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Abstract

In this doctoral thesis we consider a special type of degenerate elliptic partial
differential equations of second order for a rather general right-hand side.
We introduce the suitable notion of viscosity solutions. We first characterize
these with a maximum principle and then derive useful properties. This
includes a weak comparison principle, a Hopf-type Lemma, local regularity
estimates and existence of viscosity solutions. Finally we consider constant
right-hand sides and show 1

2
-power concavity of viscosity solutions. The

results are applied to the normalized p-Laplacian.



Zusammenfassung

In dieser Doktorarbeit untersuchen wir einen speziellen Typ von degene-
riert elliptischen partiellen Differentialgleichungen zweiter Ordnung mit all-
gemeiner rechten Seite. Dazu führen wir den Begriff der Viskositätslösung
ein. Zunächst charakterisieren wir diese über ein Maximumprinzip und leiten
dann nützliche Eigenschaften her. Dies beinhaltet ein schwaches Vergleichs-
prinzip, ein Hopf-artiges Lemma, lokale Regularitätsabschätzungen und Exis-
tenz von Viskositätslösungen. Zuletzt betrachten wir konstante rechte Seiten
und zeigen Konkavität von Quadratwurzeln von Viskositätslösungen. Die Re-
sultate werden auf den normalisierten p-Laplace angewandt.
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Introduction

1.1 Overview of the problem

We consider partial differential equations of the type

F (∇u,D2u) = f in Ω(1.1)

where F : Rn \ {0}×Rn×n → R is continuous, f ∈ C(Ω), and where Ω ⊂ Rn

is a bounded domain. The operator F may be discontinuous in points (0, X).
Furthermore we consider the Dirichlet boundary value problem

(1.2)

{
F (∇u,D2u) = f in Ω,

u = g on ∂Ω

for a continuous function g ∈ C(∂Ω). Our investigation is motivated by the
recently growing interest in the normalized infinity Laplacian

−∆N
∞ u = − |∇u|−2 〈∇u,D2u∇u

〉
.(1.3)

This operator can be considered as the limiting case of the normalized p-
Laplacian

−∆N
p u = −p−2

p
|∇u|−2 〈∇u,D2u∇u

〉
− 1

p
∆u,(1.4)

in which p is sent to∞. Questions concerning existence, regularity and prop-
erties of solutions to both problems (1.1) and (1.2) arose for the normalized
infinity Laplacian (1.3) and were partially answered in the past.
We are mainly interested in the so called 1

2
-power concavity to solutions of

(1.2) for constant right-hand side and vanishing boundary values in convex
domains. This property is well-known for the classical Laplacian, obtained
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by putting p = 2 in (1.4), and was recently shown for the infinity Laplacian
(1.3) in [11]. It is natural to ask whether the same power concavity holds
for other p ∈ (2,∞). To be more precise, this means to investigate whether
solutions of

(1.5)

{
−∆N

p u = 1 in convex Ω,

u = 0 on ∂Ω

are 1
2
-power concave, i.e. if u

1
2 is a concave function. In order to adapt

the methods presented in [11] it is again necessary to generalize the crucial
method of comparison with cones, presented in [8]. Then again, after gener-
alizing this property, it is also possible to extend some of the local regularity
results, shown in [8]. These in turn can be used to answer the naturally
arising question concerning existence of solutions by adapting the proof pre-
sented in [32].

Motivated by these connections, our objective is to investigate which struc-
tural properties of the normalized infinity Laplacian (1.3) are actually nec-
essary to obtain the comparison with cones property and what additional
assumptions have to be made to show the desired results.
Using this approach we are able to extend these results, not only to the nor-
malized p-Laplacian (1.4), but also to more general 1-homogeneous operators
like

F (∇u,D2u) = −α |∇u|−2 〈∇u,D2u∇u
〉
− β tr D2u,(1.6)

with suitable constants α and β.
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1.2 Related work

The notion of viscosity solutions we use was introduced for first order equa-
tions by Crandall and Lions in [10] and was shortly afterwards extended to
second order equations by Lions in [31]. The boundary value problem was
then introduced by Ishii and Lions in [16]. A mild introduction to this topic
was given by Koike in [28]. A remarkable overview on this topic is the User’s
guide [9] by Crandall, Ishii and Lions. The methods presented there were
used to show a wide variety of results. Barles and Busca used these methods
to develop existence and comparison results in [5] for more general operators
than the ones we are interested in but for vanishing right-hand side. Lu and
Wang extended the comparison result for strictly positive or strictly negative
right-hand sides in [33]. Comparison results for more general equations and
vanishing right-hand side were discussed by Kawohl and Kutev in [24], [25],
and [26]

The study of the infinity Laplacian was stimulated by the work of Aronsson
[3]. He was interested in extending Lipschitz continuous functions, found the
operator and the equation to describe the functions he calls absolute min-
imals and investigated them in two dimensions. He continued his research
on this equation in [4]. However, since the equation is highly degenerate
and the concept of viscosity solutions was not yet introduced, there was not
much hope to proceed. Decades later, using the notion of viscosity solutions,
Jensen was able to show that Aronsson’s Lipschitz extensions are unique and
minimize the sup norm of the gradient in [17]. In analogy to the operator
corresponding to minimizers of the p-norm, Aronsson’s operator is called in-
finity Laplacian. From then on the operator received more attention.
For the homogeneous problem Crandall, Evans and Gariepy showed a defin-
ing property of the infinity Laplacian in [8], the so called comparison with
cones. Using this, they were able to simplify the work of Jensen and to
show local regularity. It also led to an approach of showing regularity using
blow-up limits and flatness decay. It was shown by Evans and Yu in [15]
that the flatness decay approach happens to fail for the infinity Laplacian.
In the same year Savin was able to show differentiability of solutions in two
dimensions in [36], not using flatness decay but topological arguments. This
result was improved in a collaboration with Evans in [13] to obtain Hölder
regularity of the first derivative, also in two dimensions. Finally Evans and
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Smart proved everywhere differentiability in higher dimensions in [14].
The inhomogeneous problem we are considering was motivated by the work
of Peres, Schramm and Sheffield [34], showing that the normalized infin-
ity Laplacian can be used to describe the value of a mathematical tug of
war game. They showed that solutions may not exist if the right-hand side
changes its sign, while a unique solution exists if the right-hand side is every-
where strictly greater or everywhere strictly less than zero. Their work was
extended by Armstrong and Smart in [2]. Lu and Wang took a PDE-based
approach in [32] to show that solutions exist if the right-hand side becomes
zero but may fail to be unique. In the same work the authors generalized
the concept of comparison with cones to non-vanishing right-hand side. Reg-
ularity of solutions can be obtained if the domain under consideration is a
ball, as it was shown by Lindgren in [30]. Existence and nonuniqueness of
solutions for more general right-hand sides was discussed by Bhattacharya
and Mohammed in [6].

Motivated by the great interest in the infinity Laplacian and its normalized
counterpart, it is reasonable to also consider the normalized p-Laplacian.
Then one can heuristically consider the infinity Laplacian as some limiting
case. This was done rigorously by Kawohl in [22], showing that for vanishing
right-hand side, viscosity solutions for the normalized p-Laplacian converge
uniformly to viscosity solutions for the infinity Laplacian. A survey on the
normalized p-Laplacian was recently given by Kawohl and Horák in [23].

An interesting property of solutions of the type of equations we are interested
in is the so called power concavity. The investigation of this property was
stimulated by Korevaar in [29] who proved a concavity maximum principle
which can be used to show the power concavity of solutions of a variety of
equations. This problem was also discussed by Kawohl in [19]. Korevaar’s
result was improved by Kennington in [27] and Kawohl in [20] and [21].
Since these results apply to classical solutions, Sakaguchi used regularization
techniques in [35] to obtain results for problems that might only have weak
solutions in the Sobolev sense. This motivated Juutinen to generalize Ko-
revaar’s concavity maximum principle to viscosity solutions in [18]. Finally
Crasta and Fragalà showed power concavity of solutions to −∆N

∞ u = 1 in
[11].
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1.3 Summary of results

In Chapter 2 we will briefly introduce our notation and terminology used.
Most of the notation surely is standard convention, therefore the Section 2.1
is intended to make our presentation self-contained. Section 2.2 is devoted
to introduce the notion of viscosity solutions.

In Chapter 3 we will first prove the equivalence of u being a viscosity so-
lution to our problem (1.1) and satisfying the comparison principle in [33].
This property is well-known for linear elliptic equations of second order. The
strategy to prove the equivalence is to first show another comparison princi-
ple for a smaller class of functions to compare with and then to show that
all functions satisfying this weakened comparison principle are viscosity so-
lutions. In Section 3.2 we will, inspired the by the preceding chapter, derive
a comparison principle for radial functions to generalize the comparison with
cones property, introduced in [8] and use it to show a Hopf-type Lemma.
The derived comparison property for radial functions will then, in Section
3.3, be used to obtain local Hölder continuity of viscosity solutions, where
the Hölder exponent will be explicitly calculated.

In Chapter 4 we will consider the Dirichlet boundary value problem (1.2).
To this end we first introduce the notion of viscosity solutions for boundary
value problems. In Section 4.2 we will use Perron’s method and the results of
the preceding chapter to show existence of continuous solutions. Finally, in
Section 4.3, we will show power concavity of viscosity solutions for a special
type of domains using the methods provided in [1] and [11].

We will present most of our results only for viscosity subsolutions. Whenever
we do this, an analogous statement holds for viscosity supersolutions and the
corresponding proofs work the same way.
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Preliminaries

2.1 Notation

The set Ω ⊂ Rn always denotes a bounded domain, that is a bounded, open
and connected subset of Rn.
Whenever necessary, we will assume that Ω satisfies the interior sphere con-
dition. That is

∀x ∈ ∂Ω∃R > 0 : BR(y) ⊂ Ω ∧ ∂BR(y) ∩ ∂Ω = {x},(2.1)

with y := x−Rν(x) and ν(x) denoting the outer normal vector at x.
For x, y ∈ Rn we denote the i-th entry of x by [x]

i
or xi and use the standard

scalar product

〈x, y〉 :=
n∑
i=1

xiyi

and the induced Euclidean norm |x| :=
√
〈x, x〉.

