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Abstract

We live in a time of unprecedented global change. Understanding its causes and predicting its
consequences are challenges of utmost urgency. In a clash of scales, the future of the global
climate system depends in no small part on the activity of the microscopic organisms that
inhabit the soils beneath us. They mediate the future of the world's soil organic matter stocks,
the single largest terrestrial pool of organic carbon on the planet. Consequently, enormous
scientific effort has been invested to unravel the details of soil microbial carbon cycling and
carbon use efficiency. Yet, the spatial and temporal heterogeneity of the soil environment and
the interactions of many physical, chemical, and biological processes across scales continue

to limit our mechanistic understanding of the system.

This thesis contributed to the recent endeavor of establishing a bioenergetic framework for
the description of microbial carbon cycling in soil based on thermodynamic principles.
Specifically, microbial-explicit process-based models were employed to investigate the
coupling between carbon and energy fluxes during soil microbial growth. This involved the
theoretical analysis of dynamic model behavior as well as model calibration using specific

datasets to facilitate the interpretation of experimental observations.

The results revealed a close correspondence between microbial carbon and energy use
efficiency in accordance with thermodynamic predictions. In particular, the models accurately
captured the complex temporal patterns in microbial efficiency after the addition of labile
substrates. Based on these simulations, the effects of oxygen and nutrient limitation, soil
organic matter utilization, and microbial maintenance on the dynamics of microbial growth in
several experiments could be disentangled and quantified. The calorespirometric ratio of heat
to CO, release proved to be a particularly valuable tool for such analyses of experimental data
and for the generation of falsifiable hypotheses. In terms of process-based modeling, the
explicit incorporation of heat dynamics presented the most important novelty. It was
instrumental to both the model calibration and the analytical utility of the models. The
strengths, weaknesses, and possible extensions of the approaches presented in this thesis are

discussed to highlight promising options for future research.

Overall, the thesis demonstrated the feasibility and utility of microbial-explicit process-based

modeling for the analysis of coupled carbon and energy flows in the soil system.



Zusammenfassung

Wir leben in einer Zeit nie dagewesenen globalen Wandels. Das Verstindnis seiner Ursachen
und die Vorhersage seiner Folgen sind Herausforderungen von hochster Dringlichkeit. Die
Zukunft des globalen Klimasystems héngt zu einem nicht geringen Teil von der Aktivitét
mikroskopisch kleiner Organismen ab, die die Boden unter uns bewohnen. Sie entscheiden
iiber die Zukunft des weltweiten Bestands an organischer Substanz im Boden, dem groften
terrestrischen Reservoir an organischem Kohlenstoff auf unserem Planeten. Daher wurden
enorme wissenschaftliche Anstrengungen unternommen, um die FEinzelheiten des
mikrobiellen Kohlenstoffkreislaufs und der Effizienz mikrobieller Kohlenstoffnutzung im
Boden zu entschliisseln. Die rdumliche und zeitliche Heterogenitit natiirlicher Boden und die
Wechselwirkungen zahlreicher physikalischer, chemischer und biologischer Prozesse iiber
verschiedene Skalen hinweg begrenzen jedoch weiterhin unser mechanistisches Verstdandnis

dieses Systems.

Diese Arbeit leistete einen Beitrag zu aktuellen Bemiihungen, eine bioenergetische
Beschreibung des mikrobiellen Kohlenstoftkreislaufs im Boden auf der Grundlage
thermodynamischer Prinzipien zu schaffen. Insbesondere wurden prozessbasierte Modelle
mikrobieller Aktivitdt eingesetzt, um die Kopplung zwischen Kohlenstoff- und
Energiefliissen wéhrend des mikrobiellen Wachstums im Boden zu untersuchen. Dazu
gehorte  die theoretische Analyse des dynamischen Modellverhaltens sowie die
Modellkalibrierung anhand spezifischer Datensdtze, um die Interpretation experimenteller

Beobachtungen zu ermdglichen.

Die Ergebnisse zeigten eine enge Verbindung zwischen der Effizienz mikrobieller
Kohlenstoff- und Energienutzung in Ubereinstimmung mit den thermodynamischen
Vorhersagen. Insbesondere konnten die Modelle die komplexen zeitlichen Muster der
mikrobiellen Effizienz nach der Zugabe von labilen Substraten genau erfassen. Auf Basis
dieser Simulationen konnten die Auswirkungen der Sauerstoff- und Néhrstofflimitierung, der
Nutzung organischer Bodensubstanz und des mikrobiellen Basalstoffwechsels auf die
Dynamik des mikrobiellen Wachstums in mehreren Experimenten aufgeschliisselt und
quantifiziert werden. Das kalorespirometrische Verhidltnis von Warme- zu CO,-Freisetzung
erwies sich als besonders wertvolles Instrument flir derartige Analysen und fiir die

Formulierung falsifizierbarer Hypothesen. Im Hinblick auf die prozessbasierte Modellierung



stellte die explizite Einbeziehung der Warmedynamik die zentrale Neuerung dar. Diese war
sowohl fiir die Modellkalibrierung als auch fiir den analytischen Nutzen der Modelle von
entscheidender Bedeutung. Die Starken, Schwichen und moéglichen Erweiterungen der in
dieser Arbeit vorgestellten Ansitze wurden diskutiert, um vielversprechende Optionen fiir die

zukiinftige Forschung aufzuzeigen.

Insgesamt demonstrierte diese Arbeit die Machbarkeit und den Nutzen einer prozessbasierten
mikrobiellen Modellierung fiir die Analyse gekoppelter Kohlenstoff- und Energiefliisse im

Bodensystem.



List of important abbreviations and symbols

C,N Carbon, Nitrogen

CR Calorespirometric ratio

CUE Carbon use efficiency

EUE Energy use efficiency

ODE Ordinary differential equation

SOM, SOC Soil organic matter, Soil organic carbon

Yy Relative degree of reduction of compound X

A cH o A fH X Combustion and formation enthalpies of compound X
AH. Reaction enthalpy of reaction i



Introduction

Soil microorganisms play a central role in the terrestrial carbon cycle

Soil organic matter (SOM) is the largest reservoir of organic carbon (C) in the terrestrial
realm, storing approximately 1700 Pg of soil organic C (SOC). This quantity far exceeds the
combined C stocks of vegetation (450 Pg C) and the atmosphere (600 Pg C, Batjes, 2016;
Jackson et al., 2017; Canadell et al., 2021). Due to its size, even small shifts in the balance
between the C inputs and outputs to this pool can significantly influence atmospheric CO,
levels and the future of global climate change (Jenkinson et al., 1991; Davidson and Janssens,

2006).

Starting with the seminal work of Jenkinson (Jenkinson, 1966), soil microbial biomass has
come to be recognized as the central regulator of this delicate balance (Powlson et al., 2017).
It has famously been described as “the eye of the needle through which all organic matter
entering the soil must pass” (Jenkinson, 1977), which reflects the fact that the biomass of
living microorganisms constitutes only a small percentage of the total SOM pool (Xu et al.,
2013). Plants provide the bulk of organic inputs through litter and rhizodeposition, but most
of these compounds are subsequently transformed by microorganisms before ultimately
contributing to the soil C stock and SOM in the form of microbial necromass and products of
microbial metabolism (Lehmann and Kleber, 2015; Kistner et al., 2021; Camenzind et al.,
2023). This formation and partial stabilization of anabolic products in soil has also been
termed the “microbial carbon pump” and represents a key mechanism of soil C sequestration

(Liang et al., 2017).

Yet, microorganisms also drive the opposing C flux via the catabolic decomposition of
organic matter and the subsequent release of C into the atmosphere, predominantly in the
form of CO, (e.g., Crowther et al., 2016). This dual role in SOM formation and
decomposition makes soil microbial biomass a critical focus of recent research on global
change (Liang et al., 2017; Tao et al., 2023). Despite substantial progress, the future balance
of these two contrasting C fluxes - and consequently the future of global SOC stocks -
remains uncertain (Bradford et al., 2016; Sulman et al., 2018). Much of this uncertainty arises
from the incomplete representation of soil microbial processes in Earth system models

(Todd-Brown et al., 2013; Luo et al., 2015; Wieder et al., 2015).



Soil microorganisms and their activity mediate many other critical soil functions beyond SOC
turnover. These include the cycling of nitrogen (N) and phosphorus (P), the biodegradation of
harmful contaminants, the control of plant diseases, and the formation of soil structure (Vogel
et al., 2024). In this sense, soils can be regarded as largely biologically driven systems
(Bardgett and Van Der Putten, 2014). Therefore, to achieve a mechanistic understanding of
these systems and the functions they provide, it is paramount to understand the microbial life

within them.

Microbial carbon use efficiency as an emergent property of the soil system

Soil microorganisms must allocate the C they acquire from their surroundings to numerous
processes that are essential for their survival. These processes include the growth of new
biomass, maintenance and turnover of internal macromolecules, osmoregulation and other
forms of physiological maintenance, formation of storage compounds, synthesis of
extracellular enzymes and extracellular polymeric substances (EPS), production of stress
response compounds, and many more (van Bodegom, 2007; Schimel and Schaeffer, 2012;

Kempes et al., 2017).

Over the past decades, the concept of microbial carbon use efficiency (CUE) has become one
of the most important tools for studying this allocation (Manzoni et al., 2018) as well as a
central parameter regulating soil C gain or loss in models (Schimel, 2023). Broadly, CUE
describes the partitioning of microbial C use between biomass growth on one hand and any
number of non-growth processes on the other hand. More specifically, it can be defined as the
fraction of organic C consumed by microbes that is directed to anabolic reactions for the
formation of new biomass compounds (Hagerty et al., 2018). Given this definition, a high
CUE reflects efficient C transformation, e.g., converting litter or rhizodeposits into biomass
and, ultimately, microbial necromass or stable SOM compounds. In contrast, a low CUE

indicates substantial C losses, typically as CO, (Geyer et al., 2020).

The actual value of microbial CUE in soil varies widely and depends on a complex interplay
of abiotic and biotic factors. Abiotic conditions such as temperature and soil moisture
(Manzoni et al., 2012; Frey et al., 2013), the amount and the quality of organic substrates
added to or present in the soil (Sinsabaugh et al., 2013; Blagodatskaya et al., 2014a) as well

as nutrient availability (Sinsabaugh et al., 2016) are critical determinants of CUE.
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Simultaneously, biotic factors like microbial community composition shape CUE through
species-specific metabolic constraints and species interactions (Schimel and Schaefter, 2012;
Geyer et al., 2016; Maynard et al., 2017). Furthermore, the use of C depends on the activity
state of the microbial community. Under typical conditions, much of the soil microbial
biomass is inactive or dormant, and this inactivity is only interrupted during spatially and
temporally limited pulses of substrate supply (Blagodatsky et al., 2000; Blagodatskaya and
Kuzyakov, 2013; Kuzyakov and Blagodatskaya, 2015). Given this ubiquity of inactive
microbes, their maintenance requirements and the costs of emerging from and returning to
dormancy are expected to have significant implications for the overall C utilization in soils

(Joergensen and Wichern, 2018; Bolscher et al., 2024; but see Dijkstra et al., 2022).

Given this complex interplay of factors, CUE is an emergent property of the soil system and
varies significantly through space and time as well as across scales (Geyer et al., 2016; He et
al., 2024). However, it is often represented as a fixed constant in models (Hagerty et al.,
2018), creating a disconnect between real-world variability and model assumptions. This
mismatch is compounded by ambiguities in CUE definitions, experimental measures, and
mechanistic interpretations, which have been the subject of ongoing debate (e.g., Geyer et al.,
2019; Bolscher et al., 2024). Consequently, developing a process-based, nuanced description
of microbial CUE that accounts for the complexity of microbial life in the soil system is

critical to reducing the uncertainty of future SOC dynamics and other soil functions.

Microbial growth and its efficiency from a thermodynamic perspective

Heterotrophic microorganisms, whether in soil or any other environment, rely on the
decomposition of organic substrates obtained from their surroundings to survive and
proliferate. While the carbon-centered concept of CUE emphasizes this microbial need for C
to fuel biosynthesis, the anabolic formation of new biomass compounds is generally
endergonic, i.e., characterized by a positive change in Gibbs free energy (AG, von Stockar
and Liu, 1999) due to the low entropy content of the products. Thus, the decomposition of
organic compounds supplies not only the C building blocks for anabolism but also the energy
necessary to drive these anabolic processes by coupling them to highly exergonic catabolic
reactions. Together, anabolism and catabolism constitute the metabolic processes of an
organism, which, to be thermodynamically viable, must collectively yield a net negative AG

(von Stockar et al., 2006; Heijnen and Kleerebezem, 2010). For this reason, the fluxes and
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balances of matter and energy during microbial metabolism are inextricably linked based on
the laws of thermodynamics. They ensure that cells remain far from thermodynamic

equilibrium and maintain the degree of organization essential for life.

It has long been suspected that this coupling of matter and energy fluxes poses fundamental
constraints to microbial life, its origin, and evolution (Lotka, 1922; Schrodinger, 1944;
Martin et al., 2008) as well as to the efficiency of microbial metabolism (Jin and Bethke,
2007; Liu et al., 2007). This bioenergetic perspective has been successfully applied to study
the growth of microbial cultures under controlled conditions in biotechnology (Roels, 1980;
von Stockar and Marison, 1993; Battley, 1996; Braissant et al., 2010). More recently,
advances in this field have elucidated how bioenergetics shape the trade-off between growth
rate, efficiency, and metabolic versatility more generally (Desmond-Le Quéméner and

Bouchez, 2014; Calabrese et al., 2021; Chakrawal et al., 2022; Cossetto et al., 2024).

The application of bioenergetic frameworks that consider coupled C and energy fluxes in soil
systems has become an active area of research but is still at an early stage (Késtner et al.,
2024). Initial studies have begun to evaluate microbial energy use efficiency (EUE) as an
additional measure complementing CUE (Harris et al., 2012; Gunina and Kuzyakov, 2022;
Wang and Kuzyakov, 2023). Additionally, recent theoretical advances have revealed the
thermodynamic control of substrate properties and electron acceptor availability on the
decomposition of organic matter (Song et al., 2020; Chakrawal et al., 2022; Zheng et al.,
2024). Isothermal microcalorimetry has also been established as a valuable experimental tool
for investigating soil microbial activity (e.g., Barros et al., 2010; Herrmann et al., 2014; Boye
et al., 2018). Nonetheless, a comprehensive bioenergetic description of soil microbial life
based on a combination of experimental, modeling, and theoretical results is only beginning

to emerge.

Studying carbon and energy fluxes in soils via calorespirometry

The metabolic reactions performed by soil microorganisms typically produce heat and CO, as
byproducts, which play a major role in achieving the net negative AG required for
thermodynamically viable microbial metabolism (Cossetto et al., 2024). Because both heat
and CO, quickly diffuse out of the soil matrix, they are experimentally accessible through

calorimetry and respirometry, respectively. Their combined evaluation via calorespirometry
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has become an increasingly popular method for studying the coupling of C and energy fluxes
in soil science (Barros et al., 2010, 2011; Herrmann and Bolscher, 2015; Chakrawal et al.,
2020b; Yang et al., 2024) and also in biotechnology (Brueckner et al., 2017).

One key metric in this approach is the calorespirometric ratio (CR), defined as the ratio of
heat release to CO, release. It has long been recognized as a potential indicator of microbial
growth efficiency and thus of CUE and EUE (Dejean et al., 2001; Hansen et al., 2004). For
instance, in a simple aerobic growth reaction where a single, well-characterized substrate is
converted into new biomass and CO, (along with heat), the resulting CR depends solely on
the biomass yield coefficient and the energy contents of the substrate and biomass (Hansen et
al., 2004). This theoretical relationship has been applied to estimate microbial traits such as
rate and yield coefficients in soil (Chakrawal et al., 2021) and has also been extended from
aerobic respiration to anaerobic fermentations involving well-defined compounds (Chakrawal

et al., 2020b).

However, the direct one-to-one correspondence between CR and CUE breaks down under
more complex conditions typical of real soil systems (Hansen et al., 2004). In measurements
obtained from soil incubations, the CR reflects the combined heat and CO, contributions of
all physical, chemical, and biological processes occurring in the sample. For example, the
reaction of CO, with carbonates in alkaline soils, CO, dissolution in the soil solution, the
presence of multiple active metabolic pathways, or the simultaneous utilization of several
substrates, including SOM, can significantly influence the observed CR (Barros et al., 2016;
Chakrawal et al., 2020b). SOM utilization is particularly relevant in soil incubation
experiments where a defined substrate, such as glucose, is added to the soil. While much of
the subsequent CO, and heat production is typically fueled by the microbial consumption of
the added substrate, soil microbes often also decompose additional native SOM in an effect
known as positive priming, e.g., to obtain limiting nutrients (Kuzyakov et al., 2000;
Blagodatskaya and Kuzyakov, 2008; Blagodatsky et al., 2010). If the composition and energy
content of the decomposed SOM differ markedly from those of the added substrate, the

priming effect has the potential to skew experimental CR values.

As a result, the CR also represents a dynamic and emergent property of the soil system,
analogous to microbial CUE and EUE. Proper interpretation of observed CR values

necessitates a quantitative model of the underlying biogeochemistry (Chakrawal et al.,
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2020b). However, such dynamic, process-based frameworks are largely absent from current
research. Most studies rely on static CR values or CUE-CR relationships (e.g., Herrmann and
Bolscher, 2015; Chakrawal et al., 2020b; Yang et al., 2024) or focus only on the exponential
growth phase following substrate addition (Chakrawal et al., 2021).

Process-based modeling of microbial activity in soil

The patterns of microbial activity in soils are remarkably diverse and complex, owing to the
spatial and temporal heterogeneity of the soil system and the interplay of physical, chemical,
and biological processes across scales (Nunan, 2017; Nunan et al., 2020; Vogel et al., 2024).
While many biological processes and interactions occur at the microscopic scale,
experimental observations, such as CO, and heat fluxes or SOM dynamics, are often
accessible only at macroscopic scales, such as laboratory soil samples, profiles, landscapes,
or entire ecosystems (Smercina et al., 2021). This disparity in scale underscores the need for
mechanistic modeling frameworks that can identify, connect, and quantify the processes

underpinning microbial activity to provide meaningful insights into soil system behavior.

Foundational biogeochemical models of soil C dynamics, such as CENTURY (Parton et al.,
1987) and Roth-C (Jenkinson, 1990), date back to the 1980s and laid the groundwork for
understanding SOM dynamics by partitioning SOM into distinct pools with defined turnover
times. These models, however, originally did not explicitly represent microbial activity. Since
then, considerable effort has been put into developing more complex models that incorporate
the active role of microorganisms. Notable examples include the MEND model, which
simulates explicit enzymatic depolymerization of SOM as well as active and dormant
fractions of microbial biomass (Wang et al., 2015), or the MIMICS model, which divides
microbial biomass into two functional groups corresponding to microbes with copiotrophic

and oligotrophic life history strategies (Wieder et al., 2014).

Despite these developments, several observers have pointed out persistent challenges and
limited progress when it comes to scaling microbial processes in models, including the
representation of microbial CUE and priming effects (Sulman et al., 2018; Bernard et al.,
2022; Baveye, 2023; Schimel, 2023). They suggest that a deeper understanding of the
processes and boundary conditions at the microscopic scale is required to tackle these

shortcomings. This is in line with recent calls for a shift towards models based on established
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physical rules instead of empirical correlations (Tang et al., 2024). This shift may also help to
address the issue of calibration equifinality, the phenomenon that different sets of parameters
can yield equally good model agreement with observed data (Beven and Freer, 2001).
Equifinality and parameter non-identifiability are widespread even in simple biogeochemical
models (Sierra et al., 2015; Marschmann et al., 2019) and continue to represent a major

hurdle (Wieder et al., 2015).

The incorporation of thermodynamic principles and bioenergetic constraints into
biogeochemical models offers a promising avenue to address these limitations and research
needs. Thermodynamics may be leveraged to directly constrain the rates and yield
coefficients of specific microbial reactions (Brock et al., 2017; Song et al., 2020;
Ugalde-Salas et al., 2020; Zheng et al., 2024). For example, dynamic energy budget (DEB,
Kooijman, 1993) models that couple bioenergetics with genome-informed microbial traits
represent one of the latest and most ambitious developments in the microbial-explicit
modeling of soil biological processes (Marschmann et al., 2024). Beyond such theoretical
improvements to model development and parameterization, rates of heat release measured via
microcalorimetry also provide additional data at high temporal resolution for the calibration
and validation of dynamic models. While this approach has been applied in biotechnological
contexts to some extent (Maskow and Babel, 2003; Braissant et al., 2013), its application to

soil samples has barely been explored (Chakrawal et al., 2021).

Objectives and outline of this thesis

In this thesis, I apply process-based bioenergetic models to study the coupling between C and
energy fluxes during microbial activity in soil. In particular, I focus on the analysis of
temporal patterns in microbial CUE and EUE as well as the CR after the addition of labile
substrates. This investigation aims to address the research questions and limitations outlined

above, which can be summarized as follows:

1. Advance the mechanistic understanding of microbial CUE to reflect its emergent
properties and characterize its relationship with microbial EUE
2. Identify the utility and the limitations of the CR for the analysis of microbial activity

in soil using a dynamic framework
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3. Incorporate heat flow in dynamic models of microbial C cycling and demonstrate its

utility for model calibration and data interpretation

The thesis is structured into four major chapters, each of which provides specific

contributions to achieve these objectives.

In the first chapter (Endress et al., 2024a), I examine the effect of limited terminal electron
acceptor (TEA) availability on microbial CUE, EUE, and CR. Specifically, I analyze and
model the dynamics of these quantities during a gradual transition from aerobic respiration to
anaerobic fermentations as the dominant metabolic pathways after glucose addition. This
research represents the extension and dynamic application of recent theoretical advances on
this issue (in particular, Chakrawal et al., 2020b). It also demonstrates a close link between

shifts in microbial metabolism as seen in the CR and microbial community composition.

In the second chapter (Endress et al., 2024b), I explore the consequences of spatial substrate
heterogeneity and the resulting local nutrient limitation on the kinetics as well as the CUE,
EUE, and CR of microbial growth after glucose addition. The study shows strong correlations
between C and energy release from soil independent of incubation conditions, and it
demonstrates that differences in growth kinetics do not necessarily translate to differences in
growth efficiency. It also highlights the sensitivity of dynamic CR measurements to details of
the incubation setup and outlines both experimental and modeling approaches to address this

limitation.

In the third chapter (Wirsching et al., 2024), I investigate the CUE, EUE, and CR of
microbial growth on cellulose as a more complex substrate in a diverse set of arable soils.
The results illustrate the utility and the limitations of several estimates of microbial CUE and
EUE over the course of longer incubations. In addition, they reveal a substantial positive
priming effect in all studied soils and demonstrate how heat flow measurements can be

leveraged to estimate the energy content of primed SOM.

In the fourth and final chapter (Endress and Blagodatsky, in prep.), I present a theoretical
investigation of the consequences of microbial maintenance metabolism for the dynamics of,
and connections between, CUE, EUE, and the CR. The analysis predicts distinct temporal
patterns of these quantities, particularly during the lag and retardation phases of microbial

growth after substrate addition. To connect the theory with empirical evidence on the
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energetics of microbial non-growth metabolism, I compile data on the CR and the energy
content of SOM in unamended soils from the literature. The compilation reveals a close
positive relationship between these two quantities in arable soils and an inverse relationship

in forest soils.

General approach and methodology

This dissertation employs dynamic, process-based modeling of microbial growth based on
systems of ordinary differential equations (ODEs). In the first three chapters, such systems
are constructed to investigate specific aspects of microbial growth, such as anaerobic
metabolic pathways (Endress et al., 2024a), nutrient limitation (Endress et al., 2024b), and
cellulose decomposition and SOM priming (Wirsching et al., 2024). The parameters
governing the behavior of these systems are calibrated using experimental datasets provided
by collaboration partners to analyze and interpret the results of their experiments. In the
fourth chapter, ODE systems are analyzed theoretically without calibration relative to specific
datasets to explore the theoretical relationships between quantities of interest. The
mathematical and conceptual details of the dynamic models as well as the numerical
integration and calibration procedures are described in the individual publications and their
respective supplementary materials. Below, I provide a general overview of this methodology

and the underlying rationale.

Each model featured in this dissertation simulates the dynamics of at least 5 key variables per
gram dry weight of a soil sample. These include the concentrations of added substrate
(glucose or cellulose) and microbial biomass, the active fraction of microbial biomass, the
cumulative CO, release, and the cumulative heat release. All concentrations of carbon

compounds (substrate, biomass, CO,) are expressed in units of mol C (per gram soil).

A major novelty of these models is the incorporation of the heat variable, which is integral to
achieving all of the thesis objectives outlined above. Specifically, it allows for the analysis of
microbial EUE and the CR, and together with CO, release, it represents the primary variable
used for model calibration. If sufficient experimental estimates are available, microbial

biomass is also used for model calibration.

To simulate the dynamics of heat release and to couple the carbon and energy balances, it is

necessary to ascribe specific heat production rates to all relevant biochemical reactions. In
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general, this rate is given by the reaction enthalpy, which can be calculated from the
enthalpies of combustion or formation of all of the involved reactants and products via the
law of Hess (Chakrawal et al., 2020b; Kistner et al., 2024). If these enthalpies are not known
or if the involved compounds are poorly characterized, their energy contents are estimated via
Thornton’s rule (Thornton, 1917) based on their relative degrees of reduction y. The degree
of reduction, in turn, can be calculated from the number of atoms of major elements in the
compounds. Alternatively, they may also be treated as free parameters during model

calibration.

The active fraction of microbial biomass is a critical model component that is required to
adequately describe the observed kinetics over the full course of the incubation. In particular,
this includes the initial lag phase after substrate addition, the exponential growth phase, and
the eventual retardation phase after substrate depletion. In this dissertation, I use the index of
physiological state, v € [0, 1], to model the dynamic transition of microbes between active
(fraction r) and inactive (fraction 1-r) states. This framework was established by Panikov
(Panikov, 1995) and has frequently been used to describe the activity of soil microbial
biomass (e.g., Blagodatsky and Richter, 1998; Blagodatsky et al., 2000; Wutzler et al., 2012;
Chakrawal et al., 2021). In addition, I also incorporate dynamic switching from exogenous
maintenance fueled by the consumption of external substrate to endogenous maintenance

fueled by the consumption of biomass after substrate completion (Wang and Post, 2012).

The numerical integration, calibration, and analysis of the ODE systems were implemented in
the Python programming language. Since the incorporation of the activity variable » tends to
introduce considerable stiffness into these systems, they were numerically integrated using
the radau method as implemented in the solve ivp function of the scipy.optimize package
(Virtanen et al., 2020). Several approaches were employed for the calibration and uncertainty
quantification of parameter values in these models, including classical nonlinear least-squares
optimization via the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963)
combined with the Akaike Information Criterion (AIC, Banks and Joyner, 2017) as well as
Bayesian approaches using Markov chain Monte Carlo (MCMC) methods (Foreman-Mackey
et al., 2013; Valderrama-Bahamondez and Frohlich, 2019).
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Soil microorganisms rely on coupled fluxes of carbon and energy to fuel their maintenance, to switch from
dormancy to activity and to grow under dynamically changing conditions in microhabitats. To identify the
principles underlying this coupling, we measured heat and CO; release from soil alter glicose addition along
with estimates of microbial biomass and community composition. The results revealed bi-directional deviations
of the ratio of heat to CO; release (Calorespirometric Ratio, CR) that are inconsistent with theoretical predictions
for aerobic respiration, which is commonly assumed to be the major metabolic pathway in incubation experi-
ments. Moreover, the microbial community was dominated by members of the Bacillota, whose relative abun-
dance increased from 4 percent to 65 percent in 18 h. To interpret these findings, we developed a dynamic model
of carbon and energy fluxes during the microbial growth on glucose. The model simulates aerobic respiration as
well as anaerobie fermentation pathways to lactate, acetate and propionate depending on the time-varying
availability of Oy, Simulations captured the observed temporal CR pattern and suggested a gradual depletion
of O3 and a shift to anaerobic pathways as the main driver. This interpretation is consistent with the dominance
of Bacillota, many members of which are well adapted to anaerobic conditions. Our results highlight the potential
of the joint analysis of matter and energy fluxes in combined experimental and modeling approaches and indicate
the presence of facultative anaerobiosis under common experimental conditions, which could confer a
competitive advantage to certain microbial taxa during growth on labile substrate.

1. Introduction depends on many factors, including temperature and nutrient avail-

ability (Manzoni et al., 2012; Frey et al., 2013; Sinsabaugh et al., 2016),

Microorganisms mediate the carbon (C) fluxes in soils and are of
critical importance for the global C cycle (Bardgett et al.,, 2008; Liang
et al,, 2017; Crowther et al., 2019). They release CO to the atmosphere
through the decomposition of organic matter on the one hand while
contributing to soil organic matter (SOM) formation via the so-called
microbial carbon pump on the other hand (Liang et al., 2017; Kastner
et al,, 2021; Camenzind et al., 2023). Yet, substantial uncertainty about
the future balance of these two opposing C fluxes remains (Luo et al.,
2015; Bradford et al., 2016, 2019; Sulman et al., 2018).

The fraction of C consumed by micrebes that is channeled through
anabolism to form new biomass, broadly termed the microbial carbon
use efficiency (CUE), has been the subject of a large number of studies
(Manzoni et al., 2018). CUE as an emergent property of the scil system
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E-mail address: m endress@ uni-koeln.de (M.-G. Endress).
1 These authors contributed equally to this work.
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substrate quality and quantity (Sinsabaugh et al., 2013; Blagodatskaya
et al., 2014), species-specific metabolic constraints and interspecific
interactions (Geyer et al., 2016; Maynard et al,, 2017). Consequently,
CUE exhibits significant spatial and temporal variability. Despite the
importance of the concept, its definition, determination, and interpre-
tation remain ambiguous (Manzoni et al, 2012; Hagerty et al., 2018;
Geyer et al., 2019), leaving us with an insufficient understanding of CUE
patterns in time and space.

