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ABSTRACT
We introduce a new method to compute plant distribution in Ethiopia under paleoclimatic
conditions using fuzzy logic. Using a published map of the potential vegetation for Ethiopia
we decipher the boundary conditions for the main vegetation units shown, reflecting
modern climatic conditions for temperature and precipitation in this region. Fuzzy logic
using these climatic values on a GIS platform then derived the computational map of the
potential vegetation. Comparing it with the original map shows a general correspondence
of about 90%. By changing the underlying climate parameters, we then used this model for
hypothetical paleoclimatic conditions to simulate the vegetational response on these
changed climate settings. Finally, vegetational response maps for Ethiopia are presented for
two scenarios: (i) a colder and drier condition (such as the Last Glacial Maximum) and (ii) a
warmer and wetter condition (such as the last interglacial) than today.
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1. Introduction

The objective of the procedure described below is to
model the potential vegetation of Ethiopia in terms
of precipitation and temperature to compute the dis-
tribution of certain plant associations during the geo-
logic past. The method is based on the hypothesis that
a given type of vegetation cover in a specific region is
mainly a reflection of the ecological and climatological
conditions in that region, including human influence.
Following the concept of Tüxen (Tüxen, 1956), devel-
oped in the 1950s, botanists all over the continents
have created potential vegetation maps by time-con-
suming field surveys of plant associations assuming
that humans will no longer interact. Under these con-
ditions mainly climate parameters, such as tempera-
ture and precipitation, will influence the plant
distribution. A good example of such a map is the
one created by Friis et al. for Ethiopia (Friis et al.,
2010), which was improved by van Breugel et al.
(2015) and which we used here as our ‘base map’.
This map heavily relies on observations in the field
covering a broad area of the land. The results are
valid only for current climatic conditions. If we want
to model vegetation patterns under climatic con-
ditions of the past we have to rely on climate recon-
structions using, e.g. lake sediments (e.g. Schaebitz
et al., 2021). These give an accurate description of
the surrounding environment from which we can
derive the relevant climatic conditions in terms of

precipitation and temperature, but only for a
restricted area in which the lake sediments occur.
Our model uses these factors to extrapolate climate
conditions to a wider region and thus derive a descrip-
tion of the potential vegetation under a given climatic
condition.

Our model is based on the principles of fuzzy logic
(see Kainz, 2007 for fuzzy logic and GIS). Fuzzy logic
used for vegetation distribution provides a way of dis-
tinguishing smoothly between the two extremes of
‘totally suitable situation for a certain group of plants’
and ‘totally unsuitable’. The idea is to identify for each
plant association a certain span of tolerance in precipi-
tation and temperature ranges in which this particular
type of vegetation can exist (Figure 1).

Following the general assumption that those plants
which are best adapted to the dominating conditions
prevail, the model chooses the plant association that
has the strongest overall membership value for a par-
ticular location.

Oldeland et al. (2010) use Fuzzy logic for vegetation
mapping in Namibia recognizing its ‘great potential to
map and identify continuous natural vegetation’ (ibid,
1156). They use the fuzzy method to compute a mem-
bership value for each vegetation unit based on hyper-
spectral remote sensing data. Based on the highest
membership value for each pixel the prevailing veg-
etation unit was mapped in a hard classification
image. Triepke (2017, p. 64) states that fuzzy sets
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correspond more adequately to the ‘fuzzy nature of
natural landscapes’. Applying the fuzzy logic helps
to reduce the arbitrariness of human-made classifi-
cations. Räsänen et al. (2019, p. 1024) use the fuzzy
method for forest mapping and conclude that this
kind of method is to be preferred when it comes to
capturing ‘continuity in species distribution’. Feil-
hauer et al. (2021, p. 330) do not see advantages of
hard classification over the fuzzy method when it
comes to vegetation mapping. They conclude that
fuzzy classification is ‘a better representation of rea-
lity’ compared to hard classification and offers several
other advantages, such as accuracy assessment, and
mapping performance. Finally, fuzzy maps can always
be converted into hard classification but not vice versa.