Analogously for X ∈ Rn×n we denote the i-th row of X by [X]
i

or Xi and
the j-th entry in the i-th row by [X]

i,j
or Xi,j. We use

trX =
n∑
i=1

Xi,i

to denote the trace of X, the sum of all diagonal entries and

x⊗ y = [xiyj]
n

i,j=1
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for the tensor product ⊗ : Rn × Rn → Rn×n of two vectors x, y ∈ Rn.

Furthermore we use the notation O(n) ⊂ Rn×n for the set of orthogonal
matrices

O(n) = {Q ∈ Rn×n | QᵀQ = Id},
where Id denotes the identity matrix.
For matrices X, Y ∈ Rn×n we use the partial ordering

X ≥ Y :⇐⇒ X − Y is positive semidefinite.

Denoting the subset of symmetric matrices with S ⊂ Rn×n, we know that ev-
ery X ∈ S has only real valued eigenvalues. We enumerate them in increasing
order by

λmin (X) := λ1(X) ≤ . . . ≤ λn(X) =: λmax (X) .

In the special case of X, Y ∈ S we can diagonalize X and Y using matrices
in O(n). The partial ordering then becomes

X ≥ Y ⇐⇒ λi(X − Y ) ≥ 0 for all i ∈ {1, . . . , n}
and the trace of X becomes trX =

∑n
i=1 λi(X).

Furthermore we denote the set of symmetric positive semidefinite matrices
by S+ ⊂ S and the set of symmetric positive definite matrices by S++ ⊂ S+.

In order to describe the asymptotic behaviour of a function φ : R → R
compared to a function ψ : R→ R in a point a ∈ R∪ {−∞,∞} the Landau
notation o is used. We write

φ ∈ o(ψ) :⇐⇒ lim
x→a

φ(x)
ψ(x)

= 0

or simply, by abuse of notation, φ = o(ψ).

The set of Hölder continuous functions on Ω with respect to an exponent
0 < γ < 1 is denoted by C0,γ(Ω). Finally the sets of semi-continuous func-
tions are denoted by

USC(Ω) := {u : Ω→ R | u is upper semicontinuous}

and

LSC(Ω) := {u : Ω→ R | u is lower semicontinuous} .
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2.2 Viscosity solutions

Due to the possible non-divergence structure and nonlinearity of the operator
F the traditional notion of weak solutions using Sobolev spaces is not suffi-
cient. Therefore a different concept of weak solutions, the so called viscosity
solutions, was introduced in [31] for degenerate elliptic operators. Degen-
erate elliptic means that for X, Y ∈ S, it holds F (q,X) ≥ F (q, Y ) for all
q ∈ Rn whenever X ≤ Y .

Remark 2.1. There is no standard terminology for degenerate ellipticity.
Depending on the field of research the definitions differ. In partial differential
equations it is common to consider −∆, the Laplacian, as an elliptic operator,
while in harmonic analysis it is common to consider ∆ without sign instead.
Therefore the authors of [33] define degenerate ellipticity with opposite sign
from ours.

Since we will later have to consider a more general problem and do not want
to repeat ourselves, we will formulate the following definitions for a more
general right-hand side. That is

F (∇u(x),D2u(x)) = f(x, u(x),∇u(x)) in Ω,(2.2)

where −f is assumed to be continuous and proper, i.e.

(2.3) −f(x, r, q) ≤ −f(x, s, q)

for all r, s ∈ R with r ≤ s.

Since we explicitly want to include operators that are singular in (0, X) for
any X ∈ Rn×n, we use the lower and upper semicontinuous envelopes of F .
Therefore we define

F∗(q,X) =

 F (q,X) if q 6= 0,

inf
a∈Rn\{0}

F (a,X) if q = 0,

and

F ∗(q,X) =

 F (q,X) if q 6= 0,

sup
a∈Rn\{0}

F (a,X) if q = 0,
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as it was proposed in [9]. If one is only interested in the case of continuous
F , one may just take F∗ = F ∗ = F in the following.

According to [9], there are two equivalent ways to define viscosity solutions.
Both rely on the idea to generalize the involved derivatives. The first one uses
a concept of test functions, that is replacing the derivatives in the equation
with the derivatives of smooth functions ‘touching’ a solution from above
or below. Then, if F∗ and F ∗ coincide and are degenerate elliptic, viscosity
solutions generalize classical solutions in the sense that smooth viscosity so-
lutions are classical solutions and vice versa. To be more precisely we state
the following definition.

Definition 2.2. We call u ∈ USC(Ω) a viscosity subsolution of (2.2) if for
every x ∈ Ω and φ ∈ C2(Ω)

F∗(∇φ(x),D2φ(x)) ≤ f(x, u(x),∇φ(x)),

whenever u− φ attains a local maximum in x.
Likewise we call u ∈ LSC(Ω) a viscosity supersolution of (2.2) if for every
x ∈ Ω and φ ∈ C2(Ω)

F ∗(∇φ(x),D2φ(x)) ≥ f(x, u(x),∇φ(x)),

whenever u− φ attains a local minimum in x.
We call u ∈ C(Ω) a viscosity solution if it is both, a viscosity sub- and
supersolution.

The defining smooth functions are often referred to as test functions. Be-
cause of (2.3) we may always assume that for subsolutions u ∈ USC(Ω) and
test functions φ ∈ C2(Ω), whenever u− φ attains a local maximum in some
x0 ∈ Ω, it also holds (u − φ)(x0) = 0. The analogous assumption will be
made for supersolutions.

An equivalent approach to generalize the appearing derivatives is by taking
all the vectors and symmetric matrices that satisfy a Taylor approximation
property. Those are collected in two sets called semijets.

Definition 2.3. For a function u : Ω→ R and a point x ∈ Ω we define

J 2,+u(x) = {(q,X) ∈Rn × S | u(y) ≤ u(x) + 〈q, y − x〉
+ 1

2
〈y − x,X(y − x)〉+ o(|y − x|2) as y → x},

10



the second order superjet of u at x and

J 2,−u(x) = {(q,X) ∈Rn × S | u(y) ≥ u(x) + 〈q, y − x〉
+ 1

2
〈y − x,X(y − x)〉+ o(|y − x|2) as y → x},

the second order subjet of u at x.

Now we may replace the derivatives of test functions in Definition 2.2 with
elements of the semijets.

Definition 2.4. We call u ∈ USC(Ω) a viscosity subsolution of (2.2) if

F∗(q,X) ≤ f(x, u(x), q)

for all x ∈ Ω and (q,X) ∈ J 2,+u(x).
Likewise we call u ∈ LSC(Ω) a viscosity supersolution of (2.2) if

F ∗(q,X) ≥ f(x, u(x), q)

for all x ∈ Ω and (q,X) ∈ J 2,−u(x).
Again we call u ∈ C(Ω) a viscosity solution if it is both, a viscosity sub- and
supersolution.

It is not difficult to see that both definitions are equivalent. In order to do
so one has to show that semijets are just exactly the sets of derivatives of
valid test functions. We will adapt the common practice to drop the term
viscosity and just speak of sub- and supersolutions from now on.
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General results on viscosity solutions

In this chapter we will consider equation (1.1) without taking into account
any boundary condition. We will at first characterize subsolutions of this
equation as functions satisfying a comparison principle. Then we will consider
the special case of radial solutions to obtain a comparison principle with
radial functions, which can be explicitly calculated. Finally we will use this
to show a local regularity result for subsolutions of (1.1).

3.1 An equivalent condition

The main objective of this section is to show the equivalence of u being a
subsolution of (1.1) and satisfying the comparison principle presented in [33]
for a rather general left-hand side and right-hand sides f < 0 or f > 0.

So at first we first only assume that F is linear in the second argument and
bounded. That means for all µ, ν ∈ R, q ∈ Rn \ {0} and X, Y ∈ S it holds

F (q, µX + νY ) = µF (q,X) + νF (q, Y )(3.1)

and there are constants 0 < cmin ≤ cmax such that

cmin λmin (X) ≤ −F (q,X) ≤ cmax λmax (X) .(3.2)

Clearly these assumptions imply superlinearity of F∗, sublinearity of F ∗ and
boundedness of both, that is for µ ∈ R, µ > 0 and X, Y ∈ S it holds

F∗(q, µ(X + Y )) = µF∗(q,X + Y ) ≥ µ(F∗(q,X) + F∗(q, Y )),(3.3)

F ∗(q, µ(X + Y )) = µF ∗(q,X + Y ) ≤ µ(F ∗(q,X) + F ∗(q, Y ))(3.4)
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and

cmin λmin (X) ≤ −F ∗(q,X) ≤ −F∗(q,X) ≤ cmax λmax (X) .(3.5)

Before showing the announced equivalence we first want to point out that
the commonly made assumption of degenerate ellipticity of the left-hand side
is already implied by the assumptions we made.

Proposition 3.1. The operators F , F∗ and F ∗ are degenerate elliptic.

Proof. We only show the property for F∗. For this let X, Y ∈ S with Y ≤ X.
Rewriting Y = X + (Y −X) and using (3.3) together with (3.5) yields

F∗(q, Y ) ≥ F∗(q,X) + F∗(q, Y −X)

≥ F∗(q,X)− cmaxλmax (Y −X)

≥ F∗(q,X)

for any q ∈ Rn.

Due to (3.1), the non-dependency of zero order terms and the preceding
Proposition 3.1 the structure assumptions made in [33] are fulfilled. There-
fore we may reformulate their results to fit in our context.

Theorem 3.2. Let u ∈ C(Ω) be a subsolution of (1.1) with f < 0 or f > 0.
Then the strong maximum principle

(3.6) sup
U

(u− v) ≤ sup
∂U

(u− v)

holds for every bounded domain U ⊂ Ω and every supersolution v ∈ C(U) of
(1.1).

