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1 Introduction and summary of
results

1.1 Introduction

1.1.1 The challenge of under-determined inverse problems

Inverse problems have a long-standing history in science. In its simplest form this data analysis
problem requires inferring an n-dimensional vector x ∈ Cn from linear measurements of the
form

yk = 〈ak, x〉. (1.1)

Here, a1, . . . , am ∈ Cn denote the measurements and y1, . . . , ym the corresponding data ac-
quired. If the measurements a1, . . . , am span Cn, this task is trivial: perform linear inversion.

This situation changes drastically if we consider an under-determined set of m < n mea-
surements. Problems of this type arise in many different areas of science, where the problem
dimensions n are extremely high and/or massive data acquisition is challenging. Concrete
examples include high resolution biomedical imaging, seismology, radio frequency analysis,
quantum state/process estimation and many more. See for instance [Gro+10; HFY12; LDP07].

In general, such inverse problems do not have a unique solution. Additional assumptions
are required to ensure uniqueness. Compressibility is one such assumption. In concrete appli-
cations it is often justified, or at least a justifiable approximation.

Sparsity is one of the simplest notions of compressibility. A vector x ∈ Cn is s-sparse, if
it has s non-vanishing components with respect to a certain basis. In order to exploit such a
model assumption, it makes sense to search for the sparsest vector z ∈ Cn that agrees with
our measurements:

minimize sparsity(z) (1.2)

subject to 〈ak, z〉 = yk 1 ≤ k ≤ m.

However, such a constrained sparsity minimization is known to be NP-hard in general. In fact,
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1 Introduction and summary of results

there is not even an obvious heuristic algorithm for solving (1.2).

Low rank is another notion of compressibility, applicable to matrices. It may be viewed
as a “non-commutative analogue” of sparsity: a matrix has rank r, if and only if its vector
of singular values is r-sparse. Low rank matrix reconstruction problems have many applica-
tions. Examples include kernel-based learning methods [CST00], principal component analy-
sis [Jol02], and quantum state/process estimation [Gro+10]. Moreover, it gained fame through
the Netflix-prize of $1 000 000. This was an open competition for the best algorithm to predict
user ratings, based a small set of available ratings. The algorithm which won the prize in 2009
used a low rank model assumption [KB11]. However, once more we face the problem that
constrained rank minimization is NP hard in general.

Another important instance of a challenging inverse problem is phase retrieval, see for in-
stance [Wal63]. It occurs naturally in X-ray crystallography, astronomy, diffraction imaging—
see for example [Mil90]. This problem will feature prominently in this work. Its discrete
version asks for inferring a complex signal vector x ∈ Cn from m measurements of the form:

ỹk = |〈ak, x〉| 1 ≤ k ≤ m. (1.3)

This problem is ill-posed, because all phase information is lost in the measurement process.
If one had access to the complex phases φk of 〈ak, x〉 this problem reduces to solving a linear
system of equations:

Φỹ = Ax, (1.4)

where Φ = ∑m
k=1 φkeke∗k and A = ∑m

k=1 eka∗k subsumes the measurement process. Here,
e1, . . . , em denotes the standard basis of Rm. Crucially for phase retrieval, we do not know Φ
in (1.4). One approach to recovering x is performing a least-squares minimization over both
unknowns:

minimize
Φ,x

‖Φỹ− Ax‖2 , (1.5)

where Φ ∈ U(m) is unitary and diagonal in the standard basis and x ∈ Cn. Problems of this
type are non-convex, and, in fact, NP hard in general.

However, in contrast to, for instance, constrained sparsity minimization (1.2), there are
heuristics for solving (1.5). One such heuristics is alternating minimization, see e.g [Fie82].
This is an iterative algorithm, where one alternates between keeping x fixed and minimizing Φ
and, vice-versa: fixing Φ and optimizing over x. Very few theoretical guarantees regarding its
performance are known. Nonetheless, alternating minimization algorithms are used in many
applications, see for instance [MCKS99].

Given the importance of the problem and the lack of mathematical understanding, obtaining
theoretical guarantees for phase retrieval is highly desirable. In order to do so, we will fol-
low a different direction: Interpret phase retrieval as a particular instance of low rank matrix
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1.1 Introduction

reconstruction.

1.1.2 Convex signal reconstruction

Convex signal reconstruction is a novel scientific discipline that allows for analyzing under-
determined inverse problems in a mathematically rigorous way. To this end, techniques from
various branches of math are combined. Pioneering works include Refs. [Can+06; CR06;
CRT06] by Candès, Romberg and Tao, as well as and Ref. [Don06] by Donoho. They show
that a sparse vector x ∈ Cn may be reconstructed exactly from considerably fewer than n
linear measurements of the form (1.1). For instance, a measurement process containing

m ≥ Cs log
(n

s

)
(1.6)

standard Gaussian measurement vectors suffices to reconstruct any s-sparse vector x ∈ Cn

with high probability (w.h.p.). This sampling rate m turns out to be essentially tight. More-
over, the actual reconstruction can be achieved by performing

minimize
z∈Cn

‖z‖`1
(1.7)

subject to 〈ak, z〉 = yk 1 ≤ k ≤ m.

This can be viewed as a convex relaxation of problem (1.2). It may be reformulated as a linear
program, see e.g. [Bar02; BV04]. Hence, it is computationally tractable. Today, the idea of
using a constrained `1-minimization to promote sparsity is known as compressed sensing. It
has received considerable scientific attention over the past decade. We refer to [EK12; FR13]
for an overview.

Subsequently, similar ideas have been used to address other important estimation problems.
The reconstruction of low rank matrices X ∈ Mn×n is one of them. It has been shown that

minimize
Z∈Mn×n

‖Z‖1 (1.8)

subject to tr (AkZ) = yk 1 ≤ k ≤ m

is a convex optimization problem that does promote low rank, see e.g. [FHB01]. Here, ‖Z‖1
denotes the nuclear norm of Z, that is the sum singular values: ‖Z‖1 = ∑n

k=1 σk(Z). The
nuclear norm may be viewed as a non-commutative analogue of the `1-norm: It is the `1-norm
of the vector of singular values. Moreover, (1.8) may be re-phrased as a semidefinite program
[Bar02; BV04] which assures computational tractability. Similarly to compressed sensing,
one can prove that a number of

m ≥ Crn (1.9)
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1 Introduction and summary of results

Gaussian measurements yk = tr (AkX) suffice to reconstruct any rank-r matrix w.h.p.
[CP11b; FCRP08]. Note that it requires roughly rn parameters to describe a n × n-matrix
with rank r. From this perspective, the sampling rate (1.9) may be viewed as optimal.

Phase retrieval also admits a convex relaxation. To see this, we square the measurements in
(1.3):

yk := ỹ2
k = |〈ak, x〉|2 = tr (aka∗k xx∗) (1.10)

These quadratic measurements are linear in the outer product X = xx∗ of x ∈ Cn. In turn,
an order of O

(
n2) linearly independent measurements Ak = aka∗k allow for reconstructing

X = xx∗ via linear inversion [BBCE09]. Knowledge of X then specifies x ∈ Cn up to a global
phase. On first glance, a quadratic number of measurements seems necessary. Formula (1.10)
reinterpretes the n-dimensional non-linear phase retrieval problem as a linear inverse problem
on Hn—the n2-dimensional real-valued vector space of hermitian n× n-matrices. However,
lifted phase retrieval does exhibit additional structure: the object of interest X = xx∗ ∈ Hn is
guaranteed to have unit rank. In analogy to low rank matrix reconstruction, one may promote
this key feature via minimizing the nuclear norm [CESV15]:

minimize
Z∈Hn

‖Z‖1 (1.11)

subject to tr (aka∗k Z) = yk 1 ≤ k ≤ m.

Following its inventors [CESV15; CSV13], we call this approach to phase retrieval PhaseLift.
Subsequently, it was proven that a number of

m ≥ Cn (1.12)

measurements allows for reconstructing any X = xx∗ w.h.p., provided that each measurement
ak ∈ Cn is chosen uniformly from the complex unit sphere Sn−1 [CL14]. Random Gaussian
measurements also allow for drawing the same conclusion. We emphasize that this sampling
rate (1.12) scales linearly in n, the actual problem dimension of phase retrieval.

Note that alternating minimization (1.5) and PhaseLift (1.11) are two very different ap-
proaches to the same problem. Alternating minimization is a heuristic for the “vector level”,
where phase retrieval is a challenging non-convex problem. PhaseLift, on the other hand,
solves an under-determined, but linear, inverse matrix problem by exploiting techniques from
low rank matrix reconstruction.

In practical applications, the dimensionality n of phase retrieval is typically very large.
For large problem dimensions, alternating minimization heuristics have a considerable lower
runtime than PhaseLift, see for instance Table 1 in [NJS13]. Arguably, the merit of PhaseLift
is more conceptual than practical: its convex structure allows for a rigorous mathematical
analysis. In turn, theoretical reconstruction guarantees obtained via PhaseLift lend credence
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1.1 Introduction

to commonly employed heuristics, in the sense that they highlight the problem’s tractability.

1.1.3 Stability towards noise corruption

Let us now turn our attention to an important issue: noise corruption. In practical applications,
linear measurements of the form (1.1) are affected by noise:

yk = 〈ak, x〉+ εk 1 ≤ k ≤ m.

We measure the strength of such corruptions by the `2-norm of the noise vector ε =

(ε1, . . . , εm)T ∈ Cm and assume that it is bounded by a known constant η ≥ ‖ε‖`2
. Beyond

that, we shall make no further assumptions on ε. In particular, we do not require ε to be
stochastic.

The convex optimization algorithms treated so far are ill-equipped to handle noisy mea-
surements. Their constraints demand exact reproduction of the noise-corrupted measurements
yk. Having access to η allows for overcoming this issue by further relaxing the equality con-
straints. For instance,

minimize
z∈Cn

‖z‖`1
(1.13)

subject to ‖Az− y‖`2
≤ η

is a noise-robust reformulation of (1.7). Here, A = ∑m
k=1 eka∗k subsumes the measurement

process and y = (y1, . . . , ym)T encompasses the acquired data. For m = Cs log
(n

s
)

random
Gaussian measurements ak ∈ Cn one can prove w.h.p. that such a reconstruction is stable
towards noise corruptions. For instance, Ref. [BDDW08] in conjunction with Ref. [C0̀8]
assures that the minimizer z] of (1.13) obeys

∥∥∥z] − x
∥∥∥
`2
≤ Cη.

Low rank matrix reconstruction from noisy measurements yk = tr (AkX) + εk admits a
similar relaxation:

minimize
Z∈Mn×n

‖Z‖`1
(1.14)

subject to ‖A(Z)− y‖`2
≤ η.

Here, A : Mn×n → Rm denotes the measurement operator A(Z) = ∑m
k=1 ektr (AkZ). For
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1 Introduction and summary of results

Gaussian measurement matrices Ak ∈ Mn×n this reconstruction is again stable w.h.p.:
∥∥∥Z] − X

∥∥∥
2
≤ Cη. (1.15)

See, for instance, [CP11b; OMFH11] in conjunction with [RFP10]. Here ‖·‖2 denotes the
Frobenius norm on Mn×n: ‖Z‖2 =

√
tr (ZZ∗).

1.2 The challenge of structured measurements

While these initial breakthroughs of convex signal reconstruction are truly remarkable, they
do have drawbacks. All results mentioned above rely on measurements chosen randomly
from “generic” distributions: Gaussian measurements for compressed sensing and matrix re-
construction, and measurements choosen uniformly from Sn−1 for PhaseLift. The associated
reconstruction guarantees only hold with high probability over the particular realizations of
these measurements. This is undesirable for several reasons:

(i) While true with high probability, checking whether a concrete measurement instance
does indeed allow for convex signal reconstruction is a hard task.

(ii) Relying on generic measurements obscures the specific properties of measurement en-
sembles that enable convex signal reconstruction.

(iii) Perhaps most importantly, the lack of any structure in generic measurements renders the
task of practical implementations hard and, more often than not, even infeasible.

Identifying deterministic sets of highly structured measurement ensembles that allow for
proving reconstruction guarantees deterministically would solve all these issues. Unfortu-
nately, this seems to be an extremely hard task and is a major open problem. To this date,
essentially all deterministic constructions of measurements are unsatisfactory, because they
suffer from at least one of the following drawbacks: (i) they require a considerably larger
number of measurements than random measurements: In compressed sensing, this deficit is
known as the “quadratic bottleneck”, because deterministic constructions require m ≥ Cs2

instead of (1.6), (ii) contrived and complicated structure of the measurements, and (iii) weak
stability towards noise corruption, see e.g. [Kec15].

Acknowledging the hardness of such a task, we focus on a less ambitious and more realistic
goal:
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1.2 The challenge of structured measurements

Central goal

Prove convex reconstruction guarantees for measurements that are chosen
randomly from small and structured ensembles.

Ideally, such a compromise has two advantages: (i) the residual amount of randomness
allows for employing strong probabilistic proof techniques and (ii) the ensemble’s structure
facilitates practical implementation.

For compressed sensing, the discrete Fourier basis

fk =
1√
n

n

∑
j=1

e−
2πik(j−1)

n ek ∈ Cn, 1 ≤ k ≤ n (1.16)

was early on identified to fulfill this purpose [CRT06]. Fourier basis measurements occur
naturally in many applications, where raw data acquisition happens in the Fourier domain. A
prominent example for this feature is medical MRI imaging, see for instance [LDP07]. Also,
different problems in wideband radio frequency signal analysis are of this form, see e.g. the
motivation provided in [Can+06]. with respect to the standard basis, Fourier vectors (1.16)
have full support and coefficients with constant modulus 1√

n . This in turn implies that the
coherence parameter [CP11a]

µ := max
1≤j≤n

∣∣〈ej, fk〉
∣∣2 =

1
n
∀1 ≤ k ≤ n. (1.17)

of the Fourier basis is minimal. Intuitively, this incoherence assures that Fourier measurements
are sufficiently “spread out”, or “global”. In compressed sensing, incoherence rules out the
undesirable property that a measurement reveals too little information about the sparse vector
of interest1.