2. Methods

We used mean annual precipitation data obtained
from the WorldClim database (Hijmans et al., 2005).
It provides a resolution of approximately 1 × 1 km
for Ethiopia. The mean annual temperature was
approximated using SRTM elevation data, down-
loaded from USGS earthExplorer. Following the
example of Friis et al. (2010), we used the SRTM
with its higher resolution as a substitute for tempera-
ture data. Higher temperatures correspond to lower
altitudes. We assume a fairly linear change of −6°C
per 1000 m difference in elevation as the general
lapse rate. The resolution for the SRTM raster close
to the equator is about 90 m. The data was

downloaded in tiles. To cover the entire area of Ethio-
pia more than 100 tiles were used.

The term ‘fuzziness’ refers to a certain vagueness,
in this particular case related to borders between
plant associations. A fuzzy membership function
expresses to what degree something belongs to a
class. Every entity is given a value between 0 and 1
where 0 indicates no membership and 1 definite mem-
bership of a certain class (Figure 1). Members in the
center of the set usually receive a value of 1, with the
value declining towards the edges of the set. Member-
ship values of 0.5 (crossover point) should be con-
sidered where the crisp boundary of a non-fuzzy set
would have been defined. This means that entities
can be considered which do not simply belong or do
not belong to the set, but are something in between.

This is interesting in the case of vegetation distri-
bution because in natural vegetation there are no
clear boundaries but rather fuzzy transitions between
plant associations. In our case, the membership func-
tions were data driven using a training area in
Southern Ethiopia, based on the atlas of the recent
potential vegetation (Friis et al., 2010). To extract
the characteristics of the plant associations we used
geographical raster data sets indicating mean annual
precipitation and elevation (which we converted into
temperature). First, we overlay the existing map with
the precipitation and elevation raster files. A statistical
description of the data layers for each period calcu-
lated with the proposed method in the current study
is given in Table 1. Then we performed a simple cell

Figure 1. Prototypical fuzzy membership functions. Determining values for (a) minimum value where a membership can be
detected, (b and c) span around full membership, (d) maximum value where a membership can be detected, shapes the form
of the function. The transition between ‘no membership’ and ‘full membership’ can be linear (solid line) or sinusoidal (dashed
line). Other gradients such as a Gaussian function might apply. Prototypical shapes of fuzzy membership functions can be trape-
zoidal, S-, or L-shaped, indicating a membership value between 0 and 1.

Table 1. General statistics for climate data of the calculated time periods.
Min Max Mean Standard deviation

Recent conditions Elevation −169.80 4519.80 1044.64 624.39
Precipitation 86 1954 689.34 384.53

Last glacial maximum Elevation (−6°C) −1179 3525 97.94 704.22
Precipitation (−25%) 64.5 1465.5 517.006 288.396

Last interglacial Elevation (+2°C) 154 4862 1430.94 704.22
Precipitation (+25%) 107.5 2442.5 861.67 480.66
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count on each raster within the vegetation zones of the
map. We then calculated the mean, maximum and
minimum values, and the standard deviation for the
raster data sets in each vegetation zone. This yields a
unique profile for each vegetation zone indicating
the corresponding plant association’s favorable con-
ditions in terms of precipitation and elevation (as a
proxy for temperature; Figure 2).

Around these values, the membership functions are
constructed. The mean value was used to establish the
center of each set’s core. An interval of +/- the stan-
dard deviation around the mean (Figure 1) is declared
as positive membership within the group correspond-
ing to a membership value of 1. In other words, this
range of cell values is assumed to be safely associated
with a definite membership of the plant association.
The maximum and minimum values are used to
define the limits of the set outside of which member-
ship values are 0.