Proof. Let U ⊂ Ω be a bounded domain. Clearly u is also a subsolution in U .
Let v ∈ C(U) be a supersolution of (1.1). Invoking the maximum principle
[33, Theorem 1.3], or [33, Theorem 2.4] in the singular case, we obtain the
assertion.

Another way to formulate this maximum principle is the following comparison
principle. Both formulations are equivalent.
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Corollary 3.3. Let u ∈ C(Ω) satisfy the strong maximum principle (3.6).
Then the strong comparison principle

(3.7) u ≤ v on ∂U =⇒ u ≤ v in U

holds for every bounded domain U ⊂ Ω and every supersolution v ∈ C(U) of
(1.1).

Proof. Let U ⊂ Ω be a bounded domain and v ∈ C(U) a supersolution of
(1.1). We assume u ≤ v on ∂U but u(x0) > v(x0) for some x0 in U . Then

sup
U

(u− v) ≥ (u− v)(x0) > 0 ≥ sup
∂U

(u− v),

contradicting the strong maximum principle.

We will proceed showing that, under our assumptions, the strong comparison
principle and the strong maximum principle are equivalent to weaker versions.
The idea is that it sufficies to consider smooth functions v and constant right-
hand sides greater or equal to the supremum of f .

Lemma 3.4. Let u ∈ C(Ω) satisfy the strong comparison principle (3.7).
Then the weak comparison principle

(3.8) u ≤ ψ on ∂U =⇒ u ≤ ψ in U

holds for all bounded domains U ⊂ Ω and ψ ∈ C2(U) ∩ C(U) with
F∗(∇ψ,D2ψ) ≥ supU f in U .

Proof. Let U ⊂ Ω be a bounded domain and ψ ∈ C2(U) ∩ C(U) with
F∗(∇ψ,D2ψ) ≥ supU f . Then it holds

f ≤ sup
U
f ≤ F∗(∇ψ,D2ψ) ≤ F ∗(∇ψ,D2ψ)

in U . So φ is a supersolution of (1.1) in U while u ∈ C(U). Then, by the
strong comparison principle (3.7), it holds

u ≤ ψ on ∂U =⇒ u ≤ ψ in U.

Again we may also use an equivalent formulation for this statement. This
can be done because of the non-dependency of F on lower order terms.
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Corollary 3.5. Let u ∈ C(Ω) satisfy the weak comparison principle (3.8).
Then the weak maximum principle

(3.9) sup
U

(u− ψ) ≤ sup
∂U

(u− ψ)

holds for all bounded domains U ⊂ Ω and ψ ∈ C2(U)∩C(U) with F∗(∇ψ,D2ψ) ≥
supU f in U .

Proof. Let U ⊂ Ω be a bounded subset and ψ ∈ C2(U) ∩ C(U) with
F∗(∇ψ,D2ψ) ≥ supU f . We define ψ̃ := ψ + sup∂U(u− ψ) ∈ C2(U) ∩ C(U).
Then

F∗(∇ψ̃,D2ψ̃) = F∗(∇ψ,D2ψ) ≥ sup
U
f

and u ≤ ψ̃ on ∂U . Using the weak comparison principle (3.8), this implies
u ≤ ψ̃ in U . So we have

sup
U

(u− ψ) ≤ sup
∂U

(u− ψ).

In order to conclude the desired equivalence it is left to show that all upper
semicontinuous functions satisfying the weak maximum principle (3.9) are
subsolutions of (1.1).

Lemma 3.6. Let u ∈ C(Ω) satisfy the weak maximum principle (3.9). Then
u is a subsolution of (1.1).

Proof. We assume that u is not a subsolution of (1.1). Then there is some
x0 ∈ Ω and φ ∈ C2(Ω) such that u− φ attains local maximum in x0 but

F∗(∇φ(x0),D2φ(x0)) > f(x0).

So there is some δ > 0 such that

F∗(∇φ(x0),D2φ(x0))− δ > f(x0).

We define

ψ(x) := φ(x0) + 〈∇φ(x0), x− x0〉
+ 1

2

〈
x− x0,D

2φ(x0)(x− x0)
〉

+ δ
2 cmax

|x− x0|2 .
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Then we have

ψ(x0) = φ(x0), ∇ψ(x0) = ∇φ(x0), D2ψ(x0) = D2φ(x0) + δ
cmax

Id,(3.10)

and by (3.3) and (3.5)

F∗(∇ψ(x0),D2ψ(x0)) ≥ F∗(∇φ(x0),D2φ(x0))− δ > f(x0).

By continuity of f and semicontinuity of the left-hand side, there is some
bounded domain U ⊂ Ω with x0 ∈ U such that

F∗(∇ψ,D2ψ) ≥ sup
V
f

in V for all V ⊂ U with x0 ∈ V . Also, by (3.10), φ− ψ attains a strict local
maximum in x0. So there is a bounded domain V ⊂ U with x0 in V and

(u− ψ)(x0) > sup
∂V

(u− ψ),

while

F∗(∇ψ,D2ψ) ≥ sup
V
f

in V , so the weak maximum principle (3.9) does not hold.

We summarize the shown results in a theorem.

Theorem 3.7. Let u ∈ C(Ω), f < 0 or f > 0, and assume that (3.1) and
(3.2) hold. Then the following statements are equivalent

(i) u is a subsolution of (1.1),

(ii) u satisfies the strong maximum principle (3.6),

(iii) u satisfies the strong comparison principle (3.7),

(iv) u satisfies the weak comparison principle (3.8),

(v) u satisfies the weak maximum principle (3.9).

To finish this section we discuss two examples of operators satisfying the
assumptions we made.
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Example 3.8. Let α, β : Rn \ {0} → R be continuous and bounded from
above, with β ≥ 0 and infRn\{0}(α + β) > 0. We take

F (q,X) = −α(q) |q|−2 〈q,Xq〉 − β(q) trX,

which is clearly linear in X, so (3.1) is satisfied. Moreover, in points where
α is nonnegative, we have

−F (q,X) ≤ α(q)λmax (X) + β(q)nλmax (X)

= (α(q) + β(q)n) λmax (X)

and

−F (q,X) ≥ α(q)λmin (X) + β(q)nλmin (X)

= (α(q) + β(q)n) λmin (X) .

In all other points, where α is negative, we have

−F (q,X) ≤ α(q)λmin (X) + β(q)
∑n

k=1
λk(X)

= (α(q) + β(q))λmin (X) + β(q)
∑n

k=2
λk(X)

≤ (α(q) + β(q))λmax (X) + β(q) (n− 1)λmax (X)

= (α(q) + β(q)n)λmax (X)

and

−F (q,X) ≥ α(q)λmax (X) + β(q)
∑n

k=1
λk(X)

= (α(q) + β(q))λmax (X) + β(q)
∑n−1

k=1
λk(X)

≥ (α(q) + β(q))λmin (X) + β(q) (n− 1)λmin (X)

= (α(q) + β(q)n)λmin (X) .

So we may take

cmin = inf
q∈Rn\{0}

(α(q) + β(q)n) > 0

and

cmax = sup
q∈Rn\{0}

(α(q) + β(q)n) <∞,

to see that (3.2) is also satisfied.
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A special case of this example is the following.

Example 3.9. For the normalized p-Laplacian we have

F (q,X) = −p−2
p
|q|−2 〈q,Xq〉 − 1

p
trX

for 1 < p <∞. Taking

α = p−2
p

and β = 1
p

in the preceding example, we see β ≥ 0 and α + β = p−1
p
> 0 to find

cmin = cmax = p+n−2
p

.

So (3.2) is satisfied if p + n > 2. This also includes the limiting case of
the normalized infinity Laplacian by sending p→∞ but not the normalized
1-Laplacian since the condition p−1

p
> 0 is violated in the limit p→ 1.
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3.2 Comparison with cusps

In this section we assume, in addition to the previous assumptions (3.1) and
(3.2), that F is normalized in the first argument and invariant under rota-
tions. Inspired by Lemma 3.4 we derive radial functions to generalize the
comparison with cones in [8] and comparison with polar quadratic functions
in [32] for negative right-hand side f < 0.

So we assume that for all µ ∈ R, q ∈ Rn \ {0}, X ∈ S and Q ∈ O(n) it holds

F (µq,X) = F (q,X)(3.11)

and

F (q,X) = F (Qᵀq,QᵀXQ).(3.12)

In the derivation of the radial functions the values F (q, Id) and F (q, q ⊗ q)
will appear. As a preparation we observe that, by the assumptions we made,
both of these values can be calculated.

Proposition 3.10. There is a constant cF ∈ R with cmin ≤ cF ≤ cmax such
that

F (q, Id) = −cF

for all q ∈ Rn \ {0}.

Proof. Let q1, q2 ∈ Rn \ {0}. There is a Q ∈ O(n) with

q1
|q1| = Q−1 q2

|q2| = QT q2
|q2| .

Then we have

F
(
q1
|q1| , Id

)
= F

(
QT q2

|q2| , Id
)

= F
(
QT q2

|q2| , Q
ᵀQ
)

= F
(
q2
|q2| , Id

)
,

so, by (3.11), there is a constant cF ∈ R such that

F (q, Id) = −cF .

for all q ∈ Rn \{0}. Using (3.2) we obtain cmin ≤ cF ≤ cmax, which completes
the proof.

19



Furthermore we can calculate the other value that will occur.

Proposition 3.11. There is a constant cQ ∈ R with 0 ≤ cQ ≤ cF such that

F (q, q ⊗ q) = −cQ |q|2

for all q ∈ Rn \ {0}.

