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Kurzzusammenfassung

Bereits seit einigen Jahrzehnten bliiht die Forschung in der angewandten
Mathematik zu Ladungstransport in Halbleitern auf. Da ein Halbleiter aus
einigen 10?3 Atomen besteht, sind vor allem effektive Gleichungen von groem
Interesse, um einzelne Phénomene erklaren zu kénnen. Vor ein paar Jahren
wurden die zahlreichen Modelle um ein weiteres ergénzt, dass im Gegensatz zu
den bisherigen Modellen selbst ein Experiment ist. In diesem Modell werden
die geladenen Elektronen durch ultrakalte Atome dargestellt und das peri-
odische Potential des Halbleiterkristalls wird mithilfe eines optischen Gitters
realisiert.

Das Ziel dieser Dissertation ist die mathematische Behandlung von effek-
tiven Gleichungen zur Beschreibung einer Wolke aus ultrakalten Atomen in
einem optischen Gitter. Der Hauptunterschied von dem Experiment mit ul-
trakalten Atomen zu dem Ladungstransport in Halbleitern liegt in der unter-
schiedlichen Wechselwirkung. Bei ultrakalten, nicht geladenen Atomen tritt
eine sehr singuldre Wechselwirkung auf. Da diese wesentlich irregulérer ist als
die Coulombwechselwirkung zwischen Elektronen, erschwert dies erheblich die
Analysis der Gleichungen.

Eine Halbleiter-Boltzmann Gleichung mit einem BGK-Stofloperator und
einem singuldren Potential ist ein geeignetes mikroskopisches Modell fiir eine
Wolke aus ultrakalten Atomen in einem optischen Gitter. Es wird gezeigt,
dass diese Gleichung fiir kurze Zeit eine analytische Losung besitzt. Dafiir
wird allerdings vorausgesetzt, dass geeignete und analytische Anfangswerte
vorliegen, deren Energiedichten klein genug sind. Ersetzt man den BGK-
StoBoperator durch eine lineare Relaxationszeit-Approximation mit konstan-
tem Gleichgewicht, so wird fiir diese Halbleiter-Boltzmann Gleichung eine
globale Losung gefunden. Dafiir miissen analytische Anfangswerte vorliegen,
von denen jegliche Ableitungen gentigend klein sind.

Aus den mikroskopischen Gleichungen kann man mittels eines diffusiven
Limes mikroskopische Gleichungen erhalten. In dieser Dissertation werden
aus der Halbleiter-Boltzmann Gleichung mit einem BGK-Stofloperator sowohl
eine Driftdiffusionsgleichung als auch zwei Energietransport Gleichungen for-
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mal hergeleitet. Die Driftdiffusionsgleichung ist bei kleiner Dichte der Atom-
wolke die logarithmische Diffusionsgleichung. Diese Gleichung wird auf einem
beschranktem Gebiet betrachtet und mit Randbedingungen versehen, die aus
der mikroskopischen Gleichung motiviert werden. Mit diesen Randwerten
besitzt die logarithmische Diffusionsgleichung eine globale Losung die expo-
nentiell abféllt.

Die erste der beiden Energietransport Gleichungen wird direkt {iber einen
diffusiven Limes der Halbleiter-Boltzmann Gleichung mit einem BGK-Stof-
operator erhalten und besteht aus einer Kreuzdiffusiongleichung. Bei solchen
Kreuzdiffsusionsgleichungen wird haufig die Wohlgestelltheit mittels Entropie-
abschatzungen bewiesen. In dieser Dissertation wird allerdings gezeigt, dass
diese Entropieabschatzungen wesentlich schwécher sind als bei gewohnlichen
Kreuzdiffusionsgleichungen fiir Halbleiter. Der Grund dafiir ist das singulére
Wechselwirkungspotential, das zu starken Degeneriertheiten in der Entropie-
dissipation fiihrt. Um dieses System an Gleichungen zu vereinfachen, kann
man formal eine Entwicklung nach hohen Temperaturen durchfithren und
erhélt ein zweites Energietransport Gleichungssystem. Fiir die Hochtempera-
tur-Energietransport Gleichungen wird in dieser Dissertation eine schwache
untere Losung, sowie eine numerische Losung ermittelt.
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Abstract

In the last decades, the theory of charge transport in semiconductors has be-
come a thriving field in applied mathematics. Due to the complexity of semi-
conductors consisting of some 1023 atoms, there are several effective equations
describing different phenomenological properties of semiconductors. Recently,
the description of charge transport in semiconductors was extended by an ex-
perimental model: a cloud of ultracold atoms in an optical lattice. In this
model, the ultracold atoms stand for the charged electrons and the optical
lattice describes the periodic potential of the crystal formed by the ions of the
semiconductor.

This thesis is dedicated to effective equations for this experimental model
of the charge transport in semiconductors. The main difference between a
cloud of ultracold atoms and a system of electrons is the interaction. Assuming
that the atoms are uncharged, the interaction potential is significantly more
singular than the Coulomb potential of the electrons causing major structural
difficulties in the analysis.

In the microscopic description, this thesis investigates a semiconductor
Boltzmann equation with BGK-type collision operator and a singular inter-
action potential. It is shown that for adequate analytic initial data, this
equation possesses a local, analytic solution. Moreover, replacing the collision
operator by a linear relaxation time approximation with constant equilibrium,
this thesis provides a proof of the global existence of an analytic solution if
all derivatives of the analytic initial data are sufficiently small.

Using a diffusive limit, some macroscopic models are formally derived from
the semiconductor Boltzmann equation with BGK-type collision operator: a
drift diffusion equation being equal to the logarithmic diffusion equation and
two systems of energy transport equations.

The logarithmic diffusion equation is treated on a bounded domain with
non-standard boundary conditions motivated by the microscopic picture of
ultracold atoms. It is shown that the logarithmic diffusion equation admits a
global classical solution which decays exponentially in time. The first energy
transport model is a cross-diffusion equation which formally admits an entropy
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function. However, the singular interaction potential leads to degeneracies in
the entropy dissipation, undermining a rigorous solution so far. Approximat-
ing the system formally, this thesis simplifies the first energy transport model
to a second energy transport model, namely its high temperature expansion.
This high temperature energy transport model is solved numerically and pos-
sesses a non-trivial weak lower solution.
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Introduction






Computer, mobile phones and other devices based on semiconductors have
developed a growing influence on our daily life. Therefore, it is not surprising
that the mathematical modeling of charge transport in semiconductors has
become more and more popular. The simplest picture of a solid state material
is a crystal formed by a lattice of ions and electrons moving inside this crystal.
Noting that the ions are heavier than electrons by a magnitude of 103 — 10,
it is reasonable to assume that the electrons are much faster than the ions
so that the movement of the ions can be neglected in the phenomenological
way. This means that the charge transport is given by the movement of
the electrons in the semi-classical picture. Since a semiconductor consists of
the order of 10?2 ions and electrons, further simplified models are required
to understand the effective behavior of the electrons. So far, mathematical
literature [27, 26, 37] basically considered the interactions between ions and
electrons and the electron-electron interaction to be of long range, e.g., given
by the electrostatic force. In this context, several effective equations have been
derived. These equations can be divided into quantum mechanical models or
semi-classical models. Moreover, one can distinguish between microscopic and
macroscopic models (see [27]).

In [49], Schneider et al. use a cloud of ultracold fermions in an optical
lattice as an experimental model of some semiconductor materials. In their
experiment, the potential of the optical lattice represents the periodic poten-
tial of the ions in a semiconductor. The electrons are modeled by ultracold
fermions. From the experimental point of view, an optical lattice can easily
be adjusted, i.e. its lattice constants and intensity, in contrast to solid state
materials. Changing the lattice constant of a crystal for an experiment results
in growing a new crystal and dismissing the previous one.

The aim of this thesis is to consider semi-classical models for this experi-
ment. This includes equations in the microscopic as well as in the macroscopic
picture describing a short range interactions between the fermions. The the-
sis is based on the thesis of Mandt [36], who derived some effective equations
for an ultracold cloud of fermions in an optical lattice and solved them nu-
merically. A mathematical rigorous theory has been missing so far. The
basic difference of the models from [36] to the standard models in [27, 26, 37]
is the interaction potential. In semiconductors, the interaction between the
electrons is given by the Coulomb force

F(z,t) = =V,(e® *n)(z,t) for AdP(z)=4nd,,

where e > 0 denotes the absolute value of the charge of the electrons and n
the electron particle density. However, for the model of ultracold fermions in
an optical lattice, one assumes that the fermions are not charged. Mandt [36]
introduces an short ranged interaction between the fermions with

F(x,t) = =V, (0 xn)(x,t) = —Vn(z,t).






Chapter 1

The microscopic picture

As a starting point, we choose a semi-classical approach to describe the be-
havior of an ultracold cloud of fermions in an optical lattice. In general, the
density distribution f = f(z,p,t) of a cloud of indistinguishable particles
in a force field F' = F(z,t) can be modeled by a semiconductor Boltzmann
equation (cf. [37, 26, 15]), namely

Opf(w,p,t) +0(p)-Vaf (x,p,t) + F(z,1) -V f(2,p, 1) = Q(f (,-, 1)) (p). (1.1)

The value f(x, p,t) equals the density of particles at point « with momentum p
and at time ¢. Let e denote the dispersive relation, i.e. the function connecting
the momentum p to the energy. For free particles the dispersion relation is
given by €(p) = ﬁpQ, where m is the mass of each particle. The velocity in
(1.1) is defined by v(p) := Ve(p) for all p. This implies that the velocity is
proportional to momentum with p = muv(p) for free particles. In addition, the
scattering operator Q(-), being in general non-local in p, models short ranged
collisions of the particles.

1.1 Vlasov equation

If the scattering operator vanishes, Eq. (1.1) transforms into the Vlasov equa-
tion
atf(xvpa t) + ’U(p) : sz(xapv t) + F(.’E,t) : vpf(xapv t) =0. (12)

The Vlasov equation can directly be motivated by the Newton law for each

particle
Ox=v and Op=F. (1.3)

According to Newton’s law, a test particle in the force field F' moves along
the trajectory (1.3) through the phase space.

5



6 CHAPTER 1. THE MICROSCOPIC PICTURE

With the assumption that f is constant along the trajectories from (1.3),
we obtain that

d
0:af:atf"_atx'vzf""atp'vpf:atf+v'vmf+F'vpf'

Note that for now, this equation is only justified on the trajectories from
above. However, one can also extend this result for all x,p and ¢ and obtains
Eq. (1.2).

Therefore, the Vlasov equation is an easy way to model a large cloud of
indistinguishable particles driven by the force F' in the microscopic picture.
Modeling free particles, the momentum is proportional to the velocity as seen
above. By choosing the right coordinates, one can assume without loss or
generality that the mass equals one implying that v = v(p) = p. We thus can
rewrite the Vlasov equation by

{atf(:zr,v,t) +v-Vif(z,v,t)+ F(x,t) - Vo f(z,v,t) =0, (1.4)

f(x,v,O) = fo(l‘,’l)),

where z € R? represents the position in space, v € R¢ the velocity and t > 0
the time. Note that in (1.4), the velocity v is used as a coordinate. In plasma
physics, assuming that the influence of magnetic fields as well as the movement
of the ions are small and therefore neglectable, dilute plasma can be modeled
by a self-consistent version of (1.4), where

F(z,t) = =V (e® «ny)(z,t) for A® = 4ndy and ny(z,t) = /]Rd f(z,v,t)dv.

(1.5)
Here, e > 0 denotes the absolute value of the electron charge. This system,
known as the Vlasov-Poisson equation, can be solved globally in time in spatial
dimension three [34, 42]. Moreover, there are several articles devoted to the
decay properties of the solution. In [40], Mouhot and Villani prove the global
existence of classical solutions of a non-linear Vlasov equation of the form

Ouf(z,v,t) +v-Vof(z,v,t) + V@ xng(z,t) V,f(z,v,t) =0,
f(JC, v, O) = fO(‘T7 1))
R (1.6)
for z € T¢, v € R? and t > 0, where the Fourier transform ® of the periodic
interaction potentials ® satisfies

é(z)‘ < f"l; for all I € Z¢

and for some constants Cp > 0, v > 2. Mouhot and Villani [40] work on
the d-dimensional torus instead of the whole R?. If the initial data of (1.4) is
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sufficiently close to an appropriate velocity profile f* = f°(v), then the unique
classical solution of (1.6) converges exponentially fast in the weak topology
of L2(T%; LL(R%)) to a spatially homogeneous equilibrium fi., as t — 400
[40]. In addition, the particle density as well as the force converge strongly
in L?(T%) to a constant, again exponentially fast. The key ingredient for
their proof is the concept of analytic norms and the smoothing effect of the
interaction potential W.
Inserting the delta distribution dy for e® in (1.5), we obtain

F(z,t) = =V(dg * ny)(z,t) = =Vung(z,t) for ng(z,t) = / f(z, v, t)dv.
Rd

(1.7)
Combining this with the Vlasov equation yields the Vlasov-Dirac-Benny equa-
tion

atf(xavat) +v- vrf(xavat) - an(l‘,t) . va(l',"l),t) =0 (18)

for z € R, v € R? and ¢t > 0. In spatial dimension one, this equation can
be used to describe the density of fusion plasma in a strong magnetic field
in direction of the field [8]. Comparing the Vlasov-Poisson equation ((1.4)
in conjunction with (1.5)) to the Equation (1.8), we see that the interaction
potential ® is long ranged (i.e., the support is the whole space) in contrast
to the delta distribution with supp(dg) = {0}. Therefore, we can understand
(1.8) as a version of the classical Vlasov-Poisson system with a short-ranged
Dirac potential, which motivated the ” Dirac” in the name of the Vlasov-Dirac-
Benny equation. The name Benny is due to its relation to the Benny equation
in dimension one (for details see [5]).

However, the analysis of a Vlasov-Dirac-Benny equation is more delicate
as in [25] only local in time solvability was shown for analytic initial data
in spatial dimension one. Moreover, it is shown in [5] that this system is
not locally weakly (H™ — H') well-posed in the sense of Hadamard. Very
recently, [17] show that the Vlasov-Dirac-Benny is ill-posed in d = 3, re-
quiring that the spatial domain is restricted to the 3-dimensional torus T3.
More precisely, they show that the flow of solutions does not belong to
C(H*™(R3 x T3), L?(R3 x T?)) for any s > 0, € (0,1] and m € Ny. Here,
H*™(R? x T?) denotes the weighted Sobolev space of order s with weight
(z,v) — (0)™(1 + |v|*)™/2: they prove that there exists a stationary solution
= p(v) of (1.8) and a family of solutions (f:)e>0, times t. = O(e |loge|) and
(wo,v0) € T3 x R3 such that

lim Ife = MHLz([OvtE]XBE(IO)XBé(vO))

= (X),
5 000 (Felemo — )57 crgem

where Bc(z() denotes the ball with radius e centered at zp. In this thesis,
however, we face another difficulty by introducing (nonlinear) collision oper-
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ators to the Vlasov equation. A Vlasov equation with collisions is in general
called a semiconductor Boltzmann equation.

1.2 Semiconductor Boltzmann equation

In contrast to plasma physics, the kinetic transport of electrons in semiconduc-
tors is in general modeled by a semiconductor Boltzmann equation consisting
of the left-hand side of the Vlasov equation in combination with a scatter-
ing operator modeling short range interactions in form of “collisions” of the
particles [37].

Supposing that the density distribution f can change on the Newtonian
trajectories due to a scattering process, we write

%f(x(t),p(t)i) = Q(f(z(t),-, 1) (p())

for characteristics (x(t),p(t)) solving Oz = v and d;p = F. Similarly to the
Vlasov case, one can motivate the semiconductor Boltzmann equation for all
x,p and t from Eq. (1.1), namely

8tf(x>p7 t) +U(p) 'vxf(x7p7 t) +F($7t) 'fo(il?,p, t) = Q(f(x7 .7t))(p)' (19)

Note that a scattering event taking place at a certain position z at a time
t may change the momentum p. Therefore, the scattering operator Q(f) is
local in time and space but not necessarily local in p. In addition, the dis-
persive relation, i.e. the relation between momentum and energy, may differ
in semiconductors from the standard case, where the free energy e is given by
e(p) = 5= Ip|>. This means that the velocity v(p) = Ve(p) does not neces-
sarily depend linearly on the momentum p. For example, in the lowest band
approximation for semiconductors, the energy dispersion relation is given by

d
e:p=(p1,...,pa) — fQJZcos(pi)
i=1

for some J > 0. This implies that the velocity is no longer equivalent to the
momentum, i.e. p — v(p) is not bijective. Therefore, the density function
f will be considered as a function of the position x, the momentum p and
the time ¢t. A large cloud of charged particles with short ranged collisions
can be described by the semiconductor Boltzmann-Poisson equation (1.9) in
conjunction with

F(z,t) = —Vg(e® xny)(z,t) for AD(x) = 4md,
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and ng(x,t) = [pq f(z,p,t)dp as well as

(Q9)(p) = /B(S(np’)g(p’)(l —9(p)) = s(¥',p)g(p)(L = g(p")))dp’  (1.10)
for ¢ = g(p), where s(p,p’) is called the transition rate. Here, B denotes
the momentum space, which - depending on the context - is R? or the first
Brillouin zone being a bounded domain in R?. The presented collision oper-
ator in (1.10) is one of the numerous physical relevant choices of the collision
operators [27, 26, 37]. The semiconductor Boltzmann-Poisson system from
(1.9) was weakly solved by Poupaud [43]. The existence of a global smooth
solution is due to Andréasson [3].

However, in the description of ultracold fermions in an optical lattice,
Schneider et al. [49] consider a semiconductor Boltzmann-type equation with
the singular potential as in the Vlasov-Dirac-Benny equation (1.8). They use
the dispersive relation € : T — R defined by (p1,...,pa) — —2J >, cos(p;)-
The semiconductor Boltzmann-type equation for ultracold fermions is then
given by

atf(xupv t) + vpﬁ(P) . V:L’f(x7p7 t) - Vxnf(xat) ;Df Qee(f( Ly ))(p)7
f(xapv ) = fO(xvp)a

where ng(z,t) = [1q f(2,p,t)dp (see [49]). In contrast to (1.10), the ultra-
cold cloud of fermlons permits only two or more particle scattering between
the fermions. Therefore, another collision operator is required. Mandt [36]
neglects the three or more particle scattering and states the two particle scat-
tering operator for ultracold fermions in an optical lattice as

Qec(9)(p) == Z/ / Z(p)<g(p)g(p')(1—ng(p"))(l—ng(p”’))

d
Ge2nZd g Prot (p)=C

€0t (P)=0
d_
— 9" (1 = ng(p))(1 — ng(p’))) Py
¥ eron (D))

for some n > 0, where p = (p,p’,p”,p"") and HZ,Tl denotes the d — 1 di-
mensional Hausdorff measure w.r.t. p”. The function Z(p), modeling the
probability of a scattering event from state (p,p1) to the state (pa,ps), shall
be sufficiently regular, positive and satisfy

Z(p) = Z(p, 0", ") =Zp", 0" ,p,p).

Moreover, the total change of momentum and energy are denoted by

Prot(P) ==p+p —p" —p"" and  eot(p) = €(p) +€(p’) — (") — (@),
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respectively. The sum over G runs over all reciprocal lattice vectors G € 27Z<.
Note that in fact only finite summands contribute to the sum since piot is
bounded. This scattering operator is also well-known as the electron-electron
scattering operator [9]. We can formally rewrite this collision operator with
the aid of the delta distribution by

Qee (g) (p) = zG: /Td ./]1‘:1 /]l‘d 6ptoc(P)—G6€tot(P)Z(p)X
X (g(p)g(p’)(l —ng(p") (1 —=ng(»"))

— g™ (1 — ng(@)(1 — ng(p’») dyfdp'"dy”.

As the formal definition may suggest, the collision operator conserves the local
particle due to its symmetry as well as the local energy due to the ., ,. This
is rigorously proved in [27]. However, the local momentum is not conserved
because of umklapp processes, i.e. scatter events with G # 0.

1.3 Relaxation time approximation

Due to the complexity of the two particle scattering operator, the analysis as
well as the numerics of Eq. (1.1) with @ = Q.. are very difficult. Therefore, we
search for a less complicated physical approximation of Q.. In [27], Jiingel
proves in Proposition 4.6 that the zero set of Q.. consists of Fermi-Dirac
distribution functions, i.e. it holds formally that Qe.(g) = 0 if and only if
there exists a A = (Ao, A1) € R? with

1

90) = F0p) =

Hence, F annihilates the collision operator and can be seen as an equilibrium
distribution. The idea of the relaxation time approximation is to assume that
the collision operator drives the solution into the equilibrium. We define

Q-(9)(p) = _9) = FAp)

-
for some A € R?, 7 > 0 and g = g(p) (see [4]). The parameter 7 is called
the relaxation time and represents the average time between two scattering
events. Since F(J,-) is a fixed function, the relaxation time approximation
collision operator neither conserves the local particle nor the local energy.
The simplest version of the relaxation time approximation is to assume that
A1 vanishes. Then, F(Xg,0) equals a constant 7 € [0,1/n]. However, there
are also more complicated versions of the relaxation time approximation like
the BGK-collision operator.
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BGK collision operator

The idea of a Bhatnagar-Gross-Krook-type (BGK-type) collision operator is
to combine the simplicity of the relaxation time approximation while keeping
the conservation of the local particle and energy (see [13]). Fortunately, the
Fermi-Dirac equilibrium distribution offers two free parameter. Thus, we can
use those parameter to make the collision operator particle and energy con-
servative. Doing this, we interpret A = (Ag, A1) as a function of the densities

defined by
n 1 dp
(5) = L. () sr et (L1

Fon, E,p) := F((Mo(n, E), \1(n, E)), p).

Note that this is well-defined according to chapter 5. In addition to this, we
may assume that the relaxation time also depends on the densities. In the
description of ultracold fermions, Mandt [36] motivates numerically that the
inverse of 7 is proportional to n(1 —n) at high temperatures with n = 1. Note
that for n = 1, the particle density n = de F (N, p)dp is bounded by 1. We
thus generalize the relaxation time for any n > 0 to

1
yn(1 —nn)

and write

T(n) =

for some v > 0 since the density n = [, F(X, p)dp is bounded by n~". This
leads to the BGK-type collision operator

QBcx(9)(p) = ng(1 — nng)(fo(nm Eq.p) —9(p)), (1.12)

using ng = [, 9(p)dp and E; = [, €(p)g(p)dp. Now, this collision operator
is again non-linear. In [36], the author i 15 albo interested in the high tempera-
ture limit of (1.12). For the Fermi-Dirac equilibrium distribution F(A,-), the
second variable A\; coincides with the negative inverse temperature. There-
fore, high temperatures are attained at A\; =~ 0. It is shown in chapter 5 with
(1.11) that A; = 0 corresponds to E ~ 0 and that at E =~ 0 the Fermi-Dirac
distribution function is approximately given by

FO(n,E,p) =n + 2§€)dE+o(E2). (1.13)

Thus, for high temperatures, the BGK-type collision operator is heuristically,
approximately given by its Taylor expansion w.r.t. F/, namely

3Gk (9)(p) = ng(1 — nng) (ng + EQZE - (p)) : (1.14)
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This collision operator is called the (first order) high temperature expansion
of (1.12). An even more drastic approximation can be realized by setting
E =0 in (1.13). This leads to the zeroth order high temperature expansion,
namely

hT,0 o

BGk (9)(P) == 1ng(1 —nng) (ng — g(p)) - (1.15)
The particle density is very low for dilute gases, implying that ng(1 —nng) =
ng. This motivates the following BGK-type collision operator for dilute gases
at high temperatures

b (9)(p) == ng (ng — g(p)), (1.16)

corresponding to Q}];g’?{(g)(p) for n = 0.



1.4. DIAGRAM OF THE MODELS

1.4 Diagram of the models

semiconductor Boltzmann equation

Ouf +v-Vaf = Vang - Vpf =Q(f)

no collisions

Vlasov equation

QM) =0

let A = )\(Tlf,Ef)
be a function of
the densities

relaxation time

approximation
— F(\. -
o = - L)
p

let A\ be constant

BGK-type collision operator
F(\p) = FO(ng, Ef,p)
1

TETO) = )

approximate F°

by its first order

Taylor expansion
in By

linear relaxation time approx
(for an equilibrium
with zero energy)

A€Rx {0}, 7 € Rso
= F(\-) = const. € (0,77 1)

approximate F°(n, E, p)
by FO(n,0,p)

first order
high temperature expansion

e(p)

FO(ns, Ef,p) ~
(ng, Ef,p) s+ 55 Bs

zeroth order high tem-
perature expansion

Fony, Ey,p) = ny

n=20

low densities
1
T=71(ng) = —
ynf

13
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1.5 Main Results
In this thesis, we consider the semiconductor Boltzmann-type equation

atf + vpe(p) Vaf — an : vpf = Q(f(% "t))(p)y
f(l',p,O) = fO(x7p)a

for several collision operators Q(-), where n(z,t) de z,p,t)dp and d € N

(see [49]). Here, z € R? denotes the position, p € Td the momentum and ¢ > 0

the time. The dispersion relation is given by €(p1, .. .,pq) = —2J Z —1 cos(p;).
Let 70 € (0, 15 ,e) For a linear relaxation time approximation with

(1.17)

Qg)(p) = —M for g = g(p) and some fixed 7@ € [0, 1],

To
it is shown that (1.17) admits a global analytic solution f requiring that the
initial data is close to the equilibrium 7 in the sense of analytic norms, i.e.,

Z 1 Hazaj( )||Loo(RdX1rd)<5V

1]0

for some v € (0,1) and sufficiently small € > 0 (for the size of € see Theorem
10.3.1). Moreover, it holds

t
£( 1) —ﬁHLm(Rd xTd)y = <|lfo— TlHLoo(Rd Td) eXP(—?O)~
This is the first time that a global solution was found for an equation similarly
to the Vlasov-Dirac-Benny equation.

From the physical point of view, the presence of collisions should facilitate
the problem since collisions are assumed to drive the solution into an equilib-
rium given by the Fermi-Dirac distribution. However, if the collision operator
is given by the BGK-type collision operator

Q(9)(p) = yng(1 = nng)(F(ng, Eg,p) — g(p)) for some v > 0,

only the existence of an analytic local in time solution is proved if the initial
data fy is analytic and satisfies

B (o) < Mg o Eye) = [ ooy
and

oo

Yt
3y T 10505 fo (2| e (ray < Crog (@) (1 = 15, (2))0
4,7=0
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for some C,v > 0 and for all # € R? (for more details see Theorem 10.2.7 and
the preceding remark). The restriction of this result is due to the fact that
the BGK-collision operator is rather difficult to cope with in analytic norms.
The reason for this is that it is implicitly defined and involves a composition
of functions.

In the high temperature expansion

Q(9)(p) = yng(1 —nny) <ng + ;EPQLEQ — g(p)) for some v > 0,

some of the technical issues can be omitted such that an analytic solution
f:REx T4 x [0,T) exists for small T > 0 if the initial data fulfills

. iti
3 S 15000 ) ey <

for some v > 0 (for the size of T see Theorem 10.1.6).
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Chapter 2

The macroscopic picture

2.1 Drift diffusion equation

The semiconductor Boltzmann equations as in (1.9) or in (1.17) are integro-
differential equations and therefore, rather complicated from the analytical
and numerical point of view. Thus, one is interested in effective equations
for the macroscopic particle density simplifying (1.9) or (1.17). This can be
implemented by choosing the right scaling for the equation. In the diffusive
scaling, it is supposed that for a large time scale, the collisions dominate
the kinetics of the equation. This means that the mean free path between
collisions is relatively small in comparison to the reference length. Therefore,
the time variable and position variable transform to

t' =ad* and 2z’ :=ax

for oo > 0, respectively (see e.g. [27] or [9]).
Defining fo(z,p,t) == f (a , D, az , it holds

z’ t x’ t
atf <7p72> - a2at/f <3p72> = at’foz( 7p5 )
« « « o
and z/ t z/ t
v:rf <7p7 2) = avz’f <7p7 2) = avz’fa(xlvp7 tl)
« « « «
as well as
z t ;o
Vang (a’ a2> =aVynyg, (2',1),

where ny (2/,t') = [ g Ja(2',p,t")dp. The diffusive scaling of the semicon-
ductor Boltzmann equation for ultracold fermions in an optical lattice (1.17)

17
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reads

Oézatfa + avpe(p) . vmfoc - O‘vrnfa : fooz = Q(fa(fﬂ, ~,t))(p). (2'1)

Finally, we are interested in the limit & — 0 in (2.1) which is called the
diffusive limit of (2.1). This procedure is already well-studied in the semicon-
ductor Boltzmann case with Poisson potential. In [39], Masmoudi and Tayeb
consider the limit o« — 0 of the scaled Boltzmann-Poisson equation

a0 fo + aVe(p) - Vafa +aVVa(z,1) - Vpfo = Q(fala, 1)) (D),
AVy(x,t) — / falz,p,t)dp + D(z) =0, (2.2)
']l‘d

fOt('T7p7 O) = fo(xap)v

(Q9))(p) = /Td(S(p,p’)g(p’)(l —g(p)) —s(p',p)g(p)(1 — g(p)))dp’

for z,p € T4t > 0, where fo € L>®(T? x T¢). The function D € C>(T%)
denotes the doping profile fulfilling [, Ddz = [}, [ra fodpdz. Requiring that
s € L=(T¢ x T?) and that s is bounded from below by a positive constant,

it is shown that the solution of (2.2) converges to a unique equilibrium F' =
F(n(z,t),p) such that

0<F <1, F(n(z,t),p)dp =n(z,t) and Q(F)=0
Td
for z € T4, ¢t > 0 and a unique n € L>=(T¢ x R+(). Moreover, Goudon and
Mellet [20] prove that this density n = n(z,t) solves a diffusion equation of
the form

on — V- (II(n,)Ven+ O(n, )V V + x(n,-)) =0,
A,V =n+D,

n|t:0 = /Td fO(ap)dpa

for some matrix valued functions II,© and vector valued function x. This
extends previous results from Goudon and Mellet [20] as well as Masmoudi and
Tayeb [38], who require the symmetry condition s(p, p/)ec® = s(p/, p)e<®).
This condition is for example fulfilled if s(p,p’) = 6(p)e=<®G(p') for some
0 =6(p).

In case the ultracold atoms in an optical lattice, the drift diffusion limit
can only be formally derived since it is unknown whether the underlying semi-
conductor Boltzmann-type equation can be solved globally. So far, whether

(2.3)
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one can prove the convergence rigorously remains an open problem. The key
difficulty is the fact that the time of existence of the scaled equation proved
in chapter 10 is of order o?2.

For the drift diffusion limit, we need to choose a collision operator, for
which the equilibrium function is independent of the energy density. Other-
wise, as we will see in the next section, we would derive an energy transport
model. Therefore, we consider the following scaled equations:

{QQatfa +aVpe - Vofoa —aVeng, - Vyfo = —yng, (1 —nnyp, ) (fa —ny,),

fo‘|t:0 = fO >0
(2.4)
and
a28tfa + Cvae . vmfa - avznfa 'fooz = N, (foc - nfa)7 (2 5)
fa!t:0:f0>0‘ .

In chapter 7, it is shown that solutions f,, of (2.4) and (2.5) tend formally to
an equilibrium n = n(z,t) fulfilling

8n = Alog <1 _”m) (2.6)

and
O = Alogn (2.7)

with n(-,0) =ng = [ 5 fo(-;p)dp, respectively. This macroscopic description
for ultracold fermions has already been established by [48]. Equation (2.7)
is a particular case of the porous-medium equation and belongs to the type
of super fast diffusion equation which is well studied in [51]. It is called the
logarithmic diffusion equation. One of the main properties of the logarithmic
diffusion equation is the fact that the total mass, i.e. the total number of par-
ticles, is not conserved in spatial dimension greater than one. More precisely,
in dimension two there is a loss rate of the total mass which is greater or
equal than 47 [52], e.g. for every ng € L'(R?), with ng > 0 there exists a
unique function n € C([0,T), L'(R?)), which is a classical (C* and positive)
solution of (2.7) and satisfies the mass constraint

/ n(x,t)dx :/ no(z)dz — 4rt.
R? R?

Therefore, after a finite time, there is no particle left. In dimension three and
above, this behavior is even more drastic: there exists no solution with finite
mass [50]. From the physical point of view, these properties are undesired
since they undermine the conservation of mass. Since the logarithmic diffusion
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equation was derived by a (formal) drift diffusion limit of (1.17), one would
physically expect that the Equation (2.7) would conserve the mass just as
the semiconductor Boltzmann-type equation (1.17). This is the reason for
Schneider et al. [48] to call this phenomenon the “breakdown of diffusion”.

However, on a bounded domain with Neumann-boundary conditions, the
logarithmic diffusion equation can be solved globally for any dimension [22,
23, 24] requiring that the initial data belongs to some L? space. Therefore the
“breakdown of diffusion” is caused by the tail of the particle cloud, i.e., by
the region outside a bounded domain. This may be explained by the diffusive
limit procedure which was used in [48] in order to derive (2.7). It was assumed
that the collisions have the main influence on the dynamics. Considering a
cloud of fermions, there are only two or more particle scattering events. Thus,
the collisions become less important the fewer particles are considered.

For low densities, it is not reasonable to assume that the collisions are
dominant. Therefore, Schneider et al. [48] divide the whole space into two
regions, the diffusive regime and the ballistic regime. They argue that inside
the diffusive regime, a drift diffusion limit shall be considered. Outside this
regime, the particles can be assumed to move on straight lines since interac-
tions with other particles can be neglected. In this thesis, we give an example
of a rigorous setting to these ideas: we artificially fix the diffusive regime to
be a bounded domain and set reasonable boundary conditions, being in the
simplest case

d,log(n) = —pBn, (z,t) € 90 x Ry (2.8)

for some B > 0, where 0, denotes to outer normal derivative. Unfortunately,
the optimal size of the diffusive regime in this model is unknown.

For this type of system, the local solvability in combination with a criterion
for a global solution was extensively studied in [1]. The aim of this thesis is
to extend the local classical solution of (2.7) with (2.8) globally.

One can argue that the diffusive regime shall also change in time. This
leads to a model with moving boundary conditions. Such a model is stated in
the comments of chapter 11. However, if this model admits a classical solution
or not is still an open problem.

2.2 Energy transport models

In addition to the drift diffusion limit, there are several other relevant scalings
of semiconductor Boltzmann-type equations [27]. Adding to the semiconduc-
tor Boltzmann-Poisson system (1.9) further collision operators modeling the
electron-electron interaction and the impurity scattering events, Ben Abdal-
lah et al. [12] show that the scaling ¢ = o*t and 2’ = ax leads formally to a
cross-diffusion system for the energy density E and the particle density n.
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Using the same scaling (# = o2t and 2/ = az) for the semiconductor

Boltzmann-type equation with the BGK-type collision operator from (1.12),
modeling ultracold fermions in an optical lattice, entails

a28tfa+ozvpe “Vafa—aVang, - Vpfa
= —yns, (1 =g )(fo = F(ns., By, ), (2.9)
fo“t:(] = Jo,
where ny (2,t) = [ fo(z,p,t)dp, By, (x,t) = [€(p)falz,p,t)dp and d € N.
Again, F° is given by
Fo(n, E,p) := F(ho(n, E), M (n, E),p),

where \g, A1 are implicitly defined by

/w (dlp))f@o(n»E),Al(n»E),p)dp = (Z;) (2.10)

Here, F(\,p) := 1/(1 + e 2~21€(P)) denotes the Fermi-Dirac distribution
function for the entropy parameter A = (A\p, A\1). In this thesis it is shown
that f, converges formally to F = F(A, p), where A = A(z,t) is considered as
a function depending on space x and time ¢. In accord With (2.10), we define
the particle and energy densities as functions of X by n(\) = [, F 5 F (A, p)dp,

= f 5 €(0)F (X, p)dp, respectively. Then the entropy parameter A=
)\(x t) formally fulﬁlls the energy transport model for ultracold fermions in
an optical lattice

n'(A)oA+V - (Jo(A)VA) =0,

(2.11)
E'(NOX+ V- (J1(A)VA) = —=Jo(A)VA -1/ (A)VA,

where the currents are
ZDW )V + A Djo(A)n/ (A) VA,

being defined with the aid of the diffusion matrix

DEW) = [ ey L)
for k,1,i,j=1,...,d.