The integration of a bicenergetic perspective has the potential to
identify principles underlying the CUE and soil C dynamics (Barros et al.,
2010; Herrmann et al., 2014; Barros, 2021). All organisms rely on
coupled mass and energy fluxes from the decomposition of substrates,
and calcrimetric measurements of heat release have been employed in
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fields such as biotechnology to characterize microbial growth and
metabolism (Roels, 1980; von Stockar and Marison, 1993; Braissant
et al, 2010). When combined with measurements of COs,, the joint
evaluation of energy and C balances can yield insights into metabolic
processes and constraints (Calabrese et al,, 2021; Chakiawal et al.,
2022). In particular, the so-called Calorespirometric Ratio (CR) of heat
to CO, release provides a useful tool for the analysis of microbial
metabolic activity and energetics (Dejean et al, 2001; Hansen et al,,
2004) (Fig. 1). For example, CR values have been linked theoretically to
the CUE of microbial growth in simple cases like aerobic respiration of a
single substrate (Hansen et al., 2004).

Such a bioenergetics perspective has been leveraged to investigate
soil processes, but the research is still in an early stage (Barros et al.,
2010, 2011, 2016; Herrmann and Bolscher, 2015; Boye et al, 2018;
Chakrawal et al., 2020), Similar to CUE, the observed CR represents an
emergent property reflecting the sum of all heat and CO, centributions
from biological, chemical and physical processes in the soil (Barios
et al,, 2016). Its interpretation thus requires assumptions about the
dominant sources of heat and CO», including a biochemical model of the
active microbial metabolic pathways (Hansen et al., 2004; Chakrawal
et al, 2020), Many of the studies focusing on CUE and CR rely on the
addition of a single C source and frequently also assume the aerobic
decomposition of these substrates. Under such assumptions, theoretical
predictions for the CR can be readily obtained, and any deviations
indicate the presence of additional processes contributing to heat or CO,
production (Hansen et al., 2004; Maskow and Paufler, 2015; Wadso and
Hansen, 2015), e.g., substrate use via anaerobic pathways common in
heterogeneous soil micro-habitats (Boye et al., 2018; Chakrawal et al.,
2020). Additionally, measured CR values often vary significantly over
the course of experiments, but this temporal variability and its causes
have received little attention and need to be further studied in a dynamic
setting (Barros et al.,, 2010; Boye et al., 2018; Chakrawal et al., 2021).

Shifts in the microbial community introduce another sowrce of
complexity and are frequently found in soil after input of labile sub-
strates (Eilers et al., 2010; Mau et al., 2015; Morrissey et al., 2016, 2017;
Papp et al,, 2020). Such shifts may alter the metabolic capability and
efficiency of the community, which would in turn be reflected in CR.
Addition of glucose in particular has been observed to induce the
dominant growth of one or few phyla (Mau et al,, 2015; Morrissey et al.,

Electron
Acceptors,
Nutrients,
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Subsiraie

Microbial
Biomass

Fig. 1. Schematic of coupled carbon and energy fluxes during microbial sub-
strate uptake in soil. Microbes metabolize available substrates at a rate U to
grow and to fuel their maintenance requirements. Only a fraction of the carbon
and energy contained in the consumed substrate can be converted to new
biomass, depending on the apparent carbon and energy use efficiencies (CUE,,
EUE,) of the metabolism under the prevailing environmental conditions. The
remainder is released as heat and CO, with rates Ry and Reos, respectively, and
can be measured experimentally. Studying the temporal dynamics of the so-
called Calorespirometric Ratio (CR) of heat to CO; release, Rg/Rcoz, has the
potential to elucidate the underlying metabolic processes.
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2017; Papp et al, 2020), although these dynamics have not been
monitored at high resolution.

The obscure nature of the soil system as compared to, for example,
pure cultures, renders quantitative modeling efforts a necessary tool to
disclose the complex interplay of the various processes. Specifically,
there is a need for mechanistic modeling frameworks linking the heat
production, thermodynamic constraints and carbon balance, a chal-
lenging task that has only recently been tackled in the context of soils
(Chakrawal et al., 2021; Bajracharya et al., 2022).

In this study, we obtain both calorespirometric and eommunity
composition data during microbial growth in soil after the single-pulse
addition of glucose. Based on the experimental setup, we expected the
aerobic decomposition of glucose to be the major metabolic pathway,
with a corresponding CR roughly in the range between 380 kJ/mol C
(efficient aerobic growth) and 469 kJ/mol C (aerobic catabolism of
glucose). Any deviations of the CR from this range would indicate the
presence of additional processes such as shifts in the soil microbial
community or metabolic pathways. Generally, copiotrophic taxa are
expected to dominate after a pulse of labile substrate (Fierer et al,
2007), with phyla such as the Pseudomonadota (previously Protechac-
teria) and Actinomycetota (previously Actinobacteria) growing dis-
proportionally in previous studies (Eilers et al.,, 2010; Mau et al,, 2015;
Morrissey et al., 2017). Finally, we develop a microbial-explicit dynamie
model of carbon and energy flows during microbial growth, including
aerobic and anaerobic metabolic pathways as well as microbial
dormancy, to analyze and interpret our experimental observations.

2. Materials and methods
2.1. Soil

The soil was collected in September 2014, after the harvest of maize
from the upper 15 cm of a long-term field fertilization experiment
located at the Fengqiu Agroecological Experimental Station (35°00" N,
114°24' E), Henan province, China. The soil is classified as Aquic
Inceptisol, derived from alluvial sediments of the Yellow River. The soil,
with a sandy loam texture, contained 6.4 g kg ! organic C, 18.0 gkg !
total C, 0.55 gkg ! total N, 0.71 g kg ! total phosphorus, and 21.3 g
kg 1 total potassium (K). The soil had a pH (H20, 1:4) of 8.45 and water
holding capacity (WHC) of 20% (w/w). Before use, roots and other plant
residues were carefully removed, and then the soil was sieved <2 mm
and stored at 4 °C.

2.2, Experimental design

Two subsets of soil samples were incubated with glucose addition in
parallel for time-course sampling. The first subset with 5 g soil in 20-ml
glass containers tightly sealed with butyl rubber stoppers (Nichiden-
Rika Glass Co. Ltd, Japan) was used for analysis of gas emissions and
microbial growth, Before incubation, glucose was added at a rate of 2
mg g ! soil. A mixture solution containing 1.9 mg g ! (NH4),S04, 2.25
mg g ! KoHPO4 and 3.8 mg g ! MgS8047Ho0 was added and then
distilled water was supplemented to reach the final soil moisture of 60%
WHC. Containers were incubated in a dark chamber at 28 °C and
remained tightly closed during the incubation. The gas emissions were
monitored at 0, 20 min, 1, 2, 4, 6, 8, 10, 12, 14, 16 and 18 h (see section
2.3 below). When sampling, three replicated containers were taken,
firstly to collect gas samples and then opened to collect soil samples. In
total, 36 containers were prepared for the first subset.

The second subset, with three replicates of 1 g soil in glass ampules,
was used for isothermal calorimetric measurement (keeping the depth of
the soil layer and the gaseous-to-solid phase ratio equal to those in
subset 1). Before calorimenic measurements, the soil was pre-
equilibrated at the calorimeter temperature (28 “C) for 4 h. The calo-
rimeter is a TAM III (TA Instruments, Utah, USA) with 6 measuring
channels in the same chamber. The rates of glucose and mineral salt
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addition were identical to the first subset. Inmediately after glucose
addition, the ampoules with the treated soils were put into the calo-
rimeter system controlled at 28 °C. The heat flow was continuously
monitored and recorded on a computer.

2.3. Analysis of the gaseous phase

Gas probes were sampled from the closed container using a gas-tight
syringe. COs, NoO and CHy4 concentrations were analyzed by gas chro-
matography (Agilent 7890 A, Agilent Technologies) using a flame
ionization detector. Gas samples were firstly incoduced by a refitted
injector, then separated with a 2-m stainless steel column (2 mm in the
inner diameter), filled with 13 XMS (60,/80 mesh, Sigma-Aldrich Co., St.
Louis, MS). The operating calumn temperature was set at 55 °C and the
detector temperature at 250 °C. Cumulative CO, emission was expressed
as pg Cg ! soil, based on the CO, concentration in the closed container.
Rates of CO5 release were estimated as differences in the cumulative
values between subsequent time steps.

The soil used in this study is characterized by a high pH of 8.45
owing to high levels of Calcium at the site (~33 g kg 1y (Xin et al,
2019). Such alkaline conditions have the potential to strongly bias CO»
estimates due to a significant fraction of C remaining in solution as (bi-)
carbonates (Martens, 1987; Spatling and West, 1990; Oren and Stein-
berger, 2008). Therefore, we corrected our measured CO» emissions by
accounting for additional soil C in carbonate form in the presence of
CaCOg, following calculations in (Mook, 2000). Details are shown in SI
methods (section A).

2.4. Quantitative polymerase chain reaction and high-throughput
sequencing of 165 rRNA genes

DNA extraction from 0.5 g soil samples was performed using the
FastDNA SPIN Kit for soil (MP Biomedicals, Santa Ana, CA). The
extracted genomic DNA was dissolved in 50 pL of TE buffer and stored at
—20 °C for subsequent use.

The abundances of 16S rRNA gene were estimated via real-time
qPCR, using a C1000Tm Thermal Cycler (Bio-Rad, CA, USA). Bacteria
were quantified with primer set 519F/907 R. Each gPCR reaction was
performed in a 20-puL mixture containing 10 pL of SYBR Premix Ex Taq
(Takara, TaKaRa Biotechnology), primer sets (0.2 uM each), 1 uL tem-
plate DNA diluted 10-fold. A 10-fold series of dilution of the plasmid
DNA was then carried out to generate a standard curve covering 10% o
101 copies of the template per assay. Blanks were always run with water
instead of DNA extract. The final 168 rRNA gene quantities were ob-
tained by calibrating against total DNA concentrations extracted from
the soil. As the soil used in our experiment was free of fresh plant resi-
dues, we assumed that the content of plant-originated DNA was negli-
gible and did not exceed 3% (Gangneux etal.,, 2011).

High-throughput sequencing was performed with [Nlumina Miseq
sequencing platform (Illumina Inc.). PCR amplification was conducted
for bacteria with primer set 519F/907 R. For detailed sequencing pro-
cedures, please refer to (Jing et al., 2017). After completing the
sequencing process, the 168 data were analyzed using the Quantitative
Insights Into Microbial Ecology (QIIME) pipeline, following the guide-
lines provided by Caporaso et al. (2010). Sequences were binned into
OTUs using a 97% identity threshold, and the most abundant sequence
from each OTU was selected as a representative sequence for it, Tax-
onomy was assigned to QTUs with reference to a subset of the SILVA 119
database (htip: //www.arb-silva.de/download/archive/qiime/).

2.5, Calculations

Soil bacterial biomass C (BBC) and microbial biomass C (MBC).
BBC during the incubation process was evaluated by bacterial 16S TRNA
gene copy number with Eqn (1) on the level of phylum:
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BBC :AC.ZNHEM'—' (Eq. 1)

in which BBC was bacterial biomass C; Nga. was total bacterial 165
TRNA gene copy number obtained by qPCR; RAp was the relative
abundance of certain bacterial phylum obtained by high-throughput
sequencing (Supplementary Data S1), AGp; was the average gene copy
number per cell of a certain bacterial phylum (Sun et al,, 2013)(Sup
plementary Table S1); and AC was an average of 20 fg C per bacterial cell
(Baath, 1994), We further evaluated soil microbial biomass C (MBC) by
the initial rate of substrate-induced respiration (SIR) (Anderson and
Joergensen, 1997) as an independent estimate in addition to BBC. The
rate of CO; production was converted to microbial biomass as proposed
by Anderson and Domsch (1978) using the conversion factor for arable
soils suggested by Kaiser et al., (1992) with further correction for in-
cubation temperature as detailed in (Beck et al,, 1997), We also esti-
mated the lag time and the initial active fraction of biomass from the rate
of CO, emission during the exponential growth phase as described in
(Blagodartsky et al., 2000; Wutzler et al,, 2012) (details in SI methods,
section B).

Calorespirometric Ratio. CR over the course of the incubation was
calculated from the experimental rates of heat and CO; release:

R,
Eq. 2
Reoz’ Baa)

CR=

where Reop is the rate of CO, 1elease estimated from the change in cu-
mulative CO, emissions and R, is the rate of heat release measured by
calorimetry and binned according to the time points with available CO,
estimates. Specifically, heat release rates were averaged over the cor-
responding time intervals between subsequent measurements of (cu-
mulative) CO».

Carbon use efficiency. We calculated two different estimates of
apparent CUE, following the definitions of Hagerty et al. (2018). To
evaluate temporal patterns, we calculated ‘biomass-based CUE’ (CUEg)
as theratio of AMBC to the sum of AMBC and cumulative CO, release for
each time period between subsequent cumulative measurements:

AMBC;

OB
®YAMBC, + A,CO,

(Eq. 3)

Here, AMBC; and A;CO,”™™™ denote the change in MBC and cumulative
CO5 during each time period i between subsequent measurements of the
two carbon pools, respectively, and CUEg; provides an estimate of car-
bon use efficiency during that period.

In addition, we also estimated a ‘concentration-based CUE’ (CUE() as
the ratio of total MBC increase (AMBC) to total substrate depletion (AS):

CUE: = i Leitiod)

(Eq. 9

Eq. (4) was evaluated after 18 h at the end of the experiment,
assuming that all added substrate was consumed by microbes at this
time.

2.6. Modeling

We developed a dynamic model simulating the carbon and energy
fluxes during microbial decompeosition of glucose in soil to further
explore and interpret the experimental results.

The model structure (Fig. 2) includes four carbon pools (biomass,
glucose, lactate and the final fermentation products acetate and propi-
onate) and builds on the framework published by Chakrawal et al,
(2020). It represents the metabolism of added glucose (Ug,) and of
subsequently formed lactate (Uy,) fueling microbial growth via aerobic
respiration as well as fermentation pathways, where the uptake follows
Monod kinetics and is partitioned among the metabolic pathways
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Fig. 2. Schematic of the modeling framework used to investigate the temporal dynamics of the Calorespirometric Ratio during microbial growth on glucose. Mi-
crobes take up glucose at a total rate of Ug,, a fraction «-Ug, of which is metabolized aerobically via respiration according to O; availability, while the remaining
fraction (1 &) -Ug, is metabolized anaerobically and fermented to lactate. Similarly, lactate is metabolized at a total rate Uy, and respired aerobically (at rate a- Up)
or fermented further to acetate and propionate (at rate (1  «} U ). These four metabolic pathways fuel the growth and maintenance of the active part of the
microbial biomass pool as well as the maintenance requirement of its inactive part. The active fraction of microbial biomass changes according to total substrate
availability. All processes release heat and CO. at specific rates that contribute to the overall CR of the system.

depending on the time-varying availability of oxygen (aerobic fraction, increased exponentially and maximum rates of heat and CO, release
&), We also account for the physiological state of the microbial popu- were achieved after 12 h of incubation, with growth slowing down
lation by modeling transitions between a growing and a dormant sub- during the following retardation phase. We also observed small but
population according to subswmate availability (Panikov, 1996; steadily increasing NoO emissions for the first 9 h, followed by a peak
Blagodatsky et al., 2010), after 15 h when rates of CO; and heat release were already in decline
The system of ordinary differential equations was implemented in (Supplementary Fig. S1), No CH4 was released during the incubation
Python and numerical integration was carried out using the sobve ivp (Supplementary Fig. §2).
routines in the Scipy package (Virtanen et al.,, 2020), The model was fit Calorespirometric Ratio. The CR calculated from measured rates of
to the experimental results for the rate of heat production, the cumu- heat and CO; release showed a pronounced temporal pattern with a
lative CO, release as well as biomass estimates. Best-fit parameters were gradual initial increase from 400 kJ/C-mol to a maximum of 525 kJ/C-

obtained using the Levenberg-Marquardt algorithm as implemented in mol after 11 h, followed by a drop around the time of peak activity to
the minimize function of the Imfit package (Newville et al, 2023). 233kJ/C-mol after 17 h (Fig. 3C). These values deviate remarkably from

Parameter uncertainty and the corresponding sensitivity of model the expected CR for simple aerobic growth on glucose, which is pre-
output was analyzed using a Markov chain Monte Carlo ensemble dicted to vary in the range of ~380-469 kJ/C-mol, depending on the
sampler as implemented in the emcee package (Foreman-Mackey et al., growth yield of the microbial community (Hansen et al., 2004; Chak-
2013), with uniform prior diswibutions around the best-fit estimates for rawal et al., 2020).
all parameters. Microbial community composition and biomass. Initial MBC was
The detailed model formulation and numerical procedures are estimated as 152 ug C/g via substrate-induced respiration, while initial
described in SI methods (section C) and all modeling code is available BBC calculation from gene copy numbers according to equation (1)
from the corresponding author upon reasonable request. yielded 146 ug C/g. This result corroborates our assumption that growth
during the incubation is well represented by bacterial growth. Based on
3. Results this observation and the lack of independent biomass measurements, we
used the BBC estimates based on copy number for further analysis of
Heat release, CO; release and bacterial 165 rRNA copy number. biomass dynamics, assuming that other (e.g., fungal) contributions
The dynamics of heat and CO, release as well as gene copy number remained small during the experiment. After 18 h of incubation, biomass

displayed the typical pattern of microbial growth after substrate addi- increased from 146 ug C/g to 517 ug C/g ar 3.5 times initial MBC due to
tion (Fig. 3A and B). After an initial lag period of 5.8 h, all variables microbial growth,
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Fig. 3. Experimental observations of heat, CO,, biomass and CR (mean & SD) along with results of the calibrated dvnamic model (best fit = range). A The dvnamics
of heat release (red, n 3 replicates) and cumulative CO, emissions (blue, n 3 replicates per point) are accurately reproduced by the calibrated model. Symbols
may obscure small standard deviations. B The model adequately captures the experimental biomass dynamics estimated from gene copy numbers (n 3 replicates
per point). C CR derived from experimental rates of heat and CO; release reveals a pronounced temporal pattern with high values during exponential growth and
small values during the onset of growth retardation.
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To evaluate bacterial community composition, all soil samples were
rarefied to 19798 sequences. A wide diversity of bacteria was observed
in the initial soil at 20 min, with representatives categorized into nine
dominant phyla (>1% mean relative abundance). These were Pseudo-
monadota (31.19%), Actinomycetota (15.67%), Acidobacteriota (9.40%,
previously Acidobacteria), Bacteroidota (6.25%, prev, Bacteroidetes),
Planctomycetota (4.66%, prev, Planctomycetes), Bacillota (4.41%, prev.
Firmicutes), Chloroflexota (2.50%, prev. Chioroflexi), Cyanoebacteria
(1.57%) and Nitrospirota (1.42%, prev. Nitrospira), together accounting
for 82.4% of all OTUs.

However, the microbial community changed drastically over the
course of the experiment, with members of the Bacillota constituting
65% =+ 3% (Mean =+ SD) of all OTUs after 18 h of growth and decreased
relative abundance of all other phyla (Fig. 4). While these bacteria still
represented only 6.6% =+ 0.4% of all OTUs after 4 h of incubation, they
already expanded to 33 % + 5.7% of OTUs after 8 h during the early
exponential growth phase and continued to grow disproportionately for
the full duration of the experiment (Fig. 4).

In terms of estimated biomass, the Bacillota only accounted for 1.9%
of initial MBC, yet their dominant growth corresponded to 62.2% of the
estimated MBC increase and resulted in this phylum accounting for
45.2% of total estimated MBC after 18 h. This still rendered them the
dominant phylum in terms of MBC, followed by the Pseudomonadota
with an estimated 12.1% of MBC after 18 h.

This pattern was also consistent across replicates, with a similar
share of Bagcillota for all replicates at each measurement time (Supple
mentary Fig. S3). The full OTU table that includes the taxonomic as-
signments and relative abundances for all replicates is provided as a
supplementary material (SI OTU Table).

Model results. The full model achieved an excellent fit to the
measured rates of heat and CO» release as well as the available biomass
estimates (Fig. 3A and B) and captured the characteristic growth dy-
namics typically observed in batch culture. Total biomass increased
from the initial 150 pg C/g to just above 500 pg C/g after 18 h, mirroring
experimental estimates. The model reproduced key features of the
temporal pattern observed in the experimental CR (Fig. 3B). In partic-
ular, the timing and magnitude of the drop in CR to around 230 kJ/C-
mol during the retardation phase after peak heat and CO, release was
accurately reflected in simulations, Moreover, the dynamics show the
increasing tendency in CR around the time of peak metabolic activity at
12 h of incubation time. However, the model displays an initial drop in
CR from around 480 kJ/C-mol to 420 kJ/C-mol during the lag and early
exponential phase (first 7 h), in contrast to the continuous increase
observed in the experimental values. A full list of parameter estimates is
given in Supplementary Table S2 and posterior distributions are shown
in Supplementary Fig. S4.

In the model simulations, the dynamics in the C- and energy pools are
primarily driven by an activation of dormant microbes during the lag
phase and an increase in the anaerobic fraction of metabolism during the
exponential and retardation phases (Fig. 5B). At the start of the incu-
bation, the microbial population is dormant, and rates of CO5 and heat
release are determined by maintenance respiration of the inactive
fraction with a CR of ~480 kJ/C-mol. As micrabial activity increases,
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aerobic respiration of glucose fueling the growth of the active fraction
accelerates, causing an initial drop in CR due to the energy demand of
anabolism (Chakrawal et al., 2021), As the exponential phase continues,
this rapid aerobic mineralization of glucose gradually consumes the
available O,, such that a larger portion of glucose is metabolized
anaerobically and fermented to lactic acid (Supplementary Fig. S5), This
pathway is characterized by a very high CR due to the lack of CO,
production, but its contribution to the overall CR of the population re-
mains small overall. During the retardation phase, when O has been
largely depleted, only a small fraction of the formed lactie acid is
tespired aerobically, while the majority is fermented further to acetate,
propionate and CO», which yields the pronounced drop in CR. These
acids finally accumulate under the prevalent anaerobic conditions
(Supplementary Fig. S6), and the microbes begin to return to a dormant
state (Iig. 5B). A more detailed analysis of the CR is provided in SI
methods (section D).

In contrast, a model variant featuring aerobic respiration as the only
metabolic pathway achieves a good fit to heat release and cumulative
CO5 (R? > 0.99) but fails to appropriately reproduce biomass estimates
(R*=10.72), substantially overestimating growth during the last third of
the incubation with ~660 pg C/g at 18 h. It also fails to capture the
experimental CR pattern, with the only dynamic changes in CR being
caused by microbial emergence from and return to dormancy (Supple-
mentary Fig. §7), While this model features a significantly smaller
number of free parameters (Ny,, = 7) compared to the full model (Mpa, =
12), a comparison based on the Akaike Information Criterion (AIC) in
the least squares estimation context (Eanlks and Joyner, 2017) favors the
full model including anaerobic pathways (AICsy) #2-906, AlC;erop #=-899,
details see ST methods, section E).

Dynamics of CUE. Based on the available estimate of 371 g C/g for
biomass growth and assuming that only negligible amounts of the
initially added 800 pg C/g glucose remained after 18 h, the average
CUEc (Eq. (3)) over the incubation period was 0.464 g MBC/g C sub-
strate. This average value represents the net result of all metabolic ac-
tivity during the incubation but does not reflect any temporal dynamics
involving dormancy or changing metabolic pathways. For example, in
the simplest case of a fully active population growing aerobically, this
CUE¢ would imply a eonstant CR of ~448 kJ/C-mol (Chakrawal et al,,
2020), in strong contrast to our experimental observations.

On the other hand, the average CUEg (Eq. (4)) over the incubation
was 0.573 but showed significant variation over time (Fig. 5A). The
efficiency of the population was initially low (<0.4), as the large inac-
tive fraction emits CO» from maintenance respiration without achieving
any growth, but soon increased dramatically to almost 0.8 during the
exponential growth phase, when glucose was decompaosed aerobically.
CUEjg then gradually decreased to 0.7 up to 12 h, followed by a pro-
nounced drop to 0.2-0.3 during the retardation phase.

This pattern can also be observed when CUEjg is estimated from the
dynamic model (Fig. 5A), which offers an interpretation in terms of
active metabolic pathways and their yield coefficients (¥). Specifically,
the high observed CUE during the exponential growth phase corre-
sponds to the very high estimated yield coefficient of aerobic respiration
(est. Yaerahic ~0.85), while the subsequent gradual decrease and sharp
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Fig. 4. Changes in microbial community composition during growth on glucose (mean of n 3 replicates each). While the gene copy numbers of all considered phyla
increase during the experiment, the relative abundance of members of the Bacillota phylum as measured by 165 rRINA increases over the course of the incubation. Pie

size is proportional to the total gene copy number at each timepoint.
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Fig. 5. Temporal dynamics of experimental CUEg estimates and results of the calibrated model for CUEg, anaerobic fraction and microbial activity (lines, best fit +
range). A The ratio of the increase in microbial biomass carbon (MBC) to the total increase in MBC and cumulative CO- represents a proxy for carbon use efficiency
(CUEg) and shows a temporal pattern with high efficiency during exponential growth and low efficiencies during the lag and retardation phases. Assuming that all
added glucose was metabolized after 18 h, the ratio of biomass formed to consumed substrate suggests an intermediate overall efficiency (CUE, dashed). B The

calibrated model features a continuous increase in the fraction of substrate that is metabolized anaerobically due to O; limitation (blue) over the course of the
incubation, with a sharp rise during the exponential growth phase with high O, demand. The model also suggests a gradual activation of initially dormant microbes
during the lag phase, followed by a return to dormancy during the retardation phase when the substrate is depleted.

drop in efficiency can be attributed to the shift towards the anaerobic
fermentation of glucose (est. Yrgr, < 0.1) and lactic acid (est. Yyjqe
~0.28), respectively.

Notably, the measured experimental C pools after 18 h of incubation
remained unbalanced when assuming complete decomposition of
glucose, with MBC and CQ» together accounting for only 687 ng-C/g or
around 86% of the 800 ug-C/g added as substrate. This is mirrored in
simulations, with the remaining C accounted for by accumulating
fermentation products in the dynamic model (Supplementary Fig. 56).

4, Discussion

The joint analysis of carbon and heat fluxes revealed an unexpected
pattern of temporal variation in the CR that is inconsistent with the
assumption of aerobic growth on glucose (FHansen et al,, 2004; Chak
rawal et al, 2020). Moreover, we observed a dominance of the Bacillota
unfolding in the microbial community during the experiment, with this
phylum outcompeting others like Pseudomonadota, Actinomycetota and
Acidobacteriota that typically dominated the community after glucose
addition (Eilers et al., 2010; Mau et al., 2015; Morrissey etal,, 2017) and
also showed the highest initial abundance in our samples. Modeling
indicated that a shift to fermentation pathways presents a plausible and
quantitative explanation to connect both experimental findings in a
single framework.

First, Bacillota are well-known for widespread obligate and faculta-
tive fermentative capabilities, including in members that are prevalent
in the soil envirorment such as Bacillus (Cruz Ramos et al,, 2000) or
Clostridiutn (Wiegel et al, 2006). Besides the common lactic acid
fermentation of glucose, many groups (e.g., Clostridium or Pelosinus) are
also able to ferment lactate to acetate and propionate (Seeliger et al.,
2002; Mosher et al,, 2012; Beller et al., 2013), and Bacillota have been
shown to expand on lactate under both aerobic and anaerobic condi-
tions, emerging as the dominant phylum after lactate amendment
(Mosher et al., 2012; Van Den Berg et al., 2017; Macias-Benitez et al.,
2020). There have also been reports of Bacillota thriving under alkaline
conditions at pH > 8, as observed in the soil used in this study (O°Cal-
laghan et al,, 2010; Anderson et al., 2018), More generally, the Bacillota
have been recognized as a phylum with significant copiotrophic char-
acteristics, which enable their rapid expansion in the presence of labile
substrate like glucose. This is also true of some of the other phyla with
significant growth in our incubation, such as the Pseudomonadota,
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although such classifications are more ambiguous (Stone et al,, 2023).

Second, this sequence of fermentation of glucose to lactate followed
by fermentation of lactate to acetate and propionate predicts a CR
pattern as observed in our experimental data (Fig. 3C). More specif-
ically, the gradual shift from aerobic respiration to lactic acid fermen-
tation caused by increasing Op limitation during exponential growth
yields a slow increase in CR due to a lack of catabolic CO» production in
this fermentation (Chakrawal et al.,, 2020). As lactate becomes the
dominant substrate after glucose depletion, its further fermentation to
acetate and propionate subsequently lowers the observed CR (Seeliger
et al., 2002).

Importantly, we did not aim to impose anoxic conditions in our
experimental setup. Instead, we suggest that the formation of anoxic
microsites in the soil was driven by metabolic demand of the growing
microbial population, a mechanism that has recently been shown to be
particularly important in sandy loam soils such as the soil used in this
study (Lacroix et al., 2022), If oxygen diffusion into structural units such
as peds or aggregates is outpaced by microbial consumptions, oxygen is
locally depleted, and anaerobic microsites are established. While this
effect waslikely enhanced by high nutrient availability and temperature
in our experiment, the prevalence of anaerobic microsites and their role
in carbon cycling has been recognized more generally, even in
well-drained soils (Keiluweit et al,, 2016, 2017; Lacroix et al,, 2021),
Our results further support this finding and highlight the need for careful
reconsideration of assuming aerobic respiration as the only (dominant)
metabolism under common experimental and field conditions. However,
our experiment was conducted in closed containers and using sieved
soils, such that a direct comparison to natural soils is not feasible.
Although a simple estimation of the initial headspace O, in our in-
cubations indicates that there was sufficient O, for the observed
oxidation of glucose to CO,, the headspace O, saturation may have
dropped to approximately 30% of atmospheric levels after 20 h. To
explicitly monitor the role of anoxic microsites (as opposed to the
depletion of total O, in the system) using calorespirometry, future
studies might consider the use of lower soil-to-headspace ratios and the
addition of smaller amounts of substrate to ensure a continuously high
O, saturation in the headspace, as well as the use of undisturbed soils
with intact structural units.

The occurrence of anaerobic conditions in our experiment is also
supported by the observed N»O emissions (Supplementary Fig. S1).
Based on these observations, we also investigated heterotrophic
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denitrification as another possible anaerobic metabolic pathway. How-
ever, its averall contribution was small, with less than 0.5% of the cu-
mulative CO, that can be accounted for by denitrification (details in SI
methods, section F). Since NH4 was the only nitrogen source added to
the soil, nitrification must also have taken place in our samples. While
this cannot be quantified using our data, any chemoautotrophic use of
CQOsas a C source as well as any heat release during nitrification would
elevate measwred CR. This might also contribute to lower model CR
compared to the experimental values during the early (aerobic) stages of
the incubation.

