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Kurzfassung

Der Fokus dieser Arbeit liegt auf geometrischen Packungen dreidimensionaler Körper, die
nicht einer Kugel entsprechen. Es ist schwierig die maximale und somit optimale Pack-
ungsdichte zu berechnen, daher werden untere und obere Schranken an die optimale Dichte
ermittelt. Hierzu werden zwei Spezialfälle geometrischer Packungen betrachtet: translative
Packungen und Gitterpackungen.

Wir bestimmen obere Schranken für translative Packungen, also Packungen in denen
ausschließlich Verschiebungen der Körper und keine Rotationen erlaubt sind. Von Cohn
und Elkies stammt ein lineares Programm zur Berechnung solcher oberer Schranken, das
durch unendlich viele Bedingungen definiert ist und in dem über eine unendlich-dimen-
sionale Menge zu optimieren ist. Wir relaxieren das Programm zu einem semidefiniten
Programm mit endlich vielen Bedingungen, da diese im Allgemeinen effizient lösbar sind.
In unseren Berechnungen betrachten wir dreidimensionale konvexe Körper mit Tetraeder-
oder Ikosaedersymmetrie. Zur Vereinfachung des resultierenden Programms nutzen wir die
Invariantentheorie endlicher Pseudo-Spiegelungsgruppen. Die Lösungen werden mit Hilfe
numerischer Berechnungen bestimmt, daher passen wir sie anschließend gegebenfalls an
um zulässige Lösungen für das Cohn-Elkies Programm zu erhalten.

Diese Methoden werden unter anderem auf dreidimensionale Superkugeln angewendet,
das heißt auf Einheitskugeln bezüglich der `p

3 -Norm. Für p ∈ (1,∞) \ {2} bestimmen wir
neue obere Schranken. Darüber hinaus wird mit diesem Verfahren Zong’s kürzlich gefun-
dene obere Schranke für die optimale Dichte von translativen Packungen von Tetraeder von
0.3840 . . . auf 0.3683 . . . verbessert. Somit ist die neue obere Schranke dicht an 0.3673 . . .,
der besten bekannten unteren Schranke.

Im letzten Teil dieser Arbeit werden Gitterpackungen von Superkugeln untersucht. Git-
terpackungen sind translative Packungen, in denen die Mittelpunkte der Körper ein Gitter
bilden. Insbesondere ist die Dichte jeder Gitterpackung also eine untere Schranke für die
optimale Dichte translativer Packungen. Mit Hilfe eines Theorems von Minkowski können
lokal optimale Gitterpackungen für Superkugeln berechnet werden. Wir berechnen Gitter-
packungen für p ∈ [1, 8] deren Dichte mindestens so groß ist wie die Dichte der bisher
besten Gitterpackungen von Jiao, Stillinger und Torquato. Für p ∈ (1, 2) \ [log2 3, 1.6]
finden wir sogar dichtere Gitterpackungen. Vor allem die oberen Schranken für p ∈ [3, 8]
und die numerischen Resultate für obere Schranken für p ∈ [1, log2 3] befinden sich sehr
nah an den unteren Schranken, die wir mit Hilfe der Gitterpackungen bestimmen.
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Abstract

The focus of this thesis lies on geometric packings of non-spherical shapes in three-dimen-
sional Euclidean space. Since computing the optimal packing density is difficult, we in-
vestigate lower and upper bounds for the optimal value. For this, we consider two special
kinds of geometric packings: translative packings and lattice packings.

We study upper bounds for the optimal packing density of translative packings. These
are packings in which just translations and no rotations of the solids are allowed. Cohn and
Elkies determined a linear program for the computation of such upper bounds that is defined
by infinitely many inequalities optimizing over an infinite dimensional set. We relax this
problem to a semidefinite problem with finitely many constraints, since this kind of problem
is efficiently solvable in general. In our computation we consider three-dimensional convex
bodies with tetrahedral or icosahedral symmetry. To obtain a program that is not too large
for current solvers, we use invariant theory of finite pseudo-reflection groups to simplify the
constraints. Since we solve this program by using numerical computations, the solutions
might be slightly infeasible. Therefore, we verify the obtained solutions to ensure that they
can be made feasible for the Cohn-Elkies program.

With this approach we find new upper bounds for three-dimensional superballs, which
are unit balls for the `p

3 norm, for p ∈ (1,∞) \ {2} . Furthermore, using our approach, we
improve Zong’s recent upper bound for the translative packing density of tetrahedra from
0.3840 . . . to 0.3683 . . ., which is very close to the best known lower bound of 0.3673 . . ..

The last part of this thesis deals with lattice packings of superballs. Lattice packings
are translative packings in which the centers of the solids form a lattice. Thus, any lattice
packing density is in particular a lower bound for the optimal translative packing density.
Using a theorem of Minkowski, we compute locally optimal lattice packings for superballs.
We obtain lattice packings for p ∈ [1, 8] whose density is at least as high as the density of
the currently best lattice packings provided by Jiao, Stillinger, and Torquato. For p ∈ (1, 2)\
[log2 3, 1.6], we even improve these lattice packings. The upper bounds for p ∈ [3, 8], as
well as the numerical results for the upper bounds for p ∈ [1, log2, 3], are remarkably close
to the lower bounds we obtain by these lattice packings.
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Chapter One

Introduction and preliminaries

1.1 Packing problems

1.1.1 Introduction

Everyone had probably a situation, where he
or she wants to find the best arrangement of
some objects. For example, if one wants
to put as many cookies on the baking tray
as possible. But not just in dimension two
there exist packing problems in everyday life.
What is the best way to put oranges or table
tennis balls into a box? In the 1590th Thomas
Hariot had such a problem, too, because Sir
Walter Raleigh prompted him to determine
a formula for calculating the number of can-
nonballs in regular stacked piles [43]. Hariot,

Figure 1.1: Packing of cannonballs [1]

who was at that time Raleigh’s mathematical assistant, investigated also the most efficient
way to arrange cannonballs on a ship and was able to find dense configurations. He wrote
about this problem to the mathematician and astronomer Johannes Kepler, who asserts in
1611 that the density of any packing of equal-sized spheres into three-dimensional Eu-
clidean space is not greater than π/

√
18 ≈ 0.7404 . . .. This packing density is for example

achieved by the packing pictured in Figure 1.3. The problem of finding a densest packing
of three-dimensional balls all of the same size is the famous sphere packing problem, which
is one of the most popular problems in geometric optimization.

Since this problem has infinity many solutions, it is in general hard to find the densest
packing or to prove the optimality of a given packing. The examples above show appli-
cations for the sphere packing problem in dimension two and three. This problem is not
restricted to these two dimensions, since there are also concrete applications for the sphere
packing problem in higher dimensions. In dimension one the problem is trivial and for di-
mension two the problem was solved by the Norwegian mathematician Thue in 1892 [75].
He showed that the hexagonal packing, pictured in Figure 1.2, gives a densest packing of

1



2 Introduction and preliminaries Chapter 1

circles. Furthermore, the Hungarian mathematician Fejes Tóth gave a rigorous proof of the
optimality in 1940 [33]. Besides the optimality of this packing, he also proved that it is
unique up to rotations, uniform scaling, and translations among periodic packings, which
we consider in Section 1.1.5. For dimension three, Kepler asserts that there is no packing
with a higher density than π/

√
18, but it took almost 390 years until this conjecture was

proven. Thomas Hales and his PhD student Samuel Ferguson were able to give a computer
based proof in 1998 involving more than 5,000 subproblems and using more than 50,000
lines of computer code [43]. Since there are uncountable many optimal solution, proving
this conjecture was extremely complicated.

Figure 1.2: Hexagonal packing Figure 1.3: Optimal packing of spheres

As mentioned before, there are also applications for the sphere packing problem in
higher dimensions. For example the problem of finding an error-correcting code can be
formulated as a sphere packing problem in higher dimensions like, for example, in dimen-
sion 24 [21]. In 2016, Maryna Viazovska [78] solved the sphere problem in dimension eight
and based on this result she was able to solve the sphere packing problem for dimension
24 together with Henry Cohn, Abhinav Kumar, Stephen D. Miller, and Danylo Radchenko
[20]. For all other dimensions the sphere packing problem is currently unsolved.

Beside the sphere packing problem, there are also applications for packing problems
of non-spherical objects. For example in materials science, it is useful to arrange physical
granular material accurately. This problem can be formulated as the packing problem of
superballs Bp

3 in dimension three. These solids are unit balls for the `p
3 norm, which means

Bp
3 = {x ∈ R3 :

∑3
i=1 |xi|

p ≤ 1}. For some values of p the superball is pictured in Figure 1.4.

Figure 1.4: Superballs for p = 1, 2, 3, 5, and 6

The problem of finding the densest packing of superballs is unsolved for every dimen-
sion greater or equal three with p < {2,∞}. In Chapter 3, upper bounds for the densest
packing of superballs in dimension three will be presented. Furthermore, in this thesis we
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will also have a look at packing problems of other solids, which are useful, for example, in
materials science. In [76], Torquato and Jiao stated:

Dense packings of hard particles have served as useful models to understand
the structure of liquid, glassy and crystal states of matter, granular media, and
heterogeneous materials. Understanding the symmetries and other mathemat-
ical properties of the densest packings in arbitrary dimensions is a problem of
long-standing interest in discrete geometry and number theory.

It is possible to arrange cubes in all dimensions or hexagons in the plane in such a
way that the whole space is filled. But, is this also possible for regular tetrahedra in three
dimensions? More than 2300 years ago, Aristotle investigated this problem, too, and his
answer was: "Among surfaces it is agreed that there are three figures which fill place that
contain them - the triangle, the square and the hexagon: among solids only two, the pyramid
and the cube" [4, Book III, Chapter VIII, in translation by Guthrie]. Here, by the pyramid
he refers to the regular tetrahedron, which is one of the five Platonic solids: the tetrahedron,
the cube, the octahedron, the dodecahedron, and the icosahedron. Unfortunately, Aristotle
was wrong. If we consider a face-to-face arrangement, there is always a gap as pictured in
Figure 1.5.

Figure 1.5: Tetrahedra packing

It can also be shown that for other arrangements it is not possible to fill the space with
tetrahedra. One of Aristotle’s main commentators Simplicius of Cicilia stated that twelve
regular tetrahedra fill the space locally around a point [45]. Averroës, who wrote many
works on medicine, philosophy and law, commented also on most of the works of Aristotle
and gave some arguments to confirm the correctness of Simplicius statement: The sum of
the angles between two faces which meet at the same vertex of a cube is 3 · 90◦ = 270◦.
Furthermore, the sum of these angles at a vertex of a tetrahedron is 3 · 60◦ = 180. Since
8 · 270 = 12 · 160 and eight cubes fill space around a point, he concludes that twelve
tetrahedra fill space around a point, too.

However, there were still some doubts about this statement and Roger Bacon defended
Averroës claim and wrote in [6, Chapter XI, pp. 135-140] that "there is a fool in Paris
who says that Averroës was incorrect, twenty pyramids do not fill space around a point.
Regiomontanus (Johannes Müller von Königsberg 1436-1476) was the first who disproved
the statement of Aristotle’s as well as the statement of Averroës. Unfortunately, just the
title of his manuscript was published, but there are no doubts that he really disproved these
claims in his work. The mathematician and astronomer Francesco Maurolico (1494-1575)
corrected Aristotle’s statement and showed [57]:
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There exists a tiling of space using regular polyhedra other than the cube: this
tiling is a periodic face-to-face tiling using a mixture of regular tetrahedra and
regular octahedra having the same side length.

A part of such an arrangement of regular tetrahedra and regular octahedra is pictured in
Figure 1.6. Thus, after a long discussion over more than 2000 years it was shown that it is
not possible to fill the space just using tetrahedra.

Figure 1.6: Packing of octahedra and tetrahedra

But what is the maximal amount of space which can be filled by tetrahedra? This ques-
tion was also stated by Hilbert [47] at ICM in 1900 in Paris, where he presented more than
twenty open problems. Thus, the new goal was finding the densest packing of tetrahedra.
The densest packing, which is known, was found 2010 by Chen, Engel, and Glotzer [17].
They published a construction of a tetrahedra packing with density 4000/4671 = 0.8563 . . .
Even today, it is not known whether this is the densest packing for tetrahedra. Therefore,
it is also interesting to calculate upper bounds. Gravel, Elster, and Kallus proved in 2011
[40] that there is no packing with higher density than 1 − 2.6 . . . · 10−25.
In 1904, Minkowski states that he found the optimal lattice packing for tetrahedra with
density 9/38. Lattice packings, are packings in which just translations are allowed and the
centers of the solids form a lattice. In Section 1.1.2, we give a definition of lattice packings.
Minkowski’s approach is based on the Minkowski difference T − T = {x − y : x, y ∈ T }
of a tetrahedra T . In 1962, Groemer [41] discovered a mistake in Minkowski’s work: The
Minkowski difference of a tetrahedron with itself is a cuboctahedron, not an octahedron.
Furthermore, Groemer gives a construction of a lattice packing for tetrahedra with density
18/49. In 1970, Hoylman [51] proved that the optimal lattice packing density for tetrahedra
is indeed 18/49. Since lattice packings are in particular translative packings, in which the
packing contains just translations of the solid, the obtained optimal lattice packing density
gives a lower bound for the optimal translative packing density. For translative packings of
tetrahedra Dostert, Guzmán, Oliveira, and Vallentin [30] were able to find an upper bound
with 0.3745 . . . in 2015 and, thus, they improved the upper bound 0.3840 . . . from Zong
[80] found in 2014. Moreover in 2017, Pütz [64] determined the best known upper bound
with 0.3683 . . . based on the approach of Dostert, Guzmán, Oliveira, and Vallentin.
This result leads to the conjecture, that the optimal lattice packing density 18/49 = 0.3673 . . .
is equal to the optimal translative packing density.

From the new upper bound for the translative packing density of regular tetrahedra, we
get directly a new upper bound for the translative packing density of cuboctahedra, too. In
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[61], Minkowski showed that⋃
i∈N

{xi +K} is a translative packing of K

if and only if ⋃
i∈N

{
xi +

1
2

(K −K)
}

is a translative packing of
1
2

(K −K) ,

where
K −K = {x − y : x, y ∈ K}

is the Minkowski difference of K with itself. The Minkowski difference of a regular tetra-
hedron with itself is a cuboctahedron whose volume is 23 · 5/2 times larger, thus, we get
0.9208 . . . as an upper bound for the translative density of cuboctahedra.

Since more than 2300 years, mathematicians are searching for the densest packing of
three-dimensional Platonic solids. Before we define Platonic solids, we give the definition
of a polyhedron: A polyhedron P is an intersection of finitely many closed half-spaces, that
is P = {x ∈ Rn : Ax ≤ b} with A ∈ Rm×n, b ∈ Rm. Platonic and Archimedean solids are
special polyhedra. A polyhedron whose faces are all congruent to each other and whose
faces are regular polygons, is called a regular polyhedron or a Platonic solid. If just the
second condition holds, then it is called a semiregular polyhedron or an Archimedean solid.

In Chapter 3, upper bounds for the density of translative packings of three-dimensional
convex bodies having tetrahedral symmetry or icosahedral symmetry will be presented.
Besides the superballs for p ∈ [1,∞), which are invariant under the tetrahedral symmetry,
the considered solids are pictured in Figure 1.7. Three-dimensional superballs with p < 1.0
are not convex, therefore these solids are not included. In the calculations, we will not
consider the cube and the truncated octahedron, since both bodies are space fillers.

Betke and Henk [9] give a construction for optimal lattice packings for three-dimensional
polytopes. Since the corresponding densities are lower bounds for the translative packing
density, we compare them to the obtained upper bounds in Chapter 3. For superballs with
p < {1, 2,∞}, which are no polytopes, the optimal lattice packing density in not known. In
Chapter 4, we give a construction for lattice packings of superballs and provide new lower
bounds for p ∈ (1, 2) \ [log2 3, 1.6].

1.1.2 Packings and density
For the classical sphere packing problem, we do not have to care about rotations of the
spheres, because they are invariant under rotations. For considering packings of non-
spherical objects, the difficulty of the problem depends, among others, on the question
whether rotations of the objects in the packings are allowed or not. Therefore, it makes
sense to distinguish between different kinds of packings.

The most general packing is the congruent packing:

P =
⋃
i∈N

(xi + AiK) , with (xi, Ai) ∈ Rn × SO(n), i ∈ N,
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(a) Tetrahedron (b) Octahedron (c) Truncated
tetrahedron

(d) Truncated
cubocatahdron

(e) Rhombicub-
octahedron

(f) Cuboctahedron (g) Truncated cube (h) Dodecahedron (i) Icosahedron (j) Icosidodeca-
hedron

(k) Truncated
icosidodeca-
hedron

(l) Rhombicosi-
dodecahedron

(m) Truncated
dodecahedron

(n) Truncated
icosahedron

Figure 1.7: Platonic and Archimedean solids having tetrahedral symmetry (a)-(g) or icosa-
hedral symmetry (h)-(n), except of the cube and the truncated octahedron.

where xi + AiK
◦ ∩ x j + A jK

◦ = ∅ whenever i , j. With K◦ we denote the topological
interior and SO(n) is defined as

SO(n) = {A ∈ Rn×n : AAT = In, det A = 1},

a subgroup of the orthogonal group

O(n) = {A ∈ Rn×n : AAT = In}.

The intersection above has to be empty to make sure that the objects in the packing will
not intersect in their interior. Such packings contain congruent copies of K , that means
translations and rotations are allowed. The (upper) density of a congruent packing P is
given by

δ(P) = lim sup
r→∞

sup
c∈Rn

vol(B(c, r) ∩ P)
volB(c, r)

,

where B(c, r) is the Euclidean ball with center c ∈ Rn and radius r ∈ R>0. The congruent
packing density of a solid K is the maximal density over all congruent packings.

Because of the freedom of congruent packings, finding a densest one is very difficult
and there are no efficient methods known yet. For solving this problem it is therefore
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common to consider packings, which are more restrictive and better studied. Translative
packings are congruent packings, where just translations of the solid are allowed. This
means Ai has to be the identity and, thus, translative packings are defined as

P =
⋃
i∈N

(xi +K) , with xi ∈ R
n, i ∈ N,

where xi + K◦ ∩ x j + K◦ = ∅ whenever i , j. If we restrict the set of xi to form a lattice,
which we will define in the next chapter, then this packing is called a lattice packing. This
kind of packings is very restrictive, but it is well studied and many results are known. Pack-
ing problems are in general very difficult to solve, therefore it is interesting to investigate
techniques for calculating lower and upper bounds, which, we hope, are close together.

1.1.3 Lower bounds via lattice packings

The density of each translative packing is less or equal to the maximal translative packing
density. Therefore, the density of a translative packing is a lower bound of the maximal
density. For calculating a lower bound, we could construct a translative packing and calcu-
late its density. If we consider an arbitrary translative packing, the corresponding density
might be much smaller than the optimal density. To be able to find a good approximation
of the optimal density, we are interested in constructing a packing with a high density.
As mentioned before, lattice packings are well studied and there are many results known.
Since a lattice packing is a translative packing with further restrictions, the density of a
lattice packing is a lower bound of the maximal density of translative packings. For some
solids it is known, that the optimal translative packing density is equal to the optimal lattice
packing density, for example for spheres in dimension 2, 3, 8, and 24. Let b1, . . . , bn ∈ R

n

be linearly independent vectors. The corresponding lattice L is then defined by

L =

 n∑
i=1

αibi : αi ∈ Z

 .
If we translate copies of a given solidK at each lattice point p ∈ L, this packing is a lattice
packing for K if these solids do not intersect in their interior. For dimension two and three
examples for lattice packings are pictured in Figure 1.8.

As mentioned before, in dimension eight the sphere packing problem is solved and an
optimal packing with density 0.25367 . . . [21] is given by the E8-lattice, defined by

E8 =

x ∈ R8 : x ∈ Z8 ∪

(
1
2

+ Z

)8

and
8∑

i=1

xi ∈ 2 Z


=

 n∑
i=1

aibi : ai ∈ Z

 ,
with basis vectors bi which are written in the columns of the following matrix:
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Figure 1.8: Left: Lattice packing in dimension two, Center: Lattice points in dimension
three [31], Right: Lattice packing corresponding to lattice in the center [31].



2 −1 0 0 0 0 0 1/2
0 1 −1 0 0 0 0 1/2
0 0 1 −1 0 0 0 1/2
0 0 0 1 −1 0 0 1/2
0 0 0 0 1 −1 0 1/2
0 0 0 0 0 1 −1 1/2
0 0 0 0 0 0 1 1/2
0 0 0 0 0 0 0 1/2


.

In [61], Minkowski gave a method to calculate an optimal lattice packing for three-
dimensional convex bodies. In this approach it is necessary to consider all facets of the
given solid K . Betke and Henk calculated optimal lattice packings for three-dimensional
convex polytopes by using Minkowski’s work. Unfortunately, superballs have infinitely
many extreme points for p < {1,∞}, therefore this algorithm cannot be used for calculating
optimal lattice packings for superballs. Minkowski published in [61] also a theorem which
characterizes the contacting neighbors in an optimal lattice packing. Based on this, we
computed lattice packings for superballs, which will be presented in Chapter 4.

1.1.4 Upper bounds via insphere
For congruent packings of a solidK in any dimension, Jiao and Torquato published in [76]
the following upper bound of the optimal congruent packing density by using the insphere
of the considered solid K , that is the largest sphere which is entirely contained in K .

Lemma 1.1. The maximal density of a packing of congruent non-spherical particles K in
dimension d is bounded from above according to the following bound

δ(P) ≤ min
[
volK
vol S

α, 1
]
,

where S is the insphere of K , and α is the maximal density of an n-dimensional packing of
congruent spheres.
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Furthermore, they make this lemma concrete for dimension three, in which the maxi-
mal density of the sphere packing, and thus, α is equal to π/

√
18. Applying this insphere

method the obtained upper bound for the congruent packing density of rhombicuboctahe-
dra coincides with the lattice packing density found by Graf, Roij, and Dijkstra [26]. Un-
fortunately, for the tetrahedron, cube, octahedron, truncated tetrahedron, cuboctahedron,
truncated cube, truncated octahedron, and for superballs with p ≤ 1.3 or p ≥ 2.9628, the
calculated upper bound is equal to one.

1.1.5 Upper bounds via optimization
A powerful technique for computing upper bounds for the maximal density of a packing is
given by using linear optimization. For this, we consider a special kind of functions: Let
f : Rn → C be a function, such that for all x ∈ Rn and for all β ∈ Nn the derivatives Dβ f (x)
exist, and for all α, β ∈ Nn the inequality sup{|xαDα f (x)| : x ∈ Rn} < ∞ holds. Such
a function is called a Schwartz function and the space consisting of Schwartz functions
is called the Schwartz space and it is denoted by S(Rn). Henry Cohn and Noam Elkies
published in [19] the following theorem, which can be used to find an upper bound for the
packing density.

Theorem 1.2. LetK be a convex body in Rn and let f ∈ S(Rn) be a Schwartz function. Let

f̂ (u) =

∫
Rn

f (x)e−2πiu·x dx

denote the Fourier transform of f at u. Suppose f satisfies the following conditions

(i) f̂ (0) ≥ volK ,

(ii) f is of positive type, i.e. f̂ (u) ≥ 0 for every u ∈ Rn ,

(iii) f (x) ≤ 0 whenever K◦ ∩ (x +K◦) = ∅ .

Then the density of any packing of translates of K in Rn is at most f (0) .

A class of more general packings than lattice packings are periodic packings. A packing
P is called a periodic packing, if there exists a lattice L ⊆ Rn, which keeps the packing
invariant by moving it along the lattice, which means P = v + P, for all v ∈ L. In other
words, the arrangement of the solids in P repeats at each copy of a fundamental domain as
shown in Figure 1.9. In this picture, the basis vectors v1, v2 ∈ L are displayed in red and
the centers xi of the solids contained in one fundamental domain are represented by blue
points and labeled in white.

A translative periodic packing P of a solid K is defined as

P =
⋃
v∈L

m⋃
i=1

v + xi +K

based on a lattice L. Its density is given by

δ(P) =
m · vol K
vol(Rn/L)

,
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x1

x2

x3

x4

x5

u1

u2

Figure 1.9: Periodic packing

where vol(Rn/L) is the volume of a fundamental domain of the lattice L ⊆ Rn. Since
the arrangement of the solids in the periodic packing repeats at each fundamental domain,
the density of the packing corresponds to the density of the packing in one fundamental
domain. In contrast to nonperiodic packings, every periodic packings has a density. Fur-
thermore, the supremum of the upper density of any packing will also be reached by a
periodic packing: Let δ(P) be the upper density of a packing P and let R be the fundamen-
tal domain of any lattice L ⊆ Rn. Moreover, let ε > 0. For a large enough factor r, the
total volume of the solids in P which lie on the boundary of rR is at most ε vol rR. Thus,
the total volume of solids in P which lie entirely in rR is at leat (δ(P) − ε) vol rR. We
define a period packing P′ in such a way, that it contains all solids, which lie entirely in rR
and all their translations by rL. Then, δ(P′) = δ(P) − ε. Since we can choose ε arbitrary
small, the desired property holds. This property is especially useful for the computation of
upper bounds for the optimal density of packings, because we can restrict the computation
to periodic packings. Furthermore, we use this restriction in the proof of Theorem 1.2.

Proof of Theorem 1.2. Let K be a convex body in Rn and let f ∈ S(Rn) be a Schwartz
function, which satisfies condition (i), (ii), and (iii) of Theorem 1.2. We consider the vectors
z = v + xi − x j with v ∈ L and i, j ∈ [m], which are the differences between the centers of
two solids in the periodic packing P. The set K◦ ∩ (z +K◦) is nonempty, whenever v = 0
and xi = x j. Together with condition (iii), this implies that the value of f (z) is negative,
except in the m cases where z = 0. Thus, we get

m volK f (0) ≥
∑
v∈L

m∑
i, j=1

volK f (v + xi − x j).

For the next step, we make use of a result in harmonic analysis. To do so, we introduce the
Poisson summation formula∑

v∈L

f (x + v) =
1

vol(Rn/L)

∑
u∈L∗

f̂ (u)e2πiu·x
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for all x ∈ Rn, where the dual lattice of L is L∗ = {u ∈ Rn : u · x ∈ Z for all x ∈ L}. Using
the Poisson summation formula the following equation holds

∑
v∈L

m∑
i, j=1

volK f (v + xi − x j) =
∑
u∈L∗

m∑
i, j=1

volK f̂ (u) e2πi(xi−x j)·u

vol(Rn/L)
.

Due to condition (ii), the function f̂ (u) is positive for all u ∈ Rn. Moreover

volK
vol(Rn/L)

∑
u∈L∗

f̂ (u)
m∑

i, j=1

e2πi(xi−x j)·u =
volK

vol(Rn/L)

∑
u∈L∗

f̂ (u)

∣∣∣∣∣∣∣
m∑

i=1

e2πixi·u

∣∣∣∣∣∣∣
2

,

therefore each term of the sum over the dual lattice L∗ is nonnegative. Thus, this sum is
bounded from below by the term with u = 0. Hence, we obtain

volK
vol(Rn/L)

∑
u∈L∗

f̂ (u)
m∑

i, j=1

e2πi(xi−x j)·u ≥
volK

vol(Rn/L)
f̂ (0)

∣∣∣∣∣∣∣
m∑

i=1

e0

∣∣∣∣∣∣∣
2

=
volK

vol(Rn/L)
f̂ (0) m2.

Condition (i), which states f̂ (0) ≥ volK , gives the estimation

m2 volK f̂ (0)
vol(Rn/L)

≥
(m volK)2

vol(Rn/L)
,

thus, the claim follows

f (0) ≥
m volK

vol(Rn/L)
= δ(P).

�

Due to Theorem 1.2, an upper bound for the translative packing density can be com-
puted by a linear program optimizing over the set of Schwartz functions. In the special
case, where the solid K is a ball, we can use the rotational symmetry of a ball, because
K is invariant under that symmetry. The benefit is that we can restrict the optimization
variable f to functions whose values f (x) just depend on the norm ‖x‖, named radial func-
tions, which makes the problem much easier to solve. By using this restriction, Cohn and
Elkies were able to calculate upper bounds for the sphere packing problem in dimension 1
to 36 [19]. The sphere packing problem in dimension 8 and in dimension 24 was solved
by determining a feasible function f for Theorem 1.2 where f (0) is equal to the lattice
packing density of the lattices E8 and Λ24. The linear program of Theorem 1.2 gives upper
bounds for translative packings, but in the case of balls, any congruent packing is a transla-
tive packing. Thus, the results are even upper bounds for the maximal density of congruent
packings of balls.

For non-spherical objects we cannot restrict f to a radial function, which makes it
difficult to solve the program of Cohn and Elkies. In their paper [19] they stated:

Unfortunately, when [the body we want to pack] is not a sphere, there does not
seem to be a good analogue of the reduction to radial functions in Theorem
1.2. That makes these cases somewhat less convenient to deal with.
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The first time this theorem is used for calculating upper bounds for non-spherical solids is
in the work [30] of Maria Dostert, Cristóbal Guzmán, Fernando Mário de Oliveira Filho,
and Frank Vallentin. To make this problem tractable, we formulate the infinite dimensional
linear program as a polynomial optimization problem, where we optimize over real poly-
nomials up to a given degree instead of all Schwartz functions. Moreover, we use invariant
theory of pseudo-reflection groups in polynomial optimization to obtain a program, which
one can solve in practice.

1.2 Outline of the thesis

This thesis is subdivided into four chapters, starting with the introduction. A short descrip-
tion of the other three chapters is given below.

Chapter 2. Techniques.
We give an introduction into convex optimization and especially into semidefinite optimiza-
tion, which is a special class of convex optimization problems. Semidefinite problems are
well studied and in general they can be solved efficiently. A more challenging class of op-
timization problems are polynomial optimization problems. They are in general NP-hard.
Fortunately, there exists techniques to relax these problems to semidefinite problems. We
will also have a look at the representation theory of finite groups and how to check whether
a polynomial, which is invariant under a finite pseudo-reflection group, is nonnegative.

Chapter 3. New upper bounds for the density of translative packings.
Cohn and Elkies published an infinite dimensional linear program to compute an upper
bound for the density of translative packings of convex bodies. As mentioned in Chapter
1, we relax this problem to a polynomial optimization problem. In Chapter 3, we will
demonstrate this relaxation in detail and how we further relax the polynomial optimization
problem to a solvable semidefinite program. By using this program, we have calculated new
upper bounds for the density of translative packings of three-dimensional convex bodies
having tetrahedral symmetry or icosahedral symmetry. Since to compute these bounds we
applied a numerical semidefinite optimization solver, the results are numerical solutions
and, thus, they could be slightly infeasible. Therefore, we will also explain how we can
verify the solutions to make sure that these results are rigorous bounds.

Chapter 4. Locally optimal lattice packings of superballs.
We consider the problem of finding an optimal lattice packing for superballs in dimension
three. The optimal solution will also be a lower bound for the maximal density of translative
packings of superballs. First, we provide a polynomial optimization problem which is
based on the work of Minkowski [61]. Unfortunately, we could not solve the polynomial
optimization problem using SOS relaxations. In this chapter, we will show how to use the
Karush-Kuhn-Tucker-conditions, described in Section 2.1.3, to calculate locally optimal
solutions by using Newton’s method. Jiao, Stillinger, and Torquato divide the range of
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p ∈ [1,∞) into four regimes: [1, log2 3], [log2 3, 2], [2, 2.3018 . . .], [2.3018 . . . ,∞). For
each of these regimes, they give a family of lattices [53, 54]. For the first two regimes, we
were able to find lattices with a higher packing lattice density. For the other two regimes the
best packing lattices we received, are equal to the lattices of Jiao, Stillinger, and Torquato.
The density of the lattice packings in the first and last regime are very close to the upper
bounds we calculated in Chapter 3. Therefore, we conjecture, that these lattices are optimal.

1.3 New upper bounds for translative packings
We have calculated new upper bounds for three-dimensional convex bodies having tetra-
hedral or icosahedral symmetry. In the following tables, the best known lower and upper
bounds for lattice, translative, and congruent packings of these solids are presented.

Body Lattice packing
lower bound upper bound

B1
3 18/19 = 0.9473 . . . [61] 18/19 [61]

B2
2 π/

√
18 = 0.7404 . . . π/

√
18 [38]

B3
3 0.8095 . . . [53] 0.8236 . . .

B4
3 0.8698 . . . [53] 0.8742 . . .

B5
3 0.9080 . . . [53] 0.9224 . . .

B6
3 0.9318 . . . [53] 0.9338 . . .

Body Translative packing
lower bound upper bound

B1
3 18/19 = 0.9473 . . . [61] 0.9729 . . .

B2
2 π/

√
18 = 0.7404 . . . π/

√
18 [43]

B3
3 0.8095 . . . [53] 0.8236 . . .

B4
3 0.8698 . . . [53] 0.8742 . . .

B5
3 0.9080 . . . [53] 0.9224 . . .

B6
3 0.9318 . . . [53] 0.9338 . . .

Body Congruent packing
lower bound upper bound

B1
3 18/19 = 0.9473 . . . [61] 1 − 1.4 . . . · 10−12 [40]

B2
2 π/

√
18 = 0.7404 . . . π/

√
18 [43]

B3
3 0.8095 . . . [53] < 1

B4
3 0.8698 . . . [53] < 1

B5
3 0.9080 . . . [53] < 1

B6
3 0.9318 . . . [53] < 1

Table 1.1: Best known bounds for packings of three-dimensional superballs. Our new
bounds are written in italics.
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For superballs with p = 2, that is round balls, our bound is equal to the bound of Cohn
and Elkies. In all other cases, we were able to find a new upper bound. Except for the upper
bound for the congruent packing density of superballs with p ∈ {1, 2}, there were no upper
bounds for translative packing densities known before.

Body Lattice packing
lower bound upper bound

Tetrahedron 18/49 = 0.3673 . . . [41] 18/49 [51]
Truncated tetrahedron 0.6809 . . . [9] 0.6809 . . . [9]
Truncated cuboctahedron 0.8493 . . . [9] 0.8493 . . . [9]
Rhombicuboctahedron 0.8758 . . . [9] 0.8758 . . . [9]
Cuboctahedron 0.9183 . . . [41] 0.9183 . . . [51]
Truncated cube 0.9737 . . . [9] 0.9737 . . . [9]

Body Translative packing
lower bound upper bound

Tetrahedron 18/49 = 0.3673 . . . [41] 0.3683 . . .
Truncated tetrahedron 0.6809 . . . [9] 0.7170 . . .
Truncated cuboctahedron 0.8493 . . . [9] 0.8758 . . . [76]
Rhombicuboctahedron 0.8758 . . . [9] 0.8758 . . . [26]
Cuboctahedron 0.9183 . . . [41] 0.9208 . . .
Truncated cube 0.9737 . . . [9] 0.9805 . . .

Body Congruent packing
lower bound upper bound

Tetrahedron 4000/4671 = 0.8563 . . . [17] 1 − 2.6 . . . · 10−25 [40]
Truncated tetrahedron 207/208 = 0.9951 . . . [55], [23] < 1
Truncated cuboctahedron 0.8493 . . . [9] 0.8758 . . . [76]
Rhombicuboctahedron 0.8758 . . . [9] 0.8758 . . . [26]
Cuboctahedron 0.9183 . . . [41] < 1
Truncated cube 0.9737 . . . [9] < 1

Table 1.2: Best known bounds for packings of three-dimensional Platonic and
Archimedean solids with tetrahedral symmetry. The octahedron, the cube, and the trun-
cated octahedron are omitted. Our new bounds are written in italics.

We improved the upper bound of the regular tetrahedron. For the truncated tetrahedron,
cuboctahedron, and truncated cube, there were no upper bound for the translative packing
density known before.
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Body Lattice packing
lower bound upper bound

Icosahedron 0.8363 . . . [9] 0.8363 . . . [9]
Dodecahedron 0.9045 . . . [9] 0.9045 . . . [9]
Truncated icosahedron 0.7849 . . . [9] 0.7849 . . . [9]
Rhombicosidodecahedron 0.8047 . . . [9] 0.8047 . . . [9]
Truncated icosidodecahedron 0.8272 . . . [9] 0.8272 . . . [9]
Icosidodecahedron 0.8647 . . . [9] 0.8647 . . . [9]
Truncated dodecahedron 0.8977 . . . [9] 0.8977 . . . [9]

Body Translative packing
lower bound upper bound

Icosahedron 0.8363 . . . [9] 0.8796 . . .
Dodecahedron 0.9045 . . . [9] 0.9183 . . .
Truncated icosahedron 0.7849 . . . [9] 0.8345 . . .
Rhombicosidodecahedron 0.8047 . . . [9] 0.8359 . . . [76]
Truncated icosidodecahedron 0.8272 . . . [9] 0.8602 . . .
Icosidodecahedron 0.8647 . . . [9] 0.8832 . . .
Truncated dodecahedron 0.8977 . . . [9] 0.9114 . . .