Pauli matrices allow for drawing similar conclusions [Gro11; Liu11] in low rank matrix
reconstruction. There are four elementary Pauli matrices:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 1

)
. (1.18)

In dimension n = 2d, n2 different Pauli matrices arise by taking all possible d-fold tensor
products of (1.18). Such a construction can be generalized to dimensions that are not a power

1Let us consider the task of reconstructing a standard basis vector x = ej ∈ Cn from discrete Fourier basis
measurements as a concrete example. Then, its basis expansion x = ∑N

k=1 x̃k fk with respect to the Fourier
basis is guaranteed to have full support. In turn, any Fourier measurement 〈 fk, x〉 reveals “some” information
about x, because x̃k 6= 0. For some special cases, this intuition can be made precise via entropic uncertainty
relations which we briefly introduce in the outlook-section.
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1 Introduction and summary of results

of two, see e.g. Ref. [Gro06] and references therein. These n2 Pauli matrices are hermitian
and unitary. If we re-scale them by 1/

√
n, the resulting matrices W1, . . . , Wn2 form an or-

thonormal basis of Hn with respect to the Hilbert-Schmidt inner product (X, Y) = tr (X∗Y).
Hoelder’s inequality then implies

ν := max
x∈Sn−1

|(xx∗, Wk)|2 ≤ max
x∈Sn−1

‖xx∗‖1 ‖Wk‖∞ =
1
n
∀1 ≤ k ≤ n. (1.19)

Consequently, the re-scaled Pauli basis is incoherent with respect to any rank-one projector
xx∗ ∈ Hn. This may be viewed as a non-commutative analogue of the incoherence relation
(1.17).

Such incoherence properties facilitate mathematical proofs. Nonetheless, these “de-
randomized” reconstruction guarantees [CRT06; Gro11; Liu11] typically require much higher
technical efforts and deliver slightly weaker results.

For phase retrieval via PhaseLift, the task of identifying the “right” structural properties
is more involved. Obviously, Pauli matrices are not applicable, while measuring the discrete
Fourier basis does not provide sufficient information to recover phases. Moreover, PhaseLift
has the interesting feature that the measurement matrices Ak = aka∗k are constrained to unit
rank. If we normalize them to unit Frobenius norm (‖Ak‖2 = ‖ak‖2

`2
= 1), this in turn

implies
ν = max

x∈Sn−1
|(xx∗, aka∗k )|2 = max

x∈Sn−1
|〈x, ak〉|4 = 1 ∀ak ∈ Sn−1.

On the contrary to Fourier vectors (1.17) and Pauli matrices (1.19), these measurements can
never be incoherent. This turns out to be a considerable technical obstacle. For measurements
ak chosen uniformly from Sn−1 it may be overcome by proving

∣∣(xx∗, aka∗k
)∣∣2 = O

(
1
n

)
is

true for any fixed x ∈ Sn−1 with extremely high probability [CL14; CSV13]. In turn, such a
strong notion of “probabilistic incoherence” allows for employing proof techniques from low
rank matrix reconstruction [Gro11]. However, this notion of probabilistic incoherence can
only worsen, if we move on to smaller and less generic measurement ensembles. And it is not
even clear what good candidates for such ensembles would be.

Addressing these open problems regarding PhaseLift is particularly important to this thesis.
To this end, we formulate the following objectives:

(I) Identify specific properties of measurement ensembles that enable PhaseLift.

(II) Prove reconstruction guarantees for measurements chosen from such ensembles,

(III) Find concrete examples.

We shall treat these questions separately in the next three sections.

10



1.3 Spherical designs as a general purpose tool for de-randomization

1.3 Spherical designs as a general purpose tool for
de-randomization

In this section, we focus on the first objective: finding structural properties on measurement
vectors that enable PhaseLift to succeed. As the number of measurements required for de-
tecting lost phases is strictly larger than the signal space dimension n, one cannot expect
that measuring a single orthonormal basis suffices. On the other hand, Candès et al. [CL14;
CSV13] prove that m = Cn measurements chosen uniformly from the complex unit sphere
Sn−1 do enable phase retrieval w.h.p.

The concept of spherical t-designs provides an interpolation between these extreme cases.
Roughly speaking, a spherical t-design is a finite subset {w1, . . . , wN} of the complex unit
sphere Sn−1 in Cn with the following defining property: Sampling uniformly from this set
reproduces the first 2t moments of the uniform distribution over Sn−1. Many equivalent defi-
nitions capture this property, the most explicit one being

1
N

N

∑
k=1

(wkw∗k )⊗t =
∫

v∈Sn−1
(vv∗)⊗t dv. (1.20)

Here, ⊗ denotes the canonical tensor (Kronecker) product of matrices. Introduced in a sem-
inal paper by Delsarte et al. [DGS77], spherical t-designs have since been studied in alge-
braic combinatorics [Sid99], coding theory [NRS01] and quantum information theory [AE07;
RBKSC04; Sco06].

For t = 1, Def. (1.20) is equivalent to that of a tight frame. For larger t, they correspond
to equally weighted cubature formulas of the Grassmannian G (1, Cn) [DLHP05]. In this
sense, they may be viewed as rank-one instances of tight t-fusion frames [BE13]. We refer to
[EGK15] for a concise comparison between spherical designs and tight t-fusion frames. As
t scales up, t-designs give better and better approximations to vectors distributed uniformly
over Sn−1.

For phase retrieval, we already know that the structure of a tight frame (t = 1) alone
is not sufficient, while Sn−1-uniform vectors (t = ∞) provably perform optimally [CL14].
Choosing the parameter t appropriately, allows us to interpolate between two extremes in a
controlled way. We illustrate this intuition pictorially in Figure 1.1.

After having realized that demanding the structure of a 1-design alone is insufficient, a
natural next step is to consider phase retrieval from spherical 2-designs. Interestingly, the
defining property of such a set is almost equivalent to a prominent structural requirement in
convex optimization: isotropy, see e.g. [CP11a]. A matrix-valued ensemble A ∈ Mn×n is
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1 Introduction and summary of results

tight frames

“generic” Sn−1-uniform vectors

· · · t = 10 t = 9 · · · t = 4 t = 3 t = 2 t = 1t = ∞

Figure 1.1: Caricature of the intuition behind spherical t-designs: the parameter t endows the
set of all tight frames with a finer structure.

isotropic, if
E [A tr(A∗Z)] = Z ∀Z ∈ Mn×n. (1.21)

This requirement, which is equivalent to the notion of a (matrix valued) tight frame, assures
that choosing measurement matrices A1, . . . , Am uniformly at random from A results in a
measurement process that is well-conditioned in expectation. While strict isotropy is in gen-
eral not necessary, it does usually simplify mathematical proofs2.

For PhaseLift, strict isotropy in the sense of (1.21) is impossible to attain. To see this,
consider measurements chosen uniformly from Sn−1. Such an ensemble obeys

E [A tr (AZ)] = E [aa∗tr (aa∗Z)] ∝ Z + tr(Z)I ∀Z ∈ Hn, (1.22)

see for instance Lemma 8 in [GKK15a]. And a similar relation is true for Gaussian measure-
ment vectors ak ∈ Cn, see Eq. (4.1) in [CSV13]. The identity-term in (1.22) is unavoidable,
because very phaseless measurement obeys (Ak, I) = tr

(
aka∗kI

)
= ‖ak‖2

`2
> 0.

Importantly, Formula (1.22) is equivalent to the demand that a is chosen uniformly from a
spherical 2-design [AFZ15]. This highlights how well suited the notion of spherical 2-designs
seems to be for analyzing phase retrieval [KGK15].

In fact, it was conjectured that Condition (1.22) suffices to assure non-trivial reconstruction

2Consider compressed sensing as an illustrative example: Candès and Plan [CP11a] have identified incoherence
(1.17) and isotropy as sufficient assumptions to assure sparse reconstruction w.h.p. Subsequently, Gross and
myself could show that isotropy is not a necessary assumption and may be further generalized [KG14].
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1.4 Main results on phase retrieval

results for phase retrieval [EK13]. However, this turns out to be not the case, see [GKK15a].
By means of a concrete counterexample, we show that choosing phaseless measurements uni-
formly from a spherical 2-design may require a total number of m = O(n2) measurements in
order to correctly distinguish two vectors x, y ∈ Cn.

It is worthwhile to point out that the above no-go result does not exclude the possibility that
certain realizations of 2-designs can perform better, if additional structural properties can be
exploited. It states that solely demanding a 2-design structure is insufficient. We provide a
concrete example for such a measurement process in subsection 1.5.2.

The applicability of spherical t-designs is by no means limited to the problem of phase
retrieval. In [GKK15a], it has been one of the intentions of my co-authors and me to adver-
tise spherical designs as a general-purpose tool for partially “de-randomizing” constructive
results that initially relied on generic randomness. Already, this has partly come to fruition in
[Kue15], where we apply this idea to a particular scenario of matrix reconstruction that takes
into account typical features of quantum mechanical experiments.

1.4 Main results on phase retrieval

We are now in a position to describe the first main results obtained as part of this thesis. In
this section, I summarize three papers that I have co-authored during my PhD. They provide
increasingly tight and stable reconstruction guarantees for PhaseLift from spherical t-designs.

We know from the previous section that a minimal requirement for achieving this goal—
without having to make further assumptions on the ensemble—is t ≥ 3. An important first
step was achieved by the following result:

Theorem 1 (Simplified version of Theorem 1 in [GKK15a]). Fix t ≥ 3 and x ∈ Cn. Then,
performing PhaseLift with

m ≥ Ctn1+ 2
t log2(n)

measurements chosen uniformly from a spherical t-design allows for reconstructing x with
high probability.

Ignoring logarithmic factors, this sampling rate m is proportional to O
(

n1+ 2
t

)
. Already

for t = 3, this implies a sub-quadratic scaling which is non-trivial. If we allow the design
order t to grow logarithmically with the problem dimension (as t = 2 log(n)), a sampling
rate m ≥ Cn log3(n) suffices. Up to logarithmic factors, this scaling is optimal.

However, comparing this statement to the original result of Candès et al. reveals that the
transition from Sn−1-uniform measurements to t-designs comes at a prize:

13



1 Introduction and summary of results

(i) Non-optimal sampling rates: The sampling rate m only becomes optimal (up to loga-
rithmic factors), if we allow the design order t to grow with the problem dimension.

(ii) Non-uniform reconstruction guarantee: The result in [CL14] assures that a concrete
realization of the measurements w.h.p. allows for reconstructing any unknown vector
x ∈ Cn (uniform reconstruction). In contrast, Theorem 1 only promises that a concrete
realization of the measurement process is w.h.p. capable of reconstructing a single vector
x ∈ Cn (non-uniform reconstruction).

(iii) No stability towards noise corruption: The Sn−1-uniform result is stable towards noise
corruption. Although highly plausible, in its current form Theorem 1 has no stable
reformulation.

While certainly undesirable, drawbacks of this kind are typical for “de-randomizations” of
reconstruction statements that initially relied on generic randomness. Moreover, the appar-
ent trade-off between sampling rate m and design-order t seems to reflect our intuition about
spherical t-designs: the degree t interpolates between “maximal structure” and “maximal ran-
domness”. In consideration of these facts, the next result should come as a surprise:

Theorem 2 (Simplified version of Theorem 2 in [KRT15]). Fix 1 ≤ r ≤ n. Then, with high
probability

m ≥ Crn log(n)

4-design measurements Ak = aka∗k allow for reconstructing any hermitian rank-r matrix
X ∈ Hn via constrained nuclear norm minimization. This reconstruction is stable under
additive noise corruption.

This is actually a statement about matrix reconstruction. It is uniform in the sense of point
(ii) discussed above: one randomly chosen measurement process w.h.p. suffices to reconstruct
any hermitian rank-r matrix. It reduces to PhaseLift, if we set r to one. This special case
overcomes all the drawbacks from Theorem 1. In particular, up to a single log-factor, m =

Cn log(n) scales linearly—and thus optimally—in the problem dimension n. However, unlike
Theorem 1, this statement does require a 4-design. Comparing this to the no-go result for 2-
designs leaves open the behavior for t = 3. We will come back to this in Sec. 1.5.3.

Let us now turn our attention to PhaseLift, and more generally: matrix reconstruction from
rank-one projective measurements, in the presence of noise:

yk = tr (aka∗k X) + εk, or y = A(X) + ε, (1.23)

where y, ε ∈ Rmand A(Z) = ∑m
k=1 ektr

(
aka∗k Z

)
. Theorem 2 implies stable reconstruction

14
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of any rank-r X from noisy measurements (1.23) via

minimize
Z∈Hn

‖Z‖1

subject to ‖A(Z)− y‖`2
≤ η.

In analogy to the results introduced in Section 1.1.3, the minimizer Z] of this optimization is
guaranteed to obey ∥∥∥Z] − X

∥∥∥
2
≤ C

√
n(n + 1)η, (1.24)

provided that η ≥ ‖ε‖`2
. If this parameter is chosen too small, the reconstruction proofs don’t

apply. Choosing it too large worsens the reconstruction quality (1.24) unnecessarily.

We overcome this issue in [KKRT16] by exploiting an additional structural constraint:
Positive-semidefiniteness. PhaseLift re-interprets the task of inferring x ∈ Cn from phase-
less measurements as a linear inverse problem on Hn: Reconstruct X = xx∗ from a particular
family of linear measurements Ak = aka∗k . Thus, both the matrix of interest and the measure-
ments are positive semidefinite (X, Ak ≥ 0) by definition.

Theorem 3 (Simplified version of Corollary 6 in[KKRT16]). Fix r ≤ n and 1 ≤ p ≤ ∞. A
number of m ≥ Crn log(n) noisy 4-design measurements (1.23) w.h.p. allows for approxi-
mating any positive semidefinite matrix X ∈ Hn with rank at most r via solving

minimize
Z≥0

‖A(Z)− y‖`p
. (1.25)

The resulting minimizer Z] obeys

∥∥∥Z] − X
∥∥∥

2
≤ C′

√
n(n + 1)

‖ε‖`p

m1− 1
p

. (1.26)

Note that this reconstruction guarantee depends on the true noise strength ‖ε‖`p
, rather

than on an upper bound η that needs to be guessed in advance. Also, the additional freedom
of choosing 1 ≤ p ≤ ∞ allows for adjusting reconstructions to the expected noise type.
For instance, it may be advantageous to choose p = 1 for Poisson noise and p = ∞ for
quantization errors.

We also point out that the dimensional pre-factors
√

(n + 1)n ' n in (1.24) and (1.26)
are due to normalization. By definition, 4-design vectors have unit norm and hence ‖Ak‖2 =

‖ak‖4
`2

= 1. This is not the case for other “typical” measurements. For instance, the Frobenius
norm a random Gaussian n × n matrix amounts to roughly n. If we re-scale the 4-design
measurements by

√
(n + 1)n ' n, the dimensional factors in (1.26) and (1.24) vanish.

Finally, we want to point out that Theorem 2 and Theorem 3 remain valid, if we replace
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1 Introduction and summary of results

4-design measurements with complex standard Gaussian measurements. In fact, a sampling
rate of

m ≥ Crn

suffices for rank-one Gaussian measurements [KKRT16; KRT15]. This may be viewed as a
generalization of uniform PhaseLift [CL14] to matrix reconstruction. Measurements of this
form admit an interpretation as quantum mechanical measurements. Interestingly, for a brief
period of time, these results provided actually the best possible known bounds on “sample
complexity” for quantum state estimation [Haa+15; OW15]. Refs. [Haa+15; OW15] gave
improved constructions—however at the expense of having to employ so-called ”coherent
measurements across samples”, which are seen as more demanding to implement physically.
We defer the interested reader to these references for a precise definition of the terms used
here.