Noting that the energy transport model is a macroscopic model describing
a cloud of ultracold fermions in an optical lattice it is no surprise that these
equations admit an entropy H (¢ fRd ))dx which fulfills

O H(t) + S(A\(z,t), VA(z,t))dz =0

Rd
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for some S > 0, where A is a solution of the energy transport model. In
[28], making use of such entropy inequalities is the key ingredient to solve
cross-diffusion problems. In this thesis, however, it is shown that there are
degeneracies of the entropy dissipation. More precisely, S(A(z,t), VA(z,t))
vanishes in all points (z,t), where

A1(z, t) » FMz,t),p)(1 — F(A(z,t),p))dp = 1. (2.12)

Hence, these degeneracies depend on the explicit values of A\g and \; in con-
trast to the degeneracies treated in [28]. In particular, it is shown in this
thesis that one cannot extract a non-degenerate estimate for the gradients of
A in the points, where (2.12) is fulfilled in contrast to the standard systems
(e.g. [28]). Therefore, the solvability of (2.11) remains an open problem. In
order to understand the system, one can heuristically approximate it similarly
as in (1.13) and [36] using

FOop) = n(\) + ;ﬁzzE(A) +o(B(V)?).

This approximation is called the high-temperature expansion since high tem-

peratures correspond to small absolute values of E(\) [36]. Therefore, replac-
ing F(A,p) by n(A) + ;§€LE(A) in the definition of the diffusion matrix, it is
possible to write the high temperature expansion of (2.11) in a closed form

in n =n(z,t) and E = E(z,t) by

1-F
8tn = Vx . <’I’L(1—’I7n)vxn) ’

2d —1 VE 1-F 2
F=— . _
O 2d Ve (n(l — nn)) Kn(l —nn) [Van

(2.13)

for some x > 0. Although this high temperature approximation model is more
explicit than the full energy transport model, it still admits degeneracies (at
E=1).
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2.3 Diagram of the models

microscopic models macroscopic models
scaled semiconductor Energy transport model
Boltzmann equation -0 R (\)IA+V - (Jo(/\)V)\) —0,
a®difa +av: Vafa —aVans, - Vpfa E' (N3 + V- (1(A)VA)
=g, (1 =nny,) (FO(ny,, By,) — fa) = —Jo(A)VA -1/ (A)VA

terms up to first order in E = E())
terms up to first

order in Ey
high temperature en-
ergy transport model
first ord 1-F
. 1St order . dn=Vg (———wn),
high temperature expansion a—0 n(l — nn)
0 e(p) _2d-1 ( VE )
E;) = E OE = V-
N ‘ 2d n(1 —nn)
1-F
—k———— |Vn|?
n(1 —1nn)
Ef ~0
E=0
zeroth order high tem- Drift diffusion model
perature expansion a—0
on = Alog ( )
Fony, Ey) = ny L—nn
1 densiti Drift diffusion model
ow densities a—0 for low densities

ng(l—nng) =ng on = Alogn
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2.4 Main Results

This thesis shows that the logarithmic diffusion equation
on(z,t) = Alog (n(z,1)), (z,t) € A xRy,
9y log (n(z,t)) = —pn(z,t), (x,t) € 002 x Ry,
n(z,0) =ng > 0, reQ

on a bounded and regular domain €2 admits a unique classical, global solution,
where 0, denotes the normal derivative on 0. Moreover, it is shown that the
solution decays exponentially in time, i.e. for all p > 1 there exists a constant
Cp > 0 such that

1 _ _
[ exp (—IQI / |10g(no)|d90>€ B < (t) o < 0o €7

We say that the high temperature limit of the energy transport equation
(2.13) has a weak lower solution if

/ <at7’l ¢0>H1 Q)/ Hl(Q dt+/ / V(bod dt = 0
0

/Q <EO + ;(nO)Q) ¢1(0)dx +/ / (E + n2) 8,61 dadt

SM;I/ VE: V¢1d dt+/ / D Vi dadt
0 Q -

2d n(l —

(2.14)
for all ¢o € L?(0,00; H'(Q)) and ¢1 € L?(0,00; H1(Q)) N W11(0, 00; L' (2)),
being compactly supported in [0,00) with d;¢; > 0. In this thesis we are
able to derive a non-trivial weak lower solution for suitable initial data of
(2.14). So far it is not possible to show that (2.13) admits a weak solution
since the degeneracy in £ = 1 undermines an a priori estimate of Vn in
L?(0,00, L2(£2)). The lower solution was obtained by a weak limit of ap-
proximating solutions. However, an argument whether the particle density
converges strongly on {F = 1} in the weak limit is still missing. Moreover,
we are not able to apply a proper maximum principle for the approximating
energy density due to the critical exponent in the second equation. Therefore,
it remains an open problem, whether (2.14) possesses a weak solution if we
replace the inequality by an equality.

In addition, the high temperature limit of the energy transport model is
solved numerically on the one dimensional torus. It can be seen that the so-
lution decays exponentially to a stationary solution. Due to the degeneracies,
the rate of convergence to the final stationary solution highly depends on the
initial data.



Chapter 3

Overview

This thesis is divided into four parts with this introduction as part one. The
second part provides more or less well-known results for analytic norms and
the Fermi-Dirac distribution. Moreover, in chapter 4, tailor-made analytic
norms for the analysis of the semiconductor Boltzmann equations modeling
ultracold atoms in an optical lattice are presented. They thus differ from
the typical definitions according to Mouhot and Villani [40]. In addition, the
analytic norm of the Fermi-Dirac distribution as a function of the particle and
energy density is estimated in chapter 5.

The third part concentrates on the modeling. At first, the ill-posedness
of a simplified version of the semiconductor Boltzmann equation for ultracold
atoms in an optical lattice is discussed, showing the structural difficulties of
the microscopic equations. In chapter 7, the diffusion limit of the semiconduc-
tor Boltzmann equation is formally proved, linking the microscopic equations
to the macroscopic equations. This chapter is followed by a chapter on the
energy transport model exploring entropy methods. In this chapter, degen-
eracies of the entropy dissipation are discovered. In the last chapter of part
two, a numerical solution of the high-temperature energy transport model on
the one dimensional torus is presented, emphasizing the importance of the
degeneracies in the energy transport models.

The content of the fourth part is to exploit mathematical tools in order
to solve the presented equation rigorously. In chapter 10, the semiconductor
Boltzmann equation is considered with three different collision operators: the
standard BGK-type operator, its high-temperature approximation and the
linear relaxation time approximation. Chapter 11 deals with the logarithmic
diffusion equation on a bounded domain with nonlinear boundary conditions
and in the last chapter the existence of a weak lower solution of the high
temperature energy transport model is shown.

25
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Part 11

Fundamentals
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Chapter 4

Analytic norms

4.1 One variable analytic norms

In contrast to the typical approach to weaken the definition of differentiable
functions in order to solve partial differential equations, we work on a Banach
space consisting of analytic functions. The easiest way to write down such a
Banach space can be seen in the following definitions which are motivated by
Mouhot and Villani [40].

Definition 4.1.1. Let d € N and X be a Banach space with norm [-| . For
I € N, we define Xo := X and X;41 = L(R% X)) as the linear continuous
functions R? + X, which is isomorph to (X;)? equipped with the operator
norm induced by Xi, i.e. [Ty, = sup,epa T2y, for T € Xit1. Now let

T ¢ Ule. We write

Tlop == T|x,, whereT € X.
Definition 4.1.2. Let X be a Banach space, d € N and U C R? be open. We
denote O(U, X) as the set of all functions U — V and write O(U) := O(U, R).

Definition 4.1.3. Let U be an open subset of R, X a Banach space. Given
A € R, we define

o0 a

[fley = Zg

a=1

FO@)| and | flenx = sup £l
Op zeU v

as well as
‘f|c§ = [f(@)| + |f‘c§ and |f|cA(U7x) = 51615 |f|C;
for f: U — O(U,X) and x € U.

29
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The following statement is due to Mouhot and Villani [40] and will be
stated without a proof:

Lemma 4.1.4. If X is a Banach algebra and hence its norm submultiplicative,
then |[ca, ['|lox @y are also submultiplicative.

Example 4.1.5. Let U := R\ {0} and f(z) = L and A > 0. We have for
|z| > A

o0

A% al 1 A
Fley = ZEWH EEEES

a=1

4.2 Composition of functions

In this subsection we are analyze the composition of two functions f and g
in the norms given above. There is also a statement concerning compositions
in Mouhot and Villani [40]. However, the proof of it is rather a sketch of a
proof. Therefore, we elaborate the proof with some additional information.

Let X be a Banach space and let f : Uy — X, g : Uy — U; be two analytic
functions on open sets U; C R% with d; € N.

Lemma 4.2.1 (Faa di Bruno Formula). Let n € N and let I1,, be the set of
all partitions of {1,...,n}. For each 1 < i < n, let 0; be a partial derivative
operator, i.e. 0; = Oy, for some j = 1,...,1. Then for every = € II,, there
exists an |w| + 1 linear mapping M, of norm equal to 1 such that

0. onfogle) = 3 I, <f<|w|>og(x), (Hama_g(x))%ﬂ)

mell, i€B =t
Proof. The proof can directly be obtained by induction. O

Corollary 4.2.2 (Faa di Bruno Formula). Forl =1, this facilitates to

(fo)™(@) = > Me(fog@), (6150 (@)5e,) . (A1)

mell,

In the following, assume that [ = 1 and hence g : U; — Us. In dimension
one the || + 1 linear mappings are given by multiplication. Thus, we can
write a more explicit and well-known formula:

Lemma 4.2.3 (Faa di Bruno Formula). Let n € N and d; = 1. We have

n

nl @O ()\™
Fo @@= ¥ hrmrmog I (252)

J!

j=1
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Corollary 4.2.4. Let n € N and d; be arbitrary. We have
n (4) mj
99 ()]
) |70P
oo, 1T ()

Proof. In dimension d; = 1 in conjunction with X R, we have two formulas
for (f o g)™. Introducing f : y Sorey y and g : z — Y ll)f ! for
k,l € N, we infer setting z =0

Z Q| H b = Z Hn' A(my+...4+mn) H < )

mell, Bem > dmi=n

(fog)@| < >
Op -
> Jm=n

m:Zj m;

n!
Hj m;!

for all ay, b; € R. Finally, we obtain the assertion using the preceding equality
and

‘(f ) ( ‘ Z’f\wlog ‘ H‘ (1B1)( ‘

mell,

since the operator norm is by definition submultiplicative. O
Lemma 4.2.5. Let f,g and U;, X be as above. We have
[foglex < Ifles with 1 = |glen and y = g(x).

Proof. Let N € N be arbitrary. The computation

N N
> i lea @]
n=1 "
f:f: Z - H 199 () o
< 62 m;,mO% . jm;, ‘fm ({I?) 7771
n=lm=1(m;); NN Hj m;! Op i g

Ol )
et TV Op Z.%J:—m (ml’ o ) ];[ < 9 Op)

m

ensures the assertion in the limit N — oo. O
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Example 4.2.6. Let U := R? be equipped with the euclidean norm and
f(z):= Wllwﬁ for a,b > 0. Then for A € (0, /%) and = € R,

il DA + 2 |z]) } 200,
(lew — a+blaf —bAA+2]z|) 1A ”S\/TW( I

flczxé‘

where y := g(z) := a + b|z|> and
pi= lgley = bAA + 2 [2]).

Here we used that for A < /&

b
—+—\ 2o bAA+20z]) = = + 2 (22 — 2\ [a] — 47%)
2 2 2
_ 0 B b2
5 2b)\ +5 (el =)
which implies that
DAN +2]2|) ) by/ 55 (V55 +2z)) <2,/50),
a+blzl” —bAA+2]z]) T V/Z a+blz]> — bA+ 2]x|) a

4.3 Inverse function

Let U,V be two open subsets of R?. We denote O(U,V) as the set of all
analytic functions U — V.

The idea of estimating the analytic norm of an inverse function was already
established in [40]. However, in the third part of this thesis, we require a
different version being based on Theorem 13 in [35]:

Proposition 4.3.1 (Inverse function theorem, [35]). Let + € U and f €
O(U,V) such that |f™| < CL"n! for n > 2 as well as | f'(x) I‘Op <H
for some C,L,H > 0. Then there exist an open set V' > f(x) and an g €
O(V',U) which is inverse to f such that

\g(m)(f (as))]op < 2CH(HL)™(3 + 4CHL)™ 2m=21i!

for all m > 3, where % < A <1 is depending on CHL. Especially,

CH

< 2 _(4HL(1 + CHL)™m 3m/.
o S 80 ompE AL+ CHL) m™2m

9" (@)
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Corollary 4.3.2. Let A > 0, z € U and let f € O(U,V) be bijective and
Julfill [f]ea < 00 as well as (f’)_l(y)|Loc < oo withy = f(x). Then its
x Op

inverse function g € O(V,U) satisfies

l9len < 1)1 W), X

X (/Hrlflcg (\( M |0p & Wlog(l_u@jﬂ)

for all p > 0 fulfilling

COngi= % |(f/)71(y)|0p (1 + |(f/)71(y)|0p |f|c‘3 i\) < %

Proof. A direct calculation ensures
w m — 2 _ 3
> Erlemwl = ul) wlo, + (5) 1007 @IS, ey -

The rest of the sum can be estimated using Proposition 4.3.1, leading to

m 1 /
> ) < 5 100 @y fler 3 5

m>3 m>3

where
a:= 4517 0)]o, (1 U7 Wlop 1e i) '

By assumption a < 1 and hence

a™ a™
Z—gazz—:—(flog(l—a). O
m>3 m m>1 m

4.4 Two variable analytic norms

So far we treated functions with one (d-dimensional) variable. The idea of
this section is to extend these definitions and properties to functions with
two variables. Of course, one can treat two d-dimensional variables as one
2d-dimensional variable. However, those two variables may have a different
physical interpretation so that we would like to treat them separately. Again,
the idea of a two variable analytic norm was first introduced by [40]. Never-
theless, we will require a modified version in the application in part three.
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Definition 4.4.1. Let U C R? be open. The set O(U x T¢) denotes space of
all real valued analytic functions f : U x T4 = R. For A\;,\s >0 and z € U,
we define

pY DY
|f‘C’£1,>\2 = Z a1|b|2 Hagagf(xvp)HL;o(Td) )
a+b>0

|f‘031ﬁ2 = || f(, ')”L;o(’lrd) + |f|¢§1=k2

for f € O(U x T9). Here, aga};f(x,p) is assumed to be a multilinear operator
and

1M (2, p)|| oo (ray = sup [M (z, p)[op
14

for every multilinear valued function (x,p) — M(z,p), where |- |op denotes
an adequate operator norm. Moreover, we set as before:

|f‘(jh,kz(U) = 21618 |f‘c'v;1,k2 ) |f|oA1,A2(U) = 21618 |f‘c;1’k2 .

We usually write |f\c¢ = |f|c;}1,x2 and | fleoa oy = [florise @y for A=A =
Xo. Furthermore, if U = R?, we neglect the U in the notation.

Remark 4.4.2. Note that this notation coincides with the one used for the
one variable analytic norms. However, the space O(U) can be embedded into

O(U x T) by
L:OU) = OU x T, (m > f(x)) — ((gc,p) — f(x))

This embedding is in accord with the norm ||, for U C R? open and z € U,
ie. [t(f)loa = |floa for all f € O(U). The same remains true for |-|x.

Lemma 4.4.3. The norm |~|C£ is submultiplicative, i.e.,

[faler < 1flealglen -
Proof. The proof can be done by a straightforward calculation as in [40]. O
Lemma 4.4.4. Let g : Uy — Uy, h : Vi — Vo and f : Uy x Vo = X be

analytic, where Uy, V; C R4, Uy, Vo CRY are open and X is a Banach space.
For every A, Ao > 0, we have

|fo (g7h)|ck1=kz < |f|Cu11u2 )

where py = [glex, (g, gy and piz = [hlex, (v, gy -
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Proof. We may write the two variable norm |[-||-x,», as a one variable Banach
space valued norm and apply Lemma 4.2.5. We therefore define f : Uy —
C*2(Vy, X) mapping  ~— f(z,h(-)). This enables the calculation

o (g Mlenia = |fog

w5 Mo
CA1(U1,C22(V1)) CH1(Uz,CP2(V1))
where p1 1= [g|x, (U, gy Inorder to profit a second time from Lemma 4.2.5,

we utilize the trick above again. Setting f : Vy s CH*1 (Uy, X),  — f(-,2), we
derive
i

= |f © ('a h)|(jmv>\2

=|fon
<|f

for po := |h‘c'A2(V1,RN)7 completing the proof. O

Cr1(Uz,C 2 (V1))

Cr2(V1,Cr1(Ua))

|f|C'u1,u2

Cr2(Vy,Cr1(Us))

Definition 4.4.5. Let U C R? be open and z € U. For A > 0 and f €
O(U x T%), we put

Hf“c; = ‘f|c$A + \3zf|czx + ‘apf|cl% ) Hf”cA(U) = 51618 Hf”cg
Y ;
and [|Df|lca ) = supyey HDfHC;, where

||Df||c; = |8a:f|c; + |apf|c$k + |5§f|cé + |a§f|cg +2 ‘3xapf|c£ .

The main advantage of these modified norms can be seen in the following
remark:

Remark 4.4.6. Let 01,02 € {0x,0,}. It holds || fgllca < || fllea ll9]lox and
[fO19llcr < [flea 1019lcn +102flcx 101g]cr +10pflcr 1019l
+ 1 flea 102019lcx + |fley 100019
<11fles I Dglles

as well as
||81fa29||cg < |alf|c§ |829|cg + |awalf|c; |829|c; + |6p81f|03 |829‘C;
+ 1010 1020290 cx + 101 f o 10p029]
< |Iflies IDgllcy + 1D f e lglley

for f,g € C*°(R% x T?) and = € R%.
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Lemma 4.4.7. Let v > XA > 0 and U C R? pe open. Then there exists a
Cx., > 0 such that for all f € O(R? x T?) and all x € R?, it holds

1flles < Crw

Proof. It suffices to show that we have |0f|ca < C[f|cy for 0 € {9z, 0p} for
some C' > 0. Let 0 = 0, and compute

10l < Z i“ﬁif(a:,~)||Lw(W)
1,j€Ng
- Z z 10507 x7~)HLw(W)
i,j€No
1 A®
S A Sea Z il H b @ o 2y = C10:fley

for C' = sup,cy a)‘ < 00. The estimate for 0 = 9, can be proved similarly.
O

Lemma 4.4.8. Let g,h : Uy — Us and f : Us x V — R are analytic, where
U,V € R? and Uy C RY are open sets. Then for every A1, Aa > 0 it holds

1£(gMhllc < 100 lopn liglen lor + (IFlogn + 192 lpn ) IRl gyen

forz e Uy, y=g(x) and p= ‘9|C‘;'

Proof. Let us compute

|az(f(9a ')h)|c§ < |axf(g» ')|c§ |h|c§ + |f(9; ')|C? |a:ch|c;
<@g Ve 10gles 1oy + 1709, s Bl
<01 flepn [0eglen Moy + 1 Flowr 102h oy

where y = g(z) and p = |9|CA- =

The main advantage of the analytic norms with parameter A is the fact
that we can estimate the derivative of a function in the analytic norms by the
analytic norms of the function with a larger parameter \’. This phenomenon
is the key ingredient in [40] for the concept of nonlinear Landau damping.

Lemma 4.4.9. Let A > 0,0 < u < A\, U C R? be open and f € O(U x T?).
For x € U, we have the Lipschitz estimate

[fllep=s + llDfllca-w < W fllex < M fller-» + 1D Fllcy -
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In particular, if |Df|| o < 00, it holds

[fllea = N fllga-n
N = lim z z
5 I llgy = limy p

=[I1Dflley -

Proof. The proof is straightforward. The crucial part is the estimate

a a a—1 a— Aot
A—p+m)* —(—p) Sy A=) =177 S Hfam
a! S la=1=j)a=j) | > ple.

The remaining part follows by summation and the definition of ||D-||x. O

Lemma 4.4.10. Let XA : R — R3¢ be differentiable and monotonically de-
creasing, U C R? be open and f € C°((U x T?) x (0,T)) for T > 0. We
write f(t) := f(-,t). Then

¢t t
1£Ollgso = [ A DIl g dr < 16y + [ 10Tl gaen dr

forO<s<t<T.

Proof. As a consequence of Lemma 4.4.9 and the monotone convergence the-
orem, we have

156 ez = 1Moy = [ A IDIE) gy dr

for 0 <s<t<TandA<O0. Using the monotone convergence theorem,

/: O f(T)dr

t
< WGl + [ 10l dr

IF @Ol gaw < () gaw +

A

since ||| o» is monotonically increasing in A and A < 0. O

Lemma 4.4.11. Let A € C*(R,Rxq) with A<0,U CR? open, z € U and
feC® (U x T x(0,T)) for T >0 such that

t = [IDfOlgao € Lig((0,T)  and  t = [|10:f ()] 2w € Lige((0,T)).

Then t — ||f(t)]| .acr € WE((0,T)) with

”C loc

d
7 1@l gz < A 1D @)l e + 106f ()] caco -
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Proof. Similar to the proof of Lemma 4.4.10, we see that

t
< [ 10t gy dr.

for 0 < s <t < T such that ||[Df(s )”C)\( y < oo. Thus, ||f(¢ )||C
local Lipschitz continuous representant and in particular, ¢ — || f(¢)]] oo €

WL>°((0,T)). Moreover, let s > 0 be a Lebesgue point of 4| f(s )HCM y and

loc

IDf(s )ch(s) < 00. Then,

t
1Ol = 1FSllpae + / AT IDF($)] oo dr

Ay admits a

d .
2 1fGllgaer < H10ef ()l caor +Als) [DF(s)ll o

for all £ > s. Finally, the assertion follows by taking the limit ¢ — s. O

Lemma 4.4.12. Let A : R — R>q be continuously differentiable and mono-
tonely decreasing, U C R? be open and f € C*1((U x T¢) x (0,T)) for T > 0.
Moreover, we assume that

either  [[Df(t)|oaw  or  [[0cf ()|l oaw  is bounded in t € (0,T)

writing f(t) := f(-,t). Then

t . t
1£Olgso = [ A IDIlgaen dr < WOl gaeo + [ 107 ey

forall0<s<t<T.
Proof. Setting

Pf,N(/\at) = Z Z 'b' ||az+aag+bf( Z, -, ||L°°(’[[‘d)

0<i+j<1a,b<N

and

QvAt) = ) Z S Ha”aaiﬁbf(x,~,t)||Loo(w)v

1<i4+5<2 a,b<N
a+b<2N
we have Py n(At) = [[f(t)]lcn and Qn (A1) = [|[Df(t)]|on as N — oco. Let
i,7,a,b € Ny and 0 < s < t. Then

‘ ||a;+aag+bf(x7 ) t) ||Loo (T) - Ha?_aaz—i_bf(xa B 8) ||Loc (T4)

< |0 ai P f (1) = OO F ()|

i+a 9j+b —
< swp 05700 s oy (6= 9)
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implies
[Prn(At) = Prn(Ass)] < sup Po s n(XT)(t —5).
s<7t<t
Next, let A : R — R be continuously differentiable. Proceeding similarly as
in the proof of Lemma 4.4.9, we have

PENOD).0) = Prx(As).5)| < b Pogv(A0) )0 )

+ sup
s<t<t

A(T)] On(A(T), 8)(t — s).

Therefore, Py n(A(t),t) is Lipschitz continuous w.r.t. ¢t and in addition, it
belongs to W1°°((0,T)) with

d

S Prv A1), 1) < Po,p v (A1), 1) + A)QN (), 1),

since Py n, Pa,f,n and @ are continuous. Using the monotone convergence
theorem, we obtain

11 Olloxo + | (A DIl g = 105 lxer ) d

E P00+ [ (D@L + Pagn(Nw).7)) dr
< Prv(As),9) < () peo

because either ||Df(7)[|oxc or [[0¢f(7)]| oac is bounded. O

e

4.5 Time dependent analytic norms

In this section we introduce different analytic norms depending on another
parameter t, which we call time. In the previous section, we already proved
some estimate for the analytic norm || f(t)|| - for some time depending A. So
far we assumed that A\(t) = Ao —ut. However mthis definition has the side effect
that the norm || f(t )||C>\(t) is only well-defined on a small time interval. In the
following, we replace A by an exponentially decaying function and adjust the
definition of the analytic norm in order to obtain stronger estimates.

Definition 4.5.1. Let € : T — R be defined by

e:p=(p1,...,pa) — fQJZcos(pi)
i=1
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for fixed J > 0 and let v := Ve. For ¥ : R? x T — R, we define
Dprt) 1= 0 := Dpth — tv' (p) D)
as well as

Tipp(z, k) = (xz £tv(p),p) forz € R?, p e T
The notation d,; is motivated by the property

OutTortb(z,p) = (9, — 10/ (p)0 )00 (x + tv(p), p)
= (0p¥ — t(v'(p) — V' (p))02v)(z + tv(p), p) = TuiOp¥(, p).

Definition 4.5.2. For ¢t >0, J,A > 0 and v : R? x T? — R analytic, let

)\a+b
|¢|O? - Z “alb!

(a,b)eN2\{0}

iy

and
W"o? = ||7/’||Loo + |¢|(93 .

Moreover, we set

[Ylor + 10210|ox + 0

[Pl

81 .

D]y -

or'
Lemma 4.5.3.

dlon < [9lon [dlon + 1]l [0l -

Proof. At first, we compute the || o) norm of the product by

[¥dlox < a%;N/\a'b' o (W)Hm
\atb b o by o
<3 T () ) ot ol
b1+ba=b
= |[Y]ox [8lox -

Thus, the assertion follows by making use of ||OtA = |'|O? — Il oo - O
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Lemma 4.5.4. For T > 0 let A € C'([0,T],Rsq) be decreasing and f €
C>1=((R? x T?) x [0,T]) such that

su : + |0 . +||D )Sconst.
2 (g0 + 19l +1DS oy

Writing f(-,-,t) = f(t), the function t — || f(t)
and fulfills

Hox(f) belongs to W=°([0,T1)

d N (¢
pr LF @l gre < 10:fllgre + (4J(ek(t) —1)+ ]5 )

), N
+ (2004 28 1 @llggo

) 1D1Oloxe
(4.2)

for all p,qg >1 with;JrE:l.

Proof. At first, we fix 7 € [0,7] and show that ¢ — | f(¢)[| ,xe is Lipschitz

continuous and therefore an element of W1>°([0,T]): Let a,b € Ny. Since
g = 020, f is differentiable w.r.t. ¢, we have

Mg@lLoe = llg(s)ll L=l < Nlg(t) = g(s)]l o

< ||6t9HL§C([s,t];Loo) |t — s (4.3)
for all 0 < ¢ < T. In order to proceed, we claim
L /b
0,00 = — Dab-ip, 4.4
ot = =3 (7)o 0 (1.4

where [-,:] denotes the commutator, i.e. [A,B] = AB — BA. This can be
proved by induction, since

até’vt = 31&(819 - tv'(p)@w) = (ap - tv'(p)@x)ﬁt - U/(p)ax = ~vtat - U(l)(p)ax
and

(04, 05 1) = 00t [0, 0%,] + [0, 0t) 05

b
4.4 b N Rb—i
O 21: <l> By D318, — 01,8,
b /b o N _

--y (Z) (oD 4 OB 4 6,008, ) 0,

=1

"L /(b b
_pt) g (i) Ab+1—i
v Oy E ((2) + (z - 1>> Ot v\ 0, "0y

i=1

b+1
oy (e
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42
hold due to [3,, Y] = 0 and [92,,v?)] = v(+D). Fix s € (0,T),0 € (0,1) and

let A\g = dA(s). Thus, we can estimate

P L P S 0

b=0

<SS () o0 [onte
b=1 =1
< SR, 52t

1
2J(€>‘0 _1)SCA0 Ao

o
Il

IA

max x < 00. With this calculation
I o is

max A _q

with Cy, = 2J% 01 < 2055
and Inequality (4. 3) we obtain by summing over all a that ¢ — || f(t)
Lipschitz continuous in a neigborhood of s and satisfies

d
FOlore < 105 (8) g0 + Carda 10:5()| 2o

% t=s
Derivation w.r.t. A of |f] oy vields on the one hand
)\a71+b >\a+b71 > ’

Do flopo = D ((a_ Dol T ap =1

R

0+#(a,b)
= |8mf‘(9t>\o + 10
On the other hand, we may estimate the same series by
)\a+b—1 . 1
ol = > (at D)= [du]|, = 5 lop

0+ (a,b)ENZ

Combining the foregoing calculations, we have for A = d\

+ N (t) [Oue f (1)

Of\(t)

i ()] s < ‘atﬂof(f) + (CuA(t) + (1) 0:f (1)) A

o

and

A lgpe0 < 07300 + (cwt) Iﬂ”) 010 o

X |5 + 20110 s

opo * gA(t)

+ vtf()




4.5. TIME DEPENDENT ANALYTIC NORMS 43

for all p,q > 1 with % + % =1if X < 0. In order to conclude the proof, we
must translate the estimate above for the norm ||-|| oxm- This can directly be
t

done by the definition of ||| oo and the calculation
t

’atgvtf 5vtatf

/ -
Of\(t) + |'U a$f|ot)\(t>

o<
O?(t) -

S évtatf

+27E0 1] s

(’)f(”
The estimate for (’)t)‘ ) g slightly different and reads

at vtf 'utatf

O} |U/awf|@ti(t)

< 27X |0, | a0 + 2(XO = 1) 00 f | e -

x(f)

Using |6xf|og<t> < ||f||©;(t)7 we estimate either
t t

(O = 1) |00 f ]l e < (X —1) 1Dl 30

or
AR)

(A0 1) 0ufll e < STl SICR -

Finally, we have proved the assertion for A := dA. Since the assertion holds
uniformly in §, we can take the limit 6 — 1.

Corollary 4.5.5. Let the assumptions of the previous lemma be fulfilled. Let
A
Ao, @, 8 >0 and p = QJW% +a+ B <6Jer +a+ 3. Then it holds

d
7 Ifllre + A 1D Ol pro0 + BBl grer < [10:fllpre (4.6)

for A(t) = Ao exp(—ut). Note that > 6J is true for all possible combinations
Of )\07 Q, B

Proof. Recall

Xt
p

d
L Ollgpo < 19:Flppe0 + (Ww 0+ ) Ds@l gy

+ (20004 28 110l

1 4J(er—D4aX 1 2Je 48

Wechoose;z/\i,azTand,u: + a4+ B and

2J(24N)e*—4J
" A
obtain the corollary using 2e27X — 2 < 4J)e2* for A > 0. O
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Chapter 5

Fermi Function

5.1 Definition of the Fermi-Dirac distribution

In statistical physics, a distribution function provides the density of particles
at a certain point for a given momentum. The momentum space for free
particles is the whole R?, see [32]. However, in the case of a periodic potential,
a connected bounded subset B C RY, the so-called first Brillouin zone, is
enough to describe the momentum space due to the present periodic potential.
This well-known fact in the theory of semiconductors is a consequence of the
Bloch Theorem [14].
Let dz denote the Lebesgue measure. We define

dz
dp = ——
P 1} p ldz
as the normalized Lebesgue measure, which satisfies |B| := dp(B) = 1.

Definition 5.1.1. The dispersive relation, relating the momentum p to the
kinetic energy, is a continuous function € : B — R. Furthermore, we assume

He=¢c} =0 for all c e R (5.1)

and that e is symmetric by means of

/d)(e(p))dp = /¢(—e(p))dp for all measurable ¢. (5.2)
B B

Example 5.1.2. In the prototype case, we assume that the potential forms
a simple cubic lattice. Then we can identify the first Brillouin zone B :=

45
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[0,27)% C RY with the torus T¢. The function

d
e:T'~[0,21)? 5 R, p=(p1,...,pq) — —QJZcos(pi)
=1

for J > 0 fulfills the requirements of Definition 5.1.1 and is an approximation
for the lowest energy band (see [4]).

Remark 5.1.3. Since B is a connected set and e is continuous, the image €(B)
equals an interval I. The function

h:I—=TR; cw— |[{e>c}

is continuous, because

h(s) = |{e > ¢} = / Xiese (P)dp = / Nt ()dp  ass ¢
B B

according to Lebesgue’s theorem. Moreover, the condition |[{e = c}| = 0 for
all ¢ € R implies that h decreases monotonically. Now, let s,c € I with ¢ < s.
Assuming h(c) = h(s) yields |{¢ < € < s}| = 0, which thereby entails that
{c < e < d} is empty by being open due to the continuity of . Thus, ¢ = s.
Remark 5.1.4. Writing ¢ = max(¢,0)+min(¢, 0), we infer from the symmetry
of € that

[otcona= [ otctonap+ [ ol-cwp (53)
B {e>0} {e>0}
holds for all measurable ¢ and in particular, |[{e¢ > 0}| = 1/2 if we choose
¢ =1 in the equation (5.3).

Definition 5.1.5. Every element of

LY(B;[0,n71]) == {f cL'(B):0< f< 717}

being the equivalence class of a

1

pr=> F(Ap) = P Y}

(5.4)
for some A = (Ao, A1) € R? is called a (generalized) Fermi-Dirac distribu-
tion. The parameter Ao, A\; are sometimes called entropy parameters, where
physically —A; equals the inverse temperature.

The main objective in this section is to associate a given particle density
and a given energy with a Fermi-Dirac distribution. Before we are able to
achieve this, we derive a relation between (n, E) and the entropy parameters
Aoy A1.
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Definition 5.1.6. We define the particle and energy density for given A € R?
as

A = /B FOupdp and  B(Ap) = /B e(p) F(\ p)dp,

respectively.

Remark 5.1.7. The functions 7 and E are analytic.

Proposition 5.1.8. The mapping
w2 o { [ s s e @D {00, (10) ],

Ao /B (L, e(p) F (A p)dp

18 bijective and smooth. Moreover, its inverse is smooth as well.
Before we prove this proposition, we need some results on n and F first.

Lemma 5.1.9. The functions i and E from Definition (5.1.6) are analytic
and fulfill

Ion(N), Ox, E(N) > 0 (5.5)
as well as
. =< ) ) 1 <
OM(A), 00 E(N) =0 if and only if (AO —log 77) M=z 0 (5.6)
fOT’ A= ()\0, /\1)
Proof. To begin with, we observe that
on. [ e’ FOp)dp = [ p)FO D= nF O p)dp
for 2,5 = 0,1. The basic idea of this proof is to split this integral into two
parts, one with € > 0 and the other with e < 0. Note that changing the

sign of € in the definition of F behaves like a change of the sign of A; since
F(\,p) =1/(n+ e oMe(P)) Thus, the symmetry of ¢ entails

o, / e(pV (A p)dp = / e(p) T F(\p)(1 — nF (N, p))dp
B B/s

(-1 /{ R (N R L (O



48 CHAPTER 5. FERMI FUNCTION

. exp(—Ap—Ai€ .
Now putting g(A,p) := F(A,p)(1 = nF(\,p)) = sl ebl we di-
rectly see that g((Ao, —A1),p) = (Cxp(f’;z();_zoc;g(f(ﬂ)z(p)))2. Then g is positive

and

%/?@vwmwz/ e(p) (g0 p) + 9((hor —A1),p))dp > 0
B {e>0}

for i = 0,1. Comparing the denominator of g(A,p) with the denominator of
g((Mo, = A1), p) yields that

9((Ao, A1), p) § 9((Ao,=A1),p)  whenever (e —p)(1 — e~ @) § 0.