Body Congruent packing
lower bound upper bound

Icosahedron 0.8363 . . . [9] 0.8934 . . . [76]
Dodecahedron 0.9045 . . . [9] 0.9811 . . . [76]
Truncated icosahedron 0.7849 . . . [9] 0.8385 . . . [76]
Rhombicosidodecahedron 0.8047 . . . [9] 0.8359 . . . [76]
Truncated icosidodecahedron 0.8272 . . . [9] 0.8973 . . . [76]
Icosidodecahedron 0.8647 . . . [9] 0.9380 . . . [76]
Truncated dodecahedron 0.8977 . . . [9] 0.9738 . . . [76]

Table 1.3: Best known bounds for packings of three-dimensional Platonic and
Archimedean solids with icosahedral symmetry. Our new bounds are written in italics.

Except for the Rhombicosidodecahedron, we were able to improve all upper bounds for
the translative packing density. In these cases, the upper bounds for the congruent packing
density were the best known upper bounds for the translative packing density before.
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1.4 Locally optimal lattice packings for superballs
Our calculation for locally optimal lattice packings for three-dimensional superballs is
based on the following theorem of Minkowski [61], which characterizes the contact points
in an optimal lattice packing:

Theorem 1.3. Let K be a three-dimensional centrally-symmetric convex body. Then there
exists an optimal lattice 2Λ with basis 2b1, 2b2, 2b3, such that exactly one of the following
cases holds:

1. U1
B ⊂ ∂K and (−1, 1, 1)B, (1,−1, 1)B, (1, 1,−1)B < K,

2. U2
B ⊂ ∂K and (1, 1, 1)B < K ,

3. U3
B ⊂ ∂K ,

where ∂K denotes the boundary of K , xB = x1b1 + x2b2 + x3b3 is the vector x in the basis
b1, b2, b3, which are the columns of the matrix B, and

U1
B = {(1, 0, 0)B, (0, 1, 0)B, (0, 0, 1)B, (1,−1, 0)B, (0, 1,−1)B, (1, 0,−1)B} ,

U2
B = {(1, 0, 0)B, (0, 1, 0)B, (0, 0, 1)B, (1, 1, 0)B, (0, 1, 1)B, (1, 0, 1)B} ,

U3
B = U2

B ∪ {(1, 1, 1)B} .

Analogously to the lattice packings of superballs found by Jiao, Stillinger, and Torquato,
we divide the range of p ∈ [1,∞) into four different regimes. For each of these regimes, we
calculated locally optimal lattice packings. The best obtained results are given in Table 1.4

value of p Case 1 Case 2 Case 3
[1, log2 3] L1 L2 L3

(log2 3, 2] * X X
[2, 2.3018 . . .] C0 X X
[2.3018 . . . ,∞) C1 X X

Table 1.4: Best obtained locally optimal lattice for each case in each regime. The entry X
means, that our computations did not find any locally optimal lattice.

For each of these regimes, the best obtained lattice packing densities as well as a picture
of the lattice packing is given in Section 4.3.

First regime:
For p ∈ {1, 1.05, . . . , 1.55} and for p = log2 3, the best obtained locally optimal lattice
packing for Case 1 is given by the lattice

L1 = Z b1 + Z b2 + Z b3
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with

b1 =

(
21− 1

p , 21− 1
p , 0

)T
, b2 =

(
2x, 21− 1

p − 2x,−2w
)T
, b3 =

(
−2y, 21− 1

p + 2y,−2z
)T
,

where w, x, y, z ∈ R>0 such that

xp + wp + (2−1/p − x)p = 1

yp + zp + (2−1/p + y)p = 1
2(x + y)p + (w − z)p = 1.

It has density
vol Bp

3

23−1/p (
2−1/pw − 2−1/pz + 2xz + 2wy

) ,
where the volume of a superball is defined by

vol Bp
3 = 8 Γ(1 + 1/p)3/ Γ(1 + 3/p).

For Case 2 the lattice L2 had always the highest density in the first regime, except for
the case p = 1.1. In this case the best obtained lattice packing is given by the lattice with
basis vectors

b1 = 2 (−0.313, 0.302, 0.486)T , b2 = 2 (0.296, 0.301, 0.503)T , b3 = 2 (0.370,−0.475,−0.256)T .

For all other values of p, the best packing for Case 2 is given by

L2 = Z b1 + Z b2 + Z b3

with
b1 = (2x,−2x, 2y)T , b2 = (−2y,−2x,−2x)T , b3 = (2x, 2y,−2x)T ,

where x, y ∈ R>0 such that

(1 − 2xp)1/p
= y

2
(
x − (1 − 2xp)1/p

)p
+ (2x)p = 1 .

It has density
vol Bp

3

8
(
2x3 + 3x2y − y2) .

The best lattice packing over all locally optimal lattice packings we obtained for the first
regime satisfying Case 3, is given by

L3 = Z b1 + Z b2 + Z b3

with
b1 = (−2x, 2y, 2z)T , b2 = (2z,−2x, 2y)T , b3 = (2y, 2z,−2x)T ,
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where x, y, z ∈ R>0 with z ≥ x ≥ y such that

z = 3−1/p + x − y

xp + yp + zp = 1

(x − y)p + (3−1/p + x)p + (3−1/p − y)p = 1.

It has density
vol Bp

3

8 · 3−1/p (
3−2/p + 3

(
3−1/p(x − y) + (x − y)2 + xy

)) .
Furthermore, this lattice gives the best lattice packing for the first regime over all cases.

Second regime:
For the values of p ∈ {1.59, 1.6, . . . , 2} our calculations just found locally optimal lattices
for Case 1. Unfortunately, we did not find any pattern in these lattices in order to give a
family of lattices depending on p. For the considered values of p, the numerical values of
the basis vectors for the best locally optimal lattices we obtained, are given in the appendix.

Third regime:
For p ∈ {2, 2.05, . . . , 2.3} and for p = 2.3018, our calculations did not find any local
optimal lattice for Case 2 or 3. For the first case, the best obtained lattice packing is given
by the following family of lattices, which is equal to the one found by Jiao, Stillinger, and
Torquato [53]

C0 = Z b1 + Z b2 + Z b3

with

b1 =

(
21− 1

p , 21− 1
p , 0

)T
, b2 = (0, 0, 2)T , b3 =

(
−2s, 2

(
s + 2−

1
p

)
, 1

)T
,

where s is the smallest positive root of the equation(
s + 2−

1
p

)p
+ sp + 2−p − 1 = 0 .

It has density
vol Bp

3

23− 1
p

(
2s + 2−

1
p

) .
Fourth regime:
Similarly to the second and third regime, our calculations did not find any locally optimal
lattice packing satisfying Case 2 or 3 for p ∈ {2.4, 2.5, . . . , 6} or for p ∈ {2.3018, 2.31, 6.5,
7, 7.5, 8}. For Case 1, the best obtained lattice packing corresponds to the family of lattices
found by Jiao, Stillinger, and Torquato, too, and is given by

C1 = Z b1 + Z b2 + Z b3
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with

b1 =

(
21− 1

p , 21− 1
p , 0

)T
, b2 =

(
21− 1

p , 0, 21− 1
p

)T
, b3 =

(
2s + 21− 1

p ,−2s,−2s
)T
,

where s is the smallest positive root of the equation(
s + 2−

1
p

)p
+ 2sp − 1 = 0 .

It has density
vol Bp

3

23− 2
p

(
3s + 2−

1
p

) .

The obtained results for the lower and upper bounds for p ∈ [1, 8] are pictured in Figure
1.10. For the upper bounds, we applied the rigorous verification to our numerical results
for p ∈ [6], thus, the other upper bounds are numerical results.

1 2 3 4 5 6 7 8
p

0.70

0.75

0.80

0.85

0.90

0.95

1.00

de
ns

ity

Numerical upper bound
Insphere bound
L3-lattice
* lattices
C0-lattice
C1-lattice

Figure 1.10: Lower bounds given by the locally optimal lattice packings in Section 4.3.
Upper bounds obtained by the approach explained in Section 3. For p < [6] the upper
bounds are given by numerical results. For p ∈ [6], the upper bounds are rigorous.
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Chapter Two

Techniques

In this chapter, we introduce the techniques, which we apply in this thesis. In Section 2.1,
we consider convex optimization, and especially semidefinite optimization. Furthermore,
we study polynomial optimization and how one can relax these problems to semidefinite
problems. In Section 2.2, we give an introduction into the representation theory of finite
groups. Furthermore, Section 2.3 deals with polynomials which can be written as sums
of Hermitian squares (SOHS). Additionally, we consider the simplification of the SOHS
checking for polynomials invariant under finite pseudo-reflection groups. For the SOHS
checking we can use semidefinite optimization. Moreover, we consider the SOHS checking
for polynomials invariant under the octahedral group or the icosahedral group, explicitly.

2.1 Convex optimization

Traditionally, an optimization problem is given in the form:

minimize f0(x)
subject to x ∈ Rn

fi(x) ≤ bi ∀i ∈ {1, . . . ,m},

where f0 : Rn → R is the objective function, fi : Rn → R are the constraint functions,
bi ∈ R are constants, and x ∈ Rn is the optimization variable. If the objective function
and the constraint functions are linear, the given problem is called a linear problem, oth-
erwise it is called a nonlinear problem. Linear problems are well studied and efficiently
solvable, whereas nonlinear problems are very general and, thus, difficult to solve. How-
ever, during the last decade, there has been great progress in studying convex optimization
problems, optimization problems, where the objective and constraints are convex functions,
especially in developing methods for solving these kind of problems. For more information
about the rich theory of convex optimization problems, see, for example, the book [13] of
Boyd and Vandenberghe. A well-studied class of convex optimization problems is, beside
linear problems, the class of semidefinite optimization problems, a generalization of linear
problems, which are generally efficiently solvable [27].

21
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2.1.1 Semidefinite optimization
The problem of optimizing a linear function over a set of positive semidefinite matrices Sn

�0
(real symmetric matrices of dimension n with nonnegative eigenvalues), restricted by linear
matrix equalities is called a semidefinite problem (SDP). Hence the feasibility set of an SDP
is described by a spectrahedron, which is the intersection of the set of positive semidefinite
matrices and an affine linear subspace. This problem is a generalization of linear problems,
where a linear function has to be optimized over a polyhedron. An SDP is defined by

p∗ = sup 〈C, X〉 (2.1)
subject to X ∈ Sn

�0 (2.2)
〈Ai, X〉 = bi ∀i ∈ {1, . . . ,m}, (2.3)

where C, Ai ∈ S
n are symmetric matrices andSn

�0 is the set of positive semidefinite matrices
of dimension n. Furthermore, the inner product 〈X,Y〉 of two matrices X,Y ∈ Rn×n is
defined by the trace Tr(XTY) =

∑n
i, j=1 Xi jYi j. An SDP is typically defined as a maximization

problem. However, by using

inf 〈C, X〉 = − sup − 〈C, X〉

it can also be described as a minimization problem.
If the matrices C and Ai for all i ∈ [m] are diagonal matrices, the corresponding SDP is

equivalent to the following linear problem

sup 〈c, x〉

subject to x ∈ Rn

x ≥ 0
〈ai, x〉 = bi ∀i ∈ {1, . . . ,m},

where c, ai ∈ R
n contain the diagonal elements of the corresponding matrix.

The definition of an SDP is given by using the supremum instead of the maximum,
because the optimal value p∗ might not be attained. For example, consider

C =

(
−1 0
0 0

)
, A1 =

(
0 1
0 0

)
, m = 1, b1 ∈ R>0.

The matrix X is positive semidefinite if and only if all its principal minors, which are , in
this case, its entries and the determinant X11X22 − X2

12, are nonnegative. Since there is no
restriction to the element X22, the value of X11 can be arbitrary close to 0, which means the
supremum of this problem is equal to 0. Since b1 is strictly positive, X12 and thus also X11
has to be strictly positive, and therefore the supremum cannot be attained by a feasible X.

We give an important theorem about real symmetric matrices.

Theorem 2.1 (Spectral decomposition theorem [49]). Any real symmetric matrix X ∈ Sn

can be decomposed as

X =

n∑
i=1

λiuiuT
i ,
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where u1, . . . un are eigenvectors of X, which form an orthonormal basis of Rn, with eigen-
values λ1, . . . , λn ∈ R. Alternatively, this decomposition can be given in matrix form, where
X = PDPT, D is the diagonal matrix consisting of the eigenvalues λi, and P is the orthog-
onal matrix with columns ui.

From Theorem 2.1, the following properties of positive semidefinite matrices can be
deduced.

Lemma 2.2. Let X ∈ Sn be a symmetric matrix. The following properties are equivalent:

(1) X ∈ Sn
�0 .

(2) xTXx ≥ 0 for all x ∈ Rn .

(3) There exists a matrix L ∈ Rn×l such that X = LLT . This is called a Cholesky
decomposition of X .

(4) There exists vectors x1, . . . xn ∈ R
l such that Xi j = xT

i x j for all i, j ∈ [n]. This is
called a Gram representation of X .

(5) All eigenvalues of X are nonnegative .

A proof of Theorem 2.1 and Lemma 2.2, and more information about positive semidef-
inite matrices are given in the book Matrix Analysis of Horn and Johnson [49].

Instead of A ∈ Sn
�0, we also write A � 0. We can check whether a given matrix

is positive semidefinite by using efficient methods, like, for example, by calculating the
Cholesky decomposition or by determining the eigenvalues. Another property which is
useful for checking positive semidefiniteness, in more theoretical contexts, is the Schur
complement: Let

X =

(
A B
BT C

)
be a symmetric matrix in block form and A be nonsingular, then

X � 0⇐⇒ A � 0 and C − BTA−1B � 0.

An upper bound of the optimal value of the SDP, is given by any feasible solution for
the corresponding dual program. The dual problem of the SDP (2.1) – (2.3) is defined by:

d∗ = inf bTy

subject to y ∈ Rm

m∑
i=1

yiAi −C � 0.

An overview of semidefinite optimization, and in particular, of its duality theory, is
given by Blekherman, Parrilo, and Thomas in [10], by Ben-Tal and Nemirovski in [8], and
by Laurent and Vallentin in [60].
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2.1.2 Polynomial optimization and sums of squares
Many difficult optimization problems can be described as polynomial optimization prob-
lems

pmin = inf
x∈K

p(x) , (2.4)

where

K = {x ∈ Rn : gi(x) ≥ 0 ∀i ∈ [m] } (2.5)

is a subset of Rn defined by polynomial nonnegativity conditions and real polynomials
p, g1, . . . , gm ∈ R[x]. This problem can also be formulated as

pmin = sup {λ : p − λ ∈ P(K) } ,

where
P(K) = {g ∈ R[x] : g(x) ≥ 0 ∀x ∈ K } ,

is the set of nonnegative polynomials on K . In general, checking whether a polynomial
with degree at least four is nonnegative everywhere is computationally difficult, because
this is an NP-hard problem [10]. A way to make this condition tractable is to relax it
to a sufficient condition which is easier to check. A multivariate real polynomial p(x) ∈
R[x1, . . . , xn]≤2d (or short R[x]≤2d) of degree at most 2d, can be written as a sum of squares
if there exists polynomials q1, . . . , qm ∈ R[x]≤d, such that p(x) =

∑m
i=1 q2

i (x). In this case, we
say that p is SOS. If a polynomial is SOS, then it has to be globally nonnegative, therefore
this condition gives a certificate for the nonnegativity. The other direction is not true as for
example the Motzkin-polynomial p(x) = x2

1x2
2(x2

1 + x2
2 − 3) + 1 is nonnegative, but it is not

SOS. Hilbert published 1888 in [46] the following theorem.

Theorem 2.3. Every nonnegative n-variate polynomial of even degree d is a sum of squares
if and only if n = 1, or d = 2, or (n, d) = (2, 4).

Apart from these few special cases, the SOS condition is a strict relaxation of the non-
negativity condition. More information about the theory of SOS polynomials in the field
of polynomial optimization and real algebraic geometry, is given by Blekherman, Parrilo,
and Thomas in [10]. Fortunately, we can check the SOS condition by using semidefinite
optimization.

Theorem 2.4. A polynomial p ∈ R[x1, · · · , xn]≤2d of degree at most 2d can be written as
sums of squares, if and only if, there is a positive semidefinite matrix A ∈ RN×N such that

p(x1, · · · , xn) = b(x1, · · · , xn)T A b(x1, · · · , xn),

where N =
(

n+d
d

)
and b(x1, · · · , xn) ∈ R[x]N contains a basis of the space of polynomials of

degree at most d.

Proof. Let p(x) ∈ R[x1, · · · , xn]≤2d be a polynomial of degree at most 2d. If p is SOS, then
there exist polynomials q1, . . . , qm ∈ R[x]≤d such that p(x) =

∑m
i=1 q2

i (x) holds. We can
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construct a real matrix V , such that 
q1(x)
...

qm(x)

 = V · b(x).

Define the matrix A = VTV , then VTV is a Cholesky decomposition of A. Hence we get:

p(x) =

m∑
i=0

q2
i (x) = (V · b(x))T(V · b(x)) = b(x)T(VTV)b(x) = b(x)TAb(x).

Due to the Cholesky decomposition, the N-dimensional matrix A is positive semidefinite.
Conversely, by applying the Cholesky decomposition to a positive semidefinite matrix A
with p(x) = b(x)TAb(x), we obtain an SOS decomposition of p(x). �

For solving a general polynomial optimization problem we have to check whether a
given polynomial p is contained in the set P(K). Since, this problem is in general hard to
solve, we relax it. The idea is to find a sequence of convex cones C1 ⊆ C2 ⊆ . . . ⊆ P(K),
for which, the problem sup{λ : p − λ ∈ Ci} is easier to solve. Let pi be the supremum of
p − λ ∈ Ci, then p1 ≤ p2 ≤ . . . ≤ pmin, because each Ci is a subset of Ci+1. Furthermore,
the cones Ci and Ci+1 are defined in such a way that the calculation of pi is easier than
the calculation of pi+1. By this approach, we get a lower bound on the optimal value pmin.
To do so, we can define the sets Ci by restricting the maximal degree of the contained
polynomials.

Let Σn,2d denote the set of n-variate SOS polynomials of degree at most 2d. Then, we
define an SOS relaxation of pmin by

psos,d = sup

λ : p − λ ∈ Σn,2d +

m∑
i=1

giΣn,2d

 ,
and thus,

psos,1 ≤ psos,2 ≤ . . . ≤ pmin.

In general, an SOS relaxation of the problem pmin is given by

psos = {λ : p − λ ∈ Σ + g1Σ + . . . + gmΣ} ,

where Σ consists of all SOS polynomials. The benefit of this relaxation is that it is describ-
able as an SDP and thus efficiently solvable. More details about nonnegative polynomials
and sums of squares are given by Lasserre in [58] and by Laurent in [59].

2.1.3 Karush-Kuhn-Tucker conditions
A feasible solution x of a minimization problem with an objective function f0 is called a
locally optimal solution if there exists ε ∈ R>0 such that for all feasible solutions y with
||x − y|| ≤ ε the inequality f0(x) ≤ f0(y) holds. For convex optimization problems, locally
optimal solutions are also globally optimal. Theorem 2.6 states necessary conditions for
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local optimality in nonlinear optimization problems. The gradient of a function f : Rn → R
is

∇x f (x1, . . . , xn) =

(
∂ f (x)
∂x1

, . . . ,
∂ f (x)
∂xn

)T

and the Hessian matrix is defined componentwise by

(
∇2

x f (x)
)

i j
=
∂2 f (x)
∂xi ∂x j

for i, j ∈ [n]. For the necessary conditions, we have to introduce the first order constraint
qualification, which is given in the following lemma.

Lemma 2.5. Let x0 be a feasible solution of the problem:

pin f = min f (x) (2.6)
subject to hi(x) = 0 for all i ∈ {1, . . . ,m} (2.7)

g j(x) ≤ 0 for all j ∈ {1, . . . n}. (2.8)

Assume that the functions hi for i ∈ [m] and gi for i ∈ [n] are once-differentiable. Then
the first order constraint qualification holds at x0 if for any nonzero vector z, such that
zT∇x gi(x0) ≥ 0 for all i ∈ B0 = {i : gi(x0) = 0} and zT∇xh j(x0), j = 1, . . . ,m, z is tangent to
a once-differentiable arc, the arc emanating from x0 and contained in the constraint region.

By using Lemma 2.5 we can formulate a necessary condition for local optimality.

Theorem 2.6. If x∗ is a locally optimal solution of the following problem:

pin f = min f (x) (2.9)
subject to hi(x) = 0 for all i ∈ {1, . . . ,m} (2.10)

g j(x) ≤ 0 for all j ∈ {1, . . . n}, (2.11)

where f , g j for j ∈ [n], and hi for i ∈ [m] are differentiable at x∗, and if the first order
constraint qualification holds at x∗, then there exist Lagrange multipliers µ∗ = {µ∗1, . . . , µ

∗
m}

and ν = {ν∗1, . . . , ν
∗
n} such that

∇xL (x∗, µ∗, ν∗) = 0 (2.12)
g j(x∗) ≤ 0 for all j ∈ {1, . . . , n} (2.13)
hi(x∗) = 0 for all i ∈ {1, . . . ,m} (2.14)

ν∗j ≥ 0 for all j ∈ {1, . . . , n} (2.15)

ν∗jg j(x∗) = 0 for all j ∈ {1, . . . , n} (2.16)

where the Lagrange function is defined by

L(x, µ, ν) = f (x) +

m∑
i=1

µihi(x) +

n∑
j=1

ν jg j(x). (2.17)
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Conditions (2.12) to (2.16) are called Karush-Kuhn-Tucker conditions (KKT condi-
tions) or first order condition. A proof of Lemma 2.5 and of Theorem 2.6 is given by
Fiacco and McCormick in [34, Chapter 2]. Moreover, there exists a sufficient condition for
local optimality in nonlinear optimization problems called second order condition, which
is defined in Theorem 2.7. A proof of this theorem is given in [34, Chapter 2], too.

Theorem 2.7. Let x∗ be a feasible solution of the previous problem (2.9) – (2.11), where
f , g j for j ∈ [n], and hi for i ∈ [m] are twice-differentiable functions, and let µ∗ and ν∗ be
Lagrange multipliers such that (x∗, µ∗, ν∗) satisfies the KKT conditions (2.12) – (2.16). If
furthermore for all y , 0 satisfying the following conditions:

yTg j(x∗) = 0 for all j where ν∗j > 0 (2.18)

yT∇g j(x∗) ≥ 0 for all j where g j(x∗) = 0, ν∗j = 0 (2.19)

yT∇hi(x∗) = 0 for all i ∈ {1, . . . ,m} (2.20)

the inequality

yT
(
∇2

xL (x∗, µ∗, ν∗)
)
y > 0 (2.21)

holds, then x∗ is a local minimizer of the corresponding problem (2.9) – (2.11).

2.2 Representation theory
Let V be an n-dimensional vector space over the field C. The set

GL(V) = {T : V → V : T is linear and invertible }

is the group of invertible linear transformations. Furthermore, we define

GLn(C) =
{
M ∈ Cn×n : M is invertible

}
to be the group of invertible square matrices of dimension n. Since the dimension of V is
n, each transformation in GL(V) can be identified with a matrix in GLn(C). To do so, we
define

ψ : V → Cn, with bi 7→ ei,

where ei denotes the ith unit vector in Cn and {b1, . . . , bn} is a basis of V . For each transfor-
mation ρ(g) ∈ GL(V), we can calculate the corresponding matrix ρ̃ ∈ GLn(C) by

(ρ̃ (g))i j =
(
ψ

(
ρ(g) b j

))
i
.

Furthermore, the unitary set is

Un(C) = {M ∈ GLn(C) : MM∗ = I } ,

where T ∗ = T T is the conjugate transpose of T and I is the identity matrix. We also write
U(n) instead of Un(C). The group elements can be represented as matrices, so that the
group operations are expressible by matrix multiplications. Let G be a group. The function
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ρ : G → GL(V) is a representation of G if and only if it is a group homomorphism. This is
the case if each element s ∈ G is assigned to an element ρ(s) ∈ GL(V) such that

ρ(st) = ρ(s)ρ(t) for all s, t ∈ G.

Note that the identity of G is 1 and therefore ρ(1) = I. Moreover, the definition implies that
ρ(s−1) = ρ(s)−1 for all s ∈ G. A representation ρ of G is said to be unitary if ρ : G → U(n).
Let C[x1, . . . , xn], or short C[x], be the set of complex polynomials with n variables. A
representation π : G → GL(Cn) gives a representation on C[x] by the equation

(π(g)p) (x1, · · · , xn) = p
(
π
(
g−1

)
(x1, · · · , xn)

)
.

For simplicity, we write gp instead of π(g)p and g−1x instead of π(g)−1x. A polynomial p
is said to be invariant under G, or short G-invariant, if and only if gp = p for all elements
g in G. The set of polynomials p ∈ C[x] that are G-invariant is denoted by C[x]G. This set
is also called the invariant ring of G and formally it is defined as

C[x]G = {p ∈ C[x] : gp = g for all g ∈ G}.

There exists a linear transformation called Reynolds operator of the polynomials in C[x]
onto the set of G-invariant polynomials by taking the group average, which is for finite
groups defined as

M f (x) =
1
|G|

∑
g∈G

gp (x) , (2.22)

where |G| is the order of the group G. By considering the representations of G in matrix
form, we can define a set S ⊂ Cn to be G-invariant, if and only if, for all g ∈ G, the equation

gS = S with gS = {gs : s ∈ S }

holds. Two representations α : G → GL(V) and β : G → GL(V ′) of G are equivalent (or
isomorphic) if and only if there exists a linear isomorphism τ : V → V ′ that transforms α
into β. Hence τ has to satisfy the following equation:

τ ◦ α(g) = β(g) ◦ τ for all g ∈ G.

Furthermore, two representations α, β ∈ GLn(C) in matrix form are equivalent if and
only if there exists a matrix T ∈ GLn(C), such that

Tα(g)T−1 = β(g) for all g ∈ G.

Lemma 2.8. [71, Proposition 3.2.4] Every representation of a finite group is equivalent to
a unitary representation.

A linear representation π : G → GLn(C) can be transformed into an equivalent unitary
representation πu : G → U(n) using the Gram-Schmidt orthonormalization with respect to
the G-invariant inner product defined as

〈u, v〉G =
1
|G|

∑
g∈G

(π(g)u)∗ (π(g)v) for all u, v ∈ V.
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This is equal to the following formulation

〈u, v〉G = u∗
 1
|G|

∑
g∈G

π(g)∗π(g)

 v for all u, v ∈ V. (2.23)

The Gram matrix of the G-invariant inner product is

1
|G|

∑
g∈G

π(g)∗ π(g) .

Note that 〈v, v〉G = 1
|G|

∑
g∈G ||π(g)v||2 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0, thus, the inner

product is positive definite.
Let π : G → GL(V) be a representation of G and let W ⊆ V . If gW ⊆ W for all g ∈ G,

the representation ρ(g) = π(g)|W is said to be a subrepresentation of π. If the subrepre-
sentations of π are only π itself and 0, then the representation π is called an irreducible
representation. The set of all irreducible unitary representations of G up to equivalence is
denoted by Ĝ. Let ρ : G → GL(V1) be a representation on V1 and let σ : G → GL(V2) be
a representation on V2. The direct sum of two representations is defined by

ρ(g) ⊕ σ(g) = α (ρ(g), σ(g)) for all g ∈ G,

where α : GL(V1)×GL(V2)→ GL(V1⊕V2). Then, the obtained representation maps group
elements to linear transformations in GL(V1⊕V2). If the representations are in matrix form,
that is ρ : G → GLn(C) and σ : G → GLm(C), then the direct sum is defined as

ρ(g) ⊕ σ(g) =

(
ρ(g) 0

0 σ(g)

)
for all g ∈ G.

Thus, ρ ⊕ σ : G → GLm+n(C).

Lemma 2.9. [67, Chapter 1.3, Theorem 1] Let π : G → GL(V) be a representation of G
on V. If π is not irreducible, then there exist two subrepresentations ρ : G → GL(V1) and
σ : G → GL(V2) with V1,V2 subspaces of V, such that π is equivalent to (ρ ⊕ σ) : G →
GL(V1 ⊕ V2).

If a subrepresentation is not irreducible, one can decompose it again into further sub-
representations. Consequently, the decomposition can be continued until all subrepresen-
tations are irreducible.

Corollary 2.10. [67, Chapter 1.4, Theorem 2] A representation of a finite group is equiv-
alent to a direct sum of irreducible representations.

Let π be an irreducible subrepresentation of ρ : G → GL(V) and let π1, . . . , πmπ
be the

irreducible subrepresentations of ρ, which are equivalent to π. Then

ρ =
⊕
π∈Ĝ

mππ =
⊕
π∈Ĝ

mπ⊕
i=1

πi, (2.24)
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where Ĝ is the set of non-equivalent irreducible unitary representations of G and πi : G →
GL(Vπi ) is a representation on Vπi . For each π ∈ Ĝ, we define Vπ = Vπ1 ⊕ . . .⊕Vπmπ . Thus,
we obtain Vπ by collecting all subspaces with equivalent representation together. Since
each subspace Vπ can be decomposed into isomorphic subspaces, Vπ is called an isotypic
component and the decomposition V =

⊕
π∈Ĝ Vπ is called the isotypic decomposition of V .

Let πi : G → GL(Vπi ) with π ∈ Ĝ and i ∈ [mπ] be irreducible representations of
ρ : G → GL(V) , then we get a following decomposition of the vector spaces

V =
⊕
π∈Ĝ

Vπ, with Vπ =

mπ⊕
i=1

Vπi . (2.25)

Here we are interested in special representations, called regular representations, for
which we calculate these decompositions. First let us define regular representations. Let
ρ : G → GL(V) be a representation of G. If the dimension of the vector space V with a
basis {et : t ∈ G} is equal to the order of G and ρ(g) : et → egt holds for all g, t ∈ G, then
ρ is called a regular representation. A nice property of such a representation is that the
multiplicity mπ of every irreducible unitary representation π is equal to its dimension.

Theorem 2.11. [67, Chapter 2.4] Let V be a complex vector space such that the dimension
of V is equal to the order of G, and let dπ = dim π for π ∈ Ĝ. Then there exist vector
subspaces Vπi of V such that

V =
⊕
π∈Ĝ

Vπ and Vπ =

dπ⊕
i=1

Vπi , (2.26)

with πi : G → U(dπ), where π1, . . . , πdπ are irreducible unitary representations, which are

equivalent to π. Hence
∑
π∈Ĝ d2

π = |G|.

Since Theorem 2.11 is important for the sum of Hermitian squares decomposition in
Section 2.3, we give a proof after introducing the characters of a group. For this, we first
define the trace Tr(ρ(g)) of a linear transformation ρ(g) ∈ GL(V). We already saw how to
transform ρ into a representation ρ̃ : G → GLn(C) in matrix form with n = dim V . The
trace of ρ(g) is equal to the trace of the matrix ρ̃(g) given by

Tr(ρ̃(g)) =

n∑
i, j=1

(ρ̃(g))i j .

Note that the trace of ρ(g) is independent of the basis of V , which we use to obtain the
representation in matrix from. The function

χρ : G → C with χρ(g) = Tr (ρ(g)) ,

is called the character of the representation ρ. A character is irreducible if and only if its
corresponding representation is irreducible. Furthermore, χρ(1) is equal to the dimension
of ρ.

We calculate the character of a regular representation: Let r : G → GL(V) be a regular
representation and let B = {bt : t ∈ G} be a basis of V . Furthermore, let r̃ : V → C|G| be
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the regular representation in matrix form with respect to the basis B indexed by the group
elements. Then

(r̃(g))st =

1 if bt = r(g)bs,

0 otherwise.

Since r is a regular representation r(g)bs = bgs for all g, s ∈ G. Thus bt = r(g)bs if and only
if g = ts−1. In particular,

(r̃(g))tt =

1 if g = 1,
0 otherwise.

Hence, the character χr of the regular representation r is

χr(g) =

|G|, if g = 1,
0, otherwise.

Since ρ can be decomposed as the direct sum ρ =
⊕

π∈Ĝ mππ, the character of ρ can be
decomposed as

χρ =
∑
π∈Ĝ

mπ χπ .

The inner product of two characters χ1 and χ2 is defined by

〈χ1, χ2〉 =
1
|G|

∑
g∈G

χ1(g−1) χ2(g) .

Then, we can compute the multiplicity, since mπ = 〈χρ, χπ〉 [67, Chapter 2.3].

Proof of Theorem 2.11. Let V be a |G|-dimensional vector space and let ρ : G → GL(V) be
a regular representation on V . Due to Corollary 2.10 this representation can be decomposed
into irreducible representations. Furthermore, by Lemma 2.8, the obtained irreducible rep-
resentations are equivalent to irreducible unitary representations. We can decompose the
vector space V as in (2.25)

V =
⊕
π∈Ĝ

Vπ, with Vπ =

mπ⊕
i=1

Vπi . (2.27)

Let dπ be the dimension of π. The multiplicity mπ can be calculated by

mπ = 〈χρ, χπ〉 =
1
|G|

∑
g∈G

χρ
(
g−1

)
χπ(g) =

1
|G|
· |G| · χπ(1) = χπ(1) = dπ .

�

Instead of decomposing the finite-dimensional representation directly into its irreducible
representations, we first decompose V into its isotypic components Vπ, which is a unique
decomposition. In [67, Chapter 2.6, Theorem 8], Serre gives the projection pπ of V onto
Vπ by the formula

pπ : V → V ,
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with

f 7→
dπ
|G|

∑
g∈G

χπ
(
g−1

)
ρ(g) f , (2.28)

where ρ : G → GL(V) and χπ : G → C is the character of π ∈ Ĝ. After the first
decomposition, each isotypic component Vπ contains a collection of isomorphic irreducible
subspaces Vπi .

Contrary to the first decomposition, there are many ways to decompose the isotypic
components into its isomorphic irreducible subspaces. For an irreducible representation
π, the vector subspace Vπ contains mπ many vector subspaces Vπi . In [67, Chapter 2.7,
Proposition 8], Serre gives a projection from Vπ into its vector subspaces Vπi explicitly:

Theorem 2.12. Let ρ : G → GL(V) be a representation of G. Furthermore, let π be
an irreducible representation given as a dπ × dπ matrix. For each pair of integers i, j ∈
{1, . . . , dπ} define a linear map pπi j : Vπ → Vπ by

f 7→
dπ
|G|

∑
g∈G

π ji

(
g−1

)
ρ(g) f . (2.29)

Then the following holds:

(a) The map pπii is a projection; its image pπii(V
π) is contained in Vπi and pπ =

∑dπ
i=1 pπii .

(b) The linear map pπi j is an isomorphism from Vπ j onto Vπi .

(c) Let xπ1 be a nonzero element of Vπ1 and let xπi = pπi1(xπ1) ∈ Vπi . The elements xπi are
linearly independent and generate a vector space V(xπ1), which is isomorphic to Vπ.
For each g ∈ G, we have

ρ(g)(xπi ) =

dπ∑
j=1

π ji(g)xπj .

(d) If (xπ1, . . . , x
π
dπ

) is a basis of Vπ1 , then

Vπ = V(xπ1) ⊕ · · · ⊕ V(xπdπ ) ,

with V(xπi ) defined in (c).

Taking a basis of Vπ1 , we can, thus, calculate a decomposition of Vπ =
⊕dπ

i=1 Vπi

explicitly.

2.3 Invariant sum of Hermitian squares

2.3.1 Sum of Hermitian squares (SOHS)
There are several methods for solving semidefinite programs in polynomial time, for exam-
ple, the interior point method [2, 62]. For polynomials with many variables or a high degree
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the dimension of the positive semidefinite matrix A of Theorem 2.4, which is needed for
checking the SOS condition, will become large. For example, if the polynomial has three
variables and degree 30, the matrix A has dimension 816. Unfortunately, such matrices are
too large for current high-precision SDP solvers. Therefore, we are interested in simplify-
ing the SOS calculation for polynomials that are invariant under a finite pseudo-reflection
group.

Let v ∈ Rn be a nonzero vector and Hv be the hyperplane which is orthogonal to v. A
reflection on the hyperplane Hv is an orthogonal transformation ρv : Rn → Rn defined as

ρv(x) = x −
2〈x, v〉
‖v‖2

v.

Note that ρv(v) = −v and ρv(x) = x if and only if 〈x, v〉 = 0. A finite group, generated
by reflections ρv is called a finite reflection group . It is a subgroup of the orthogonal
group O(n). A group generated by a finite number of pseudo-reflections, that are invertible
linear transformations on Cn with exactly one eigenvalue not equal to 1, is called a finite
pseudo-reflection group. Since a reflection ρv(v) is in particular a pseudo-reflection, any
finite reflection group is also a finite pseudo-reflection group.

Example 2.13. The octahedral group B3 = S4 × C2 is a finite reflection group, where S4
is the symmetric group on 4 elements and C2 is the cyclic group on 2 elements. The order
of the group is 48 and it is generated by the reflecting hyperplanes xi = 0 for 1 ≤ i ≤ 3 and
xi ± x j = 0 for 1 ≤ i < j ≤ 3. A generating set of reflecting hyperplanes of B3 is pictured
in Figure 2.1.

Figure 2.1: Generating set of reflecting hyperplanes of B3.

Thus, the group can be generated by the matrices−1 0 0
0 1 0
0 0 1

 ,
1 0 0
0 0 −1
0 −1 0

 ,
0 0 1
0 1 0
1 0 0

 .
These reflections generate all reflections and rotations, which will keep the regular cube
[−1,+1]3 unchanged. Therefore, B3 coincides with the group of symmetries of the regular
cube. Furthermore, it is also equal to the symmetry group of the regular octahedron.