1.5 Concrete realizations of structured spherical
designs

Our results from the previous section highlight that measurement vectors chosen uniformly
from Sn−1 are not required for performing phase retrieval via PhaseLift. However, the practi-
cal relevance of these statements hinges on the availability of explicit constructions.

Explicit constructions of spherical designs are known for any degree t and any dimension
n. However, these constructions are typically inefficient, in the sense that they require an ex-
ponentially large number of vectors, see e.g. [HHH05; SZ84]. Moreover, these constructions
typically lack the type of structure that would be important in practical applications.

1.5.1 Approximate spherical designs and randomized
constructions

While tight and “structured” 2-designs are widely known [KR05; Kön99; Sch60; Zau99],
tighter analytic designs for t ≥ 3 are notoriously difficult to find. This lack of candidates may
be overcome by relaxing the definition of a t-design:

(i) Allow for non-uniform weights pk 6= 1
N in (1.20). Doing so, results in weighted spher-

ical t-designs {pk, wk}N
k=1. These are also known as cubatures of strength t, see e.g.

[EGK15]. Constructions for such sets containing only O
(
n2t) vectors are available

[Kup06].

(ii) Approximate spherical designs {pk, wk}N
k=1 arise, if one relaxes strict equality in (1.20)
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1.5 Concrete realizations of structured spherical designs

to closeness in some norm. Typically, Schatten p-norms ‖·‖p are used to measure the
inaccuracy θp of a given relaxation:

∥∥∥∥∥
N

∑
k=1

pk (wkw∗k )⊗t −
∫

v∈Sn−1
(vv∗)⊗t dv

∥∥∥∥∥
p

≤ θp.

Such relaxations are well-established in quantum information science and randomized
constructions do exist [AE07; BHH12]. We refer to [KRT15] for further information.

Theorem 4 (Simplified version of Theorem 28 in [KKRT16]). The assertions of Theorem 2
and Theorem 3 remain true, if one chooses measurements from a weighted, approximate 4-
design with accuracy θ∞ ≤ 1

16r2 , or θ1 ≤ 1
4 . For weighted designs {pk, wk}N

k=1, uniform
sampling must be replaced by choosing measurement vectors independently according to the
weights pk.

While we have not explicitly done the calculations, it is plausible that Theorem 1 also
remains true for approximate, weighted t-designs.

1.5.2 Coded diffraction patterns

Coded diffraction patterns are a simplified model of techniques used in diffraction imaging.
There, the phase retrieval problem arises naturally, because detectors can only capture light
intensities, not phases. A typical diffraction imaging experiment aims at identifying the struc-
ture of a microscopic probe, for instance a protein. To this end, the probe is illuminated by
coherent X-ray light. The resulting diffraction pattern is then recorded at detectors, or a photo-
graphic plate. Fresnel and Fraunhofer approximations to the diffraction equation often allow
for relating microscopic features of the probe to its diffraction pattern via a 2D-Fourier trans-
form. However, observing the absolute values of a single Fourier transform is insufficient to
recover phases.

To overcome this, one typically repeats this process under different physical conditions.
Conceptually, one of the simplest examples for such a procedure is masked illumination: one
inserts different masks, or phase plates, between the sample and the recording screen, see
e.g. [Liu+08] and Figure 1.2 for an illustration. Alternative techniques for achieving similar
goals are well-established and we refer to [CESV15] for a concise overview. To illustrate how
important these problems are in practice, we note that Watson and Crick used vital information
from such diffraction patterns to identify the double-helix structure of DNA.

Motivated by such procedures, Candès, Li and Soltanolkotabi [CLS15] introduced the
following measurement model for discrete phase retrieval: They describe modulations (via
masks, or otherwise) by random matrices Dl ∈ Mn×n that are diagonal with respect to the
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Figure 1.2: Caricature of a typical masked illumination experiment (courtesy of
M.S̃oltanolkotabi [CLS15]).

standard basis: Dl = ∑n
k=1 d(l)

k eke∗k . In turn, they approximate diffraction patterns by measur-
ing all inner products with discrete Fourier vectors. Let x ∈ Cn be a vector which may carry
important information about the microscopic structure of a probe. Then, this model associates
n measurements

yk,l = |〈 fk, Dlx〉|2 = tr (Dl fk f ∗k D∗l xx∗) 1 ≤ k ≤ n (1.27)

with the l-th modulated diffraction pattern. Following [CLS15], we call one such measure-
ments a coded diffraction pattern. Note that—even if Dl is random—the n different measure-
ments (1.27) exhibit a high degree of structure in that each measurement vector is similar to a
Fourier vector:

Dl fk =
1√
n

n

∑
j=1

b(l)
k ω jkek with ω = e

2πi
n .

Also, they are correlated in the sense that the same random numbers b(l)
1 , . . . , b(l)

n feature in
every Dl fk, 1 ≤ k ≤ n. Soltanolkotabi et al. could show that for certain random models of
Dl,

L = C log4(n)

independent coded diffraction patterns allow for recovering a fixed x ∈ Cn with high proba-
bility. This amounts to a total sampling rate of m = Ln = Cn log4(n).

Their random model assumes that each d(l)
k is an independent instances of a bounded (|d| ≤

c almost surely), symmetric random variable d ∈ C obeying E
[
d2] = 0 and

E
[
|d|4
]

= 2E
[
|d|2
]2

. (1.28)
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A concrete example [CLS15] for a complex-valued random variable that fulfills these proper-
ties is d = b1b2, where b1 and b2 are independent and distributed as

b1 =





1 with prob. 1
4

−1 with prob. 1
4

−i with prob. 1
4

i with prob. 1
4

and b2 =

{
1 with prob. 4

5√
6 with prob. 1

5

.

One key ingredient of proving such a statement is the fact that the bk’s are centered. This
allows for applying Hoeffding’s inequality [Hoe63] in order to conclude

|〈 fk, Dlx〉|2 =
1
n

∣∣∣∣∣
n

∑
j=1

bjxjω
jk

∣∣∣∣∣

2

≤ C log(n)

n

for any fixed x = ∑n
j=1 xjej ∈ Cn with very high probability. This is a rather strong notion of

probabilistic incoherence.

A few months after this original paper appeared on the pre-print server, we succeeded in
improving this statement [GKK15b]. In particular, we managed to further reduce the required
sampling rate to

L = C log2(n).

This is close to optimal. Indeed, we also established a converse lower bound: C′ log(n) such
coded diffraction patterns are necessary to guarantee injectivity [GKK15b].

Also, as a minor improvement, we drop their “simplifying assumption” that d must obey
E
[
d2] = 0. Instead, we require d to be a bounded, real-valued random variable obeying

(1.28), as well as E [d] = E
[
d3] = 0. A particular example for a random variable fulfilling

all these requirements is

d ∼





√
2 with prob. 1/4,

0 with prob. 1/2,

−
√

2 with prob. 1/4.

Finally, we point out that the moment condition (1.28) together with E [d] = 0 is equiv-
alent to near-isotropy (1.22) of the measurement model. This in turn implies that these
coded diffraction patterns form a spherical 2-design, albeit a very particular one. The addi-
tional structural properties of this design allow for establishing close-to-optimal reconstruction
proofs for PhaseLift.
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1.5.3 Stabilizer states

In this section we consider stabilizer states—a ubiqutous tool in quantum information theory
[Got97; NC10]. They also feature prominently in discrete Weyl-Heisenberg theory, where
they correspond to the smallest orbit of the oscillator group. Real-valued versions of stabilizer
states arise as generators of Barnes-Wall lattices [NRS02] and have been studied extensively
in coding theory, see e.g. [NRS06].

In a sense made precise below, stabilizer states can be viewed as a generalization of discrete
Fourier vectors. Here, we will introduce them from a quantum information perspective. Sta-
bilizer states are joint eigenvectors of Pauli matrices (1.18). For the particular case of a single
qubit (n = 2), they form a set Stab(2) of six normalized vectors:

s1 =e1, s2 = e2, s3 =
1√
2

(e1 + e2) , s4 =
1√
2

(e1 − e2) , (1.29)

s5 =
1√
2

(e1 + ie2) , s6 =
1√
2

(e1 − ie2) .

This is a union of three orthonormal bases which contains both the standard basis (s1, s2) and
the Fourier basis (s3, s4) of C2. Note that s1 is the unique joint eigenvector of σ0 and σ3 with
eigenvalue +1. Also, σ0 = I and σ3 commute. Likewise, s2 is the unique joint +1-eigenvector
of the commuting matrices σ0 and −σ3. The remaining stabilizer states s3, . . . , s6 ∈ C2 admit
a similar unique description.

Such a definition of stabilizer states can be generalized to arbitrary dimensions. However,
for the sake of brevity, we shall restrict ourselves to power-of-two dimensions n = 2d. It is
useful to introduce the following notation. Let us re-label the elementary Pauli matrices (1.18)
in the following way:

σ(0,0) =

(
1 0
0 1

)
, σ(0,1) =

(
0 1
1 0

)
, σ(1,1) =

(
0 −i
i 0

)
, σ(1,0) =

(
1 0
0 1

)
.

This notation allows us to identify every 2 × 2 Pauli matrix with a 2-dimensional vector
(p1, q1) ∈ F2

2. Likewise, in dimension n = 2d, every Pauli matrix is uniquely specified
by a 2d-dimensional vector (p, q) := (p1, . . . , pd; q1, . . . , qd) ∈ F2d

2 of length 2d:

W(p, q) = W(p1, . . . , pn; q1, . . . qn) = σ(p1,q1) ⊗ · · · ⊗ σ(pd,qd).

Such a description turns out to be extremely useful. For instance, two Pauli matrices
W(p, q), W(p′, q′) ∈ Hn commute, if and only if the symplectic inner product of their
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description vanishes:

[
(p; q), (p′; q′)

]
:= 〈p, q′〉 − 〈q, p′〉 =

d

∑
k=1

pkq′k −
d

∑
k=1

qk p′k = 0. (1.30)

The vector space F2d
2 together with the non-degenerate symplectic product (1.30) is called

phase space due to its resemblance to the phase space appearing in classical mechanics.

In turn, a set of n = 2d commuting n× n-Pauli matrices corresponds to a n-dimensional
subspace M ⊂ F2d

2 that is isotropic: [(p; q), (p′; q′)] = 0 ∀(p; q), (p′; q′) ∈ M. This obser-
vation allows us to generalize the definition of stabilizer states from C2 to Cn [Got97]. In the
language adopted here and in [KG15] we obtain the following description:

Theorem 5. Let n = 2d be a power of two. Then, up to a global phase, every stabilizer
state s ∈ Stab(n) ⊂ Cn is specified by a vector (v; w) ∈ F2d

2 and a d-dimensional isotropic
subspace M ⊂ F2d

2 :

ss∗ =
1
n ∑

(p;q)∈M
(−1)[(v;w),(p,q)]W(p; q).

We emphasize, that Theorem 5 allows for a succinct description of every n-dimensional
stabilizer state in terms of at most 2

(
log2

2(n) + log2(n)
)

bits. In turn, the “low complexity”
of stabilizer states allows for generating them algorithmically with relative ease. To this end,
let us label the standard basis in Cn by y ∈ Fd

2 (each ek is specified by the binary representation
of 1 ≤ k ≤ n). In turn, every stabilizer state s ∈ Cn is uniquely specified by an affine subspace
S + t ⊂ Fd

2, a vector l ∈ Fd
2 and a quadratic form q : Fd

2 → F2:

s =
1√
|S| ∑

y∈S
i〈l,y〉(−1)q(y)ey, (1.31)

see [DDM03] and also Theorem 5 in [GN07]. Moreover, there is a one-to-one correspondence
between this triple (S + t, l, q) and (M, (v; w)) from Theorem 5.

If we set l = 0 ∈ Fd
2, S = {0} and q(y) = 0 ∀y ∈ Fd

2, we recover the standard basis:
st = et ∀t ∈ Fd

2. Conversely, if we choose S = Fn
2 , t ∈ Fd

2 becomes irrelevant and setting
l = 0 and q(y) = 〈k, y〉 with k ∈ Fd

2 results in the discrete Fourier basis over Z×d
2 :

sk =
1√
n

n

∑
y∈Fn

2

(−1)〈k,y〉ey = fk1 ⊗ · · · ⊗ fkd
,

where f0 = 1√
2

(e1 + e2)T and f1 = 1√
2

(e1 − e2)T. In this sense, stabilizer states are a
generalization of both standard basis and Fourier basis.

The standard basis description (1.31) of stabilizer states in particular allows for generat-
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ing random stabilizer states efficiently. We have used such algorithms in different numerical
experiments, see for instance Figure 1.3.

Beyond that, multi-qubit (n = 2d) stabilizer states exhibit structural properties similar to
their single-qubit counterpart (1.29). The set Stab(n) ⊂ Cn of all stabilizer states is a union
of

|Stab(n)|
n

=
d

∏
j=1

(
2j + 1

)
= O

(
2

1
2 d2
)

different orthonormal bases. Each basis is uniquely determined by a d-dimensional isotropic
subspace M ⊆ F2d

2 , while different vectors (v; w) ∈ F2d
2 single out the individual basis

vectors. As pointed out above, the standard basis and the discrete Fourier basis over Z×d
2 are

two particular instances of these bases.

Using the rich geometric structure of stabilizer states, we were able to prove the following
statement:

Theorem 6 (Simplified version of Corollary 1 in [KG15]). Let n = 2d be a power of two.
Then, the set Stab(n) ⊆ Cn of all stabilizer states forms a spherical 3-design. They do,
however, not constitute a spherical 4-design.

This statement is wrong for dimensions n that are not a power of two. Sidelnikov could
prove an analogous statement for real-valued stabilizer states [Sid99] which also requires
power-of-two dimensions. However, the structure of real-valued spherical designs is sur-
prisingly different from their complex-valued counterparts. In turn, it is not obvious how
to generalize the techniques from Sidelnikov to the complex case and our proof technique
[KG15] is completely different from [Sid99].

Theorem 6 assures that the set of all stabilizer states obeys the requirements of Theorem 1—
our first main result for phase retrieval via PhaseLift. Said result assures that a fixed x ∈ Cn

may be reconstructed from
m ≥ Cn

5
3 log2(n) (1.32)

random stabilizer state measurements w.h.p While non-trivial, the sampling rate (1.34) is far
from being optimal. Very recently, in a fruitful collaboration with Zhu, Gross and Grassl we
were able to considerably improve this statement. These results are not yet published and we
present parts of them in Chapter 3 below. The key idea is to approach stabilizer states via their
symmetry group. Stabilizer states are the smallest orbit of the Clifford group C(n) ⊂ U(n):

Stab(n) = {Ce1 : C ∈ C(n)} .