We finally deduce the assertion from

on, / PV FO\p)dp = / (0 (g0 ) — 9((ho, —A1),p))dp > 0
B {e>0}

for (i,7) = (0,1),(1,0) and the fact that

(1 — e e § 0  whenever \; % 0
for p € {e > 0}. O
Lemma 5.1.10. The Jacobian determinant det 8,\(ﬁ,E) 18 positive.

Proof. Starting similarly to the proof of the foregoing lemma, we deduce

det 9y (71, E) = //e(e — € Ydpdy'
B B

2
:/62d,u/ 1d,u—(/e-1d,u> ,
B B B

where dy = du, == F(\,p)(1 —nF (A, p))dp is a positive measure. Thus, an
application of the Cauchy Schwarz theorem yields the assertion. O

The previous Lemma entails in particular that A — (2(\), E(\)) is a local
isomorphism. The goal of the following Lemmata is to show that there is
indeed a global isomorphism.

Lemma 5.1.11. Let n € (0,1/n). There exists a unique function ¢ : R — R
such that

n = /Bf((¢(>\1)a A1), p)dp.

In particular, it holds ¢(0) = log
unique solution of

- Moreover, defining ep € e(B) as the

{e <er}| =nn,
we have
d(M1) FerA1 = 0o(A\1) as Ay — too.
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Remark 5.1.12. Note that ep is well-defined due to Remark 5.1.3 in conjunc-
tion with the symmetry of €. In particular, observe that —ep fulfills

[{e > —ex}| = mm.

Proof of Lemma 5.1.11. To begin with, we fix A\; and compute

1 s A
/prdp / dp Ll as A\g — 00,
7+ e~ Ro=Are(p) 0 as A — —o0

in use of Lebesgue’s theorem. According to Lemma 5.1.9, fB F(\ p)dp is
strictly monotone and continuous in Ay. Therefore, ¢ is well-defined and
unique due to the mean-value theorem. Finally, the function ¢ is smooth as
a consequence of the implicit function theorem and the positivity of dy,7.

Let 4 (A1) := ¢(A1)FerA1. We want to show that 7y (A1) = o(A1) as Ay —
+o0.

Case 1: Let /\fl — +00 as { — co. Assume that T()\lil)/)\l =t eR
Thus, for every § > 0 there exists an ig € N such that A (c — 0) < re(A) <
A1(c+ 0) for all ¢ > iy abbreviating A; = )‘1,1 and ¢ = ¢*. We have

dp T dp
"= F e ez 0w = | T e e R ters)

1
= */ X{i(eﬁ:ep+c+5)<0}(p)dp
nJB

1
— — |[{xe > —ep F ¢}
n

as § — 0. The lower bound can be found analogously and we conclude
nn = |{£e > —ep F ¢)}|. According to Remark 5.1.3 and the symmetry of e,
this is only true if ¢ = ¢+ = 0.

Case 2: Suppose that r4(A1)/A\ are unbounded at =+ infinity such that
there exist sequences )\fi — oo fulfilling r4 ()\I*LZ)//\lil — Zoo. Similarly to
the proof of case 1 and using the boundedness of €, we derive n = 0 , which
undermines the assumption n # 0. O

Now we are able to define the basic properties of distribution functions. In
general, a distribution function depends on the spatial position, the momen-
tum and time. Nevertheless, in the present chapter only the dependency on
the momentum is of interest. Thus, we neglect the spatial and time variable
for the moment to simplify the notations.

Definition 5.1.13. Let n € [0,00). For f € L'(B;[0,771]), we define its
particle density and energy density as

ny = /B f@dp  end  Eyi= /B () (p)dp, (5.7)



50 CHAPTER 5. FERMI FUNCTION

respectively.

Lemma 5.1.14. The set of all admissible particle and energy densities is
given by

{[aconso: s e 'm0
2. 1 an e n
:{(n,E)ER .Ogngn d |E| < emax( )}, (5.8)
where eqmax = 00 for n =0 and

1 1
Emax {0, } —R; n— — e(p)dp with |{e > c¢}| = nn, (5.9)
n {e>c}

otherwise bounded by emax(n™1) =11 f{€>o} e(p)dp

Proof. The assertion is obvious for n = 0 and hence we can assume that
1 is positive. The symmetry of €, see condition (5.2), in conjunction with
0 < f < n~! implies the inclusion 7 C”.

Therefore, let (n, E) € R? such that 0 < n < 1/n and |E| < epax(n). We
define

1—s

s .
As(p) :== ;X{eZa}(p) + X{e<—c}(p) With [{e > c}| =nn (5.10)

for s € [0, 1] and p € B, where x denotes the characteristic function. Clearly,
As € L1 (B [0, n’l]). The definition of A; and the symmetry of e ensue
that n = [ As(p)dp for each s. Moreover, we infer — [, Xo(p)e(p)dp =
fB )\1 e(p )dp = emax(n) once again from the symmetry of e. Since s —

= [z € p)dp is continuous, the mean value theorem implies the
cx1stcncc of a t 6 [() 1] such that [ A¢(p)e(p)dp = E, finalizing the proof. [J

Lemma 5.1.15. Let 0 < n < 1/n < oo and ¢ be given by Lemma 5.1.11.
Then for every —emax < E < emax, there exists a unique Ay € R such that

E= / ), A1), p)dp

Proof. The idea of the proof is to make use of the mean value theorem once
again to find A;. Recalling

d

0= dTlﬁ(qS(h), A1) = &' (A1) (A(A1), A1) + O, 2(B(A1), A1)
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from Lemma 5.1.11, we observe that

d

dTlE((b()\l)’ A1) = @' (M)0x E(¢(M1), A1) + Ox, E(¢(A1), A1)
1

" Oaon($(M), M)

is positive due to Lemmata 5.1.9 and 5.1.10. According to the mean value
theorem, it remains to show that

det T 5y (0(A1), A1)

lim  E(p(M), M) = £nemax(n). (5.11)

A—too

In order to prove this, recall from Lemma 5.1.11 that
T:t(/\l) ‘= Fep + gb(/\l) = 0()\1) as \1 — xoo.

Turning to Equation (5.11), we observe

E((¢(M), A1), p) = / €(p)dp

BN + e_Al(e(p)j:EF)_"'i()‘l)
1

— */ €(P)X{Fe<er} (P)dp
nJB

as \; = Ali — 4o00. By means of the symmetry of €, we obtain

/Be(p)X{fe«F}(p)dp = /B —€(P)X{e>er} (P)AP = Nemax

and
/Be(p)X{e«F}(p)dp: /Be(p)X{ofeF}(p)dp = —7emax- O

Remark 5.1.16. The parameters Ao, A\; are sometimes called the entropy pa-
rameters. Note that A\; has the same sign as E(¢(\1), A1), since the energy

E(¢(A1), A1) increases in A; and we may observe that E(¢(0),0) vanishes.

Proof of Proposition 5.1.8. Recall that (\,p) — F(\,p) = 1/(n+e ro—A1e))
is an analytic in A and continuous in p. From this, one can easily check the
analyticity of (FL,E) Since Lemma 5.1.10 provides the invertibility of the
Jacobian J (7, E), the implicit function theorem ensures the analyticity and
hence the smoothness of the inverse mapping. O

As we have seen in Proposition 5.1.8, we can either use (n, E) or A to
describe the Fermi-Dirac distribution. Sometimes its more useful to describe
the Fermi function with the help of the particle density and A\;. This is also
possible as shown by the next lemma:



52 CHAPTER 5. FERMI FUNCTION

Lemma 5.1.17. The mapping (0,1/1) x R — R?

(mA) = (0, E) with (n, E) = /B (1, () FO\, p)dp (5.12)

1s injective and smooth.

Proof. Given A1 € R, we define g : R — (0,1/7) by

g / F((Xo, A1), p)dp,
B

which has the properties limy,——oo g(Ao) = 0, limy, 00 g(Ao) = 1/n and
g'(A) > 0 according to Lemma 5.1.9. Thus, there exists a unique Ay € R
fulfilling g(A\g) = n. Therefore, the mapping is well-defined and injective.
The smoothness is a direct consequence of the smoothness of the mapping
A= ((N), E(N). O

5.2 The Fermi energy and chemical potential

Throughout this section, we assume in addition to the hypothesis on € that it
is Lipschitz continuous and fulfills ||e|| . = 2J. Moreover, we fix 2J > 0 and
fix n > 0. As we have seen in Section 5.1, there exists a C°° diffeomorphism
connecting the entropy parameters g, A1 to the particle and energy densities
n, E. This motivates the following definition:

Definition 5.2.1. Let n > 0 and L' (B;[0,771]) := {f € L}(B) with 0 < f <
1/n}. We define the 70 : { [5(1,e(p)) f(p)dp : f € L*(B;[0,n7'])} x B — [0,7]
by
n it n e {0,1/n},
(n, E,p) =  X{te<er(n)} (D) it E=Femax and 0 <n <1, (5.13)
1

nt+e—20(mE)=A1(n,E)e(p) else,

where ep(n) and A(n, E) = (Ao(n, E), A1(n, E)) are implicitly given by
e <er(n)} =nn, (n,E)= /]3(1,6(19))7:()\(”, E),p)dp

for n € (0,771). Thus, F° maps the particle density and energy density to its
corresponding Fermi-Dirac distribution. The parameter ep = ep(n) is called
the Fermi Energy and describes the energy level below which every state is
occupied at zero temperature (i.e. at £ = —epax). Moreover, we can extend
the definition of er as a function of the density by

er(n™) =2J and ep(0) = —2J.
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Since the definition is rather implicit, we seek for a more direct method to
compute erp. On the one hand, we can use the notion of the chemical potential
in order to compute the Fermi energy.

Definition 5.2.2. For A € R x R\ {0} the chemical potential is defined
as @ := Ao/A1. We may rewrite any Fermi-Dirac function F(}A,-) using the
chemical potential in combination with A\ as variables by

1

F(u, A1,p) = T N ) for p € B.

Moreover, we denote the corresponding particle density as

ﬁ(ﬂv)‘l) ::/Bﬁ(/iv)‘lap)d}l

Corollary 5.2.3. lim = Fep.
)q—)ioo
n(p,A1)=const.
Proof. The assertion is a direct consequence of the proof of Lemma 5.1.15
writing

T‘i()\l)
At

On the other hand, we may compute erp using moments of € with respect
to the measure F(A,p)(1 — nF (A, p))dp, which we have already required for
the proof of Lemma 5.1.10. For this, we state some preliminary definitions
first:

Definition 5.2.4. We set w; := w;(\) := [ €(p)"F(X, p)(1 — nF(\,p))dp for
© € Np.

W= Fep — O

Definition 5.2.5. Let N(e) denote the density of states at energy level e
given by

dHy !
N(e ::/ r__.
( ) e(p)=e ‘Ve(p)‘

Here, Hg’l denotes the d — 1 dimensional Hausdorff measure on B.
Lemma 5.2.6. Letnn > 0 and

1

F(Aa) = 777 e s

With this definition, we have F(\, e(p)) = F(\, p). Considering Ao as a func-
tion of n and A\, we have

FA )1 =nFA-)

W1 N ()=

= n*(1=nn)gepn)  as A1 = o0
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in CO(R)" as well as

n2(1— )22 e 2 (Fen(n)) as A — doo

wo(A)
fori € N. Here = denotes uniform convergence w.r.t. n € (0,n71).

In order to prove this, we require an Arzela-Ascoli type lemma, where the
equicontiuity is replaced by monotonicity:

Lemma 5.2.7. Let I C R be an compact interval and let ¢ : I — R be
continuous. Furthermore, let ¢ : I x R — R be monotonically increasing in
its first variable such that

P(z,y) = d(x)  pointwise as y — 00
for every x € I. Then the convergence is uniform, i.e.

sup [¢(z,y) — ¢(x)|  asy — oo.

Proof. We encounter from the hypothesis that for every ¢ > 0 and every z,
there exists a 7, > 0 such that

[(x,y) — o(x)] <

In order to show that the convergence is uniform, we need some preliminary
considerations. First, for every € > 0 there exists a . > 0 such that

(2) —9(2)| < 5 if e -2 < (5.15)

forall y > 7y . (5.14)

[N e

due to the uniform continuity of ¢. Combining (5.14) with (5.15) and using
the monotonicity of ¥ (x,y) yields

bla,y) - o) S (=) — 9(:) + 5 <
fory >r,.and 0 < z —x < §.. Likewise, we obtain
blay) = 6(@) 2 W(Ey) — 6(2) — 5 = —c

fory > 7z and 0 <z — Z < 0. Since I is compact, for € > 0 there exists an
N, € N and 2z € R, such that Uf\i‘o_l[zi7€, Zit1,e] D I, where z; c = 2, + 10
fori =1,..., N.. Thus, for every z € I, we can find and ¢ such that

0<z—2,<0 and 0<zi41¢e—a <06
Let € > 0. Defining 7. = max; 7., _ ., we have

sup [(z, y) — p(z)] <€

for y > r., which proves the claim. O
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Proof of Lemma 5.2.6. At first, we fix n € (0,1), let us define

F(Aa)(1 —nF (X a))

d(n, A1,a) := N(e) NG

with A= ()\o(n, )\1),)\1).

Note that F(), e(\)) = F(X, p). Here, Ao may be computed via

A / /
n P wi(Ao(n, A7), AY)
:1 -
doln, ) = log g7 = [ X

by integrating the ODE

0=0xn=ws +widr o and Ag(n,0)=log .
1—mn

Recall that e is the solution of |{e + er > 0}| = nn. Now taking the limit in
A1 — 0o with A = (A\g(n, A1), A1) yields

e—kl (a+er—v)—Ao(n,A1)+ep At

VA1 T T _
"M F(N\ a)(1 —nF(Xa)) = (1 + e Mlter) Aol ) FerAr )2

oo, if la+ep| <v
_>
0, else

for every positive v as A\; — oo, because Ag(n, A1) + epA; = o(\1) according
to Lemma 5.1.11. Hence, we obtain

e MF(A a)(1 = nF (A a))

qS(n, )\1,0,) = el/)\le(A) —0 with A= ()\o(n, )\1), )\1)

as A\; — oo uniformly in a for |a + ep| > 2v. Since v > 0 was arbitrary, we
infer by means of the co-area formula

/ o(n, A1,a)N(a)da = / d(n, A1, €e(p))dp — 0 as Ay — oc.
later|>2v le(p)+er|>2v

This and the fact that [, ¢(n, A1,a)da = 1 (due to the co-area formula) as
well as the positivity of ¢ show that
wo(/\)

N(-) — 8¢ with A = (Ao(n, A1), A1) in C°(R)’

(5.16)
as A\; — oo. In particular, for i € Ny we have

wi(/\o(n, )\1), /\1)

— (—ep)’ as A\; — oc.
wo(Ao(n, A1), A1) (—er) !
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Until now, every convergence has been point-wise w.r.t. n. In order to prove
uniform convergence, we define

1 M Wl()\O(nvA/l)a)‘/l)) ’
A / wo(Ao(m, A7), X))dAl

and ¥(1,A1) = —=2J = —ep(1), ¥(0, A1) = 2J = —epr(0) such that (1,\) <
PY(n, A1) < (0,\). For n € (0,1), we can calculation ¢ with the aid of Ao
by

Y(n, A1) = for0<n<1

Alw(nﬁ >\1) = log 1

We want to apply Lemma 5.2.7 and therefore we need that 1 is monotone.
For this we take the derivative

1 1 1
A18"¢(n7/\1) = m - anAO(n,)\l) = m - J07

_n - Xo(n, A1)

where we have used

6n)\0 = i <~ 1= &m = 6n)\0w0.
wo
The derivative of ¥ (n, A1) w.r.t. n is non-positive and hence ¥ monotone
since wyg < n(l — nn). From the first part of the proof, we deduct that
P(n, A1) = —er(n) as Ay — oo for every n € (0,1). Now, we have prepared
everything to apply Lemma 5.2.7 and obtain that ¢(n,\1) = —ep(n) as
A1 — oo since ep is continuous. With this additional knowledge we can reuse
the ideas of the first part. However, we have to pay attention that 0 ¢+ €EF A1
does not converge uniformly in contrast to 1. Therefore, the convergence of
e’ F(\, a)(1 —nF (X, a)) is not uniform w.r.t. a; we have to replace it on the
one hand with me”/\l}i()\,a)(l —nF(\a)) = oo if |a+ ep| < v and on
the other hand with n(1 — nn)e’** F(\, a)(1 — nF(\,a)) = 0 if |a + ep| > v
as A1 — oo. This implies the assertion for \; — oco. Finally, we note that we
can do exactly the same for the case \; — —oo replacing —ep by €p. O

Remark 5.2.8. The foregoing proof entails in addition

1™ wi(Ao(n, M), \))

— d\, = Fep(n
M Sy wo0a(m Ay, Ay P = Fer()

as \; — *oo.

Remark 5.2.9. Let n = 1. Due to the definition of XAy, we see that it is
monotonically increasing in A; for AgA; > 0 and monotonically decreasing for
AoA1 < 0 since

e(p)e~rod <0, if A1 >0
w1()\0,)\1):/ ( (p) p {— 041 =
B

14 e doe—ie®))(e=Ho 4 eMc®)) | >0, else.
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Therefore, we infer that Ag is monotone in A;. Note that the proof of Lemma
5.2.6 provides that \g is also monotonically increasing in n.

5.3 The capacity

In semiconductor physics, the capacity is given by
H()\) = 8;,]3()\) = )\1&)0()\),

where p = A1/)g is the chemical potential, 7(\) the particle density and
A= (Ao, A\1). As we will see in the chapter of the hydrodynamic description of
our model, the ultracold cloud of fermions in an optical lattice, certain values
of the capacity lead to degeneracies in our equation and produce difficulties.
In this section we prove that the capacity is unbounded and in particular that
% : R? = R is surjective.

Lemma 5.3.1. sup, cg x,>0 A1wo(Xo; A1) = 00.

Proof. Recall that Ajwo(Ao, A1) is defined as the integral Ay [ F(A,p)(1 —
nF (A, p))dp with A = (Ao, A\1). Thus, showing that the integral over a smaller
set is already unbounded ensures the assertion. We calculate the value of the
integral using the co-area formula and the definition

5 1

.F()\,(l) = W, where \ = ()\0,)\1).

For v > 0, we compute

sup / T MFO ) — 5 F O, )N (a)da

A>0J —v—ep

v—eR )\1€_>\0_)\1a
> inf N(e) sup / mda
leter|<v M>0Jpep (NF€ )

e)\ll/ _ e—/\lll

= inf N(e) sup

leter|<v NS0 (ner—Alsp + €—>\1l/)(n + e—>\0+)\16p‘€>\1u)
sinh(\v) 1
= 1 f N S = i f N
\e+ler;\§l/ () )\1u>po ero=Aer (1 + n?) + ncosh(Av) g \eJrler;\gu ()

since A\g — Aep = o(\1). Now, let v = 222 The unboundedness of N (e)
and, being more precise, the fact that lime, 125 N(ep) = co imply

—J—32ep ~ ~
sup sup/ i MF (A a)(1 —nF(Xa))N(a)da
ne(0,1) \i>0J—J—F

277*1 lim N(—J—gep>:oo.

61:*—)—2.]
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This finishes the proof. O

In the case n # 0, the statement of Lemma 5.3.1 changes completely
assuming that the density (Ao, \1) = [, F 5 F (Mo, A1), p)dp does not approach
0 and ! as A; tends to oo.

Lemma 5.3.2. Let n > 0 and I be a compact subset of (0,n71); then

sup A1wo (Ao, A1) < o0
n(Ao,A1)€L,X1>0

Proof. As in the proof of Lemma 5.3.1, we treat the case \; — oo first. Note
that Ajwo(Xo, A1) is defined as the integral A [, F(X, p)(1 —nF (X, p))dp with
A= (X, A1). Let Ay > 0 and n € I. We start as in the proof of Lemma 5.3.1

and define )

W, where \ = ()\0,)\1).

.7:"()\,11) =

Likewise to the proof of Lemma 5.3.1,

/V_GF MF(N, a)(1 —nF (N a))N(a)da <n~' sup Ne).

—ep v<e<v

for v < 0 < . Since N(e) may be singular for e = +2.J, we need to estimate
the remaining part of the integral separately. To begin with, we assume
a+ er > v and derive

m\w

MF(a)(1 - nF (N a) < e M@t FriPoe|
< n(]_ — nn)e_)\Tl(D_2|0D7

where we know from the proof of Lemma 5.2.6 that 6(n, A1) := /\%)\O(n, A1) —
er(n) — )\% log = = 0 as Ay — oo. In fact, the same estimate holds for

€ 4+ ep < v replacing 7 by —v. Thus, using A\je=*1*/2 < 1/v, the inequalities
for 7 and v entail

(/e+6F>17 * /6+5F<V> Alf(/\vp)(l — U‘F(A,p))dp
< n(l—nn) <|{p-e+6F >} n |{p:e+eF§V}|>

A
rve—z (V 2|9D 7£€Tl(_£_2|9|)

which is bounded uniformly in n as 2 |0| < v, —v for sufficiently large A\ for
fixed v, 7. However, since n € I CC (0,1), we can choose 7, v independently
from n. Combining both estimates shows the assertion. O
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5.4 The Fermi-Dirac distribution as a function
of the densities

This section is devoted to estimates on the derivatives of FO. Since F0 is
not directly given, we may consider it as composition of two functions. The
natural choice would be

Fo(n, B.p) = (f(-,m ° (7, B)™) (n, E)

for n(X) = [ F(X\, p)dp and E(\ = [z €(p)F (A, p)dp. Thus, we can combine
estlmates on F and 7, F in order to find ebtnnateb on the derivatives of F°.
Remark 5.4.1. The Fermi-Dirac distribution functions are related to each
other for different n > 0. In order to see this, we denote Fg(n,E,p) =
(Fy(-p) © (g, Ey) =) (n, E) for > 0 with

1

Fn(Ap) = P Y )

and  (7in(A), By(V) = / (1, €(p) Fy (N p)dp.

B

Defining the transformation
Uy 1 R? = R%, (2,y) = (¢ —logn,y),

we observe that
1 o~ 1 . =
F?]('a 7p) = E‘/—-vl('a 7p) 077[}71 and (n'f]’En) = ;(nhEl) 011[}71'

as well as

]:7(7)(7 '7p) = ‘7:17(" 'ap) © (ﬁ‘mEﬁ)_l = % (]:1('7 '7p) © (ﬁ‘laEl)_l) (77)
= %f?(nnn-,p)

Therefore, if we can prove estimates for the derivatives of F° with respect to
n and F for n = 1, we can easily extend these estimates to all > 0 and also
for n = 0 by taking the limit. Throughout this section, we assume that n = 1.

Since we are also interested in the case of small densities, n < 1. The
desired estimates shall not be singular in n. Nevertheless, it turns out that
we need different coordinates as A.

Definition 5.4.2 (n = 1). We define the transformation ¢ : A — (4,7) by
setting

1 1

0= Toe and 7y := To oo
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Using 6= %}‘5 = e and 7 := 1_7“’ = e MM a5 well as § = 1/5 and
4 =1/%, we define
. 1 1
F(v,6,8) := —— 5 = — (5.17)
1+5(2) 1+1(3)
We set )
n(v,d ::/ ( )F‘ v, 0, €(p))dp, 5.18
(7,9) ) (7,6,€(p)) (5.18)

which entails FO(-,-,p) = F(-,-,e(p)) o i~! by requiring that @ is invertible.
Lemma 5.4.3 (n=1). Let (n,E) =1n(y,d). Let

0
On.) = d(n, E)

be the deriwvative w.r.t. (n,E). We have

2
1 L(efl)
2V, E) = ——— X ) (—e1)d 1
6(’rL,E)n (n7 ) <6L1>i/3< € > ( € ) 1% (5 9)
with dp = %dp and X = %, where

eLl // e — )dudy

(e L 1) = |lel3 exp(~2 [lelog X1|. ).

fulfilling

In particular, it holds

. 1 L1
O, pyn "V (n,0) = — (1 If) .
Proof. We compute

R X5 eX 1—-p
8(%6)F(%5’ B) = m <72a 52 > )

where 0, 5) = This leads to

0(7 9)

LZGX 1—¢
O(~,5)0(7,6) = d
(.07, 6) /B<§262X 6(1€)> p
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X . xe® o xe<(P)
having set dp = Gateranz P = Gra-nxmP

by

dp. Its determinant, given

det (04,5017, —X// €e—e*)dudy = 6 X(e L1)2,

can be estimated by

25 (2]el
et Oy, )| € L2 22RO
lell3
2
1+e 0 1
= 2 A .
(1+6)‘0>‘1) H€||§exp( H 16”)
Hence,
8 V(n, E 1 L) gy
(n,E) (Tl, ) <€L1>;21/B( —62 € ) H
1 e
= (—e1)d
i, () e

can be estimated using
2
(e L 1)5 = llellz exp(=2 [ Avel . )-

We conclude the assertion, noting that £ = 0 corresponds to v = § as well as
X =1 O

Remark 5.4.4. Let U C R%2 and f : U — R be smooth than for v!,...,v7 € R?
it holds

f(j)(m)(vla cvl) = Z D,y "'amw)f(x)”il(l) ' "Ug(j)

ie{1,2}

for x € U. Thus,
< sup [0°f(x)] 2.

P al=j

’f(j)(x) 5

Lemma 5.4.5 (n=1). Let j € N and let

0

0 3 =
70 0(3.0)
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the derivative w.r.t. (7, 5) Then there exist tensor valued polynomials Agl of
degree at most j for i, =1,...,7 such that

a-(],yg) (77&5)
i J ; s l ~ j=l _ .
=354 (155) (25) (- Fo8) P9

(c¢f. Definition 5.4.2). These

using 6 = 6(8) = 1i5 and v = y(¥) =

tensors may be estimate via

1
1+%

, : (=1
@) <za+isri(7)):
In particular, it holds

ol 5 F(1.0.8)]

<2 +2181Y EJ: (lf(s)l (ﬂ)jl F(3,6,8)(1 = F (7,6, 5)).

=0

Proof. Fix f € R and define

~\iB—m 1
grm (7,6) := (=)™ X (3) T
(1+6(3)")

with a?® = 1if i = 0 and a?° = 0 else. We demand g, 1., = 95g1,m by setting

ath = (1 (+m 42— i) (1 - B))al™ + (1 +i(6 —1))al™
for 0 <4 <[l+m and alﬂm
calculation:

= 0 otherwise; this can be seen by the following

tm (7\G+DE-m 1
aéglm = (—1)l+m+1(l +m + 1)(1 — B) Zl @i (6) SlFm—1i

(1+(°) "
()
+(*1)”m“(lﬂ'+w)zz“z (3) : e
(1+5()°)
l+m+1 iB—m
B (14_(5(7) )l+m+22( ) m((l+m+1)(175)ai@1
3

+ (I +i(B—1))a™ + (1 + (1 —i)(1 - B))ai™) .
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In addition, we obtain g;m+1 = 0yg1,m by setting
a;" = (L m o+ 1)Bal™ + (m —iB)al™ + (m — (i = 1)B)al"

for 0 <i<Il+m and al M+ — (0 otherwise, since

) Im (1)(i+1)5—m—1 1

17 1 I+m—i
Oy gum = (1)1 4+ m+ 1) = : s T
(1+5(1)")

Zz aim (6 )iﬂ_m_l 5l+m1+1—i
(1 Lo <%)5>l+m+1

iB—(m+1) 1
2 (5)" T e (@ mer gl

+ (_1)l+m+1(m _ Zﬁ)

( 1 I+m+1

:(1+6()

) l+m+2

+(m—if)ai™ + (m + (i = 1)B)a;™) -

Im 1 ifl=m=0,
ay" =
0 else.

Thus, we have found the derivatives of F by

Note that

[Ss]

. (_1)l+m (1 (+ S)(m)i>l+rln+1 H_i lm(sl (Z)IB

= S 2 (= FE ) B

ot

This proves the first assertion with
. L
A7 (B) = ((‘Ujaij 517‘“')51 im0.1’
yereyhg =Y,

where §; ,, denotes the Kronaecker ¢ and |x| = >, ,. In order to derive the
estimate, we observe that

a0l < @ m e )+ (B2 ]alm ] + fal))
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and especially

lalm| < 21+ 1B (L 4 m) (”m‘ 1)

-1
for | +m > 1. This entails

S e FrT

(3
( ) g)ﬁy+m+l

_ ™" ¥ p ! m (NP1
B (1 +5 (%)5)l+m+1 (6) zz:% |ai+1 (5) 5l+m—1—1’
= ) (24 2(8)F™ (1 +m)!x

(1 45 (%)ﬁ)lerJrl
LONORSH N
) ) )
(1)/3—’” 1
SO ST (9 4 9|8 (1 4 m)!

(1+53)")

for {l +m > 1. O

IN

Corollary 5.4.6 (n =1). Let j € N. Then there exist tensors Bgl foril =
1,...,7 such that

=0 i=1

oy}
7N
| | =
>,
~
7N
—
e
2
~
o
L
X

: _ 1 _
wzth’yfl_w,(;fm and

j i i+1 (7 —1
B <2l (] )):

In particular, we have
R e Jj+1 d Y !
07,5800, )] < 3137 (14 el o) mae§ 125 2

-/]313’(7,5,6(1)))(1 F(y,8,¢(p)))dp.



5.4. THE FERMI-DIRAC DISTRIBUTION AND THE DENSITIES 65

Lemma 5.4.7 (n=1). Let v, € (0,1) and A > 0 such that
3(2+2le]| o )C1A < min{d, v} (1 — max{d,v}),

where C7 1= ?ﬁf{{gﬁ Then we have

Mot 3(2+ 2 el])* 1A : .
3 PR < g~ ) Jy OV PO

and in particular

) L !
’aé%‘;)n(%é)’ s (min{é,’y}(l — max{Jd, 7})) 8
x / F (8,7, e(p) (1 - E(6,7,(p)))dp.
B

where
o _7 max{J,7}
C:=2+2|e|, and L:= 3(2+2”€H°°)min{6,fy}'

Proof. We define g(vy,0) = (’7,5). According to Faa di Bruno’s formula, we
have

Al iy
zl:“|81ﬁ(775)|§2/‘;!‘8ﬁ/8ﬁ(%5)‘ with = Z

J

9(7,9

We can directly estimate p via

1 1 < 2\
dm+1? ym41 [ = min{g,v}2

by assuming the 2\ < min{d,v}. Let wy = fB (7,6, €(p))(1—F (7,6, e(p)))dp.
Corollary 5.4.6 entails

oo
u< Z)\mmax

m=1

3 v ) h i+1 1) v J
]Z_lj!‘%n( ’ nga 14 [lell ) maX{ Ve
< 2N ‘
< —3(1 J+1
B ; min{&fy}?y?’ (L4 lell o) max{ }
Ciwo
<3242’ 1o

min{d, y}(1 — max{d,~v})

where Cy = 230l if

3(2+2le]| o )C1A < min{d,v}(1 — max{d,~v}). O
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Corollary 5.4.8. Lemma 5.4.7 remains true, replacing C1 and L by

~ . [max{0,y} 1—min{d,v}
€ = min { min{d,7} " 1 — max{d,v}

} and L:=3(2+2|e€)Ch,

respectively. Moreover, let I = [a,1/a] for a > 0. Then we have

I ! U -
0" (y, )| < UCL (ﬁl(%é)(l — 1 (7, 5)))

with
C=2+2|¢l, and L :=3(2+2 ||€Hoo)a“€u°°+1
for all v,8 € (0,1) such that 7/ € I. Especially, it holds

6(|I600+1))l

04(y,7)| <11 2(lell oo + (1 =) ( (1 =7)

for v €(0,1) and v =0 (y,7).
Proof. Recalling the definition of F', we observe that

O

A 6 A

F(l—’y,l—&ﬁ):: . ﬂ:l— . 5:1_F(7a635)
146 (g) 1+6 (g)

is valid, where § := 1%‘5 and 4 = 1777 . Hence, we can exchange (4,7) by

(1 -=46,1—~) without changing the previous lemma. Moreover, we have

b b 5 A

01Mmax{,7}§max f,l §a2
min{J, v} v 9 35

for all §/4 € I = [1/a,a). It remains to show that we can find an estimate as

in Lemma 5.4.7 using 13 (v, d) and not the variables -, d themselves. In order

to prove this, we compare § and 1 — y with F'(v,6,e(p)) and 1 — F(v, 8, e(p))
and see

o1 =) =

oo

1 7 -
L+61+7 7 L 5 (1)@ (1) -
+5(1) (%) +7
= F(7,8,¢(p))(1 — F(7,8,¢(p')))a" Il

for p,p’ € B. Similarly, we obtain a lower bound for (1 — ¢)y. Finally

integration w.r.t p and p’ entails

min{’% 5}(1 - max{%é}) Z ﬁl('% 5)(1 - ﬁ1(776))a_1_||€‘|w~ O
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Lemma 5.4.9. Let I = [1/a,a] C Rsq. Then there exist constants A, B > 0

depending only on a, ||€|| ., such that
(ﬁ’l)(m)(n,E)‘ <mimi—AB"__ (5.20)
(n(1 = n))
and (n, E) = 1(6,7) € 1n((0,1)?) with
6§ 1-0~
01790 ¢
7 176
Furthermore, it holds
(67 0,0) < b (el + 1t (2 D))
n(l—n) ' '

Proof. We start with recalling that Lemma 5.4.3 which entails that
< o0.

H := sup sup‘(aﬁ(fy,(S))_l‘
0<6<1 f¢g Op

Moreover, due to Corollary 5.4.8, there exist C, L > 0 such that

|0, (v, )| < UCL.
€ I and

on

1) with

with C' := n(1 —n)C and L = (1 n) for all 7,0 € (0,
I € N, where n = 1 (v, d). Thus, we can apply Proposition 4.3.1 to obtain for

m >3
CH . - s
om(a ) (A(ry,d))| < ———=——=—MHL(1 +CHL))™m™ 2m!
00000 < G g )
a B m
<mm 3 An(1—n) [ ——
<m!m™2 An( n)<n(1n)>
with
~ CH
= B:=4LH(1 HL).
sarcmne (1+CHL)
Now, we turn to m = 2 and have
1

@, B < 2CWYH G = APy
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For the first assertion, we define A = AB. The second assertion treats the
case where I = {1} implying 6 = 7 or equivalently F = 0. We obtain from

Lemma 5.4.3 that
1
LI P
1 0
O

C=2(lello +1) and L =6([ell, +1)-

Op

< 2.

H= sup ‘(81?1(6,6))_1
0<6<1

P

Moreover, Corollary 5.4.8 entails that

Therefore A and B can be estimated from above as

A< Moo+ _ Jlello +1
8(1+2-2-6)2 1250

and

Lemma 5.4.10. Leti+j > 1.