The missing 14% of added C in the carbon balance after 18 h along
with the temporal pattern of CUE represent another indication of
possible fermentative pathways. Specifically, the mismatch between
overall CUE¢ (0.46) and CUEg (0.57) could be explained by the accu-
mulation of fermentation products, which are not included in estimates
based on CO, and biomass alone (i.e., CUEg) (Hagerty et al.,, 2018).
Moreover, the dynamic model suggests that the drop in CUE even before
the time of peak activity might be caused by a gradual shift to less
efficient fermentation pathways (Fig. 5A) resulting inreduced microbial
growth.

Notably, we were able to obtain realistic biomass estimates from
gene copy numbers (Eq. (1)) that were in close agreement with estimates
based on SIR. In particular, accounting for different average gene copy
numbers per cell in the considered bacterial phyla enables us to more
accurately capture the biomass dynamics, whereas the use of a global
average for all bacteria would underestimate initial biomass and over-
estimate growth. This is due to the fact that Bacillota feature the highest
average gene copy number per cell among bacterial phyla (Sun et al.,
2013; Vetrovsky and Baldrian, 2013) (Supplementary Table S1). This is
also reflected in the different estimated contributions of Bacillota to the
total gene copy numbers and to microbial biomass. While the relative
abundances obtained via PCR suggested a 65% share of Bacillota after
18 h, our biomass estimates result in a relatively lower contribution of
45% of MBC after 18 h, although this still places the Bacillota as the
dominant phylum by a wide margin.

Nonetheless, both the relative abundances based on PCR and owur
corrected biomass estimates are vulnerable to multiple sources of bias,
These include DNA extraction, primer mismatches and amplification,
but also variation in the average gene copy numbers within phyla and
during growth (see for example Eisenstein 2018). Since such biases
would be consistent for all samples in our experiment, we conclude that
our central finding regarding the community, i.e., the dominance of the
Bacillota at the high taxonomic level of phylum, is reliable. In particular,
we observed a very consistent pattern in all experimental replicates
(Supplementary Fig. S3). Yet, a direct comparison with other experi-
mental results, especially at the macro scale, and the interpretation of
quantitative details should be treated with great caution. Specifically,
these results were derived from an incubation experiment, and thus
inevitably depend suongly on the details of the incubation process.

Furthermore, the interpretation of CR values requires a model of the
biochemistry of the system, and despite the support for fermentative
pathways outlined above, we did not evaluate the specific biochemical
processes besides the detection of N,O and CH,4 as potential products.
Since the observed CR is the sum of all heat and CO, contributing pro-
cesses in the soil, any future calorespirometric investigation will be
strengthened by the experimental validation of its biochemical as-
sumptions, for example by measuring hypothesized metabolic products
like those resulting from common fermentations or monitoring the ac-
tivities of enzymes of interest.

Finally, monitoring O levels explicitly in the soil and in the head-
space would be invaluable for model calibration and validation. We
were able to achieve a good fit of the dynamic model, and multiple lines
of evidence point towards the development of anaerobiosis in our
experiment. Nonetheless, the representation of O5 dynamics in our
framework is simplistic with limited flexibility, and even the parame-
terization of this simple formulation relies on certain assumptions
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(details in SI methods, section C2).

More generally, the calibration and development of wrgently needed
mechanistic dynamic models remains challenging given available data,
and issues of parameter non-identifiability are widespread (Sierta et al.,
2015; Marschmann et al.,, 2019; Siade, 2021). In the context of our
experiment, measurements of O, levels and fermentation products
would be most important to infer the dynamics of these variables, which
could only be estimated indirectly in this study.

5. Conclusion

Our joint evaluation of carbon and energy fluxes using combined
experimental and modeling approaches revealed a time-dependent bi-
directorial deviation of experimental CR values from theoretical pre-
dictions for aerobic respiration of glucose. We suggest fermentative
metabolic pathways as a likely explanation of this pattern as well as the
rapid expansion of Bacillota, which dominated the community. Our
study highlights the potential of a mechanistic bioenergetics framework
to generate hypotheses and test assumptions that cannot be tackled from
either a carbon or energy perspective alone. In particular, the possible
development of significant anaerobiosis in aerobic soil incubations
needs to be further investigated. Future studies should link the calo-
Tespirometric evidence with direct monitoring of O, levels and products
of potential anaerobic pathways. Such data will be instrumental both to
advance modeling efforts and to obtain a process-based understanding
of the complex soil system.

CRediT authorship contribution statement

Martin-Georg Endress: Writing — review & editing, Writing —
original draft, Visualization, Methodology, Investigation, Formal anal-
ysis. Ruirui Chen: Writing — review & editing, Writing — original draft,
Methodology, Investigation, Funding acquisition, Formal analysis, Data
curation, Conceptualization. Evgenia Blagodatskaya: Writing — review
& editing, Writing — original draft, Supervision, Formal analysis,
Conceptualization. Sergey Blagodatsky: Writing - review & editing,
Writing — original draft, Supervision, Funding acquisition, Formal
analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:

Sergey Blagodatsky reports financial suppert was provided by
German Research Foundation. Evgenia Blagodatskaya reports financial
support was provided by German Research Foundation. Ruirui Chen
reports financial support was provided by National Natural Science
Foundation of China. If there are other authors, they declare that they
have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Data availability

All data analyzed during this study are included in this published
article and its supplementary files. All code is available from the cor-
responding author upon reasonable request.

Acknowledgements

MGE, EB and SB acknowledge funding by the Deutsche For-
schungsgemeinschaft (SPP2322 SoilSystems, grant numbers 465124939
and 465122443). RC acknowledges funding by the National Natural
Science Foundation of China (grant number 41977045).

Schematics (Figs, | and 2) were created with BioRender.



M.-G. Endress et al.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.

org/10.1016/j.s0ilbin.2024.109478.

References

Anderson, C.R., Peterson, M.E, Frampton, RA., Bulman, S.R., Keenan, S., Curtin, D,
2018. Rapid increases in soil pH sol ubilise organic matter, dramatically increase
denitrification potential and strongly stimulate microorganisms from the Firmicues
phylum. PeerJ 6, e6090. https://doi.org/10.7717 /peerj.6090.

Anderson, J.P.E., Domsch, K.H., 1978. A physid ogical method for the quantitative
measurement of microbial biomass in soils. Soil Bio ogy and Biochemistry 10,
215-221. https://doi.org,/10.1016,/0038-0717(78)20099-8,

Anderson, T.-H., Joergensen, R.G., 1997. Relationship between SIR and FE estimates of
microbial biomass C in deciduous forest soils at different pH. Soil Biology and
Biochemistry 29, 1033-1042. https://doi.org/10.1016/50038-0717(97)00011-4.

Baath, E., 1994. Thymidine and leucine incorporation in soil bacteria with different cell
size. Microbial Ecology 27. https://doi.org,/10.1007 /BF00182410.

Bajracharya, B.M., Smeaton, CIM., Markelov, 1., Markelova, E., Lu, C, Cirpka, O.A.,
Cappelen, P.V, 2022. Organic matter degradation in energyimited subsurface
environments—a bioenergetics-informed modeling approach. Geomicrobiol ogy
Journal 39, 1-16. https://doi.org/10.1080,01490451.2021.1998256.

Banks, H.T., Joyner, M.L, 2017. AIC under the framework of least squares estimation.
Applied Mathematics Letters 74, 33-45. https://doi.org/10.1016/j
aml.2017.05.005.

Bardgett, R.D., Freeman, C., Ostle, N.J,, 2008. Microbial contributions to climate change
through carbon cycle feedbacks. The ISME Journal 2, 805-814. https:,//doi.org/
10.1038/ismej.2008.58.

Barros, ., 2021. Thertmodynamics of soil microbial metabolism: applications and
functions. Applied Sciences 11, 4962. hitps://doiorg/1( 90/appl11114962.
Barros, N., Feijoo, S., Hansen, L.D., 2011. Calorimetric determination of metabolic heat,
CO2 rates and the cal orespirometric ratio of soil basal metabolism. Geoderma 160,

542-547. https://doi.org,/10.1016/j.geoderma.2010.11.002.

Barros, M., Hansen, L.D., Pifeito, V., Pérez-Cruzado, C,, Villanueva, M,, Proupin, J.,
Rodriguez-Aiion, J.A., 2016. Factors influencing the cal orespirometric ratios of soil
microbial metabolism. Soil Biology and Biochemistry 92, 221-229. https://doi.org
10.1016/j.s0il bio.2015.10.007.

Barros, N., Salgado, J,, Rodriguez-Afién, J.A., Proupin, J., Villanueva, M., Hansen, L.D.,
2010. Calorimetric approach to metabolic carbon conversion efficiency in soils:
comparison of experimental and theotetical models. Journal of Thermal Analysis
and Calorimetry 99, 771-777. https://doi.org,/10.1007/s10973-010-0673-4.

Beck, T., Joergensen, R.G., Kandeler, E.,, Makeschin, F., Nuss, E., Oberholzer, H.R.,
Scheu, 8., 1997. An inter-laboratory comparison of ten different ways of measuring
soil microbial biomass C. Soil Biology and Biochemistry 29, 1023-1032. https://doi.
org,/10.1016/50038-0717(97)00030-8.

Beller, H.R., Han, R., Karaoz, U., Lim, H., Brodie, E 3. Genomic and physiol ogical
characterization of the chromate- reducing, aquifer-derived firmicute Pelosinus sp.
strain HCF, Applied and Environmental Microbiology 79, 11.

Blagodatskaya, E., Blagodatsky, S., Anderson, T.-H., Kuzyakov, Y., 2014. Microbial
growth and carbon use efficiency in the rhizosphere and root-free soil. PLoS One 9,
€93282. hutps://doi.org/10.1371/journal . pone. 0093282,

Blagodatsky, S., Blagodatskaya, E., Yuyukina, T., Kuzyakov, Y., 2010. Model of apparent
and real priming effects: linking microbial activity with soil organic matter
decomposition. Soil Biology and Biochemistry 42, 1275-1283. https:/,/dol.org/
10.1016/j.50il bi0.2010.04.005,

Blagodatsky, S.A., Heinemeyer, O., Richter, J., 2000. Estimating the active and total soil
microbial biomass by kinetic respiration anal ysis. Biology and Fertility of Soils 32,
73-81. hups://doi.org/10.1007 /5003740000219,

Boye, K., Herrmann, AM., Schaefer, M.V., Tfaily, M.M., Fendotf, S., 2018. Discerning
microbially mediated processes during redox transitions in flooded soils using
carbon and energy balances. Frontiers in Environmental Science 6, 15. htips://doi.
org/10.3389,/fenvs.2018.00015.

Bradford, M.A., Carey, C.J.,, Atwood, L., Bossio, D., Fenichel, E.P., Gennet, S.,
Fargione, J., Fisher, J.R.B., Fuller, E,, Kane, D.A., Lehmann, J., Oldfield, E.E,
Ordway, E.IM., Rudek, J., Sanderman, J., Wood, $.A., 2019. Soil carbon science for
policy and practice. Nature Sustainability 2, 1070-1072. https://doi.og/10.1038/
§41893-019-0431-y.

Bradford, M.A., Wieder, W.R., Bonan, G.B., Fierer, M., Raymond, P.A., Crowther, T.W.,
2016. Managing uncertainty in soil carbon feedbacks to climate change. Nature
Qimate Change 6, 751-758. https://doi.org/10.1038/nclimate3071.

Braissant, O., Wirz, D., Gafjpfert, B., Daniels, A.U., 2010. Use of isothermal
microcalorimetry to monitor microbial activities. FEMS Microbiology Letters 303,
1-8. https://doi.org,/10.1111/j.1574-6968.2009.01819.x.

Calabrese, S., Chakrawal, A., Manzoni, 5., Van Cappellen, P., 2021. Energetic scaling in
microbial growth. Proceedings of the National Academy of Sciences 118,
€2107668118. https://doi.org/10.1073,/pnas. 2107668118,

Camenzind, T., Mason-Jones, K., Mansou, I, Rillig, M.C., Lehmann, J., 2023. Formation
of necromass-derived soil organic carbon determined by microbial death pathways.
Nature Geoscience, https://doi.org/10.1038,/541561-022-01100-3,

Caporaso, J.G., Bittinger, K, Bushman, F.D., DeSantis, T.Z., Andersen, G.L.,, Knight, R.,
2010. PyNAST: a flexible tool for aligning sequences to a template alignment.
Bioinformatics 26, 266-267. https://doi.org/10.1093/bioinformatics/btp636.

27

Soil Biology and Biochemistry 195 (2024) 109478

Chakrawal, A, Calabrese, S, Herrmann, AM., Manzoni, S., 2022. Interacting
bioenergetic and stoichiometric controls on microbial growth. Frontiers in
Microbiology 13, 859063. https://doi.org/10.3389/fmicb.2022.859063.

Chakrawal, A., Herrmann, A.M., Manzoni, S., 2021, Leveraging energy flows to quantify
microbial traits in soils. Soil Biology and Biochemistry 155, 108169. https:,//dol.otg/
10.1016/j.50il bio.2021,108169,

Chakrawal, A, Herrmann, A.M., Samrﬁékovﬁ, H., Manzoni, 8., 2020. Quantifying
microbial metabolism in soils using cal orespirometry — a bioenergetics perspective.
Soil Bidogy and Biochemistry 148, 107945. hitps://doi.org/10.1016/].
s0ilbi0.2020.107945.

Crowther, T.W., Van Den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L,
Averill, C., Maynard, D.8., 2019. The global soil community and its influence on
biogeochemistry. Science 365, eaav0550. https://doi.org/10.1126/5cience.aav0550,

Cruz Ramos, H., Hoffmann, T., Marino, M., Nedjari, H., Presecan-Siedel, E., Dreesen, O.,
Glaser, P., Jahn, D, 2000. Fermentative metabolism of Bacillus subtilis : physiol ogy
and regulation of gene expression. Journal of Bacteriol ogy 182, 3072-3080. https:/,
doi.org/10.1128/JB.182.11.3072-3080.2000.

Dejean, L., Beauvoit, B, Bunoust, O., Fleury, C,, Guerin, B., Rigoulet, M., 2001. The
cal orimetric-respirometric ratio is an on-line marker of enthal py effciency of yeast
cell s growing on a non-fermentable carbon source. Biochimica et Biophysica Acta
1503, 329-340.

Filers, K.G., Lauber, C.L, Knight, R, Fierer, I., 2010. Shifts in bacterial community
structure associated with inputs of low molecular weight carbon compounds to soil.
Soil Bidogy and Biochemistry 42, $96-903. https://dol.org/10.1016/].
50il bi0.2010.02.003,

FEisenstein, M., 2018. Microbiology: making the best of PCR bias. Nature Methods 15,
317-320. https://doi.org/10.1038,/nmeth. 4683,

Fierer, 1., Bradford, M.A., Jackson, R.B., 2007. Toward an ecological o assification of soil
bacteria. Ecology 88, 1354-1364. https://doi.org/10.1890,/05-1839.

Foreman-Mackey, D., Hogg, D.W,, Lang, D., Goodman, J., 2013. Emcee : the MCMC
Hammer. Publications of the Astronomical Society of the Pacific 125, 306-312.
https://doi.org/10.1086,/670067.

Frey, 5.D., Lee, J., Melillo, J.M., Six, J., 2013. The temperature response of soil microbial
efficiency and its feedback to climate. Nature imate Change 3, 395-398. hitps.//
doi.org/10.1038/nclimate1796.

Gangneux, C., Akpa-Vincesl as, M., Sauvage, H., Desaire, S., Houot, 8., Laval, K, 2011.
Fungal, bacterial and plant dsDNA contributions to soil total DNA extracted from
silty soils under different farming practices: relationships with chloroform-labile
carbon, Soil Biology and Biochemistry 43, 431-437, https://doi.org/10.1016/].
s0il bin.2010.11.012.

Geyer, KM., Dijkstra, P., Sinsabaugh, R, Frey, $.D., 2019. Qarifying the interpretation of
carbon use efficiency in soil throngh methods comparison. Soil Bidogy and
Biochemistry 128, 79-88. https://doi.org/10.1016/j.50il bio.2018.09.036.

Geyer, KM, Kyker-Snowman, E, Grandy, A.S., Frey, 8.D., 2016, Mictobial carbon use
efficiency: accounting for population, community, and ecosystem-scale controls over
the fate of metabolized organic matter. Biogeochemistry 127, 173-188. https://doi
otg/10.1007/51C 016-0191-y.

Hagerty, S.B., Allison, $.D., Schimd, J.P., 2018. Evaluating soil microbial carbon use
efficiency explicitly as a function of celular processes: implications for
measurernents and models. Biogeochemistry 140, 269-283. https:,//doi.org/
10.1007/510533-018-0489-z,

Hansen, L.D., Macfarlane, C., McKinnon, M., Smith, B.MN., Criddle, R.S., 2004. Use of
cal orespirometric ratios, heat per CO2 and heat per 02, to quantify metabolic paths
and energetics of growing cells. Thermochimica Acta 422, 55-61. https://dol.org/
10.1016/j.tea.2004.05.033.

Herrmann, A.M., Bd scher, T., 2015. Simultaneons screening of microbial energetics and
CO2 respiration in soil samples from different ecosystems. Soil Biology and
Biochemistry 83, 88-92. https://doi.org/10.1016/j.50il bio.2015.01.020,

Herrmann, A.M., Coucheney, E., Nunan, M., 2014. Isothermal microcalorimetry provides
new insight into terrestrial carbon cycling. Environmental Science & Technology 48,
4344-4352. https://doi.org/10.1021 /es403941h.

Jing, Z, Chen, R, Wei, S., Feng, Y., Zhang, J., Lin, X., 2017. Response and feedback of C
mineralization to P availability driven by soil microorganisms. Soil Biology and
Biochemistry 105, 111-120. https://doi.org/10.1016/j.50ilbio.2016.11.014.

Kastner, M., Miltner, A., Thiele-Bruhn, 8., Liang, C., 2021. Microbial necromass in
soils—linking microbes to soil processes and carbon turnover. Frontiers in
Environmental Science 9, 597. https://doi.org/10.3389,/fenvs. 2021.756378.

Kaiser, E.A., Mueller, T., Joergensen, R.G., Insam, H., Heinemeyer, O., 1992. Eval uation
of methods to estimate the soil microbial biomass and the rd ationship with soil
texture and organic matter. Soil Biol ogy and Biochemistry 24, 675-683. https://doi
org/10.1016/0038-0717(92)20046-Z.

Keiluweit, M., Nico, P.S., Kleber, M., Fendorf, 5., 2016. Are oxygen limitations under
recognized regulators of organic carbon turnover in upland soils? Biogeochemistry
127, 157-171. https://doi.org,/10.1007/s10533-015-0180-6.

Keiluweit, M., Wanzek, T., Kleber, M., Nico, P., Fendorf, 8., 2017. Anaerobic microsites
have an unaccounted role in soil carbon stabilization. Nature Communications 8,
1771. https://doi.org/10.1038,/541467-017-01406-6.

Lacroix, E.M., Mendillo, J., Gomes, A, Dekas, A., Fendorf, S., 2022. Contributions of
anoxic microsites to soil carbon protection across soil textures. Geoderma 425,
116050. hrtps://doi.org/10.1016/j.geoderma.2022.116050.

Lacroix, EM., Rossi, R.J., Bossio, D, Fendorf, S., 2021. Effects of moisture and physical
disturbance on pore-scale oxygen content and anaerobic metabolisms in upland
soils. Science of the Total Environment 780, 146572. hitps://doi.org/10.1016/].
scitotenv.2021.146572.




M.-G. Endress et al.

Liang, C., Schimel, J.P., Jastrow, J.D., 2017. The importance of anabolism in microbial
control over soil carbon storage. Mature Microbiology 2, 17105. https://doi.org/
10.1038/nmicrobia .2017.105.

Luo, Y., Ahlstrom, A., Allison, 8.D., Batjes, N.H., Brovkin, V., Carvalhais, M., Chappell, A.,
Ciais, P., Davidson, EA., Finzi, A, Georgiou, K, Guenet, B., Hararuk, O., Harden, J.
W., He, Y., Hopkins, F, Jiang, L., Koven, C, Jackson, R.B., Jones, C.D., Lara, M.J.,
Liang, J., McGuire, A.D., Parton, W., Peng, C., Randerson, J.T., Salazar, A., Sierra, C.
A, Smith, M.J,, Tian, H., Todd-Brown, KE.O., Torn, M., Groenigen, K.J., Wang, Y.P.,
West, T.O., Wei, Y., Wieder, W.R,, Xia, J., Xu, Xia, Xu, Xiaofeng, Zhou, T., 2015
Towatd more realistic projections of soil carbon dynamics by Earth system modds.
Global Biogeochemical Cycles 17.

Macias-Benitez, 8., Garcia-Martinez, A.M., Caballero Jimenez, P., Gonzalez, J.M., Tejada
MWoral, M, Parrado Rubio, J., 2020. Rhizospheric organic acids as biostimulants:
monitoring feedbacks on soil microorganisms and biochemical properties. Frontiers
in Plant Science 11, 633. https://doi.org/10.3389,/fpl5.2020.00633.

Manzoni, S., Capek, P., Porada, P., Thurner, M., Winterdahl, M., Beer, C., Briichert, V.,
Frougz, J., Herrmann, A.M.,, Lindahl, B.D., Lyon, 5.W.,, Santrickovd, H., Vico, G.,
Way, D., 2018, Reviews and syntheses: carbon use efficiency from organisms to
ecosystems — definitions, theories, and empirical evidence. Biogeosciences 15,
5929-5949, https://doi.org,/10.5194,/bg-15-5929-2018.

Manzoni, 8., Taylor, P., Richter, A., Porporato, A., A, gren, G.1, 2012. Environmental and
stoi chiometric controls on microbial carbon-use efficiency in soils. New Phytologist
196, 79-91.

Matschmann, G.L, Pagel, H,, Kiigler, P., Streck, T., 2019. Equifinality, sloppiness, and
emergent structures of mechanistic soil biogeochemical models. Environmental
Modelling & Software 122, 104518. hitps://doi.org/10.1016/].
envsoft.2019.104518.

Martens, R, 1987. Estimation of microbial biomass in soil by the respiration method:
importance of soil pH and flushing methods for the measurement of respired CO2.
Soil Biology and Biochemistry 19, 77-81. hitps//doi.org/10.1016,/0038-0717(87)
90128-3.

Maskow, T., Paufler, §., 2015, What does calorimetry and thetmodynamics of living cells
tell us? Methods 76, 3-10. https://doi.org/10.1016/).ymeth.2014.10.035.

Mau, R.L, Liu, CM.,, Aziz, M., Schwartz, E., Dijkstra, P., Marks, J.C, Price, L.B., Keim, P.,
Hungate, B.A., 2015. Linking soil bacterial biodiversity and soil carbon stability. The
ISME Journal 9, 1477-1480. https://doi.org/10.1038/ismej.2014.205.

Maynard, D.S., Crowther, T.W,, Bradford, M.A., 2017, Fungal interactions reduce carbon
use efficiency. Ecology Letters 20, 1034-1042, hups.//dolotg/ 10,1111 ele 12801,

Chemistry of carbonic acid in water. In: Mook, W.G. (Ed.), 2000. Environmental Isotopes
in the Hydrological Cycle - Principles and Applications. UNESCO, Paris,
pp. 143-165.

Morrissey, EM., Mau, R.L., Schwartz, E., Caporaso, J.G., Dijkstra, P., van Gestel, I,
Koch, B.J., Liu, CM., Hayer, M., McHugh, T.A., Marks, J.C., Price, L.B., Hungate, B.
A., 2016, Phylogenetic organization of bacterial activity. The ISME Journal 10,
2336-2340. htps://doi.org/10.1038/ismej.2016.28.

Mortissey, E.M., Mau, R.L, Schwartz, E., McHugh, T.A., Dijkstra, P., Koch, B.J., Marks, J.
C., Hungate, B.A., 2017, Bacterial carbon use plasticity, phyl ogenetic diversity and
the priming of soil organic matter. The ISME Journal 11, 1890-1899. hitps://doi.
org,/10.1038/ismej.2017.43.

Mosher, J.J., Phelps, T.J., Podar, M., Hutt, R.A., Campbdl, J.H., Drake, M.M., Moberly, J.
G., Schadt, , Brown, 5.D., Hazen, T.C., Arkin, A.P., Palumbo, A.V,,
Faybishenko, B.A., Hias, D.A.,, 2012. Microbial community succession during lactate
amendment and electron acceptor limitation reveals a predominance of metal
reducing Pe osinus spp. Applied and Environmental Microbiol ogy 78, 10.

Newville, M., Otten, R, Neson, A., Stensitzki, T., Ingargiola, A., Allan, D., Fox, A,
Carter, F., Michat, Osborn, R., Pustakhod, D., Ineuhauns, Weigand, 8., Aristov, A.,
Glenn, Deil, C., mgunyho, Mark, Hansen, A.L.R., Pasquevich, G., Foks, L., Zobrist, b.,
Frost, O., Stuermer, azelcer, Polloreno, A., Persaud, A, Nidsen, J.H., Pompili, M.,
Eendebak, P., 2023. Imfit/1mfit-py: 1.2.2 (1.2.2). doi:10.5281/zenod0.8145703.

O’ Callaghan, M., Gerard, E.M., Carter, P.E, Lardner, R, Sarathchandra, U, Burch, G,
Ghani, A., Bdl, 1., 2010. Effect of the nitrification inhibitor dicyandiamide (DCD) on
microbial communities in a pasture soil amended with bovine urine. Soil Biology and
Biochemistry 42, 1425-1436. https://doi.org/10.1016,.50il bi 0.2010.05.003.

Oren, A., Steinberger, Y., 2008. Coping with artifacts induced by CaC0O3-CO2-H20
equilibria in substrate utilization profiling of calcareous soils. Soil Biology and
Biochemistry 40, 2569-2577. https://doi.org/10.1016/j.50il bi0.2008.06.020.

Panikov, N.S., 1996. Mechanistic mathematical models of microbial growth in
bioreactors and in natural soils: explanation of complex phenomena. Mathematics
and Computers in Simul ation 42, 179-186. https://doi.org,/10.1016,/0378-475495)
00127-1.

Papp, K., Hungate, B.A., Schwartz, E., 2020. Glucose triggers strong taxon-specific
responses in microbial growth and activity: insights from DNA and RNA qSIP.
Ecology 101. https://doi.otg,/10.1002/ecy.2887.

28

Soil Biology and Biochemistry 195 (2024) 109478

Roels, J.A, 1980. Application of macroscopic principles to microbial metabolism.
Biotechnology and Bioengineering 22, 2457-2514. https:,//doi.org/10.1002/
bit.260221202.

Sediger, S., Janssen, P.H., Schink, B, 2002. Energetics and kinetics of lactate
fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA.
FEMS Microbiology Letters 211, 65-70. https://doi.org/10,1111,/j.1574-6968.2002
th11204.x.

Siade, A.J,, 2021. Unraveling biogeochemical complexity through better integration of
experiments and modeling. Environmental Sciences 9.

Sierra, C.A., Malghani, S., Miillet, M., 2015. Model structure and parameter
identification of soil organic matter models. Soil Bidogy and Biochemistry 90,
197-203. https://doi.org/10.1016/]).50il bio.2015.08.012.

Sinsabaugh, R.I., Manzoni, S., Moothead, D.L, Richter, A, 2013. Carbon use efficiency
of microbial communities: stoichiometry, methodology and modelling. Ecol ogy
Letters 16, 930-939. https://doi.org/10.1111/el . 12113.

Sinsabaugh, R.L., Turner, B.L., Talbot, J.M., Waring, B.G., Powers, J.S., Kuske, C.R,
Moothead, D.L, Follstad Shah, J.J.,, 2016. Stoichiometry of mictobial carbon use
efficiency in soils. Ecol ogical Monographs 86, 172-189, https://dol.org/10.1820/
15-2110.1.

Sparling, G.W., West, A.W.,, 1990. A comparison of gas chromatography and differential
respirometer methods to measure soil respiration and to estimate the soil microbial
biomass. Pedobiol ogia 34, 103-112.

Stone, B.W.G., Dijkstra, P., Finley, B.K,, Fitzpatrick, R., Fd ey, M.M., Hayer, M.,
Hofmockel, K.S., Koch, B.J., Li, J., Liu, X.J.A., Martinez, A., Mau, RL., Matks, J.,
Monsaint-Queeney, V,, Morrissey, EM., Propster, J,, Pett-Ridge, J.,, Purcdl, A.M.,,
Schwartz, E., Hungate, B.A.,, 2023. Life history strategies among soil
bacteria—dichotomy for few, continuum for many. The ISME Journal. https://doi
org/10.1038/541396-022-01554-0.

Sulman, B.N., Moore, J.AM., Abramoff, R, Averill, C., Kivlin, 5., Georgiou, K,
Sridhar, B., Hartman, M.D., Wang, G., Wieder, W.R., Bradford, M.A,, Luo, Y.,
Mayes, MLA., Mortison, E., Riley, W.J., Salazar, A., Schimel, J.P., Tang, J., Qassen, A.
T., 2018. Multiple models and experiments underscore large uncertainty in soil
carbon dynamics. Biogeochemistry 141, 109-123. https://doiorg/10.1007,/510555-
018-0509-z

Sun, D.-L, Jiang, X., Wu, Q.L, Zhou, N.-Y., 2013. Intragenomic heterogeneity of 1635
tRINA genes causes overestimation of prokaryotic diversity. Applied and
Environmental Microbiology 79, 5962-5969, https://doi.org/10.1128/AFM 01282-
13.

Van Den Berg, E.M., Elisirio, M.P., Kuenen, J.G., Kleetebezem, R., Van Loosdrecht, M.C.
M., 2017. Fermentative bacteria influence the competition between denitri fiers and
DNRA bacteria. Frontiers in Microbiology 8, 1684. https://doi.org/10.3389/
fmich.2017.01684.

Vétrovsky, T., Baldrian, P., 2013. The variability of the 16S rRMNA gene in bacterial
genomes and its consequences for bacterial community anal yses. PLoS One 8,
e57923. https: //doi.org/10.1371/journal .pone.0057923.