The Clifford group is defined as the group of operations that—up to phase factors—map Pauli
matrices onto themselves under conjugation. It arises naturally in quantum information. For
instance, the important field of quantum error correction relies practically exclusively on con-
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1.5 Concrete realizations of structured spherical designs

structions that arise from Pauli matrices and Clifford actions. We refer to [LB13] and refer-
ences therein for further information.

This symmetry group features prominently in different fields: For instance it is known as
the oscillator group in finite Weyl-Heisenberg analysis and the metaplectic representation of
Sp (F2, d) in mathematical physics, see e.g. [Fol16].

In order to improve (1.32), we fully characterized the irreducible representations of the di-
agonal representation C 7→ C⊗4 of the Clifford group. I want to emphasize that this character-
ization is mainly due to my collaborators, in particular Zhu and Gross. Since stabilizer states
are an orbit of the Clifford group, this result allowed us to conclude the following formula for
stabilizer states [ZKGG16]:

1
|Stab(n)| ∑

s∈Stab(n)

(ss∗)⊗4 =

(
n + 2

3

)(
P1 +

4
n + 4

P2

)
. (1.33)

Here, P1, P2 ∈ H⊗4
n denote orthogonal projections that obey P1 + P2 = PSym4 , where PSym4

denotes the projector onto the totally symmetric subspace of (Cn)⊗4. We refer to Section
3.2 in [GKK15a] for a precise definition. This precise knowledge of the fourth moments of
stabilizer states allowed us to apply proof techniques similar to [KRT15] and [KKRT16] and
establish the following statement:

Theorem 7 (Simplified version of Theorems 2 and 3 in [KZG16b]). Let n = 2d be a power
of two and fix 1 ≤ r ≤ n. Then, w.h.p.

m = Cr3n log(n) (1.34)

random stabilizer measurements Ak = aka∗k allow for reconstructing any rank-r matrix X ∈
Hn via constrained nuclear norm minimization. This reconstruction is stable towards noise
corruptions. If X is in addition positive semidefinite, noise robust reconstruction may be done
by solving

minimize
Z≥0

‖A(Z)− y‖`p
∀1 ≤ p ≤ ∞.

We point out that the sampling rate (1.34) is cubic in the rank parameter r. For phase
retrieval via PhaseLift this non-linearity is irrelevant, because every matrix of interest X =

xx∗ ≥ 0 is proportional to a rank one projector (r = 1). In turn, Theorem 7 reproduces
the strongest PhaseLift reconstruction statement available to date [CL14] up to a single log-
factor. We emphasize that, unlike measurement vectors chosen uniformly from Sn0−1 [CL14],
stabilizer states have an exceedingly rich structure in the following sense:

(i) They admit a concise description in terms of finite symplectic geometry.

(ii) They form the smallest orbit of a big and well-studied symmetry group—the Clifford
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Figure 1.3: Phase Diagram for PhaseLift from (projected) stabilizer states. The red line indicates
m = 4d− 4—a sufficient criterion for injectivity of generic measurements [CEHV15].

group.

Numerical experiments conducted in [GKK15a] highlight the almost optimal behavior of sta-
bilizer states for phase retrieval, see Figure 1.3.

We conclude this section by pointing out that Theorem 7 remains valid, if we replace stabi-
lizer states by any other Clifford orbit. In fact, several other Clifford orbits admit a better rank
scaling in the sampling rate m.

1.5.4 Orthonormal basis measurements

Here, we shall focus on reconstructing a matrix X from a collection of orthonormal basis
measurements:

yk = tr (bkb∗k X) 1 ≤ k ≤ n, (1.35)

where b1, . . . , bn ∈ Cn denotes an orthonormal basis. Since two orthonormal bases are related
via a unitary transformation U ∈ U(n), we may equivalently write

yk = tr (U fk f ∗k U∗X) 1 ≤ k ≤ n, (1.36)
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where f1, . . . , fn denotes the orthonormal basis of discrete Fourier vectors. Viewed from this
perspective, orthonormal basis measurements are very similar to coded diffraction patterns
(1.27). However, here the modulation is due to a unitary rotation U, instead of a diagonal
mask Dl. For maximal randomness, in the sense that each U is chosen Haar-uniformly from
U(n), Voroninski could establish reconstruction results [Vor13]. He proved that a constant
number of such generic orthonormal basis measurements suffices to reconstruct a rank-one
matrix X = xx∗ with high probability. We point out that each orthonormal basis measurement
encompasses n different measurements. Thus the total number of measurements amounts to
m = Cn, which is optimal up to multiplicative factors. Although not stated explicitly, it is
plausible that this result may be extended to hermitian matrices with higher rank.

By combining the proof techniques from [GKK15b] (coded diffraction patterns) and
[GKK15a] (spherical designs) we were able to de-randomize this statement also general-
ize it to arbitrary rank:

Theorem 8 (Simplified version of Theorem 2 in [Kue15]). Let X ∈ Hn be a hermitian matrix
of rank r an suppose that each U in (1.36) is chosen independently from a unitary t-design
(t ≥ 3). Then, with high probability

L ≥ Ctn
2
t r log2(n)

orthonormal basis measurements allow for reconstructing X via nuclear norm minimization.

Unitary t-designs are a generalization of the spherical design concept to the unitary group
U(n) [DCEL09; GAE07]. On first sight, this result bears strong similarities with Theorem 1
above. However, it is a statement about matrix reconstruction and not not only valid for
PhaseLift (r = 1).

Also, unlike coded diffraction patterns, the orthonormal basis measurements considered
here do not admit a strong notion of probabilistic incoherence. So far, this lack of incoherence
together with the fact that that the individual measurements are not independent has prevented
us from further improving this result.

A concrete example for such a measurement procedure are stabilizer states in power of two
dimension. In turn, Theorem 8 implies that measuring

L ≥ C′rn
2
3 log2(n)

random stabilizer bases allows for rank-r matrix reconstruction. Measurements of this type are
not only feasible, but also typical, for several quantum mechanical experiments. Meeting the
structural requirements of these types of experiments has been my main motivation to study
matrix reconstruction from orthonormal basis measurements.
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1.6 Miscellaneous results convex reconstruction
problems

The previous two sections were devoted to the main results of this thesis. In this section,
I present further results on convex signal reconstruction that were obtained throughout the
course of my PhD. Several of these projects address features that are typical for PhaseLift—
such as anisotropic measurements and positivity constraints—in more generality.

1.6.1 Compressed sensing from anisotropic measurements

We have already introduced minimal coherence (1.17) and isotropy (1.21) as desirable prop-
erties for performing convex signal reconstruction. For sparse vector reconstruction from
measurements that are independent realizations of a random vector a ∈ Cn these amount to

µ = max
1≤k≤n

|〈ek, a〉|2 (coherence parameter) and E [aa∗] = I (isotropy).

Candès and Plan could show that these two requirements suffice for establishing compressed
sensing reconstruction guarantees [CP11a]. They prove that w.h.p. a fixed s-sparse vector can
be reconstructed from

m ≥ Cµs log(n)

random isotropic measurements with coherence parameter µ.

A concrete example for such a measurement ensemble are re-scaled Fourier basis vectors√
n f1, . . . ,

√
n fn ∈ Cn. They are isotropic and admit a minimal coherence parameter µ = 1.

Consequently, m = Cs log(n) random Fourier basis measurements w.h.p. suffice to recon-
struct a s-sparse vector via `1-norm minimization (1.7).

We could further generalize this result by considerably relaxing the isotropy condition. To
this end, we introduce the following condition number:

κ := κ
(

E [aa∗]
1
2
)

=
λmax

(
E [aa∗]

1
2
)

λmin

(
E [aa∗]

1
2
)

Note that isotropy is equivalent to demanding κ = 1. In turn, we need to adjust the coherence
parameter

µ̃ := max
{

max
1≤k≤n

|〈ek, a〉|2 , max
1≤k≤n

∣∣∣〈ek, E [aa∗]−1 a〉
∣∣∣
2
}

and arrive at the following statement.
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Theorem 9 (Simplified version of Theorem 2 in [KG14]). Let x ∈ Cn be an s-sparse vector
and suppose that measurement vectors are chosen randomly from an ensemble a ∈ Cn with
condition number κ and coherence parameter µ̃. Then, w.h.p.

m ≥ Csκµ̃ log(n)

independent measurements suffice to reconstruct x via constrained `1-minimization (1.7).

1.6.2 The role of positivity assumptions

In the context of phase retrieval, we have already seen that exploiting its positive semi-definite
structure is advantageous for noise-robustness. It allowed us to replace the “usual” constrained
nuclear norm minimization [KRT15] by Algorithm (1.25) [KKRT16]. This latter algorithm is
considerably simpler. And, perhaps more importantly, posing it does not require an a-priori
bound η ≥ ‖ε‖`2

on the noise strength.

Here, we show that similar conclusions may be drawn for sparse reconstruction of entry-
wise non-negative vectors x ≥ 0. The study of sparse reconstruction under such a positivity
constraint has a long and rich history that actually pre-dates compressed sensing, see e.g.
[DT05]. Subsequently, different aspects of non-negativity in compressed sensing have been
analyzed, see e.g. [BEZ08] and [SH+13]. To the best of our knowledge, these works focus on
the idealized scenario of reconstructing positive, sparse vectors from noiseless measurements.

In [KJ16] we put an emphasis on non-negative compressed sensing from noisy measure-
ments. We combine the geometric insights from [BEZ08] with the notion of a robust null
space property3 [FR13] to arrive at the following conclusion:

Theorem 10 (Simplified version of Theorem 1 in [KJ16]). Suppose that a real-valued mea-
surement process A : Rn → Rm obeys the robust NSP for s-sparse vectors and its row-span
intersects the positive orthant: ∑m

k=1 tkak > 0 for some t ∈ Rm. Then, solving

z] = arg min
z≥0

‖Az− y‖`2
(1.37)

allows for stably reconstructing any non-negative s-sparse vector x ∈ Rn from noisy mea-
surements Ax = y + ε:

∥∥∥z] − x
∥∥∥
`2
≤ C′

‖ε‖`2√
m

.

Note that Algorithm (1.37) is actually a simple non-negative least squares regression
(NNLS). When using standard tools, such as CVX [GB14; GBY08], its runtime is consid-

3The null space property is somewhat “folklore”. We refer to loc. cit. for a discussion about its origin.
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Figure 1.4: Comparison of NNLS and BPDN for 0/1-Bernoulli matrices in the noisy setting.

erably lower than constrained `1-minimization (1.7). Perhaps more importantly, NNLS does
not require any assumptions on the noise ε to assure stable reconstruction. This is not the case
for constrained `1-minimization, where an appropriate choice of η is essential.

As a concrete example, we consider Bernoulli-random measurements:

Theorem 11 (Simplified version of Theorem 2 in [KJ16]). A measurement process containing

m ≥ Cs log(n)

independent 0/1-Bernoulli vectors ak ∈ Rn meets the requirements of Theorem 10 with high
probability.

It is plausible that the number of measurements required may further be improved to m ≥
Cs log(n/s). For such measurement processes, we have run numerical simulations to com-
pare NNLS to “traditional” `1-minimization, see Figure 1.4. They highlight the advantage of
exploiting positivity. This 0/1-measurement model also has potential applications in current
engineering problems. We discuss one such application—activity detection in large wireless
networks—in [KJ16].

Finally, we point out that we proved a robust NSP for 0/1-Bernoulli matrices in order to
arrive at Theorem 11. This result alone allows for concluding strong (i.e. uniform and stable)
compressed sensing results—regardless of positivity. To the best of our knowledge, we were
the first to derive such strong results for 0/1-Bernoulli measurements. This lack of results is
likely due to the fact that such measurements are not isotropic:

E [aa∗] =
n

∑
k,l=1

E [bkbl] eke∗l =
1
4 ∑

k 6=l
ekel +

1
2

n

∑
k=1

eke∗k =
1
4

I +
1
4
~1~1∗.
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Here, ~1 = ∑n
k=1 ek denotes the “all-ones” vector with respect to the standard basis. This

anisotropy renders traditional strong proof techniques, such as establishing the famous re-
stricted isometry property (RIP) [C0̀8], infeasible. However, in accordance with the previous
subsection, Theorem 11 highlights that isotropy is not required for deriving strong compressed
sensing results.

1.6.3 Matrix reconstruction via minimizing the diamond norm

Low rank matrix reconstruction is typically carried out via a constrained nuclear norm mini-
mization (1.8). In some sense [FHB01], the nuclear norm is the tightest convex relaxation of
rank. However, this may not necessarily be the case if we restrict our attention to strict subsets
of low rank matrices.

Motivated by applications in quantum information science, we focus on matrices with a
bipartite structure: X ∈ Hn1 ⊗ Hn2 . For such matrices, we identify a novel convex surro-
gate for rank. It is based on the diamond norm—an important distance measure in quantum
information theory:

‖X‖� = max {‖(I⊗ A)X(I⊗ B)‖1 : ‖A‖ = ‖B‖ =
√

n2} (1.38)

It is easy to see that ‖·‖� is a norm and, although not obvious, it can be computed via a
semidefinite program that satisfies strong duality [Wat13]. Also, note that the pair A = B = I

is admissible in the maximization (1.38) and consequently

‖X‖1 ≤ ‖X‖� ∀X ∈ Hn1 ⊗ Hn2 . (1.39)

In [KKEG16] we provide analytical evidence in favor of the diamond norm as a convex
surrogate for rank. We use the fact that the geometry of convex reconstruction schemes is well
understood, see e.g. [Tro15]. Starting with a convex regularizer f (e.g. the nuclear norm), ge-
ometric proof techniques like Tropp’s Bowling scheme [Tro15] (see also [KRT15]) bound the
reconstruction error in terms of the descent cone of f at the matrix X that is to be recovered.
These arguments suggest that the reconstruction error would decrease, if another convex reg-
ularizer with smaller descent cone would be used. In this sense, the following result implies
that the diamond norm may be an improved regularizer for certain classes of matrices:

Theorem 12 (Simplified version of Corollary 8 in [KKEG16]). Let X ∈ Hn1 ⊗ Hn2 be a
matrix that saturates (1.39) , i.e. ‖X‖1 = ‖X‖�. Then the descent cone of the diamond norm
(1.38) in X is contained in the descent cone of the nuclear norm at the same point. Moreover,
we completely describe the set of all matrices X ∈ Hn1 ⊗ Hn2 obeying ‖X‖� = ‖X‖1.