B<4-6(el,+1)-2-(14+2-2-6)(e]l, +1)*=1200(||e|| ., +1)*. O
OL505F (1,6,8)| < 3T (L+ B (i +4)! D

1 ~ N
= (1 + |log YD X
l+m=i m(s g

X(]- - (’775 6)) (775 B)

Proof. Define

T\® agp? (l)iﬁ_m%
91m(7:6.8) =(=1)"" Y (log 1) 2B
(1+5(1)")

Here the sum runs over all 0 < i <1+ m+ j. We compute

aBgl,rn,j (73 65 5)

_ z+mz( ) dpai? (1) s
8 I+m+r+1
(1 +4(%) )
K1 lmj (~ (i+1)B—m 1
- (—1)l+m Z(l +m+k+1) <log g) Yin (5) ; l+m67¢,::;1
[
L glmd ()P
+ ( 1)l+mZ(log%) i (3 . l+ii++n+1-
ix (1 +0(%) )
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We assume that almo = alm if Kk =0 and almo = 0 otherwise, where alm is

defined in the proof of Lemma 5.4.5. In addition, we put alm”+1 = Opa lm]

and

lm,j+1 L lm] lmj . lmj lmj
Ay _a +3al 1, (Z_l_l_m_l{_l)aifl,m l+laznl

for k > 0 and almjl = alm] _, = 0. This entails that (%glm = Gim;, where g,

is defined in the proof of Lemma 5.4.5. Note that this implies alm] =0. As
in the proof of Lemma 5.4.5, we see that

050 OLF (7,0) = Gim (7,6, )
—1)tm ! ;5/ o i T m-+r+1—i
—EEE S () X - Ao P
ymet = o i=1
We recall from Lemma 5.4.5 that

Im 1 ifi=l=m=0,
a, pr—
! 0 ifl+m>i=0o0ri>1+m

as well as
ay™ = (I m+ 1)Bal™, + (m —iB)al™ + (m + (i — 1)B)al™,
and
a; "= (L (rm 2= )= B))a™y + (4 i(5 — 1))ai™

Let dq,5 denote the Kronaecker ¢. Thus, 05 alm] can be computed iteratively
by 83@?,80 = (5(1705@,05570 and

050t = —a(l+2 - )05 'al® | + @idy 'l
+(I+(+2- z)( —B))ogal , + (I +i(B - 1))3;;@50,
0ga;™ " = a(l+m+1)95  ai™ — aid§ el — a(i — 1)0°a
+ (I +m+1)B0ga™ + (m —if)dga;"
+(m— (i = 1)B)d5ai™,
O = o5 ap ¥ 05T e,

+(i—1—1—m—r—1)05ai™ ,_, +i03al™

for all & € N with almo = alm. Here, we have used the convention that
Gg‘ai;n] =0fori¢ {0,...,04+m+j}ork¢&{0,...,5} From this we directly
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derive the estimates

o5at") < at+1) (Jog1ale, | +[og~al))

+ (I + D)1 +8) (2|05a%,] + [0gal?]),
5‘0‘ lm+1 <a(ll+m+1) ( 60‘_1a4_ ‘ + 30‘_1al.m‘)

+ (1 +m+ 1)1 +18]) (2|05a™ | + |05ai™])
< 8g+1 ai;ﬂ]

6aa{m,j+1 aa-}-l lmj

zln

+U+m+m+D(

a lmj
aﬁal 1,k— 1‘+

52’6%1? 1 D

Now by induction, we deduce successively that

. l+m—1
5] < ot + s (1 01,

a Ilmj
aﬁ a“i

l —1
<(atitm+) (1+|5|>l+m3l+mzﬂ< +mts )

1—1

This yields

[BLom o P (1,8)] < 8 (1 B (L4 m 4 )1

1 1\ . ’
(1 o ”D (1~ F(r.6)F(.5).
,ym(sl k)
From this, we easily derive the assertion by connecting the derivative with
respect to (7,0) to the partial derivatives 05 and 0. O

Lemma 5.4.11. Let v, € (0,1) and define b= % as well as 7 := 1_77
Moreover, let X be non-negative such that

min{vy, d}(1 — max{~,d}) . max{~,d}
< = —_—
As 36(1+ |8])Ch with - Cy min{~, d}

Then, we have

Zl,\ LSOAE(1,8,6)] < (1= F(7,6, ) (7,5, 6)x

31\ 36(1 4 |8])Cy

x 7167 (1 +
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and in particular it holds

O OP (3,8, 8)| < F(7,0,8)(1 = F(7,8,8))x

. 71\ 36(1+ |6))Ch l
(1 o3 (G i )
as well as
(360 + (8D
’ Ls0LF (7,6, 8)| 5 ‘ < F(v,7,8)(1 = F(v,7, 8))j'6'1! (W—v)) :

Proof. Likewise to the proof of Lemma 5.4.7, we make use of Lemma 5.4.10
and estimate

)\l . Iui d i .
ﬁ‘aiaaéF(%&ﬂ)‘ < i (d(i,5)> aéF(7,5,5)|-
for p = ﬁg’y}?' Hence,
Z 0L505F (1.6, 9)
) S . 1 5 J
SZW*J(HWW! > — <1+ 1og~D X
i=1 Loy VM0 0
X (1 - A(’Yats 6)) A(’Yats 6)
< (1= F(7,6,)F(2,5,)j16 (1+lo ) 1oull+ 13)
min{7,4}
since
18ul+6) _18A+|8) 22 _ 36(1 + |8))Ch V<1

min{7, 0} min{7,0} min{d,y}? = min{y,d}(1 — max{y,d})

where C := r;?;‘gg Finally, the same trick as in the proof of Corollary
5.4.8 ensures the assertion. O

In the following, we only want to specify the energy dispersion being given
by Example 5.1.2 and use its concrete form in the sequel.

Definition 5.4.12. Identifying the first Brillouin zone B := [0,27)¢ C R?
with the torus T%, we define

d
e:T' =R, p=(p1,...,pa) = —2J Y _ cos(p;)

=1

for a given J > 0.
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Definition 5.4.13. For ¢ > 1 and n € [0,1], let &,(n) be the set of all
possible energy densities for a particle cloud in equilibrium with density n,
where the inverse temperature —\; is restricted to the interval [—log a, log al.
More precisely, we define

. ep)dp dp =
Ea(n) := {/]31—1—(5_)“)_)‘16(7’) :[A1| <loga and /Bm -

being equivalent to

1—~v4¢

Ealn) = {ﬁz(m) BEO1), e [ia] and 1y (7, 0) = n}

Note that & (n) = {0}.

Lemma 5.4.14. Let a > 0. Then there exist constants Ay, B, > 0 only

depending on a and J = 1 ||e|| ., such that for

it holds

7 i -y j Ba ’
Oty 3 F" (0, B, )| < 14 <n(1)> Fo(n, E,p)(1 = FO(n, E, p))

—-n

forallpeTd i+j>1and (n,E)=(0,1) x R with E € £,(n). In addition,
we have

J
) ) 1
. ijo(n,E,p) - ‘SSi!j! — | X
(n,B)~p |E—0 log (1+ 2iJ)

2400(2.] + 1) in .
<(Hsg ) e

for allm € (0,1) and p € T

Proof. At first, we see that we can prove a version of Corollary 5.4.8 for
Lemma 5.4.11 following the same method as above. Thus, replace min{vy,d} -
(1 — max{y,d}) by n(1 — n)a"'~Il in the estimate of Lemma 5.4.11. In
particular, there exist A’, B’ > 0 only depending on a and |e|  such that

. o B !
af,yﬁé)@éF(’y,é, 6)|ﬁ26(p)’ <1 AN (n(l — n)> X

x F(y,0,¢(p))(1 — F(v,6,€(p)))-
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If a = 1 implying that v = 4, it holds
A"=6 and B’ <36(|€| +1).

According to Lemma 5.4.9, we have for m > 1

0™ (8 Y)(n, B)| < mim~3 A (n(lB—n)) ) (5.22)

for some A, B > 0 depending only on a and ||¢||, where
=(Jlell, +1)* and B =1200(||e|, +1)* ifa=1.
Let A > 0 be sufficiently small, we have

il

i

O (- B) o (A1) (n, B

)‘BZE(P)
Z’li ‘alﬁaﬂF 4,8, ) yﬂze(m\
< A %Fw,a ()1 = E(7,6,¢(p))

for n(1 —n) > 2B’p, where 1a(v,d) = (n, E) and

oo

p=> ==]omm ") (n, E)| < 24X

m=1

for n(1—n) > 2BA\. The next step is to cope with the derivation w.r.t. p. For
this purpose we abbreviate

Al PR .1 . 4AB')\
We have
SR 2 (2J(e” — 1))l
Z j' pgz Z lg:(e())] + Z I TR ‘85391'(6”/3:6(1,)
it+j=1 i=0,l=1 ’

% l
< (C+8J(e" = 1)A) F(7,8,¢(p))(1 = F(7,6,¢(p)))
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We can summarize this by

SN\
2 T

itj=1

(n,

Oty D3 F (0, B, )|

4AB'X v /
- (M +8J(e” - 1)A > F(n, B,p)(1 = F'(n, E,p))
(5.23)
for

n(l —n)

1
<1 — 41 d 2D ———F—"—-.
v=oe ( + ) o ~ max{4AB’,2B}

4J A’
As before, we deduce the assertion from this by taking the largest possible
values for A and v in the estimate. In the case of a = 1 or equivalently E = 0,
we put
n(l —n) n(l —n) n(l —n)

- max{4AB’,2B}  2400(|l¢[|, +1)3  2400(2J + 1)3

and

1 1
u—bg(w—l—l)—log(%]—i—l).

Finally, we use estimate (5.23) and see

oo ; o . \iyd ; .
ZO']O' 8(%E)a]j)0‘/—: (n7Eap)‘ S Z ’L'jT 3(n7E)8g,.77 (n,E,p)
i+j5=1
< 3]:0(n,E,p)(1 _‘Fo(n?Eap))
for o + jo > 1. O

Corollary 5.4.15. For a > 1 let A,, B, > 0 be given by Lemma 5.4.14.
Moreover, we define

Fon, B,p) = (Folrop) o (s By) 1) (0, B)

with F,(A, p) = m and (7iy(N), E,(N)) = J5(L,e(p)) Fy (X, p)dp.
Then for all i +j > 1 and all (n, E) € (0,77%) x R satisfying nE € E,(nn),
we have

‘ , ‘ B '
7 0 L a 0 0
Oy 400 B < 141 (2} P, Ep)(1 = 0 B
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In particular, for n =0 it holds
|0, 503 F9 (n, B, p)| < Z~]~A1F}-o(”aE,P)

foranyi+j >1 and all (n,E) € [0,00) x R.

Remark 5.4.16. For a > 1, 7> 0 and n € [0,771]. It holds that nE € &,(nn)
if and only if

ep)dp db =
e {/B,W_Hm Pl < loga and /Bm_n |

This can easily be proved by the identities
ity (Ao, A1) = 71(Ag —logn, A1) and  nE,(Xo, A1) = E1(Ao — logn, \).

Proof of Corollary 5.4.15. The proof is a direct consequence of the fact that
we can rewrite fg(-,-,p) as %]—'0(77-,77-,])) for n > 0 and that we have that

F§(n, E,p) = lim,_o F9(n, E, p). O

With the same proof, we can derive an estimate for the derivatives of .7-"2
at all points, where E = 0 is satisfied:

Corollary 5.4.17. Forn > 0 let again
Fon B,p) i= (Fy ) 0 (g, By) ™) (0, B)

with F,(\,p) = m and (ﬁn(/\),En()\)) = fB(l,e(p))]:n()\,p)dp.

Then for all n € (0,n71), it holds

J
‘ , 1
o L F(n, E, ‘<3'!'! - )«
(n,5)Op T (1 p)|E=O = 9n) <log(1+2}n,)>
(2400(2J +1)3

Proposition 5.4.18. Forn > 0 let ]—"0, a>1and A,, B, be given by Corol-

lary 5.4.15 and let A! := al“ll~ A,. Then for alln € (0,77") and E € R such
that

inf 2B, |E — Eo| <n(l—nn
yioiak oy 2Bl ol <n(l—nn)
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it holds

151
i+j=1 -

(nvE,p)‘

nEo€Eq(nn)

<2 (Ba ()\ + inf |E-— Eo|) + Al vn(l — nn))
< (14 all<)n(1 = nn)
for non-negative \,v such that

24,v <1 and 2B\ <n(l—nn)-— inf 2B, |E — Ey|.
nEo€&a(nn)

Moreover, if

n(l —nn) 1 1
< MU pd v < —log [ —— +1
AS Roor g @ v=gls <24J i )
we have
=\
3 T O )O3 (n,E,p)‘
itj=1

1 _
<12 <2400(2J+ 13\ +|E]) + ”("”1)1/> <12

for alln € (0,n7') and E € R such that

n(l—nn)

Bl = 4800(2J + 1)3

Proof. This proposition is a direct consequence of Corollaries 5.4.15 and 5.4.17
as well as Taylor’s formula. O

Remark 5.4.19. Let n > 0. We have & (n) = {0} and thus

inf 231 |E—E0‘ :2Bl|E|
EoGSl(n)

In addition, £,(n) is symmetric in n for all a in such a way that
Ea(n)=E,(1—n).
Lemma 5.4.20. Forng >nq > = zt holds
Ea(n2) C Eu(m1)

for all a > 1.
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Proof. Let ﬁ <n< %7 a>1and E € &(n) as well as A = (Ao, A1) being
defined by

(n, B) = (#(X), E(V)) := /B %dp.

As a direct consequence of Lemma 5.1.9, we see that

1
From E € &,(n) we know that Ay fulfills [A;| < loga. As the statement
suggests, we are interested in what happens if we change n. Therefore we

define the auxiliary function
$:0,1] xR =R, (n,A1) — E(Xo, A1), where iAo, A1) = n.

The change in n can qualitatively be treated with the aid of Lemmata 5.1.9
and 5.1.10 by
MEN) <

Ono(n, A1) = 8>\OE()\)(9”)\0 = (%\OE()\)m < 0 & Ao § 0,
(7, E)

where 71(Ag, A1) = n. Thus, if A; is non-negative (non-positive), then ¢(-, A1)
has a global maximum (minimum) in n = % Moreover, beyond this maximum
(minimum), ¢(-, A1) is monotone. Finally, the assertion follows the fact that
¢ is strictly monotone w.r.t. A\; due to Lemma 5.1.9. O

Proposition 5.4.21. Let n > 0, 2 € R%, U be a neighborhood of x and let
n:U — (0,n71), E:U — R be analytic. Moreover, for a > 1, let A,, B,
be as in Lemma 5.4.14. We either assume that there exists an a > 1 and a
o € (0, i) such that

n)( =) o

E(x) — Ey| <
[B(a) - Bol < S

n| -xo + | E g + inf
‘ |C:’_}O | ‘Cio B0 €Ea (y(x))

18 fulfilled or we assume that

n(z)(1 —nn(z))
Ao El - E < .
g0 + 1l + | E(@)] 4800(2.J + 1)3

is satisfied for some Ao € (0, 3 1og(1 + 517))-
1. Then, for all positive X < Ao, we have
< CX(n(z)(1 —nn(z))),

for some C > 0 depending on a and A\g.
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2. Moreover, it holds
[n(1 = ) F(n, B )| 20 < C (n(x)(1 = nn(z))),

for some C > 0 only depending on a and Xg.

Proof. We only consider the case n = 1 since the the other cases are similar.
To prove the first assertion, we directly derive from Lemma 4.4.4 that

[FOn, B, )| o < |77

LA
Cy

with y = (n(z), E(z)) and p = |(n, E)|z20 < [n]zr0 + [Elsn. We consider
only the case, where a > 1 since the remaining cas can be proved similarly.
Let A,, B, be given by Lemma 5.4.14. Then Proposition 5.4.18 implies

[FO, B, )| o < (1+al ) () (1 = n(2)
assuming 24,2 < 1 and

2B, < n(z)(1 —n(z))—  inf 2B, |E(x) — Ey|,
nEo€Eq(nn)

which is a consequence of Eq. (5.24). We can prove the second assertion
similarly. This time, we only have to combine Lemma 5.4.14 with Lemma
4.4.8 instead of Lemma 4.4.4. O

Proposition 5.4.22. Fora > 1, let Ay, B, be as in Corollary 5.4.15 and let
Ao < i be positive and U C R? be open and = € U. Moreover, let ng,ny :
U— (0,1), Eg, E1 : U — R be analytic. We assume that ng := 0ny+(1—60)ns
and Eg := 0F1 + (1 — 0)E5 satisfy

1
. Ey| inf Eo(z) — Bo| < — 1—
6l o + [Eol 2o +77Eoeglafznn9(m))| 0(z) = Bo| < 5p-ne(@) (1 —nne(x))
(5.25)

for all 6 € [0,1]. Then there exists a C > 0 only depending on a and Mg such
that

[0 (1 = nno) FO(no, Eo, -) — na (1 — nny) FO(ny, By, ')HC;‘O
< C'l(no, Eo) — (n1, E1)l| 20 -
In addition, this estimate holds true for some C depending on Ag if
1 1
< = _
Ao < 210g<1+24J)
and ng :=0ny + (1 — 0)ng, Eg := 0E; + (1 — 0)E> fulfill

o(z)(1 —nne(z))
4800(2J + 1)3

n
76l gro + [Eo ()] 00 + [Eg| <
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Proof. The proof can be done exactly as the proof of Proposition 5.4.21 using
the identity

1
G(no,EQ) - G(nl,El) = . G/(na,Eg)de((no,Eo) — (nl,El))

for G(n, E) :=n(1 —nn)F°(n, E, ). O

5.5 High temperature expansion

The high temperature expansion of ]-",0, is defined as its Taylor expansion
w.r.t. E at E = 0. It was first computed in [36] for n = 1. Let us write
Fo(n, B,p) = (Fy(,-p) on,t) (n, E)
with
1 1
and n(\) = / (
7+ exp(—ho — Melp) W= o e

Note that n is invertible due to Proposition 5.1.8 and £ = 0 corresponds to
A1 = 0. The second order Taylor expansion w.r.t. F at zero is given by

Fy(hp) = )fn(A,p)dp-

1(0
‘Fg(nanp) = ‘Fg(naovp) +a)\f?7()‘0703p) (a)\nn(AOaO)) 1(E>

1
+ §a§f:;(n, 0,p)E? + o( E?).
The second derivative of ]-'7(; can be computed via the formula
8,25]:,? = 5En,71 O3 Fy, o n;laEngl

-1 92 -1 -1
Jgn, " -0iny10on, dgn, )
b

aEngl - 03n, 9 0 nglaEn,;l

_ a,\}_n o 1’1771 (8)\1’17])_1 (

Thus, we compute
8)\]:77()\710) = Fn()‘ap)(l - nfn()\7p))(17€(p))

RO = A0 F =270 ()

Note that we are only interested in the case Ay = 0 which facilitates the
computations since F, (Ao, 0,p) = 1, 1(Ag,0) =: n for all p € B. We have

(9,\]:7,(/\070) = n(l - Tln)(1’ e(p))v

037, (00.0) = (1 )1 = 20m) (0 (7))
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and
1 0
0 n, (Ao, 0) =n(l —nn) (0 2J2d> ,

VR 1 0
Opn " (n,0) = 2J2dn(1 —nn) \1/’
1 0
03n,1000:0) = (1 )1 = 20m) (5129
0 2J2d
03n,2000,0) = (1 = )1 = 20) (, 1y 1)

using fB €(p)%dp = 2J%d. Finally, we obtain that

n(l —nn)(1 — 2nn)
(2J2dn(1 — nn))?
~_n(l—mn)

2J2dn(1 — nn)

95 F(n,0,p) = e(p)?

(2.2, e(p)) 20— 207 (2J2d>.

(2J%dn(1 — nn))? 0

Definition 5.5.1. We define the zeroth, first and second order high temper-
ature expansion as

Fo" (n, E,p) = n, (5.26)
hT _ e(p)
Fi (n,E;p)=n+ 2J2dE (5.27)
e(p) 1—2mm

E
2J2d + 8J4d?n(1 — nn)

F¥T(n,E) =n+ (e(p)? — 2J%d)E? (5.28)

for p € B = T?, respectively. They formally fulfill

0 hT i
‘Fn(naEap) = ‘Fz (H,E,p) +O(E +1)‘

5.6 Comments

Recall that n and E describe the particle and energy density, respectively.
If we think of an experimental realization, we may assume that most of the
particles are located near to the origin. A common model for this assumption
is given by

2

n(x) = nee” "

with |E(z)| < n(z) < 1.
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Lemma 5.6.1. Let n =1 and n(z) = noe=2%" be as above. We have

> 1005 F (1), 0.0) | e 1) = 00
n=0

for all r,\ > 0 and almost all p € TY.
Proof. The assertion is a direct consequence of the observation

, (2 =2J%d) [ 1 .» 2n
2 70 1, 0
A 0pF" (n(x),0) = W ( =

2—noeém2> — +o00

as |z| — oo for almost all p € T O
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Chapter 6

Ill-posedness of
Semiconductor
Boltzmann-type equation

This chapter is devoted to the ill-posedness of Eq. (1.1) in combination with
the potential proportional to the particle density. For the sake of simplicity,
we focus in this chapter on a relaxation time approximation with the fixed

equilibrium 7 + 57 de Thus, we consider

) _ ) n+ J2d e(p) — f
atf+v(p) vmf Uvnf vpf— o ; (61)

f(xvpv 0) = fO(xap)

for z € R4,p € T¢ and t > 0, Where 70, € Ry and v(p) = Ve(p) :=
(2 sin(p;)); as well as ng(z,t) = [1q f(2,p,t)dp. Note that this equation is
closely related to the Vlasov- Dlrac Benny equation [6, 7, 17], where v(p) = p
with p € R? and where the right-hand side vanishes.

Everything in this chapter is based on [8] and [5]. We only adapt their
methods and calculations to the present setting in order to show the difficulties
of the analysis of the semiconductor Boltzmann equation for ultracold atoms
in an optical lattice.

6.1 Linearized equation

Similar to [8], we formally linearize Eq. (6.1) around G = G(p) =i+ %e(p)
by assuming that g(x,p,t) = f(z,p,t) — G(p) is relatively small. Inserting

85
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this into Eq. (6.1) and dropping the quadratic terms, we obtain

g(z,p,t
8tg + U(p) : vzg(x7p7 t) - vang(xap) : VPG(p) = _%' (62)
In oder to derive a explicit solution, we need the following auxiliary lemma
first.

Lemma 6.1.1. Let UE > 2J%d. We denote v; := v -¢&; for j = 1,....d.
Then
E v;(p) E v;(p)?

1=U dp=U
2J%d Jra vj(p) —ic P 2J%d Jra vj(p)? + 2

dp, (6.3)

admits a unique positive solution c independent from j.

Proof. The r.h.s. of (6.3) attains its minimum at ¢ = 0 and tends to zero as
¢ — oo. Using that v; = 2J sin(p;), we obtain the assertion. O

With ¢ as in the previous lemma, we can find special solutions of (6.2):

Proposition 6.1.2. Let j =1,...,d, UE > 2J2d and let ¢ be a solution of
(6.3) for £ =¢é;. For T >0, we assume that ng : {z € C: [cSz| <T} — C is
holomorph. Then

v;(p)

— Wy (wy — ict)e” 7o 4
vj(p)—icno(x] ict)e 7o (6.4)

g(x,p,t) ==

is a classical solution of (6.2) on the time interval (=T,T) for j =1,...,d,
where x; = x - €;.

Proof. According to (6.3), we have

v;(p) g

ng(x,t) == /11‘d g(x,p,t)dp = /Td vj(;) — Z,Cdpno(scj —ict)e” 7o
2J%d ( ot) _t

=—="nol\T; —1Ct)€E 7o .

UE

Since ng is complex differentiable, we see that

g(z,p,t)
To

(8t +ov- vr)g(xap7 t) +

= oy i) - (it 0,(0)

=vj(p)ng(x; —ict)e 7 = Umv(p) - Vang(z,t)

This finishes the proof, because V,G(p) := %U(p). O
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Remark 6.1.3. Note that (6.2) is a linear PDE with real coefficients. Thus, we
obtain real valued solutions by taking the real part or the imaginary part of
g. Assuming that ng(R?) C R¢, we have found solutions to the initial values

go(x,p) == (av(p) +b) 1&}262”0(@
for a,b € R.

Indeed, we have found the only solutions to these initial values due to the
following proposition, which corresponds to Theorem 3.1 in [25].

Definition 6.1.4. Let 7' > 0. We say g € (L'(0,T; H'(R%;C°(T%))))" is a
weak solution of (6.2) to the initial guess gq if

—/OT /Rd<g,6t¢>dxdt—/kd /Td go¢(0)dpdx+/T /Rd (v Vg, o(t)) dpdt

T
= —U/ (Vng, GV,¢(1)) dmdt+——/ / )) dxdt (6.5)
o Jre R

holds for all ¢ € CX([0,T); L*(R% C*(T%))), where (u, @) := pu(¢) = [1u ¢pdp
for p € M = CO(T9).

Remark 6.1.5. The classical solutions of Eq. (6.2) found in Proposition 6.1.2
belong to (L'(0,T; H'(R%;C°(T%))))" and are also weak solution w.r.t. Def-
inition 6.1.4 if ng € H'(R) is additionally fulfilled. This is a consequence of
the fact that we can interpret f € L>°(0,T; H'(R%; L*(T))) as an element of
(LY(0,T; HY(R; CO(T4))))" with

111z 0,11 metsco (meyyy

/ /Rd | (@ p )o@, p, )dpdadt

S M Fllpoe o7 1 (rat; 11 (7 -

Proposition 6.1.6. Any weak solution g € (L*(0,T; H(R% C°(T%)))) to
the initial guess go = 0 is identical to zero.

”(ﬁHLl(Hl(cO))*l

Proof. Note that Eq. (6.2) can directly be solved in Fourier space. By an
argument using Gronwall, one easily obtains that the solution must vanish.
For more details, we refer to Theorem 3.1 in [8]. O

6.2 Ill-posedness

In this section, we show that the nonlinear semiconductor Boltzmann type
equation in (6.1) is not well-posed by means of the following definition. This
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definition is motivated by [8]. However, it differs slightly to its corresponding
version in [8] since we corrected some minor mistakes.

Definition 6.2.1. Let m € N, 7" > O and let f € L>°(0,7"; H. .(R% L' (T%)))
be a weak solution of (6.1) with f(0) = fo € H" (R%; Ll(Td)). We call the

loc

Cauchy problem (6.1) locally (H™ — H?!) well-posed at fy if there exists a
constant ¢, > 0 such that for all C' € (0,1/¢y,), there exist a time T € (0,7”)

with the following property:
For any 0f € H™(R%; L*(T¢)) with

16 foll grom (a1 (pay) < €
there exists a weak solution
f+0f € L%(0,T; Hiyo (R LY(TY))
of (6.1) for (f +df)(0) = fo + dfo with
esssupocr<r |0F ()l g1y < em [0S0l grm(r1y -
Definition 6.2.2. Let T' > 0 and fy € L2 (R%; L}(T%)). We call a function
f € L%(0, T Hyoo(RY; LY(T1)))

a weak solution of (6.1) if

_ /0 ! /R , L, Fowsdpdzds ~ /R , |, fo#(0)dpda
+/T/]Rd/Tdv.vxf(bdpdxdt—i—U/oT/Rd Tanff.qubdpdazdt
/ /Rd /Td < 2J2d f> dpdadt

for all ¢ € C1([0,T); CO(R%; C1(T9))).

Proposition 6.2.3. Let UE > 2J%d. The C’auchy problem (6.1) is not locally
(H™ — H') well-posed at G = G(p) := T + 5555€(p) for any m € N.

Proof. The proof is due to [8] which itself was inspired by [21]. Therefore,
we only sketch the proof. Let G := m + %e. First, a straightforward
computation that G is indeed a stationary classical solution of (6.1). We now
assume to the contrary that the Cauchy problem is (H™ — H') well-posed for
some m at G and fix ¢,,, C,T > 0 from the definition. Now let

vi(p) a2

go(w,p) = m



6.2. ILL-POSEDNESS 89

for some j = 1,...,d with ¢ being a solution of (6.3). Rescaling this function,
we obtain with

df5(x,p) = go(x,p)e’™@i  for a € N

g0l (1)

a sequence of functions with |[0f¢ || 1 ;1) = C. By assumption, for any G +

L5 f¢ with n,a € N, there exists a weak solution G + §f2 of (6.1) which
belongs to L°°(O T; H1 (R?; LY(T%))) such that

loc

a 1 a
esssupg << [|6./5 (0|l ey < o Cm 056N rm 11y -

Then g, := nd f2 solves

-/ ' [ madiaste— [ [ srs00dps
+ /T /Rd /Td v+ Vaegno(t)dpdzdt
+U/ /Rd » Vngn< (p) + gn) - Vpé(t)dpdxdt

/ / / (t)dpdxdt
Rd JTd T0

for all ¢ € CL([0,7); C2(R%; C1(T?))). According to the hypothesis, the se-
quence (g,), admits a weakly™ convergent subsequence (g, )m in the dual
space of L1(0,T; H' (R4 C°(T%))). Moreover, we see that the second part of
the fourth term on the left-hand side converges to 0 as n — oo since

1
Vng, —n V,¢(t)dpddt

R4 JTd

1
s gnll o e (1)) 19nll oo (2 00)) 1VPDl oo (poc (poey) -

Thus, the limit g of the subsequence g,,, solves the linearized equation

/OT/Rd<g,8t¢>dscdt/ /Wafo dpd:c+/ /Rd “Vag, ¢(t)) dpdt

= —U/ (Vng, GV,0(t)) dedt — / / )) dadt
Rd Rd

for all ¢ € CL([0,T); CO(R%; C1(T?))). Moreover, we can estimate the norm
of g by
9l L1 07510 meseo (Tayyyy < Em 105 1 gpm 1y < 1. (6.6)
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By Propositions 6.1.2 and 6.1.6, we can compute this solution by

g(.’IJ,p, t) — c ( U(p) : 6_$?+2i0t$j+c2t2eiawjeact) 67%.
HQOHHM(Ll) v(p) —ic
Defining
C
m = v(p) e >0,
Igoll m(z1y llv(p) = ic (H1(R4;CO(T4)))
it holds

2,2 t
c’t +act—a'

||g(t) HHI(Rd;CU(Td)))/ 2 Kme

However, this tends to infinity for fixed ¢ > 0 as ¢ — oo, contradicting
(6.6). O



Chapter 7
Diffusion limit

The thesis of Mandt [36] has shown that there are different models to describe
the ultracold atoms in an optical lattice. These models can be divided into
the microscopic picture and the macroscopic picture. This chapter provides a
link between the two descriptions which is called the diffusion limit. For this,
we rescale the semiconductor Boltzmann equation for ultracold atoms in an
optical lattice by a diffusive scaling with parameter a. The next step is to
take the limit  — 0 to obtain a macroscopic description of the model.

7.1 The diffusive scaling

Let us introduce the scaled semiconductor Boltzmann equation for ultracold
atoms in an optical lattice

aatfa+U(p)'vzfa+vzv(x7t7nfa)'vpfa = Q(fa( Ly ))(p)7 (71)

where o > 0 is the Knudsen number, v the velocity, V' the potential and
Q the collision operator. The velocity v is defined by the energy dispersion
e(p) = —2J Z‘j:l cos(p;) via v(p) = Vpe(p). Moreover, the potential V is
defined by

Viz,t,ng,) = —Uny, (2,t) + Vexe (2, 1).

using the particle density ny, (z,t) de falz,p, )dp Similarly to the parti-
cle density, we can define the energy density Ey, (x,t) de €(p) fo(z,p, t)dp.

There are several choices of collision operators. Let F=F (n fur Et.,€) be
a function depending smoothly on the particle density n, the energy density F
and the internal energy e. In the following, we consider a BGK-type collision

91
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operator similarly as in (1.11) by

Q(9)(p) = Qr(9)(p) := yng(1 —1ng)(F(ng, By, e(p)) — g(p)) for g = g(p)
(7.2)
for some v > 0 and n > 0, where ng = [1, fo(p)dp and E, = [, €(p)g(p)dp.
For this collision operator, we say that GG is an equilibrium since

p— F(n, E,e(p))

annihilates Q@ for all possible n, E.

Note that the scaling is in accord with [9, 12]. In the diffusion limit, we
assumes that the Knudsen number is small (see, e.g., [29]). Therefore, we
are interested in the limit & — 0 of the semiconductor Boltzmann equation
(7.1). These types of limits have been widely studied for similar semiconductor
Boltzmann equations [10, 11, 19, 39, 44].

Proposition 7.1.1. Let f, be a formal solution of (7.1). Assume that the
formal limits limy_o fo = fo exists such that fo = fo + O(a).

Then fo(z,p,t) = F(ng(x,t), Ef(x,t),p). Moreover, ng = ny, and
Ey := Ey, formally solve

Gr(no, Eo,p)

Omo +V, - | wp) 20 R0P) g g
o T4 (®) (L —1mo) ¥
GF(n())EOap)
OyFyg+ V- / v(ple(p) ——m= 7.3
t1420 pa (p) (p) 'Yno(]. o 77710) ( )

)

Gr(no, Eo,-)
=V, V(- no) - ZrNo, £0,°) 4
(o) - [ o) ZE R

where
Gr(no, Eo, p) := —v(p) - VoF(no, Eo, €(p)) + ViV (no) - VpF(no, Eo, €(p)).
Proof. Let us introduce the Chapman-Enskog expansion (see, e.g., [16]) by
fo = fo+afs (74)

and define
mo(e,t) = [ folwptdp and ni(at) = [ gt
T Td
as well as

Bowt) = [ ewolap.)dp and Elat) = [ o) fiepit)dn
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Now, we insert the Chapman-Enskog expansion (7.4) in Equation (7.1) and

identify equal powers of «. This yields fo(x,p,t) = F(ng(z,t), Eo(x,t),p) for

terms of order o~ ! and

v-Vafo+ VaV(,m0) - Vyfo
Yno(1 —nno) '

ne01F(no, Eo, €) + Er0aF(ng, Eo, €) — fL =
(7.5)

for terms of order a®. We define the functions Gy = Go(ng, Eo, p) as well as
Gl == Gl(nOa E07 n(l)u ngp) by

Go(no, Eo, p) := —v(p) - VaF(no, Eo, €(p)) + VoV (-, -, no) - VpF(no, Eo, €(p))
and

G1(no, Bo,ny, By, p) := ny01F (no, Eo, €(p)) + Ep02F (no, Eo, €(p))-
Thus, we have

E .
L = Gi(no, Bo,nk, EL, ) + Go(no, Eo, )
yno(1 —nng)

On the one hand, Gauf’ theorem implies that

/d v(p)e(p)'G1(no, Eo,nl, EL, p)dp
T

= » V,e(p)e(p)’ (ni@lF(no, Eo, €(p)) + EL02F(ng, Ey, e(p))) dp

vanishes for all 4 = 0,1 using that T has no boundary. On the other hand,
by the same reason, the function Gg(ng, Ep,-) has neither mass nor energy,
i.e. it holds

— [ Golno, Eo, p)e(p)idp = / V,e(p) - Vo F(no, o, c(p))c(p) dp
T Td

+ - VoV (o) - VpF(no, Eo, €(p))e(p)'dp =0
for i =0, 1.