Let G be a finite pseudo-reflection group and p(x) ∈ R[x]G
≤2d be a G-invariant SOS

polynomial with degree at most 2d. Using the standard monomial basis, there exists a
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positive semidefinite matrix A ∈ SN
�0 with N =

(
n+d

d

)
, such that

p = bTAb, (2.30)

where b is a vector containing all monomials of V = R[x]≤d up to degree d. Let ρ : G →
GLN(R) be a matrix representation of G with respect to the monomial basis of V . Because
of the G-invariance of p(x), the following equations hold for all group elements g ∈ G:

bTA b = p(x) = gp (x) = (ρ(g) b)T A (ρ(g) b) = bTρ(g)TA ρ(g) b.

If ρ is an orthogonal representation, which means ρ(g) ρ(g)T = ρ(g)Tρ(g) = I for all g ∈ G,
then we get

A ρ(g) = ρ(g) A for all g ∈ G. (2.31)

LetA ⊆ RN×N be the set of matrices satisfying equation (2.31), which is a subspace of
the set of symmetric matrices SN . The set A is invariant under summation, scalar, matrix
multiplication, and taking the adjoint, therefore it defines a matrix *-algebra. Wedderburn
showed in [79] that each matrix *-algebra is decomposable into basic algebras and a zero
algebra. By Lemma 2.8 and Corollary 2.10, we can assume that the representation ρ of
(2.31) is unitary and equivalent to a direct sum of irreducible unitary representations π ∈ Ĝ.
Moreover, since ρ is a transformation on RN , the conjugate transpose ρ(g)∗ is equal to the
transpose ρ(g)T, which implies that the unitary representation ρ is orthogonal.

Observe that, since ρ is orthogonal, we can find an orthogonal matrix T , such that

ρ(g) = T

⊕
π∈Ĝ

π(g)

 T T,

for all g ∈ G. Moreover, for all matrices A ∈ A, we get

T TAT = Diag (Aπ)π∈Ĝ =


A1 0

. . .

0 A|Ĝ|

 , (2.32)

with Aπ ∈ Smπ·dπ . Furthermore, each irreducible representation π has mπ equivalent repre-
sentations in the decomposition. Therefore, each matrix Aπ is block diagonalized. These
blocks are all equal because of the G-invariance of the polynomial p. Thus,

Aπ = Diag(Qπ . . .Qπ︸     ︷︷     ︸)
mπ

=


Qπ 0

. . .

0 Qπ

 , (2.33)

with Qπ ∈ Sdπ . For the SOS calculation it is sufficient to calculate just the entries in
the blocks, instead of the whole matrix A. Therefore, the block diagonalization makes
the SOS calculation tractable. However, to use this technique, we have to calculate the
transformation matrix T . Furthermore, we obtain the equations

p(x) = bTAb = bTTT TATT Tb =
(
T Tb

)T
T TAT

(
T Tb

)
.
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The matrix T decomposes the basis vector b in a similar way as the matrix A. Thus,

Tb = (bπ)π∈Ĝ =


b1

...

b|Ĝ|

 , with bπ =


bπ1
...

bπmπ

 for each π ∈ Ĝ (2.34)

and the dimension of bπi is equal to dπ for i ∈ [mπ] . Hence, each bπ contains the basis
vectors of the vector subspace Vπ. To calculate bπ from b we will use the formula in (2.28),
which provides the projection of the vector space V onto the vector subspace Vπ for each
irreducible representation π.

Due to the equations (2.30), (2.32), (2.33) and (2.34), an SOS polynomial p can be
written in the form

p =
∑
π∈Ĝ

mπ∑
i=1

(
bπi

)T
Qπbπi , (2.35)

with positive semidefinite matrices Qπ.
Gatermann and Parrilo give in [37] a method for simplifying the SOS calculation for

polynomials invariant under a finite group. For this, they use the Hironaka-decomposition
of the invariant polynomial ring, which is given by

R[x]G =

t⊕
j=1

η j(x) R [θ1(x), . . . , θn(x)] , (2.36)

with primary invariants θi(x) ∈ R[x] and secondary invariants ηi(x) ∈ R[x]. Primary
invariants are also called basic invariants. A matrix A ∈ R[x]n×n is named an SOS matrix if
and only if there exists a matrix L ∈ R[x]n×l such that A = LLT. The results of Gatermann
and Parrilo in [37] are stated in the following theorem.

Theorem 2.14. Let p(x) be an SOS polynomial that is invariant under the action of a finite
group G, and let θi, ηi be primary and secondary invariants of the corresponding invariant
ring. Furthermore, let π1, . . . , πh be the orthogonal irreducible representations of G. Then
there exists rπi for all i ∈ [h], such that p(x) has a representation of the form:

p =

h∑
i=1

〈Qπi , Pπi〉 ,

where Qπi ∈ R[θ, η]rπi×rπi depends only on the group action, and Pπi ∈ R[θ]rπi×rπi is an SOS
matrix for each i ∈ [h].

In [37], Gatermann and Parrilo explain how to obtain the dimensions rπi . Using this the-
orem for the SOS calculation instead of finding one large matrix P with p =

〈
P, b(x) b(x)T

〉
,

makes the calculation easier, since less values have to be calculated for the desired matrix.
That is, instead of computing one large positive semidefinite matrix, one has to compute
h many smaller positive semidefinite matrices. In [5], Bachoc, Gijwijt, Schrijver, and Val-
lentin give more information about invariant semidefinite programs, and in particular, about
invariant SOS polynomials.
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Since our goal is to simplify the SOS calculation for polynomials invariant under a finite
pseudo-reflection group, we make the abstract theorem of Gaterman and Parrilo concrete
by considering finite pseudo-reflection groups. To do so, we use the Peter-Weyl theorem
to transform the regular representations into irreducible unitary representations. For this
it is more natural to consider Hermitian symmetric polynomials contrary to the work of
Gaterman and Parrilo, in which the polynomials are over the field of real numbers.

A polynomial p ∈ C[z1, . . . , zn, w1, . . . , wn] = C[z, w] is called a Hermitian symmetric
polynomial if the following three equivalent conditions hold (see D’Angelo [25]):

i) Equality p(z, w) = p(w, z) holds for all z, w ∈ Cn.

ii) The function z 7→ p(z, z), with z ∈ Cn, is real-valued.

iii) There is a Hermitian matrix Q = (qαβ), such that one can represent p as p(z, w) =∑
αβ qαβ zα w β.

Let p ∈ C[z, w] be a Hermitian symmetric polynomial, then p is said to be a sum of
Hermitian squares if and only if there are complex polynomials q1(x), . . . , qm(x) ∈ C[x]
such that

p(z, w) =

m∑
i=1

qi(z) qi(w) (2.37)

holds. In this case, we also say p is SOHS. Since z 7→ p(z, z) is real-valued and p(z, z) =∑m
i=1 qi(z) qi(z) holds, the sum of Hermitian squares determines a real-valued nonnegative

function z 7→
∑m

i=1 qi(z) qi(z). D’Angelo considered eight different positivity classes of
Hermitian symmetric polynomials, whereas being SOHS is the strongest condition among
them [24].

The SOHS condition can also be verified by the Gram matrix method. For this, we need
Hermitian matrices with nonnegative eigenvalues called Hermitian positive semidefinite
matrices. Analogously to equation (2.30), we transform equation (2.37) to

p(z, w) = b(z)TA b(w),

where A is a Hermitian positive semidefinite matrix of dimension N =
(

n+d
d

)
and where the

vector b(x) ∈ C[x]N contains a basis of the space of complex polynomials up to degree d.
Since we are dealing with polynomials invariant under a finite pseudo-reflection group,

we have a look at the invariant theory of finite pseudo-reflection groups. Due to Theorem
2.15, well known as the Shephard-Todd-Chevalley theorem [72], the invariant ring of finite
pseudo-reflection groups, can be described by basic invariants only.

Theorem 2.15. The invariant ring C[x]G of a finite matrix group G ⊂ GLn(C) is generated
by n algebraically independent homogeneous invariants if and only if G is a finite pseudo-
reflection group.

Hence, the invariant ring C[x]G is generated by n basic invariants:

C[x1, . . . xn]G = C[θ1, . . . , θn] . (2.38)
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Since basic invariants are homogeneous, algebraically independent polynomials, the invari-
ant ring is a free algebra. The basic invariants are not uniquely determined by the group,
but their degrees are. In [72], Sturmfels gives more information about the invariant theory.
Furthermore, Stanley published a survey [68] about the invariant theory of finite groups, in
which he also describes the theory of Shephard and Todd, and Chevalley.

Any action of the group keeps the grading of the polynomials invariant. Therefore we
can decompose the invariant ring into homogeneous subspaces, which are invariant under
the action of G. The set of homogeneous polynomials of degree k is defined by

Homk =
{
p ∈ C[x] : p(αx) = αk p(x) for all α ∈ C, deg p = k

}
. (2.39)

The intersection of the homogeneous polynomials with the invariant ring contains the ho-
mogeneous invariant polynomials:

HomG
k = C[x]G ∩ Homk . (2.40)

The dimension of each homogeneous invariant subspace can be determined by using the
Molien’s series

∞∑
k=0

dim HomG
k tk =

 n∏
i=1

(
1 − tdi

)−1

, (2.41)

where di are the degrees of the basic invariants θi. For the groups An, Bn, Dn, E6, E7,
E8, F4, G2, H3, H4, and I2(m) Humphrey published in [52] a table showing these degrees.
Alternatively, one can compute basic invariants by a computer program like Magma [12]
to obtain the desired degrees. Furthermore, Sturmfels describes in [72] an algorithm for
computing basic invariants.

Due to Theorem 2.11, we know that a |G|-dimensional vector space can be decomposed
in |Ĝ| many subspaces, which can be further decomposed into dπ many subspaces. We use
this decomposition in the SOHS calculation to decompose the desired Hermitian positive
semidefinite matrix into smaller matrices. To do so, we consider the coinvariant algebra,
which is defined as the following quotient space

C[x]G = C[x]/I , (2.42)

where I = (θ1, . . . , θn) is the ideal generated by basic invariants. The coinvariant algebra is
a graded algebra of finite dimension |G|. Like the invariant ring, we can decompose it into
homogeneous subspaces of degree k:

C[x]G =
⊕
k∈Z≥0

(C[x]G ∩ Homk) . (2.43)

The dimension and the degree of these homogeneous subspaces are given by the Poincaré
series, which is defined as

PG(t) =

m∑
i=0

dim Vi tki ,

where Vi = C[x]G ∩ Homki is the subspace of C[x]G consisting of the homogeneous poly-
nomials of degree ki, and m ∈ N is the maximal degree. For more details on this, see the
work of Chevalley [18]. In [48, p. 83], Hiller give the following formula to compute the
Poincaré series.
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Lemma 2.16. Let G be a finite group. Its Poincaré series PG(t) can be computed as

PG(t) = (1 − t)−n
n∏

i=1

(
1 − tdi

)
, (2.44)

where di are the degrees of the basic invariants θi.

An alternative formula to calculate the Poincaré series PG(t) is given in Lemma 2.17.

Lemma 2.17. Let G be a finite group. Its Poincaré series PG(t) can be computed as

PG(t) = (1 − t)−n|G|

∑
[g]∈G

|[g]|
det (In − tg)


−1

,

where In denotes the n×n identity matrix, G is the set of conjugacy classes of G and g ∈ [g]
is a representative of the conjugacy class [g] ∈ G.

Lemma 2.17 can be deduced by combining the following results of Hiller [48, (2.1 b),
(2.5)]:

PG(t) =
P(t)

PG(t)
,

with
P(t) = (1 − t)−n and PG(t) =

1
|G|

∑
g∈G

1
det (In − tg)

,

where P(t) is the Poincaré series of C[x] and PG(t) denotes the Poincaré series of C[x]G.
Analogously to PG(t), the Poincaré series P(t) and PG(t) are counting the dimension of the
homogeneous subspaces of C[x] and C[x]G. We use the following theorem of Chevalley to
express the set of complex polynomials.

Theorem 2.18. Let G be a finite pseudo-reflection group. Then the following equation
holds:

C[x] = C[x]G ⊗ C[x]G.

More information about Theorem 2.18 are, for example, given in [72]. For checking
whether a polynomial p(z, w) ∈ C[z, w] is SOHS, we can use a basis b(x) of C[x], for exam-
ple the standard monomial basis, and try to find a positive semidefinite matrix A satisfying
p(z, w) = 〈A, B〉, with B = b(w) b(z)T. To simplify the SOHS calculation, we want to
decompose the polynomial p = 〈P,Q〉, such that P contains elements of C[x]G and Q con-
tains a basis of C[x]G. The benefit is that we know how to decompose these subspaces into
smaller subspaces. To calculate this decomposition, we have a look at the basis of the coin-
variant algebra. Due to the following theorem of Chevalley [52], we know that there exists
a regular representation ρ : G → GL(C[x]G), which we use to calculate the decomposition
of C[x]G.

Theorem 2.19. Viewed as a C[θ1, . . . , θn]-module, C[x1, . . . , xn] is free of rank |G|. More-
over, the action of G on C[x1, . . . , xn]/(θ1, . . . , θn) is isomorphic to the regular representa-
tion of G.
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This regular representation can be transformed into a unitary representation, which
is decomposable into irreducible unitary representations. Furthermore, we can apply the
Peter-Weyl theorem [74, Chapter 15]: There exist homogeneous polynomials

ϕπi j with π ∈ Ĝ, (2.45)

which form a basis of the coinvariant algebra C[x]G, such that

gϕπi j =
(
π(g) j

)T


ϕπi1
...
ϕπidπ

 , i = 1, . . . , dπ, (2.46)

where dπ is the dimension of π, holds for all g ∈ G. Here, π(g) j denotes the j-th column of
the unitary matrix π(g) ∈ U(dπ).

We want to work with Hermitian symmetric polynomials, therefore we have to extend
the action of the group G from the complex polynomials C[x] to the Hermitian symmetric
polynomials C[z, w] by

(gp)(z, w) = p(g−1z, g−1w).

Analogously, we have to define the ring of G-invariant Hermitian symmetric polynomials
by

C[z, w]G = {p ∈ C[z, w] : gp = p for all g ∈ G} .

As mentioned before, we want to express a polynomial p by using a matrix P, which con-
tains elements of the invariant ring C[x]G and a matrix Q, whose elements build a basis of
the coinvariant algebra C[x]G. The coinvariant algebra C[x]G can be decomposed into sub-
spaces, such that for each irreducible representation π ∈ Ĝ, there exists one corresponding
subspace. The vectors ϕπi j from (2.45) correspond to the basis vectors of the subspace Vπ

of V = C[x]G. This decomposition implies that the matrix Q is a block matrix. Therefore,
the trace inner product 〈P,Q〉 can be written as

∑
π∈Ĝ 〈P

π,Qπ〉. In the following theorem,
we use this decomposition for Hermitian symmetric polynomials to simplify the SOHS
checking.

Theorem 2.20. Let G ⊆ GLn(C) be a finite group generated by pseudo-reflections. The
convex cone of G-invariant Hermitian symmetric polynomials which can be written as sums
of Hermitian squares equals{

p ∈ C[z, w]G : p(z, w) =
∑
π∈Ĝ

〈Pπ(z, w),Qπ(z, w)〉 ,

Pπ(z, w) is a Hermitian SOS matrix polynomial in θi

}
.

Here 〈A, B〉 = Tr(B∗A) denotes the trace inner product, the matrix Pπ(z, w) is a Hermitian
SOS matrix polynomial in the variables θ1, . . . , θn, i.e. there is a matrix Lπ(z) with entries
in C[z]G = C[θ1, . . . , θn] such that

Pπ(z, w) = Lπ(z) Lπ(w)
T
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holds, and Qπ(z, w) ∈ (C[z, w]G)dπ×dπ is defined componentwise by

[Qπ]kl(z, w) =

dπ∑
i=1

ϕπki(z) ϕπli(w) .

Proof. Let p(z, w) be a G-invariant SOHS polynomial in C[z, w]G of degree at most 2d,
thus there exists a Hermitian positive semidefinite matrix A of dimension N =

(
n+d

d

)
such

that
p(z, w) = b(z)TA b(w) ,

where b(z) ∈ C[x]N is a vector that contains a basis of the space of complex polynomials up
to degree d. The SOHS polynomial can be decomposed in a similar way as the SOS poly-
nomial in (2.35). Thus, we can decompose the vector space C[z, w]N into vector subspaces
for each irreducible representation π ∈ Ĝ and there exists a unitary base change matrix T
expressing the corresponding projection. Hence, we get

p(z, w) =
∑
π∈Ĝ

bπ(z)TS π bπ(w) ,

where

Tb(x) =


bπ1 (x)
...

bπ|Ĝ| (x)

 with bπ ∈ C[x]mπ·dπ (2.47)

and S π is a Hermitian positive semidefinite matrix of dimension mπ · dπ. Furthermore, we
define

Zπ(z, w) =


Zπ

1 (z, w) 0
. . .

0 Zπ
mπ

(z, w)


with

Zπ
i (z, w) = bπi (z) bπi (w)

T
∈ C[z, w]dπ×dπ .

Due to Theorem 2.18, the set of complex polynomials is equal to the tensor product of the
coinvariant algebra and the invariant ring

C[x] = C[x]G ⊗ C[x]G.

Thus, each q(x) ∈ C[x] can be computed as a sum of products of a coinvariant monomial
and invariant monomials in the basic invariants. Formally, q(x) is equal to a sum over
elements

ϕπjk

∏
i∈[n]

θi(x)li , (2.48)

with powers l ∈ Zn
≥0, and where ϕπjk for j, k ∈ [dπ] form a basis of C[x]G. This parameteri-

zation of the elements in C[x] is not unique.
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Since the entries of the basis elements bπi (x) are elements in C[x], they can be described
by the basis elements ϕπi j(x) of the coinvariant algebra and the basic invariants θi as in
(2.48). Furthermore, there exists generators of C[x]≤d of the form (2.48). The matrix Qπ is
defined as in Theorem 2.20:

[Qπ]kl(z, w) =

dπ∑
i=1

ϕπki(z) ϕπli(w).

Then, we can express the elements in Zπ(z, w) in the form (2.48) by applying a basis change
matrix to Zπ(z, w) in such a way that the new matrix is

Z̃π(z, w) =


Z̃π

11(z, w) · · · Z̃π
1tπ

(z, w)
...

. . .
...

Z̃π
tπ1(z, w) · · · Z̃π

tπtπ (z, w)


with

Z̃π
i j(z, w) = vπ(z)i vπ(w)

T
j Qπ(z, w) for all i, j ∈ [tπ],

where vπ(x) be a vector that contains all monomials in the basic invariants up to degree
d − min{degϕπii(x) : i ∈ [dπ]}. The value of tπ depends on π as well as on the degree
of the basic invariants and on the degree of the elements in the coinvariant algebra. By
restricting the degrees, we obtain a unique parameterization. Using this parameterization,
the following equation holds

Z̃π(z, w) =

(
vπ(z) vπ(w)

T
)
⊗ Qπ (z, w) .

According to the previous transformation of Zπ(z, w) to Z̃π(z, w), we can apply a ba-
sis change matrix to the Hermitian positive semidefinite matrix S π to obtain a Hermitian
positive semidefinite matrix S̃ π, such that

p(z, w) =
∑
π∈Ĝ

〈
S̃ π, Z̃π

〉
. (2.49)

We first have to compute the basis change matrix for the transformation of Zπ(z, w) and
then, we determine a basis change matrix for S π, such that 〈S π,Zπ〉 = 〈S̃ π, Z̃π〉 and thus the
equation in (2.49) holds. Using the new parameterizations, we get

p(z, w) =
∑
π∈Ĝ

〈
S̃ π,

(
vπ(z) vπ(w)

T
)
⊗ Qπ (z, w)

〉
.

We want to exchange the factors of the Kronecker product, thus we need to permute the
entries of the matrix S̃ π; We denote the new matrix by S̆ π:

p (z, w) =
∑
π∈Ĝ

〈
S̆ π,Qπ(z, w) ⊗

(
vπ(z) vπ(w)

T
)〉
.
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Next, we use a property of the Kronecker product which states (A⊗B)(C⊗D) = (AC⊗BD).
Since Qπ = IdπQ

πIdπ and vπ(w) vπ(w)
T

= vπ(w)1 vπ(w)
T
, we obtain

p (z, w) =
∑
π∈Ĝ

〈
S̆ π,

(
Idπ ⊗ v

π(z)
)

(Qπ(z, w) ⊗ 1)
(
Idπ ⊗ v

π(w)
)T

〉
.

As the trace is invariant under permutations, we can use 〈A, BCD〉 = 〈DAB,C〉 and thus

p(z, w) =
∑
π∈Ĝ

〈(
Idπ ⊗ v

π(w)
)T

S̆ π (Idπ ⊗ v
π(z)

)
,Qπ(z, w)

〉
.

For each irreducible representation π ∈ Ĝ, we define a matrix Pπ(z, w) by

Pπ(z, w) =
(
Idπ ⊗ v

π(w)
)T

S̆ π (Idπ ⊗ v
π(z)

)
.

Thus, the following equation holds

p(z, w) =
∑
π∈Ĝ

〈Pπ(z, w),Qπ(z, w)〉 .

Since S̃ π is positive semidefinite, S̆ π is as well. Hence, for each matrix Pπ(z, w) there exists
a matrix Lπ(x), such that

Pπ(z, w) = Lπ(z) Lπ(w)
T
.

Since all entries of the matrices Pπ(z, w) are elements of the invariant ring, the entries of
Lπ(x) have to be elements of C[x]G. �

The basis elements ϕπi j are independent of the degree of the polynomial p. Due to Theo-
rem 2.20, we can check whether a given polynomial that is invariant under a finite pseudo-
reflection group G is SOHS by calculating many smaller Hermitian positive semidefinite
matrices instead of one large matrix. This makes the calculation much easier, since we
calculate less matrix entries.

If all unitary representations are orthogonal, the G-invariant polynomials have to be
real. In this case, we can reformulate Theorem 2.20 as follows

Theorem 2.21. Let G ⊆ GLn(R) be a finite group generated by pseudo-reflections so that
all unitary irreducible representation π ∈ Ĝ of G are orthogonal. The convex cone of
G-invariant real polynomials which can be written as sums of squares equals{

p ∈ C[x]G ∩ R[x] : p(x) =
∑
π∈Ĝ

〈Pπ(x),Qπ(x)〉 ,

Pπ(x) is an SOS matrix polynomial in θi

}
.

Here the matrix Pπ(x) is an SOS matrix polynomial in the variables θ1, . . . , θn, i.e. there is
a matrix Lπ(x) with entries in R[x]G = R[θ1, . . . , θn] such that

Pπ(x) = Lπ(x) Lπ(x)T
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holds, and Qπ(x) ∈ (R[x]G)dπ×dπ is defined componentwise by

[Qπ]kl(x) =

dπ∑
i=1

ϕπki(x) ϕπli(x) .

Proof. For a G-invariant real polynomial p(x) ∈ C[x]G ∩ R[x] =: R[x]G there exists a
positive semidefinite matrix S π for all π ∈ Ĝ such that

p(x) =
∑
π∈Ĝ

mπ∑
i=1

〈
S π

i , b
π
i (x) bπi (x)T

〉
.

Since G ⊆ GLn(R), the coefficients of the monomials in the basic invariants θ1, . . . , θn

are real and, furthermore, for the invariant ring R[x]G = R[θ1, . . . , θn] holds. Moreover,
from G ⊆ GLn(R) it follows that the unitary matrices π(g) are real-valued and thus the
projection of Serre maps polynomials in R[x] to polynomials in R[x]. The polynomials
stay real under the Gram-Schmidt orthonormalization method, since the G-invariant norm
‖ · ‖G is real-valued. Thus, the basis elements ϕπjk(x) are real polynomials. By using the
decomposition R[x] = R[x]G ⊗ R[x]G the proof of Theorem 2.21 is analogously to the
proof of Theorem 2.20. �

To apply Theorem 2.20 or Theorem 2.21, we have to calculate the matrix Qπ, which
consists of the basis elements ϕπjk(x) of the coinvariant algebra C[x]G or R[x]G. We will
now just consider the complex case, because for real polynomials the calculation is similar.
Since the group action respects the grading on C[x], the following equation holds

pπ(C[x]) =
⊕
k∈Z≥0

pπ(Homk) ,

where pπ is the projection given in (2.28). Combining the decomposition in Theorem 2.11
with formula (2.43), the coinvariant algebra can be decomposed as

C[x]G =
⊕
π∈Ĝ

km⊕
k=0

Vπ
k , (2.50)

where
Vπ

k = pπ(C[x]G ∩ Homk)

and km is the maximal degree, which is equal to the degree of the Poincaré series.
To avoid zero summands in the decomposition, we are just interested in the values for k

which appear in the subset Vπ for π ∈ Ĝ. The Poincaré series PG(t) can be decomposed into
a sum of PG,π(t) over the set of irreducible representations π ∈ Ĝ to get these information.
We define for each π ∈ Ĝ,

PG,π(t) =

dπ∑
i=1

dπtkπi ,

where dπ = dim π. In [68, p. 489], Stanley gives the following lemma.



44 Techniques Chapter 2

Lemma 2.22. Let G be a finite pseudo-reflection group and π ∈ Ĝ. The Poincaré series
PG,π(t) of the isotypic component belonging to π is given by

PG,π(t) =
1
|G|

n∏
i=1

(
1 − tdi

)∑
g∈G

χπ(g)
det (In − tg)

,

where In denotes the n×n identity matrix and the di’s are the degrees of the basic invariants.

A proof of Lemma 2.22 is given in [16, Proposition 11.1.1]. Instead of summing over
all elements of the group G, we can alternatively use the following equation,

PG,π(t) =
1
|G|

n∏
i=1

(
1 − tdi

) ∑
[g]∈G

|[g]| χπ(g)
det (In − tg)

,

in which we just have to sum over the conjugacy classes [g] ∈ G of G. Let nπ be the number
of non-zero monomials in PG,π(t) and lπ1, . . . , l

π
nπ be the powers of t occurring in PG,π(t). We

can describe the decomposition in (2.50) by

C[x]G =
⊕
π∈Ĝ

nπ⊕
i=1

Ṽπ
i (2.51)

and
Ṽπ

i = pπ(C[x]G ∩ Homlπi ) .

Since multiple powers kπj can be equal to lπi in PG,π(t), we can deduce that the dimension of
Ṽπ

i is a multiple of dπ, which is the dimension of each subspace Vπ
i . This multiple factor is

denoted by m(lπi ).

Example 2.23. We consider the group H3: Its Poincaré series is

PH3 (t) = (1 − t)−3(1 − t2)(1 − t6)(1 − t10)

= 1 + 3t + 5t2 + 7t3 + 9t4 + 11t5 + 12t6 + 12t7 + 12t8

+ 12t9 + 11t10 + 9t11 + 7t12 + 513 + 3t14 + t15

If we use the decomposition in (2.50), then we would decompose C[x]G into subspaces Vπ
k

for π ∈ Ĝ and k ∈ [0, . . . , km]. Since the group H3 has ten irreducible non-equivalent unitary
representations and km = deg PH3 (t) = 15, we would obtain 160 subspaces.

Alternatively, we consider PH3,π(t), the Poincaré series for each irreducible represen-
tation π of H3, given in Table 2.1. If we decompose C[x]G like in (2.51), we obtain the
subspaces Ṽπ

i for π ∈ Ĝ and i = [nπ]. Since nπ is the number of powers which occur in
PH3,π(t), the number of subspaces PH3,π(t) is equal to 32. For example for π = T2g, we get
lπ1 = 6, lπ2 = 10, lπ3 = 14, and nπ = 3.

To apply the projection pπ given in (2.28) on Homk, we consider the representation

ρk : G → GL(Homk) with ρk(g)(p) 7→ gp
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Ag : t0 Au : t15

T1g : 3(t8 + t10 + t12) T1u : 3(t3 + t5, t7)
T2g : 3(t6 + t10 + t14) T2u : 3(t1 + t5 + t9)
Gg : 4(t4 + t6 + t8 + t12) Gu : 4(t3 + t7 + t9 + t11)
Hg : 5(t2 + t4 + t6 + t8 + t10) Hu : 5(t5 + t7 + t9 + t11 + t13)

Table 2.1: Poincaré series PH3,π(t) for each irreducible representation π of H3.

and transform this into a representation ρ̃k : G → GLN(C) in matrix form, with N =

dim Homk: To do so, we define

ψk : Homk → C
N with mi 7→ ei ,

where {m1, . . . ,mN} are homogeneous monomials which form a basis of Homk. Then, the
desired matrix ρ̃k is given by

(ρ̃k (g))i j =
(
ψk

(
ρk(g) m j

))
i
.

By using this matrix representation, we can apply pπ of (2.28) on Homk: The projection pπk
with image Vπ

k is defined as

pπk : Homk → Homk, pπk ( f ) =
dπ
|G|

∑
g∈G

χπ
(
g−1

)
ψ−1

k (ρ̃k(g) ψk( f ))

= ψ−1
k


 dπ
|G|

∑
g∈G

χπ
(
g−1

)
ρ̃k(g)

 ψk( f )

 .
Since for p ∈ Homk, ρ(g) and ρ̃k(g) maps p to gp, we get the identity pπ(Homk) =

pπk (Homk) .
To calculate a basis ϕπi j for i, j ∈ [dπ] of the coinvariant algebra, which is suitable for

Theorem 2.20, the basis elements have to satisfy the equation (2.41). Since due to Peter-
Weyl theorem, there exists such a basis for unitary irreducible representations of G, we first
transform each irreducible representation π ∈ Ĝ into a unitary representation. To do so, we
determine a basis of each subspace Vπ

1 with minimal degree kπ1 and apply the Gram-Schmidt
orthonormalization to obtain an orthonormal basis:

Without loss of generality, we assume that kπ1 ≤ . . . ≤ kπdπ and lπ1 < . . . < lπnπ . By
definition kπ1 = lπ1 and Vπ

1 ⊆ Ṽπ
1 . Furthermore,

Ṽπ
1 =

m(lπi )⊕
j=1

Vπ
j .

In general
Vπ

j ⊆ pπ
(
Homkπj ∩C[x]G

)
⊆ pπ

(
Homkπj

)
.
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For the icosahedral group H3 and the octahedral group B3, we get

Vπ
1 = pπ

(
Homkπ1 ∩C[x]G

)
= pπ

(
Homkπ1

)
.

In that case, we take a basis
{
bπ1, . . . , b

π
dπ

}
of pπ(Homkπ1 ). To obtain an orthonormal basis{

ϕπ11, . . . , ϕ
π
1dπ

}
of Vπ

1 , we apply the Gram-Schmidt orthonormalization method by using the
G-invariant inner product defined in (2.23). To do so, we first have to compute a matrix
representation ρπ1 : G → GLdπ (C):(

ρπ1 (g)
)

i j
=

(
ψπ1

(
g bπj

))
i
,

where ψπ1 : Vπ
1 → C

dπ with bπi 7→ ei. Using the obtained matrix representation, we can
apply the Gram-Schmidt orthonormalization:

〈·, ·〉G :Vπ
1 × Vπ

1 → C

(u, v)→ 〈u, v〉G = ψπ1(u)
T
 1
|G|

∑
g∈G

ρπ1(g)
T
ρπ1(g)

ψπ1(v) ,

and the corresponding G-invariant norm

‖ · ‖G =
√
〈·, ·〉G .

The orthonormal basis
{
ϕπ11, . . . , ϕ

π
1dπ

}
for Vπ

1 can be computed as

ϕπ11 =
bπ1
‖bπ1‖G

,

ϕπ1 j =
b̃πj
‖b̃πj‖G

, with b̃πj = bπj −
j−1∑
i=1

ϕπ1i

〈
ϕπ1i, b

π
j

〉
G
, for j ∈ {2, . . . , dπ}.

Since we have now an orthonormal basis of the vector subspaces Vπ
1 for each π ∈

Ĝ, we can apply Weyl’s trick to obtain the unitary irreducible representations: Let T be
the basis change matrix, which transforms the basis

{
bπ1, . . . , b

π
dπ

}
to the orthonormal basis{

ϕπ11, . . . , ϕ
π
1dπ

}
, that is

Ti j = ψπ1
(
ϕπ1 j

)
i
.

As this matrix is orthogonal, the representation

π(g) = T−1 ρπ1(g) T

is a unitary representation.
The goal is to compute a suitable basis ϕπi j of the coinvariant algebra which we can use

to apply Theorem 2.20. For this, we can use Theorem 2.12 and obtain the linear map

pπk,i j : Homk → Homk by pπk,i j =
dπ
|G|

∑
g∈G

π ji

(
g−1

)
ρ̃k(g). (2.52)
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We define Vπ
k,i = pπk,ii(V

π
k ) for i ∈ {1, . . . , dπ}. Then pπk,i j is an isomorphism from Vπ

k,i to Vπ
k, j

and we have the decomposition

Vπ
k = Vπ

k,1 ⊕ . . . ⊕ Vπ
k,dπ .

We consider a non-zero element ϕπk,1 ∈ Vπ
k,1 and obtain the basis elements ϕπk,i by

ϕπk,i = pπk,i1
(
ϕπk,1

)
.

Using this construction, the property

ρ̃k(g)
(
ϕπk,i

)
=

dπ∑
j=1

π j,i(g) ϕπk, j .

holds. In the following two subsections, we calculate this basis explicitly for the octahedral
group B3 and the icosahedral group H3 .

2.3.2 SOHS invariant under the octrahedral group
To calculate the basis of the coinvariant algebra, we are interested in the irreducible char-
acters of the group. Information about these irreducible characters can be recorded in the
form of a character table. For the octahedral group B3 the character table is pictured in
Table 2.2. A character is a class function, which is defined to be constant on the conjugacy
classes of G. Each row is labeled by an irreducible character and each column is labeled
by a conjugacy class. For each pair of an irreducible character and a conjugacy class the
character table contains the corresponding constant. The number of conjugacy classes is
equal to the number of inequivalent irreducible characters.

Robert S. Mulliken, Nobel laureate in Chemistry in 1966, suggests the Mulliken sym-
bols, which give a scheme for labeling the irreducible characters. The name starts with
a capital letter depending on the dimension of the character. One-dimensional characters,
which are symmetric when rotating around the principal axis, start with letter A, whereas
one-dimensional characters, which are asymmetric when rotating around the principal axis,
are denoted by B. For two-, three-, four-, and five-dimensional characters the letters E, T ,
G, and H are used. To distinguish between χ(i) = 1 and χ(i) = −1, we use the index g
(g from German gerade meaning even) and u (u from German ungerade meaning odd).
Furthermore, the index can contain the number 1 or 2, to note whether the character is
symmetric or asymmetric with respect to a reflection plane orthogonal to the principal axis.

The first column is always for the identity E (E from German Einheit) and therefore the
dimension of each corresponding representation is given in the first column. The inverse
operator i with i(x) = −x is represented by the second conjugacy class. The other classes
contain the remaining fundamental symmetry operations, which are reflections (denoted by
σ from German Spiegelung), rotations (denoted by C), and rotation-reflections (denoted by
S ). The name of each of these conjugacy classes starts with the number of the symmetry
operations, followed by the symbol of the operation. Furthermore, 360◦ divided by the
index of this symbol is equal to the degree of the rotation. If the symbol of the operation
has also an exponent, then the degree of the rotation has to be multiplied by this exponent.
For example, the class C4 corresponds to the class C2

2.
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E i 3C2 3σh 6C′2 6σd 8C3 6C4 6S 4 8S 6

A1g 1 1 1 1 1 1 1 1 1 1
A1u 1 −1 1 −1 1 −1 1 1 −1 −1
A2g 1 1 1 1 −1 −1 1 −1 −1 1
A2u 1 −1 1 −1 −1 1 1 −1 1 −1
Eg 2 2 2 2 0 0 −1 0 0 −1
Eu 2 −2 2 −2 0 0 −1 0 0 1
T1g 3 3 −1 −1 −1 −1 0 1 1 0
T1u 3 −3 −1 1 −1 1 0 1 −1 0
T2g 3 3 −1 −1 1 1 0 −1 −1 0
T2u 3 −3 −1 1 1 −1 0 −1 1 0

Table 2.2: The character table of the octahedral group B3.

The octahedral group B3 has four one-dimensional characters (A1g, A1u, A2g, A2u), two
two-dimensional characters (Eg,Eu) and four four-dimensional characters (T1g, T1u, T2g,
T2u). The three clockwise rotation by 180◦ through the axis of the facet centers build
the class 3C2 and the three reflections through planes which are parallel to pairs of facets
generate the class 3σh. The next conjugacy class named 6C′2 consists of the six clockwise
rotation by 180◦ through the axis of the edge centers and 6σd represents the six reflections
through the planes given by the diagonals of the facets. The class 8C3 contains the eight
clockwise rotations by 120◦ through the diagonals of the cube. The six clockwise rotations
by 90◦ through the axis of the facet centers build the class 6C4. The class 6S 4 consists of
the six rotation-reflections by 90◦ through the axis of the facet centers, and 8S 6 consists
of the eight rotation-reflections by 60◦ through the diagonals of the cube. Thus the group
consists of 48 symmetry operations.

