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Abstract  
 
In recent years, the rapid increase of antibiotic resistances and the expansion of 

multi-resistant bacterial strains have provoked the need to develop novel antibiotics. 

So-called antimicrobial peptides (AMPs) are short, amphiphilic, cationic peptides 

and part of the innate immune system. There unique membrane disrupting 

mechanism and the low propensity for developing resistances attracted their 

attention in pharmaceutical medicine. AMPs are active against a wide spectrum of 

microorganisms, such as gram-positive and gram-negative bacteria, fungi, viruses 

and parasites.  

The present thesis focuses on improving the antimicrobial activity of AMPs by using 

different strategies like synthesis of AMP-conjugates, membrane immobilization of 

AMPs, and amino acid exchanges within the AMP sequence. For this, multiple 

imidazolium-salts, already described as antibacterial agents, were conjugated to 

AMPs via solid phase peptide synthesis, developing a branched conjugate. 

Combination of both compounds resulted in a higher antimicrobial activity against 

multi-resistant bacterial strains. Selectivity of the novel compounds was 

demonstrated against human-red blood cells, which was further investigated by lipid 

interaction studies with cholesterol. The most selective compound IL-KKA (3a) 

could be used as a future lead structure for the development of new antimicrobial 

agents.  

Since 80% of human infections are caused by biofilms, the newly designed 

compound IL-KKA (3a) was coupled covalently via a peptide bond or with electron 

beam radiation on polyether sulfone membranes (PES). Both immobilization 

techniques were successfully performed, still showing a high antimicrobial activity of 

the immobilized compound.   

The cell-penetrating peptide sC18 was converted to an AMP by amino acid 

exchanges with isoleucine and phenylalanine. Isoleucine and phenylalanine mono 

mutants already exhibited an increased activity against a wide spectrum of bacteria. 

A higher amount of phenylalanine in the sequence leads to a further increased 

antimicrobial activity. The insertion of hydrophobic amino acids at position 10 led to 

the formation of a characteristic α-helix, while the positions 15 and 16 seemed to be 

necessary for hydrophobic membrane interactions.  
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All in all, this thesis highlights the successful modification of AMPs to more active 

antimicrobial agents, which make them extremely interesting for the design of future 

antibiotics and the application of potential anti-biofilm agents.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

Zusammenfassung 
 
Die Vermehrung von Antibiotikaresistenzen und somit multi-resistenten Bakterien 

macht die Entwicklung von alternativen Antibiotika, in Form von antimikrobiellen 

Peptiden (AMPs), nötig. AMPs sind kurze, amphipathische, kationische Peptide und 

Teil des angeborenen Immunsystems. Ihr einzigartiger Wirkmechanismus und das 

seltene Aufkommen von Resistenzen, machen AMPs interessant für die Pharmazie. 

AMPs sind aktiv gegen unterschiedlichste Mikroorganismen u.a. gram-positive und 

gram-negative Bakterien sowie Pilze, Viren und Parasiten. 

In dieser Arbeit soll die antimikrobielle Aktivität von AMPs durch Herstellung von 

AMP-Konjugaten, Membranimmobilisierung von AMPs und den Austausch von 

Aminosäuren innerhalb der AMP Sequenz weiter erhöht werden. Unterschiedlich 

modifizierte Imidazoliumsalze, die bereits für ihre antimikrobielle Aktivität bekannt 

sind, wurden mit Hilfe der Festphasenpeptidsynthese an AMPs gekuppelt. Die 

Kombination der beiden Komponenten zeigte eine höhere Aktivität gegen 

multiresistente Bakterien. Eine der neuen Verbindungen, IL-KKA (3a), zeigte die 

höchste Selektivität und kann als Leitstruktur für die Entwicklung von neuen 

Antibiotika verwendet werden. 

80% der heutigen Infektionen werden durch Biofilme verursacht. Deshalb wurde 

das neu designte IL-KKA (3a) mit unterschiedlichen Linkern an Polyethersulfon-

Membranen immobilisiert. Dies wurde entweder durch eine kovalente 

Peptidbindung oder mit Hilfe von Elektronenbestrahlung bewerkstelligt. Beide 

Techniken waren erfolgreich und die so aktivierten Membranen zeigten weiterhin 

eine antimikrobielle Aktivität.  

Das zellpenetrierende Peptid sC18 wurde durch den Austausch der Aminosäuren 

an Position 10, 15 und 16 durch Isoleucin oder Phenylalanin in ein AMP 

umgewandelt. Die Einzelmutanten zeigten bereits eine erhöhte Aktivität gegenüber 

unterschiedlichsten Bakterienstämmen. Durch das Einfügen von bis zu 3 

Phenylalaninen konnte die antimikrobielle Aktivität weiter erhöht werden. Hierbei 

sorgte der Austausch an Position 10 für eine besser ausgebildete α-Helix, während 

der Austausch an den Positionen 15 und 16 die hydrophoben 

Membraninteraktionen verstärkten.  

Zusammenfassend zeigt diese Arbeit, dass die Modifikation von antimikrobiellen 

Peptiden zu einer erhöhten Aktivität führen kann. Die in dieser Arbeit neu 
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entwickelten AMPs haben das Potential, als neue Antibiotika oder als Anti-Biofilm 

Wirkstoffe eingesetzt zu werden. 
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1. Introduction 

1.1. Antibiotics and the connected problem to antimicrobial resistances 

In 1928, Alexander Fleming discovered penicillin, the first antibiotic substance. This 

discovery opened one of the most important research fields in medical history. 

Nearly 90 years later, antibiotics are still the major tools against infectious diseases. 

However, due to their excessive and overdosed application, in the last decades, 

bacteria became more and more resistant against common antibiotics (1). The 

resulting antimicrobial resistances have become a major health problem (1-4). 

Antibiotic resistances are listed as one of the greatest threats to human health (5), 

as a lot of resistant bacteria can be found in hospitals, where they cause serious 

infections. So-called superbugs refer to bacteria, which have adapted to resist 

multiple classes of antibiotics (multidrug-resistant). They demonstrate an enhanced 

morbidity and the therapeutic options to kill them are only limited (6). The most 

famous superbug is the gram-positive and methicillin-resistant bacterium 

Staphylococcus aureus (MRSA) (7). One additional problem is the use of antibiotics 

in non-human niches like agriculture, aquaculture and waste disposal that has 

steadily increased during the last years (8). For example, the resistance of 

Escherichia coli against ciprofloxacin has been associated with the use of 

fluoroquinolones, a broad-spectrum antibiotic, in aviculture (9). When bacteria 

acquired resistances, they are able to preserve them through genetic and 

biochemical mechanisms (Table 1). These mechanisms include e.g. genetic 

mutations or transfer of genetic gene material between bacteria via conjugation, 

transformation or transduction (10, 11). Biochemical resistance mechanisms on the 

other side can be divided into different resistance types, like an decreased uptake of 

the antibiotic, enzymatic modification and degradation, or an altered targeting within 

the cell, or via efflux pumps that remove the antibiotic out of the cell directly after the 

uptake (12, 13). However, the most popular mechanism is the enzymatic 

inactivation of antibiotics. The three main enzyme classes are β-lactamases, 

aminoglycoside-modifying enzymes and chloramphenicol acetyltransferases. β-

lactamases hydrolyze ester and amide bonds from β-lactam antibiotics like penicillin 

(14). Aminoglycoside-modifying enzymes reduce the affinity of aminoglycosides and 

fluoroquinolones, resulting in a weaker binding to the 30S ribosomal subunit (15, 
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16). So-called acetyltransferases inactivate chloramphenicol and aminoglycosides 

by binding adenylyl-, phosphoryl- or acetyl-groups to the antibiotics (17).  

 

Table 1: Common antibiotics and their bacterial res istance mechanisms. 

Antibiotic class Antibiotics Target 
Resistance 

mechanism 

β-lactams (18) 

Penicillin 

Peptidoglycan 

biosynthesis 
Hydrolysis Ampicillin 

Methicillin 

Aminoglycosides 
(19) 

Gentamicin 

Translation 

Phosphorylation 

Streptomycin Acetylation 

Glycopeptides (20) Vancomycin 
Peptidoglycan 

biosynthesis 

Reprogramming of 
peptidoglycan 
biosynthesis 

Tetracyclines (21) Minocycline Translation Monooxygenation 

Phenicols (22) Chloramphenicol Translation Enzymatic degradation 

 

During the last years, an alternative antibiotic class, namely antimicrobial peptides 

(AMPs), attracted the attention in pharmaceutical medicine owing to their different 

activity mechanisms, and their antimicrobial activity against a broad spectrum of 

microorganisms, such as gram-positive and gram-negative bacteria as well as fungi, 

parasites and viruses (23-25). 

 

1.2. Antimicrobial peptides – a new class of antibiotics? 

Antimicrobial peptides are part of the innate immune system and play an important 

role in the defense against pathogenic microorganisms (26, 27). Thus, AMPs are of 
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great interest in averting infections before they cause symptoms, and additionally, 

they participate in inflammation and wound healing processes (28). Based on their 

structural properties, AMPs can be further divided into four subgroups, namely 

α-helical, β-sheet, extended and loop peptides (Figure 1 and Table 2) (27, 29, 30). 

Most AMPs are short-length peptides, sharing an amphipathic character with a 

positive net charge and a high content of hydrophobic residues, belonging to the 

subgroup of α-helical AMPs (31). Well-known examples, which belong to this group, 

are magainin, LL-37 and cecropin (32, 33). The subgroup of β-sheet proteins, 

including protegrin and the defensin family is characterized by two or more disulfide 

bridges, which stabilize their conformation (27). Thirdly, the extended AMPs contain 

a high content of arginine, tryptophan and proline residues in their amino acid 

sequence. Indolicidin and bactenecins are well-known representatives of this 

subgroup (34, 35). The smallest subgroup is represented by hairpin-like loop 

structures consisting of highly stable peptides interconnected by at least one 

disulfide bridge. For example, gramicidin and dodecapeptide belong to this class of 

AMPs (36-38). Some AMPs, like indolicidin, form their secondary structure only 

when interacting with target membranes (39).  

 

Figure 1: The four classes of antimicrobial peptide s represented by protein models.  

Subgroups of antimicrobial peptides: (A) α-helical peptides, (B) β-sheet peptides, (C) extended 

peptides and (D) loop-peptides. All structures were obtained from the RCSB Protein Data Bank 

(PDB) (40). 
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In the last years, researchers optimized natural AMPs and developed related 

synthetic ones (41, 42). Especially the reduction of size leads to an optimization of 

metabolic stability and bioavailability. Furthermore, shorter peptide sequences 

would advantageously reduce the production costs dramatically (43). Modifications 

of peptide bonds by introduction of hydrogen bonds in the AMP sequence as well as 

insertion of unnatural amino acids and replacement, might also increase the 

antimicrobial activity (44). The conjugation of AMPs to drugs, photosensitizer, 

nanoparticles or organometallic complexes could convert AMPs into useful delivery 

vectors (45). Moreover, there are different strategies to apply AMPs therapeutically. 

On the one hand, they can be used as single anti-infective reagents, or in 

combination with common antibiotics to obtain a synergetic effect. On the other 

hand, AMPs can be used as immunostimulatory agents resulting in an enhanced 

innate immune system. Lastly, the application of AMPs as endotoxin-neutralizing 

agents is possible to prevent septic shocks induced by bacterial virulence factors 

(46). 
Table 2: Some examples of antimicrobial peptides, t heir sequences, structures and 

mechanisms of action. 

Peptide and Sequence Structure Mechanism 

Apidaecin 1b (47) 

GNNRPVYIPQPRPPHPRL 

Polyproline 
helix type II 

Inhibition of ATPase 

Cecropin A (48) 

KWKLFKKIEKVGQNIRDGII 

KAGPAVAVVGQATQIAK 

α-helix Disruption of cell 
membrane 

Histatin-5 (49) 

DSHAKRHHGYKRKFHEKHHSHRGY  
α-helix Intracellular targeting 

Indolicidin (50) 

ILPWKWPWWPWRR 
Extended 

Inhibition of DNA/RNA 
synthesis 

KLA (51) 

(KLAKLAK) 2 
α-helix Pore-forming 
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LL-37 (52) 

LLGDFFRKSKEKIGKEFKRI 

VQRIKDFLRNLVPRTES 

α-helix 
Pore-forming 

(Carpet-like) 

Magainin 2 (53) 

GIGKFLHSAKKFGKAFVGEIMNS 
α-helix Pore-forming (Toroidal) 

Melittin (54) 

GIGAVLKVLTTGLPALIS 
α-helix Pore-forming (Toroidal) 

sC18 (55) 

GLRKRLRKFRNKIKEK 
α-helix - 

Sushi (56) 

GFKLKGMARISCLPNGQWS 

NFPPKCIRECAMVS 

α-helix 
Pore-forming 

(Carpet-like) 

 

Through their activity against a broad spectrum of microorganisms (23, 24, 30), 

AMPs can be classified not only by their secondary structure, but also by their target 

organism as antiviral, antifungal, antiparasitic and antibacterial peptides. Antiviral 

peptides neutralize the viral absorption, lyse viruses or affect the viral envelope (57, 

58). Integration of AMPs into viral envelopes causes membrane instability leaving 

the virus unable to infect host cells (59). However, the antiviral activity of AMPs is 

always related to their secondary structure, signifying that β-sheet peptides show 

higher effects than α-helical AMPs. Defensins are β-sheet AMPs that are able to 

bind to viral glycoproteins, which results in the inability of the herpes simplex virus 

(HSV) to bind to host cells (60). In contrast, AMPs like NP-1 prevent the host-cell 

virus interaction by changing the gene expression profile of host cells (61).  

Another class of AMPs comprises antifungal peptides, which are able to kill fungi by 

cell wall targeting, or interaction with intracellular components (62, 63). Most 

antifungal peptides are isolated from plants and display a high content of polar and 

neutral amino acids in their primary sequence (64). In contrast to bacteria, fungi cell 

walls contain chitin, a derivate of glucose. Some antifungal peptides have the ability 

to bind to chitin, resulting in a selective fungi targeting (65). Antifungal AMPs are 
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mostly membrane active and kill the fungi by disrupting the membrane integrity, 

forming pores or increasing the membrane permeabilization (66, 67).  

The smallest class of AMPs are the antiparasitic peptides. Magainin was the first 

peptide which demonstrated a killing activity against Paramecium caudatum, a 

ciliophoran (68). Some years later, cathelicidin was discovered to kill 

Caenorhabditis elegans by forming membrane pores. The main mechanism of 

antiparasitic AMPs is the interaction with cell membranes, too (69).   

The most-studied class is represented by antibacterial peptides. Antibacterial 

peptides interact with bacteria’s cell membrane. They either cause membrane 

permeation or pass the cell membrane and bind intercellular targets (70). The 

amphipathic structure of antibacterial peptides provides the possibility to bind lipid 

components with their hydrophobic region, and face the lumen of the pore with their 

hydrophilic region (71). Intracellular active AMPs tend to inhibit important cell 

pathways like DNA replication or protein synthesis. These AMPs contain an active 

site in their sequence for binding to their target (72). In some cases, AMPs like nisin 

can also kill antibiotic-resistant bacteria (73).  

Most of the AMPs are active against one class of microorganisms, however, 

indolicidin is one of the exceptions, because it effectively targets bacteria, fungi and 

viruses (74). 

For some so called cell-penetrating peptides, also antimicrobial activity has been 

observed. The same holds true for sC18, which showed only a moderate 

antimicrobial activity, while it was successfully used as cell-penetrating peptide. 

sC18 was used during this work and is a 16 amino acids long C-terminal fragment 

of the CAP18 peptide, which belongs to the group of cathelicidines and is known to 

bind to lipopolysaccharides (LPS) (75). Previous studies already illustrated that 

parts of the CAP18 peptide exhibit high antimicrobial effects. Within CAP18, the 

fragment C18, which contains residues 106-125, was highlighted as an 

antimicrobial peptide, exhibiting an amphipathic α-helix (76). Since the C18 peptide 

was also used as a gene delivery system (77), our group developed a four amino 

acids shorter version of the C18 peptide in 2009, called sC18 (residues 106-121), in 

order to develop a potential drug carrier system (78). Since sC18 showed very 

efficient cell-penetrating activities and no toxicity against human cell lines, it was 

further optimized via cyclisation or truncation, to ensure an efficient cellular uptake 

(79-82).  
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1.3. Antibacterial AMPs – mechanism of action 

As already mentioned, the most common mechanism of antibacterial AMPs is the 

permeation of bacterial membranes followed by their disruption. The amphipathic 

character of AMPs, especially their positively charged sites, leads to a highly 

selective interaction with the outer microbial membrane. Due to lipoteichoic acids 

(gram-negative bacteria) and lipopolysaccharides (gram-positive bacteria), these 

membranes show characteristically a negatively charged environment (83, 84). 

Bacterial death occurs only when AMPs are completely saturated on the bacterial 

cell membrane. Nevertheless, the interaction of AMPs with lipopolysaccharides or 

anionic lipoteichoic acids may reduce the AMP concentration needed for 

destabilization of the bacterial membrane and pore formation (85). The hydrophobic 

part of the peptides enables them to insert into bacterial membranes (86). The 

disruption of the bacterial membrane induces the breakdown of the membrane 

potential as well as the leakage of intracellular components and is finally leading to 

cell death (87). The membrane disrupting mechanism is highly complex but can 

roughly be divided into three main models, namely the barrel-stave, the toroidal 

pore and the carpet-like model (Figure 2) (72). In the barrel-stave model, the AMPs 

aggregate and attach to the outer membrane with their hydrophobic part aligning to 

the lipid bilayer. During the following pore forming process, the hydrophobic part of 

the AMP is oriented to the cell membrane while the hydrophilic part is exposed to 

the pores (54). In the toroidal model, the mechanism also starts with an aggregation 

of the peptides on the membrane surface. In this way, the hydrophilic residues of 

the AMPs interact with the lipid head groups inducing a pore built up by inserted 

peptides as well as lipid head groups (88). The last model, the carpet-like model, 

depicts the formation of micelles instead of pores. AMPs are oriented parallel to the 

membrane, covering the whole membrane surface resulting in a carpet formation, 

which then disrupts the membrane structure in a detergent-like manner (89, 90). 