However, we still need an equation determining ny and Ey. For this, we
insert the Chapman-Enskog expansion (7.4) satisfying (7.6) into (7.1) and
compute the first two moments in € using the properties of G; and Gy from
above. We have

Go(no,Eoyp)d _

o —I—/ v(p) - Vg
0T Ja ®) (1 —nno)
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and

Go(ﬂo,Emp)d
“yno(1 —nno)

Go(no, Eo, )
=V, V(. n / w(p)22\no, B0, )
7 mo) T4 (p)’)’no(lfﬁno) g

O Eo + /Td v(p)e(p) - V

in the limits o — 0, which implies the assertion. O

Definition 7.1.2. Let n > 0. For (n,E) € {[;.(1,e(p))g(p)dp : g € L*(T%)
with 0 < g < %}, let A = S\(n, E) be the unique solution of

1 d
(n) :/ ( ) _dp (7.7)
E B \E€ n + 67)\0(n,E)7)\1(n7E)6(p)

for A = (Ao, A1) and let

1
n+e—)\0(n E)— )\1(n E)e(p)

F(n, E,p) := F(A\(n, E),p) :==

(see chapter 5, Definition 5.2.1).

Corollary 7.1.3. Let v > 0 and n > 0. Assume that for all a > 0, there
exists a formal solution fo of (7.1) with

Q(9)(p) = Qeck(9)(p) := Yng(1—nng)(F’(ng, Eq, e(p))—g(p)) for g = g(p).

If this solution admits the formal limit fo = fo+O(«), there exists a function
A= (Ao, A1) : R x[0,00) = R2 fulfilling fo(z,p,t) = F(\x,t),p). Moreover,
A is a formal solution of

An(\) + V- Ju(A, VA) = 0

7.8
HREN)+V - Jg(A\, VX)) = J,(\, V) - VV(A) = (7.8)

where n(X) = [14 F(A\, p)dp, E de e(p)F (A p)dp and V(\) = =Un()\) +
Vext - Here the partzcle current J \V de G\, VA, p)dp and the

energy current Jg(\, V) de p)e(p)G )\ VA, p)dp are defined using

G\, Vi, p) o= — (Z e(p)'v(p) - Vadi + VaV(A) 'v(p)M) x
=0
F (A p)(1 —nF(\p))

(M) (1 = n(X))
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Proof. This Corollary is a consequence of Proposition 7.1.1 for F(n, E,e(p)) =
FO(n, E,p), which provides two equations for the particle density ng(x,t) =
Jpa fo(z,p, t)dp and the energy density Eo(x,t) = [1. €(p) fo(z,p, t)dp. Let us
define A = A(z,t) implicitly by the relation

(5or0) = (o) = [ 700001

Note that this A is well-defined and unique (see chapter 5). We thus only need
to verify the formula for G. By Proposition 7.1.1, we have

(AL =1n(A)G(A, VA, p)

= Gro(n(X), E(A), p)

=v(p) - VoI (n(X), E(N),p) + VaV (-, n(N)) - V. PP (n(A), E(A), p)
=v(p) - VaF(Ap) + VaV(A)) - VpF (A, p)

<Z e(p)'v(p) - Vadi + Vo V(A) - v(p)/\1> FAp)(L =nF(A,p))

i=0
using
1 ! ,
V. F (A p) = zm = va/\iel]:()\,p))(l —nF (A p))
i=0
and V,F (A, p) = v(p) M F (A, p) (1 —nF (N, p)). O

7.2 High temperature expansion

In this thesis the prototype (scaled) semiconductor Boltzmann equation for a
cloud of ultracold atoms in an optical lattice is Eq. (7.1) with

Q(9)(p) = QBak (9)(p) := Yng(1 — nng)(F°(ng, Eg,p) — g(p)) for g = g(p).

We already have seen by chapter 5 that F°(n, E, p) is the generalized Fermi-
Dirac distribution for a fixed particle and energy density. In Definition 7.1.2,
we need to define A = (Ao, A1) implicitly by

n _/ 1 dp
E) " Jp\e)n+e2mBE)-Xi(nE)p)

in order to provide the formula

1

On, E,p) = F\n, E = = = .
Fo(n, E,p) :== F(A\(n, E), p) 1+ e Ro(nB) i (mB)e(p)
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Assuming that the temperature of the cloud is large meaning that | A1 (n, F)| ~
0, Mandt [36] approximates F by its high temperature expansion. In the high
temperature expansion we replace F° by a Taylor polynomial of F° w.r.t. E
at F = 0. Note that high temperatures (]A\1(n, E)| ~ 0) correspond to small
absolute values of the energy density E. We recall from (5.27) that

FnEp) =n+ Dpy 12"

2 _2J%d)E? E3).
2720 T ST =) W)~ 27 AET+ O(E)

From this we can define a high temperature expansion collision operator for
the microscopic picture by

ek (9) = yng(1 —nng)(ng — g) for g = g(p). (7.9)

Similarly, we obtain the first order high temperature expansion by

€
gé’ll((g) = yng(1 —nng) (ng + mEg — g) for g = g(p) (7.10)

as well as the second order high temperature expansion by

1—-2nn
bak(9) = Qpak(9) + g grg (€~ 2 DE] forg=g(p). (7.11)

In the macroscopic picture, i.e. for (7.3), we can also define a high tem-
perature expansion. Using the expansion of F°, we can formally approximate
the System (7.3) for F(n, E, e(p)) = F°(ng, Eo, p) in different orders.

In the zeroth order high temperature expansion, we apply Proposition
7.1.1 to

F(n,E,e(p) = félT(n,E,p) =n.

and obtain

_ v(p) - Vng
Orma /1rd v(p) - Ve no(l —nno) 0

v(p) - Vng
“yno(1 —nno)

U(p) - Vng
==V, V(,,n / v(p)—F——
(-, m0) e e

O Ey — /]I‘d v(p)e(p) - V (7.12)

dp,

since G]:(}];T (no, Eo,p) = —v(p)-Vng. Note that these system can be iteratively
solved since the first equation is independent from Ej.
In the first order high temperature expansion, we need to use

€p
F(n, B.e(p) = (0, Bp) = n+ 20 g
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in Proposition 7.1.1. We thus obtain

G e (no, Eo,p) = — ( (p) - Vg + 52)d (p) - VEo + VV(no) - ;’ﬁszE[)) .
Similarly, one can also derive a formula for the second order high temperature
expansion of (7.3). However, we leave this to the reader since the formula is
rather long. In the zeroth order high temperature, we call the first equation
of (7.12) the drift diffusion equation for ultracold atoms in an optical lattice.
Moreover, in the first order high temperature expansion of (7.12), we call the
system in (7.8) with Gp = G FhT the high temperature energy transport equa-
tions. Note that Corollary 7. 1.3 provides the diffusive limit for the prototype
case with Q = Qpak. However, the equations for the diffusive limit involve
F(A,p). We thus can also formally approximate F (A, p) by its high temper-
ature expansion and derive formal approximations for the diffusive equation
(7.8).

Therefore, if we use a high temperature expansion for the scaled Boltz-
mann equation and then perform the formal limit will give us the same system
as if we approximate G in the formal limit of the standard scaled Boltzmann-
equation (7.1). In particular, the diagram in the introduction in section 2.3
commutes w.r.t. the formal limits.

7.3 Drift diffusion equation

The drift diffusion equation for ultracold atoms in an optical lattice is given by
the first equation of (7.12). Hence it involves only an equation for the particle
density n. With the aid of the symmetry of v, the matrix [v(p) ® v(p)dp can
be identified with the number 2J2 due to the calculation

/ vvjdp = /v?dpéi)j = /4J2 sinz(p)dpéi)j =2J2.
B
Thus, we can rewrite the Eq. (7.12) for n = ng by
Vn
on =2V [ ——— |. 7.13
" (W(l - nn)) (713)

Let us transform the time variable ¢ to t' := 2.J%t/ and write again ¢ instead
of t’. Then Equation (7.13) transforms to

on = Alog <1 —nnn) . (7.14)

By defining the fugacity n := ﬁ, this equation is equivalent to

o = (1 +nn)*Alog i, (7.15)
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which is a super fast diffusion type equation and very similar to the logarithmic
diffusion equation, in which the prefactor of Alogn equals a constant. Note
that for n = 1, Equation (7.14) is invariant to the transformation n — 1 —n
and therefore, Equation (7.15) remains the same after replacing 7 by <.

A new set of the boundary conditions

The drift diffusion limit is a super fast diffusion equation which does not
conserve the mass in dimension d > 2 (see [51] for n = 0). In [48], this
property was called ”breakdown of diffusion”. In order to understand the lack
of particle conservation, we need to investigate the formal limit of Proposition
7.1.1. In the diffusive limit @ — 0, it was assumed that the collision term
dominates the other terms. However, in the region where the particle density
is small, i.e. n = 0, the relaxation time is small as well. This again entails
that there are only little collisions and hence the collision operator is rather
neglectable, contradicting the assumption that the collisions dominate the
kinetics.

With this observation, [48] distinguishes between a diffusive region and a
ballistic regime. In the diffusive regime, the dynamics of the particle cloud can
be described by the diffusive limit according to Proposition 7.1.1. In contrast
to that, Schneider et al. [48] argue that in the ballistic regime, the particles
move almost along straight lines with constant velocity. Since the particle
density in the ballistic regime is assumed to be very small, the main interest
lies on understanding the diffusive regime.

In order to derive a complete model, we suppose that R? can be divided in
the diffusive regime Q C R¢ being a bounded domain with smooth boundary
and the ballistic regime. In the diffusive regime, we consider the system

s
|

—Alog( ), (z,t) € Q x Ry,

n(-,0) = ng, x € €,

L —mnn (7.16)

where w is the sufficiently regular initial guess with values in (0,77!). How-
ever, we require boundary conditions to guaranty that the solution is unique.
So far we may suppose that the number of particles leaving the diffusive
regime at a point x € 9 depend on the particle density in x. This leads to
generalized mixed boundary condition, namely

Ovg1(n) + g2(n) =0 (z,t) € 0Q x R

for some g; to be determined.
In the following, we try to motivate a suitable choice for g; by estimating
the number of particles entering the ballistic regime: we assume that the
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unscaled semiconductor Boltzmann equation
of+o(p) Vif =V V(z,t) - Vpf=Q(f)

is fulfilled for all £ > 0 in the ballistic regime R? \ © x T?. Thus, we obtain

875/ ndx = —/ \Y / v(p) fdpdx :/ / v - v fdpdz,
RI\Q RI\Q Td o0 JTd

where v denotes the outer normal vector. Using the physical assumption that
the total mass fRd ndx is conserved, we derive

8t/ ndz / / v-vfdpdx

Rd o Jrd

O / ndx
Rd

Coming back to the generalized mixed boundary conditions, we see that
n

go(n) :=log(1=37) and g1(n) = bo(n)n(1 —nn), where [|bo|, < [|v]|, fulfills
(7.17) since

< ||v||oc/aQ ndx (7.17)

and likewise

<loll [ (1= (7.18)

n

at/ ndr = 0, log <> dx = f/ bo(n)n(1l — nn)dz.
0 o0 L—=mnn 00

Moreover, if we assume that €2 is convex and that every particle in the ballistic
regime had its origin in the diffusive regime and escaped, by must be non-
negative. In order to prove decay estimates, we may assume in addition that

bo(n) > B> 0.

7.4 High temperature energy transport model

In this approximation, we apply Proposition 7.1.1 for

e\p
Fin, B, e(p) = B (n, E.p) = n+ 2L

and derive the System (7.3) with

€(p) v(p)
G gur (no, Eo,p) = — (U(P) Vo + 5 7m0 w) - VE+ VV (o) - 5750 Fo |-
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This is called the first order high temperature expansion. In [36], the second
order high temperature expansion of F° is used to derive the high tempera-
ture energy transport model. In addition to that, Mandt [36] simplifies this
system by neglecting some of the quadratic terms in E. This thesis presents
a more direct method, where all second order terms in F are neglected in the
approximation of F%(n, E, p).

Let n = ng and E = Ey. We recall the equations of (7.3) by

Td yn(l —nn)

on=V- [ v(p) (-GH}T . E,p))
_ G}'{‘T (TL, Evp) >

QE=V: | o0 ( yn(1 —nn)

Td

G]—"{’T (n7 E, p)
—VV(,n)- /Tdv(p) <_W(1—Wl)> d

In order to write it in a closed form, we need to compute the integrals involving
Gzur. We have

[ 0o -Gy Epdp = [ o) v(p) @ vipdp- I

Td

€ a+1
+/Td (2]9}265 v(p)®v(p)deE+/Td 6(p)“v(p)®v(p)deV(v-7n)%~

As in the zeroth order case, we can identify [, v(p) ® v(p)dp with 2J%. Fur-
thermore, we have [, €(p)®v;i(p)v;(p)dp = dij [ra €(p)*(d1€(p))?dp by the sym-
metry of €(p). We define

e(p)*(Dre(p))*dp = {g’zzdl "

Rq = 71
“T2J2d Jra

Hence, we conclude

[, oG (0, B p))dp = 27 4 L9V (- )
'ﬂ‘d

2d — 1
/d €(p)o(p)(=Grpr(n, E,p))dp = koVE = J*——VE.
T

Therefore, the energy transport model in the first order high temperature
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approximation is given by

2J2Vn+ SEVV(,-
atn:V( n+d (77“))
Y(n(1 —nn))
2d — 1 E o n) - 2J2 E o n))?
0,E = J2 d v. v _VV(,,n) J2dVn+ E|VV(-,-,n)| -
d v(n(1 —nn)) dy(n(1 —nn))
(7.19)
As in the zeroth order approximation, we suppose that
V(x,t,n) := —=Un(x,t) + Vext(, 1) (7.20)

for some U € R and all € R%,¢ > 0. With these assumptions we can rewrite
(7.19) as

1 2J2d —UE E
o= v ( w—mm) T T —m) We’“) ’
J2(2d — 1) VE 1 2J%d - UE )
E = . — — VVexs
B} R g B B ey (U9 = YVt - V)
1 UE 1 )
%m (vvcxt'vn_U|vvcxt| >

Remark 7.4.1 (Dimensionless parameters). Since 2J # 0, we can rescale the
energy density E to B := 575 dE In addition, we introduce the time scaling
t — t' := 2J%t/y as well as the external potential UV/ := Vey. Finally,
we write again ¢ for ¢/, F for E’ and Vext for V7, in order to facilitate the

notation. The parameters k := describes the intensity of the interactions.

Altogether, we end up with

8mV-( (17E Vn + E V‘/ext>7

2]2d

n(1l —nn) n(1l —nn)
2d —1 VE 1-F 2
E= . — VVixt - 7.21
% 2d v n(1 —nn) JrHn(l —nn) <|Vn| VVext Vn) (7.21)
E 2
+ K/m (V‘/cxt * VTL - |VV;X1;| )
and in particular with
1-F
on=V-{———Vn|,
n(l —m) (7.22)
2d — 1 E 1-— '
OuF = Al Vnf*

2d “n(l—nn) o n(l— nn)

if Voxt = const.. Note that we recall Equation (7.14) by setting £ = 0 in the
first equation.
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Chapter 8

Energy transport model

8.1 The model and its structure

Let us consider a system of indistinguishable particles in the potential V. We
assume that the momentum space is T¢ with the energy dispersion defined by
e:T? 5 R,
d
p=(p1,...,pd) — —QJZcos(pi) (8.1)
i=1

for a given, positive J. Thus, the dispersion relation is an approximation for
the lowest band (see. [4]). The velocity can be computed by v(p) := Ve(p) =
2J % . sin(p;)é;. T hroughout this thesis, we normalize the Lebesgue measure
on T4 = R?/27Z% ~ [0,27)? such that |T?| =1, i.e., we define

1

T Gy

An energy-transport model for a particle distribution in the generalized Fermi-
Dirac equilibrium F(\, p) := 1/(n + e~ ~*1¢(P)) for fixed v > 0 is given by

Oiv(A) + V - Jn (A, VA) =

- 8.2
OEN) +V - T\, VA) — Ju(\, VA) - VV =0, (8.2)
with the densities 7(\) = [r. F(A,p dp and E(\) = Jra €(@)F (X, p)dp as
well as the currents J ()\ V) = Tde p)G(A, V ,D)dp and JE()\ VA) =
7 Jpa v( G\, VA, p)dp for T >0, Where
1
G(\, V), p) <Ze SV + VYV - u(p)A )}'()\,p)(l —nF(\p)).
=0

103
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Here n and E denote the particle density and the energy density, restrictively.
Moreover, we call J,, the particle current and Jg the energy current.

Remark 8.1.1. If we assume that the parameter 7 is a function of A with
1
T=7(\) = — -
W = S a — o)
for v > 0, we obtain with (8.2) the system from (7.8). However, the structural

analysis remains the same. Therefore, for the sake of simplicity, we only treat
7 € Ry in this chapter.

Definition 8.1.2. The matrix D;;(A) = (D(X)j})x with

DOV =7 [ oo F O = F Oy (53)

is called the diffusion matrix for the entropy parameters Ag, A1. It can be used
to rewrite the currents to

(A, V) ZD Y0iVAi — A1D(M) oo VYV,
(8.4)
2\, V) ZD )1V A — A1D(A) 10V V.

The diffusion matrix and its properties for similar systems are already
introduced in [30]. Similarly as in [30], we see that it admits the following
properties.

Lemma 8.1.3. The 2d x2d diffusion matriz D(X) = (D(X)i;)i; is symmetric,
positive definite if F(A,p)(1 — nF(A\,p)) is positive a.e..

Proof. The property D(A)o1 = D(A)1 is a direct consequence of the definition
of D. We easily verify D()\)Z” = D()\);”’}l for 1 <1,m < d from the definition
and see that D is symmetric. Let z = (&,¢)7 # 0 with &, ¢ € R%; we have

%zTD(/\)Z = /Td(é +e(p)Q) v(p) @ v(p) (€ + €(p)O)F (A, p)(1 — nF (A, p))dp

Note that the off-diagonal elements of v(p)®v(p) have zero contributions, since
the summand of the right-hand side7 involving the 4, j-th entry of v(p) ® v(p),
can be written in the form of [, v(p)igi;(e(p))dp for some differentiable g :
R — R. Therefore, it vanishes due to v(p); = d;e(p). Thus, we have

~TDWz = 3 [ 6+ G2 o) FO)(1 = nF )

T

=12 Y [ (64 eln)6)? i) F ) (1= 0 p)dp > 0
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since the integrand is positive almost everywhere in T¢. O

In the following lemma, we give a condition for D to be coercive.

Lemma 8.1.4. Let M := [ ,¢€(p)? lsin(p)|? dp - min{1, {1z }. Then we
have

D)z 2 () - () o (8.5)
for all z = (¢,0)T with €,¢ € RY.
Proof. Let i € {1,...,d} and z; = (&/(2J),¢;) # 0 be fixed. According to

Lemma 8.1.3, we require an estimate for

A= [ (6 )6 Binp) FO )1 = 97 p)dp > 0

2|

We start with the case: &;¢; > 0. This implies

2 1 (e(p)Ci)2 2
A> / S AP i) F(A ) (L = 1 F (N, )
e(p)>0 |Z|

> / e(p)? [sin(ps)[2 FO, p) (L — 5F (A, p))dp.
e(p)>0
We have

1 €—4J>\1dp' C4TA -
F(Ap) = S s W > /Td T v T n(A).

Likewise, we can estimate 1 — nF (A, p) and combine
FAp)(1 = nFA,p)) > e ¥ aA)(1 = na(N)).
Defining M := fe(p)>0 e(p)? |sin(p,~)|2 dp, we obtain
A > Me 3™ p(\) (1 — ni(N))

and conclude the assertion for £;¢; > 0. The remaining case can be treated
similarly by integration over {e(p) < 0} and utilizing the symmetry of e(p). O

8.2 Entropy structure and dual entropy
parameters

The entropy structure of the system (8.2) was already described in [29] and
[30]. However, for the convenience of the reader, we state the main ideas and
sketch the proofs whenever it helps to understand the structure.
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Definition 8.2.1. Let A = (Ao, A1) be as above. The entropy of the system
(8.2) is defined as

Ho = [ [ Fopoero)
Rd JTd
+n7 (L= nF (A, p))log(1 — nF(\,p)))dpdz  (8.6)

with F(\,p) = 1/(n + e~ 1€P)=A0),
Lemma 8.2.2. The entropy can alternatively be written as H(t) = [, h(N)da
with

h(A) == —m(\) - A 4+77! / log(1 + netot2e®)) gy, (8.7)

Td
1

where m(A) == [14 (E(p))}'()\,p)dp.

Proof. The assertion can be verified directly by

h(A) = [ F(Ap)(=Aie(p) — Ao) + 1~ " log(1/(1 — nF (A, p)))dp

Td
) F(\p)
== | Fplog g ZAs

= / F(Ap)log F(A,p) + 17 (1 = nF(\,p)) log(1 — nF(\,p))dp. O

+n~ " log(1 — nF (X, p))dp

Remark 8.2.3. Let n = 1. The fact that F(\,p) = 1 — F(—A\,p) and the
transformation p — p+(m,...,7) in the integration of h leads to the identities

h(A) = h(=Xo, A1) = h(Ao, —A1) = h(=N).

In order to show that the entropy is monotone in time, we need to define
the dual-entropy parameters as in [29].

Definition 8.2.4. Die dual-entropy parameter A\ = (A, A1) is given by
5\0 =X+ VA and 5\1 = A1

The diffusion matrix C' for the dual-entropy parameters Ao, A; is defined as

C*(X\) = PTD(ANMP,  where P:<(1) _1V>.

Corollary 8.2.5. The Matrix C(N) is symmetric and positive semi-definite
for any X € R2.

The following proposition is due to [29] and can be obtained by a direct
computation. Therefore, the proof is omitted.
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Proposition 8.2.6. The System (8.2) in conjunction with (8.4) is equivalent

to
(N + V- Jo(X, VA) = 0

0
E(\ by 7 Y oy 8.8
HEN) —Vo,n(\) + V- Jg(\, V) =0 (8.8)

(

(
with ,j"(jl’ VX) = —COQ(SL)VS\ 001 (/\)V/\l and JE()\ V)\) —Clo(j\)VS\o -
C11(NVAL as well as (X)) = n(\) and E(\) = E(\), where

/_\0 = )\0 + V)\l and 5\1 = /\1.
Proposition 8.2.7.
- —H Z Ai - Cij(MVA; = 0. (8.9)
,j=0

Proof. The proof is exactly the same as in [29], Proposition 4.9. However,

we sketch the calculation and abbreviate m = (f()\), E(\)) as well as J =
(Jn (A, VA), Jg(A, VA)). Tt holds

— Oh — Om;
—Oh(N) = =D S0 =) = A0k = e A
i=0 " i=0 "

As in [29], we use A = P in order to transform this equation to
oh(\) = —PToym - P 'N=-PTom- A=V -J-)

by making use of the equations in (8.8). Finally, an integration by part and
the definition of C' yields the assertion with

—~ at dx—i—Z/V)\ Cij(MVA; = 0. O

4,7=0

8.3 Entropy dissipation estimates

As we have seen so far, the dual entropy variables play an important role
analyzing the entropy. Throughout this section, we formally derive some esti-
mates for the entropy dissipation. Lemma 8.3.2 provides an formal estimate
for the transformation (n, E) <+ A for the special case V = —Un. However,
we do not prove that the mapping (n, F) ~ X is bijective. The idea of this
section is to argue that this mapping has to be treated with caution (see, e.g.,
Eq. (8.10)).
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Definition 8.3.1. Let A = (Mg, \;) € R%. In accord with the definitions of
the dual-entropy variables from Definition 8.2.4, we obtain the particle and
energy density by

SN dp 2% o e(p)dp
n(A) = /w N4 e~ Ao +URN)=A1e(p) and E(}) = /Td N+ e~ MoFURN)=Awe(p)”

Using this (implicit) definitions, we can define the generalized Fermi-Dirac
distribution for the dual-entropy variables as

o 1
F(\p) = 1+ e~ 2o +URRN)=Aie(p)

and set @; 1= @;(A) == [pa €(p)' F(A, p)(1 = nF(A,p))dp for i € No.
Lemma 8.3.2. There exist constants C1,Cs depending on the used norms
such that
@o(1+ |U|n(N)) + (wowo — @F) U]
|1 - U;\1@0|
Wy — W3

wo(1+ |U[7(N)) + (w200 — @) [UAL|”

)

|05 (@(X), EQV)|| < Oy

[05(@(N), EQV)|| = Cy

In addition, it holds

o =2
T — - Wawp — Wy
det (05(n(N), E(X))) = ————. 8.10
ot (R0, BY)) = 2% =1 (8.10)
Proof. Let m = (n(A), E(A)T with m; = [1, n+ef;f((f(£ﬁpw)7;0, we infer

0;\0mi = W; (1 + Uj\la/‘\omo) and 8;\1mi =wi+1 + Uk, (mo + 5\185\17710) .

Rearranging the equations leads to

_ (DO _ w1 + U(IJQTL
Ox = d 05 n= =
A TN 55 VI L B 5 W
as well as
= T Wo w1
8_ E == 1 UA = = —
Ao W ( + 11—LU0U)\1> 1 —woUN
and
_ (< @+ Uaon _ M@+
o5, F = U Mo——— | = Uig, 2L 7 7
M Wz + OJ1(TL+ 11—UJ0U)\1> w2 wll—@oU)\l

@ + Unwy — U (@owe — @?)
1 —@oU
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In order to obtain a lower bound, we require the inverse of A — m and its
Jacobian. Therefore, we calculate its determinant first by

85\075 (3;\115 _ I \2

det <8§\0E 85\1E) (1 - wOU)\l)
= @ (@2 + Unwy — Ui (@owa — 7)) — @1 (@1 + Udoh)
= (1 — (I]OUS\l)(JJO(DQ — (ZJ%)

This entails

anE\O aEE\O _ 1 wg +Uniy —Undiog — i i 0 7U5\1
an>\1 aE)\l - Wl — (:J% —W1 wo 0 0
as well as the estimate stated in the assertion using that ||-|| is equivalent to

a matrix norm.

Remark 8.3.3. Lemma 8.3.2 provides useful estimates for the mapping A — m.
However, these estimates are either singular or degenerated for

e 0% ang 22X _ (@D
1=Uwy(M)A; d Z000) (@o()\)> . (8.11)
Lemma 8.3.4. Let n =0. We have @y =1, w1, = E and
R TN 0[0)) E(N)?

In particular, it holds Uwy(A)A = Un(MN)A; and

N5 @ (V2 = 47000 a0 2N 4 (20 - 5) B

1

Note that for n > 0, we cannot calculate the values of w; as explicitly as
in the Maxwell-Boltzmann case (n = 0).

Proof. The the fact that @y = 7 and @; = E is clear by definition. For @s,
we observe that

e(p)? = 4J* Z <cosz(p¢) +2 Z cos(p;) cos(pj)).
i j#i

Using cos? +sin? = 1 and integration by parts, we compute

4J22/ cos?(ps) F(\, p)dp = 4.J%n( d——Z/ sin(p;) Oy, F (A, p)dp
’]I‘d

E(V)

At

=4J%*n(\)d —
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Since F(\,p) can be rewritten as
.7?(5\,10) _ eXg-&-Uﬁ(X)jq—ZJXl cos(p;) H 6—2J;\1 cos(pi)7
J#i

we have

172 [ cos(p) cos(p) PR p)dp =
T

Thus, we conclude the assertion. O

Corollary 8.3.5. let A = (Ao, A1) : RY — R? and let

- dp S
AO—)\O*)\lU\/ﬂ‘dm and )\1—)\1.
Moreover, let n, E, w; : R? — R be defined by n := o\ and E := E o\ as
well as w; := w; o X for i € Ng. There exists constants C1,Cy > 0 depending
on U such that

wg + (wgwo - w%)Q 5\% |V5\|2
(1 - Uj\le)Z

\Vn> +|VE)* < ¢

and _
+ (wawp — wf)*A?
(wowp — w?)?

2
VAP < 0,40 (|vn|2 + |VE|2> .

Proof. Using Lemma 8.3.2, we obtain

(Vn| < |05,n] [VA| < @ (|VAo] + (27 + |U|n) VA1)
with w = wo/‘l —onj\ll and

2
IVE| < 2Jw (|[VXo| + (2] + |[U|n) [VA1]) + @ U] (m — Z;) |VA].

The second assertion can be derived similarly. O

Recalling the statements of section 5.2, we see that the conditions in Re-
mark 8.3.3 are indeed critical. Therefore, we see that the inequalities in
Corollary 8.3.5 connecting Vn, VE and VA have to be used with caution.
Nevertheless, the next lemma and its corollaries try to obtain an estimate for
Vn and VFE directly from the entropy dissipation:
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Lemma 8.3.6. Let 5\_: Rd — R? and let n, E, wj : R? — R be defined by
n:=no)and E := E o\ as well as w; := w; o X for i € Ng. Moreover, we
define the diffusion matriz C*' as a matriz valued function R4 — R2%2 by

C*(z) = P(z)" D(z)" P(x), where p(x):@ Unl(x)>

and Dyj(x) = (D(x)F)m with

D(x)j] = T/W e() o)) F(A(z),p)(1 = nF(Az),p))dp  (8.12)

for x € R and k,l = 1,...,d. Let C := (Ckl)k)lzlw,d. Then for every
positive § exists an Rs > 0 such that

- - Twoy TN_o(p) - 5 9
: > 1-—
VA CV)\+6H2(1 77771)2 = wgd ( U)\l(,«JQ) ‘V?’Ll
and
_ _ N_ <
VA: OVA 46— N2\ G - RVl

n2(l—nn)? = 4J%wed

for ‘5\1| > Rs setting

1
Neolo) = 5 [ IVelani .
N(@) e(p)=e P
Definition 8.3.7. Let 2o = (201,...,20a)",21 = (210,--.,214)7 € R? and

z = (20, 21). Then we define

. — _ kl
z:Cz:= ZZZ . Ciij = ZZZZ]CC” Zjl-

(] i, kil

Proof. Let zg,21 € R, z = (z,2) and Cij = (ijl)k,lzlw,d and let V :=
—Un :R? - R. We have

z2:Cz:= E zi - Cijzj = E Pijzj - DikPrizi
4,J ,5,k,1

= TZ /]rd(ZOk — Vi + €(p)z1x)? [v(®0)k]* FO\, p) (1 — nF (X, p))dp.
' (8.13)

=2 /T ok = Ve + e21) () F(X, €) (1 = nF (A, €)) N (e)de.
k
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for F(\, a) := ———— with A depending on A, where we have used the

e o ria
co-area formula in the last step as well as

- 1 |3k6(p)|2 d—1
WO = 55 gy IO

We infer from Lemma 5.2.6 that for all § > 0, there exists an Rs > 0 such
that

n?(1 —nn)*
wo

/Td(ZOk — Vzip, + €(p)z1x)* x
< ([v(p)i|* — ¥u(F1) F(X, p)(1 — nF (X, p))dp| < &

if X1 > Rs. The Cauchy-Schwartz Inequality for the measure F(X, p)(1 —
nF (A, p))dp ensures

/T Caon = Vare + e0)zu) FOp) (1= 0, p)dp

< \/wo /Td(ZOk — Vo + E(P)ZM)QJ:—(;\,P)“ - nf(ﬁ,p))dp-

Therefore, in conjunction with the estimate from above, we infer

z:Cz
T o o 2
> o Zdﬁc(?ﬂ) /Td(z()k — Vg + €(p)z1k) F(\ p) (1 — nF (A, p))dp
k
_5_Two
n2(1 —nn)?
71 (1) 2 TWo
= TO |ZOU]0 - Vzlwo + ZlWl‘ - (5m (814)

Here, we have applied that ¢y (de) and 91 (e) coincide due to the symmetry
of €(p). For the assertion, we note that N_s = 1d. Making use of |e(p)| < 2.J,
we can analogously prove

4J%2:Cz > 7-17('“) |zow1 — Vziwy + zlw2|2 Y7 e (8.15)
wo n%(1 —nn)?
For the next step we need the precise definition of V= —Un. The main

idea is to utilize A\g = Ao + UMin to obtain an estimate for the gradient of
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n. The definition of A and the fact 5:1 = \; yield Vn = VAw; + Vgwo.
Thereby, the relation between Ao und A implies

Vn = Vhw + (VAo + UVAin+ U Vn) w,
which is equivalent to
Vﬂ(l - U5\1(,U0) = V;\l(wl - VUJO) + VS\QWO.

Combining this with the estimate on z : Cz in (8.14) entails the assertion
concerning Vn. Finally, we insert

VE — U5\1w1Vn = Vj\l(wQ — le) + ijowl
in (8.15) in order to obtain the desired estimate involving VE. O

Corollary 8.3.8. Let 1 # 0 and let n, E as well as C be defined as above.
Assume that A\iwg is bounded uniformly in A such that supUN\wy < 1. Then
there exists a 6 > 0 such that

N_Q(M) <|VTL|2 + |VE|2) < (SZ VS\l : CijV;\j + 1.
(2]
Proof. For large }/_\1|, this corollary is a direct consequence of Lemma 8.3.6.

Now assuming |5\1| is bounded by some R, we need to apply Lemma 8.1.4 and
the definition of C' in conjunction with Corollary 8.3.5. O

Remark 8.3.9. For n =1 and in dimension d = 1, we have

— 2 _ 2 2
N(e)—m and N_Q(e)—4<] — €.

Combining this with y = 2.J cos(mn) yields
N_s(p) = 4J%sin®(mn) > 4J%*7*n*(1 — n)>.
For the Maxwell-Boltzmann case, we have a slightly different result:

Lemma 8.3.10. Let n = 0 and let \,n, E as well as C be defined as above.

Then
< < Tj\l 2
Z VA CUV)\J > —

E
V= — EUV
= FEd| X uvn

1

(8.16)
4,J

Proof. For a,b € R, we have

[ (acto) + ) [T Fup)p = - [ (aelo) +0)elr) Py — a1
Td 1JTd 1

aws + bwy FE

= Al —_ GT%
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and especially [}, [Ve(p)|> F(\, p)dp = % (for more details see Lemma 8.4.2).
Let 29,21 € R%. Using (8.13) and the symmetry of e(p) ensures

z:Cz:= ZZZ 'Ciij

ij

P> /qrd(zo’“ — Vg + e(p)21x)* [Vep)  FA, p)dp,  (8.17)
— Jra

where we can apply Cauchy-Schwartz’ inequality in L2(|Ve(p)|2 F (X, p)dp) in
order to estimate the integral and obtain

2
T -, = )\
20022 TS ([ Gon = Vare o)) [Veto)* F R pldp) 5t
d - Td E

z oW1 — Vlel + zZ1wa . EZ 2 &

T d Y X E

Likewise to the proof of Lemma 8.3.6, we have

VE — U5\1w1Vn = V;\l(&]Q - le) + Vj\owl

implying
_ 9 - 5 <
Igx.cvas | YEZU VR | o LM \GE gy, A
T )\1 /\1 E /\1
since wg = n. O

8.4 Degeneracies of the entropy dissipation

Throughout this section, let A = (A, A1) : R — R? and let

_ dp I
)\O—AO—AlU/’H‘dm and )\1—)\1.
Moreover, we define n, F,w; : R* — R by n = de %7 E =

fT e(p)dp

4 pre—ro-Arem A8 well as

wii= [ @' FOPO—nFO )

for i € Ny. In addition, the diffusion matrix C*! is a matrix valued function
R? — R?*2 given by

C*(z) = P(z)" D(2)* P(x), where P(J;):((l) Unl(m)>
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and D;;(z) = (D(z )kl) ki with

D@ =7 [ ) oo FOG). (L -0 F @ P (315)
T
forr € R*and k,l=1,...,d. Let C := (C"’l)k7l:17___7d. Moreover, we define
V= -Un.
Definition 8.4.1. Put I; := [, e(p)’ |[Ve(p)|* F(\,p)(1 — nF (X, p))dp and

(o)
w;z/ iE(Ao—s,Al)ds=n_1/ [Ve(p)[* log (”’”Aome(m)dp'
0 A e

Lemma 8.4.2 (n=0). M\ =w; = E, M1 =wy — /\% =wy — Iy and

2LU2 2F

My =w; —T'| =w3 — —= + —.
12 = ws 1= Ws )\14‘/\%

Proof. The functions Gy(e(p)) = )\ie%“')‘le(”) and Gi(e(p)) := %()\16(1)) -

1

Detot2el®) ag well as Ga(e(p)) = 35 (Ae(p)? — 2A1€(p) + 2)eroTA®) fulfill
1

Gl(e(p)) = e(p)'F(A\,p). Thus, integration by parts as well as the property
Ae(p) = —¢(p) entail

Li= [ Ve(p)-VGi(e(p))dp = — [ Ae(p)Gile(p))dp = /Td €(p)Gi(e(p))dp.