We are interested in the coinvariant algebra C[x]B3 = C[x]/I, where I is the ideal gen-
erated by the basic invariants of B3. This reflection group has three basic invariants with
degree 2, 4, and 6:

θ1 = x2
1 + x2

2 + x2
3, θ2 = x4

1 + x4
2 + x4

3, θ3 = x6
1 + x6

2 + x6
3 .

Now we have all information to calculate its Poincaré series:

PB3 (t) = (1 − t)−3(1 − t2)(1 − t4)(1 − t6)

= 1 + 3t + 5t2 + 7t3 + 8t4 + 8t5 + 7t6 + 5t7 + 3t8 + 1t9,

which gives us information about the subspaces of C[x]B3 and its dimension. Since the
powers of t in the Poincaré series range from 0 to 9, we can decompose the coinvariant
algebra into ten homogeneous subspaces

C[x]B3 =
⊕
k≥0

(
C[x]B3 ∩ Homk

)
= V0 ⊕ . . . ⊕ V9
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according to the grading by degree. Furthermore, the dimension of each subspace Vk is
given by the coefficients of tk in PB3 (t).

Furthermore, from the character table we know that the group B3 has ten irreducible
characters and thus ten irreducible representations. The coinvariant algebra can also be
decomposed into the following ten subspaces (one per irreducible representation)

C[x]B3 =
⊕
π∈B̂3

Vπ.

The dimension and the degree of these subspaces can be obtained by the character table
pictured in Table 2.2 or by the Poincaré series PB3,π(t) for each irreducible representation π
of B3 given in Table 2.3.

A1g : t0 A1u : t3 A2g : t6 A2u : t9

Eg : 2(t5 + t7) Eu : 2(t2 + t4)
T1g : 3(t4 + t6 + t8) T1u : 3(t3 + t5 + t7) T2g : 3(t2 + t4 + t6) T2u : 3(t + t3 + t5)

Table 2.3: Poincaré series PB3,π(t) for each irreducible representation π of B3.

According to the Poincare series PB3,π(t) for each π in B̂3 or the character table, the
group consists of four one-dimensional representations, two two-dimensional representa-
tions and four three-dimensional representations. Due to Theorem 2.11, a vector space with
dimension equal to the order of G, can be decomposed into one subspace per irreducible
representation and each of these subspaces can be decomposed into dπ many subspaces of
dimension dπ. Thus, we get∑

π∈B̂3

d2
π = 4 · 12 + 2 · 22 + 4 · 32 = 48 = |B3|.

We also get this order by multiplying the degree of the irreducible representations

deg θ1 · deg θ2 · deg θ3 = 2 · 4 · 6 = 48.

Let kπ1 be the smallest degree of the subspace Vπ. As described in the previous section,
we need to calculate an orthonormal basis for the vector subspace Vπ

kπ1
, which is the image

of pπ(C[x]B3 ∩ Homkπ1 ). Using this projection, we get a basis of Vπ
kπ1

and by applying the
Gram-Schmidt orhonormalization to these basis elements, the orthonormal basis, which is
pictured in Table 2.4, will be obtained.

Now that we have calculated the orthonormal basis of Vπ
kπ1

for all non-equivalent irre-
ducible representations π of the group B3, the next task will be the calculation of the re-
maining basis elements of the coinvariant algebra. For this, we apply the projection defined
in (2.52), i.e.,

pπk,i j : Homk → Homk with pπk,i j =
dπ
|B3|

∑
g∈B3

π ji(g−1) ρ̃k(g), (2.53)
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A1g 1
A1u x1x2x3

A2g x4
1x2

2 − x4
1x2

3 − x2
1x4

2 + x2
1x4

3 + x4
2x2

3 − x2
2x4

3

A2u x5
1x3

2x3 − x5
1x2x3

3 − x3
1x5

2x3 + x3
1x2x5

3 + x1x5
2x3

3 − x1x3
2x5

3

Eg x3
1x2x3 − x1x2x3

3√
3

3 x3
1x2x3 −

2
√

3
3 x1x3

2x3 +
√

3
3 x1x2x3

3

Eu x2
1 − x2

3√
3

3 x2
1 −

2
√

3
3 x2

2 +
√

3
3 x2

3

T1g x3
1x2 − x1x3

2

x3
1x3 − x1x3

3

x3
2x3 − x2x3

3

T1u x2
1x2 − x2x2

3

x2
1x3 − x2

2x3

x1x2
2 − x1x2

3

T2g x1x2

x1x3

x2x3

T2u x1

x2

x3

Table 2.4: Orthonormal basis ϕπ1 j, with j = 1, . . . , dπ, of subspaces Vπ
kπ1

.

By applying this approach, the obtained basis will satisfy condition (2.46), i.e.,

ρ̃k(g)ϕπi j =
(
π(g) j

)T


ϕπi1
...
ϕπidπ

 , i = 1, . . . , dπ, (2.54)

for all g ∈ B3. Here, π(g) j denotes the j-th column of the unitary matrix π(g) ∈ U(dπ). The
calculated basis is displayed in Table 2.5. We can use this basis for the SOS calculation
described in the previous section. All irreducible unitary representations of the octahedral
group B3 are orthogonal. Therefore we can use Theorem 2.21 for the SOS calculation
instead of the complex version.

A1g 1
A1u θ3

1 − 3θ1θ2 + 2θ3

A2g −θ6
1 + 9θ4

1θ2 − 8θ3
1θ3 − 21θ2

1θ
2
2 + 36θ1θ2θ3 + 3θ3

2 − 18θ2
3

A2u −θ9
1 + 12θ7

1θ2 − 10θ6
1θ3 − 48θ5

1θ
2
2 + 78θ4

1θ2θ3 + 66θ3
1θ

3
2 − 34θ3

1θ
2
3 − 150θ2

1θ
2
2θ3

−9θ1θ
4
2 + 126θ1θ2θ

2
3 + 6θ3

2θ3 − 36θ3
3
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Eg −2θ5
1 + 12θ3

1θ2 − 4θ2
1θ3 − 18θ1θ

2
2 + 12θ2θ3

−2θ4
1θ2 + 6θ3

1θ3 + 6θ2
1θ

2
2 − 22θ1θ2θ3 + 12θ2

3
θ7

1 − 9θ5
1θ2 + 10θ4

1θ3 + 19θ3
1θ

2
2 − 36θ2

1θ2θ3 − 3θ1θ
3
2 + 16θ1θ

2
3 + 2θ2

2θ3

Eu −2θ2
1 + 6θ2

−2θ1θ2 + 6θ3

θ4
1 − 6θ2

1θ2 + 8θ1θ3 + θ2
2

T1g 12θ1θ3 − 12θ2
2

2θ5
1 − 12θ3

1θ2 + 16θ2
1θ3 + 6θ1θ

2
2 − 12θ2θ3

2θ6
1 − 12θ4

1θ2 + 10θ3
1θ3 + 12θ2

1θ
2
2 − 6θ1θ2θ3 − 6θ3

2
2θ6

1 − 10θ4
1θ2 + 10θ3

1θ3 + 10θ1θ2θ3 − 12θ2
3

θ7
1 − 3θ5

1θ2 + 2θ4
1θ3 − 9θ3

1θ
2
2 + 24θ2

1θ2θ3 + 3θ1θ
3
2 − 12θ1θ

2
3 − 6θ2

2θ3

4θ6
1θ2 − 3θ5

1θ3 − 21θ4
1θ

2
2 + 32θ3

1θ2θ3 + 12θ2
1θ

3
2 − 12θ2

1θ
2
3 − 9θ1θ

2
2θ3 − 3θ4

2
T1u −12θ3

1 + 48θ1θ2 − 36θ3

−6θ4
1 + 24θ2

1θ2 − 12θ1θ3 − 6θ2
2

−6θ3
1θ2 + 6θ2

1θ3 + 18θ1θ
2
2 − 18θ2θ3

−2θ5
1 + 6θ3

1θ2 + 2θ2
1θ3 − 6θ2θ3

θ6
1 − 9θ4

1θ2 + 8θ3
1θ3 + 15θ2

1θ
2
2 − 12θ1θ2θ3 − 3θ3

2
θ7

1 − 6θ5
1θ2 + 5θ4

1θ3 + 3θ3
1θ

2
2 + 6θ1θ

3
2 − 9θ2

2θ3

T2g 3θ2
1 − 3θ2

6θ1θ2 − 6θ3

−θ4
1 + 6θ2

1θ2 − 2θ1θ3 − 3θ2
2

−2θ4
1 + 12θ2

1θ2 − 10θ1θ3

−θ5
1 + 4θ3

1θ2 − 2θ2
1θ3 + 3θ1θ

2
2 − 4θ2θ3

−2θ4
1θ2 + θ3

1θ3 + 9θ2
1θ

2
2 − 7θ1θ2θ3 − 3θ3

2 + 2θ2
3

T2u 6θ1

6θ2

6θ3

6θ3

θ4
1 − 6θ2

1θ2 + 8θ1θ3 + 3θ2
2

θ5
1 − 5θ3

1θ2 + 5θ2
1θ3 + 5θ2θ3

Table 2.5: Matrices Qπ for the group B3 given in upper triangular row-major order (in the
consecutive order of row entries of upper triangular matrices).

If we would like to check whether a polynomial p ∈ R[x1, x2, x3]B3
30 is SOS, we can try

to find an SOS polynomial A with p(x) = b(x) A b(x)T, where b(x) contains the monomial
basis of R[x1, x2, x3] up to degree 15. The desired matrix A has dimension

(
n+d

d

)
, so we

have to find a positive semidefinite matrix of dimension 816. Alternatively, we can apply
Theorem 2.21 to check the SOS property. Since the octahedral group B3 has ten irreducible
representations, we have to calculate ten positive semidefinite matrices instead of one. The
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dimensions of these matrices are 31, 23, 11, 7, 27, 39, 34, 50, 50, and 70. Thus the largest
matrix has dimension 70. Hence, instead of calculating a symmetric matrix of dimension
816, we have to calculate symmetric matrices of dimension at most 70. Fortunately, the
corresponding SDP can be solved by today’s SDP solvers.

2.3.3 SOHS invariant under the icosahedral group
Since all irreducible representations of the icosahedral group are orthogonal, H3-invariant
polynomials have to be real. To apply Theorem 2.21 to these polynomials, we have to
calculate a basis of the coinvariant algebra C[x]H3 . To this end, we are interested in the
irreducible representations of the group. Information about their properties are displayed
in the character table given in Table 2.6. The structure of a character table and the symbols
of its irreducible characters and conjugacy classes are explained in the beginning of Section
2.3.2.

E i 15C2 15σ 20C3 12C5 12C2
5 20S 6 12S 10 12S 3

10

Ag 1 1 1 1 1 1 1 1 1 1
Au 1 −1 1 −1 1 1 1 −1 −1 −1
T1g 3 3 −1 −1 0 τ τ̂ 0 τ̂ τ

T1u 3 −3 −1 1 0 τ τ̂ 0 −̂τ −τ

T2g 3 3 −1 −1 0 τ̂ τ 0 τ τ̂

T2u 3 −3 −1 1 0 τ̂ τ 0 −τ −̂τ

Gg 4 4 0 0 1 −1 −1 1 −1 −1
Gu 4 −4 0 0 1 −1 −1 −1 1 1
Hg 5 5 1 1 −1 0 0 −1 0 0
Hu 5 −5 1 −1 −1 0 0 1 0 0

Table 2.6: The character table of the icosahedral group H3 with τ = (1 +
√

5)/2 and
τ̂ = (1 −

√
5)/2.

The three-dimensional icosahedral group H3 has two one-dimensional characters (Ag,
Au), four three-dimensional characters (T1g,T1u,T2g,T2u), two four-dimensional characters
(Gg,Gu), and two five-dimensional characters (Hg,Hu). Analogously to the character table
of B3, E represents the identity class and i the inverse operator. The fifteen rotations by
180◦ through the vertices build the class 15C2 and the fifteen reflections through planes
through opposite edges generate the class 15σ. The next conjugacy class named 20C3
consists of the twenty clockwise rotations by 120◦ through the centers of the opposite faces
and 12C5 represents the twelve clockwise rotations by 72◦ through each vertex. The class
15C2

5 consists of the fifteen clockwise rotations by 144◦ through the vertices. The twenty
rotation-reflections by 60◦ through the axis of the facet centers build the class 20S 6. The
class 12S 10 consists of the six rotation-reflections by 36◦ through the vertices, and 12S 10
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are the eight rotation-reflections by 108◦ through the vertices. The total number of these
fundamental symmetry operations is 120, which is the order of the group H3.

Due to the Poincaré series

PH3 (t) =1 + 3t + 5t2 + 7t3 + 9t4 + 11t5 + 12t6 + 12t7 + 12t8

+ 12t9 + 11t10 + 9t11 + 7t12 + 513 + 3t14 + t15

as given before, the coinvariant algebra can be decomposed into 16 homogeneous sub-
spaces

C[x]H3 =
⊕
k≥0

(
C[x]H3 ∩ Homk

)
= V0 ⊕ . . . ⊕ V15 ,

according to the grading by degree. The dimension of each subspace Vk is given by the
coefficient of tk in PH3 (t).

Furthermore, the icosahedral group has ten irreducible characters and thus ten irre-
ducible representation. We can decompose the coinvariant algebraC[x]H3 = C[x]/(θ1, θ2, θ3)
with basic invariants of degree 2, 6, and 10:

θ1 =x2
1 + x2

2 + x2
3

θ2 =x6
1 + x6

2 + x6
3+

54
7

x2
1x2

2x2
3 +

39 − 3
√

5
14

(
x4

1x2
2 + x2

1x4
3 + x4

2x2
3

)
+

39 + 3
√

5
14

(
x2

1x4
2 + x4

1x2
3 + x2

2x4
3

)
θ3 =x10

1 + x10
2 + x10

3 +

147 − 21
√

5
19

(
x6

1x4
2 + x4

1x6
3 + x6

2x4
3

)
+

147 + 21
√

5
19

(
x4

1x6
2 + x6

1x4
3 + x4

2x6
3

)
+

153 − 27
√

5
38

(
x8

1x2
2 + x2

1x8
3 + x8

2x2
3

)
+

153 + 27
√

5
38

(
x2

1x8
2 + x8

1x2
3 + x2

2x8
3

)
+

630
19

(
x4

1x4
2x2

3 + x4
1x2

2x4
3 + x2

1x4
2x4

3

)
+

504
19

(
x2

1x2
2x6

3 + x2
1x6

2x2
3 + x6

1x2
2x2

3

)
.

into one subspace per irreducible representation

C[x]H3 =
⊕
π∈Ĥ3

Vπ.

To get some information about the dimension and the degree of these subspaces, we cal-
culate the Poincaré series for each of the irreducible representations π, which are given in
Table 2.1.

The icosahedral group consists of two one-dimensional, four three-dimensional, two
four-dimensional, and two five-dimensional irreducible representations.∑

π∈Ĥ3

d2
π = 2 · 12 + 4 · 32 + 2 · 42 + 2 · 52 = 120 = 2 · 6 · 120 = |H3|.

In Table 2.7, the orthogonal basis for Vπ
kπ1

with minimal degree kπ1 for each irreducible

representation π ∈ Ĥ3 is presented. Using the projection described in (2.52) for H3, i.e.,

pπk,i j : Homk → Homk with pπk,i j =
dπ
|H3|

∑
g∈H3

π ji

(
g−1

)
ρ̃k(g), (2.55)
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we get all remaining basis elements of C[x]H3 , which are presented in Table 2.8.

Ag 1

Au
11
√

5+113
2 (x1x5

2x9
3 + x9

1x2x5
3 + x5

1x9
2x3) + −11

√
5+113
2 (x9

1x5
2x3 + x5

1x2x9
3 + x1x9

2x5
3)

−84(x7
1x7

2x3 + x7
1x2x7

3 + x1x7
2x7

3) + (66
√

5 − 90)(x7
1x5

2x3
3 + x5

1x3
2x7

3 + x3
1x7

2x5
3)

+(−66
√

5 − 90)(x5
1x7

2x3
3 + x3

1x5
2x7

3 + x7
1x3

2x5
3) + 50(x3

1x9
2x3

3 + x3
1x3

2x9
3 + x9

1x3
2x3

3)

+378x5
1x5

2x5
3 + (−

√
5 − 13)(x3

1x11
2 x3 + x11

1 x2x3
3 + x1x3

2x11
3 ) + x13

1 x2x3 + x1x2x13
3

+x1x13
2 x3 + (

√
5 − 13)(x3

1x2x11
3 + x11

1 x3
2x3 + x1x11

2 x3
3)

T1g

√
47
3 (− 3

47 x7
1x2 + −3

√
5+39

94 x5
1x3

2 + 9
√

5+9
94 x5

1x2x2
3 + −3

√
5−39

94 x3
1x5

2 + 30
√

5
47 x3

1x3
2x2

3

+−45
√

5−15
94 x3

1x2x4
3 + 3

47 x1x7
2 + 9

√
5−9

94 x1x5
2x2

3 + −45
√

5+15
94 x1x3

2x4
3 + 9

47

√
5x1x2x6

3)

(− 3
47 x7

1x3 + −9
√

5+9
94 x5

1x2
2x3 + 3

√
5+39
94 x5

1x3
3 + 45

√
5−15

94 x3
1x4

2x3 −
30
√

5
47 x3

1x2
2x3

3

+ 3
√

5−39
94 x3

1x5
3 −

9
√

5
47 x1x6

2x3 + 45
√

5+15
94 x1x4

2x3
3 + −9

√
5−9

94 x1x2
2x5

3 + 3
47 x1x7

3)√
47
3 (− 9

√
5

47 x6
1x2x3 + 45

√
5+15

94 x4
1x3

2x3 + 45
√

5−15
94 x4

1x2x3
3 + −9

√
5−9

94 x2
1x5

2x3

− 30
√

5
47 x2

1x3
2x3

3 + −9
√

5+9
94 x2

1x2x5
3 + 3

47 x7
2x3 + 3

√
5−39
94 x5

2x3
3 + 3

√
5+39
94 x3

2x5
3 −

3
47 x2x7

3)

T2u x1

x2

x3

T1u

√
28
3 (− 3

28 x3
1 + −9

√
5+9

56 x1x2
2 + 9

√
5+9

56 x1x2
3)√

28
3 (−9

√
5−9

56 x2
1x2 + 3

28 x3
2 + 9

√
5−9

56 x2x2
3)√

28
3 (−9

√
5+9

56 x2
1x3 + 9

√
5+9

56 x2
2x3 −

3
28 x3

3)

T2g α(−3
√

5−9
16 x5

1x2 + 3
√

5+15
16 (2x3

1x3
2 + x1x2x4

3) + 3
√

5
4 x3

1x2x2
3 −

3
8 x1x5

2 + −9
√

5−15
8 x1x3

2x2
3)

α(− 3
8 x5

1x3 + −9
√

5−15
8 x3

1x2
2x3 + 3

√
5+15
16 (x3

1x3
3 + x1x4

2x3) + 3
√

5
4 x1x2

2x3
3 + −3

√
5−9

16 x1x5
3)

α(−3
√

5−15
16 (x4

1x2x3 + 2x3
2x3

3) − 3
√

5
4 x2

1x3
2x3 + 9

√
5+15
8 x2

1x2x3
3 + 3

√
5+9

16 x5
2x3 + 3

8 x2x5
3)

Gg

√
−61

4
4

61 (−x4
1 + 3x2

1x2
2 + 3x2

1x2
3 − x4

2 + 3x2
2x2

3 − x4
3)√

−61
4 ( 2

√
5−10
61 x3

1x2 + 2
√

5+10
61 x1x3

2 −
12
√

5
61 x1x2x2

3)√
−61

4 ( 2
√

5+10
61 x3

1x3 −
12
√

5
61 x1x2

2x3 + 2
√

5−10
61 x1x3

3)√
−61

4 (− 12
√

5
61 x2

1x2x3 + 2
√

5−10
61 x3

2x3 + 2
√

5+10
61 x2x3

3)

Gg

√
7(− 1

7 x3
1 +

√
5+3
14 x1x2

2 + −
√

5+3
14 x1x2

3)
√

7(
√

5−3
14 x2

1x2 + 1
7 x3

2 + −
√

5−3
14 x2x2

3)
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√
7(
√

5+3
14 x2

1x3 + −
√

5+3
14 x2

2x3 −
1
7 x3

3)

−
√

7 2
√

5
7 x1x2x3

Hg − 15
44

√
44
15 (x2

1 − x2
3)

− 15
22

√
44
15 x1x2

− 15
22

√
44
15 x1x3√

11
5

5
22 (x2

1 − 2x2
2 + x2

3)

− 15
22

√
44
15 x2x3

Hu

√
264
5 (− 5

264 x5
1 + −5

√
5+25

264 x3
1x2

2 + 5
√

5+25
264 x3

1x2
3 + 5

√
5−15

528 x1x4
2 −

5
44 x1x2

2x2
3 −

5
√

5+15
528 x1x4

3)√
264
5 ( 5

√
5+15

528 x4
1x2 −

5
√

5+25
264 x2

1x3
2 + 5

44 x2
1x2x2

3 + 5
264 x5

2 + 5
√

5−25
264 x3

2x2
3 + −5

√
5+15

528 x2x4
3)√

264
5 ( 5

√
5−15

528 x4
1x3 −

5
44 x2

1x2
2x3 + −5

√
5+25

264 x2
1x3

3 −
5
√

5+15
528 x4

2x3 + 5
√

5+25
264 x2

2x3
3 −

5
264 x5

3)√
11
20

20
11 (−x3

1x2x3 + x1x2x3
3)√

33
80

40
33 (x3

1x2x3 − 2x1x3
2x3 + x1x2x3

3)

Table 2.7: Orthonormal basis ϕπ1 j, with j = 1, . . . , dπ, of subspaces Vπ
kπ1

with α =

√
−4
√

5+12
3 .

Ag 1

Au − 54329344
10125 θ15

1 + 245088256
10125 θ12

1 θ2 + 505856
375 θ10

1 θ3 −
148746752

3375 θ9
1θ

2
2 −

1498112
375 θ7

1θ2θ3

+ 81639488
2025 θ6

1θ
3
2 + 652688

375 θ5
1θ

2
3 + 96824

75 θ4
1θ

2
2θ3 −

1394981
81 θ3

1θ
4
2 −

192052
75 θ2

1θ2θ
2
3

+ 6517
3 θ1θ

3
2θ3 + 16807

9 θ5
2 + 6859

25 θ3
3

T1g − 18176
45 θ8

1 + 42112
45 θ5

1θ2 −
684

5 θ3
1θ3 −

4753
9 θ2

1θ
2
2 + 133θ2θ3

−273664
√

5−206080
225 θ9

1 + 740768
√

5+428960
225 θ6

1θ2 + −17708
√

5−29260
75 θ4

1θ3+

−121667
√

5−31115
45 θ3

1θ
2
2 + 7049

√
5+11305
30 θ1θ2θ3 + 3773

√
5−1715
6 θ3

2

85312
√

5−150208
45 θ10

1 + −232736
√

5+397152
45 θ7

1θ2 + −34333
√

5+96995
15 θ5

1θ3 + −6498
√

5+17689
10 θ2

3

1132831
√

5−2219553
180 θ4

1θ
2
2 + 42959

√
5−119833
12 θ2

1θ2θ3 + −65856
√

5+154693
18 θ1θ

3
2

−366592
√

5−239616
45 θ10

1 + 988288
√

5+577920
45 θ7

1θ2 −
162944

15 θ5
1θ3 + −860048

√
5−54096

45 θ4
1θ

2
2

+−2394
√

5+46018
3 θ2

1θ2θ3 + 102557
√

5−153321
18 θ1θ

3
2 + 3971

√
5−22743
10 θ2

3

27597952
√

5−54052480
675 θ11

1 + −28899248
√

5+56311920
225 θ8

1θ2 + −285266
√

5+876090
25 θ6

1θ3

+ 13457997
√

5−26980625
90 θ5

1θ
2
2 + 3979493

√
5−13534745

300 θ3
1θ2θ3 + −18292876

√
5+38915065

270 θ2
1θ

3
2



56 Techniques Chapter 2

+−292049
√

5+734635
50 θ1θ

2
3 + 585599

√
5−1149785
60 θ2

2θ3

−60654112
√

5+125407648
675 θ12

1 + 39500496
√

5−76098064
225 θ9

1θ2 + 33156729
√

5−75230101
450 θ7

1θ3+

−89263153
√

5+74398317
1800 θ6

1θ
2
2 + −168351267

√
5+386584583

1800 θ4
1θ2θ3 + −65763733

√
5+166406107

540 θ3
1θ

3
2

+ 3231311
√

5−7187149
100 θ2

1θ
2
3 + −7999152

√
5+17170433

180 θ1θ
2
2θ3 + 4235364

√
5−9654421

36 θ4
2

T2u θ1

−7
√

5+9
2 θ3

1 + 7
√

5−7
2 θ2

−21
√

5+579
11 θ5

1 + 21
√

5−777
11 θ2

1θ2 + 19θ3

−113
√

5−51
30 θ5

1 + 28
√

5+126
15 θ2

1θ2 + 19
√

5−57
10 θ3

46955
√

5−53543
495 θ7

1 + −93310
√

5+120526
495 θ4

1θ2 + 855
√

5+551
110 θ2

1θ3 + 17003
√

5−27587
198 θ1θ

2
2

3627738
√

5−10764242
5445 θ9

1 + −2655912
√

5+7900928
1815 θ6

1θ2 + 100092
√

5−362748
605 θ4

1θ3+

281946
√

5−786058
363 θ3

1θ
2
2 + −1596

√
5+6384

11 θ1θ2θ3 −
1715

9 θ3
2

T1u 36θ3
1 − 35θ2

28
√

5−4
3 θ4

1 + −28
√

5+7
3 θ1θ2

−14θ5
1 + 49

2 θ
2
1θ2 −

19
2 θ3

1336
√

5−3352
15 θ5

1 + −1792
√

5+4564
15 θ2

1θ2 + 152
√

5−399
5 θ3

742
√

5−3178
15 θ6

1 + −2128
√

5+9247
30 θ3

1θ2 + 133
√

5−627
10 θ1θ3 + 49

√
5−196
6 θ2

2

−2063
9 θ7

1 + 12397
36 θ4

1θ2 −
133

2 θ2
1θ3 −

1715
36 θ1θ

2
2

T2g
416
√

5−1248
15 θ6

1 + −812
√

5+2436
15 θ3

1θ2 + 19
√

5−57
10 θ1θ3 + 49

√
5−147
2 θ2

2

−16384
√

5+40960
225 θ8

1 + 45248
√

5−113120
225 θ5

1θ2 + −1216
√

5+3040
25 θ3

1θ3 + −5978
√

5+14945
45 θ2

1θ
2
2

+ 266
√

5−665
5 θ2θ3

−405392
√

5+875920
225 θ10

1 + 1118558
√

5−2420670
225 θ7

1θ2 + 1888011
√

5−4358315
900 θ5

1θ3

+−5428367
√

5+11967515
900 θ4

1θ
2
2 + −738948

√
5+1700405

225 θ2
1θ2θ3 + 62083

√
5−139944
18 θ1θ

3
2

+ 29963
√

5−68590
50 θ2

3

1536
√

5−3584
45 θ10

1 + −1344
√

5+3136
5 θ7

1θ2 + 1368
√

5−3192
5 θ5

1θ3 + 4116
√

5−9604
15 θ4

1θ
2
2

+−2394
√

5+5586
5 θ2

1θ2θ3 + 1029
√

5−2401
18 θ1θ

3
2 + 1083

√
5−2527

10 θ2
3

−34098688
√

5+77295104
2025 θ12

1 + 40026168
√

5−90747272
675 θ9

1θ2 + 955776
√

5−2117968
225 θ7

1θ3

+−217640213
√

5+492955043
2700 θ6

1θ
2
2 + −5170641

√
5+11390519

900 θ4
1θ2θ3 + 38828629

√
5−87777473

810 θ3
1θ

3
2

+ 262447
√

5−588791
150 θ2

1θ
2
3 + −354711

√
5+816487

180 θ1θ
2
2θ3 + −290521

√
5+655473

36 θ4
2
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9361491200
√

5−21038935248
30375 θ14

1 + −1486873360
√

5+3339562226
1125 θ11

1 θ2

+−3487480400
√

5+7717928877
40500 θ9

1θ3 + 90696080090
√

5−203504641011
40500 θ8

1θ
2
2

+ 4029194435
√

5−8919263157
20250 θ6

1θ2θ3 + −43953224959
√

5+98505697689
24300 θ5

1θ
3
2

+−202295375
√

5+451108849
4500 θ4

1θ
2
3 + −158557679

√
5+343726131

4050 θ3
1θ

2
2θ3

1910031515
√

5−4276197807
3240 θ2

1θ
4
2 + 23276197

√
5−51962701

450 θ1θ2θ
2
3 + −31379355

√
5+70298879

360 θ3
2θ3

Gg − 32
3 θ

4
1 + 35

3 θ1θ2

160
√

5+128
3 θ5

1 + −217
√

5−182
3 θ2

1θ2 + (19
√

5 + 19)θ3

−224
3 θ6

1 + 126θ3
1θ2 −

19
2 θ1θ3 −

245
6 θ2

2

416
9 θ8

1 −
952
9 θ5

1θ2 + 95
6 θ

3
1θ3 + 2009

36 θ2
1θ

2
2 −

133
12 θ2θ3

512
√

5−1824
15 θ6

1 + −364
√

5+3423
15 θ3

1θ2 + 114
√

5−38
5 θ1θ3 + −98

√
5−294
3 θ2

2

2528
√

5−832
45 θ7

1 + −3346
√

5+2324
45 θ4

1θ2 + 209
√

5+114
10 θ2

1θ3 + −49
√

5−784
18 θ1θ

2
2

13984
√

5+16064
45 θ9

1 + −34776
√

5−39536
45 θ6

1θ2 + 2071
√

5+2546
30 θ4

1θ3 + 103929
√

5+113974
180 θ3

1θ
2
2+

−3059
√

5−3724
60 θ1θ2θ3 + −2401

√
5−2401

18 θ3
2

−576
5 θ8

1 + 2716
15 θ5

1θ2 −
133
15 θ

3
1θ3 −

539
12 θ

2
1θ

2
2 −

133
12 θ2θ3

−9856
135 θ10

1 + 7616
45 θ7

1θ2 −
2774

15 θ5
1θ3 + 343

60 θ
4
1θ

2
2 + 8113

30 θ2
1θ2θ3 −

30527
216 θ1θ

3
2 −

361
8 θ2

3

36544
45 θ12

1 −
356608

135 θ9
1θ2 + 3173

15 θ7
1θ3 + 533071

180 θ6
1θ

2
2 −

21679
60 θ4

1θ2θ3 −
234269

180 θ3
1θ

3
2+

38171
240 θ1θ

2
2θ3 + 69629

432 θ4
2

Gu − 32
3 θ

3
1 + 35

3 θ2

16θ5
1 −

49
2 θ

2
1θ2 + 19

2 θ3

7200
√

5+76768
909 θ6

1 + −9765
√

5−123347
909 θ3

1θ2 + 285
√

5+2527
101 θ1θ3 + 245

9 θ2
2

11328
√

5+41768
135 θ7

1 + −69384
√

5−269899
540 θ4

1θ2 + 684
√

5+2299
30 θ2

1θ3 + 2352
√

5+12397
108 θ1θ

2
2

168
5 θ7

1 −
2737
60 θ4

1θ2 + 171
10 θ

2
1θ3 −

49
12θ1θ

2
2

−49776
√

5−93584
909 θ8

1 + 241269
√

5+565187
1818 θ5

1θ2 + −5472
√

5−10906
303 θ3

1θ3 + −144795
√

5−427672
1818 θ2

1θ
2
2

+ 11970
√

5+38969
606 θ2θ3

−95712
√

5−226588
135 θ9

1 + 2018184
√

5+4937275
1080 θ6

1θ2 −
64752

√
5+149093

360 θ4
1θ3 −

1515864
√

5+3878399
1080 θ3

1θ
2
2

+ 35112
√

5+86317
180 θ1θ2θ3 + 16464

√
5+45619

72 θ3
2

−281741760
√

5−863222464
1377135 θ9

1 + 146457990
√

5+567389326
459045 θ6

1θ2 −
6528780

√
5+17098252

51005 θ4
1θ3

+ 9472680
√

5−19720148
91809 θ3

1θ
2
2 + 1280790

√
5+3672662

10201 θ1θ2θ3 −
59270400

√
5+115184545

275427 θ3
2
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−145953192
√

5−348596056
40905 θ10

1 + 464994327
√

5+1129687601
54540 θ7

1θ2 + 3548003
√

5+7216105
6060 θ5

1θ3

− 23723693
√

5+58514428
3636 θ4

1θ
2
2 + −4355617

√
5−9240042

3030 θ2
1θ2θ3 + 65393979

√
5+157923374

32724 θ1θ
3
2

+ 1274691
√

5+2836016
3030 θ2

3

−16222176
√

5−35079878
2025 θ11

1 + 68530448
√

5+133728539
10800 θ8

1θ2 + 5104388
√

5+10360339
900 θ6

1θ3+

68158216
√

5+168589253
5400 θ5

1θ
2
2 −

19693044
√

5+41821717
1350 θ3

1θ2θ3 −
14887572

√
5+36813161

1620 θ2
1θ

3
2

+ 1481544
√

5+2991607
900 θ1θ

2
3 + 11887008

√
5+27193579

2160 θ2
2θ3

Hg
4
3θ

2
1

−θ3
1 + 35

16θ2

− 7
3θ

4
1 + 161

48 θ1θ2

7
9θ

5
1 −

49
36θ

2
1θ2 + 95

64θ3

231
20 θ

6
1 −

1533
80 θ3

1θ2 + 16397
3840 θ1θ3 + 4263

1024θ
2
2

− 31
12θ

4
1 + 175

48 θ1θ2

− 15
4 θ

5
1 + 77

16θ
2
1θ2 −

19
128θ3

− 7
24θ

6
1 −

21
32θ

3
1θ2 + 551

512θ1θ3 + 4165
6144θ

2
2

739
72 θ

7
1 −

10549
576 θ4

1θ2 + 1805
512 θ

2
1θ3 + 48461

9216 θ1θ
2
2

− 89
20θ

6
1 + 427

80 θ
3
1θ2 −

57
160θ1θ3 + 49

192θ
2
2

− 71
120θ

7
1 −

1421
1440θ

4
1θ2 + 1767

2560θ
2
1θ3 + 29155

18432θ1θ
2
2

6827
720 θ

8
1 −

103901
5760 θ5

1θ2 + 43681
15360θ

3
1θ3 + 1173011

184320 θ
2
1θ

2
2 −

2527
122880θ2θ3

218
135θ

8
1 −

7861
2160θ

5
1θ2 + 133

160θ
3
1θ3 + 7987

6912θ
2
1θ

2
2 + 665

1024θ2θ3

5897
720 θ

9
1 −

19565
1536 θ

6
1θ2 + 82973

46080θ
4
1θ3 + 76979

61440θ
3
1θ

2
2 + 2158457

1474560θ1θ2θ3 + 691831
1179648θ

3
2

141653
14400 θ

10
1 −

264873
25600 θ

7
1θ2 + 31977

12800θ
5
1θ3 −

4207483
614400 θ

4
1θ

2
2 + 2664123

1638400θ
2
1θ2θ3 + 8189125

2359296θ1θ
3
2

+ 5285401
19660800θ

2
3

Hu
448
3 θ5

1 −
616

3 θ2
1θ2 + 57θ3

1248
√

5−2720
5 θ6

1 + −2436
√

5+5740
5 θ3

1θ2 + 171
√

5+95
10 θ1θ3 + 441

√
5−1225
2 θ2

2

24128
√

5−54336
15 θ7

1 + −47096
√

5+107352
15 θ4

1θ2 + 551
√

5−1007
5 θ2

1θ3 + (1421
√

5 − 3332)θ1θ
2
2

12992512
√

5−29577600
225 θ8

1 + −29413664
√

5+67006800
225 θ5

1θ2 + 432288
√

5−985150
25 θ3

1θ3

+ 3237479
√

5−7382340
45 θ2

1θ
2
2 + −81263

√
5+185535
5 θ2θ3

72650528
√

5−162710112
45 θ9

1 + −178550428
√

5+399904596
45 θ6

1θ2 + 13365607
√

5−29931213
30 θ4

1θ3
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+ 239629453
√

5−536752713
90 θ3

1θ
2
2 + −6496784

√
5+14549934

15 θ1θ2θ3 + −964859
√

5+2161929
3 θ3

2

26208
√

5−61408
15 θ7

1 + −51156
√

5+121156
15 θ4

1θ2 + 1197
√

5−2337
10 θ2

1θ3 + 3087
√

5−7497
2 θ1θ

2
2

12510592
√

5−28122880
225 θ8

1 + −28224224
√

5+63454160
225 θ5

1θ2 + 408158
√

5−915420
25 θ3

1θ3

+ 6189043
√

5−13919185
90 θ2

1θ
2
2 + −152551

√
5+342475

10 θ2θ3

357958848
√

5−801263680
225 θ9

1 + −878913336
√

5+1967205800
225 θ6

1θ2 + 32869981
√

5−73593935
75 θ4

1θ3

+ 235563531
√

5−527124997
90 θ3

1θ
2
2 + −6385463

√
5+14297101

15 θ1θ2θ3 + −1887529
√

5+4218557
6 θ3

2

1693705184
√

5−3787860832
45 θ10

1 + −21859861828
√

5+48887989780
225 θ7

1θ2 + 829053239
√

5−1854036435
50 θ5

1θ3

+ 15064043246
√

5−33689691770
225 θ4

1θ
2
2 + −1007541367

√
5+2253166965

50 θ2
1θ2θ3

+−51641051
√

5+115500105
9 θ1θ

3
2 + 46835057

√
5−104731515
25 θ2

3

368851328
√

5−825444480
225 θ9

1 + −907003216
√

5+2029747440
225 θ6

1θ2 + 33736666
√

5−75492510
75 θ4

1θ3

+ 121976386
√

5−272962242
45 θ3

1θ
2
2 + −6555836

√
5+14670432

15 θ1θ2θ3 + −994700
√

5+2225727
3 θ3

2

2953684096
√

5−6605545600
75 θ10

1 + −4580798320
√

5+10244330544
45 θ7

1θ2 + 1315287274
√

5−2941519770
75 θ5

1θ3

+ 15794253643
√

5−35321218065
225 θ4

1θ
2
2 + −1604288959

√
5+3587845905

75 θ2
1θ2θ3

+−53534411
√

5+119706657
9 θ1θ

3
2 + 50450111

√
5−112826940
25 θ2

3

75715610496
√

5−169308883712
75 θ11

1 + −630884869664
√

5+1410731127344
225 θ8

1θ2

+ 42327530326
√

5−94648999244
75 θ6

1θ3 + 972238541267
√

5−2174036688173
450 θ5

1θ
2
2

+−58719975076
√

5+131304228188
75 θ3

1θ2θ3 + −25972330097
√

5+58077179489
90 θ2

1θ
3
2

+ 2011259155
√

5−4497384569
25 θ1θ

2
3 + 302790992

√
5−677073474
5 θ2

2θ3

695144135168
√

5−1554407364352
675 θ11

1 + −644002014208
√

5+1440045581856
225 θ8

1θ2

+ 43239175368
√

5−96687242636
75 θ6

1θ3 + 496757391942
√

5−1110787534346
225 θ5

1θ
2
2

+−60039573944
√

5+134254318212
75 θ3

1θ2θ3 + −39973239208
√

5+89380532549
135 θ2

1θ
3
2

+ 2056498592
√

5−4598562761
25 θ1θ

2
3 + 936312286

√
5−2093598353
15 θ2

2θ3

102484099009216
√

5−229161983510080
3375 θ12

1 + −103712003920168
√

5+231907635997240
1125 θ9

1θ2

+ 18203575800549
√

5−40704542676695
1125 θ7

1θ3 + 192334395907241
√

5−430073674278955
2250 θ6

1θ
2
2

+−27575163543228
√

5+61660097771440
1125 θ4

1θ2θ3 + −15950451341027
√

5+35666340525725
675 θ3

1θ
3
2

+ 542807423231
√

5−1213757793755
250 θ2

1θ
2
3 + 908322350082

√
5−2031073882600

225 θ1θ
2
2θ3+

18838942290
√

5−42125180048
9 θ4

2

3017661092856288
√

5−6747698145436256
3375 θ13

1 + −9757682133208212
√

5+21818849408711684
3375 θ10

1 θ2
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+ 1018019538640689
√

5−2276361853755053
2250 θ8

1θ3 + 3379828161239544
√

5−7557528462019018
1125 θ7

1θ
2
2

+−858802528101924
√

5+1920341613573908
1125 θ5

1θ2θ3 + −1433089424148543
√

5+3204486519902213
1350 θ4

1θ
3
2

+ 21805257173562
√

5−48758058158054
375 θ3

1θ
2
3 + 48419759670870

√
5−108269912096318

225 θ2
1θ

2
2θ3

+ 2747035841550
√

5−6142560966430
27 θ1θ

4
2 + −739662143766

√
5+1653935302474

75 θ2θ
2
3

Table 2.8: Matrices Qπ for the group H3 given in upper triangular row-major order (in the
consecutive order of row entries of upper triangular matrices).