Virtanen, P., Gommers, R., Oliphant, T.E.,, Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Petetson, P., Weckesser, W., Bright, J., van der Walt, S.J,, Brett, M.,
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E.,, Kern, R., Larson, E,,
Carey, C.J., Polat, 1., Feng, Y., Moore, E.W., VanderPl as, J., Laxalde, D., Perktold, J.,
Cimrman, R, Hentiksen, 1., Quintero, E.A., Harris, C.R, Archibald, A.M., Ribeiro, A.
H., Pedregosa, F.,, van Mulbregt, P., SciPy 1.0 Contributors, 2020, SciPy 1.0:
fundamental algorithms for scientific computing in Python. Nature Methods 17,
261-272, https://doi.org/10.1038/541592-019-0686-2,

von Stockar, U., Marison, 1.W., 1993, The definition of energetic growth efficiencies for
aerobic and anaerobic microbial growth and their determination by calotimetry and
by other means. Thermochimica Acta 229, 157-172. hrrps://doi.org/10.1016,/0040-
6031(93)80323-3.

Wadsd, L., Hansen, L.D., 2015. Cal orespirometry of terrestrial organisms and ecosystems.
Methods 76, 11-19. https: //doi.org,/10.1016/j.ymeth.2014.10.024.

‘Wiegel, J.,, Tanner, R, Rainey, F.A.,, 2006. An introduction to the family clostridiaceae.
In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (Eds.),
The Prokaryotes: Volume 4: Bacteria: Firmicutes, Cyanobacteria. Springer US, New
York, NY, pp. 654-678. hrtps://doi.org/10.1007,/0-387-30744-3 20.

‘Wutzler, T., Blagodatsky, 5.A., Blagodatskaya, E., Kuzyakov, Y., 2012. Soil microbial
biomass and its activity estimated by kinetic respiration analysis — statistical
guidelines. Soil Biology and Biochemistry 45, 102-112. hrtps://doi.org,/10.1016/].
50ilbi0.2011.10.004.

Xin, X., Zhang, X, Chu, W,, Mao, J.,, Yang, W., Zhu, A., Zhang, J., Zhong, X., 2019.
Characterization of fluvo-aquic soil phosphorus affected by long-term fertilization
using solution 31P NMR spectroscopy. Science of the Total Environment 692, 89-97.
https://doi.org/10.1016/).scitotenv.2019.07.221.



Chapter 2: Spatial substrate heterogeneity limits microbial growth as
revealed by the joint experimental quantification and modeling of carbon

and heat fluxes

Publication:

Endress, M.-G., Dehghani, F., Blagodatsky, S., et al., 2024b. Spatial substrate heterogeneity
limits microbial growth as revealed by the joint experimental quantification and modeling of
carbon and heat fluxes. Soil Biology and Biochemistry 197, 109509.
doi:10.1016/].50i1bi0.2024.109509

Declaration of personal contributions:

I am one of the first authors and the corresponding author of this publication. The first
authorship is shared with F. Dehghani, who performed all experimental work presented in the
study as well as initial data treatment. I performed all modeling work and all quantitative
analyses. Specifically, I designed the dynamic model and performed all numerical
simulations, model calibration, and statistics, and wrote the code required for these tasks. I
prepared the first draft together with F. Dehghani, took the lead in writing, and prepared the
final version of the manuscript with input from all co-authors. Based on the dataset provided,
I prepared all figures and all supplementary material other than Table S1 and Figure S1 with

input from all co-authors. I handled revisions with input from all co-authors.
Data availability statement:

All data analyzed during this study are included in this published article and its
supplementary files. All modeling code is available from the corresponding author upon

reasonable request.

29



Soil Biology and Biochemistry 197 (2024) 109509

Contents lists available at ScienceDirect

Soil Biology &
Biochemistry

Soil Biology and Biochemistry

-
23

ELSEVIER

journal homepage: www.elsevier.com/locate/soilbio

Check for ‘

Spatial substrate heterogeneity limits microbial growth as revealed by the %=
joint experimental quantification and modeling of carbon and heat fluxes

Martin-Georg Endress ™", Fatemeh Dehghani ™', Sergey Blagodatsky ***, Thomas Reitz ",
Steffen Schliiter”, Evgenia Blagodatskaya "

“ Institute of Zoology, University of Cologne, 50923, Cologne, Germarny

® Department of Soil Ecology, Helmholtz Gentre for Environmental Research - UFZ, 06120, Halle/Saale, Germany

“ Institute of Meteorology and Climate Research, Department of Atmwospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Techniology (KIT) — Cumpus
Alpin, 82467, Garmisch-Partenkirchen, Germany

g Department of Soil System Science, [elmholtz Centre for Environmental Research — UFZ, 06120, Holle/Saale, Germarry

ARTICLE INFO ABSTRACT
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Spatial heterogeneity is a pervasive feature of soils, affecting the distribution of carbon sources as well as their
microbial consumers. Helerogencous addition of substrates typically results in delayed microbial growth
compared to homogeneous addition, and this effect has frequently been attributed to spatial separation of mi-
croorganisms from their food. We investigated the importance of two other potential causes of this effect, the
availability of nutrients and oxygen, by measuring heat and CO; release along with O; consumption from soil
samples after homogeneous or heterogeneous addition of glucose as well as with or without further addition of a
nutrient solution. We then employed a microbial-explicit model to quantitatively interpret our observations. The
results revealed that delayed growth after spatially heterogeneous substrate addition was primarily caused by
nutrient limitation. While sufficient co-location of all entities - substrate, microorganisms, and nutrients - is
required for optimal growth, spatial separation of glucose and microorganisms only played a minor role in our
experiment. Model simulations captured the dynamics based on aercbic growth and maintenance, utilizing a
simple formulation of nutrient limitation coupled with dynamic transition of microbes between activity and
dormancy. The model predicted an overall lower microbial activity over the course of the incubation in treat-
ments with heterogeneous substrate addition. Despite reduced rates, neither the experimental carbon and energy
balances nor modeling showed an effect of heterogeneity on the growth efficiencey after 50 h of incubation. In all
treatments, energy use efficiency exceeded carbon use efficiency by 9-21%. We found no evidence of anaero-
biosis. The application of a bioenergetic framework facilitated the interpretation of complex experimental data
and quantitatively captured the mechanisms underlying the effects of spatial heterogeneity.

role in soil research for decades (Manzoni et al, 2018). Yet, the
complexity and variability of natural soil environments that arises from

1, Introduction

The fate of organic carbon (C) entering soil or stored as soil organic
matter (SOM) is of critical importance to future climate change and to
the provisioning of soil ecosystem services, and it is mediated in large
part by soil microorganisins (Bardgett et al., 2008; Phillips and Nick-
erson, 2015; Crowther et al.,, 2019). The processes and factors control-
ling the decomposition and cycling of C and especially the fraction of
consumed C that is used by microbes to form new biomass, often termed
the microbial carbon use efficiency (CUE), have thus played a central
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the simultaneous occurrence of many physico-chemical (e.g., diffusion
and sorption) and biological processes (e.g., diverse metabolic activity
and microbial interactions) continue to challenge our understanding of
microbial carbon cycling and especially CUE (Sinsabaugh et al., 2013;
Geyer et al., 2016; Hagerty et al., 2018).

One important source of such challenges is the high degree of spatial
and temporal heterogeneity in soils, both regarding the distribution of C
substrates (e.g., Peth et al., 2014; Schliiter et al., 2022) as well as their
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potential microbial consumers (e.g., Raynaud and Nunan, 2014).
Availability and input of C as well as suitable habitat in soils are
necessarily patchy, e.g, concentrated in the rhizosphere or detritu-
sphere, and the ecological relevance of this heterogeneity for microbial
strategies and communities as well as for SOM persistence is well
recognized (Kuzyakov and Blagodatskaya, 2015; Nunan, 2017; Leh-
mann et al, 2020), Multiple studies have evaluated the effect of sub-
strate spatial heterogeneity on microbial C use by manipulating the
substrate distribution experimentally. C derived from various com-
pounds, ranging from labile C sources (Shi et al,, 2021) to pesticides
(Pinheiro et al., 2015), plant litter (Gaillard etal., 1999; Kandeler, 1999;
Coppens et al.,, 2006; Magid et al., 2006; Poll et al., 2006; Védére et al.,
2020) and plant-derived organic matter (Inagaki et al., 2023) has been
used for this purpose. The role of spatial heterogeneity was also inves-
tigated by manipulating soil spatial structure (Stong et al.,, 2004; Juarez
et al.,, 2013; Tian et al,, 2015). The results of such experiments revealed
pronounced effects of spatial heterogeneity, like a steep decline in ac-
tivity with increasing distance from substrate hotspots, or areduced and
delayed activity in the case of heterogeneous substrate addition when
compared to homogeneous addition (but see Juarez et al., 2013 and the
subsoil results in [nagaki et al., 2023),

Mechanistically, several processes could explain these experimental
observations. Granted that most soil microbes are expected to follow
stationary sit-and-wait strategies (Nunan et al, 2020), the most
frequently offered explanation invokes the spatial separation between
microbial consumers and C sources. In this situation, the availability of
assimilable substrate is mediated by the diffusion of monomers (either
added directly or resulting from the decomposition of polymers) and
enzymes (to decompose polymers, Or et al., 2007) as well as by physical
C source accessibility (Dungait et al., 2012), Conceptually, a reduction
and delay in activity in the case of heterogeneous substrate distribution
may then result from a considerable portion of soil microbes that cannot
access the substrate and remains C- and energy-limited. However, other
limitations may also occur, especially under local excess of substrate.
For example, low availability of essential nutrients like nitrogen (N) has
the potential to limit the rate of anabolism and thus microbial growth
even if sufficient C is present. Such imbalanced stoichiometry reduces
CUE and alters SOM utilization in natural soils, for example due to
N-mining (Manzoni et al,, 2012; Chen et al.,, 2014; Manzoni, 2017;
Chakrawal et al., 2022), and might lead to overflow respiration (Russell
and Cool, 1905). Likewise, microbial growth can be impeded if the rate
of energy acquisition through catabolism is limited by local O, avail-
ability in the soil. While this is very common under water-saturated
conditions, the mechanism is also relevant at intermediate moisture
levels, in particular in microsites with high microbial activity, where the
demand-driven onset of anaerobiosis may lower the rate and efficiency
of microbial carbon use (Loecke and Robertson, 2009; Schliiter et al.,
2019; Kim et al., 2021; Lacroix et al.,, 2023).

These mechanisms, depending on local availability of substrate,
nutrients, and oxygen, likely mediate the effect of substrate spatial
heterogeneity to varying degrees in sit, but untangling their contribu-
tions in particular experimental settings is a challenging task.

Theoretical and modelling frameworks frequently used to interpret
experiments (e.g., Korsaeth etal,, 2001; Kuka et al., 2007; Moyano etal.,
2013; Babey et al,, 2017; Zech et al., 2022) recently turned towards
leveraging the coupling between C and energy fluxes in soil as a new
avenue to elucidate the mierobial metabolism and specifically CUE and
energy use efficiency (EUE) (e.g., Chakrawal et al., 2020; Bajracharya
et al., 2022; Gunina and Kuzyakov, 2022; Wang and Kuzyakov, 2023).
For example, several studies evaluated the calorespirometric ratio (CR,
Hansen et al,, 2004; Bartos et al,, 2016) of heat to CO5 production during
microbial growth in soil, both experimentally (e.g., Barros et al,, 2010;
Herrmann and Bolscher, 2015) and theoretically (Chakrawal et al.,
2020, 2021, Endress et al,, 2024), These efforts demonstrated the po-
tential of the framework to, e.g., monitor changes in microbial CUE or to
detect a switch to anaerobic metabolism, especially if CR observations
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are supported by modelling efforts to disentangle and quantify these
effects. However, this integration of experimental data with
process-based bioenergetic models that include an explicit representa-
tion of microbial biomass and its dynamics is still at an early stage, a
challenge that persists with regard to biogeochemical models more
generally (Wieder et al., 2015; Marschmann et al,, 2019).

In this study, we investigated the impact of substrate spatial het-
erogeneity on the dynamics and the efficiency of soil microbial growth
from the perspective of coupled C and energy fluxes. To that end, we
measured CO» and heat production after either homogeneous or het-
erogeneous addition of glucose as a labile C- and energy source. Based
on similar studies, we hypothesized (i) that heterogeneous substate
application would result in lower and delayed microbial growth
compared to a homogeneous weatment. To distinguish the potential
limiting factors underlying such a pattern, we also monitored the con-
sumption of O, throughout the incubations and factorially added nu-
trients along with glucose. Using this design, transitions to anaerobic
pathways due to local O, deficiency can be detected both in the CR as
well as in the direct O, measurements, while local nutrient depletion in
hotspots with excess glucose would be alleviated in treatments where
glucose is supplied in combination with additional nutrients. We further
hypothesized (ii) that these mechanisms are more important causes of
reduced microbial growth compared to the spatial availability of glucose
itself. Finally, we combined our experimental findings with a simple
microbial-explicit model including eoupled C- and heat fluxes during
growth on glucose to analyze and interpret our results in a quantitative
framework, and to discern the degree to which growth limitation (e.g.,
by O or nutrients) can be inferred from the C- and energy balance.

2. Materials and methods
2.1, Incubation setup

The soil used in this experiment is classified as a Haplic Luvisol and
was sampled during September 2021 from the experimental site of
Dikopshof, University of Bonn, Germany, established in 1904
(Holthusen et al., 2012; Seidel et al., 2021). Relevant characteristics of
the soil are given in Table S1. The soil was sieved through a 2 mm mesh,
air dried and stored at room temperature. It was then preincubated ata
water content of 14% (w/w, 45.5% of water holding capacity, WHC) for
10 days before the start of the experiment. Water loss due to evaporation
was compensated by regular water addition, and any seedlings growing
during the preincubation were removed by hand.

Four treatments were considered to investigate the effect of substrate
heterogeneity in soil. The soil samples were either amended with a so-
lution of glucose in water or glucose in a nutrient solution ((NH4)»S0O4
9.5 g/L, KHoPO4 14.75 g/L, MgS04(H0)7 19 g/L)) at a rate of 1 mg
glucose per g soil and with a C:N:P ratio of 10:1:1. In addition, appli-
cation of glucose was either drop by drop on the soil surface without
additional mixing, inducing a heterogeneous substrate distribution, or
the soil was manually well mixed after substrate amendment. The added
solutions brought the final soil water content to 16% (w/w, 52 % WHC).

2.2, Calorimetry and respirometry measuremernt

CO, efflux after substrate addition was monitored using a Respi-
rometer (Respicond V, Sweden) in which 25.8 g (DW) of soil were
incubated in 280 ml vessels that were kept in a water bath at a constant
temperature of 20 °C. CO, release rate (mg GO, h 1) was quantified via
the decrease in the conductance of a KOH solution (10 ml, 0.6 M) in the
vessels (Chapman, 1971; Nordgren, 1988), Heat release was measured
from 3.88 g (DW) soil incubated in 20 ml glass ampoules using an
isothermal calorimeter (TAM Air, TA Instruments, Germany) at the same
constant temperature of 20 °C. A comparable soil height of 0.9 cm as
well as a minimum headspace to soil ratio of 4 was used in both the
Respicond vessels and TAM Air ampoules. The vessels used for the
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incubations are shown in Fig. S1.

2.3. Oz measurement

In a parallel setup, we measured Oz consumption via needle-type Oz
microsensors (NFSG-PStl, PreSens Precision Sensing Gmbl, Regens-
burg, Germany) that were placed in the headspace of 20 ml glass am-
poules with the same experimental setup as used for the TAM Air
measurements. O, saturation (%, 100% = 21.22 kPa) was monitored
every 15 min.

2.4. Microbial biomass quantification and determination of residual
glucose

Additional incubations were carried out for well-mixed samples with
only glucose addition (i.e., without nutrient addition) for the determi-
nation of microbial biomass production via an increase in double-
stranded DNA (dsDNA) as well as quantification of the residual
amount of glucose. Again, these incubations were carried out in 20 ml
ampoules ensuring the same experimental setup as used for the TAM Air
measurements, 300 mg of fresh soil was sampled destructively at several
time points (0, 18, 21, 25, and 47 h after subswate addition). The dsDNA
in the soil was extracted using the PowerSoil DNA isolation kit (QIAGEN,
Germany) with small modifications in the protocol by performing an
additional physical cell lysis using a homogenizer (Precelleys-24, PEQ-
LAB, Germany) in three batches each for 45 s at 5000 rpm. DNA quan-
tification was done by a NanoDrop ND-8000 spectrophotometer
(Thermo Fisher Scientific, Dreieich, Germany). An increase in the mi-
crobial biomass was related to changes in the DNA by a conversion
factor of fpya = 16.5 calculated as (Zheng et al., 2019):

Sona :% (Eqn. 1)
Here, MBC; is the initial amount of soil microbial biomass carbon (MBC)
as determined by chloroform fumigation extraction (155 pgC g 1 soil,
details in S1 Text), and DNA; is the initial dsDNA content of the soil (9.4
ug DNA g 1y. For the quantification of residual glucose, 200 mg of soil
(DW), taken at 0, 3, 6, 21, 23, and 24 h after glucose addition to the soil,
was dispersed in 30 ml of DI water followed by shaking on a rotary
shaker at room temperature for 30 min. Afterwards, the suspension was
centrifuged at 4000 rpm for 10 min. Thereafter, 20 ml of supernatant
was transferred to determine residual glucose by a glucose colorimetric/
fluorometric assay kit MAK263 (Sigma-Aldrich, Germany) in which
glucose is oxidized to generate a fluorometric product, proportional to
the glucose amount. Glucose quantification was performed based on the
manufacturer’s protocol.

CO, measurements were performed with 4 replicates, all other ex-
periments were performed in triplicate. All process rates (CO» and heat
produetion, O, consumption) were corrected by subtracting the average
rates of unamended (control) incubations, which were also performed in
triplicate.

2.5, Calculations and statistics

Analysis of CO, and heat production. Maximum rates of CO, and
heat release as well as their corresponding time points were determined
from the time series of all replicates. For heat release, maximum rates
and time points could be identified unambiguously from the raw time
series. For COy and Oy, we applied a moving average with a window
width of 2 h to the time series prior to determination of maximum rates
and time points to enable unambiguous identification. The results were
tested for the effects of substrate heterogeneity and nutrient addition
using a two-way ANOVA with contrasts between treatments at a sig-
nificance level o= 0.05 as implemented in the emmeans package (v.
1.8.9, Lenth, 2023) in R (v. 4.3.2, R Core Team, 2023).
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Cumulative and dynamic ratios. The cumulative ratios of heat to
CO» production (CR), heat production to Oy consumption (CRgp) and
CO, production to O, consumption (respiratory quotient, RQ) were
calculated using the respective mean cumulative values after 50 h of
incubation time. Standard deviations were estimated via error propa-
gation of the standard deviations of the constituting variables (S1 Text).
Due to initial disturbance in the Respicond and the calorimeter, the first
2.5 h were discarded for the cumulative analysis (but raw data are
provided in §1 Data). The effects of substrate heterogeneity and nutrient
addition were tested using an approximate permutation test for pairwise
differences (van den Broek, 2012) with 10000 bootstrap iterations
(details in S1 Text).

The dynamic ratios were calculated hourly from the corresponding
rate data (mean of replicates). To mitigate the fluctuations caused by the
high temporal resolution, the rates were smoothed using a moving
average with a width of 4 h prior to calculating ratios. Due to the high
sensitivity of the dynamic ratio to even small perturbations, it was
calculated in the interval between 5 h and 50 h of incubation time to
avoid artifacts caused by initial disturbance.

CUE and EUE. Apparent carbon and energy use efficiency was
estimated from the cumulative release of CO, and heat, respectively,
after 50 h of incubation time, i.e.,

CCOZ
CUEs=1 — Con
Q
EUE; =1 —
2 AEGEU

Here, Ceoz and Q denote the mean cumulative CO, and heat produced
per gram of soil after 50 h, respectively, whereas Ggh, and AEg, denote
the initial amount of carbon and energy added as glucose per gram of
soil. We use the subscript s for CUE and EUE to denote the substrate-
based nature of these estimates (Hagerty et al.,, 2018) and emphasize
that these rely on the assumption of complete substrate consumption at
the time of caleulation (Wang and Kuzyakov, 2023). Again, the effects of
substrate spatial heterogeneity and nutrient addition were tested usinga
two-way ANOVA with contrasts,

04 consumption. O, saturation Og; [%] was converted to mol per
gram soil (DW) via the ideal gas law according to

o[

where Ogmy = 21.22 [kPa] denotes the atmospheric oxygen partial
pressure, V = 0.019 [1] is the estimated volume of air in the ampoule, T
= 293.15 [K] is experimental temperature, R = 8.314 [J/(mol*K)] is the
gas constant, and W = 3.88 [g] is the dry weight of the soil sample (DW).

O vV 1

100 ™TR W

2.6, Modeling

We use a modified version of the ordinary differential equation
(ODE) model presented in (Endress et al, 2024) to quantitatively
simulate the coupled carbon and energy fluxes during microbial growth
on glucose in soil. In contrast to the original formulation, the model only
includes aerobic metabolism, but considers an additional nutrient
limitation.

The model strueture (Fig. 1) includes three carbon pools: biomass X,
glucose S, and CO,, similar to the complex physiclogical model used in
Chakrawal et al. (2021), It represents the microbial utilization of added
glucose following Monod kinetics (at rate U) for aerobic growth, as well
as maintenance respiration, fueled first by glucose (exogenous mainte-
nance, Ms) and later by biomass consumption (endogenous mainte-
nance, My, see Wang and Post, 2012). In addition, the model also
accounts for changes in microbial activity via the index of physiological
state r (Panikov, 1996; Blagodatsky and Richter, 1998), which partitions
the biomass into an active, growing fraction rX as well as a dormant
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fraction (1-r)X that only performs maintenance, depending on substrate
availability. Finally, we also model nutrient limitation by including an
additional unspecified nutrient pool N, which acts as an additional
essential component for the anabolic reaction and also follows
Michaelis-Menten kinetics (i.e., the growth kinetics &/ now depend on
two substrates, carbon 8 and nutrient N, Zinn etal,, 2004), In conuast to
glucose, which is added in batch at time 0, the model nutrient concen-
tration gradually replenishes at a rate I(Ng-N) proportional to the de-
gree of nutrient depletion, thus mimicking diffusive (re-)supply from the
surrounding soil.

To investigate the potential impact of a delayed CO» detection due to
diffusion of CO» from the soil to the KOH solution, we also implemented
a model variant with an additional carbon pool representing the con-
centration of CO2-C accumulating in the KOH solution (Camai). This
pool is characterized by slightly delayed dynamics due to the additional
transport process, and it is utilized for all subsequent analyses of the
modified model instead of the (soil) CO, pool that is used in the standard
model.

All model ODEs were implemented in Python (version 3.9.18) and
simulations were obtained via numerical integration using the ‘Rada’
method of the solve bvp funetion in the Scipy package (Virtanen et al.,
2020). Initial biomass and glucose concentrations were set to the
experimental values, whereas initial cumulative heat and CO, were set
to 0. The initial nutrient concenwation as well as the initial active
fraction of microbes were treated as free parameters. The model was
calibrated against the measured rates of heat and CO, release of the
individual treatments, i.e., we obtained 4 sets of optimized parameter
values comresponding to the combinations of substrate spatial hetero-
geneity (homogeneous, heterogeneous) and nutrient addition (with,
without).  Parameter optimization was done wusing the
Levenberg-Marquardt algorithm in the minimize function of the Imfit
package (MNewville et al., 2023) with upper and lower bounds on indi-
vidual parameters.

The detailed model formulation and rationale as well as an in-depth
description of the numerical procedures are provided in the supple-
mentary materials and methods (S1 Text). A list of all variables and
parameters including their units is provided in Table 52,

3. Results
3.1, €O and heat release and Oz consumption

The rates of CO9 and heat release as well as Oy consumption showed
a broadly consistent pattern indicating substantial microbial growth
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after batch glucose input in all treatments, with a distinet maximum
after 20-25 h (Fig. 2). However, both the mode of glucose application
and the addition of nutrients had characteristic and interacting effects
on the observed dynamics.

In reatments without nutrient addition, heterogeneous application
of glucose resulted in significantly lower maximum rates of carbon and
heat release (Fig. 2 a, ¢), which reached only 50-55% of the maximum
values observed after homogeneous glucose application (ANOVA results
in 81 Data). On the other hand, both CO5; and heat continued to be
released at elevated rates in these incubations over the full 50 h dura-
tion, whereas they returned to near-basal levels within that time span in
samples with homogeneous glucose addition (ig. Za—c). While less
pronounced, these characteristics were also present in the measured
rates of O consumption (Fig. 2e). Headspace Oz concentrations
remained oxic throughout the experiment in all treatments (Fig. S2).

In contrast, such effects of heterogeneous substrate application were
strongly reduced in treatments with nutrient addition. Maximum rates
of CO, and heat release as well as O, consumption were similar or only
slightly lower in heterogeneous treatments when compared to homo-
geneous ones, and all rates also decreased to similar levels within 50 h
(Fig. 2b-d,f). Nonetheless, maximum values in incubations with het-
erogeneous glucose application were reached slighdy later (~2 h) than
in those with homogeneous application. While this effect was only sig-
nificant for heat, it was entirely absent in the treatments without
mutrient addition (ANOVA results in 81 Data).

Thus, the effect of heterogeneous substrate application was most
pronounced in samples without added nutrients. At the same time,
nutrient addition altered the observed dynamics only in the case of
heterogeneous substrate application, with barely any discernible impact
in samples with homogeneous application.

3.2, Cumulative calorespirometric ratios and respiratory quotient

The ratios of cumulative heat release to CO» release as well as to O
consumption (CR and CRog, respectively) showed similar values with no
significant differences across treatments. The same was true for the
respiratory quotient (RQ) of CO» release to O» consumption. Hence,
from a cumulative perspective, neither the mode of substrate application
nor the addition of nutrients had a significant effect (Fig. 3).

Furthermore, no ratio indicated any substantial deviation from
values expected for aerobic metabolism in our incubation after 50 h.
Specifically, the observed average CR values of 344-403 kJ/mol C agree
with predictions for efficient aerobic growth on glucose, which lie in the
range of ~250-469 kJ/mol C (Barros et al,, 2010). Similarly, average

Microbial Biomass
YU
Mx..

Anabolism

\
1/

Mainlenance @’f‘g

Fig. 1. Dynamic model structure representing aerobic microbial growth after glucose addition to soil. Microbial biomass X is initially in a largely inactive state
(fraction 1), but quickly becomes active (fraction r) in the presence of substrate S. This substrate is consumed following Michaelis-Menten kinetics at a rate U and
partitioned between anabolic and catabolic pathways according to a growth vield coefficient ¥. The uptake rate is further co-limited by the availability of a proxy
nutrient pool N required for anabolism. Moreover, both active and inactive biomass produce additional CO, and heat via exogenous maintenance (Mg, fueled by
glucose consumption) and endogenous maintenance (My, fueled by biomass consumption). The total modelled CO; and heat production is used to calibrate the model
against experimental observations for each treatment. A detailed model description is provided in S1 Text.
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Fig. 2. Experimental observations (mean + SD) and model simulations of CO; production (a, b,n 4, heat production (¢, d, n  3) production and O, consumption
(e, f,n  3) in soil after glucose amendment. The top row shows results obtained without nutrient addition (open symbols), while the bottom row shows results with
addition of NPK solution (filled symbols). In both cases, rates of CO, and heat production as well as O, consumption differed markedly between homogeneous

(circles) and heterogeneous (triangles) addition of glucose to the soil.
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Fig. 3. Experimental ratios (mean + SD) calculated from cumulative CO;
production, heat production and O, consumption after 50 h of incubation time.
Open symbols indicate incubations without nutrient addition, filled symbols
indicate incubations with IMPK addition. Circles indicate homogeneous addition
of glucose; triangles indicate heterogeneous addition. Dashed lines indicate the
theoretical predictions for the corresponding ratios for the case of aerobic
glucose catabolism.

CRo» varied between 411 and 439 kJ/mol O,, while anaerobic heat
contributions would elevate thisratio above the theoretical predietion of
469 kJ/mol O, (enthalpy of combustion of glucose, Hansen et al., 2004).
Finally, the average RQ in all treatments was not significantly different
from 1, which is the expected value for the aerobic decomposition of
carbohydrates.

3.3. CUE and EUE

Both CUEg and EUEg based on cumulative CO, and heat release after
50 h indicated efficient aerobic growth with an average growth vield of
0.56-0.63 (carbon-based) and 0.65-0.68 (energy-based) across treat-
ments (Fig. 4a). Generally, EUE was slightly higher than CUE in all in-
cubations (i.e., observations are above the dotted line in Fig. 4a), and
their relationship was in line with the theoretical expectation for aerobic
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growth on glucose (dashed and solid lines in Fig. 4a, details in S1 Text).
Moreover, the observed relationship between CUEg and CR also was
broadly consistent with theory (Fig. 4b), although the quantitative
prediction depends on the assumed composition of microbial biomass as
summarized by its degree of reduction, yg (which is controlled by the C:
N ratio of biomass, see Hansen et al,, 2004; Chakrawal et al., 2020; Yang
el al, 2024 and 81 Text). However, both CUEs and CR showed sub-
stantial variability, in particular for the treatment with homogeneous
glucose application and no nutrient addition, which was characterized
by larger deviations in the CO; release rate between replicates (Fig. 2a).

Overall, neither the mode of substrate application nor the addition of
nutrients significantly affected CUEg, while nutrient addition slightly
reduced EUEg irrespective of the mode of substrate application (ANOVA
results in S1 Data).

3.4, Model behavior and performance

The dynamic model achieved good fits to the experimental obser-
vations in all treatments (Fig. 2 a-d, R? = 0.89-0.97) and adequately
represented the general dynamics of CO2 and heat release over the 50 h
after addition of glucose. In particular, the model captured the pro-
longed release of CO» and heat in the case of heterogeneous substrate
application without nutrient addition (Fig. 2 a, ¢) via its simple repre-
sentation of nutrient dynamics.