We demonstrate this supremacy numerically: The diamond norm indeed outperforms the
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nuclear norm in a number of relevant applications, including quantum process reconstruction.
Quantum processes may be described by bipartite matrices X ∈ Hn1 ⊗ Hn2 which obey
‖X‖� = ‖X‖1 by definition. Moreover, many idealized quantum processes that are relevant
in quantum computation are described by matrices X with unit rank. Our results suggest
to employ a constrained diamond norm minimization in order to reconstruct such processes
from few random measurements. Numerical simulations conducted in [KKEG16] suggest that
this is indeed favorable: For correct reconstruction, constrained diamond norm minimization
requires fewer measurements than nuclear norm minimization.

1.7 Further results in quantum information theory

The main focus of this project is convex signal reconstruction, with an emphasis on phase re-
trieval and matrix reconstruction. As a field, convex reconstruction combines techniques from
various branches of mathematics, including convex optimization, linear algebra and probabil-
ity theory. These mathematical techniques lend themselves to tackling various different types
of problems. This section is devoted to presenting insights into different problems in quantum
information science. These were all obtained by applying such techniques.

1.7.1 A causal interpretation of Bell inequality violations

Bell inequalities are an elegant method to single out certain properties of quantum mechanical
systems that cannot be explained classically [Bel64]. At their heart are experiments that in-
volve two experimenters at different locations who simultaneously perform measurements on
a shared physical system. Under natural assumptions, such as locality (the results obtained by
one observer cannot be influenced by any action of the other), measurement independence (ex-
perimenters are free to choose which properties to measure) and realism (one can consistently
assign a value to any physical property—independently of whether or not it is measured), the
causal structure of this setup alone implies strong constraints on the statistical data that can
arise. The resulting constraints are called Bell inequalities. Famously, quantum mechanical
experiments can violate these constraints, see e.g. [CS78].

However, when trying to reproduce these results in a quantum experiment, practical limi-
tations make it very challenging to assure that the underlying assumptions – space-like sepa-
ration, locality and measurement independence – are met exactly. These practical limitations
motivate studying how stable Bell inequalities are towards violating one, or more, of these
assumptions.

To address this issue, we have re-visited typical “Bell experiments” and tried to explain
the observations classically via Bayesian networks. Doing so allows us to construct and
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subsequently analyze alternative causal structures, e.g. one that does allow for non-local in-
teractions. It turns out that the resulting problems can often be re-cast as linear programs.
Subsequently, the versatility of linear programming allowed us to draw several conclusions
[CKBG15], for instance: Novel “causal” interpretations of Bell inequality violations.

1.7.2 Bayesian quantum state estimation with fidelity

A finite, n-dimensional quantum system is fully described by its quantum state: a positive
semidefinite matrix that has unit trace. The task of estimating such a description of a physical
system from empirical data is called quantum tomography.

In recent years it has become increasingly popular to approach this task via Bayesian estima-
tion theory. The key idea is to choose a prior distribution over quantum states and subsequently
update it based on the measurement data. Doing so results in a posterior distribution dρ. Sub-
sequently, point estimators ρ̂ are obtained by specifying a loss function L : Hn × Hn → R

and minimizing the expected posterior loss:

minimize
σ≥0

Eρ [L(ρ, σ)] (1.40)

subject to tr(σ) = 1.

A prominent loss function is the following generalization of mean square error: L (ρ, σ) =

‖ρ− σ‖2
2. For such a loss function, (1.40) results in the Bayesian mean estimator ρ̂ = Eρ [ρ]

[BK10].

However, Frobenius distance ‖ρ− σ‖2 is not a prominent distance measure in quantum
information science. Instead, the fidelity [Uhl76]

F(ρ, σ) =
∥∥√ρ
√

σ
∥∥2

1 ∈ [0, 1]

is by far the most commonly used figure of merit for comparing quantum states. Interestingly,
the point estimator maximizing the expected fidelity is only known for a single qubit (n = 2)
[Bag+06]. In [KF15] we address this lack of knowledge by providing upper bounds on the
maximal expected fidelity achievable by any estimator:

Theorem 13 (Simplified version of Theorem 2 in [KF15]). The maximal average fidelity
achieved by any estimator ρ̂ obeys

Eρ [F(ρ, ρ̂)] ≤1− 1
4

tr
(

Eρ

[
ρ2
]
−Eρ [ρ]2

)
.

Such a result is useful for benchmarking the fidelity performance of different estimation

31



1 Introduction and summary of results

techniques.

We complement our theoretical findings with numerical experiments. These demonstrate
the relative tightness of our bounds. Moreover, they reveal that the Bayesian mean estimator
[BK10] is an excellent point estimator. Despite not being designed for maximizing expected
fidelity, it achieves values that—according to our bounds—are close to optimal.

1.7.3 Comparing experiments to fault-tolerance thresholds

The possibility of eventually constructing a working quantum computer hinges on the avail-
ability of robust control mechanisms that allow for compensating faulty computations. A
strong theoretical guarantee for being able to do so, is the Threshold Theorem [Kit97]. In a
nutshell, it states that if the error rate remains below a certain threshold, potentially noisy and
even faulty computations can be fully compensated using quantum error correction. The figure
of merit that quantifies this threshold is the diamond norm difference between the identity map
I : Hn → Hn and the error channel E : Hn → Hn occurring. This makes it imperative to
estimate diamond distances ∆(E) = ‖I − E‖� from experimentally available data. However,
doing so is a non-trivial task.

Instead, the average error rate of a noise channel

r(E) := 1−
∫

Sn−1
〈w, E(ww∗)w〉dw

is a prominent figure of merit. It can be estimated efficiently by performing techniques like
direct fidelity estimation [FL11] and randomized benchmarking, see e.g. [MGE11].

To date, the best known general bound that relates these two error measures is

r(E) ≤ ∆(E) ≤
√

n(n + 1)r(E) ∀E : Hn → Hn, (1.41)

which is rather discouraging. Current results on fault-tolerant quantum computation require a
threshold of order 10−4 [AC07]. In principle, experimenters need to be able to achieve average
error rates of order 10−8 in their working devices.

In [KLDF16] we address this problem. Concretely, we consider several realistic models of
incoherent quantum noise and show that these admit a linear relation:

r(E) ≤ ∆(E) ≤ 3r(E).

Conversely, we show that coherent noise processes—such as unitary errors E(X) = UXU∗—
essentially saturate the upper bound in (1.41). We derived these relations by exploiting the
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semidefinite program formulation of the diamond norm [Wat09].

From a practical perspective, these results are encouraging. On the contrary to incoherent
errors, such as leakage, coherent noise effects can typically be corrected. We point out that our
findings from subsection 1.6.3 may be useful for such a task. They allow for reconstructing
particular coherent processes from a reduced number of random measurements.

1.7.4 Distinguishing quantum states

Quantum state discrimination is the task of correctly distinguishing between two quantum
states, say ρ and σ, by performing a single quantum measurement. Helstrom’s theorem
[Hel76] states that the maximal probability of success for such a task is bounded by

psucc ≤
1
2

+
1
4
‖ρ− σ‖1 ,

if both states occur with equal probability. This amounts to a an optimal bias of βHelstrom =
1
4 ‖ρ− σ‖1. Moreover, Helstrom showed that this bound is achievable by performing a partic-
ular quantum measurement that depends on ρ and σ. However, such a particular measurement
is optimized to distinguish ρ from σ and may fail completely at distinguishing other state pairs.

Addressing this lack of universality in Helstrom’s theorem, Matthews, Wehner and Winter
[MWW09] turned this problem around: instead of fixing the states and optimizing the mea-
surement procedure, they consider the performance of a fixed measurement at distinguishing
arbitrary pairs of states ρ, σ ∈ Hn. In particular, they could show that a 4-design measurement
performs surprisingly well at this task:

β4D ≥
1

6
√

rank(ρ− σ)
‖ρ− σ‖1 ∀ρ, σ.

This is close to optimal, in the sense that it reproduces the performance of the uniform mea-
surement encompassing all xx∗ with x ∈ Sn−1. Conversely, a 2-design measurement may
perform considerably worse:

β2D ≥
1

2(n + 1)
‖ρ− σ‖1 .

This bound cannot be further improved in general.

Our novel results about the fourth moments of stabilizer states (1.33) [ZKGG16] have en-
abled us to infer similar results for measurements that consist of all stabilizer states.

Theorem 14 (Simplified version of Theorem 4 in [KZG16a]). If the dimension n = 2d is a
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power of two, stabilizer measurements obey

βstab ≥
1

4rank(ρ− σ)
‖ρ− σ‖1 ∀ρ, σ.

Note that this result critically depends on the rank of the states ρ and σ considered. If
both states are approximately pure, i.e. rank(ρ) ' rank(σ) ' 1, we can conclude βstab ≥
1
8 ‖ρ− σ‖1, which almost reproduces the 4-design behavior. Conversely, if ρ− σ has full rank
then stabilizer states may perform as bad as 2-designs: 1

4n ‖ρ− σ‖1 ≤ βstab ≤ 1
n+1 ‖ρ− σ‖1.
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0/1 measurements, Proceedings of the IEEE Information Theory Workshop (2016)
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While the topics of these articles are seemingly diverse, I want to emphasize that the meth-
ods and proof techniques are strongly related. This is illustrated in Figure 2.1.
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Figure 2.1: This figure illustrates the methodical connections between the different publica-
tions presented in this cumulative dissertation.
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Abstract—The problem of retrieving phase information from ampli-
tude measurements alone has appeared in many scientific disciplines
over the last century. PhaseLift is a recently introduced algorithm for
phase recovery that is computationally tractable and numerically stable.
However, initial rigorous performance guarantees relied specifically on
Gaussian random measurement vectors. To date, it remains unclear
which properties of the measurements render the problem well-posed.
With this question in mind, we employ the concept of spherical t-designs
to achieve a partial derandomziation of PhaseLift. Spherical designs
are ensembles of vectors which reproduce the first 2t moments of the
uniform distribution on the complex unit sphere. As such, they provide
notions of “evenly distributed” sets of vectors, ranging from tight frames
(t = 1) to the full sphere, as t approaches infinity. Beyond the specific
case of PhaseLift, this result highlights the utility of spherical designs
for the derandomization of data recovery schemes.

Index Terms—phase retrieval, spherical designs, low rank matrix
recovery

I. INTRODUCTION

A. The phase retrieval problem and PhaseLift

The problem of retrieving a complex signal x ∈ Cn from
measurements of the form

yi = |〈ai, x〉|2 i = 1, . . . ,m, (1)

where a1, . . . , am ∈ Cn are measurement vectors, has long been
abundant in many areas of science. Quite recently, several new
recovery algorithms have been proposed and first rigorous performance
guarantees have been established. Examples include methods based
on polarization identities [1], alternating projections [2], or Wirtinger
flow [3]. In addition, there are reconstruction methods that are tailored
to specific measurement ensembles, such as the approach in [4], which
is based on polynomial representations.

The approach we will focus on has been called PhaseLift [5]–[7]
and relies on formulating the problem as a low-rank matrix recovery
task [8]–[10]. To this end, one notes [11] that the yi’s in (1) can
equivalently be expressed as

yi = |〈ai, x〉|2 = tr ((aia
∗
i ) (xx∗)) =: tr (Ai (xx∗)) . (2)

In other words, the measurement results yi are linear in the outer
product X := xx∗ of the signal x with itself. This slight reformulation

“lifts” phase retrieval to a linear problem on the (non-linear) set of
n× n hermitian rank-one matrices {Z : Z = zz∗, z ∈ Cn} ⊂ Hn:

find Z ∈ Hn (3)
subject to tr (ZAi) = yi i = 1, . . . ,m,

rank Z = 1.

Throughout this article, we shall denote the n2-dimensional real vector
space of hermitian n× n matrices by Hn.

In general, solving linear equations over the set of rank-1 matrices
is computationally intractable. However, there are now many situations
for which it has been proved that the nuclear norm can be employed
as an efficiently computable proxy for rank [8]–[10]. (Recall that the
nuclear norm ‖X‖∗ = tr(|X|) is the sum of the singular values of
X . In a sense, it is the natural “non-commutative”, basis-independent
matrix analogue of the vector `1 norm). These results are closely
related to the use of the `1-norm as a convex relaxation of sparsity
in compressed sensing [12]. In particular, these findings suggest that
(3) can be substituted by the semi-definite program

minimize
Z∈Hn

‖Z‖∗ (4)

subject to tr (ZAi) = yi i = 1, . . . ,m.

This ansatz was dubbed the PhaseLift algorithm for phase retrieval
by its inventors [5]–[7].

The task is now to establish sufficient conditions under which the
above convex problem will indeed have the outer product X = xx∗

of the sought-for signal as its unique solution. First results proved that
this is the case (with high probability) if the number of measurements
roughly scales linearly in the problem dimension – i.e. m = O(n)
– and the measurement vectors ai are complex standard Gaussians
[6], [7]. Later works concentrated on the practically more important
case of “masked Fourier measurements” [13], [14]. However, the use
of Gaussian vectors obscures the specific properties of measurement
vectors that enable phase retrieval, while the masked Fourier case is
highly application-specified. Thus, the question we are interested in is:
Can one identify particular properties of measurement ensembles that
allow for phase retrieval via PhaseLift, that are sufficiently general
to encompass structured measurements (unlike Gaussians), but at the
same time are fairly general (unlike masked Fourier)? We will argue
below that the defining properties of spherical designs fall into this
category.978-1-4673-7353-1/15/$31.00 c©2015 IEEE
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II. PHASE RETRIEVAL FROM SPHERICAL DESIGN MEASUREMENTS

To motivate the notion of spherical designs, we recall that low-
rank recovery results [8]–[10] are usually phrased for measurement
ensembles that are isotropic, or drawn from a tight frame (analogous
statements apply to compressed sensing [12], but can be generalized –
see e.g. [15], [16]). One definition of such a structural property is as
follows:

Definition 1 (Isotropy). A weighted set {µ(α), Bα}α∈I ⊆ Hn is
isotropic, if, for all Z ∈ Hn,∫

I

Bαtr (BαZ) dµ(α) = Z. (5)

In the case of PhaseLift, full isotropy for the measurements Ai is
impossible to attain. The reason is that the Ai = aia

∗
i are all outer

products and thus have positive Hilbert-Schmitt inner product with
the identity matrix:

trAiI = trAi = ‖ai‖22 > 0. (6)

Fortunately, the vectors can be chosen in such a way that Ai’s are
isotropic on the trace-free subspace of Hn, i.e. the “overweighting
of the identity component” just noted is the only way in which the
Ai’s deviate from being a tight frame. Indeed, for complex standard
Gaussian vectors the following identity follows from a simple direct
calculation:

Proposition 2 (Near-isotropy: Equation (5.1) in [6]). Let Z ∈ Hn be
arbitrary and assume that b is a complex standard Gaussian vector
in Cn. Then

E [bb∗tr (bb∗Z)] = Z + tr(Z)I. (7)

Note that the “identity component” tr(Ixx∗) = ‖x‖22 of the signal is
nothing but its squared length, or intensity. From now on, we assume
that the intensity ‖x‖22 is in fact known. Also, while not essential, we
have opted to carry out our analysis for measurement vectors ai with
unit length ‖ai‖2 = 1. With these conventions, the entire problem
only ever concerns vectors on the complex unit-sphere. The rotation-
invariant measure on the unit sphere Sn−1 ⊂ Cn is called the Haar
measure. One can sample from it e.g. by drawing complex standard
Gaussian vectors and normalizing them. The resulting analogue of
(7) reads∫

w∈Sn−1

ww∗tr (ww∗Z) dw =
1

n(n+ 1)
(Z + tr(Z)I) (8)

for all Z ∈ Hn. Near-isotropy for an ensemble {µ(α), bα}α∈I can
easily be seen [17, Lemma 1] to be equivalent to demanding that the
ensemble reproduces the 4th moments of the Haar measure:

Proposition 3 (Necessary and sufficient criterion for near isotropy).
Let {µ(α), bα}α∈I ⊆ Sn−1 be a weighted set of unit vectors. Then

∫

I

bαb
∗
α ⊗ bαb∗αdµ(α) =

∫

w∈Sn−1

ww∗ ⊗ ww∗dw (9)

holds if and only if the re-scaled set {µ(α),
√
n(n+ 1)bαb

∗
α}α∈I is

near-isotropic in the sense of (7).