We applied this procedure to a simplified map of
potential natural vegetation by Friis et al. (2010) and
van Breugel et al. (2015) using only six vegetation
units instead of nine (Map 1) by putting all the original
forests types (wet evergreen mountain forests =MAF,
transition forests = TRF and Afromontane forests =
DAF) in only one class (F) together. Furthermore,
we joined all bush and savanna types (Acacia-Commi-
phora = ACB ‘forests’, Acacia dominated grassland =
ACB/RV and Combretum-Terminala ‘forests’ and
forested grasslands = CTW) into another class
named Bush and Grassland (BG). Therefore, we
finally differentiated between: Desert (DSS), Bush
and Grassland (BG), Ericaceous Belt (EB), Forest
(F), Afroalpine Belt (AA), and a currently non-existent
Periglacial and Glacial Belt (PGG), which might have
existed in times of low temperatures. The results
were two trapezoidal membership functions for each
plant association, except for the DSS and PGG
which were L and S shaped respectively and defined
by elevation/temperature and precipitation only
(Figure 3). We used the L-shaped functions (for expla-
nation of L and S-shaped functions see Figure 1) to
indicate that membership values below a certain
threshold will not decrease. Membership values for
DSS will not decrease below a certain amount of pre-
cipitation. In parallel, glacial conditions will not dwin-
dle when temperatures get lower. The respective
membership function will assume a distinct S-shape
because the membership value will not decrease after
a certain temperature value. Thus the PGG member-
ship function expresses the assumption that below a
certain temperature (or above a certain elevation) no
plants can exist. This defines at some point a definitive
limit to any plant association no matter how low
temperatures get or how high precipitation will be.
There should be a similar limit for low precipitation,
demarcating desert climate mostly bordering the BG

plant association. For boundary conditions of each
plant association used in this model, see Figure 3.

The membership functions were translated into the
python scripting language. In ArcGIS, python can be
used as an interface to access tools for processing ras-
ter data sets in geographically meaningful ways. Using
the spatial analyst library of the arcpy module pro-
vided by ESRI, we can perform all kinds of calculations
on a given raster dataset. We established the fuzzy
membership functions using conditional statements.
See the commented scripts for details.

All six membership functions are applied to the
precipitation and the elevation data sets, producing
five new data sets each. These data sets describe for
each cell in the raster, the fuzzy membership values
of the respective plant association separately for pre-
cipitation and elevation (temperature). To aggregate
the two membership values of each vegetation class,
the average value among them is calculated for each
cell. This results in five layers representing the mem-
bership values of every raster cell for each plant associ-
ation in terms of precipitation and elevation
(temperature) combined.

For the display of the data in a single map, we had
to defuzzify our results. Following Friis et al. (2010)
and van Breugel et al. (2015), we use the spatial resol-
ution of our temperature proxy data, the SRTM data-
sets, as basic cell size for our calculations. This
corresponds to the natural conditions where tempera-
ture changes are more corresponding to relief changes
than precipitation patterns do. This means the basic
cell size for our defuzzification is approximately 90
m × 90 m (SRTM spatial resolution) and thus fairly
small. We assume that one plant association prevails
over another under most favorable conditions, which
are expressed in the fuzzy membership values. Using
the stacking algorithm of the ArcGIS desktop toolbox
the values were integrated into a single raster output
by selecting the strongest membership value in the
stack and assigning the cells the class of the prevailing
plant association (Figure 4).

3. Results

The resulting map of the fuzzy-based potential veg-
etation for Ethiopia is shown in Map 2. The map
shows that the lowest elevations are predominantly
covered by desert vegetation. This changes to ‘Bush
and Grasslands’ in the slightly more elevated regions.
For the more mountainous areas, our model indicates
predominantly forest vegetation that yield to the Eri-
cacea belt. The highest regions are characterized by
Afro-alpine conditions. Considering the whole of
Ethiopia, there are only 10.2% differences (see Map
3) in the plant distribution areas between our compu-
tational fuzzy-based map and the modified original
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map by Friis et al. (2010) and van Breugel et al. (2015)
(Map 1).

Comparing our fuzzy logic map (Map 2) with the
field-based map (Map 1) certain deviations of our
model are visible in the extremely dry areas of NE
and eastern Ethiopia (Map 3). Here the ‘Bush and
Grassland’ vegetation covers less terrain as effectively
prevailing under recent climate conditions. Our model
calculates more desertic areas.