Chapter Three

New upper bounds for the density
of translative packings of

three-dimensional convex bodies
with tetrahedral symmetry

This chapter is based on the paper: "M. Dostert, C. Guzmán, F. M. de Oliveira Filho, and
F. Vallentin, New upper bounds for the density of translative packings of three-dimensional
convex bodies with tetrahedral symmetry, arXiv:1510.02331 [math.MG], Discrete and Com-
putational Geometry, 2017, 30 pages".

3.1 Formulation as a polynomial optimization problem
Theorem 1.2 contains a characterization of a suitable Schwartz function f , such that f (0)
gives an upper bound for the density of every translative packing of a given convex body in
Rn. Thus, based on this characterization, we can formulate an optimization problem with
objective function f (0) and linear constraints to ensure that f satisfies the conditions given
in Theorem 1.2. Since the obtained problem has infinitely many linear constraints and we
optimize over S(Rn), thus an infinite dimensional set, it is an infinite dimensional linear
program.

δ(K) ≤ min f (0) (3.1)
f ∈ S(Rn) (3.2)

f̂ (0) ≥ volK (3.3)

f̂ (u) ≥ 0 for all u ∈ Rn \ {0} (3.4)
f (x) ≤ 0 whenever K◦ ∩ (x +K◦) = ∅ (3.5)

As explained in Section 2.1.1, SDPs has been well studied and there exists techniques to
solve these kind of problems efficiently. Thus, we relax the above optimization problem
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to an SDP. In Section 2.1.2, we explained how to relax a polynomial optimization problem
to an SDP, therefore we first relax the infinite dimensional linear program to a polynomial
optimization problem, and then we relax the obtained problem to an SDP. To be able to
formulate this problem as a polynomial optimization problem, we would like to optimize
over the set of polynomials R[x]≤2d of a fixed maximum degree 2d, instead of optimizing
over the space of Schwartz functions. To do so, we use the following equation for the
Fourier transform f̂ of the optimization variable f to specify it by a real polynomial g ∈
C[x]≤2d multiplied with the Gaussian density

f̂ (u) = g(u)e−π‖u‖
2
. (3.6)

All derivatives Dβ f̂ (x) exist for all x ∈ Rn and for all β ∈ Nn. Moreover,

sup
{∣∣∣∣xαDβ f̂ (x)

∣∣∣∣ : x ∈ Rn
}
< ∞

holds for all α, β ∈ Nn. Thus, the Fourier transform f̂ is a Schwartz function, which
implies that the function f is also a Schwartz function [35, Chapter 9.4, Theorem 9.7]. In
particular, the function f is a feasible solution for the Cohn-Elkies bound, if it satisfies
conditions (3.3) to (3.5). By applying equation (3.6), we obtain the following polynomial
optimization problem:

δ(K) ≤ min
∫
Rn
g(u)e−π||u||

2
(3.7)

g ∈ R[x]2d (3.8)
g(0) ≥ volK (3.9)
g(u) ≥ 0 for all u ∈ Rn \ {0} (3.10)∫
Rn
g(u)e−π||u||

2
e2πiu·xdu ≤ 0 whenever K◦ ∩ (x +K◦) = ∅ (3.11)

Since we restrict the function f to be of the form (3.6), the polynomial optimization prob-
lem is a relaxation of the Cohn-Elkies program. However, since those weighted polyno-
mials lie dense in the Schwartz space [50, Chapter III], the optimal value of the polyno-
mial optimization problem is equal to the optimal value of the original problem. Since
f̂ (0) = g(0), condition (3.9) corresponds to condition (3.3). Furthermore, the Fourier trans-
form f̂ is nonnegative if and only if the polynomial g is nonnegative. Therefore, we can
replace condition (3.4) by condition (3.10). However, for computing the objective value
and for checking condition (3.5), we have to compute the function f from the polynomial
g, which means we determine f from its Fourier transform f̂ . In Section 3.2, we will
explain this calculation in detail.

We can simplify the above polynomial optimization problem by using symmetries.
Note, that the Gaussian part e−π‖u‖

2
of f̂ is invariant under any orthogonal transformation.

Furthermore, conditions (3.3) and (3.4) are invariant under any invertible linear transfor-
mation. For the last condition (3.5), we will consider the symmetry group of a convex body
K ⊆ Rn, which is defined by

S (K) = {A ∈ O(n) : AK = K} .
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The Minkowski difference of A, B ⊆ Rn is given by

A − B = {a − b : a ∈ A, b ∈ B} .

To prove that condition (3.5) is invariant under the symmetry group S (K −K), we have to
check whetherK◦∩ (x+K◦) = ∅ if and only ifK◦∩ (A−1x+K◦) = ∅ for all A ∈ S (K−K).
To do so, we consider an arbitrary element of the symmetry group A ∈ S (K −K), then

K◦ ∩ (A−1x +K◦) = ∅ ⇐⇒ AK◦ ∩ (x + AK◦) = ∅

⇐⇒ x < AK◦ − AK◦

⇐⇒ x < A(K◦ − K◦)
⇐⇒ x < K◦ − K◦

⇐⇒ K◦ ∩ (x +K◦) = ∅ .

Lemma 3.1. Let (P) be the linear program given in (3.1) to (3.5) for a solid K . Let (P′)
be the linear program, which we obtain by adding the condition

f is invariant under the group S (K −K)

to (P). Then, the optimal value of (P) is equal to the optimal value of (P′).

Proof. Let f be a feasible function for (P) and S (K − K) be the symmetry group of the
Minkowski difference of K . For a function f ∈ S(Rn), we define the Reynolds operator
similar as (2.22):

M f (x1, . . . , xn) =
1
|G|

∑
g∈G

f
(
g−1(x1, . . . , xn)

)
.

Then, we get a function f̃ = M f invariant under S (K − K). Furthermore, this function
is a Schwartz function if f is a Schwartz function. The linearity of the Fourier transforms
implies that f̃ satisfies conditions (3.3) and (3.4). Since the intersection K◦ ∩ (A−1x +K◦)
is empty if and only if the intersection K◦ ∩ (x + K◦) is empty, we know that f (x) ≤ 0
holds if and only if f (A−1x) ≤ 0 holds for all A ∈ S (K − K). This implies that each
summand of f̃ (x) = 1

|G|
∑
g∈G f

(
g−1x

)
is nonpositive, and thus, condition (3.5) is satisfied.

Consequently, the function f̃ is a feasible solution for (P′). Furthermore, by applying the
Reynolds operator the value at the point x = 0 will not change, because we are averaging,
and therefore, the optimal values of (P) and (P′) coincide. �

Consequently, we can assume that f is invariant under S (K −K) :

f (A−1x) = f (x) for all A ∈ S (K −K) .

If the function f is invariant under the symmetry group S (K−K), then its Fourier transform
f̂ is invariant under this group, too. Furthermore, since the Gaussian part of the formula
for f̂ is invariant under any orthogonal transformation, the polynomial g, which defines f̂ ,
is invariant under the symmetry group, too. For the convex bodiesK with S (K −K) equal
to the octahedral group B3 or to the icosahedral group H3, the invariant polynomial g is a
real polynomial as we mentioned in Section 2.3.2 and Section 2.3.3.
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3.2 Computation of the Fourier transform

To compute the antitransform f from f̂ , we have to compute the Fourier transform of
u 7→ f̂ (−u). First, we explain how to obtain the function f from an arbitrary complex poly-
nomial g and then, we give a simplification of this computation by using some properties
of the polynomial g of the considered optimization problem. We can decompose the set of
complex polynomials of degree at most d into the following direct sum

C[x]≤d =

d⊕
j=0

Hom j =

d⊕
j=0

⊕
r,k

2r+k= j

‖x‖2r Harmk , (3.12)

where

Harmk =

{
h ∈ Homk : ∆ h =

(
∂2

∂2x1
+ · · · +

∂2

∂2xn

)
h = 0

}
is the set of (homogeneous) harmonic polynomials of degree k. This means, harmonic
polynomials of degree k are the kernel of the Laplace operator

Harmk = ker ∆, ∆ : Homk → Homk−2 ,

with

∆h(x1, . . . , xn) =

n∑
i=1

∂2h
∂2xi

,

where

dim Harmk = dim Homk − dim Homk−2 =

(
n + k − 1

k

)
−

(
n + k − 3

k − 2

)
. (3.13)

A proof of the decomposition of the complex polynomials into harmonic polynomials is,
for example, presented by Stein and Weiss in [69, Theorem IV.2.10]. For the computation
of f , we need Laguerre polynomials Lαn (x) of degree n ∈ Z≥0 in the variable x and with
parameter α ∈ R greater than −1, which are defined by

Lαn (x) =
1
n

x−αex dn

dxn

(
e−xxn+α) .

The Fourier transform of the function u 7→ f̂ (−u) is equal to f . Therefore, we will compute
this Fourier transform to obtain f from f̂ , which is specified by a polynomial g ∈ C[x]≤d.
If we express g by harmonic polynomials, we can apply Proposition 3.2 to compute f .

Proposition 3.2. Let
f (x) = hk(x)‖x‖2re−π‖x‖

2

be a Schwartz function with hk ∈ Harmk. The Fourier transform of f is

f̂ (u) = (i−khk(u)) · π−rr!Ln/2+k−1
r (π‖u‖2)e−π‖u‖

2
,

where Ln/2+k−1
r is the Laguerre polynomial of degree r with parameter n/2 + k − 1.
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Proposition 3.2 shows that the function x 7→ hk(x)e−π‖x‖
2

is an eigenfunction of the
Fourier transform with eigenvalue i−k. This means, by applying Proposition 3.2 the function
f with Fourier transform f̂ (u) = g(u)e−π‖u‖

2
can be computed from the polynomial g by

solving a system of linear equations. Dunkl uses a similar computation and he even gives
in [32] explicit algebraic solutions.

To prove Proposition 3.2, we have to give some definitions and lemmas. The Gamma
function of a complex number x ∈ C with real part Re(x) > 0 is defined by

Γ(x) =

∫ ∞

0
tx−1e−tdt . (3.14)

Furthermore, we need the Bessel function Jk(t) with real number k ≥ −1/2 and t ∈ R>0
given by the formula

Jk(t) =
(t/2)k

Γ(k + 1/2) Γ(1/2)

∫ 1

−1
eits(1 − s)k−1/2ds . (3.15)

The hypergeometric series 1F1

(
a
b ; x

)
is defined as

1F1

(a
b

; x
)

=

∞∑
k=0

(a)k

(b)k

xk

k!
, (3.16)

where a, b, x ∈ C are arbitrary complex numbers satisfying b < Z≤0 and (q)n is defined as

(q)n =

1, if n = 0 ,∏n−1
k=0(q + k), if n > 0 .

The proof of Proposition 3.2 can be divided into three steps. First, we express the Fourier
transform of f in terms of a Bessel function. Then, we describe the Bessel function by
the hypergeometric series. In the last step, we replace the hypergeometric series by the
Laguerre polynomials, and so, we get the equation of Proposition 3.2. In the following, we
explain each of these steps in more detail, and then, we give the proof for Proposition 3.2.

The relation between the Fourier transform of f and the Bessel function is described in
the following lemma.

Lemma 3.3. Suppose n ≥ 2 and f ∈ L2(Rn) ∩ L1(Rn) has the form

f (x) = f0(‖x‖)P(x),

where P(x) is a harmonic function of degree k and f0(‖x‖) is a radial function. Then, the
Fourier transform f̂ has the form f̂ (x) = F0(‖u‖)P(x), where

F0(r) = 2πi−kr−(n/2+k−1)
∫ ∞

0
f0(s)Jn/2+k−1(2πrs) · sn/2+kds . (3.17)

Stein and Weiss present in [69] a proof of Lemma 3.3. The function in Proposition 3.2
is described by the equation f (x) = hk(x)‖x‖2re−π‖x‖

2
, where hk(x) is a harmonic polynomial
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of degree k. Since x → ‖x‖2re−π‖x‖
2

is a radial function and hk(x) ∈ Harmk, we can apply
Lemma 3.3 to the function f . As there exists a monomial basis for the complex homoge-
neous polynomials of degree k, such that all coefficients of the monomials in this basis are
real, we can compute a basis for Harmk with real coefficients, too.

Lemma 3.4 describes how to replace the Bessel function by the hypergeometric series.

Lemma 3.4. For Re(x) > 0,∫ ∞

0
Jv(at)tµ−1e−p2t2

dt =
Γ( µ+ν

2 )( a
2p )νe−a2/4p2

2pµΓ(ν + 1) 1F1

( ν−µ
2 + 1
ν + 1

;
a2

4p2

)
. (3.18)

In [3], Andrew, Askey, and Roy give a proof for Lemma 3.4. Furthermore, they present
a relation between finite hypergeometric series and Laguerre polynomials. This relation is
given in Lemma 3.5.

Lemma 3.5. The Laguerre polynomial Lαn (x) can be expressed in terms of a hypergeometric
series as

Lαn (x) =
(α + 1)n

n!

n∑
k=0

(−n)k xk

(α + 1)kk!
=

(α + 1)n

n! 1F1

(
−n
α + 1

; x
)
.

The tedious verification of this formula has been, for example, carried out by Pütz [64].
First, he proves by induction over n the equation

dn

dxn (e−xxn+α) =

n∑
k=0

 (−1)n−k

(n − k)!

 n∏
l=k+1

l
k−1∏
m=0

(n + α − m)


 .

Then he splits the right-hand side into two parts and shows that

(−1)n−k
n∏

l=k+1

l = (−n)n−k and
k−1∏
m=0

(n + α − m) =
(α + 1)m

(α + 1)n−k
.

Combining these results with the definition of the Laguerre polynomial, we obtain

Lαn (x) =
x−aex

n!

n∑
l=0

(
(−n)l

(l)!
(α + 1)n

(α + 1)l

)
e−xxα+l

=
(α + 1)n

n!

n∑
k=0

(−n)k xk

(α + 1)kk!
=

(α + 1)n

n! 1F1

(
−n
α + 1

; x
)

the equations of Lemma 3.5. By using Lemma 3.3, Lemma 3.4, and Lemma 3.5, we can
give a proof for Proposition 3.2.

Proof. Let f (x) = hk(x)‖x‖2re−π‖x‖
2

be a Schwartz function with hk ∈ Harmk. As mentioned
before, the function f0(‖x‖) = ‖x‖2re−π‖x‖

2
has the property that f0(x) just depends on the

norm ‖x‖, and thus, f0 is a radial function. By definition, hk is a harmonic polynomial of
degree k, thus, we can apply Lemma 3.3 and obtain

f̂ (u) = 2πi−k‖u‖−(n/2+k−1)
∫ ∞

0
f0(s)Jn/2+k−1(2π‖u‖us) · sn/2+kds · hk(u)

= (i−khk(u)) · 2π‖u‖−(n/2+k−1)
∫ ∞

0
Jn/2+k−1(2πs‖u‖)sn/2+k+2re−πs2

ds.
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To describe the Bessel function by hypergeometric series, we apply Lemma 3.4 by setting
a = 2π‖u‖, p =

√
π, µ = n/2 + 2r + k + 1, and ν = n/2 + k − 1 and using the equations

a
2p

=
√
π‖u‖,

a2

4p2 = π‖u‖2,
µ + ν

2
= n/2 + r + k,

ν − µ

2
+ 1 = −r.

This implies ∫ ∞

0
Jn/2+k−1(2πs‖u‖)sn/2+k+2re−πs2

ds

=
Γ(n/2 + r + k)(

√
π‖u‖)n/2+k−1e−π‖u‖

2

2(
√
π)n/2+2r+k+1Γ(n/2 + k)

1F1

(
−r

n/2 + k
; π‖u‖2)

)
=
‖u‖n/2+k−1Γ(n/2 + r + k)e−π‖u‖

2

2(
√
π)2r+2Γ(n/2 + k)

1F1

(
−r

n/2 + k
; π‖u‖2)

)
.

In the last step, we just worked with the part of the Fourier transform f̂ (u) which contains
the integral. Now we consider the whole remaining equation

f̂ (u) = (i−khk(u)) ·
2π · ‖u‖n/2+k−1Γ(n/2 + r + k)e−π‖u‖

2

‖u‖n/2+k−1 · 2πr+1Γ(n/2 + k) 1F1( −r
n/2+k; π‖u‖2)

= (i−khk(u)) · π−r Γ(n/2 + r + k)
Γ(n/2 + k) 1F1

(
−r

n/2 + k
; π‖u‖2)

)
e−π‖u‖

2
.

By applying Lemma 3.5, we replace the hypergeometric series by the Laguerre polynomial
Lαn (x) with α = n/2 + k − 1, n = r, and x = π‖u‖2, and obtain

1F1

(
−r

n/2 + k
; π‖u‖2)

)
e−π‖u‖

2
=

r!
(n/2 + k)r

Ln/2+k−1
r (π‖u‖2) .

Finally, we can describe the Fourier transform f̂ (u) by using the Laguerre polynomial
Ln/2+k−1

r (π‖u‖2) . Thus,

f̂ (u) = (i−khk(u)) · π−r Γ(n/2 + r + k)
Γ(n/2 + k) 1F1

(
−r

n/2 + k
; π‖u‖2)

)
e−π‖u‖

2

= (i−khk(u)) · π−r Γ(n/2 + r + k)
Γ(n/2 + k)

r!
(n/2 + k)r

Ln/2+k−1
r (π‖u‖2) .

We use the property Γ(x + 1) = xΓ(x) of the Gamma function, and therefore,

Γ(n/2 + k + r)
Γ(n/2 + k)

=

r−1∏
j=0

(n/2 + k + j)
Γ(n/2 + k)
Γ(n/2 + k)

= (n/2 + k)r

holds for r ∈ Z. By using

Γ(n/2 + r + k)
Γ(n/2 + k)

1
(n/2 + k)r

= 1 ,

we obtain the desired result

f̂ (u) =
(
i−khk(u)

)
· π−rr!Ln/2+k−1

r

(
π‖u‖2

)
e−π‖u‖

2
.

�
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To compute the inverse Fourier transform of f̂ , we write f̂ as a sum over polynomials
of the form hk(x)‖x‖2re−π‖u‖

2
, where hk is a harmonic polynomial of degree k. Due to the

linearity of the Fourier transform operator, it is sufficient to compute the inverse Fourier
transform of each of these summands for obtaining the inverse Fourier transform of f̂ . For
this computation, we use Proposition 3.2.

From Section 3.1, we know that the polynomial g is invariant under a pseudo-finite
reflection group G. By using this property, we can reduce the dimension of the harmonic
subspaces. To do so, we have to define the set of G-invariant harmonic polynomials

HarmG
k =

{
h ∈ HomG

k : ∆h = 0
}
.

Thus, the space of G-invariant complex polynomials can be decomposed as

C[x]G
≤d =

d⊕
j=0

HomG
j =

d⊕
j=0

⊕
r,k

2r+k= j

‖x‖2r HarmG
k .

Using this decomposition, we can compute the antitransform f̂ from f by applying Propo-
sition 3.2 in the same way as by using the decomposition of C[x]. The benefit of taking the
G-invariance into account is, that the dimension of the harmonic subspaces is smaller, and
therefore, the computation of f should be faster. To compare the dimensions, we can use
the harmonic Molien-Poincáre series, given by Goethals and Seidel in [39].

Theorem 3.6. Let G ⊂ On(R) be a finite reflection group. Then, the harmonic Molien-
Poincáre series is given by

∞∑
k=0

dim HarmG
k ·t

k =

n∏
i=2

(1 − tdi )−1 ,

where d1 ≤ . . . ≤ dn are the degrees of the primary invariants of G.

Example 3.7. By applying the formula for the dimension of Harmk given in (3.13) to 3-
variate polynomials, we obtain 2k + 1. We will compare this dimension to the dimension
of the subspaces HarmB3

k and HarmH3
k . Since B3 and H3 are finite reflection groups, we can

apply Theorem 3.6:

∞∑
k=0

dim HarmB3
k · t

k =
1

(1 − t4)(1 − t6)

= 1 + t4 + t6 + t8 + t10 + t12 + t14 + 2t16 + 2t18 + 2t20 + 2t22+

3t24 + 2t26 + 3t28 + 3t30 + 3t32 + 3t34 + 4t36 + 3t38 + 3t40 + . . .

∞∑
k=0

dim HarmH3
k · t

k =
1

(1 − t6)(1 − t10)

= 1 + t6 + t10 + t12 + t18 + t20 + t22 + t24 + t26 + t26+

t28 + 2t30 + t32 + t34 + 2t36 + t38 + 2t40 + . . .
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We consider for example C[x]G
≤40

40∑
k=0

dim Harmk =

40∑
k=0

2k + 1 = 1681 ,

but
40∑

k=0

dim HarmB3
k = 42 and

40∑
k=0

dim HarmH3
k = 20 .

The computation of the invariant harmonic spaces is more work than the computation of
the harmonic spaces. However, for the groups B3 and H3, the computation of the Fourier
antitransform f was much faster by exploiting the group invariance.

3.3 Semidefinite formulation
In Section 3.1 we relaxed the infinite dimensional linear program from Cohn and Elkies to
a polynomial optimization problem, in which we optimize over polynomials g ∈ R[x]≤2d

invariant under a finite pseudo-reflection group G. The next task is to relax the polynomial
optimization problem to an SDP, which is solvable by using current SDP solvers. In Section
2.1.2 we explained how to relax a polynomial optimization problem in order to obtain an
SDP. The problem is that if the dimension of the matrices in the SDP is too large, we
cannot use current SDP solvers. Thus, on the one hand we have to find a relaxation of
the polynomial optimization problem described as an SDP, and on the other hand, we need
to use the G-invariance of g to simplify the problem in such a way, that we can use a
solver. Furthermore, we have to find a way to formulate the infinitely many nonpositivity
constraints as suitable constraints in the SDP.

3.3.1 Representation of the function f

To transform the objective function in (3.7) and condition (3.11) into standard form for the
SDP, we have to give a good representation of the function f . Since its definition depends
on the polynomial g, the next task is to describe this polynomial. Due to the constraint
(3.10) it has to be nonnegative, which we know from Section 2.1.2 is difficult to check.
Therefore, we restrict g(x) to be equal to g̃(x, x), where g̃ is an SOHS polynomial.

An example of a B3-invariant polynomial is the Robinson polynomial

x6
1 + x6

2 + x6
3 −

(
x4

1x2
2 + x2

1x4
2 + x4

1x2
3 + x2

1x4
3 + x4

2x2
3 + x2

2x4
3

)
+ 3x2

1x2
2x2

3,

which is nonnegative, but it is not SOS. A proof is given by Reznick in [66]. Furthermore,
this implies that it is not SOHS, too, since B3-invariant polynomials are SOS if and only
if they are SOHS. Thus, even for B3-invariant polynomials with three variables and degree
six, the set of SOS polynomials is a strict subset of the set of nonnegative polynomials.
One possibility to describe g with degree at most 2d offers Theorem 2.20:

g(z, w) =
∑
π∈Ĝ

〈Pπ(z, w),Rπ〉 , (3.19)
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with
Pπ(z, w) =

(
vπ(z) vπ(w)

T
)
⊗ Qπ(z, w) ,

and

[Qπ]kl(z, w) =

dπ∑
i=1

ϕπki(z) ϕπli(w)

where ϕπi j are the basis elements of the coinvariant algebra as described in Section 2.3.1, Rπ

is Hermitian positive semidefinite, and vπ(x) contains all monomials in the basic invariants
up to degree d −min{degϕπii(x) : i ∈ [dπ]}. Since the solutions we get from the SDP solvers
can be slightly infeasible, we will use a derived representation of g to formulate problems,
which are numerically more stable and whose solutions can be rigorously shown to be
correct. Before explaining this representation, we have to give some definitions. For each
irreducible representation π ∈ Ĝ, we define a dπ-dimensional symmetric matrix Φπ by

Φπ
i j = ϕπi j , and thus Qπ = Φπ(Φπ)T

holds. Since each row of Φπ contains homogeneous polynomials of the same degree, we
define the degree of a row i of Φπ by

deg Φπ
i = deg Φπ

i1 .

Furthermore, let B be some basis of C[x]G consisting of homogeneous polynomials and set

It
π =

{
(a, r) ∈ B × [dπ] : deg a + deg Φπ

r ≤ t
}
.

We define a matrix
Vπ,t

(a,r)(b,s)(z, w) = a(z) b(w) Qπ
rs(z, w)

with indices in It
π. The degree of each entry can be calculated by

deg Vπ,t
(a,r)(b,s) = deg a + deg b + deg Qπ

r,s = deg a + deg b + deg Φπ
r + deg Φπ

s ≤ 2t .

By using the above matrix, we can describe an SOHS polynomial g ∈ C[z, w]G
≤2d by

g(z, w) =
∑
π∈Ĝ

〈
Vπ,d(z, w), R̃π

〉
, (3.20)

where R̃π is a Hermitian positive semidefinite matrix of dimension
∣∣∣Id

π

∣∣∣ .

Lemma 3.8. The parameterization of a G invariant SOHS polynomial in (3.19) is equiva-
lent to the parameterization in (3.20).

Proof. Let g be a polynomial described by the equation in (3.20). Since for each (b, r) ∈ Id
π

it follows b ∈ vπ(x), the polynomial g can be expressed by using the Pπ matrices instead
of the Vπ,d matrices. To obtain a larger Hermitian positive semidefinite matrix Rπ from R̃π,
such that the equation (3.19) holds, we set all new entries of Rπ equal to zero. Since we can
obtain the matrix Rπ from the matrix R̃π by applying a basis change matrix, the new matrix
is still positive semidefinite.
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Conversely, let g be a polynomial in (3.19). Each p ∈ Pπ is contained in Vπ,d if deg p ≤
deg g, otherwise Rπ

i j p = 0 for all i, j with p = Pπ
i j. Thus, the old representation (3.19) can

be transformed into the new representation (3.20), by setting

R̃π
i j =

∑
(k,l)∈Mi j

Rkl, withMi j =
{
(k, l) : Pπ

kl = Vπ,d
i j

}
.

Since the matrix Rπ is Hermitian positive definite and the matrix R̃π can be obtained by
applying a basis change matrix to Rπ, the new matrix R̃π is Hermitian positive semidefinite,
too. �

The benefit of the new parameterization of g is that we use smaller matrices where
R̃π has less zero entries than Rπ in order to obtain strictly feasible solutions which can be
easier checked to be rigorous. For the infinite dimensional linear program of Cohn-Elkies
the function f , which we expressed in terms of a polynomial g, has to be real-valued,
therefore we define a real-valued nonnegative function g from an SOHS by

g(x) = g(x, x) =
∑
π∈Ĝ

〈
Vπ,d(x, x),Hπ

〉
(3.21)

and a matrix
Vπ,d(x) = Vπ,d(x, x) .

In case all the irreducible representations of the group are orthogonal, the representation of
g in (3.20) is equal to

g(x) =
∑
π∈Ĝ

〈
Vπ,d(x),Rπ

〉
, (3.22)

where Rπ is a positive semidefinite matrix, Qπ = Φπ(Φπ)T, B contains a basis of R[x]G, and

Vπ,t
(a,r)(b,s)(x) = a(x) b(x) Qπ

rs(x) .

Using the new representation of g, we obtain a suitable representation of the function
f in the SDP. By applying Proposition 3.2, the function f can be computed from f̂ by a
linear transformation F : R[x]G → R[x]G, such that

f (x) = F [g](x)e−π‖x‖
2

holds. We represent the polynomial g as in (3.21) with the matrix Vπ,d(x), and thus, we
obtain

f (x) = e−π‖u‖
2
∑
π∈Ĝ

〈
F [Vπ,d](x),Rπ

〉
, (3.23)

where we apply F to the matrix Vπ,d(x) by applying it to all its entries.
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3.3.2 Nonpositivity condition
By using the above representation of f and g, we can directly transform the objective
function and the constraints of the polynomial optimization problem into an SDP, except
of the nonpositivity constraint in (3.11), which states

f (x) ≤ 0 whenever x < K◦ − K◦.

For this, we divide the domain R3 \ (K◦ − K◦) into a bounded and unbounded part. We
deal with the nonpositivity in the bounded part by using sample points, whereas the non-
positivity in the unbounded part can be ensured by using an SOHS condition. We start with
the unbounded part: Let s be a G-invariant polynomial, such that

K◦ − K◦ ⊆
{
x ∈ R3 : s(x) < 0

}
,

where
{
x ∈ R3 : s(x) < 0

}
is a bounded set. For example, if we consider K = Bp

3 with p
being an even positive integer, thenK −K = 2Bp

3 and so we take s(x) = xp
1 + xp

2 + xp
3 −2. If

p is odd or not an integer, then we use the next larger even integer p′ for defining s(x). For
polytopes, we may use s(x) = ‖x‖2−δ2, where δ is the maximal norm of a vector inK −K ,
which means δ = max {‖x‖ : x ∈ K − K} . By using nonnegative polynomials p1 and p2
derived from SOHS polynomials like in (3.21), we can formulate a condition to ensure that
f is nonpositive in {x ∈ R3 : s(x) ≥ 0} :

f (x) = −s(x)p1(x) − p2(x) , (3.24)

then f is nonpositive if s, p1, and p2 are nonnegative. Since p1 and p2 are nonnegative,
for s(x) ≥ 0 the function f (x) is nonpositive. Since s and f are G-invariant, we can as-
sume p1 and p2 are G-invariant without loss of generality. Therefore, we can represent
the G-invariant nonnegative polynomials in the program similar to the representation of the
polynomial g. On the one hand, we should not choose too small degrees for p1 and p2 to
make sure that the equality (3.24) may hold. On the other hand, if the degree of p2 is higher
than the degree of f , the matrices in our parameterization cannot be positive definite. A
matrix A is positive definite if and only if all its eigenvalues are strictly positive. In Chapter
4, we will see that for positive semidefinite matrices, which are not positive definite, it is
more difficult to prove that the results give bounds for the maximal packing density. There-
fore, we have to be careful with the choice of the degree of p1 and p2. Since, we fix the
maximal degree of g to be 2d, the function f = F [g] has maximal degree 2d, too. As s is
G-invariant, it has even degree, which we define to be 2ds with ds ∈ N. Hence, we limit the
maximal degrees

deg p1 ≤ 2(d − ds) and deg p2 ≤ 2d .

To describe the polynomials p1 and p2 similar to g, we use a parameterization for p1 con-
taining Hermitian positive semidefinite matrices S π

1 and for the parameterization of p2 we
use Hermitian positive semidefinite matrices S π

2. We can formulate the constraint

f (x) + s(x)p1(x) + p2(x) = 0

by the following linear condition∑
π∈Ĝ

〈
F [Vπ,d](x),Rπ

〉
+

∑
π∈Ĝ

〈
s(x)Vπ,d−ds (x), S π

1

〉
+

∑
π∈Ĝ

〈
Vπ,d(x), S π

2

〉
= 0 . (3.25)
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By adding the condition in (3.25) to the SDP, we ensure that f is nonpositive in {x ∈
R3 : s(x) ≥ 0}. Since the nonpositivity condition (3.11) has to hold on

R3 \ (K◦ − K◦) = {x ∈ R3 : s(x) ≥ 0} ∪ {x ∈ R3 : s(x) < 0} \ (K◦ − K◦) ,

we still have to deal with the bounded part

D = {x ∈ R3 : s(x) < 0} \ (K◦ − K◦) .

For example for K = Bp
3 where p is not an even integer, we used the next larger even

integer p′ in the unbounded part, and so we still have to check the condition for 2Bp′

3 \ 2Bp
3 .

We have to take twice the superball, because Bp
3 −Bp

3 = 2Bp
3 . In Figure 3.1, a superball 2Bp

3

with p = 1.2 is pictured in a superball 2Bp′

3 with p′ = 2. Analogously, for polytopes, we
have still to check the nonpositivity condition for the points in δB2

3 \ (K −K). ForK equal
to a regular tetrahedron, the Minkowski difference K − K is a cuboctahedron. In Figure
3.2, a cuboctahedron inside of the ball δB2

3 is pictured.

Figure 3.1: 2B1.2
3 in 2B2

3. Figure 3.2: Cuboctahedron in δB2
3.

We take a subset S of points in D and add linear constraints to the SDP, which ensure
that f is nonpositive for all elements of the sample set S. We would like to find a finite set
of points S, such that, if f is nonpositive on this set, it will probably also be nonpositive
on D. For this, we have to find a good set of sample points. Since the polynomial g is
G-invariant, and so, the function F [g] is G-invariant, too, we can restrict the sample points
(x1, x2, x3) to the fundamental domain of G. For example for G = B3, we choose

S ⊆ D ∩ {x ∈ R3 : 0 ≤ x1 ≤ x2 ≤ x3} .

The choice of the sample points is important for the quality of the result. Pütz developed in
his master’s thesis [64] two further methods for calculating a sample set other than the one
we use in [30]. For each of these three sample methods, he solved the SDP with d = 13 for
the truncated icosahedron. Afterwards, he verified these results. In Section 3.4.3, where
the verification of the sample conditions be explained, we will present the obtained results
by Pütz.

To ensure the nonpositivity of f on a certain sample set S ⊆ D, we add the condition∑
π∈Ĝ

〈
F [Vπ,d](x),Rπ

〉
≤ 0 for all x ∈ S . (3.26)
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Furthermore, the number of sample conditions in the SDP corresponds to the number
of sample points, thus, the sample set should not become too large. However, no sample
method guarantees that if the nonpositivity condition holds for the sample points, it will
also hold for all elements in the bounded part D. Thus, after solving the SDP, we have to
verify the obtained solution to ensure, that the nonpositivity condition indeed holds for the
required part.