Td Td
Lemma 8.4.3. 7 is well-defined and fulfills

Tod - <
% D VA CyVA; = [Vy + MDVV [ + (Dol — %) [V 7.
Z"j
Proof. We can rewrite (8.13) by using the symmetry of e(p) to
z:Cz:= Zzl . Ciij
.7j
=2 | 120 = Var 4 ep)ar*[Ve@) FAp)(1 = nF(hp))dp. (819)

Inserting the definition of I'; yields
d
—2:Cz=Ty 20”4 2(Ty — VT0)zo - 21 + (Vg — 2VTy + ) |21 >

1
= F—O (|F02’0 —|— (Fl — VF0)21|2 + (FQFO — F?) |21|2) .
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Here, I'yTg — I'? is positive for n € (0,7!) according to the Cauchy-Schwartz
Inequality. Choosing z = V\, we want to simplify ToV g + (I'y — VT) V.
For this, we consider ¢ fulfilling ¢’(s) = n~ ! log(1+ne®*) and observe 9" (A +
Ae(p)) = F(A\,p). Note that ¢ is given by a complete Fermi-Dirac integral,
namely

tdt

—77 P v vy + const.

Y(Ao + Aie(p)) = /
0
Using Ae(p) = —e(p), we can compute the gradient of

1

1m0 = 1 [ oot epMdp = [ Ve 0+ M)

w.r.t. by

Vy = /Txvxo + (e(p) = VIVAL = MVV)$" (Ao + Aie(p))dp

=TV + (T1 — VT)VA — ToM VV

recalling the relations Xo =X — VA and A\ = M. O
Lemma 8.4.4. Let V = —Un and define v,,1 = w1, vg,1 = wo and

Un,O — 1 Fowg — LU1F1 — /\1UF0(LUOOJ2 — w%)

vEo) /Tl —I2 Powi — woly )

Then, we have

Tod < < ol — 12
% E V)\z . C”V/\] = 20 ; E |vn,iVn - UE71‘VE|2 .
9,7 )

Walp — Wy
Proof. Similarly as in the proof of Lemma 8.4.3, we have Vy = I'(V )y +
1 V1. With this relation we can compute the gradient of n in terms of
and A1 via

FQVTL = F0w0v>\0 + F0w1V)\1 = wOny + (Fowl - LU()Fl)V)\l
and in particular for V.= —-Un

Fo(l - AlUwO)Vn = CU()(V’}/ + /\1F0VV) + (F0w1 - wofl)V/\l.
Likewise, we obtain

Fo(VE — /\1Uw1Vn) = W1 (V'y + /\1F0VV) + (Fowg — W1F1)V/\1
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and therefore

To(1 — M\ Uwy)VE
=(1—=XMUwy) (w1 (Vy+MToVV) + Tows —wiI'1)VA7)
+ MUwiTo(1 = M Uwp)Vn
=wi(1 = MUwg + M Uwo)(Vy + M ToVV)
+ ((1 = MUwp)(Towz — wil'1) + A\ Uw; (Towy — wol'1)) VA
= w1 (Vy 4+ MToVV) 4 (Tows — wiT'1) — M UTg(wowo — wi)) VA;.

We define the Matrix

A= wo Fowl - w0F1
’ w1 FOCUQ - w1F1 - )\1UFO(W2W0 - w%)

and compute its determinant by
detA = Wy (FOOJQ — w1F1 — AlUro(WQOJO — wf)) — W1 (Fowl — Wer)
= Fo(l — AlUwO)(wowg - wf),

which leads to

To(1 — M Uwp)A™!

1 Fowg — w1F1 Wer - F0w1 _ )\1 UFO 0
wowg — w% —Ww1 wo 0 0
and concludes the assertion by using Lemma 8.4.3. O
Lemma 8.4.5. Let V = —Un. Setting

F()(U.}()wg — w%)(rgro — F%)

wl()\) = (F0w1 — w0F1)2 + (FQFO — F%)w%’
w2()\) — FQFO - F% _ (Fowl - w0F1)2 + (FQFO - F%)wg
' 77[}1 ()\) FO (CUQLAJO — w%)
and
2 2
T FO(F0w1 - wofl) ((1 - AlUwo)(wg - %)-’-%) + Fowl(FQUJO - Flwl)

(Towr — wol'1)? + (F2lg — 7w
Then we have
d _ _
; Z V/\l . CUV)\] = wl()\)(l — )\1UW0)2 \Vn\g + '¢2(/\) ‘TnVﬂ - VE|2 .

4,3

(8.20)
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Proof. We define z; := v, ;Vn —vg,;VE and the rotation

(szo+\/1—52z1 )

R(s)z = —V1 =522 + 52

and compute

R(s)z = (svno+ V1 —5%v,1)Vn — (sugo+ V1 —s?vg1)VE
(sup1 — V1 —8%v,0)Vn+ (V1 —s?vgg —svg1)VE

Choose s such that 0 = sug g+ V1 — s?vg,1. Then s satisfies

2

2 2 2y, 2 2 VE,1
sV o= (1—s)v & 8= .
E,0 ( ) E,1 U2E,0 + UJQ'_«?,l
Now (R(s)z)o := (sUn,0 + V1 = s2v,,1)Vn = s(vy0 — =2 0n,1) V. Inserting

52 calculated above yields

o 2
(R(S)Z)2 _ (Un,OUE,l UE,OUn,l) |vn|2
0 2 2
Vgo TV

We recall v,1 = w1, Vg1 = wp and

(Un70> o 1 (F0w2 — w1F1 — AlUFO(wowg — UJ%) )

veo)  \/Toly—I2 Towr —wol'y

from Lemma 8.4.4. We compute

m(vn 0VE,1 — UE,0Un,1)

= WQ(F()ZUQ — w1F1 — AlUFo(wowg — w%)) — wl(Fowl — wOFl)
= Fo(l - AlUwo)(wOwg - w%)

and

(T2To — T)(vh 0 + vE ) = (Towr —wol'1)? 4 (T2lg — I'%)wg
= W FO - 2FOW1WOF1 + F2F0w0

Thus, we conclude

(R(s)2)2 = 100 = MUwo)(wows — )’

0= (Fowl — w0F1)2 + (FQFO FQ) 2 ‘V ‘

Lemma 8.4.4 implies

Z VXz . CijVS\j Z 51/}1 ()\)(1 — )\1Uw0)2 |Vn|2 .

.3
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Moreover, we are able to find an equality instead of an estimate. We therefore
need to investigate (R(s)z); with the help of

(R(s)z)1 = (svp1 — MUn,o)Vn + (V1 —s%vgg—svg1)VE

VE,0 VE,0
=s ((vml + Un,o) Vn — < vpo+vg1 | VE |,
VE,1 VE,1

((Un71UE71 + UE’(]Uny()) Vn — (U2E,O + U2E,1) VE)z

2 2
Vgo T Vg1

2
2 2 Un,1VE,1 + VE,0Un,0
= (UE,O+UE,1) 3 3 anVE .
Vgo 1t Vg1

In order to compute the prefactor for Vn, we observe

(FQFO - F%)Un70UE70 = (F0w2 - w1F1 - AlUFO(wOwQ - wf))(I‘owl - OJorl)
= F0w1F0w2 - FQW1W1F1 — )\1 UF0F0w1 ((UOOJQ — w%)

— wOI‘lFowg + w0F1w1F1 + AlUF()wO].—‘l(wong — w%)
and

(Tolg — T3)v, ovEo + (T2l — T%)wowy
= FO (F0w1w2 — wlwlFl — AlU(Fowl — Wer)(wOwg — w%)

—wol'1w2 + wol'2w)
2
w
=Ty (Fow1w2 —wiwily + (1 = M Uwp)(Towy — wol'1) (w2 — j))

w? w?
— wol'iwa + wol'awr — Towiwa + Towr —+ + wol'iwe — wol'y 1)
wo wo
2 w%
=TI —2w1F1 + (1 — )\1UUJO>(FOW1 — woFl)(wg — ;)
0

w2
+ WOFQWl + Fowl 1)
wo
w?
= Fo(l — /\1UWO)(FOW1 — wofl)(wg — ;;)
+ Fo% (w1 (Towr — Two) + wo(Tawe — Tiwy)) -
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Hence,
Un,1VE,1 + VE,0Un,0
U%;,o + ’UZE,I
To(Towr — wol'1) (1= MUwo)(wp — £) + 2L ) + Dows (Pawp — Tywn)
(Powi — wel'1)2 + (Pl — T2)w? ’

Then, by means of Lemma 8.4.4 we have

T, =

d _ _
- STV G VA = 1AL — MUwo)? [Vnf® + 4(A) [T,V — VE[*,
]

where (A r= Cor=eofu H(Capo-Ti)u, o

Lemma 8.4.6. Let V = —Un and define
(Fowl — w0F1)2 + (FQFO — F%)w%

w? 2
(%;(Fowl — OJer) + (1 — >\1UOJ0)F0 (OJQ — 7;)) + (FQFO — F%)w%

¢(A) =

as well as

w ()\) — Fo(&)owg — w%)(FQFO — F%)
! ’ (Fow1 — w0F1)2 + (FQFO — F%)wg ’

Then we have for any « € [0, 1]
> VA Cy VA = ()L = MUwo)? (@] Vnl® + <) (1= @) [VEF) .
]

(8.21)

Proof. We can similarly find an estimate for VE by using another rota-
tion angle such that the zeroth component from R(3)z is independent from
Vn. We choose 3, satisfying 0 = Sv,, 0 + V1 — 32v,,1 and especially §* =
v 1/(V% o +v2 ). Likewise before, we observe

_ 2
(R(5)2)2 = Ln0VB1 — UB0Un1)” 2.
Un,O + Un,l

Fortunately, compared to (R(s)z)2, only the denominator has changed to
(TPalo = T9)(vp o +vr 1)
= (Fowg — w1F1 — AlUFO(wowg — W%))Q + (FQFO - F%)w%
w w2\
1
= (w(rowl —wol'1) + (1 = A Uwp)To (w2 - (;)) + (FoTg — TF)wi.
0 0

2 2
VE,0tVE1 O]
v v

7,0TVn,1

Define ¢ =



Chapter 9

High temperature energy
transport model

Assume (n, E) is a solution of (7.22). For £ =1 — E holds

&
o= (S V).

- 2d — 1 V& KkE 2
0k = 2d v n(l—nn) n(l—nn) Val™

(9.1)

9.1 Numeric realization

This section is devoted to the visualization of the solution and its long term
behavior. For this, we consider Q := R/Z as the one dimensional torus. As
we can easily see, the system (9.1) admits two conserved quantities: the total
number of particles [, ndz and the total amount of energy [, Eordx, where
Eiot = E — %n? Therefore, we discretize the time variable by an semi-implicit
Euler-scheme conserving these quantities. Let 7 > 0 and k& € N. Given

nF=1, 51 we compute n* and £F by

Lo k—1 gkt k

;(n —-n ) = 81’ nk_l(l — ’I’]’I’Lk_l)axn 5 (92)
1 kE_ ek—1y _ QEE’“ Iigk k
T(gtot gtot ) - 81 (2nk(1 _ nnk) + 1 — ’I’]’I’Lk 8@” 5 (93)

where £F, = £¥ — £(n*)? for k € Ny. Here, we use the method of centered
finite differences to calculate the spatial derivatives. Note that we can solve
the two equations separately since Eq. (9.2) is independent from *. After
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t=0
——¢=10.005

0.6 | —— t=0.01
—+=0.015

= — t=0.1

0 02 04 0.6 08 0 02 04 0.6 08
X X

Figure 9.1: h = 1/100, 7 = 1/10000, « = 10, n = 1.

having solved Eq. (9.2) for some k, we can insert n* in Eq. (9.3). Thus, £*
can also be computed using a solver for linear systems.

9.2 Interpretation

In figure 9.1 and figure 9.2, we see the numeric realization of the high temper-
ature energy transport model for kK = 10 and n = 1 on the torus. The torus
was discretized in 100 uniformly distributed points and the time steps are all
of size 1/10000. The initial data was chosen in such a way that the initial
kinetic energy & is constant with & = 1 in figure 9.1 and & = 1/4 in figure
9.2. Moreover, the initial particle density distribution is in both figures given

by
no(z) = {

Therefore, the only difference between figure 9.1 and 9.2 is the size of the
initial kinetic energy &. Analyzing figures 9.1 and 9.2, we firstly see the
smoothing effects due to the diffusive type of the equations for n and €.
Hence, it is no surprise that the solution in figure 9.1 tends numerically to
a constant. Note that by construction, the numeric realization conserves
the total number of particles fol no(z)de = 0 as well as the total energy

m—z<z<m+3z, mezZ

N

3

, else.

ENTGUINT

fol (&o(x) — bng(x)?) dz = 0. From this, we can easily compute the final
particle density by

o

N |
=
N —

1
n> :/ no(z)dr =
0
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t =
0.2 —t =0.005
0.6 | —1 =0.015
“ - — t=0.05
0.4+
0 . . . . e >
0 02 04 0.6 0.8 0 02 04 0.6 0.
x x
Figure 9.2: h =1/100, 7 = 1/10000, x = 10, n = 1.
and the final kinetic energy by
1 2 2
1 3 11 b)
oo __ 2 c0\2 __

= 0.6875.

We can see that these final distributions are already almost attained after
t = 0.1. However, the situation in figure 9.2 is quite different. The reason for
this can easily be deduced by making the false assumption that the kinetic
energy as well as the particle density again numerically converge to constants.
Implementing the same computation as above, these constants would be n®> =
% and £€*° = —0.0625. However, this contradicts the fact that £ always
remains non-negative due to the maximum principle. Therefore, either n or £
cannot converge to a constant. Since the diffusion equation of n is degenerated
at & = 0 in contrast to the diffusion equation for &, it is reasonable that £
numerically converges to 0 and that n does not converge to a constant. Due to
the degeneracy in £ = 0, all solutions of the form £ = 0 = const. with n being
any bounded function being constant in time with 0 < n < 1 are stationary
solutions of the high temperature energy transport model. Unfortunately, this
means that we cannot find a concrete formula for the final density distribution
n®> = n>(x). The easiest interpretation for n in figure 9.2 is that there is not
enough kinetic energy in order to level the distribution density.

Another difference between figure 9.2 and figure 9.1 is the time scale. This
can be seen with the help of figure 9.3. The rate of convergence for n and
&, with the initial data from figure 9.1, is faster than for n and &£, satisfying
the initial conditions from figure 9.2. Moreover, figure 9.3 shows that n and
£ numerically converge exponentially fast to the final distribution n>° and
£, respectively. However, it is remarkable that the convergence rate highly
depends on the initial kinetic energy. Smaller initial kinetic energy leads to
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= T £=1
0 _ 1

8: go & =3

| 5] —&0 =4
= w
) )

2 S -1

0 0204 06 08 1 0 0.5 1
t

Figure 9.3: h =1/100, 7 = 1/50007 k = 10, n = 1. The initial particle density
isgivenbyno(x):ifor0<x< (x) S3for i <ax <1 For& =11,
we have n® = 1 and £ = £° 2f0 0—1)2dx. For £ = 1, it holds £* = 0

and we have set n™ = n(2).

a slower rate of convergence. As usual for energy transport models [28], it is
possible to use entropy estimates in order to derive an exponential convergence
of the solution to an equilibrium. However, these convergence rates do not
depend on the initial data. This leads to the conjecture that it is not possible
to derive an exponential decay of the solution of the high temperature energy
transport models using entropy methods. It seems that it is necessary to find
another tool in order to prove analytically that a solution of (9.1) converges
exponentially fast to a stationary solution.

9.3 Numerical convergence

In order to show numerical convergence, we compare different step sizes of
Az and Ax to a reference solution. Since there is no analytic formula for
the solution of Eq. (12.6), we use a numerically computed solution of (9.2)
and (9.3) with comparably small step size. For the [2 error in the spatial
coordinate (see Fig. 9.4) we choose Az = 1680 On the other hand, we take
Atper = M for the 1212 error as the reference time step size (see Fig. 9.5).
We see that the error in ¢ converges linearly and the error in x converges
quadratically.
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Convergence Plot

E\ T T 17 T T T T 7
-3 §
L | [eom
é . - : —1.46 - Ax'91
= 1077 E e &£
[\ R3] - 1
= F 1 —4.49 - Ax?31
1075 E E
= . .|
I Lo Bl
1073 1072
Step size Ax
Figure 9.4: T = 0.01 with 7 = -, v € {{; : 0 < N < 1}.
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Figure 9.5: (t,2) € {(5555, 1ng) : 0 < M < 50,0 < N < 100}.
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Part 1V

Analysis of the models
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Chapter 10

Semiconductor
Boltzmann-type equations

Let Voge : R4 — R be an analytic potential. Moreover, we consider dispersive
relation € : T¢ — R defined by p = (p1,...,pa) — —2J Y, cos(p;) and the
velocity v(p) = V,e(p). The semiconductor Boltzmann equation for ultracold
atoms in an optical lattice and in an the external potential Viy is given by

= —’y’l’L(l—nn)(f—]:o(nf,Ef,p)), (101)
f’t:O = f07
where ng(z,t) de x,p,t)dp, Ef(z,p,t) = [ra€(p)f(z,p,t)dp and d €

N,v>0,n 2 0, U # 0. Here, F° denotes the generahzed Fermi-Dirac
distribution given by

1
n+ e—2o(n,E)—A1(n,E)e(p)’

Fo(n,E,p) =

where \g and A\; are functions of n, E being implicitly defined by

1 dp _(n
Td e(p) rr}_|_e—>\0(nvE)_)\1(naE)€(p) o E/)

For more detail on the generalized Fermi-Dirac distribution see chapter 5. A
similar equation in one dimension without collisions, i.e. v = 0, and v(p) = p
for p € R was analytically solved for short times in [25]. Jabin and Nouri
[25] used analytic norms motivated by [40]. However, it is not clear to the
author why theses norms consisting of infinite series converge. In this chapter
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we establish a solution of 10.1 for adequate initial data with a similar tech-
nique making use of the norms defined in chapter 4. We will do this in two
steps: first we replace the collision operator by its high-temperature approx-
imation. Second, we solve the original Problem 10.1. In a third section, we
will exchange the collision operator by a linear relaxation time approximation
and prove the global existence of a classical solution for sufficiently small and
regular initial data.

10.1 High temperature expansion

In the first order high temperature expansion of the semiconductor Boltzmann
equation for ultracold fermions in an optical lattice, we replace F°(n Efp)
in Equation (10.1) by

e(p)

f{jT(nf,Ef,p) =ny+ Ef 572d"

Moreover, we may add an additional source term G € C>C((R? x T9) x
(0,7)) — R and consider the following equation

atf + U(p) : vmf - vm(nf + ‘/cxt(xat)) . vpf
= —yns(L—mmg)(f = Fi¥ (ng, Ep,p)) + Gz, pt)  (10.2)
with f(z,p,0) = fo(x,p). Our strategy to solve (10.2) lies on an iterative

explicit scheme: Given f; and n; = [ f;dp, E; = [ f;dp, we define f;1; as
the solution of

Oufj+1 0V o fi= Vo (Unj+Vexi) Vp fj = —yng(L—nmy) (f;=F1 " (ng, £;))+G,

(10.3)
with fj11(2,p,0) = fo(z,p). In order to proof that f; converges, we need to
work with the analytic norms from chapter 4:

Definition 10.1.1. For Ao, T and p € [0, \o/T'), we define \; := Ao — ut and
the norm

T
1l oz == suD_IF GOl + / IDFC D)l dt
0<t<T 0

for f € C*O((R? x T?) x [0,T)). We put || flly, .7 = sups | fll 5,70

Lemma 10.1.2. Given fy € C°(R? x T?), f;,G € C=O((R? x T?) x [0,T))
for some j € N, we assume that there exist Ao, T > 0 and u € (0,\/T). Then,
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it holds

1
5 ”-fj‘*'l”)\o,u,T,x

1
< olgzo + 5 (Wlezo + 19 Vestllgo + 10113l ) Wsllng e

2 1
ST, s (L4716 ) (1 + o lelloxs ) + Tsup [l

for fj+1 being defined via the iterative scheme and x € R%.

Proof. Due to the iterative scheme, f;4; is defined as fj+1|t:0 = fo and

Otfj+1=—v-Vauf;
+ Vo (Unj + Vexe) - Vi fs — (1 =) (f; — F*T (ny, E;)) + G.

For z € R?, we have

A

10 firillcre < Mlv-Vafjlloar + 1VVext - Vpfillgre + U Van; - Vpfill ox
g (L= mmy) (f; = F* (0, Bp) || oae + sup Gl e

T+ IT4+1IT4+1V + V.

We can estimate I, II and II] using the submultiplicativity obtained by
Remark 4.4.6 and see

L4 T+ 111 < (ol o + 19 Vel o + 101l ) 1D e
+ U IDn;ll oxe [1f5ll e

< (Iollgae + I9Vestl e + 21011 llgae ) 1D Sl

since [[nllpae < |Ifjllgae and [[Dnjlloae < [IDfjl o2 Likewise,

1
1V < sl (1 s ) (I + Imsllop + g 1Bl el

2 1
<2080 (1405l (1+ o lellea )
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We conclude that

T
| 10ty ar
0

1
< (s, (lleas +19Velcae) 1011 ) 1l s

2 1
T o (1018 ) (14 57 500 Tl

+sup [ Gl
and in particular ¢t = ||0; f; 1]l » € L'((0,T)). Finally, Lemma 4.4.12 entails

T
sup [fisallgae + i / 1D fall o ds
0<t<T € 0 v

T
<201l +2 [ o0l de
0

and thus, the assertion is proved. O

Lemma 10.1.3. For z € R? let T, \g > 0. Then for every p € (0, Xo/T)

T
lollag e = allgzo + 0 [ DSl dt < 2ol

where Ay = Ao — uT'.

Proof. The assertion is a direct consequence of Lemma 4.4.12 since

T
1 follar +u/ 1D foll e dt < [l foll o - O
O )

Proposition 10.1.4. Let € R?, \g > 0 such that || fo
R > 0. Moreover, let V be a neighborhood of x and

g0 < L for some

2 (Iloll o + 9 Vexell 0 + U1 R) R+ 4207 B (1 + 1R) (1+ 5 llel 20 )
R~ 2 foll 20

fri=

assume that there exists a > fi and a T' € (0, \o/p) such that G : V x T4 x
[0,T7") — R is analytic in its first two variables and continuous in t € [0,T")
with supg<,<p |Gl oro-ne < 00. Then there exists a time T € (0,1"] such
that :

1 £illxg e < R for all j €N. (10.4)
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A sufficient condition for the smallness of T € (0,T") is given by

(1= i) (R =21l o)

S QMSUPOSK%S ||GHC$0,M~

Proof. By the hypothesis, we have

x

1
2 (Ilell o + ¥ Veell o + U1 R) R+ 407 B2 (1 + 31R) (1 + 55 ||€|C§0)

—ap(R=2|follo) (105)

for some o € (0,1). Now let T' € (0, \o/p) satisfy
—ut < (1 — — . .
2T sup |Gl cpomre < (1= ) (R=2[ ol ) (10.6)

According to Lemma 10.1.2, we have

2
i1l < 2 ollgzo + = (IWlleo + IV Vel o +1U1 R) R
o o 1
+4;’YR (L+nR) {1+ 27 lellero ) + 2T0<S:1<pm Gl 20—t
Thus, using (10.5) and (10.6),
il e < 2 foll o +a (R =21 follgao ) + (1= ) (R =2 foll o )
=R.
This finishes the proof. O

In order to use the Banach fixed point theorem, we need the following
estimate on f;41 — f;.

Proposition 10.1.5. Let Ag,u, R >0 and T € (0, \o/p) and define

2
Coni= 2 (Toleps + 19 Vol
Ao 1
+4|U|R +2;7R(2+3’I7R) 2+3||6HC;\0 .

If ”fj”)\oyﬂ’T’gc s Hfj—ln)\o,#,T@ <R, then

1fi+1 = fillag pre < Crnomnr 15 = fimtlly e -
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Proof. The difference gj41 := fj4+1 — f; is given by

¢
9j+1(t):/ (=v-Vagi+Va(Unj+Vex) - Vpg; —UVa(nj—nj—1)-Vpfia
0

+QEak (i) — QBak (fi-1)ds
where

hT,1 L €
bk () = —ng, (L= mng,) (£ =g, + Bgy )

Since Qggé( f;) is cubic in f;, we use the submultiplicativity of the norm
[[lca to ensure that

hT, , 1
@t )~ Qb -, < omC -4 308 (24 S el ) Nl

since || fj—1lloae s Ifillpre < R. We derive similarly to the proof of Lemma
10.1.2 that )

10egj41l e

< (Iellgao + 19 Vestllgo + 01 1f5llge + 1011551l ) IDgs 1l e
+ <|U| 1D Sl + 011D F5-1lloa.

1
2R+ 300) (24 3 Iellop ) ) il -

Using the hypothesis [ f;[|,, , » < R entails
T 1
/0 190 alleze dt < - (Woll o + IV Verellgae +4101R) gl 0

Ao 1
+209R@ +308) (24 5 Wl ) il

using T' < % Hence, we conclude the assertion with the aid of Lemma 4.4.12
by

T
195415y e < 2 / 10cgs1ll g dt < Crourlgilyy - O

Theorem 10.1.6. For Ag > 0, let || fol[crogay < 00. We choose any R >
4||f0||cko(JRd) and

> i =2 ([0l gra + 9 Vest |l oragu) +41U| R)

1
+207R(2 + 30R) (2 +5 ||e||m> .
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and a T" € (0, \o/p) such that G : V x T? x [0,T') — R is analytic in its first
two variables and continuous int € [0,1") with supg<i<r |Gl org—nt (ray < 00

Then there exists an analytic solution f of (10.2) on R? x T¢ x [0,T) for
T € (0, T'] satisfying

(L — )R
- 4MSUP0§,§<T ||G||C’>‘0’“t(Rd)

The solution is unique in the space of all g € C*°((R% x T9) x [0,T)]) such
that HgH)\U’H’T < R. Moreover, f fulfills

(10— 1) [ foll 2o

HSUPo<t<T ||G||c;o*ut .

1FCo Ol ro-ne < 4l follro  forz eRY, ¢ <

Corollary 10.1.7. Let v > 0. Assume that
|Vext|cu(Rd) + |fO|CV(Rd) < 0.

Then there exists a T > 0 such that (10.2) admits an analytic solution f :
R x T? x [0,T).

Proof of Theorem 10.1.6. Let X denote the Banach space consisting of all
functions g € C®0((R? x T4) x [0,T)]) such at that 9] 5y < 00 We use
the Banach scheme (f;); defined above. Since R > 4|[folcro(ray, we have
R —2|follcxo = R/2. Thus, i > fi for

2 (Wl + 1V Vext ooy + U1 R) R
E=2]follro

=

AR (1 +nR) (1 + 55 llell o)
R — 2| foll cro (ray

Proposition 10.1.4 guarantees that f; € Br = {g € X : |gll\, ,r <
R}. Moreover, according to Proposition 10.1.5, we have || fit1 — fjlly, .7 <
Cronr 15 — fj,1||>\07M7T with Cx,,u,r < 1. Thus, the series f; converges to
the (unique) fixed point of the mapping ® : B — Bgr with

s o /0 (0-Vaf = Va(Uns + Vus) - Vol

+yn(l —nn)(f — F"(ng, Ey, ) + G)dt,

where (ng, Ef) := [p.(1,€(p))f(-,p,-)dp. For more details to the proof of
uniqueness, see Proposition 10.1.8. Note that the fixed point f belongs to
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C>=O((R? x T?) x [0, T")]) by the definition of X. Making use of the analyticity
of fo and the fixed point equation, a bootstrap argument shows that f is
smooth (also in the time variable) and hence, f is a classical solution of
(10.2). The remaining part of the assertion is finally a direct consequence of
Proposition 10.1.4 if we set R = R, = 4 ||f0||C:0 and use Proposition 10.1.4

for fixed xz € R4, O

Proof of Corollary 10.1.7. By Lemma 4.4.7, we infer that there exists a Ay €
(0,v) such that [|VVext|| oo ray and || follcao gay are finite. We thus can apply
Theorem 10.1.6. O

Proposition 10.1.8. Let fo, Ao, R, Vext, f and pp > [u be as in the previous
theorem. Moreover, let G* € C®O((R% x T9) x (0, \g/p)) for = 1,2 such that

sup HGl
0<t<20

HCAO*M(]RUZ) <

for i = 1,2. Let f denote the solution of (10.2) for G = G*, respectively.
Then there exists a constant C' > 0 such that

172 = 7l e < CT 50 1167 = Gl 0-se

for z € R if T € (0, %] satisfies

(1= 1) [ foll
T < min Ce?

=12 L SUPg<t<T HGiHCQO*W .

Proof. Let g := f2 — f'. Proceeding similarly to the proof of Proposition

10.1.5, we can find a constant C’ < 1 such that

T
2 1
1ol de < Clll, e + T s G2 = 6

Thus, the definition of ||g|[,, , 7, directly entails that

T
905007 < T35 302, [16” = Gl - O

10.2 BGK-type collision operator

In this section we solve Equation (10.1) without replacing the Fermi-Dirac
distribution function by a high temperature expansion. The basic idea of the
proof is to use the results of the high temperature expansion in combination
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with the Banach fixed point theorem. However, in this case controlling F° in
the norm |[|-[ ox ga) is more cumbersome since this norm involves every deriva-

tive of FO. Fortunately, Chapter 5 provides us with the required estimates
for the Fermi-Dirac distribution function.
We define the mapping

®: (ng, Ey) = (ny, Ey) (10.7)
with
ng = / fdp aswellas Ef= / efdp,
Td Td
where f is the solution of (5.27) for
G = yng(1 —nng)(FO(ng, By, ) — F (ng, By, ).

Clearly a fixed point of this mapping provides an f solving the desired equa-
tion. However, we still have to concretize the domain and range of ®. On
the one hand, this is crucial for the well-definedness of ® due to the lack of
analyticity of F° in 0. On the other hand, we want ® to be a contraction in
order to apply the Banach fixed point theorem.

Definition 10.2.1. Let Ao, and T' < % be positive. Let ) be the set of all
(n, E) : R¥x (0, T) — R? such that there exists a f : RxT9x (0,T) — [0,77!]
being smooth in = € R? with

(0.8) = [ (Lew)rp. )b
Td
Moreover, let

dxg,u,r((n0, Eo), (n1, Ex)) == sup ||(no, Eo) — (n1, E1)l| oo e (ray -
0<t<T

Finally, we can define the metric space

dko,u,T

Y/\O,H,T = {(n,E) cy: dAO’M’T((n,E),O) < OO}
with metric dy, .., 7-

Definition 10.2.2. Let n > 0 and a > 1. Choose A,, B, > 0 such that for
all (n, E) € (0,771) x R satisfying

d
nE € E(nn) = {/ Lp) tA1| < loga
T

a1+ e~ ro—Auelp
Y U
amd L Tree e "
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it holds

o Ba Y
o DS B < ] (s ) P B )1 = 0o, B

n(l —nn

These numbers A,, B, € Ry exist and can be chosen independently from 7
according to Corollary 5.4.15. Moreover, for a = 1, Corollary 5.4.17 states
that we can take

3
log (1 + 317)
recalling that 2J = ||¢||

Ay = and B = 2400(2J +1)3

Definition 10.2.3. Let a > 1, \g € (0, ﬁ),,u >0, T € (0, %) Moreover,
let M, be the set of functions (ng4, Ey) € Y, .7 such that

1
|ng( |C>\0 we 1 |E ( )‘CAO w S e 4B (.’L‘)(l - 77”9(33)) (108)
and
1
inf E Eo| < 55 1- . 10.9
nEoEgalg')ng(l',t))| o(2,1) = Eol 4B, ng(x)(1 = nng(x)) (10.9)

for all x € R and ¢ € (0,T). Note that M, is a set of functions to which we
can apply Proposition 5.4.21 at each point (x,t). Finally, for fo : R? x T¢ —
(0,n™1) analytic, let M(fo, Ao, u, T, a) be the set of all (ng, E;) € M, such
that

g, )(1 = g (e, 1)) < 20 (2)(1 =y, (@) (10.10)
for all z € R

Example 10.2.4. The set M(fo, Ao, p,T,a) is not empty for appropriate
fo € C®(R? x T?). For a > n and > 0, let
1
Jo(z,p) = ———— forxe R, p e T
a+ Bzl

According to Example 4.2.6, it holds

oleo <\ g ol )] = 1/ 2 omgy 2

< YZ s (@)1 = g (0)

for A € (0, \/%) and for all z € R%,p € T?. Then ((z,p,t) = fo(z,p)) €
M (fo, Aoy 1, Ty a) if v/20aBAg < S57
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Proposition 10.2.5. Let a > 1 and fo : R x T — (0,771) analytic such
that

N fo (:L’)(l — My, (m))
f E Ey| < .
nEoef}n(nn @) | fo( ) 0| > SB,

for ni(z) = f—|—\/f—fnf0 (1 —nng(x)) and

[follgy < Conge(x)(1 =, (2))

for some Cy > 0 and some v € (0, i) Thus, there exists a A\g < v such
that
Hf H nfo(x)(l —ﬂ”fo(m))
Olleze = "720B,(1 + 2J)

For this Ao, we define i > 0 as in Theorem 10.1.6. Then there exists a T’ > 0
such that ® : M(fo, Xo, . T,a) — M(fo, ho, i, T,a) with ® : (ng, Ey) —
(ng, Ey) as in (10.7) is well-defined for all 0 <T <T'.