Due to the differences in membrane composition of bacteria and mammalian cells, 

antimicrobial peptides exhibit a selective cytotoxicity against microorganisms. In 

contrast to bacterial membranes, mammalian cell surfaces consist additionally of 

sphingomyelin and cholesterol (91). 
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Figure 2:  Membrane disrupting mechanism of AMPs. In blue: hydrophobic regions, in red: 

hydrophilic regions. Peptides attach to the lipid head groups of the cell membrane (A) The barrel-

stave model: Hydrophobic sides of the peptides are at the outside while hydrophilic sides build the 

channel inside. (B) The carpet-like model: Peptides disrupt the cell membrane forming a carpet 

around the membrane. (C) The toroidal model: The peptide pore is built by the inserted peptides and 

the lipid head groups of the cell membrane (92). 

 

AMPs are not limited to operate just via membrane permeation, because there also 

exist AMPs with intracellular targets (93, 94). These translocate across the 

membrane and are able to target a wide range of intracellular processes (72). One 

major intracellular target for AMPs is DNA or the protein machinery. For example, 

the AMP buforin II translocates across the cell membrane and binds to DNA and 

RNA inhibiting both (95-97). The AMP apidaecin is another peptide, which blocks 

the pore forming ability of bacteria (Table 2). However, this AMP is only able to act 

against gram-negative bacteria. It is suggested that apidaecin is carried inside the 

cell by a transporter protein, which is specific for gram-negative bacteria (98). On 

the other hand, there exist AMPs, which can inhibit enzymatic activity like histatin- 5 

or phyrrocidin. Histatin-5 inhibits a protease from Bacteriocides gingivalis, while 

phyrrocidin inhibits the ATPase activity of the heat shock protein DnaK that is 
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involved in protein folding (99, 100). Some AMPs are only active against bacteria in 

a certain growth stage, proposing an interaction with a specific metabolic pathway, 

which is activated during bacterial growth (101). The cytoplasmic localization of 

AMPs leads to the presumption of existing cellular uptake mechanisms. Two 

mechanisms for cellular uptake of AMPs are reported. The uptake is either 

accomplished via endocytosis, including micropinocytosis or receptor-mediated 

endocytosis or by direct penetration (86). 

 

1.4. Structural properties of antimicrobial peptides 

The structural properties of antimicrobial peptides are essential for their 

antimicrobial activity and cell selectivity. Although a structure related prediction 

about the mode of action cannot be proposed, the conformation, charge, 

hydrophobicity and solubility are important aspects for antimicrobial peptides. The 

structure of α-helical AMPs is often formed during the interaction with the 

amphipathic bacterial membrane. It was reported that for an α-helical AMP a length 

of at least 22 amino acids is required to transverse the bacterial bilayer via the 

barrel-stave model (102). By the introduction of D-amino acids in the hydrophobic 

face, the secondary structure is affected, which results in a hemolytic effect and 

improved selectivity (103). As the secondary structure of peptides is predicted by 

the amino acid sequence, the introduction of amino acids like proline and glycine 

hinders the helix-formation and the flexibility (104). Nevertheless, there exist 

proline-arginine rich peptides inducing polyproline helical type II structures, which 

are comparable to an alpha helix (105, 106).  

The positive net charge of AMPs is an important property because the electrostatic 

interactions between AMPs and bacterial cell membranes are the major force for 

the first contact (72, 107, 108). Since bacterial membranes are rich in acidic 

phospholipids and human cell membranes contain acidic phospholipids only on the 

inner side, the net charge plays a crucial role for selectivity, too (109). An increasing 

positive net charge often leads to an increased antimicrobial but also hemolytic 

activity (110).   

Another essential structural property of AMPs is the content of hydrophobic amino 

acids, which for most antimicrobial peptides is in the range of approximately 50% 

(111). Increasing hydrophobicity on the positively charged side of the AMPs up to a 
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certain point leads to an increased antimicrobial activity. Nevertheless, increasing 

hydrophobicity is often connected to mammalian cell toxicity and loss of selectivity 

(109). Furthermore, an augmented hydrophobicity can alter the range of targets for 

the AMP. The AMP magainin, which is only active against gram-negative bacteria, 

can also be effective against gram-positive bacteria by the insertion of hydrophobic 

amino acids (112). 

 

1.5. Bacterial resistance mechanisms against antimicrobial peptides 

In order to find new and useful antibiotic compounds, some AMPs have already 

been investigated in clinical research. The understanding of bacterial resistance 

against theses AMPs is the next, crucial step (113). Therefore, research groups 

focus on the identification of different bacterial resistance mechanisms. Membrane 

alterations represent one major tool for bacteria to develop resistances. It was 

shown, that changes in the membrane lipid composition by the inclusion of 

cardiolipin or other positively charged phospholipids avoid the insertion of positively 

charged AMPs (114) (Figure 3A). Moreover, bacteria are able to overexpress genes 

encoding for transmembrane transporters like the efflux pumps, which allow the 

displacement of AMPs back into the periplasm (115) (Figure 3B). Another example 

for the development of resistances against gram-positive bacteria, is the 

modification of their teichoic acids through D-alanylation resulting in the reduction of 

their anionic charge (116) (Figure 3C). On the other hand, gram-negative bacteria 

can make use of lipid A modifications to incorporate positive charges into 

lipopolysaccharides, which decreases the binding affinity of antimicrobial peptides 

(117) (Figure 3D). Furthermore, bacteria are able to alter their cellular metabolism 

and regulate the expression of proteases, biofilm formation and modifications of 

surface structures to avoid the uptake of AMPs (109).  
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Figure 3: Schematic overview of AMP resistance mech anism. (A) Insertion of cardiolipin or 

phosphatidylcholine leads to an increased positive charge. (B) Membrane transporter like the efflux 

pump are overexpressed and transport the AMPs outside the cell. (C) D-alanylation of teichoic acids 

in gram-positive bacteria. (D) Lipid A modifications through positive charges in gram-negative 

bacteria (modified from (92)).    

 
1.6. Biofilms – a problem of bacterial infections 

Biofilms consist of single or multiple organism species in a wide range of 

physiological states and are mostly attached to tissue or abiotic surfaces. Formation 

of such biofilms and their upcoming resistance to antimicrobial agents are one of 

the main reasons for many chronic bacterial infections (118). Moreover, it was 

estimated that 80% of human bacterial infections are caused by biofilm formation on 

implants, catheters and heart valves (119). Biofilm formation itself can be divided 

into four stages, starting with the adherence of microorganisms to a tissue or abiotic 

surface. The second state is initiated by the generation of an extracellular polymeric 

substance containing proteins, extracellular DNA and polysaccharides. During 

biofilm maturation, the formation of water channels and other complex structures 

occurs and is pronounced as the third stage of biofilm formation. As a final step, 

biofilm spreading takes place, in which adjacent regions are colonized (120-122). A 

biofilm consists, as already mentioned, of single or multiple organisms, such as 

fungi, bacteria and viruses. With the generation of biofilm matrices, the organisms 
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are able to protect themselves against environmental stresses such as 

UV-radiation, pH variation and osmotic shock. Interactions like horizontal gene 

transfer, metabolic cooperation as well as a competition between bacteria result in 

an improved survivability (123, 124). Heterogeneity is an important property of 

biofilms, too (125). A biofilm produces gradients of oxygen, pH value and redox 

conditions leading to a multilayered biofilm (126). Due to the presence of oxygen in 

the water phase, the upper layer of the biofilm is aerobic. The present oxygen is 

consumed rapidly by aerobe bacteria, resulting in the formation of anaerobic zones 

in deeper layers (127). In a biofilm, cooperative interactions between bacteria are 

observable. During the process of nitrification, ammonia-oxidizing bacteria convert 

ammonium into nitrite, which is then consumed by nitrite-oxidizing bacteria (128). 

As a result of these cooperative interactions, a 10-1,000 fold higher resistance 

against antibiotics is observed within biofilms compared to the planktonic state of 

the same bacteria (129, 130). However, also competitive interactions, caused by 

bacteriocins, extracellular vesicles or the application of antibiotics, can be observed 

within biofilms and lead to the prevention of adhesion (131).  

To avoid biofilm formation, several methods, including the generation of 

antimicrobial peptides on surfaces were reported (132-134). Moreover, colonizing 

surfaces with non-pathogenic bacteria (129), and/or coating them with biocidal 

substances like triclosal or polyquaternary amines might also avoid biofilm formation 

(135, 136). Another common way is the direct coating or immobilization of surfaces 

with antibiotic compounds, such as vancomycin, penicillin or ampicillin (137-139). 

 

1.7. General structure of bacterial membranes 

The main purpose of the bacterial cell membrane is the protection against osmotic 

lysis. In 1884, Christian Gram developed a staining procedure to classify the 

bacteria into two groups, namely gram-positive and gram-negative bacteria. Gram-

positive bacteria retain the stain, while gram-negative bacteria do not.  

Gram-negative bacterial membranes consist of three layers: the outer membrane 

(OM), the peptidoglycan and the cytoplasmic or inner membrane (IM) (Figure 4). 

The composition of the OM can be described asymmetrically with the inner leaflet 

containing phospholipids and the outer leaflet composed of glycolipids, mostly 

lipopolysaccharides (LPS) (140, 141). Furthermore, the OM is enriched in 
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phosphatidylethanolamine (142, 143). LPS consists of lipid A, a core 

oligosaccharide and an O-antigen, and play a critical role in the barrier function of 

the OM (144, 145). The core oligosaccharide can be further distinguished into the 

inner and the outer region. Moreover, two protein types, lipoproteins and β-barrel 

proteins, can be detected in the OM. While lipoproteins are attached to the inner 

leaflet of the OM, β-barrel proteins function as transmembrane proteins, which span 

the outer membrane (146, 147). Peptidoglycan consists of N-acetylglucosamine and 

N-acteylmuramic acid, which are connected by β-1,4 glyosidic bonds (148) and are 

important for the characteristic shape of bacteria. The aqueous compartment 

surrounded by the outer and the inner membrane is called periplasm and contains 

the peptidoglycan and various proteins and chaperons (149). The inner membrane 

of gram-negative bacteria can be described as a phospholipid bilayer with inner 

membrane proteins (150).  

In contrast to gram-negative bacteria, gram-positive bacteria possess no outer 

membrane. To compensate this disadvantage, gram-positive bacteria consist of a 

thicker peptidoglycan layer (151). Long anionic polymers called teichoic acids are 

localized within this peptidoglycan layer. These, so-called wall-teichoic acids, are 

covalently attached to the peptidoglycan while the lipoteichoic acids are anchored to 

the lipid head groups of the membrane (152). Since gram-positive bacteria miss the 

outer membrane, the surface of the peptidoglycan is decorated with lots of proteins, 

which are similar to proteins found in the periplasm of gram-negative bacteria (153).  

Additionally to gram-positive and gram-negative bacteria, there exists a further class 

of special bacteria in nature, called mycobacteria. Due to the complex structure of 

their cell wall, mycobacteria are more resistant against antibiotics and virulences 

(154). The peptidoglycan of mycobacteria is more cross-linked than in E. coli or 

B. subtilis, as 80% of the peptidoglycan contains 3-3 peptide crosslinks (155). The 

peptidoglycan is surrounded by a layer of arabinogalactan (156), which further is 

ligated with mycolic acids. (157). These mycolic acids, composed of long carbon 

chains, form the characteristic thick waxy lipid layer of mycobacteria and are 

primarily responsible for the impermeability of the cell membrane (158). 
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Figure 4: Cell-wall structure of gram-negative, gra m-positive and mycobacteria . (a) 

Gram-negative bacteria consist of a cell membrane with a periplasmic space and an outer 

membrane. In the periplasmic space localizes a thin peptidoglycan layer. The outer membrane 

contains LPS and porins. (b) Gram-positive bacteria have a cell membrane and a thicker 

peptidoglycan layer than gram-negative bacteria. The peptidoglycan consists of teichoic acids and 

lipoteichoic acids. (c) Mycobacteria consist of a cell membrane, a thin layer of peptidoglycan and 

arabinogalactan and a thicker layer of mycolic acids. Glycolipids and porins are detected in the cell 

walls (159). 

 

1.8. Ionic liquids 

Due to their potential antimicrobial activity, ionic liquids (ILs) have gained much 

interest. ILs represent a class of liquid materials consisting of an amphiphilic cation 

and an inorganic or organic anion (160). Depending on the structure of ILs, they are 

applied in various fields like synthetic chemistry, enzyme stabilization, or as 
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pharmaceutical compounds in pharmaceutical industry (161-163). ILs are extremely 

interesting due to their flexibility of altering composition and structure of cation and 

anion, their thermal stability and their solvating potential (164-166). Usually, ILs can 

be divided into four classes, namely dialkylimidazolium-, alkylammonium-, 

phosphonium- and N-alkylpyridinium-based ILs. A well-studied class are 

imidazolium-based ionic liquids, which are used as solvents in bioorganic 

transformations (167) (Figure 5). The imidazolium cations show high stability within 

oxidative and reductive conditions (168) and are relatively easy to synthesize (169). 

This class of ionic liquids also improves the solubility of proteins and thus, prevents 

them from aggregation (170). In 1999, Welton et al. designed special ionic liquids 

with toxic effects against microorganisms (165). Further studies demonstrated that 

ionic liquids with a charged hydrophilic head group and hydrophilic tail have an 

amphiphilic character, which especially is true for imidazolium and pyrimidinium-

based ionic liquids (171). The amphiphilic character and the length of the alkyl-chain 

are the major requirements for their toxic effects against microorganisms (172). 

However, also non-specific toxic side effects resulting in cell toxicity against host 

cells were observed (173). Consequently, in the next step researchers focus on the 

development of new ionic liquid compounds and conjugates with reduced host cell 

toxicity.  

 

Figure 5:  The imidazolium cation with different anions.  R = methyl, ethyl or butyl groups. 

 

1.9. Preliminary work 

The preceding paragraphs have described the difficulty about increasing 

antimicrobial resistances and the connected health problem. Due to this, the 

development of new antibiotic substances is crucial. Antimicrobial peptides 

represent an alternative antibiotic class, which holds for a comprehensive analysis. 
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One of my main goals during my master thesis was therefore the identification of 

future lead structures, demonstrating high antimicrobial activity and selectivity. 

Therefore, imidazolium-salt cations were covalently coupled to AMPs and the 

influence on the antimicrobial activity was investigated. Conjugates containing one 

imidazolium-salt cation and a branched conjugate consisting of an AMP and four 

ionic liquids (namely IL-KKA) were already synthesized and tested during my 

master thesis (Figure 6).  

 

 

Figure 6: Final structure of 3a, 3b and 3c. * CF-labelled peptides at the ε-amino group of lysine 

(Table 6). 

 

The results showed that four molecules of imidazolium-salts coupled to AMPs 

increased the antimicrobial activity dramatically compared to the mono imidazolium 

salt conjugate. Antimicrobial activity for 3a, 3b and 3c, peptide conjugates 

containing four imidazolium salts (see table 6 for peptide sequences), is shown in 

Figure 7. [(C16C1)im]Br- was used as a negative control. 3a showed a toxic effect 

against all bacterial strains in particular against B. subtilis. An increase of the 

antimicrobial activity could be reached by coupling sC18 to compound 3a, leading to 

compound 3b. Against B. subtilis the three peptides demonstrated a relevant toxic 

effect since after treatment with 5 µM concentration only 5% of bacteria survived, 

while using E. coli only 3a and 3b reached this high toxic effect at 5 µM 

concentrations. Contrarily, the highest toxicity against M. phlei is already reached at 

1 µM for all peptides with 30% living bacteria and no further increase after 

enhanced peptide concentration. 
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Figure 7: Antimicrobial activity of 3a, 3b and 3c.  INT-assay was performed against B. subtilis, 

E. coli and M. phlei. Negative control was set up to 100%. 

 

Besides the peptide sC18, already described in chapter 1.2., also the LL-37 peptide 

was investigated during this work. The LL-37 peptide is a 37 amino acids long 

segment of the FALL-39 peptide, which is known as the only human cathelicidin-

derived AMP. LL-37 was identified as an antimicrobial peptide, expressed in the 

bone marrow, with activity against gram-positive as well as gram-negative bacteria 

(174). The proposed mechanism for LL-37 is the carpet-like mechanism (175).  

 

1.10. Aim of the thesis 

Aim of this work was to design new and more potent antimicrobial peptides as well 

as conjugates thereof, and to elucidate their antimicrobial activity spectrum as well 

as their mechanism of action. 

The first part of the thesis deals with further modification of imidazolium salt-peptide 

conjugates to improve their antimicrobial activity and selectivity. Therefore, 

conjugates already developed during my master thesis, including the peptides sC18 

and LL-37, should be further evaluated concerning their activity against resistant 

bacterial strains, as well as their activity mechanism. 
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Further work should then investigate the potential of the short IL-KKA peptide to act 

as an anti-biofilm compound when immobilized on polyether sulfone (PES) 

membranes. Different coating strategies should be used and the activity of the 

functionalized membranes should be characterized by different physical as well as 

biological techniques. 