If the Ai’s range over all measurements in a near-isotropic set, they
essentially1 form a tight frame in matrix space and thus X can be

1As already mentioned, (6) implies that the ray {Z ∈ Hn : Z = cI, c ∈ R} ∈ Hn

is “overweighted”. If the signal’s intensity is known, however, this distortion can be
readily compensated.

recovered by simple linear inversion [11]. However, such a tight frame
necessarily contains at least dimHn = O(n2) elements – much more
than the O(n) degrees of freedom in x. Still, one could hope that
PhaseLift could be proved to succeed for linearly many ai’s sampled
from such a set. We will prove below that, unfortunately, this is too
optimistic. In general, near-isotropy alone is insufficient for reaching
an optimal linear scaling in the number of measurements m. However,
(9) suggests a generalization which will turn out to be sufficiently
strong for achieving such a goal.

To motivate it, it is wortwhile to point out that vectors drawn
uniformly from the sphere are proportional to a tight frame in Cn (as
opposed to Hn): ∫

w∈Sn−1

ww∗dw =
1

n
I. (10)

Combining this with (9) yields the following two structural criteria
for a weighted set {µ(α), bα}α∈I of unit vectors:

∫

I

bαb
∗
αdµ(α) =

∫

Sn−1

ww∗dw ⇒ tight frame, (11)
∫

I

(bαb
∗
α)
⊗2

dµ(α) =

∫

Sn−1

(ww∗)⊗2 dw ⇒ near-isotropy. (12)

Generalizing these equalities to arbitrary t-th tensor powers yields
the following definition which is a the heart of our work:

Definition 4 (Spherical t-design). Let t ∈ N. We call a weighted set
{µ(α), bα}α∈I ⊆ Sn−1 of unit vectors a spherical t-design, if

∫

I

(bαb
∗
α)
⊗k

dµ(α) =

∫

Sn−1

(ww∗)⊗k dw (13)

is valid for all 1 ≤ k ≤ t. The parameter t ∈ N is called the design’s
order.

While this definition underlines the resemblance of a t-design to
vectors drawn uniformly from the complex unit sphere, the expression
on the right hand side of (13) is not very practical for actual
calculations (in particular, if t is large). Fortunately, a straightforward
application of Schur’s Lemma [18, Lemma 1] yields

∫

Sn−1

(ww∗)⊗k dw =

(
n+ k − 1

k

)−1
PSymk

for t, n ∈ N arbitrary. Here, PSymt denotes the projector onto the
totally symmetric subspace of (Cn)

⊗k. In turn, techniques from
multilinear algebra – in particular wiring calculus [19], [20] – allow
for carrying out calculations involving PSymt explicitly.

Analytic expressions for exact designs are notoriously difficult to
find. Designs of degree 2 are widely known [21]–[24] (see also next
section). For degree 3, both real [25] and complex [26] designs are
known. For higher t, there are numerical methods based on the notion
of the frame potential [24], [26], [27], non-constructive existence
proofs [28], and constructions in sporadic dimensions (c.f. [29] and
references thererin).

In Section II-A below, we will show that drawing the measurements
from a spherical 2-design does not allow for non-trivial performance
guarantees for PhaseLift. Conversly, in Section II-B, we provide such
guarantees for designs of order t ≥ 3.
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A. Phase retrieval from spherical 2-designs

Proposition 3 together with Definition 4 establishes a one-to-one
correspondence between spherical 2-designs and weighted sets of unit
vectors which fulfill near-isotropy in the sense of (7). This in turn
assures that for any X ∈ Hn, measuring all projectors onto elements
of a 2-design as well as measuring tr (IX) = tr(X) allows one to
linearly invert the measurement process and determine X exactly.

In the context of the “lifted” phase retrieval problem, Balan et. al
[11] were the first to be aware of this correspondence. In turn, they
used a particular instance of a spherical 2-design to recover X = xx∗

via a deterministic choice of order O
(
n2
)

projective measurements
onto elements of this design.

Concretely, their approach uses a maximal set of mutually unbiased
bases (MUBs). Two orthonormal bases {u1, . . . , un} and {v1, . . . , vn}
of Cn are called mutually unbiased, if their overlap is uniformly
minimal. Concretely, this means that

|〈ui, vj〉|2 =
1

n
∀i, j = 1, . . . , n

must hold for all i, j = 1, . . . , n. Note that this is just a generalization
of the incoherence property between standard and Fourier basis. In
prime power dimensions, a maximal set of (n + 1) such MUBs is
known to exist (and can be constructed) [30]. Such a set is maximal
in the sense that it is not possible to find more than (n+ 1) MUBs in
any Hilbert space. It is well-known that equally weighted, maximal
sets of MUBs form spherical 2-designs [22], [24].

Ehler and Kunis [31] also identified near isotropy – equation (7)
– and its connection to spherical 2-designs (12) (which they call
curbatures of strength 2) as a crucial ingredient for performing phase
retrieval. Combining this insight with the PhaseLift approach [5],
[6] they conjecture that measuring O(n) projectors onto randomly
chosen elements of a spherical 2-design should be sufficient for
establishing a recovery guarantee for PhaseLift. However, in [20] a
counter-example to this conjecture is provided: without assuming and
exploiting additional properties of the measurement ensemble, random
subsampling is not sufficient for avoiding a scaling of m = O(n2).

At the heart heart of this counter-example is the following obser-
vation regarding the injectivity of a random phaseless measurement
chosen from a particular spherical 2-design.

Proposition 5. Suppose that a is chosen uniformly at random from a
maximal set of MUBs (which forms a spherical 2-design). Then there
exist orthogonal and normalized vectors x, y ∈ Cn such that

Pr
[∣∣∣|〈a, x〉|2 − |〈a, y〉|2

∣∣∣ > 0
]
≤ 2

n(n+ 1)
.

Proof: Suppose that {u1, . . . , un} ⊂ Cn is one orthonormal basis
contained in the maximal set of MUBs and set x := u1, as well as
y := u2. Note that by definition these vectors are orthogonal and
normalized. Due to the particular structure of MUBs, the expression
of interest obeys

∣∣∣|〈a, u1〉|2 − |〈a, u2〉|2
∣∣∣ =

{
1 if a = u1, or a = u2,

0 otherwise.

The claim now follows from noticing that a is chosen uniformly at
random from the n(n + 1) vectors contained in a maximal set of
MUBs.

Note that this statement implies that the probability of distinguishing
the orthogonal vectors x and y by means of a random phaseless
measurement (chosen uniformly from the spherical 2-design formed
by a maximal set of MUBs) is proportional to 1/n2. In [20] the authors
use a slightly refined version of this insight together with a stopping
time argument to establish the following rigorous counter-example to
subsampling from a particular 2-design.

Theorem 6 (Theorem 2 in [20]). Let n ≥ 2 be a prime power and
let D2 ⊂ Cn be a maximal set of MUBs. Then there exist orthogonal,
normalized vectors x, y ∈ Cd which have the following property:

Suppose that m measurement vectors a1, . . . , am are sampled
independently and uniformly at random from D2. Then, for any ω ≥ 0,
the number of measurements must obey

m ≥ ω

4
n(n+ 1), (14)

or the event

|〈ai, x〉|2 = |〈ai, y〉|2 ∀ i ∈ {1, . . . ,m}
will occur with probability at least e−ω .

It is worthwhile to emphasize that this no-go result only applies
to specific 2-designs. Particular instances of a 2-design that exhibit
additional structural properties may well allow for subsampling. In
fact, such a measurement ensemble – “coded diffraction patterns”, or
“masked Fourier measurements” – was introduced by Candès et al.
in [13] and it was proven in the same paper that a total number of
m = O

(
n log4 n

)
such measurements actually allows for establishing

a Phaselift recovery guarantee. Since these coded-diffraction patterns
fulfill near-isotropy in the sense of (7), Proposition 3 assures that
they also form a spherical 2-design. This equivalence was pointed out
in [14], where the required sampling rate for such a recovery was
furthermore reduced to a total of O

(
n log2 n

)
measurements.

B. Phase retrieval from higher-order designs

Since a subsampled collection of random projectors onto a spherical
2-design can in general not be sufficient for recovering a sought for
signal X = xx∗ via PhaseLift, it is natural to ask if designs of higher
order allow for establishing such a recovery guarantee.

Recall that the main problem with subsampling from a spherical 2-
design was the injectivity-issue pointed out in Proposition 5. However,
this situation changes dramatically for designs of higher order.

Proposition 7. Suppose that a is chosen uniformly at random from
a spherical 4-design. Then for any two distinct vectors x, y ∈ Cn

Pr
[∣∣∣|〈a, x〉|2 − |〈a, y〉|2

∣∣∣ > 0
]
≥ 1

96

is true.

Proof: The claim is an immediate corollary from the auxiliary
statement [32, equation (24)] used to establish Proposition 12 there.
For a chosen uniformly at random from a spherical 4-design, this
statement assures for any Z ∈ Hn

Pr

[
|tr (aa∗Z)| ≥ ξ‖Z‖2√

n(n+ 1)

]
≥
(
1− ξ2

)2

24
∀ξ ∈ [0, 1] (15)

by means of the Payley-Zygmund inequality. Here, ‖Z‖2 denotes the
Frobenius norm of Z. Setting Z := xx∗ − yy∗ (note that since x and
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y are distinct, the matrix Z cannot vanish and therefore ‖Z‖2 > 0
must hold) and setting ξ = 2−1/2 allows us to conclude

Pr
[∣∣∣|〈a, x〉|2 − |〈a, y〉|2

∣∣∣ > 0
]

= Pr [|tr (aa∗Z)| > 0]

≥Pr

[
|tr (aa∗Z)| ≥ 2−1/2‖Z‖2√

n(n+ 1)

]
≥ (1− 1/2)2

24
=

1

96

by means of (15).
Proposition 7 assures that choosing measurement vectors inde-

pendently from any spherical 4-design behaves strikingly different
from the 2-design case. In particular, this statement guarantees that
injectivity issues in the sense of Proposition 5 are much less severe for
designs of higher order. In accordance with such a disintegration of
the injecivity problem, non-trivial recovery guarantees for PhaseLift
can be established for designs of higher order, as the main result in
[20] shows.

Theorem 8 (Theorem 1 in [20]). Let x ∈ Cn be the unknown signal
of interest. Suppose that ‖x‖2`2 is known and that m measurement
vectors a1, . . . , am have been sampled independently and uniformly
at random from an equally weighted t-design obeying t ≥ 3. Then,
with probability at least 1− e−ω , PhaseLift (the convex optimization
problem (4) above) recovers x up to a global phase, provided that
the sampling rate exceeds

m ≥ ω Ctn1+2/t log2 n. (16)

Here ω ≥ 1 is an arbitrary parameter and C is a universal constant.

Already for 3-designs, this result establishes a recovery guarantee
from subquadratically many – namely O(n5/3 log2(n)) – projectors
onto randomly selected 3-design elements. The statement furthermore
becomes tight – i.e. the required sampling rate scales linearly in
the dimension n of the signal x – up to polylog-factors, if the
design order t is allowed to grow logarithmically with the dimension
(t = 2 log n). Note that a similar recovery guarantee for sampling
from particular t-designs can be established, even if n sampling
vectors are correlated at a time [33]. Recently, the above Theorem
was substantially strengthened and generalized in [32].

Theorem 9 (Theorem 3 in [32]). Consider the measurement process
described in (2) where the measurement vectors a1, . . . , am have
been sampled independently from a spherical 4-design (according
to the design’s weights). Furthermore assume that the number of
measurements m obeys

m ≥ C1nr log n,

for 1 ≤ r ≤ n arbitrary. Then with probability at least 1 − e−C2m

it holds that for any X ∈ Hn with rank at most r, any solution
X# of the convex optimization problem (4) with noisy measurements
yi = tr (AiX) + εi , where

∑n
i=1 ε

2
i ≤ η2, obeys

‖X −X#‖2 ≤
C3η√
m
. (17)

Here, C1, C2, C3 > 0 again denote universal positive constants.

This is a uniform recovery guarantee for recovering arbitrary rank-r
matrices that is furthermore robust towards noise. Clearly it covers
phase retrieval via PhaseLift as a special case – namely the one,
where all matrices X of interest are guaranteed to be rank one.

Consequently, O(n log n) measurements randomly chosen from a
4-design are sufficient to guarantee phaseless recovery of arbitrary
signals x ∈ Cn via the convex optimization (4). Moreover, such a
sampling rate is close to optimal. As shown in [34], it follows from
the results derived in [35] that a sample size of m ≥ (4 + o(1))n is
in fact necessary (cf. [36]).

Finally, we want to point out that Theorem 9 is also close to optimal
in terms of the design order t required. Indeed, Theorem 6 establishes
that a design order of at least t = 3 is required without making
additional assumptions on the measurement ensemble. Theorem 9 gets
by with a design order of t = 4 and no further assumptions. Fully
closing the gap by establishing an analogue of Theorem 9 which is
valid already for 3-designs, or tightening the required sampling rate
in Theorem 8 does constitute an intriguing open problem. Numerical
studies presented in [20] suggest that this might indeed be feasible.
For the sake of completeness we have included the results of this
study in Figure 1.

