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Abstract 

We live in a time of unprecedented global change. Understanding its causes and predicting its 

consequences are challenges of utmost urgency. In a clash of scales, the future of the global 

climate system depends in no small part on the activity of the microscopic organisms that 

inhabit the soils beneath us. They mediate the future of the world's soil organic matter stocks, 

the single largest terrestrial pool of organic carbon on the planet. Consequently, enormous 

scientific effort has been invested to unravel the details of soil microbial carbon cycling and 

carbon use efficiency. Yet, the spatial and temporal heterogeneity of the soil environment and 

the interactions of many physical, chemical, and biological processes across scales continue 

to limit our mechanistic understanding of the system.  

This thesis contributed to the recent endeavor of establishing a bioenergetic framework for 

the description of microbial carbon cycling in soil based on thermodynamic principles. 

Specifically, microbial-explicit process-based models were employed to investigate the 

coupling between carbon and energy fluxes during soil microbial growth. This involved the 

theoretical analysis of dynamic model behavior as well as model calibration using specific 

datasets to facilitate the interpretation of experimental observations. 

The results revealed a close correspondence between microbial carbon and energy use 

efficiency in accordance with thermodynamic predictions. In particular, the models accurately 

captured the complex temporal patterns in microbial efficiency after the addition of labile 

substrates. Based on these simulations, the effects of oxygen and nutrient limitation, soil 

organic matter utilization, and microbial maintenance on the dynamics of microbial growth in 

several experiments could be disentangled and quantified. The calorespirometric ratio of heat 

to CO2 release proved to be a particularly valuable tool for such analyses of experimental data 

and for the generation of falsifiable hypotheses. In terms of process-based modeling, the 

explicit incorporation of heat dynamics presented the most important novelty. It was 

instrumental to both the model calibration and the analytical utility of the models. The 

strengths, weaknesses, and possible extensions of the approaches presented in this thesis are 

discussed to highlight promising options for future research. 

Overall, the thesis demonstrated the feasibility and utility of microbial-explicit process-based 

modeling for the analysis of coupled carbon and energy flows in the soil system.  
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Zusammenfassung 

Wir leben in einer Zeit nie dagewesenen globalen Wandels. Das Verständnis seiner Ursachen 

und die Vorhersage seiner Folgen sind Herausforderungen von höchster Dringlichkeit. Die 

Zukunft des globalen Klimasystems hängt zu einem nicht geringen Teil von der Aktivität 

mikroskopisch kleiner Organismen ab, die die Böden unter uns bewohnen. Sie entscheiden 

über die Zukunft des weltweiten Bestands an organischer Substanz im Boden, dem größten 

terrestrischen Reservoir an organischem Kohlenstoff auf unserem Planeten. Daher wurden 

enorme wissenschaftliche Anstrengungen unternommen, um die Einzelheiten des 

mikrobiellen Kohlenstoffkreislaufs und der Effizienz mikrobieller Kohlenstoffnutzung im 

Boden zu entschlüsseln. Die räumliche und zeitliche Heterogenität natürlicher Böden und die 

Wechselwirkungen zahlreicher physikalischer, chemischer und biologischer Prozesse über 

verschiedene Skalen hinweg begrenzen jedoch weiterhin unser mechanistisches Verständnis 

dieses Systems.  

Diese Arbeit leistete einen Beitrag zu aktuellen Bemühungen, eine bioenergetische 

Beschreibung des mikrobiellen Kohlenstoffkreislaufs im Boden auf der Grundlage 

thermodynamischer Prinzipien zu schaffen. Insbesondere wurden prozessbasierte Modelle 

mikrobieller Aktivität eingesetzt, um die Kopplung zwischen Kohlenstoff- und 

Energieflüssen während des mikrobiellen Wachstums im Boden zu untersuchen. Dazu 

gehörte die theoretische Analyse des dynamischen Modellverhaltens sowie die 

Modellkalibrierung anhand spezifischer Datensätze, um die Interpretation experimenteller 

Beobachtungen zu ermöglichen. 

Die Ergebnisse zeigten eine enge Verbindung zwischen der Effizienz mikrobieller 

Kohlenstoff- und Energienutzung in Übereinstimmung mit den thermodynamischen 

Vorhersagen. Insbesondere konnten die Modelle die komplexen zeitlichen Muster der 

mikrobiellen Effizienz nach der Zugabe von labilen Substraten genau erfassen. Auf Basis 

dieser Simulationen konnten die Auswirkungen der Sauerstoff- und Nährstofflimitierung, der 

Nutzung organischer Bodensubstanz und des mikrobiellen Basalstoffwechsels auf die 

Dynamik des mikrobiellen Wachstums in mehreren Experimenten aufgeschlüsselt und 

quantifiziert werden. Das kalorespirometrische Verhältnis von Wärme- zu CO2-Freisetzung 

erwies sich als besonders wertvolles Instrument für derartige Analysen und für die 

Formulierung falsifizierbarer Hypothesen. Im Hinblick auf die prozessbasierte Modellierung 
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stellte die explizite Einbeziehung der Wärmedynamik die zentrale Neuerung dar. Diese war 

sowohl für die Modellkalibrierung als auch für den analytischen Nutzen der Modelle von 

entscheidender Bedeutung. Die Stärken, Schwächen und möglichen Erweiterungen der in 

dieser Arbeit vorgestellten Ansätze wurden diskutiert, um vielversprechende Optionen für die 

zukünftige Forschung aufzuzeigen. 

Insgesamt demonstrierte diese Arbeit die Machbarkeit und den Nutzen einer prozessbasierten 

mikrobiellen Modellierung für die Analyse gekoppelter Kohlenstoff- und Energieflüsse im 

Bodensystem.  
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List of important abbreviations and symbols 

C, N​ ​ ​ ​ ​ Carbon, Nitrogen 

CR​ ​ ​ ​ ​ Calorespirometric ratio 

CUE​ ​ ​ ​ ​ Carbon use efficiency 
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ODE​ ​ ​ ​ ​ Ordinary differential equation 

SOM, SOC​ ​ ​ ​ Soil organic matter, Soil organic carbon 
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𝐶
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∆
𝑓
𝐻
𝑋

​ ​ ​ ​ ​ Reaction enthalpy of reaction i ∆
𝑟
𝐻
𝑖
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Introduction 

Soil microorganisms play a central role in the terrestrial carbon cycle 

Soil organic matter (SOM) is the largest reservoir of organic carbon (C) in the terrestrial 

realm, storing approximately 1700 Pg of soil organic C (SOC). This quantity far exceeds the 

combined C stocks of vegetation (450 Pg C) and the atmosphere (600 Pg C, Batjes, 2016; 

Jackson et al., 2017; Canadell et al., 2021). Due to its size, even small shifts in the balance 

between the C inputs and outputs to this pool can significantly influence atmospheric CO2 

levels and the future of global climate change (Jenkinson et al., 1991; Davidson and Janssens, 

2006).  

Starting with the seminal work of Jenkinson (Jenkinson, 1966), soil microbial biomass has 

come to be recognized as the central regulator of this delicate balance (Powlson et al., 2017). 

It has famously been described as “the eye of the needle through which all organic matter 

entering the soil must pass” (Jenkinson, 1977), which reflects the fact that the biomass of 

living microorganisms constitutes only a small percentage of the total SOM pool (Xu et al., 

2013). Plants provide the bulk of organic inputs through litter and rhizodeposition, but most 

of these compounds are subsequently transformed by microorganisms before ultimately 

contributing to the soil C stock and SOM in the form of microbial necromass and products of 

microbial metabolism (Lehmann and Kleber, 2015; Kästner et al., 2021; Camenzind et al., 

2023). This formation and partial stabilization of anabolic products in soil has also been 

termed the “microbial carbon pump” and represents a key mechanism of soil C sequestration 

(Liang et al., 2017).  