The second goal of this work was to improve the antimicrobial activity of sC18. 

Since the parent C18 peptide already showed antimicrobial activity it should be 

tested if the introduction of hydrophobic amino acids could return this antimicrobial 

activity to the shorter sC18 peptide. Therefore, several amino acids within the 

sequence of sC18 should be exchanged with either isoleucine or phenylalanine, 

respectively, and the antimicrobial activity should be tested. To verify the influence 

of the amino acid exchange, structural characteristics and antimicrobial activity 

against different bacterial strains should be determined.  
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2. Materials and methods 

2.1. Materials 

All chemicals, reagents and consumables, which were used during this work, were 

obtained from Fluka (Taufkirchen, Germany), Merck (Darmstadt, Germany), 

Sarstedt (Nümbrecht, Germany), Sigma-Aldrich (Taufkirchen, Germany) and VWR 

(Darmstadt, Germany). 

 

For peptide synthesis, all Nα-Fmoc protected amino acids were achieved from Iris 

Biotech (Marktredwitz, Germany). The side-chains of the trifunctional amino acids 

were equipped with acid-labeled protection groups to make use of the orthogonal 

Fmoc/tBu strategy for peptide synthesis. Protection groups for the regular amino 

acids were Pbf (Arg), Trt (Asn, Gln, His, Cys), Boc (Trp, Lys) and tert-butyl (Asp, 

Glu, Ser, Thr, Tyr). For branched peptide compounds, Fmoc-L-Lys(Fmoc)-OH was 

used while for CF-labeled peptides Fmoc-L-Lys(Dde)-OH was used. 

 

For the calculation of the peptide concentrations, the binding of TFA anions to 

positively charged amino acid side chains and free amino groups was taken into 

consideration. 
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2.1.1. Equipment 

Table 3: Equipment used during this work. 

Equipment Producer 

CD spectrometer Jasco Corp. J715 

Centrifuges 
Thermo Scientific; Multifuge X1R 

Thermo Scientific; PicO 17 

ELISA-mircoplate reader Biotek – EL 808 

Heating block Eppendorf – Thermomixer compact 

HPLC (analytic) 

Hewlett Packard Series 1100, Agilent 
1100 Series; Column: Machery-Nagel, 
2,6 u, C18, 100 A, 125 x 4.6 mm 
Elite Lachrom Hitachi Pump L-2130, 
Elite 

HPLC (preparative) 

Lachrom Hitachi Autosampler L-2200, 
Elite 
Lachrom Hitachi Diode Array Detector 
L-2455, 
Teoledyne ISCO Fraction Collector 
Foxy R1, 
Column: Machery-Nagel, 2,6 u, 
C18, 100 A,   250 x 16 mm, 4 micron 

Mass spectrometer Thermo Scientific LTQ-XL 

Lyophilizer Leybold 
Christ; Alpha 2-4 LDplus 

Spectral photometer Thermo Scientific Genesys 10S UV-
Vis 

Speed-Vac 

Thermo Scientific Speedvac 
Concentrator Savant SC210A, 
RVT5105 Refrigerated Vapor Trap 
VLP80 Vacuum Pump 

Synthesis roboter MultiSynTech Syro I 
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Vortex Scientific Industries – Vortex Genie 2 

Xcel Vap Horizon Technology 

 

2.1.2. Buffers  

Table 4: Buffers used during this work. 

Giant unilamellar vesicle buffer 

10 mM HEPES buffer, pH 7.4 

50 mM KCl 

50 mM NaCl 

1mg/mL dextran (from Leuconostoc 
spp., 6 kDA) 

5 µM Oyster 405 

Iodnitrotetrazolium violet solution 
10 mg Iodnitrotetrazolium-chloride 

10 mL DMSO (cell culture quality) 

Kaiser test solutions 

Solution I (1 g ninhydrin in 20 mL 
EtOH) 

Solution II (80 g phenol in 20 mL 
EtOH) 

Solution III (0.4 mL aqu. KCN-solution 
(1mM) in 20 mL pyridine) 

Mueller-Hinton medium 

(Pronadisa-Conda) 

2.0 g/L Beef Infusion 

1.5 g/L Corn Starch 

17.5 g/L Casein Peptone (acidic 
hydrolysate) pH 7.4 

21 g/L Mueller-Hinton Broth in 
deionized water 

Mueller-Hinton agar plates 
21 g/L Mueller-Hinton Broth 

15 g bacteriologic Agar 
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2.1.3. Bacterial strains 

Bacillus subtilis (ATTC 6633) 

Corynebacterium glutamicum (ATCC 13032) 

Escherichia coli K12 (MG 1625) 

Micrococcus luteus (DSM 20030) 

Mycobacterium phlei (DSM 48214) 

Pseudomonas fluorescens (DSM 50090) 

Salmonella typhimurium (TA 100) 

Methicillin-resistant Staphyloccocus aureus 

Vancomycin-resistant Enterococci 

 

2.1.4. Peptide sequences 

Table 5: Peptides synthesized during this work. 

Peptide Sequence 

1a (sC18) GLRKRLRKFRNKIKEK-NH2 

2a (LL-37) LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES-NH2 

3a (IL-KKA) IL4-KK(εK)βA-OH 

3b (IL-KKA-sC18) IL4-KK(εK)βA-GLRKRLRKFRNKIKEK-NH2 

3b* (IL-KKA-sC18) IL4-KK(εK)βA- GLRKRLRKFRNKIKEK(CF)-NH2 

3c (IL-KKA-LL-37) IL4-KK(εK)βA-
LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES-NH2 

3c* (IL-KKA-LL-37) IL4-KK(εK)βA- 
LLGDFFRKSKEKIGKEFKRIVQRIK(CF)DFLRNLVPRTES-NH2 

3d (IL-KKA-Ahx-Ahx-G) IL4-KK(εK)βA -Ahx-Ahx-G-OH 

3e (IL-KKA-FF) IL4-KK(εK)βA –FF-OH 
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3f (IL-KKA-WLLKW) IL4-KK(εK)βA –WLLKW-OH 

sC18I1 ILRKRLRKFRNKIKEK-NH2 

sC18I2 GIRKRLRKFRNKIKEK-NH2 

sC18I3 GLIKRLRKFRNKIKEK-NH2 

sC18I4 GLRIRLRKFRNKIKEK-NH2 

sC18I5 GLRKILRKFRNKIKEK-NH2 

sC18I6 GLRKRIRKFRNKIKEK-NH2 

sC18I7 GLRKRLIKFRNKIKEK-NH2 

sC18I8 GLRKRLRIFRNKIKEK-NH2 

sC18I9 GLRKRLRKIRNKIKEK-NH2 

sC18I10 GLRKRLRKFINKIKEK-NH2 

sC18I11 GLRKRLRKFRIKIKEK-NH2 

sC18I12 GLRKRLRKFRNIIKEK-NH2 

sC18I14 GLRKRLRKFRNKIIEK-NH2 

sC18I15 GLRKRLRKFRNKIKIK-NH2 

sC18I16 GLRKRLRKFRNKIKEI-NH2 

sC18I10I15 GLRKRLRKFINKIKIK-NH2 
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sC18I10I16 GLRKRLRKFINKIKEI-NH2 

sC18I15I16 GLRKRLRKFRNKIKII-NH2 

sC18I10I15I16 GLRKRLRKFINKIKII-NH2 

sC18F10 GLRKRLRKFFNKIKEK-NH2 

sC18F15 GLRKRLRKFRNKIKFK-NH2 

sC18F16 GLRKRLRKFRNKIKEF-NH2 

sC18F10F15 GLRKRLRKFFNKIKFK-NH2 

sC18F10F16 GLRKRLRKFFNKIKEF-NH2 

sC18F15F16 GLRKRLRKFRNKIKFF-NH2 

sC18F10F15F16 GLRKRLRKFFNKIKFF-NH2 

* Peptides were labeled with 5(6)-carboxyfluorescin (CF). 

 

2.2. Solid phase peptide synthesis (SPPS) 

2.2.1. Loading of Wang-resin with the first amino acid 

For the peptides 3a, 3d, 3e and 3f, the first amino acid had to be preloaded to a 

Wang resin. Therefore, 30 mg Wang resin (loading 1.1 mmol/g) was swollen for 

15 min in dimethylformamide (DMF). DMF was removed and 5 eq. Fmoc-amino 

acid, 5 eq. Oxyma Pure and 5 eq. N’,N’-diisopropylcarbodiimide (DIC) were 

dissolved in 500 mL DMF and added to the resin beads. The solution was shaken 

over night at room temperature (RT). On the next day, the resins were washed five-

times with DMF, dichloromethane (DCM), methanol and diethylether. Afterwards, 

the resins were dried using a SpeedVac. 
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2.2.2. Determination of the first residue attachment 

To quantify the coupling of the first amino acid toward the Wang resin, the Fmoc-

group was cleaved and the absorption was measured.  

Therefore, 500 µL 30% piperidine in DMF was incubated with 3 mg Wang resin 

beads for 30 min at RT. 250 µL of the solution were mixed with 1.5 mL DMF and the 

absorbance at 301 nm was measured. As blank 250 µL 30% piperidine in DMF was 

added to 1.5 mL DMF. The loading was calculated using the following equation 

(Formula 1): 

 

 

����	�� �		
�
� 
 = 	 ����	��

ε��−1�	−1� × ���	� 	× 	2	 × ��	��
	�������

 

 

E = extinction at 301 nm 
V = volume 
ε= extinction coefficient of Fmoc (7800) 
m = mass of weight resin (g) 
D = density of cuvette. 

 

2.2.3. Automated peptide synthesis 

To generate longer peptides, a synthesis robot from MultiSynTech was used. The 

required amino acid solutions and reaction reagents were prepared manually. Rink 

amid resin (substitution 0.48 mmol/g, 0.015 mmol scale) or preloaded Wang resin 

(0.015 mmol scale) were swollen for 10 min in 800 µL DMF und after that, the 

deprotection of the Fmoc group was performed using 40% piperidine for 3 min and 

20% piperidine for 10 min in DMF. Resins were washed four times with 600 mL 

DMF and the coupling of the Nα-Fmoc-protected amino acid was performed. 

Hereby, 8 eq. (300 µL) of the amino acid and 2.4 M (50 µL) Oxyma Pure were 

mixed and incubated for 3 min. Then, 2.4 M (50 µL) DIC was added to the solution 

and incubated for 40 min at RT. (Due to Oxyma Pure and DIC, the carboxyl group 

of the amino acid gets activated.) The resins were washed twice with 800 µL DMF. 

Each coupling was performed as a double coupling step. The synthesis robot 

repeats this procedure until the peptide is synthesized. Then, resins were washed 

(1) 
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manually five times with DCM, methanol and diethylether and dried in the 

SpeedVac. 

 

2.2.4. Manual coupling of ionic liquids and 5(6)-carboxyfluorescein 

For manual coupling, the resin was swollen for 15 min in 1 mL DMF. Then, 5 eq. 

ionic liquid, or 3 eq. 5(6)-carboxyfluorescein (CF), respectively, was added with 5 

eq. or 3 eq. HATU in 300 µL DMF. After that, diisopropylethylamine (DIPEA) (5 eq. 

for ionic liquids and 3 eq. for CF) were added to the mixture and incubated for 2 

min. The solution was added for 2 h to the resin at RT. The resin was washed five 

times with DMF and again incubated with IL or CF, HATU and DIPEA for 2 h at RT. 

After the second coupling, the resin was washed five times with DMF, DCM, 

methanol and diethylether and dried using a SpeedVac. 

 

2.2.5. Endcapping 

To block free reactive groups and amino acid side-chains during a peptide 

synthesis, an endcapping was performed.  

Therefore, the resin was swollen for 15 min in 1 mL DCM. After the DCM was 

removed, 50 µL acetic anhydride and 50 µL DIPEA were dissolved in 500 µL DCM 

and added to the resin. The resin was shaken for 15 min at RT. In the end, the resin 

was washed five times with DCM, methanol and diethylether and dried using a 

SpeedVac. 

 

2.2.6. Fmoc cleavage 

To couple the next amino acid towards a peptide sequence, first, the Fmoc-

protection group had to be removed.  

Therefore, the resin was swollen in 300 µL DMF for 15 min. Then, 300 µL 20% 

piperidine (in DMF) were added to the resin and incubated for 5 min. Afterwards the 

resin was washed five times with DMF, 300 µL 20% piperidine were added again to 

the resin for 15 min. In the end, the resin was washed five times with DMF, DCM, 

methanol and diethylether and dried using a SpeedVac. 
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2.2.7. Cleavage of the Dde-protection group 

For CF-labeled peptides, Fmoc-Lys(Dde)-OH was used to couple the CF at the ε-

side chain of the lysine.  

For the cleavage of the Dde-protection group, the resin was swollen in 1 mL DMF 

for 15 min. After removing the DMF, 1 mL of 3% hydrazine in DMF was added to 

the resin and incubated for 10 min at RT. The flow through was collected in a falcon 

and the resin was washed two times with 1 mL DMF. The washing solution was 

added to the flow through into the falcon. Then again, 1 mL of 3% hydrazine in DMF 

was added. This procedure was repeated ten times and the amount of cleaved Dde 

in step 1 and step 10 was determined measuring the absorption at 301 nm. As a 

blank 2 mL DMF with 1 mL of 3% hydrazine in DMF were used. If the OD301nm was 

less than 0.1, the deprotection was successful. After the cleavage, the resin was 

washed five times with DMF, DCM, methanol and diethylether and dried using a 

SpeedVac. 

 

2.2.8. Kaiser test 

To check the completion of an amino acid coupling to the peptide sequence, a 

visual test was used indicating the presence or absence of free amino groups.  

One drop of each solution was added to a few resin beads: solution I (1 g ninhydrin 

in 20 mL EtOH); solution II (80 g phenol in 20 mL EtOH) and solution III (0.4 mL 

aqu. KCN solution (1 mM) in 20 mL pyridine). As negative control, a sample without 

resin beads was used and as positive control, N-ethyldiisopropylamine was used. 

The samples were incubated for 5 min at 95 °C. If the solution turned yellow, no free 

amino groups were present, while a blue color is a hint for free amino groups. 

 

2.2.9. Sample cleavage   

The sample cleavage was performed to verify the coupling success and to analyze 

the composition of the products.  

2.5 µL triisopropylsilane (TIS) and 2.5 µL H2Odd, working as scavenger, were added 

to a small amount of dry resin beads. For peptide 3d, 7 µL thioanisole and 3 µL 1,2-

ethanedithiol were used as scavenger due to the presence of tryptophan in the 

peptide sequence. The mixture was filled up to 100 µL with trifluoroacetic acid 
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(TFA). After 3 h shaking at RT, 1 mL ice-cold diethylether was added for at least 20 

min at -20 °C to precipitate the peptide. The peptide was washed five times with 

diethylether by centrifugation at 10,000 x g for 5 min. After each centrifugation step, 

the supernatant was discarded and the pellet again resuspended in diethylether. 

The pellet was dried using a SpeedVac and dissolved in 100 µL H2Odd or 100 µL 

H2Odd /tBuOH (3:1). The peptide solution was diluted in either 10% acetonitrile/ 90% 

H2Odd + 0.1% formic acid (FA) or 10% acetonitrile/ 90% H2Odd + 0.1% TFA for 

qualitative and quantitative analysis, respectively.  

 

2.2.10. Full cleavage 

With the full cleavage, all protection groups were removed from the peptide and the 

peptide was cleaved from the resin. 

25 µL TIS and 25 µL H2Odd were added to the dry resin. For peptide 3d, 70 µL 

thioanisole and 30 µL 1,2-ethanedithiol were used due to the tryptophan in the 

peptide sequence. The mixture was filled up to 1 mL with TFA and shaken for 3 h at 

RT. After that, the peptide was precipitated in 10 mL ice-cold diethylether. The resin 

was washed with 200 µL TFA and the solution was added to diethylether. The 

mixture was stored for at least 20 min at -20 °C to precipitate the peptide.  

Afterwards, the peptide was washed five times with 10 mL diethylether by 

centrifugation at 5,000 x g for 5 min. After every centrifugation step, the supernatant 

was discarded and the pellet was resuspended in 10 mL diethylether. The pellet 

was dried using a SpeedVac and dissolved in 2-3 mL H2Odd or 2-3 mL H2O/tBuOH 

(3:1). One part of the peptide solution was diluted with either 10% acetonitrile/ 90% 

H2Odd + 0.1% formic acid (FA) or 10% acetonitrile / 90% H2Odd + 0.1% TFA for 

qualitative and quantitative analysis, respectively. The rest of the peptide solution 

was lyophilized. 

 

2.2.11. LC-mass spectrometry with 0.1% FA for qualitative analysis 

The peptide solution was analyzed qualitatively by reverse-phase liquid 

chromatography mass spectrometry (RP-HPLC-MS) using a Nucleodur column 

(100-5; C18ec; 4.6 x 125 mm) from Macherey-Nagel. 10 µL of the diluted peptide 

solution were injected into the RP-HPLC and separated by an acetonitrile gradient 

increasing from 10% up to 60% in 15 min. The flow rate was set to 0.6 mL/min. 
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After HPLC, the eluent was injected into a LTQ-XL ESI-MS. Pseudo molecular ions 

were generated and a full mass spectrum was acquired. 