P’I"OOf. Let g & M = M(an)‘Oa:U/vTa a) and G = 'ynq(l - Ung)(fo(ngaE_q, ) -
F(ny, E,,-)). Similar to the proof of Lemma 10.1.2 (setting f;41 = fj = f),
we have

100 go—se < (ol gpo-se + 19 Vextllgae + 2101 1 llgromse ) DSl gromse
+ [Jng (L =nng)(f = F(ng, Ep)|| go-ne + 1G] g0
< DSl gro-st + Gl g0

since || f[| sr0-ut < Ao [|Dfl or0—ne. Thus, we have
t

Iease = Wollogo < [ 8l egaveds
0

t t
< [ 10uflsemseds = [ 1DFIcaneds
’ 0

<t sup HG||CA0 ue . (10.11)
0<s<t

Combining this with Proposition 5.4.21 and Eq. (10.10), we obtain

sup || fllgro-ut < [ follgro + C1Tmgy (2)(1 — nng, (z))
0<t<T @ @

for some C7 > 0. This directly implies
Lo vt + 1Byl gnose < (1420 [follgno + CiTng, (2)(1 = g, ()

< anm)(l — gy (@)
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using the hypothesis on fy if 7' > 0 is sufliciently small. Note that £y and
Ey, are close to each other since

OE; + [ o)elp) Vafdp+ Uy [ olo)fip
T T
:@@+/LW*@*VJW—UVmw/J@Wszo
T T
yields that
oy <C [ V.fldp
Td
with C = 2J(|U|n~! 4+ 2J). Similar to (10.11), we see that
t
By(a.t) = Bry(@)] £ C [ 1Dfppo-ovene ds
i :
HfOHC'QO +t08§g2t”G”CQO*“+6W

_ (@)1= g ()
= 20B,(1+2J)

IN

+ ClTnfo (z)(1— UL ()

We conclude

inf Er(x,t) — E
nEoeé’a(nﬁ(ﬂc))| r(@0) o
< inf Es (z) — Eo| + |Er(x,t) — Ef (x
el 1By (w) = Bol + By(e.0) = By (@)
1
< 6?”]”0(1:)(1 - U”fo(z))

for nn(z) == 3 + \/f — angy(z)(1 —nny,(x)) if T is sufficiently small. Note

that these estlmates are already close to the asserted ones. However, we
still need to “replace” fy and nn by the solution f and nny in the estimate,
respectively. At first, we show as above, that ny and ny, are closely related,
i.e. we can show that

(g (2, ) (1 =g (2, 1)) = (ng, () (1 =g (2)))]

t
< ol / / IV f(z,p, )| dpds
O d

< fO ‘2o + ¢ sup G| 22— 1+20)0s
[[foll 20 S Gl gro-a+2nm
Therefore, if T' > 0 is sufficiently small we have

%nfo (z)(1 - nm g, (z)) < nf(x7t)(1 - ﬁ”f(l”»t)) < 2nf0(x)(1 - nnfo(x))
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forallz e R and all 0 < ¢ < T. and
1
sl onse + 1Bylepor < gpons(a)(L =y (a)

as well as

inf E¢(z,t) — Ey| <
woed oy | B (@5 8) = Bo

ny() (1 —nng(x))

In the next and final step, we need to replace &, (nn(z,t)) by E.(nnys(x,t))
in the estimate. Due to the symmetry &,(nn) = E,(1 — nn), we can assume
w.l.o.g. that nny, and nn; are greater or equal to % Therefore,

np(e, )1 —nny(z, 1) > Snyp () (1 —nng,(x)) = n(z)(1 —nn(z)),

IA M\H

which directly implies that n n. Finally, Lemma 5.4.20 ensures

1
in Ei(z,t) — Ey| < —n¢(x)(1 —nns(x)),
nEo€&q (nnf(zt))| s(@.t) = Eol < 4B, 7(@)( nny(x))

implying the assertion. O

Proposition 10.2.6. Assuming the hypothesis of Proposition 10.2.5, let A,
w, T' and a be as in Proposition 10.2.5. Then there exists a T" € (0,T")
such that ¢ : M(fo, Ao, i1, T,a) — M(fo,Xo, 1, T,a) is a contraction for all
o<T<T".

Proof. Let (ng,, Eqy), (ng,, Eg,) € M(fo, Mo, 1, T,a). The idea of the proof
is to use Proposition 5.4.22. Therefore, we would like to show that the set
M(fo, Mo, i1, T, a) is a convex set and define gg := 0g1 + (1 —0)go for 8 € (0, 1).
Unfortunately, we cannot prove that M(fo, Ao, t, T, a) is convex due to the
restriction in (10.10). In contrast to this, the condition (10.8) can be verified
for gg by

‘nge|caj0*‘” + |Ege|c'~§0*ﬂ‘ <é (|ngo|c}jowt + ‘Ego|c'~?0*ﬂt)
+ (1 - 9) <|ngl |C~30*M + |E91|C~30*M)
1
<0 ()1 g, 2)
1
(L= 0) g, (2)(1 — g, ()

< én (@)(1 = nng, (x))



142 CHAPTER 10. SEMICONDUCTOR BOLTZMANN-TYPE EQ.

since & — x(1—z) is concave. However, in order to bypass the lack of convexity
of M(fo, Ao, 1, T, a), we may split M(fo, Ao, i, T, a) into its connected parts.
Then we connect two points in the connected parts of M (fq, Ao, 1, T, a) by a
curve consisting of two or three straight lines. For this we fix x € R% ¢ > 0
and proceed with different cases:

At first we assume w.l.o.g. that

Ng, (l‘,t)(l — Mg, (Z‘,t)) < Mg ($,t)(1 — NMgq (x7t)) (1012)

implying

Ng, (.%', t)(l — Mg, (l‘, t)) < Nge (J:, t)(l — Mg, (l‘, t))
Case 1: We suppose in addition that Fyy = E; . Then clearly

nf |E

i r,t) — Ey| <
nEo€E€q (Mmg, (x,t)) (@) o

inf E, (x,t) — E
nEoega(mgl(I’t))l o (2,1) — Eo

1
< Engl (2)(1 = nng, (z))

1
< Engs (.’L‘)(l — MMgy (m>)

and hence (ng,, Eg,) € M™*.
Case 2: We assume that ng, = ng, = ng, and £y < Ey . Thus,

E1g0 — FEy < E99 —Fy < .Eg1 — Ey for all Ey € R,

which entails

inf E, (x,t) — Ey| < max inf E, (z,t)— E
nEoesamnge(w,t»' a0(@,1) = Eol izo»lnEOEEa(ﬂngi(l'at))' (@, 8) = Eol
1

< Engg ()1 - Mg (2)).

Again, we have (ng,, E,,) € M.
Finally, we can come back to the general case, where we only have the
restriction from (10.12). We see that the curve

E
v [072] A{z,t’ t (n907 gt)7
(ngt717E91)7 te [172]

is well-defined.
Therefore, we have found a curve «y consisting of two straight lines parallel
to the coordinate axis n and E that connect (ng,, Eq,) with (ng,, Ey, ) in M,.
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This means that we can use Proposition 5.4.22: there exists a Cy > 0 only
depending on €g, €1, a and Ag such that

Hngo(l - ngo)fo(ngm Egy) —mng, (1 — ,n’gl)]_-o(ngl7Egl)HC£‘0

< Co (Ings = ngall o + B0 = Egillo ) -
Since FPT is linear in n and E, this directly entails

1G(no, Eo) = G(n1, Bl ox0 < Crf[(n0, Eo) = (1, B[ 20 5

for some C7 > 0 only depending on &g, €1, a and Ay, where
G(ng, Eg) = yng(1 — n”g)(fo(ngyEg) - ]:hT(nga Ey)).

Finally, the assertion is a consequence of this and Proposition 10.1.8, providing

||¢(n907 Ego) - (b(ngl ) E{h)H)\O,H,T

< C3T sup HG(nQO»E!Jo) - G(ngnEgl)

At
0<t<T ”CI'

for some C3 > 0 and some small T" > 0. O

Theorem 10.2.7. Let fo : R x T? — (0,771 be analytic such that

|Ef0 (.23)‘ < N fo ('r)(l — NNy, (1‘))

< “oo00er 11 M Woley = Ong(@)(1 =nng, (@)

(10.13)
for some C,v > 0 and all x € R%. Moreover, assume that [Vext| o < 0.

Then there exist a time T > 0 and an analytic f : RIxTx[0,T) — [0,77}]
being a classical solution of Eq. (10.1) on the time interval [0,T).

Proof. The theorem can be proved by Banach’s fixed point theorem. At first,
we assume by shrinking v that v € (0, Q—ih) = (0, 3 log(1 + 577)) and that

[follgy < Conge(x)(X —nnygy(2))  and  [[VVexillcy < o0

for some Cy > 0 and all # € RY using Lemma 4.4.7. Recalling that B; =
2400(2J 4 1)3, we choose A\ < v sufficiently small and define

1
122 (Jollgpo + [9Vexell o + 4101 R) + 2007 B%(2+ 30R) (2 +2 ||e||C¢o> .
for some R > 4| follcv (gay as in Proposition 10.2.6. Then the mapping

d) : M(an)‘Oa,uvTv 1) - M(f07>\0a,u7T7 1)v (TL,E) = Td(lae(p))f('apv )dp7
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where f is the solution of (5.27) for G = yn(1 — nn)(F°(n, E) — F'T(n, E)),
is a contraction for sufficiently small T' > 0 according to Proposition 10.2.6.
Hence, it can be continuously extended to the closure of M (fo, Ao, pt, T, 1) in
Y5,,u,r- The Banach fixed point theorem finally guarantees a unique fixed
point of ¢ in M(fo, Ao, pt, T, 1). Then Theorem 10.1.6 provides a unique solu-
tion of (10.1) in M(fo, Ao, i, T, 1). O

Remark 10.2.8. We can replace the first hypothesis in (10.13) from the pre-
vious theorem by a less restricting condition, which reads

inf {|Ef0(x) — Ep|:nEy €&, (; + \/i - gnfo(x,t)(l - nnfo(%t))) }

< Nfo (x)(l — My, (l‘))
- 8B,

Moreover, the densities (ns, Ey) of the solution f found in the previous
theorem are unique in the space M (fo, Ao, u, T, a) for Ag,pr > 0 as in the
proof of Theorem 10.2.7. Hence, due to Theorem 10.1.6, the solution f
itself is unique in the space of all smooth g with ||g[, ,» < R fulfilling
that (ng, Eg) € M(fo, Ao, T, a), where [|g||,, , 7 < R is given by Definition
10.1.1.

10.3 Global solvability for linear relaxation
time approximation

Let @ € [0,1] and 79 > 0, we consider the equation

8tf_|_v(p).fo—vxnf-fo:_f;Oﬁ (10.14)

f(xapv O) = fO(xvp)

forz € RYp e T4t > 0withny = [ f(-,p,")dp and fo: R? x T¢ — R as well

asv(p) := Vpe(p) with €(p1, . .., pa) == —2J 2?21 cos(p;) and p = (p1,...,Dd)-
In order to find such a solution, we transform f into

glx,p,t) = (f(x + tv(k),p,t) —ﬁ)e%. (10.15)
This entails

{@g(m,p, t) = Opn(z + to(k),t) - Oueg(z, p, t) (10.16)

g|t:O = 9o ‘= fo —n,
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where n(z,t) = e~ 7o [ g(x —tv(p),p,t)dp = e~ 7o J T—wig(x, p,t)dp and

Dyt := 0 := D — 1 (p) Dy (10.17)

as well as
Tiotf(z, kyt) = flax £ tv(k),k,t). (10.18)

The notation dy; is motivated by the property

OutTorf(2,p. t) = (0p — t0/ () )t (x + tu(p), p)
= (Op1h — t(v'(p) — V' (p) 02 (x + tv(p), p) = Tordpih(x, p).

Theorem 10.3.1. Let a,\g >0, m € R and fo € C°(R? x TY) satisfy

a)d

R:=|fo -7l +4||f0|\o*o =800+ 1)

]fT—lO > 12Je* +2q, then Eq. (10.14) admits a global analytic solution f. For
any T > 0, the solution is unique in the space of h € C°O((R? x T%) x [0,T))

with
T
o +a/0 A [[p(tyes

where A(t) = Moe ™" for p = 6Je* + a. In particular, we have

oy W= R

sup H —TM)e 7
0<t<T

I llpo < 4l follgno 7.
Proposition 10.3.2. A classical solution f of (10.14) fulfills
If =7l < lfo =7l e
Proof. The solution f can be rewritten as

F(@,p,t) == (fo(X (0), K(0)) =)™ 7 +7,
where X, K are the characteristics with

0:X(s) =v(K(s)), 0sK(s)=-V,yo(X(s),s)

with X(t) = 2 and K(t) = p. Thus, ||f -7l < [|fo —ﬁ||ooe_%, O



146 CHAPTER 10. SEMICONDUCTOR BOLTZMANN-TYPE EQ.

Proof of Theorem 10.3.1: linearized equation

Let g : RYxT%x (0,00) — R be analytic in € R? and p € T¢ and measurable
in t. We define h by

{@h(m,p, t) = 810-9('1: + tv(p),t) ’ 5vtg(x7p’t) (1019)

h|t:0 = go ‘= fO — o,

where oy(z,t) == e 7 J g(z —to(p),p,t)dp = e 7 J T_vig(z, p, t)dp.
Lemma 10.3.3. Let h be defined by (10.19). Then

A+1
) = (1020

10kl < (IDTwrgllop lgllor + I Tuayllsy 1Dglon

Proof. In use of Eq. (10.19) and the triangle inequality, we infer

<

5 -
o 8;L»Tvt0'gavtg

Tvtaxo'g : 5vtg‘

0, T10 50 ‘ +
L vtTgOutg O{\ Ot)‘
aﬁchtO'gégtg

+ 8IT’L)t Og ar 5vtg

o} * o}
t t

&,tg 8~vtg

< |8xTvt0—9|O?’°° o> + ||8IJQHL:§°
t

o}

5Utg 8vtg

+ ’(“)iTthgb?,m

2
.+ 05T 0 ',oc‘ ‘
o} 02T 9’0? L
52
8vtg

0?)
+||a;c0'g||Lg° < (’)*)
t

< IDToiogllop = lgllor + [ Toragllor= [1Dgllox
t t t t

azévtg +

10 Tuolops ([ordna,,
) t

55t9 a:cévtg

T
oy

avtg

‘Loo

A+1
< (IDTwogllor~ lgllor + Tyl I1Dgllop ) “5=

+10:0yll . 1Dglloy + IDTuaoryll sy~ |

in order to encounter the first statement. The remaining part can be obtained
by straightforward computations. O

Definition 10.3.4. We define

T
hllo = sup [AE)llgro +a / A(t) | Dhl| prco dt
0<t<T t 0 t
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Proposition 10.3.5. For \g, o, T > 0, let X : t — Aoe ™ with = 6.Je* +av.
Moreover, assume that go € C®(R? x T?) and g € C®O(R? x T¢ x (0, 00))
fulfill

L lgllo < Noollgpe < zrond—
gllo = liglloye = 55053 7y
For h being given by (10.19), it holds

Il < 3llg0lopo-

Proof. Throughout this proof we write O} instead of (’)t)‘ ®, Applying Corol-
lary 4.5.5 and Lemma 10.3.3, we arrive at

d
7 1hllex + aX[Dhlloy < [|0:h] o

A+1
< (IDTuogllop= llglloy + I Tuosllon= 1Dglloy ) =5
Thus, integration w.r.t. ¢t yields
2 A+1
1hllo < 2llgollpo + o llglles —z %
Thus, for o4 := e~ 7o J g(z — tv(p), p, t)dp, it holds
A+1 A4+1 _ & A +1 (L —2u)t Ao +1
ol < Pt ol =25t l, < 25 e

since % > 2u. Now, we can estimate the semi-norm of h by means of the

initial value by

Ao+ 1

3aA3
o < (2+ 3225 lanllegs ) lanlegs < 3l °

O S B+ 1)
using the hypothesis

Liglles < llgollgno < =228
1 9llo = ligolloye = 5o "7y

Lemma 10.3.6. Let go, g, h be as in Proposition 10.3.5. Then

16 ) 1
. < = . < . — ..
Il < ool + 537 901 < ool + 55075 ool
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Proof. Again, we write O; instead of OtA @, Using the definition of h, we have

10,2, 1)l e = 10s7y 2 + t0, )] |

g’utg(xvpat)H

(o]
1

< 3 Daglloy gl -

Integration w.r.t. ¢ yields
A1) o < L2 ; < T
120 )l < llgolloe + ¥ e a5 llgllo < llgollo + v gl

for all ¢ > 0. O

Proposition 10.3.7. For \g,a,T > 0, let X : t — Aoe "t with u = 6Je 0 +au.
In addition, we assume that go € C°(R? x T4) and g1, g2 € C®°(R? x T x
(0,00)) satisfy

a)d

1
“Maills < g < ——0 i =1,2.
1lollo < lonllgpe < gy for

We define h; = h by (10.19) for g = g; and i = 1,2.
Then it holds

A

|h1 = hallp < 16

o+1 1
a)\% ”90“(980 g1 — 92||© < 9 g1 —92||@-

Proof. The function H := hy — ho solves
atH('Tvpv t) = amagl (l’ + t’U(p), t) : 51)tG(I'7p7 t) - 8%(UG) : 51)t92(x7pa t)

with Hy := H(-,-,0) = 0, where G := g1 — go. We derive similarly to the
proof of Proposition 10.3.5 that

A+1
)\2
Ao +1

<2———
T aN

2 (A+1
6l + 2 |5t

Og

2
H|p, <=
1o < =

Mlg2llo
@]
(lgrllo + llg2llo) 1G1 o -

Finally, the assertion can be concluded using Proposition 10.3.5. O

Lemma 10.3.8. Let go, g1, 92, h1, ha be as in Proposition 10.53.7. Then

8 1
hy = hallo < — llgoll,: — ol < 91 — %2llp -
11 = halloe = 55 Ioollego lon = 92llo = 755 llor = 92llo
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Proof. Defining G := g1 — g2 , then H := hy — hy is given by
atH(x7p7 t) = azag1 (‘T + t’l)(p),t) : 5th(x7p7 t) - 8IJG : 5vt92(xvp7 t)

with Hy = H(-,-,0) = 0. We can now proceed similarly to the proof of Lemma
10.3.6 and obtain

1
o < oo IGllo T 3 lle Toa||p ll92llo
lH| o < gl 1G] +aAO e oc|| s gzl

1
2 He
aAg

1
< axz (lg1llo + llg2llo) Gl

for all ¢ > 0. O

Definition 10.3.9. Let ) be the space of all g € C*=°((R? x T¢) x (0, 00))
such that

lgll = llglle +llglle < oo

Clearly, the space (), |-||) is a Banach space. We denote Bpr as the closed
ball of radius R := [|goll,, + 41902 in V-
0

Corollary 10.3.10. Let W : Br — Y denote the mapping g — h defined by
ath(x>p7 t) = aza—g(x + tU(p), t) : évtg(xup7 t)
h|,_y = 90 := fo — no.
If go € C(R? x T?) fulfills

al?
R := 4 Sy < —— O
l90llc, + 410l 530 00+ 1)
then U is a contraction with ¥(Bg) C Bg.
In particular, ¥ admits a unique fixed point g € By.

Proof. According to Proposition 10.3.5 and Lemma 10.3.6, we have
@Il < llgolle +4llg0ll 20 < B for all g € Bg.

This time, using Proposition 10.3.7 and Lemma 10.3.6 yields

3 3
12 (1) = ¥(g2)ll < 7 llgr — g2llo < 7 llgr — g2l

for any ¢1,92 € Bpr. Finally, the Banach fixed point theorem proves the
claim. O

Proof of Theorem 10.3.1. Now, we derive the solution of (10.14) by back-
transforming the fixed point g of W. O
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Chapter 11

Drift diffusion equation

11.1 The model

Let € be a bounded domain with smooth boundary and let by belong to
C?(09,0,00),[0,77]) with by, < |Jv]., = 2Jd and let n > 0. We intro-
duce the equation

), (2,1) €Q X Ry,

(11.1)

0y log ( ) = —bo(z,t,w)u(l —nu), (z,t) € 00 x R,

1—nu
u(+,0) = ug >0, T €,

where ug € C%(Q, (0,771)).
Proposition 11.1.1 (Amann [1]). There ezxists a unique mazimal solution
u e C([0,7), (2, (0,n71))) N C((0,7),C*(2)) N C*((0,T), C())

of (11.1) for T" € (0,00]. Moreover, u is global, i.e. T = oo, if u([0,1]) is
bounded away from 0 and n=1 for allt € [0,T) and u is bounded in C(£2).
Remark 11.1.2. The condition of Proposition 11.1.1 of u being bounded in
C(Q) is trivially satisfied for n > 0 since 0 < u < 1.

Remark 11.1.3. Let u denote the solution of Proposition 11.1.1. Then w :=

log (=) solves

wy = e " (14 ne®)? Aw, (x,t) € A xRy,
e e’
dw = —by (,t, . (z,t) €00 xRy, (112
w 0 (x 1+776w) (1 + nev)? (z,1) € Xy (11.2)
u(+,0) =ug > 0, z €.

151
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11.2 Low density approximation

In the drift diffusive picture, the difference between Fermions and Bosons
relies on the Pauli exclusion principle, since states can only be occupied once
the density is bounded by 1 describing occupied states. Therefore, the inverse
relaxation time vanishes for n = 1. In the low density approximation, we
assume that n is sufficiently small such that the Pauli exclusion principle is
neglectable since almost no state is occupied. In this case, Fermions behave
like Bosons. This section analyzes Eq. (11.1) for n = 0. Let u be the (local)
positive, classical solution of

ur = Alogu, (x,t) € O x Ry,
Oy log(u) = —bo(x, t,u)u, (x,t) € 00 xRy, (11.3)
u(-,0) =ug >0, r€Q

with ug € C%(Q). Furthermore, we assume that
bp > B for some S € (0, 00).
Lemma 11.2.1 (Maximum principle).

max u(z,t) = maxug(x)
x x

Proof. This Lemma is a direct consequence of chapter 3, Theorem 6 from [45]
since d,u = —bg(z,t,u)u® < —Bu? < 0 on 9N x R,. O

Lemma 11.2.2. Let p # —1. It holds

6t/ e 4+ 8 | uP T dHIT! +p/ u? |Viogul|®do = 0. (11.4)
Q

p+1 o0

Moreover, let q € (1,00); we have

)l Loy < lluoll Loy et

for some Cyq > 0 depending only on B, ||uo|| ~ and q. In addition,

[u@®l 1) < 1921 [luollLa(q) e Gt

for all ¢ > 1 putting C, = 0.

Proof. This first assertion can easily be deduced by multiplying Eq. (11.1),
by uP and using integration by parts as well as the boundary equation. Now,

we note that )

5wy = (I oy + 19050 )
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defines an equivalent norm on W1(Q). Hence, there exists a constant C; > 0
such that

at/ ulde = fq/ bo(u)uldHE™ — q(q — 1)/ uwI™ |Viogul® d
Q i9) Q

2 A(g—1
< 48 ‘u dHt L)/ ‘Vu
f519) q Q

4(g—1
< —Cygmin {5, 2((])} / uldz.
q°maXg; u Q

Finally, by Gronwall, the second assertion is proved. The estimate of the L!
norm of u is a consequence of Hélder’s inequalities. O

a
2

Wk

21
—dx
U

The following lemma is a modified version of Lemma 3.1 in [2], which
itself has its counterpart Proposition 2.1 from [47]. However, we require an
additional non-divergence part in the equation as we will see later on, which
motivates the new version of this lemma.

Lemma 11.2.3 (Maximum principle). Define Qr := Q x (0,T) and Xp =
o0 x (0,T). Let az,b € C*(Qr,R), a1,c € C°(Qr x R) and g € C°(Tr x R)
such that
1. (a1(z, t,w) + Opas (z, t,w))as(z, t,w) > 0 for (z,t) € Qr and w > ko,
2. 1], 1|, |Vza1] <« for (z,t) € Qr and w > ko,

3. g| (z,t,w) < a for (x,t) € Zp and w > kg

for some constants ko, a, 8. Then every classical solution of

wy = a1V - (aeVw +b) + ¢ on Qr,
a1a20,w =g on X, (11.5)
w = wWo on Q x {0}

fulfills w(z,t) < maxwy + C(1 + t)td% for all0 <t < T and some C' > 0
only depending on «, 8,82 and the dimension d.

Proof. The proof can be done as in [2]. Since the proof in [2] contains a false
application of the Gagliardo Nirenberg inequalities leading to a different time
dependency, we redo the proof. However, the main steps will coincide.

Let pu(k) := fot {x € Q: w(x,s) > k}|ds. By applying integration by parts
and standard theory for the positive part (ry = max{r,0}) of a function,
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Equation (11.5) entails

1
f/(w—k)idx
2 Ja

:—/O /Q((a1—|—(9wa1)a2\V(w—k)+|2+b.v(w_k)+)dxds

t t
+/ /c(w—k)+dxds+/ / (w— k) (g+0b-v)dH ds
0o JQ 0 JoQa

for all 0 < ¢ < T and all k > kg such that (ko) = 0. Here v is defined as the
outer normal vector of ) at a point in Q2. As in the proof of Lemma 3.1 in
[2], the trace theorem ensures

t
1/(w—k)idaz+9/ IV (w — k)| deds
2 Q 2 0 Q
t
SC,u(k)—f—C/ /(w—k)+dxds (11.6)
0 JQ

for some constant C' only depending on €2, «, 8 and the dimension d. Similar
to [33], we infer from Gagliardo Nirenbergs inequality

t 7
2 r
||fHLr(Qx(o,t)) = (/0 ||f||m(sz) dS)

2
t =
2 1-2
<C </0 Hf”wl,Z(Q) d5) ess sup ||f||L2(Q)

for r = 2(d+2)/d and some C > 0 and all suitable f. Using Young’s inequality,
we infer for f = (w — k)%

1w = k)4 [ Zatasoa (0 0.0)

t
SC//||V(w—k)+|\2dxds+0(1+t)esssup/ |(w — k)4 |? de.
0o Jo Q

Thus, the previous consideration in Eq. (11.6) yields

t
0= B s ovseion < OO+ Dtk + € +0) [ [ (0= by, duds

for some C > 0 only depending on 2, «, 8, d. The previous inequality implies
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by interpolation of LP spaces

(1+1) /Ot/ﬂ(w—kmxds

< 1w = k)4 llagasaya 12ear2)/asa)

1 C(1+41t)? dta
<Criglio- B sy + S ey
2 C(1+t 2

€ o 0= K0+ 12078 St

2
the following estimate

d+3

_d
(h—k)?p(h) ™2 < |(w— k)+||i2(d+2)/d(ﬂ><(0 oy < (C+C td“) (k)

for some C’ > 0 independent from ¢ and for all h > k. In particular, we have

2(d+2) a+2

d+2
(h—k)" 7 u(h) < (C+C)* T tipu(k) s
for some C,C’ > 0 independent from ¢ and all h > k. In conjunction with
[31], this entails p(ko + K’) = 0 for

2(d+2) 2(d 12) o
/=7

=2C+C)" T tip(ky)d.

If we roughly estimate u(ko) < || ¢, we infer p(ko + K'') = 0 for
K" =C"(1+ t)t@s

for some C” > 0 independent from ¢. Since this is true for all kg satisfying
(ko) = 0, we end up with the assertion. O

Theorem 11.2.4. The classical solution u of (11.3) is global. Moreover,
there exists a constant C > 0 such that

min u(z,t) > minug(x) exp(—C(1 + t)td%r?).
e e

In particular, we have

min u(z,t) > e~ minug(z) exp(—2Ct).
€S e

Proof. The function w = — logu solves

wy = eV -Vw on Qr,

e 0, w = by on X,
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where e“ + 0,e” > 2. Hence, Lemma 11.2.3 is applicable and ensures the
first part of the assertion. For the second one, we write t = i + s for ¢ € Ny
and s € [0,1); we observe inductively

minu(z,i+s) > e~ minu(z,i)e” > e~ minu(x,i — 1)e”2¢0+)
€N €N €N
> ... > e “minug(x) exp(—2C(N + s5)). O

e

In order to learn more about the decay of the solution, we analyze the LP
norms of the logarithm.

Lemma 11.2.5. Let p # —1. We have

1

p+18t/(logu)p+1dx+/ (p — logu) |V log u|® dx
Q Q

(log u)P~!
u

= Itoll [ Gogwpandt. (17
onN

In addition, there exist a constant C' > 0 fulfilling

1
08 u(0)l57+10) < 108 0l 010y + VFC ol 2+ 1)

for all p € N and it holds
log w(t)]| 11y < [loguoll 11 () + [[bolloo t-

forug < 1.

Proof. We obtain the first equality by multiplying Eq. (11.1) by %(log w)P
and using integration by parts. For the next step, we assume max, ug < 1 for
simplicity. In the case p = 0, the desired inequality can directly be obtained
by choosing C' = 1. Now, let p > 0; we have

—1
! 8t/ \logu|p+1d:c+/ logul”™_

- / bo (u) [log uf” dHZ!
o

(p —logu) |V log u|” dx

<Cp (/ [log u|” dx +p/ logul" ™" |V10gu|d:v>
Q Q
C _
< ool @ ([ g e+ ol [ pogur= o
Q 4 Q

+p/ llogul”~" |V log u|? dz
)
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for some constant C' > 0 independent from p, since we have applied the
trace theorem for |logul’ € W11(Q) and Young’s inequality. Defining y, :=
llog u|pp+1(q) and o = |[bo|,, Holder’s inequality entails an ordinary differ-
ential inequality, namely

1 C?%a?
+1 -1
1 +p8ty£ <Coayp+p——y; -

ypy;]? = 4

From this inequality, we obtain

t Eoagy pCa 4y, (t) + pCa
= > __Jp — _ _ 1 p
Cat /0 Cads > /0 1+ pCa ds = yp(t) — yp(0) 4 o8 4y,(0) + pCa
1 Yp(t) — yp(0) Yp(t) — yp(0)
= — —_— _— 1 .
4pCa (4 oo log [ 4 oo +

Abbreviating z = (y,(t) — yp(0)), we can rewrite this inequality as

4z 1 4z 11) < 4t
—log | — —t.
pCa & pCa —p
In order to cope with the logarithm in the previous inequality, we observe
that

1
s>s—log(l+s)>—s—
p

D=

holds for all non-negative s. Thus,

4 1 4z 1
,t Z P —
p — ppCa p

which directly implies that

1
log w(t) || Lo+1(0y < I0g uoll o1 () + vPCa (t+ 7 )
(@) @) 1

Finally, we can easily extend this result for max; uy > 0: We define 4 =
u/ max, ug and observe that @ solves Eq. (11.1) after readjusting the time
t = max, ugt and & = max, uga for the initial value uo/ max, ug. O

Corollary 11.2.6. Let ug < 1. Then it holds

1
[ Loy = V192 exp (—M/Qllog(w)ldw) e Mholleot,
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Proof. This can easily be obtained by Jensen’s inequality and the previous
Lemma using

1 1
@/Qupdm: @/ exp(—p |log(u)|)dx
> eXp( |Q| \log( )|dx)
> exp <_|Q|/ \log(u0)| dx) e—PHbOth_ 0
Q

Lemma 11.2.7.

Alogul®
*315/ \VIOgUI2dx+8t/ Bo(u)d?—ti‘1+/ |Alogul”
@ o0 0 u
= / (0 Bo) (u)dHi~t, (11.8)
o0

where By(z,t,u) = flu bo(z,t,8)ds for x € Q and t > 0. In particular, if O;bg
is bounded, then
u € L2.(0, 00; H ().

Proof. The assertion can be obtained by the straightforward calculation

78,5/ \Vlogu|2dx:/V10gu-V(E)d
Q Q u

:—/ bo(u)udHI! —/ Aloguﬁdm
oQ Q u

2
= —/ bo(u)utd'}lg_l _/ de
5[] Q u

and the property that u > 0 for all ¢ > 0. O

At most exponential decay for spherical symmetry

Lemma 11.2.8. Let Q = Bp equal the ball of radius R in R? and 0 < r <
ro < R. Lett € (0,T). The condition

/ log uo(ry)dﬂfj_l > / log uo(roy)dﬂg_l
§d—1 © d—1

mmplies

/Sd?l log u(ry,t)d’:‘—[zfl > /Sdi1 log u(roy,t)defl. (11.9)
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Proof. We denote A, and Ay as the radial and spherical component of the
Laplace operator, respectively. Since w is positive and continuous, there exists
a constant C' > 0 such that

_ Opu(ry,t) _
1 d—1 :/ t ’ d—1
Oy /Sdil ogu(ry,t)dH, o (D) dH,,
1 d—1
> T Jois Opu(ry, t)dH,
1 _
=G gd—l(AT + Ay) log u(ry, t)d’HZ 1
1 d—1
= 5AT s log u(ry,t)dH,

since integration of the part concerning Ay yields zero contribution. Likewise,
we obtain

O /Sd_l log u(ry,t)d’l—lz_l < &Ar /Sd—l log u(ry,t)d?—lz_l
for some C’ > 0 different from C. According to the boundary conditions,
the function r +— fsd—l log u(ry, t)d?-lgfl cannot attain its local maximum at
r = R. Fix for a moment ¢ € (0,7). Assuming that there exists a local
minimum in 7’ € [0, R) implies the existence of a local maximum in at some
" € (', R). The derived heat inequalities for [g,_, logu(ry,t)dHi™! entail

8t/ log u(r”y,t)d”y’-ﬂgf1 <0< 6t/ log u(r'y,t)d’;’-{zfl.

Sdfl Sd—l

Since this is true for all ¢, the hypothesis of the lemma implies that a local
in space minimum at ' € [0, R) is greater or equal to an arbitrary local
maximum. Consequently, de,l log u(ry, t)d’HZ_l is non-increasing in r. [

Let Q = Bpg be the ball of radius R in R? and ug be spherically symmetric
and let u be a solution of Eq. (11.1). The symmetry of wug directly implies
that u must also be spherically symmetric. We denote u(r,t) = u(x,t) and
ug(r) = ug(x) for r = |x|.

Lemma 11.2.9. Let Q = By be the ball of radius R in R? and ug be spherical
symmetric and let u be a solution of Fq. (11.1). Assume that

uo(ry) > uo(re) for all0<r <ry <R, (11.10)

which implies u(ry,t) > u(re,t) according to Lemma 11.2.8.
Then we have

160l ¢
t)dx > d . WMOlNeo ™
[tz [ o vexp (il
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Proof. We integrate Eq. (11.1) and use Lemma 11.2.8 in conjunction with
Condition (11.10) to derive

—0, / udz = / bo(w)udHE ™ = bo(u(R,t)) [S* | R¥u(R, t)
BR 8BR

< Mol 01| [ t-tu(r )
@-ne" 1,

160l oo

SW-nR [, "

for d > 1 and likewise, we obtain —0; [ u < % llboll,, [5, u for d = 1.
Finally, the assertion follows using Gronwall’s inequality. ' O

Corollary 11.2.10.

max u(z,t) >

1

©eQ |Br /
1

B o

\ V

y)d B
Jdy exp (_Rmax{l,d— 1})‘

11.3 Comments

So far we have assumed that the diffusive regime is fixed to a bounded domain.
However, if we assume that the cloud of ultracold atoms expands, we may
suppose that the diffusive regime also expands. This leads to a diffusive
equation with moving boundaries. The idea of this section is to present the
problem and rewrite it into a fixed boundary problem. Whether it is possible
to derive a global solution for this problem as in the previous section remains
open and needs further investigation.

Let Bpr the ball of radius R in R? and R(t) = v(t + to) the radius of
the atom cloud. We define Qp := {(z,t) € RYd+1] : ¢t > 0, € B},
O : {(z,t) e RYd+1] : t > 0, x € B} Given ug > 0 being a smooth
function on Bpg(g), we consider the equatlon

uy = Alogu, (z,t) € Qp,
9y logu = —bo(w)u, (z,t) € 0Q7, (11.11)
u(-,O):uo > 0, xEBR(O).
We note that Eq. 11.11 can be transformed into a fixed boundary problem by

setting
n(x,t) == R(t)"u(R(t)x,t)
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for some fixed m € N. We compute

ny = mRR™ 'u(Rx,t) + R™ (Alogu(Rx,t)) + Rz - Vu(Rz, t))
= R™2Alogn + (mn +x - Vn)d; log R

as well as

dylogn(1l,t) = RO, logu(Rx,t) = —Rbg(u(Rx,t))u(Rz,t)
= R h(R (1, )1, 1)

and infer

ng = R™" 2Alogn + (mn+ax-Vn)f, (x,t)€ By xRy,
0y logn = —Rg(n)n, (x,t) € 0B1 x Ry, (11.12)
n(-,0) =ng > 0, T € By,
where ng := R(0)"u(R(0)-), f := 0tlog R and g(n) = R~™by(R™"n(1,t)).
Proposition 11.3.1 (Amann). There exists a unique mazimal solution

n € C([0,7),C(Q)) N C((0,T),C*(Q) N C((0,T),C())

of (11.12) for T' € (0,00]. Moreover, n is global, i.e. T = oo if n([0,1]) is
bounded away from 0 for allt € [0,T) and u is bounded in C(Q) for allt < T.