3.3.3 Full formulation
We formulate a relaxation of the polynomial optimization problem (3.7) - (3.11) as an SDP.
For this, we start by considering the objective function f (0). Since we describe the function
f by (3.23), we obtain the objective function

f (0) =
∑
π∈Ĝ

〈
F [Vπ,d](0),Rπ

〉
.

We modify the first condition (3.9) g(0) ≥ volK to g(0) ≥ 1, therefore we have to scale
f (0) by multiplying with the volume of K to obtain an upper bound for the density. In
(3.21) we set x = 0 to obtain g(0), and so, the first condition will be transformed to∑

π∈Ĝ

〈
Vπ,d(0),Rπ

〉
≥ 1.

In the relaxation, we replace the nonnegativity condition (3.10) for g by an SOHS condi-
tion. By the chosen description of g this property holds. In the SDP we have to fix the
maximal degree of g by 2d, where we choose d to be an odd positive integer. In Chapter 4,
we will explain why the verification is easier if d is odd. The last condition is the nonpos-
itivity condition on f , which we transformed into an SOHS condition (3.25) and a sample
condition (3.26).

Finally, we can give a relaxation of the program of Cohn and Elkies as an SDP

min
∑
π∈Ĝ

〈
F [Vπ,d](0),Rπ

〉
(a)

∑
π∈Ĝ

〈
Vπ,d(0),Rπ

〉
≥ 1,

(b)
∑
π∈Ĝ

〈
F [Vπ,d](x),Rπ

〉
+

∑
π∈Ĝ

〈
s(x)Vπ,d−ds (x), S π

1

〉
+

∑
π∈Ĝ

〈
Vπ,d(x), S π

2

〉
= 0,

(c)
∑
π∈Ĝ

〈
F [Vπ,d](x),Rπ

〉
≤ 0 for all x ∈ S,

Rπ, S π
1, and S π

2 are Hermitian positive semidefinite,

(3.27)

where G = S(K − K). If the irreducible representations of the group are orthogonal, the
matrices Rπ, S π

1, and S π
2 are real-valued positive semidefinite matrices.
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3.4 Rigorous verification
We formulated an SDP in (3.27), which is a relaxation of the infinite dimensional linear
program of Cohn and Elkies. Now we can solve the program by using an SDP solver. To
transform the SDP into valid input data, we have to use floating numbers. Since we are not
able to describe the SDP with rationals, we use floating numbers in the input, and thus, the
solver use floating numbers in the computation. Therefore, the solution we obtain is likely
infeasible. We would like to find solutions which are just slightly infeasible, such that we
can transform them into feasible solutions.

To obtain a rigorous bound for the maximal packing density, we apply the following
steps:

1. Solve the SDP in (3.27) by using an SDP solver.

2. Transform the obtained solution into a strictly feasible solution for the SDP.

3. Check whether the new solution is also feasible for the Cohn Elkies program:

(a) Check the normalization and SOS condition.

(b) Check the nonpositivity condition on the bounded partD.

If the last step fails, then we have to use a larger sample set or we have to go back in step
two.

Since we computed upper bounds for three-dimensional convex bodies having tetra-
hedral or icosahedral symmetry, the corresponding solutions of the SDP are real-valued
positive semidefinite matrices. In this section, we describe the verification process for the
case, in which the solution matrices are real-valued.

3.4.1 Solving the semidefinite program
To be able to transform the numerical solution of the SDP solver into a feasible solution, it
should just slightly violate the conditions. Therefore, we are interested in solutions, whose
matrices

(
Rπ, S π

1, S
π
2

)
have minimal eigenvalues which are much larger than the maximal

violation of any constraint. The eigenvalues of a semidefinite matrix are all nonnegative,
but they can be zero or due to numerical instability they can be negative. If all eigenvalues
are strictly positive the matrix is called a positive definite matrix. The interior of the cone of
positive semidefinite matrices consists of the positive definite matrices, and thus, the solu-
tions just consisting of positive definite matrices are equal to the strictly feasible solutions.
Since, we need solution matrices with strictly positive eigenvalues, we would like to find a
strictly feasible solution. If we choose d to be even, we never obtained a strictly feasible
solution of the SDP in our calculations. Therefore, we restrict d to be odd. Furthermore, we
have to be careful with the choice of the right degrees d and ds. As mentioned in Section
3.3.2, the degree of the polynomial p2 has to be less or equal to the degree of the function
F [g], otherwise the representation cannot contain positive definite matrices, and thus, the
solutions will not be strictly feasible.

First, we explain how we can get a strictly feasible solution of the given SDP: Many
solvers use positive definite matrices in their calculation, like for example by using the
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interior point method. After the calculation, the solution will be rounded to get a solution
which lies on the boundary of the cone of positive semidefinite matrices. Thus, the solution
is not strictly feasible anymore. However, after the calculation we get an estimate z∗ of
the optimal value of the SDP. Using this estimate, we can turn the SDP into a feasibility
problem to obtain strictly feasible solutions. For this, we define a small positive error η, in
our computations we usually used η = 10−5. To obtain a feasibility problem instead of an
optimization problem, the objective function of the SDP will be removed. To make sure
that f (0) is almost z∗, which means f (0) ≤ z∗ + η, we add the constraint∑

π∈Ĝ

〈
F [Vπ,d](0),Rπ

〉
≤ z∗ + η

to the new problem. Thus, for getting a strictly feasible solution, we sacrifice a bit of
the optimal value. The advantage of feasibility problems is, that solvers usually return
strictly feasible solutions, which means the minimal eigenvalues of the resulting matrices
are strictly positive.

To translate our solution into a feasible solution, the minimal eigenvalues of these ma-
trices should be larger than the maximal violation of any constraint. The resulting matrices
of the optimization problem lie on the boundary of the positive semidefinite cone, whereas
the resulting matrices of the feasibility problem lie in the interior, thus the minimal eigen-
values of the new matrices depend on η. If the minimal eigenvalues are smaller than the
violation, we have to increase η even if this means that the optimal value becomes worse.

For the calculation it is important to use an SDP solver with high-precision floating-
point numbers to obtain a solution of the optimization problem which is just slightly infea-
sible. Solvers with double-precision floating-point arithmetic have failed due to numerical
instability problems. For our calculations we used the SDPA-GMP solver [36].

3.4.2 Checking the normalization and SOS condition
From the computation of the feasibility problem with a suitable η, we get positive definite
matrices

(
Rπ, S π

1, S
π
2

)
with minimal eigenvalues much larger than the maximal constraint

violation. We compute a bound for the minimal eigenvalues of each of these matrices:
Let A be one of these matrices, then we use binary search to find λA close to the minimal
eigenvalues, such that A− λAI has a Cholesky decomposition LLT. For this calculation, we
use high-precision floating-point arithmetic. We define a new matrix Ã = LLT + λAI. Now
we have positive definite matrices

(
R̃π, S̃ π

1, S̃
π
2

)
and a bound on their minimal eigenvalues.

For the representation of the new solution
(
R̃π, S̃ π

1, S̃
π
2

)
, we use interval arithmetic with

high-precision floating-point arithmetic [65].
We can easily compute the objective value∑

π∈Ĝ

〈
F [Vπ,d](0), R̃π

〉
.

The next task is to compute the violation of each constraint. We start with the normalization
constraint (a): If a solution violates this constraint, we multiply it with a positive number
such that this constraint is satisfied, by using interval arithmetic. If a solution violates the
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SOS constraint (b), we compute the absolute value of the coefficient of

r(x) =
∑
π∈Ĝ

〈
F [Vπ,d](x), R̃π

〉
+

∑
π∈Ĝ

〈
s(x)Vπ,d−ds (x), S̃ π

1

〉
+

∑
π∈Ĝ

〈
Vπ,d(x), S̃ π

2

〉
(3.28)

with largest absolute value. In order to satisfy condition (b) the polynomial r(x) has to
be equal to zero. Thus, the absolute value of the coefficient of r(x) with largest absolute
value gives an upper bound on the violation of this constraint. As mentioned before, we
need a common basis for the polynomials in the SOS constraint and since all contained
polynomials are invariant, we use a basis ofR[x]G. Therefore, we can represent the matrices
Vπ,d and Vπ,ds by using rationals and these can be approximated by interval arithmetic. The
SOS constraints also contain the Fourier antitransform F [Vπ,d] with powers of π, therefore
we need irrationals, but these can be approximated by interval arithmetic, too.

Since we are interested in feasible solutions, we have to turn the matrices
(
R̃π, S̃ π

1, S̃
π
2

)
into a solution, for which the polynomial r(x) is identically zero. From the definition of r(x)
in (3.28), we know that the degree of r(x) is at most 2d and that r(x) has to be a G-invariant
polynomial. Furthermore, due to the construction of the matrices Vπ,d and Vπ,d−ds , we can
formulate the polynomial r(x) as a linear combination of the entries of these matrices. This
means, for each irreducible representation π ∈ Ĝ, there exists a matrix T π, so that

r(x) =
∑
π∈Ĝ

〈
Vπ,d(x),T π

〉
(3.29)

holds. Thus if we take the difference of the right-hand sides of (3.28) and (3.29), we get∑
π∈Ĝ

〈
F [Vπ,d](x), R̃π

〉
+

∑
π∈Ĝ

〈
s(x)Vπ,d−ds (x), S̃ π

1

〉
+

∑
π∈Ĝ

〈
Vπ,d(x), S̃ π

2

〉
−

∑
π∈Ĝ

〈
Vπ,d(x),T π

〉
= 0 ,

which is equivalent to∑
π∈Ĝ

〈
F [Vπ,d](x), R̃π

〉
+

∑
π∈Ĝ

〈
s(x)Vπ,d−ds (x), S̃ π

1

〉
+

∑
π∈Ĝ

〈
Vπ,d(x), S̃ π

2 − T π
〉

= 0 .

Consequently, the SOS condition (b) is satisfied for
(
R̃π, S̃ π

1, S̃
π
2 − T π

)
. Furthermore, by

modifying the third matrix, the objective value will not change. Since the matrices have to
be positive semidefinite to be feasible for the SDP, we have to check whether S̃ π

2 − T π is
positive semidefinite.

To ensure the positive semidefiniteness, the entries of T π have to be small enough com-
pared to the minimal eigenvalues of S̃ π

2. Hence, we need a restriction on the maximal
value of the entries of T π. For this, we use the Frobenius norm, which is defined by
‖A‖ = 〈A, A〉1/2 for a matrix A. Moreover, we need λS̃ π

2
, which is any lower bound on

the minimal eigenvalues of the matrix S̃ π
2. We can compute this bound by using binary

search as mentioned before. Now, we can restrict the entries of the matrix T π by

‖T π‖ ≤ λS̃ π
2
. (3.30)

Thus the SOS condition is satisfied, if T π satisfies (3.30) for all π ∈ Ĝ. To estimate ‖T π‖

we use the following approach without computing the matrix T π explicitly.
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To determine an estimate, we have to find a maximal linearly independent subset B of
the polynomials inside the set of all entries of the matrices Vπ,d. LetM be the set consisting
of all monomials appearing in B. Then, we can create a |M| × |B| matrix A, such that each
entry (m, a) ∈ M × B contains the coefficient of the monomial m in the polynomial a. We
consider a submatrix Â of A consisting of |B| linearly independent rows of A.

For the upper bound, we have to use the infinity norm for matrices, which is defined for
an n × m matrix A by

‖A‖∞ = max
i=1,...n

m∑
j=1

∣∣∣Ai j

∣∣∣ .
Furthermore, we need the infinity norm for polynomials, given by

‖p(x)‖∞ = max {|λi| : i ∈ {1, . . . ,m}} ,

for a polynomial p(x) =
∑m

i=1 λimi, with coefficients λi and monomials mi.

Proposition 3.9. Let T π, Â, and r be defined as above, then

‖T π‖ ≤
∣∣∣Id

π

∣∣∣ ∥∥∥∥ Â−1
∥∥∥∥
∞
‖r‖∞ ,

holds for all π ∈ Ĝ.

Proof. The matrix T π has to satisfy

r(x) =
∑
π∈Ĝ

〈
Vπ,d(x),T π

〉
,

therefore, the matrix T π is indexed by the elements of Id
π similarly to Vπ,d(x). Hence,

‖T π‖ = 〈T π,T π〉
1/2

=

 ∑
(a,r)∈Id

π

∑
(b,s)∈Id

π

∣∣∣T π
(a,r),(b,s)

∣∣∣2
1/2

.

The monomials of r(x) with non-zero coefficient, are contained in some entries of the ma-
trix Vπ,d, and thus, the monomials of r(x) are elements of M. The polynomials in B can
appear multiple times in Vπ,d(x). The entries of T π can be estimated by the matrix Â

∣∣∣T π
(a,r),(b,s)

∣∣∣ ≤
∣∣∣∣∣∣∣∣
|B|∑
j=1

Â−1
i j λi

∣∣∣∣∣∣∣∣ ,
for Vπ

(a,r),(b,s) = bi(x), where λi is the largest coefficient of all monomials contained in bi(x).
Furthermore, ∣∣∣∣∣∣∣∣

|B|∑
j=1

Â−1
i j λi

∣∣∣∣∣∣∣∣ ≤
|B|∑
j=1

∣∣∣∣ Â−1
i j λi

∣∣∣∣ .
Since all coefficients are upper bounded by ‖r‖∞, which means |λi| ≤ ‖r‖∞, it follows

|B|∑
j=1

∣∣∣∣ Â−1
i j λi

∣∣∣∣ ≤ ‖r‖∞ |B|∑
j=1

∣∣∣∣ Â−1
i j

∣∣∣∣ ≤ ∥∥∥∥ Â−1
∥∥∥∥
∞
‖r‖∞
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and consequently, we obtain

‖T π‖ ≤
∣∣∣Id

π

∣∣∣ ∥∥∥∥ Â−1
∥∥∥∥
∞
‖r‖∞ .

�

Due to Proposition 3.9 the inequality in (3.30) is satisfied if∣∣∣Id
π

∣∣∣ ∥∥∥∥ Â−1
∥∥∥∥
∞
‖r‖∞ ≤ λS̃ π

2

holds for all π ∈ Ĝ. For checking this inequality, we compute the inverse Â−1 by using
rational arithmetic. To break these |Ĝ|many conditions down to just one condition, we take
the cardinality of the largest index set

imax = max
{ ∣∣∣Id

π

∣∣∣ : π ∈ Ĝ
}

and the minimal eigenvalue λmin = min
{
λS̃ π

2
: π ∈ Ĝ

}
, and consider the stronger condition

imax ‖ Â−1‖∞‖r‖∞ ≤ λmin.

If this condition is not satisfied by our solution, we have some options to get a better
solution: we can increase the error η to increase the right-hand side, or we take more
sample points, or we increase the precision of the input data, or we fix a different degree d.

3.4.3 Checking sample conditions
We have to check whether our solution satisfies the nonpositivity condition (3.11), which
states that the function f has to be nonpositive in Rn \ (K◦ − K◦). To transform this condi-
tion into linear constraints for the SDP, we divided it into two conditions. For the first part
we checked the feasibility in the previous subsection. Now the second part is left. Since
the solution is feasible for the SDP if this condition is just satisfied by the sample points in
S ⊂ D, the condition is probably not satisfied for all elements in

D = {x ∈ R3 : s(x) < 0} \ (K◦ − K◦} ,

and thus, the obtained solution is probably not feasible for the Cohn Elkies program. The
problem is that it is difficult to detect the boundary of D by using sampling. However, we
can find a small value α > 1, such that

f (x) ≤ 0 for all x ∈ D′ = {x ∈ R3 : s(x) < 0} \ α(K◦ − K◦) . (3.31)

By modifying the set D to D′, the solid we want to pack will increase from K to αK .
Therefore, we have to multiply α3, or in general αn, with f (0), the upper bound we obtain
by solving the SDP. Since, the upper bound should be as small as possible, we have to find
small α > 1 satisfying (3.31). By testing the function f in a fine grid of points, we can
determine an estimate of α. The required factor α depends on the considered sample set S.
Therefore, we explain our sample method and the two further sample methods developed
by Pütz [64].
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Sample methods

As mentioned before, we just have to consider the intersection of D with the fundamental
domain of G, due to the G-invariance of F [g]. We denote the fundamental domain of
G by F(G). In our approach, we use a uniform sample, which is a general method and
can be used for arbitrary convex bodies K ⊆ Rn. Before defining this sample method,
we first explain the idea of it. We take sample points of the intersection of F(G) and D,
such that they are uniformly distributed with a distance of ε ∈ R>0. The set D is bounded
and contained in the cube [s(0),−s(0)]n, therefore it is sufficient to restrict the grid to this
domain. The uniform sample S is defined by

S = G ∩D ∩ F(G) ,

with grid

G =

{
x ∈ Rn : x = ε · k for all k ∈ Zn, such that |ki| ≤

−s(0)
ε

for all i ∈ [n]
}
,

and grid size ε ∈ R>0. We would like to detect the boundary of K − K to obtain a feasible
solution or at least to obtain a solution which requires a small factor α to get a feasible
solution. In the uniform sample the sample points are uniformly distributed, thus for ob-
taining a fine grid at the boundary, we have to use a small grid size ε, but then the sample
set would become large. Thus, it would be better to develop a sample method with more
sample points near the boundary than for the other parts of the considered region.

Therefore, Pütz developed two different methods for computing a sample set S, in
which the sample points are not uniformly distributed. These sample methods can just be
used for K − K being a polytope. One way to obtain sample points such that there are
more sample points at the boundary, is by distributing the sample points in such a way that
they lie in planes which are parallel to the faces of K − K . Therefore, for each face of
K − K , we need two orthonormal vectors r1 and r2 spanning the plane and one vertex v
of the considered face. The sample points in a plane spanned by r1 and r2 with grid size
ε ∈ R>0 can be calculated by ε(k1r1 + k2r2). Since the faces are at most twice the square
spanned by these orthonormal vectors, it is sufficient to compute sample points for k1 and
k2 in [0, . . . , b2/εc], where we define [0, . . . , k] to be the set of integers {0} ∪ [k]. We denote
the set of values for k1 and k2 by M1. To translate these points in the considered plane we
have to add them to a point contained in that plane. For this we consider the vector v which
lies in the considered face of the solid. In order to obtain a point on each plane we want
to sample, we copy v to each of these planes by multiplying it with a factor δ and k3. If
we would like to consider, for example, 10 planes above a face, then we choose the range
of k3 equal to [0, . . . , 10]. We denote this set by M3. Furthermore, we need a factor δ for
the distance between each plane and the next plane above. If the face we are considering
is close to the sphere, we might not get enough sample points between the face and the
sphere. Therefore, we multiply v also with a scaling factor λv ∈ (0, 1] to obtain a sample set
which is not too small. Due to numerical errors, a point can be mistakenly associated to the
interior of K − K . To avoid this, we add µ to the factor of v. Pütz set in his computations
µ = 0.00005. The plane sample S with parameters ε, δ, and µ, is defined by

S = G ∩D ∩ F(G),
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with

G =
⋃

(v,r1,r2,λv)∈F

{(1 + µ + δ · λvk3) v + ε (k1r1 + k2r2) : k1, k2 ∈ M1, k3 ∈ M3} ,

where F contains all fourtuples (v, r1, r2, λv) for each face of the intersection F(G)∩(K−K),
which lives in a face of (K − K). For the groups B3 and H3, which we consider in our
approach, there exists at most three of these faces. To apply this sample method, for each
face of K −K , we have to determine the orthonormal vectors r1 and r2 and a point v lying
on that face. For the solids K − K invariant under B3 or H3, each face of (K − K) ∩ F(G)
contains one vertex v lying on a face of K − K , with orthogonal edges originating from v.
By scaling these edges to have norm 1, we obtain the desired orthonormal vectors.

In the plane sample the sample points are not uniformly distributed in the considered
space, but they are uniformly distributed in each plane. By decreasing the distance between
the sample points lying close to the boundary or by increasing the distance for the points
in the center of the faces, we might obtain a better sample set without considering a large
set of sample points. Therefore, Pütz derived a generalized version of the plane sample
method, in which the distance of the samples in the centers of the faces increase. For this
we additionally need the length l1 and l2 of the edges from which we obtain the orthonormal
vectors r1 and r2. Thus, for each face of K − K , we consider a sixtupel (v, r1, r2, λv, l1, l2).
For i ∈ {1, 2}, the range of ki, denoted by Mi, is equal to [0, . . . , di] with di = bli/εc. To
increase the distance in the centers of the faces, we define a function for j ∈ {1, 2} by

f j,λ : [0, d j]→ [0, 1]

with

f j,λ(x) =
1
2

(
1 +

arctan(λ(2x/d j − 1))
arctan(λ)

)
.

In the new sample method, we apply this function to the elements of k1 and k2 to obtain the
desired sample set. The generalized plane sample S with parameters ε, µ, δ, and λ in R>0
is defined by

S = G ∩ D ∩ F[G] ,

with

G =
⋃

(v,r1,r2,λv,l1,l2)∈F

{(1 + µ + δ · λvk3) v

+ (1 + δ · λvk3)
(
f1,λ(k1)l1r1 + f2,λ(k2)l2r2

)
: ki ∈ Mi, i ∈ [3]} .

In Table 3.1, one can see how the choice of the parameter λ in the function fi,λ influences
the number of sample points and the obtained numerical result.

For the truncated icosahedron, Pütz solved the SDP with d = 13 three times by using
each time a different sample method. Afterwards, he transformed the numerical results
into rigorous bounds. Table 3.2 contains for each of these sample methods, the number of
sample points, the obtained rigorous upper bound, and the required value for α. In this case,
the generalized plane sample is the best sampling, because it contains the least number of
sampling points, the factor α is small, and in particular, the obtained upper bound is better
than in the other two cases.

For the truncated icosahedron, the sample points of the uniform sample, the plane sam-
ple, and the generalized plane sample are pictured in Figure 3.3.
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Parameter λ Points Numerical result
0.0001 576 0.367795 . . .
0.5 572 0.367783 . . .
1 567 0.367742 . . .
1.5 562 0.367667 . . .
2 552 0.367578 . . .
2.5 550 0.367462 . . .

Table 3.1: Number of sample points and obtained numerical results for the tetrahedron
using generalized plane sample with different values of λ [64].

Sample method Points Upper bound Factor α
Uniform sample 546 0.856190 1.0180
Plane sample 411 0.835740 1.0002
Generalized plane sample 400 0.835536 1.0002

Table 3.2: Number of sample points, rigorous bounds, and required blow-up factor α, for
the truncated icosahedron and d = 13 [64].

Figure 3.3: Left: Uniform sample, center: plane sample, right: generalized plane sample
for truncated icosahedron [64]
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Checking sample conditions on bounded part

The next task is to check whether the function f is indeed nonpositive in D′: Since, we
are interested in rigorous results, we evaluate f , which is equal to F [g], by using interval
arithmetic. We consider a cube of side length δmax = maxx∈K−K ‖x‖2, which is the maximal
norm of elements in K −K , thus, the cube is defined by [−δmax, δmax]3. By this definition,
the set D is contained in the initial cube, and therefore, its subset D′ is contained in this
cube, too. The idea is, that we divide the cube, into many smaller cubes, and check the
nonnegativity condition for each of these smaller cubes, which intersect with the setD′. If
f is nonpositive on each of these cubes, it has to be nonpositive onD′.

To do so, we choose δ < δmax and divide the initial cube into a set of smaller cubes
[−δ, δ]3. Furthermore, let C be the set of all cubes containing at least one element (x1, x2, x3)
in D′ with 0 ≤ x1 ≤ x2 ≤ x3. Because of the invariance of F [g], it is again sufficient to
consider just the fundamental domain {x ∈ R3 : 0 ≤ x1 ≤ x2 ≤ x3}. Since D′ is contained
in the initial cube, C coversD′ in the fundamental domain. Furthermore, the set C is finite.

Let K be the regular tetrahedron, then K − K corresponds to the cuboctahedron. In
Figure 3.4 the cuboctahedron is pictured together with the initial set of cubes. For the
regular tetrahedron, we choose α = 1.02 and s(x) = ‖x‖2 − 1. In Figure 3.5, the set
{x ∈ R3 : s(x) < 1} is pictured, too, which is equal to the interior of the unit ball and is
colored in green.

Figure 3.4: Cuboctahedra with ini-
tial set of cubes [30]

Figure 3.5: Cuboctahedra with ini-
tial set of cubes and unit ball [30]

To ensure that the nonpositivity condition is satisfied onD′, we have to check whether
it is satisfied on C, which means

F [g](x) ≤ 0 ,

for all x ∈
⋃

C∈C . To check this condition, we compute an upper bound νC of the norm of
the gradient of F [g] for all cubes C ∈ C:

‖∇F [g](x)‖ ≤ νC for all x ∈ C.

We can easily compute νC by using interval arithmetic: The coefficients of F [g] are rep-
resented by intervals. Moreover, the cubes are also represented by intervals, since they are
a product of three intervals C = [x1, y1] × [x2, y2] × [x3, y3]. By using interval arithmetic,
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we can now compute the gradient ∇F [g]([x1, y1] × [x2, y2] × [x3, y3]) and get the intervals
([l1, u1], [l2, u2], [l3, u3]), such that for all (x1, x2, x3) ∈ C

(l1, l2, l3) ≤ ∇F [g] (x1, x2, x3) ≤ (u1, u2, u3)

holds. From this, we can compute νC by

νC =
∥∥∥ (max {|li|, |ui|})i∈[3]

∥∥∥ .
For a fixed N ≥ 1, we divide each side of the cube C into N intervals and so we get a

grid of points inside of C. Let xC denote the lower-left corner of the cube C, then the set of
points we consider is defined by

CN = {xc + (a, b, c) δ/N : 0 ≤ a, b, c ≤ N, a, b, c ∈ N } .

Since by definition ofD′, this set contains no elements of α(K◦−K◦) and the set C contains
at least one element of D′, there exists an element of CN ⊂ C, which is not contained in
α(K◦ − K◦). We define the maximal minimal distance from a point in C \ α(K◦ − K◦) to
a grid point in CN \ α(K◦ − K◦) by d(C,N):

d(C,N) = max
x∈C\α(K◦−K◦)

min
y∈CN\α(K◦−K◦)

‖x − y‖ .

Moreover, we define

µ(C,N) = max {F [g](x) : x ∈ CN \ α (K◦ − K◦)} .

By using d(C,N) and µ(C,N), we can check whether F [g] is nonpositive in C: If µ(C,N) >
0 the required condition fails. Therefore, we hope that µ(C,N) is nonpositive for our choice
of α. In that case, let x ∈ C \α(K◦ −K◦) and let x′ ∈ CN \α(K◦ −K◦) be the closest point
to x. By applying the mean value theorem, we obtain∣∣∣ F [g](x) − F [g](x′)

∣∣∣ ≤ νC

∥∥∥x − x′
∥∥∥ ≤ νC d(C,N) .

Consequently, the function F [g] is nonpositive, if

νCd(C,N) ≤ | µ(C,N) | ≤
∣∣∣ F [g](x′)

∣∣∣ (3.32)

holds. Hence, we obtain the sufficient condition

νC d(C,N) ≤ | µ(C,N) | ≤
∣∣∣ F [g](x′)

∣∣∣ for all x′ ∈ CN \ α (K◦ − K◦) (3.33)

for the condition in (3.31). In order to check this condition, we estimate d(C,N). To do so,
we first assume C ∩ α(K◦ − K◦) = ∅: Let x ∈ C, then there exists a grid point x̃ ∈ C, such
that x ∈ x̃ + [0, δ/N]3. To maximize the distance, we assume that the distance of x to all its
neighboring grid points is the same, which implies

x = x̃ + δ/(2N)13,

with 13 = (1, 1, 1)T is the central point in the cube x̃ + [0, δ/N]3. Thus, in this case the
distance of x to one of its neighbors is equal to

d(x, x̃) = ‖x̃ + δ/(2N)13 − x̃‖ = δ/(2N) ‖13‖ = δ/(2N)
√

3.
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Assume C ∩ α(K◦ − K◦) , ∅: Let x ∈ C and let x̃ be a grid point such that x ∈ C̃ =

x̃ + [0, δ/N]3. If C̃ \ α(K◦ − K◦) contains no grid point of CN , then it is empty. Therefore,
we can assume that there exists a grid point in y ∈ C̃ \α(K◦ −K◦). The distance between a
point x ∈ C̃ and y ∈ C̃ \ (αK◦ − αK◦) increases if we choose x to be close to α(K◦ − K◦).
However, since x and y are both elements of C̃, their largest distance is bounded above by
the diagonal of the cube C̃ which is equal to

d(x̃, x̃ + δ/N13) = ‖δ/N13‖ = δ/N
√

3.

Thus, we can estimate d(C,N) by

d(C,N) ≤


√

3 (δ/N) , if C ∩ α(K◦ − K◦) , 0,
√

3 (δ/(2N)) , otherwise.

In our approach, we run over all cubes C ∈ C starting with N = 2. In every iteration,
we check the condition in (3.33) for the currently considered cube. If this condition is not
satisfied, we increase N and check it again. We repeat this procedure until the condition
is satisfied. After we applied this procedure to every cube in C, we know that the function
F [g] is nonpositive everywhere in the domain D′, in case the approach terminates. Since
we use interval arithmetic for evaluating the function, the obtained results are rigorous.

The disadvantage of using interval arithmetic is that the computations need much more
time. If we take for example a dense grid with N = 1000, then the computation would take
several months. Since the size of the grid required by a cube is proportional to νC , which
is better the smaller the cube is, we can improve on the grid size by taking small values for
δ. But, if we change δ globally, we increase the total number of cubes, and thus, we may
slowing down our calculations.

We improved our approach as follows: We fix a threshold, which is in our computation
equal to 30 and if the grid size required by a cube becomes larger than the threshold, we
split the cube into eight smaller cubes. To do so, we split each side of the cube into two
halves. Since just one point of the cube has to be contained inD′, some of the new smaller
cubes may have no intersection with D′. For the further calculations, we just consider the
new cubes with at least one point inD′. Since these cubes are smaller, we get a better grid
size. We fix a maximal depth to limit the number of splittings of one cube. By reaching
the grid size, we increase N, but it could be that N will just become a little bit larger. This
case should be avoided, because then, we have to evaluate the function F [g] more often
than if the increasing step would be larger. The problem is that evaluating the function is
computationally very expensive, since we are using interval arithmetic.

To speed up our approach, we first use double-precision floating-point arithmetic for the
function evaluation to get an estimate of the required grid size of each cube. Afterwards,
we use this estimate to rerun the checking process by evaluating the function F [g] using
interval arithmetic. The benefit of this precalculation is the reduction of the number of
evaluations of F [g] with interval arithmetic.

Algorithm 1 describes the precalculation process by using double values. Furthermore,
Algorithm 2 describes the checking process by using interval arithmetic.
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Algorithm 1 Precalculation using double values

Require: K , α, max_depth, split_threshold
D′ = {x ∈ R3 : s(x) < 0} \ α(K◦ − K◦)
C = {C ⊆ R3 : C cube of side length δ,∃x ∈ C ∩D′ : 0 ≤ x1 ≤ x2 ≤ x3}

cube_list = ∅

for cube C ∈ C do
calculate νC

N = 2; depth = 0
while depth ≤ max_depth do

CN = {xC + (a, b, c) δ/N : 0 ≤ a, b, c ≤ N}
calculate d(C,N)
calculate µ(C,N)
if µ(C,N) > 0 then

throw NonNegativeValue
end if
if νCd(C,N) ≤ |µ(C,N)| then

add(C, grid_size) to cube_list
break // nonpositivity constraint satisfied for C

else if N < split_threshold then
increase N

else
split C into 8 new cubes
add every new cube which intersects the domainD′ to C
N = 2
increase depth

end if
end while
if depth > max_depth then

throw MaxGridSizeExceeded
end if

end for
return cube_list

Algorithm 2 Check nonnegativity of F [g] using mpfi values

Require: cube_list
for (C, grid_size) ∈ cube_list do

if µ(C, grid_size) ≥ 0 then
throw NonNegativeValue

end if
end for
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3.4.4 Rigorous bounds
In [30], we published new upper bounds for three-dimensional convex bodies with tetrahe-
dral symmetry by using the described approach. In our computations, we used the uniform
sample method for checking the nonpositivity condition in the bounded part. By using the
plane and generalized plane sample method, Pütz was able to improve some of our upper
bounds. Furthermore, Pütz adapted our approach for three-dimensional convex bodies hav-
ing icosahedral symmetry. In Table 3.3 the best obtained rigorous upper bounds with the
corresponding factor α are given.

Body Upper bound Factor α
Regular octahedron (B1

3) 0.972912750 1.0010
B3

3 0.823611150 1.0020
B4

3 0.874257405 1.0000
B5

3 0.922441815 1.0050
B6

3 0.933843309 1.0000
Regular tetrahedron 0.368333384 1.0005
Truncated cube 0.980578583 1.0003
Truncated tetrahedron 0.717085879 1.0009
Rhombicuboctahedron 0.876796420 1.0004
Regular icosahedron 0.879603500 1.0003
Regular dodecahdron 0.918311372 1.0001
Truncated icosahedron 0.834557102 1.0005
Rhombicosidodecahedron 0.843685241 1.0002
Truncated icosidodecahedron 0.860265927 1.0005
Truncated cuboctahedron 0.881501128 1.0005
Regular icosidodecahedron 0.883236750 1.0005
Truncated dodecahedron 0.911427019 1.0002

Table 3.3: List of rigorous upper bounds together with the factor α we needed in the verifi-
cation.

3.5 Further implementation details

For computing rigorous bounds, we have to transform the problem into an SDP in standard
form, then we use a solver for returning a numerical result, and afterwards we turn it into a
solution which we verify to be rigorous.

For the first part, a basis for Vπ,d andF [Vπ,d] is needed. Since, Vπ,d depends on the basis
vectors ϕπ of the coinvariant algebra C[x]G, we first compute this basis by using Magma
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[12]. The advantage of Magma is, that it provides useful methods like the computation of
the basic invariants and the character table.

Based on the obtained basis for the coinvariant algebra, we implemented a Sage script
[70] for calculating a basis of C[x]G

≤40. Furthermore, in this program its Fourier inverse will
be computed as described in Section 3.2. For formulating the program as an SDP, we need
to get a common basis for C[x]G

≤40, C[x]G, and its inverses, which we also get by this Sage
program.

The last step to express the program as an SDP is to compute the sample points, which
we implemented as a C++ program. Then, we can transform this into an SDP in standard
form by using the C++ library SDPSL [28], a semidefinite programming specification li-
brary. Now we can solve the program by using the SDPA-GMP solver to obtain a numerical
result. Besides this library a further advantage of using C++ is that we can use multiple
kernels, and thus, we can speed up our calculations. Moreover, the program has to work
with large files and for transforming them into a format supported by the SDP solver, we
have to formulate it by using floating-point numbers, since it cannot be described by ratio-
nals. Therefore, by using the C++ program, we can translate the exact values computed in
the steps before into high-precision floating-point numbers.

The verification consists of the normalization and SOS checking in Section 3.4.2, and
the sample checking in Section 3.4.3. For three-dimensional convex bodies with tetrahedral
symmetry, the solutions, as well as the verification scripts and problems are available as
ancillary files from the arXiv.org e-print archive [30]. We started the verification process
by checking the normalization and SOS condition implemented as a Sage script named
verify.sage, which runs in Sage 6.2. Further details about this program are explained in the
file README_SOSChecking. Besides the normalization and SOS checking, this program
produces input files for the sample checking, containing the function F [g] described by
interval arithmetic.

The last step is the sample checking, which is implemented as a C++11 program called
checker. To obtain rigorous bounds, we have to use interval arithmetic for this calculation.
That can be realized by using the MPFI library [65] supported by C++. A detailed docu-
mentation about this program, including the description of all classes and methods is given
in the file docu.pdf. Moreover, in README_SampleChecking we explain how to use the
sample checking program.



Chapter Four

Lattice packings of superballs

4.1 Formulation as a polynomial optimization problem
In Section 3, we determined upper bounds for the translative packing density of three-
dimension convex bodies having tetrahedral symmetry. To determine the optimal transla-
tive packing density one also needs lower bounds. Since lattice packings are in particular
translative packings, any lattice packing density is a lower bound of the optimal translative
packing density. Lattice packings are well studied and there are multiple results known.
Theorem 1.3 provides a characterization of the basis vectors b1, b2, b3 of a lattice Λ, for
2Λ being an optimal packing lattice in dimension three. These vectors are called contact
points, since they are lying on the intersection of the boundary of a superball with the
boundary of a neighboring superball.

b3 − b2

b1 − b2

b1 − b3

b3 − b1

b2 − b3

b2 − b1

b1

b2

b3

Figure 4.1: Left: A part of a lattice packing for B4
3 satisfying Case 1 of Theorem 1.3. Right:

Nine of twelve contact points of the packing on the left-hand side. The contact points are
labeled in red.

Example 4.1. On the left-hand side in Figure 4.1, a lattice packing of three-dimensional
superballs with p = 4 is given. In this packing, each solid has twelve contacting neighbors.
One superball with six of its contacting neighbors is pictured. For the sake of clarity, there

89
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are three contacting neighbors in front of the superball and three contacting neighbors be-
hind the superball missing. The corresponding packing lattice 2Λ has a basis 2b1, 2b2, 2b3
such that

±b1, ± b2, ± b3, ± (b1 − b2), ± (b1 − b3), ± (b2 − b3)

are lattice points of Λ which lie on the boundary of B4
3. Thus, they are defining the contact

points and building the set U1
B with matrix B consisting of the columns b1, b2, and b3.