 

2.2.12. RP-HPLC with 0.1% TFA for purity analysis 

The purity of the peptides was determined by reverse-phase liquid chromatography 

(RP-HPLC) using a Nucleodur column (100-5; C18ec; 4.6 x 125 mm) from 

Macherey-Nagel. 10 µL of the diluted peptide solution were injected into the RP-

HPLC and separated by an acetonitrile gradient increasing from 10% up to 60% in 

15 min. The flow rate was set to 0.6 mL/min. The UV-chromatogram was used to 

determine the percentage of the peptide purity.  

 

2.2.13. Preparative RP-HPLC with 0.1% TFA 

The preparative RP-HPLC was used to purify the peptide. A Nucleodur column  

(1005; C18ec; 16 x 250 mm) from Macherey-Nagel was used. The column was 

equilibrated with 10% acetonitrile in H2Odd + 0.1% TFA for 15 min. For purification, 

an acetonitrile gradient from 10% to 60% in 45 min was used. The flow rate was 

6 mL/min and the peptide was detected at 220 nm. Acetonitrile was removed with 

the Xcel Vap and the sample was lyophilized.  

 

2.2.14. Synthesis of ionic liquids 

Ionic liquids were synthesized by the group of AG Giernoth by Julie Piper gen. 

Schmauck (176). 

 

2.3.  Characterization methods 

2.3.1. Circular dichroism spectroscopy  

Circular dichroism (CD) spectroscopy was used to determine the secondary 

structure of the synthesized peptides. All CD spectra were measured with a Jasco 

Corp. J715 spectrometer at 20 °C. A 20 µM peptide solution in 10 mM phosphate 

buffer, pH 7.0 or 10 mM phosphate buffer/TFE (1:1 v/v), pH 7.0 was prepared. 

Peptide solutions were filled into a 0.1 cm quartz cell and a spectrum was recorded 

from wavelength 180 to 260 nm in 0.2 nm intervals. The measurement was 
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performed in triplicate. The scanning speed was 50 nm/min and the sensitivity 100 

mdegrees. 

 

2.3.2. Preparation of large unilamellar vesicle (LUVs) 

LUVs were prepared combining either 1,2-dioleoyl-sn-glycero-3-

phophoethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-

glycerol)] (DOPG) (DOPE/DOPG 80:20) to imitate a gram-negative bacterial 

membrane, or by combination of DOPE, DOPG and cardiolipin (CL) 

(DOPE/DOPG/CL 15:80:5) to imitate a gram-positive bacterial membrane. Lipid 

mixtures were dissolved in 1 mL chloroform and the chloroform was evaporated 

under reduced pressure. Then, the lipid film was dissolved in 1 mL 10 mM 

phosphate buffer, pH 7.0 and ten times frozen and melted in liquid nitrogen. In a 

next step, the suspension was passed 21 times through a mini-extruder equipped 

with a 0.4 µm polycarbonate track-etch membrane (Avanti Polar Lipids, Alabaster, 

USA). The size of the vesicle was determined via dynamic light scattering.   

 

2.3.3. Circular dichroism with LUVs 

20 µM peptide solution was added to 1 mM LUVs in 10 mM phosphate buffer, pH 

7.0. The CD measurement was performed as written above.  

 

2.3.4. Preparation of giant unilamellar vesicle (GUVs) 

The preparation of giant unilamellar vesicles (GUVs) was performed by Mareike 

Horn. In brief, GUVs were prepared combining 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC), Atto550 labeled DOPE and different amounts of 

cholesterol. In a first step, super low melting agarose (1% w/v) was coated on a 

glass slide and dried for 30 min at 50 °C. After that, 10 µL of DOPC and DOPE 

solution were spread on the agarose layer and dried in vacuo for at least 1 h. In a 

next step, a seal ring was placed on the lipid coated agarose film. For the 

preparation of GUVs with encapsulated Oyster 405, a 10 mM HEPES buffer, pH 

7.4, 50 mM KCl, 50mM NaCl, 1mg/mL dextran (from Leuconostoc spp., 6 kDA) and 

5 µM Oyster 405 was used. After adding the buffer into the seal ring, the glass slide 
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was left for 2 h in the dark to allow the lipids to swell. For harvesting the GUVs, the 

glass slide was tilted gently in all directions. The GUVs were used within three days.    

 

2.3.5. CLSM observation of GUVs treated with peptide conjugates 

The CLSM observation with GUVs and peptides were performed by Mareike Horn. 

In brief, GUVs were centrifuged at 14.000 x g for 10 min at RT to remove untrapped 

Oyster 405. 40 µL GUV solution was diluted with 50 µL of the respective HEPES 

buffer described above and transferred into a tissue culture vessel. CF-labeled 

peptide conjugates were added to the GUVs with a final concentration of 5 µM.  

The GUV-peptide interaction was analyzed using a confocal laser scanning system 

(Nikon D-Eclipse C1) containing an inverted microscope (Nikon Eclipse Ti) with an 

20x objective (N.A. 0.45, Plan Flour; Nikon). The fluorescence intensity was 

determined using ImageJ.  

 

2.4.  Biological methods 

2.4.1. Antimicrobial activity 

The iodnitrotetrazolium-purple assay was performed to determine the viability of 

different bacteria. Only viable bacteria convert tetrazolium to formazan, therefore, 

the absorption is proportional to the bacterial number. 

For imidazolium-salt conjugates: Each bacterial strain was incubated overnight in 

Müller-Hinton medium at 30 °C. The next day, the optical density (OD) at 600 nm 

was determined and the bacteria culture was diluted to an OD600nm = 0.7. In each 

well of a 96-well plate, 180 µL Müller-Hinton medium, 10 µL bacteria suspension 

and 10 µL of peptide conjugates (concentration 5 µM, 4 µM, 3 µM, 2 µM, 1 µM, 0.5 

µM and 0.25 µM) were added. As positive control, gentamicin (for B. subtilis), 

streptomycin (for M. phlei) and tetracycline (E. coli) and as negative control, H2Odd 

was used. Bacteria were incubated with peptide-conjugates for 6 h at 30 °C. Then, 

10 µL INT solution (iodnitrotetrazolium-chloride 1 mg/mL in DMSO) were added to 

each well and incubated for 30 min at 37 °C. The viability was analyzed measuring 

the absorption at 540 nm. Negative control was set to 100%. 

For sC18 variants: Each bacterial strain was incubated in a subculture overnight at 

37 °C. The next day, the sub culture was given to 100 mL fresh Müller-Hinton 
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medium and bacteria were grown to an OD600nm = 0.7. Then, the INT-assay was 

performed as written above with the difference that everything was performed at 

37 °C. 

 

2.4.2. Killing assay using resistant bacterial strains 

The killing assay was performed by Dr. Andreas Schubert at the Fraunhofer 

Institute for Cell Therapy and Immunology, Leipzig. It was performed against 

vancomycin-resistant Enterococci (VRE) and methicillin-resistant Staphylococcus 

aureus (MRSA). In brief, an overnight bacteria culture was diluted to an OD600nm = 

0.05 in Trypticase-Soya-Bouillon and incubated for 2 h at 37 °C. After an OD600nm = 

0.3 was reached, VRE bacteria were diluted to 700 cfu/180 µL in 10 mM PPB and 

0.5% LB-medium (MRSA bacteria to 500 cfu/180 µL in 10 mM PPB and 2% LB-

medium). 180 µL of the solution was transferred to 20 µL peptide solution at 

different concentrations and shaken at 37 °C for 1 h. Then, bacteria were plated on 

Bacto Brain Heart Infusion (BD) agar plates and incubated overnight at 37 °C. The 

next day, the bacteria colonies were counted.  

 

2.4.3. Hemolytic activity 

Human red blood cells (h-RBCs) were used to determine the hemolytic activity 

based on the release of hemoglobin. H-RBCs were centrifuged at 5,000 x g at 4 °C 

for 10 min and three times washed with PBS by centrifugation at 4,000 x g at 4 °C 

for 10 min. After each washing step, h-RBCs were resuspended in PBS. 50 µL 

peptide solution were added to 50 µL of h-RBCs in PBS to a final concentration of 

4% v/v. The solution was incubated for 60 min at 37 °C and centrifuged at 1,000 x g 

for 5 min. The supernatant was added into 96-well plates and the absorbance of the 

released hemoglobin was measured at 550 nm. As negative control, only PBS was 

used, while 0.1% Triton X-100 acts as positive control. Percentage of hemolysis 

was calculated (Formula 2):  

%	hemolysis = 	 (A550nm	of	erythrocytes	plus	peptide	 − 	A550nm	of	erythrocytes	in	PBS)
(	A550nm	of	erythrocytes	in	0.1	%	Triton − X	100	 − 	A550nm	of	erythrocytes	in	PBS) 	× 100 

 

 

 

(2) 
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2.4.4. Immobilization and characterization of polyether sulfone  

 membranes (PES) 

Immobilization and characterization of polyether sulfone membranes were 

performed by Dr. Agnes Schulze at the Institute for Surface Modifications in Leipzig.  

For peptide immobilization, the PES membrane disc (Ø 10 mm) was immersed into 

a peptide solution (2.5 mg/mL in ultrapure water) for 5 min followed by electron 

beam irradiation (E-Beam) with a dose of 50, 100 or 150 kGy. Irradiation was 

performed in N2 atmosphere with O2 quantities < 10 ppm. The voltage and the 

current were set to 160 kV and 10 mA, respectively. Then, the irradiated membrane 

was rinsed three times for 30 min with ultrapure water and dried at ambient 

temperature.  

Alternatively, peptides were immobilized by a chemical linker system. For this 

purpose, the membranes had first to be functionalized with amino groups at the 

surface. The PES membrane disc (Ø 47 mm) was immersed into a solution of  

2aminoethyl methacrylate hydrochloride (AEMA) (0.5 wt. % in water) for 30 min 

followed by E-Beam irradiation (150 kGy). Then, the samples were washed with 

water (three times for 30 min) and dried at ambient temperature. The membranes 

were cut into 10 mm discs and were treated with an aqueous solution of the peptide 

(2.5 mg/mL), N-hydroxysuccinimide (NHS) (5 mg/mL), and 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) (5 mg/mL). The coupling was allowed to 

react overnight at RT. Then, membranes were washed three times for 30 min with 

ultrapure water and dried at ambient temperature. 

The membrane morphology was investigated by scanning electron microscopy 

(SEM, Ultra 55, Carl Zeiss SMT, Jena, Germany).  

The chemical surface composition was analyzed with X-ray photoelectron 

spectroscopy (AXIS Ultra, Kratos Analytical, Manchester, England). The kinetic 

energy of the electrons was analyzed with a pass energy of 160 eV for the survey 

spectra and 40 eV for the energy resolved spectra, respectively.  

 

2.4.5. Antimicrobial activity with immobilized PES membranes 

For antimicrobial activity tests, the gram-positive bacterium Bacillus subtilis (ATTC 

6633) was used as test strain. The bacteria were cultured in Mueller-Hinton Broth 

(MHB) medium overnight at 37 °C and diluted to an OD600nm = 0.001 (correspond to 
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106 bacteria/mL). PES membranes immobilized with peptides (control: membrane 

without peptide) were placed at the bottom of a 48 well-plate. In each well, 50 µL of 

bacteria suspension were added and the solution was incubated for 3 h at 37 °C. 

Bacteria suspensions were diluted 1:100 with PBS and 10 µL were exposed onto 

Mueller-Hinton agar plates. The next day, the grown bacteria colonies were 

counted. Additionally, to the membranes with the bacteria solution, 600 µL Mueller-

Hinton medium were added and incubated for 24 h at 37 °C. Membranes were 

removed and 20 µL INT-solution were added for 30 min at 37 °C to the bacteria 

suspension. The 48-well plate was subsequently placed in an ELISA plate reader to 

measure absorption at 540 nm. Negative control was set up to 100%. All 

experiments were done in triplicate or duplicate with n=3. 
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3. Results and discussion 

3.1. Improvement of imidazolium salt-peptide conjugates and their 

mechanism of action 

During my master thesis, the covalent combination of imidazolium salts and the 

peptides sC18 and LL-37 yielded new compounds with high antimicrobial activity 

against different bacterial strains. To further investigate the antimicrobial activity, the 

designed compounds should be tested against multi-resistant strains, which are 

heavy to threat with common antibiotics. Moreover, experiments were performed in 

order to investigate selectivity and mechanism of action of the newly designed 

compounds. 

 

3.1.1. Synthesis of imidazolium salt-peptide conjugates 

For the new sets of experiment, the conjugates first had to be synthesized again. 

Table 6 gives an overview of all the synthesized imidazolium-salt peptide 

compounds. Remarkable is that the yield of all peptides containing IL4-KK(εK)βA in 

their sequence (3b, 3b*, 3c and 3c*) was low (only 5-10%). A reason for this low 

peptide amount could be the fact, that as last coupling step, four imidazolium salts 

had to be simultaneously coupled to the already branched peptide sequence. 

Therefore, also side products with less than four imidazolium salts were obtained. 

Nevertheless, after purification via preparative HPLC all peptides showed a 

satisfying purity of around 98%. 
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Table 6: Analytical and synthetic data of all imida zolium salt compounds. Net-charge was determined by counting all lysine and arginine residues and the 

N-terminus. Calculated molecular weight was determined using a calculation software, while the experimental molecular weight, retention time and purity was 

determined using the UV-chromatograms und ESI-MS-spectra. The acetonitrile gradient was 10-60% acetonitrile in water in 15 min with 0.1% TFA. 

Peptide  Sequence  Net 

charge  

MWcalc  

[Da]  

MWexp  

[Da]  

RT 

[min]  

Purity  

[%]  

Yield  

[%]  

1a (sC18) GLRKRLRKFRNKIKEK-NH2 +9 2069.6 2069.5 7.20 98 48  

2a (LL-37) LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES-NH2 +7 4492.4 2234.8 8.40 98 54  

3a (IL-KKA)  IL4-KK(εK)βA-OH +4 1751.7 1752.1 18.78  98 20  

3b (IL-KKA-sC18) IL4-KK(εK)βA-GLRKRLRKFRNKIKEK-NH2 +14 3803.3 3802.8 17.27  97 20 

3b* (IL-KKA -sC18) IL4-KK(εK)βA- GLRKRLRKFRNKIKEK(CF)-NH2 +13 4161.6 4160.9 18.35  96 18 

3c (IL-KKA -LL-37) IL4-KK(εK)βA-LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES-NH2 +11 6226.1 6226.0 18.62  98 12  

3c* (IL-KKA -LL-37) IL4-KK(εK)βA-LLGDFFRKSKEKIGKEFKRIVQRIK(CF)DFLRNLVPRTES-NH2 +10 6584.4 6584.5 18.81 97 10 
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The synthesis of the unmodified peptides 1a and 2a was performed by standard 

solid phase peptide synthesis. For peptides 3a, 3b and 3c the imidazolium salt 

(Figure 8) was coupled on solid phase to the N-terminus of the peptide sequence. 

The final conjugates are depicted in Figure 8. Moreover, peptides 3b and 3c were 

also labeled with the fluorophore (3b* and 3c*) 5,(6)-carboxyfluorescein (CF). The 

CF-fluorophore was coupled to the ε-amino group of the last lysine residue, to avoid 

steric hindrance with the imidazolium salts. The peptides were cleaved from the 

resin and fully deprotected using TFA and a scavenger cocktail. After purification 

with a preparative HPLC, all peptides were isolated as trifluoroacetate salts.  

 

OH

O

N N+

H3C
15Br

 

Figure 8: Structure of the imidazolium salt used fo r peptide 3a, 3b and 3c. 

 

 

Figure 9: Final structure of 3a, 3b and 3c. * CF-labeled peptides at the ε-amino group of lysine 

(Table 6). 

 

Figure 10 shows the UV-chromatogram and ESI-MS-spectrum of 3a before and 

after the purification step via HPLC. The ESI-MS spectrum shows the 

4-fold ([M]4+  = 438.06), 3-fold ([M-H]3+ = 583.63) and 2-fold ([M-2H]2+ = 931.30) 

charged molecular peaks, corresponding to the peptide mass of 3a 
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(MWcalc = 1751.7). After the purification step (Figure 10, right side), all impurities 

were removed and only the peak of the desired compound is detectable, again with 

the 4-fold, 3-fold and 2-fold charged molecular peaks. The reason why the 4-fold 

charged molecular peak contains no additional H+ ion can be explained through the 

four positive charges of the four imidazolium cations (Figure 9).  

 

 

Figure 10: HPLC-MS analysis of 3a before and after purification via preparative HPLC. Used 

gradient: acetonitrile in water 10-60% in 15 min. UV-chromatogram (above) and full scan ESI-MS 

were both performed with 0.1% TFA. On the left side the UV and ESI-spectrum before purification is 

shown with the product 3a at a RT of 18.77 min. On the right side the UV and ESI-spectrum after 

purification is shown with the product 3a at a RT of 18.78 min. 

