum
equations. Here, the pressure projects the velocity fields onto a divergence-free space. The
implicit coupling is circumvented by taking the divergence of the momentum equations
and thereby obtaining an explicit Poisson-type equation for the pressure, which is time-
consuming and numerically challenging to solve. (In contrast, the implicit coupling of
pressure and velocities does not occur in the compressible formulation of flow problems,
where the continuity equation contains the time-derivative of the fluid density. In this
case, the pressure is directly calculated with the equation of state (equation 2.5a).)
The discretized equations in time and space are solved via the fractional-step (also known

as time-splitting) method, which was introduced by Chorin (1968) and Témam (1969) and
in the context of DNS described by Kim and Moin (1985) and Wilson et al. (1998). A
significant drawback of this method is first-order accuracy in terms of time for pressure
(Perot, 1993). Brown et al. (2001) studied the interplay of boundary conditions on the
intermediate velocity vector and the approximation of the pressure gradient term. With
a change in the pressure-update step, a second-order accuracy in the pressure is achieved.
In principle, the fractional-step method splits the time advancement of the discretized

equations into three steps:

u⋆ = τF̃ + un, (2.54a)

ϕn+1 =
1

τ
∆−1 (∇u⋆) , (2.54b)

un+1 − u⋆

τ
= −∇ϕn+1

= −∇
{
1

τ
∆−1

[
∇
(
τF̃ + un

)]}
, with ∇un+1 = 0, (2.54c)

where the subscript n denotes the previous sub-step, n+1 respectively the next unknown
one and τ the time increment in between. The procedure presented here is performed
at every sub-stage of the temporal discretization scheme and holds in the fluid region
ΩF of the computational domain (cf. section 1.3). In the first step (equation 2.54a), an
intermediate velocity u⋆ is computed without the pressure gradient term, where F̃ contains
the convective, diffusive terms and potential sources and sinks of the flow (equations 2.46).
In the second step (equation 2.54b), the pressure ϕn+1 is computed by solving a Poisson
equation with Neumann boundary conditions. In the last step (equation 2.54c), the new
and divergence-free velocity un+1 is computed and u⋆ discarded afterwards.
Numerically solving the pressure Poisson equation (equation 2.54b) for an incompressible

flow can be avoided by taking the curl of the momentum equations, which yields a non-
primitive formulation (of ∆w and the wall-normal vorticity ωz) of the incompressible flow
problem through eliminating the pressure term since∇×∇p = 0 (Kim et al., 1987). Hence,
the pressure is only computed if needed for statistics containing the pressure.
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Solving the Poisson equation and pressure grid staggering. The current DNS code solves
the pressure Poisson equation in the horizontal directions in Fourier space with periodic
boundary conditions and in the non-periodic vertical direction with an inverse-compact
approach (Mellado and Ansorge, 2012). The applied Poisson solver is consistent with
the higher-order compact discretization kernel since it uses the corresponding modified
wavenumbers of the spatial scheme in the frequency space. Up to this point, the pressure
and velocity values were computed in a collocated arrangement, where all variables were
computed on the same grid.
Since the analogue of an integration in physical space is a simple division of the Fourier

modes by the wavenumbers, the calculus in the horizontal directions consists of a division
of the pressure modes by the modified wavenumbers (k′2x + k′2y ), which are for the first
derivative (equation 2.50a) zero at ki = [0, π]. As a result, four possible combinations of
a zero division in the two-dimensional case appear and, therefore, must be excluded from
the division and treated separately. Nevertheless, a division by very small wavenumbers
in the vicinity of these singular pressure modes causes and exaggerates spurious pressure
oscillations that may propagate to the velocity fields, due to the inherent coupling (Laizet
and Lamballais, 2009). One can observe these oscillations for higher wavenumbers as
an accumulation of energy in the spectral energy density of the pressure and spanwise
velocity, analyzed in detail in the section 3.3.2 for a smooth and rough turbulent channel
flow. So far, this numerical artefact was acceptable for simulations with smooth walls since
it does not severely affect the data quality. Implementing an IBM intensifies these pressure
oscillations as the IBM imposes a forcing at the smallest scales and severely degrades the
pressure and velocity fields. Furthermore, this mechanism is observed to be amplified with
increasing grid resolution.
The numerical strategy implemented in this work provides a partially staggered pressure

mesh in the horizontal directions, where the Fourier transformation is performed, and an
additional pressure filter in the vertical to avoid the prescribed numerical artefacts in all
three dimensions. With this strategy, the velocities are always on the same grid, and
the pressure Poisson equation is solved on a staggered pressure grid by half a grid spacing
(∆xi/2) in the horizontal directions. Partially staggered pressure grids were introduced by
Fortin et al. (1971), further applied by Almgren et al. (1996) and George et al. (2000) and
used with compact schemes of sixth-order and an IBM by Laizet and Lamballais (2009).
In the first step, the LHS terms of the pressure Poisson equation are interpolated to the
pressure grid. The Poisson equation is solved in the next step, and the pressure is filtered
in the vertical. The pressure gradients are evaluated back on the velocity mesh in the last
step.
An interpolatory compact scheme (Lele, 1992) for the first derivative on midpoints is

used to preserve the consistency of the sixth-order compact spatial discretization scheme
in the code. The interpolatory schemes read as

c13f
′I
i+5/2 + c23f

′I
i+3/2 + f ′Ii+1/2 + c23f

′I
i−1/2 + c13f

′I
i−3/2 = c33

fi+1 − fi
∆x

+c43
fi+2 − fi−1

3∆x

+c53
fi+3 − fi−2

5∆x
.

(2.55)

The prefactors are c13 = 0, c23 = 9/62, c33 = 63/62, c43 = 17/62 and c53 = 0 to get
a sixth-order accurate scheme. This scheme offers beneficial properties since it combines
a derivative and an interpolation operator in a single step, which saves computational
effort and possesses better resolution characteristics in the modified wavenumber space
(Fig. 2.3a) as its non-interpolatory counterpart (equation 2.47). The compact midpoint
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interpolation scheme from Lele (1992) is given by

c14f
I
i+5/2 + c24f

I
i+3/2 + f Ii+1/2 + c24f

I
i−1/2 + c14f

I
i−3/2 = c34

fi+1 − fi
2

+c44
fi+2 − fi−1

2

+c54
fi+3 − fi−2

2
,

(2.56)

with choosing the prefactors to c14 = 0, c24 = 3/10, c34 = 3/4, c44 = 1/20 and c54 = 0
again a sixth-order accurate scheme is obtained. The modified wavenumbers k′I of the
interpolatory compact scheme of sixth-order for the first derivative (equation 2.55) and
the transfer function T I of the interpolation scheme (equation 2.56) associated with the
actual wavenumbers k are given by (Laizet and Lamballais, 2009)

k′I(k) =
2c33 sin (k/2) + (2c43/3) sin (3k/2)

1 + 2c23 cos (k)
, (2.57a)

T I(k) =
2c33 cos (k/2) + (2c43/3) cos (3k/2)

1 + 2c23 cos (k)
. (2.57b)

The modified wavenumber analysis k′I reveals that when an interpolatory first-order
derivative scheme (equation 2.55) is used, only one singular pressure mode at ki = 0
remains instead of the previous four. Nevertheless, using the sixth-order midpoint inter-
polation scheme (equation 2.56) introduces new singular modes, where T I = 0 at ki = π.
Fortunately, Laizet and Lamballais (2009) discovered that the singular pressure modes
associated with the pure interpolation do not exaggerate spurious oscillations.

In the vertical direction, two different pressure filters are considered, a spectral and a
compact filter, to eliminate spurious pressure oscillations in all spatial directions while
being consistent with the existing algorithm. The spectral filter has the following transfer
function (Fig. 2.4a):

T sf (krel) =
erf [8 (1− krel)] + 1

2
, with krel =

kz
kref

, kref =
nz
lcut

, (2.58a-c)

and the relative and reference wavenumber krel, kref to map the filter on a specific relative
position of the vertical pressure spectra. At this location, the expected energy accumu-
lation at the highest wavenumbers in the pressure spectra is smoothly cut off with the
error function. The filter parameter lcut determines the strength of the filter, respectively
the relative position of the cut-off and should be in the range of lcut = [2, 4]. This
filtering approach is, by construction, limited to periodic signals. Therefore, the filter
only applies for simulation setups with symmetric boundary conditions on the vertical
domain boundaries, such as closed channel flow, where a quasi-periodic pressure signal in
the vertical is assumed.
This assumption is invalid for boundary layer flows like Ekman flows due to the lack of

symmetry in the vertical boundary conditions, resulting in a non-periodic vertical pressure
signal. In that case, a compact filter (Lele, 1992) is applied in the vertical direction to the
pressure, which reads

c15f̂i−2 + c25f̂i−1 + f̂i + c25f̂i+1 + c15f̂i+2 = c35fi + c45
fi+1 − fi−1

2
+ c55

fi+2 − fi−2

2

+ c65
fi+3 − fi−3

2
,

(2.59)
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Fig. 2.4 Transfer functions of the (a) spectral error function filter (equations 2.58) for
filtering the spectral pressure, and (b) the compact filter (equation 2.59) for filtering the
pressure in the vertical direction as a function of the filter parameter c25.

with the approximate filtered flow variable f̂i on the grid nodes. This representation is
valid for interior points, and biased schemes are needed on the boundaries, as can be found
in Lele (1992). The transfer function of the compact filter (equation 2.59, Fig. 2.4b) is
given by

T cf (k) =
c35 + c45cos (k) + c55cos (2k) + c65cos (3k)

1 + 2c25cos (k) + 2c15cos (2k)
. (2.60)

Choosing the prefactors c15 = c65 = 0 and c35 = 1
8 (5 + 6c25), c45 = 1

2 (1 + 2c25), c55 =
−1

8 (1− 2c25) a fourth-order tridiagonal filter scheme is derived. The parameter c25 defines
the strength of the filter and is observed to be strong enough by choosing c25 = 0.49
(Fig. 2.4b).
With the proposed pressure treatment, consisting of a partially staggered pressure grid in

the horizontal directions and a pressure filter in the vertical, artificial pressure oscillations
can be avoided while being entirely consistent with the accuracy of the spatial discretization
schemes. This paves the way for representing complex boundaries in the computational
domain and ensuring high-resolution data of all flow variables.

2.5.3 Immersed Boundary Methods
Immersed boundary methods were first introduced by the seminal work of Peskin (1972)
(later: Peskin, 1977, 2002), who simulated the two-dimensional movement of a heart valve
with elastic boundaries at low Reynolds number by applying a forcing term to the NSE
based on Hooke’s law (describes the elastic body deformation). Later, this method was
adjusted by a feedback forcing approach of Goldstein et al. (1993) for application to objects
with rigid boundaries to study the effect of riblets in turbulent channel flow. The IBM
volume force f IBM(xi, t) = (fx, fy, fz)

T added to the RHS of the NSE (equation 2.46) is
given by

f IBM(xi, t) = ϵ(xi)β1

∫ t

0
u(xi, t̃)dt̃

︸ ︷︷ ︸
fi,β1

+ ϵ(xi)β2u(xi, t)

︸ ︷︷ ︸
fi,β2

, (2.61)

with the negative constants β1, β2 (Lamballais and Silvestrini, 2002). The feedback forcing
term f IBM can be interpreted as a proportional-integral controller with two heuristic param-
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eters and therefore behaves like a damped oscillator (Mittal and Iaccarino, 2005). In the
case of rigid boundaries at high Reynolds numbers, this leads to large oscillator frequencies,
damping coefficients and turns the modified NSE stiff. Hence, severe stability issues are
faced with the need for very small time increments and carefully tuned parameters of the
forcing function (Mittal and Iaccarino, 2005).

The Gibbs phenomenon and spurious force oscillations (SFOs)2 are common artefacts
when simulating moving and rigid bodies with IBMs (Lee et al., 2011a; Li et al., 2016).
SFOs are unphysical, numerical artefacts in the velocity and pressure fields that appear
near solid boundaries at high frequencies. They are closely related to the Gibbs phe-
nomenon in spectral space (Fornberg, 1996, p. 11) when an expansion of continuous
trigonometric functions expresses a discontinuous function. The deterioration of the flow
fields by SFOs is often not limited to instantaneous realizations but also contaminates time-
averaged statistics of the flow and is, therefore, non-negligible as the overall data quality
may deteriorate significantly. When using IBMs, the origin of SFOs traces back to the
discontinuous behavior of the IBM forcing term at the interface between the fluid and solid
regions. Higher-order discretization schemes with spectral-like resolution, such as compact
schemes (section 2.5.1), excite Gibbs oscillations at the interface, which propagate into the
fluid region owing to the non-local behavior of these schemes. The spectral derivatives show
the most pronounced oscillation in the far field, followed by sixth-order compact schemes
(Figs. 2.5). Local schemes, such as central finite differencing schemes of second or higher
order, do not transport the differentiation error far from the wall. Saiki and Biringen
(1996) observed this behavior with a fourth-order central finite difference scheme, and also
Fadlun et al. (2000) did not observe the oscillations in combination with a second-order
scheme.
In introducing the feedback forcing approach, Goldstein et al. (1993) described a pro-

cedure to reduce the SFOs in the flow fields as they use a pseudo-spectral DNS code.
The proposed procedure comprises a smearing of the forcing term at the interfaces with
a Gaussian weight function to distribute the forcing over neighboring grid points. Fur-
thermore, the non-linear convective term is low-pass filtered. Lamballais and Silvestrini
(2002) followed a similar treatment with sixth-order compact schemes. In recent years,
different filtering and smoothing procedures in physical and frequency space were discussed
to reduce and control SFOs. Fang et al. (2011) proposed a smoothing with a radial basis
function and Tseng et al. (2006) a Laplacian smoothing function, both in combination
with pseudo-spectral schemes and an IBM. Another possibility is adding a source or sink
term to the NSE (Kim et al., 2001). The methods to deal with SFOs have symptomatic
treatment in common, which does not entirely solve the problem and, therefore, does not
lead to oscillation-free IBM approaches. They alter the velocity fields by filtering them
and blurring the interface’s location between fluid and solid regions. The boundaries of the
objects are no longer precisely represented on the grid, which is inconsistent from a physical
point of view, and the impact on turbulent wall interactions is non-negligible. Moving away
from pseudo-spectral and non-local, higher-order schemes towards second-order schemes
is not desirable: Parnaudeau et al. (2004) showed the improvement of the solution when
sixth-order compact schemes are used. The same holds from the modelling perspective
if high-resolution DNS of high Reynolds number flows with large computational domains
are planned. A possibility to avoid SFOs was initially proposed by Fadlun et al. (2000)
for a direct forcing approach, with an internal treatment of the solid regions to reduce
discontinuities at the interface for the derivative schemes.

2The following paragraph about the Gibbs phenomenon corresponds contentwise to section 2.4. in
Kostelecky and Ansorge (2024a) (cf. chapter 4) and is reproduced here for convenience. The paragraph
is adapted in parts and complemented with figures.
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Fig. 2.5 Gibbs phenomenon for different spatial discretization schemes. (a) Derivatives
of the sinusoidal test function f(x), with nx = 36 and a discontinuity in the center. (b)
Absolute error of the approximate and the exact solution. Grey shaded area depicts the
region where f(x) = 0 and f ′exact(x) = 0.

The direct forcing IBM approach was first introduced by Mohd-Yusof (1997) and Fadlun
et al. (2000) to directly impose the immersed boundary conditions to the discretized
governing equations without dynamical processes, tuning parameters (cf. β1, β2 in equa-
tion 2.61) or blurring of boundaries to obtain a sharp representation of the interface. The
conceptual idea of the direct forcing approach (Giannenas and Laizet (2021) use the term
“No-Reconstruction IBM”, without an internal treatment of the solid body) is to add an
IBM force to the RHS of equation 2.54a in each sub-stage tn of the RK45 scheme. The
IBM force is given by

f IBM
n = ϵ

(
ub − un

τ
− F̃

)
, (2.62)

with u⋆ = ϵub and ub = 0 for a fixed body with rigid boundaries. The provisional
velocity u⋆ is not divergence-free; hence, the pressure Poisson equation (equation 2.54b)
is adjusted as follows

ϕn+1 =
1

τ
∆−1 {∇ [(1− ϵ)u⋆]} . (2.63)

It is important to note that the IBM boundary conditions are applied to u⋆ before
computing the gradient, resulting in a first-order accurate approximation. The pressure
Poisson equation is a global operation solved for the whole computational domain with
pressure values inside the solid body. Moreover, the continuity equation (equation 2.54c)
is modified to ∇ [(1− ϵ)un+1] = 0.
Using a simple no-reconstruction IBM leads to the Gibbs phenomenon, and so to SFOs

in the presence of higher-order schemes. To reduce the discontinuity at the interface for
the derivative schemes, Mohd-Yusof (1997) and Fadlun et al. (2000) proposed a reversed
flow at the first solid grid point adjacent to the interface while ensuring valid boundary
conditions at the interface (no-slip and impermeability). Besides the control of SFOs, a
vital feature of this treatment is that the external flow is unaffected by the internal flow
(Fadlun et al., 2000), allowing the use of more sophisticated methods for flow control
inside the solid region. Parnaudeau et al. (2004) and Parnaudeau et al. (2008) refined
the velocity mirroring approach for investigating flow around a cylinder with sixth-order
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Fig. 2.6 Schematic of the ADR IBM with cubic splines (solid lines) and Lagrangian
polynomials (dotted lines) for two exemplary velocity distributions u1(xi) (blue), u2(xi)
(red) and interfaces with ui|xi=interface = 0 located on grid nodes. The grey shaded area
depicts the solid region, including the interfaces.

compact schemes. Nonetheless, this approach is limited to simple geometries like cylinders
but problematic for objects with sharp edges (Giannenas and Laizet, 2021, Fig. 2 on p.
610).

The alternating direction reconstruction (ADR) IBM3 was initially introduced by Gautier
et al. (2014) and is based on the velocity mirroring procedure for a flow around cylinders
(Parnaudeau et al., 2008). The core idea is to preserve the homogeneity of spatial operators
to simulate more complex geometries. While preserving the physical boundary conditions
at the interface of the solid object (no-slip and impermeability), an artificial flow field is
generated inside the solid region to smooth the resulting field. This is achieved by inter-
polation with one-dimensional Lagrangian polynomials in the direction of the subsequent
derivative evaluation. This procedure is repeated before each spatial derivation in the
respective spatial direction. Hence, the values in the solid region are continuously updated
and only used to evaluate one single spatial derivative, after which they are discarded.
The Lagrangian polynomial function is created by taking the interface points with

velocity values of zero and three adjacent fluid points on either side, resulting in a set of
eight points and, therefore, an eighth-order polynomial function (Fig. 2.6). This method
comes with restrictions regarding the number of required grid nodes. In general, the
interface can be located anywhere between two grid nodes. The first grid point in the fluid
is always skipped to avoid numerical instabilities if the interface is close to a grid node,
and the following three nodes are then taken for reconstruction. Moreover, sufficient grid
points between and inside the objects are essential. In a rough turbulent channel flow study
with mixed convection, Schäfer et al. (2022a) adapted the ADR IBM also for the spatial
derivatives in the energy balance with constant temperature boundary conditions at the
interface. To the author’s knowledge, the ADR IBM was so far only used for Dirichlet
boundary conditions.
Lagrangian polynomials tend to produce signals with large amplitudes close to the

interface as the solid regions get wider with increasing polynomial degrees. This dis-

3The following paragraph about the ADR IBM corresponds contentwise to section 2.4. in Kostelecky and
Ansorge (2024a) (cf. chapter 4), and is reproduced here for convenience. The paragraph is adapted in
parts and complemented with figures.
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advantageous characteristic is attributed to the Runge's phenomenon (Runge, 1901) that
concerns polynomials of higher order on equidistant grids (Fig. 2.6). Consequently, large
derivative values are created close to the interface with significant pressure signals in
the solid regions, which might lead to numerical instabilities. Instead of Lagrangian
polynomials, Giannenas and Laizet (2021) used cubic splines, piecewise and smooth third-
order polynomial functions with reduced amplitudes, in the solid region to avoid Runge's
phenomenon at boundary nodes (Fig. 2.6). In a comprehensive error convergence study,
Giannenas and Laizet (2021) showed that the ADR IBM with cubic splines is well-suited for
sixth-order compact schemes and will not degrade the overall error convergence of the DNS
code. From the numerical perspective, the method is robust since no additional stability
constraints are added. Moreover, the ADR IBM is beneficial from the computational
perspective, as the communication overhead is not increased between computational cores,
and the method fits accordingly to the two-dimensional parallelization strategy of DNS
codes with compact schemes. Furthermore, Giannenas and Laizet (2021) presented a high
scalability of this method on HPC systems.
The ADR IBM is validated successfully in-depth for a flow around a cylinder with

experimental and modelling databases (Giannenas and Laizet, 2021; Gautier et al., 2014,
2013; Parnaudeau et al., 2008) and across different DNS codes (Theobald et al., 2021;
Schäfer et al., 2020) to ensure high data quality and physically reasoned results. The
method has been used in several recent studies, showing its high implementation capability.
The ADR IBM was applied for moving objects (Giannenas and Laizet, 2021), upon wavy
channel turbulence (Khan and Jayaraman, 2019; Jayaraman and Khan, 2020), control a
turbulent jet (Gautier et al., 2014), LES of a circular cylinder wake flow (Resseguier et al.,
2017; Chandramouli et al., 2018), flow over periodic hill (Xiao et al., 2020) and on channel
flow over streamwise-aligned ridges (Schäfer et al., 2019) and with free convection (Schäfer
et al., 2022b).
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3. Implementation and Validation of the
Immersed Boundary Method

This chapter describes the implementation and validation of the previously described ADR
IBM (section 2.5.3) in the open source DNS code tlab1, which is used to generate the
results for Study I & II (chapters 4, 5). The technical implementation of the pressure
treatment and the ADR IBM are presented in section 3.1 and section 3.2, respectively.
The validation of the numerical tools with literature data is presented in section 3.3. Note
the change of the coordinate system in the present chapter2.

3.1 Implementation of the Pressure Grid Staggering and Filtering
The implementation of the horizontal pressure grid staggering with the vertical pressure
filters in the DNS code is described for the flow fields in the pseudo-code in Fig. 3.1.
The tendencies of the flow evolution equation for the RK45 sub-step are stored in the
arrays h[1-3]. Additional memory for computation is guaranteed by the auxiliary arrays
tmp[1-6]. Coriolis and buoyancy forces are added to the tendencies already before
entering the displayed RK45 sub-time loop.
After computing the convection and diffusion terms (line 4), the pressure forcing terms

are prepared with the aim of solving the pressure Poisson equation (line 26) on the horizon-
tally staggered pressure grid. The derivatives in the horizontal tmp1,tmp3 (lines 16,18)
are evaluated in one direction with combined interpolatory derivative schemes (equa-
tion 2.55) and, subsequently, in the other direction with pure interpolation schemes (equa-
tion 2.56). Since the vertical levels of the pressure and velocity grid coincide, the vertical
derivative (line 17) is computed on the velocity grid and interpolated in the horizontal
directions. Note that there is no significant difference in the order of the pure interpolation
and the combined operators. The same applies to the order of operators in line 17 and for
the interpolation back on the velocity grid (lines 32− 34), respectively. The total pressure
forcing term tmp1 in line 21 is on the pressure grid.
The pressure field itself is computed in the pressure Poisson solver (lines 26, 45f.) con-

sidering one singular pressure mode at ki = 0 for the combined interpolatory derivative
schemes. In addition to the pressure, the Poisson solver outputs the vertical derivative

1https://github.com/turbulencia/tlab
2In contrast to the rest of the thesis, this chapter swaps the vertical axis with the spanwise axis. Thus, x is
the streamwise, y is the vertical, and z is the spanwise direction. For the following reasons: (i) consistency
with the conventions of the research community of wall-bounded turbulence (especially for channel flows),
and (ii) convenience in using a consistent coordinate system throughout the code implementation and
validation.
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! Time loop f o r RHS terms ( f low + s c a l a r ) with the RK45 scheme
2 do i =1, rk endstep ! RK45 sub−s t ep s

! buoyancy + Co r i o l i s terms a l ready added , t endenc i e s in h1 , h2 , h3
4 ! compute convect ion + d i f f u s i o n terms with burgers operator

. . .
6 ! compute p r e s su r e ( remove r e s i d u a l d ive rgence )

! ( dte = time step o f each RK45 sub−s tep )
8 tmp1 = h1 + u/dte ; tmp2 = h2 + v/dte ; tmp3 = h3 + w/dte

10 ! apply IBM boundary cond i t i on s on tmp arrays
c a l l IBM bcs ( tmp1 , tmp2 , tmp3)

12

! compute d e r i v a t i v e s f o r the p r e s su r e f o r c i n g
14 ! ( der1 = 1 s t de r i v . ; d e r 1 i n t = 1 s t i n t .− de r i v . ; i n t = in t e rp . )

! ( on pr e s su r e gr id , no IBM re con s t ru c t i on here ! )
16 tmp5=de r1 i n t x ( tmp1) ; tmp4=i n t z ( tmp5) ! d ( ) /dx

tmp6=in t x ( tmp2) ; tmp2=der1 y ( tmp6) ; tmp5=i n t z ( tmp2) ! d ( ) /dy
18 tmp1=in t x ( tmp3) ; tmp6=de r 1 i n t z ( tmp1) ! d ( ) /dz

20 ! p r e s su r e f o r c i n g term
tmp1 = tmp4 + tmp5 + tmp6

22

! Neumann boundary cond i t i on s ( f o r p r e s su r e Poisson s o l v e r )
24 . . .

! p r e s su r e Poisson s o l v e r ( p r e s su r e in tmp1 , dpdy in tmp6)
26 c a l l p r e s s u r e po i s s on ( tmp1 , tmp6)

28 ! compact p r e s su r e f i l t e r in the v e r t i c a l ( f i l t e r p and dpdy )
i f v f i l t e r p compac t : c a l l c ompa c t f i l t e r v e r t i c a l p ( tmp1 , tmp6)

30

! compute p r e s su r e g rad i en t s (dp/dy a l ready there )
32 ! ( on v e l o c i t y gr id , no IBM re con s t ru c t i on here ! )

tmp3 = de r1 i n t x ( tmp1) ; tmp2 = i n t z ( tmp3) ! dp/dx
34 tmp4 = in t x ( tmp6) ; tmp3 = i n t z ( tmp4) ! dp/dy

tmp5 = in t x ( tmp1) ; tmp4 = de r 1 i n t z ( tmp5) ! dp/dz
36

! add pre s su r e g rad i en t s to t endenc i e s
38 h1 = h1 − tmp2 ; h2 = h2 − tmp3 ; h3 = h3 − tmp4 ;

40 ! apply BCs on tendenc i e s again ( zero v e l o c i t i e s in s o l i d )
end do

42

conta in s
44 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

subrout ine p r e s su r e po i s s on ( tmp1 , tmp6)
46 ! forward Four i e r trans form in ho r i z on t a l d i r e c t i o n s

. . .
48 ! s o l v e Laplace equat ion f o r p r e s su r e

! ( s p e c t r a l in ho r i z on t a l + compact i nv e r s e in v e r t i c a l )
50 ! ( only one s i n gu l a r p r e s su r e mode at (kx , kz ) =(0 ,0) )

. . .
52 ! s p e c t r a l v e r t i c a l p r e s su r e f i l t e r ( f i l t e r p and dpdy )

i f v f i l t e r p s p e c t r a l : c a l l s p e c t r a l f i l t e r v e r t i c a l p ( tmp1 , tmp6)
54

! backward Four i e r trans form in ho r i z on t a l d i r e c t i o n s
56 end subrout ine

Fig. 3.1 Pseudo-code for the pressure treatment implementation in the DNS code.

36



3.2. Implementation of the Alternating Direction Reconstruction
Immersed Boundary Method 37

of the pressure. In the case of the spectral filter, the pressure and its vertical derivative
are filtered in the vertical within this routine in their native Fourier space representation,
whereas, if the compact pressure filter is used, they are filtered on the pressure grid after
leaving the pressure Poisson solver (line 29). After the vertical filtering, the pressure
gradients are evaluated backwards on the velocity grid (lines 33 − 35) and added to the
tendencies (line 38) to remove the residual divergence. Since the pressure is computed
globally in the computational domain with non-zero values in the solid regions, boundary
conditions are applied again at the end of the sub-step.

3.2 Implementation of the Alternating Direction Reconstruction Im-
mersed Boundary Method

The implementation of the ADR IBM in the DNS code, which is accomplished as part of
this work, is described in the pseudo-code in Fig. 3.2. An indicator field ϵ(xi) (equation 1.1)
is used to fully describe the spatial properties of the immersed roughness geometry in the
computational domain. This field is prepared in the initialization phase of the IBM (line
6), with a similar shape and size as the computational domain. Grid node positions are
filled with zeros in fluid regions and ones in solid regions, where the interfaces between
the two are attributed to the solid regions since physical boundary conditions are valid
here. Therefore, in the present implementation, the geometry of the roughness elements is
bound to the positions of the grid nodes. The indicator field is either read from an existing
file (line 38) or generated by an intrinsic routine (line 41). To efficiently write the field
to disk, three different format options are implemented: (i) the double-precision floating
point format (64-bit), comparable with the I/O of complete three-dimensional fields of the
code, (ii) the integer format (8-bit), (iii) the most efficient bitwise representation (1-bit),
which only needs 1/64 storage compared to option (i).
The IBM algorithm requires further information about the roughness geometry besides

the indicator field ϵ(xi) to perform the one-dimensional alternating direction reconstruction
with cubic splines (section 2.5.3). Since the cubic spline reconstruction in the solid
regions is a line-by-line operator executed independently before each spatial derivative,
the algorithm must know the number of objects and their exact positions in each line. For
example, in the x-direction, the two-dimensional field ϵx,nobj(y, z) of size ny × nz with the
normal x-vector stores the number of objects in each line. The reduced three-dimensional
fields ϵx,start (y, z,nobj), ϵx,end (y, z,nobj) of sizes ny × nz ×max {ϵx,nobj(y, z)} contain the
indices of the left and right interfaces of the solid objects, respectively, when moving
along the x-axis with increasing indices. Each time the code is started, nine descriptive
geometry fields of reduced sizes are created for a three-dimensional flow based on the
indicator field ϵ(xi) (line 43).
A self-written library is implemented to evaluate cubic splines between left and right

interfaces while ensuring physical boundary conditions for velocities u|xi=interface = 0. The
splines are evaluated with the help of a predefined number of solid points and fluid grid
points on each side of the object (Fig. 2.6). In addition to the interface points, at least two
points are needed on each side to construct the cubic splines, which sets the limit for spline
construction. Moreover, the outermost fluid points can already serve as interface points
of the neighboring elements. Theoretically, one liquid point on each side of the object is
sufficient. However, the intended setting consists of three fluid points and a minimum of
two solid points. These limits reduce the risk of numerical instabilities, especially for high
Reynolds number when local gradients are expected to be large. Clamped-type boundary
conditions are taken to match the first derivative values at the endpoints. In the non-
periodic vertical direction, the values of the fluid points are mirrored at the lower domain
boundary. Furthermore, the ADR IBM is implemented for scalar fields (passive scalar,
buoyancy) with Dirichlet boundary conditions, with the restriction that the objects on the
ground and the lower domain boundary have identical boundary values (section 2.2.8).
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program DNS
2

! i n i t i a l i z a t i o n part o f the DNS code ( IO , memory , MPI, FFTW, . . . )
4 . . .