The model also achieves a very good correspondence with experi-
mental measurements of remaining glucose over time in the one treat-
ment where this data is available (Fig. S3a). There was also a broad
agreement between the predicted microbial biomass growth in the
model and that inferred from dsDNA, although the relative biomass
increase in the model (2.45-fold after 50h) exceeded the relative in-
crease in dsDNA in the same treatment (which increased 1.84-fold,
Fig. S3b, details in S1 Text).

The calibration results for all parameters and treatments along with
uncertainty estimates are provided in §1 Data. Generally, the optimized
values of most parameters were well comparable for all treatments and
showed a plausible range and pattern (e.g., high aerobic yield co-
efficients and higher maintenance costs for the active fraction than the
inactive fraction, calibration results in S1 Data). However, the param-
eters controlling the activity state of the microbial population differed
between weatments with homogeneous and heterogeneous glucose
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modified model induces a temporal pattern that is qualitatively similar to those observed in experimental data (shown are the results for homogeneous glucose
application and with nutrient addition, all curves and fits are shown in Fig. 54).

application. Specifically, the model predicted a lower initial active phase, and while this general pattern was observed for all treatments, it
fraction of microbes as well as an overall lower activity over the course was more pronounced in the case of heterogeneous substrate addition
of the whole incubation in treatments with heterogeneous substrate (Figs. S4c and d).

application (Fig. S3¢), regardless of nutrient addition. In terms of model Although the dynamie model captured such a qualitative shift from
calibration, this difference is tied to the overall slower dynamies in those high to low CR, it did not reproduce the quantitative details, especially
treatments (see 3.1), and it can be intuitively thought of as a smaller the very high values during the exponential growth phase (Fig. 54).

fraction of the biomass being exposed (and reacting) to the available However, the introduction of a moderate delay of the measured CO»
glucose, as expected in the case of heterogeneous application. release rate in the modified model variant improved the CR represen-

In terms of CR, the (purely aerobic) growth reaction used in the tation considerably (Fig. 5). In particular, the model delay of 1.2-1.8 h
model corresponds to the solid line in Fig. 4b. However, the actual due to diffusion of CO, from the site of production in the soil to the site
relationship between model CUEg and CR is altered by the maintenance of detection in the KOH solution (Fig. 5a and b) resulted in a pronounced
metabolism (details in S1 Text) and broadly resembled experimental and characteristic pattern in the dynamic model CR similar to obser-
observations after calibration. Nonetheless, model CR tended to be vations (Iig. 5e). While the model fit to the rate data improved only
lower than observations in all treatments other than the incubations slightly across treatments compared to the standard model ®R? =
with homogeneous substrate application and no nutrient addition, 0.93-0.99 instead of 0.89-0.97), this difference was much more pro-
indicating that the final calibration slightly overestimated cumulative nounced in the CR, where small changes in modelled rates induced large
CO4 release compared to cumnulative heat release in those reatments changes in modelled CR due to its nature as quotient (with R? improving
(Figs. 2 and 4b). from —0.09-0.81 to 0.27-0.81, Fig. 54).

4, Discussion
3.5. Dynamic CR and model variant with delayed CO, detection

4.1. Substrate spatial heterogeneity induces nutrient limitation of
The dynamic CR calculated from the rates of heat and CO» produc- microbial growth
tion showed strong temporal variation in all treatments, including
values well above and below those expected for simple aerobic growth We observed marked differences in the dynamics of CO, and heat

(Fig. 54). Specifically, rate-based CR was high early in the incubation release from an arable soil after the heterogeneous drop-by-drop
followed by a drop after the time of peak activity during the retardation
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application of glucose when compared to the well-mixed, homogeneous
application of the substrate. This effect of spatial heterogeneity can in
large part be attributed to nutrient limitation: in the heterogeneous
treatment, the local availability of nutrients in the substrate hotspots
was not sufficient to sustain the high microbial growth rate in the
presence of a large excess of C. On the other hand, mixing alleviated this
limitation by distributing the same amount of glucose more evenly
across the sample, such that sufficient soil-derived nutrients were
available. This is plausible given that the soil used was sampled from an
experimental site with long-term fertilization with farmyard manure
(Holthusen et al., 2012; Seidel et al., 2021, Table S1 soil characteristics)
and because the addition of a full nutrient solution instead of just
glucose did not yield any discernible difference in the dynamics of the
homogenized treatments (Fig. 2). This indicates no general nutrient
limitation in this soil, although such limitations are commenly found in
respiration experiments with many diverse soils (e.g., Sawada et al.,
2017).

However, the fact that the dropwise heterogeneous addition of
glucose was sufficient to induce local nutrient limitation in this soil
highlights the need for careful consideration of both (i) experimental
protocols and (ii) microbial dynamics in natural soils, where substrate
(and nutrient) availability is highly localized in space and time
(Kuzyakov and Blagodatskaya, 2015), Notably, we only used a single
rate of glucose addition (1 mg glucose/g soil, corresponding to ~2.5
MBC) across treatments in this experiment. According to our results, we
would predict that adding larger amounts of C should begin to induce a
similar nutrient limitation even in homogenized samples, as the (equally
distributed) glucose concentration approaches the one experienced
lacally by microbes in our heterogeneous incubations. Conversely, lower
rates of C addition should alleviate the nutrient limitation even in het-
erogeneous treatments. The rate of glucose addition is well known to
strongly affect the outcome of respiration experiments (e.g.,, Schneck-
enberger et al., 2008; Reischke et al., 2014; Rousk et al., 2014), and
varying it would thus be an option to investigate the details of the
induced nuwrient limitation and its role in determining the effect of
substrate spatial heterogeneity (see also Illstedt et al., 2006; Gunankam-
bary et al,, 2008). In particular, functional differences in microbial
communities may only affect soil C dynamics under conditions that do
not constrain microbial activity (MNuman et al., 2017),

A similar pattern of reduced maximum heat release rates and pro-
longed heat production after glucose additon in soil microcosms with
varying degrees of substrate spatial heterogeneity has previously been
explained by the possible effects of substrate diffusion and the co-
location of substrate and microorganisms (Shi et al, 2021). The
importance of such effects has long been studied both empirically and
via medelling across scales (e.g., Gaillard et al., 1999; Portell et al.,
2018), yet they cannot explain the strongly reduced effect of substrate
spatial availability in our experiment in the presence of additional nu-
trients (critically, no nutrients were added along with glucose in the
experiment of Shi et al,, 2021)., Nonetheless, we do still find a small
delay and reduction in the activity of the heterogeneous treatment after
nutrient addition (Fig. 2b-d), which we assume to be caused by such a
consumer-resowrce dislocation as discussed in Shi et al. (2021). Specif-
ically, even if nutrients are sufficient, the exponential growth of mi-
crobes exposed to substrate in a smaller number of hotspots lagged
behind that of samples in which all microbes had immediate access to
the evenly distributed substrate (Fig. 2b-d).

The dynamies of CO, and heat release of all treatments were
adequately captured by the simple model of aerobic microbial growth en
glucose and an additional nutrient pool, representing a nutrient proxy
comprising all essential nutrients. Specifically, the elevated rates of CO»
and heat release well beyond the respective peaks in the heterogeneous
treatment in Fig. Za—c can be explained by the continued consumption of
glucose by microbes in the model, which are unable to make use of all of
the available substrate during the exponential growth phase due to
nutrient limitation. Instead, they continue to grow for a longer period
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and reach a similar biomass by the time all available glucose has been
consumed (Fig. S3b), even though they cannot grow as quickly under the
nutrient-limited conditions early in the incubation. This intuition is
supported by very similar overall CUE (and EUE) in the model after 50 h
across treatments (Fig, 4a).

Importantdy, the model did not include any spatially explicit struc-
ture, and a minimal representation of nutrient availability via Michaelis-
Menten-type kinetics was sufficient to quantitatively capture the pat-
terns in the observed data (Fig. 2). Effectively, the low nutrient con-
centrations (corresponding to the limited amount available in substrate
hotspots) acted to lower the overall microbial growth rate, an effect that
was studied in detail by Chaloawal et al. (2022). Intriguingly, the model
calibration also accounted for the substrate spatial heterogeneity by
reducing overall microbial activity in heterogeneous wteatments,
regardless of nutrient status (Fig. S3¢). While the initial MBC in the
model was fixed to the experimentally determined value (155 ug C g 1,
details in S1 Text), this behavior can be interpreted as lowering the
effective initial model MBC, with a smaller part of the microbial com-
munity reacting to the constant amount of added substrate. This mimics
the smaller co-location of (or larger distance between) substrate and
consumers (e.g., Pinheiro et al,, 2015; Babey et al,, 2017) without a
spatially explicit strueture and accounts for the residual effect of sub-
strate spatial heterogeneity in the absence of nutrient limitation.

While the nutient limitation changed the temporal dynamics of
microbial growth in the corresponding treatments, neither the model
nor the experimental data indicated a substantial reduction in microbial
growth yield after 50 h (Fig. 4a). Instead, all incubations and simulations
were characterized by very similar values of CUEg and EUEg broadly in
the range of 0.55-0.65 (Fig. 4a), which is consistent with theoretical
constraints and empirical observations of efficient aerobic growth on
glucose (e.g.,, Heijnen and Van Dijken, 1992, Trapp et al., 2018);
Remarkably, Inagali et al. (2023) observed a very similar pattern in a
recent study, but these authors were using plant-derived organic matter
as a more complex carbon source and performed longer incubations.
After substrate addition either in hotspots or homogeneously to topsoil,
they also found a pronounced effect of heterogeneity on the process rates
but not on the efficiency based on cumulative COs.

Although the estimation of growth based solely on CO, or heat
release using CUEg and EUEg is generally problematic (Hagerty et al,
2018), both estimates were in good agreement in our experiment, and
their underlying assumption of complete substrate consumption was
justified after 50 h (Fig. S2a), Moreover, we found that EUEg consistently
exceeded CUEg, in line with theory (S1 Text) and contrary to the recent
review by Wang and Kuzyakov (2023), However, both estimates as well
as model simulations indicated a larger biomass growth than did dsDNA,
although dsDNA was only measured in the homogenized teatment
without nutrient addition. In part, these differences may be explained by
variability in the initial biomass in our incubations (S1 Text). Yet, this
observation might also indicate that not all glucose consumed is
immediately used for growth with a corresponding proportional in-
crease in dsDNA, and that the conversion factor between dsDNA and
biomass carbon initially increases after substrate addition (Capek et al.,
20023, details in §1 Text). In any case, the direct quantification of MBC
and especially the use of isotope-labeled substrates would greatly
strengthen any future investigations.

Overall, our first hypothesis regarding microbial growth was there-
fore only partly confirmed. While we did observe reduced and delayed
microbial activity under spatially heterogeneous conditions in the
treatment without nutrient addition, this impaired activity was only
partly observed when nutrients were added in parallel. Moreover, all
available estimates and the dynamic model indicate that net growth was
comparable among the treatments after 50 h of incubation. Finally,
nutrient limitation (though not Qp, see below) was indeed the more
important cause behind this effect of substrate spatial heterogeneity
when compared to the spatial separation of glucose and microbes,
confirming the nutrient aspect of our second hypothesis.
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4.2, Substrate spatial heterogeneity does not induce local Oy limitation

We also hypothesized that local oxygen availability might be another
limiting factor for microbial growth under heterogeneous substrate
conditions and could potentially induce anaerobic metabolism.
Conceptually, microbial O, demand in the presence of high substrate
concentrations has the potential to locally outpace physical O, supply
and conwibute to the formation of anoxic microsites that form on mi-
crobial hotspots. The importance of this mechanism has beenrecognized
even in well-drained upland soils (e.g., Keiluweit et al.,, 2017; Lacroix
et al.,, 2022). However, we found no evidence of substantial anaerobiosis
in our experiment, with neither the direct Oz measurements nor any of
the cumulative ratios (CR, CRg», RQ) indicating such an O» limitation in
our incubations (Figs. 2 and 3, Fig. S2). Furthermore, substantial con-
tributions of anaerobie metabolism would leave a distinct signature in
the CR depending on the specific metabolic pathway (Barros et al., 2016;
Boye et al, 2018; Chakrawal et al, 2020), and any CO, produced
anaerobically would elevate RQ values. In addition, any demand-driven
Oqlimitation should arguably be at least as severe in the reatments with
nutrient addition, yet we did not find substantial differences in the dy-
namics or microbial efficiency of those incubations. Lastly, the model
was also able to accurately capture the observed dynamics assuming a
purely aerobic (growth and maintenance) metabolism.

Importantly, even though the soil in the meatments simulating het-
erogeneous conditions was not mixed after the dropwise application of
glucose, the soil used for all samples had been sieved, dried, rewetted,
and mixed beforehand. Consequently, any comparison or inference to
natural soils with intact structure that may promote the formation of
anoxic conditions is not feasible. Similarly, the soil disturbance will
disrupt the local microbial community and alter its use of the labile
substrate, e.g., regarding rate and efficiency, when compared to undis-
turbed soil (Thomson et al., 2010; Ruamps et al., 2011).

Finally, we note that anaerobic pathways such as fermentations may
also be carried out by microbes under purely aerobic conditions if sub-
strate concentration is high, a phenomenon sometimes termed overflow
metabolism (Basan etal,, 2015). While this would affect the assumption
of complete conversion of glucose to biomass and CO,, we suggest that it
likely did not occur to a significant extent in our experiment, since the
measured cumulative ratios (Fig. 3) did not reveal any pattern charac-
teristic of these fermentations (Chakrawal et al., 2020),

4.3. Leveraging coupled carbon and energy fluxes

Our estimates of the cumulative CR were consistent with efficient
aerobic growth of microbes on glucose and indicated no substantial
deviations, e.g., caused by anaerobiosis (Barros et al., 2016; Chakrawal
et al,, 2020), In essence, both the carbon and energy balances suggest a
similar, simple interpretation of our experimental findings (Figs. 3 and
4), CR should be understood as the ratio of the comresponding (instan-
taneous) rates of CO» and heat production, and thus as a dynamic
quantity (Hansen et al,, 2004), In fact, the use of total ecumulative values
for the CR ealeulation is equivalent to using the average production rates
over the incubation, thereby muting any temporal pattern. While such a
simplification has been used before (e.g., IHerrmann and Bolscher,
2015), it greatly reduces the amount of available information, and we
found pronounced temporal variation of the CR in all reatments (Fig. 5,
Fig. S4). Hence, the full potential of the framework could be leveraged
by including this dynamic information in the analysis.

For example, the consistent shift from higher CR values during the
exponential growth phase to lower values after the onset of the retar-
dation phase when substrate is depleted (Fig. 54) was also recently
observed in a similar experiment using the same soil (Yang et al,, 2024)
and may be interpreted as a shift from growth metabolism to a meta-
bolism dominated by maintenance processes. When using cumulative
CR, averaging the rates across the exponential and retardation phases
would mask the individual CR values of these processes and alter the
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relationship between observed CUE and (cumulative) CR. This may also
account for some of the observed deviation from theoretical predictions
in Fig. 4B, which are based on pure growth without maintenance (for
details, see also S1 Text).

In contrast, the shift in dynamic CR is mechanistically captured by
the dynamic model via a decrease in the active fraction of biomass
(Fig. S3¢) and a transition from exogenous (glucose-consuming) to
endogenous (biomass carbon-consuming) maintenance (Wang and Post,
2012) once the substate is depleted (Fig. S4). Nonetheless, based on
heat and CO» alone, the model cannot distinguish between different
equally plausible (biochemical) processes that could result in the spe-
cific lower CR value during the retardation phase, e.g., the use of SOM,
necromass formation, or consumption of storage compounds (details S1
Text). This conceptual limitation of the CR, which integrates the con-
ributions of all heat- and CO,- producing processes, could at least in
part be overcome by additional measurements, in particular by moni-
toring biomass (composition) and by using labeled substrates. Such
measurements would alse help to improve parameter identifiability,
which is often low in soil biogeochemical models like the one employed
here (see e.g. Sierra et al,, 2015; Marschmann et al., 2019). Specifically,
observations of these additional carbon pools can reduce equifinality,
the phenomenon that multiple (complex) model formulations and pa-
rameterizations yield identical dynamics of the (limited) observed data,
which remains a major challenge (Wieder et al,, 2015),

The quantitative interpretation of dynamic CR curves also faces
substantial challenges from an experimental perspective. One source of
error stems from the fact that the (dynamic) CR is highly sensitive to
even minor shifts in the relative timing of CO» and heat, due to its nature
as a quotient. In particular, the measurement of CO5 and heat in separate
incubations, which frequently also takes place in different types of
vessels, requires matching experimental conditions (e.g., keeping the
same soil-to-head space volume as in our study) to minimize potential
effects on CR dynamics. This problem has been recognized, but the
development of setups allowing the simultaneous measurement of CO,
and heat is still ongoing (Barros et al.,, 2010; Yang et al., 2024).

Our modified model variant (Fig. 5a), in which CO, is measured after
an additional wansport process mimicking the diffusion of the gas from
its site of production (microbes in the soil) to the site of detection (alkali
solution above the headspace), illustrates this problem. The transport
causes a relative delay of CO5 compared to heat of around 1.2-1.8h,
which is consistent with simple estimates of the diffusion time in our
experimental system (Fig. 5b, details are presented in S1 Text).
Intriguingly, this moderate shift in timing induced an artificial tempeoral
CR pattern in the model which resembles those observed in our treat-
ments (Fig. 5c¢) as well as in the literature (e.g., Barros et al,, 2010).
Thus, the quantitative evaluation of the dynamic CR requires a careful
disentanglement of features that may be caused by the experimental
setup from those corresponding to actual microbial activity, such as a
slightly faster (0.5-2 h) heat vs CO5 release in response to the input of
labile substrate, While this is beyond the scope and data availability of
this study, future work aiming at simultaneous measurements of carbon
and energy fluxes would benefit from the use of labeled substrates to
quantify potential biases. This will enable the full utilization of this
promising tool to obtain a mechanistic, bioenergetic understanding of
the soil system.

4.4. Conclusion

Based on rates of CO, and heat production, substrate spatial het-
erogeneity resulted in reduced but prolonged micrabial activity in
glucose-amended soil. This effect could be attributed to local nutrient
limitation and was mitigated if nutrients were added along with glucose,
while we found no evidence of substantial oxygen limitation in any of
our incubations. The abserved dynamics were well described by a simple
model of aerobic microbial growth., Notably, both simulations and
experimental evidence revealed mno significant effect of spatial
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heterogeneity or nutrient addition on the overall CUE and EUE after 50
h. These findings demonstrate thatlocal nutrient availability in soils can
be the major factor limiting microbial growth rates, but not necessarily
efficiency, if C sources have patchy distributions in space and time.
Conversely, microbes in substrate hotspots may be able to compensate
for the smaller overall co-location of consumers and substrate in the soil
if ample nutrients are available in those hotspots.

Furthermore, the joint application experimental and process-based
modeling techniques is a powerful tool for the analysis of microbial
dynamics in soil. In this study, data-model integration provided mech-
anistic insights on the contributions of nutrient limitation and reduced
microbial activity to the observed effect of substrate spatial heteroge-
neity, and quantitatively revealed potential biases arising from the
combination of temporal CO2 and heat measurements. If such artifacts
are accounted for, future analyses may harness the full potential of this
bioenergetic framework to study the dynamics of coupled C- and energy
fluxes in the soil system.

Finally, our observations also illustrate that even relatively minor
differences in the application of labile substrate to soils, like (lack of)
thorough mixing after glucose amendment, do not affect the overall CUE
and EUE values, but they have the potential to significanty alter the
dynamics in a laboratory setting. The possibility of such methodological
details introducing artificial patterns must be carefully evaluated in the
specific context of similar experiments.
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ARTICLE INFO ABSTRACT
Keywords: Microbial carbon use efficiency (CUE) is an important meiric for understanding the balance between anabolic
Energy use efficiency (EUE) and catabolic metabolism, while energy use efficiency (EUE) provides insight into microbial energy re-

Calorimetric ratio (CR)

Carbon use efficiency (CUE)
13C-Labeled cellul ose

Fertilized and unfertilized arable soils

quirements. They are linked by the ratio between released heat and respiration (calorespirometric ratio, CR),
which can be used to describe the efficiency of microbial growth. In this study, microbial G and energy use during
the degradation of '°C-labeled cellulose in eight different soils was investigated experimentally and simulated
using a process-based model. Our results show close agreement between the cumulative C and energy balances
during the incubations, with a total C and energy release equal to 30-50% of the amount added as cellulose. Both
energy and C fluxes indicated that a positive priming effect of soil organic matter (SOM) increased the release of
heat and CO, by 10-32% relative to the added substrate. The CR-CUE relationship indicated that growth on
cellulose was energy limited during the early but not the later stages of the incubation, especially in soils with
high SOM content, We partly observed systematic differences between estimates for CUE based either on the %G
label or on the calorespirometric ratio, Both approaches were constrained by technical and methodological
limitations and agreed best during the phase of microbial growth in the SOM-rich soils, with CUE values between
0.4 and 0.75 indicating efficient aerobic growth. During early stages or after transition to a maintenance phase,
both estimates were less meaningful for cellulose degradation, a substrate with a lower turnover rate than
glucose, still, the coupled heat and mass balances during cellulose degradation in combination with process-
based modeling provided additional information on growth vields as well as the contribution of SOM priming
to microbial growth compared to considering mass balances alone.

1. Imtroduction deduce how much C is either emitted from the soil as CO» or retained
and eventually stabilized in the SOM (Chalarawal et al.,, 2020). Studies

Microorganisms utilize soil organic matter (SOM) for catabolic and have highlighted the importance of substrate availability, nutrient
anabolic processes (Chalzawal et al,, 2020). This C allocatien or the composition, environmental conditions, and microbial community
ratio of C used for biosynthesis to C consumed is commonly referred to as composition to explain the variability in CUE (Manzoni et al., 2012;
carbon use efficiency (CUE; (Geyer et al., 2019)), from which we can Qiao et al.,, 2019; Domeignoz-Horta et al.,, 2020). What is missing are
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studies that take into account that biosynthesis is a purely
non-equilibrium process that depends not only on carbon alone but also
on the energy that can be provided by catabolism (Kastmer et al., 2024),
This perspective emphasizes the quantification of energy fluxes along-
side wraditional carbon-centered analyses, Currently, there are a growing
number of model-based descriptions, such as those published by Chak-
rawal et al, (2020), in which the potential application of coupled mass
and energy balance models for glucose can be used to create a gener-
alized understanding of metabolic pathways during substrate utilization
and implement physiological constraints in C-cycle models (Calabrese
et al., 2021; Endress et al.,, 2024a), However, there is a lack of experi-
mental data to support this theoretical notion, also with regard to more
complex molecules that better reflect the natural compaosition of fresh
litter in the soil, e.g. cellulose, while revealing possible technical limi-
tations in determining and combining energy and mass fluxes.

The measurement of heat production via calorimetry opens up a non-
destructive, label-free method in soil science that provide useful ther-
modynamic, kinetic and stochiometric quantities (Yang et al, 2024).
One of these is the calorespirometric ratio (CR), i.e. the quotient of the
specific heat (Qg kI g 1) and the COy release (Reg,; mol CO»-C g 1).
This ratio contains valuable information about the soil microbial
metabolism, because it reflects the fact that a certain fraction of energy
contained in the substrate is released as heat during catabolic oxidation
of subsmrate-C to CO,, while the remainder is used for reducing C during
biosynthesis. Hence, it links heat and CO5 produetion during substrate
consumption to the efficiency with which microorganisms synthesize
new biomass from the substrate. Hansen et al. (2004) developed a
widely used quantitative model linking the CR to CUE which allows
estimating the CUE of microbial growth from the simultaneous mea-
surement of heat and CO» production. This model simplifies soil pro-
cesses by focusing on aerobic metabolic processes and a single substrate
and neglecting any interactions involving minerals or SOM (Yang et al.,
2024). Building on these findings, Chakrawal et al, (2020) expanded the
model to include both SOM utilization as well as anaerobic processes
such as ethanol and lactic acid fermentation. This extension enabled a
more comprehensive and nuanced understanding of CR-CUE relation-
ships. In particular, the authors showed how the CR-CUE relationship for
a simple microbial growth reaction differs depending on the energy
content of the substrate: if a substrate that is more oxidized than mi-
crobial biomass is consumed, the CR values decrease with increasing
CUE and are limited to values below the combustion enthalpy (=energy
content) of the biomass, whereas more reduced substrates result in CR
values that increase with increasing CUE and fall above this threshold.
The former corresponds to energy limited growth with relatively more C
than energy being released per unit substrate, while the latter corre-
sponds to C-limited growth, with relatively more energy than C being
released (Chakrawal et al., 2020). The CR-CUE relation in the complex
soil environment can, however, be influenced by many other factors that
may cause deviations from such simple predictions (Barros et al,, 2016;
Herrmann and Bolscher, 2015), For instance, technical limitations may
result in alterations to the CR when attempting to carry out the com-
bined measurement of heat and CO, in parallel experiments in separate
vessels (Yang et al,, 2024; Endress et al.,, 2024b), Other processes that
consume C and energy such as the production of extracellular enzymes
or the formation of biofilms (Bolscher et al., 2024), might also affect the
CR-CUE relation through the anabolic use of C that is not directly linked
to biomass production. Similarly, extracellular enzymes can release heat
during hydrolysis and depolymerization of complex substrates, which
could elevate measured CR values. The additional use of SOM after
substrate addition can contribute to microbial growth and, hence, to
heat production that is not directly linked to the added substrate
(Arcand et al.,, 2017). The intensity of priming depends, among other
factors, on the competition for energy and nutrients between microbial
groups using the fresh added substate and other groups using SOM
(Fontaine et al., 2003). The degree to which SOM priming affects the
CR-CUE relation depends, therefore, also on the amount and energy
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content of the SOM.

The different substrate preference and growth strategies control not
only the decomposition rate but also the course of CUE (De Graaff et al.,
2010). According to Geyer et al. (2016), the beginning of substrate
utilization is characterized by a population-level CUE, which is deter-
mined by species-specific metabolic and thermodynamic constraints
and, over time, wansforms into an ecosystem-level CUE reflecting the
efficiency of microbial net biomass production (growth) per unit of
ingested substrate, including recycling of microbial products (Geyer
et al., 2016). An often-used method for estimating CUE is the use of
13¢ Jabeled substrates in conjunction with measuring the ’C-flux into
CO» and the microbial biomass. However, both methods (i.e. the
quantitative model of Hansen et al. (2004) and Bejabeled substrates)
have their specific strengths and weaknesses and a simultaneous appli-
cation of both may provide new insights into the C and energy use of soil
microorganisms (Geyer et al., 2019). In addition, the CO, and heat
release (including priming of SOM) can be related to the amount of C
and energy initially added to the scil as substrate. Such a comparison
accounts both for CO, and heat production from other sources as well as
for any incomplete decomposition of the added substrate, and isreferred
to in this study as net carbon balance (CB,ey) and net energy use effi-
ciency (EUEe, Fig. 1). Both might be considered as the storage effi-
ciency of the soil system (Manzoni et al., 2018) and CB ., night be seen
in a continuum following population CUE and ecosystem CUE. In this
context, a CBye and EUE,,; > 0 indicate a net C and energy gain in the
soil system after substrate addition, while negative values indicate net C
and energy loss from the system. It is important to note, that EUEqe
differs from (instantaneous) EUE, which is defined as the fraction of total
substrate-derived energy required for anabolism (Klemm et al., 2005;
Wang and Kuzyakov, 2023). EUEge can, therefore, only be related to
CByer and both are not directly relatable to the CUE estimates derived
from *®C mass balanece or CR, but instead broaden the concepts of CUE
and EUE.

The research aim of this study was to investigate the C and energy
use from added cellulose in either organically fertilized or unfertilized
arable soils during a 64-days incubation. We used 3¢ 1abeled cellulose
and isothermal ealorimetry in combination with a process-based model
to provide an in-depth analysis of microbial cellulose degradation. This
approach was used to address the following objectives: 1) apply and
evaluate the concepts of CB e, EUE e, CR and CUE to cellulose degra-
dation and 2) determine if growth on cellulose is energy limited as

(=]
/

CBret = 1 - Ceo,/ Ceallulose
EUEn.t =1- Q / AEOllluInn

| 3C-Cellulose I

EUEu
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-~

\

%
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Fig. 1. Schematic of major C and energy flows in soil incubation experiments.
Microorganisms consume **C-labeled substrate added to the soil to form new
biomass, CO; and heat with a certain carbon and energy use efficiency (CUE-
celidose ANd EUEc.n10s0). Additionally, they also metabolize native (*2C)SOM.
The net storage or release of C (CBy.,) and energy (EUE,.,) in the soil thus
depends on the balance between the total amount of C and energy initially
added as substrate (Ccenaese, AEcemues) 0n the one hand and the total amount
of C and energy lost as CO. and heat over time (Cqo,, Q) on the other hand.
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predicted based on its energy content (Chakrawal et al, 2020).
Furthermore, we want to 3) determine how priming of SOM and the
fertilizer status affects CUEs, CB et and EUE, and finally 4) evaluate
technical difficulties in measuring and combining heat and CO, release
in the CR.

2. Materials and methods
2.1. Soil origin and sampling

The soil samples originate from four long-term field experiments,
each with an unfertilized (UF) and a fertilized (FYM) variant. The soils
included in the study had different textures: a loamy sand called *Thy-
row” (TH), a sandy loam called "Dikopshof” (DI), a loamy sand called
“Reckenholz” (RE), and a silty loam called *QualiAgro” (QA). The soils
cover a wide range of soil properties of arable soils, which allowed us to
study the impact of background SOM and energy content on microbial
cellulose utilization. Further details on the soil properties can be found
in the published database (Lorenz et al., 2024a). Sampling was carried
out randomly with a spade from the top 20 cm after harvest, Soil sam-
pling took place in August for DI, in September for QA and RE and in
October for TH, each in 2021. Thyrow (TH) is located at 52°16'N,
13°12E in Brandenburg, Germany. The climate is characterized by an
annual mean temperature of 9.2 °C and precipitation of 510 mm. The
crop rotation, which has been implemented since 2005, consists of silage
maize and winter rye. Since 1938, fertilizer has been applied exclusively
with farmyard manure, which is applied at a rate of 20 t ha 1 (Ellmer
and Baumecker, 2005; Kroschewski et al.,, 2023). The Dikopshof (DI)
agricultural area is located at 50°81'N, 6°95E in North
Rhine-Westphalia, Germany. The area has an average annual tempera-
ture of 10.5 °C and a precipitation of 688 mm. Since 1953, the farm has
been cultivated as part of a five-year crop rotation, with sugar beet,
winter wheat, winter rye, Persian clover and potatoes being grown.
Since 1904, farmyard manure has been applied at a rate of 60 t ha !
(Ahrends et al,, 2018). The Reckenholz (RE) site is an arable field at
47°43' N, 8°52' E near Zurich, Switzerland. Reckenholz has an annual
mean temperature of 9.5 °C and a precipitation of 1050 mm. The 8-year
crop rotation includes winter wheat, maize, potatoes, winter wheat,
maize and spring barley. Since 1949, 5t ha ! of farm manure has been
applied every second year (Cagnarini et al., 2021). QualiAgro (QA) soil
samples were collected from a field situated at 48°87' N, 1°95' E in
Ile-de-France, with an average annual temperature of 10.8 °C and 644
mm of precipitation. The crop rotation includes barley, oats, barley and
maize, with farmyard manure applied at a rate of 4 t ha ! every two
years since 2014 (Nest et al., 2016).