Yet, microorganisms also drive the opposing C flux via the catabolic decomposition of 

organic matter and the subsequent release of C into the atmosphere, predominantly in the 

form of CO2 (e.g., Crowther et al., 2016). This dual role in SOM formation and 

decomposition makes soil microbial biomass a critical focus of recent research on global 

change (Liang et al., 2017; Tao et al., 2023). Despite substantial progress, the future balance 

of these two contrasting C fluxes - and consequently the future of global SOC stocks - 

remains uncertain (Bradford et al., 2016; Sulman et al., 2018). Much of this uncertainty arises 

from the incomplete representation of soil microbial processes in Earth system models 

(Todd-Brown et al., 2013; Luo et al., 2015; Wieder et al., 2015). 
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Soil microorganisms and their activity mediate many other critical soil functions beyond SOC 

turnover. These include the cycling of nitrogen (N) and phosphorus (P), the biodegradation of 

harmful contaminants, the control of plant diseases, and the formation of soil structure (Vogel 

et al., 2024). In this sense, soils can be regarded as largely biologically driven systems 

(Bardgett and Van Der Putten, 2014). Therefore, to achieve a mechanistic understanding of 

these systems and the functions they provide, it is paramount to understand the microbial life 

within them. 

Microbial carbon use efficiency as an emergent property of the soil system 

Soil microorganisms must allocate the C they acquire from their surroundings to numerous 

processes that are essential for their survival. These processes include the growth of new 

biomass, maintenance and turnover of internal macromolecules, osmoregulation and other 

forms of physiological maintenance, formation of storage compounds, synthesis of 

extracellular enzymes and extracellular polymeric substances (EPS), production of stress 

response compounds, and many more (van Bodegom, 2007; Schimel and Schaeffer, 2012; 

Kempes et al., 2017).  

Over the past decades, the concept of microbial carbon use efficiency (CUE) has become one 

of the most important tools for studying this allocation (Manzoni et al., 2018) as well as a 

central parameter regulating soil C gain or loss in models (Schimel, 2023). Broadly, CUE 

describes the partitioning of microbial C use between biomass growth on one hand and any 

number of non-growth processes on the other hand. More specifically, it can be defined as the 

fraction of organic C consumed by microbes that is directed to anabolic reactions for the 

formation of new biomass compounds (Hagerty et al., 2018). Given this definition, a high 

CUE reflects efficient C transformation, e.g., converting litter or rhizodeposits into biomass 

and, ultimately, microbial necromass or stable SOM compounds. In contrast, a low CUE 

indicates substantial C losses, typically as CO2 (Geyer et al., 2020).  

The actual value of microbial CUE in soil varies widely and depends on a complex interplay 

of abiotic and biotic factors. Abiotic conditions such as temperature and soil moisture 

(Manzoni et al., 2012; Frey et al., 2013), the amount and the quality of organic substrates 

added to or present in the soil (Sinsabaugh et al., 2013; Blagodatskaya et al., 2014a) as well 

as nutrient availability (Sinsabaugh et al., 2016) are critical determinants of CUE. 
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Simultaneously, biotic factors like microbial community composition shape CUE through 

species-specific metabolic constraints and species interactions (Schimel and Schaeffer, 2012; 

Geyer et al., 2016; Maynard et al., 2017).  Furthermore, the use of C depends on the activity 

state of the microbial community. Under typical conditions, much of the soil microbial 

biomass is inactive or dormant, and this inactivity is only interrupted during spatially and 

temporally limited pulses of substrate supply (Blagodatsky et al., 2000; Blagodatskaya and 

Kuzyakov, 2013; Kuzyakov and Blagodatskaya, 2015). Given this ubiquity of inactive 

microbes, their maintenance requirements and the costs of emerging from and returning to 

dormancy are expected to have significant implications for the overall C utilization in soils 

(Joergensen and Wichern, 2018; Bölscher et al., 2024; but see Dijkstra et al., 2022). 

Given this complex interplay of factors, CUE is an emergent property of the soil system and 

varies significantly through space and time as well as across scales (Geyer et al., 2016; He et 

al., 2024). However, it is often represented as a fixed constant in models (Hagerty et al., 

2018), creating a disconnect between real-world variability and model assumptions. This 

mismatch is compounded by ambiguities in CUE definitions, experimental measures, and 

mechanistic interpretations, which have been the subject of ongoing debate (e.g., Geyer et al., 

2019; Bölscher et al., 2024). Consequently, developing a process-based, nuanced description 

of microbial CUE that accounts for the complexity of microbial life in the soil system is 

critical to reducing the uncertainty of future SOC dynamics and other soil functions. 

Microbial growth and its efficiency from a thermodynamic perspective 

Heterotrophic microorganisms, whether in soil or any other environment, rely on the 

decomposition of organic substrates obtained from their surroundings to survive and 

proliferate. While the carbon-centered concept of CUE emphasizes this microbial need for C 

to fuel biosynthesis, the anabolic formation of new biomass compounds is generally 

endergonic, i.e., characterized by a positive change in Gibbs free energy ( , von Stockar ∆𝐺

and Liu, 1999) due to the low entropy content of the products. Thus, the decomposition of 

organic compounds supplies not only the C building blocks for anabolism but also the energy 

necessary to drive these anabolic processes by coupling them to highly exergonic catabolic 

reactions. Together, anabolism and catabolism constitute the metabolic processes of an 

organism, which, to be thermodynamically viable, must collectively yield a net negative  ∆𝐺

(von Stockar et al., 2006; Heijnen and Kleerebezem, 2010). For this reason, the fluxes and 
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balances of matter and energy during microbial metabolism are inextricably linked based on 

the laws of thermodynamics. They ensure that cells remain far from thermodynamic 

equilibrium and maintain the degree of organization essential for life. 

It has long been suspected that this coupling of matter and energy fluxes poses fundamental 

constraints to microbial life, its origin, and evolution (Lotka, 1922; Schrödinger, 1944; 

Martin et al., 2008) as well as to the efficiency of microbial metabolism (Jin and Bethke, 

2007; Liu et al., 2007). This bioenergetic perspective has been successfully applied to study 

the growth of microbial cultures under controlled conditions in biotechnology (Roels, 1980; 

von Stockar and Marison, 1993; Battley, 1996; Braissant et al., 2010). More recently, 

advances in this field have elucidated how bioenergetics shape the trade-off between growth 

rate, efficiency, and metabolic versatility more generally (Desmond-Le Quéméner and 

Bouchez, 2014; Calabrese et al., 2021; Chakrawal et al., 2022; Cossetto et al., 2024). 

The application of bioenergetic frameworks that consider coupled C and energy fluxes in soil 

systems has become an active area of research but is still at an early stage (Kästner et al., 

2024). Initial studies have begun to evaluate microbial energy use efficiency (EUE) as an 

additional measure complementing CUE (Harris et al., 2012; Gunina and Kuzyakov, 2022; 

Wang and Kuzyakov, 2023). Additionally, recent theoretical advances have revealed the 

thermodynamic control of substrate properties and electron acceptor availability on the 

decomposition of organic matter (Song et al., 2020; Chakrawal et al., 2022; Zheng et al., 

2024). Isothermal microcalorimetry has also been established as a valuable experimental tool 

for investigating soil microbial activity (e.g., Barros et al., 2010; Herrmann et al., 2014; Boye 

et al., 2018). Nonetheless, a comprehensive bioenergetic description of soil microbial life 

based on a combination of experimental, modeling, and theoretical results is only beginning 

to emerge. 

Studying carbon and energy fluxes in soils via calorespirometry 

The metabolic reactions performed by soil microorganisms typically produce heat and CO2 as 

byproducts, which play a major role in achieving the net negative  required for ∆𝐺

thermodynamically viable microbial metabolism (Cossetto et al., 2024). Because both heat 

and CO2 quickly diffuse out of the soil matrix, they are experimentally accessible through 

calorimetry and respirometry, respectively. Their combined evaluation via calorespirometry 
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has become an increasingly popular method for studying the coupling of C and energy fluxes 

in soil science (Barros et al., 2010, 2011; Herrmann and Bölscher, 2015; Chakrawal et al., 

2020b; Yang et al., 2024) and also in biotechnology (Brueckner et al., 2017). 