! i n i t i a l i z a t i o n o f the IBM module
6 ! ( c r e a t e d e s c r i p t i v e geometry f i e l d s )

c a l l IBM in i t i a l i z e ( g eomet ry f i e l d s xyz )
8 ! apply boundary cond i t i on s on r e s t a r t f i e l d s ( f low + s c a l a r )

c a l l IBM bcs (u , v ,w, s ) ! important i f geometry changes
10 ! en te r time loop o f the RK45 scheme

do i=i t s t a r t , i t s t o p
12 i f ( DNS f i l t e r = true ) then

c a l l DNS f i l t e r (u , v ,w, s )
14 c a l l IBM bcs (u , v ,w, s ) ! i f f i l t e r i n g i s a c t i v e en f o r c e BCs

end i f
16 ! compute advect ion + d i f f u s i o n with modi f i ed burgers operator

! ( modi f i ed f i e l d s with cubic s p l i n e s in s o l i d r e g i on s )
18 c a l l opr burgers IBM xyz ( )

! compute p r e s su r e p r o j e c t i o n step (tmp conta in s pre . f o r c i n g )
20 tmp = . . .

c a l l p r e s s u r e po i s s on (tmp)
22 ! add pre s su r e x−/y−/z−d e r i v a t i v e s to f low tendenc i e s ( no IBM! )

. . .
24 ! apply BCs on tendenc i e s again ( zero v e l o c i t i e s in s o l i d )

. . .
26 end do

! f i n a l i z e program (IO o f f i e l d s / averages . . . , . . . )
28 c a l l DNS f ina l i z e ( )

30 conta in s

32 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
subrout ine IBM in i t i a l i z e ( g eomet ry f i e l d s xyz )

34 ! read IBM parameters from dns . i n i with con s i s t ency check
c a l l IBM read parameters ( i n i f i l e )

36 ! read / generate eps f i e l d
i f ( i bm eps ex i s t = true ) then

38 c a l l IBM read eps ( eps )
e l s e

40 c a l l IBM generate eps ( eps )
end i f

42 ! g enerate d e s c r i p t i v e geometry f i e l d s ( nobi , nobi b , nob i e )
c a l l IBM generate geo ( )

44 ! v e r i f y the used geometry f i e l d
c a l l IBM ver i fy geo ( )

46 ! s t agge r eps on the p r e s su r e g r id
c a l l IBM stagger ( )

48 ! compute s o l i d / f l u i d f r a c t i o n s f o r c ond i t i o na l averag ing
c a l l IBM gamma( )

50 ! d e f i n e which MPI threads are a c t i v e / i d l e f o r the IBM
c a l l IBM check procs ( )

52 end subrout ine
! − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

54

end program DNS

Fig. 3.2 Pseudo-code for the ADR IBM implementation in the DNS code.
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Objects on the upper domain boundary are not supported if the IBM is applied to scalar
fields.
The initialization part contains the following steps: (i) the descriptive geometry fields

are verified (line 45), (ii) the indicator field ϵ(xi) is horizontally staggered on the pressure
grid to ϵp(xi) (line 47), (iii) the solid and fluid fractions are computed from ϵ(xi) for
conditional averaging (line 49), (iv) and both active and idle threads for the IBM module
are identified (line 51). The last step (iv) may lead to a load imbalance of the threads but
was observed to speed up the implementation.
Before entering the time-integration of the code (line 11), boundary conditions are

applied in line 9 to flow and scalar fields, with

u(xi) 7→ u(xi) [1− ϵ(xi)] , respectively s(xi) 7→ s(xi) [1− ϵ(xi)] + sBCsϵ(xi), (3.1a,b)

where sBCs describes the fixed scalar boundary values. When filtering is applied to flow
fields, boundary conditions are enforced again at the beginning of the time-integration
loop (line 14) since global filter operations can deteriorate boundary values. The crucial
part of the ADR IBM, namely the cubic spline interpolation, is performed within the
low-level Burgers-operator (line 18), where first and second derivatives are evaluated for
the advection and diffusion terms of the NSE. The Burgers operator in the direction i is
defined as

Bi(φ) = uD′
i(φ) +

1

ReΛ
D′′

i (φ), (3.2)

where φ is either a velocity or scalar field and D′
i, D

′′
i are the discrete first and second

derivatives. Before passing φ to the discrete derivative operators inside the Burgers kernel,
the one-dimensional reconstruction is carried out in the solid regions. Afterwards, the
pressure forcing term for the Poisson solver (line 21) is computed without using the ADR
since the pressure grid staggering (section 2.5.2) acts already as a filter. Solving the
pressure Poisson equation is a global operator, i.e. the pressure is defined in the entire
computational domain and pressure gradients are thus evaluated without the ADR. Again,
the IBM boundary conditions are enforced on the tendencies.
For reasons of clarity and in order to transfer the implementation on further flow

problems, the ADR IBM is written in modular form complying to an object-orientated
software development strategy. Moreover, the implementation is fully compatible with the
code’s parallelization strategy. The computation for the reconstruction is active on a low-
level code basis, which increases the serial part for each thread slightly but is significantly
dependent on the simulation setup. A three-dimensional flow problem with one scalar
(four prognostic variables) results in a total random-access memory (RAM) demand of
15 three-dimensional fields. They are needed for the prognostic variables, tendencies and
temporal working arrays. When using the ADR IBM, two additional fields ϵ(xi), ϵp(xi)
are stored with an overall memory increase of approximately 13%.

3.3 Validation of the Numerical Tools
Newly implemented numerical methods (sections 3.1, 3.2) in a DNS code require validation.
An overview of existing strategies and recommendations for validating a DNS code is
described in Coleman and Sandberg (2010). In line with that study, there is no need in
the present dissertation to validate the DNS code with comprehensive convergence studies
or comparisons of analytical laminar flow problems since the core of the numerical solver is
well-tested (Mellado and Ansorge, 2012; Ansorge and Mellado, 2014, 2016) and unchanged
by the current implementation.
Well-established literature databases were chosen for validation since no analytical so-

lutions for a three-dimensional, fully-developed turbulent flow are known. By neglecting
the rotation of the reference frame (Coriolis force) and density stratification (buoyancy),
the flow simplifies to the canonical turbulent channel flow problem (cf. Kim et al., 1987).
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This section first describes the numerical setup of a fully-developed turbulent channel
flow (section 3.3.1), followed by the validation of the implemented horizontal pressure grid
staggering and the ADR IBM in four stages:

• Validating the horizontal pressure grid staggering with a vertical pressure filter using
data from a smooth and a rough, turbulent channel flow (sections 3.3.2, 3.3.3).

• Comparing rough turbulent channel flow with streamwise aligned bars on the upper
and lower boundary with data from another DNS code (section 3.3.4).

• Comparing street canyon air flow using a suitable DNS setup with wind tunnel
experiments and LES data (section 3.3.5).

• Investigating the effect of the IBM on scalar fields (section 3.3.6).

3.3.1 Numerical Setup of the Turbulent Channel Flow

General setup and dimensions. The simulations in this chapter cover a fully-developed,
three-dimensional turbulent channel flow driven by a constant streamwise pressure gra-
dient. All simulations are conducted on a Cartesian mesh xi = (x, y, z)T , representing
the streamwise, wall-normal and spanwise directions. The computational domain size is
[Lx × Ly × Lz] = [8δ × 2δ × 4δ] with the half-channel height3 δ ≡ 1, except for the open
channel flow configuration in section 3.3.5, where Ly = δ. The computational mesh is
stretched only in the vertical direction with a hyperbolic tangent function and a maximum
grid stretching of d(∆y) / dy ≲ 4.5% to keep the spatial discretization scheme on non-
uniform grids stable (Shukla and Zhong, 2005). In the absence of surface roughness, the
grid stretching starts far above the viscous sublayer at y+ ≳ 20, and in the case of surface
roughness, it starts on top of the obstacles. A fine resolution is required in the vicinity of
the wall to resolve the viscous sublayer. In contrast, a coarser resolution is sufficient in
the center region of the channel where large-scale turbulent motions reside, and velocity
gradients are expected to be small. A uniform grid spacing is used in the horizontal
directions.

Domain configuration. The validation involves three different domain configurations of
turbulent channel flow. First, a closed channel flow is considered with smooth walls (case
without an IBM). Second, a closed channel flow with four evenly distributed streamwise
aligned bars is considered (Fig. 3.3a). The bars are located in phase on the upper and
lower wall of the channel with the following dimensions: width and height W = H = 0.1δ
and a uniform spacing S = 1δ (center to center). Third, an open channel flow is considered
to mimic the wind tunnel and LES domain of the study by Llaguno-Munitxa et al. (2017)
(Fig. 3.3b) in the sense of geometric similarity. In this setup, seven housing blocks of
equal height, width and spacing (center to center) W = H = S/2 = 1/8δ are located
perpendicular to the main flow direction. In the reference case, this complies with a
housing block size of W = H = S/2 = 0.076 m.

Boundary conditions. Periodic boundary conditions are applied to velocity and tempera-
ture fields in the streamwise and spanwise directions, resulting in infinitely extended walls
in horizontal directions. No-slip and impermeability boundary conditions are applied
to the flow fields at rigid boundaries. Free-slip boundary conditions are used at the
upper boundary for open channel flows. Isothermal boundary conditions are chosen for
temperature fields with a constant value on the upper and lower wall and inside the
roughness elements. For validation purposes, temperature is treated as a passive scalar.

3In this chapter only, δ is the (half) channel height for a (closed) open channel flow, which otherwise refers
to the turbulent boundary layer thickness (section 2.4.2).
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Fig. 3.3 Schematic of the domain configurations of turbulent flows. (a) Closed channel flow
with streamwise aligned bars, the flow is into the plane, and (b) open channel flow with
spanwise housing blocks, the flow is from left to right, imitating the setup in the reference
study of Llaguno-Munitxa et al. (2017) with geometric similarity.

Forcing of the simulations. In principle, turbulent channel flow is forced either with a
constant pressure gradient (CPG) in the streamwise direction or with a constant flow
rate (CFR). These options translate for the CPG strategy to a constant forcing term and
a fluctuating bulk velocity and for the CFR strategy to the opposite – a fluctuating forcing
term and a constant bulk velocity. During the simulations, the time-varying bulk velocity
ũb(t), which is defined as

ũb (t) =
1

Ly

∫ Ly

0
⟨u⟩ (y, t) dy, (3.3)

is tracked for the smooth channel flow with the CPG strategy. These fluctuations are small
and unbiased and serve as a measure for bulk convergence of the flow if a stable long-term
average ub has formed. Combining both forcing strategies leads to the constant power
input (CPI) forcing, as described in Quadrio et al. (2016). Here, the CPG approach is
chosen for the current channel flow simulations4, and the forcing strategy is briefly outlined
below; a more detailed derivation can be found in the Appendix.
The following set of fundamental equations (Kim et al., 1987; Kim and Moin, 1987) in

non-dimensional form describes the turbulent channel flow:

∂uj
∂xj

= 0, (3.4a)

∂uj
∂t

+ ui
∂uj
∂xi

= − ∂p

∂xj
+

1

Re
∂2uj
∂xi∂xi

+ δ1jFCPG, (3.4b)

∂s

∂t
+ uj

∂s

∂xj
=

1

ReSc
∂2s

∂xj∂xj
, (3.4c)

consisting of the conservation equations for mass, momentum, and passive scalar. Depend-
ing on the choice of the characteristic scales, different formulations of the Reynolds number
Re exist (equations A.1). Here, the centerline velocity ucl = ⟨u⟩|y=δ and the half channel
height δ are taken, which results in the centerline Reynolds number Re ∧= Recl = δucl/ν
as the governing parameter of the turbulent channel flow (and Sc). For comparison
with other studies, the friction Reynolds number Reτ (equation 2.34) is given. Both
Reynolds numbers are linked with a semi-empirical power law (Dean, 1978; Pope, 2000)

4Quadrio et al. (2016) showed in their study that the choice of a certain forcing has no significant effect on
the flow statistics.
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and combined to the forcing term FCPG as follows:

Recl =

(
Reτ
0.116

) 1
0.88

, FCPG =

(
Reτ
Recl

)2

, (3.5a,b)

where the CPG forcing term FCPG = τw/δ compensates for the wall shear stress τw.
Applying these relations directly to a rough channel flow yields a friction Reynolds

number that is too low as the total shear stress increases. Therefore, a correction of FCPG

is required. Roughness elements in the flow domain reduce the cross-sectional area of the
channel, which is expressed in terms of the effective half-channel height δeff = δ − δmelt.
The meltdown height δmelt of the obstacles is defined as

δmelt =
1

2

∑nobj

i=1 Vobj,i
LxLz

, with i = 1, . . . , nobj, (3.6)

half of the sum of all nobj obstacle volumes Vobj divided by the horizontal plane of the
computational domain. If objects are present on both walls of the closed channel, the
equation (3.6) is valid; otherwise, the factor 1/2 is skipped for an (open) channel flow with
objects on only one wall. Since the wall is not smooth, the wall shear stress is evaluated
at a virtual height δmelt, which avoids evaluating the wall shear stress on oblique surfaces
by a simple bulk formulation (Chan-Braun et al., 2011). The CPG forcing term for the
rough turbulent channel flow is corrected by

FCPG,rough

FCPG,smooth
=

(
δ

δeff

)3

. (3.7)

The detailed derivation of the presented relations is presented in the Appendix.

Data sampling. A sufficient simulation duration and exclusion of the initial transient
of the simulations guarantee statistical convergence of the presented cases. Convergence
improves further by exploiting the centerline symmetry of the closed channel configurations
by averaging over the half-channel height. A phase averaging operator of the flow variable
φ is introduced by Stroh et al. (2016) for the closed channel flow setup (Fig. 3.3a) with
streamwise aligned bars, given by

⌊
φ (yj , zk)

⌋
=

1

npntnx

np∑

m=1

nx∑

i=1

nt∑

l=1

φ (xi, yj , zk +mS, tl) , (3.8)

where nt, np, and nx are the numbers of samples, phases and grid nodes in the streamwise
direction, and S is the spacing of the bars.

3.3.2 Validation of the Horizontal Pressure Grid Staggering for a Smooth Wall

The horizontal pressure grid staggering combined with a pressure filter in the vertical
direction (section 2.5.2) is validated using a smooth turbulent channel flow with a friction
Reynolds number of Reτ ≈ 180 and a rough channel flow at Reτ ≈ 360 (Fig. 3.3a).
Relevant simulation parameters are displayed in Table 3.1. Available reference data from
the literature is computed on different computational domains: [Lx×Ly×Lz] = [8π×2×3π]
for Lee and Moser (2015) and [Lx×Ly×Lz] = [4π×2×4/3π] for Vreman and Kuerten
(2014).
In the first step, mean statistics of the implemented pressure grid staggering (case SC180)

are compared with smooth channel flow data from Lee and Moser (2015) and the DNS
code Xcompact3d (Laizet and Lamballais, 2009). Lee and Moser (2015) use a spectral DNS
code (Lee et al., 2013) by solving the NSE in the vorticity formulation (Kim et al., 1987).
In contrast, the Xcompact3d code is equipped with compact schemes of sixth-order and a
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Case Type Reτ nx × ny × nz ∆x+ ∆y+min ∆y+max ∆z+ Sc t+

SC180 S 179.48 256× 194× 128 5.625 1.008 3.571 5.625 0.71 20

Xcompact3d S 179.79 256× 193× 128 5.625 1.000 3.515 5.625 0.71 143

Moser5 S 182.09 1024× 192× 512 4.500 0.074 3.400 3.100 - 32

Vreman6 S 180.00 512× 256× 256 4.400 0.240 2.230 2.900 - 200

RC360 R 359.43 512× 384× 320 5.623 0.997 3.622 4.500 1.00 62

Xcompact3d R 360.28 512× 321× 384 5.625 1.000 5.063 3.750 1.00 31

Table 3.1 Simulation parameters of the smooth (S) and rough (R) turbulent channel flow.
The grid spacing ∆x+i is normalized with the viscous length scale ν/uτ , and the simulation
duration t+ is normalized with the viscous time scale δ/uτ . Results from cases SC180 &
RC360 are part of this work.

partial pressure grid staggering in all spatial directions. Overall, an excellent agreement is
observed between the first-order and second-order mean statistics with the reference data
(Figs. 3.4). Minor deviations are found in the root-mean-square (rms) of the mean passive
scalar variance (Fig. 3.4d) for y/δ > 0.2, where the maximum deviation of approximately
−2.2% is found at y/δ ≈ 0.6. Nevertheless, the newly implemented pressure treatment
does not affect the statistics’ quality.
Spurious pressure oscillations occur if pressure and velocities are computed on collocated

grids (Laizet and Lamballais, 2009). In turn, the numerical noise in the pressure fields will
degrade the quality of the velocity fields because of the inherent coupling resulting from
the incompressibility assumption. It is important to note that this phenomenon is not
caused by insufficient grid resolution but rather by the Poisson solver amplifying energy
in the near-singular wavenumber range. At higher grid resolution, the spectral energy
density decreases even further, and the tail of the spectra returns to a certain level at the
highest wavenumbers, which seems to be independent of grid resolution. Furthermore, the
phenomenon is intensified in the presence of an IBM, as finer grid resolution is required
to resolve the viscous sublayer around the objects sufficiently. At the same time, the
IBM adds energy at the small scales by the locality of forcing. Oscillations in the non-
staggered simulations can be observed in the one-dimensional energy density spectra of
the pressure fluctuations in Figs. 3.5 as a cusp in the high wavenumber tails of the spectra.
The pressure fluctuation spectra are compared with Vreman and Kuerten’s (2014) data,
which is generated with a staggered finite difference code.
The staggering acts like a filter by removing energy from the pressure fluctuations at

the largest wavenumbers (smallest scales) in both horizontal directions (Figs. 3.5a,b). As
proposed (section 2.5.2), large scales in the pressure and velocity spectra are not affected
by the pressure treatment; only the tail of the spectra decreases towards zero values. An
accumulation of energy at the smallest scales in the velocity fluctuations is only observed
in the spanwise direction for the spanwise velocity component (Fig. 3.5d). This numerical
artefact in the non-staggered arrangement is assumed to be closely linked to the Poisson
solver for the pressure since the unphysical behavior at the tail of the spectra disappears
when staggering is applied.

3.3.3 Validation of the Horizontal Pressure Grid Staggering for a Rough Wall

In the second step, the effect of the proposed pressure treatment (section 2.5.2) is investi-
gated on a rough flow with an active ADR IBM. The pressure is staggered in the horizontal
directions and filtered in the vertical direction with a spectral pressure filter, with the filter
strengths lcut = [3, 4] (equations 2.58). Fig. 3.6a displays the phase-averaged pressure field

5Reference data from Lee and Moser (2015).
6Reference data from Vreman and Kuerten (2014).
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Fig. 3.4 Comparison of mean vertical profiles of smooth channel flow in viscous units.
(a) Mean streamwise velocity, (b) mean passive scalar, (c) mean Reynolds stresses, and
(d) mean passive scalar variance.
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Fig. 3.5 Comparison of spectral energy densities of (non-)staggered arrangements in
streamwise and spanwise direction with literature data. (a,b) Pressure fluctuations at
various vertical levels, and (c,d) velocity fluctuations at y+ = 30.
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surrounding one streamwise aligned bar, with different vertical and horizontal positions of
the pressure slices. The solution of the pressure Poisson solver is a pressure field with values
in the entire simulation domain, including the solid regions. One-dimensional pressure
signals in the horizontal and vertical directions are not perfectly aligned (cf. Figs. 3.6b,c)
since pressure fields are not perfectly converged after each 4000 computational iteration
steps.
The spanwise pressure distribution (Fig. 3.6c) reveals the advantage of applying a

horizontal pressure grid staggering. Spurious pressure oscillations in the collocated ar-
rangement are smoothed by solving the pressure on a horizontally staggered grid. Elimi-
nating pressure oscillations in the vertical is not as efficient as in the spanwise direction.
Nevertheless, the applied vertical pressure filters (section 2.5.2) remove energy from the
tail of the spectra by smoothly truncating the spectra at a specific wavenumber defined
by the parameters lcut and c25. Noticeable oscillations in the vertical pressure signal
are still present at z/δ = 0.45 after applying the filter (Fig. 3.6d). This spanwise location
coincides with the interface, respectively, the vertical wall of the bar. To further investigate
the behaviour of vertical pressure oscillations at this particular interface, an additional
simulation is performed with parameters similar to RC360 but with a finer vertical grid
resolution of ny = 1024. In viscous units, the fine resolution corresponds to y+min ≈ 0.4
at the bottom and up to the height of the bars, and y+max ≈ 1.4 in the center of the
channel. The appearance of spurious pressure oscillations is clearly linked to the vertical
grid resolution and vanishes at higher resolution (Fig. 3.6d).
A similar behavior of the pressure treatment is observed not only in the mean fields but

also for the distributions of spectral energy densities of pressure fluctuations at various
vertical levels and velocity fluctuations at y+ = 30, which lies within the height of the
roughness elements H+ = 36 (Figs. 3.7). Here, considering only the spanwise direction is
sufficient due to the one-dimensional roughness structure of the streamwise aligned bars.
Reoccurring peaks in the velocity spectra in Fig. 3.7b are not related to spurious oscillation.
They are a signature that the spectra is computed from three-dimensional velocity fields
with zero velocities in the solid regions.

The elimination of artificial spurious pressure oscillations from the numerical solution
by using a horizontally staggered pressure grid in combination with a filter in the vertical
does not impact the large and intermediate scales (Fig. 3.7a). The velocity spectra is
solely changed at the smallest scales for the spanwise velocity in the spanwise direction
(Fig. 3.7b). This provides a stable and consistent algorithm for the representation of
geometrically complex horizontal boundaries that maintain the advantages of the code,
namely modular implementation, high scalability, and flexibility concerning the choice of
the wall-normal grid. The next step validates the proposed algorithm against an existing
DNS code (section 3.3.4) and wind tunnel measurements in combination with LES data
(section 3.3.5).

3.3.4 Comparison of Rough Turbulent Channel Flow Data

The implementation is tested against the Xcompact3d algorithm, which is well-validated
against literature data (Parnaudeau et al., 2008; Gautier et al., 2013, 2014; Giannenas
and Laizet, 2021). Besides similar spatial discretization schemes and order of accuracy,
Xcompact3d uses the ADR IBM described in section 2.5.3, with a distinct difference in the
interpolation strategy used for the artificial flow inside the solid regions. In Xcompact3d,
Lagrangian polynomials are applied instead of cubic splines as in the present code. Cubic
splines efficiently avoid the well-known problem of Runge's phenomenon (Runge, 1901) for
polynomial interpolation of high-order on equidistant grids, where large errors are observed
at the boundaries of an interval. This phenomenon is analogous to the Gibbs phenomenon
in spectral space for periodic functions with discontinuities.
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Case Reτ,eff Reb,eff u+b,eff Cf,eff Nueff

RC360 359.43 5741.77 15.97 7.84 · 10−3 15.21

Xcompact3d 360.28 5671.62 15.74 8.07 · 10−3 15.28

Table 3.2 Global flow properties for rough channel flow with streamwise aligned bars.
Reynolds numbers and bulk velocity according to equations (A.1a,b,e), skin friction
coefficient Cf,eff = 2 (uτ,eff/ub,eff)

2 and Nusselt number according to Stroh et al. (2020a),
cf. their equations 4-8. Results from case R360 as part of this work.

Both rough turbulent channel flow simulations are computed with a similar friction
Reynolds number of Reτ,eff ≈ 360. The grid resolution and dimensionless numbers can be
found in Table 3.1, and a sketch of the domain configuration is shown in Fig. 3.3a. This
simulation setup with streamwise aligned bars generates a secondary motion of Prandtl's
second kind (Prandtl, 1952) orientated perpendicular to the main flow direction (Vanderwel
et al., 2019; Schäfer et al., 2019).

Effective integral flow properties in Table 3.2 (denoted with the subscript (·)eff) are eval-
uated with the effective half-channel height δeff respectively at the virtual mean roughness
height y0 = δmelt (section 3.3.1). A closer look reveals a slightly lower friction Reynolds
number by 1.6‰ than the initially intended Reτ = 360. Therefore, the friction velocity is
also slightly reduced by 1.1‰ compared to the Xcompact3d data. The friction coefficient
between both codes decreases by 3%, resulting from the enhanced bulk velocity of 1.4%
due to a lower wall shear stress. The deviations between both codes are in an acceptable
range. They can be explained with the difference of the IBM interpolation schemes and
differences in the total simulation time t+.
The vertical mean profiles of first and second-order statistics are derived by applying

conditional averaging (section 2.4.1) to compute the mean values within the roughness
y/δ ≤ 0.1δ (Figs. 3.8). The mean velocity and passive scalar profiles agree well with the
reference data for the inner layer scaled in viscous units and the outer layer scaled in bulk
units (Figs. 3.8a,b). Minor deviations appear at y/δ ≈ 0.2 scaled in viscous units, where
a reduced streamwise velocity is observed (Fig.3.8a), emerging from the lower friction
Reynolds number. In the case of outer scaling with bulk properties of the flow, the mean
profiles match perfectly (Fig.3.8b). This alleged discrepancy underlines the importance
of correct scaling corresponding to the flow region in which the data is compared. The
variances for the mean streamwise velocity

〈
u′u′

〉
and the passive scalar

〈
s′s′
〉
agree well

with the reference data in the range of y/δ ≥ 0.15, whereas deviations occur in the vicinity
of the bars for y/δ < 0.15 (Figs. 3.8c,d). Both variances are increased by up to 10%
between roughness elements. Differences in the implementations of the ADR IBMs in
the codes may explain this behavior: Lagrangian polynomials in Xcompact3d instead of
cubic splines in the present algorithm. Furthermore, fluid-solid interfaces can be located
anywhere between grid points in Xcompact3d. The first fluid grid point next to an interface
is skipped to avoid numerical instabilities in the interpolation procedure. This could affect
turbulent properties in the IBM’s operating range because of a filtering effect. For clarity,
the other non-zero mean vertical Reynolds stress profiles (

〈
v′v′
〉
,
〈
w′w′〉 ,

〈
u′v′

〉
) are not

displayed here but show a good agreement for y/δ ≥ 0.15 with the reference data and

slightly reduced values for y/δ < 0.15 with a maximum reduction in
〈
w′w′〉+ of 5%.

In summary, the present comparison of rough channel flow with reference data from
a well-tested DNS code Xcompact3d and the current IBM implementation present an
excellent overall agreement between integral flow properties and first-order and second-
order statistics above roughness elements. In the reach of roughness elements, where the
ADR IBM is mainly impacting the flow, deviations in the Reynolds stresses are observed
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Fig. 3.8 Comparison of mean vertical profiles of rough channel flow, non-dimensionalized
in inner and outer units. (a) Mean streamwise velocity and mean passive scalar in viscous
units, and (b) in bulk units; (c) mean streamwise velocity and passive scalar variance in
viscous units, and (d) in bulk units. Dashed lines are conventional averages, and grey
shaded areas depict the height of the bars.

between both codes and are related to implementation differences. Previous comparison
studies of codes using body-conforming grids and IBM codes show similar magnitudes of
deviations in second-order statistics (Theobald et al., 2021; Schäfer et al., 2020, pp. 91-96).
Besides the consistency of the results of both codes, the following validation step shows
the physical consistency of the ADR IBM implementation.

3.3.5 Comparison with Wind Tunnel and LES Data

The second part of the IBM validation is a comparison between the reference study of
Llaguno-Munitxa et al. (2017) and a current DNS setup with geometric similarity. In
the reference study, air flows in street canyons were investigated in LES and wind tunnel
experiments with different roof geometries. This validation step aims to ensure physically
reasonable results of the implemented IBM. All vertical profiles of DNS, LES and wind
tunnel data presented in the following correspond to measurements in the middle of the
last street canyon – the center between two housing blocks with flat roofs (Fig. 3.3b).
Assuming that the flow at this position is in equilibrium with the new rough boundary
conditions, respectively, the flow is fully developed here.

Setup and scale considerations. The simulation setup is described in section 3.3.1 and
depicted in Fig. 3.3b with the simulation parameters in Table 3.3. Three simulations
were carried out with an identical viscosity, roughly constant friction Reynolds number of
Reτ ≈ 400, but with increasing buffer strengths of αbuf = [0.25, 0.5, 1.0] (cf. equations 3.9).
The numerical (LES) and wind tunnel experiments exhibit geometric similarity with a
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Case Reτ αbuf nx × ny × nz ∆x+ ∆y+min ∆y+max ∆z+

WT025 441.21 0.25 1024× 256× 1024 3.45 0.886 3.416 1.72
WT050 415.21 0.50 1024× 256× 1024 3.24 0.834 3.215 1.62
WT100 406.87 1.00 1024× 256× 1024 3.18 0.817 3.150 1.59

Table 3.3 Simulation parameters of rough open channel flows with the buffer strength αbuf .

test section of [Lx × Ly × Lz] = [49H × 8H × 12H], where H = 0.076 m is the building
height, and a grid size of [nx × ny × nz] = [490 × 80 × 120]. The Reynolds numbers
for the wind tunnel experiments, based on the building height and viscosity of air νair ≈
1.5 ·10−5 m2/s, are estimated as ReH,WT ≈ [1.8, 3.8] ·104 for the inlet velocities of ur,WT =
[3.5, 7.5] m/s. Analogously to this definition, the present DNS cases have a Reynolds
number of ReH,DNS = 1.14 · 103 (Reτ ≈ 400, ur,DNS ≈ 0.48), which leads to a Reynolds
number disparity between wind tunnel and DNS by the factors 16, respectively 33.
Assuming the existence of a viscous sublayer in the vicinity of the housing blocks, the grid

resolution selected in Table 3.3 in the horizontal directions does not meet the requirement
of ∆x+i ≈ 1 in the vicinity of vertical walls. Consequently, oscillations appear in the
velocity fields in the horizontal directions, which are most pronounced at the upper edge
of the first housing block. Further investigations showed a distinct dependence between
a grid resolution that is too coarse and the occurrence of these velocity oscillations. A
spectral filter comparable to the one described in section 2.5.2 is applied to reduce the
oscillations while ensuring a feasible simulation expense.

Buffer zone. Periodic boundary conditions are applied in the horizontal directions. This
assumption is reasonable in the spanwise direction, as wall effects from lateral boundaries
of the test section in the wind tunnel should be avoided during measurements. However,
a periodic boundary condition in the streamwise direction is not appropriate to match the
quasi-laminar inflow condition of the reference study. Therefore, a Rayleigh-damping layer
(sponge region) is located at the first and last eighth of the domain length to suppress the
wake of the flow and turbulence enhanced by the roughness. A relaxation term modulated
by the coefficient σ(x) is added to the RHS of the NSE (3.4b) and reads as

(
∂uj
∂t

)

buf

= −σ(x) (uj − uj,buf) , (3.9a)

where σ(x) =





xb,1 ≤ x ≤ xe,1 : αbuf

(
xe,1−x
∆xbuf,1

)βbuf

xe,1 < x < xb,2 : 0

xb,2 ≤ x ≤ xe,2 : αbuf

(
x−xb,2

∆xbuf,2

)βbuf

,

(3.9b)

with ∆xbuf,i = xe,i − xb,i and i ∈ {1, 2} ⊂ N (Hu, 1996). The buffer regions start and end
in the streamwise direction at xb,i ∈ {0, 7δ} ⊂ R, xe,i ∈ {δ, 8δ} ⊂ R, each buffer with a
length of ∆xbuf,i = δ. The buffer parameters are set to αbuf = [0.25, 0.5, 1.0] and βbuf = 2.
With this buffer area, the flow is damped to a certain extent to the quasi-laminar velocity
profile ubuf(y) with vanishing vertical and spanwise velocities uj,buf = (ubuf (y) , 0, 0)

T ,
which is given by

ubuf(y) =

{
y < ytr : −utr

y2tr
(y − ytr)

2 + utr

ytr ≤ y ≤ Ly : utr,
(3.10a)

where utr = ub,buf

(
1− ytr

3δ

)−1
, with ub,buf =

1

δ

∫ δ

0
ubuf dy. (3.10b,c)
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Fig. 3.9 Mean velocity profiles of the
inflow at x/δ = 1 (solid) and the outflow
at x/δ = 7 (dotted) for the three simula-
tions (WT025, WT050, WT100) with their
corresponding buffer strengths αbuf . The
buffer velocity profile ubuf(y) is displayed
in black. The wall-normal direction y is
normalized with the building height H,
as depicted by the grey shaded area.
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The profile ubuf(y) consists of a lower parabolic velocity profile and an upper constant
transition velocity utr, both smoothly blended at the transition height ytr. Therefore, the
transition height and the bulk velocity of the profile ub,buf must be estimated in advance.
For this purpose, a simulation without buffer zones is conducted to measure the bulk
velocity ub and the friction Reynolds number Reτ . Afterwards, the bulk velocity and the
velocity gradient at the wall dyubuf |y=0 of the buffer velocity profile are matched with the
previous measurements. The transition height is determined with the following quadratic
relation

y2tr − 3δytr + 6
ubδ

3

Re2τν
= 0. (3.11)

An unbuffered flow with Reτ ≈ 400 would have a transition height of ytr/δ ≈ 1/10,
close to the building height H/δ = 1/8. Inflow and outflow conditions are shown in
Fig. 3.9. The shape of the mean inflow velocity profiles at x/δ = 1 resembles the
target buffer velocity to a higher degree with increasing buffer strength. As the buffer
strength increases, the remaining turbulence reduces more and more. This does not lead
to physically reasonable results since a certain level of inflow turbulence always exists in
the wind tunnel. Nevertheless, the profile with αbuf = 1.0 is a good representation of the
LES Inlet#1 -condition (cf. Llaguno-Munitxa et al., 2017, their Fig. 4d). The exact inflow
profile of the wind tunnel in the near-wall region is not documented.