Proof. Let q = (q1, . . . , qn)ᵀ ∈ Rn \ {0}. First we note that

q ⊗ q = [q1 q, . . . qn q],

so all n columns are linear dependent. Thus the matrix has n− 1 times the
eigenvalue 0. Also we note that q itself is an eigenvector with corresponding
eigenvalue |q|2. So let Q ∈ O(n) be a diagonalizing matrix in a way that
[Qᵀ(q ⊗ q)Q]1,1 = |q|2 and [Qᵀ(q ⊗ q)Q]

i,j
= 0 for 2 ≤ i, j ≤ n. We compute

[Qᵀ(q ⊗ q)Q]
i,j

=
n∑
k=1

Qᵀ
i,k

n∑
l=1

qkqlQl,j =
n∑
k=1

Qᵀ
i,k qk

n∑
l=1

Qᵀ
j,l ql = [Qᵀ q]

i
[Qᵀ q]

j

to find that

[Qᵀ q]2
1

= [Qᵀ(q ⊗ q)Q]1,1 = |q|2

and

[Qᵀ q]2
i

= [Qᵀ(q ⊗ q)Q]
i,i

= 0,

so F (q, q ⊗ q) = F (Qᵀq,Qᵀ(q ⊗ q)Q) only depends on the value of |q|. We
may deduce that there is a function h : R→ R such that

F (q, q ⊗ q) = h(|q|).

Then, by (3.1) and (3.11), for every µ ∈ R, we have

h(|µ q|) = F (µq, (µq)⊗ (µq)) = µ2 F (q, q ⊗ q) = µ2 h(|q|),

so there must be a constant cQ ∈ R such that

h(|q|) = −cQ |q|2 .
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Finally, by (3.2), we have

0 = cmin λmin (q ⊗ q) ≤ −F (q, q ⊗ q) = cQ |q|2

and

cQ |q|2 = −F (q, q ⊗ q) ≤ − |q|2 F (q, Id) = cF |q|2 ,

by the degenerate ellipticity of F and Proposition 3.10. So 0 ≤ cQ ≤ cF ,
completing the proof.

After these preparations and since F is assumed to be invariant under rota-
tions, let us now assume that (x 7→ φ(|x|)) ∈ C2(U \ {0}) is a radial solution
of (1.1) in U \ {0} for some bounded subset U ⊂ Ω.

We may compute for x 6= 0

∇φ(|x|) = φ′(|x|) x
|x| ,

D2φ(|x|) = φ′′(|x|)x⊗x|x|2 + φ′(|x|)
(

Id
|x| −

x⊗x
|x|3

)
=
(
φ′′(|x|)− 1

|x|φ
′(|x|)

)
x⊗x
|x|2 + 1

|x|φ
′(|x|) Id .

Then, if φ′(|x|) 6= 0, we obtain

F∗(∇φ(|x|),D2φ(|x|))
= F (∇φ(|x|),D2φ(|x|))

=
(
φ′′(|x|)− 1

|x|φ
′(|x|)

)
F
(
x
|x| ,

x⊗x
|x|2

)
+ 1
|x|φ

′(|x|)F
(
x
|x| , Id

)
= −

(
φ′′(|x|)− 1

|x|φ
′(|x|)

)
cQ − 1

|x|φ
′(|x|) cF

= −φ′′(|x|) cQ − 1
|x|φ

′(|x|) (cF − cQ),

using the identities provided by Proposition 3.10 and 3.11.
Solving the ordinary differential equation

−φ′′(|x|) cQ − 1
|x|φ

′(|x|) (cF − cQ) = K sup
U
f ≥ sup

U
f,(3.13)

for any constant K ≤ 1, yields

φ(|x|) =


a− K

2 cF
(supU f) |x|2 if cQ = 0,

a+ b
cQ

2 cQ−cF
|x|2−

cF
cQ − K

2 cF
(supU f) |x|2 if 2 cQ 6= cF ,

a+ b log |x| − K
2 cF

(supU f) |x|2 if 2 cQ = cF ,
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with arbitrary a, b ∈ R, as a candidate for the radial solution we are looking
for. The constant K will be chosen afterwards.

For this purpose we have to consider the case of φ′(|x|) = 0.
If cQ = 0 we simply have

D2φ(|x|) = − K
cF

(sup
U
f)x⊗x|x|2

and so

F∗(∇φ(|x|),D2φ(|x|)) ≥ −cmax λmax

(
D2φ(|x|)

)
= cmax

cF
K sup

U
f.(3.14)

Taking K := cF
cmax
≤ 1 then assures F∗(∇φ(|x|),D2φ(|x|)) ≥ supU f .

If cQ 6= 0 then φ′(|x|) = 0 implies

b |x|−
cF
cQ = K

cF
sup
U
f

and so

D2φ(|x|) = φ′′(|x|)x⊗x|x|2

=

(
b
(

1− cF
cQ

)
|x|−

cF
cQ − K

cF
sup
U
f

)
x⊗x
|x|2

= − K
cQ

(sup
U
f)x⊗x|x|2 .

Thus we have

F∗(∇φ(|x|),D2φ(|x|)) ≥ −cmax λmax

(
D2φ(|x|)

)
= cmax

cQ
K sup

U
f.(3.15)

Taking K :=
cQ
cmax
≤ 1 again assures F∗(∇φ(|x|),D2φ(|x|)) ≥ supU f .

We may use the radial symmetric function we just derived together with the
idea of Lemma 3.4 to obtain an important lemma. Because of the shape
of the function appearing in it, we call this property comparison with cusps
from above. The shape of these cusps is fully determined by the right-hand
side f , the values cF , cQ and cmax, and the values of a and b.
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Lemma 3.12. Let f < 0, u ∈ USC(Ω) be a subsolution of (1.1) and U ⊂
Ω be a bounded domain. Furthermore assume that (3.1), (3.2), (3.11) and
(3.12) hold. Then for every x0 ∈ U it holds

u(x) ≤ C(x− x0) on ∂ (U \ {x0}) =⇒ u(x) ≤ C(x− x0) in U

with

C(x) :=


a− 1

2 cmax
(supU f) |x|2 if cQ = 0,

a+ b
cQ

2 cQ−cF
|x|2−

cF
cQ − cQ

2 cF cmax
(supU f) |x|2 if 2 cQ 6= cF ,

a+ b log |x| − cQ
2 cF cmax

(supU f) |x|2 if 2 cQ = cF ,

and a, b ∈ R.

Proof. We only show the case of cQ 6= 0, since it is obvious to transfer the
proof.
So let us assume the assertion is not true. Then there exists some bounded
domain U ⊂ Ω and a point x̂ ∈ U \ {x0} such that

u(x) ≤ C(x− x0) on ∂ (U \ {x0}) but u(x̂) > C(x̂− x0) in U.

Since U is bounded, we can find some ball of radius R covering U . Therefore
it holds

u(x) ≤ Cε(x− x0) := C(x− x0) + ε
cQ

2 cF cmax
(R2 − |x− x0|2)

in ∂ (U \ {x0}) while still keeping u(x̂) > Cε(x̂− x0) and supU f + ε ≤ 0 for
ε > 0 sufficiently small. We may assume that x 7→ u(x)−Cε(x− x0) attains
a local maximum in x̂ and use the preceding calculation to obtain

F∗(∇Cε(x̂− x0),D2Cε(x̂− x0)) ≥ sup
U
f + ε > f(x̂),

contradicting u being a subsolution of (1.1).

Remark 3.13. We want to mention that Lemma 3.12 can be obtained for
nonnegative f ≥ 0 with slightly different cusps. Indeed we may choose K = 1
in (3.13), (3.14), and (3.15) to obtain the cusp

C(x) :=


a− 1

2 cF
(supU f) |x|2 if cQ = 0,

a+ b
cQ

2 cQ−cF
|x|2−

cF
cQ − 1

2 cF
(supU f) |x|2 if 2 cQ 6= cF ,

a+ b log |x| − 1
2 cF

(supU f) |x|2 if 2 cQ = cF ,

for suitable a, b ∈ R.

23



This useful property of subsolutions allows us to prove a Hopf-type Lemma.

Lemma 3.14. Let f < 0, u ∈ USC(Ω) be a subsolution to (1.1) and Ω
satisfy the interior sphere condition (2.1). Furthermore assume that (3.1),
(3.2), (3.11) and (3.12) hold, and let x0 ∈ ∂Ω be a boundary point with

u(x0) > u(x)(3.16)

for all x ∈ Ω. Then for every µ ∈ ∂B1(0) with 〈µ, ν(x0)〉 > 0 holds

lim inf
r↓0

u(x0)− u(x0 − rµ)

r
> 0

and therefore

∂u

∂µ
(x0) > 0,

provided the derivative ∂u
∂µ

(x0) exists.

Proof. Again we only show the case of cQ 6= 0. According to the interior
sphere condition (2.1) there is some R > 0 such that BR(y0) ⊂ Ω and
∂BR(y0) ∩ ∂Ω = {x0} with y0 := x0 − Rν(x0). We also note that u sat-
isfies

F∗(∇u,D2u) ≤ ε sup
Ω
f(3.17)

in Ω for all ε ∈ (0, 1) in the sense of viscosity solutions. We may take ε > 0
so small that

u(y0) ≤ u(x0) + ε
cQ

2cF cmax

(
sup
BR(y0)

f
)
R2(3.18)

Then we define

ψ(x) := u(x0) + ε
cQ

2cF cmax

(
sup
BR(y0)

f
) (
R2 − |x− y0|2

)
.

Now we have

u(y0) ≤ ψ(y0),
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by (3.18) and

u(x) < u(x0) = ψ(x)

on ∂BR(y0) by (3.16). Therefore we have u ≤ ψ on ∂(BR(y0) \ {y0}). Then
Lemma 3.12 implies u ≤ ψ in BR(y0) by considering εf instead of f , which
is justified by (3.17).
For every µ ∈ ∂B1(0) with 〈µ, ν(x0)〉 > 0 holds x0−rµ ∈ BR(y0) for all r > 0
sufficiently small. Using u(x0) = ψ(x0) we conclude

u(x0)− u(x0 − rµ)

r
≥ ψ(x0)− ψ(x0 − rµ)

r

for all r > 0 sufficiently small. Sending r ↓ 0 we find

lim inf
r↓0

u(x0)− u(x0 − rµ)

r
≥ ∂ψ

∂µ
(x0) = −ε cQ

cF cmax

(
sup
BR(y0)

f
)
R 〈ν(x0), µ〉 > 0.