Moreover, some significant differences appear on
the western exposed slopes of the forest in the SW of
the country. Here the forest vegetation covers less ter-
rain than the ‘Bush and Grassland’. Friis et al. (2010)
designate these areas to the transitional rain forests of
the moist evergreen montane forest ecosystem

(p. 252). Once again, our model overestimates the
water stress for the plants. This phenomenon is also
visible in general at the borderline of the forest all
over the country. In sum, all red marked differences
in Map 3 reach about 10.2% of the complete Ethiopian
terrain, which suggests our Fuzzy model in these areas
is not accurately representing the potential vegetation
map.

A second step was to use this fuzzy model for the
past by changing the temperature and precipitation
values for two hypothetical scenarios: the last glacial
maximum (LGM) and the Last Interglacial (Maps 4
and 5). First, we present the modeled situation for
the Last Glacial Maximum (LGM=MIS 2 about 18–
22 ka BP; Map 4) which was derived by using a general

Figure 2. Two membership functions have been constructed for each kind of plant association. Assuming that both precipitation
and temperature make up the ideal conditions for the respective plant associations, we aggregated these two values by calculat-
ing their mean, thus gaining a single membership value for each plant association at the location of each cell. Two exemplified
membership functions for each of six plant associations define their respective combination.

Figure 3. The actual membership functions of each plant association. The darker are in the bar charts represent the core where
membership values equal 1. The actual trapezoidal membership functions of each plant association shown for precipitation and
elevation.
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temperature decrease of −6°C as discussed for the tro-
pics by Hostetler et al. (2006) and a mean reduction of
precipitation of about 25% as proposed by Fischer
et al. (2020) for southern Ethiopia (the Chew Bahir
region). Our model calculates a spread of the desert
vegetation into higher altitudes, whereas the best con-
ditions for forest reach further down the elevations. As
a result ‘Bush and Grassland’ retreat under pressure
from lower and higher elevations. The Ericacea belt
and Afro-alpine conditions extended to lower
elevations. In the highest elevations, even periglacial
and glacial conditions were maintained.

The second example shows the modeled situation
based on the recent version of our Fuzzy model for
the Last Interglacial (MIS 5e = about 120–130 ka BP,
Map 5). We generally calculated a rise in temperature
of +2°C and 25% more in annual precipitation for this
time interval in comparison to modern conditions (i.e.
Asrat et al., 2018; Fischer et al., 2020). Here our calcu-
lations suggest a fairly wide spread of ‘Bush and
Grassland’ and growth of the Ericacea belt. The forests
slightly retreat to higher altitudes.

In comparison to the modern conditions calculated
by our model (Map 2), it is visible that the desert veg-
etation in the NE and east of the country covers more
terrain during LGM (Map 4) which is expected when

decreasing the precipitation values countrywide.
Moreover, the prevailing forests in lower altitudinal
positions of the mountains, directly border the desert
vegetation in some areas in the east. It looks like in
general the forest was able to grow on lower elevated
slopes due to the reduction of water stress by decreas-
ing the temperature level which might have overcom-
pensated for the lesser annual precipitation values. For
the higher elevated mountain areas, mainly in the
southwest, our simulation for the LGM shows wide-
spread Ericacea and Afro-alpine belts. Additionally,
small spots of Periglacial and Glacial (PPG) environ-
ments appear on the highest peaks (i.e. Simien and
Bale Mountains). A broad corridor with open veg-
etation (‘Bush and Grassland’) stretching in N–S-
direction through the highlands north of the rift
(where forest is dominating currently) dominated
during the LGM, while in the Afar region and
eastwards to Somalia, desertic environments
predominate.

The simulation of the conditions under the last
interglacial led to more widespread ‘Bush and Grass-
land’ with broad corridors in the rift and shrinking
areas of deserts. Moreover, the forest shrank at its east-
ern flanks but spread in western parts of the country
which today border Kenya and southern Sudan. The
smaller forest terrain in the east is surprising but
could be due to the warmer conditions raising the
water stress for trees overcompensating the higher
precipitation. In the higher elevations, the Ericacea
belt tended to spread in the terrain of the Afroalpine
belt while periglacial and glacial zones at very high
elevations disappear. It looks like open vegetation
during the Last Interglacial predominated in the rift
and offers broader corridors to allow for the dispersal
of our ancestors. While during the LGM, under drier
and colder climate conditions, the model shows
more desertic conditions in the lowlands, which
might have triggered the upward movement into
higher elevated mountains for people living during
these times (Schaebitz et al., 2021).