Instantaneous velocity fields. The effect of the applied buffer zone on the flow in the
streamwise direction is not only observable in the mean inflow and outflow profiles in
Fig. 3.9 but also in the instantaneous snapshots of the velocity fields. These velocity
snapshots are normalized with the free stream velocity ur (Figs. 3.10a,b). Vertical and
spanwise (not shown) velocities vanish when passing the buffer region. In the instantaneous
velocity snapshot (Fig. 3.10a), very little turbulence activity and a quasi-laminar inflow
are observed between the buffer and the first housing block. The streamwise distribution
of turbulence activity in the flow can be analyzed by the vertical component of enstrophy
ξy of the flow, which is given by

ξy =
1

LyLz

∫ Lz

0

∫ ỹ

0
ω2
y dy dz, (3.12)

where the squared vertical vorticity ωy = (∂zu− ∂xw) is integrated vertically from the
lower boundary up to ỹ = H or over the entire domain ỹ = δ. As shearing effects
are excluded from this analysis, the streamwise and spanwise enstrophy components are
not considered. Laminar inflow conditions with a vanishing enstrophy are observable
before the first housing block (Fig. 3.11). The flow is abruptly deflected upwards at
the first housing block, creating a stagnation point near the wall. This initially triggers
turbulence and hence growth of a roughness sublayer (cf. peak in ξy at the first vertical
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Fig. 3.10 Instantaneous snapshots of the simulation WT050 at the spanwise location
z/δ = Lz/2. The positions of housing blocks are depicted as black squares, the mea-
surement location for vertical profiles as grey dashed lines, and the buffer regions as white
hatched areas. (a) Streamwise, (b) vertical velocity components, and (c) pressure, all
normalized with the free stream velocity ur. The close-up views of (b,c) are depicted as
the red area in (a). The flow direction is from left to right.
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Fig. 3.11 Streamwise distributions of the vertically integrated enstrophy ξy, based on
the three-dimensional snapshots in Fig. 3.10. Upper integration bounds are [H, δ] and
normalization with the maximum of ξy, when integrated over the full domain height [0, δ].
The grey shaded areas show the position of housing blocks.

51



52 3. Implementation and Validation of the Immersed Boundary Method

wall in Fig. 3.11). Since the horizontal grid resolution is too coarse to fully resolve the
viscous sublayer at the vertical boundary, slight residual oscillations are visible in the
vertical velocity component, originating at the sharp edge of the first housing block and
propagating diagonally outwards. This effect disappears at the edges of the subsequent
housing blocks, and the roughness sublayer grows as the flow passes over the roughness
elements. Moreover, recirculation areas inside the street canyons and a larger vortex after
the buildings are formed. The streamwise distribution of ξy reveals that the flow adapts
to the new boundary conditions from the fourth street canyon, located at x/δ ≈ 4.2.
In reality, such laminar inflow conditions (Figs. 3.10, 3.11) are questionable, as turbulent

motion is always present to a certain extent. Therefore, the oscillations emerging from the
quasi-laminar inflow conditions at the first housing block are neither physical nor important
since they disappear at the following blocks.
The present flow configuration with solid bodies perpendicular to the streamwise direc-

tion is numerically more challenging than the simulation setup with streamwise aligned
bars (section 3.3.4). Potential instabilities in the flow field might occur due to an abrupt
forcing of the flow to rest at a vertical wall. Nevertheless, the instantaneous pressure
field (Fig. 3.10c) is free of spurious oscillations. These findings confirm the effectiveness
of the implemented numerical framework with the pressure treatment and the ADR IBM,
resulting in high-resolution data of excellent quality.

Vertical profiles (Figs. 3.12). In the last street canyon, the flow over the housing blocks
is assumed to be fully developed. The vertical direction is normalized with the building
height H and the mean vertical profiles are normalized with the free stream velocity
ur, measured at y/H = 7, where the mean streamwise velocity is constant. Since the
spanwise velocity is not measurable with the spanwise aligned hot wires in the wind tunnel
experiments, this component is dropped from the mean variance (Fig. 3.12c).

The total mean velocity of the simulation WT100 agrees very well with the experimental
data from the wind tunnel (Fig. 3.12a). Above the housing block, for y/H > 1, a weaker
streamwise velocity gradient can be observed in Fig. 3.12b, due to the lower Reynolds num-
ber in the DNS. The recirculation flow inside the street canyon (y/H < 1) is weaker and
almost laminar. Within the recirculation region (between two housing blocks), the mean
velocities of the standing recirculation and variances are substantially reduced compared
to the reference case. This can be attributed to the difference in the scale separation on
the order of one for the DNS setup. A test simulation was conducted to confirm that this
difference vanishes with increasing Reynolds number. Given that the objective is not to
reproduce this particular case but rather to confirm the consistency of the numerical and
algorithmic approaches, no attempt is made here to further investigate the Re-dependence
of this problem. As expected, flow statistics inside the street canyons are unaffected by
varying buffer strengths since they are primarily governed by the Reynolds number.
The peaks of the mean variance profiles (Fig. 3.12c) aloft the housing blocks are a

signature of an elevated buffer layer. In smooth channel flow, the buffer layer is between
the viscous sublayer and the log-law region (Pope, 2000). In this setup of densely arranged
roughness elements, the flow above the housing blocks can be compared to a flow over a
porous medium with a roughness sublayer and a buffer layer above. The buffer zones affect
the shape of variance profiles above the housing blocks (Figs. 3.12c,d). In the case of a
weaker buffer, the variance is larger in the outer region, whereas in the experimental data,
the variance is vanishing for y/H > 3. Considering the mean velocity profiles leads to
the conclusion of an appropriate buffer strength close to unity to mimic the wind tunnel
measurements. The plateau in the variance profile at y/H ≈ 1.5 for case WT100 is less
pronounced in the LES data. In contrast, observing the plateau in the experimental data
is impossible due to the measurement uncertainties and large vertical spacing of samples.
Moreover, the buffer layer in the LES is either absent or not adequately resolved. It is
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Fig. 3.12 Comparison of mean vertical profiles of wind tunnel measurements (plus symbol),
LES data (star symbol) and DNS data (solid lines, cases WT025, WT050, WT100). (a,b)
Mean velocities, (c,d) mean velocity variances. All profiles are normalized with the free
stream velocity ur and the building height H. Grey shaded areas depict the height of the
housing blocks.

known from previous DNS studies of channel flow at very high Reynolds numbers that
the velocity variance peak values increase, the peak positions on the vertical axis decrease,
and the plateau becomes more pronounced with increasing friction Reynolds numbers (Lee
and Moser, 2015). Overall, the vertical profiles agree well with the reference data, and
this comparison shows that the numerical approach is consistent. Another DNS at higher
friction Reynolds number of O(103) would be interesting to access the tendency of mean
profiles even further compared to the wind tunnel and LES data.

3.3.6 Effect of the IBM on a Passive Scalar

To avoid spurious oscillations in the flow field, the ADR IBM is used in an implementation
that avoids the Gibbs phenomenon. Oscillations appear due to the interplay of discontinu-
ous functions for the higher-order derivative operators and the redistributive nature of the
pressure. In the absence of the pressure gradient term in the passive scalar equation (3.4c),
the question is whether the oscillations occur or not in the scalar fields if no IBM is used
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Fig. 3.14 Comparison of spectral energy densities of scalar fluctuations with an active and
idle IBM for scalar fields in (a) streamwise and (b) spanwise direction.

to compute derivatives of scalars.
The effect of an active or idle IBM on spurious oscillations in the scalar fields is tested

with a slightly different simulation setup: In contrast to case RC360 (cf. Table 3.1), there
are no streamwise aligned bars on the upper domain boundary. The scalar boundary
values at the bottom wall and inside the solid regions have a value of one, and on the
upper smooth boundary, the value is zero.
Vertical and horizontal slices of the phase-averaged mean scalar field in Figs. 3.13 reveal

no significant difference if the IBM is turned on or off for the scalar transport equation.
These findings are confirmed by observing the spectral energy density of scalar fluctuations
in horizontal directions, depicted in Figs. 3.14. The spectral energy distribution of both
settings shows very similar results, concluding that there is no significant difference in the
scalar fields concerning an active or idle IBM. This observed insensitivity of scalar fields
concerning the use of the ADR IBM signifies the physical consistency of the implemented
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method. Hence, the present IBM avoids the deterioration of flow fields through oscillations
and ensures a physically correct representation of the flow. The pressure term in the
momentum transport equations is assumed to be closely linked to amplifying spurious
numerical oscillations.
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4. Study I: The Neutrally Stratified Rough
Ekman Layer

This study deals with the effects of small-scale surface roughness in the turbulent boundary
layer with neutral stratification on the bulk and transport properties of the flow. This
is addressed using three rough cases with varying mean heights of roughness elements,
covering the whole regime from the smooth to the transitionally rough to the verge of the
fully rough regime. A method to estimate the friction of the velocity and passive scalar is
presented with a focus on the logarithmic region of the flow and the corresponding param-
eters, such as von Kármán constants, zero-plane displacement heights and aerodynamic
roughness lengths.

The following study has been published:
Kostelecky J., Ansorge C. (2024): Simulation and scaling analysis of periodic surfaces with
small-scale roughness in turbulent Ekman flow, Journal of Fluid Mechanics, 992, pp. A8,
https://doi.org/10.1017/jfm.2024.542.

The article is reproduced here using its original layout of the journal, where it was published
under the terms of the Creative Commons Attribution 4.0 licence.

Author contributions:
Jonathan Kostelecky: Code implementation, numerical simulations, post-processing of the
data, visualization and interpretation of results, writing of the original draft, conceptual-
ization of the study.
Cedrick Ansorge: Supervising of the research, discussion and interpretation of results,
reviewing and editing the original draft, acquisition of funding, conceptualization of the
study.
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surfaces with small-scale roughness in turbulent
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Roughness of the surface underlying the atmospheric boundary layer causes departures
of the near-surface scalar and momentum transport in comparison with aerodynamically
smooth surfaces. Here, we investigate the effect of 56 × 56 homogeneously distributed
roughness elements on bulk properties of a turbulent Ekman flow. Direct numerical
simulation in combination with an immersed boundary method is performed for fully
resolved, three-dimensional roughness elements. The packing density is approximately
10 % and the roughness elements have a mean height in wall units of 10 � H+ � 40.
According to their roughness Reynolds numbers, the cases are transitionally rough,
although the roughest case is on the verge of being fully rough. We derive the friction of
velocity and of the passive scalar through vertical integration of the respective balances.
Thereby, we quantify the enhancement of turbulent activity with increasing roughness
height and find a scaling for the friction Reynolds number that is verified up to Reτ ≈
2700. The higher level of turbulent activity results in a deeper logarithmic layer for the
rough cases and an increase of the near-surface wind veer in spite of higher Reτ . We
estimate the von Kármán constant for the horizontal velocity κm = 0.42 (offset A = 5.44)
and for the passive scalar κh = 0.35 (offset A = 4.2). We find an accurate collapse of the
data under the rough-wall scaling in the logarithmic layer, which also yields a scaling for
the roughness parameters z-nought for momentum (z0m) and the passive scalar (z0h).
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J. Kostelecky and C. Ansorge

1. Introduction

Roughness characterizes a plethora of turbulent flows at various scales – from the smallest
scales encountered in geophysical flow (such as the roughness of individual surfaces, tree
leaves, etc.) via the bulk roughness of real surfaces to the largest scales in the Earth system,
where topographic undulations present a roughness for synoptic-scale systems. While
under strong conditions on the surface properties, a flow can be considered hydraulically
smooth (Pope 2000), atmospheric flows are virtually always rough due to the small-scale
heterogeneity of the underlying Earth’s surface in combination with the low viscosity of
air. The atmospheric boundary layer (ABL) is the lowest part of the Earth’s atmosphere
with a thickness of 0.1 to 2 km (Garratt 1992) and a prototype rough ABL is the objective
of this study.

Rotation of the Earth is a unique feature of the ABL; despite the small Rossby number,
it causes significant departures in comparison with simpler canonical flows (e.g. closed
channel or pipe flow). It is commonly considered by background rotation around the
vertical axis – giving rise to Ekman flow (Ekman 1905). For a statistical two-point
description of the flow, such rotation breaks the symmetry in the spanwise direction.
Near the ground, surface friction comes into play and decelerates the flow, and the mean
wind rotates in favour of the pressure gradient force, forming the Ekman spiral. Given
the friction velocity uτ and the Coriolis parameter f, the outer scale of the Ekman flow
δ = uτ /f , a scale for the boundary-layer thickness, forms as a consequence of shear
growth and rotational suppression of the boundary layer; though unknown a priori, it
is a constant for neutrally stratified flow and depends on the Reynolds number only –
in stark contrast to spatially evolving boundary layers. Further, the turbulent boundary
layer is complemented by an infinite reservoir of non-turbulent fluid aloft, which can be
entrained into the boundary layer, causing departures of mean-flow statistics with respect
to non-external canonical flows.

Direct numerical simulation (DNS) of Ekman flow is a viable model for ABL
turbulence. Following the seminal work of Coleman, Ferziger & Spalart (1990), it was
studied for hydraulically smooth configurations (Coleman 1999; Shingai & Kawamura
2004; Miyashita, Iwamoto & Kawamura 2006; Spalart, Coleman & Johnstone 2008, 2009;
Ansorge & Mellado 2014, 2016; Deusebio et al. 2014; Shah & Bou-Zeid 2014; Ansorge
2019). Considerations over non-smooth surfaces are scarce: to the authors’ knowledge,
Lee, Gohari & Sarkar (2020), who conduct DNS of the Ekman flow for sinusoidal
surface topography under neutral and stable density stratification, is the only example.
They investigate two-dimensional periodic bumps with H+ = 15 at Reτ = 700, where
H+ is the height of the bumps in viscous units and Reτ the friction Reynolds number,
i.e. in the transitionally rough regime and find increased turbulent kinetic energy (TKE)
production with an increasing slope of the bumps – counteracting buoyancy-induced
suppression of turbulence. Limitations of the study are the absence of sharp edges, thus
limiting flow instability and flow turbulence enhancement, the two-dimensional shape of
their roughness elements and limited scale separation (Reτ ). Here, we complement this
approach by (i) adding square surface elements to represent the small-scale roughness
over homogeneous surfaces encountered frequently underneath the ABL and (ii) by an
increased scale separation.

The effect of a rough boundary in turbulent flow is reviewed by Raupach, Antonia &
Rajagopalan (1991), Finnigan (2000), Jiménez (2004), Kadivar, Tormey & McGranaghan
(2021) and Chung et al. (2021). Homogeneously rough flow, i.e. flow with a statistically
homogeneous description of the roughness elements, is governed by two dimensionless
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Small-scale roughness in Ekman flow

parameters: (i) a roughness Reynolds number

H+ = H
δν

, (1.1)

where H is the height of roughness, δν = ν/uτ the viscous length scale with uτ the
friction velocity and ν the kinematic viscosity, and (ii) the blocking ratio H/δ, where δ is
the boundary-layer thickness. Different roughness regimes are encountered for increasing
H+, ranging from hydraulically smooth – where no roughness effects are found in the
flow statistics above the viscous layer – via transitionally rough to fully rough – where
pressure drag outweighs the skin frictional drag and the buffer layer is replaced by a
roughness sublayer. Values for the regime transitions are reported based on experiments
(cf. table 2 in Kadivar et al. 2021). These are based on the pioneering work of Nikuradse
(1933), who studied pipe flow with uniform sand-grain roughness and on the later work
by Schlichting (1936), who introduced the equivalent sand-grain roughness with the aim
of transferring Nikuradse’s theory to other roughness geometries. In essence, the latter
work suggests there exists an approximate scale z0m representing roughness effects also for
less ideal configurations. This equivalent parameter, the aerodynamic roughness length for
momentum z0m, defines an empirical roughness Reynolds number z+

0m which is commonly
used in studies of rough configurations. The ABL flow is considered hydraulically smooth
flow for z+

0m � 0.135 and fully rough for z+
0m � 2 − 2.5 with the transitionally rough

regime in between (Brutsaert 1982; Andreas 1987). The zero-plane displacement height
d reflects a virtual shift of the effective underlying surface for high packing densities when
fitting the logarithmic law. In the essence of classical scaling theory, the logarithmic law
of the wall for the mean velocity ū(z) under neutral conditions is

ū(z) = uτ

κ
ln

(
z
z0

)
, (1.2)

following the notation of Monin (1970) (cf. their equation 9a), with the von Kármán
constant κ . For flow over rough surfaces, z is substituted by z − d (in 1.2), for consideration
of the zero-plane displacement height d. This form of the logarithmic law – with the
roughness parameter z0 – forms the cornerstone of the Monin–Obukhov similarity theory
(MOST, cf. Monin 1970; Foken 2006).

The second parameter of the roughness, the blocking ratio H/δ, can be used to describe
the influence of roughness on the logarithmic layer and wall similarity (based on Townsend
1961, 1976, and elaborated by Raupach et al. 1991). Jiménez (2004) found that wall
similarity holds if δ/H > δcrit/H for δcrit/H ≈ 40–80. Notably, for the friction Reynolds
number Reτ = δ+, it is

Reτ = δ

H
H+ = δ+. (1.3)

However, this suggests that the total turbulent scale separation measured in terms of Reτ is
to be considered as geometrically composed of, first, a separation between large eddies and
the roughness scale and, second, a separation between the roughness scale and viscosity.
The scale separation between the inner viscous scale δinner and the outer scale δouter of the
problem in a general formulation is given as

Regen = δouter

δinner
= δ

F(δν, H)
, (1.4)

in the form of the general-Reynolds number Regen. In the smooth limit, it is δinner ∼ δν ,
Regen is the friction Reynolds number Reτ . However, in the fully rough limit δinner ∼ H
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J. Kostelecky and C. Ansorge

Eddy sizes

Dissipation range Inertial range Energy-containing eddies

Rer

Lr

Reτ /Rer

Reτ ∝ δ/δv

δv δ

Figure 1. Schematic of the scale separation in a turbulent flow as a function of the eddy sizes, with roughness
acting at a range of scale O(Lr). The energy-containing eddies are O(δ) for a turbulent Ekman layer and the
onset of the dissipation range is located at O(δν), with the viscous scale δν = ν/uτ . The Reynolds numbers
Reτ and Rer in this schematic give rise to a reduced Reynolds number Reτ ∝ Reτ /Rer, capturing the scale
separation available for large-scale eddies until they hit the effects of bulk roughness.

and Regen is the blockage ratio δ/H. An overlap and logarithmic layer is only present if the
scale separation in terms of Regen is sufficiently large.

When interpreting turbulent Ekman flow as an idealized representation of the ABL,
a DNS approach inevitably resorts to the concept of Reynolds-number similarity: the
scale separation necessary for a direct representation of geophysical problems at scale
is out of reach, even using the most modern computational approaches. The common
representation of a prototype turbulent flow shows a cascade of motions from large-scale
energy-containing eddies to the dissipation range (figure 1). If there is sufficient scale
separation in between the two, the inertial range develops a self-similar scaling. In this
regime of fully developed turbulence, i.e. when a sufficiently large inertial range exists
(Dimotakis 2005), the spectral properties are well described by the seminal theory put
forward by Kolmogorov (1941) and Obukhov (1941). Further, some statistics of the
flow – in particular low-order statistics, such as dissipation (Dimotakis 2005) and mean
velocity profiles (Barenblatt 1993) – will cease to depend on the separation of scales,
viz. Reynolds number. While these scales, and thus also Reτ , exist and bear a physical
meaning in the rough configuration, the roughness parameter Lr (characteristic roughness
length scale) defines a new length scale. For all problems of relevance, it is L � Lr,
with L the scale of the largest eddies and in our specific problem we identify L ∼ O(δ)

with the boundary-layer thickness, and Lr � O(δν) (if Lr � δν , the surface must be
aerodynamically smooth; and if Lr reaches O(δ), an obstacle is no longer considered
a roughness element). In analogy to the decomposition of the Reynolds number Reτ

proposed above (1.3), this gives rise to a roughness Reynolds number Rer ∝ Lr/δν which
can be interpreted as a range of eddy sizes locally ‘occupied’ by roughness. This range
is not available for an undisturbed continuation of the inertial range as roughness alters
the scales of turbulent production, as measured by uτ , and local dissipation of turbulence
kinetic energy (Davidson & Krogstad 2014). From the perspective of large-scale motions,
this limitation is similar to reducing the Reynolds number by O(Re−1

r ). In our study
we will hence resort to cases with Rer = O(1) such that the turbulence instability of
the large-scale eddies is retained despite the intermediate Reynolds number achieved
in our DNS. While this limits us to relatively small roughness elements, we retain a
proper turbulent interaction between the inner and outer scales as is observed in the
real-world ABL.

The investigation of roughness gives rise to a huge parameter space, as the geometry,
distribution and arrangement of roughness elements impact on the turbulent flow (Kadivar
et al. 2021). Cubical roughness elements are one preferred set-up for studying the effect
of three-dimensional roughness on wall-bounded turbulent flow in vegetation and urban
canopies, and we choose them also here as the building blocks of the rough surface.
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Small-scale roughness in Ekman flow

There are several numerical studies with staggered or aligned arrays, varying the roughness
density and the size of roughness elements. The problem is investigated through DNS for
channel flow (Coceal et al. 2006; Leonardi & Castro 2010), and for a turbulent boundary
layer (Lee, Sung & Krogstad 2011b). It was also assessed by large-eddy simulation (LES)
(Stoesser et al. 2003; Kanda, Moriwaki & Kasamatsu 2004; Cheng & Porté-Agel 2015)
and through wind tunnel measurements (Castro 2007; Cheng et al. 2007; Perret et al.
2019). Coceal et al. (2006) emphasize the difference between two- and three-dimensional
roughness: mixing and transport are different for a two-dimensional setting. For flow
orthogonal to the elements, there are unrealistically large sheltering effects; for flow
parallel to elements, secondary motions become unrealistically large. Furthermore, their
findings imply that a variable height of the roughness elements is needed to capture
real-world conditions. Indeed, LES studies of Xie, Coceal & Castro (2008) and Yang et al.
(2016), investigated flows over blocks with a Gaussian height distribution. In this study, we
chose blocks with a uniform height and width distribution to represent the randomness of
individual roughness elements. Individual roughness elements are randomly offset from
an equidistant, regular grid to also break symmetry due their positioning. The height of
roughness elements can be considered with respect to the outer scale δ (giving rise to the
blocking ratio) and the inner scale ν/uτ (yielding the roughness Reynolds number H+; cf.
(1.3)). The present work is limited to rectangular roughness blocks with a small blocking
ratio (H/δ � 1.5 %) such that sufficient scale separation exists for a logarithmic layer to
form.

The packing density of roughness elements – and hence the mutual sheltering– gives
rise to three different flow regimes: isolated roughness, wake interference and skimming
flow (Hussain & Lee 1980; Grimmond & Oke 1999). In the skimming regime, the packing
density is sufficiently high such that the flow ‘slides’ over the roughness crests. In the other
extreme case, the isolated roughness, the flow interaction between roughness elements is
negligible and roughness elements can be considered as individual bluff bodies. Leonardi
& Castro (2010) found the drag maximum for a packing density of 15 %, which is in
agreement with Kanda et al. (2013), whereas Ahn, Lee & Sung (2013) measured a
value of 11.1 % to 12.5 % and Cheng & Porté-Agel (2015) a value of 10 %. In the
present study, we use a packing density of approximately 10 %, which falls in between
isolated and wake interference roughness according to Grimmond & Oke (1999) (cf. their
figure 1).

In the current work, we aim to answer the following research questions regarding the
quantitative effects of surface roughness on a prototype ABL: (i) What is the impact
of a controlled and fully resolved surface roughness on bulk parameters and mean flow
properties in the inner and outer layer? (ii) Do the rough-wall scaling and log-layer scaling
follow the expected and widely used approaches in MOST for neutral conditions? (iii) Can
we arrive at meaningful estimates for the zero-plane displacement and roughness length for
momentum and scalar? (iv) How different is the enhanced mixing of the momentum and
of the scalar in the presence of surface roughness? To do so, we extend a well-established
modelling set-up for turbulent Ekman flow by an immersed boundary method (IBM) and
deploy the problem on the supercomputing system Hawk at Höchstleistungsrechenzentrum
Stuttgart (HLRS, Germany) to reach scale separation of up to Reτ ≈ 2700.

2. Methodology

We consider Ekman flow of an incompressible fluid over a horizontal plate on the f-plane,
that is, the Coriolis force only affects the horizontal velocity components and is constant.
Far away from the wall, shear effects vanish and the flow is in geostrophic equilibrium, i.e.
the pressure gradient is balanced by the Coriolis force.
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J. Kostelecky and C. Ansorge

2.1. Governing equations and parameters
The three-dimensional Navier–Stokes equations are numerically solved for an
incompressible, Newtonian fluid with constant fluid properties (density ρ, viscosity ν)
subject to steady system rotation about the vertical axis. The problem is discretized
on the Cartesian coordinate system Xi = (X, Y, Z)T, where X, Y is the streamwise,
spanwise and Z the wall-normal coordinate, and we solve it on a cubic domain of size
[0, 0, 0] ≤ [X, Y, Z] ≤ [Lx, Ly, Lz]. The streamwise direction is defined with respect to
the smooth-wall flow; the flow direction deviates with increasing height and surface
roughness. The dynamical system is governed by the following parameters: (i) the

geostrophic wind vector G = (G1, G2, 0)T and force G =
√

G2
1 + G2

2, and (ii) the Coriolis
parameter f. Both scales yield the Rossby radius ΛRo = G/f as a length scale. Thus, the
governing flow equations are non-dimensionalized with the characteristic scales G, f , ΛRo
and read

∂ui

∂xi
= 0,

∂ui

∂t
+ uj

∂ui

∂xj
= −∂π

∂xi
+ 1

ReΛ

∂2ui

∂x2
j

+ f εik3(uk − gk). (2.1a,b)

Here, t is the non-dimensional time, u = (u, v, w)T = (u1, u2, u3)
T is the non-dimensional

velocity vector, xi = (x, y, z)T the non-dimensional coordinates and ∂π/∂xi the
non-dimensional, non-hydrostatic, ageostrophic pressure gradient. Further, g = (g1, g2, 0)T

with gj = Gj/G is the normalized geostrophic wind (by construction g = ‖g‖ = 1) and
εijk is the alternating unit tensor. The boundary conditions for the velocities are no slip at
the bottom and free slip at the top boundary; periodic boundary conditions are applied
in the horizontal directions. Equations (2.1b) solely depend on the Reynolds number
ReΛ = ΛRoG/ν. For comparison with other studies, we refer to the Reynolds number

ReD = GD
ν

=
√

2ReΛ, (2.2)

with D =
√

2νf −1 the laminar Ekman layer thickness. Both Rossby and Ekman scalings
lose their relevance once the system is in a fully turbulent state. Then, the system is
scaled by the friction velocity uτ (non-dimensionalized form u
 = uτ /G), the turbulent
boundary-layer thickness δ = uτ /f (non-dimensionalized form δ
 = δ/ΛRo = u
) and the
eddy-turnover scale f −1. These turbulent scales result in the friction Reynolds number
Reτ = uτ δ/ν with

u2

 = 1

ReΛ

√(
∂〈u〉
∂z

∣∣∣∣
z=0

)2

+
(

∂〈v〉
∂z

∣∣∣∣
z=0

)2

, (2.3)

such that Reτ equals the non-dimensional wind-speed gradient at the surface. The
definition (2.3) of u
 is valid for a smooth wall located at z = 0. Over a non-flat surface, it
is u2


 = ‖τw‖/(ρG2) = ‖τ 
‖, where τw is the total surface shear stress (non-dimensional
form τ 
) and ρ the constant fluid density. As a consequence of rotation, the surface shear
stress is not aligned with the geostrophic wind vector and the wind veers towards the
surface as

α(z)�(〈u(z)〉, g) and α
�(−τ 
, g). (2.4a,b)

The values u
, α
 and δ
 are unknown a priori but can be approximated as functions of ReD
(Spalart 1989). In external flow, there is a duality of scales, where the inner layer scales
in inner units and the corresponding normalized quantities are denoted by (·)+, while the
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Small-scale roughness in Ekman flow

outer layer scales in outer units, denoted by (·)−. The non-dimensional length and velocity
scales are defined as

x+
i = xiu
ReΛ = Xi

δν

, u+
i = ui

u


, x−
i = xi

u


= Xi

δ
, u−

i = ui. (2.5a–d)

The scalings are mapped by x+
i = Reτ x−

i and u−
i = u
u+

i . Spatial averaging of flow
variables in the horizontal is denoted by 〈(·)〉 and temporal averaging by (·).

Along with the conservation equation of momentum, we solve the transport equation
of a passive scalar s. Boundary conditions for the passive scalar are of Dirichlet type,
with a constant difference between the lower and upper walls �s = s|z=Lz − s|z=w, with
s|z=Lz = 1 and s|z=w = 0. The conservation equation of the scalar is non-dimensionalized
with the additional characteristic scale �s, and it reads as

∂s
∂t

+ uj
∂s
∂xj

= 1
ReΛSc

∂2s

∂x2
j
, (2.6a)

with

Sc = ν

κd
, (2.6b)

where Sc is the Schmidt number and κd the constant molecular diffusivity for the scalar.
Analogously to the friction velocity we define a non-dimensional reference friction value
for the scalar with

s
 = q


u


and q
 = 1
ReΛSc

∂s
∂z

∣∣∣∣
z=0

, (2.7a,b)

where q
 is the surface flux of the scalar for a smooth surface at z = 0. The scalar in inner
units is given by s+ = s/s
 and in outer units by s− = s, since s is scaled by �s.

Following Ansorge (2017), a Rayleigh-damping layer is introduced on the uppermost 20
grid points to suppress spurious boundary effects, that may occur as a consequence of a
finite domain height.

2.2. Intrinsic averaging
Intrinsic averaging implies that only values inside the fluid domain are considered for
averaging, in contrast to extrinsic averaging, where all values in the whole domain are
taken into account. Since there is a mismatch between the volume share covered by
roughness elements (figure 2a, red and blue shaded area) and the corresponding share
of grid points, a volume approach (figure 2b) yielding a fluid fraction for the volume in the
box around each grid point is used and described in detail in Appendix A. In this study, we
apply intrinsic averaging to all mean vertical profiles and global flow parameters, within
the roughness layer z ≤ Hmax, where Hmax is the height of the largest roughness element.

2.3. Numerical approach of the DNS code
Simulations in this study use the open source DNS code tlab (https://github.com/
turbulencia/tlab). The governing equations are advanced in time with a fourth-order
five-stage low-storage Runge–Kutta scheme (Williamson 1980). Spatial derivatives are
computed with finite differences of sixth-order accuracy (Lele 1992). Biased compact
schemes of reduced order are used at the vertical (non-periodic) boundaries. The applied
discretization results in an overall fourth-order accuracy of the code. Incompressibility

992 A8-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

54
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



J. Kostelecky and C. Ansorge

A1

A0 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.75

0.75

0.75

0.75

0.5

0.5

0.5 0.50

(a) (b)

Figure 2. (a) Two-dimensional schematic of a solid object (red points) covering the area A1 immersed in a
fluid domain (black points) covering the area A0. The blue-shaded area belongs to the fluid, but field values in
the area would be represented by the value on the solid surface. (b) Corresponding indicator field with volume
fractions of the fluid εF(xi) = [1 − εS(xi)].

is enforced with the fractional step method (Chorin 1968; Témam 1969) to ensure
divergence-free velocity fields up to machine accuracy. The Poisson solver uses a
Fourier-spectral approach in the periodic horizontal directions, and an inverse-compact
approach along the vertical (Mellado & Ansorge 2012). Originally, pressure and velocities
are computed on the same grid in tlab. This collocated arrangement is well known to
cause spurious pressure oscillations (Laizet & Lamballais 2009) in combination with an
IBM. Hence, the existing code was extended by a partially staggered pressure grid in the
horizontal and a compact filter (Lele 1992) for the pressure in the vertical to circumvent
the deterioration of the data by numerical artefacts in the pressure.

2.4. Immersed boundary method
The representation of flow obstacles with vertical walls and rigid boundaries challenges
DNS codes of high-order accuracy and may cause numerical artefacts, referred to as
spurious force oscillations (SFOs). With the aim of using Cartesian grids, an IBM is
implemented in tlab and tested against reference data to ensure sufficient resolution and
absence of SFOs that deteriorate the flow statistics.