 

The purification of 3c looks pretty similar to the one of 3a. Before the purification 

(Figure 11, left side), a small side product can be detected in the UV-chromatogram, 

visible as a shoulder of the main product peak. This side product corresponds to an 

uncomplete coupling of the imidazolium salts to the peptide. After the purification 

(Figure 11, right side), this impurity is eliminated and only the main product peak is 

visible. In both spectra, before and after the purification, charged molecular peaks 

from the 8-fold ([M+4H]8+  = 778.89) to the 4-fold ([M]4+  = 1556.12) are detectable, 

which correspond to peptide 3c (MWcalc = 6224.5). 
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Figure 11: HPLC-MS analysis of 3c before and after purification via preparative HPLC. Used 

gradient: acetonitrile in water 10-60% in 15 min. UV-spectrum (above) and full scan ESI-MS were 

both performed with 0.1% TFA. On the left side the UV and ESI-spectrum before purification is 

shown with the product 3c at a RT of 18.62 min. On the right side the UV and ESI-spectrum after 

purification is shown with the product 3c at a RT of 18.62 min. 
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3.1.2. pH influence on the secondary structure of compound 3c 

The secondary structure analysis of all imidazolium salt-peptide conjugates already 

showed that peptides 2a and 3c form an alpha helical structure in the absence of 

TFE. This is due to the presence of the LL-37 peptide (176). To verify the influence 

of different pH values on the secondary structure of 3c, the pH value of 10 mM 

phosphate buffer + 50% TFE was changed to an acidic and basic milieu. This 

experiment was performed to test, if an acidic or basic milieu leads to structural 

changes or aggregation of the peptide. At this point, only peptide 3c was checked 

exemplarily, since it showed an α-helix without the use of TFE in comparison to 3b 

(176). All pH-values minima at 222 nm and 208 nm were present in the spectrum 

(Figure 12). To analyze the spectra further, the α-helical content was determined by 

calculating the ratio between the molar ellipticity at 222 nm and 208 nm  

(R = [θ]222 nm / [θ]208 nm). The R-value of 1 stands for a perfect formed α-helix. 

Comparing the R-values, no conformational shifts can be detected for the different 

pH values, demonstrating that a basic or acidic milieu has no influence on the 

secondary structure of 3c. 

Figure 12: Circular dichroism spectra of 3c at diff erent pH values. The spectrum was 

measured with 20 µM peptide concentration in 10 mM phosphate buffer + 50% TFE. R-values 

(R) represent the ratio between the molar ellipticity values at 222 nm and 208 nm. 
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3.1.3. Antimicrobial activity against resistant bacterial strains 

To further investigate the antimicrobial activity of all compounds, the activity against 

methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant 

Enterococci (VRE) were determined. Figure 13 shows the results of the killing 

assays, which were performed by the Fraunhofer Institute for Cell Therapy and 

Immunology in Leipzig. While the control peptide 1a, without imidazolium salts, 

showed no activity up to 5 µM against both bacterial strains, the other control 

peptide 2a exhibited a minimal inhibitory concentration of 50% (MIC50) value of 

2 µM) for both bacteria. All imidazolium salt-peptide conjugates displayed very 

promising activities with MIC50 values in the lower molecular range and the lowest 

MIC50 value of 0.3 µM for compound 3b. However, the MIC50 values of 3a and 3c 

were nearly as low as for 3b, with 3a being more active against MRSA and 3c 

against VRE bacteria.  

 

Figure 13: Antimicrobial activity against resistant  bacterial strains.  All compounds were tested 

against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enteroccoci. n=3 in 

triplicate.  

 

A comparison of all MIC50 values is shown in Table 7. The MIC50 values were 

manually defined from the individual graphs of each compound. MIC50 values for B. 

subtilis, E.coli and M. phlei had been already calculated during my master work. 

The unmodified peptide 1a showed no activity against all bacteria strains, while 2a 

was inactive only against the gram-negative bacterium E. coli. Against all other 

gram-positive bacteria and the acid-fast bacterium M. phlei, a slightly increased 

activity was visible. The fact that 2a is more active than 1a, can be explained 

comparing their length. 2a is twice as long as 1a and, therefore, is probably better 
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integrated into the bacterial membrane. Furthermore, 1a is maybe too short to span 

the whole peptidoglycan of the bacteria. Interestingly, the short compound 3a 

exhibited a high activity (MIC50 = 0.4 – 2.5 µM) against all bacterial strains tested, 

with the exception of M. phlei. Generally, M. phlei is very hard to be affected by 

antibiotics due to its additional waxy mycolic layer. The antimicrobial peptide 

coupled to the imidazolium salts led to a further increased antimicrobial activity for 

nearly all bacterial strains. Notably, the sC18 conjugate 3b exhibited a slightly 

increased toxicity compared to the LL-37 conjugate 3c. This result can be explained 

by the fact that the LL-37 conjugate 3c is bigger and longer than the sC18 

conjugate 3b and maybe cannot permeate the bacteria membrane as good as 3b. 

All conjugates 3a, 3b and 3c were the most active against the resistant bacteria, 

which makes them very interesting for further investigation. Additionally, it can be 

noticed that these three compounds were the most active against the gram-positive 

bacteria B. subtilis, MRSA and VRE and exhibited only low activity against the 

gram-negative bacterium E.coli. This is mainly because gram-positive bacteria miss 

the outer membrane compared to gram-negative bacteria. Another point is that the 

composition of both bacteria membranes is different: gram-negative bacterial 

membranes contain more phosphatidylethanolamine, while in gram-positive 

bacteria membranes phosphatidylglycerol is the main component (177). Since 

phosphatidylglycerol is negatively charged, while phosphatidylethanolamine is 

neutral, the positive charged imidazolium salt compounds interact better with the 

gram-positive bacterial membranes. 

 

Table 7: Minimal inhibitory concentration (MIC 50) of all tested compounds .  

Compound  Organism  

 B. subtilis 
(ATTC 6633) 

E. coli K12 
(MG 1625) 

M. phlei 
(DSM 48214) 

MRSA VRE 

1a - 5.0 µM 5.0 µM - - 

2a 3.0 µM 5.0 µM 1.0 µM 2.3 µM 0.9 µM 

3a 1.1 µM 2.5 µM 5.0 µM 0.4 µM 0.5 µM 

3b 0.5 µM 1.0 µM 0.3 µM 0.3 µM 0.2 µM 

3c 1.8 µM 3.5 µM 0.8 µM 0.6 µM 0.3 µM 
- :no activity detected at the highest concentration of 5 µM . MIC50 values of control compounds: gentamicin  
(B. subtilis 2.1 µM), tetracycline (E. coli 32.8 µM) and streptomycin (M. phlei 17 µM). 
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Compared with commonly used antibiotics, the tested MIC50 values of the 

compounds were between 0.3 – 0.6 µM, which is similar to values of vancomycin 

(MIC50 = 0.32 µM against MRSA (178, 179)) and linezolid  

(MIC50 = 0.59 µM against VRE (179)), highlighting again their high antimicrobial 

potential. 

 
3.1.4. Hemolytic activity studies 

To get a first impression of every compound’s selectivity, the hemolytic activity 

against human erythrocytes was determined and a selectivity index (SI) was 

calculated. Therefore, human red blood cells (h-RBCs) from a healthy volunteer 

were used and the HC20 values were defined. The HC20 represents the value where 

20% hemolytic activity was detected. For peptides 1a and 2a, as well as the 

conjugate 3a no hemolytic activity below 5 µM was detected (Figure 14); therefore 

the HC20 value was set to 5. Notably, the coupling of four imidazolium salts to the 

sC18 and LL-37 peptides led to a highly increased hemolytic activity with HC20 

values of 1 µM for 3b and 0.5 µM for 3c. To further investigate the selectivity, the SI 

index (HC20/MIC50) was calculated, considering that a high SI index is a hint for 

good selectivity (Table 8). 3a exhibited the highest SI, except for M. phlei, because 

no high hemolysis against red blood cells was detected. To increase the 

antimicrobial activity of 3a further with consistent selectivity, some additional 

positive amino acids like arginine and lysine could be added at the C-terminus of 

this small compound until the point the selectivity decreases. On the other hand, 

conjugates 3b and 3c showed low SI due to their high hemolytic activity. These 

results can be explained by the higher hydrophobicity and increased amount of 

positive charges of compounds 3b and 3c, which can be correlated to a strong 

hemolytic activity. It was additionally shown that the peptides alone were not that 

active against erythrocytes compared to the conjugates.  
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Figure 14: Hemolytic activity of all novel conjugat es against human red blood cells. The 

activity was measured against peptide concentrations from 0.25 to 5 µM. Triton-X 100 and water 

were used as positive and negative control, respectively. HC20 value was determined from this 

Figure; n=2.  

 

Table 8: Selectivity index (SI) of all conjugates c alculated with HC 20/MIC50 

Organism  1a 2a 3a 3b 3c 

B. subtilis - 1.7 4.5 2 0.3 

E. coli 1 1 2 1 0,3 

M. phlei 1 5 1 3.3 0.6 

MRSA - 2.2 12.5 3.3 2.5 

VRE - 5.6 10 1.7 1.7 
- : denotes no activity at the highest concentration of 5 µM detected 

  



 

44 
 

3.1.5. Interaction with model membrane systems 

To get a first hint about the membrane disturbing processes of the tested 

compounds, the interaction of 3b and 3c with giant unilamellar vesicles (GUVs) 

were studied. AMPs get usually attracted to a membrane through electrostatic 

interactions. However, membrane interactions are lower for eukaryotic membranes 

than for bacterial membranes due to the presence of cholesterol in eukaryotic 

membranes (180). It is assumed, that the binding of AMPs to eukaryotic 

membranes is prevented by cholesterol, which increases membrane cohesion and 

membrane stiffness to stabilize the membrane resulting in a liquid ordered state. 

The experiments were performed with the CF-labeled versions of 3b* and 3c*, since 

3b and 3c showed the highest antimicrobial activity in the previous tests. 

 

 

Figure 15: Interaction of peptide 3b* with GUVs and  different DOPC/cholesterol compositions. 

GUVs were incubated with 5 µM 3b* for 90 min and analyzed by CLSM. On the right side the 

intensity profiles of Atto550 (red), 5(6)-carboxyfluorescein (green) and Oyster 405 (blue) along the 

lines of the merge confocal picture were depicted. GUVs contain 0.2 mol% Atto550-DOPE as lipid 

marker and 5 µM Oyster 405 inside the vesicles. Scale bar, 30 µM. 
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GUVs with different amounts of cholesterol ranging from 0 – 60 mol% were 

prepared (181). For GUV preparation DOPC and 0.2 mol% Atto550 labeled DOPE 

were used to visualize the membrane (Figure 15/16 red channel). To visualize a 

possible membrane leakage by dye outflow, Oyster 405 was encapsulated inside 

the vesicles. Compound 3b* showed strong interactions with the GUV membrane, 

as it could be seen in the microscope pictures and the intensity profile (Figure 15). A 

complete dye outflow was visible for GUVs with 20% cholesterol and without 

cholesterol suggesting that the mode of action of 3b is a pore-forming mechanism. 

The intensity profile of these GUVs further showed that the green dye is detectable 

in and outside the vesicle suggesting that the peptide had crossed the vesicle 

membrane. However, increasing the cholesterol content led to an increased dye 

outflow.  

In Figure 16 the results for compound 3c were shown. In this case, no membrane 

disrupting mechanism could be identified, since no dye outflow was visible. This 

result was unexpected because in the antimicrobial experiments it seems that 3b 

and 3c act both via strong membrane interactions. The intensity profile depicted 

some green fluorescence inside the vesicle, suggesting that some peptides of 3c 

already crossed the membrane. For the LL-37, which is a part of 3c, the carpet-like 

mechanism had already been proposed (182). Maybe our compound also acts in a 

detergent-like manner and the concentration was too low to detect micelles, which 

were aroused from the membrane. The extreme clusters of the red green 

fluorescence dye, especially visible in Figure 16, might be caused by the high 

presence of cholesterol. Especially at 60%, it seemed that the cholesterol was not 

homogenously distributed over the GUV membrane and built these clusters.  

This experiment exposed that compounds 3b and 3c have different mode of 

actions.  

For 3b a pore-forming mechanism is proposed, where the conjugate in a first step 

interacts with the lipid membrane, which could be identified by the green 

accumulation at the lipid membrane, and in a second step builds pores leading to 

the outflow of the blue dye. To differentiate better between the first and the second 

step, this experiment could be performed with different concentrations or at different 

time points. In contrast, 3c seems to act in a detergent-like manner, since no 

outflow of the blue dye could be detected. Nevertheless, an interaction of peptide 

and lipid membrane is visible.  
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Previous studies with AMPs Citropin, Aurein and Maculatin also showed differences 

between pore-forming and detergent-like mechanism while interacting with lipid 

bilayers. Citropin and Aurein, both acting in a detergent-like manner (183), indicate 

that these peptides need a higher lipid-to-peptide ratio to achieve a dye leakage 

compared to the pore-forming Maculatin. Therefore, it seems that more peptide 

molecules are required to disrupt the membrane in a detergent-like manner 

compared to a pore-forming mechanism. This observation could explain the 

different results seen for the pore forming 3b and the detergent-like acting 3c. 

Furthermore, an inhibitory effect of cholesterol was visible for compound 3b. 

Hereby, not the interaction between cholesterol and compound led to this inhibitory 

effect, but an indirect effect of cholesterol on the membrane properties (184). The 

presence of cholesterol results in an enhanced membrane cohesion and 

mechanical stiffness, which is explained by an increased acyl chain order in the 

liquid ordered phase of membranes containing cholesterol (180).  
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Figure 16: Interaction of peptide 3c* with GUVs and  different DOPC/cholesterol compositions. 

GUVs were incubated with 5 µM 3c* for 90 min and analyzed by CLSM. On the right side the 

intensity profiles of Atto550 (red), 5,6-carboxyfluorescein (green) and Oyster 405 (blue) along the 

lines of the merge confocal picture were depicted. GUVs contain 0.2 mol% Atto550-DOPE as lipid 

marker and 5 µM Oyster 405 inside the vesicles. Scale bar, 30 µM. 

 

In conclusion, all imidazolium salt-peptide conjugates showed an increased 

antimicrobial activity. Their highly potent activity, especially against drug-resistant 

strains, and their ease of preparation could make them possible future lead 

compounds. Compound 3a is the most interesting one demonstrating the best 

selectivity, with high antimicrobial activity. The content of cholesterol and different 

membrane composition could be a critical factor for this compound’s selectivity, 

which has to be further investigated. To further increase the antimicrobial activity of 

the imidazolium-salt-peptide conjugates, the C-chain length of the imidazolium 

cation could be extended to a C-18 or C-20 chain. In literature, it was already 

demonstrated that the antimicrobial activity of imidazolium salts is mainly driven by 

the length of the C-chain (185, 186). However, a too long C-chain may hinder the 
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antimicrobial effect, too. This observation is named “cut-off” effect and can be 

explained based on inadequate solubility (187). Another reason could be that too 

long C-chains mimic the components of lipid bilayer which leads to an decreased 

perturbation and disruption within the membrane (188). Moreover, in this work, the 

long C-16 chain was located between the antimicrobial peptide and the imidazolium 

cation, while a shorter methyl group was at the end of the conjugate. To further 

increase the antimicrobial activity, the methyl group can be replaced with an 8 to 16 

long C-chain. This additionally C-chain can strengthen the interaction with the lipid 

tails of the membrane, which promotes the integration into the membrane layer. 

Nevertheless, the C-chain should not be too long on the basis of the problems 

mentioned above.  

 
3.2. Electron beam immobilization of novel antimicrobial, short peptide 

motifs leads to membrane surfaces with promising anti-biofilm 

properties 

Biofilm formation is a major problem: 80% of human bacterial infections are caused 

by biofilm infections and upcoming resistance is steadily increasing. Therefore 

compound 3a, which showed potent antimicrobial activity and selectivity, was 

coupled to polyethersulfone (PES) membranes with different linkers and different 

coating strategies. PES is a high temperature resistant polymer, which is often used 

in biological and pharmaceutical applications due to its advantages in oxidative, 

thermal and hydrolytic stability as well as mechanical property (189). One 

disadvantage of the PES membranes is the very hydrophobic character, resulting in 

membrane fouling. (190). Since alternative membrane materials are often unstable 

and expensive, PES membranes are a good alternative. Furthermore, they can be 

easily modified to decrease their hydrophobicity (191). In the following experiments 

PES membranes were functionalized with the hydrophilic compound 3a, 

characterized and their antimicrobial activities were investigated. On the one hand 

electron beam radiation was used as novel an easy method for surface coating 

((192, 193)). Electron beam radiation is a high-energy dependent process which is 

used for cross-linking molecules with the membrane surface. The advantage of 

cross-linking is the looking effect of the compounds leading to thermal resistance, 

mechanical strength and chemical stress (194). This method was then compared to 

a chemical coupling method of peptide immobilization.  
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3.2.1. Synthesis of 3a and its derivates 3d, 3e and 3f 

In addition to compound 3a (Figure 8), three derivatives with different linkers at the 

C-terminus were synthesized (3d, 3e and 3f). Compound 3d contained a flexible 

Ahx-Ahx-Gly linker, consisting of two 6-(amino)hexanoic acids (Ahx) and one 

glycine. The glycine was important, because the direct coupling of Ahx to the Wang 

resin was not very successful. To increase the hydrophobicity, two additionally 

phenylalanine residues were used as linker for peptide 3e. The last compound 3f 

contained a short antimicrobial peptide as linker with the amino acid sequence Trp-

Leu-Leu-Lys-Trp. The three novel C-terminal linkers should promote a better 

integration into the PES membranes during the irradiation process, either by an 

increased distance (3d), by supporting hydrophobic interaction with the membranes 

(3e), or by the introduction of a hydrophobic AMP to increase the overall 

antimicrobial activity (3f). Table 9 shows that the synthesis of all peptides was very 

successful.  
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Table 9: Analytical und synthetic data of all pepti de derivates. Net-charge was determined by counting all lysine and arginine residues and the N-terminus as 

positive charges and aspartic acid and glutamic acid residues as negative charges. Calculated molecular weight was determined using a calculation software, 

while the experimental molecular weight, retention time and purity was determined using the UV-chromatograms und ESI-MS-spectra. The gradient was 10-60% 

acetonitrile in water in 15 min with 0.1% FA except for 3a where the gradient was 10-60% in 15 min with 0.1% TFA.  