Fig. 1. Phase Diagram for PhaseLift from (projected) stabilizer states, which form
an equally weighted 3-design in power-of-two dimensions [26]. The x-axis indicates
the problem’s dimension, while the y-axis denotes the number of independent design
measurements performed. The frequency of a successful recovery over 30 independent
runs of the experiment appears color-coded from black (zero) to white (one). To guide
the eye, we have furthermore included a red line indicating m = 4n− 4.

III. SPHERICAL DESIGNS AS A GENERAL-PURPOSE TOOL FOR
PARTIAL DERANDOMIZATION

In section II we have introduced spherical t-designs as a general-
ization of natural structural properties (11), (12) which assure that the
weighted vector set forms a tight frame on Cn and the corresponding
rank-one projectors obey near-isotropy (essentially meaning that they
form a slightly distorted tight-frame on Hn).

Equivalently, one can define spherical t-designs as (usually finite)
weighted distributions of vectors that approximate Haar-random
vectors (or equivalently: the distribution of complex standard Gaussian
vectors renormalized to unit length) up to t-th moments.

Viewing spherical t-designs from this angle reveals that they do
constitute a general purpose tool for derandomizing results that
initially required generic – i.e. Haar-random or standard Gaussian –
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vectors. This utility of the design concept has long been appreciated
for example in quantum information theory [37], [38]. It has been
compared [37] to the notion of t-wise independence, which plays a
role for example in the analysis of discrete randomized algorithms.
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LOW RANK MATRIX RECOVERY FROM RANK ONE MEASUREMENTS

RICHARD KUENG, HOLGER RAUHUT, AND ULRICH TERSTIEGE

Abstract. We study the recovery of Hermitian low rank matrices X ∈ Cn×n from under-
sampled measurements via nuclear norm minimization. We consider the particular scenario
where the measurements are Frobenius inner products with random rank-one matrices of the
form aja∗j for some measurement vectors a1, . . . , am, i.e., the measurements are given by

yj = tr(Xaja
∗
j ). The case where the matrix X = xx∗ to be recovered is of rank one reduces

to the problem of phaseless estimation (from measurements, yj = |〈x, aj〉|2 via the PhaseLift
approach, which has been introduced recently. We derive bounds for the number m of mea-
surements that guarantee successful uniform recovery of Hermitian rank r matrices, either for
the vectors aj , j = 1, . . . ,m, being chosen independently at random according to a standard
Gaussian distribution, or aj being sampled independently from an (approximate) complex pro-
jective t-design with t = 4. In the Gaussian case, we require m ≥ Crn measurements, while
in the case of 4-designs we need m ≥ Crn log(n). Our results are uniform in the sense that
one random choice of the measurement vectors aj guarantees recovery of all rank r-matrices
simultaneously with high probability. Moreover, we prove robustness of recovery under per-
turbation of the measurements by noise. The result for approximate 4-designs generalizes and
improves a recent bound on phase retrieval due to Gross, Kueng and Krahmer. In addition,
it has applications in quantum state tomography. Our proofs employ the so-called bowling
scheme which is based on recent ideas by Mendelson and Koltchinskii.

1. Introduction

1.1. The phase retrieval problem. The problem of retrieving a complex signal from mea-
surements that are ignorant towards phases is abundant in many different areas of science, such
as X-ray cristallography [40, 57], astronomy [29] diffraction imaging [67, 57] and more [8, 12, 76].
Mathematically formulated, the problem consists of recovering a complex signal (vector) x ∈ Cn

from measurements of the form

|〈aj , x〉|2 = bj for j = 1, . . . ,m, (1)

where a1, . . . , am ∈ Cn are sampling vectors. This ill-posed inverse problem is called phase
retrieval and has attracted considerable interest over the last few decades. An important feature
of this problem is that the signal x enters the measurement process (1) quadratically. This leads
to a non-linear inverse problem. Classical approaches to numerically solving it include alternating
projection methods [30, 34]. However, these methods usually require extra constraints and careful
selection of parameters, and in particular, no rigorous convergence or recovery guarantees seem
to be available.

As Balan et al. pointed out in [7], this apparent obstacle of having nonlinear measurements
can be overcome by noting that the measurement process – while quadratic in x – is linear in
the outer product xx∗:

|〈aj , x〉|2 = tr
(
aja

∗
jxx

∗) .
This “lifts” the problem to a matrix space of dimension n2, where it becomes linear and can
be solved explicitly, provided that the number of measurements m is at least n2 [7]. However,
there is additional structure present, namely the matrix X = xx∗ is guaranteed to have rank one.
This connects the phase retrieval problem to the young but already extensive field of low-rank
matrix recovery. Indeed, it is just a special case of low-rank matrix recovery, where both the
signal X = xx∗ and the measurement matrices Aj = aja

∗
j are constrained to be proportional to

rank-one projectors.

Date: October 25, 2014.
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It should be noted, however, that such a reduction to a low rank matrix recovery problem
is just one possibility to retrieve phases. Other approaches use polarization identities [2] or
alternate projections [60]. Yet another recent method is phase retrieval via Wirtinger flow [14].

1.2. Low rank matrix recovery. Building on ideas of compressive sensing [18, 27, 33], low rank
matrix recovery aims to reconstruct a matrix of low rank from incomplete linear measurements
via efficient algorithms [63]. For our purposes we concentrate on Hermitian matrices X ∈ Cn×n

and consider measurements of the form

tr (XAj) = bj j = 1, . . . ,m (2)

where the Aj ∈ Cn×n are some Hermitian matrices. For notational simplicity, we define the
measurement operator

A : Hn → Rm Z 7→
m∑

j=1

tr (ZAj) ej ,

where e1, . . . , em denotes the standard basis in Rm. This summarizes an entire (possibly noisy)
measurement process via

b = A(X) + ǫ. (3)

Here b = (b1, . . . , bm)T contains all measurement outcomes and ǫ ∈ Rm denotes additive noise.
Low rank matrix recovery can be regarded as a non-commutative version of compressive sensing.
Indeed, the structural assumption of low rank assures that the matrix is sparse in its eigenbasis.
In parallel to the prominent role of ℓ1-norm minimization in compressive sensing [33], it is by
now well-appreciated [1, 17, 16, 63, 35] that in many relevant measurement scenarios, the sought
for matrix X can be efficiently recovered via convex programming, although the corresponding
rank minimization problem is NP hard in general [28].

In order to formulate this convex program, we introduce the standard ℓp-norm on Rn or Cn by

‖x‖ℓp = (
∑n

ℓ=1 |xℓ|p)1/p for 1 ≤ p < ∞ and the Schatten-p-norm on the space Hn of Hermitian
n× n matrices as

‖Z‖p =

(
n∑

ℓ=1

σℓ(Z)p

)1/p

= tr (|Z|p)1/p , p ≥ 1,

where σℓ(Z), ℓ = 1, . . . , n, denote the singular values of Z, tr is the trace and |Z| = (Z∗Z)1/2.
Important special cases are the nuclear norm ‖Z‖∗ = ‖Z‖1, the Frobenius norm ‖Z‖F = ‖Z‖2
and the spectral norm ‖Z‖∞ = ‖Z‖2→2 = σmax(Z) being the largest singular value. More
information, concerning Schatten-p norms can be found in Appendix 5.1.

Assuming the upper bound ‖ǫ‖ℓ2 ≤ η on the noise for some η ≥ 0, recovery via nuclear norm
minimization corresponds to

minimize
Z∈Hn

‖Z‖1 subject to ‖A(Z)− b‖ℓ2 ≤ η. (4)

This is a convex optimization problem which can be solved computationally efficiently with var-
ious strategies [33, Chapter 15], [10, 23, 62, 71]. We note that several alternatives to nuclear
norm minimization may also be applied including iteratively reweighted least squares [32], it-
erative hard thresholding [47, 70], greedy approaches [51] and algorithms specialized to certain
measurement maps A [43], but our analysis is geared towards nuclear norm minimization and
does not provide guarantees for these other algorithms.

Up to date, a number of measurement instances have been identified for which nuclear norm
minimization (4) – and potentially other algorithms – provably recovers the sought for low-rank
matrix from considerably fewer than n2 measurements [17, 16, 20, 35, 32, 52, 63, 74]. All these
constructions are based on randomness, the simplest being a random Gaussian measurement
map where all entries Aj,k,ℓ in the representation A(X)j =

∑n
k,ℓ=1 Aj,k,ℓXk,ℓ are independent

mean zero variance one Gaussian random variables. It is shown in [16, 63] that

m ≥ Crn

measurements suffice in order to (stably) reconstruct a matrix X ∈ Cn×n of rank at most r
with probability at least 1 − exp(−cm), where the constants C, c > 0 are universal. This result
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is based on a version of the by-now classical restricted isometry property so that this result is
uniform in the sense that a random draw of A enables reconstruction of all rank r matrices
simultaneously with high probability. A corresponding nonuniform result, holding only for a
fixed rank r matrix X is stated in [20], see also [4, 74], which shows that essentially m > 6rn
measurements are sufficient, thus providing also good constants.

While unstructured Gaussian measurements provide optimal guarantees, which are compara-
bly easy to derive, many applications demand for more structure in the measurement process. A
particular instance is the matrix completion problem [22, 17, 19, 35, 21], which aims at recover-
ing missing entries of a matrix which is known to be of low rank. Here, the source of randomness
is in the selection of the known entries. In contrast to the unstructured measurements, ad-
ditional incoherence properties of the matrix to be recovered are required and the bounds on
the number of measurements are slightly worse [22, 35], namely m ≥ Crn log2(n). The matrix
completion setup generalizes to measurements with respect to an arbitrary operator basis. The
incoherence assumption on the matrix to be recovered can be dropped if in turn the operator
basis is incoherent, which is the case for the particular example of Pauli measurements arising in
quantum tomography [35, 52]. Here, a sufficient and necessary number of measurements scales
like m ≥ Crn log(n).

Rank-one measurements, however, in general fail to be sufficiently incoherent for directly
applying proof techniques of the same type. For the particular case of phase retrieval (where the
matrix of interest is by construction a rank-one projector) this obstacle could be overcome by
providing problem specific recovery guarantees that either manifestly rely on (rank one) Gaussian
measurements [13, 74] or result in a non-optimal sampling rate [38, 15, 37].

1.3. Weighted complex projective designs. The concept of real spherical designs was intro-
duced by Delsarte Goethals and Seidel in a seminal paper [26] and has been studied in algebraic
combinatorics [68] and coding theory [26, 59]. Recently, complex projective designs – the natural
extension of real spherical designs to the complex unit sphere – have been of considerable interest
in quantum information theory [79, 65, 41, 36, 53, 11, 48].

Roughly speaking, a complex projective t-design is a finite subset of the complex unit sphere
in Cn with the particular property that the discrete average of any polynomial of degree (t, t)
(i.e., a polynomial p(z, z̄) of total degree t both in z = (z1, . . . , zn) and in z̄ = (z̄1, . . . , z̄n)) or less
equals its uniform average. Many equivalent definitions capture this essence, but the following
one best serves our purpose.

Definition 1 (exact, weighted t-design, Definition 3 in [65]). For t ∈ N, a finite set {w1, . . . , wN} ⊂
Cn of normalized vectors with corresponding weights {p1, . . . , pN} such that pi ≥ 0 and

∑N
i=1 pi =

1 is called a weighted complex projective t-design of dimension n and cardinality N if

N∑

i=1

pi (wiw
∗
i )

⊗t
=

∫

CPn−1

(ww∗)⊗t
dw, (5)

where the integral on the right hand side is taken with respect to the unique unitarily-invariant
probability measure on the complex projective space CPn−1 and the integrand is computed
using arbitrary preimages of the w ∈ CPn−1 in the unit sphere in Cn. (Note that if w1 and
w2 are elements of the unit sphere that have the same image w in CPn−1 then w1w

∗
1 = w2w

∗
2 .)

This definition in particular shows that uniform sampling from a t-design mimics the first 2t
moments of sampling uniformly according to the Haar measure, which is equivalent to sampling
standard Gaussian vectors followed by renormalization.

A simple application of Schur’s Lemma – see e.g. [65, Lemma 1] – reveals that the integral
on the right hand side of (5) amounts to

∫

CPn−1

(ww∗)⊗t
dw =

(
n+ t− 1

t

)−1

PSymt , (6)

where PSymt denotes the projector onto the totally symmetric subspace Symt of (Cn)
⊗t

defined
in the appendix – see equation (40).
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In accordance with [55], we call a t-design proper, if all the weights are equal, i.e., pi = 1/N
for all i = 1, . . . , N .

Although exact, proper t-designs exist and can be constructed in any dimension n for any t ∈ N
[66, 6, 45, 41], these constructions are typically inefficient in the sense that they require vector
sets of exponential size. For example, the construction in [41] requires on the order of O (t)

n

vectors which scales exponentially in the dimension n. Constructions of exact, proper designs
with significantly smaller number of vectors (scaling only polynomially in n) are notoriously
difficult to find.

By introducing weights, it becomes simpler to obtain designs with a number of elements that
scales polynomially in the dimension n. Some existence results can be found in [25], where
weighted t-designs appear under the notion of cubatures of strength t. It seems that one can
construct weighted t-designs by drawing sufficiently many vectors at random and afterwards
solving a linear system for the weights. Further note, that generalizations of cubatures to higher
dimensional projections were used in [5] in the context of a generalized phase retrieval problem,
where the measurements are given as norms of projections onto higher dimensional subspaces.

2. Main results

2.1. Low rank matrix recovery from rank one Gaussian projections. Our first main
result gives a uniform and stable guarantee for recovering rank-r matrices with O(rn) rank one
measurements that are proportional to projectors onto standard Gaussian random vectors.

Theorem 2. Consider the measurement process described in (3) with measurement matrices
Aj = aja

∗
j , where a1, . . . , am ∈ Cn are independent standard Gaussian distributed random vec-

tors. Furthermore assume that the number of measurements m obeys

m ≥ C1nr,

for 1 ≤ r ≤ n arbitrary. Then with probability at least 1 − e−C2m it holds that for any positive
semidefinite matrix X ∈ Hn with rank at most r, any solution X# to the convex optimization
problem (4) with noisy measurements b = A(X) + ǫ, where ‖ǫ‖ℓ2 ≤ η, obeys

‖X −X#‖2 ≤ C3η√
m
. (7)

Here, C1, C2 and C3 denote universal positive constants. (In particular, for η = 0 one has exact
reconstruction.)