The Gibbs phenomenon and SFOs are known artefacts to occur in moving-body
problems (Lee et al. 2011a), but also for non-moving bodies represented through an IBM
(Li, Bou-Zeid & Anderson 2016). The SFOs appear as high-frequency oscillations near
a solid boundary (Fornberg 1996, p. 11). They can severely deteriorate the numerical
solution. Not only may this impact instantaneous realizations of the flow, but also the
long-time averages of flow quantities. In our case of rigid bodies represented by an
IBM, SFOs are caused by a stepwise signal of the IBM forcing at the solid boundary
in combination with a spectral-like compact differencing scheme. The oscillations may
contaminate the flow field due to the non-local character of these schemes. Filtering
and smoothing procedures in physical and frequency space can be used to reduce or
control SFOs (Goldstein, Handler & Sirovich 1993; Kim, Kim & Choi 2001; Lamballais
& Silvestrini 2002; Tseng, Meneveau & Parlange 2006; Fang et al. 2011).

The direct forcing IBM approach was introduced by Mohd-Yusof (1997) and Fadlun et
al. (2000). It tries to avoid SFOs through an artificial flow in the solid regions that reduces
discontinuities at the interface while fulfilling the boundary conditions. This leaves the
external flow unaffected by the artificial flow (Fadlun et al. 2000). While the method
was extended towards higher-order derivative schemes (Parnaudeau et al. 2004, 2008),
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Small-scale roughness in Ekman flow

it remains limited to simple geometries like cylinders, and is problematic for objects with
sharp edges (Giannenas & Laizet 2021, figure 2 on p. 610).

The alternating direction reconstruction (ADR) IBM, proposed by Gautier, Laizet &
Lamballais (2014), allows simulations with more complex geometries while preserving
the homogeneity of spatial operators. The flow is artificially expanded into solid regions
to ensure the smoothness of fields across the interface, while the boundary conditions
ui|interface = 0 are met. Gautier et al. (2014) used one-dimensional Lagrangian polynomials
for interpolation, which are evaluated in the respective direction before a spatial derivative
of the governing equations is evaluated in this direction. This procedure is repeated
anew for each derivative and the values within the solid regions are not considered for
subsequent calculations.

Lagrangian polynomials suffer from Runge’s phenomenon (Runge 1901), where
large amplitudes occur at the boundaries for equidistant grids. As objects get wider,
numerical instabilities can occur due to unphysically large derivatives at the interface and
corresponding large pressure signals inside the solid. Giannenas & Laizet (2021) use cubic
splines, avoiding the Runge phenomenon at boundary nodes, which results in reduced
amplitudes of the auxiliary field within the solid. They demonstrate that the ADR IBM
with cubic splines is well suited for sixth-order compact schemes and does not degrade
the overall convergence order of the DNS code. Further, no additional stability constraints
emerge and the computational overhead is marginal. Finally, the ADR IBM is highly
scalable on high-performance computing systems, as the communication overhead of the
parallel algorithm does not increase.

The ADR IBM is well tested for flow around a cylinder against both experimental
and simulation data (Parnaudeau et al. 2008; Gautier, Biau & Lamballais 2013; Gautier
et al. 2014; Giannenas & Laizet 2021) and across different DNS codes (Schäfer et al.
2020; Theobald et al. 2021). More recently, the ADR IBM was also applied for moving
objects (Giannenas & Laizet 2021), to wavy channel turbulence (Khan & Jayaraman 2019;
Jayaraman & Khan 2020), jet control with microjets (Gautier et al. 2014), LES of a circular
cylinder wake flow (Resseguier et al. 2017; Chandramouli et al. 2018), flow over periodic
hill (Xiao et al. 2020) and to channel flow over streamwise-aligned ridges (Schäfer et al.
2019) and with free convection (Schäfer et al. 2022b).

The implementation of the ADR IBM based on cubic splines in tlab enables DNS of
Ekman flow with fully resolved roughness. An indicator field ε(xi) is used to fully describe
the spatial properties of the immersed roughness geometry in the computational domain
Ω , which is decomposed into the solid and interface ΩS and fluid ΩF regions (figure 2),
given by

ε(xi) =
{

1, if xi ∈ ΩS,
0, if xi ∈ ΩF.

(2.8)

Objects are bound to the location of the grid node positions, where the outer grid nodes
labelled as solid represent the exterior of the solid. Hence, a minimum of two solid
points is required for the solid to have a finite size; further, three fluid points at each
side are used to define the cubic spline. The ADR IBM is used to compute the derivatives
(advection, diffusion) for the provisional velocity in the fractional step method, which is
not divergence free. Next, the Poisson equation

�π = ∇{[1 − ε(xi)] fπ}, (2.9)

is solved for π on the staggered grid where no reconstruction is applied when calculating
the pressure forcing ∇fπ. The continuity equation in the presence of the IBM is now
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J. Kostelecky and C. Ansorge

[1 − ε(xi)]∂ui/∂xi = 0 and the Dirichlet boundary conditions of the velocity fields are
[1 − ε(xi)]ui(xi) = 0. In addition, the ADR IBM is also implemented for a passive scalar,
with the following boundary conditions s(xi) = [1 − ε(xi)]s(xi) + sBCsε(xi), where sBCs
describes the fixed boundary values of the scalar. Here, the reconstruction is used for the
derivatives in the advection and diffusion terms of (2.6a).

3. Surface roughness configuration

The targeted examination of small-scale roughness requires a small blocking ratio H/δ

(Jiménez 2004), and is in contrast to urban-like geometries or other canopy flows where
obstacles may cover a considerable portion of the boundary layer. This necessitates
sufficient scale separation to yield values of H of the order of tens of wall units while
keeping the blocking ratio limited below ≈1/100. In comparison with simulations over
aerodynamically smooth surfaces, the grid resolution needs consideration in all three
directions: first, the viscous sublayer is not restricted to z+ � 5 (Pope 2000) but forms
around the obstacles, also on top of the elements such that we may expect a viscous
sublayer up to z+ < H+ + 5. Second, the flow is also forced to rest at vertical walls,
accompanied by sharp velocity gradients in the spanwise direction and an upward
deflection in the streamwise direction. Hence, the horizontal grid must be sufficient for
resolution of viscous sublayers at the vertical walls, which imposes additional constraints
on the horizontal resolution.

We consider four simulations, one smooth and three rough cases with labels [s, r1,
r2, r3]. The roughness properties are defined a priori in terms of the inner scaling
of the smooth case (subscript (·)s), since the drag over the rough surface is unknown.
The roughness consists of 562 elements of horizontally squared shape. The centroids
of these elements are slightly displaced according to the roughness grid by up to ±2
grid points in the horizontal directions, to break the symmetry (figure 3a). Heights
and widths of the elements are uniformly distributed in the range of �H+

s ≈ 10 and
�W+

s ≈ 20, that is Hs ∈ [H+
s − �H+

s /2, H+
s + �H+

s /2] and similar for Ws, with mean
heights of H+

s = [9.9, 19.8, 29.5] and a uniform width of W+
s = [39.8, 39.8, 39.9]. The

volume fraction covered by the roughness (A3d) at the ground is γ S = 1 − γ F = 0.099
and equals the plan area density λp =̂ γ S. The frontal solidities of the three rough cases
are λf = [0.023, 0.047, 0.071]. The surface area increases with respect to the horizontal
Lxy-plane for the rough cases by �Aeff = 4λf , since the roughness elements have a square
base.

For consistency, we use the same computational grid and forcing parameters at
ReD = 1000 (note that simulation parameters are listed in table 1) for all four cases. The
large-scale forcing is such that the mean velocity of the smooth case on the ground is
approximately shear aligned, thus τ
s = τ
s,x. In the vertical, the grid spacing is �z+

s ≈ 1
up to the top of the roughness elements with z+

s ≥ 35, where stretching begins. In the
horizontal it is [�x+

s , �y+
s ] ≈ 2.3. Obstacles increase the drag, therefore the resolution

in terms of wall units is expected to be coarser, which results in slight oscillations in
velocities close to the roughness elements. Preliminary simulations showed that this effect
is resolution dependent and is suppressed by a spectral cutoff filter at highest frequencies.

Interpolated turbulent fields from precursor simulations are used as initial conditions
for the smooth simulation. In rotating systems, disturbances from the equilibrium state
cause pervasive inertial oscillations with a period 2π/f (Appendix B, figure 17). We
reduce those by replacing the mean in the three-dimensional velocity fields by a time
and horizontal average over one inertial period. Once the smooth case has converged, we
use velocity and passive scalar fields to initialize the rough simulations. The insertion of
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Small-scale roughness in Ekman flow
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Figure 3. (a) Top view of the horizontal distribution of elements for case r1 and close-up view, colour coded
according to their height; the horizontal axes are scaled by outer units of the smooth case. (b) Fluid fraction
γ F(z+

s ) as a function of the distance from the wall for the rough cases r1, r2, r3 to illustrate the uniform height
distribution of the elements; the vertical distance is scaled in smooth inner units. Round markers indicate the
vertical position of grid nodes.

ReΛ ReD Sc Nxy × Nz (Lxy × Lz)/δ
3
s �xy+

s × �z+
s,min

5 × 105 103 1.0 30722 × 656 5.12 × 4.9 2.32 × 1.0

Case (ID) H+
s W+

s �H+
s �W+

s λp [%] λf [%] �Aeff [%]

Rough (r1) 10 40 10 20 10 2.3 9.2
Rough (r2) 20 40 10 20 10 4.7 18.8
Rough (r3) 30 40 10 20 10 7.1 28.4

Table 1. Upper table: grid, domain parameters and external Reynolds number for all cases presented in this
study (subscript (·)s relates to the smooth case), and the computational domain size normalized with the Rossby
radius is (Lxy × Lz)/Λ

3
Ro = 0.272 × 0.26. Lower table: average height H+

s and width W+
s of the roughness

elements for the rough cases, and their range of heights �H+
s and widths �W+

s . Also given are the plan area
density λp, frontal solidity λf and the effective increase of the surface area �Aeff .

roughness elements in fully turbulent fields is possible since the numerical methods are
stable and robust. Statistics of rough simulations are collected once the flow has adapted
to the new boundary conditions. In eddy-turnover times, f −1, flow statistics are collected
for a timespan of [6.8, 2.3, 1.9, 6.3] (Appendix B); scalar statistics are considered over the
final eddy-turnover time (§ 4.7).

The data used for statistical analyses in the remainder of this study are available for
download at Kostelecky & Ansorge (2024) (http://dx.doi.org/10.17169/refubium-43215).

4. Results

4.1. Momentum budget and wall shear stress
For our configuration, roughness enhances the drag in comparison with smooth flow.
However, the quantitative impact of our roughness arrangement (§ 3) on scalar and
momentum transfer is unknown a priori. Total surface drag is the sum of pressure drag
(also called ‘form’ drag), acting normal to the vertical walls of the cuboids, and of skin
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J. Kostelecky and C. Ansorge

friction drag, acting tangentially. The frictional drag may further be decomposed into
ground-surface drag at z = 0 and roughness-element-surface drag (Shao & Yang 2008).
The vertical component of the frictional drag on the roughness elements, the lift, is not of
interest here.

Accurate quantification of horizontal drag exerted by roughness is essential for the
subsequent analysis. A key feature of the Ekman flow is the veering of the wind with
greater distance from the ground, due to the triadic balance of Coriolis, pressure gradient
and frictional forces. This manifests in a non-zero spanwise component τzy such that

〈τ̄ 〉(z) =
√

〈τ̄ 〉2
zx + 〈τ̄ 〉2

zy. (4.1)

Over smooth surfaces, the wall shear stress τ
s = 〈τ̄ 〉|z=0 reduces to the streamwise
component τ
s = 〈τ̄ 〉zx ≡ 1/ReΛ∂〈ū〉/∂z|z=0, since we align the streamwise direction of
the computational grid with τ
s (§ 3 and figure 4, dashed lines). Over rough surfaces, we
determine the total drag from the vertically integrated momentum equations (2.1b) in the
streamwise and spanwise directions

〈τ̄ 〉zi(z) = −
∫ z

0

∂〈ū〉i

∂t
dz︸ ︷︷ ︸

T

+ f
∫ z

0
εik3(〈ū〉k − gk) dz︸ ︷︷ ︸

C

+ 1
ReΛ

∂〈ū〉i

∂z︸ ︷︷ ︸
V

−〈u′
iw

′〉︸ ︷︷ ︸
R

. (4.2)

The total surface drag is composed of the temporal tendency (T ), Coriolis (C), viscous (V)
and turbulent stress contributions (R) (figure 4). Here, we define the turbulent contribution
as the sum of turbulent (Reynolds) and dispersive stresses, since we study small-scale
roughness.

The integrated temporal tendency is a measure of the convergence of a simulation
towards its statistically steady equilibrium, and indeed cases s and r3 appear as
statistically converged (∂t(·)/∂t ≈ 0). For the rough cases r1, r2, we observe that they
have not fully converged towards equilibrium in the outer layer, whereas in the near-wall
region z+ < 300 the integrated tendency is negligible. This behaviour is attributed to the
different averaging times of the cases (Appendix B). Disturbances from the ground, i.e.
the introduction of roughness elements into the flow, slowly progress to the outer layer,
starting at z− � 0.12 and the relatively slower process of equilibration in the outer layer is
apparently not converged after approximately 2–3 eddy-turnover periods.

Viscous friction dominates the momentum budget close to the wall (figure 4a), where
the largest velocity gradient for the smooth case appears at z = 0, followed by a rapid
decrease. With increasing roughness height a second peak develops for the cases r2,
r3, linked to large velocity gradients at the top of the roughness elements. The turbulent
stress dominates in the near-wall region away from the wall, with a maximum located
above the roughness elements and a share of up to 80 %. Turbulent stress increases
with the roughness height in absolute values, pointing to enhanced turbulent mixing.
The contribution of the Coriolis term is non-negligible within the roughness layer. At
the top of the elements its contribution reaches up to 10 %. With increasing roughness
height, the veering of the wind inside the roughness layer is enhanced, underpinning the
importance of the term C to close the momentum budget in the roughness sublayer. Above
the boundary-layer height, (4.2) is a balance between the Coriolis term, the total friction
term, and for the non-converged cases the temporal tendency term.

The total surface drag of the smooth case is τ
s = 2.82 × 10−3, as estimated from
the velocity gradient at z = 0. For the rough cases, τ reaches its maximum at
the crest height of the highest elements, and it is ‖τ 
‖ = [3.36, 4.39, 5.38] × 10−3.

992 A8-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

54
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Small-scale roughness in Ekman flow

0

0.2

0.4

0.6

0.8

1.0

s
r1
r3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 20 40 60 80 100

0

0.25

0.50

0.75

1.00
C
V
R
T
〈τ̄〉ij (z)

0 20 40 60 80 100

z+z+

0

0.05

0.10

0.15

0

2

4

6

〈τ̄〉
− zx

1
0

–
3

〈τ̄〉
− zy

1
0

–
3

〈τ̄〉
+ zy

〈τ̄〉
+ zx

z −

–1

0

1

2

3

0 0.2 0.4 0.6 0.8 1.0 1.2

z–

0 0.2 0.4 0.6 0.8 1.0 1.2

z–

0

2

4

6

0

0.25

0.50

0.75

1.00

(b)(a)

(c) (d )

Figure 4. Integration of the mean momentum conservation in the streamwise (a,c) and spanwise directions
(b,d), the terms according to (4.2). For clarity case r2 is not shown and the total drag 〈τ̄ 〉zi(z) is moved to the
lower panels of the plots. Colour shaded areas in the near-wall region in (a,b) correspond to the range of top
heights of the roughness elements (cf. colour coding figure 3b), mean heights are displayed by vertical dotted
lines. Shear stress components of the cases in the near-wall region (a,b) are scaled with the respective 1/u2


 and
in the outer region in (c,d) with 10−3/G2.

This gives a relative increase of the drag with respect to the smooth case of
�rel ‖τ 
‖ = [19.1 %, 55.7 %, 90.8 %]; this corresponds to an increase of geostrophic drag
of approximately 10 %–40 % (table 2). Notably, when the surface stress is determined from
the values of the maximum turbulent stress in the constant-flux layer (where turbulent
fluxes vary less than 10 %, Stull 1988; Garratt 1992), approximately 20 %–30 % of the
total stress is neglected (cf. figure 4a) for the configurations considered here. While this
figure is likely on the upper end of expected outcomes for atmospheric conditions at higher
Reynolds number, this illustrates that estimates of skin friction from inner-layer stress may
experience considerable biased over rough surfaces.
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Case (ID) Smooth (s) Rough (r1) Rough (r2) Rough (r3)

H+ — 10.8 24.7 40.8
u
 0.0531 0.0580 0.0663 0.0733
α
 18.6 22.3 28.4 33.2
δ95/δ
 0.612 0.621 0.594 0.578
δ+

CF [39, 91, 52] [42, 101, 59] [51, 121, 70] [65, 147, 82]
Reτ = δ+ 1408 1680 2196 2688
Ret = maxz{ e2

νε
} 764 895 1049 1254

Rek =
√

Kδ
ν

316 389 528 676

Table 2. Integral flow properties of the cases. The boundary-layer thickness δ95 refers to the height, where the

total vertical flux is
√

〈u′w′〉2 + 〈v′w′〉2 = 0.05u2

 . The constant-flux layer δ+

CF refers to the layer between the
maximum of the total vertical flux and the height where it is reduced by 10 % of the maximum, and given as
[start, end, extend] in inner units. The maximum for the Reynolds number of isotropic turbulence Ret (defined
in Ansorge & Mellado 2014, table 2, equation 5b) is always located above the highest roughness elements,
and the Reynolds number for turbulence intensity Rek is defined according to Schäfer, Frohnapfel & Mellado
(2022a), where K = ∫ δ

0 e dz is the integrated TKE e ≡ 0.5〈u′
iu

′
i〉 within the boundary layer.

4.2. Scalar budget and scalar wall stress
The scalar flux is determined by the vertical integration of the scalar budget (2.6a)

〈q〉(z) = −
∫ z

0

∂〈s〉
∂t

dz︸ ︷︷ ︸
Ts

+ 1
ReΛSc

∂〈s〉
∂z︸ ︷︷ ︸

Vs

−〈w′s′〉︸ ︷︷ ︸
Rs

, (4.3)

with the temporal tendency Ts, the viscous term Vs and the scalar flux term Rs (cf. their
behaviour in figure 5), which incorporates again the Reynolds and dispersive stresses.
Unlike the momentum budget, the passive scalar concentration in the boundary layer
evolves in time. Hence, the vertical integration (4.3) precedes time averaging. Near the
wall, again the tendency Ts is small and the viscous contribution is relevant. For increasing
roughness, the viscous stress is smeared out over the height of the roughness sublayer
and a second peak similar to the one discussed for the momentum budget forms. This
second peak becomes more dominant for increasing roughness and will eventually govern
the viscous stress for large roughness elements or skimming flow. While the share of the
turbulent contribution R was limited to ≈80 % for momentum, mixing of the scalar is
by far turbulence dominated, with a share of �90 %. In the outer region, the balance –
in the absence of a rotational term – is governed by the turbulent scalar flux Rs and the
integrated tendency Ts.

The surface flux of the scalar q
s is estimated for the smooth case at z = 0 and for the
rough cases, q reaches its maximum and at the same time constant value at the height of
the highest elements, where q
 is estimated. If temporal averaging of (4.3) is omitted, the
development of q
(t) and the friction of the scalar s
(t) = q
(t)/u
(t) with the respective
friction velocity u
(t) are estimated (§ 4.7 and figure 14).

4.3. Global flow properties
The most prominent features when the turbulent flow is exposed to a rough surface are
an increase in turbulence production associated with increased bulk shear stress ‖τ 
‖, a
deeper boundary layer and higher turbulent Reynolds numbers (table 2). As δ+ = Reτ
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Figure 5. Integration of the mean passive scalar conservation (4.3). For clarity r2 is not shown and the scalar
flux 〈q〉(z) is moved to the lower panels of the plots. (a) Terms in the near-wall region and (b) terms in the outer
region are scaled with the respective 1/q
 and temporal averaging over the final eddy-turnover time (cf. colour
coding and shaded areas in figure 4).

and ‖τ 
‖ are linearly related, also Reτ grows by up to 91 % (for the case r3). For the
range of blocking ratios considered here, Reτ appears to be a linear function of the
height of the roughness elements; with ReD = const. = 1000, this implies u
 ∝ (H+)1/2.
As a consequence of increased u
, the grid resolution of case r3 in wall units is
�xy+ × �z+

min = 3.22 × 1.4 (compared with 2.32 × 1.0 for the smooth case). In inviscid
units, i.e. normalized with ΛRo, the boundary-layer thickness δΛ = uτ /( f ΛRo) also
increases with H+ (not shown in table 2). This illustrates an enhanced level of turbulence
in the rough cases, quantifiable by an increase of Ret and Rek (table 2). Changes in global
flow properties of case r1 are comparatively small, underpinning that the set-up is close
to the aerodynamically smooth case s.

4.4. Wind veer in the surface layer
Due to surface friction, the wind veers in favour of the pressure gradient force as it
approaches the surface (figure 6), giving rise to the Ekman spiral. While α
, the veer
of the near-surface wind with respect to the outer layer is commonly taken into account by
a rotation of the reference frame for surface-layer similarity (Ansorge 2019), wind veer
within the atmospheric surface (Prandtl) layer, is commonly neglected (Monin 1970).
Under this neglect, the surface layer becomes a componentwise ‘constant’-flux layer,
i.e. the total vertical turbulent flux and its partitioning to the components is constant
with height (commonly, a deviation of less than 10 % from the maximum value, usually
measured close to the ground, is accepted). For the rough cases, the position of the
constant-flux layer shifts upwards with H+, and it grows in extent when measured in inner
units. Consistently with the increased scale separation, manifest in larger Reτ , Rek and
Ret, the constant-flux layer’s thickness increases both when expressed relative to ΛRo and
when expressed in wall units by approximately 15 %.

Within the roughness sublayer, the direct effect of surface friction is strong, and we
observe a veer of up to approximately 33◦ for case r3, nearly twice the veer of the smooth
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Figure 6. (a) Hodograph and (b) veering of the wind shown by means of the turning angle α (2.4a) of the
surface shear stress to the geostrophic wind. Symbols in panel (b) correspond to the heights as labelled in panel
(a), i.e. the end of the constant-flux layer as defined by a 10 % stress reduction and the upper bound of the inner
layer z− = 0.15 are marked.

case (18◦). Close to the ground, for z+ < H+, both streamwise and spanwise velocity are
slower compared with the smooth case (figure 6a), but the reduction of streamwise velocity
is relatively stronger – manifest in the increased veer. In reach of the roughness tops, the
turning angle α stays constant for r3, visible in the kink of the green curve in figure 6(b),
which occurs for cases r2 and r3. As a consequence of the different wind veers within
the surface roughness, the roughness field is approached at different angles for the cases
presented here.

We find here that wind veer within the surface layer is not negligible for the current
rough cases – and this effect appears to become stronger with increasing roughness. From
previous studies on smooth Ekman flow and scaling arguments (Rossby & Montgomery
1935; Coleman et al. 1990), it is known that u
 and α
 decrease with higher Re (Shingai &
Kawamura 2004) and increases for stably stratified conditions (Ansorge & Mellado 2014).
Roughness, which acts to increase the scale separation in terms of Reτ counteracts this
relation by an increase in u
 and α
; that means, the dependence of α on the Reynolds
number is outweighed by a stronger coupling of the outer and inner layers in the case
of a rough surface such that overall the veering decreases. Roughness apparently comes
into play as another important factor in real-world conditions for the strong dependence of
both α and u
 on the height of the roughness elements (figure 6). In fact, our simulations
suggest that the dependence of wind veer on both roughness and surface friction is stronger
than the effects of intermediate Reynolds number (a change of u
 and α by 50 % due to
variation of the Reynolds number requires a change of Re by several orders of magnitude
while we have only varied the roughness height by approximately a factor three).

4.5. Aerodynamic parameters of the momentum
For the subsequent estimation of aerodynamic parameters, we use the total magnitude of
the horizontal wind, defined as

〈ūh〉+ =
√

(〈ū〉+)2 + (〈v̄〉+)2. (4.4)

This choice is in accordance both with atmospheric observations, where the wind
magnitude is measured at different heights, and with previous numerical studies of Ekman
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Figure 7. Intrinsically averaged velocity profiles in inner units. Displayed are the mean streamwise (〈ū〉+,
dash-dotted lines), spanwise (〈v̄〉+, dashed lines) and total horizontal velocity magnitudes (〈ūh〉+, solid lines).
For reference, the logarithmic and viscous laws are shown for the smooth case by thin dash-dotted and dotted
lines, respectively. Parameters of the smooth logarithmic law are κm = 0.42, A = 5.44.

flow (Shingai & Kawamura 2004; Deusebio et al. 2014; Jiang, Wang & Sullivan 2018).
For reference, we commence by consideration of the mean velocity profile for the smooth
case s (figure 7) in inner and outer units. This profile agrees well with previous work
(Spalart et al. 2008, 2009; Ansorge & Mellado 2014; Ansorge 2019): in the vicinity of the
ground (0 < z+ � 5), the viscous sublayer has a linear velocity profile 〈ūh〉+ = z+. Above
the viscous sublayer and the adjacent buffer layer, where turbulent production peaks, the
logarithmic layer is found (Von Kármán 1930; Prandtl 1961; Zanoun, Durst & Nagib 2003)

∂〈ūh〉+
∂z+ = 1

κmz+ or in the integrated form 〈ūh〉+ = 1
κm

ln(z+) + A. (4.5a,b)

Here, κm is the von Kármán constant and A an integration constant encoding the lower
boundary condition, i.e. the integrated velocity profile of the viscous and buffer layers. The
exact vertical bounds of the logarithmic layer are a matter of debate; following Marusic
et al. (2013), the logarithmic region for the streamwise turbulent intensity is located at
3
√

Reτ < z+ < 0.15Reτ . For the smooth case, we choose z+ > 30 as a common value for
the lower boundary (Tennekes & Lumley 1972) and z+ < 0.15Reτ as the upper boundary.
Within this region, we estimate κm = 0.42 and A = 5.44 from a least squares fit.

Over rough surfaces, the logarithmic law is expressed as

〈ūh〉+ = 1
κm

ln(z − dm)+ + A − �〈ūh〉+ = 1
κm

ln
(

z − dm

z0m

)
, (4.6)

where dm is the zero-plane displacement height, a function of the packing density
of roughness elements (Placidi & Ganapathisubramani 2015), and �〈ūh〉+ = A +
κ−1

m ln(z+
0m) is the roughness function (Clauser 1954; Hama 1954), which describes the

additional momentum loss due to roughness. Also, A is an integration constant. The
roughness function measures the deceleration of the velocity with respect to smooth
flow within the logarithmic region (figure 8a). If the surface is smooth, the parameters
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Figure 8. (a) Roughness function for the horizontal velocity magnitude. (b) Relative error εL2 of the present
velocity profiles and the logarithmic law fit for an optimal z0m as a function of the normalized displacement
height dm/H.

dm, �〈ūh〉+ are zero. The aerodynamic roughness length z0m for the smooth case is
z+

0m = e−κmA ≈ 0.1. Traditionally, the equivalent sand-grain roughness Reynolds number
k+

s = ksu
/ν is used to compare different roughness set-ups. The roughness function
follows, in the fully rough regime, a logarithmic law �〈ūh〉+ = κ−1

m ln(k+
s ) + A − A′

FR
(cf. equation 2.2 in Squire et al. 2016). With the constant A′

FR = 8.5 (Nikuradse 1933)
the relation k+

s ≈ 35.5z+
0m directly appears and is valid under fully rough conditions.

Both forms of the rough log law (4.6) are interchangeable, whereas the first expression
is preferably used in an engineering context and the second in a meteorological context.

In the quest for a universal scaling for the mean velocity profiles in the logarithmic
region, an optimization problem over the set of parameters {κm, z0m, dm} arises, which
is challenging to solve. Therefore, the following assumptions are drawn. First, the von
Kármán constant is universal in this study, since the only difference in the simulation
set-ups of the cases are in the surface conditions. The observed dependence of the
von Kármán constant on the roughness Reynolds number κm = f (z+

0 ) in atmospheric
measurement data in the fully rough regime (Frenzen & Vogel 1995a,b) is according
to Andreas et al. (2006) an artificial consequence of correlation when calculating the
parameters. We follow the notion of κm as a universal constant for canonical flows over
smooth (Nagib & Chauhan 2008) and rough surfaces (Castro & Leonardi 2010). As shown
below, the roughness Reynolds number varies by approximately one decade in the current
cases. The increase of roughness heights among cases r1–r3 is considered via an adjusted
fitting interval for the logarithmic law (4.6). That is, second, we assume the logarithmic
layer is located in the range z+

log,m < z+ < 0.15Reτ , where we use z+
log,m = 30 + d+

m . (Due
to the small value of H, the choice of z+

log,m fits the data, and should not be interpreted as
predictive or general; great care should be taken with respect to higher-order statistics.)
The subsequent analysis shows that we are still well within the logarithmic range of the
flow with the choice of the lower limit z+

log,m. Third, the normalized displacement height
dm/H is assumed to be constant for all rough cases. In fact, this ratio is known to be mainly
governed by the roughness density λp and an unclear relation of λf for λf < 0.1 (Placidi
& Ganapathisubramani 2015, figure 11).

992 A8-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

54
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Small-scale roughness in Ekman flow

100 101 102 103 104 105

z−
m = (z − dm)/z0m

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

s(dm = 0, z+
0m = 0.1)

r1(z+
0m = 0.24)

r2(z+
0m = 0.84)

r3(z+
0m = 2.01)

log-law (κm = 0.42)
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Figure 9. Collapse of the mean horizontal velocity profiles onto the logarithmic law of the wall, with the
zero-plane displacement height dm/H = 0.59. Coloured arrows and vertical dotted lines indicate the fitting
interval for the logarithmic law of each case.

To determine the optimal value of dm/H, an error norm εL2 is defined for each of the
corresponding intervals in (figure 8b)

εL2(〈ūh〉+)|dm,z0m = 1
n

√√√√√ n∑
i∈{z+|z+log,m<z+<0.15Reτ }

[
〈ūh〉+i − 1

κm
ln

(
zi − dm

z0m

)]2

. (4.7)

The optimum value of dm/H minimizes the expression {∑n
k∈{r1,r2,r3} εL2}. We find the

optimal value of dm/H ≈ 0.59 (cf. black curve in figure 8b) in accordance with literature
data for λp = 0.1 (Kanda et al. (2004) with LESs over cube roughness dm/H ≈ 0.65,
Leonardi & Castro (2010) with DNS over staggered cube roughness with dm/H ≈ 0.6 and
Brutsaert (1982) for crop covered surfaces dm/H ≈ 2/3). Excluding case r1 (which is
almost aerodynamically smooth) from the sum would result in a negligible change of the
optimal value of dm/H ≈ 0.61.

The mean velocity profiles collapse onto the proposed rough log law (4.6) when scaled
with u
 and the vertical distance with z−

m = (z − dm)/z0m (figure 9). We obtain values
of the normalized aerodynamic roughness length of z0m/H = [0.022, 0.034, 0.049] and
scaled in inner units z+

0m = Rez0m = [0.24, 0.84, 2.01]. In the ABL, the onset of the
fully rough regime is assumed for z+

0m � 2–2.5, and the transitionally rough regime for
0.135 � z+

0m � 2–2.5 (Brutsaert 1982; Andreas 1987). By this definition, cases r1, r2
are transitionally rough and r3 is on the edge of being fully rough when considered in
terms of z+

0m. Taking into account that the transition between roughness regimes is highly
dependent on the type of roughness, we conclude that case r3 is fully rough for (i) its
sharp-edged geometry, (ii) the occurrence of a dual peak in the viscous stress and (iii) the
strong signature of roughness in all turbulent statistics. Figure 9 illustrates that the increase
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Figure 10. (a) Temporal evolution of the horizontally averaged scalar profile in inner units, shown together
with the temporal mean (solid black lines). The viscous law (magenta dotted line) with 〈s̄〉+ = z+Sc and the
logarithmic law (magenta dashed-dotted line) 〈s̄〉+ = κ−1

h ln(z+) + A with κh = 0.35, A = 4.2 are shown for
case s. (b) Relative error εL2 of the present scalar profiles and the logarithmic law fit for an optimal z0h as a
function of the normalized displacement height dh/H.

of Reτ for the rough cases also manifests in a deeper logarithmic layer, i.e. the common
bounds of the logarithmic region also hold over the rough surface. In fact, the previous
lower limit of z+ > z+

log,m can be adjusted downward to z+ > 25 + d+
m or to z+ > 0.8

√
Reτ

as a function of the Reynolds number, without z+
0m differing by more than ±5 % from the

above values. The proposed procedure of estimating the aerodynamic properties of the
flow is robust to the choice of the displacement height, since changing dm/H = 0.6 ± 0.1
results in maximum deviation of the presented z+

0m values of ±4.5 % (cf. small variation
of εL2 vs dm/H in figure 8b).