2.2, Experimental design

The soils were stored air-dry and pre-incubated for 10 days at a water
content corresponding to 45-50% water holding capacity
(Supplementary Table S2, Table S3) to restore and stabilize microbial
activity. After pre-incubation, the soils were incubated with 97 at% 1°C-
labeled cellulose derived from maize (Zea mays; IsoLife, Wageningen,
Netherlands). The amount added corresponded to four times the C
content of the microbial biomass in each soil (Table 1).

The cellulose was frozen at —80 °C and ground in a ball mill to a fine
powder that allowed homogeneous mixing with the soil. Seils without
cellulose addition served as controls. Soil equivalent to 3.78 g dry matter
was incubated in 20 ml airtight calorimeter vials, which, together with
aeration of the vials at three time points, ensured sufficient oxygen
availability during the incubation. The experiment was run for 64 days
in three replicates, with the assumption that a significant proportion
would be utilized by that time. Additional sets of vials were sampled at
4, 8, 16 and 32 days to cover, together with the frequent respiration
measurements, the dynamic phase of cellulose utilization during the
early stages of incubation (Table 2).
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Table 1
Cellulose addition.

Soil Fertilization Gy 400% C- Cell ulose addition
(g’ cell ulose (mg 3.8g " soil)
soil) (ugg *soil)

Dikopshof Fertilized 155 622 54

Dikopshof Unfertil ized 70 280 2.4

Reckenholz  Pertilized 213 853 7.4

Reckenholz ~ Unfertilized 162 650 5.6

Thyrow Fertilized 106 425 3.7

Thytow Unfertilized 31 126 11

QualiAgrto Fertilized 227 908 7.8

QualiAgto Unfertil ized 167 668 58

Table 2
Sampling schedule.
Analyses Sampling time

CO, respitation
¢ respiration
13Cmu:

0, 4, 5, 8, 12, 16, 20, 26, 32, 43, 46, 56, and 64 d
4, 8, 16, 32, and 64 d
4, 8, 16, 32, and 64 d

A flowchart illustrating the experimental design as well as a
nomenclature of important quantities and their units are provided in the
supplementary material (Supplementary Fig. S1, Supplementary
Table S1).

2.3. CQ, measurement

Gas samples were taken from the incubation vials according to the
experiment schedule (Tabel 2) to measure CO, accumulation between
the sampling dates. In a first step, exetainers were flushed with COo-free
air at the start of the experiment and after taking the head space samples
at each sampling date. At the sampling dates (i.e. before flushing the
vials with COq-free air), gas samples from the head space were mans-
ferred into exetainers (Labeo, UK). The CO, concentration was quanti-
fied using a gas chromatograph (Agilent 7890, USA). To calibrate and
calculate the CO» concentrations, three standard gases with known CO»
concentrations were used. **CO, was measured with a mass spectrom-
eter (Thermo Finnigan MAT, Bremen, Germany). The at% of the CO>-C
respired between the sampling dates t =iand ¢t =i+ 1 was calculated as
follows:

Ci-at%; — CH-l ‘at%i+1
a% = | —m—
( Ci — G
where C;j and G are the CO,-C concentrations and at%; and at%;.
the atom% of the CO,-C at the respective sampling dates. The at%
values of the evolved CO,-C were taken to calculate the proportion of
cellulose-derived C (%cellulose C) in COx-Cat t=1i+ 1:

(L

ato’bswnp!e = af%conm:!

%CelluloseC = ( )100 (2)
atoﬁcslluio:e - aﬁ'ﬁmnn‘u[

where @%swmple is the at% content of the sample, at%conirol COITE-
sponds to the at% of the control soil, at%,dndoese Tefers to the at% of the
added cellulose. As **C and CO» were not measured in the same interval,
the missing at% values were estimated by linear interpolation between
two time points. The respired CO, was partitioned based on the isotopic
signature of the substrate and priming effect was calculated (Boos et al,,
2023):
PE = COspa — °C — CO2 — CO5onpat (3)
where PE is the priming effect, COxotal is the CO2 evolved from the
substrate enriched soil, CO3 control is the CO3 evolved without substrate
addition and **C — CO, is the amount of labeled COz evolved from the
amended soil.
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2.4. Bomb combustion calorimetry

The background energy content of the different soils was determined
by combustion calorimetry and TG-DSC measurements. Following the
methodological procedure described by Lorenz et al. (2024b), a subset of
the homogenized soil was first dried at 105 °C and stored in a desiccator
until combustion calorimetric measurements were performed. The en-
ergy content was determined as enthalpy of combustion AcH according
to DIN 51900 using an isoperibol combustion calorimeter (IKA C 200,
IKA-Analysentechnik, Heitersheim, Germany; Lorenz et al., 2024b). In
brief, 0.5 g of soil was mixed with benzoicacid ina 1:1 (w/w) ratio asan
auxiliary combustion source and placed in a quartz crucible inside the
bomb. This was done to achieve a complete combustion of SOM (Lorenz
et al,, 2024b). A volume of 5 ml of distilled water (25 °C) was added to
the bomb to collect gases containing N and 8§ from the combustion re-
action to correct for energy releases by formation of nitric and sulfuric
acid (for details see Lorenz et al., 2024D). The sealed bomb was pres-
surized with pure oxygen (purity 99.998 mol%, ALPHAGAZ) to 30 bar.
After the combustion reaction, the residual material was weighed to
account for the ash content of the analyzed sample. In case the com-
bustion failed or was incomplete (recognizable by black soot in the
sample residue), the respective measurement was discarded and
repeated. Analysis of the C content in the combustion residues using an
elemental analyzer (Vario EL cube, Elementar Analysensysteme GmbH,
Langeselbold, Germany) confirmed that SOM had been completely
burned in all samples. The combustion enthalpy is reported normalized
to the organic C content (Lorenz et al., 2024a) of the sampleinkJ g 1 C
to better characterize the energetic signature of SOM, which is of
particular importance for mineral soil samples.

2.5, Thermogravimetry-differential scanning calorimetry (TG-DSC)

The thermogravimetric and differential scanning calorimetric ana-
lyses were performed with STA 449 F3 Jupiter® simultaneous thermal
analyzer equipped with type-S thermocouple (Pt-Pt/Rh) DSC/TG Octo
sample carrier (Netzsch-Geratebau GmbH, Selb, Germany) and coupled
via a heated transfer line at 300 °C, untreated fused silica capillary, I =
22 m, d = 75 ym (SGE Analytical Science, Ringwood, Victoria,
Austalia) with the QMS 403 Aeolos® Quadro quadrupole mass spec-
trometer (Netzsch-Gerdtebau GmbH, Selb, Germany). Samples were
weighted in Al,O3 crucibles (d = 6.8 mm, V = 85 L) on the Cubis® II
Ula-Miero lab balance (Sartorius AG, Gottingen, Germany). The sam-
ple mass was approx. 30 mg. An empty Al,O3 crucible was used as a
reference. The samples were heated from 45 °C to 1000 °C at 10 °C
min ! under an oxidative atmosphere of 50 mL min ! of synthetic air
(N2/05, 80/20 %) and 20 mL min 1of Argon as a protective gas. The
temperature and enthalpy calibration of the DSC was carried out at
regular intervals. The performance of the TG unit was regularly checked
by the thermal decomposition of calcium oxalate monohydrate. For the
TG data, a correction measurement (blank value determination) was
performed with an empty Al,O3 crucible under the same conditions to
consider the influence of buoyancy on the thermobalance. Measure-
ments were conducted in triplicates for each soil. Data evaluation was
done by the Software NETZSCH Proteus Thermal Analysis (Netzsch-
Gerdtebau GmbH, Selb, Germany). The mass loss of soil organic matter
Mmgoy (in mg) in the sample was determined for the TG data. The heat of
combustion Qg (in J) was evaluated by combusting each replicate two
times and submracting the corresponding DSC curves (Ferndndez et al.,
2011). Alinear baseline was used to determine the Q¢ from the DSC data
according to (Bairos, 2021), The combustion enthalpy of SOM in each
soil is expressed as AcHsom (in kJ g 1 SOM) or related to the carbon
content (in kJ g 1 C).

2.6, Calorespirometry

Heat production rate was determined using a TAM Air (TA In-
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stuments, New Castle, USA) isothermal heat conduction microcalo-
rimeter with eight twin channels at an internal temperature of 20 °C.
The set of calorimeter vials sampled at 64 days (see chapter 2.2) was
used for continuous measurement of the heat production rate. The vials
were removed from the calorimeter at the three aeration events. Each
time the vials were (re-)placed in the calorimeter, a 45-min thermal
equilibration period was applied before the heat signal was considered
stable, Vials filled with water of the same heat capacity as the soil
samples were used as a reference. The specific heat production rate P(r)
per gram soil is derived from Eqn. (4) (Yang et al., 2024):

P(t) = i:ri(t)'ArHi (€))]
i1

where ri(£) is the rate of all ireactions (per gram soil) and their combined
reaction enthalpies A H; (Yang et al., 2024; Assael et al., 2022).
The specific heat (Q(t); kJ g 1) was determined by

4
Q) = ] P(odt (5)
e 0
as the integrated specific heat production rate P(¢) (Yang et al., 2024).
The net energy use efficiency EUE, . was determined by dividing the
cumulative heat production, including the utilization of cellulose and
the priming of SOM, by the energy that was initially added via the cel-
lulose and subtracting the result from 1. The EUE,, therefore, provides
a measure of how much energy the system gained or lost during the
incubation. The equation for EUE, is as follows:
Q)

EUFp =1 -——22
Enet AEcelb.clase

(6)
where Q(¢) is the specific heat per gram soil (Eqn. (5), and AE agose is the
total combustion enthalpy (AcH) of the added cellulose per gram soil
kig M.

The calorespirometric ratio (CR; kJ mol ! C0»C) was calculated
from the quotient of the cumulative, metabolic heat (Q(t); kJ g 1 soil)
and the cumulative COs respiration (Ree, (£); mol CO, —Cg Lsoil (Yang
et al.,, 2024);):

Q
CR=
Reo,

(7

We also determined the enthalpy change according to Chalaawal
et al. (2020) of the growth reaction on cellulose under aerobic condi-
tions as a function of the relative degree of reduction (DR, y) of cellulose
and microbial biomass:

Yum

ArHeemioe = (1 — Yoot )ACHEEEEHESE (8)

Yeeltiose

where AHgklose 15 the reaction enthalpy of the growth reaction on
cellulose and AcHgdutose i the combustion enthalpy of cellulose and
Yoahutose 15 the yield coefficient for biomass formation. The relative de-
gree of reduction of cellulose y jutose and microbial biomass yym were
calculated using

_ ANe 4Ny — 20 — 3Ny
£ N

(9

where ny is the number of atoms of X in the compound and CO», NHg and
H,O are assumed as the reference compounds with zero degree of
reduction (Chakrawal et al,, 2020), This equation vields v duiose = 4 a5
well as yup 4.284 for an empirical biomass composition of
CHi.57100.420N0.143 as recently suggested by Yang et al. (2024) for soil.

2.7. Microbial biomnass (Cric)

Microbial biomass was determined using the chloroform fumigation
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extraction method, originally intreduced by Vance et al. (1987) and
further modified by Poll et al. (2010) to allow additional quantification
of 'C. To quantify the °C content, 1.5 g of soil was fumigated (f) with
ethanol-free chloroform for 24 h and then extracted with 6 mL of 0,025
M K5S04. A non-fumigated (nf) 1.5 g control was extracted simulta-
neously. The difference in DOC concentration between the fumigated
and non-fumigated sample corresponds to the microbial biomass C
(extraction efficiency = 0.45). Since the quantification efficiency of the
infrared detector of the TOC analyzer (Multi-N/C 2100S, Analytik Jena,
Jena, Germany) decreases with increasing '°C at% content, the data
were corrected with a calibration curve ranging from 1 to 99 at%. **Cpic
in ug C g ! soil was determined by multiplying the total microbial
biomass with the labeled microbial biomass (% *Cpyi (Geyer et al,
2019)):

AWC s = (m%f e — GE%R G ""“) (10)
fcmic = nfcmi‘c
at%; — %
at%'*Cpie = | ——————1-100 11
" (arﬂ/&c‘eﬁuhw > aﬂ'ﬁc) ( )
Conie A% Crric
P sl L (12)

100

where the organic carbon content of the fumigated and non-fumigated
samples (ug C g ' soil) was expressed as fCpi and nfC, while the
corresponding 2C atom% values were labeled as at%f and at%nf. at%s
and at%; represent the atom percent of sample treatments and the
natural abundance in the soil, respectively. at%ceiose T€presents the
atom percent of the cellulose.

2.8. C use and storage efficiency

The CUE was derived from the *C mass balance, and from the cal-
orespirometric ratio.

1. CUE;: experiment-based CUE used for labeled substances (Geyer
et al., 2016).

wcmic

U = T+ C0s

(13)

where: PGy is the C uptake in microbial biomass, and Bco, is the
cumulated mineralized cellulose-derived C.

2. CUERgq: calorespirometric ratio (CR)-based CUE,
-1
O,

406 (1 - —;ﬂ)

115(0x,.p — OXp)

2

Reoo,

406(1 —%ﬂ) —ﬁ

CUFg, =
% 115(0%,.; — OXip)

+1

(14

where 406 (kJ mol ! O5) is the combustion enthalpy of cellulose, Ox,t -
Qxyp is the difference between the oxidation states of C in the substrate
(cellulose = 0; Saito et al. (2007)) and in the microbial biomass (—0.3;
YVon Stockar and Liu (1999)) and 115 is the average energy loss (kJ) per
change in oxidation state of C during the conversion of substrate to
mierobial biomass (Geyer et al., 2019; Kemp, 2000),

3. CBpe: net carbon balance including C released from cellulose and
SOM:

(15)
Cce{{u[o:e

where Cqn, is the total cumulative CO» release (ug C g 1 5il) and
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Ceellulese 15 the total amount of carbon added to the soil in the form of
cellulose (ugC g 1, CBpet thus measures the net retention (CBy e == 0) or
loss (CBpet << 0) of C in the soil after substrate addition. Note that CB, (¢
= 0) = 1 and that CB decreases over time.

2.9. Data analyses

All data analyses were carried out using the statistical software R
4.,0.2 (R Core Team, 2020), Significant differences were tested using a
linear mixed-effects model with G2, CO3? and heat production rate as
dependent variables and time, fertilizer status and experimental sites as
explanatory variables. Models were fitted to the data using the “lme4”
package (Bates et al,, 2008). For the '?C0O, data, we integrated the time
factor for repeated measurements by crossing it with the treatment
structure, including an interaction effect between site and site-time
point and a random effect of the individual microcosms in which the
CO», measurement took place (Piepho et al,, 2004), We carried out a
three-way anova to identify significant effects (p < 0.05) and then
compared the estimated marginal means. Normal distribution and
variance homogeneity were tested by means of residual diagnostic plots.
If an interaction with time point was significant, we evaluated simple
contrasts per time point level.

2.10. Dynamic model

We simulated the coupled fluxes of carbon and energy with an or-
dinary differential equation (ODE) model of microbial growth after the
addition of '3C-labeled cellulose. The model is based on similar formu-
lations by Chakrawal et al. (2020, 2021) and Endress et al. (2024a),
which were extended to represent Be dynamics. In total, the model
features 5 major carbon pools including the concentrations of substrate
(*C-cellulose) as well as microbial biomass and CO», each with separate
pools for 12¢ and 13C. In the model, microorganisms grow aerobically on
the added 13C-cellulose following Monod kinetics with a threshold
concentration, forming new ?C-biomass as well as *C-CO,. To capture
potential priming, microbes also utilize native sail *2C-SOM to form new
12¢.biomass and 12G-CO, via a second aerobic growth reaction. Model
SOM is characterized by its average degree of reduction y50y, Which is
incorporated as a {ree parameter. Counteracting the growth reactions,
total biomass (12(3 b 13(]) is constantly consumed to fuel endogeneous
maintenance respiration, releasing both 12¢. and 1¥c-CO,, and finally
gets turned over to necromass at a specific rate,

In addition to the distinction between 12C- and 13C-biomass, the
model also partitions the total biomass into an active fraction, which
performs both growth and maintenance reactions, as well as an inactive
fraction, which only performs maintenance. Changes in the activity state
are modeled via the index of physiological state framework and depend
on the availability of eellulose as the primary substrate (Panikov, 1996;
Blagodatsky and Richter, 1098), Note that this partitioning implies that
the same proportion of 12C- and 1C-biomass is considered active at any
time.

This ODE model was implemented in Python (version 3.9.18) and
numerical integration was carried out using the Radau method of the
solve ivp function in the Scipy package (Virtanen et al, 2020). The
model was calibrated against the measured pools of total and
13C—bioma[ss, cumulative total and 13(3—005 as well as the heat pro-
duction rate. Parameter optimization was performed for each individual
soil, i.e, we obtained eight calibrated parameter sets in total for the
fertilized and unfertilized soils of the four field experiments. The opti-
mization was carried out numerically using the Levenberg-Marquardt
algorithm as implemented in the minimize function of the lmfit pack-
age (Newville et al., 2023). Initial conditions for substrate and biomass
concentrations were chosen according to the measured experimental
values and lower and upper bounds were provided for individual pa-
rameters. The full ODE model as well as a detailed description of the
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calibration routine is presented in the supplementary materials and
methods (SI Text). A list of all variables and parameters with units is
given in the supplementary material (Supplementary Table S4).

3. Results

3.1. BCuc content and 3CO, release

The ¥Cp;c content began to increase after 3 days and was compa-
rable in its dynamics for all soils and fertilizer status. Averaged over the
fertilization status, since we observed no significant difference, the
maximum Gy content at day 16 ranged from 20 ug g ! soil at TH to
100 pg g ! soil at QA (Fig. Za-d; dashed lines), i.e. there was a signifi-
cant increase from the baseline value of about 0.0017 ug g Lsoil on day
0 (p < 0.05; Fig. 2a-d).

This increase corresponds to approximately 10% (TH) and 20% (QA)
of the initially added cellulose-C. After day 16, growth was counter-
balanced to some extent by continued ?C losses from the biomass pool
and fell back to baseline by day 64 (Fig. 2a-d). Mierobial growth was
accompanied by an sigmoidal increase in cumulative **CO, release,
whereby after a lag phase of about 3 days, an exponential phase
occurted until day 16, which then turned into a saturation phase
(Fig. 2e-h; dashed line). The statistical comparison of the cumulative
130, release at the end of incubation showed no statistical difference
between the fertilized and unfertilized treatment and ranged on average
from TH-UF with 22,5 = 11.7 to 261.2 + 131.7 yg g ! soil in RE-FYM
(Fig. 2e-h). The general increase in biomass (C;.) and respiration
(COy) evolved at a comparable rate as the B3¢ content (Fig. 2; solid
lines).

3.2, Priming effect

The percentage of labeled cellulose-C in relation to the total CO,
release, corrected for the CO5 coming from the control soil, ranged from
37% (TH-UF) to 79% (RE-FYM) on day 64. After cellulose application,
we observed a positive priming effect in all soils. PE started to increase
immediately after cellulose application and was higher in the fertilized
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soils and in the soils with a higher C content (QA, RE). In the fertilized
soils, the PE ranged from 74.5 g g 1s0il (TH) to 182.9 negg 1 50il (QA).
At the unfertilized sites, PE ranged from 38.4 to 131.7 ug g ! soil in the
same order. The priming effect as a percentage of C added as cellulose
showed an inverse pattern compared to the total amount of primed C,
with values ranging from 10% in the RE-FYM to 32% in the TH-UF
(Fig. 3).

3.3. Combustion enthalpy of SOM

The combustion enthalpy determined by combustion calorimetry in
the unfertilized variants tended to be higher than in the fertilized soils,
ranging from 436 + 143 kJ mol C in QA to 732 + 30 kJ mol 1Cin TH.
In the fertilized soils, the energy content ranged from 306 £ 106 in DI to
439 + 21 kJ mol G in TH. TH-UF was therefore the soil with the
highest SOM combustion enthalpy according to combustion calorimetry
(Supplementary Fig. 83, Table S5). Combustion enthalpy values deter-
mined by TG-DSC tended to be higher than those determined by com-
bustion calorimetry, but followed the same pattern across soils. The
energy content ranged from 397 + 12 kJ mol 1C in QA to 820 + 181 kJ
mol 1C in TH for the unfertilized soils and from 407 + 177 kJ mol 1Cin
QA to 609 + 40 kJ mol 1C in TH in the fertilized soils. Thus, TH-UF was
also the soil with the highest SOM combustion enthalpy when deter-
mined via TG-DSC.

3.4. Heat production rate and specific heat

The heat production rate P, increased exponentially without any
significant lag phase, peaking after about eight days and falling back to
the initial value after about 20 days, indicating that growth took place
up to day eight (I'ig. 4a; the apparent specific growth rate is included in
Supplementary Fig. 55). On fertilized sites, the maximum P;ranged from
the lowest value at DI with 7.0 & 1.7 uW g ! to the highest value of
21.73 + 2.2 uW g 1 (Fig. 4a-d) at RE, which was reached after eight to
ten days. In the unfertilized soils, P; at the maximum was significantly
reduced in RE and QA (p < 0.01) and peaked at 14.73 + 1.56 yW g !
(—32.21%) and 12.50 + 1.5 yW g ! (—23.8%).

In TH and DI there was no statistically significant difference between
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Fig. 2. Microbial biomass content (Cy;., a-d) and cumulative CO; release (e-h) of all soils. Dots and solid lines correspond to total C measurements and model fits,
respectively. Triangles and dashed lines correspond to '°C measurements and model fits. Results for the fertilized soils are shown in black, results for unfertilized soils
3). (For interpretation of the references to colour in this figure legend, the reader is

are shown in red. Data shown represent mean values and standard deviation (n
referred to the Web version of this article.)
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Fig. 4. Heat production rate P, (a-d) and cumulative heat @, (e-h) for all soils (black dots  fertilized, red dots  unfertilized). The corresponding lines represent the

mechanistic model fit. Shaded areas represent standard deviation (n  3). (For interpretation of the references to colour in this figure legend, the reader is referred to
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fertilized and unfertilized soils. In these less active soils, in which we exponential increase between three and eight days, which is reflected in
could not observe this increase up to about 20 W g !, the TAM Air the higher standard deviation (Iig. 4a-d). The same dependence on
operated at the detection limit (0-10 y{W g 1, based on the fluctuations fertilization status as observed for P, was also observed for the specific

in the measurement of the heat production rate) even in the phase of heat Q; (Fig. 4e-h). After 30 days, 16.5+21J¢g land13.84+3.4J g 1
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Fig. 5. Calorespirometric ratio over 35 d following cellulose amendment for all soils (black fertilized, red  unfertilized). The dotted line is the expected calo-
respirometric ratio upon complete oxidation of cellulose (406 kJ mol™ GO,-C). Dots correspond to the measured data and respective lines represent the output of the
mechanistic model. Data shown represent mean values and standard deviation (n  3). (For interpretation of the references to colour in this figure legend, the reader
is referred to the Web version of this article.)
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were attained in QA-FYM and RE-FYM, whereasonly 11.2 4+ 1.7 (—32%;
p<00l)and 98 £52J¢g 1 (—29%; p < 0.01) were reached at the
unfertilized sites (Fig. 4e-h). Again, due to the measurement uncertainty
of the heat production rate in TH and DI and the resulting high standard
deviation (Fig. 4e-h), no significant difference between the fertilized
and unfertilized treatments could be determined.

3.5, Calorespirometric ratio

The CR calculated from the ratio of cumulative heat production and
respiration started to increase during the exponential growth phase
(0-16 days) from about 250 to about 540 kJ mol ! at least for QA and
RE, regardless of the fertilization status (Fig. 5).

At DI and TH, this relationship between heat production and respi-
ration was more difficult to establish, due to the low general activity,
making it difficult to correctly determine the heat production. Once
more, this is reflected in a high standard deviation. Nevertheless, the
pattern of increase was still discernible, but the value of 700 kJ mol !
achieved in the unfertilized TH is exceptionally high (Fig. 5).

3.6. G and energy use and storage

The metries describing C and energy use and storage in the soils were
only calculated up to 32 days, because at this point the heat production
rate approached very low levels, increasing the uncertainty of the data.
When considering the net carbon balance over time, there was a
decrease of CB, from its initial value of 1 down to 0.5-0.7 (Fig. 6). The
EUE ¢ showed almost identical dynamics, also falling from around 1 on
day 0O to around 0.55 on day 32 (Fig. 6).

When the net balance measures CBper and EUEpe were compared
with CUEy, and CUERg, CBpe and EUE,, were significantly higher (p <
0.001) during the first days (day 0 - day three). Over time, the CUEgq
derived from the calorespriometric ratio at times exceeded the CB; and
EUE, ¢, but the CUEL was always lower than the net C and energy bal-
ance. CUERq decreased until days eight and ten down to 0.19 to 0.65 in
most of the soils. It should be noted that Eqn. (14) does not permit to
estimate the CUEgq for CR values above 406 kJ mol 1 which substan-
tially reduced the number of CUEgq estimates. CUE was between 0.3
(DI-UF) and 0.71 (QA-FYM) on day four. As expected, the CUEL
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decreased after day 16 when the concentration of labeled biomass had
peaked on day 16 while *?*CO, losses continued (Fig 6).

In addition to analyzing CR as a function of time (Fig. 5), we describe
here the relationship between CUE; and CR (Fig. /).

We use CUEL because CUEgq is directly derived from the CR and
therefore not a CR-independent measure of CUE. The two components of
the CR (heat and CO, release rates) vary to different degrees and
therefore allow conclusions to be drawn about C or energy limitation of
microbial growth. Specifically, CR values that decrease with CUE and
are limited to below the combustion enthalpy of biomass (=485 kJ
mol 'C using our assumptions) are taken to indicate energy limitation,
whereas CR values that increase with CUE and are limited to values
above this threshold are taken to indicate C limitation of growth (Fig. 7).
CUE was found to decrease with increasing CR up to day eight across
soils, When CUE is at its maximum, about 0.5-0.75, and not much heat is
released, CR is lowest in the range of 200-300 kJ mol 1. On the con-
trary, when growth stops (i.e, CUE 220,18 to 0.25 after 32 days), CR is
maximised. On the other hand, we also observed CR values around or
exceeding the combustion enthalpy of cellulose (406 kJ mol 1C) and
biomass (485 kJ mol 1), in particular during the later stages and in the
SOMrich soils of RE and QA (Fig. 5). This can be explained by the use of
an additional energy and C-source such as SOM that is more reduced
than cellulose and would comrespond to C limited growth in these
instances.

3.7. Model behavior and performance

The dynamic model adequately reproduced the time series of CO,
and heat production as well as biomass growth and turnover over the
course of the incubation for all soils. In particular, the simulated com-
bination of growth reactions using either added 13¢_cellulose or native
12¢.80M as substrates properly captured the dynamies of both 12C and
13¢ pools (Fig. 2). Moreover, the sum of their corresponding heat con-
tributions was in good agreement with measured total heat production
rate (Fig. 4), although the experimental results showed high variance in
the SOM-poor soils (TH and DI).

This close coupling of carbon and energy release was also reflected in
the simulated CR, which was generally aligned with experimental esti-
mates, especially in the SOM-rich soils (RE and QA, Fig. 5). Overall, the
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cumulative model CR showed less temporal variation than the obser-
vations and was instead dominated by its value during the growth phase.
The two soils with the lowest SOM content, i.e., the unfertilized soils of
TH and DI, were an exception to this, with cumulative CR increasing and
decreasing from its initial value over time, respectively.

As suggested by the close model fit to the cumulative data, CBger and
EUE,., as well as C-CUE; estimates obtained from simulations
resembled their experimental counterparts (Fig. 6). In addition to these
directly obtainable experimental measures, model simulations also
allowed the estimation of 12C-CU]E'.L, i.e,, modeled '2C,,;, formation
relative to modeled SOM consumption, as well as total CUEy, i.e.,
modeled net Cpj. formation relative to the combined modeled con-
sumption of cellulose and SOM (Supplementary Fig. 54). These modeled
measures showed generally lower (TH, QA) or similar (DI, RE-UF)
12¢ _ CUE relative to 'C— CUE, with the exception of RE-FYM,
where growth on SOM was modeled as more efficient. The analysis
also revealed a temporal pattern of biomass formation being first fueled
by cellulose consumption, followed by later contributions due to SOM
utilization (Supplementary Fig. $4). In terms of net growth, the exper-
imental cellulose amendment resulted in an increase in total Cpie after
32 days in all soils except TH, where biomass levels dropped to (TH-UF)
or below (TH-FYM) their initial values within that time span (Fig. 2a-d).

In terms of the calibrated parameter sets, optimized values indicated
that specific growth rates gmgx fueled by cellulose exceeded those fueled
by SOM in all soils (Supplementary Fig, 85), and jmq, was higher in the
unfertilized soil for all sites except RE, where this trend was reversed.
Finally, the modeled degree of reduction ygops of the consumed SOM
were in good agreement with experimental measurements derived from
the average energy content of the bulk SOM determined via bomb
calorimetry and TG-DSC in most soils (Supplementary Fig. S3, Fig. S6).
QA and DI-UF presented notable exceptions, with higher (QA) and lower
(DI-UF) values compared to experimental estimates, respectively.