One key metric in this approach is the calorespirometric ratio (CR), defined as the ratio of 

heat release to CO2 release. It has long been recognized as a potential indicator of microbial 

growth efficiency and thus of CUE and EUE (Dejean et al., 2001; Hansen et al., 2004). For 

instance, in a simple aerobic growth reaction where a single, well-characterized substrate is 

converted into new biomass and CO2 (along with heat), the resulting CR depends solely on 

the biomass yield coefficient and the energy contents of the substrate and biomass (Hansen et 

al., 2004). This theoretical relationship has been applied to estimate microbial traits such as 

rate and yield coefficients in soil (Chakrawal et al., 2021) and has also been extended from 

aerobic respiration to anaerobic fermentations involving well-defined compounds (Chakrawal 

et al., 2020b).  

However, the direct one-to-one correspondence between CR and CUE breaks down under 

more complex conditions typical of real soil systems (Hansen et al., 2004). In measurements 

obtained from soil incubations, the CR reflects the combined heat and CO2 contributions of 

all physical, chemical, and biological processes occurring in the sample. For example, the 

reaction of CO2 with carbonates in alkaline soils, CO2 dissolution in the soil solution, the 

presence of multiple active metabolic pathways, or the simultaneous utilization of several 

substrates, including SOM, can significantly influence the observed CR (Barros et al., 2016; 

Chakrawal et al., 2020b). SOM utilization is particularly relevant in soil incubation 

experiments where a defined substrate, such as glucose, is added to the soil. While much of 

the subsequent CO2 and heat production is typically fueled by the microbial consumption of 

the added substrate, soil microbes often also decompose additional native SOM in an effect 

known as positive priming, e.g., to obtain limiting nutrients (Kuzyakov et al., 2000; 

Blagodatskaya and Kuzyakov, 2008; Blagodatsky et al., 2010). If the composition and energy 

content of the decomposed SOM differ markedly from those of the added substrate, the 

priming effect has the potential to skew experimental CR values. 

As a result, the CR also represents a dynamic and emergent property of the soil system, 

analogous to microbial CUE and EUE. Proper interpretation of observed CR values 

necessitates a quantitative model of the underlying biogeochemistry (Chakrawal et al., 

13 



2020b). However, such dynamic, process-based frameworks are largely absent from current 

research. Most studies rely on static CR values or CUE-CR relationships (e.g., Herrmann and 

Bölscher, 2015; Chakrawal et al., 2020b; Yang et al., 2024) or focus only on the exponential 

growth phase following substrate addition (Chakrawal et al., 2021). 

Process-based modeling of microbial activity in soil 

The patterns of microbial activity in soils are remarkably diverse and complex, owing to the 

spatial and temporal heterogeneity of the soil system and the interplay of physical, chemical, 

and biological processes across scales (Nunan, 2017; Nunan et al., 2020; Vogel et al., 2024). 

While many biological processes and interactions occur at the microscopic scale, 

experimental observations, such as CO2 and heat fluxes or SOM dynamics, are often 

accessible only at macroscopic scales, such as laboratory soil samples, profiles, landscapes, 

or entire ecosystems (Smercina et al., 2021). This disparity in scale underscores the need for 

mechanistic modeling frameworks that can identify, connect, and quantify the processes 

underpinning microbial activity to provide meaningful insights into soil system behavior. 

Foundational biogeochemical models of soil C dynamics, such as CENTURY (Parton et al., 

1987) and Roth-C (Jenkinson, 1990), date back to the 1980s and laid the groundwork for 

understanding SOM dynamics by partitioning SOM into distinct pools with defined turnover 

times. These models, however, originally did not explicitly represent microbial activity. Since 

then, considerable effort has been put into developing more complex models that incorporate 

the active role of microorganisms. Notable examples include the MEND model, which 

simulates explicit enzymatic depolymerization of SOM as well as active and dormant 

fractions of microbial biomass (Wang et al., 2015), or the MIMICS model, which divides 

microbial biomass into two functional groups corresponding to microbes with copiotrophic 

and oligotrophic life history strategies (Wieder et al., 2014). 

Despite these developments, several observers have pointed out persistent challenges and 

limited progress when it comes to scaling microbial processes in models, including the 

representation of microbial CUE and priming effects (Sulman et al., 2018; Bernard et al., 

2022; Baveye, 2023; Schimel, 2023). They suggest that a deeper understanding of the 

processes and boundary conditions at the microscopic scale is required to tackle these 

shortcomings. This is in line with recent calls for a shift towards models based on established 
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physical rules instead of empirical correlations (Tang et al., 2024). This shift may also help to 

address the issue of calibration equifinality, the phenomenon that different sets of parameters 

can yield equally good model agreement with observed data (Beven and Freer, 2001). 

Equifinality and parameter non-identifiability are widespread even in simple biogeochemical 

models (Sierra et al., 2015; Marschmann et al., 2019) and continue to represent a major 

hurdle (Wieder et al., 2015). 

The incorporation of thermodynamic principles and bioenergetic constraints into 

biogeochemical models offers a promising avenue to address these limitations and research 

needs. Thermodynamics may be leveraged to directly constrain the rates and yield 

coefficients of specific microbial reactions (Brock et al., 2017; Song et al., 2020; 

Ugalde-Salas et al., 2020; Zheng et al., 2024). For example, dynamic energy budget (DEB, 

Kooijman, 1993) models that couple bioenergetics with genome-informed microbial traits 

represent one of the latest and most ambitious developments in the microbial-explicit 

modeling of soil biological processes (Marschmann et al., 2024).  Beyond such theoretical 

improvements to model development and parameterization, rates of heat release measured via 

microcalorimetry also provide additional data at high temporal resolution for the calibration 

and validation of dynamic models. While this approach has been applied in biotechnological 

contexts to some extent (Maskow and Babel, 2003; Braissant et al., 2013), its application to 

soil samples has barely been explored (Chakrawal et al., 2021). 

Objectives and outline of this thesis 

In this thesis, I apply process-based bioenergetic models to study the coupling between C and 

energy fluxes during microbial activity in soil. In particular, I focus on the analysis of 

temporal patterns in microbial CUE and EUE as well as the CR after the addition of labile 

substrates. This investigation aims to address the research questions and limitations outlined 

above, which can be summarized as follows: 

1.​ Advance the mechanistic understanding of microbial CUE to reflect its emergent 

properties and characterize its relationship with microbial EUE 

2.​ Identify the utility and the limitations of the CR for the analysis of microbial activity 

in soil using a dynamic framework 
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3.​ Incorporate heat flow in dynamic models of microbial C cycling and demonstrate its 

utility for model calibration and data interpretation 

The thesis is structured into four major chapters, each of which provides specific 

contributions to achieve these objectives. 

In the first chapter (Endress et al., 2024a), I examine the effect of limited terminal electron 

acceptor (TEA) availability on microbial CUE, EUE, and CR. Specifically, I analyze and 

model the dynamics of these quantities during a gradual transition from aerobic respiration to 

anaerobic fermentations as the dominant metabolic pathways after glucose addition. This 

research represents the extension and dynamic application of recent theoretical advances on 

this issue (in particular, Chakrawal et al., 2020b). It also demonstrates a close link between 

shifts in microbial metabolism as seen in the CR and microbial community composition. 

In the second chapter (Endress et al., 2024b), I explore the consequences of spatial substrate 

heterogeneity and the resulting local nutrient limitation on the kinetics as well as the CUE, 

EUE, and CR of microbial growth after glucose addition. The study shows strong correlations 

between C and energy release from soil independent of incubation conditions, and it 

demonstrates that differences in growth kinetics do not necessarily translate to differences in 

growth efficiency. It also highlights the sensitivity of dynamic CR measurements to details of 

the incubation setup and outlines both experimental and modeling approaches to address this 

limitation. 

In the third chapter (Wirsching et al., 2024), I investigate the CUE, EUE, and CR of 

microbial growth on cellulose as a more complex substrate in a diverse set of arable soils. 