4. Discussion

In general, the fuzzy model proved to be reliable in
predicting potential vegetation in terms of precipi-
tation and elevation (temperature) compared to the
modified map by Friis et al. (2010) and van Breugel
et al. (2015). Using more accurate precipitation and
elevation (temperature) data with a higher spatial res-
olution or describing seasonal changes might yield
even better results. One main limiting factor is the
spatial resolution especially of the precipitation data.
Using more exact precipitation regimes and its pat-
terns across Ethiopia in future model runs would
probably result in more accurate localization of plant
associations.

Figure 4. Creating the fuzzy model for Ethiopian vegetation
using the example at the location of SRTM tile n09_e038.
The four tiles show the aggregated membership values for
each cell derived from temperature and precipitation. For
defuzzification, the strongest membership value out of the
stack is picked for determining the predominant type of veg-
etation of each cell. Four tiles layered on top of each other
indicating the membership values at each image cell for
four plant associations occurring in this particular area. The
strongest membership value is visualized with the brightest
value on a grey scale and determines the prevailing
association.
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The membership functions could be re-modeled to
represent more precisely real-world behavior of plant
associations. Possibly a linear decline does not prop-
erly describe membership values toward the edges of
a set. Functions with smooth transitions between
membership values like sinusoidal (see Figure 1) or
Gaussian functions might be more appropriate to
describe vegetation in fuzzy terms. Moreover, the
core of the set could be better defined either in a
data-driven approach using a less arbitrary indicator
than the aforementioned spans of suitability for
plant growth. Alternatively, instead of a data-driven
approach, field or laboratory observations of the toler-
ance ranges of the given plant associations could be
used to more accurately describe the behavior of
plant associations.

Given the reliable functionality of the fuzzy model,
it can be easily enhanced by adding more membership
functions besides precipitation and elevation (temp-
erature). Functions describing the affiliation of plant
associations to soil, wind patterns, exposure to sun-
light, etc. might yield even more reliable results.
Finally, the training areas could be improved. They
were chosen for pragmatic reasons, but could also be
determined by field observations in possibly undis-
turbed environments.

5. Conclusion

Our Potential Natural Vegetation Map of Ethiopia
based on Fuzzy Logic is about 90% similar to the
field-based potential vegetation map of Ethiopia
(Friis et al., 2010; van Breugel et al., 2015) and there-
fore can generally be used as the first version of a
new tool to generally describe the vegetation cover
in the country. The Fuzzy modeled map can be
improved with the use of higher resolution and
more accurate precipitation and temperature data.
Nevertheless, our model even with the available coarse
climate parameter data has shown that it can be useful
for characterizing late Quaternary vegetation regimes.
During the drier and colder LGM desert vegetation
spread in the east and NE of Ethiopia, while ‘Bush
and Grassland’ were predominant in the middle-
high elevated regions north of the central rift and
the forest appears in more westerly positions. The
higher mountains showed more Ericacea and Afro-
alpine vegetation topped by periglacial and glacial
environments on the highest peaks. During the
much wetter and slightly warmer Last Interglacial,
these last two features disappeared from the highest
peaks, forest vegetation shrank while Ericacea spread.
‘Bush and Grasslands’ appeared as the dominant veg-
etation form over much of the county, covering parts
of the areas in the east where today forest is dominat-
ing, broadly covering the rift and spread into some of
today’s desert regions in the east and NE offering

corridors with open vegetation to the Red Sea and
the Horn of Africa.

The resulting maps can be used in a wide range of
disciplines like paleoecology, paleogeography, and
Paleoanthropology, because they reveal interesting
insights into the potential spread of vegetation which
influences the livelihoods and activities of human
beings in these areas.

Software

For modeling the potential vegetation with the fuzzy
method, we used the python interface for the ArcGIS
desktop 10.5. We did the map design, layout, typogra-
phy, and additional graphics in Adobe Illustrator CS6.
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