Furthermore, the lattice points

±(−b1 + b2 + b3), ± (b1 − b2 + b3), ± (b1 + b2 − b3)

lie outside of the superball. Therefore, in this example, Case 1 of Theorem 1.3 is satisfied.
On the right-hand side in Figure 4.1, a superball with nine of its twelve contact points is
shown. The remaining contact points are −b1, −b2, and −b3, which lie behind the solid.
The contacting neighbors pictured on the left-hand side correspond to the contact points
bi − b j for i, j ∈ [3] with i , j on the right-hand side.

In [61], Minkowski gives necessary conditions for the optimality of a lattice packing
based on the supporting hyperplanes of the solid. From this, Betke and Henk were able to
formulate in [9] an implementable algorithm for computing an optimal lattice packing of
an arbitrary three-dimensional polytope. The characterizations of Minkowski are defined
for any three-dimensional centrally-symmetric convex bodies, but they stated in [9]:

Of course, given an arbitrary convex body K we do not know how to exploit
[these necessary conditions], but if we consider only polytopes then for the
supporting hyperplanes, we may always choose the supporting hyperplanes of
the facets of the polytope. As a polytope has only finitely many facets we
obtain the following frame of an algorithm for the computation of a critical
lattice of a polytope.

Thus, for non-polytopes like superballs we cannot apply the approach of Betke and Henk.
If 2Λ∗ is an optimal lattice, Λ∗ is called a critical lattice. Besides polytopes, Theorem
1.3 can also be used for computing an optimal lattice packing for three-dimensional round
balls. Following Minkowski, we consider K = 1/2 B2

3 a three-dimensional round ball with
radius 1/2. Due to Theorem 1.3, there exists an optimal lattice 2Λ∗ for K , such that the
basis vectors of the corresponding critical lattice Λ satisfy exactly one of the three cases of
Theorem 1.3. Let b1, b2, b3 ∈ R

3 be basis vectors of an optimal lattice 2Λ∗, then we have
to check whether 1/2 b1, 1/2 b2, and 1/2 b3, basis vectors of Λ, satisfy Case 1, Case 2, or
Case 3. Alternatively, we can check this for the basis vectors b1, b2, and b3 and consider
the solid 2K = B2

3 a three-dimensional unit ball.
Moreover, a point yB = (y1, y2, y3)T

B is a point in the basis b1, b2, and b3, which are
contained as columns in the matrix B, thus, yB = y1b1 + y2b2 + y3b3. A point yB is lying on
the boundary of B2

3, if its norm ‖yB‖2 is equal to the radius which is one. The square of the
`2

3 norm of yB can be calculated as

‖yB‖
2
2 = ‖y1b1 + y2b2 + y3b3‖

2
2

= (b11y1 + b12y2 + b13y3)2 + (b21y1 + b22y2 + b23y3)2 + (b31y1 + b32y2 + b33y3)2

= α11y
2
1 + 2α12y1y2 + 2α13y1y3 + α22y

2
2 + α33y

2
3,
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with
αi j = b1ib1 j + b2ib2 j + b3ib3 j for i, j ∈ [3].

We define the function h, which maps a point y ∈ R3 to ‖yB‖
2
2, the `2

3 norm squared of y
with respect to the basis B. Formally, this function is defined by

h : R3 → R,

with

h(y1, y2, y3) = α11y
2
1 + 2α12y1y2 + 2α13y1y3 + α22y

2
2 + α33y

2
3 . (4.1)

If the lattice packing satisfies Case 2 of Theorem 1.3, the lattice points

±b1, ± b2, ± b3, ± (b1 + b2), ± (b1 + b3), ± (b2 + b3)

are elements of the boundary of K . The set of these points in the basis B is {xB : x ∈ L},
where

L =


±


1

0

0

 , ±

0

1

0

 , ±

0

0

1

 , ±

1

1

0

 , ±

1

0

1

 , ±

0

1

1



.

If these points lie on the boundary, the following equation holds

h(y1, y2, y3) = 1 for all (y1, y2, y3)T ∈ L . (4.2)

Then, we obtain

h(y1, y2, y3) = y2
1 − y1y2 − y1y3 − y2y3 + y2

2 + y2
3 (4.3)

=

(
y1 −

1
2
y2 −

1
2
y3

)2

+
3
4

(y2 − y3)2 , (4.4)

which describes a cylinder instead of a round sphere. Thus, this leads to a contradiction.
In Case 3, equation (4.2) and equation h(1, 1, 1) = 1 has to be satisfied. Therefore,

h(y1, y2, y3) = 1 for all (y1, y2, y3)T ∈ L ∪
{
±(1, 1, 1)T

}
has to hold. If we calculate h(1, 1, 1) using the equation (4.3), we obtain h(1, 1, 1) = 0, and
thus, this leads to a contradiction, too.

If we consider Case 1 of Theorem 1.3, we can do a similar calculation and obtain

h(y1, y2, y3) = y2
1 + y1y2 + y1y3 + y2y3 + y2

2 + y2
3.

To satisfy this condition, the matrix M = (αi j)i, j∈[3] is

M =


1 1/2

1/2

1/2 1 1/2

1/2
1/2 1

 .
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Note that det M = (det B)2, where B is the matrix with columns equal to the basis vectors
b1, b2, b3. Since the determinant of M is equal to 1/2, the determinant of B is 1/

√
2. This is

also equal to the volume of the fundamental domain of the corresponding packing lattice.
Thus, we can calculate the lattice packing density. To do so, we have to divide the volume
of the three-dimensional ball with radius 1/2, which is equal to π/6, by the determinant
of B, and thus, we obtain the optimal lattice packing density π/

√
18 . Furthermore, Hales

and Ferguson proved that this is also the optimal density for general packings of balls in
dimension three [43].

Using the characterization of the contact points given in Theorem 1.3, we formulate
a polynomial optimization problem for finding an optimal lattice for packing superballs.
Theorem 1.3 states that there exists an optimal lattice such that for the corresponding crit-
ical lattice Case 1, Case 2, or Case 3 is satisfied. Thus, we have to calculate a best lattice
for each of these three cases. By taking a best of these three resulting lattices, we obtain
an optimal lattice. Since the only difference between these three cases is the set UB and
the points which have to lie outside of the considered solid K , we just formulate a polyno-
mial optimization problem for Case 1. For the other two cases, a polynomial optimization
problem can be formulated in the same way.

We assume that Case 1 of Theorem 1.3 holds. Besides the lattice points which have to
lie on the boundary of K , there are also lattice points which have to lie outside of K . We
define a set Ũ1

B consisting of these points

Ũ1
B = {(−1, 1, 1)B, (1,−1, 1)B, (1, 1,−1)B}.

Moreover, we define the function h mapping y ∈ R3 to ‖yB‖
p
3 . For p = 2, this function is

given in (4.1). For general values of p, it is

h(y1, y2, y3) = ||(y1, y2, y3)B||
p
p

= |y1b11 + y2b21 + y3b31|
p + |y1b12 + y2b22 + y3b32|

p + |y1b13 + y2b23 + y3b33|
p.

Due to the absolute value, h(y1, y2, y3) is not a polynomial, unless p is an even integer, then
it is equal to

(y1b11 + y2b21 + y3b31)p + (y1b12 + y2b22 + y3b32)p + (y1b13 + y2b23 + y3b33)p.

If p is not an even integer, and thus, h(y1, y2, y3) is not a polynomial, it is more complicated
to formulate the problem as a polynomial optimization problem. One possibility would
be to split the problem into many optimization problems depending on the sign of the
optimization variables. However, for the rest of this section, we consider the case where p
is an even integer.

Since our goal is to formulate an optimization problem for Case 1 of Theorem 1.3, the
polynomial h has to satisfy

h(y1, y2, y3) = 1 for all (y1, y2, y3) ∈ U1
B, (4.5)

h(y1, y2, y3) > 1 for all (y1, y2, y3) ∈ Ũ1
B. (4.6)

Hence, a basis b1, b2, b3 ∈ R
3 satisfying (4.5) and (4.6) is a feasible lattice for Case 1.
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To describe the objective function, we consider the lattice packing density: A lattice Λ

is called a packing lattice for a solid K if for all x, y ∈ Λ with x , y, the intersection of
the interior of x + K and y + K is empty. An optimal packing lattice for K is denoted by
Λ∗(K), and thus, the corresponding lattice packing density is

δ(K) =
vol(K)

det Λ∗(K)
,

where det Λ∗(K) is the absolute value of the determinant of the matrix whose columns are
the basis vectors of Λ∗(K). Consequently, finding the densest lattice packing is equivalent
to the problem of finding a packing lattice with minimal determinant. The absolute value
of the determinant of a lattice with basis vectors b1, b2, b3, or in general b1, . . . , bn, is equal
to the volume of the parallelepiped generated by these basis vectors called fundamental
domain. Therefore, the volume of the fundamental domain of a lattice is given by the abso-
lute value of the determinant of the matrix B whose columns are equal to the basis vectors.
For transforming the problem into a polynomial optimization problem in standard form, we
cannot take the absolute value of a polynomial into account. However, we can avoid this
problem by taking the minimum of (det B)2 or alternatively, we can add a constraint that the
determinant has to be positive. Since the optimal lattice has to have a nonzero determinant,
we have to add this constraint to the optimization problem, too.

Let x ∈ R9 be a vector consisting of the elements in B, such that xT = (b11, b12, . . . , b33).
Furthermore, let d(x) be a polynomial equal to the determinant of the matrix B whose
columns coincide with b1, b2, and b3, thus,

d(x) = x2x6x7 − x3x5x7 + x3x4x8 − x1x6x8 − x2x4x9 + x1x5x9. (4.7)

Our goal is to find a packing lattice 2Λ with basis vectors 2b1, 2b2, 2b3 ∈ R
3 such that

b1, b2, b3 satisfy Case 1 of Theorem 1.3 and the absolute value of the determinant of 2Λ

is minimal. Since, the determinant of the packing lattice 2Λ is minimal if and only if
the determinant of the critical lattice Λ is minimal, we optimize over x ∈ R9 defining
a critical lattice. Thus, we have to minimize |d(x)|. Since d(x) has to be nonnegative,
we use p0(x) = d(x)2 as the objective function of the desired optimization problem. To
formulate the problem as a polynomial optimization problem defined in (2.4) – (2.5), we
have to express the inequality conditions as nonnegativity conditions. To do so, we define
the polynomial pu(x) for u ∈ U1

B ∪ Ũ
1
B to be equal to h(u) − 1 with respect to the basis

contained in x.
Finally, we formulate a polynomial optimization problem with optimal value pmin to

compute an optimal lattice for Case 1

pmin = min p0(x) (4.8)

x ∈ R9 (4.9)

pu(x) = 0 ∀u ∈ U1
B (4.10)

pu(x) > 0 ∀u ∈ Ũ1
B (4.11)

If Case 1 of Theorem 1.3 holds, the optimal value pmin is equal to (det Λ∗(K))2. We re-
place the strict inequality conditions by non-strict inequality conditions in order to obtain
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a semidefinite program (SDP) by using a sum of squares (SOS) relaxation as explained in
Section 2.1.2. Therefore, we have also to check whether the computed solutions are fea-
sible for problem (4.8) – (4.11), which means we have to check whether they even satisfy
the strictly inequality conditions.

The optimization variable x ∈ R9 contains the elements of basis vectors b1, b2, b3 ∈ R
3

defining a lattice. Thus, we have to optimize over nine variables. We apply SOS relaxations
to the polynomial optimization problem in order to obtain a semidefinite program (SDP),
which can be solved by SDP solvers. In Section 2.1.2, we explained the SOS relaxation of
a polynomial optimization problem.

If we split equation (4.10) into pu(x) ≤ 0 and −pu(x) ≤ 0 for all u ∈ U1
B, we get the

following SDP by using SOS relaxations:

psos,i, j = max Λ

Λ ∈ R>0

p0(x) − Λ ∈ Σ9,2i +
∑

u∈U1
B

pu(x) Σ9,2 j − pu(x) Σ9,2 j +
∑

u∈Ũ1
B

pu(x) Σ9,2 j,

where Σm,k denotes the set of SOS polynomials with m variables and degree at most k. To
compute an optimal solution for superballs with p = 4, the polynomials pu for u ∈ U1

B∪Ũ
1
B

have degree four. Furthermore, the polynomial p0(x) has degree six. If we consider i = 3
and j = 1, the positive semidefinite matrices of the cone Σ9,6 have dimension 220 and the
matrices of the cone Σ9,2 have dimension 10. We can solve this SDP with the interior point
method by using CSDP, a C library for semidefinite programs [11]. The obtained objective
value is psos,3,1 = 0.64432 . . .. Since our goal is to determine the density of a critical lattice,
pmin is equal to the volume of its fundamental domain squared. As psos,i, j ≤ pmin for
i, j ∈ N, we obtain lower bounds for pmin by solving the SDP. The optimal lattice packing
density is equal to vol B4

3/(8
√

pmin) and thus by using the upper bound for the density
computed in Section 3, we get pmin ≥ 0.8590. Furthermore, if we had pmin = 0.64432 . . .,
the corresponding density would be equal to 1.0094 . . .. This implies, that psos,3,1 is not
equal to pmin. Thus, using the SOS relaxation with i = 3 and j = 1 to determine pmin is not
useful. However, by increasing the degrees i and j the solution of the corresponding SDP
might be equal to pmin. If we set j = 2, the ten-dimensional matrices increase to dimension
55. The SDP solver had to interrupt its computation after around 10 hours, which might
be because of memory problems. For j = 3, the dimension of these matrices is equal to
220 and the solver immediately stops with the message that the SDP is too large. It might
be possible to determine pmin by solving the SDP psos,i, j, but we probably have to choose
larger values for i and j, and then the corresponding SDP is not solvable in practice.

In the previous step, we split the equality condition (4.10) into inequality conditions in
order to apply SOS relaxations to the polynomial optimization problem. Alternatively, we
can use the condition

p(x) is SOS in R[x]/I,

where I is the ideal generated by the polynomials pu(x) for u ∈ U1
B. Thus, p(x) has to be
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SOS, if pu(x) = 0 for all u ∈ U1
B. The corresponding SDP is then given as

psos,i, j = max Λ (4.12)
Λ > 0 (4.13)
p0(x) − Λ is SOS in R[x]/I (4.14)

p0(x) − Λ ∈ Σ9,2i +
∑

u∈Ũ1
B

pu(x) Σ9,2 j. (4.15)

For checking condition (4.14) the solver has to compute a Gröbner basis for the ideal
I. For more details about Gröbner bases, we refer the interested reader to Becker and
Weispfenning [7], Buchberger [14, 15], and Cox, Little, and O’Shea [22]. For superballs
with p = 4, the calculation of the Gröbner basis is too expensive, and thus, this SDP is not
solvable.

4.2 Shortest vector problem
In the previous section, we saw that we can formulate a polynomial optimization problem
to find an optimal lattice packing of superballs if p is an even integer. Unfortunately, we
could not solve this problem by using SOS relaxations. Thus, we compute lattice packings
and check, whether these packings are locally optimal. For this, we first have to check
whether a given lattice is a packing lattice.

As defined before, a lattice Λ ⊆ Rn described by its basis vectors b1, . . . , bn is a packing
lattice forK , if and only if, for all x, y ∈ Λ the intersection of the interior of x+K and y+K

is empty. Since the packing of a lattice packing coincides in each fundamental domain, we
just have to check whether the solids do not intersect in the fundamental domain spanned
by the basis vectors b1, . . . , bn. For the following lemma, we consider solids which are
proper, which means, their interior is not empty.

Lemma 4.2. Let K be a proper convex body, D = 1
2 (K −K) its centrally symmetrization,

and Λ a lattice. Then Λ is a packing lattice of K if and only if (2D)◦ ∩ Λ = {0}.

Proof. In [42, Proposition 30.4], Gruber provide the following proof of Lemma 4.2

Λ is a packing lattice of D

⇐⇒ D◦ ∩
(

1
2

D◦ + x
)

= ∅ for all x ∈ Λ \ {0}

⇐⇒ x < D◦ − D◦ for all x ∈ Λ \ {0}

Since D is centrally-symmetric, we get D − D = 2D. This implies

Λ is a packing lattice of D⇐⇒ (2D)◦ ∩ Λ = {0}

By applying the following result of Minkowski [61]

Λ is a packing lattice of K ⇐⇒ Λ is a packing lattice of D,

the claim follows. �
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The equalityK = 1
2 (K −K) for convex bodiesK , which are centrally-symmetric with

respect to the origin, leads to the following corollary.

Corollary 4.3. Let Λ be a lattice and K be a centrally-symmetric proper convex body.
Then 2Λ is a packing lattice of K if and only if K◦ ∩ Λ = {0}.

Due to Corollary 4.3, we can check whether a given lattice 2Λ is a packing lattice for a
solid K by checking whether zero is the only common point of the interior of the solid and
the lattice Λ. For this, we calculate the shortest nonzero vector of Λ. Then, the intersection
consists just of the zero point, if and only if, the shortest vector of Λ lies not in K◦.

The shortest vector problem is a famous problem in number theory and has been studied
by mathematicians for more than a century. We consider the case for calculating a shortest
vector concerning the `p

n norm in dimension n. For more information about the general
problem, see for example [77].

To calculate the shortest vector concerning the `p
n norm in a lattice, the following lemma

inspired by the work of Dieter [29], gives a necessary condition.

Lemma 4.4. Let b1, . . . , bn ∈ R
n be a basis of a lattice Λ and let µ ∈ R and p ∈ R. A lattice

point v =
∑n

i=1 αibi with α ∈ Zn and ‖v‖p ≤ µ, has to satisfy

|αi| ≤ µ
√

n
√

G−1
ii for all i ∈ {1, . . . , n},

where G is the Gram matrix of Λ given by Gi j = 〈bi, b j〉.

Before proving this lemma, we define the dual lattice. The dual lattice Λ# of Λ ⊂ Rn is
defined by

Λ# = {x ∈ Rn : 〈x, v〉 ∈ Z for all v ∈ Λ}.

The vectors b#
1, . . . , b

#
n ∈ Λ# satisfying

〈bi, b#
j〉 =

1, if i = j,
0, otherwiese.

for i, j ∈ [n] build a basis of the n-dimensional lattice Λ#. Furthermore, the dual of the dual
of a lattice is equal to the lattice, that is (Λ#)# = Λ. The Gram matrix G# concerning the
dual basis vectors b# is the inverse matrix of G.

Proof of Lemma 4.4. Let v =
∑n

i=1 αibi be a lattice point in Λ. Then, we get the value αi by
the inner product 〈v, b#

i 〉. Thus, each αi is bounded above by

|αi| =
∣∣∣〈v, b#

i 〉
∣∣∣ =

∣∣∣∣∣∣∣∣
n∑

j=1

v jb#
i j

∣∣∣∣∣∣∣∣ ≤
n∑

j=1

∣∣∣v jb#
i j

∣∣∣ .
The Hölder inequality [44, p. 24, Theorem 12] states

n∑
i=1

|xiyi| ≤ ‖x‖p‖y‖q,
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for x, y ∈ Rn and 1 < p, q < ∞ with 1/p + 1/q = 1. Thus, by applying the Hölder
inequality we obtain

n∑
j=1

∣∣∣v jb#
i j

∣∣∣ ≤ ‖v‖p ‖b#
i ‖q ≤ µ ‖b

#
i ‖q,

for q satisfying 1/p + 1/q = 1. Moreover, we can use the property

‖x‖q ≤ ‖x‖1 ≤
√

n ‖x‖2 ,

for q ≥ 1. The square of the `2
n norm of the dual basis vectors b#

1, . . . , b
#
n is given in the

Gram matrix, because G−1
ii = 〈b#

i , b
#
i 〉 = ‖b#

i ‖
2
2 and therefore, |αi| ≤ µ

√
n
√

G−1
ii . �

To check whether a lattice Λ is a packing lattice for Bp
3 , we compute all lattice points

satisfying the necessary condition given in Lemma 4.4 for n = 3, and then, we take the one
with the smallest `p

3 norm. A lattice Λ is a packing lattice of Bp
3 if and only if the `p

3 norm
of the shortest vector in Λ is at least two.

4.3 Locally optimal lattice packings
Since we could not solve the optimization problem (4.8) – (4.11) for finding an optimal
lattice packing by using SOS relaxations, as explained in Section 4.1, we calculate lo-
cally optimal lattice packings. To do so, we determine packing lattices by using Newton’s
method and check whether these solutions satisfy the KKT conditions as well as the sec-
ond order condition. If so, the obtained solution is locally optimal. First, we formulate
the KKT conditions and the second order condition explicitly for the considered optimiza-
tion problem (4.8) – (4.11). Then, we describe the approach for computing locally optimal
lattice packings using these conditions. Furthermore, for each of the four regimes of p,
we provide the best obtained locally optimal packing lattice. In this section, we consider
superballs defined by arbitrary p ≥ 1, thus pu(x) is not a polynomial unless p is an even
integer.

4.3.1 Sufficient condition
Our goal is to check whether a feasible solution x∗ of the problem (4.8) – (4.11) is locally
optimal. In order to apply the sufficient condition of local optimality given in Theorem
2.7, we have to determine the objective function f (x) and the constraint functions hi(x) and
gi(x) used in this theorem.

The objective function f (x) is defined by the polynomial p0(x) = d(x)2 in (4.7). The
problem (4.8) – (4.11) contains the equality condition

pu(x) = 0 for all u ∈ Ui
B,

for i ∈ {1, 2, 3} depending on the considered case of Theorem 1.3. Thus, the functions pu

for u ∈ Ui
B correspond to the desired functions hi(u). For the first two cases of Minkowski’s

theorem, the optimization problem also contains strict inequality conditions

pu(x) > 0 for all u ∈ Ũi
B,
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for i ∈ {1, 2}. To be able to apply the KKT conditions to our problem, we have to transform
the strict inequality conditions into non-strict inequality conditions. The functions pu(x)
for u ∈ Ũi

B with i ∈ {1, 2}, which define these inequality conditions, correspond to the
remaining functions g j for j ∈ [n], which we need to apply Theorem (2.7). Note that for
i = 3, there exist no inequality conditions.

The sufficient condition requires that the objective function f (x) and the constraint
functions hi(x) and g j(x), which are pu(x) for u ∈ Ui

B ∪ Ũ
i
B, are twice-differentiable at x∗.

The objective function satisfies this condition. The functions pu(x) for u ∈ Ui
B ∪ Ũ

i
B are

of the form ∣∣∣γT
1 x

∣∣∣p +
∣∣∣γT

2 x
∣∣∣p +

∣∣∣γT
3 x

∣∣∣p , (4.16)

with γ1, γ2, γ3 ∈ {−1, 0,+1}9. Since we know the considered solution x∗ before checking
the second order condition, we can determine the function(

sign
(
γT

1 x∗
)
γT

1 x
)p

+
(
sign

(
γT

2 x∗
)
γT

2 x
)p

+
(
sign

(
γT

3 x∗
)
γT

3 x
)p
, (4.17)

which is equal to (4.16) for x being close to x∗. This function is twice-differentiable at x∗

for p ≥ 1 unless there exist no pu(x∗) with summand 0p for p < 2.

KKT conditions

The sufficient condition given in Theorem 2.7 requires that the KKT conditions (2.12) –
(2.16) are satisfied. Thus, we have to determine Lagrange multipliers. For each equal-
ity condition, we consider one Lagrange multiplier µu. Furthermore, for each inequality
condition, we need one Lagrange multiplier νu. Thus, we need Lagrange multipliers

µ = {µ1, . . . , µm} for m =
∣∣∣Ui

B

∣∣∣ ,
ν = {ν1, . . . , νn} for n =

∣∣∣∣Ũi
B

∣∣∣∣ .
Based on the objective function, the constraint functions and the Lagrange multipliers, the
corresponding Lagrange function is

L(x, µ, ν) = p0(x) +
∑

u∈Ui
B

µu pu(x) +
∑

u∈Ũi
B

νu pu(x). (4.18)

Furthermore, the KKT conditions for the considered optimization problem (4.8) – (4.11)
are

∇xL(x∗, µ∗, ν∗) = 0 (4.19)

pu(x∗) > 0 for all u ∈ Ũi
B (4.20)

pu(x∗) = 0 for all u ∈ Ui
B (4.21)

ν∗u ≥ 0 for all u ∈ Ũi
B (4.22)

ν∗u pu(x∗) = 0 for all u ∈ Ũi
B (4.23)

with Lagrange multipliers µ∗ = {µ∗1, . . . , µ
∗
m} and ν∗ = {ν∗1, . . . , ν

∗
n}.
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The conditions (4.20) and (4.21) are the constraint conditions of the considered op-
timization problem to ensure the feasibility of x∗. Since we are interested in solutions
satisfying the inequality constraints strictly, we use in (4.20) strict inequality conditions.
Thus, the condition (4.23) can just be satisfied if ν∗u = 0 for u ∈ Ũi

B. Consequently, we
set ν∗u equal to 0 for all u ∈ Ũi

B, and thus, the conditions in (4.22) and (4.23) are satisfied.
Hence, a feasible solution x∗ of the considered problem satisfies the KKT conditions, if
there exists Lagrange multipliers µ∗ = {µ∗1, . . . , µ

∗
m}, such that ∇xL(x∗, µ∗, 0) = 0.

Second order condition

Due to Theorem 2.7, the second order condition is satisfied if and only if for all y , 0 with

yTgu(x∗) = 0 for all u ∈ Ũi
B where ν∗u > 0 (4.24)

yT∇x pu(x∗) ≥ 0 for all u ∈ Ũi
B where pu(x∗) = 0, ν∗u = 0 (4.25)

yT∇x pu(x∗) = 0 for all u ∈ Ui
B, (4.26)

the second derivative of the Lagrange function satisfies the following condition

yT
(
∇2

x L(x∗, µ∗, ν∗)
)
y > 0. (4.27)

Since ν∗ is equal to zero, condition (4.24) is satisfied. Furthermore, for a feasible
solution x of the considered optimization problem (4.8) – (4.11), the value pu(x) is strictly
positive for all ∈ Ũi

B, therefore, condition (4.25) holds, too. Thus, condition (4.26) is left
to check. For this, we define

Y =
{
y ∈ R9 : y , 0, yT ∇x pu(x∗) = 0 for all u ∈ Ui

B

}
.

To check the second order condition (4.27), we just have to check the condition

yT
(
∇2

x L(x∗, µ∗, ν∗)
)
y > 0 for all y ∈ Y.

Let I be the vector subspace generated by the polynomials (∇pu(x∗))T y for u ∈ Ui
B and

yT = (y1, . . . , yn). Furthermore, let ỹ consists of the standard monomials corresponding to
the basis of I and let M be a symmetric matrix such that

y
(
∇2

xL(x∗, µ∗, ν∗)
)
y = ỹMỹT mod I. (4.28)

Then, the second order condition (4.27) is satisfied if and only if M is positive definite,
which means the eigenvalues of M are strictly positive. Since for i ∈ {1, 2} the set Ui

B has
cardinality six, the matrix M has dimension three. For i = 3 the set Ui

B has cardinality
seven, and thus, the matrix M has dimension two. In Section 4.3.6, we determine ỹ and M
explicitly for a certain solution (x∗, µ∗).

4.3.2 Computations via Newton’s method
We have determined the KKT conditions and the second order condition explicitly for the
considered problem. The next task is to compute locally optimal lattices. Since we have to
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determine solutions (x∗, µ∗) ∈ R9+k for k = |Ui
B| and i ∈ [3], such that

∇x L(x∗, µ∗, 0) = 0 (4.29)

pu(x∗) = 0 for u ∈ Ui
B, (4.30)

we have to calculate the roots of these functions to obtain locally optimal solutions. To do
so, we apply Newton’s method: This is an iterative approach to find roots of a given strictly
convex, differentiable function f : Rn → R close to a given point s, which is an initial
guess for the desired root r. For this we approximate f around a point a by using the Taylor
approximation

f (a + x) =

(
f (a) + ∇ f (a)Tx +

1
2

xT∇2 f (a)x
)

+ α,

where α represents higher order terms. In each Newton step, we use this approximation in
order to find the minimizer. This can be done by setting the gradient of

q(x) = f (a) + ∇ f (a)Tx +
1
2

xT∇2 f (a)x

equal to zero. The Newton’s method starts with an initial guess s1 and in each iteration the
considered point s j will be updated to s j+1 by

s j+1 = s j −
∇x f (s j)
∇2

x f (s j)
.

In such a way, Newton’s method determines a sequence of points converging to r. The
procedure terminates by reaching a desired accuracy. We refer interested reader to [56,
Chapter XVIII] of Akilov and Kantorovich. This book also includes the first thorough
analysis of the convergence behavior of the Newton’s method.

To compute locally optimal lattice packings, we have to find the roots of ∇xL(x, µ, 0)
and of pu(x) for u ∈ Ui

B. For this, we apply Newton’s method, with an initial guess
s = (x, µ), where x ∈ R9 is a random point and we set µ ∈ {0}k with k = |Ui

B|. For the
computation of locally optimal lattice packings, we used Sage, which provides a method
for applying the Newton’s method to a given vector function f and a given initial guess s. In
our case, we use f T = [L(x, µ, 0), pu1 (x), . . . , puk (x)], where k = |Ui

B|. If the computation
was successful, we check whether the obtained root [x∗, µ∗] is indeed a locally optimal
solution.

First, we have to check whether x∗ defines a feasible lattice packing. To do so, we
define the vectors

bT
1 =

(
x∗1, x

∗
2, x
∗
3

)
, bT

2 =
(
x∗4, x

∗
5, x
∗
6

)
, bT

3 =
(
x∗7, x

∗
8, x
∗
9

)
.

Furthermore, let Λ be the lattice defined by the basis vectors b1, b2, and b3. Due to Corol-
lary 4.3, 2Λ is a packing lattice for Bp

3 if and only if the shortest vector in Λ has `p
3 norm

one. Thus, we check this condition by computing the shortest vector. For this, we can apply
Lemma 4.4.

Next, we have to check whether x∗ is a feasible solution of the optimization problem
(4.8) – (4.11). Since x∗ is a root of f , the equality conditions are satisfied. Thus, the
inequality conditions pu(x∗) > 0 for all u ∈ Ũ i

B are remain to check.
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Since we would like to compute locally optimal solutions, we have to check whether
(x∗, µ∗) satisfies the second order condition. In case the solution (x∗, µ∗) satisfies these con-
ditions, x∗ defines a locally optimal lattice packing. Since the given optimization problem
is not convex, the locally optimal solution is not necessary globally optimal. Thus, we
apply the above approach to many random starting points s, which are in our approach
10,000, to obtain many locally optimal solutions. Then, we take the best solution over all
obtained locally optimal solutions, which is hopefully equal to a globally optimal solution.
We run this procedure for each of the three cases of Theorem 1.3 and take the one with a
densest lattice packing. In the following sections, we provide the obtained locally optimal
lattice packings.

In [53, 54], Jiao, Stillinger, and Torquato divide the range of p ∈ [1,∞) into four
regimes:

[1, log2 3], [log2 3, 2], [2, 2.3018 . . .], [2.3018 . . . ,∞) .

For each of these regimes, they give a family of lattices defining a lattice packing. Analo-
gously, we divide the range of p ∈ [1,∞) in a similar way, and for each of these regimes
we compute lattice packings, for which we numerically prove local optimality. Due to the
pattern of the obtained lattices, we define the second regime in such a way, that it does not
include the value log2 3. Thus, we consider the following partitioning:

[1, log2 3], (log2 3, 2], [2, 2.3018 . . .], [2.3018 . . . ,∞) .

4.3.3 First regime
For the first regime [1, log2 3], we obtained locally optimal lattice packings for each of the
three cases of Theorem 1.3. The lattice L3, which is defined as

L3 = Z 2b1 ⊕ Z 2b2 ⊕ Z 2b3,

with
b1 = (−x, y, z) , b2 = (z,−x, y) , b3 = (y, z,−x) ,

where x, y, z ∈ R>0 with z ≥ x ≥ y such that

z = 3−1/p + x − y,

xp + yp + zp = 1,

(x − y)p + (3−1/p + x)p + (3−1/p − y)p = 1,

is the best locally optimal lattice we computed. In this packing, each solid has fourteen
contacting neighbors. For p = 1, the lattice L3 coincides with an optimal packing lattice
for octahedra found by Minkowski [61]. This lattice is defined by the basis vectors

bT
1 = 2 (−1/3, 1/6, 1/2) , bT

2 = 2 (1/2,−1/3, 1/6) , bT
3 = 2 (1/6, 1/2,−1/3)

and has density 18/19 = 0.947368421 . . . .
On the left-hand side in Figure 4.2 a part of the L3 lattice packing for superballs with

p = 1.2 is given. For the sake of clarity, in the figure one superball with just six of its
fourteen contacting neighbors is pictured. Furthermore, on the right-hand side in Figure
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b3
b2 + b3

b1

b1 + b3b1 + b2 + b3

b1 + b2

b2

Figure 4.2: Left: A part of the L3 lattice packing for B1.2
3 . Right: Seven of fourteen contact

points in the L3 lattice packing for B1.2
3 . The contact points are labeled in red.

4.2 the superball B1.2
3 with seven of its fourteen contact points is shown. The contacting

neighbors on the left-hand side correspond to the contact points ±b1, ±b2, and ±b3 shown
on the right-hand side.

In our computations, we numerically proved local optimality of L3. For this, we
checked the KKT conditions and the second order condition by a computer program. In
[53, 54], Jiao, Stillinger, and Torquato publish a lattice O1 for the lattice packing of super-
balls in the first regime. This lattice is defined by

O1 = Z 2b1 ⊕ Z 2b2 ⊕ Z 2b3,

with

b1 =
(
3−1/p, 3−1/p, 3−1/p

)
, b2 = (−q, s,−q) , bT

3 = (q,−q,−s) ,

where

2qp + sp = 1,

(s − q − 3−1/p)p + (s + q − 3−1/p)p = 2/3.

The O1 lattice satisfies none of the three cases of Theorem 1.3, because each solid has
just eight contacting neighbors in the packing for p ∈ (1, log2 3). In 1953, Swinnerton-Dyer
proved that the number of contact points in any locally optimal lattice packing in dimension
d is at least d(d + 1) [73]. For d = 2, 3, this was already proven by Minkowski in 1904 [61].
Since we are considering three-dimensional packings, any locally optimal lattice packing
has to have at least twelve contact points. Thus, the O1 lattice is not even locally optimal.

In case p ∈ {1, log2 3}, the density of the L3 lattice packing is equal to the density of
the O1 lattice packing. For p ∈ {1.05, 1.1, . . . , 1.55}, the lattice L3 defines a lattice packing
with a higher density than the O1 lattice.

In [63], Ni, Gantapara, de Graaf, van Roij, and Dijkstra state that they found better
lattice packings for the first regime than the O1 lattice packing. They give one example for
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p = 1.4: The basis vectors of their lattice are

b1 =


0.912492

0.912403

−0.912165

 , b2 =


−0.271668

1.80916

−0.288051

 , b3 =


0.28834

−0.272001

−1.80882

 .
The packing density they claim is equal to the density of the L3 lattice packing. If b1, b2,
and b3 generate a packing lattice Λ for B1.4

3 , then there is no lattice point in 1/2Λ with `1.4
3

norm less than one. Thus, we have to check whether there is no lattice point in Λ with `1.4
3

norm less than 2. If we consider the lattice point 2b1 − b2 − b3, we obtain

‖ 2b1 − b2 − b3 ‖1.4 =
∥∥∥ (1.808312, 0.287647, 0.272541)T

∥∥∥
1.4 = 1.994 . . . .

Since the `1.4
3 norm of this lattice point is less than two, the vectors b1, b2, and b3 do not

generate a packing lattice for B1.4
3 . This means, their provided vectors does not define a

feasible lattice packing. Thus, they claim that they found better lattice packings for the first
regime than the O1 lattice packing, but the only example they state is wrong.

For the first regime, the densities of the O1 and L3 lattice packing are given in Table 4.1
and in Figure 4.3. The numerical upper bounds, which are displayed in the table as well as
in the figure, are obtained by using the approach described in Section 3.3. As mentioned
before, the L3 lattice gives the best lattice packing over all three cases for the considered
values of p in the first regime. In this regime, the upper bounds obtained by using the
insphere method, explained in Section 1.1.4, are equal to one. Thus, these upper bounds
are not given in Table 4.1 or in Figure 4.3.

p O1 packing density L3 packing density Upper bound
1.05 0.92482 . . . 0.92713 . . . 0.93832 . . .
1.1 0.90461 . . . 0.90913 . . . 0.9166 . . .
1.15 0.88686 . . . 0.89305 . . . 0.89843 . . .
1.2 0.87121 . . . 0.87861 . . . 0.8823 . . .
1.25 0.85738 . . . 0.86558 . . . 0.86798 . . .
1.3 0.84516 . . . 0.85375 . . . 0.8553 . . .
1.35 0.83435 . . . 0.84290 . . . 0.84415 . . .
1.4 0.82497 . . . 0.83284 . . . 0.8341 . . .
1.45 0.81674 . . . 0.82330 . . . 0.82517 . . .
1.5 0.80948 . . . 0.81395 . . . 0.8169 . . .
1.55 0.80240 . . . 0.80417 . . . 0.80961 . . .
log2 3 0.79594 . . . 0.79594 . . . 0.80495 . . .