The results illustrate the utility and the limitations of several estimates of microbial CUE and 

EUE over the course of longer incubations. In addition, they reveal a substantial positive 

priming effect in all studied soils and demonstrate how heat flow measurements can be 

leveraged to estimate the energy content of primed SOM. 

In the fourth and final chapter (Endress and Blagodatsky, in prep.), I present a theoretical 

investigation of the consequences of microbial maintenance metabolism for the dynamics of, 

and connections between, CUE, EUE, and the CR. The analysis predicts distinct temporal 

patterns of these quantities, particularly during the lag and retardation phases of microbial 

growth after substrate addition. To connect the theory with empirical evidence on the 
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energetics of microbial non-growth metabolism, I compile data on the CR and the energy 

content of SOM in unamended soils from the literature. The compilation reveals a close 

positive relationship between these two quantities in arable soils and an inverse relationship 

in forest soils. 

General approach and methodology 

This dissertation employs dynamic, process-based modeling of microbial growth based on 

systems of ordinary differential equations (ODEs). In the first three chapters, such systems 

are constructed to investigate specific aspects of microbial growth, such as anaerobic 

metabolic pathways (Endress et al., 2024a), nutrient limitation (Endress et al., 2024b), and 

cellulose decomposition and SOM priming (Wirsching et al., 2024). The parameters 

governing the behavior of these systems are calibrated using experimental datasets provided 

by collaboration partners to analyze and interpret the results of their experiments. In the 

fourth chapter, ODE systems are analyzed theoretically without calibration relative to specific 

datasets to explore the theoretical relationships between quantities of interest. The 

mathematical and conceptual details of the dynamic models as well as the numerical 

integration and calibration procedures are described in the individual publications and their 

respective supplementary materials. Below, I provide a general overview of this methodology 

and the underlying rationale. 

Each model featured in this dissertation simulates the dynamics of at least 5 key variables per 

gram dry weight of a soil sample. These include the concentrations of added substrate 

(glucose or cellulose) and microbial biomass, the active fraction of microbial biomass, the 

cumulative CO2 release, and the cumulative heat release. All concentrations of carbon 

compounds (substrate, biomass, CO2) are expressed in units of mol C (per gram soil).  

A major novelty of these models is the incorporation of the heat variable, which is integral to 

achieving all of the thesis objectives outlined above. Specifically, it allows for the analysis of 

microbial EUE and the CR, and together with CO2 release, it represents the primary variable 

used for model calibration. If sufficient experimental estimates are available, microbial 

biomass is also used for model calibration. 

To simulate the dynamics of heat release and to couple the carbon and energy balances, it is 

necessary to ascribe specific heat production rates to all relevant biochemical reactions. In 
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general, this rate is given by the reaction enthalpy, which can be calculated from the 

enthalpies of combustion or formation of all of the involved reactants and products via the 

law of Hess (Chakrawal et al., 2020b; Kästner et al., 2024). If these enthalpies are not known 

or if the involved compounds are poorly characterized, their energy contents are estimated via 

Thornton’s rule (Thornton, 1917) based on their relative degrees of reduction . The degree γ

of reduction, in turn, can be calculated from the number of atoms of major elements in the 

compounds. Alternatively, they may also be treated as free parameters during model 

calibration. 

The active fraction of microbial biomass is a critical model component that is required to 

adequately describe the observed kinetics over the full course of the incubation. In particular, 

this includes the initial lag phase after substrate addition, the exponential growth phase, and 

the eventual retardation phase after substrate depletion. In this dissertation, I use the index of 

physiological state,  to model the dynamic transition of microbes between active 𝑟 ∈ [0, 1],

(fraction r) and inactive (fraction 1-r) states. This framework was established by Panikov 

(Panikov, 1995) and has frequently been used to describe the activity of soil microbial 

biomass (e.g., Blagodatsky and Richter, 1998; Blagodatsky et al., 2000; Wutzler et al., 2012; 

Chakrawal et al., 2021). In addition, I also incorporate dynamic switching from exogenous 

maintenance fueled by the consumption of external substrate to endogenous maintenance 

fueled by the consumption of biomass after substrate completion (Wang and Post, 2012). 

The numerical integration, calibration, and analysis of the ODE systems were implemented in 

the Python programming language. Since the incorporation of the activity variable r tends to 

introduce considerable stiffness into these systems, they were numerically integrated using 

the radau method as implemented in the solve_ivp function of the scipy.optimize package 

(Virtanen et al., 2020). Several approaches were employed for the calibration and uncertainty 

quantification of parameter values in these models, including classical nonlinear least-squares 

optimization via the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) 

combined with the Akaike Information Criterion (AIC, Banks and Joyner, 2017) as well as 

Bayesian approaches using Markov chain Monte Carlo (MCMC) methods (Foreman-Mackey 

et al., 2013; Valderrama-Bahamóndez and Fröhlich, 2019).  
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Results 

For high-resolution versions of all figures, please refer to the online versions of the published 

articles. 
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Discussion 

The studies presented in this thesis investigated the temporal patterns of microbial C and 

energy use under a wide range of conditions and across several different experiments and 

models. In the following, I briefly summarize the results of each study and discuss the 

relevance, limitations and future implications of these findings relative to the objectives of 

this dissertation. In particular, I focus on aspects of (i) the CUE and EUE, (ii) the CR, (iii) the 

bioenergetics of complex processes such as selective SOM utilization and trophic 

interactions, and (iv) the process-based modeling of coupled C and energy fluxes.   

Temporal variations in microbial carbon and energy use efficiency 

The results of this thesis revealed how a diverse set of factors including O2 and nutrient 

limitation, priming of SOM and maintenance metabolism can impact microbial CUE and 

EUE, and how these factors cause distinct temporal patterns over the course of typical soil 

incubation experiments after the addition of labile substrate.  

Transitions from aerobic to anaerobic metabolism cause a drop in efficiency. 

In Endress et al. (2024a), both experimental and model CUE estimated from observed 

biomass changes and cumulative CO2 release followed a characteristic pattern of high 

efficiency during exponential growth and low efficiency during lag and retardation phases 

(Chapter 1, Fig. 5a). Using the dynamic model, we were able to identify two major 

underlying causes of this pattern. First, more carbon was channeled through catabolism to 

fuel maintenance requirements early and late during the incubation. Second, the transition 

from aerobic respiration to anaerobic fermentations around the time of maximum activity 

resulted in reduced efficiency due to the low biomass yield coefficients of fermentations 

(<0.3) compared to that of aerobic respiration (>0.6). In general, the thermodynamic basis of 

low microbial CUE under anoxic conditions is well understood, including its representation 

in mechanistic models (e.g., Boye et al., 2017; Bajracharya et al., 2022; Zheng et al., 2024). 

However, in our study, we were able to leverage this general understanding in a dynamic 

modeling framework to disentangle and quantify the factors governing the temporal CUE 

pattern over the course of a specific experiment. 
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Moreover, the findings demonstrated the gradual onset of anaerobiosis in a typical, initially 

aerobic, soil incubation characterized by a moderate moisture content. A possible 

interpretation involves the formation and expansion of anaerobic microsites in the soil due to 

the high O2 demand of the growing microbial population. The importance of this mechanism 

for soil C cycling and stabilization has increasingly been recognized, even in well-drained 

soils (Keiluweit et al., 2016, 2017; Lacroix et al., 2022). A recent study also utilized 

pathway-specific gene abundance to identify increased lactic acid fermentation and glycolysis 

along with suppressed tricarboxylic acid cycle and pentose phosphate pathway activities as 

the cause of lowered CO2 emissions in an alpine meadow (Wang et al., 2024). The 

combination of such an analysis with our bioenergetic approach offers a promising option to 

comprehensively describe microbial transitions between metabolic pathways and their 

consequences for C cycling. In particular, I highlight how the CR can be used to dynamically 

monitor shifts in dominant pathways in a subsequent section (Utility and limitations of the 

calorespirometric ratio). 

Local nutrient limitation changes the kinetics, but not the efficiency of microbial 

growth. 