4, Discussion

It is established that the CUE, CR and microbial growth kineties can
bereliably derived from calorespirometric measurements for growth on
rapidly metabolized substrates, especially under aerobic conditions
(Yang et al,, 2024; Von Stockar et al,, 2006; Barros et al,, 2000; Chak-
rawal etal,, 2020). In the following, we will discuss to what extent CR is
related to microbial growth on added cellulose as a slowly degradable
substrate compared to glucose, how a possible priming of SOM affects
CR and how the measurement accuracy of calorimetry affects CUE and
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EUE,, estimates as well as CR compared to the determination of mi-
crobial CUE by other methods. Finally, we address technical issues that
arise when combining the energy and carbon flow in the CR framework.

4.1. The CR reflects the coupling of energy and carbon flux during
microbial growth after cellulose amendment

Across the studied soils, our observed CR values in the range of
200-540 kJ mol ! CO»-Care broadly consistent with aerobic growth on
cellulose, They are comparable to the findings of previous studies that
reported CR values during microbial growth on glucose with yields of
0.5-0.75, characteristic of highly efficient aerobic growth (Hansen et al,,
2004; Chakrawal et al.,, 2021). Since glucose units form the primary
structure of cellulose, the metabolic processes involved in microbial
growth on these substrates are very similar, apart from the hydrolysis
required for the extracellular depolymerization of the cellulose
(Blagodatskaya et al.,, 2014; Popovic et al., 2019; Sgrensen et al., 2015;
Datta et al.,, 2017). Given this context, the theoretical framework pro-
posed by Chalkrawal et al. (2020) for the variation of the CR of different
metabolic pathways of glucose (and SOM) utilization can be applied to
our data. The principal distinction is that we measured a combustion
enthalpy of A Hgaltese = 406 kJ mol 1 ¢ for the cellulose used in this
study, in contrast to the literature value of AcHghicose = 469 kJ mol 1¢c
for glucose, If the growth reaction fueled by cellulose was the only
process contributing to observed CO» and heat produetion, the range of
possible CR values would be fully determined by this combustion
enthalpy along with the microbial CUE and the degree of reduction yam
of the newly formed microbial biomass (Eqn. (14)). Assuming a biomass
composition of C{Hy 57100.420Np 143 as suggested for soils in this context
(Yang et al, 2024), cellulose represents a more oxidized substrate
relative to biomass, i.e., vedidese < ¥amp, and the growth reaction is
characterized by a decrease in CR for increasing CUE (Fig. 7), with a
maximum of CR = A Hetose = 406 kJ mol 1¢ for pure catabolism (i.e.,
CUE = 0, Kasmer et al., 2024), Minor deviations from this predicted
CR-CUE relationship may be attributed to variations in the actual
biomass composition and thus in yyp as noted by Chakrawal et al,
(2020). However, we observed CR values well above and below this
theoretical prediction (Fig. 7). Yang et al. (2024) also reported an
average CR of 577.7 kJ mol 1 ¢ obtained from cumulative heat mea-
surements and 567.6 kJ mol ! C obtained from the corresponding heat
production rate after glucose addition to the DI-FYM soil, well above
their theoretical predictions, and pointed to additional SOM utilization
or partial anoxic conditions as potential explanations of this
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observation. Our results using labeled ®*C-cellulose confirmed such
substantial SOM utilization over the course of the incubation and asso-
ciated observed deviations from the predicted CR-CUE curve. Critically,
this predicted CR-CUE relationship is only applicable to the pure growth
reaction on cellulose, and will be altered by additional contributions of
heat and CO; from the growth reaction fueled by SOM, which is char-
acterized by its own degree of reduction and yield coefficient. Following
Chakrawal et al. (2020), the simple relationship predicted for cellulose
corresponds to energy limited microbial growth, which releases rela-
tively more C than heat as efficiency increases. In our data, we observe
this pattern only during the ea1ly stages of the incubation across soils (at
least up to day eight after substrate addition). However, this pattern is
no longer evident later during the incubation, especially in the SOM-rich
soils and in TH-UF (Figs. 5 and 7). For all of these soils, our model
predicts the utilization of more reduced SOM (Supplementary Fig. 86)
that corresponds to C-limited growth in this framework, and our findings
could thus be interpreted as an increasing contribution of SOM utiliza-
tion after the cellulose addition in these soils.

In addition, we observed no net growth and lower activity for alarge
fraction of the later stages of our incubations (Figs. 2 and 4). If no further
growth occurs during this time, the observed CO» and heat production
will primarily result from maintenance and turnover processes (Manzoni
et al,, 2012) and thus again deviate from the CR of the growth reaction.
In our dynamic model formulation, this slow conversion of biomass to
CO» and heat due to maintenance predicts a CR of ~490 kJ mol 1 C
equal to the combustion enthalpy of microbial biomass (Chakrawal
et al, 2020), which is in good agreement with the observed values
especially in the SOM-rich soils (RE and QA, Fig. 7). However, future
studies will benefit from a more nuanced consideration of the carbon
and energy flux due to maintenance and turnover during the retardation
and onset of starvation following the growth phase.

In principle, deviations of the CR from predictions for the aerobic
growth reaction may also be caused by anaerobic metabolism
(Chakrawal et al.,, 2020; Endress et al., 2024a; Barros et al., 2016).
However, total O, concentration was not limiting in our vials, as the
observed CR deviations occurred in incubations that differed strongly in
the amount of added C and cumulative CO5 release. Similarly, the for-
mation of substantial anoxic microsites seems unlikely given the slow
rate of cellulose decomposition in our samples, whereas such sites might
be important in the case of more labile substrates and in natural, intact
soils (e.g., Lacroix et al, (2022); Keiluweit et al. (2016)),

4.2. 12C-labeling and dynamic modeling reveal a substantial priming
effect

We observed a substantial PE after cellulose addition across soils,
which cover a wide range of SOM contents (Tables S1 and 52) as well as
total rates of C addition (Table 1) and were deliberately chosen for this
study. The release of 1260y, presumably fueled by the degradation of
native SOM, accounted for a large share of total CO emissions in all of
these soils (Fig. 3). In absolute terms, the observed PE is consistent with
the relationship described in the literature between the input of 12C-
labeled plant residues and the primed CO, — C (Blagodatskaya et al.,
2014; Perveen et al.,, 2019). Blagodatskaya et al. (2014) ascribed the
pronounced increase in the amount of active microbial biomass that
occurs during the intensive phase of cellulose degradation to the
elevated enzyme activity for the hydrolysis of chitin, cellulose and
hemicellulose, which are also involved in the decomposition of SOM.
While the absolute amount of primed C showed the expected relation-
ship of increasing PE with native SOM content and amount of added
cellulose across soils (Fig. 3), the PE relative to the amount of added C
showed a more variable pattern (Fig. 3), ranging from 8.7% (RE-FYM) to
31% (TH-UF). In particular, the amount of degraded SOM per added
substrate was strongly elevated in the unfertilized variants of the
SOM-poor soils at TH and DI when compared to their fertilized variants
(p < 0.05), whereas no such difference was observed in the SOM-rich
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soils, While the C content in the fertilized soils is always slightly
higher compared to the unfertilized counterparts for all sites, this is not
true for the C/N ratios (Tables S1-52), Nevertheless, a C/N ratio of 7-9
indicates a good nutrient supply in all soils. It is conceivable that the
fertilisation effect of farmyard manure could be partly offset, as Arcand
etal, (2017) noted that the long-term application of organic material (e.
g. straw) can reduce the N availability. As a result, in addition to the
joint decomposition of soil organic matter and cellulose, additional N
mining could have been stimulated, with potential further release of CO,
and heat (Arcand et al., 2017; Chakrawal et al., 2021).

Combining the measured heat production with the carbon-based
considerations offers further insights into the nature of the degraded
SOM. Specifically, our observed CR values are consistent with substan-
tial priming, given the deviations from predictions for the simple aerobic
growth reaction fueled by cellulose. For example, an elevated CR, in
particular above >406 kJ mol 1 ¢, would indicate heat and CO» con-
tibutions from the degradation of relatively reduced, energy-rich SOM,
whereas low CR values might indicate the utilization of more oxidized
and energy-poor SOM (Chakrawal et al., 2020; Barros, 2021). We
observed both comparatively high and low CR values over the course of
the incubation experiments, potentially reflecting the varying energy
contents of SOM in the studied soils, which ranged from 305 to 732 kJ
mol ! C when determined via combustion calorimetry and from 397 to
820 kJ mol 1C when determined via TG-DSC (Supplementary Fig. $3),
More specifically, the parameter calibration of the dynamic model
suggested a degree of reduction of the SOM consumed by microbes that
is consistent with the measured energy contents of the bulk SOM (e. g, in
the RE and TH soils as well as in DI-FYM, Supplementary Fig. 56)., The
TH-UF soil, which is characterized by both the lowest organic carbon
content (Supplementary Table S2, Table 53) as well as the highest SOM
energy content (Supplementary Fig. S3, Table 55) of all soils, provides a
compelling illustration, with the model suggesting an extemely high
vsom = 7 that is in line with our experimental results (Supplementary
Fig. 56). This soil also showed the most pronounced CR deviation,
consistent with microbial utilization of such highly reduced SOM
(Fig. 5). In contrast, we found discrepancies between the measured en-
ergy content of the bulk SOM and the modeled ygop of microbially
consumed SOM in some of the other soils. In the QA soils, the micro-
bially degraded SOM was predicted to be more reduced than measure-
ments of bulk energy contents would suggest, whereas the opposite was
true in the DI-UF soil (Supplementary Fig. S6). In both cases, these
discrepancies are consistent with observed CR deviations (Fig. 5) and
may indicate a preferential use of SOM components that differ from the
bulk SOM in terms of their average DR, although our data are insuffi-
cient to test this interpretation.

4.3, CUEs are indicative of cellulose metabolism, while CBpe and EUE
reflect the balance of C and energy after the cellulose application

Our experimental and modeling evaluation of various estimators for
the fate of substrate-derived C and energy revealed systematic differ-
ences between these approaches as well as their respective limitations.
The interpretation of CUE based on *C-labeled substrates strongly de-
pends on the considered time scale. While the efficiency of the imme-
diate substrate use is reflected by the population CUE, the ecosystem
CUE also considers processes such as microbial recyeling at a longer time
scale and is usually declining with time compared to the population CUE
(Geyer et al,, 2016), Notably, the B¢ based CUE; (Eqn. (13)), which we
consider to be the most direct estimate, consistently yielded lower effi-
ciencies than the other methods, ranging from 0.18 to roughly 0.7 and
the decrease over time and across soils reflects the transition from the
population to the ecosystem CUE. Nonetheless, these values indicate
efficient aerobic growth in all incubations, and a lower efficiency than
obtained for growth on more labile substrates such as glucose can be
expected for the more complex cellulose (Manzoni et al., 2018; Oquist
et al,, 2017).
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Efficiency estimates based on CUERq (Egn. (14)) turned out to be
problematic. First and foremaost, its derivation rests on the assumption
that the CR primarily reflects the CO, and heat production of the aerobic
growth reaction fueled by the added substrate (Hansen et al., 2004;
Geyer etal,, 2019). Yang et al. (2024) recently questioned whether this
condition was met even in the case of glucose amendment, and it was
certainly not met in our experiment, where we observed substantial
SOM decomposition as well as substantial periods primarily character-
ized by maintenance and turnover processes. Accordingly, we obtained
CR values (namely, CR > 406 kJ mol 1 ) that Egn. (14) maps to
nonsensical (< 0 or > 1) CUE estimates for several time points in many
of our incubations, as did Yang et al. (2024) in their recent experiments
with glucose. Moreover, CUEggq estimates in the interval between 0 and 1
may still not reflect the actual growth efficiency due to, e.g., the impact
of SOM utilization. For example, low CR values in the range of 200 kJ
mol 1¢C (e.g., as seen in the TH and DI soils, Fig. 5) correspond to a
CUER,q exceeding ~0.9. Such values would indicate that the C is chan-
nelled almost exclusively to anabolism (Gever et al, 2016), which is
beyond the physiological limits imposed by the energy demands of these
reactions that need to be fueled by corresponding catabolism
(Chakrawal et al., 2020), Similarly, biosynthesis is only possible when
growth-independent energy requirements are met and a sufficient sur-
plus of C and energy is available (Ingraham et al, 1983), Overall,
maximum efficiency is limited to around 0.85 by respiration losses, even
for the most reduced and energy-rich compounds (Gommers et al.,
1988). Another example of an implausible pattern predicted by CUEgq
can be seen in the DI-UF soil, which is characterized by consistently
decreasing CR values that are mapped to increasing CUE estimates over
time by Eqn. (14), in contrast to the 13¢.based CUEy and the growth
dynamics seen in the biomass time series (I'ig. 2a-d). Overall, we
conclude that CUEgq is only an appropriate estimator of growth effi-
ciency if the underlying CR values can be reasonably assumed to pri-
marily reflect the growth reaction on the added substrate. Accordingly,
we observed the best agreement of this estimate with CUE; during the
phase of intense, cellulose-fueled growth, at least in the SOM-rich soils
(RE and QA, Fig. 6).

The susceptibility of CUEgq to processes such as priming translates to
CBper (Eqn. (15)) and EUE,, (Eqn. (6)), which can be considered as
storage efficiencies of the whole soil system (Manzoni et al., 2018) and
are purely based on the cumulative release of CO5 and heat, respectively.
They continuously decreased from their initial value of 1 over the course
of the experiment (Fig. 6), reflecting a continuous loss of C and energy.
Notably, the use of 13¢ labeled cellulose enabled us to disentangle the
contributions of substrate and SOM degradation to the loss and storage
of both C and energy over the course of a long incubation using cellulose
as a less degradable substrate. This revealed substantial priming and
preferential use of SOM (Supplementary Fig. 56), but also retention of
undecomposed cellulose across soils, highlighting the potential of
combining 13¢- and energy based metrics as emphasized by Kastner et al.
(2024), Both storage metrics can parallel CUE in the case of rapidly
metabolized substrates such as glucose, which are quickly and
completely converted to microbial biomass, CO, and heat (Hagerty
et al., 2018; Wang and Kuzyakov, 2023; Yang et al., 2024; Endress et al,,
2024a). For example, glucose may be taken up by microbial cells within
few minutes without being immediately metabolized (Geyer et al.,
2019). In such a case, both metrics would be close to 1 and start to
constantly decrease while the glucose is being metabolized. However, it
is important to consider that CUE focuses on the efficiency of the
anabelic use of the substrate that was taken up, while CBye focuses on
the C retention within the whole soil system. The assumption of a
complete rapid utilization of the added substrate is not applicable to our
incubations, in which considerable amounts of cellulose remained in the
s0il by the end of the incubation after 64 days and considerable priming
of SOM was observed, Under such circumstances, which may be more
reflective of litter inputs in natural soils, CB,e; and EUE,; differ from the
estimated CUE (Fig. 6) both conceptually and numerically, as evidenced

11

52

Soil Biology and Biochemistry 202 (2025) 109691

by measured biomass increases (I'ig. 2) and CUE|, especially early
during the incubation and the exponential growth phase. Thus, CBye
and EUE, can be taken to reflect the temporal evolution of the net
carbon and energy remaining in the soil after substrate addition. From
this perspective, our results indicate a net accumulation of carbon (and
energy) in the soil after 32 days, as the combined CO» (heat) losses from
both added cellulose and native SOM do not exceed the amount of
initially added carbon (energy) within the time span of the experiment
(i.e., CByuetr, EUEL > 0). While the interpretation of these value is thus
more akin to astorage efficiency (Manzonietal,, 2018), they themselves
do not reveal the nature of the carbon (energy) remaining in the soil, e.
g., as undecomposed cellulose, biomass, or necromass.

A more complex understanding of the connection between CR and
CUE beyond the simple correspondence suggested by Eqn. (14) can be
leveraged to interpret the experimental patterns. This has been
demonstrated theoretically for the case of SOM utilization and anaerobic
pathways (Chakiawal etal,, 2020) as well as using process-based models
calibrated to experimental data, which explicitly considered anaerobic
and maintenance processes (Endress et al., 2024a). Likewise, the results
of our model calibration offer the most nuanced interpretation of the
efficiency and carbon-energy coupling over the course of the experi-
ments. First, CBy e, EUEe and CUE estimated from model output are in
good agreement with those obtained from data, although model CUEL
tended to be slightly lower than experimental values due to the inclusion
of necromass in the model carbon balance, which is missing from Eqn.
(13) (Fig. 6). The model provides a mechanistic description that shows a
plausible and consistent interpretation of the observed dynamics of all
carbon pools in combination with the total heat production, despite the
failure of a simple estimate like CUEpq in Eqn. (14). In addition, the
model offers dynamic estimates of the actual growth efficiencies, i.e., the
ratio of (cumulative) biomass formation to the (cumulative) amount of
consumed substrate, both for 1C and the combined °C + '*C pools
(Supplementary Fig. S4). These include negative values corresponding
to net loss of(12C or total) biomass compared to initial measured values,
which is also evident from the experimental biomass time series, and
reveal periods of highly efficient growth on SOM, e.g., in the RE-FYM
soil (Supplementary Fig. 54). Overall, the model nonetheless suggests
that growth was predominantly driven by consumption of the added
cellulose in most soils, in particular early during the incubation.

While the use of a labeled subswate is essential for this kind of
detailed model calibration and greatly enhances model performance, the
calibrated model parameters (e.g., ysoam) and behavior should still be
treated with caution. In particular, models of soil C eycling such as the
one employed here frequently face substantial equifinality and limited
parameter identifiability (Sierra et al.,, 2015; Marschmann et al., 2019).
Moreover, our model formulation relied on a simple threshold param-
eter to capture the observed levels of undecomposed cellulose remaining
in the soil, and we used a simple conversion of biomass to CO, and heat
to represent the bioenergetic coupling during maintenance, as opposed
to a more complex process like continued SOM use to fuel maintenance
requirements. The more detailed characterization of such processes as
well as a systematic analysis of model parameter identifiability in the
presence of labeled substrates will be critical next steps for the proper
representation of microbial-explicit C eycling in biogeochemical models,
which remains challenging (Wieder et al,, 2015).

4.4, Technical constraints in the combination of C and heat fluxes to
dissipate the CR

Although Eqn. (14) from Hansen et al. (2004) shows a relationship
between CR and CUE, it is limited to the exponential growth phase
fueled by cellulose consumption and is therefore not applicable during
maintenance processes or in the case of simultaneous utilization of
substrates with different degrees of reduction. As stated by Yang et al.
(2024), the aceuracy requirements of this model for the CR and the
actual determination errors of currently available insotuments, such as
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TAM Air, imply that CUE can only be inferred from the CR in a best-case
scenario. If the heat measurement takes place in low-activity soils at
levels close to the detection limit, the stability of the baseline for
long-term experiments (e.g. over weeks) can no longer be guaranteed,
and it may even be in the negative range (Supplementary Fig. S2). For
TH and DI, a subsequent baseline correction had to be carried out in
order to obtain realistic heat production rates.

5. Conclusion

Measures of microbial CUE and EUE are frequently based on the fate
of added substrates, thus neglecting microbial use of native SOC. We
extended these concepts to the net balances of C (CByer) and energy
(EUEe) of the whole soil system, which also integrate additional C and
energy fluxes due to microbial SOC consumption. They thus quantify
whether the system loses or gains C and energy after substrate addition
and complement traditional measures of growth efficiency. Application
of these concepts to eight cellulose-amended fertilized and unfertilized
arable soils demonstrated a net C and energy gain in all soils after 32
days of incubation, despite substantial SOC priming in all soils as indi-
cated by 1:']C—latbelinc.,,r. The calorespirometric ratio proved to be a useful
metric to link the C and energy fluxes in the presence of priming,
showing that the initial energy limitation of microbial growth fueled by
cellulose was alleviated by SOC consumption during later stages of in-
cubation. Dynamic modeling further suggested a close connection be-
tween microbial SOC utilization and the average energy content of SOC
in the studied soils. The applied approaches are well suited for the joint
evaluation of C and energy fluxes in soils with high microbial biomass
and SOC content, but face some limitations in soils with low microbial
activity, highlighting a need for further methodological development.
Overall, we demonstrated how a combination of experimental and
modeling techniques can disentangle the complex dynamics of microbial
substrate and SOC utilization from a bicenergetic perspective.
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Fig. 1: lllustration of major C and energy fluxes in typical incubation experiments. Substrates
added to soil as well as native SOM are utilized by microbes to fuel both their growth and
maintenance requirements (here termed exogenous maintenance). Alternatively, microbes may
consume their own biomass to sustain themselves if insufficient resources are available (here
termed endogenous maintenance). In an aerobic setting, all these processes release heat and
CO:; at specific rates. Thus, their ratio (CR) can be leveraged to study the coupling between C

and energy dynamics in the soil system over time.
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Fig. 2: Simulated patterns of heat and CO- release and CR after substrate addition with (black)
and without (red) additional consumption of SOM (positive priming) a In a plot of cumulative
heat release against cumulative CO- release, the diagonal corresponds to complete oxidation of
the added substrate. Deviations reveal the presence of other processes, such as efficient
aerobic growth fueled by added substrate (magenta), growth fueled by highly reduced SOM
(orange), or biomass consumption for endogenous maintenance (teal). b The CR calculated
from cumulative values (solid black and red) resembles the cumulative curves shown in panel a.
In contrast, the CR calculated from the corresponding rates shows much more pronounced
variations and reflects shifts in the dominant processes over time. ¢ |dentical CR values can
result from different combinations of substrate energy content (measured as relative degree of
reduction, y¢) and growth yield (¥) in a simple growth reaction. Thus, the underlying process
cannot be inferred from CR alone. The black line indicates the maximum theoretic yield based

on simple thermodynamic considerations.
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Fig. 3: Theoretical and simulated relationship between CUE and CR in the presence of

endogenous and exogenous maintenance. The presence of endogenous maintenance modifies

the relation between CUE and CR predicted for the pure growth reaction on glucose (blue) in

the direction of lower apparent CUE (black). In a model simulation (dashed red), glucose initially

fuels microbial exogenous maintenance during the initial lag phase (with CR equal to AH.,, =

A Hg). During the subsequent phase of efficient exponential growth, most C is channeled

through the growth reaction. After substrate depletion, microbes switch to endogenous

maintenance (with a CR of AH,,,;,), resulting in an eventual decline of microbial biomass during

the retardation phase by the end of the incubation. Details are presented in the methods

section.
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Discussion

The studies presented in this thesis investigated the temporal patterns of microbial C and
energy use under a wide range of conditions and across several different experiments and
models. In the following, I briefly summarize the results of each study and discuss the
relevance, limitations and future implications of these findings relative to the objectives of
this dissertation. In particular, I focus on aspects of (i) the CUE and EUE, (ii) the CR, (iii) the
bioenergetics of complex processes such as selective SOM utilization and trophic

interactions, and (iv) the process-based modeling of coupled C and energy fluxes.

Temporal variations in microbial carbon and energy use efficiency

The results of this thesis revealed how a diverse set of factors including O, and nutrient
limitation, priming of SOM and maintenance metabolism can impact microbial CUE and
EUE, and how these factors cause distinct temporal patterns over the course of typical soil

incubation experiments after the addition of labile substrate.
Transitions from aerobic to anaerobic metabolism cause a drop in efficiency.

In Endress et al. (2024a), both experimental and model CUE estimated from observed
biomass changes and cumulative CO, release followed a characteristic pattern of high
efficiency during exponential growth and low efficiency during lag and retardation phases
(Chapter 1, Fig. 5a). Using the dynamic model, we were able to identify two major
underlying causes of this pattern. First, more carbon was channeled through catabolism to
fuel maintenance requirements early and late during the incubation. Second, the transition
from aerobic respiration to anaerobic fermentations around the time of maximum activity
resulted in reduced efficiency due to the low biomass yield coefficients of fermentations
(<0.3) compared to that of aerobic respiration (>0.6). In general, the thermodynamic basis of
low microbial CUE under anoxic conditions is well understood, including its representation
in mechanistic models (e.g., Boye et al., 2017; Bajracharya et al., 2022; Zheng et al., 2024).
However, in our study, we were able to leverage this general understanding in a dynamic
modeling framework to disentangle and quantify the factors governing the temporal CUE

pattern over the course of a specific experiment.
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Moreover, the findings demonstrated the gradual onset of anaerobiosis in a typical, initially
aerobic, soil incubation characterized by a moderate moisture content. A possible
interpretation involves the formation and expansion of anaerobic microsites in the soil due to
the high O, demand of the growing microbial population. The importance of this mechanism
for soil C cycling and stabilization has increasingly been recognized, even in well-drained
soils (Keiluweit et al., 2016, 2017; Lacroix et al., 2022). A recent study also utilized
pathway-specific gene abundance to identify increased lactic acid fermentation and glycolysis
along with suppressed tricarboxylic acid cycle and pentose phosphate pathway activities as
the cause of lowered CO, emissions in an alpine meadow (Wang et al., 2024). The
combination of such an analysis with our bioenergetic approach offers a promising option to
comprehensively describe microbial transitions between metabolic pathways and their
consequences for C cycling. In particular, I highlight how the CR can be used to dynamically
monitor shifts in dominant pathways in a subsequent section (Utility and limitations of the

calorespirometric ratio).

Local nutrient limitation changes the kinetics, but not the efficiency of microbial

growth.

In contrast, the results of Endress et al. (2024b) revealed no signs of anaerobic metabolism,
and microbial growth was predominantly fueled by aerobic respiration of glucose.
Remarkably, we also found no significant effect of nutrient limitation on the overall
efficiency of the microbial population (Chapter 2, Fig. 4a). Instead, CUE and EUE attained
high values in the range of 0.5 to 0.7 consistent with efficient aerobic growth in all
treatments, and their relationship adhered closely to theoretical predictions. However, the
kinetics of microbial growth were significantly different under nutrient limitation, with
reduced and delayed rates of microbial activity (Chapter 2, Fig. 2). This is in line with
similar experimental results (Shi et al., 2021; Inagaki et al., 2023) and recent theoretical
advances on the interacting effects of substrate stoichiometry and bioenergetics (Chakrawal et
al., 2022). In addition, modeled patterns of microbial activity were similar to those in Chapter
1 (compare Chapter 1, Fig. 5b and Supplementary Fig. S3c to Chapter 2), implying a
comparable temporal pattern of CUE and EUE due to the effects of microbial maintenance.
Intriguingly, the model predicted an overall smaller active fraction in spatially heterogeneous
incubations, which is consistent with a reduced co-location of substrate and consumers

(Pinheiro et al., 2015; Babey et al., 2017). Combined with the constant efficiency across
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treatments, this implies that the growth of the soil microbes with sufficient exposure to
glucose was enough to compensate for the fraction of microorganisms located outside of
substrate hotspots, which remained inactive and only performed maintenance (Supplementary
Fig. S3b to Chapter 2). In contrast, theory indicates that this averaging across heterogeneous
conditions generally does not yield the same dynamics as observed in a homogeneous system
(e.g., Chakrawal et al., 2020a), and the precise conditions under which such a comparison is

or is not feasible in soil systems must be further investigated.
CUE estimates must account for the additional utilization of SOM due to priming.

The study of Wirsching et al. (2024) represents the most complex examination of temporal
CUE and EUE patterns in this thesis (Chapter 3, Fig. 6). Specifically, we were able to
disentangle the microbial utilization of added cellulose from that of native SOM through the
use of "*C-labeled substrate. This approach revealed a substantial positive priming effect of
up to 30% of the added substrate in all studied soils (Chapter 3, Fig. 2, Fig. 3), consistent
with reports in the literature (e.g., Blagodatskaya et al., 2014b; Perveen et al., 2019).
Microbial cellulose utilization was efficient during the exponential growth phase with CUE
values in the range of 0.4 to 0.5, slightly below those observed for glucose. The efficiency of
microbial growth on primed SOM was even lower (<0.4 on average), as expected for these
more complex compounds (Oquist et al., 2017; Manzoni et al., 2018; Ahamed et al., 2023).
Overall, dynamic estimates of the C and energy balances were in close agreement and
indicated a net increase of C and energy in all soils after one month, which was largely
caused by a substantial amount of undecomposed residual cellulose in the soil (Chapter 3,
Fig. 6). After accounting for the positive priming of SOM, this net storage of C was
equivalent to roughly half the amount of added substrate, with very low mineralization rates
by the end of the incubation (Chapter 3, Fig. 2). This highlights the fact that the fate of both
added substrate and native SOM must be considered to obtain an accurate assessment of the

net C gain or loss after substrate amendment (Dijkstra and Keitel, 2024).

Moreover, the temporal patterns of CUE of both cellulose and SOM utilization were
qualitatively comparable to those observed in the first and second chapters (Supplementary
Fig. S2 to Chapter 3), despite the fact that microbes grew on multiple substrates and growth
occurred over a much longer time period (weeks compared to days) due to the slower

microbial decomposition of cellulose. This highlights the broad applicability of our approach
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and indicates that general biological constraints steer the dynamics in the soil in our study

cases, as discussed below.
Changes in the active biomass fraction govern the overall dynamics of CUE.

The findings presented in Endress and Blagodatsky (in prep.) provide the theoretical
underpinnings of the ubiquitous pattern of CUE and EUE after single-pulse substrate
addition. In essence, the temporal dynamics of microbial CUE reflect those of the active
fraction of microbes, because only the active fraction channels C through anabolic reactions
to produce new biomass via growth. Since the dynamics of the » variable display a unimodal
pattern in all model simulations, so too does CUE. This unimodal pattern is consistent with
experimental measures of microbial activity such as respiration and heat production and
indicates an adequate performance of the index of physiological state . Other processes, such
as anaerobic pathways or SOM utilization, contribute additional variation to this fundamental
pattern. For example, the dominant active pathways determine the maximum efficiency that
can be reached by the active fraction of microbial biomass. Notably, the carbon and energy
flow is dominated by maintenance reactions of the inactive fraction during the initial lag
phase and the retardation phase after substrate depletion. These reactions do not yield any net
increase in biomass. In fact, the switch to endogenous maintenance in the absence of external
substrates eventually causes a negative CUE that results in a net decrease of biomass, as
observed in the results of Chapter 3 (Chapter 3, Fig. 2) and many similar experiments (for an
example including the application of the index of physiological state r, see Blagodatsky et al.,

1998).
Assessment of microbial CUE and EUE is limited by biomass quantification.