It was shown in [8] that, in case of the infinity Laplacian and vanishing
right-hand side, the equivalence shown in Section 3.1 can be preserved when
reducing the weak comparison principle (3.8) to these radial functions. The
proof uses Lipschitz continuity of C, which is the case if and only if cQ = cF
or cQ = 0. So, in that case, comparison with cusps from above is a defining
property of subsolutions.

Definition 3.15. We say u ∈ USC(Ω) enjoys comparison with cusps from
above if for every bounded subset U ⊂ Ω, every point x0 ∈ U

u(x) ≤ C(x− x0) on ∂ (U \ {x0}) =⇒ u(x) ≤ C(x− x0) in U

with C(x) as in Lemma 3.12. Note that u(x) ≤ C(x − x0) on ∂(U \ {x0})
only for suitable values of a and b.

To finish the section we want to mention that, though the function appear-
ing in Lemma 3.12 looks complicated, the constants cF and cQ are easily
computed with

cF = −F (q, Id),
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according to Proposition 3.10 and

cQ = − 1
|q|2F (q, q ⊗ q),

by Proposition 3.11 for arbitrary q ∈ Rn \ {0}. We discuss this in two
examples.

Example 3.16. Due to the assumptions we made we have to take α, β ∈ R
constant in Example 3.8 with β ≥ 0 and α + β > 0. Then we have

F (q,X) = −α |q|−2 〈q,Xq〉 − β trX.

By Example 3.8 we already know cmax = (α + β n). Additionally we easily
compute

cF = α + β n and cQ = α + β > 0,

so 2cQ − cF = α− β (n− 2). Then, in Lemma 3.12, we have

C(x) =

{
a+ b α+β

α−β (n−2)
|x|2−

α+β n
α+β − α+β

2 (α+β n)2 (supU f) |x|2 if α 6= β (n− 2),

a+ b log |x| − α+β
2 (α+β n)2 (supU f) |x|2 if α = β (n− 2).

We observe that for the lower order exponent we have 2 − α+β n
α+β

≤ 1, with
equality if and only if β = 0 or n = 1.

Example 3.17. Again for 1 < p < ∞ taking α = p−2
p

and β = 1
p

in the
preceding example brings us to the normalized p-Laplacian

F (q,X) = −p−2
p
|q|−2 〈q,Xq〉 − 1

p
trX.

Then we have cmax = p+n−2
p

, cF = p+n−2
p

and cQ = p−1
p

, so 2cQ − cF = p−n
p

.
We obtain

C(x) =

{
a+ b p−1

p−n |x|
p−n
p−1 − p(p−1)

2 (p+n−2)2 (supU f) |x|2 if p 6= n,

a+ b log |x| − p(p−1)
2 (p+n−2)2 (supU f) |x|2 if p = n.

In the limiting case p→ 1 we have cQ = 0, for which we would know how to
calculate the cusp function, but in the derivation we demanded p−2

p
+ 1

p
> 0.

So the result is not applicable in this case.
In the other limiting case p→∞ we obtain

C(x) = a+ b |x| − 1
2
(sup
U
f) |x|2 .

Then Lemma 3.12 becomes the so called ‘Comparison with Polar Quadratic
Polynomials from above’ as in [32]. This property is also introduced as
‘Comparison with Cones from above’ for vanishing right-hand side in [8].
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3.3 Local regularity

In this section we want to use comparison with cusps property to obtain
local regularity of subsolutions. We use the methods provided in [8]. These
apply whenever the cusps in Lemma 3.12 are bounded, which is the case if
the lower order exponent is positive. So we assume

cF < 2cQ(3.19)

or, by recalling Proposition 3.10 and 3.11, that F (q, Id) > 2 |q|−2 F (q, q ⊗ q)
for all q ∈ Rn \ {0}. In order to improve the readability we introduce

γ := 2− cF
cQ

and θ :=
cQ

2 cF cmax

to replace the constants appearing in Lemma 3.12. So we are hereafter con-
sidering the case of γ > 0.

In order to obtain local estimates on subsolutions u ∈ USC(Ω) of (1.1), we
want the left-hand side of the implication in Lemma 3.12 to always hold.
Therefore, for u ∈ USC(Ω), y ∈ Ω, r < dist(y, ∂Ω), we define

Lr(y) := max
z∈∂Br(y)

u(z)−u(y)
rγ

.

If u happens to be Hölder continuous, this value is less or equal to its Hölder
norm. On the other hand, if this value is locally bounded, u must be locally
Hölder continuous with exponent γ. To verify that Lr is locally bounded
near r = 0, we estimate the growth of the mapping r 7→ Lr(y).

Proposition 3.18. Let u ∈ USC(Ω) enjoy comparison with cusps from
above. Then it holds

Ls(y) ≤ Lr(y) +
(

sup
Br(y)

f
)
θ (r2−γ − s2−γ).

for all s ≤ r.

Proof. By definition we have

u(z) ≤ u(y) + Lr(y) rγ = u(y) + Lr(y) |x− y|γ
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for all z ∈ ∂Br(y). Adding

0 =
(

sup
Br(y)

f
)
θr2−γ |z − y|γ −

(
sup
Br(y)

f
)
θ |z − y|2 ,

on the right-hand side, we find

u(z) ≤ u(y) + γ
(
Lr(y) +

(
sup
Br(y)

f
)
θr2−γ) 1

γ
|z − y|γ −

(
sup
Br(y)

f
)
θ |z − y|2

for all z ∈ ∂Br(y). Then, by comparison with cusps from above, the same
inequality holds for all z ∈ Br(y) and so for all 0 < s < r and z ∈ ∂Bs(y).
We find by replacing |z − y| = s and rearranging

u(z)−u(y)
sγ

≤ Lr(y) +
(

sup
Br(y)

f
)
θ (r2−γ − s2−γ)

for all z ∈ ∂Bs(y). Taking the maximum on the left-hand side yields the
assertion.

Using this proposition we can generalize the results shown in [8, Lemma 2.4
and Lemma 2.5], carefully repeating the steps of the proof. In the special
case of γ = 1 the results coincide.

Lemma 3.19. Let f ≤ 0 and u ∈ USC(Ω) enjoy comparison with cusps from
above. Then the mapping r 7→ Lr(y) is nondecreasing in r and nonnegative.

Proof. From Proposition 3.18 it immediately follows that the mapping is
nondecreasing.
So it is left to show that 0 ≤ Lr(y). Since Lr(y) decreases as r decreases, we
may find some

M > lim
r↓0

Lr(y).

We want to show −M < limr↓0 Lr(y) to conclude that M can not be chosen
negative, which then implies the assertion.
The monotonicity and the preceding inequality imply that there is some
r0 > 0 such that

u(x) ≤ u(y) +M |x− y|γ(3.20)
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for all x ∈ Br0(y). Also by monotonicity we have

u(y) ≤ u(x) + max
z∈∂Br(x)

u(z)− u(x)

rγ
|x− y|γ(3.21)

for all r > |x− y|. Taking r < r0
2

, we have

|z − y| ≤ |z − x|+ |x− y| < r0,

so we may use (3.20) for x = z in (3.21) with |z − y|γ ≤ |x− y|γ + rγ, which
holds for γ ≤ 1, to obtain

u(y) ≤ u(x) +
u(y) +M (|x− y|γ + rγ)− u(x)

rγ
|x− y|γ .

This can be rearranged to

−M rγ + |x− y|γ

rγ − |x− y|γ
|x− y|γ ≤ u(x)− u(y)

and so

−M rγ + εγ

rγ − εγ
≤ max

x∈∂Bε(y)

u(x)− u(y)

εγ
= Lε(y).

Sending ε ↓ 0 we conclude −M ≤ limr↓0 Lr(y), implying limr↓0 Lr(y) ≥ 0 and
proving the assertion.

Theorem 3.20. Let f ≤ 0 and u ∈ USC(Ω) enjoy comparison with cusps
from above. Then u ∈ C0,γ

loc (Ω).

Proof. By definition of Lr(y) and comparison with cusps from above we have

u(x) ≤ u(y) + max
z∈∂Br(y)

u(z)− u(y)

rγ
|x− y|γ(3.22)

for |x− y| ≤ r and r < dist(y, ∂Ω), since the inequality holds for |x− y| = r.
If |x− y| < r, we have(

rγ

rγ − |x− y|γ
)
u(x)− max

z∈∂Br(y)
u(z)

(
|x− y|γ

rγ − |x− y|γ
)
≤ u(y).
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For fixed r the left-hand side is lower semicontinuous in y ∈ Br(x), so u(y)
is locally bounded from below. Since u is upper semicontinuous it is also
locally bounded from above, so Lr(y) is locally bounded for fixed r.
Then we know that 0 ≤ Lr(y) is bounded for fixed r in compact subsets of
{z ∈ Ω | dist(z, ∂Ω) < r} and decreases whenever r decreases, both according
to Lemma 3.19.
We may now rewrite (3.22) to see

u(x)− u(y) ≤ Lr(y) |x− y|γ

and by interchanging x and y we see

u(y)− u(x) ≤ Lr(x) |x− y|γ .

Finally we put these estimates together to obtain

|u(x)− u(y)| ≤ max (Lr(x), Lr(y)) |x− y|γ

for |x− y| < r and max(dist(x, ∂Ω), dist(y, ∂Ω)) < r. This implies the asser-
tion.

We continue developing the previous examples.

Example 3.21. As in Example 3.16, let α, β ∈ R with β > 0, α+β > 0 and

F (q,X) = −α |q|−2 〈q,Xq〉 − β trX.

Then we have γ = α−β (n−2)
α+β

> 0 if and only if α > β(n− 2). So α > β(n− 2)

implies that all upper semicontinuous subsolutions of (1.1) with nonpositive
right-hand side f ≤ 0 are locally Hölder continuous with exponent γ and
locally Lipschitz continuous if β = 0 or n = 1.