In contrast, the results of Endress et al. (2024b) revealed no signs of anaerobic metabolism, 

and microbial growth was predominantly fueled by aerobic respiration of glucose. 

Remarkably, we also found no significant effect of nutrient limitation on the overall 

efficiency of the microbial population (Chapter 2, Fig. 4a). Instead, CUE and EUE attained 

high values in the range of 0.5 to 0.7 consistent with efficient aerobic growth in all 

treatments, and their relationship adhered closely to theoretical predictions. However, the 

kinetics of microbial growth were significantly different under nutrient limitation, with 

reduced and delayed rates of microbial activity (Chapter 2, Fig. 2).  This is in line with 

similar experimental results (Shi et al., 2021; Inagaki et al., 2023) and recent theoretical 

advances on the interacting effects of substrate stoichiometry and bioenergetics (Chakrawal et 

al., 2022). In addition, modeled patterns of microbial activity were similar to those in Chapter 

1 (compare Chapter 1, Fig. 5b and Supplementary Fig. S3c to Chapter 2), implying a 

comparable temporal pattern of CUE and EUE due to the effects of microbial maintenance. 

Intriguingly, the model predicted an overall smaller active fraction in spatially heterogeneous 

incubations, which is consistent with a reduced co-location of substrate and consumers 

(Pinheiro et al., 2015; Babey et al., 2017). Combined with the constant efficiency across 
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treatments, this implies that the growth of the soil microbes with sufficient exposure to 

glucose was enough to compensate for the fraction of microorganisms located outside of 

substrate hotspots, which remained inactive and only performed maintenance (Supplementary 

Fig. S3b to Chapter 2). In contrast, theory indicates that this averaging across heterogeneous 

conditions generally does not yield the same dynamics as observed in a homogeneous system 

(e.g., Chakrawal et al., 2020a), and the precise conditions under which such a comparison is 

or is not feasible in soil systems must be further investigated.  

CUE estimates must account for the additional utilization of SOM due to priming. 

The study of Wirsching et al. (2024) represents the most complex examination of temporal 

CUE and EUE patterns in this thesis (Chapter 3, Fig. 6). Specifically, we were able to 

disentangle the microbial utilization of added cellulose from that of native SOM through the 

use of 13C-labeled substrate. This approach revealed a substantial positive priming effect of 

up to 30% of the added substrate in all studied soils (Chapter 3, Fig. 2, Fig. 3), consistent 

with reports in the literature (e.g., Blagodatskaya et al., 2014b; Perveen et al., 2019). 

Microbial cellulose utilization was efficient during the exponential growth phase with CUE 

values in the range of 0.4 to 0.5, slightly below those observed for glucose. The efficiency of 

microbial growth on primed SOM was even lower (<0.4 on average), as expected for these 

more complex compounds (Öquist et al., 2017; Manzoni et al., 2018; Ahamed et al., 2023). 

Overall, dynamic estimates of the C and energy balances were in close agreement and 

indicated a net increase of C and energy in all soils after one month, which was largely 

caused by a substantial amount of undecomposed residual cellulose in the soil (Chapter 3, 

Fig. 6). After accounting for the positive priming of SOM, this net storage of C was 

equivalent to roughly half the amount of added substrate, with very low mineralization rates 

by the end of the incubation (Chapter 3, Fig. 2). This highlights the fact that the fate of both 

added substrate and native SOM must be considered to obtain an accurate assessment of the 

net C gain or loss after substrate amendment (Dijkstra and Keitel, 2024).  

Moreover, the temporal patterns of CUE of both cellulose and SOM utilization were 

qualitatively comparable to those observed in the first and second chapters (Supplementary 

Fig. S2 to Chapter 3), despite the fact that microbes grew on multiple substrates and growth 

occurred over a much longer time period (weeks compared to days) due to the slower 

microbial decomposition of cellulose. This highlights the broad applicability of our approach 
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and indicates that general biological constraints steer the dynamics in the soil in our study 

cases, as discussed below. 

Changes in the active biomass fraction govern the overall dynamics of CUE. 

The findings presented in Endress and Blagodatsky (in prep.) provide the theoretical 

underpinnings of the ubiquitous pattern of CUE and EUE after single-pulse substrate 

addition. In essence, the temporal dynamics of microbial CUE reflect those of the active 

fraction of microbes, because only the active fraction channels C through anabolic reactions 

to produce new biomass via growth. Since the dynamics of the r variable display a unimodal 

pattern in all model simulations, so too does CUE. This unimodal pattern is consistent with 

experimental measures of microbial activity such as respiration and heat production and 

indicates an adequate performance of the index of physiological state r. Other processes, such 

as anaerobic pathways or SOM utilization, contribute additional variation to this fundamental 

pattern. For example, the dominant active pathways determine the maximum efficiency that 

can be reached by the active fraction of microbial biomass. Notably, the carbon and energy 

flow is dominated by maintenance reactions of the inactive fraction during the initial lag 

phase and the retardation phase after substrate depletion. These reactions do not yield any net 

increase in biomass. In fact, the switch to endogenous maintenance in the absence of external 

substrates eventually causes a negative CUE that results in a net decrease of biomass, as 

observed in the results of Chapter 3 (Chapter 3, Fig. 2) and many similar experiments (for an 

example including the application of the index of physiological state r, see Blagodatsky et al., 

1998). 

Assessment of microbial CUE and EUE is limited by biomass quantification. 

Given its definition as the fraction of C channeled through anabolism, a direct assessment of 

CUE requires accurate estimates of microbial biomass in the soil. Yet, no universal and 

unambiguous method to obtain such estimates exists (Blagodatskaya and Kuzyakov, 2013). 

Chloroform fumigation-extraction (CFE, Vance et al., 1987) represents the most widespread 

approach, yet its accuracy depends on the conversion factor between chloroform-extractable 

C and soil microbial C (Glanville et al., 2016). This factor is frequently treated as a constant 

(Čapek et al., 2023), which neglects its documented variability across soils (Sparling and 

West, 1988; Dictor et al., 1998) and propagates this uncertainty if novel approaches are 

calibrated via the CFE method. Therefore, the development and improvement of biomass 
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quantification procedures represent a major limitation to our quantitative understanding of 

soil microbial CUE.  

In our studies, we have used CFE-derived biomass estimates (Chapter 3) as well as estimates 

derived from soil DNA content and substrate-induced respiration (SIR, Anderson and 

Domsch, 1978, Chapter 1, Chapter 2) for the calibration of model parameters and initial 

conditions. While DNA- and respiration-based estimates were in good agreement in Endress 

et al. (2024a), growth estimates based on DNA increase were lower than those based on 

respiration in Endress et al. (2024b), probably due to dynamic changes in the conversion 

factor between DNA and biomass (Čapek et al., 2023). This further highlights the need for 

method intercomparison and development. Finally, our results corroborate the idea that 

efficiency estimates based solely on the release of heat and CO2 are generally problematic, 

especially in the case of complex substrates and additional SOM utilization (Chapter 3, 

Hagerty et al., 2018).  Notably, heat-based estimates are currently the only practical method 

for the estimation of EUE. Independent estimates of EUE do not only require the accurate 

quantification of biomass but also of its energy content, making them even more challenging 

to obtain (see Wang and Kuzyakov, 2023, for an overview of EUE calculations). 

Information content and limitations of the calorespirometric ratio 

Similar to the findings on CUE and EUE, our results revealed that the temporal patterns of 

the CR can be leveraged to monitor dynamic changes in microbial metabolism over the 

course of soil incubation experiments. 

The CR can be used to identify shifts in metabolic pathways.  