4.6. Aerodynamic parameters of the passive scalar
Despite the temporal evolution of mean scalar profiles 〈s〉− (figure 10a), 〈s̄〉+ is statistically
steady in the logarithmic layer: the inner layer is in quasi-equilibrium with the scalar
evolution in the outer layer. In the immediate vicinity of a smooth wall (case s) we resolve
the conductive sublayer with 〈s̄〉+ = z+Sc. In analogy with the momentum logarithmic
layer (4.6), the scalar one reads as

〈s̄〉+ = 1
κh

ln(z − dh)
+ + A(Sc) − �〈s̄〉+ = 1

κh
ln

(
z − dh

z0h

)
, (4.8)

where κh is the von Kármán constant and the constant of integration A(Sc) encodes the
surface information. For (aerodynamically) smooth surfaces, it is dh = 0 and �〈s̄〉+ = 0;
for rough surfaces, the displacement height dh > 0, the roughness function �〈s̄〉+ /= 0
and an aerodynamic roughness length z0h emerges. We determine the parameters from
our simulation data following the procedure described above and find the von Kármán
constant κh ≈ 0.35. While existing data of experiments appear to agree on κh ≈ 0.47,
DNS data yield a large spread in the range 0.28 � κh � 0.46 (table 3). The experimental
data available (table 3) do, however, not consider external flow while externality of the
flow is known to impact estimates of κ and can explain a substantial share of the variation
in κ from simulation data (Ansorge & Mellado 2016).
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Small-scale roughness in Ekman flow

Reference Type (BCs) Reτ Sc κh A(Sc)

Kader (1981) exp. data
(collection)

multiple 1.0 0.47 6.5

Subramanian &
Antonia (1981)

exp. boundary layer multiple — 0.48 ± 0.02 2.0 ± 0.02

Kasagi, Tomita &
Kuroda (1992)

DNS channel (v) 150 0.71 0.36 2.09

Kawamura, Abe &
Matsuo (1999)

DNS channel (f) 180, 395 0.025–0.71 0.4–0.42 —

Johansson &
Wikström (2000)

DNS channel (v) 265 0.71 0.33 0.95

Kawamura, Abe &
Shingai (2000)

DNS channel (f/v) 180, 395 0.025–1.0 0.28 (v), 0.41 (f) —

Pirozzoli,
Bernardini &
Orlandi (2016)

DNS channel 548–4088 0.2–1.0 0.46 —

Pirozzoli et al.
(2022)

DNS pipe flow (v) 6000 1.00 0.459 5.78

Cases of this study
(s, r1, r2, r3)

DNS Ekman flow
(v)

1408–2688 1.00 0.35 4.2

Table 3. Parameters {κh,A(Sc)} for the logarithmic law of the passive scalar. If known, boundary conditions
(BCs) for the scalar are indicated with (v) for constant value or (f) for constant flux. All DNS of turbulent
channel flow are closed channels. Kader (1981) gives a function for the integration constant with A(Sc) =
(3.85Sc1/3 − 1.3)2 + 2.12 ln Sc.
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Figure 11. (a) Shading of the error norm εL2 (according to (4.7)) for the least squares fit of {κh,A} of the
passive scalar of the smooth case s. The red line indicates a polynomial fit to the minimum error norm and the
best fit is marked with red dotted lines. (b) The error norm εL2 as a function of A for an optimal value of κh,opt
in black and κh,opt as function of A in red.

The constants κm and A of the logarithmic law for the mean velocity are known to be
strongly correlated for the momentum log law (4.5; Ansorge & Mellado 2016; Ansorge
2017), which also holds for the scalar and is quantified in figure 11(a). For the smooth
case s, the rather flat curve of the error norm εL2 (evaluated similar to (4.7)) for the scalar
allows values of the von Kármán constant κh in the range of 0.34 � κh � 0.37 (figure 11b).
For the rough cases, we again pose universality of κh = 0.35 and minimize the error norm
analogous to (4.7), which is shown in figure 10(b), to estimate the scalar displacement
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Figure 12. Collapse of the mean scalar profiles onto the logarithmic law of the wall, with the zero-plane
displacement height dh/H = 0.41. Coloured arrows and vertical dotted lines indicate the fitting interval for the
logarithmic law of each case.

height (dh/H)opt = 0.41 for all rough cases; as expected, this height is substantially lower
than that of the momentum, which illustrates the absence of pressure-blocking effects for
the scalar exchange in comparison with momentum exchange.

The collapse of profiles to the proposed logarithmic law is shown in figure 12 with
z+

log,h < z+ < 0.12Reτ for rough cases, where z+
log,h = 30 + d+

h . (Due to the small value
of H, the choice of z+

log,h fits the data, and should not be interpreted as predictive
or general. Great care should be taken with respect to higher-order statistics.) For the
smooth case, we find z+

0h = e−κhA = 0.23, more than twice the momentum roughness
length z0m. And for the rough cases, it is z0h/H = [0.035, 0.037, 0.040] or, in inner
units, z+

0h = [0.38, 0.91, 1.69]. In contrast to the momentum roughness length z0m/H,
which increases by more than a factor two, the normalized scalar roughness length z0h/H
depends only weakly on the blocking ratio. This difference is due to the absence of
pressure-blocking effects in the scalar budgets that hamper vertical momentum exchange
in the viscous region.

4.7. Scaling behaviour of aerodynamic parameters
The z-nought concept with parameters z0m, z0h lumps the roughness effects for the
near-surface transport of scalar and momentum (in addition to their displacement heights
dm and dh commonly considered to be related to the covered volume only). These z-nought
parameters are key for the modelling of surface momentum and scalar exchange (Monin
1970; Foken 2006). The mixing of momentum is determined by both pressure drag and
viscous drag over rough surfaces, while scalar mixing lacks the pressure-blocking effect
and is therefore described by molecular diffusion alone (Cebeci & Bradshaw 1984, p.168),
as already discussed when determining z0h (§ 4.6; cf. also Brutsaert 1982, § 5; Garratt
1992, § 4). In the ABL z0m > z0h, since mixing of momentum is more efficient than scalar
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Figure 13. (a) Aerodynamic roughness lengths of momentum z+
0m and scalar z+

0h as a function of the friction
Reynolds number. (b) Log ratio of the momentum and scalar roughness length plotted as a function of the
logarithm of the roughness Reynolds number ln(Rez0m ), with exponential fitting functions (solid and dotdashed
black lines) and the corresponding values of r2 (coefficient of determination). The dashed and dotted lines are
according to Zilitinkevich (1995) and Kanda et al. (2007).

mixing due to pressure gradients in the roughness sublayer (cf. also LES studies with
cubical roughness by Li & Bou-Zeid 2019 and Li et al. 2020).

Commonly, z0m is determined as a site-specific parameter from wind profiles, with due
regard of roughness geometry and arrangement. Different approaches exist to parametrize
z0h based on z0m. Conventionally, ln(z0m/z0h) ∝ Ren

z0m
is assumed for constant Schmidt

number. A review of classical theories is given by Li et al. (2017). Zilitinkevich (1995)
proposed an exponent n = 1/2 and Brutsaert (1975a,b) an exponent of n = 1/4. For the
roughest case r3 we observe the proposed behaviour of z0m > z0h (figure 13a), which
supports our assertion that case r3 is in between the transitionally and fully rough regimes,
where pressure drag dominates. For the other cases, the scalar roughness length exceeds
the aerodynamic one. Following the scalings of Brutsaert (1982) and Kanda et al. (2007),
we estimate the scaling for the log ratio of roughness lengths as ln(z0m/z0h) = 1.96Re1/4

z0m −
2, whereas the best fit collapses on ln(z0m/z0h) = 1.53Re1/4

z0m − 1.61. An extrapolation to
the fully rough regime z+

0m > 2 is, however, delicate due to the lack of data.
We observe a linear relation of u
 as a function of the height of roughness elements

expressed in external units ΛRo (figure 14a) in the transitionally rough regime. This scaling
appears despite the change in wind direction with which the roughness field is approached
for the cases (cf. figure 6b). The scaling behaviour of the friction values of the passive
scalar is not as conclusive as for u
, since the scalar is evolving in time (figure 14b) and
processes act on different time scales. The imposed initial state of the passive scalar adapts
to the imposed boundary conditions on the shortest possible, namely the viscous, time
scale (cf. near-sudden increase for the rough cases at tf = 0, and strong increase for the
smooth case at tf ≈ −2.7, figure 14b). Following this initial transition, the scalar gets
mixed vertically across the boundary layer by turbulence at the turbulent time scale f −1. If
time is allowed to get sufficiently large, processes at the largest time scale ∝ ReΛ become
relevant. Here, the scalar is mixed by laminar diffusion between the top of the boundary
layer and the top of the computational domain at a time scale ν/G2 (here, ∼ReΛ). This
separation of time scales is indeed supported by the process of scalar mixing across the
ABL (figure 15): after the initial transient, disturbances propagate upwards through the
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Figure 14. (a) Scaling of the friction velocity u
 as function of the mean height H/ΛRo of the roughness
elements, normalized with the Rossby radius ΛRo. The linear function is derived by fitting the slope parameter,
whereby the vertical offset parameter is equal to the value of the smooth case s. With the corresponding r2

value of the linear fit. (b) Temporal evolution of the friction scalar s
(t) and the surface flux q
(t). Time is
scaled with eddy-turnover times f −1 (cf. Appendix B for u
(t)).
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Figure 15. Temporal evolution of the horizontally averaged gradient of the passive scalar for (a) case r3 and
(b) case s, scaled in inner units. The upper boundary of the logarithmic layer is indicated with z+ = 0.12δ+,
the lower boundary with z+ = z+

log,h (d+
h = 0 for case s) and the boundary-layer thickness with δ+. The lowest

part 0 ≤ z+ < 30 of the boundary layer is not shown.

logarithmic layer and above. Mixing in the upper part of the boundary layer is visible
for case r3 (figure 15a) at time tf � 6.5. This is also seen in figure 14(b) in terms of
a decreased rate in q
 and u
 for tf � 6.5. The less rough cases have not reached this
quasi-steady regime, which points to enhanced turbulent mixing for the roughest case.
Nevertheless, mean passive scalar statistics are sufficiently converged in the logarithmic
layer so they have reached a quasi-equilibrium, and they are analysed for the period of the
final eddy-turnover time of each case.

Based on figure 14(b), we find that the change of s
 with respect to H/ΛRo in equilibrium
is small in comparison with the change of u
. From the data available it is, however,
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Small-scale roughness in Ekman flow

not clear whether s
 becomes a constant or changes weakly with respect to H/ΛRo.
The key difference between the conservation equations for momentum (2.1b) and passive
scalar (2.6a) is the pressure gradient term −∂π/∂xi. The friction velocity u
 changes by up
to 38 % while the change of q
 is largely explained by a change of u
 such that s
 remain
approximately constants. This behaviour underlines the strong link between roughness
effects on the momentum conservation and the pressure drag.

5. Discussion and conclusions

Direct numerical simulations of turbulent Ekman flow with a passive scalar are carried out
for a rough surface resembling a typical ABL configuration over homogeneous roughness.
The roughness is fully resolved and considered through an ADR IBM, which allows
us to maintain a high order of spatial discretization while avoiding SFOs. The fully
resolved small-scale roughness (blocking ratio H/δ of the order of O(1 %)) has the form
of 562 rectangular blocks on the surface; these blocks feature a uniform height and width
distribution. In total, four simulations with identical large-scale forcing are performed: one
smooth case s at Reτ = 1408 and three rough cases r1, r2, r3 with increasing roughness
heights H+ = [10.8, 24.7, 40.8]. Regarding our research questions posed in § 1, we find
the following:

(i) For a controlled and fully resolved surface roughness, friction velocity u
 and
scalar s
 can be determined by integration of the scalar and momentum budgets.
The increase for u
 is up to 38 % and for Reτ up to 91 %. The results of the passive
scalar indicate the importance of the pressure drag on the momentum, especially
for the fully rough case r3, in which momentum transfer is dominated by pressure
drag and scalar transfer by molecular diffusion (Cebeci & Bradshaw 1984, p. 168).
With increasing roughness height the turbulent activity and therefore mixing is
enhanced. The influence of roughness on the turning of the wind and hence the
Ekman spiral manifests in an enhanced turning angle α. This is despite an increasing
scale separation in viscous units, and it illustrates that, in terms of outer scaling,
roughness acts to reduce the Reynolds number; i.e. the scale separation for large
eddies is governed by Reτ /Rez0 rather than by Reτ . This means that – from the
perspective of large eddies – the ABL has a lower Reynolds number than is usually
assumed by a factor Rez0 .

(ii) The DNS data collapse onto the rough-wall scaling in the logarithmic layer for the
mean horizontal velocity and passive scalar. The estimated von Kármán constants
and offset parameters are κm = 0.42, A = 5.44 and κh = 0.35,A = 4.2. A strong
correlation between the von Kármán constant κ and the offset parameter A is
quantified. In the presence of roughness, the extent of the logarithmic layer in inner
units grows with increasing roughness height and therefore scale separation. We,
however, find that the commonly assumed representation of the total drag by the
maximum of the turbulent drag in the lower part of the surface layer may constitute
a substantial bias in rough boundary layers as a substantial fraction of up to 20 %
of the drag is neglected when considering the turbulent drag only. The substantial
variation of drag in the inner layer (below z− ≈ 0.15) comes with rotational effects
(due to the triadic balance between the Coriolis force, pressure gradient and viscous
drag) in the roughness sublayer that manifest in a wind veer across the lowest part of
the ABL, even below the logarithmic layer.

(iii) Based on our data, we estimate the zero-plane displacement height for momentum
to dm/H ≈ 0.6 and for the scalar to dh/H ≈ 0.4 and roughness Reynolds numbers
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J. Kostelecky and C. Ansorge

of z+
0m = [0.1, 0.24, 0.84, 2.01] and z+

0h = [0.23, 0.38, 0.91, 1.69]. This leaves the
cases r1, r2 in the transitionally rough regime and the roughest case r3 at the edge
of the fully rough regime.

(iv) The log ratios of the roughness lengths ln(z0m/z0h) exhibit a clear scaling ∝
Re1/4, which fits the known exponent of Brutsaert (1975a,b). For the smooth and
transitionally rough regime scalar mixing is enhanced z0m < z0h, whereas in the fully
rough regime z0m > z0h is recovered, due to the importance of the pressure.

With the framework prescribed in this study, we are now able to study the impact of
roughness on the ABL at meaningful scale separations. The extension of these results to
the fully rough regime for the scaling of aerodynamic parameters outside the transitionally
rough regime as well as the effects of heterogeneous surface conditions on the stably
stratified flow are interesting aspects for future work.
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Appendix A. Intrinsic averaging in an inhomogeneous domain

Let us consider a square object immersed in a fluid domain (cf. figure 2a, red shaded area),
which covers a normalized solid area of A1 = 4 and fluid area of A0 = 21 and N1 = 9,
N0 = 16 grid points (superscripts (·)0,1 are used according to (2.8)). The mean of any flow
variable ϕi in the solid and fluid region is defined as follows:

〈ϕi〉0 = 1
N0

∑
i∈A0

ϕi, and 〈ϕi〉1 = 1
N1

∑
i∈A1

ϕi. (A1a,b)

Evidently, this approach neglects contributions to the fluid, because of the mismatch
in A0/(A0 + A1) /= N0/(N0 + N1) (red, blue shaded area), therefore a volume-based
approach (for the three-dimensional case) is needed to take precisely the covered space into
account. Depending on the location of a certain grid point, the distinction between solid
and fluid is augmented by grid points on corners, edges and plane interfaces (cf. figure 2b)
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Small-scale roughness in Ekman flow

with

εS(xj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if xi ∈ fluid,

1
2
, if xi ∈ plane interface,

1
4
, if xi ∈ edge,

1
8
, if xi ∈ corner,

0, if xi ∈ solid,

and εF(xi) = [1 − εS(xi)]. (A2a,b)

Expanding the approach to the three-dimensional case leads to height-dependent volume
fractions

γ 0(z) = 〈1 − ε(xi)〉, γ F(z) = 〈1 − εS(xi)〉, (A3a,b)

γ 1(z) = 1 − γ 0(z), γ S(z) = 1 − γ F(z), (A3c,d)

γ rel(z) = γ 0(z)
γ 1(z)

, (A3e)

which are easily validated by γ F(z) − γ 0(z) = γ 1(z) − γ S(z). We are interested in
the mean conditional statistical moments in the fluid region, since any statistics inside
the solid regions are irrelevant. The statistical output of the DNS code provides only
the unconditional mean 〈ϕi〉code and (co-)variances 〈ϕ′

iϕ
′
j〉code of the flow variables.

Following the conditional averaging approach in Pope (2000, p. 169f), the mean can be
easily conditioned to the fluid region with

〈ϕ〉F
i = 1

γ F (〈ϕi〉code − γ S〈ϕi〉S), (A4a)

with

〈ϕi〉S =
{

const., if ϕi is passive scalar,
0, if ϕi is velocity.

(A4b)

Advancing this approach for the (co-)variances gives

〈ϕ′
iϕ

′
j〉F = γ rel[〈ϕ′

iϕ
′
j〉0 + (1 − γ rel)(〈ϕi〉0 − 〈ϕi〉S)(〈ϕj〉0 − 〈ϕj〉S)], (A5)

with

〈ϕ′
iϕ

′
j〉0 =

〈ϕ′
iϕ

′
j〉code

γ 0 − γ 1(〈ϕi〉1 − 〈ϕi〉0)(〈ϕj〉1 − 〈ϕj〉0), (A6)

〈ϕi〉0 = 1
γ 0 (〈ϕi〉code − γ 1〈ϕi〉1), (A7)

〈ϕi〉1 =
{

const., if ϕi is passive scalar,

0, if ϕi is velocity.
(A8)

The values of 〈ϕi〉S and 〈ϕi〉1 have to be known in advance and the (co-)variances
〈ϕ′

iϕ
′
j〉S ≡ 0 and 〈ϕ′

iϕ
′
j〉1 ≡ 0 are always zero.
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Figure 16. Temporal evolution of the friction velocity u
 for the smooth (grey) and the three rough cases (red,
blue, green), with tf = 0 for the start of the rough cases. Thick transparent lines denote the intervals for time
integration of the flow variables. Time is scaled in eddy-turnover times f −1. The averaging time of cases s and
r3 is a full inertial cycle.
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Figure 17. Inertial oscillations of the conducted cases. (a) Mean hodographs are shown with thick solid lines,
and the thin lines show the temporal evolution of 〈u〉, 〈v〉 at specific heights (scaled in inner smooth units).
(b) Temporal streamwise (top half) and spanwise (bottom half) bulk velocities ui,bulk(t) = L−1

z
∫ Lz

0 〈ui(t, z)〉 dz,
with time in eddy-turnover times f −1. Dotted lines in (a) and (b) depict the initial transient of the cases, which
is excluded from time averaging.

Appendix B. Time integration for statistical analysis and inertial oscillations

For initialization of the smooth case s we take the fully turbulent velocity fields of
a previous simulation, which was in a statistically converged state of similar Reynolds
number. Those original fields are interpolated to the current computational grid (table 1).
The passive scalar of the smooth case is introduced with an initial exponentially decaying
profile. The rough cases are initialized to the time instance t = 0 with fully turbulent,
three-dimensional fields (velocities and passive scalar) from the smooth case s, and were
already in a statistically converged state.

A measurement for determining statistical convergence of the cases is the temporal
evolution of the friction velocity u
(t) (figure 16), following the method described in § 4.1.
After an initial transient (adaptation phase of new boundary conditions), u
(t) reaches a
quasi-steady state, which is determined by visual inspection, and from which flow statistics
are collected for temporal integration.
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Small-scale roughness in Ekman flow

Another helpful tool for diagnosing statistical convergence and gradual adaptation of
the simulations to the new boundary conditions is the visualizations of inertial oscillations
with the period of 2π/f , which are visible in the hodographs and horizontal bulk velocities
(figure 17). The smooth case s is statistically converged and therefore the amplitude of the
inertial oscillation is negligible. This is also valid in the near-wall region (figure 17a).
Adjusting the boundary conditions by introducing surface roughness increases inertial
oscillations, which then slowly decay over time. Cases s and r3 are averaged over
approximately one full inertial period, whereas r1, r2 are averaged over 0.4, 0.3 inertial
periods.
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5. Study II: The Stably Stratified Rough
Ekman Layer

This study addresses the interplay of surface roughness and the stably stratified turbulent
Ekman layer. The mean height of the surface roughness is constant and corresponds to
the roughest case r3 of Study I (cf. chapter 4) while incrementally increasing the strength
of the stable density stratification. The entire span of stability regimes is covered from the
WSBL to the VSBL, where intermittency occurs. This study focusses on the flow topology
and regime shifts due to the presence of roughness and surface layer similarity (MOST).

The following study has been published:
Kostelecky J., Ansorge C. (2025): Surface Roughness in Stratified Turbulent Ekman Flow,
Boundary-Layer Meteorology, 191, pp. 5, https://doi.org/10.1007/s10546-024-00895-5.

The article is reproduced here using its original layout of the journal, where it was published
under the terms of the Creative Commons Attribution 4.0 licence.

Author contributions:
Jonathan Kostelecky: Code implementation, numerical simulations, post-processing of the
data, visualization and interpretation of results, writing of the original draft, conceptual-
ization of the study.
Cedrick Ansorge: Supervising of the research, discussion and interpretation of results,
reviewing and editing the original draft, acquisition of funding, conceptualization of the
study.
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Abstract
The interplay of surface roughness and stable stratification is investigated by direct numerical
simulation of Ekman flow. Our setup is well within the turbulent regime, reaching a friction
Reynolds number of Reτ ≈ 2700. Further, we reach the verge of the fully rough regime
under neutral conditions with a non-dimensional obstacle height H+ ≈ 40, corresponding
to a z-nought parameter in viscous units z+0 ≈ 2. Stability is imposed via a gradual decrease
of surface buoyancy from neutral (no stratification) to very strong stratification. The reduced
Reynolds number (Reτ ) in comparison to atmospheric problems warrants consideration of
viscous effects on our results, and we demonstrate a correction method that consistently
incorporates viscous effects, thus reducing the spread of data from our numerical results. The
weakly stable regime ismaintained at higher stability due to efficient production of turbulence
kinetic energy which counteracts buoyant restoring forces in the presence of roughness.
When scaled according to Monin–Obukhov similarity theory (MOST) our results for weak
stability compares excellent to known formulations based on atmospheric observations. The
coefficients of the stability correction functions formomentumandheat are estimated asβm =
3.45, βh = 5.21 respectively, and we observe a slight but significant increase of the turbulent
Prandtl number with stability. In the very stable regime, global flow properties (e.g. friction
velocity, Obukhov length) oscillate with a decaying amplitude and global intermittency, i.e.
the co-occurrence of turbulent/laminar fluid at large scale, is observed in the presence of
roughness. In such very stable conditions, a strong veering of the surface wind with respect
to the large-scale forcing (< 90◦) is observed.

Keywords Boundary-layer turbulence · Direct numerical simulation · Monin–Obukhov
similarity theory · Stable boundary layer · Surface roughness

1 Introduction

Static stability is ubiquitous in the atmospheric boundary layer (ABL) as radiative processes
in vicinity of and at the underneath surface cause vertical temperature gradients at various
time scales. In the mid-latitudes, the static stability primarily governs the ABL’s diurnal
cycle (cf. Figure 1.7 on p. 11, Stull 1988, ): During the day, the sun heats the Earth surface,
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plumes of warmer air rise from the ground, resulting in the well-mixed and turbulence-rich
convective boundary layer. In absence of solar irradiation – during night or polar night –
the surface cools and the stable boundary layer (SBL) forms, characterized by an upward
increase of potential air temperature (Mahrt 2014).

Static stability makes the buoyancy conversion term a sink in the budget of turbulence
kinetic energy (TKE), such that turbulence is exclusively generated by shear – a stark contrast
to convective conditions where both buoyancy and shear generation are a source of TKE.
The SBL is commonly classified according to the relative strength of stratification and the
impact of stratification on turbulent transport and mixing. This gives rise to classification
approaches, suggested, for instance, by Mahrt (1998); Howell and Sun (1999); Grachev
et al. (2013); Stopa et al. (2022). Mahrt (1998) distinguishes the weakly stratified boundary
layer (WSBL), where surface-layer similarity works very well, the temperature behaves like
a passive scalar, and the interaction of stratification with the turbulence structure is weak,
from the very stable boundary layer (VSBL), where buoyancy destruction of turbulence
substantially changes the surface-layer flow. Windy conditions (when shear-generation of
turbulence is strong), or moderate surface cooling give rise to the WSBL, characterized by a
state of continuous turbulence at reduced intensity. For large surface-cooling or weak wind,
in the VSBL, turbulence is suppressed, but a complete laminarization is not found in the
atmospheric measurements for its high Reynolds number. In such intermittently turbulent
flow (Businger 1973; Mahrt 1999; Ansorge and Mellado 2014; Shah and Bou-Zeid 2014;
Deusebio et al. 2015) the upper part of the VSBL decouples from the surface layer.

The WSBL is amenable by Monin–Obukhov Similarity theory (MOST) for the atmo-
spheric surface layer (ASL, Monin 1970; Högström 1988; Grachev et al. 2013) and by local
similarity aloft (Nieuwstadt 1984). On the contrary, the VSBL is intricate and despite intense
efforts over past decades, a number of issues remain unsolved (Holtslag et al. 2013; Sandu
et al. 2013; Steeneveld 2014; LeMone et al. 2019; Edwards et al. 2020). Global intermittency
plays a pivotal role in the VSBL, and it results in spatio-temporally complex organized turbu-
lence, characterized by anisotropy and wave-like/non-turbulent interaction between laminar
and turbulent flow (cf. gravitywaves on p. 87, Businger 1973;Vercauteren et al. 2019; Van der
Linden et al. 2020; Gucci et al. 2023, ). Most prominently, large-eddy simulation (LES) faces
severe challenges in the VSBL for the locality, anisotropy, and inhomogeneity of turbulence
(Jiménez and Cuxart 2005). A common problem is the local laminarization of the flow and
the associated runaway cooling (Jiménez and Cuxart 2005; Van de Wiel et al. 2012a). These
problems reflect a conceptual lack models of the VSBL and challenge classical modelling
approaches, calling for new avenues in turbulence parameterization (e.g. Stiperski and Calaf
2018; Maroneze et al. 2023; Boyko and Vercauteren 2024, ). Here, we use direct numerical
simulation (DNS) of the SBL to circumvent dependencies on turbulence closure models at
the cost of (i) a simplified setup, (ii) high computational expense, and (iii) a reduced scale
separation.

Neglecting the background rotation of the mean wind in the ASL, which is in accordance
with MOST, the ASL can be studied by virtue of the channel-flow analogy. DNS of stratified
channel flow (Garg et al. 2000; Nieuwstadt 2005; Flores and Riley 2011; García-Villalba and
del Álamo 2011; Donda et al. 2015, 2016, among others), commonly focuses on the col-
lapse of turbulence and associated laminarization in the intermittently turbulent regime. The
Obukhov length scaled in viscous units (later defined as L+

O and sometimes termed buoyancy
Reynolds number) for its appropriate characterization of turbulence instability in a stratified
flow–is identified as relevant scaling parameter for the turbulence collapse (Flores and Riley
2011). Over a smooth surface, the flow laminarizes below L+

O ≈ 100. For heterogeneous sur-
face conditions, they speculate LO/LR , where LR is a characteristic roughness length scale,
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is the appropriate parameter. This would suggest that roughness shifts the stability threshold
for transition to a laminar or intermittently turbulent flow to higher stability. More recently,
Mironov and Sullivan (2023) investigate the turbulence structure in a stratified Couette flow
for a thermally heterogeneous bottom boundary. They indeed demonstrate maintenance of
turbulence in very stable conditions over thermally heterogeneous surfaces due to the pres-
ence of local convective instability as a consequence of the thermal heterogeneity.

When the ABL is considered in its vertical entirety, Earth rotation, i.e. the Coriolis force,
manifests in a wind veer. This veer gives rise to the Ekman spiral (Ekman 1905) and a loss
of the lateral (spanwise) flow symmetry in comparison with channel flow. Rotational effects
are adequately represented in Ekman flow, the flow over a flat, rotating plate. The boundary
layer depth scale (outer scale) of the Ekman flow δ = uτ / f , with the friction velocity uτ and
the Coriolis parameter f , is constant under neutral stratification, but unknown a priori to the
simulation. The total turbulent scale separation of the outer δ (largest eddies of the size of
the boundary layer scale) and inner scale δν (smallest eddy size, where dissipation becomes
relevant) of the flow problem is expressed as the friction Reynolds number Reτ , defined as:

Reτ = δ

δν

= uτ δ

ν
, (1)

where δν is the viscous unit and ν the kinematic viscosity.
The neutrally stratified problem was studied by Coleman et al. (1990); Coleman (1999);

Shingai and Kawamura (2004); Miyashita et al. (2006); Spalart et al. (2008, 2009); Marlatt
et al. (2012); Ansorge (2019). Different regimes of density stratification are explored in Cole-
man et al. (1992); Ansorge and Mellado (2014, 2016); Shah and Bou-Zeid (2014); Deusebio
et al. (2014); Stefanello et al. (2022). The turning angle of the wind increases with stability,
while a drastic decrease of the boundary layer height is observed. The studies by Ansorge and
Mellado (2014, 2016) enabled a qualitative representation of the turbulence regimes only
by varying the strength of stability, measured by an external bulk Richardson number. At
sufficient stability, global intermittency is intrinsic to the VSBL and does not require external
trigger mechanisms. This intermittency occurs in space and time rather than as an on–off
processes in time which calls for conditional analysis and at the same time emphasizes the
importance of the laminar patches in the flow’s surface layer. As previous studies have indi-
cated, DNS of very stable Ekman flow with global intermittency are demanding for various
reasons: (i) the scale separation in terms of the friction Reynolds number Reτ has to be large
enough, (ii) fine grid resolution is necessary to resolve the occurrence of large gradients
in turbulent patches, (iii) large domain sizes are required to accommodate large-scale flow
structures and laminar/turbulent patches.

The aforementioned studies of Ekman flow cover a broad range of stratification, but
they are mainly constrained to aerodynamically smooth surfaces. At the same time, surface
roughness is an omnipresent and multiscale feature in the ABL. More importantly, the effect
of roughness is pronounced in the SBL, since the ABL thickness decreases by up to an order
of magnitude in contrast to neutral stratification, from O(1 km) to O(10− 100 m) (cf. semi-
empirical boundary layer depth scheme for neutral and stable stratification by Zilitinkevich
et al. 2012, based onLES and observational data). An exception is Lee et al. (2020), who study
stratified Ekman flow over a periodic cosine-shaped hill. Their roughness setup is located
in the transitionally rough regime with H+ = 15, where H+ is the height H of the bumps
expressed in viscous units. A regime shift from the VSBL to the WSBL is observed, since
roughness is a triggering mechanism of turbulence and therefore counteracts the stability-
induced suppression of turbulence. More recently, Bhimireddy et al. (2024) describe the
effect of roughness on the SBL based on tower measurement from field observations and find
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that the increase in the turbulent velocity scale VT K E (equal to the square root of the TKE)
with the wind speed increases with the roughness length.

In a preliminary study (Kostelecky and Ansorge 2024a, hereafter KA24), we investigated
the effect of small-scale surface roughness on bulk properties of the neutrally stratifiedABL—
based on first principles, i.e. using DNS. The cases in KA24 only differ with respect to the
mean height of the roughness, and they cover the transitionally rough regime up to the
verge of the fully rough regime. From the DNS perspective, the setup exhibits a relatively
large scale separation in terms of the friction Reynolds number Reτ (up to Reτ ≈ 2700). In
fact, this scale separation is sufficient to explore the rough-wall scaling of the logarithmic
layer for velocity and a passive scalar, which allows extrapolation of our results to the high-
Reynolds-number regime in which the ABL is generally found. Here, we extend the setup
introduced by KA24 to stable stratification, and investigate four research questions: (1) Does
the presence of roughness extend the stability regime in which turbulence is maintained,
and how is the regime transition from weak to very stable s roughness? (2) Does large-
scale intermittency occur in the very stable regime and are its effects comparable to those
in aerodynamically smooth flow? (3) How does the flow topology change? (4) Are common
stability corrections for MOST applicable to our data and do the associated values of the
von Kármán constant κ , aerodynamic roughness length z0 and the zero-plane displacement
height d match expectations based on observational data from atmospheric measurement
campaigns?