Example 3.22. In the case of the normalized p-Laplacian

F (q,X) = −p−2
p
|q|−2 〈q,Xq〉 − 1

p
trX,

we find γ = p−n
p−1

> 0 if and only if p > n. So p > n implies local Hölder

continuity with exponent p−n
p−1

for all upper semicontinuous subsolutions of

(1.1) with nonpositive right-hand side f ≤ 0.
Making the assumption that u is a nonnegative viscosity solution of (1.1) and
the right-hand side f is bounded, it was shown in [7] that u is even locally
Lipschitz continuous, independent of the dimension.
In the limiting case p → ∞, we also obtain local Lipschitz continuity in all
dimensions, as it was shown in [8].
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The Dirichlet boundary value problem

In this chapter we will discuss the Dirichlet boundary value problem (1.2).
We introduce the suitable definition of viscosity solutions to this type of
problem. Then we will show existence of solutions for continuous boundary
data under the assumptions made in Chapter 3. Finally we will show power
concavity for constant right-hand side and vanishing boundary data under
assumptions on the operator F and an additional structural assumption on
the domain Ω.

4.1 Viscosity solutions of the Dirichlet bound-

ary value problem

First we have to extend the concept of viscosity solutions to boundary value
problems. The notion we introduced, does not suit for boundary points.
Therefore a suitable notion was introduced in [16]. Again, there are two
ways to formulate the definition. The one we will use requires the so called
closed semijets.

Definition 4.1. For a function u : Ω→ R and a point x ∈ Ω we define

J 2,+
u(x) = {(q,X) ∈ Rn × S | ∃(xn, qn, Xn) ∈ Ω× Rn × S,

(qn, Xn) ∈ J 2,+u(xn) and

(xn, u(xn), qn, Xn)→ (x, u(x), q,X)} ,

the closed second order superjet of u at x, and

J 2,−
u(x) = {(q,X) ∈ Rn × S | ∃(xn, qn, Xn) ∈ Ω× Rn × S,

(qn, Xn) ∈ J 2,−u(xn) and

(xn, u(xn), qn, Xn)→ (x, u(x), q,X)} ,
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the closed second order subjet of u at x.

The closed semijets are not what is commonly understood as the closure of
set-valued functions, since they depend on the values of the function u but
their graphs do not record its values.
Now we may state the definition of viscosity solutions. Again we consider a
more general right-hand side f : Ω× R× Rn → R that satisfies (2.3).

Definition 4.2. We call u ∈ USC(Ω) a viscosity subsolution of (1.2) if it is
a viscosity subsolution of (1.1) in Ω and for every x ∈ ∂Ω it holds

min {F∗(q,X)− f(x, u(x), q), u(x)− g(x)} ≤ 0,

for all (q,X) ∈ J 2,+
u(x).

Likewise we call u ∈ LSC(Ω) a viscosity supersolution of (1.2) if it is a
viscosity supersolution of (1.1) in Ω and for every x ∈ ∂Ω it holds

max {F ∗(q,X)− f(x, u(x), q), u(x)− g(x)} ≥ 0,

for all (q,X) ∈ J 2,−
u(x).

So a viscosity solution of the Dirichlet boundary value problem is a viscosity
solution of the (1.1) that additionally solves (1.1) in boundary points or
satisfies the boundary condition, but not necessarily both. Again we will
drop the term viscosity and just speak of sub- and supersolutions.
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4.2 Existence of solutions

In this section we want to show, that viscosity solutions of the Dirichlet
boundary value problem (1.2) actually exist. For showing existence of vis-
cosity solutions a key tool is Perron’s method [10, Chapter 4]. The idea is
to consider a set of subsolutions, take the pointwise supremum of these func-
tions, and to hopefully obtain a solution to the problem. This motivates the
following lemma.

Lemma 4.3. Let Σ ⊂ C(Ω). If every v ∈ Σ is a subsolution of (1.1),
then the pointwise defined function u(x) := supv∈Σ v(x) is also a continuous
subsolution of (1.1) provided u ∈ USC(Ω).

Proof. First we note that u ∈ LSC(Ω), since it is the pointwise supremum of
continuous functions. By assumption we also have u ∈ USC(Ω). Therefore
u ∈ C(Ω).
We now assume u is not a subsolution of (1.1). Then there must be some
point x0 and a function φ ∈ C2(Ω) such that u− φ attains a local maximum
in x0 with u(x0) = φ(x0) but F∗(∇φ(x0),D2φ(x0)) > f(x0). We then define

φδ(x) := φ(x) + δ
2 cmax

|x− x0|2 .

Then u− φδ attains a strict local maximum in x0 and by (3.3)

F∗(∇φδ(x0),D2φδ(x0)) ≥ F∗(∇φ(x0),D2φ(x0))− δ > f(x0)

for δ > 0 sufficiently small. By semicontinuity of the left-hand side and
continuity of f , there is a ball BR(x0) such that

F∗(∇φδ(x),D2φδ(x)) > f(x)(4.1)

for all x ∈ BR(x0). Then by definition, for any ε > 0, there is a vε ∈ Σ
such that vε(x0) > u(x0) − ε. Now we define ψδ,ε(x) := φδ(x) − ε, so that
ψδ,ε(x0) = u(x0)− ε < vε(x0) and

ψδ,ε(x) = φ(x) + δ
2cmax

|x− x0|2 − ε
≥ u(x) + δ

2cmax
r2 − ε

≥ u(x)

≥ vε(x)
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on ∂Br(x0) for some r < R and ε > 0 sufficiently small. Such an r exists
because u − φδ attains a strict local maximum in x0. We conclude that
ψδ,ε(x0) < vε(x0) while ψδ,ε ≥ vε on ∂Br(x0), so there is some x̂ ∈ Br(x0) such
that vε − ψδ,ε attains a local maximum in x̂. Then, since vε is a subsolution,
this implies

F∗(∇ψδ,ε(x̂),D2ψδ,ε(x̂) = F∗(∇φδ(x̂),D2φδ(x̂)) ≤ f(x̂),

by construction of ψδ,ε, contradicting (4.1).

So the supremum of continuous subsolutions of (1.1) is again a continuous
subsolution of the same problem if it is upper semicontinuous, which is by far
not obvious and the first difficulty that arises. The second crucial part is to
show that the obtained function is also a supersolution. Finally we have to
make sure, that the obtained function agrees with the prescribed boundary
condition. For the latter we have to restrict the set of considered subsolu-
tions of (1.1) to a subset of those which are also subsolutions of the Dirichlet
boundary value problem (1.2). The following theorem solves these problems.
It is a generalization of the existence result [32, Theorem 4.1] for the normal-
ized infinity Laplacian. Further difficulties arise in the proof whenever an
explicit function is needed, since we do not demand the operator F to have
a specific shape which would allow us to explicitly compute F (∇u,D2u).

Theorem 4.4. If f > 0, g ∈ C(∂Ω), and (3.1), (3.2), (3.11), (3.12) and
(3.19) hold, then there exists a viscosity solution u ∈ C(Ω) of (1.2).

Proof. First we define a subset of all continuous subsolutions

Af,g := {v ∈ C(Ω) | F∗(∇v,D2v) ≤ f in Ω and v ≤ g on ∂Ω}.

We note that Af,g is nonempty since it contains all constant functions smaller
than the infimum of g on ∂Ω. So we may define a candidate for a solution
by taking the pointwise supremum

u(x) := sup
v∈Af,g

v(x)

for each x ∈ Ω.
We also see that u = g on ∂Ω. Indeed, for each x0 ∈ ∂Ω and each ε > 0 there
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is some ball Bδ(x0) such that |g(x)− g(x0)| < ε for each x ∈ Bδ(x0) ∩ ∂Ω.
Then, by the derivation of Lemma 3.12, the function

vε(x) := g(x0)− ε+ b 1
γ
|x− x0|γ − 1

2 cF
(inf

Ω
f) |x− x0|2

satisfies ∇vε(x) 6= 0 and so F∗(∇vε,D2vε) = F (∇vε,D2vε) = infΩ f for all
x ∈ Ω and b ∈ R. When instead taking x ∈ ∂Ω and

b < −2 γ maxz∈∂Ω|g(z)|
rγ

≤ 0,

we see that for |x− x0| < r we have vε(x) ≤ g(x0) − ε ≤ g(x) and for
|x− x0| ≥ r we have vε(x) ≤ g(x0) − ε + b 1

γ
rγ ≤ −maxz∈∂Ω |g(z)| ≤ g(x).

So vε ∈ Af,g and

g(x0)− ε ≤ vε(x0) ≤ u(x0) ≤ g(x0)

for every ε > 0. We conclude u = g on ∂Ω.

The remaining proof is done in three steps. We show that

1. u is a supersolution of (1.2),

2. u is continuous,

3. u is a subsolution of (1.2).

We start with the first step:
For this we first note that u is lower semicontinuous, as it is the pointwise
supremum of continuous functions. Let us now assume u is not a supersolu-
tion of (1.1). Then there must be a point x̂ ∈ Ω and a function φ ∈ C2(Ω)
so that u− φ attains a local minimum in x̂, but

F ∗
(
∇φ(x̂),D2φ(x̂)

)
< f(x̂).