Given its definition as the fraction of C channeled through anabolism, a direct assessment of
CUE requires accurate estimates of microbial biomass in the soil. Yet, no universal and
unambiguous method to obtain such estimates exists (Blagodatskaya and Kuzyakov, 2013).
Chloroform fumigation-extraction (CFE, Vance et al., 1987) represents the most widespread
approach, yet its accuracy depends on the conversion factor between chloroform-extractable
C and soil microbial C (Glanville et al., 2016). This factor is frequently treated as a constant
(Capek et al., 2023), which neglects its documented variability across soils (Sparling and
West, 1988; Dictor et al., 1998) and propagates this uncertainty if novel approaches are

calibrated via the CFE method. Therefore, the development and improvement of biomass
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quantification procedures represent a major limitation to our quantitative understanding of

soil microbial CUE.

In our studies, we have used CFE-derived biomass estimates (Chapter 3) as well as estimates
derived from soil DNA content and substrate-induced respiration (SIR, Anderson and
Domsch, 1978, Chapter 1, Chapter 2) for the calibration of model parameters and initial
conditions. While DNA- and respiration-based estimates were in good agreement in Endress
et al. (2024a), growth estimates based on DNA increase were lower than those based on
respiration in Endress et al. (2024b), probably due to dynamic changes in the conversion
factor between DNA and biomass (Capek et al., 2023). This further highlights the need for
method intercomparison and development. Finally, our results corroborate the idea that
efficiency estimates based solely on the release of heat and CO, are generally problematic,
especially in the case of complex substrates and additional SOM utilization (Chapter 3,
Hagerty et al., 2018). Notably, heat-based estimates are currently the only practical method
for the estimation of EUE. Independent estimates of EUE do not only require the accurate
quantification of biomass but also of its energy content, making them even more challenging

to obtain (see Wang and Kuzyakov, 2023, for an overview of EUE calculations).

Information content and limitations of the calorespirometric ratio

Similar to the findings on CUE and EUE, our results revealed that the temporal patterns of
the CR can be leveraged to monitor dynamic changes in microbial metabolism over the

course of soil incubation experiments.
The CR can be used to identify shifts in metabolic pathways.

In Endress et al. (2024a), the time course of the CR was characterized by two distinct trends,
an initial increase to around 550 kJ per mol C followed by a sharp drop to around 230 kJ per
mol C around the time of peak activity (Chapter 1, Fig. 3). These values fall outside the
plausible range of values expected for aerobic growth on glucose and can be interpreted to
indicate a shift toward anaerobic metabolic pathways (Chakrawal et al., 2020b). Specifically,
a gradual onset of glucose fermentation to lactate followed by further fermentation to acetate
and propionate predicts a temporal pattern consistent with observations. Critically, this
interpretation is based on theoretical considerations instead of direct experimental evidence,

such as the measurement of fermentation products or the activity of specific enzymes.
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However, this hypothesis is supported by several indirect lines of evidence besides the CR
pattern. First, members of the Bacillota phylum, known for their extensive fermentative
capabilities (Cruz Ramos et al., 2000; Seeliger et al., 2002; Wiegel et al., 2006; Mosher et al.,
2012), dramatically expanded during the incubation and eventually dominated the community
(Chapter 1, Fig. 4). Second, we observed N,O emissions indicating denitrification under
anaerobic conditions, yet they were insufficient to explain CO, and heat emissions
quantitatively (Supplementary Fig. S1 to Chapter 1). I note that the detection of additional
gaseous products like N,O and CH, represents a simple yet powerful way to enhance the
interpretation of experimental results in the CR framework, especially if CO, is already
analyzed by gas chromatography (as in Chapter 1). Third, 14% of the C added as glucose was
unaccounted for between biomass and cumulative CO, at the end of the incubation, consistent
with the accumulation of fermentation products in the dynamic model (Supplementary Fig.
S6 to Chapter 1). Finally, a rough estimation of total O, availability indicated that complete
aerobic oxidation of all added glucose was not feasible in the vials used for incubation.
Together, these considerations suggest that the CR pattern can be used to track changes in
metabolic pathways dynamically. Most importantly, identifying the possibility of
fermentations would have been difficult based on C fluxes alone. Instead, this was only

enabled by the joint consideration of heat and CO,.
The CR can be used to assess the energy content of primed SOM.

The results of Wirsching et al. (2024) provide another example of the additional information
that can be gleaned from the CR. In this study, we observed a substantial positive priming
effect after the addition of cellulose based on *C-labeling (Chapter 3, Fig. 2, Fig. 3). The
amount of added substrate, as well as microbial biomass, are important determinants of the
extent of SOM mineralization due to priming (Schimel, 2023), and this relationship can be
explored from a carbon-centered perspective. However, such a methodology does not reveal
any details about the composition of the primed SOM. By including the rate of heat release in
our quantitative modeling framework, we were able to estimate the energy content of the
SOM that was actually utilized by microbes in the studied soils (Supplementary Fig. 4 to
Chapter 3). The analysis revealed diverse outcomes, with microbes utilizing SOM of lower,
equal, or higher energy content than the average energy content of SOM in their respective
soils. While we made no attempt to systematically interpret these novel findings in the study,

developing and testing mechanistic explanations underlying the observations and linking
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them to existing concepts of SOM bioavailability and preferential degradation represent
important next steps to understanding the dynamics of soil C stocks (Gunina and Kuzyakov,
2022; Wang and Kuzyakov, 2023; Kistner et al., 2024). For example, this involves
connecting SOM energy content to other properties that determine bioavailability, such as
molecular weight and C/N-ratio (Ahamed et al., 2023), or explicitly accounting for the
distribution of energy contents across SOM compounds as revealed by LDI-FT-ICR-MS
(Simon et al., 2024).

The CR can identify plausible process combinations underlying experimental

observations.

The theoretical analysis presented in Endress and Blagodatsky (in prep.) concludes that much
of the utility of the CR lies in its ability to identify processes or process combinations that are
consistent with the dynamics observed in experiments. Specifically, the CR can be used to
generate falsifiable hypotheses about the dominant sources of CO, and heat and to suggest
targeted measurements for testing these hypotheses. For example, in Endress et al. (2024a),
the hypothesized transition to anaerobic pathways can be confirmed or rejected via the direct
detection (or lack thereof) of fermentation products in follow-up studies or experiments.
Besides its value for the interpretation of experimental results, the explicit representation of
heat release also forces us to clarify our assumptions about conceptual and modeled C fluxes.
For instance, the presumed composition of the external substrates or internal biomass
compounds consumed to fuel maintenance requirements has a distinct effect on the CR
signature of maintenance metabolism, but it is largely irrelevant if only CO, release is
considered (Chapter 4, Fig. 3). Therefore, the CR enables and requires a nuanced
understanding of the studied processes, both in the interpretation of experimental results and

the design of mechanistic models.
In general, the CR should not be used to estimate microbial CUE directly.

Interest in the CR is in no small part driven by its connection to the efficiency of microbial
growth and thus CUE. In particular, early studies highlighted a one-to-one correspondence
between the CR and CUE in the case of simple growth reactions (Hansen et al., 2004), and
the CR has subsequently been suggested as a method for CUE determination under certain
conditions (Geyer et al., 2019). However, this correspondence is no longer applicable if other

processes such as anaerobic reactions or SOM utilization are present (Chakrawal et al.,
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2020b), and the required accuracy of CR measurements to obtain reliable CUE estimates is
difficult to achieve using current setups (Yang et al., 2024). The results presented in all four
chapters support these criticisms, and we conclude that the CR can only be used to estimate
CUE under narrow conditions, such as during the exponential growth phase after labile
substrate addition (as done in Chakrawal et al., 2021). In general, the relation between CR
and CUE is nuanced, and the more complex model predictions in Endress and Blagodatsky
(in prep.) are in good agreement with observations in the few experiments with sufficient
CUE and CR estimates (e.g., compare Chapter 4, Fig. 3 to Chapter 2, Fig. 4b and Chapter 3,
Fig. 7).

The CR is highly sensitive to the relative timing of heat and CO, observations.

In Endress et al. (2024b), we observed erratic patterns in the dynamic CR that were
incompatible with simple model predictions (Chapter 2, Fig. 5, and Supplementary Fig. S4 to
Chapter 2). By extending the model to account for delayed CO, detection relative to heat
detection, we were able to reproduce many features of the measured CR curves. We speculate
that this delay is caused by the transport of CO, from the site of production in the soil to the
site of its detection (alkali solution in the headspace above the sample). Our findings add to
related issues regarding the parallel measurement of heat and CO, from soil samples reported
in the literature (Barros et al., 2010; Yang et al., 2024). They emphasize the need for
improvements to existing experimental setups and the design of novel calorespirometers,
which represent an ongoing endeavor (Fricke et al., 2024). The study also illustrates how
models can account for artificial patterns caused by experimental procedures, although a
spatially explicit modeling approach to the transport of gases and heat in the system would be

required to assess the observed delay and its causes quantitatively.

In addition, the results of Endress et al. (2024b) show that the CR calculated from the
cumulative release of heat and CO,, as opposed to the highly sensitive CR based on rates, is a
robust tool to assess the overall balance of C and energy in the system. This finding is in line
with the theoretical conclusions reached by Endress and Blagodatsky (in prep., Chapter 4,
Fig. 2). In particular, the combination of the CR with the ratio of CO, production to O,
consumption and the ratio of heat production to O, consumption clearly revealed aerobic
growth fueled by glucose as the dominant process in all incubations (Chapter 2, Fig. 3). This

complementary nature of the three ratios was already discussed by Hansen et al. (2004) and
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has recently regained some attention (Smart et al., 2024), but the information contained in a

joint dynamic analysis of all three quantities - heat, CO, and O, - is yet to be leveraged.

Unraveling the complexity of microbial life in soil using bioenergetics

The findings of this thesis primarily pertain to the microbial carbon and energy use after the
addition of well-defined, labile substrates to sieved and homogenized soil samples under
laboratory conditions. Yet, the results and bioenergetic considerations also have the potential
to elucidate other aspects of microbial life in soil, such as microbial C cycling in unamended

soils or the role of complex interactions in microbial communities and across trophic levels.

Do microbes selectively utilize specific SOM compounds in amended and unamended

soils?

The simultaneous screening of heat and CO, enabled us to estimate the energy content of
SOM mineralized after cellulose addition due to the priming effect (Wirsching et al., 2024).
While this analysis by itself revealed the microbial utilization of SOM of a wide range of
energy contents in a diverse set of soils, it is particularly valuable when combined with
estimates of the average energy content of SOM in those soils as obtained via combustion
calorimetry or TG-DSC (e.g., Baraldi et al., 1998; Barros et al., 2020; Lorenz, 2024). The
selective utilization of SOM by microorganisms can then be inferred from a comparison of
the two estimates as discussed above (see also Supplementary Fig. S4 to Chapter 3) and
offers many avenues for further investigation. In particular, the selective utilization of certain
SOM compounds implies the selective stabilization of other compounds under the studied
conditions, with implications for the fate of the quantity and quality of SOM stocks (Gunina
and Kuzyakov, 2022; Wang and Kuzyakov, 2023; Késtner et al., 2024).

The same rationale can also be applied to unamended soils and soil samples. Given that most
microbes are inactive most of the time and the conditions they experience cannot be
compared to those after the addition of large amounts of labile substrate (Kuzyakov and
Blagodatskaya, 2015), this scenario may be even more important for the fate of SOM at
larger scales. However, almost all of the limited available data for the CR of unamended soils
have been collected by a small number of researchers, in particular by Barros and colleagues
(e.g., Barros et al., 2011, 2017, 2020; Barros, 2021; Lestido-Cardama et al., 2024). I note that

such CR values should also be available from the unamended control samples used in
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substrate addition experiments, but those data are rarely reported. Nonetheless, in the few
studies that measured both the CR of unamended samples and the energy content of SOM in
the soil, the relationship between the two quantities is intriguing (Chapter 4, Fig. 4). In arable
soils, there is a very close positive correlation, indicating that microbes do not preferentially
utilize SOM of higher or lower energy content. On the other hand, a weak inverse
relationship is found in samples obtained from forest soils, perhaps driven by selective
utilization of energy-rich substrates in organic horizons with high C content. An in-depth
analysis of the causes underlying this pattern is currently prevented by the small number of

samples, but this will be an important and attractive option as more data becomes available.

The role of microbial community composition and trophic interactions remains to be

explored in a bioenergetic framework.

Soils harbor an enormous diversity of microbial life (Anthony et al., 2023), and this diversity
is central to the biogeochemistry of the system (Mau et al., 2015; Crowther et al., 2019). In
contrast, the microbial community is frequently dominated by the expansion of one or few
taxa after a pulse of labile substrate in experiments (Eilers et al., 2010; Mau et al., 2015;
Morrissey et al., 2017; Papp et al., 2020; Stone et al., 2021). While this can give important
hints for understanding experimental observations, as it did in Endress et al. (2024a), such
experiments do not reflect natural soil conditions. Therefore, future studies should consider
combining bioenergetic investigations as presented in this thesis with an analysis of the
microbial community and its successional stages under a wider range of conditions, including
unamended and undisturbed soil samples with intact structure (Thomson et al., 2010; Ruamps
et al., 2011), repeated substrate additions (Wu et al., 2020; Peng et al., 2024) or the addition
of more complex substrate mixtures (Blagodatskii et al., 2008; Min et al., 2021).

Trophic interactions in soil food webs add another layer of complexity, yet they are critically
important for many soil functions such as SOM and nutrient cycling (Schimel and Schaeffer,
2012; Grandy et al., 2016; Richter et al., 2019). Energy flux across trophic levels in the soil
system has been investigated with a particular focus on nematode consumers (e.g., Ferris,
2010; Wan et al., 2022). However, such investigations typically rely on empirical estimates of
energy transfer that are ultimately based on the flux of C through the system, instead of
independent measures such as heat release. Recent efforts have started to unveil connections

between the soil nematode community and microbial activity, CUE, and EUE, suggesting
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nematode faunal analysis as a useful proxy for microbial substrate turnover and efficiency
(van Bommel et al., 2024). A mechanistic, bioenergetic description based on coupled

measurements of C and energy flux would help to substantiate these observed correlations.

Utility of process-based models with coupled microbial carbon and energy

turnover

Throughout this thesis, the use of process-based dynamic models was central to the
quantitative interpretation of experimental results and to the conceptual advancement of our
understanding of microbial C cycling. Below, I briefly summarize the strengths, the

limitations, and the options for future extensions of these models.

The incorporation of heat dynamics enhances the capabilities of microbial C cycling

models.

The representation of heat dynamics was key to the utility of the models in all chapters of this
thesis. In Endress et al. (2024a), only the quantitative pattern of the CR enabled the
identification of plausible anaerobic pathways. An analysis based on the dynamics of C pools
alone would be unlikely to yield similar conclusions. In Wirsching et al. (2024), the
incorporation of heat flux allowed us to estimate SOM energy content from the difference
between the total observed heat release and the expected heat release due to the consumption
of ®C-labeled cellulose. While we did not perform an in-depth analysis of the dynamic CR in
Endress et al. (2024b), the heat flux nonetheless provided valuable insights for the
improvement of the experimental setup to enable such investigations in the future.
Furthermore, the cumulative CR confirmed aerobic growth on glucose as the main
biochemical process in all incubations. Finally, the coupling between CO, and heat release
represents the basis for all of the model predictions regarding maintenance metabolism and

the CR of unamended soil samples in Endress and Blagodatsky (in prep.).

Experimental observations of heat release were also instrumental during model calibration.
The availability of another time series for calibration greatly enhanced the quality of
parameter estimates (see also Chakrawal et al., 2021). Sometimes, it even enabled the
convergence of calibration routines in the first place. Specifically, relatively few or even no
additional parameters had to be introduced to describe the dynamics of the heat variable,

since the reaction enthalpy of the dominant processes can be derived from other parameters in
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combination with independent information such as the energy contents of the involved
compounds (Késtner et al.,, 2024). Notably, isothermal microcalorimetry provides
measurements at an extremely high temporal resolution (on the order of seconds). This is in
stark contrast to C pools such as biomass and CO,, which are typically measured only a few
times over the course of incubation (see for example Chapter 1, Fig. 3, and Chapter 3, Fig. 2).
I note that this dramatic difference in the number of data points between variables
necessitates the use of weighted residuals to avoid overfitting of the heat observations.
Nonetheless, the highly resolved dynamics facilitate the quantitative judgment of properties

such as the time of maximum activity or the return of activity to basal levels.
Current models can be extended to improve process representations.

To demonstrate the feasibility and the utility of simulating coupled C and energy fluxes and
to allow for model calibration to small datasets, the dynamic models used in this thesis are of
low complexity compared to many contemporary models of soil C cycling (Sulman et al.,
2018). For example, they utilize simple formulations to simulate the anaerobic soil volume
fraction (Endress et al., 2024a), the consumption of nutrients from the surrounding soil
(Endress et al., 2024b), the priming of SOM, and the residual undecomposed fraction of
cellulose (Wirsching et al., 2024). Similarly, they all rely on a small number of C pools
characterized by constant energy contents, as well as on macrochemical (i.e., black-box)

fluxes between these pools.

Fortunately, numerous options are readily available to extend these models and to improve
the representations of the processes of interest as required. Ideally, these extensions should be
grounded in established physical rules (Tang et al., 2024). Among many others, these options
include mechanistic descriptions of O, supply and demand in the soil pore space, including
spatially explicit formulations (Schliiter et al., 2024), the explicit representation of
extracellular enzymes for the decomposition of SOM and polymeric substrates such as
cellulose (as in, e.g., the MEND model, Wang et al., 2015) or the incorporation of nitrogen
dynamics and microbial stoichiometry more generally (Chakrawal et al., 2022). The
representation of the microbial community can be extended to account for different functional
groups and life history strategies (e.g., Fierer, 2017; Piton et al., 2023), for example via
trait-based approaches (Marschmann et al., 2024; Sircan et al., 2025). At the same time, the

structure of microbial biomass can be more finely resolved, e.g., using structural and reserve
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biomass pools as in DEB models (Marschmann et al., 2024) or via the incorporation of
storage compounds (Manzoni et al., 2021; Mason-Jones et al., 2023). Soil solution chemistry
and interactions of organic C with mineral phases in the soil, e.g., via sorption, represent
another aspect that was not considered in this thesis. Coupling microbial-explicit C dynamics
with models of soil solution chemistry such as the open-source program PHREEQC
(Parkhurst and Appelo, 2013) could elucidate the role of physico-chemical interactions in
future investigations, for example, to study the impacts of soil salinization (Mavi and

Marschner, 2017).

In all of these cases, the central challenge with respect to bioenergetic modeling consists of
assigning appropriate energy contents and heat fluxes to all of the C pools and C fluxes,
respectively (or the decision to omit such fluxes if the rate of heat release is deemed

negligible).
Equifinality and parameter identifiability remain important challenges.

The estimation of model parameters was significantly enhanced, and sometimes even made
possible, by the incorporation of heat dynamics in the models and the availability of heat
measurements for model calibration. Nonetheless, issues of calibration equifinality and poor
identifiability of parameters persist in these models. The theoretical results of Endress and
Blagodatsky (in prep.) provide particularly straightforward examples of this, with different
parameter sets yielding equivalent system behavior in all modeled variables. Fundamentally,
this finding is not surprising, given that the dynamics of heat release are uniquely determined
by the overall energy balance in these simple models. Therefore, if all carbon pools follow

equivalent trajectories under different parameterizations, so too will the heat variable.

However, parameter non-identifiability extends far beyond such narrow cases of strict
equivalence (Marschmann et al., 2019). In this thesis, it manifested itself in high parameter
uncertainty and poorly constrained posterior distributions of some parameters like certain
yield coefficients or the half-saturation constant of the physiological state variable » (see e.g.
Supplementary Fig. S4 to Chapter 1). I note that model calibration is particularly challenging
if no experimental estimates of microbial biomass are available. In this case, both the growth
of the biomass pool and the activation of previously dormant biomass without growth can
yield highly similar dynamics of heat and CO, release, despite markedly different trajectories

of the biomass pool. In practice, microbial biomass therefore represents the most important
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variable for calibration other than the calorespirometric data. A formal analysis that
quantifies the additional information gained from the representation of the heat variable is,

however, still missing.

Such issues present an even greater challenge as the complexity and the number of
parameters of the biogeochemical models in question increase (Sierra et al., 2015). Novel
calibration procedures such as constraint-based MCMC methods that flexibly incorporate a
priori parameter and process-constraints into the calibration routine can be leveraged to
address this problem by confining the space of feasible parameter combinations (Chavez
Rodriguez et al., 2022). This is especially valuable if models are not calibrated to reflect the
detailed dynamics of single experiments. To complement such algorithmic innovations, the
number of free parameters as well as their ranges can also be reduced via independent
thermodynamic and biological considerations. For example, this has been demonstrated for
growth yield coefficients (Brock et al., 2017), rate coefficients (Desmond-Le Quéméner and
Bouchez, 2014; Delattre et al., 2019), and a range of other genome-informed microbial traits

(Karaoz and Brodie, 2022; Marschmann et al., 2024).

Conclusion

In this thesis, I have demonstrated the feasibility and utility of microbial-explicit
process-based modeling for the analysis of coupled carbon and energy flows in the soil

system.

The models show that microbial CUE and EUE after single-pulse addition of labile substrate
are tightly linked according to fundamental thermodynamic rules. Specifically, the efficiency
of microbial growth exhibits complex temporal patterns that are shaped by the availability
and quality of substrate and terminal electron acceptors, the additional utilization of SOM,
and the activity state of the microbial community. Accurate experimental biomass
quantification represents a critical challenge for the validation of CUE dynamics in these

models and should be addressed via method development and intercomparison.

The results illustrate how the calorespirometric ratio of heat to CO, release can be leveraged
to monitor and quantify microbial metabolism in the soil system dynamically. In particular,
the CR enables the identification of plausible processes underlying experimental

observations, such as shifts in metabolic pathways or the selective utilization of SOM
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compounds. Therefore, the framework allows for the formulation of specific and testable
hypotheses and is most useful when combined with other sources of information, like
measurements of O, consumption or independent estimates of the dynamics of relevant C
pools such as biomass or metabolic products. When combined with estimates of SOM energy
content, the CR can reveal selective utilization of SOM in both unamended soils and after

substrate addition, which offers a promising option for future research.

Finally, the incorporation of heat dynamics was instrumental in the calibration of the studied
models, and contributed to their ability to generate mechanistic interpretations of
experimental results. The simple formulations presented in this thesis can easily be extended
to increase the realism and scope of process representations. However, the estimation of
model parameters continues to pose a serious challenge, which is exacerbated by increased
model complexity. A combination of advanced calibration methods and independent
constraints based on thermodynamic considerations and microbial traits should be leveraged

to address this issue.
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List of resources

The table below lists important resources used in this thesis for analysis and visualization

purposes. Versions of programming languages and packages used are indicated in each

article.

Name Description References

NIST Chemistry Public online collection of physical and | Peter Linstrom (2017)

WebBook chemical properties of many
compounds, e.g., enthalpies of formation
and combustion

BioRender Online tool for figure creation used to BioRender.com
create the schematic illustrations in all
manuscripts (Chapter 1, Fig. 1 and Fig.

2; Chapter 2, Fig. 1; Chapter 3, Fig. 1;
Chapter 4, Fig. 1)

R and RStudio Programming language and environment | RStudio Team (2020); R
used for some statistical analyses Core Team (2023)

emmeans Package used for ANOVA with contrasts | Lenth (2023)

(Chapter 2)

Python and SciPy | Programming language and primary Rossum (1995); Virtanen
package used for all analyses, et al. (2020)
particularly the numerical integration of
ODEs

Imfit Package used for model calibration Newville et al. (2023)

emcee Package used for MCMC analysis Foreman-Mackey et al.

(2013)
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Appendix

For high-resolution versions of all figures, please refer to the published online versions of the

supplementary materials.

Supplementary material of Endress et al. (2024a)

This supplementary material consists of the following components:

e SI Data. Excel file containing all calorespirometry and biomass data analyzed in this
study, as well as relative abundances of the major bacterial phyla during the
incubations.

e SI OTU Table. Excel file that includes the taxonomic assignments and relative
abundances for all replicates.

e SI Text. PDF file containing supplementary materials and methods, Supplementary

Figs. S1-S7, Supplementary Tables S1-S2, and supplementary references.

SI Text is provided below. For SI Data and SI OTU Table, please refer to the online version
of the published article.
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Supplementary figure S1. Rate of N.O production during the incubation.

Shown are mean +- SD of n=3 replicates per point.
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Supplementary figure S2. CH,4 concentration during the incubation.

Shown are mean +- SD of n=3 replicates per point.
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Supplementary figure 53. The relative abundance of OTUs on the level of phylum durng
growth on glucose for all experimental replicates. Percentages on top denote relative
abundance of Baciliota across replicates for each time point.
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475  Supplementary figure S5. Contribution of aerobic and anaerobic processes to the total

476  rates of heat and CO: release in the calibrated model. The contribution is determined by the
477  time-varying anaerobic fraction.
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481  Supplementary figure $6. Concentrations of substrate (glucose) as well as fermentation

482  products (lactate, acetate, and propionate) in the calibrated model. Lactate is consumed by
483  microbes as it becomes available, but acetate and propionate accumulate under the anoxic
484  conditions.
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488  Supplementary figure S7. Comparison of the CR pattern during the incubation as observed in
489  data as well as the full calibrated model and a calibrated model variant featuring only aerobic

490  respiration.
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Supplementary material of Endress et al. (2024b)

This supplementary material consists of the following components:

e SI Text. PDF file containing supplementary materials and methods, Supplementary
Figs. S1-S4, Supplementary Tables S1-S2, and supplementary references.
e SI Data. Excel file containing all data analyzed in this study as well as ANOVA and

model calibration results.

SI Text is provided below. For SI Data, please refer to the online version of the published

article.
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Supplementary figure $1. Incubation vessels a used for the determination of CO- release in
the Respicond respirometer (height 10 cm, diameter 6 cm) and b used for the determination of
heat release in the TAM air calorimeter as well as for O, consumption, DNA and glucose
measurements (height 4.3 ¢cm + 1 cm neck, diameter 2.cm).
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Supplementary figure $2. Headspace O saturation (100% = 21.22 kPa) over the course of 50

h of incubation for all treatments. Conditions remained oxic in all cases, with O» reaching ~70%

atmospheric saturation after 50 h. Shown are mean + SD of n = 3 replicates.
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Supplementary figure $3. Dynamics of a residual glucose, b microbial biomass and ¢ active

fraction of microbial biomass in the ODE model. For the homogeneous treatment without

nutrient addition (solid blue line), residual glucose as well as dsDNA was quantified

experimentally in parallel incubations (markers, mean £+ SD, n = 3). Heterogeneous treatments

are shown in red, homogeneous ones in blue. Solid lines indicate treatments without nutrient
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Supplementary figure S4. Observed and modeled dynamics of the calorespirometric ratio (CR)
calculated from rates of heat (n = 3) and COz (n = 4) release for all treatments. Solid lines show

the results of simulations using the standard model formulation, which assumes instantaneous

detection of CO, after production via microbial metabolism. Dashed lines show simulations

using the modified model, in which CO- diffuses from the site of production (soil) to the site of

detection (alkali solution), inducing a relative delay of CO; release compared to the rate of heat

release.
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Supplementary material of Wirsching et al. (2024)

This supplementary material consists of the following components:

e SI Text. PDF file containing supplementary materials and methods, Supplementary
Figs. S1-S6, Supplementary Tables S1-S5, and supplementary references.

SI Text is provided below.
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3.78g DM in Cellulose addition
20 ml vials (4 xCryie)

Thyrow unfertilized

Thyrow fertilized D

Dikopshof unfertilized 10 days pre- 64 days incubation at 20°C and 45-50% WHC
incubationat 20°C (vials sampled at day 64 in calorimeter, all
Dikopshof fertilized and 45-50% WHC other vialsin incubator)

PP E — 1—

Soil sampling at days 4, 8, 16, 32 and 64

Reckenholz  fertilized

QualiAgro unfertilized
Respiration measurements at days 0, 4, 5,

8,12, 16, 20, 26, 32, 43, 46, 56, 64

(N ] W

QualiAgro fertilized

Figure 1: Flow chart illustrating the experimental design and setup used in this study. All
details are provided in sections 2.1-2.7 of the main text.

1.2. Soil properties
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2. Results

2.1. Calorimetry

Dikopshof QualiAgro Reckenholz Thyrow

Fertilization
«  Fertilized
Unfertilized

Mean heat (J 9—1)

-z

[} 10 20 30 0 10 20 30 0 10 20 3 0 10 20 30
Time (days)

Figure 2: Uncorrected mean heat @Q; (J g~ '; n = 3) at all four sites and fertilized (black)
and unfertilized (red) soils.
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Figure 3: Quantitative values of A~ H obtained by combustion calorimetry and TG-DSC.
TG-DSC yields higher values than combustion calorimetry in several cases (D-FYM,
T-FYM). Both methods are at an early stage for determining A¢ H of mineral soils and
shortcomings of both were already identified. To date, further efforts are required to
unify both in a quantitative way. However, the trends in A H with respect to the study
site or treatment are similar irrespective of the used method. Ao H tends to be higher in
the unfertilized treatment compared to the farmyard manure treatment. Highest Ao H
values were observed in Thyrow seils. In general, more negative Ax H indicates more
reduced and energy-rich carbon.

2.3. Modeling
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Figure 4: Modelled CUE, for '2C (red), 13C (blue) and total C (purple) in all soils. The curves
show the net cumulative biomass change relative to the respective substrate consumption.
Therefore, positive values indicate a net gain and negative values indicate a net loss
of biomass compared to the start of the incubation. Markers indicate corresponding

experimental estimates.
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Figure 5: Model estimates of the maximum specific growth rate pu,q, for the growth reac-
tion using cellulose (black) and SOM (red). The quantity psmas is not a model parameter,

but instead derived as the product of the maximum substrate uptake rate vpmqe, x and the

vield coefficient Yx of the respective substrate X.
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Figure 6: Model estimates of the degree of reduction ygo s of the biomass consumed
by microbes (black) compared to experimental estimates for bulk SOM derived from
measurements of average energy content via bomb calorimetry (red) and TG-DSC (blue).
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