2 Methodology

Weapproach the problembyDNS.The governing equations and their non-dimensionalization
are described in Sect. 2.1 followed by the algorithm used to solve the equations (Sect. 2.3).
The treatment of a rough surface and introduction of stable density stratification are described
in Sect. 2.4 and Sect. 2.5 before we introduce the set of simulation cases in Sect. 2.6.

2.1 Governing Equations

We solve the incompressible Navier–Stokes equations numerically under the Boussinesq
approximation in a horizontally doubly-periodic domain. Stratification effects are represented
by buoyancy:

b = θ ′

θ0
ggrav, (2)

with the gravitational acceleration−ggravê3 (pointing downwards). Neglecting diabatic heat-
ing, the energy conservation equation then becomes an advection–diffusion equation for
buoyancy. Here, θ0 is a reference temperature throughout the domain and θ ′ is the local devi-
ation from this temperature. For non-dimensionalization of the system,we use the geostrophic

windG (withG = (G1,G2, 0)T , andG =
√
G2

1 + G2
2), the Rossby radiusΛRo = G/ f with

the Coriolis parameter f , and the buoyancy differenceΔB = B0−0 between the bottom and
top boundaries of the domain. With these scales, the non-dimensionalized governing equa-
tions for continuity, momentum and buoyancy become (hats over dimensionless variables
are dropped for convenience):
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∂ui
∂xi

= 0, (3a)

∂ui
∂t

+ u j
∂ui
∂x j

= − ∂π

∂xi
+ 1

ReΛ

∂2ui
∂x2j

+ εik3(uk − gk) + RiΛbδi3, (3b)

∂b

∂t
+ u j

∂b

∂x j
= 1

ReΛPr

∂2b

∂x2j
, (3c)

with boundary conditions corresponding to Ekman flow:(
ui |z=0
ui |z=ztop

)
=

(
0
gi

)
and, (3d)

(
b|z=0
b|z=ztop

)
=

(
0
B0

)
. (3e)

Here, t is the time, xi the Cartesian coordinates with xi = (x, y, z)T , where x, y are the
streamwise, spanwise directions and z the wall-normal coordinate (pointing upwards from
the ground). The corresponding velocity vector is u = (u, v, w)T = (u1, u2, u3)T . The
ageostrophic non-hydrostatic pressure is π and the non-dimensional geostrophic wind vector
is g = (g1, g2, 0).

In case of RiΛ = 0 (no buoyancy), the buoyancy equation (3c) reduces to an equation for
a passive scalar s (non-dimensionalized with ΔS, the scalar difference between bottom and
top boundaries), without feedback on the momentum equations, since the buoyancy term in
(3b) is dropped.

2.2 Dimensionless Parameters

The system of Eqs. (3a–3c) is governed by three dimensionless parameters,

ReΛ = GΛRo

ν
, (4a)

Pr = ν

κd
, (4b)

RiΛ = ΔBΛRo

G2 , (4c)

the external Reynolds number ReΛ, the molecular Prandtl number Pr and the bulk
Richardson number RiΛ with the constant kinematic fluid viscosity ν and constant molecu-
lar diffusivity κd . The Reynolds number ReD = GD/ν = √

2ReΛ, the Richardson number
RiD = ΔBD/G2 = Fr−2 (Fr being the Froude number), based on the laminar thickness
of the Ekman layer D = √

2ν/ f and the Richardson bulk number RiB = ΔBδN/G2, with
the turbulent boundary thickness δN for a neutral flow, are given for comparison with other
studies. Whereas the ratios of ReD/ReΛ and RiD/RiΛ reduce to the length scale ratio of the
system of D/ΛRo.

The study of the turbulent problem requires a mapping from the non-dimensionalization
with external parameters to the classical inner (·)+ and outer (·)− normalization for velocities
and length scales (KA24):
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x+
i = xi uReΛ, (5a)

u+
i = ui

u

, (5b)

x−
i = xi

u

, (5c)

u−
i = ui . (5d)

The inner and outer scales are mapped by x+
i = Reτ x

−
i and u−

i = uu
+
i . Here, x

+
i =

xiΛRouτ /ν, with the dimensional coordinate xiΛRo and the viscous unit ν/uτ . The non-
dimensional friction velocity u = uτ /G, where uτ is corresponding dimensional quantity
and is derived from an integration procedure described in KA24, which is linked to the non-
dimensional boundary layer depth scale δN = uτN (ΛRo f )−1 = uN for neutral conditions
(subscript (·)N ). Further, we define the non-dimensional boundary layer depth scale δ,95 (cf.
their Eq. 30, here without extrapolation, Kosović and Curry 2000), of relevance for stable
stratification, defined as:

δ,95 = z

(√
〈u′w′〉2 + 〈v′w′〉2

u2
= 0.05

)
, (6)

the height, where the total vertical momentum stress is 5% of the total stress. In the following,
the temporal averaging of the flow variables is denoted by (·) and spatial averaging in the
horizontal by 〈(·)〉.

In stratified flow, the Obukhov length LO (Obukhov 1971; Nieuwstadt 2005; Flores and
Riley 2011) is commonly used to describe the relative impact of stratification. Here, for
the choice of Dirichlet boundary conditions for buoyancy, the evolution of LO is part of the
solution, i.e. unknown a priori. As suchwe diagnose it from the simulations.When expressed
in viscous units, L+

O = ReL is a Reynolds number, sometimes termed the buoyancyReynolds
number, and it can be interpreted as the inverse of the gradient-Richardson number RiG
evaluated at the surface (Ansorge and Mellado 2014) (commensurate with a flux-Richardson
number RiF evaluated at the bottom of the constant flux layer):

L+
O = LO

uτ

ν
=

(
u3
ub

)+
, (7a)

RiG = 1

L+
O

. (7b)

The buoyancy friction value b is derivedwith an integration procedure described inKA24
(similar procedure to s, the friction value of the passive scalar). In contrast to Obukhov
(1971), we follow the definition of Nieuwstadt (2005) and skip the von Kármán constant κ .
Therefore, the mapping is according to LO71

O = κ−1LO , where LO71
O is the Obukhov length

including the von Kármán constant as introduced by Obukhov (1971).

2.3 Algorithm

For the simulation and analysis of turbulent flow we use the highly scalable andMPI-parallel
tool-suite tLab,1 which is open-source and contains an extensive documentation, validation
routines and examples. tLab is based on a factorization of the pressure-Poisson equation, as

1 https://github.com/turbulencia/tlab.
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discussed by Mellado and Ansorge (2012), where details on the numerics and validation of
the code can be found. The horizontally periodic flow problem is discretized and solved in a
finite-size cuboidal domain

[
Lx , Ly, Lz

]
using compact Padé schemes of sixth order in the

interior of the domain (Lele 1992) and a fourth-order five-stage low-storage Runge–Kutta
scheme (Williamson 1980).

2.4 Surface Roughness

Roughness is represented via an immersed boundary method (IBM). Here, we use the alter-
nating direction reconstruction IBM (ADR IBM, based on Giannenas and Laizet 2021) with
cubic splines to fully resolve obstacles in the flow. The implementation of the ADR IBM in
the DNS code is discussed in Sect. 2.4 in KA24.

As roughness setup in the whole study we choose the case r3 (cf. KA24, Fig. 3), with
562 square blocks located at the lower domain boundary. To introduce a certain degree of
randomness, the blocks are slightly displaced from a regular grid and heights, widths of the
elements are uniformly distributed within ΔH+ = 13.8, ΔW+ = 27.6 and therefore:

H ∈
[
H+ − ΔH+

2
, H+ + ΔH+

2

]
, (8a)

W ∈
[
W+ − ΔW+

2
,W+ + ΔW+

2

]
. (8b)

The mean height is H+ = 40.8 and the mean width isW+ = 55.2. The roughness morphol-
ogy is characterized by the plan area density of λp = AP/AT ≈ 10% and frontal solidity of
λ f = AF/AT ≈ 7%, with the total surface area AT , the frontal area AF and the plan area
AP occupied by all roughness elements (cf. Figure 2 in Grimmond and Oke 1999, ). This
particular choice is considered as small-scale surface roughness, since the scale separation
measured in Reτ = 2688 is large from the DNS perspective and thus results in a small block-
ing ratio of H/δ ≈ 1.5% for relevance of the ABL. Case r3 is on the verge of the transition
to the fully rough regime, with a diagnosed apparent roughness length of z+0m ≈ 2. This
roughness setup is at the limit of what is possible with the available computational resources.

2.5 Stratification

For progression to the regimes of stronger stability, we use a constant-in-time Dirichlet
boundary condition for the buoyancy (Eq. 3e). This allows us to analyze the quasi-steady
state that is reached once the SBL is in equilibrium with the stratification imposed. Provided
the perturbation is not too large, the expected duration for this equilibrium to be reached is on
the order of the eddy-turnover time f −1. (Where the eddy-turnover time emerges as the ratio
of the boundary layer depth scale and the turbulent velocity scale.) For the first stratified case,
which is well within the weakly stratified regime, we use the flow fields from the neutrally
stratified precursor simulations as initial condition in combinationwith the initial temperature
profile described in Fig. 1, where the entire gradient is located above the highest roughness
elements, since mixing is strong here.

The subsequent cases with higher stratification use the turbulent fields of buoyancy and
momentum from its respective precursors as initial condition (vertical connections in Fig. 2).
The increase in stratification is represented by a change in the Richardson number, which
corresponds to a ramp-up in stratification across the boundary layer. The presence of realistic
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Fig. 1 Temperature profile used for initialization of the first stratified case S001 in black. The linear temper-
ature profile (gradient corresponding to L+

O ≈ 1000) in red is smoothed to the boundary values. The gradient

is concentrated at the highest roughness elements z+N > Hmax (green shaded area relates to the range of
roughness element heights). The subscript (·)N , relates to the viscous units of the neutral case. The numerical
values of �ini can be found in the available data in Kostelecky and Ansorge (2024b) (10.17169/refubium-
45292)

Fig. 2 Temporal evolution of RiΛ for the sequence of stratified simulation (cf. Table 2). The neutral precursor
simulation r3 is shown as a green arrow (t− > 0) and dashed line (t− < 0). Further, the computational grid is
changed in favour of a lower one to resolve less of the laminar fluid aloft the PBL from (A) to (B) at t− ≈ 7.3,
where t− is the eddy turnover time f −1

turbulent perturbations in the initial fields (i) avoids a potential complete laminarization of
the flow, which leads on the one hand in a slow recovery and on the other to strong turbulent
bursts, which are numerically challenging (large gradients), and (ii) is a viable approach to
present the build-up of stable density stratification following the evening transition. At the
same time, however, each case reaches a quasi-steady state that can be analyzed in accordance
with surface-layer similarity. The aim of this procedure is not to exactly mimic a realistic
transition of the boundary layer but to enable a fast transition of the simulations into the
quasi-steady state where we can analyze the data in accordance with surface-layer similarity.
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Table 1 (a) Dimensionless numbers, grid and domain parameters for all cases

ReΛ ReD Pr Nxy × Nz
(
Lxy × Lz

)
/δ3N Δxy+

N × Δz+N ,min

5·105 103 1.0 38402 × 704 (A) 3.72 × 3.5 (A) 2.62 × 1.0

38402 × 576 (B) 3.72 × 1.5 (B)

Grids (A) and (B) are used in this study, with the latter (B) being cropped from the top. The
domain size normalized with the Rossby radius is (A) (Lxy × Lz)/Λ3

Ro = 0.272 × 0.26 and (B)

(Lxy × Lz)/Λ3
Ro = 0.272 × 0.11

2.6 Simulations

Tables 1 and 2 list the simulations used here. All cases share the same heterogeneity pattern
corresponding to case r3 in KA24, consisting of 56 × 56 roughness elements in quasi-
random arrangement. The molecular Prandtl number is Pr = 1, and the external Reynolds
is fixed at ReΛ = 5 · 105, corresponding to ReD = 1000. As initial condition, we use three-
dimensional fields of momentum and buoyancy of case r3 in KA24. These data reside on
a grid of Nxy × Nz = 30722 × 656 collocation points and are interpolated to grid (A) (cf.
Table 1), i.e. a slightly increased resolution. This is necessary as stronger gradients in stratified
flow (causing higher velocities in vicinity of roughness elements) pose numerical challenges
at the vertical walls of roughness elements. As a consequence of interpolating the fields, the
surface roughness of case N is not identical with case r3, but it features identical statistical
properties (mean height, width and distributions). Case N is run without stratification to
equilibrate the new roughness configuration on grid (A) before stratification is added to the
problem.

Starting from the neutral case N, stratification is sequentially increased in 12 steps from the
weak to the very strong stability (cf. Table 2 and Fig. 2). In the very stable regime, three cases
(S128P, S192P, S256P) are run in parallel on the new grid (B). Grid (B) is similar to
(A) but cropped on top to decrease computational cost, since the boundary layer thickness is
substantially decreased compared to the weakly stable cases.

Numerical integration is accomplished with the algorithm suite tLab on the high-
performance computing system hawk at HLRS Stuttgart. Simulations were run for 86.5
days of wall-clock time on 128 nodes (16,384 physical CPUs). The total simulation period
covers a time span Δt−total = ∑N=16

i=1 Δt−sim,i = 12.37, which corresponds to one week of
wall-clock time or 21, 500Node-hours per eddy turnover period (1/ f ). Processed results are
available for download in Kostelecky and Ansorge (2024b) (doi:10.17169/refubium-45292).

3 Bulk Statistics and Turbulence Regimes

3.1 Surface Friction and Boundary-Layer Depth

We commence by analyzing the statistics that form once the boundary layer has reached a
quasi-steady state in equilibrium with the surface state. Each increment in stratification, viz.
RiΛ, is followed by an adaptation period on the order of an eddy-turnover time (this initial
transient is depicted by dotted lines in Figs. 3, 5). During this initial transient, surface-layer
similarity is not expected to hold, and it is consequently excluded from subsequent analysis.
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Table 2 Overview of the
simulation cases of this study,
with the corresponding
stratification level (Richardson
numbers), grid type and the total
simulation time in eddy-turnover
times f −1 for each case

Case (ID) RiΛ RiB Grid Δt−sim[1/ f ] (ID)

N 0 0.000 A 1.06

S001 1 0.073 A 0.58

S002 2 0.147 A 0.44

S004 4 0.293 A 0.71

S005 5 0.367 A 0.48

S008 8 0.587 A 0.74

S012 12 0.880 A 0.51

S016 16 1.174 A 0.44

S020 20 1.467 A 0.39

S032 32 2.348 A 0.45

S042 42 3.081 A 0.55

S064 64 4.695 A 0.43

S128 128 9.390 A 0.48

S128P 128 9.390 B 1.95

S192P 192 14.086 B 0.97

S256P 256 18.781 B 2.19

Notation of case ID: N for neutral, S for stable, P for concurrent runs
and numbering according to the value of RiΛ

Fig. 3 aTemporal evolution of the friction velocity u(t−) (thick lines) and boundary layer thickness δ,95(t
−)

(6, thin lines). b Wind veer α(t−) at the surface z+ = 0 (thick lines) and above the roughness elements
z+ ≈ H+

max + 5 (thin lines). Markers for the analysis in Sect. 3.5. The coordinate system is aligned with the
geostrophic wind for estimating the wind veer. Dotted lines are excluded from the analysis, since these parts
are identified as initial transients. Case S128 (6.8 ≤ t− ≤ 7.8) is out of equilibrium and therefore excluded
from subsequent analysis
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If stratification is weak, the buoyancy term in the momentum equations is small in com-
parison to the dominant balance in the ASL. In such conditions, the downward buoyancy
flux is limited by small temperature gradients, and no substantial changes in the bulk statis-
tics (Fig. 3) are found. This is the case for our simulations S001-S002 (t− ≤ 2.1) where
buoyancy acts as a passive scalar. From case S004 onward, buoyancy starts o act on the flow
fields, and the thickness of the boundary layer, measured in terms of δ,95, decreases by about
50 % (Fig. 3a). With increasing stratification, δ,95 decreases to approximately one fifth of
its neutral value for case S064 (5.8 ≤ t− ≤ 6.8). In contrast, the friction velocity decreases
only slightly so that the ratio δ,95/δ (not shown) drops from its neutral value 0.5 − 0.6 to
approximately 0.1 for the most stable cases. This indicates that shear production (u) is no
longer the single appropriate scaling variable in the surface layer. Indeed, the Obukhov length
LO , in dimensional terms: the buoyancy flux, enters. The bulk statistics of the flow indicate a
regime transition fromWSBL to VSBL around t− > 6.8 (cases S128-S256P): instead of a
rather steady and smooth evolution for each case (t− ≤ 6.8), we now find sizeable oscillation
in the bulk quantities. This is in agreement with previous findings in Ansorge and Mellado
(2014): if strong stability is abruptly imposed on the flow, turbulence vanishes in vicinity of
the wall (in the viscous sublayer, located next to the ground and around roughness elements),
where mixing is attributed to viscous diffusion. The rapid change is followed by a somewhat
slower recovery and an overshoot (at t− ≈ 7.6 for case S128P and t− ≈ [9.2, 9.3] for cases
S192P, S256P).

3.2 WindVeer and Pressure-Driven Channeling

An over-veering of the surface wind, a rotation of more than 45◦, is sometimes observed
in particular under stably stratified conditions or for strongly anisotropic orography. With
increasing stability, the turbulence intensity decreases along with buoyant destruction of tur-
bulence and the velocity profile shifts to a more laminar-like profile with reduced velocity in
the vicinity of the ground and an enhanced velocity in the upper part of the SBL.Hence, veloc-
ity gradients close to the ground and within the roughness are reduced and u(t) decreases
(by approximately 15%, cf. Figure 3a). Such reduced mixing comes with an increased sur-
face wind veer α(t) in Ekman flow which is known from both theoretical (Rossby and
Montgomery 1935; Spalart 1989) and numerical (Coleman et al. 1992; Deusebio et al. 2014;
Shah and Bou-Zeid 2014; Ansorge andMellado 2014) consideration of the problem, see also
KA24 (their Eq. 7). We evaluate the veering both throughout the domain (α(z, t)) and at the
surface (α(t)) as:

α (z, t) � (〈u (z)〉 , g) , (9a)

and α (t)� (−τ  (t) , g) , (9b)

where τ(t) is the non-dimensional instantaneous, domain-averaged surface shear stress.
Stability further increases the turning, measured in terms of α, that is already increased due
to roughness in neutral conditions (cf. Sect. 4.4 in KA24): α grows from ≈ 35◦ (case N)
to 65◦ (S064, cf. Figure 3b). If we consider the SBL above z+ = H+

max + 5, in other words
above the roughness, the veering angle approaches approximately 40◦, close to the laminar
limit of 45◦. A large portion of the increase in veering is concentrated within the roughness,
where Δα (here, specified in the range of 0 ≤ z+ ≤ H+

max + 5) triples from ≈ 10◦ to ≈ 30◦.
For homogeneous, smooth surface conditions under stable stratification one would expect

turning angles that are smaller than the laminar limit, viz. α < 45◦. However, observations
under certain orographic conditions indicate otherwise: In extended valleys (e.g. Upper Rhine

123



5 Page 12 of 36 J. Kostelecky, C. Ansorge

Fig. 4 Schematic of the channeling mechanism for the case S256P, with the angles of the geostrophic wind
(z+ > δ+, red), the orthogonal pressure gradient (red dashed line), the horizontal velocity in the vicinity of
the crests of the roughness elements (z+ = H+

max + 5, green) and the angle of the surface shear stress on the
lower wall of the domain (z+ = 0, blue). Gray squares in the background depict the surface roughness

valley in Germany (Wippermann and Gross 1981), Tennessee valley in the USA (Whiteman
and Doran 1993), region of theMISTRAL campaign (Weber and Kaufmann 1998)), the near-
surface windmay turn bymore than 90◦ with respect to the large-scale geostrophic wind (e.g.
Wippermann andGross 1981;Kalthoff andVogel 1992. This phenomenon is termed pressure-
driven channeling and was first described by Fiedler (1983), where the near-surface wind
is observed to be preferably aligned with the valley axis in stable and low-wind conditions.
Fiedler (1983) relates the cause of this mechanism to the valley-aligned component of the
pressure gradient and friction on the side walls of the valley, while the Coriolis force was
assumed to be negligible in this context. In our rough setup, three principal axes (‘valleys’) for
the channeling mechanism exist: (i) the streamwise x-direction, (ii) the spanwise y-direction
and (iii) the transverse direction, inclined by 45◦ to the roughness grid. The wind can flow
through these ‘valleys’ more or less unimpeded by the surface roughness.

Our results indicate that option (iii) is relevant (cf. Figure 7c). The present results suggest
an explanation of the channeling mechanism based on the momentum balance (cf. Figure 4):
As stability increases, the wind speed within the roughness layer is substantially reduced
(here, by approximately half, leading to a more laminar-like velocity profile, compare cases
N vs. S256P) and, hence, the Coriolis and friction forces reduce. This results in a stronger
turning of the wind in favour of the pressure gradient, which is the remaining large-scale
forcing of the system. In our particular case, the large-scale forcing is shear-aligned for the
smooth surface case, i.e. has an angle of α ≈ 19◦ (KA24). Hence, the angle of the pressure
gradient with respect to the 45◦-axis is only ≈ 26◦, i.e. the projection of ∇π onto this 45◦-
axis is large. Therefore, we conclude that the triadic balance of the pressure gradient, friction
and Coriolis forces determine the observed strong turning of the wind within the roughness,
where the main mechanism for the super-rotation in the case of pressure-driven channeling is
a reduction of the Coriolis force due to the reduced wind speed. We conclude that frictional
effects alone do not explain the turning of the wind, and the balance of forces is only closed
and consistent if the Coriolis force is considered—also within the roughness layer.
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Fig. 5 a Temporal evolution of the Obukhov length in viscous units L+
O (t−) and b scaled in outer units with

LO (t−)/δ95(t
−). c Temporal evolution of the bulk Richardson number RiB,95 = Bδ95/G

2 = RiΛδ95/ΛRo.
Dotted lines are excluded from the analysis, since these parts are identified as initial transients.dTime-averaged

gradient Richardson number Rig = (∂z〈b〉)/
[
(∂z〈u〉)2 + (∂z〈v〉)2

]
, plotted as a function of the mean non-

dimensional height z/δ95 > Hmax/δ95 of the stable cases. The red dashed line indicates the linear fit for the
cases S005-S256P for 0.35 < z/δ95 < 0.7 with Rig,fit = 0.01 + 0.2z/δ95, the red shaded area depicts
the range of the critical Richardson number Rig,crit = 0.2 − 0.25 according to the literature, and the shaded
regions corresponds to the spread of the data

3.3 Obukhov Length

At a height z = LO (cf. 7a), the buoyant destruction of TKE equals its mechanical shear
generation, under the prerequisite that fluxes are truly constant; for the boundary layers
studied here, this is an approximation that is commonly used when interpreting data in the
context of ASL similarity. Hence, absent pressure redistribution and transport effects, the
shear generation dominates for z � LO . Alternatively, LO is the largest wall-attached eddy
for which the kinetic energy is sufficient to overcome stratification (Van de Wiel et al. 2008).

Flores and Riley (2011) propose the buoyancy Reynolds number ReL ≡ L+
O as scaling

parameter to indicate turbulence collapse in a hydraulically smooth SBL. They find that the
flow laminarizes for ReL < ReL,crit ≈ 40 which implies L+

O,crit = ReL,crit/κ ≈ 100. In
the case of rough walls, they suggest LO,crit/hr ≈ 1 as an appropriate criterion, where hr
is a characteristic roughness length scale. Here, the roughness length hr =̂ H is the mean
height of the roughness elements, in viscous units H+ ≈ 30 − 40 (with the range of u(t)
in Fig. 3a). By coincidence, both suggested criteria are equivalent given our setup. In the
current study, we do not observe a complete laminarization of the flow since the most stable
cases at t− ≈ 8.7 drop to L+

O ≈ 75 (Fig. 5a). These cases are close to laminarization and
hence, it is a strong indicator of the intermittent regime, where turbulent and laminar regions
coexists in the flow. As previously discussed, the flow is effected by buoyancy for t− > 2.1,
where the ratio LO/δ95 < 1 for the first time (Fig. 5b). Here, buoyancy is the dominating
process, since LO � δ95. Interestingly, for the very stable case S128P at t− > 8 the ratio
LO/δ95 ≈ 1, whereas cases S192P, S256P oscillate with a damped amplitude (observable
for case 256P) around the value LO/δ95 ≈ 1.1−1.2.
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3.4 Richardson Number

An important indicator for the collapse of turbulence in stably stratified flow is the local
gradient Richardson number, defined as:

Rig = ∂〈b〉/∂z
(∂〈u〉/∂z)2 + (∂〈v〉/∂z)2 , (10)

with a ‘critical’ range of Rig,crit ≈ 0.2 − 0.25 (Garratt 1992), where the precise value
and nature of the threshold is still a matter of debate (cf. extensive discussion in Sect. 4.2,
Grachev et al. 2013). The flow regime we find for the stable cases S005-S256P (Fig. 5d) is
in accordance with previous findings regarding their Richardson number. The cases pass the
range of 0.2–0.25 for 0.8 < z/δ95 < 1.1. Above the boundary layer thickness δ95, the flow
is mostly laminar. Within the boundary layer Rig approximately follows a linear relation (cf.
red dashed line in Fig. 5d). The cases S001-S002 do not reach Rig,crit and are therefore
slightly effected by buoyancy. With respect to both field observation and numerical bulk
models of the SBL, the bulk Richardson number is a key parameter. We use here RiB,95
based on δ95 (Fig. 5c). While RiB � 1 for near-neutral cases where buoyancy acts as a
passive scalar, it reaches 1 for the most stable cases indicating that (i) our study spans the full
range of stability regimes and (ii) the criticality of stability is well reproduced in our rough
setup, also in terms of the bulk Richardson number.

3.5 Synopsis of the Turbulent Flow

Visual inspection of instantaneous snapshots of enstrophy ξ(xi ) for the neutral case N at t− ≈
1.1, weakly stable case S008 at t− ≈ 3.5 and very stable case S256P at t− ≈ 8.8 (Figs. 6, 7)
reveal the antagonistic interplay of static stability and small-scale surface roughness despite
the small blocking ratio (H/δN ≈ 0.015 for case N).

Immediately above the roughness elements, strong vortical activity is observable (Fig. 6a,
b), indicative of the buffer-layer (for homogeneous surfaces at 5 < z+ < 30, according
to Pope (2000); here, elevated by the roughness height). Here, turbulent production peaks
and the fine turbulent structures move upwards while increasing in size until the boundary
layer height is reached (blue bars in Fig. 6 for δ and δ95). Non-turbulent fluid from aloft is
entrained deeply into the boundary layer (cf. light regions in Fig. 6a, e.g. at 1 � t− � 1.5).
Simultaneously, ejections of turbulent fluid penetrate into the upper part of the boundary layer.
This phenomenon is inherent to boundary layer flow and related to the external intermittency
of the turbulent Ekman flow (Ansorge and Mellado 2014).

The suppression of turbulence by buoyancy reduces the boundary layer height of case
S008 (Fig. 6b), measured in terms of δ95, by half in comparison to N, whereas δ is reduced
by approximately 10 %. It is distinctly recognizable that δ95 rather than δ is the appropriate
scale of the boundary layer thickness in the presence of stable density stratification. Large-
scale structures are still visible for S008 at z > δ95 above the boundary layer, which is
attributed to residual turbulence inherited from case N. A further increase in stability leads
to a strong reduction in turbulence activity in the VSBL for case S256P (Fig. 6c) with a
boundary layer thickness of δ95 ≈ 3H . In this case the boundary layer becomes very thin
and there is a complex interplay between gravity waves, residual turbulence and large-scale
intermittency which is probably not relevant at atmospheric scale due to the mismatch in
scale separation vide the reduced Reynolds number of our setup.
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Fig. 6 Streamwise-vertical, instantaneous intersection of the logarithm of the enstrophy ξ(xi ) with a linear
colormap 0 ≤ ξ ≤ 16 of a case N, b case S008, and c case S256P; time corresponds to circles in Fig. 3.
The axes are scaled with the neutral boundary layer thickness and blue bars depict the instantaneous boundary
layer thickness δ(t) and δ,95(t). The roughness elements on the ground are shown as red cuboid blocks.
Green lines for the vertical position of Fig. 7d–f

Within the surface roughness (at half the height of the elements) and above the roughness,
located at the lower bound of the surface e.g. logarithmic layer, no distinct differences are
visible between the cases N and S008 (Fig. 7a, b, d, e). The flow is turbulent inside the
roughness, due to the high Reynolds number of the flow and instabilities induced by the
roughness elements (Fig. 7a,b). Above (Fig. 7d,e), the turbulence is homogeneous with the
imprint of hairpin vortices seen as elongated enstrophy filaments. Hairpins originate from the
buffer layer and are characteristic for wall-bounded flows in the logarithmic layer (Adrian
2007). In conclusion, the visual appearance of the turbulence in the close-wall region is
comparable for the neutral and weakly stable regime, which is consistent with the literature
(García-Villalba and del Álamo 2011; Watanabe et al. 2019; Atoufi et al. 2021), despite the
reduction in δ95 and the stronger turning angle α. In case of very strong stability, heavy fluid is
trapped inside the roughness and therefore, the surface layer is decoupled from the outer layer
(Van de Wiel et al. 2012a). Weak turbulence activity is visible within the roughness, which
is induced by the transverse flow (≈ 45◦) of the objects with sharp edges (Fig. 7c). Above
the roughness, the intermittent behaviour of the flow is clearly observable (Fig. 7f), where
patches of turbulent fluid (regions with sharp transitions) are embedded in non-turbulent
fluid (smeared regions). Global intermittency in the VSBL appears in space and time, and
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Fig. 7 Horizontal (streamwise-spanwise) intersection of the size
[
δN × δN

]
, corresponding to approximately

1/14 of the computational domain (time instances cf. circles in Fig. 3) with a linear colormap 5 ≤ ξ ≤ 15 (cf.
explanations in Fig. 6, identical turbulent fields are chosen). Shown are the cases a, d N, b, c S008 and c, f
S256P at half height of the roughness elements (a–c) z+N ≈ 20 and in the surface layer at z+N ≈ 65 [(d–f),
cf. green lines in Fig. 6]

is not an on–off process (Mahrt 2014; Ansorge and Mellado 2014). In order to investigate
this behaviour, computational domains of sufficient size are required that can accommodate
these laminar-turbulent patterns (Deusebio et al. 2014), which is the case here.

3.6 Maximum Sustainable Heat Flux

The heat (buoyancy) flux 〈w′b′〉 represents at the same time also the buoyant destruction
(production) term in the TKE budget equation, and it is limited from two-sides given a large-
scale forcing (De Bruin 1994). In the WSBL, the vertical mean temperature profile is nearly
neutral with a small gradient, and turbulent mixing is strong. In these conditions, heat flux is
limited due to lack of temperature contrast, i.e. 〈b′b′〉. The other extreme is the VSBL, where
the restoration of buoyant forces is so strong that turbulent mixing in the boundary layer is
inhibited and the heat flux is limited for lack of velocity fluctuations 〈w′w′〉. In between these
two extrema, the heat flux assumes a maximum according to the concept of the maximum
sustainable heat flux (MSHF) Van de Wiel et al. (2012a, b).

The core of the MSHF concept is confirmed by the current simulations (Fig. 8). However,
we observe for the vertically integrated buoyancy term of the TKE budget a pronounced
plateau over two orders of magnitude in RiΛ rather than a distinct maximum, which differs
from stable Ekman flow over smooth surfaces, where the plateau width is less than one order
of magnitude in RiΛ (cf. Fig. 6c, Ansorge and Mellado 2014).

This characteristic behaviour of 〈w′b′〉 as a function of the stability, underpins the impor-
tance of roughness as a very efficient triggering mechanism of turbulence due to flow
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Fig. 8 Domain-wise, vertically integrated contributions to the TKE budget (shear production, buoyancy
destruction and dissipation of TKE). Bounds for vertical integration are Hmax to Lz as a function of the
external Richardson number RiΛ. Terms are normalized with the neutral production rate. The integration is
shown for Δt− ≈ 0.1 around the time instances depicted as ×-symbols in Fig. 3 (not all cases are considered)

instabilities on sharp edges (detached eddies),which counteracts efficiently buoyancy induced
reduction of turbulence and is assumed to form the observed plateau. The remaining imbal-
ance of the presented TKE terms (shear production, dissipation, buoyancy destruction) in
Fig. 8, especially for the more stable cases, are the integrated temporal tendency and trans-
port terms of the TKE budget (not shown). These terms are non-zero, as the more stable cases
are out of equilibrium to a certain degree.