Peptide Sequence Net charge 
MWcalc 

[Da] 

MWexp 

[Da] 

RT 

[min] 

Purity 

[%] 

Yield  

[%] 

3a IL4-KK(εK)βA-OH +4 1751.74 1752.24 18.78 98 20 

3d IL4-KK(εK)βA-Ahx-Ahx-Gly-OH +4 2035.13 2035.68 15.63 98 33 

3e IL4-KK(εK)βA-Phe-Phe-OH +4 2046.11 2046.84 15.08 95 21 

3f IL4-KK(εK)βA-Trp-Leu-Leu-Lys-Trp-OH +5 2478.68 2479.6 13.75 97 17 
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3.2.2. Membrane immobilization and characterization 

Membrane immobilization and characterization was performed by Dr. Agnes 

Schulze at the Institute for Surface Modifications in Leipzig. The four peptides 3a, 

3d, 3e and 3f were immobilized onto PES membranes using either electron beam 

radiation with 50 kGy, 100 kGy or 150 kGy, or chemical immobilization via a peptide 

bond. For this, the C-terminus of the peptides was introduced on the membrane by 

NHS/EDC activation. Successful immobilization on the PES membrane was proven 

by X-ray photoelectron spectroscopy (XPS) (Table 10). The unmodified PES 

membranes were used as reference. XPS data show that they contain 70% carbon, 

26% oxygen and 4% sulfur. After the immobilization of all peptides on the 

membrane, a significant increase of nitrogen on the membrane surface could be 

detected. Since the PES membrane reference contains no nitrogen, the nitrogen 

increase let conclude a successful peptide immobilization.  

A comparison of the four different peptides was difficult because the values of 

nitrogen seem to be pretty variable. However, the highest nitrogen amount (0.72 – 

1.73%) could be detected for 3f compared with the other peptides. All in all, the 

electron beam radiation seemed to be a successful method to immobilize peptides 

on a PES membrane.  

Scanning electron microscopy (SEM) pictures were taken to further characterize the 

membrane morphology after immobilization. The reference PES membrane 

depicted in Figure 17 is highly porous with a pore-like structure. After electron 

radiation, immobilization and EDC/NHS immobilization of the peptides, the pore 

structure remained the same as for the reference leading to the conclusion that no 

pore blocking or structural defects were caused by both immobilization methods.   
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Table 10: Atomic composition of the membranes (as d etermined by XPS analysis). 

 Elemental ratio  
(relative atom-%) 

Label C N O S 

PES Membrane (reference) 69.95 - 26.12 3.93 

Membrane + 3a 50kGy 67.81 0.36 28.17 3.33 

Membrane + 3a 100kGy 69.25 0.73 26.87 3.62 

Membrane + 3a 150kGy 69.39 0.61 27.05 3.56 

Membrane + 3a (NHS/EDC) 69.61 0.98 26.61 3.78 

Membrane + 3d 50kGy 69.28 0.71 26.85 3.17 

Membrane + 3d 100kGy 69.44 0.69 26.61 3.27 

Membrane + 3d 150kGy 68.79 0.17 27.47 3.56 

Membrane + 3d (NHS/EDC) 69.42 1.03 26.50 3.06 

Membrane + 3e 50kGy 68.38 0.81 27.53 3.28 

Membrane + 3e 100kGy 67.84 0.59 28.20 3.37 

Membrane + 3e 150kGy 69.55 1.34 25.86 3.25 

Membrane + 3e (NHS/EDC) 68.95 0.33 27.06 3.65 

Membrane + 3f 50kGy 68.81 0.72 27.12 3.35 

Membrane + 3f 100kGy 68.60 0.73 27.34 3.33 

Membrane + 3f 150kGy 70.51 1.73 24.93 2.85 

Membrane + 3f (NHS/EDC) 69.15 0.73 26.79 3.33 
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Figure 17: SEM images of immobilized PES membranes.  PES reference membrane without 

peptide. Membranes with peptides 3a, 3d, 3e and 3f after coupling with EDC/NHS (upper row) and 

after electron beam radiation (lower row). All membranes images are in top view. 

 

3.2.3. Antimicrobial activity of the functionalized PES membranes 

To investigate the antimicrobial activity of the functionalized PES membranes, an 

INT-assay was performed after 24 h incubation of B. subtilis, a gram-positive 

bacterium, with functionalized membranes (Figure 18). Hereby, the peptide 3a 

showed the best antimicrobial activity when immobilized via covalent coupling, while 

3d had the highest effect on B. subtilis when the membrane radiated with 150 kGy 

was tested. An explanation for these results could be that the peptide 3a without 

linker is closer to the membrane than the tested compounds with linker. Since the 

bacteria build their bacterial film on the membranes, the peptide 3a was closer to 

the bacteria then the other compounds. On the other side, the good results for 3d 

radiated with 150 kGy could be explained by the fact that the aliphatic chain of 

aminohexanoic acid could be better integrated in the membrane compared to 

phenylalanine. However, when 3a was incorporated by radiation, it showed no 

activity at all, may be due to the fact that it got integrated too deep into the 

membrane and subsequently lost its antimicrobial activity. In contrast, the bulky 

aromatic groups of 3e and 3f may hinder the integration of these peptides into the 

membrane leading to lower antimicrobial effects.  

Most of the time, the antimicrobial activity of immobilized peptides was reduced 

compared to soluble peptide activity (196). To check, if this statement also is true 

for the results of compound 3a the concentration in µM had to be compared. On the 

one hand, B. subtilis 3a exhibited a MIC50 value of 1.1 µM; on the other hand, 

0.25 mg of 3a was immobilized on the PES membrane which equals approximately 
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142 µM. Therefore, it is very hard to predict, if the soluble peptide activity is higher 

than the immobilized peptide activity, but it seems very plausible that some 

antimicrobial activity was lost during the immobilization step. To solve this problem 

Gabriel et al. used a more flexible hydrophilic poly(ethylene glycol) linker and retain 

antimicrobial activity (197). In literature, it was further shown that immobilization of 

peptides led to an higher stability in physiological environment (195). 

Further insides should give a time-dependent INT-assay (Figure 19). Antimicrobial 

activity was detected after 17 h, 19 h, 21 h and 23 h. No differences between the 

control membranes and peptide-immobilized membranes could be measured 

except for 3a at 100 kGy. Thus, it was concluded that this method was not suitable 

for measuring the anti-biofilm effects. 

 

 

Figure 18: INT-assay of immobilized membranes. Membranes were incubated for 24 h at 37°C 

with bacteria. Membranes were removed and 20 µl INT-solution were added for 30 min at 37°C to 

the bacteria suspension. The 48-well plate was subsequently put in an ELISA plate reader to 

measure absorption at 540 nm. Negative control was set up to 100% (n=4). 
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Figure 19: Time-experiments of immobilized membrane s. Membranes were incubated for 17 h, 

19 h, 21 h and 23 h at 37°C with bacteria. OD540nm was measured at each time-point. The 48-well 

plate was subsequently put in an ELISA plate reader to measure absorption at 540 nm. Negative 

control was set up to 100% (n=2).  

 

Therefore, as an additional experiment, an agar plate assay was performed using 

B. subtilis. The respective membranes were incubated for 3 h with a solution 

containing B. subtilis, and then a small amount of this solution was exposed on agar 

plates (Figure 20). Figure 20 depicts that for peptide 3a only one agar plate 

containing some single bacteria colonies could be detected using electron beam 

radiation of 150 kGy. Covalent coupling of peptide 3d exhibited no bacteria at the 

agar plates, while for the control without peptide lots of bacteria were visible. The 

amount of bacteria colonies for all linker variants and immobilization methods are 

illustrated in Figure 21. It is displayed that 3a and 3d dramatically inhibited the 

bacterial growth independently from the immobilization method used. On the 

contrary, the activity of 3e and 3f seemed to be dependent on the immobilization 

technique used, but the results were not statistically significant to confirm this 

assumption.  
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Figure 20: Grown bacteria after incubation with imm obilized membranes. Immobilized 

membranes were incubated for 3 h with B. subtilis and some drops of the solution were exposed on 

agar plates. This Figure shows the results for peptide 3a with electron beam radiation of 150 kGy, for 

3d using covalent coupling and the control agar plates without peptide.  

 

 

Figure 21: Agar plate assay of immobilized membrane s. Membranes modified with peptide were 

incubated with B. subtilis. After 3 h incubation at 37°C 1 µL of bacteria solution were mixed with 99 

µL PBS and scratched out on Mueller-Hinton Agar plates. The day after grown bacteria colonies 

were counted. As negative control membrane without peptide was used (n = 4). 
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In conclusion, bacteria growing experiments showed antimicrobial activity of 3a and 

3d, while within the INT-assays, no antimicrobial effect was detected. The 

difference between these two experiments might be the volume of the bacterial 

solution, which is 10-fold higher in the INT-assay than in the agar plate assay. 

Additionally, the incubation time for the agar plate assay is with 3 h shorter than the 

6 h for the INT-assays. It can be concluded that the small compounds 3a and 3d 

are very active in the first 3 h and have only a limited range with their branched side 

chains. However, all coated membranes exhibited an increased activity against 

B. subtilis compared to membranes without peptide. Taken together, the electron 

beam radiation method demonstrated as high antimicrobial activity as the chemical 

coupled method. This lead to the assumption that peptides can be immobilized 

successfully on PES membranes using the electron beam radiation method.  

 

3.3. Optimizing the antimicrobial activity of the CPP sC18 

sC18 is originally derived from CAP18, a cathelicidin peptide with antimicrobial 

activity. sC18 was studied and developed in our research group and is mostly used 

as cell-penetrating peptide in the delivery of cytostatic drugs or imagine probes. (80, 

196). sC18 is mostly taken up in cells via endocytosis, but an direct entry seems 

also possible (55, 81, 82). In chapter one of this work, it was already shown, that 

sC18 as a peptide conjugate exhibited high antimicrobial activity. Besides sC18 

other well-known CPPs were found to exhibit antimicrobial activity as well, for 

example TAT(48-60), penetratin or Pep-1 (55, 197-199). The lastly named peptide 

Pep-1 was already modified to an antimicrobial Peptide Pep-1-k through increase of 

the cationic character (200). Since the sC18 peptide already has a cationic 

character, the idea was to increase the antimicrobial activity and selectivity through 

the integration of hydrophobic amino acids. Kim et al. revealed that an introduction 

of isoleucine or leucine in the AMP sequence led to an increase in antimicrobial 

activity (201). Isoleucine was chosen because its hydrophobicity is a little bit higher 

than the hydrophobicity of leucine (202). Furthermore, the hydrophobicity index of 

Monera et al. exhibited that phenylalanine is the most hydrophobic amino acid. 

Therefore, isoleucine and phenylalanine exchanges were performed and their 

influence was tested towards activity and selectivity. 
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3.3.1. Synthesis of sC18 variants 

In a first set of experiments, an isoleucine full scan was performed. Further on, the 

isoleucine exchanges at position 10, 15 and 16 showed the best antimicrobial 

activity, and so they were combined to three double and one triple mutants (Table 

11) (Antimicrobial activity is shown in 3.3.2). To investigate, if phenylalanine exhibits 

the same influence on the antimicrobial activity as isoleucine did, the same amino 

acid exchanges at position 10, 15 and 16 as well as the double and triple mutants 

were accomplished for phenylalanine, too (Table 11). The synthesis of all these 

peptides was performed successfully. Peptides sC18I1 – sC18I9 and sC18I11 – 

sC18I14 were only used in the preliminary full scan to investigate which amino acid 

substitution position showed the highest increase in antimicrobial activity. For the 

preliminary tests, these peptides were synthesized in small amounts and were not 

further purified via preparative HPLC. However, the obtained yields were above 

70%, what was sufficient for a first row of biological testing. The peptides sC18, 

sC18I10, sC18I15, sC18I16, sC18F10, sC18F15, sC18F1 6 and all double and 

triple mutants were purified and showed high purity between 91-98%. The yield of 

these peptides was around 30%, except for the double and triple mutants of 

isoleucine, which were obtained in a yield of only 10%. This can be explained by the 

formation of a side-product, which was detected in the UV-chromatogram before 

HPLC purification (Figure 22). The side-product at a retention time of 5.56 min 

exhibited a 6-fold charged molecular peak of 342.24 m/z, corresponding to a 

peptide mass of 1939.26 Da. The molecular weight of this side-product was 113 m/z 

fewer compared to the product peak at a retention time of 6.79 min. This mass 

difference can be explained by the loss of an isoleucine at position 15. Similar side 

products were detected for all peptides containing an isoleucine at position 15. A 

closer look at the peptide sequence suggested that the KIKIK (sC18I15) or similar 

motifs at the N-terminus of the peptide were very difficult to synthesize resulting in a 

low yield of the final product. As already mentioned, the main product was detected 

in the UV-chromatogram at 6.79 min. The ESI-MS spectrum displays the 3-fold 

([M+3H]3+ = 685.58) to 6-fold ([M+6H]6+ = 343.29) charged molecular ions. After 

purification via preparative HPLC, a sharp peak could be detected in the UV-

chromatogram with 0.1% TFA (Figure 23). Again, the 3-fold ([M+3H]3+ = 685.66) to 

6-fold ([M+6H]6+ = 343.22) charged molecular ions were visible with the 

corresponding molecular mass of 2054.70 Da which was assigned to sC18I15.  
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Table 11: Analytic data of all synthesized sC18 var iants. Net-charge was determined by counting all lysine, arginine and the N-terminus as positive charge 

and aspartic acid and glutamic acid as negative charge. Calculated molecular weight was determined using a calculation software, while the experimental 

molecular weight, retention time and purity was determined using the UV-chromatograms und ESI-MS-spectra. The acetonitrile gradient was 10-60% in 15 min 

with 0.1% FA for molecular weight calculation. To calculate the retention time and purity an acetonitrile gradient 10-60% in 15 min with 0.1% TFA was used. 

Peptide Sequence Net 
charge 

MWcalc 

[Da] 

MWexp 

[Da] 

RT 

[min] 

Purity 

[%] 

Yield 

[%] 

sC18 GLRKRLRKFRNKIKEK-NH2 +9 2069.60 2070.54 7.8 > 99 35 

sC18I1 ILRKRLRKFRNKIKEK-NH2 +9 2125.70 2126.82 - > 75* 80 

sC18I2 GIRKRLRKFRNKIKEK-NH2 +9 2069.60 2070.33 - > 70* 81 

sC18I3 GLIKRLRKFRNKIKEK-NH2 +8 2026.57 2027.28 - > 80* 72 

sC18I4 GLRIRLRKFRNKIKEK-NH2 +8 2054.58 2055.78 - > 80* 91 

sC18I5 GLRKILRKFRNKIKEK-NH2 +8 2026.57 2027.25 - > 80* 66 

sC18I6 GLRKRIRKFRNKIKEK-NH2 +9 2069.60 2069.94 - > 85* 62 

sC18I7 GLRKRLIKFRNKIKEK-NH2 +8 2026.57 2027.70 - > 85* 92 

sC18I8 GLRKRLRIFRNKIKEK-NH2 +8 2054.58 2055.78 - > 80* 97 
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sC18I9 GLRKRLRKIRNKIKEK-NH2 +9 2035.58 2036.01 - > 80* 88 

sC18I10 GLRKRLRKFINKIKEK-NH2 +8 2026.57 2027.70 9.2 95 37 

sC18I11 GLRKRLRKFRIKIKEK-NH2 +9 2068.65 2069.88 - > 90* 95 

sC18I12 GLRKRLRKFRNIIKEK-NH2 +8 2054.58 2055.78 - > 75* 65 

sC18I14 GLRKRLRKFRNKIIEK-NH2 +8 2054.58 2055.84 - > 80* 71 

sC18I15 GLRKRLRKFRNKIKIK-NH2 +10 2053.64 2054.70 7.6 98 24 

sC18I16 GLRKRLRKFRNKIKEI-NH2 +8 2054.58 2055.90 8.6 95 28 

sC18I10I15 GLRKRLRKFINKIKIK-NH2 +9 2010.61 2011.00 9.2 90 11 

sC18I10I16 GLRKRLRKFINKIKEI-NH2 +7 2011.55 2012.5 10.1 95 8 

sC18I15I16 GLRKRLRKFRNKIKII-NH2 +9 2038.63 2038.85 8.3 95 9 

sC18I10I15I16 GLRKRLRKFINKIKII-NH2 +8 1995.60 1996.05 9.3 95 6 

sC18F10 GLRKRLRKFFNKIKEK-NH2 +8 2060.59 2060.76 9.3 94 37 

sC18F15 GLRKRLRKFRNKIKFK-NH2 +10 2087.66 2087.96 8.3 93 31 
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sC18F16 GLRKRLRKFRNKIKEF-NH2 +8 2088.60 2888,75 8.7 92 32 

sC18F10F15 GLRKRLRKFFNKIKFK-NH2 +9 2078.65 2079,02 9.6 98 28 

sC18F10F16 GLRKRLRKFFNKIKEF-NH2 +7 2079.59 2079,93 10.3. 98 29 

sC18F15F16 GLRKRLRKFRNKIKFF-NH2 +9 2106.66 2107,06 9.3 92 32 

sC18F10F15F16 GLRKRLRKFFNKIKFF-NH2 +8 2097.65 2097,95 10.6 91 16 

- : no retention time and purity investigated. * : purity was determinend via the UV-spectrum containing 0.1% FA. 
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Figure 22 : HPLC-MS analysis of sC18I15 before purification via  preparative HPLC. Used 

gradient: acetonitrile in water 10-60% in 15 min UV-spectrum (above) and full scan ESI-MS were 

both performed with 0.1% FA. At the top the UV chromatogram is shown with the product sC18I15 at 

a RT of 6.79 min and a side-product (-113 m/z) at 5.56 min. On the bottom the ESI-spectra of 

product side product (5.56 min) and product (6.79 min) are shown. 
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Figure 23  HPLC-MS analysis of sC18I15 after purification via preparative HPLC. Used 

acetonitrile gradient was 10-60% in 15 min. UV-spectrum (above) was performed with 0.1% TFA 

while full scan ESI-MS was performed with 0.1% FA. At the top the UV chromatogram is shown with 

the product sC18I15 at a RT of 7.55 min. On the bottom the ESI-spectra of the purified sC18I15 is 

shown. 