Proof. See Theorem 1 and 3 of [1]. O

Lemma 11.3.2 (Loss rate).

_ 1 - i1
8t/BRudx— R/aBR (R bo(u)) udHI1. (11.13)

Proof. We can write the total mass of w in terms of n and calculate the
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derivative via

8t/ udx = 04 (Rd_m/ ndm)
BR Bl

= (d—m)RI"™f ndx
B,

+ Rdfm/ (R™2Alogn + (mn+ - Vn)f)dz
B,

= dR¥""f | ndr— R / g(n)ndHi=1
B 0B,

+ fR™ / ndHY™ —dR*™™f | ndx
8B1 Bl

= RiI—mf nd”Hg*l — R1 / g(n)nd?—lifl
E)Bl 8Bl

1

=f udHEt — —

7 g(n)ndHI1. O
aBR 8BR



Chapter 12

High temperature energy
transport model

Assume (n, E) is a solution of (7.22). For £ = 1 — E we recall the system
(9.1) by

&
0= (S n)

o 2d — 1 vE kE 2
%hE = 2d v n(l—nn) n(l—mnn) [Vl

(12.1)

In this chapter, we try to find a weak solution of (12.1) and face certain
difficulties. The main two difficulties of these equations are the degeneracy
of (12.1); in £ = 0 and the last term on the right-hand side of (12.1),, which
has a critical exponent in Vn. Introducing the total energy ot = € — %nz,

we can rewrite this system of equations to

£
aﬂ’l =V (Tb(l_nn)Vn> ,
2d — 1v VE EVn

2d 'n(l—nn)_ﬂv'(l—nn)'

(12.2)

8t(c/‘tot =

This chapter shows the existence of an almost weak solution of (12.2) by means
of Definition 12.1.1. In the proof, we approximate (12.2) by a time discrete
version without degeneracies. However, in the limit of the approximating
solutions, we cannot prove that the approximating n converges strongly in
L2, because we cannot apply an Aubin-Lions Lemma for the approximating
n due to the degeneracy in the first equation. In addition, if we work with
system of equations from (12.2), we will loose the maximum principle for the

163
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lower bound of £ in the approximation. These two issues are the main reason,
why we only find an almost weak upper solution.

12.1 Results

Definition 12.1.1. We call (n,&, &) with n,& € L®((0,00) x ), € €
L% (0,00; HY(Q)), En € L (0,00; HY()) and n, Eor € HE (0, 00; H(Q)')

loc
a weak upper solution of (12.1) if VE,EVn € L?(0,00; L?(Q)), din, 0ot €
L?(0, 00, H'(Q2)") and

/ <5‘tn,¢o>dt+/ /ﬂ-wodmt:o
0 1"7”)

> 2d — e VE -V,
/ <atgtot7 ¢1> dt 4+ — 2d A mdl‘dt (123)

Q
/ / EVN G dudt = 0

for all ¢; € L*(0, 00; H'(£2)), where

EVn=V(En) —nVE and & <E-— §n

The last inequality has to be understood in L2 (0, 00; H(Q)) as

loc

| s [T (e Sav)a

for all v € L2(0,T; H*()) with ¢ > 0.

Theorem 12.1.2. Let £9 n° € L>(Q) be nonnegative such that 6 < n® <
1-6
=2 and

/Qsmt(om - /Q (0~ 50y dr > —ﬁ </Q nodx)Q.

Then there exists a non-trivial weak upper solution (n, &, Ewot) of the system
(12.1). Moreover, n, oy € C°([0,00); HY(Q)') fulfill the initial conditions
n(0) =n® and Euop(0) = EY — = (n")2.

In addition, the solution satisfies 6 < n < HnOHOO < %‘; and 0 < & < HSOHOO
as well as

/Q (E(t) — gn(t)2> dx > /Q (50 - g(n0)2) dx  for a.e. t>0. (12.4)
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Corollary 12.1.3. The solutions n and & found in the proof of Theorem
12.1.2 fulfill

/ (Ogm, o) dt +/ / 1 - Vodxdt =0
0 _

(- 5oy + [ <s—fn 061 ) dt (125)
>2d2;1/00o V(f_vﬁld dt—i—n/ /gv" - Vérdrdt

for all ¢g € L*(0,00; HY(Q)) and ¢1 € L?(0,00; H*(2)) N WHL(0, 00; L1(2)),
being compactly supported in [0,00) with Oyp1 > 0.

12.2 Proof of Theorem 12.1.2

Existence of approximate solution of (12.2)

In order to find a solution of (12.2), we need to approximate it. We use
an approximation with discrete time steps as in [28]. Let 7 > 0, k € N,
g, > 0 and let § > 0 be sufficiently small. Given £, nF~1 such that

§<nkl< HnOHOO < 1—;5 and £F1 < ||50H007 we introduce

k
Lk k-1 g[v] k
0:;<TL -n ,¢0>+‘/van 'V¢0dl‘7
c Z <8a5k 6a¢1> _ 1 <5k _gh-1 _ f((nk)z ~ (nF1)2) ¢1>
Ng 7 g 2 k k,
a€lo EL.Vn
lal<2 —7/ VSk-V¢1dx—m/ bl Ve da
ol—mnn
2d— 1 / / VEL -V
nk(1 — nnk) de
(12.6)
for all ¢g € H'(Q), where (f,g) = [, f(2)g(z)dx and

f[’y] = min{l/% max{’% f}}

In contrast to [28], we need further terms in the approximation: The term
involving € and the truncation &£ ]fy in the first equation are necessary in order
to guarantee a global weak solution of this system. Letting ¢ — 0, we still
need an estimate for the L? norm of VE* for the limit 7 — 0, which motivates

the extra integral over VE¥ - V¢ in the second equation. This could also be

achieved if we replaced the second to last integral by 22—51 fo O Hdw

without truncation. However, this would result in some difficulties in the



166 CHAPTER 12. HIGH TEMP. ENERGY TRANSPORT MODEL

limit v — 0 since we are not able to show that £* and n* converge strongly
as vy — 0.

Proposition 12.2.1. There exists a solution of (12.6) such that § < nF <

Il < 5

Proof. We solve this equation using Leray-Schauder’s fixed point theorem
and thus need to define the fixed point operator S : L?(Q) x H1(Q) x [0,1] —
L2(Q) x HY(Q). For 7 € L*(Q), £ € HY(Q) and 6 € [0,1], let S((n,E),0) =
(n, £) be the unique solution of

(n,¢0)g = Fo(po) and (E,¢1), = Fi(n,¢1) for all ¢o,d1 € H'(Q),
(12.7)
where
&
<n7¢0>0 = /Q an v¢(]d$+ (n ¢O>

and Fy(¢o) = £ (n*~*, ¢) and

(E.d1) =2 ) (9"€,0") +7/v5 Vi dz
aeNd
|a|<2
as well as

Filn,dn) = —2 (£ — €51 = 2 (@192 — (n1)2), 1)

2d—1 V&L -Vér V¢1 & Vn
of Sy e

Here, we have used the notation Al := min{l—;‘s,max{é, n}}. The function
n is well-defined due to the Lax-Milgram Lemma and the facts that (-,-),, Fo
are bounded on H'(2) and (-, -),, is coercive. Moreover, Lax-Milgram’s lemma
provides that n € H'(Q). As a consequence, Fy(n,-) € HY(Q) C H?(Q).
Thus, £ is also well-defined by the same argumentation and it holds £ €
H?(Q). In particular, we see that S has a compact range. In the following,
we will agsume that 6 <n < 1775, motivated by the fact that S((7l%, £),0) =
S((,€),8). Thus, we can drop the 1 in the equations.

Next, we are going to prove that S is continuous. Let 7; — @ in L?(Q),
& — & in HY(Q) and 6, — 0 for | — oo. Since (-,-), and (-,-), are coercive,
we obtain ||nl| 1 q) < O+ Clliull 2y and [Ellgz) < C + Cllélm )
for some C' > 0, where we have set (ng,&) := S((7,&),6;). According to
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the compact embeddings H*(Q2) cC H"1(Q) for i = 1,2, we can extract a
subsequence which is not relabeled such that

(n, &) — yin L*(Q) x HY(Q) and (n;,&) — y weakly in H'(Q) x H*(Q)

for some y = (yo,y1) € HY(Q) x H2(). For ¢g € WhH(Q), we can take
the limit in the first equation of (12.7) since (&)[,1/(7:(1 — n7y)) converges
strongly in L*(Q2) to &)/(7(1 —nn)) and Vn; converges weakly in L?(€2).
Since the solution of (12.7) is unique, we have yo = n and that the whole
series converges. Likewise, we can prove that the integrals in the definition of
F5(ny, ¢1) converge setting n = n; and E=§if ¢ € W?2:°°(Q). Therefore,
using the same arguments as before, we end up with y; = £ and in particular
with the result that S is continuous. Furthermore, we easily deduce that
S((n,E£),0) =

For the Leray-Schauder’s fixed point theorem we require additionally that
all potential fixed points of S(-, ) are uniformly bounded: Inserting ¢y = 11 =
n in (12.7), we have

1/ 2 i / 2 9/ k—1\2
— nde + ————— Vn|de < — n dzx
2 Jo " T ) Jo VS e )

due to Cauchy-Schwarz’ inequality for (-,-). Let ITy : L2(Q) x HY(Q) — L?(£2)
be the projection on the first component. Then, we have shown that the image
of I} 0 S is uniformly bounded in H'(Q). Now, we insert ¢; = & = £ (12.7)
and estimate

0
€ Hgll?{?(ﬁ) < ; Hgk_luLz(Q |5HL2(Q

Ok
o2 52 WIQLIEN L2 a5 Mz €l

again by Cauchy—SchwarZ inequality. Since, we already know that image of
I1; o S is uniformly bounded in H!(Q), we can use the embedding L?(Q) C
H?(Q) and Young’s inequality to see that the whole image of S is uniformly
bounded in H* ().

Finally, we have shown the hypothesis of Leray-Schauder’s fixed point
theorem. Beyond this, by the Stampaccia method/maximum principle, we
are able to ensure that the solution (n*,&F) fulfills § < n* < HnOHOO < 1=9

n
Thus, we obtain a weak solution of (12.6).

The limit ¢ — 0

In order to emphasize the dependency of ¢, we write n* and £F for the solution
of (12.6). Testing Eq. (12.6) with ¢g = n* and ¢; = £* ensures that

1 / ky2 Y / k|2 1 / k—132
ng ) dx + VnZ| dz < n dx
2T Q( ) (n—9)(1—nd) Q’ ’ 2T Q( )
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and

1 2 2 2
- H<5’f)m!|Lz<m +e[|E8 a0y + Y IIVEE |2

- Hgk 1HL2(Q) HngLz () + ‘52 VI Hgkum ()

K
+ ~7(1-9) an“m(m 1(€5) MHLZ(Q) - (12.8)

Thus, n* is uniformly bounded in H'(£2). There exists a sequence € = (I) — 0
such that ”];(z) —n*in H'(Q) and n’;(l) — n* in L2(Q) for | — oo for some
n* € HY(Q). Using the uniform bound on n* in H!(2) and Young’s inequality,
we infer from (12.8) that there exist a constant C' > 0 independent from &
such that

+||ver|?

2
+ell&f ||L2(Q)

32 <C.

1 2
o .

In particular, we can find a subsequence of g(1), which we again denote by e(1)
and &,¢ € H'(Q) such that &F () — gk, (Eg(l)) — ¢in HY(Q) and 55(1)
&k, (Sg(l)) — &in L%(Q) for | — co. Du to the strong convergence in L?(£2),
it holds £ = (£¥),). Moreover, we easily check that e(I)EF @ — 0in H2(Q).
Finally, we can take the limit ¢ = £(I) — 0 in (12.6) for ¢g, 1 € W2>(Q)
and obtain

k
Lk k—1 € k
0= ;<n -n ,¢0>+/QmVn - Vodx,

o=1<5’€—5’“—1—

T

K

5((n’“)2—(n’“‘1)2)7¢>1 +’7/V€k~v¢1dx (12.9)

2d—1 Vo &k, vn*
/ /anl—??”k x+n/s21—77 Vo

for all ¢g, 1 € H'() since W2>(Q) C H'(Q) is dense. Again § < n* <
HnOH < 1—;5 holds true, because of the strong convergence of n’;(l) and the

fact that 6 < n’; N < HnOHOO for all [ € N. We can rewrite the second equation
with the aid of the first one by

1
027<5’f gy 2(nk—n D2 ¢ +v/v5’“ Voidx
T

k|2
/ /nkl— dotn an(l— )¢ e

Thus, the maximum principle ensures that ¥ < esssup, £F71( HgoH

(12.10)
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The limit 7 — 0

To start with, let 7 € N and assume that 7/7 € N. We define n,(t) := n*
and &, (t) := E* for t € ((k— 1)1, k7]. Moreover, for any function 1 : (0,T) —
L'(9), we define the discrete time derivation D, by D (t) := L(y(t) — v (t —
7)). Summing Equations (12.9) over all k¥ < T'/7 yields that n,, &, solve

/ <D 27 d)() dt + / / VTLT qugdmdt =0

0 1. ( 1 — nnT
T 2 -1 -V

/ <DT (E,’T ) (bl d / / VN Vo
0 n.(1 nnT

+7/ /vg V(bldxdm—n/ /1_nn Vn, - Véidedt = 0
i (12.11)

for all piecewise constant functions ¢ := (¢g, ¢1) : (0,T) — H* () x (H* ()N
L>(Q)) which are dense in L2(0,T; H*(Q)) x L*(0,T; HY(Q)) N L*°((0,T) x
)), see [46, Prop 1.36].

In order to extract a converging subsequence of n. and &,, we need some a
priori estimates. The main ingredient will be the discrete Aubin-Lions Lemma
from [18]. Let 0 < ¢ < T and let x[o,4 denote the characteristic function on
[0,t]. Inserting ¢o := n,X[o, in Eq. (12.11); entails

1
/nT dx—!—/ / |VnT| dxds < = /(nO)Qdm (12.12)
Q o nr(l— 2 Jo

Thus, n, is bounded in L% (0,T; L>(Q)) N L?(0,T; H()). Note that we
have a uniform bound for all T. Next, we derive an estimate on the discrete
time derivative of n, by

m IVl g2z 9ol L2 g1 s

1oe

T
/ (Driy, o) dt| <

which is again uniform in 7. A similar estimate for the energy is not possible
due to the latter two terms on the left-hand side. However, switching to the
total energy Eiot r = & — 5712 we insert @o := ot rX[0,4 0 Eq. (12.11),

T
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and estimate

1 2 -1
- &ot,T(tQ d // 7]’ dxds+ //|V5| dzds
2 Jo o n.(1— Q

1 2d — |Vn |
<= 2 T
< / Erot - (0)%dx + K 1 / - 777% dxds

/ / 2|Vn, |? dzdsfn/ / vl g, e, duds
—nn,

+n// 17[”] T\ P dads (12.13)

using a - (a — b) > % - % for a,b € R?. Again by Young’s inequality, we can
treat the first term of the last line by

// Vn, - VE,dxds
l—nnT
2 ot (g)2
P et s [ [ G o
<= VEL dxds + — —— |Vn,|" dxds.
4 Jo Q| | 7 Jo 9(1—77”7)2| |

Putting both estimates together, there exists a constant C' > 0 independent
from ¢ such that

1 2 2d*1 7]| / /
2/Qgtot,7(t) / / o 1_ d ds+ — IVE.|? dads

1
< 5/ Eot - (0)2dz + C (12.14)
Q

since nr, (£;)y) are uniformly bounded and Vn, is uniformly bounded in

L?(0, 00; L*(£2)). Therefore, we can use (12.12) and (12.14) to see that oy , is

also (uniformly w.r.t. 7) bounded in L?(0,T; H(Q2)). Moreover, we calculate
nr(Er)i +1

: )
( nr(1—=nnr) ||
: (HVETHHL? + ||VnT||L2L2) ||¢1||L2H1 .

Finally, we have shown the hypothesis for n, and . , of the discrete Aubin-
Lions Lemma from [18]. Hence, there exists a subsequence 7(I) — 0 and
1, Eor € H := L2(0,T; HY(Q)) N HY(0,T; H(2)) such that see that n, — n
and Eior , = Epot In L2(0,T; L?(Q2)) as well as n, — n and Erot . — Etot
in H. Since n, is uniformly bounded in L>(0,T; L>°(f2)), n, convergences
strongly in every LP(0,T; LP(2)) with p < oco. In particular, we have that

T
/ <D‘rgtot,‘ra¢1> dt
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& = € =&+ 5n?in L2(0,T; L*(Q)) and & — & in L?(0,T; H'(Q)). Thus,
(7)) = &}y in every LP(0,T; LP(S2)) since (£;)},) is uniformly bounded
in L°°(0, 00; L>(£2)). Moreover, we can easily check that (£;),; — & in
L?(0,T; HY(Q)). Finally, we note that we can extract a diagonal sequence
such that every convergence stated above holds simultaneously for all 7' € N
and consequently for all T > 0.

Let ¢o,¢1 € L?(0,00; H(Q2)) have compact support in [0,00). We can
take the limit in Eq. (12.11) along a subsequence and obtain

/0 Oum, o) dt + / / 51[”]_22  Vodadt = 0,
9 (€ - *n ¢1 ~dwdt
/O < ( ) / / Vgl & Vqs

+’y/ / VE'«Vqﬁldxdt—l—n/ / 77Vn~v¢1dxdt:0
o Ja o Jal—mm

(12.15)
forn,& € HNL>®((0,00) xQ)) with H := L*(0, 00; H*(Q))NH (0, 00; H(2)")
form above and the uniform bounds w.r.t. T. As before, n and & fulfill
0<n< HnOHOO < 1—;5 and £ < HSOHOO, respectively.

Remark 12.2.2. The fact that n,€ € H implies that n, € € C°([0,00); LP(Q))
for all 1 < p < oo. Since the space of function from L?(0,00; H'(Q)) with
compact support in [0, 00) are dense in L?(0, 00; H(€2)), Equation (12.15) is
fulfilled for all ¢, ¢1 € L?(0, 00; H(Q)) without further restrictions.

In order to show that n(0) = n® and £(0) = £°, we proceed similarly as
in [28] and define for u € {n, o1} the linear interpolation @, as

kTt —t
r(t) = uf — Lk —ubY) for (k— 1)1 <t < kT
T

Let T'> 0. Since D:nr, D7t , are uniformly bounded in L*(r, T; H*(Q2)'),
we see by

10etir | 20,7 10 () < I Pvturll 20,07 11 () < €

for some C' > 0 that @, is bounded in H*(0,T; H'(2)"). Hence, a subsequence
converges weakly to some w in H(0,T; H'(Q)") which is continuously em-
bedded in C°([0,T]; H*(2)"). The fact that @, and u, converge to the same
limit due to

[t = well L2 o.0—r 1 (@)) S TN DUl 20 —r 1)) SCT =0 as7—0

implies that «° = lim, 0 @, (0) = lim, 0 u,(0) = u(0). Finally, we conclude
that n(0) = n® and £(0) = &t (0) + 5n(0)* = £°.
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The limit v — 0

In the sequel, let us denote n, and &, as the solution of (12.15) in order
to emphasize the dependency on «. This shall not be confused with n, and
&, from above. Let T' > 0. The limit v — 0 is more delicate due to the
degeneracy of the equation concerning n. However, the equation for £ does
not degenerate and we are able to show that ((€,)},])y € L*(0,T; L*(2)) is
precompact. Clearly, this will be a result of an Aubin-Lions type lemma. Let
¢1 € L*(0,T5; HY(2)) N L>=(0,T; L>°(9)). Testing the equation for n. with
kn~¢1 and subtracting this from Eq. (12.15),, we derive
V) Vér

T 2d—1
/ (D&, 1)
0 n"/ 77”"/

T (&) [Vny)?
+7/./V&mV@Mﬁ+n/' —ll——lﬂ@ =0. (12.16)
0o Ja 0 ny (1 = nny)

Since &, < ||50HOO, we have for sufficiently small v > 0 that

(&) = (& =)+ + 7= max{€, — 7,0} + 7

and in particular V(&,—7v)4 = V(&,)y. Setting ¢y := (£, (t)—7)+ in (12.16),

we see

2d—1 (T [ V(& —7)
j/(g (T) —v)%dx + 5 jﬁ 44444444;17d dt

—nn,)

_ [7]|an‘ B
+fy/ /|V5 )4l dxdt—&—/i/ / o (1 — ) (Ey — ) 4dxdt

— 2 i .
< /Q (€0 —7)2dz, (12.17)

implying that V(&,)(y = V(£,—7)4+ is uniformly bounded in L?(0,T; L*(Q2)).
Moreover, testing Eq. (12.15); with n,, we obtain that /(&) Vny is also
bounded in L?(0,T; L?(2)). In both cases, the bound can be chosen in such
a way that it is uniform for all 7. We estimate

T T
| toe - vt)a =z2| [ @ue, ~ (e, - )sohde
0 0

<C <||v(g’v)h]||i2m + H Y, (g’v)h]V’L’v’ .

) 19
+C HV(SV)[A,]HLZLZ Vol 2p2 -
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Using that L>((0,T) x Q) N L2(0,T; H*(Q)) > C°([0,T]; H*(Q)) for s >
min{1,d/2}, we just have proved that 8;(£, — )2 is uniformly bounded
in the space C°([0,T]; H*(Q))’. Note that in addition, V(£, — )% is uni-
formly bounded in L2?(0,T; L?(Q2)). Therefore, we can apply the version of
the Aubin-Lions Lemma from [41] to infer that (£, —~)3 converges strongly in
L2(0,T; L*(Q)) and weakly in L2(0,T; H'(Q)) to some & € L?(0,T; H'(Q))
along a subsequence v = () — 0. Note that £ is non-negative such that
there exists its non-negative root £ = /€. Since (&, )(,] is uniformly bounded,
we obtain that

Eva)mw) = Evqy =10+ +7(1) = & in L*(0,T; L*(2)) for | — oo

using Lebesgue’s theorem. Moreover, we can assume that along this subse-
quence, we have (£,))y@) — € in L?(0,T; H'(Q)). Regarding the variable
n., so far, we can only derive a weak convergence of a subsequence: there
exist some n € L?(0,T; L*()) such that n. ) — n in L?(0,T; L*(Q)).

The next step is to improve the convergence of n,;) — at least for a
subsequence. Because of the degeneracy in Eq. (12.15),, we consider z; :=
(&) —7)3 nyq instead of n.,). Since V(Ey — )+ = V(&)1 V(&) Vg
are bounded in L?(0,7; L*(2)) and 6§ < n, < ||nOHOO < %, we see that

Vi = 2(E,0)+V(Eyw)+na0) + (E50)5 V)

is uniformly bounded in L?*(0,T;L*()), because (&, — 7)1 < (&) <
Hé‘OHOO. We aim to apply Aubin-Lions’s lemma once again; we thus need
an estimate on the time derivative of z. Making use of Eq. (12.15); and
(12.16) ensures that

T
/0 (0((& —7)2ny), 0) dt

SQA<@@rﬂ%@wﬂhm@ﬁ4-A<&mi&—7ﬁ@ﬁ

< O(T, 2., 8) (119l = (0 ryxeny + 16ll 2 ) -

As above, we can apply the Aubin-Lions Lemma from [41] to z;. Hence, along
a subsequence which is not relabeled, z, — z in L?(0,T; L*(2)) for some
z € L*(0,T; L*(2)). Let us return to the main purpose: the convergence of
Ny ). We have

z] z .
n = ——— — =5 ae. in {€ >0}.
R R e
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Since n(;y is bounded, the dominated convergence theorem implies that n. )
converges strongly in L?({€ > 0}). Its limit coincides with its weak limit n.
Note that we cannot expect to prove that n., converges strongly on the whole
Q) because its gradient is eventually not uniformly bounded in L?({€ = 0}).

Keeping in mind that we would like to take the limit in Eq. (12.15), we
turn to analyze the behavior of the gradient of n, in the limit. As we have
seen before, it is useful to distinguish the cases £ = 0 and £ # 0.

First, we treat the easier case £ = 0. Let g : R — R be a locally bounded
function. Then g(nuy)v/(E1)y1)] Vg is bounded in L?(0,T; L*(2)) and
admits a weakly converging subsequence labeled again with the same index.
Therefore, we directly deduce that

9y @) (E) Vg — 0 in L*({€ = 0})

as y(l) — 0. We emphasize that we would have been completely lost at this
point without the multiplicator (£,(;))y)). Fortunately, the gradient of n,
always occurs in combination with it.

For the other case (€ # 0), we again require an auxiliary variable, namely
Y1 = (E5(1))ly)7~()- This can be seen by the following identity:

/ / (E Vg - dedt
{e0}

= // Vyl - ddxdt — // v(g'y(l))['y(l)]n'y(l) - ddzdt.
{70} {E#0}

We want to prove the convergence of the left-hand side for some fixed and
regular ®. The second integral on the right-hand side converges for ® €
L*((0,T) x Q)%, since V(E,)) vy = VE and n,y — n both along a subse-
quence in L*(0,T; L?(£2)). For this, we can use that (VE, )y 18 uniformly
bounded in L?(0,7; L*(2)) and that (£,¢))py converges strongly. Never-
theless, we need to get more involved to prove the convergence of the first
term, because we are not able to integrate by parts. Due to the strong con-
vergence of (£,(1))y()) and ny k) — 1 in L2(0,T; L?(Q)), we have y; — En in
LY(0,T; LY(Q)). Similarly as above for 2;, we derive that Vy; is bounded in
L?(0,T; H'()). This entails that for a subsequence, which is not relabeled,
that Vy; — V(En) in L1(0,T; L(Q)). According to chapter V, Theorem 3 in
[53], this convergence holds in L2(0,T; L?(f2)), since L'(0,T; L'(Q)) is dense
in L?(0,T; L?(Q)). As in the first case, we can do the same if we multiply
(&) Vnyq by a (Lipschitz) function of n. .

Finally, we can summarize the convergence of Vn,y: Let g : R — R be a
Lipschitz function. Then

g(nw))(é’w))h(l)]VnV(l) — g(n)(V(Sn) — nVé’) in L2(O7 T; LQ(Q))
as y(I) — 0.
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Lemma 12.2.3. By interpreting L*(Q) C C°(Q)’, we have

EVn = V(En) —nVE € L*(0,T; L*()).

Proof. Since n € L%(0,T; L?(2)), we have that the distributional derivative
of n w.r.t. x € Q belongs to L2(0,T; H*(Q)"). Now let ¢ € L?(0,T;C(12)).
Then it holds by definition

<€Vn, ¢>L2(H1)’,L2H1 = <Vn75¢>L2(H1)/,L2H1
=—(n,VEP) L2y 2 — (N, EVP) 21y L2m
=—(nVE Q) 2y, L2m +(V(n€), ¢)L2(mry 2w

Thus, we have that EVn = V(En) — nVE holds in L?(0,T;C°(2)). Finally
the fact that V(En) —nVE belongs to L?(0,T; L?(Q2)) yields the assertion by
identifying L?(2) with the right subset of regular distribution of C°(Q). O

We are now able to take the limit in the second term of Equation (12.15),,
assuming ¢o € L?(0,T; H'(Q)). For the first term involving the time deriva-
tive, we see by

(&)

< v - 7t
= |Iny (1 —nny)

H(é’w)m |Vn7|2(

I ”V¢0||L2L2

T
/0 (D, o)t

Loe

that n, is bounded in H'(0,7; H*(Q)). Thus, taking the right sequence
~v(1) — 0, we obtain

/ <3m,¢o>dt+/ /75% - Vodzdt = 0.
0 0 Q n(l - 77”)

Now let us turn to (12.15),. Here, we still need to argue why the first three
integrals converge. For the convergence of the integral concerning the time
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. . I 2
derivative of oy 4 1= &, — 5n5, we compute

/OT< L (Ey gbl dt

Vo

Q nA, 1 — 777%

+ / / VE, - Vidudt
Q

s / / e ~ G Ve dadt
1—nn,

< C(IVEDmllage + 1VRall o p2) 1011l 2

T
+7/ /87A¢1dxdt
0 Q

<C (||v(5’y)[“/]HL2L2 + an’Y”Hm) ||¢1||L2H1
+7 ||57||LooL1 ||¢1||L1W2v°°

1d dt

for ¢1 € C9([0,T7; C%(Q)), where C%(Q) := {f € C*(Q) : 9, f = 0 on IN}.
Let H$(S2) be the completion of C%(2) in H*(Q2) for s > 0. Since &, is
bounded from above by HSOHDO, we obtain from the energy conservation

/9(6’7(75) ) dx—/Q(EO—g(nO)Q) do

(put ¢1 =1 in (12.15),) that H&Y(t)HLl(Q) is uniformly bounded w.r.t. ¢ > 0
and y > 0. Thus, ot - is uniformly bounded in H*(0,7T; H3 (2)’) for s > 2+
%. This implies that & ., converges weakly to some Eiop € HY0,T; H5(Q)")
along a subsequence y(I) — 0.

The following lemma links & to € and n. Due to the lack of the strong
convergence of n.y and £,y in L*(0,T; L*(R)), it presents only a partial
result.

Lemma 12.2.4. It holds oy € HY(0,T; HY(Q)') and

| Eaores [ (s - futio)a

for all ¢ € L2(0, 00; HY(Q)) with ¢ > 0.

Proof. Let T > 0. To begin with, we test (12.15), with v, = Y(Ey — 5n2)
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and obtain similarly to (12.13) and its following estimate that

2d—1
;/am(t)? Ty / / 77”7 d ds+L / /|vs| dwds
2d — 1
< / Eiot,r(0)2dz + & d / / 21V g
2 1—7m,Y
[“/
// ,Y'y|Vn,Y\ drds + K* A/ 1_17nW2|VnAY| dxds

+f<¢27/0 /Q%M|Vn7|2dxds. (12.18)
Y

Since v < (&), all integrals involving |Vn,y|2 are uniformly bounded due
to the boundedness of /(&) Vny in L*(0,00, L?(Q)). Thus, /7€, and
yVE, are uniformly bounded in L*(0,00; L?(2)) and L?(0,00; L*(12)), re-
spectively. Therefore, there exists a subsequence of «(I), which is again de-
noted by (1), such that

Y)VE, @y — 0 in L*(0, 00; L*(R)).

This implies that ¢ — [ (8iot -, @) ds is bounded in H'(0,T; H*(€)) for
every T' > 0. As we have seen above, we can take the limit (along the right
subsequence of y(l) which is not relabeled) such that

T T
/ (Biiot p(1), @) dt — / (OrEot, @) dt
0 0

for all ¢ € L?(0,T; H*(2)) as (1) — 0. For the next step, let the test function
¢ € L?(0,T; H*()) be non-negative. Then

T T
/ <£tot7 ¢> dt = lim <5tot;y(l)a ¢> dt
0 l—o0 Jg
T

1 K2
= lim o <g'y(l) — §n7(l),¢> dt

l—o0

S lim sup /T <(S'y(l))['y(l)] — Eni(l), ¢> dt
O 2

l— 00
< /OT <5 - gn2,¢>> dt.

Finally, this implies the assertion since T was arbitrary. [
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Let us come back to the convergence of (12.15),. The behavior of the
second integral in (12.15), can be understood by using integration by parts,

i.e.
Y
/ / z) b Vo, o
My (1 n”v(l))

/ / z) bAA
Ty (1) (1 = 1y 1))

1—2nn
/ / L0 )(&(z))h(mwv(l)'Wldﬂfdt

Ny (1 = 1)
EAG, / 1-—

N e £ S S A= eg, Vo
/Qnu—nn) n(1—nn) '
VE-Ver
n(l —nn)

for ¢1 € L2(0,T; H%(Q)).
For the third integral, we already have seen in the proof of Lemma 12.2.4
that

T
'y/ / V&, -Voidzdt -0 asy—0 (12.19)
0 Ja

if ¢1 € L?(0,T;H'(2)). The last term of (12.15), can be treated similarly
as in the proof of the convergence of the first equation. Thus, if we take the
appropriate subsequence y(I) — 0, we obtain that every integral in (12.15),
converges for ¢ € L*(0,T; H3 () for s > 2+ 4. We finally obtain that
(n, &, Eor) fulfills

/ (O, o) dt —l—/ / 1 - Voodxdt =0
0 _

(0rEiot, P1) dt + 2 / / vg V‘;Sld dt (12.20)
(I =nn)

+n/ / gv” - Vrdrdt =0

for ¢o € L*(0,T; H'(Q)) and ¢y € L*(0,T; H3, () for s > 2+ 4. Note that
(12.20), holds true for all ¢y € L*(0,T; H'(2)) since L?(0,T; Hy(€2)) is dense
in L2(0,T; HY(2)).

In addition, our solution shall fulfill the initial data. We have already seen
that ot converges weakly to Eyor in H(0,T; H*(Q)"), which is continuously
embedded in CO([0,T]; H*(Q)'). Thus, Et(0) <= Etot (1) (0) = E° — 5(n?)%
Likewise, we recall that n.,(; is uniformly bounded in H'(0,T; H'(Q)') w.r.t.
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v(l) and T. Following the same arguments as before, n € C°([0,7]; H(Q2)’
and n(0) = n". For this, we may have to take another subsequence of ¥(I) in
the procedure above.

Finally, we notice that the key estimates were uniform w.r.t. 7. As in
the case 7 — 0, we use the fact that the functions with compact support in
[0, 00) are dense in L?(0, 00; H(£2)) such that we have proved the first part of
Theorem 12.1.2 without any restrictions on the support of the test functions.

The second part of Theorem 12.1.2 can be proved as follows. We observe
that

t
//Edzdrf hm// ) drdT
Zlimsup/ /Sﬁ/(l)dxdT
l—o0 s Q

t
:limsup/ /Stotﬁ(l)dxdT—l— fhmsup/ / nyqydadr
l— o0 s O l—o00

¢
> (t— s)/ 5t0t(0)dx+g/ /ndedT.
Q s JQ

Here, we used that (&) [7(% converges strongly in L'(s,t; L'(Q)) and Ty (1)
converges weakly in L?(s,t; L?(2)). Finally, the energy given by

/Q (&)~ Sn(t)?) da

is alway greater or equal than the initial total energy [, &ot(0)da for all
almost every ¢ > 0 due to the Lebesgue differentiation theorem. Moreover,
by Hélder’s inequality, we see that £ > 0 does not vanish, because

/St/gé'dxd7>(t—S)/Qé'tot(O)d;p+g/:/ﬂnzdxdT
> (t—S)/ 5tot(0)dx+g (/:/Qndxd7>2(t_s)_1 o
o f w0+ 57 ([ o))

is positive.
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Appendix A

Notation

In this chapter we state some special abbreviations defined throughout this
thesis.

Symbol Explication Def. page
B 1) first Brillouin zone C R¢ 5.1.1 45
2) [0,27)4 = T¢ 4.5.1, 39,
5.4.12 71
Dt Dy — tv' (p)0s 4.5.1 39
(4,%) (352, 5.4.2 59
E(\) [ €(p)F (X, p)dp 5.1.6 47
E; Jz€e)f(p)dp 5.1.13 49
€max (1) %f{€>c} €(p)dp with [{e > ¢}| = nn and | Lemma | 50
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