4 Surface-Layer Similarity

For guidance in the subsequent gradient analysis, Fig. 9 present horizontal velocity and
buoyancy profiles with increasing stratification. In contrast to non-rotating flow problems,
the horizontal mean velocity profiles in Ekman layers exhibit a super-geostrophic velocity,
referred to as the low-level jet (LLJ) (Fig. 9a). With increasing stability, the height of the
LLJ maximum is reduced from z−N ≈ 0.4 for the neutral case N to z−N ≈ 0.1 for the most
stable case S256P, with a velocity increase of ≈ 4% (N) up to ≈ 20% (S064) with respect
to the geostrophic velocity. The reduction in the vertical LLJ position is accompanied by a
reduced boundary layer thickness (cf. Figures 3a, 6), which also reduces the outer length
scale relevant for the formation of turbulence. Due to the increased shear and turbulence
triggering by roughness, also the inner length scale of the turbulent boundary layer is reduced,
such that a turbulent boundary layer is maintained. While our data suggest the thickness
of the surface layer is marginal for the most stable cases, this cannot be judged based on
surface scales alone. Hence, the following discussion assumes existence of a surface layer,
which is common when using surface layer similarity in an observational, operational, or
modelling context. Within the roughness (indistinguishable in Fig. 9a) at z−N � H , the
velocity reduces with increasing stability, whereas for z−N � 2H the velocity enhances with
increasing stability.Here, above the roughness (z−N � 2H ), the velocity gradient increases due
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Fig. 9 a Horizontal mean velocity and b buoyancy profiles (normalized with b(t)) of the stable cases S004,
S012, S032-S256P, case N only in (a) (green). The vertical strokes in (a) depict the position of the
super-geostrophic velocity. Temporal averaging according to the intervals in Fig. 3. The vertical distance is
normalized with the turbulent boundary layer thickness of the neutral case (N) as reference. The green shaded
areas depict the maximum height of the surface roughness

to less vertical mixing. With increasing stratification (RiΛ) the buoyancy profiles steepen,
respectively the gradient increases. Above the boundary layer thickness, where diffusion
dominates (approximately the position of the LLJ) buoyancy increases linearly and then
flattens (Deusebio et al. 2014).

4.1 ASL Similarity in Vicinity to the Rough Boundary

MOST, the corner stone of ASL similarity (Obukhov 1971; Foken 2006), is limited to hori-
zontally homogeneous and statistically stationary conditions (ASL, Obukhov 1971; Ansorge
2019). It further precludes that the stability (e.g. measured in terms of Ri) does not exceed a
critical value Ricrit and neglects the vertical flux divergence due to the Coriolis force, leading
to the so-called constant flux layer (maximum of the total turbulent flux varies less than 10%,
cf. Stull 1988) or channel-flow analogy. In KA24 we show that the neglect of the Coriolis
force in the ASL is a strong assumption for intermediate Re, where the share of the Coriolis
term in the total drag is up to 10% at the top of the roughness elements. Obviously, this
assumption becomes even stronger in stratified conditions where the ABL height decreases
in response to surface cooling. We intend here to also reach the regime of extreme stabil-
ity where not only the scale separation shrinks and existence of a surface layer becomes
questionable in general, but also the stability correction exceeds the order of one, which is
a fundamental problem from the perspective of flux parameterization. Nonetheless, in the
following, we stick to the common height range defined in terms of the friction thickness
δ, which requires caution when interpreting data for strongly stable cases at the larger end
of the stability parameter (ζ , defined below). In fact, ASL closures implied by MOST are
ubiquitous in numerical models at all scales, and even if requirements are not fully met (e.g.
for complex terrain, the non-stationarity of the ABL, etc.), observations confirm to the theory
(Grachev et al. 2013; Stiperski and Calaf 2018).
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Within the ASL, MOST implies that appropriately non-dimensionalized gradients of
the horizontal wind speed, uh(z) = √〈u〉2 + 〈v〉2, and buoyancy, b(z), depend on a non-
dimensional height only, namely:

ζi = κi (z − di )/LO , (11a)

(here the von Kármán constants are included, since LO is formulated without). Based on the
TKE equation, ζ can be interpreted as a stability parameter representative of an eddy size
beyond which stability effects exceed inertia. The index i corresponds to (·)m for momentum
or (·)h for heat, reflecting the different von Kármán constants (κm = 0.42, κh = 0.35).
KA24 found different displacement heights for momentum and heat, but an overall small
dependence of the L2 error on the particular value. Here, we therefore stick to the common
assumption dh = dm ≡ d and use d/H = 2/3. For the non-dimensionalized gradients
Φm(ζm) and Φh(ζh) we obtain:

κm (z − d)

u

√(
∂〈u〉
∂z

)2

+
(

∂〈v〉
∂z

)2

= Φm (ζm) , (11b)

κh (z − d)

b

∂〈b〉
∂z

= Φh (ζh) . (11c)

The existence of such unique representations Φi (ζi ) is understood to indicate the suitability
of the assumptions of the constant-flux layer. The dependencies of Φm and Φh on ζm and ζh,
respectively, describe the stability dependence of the velocity and scalar profiles. In neutrally
stratified flow with ζi = 0 (since LO → ∞), the logarithmic law of the velocity emerges
with Φm (ζm = 0) = 1, whereas ζi > 0 for stably stratified flow. Based on observational
studies, the Businger–Dyer relations (Businger et al. 1971; Dyer 1974; Garratt 1992):

Φm (ζm) = αm + βmζm, (12a)

Φh (ζh) = αh + βhζh, (12b)

are widely accepted for the weakly stable regime (ζi � 1). The empirical parameters are
αm = 1, αh = 0.74 and βm = βh = 4.7 (Högström 1988, 1996; commonly approximated
with βi ≈ 5).

We find reasonable agreement with these observational fits for stability corrections ζ � 1
(Fig. 11).Asmentioned above, results for stronger stability should be interpretedwith caution,
which is in fact seen by an increased spread for higher stability and a systematic deviation
from the ASL fits in Fig. 10.

This also agrees with previous DNS of Ekman flow over smooth surfaces (Ansorge and
Mellado 2014; Shah and Bou-Zeid 2014; Ansorge 2019) and LES of Ekman flow with
subsidence (Bon et al. 2024). The best fits for the non-dimensional gradients of wind speed
and buoyancy are:

Φm(ζm) − αm = 5.3ζm, (13a)

Φh(ζh) − αh = 12.5ζh, (13b)

respectively, where we estimate αm = 0.89 and αh = 0.72 (cf. discussion in the Appendix
1). The analysis here is exempt from the exact value of the parameters αi . In terms of ζm,
we find Φh(ζm) − αh = 10.5ζm for cases S001-S064. In many practical applications of
ASL theory, ζh is approximated by ζm due to the lack of informative models for turbulent
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Fig. 10 Non-dimensional gradients of the a horizontal velocity and b buoyancy, as a function of the stability
parameter ζm, ζh, according to (11). The data in the regime z+log,i ≤ z+ ≤ 0.1Reτ is instantaneous and
spatially averaged in the horizontal, while using the respective instantaneous friction values of u(t), b(t)
(respectively s for the neutral case N) and the Obukhov length LO (t). The linear regression functions (red
dashed lines, with the r2-value, the coefficient of determination) are derived in consideration of the cases
S001-S064 with a zero-plane displacement of d/H = 2/3. The arrows (time) depict the temporal evolution

diffusivity. We use dh = dm, which implies:

Φh(ζm) = αh + κh

κm
βhζm. (14)

The data is fitted in the regime z+log,i ≤ z+ ≤ 0.1Reτ , with the lower boundary of the

logarithmic layer at z+log,i = 30+ d+
i (KA24) and the commonly accepted limit of the upper

boundary of the ASL with approximately 10 % of δ.
Cases with stronger stability fall into the very stable regime where a linearization of the

stability correctionΦm−αm (magenta, orange, olive coloured cases) is no longer appropriate
(Mahrt 2014) for the limited extent of the ASL and large effects of stability.While outside the
ASL in terms of strict criteria (δ95, cf. Fig. 6), the very stable data of the casesS128P-S256P
show a distinct left curvature (cf. Ansorge 2019, Fig. 12). As the simulation time progresses,
a tendency is observed to the right, closer to the linear fit, indicating that the left curvature for
large values of the stability parameter (ζ > 0.1) is a transient effect reflecting the imbalance
of the ABL with the surface boundary condition.

The linear fit of Φm is very close to the widely-used Businger–Dyer relation, whereas Φh

does not agree. We attribute this disagreement to insufficient convergence, respectively, the
nonequilibrium state of the data for large stratification, since the linear fit improves if only
the weakly stable cases S001-S005 are considered (βh = 4.9). We further note that also
Högström (1988) estimates βh ≈ 8 after eliminating systematic errors from observational
data.

For large stratification, the linear stability correction is known to deviate in the very sta-
ble regime, due to its highly non-stationarity (inertial oscillation, adaptation of the turbulent
boundary layer to strongly modified surface boundary, intermittency) and strong turning of
the wind within the substantially decreasing boundary layer thickness (Fig. 3). Moreover,
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Fig. 11 Similar to Fig. 10. Here, with the instantaneous and local (in the vertical) values of u(z, t), b(z, t),
Λ(z, t), according to the local theory of Nieuwstadt (1984). The close-up views and the similarity functions
are fitted up to the height z+ < 0.1δ, and data is plotted up to z+ < 0.3δ. a Lines: Businger–Dyer
relation, Φm − 1 = 4.7ζm (black dotted line); Chinita et al. (2022) Φm − 1 = 3ζm (black dotdashed
line); S001-S064, Φm − αm = 3.45ζm (red dashed line) with r2 = 0.97. b Lines: Businger–Dyer relation,
Φh−0.74 = 4.7κmκ−1

h ζh (black dotted line); Chinita et al. (2022),Φh−0.74 = 3κmκ−1
h ζh (black dotdashed

line); S001-S064 Φh − αh = 5.21ζh (red dashed line) with r2 = 0.981

turbulence is observed to be highly anisotropic, respectively of non-Kolmogorov type (Stiper-
ski and Calaf 2018). Then, the surface flux seizes to be a relevant scaling parameter, and we
follow the local scaling approach of Nieuwstadt (1984) (cf. Fig. 11), while using local values
of the Obukhov length Λ(z, t) for the stability parameters ζi and the local friction values
u(z, t), b(z, t) for the stability functions Φi . This approach yields a better collapse of the
data compared to Fig. 10, since the scattering of data is significantly reduced. Chinita et al.
(2022) proposes for the local MOST based on LES simulations the parameters βi ≈ 3 (rather
than βi ≈ 5). Notably, the very stable cases do follow the proposed linear stability correc-
tion functions as well, even though, according to strict criteria, some values originate from
above the ASL. Anyhow, the values of βh in the weakly stable and moderately stable regimes
are higher compared to the proposed value. Again, this is assumed to be related to limited
simulation times and insufficient convergence.

In the context of the local scaling approach, the very stable cases indicate a right curvature
of the data with respect to the linear fits, which is in accordance to observations (e.g. Chenge
and Brutsaert 2005; Grachev et al. 2013, ). For ζi � 1 a levelling-off of Φi (Fig. 11) is
observed, while Φm reaches a peak and continues with a negative slope and Φh forms a
plateau. Peak and plateau values of Φi decrease with increasing stability of the cases. Mahrt
(2007) links this characteristic with a simultaneous increasing stability and non-stationarity
of the flow (wave-like, meandering motions) and thus an enhanced mixing efficiency. As a
result, the slopeΦi decrease for large ζi , whereas this behaviour is pronounced formomentum
compared to buoyancy. However, the data are presented up to the upper bound 0.3δ, which
is outside the very stable boundary layer, measured in terms of δ,95 (cf. Figure 6), and is
thus associated with problems in LES and observations where the first model layer or the first
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measurement point under strongly stable conditions could as well lie outside the boundary
layer.

Surface roughness increases u in comparison to a smooth surface with similar forcing
of the flow. Hence, the scale separation measured in Reτ is enhanced, which results in a
deeper logarithmic layer. As a consequence of the rise of Reτ , we observe a higher degree of
consistency of our data for a wider range of stability in contrast to the smooth case at similar
ReD (cf. Ansorge 2019, Fig. 12). The induced growth in scale separation by roughness is
counteracted by increasing stability, since it reduces the extent of the remaining logarithmic
layer until a critical value, here RiΛ > 64, is reached from where measurements deviate
from the theory.

4.2 Non-dimensional Gradients in the Roughness Region

Thevalidity ofMOST is limited to the inertial sublayer.Hence, classic surface-layer similarity
only holds above the top of the roughness elements. This is in part for theoretical reasons, but
also due to practical limitations, as in the field, it is virtually impossible to obtain data within
small-scale roughness. Here, we briefly report on the scalings observed below the height
of the roughness elements. In the lower part of the roughness region, i.e. below z+ ≈ 10,
the velocity gradients appear to fall in a narrow band that grows linearly with distance from
the wall (Fig. 12a). This suggests that the viscous law of the wall is appropriate here. The
classical scaling u+ = z+ would be re-covered if a truly wall-based velocity scale would be
considered, i.e. if the friction velocity were calculated from the bottom shear alone. Near the
top of roughness elements, the scaling is not universal and would need to include information
on the velocity scale at the top of the roughness elements. Interestingly, the transition of the
velocity profile to the different velocities in the outer region (higher for stronger stability)
is mostly confined to the upper region of the roughness region, where a strong stability-
dependence is observed. This dual behaviour suggests that it will not be possible to prescribe
profiles in the roughness region by either awall-based or a surface-layer-base scaling; instead,
a complete description will need to resort to a mixed scaling incorporating information from
the friction at the top of the roughness elements and the friction at the actual domain bottom.
The partitioning of friction between the top of roughness elements and the actual domain
bottom is hence a key parameter to determine the dynamics within the roughness region.

The scalar profiles show a similar duality suggesting wall-based scaling below z+ ≈ 10
and profile-dependency above. Interestingly, there is amaximum in the scalar gradient around
z+ ≈ 10 and a plateau and collapse of data (cases S001-S064) for the non-dimensional
buoyancy gradients (Fig. 12b). The plateau is located above the viscous sublayer z+ > 5 and
below the lowest roughness elements, here limited to z+ < 20 with a value of 0.76, which is
close to αh. This maximum of the gradient is related to a local minimum of turbulent scalar
transport, and we suppose it is due the separation of the mixing at the roughness tops from
the mixing at the domain bottom. Apparently, this separation is stronger for buoyancy (which
shows a local maximum) than it is for momentum (which only shows a right curvature in
the profile at the respective height). This difference underlines the critical role of pressure
(blocking) effects in the roughness region which are the root cause for differences between
scalar and momentum quantities and cause a stability and height-dependence of the turbulent
Prandtl number (cf. Sect. 4.4).
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Fig. 12 Non-dimensional gradients of the a horizontal velocity and the b buoyancy within the reach of the
roughness elements (Hmin and Hmax depict the distribution of roughness element heights, red markers),
plotted against the vertical distance in viscous units z+. The presented data is instantaneous and horizontally
averaged, while using the respective instantaneous values of u(t), b(t). b The mean value is derived in
consideration of the cases S001-S064 in the range 5 < z+ < 20

4.3 Reynolds Number Effects on the ASL Similarity

ASL theory commonly neglects viscous effects for the very high Reynolds number encoun-
tered in geophysical problems. For typical scales of the neutralABL, themagnitude of ReABL,
indicative of the scale separation in a neutrally stratified atmosphere, isO(108) (Mellado et al.
2018). With increasing stability and thus decreasing depth of the ABL (cf. Figure 3a), the
relevant scale separation ReABL is reduced and viscous effects may matter, at least to some
extent. For the intermediate Reynolds number of our setup (Reτ ≈1800–2700), we expect
viscous stress to be non-negligible in the ASL theory at strong stability. While this is not
necessarily the case in atmospheric conditions, we need to consider those viscous effects to
allow for an uncontaminated formulation of the similarity theory with respect to the actual
geophysical scale separation. We, however, note that close to the surface these effects also
occur in the atmosphere which may be relevant for some very high-resolution LES stud-
ies with resolutions on the sub-metre scale. Further, this section makes use of the common
assumption that it is the total stress, total vertical gradient and total horizontal velocity which
scale in the context of surface-layer similarity. While this is certainly an increasingly strong
assumption for stratified flow, it is consistent with the way in which surface-layer similarity
is commonly applied.

The total stress τtot in the boundary layer is composed of the viscous and turbulent stress,
which in our non-dimensionalized formulation reads as:

τ,tot = τ,visc + τ,turb = 1

ReΛ

∂〈uh〉
∂z

+
√

〈u′w′〉2 + 〈v′w′〉2. (15a)

Here, we consider the horizontal velocity and total vertical flux, since the veering of the
wind within the surface layer is substantial. Commonly, the turbulent stress is modelled with
the eddy viscosity approach introduced by Boussinesq (cf. Sect. 3.4.1 on p.171, Rotta 1972),
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where the turbulent flux is related to the local vertical mean gradient, given by:

τ,turb = −K,m
∂〈uh〉
∂z

, (15b)

with: K,m = l2,m
∂〈uh〉
∂z

. (15c)

The eddy viscosity K,m ismodelledwith themixing length l,m,where the simple relation
l,m = κmz (Prandtl 1925) is used. Therefore, K,m is the eddy viscosity non-dimensionalized
by GΛRo, and not constant but rather a function of time and space. The non-dimensionalized
total shear stress τ,tot (15a) is given by:

τ,tot = ∂〈uh〉+
∂z+

+ (
κz+

)2 (
∂〈uh〉+
∂z+

)2

= ∂〈uh〉+
∂z+

+ [
Φm,cor (ζm)

]2
, (15d)

whereas Φm,cor is the stability function (11b) corrected by the viscous stress and hence,

Φm,cor (ζm) = Φm (ζm) −
√

∂〈uh〉+
∂z+

= αm + βm,corζm. (16a)

In this reading, Φm,cor corresponds to the actual non-dimensional gradient in the context
of similarity theory and Φm corresponds to the classic estimate used above.

Hence, we expect that the corrected coefficient βm,cor matches better field observations
where viscous effects are smaller than in our DNS.

Analogously, the viscous correction approach is applied on the stability functionΦh (11c)
for buoyancy, with:

Φh,cor (ζh) = Φh (ζh) −
√

∂〈b〉+
∂z+

= αm + βh,corζh. (16b)

Our findings (Fig. 13) are in accordance with ( Chung and Matheou 2012, § 4.4); with
decreasing Reynolds number and thus increasing stability (cf. u in Fig. 3a), a shift of the
data to the left is observed.

For decreasing Reynolds numbers, the stability parameters βi are enhanced compared to
the atmospheric value βi = 4.7 (similar characteristic is observed in the study of Shah and
Bou-Zeid 2014, ). Here, we measure βm,cor = 4.88 instead of βm = 5.31 (Fig. 10a) and
βh,cor = 11.7 instead of βm = 12.51 (Fig. 10b). The relative importance of the viscous
correction term in the regime ζi < 0.1 is up to approximately 25%. Near surface data of
the corrected stability functions Φi,cor for the cases S064-S256P reveal a better collapse
of data with the weakly stable cases (grey to black data points in Fig. 13), observable in the
region 0.04 � ζi � 0.08.

Högström (1988) proposed a second-order regression for the weakly stable regime (ζi �
1) up to a threshold ζi = ζi,1 (ζm,1 = 0.15 and ζh,1 = 0.2), above which the common linear
regression (12a) is valid. This approach improves the fit in the region ζi < 0.1, since the
linear regression systematically overestimates the data (Fig. 13). The best quadratic fits based
on the cases S001-S064 in the region z+log,i ≤ z+ ≤ 0.1Reτ are:

Φm(ζm) − αm = 2.41ζm + 16.48ζ 2
m, (17a)

Φh(ζh) − αh = 4.66ζh + 55.84ζ 2
h . (17b)

Weobserve a larger scatter and stronger curvature of the data to the left forΦh (cf. Figures 10b,
13b) compared to Φm (Fig. 13b) and hence, estimate a large quadratic term which deviates
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Fig. 13 Similar to Fig. 10, with the viscous correction (magnitude of the correction depicted with red data
points) with Πi,cor = Φi,cor(ζi ) − αi . Only the weakly stable regime is shown for ζi < 0.1. Nevertheless,
the regression lines (green and red dashed lines) are computed for z+ < 0.1δ. a Lines: S001-S064,
Φm − αm = 2.41ζm + 16.48ζ 2m with r2 = 0.948 (red dashed line); S001-S064, Φm − αm = 4.88ζm
with r2 = 0.865 (green dashed line); Högström (1988), Φm − 1 = 3.43ζm + 8.4ζ 2m (black dotted line).
b Lines: S001-S064, Φh − αh = 4.66ζh + 55.84ζ 2h with r2 = 0.929 (red dashed line); S001-S064,

Φh − αh = 11.7ζh with r2 = 0.818 (green dashed line); Högström (1988), Φh − 0.95 = 5.24ζh + 6.3ζ 2h
(black dotted line)

from the fits in the literature. In comparison, the quadratic fits according to Högström (1988)
are Φm − (1 ± 0.018) = (3.34 ± 0.32)ζ + (8.4 ± 5.9)ζ 2 and Φh − (0.95 ± 0.039) =
(5.24± 0.64)ζ + (6.3± 11.8)ζ 2, with standard error estimates (for ζi ≤ 0.1). In their study,
they claim that the data base for Φh is also less clear.

4.4 Dependence of the Richardson and Turbulent Prandtl Numbers on Stability

The Richardson flux and gradient numbers Ri f and Rig (10) are, in addition to the Monin–
Obukhov stability parameter ζi , decisive measures of the flow stability and can be defined as
(Stull 1988; Coleman et al. 1992):

Ri f = 〈w′b′〉
〈u′w′〉 (∂〈u〉/∂z) + 〈v′w′〉 (∂〈v〉/∂z) = ζm

Φm
, (18a)

Rig = ζmΦh

Φ2
m

, (18b)

where Rig = N 2/S2 is the ratio of the buoyancy, respectively the Brunt–Väi -sä -lä frequency
N and the shear frequency S. The Richardson flux number is the ratio of the TKE destruc-
tion (production) by buoyancy to the TKE production by shear and is a key parameter for
turbulence closure schemes (cf. Mellor and Yamada 1974, 1982, ). The ratio of Richardson
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Fig. 14 a, b The gradient and flux Richardson numbers Rig(ζm), Ri f (ζm) as functions of the local stabil-
ity parameter ζm and (c) the Richardson flux number Ri f (Rig). The parameters of the stability functions
Φi in (a, b) from Fig. 11, the green curve in (c) after Mellor and Yamada (1974, 1982) (MY82) with

Ri f = 0.725

[
Rig + 0.186 −

(
Ri2g − 0.316Rig + 0.0346

)1/2]
. The coloured data is plotted within the

constant-flux layer located in the region between the peak of the total turbulent fluxmax{
√

〈u′w′〉2 + 〈v′w′〉2}
and where the flux is reduced by 10% (Stull 1988). Light grey data in is plotted in the region z+log,i ≤ z+ ≤
0.1Reτ

numbers Rig/Ri f forms the turbulent Prandtl number Prt , given by:

Prt = Rig
Ri f

= (∂〈b〉/∂z) [〈u′w′〉 (∂〈u〉/∂z) + 〈v′w′〉 (∂〈v〉/∂z)]

〈w′b′〉 [
(∂〈u〉/∂z)2 + (∂〈v〉/∂z)2] = Φh

Φm
= K̃,m

K,h
. (19)

The turbulent Prandtl number Prt describes the difference in eddy viscosity K̃,m and dif-
fusivity K,h, i.e. the difference in turbulent mixing of momentum and heat (cf. review by
Li 2019, ). In (19), we follow the approach of Coleman et al. (1992) for K̃,m which differs
from the previous definition of K,m in (15c). We define the dimensionless numbers (18, 19)
by considering the veering of the wind (coordinate system rotation) within the surface layer,
since the lateral v-velocity component is nonzero for an Ekman flow.

The Richardson numbers in Fig. 14a, b increase with the stability parameter ζm and follow
the proposed scaling approaches (red dashed lines), while a systematic shift of the data to
the right is observed at higher stabilities.

This overestimation of Rig , Ri f is assumed to originate from the deviation of the linear
stability functions and data in Fig. 11 at large ζi . Within the considered regime Rig ≤ 0.1, the
dependence of Ri f (Rig) is linear (O(Ri f /Rig) = 1, cf. Figure 14c). The linear dependence
of Ri f (Rig) for small ζm is in agreement with previous studies, e.g. Pardyjak et al. (2002)
reports an increase of Ri f with Rig until Rig ≈ 1 and subsequently a levelling-off of Ri f
with a maximum of approximately 0.4 − 0.5 (cf. also Fig. 9, in Grachev et al. 2013, ). This
characteristic can not be approved with our data, since the scatter of data is large outside the
ASL for MOST.We observe an overestimation of Ri f by the parameterization of Mellor and
Yamada (1974, 1982) of ≈ 20%.

The turbulent Prandtl number data as a function of the stability in the regime z+log,i ≤
z+ ≤ 0.1Reτ exhibits a large scatter (Fig. 15).

If the turbulent Prandtl number is considered in the constant-flux layer (validity region
of MOST), or merely at the lower bound at z+ = 50 where the vertical turbulent flux tends
to peak (red data points in Fig. 15), Prt increases with stability (similar for Prt (Ri f ), not
shown here) with a neutral value of Prt,0 = Prt |Rig=0 ≈ 0.94 and hence, the surface-layer
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Fig. 15 a Turbulent Prandtl number Prt (ζm), with the parameters of the stability functions Φi from Fig. 11.
b Prt (Rig) vs. stability (RiΛ), with the fit (green line) based on (20) (cf. Equation 3.6, Venayagamoorthy and
Stretch 2010, (VS10)) and the fit (red line) based on (Zilitinkevich et al. (2008), (Z08)) with Prt = 0.8+5Rig .
The data shown here is similar to Fig. 14 and red data points are located at z+ = 50

data is located between the envelopes Prt = Φh/Φm and Prt − 0.15 = Φh/Φm (Fig. 15a).
The Prt (Rig)model of Venayagamoorthy and Stretch (2010) (their Eq. 3.6), which is refined
from Schumann and Gerz (1995) (their Eq. 22), takes the form of:

Prt = Prt,0 exp

(
− Rig
Prt,0Ri f ,∞

+ Rig
Prt,0

)
+ Rig

Ri f ,∞
, (20)

with Ri f ,∞ = Ri f
∣∣
Rig=∞. The model (20) shows surprisingly good agreement with our

data (Fig. 15b), with Prt,0 = lim
Rig→0

Prt (Rig) = 0.15 + αh/αm ≈ 0.94 and Ri f ,∞ =
lim

Rig→∞ Ri f (Rig) = β−1
m ≈ 0.29. Further, Zilitinkevich et al. (2008) propose the relation

Prt ≈ Prt,0 + 5Rig , with the asymptote Prt,0 ≈ 0.8, based on measurement campaigns,
experimental and modelling results. In contrast to the previous model (20) this overestimates
our data for large Rig , and underestimates for small Rig . The increasing behaviour of Prt with
increasing stability is supported by the findings of Mauritsen and Svensson (2007), where
they find finite values of themomentum flux and zero values of the heat flux for Rig � 1. The
asymptotical behaviour of Prt for small ζ is Prt,0 ∼ αh/αm (z-less stratification, Wyngaard
1973) and therefore, 0.74 for Businger et al. (1971) and 1.0 for Dyer (1974). Townsend
(1976); Yakhot and Orszag (1986) predict a neutral value of ≈ 0.7 and Schumann and Gerz
(1995) expect values between 0.7 and 1.2. The asymptotical value of Ri f ,∞ is according to
Nieuwstadt (1984) 0.2 and Schumann and Gerz (1995) 0.25 and hence, our values of Prt,0,
Ri f ,∞ fit well with those of the literature.

The dependence of the Prandtl number in the stable regime is controversial. A major
challenge, apart from the large scatter of measurement data, is self-correlation of Prt with the
stability measures, due to shared variables (e.g. velocity and buoyancy gradients are present
in Prt and Rig , cf. discussions in Grachev et al. (2007); Mahrt (2007); Anderson (2009);
Sorbjan and Grachev (2010). Mahrt (2007) points out the importance of non-stationarity
in the VSBL, where non-turbulent motions (e.g. wave-like, meandering motions) transport
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Fig. 16 The turbulent Prandtl number Prt (RiΛ) as a function of the external stability parameter RiΛ (4c).
The data points are in the constant-flux layer and the box plots are derived from the data shown here

momentummore efficiently than heat, suggesting an increase of the turbulent Prandtl number
with stability. This behaviour is supported by the ratio Rig/Ri f , since Ri f is assumed to
reach a constant, whereas Rig increases. Howell and Sun (1999) observed Prt (ζ ) ≈ 1.0 for
10−2 < ζ < 101, with a large scatter in the data similar to Yagüe et al. (2001), where an exact
dependence of Prt on ζ remains uncertain. Whereas Yagüe et al. (2001) reports an increase
of Prt (Rig) at Rig � 0.1. Sorbjan and Grachev (2010) found a neutral value Prt,0 = 0.9
and a slight decrease with Rig to 0.7, after neglecting outliers in Rig from the analysis.

To circumvent self-correlation, Grachev et al. (2007) considers the Prt as a function of
the Richardson bulk number RiB (cf. their Eq. 6 for the bulk Richardson number RiB ) and
finds a decrease with stability. Anderson (2009) proposed a self-correlation free method and
observes an increase of the Prandtl number as a function of the gradient Richardson number
Prt (Rig). In our simulations, the turbulent Prandtl number Prt (RiΛ) in the surfaces layer
increases as a function of the external Richardson number RiΛ (4c, Fig. 16), contrasting the
results of Grachev et al. (2007).

While the data for Prt presented in this study (Figs. 15, 16) exhibit a substantial scatter,
we find that Prt increases in the constant-flux layer with any of the stability measures
Rig, Ri f , ζm, RiΛ. The most stable, intermittently turbulent case S256P shows a different
behaviour, which is related to the large imbalance in TKE; in fact, this case features such a
thin boundary layer that it is not possible to identify a surface layer by strict criteria.

5 Discussion and Conclusions

We investigate the competing interaction of small-scale surface roughness and stable stratifi-
cation onASL similarity using idealizedDNSof turbulent Ekmanflow.The surface roughness
is fully resolved with an immersed boundary method (ADR IBM) and the flow is driven with
an identical large-scale forcing for all cases. On the lower boundary there are 56 × 56 rect-
angular blocks with a certain degree of randomness in structure and layout, which leaves the
setup under neutral stratification on the verge of the transitionally to fully rough regime, with
z+0 ≈ 2. The stability of the flow is incrementally increased in 12 steps to cover the full span
of the stability regime, from the WSBL to the VSBL at meaningful scale separation (high
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Reynolds number in DNS context, Reτ,N ≈ 2700, ReD = 1000). We now conclude with
respect to the research questions posed in Sect. 1.

(1) The presence of small-scale surface roughness extends the stability regime, where
turbulence is in a continuous state. Roughness is observed to be a very effective triggering
mechanism of turbulence by inducing flow instabilities, since flow around objects with sharp
edges creates detached eddies and turbulent mixing. This enhances the production of TKE in
the ASL and counteracts the suppression of turbulence by buoyancy. The WSBL regime is
extended, which is characterized by a decreasing boundary layer depth and a continuous state
of turbulence. This gives rise to a pronounced plateau of the vertically integrated buoyancy
flux (MSHF concept) over an extensive stability regime. The regime transition from the
WSBL to the VSBL manifests itself in distinct oscillations of global flow properties with
decaying amplitude in time, such as u and L

+
O . At the transition to the VSBL, where a drastic

decrease of turbulence is observable, buoyancy is dominating with LO � δ95, RiB,95 ≈ 1
and where L+

O gets close to ReL,crit .
(2)Global intermittency is an inherent characteristic of the rough VSBL. In the presence of

surface roughness, global intermittency in the VSBL is successfully simulated and observed
to appear in space (across the boundary layer) and time (oscillating intensity). In this study,
it was not possible to completely laminarize the flow at very strong stability. We therefore
assume that the intermittency in the VSBL over heterogeneous surfaces lasts over a broader
stability range than in the VSBL over smooth surfaces, where complete laminarization of
the flow occurs for smaller values of stable stratification. This is supported by observation
of intermittency in the real-world SBL, since the atmospheric Reynolds number is large, the
Earth’s surface is rough and hence, a complete laminarization is not observed. Here, further
investigation would shed light on the intermittency phenomenon over rough surfaces.