 

3.3.2. Antimicrobial activity of sC18 isoleucine variants 

To get a hint which amino acid positions are best to exchange with isoleucine, the 

antimicrobial activity of sC18 and sC18I1 – sC18I16 was tested at 50 µM and 

25 µM against seven different bacteria strains (B. subtilis, E. coli, P. fluorescens, 

S. typhimurium, M. phlei, C. glutamicum and M. luteus) using the INT-assay. 

Bacteria were divided into three subgroups: (1) bacillus, (2) proteobacteria and (3) 

actinobacteria. From each subgroup one bacterium is shown exemplarily, namely 

(1) B. subtilis, (2) P. fluorescens, (3) M. luteus (Figure 24). Against B. subtilis, all 

sC18 variants showed high antimicrobial activity. The highest effect was detected 

for sC18I1, sC18I3, sC18I5, sC18I8, sC18I10 and sC18I12 – sC18I16. All of these 

variants had an exchange of a basic amino acid residue, either arginine or lysine, 

with isoleucine leading to an increased hydrophobic effect of the whole peptide and 

therefore maybe a better integration into the membrane of B. subtilis. An exception 
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was sC18I15, where the deletion of the acidic glutamic acid led to an increased 

activity compared to sC18.   

For P. fluorescens, a proteobacterium, the results looked a little bit different. Not all 

sC18 isoleucine variants exhibited an increased antimicrobial activity. The most 

toxic effects were determined for sC18I4, sC18I10 and sC18I16 with only 20% 

living bacteria at 25 µM. Again for these three variants isoleucine substituted a 

basic amino acid.  

The Results for the actinobacterium M. luteus were similar to the results of 

P. fluorescens. Again sC18I10 and sC18I16 showed the highest antimicrobial 

activity with 30% and 20% living bacteria, respectively. Furthermore, also sC18I15 

displayed a moderate antimicrobial activity.  

A comparison of the antimicrobial activity of all seven bacteria strains (not all data 

shown) led to the conclusion that isoleucine exchanges at position 10, 15 and 16 

increased the antimicrobial activity. Figure 25 depicts the helical wheel projections 

of sC18 as well as sC18I10, sC18I15 and sC18I16 indicating that an expansion of 

the hydrophobic face (sC18I10 and sC18I16) or the deletion of the negatively 

charged glutamic acid (sC18I15) led to better antimicrobial activity effects. 

Furthermore, the isoleucine scan revealed that a hydrophobic isoleucine inside a 

high positive area (sC18I7) as well as the replacement of the high hydrophobic 

phenylalanine (sC18I9) or asparagine (sC18I11) decreased the antimicrobial 

activity.  
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Figure 24: Antimicrobial activity of sC18 isoleucin e variants. Antimicrobial activity was tested 

against B. subtilis, P. fluorescens and M. luteus. Each value represents the mean ± SEM (n=1 in 

triplicate). Negative control (water) was set up to 100%. 
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Figure 25: Helical wheel projection of sC18, sC18I1 0, sC18I15 and sC18I16. Hydrophilic 

residues are shown as circles, hydrophobic residues as diamonds, potentially negatively charged 

residues as triangles and potentially positively charged residues as pentagons. Hydrophobicity is 

color coded as well: the most hydrophobic residue is green, and the amount of green is decreasing 

proportionally to the hydrophobicity, with zero hydrophobicity coded as yellow. Hydrophilic residues 

are coded red with pure red being the most hydrophilic (uncharged) residue, and the amount of red 

decreasing proportionally to the hydrophilicity. The potentially charged residues are light blue. The 

program of the website http://rzlab.ucr.edu was used for helical wheel projections.  

 
In a next set of experiments, sC18, sC18I10, sC18I15, sC18I16, sC18I10I15, 

sC18I10I16, sC18I15I16 and sC18I10I15I16 were tested again against seven 

different bacterial strains, but this time in a concentration range of 2.5 µM – 25 µM. 

For a better overview, the bacteria were again divided into bacillus, proteobacteria 

and actinobacteria. Compared to the pretests, this time bacteria were first grown in 

a preculture and the next day diluted and grown to an OD600 = 0.7. Figure 26 
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depicts the results of the antimicrobial activity for B. subtilis. For sC18, no activity 

could be detected; on the contrary at 5 µM and 10 µM the percentage of living 

bacteria increases. A reason for this increase could be that bacteria were stressed 

by the presence of the peptide in the solution, but peptide concentration was not 

high enough to kill the bacteria. The highest activity of a single exchanged peptide 

was shown by sC18I16 with only 15% living bacteria at 10 µM. SC18I10 also 

exhibited a high activity but was not as potent as sC18I16. It seems that an 

extension of the hydrophobic area is more effective than the deletion of glutamic 

acid, since sC18I15 only showed a low activity against B. subtilis. However, all 

double and triple mutants displayed a very high antimicrobial activity already at 

5 µM. The mutant sC18I10I16 was the most active one and confirms that the 

hydrophobic face is more important for B. subtilis than the deletion of the negative 

charge.   

 

Figure 26: Antimicrobial activity of sC18 isoleucin e variants against B. subtilis. Antimicrobial 

activity was tested against B. subtilis (2.5, 5, 10, 15, 20 and 25 µM). On the left site, the single 

isoleucine exchanges were depicted, while the right site shows the double and triple isoleucine 

exchanges. Each value represents the mean ± SEM (n=2 in triplicate). Negative control (water) was 

set up to 100%. 

 

The results for the antimicrobial activity of the sC18 variants against the 

proteobacteria C. glutamicum and M. luteus are depicted in Figure 27. Against 

M. phlei, no activity was detected for any of the sC18 variants (Data not shown), 

which could be explained by the fact that M. phlei was very hard to threat with 

antibiotics due to its additional mycolic acid layer. The control peptide sC18 showed 

a slightly increased percentage of living bacteria for M. luteus at 2.5 µM and 5 µM, 

which was also detected for B. subtilis (Figure 26). Moreover, sC18 exhibited no 

toxic effects against C. glutamicum and M. luteus. The single isoleucine exchange 
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sC18I10 showed the highest toxic effect even though no significant differences 

between sC18, sC18I10, sC18I15 and sC18I16  could be detected. Having a closer 

look to the double mutants, no differences between sC18I10I15, sC18I10I16 and 

sC18I15I16 could be observed. However, the triple exchange of sC18I10I15I16 was 

a little bit less active than the double mutants, which could be explained by the high 

hydrophobicity content that is too high with 38% of hydrophobic residues in the CPP 

sequence. Another explanation could be that the steric hindrance of the many 

isoleucine residues did not permit the formation of an alpha helix, resulting in the 

loss of activity.  

The most active single-exchanged peptide against M. luteus was again sC18I10. 

SC18I16 was the second most active compound. A closer look at the combination 

of these single exchanges (sC18I10I16) showed a high increased antimicrobial 

effect at 5 µM – 15 µM. The triple exchanged peptide sC18I10I15I16 was again less 

active at 5 µM – 15 µM than all double exchanges.   

 

Figure 27: Antimicrobial activity of sC18 isoleucin e variants against C. glutamicum and 

M. luteus. Antimicrobial activity was tested against C. glutamicum and M. luteus (2.5, 5, 10, 15, 20 

and 25 µM). On the left site the single isoleucine exchanges were depicted, while the right site 

shows the double and triple isoleucine exchanges. Each value represents the mean ± SEM (n=2 in 

triplicate). Negative control (water) was set up to 100%. 
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Within the third group of tested bacteria were the gram-negative actinobacteria P. 

fluorescencs, S. typhimurium and E. coli. The results for E. coli were not displayed 

because no antimicrobial effect was detected for any compound. The results for P. 

fluorescencs and S. typhimurium depicted in Figure 28 exhibited similar results than 

obtained for the other bacteria. The single exchange at position 10 showed the 

highest increase in activity with MIC50 values of around 5 µM. Moreover, 

sC18I10I15I16 did not increase the activity compared to sC18I10, sC18I15 and 

sC18I16.  

 

Figure 28: Antimicrobial activity of sC18 isoleucin e variants against P. fluorescens and 

S. typhimurium. Antimicrobial activity was tested against P. fluorescens and S. typhimurium (2.5, 5, 

10, 15, 20 and 25 µM). On the left site the single isoleucine exchanges were depicted, while the right 

site shows the double and triple isoleucine exchanges. Each value represents the mean ± SEM (n=2 

in triplicate). Negative control (water) was set up to 100%. 

 

In comparison, the results showed that an increase of the hydrophobic faces 

(sC18I10 and sC18I16) affects the antimicrobial activity more than the deletion of 

the acidic glutamic acid. Nevertheless, the combination of these variations to the 

double exchange variant sC18I10I16 led to an increased antimicrobial effect. On 

the contrary, this was not the case for the triple exchange variant sC18I10I15I16 

compared to the double exchanged ones. The observation that position 10 seemed 
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to be the most important one can be explained as follows. First, the variant sC18I10 

expands the hydrophobic face more compared to sC18I16 due to the loss of an 

amino acid between arginine 10 and leucine 6, which can be seen in the helical 

wheel projection (Figure 24). Secondly, the sC18 peptide contains 16 amino acids 

and position 16 is direct at the C-terminus. Therefore, this position is not as 

important as position 10 in the α-helical secondary structure.  

 

3.3.3. Antimicrobial activity of phenylalanine variants  

To investigate further the influence of hydrophobic amino acids to the antimicrobial 

activity of antimicrobial peptides phenylalanine exchanges were performed because 

phenylalanine is more hydrophobic than isoleucine. The positions chosen were the 

same than for the isoleucine scan, namely sC18F10, sC18F15, sC18F16, 

sC18F10F15, sC18F10F16, sC18F15F16  and sC18F10F15F16 (Figure 29). Again, 

all variants were tested against the seven bacterial strains mentioned above. 

 

 

Figure 29: Helical wheel projection.  Helical wheel projection with amino acid exchanges at position 

10, 15 and 16. Hydrophilic residues are shown as circles, hydrophobic residues as diamonds, 

potentially negatively charged residues as triangles and potentially positively charged residues as 

pentagons. The most hydrophobic residue is green, and the amount of green is decreasing 

proportionally to the hydrophobicity, with zero hydrophobicity coded as yellow while hydrophilic 

residues are coded in red. The potentially charged residues are light blue. The program of the 

website http://rzlab.ucr.edu was used for helical wheel projections.  
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Figure 30 illustrates the results of the antimicrobial activity against the gram-positive 

bacterium B. subtilis. The highest activity of the single mutants was detectable for 

sC18F10 with an MIC50 value of 15 µM followed by sC18F16. Compared to the 

isoleucine single mutants, the MIC50 values exhibited higher values (Figure 26), and 

were therefore, less active. However, at 25 µM the percentage of living bacteria was 

the same for isoleucine and phenylalanine single mutants. Combination of mutation 

F10 and mutation F16 with mutation F15 to sC18F10F15 and sC18F15F16 did not 

increase the antimicrobial activity compared to the single mutants, amplifying the 

argument that position 15 did not play an important role in improving the 

antimicrobial activity of the peptides. However, sC18F10F16 showed an increased 

activity with a MIC50 of 2 µM, which was further increased through the triple mutant 

sC18F10F15F16 to a MIC50 of 1.5 µM. 

  

 

Figure 30: Antimicrobial activity of sC18 phenylala nine variants against B. subtilis. 

Antimicrobial activity was tested against B. subtilis (2.5, 5, 10, 15, 20 and 25 µM). On the left site the 

single isoleucine exchanges were depicted, while on the right site the double and triple isoleucine 

exchanges are shown. Each value represents the mean ± SEM (n=2 in triplicates). Negative control 

(water) was set up to 100%. 

 

The results of the antimicrobial activity against the gram-positive bacteria 

C. glutamicum and M. luteus are shown in Figure 31. Again, no activity could be 

detected for the sC18 peptide. Moreover, for both bacterial strains the peptide 

sC18F10 was the mono mutant with the highest antimicrobial activity. For 

C. glutamicum the difference between the double mutants was not very high. In 

contrast, sC18F15 and sC18F16 only exhibited an antimicrobial activity at 25 µM, 

while at 20 µM nearly 90% living bacteria were detected. As already seen for 

B. subtilis, the triple mutant sC18F10F15F16 also increased the antimicrobial 
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activity against C. glutamicum and M. luteus compared to all mono and double 

mutants.  

 

Figure 31: Antimicrobial activity of sC18 phenylala nine variants against C. glutamicum and 

M. luteus. Antimicrobial activity was tested against C. glutamicum and M. luteus (2.5, 5, 10, 15, 20 

and 25 µM). On the left site, the single isoleucine exchanges were depicted, while on the right site 

the double and triple isoleucine exchanges are shown. Each value represents the mean ± SEM (n=2 

in triplicate). Negative control (water) was set up to 100%. 

 

Finally, the results of the phenylalanine variants against the actinobacteria P. 

fluorescens and S. typhimurium are shown in Figure 32. Again sC18F10 exhibited 

the highest antimicrobial activity as single mutant with only 15 % living bacteria at 

15 µM against P. fluorescens. Examining the double and triple mutants, only the 

triple mutant sC18F10F15F16 displayed an increased antimicrobial activity with 

only 15 % living bacteria at 5 µM. The results for S. typhimurium were a little bit 

different, since only minor alterations in the antimicrobial activity could be detected 

for all sC18 variants. Nevertheless, the double mutant sC18F10F16 and the triple 

mutant sC18F10F15F16 showed a slightly increased activity compared to the other 

variants.   
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Figure 32: Antimicrobial activity of sC18 phenylala nine variants against P. fluorescens and 

S. typhimurium. Antimicrobial activity was tested against P. fluorescens and S. typhimurium (2.5, 5, 

10, 15, 20 and 25 µM). On the left site, the single isoleucine exchanges were depicted, while the 

right site shows the double and triple isoleucine exchanges. Each value represents the mean ± SEM 

(n=2 in triplicate). Negative control (water) was set up to 100%. 

 
Table 12 summarizes the MIC50 values against every bacterial strain tested. The 

results indicate that the isoleucine mono variants were more active than the 

phenylalanine mono variants. Peptides with exchanges at position 10 were the most 

active ones. As already mentioned, the reason for this could be that position 10 is 

located in the middle of the α-helix, while position 15 and 16 are the last amino 

acids at the C-terminus. Therefore, it might be that positions 15 and 16 are less 

important for the formation of an α-helix. Comparing the results of the double and 

triple mutants, the phenylalanine double and triple variants were more active than 

the isoleucine double and triple variants. Comparing phenylalanine double and triple 

mutations, more phenylalanine mutations resulted in a higher antimicrobial activity. 

In contrast, the antimicrobial activity of the isoleucine triple mutant decreased 

compared to sC18I10I15, sC18I10I16  and sC18I15I16. To explain why a synergetic 

effect was detected for the phenylalanine mutations, the 3D-structures of sC18 and 

sC18F10F15F16 are depicted in Figure 33. While for sC18 the glutamic acid at 

position 15 and the lysine at position 16 point into opposite directions (Figure 33 b), 

the phenylalanine at position 15 and 16 of the sC18F10F15F16 peptide are close 
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nearby for hydrophobic and pi-interactions of the benzyl rings. In 1985, Singh et al. 

reported that parallel structures of phenylalanine rings exhibit the highest interaction 

in proteins but are unstable and therefore, only very less found in proteins (203). 

More common and stable are perpendicular interactions, where the ring planes are 

tilted. This interaction can also be found in sC18F10F15F16 (Figure 33 d). Hereby, 

hydrophobic interactions between the positively charged hydrogens of 

phenylalanine 15 and the cloud of π-electrons of the phenylalanine ring at position 

16 stabilize the peptide (203). This stabilization maybe helps the peptide to form an 

α-helix and to better integrate into bacterial membranes. Moreover, the hydrophobic 

interaction of these two phenylalanines helps the peptide to insert into the lipid 

bilayer from the C-terminal end, which interacts with the hydrophobic tails of the 

lipid bilayer (204).  

 

 

 

 

 

 

 

 



 

75 
 

Table 12: Calculated MIC 50 values of all isoleucine and phenylalanine variant s. Half minimal inhibitory concentration (MIC50) was calculated using the 

GraphPad Prism 6.0 Software. First, all graphs were depicted in a logarithmic representation and then a nonlinear regression curve fit was performed (Settings: 

(log) inhibitor vs. normalized response – variable slope). 