Table 4.1: Lower bounds given by the O1 and L3 lattice packing density. For p > 1,
numerical upper bounds obtained by the approach explained in Section 3.3.
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1.0 1.1 1.2 1.3 1.4 1.5
p

0.80

0.85

0.90

0.95
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ns
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Numerical upper bound
L3-lattice
O1-lattice

Figure 4.3: O1 and L3 lattice packing density, and numerical upper bounds obtained by the
approach explained in Section 3.3

4.3.4 Second regime

For p ∈ {1.59, 1.6, . . . , 2}, we searched for locally optimal solutions by using 10,000 ran-
dom starting vectors x ∈ R9 defining a lattice Λ ⊂ R3. For Case 2 and 3, our computations
did not find any solution satisfying the KKT conditions (4.19) – (4.23). This leads to the
following conjecture.

Conjecture 4.5. For p ∈ (log2 3], there exists no locally optimal solution satisfying Case
2 or 3 of Theorem 1.3.

For Case 1, we found locally optimal solutions. We proved the local optimality of these
lattices by checking the KKT conditions as well as the second order condition numerically.
Since we did not find any pattern in these lattices, we are not able to describe them as a
family of lattices depending on p like the L3 lattice. In the appendix, we give the basis
vectors of the best obtained lattices for p ∈ {1.59, 1.99} and for p ∈ {1.6, 1.65, . . . , 1.95}.

In [53], Jiao, Stillinger, and Torquato provide a family of lattices called O0 defined as

O0 = Z 2b1 ⊕ Z 2b2 ⊕ Z 2b3,
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with

b1 = (1, 0, 0) , b2 = (0, 1, 0) , b3 =

(
1
2
,

1
2
,
(
1 − 21−p

)1/p
)
.

They state that each solid in this lattice has twelve contacting neighbors. Furthermore,
they define the regime in which O0 would be the densest packing by [log2 3, 2]. Thus, the
difference to the regime we consider is that they include the value log2 3. For p = log2 3,
we do not obtain any locally optimal solution from our calculations for Case 1. Therefore,
in this regime we consider p > log2 3. For p = log2 3 the basis vectors of the O0 lattice are

2bT
1 = (2, 0, 0), 2bT

2 = (0, 2, 0), 2bT
3 = (1, 1, 1).

For the considered values of p, the basis vectors of the L3 lattice are

2b̃T
1 = (−1, 1, 1), 2b̃T

2 = (1 − 1, 1), 2b̃T
3 = (1, 1,−1)

Since b̃1 = −b1 +b3, b̃2 = −b2 +b3, and b̃3 = b1 +b2−b3, the O0 and L3 lattice coincides for
p = log2 3. Hence, for p = log2 3 the O0 lattice satisfies Case 3 and, thus, the solids in this
packing have fourteen contacting neighbors. A part of the packing and some of the contact
points are shown in Figure 4.4. The contacting neighbors on the left-hand side correspond
to the contact points on the right-hand side, except for the contact point b1 +b2 +b3. For that
point, we do not show the contacting neighbors, since it would be in front of the centered
superball.

b3

b2 + b3

b1

b1 + b3

b1 + b2 + b3

b1 + b2

b2

Figure 4.4: Left: A part of a lattice packing for Blog2 3
3 satisfying Case 3 of Theorem 1.3.

Right: Seven of twelve contact points of the packing, which is partially pictured on the
left-hand side. The contact points are labeled in red.

For p ∈ (log2 3, 2], the O0 lattice satisfies Case 1. To see this, one has to define the
basis vectors by b̃1 = b1, b̃2 = b1 − b3, and b̃3 = b1 + b2 − b3. For p = log2 3, the lattice

point −b̃1 + b̃2 + b̃3 = −2
(
0, 0,

(
(1 − 2)1−p

)1/p
)T

is equal to (0, 0, 1)T. Since this is a point
on the boundary of the superball, Case 1 is not satisfied.

In [63], Ni, Gantapara, de Graaf, van Roij, and Dijkstra assert that they found better
lattice packings than the O0 lattice packing for the second regime. They give an example
for p = 1.7, where they obtained a lattice packing density of 0.7661. Unfortunately, they
do not publish the basis vectors defining the corresponding packing lattice. The density of
their lattice packing is equal to the best density we computed. However, we determined
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better lattice packings than the O0 lattice packings, except for p ∈ {1.59, 1.6, 2}. In these
three cases, the lattice packing density we obtained is equal to the density of the O0 lattice
packing. For the second regime, the densities of the O0 lattice and the best densities we
computed, are listed in Table 4.2. The upper bound given in Table 4.2 is for p ≤ 1.8
obtained by a numerical solution of the approach described in Section 3.3. For 1.85 ≤ p <
2, the upper bound is given by applying the insphere method. Furthermore, for p = 2,
where the superball is a round ball, the optimal density is known [43]. In this case, the
density of the O0 lattice is

vol B2
3

8(1 − 21−p)1/p =
4/3 π

8/
√

2
=

π

3
√

2
,

which is equal to the optimal density of π/
√

18. Furthermore, by our calculations, we
obtained the optimal lattice packing density, too.

p O0 packing density New packing density Upper bound
1.59 0.79418 . . . 0.79418 . . . 0.80432 . . .
1.6 0.79084 . . . 0.79084 . . . 0.80308 . . .
1.65 0.77656 . . . 0.77663 . . . 0.79744 . . .
1.7 0.76567 . . . 0.76610 . . . 0.79262 . . .
1.75 0.75742 . . . 0.75854 . . . 0.78859 . . .
1.8 0.75126 . . . 0.75303 . . . 0.78535 . . .
1.85 0.74677 . . . 0.7488 . . . 0.77942∗ . . .
1.9 0.74364 . . . 0.74550 . . . 0.76574∗ . . .
1.95 0.74161 . . . 0.74277 . . . 0.75278∗ . . .
2 π/

√
18 ≈ 0.74048 π/

√
18 π/

√
18∗

Table 4.2: O0 lattice packing density and the new packing density given by the * lattices.
Numerical upper bounds for p ≤ 1.8 obtained by the approach of Section 3.3 are displayed.
For p ∈ {1.85, 1.9, 1.95}, upper bounds via insphere method, explained in Section 1.1.4, are
shown. For p = 2, the optimal density is listed. The upper bounds with a star are rigorous
bounds.

In Figure 4.5, lower and upper bounds, which are also displayed in Table 4.2, are shown.
The * lattices denote the best obtained packing lattices for this regime. One can see that
at the beginning and at the end of the regime both lower bounds are equal. The largest
improvement of the lower bounds by the * lattices is between p = 1.8 and p = 1.9. Fur-
thermore, the difference between the new lower bounds and the upper bounds obtained by
the calculations of Section 3.3 becomes larger the closer p gets to two. For p = 2, our
upper bound coincides with the upper bound provided by Cohn and Elkies [19].

Note that in the best computed lattice packing in the previous regime, each solid has
fourteen contacting neighbors. However, in this regime, our computer program did not find
any locally optimal solution satisfying Case 3 of Theorem 1.3. This means, we did not find
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Figure 4.5: Density of the O0 lattice packing and the new lattice packings defined by the
* lattices. Numerical upper bounds obtained from the approach of Section 3.3. Rigorous
upper bounds via insphere method, explained in Section 1.1.4.

any locally optimal solution with fourteen contacting neighbors. For p = 2, it is known
that the maximal number of round balls which can simultaneously touch a ball without
pairwise intersection is equal to twelve. This number is called the kissing number. For
three-dimensional superballs with p < {1, 2,∞}, we do not know the kissing number.

4.3.5 Third regime

For p ∈ {2, 2.05, . . . , 2.3} and for p = 2.3018, we computed locally optimal lattice packings.
The best obtained lattice packings are equal to the lattice packings found by Jiao, Stillinger,
and Torquato [53] for this regime. The family of these lattices is defined by

C0 = Z 2b1 ⊕ Z 2b2 ⊕ Z 2b3

with

b1 =

(
2−

1
p , 2−

1
p , 0

)
, b2 = (0, 0, 1) , b3 =

(
−s,

(
s + 2−

1
p

)
,

1
2

)
,

where s is the smallest positive root of the equation(
s + 2−

1
p

)p
+ sp + 2−p − 1 = 0 .
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It has density
vol Bp

3

23− 1
p

(
2s + 2−

1
p

) .
The C0 lattice packing has twelve contact points

±b1, ± b2, ± b3, ± (b1 − b3) , ± (b2 − b3) , ± (b1 + b2 − b3) .

We define the basis vectors

b̃1 = b1 − b3, b̃2 = b2, b̃3 = b1 + b2 − b3,

generating the same lattice. Using the new basis vectors, one can easily check that Case 1
of Theorem 1.3 is satisfied. On the left-hand side in Figure 4.6, a round ball B2

3 is pictured
with nine of its twelve contact points in the C0 lattice packing. There are three contact
points in front of the ball, and six contact points around the ball uniformly distributed.
Furthermore, there are three contact points behind the ball. In the center of the figure a
superball with p = 2.3018 is shown from the same perspective with the corresponding
nine contact points. For this solid, there are also three further contact points behind the
ball. Furthermore, on the right-hand side, we also displayed these contact points for the
superball with p = 6. From this picture, one can see how the contact points are distributed
over the surface of the superball for p tend to infinity.

Figure 4.6: Contact points in the C0 lattice packing for p = 2, p = 2.3018, and p = 6. The
contact points are pictured in red.

For p = 2, the C0 lattice packing is equal to the packing shown in Figure 1.3. In this

case, the value of s is
(
1 − 1

√
2

)
/2, and by calculating the packing density

vol B2
3

22.5 (
2s + 2−1/2) =

4/3 π
22.5 (

1 + 2−1/2 + 2−1/2) =
π

3
√

2
,

we obtain the optimal packing density π/
√

18.
For p = 2.3018, a superball with six of its twelve contacting neighbors in the C0 lattice

packing is pictured on the left-hand side in Figure 4.7. On the right-hand side nine of
twelve contact points of a superball with p = 2.3018 are shown. The remaining three
contact points −b2, −(b2 + b3), and −(b1 + b2 − b3) lie behind the solid. The contacting
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b2 + b3 b1 + b2 − b3

−b1

b3

b1

b2

b3 − b1

b1 − b3−b3

Figure 4.7: Left: A part of the C0 lattice packing for p = 2.3018. Right: Nine of twelve
contact points in the C0 lattice packing for p = 2.3018. The contact points are labeled in
red.

neighbors on the left-hand side correspond to the contact points ±b1, ±b3, and ±(b1 − b3)
on the right-hand side.

For the considered values of p, lower bounds given by the C0 lattice packing are listed
in Table 4.3. Furthermore, we compare these lower bounds with the best known upper
bounds. For p ≤ 2.1, we display the upper bounds obtained by using the insphere method.
Furthermore, the remaining upper bounds are obtained by numerical results of the approach
described in Section 3.3. In Figure 4.8, the computed lower and upper bounds of the third
regime are shown.

Lemma 4.6. The C0 lattice satisfies the KKT conditions (4.19) – (4.23) for p ∈ R>0 .

Proof. Let B be a 3 × 3 matrix with columns equal to the basis vectors b̃1, b̃2, and b̃3.
By computing the `p

3 norm of the elements of U1
B and Ũ1

B, one can easily check that the
conditions (4.20) and (4.21) are satisfied. Since we set ν∗ = (0, 0, 0), the conditions (4.22)
and (4.23) are satisfied, too. The next task is to check condition (4.19). To do so, we have
to find suitable Lagrange multipliers µ∗1, . . . , µ

∗
6, such that for f = L(x∗, µ∗, ν∗) the equality

∇xL(x∗, µ∗, ν∗) =

(
∂ f
∂x1

, . . . ,
∂ f
∂x9

)T

= 0

holds. Since |U1
B| = 6, we have to consider six functions pu:

p1(x) = |x1|
p + |x2|

p + |x3|
p − 1 (4.31)

p2(x) = |x4|
p + |x5|

p + |x6|
p − 1 (4.32)

p3(x) = |x7|
p + |x8|

p + |x9|
p − 1 (4.33)

p4(x) = |x1 − x4|
p + |x2 − x5|

p + |x3 − x6|
p − 1 (4.34)

p5(x) = |x1 − x7|
p + |x2 − x8|

p + |x3 − x9|
p − 1 (4.35)

p6(x) = |x4 − x7|
p + |x5 − x8|

p + |x6 − x9|
p − 1 (4.36)

Furthermore, we have to calculate the partial derivative of the Lagrange function for each
variable xi. Since we are considering the basis vectors b̃1, b̃2, b̃3 of a lattice 2Λ, the basis
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vectors of Λ have to satisfy the conditions of the optimization problem. Thus, the consid-
ered solution is

x∗ =
(
2−1/p + s,−s,−0.5, 2−1/p, 2−1/p, 0, 2−1/p + s,−s, 0.5

)
.

Since we have to calculate the derivative of pi(x) for i ∈ [6], we express these functions
as in (4.17) by using the considered solution x∗ in order to get rid of the absolute values.
Then, we start with the partial derivative of x1:

∂ f
∂x1

=
∂p0

∂x1
+ µ∗1 px∗1

p−1
+ µ∗4 p

(
x∗1 − x∗4

)p−1
+ µ∗5 p

(
x∗1 − x∗7

)p−1

=
∂p
∂x1

+ µ∗1 p
(
2−1/p + s

)p−1
+ µ∗4 psp−1

Thus, we have to find Lagrange multipliers such that

−
∂p0

∂x1
= µ∗1 p

(
2−1/p + s

)p−1
+ µ∗4 psp−1

Similarly, we compute the remaining partial derivatives of L and set them equal to zero:

−
∂p0

∂x2
= −µ∗4 p

(
2−1/p + s

)p−1
− µ∗1 p sp−1

−
∂p0

∂x3
= −µ∗1 p21−p − µ∗4 p 21−p − µ∗5 p

−
∂p0

∂x4
= µ∗2 p2(1−p)/p − µ∗4 p sp−1 − µ∗6 p sp−1

−
∂p0

∂x5
= µ∗2 p2(1−p)/p + µ∗4 p

(
2−1/p + s

)p−1
+ µ∗6 p

(
2−1/p + s

)p−1

−
∂p0

∂x6
= µ∗4 p21−p − µ∗6 p21−p

−
∂p0

∂x7
= µ∗3 p

(
2−1/p + s

)p−1
+ µ∗6 psp−1

−
∂p0

∂x8
= −µ∗6 p

(
2−1/p + s

)p−1
− µ∗3 psp−1

−
∂p0

∂x9
= µ∗3 p21−p + µ∗6 p21−p + µ∗5 p

We use the following equalities of the partial derivatives of the objective function p0(x∗) :

∂p0

∂x1
= −

∂p0

∂x2
,

∂p0

∂x6
= 0,

∂p0

∂x3
= −

∂p0

∂x9
,

∂p0

∂x7
= −

∂p0

∂x8
,

∂p0

∂x5
= 2

∂p0

∂x1
+
∂p0

∂x4
.
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Consequently, we obtain the following equations

µ∗1 p
(
2−1/p + s

)p−1
+ µ∗4 psp−1 = µ∗4 p

(
2−1/p + s

)p−1
+ µ∗1 psp−1

µ∗4 p21−p − µ∗6 p21−p = 0

µ∗1 p21−p + µ∗4 p21−p + µ∗5 p = µ∗3 p21−p + µ∗6 p21−p + µ∗5 p

µ∗3 p
(
2−1/p + s

)p−1
+ µ∗6 psp−1 = µ∗6 p

(
2−1/p + s

)p−1
+ µ∗3 psp−1

µ∗2 p2(1−p)/p +
(
µ∗4 + µ∗6

)
p
(
2−1/p + s

)p−1
= 2µ∗1 p

(
2−1/p + s

)p−1
+

(
µ∗4 − µ

∗
6

)
psp−1+

µ∗2 p2(1−p)/p

From these equalities we deduce µ∗1 = µ∗3 = µ∗4 = µ∗6. Then, we define α = µ∗1 = µ∗3 = µ∗4 =

µ∗6, β = µ∗2, and δ = µ∗5. Now, the following equalities are left

−
∂p
∂x1

= ((2−1/p + s)p−1 + sp−1)pα

∂p
∂x3

= 2αpsp−1 − 2(1−p)/p pβ

∂p
∂x3

= 22−p pα + pδ

By using the Lagrange multipliers

µ∗ = (α, β, α, α, γ, α) and ν∗ = (0, 0, 0),

with

α = −
∂p
∂x1
/

(((
2−1/p + s

)p−1
+ sp−1

)
p
)

β =

(
2αpsp−1 −

∂p
∂x3

)
2(p−1)/p

p

δ =

(
∂p
∂x3
− 22−p pα

)
1
p

condition (4.19) is satisfied. Since p and s are strictly positive, the denominators in the
formula of α, β, and δ are not equal to zero. �

Since our program is based on Minkowski’s theorem for convex bodies, we restrict p
to be at least one. Although the considered KKT conditions just make sense for p ≥ 1, the
lattice C0 satisfies them even for p > 0.

To check local optimality of the C0 lattice, we still have to check the second order
condition given in (4.27). To do so, we have to compute a matrix M and a vector ỹ suitable
for the equation (4.28). Then, the second order condition is satisfied if and only if the
eigenvalues of M are strictly positive. For p ∈ {2, 2.05, . . . , 2.3} and for p = 2.3018, we
checked this condition numerically. Thus, we have a numerical proof that the C0 lattice is
locally optimal for the considered values of p. The corresponding densities are listed in
Table 4.3.
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p C0 packing density Upper bound
2 π/

√
18 ≈ 0.74048 π/

√
18∗

2.05 0.74359 . . . 0.75867∗ . . .
2.1 0.74673 . . . 0.77623∗ . . .
2.15 0.74991 . . . 0.78107 . . .
2.2 0.75311 . . . 0.78134 . . .
2.25 0.75633 . . . 0.78423 . . .
2.3 0.75954 . . . 0.78255 . . .
2.3018 0.75968 . . . 0.78305 . . .

Table 4.3: Lattice packing density by the C0 lattice. For p = 2, optimal packing density
[43]. For p < 2.15, upper bounds via insphere method. For p ≥ 2.15 numerical upper
bounds computed by the approach of Section 3.3. Upper bounds with a star are rigorous
bounds.

2.00 2.05 2.10 2.15 2.20 2.25 2.30
p

0.74

0.75

0.76

0.77

0.78

de
ns

ity

Numerical upper bound
Insphere bound
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Figure 4.8: Lower bounds given by the C0 lattice packing. Numerical upper bounds ob-
tained by the approach from Section 3.3. Rigorous upper bounds via insphere method.
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4.3.6 Fourth regime
For p ∈ {2.4, 2.5, . . . , 6} and for p ∈ {2.3018, 2.31, 6.5, 7, 7.5, 8}, we computed locally
optimal lattice packings. For Case 2 and 3, our computer program did not find any locally
optimal solution. For Case 1, the best obtained locally optimal lattice is equal to the C1
lattice given by Jiao, Stillinger, and Torquato [53]. This lattice is defined as

C1 = Z 2b1 ⊕ Z 2b2 ⊕ Z 2b3

with
b1 =

(
2−

1
p , 2−

1
p , 0

)
, b2 =

(
2−

1
p , 0, 2−

1
p

)
, b3 =

(
s + 2−

1
p ,−s,−s

)
,

where s is the smallest positive root of the equation

(s + 2−
1
p )p + 2sp − 1 = 0.

It has density
vol Bp

3

23− 2
p

(
3s + 2−

1
p

) .
In this lattice packing each solid has twelve contacting neighbors. For superballs with
p = 2, p = 2.3018, and for p = 6, seven of the twelve contact points in the corresponding
C1 lattice packing are shown in Figure 4.9. These pictures are from the same perspective
as in Figure 4.6.

To make the difference between the C0 and C1 lattice packing more clear, we show in
Figure 4.10 the contact points of B6

3 for both lattice packings. For the C0 lattice packing
these contact points are displayed on the left-hand side, and for the C1 lattice packing they
are pictured in the center. In the C1 lattice packing there are more contact points on the
round edges of the solid than in the C0 lattice packing. Furthermore, we obtain the picture
on the right-hand side in Figure 4.10 by rotating the picture, which is placed in the center.
In the picture on the right-hand side, it is easier to see the relation between the contact
points and the contacting neighbors in Figure 4.1.

Figure 4.9: Seven of twelve contact points in the C1 lattice packing for Bp
3 with p = 2,

p = 2.3018, and p = 6. The contact points are pictured in red.

To prove local optimality of the C1 lattice, we have to check the KKT conditions.

Lemma 4.7. The C1 lattice satisfies the KKT conditions (4.19) – (4.23) for p ∈ R>0 .



114 Lattice packings of superballs Chapter 4

Figure 4.10: Contact points for B6
3 in the C0 lattice packing (left-hand side) and in the

C1 lattice packing (center and right-hand side). The superball on the left-hand side and
the superball in the center are pictured from the same perspective. The contact points are
shown in red.

Proof. The KKT conditions (4.19) – (4.23) are satisfied, if and only if, there exist Lagrange
multipliers µ∗1, . . . , µ

∗
6 and ν∗1, . . . , ν

∗
3, such that

∇xL(x∗, µ∗, ν∗) =

(
∂L

∂x1
, . . . ,

∂L

∂x9

)T

= 0.

Analogously to the proof of the KKT conditions (4.19) – (4.23) for the C0 lattice, we
compute the partial derivatives of L(x∗, µ∗, ν∗) to obtain the following conditions on the
Lagrange multipliers:

−
∂p0

∂x1
= µ∗1 p2(1−p)/p − µ∗5 psp−1

−
∂p0

∂x2
= µ∗1 p2(1−p)/p + µ∗4 p2(1−p)/p + µ∗5 p

(
2−1/p + s

)p−1

−
∂p0

∂x3
= −µ∗4 p2(1−p)/p + µ∗5 psp−1

−
∂p0

∂x4
= µ∗2 p2(1−p)/p − µ∗6 psp−1

−
∂p0

∂x5
= −µ∗4 p2(1−p)/p + µ∗6 psp−1

−
∂p0

∂x6
= µ∗2 p2(1−p)/p + µ∗4 p2(1−p)/p + µ∗6 p

(
2−1/p + s

)p−1

−
∂p0

∂x7
= µ∗3 p

(
2−1/p + s

)p−1
+ µ∗5 psp−1 + µ∗6 psp−1

−
∂p0

∂x8
= −µ∗3 psp−1 − µ∗5 p

(
2−1/p + s

)p−1
− µ∗6 psp−1

−
∂p0

∂x9
= −µ∗3 psp−1 − µ∗5 psp−1 − µ∗6 p

(
2−1/p + s

)p−1

Furthermore, the following partial derivatives of the objective function p(x∗) coincide:

∂p0

∂x1
=
∂p0

∂x4
,

∂p0

∂x3
=
∂p0

∂x5
,
∂p0

∂x2
=
∂p0

∂x6
,

∂p0

∂x7
= −

∂p0

∂x8
,

∂p0

∂x8
=
∂p0

∂x9
.
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Consequently, we obtain the following equations

µ∗1 p2(1−p)/p − µ∗5 psp−1 = µ∗2 p2(1−p)/p − µ∗6 psp−1

−µ∗4 p2(1−p)/p + µ∗5 psp−1 = −µ∗4 p2(1−p)/p + µ∗6 psp−1(
µ∗1 + µ∗4

)
p2(1−p)/p + µ∗5 p

(
2−1/p + s

)p−1
=

(
µ∗2 + µ∗4

)
p2(1−p)/p + µ∗6 p

(
2−1/p + s

)p−1

µ∗3 p
(
2−1/p + s

)p−1
+

(
µ∗5 + µ∗6

)
psp−1 =

(
µ∗3 + µ∗6

)
psp−1 + µ∗5 p

(
2−1/p + s

)p−1(
µ∗3 + µ∗6

)
psp−1 + µ∗5 p

(
2−1/p + s

)p−1
=

(
µ∗3 + µ∗5

)
psp−1 + µ∗6 p

(
2−1/p + s

)p−1

From these equalities we deduce µ∗1 = µ∗2 = µ∗4 and µ∗3 = µ∗5 = µ∗6. Furthermore, we define
α = µ∗1 = µ∗2 = µ∗4 and β = µ∗3 = µ∗5 = µ∗6. Now, the following equalities are left

−
∂p0

∂x1
= αp2(1−p)/p − βpsp−1

−
∂p0

∂x7
= β

((
2−1/p + s

)p−1
+ 2psp−1

)
By using the Lagrange multipliers

µ∗ = (α, α, β, α, β, β) and ν∗ = (0, 0, 0),

where

α =
2

p−1
p

p

(
psp−1β −

∂p0

∂x1

)
and

β =
∂p0

∂x7

1
2psp−1 + p(2−1/p + s)p−1

this condition is satisfied. Since p and s are strictly positive, the denominators in the
formula of α and β are not equal to zero. �

Analogously to the third regime, the considered lattice satisfies the KKT conditions
even for all positive values of p and not just for p ≥ 1.

To prove local optimality, we have to check the second order condition (4.27). For this,
we have to compute a matrix M and a vector ỹ suitable for the equation (4.28). We first
compute ỹ and then we compute the matrix M. By evaluating ∇pu(x∗), we see that a vector
y ∈ R9 satisfies the condition yT∇pu(x∗) = 0 for all u ∈ U1

B if the entries of the vector

y1 − y6 + (a − 1) y8 + (a − 1) y9

y2 + y6 + (1 − a) y8 + (1 − a) y9

y3 −
(
1 + 1

a

)
y6 +

(
1
a + a − 1

)
y9

y4 + y6

y5 +
(
1 + 1

a

)
y6 − (1 − a) y8 −

1
a x9

y7 − ay8 + ay9





116 Lattice packings of superballs Chapter 4

with a =
(

s
2−1/p+s

)p−1
are equal to zero. Since we can express all elements of y by the

monomials y6, y8, and y9, we obtain ỹ = (x6, x8, x9).
Let T ∈ R3×9 be the basis change matrix, such that ỹ = Ty. Then we get the matrix M

satisfying the equation (4.28), by computing

M = T
(
∇2

x L (x∗, µ∗, ν∗)
)

T−1,

which is equal to
M = 4v2M1 + p (p − 1) (M2 + βM3) ,

with q =
(

s
v+s

)p−1
and

M1 = 3s2


(
2 + 1

q

)2 (
2 + 1

q

)
(q − 1)

(
q − 1

q

) (
2 + 1

q

)
(
2 + 1

q

)
(q − 1) (q − 1)2 (q − 1)

(
q − 1

q

)
(
q − 1

q

) (
2 + 1

q

)
(q − 1)

(
q − 1

q

) (
q − 1

q

)2


+sv


2
(
2 + 5

q + 2
q2

)
2q − 1 − 1

q 2q + 7 − 5
q −

4
q2

2q − 1 − 1
q 2

(
2 − q − q2

)
1
q − 1 + 2q − 2q2

2q + 7 − 5
q −

4
q2

1
q − 1 + 2q − 2q2 6q − 2q2 − 8 + 4

q2


+v2


2
q + 1

q2 0 2 − 1
q −

1
q2

0 1 − q2 q − q2

2 − 1
q −

1
q2 q − q2 2q − q2 − 2 + 1

q2

 ,

M2 =
α

v2


1
q2 + 2 q − 1 q − 1

q2 + 1
q − 1

q − 1 (q − 1)2 (q − 1)2

q − 1
q2 + 1

q − 1 (q − 1)2 q2 − 2q + 2 + 1
q2 −

2
q

 ,

M3 = (v + s)p−2


2 q q − 2

q 2q2 q (2q − 1)

q − 2 q (2q − 1) 2
(
q2 − q + 1

)


+2sp−2


2
(
2 + 2

q + 1
q2

)
2q 2

(
q − 1

q −
1
q2

)
2q 2

(
q2 + 1

)
2q2

2
(
q − 1

q −
1
q2

)
2q2 2

(
q2 + 1

q2

)
 .
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For p ∈ {2.3018, 2.31} and for p ∈ {2.3, 2.4, . . . , 8}, we numerically proved that the matrix
M is positive definite. For this, we checked whether their eigenvalues are strictly positive.
For some values of p, the eigenvalues of M are displayed in Table 4.4.

p Eigenvalues of M
2.3 88.9 . . . 0.16182 . . . 0.32707 . . .
2.5 175.2 . . . 0.17046 . . . 0.38883 . . .
3 1477.7 . . . 0.33113 . . . 0.83038 . . .
3.5 16976.4 . . . 0.54260 . . . 1.32512 . . .
4 216469.6 . . . 0.68213 . . . 1.61308 . . .
6 14694858160.5 . . . 0.76898 . . . 1.71202 . . .
8 4463545021899008.0 . . . 0.88388 . . . 1.57882 . . .

Table 4.4: Eigenvalues of M for some values of p.

From the positive definiteness, we can conclude the local optimality of C1 for the con-
sidered values of p.

Furthermore, we computed the C1 lattice packing density for p ∈ {2.4, 2.5, . . . , 6} and
for p ∈ {2.3018, 2.31, 6.5, 7, 7.5, 8}. Some of these results are listed in Table 4.5. The
computed lower bounds as well as the numerical upper bounds are pictured in Figure 4.11.
The upper bound obtained via insphere method is equal to one for this regime. Thus, these
upper bounds are not displayed in Table 4.5 or in Figure 4.11.

p C1 packing density Upper bound
2.3018 0.7596 . . . 0.7830 . . .
3 0.8095 . . . 0.8236∗ . . .
4 0.8698 . . . 0.8742∗ . . .
5 0.9080 . . . 0.9224∗ . . .
6 0.9318 . . . 0.9338∗ . . .
7 0.9474 . . . 0.9504 . . .
8 0.9582 . . . 0.9619 . . .

Table 4.5: Lower bounds given by the C1 lattice packing density and numerical upper
bounds obtained by the approach from Section 3.3. The upper bounds with a star are
rigorous.
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Figure 4.11: Density of the C1 lattice packings. Numerical upper bounds obtained from the
approach in Section 3.3.

4.4 Summary and outlook

For each of the four regimes, we computed feasible packing lattices by using Newton’s
method. For each of these lattices, we proved local optimality. This proof is divided into
two parts: first we have to check the KKT conditions, and then, we have to ensure that
the second order condition is satisfied. In Figure 4.6, we display the best obtained locally
optimal lattices for each regime, as well as information which parts of these proofs are
numerically and which are rigorous. For the best obtained packing lattices in the second
regime, we did not find any pattern. For p ∈ (1, 2) \ [log2 3, 1.6], we improved the best
known lattice packing density provided by Jiao, Stillinger, and Torquato [53].

The L3 lattice is the best obtained packing lattice for the considered values of p ∈
[1, log2 3] and thus, it gives a better lattice packing density than the O1 lattice found by
Jiao, Stillinger, and Torquato [53]. One can probably show that this holds for all values of
p in the first regime.

Conjecture 4.8. The L3 lattice packing density is higher than the O1 lattice packing density
for all p ∈ [1, log2 3] .

Furthermore, we proved local optimality of the best obtained lattices numerically. For
the C0 and C1 lattice we also give a rigorous proof of the KKT conditions, but checking
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Best obtained Proof of
Regime of p packing lattice KKT conditions second order condition
[1, log2 3] L3 numerical numerical
(log2 3, 2] * numerical numerical
[2, 2.3018 . . .] C0 rigorous numerical
[2.3018 . . . , 8] C1 rigorous numerical

Table 4.6: Locally optimal lattice packings for superballs with p ∈ [1, 8].

the second order condition seems to be more complicated. For the L3 lattice it should be
easier since the matrix which we have to check for positive definiteness is a symmetric two
dimensional matrix, not as in the other cases in which it is three dimensional. Thus, one
would have to prove that the entries and the determinant are strictly positive.

Conjecture 4.9. L3, C0, and C1 are indeed locally optimal packing lattices for superballs
with p in the corresponding regime.

The best obtained lattice packing density is close to our upper bound, especially in the
first and last regime. If we can improve the upper bound, for example by increasing the
considered degree d or by determining better sample methods, we might be able to prove
optimality of the best obtained lattice packing for some values of p. Maybe there is a better
way to check the nonpositivity condition in the bounded part than using sample points.

Conjecture 4.10. L3 is optimal for the first regime and C1 for the last regime.

Assume we are able to improve the upper bound for some values of p in the first and
last regime in such a way that they coincide with our lower bound. Then, we would not
just have proven optimality for these packing lattices, we also would have obtained the
optimal translative packing density. The lower bounds for the lattice packing densities are
remarkably close to the upper bounds for the translative packing densities, especially in the
first and last regime. Thus, it seems that for at least some values of p the optimal lattice
packing density coincides with the optimal translative packing density. Even for p = 2,
where the difference between the lower and upper bound reach their maximum, it is proven
that the best optimal lattice packing density coincides with the optimal translative packing
density.

Problem 4.11. For which superballs is the optimal lattice packing density equal to the
optimal translative packing density?

In our calculations we did not find any locally optimal packing lattice for the second,
third, and forth regime satisfying Case 2 or Case 3 of Theorem 1.3. Furthermore, our
computer program did not even find any packing lattice satisfying the KKT conditions for
these two cases unless p ≤ log2 3. Thus, this leads to the question, whether there exists any
locally optimal solution for these two cases by considering p > log2 3.

Conjecture 4.12. For p > log2 3, there exist no locally optimal packing lattice satisfying
Case 2 or 3 of Theorem 1.3.
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If we find a way to solve the optimization problem (4.8) – (4.11) in practice, we could
determine optimal lattice packings for three-dimensional superballs with p ≥ 1. Since for
larger values of i and j, the SOS relaxation of (4.8) – (4.11) is too large for current SDP
solvers, one has probably to find a way to use symmetries for simplifying the program.

Problem 4.13. Determining optimal lattice packings for superballs.



Appendix

For p ∈ {1.6, 1.65, . . . , 1.95} and for p ∈ {1.59, 1.99}, the basis vectors of the best obtained
lattice packings are displayed in the following tables. Each matrix represents a lattice in
the form that its columns contain the corresponding basis vectors.

p Basis matrices

1.59


0.499926470 0.50004973 0.99999959
−0.500073118 0.49992647 −0.00012326

0.503293851 0.50331714 0.00002329



1.6


0.00144215 0.50057269 −0.49940825
0.99998095 0.49940851 0.50085062
−0.00027473 0.50978394 0.50950921



1.65


0.9979212 0.51754606 0.48675064
0.0061634 −0.5425021 −0.53633836

0.03077145 −0.48025521 0.51766348

,
0.03079542 0.51754606 −0.48037515
0.99791869 0.48025521 0.51102666
0.00616374 0.5425021 0.5486655



1.7


−0.43562497 −0.52902864 −0.98867247

0.57701813 0.59729026 0.0202829
0.55171075 −0.43701488 0.09367698


Table 4.7: Locally optimal lattices
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p Basis matrices

1.75


0.42758357 0.59733183 0.97168858
−0.61032918 −0.57021722 0.04019376
−0.55107367 0.42092518 −0.17086613

,
0.37435675 −0.16974826 −0.59733183
0.61041098 −0.04011196 0.57021722
−0.59179131 −0.97199885 −0.42092518

,
0.38020754 0.97199885 0.55107367
−0.54410501 −0.16974826 0.42758357

0.65052294 0.04011196 0.61032918

,

1.8


−0.05881466 0.5790554 0.63758048
−0.2373794 0.38728256 −0.56758784
−0.95402774 −0.63746795 −0.40256933

,
−0.33020844 −0.56758784 −0.9548704

0.55145841 −0.40256933 0.23489862
−0.69639514 −0.63758048 −0.05852508

,
0.9548704 0.38728256 0.62466196
0.23489862 0.63746795 −0.3165598
−0.05852508 0.5790554 0.63787006



1.85


−0.58601804 0.0725444 −0.65924243

0.35956556 0.94126075 0.64870975
0.67038117 0.28514582 −0.2693437

,
0.29255099 −0.64870975 −0.28914419
−0.55448952 −0.2693437 −0.93972488

0.73178683 0.65924243 0.07322439

,
−0.58169518 −0.28914418 0.35956557

0.38523536 0.93972488 0.67038117
0.65856244 −0.07322439 0.58601804


Table 4.8: Locally optimal lattices
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p Basis matrices

1.9


−0.08288738 0.67623115 0.59207566

0.32536621 −0.2306987 0.6978566
−0.93086763 −0.6666684 −0.33576866

,
0.26419923 0.59509897 0.93086763
0.75911852 0.67496304 0.08288738
0.55606491 −0.37249039 0.32536621

,
0.59207566 −0.08415549 0.67496304
0.6978566 0.9285553 0.37249039
−0.33576866 0.33089973 0.59509897



1.95


0.09275833 0.78084097 0.69012658
0.36647539 −0.2420198 0.6806764
0.91953165 0.55732048 0.19795805

,
−0.72157359 −0.35936243 0.19795805
−0.314201 −0.9226962 −0.6806764
−0.59736824 0.0907144 −0.69012658



1.99


−0.55836637 −0.38359316 0.35495499

0.22729804 0.91723813 0.61935069
0.79531069 0.09575527 0.69677868


Table 4.9: Locally optimal lattices
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