Defining the function

φδ(x) := φ(x)− δ
cmin
|x− x̂|2 ,

we see

F ∗
(
∇φδ(x̂),D2φδ(x̂)

)
≤ F ∗

(
∇φ(x̂),D2φ(x̂)

)
+ δ < f(x̂)
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for a sufficiently small δ > 0 while u − φδ attains a strict local minimum in
x̂. By upper semicontinuity of the left-hand side and continuity of f , there
must be some ball Br(x̂) such that

F ∗
(
∇φδ(x),D2φδ(x)

)
< f(x)(4.2)

for all x ∈ Br(x̂).
For all ε > 0 there is some vε ∈ Af,g such that u(x̂)− ε < vε(x̂) < u(x̂) + ε.
We define

φ̂(x) := φδ(x) + ε

Then we have φ̂ > vε in some domain Uε ⊂ Br(x̂) containing x̂ and φ̂ ≤ vε
outside of this domain, for ε sufficiently small. We fix such a ε > 0.
Now we define v̂ := max{φ̂, vε} ∈ C(Ω). Clearly we have v̂ ≤ g on ∂Ω, since
v̂ = vε outside of Uε ⊂ Ω and vε ∈ Af,g. Inside of Uε we have v̂ = φ̂, which
is by (4.2) a subsolution in Uε. Outside of Uε we have v̂ = vε, which is a
subsolution by assumption.
So v̂ satisfies F∗(∇v,D2v) ≤ f in Ω. We may conclude v̂ ∈ Af,g. On the other

hand we have v̂(x̂) = φ̂(x̂) > φδ(x̂) = u(x̂), contradicting the construction of
u. So, together with u = g on ∂Ω, we conclude that u is a supersolution of
(1.2).

In the second step we will show continuity:
With Theorem 3.20 for supersolutions we already know that u ∈ Cγ

loc(Ω).
Therefore we only need to show

lim
x∈Ω→z

u(x) = g(z).

We denote the set of continuous supersolutions by

Bf,g := {v ∈ C(Ω) | F ∗(∇v,D2v) ≥ f in Ω and v ≥ g on ∂Ω}.

For an arbitrary z ∈ Ω we define the function

ψ(x) := A+ B
2 cmax

|x− z|2

to see with (3.2) that F ∗(∇ψ(x),D2ψ(x)) ≥ −B. So we take B ≤ − supΩ f
and A so large that ψ ≥ g on ∂Ω. Therefore Bf,g is not empty and we may
define

v := inf
w∈Bf,g

w(x)
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for every x ∈ Ω. By construction we have v ∈ USC(Ω) and clearly v ≤ g.

We fix a z ∈ ∂Ω. Then for all ε > 0 there is a r > 0 such that

x ∈ ∂Ω ∩Br(z) =⇒ |g(x)− g(z)| < ε,(4.3)

by continuity of g.
Since Ω is bounded, there is some R with

R > sup
x∈Ω
|x− z| .

Then we may take a large number b such that the mapping

s 7→ b 1
γ
sγ − 1

2cF
sup

Ω
fs2(4.4)

is monotone increasing on [0, R) and

b 1
γ
rγ − 1

2cF
sup

Ω
fr2 ≥ 2 sup

∂Ω
|g| .(4.5)

Then we define the function

w(x) := g(z) + ε+ b 1
γ
|x− z|γ − 1

2 cF
(sup

Ω
f) |x− z|2 .

Again, by the derivation of Lemma 3.12, we know ∇w(x) 6= 0 and

F ∗(∇w(x),D2w(x)) = F (∇w(x),D2w(x)) = sup
Ω
f.

Moreover, by (4.4) and (4.3), we have

w(x) ≥ g(z) + ε ≥ g(x)

for x ∈ ∂Ω ∩Br(z). On the other hand, by (4.4) and (4.5), we have

w(x) ≥ g(z) + ε+ b 1
γ
rγ − 1

2 cF
(sup

Ω
f) r2 ≥ g(z) + 2 sup

∂Ω
|g| ≥ g(x)

for x ∈ ∂Ω \Br(z). So w ∈ Bf,g and by construction

v(z) ≤ w(z) = g(z) + ε
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for all ε > 0, so v(z) ≤ g(z).
Also v must be upper semicontinuous in Ω, so we have

g(z) ≥ v(z) ≥ lim sup
x∈Ω→z

v(x).

Using the comparison principle [33, Theorem 2.4] we know w1 ≤ w2 for all
w1 ∈ Af,g and w2 ∈ Bf,g in Ω, so u(x) ≤ v(x) pointwise for all x ∈ Ω. This
implies

lim sup
x∈Ω→z

u(x) ≤ lim sup
x∈Ω→z

v(x) ≤ g(z).

On the other hand, by lower semicontinuity of u in Ω, we have

g(z) = u(z) ≤ lim inf
x∈Ω→z

u(x).(4.6)

Therefore limx∈Ω→z u(x) = g(z) for all z ∈ ∂Ω, so u ∈ C(Ω).

We turn to the third and last step:
Knowing from the second step that u is continuous, we may invoke Lemma
4.3 to see that u is a subsolution of (1.1). Together with u = g on ∂Ω we
conclude that u is subsolution of (1.2).

If the right-hand side is f < 0, we may consider problem (1.2) with right-hand
side f̃ := −f and boundary data g̃ := −g to obtain a continuous viscosity
solution ũ. Then, by the structure of F , the continuous function u := −ũ is
a viscosity solution of problem (1.2). We conclude the following corollary.

Corollary 4.5. If f > 0 or f < 0, g ∈ C(∂Ω), and (3.1), (3.2), (3.11),
(3.12) and (3.19) hold, then there exists a viscosity solution u ∈ C(Ω) of
(1.2).
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4.3 Power concavity

In this section we investigate a very special type of problem, that is showing
so called power concavity of viscosity solutions of

(4.7)

{
F (∇u,D2u) = 1 in Ω,

u = 0 on ∂Ω

in a convex and bounded domain Ω ⊂ Rn that the interior sphere condition
(2.1). To be more precise, we want to show that if u is a positive solution to

(4.7) then u
1
2 is a concave or equivalently −u 1

2 is a convex function.

Therefore we may drop the assumption (3.19) but have to assume that the
boundary condition in (4.7) holds exactly and not only in the sense of vis-
cosity solutions. We also make another assumption on the structure of F .
We assume that for every q ∈ Rn the mapping A 7→ F ∗(q, A−1) is concave in
S++. That means

(4.8) F ∗(q, (µA1 + (1− µ)A2)−1) ≥ µF ∗(q, A−1
1 ) + (1− µ)F ∗(q, A−1

2 )

for all q ∈ Rn, A1, A2 ∈ S++ and all µ ∈ [0, 1].

The route we take in this section was prescribed in [11]. We show that the

boundary value problem w = −u 1
2 solves

(4.9)

{
F (∇w,D2w) = 1

w

(
cQ |∇w|2 + 1

2

)
in Ω,

u = 0 on ∂Ω

whenever u is a positive viscosity solution of (4.7). In the second step we

show that the convex envelope w∗∗ of −u 1
2 , that is the largest convex function

below −u 1
2 , is a viscosity supersolution of the derived equation. In the third

and last step we apply the comparison principle [33, Theorem 2.4] to see that

subsolutions are smaller than supersolutions and conclude w∗∗ ≤ −u
1
2 ≤ w∗∗,

so the convex envelope is actually the function itself.

First of all we want to make sure that u is positive, so u
1
2 is welldefined. It

is easy to prove that our assumptions are sufficient to guarantee this.
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Proposition 4.6. Let u ∈ LSC(Ω) be supersolution of (4.7). Then we have
u > 0 in Ω.

Proof. We assume there is a point x0 ∈ Ω such that u(x0) ≤ 0. Since u
is lower semicontinuous and u = 0 on ∂Ω, we may assume that u attains
a local minimum in x0. Then the constant function φ(x) := u(x0) satisfies
φ ∈ C2(Ω) and u− φ attains a local minimum in x0. Therefore we have

F ∗(∇φ(x0),D2φ(x0)) = F ∗(0, 0) ≤ −cminλmin (0) = 0 < 1.

Then u cannot be a supersolution of (4.7).

Knowing that u
1
2 is welldefined and nonzero in Ω, we can now show that if u

is a viscosity subsolution of (1.2) then −u 1
2 is indeed a viscosity supersolution

of (4.9). More precisely, we formulate the following proposition. Its proof is
a straightforward computation.

Proposition 4.7. A function u ∈ USC(Ω) is a positive viscosity subsolution

of (4.7) if and only if v := −u 1
2 ∈ LSC(Ω) is a negative viscosity supersolu-

tion of (4.9).

Proof. We will only show one implication, as the other only involves similar
calculations. So let u ∈ USC(Ω) be a positive viscosity subsolution of (4.7).

Clearly v := −u 1
2 ∈ LSC(Ω) is negative. Let φ ∈ C2(Ω) and x0 be such that

v−φ attains a local minimum in x0 with (v−φ)(x0) = 0, so φ(x0) < 0. Then
u− φ2 attains a local maximum in x0. By computing

∇(φ2)(x0) = 2φ(x0)∇φ(x0)

and

D2(φ2)(x0) = 2∇φ(x0)⊗∇φ(x0) + 2φ(x0)D2φ(x0)

we see that ∇(φ2)(x0) = 0 if and only if ∇φ(x0) = 0. Then in this case we
have in x0

1 ≥ F∗(∇(φ2),D2(φ2)) = F∗(0, 2φD2φ) = 2φF ∗(0,D2φ),

and so
F ∗(0,D2φ) ≥ 1

2φ
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as desired. In the case of ∇(φ2)(x0) 6= 0 we have in x0

1 ≥ F∗(∇(φ2),D2(φ2))

= F (∇(φ2),D2(φ2))

= F (2φ∇φ, 2∇φ⊗∇φ+ 2φD2φ)

= 2F (∇φ,∇φ⊗∇φ) + 2φF (∇φ,D2φ)

= 2 (−cQ |∇φ|2 + φF (∇φ,D2φ)

and finally
F (∇φ,D2φ) ≤ 1

φ
(cQ |∇φ|2 + 1

2
).

By Carathéodory’s theorem on convex hulls, which can be found in [12], each
point of the convex set Ω can be decomposed into convex combinations of
at most n + 1 other points of Ω. By then taking the convex combination of
the corresponding function values, we obtain a convex function. Taking the
supremum over all of these decompositions we obtain the convex envelope,
the largest convex function below the function of consideration.