 

 

MIC50 in µM  sC18 sC18I10 sC18I15 sC18I16 sC18I10I15 sC18I10I16 sC18I15I16 sC18I10I15I16 

B. subtilis > 25 6.9 > 25 5.9 3.8 2.5 3.6 2.2 

C. glutamicum >25 8.2 8.6 5.5 4.9 5.2 7.6 5.3 

M. luteus > 25 14.2 > 25 18.9 6 1.3 5.3 10.9 

M. phlei > 25 > 25 > 25 > 25 > 25 > 25 > 25 > 25 

P. fluorescens >25 7.6 12.6 12.6 7.2 2.3 4.5 8.2 

S. typhimurium > 25 4.5 6.5 16.4 1.7 2.8 9.2 2.1 

E. coli > 25 > 25 > 25 > 25 > 25 > 25 > 25 > 25 

 sC18 sC18F10 sC18F15 sC18F16 sC18F10F15 sC18F10F16 sC18F15F16 sC18F10F15F16 

B. subtilis > 25 18 23.1 18.3 11.1 2 > 25 1.5 

C. glutamicum >25 9.7 14.3 10.5 2.1 4.3 8.6 1.5 

M. luteus > 25 15 23.3 21.4 6.3 13.2 13.7 3.8 

M. phlei > 25 > 25 > 25 > 25 > 25 > 25 > 25 > 25 

P. fluorescens >25 10.1 19.2 12.1 4.3 6 3.4 2.2 

S. typhimurium > 25 12.1 21.3 18.9 > 25 12.4 23.6 10.7 
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Figure 33: 3D-structure of sC18 (above) and sC18F10 F15F16 (below). Structure was generated 

using PyMOL. Full peptide is shown in an α-helical formation with additionally highlighted side chains 

of amino acid position 10, 15 and 16. On the left side, the 3D-structure is shown in side view (a: 

sC18 / c: sC18F10F15F16), while the right side depicted the 3D-structure in top view (b: sC18 / d: 

sC18F10F15F16). 

 

To further investigate the structural relationships between activity and amino acid 

exchange, CD-spectrometry was performed. In particular, the connection between 

secondary structure and activity of position 10 should be considered with this 

experiment. 

 
3.3.4. Characterization of peptides via CD-spectrometry 

To get a first impression of the secondary structure of the peptides, CD 

spectroscopy was performed in 10 mM phosphate buffer (Figure 34). All isoleucine 

and phenylalanine variants displayed a minimum at 198 nm, which is characteristic 

for a random coil secondary structure. These results were expected since the sC18 

peptide is relatively short with 16 amino acids, and therefore, does not build an α-

helix in a buffer solution. The small maxima at 195 nm of sC18F10F16 and 

sC18F10F15F16 can be a first hint for the building of an α-helix, but probably it was 

a concentration error.  
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Figure 34: Circular dichroism spectra of isoleucine  and phenylalanine variants in phosphate 

buffer. The spectra were measured at a peptide concentration of 20 µM in 10 mM phosphate buffer. 

 

To study the secondary structure in more detail, 50% 2,2,2-Trifluorethanol (TFE) 

was added to the phosphate buffer solution (Figure 35). TFE is a secondary 

structure inducing agent, which stabilizes peptides secondary structure (205). Two 

minima at 208 nm and 222 nm and one maximum at 190 nm could be found for all 

isoleucine and phenylalanine variants as well as for sC18 and are characteristic for 

an α-helical secondary structure. To rigorously interpret the α-helical structure the 

R-value, representing the ratio between the molar ellipticity values at position 

222 nm and 208 nm, was calculated. An R-value of 1 represents a perfectly built α-

helix (206). The unmodified sC18 peptide exhibited an R-value of 0.83. Comparing 

this R-value with the isoleucine single mutants, no significant changes could be 

detected (R-values: 0.8 – 0.82) (Figure 34). Furthermore, no changes could be 

detected for sC18F10F15 and sC10F10F16. In contrast, slightly lower R-values of 

0.78 were detected for sC18F15F16 and the triple mutant sC18F10F15F16 

concluding that two isoleucines at the C-terminal part maybe destabilize the 

secondary structure or somehow hinder the formation of an α-helix. Contrarily to the 
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results of the isoleucine mono variants, the phenylalanine mono variant sC18F10 

displayed a higher R-value of 0.9 compared to sC18. This observation can be 

connected to the high antimicrobial activity, which was detected for sC18F10. No 

significant changes were detected for sC18F15 and sC18F16, which amplifies the 

assumption that these two amino acid positions 15 and 16 are not as important for 

the secondary structure as position 10. Having a closer look at the phenylalanine 

double and triple mutants no further changes in the R-value could be detected. All 

variants containing an isoleucine at position 10 (sC18F10F15, sC18F10F16  and 

sC18F10F15F16) showed a calculated R-value of 0.91 or 0.92. Only the double 

mutant sC18F15F16 exhibited the same R-value than sC18 strengthening the 

argument that only position 10 is important for the secondary structure. An 

explanation why phenylalanine showed an increased R-value compared to 

isoleucine can be given with the α-helix propensity theory of Chou and Fasman, 

published in 1974 (207). Hereby, the value of α-helix propensity for phenylalanine is 

1.12 while for isoleucine it is 1.00 showing that the introduction of phenylalanine 

within the peptide sequence is more suitable for an α-helical secondary structure. 

Moreover, glutamic acid and lysine have an α-helix propensity of 1.53 and 1.07, 

respectively. These two amino acids are the original amino acids of the sC18 at 

position 15 and 16. An exchange led to a decrease in the α-helix propensity for 

glutamic acid, while there is no essential difference for lysine. Differently, the amino 

acid exchange of arginine at position 10 with phenylalanine increased the α-helix 

propensity from 0.79 to 1.12, which can be also a way to explain the increased R-

value of all sC18 variants containing a phenylalanine at position 10. 
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Figure 35: Circular dichroism spectra of isoleucine  and phenylalanine variants in phosphate 

buffer + TFE. The spectra were measured at a peptide concentration of 20 µM in 10 mM phosphate 

buffer with 50% TFE. R-values (R) represent the ratio between the molar ellipticity values at 222 nm 

and 208 nm. 

 
3.3.5. Peptide interaction with artificial membrane vesicles 

The results of CD-measurement showed that position 10 is important for the 

formation of the α-helix. However, the function of position 15 and 16, especially in 

the very active triple mutant sC18F10F15F16, remains unclear. To answer this 

question, and to verify why the tested peptides in general exhibited activity against 

B. subtilis, but not against E. coli, two artificial membrane systems were produced 

using large unilamellar vesicles (LUVs). Therefore, two different LUV compositions 

mimicking the membranes of B. subtilis (DOPE:DOPG:CL 15:80:5) and E. coli 

(DOPE:DOPG 80:20) were prepared. Vesicles that should mimic the outer 

membrane of the gram-positive bacterium B. subtilis contained higher amounts of 

the negatively charged DOPG. In contrast, the composition, combining the inner 

and outer membrane of the gram-negative bacterium E. coli consisted of more 

neutral DOPE. Figure 36 shows the results of the CD experiments, which were 

conducted with the most active isoleucine and phenylalanine variants. Obviously, 

the peptides incubated with DOPE:DOPG:CL vesicles displayed a more defined 
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secondary structure when compared to vesicles mimicking the membrane of E. coli. 

The two isoleucine variants sC18I10I15 and sC18I10I16 showed two minima at 208 

nm and 220 nm and a maximum at 195 nm indicating an α-helical secondary 

structure. Furthermore, also sC18F10F16 and sC18F10F15F16 exhibited structural 

elements revealing an α-helix, although the structure was not as distinct as for the 

isoleucine variants. This can be explained by the use of two different LUV stock 

solutions that were used. In comparison, the structure of the four peptides incubated 

with DOPE:DOPG vesicles seemed to be unstructured. While for the isoleucine 

variants only a minimum at 222 nm was detected, phenylalanine variants show a 

maximum at 200 nm. These structural differences in the presence of different 

vesicles can be a hint why the peptides are more active against B. subtilis than 

E. coli. Nevertheless, the structural elements do not seem to be the only important 

factor for antimicrobial activity. Especially for sC18F10F15F16, there could exist a 

combination of secondary structure, peptide stabilization and interaction with the 

hydrophobic tails of the lipid bilayer leading to the highest antimicrobial activity of all 

sC18 variants.  

 

 

Figure 36: Circular dichroism spectra with artifici al membrane vesicles. LUVs containing 

DOPE:DOPG:CL (15:80:5) and DOPE:DOPG (80:20) was prepared to imitate the membrane of 

B. subtilis and E. coli, respectively. The spectra were measured at a peptide concentration of 20 µM 

in 10 mM phosphate buffer with 1 mM LUVs. R-values (R) represent the ratio between the molar 

ellipticity values at 222 nm and 208 nm. 

 

Stella et al. already showed that the main difference between CPP and AMP activity 

could be their affinities towards bacterial membranes (200). Especially a positive 

charge is needed to bind more strongly to the anionic bilayer. Since the increased 
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activity in this work could not be explained with a higher positive charge, there seem 

to be other characteristics. Concluding all results, two further characteristics can be 

emphasized. On the one hand, position 10 stabilizes the α-helical structure and 

maybe increases the hydrophobic interaction between the hydrophobic parts of two 

AMPs during pore formation. On the other hand, position 15 and 16 interact with 

each other, especially when exchanged with phenylalanine, and further interact as 

first amino acids with the hydrophobic tails of the lipid molecules, resulting in a 

higher affinity to the bacterial membrane. This model was already published in 

literature for cytolytic peptides, describing that hydrophobic interaction also 

increases the cytolytic activity (204). LUV experiments, imitating B. subtilis or E. coli 

membranes, gave a further hint that the bacterial membrane composition is related 

to peptide activity. This would explain why the sC18 variants exhibited different 

activities against different bacteria. Nevertheless, this result cannot be generalized 

for all gram-positive and gram-negative bacteria because every group has their 

exceptions. For the gram-negative bacterium C.crescentus, the absence of 

phosphatidylethanolamine (208) is as unusual as the high amount of 

phosphatidylethanolamine in the gram-positive bacterium B. polymyxa (209). This 

observation shows that also in the bacterial subgroups every bacterium differs in 

their lipid composition making it very hard to treat all bacteria of one subgroup 

equally. 

To give an overview about the interaction of the sC18F10F15F16 peptide with the 

membrane bilayer a mechanism of action model was proposed in Figure 37. In a 

first step, the positive charged amino acids of sC18F10F15F16 get attached to the 

negatively charged phospholipids (for example DOPG). Hereby, the positive peptide 

net charge of +8 (Table 11) is very helpful for this interaction. In a second step, the 

phenylalanine at positon 15 and 16 start an interaction with the hydrophobic lipid 

tails leading to an insertion of the peptide into the membrane. Furthermore, an 

interaction between the phenylalanines at position 10 of different peptides can be 

hypothesized resulting in an α-helix stabilization (stripped black line in Figure 37). 

This hypothesis can be reinforced, because all sC18 variants with a phenylalanine 

at position 10 exhibited a better distinct α-helix (Figure 35). The last step is the 

complete integration of more peptides building a pore, which then leads to a 

destabilization of the membrane and an antimicrobial effect. The inside of the pore 

is built by the hydrophilic sides of the peptides. 
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Figure 37: Mechanism of action model for sC18F10F15 F16. (1) Positive arginine and lysine 

residue interact with negatively charged phospholipids (red: hydrophilic side, blue: hydrophobic side). 

Hereby, the peptide gets attached to the membrane. (2) Phenylalanine’s at position 15 and 16 (black 

hexamers) are the first amino acids, which interact with the hydrophobic tails of the lipid molecules 

starting the incorporation of the peptides in the membrane bilayer. The phenylalanine's at positon 10 

(green hemaxers) interact among themselves (striped black line) stabilizing the α-helical structure. 

(3) Peptides are integrated into the membrane bilayer building a pore.  
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4. Conclusion and Outlook 

Within this work, different strategies are described to increase the antimicrobial 

activity of AMPs, e.g. conjugation to imidazolium salts, immobilization on 

membranes, or amino acid exchanges. 

In a first step, a branched imidazolium-salt compound was designed and 

successfully conjugated to sC18 and LL-37. The combination of the antimicrobial 

characteristics of AMPs and imidazolium-salts led to a highly increased 

antimicrobial activity, especially against hard to medicate multi-drug resistant strains 

like MRSA and VRE. The secondary structure of compound 3c was characterized 

under very basic and acidic conditions. No changes in the secondary structure were 

detected, showing that the peptide is stable under these extreme conditions. To use 

the compound as future antibiotic, its stability against proteases and human blood 

plasma should be investigated. Another important attribute of antibiotics is their 

selectivity. 3b and 3c exhibited very strong antimicrobial activity, but were only less 

selective against human red blood cells, while on the other hand 3a showed better 

selectivity. Furthermore, the influence of cholesterol as a membrane compound was 

investigated, since only eukaryotic cell contain cholesterol. Compounds 3b and 3c 

were less active against vesicles containing cholesterol, concluding that the 

compounds also show selectivity towards eukaryotic cells. In conclusion, this work 

demonstrated for the first time that imidazolium salts conjugated to antimicrobial 

peptides led to highly active compounds, especially against resistant bacterial 

strains. Since compound 3a execute highest selectivity, this compound could be a 

future lead structure for new antibiotic agents. 

In a second step, the novel designed compound 3a was immobilized on a polyether 

sulfone membrane using different linkers (compounds 3a, 3d, 3e and 3f) to achieve 

a surface with high antimicrobial activity. The immobilization with electron beam 

radiation and chemical coupling was very successful for all compounds. To increase 

the activity range, further polyethylene glycol (PEG) chains could be coupled to the 

C-terminus, which also should lead to a better flexibility. In general, an introduction 

of a hydrophobic linker seemed to be more effective for a successful electron beam 

radiation. Anyway, the electron radiation is a technique without the use of catalyst or 

toxic reagents, but has the problem that the integration position of the compound is 

not completely understood yet (210). Consequently, the chemical coupling method 
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seems to be more attractive for the immobilization of peptide compounds since the 

peptide is arranged at the surface of the membrane via a peptide bond and not 

integrated into the membrane. Conclusively, both immobilization methods are easy 

and powerful to coat antimicrobial compounds on polyether sulfone membranes 

retaining their antimicrobial effect.  

Finally, the thin line between cell-penetrating peptides and antimicrobial peptides 

was investigated modulating the CPP sC18 to an antimicrobial peptide via amino 

acid exchanges. The sC18 peptide already consists of a lot of positively charged 

amino acids, whereas the focus had been on increasing the hydrophobic face of 

sC18 including phenylalanine and isoleucine. The antimicrobial activity already was 

increased with one amino acid substitution and showed the highest effect for 

sC18F10F15F16. The hydrophobic face seemed to be as important for antimicrobial 

activity as the cationic charge. Position 15 showed the weakest effects since the 

hydrophobic amino acid was incorporated in the hydrophilic face of the α-helix. 

Therefore, a substitution of glutamic acid at position 15 with arginine or lysine 

should enhance the antimicrobial activity further. Therefore, in a next step of 

experiments, the selectivity of the novel sC18 variants should be determined to 

verify if the lytic activity against human cell lines or human red blood cells also 

increases through the different amino acid exchanges. Moreover, bacteria with high 

phosphatidylethanolamine content seem to be more resistant against the treatment 

with antimicrobial peptides since the role of phosphatidylethanolamine is to spread 

out the negatively charged phospholipids and reduce the negatively overall 

membrane charge (177).  

Recently, the appearance of more and more multi-resistant strains has forced the 

development of novel antimicrobial compounds. However, the use of AMPs as 

clinical application is still far away because of their low specificity and their toxic 

side effects. In this work, it could be shown that small modifications of the peptide 

sequence can lead to characteristic changes, but predicting these changes remains 

challenging. To use AMPs as antibiotics, the mechanism of action should be better 

understood. However, especially their unique membrane targeting mechanism 

makes AMPs to a benefit in public health in the near future.  
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6.  Attachment 

6.1. List of abbreviations 

AEMA    2-aminoethyl methacrylate hydrochloride 

Ahx    6-hexanoic acid 

AMP    Antimicrobial peptide 

BD    Bacto brain heart infusion 

CD    Circular dichroism  

CF    5(6)-carboxyfluorescein 

CL    Cardiolipin 

CLSM    Confocal laser scanning microscopy 

CPP    Cell-penetrating peptide 

DCM    Dichlormethan 

Dde    2-acetyldimedone 

DIC    N,N′-diisopropylcarbodiimide 

DIPEA   N,N-diisopropylethylamine 

DMF    N,N-dimethylformamide 

DOPC    1,2-dioleoyl-sn-glycero-3-phosphocholine 

DOPE    1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

DOPG 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phospho- 

(1'-rac-glycerol) 

EDC    1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

ESI-MS   Electrospray ionization mass-spectrometry 

FA    Formic acid 

GUV    Giant unilamellar vesicle 

HATU    N-methylmethanaminium hexafluorophosphate N-oxide 

HC20 Minimal hemolytic concentration of 20% living  

red blood cells 
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h-RBCs   Human red blood cells 

HSV    Herpes-simplex-virus 

IL    Ionic liquid 

INT    Iodnitrotetrazolium 

kGy    Kilogray 

Leu    Leucine 

LPS    Lipopolysaccharides 

LUV    Large unilamellar vesicle 

Lys    Lysine 

MHB    Mueller-Hinton broth 

MIC50    Minimal inhibitory concentration of 50% living 

bacteria 

MRSA    Methicillin-resistant Staphylococcus aureus 

NHS    N-hydroxysuccinimide 

OD    Optical density 

OM    Outer membrane 

PBS    Phosphate buffered saline 

PES    Polyether sulfone 

RP-HPLC Reversed-phase high-performance liquid 

chromatography 

SEM Standard error of mean 

SI Selectivity index 

TFA    Trifluoracetic acid 

TFE    2,2,2-trifluorethanol 

TIS    Triisopropylsilane 

Trp    Tryptophan  
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VRE    Vancomycin-resistant Enterococci 

XPS    X-ray photoelectron spectroscopy 
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