(3) Turning of the wind is enhanced in the rough VSBL and an appropriate boundary layer
depth scale is δ,95. The turning of the surface wind with respect to the geostrophic wind is
enhanced by roughness. In theVSBLvalues ofα > 90◦ are observed for caseS256P, which
exceeds by far the laminar limit of α = 45◦ for an Ekman flow. The proposed mechanism is
based on the momentum balance within the surface roughness. With increasing stability, the
velocity is reduced and so are the Coriolis and friction force. Eventually, the wind turns in
favour of the pressure gradient force, resulting in a large α, which we suggest as the reason
for pressure-driven channeling in more complex situations. With increasing stratification, the
boundary layer thickness decreases: When comparing the neutral case N and the very stable
case S256P, δ is reduced by approximately 30 %, δ,95 by 90 %, which changes their ratio
from δ,95/δ ≈ 0.55 in the neutral regime to ≈ 0.08 in the VSBL. Both visual inspection of
the flow and scaling of global stability measures, such as RiB,95, LO/δ95 suggest that the
boundary layer depth δ,95 is an appropriate scale in case of stable stratification rather than
the scale δ.

(4) Surface layer similarity holds in the known limits for the cases S001- S064. With the
displacement height d/H = 2/3, von Kármán constants of heat and momentum κm = 0.42,
κh = 0.35, we estimate the following parameters of the linear MOST correction functions:
αm = 0.89, αh = 0.72 and βm = 5.3, βh = 12.5. In contrast to classical MOST, local
similarity theory results in a more accurate collapse of the data onto the linear fit, with slope
parameters of βm = 3.45, βh = 5.21. For large stability values, we observe a levelling-off
of the stability correction, which is in accordance with observations. Viscous effects impact
ASL theory, due to the present intermediate Reynolds number compared to the atmospheric
one. Hence, we propose a viscous correction method for the MOST and reveal, that fitting
parameters converge closer to the observational values. Furthermore, based on the current
data, we observe that a linear stability correction function is overestimating for small and
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underestimating for large stabilities (ζ ). Here, a quadratic fit in the WSBL regime seems to
improve the collapse of data, in agreement with the fits derived by Högström (1996) based
on observational data.

Regarding the controversial discussion on the turbulent Prandtl number Prt and its depen-
dence on stability (e.g. ζ , Ri f , Rig), –despite substantial scatter–we observe an increase with
stability and a neutral value of Prt,0 ≈ 0.94.

In summary, we provide a setup consistently treating outer dynamics in the boundary
layer (i.e. the rotation, and associated triadic balance in Ekman flow), the turbulent mixing
in the logarithmic layer and the immediate interaction with the surface through a roughness
layer and viscous sublayer. While this requires substantial numerical resources on the largest
supercomputers, it yields valuable insight to the boundary-layer dynamics. Based on an
analysis of well-known surface-layer scaling relations, we show that roughness helps to
maintain turbulence and shifts the stability regimes to higher stratification (cf. 1), that global
intermittency is an intrinsic characteristic, also of the rough boundary layer (cf. 2), that
stratification and roughness together can cause over-veering of thewind (cf. 3). The agreement
of results fromsuch a strongly idealized setupwithMOSTand the semi-empirical fits basedon
field observation demonstrates the consistency of our setup and its relevance for atmospheric
conditions when the data is scaled properly. Indeed, the results underline the potential of such
idealized setup to further address open questions regarding land–atmosphere interactions on
the process-level, for the first time also including processes in the roughness sublayer.

Appendix 1: Determination of the Stability Functions for Neutral Strati-
fication

The linear stability correction functions (12a) reduce to Φi |ζi=0 = αi at neutral stratification.
Based on theory, the empirical parameter for momentum αm is equal to unity in order to retain
the logarithmic law of the wall for the mean velocity. For buoyancy, the parameter αh equals
the ratio of the von Kármán constants of heat and momentum αh = κh/κm (Brutsaert 1982;
Chenge and Brutsaert 2005), or it is interpreted as αh = αm/(Kh/Km), depending on the
ratio of the eddy diffusivities Kh, Km. For momentum, the common value in the literature is
αm = 1, while the picture is less clear for buoyancy. Chenge and Brutsaert (2005) proposed
equal values for the von Kármán constants and therefore αh = 1 (the so-called Reynolds
analogy, namely equal transport properties for heat and momentum), Businger et al. (1971)
give αh = 0.74 and Högström (1988) gives αh = 0.95. However, Businger et al. (1971)
corrected the value of the commonly accepted von Kármán constant κm = 0.4 to κm = 0.35
to obtain αm = 1 instead of αm = 1.15 and used κm = κh and argued that the eddy
diffusivities are different for heat and momentum.

The empirical slope parameters βi from Sect. 4.1 with βm = 5.31, βh = 12.51 are taken
to estimate the parameters αi with a least squares fit within the constant-flux layer for the
cases S001-S064, where MOST is valid (cf. Fig. 17).

With this approach, we estimate αh = 0.72, which is similar to the common literature
value, and αm = 0.89, which does not fit the expected value of unity.

Here, we do not follow the approach by Businger et al. (1971) to correct the von Kármán
constants to gain αm = 1.We take the carefully estimated values of the vonKármán constants
from KA24 at neutral stratification, namely κm = 0.42, κh = 0.35 and assume that these
are universal, since the flow type is unchanged between the current study and KA24. The
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Fig. 17 Stability correction functionsΦi (ζi ) for the casesS001-S064. The data is plottedwithin the constant-
flux layer located in the region between the peak of the total turbulent flux max{

√
〈u′w′〉2 + 〈v′w′〉2} and

where the flux is reduced by 10% (Stull 1988). The linear regression lines (red dashed lines) are derived with
the slope parameters βi from Sect. 4.1

analysis concerning the MOST in the current study is exempted from the precise values of
αi through removing the neutral share of the dimensionless gradients.
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6. Conclusions and Outlook

Surface roughness is an omnipresent and crucial feature of the atmospheric boundary layer.
In the present dissertation, the effect of roughness on the bulk properties of the flow was
first unveiled for neutral conditions (Study I, chapter 4). Stability was then introduced
(Study II, chapter 5) to investigate the competing interplay of enhanced mixing due to
roughness and suppression of turbulence by buoyant restoring forces and the implications
on ASL theory.
In large-scale atmospheric models (e.g. GCMs, NWP models), the effect of unresolved

surface roughness and turbulence in the ABL on resolved properties are parameterized
since model grid resolutions are too coarse for an explicit representation. These parameter-
izations tend to fail to reproduce certain ABL characteristics in extreme regimes, especially
under strong stability where global intermittency is observed. The main challenge for these
models is the lack of a general framework ranging from the WSBL to the VSBL. With
the aim of shedding light on the interactions of surface roughness with ABL dynamics,
particularly in combination with stable density stratification, these complex processes were
investigated through a simplified model: the canonical flow problem of rough, turbulent
Ekman flow. Ekman flow is the flow over a flat plate with surface heterogeneity, driven
by a large-scale pressure gradient and subjected to steady system rotation.
Concerning the conceptual simplicity, DNS is chosen as the simulation paradigm for the

rough, turbulent Ekman flow, which brings the present analysis to the core problem of fluid
dynamics, the numerical solution of the NSE (chapter 2). The three-dimensional surface
roughness and turbulent motions are explicitly and fully resolved on the computational
grid without relying on turbulence closure assumptions and surface models. The demand
for an extremely fine grid resolution is accompanied by tremendous computational costs,
which still limits DNS to a reduced scale separation, i.e. low to intermediate Reynolds
numbers. The DNS approach is comparably new for analyzing geophysical wall-bounded
flows, although it has already been used for some decades in engineering. The rise of DNS
in the meteorological context has been favored in recent years by the advent of increasingly
powerful supercomputers, enabling geophysically relevant scale separations, computational
domain sizes and simulation durations. In the present dissertation, the TIER-0 HPC
system HAWK in Stuttgart was employed for the simulations in studies I & II, whereby the
DNS code ran massively parallel on up to 128 compute nodes with each 128 compute cores.
Simulation data of both studies I & II is published and available to the public (Kostelecky
and Ansorge, 2024a,c). The rough Ekman flow problem and HPC usage demand cutting-
edge algorithms of high accuracy and scalability. With the intention of representing
three-dimensional roughness elements in the simulation domain, the ADR IBM, based
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on cubic splines for high accuracy, was implemented and successfully validated. Data from
a combined wind tunnel and LES study and from another DNS code employing the ADR
IBM was taken for the validation (chapter 3). Spurious pressure oscillations are avoided
using a horizontal pressure grid staggering and a compact pressure filter in the vertical
direction. The pressure grid is staggered with interpolatory compact schemes similar
to the schemes for spatial discretization. As an initial finding from the computational
standpoint, the numerical framework implemented into the DNS code enables–for the first
time–DNS of Ekman flows with fully resolved, three-dimensional roughness elements with
sharp edges. Utilization of TIER-0 HPC facilities allows DNS with large domain sizes and
high Reynolds numbers Reτ ≈ 2700.

6.1 Study I: The Neutrally Stratified Rough Ekman Layer
In Study I, the effect of a controlled and fully-resolved, small-scale surface roughness on
bulk properties of the flow with neutral density stratification is investigated (temperature
is treated as a passive scalar). The considered cases are driven with an identical large-
scale forcing and differ only in their mean roughness height. The following conclusions are
drawn concerning the research questions posed (section 1.4):

• The drag is measured with a newly introduced integration method of the momentum
and scalar budgets and significantly increases if the surface is rough. Consequently,
the friction values of the velocity u⋆, scalar s⋆ and the friction Reynolds number Reτ
are enhanced. In addition, a strong veering of the wind with height is observed, with
a substantial share of the veering already within the roughness.

• An extended logarithmic layer is formed, favored by the increase in the scale sepa-
ration (Reτ ). The velocity and scalar profiles of the rough cases collapse with high
accuracy on the rough-wall scaling within the logarithmic layer. When estimating
the log-law parameters, a strong correlation of the von Kármán constant κ and the
offset parameter A is observed. Values of the zero-plane displacement thickness and
scaling of log ratios of the aerodynamic roughness lengths are approved by known
values from the literature. Furthermore, the simulated cases are transitionally rough
and at the verge of the fully rough regime.

• Within the smooth and transitionally rough regime, scalar mixing outweighs mo-
mentum mixing. In contrast, momentum mixing is larger at the edge of the fully
rough regime, highlighting the importance of pressure.

The findings of Study I have implications for ABL research. The observed increase in the
wind veering with the mean roughness height is remarkable and far exceeds the known
reduction of the veering angle with increasing Reynolds number. The scale separation in
the ABL for the large eddies is governed by the reduced Reynolds number Reτ/Rez0 (with
the roughness Reynolds number Rez0 based on the aerodynamic roughness length z0),
rather than by Reτ . Consequently, from the view-point of the outer layer, this implies an
effective atmospheric Reynolds number lower than the commonly assumed ReABL ∼ 108

(section 1.4), as the real-world ABL is located well within the fully rough regime.
Considering the turning of the wind within the roughness and surface layer is important

for drag measurements. An estimation based only on the maximum turbulent stress would
result in Study I in an underestimation of the drag of up to 10%. Therefore, the com-
mon constant flux layer assumption–neglecting the Coriolis force–might be problematic,
particularly in conditions of reduced scale separation, viz., stable density stratification.
The decisive dissimilarity between the momentum and scalar conservation equations is the
pressure gradient term. In the fully rough regime, momentum is more efficiently mixed
than the scalar with z0m > z0h, which underlines the important role of pressure (blocking)
effects within the roughness.
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6.2 Study II: The Stably Stratified Rough Ekman Layer
The rough Ekman layer in Study II is exposed to an incrementally increasing stable density
stratification that spans the full range from theWSBL to the VSBL. The focus of this study
is the counteracting interplay of surface roughness and stability as well as the impact on
ASL theory (MOST). Concerning the research questions posed (section 1.4), the following
conclusions are drawn:

• The stability regime, where turbulence is in a continuous state, is extended in the
presence of surface roughness. Roughness enhances turbulent mixing by inducing
flow instabilities and generating eddies detached from the bottom surface at the
sharp edges of the roughness elements. This increased level of mixing counteracts
buoyancy-induced suppression of turbulence efficiently.

• The phenomenon of global intermittency in the VSBL is an inherent feature of the
rough SBL, and a complete laminarization of the flow was not achieved despite the
strong stability in the VSBL.

• Surface layer similarity (MOST) holds in the WSBL and deviates from the classical
linear scaling in the VSBL. Using a local-in-height approach increases the accuracy
of the collapse onto semi-empirical fits. Further, a correction approach for viscous
effects on the stability correction functions is proposed, which significantly improves
the fits compared to observational values.

The findings of Study II indicate that the turning of the wind with height under stable
conditions is even more pronounced than in Study I. An over-veering of the wind (with a
turning angle of the wind α⋆ > 90◦) is observed with increasing stability that exceeds by
far the laminar limit of 45◦. The wind turns in favor of the pressure gradient force since
Coriolis and friction forces are reduced with increasing stability (triadic force balance
in Ekman flow). This has implications for the classical ASL theory (MOST), where
the turning of the wind is neglected–a potentially strong assumption. However, the
measured high level of agreement in the ASL scaling behavior with the known values
from observations is encouraging despite the intermediate Reynolds number of the present
simulations compared to the atmospheric Reynolds number. Owing to the relatively large
roughness Reynolds number in many realistic ABL flows, the gap in Reynolds numbers
of the present DNS and the atmosphere might not be as large as commonly assumed and
underlines the relevance of the present findings for atmospheric conditions.

6.3 Outlook
In conclusion, turbulent Ekman flow with small-scale surface roughness is an appropriate
model to study ABL processes in a well-defined setup at reduced complexity. The impor-
tant dynamical features of the ABL–the triadic balance, consisting of the pressure gradient,
Coriolis and friction forces–are adequately captured. While considering surface roughness
in DNS of turbulent Ekman flow, the essential difference between these simulations and
a real-world ABL is eliminated, owing to advanced numerical methods and available
computational resources. This dissertation emphasizes the significance of roughness for the
dynamics of the ABL, as the Earth’s surface is inherently rough and lays the foundation
for promising future investigations into surface-atmosphere interactions.
The provided numerical framework, consisting of the ADR IBM and the pressure grid

staggering, paves the way for future high-resolution studies of rough wall-bounded flows
at the scale of geophysical interest. Studying flows subjected to surface roughness offers
a vast parameter space (e.g. distribution of roughness elements, geometry, mean height,
roughness density). In both studies I & II of the present work, the statistical properties
of the surface roughness remained unchanged, apart from the varying mean height of the
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roughness elements (in viscous units H+ ≈ 10− 40, and blocking ratio H/δ ≈ 0.7− 1.5%,
cf. chapter 4). This work focussed on the impact of small-scale surface roughness on ABL
properties. However, further exploring the roughness parameter space at relevant scales
with well-defined cases would be very interesting. Nonetheless, a comprehensive parameter
study is not feasible with the available computational resources.
The present setup with the largest mean roughness height is on the verge of the fully

rough regime (roughness parameter z-nought in viscous units z+ ≈ 2). Therefore, analyz-
ing a case well within the fully rough regime would be enlightening since the real-world ABL
is also located here (large atmospheric Reynolds number). Performing such a simulation
case is an intricate task with huge computational cost, but it appears to possible on
the next-generation HPC-systems. Increasing the mean height implies a higher Reynolds
number (finer grid resolution, smaller simulation time step) to maintain the small-scale
character of the roughness. (This will be possible soon owing to the ever-increasing
computing resources.) Furthermore, the roughness elements are still arranged slightly
offset on a regular grid. Concerning the arrangement, future studies should elucidate
how an increased degree of randomness in surface roughness and incorporating multiscale
roughness can provide a higher degree of realism in the simulations. Concerning processes
within the surface roughness, the advantage of the present high-resolution DNS data is
the availability of data in this flow region compared to observations, where measurements
within the surface roughness are challenging or even impossible. Future work could thus as
well focus on the near-wall region within the roughness to unveil the turbulence structures.
In Study I (chapter 4), a method was proposed to determine the total drag of the

rough surface based on mean statistics of the flow. However, this approach is limited to
the total value and the contributions originating from momentum budget terms (Coriolis,
viscous and turbulent stress contributions). Based on this method, a drag partitioning
into pressure drag, skin friction drag of the ground and roughness surfaces is impossible.
These partitions can be determined based on the existing three-dimensional data, which
would contribute to evaluating drag models and isolating leading drag processes in the
roughness regimes. In addition, this would contribute to a better understanding of the
transitionally rough regime.
In Study II (chapter 5), in the VSBL, global intermittency is observed to be intrin-

sic to the VSBL, where turbulence ceases locally in time and space. The quantitative
characterization of this phenomenon as an intermittency factor is still unexplored in the
present work. Precisely measuring this factor is challenging in the vicinity of the surface
roughness, as shear and, thus, gradients are large and vorticity-based threshold methods
could misinterpret turbulent and non-turbulent regions. Hence, sophisticated methods
are required (e.g. filtering approaches). Furthermore, it is observed that turbulence
becomes increasingly anisotropic with stability. Considering both governing aspects of
the VSBL–anisotropy of turbulence and global intermittency–for future development of
general turbulence closures and unified ASL similarity theories, incorporating the WSBL
and VSBL, seems to be very promising. This would significantly improve large-scale
meteorological models that rely heavily on these parameterizations.
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Chan-Braun, C., Garćıa-Villalba, M., and Uhlmann, M. (2011). Force and torque acting
on particles in a transitionally rough open-channel flow. Journal of Fluid Mechanics,
684:441–474. doi: 10.1017/jfm.2011.311.

Chandramouli, P., Heitz, D., Laizet, S., and Mémin, E. (2018). Coarse large-eddy
simulations in a transitional wake flow with flow models under location uncertainty.
Computers & Fluids, 168:170–189. doi: 10.1016/j.compfluid.2018.04.001.

Cheng, H., Hayden, P., Robins, A., and Castro, I. (2007). Flow over cube arrays of
different packing densities. Journal of Wind Engineering and Industrial Aerodynamics,
95(8):715–740. doi: 10.1016/j.jweia.2007.01.004.
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Ferziger, J. H., Perić, M., and Street, R. L. (2020). Computational Methods for Fluid
Dynamics. Springer International Publishing, Cham. doi: 10.1007/978-3-319-99693-6.

Fiedler, F. (1983). Einige Charakteristika der Strömung im Oberrheingraben. Wis-
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Högström, U. (1988). Non-dimensional wind and temperature profiles in the atmo-
spheric surface layer: A re-evaluation. Boundary-Layer Meteorology, 42(1):55–78. doi:
10.1007/BF00119875.
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Nomenclature

Abbreviations

Acronym Description

ABL Atmospheric boundary layer

ADR Alternating direction reconstruction

ASL Atmospheric surface layer

CFD Computational fluid dynamics

CFL Courant–Friedrichs–Lewy number

CFR Constant flow rate

CPG Constant pressure gradient

CPI Constant power input

DNS Direct numerical simulation

GCM General circulation model

HPC High-performance computing

IBM Immersed boundary method

LES Large-eddy simulation

LHS Left-hand side

ML Mixed layer

MOST Monin–Obukhov Similarity Theory

MSHF Maximum sustainable heat flux

NSE Navier–Stokes equations

NWP Numerical weather prediction

PDE Partial differential equation

RHS Right-hand side

RAM Random-access memory

RANS Reynolds-averaged Navier–Stokes equations

RK Runge–Kutta scheme

rms Root-mean-square

SBL Stably stratified planetary boundary layer

SFOs Spurious force oscillations

TIER Categorization of European HPC facilities in 3 tiers

TKE Turbulent kinetic energy

VSBL Very stable boundary layer

WSBL Weakly stable boundary layer
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152 Nomenclature

List of Greek Symbols and Variables

Symbol Description

α⋆ angle between wall shear stress and geostrophic wind
β1, β2 parameters of the feedback forcing IBM
βbuf buffer parameter
γ volume fraction
ΓF interface of the fluid region
ΓS interface of the solid region (immersed object)

δ
turbulent boundary layer thickness
(in chapter 3, half-channel height)

δeff effective half-channel height
δmelt meltdown height of the surface roughness
δij Kronecker delta
δv viscous length scale
δ⋆ non-dimensional turbulent boundary layer thickness
∆x,∆y,∆z spacing between two neighboring grid points, grid resolution
∆B constant buoyancy difference between upper and lower wall
∆S constant passive scalar difference between upper and lower wall
∆U roughness function of the log-law
ϵ indicator function of the roughness geometry (velocity grid)
ϵp indicator function of the roughness geometry (pressure grid)
ϵdis energy dissipation rate
ϵijk Levi–Civita symbol
ζ non-dimensional stability parameter
η Kolmogorov length scale
Θ potential temperature
Θsfc potential temperature of the surface layer
κ von Kármán constant
κd thermal diffusivity
ΛRo Rossby radius
µ dynamic viscosity
ν kinematic viscosity
νeff effective kinematic viscosity
ξ enstrophy
π modified non-hydrostatic pressure
ρ fluid density
σ buffer coefficient
τ time increment of Runge–Kutta scheme
τw wall shear stress
τ ⋆ non-dimensional wall shear stress
ϕ latitude
ϕn discrete pressure from the Poisson solver
Φ stability correction function
φ flow variable (e.g. velocity, temperature, buoyancy)
ψ integrated universal function of the log-law
Ψ,ΨI ,ΨR,ΨW universal functions of the log-law
ωj vorticity vector
Ωi rotation vector
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List of Latin Symbols and Variables

Symbol Description

aij , bj , cj Runge–Kutta parameters
Ax,Bx,Cx,Dx narrow banded matrices (compact schemes)

A,AR, ÃR, B universal constants for the smooth (rough) log-law

b buoyancy
b⋆ friction buoyancy
Bi Burgers operator in i-direction
cij prefactors for numerical discretization schemes
cs speed of sound
cu fluid velocity
cp specific heat capacity at constant pressure
cv specific heat capacity at constant volume
CFLa, CFLd advection (diffusion) Courant–Friedrichs–Lewy number
Cf skin friction coefficient
D′

i, D
′′
i descrete first/second derivatives in i-direction (Burgers operator)

D computational domain
DF fluid region of the computational domain
DS solid region of the computational domain
dR displacement thickness (rough log-law)
D laminar Ekman layer thickness
eij rate-of-strain tensor
EkΛ Ekman number
EuΛ Euler number
Eφφ spectral Energy densities
f Coriolis parameter
f IBM IBM volume force added to RHS of the NSE
F RHS terms of NSE

F̃ RHS terms of NSE without pressure gradient term

FrΛ Froude number based on Rossby radius
ggrav gravity
g non-dimensional geostrophic wind vector
G geostrophic wind vector
hR characteristic roughness length scale
H height of bars (housing blocks)
ks grain diameter of sand grain roughness
ki wavenumber in i-direction
krel relative wavenumber
k′i, k

′′
i modified wavenumbers for first and second derivatives

Lx, Ly, Lz computational domain size
LO Obukhov length
lcut spectral filter parameter
Ma Mach number
nx, ny, nz number of grid points
nobj number of objects
np number of phases
nt number of samples
Nu Nusselt number
p pressure
pref reference pressure (standard pressure 105 Pa )
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154 Nomenclature

Pr Prandtl number
q⋆ buoyancy surface flux
R specific gas constant
Re unspecific Reynolds number for the channel flow configuration
ReABL Reynolds number of the ABL
Reb bulk Reynolds number
Recl centerline Reynolds number
Recrit critical Reynolds number
ReD Reynolds number based on the laminar Ekman layer thickness
ReΛ Reynolds number based on the Rossby radius
ReL buoyancy Reynolds number
Reτ friction Reynolds number
RiΛ Richardson number based on the Rossby radius
RoΛ Rossby number based on the Rossby radius
s passive scalar
s⋆ friction value of the passive scalar
S spacing of bars (housing blocks)
Sc Schmidt number
t time
T Temperature
T cf , T sf transfer function of compact (spectral) filter
u streamwise velocity component
u⋆ intermediate velocity
ub bulk velocity
ũb time-varying bulk velocity
uS velocity vector for a moving body
ubuf streamwise buffer velocity
ucl centerline velocity
uh horizontal velocity
ui fluid velocity vector u = (u, v, w)T

utr transition velocity for the buffer
uτ friction velocity
u⋆ non-dimensional friction velocity
v spanwise velocity component
Vobj volume of the objects
w wall-normal velocity component
W width of bars (housing blocks)
x Cartesian coordinate, streamwise direction
xj Cartesian coordinate vector xi = (x, y, z)T

y Cartesian coordinate, spanwise direction
ytr transition height for buffer velocity
z Cartesian coordinate, wall-normal direction
z0 aerodynamic roughness length
D (·) /Dt total (material) derivative in time
∂ (·) /∂t partial derivative in time (in short: ∂t (·))
∂ (·) /∂xi partial derivative in xi direction (in short: ∂xi (·))
(·)′ instantaneous fluctuation (Reynolds decomposition)
(·)0 reference value
(·)eff effective value, based on the effective half-channel height
(·)buf value associated with the buffer region in the domain

(·) time average

⟨(·)⟩ spatial average in the horizontal directions
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⌊
(·)
⌋

phase-average

(. . . )+ scaled in inner (viscous) units
(. . . )− scaled in outer units
(. . . )ex extrinsic average
(. . . )0 conditional averaged on fluid region
(. . . )1 conditional averaged on solid region
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Appendix
Channel Flow – Description and Forcing

1Characteristics. The canonical channel flow problem describes a flow between two in-
finitely extended plates in the horizontal directions. The height H of the closed channel is
twice the half-channel height δ with H = 2δ, and H = δ in case of an open channel flow.
The insertion of roughness elements in the flow domain results in a reduced cross-sectional
area of the channel, and hence in an effective half-channel height δeff ≤ δ. The effective
value is δeff = δ − δmelt (in the absence of obstacles δeff = δ), with the meltdown height
δmelt (equation 3.6). A single non-dimensional parameter, the Reynolds number of the flow,
characterizes the flow problem itself. Depending on the characteristic velocity and length
scale choice, several formulations are common (Pope, 2000). The following formulations
are adapted to the rough channel with streamwise aligned roughness elements and are
defined as

Reb,eff =
2δeffub,eff

ν
, ub,eff =

1

2δeffLxLz

Lx∫

0

Lz∫

0

∫ htop(z)

hbottom(z)
udy dz dx, (A.1a,b)

Recl,eff =
δeffucl,eff

ν
, ucl,eff = ⟨u⟩|y=δ , (A.1c,d)

Reτ,eff =
δeffuτ,eff

ν
, uτ,eff =

√
τw,eff

ρ
=

√
ν
d ⟨u⟩
dy

∣∣∣∣
y=y0

, (A.1e,f)

the bulk, centerline, and friction velocities and Reynolds numbers. The surface profile on
the bottom and the top boundary is depicted by hbottom(z) and htop(z). The wall shear
stress is τw, and in the case of a rough channel flow, τw is evaluated at the virtual height
y0 = δmelt (Chan-Braun et al., 2011). All properties with the subscript (·)eff are related
to rough channel flow. When a smooth channel flow is considered, similar formulations
apply with δeff = δ and y0 = 0.

1Note the change of the coordinate system in this section following chapter 3 (cf. footnote 2). Furthermore,
the governing equations (3.4) are used in the dimensional formulation.
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Laminar relations and turbulent approximations for a smooth channel flow. The laminar
parabolic mean velocity profile and wall shear stress with a known centerline velocity is
given by

⟨u⟩ (y) = −ucl
δ2

(y − δ)2 + ucl, τw = µ
d⟨u⟩
dy

∣∣∣∣
y=0

= ρν
2ucl
δ
. (A.2a,b)

Integrating the vertical mean velocity profile ⟨u⟩ over the full channel height leads to the
following laminar relations

ub =
2

3
ucl, Reb =

4

3
Recl, (A.3a,b)

uτ
ucl

=

√
2

Recl
, Reτ =

√
2Recl =

√
3Reb. (A.3c,d)

Considering turbulent channel flow, an excellent empirical approximation of the relation
between friction, bulk, and centerline velocity is given by the simple power law (Dean,
1978; Pope, 2000):

Reτ ≈ 0.09Re0.88b ≈ 0.116Re0.88cl . (A.4)

Mean momentum balances for smooth channel flow. Applying the Reynolds decomposition
for velocities and pressure to the governing equations (3.4a,3.4b) and averaging in time
and space lead to the Reynolds-averaged Navier–Stokes equations (RANS) (Spurk and
Aksel, 2010) and read as

∂⟨uj⟩
∂xj

= 0 (A.5a)

∂⟨uj⟩
∂t

+ ⟨uj⟩
∂⟨ui⟩
∂xi

= −1

ρ

∂⟨p⟩
∂xj

+
∂

∂xi

(
ν
∂⟨uj⟩
∂xi

−
〈
u′iu

′
j

〉)
. (A.5b)

The following assumptions are considered for the mean flow equations (A.5): (i) statistical
homogeneity in the horizontal directions ∂x ⟨·⟩ = ∂z ⟨·⟩ = 0, (ii) statistical stationarity
∂t ⟨·⟩ = 0 and (iii) a statistical plane flow ⟨w⟩ = 0. With these assumptions and the
vertical integration of the continuum equation (A.5a) with regard to the impermeability
of the wall result in a zero mean vertical velocity v = 0. The RANS equations can be
simplified to the following mean momentum balances:

in x: 0 = −1

ρ

d⟨p⟩
dx

− d

dy

〈
u′v′

〉
+ ν

∂2⟨u⟩
dy2

, (A.6a)

in y: 0 = −1

ρ

d⟨p⟩
dy

− d

dy

〈
v′v′
〉
, (A.6b)

in z: 0 = − d

dy

〈
v′w′〉 . (A.6c)

Integrating the spanwise balance (equation A.6c) in the vertical direction yields a zero
mean Reynolds stress

〈
v′w′〉. Similar vertical integration of the vertical balance (equa-

tion A.6b) gives a constant pressure gradient dx⟨p⟩ = const. in the vertical direction.
Inserting the streamwise pressure gradient in the mean streamwise momentum balance
(equation A.6a) and a subsequent integration over the full channel height leads to

d⟨p⟩
dx

=
d

dy

(
µ
d⟨u⟩
dy

− ρ
〈
u′v′

〉)
=

dτ

dy
, (A.7a)
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∫ 2δ

0

d⟨p⟩
dx

dy =

∫ 2δ

0

dτ

dy
dy, (A.7b)

d⟨p⟩
dx

= −τw
δ
. (A.7c)

Wall-bounded flows are constantly losing energy due to friction. Without adding a forcing
term F1 to the RHS of the NSE (equation 3.4b), the flow would decelerate and come to
rest. Therefore, a continuous forcing is needed to drive the turbulent channel flow at a
constant Reynolds number.

Rough channel flow forcing with a constant pressure gradient. The following options
are conceivable to force a channel flow (Quadrio et al., 2016): (i) a constant pressure
gradient (CPG) in the streamwise direction, (ii) a constant flow rate (CFR) (constant mass
flow per unit area), and (iii) a mixture of both approaches, a constant power input (CPI).
Here, the CPG approach is used since Quadrio et al. (2016) showed in their study that the
choice of forcing has no statistical significance. The CPG balances the wall shear stress
(equation A.7a) and results in a time-dependent bulk velocity of the flow. For turbulent
and laminar flows, the forcing term is defined as

F1,turb =

(
Reτ
Recl

)2

, F1,lam =
2

Recl
. (A.8a,b)

With the forcing term F1,turb and the power-law (equation A.4) it is possible to precisely
aim for a desired Reynolds number of a smooth turbulent channel flow.
The insertion of obstacles in the flow reduces the cross-sectional area of the channel.

Ignoring this would result in a rough channel flow with a reduced Reynolds number
compared to a smooth channel flow with a similar forcing. With the necessity for com-
paring rough and smooth channel flow statistics at similar Reynolds numbers, namely
Reτ,rough = Reτ,smooth, the correction factor for the streamwise pressure gradient is ac-
cording to (Stroh et al., 2020b) introduced with

dxprough
dxpsmooth

=
τw,eff

τw

δ

δeff
, (A.9a)

=
ρu2τ,eff
ρu2τ

δ

δeff
, (A.9b)

=

(
νReτ,rough

δeff

)2( δ

νReτ,smooth

)2 δ

δeff
, (A.9c)

=

(
δ

δeff

)3

. (A.9d)
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