In Endress et al. (2024a), the time course of the CR was characterized by two distinct trends, 

an initial increase to around 550 kJ per mol C followed by a sharp drop to around 230 kJ per 

mol C around the time of peak activity (Chapter 1, Fig. 3). These values fall outside the 

plausible range of values expected for aerobic growth on glucose and can be interpreted to 

indicate a shift toward anaerobic metabolic pathways (Chakrawal et al., 2020b). Specifically, 

a gradual onset of glucose fermentation to lactate followed by further fermentation to acetate 

and propionate predicts a temporal pattern consistent with observations. Critically, this 

interpretation is based on theoretical considerations instead of direct experimental evidence, 

such as the measurement of fermentation products or the activity of specific enzymes. 
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However, this hypothesis is supported by several indirect lines of evidence besides the CR 

pattern. First, members of the Bacillota phylum, known for their extensive fermentative 

capabilities (Cruz Ramos et al., 2000; Seeliger et al., 2002; Wiegel et al., 2006; Mosher et al., 

2012), dramatically expanded during the incubation and eventually dominated the community 

(Chapter 1, Fig. 4). Second, we observed N2O emissions indicating denitrification under 

anaerobic conditions, yet they were insufficient to explain CO2 and heat emissions 

quantitatively (Supplementary Fig. S1 to Chapter 1). I note that the detection of additional 

gaseous products like N2O and CH4 represents a simple yet powerful way to enhance the 

interpretation of experimental results in the CR framework, especially if CO2 is already 

analyzed by gas chromatography (as in Chapter 1). Third, 14% of the C added as glucose was 

unaccounted for between biomass and cumulative CO2 at the end of the incubation, consistent 

with the accumulation of fermentation products in the dynamic model (Supplementary Fig. 

S6 to Chapter 1). Finally, a rough estimation of total O2 availability indicated that complete 

aerobic oxidation of all added glucose was not feasible in the vials used for incubation. 

Together, these considerations suggest that the CR pattern can be used to track changes in 

metabolic pathways dynamically. Most importantly, identifying the possibility of 

fermentations would have been difficult based on C fluxes alone. Instead, this was only 

enabled by the joint consideration of heat and CO2.  

The CR can be used to assess the energy content of primed SOM. 

The results of Wirsching et al. (2024) provide another example of the additional information 

that can be gleaned from the CR. In this study, we observed a substantial positive priming 

effect after the addition of cellulose based on 13C-labeling (Chapter 3, Fig. 2, Fig. 3). The 

amount of added substrate, as well as microbial biomass, are important determinants of the 

extent of SOM mineralization due to priming (Schimel, 2023), and this relationship can be 

explored from a carbon-centered perspective. However, such a methodology does not reveal 

any details about the composition of the primed SOM. By including the rate of heat release in 

our quantitative modeling framework, we were able to estimate the energy content of the 

SOM that was actually utilized by microbes in the studied soils (Supplementary Fig. 4 to 

Chapter 3). The analysis revealed diverse outcomes, with microbes utilizing SOM of lower, 

equal, or higher energy content than the average energy content of SOM in their respective 

soils. While we made no attempt to systematically interpret these novel findings in the study, 

developing and testing mechanistic explanations underlying the observations and linking 
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them to existing concepts of SOM bioavailability and preferential degradation represent 

important next steps to understanding the dynamics of soil C stocks (Gunina and Kuzyakov, 

2022; Wang and Kuzyakov, 2023; Kästner et al., 2024). For example, this involves 

connecting SOM energy content to other properties that determine bioavailability, such as 

molecular weight and C/N-ratio (Ahamed et al., 2023), or explicitly accounting for the 

distribution of energy contents across SOM compounds as revealed by LDI-FT-ICR-MS 

(Simon et al., 2024). 

The CR can identify plausible process combinations underlying experimental 

observations. 

The theoretical analysis presented in Endress and Blagodatsky (in prep.) concludes that much 

of the utility of the CR lies in its ability to identify processes or process combinations that are 

consistent with the dynamics observed in experiments. Specifically, the CR can be used to 

generate falsifiable hypotheses about the dominant sources of CO2 and heat and to suggest 

targeted measurements for testing these hypotheses. For example, in Endress et al. (2024a), 

the hypothesized transition to anaerobic pathways can be confirmed or rejected via the direct 

detection (or lack thereof) of fermentation products in follow-up studies or experiments. 

Besides its value for the interpretation of experimental results, the explicit representation of 

heat release also forces us to clarify our assumptions about conceptual and modeled C fluxes. 

For instance, the presumed composition of the external substrates or internal biomass 

compounds consumed to fuel maintenance requirements has a distinct effect on the CR 

signature of maintenance metabolism, but it is largely irrelevant if only CO2 release is 

considered (Chapter 4, Fig. 3). Therefore, the CR enables and requires a nuanced 

understanding of the studied processes, both in the interpretation of experimental results and 

the design of mechanistic models. 

In general, the CR should not be used to estimate microbial CUE directly. 

Interest in the CR is in no small part driven by its connection to the efficiency of microbial 

growth and thus CUE. In particular, early studies highlighted a one-to-one correspondence 

between the CR and CUE in the case of simple growth reactions (Hansen et al., 2004), and 

the CR has subsequently been suggested as a method for CUE determination under certain 

conditions (Geyer et al., 2019). However, this correspondence is no longer applicable if other 

processes such as anaerobic reactions or SOM utilization are present (Chakrawal et al., 

96 



2020b), and the required accuracy of CR measurements to obtain reliable CUE estimates is 

difficult to achieve using current setups (Yang et al., 2024). The results presented in all four 

chapters support these criticisms, and we conclude that the CR can only be used to estimate 

CUE under narrow conditions, such as during the exponential growth phase after labile 

substrate addition (as done in Chakrawal et al., 2021). In general, the relation between CR 

and CUE is nuanced, and the more complex model predictions in Endress and Blagodatsky 

(in prep.) are in good agreement with observations in the few experiments with sufficient 

CUE and CR estimates (e.g., compare Chapter 4, Fig. 3 to Chapter 2, Fig. 4b and Chapter 3, 

Fig. 7). 

The CR is highly sensitive to the relative timing of heat and CO2 observations. 

In Endress et al. (2024b), we observed erratic patterns in the dynamic CR that were 

incompatible with simple model predictions (Chapter 2, Fig. 5, and Supplementary Fig. S4 to 

Chapter 2). By extending the model to account for delayed CO2 detection relative to heat 

detection, we were able to reproduce many features of the measured CR curves. We speculate 

that this delay is caused by the transport of CO2 from the site of production in the soil to the 

site of its detection (alkali solution in the headspace above the sample). Our findings add to 

related issues regarding the parallel measurement of heat and CO2 from soil samples reported 

in the literature (Barros et al., 2010; Yang et al., 2024). They emphasize the need for 

improvements to existing experimental setups and the design of novel calorespirometers, 

which represent an ongoing endeavor (Fricke et al., 2024). The study also illustrates how 

models can account for artificial patterns caused by experimental procedures, although a 

spatially explicit modeling approach to the transport of gases and heat in the system would be 

required to assess the observed delay and its causes quantitatively. 

In addition, the results of Endress et al. (2024b) show that the CR calculated from the 

cumulative release of heat and CO2, as opposed to the highly sensitive CR based on rates, is a 

robust tool to assess the overall balance of C and energy in the system. This finding is in line 

with the theoretical conclusions reached by Endress and Blagodatsky (in prep., Chapter 4, 

Fig. 2). In particular, the combination of the CR with the ratio of CO2 production to O2 

consumption and the ratio of heat production to O2 consumption clearly revealed aerobic 

growth fueled by glucose as the dominant process in all incubations (Chapter 2, Fig. 3). This 

complementary nature of the three ratios was already discussed by Hansen et al. (2004) and 
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has recently regained some attention (Smart et al., 2024), but the information contained in a 

joint dynamic analysis of all three quantities - heat, CO2 and O2 - is yet to be leveraged. 

Unraveling the complexity of microbial life in soil using bioenergetics 

The findings of this thesis primarily pertain to the microbial carbon and energy use after the 

addition of well-defined, labile substrates to sieved and homogenized soil samples under 

laboratory conditions. Yet, the results and bioenergetic considerations also have the potential 

to elucidate other aspects of microbial life in soil, such as microbial C cycling in unamended 

soils or the role of complex interactions in microbial communities and across trophic levels. 

Do microbes selectively utilize specific SOM compounds in amended and unamended 

soils? 