Definition 4.8. For a function w : Ω→ R, we call the function

w∗∗(x) = inf

{
k∑
i=1

µiw(xi)

∣∣∣∣∣ x =
k∑
i=1

µixi,

xi ∈ Ω, µi > 0,
k∑
i=1

µi = 1, k ≤ n+ 1

}

the convex envelope of w.

The following lemma shows that, for viscosity solutions of (4.7), the defining
points of their convex envelope never lie on the boundary of Ω. This is a
very useful property, since the boundary data itself does not contain any
information about the behavior of solutions inside the domain. The proof
we give requires the interior sphere condition (2.1). However, this is the only
part where we actually use this condition, raising the question whether the
main result of this section can be improved at this point.

41



Lemma 4.9. Let u ∈ C(Ω) be a viscosity solution to (4.7) and w = −u 1
2 .

For every x ∈ Ω, let x1, . . . , xk ∈ Ω, µ1, . . . , µk > 0 with
∑k

i=1 µi = 1 be such
that

x =
k∑
i=1

µixi and w∗∗(x) =
k∑
i=1

µiw(xi).

Then x1, . . . , xk ∈ Ω.

Proof. Let x0 ∈ ∂Ω be any boundary point and µ ∈ ∂B1(0) be any direction
with 〈µ, ν(x0)〉 > 0. Using the definition of w < 0 it is easy to see that

w(x0)− w(x0 − tµ)

t
≥ 1

2

1

w(x0 − tµ)

u(x0)− u(x0 − tµ)

t
(4.10)

for all t > 0. Using u = 0 on ∂Ω and u > 0 in Ω, we may invoke Hopf’s
Lemma (3.14) for supersolutions and positive right-hand sides to see

lim sup
t↓0

u(x0)− u(x0 − tµ)

t
< 0.

This together with w(x0 − tµ) ↑ 0 for t ↓ 0 and (4.10) implies

w(x0)− w(x0 − tµ)

t
→∞

for t ↓ 0. Therefore w must be convex close to the boundary and the convex
envelope of w can not be spanned by any boundary points.

Remark 4.10. Another proof of Lemma (4.9) was essentially provided for
the infinity Laplacian in [11] and can be adapted using the methods derived
in Chapter 3 and assuming (3.19).

In order to show that the convex envelope of a viscosity supersolution of
(4.9) is again a viscosity supersolution of the same problem, we first need the
following technical lemma. The necessity of this Lemma in turn motivates
the structural assumption (4.8) made at the beginning of this section.

Lemma 4.11. Let q ∈ Rn, A1, A2 ∈ S++, µ ∈ [0, 1]. Then

1

−F ∗(q, (µA1 + (1− µ)A2)−1)
≥ µ

1

−F ∗(q, A−1
1 )

+ (1− µ)
1

−F ∗(q, A−1
2 )

,

so the mapping A 7→ 1
−F ∗(q,A−1)

is concave in S++.
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Proof. First let B1, B2 ∈ S++ and ν ∈ [0, 1]. Then by (4.8)

F ∗(q, (νB1 + (1− ν)B2)−1) ≥ ν F ∗(q, B−1
1 ) + (1− ν)F ∗(q, B−1

2 )

or equivalently

1

−F ∗(q, (νB1 + (1− ν)B2)−1)
≥ 1

−ν F ∗(q, B−1
1 )− (1− ν)F ∗(q, B−1

2 )

for all q ∈ Rn. Now let A1, A2 ∈ S++ and µ ∈ [0, 1]. To keep the readability
we define

c1 := −F ∗(q, A−1
1 ) and c2 := −F ∗(q, A−1

2 ).

We note that c1, c2 > 0 by (3.2). Then we take

ν :=
µ c2

µ c2 + (1− µ) c1

, B1 :=
A1

c2

, B2 :=
A2

c1

and see

1

−F ∗(q, (µA1 + (1− µA2))−1)
=

µ c2 + (1− µ) c1

−F ∗(q, (ν B1 + (1− ν)B2)−1)

≥ µ c2 + (1− µ) c1

−ν F ∗(q, B−1
1 )− (1− ν)F ∗(q, B−1

2 )

=
µ c2 + (1− µ) c1

ν c1 c2 + (1− ν) c1 c2

=
µ c2 + (1− µ) c1

c1 c2

= µ
1

c1

+ (1− µ)
1

c2

,

using the positive homogeneity of F ∗ in the second argument, to obtain the
desired.

Now we are able to prove the claimed property of the convex envelope of
viscosity supersolutions to (4.9).

Lemma 4.12. Let w be a viscosity supersolution to (4.9). Then w∗∗ is a
viscosity supersolution to (4.9).
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Proof. First we note that w∗∗ = w = 0 on ∂Ω, according to [1, Lemma
4]. So we only need to check that w∗∗ satisfies the definition of a viscosity
supersolution 2.4. For this we need to check that

F ∗ (q,X)− 1
w∗∗(x)

(
cQ |q|2 + 1

2

)
≥ 0

holds for all x ∈ Ω and all (q,X) ∈ J 2,−w∗∗(x). So let x ∈ Ω and (q,X) ∈
J 2,−w∗∗(x). Furthermore we can reduce to the case of positive semidefinite
X, according to [1, Lemma 3]. By Proposition 4.9 we can decompose x in a
convex combination of points x1, . . . , xk ∈ Ω such that

k∑
i=1

µixi = x and
k∑
i=1

µiw(xi) = w∗∗(x)

for some µ1, . . . , µk > 0 with
∑k

i=1 µi = 1. Then by [1, Proposition 1]
for every ε > 0 small enough, there are positive semidefinite matrices with

X1, . . . Xk ∈ S such that (q,Xi) ∈ J
2,−
w(xi) and

X − εX2 ≤

(
k∑
i=1

µiX
−1
i

)−1

=: Y.

We may also assume that the matrices X1, . . . , Xk are positive definite, since
the degenerate case can be handled as in [1, p. 273].
Using that by assumption w is a supersolution of (4.9), we find

1
w(xi)

(
cQ |q|2 + 1

2

)
≤ F ∗ (q,Xi) .

Since X is positive definite we have F ∗(q,X) ≤ −cminλmin (X) < 0, which
allows us together with w < 0 to rearrange the preceding inequality to

−w(xi) ≤ −
1

F ∗(q,Xi)

(
cQ |q|2 +

1

2

)
.

By summation and rearranging the terms again, we obtain

− 1∑k
i=1 µiw(xi)

(
cQ |q|2 +

1

2

)
≥

(
k∑
i=1

µi
1

−F ∗(q,Xi)

)−1

.
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Using that F ∗ is degenerate elliptic we find by plugging in X − εX2 ≤ Y

F ∗(q,X − εX2)− 1
w∗∗(x)

(
cQ |q|2 + 1

2

)
≥ F ∗(q, Y )− 1

w∗∗(x)

(
cQ |q|2 + 1

2

)
= F ∗(q, Y )− 1∑k

i=1 µiw(xi)

(
cQ |q|2 + 1

2

)
≥ F ∗(q, Y ) +

(
k∑
i=1

µi
1

−F ∗(q,Xi)

)−1

≥ 0,

by Lemma 4.11. Sending ε ↓ 0 concludes the assertion.

The following theorem is the main result utilizing all the previous results of
this section and the comparison principle provided in [33, Theorem 2.4].

Theorem 4.13. Let u ∈ C(Ω) be a viscosity solution of (4.7) in convex

Ω and assume that (3.1), (3.2), (3.11), (3.12) and (4.8) hold. Then u
1
2 is

concave.

Proof. By definition u is both, a sub- and a supersolution of (4.7). Being
a supersolution we know by Proposition 4.6 that u is positive in Ω. So u
is a positive subsolution of (4.7). Then, by Proposition 4.7, we find that

w := −u 1
2 is a negative supersolution of (4.9). Using Lemma 4.12, we obtain

that w∗∗ ≤ w is also a negative supersolution of (4.9). Then, again by Propo-
sition 4.7, (w∗∗)

2 is a positive subsolution of (4.7). Invoking the comparison
principle of [33, Theorem 2.4] we find (w∗∗)

2 ≤ w2. On the other hand we
have w∗∗ ≤ w ≤ 0, so (w∗∗)

2 ≥ w2 and finally w2
∗∗ = w2. We may conclude

that w∗∗ = w, making w a convex and u
1
2 a concave function.

We apply our main result to the two examples of the preceding chapters. For
this we only have to check if (4.8) holds.

Example 4.14. As in Example 3.21, let α, β ∈ R with β ≥ 0, α+β > 0 and

F (q,X) = −α |q|−2 〈q,Xq〉 − β trX.

We want to check that (4.8) is satisfied for this operator.
In [1, p.286] it is shown that the mapping (q, A) 7→ 〈q, A−1q〉 is convex in
Rn × S++. By that we mean

(4.11)

〈
µ q1 + (1− µ) q2, (µA1 + (1− µ)A2)−1(q1 + (1− µ) q2)

〉
≥ µ

〈
q1, A

−1
1 , q1

〉
+ (1− µ)

〈
q2, A

−1
2 q2

〉
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for all q1, q2 ∈ Rn \ {0}, A1, A2 ∈ S++ and all µ ∈ [0, 1].
In the case of q 6= 0 we may take q1 = q2 = q in (4.11) to see that the
mapping A 7→ F (q, A−1) is concave in S++ for α ≥ 0.
In the case of q = 0 we take q1, q2 ∈ Rn \ {0} to maximize the right-hand
side of (4.11) and afterwards maximize the left-hand side to obtain that
A 7→ F ∗(0, A−1) is also concave in S++ for α ≥ 0.
We conclude that (4.8) holds, provided α ≥ 0, and that we obtain power
concavity in this case.

Example 4.15. For the normalized p-Laplacian

F (q,X) = −p−2
p
|q|−2 〈q,Xq〉 − 1

p
trX,

we use the preceding example and have to require p ≥ 2, so that (4.8) holds,
to apply our results and to obtain power concavity. The limiting case p→∞
was discussed in [11].
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gesehen von unten angegebenen Teilpublikationen - noch nicht veröffentlicht
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