The simultaneous screening of heat and CO2 enabled us to estimate the energy content of 

SOM mineralized after cellulose addition due to the priming effect (Wirsching et al., 2024). 

While this analysis by itself revealed the microbial utilization of SOM of a wide range of 

energy contents in a diverse set of soils, it is particularly valuable when combined with 

estimates of the average energy content of SOM in those soils as obtained via combustion 

calorimetry or TG-DSC (e.g., Baraldi et al., 1998; Barros et al., 2020; Lorenz, 2024). The 

selective utilization of SOM by microorganisms can then be inferred from a comparison of 

the two estimates as discussed above (see also Supplementary Fig. S4 to Chapter 3) and 

offers many avenues for further investigation. In particular, the selective utilization of certain 

SOM compounds implies the selective stabilization of other compounds under the studied 

conditions, with implications for the fate of the quantity and quality of SOM stocks (Gunina 

and Kuzyakov, 2022; Wang and Kuzyakov, 2023; Kästner et al., 2024). 

The same rationale can also be applied to unamended soils and soil samples. Given that most 

microbes are inactive most of the time and the conditions they experience cannot be 

compared to those after the addition of large amounts of labile substrate (Kuzyakov and 

Blagodatskaya, 2015), this scenario may be even more important for the fate of SOM at 

larger scales. However, almost all of the limited available data for the CR of unamended soils 

have been collected by a small number of researchers, in particular by Barros and colleagues 

(e.g., Barros et al., 2011, 2017, 2020; Barros, 2021; Lestido-Cardama et al., 2024). I note that 

such CR values should also be available from the unamended control samples used in 
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substrate addition experiments, but those data are rarely reported. Nonetheless, in the few 

studies that measured both the CR of unamended samples and the energy content of SOM in 

the soil, the relationship between the two quantities is intriguing (Chapter 4, Fig. 4). In arable 

soils, there is a very close positive correlation, indicating that microbes do not preferentially 

utilize SOM of higher or lower energy content. On the other hand, a weak inverse 

relationship is found in samples obtained from forest soils, perhaps driven by selective 

utilization of energy-rich substrates in organic horizons with high C content. An in-depth 

analysis of the causes underlying this pattern is currently prevented by the small number of 

samples, but this will be an important and attractive option as more data becomes available. 

The role of microbial community composition and trophic interactions remains to be 

explored in a bioenergetic framework. 

Soils harbor an enormous diversity of microbial life (Anthony et al., 2023), and this diversity 

is central to the biogeochemistry of the system (Mau et al., 2015; Crowther et al., 2019). In 

contrast, the microbial community is frequently dominated by the expansion of one or few 

taxa after a pulse of labile substrate in experiments (Eilers et al., 2010; Mau et al., 2015; 

Morrissey et al., 2017; Papp et al., 2020; Stone et al., 2021). While this can give important 

hints for understanding experimental observations, as it did in Endress et al. (2024a), such 

experiments do not reflect natural soil conditions. Therefore, future studies should consider 

combining bioenergetic investigations as presented in this thesis with an analysis of the 

microbial community and its successional stages under a wider range of conditions, including 

unamended and undisturbed soil samples with intact structure (Thomson et al., 2010; Ruamps 

et al., 2011), repeated substrate additions (Wu et al., 2020; Peng et al., 2024) or the addition 

of more complex substrate mixtures (Blagodatskii et al., 2008; Min et al., 2021). 

Trophic interactions in soil food webs add another layer of complexity, yet they are critically 

important for many soil functions such as SOM and nutrient cycling (Schimel and Schaeffer, 

2012; Grandy et al., 2016; Richter et al., 2019). Energy flux across trophic levels in the soil 

system has been investigated with a particular focus on nematode consumers (e.g., Ferris, 

2010; Wan et al., 2022). However, such investigations typically rely on empirical estimates of 

energy transfer that are ultimately based on the flux of C through the system, instead of 

independent measures such as heat release. Recent efforts have started to unveil connections 

between the soil nematode community and microbial activity, CUE, and EUE, suggesting 

99 



nematode faunal analysis as a useful proxy for microbial substrate turnover and efficiency 

(van Bommel et al., 2024). A mechanistic, bioenergetic description based on coupled 

measurements of C and energy flux would help to substantiate these observed correlations. 

Utility of process-based models with coupled microbial carbon and energy 

turnover 

Throughout this thesis, the use of process-based dynamic models was central to the 

quantitative interpretation of experimental results and to the conceptual advancement of our 

understanding of microbial C cycling. Below, I briefly summarize the strengths, the 

limitations, and the options for future extensions of these models. 

The incorporation of heat dynamics enhances the capabilities of microbial C cycling 

models. 

The representation of heat dynamics was key to the utility of the models in all chapters of this 

thesis. In Endress et al. (2024a), only the quantitative pattern of the CR enabled the 

identification of plausible anaerobic pathways. An analysis based on the dynamics of C pools 

alone would be unlikely to yield similar conclusions. In Wirsching et al. (2024), the 

incorporation of heat flux allowed us to estimate SOM energy content from the difference 

between the total observed heat release and the expected heat release due to the consumption 

of 13C-labeled cellulose. While we did not perform an in-depth analysis of the dynamic CR in 

Endress et al. (2024b), the heat flux nonetheless provided valuable insights for the 

improvement of the experimental setup to enable such investigations in the future. 

Furthermore, the cumulative CR confirmed aerobic growth on glucose as the main 

biochemical process in all incubations. Finally, the coupling between CO2 and heat release 

represents the basis for all of the model predictions regarding maintenance metabolism and 

the CR of unamended soil samples in Endress and Blagodatsky (in prep.).  

Experimental observations of heat release were also instrumental during model calibration. 

The availability of another time series for calibration greatly enhanced the quality of 

parameter estimates (see also Chakrawal et al., 2021). Sometimes, it even enabled the 

convergence of calibration routines in the first place. Specifically, relatively few or even no 

additional parameters had to be introduced to describe the dynamics of the heat variable, 

since the reaction enthalpy of the dominant processes can be derived from other parameters in 
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combination with independent information such as the energy contents of the involved 

compounds (Kästner et al., 2024). Notably, isothermal microcalorimetry provides 

measurements at an extremely high temporal resolution (on the order of seconds). This is in 

stark contrast to C pools such as biomass and CO2, which are typically measured only a few 

times over the course of incubation (see for example Chapter 1, Fig. 3, and Chapter 3, Fig. 2). 

I note that this dramatic difference in the number of data points between variables 

necessitates the use of weighted residuals to avoid overfitting of the heat observations. 

Nonetheless, the highly resolved dynamics facilitate the quantitative judgment of properties 

such as the time of maximum activity or the return of activity to basal levels.  

Current models can be extended to improve process representations. 

To demonstrate the feasibility and the utility of simulating coupled C and energy fluxes and 

to allow for model calibration to small datasets, the dynamic models used in this thesis are of 

low complexity compared to many contemporary models of soil C cycling (Sulman et al., 

2018). For example, they utilize simple formulations to simulate the anaerobic soil volume 

fraction (Endress et al., 2024a), the consumption of nutrients from the surrounding soil 

(Endress et al., 2024b), the priming of SOM, and the residual undecomposed fraction of 

cellulose (Wirsching et al., 2024). Similarly, they all rely on a small number of C pools 

characterized by constant energy contents, as well as on macrochemical (i.e., black-box) 

fluxes between these pools.  

Fortunately, numerous options are readily available to extend these models and to improve 

the representations of the processes of interest as required. Ideally, these extensions should be 

grounded in established physical rules (Tang et al., 2024). Among many others, these options 

include mechanistic descriptions of O2 supply and demand in the soil pore space, including 

spatially explicit formulations (Schlüter et al., 2024), the explicit representation of 

extracellular enzymes for the decomposition of SOM and polymeric substrates such as 

cellulose (as in, e.g., the MEND model, Wang et al., 2015) or the incorporation of nitrogen 

dynamics and microbial stoichiometry more generally (Chakrawal et al., 2022). The 

representation of the microbial community can be extended to account for different functional 

groups and life history strategies (e.g., Fierer, 2017; Piton et al., 2023), for example via 

trait-based approaches (Marschmann et al., 2024; Sırcan et al., 2025). At the same time, the 

structure of microbial biomass can be more finely resolved, e.g., using structural and reserve 
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biomass pools as in DEB models (Marschmann et al., 2024) or via the incorporation of 

storage compounds (Manzoni et al., 2021; Mason-Jones et al., 2023). Soil solution chemistry 

and interactions of organic C with mineral phases in the soil, e.g., via sorption, represent 

another aspect that was not considered in this thesis. Coupling microbial-explicit C dynamics 

with models of soil solution chemistry such as the open-source program PHREEQC 

(Parkhurst and Appelo, 2013) could elucidate the role of physico-chemical interactions in 

future investigations, for example, to study the impacts of soil salinization (Mavi and 

Marschner, 2017). 

In all of these cases, the central challenge with respect to bioenergetic modeling consists of 

assigning appropriate energy contents and heat fluxes to all of the C pools and C fluxes, 

respectively (or the decision to omit such fluxes if the rate of heat release is deemed 

negligible). 

Equifinality and parameter identifiability remain important challenges. 

The estimation of model parameters was significantly enhanced, and sometimes even made 

possible, by the incorporation of heat dynamics in the models and the availability of heat 

measurements for model calibration. Nonetheless, issues of calibration equifinality and poor 

identifiability of parameters persist in these models. The theoretical results of Endress and 

Blagodatsky (in prep.) provide particularly straightforward examples of this, with different 

parameter sets yielding equivalent system behavior in all modeled variables. Fundamentally, 

this finding is not surprising, given that the dynamics of heat release are uniquely determined 

by the overall energy balance in these simple models. Therefore, if all carbon pools follow 

equivalent trajectories under different parameterizations, so too will the heat variable.  

However, parameter non-identifiability extends far beyond such narrow cases of strict 

equivalence (Marschmann et al., 2019). In this thesis, it manifested itself in high parameter 

uncertainty and poorly constrained posterior distributions of some parameters like certain 

yield coefficients or the half-saturation constant of the physiological state variable r (see e.g. 

Supplementary Fig. S4 to Chapter 1). I note that model calibration is particularly challenging 

if no experimental estimates of microbial biomass are available. In this case, both the growth 

of the biomass pool and the activation of previously dormant biomass without growth can 

yield highly similar dynamics of heat and CO2 release, despite markedly different trajectories 

of the biomass pool. In practice, microbial biomass therefore represents the most important 
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variable for calibration other than the calorespirometric data. A formal analysis that 

quantifies the additional information gained from the representation of the heat variable is, 

however, still missing. 

Such issues present an even greater challenge as the complexity and the number of 

parameters of the biogeochemical models in question increase (Sierra et al., 2015). Novel 

calibration procedures such as constraint-based MCMC methods that flexibly incorporate a 

priori parameter and process-constraints into the calibration routine can be leveraged to 

address this problem by confining the space of feasible parameter combinations (Chavez 

Rodriguez et al., 2022). This is especially valuable if models are not calibrated to reflect the 

detailed dynamics of single experiments. To complement such algorithmic innovations, the 

number of free parameters as well as their ranges can also be reduced via independent 

thermodynamic and biological considerations. For example, this has been demonstrated for 

growth yield coefficients (Brock et al., 2017), rate coefficients (Desmond-Le Quéméner and 

Bouchez, 2014; Delattre et al., 2019), and a range of other genome-informed microbial traits 

(Karaoz and Brodie, 2022; Marschmann et al., 2024). 

Conclusion 

In this thesis, I have demonstrated the feasibility and utility of microbial-explicit 

process-based modeling for the analysis of coupled carbon and energy flows in the soil 

system.  

The models show that microbial CUE and EUE after single-pulse addition of labile substrate 

are tightly linked according to fundamental thermodynamic rules. Specifically, the efficiency 

of microbial growth exhibits complex temporal patterns that are shaped by the availability 

and quality of substrate and terminal electron acceptors, the additional utilization of SOM, 

and the activity state of the microbial community. Accurate experimental biomass 

quantification represents a critical challenge for the validation of CUE dynamics in these 

models and should be addressed via method development and intercomparison. 

The results illustrate how the calorespirometric ratio of heat to CO2 release can be leveraged 

to monitor and quantify microbial metabolism in the soil system dynamically. In particular, 

the CR enables the identification of plausible processes underlying experimental 

observations, such as shifts in metabolic pathways or the selective utilization of SOM 
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compounds. Therefore, the framework allows for the formulation of specific and testable 

hypotheses and is most useful when combined with other sources of information, like 

measurements of O2 consumption or independent estimates of the dynamics of relevant C 

pools such as biomass or metabolic products. When combined with estimates of SOM energy 

content, the CR can reveal selective utilization of SOM in both unamended soils and after 

substrate addition, which offers a promising option for future research. 

Finally, the incorporation of heat dynamics was instrumental in the calibration of the studied 

models, and contributed to their ability to generate mechanistic interpretations of 

experimental results. The simple formulations presented in this thesis can easily be extended 

to increase the realism and scope of process representations. However, the estimation of 

model parameters continues to pose a serious challenge, which is exacerbated by increased 

model complexity. A combination of advanced calibration methods and independent 

constraints based on thermodynamic considerations and microbial traits should be leveraged 

to address this issue. 
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List of resources 

The table below lists important resources used in this thesis for analysis and visualization 

purposes. Versions of programming languages and packages used are indicated in each 

article. 

Name Description References 

NIST Chemistry 
WebBook 

Public online collection of physical and 
chemical properties of many 
compounds, e.g., enthalpies of formation 
and combustion 

Peter Linstrom (2017) 
 

BioRender Online tool for figure creation used to 
create the schematic illustrations in all 
manuscripts (Chapter 1, Fig. 1 and Fig. 
2; Chapter 2, Fig. 1; Chapter 3, Fig. 1; 
Chapter 4, Fig. 1) 

BioRender.com 

R and RStudio Programming language and environment 
used for some statistical analyses 

RStudio Team (2020); R 
Core Team (2023) 

emmeans Package used for ANOVA with contrasts 
(Chapter 2) 

Lenth (2023) 
 

Python and SciPy Programming language and primary 
package used for all analyses, 
particularly the numerical integration of 
ODEs 

Rossum (1995); Virtanen 
et al. (2020) 
 

lmfit Package used for model calibration Newville et al. (2023) 

emcee Package used for MCMC analysis Foreman-Mackey et al. 
(2013) 
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Appendix 

For high-resolution versions of all figures, please refer to the published online versions of the 

supplementary materials. 

Supplementary material of Endress et al. (2024a) 

This supplementary material consists of the following components: 

●​ SI Data. Excel file containing all calorespirometry and biomass data analyzed in this 

study, as well as relative abundances of the major bacterial phyla during the 

incubations. 

●​ SI OTU Table. Excel file that includes the taxonomic assignments and relative 

abundances for all replicates. 

●​ SI Text. PDF file containing supplementary materials and methods, Supplementary 

Figs. S1–S7, Supplementary Tables S1–S2, and supplementary references. 

SI Text is provided below. For SI Data and SI OTU Table, please refer to the online version 

of the published article. 
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Supplementary material of Endress et al. (2024b) 

This supplementary material consists of the following components: 

 

●​ SI Text. PDF file containing supplementary materials and methods, Supplementary 

Figs. S1–S4, Supplementary Tables S1–S2, and supplementary references. 

●​ SI Data. Excel file containing all data analyzed in this study as well as ANOVA and 

model calibration results. 

SI Text is provided below. For SI Data, please refer to the online version of the published 

article. 
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Supplementary material of Wirsching et al. (2024) 

This supplementary material consists of the following components: 

●​ SI Text. PDF file containing supplementary materials and methods, Supplementary 
Figs. S1–S6, Supplementary Tables S1–S5, and supplementary references. 

 SI Text is provided below. 
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