For the rank one case r = 1, Theorem 2 essentialy reproduces the main result in [13] which
uses completely different proof techniques. (More precisely, for X of rank 1 the estimate in

loc. cit. is ‖X −X#‖2 ≤ C‖ǫ‖1

m with high probability.) A variant of the above statement was
shown in [74] to hold (in the real case) for a fixed matrix X of rank one. (More precisely, in
loc. cit. it is assumed that X is positive semidefinite and the optimization is performed wrt.
the function f given by (9) below.) In fact, our proof reorganizes and extends the arguments of
[74, Section 8] in such a way, that Theorem 8.1 of loc. cit. is shown to hold even uniformly (that
is simultaneously for all X) and for arbitrary rank. On the contrary to [13], we will not need
ε-nets to show uniformity.

2.2. Recovery with 4-designs. As we will see, the proof method for Theorem 2 can also
be applied to measurements drawn independently from a weighted complex projective 4-design
in the sense of Definition 1. In [38] exact complex projective t-designs have been applied to
the problem of phase retrieval. The main result (Theorem 1) in [38] is a non-uniform exact
recovery guarantee for phase retrieval via the convex optimization problem (4) that requiresm =

O
(
tn1+2/t log2 n

)
measurement vectors that are drawn uniformly from a proper t-design (t ≥ 3).

The proof technique which we are going to employ here, allows for considerably generalizing and
improving this statement. We will draw the measurement vectors a1, . . . , am ∈ Cn independently

at random from a weighted 4-design {pi, wi}Ni=1, which means that for each draw of aj , the design
element wi is selected with probability pi. In the sequel we assume that n ≥ 2.
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Theorem 3. Let {pi, wi}Ni=1 be a weighted 4-design and consider the measurement process de-

scribed in (3) with measurement matrices Aj =
√
n(n+ 1)aja

∗
j , where a1, . . . , am ∈ Cn are

drawn independently from {pi, wi}Ni=1. Furthermore assume that the number of measurements m
obeys

m ≥ C4nr logn,

for 1 ≤ r ≤ n arbitrary. Then with probability at least 1−e−C5m it holds that for any X ∈ Hn with
rank at most r, any solution X# to the convex optimization problem (4) with noisy measurements
b = A(X) + ǫ, where ‖ǫ‖ℓ2 ≤ η, obeys

‖X −X#‖2 ≤ C6η√
m
. (8)

Here, C4, C5, C6 > 0 again denote universal positive constants.

The normalization factor
√
n(n+ 1) leads to approximately the same normalization of the

Aj (wrt. the Frobenius norm) as in expectation in the Gauss case. The theorem is a stable,
uniform guarantee for recovering arbitrary Hermitian matrices of rank at most r with high
probability using the convex optimization problem (4) and m = O (nr log(n)) measurements
drawn independently (according to the design’s weights) from a weighted 4-design. It obviously
covers sampling from proper 4-designs as a special case.

Also, Theorem 3 is close to optimal in terms of the design order t required. In the context
of the phase retrieval problem1 it was shown in [38, Theorem 2], that choosing measurements
uniformly from a proper 2-design does not allow for a sub-quadratic sampling rate m without
additional structural assumptions on the measurement ensemble. It is presently open whether
Theorem 3 also holds for 3-designs.

Finally, note that the results for Gaussian measurement vectors and 4-designs are remarkably
similar. They only differ by a logarithmic factor. This underlines the usefulness of complex
projective designs as a general-purpose tool for de-randomization – see e.g. [38, Section 1.1.] for
further reading on this topic. Also, Theorem 3 resembles insights in the context of distinguishing
quantum states [55, 3], where it was pointed out that (approximate) 4-designs “perform almost
as good” as uniform measurements (projectors onto random Gaussian vectors). Note that we
will generalize Theorem 3 to approximate 4-designs in Theorem 5 below.

2.3. Extensions. In this section we state variants of the main theorems which can be proved
in a similar way.

2.3.1. Real-valued case. Theorem 2 is also valid in the real case, i.e., assuming that the aj are
real standard Gaussian distributed and Hn is replaced by the space Sn of real symmetric n× n-
matrices. The proof of the corresponding statement is very similar to the one of Theorem 2 and
we sketch the necessary adaptations in Subsection 4.3.

2.3.2. Recovery of positive semidefinite matrices. The matrix X to be recovered may be known
to be positive semidefinite (X < 0) in advance. In this case, one can enforce the reconstructed
matrix to be positive semidefinite by considering the optimization program

minimize
Z<0

tr(Z) subject to ‖A(Z)− b‖ℓ2 ≤ η

instead of the nuclear norm minimization program (4). Then analog versions of Theorems 2, 3
and 5 hold. In particular, the error bounds (7), (8) remain valid. In the noisy case η > 0, this does
not follow directly from these theorems, since the minimizer of the nuclear norm minimization
(4) is not guaranteed to be positive semidefinite in the noisy case. The proof proceeds similarly
as the ones for the case X ∈ Hn. Instead of the nuclear norm one has to consider (as in [74])
the function

f : Hn → R ∪ {∞}, f(X) =

{
tr(X), if X < 0

∞, otherwise.
(9)

1i.e., recovering unknown Hermitian matrices of rank one
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3. Applications to quantum state tomography

A particular instance of matrix recovery is the task of reconstructing a finite n-dimensional
quantum mechanical system which is fully characterized by its density operator ρ – an n × n-
dimensional positive semidefinite matrix with trace one. Estimating the density operator of an
actual (finite dimensional) quantum system is an important task in quantum physics known as
quantum state tomography.

One is often interested in performing tomography for quantum systems that have certain
structural properties. An important structural property – on which we shall focus here – is
purity. A quantum system is called pure, if its density operator has rank one and almost pure
if it is well approximated by a matrix of low rank rank(ρ) = r ≪ n. Assuming this structural
property, quantum state tomography is a low-rank matrix recovery problem [39, 35, 31, 52].
An additional requirement for tomography is the fact that the measurement process has to be
“experimentally realizable” and – preferably – “efficiently” so.

Any “experimentally realizable” quantum mechanical measurement corresponds to a positive
operator-valued measure (POVM). In the special case of (finite) n-dimensional quantum systems,

a POVM is a set of positive semidefinite matrices {Mj}Nj=1 ⊂ Hn that sum up to the identity,

i.e.,
∑N

j=1 Mj = id – see e.g. [61, Chapter 2.2.6] for further information.

For practical reasons, it is highly desirable that a quantum measurement (represented by
a POVM) can be implemented with reasonable effort. In accordance with [61], we call a
POVM-measurement efficient (or practical), if it can be carried out by performing a number of
O (polylog(n)) elementary steps2. Making this notion precise would go beyond the scope of this
work and we refer to [3, 61] for further reading.

Below we will concentrate on random constructions of the vectors aj. We note, however, that
implementing the POVM element aja

∗
j corresponding to the projection onto a Gaussian random

vector is not efficient as it requires O (poly(n)) steps. This renders all low rank matrix recovery
guarantees which rely on Gaussian measurements – like in Theorem 2 above – inefficient (and
therefore impractical) for low rank quantum state tomography. Utilizing a weakened concept
of t-designs discussed next, we partly overcome this obstackle with Theorem 5 below and its
possible implementations outlined in Sections 3.2.1, 3.2.2.

3.1. An analogue of Theorem 3 for approximate designs. While Theorem 3 is a substan-
tial derandomization of Theorem 2 and therefore interesting from a theoretical point of view, its
usefulness hinges on the availability of constructions of exact weighted 4-designs. Unfortunately,
such constructions are notoriously difficult to find unless one relies on randomness, for which,
however, the resulting designs are not efficient in the sense described in the previous section. One
way to circumvent these difficulties is to relax the defining property (5) of a t-design. This ap-
proach was – up to our knowledge – introduced by A. Ambainis and J. Emerson [3] and resulted
in the notion of approximate designs which is by now well established in quantum information
science.

Definition 4 (Approximate t-design). We call a weighted set {pi, wi}Ni=1 of normalized vectors
an approximate t-design of p-norm accuracy θp, if

∥∥∥∥∥
N∑

i=1

pi (wiw
∗
i )

⊗t −
∫

CPn−1

(ww∗)⊗t
dw

∥∥∥∥∥
p

≤
(
n+ t− 1

t

)−1

θp. (10)

While accuracy measured in arbitrary Schatten-p-norms is conceivable, the ones measured
in operator norm (p = ∞) [42, 3, 54, 11] and nuclear norm (p = 1) [58] are the ones most
commonly used – at least in quantum information theory. For these two accuracies, the definition
in particular assures that every approximate t-design is in particular also a k-design for any
1 ≤ k ≤ t with the same p-norm accuracy θp [3, 54]. For the sake of being self-contained we
provide a proof of this statement in the appendix – see Lemma 16.

2This notion is comparable to the circuit depth in classical computer science.
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A slightly refined analysis reveals that Theorem 3 also holds for sufficiently accurate approx-
imate 4-designs.

Theorem 5. Fix 1 ≤ r ≤ n arbitrary and let {pi, wi}Ni=1 be an approximate 4-design satisfying
∥∥∥∥∥

N∑

i=1

piwiw
∗
i − 1

n
id

∥∥∥∥∥
∞

≤ 1

n
, (11)

that admits either operator norm accuracy θ∞ ≤ 1/(16r2), or trace-norm accuracy θ1 ≤ 1/4,
respectively. Then, the recovery guarantee from Theorem 3 is still valid (possibly with slightly

worse absolute constants C̃4, C̃5 and C̃6).

3.2. Protocols for efficient low rank matrix recovery. Up to now, efficient recovery of low
rank density operators by means of the convex optimization problem (4) has been established for
random measurements of (generalized) Pauli observables [39, 35]. For this type of measurements,
the statistical issues are well understood [31] and Y.K. Liu managed to prove a uniform recovery
guarantee [52] which is comparable to the results presented here. Also, this procedure has been
tested in experiments [64].

Theorem 5 is similar in spirit and we show here that it permits efficient low rank quantum state
tomography for different types of measurements. Indeed, in the field of quantum information
theory, various ways of constructing approximate t-designs are known. Most of these methods
are inspired by “realistic” quantum mechanical setups (e.g. the circuit model [61, Chapter 4])
and can therefore be – in principle – implemented efficiently in an actual experiment.

Introducing these constructions in full detail would go beyond the scope of this work and we
content ourselves with sketching two possible ways of generating approximate 4-design measure-
ments which meet the requirements of Theorem 5. For further clarification on the concepts used
here, we refer directly to the stated references.

From now on we shall assume that the dimension n = 2d is a power of two (d-qubit density
operators).

3.2.1. The Ambainis-Emerson POVM. In [3], the authors provide a way of constructing a nor-
malized approximate 4-design of operator-norm accuracy θ∞ = O

(
1/n1/3

)
, which in addition

is a tight frame. They furthermore present a way to generate the corresponding POVM-
measurements efficiently – i.e., involving only O (polylog(n)) elementary steps. It therefore
meets the requirements of Theorem 5, provided that the maximal rank r of the unknown density
operator obeys

r ≤ C7n
1/6, (12)

where C7 is a sufficiently small absolute constant. The additional rank requirement stems from
the fact that the resulting design only has limited accuracy.

This accuracy can be improved if we construct an approximate design in a much larger space –

say Cn6

– and project it down onto an arbitrary n-dimensional subspace. The reason for such an

approach is that the projected design’s accuracy corresponds to θ∞ = O
((

n6
)−1/3

)
= O(1/n2).

This allows for replacing (12) by the much weaker rank constraint

r ≤ C8n, (13)

(where C8 is again a sufficiently small absolute constant) in order to assure that the design’s
operator-norm accuracy obeys θ∞ ≤ 1/(16r2).

Also, the projected design vectors still form a tight frame, but are sub-normalized, i.e.

‖w̃i‖2ℓ2 = ‖Pwi‖2ℓ2 ≤ ‖wi‖22 = 1. Here, P : Cn6 → Cn denotes the projection. However, since
they are an approximate design’s projection onto a smaller space, they maintain all properties
of an approximate 4-design – most notably Lemma 16 – except normalization. In the proof of
Theorem 5, normalization is only used once, namely in (28) and sub-normalization is sufficient
to guarantee this estimate. Consequently, Theorem 5 is applicable and guarantees universal
quantum state tomography via the convex optimization problem (4), provided that (13) holds
and m = C4rn log n randomly chosen measurements tr (w̃iw̃

∗
i ρ) are known.
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3.2.2. Approximate unitary designs. Another way to generate approximate t-designs is to con-

sider arbitrary orbits of unitary t-designs. Unitary t-designs {pi, Ui}Ni=1 are a natural general-
ization of the spherical design concept to unitary matrices [24, 36]. They have the particular
property that every weighted orbit {pi, Uix} with ‖x‖ℓ2 = 1 of an approximate unitary design
forms an approximate complex projective t-design of the same accuracy.

It was shown in [11] that unitary t-designs of arbitrary operator-norm accuracy θ∞ can be
constructed efficiently by using local random circuits. This approach allows for generating an ap-
proximate unitary 4-design of operator-norm accuracy θ∞ ≤ 1/(16n2) by means of local random
circuits of length C9 log(n)

2, where C9 is a sufficiently large absolute constant. Consequently,
every orbit of the union of all such local random circuits of length C9 log(n)

2 forms a normalized
approximate 4-design which meets the requirements of Theorem 5. One way of implement-
ing such a measurement consists in choosing a local quantum circuit Ui at random, applying
its adjoint circuit U∗

i to the density operator ρ and then measuring the two-outcome POVM
{xx∗, id− xx∗}, where x ∈ Cn is arbitrary (but fixed and normalized) to obtain

yi = tr (xx∗U∗
i ρUi) = tr (Uixx

∗U∗
i ρ) = tr (wiw

∗
i ρ) .

According to Theorem 5, m = C̃4nr logn random measurements of this kind are sufficient to
reconstruct any density operator ρ of rank at most r with very high probability via the convex
optimization problem (4).

Remark 6. One should note that the approximate unitary designs of [11] are not of a finite
nature, because the set of all local random unitaries is continuous. Nevertheless, assuming
that such local random unitaries are available as “basic building blocks”, local random circuits
are efficiently implementable in terms of circuit length. Replacing the atomic expectation values∑N

i=1 pi (wiwi)
⊗t

by their continuous counterparts does not change the argument and Theorem 5
remains valid.

It is worthwhile to point out that the two possible applications of Theorem 5 to the problem of
low rank quantum state tomography, as presented here, are not yet optimal. The implementation
using the Ambainis-Emerson POVM – presented in 3.2.1 – suffers from the drawback that it
demands either a very strong criterion on the density operator’s rank – condition (12) – or
generating the design in a much larger space and projecting it down. The latter construction is
highly unlikely to be optimal and it is furthermore a priori not clear where the corresponding
POVM-measurements can be implemented efficiently.

The second approach, on the other hand, suffers from the drawback that carrying out each of
the Crn log n randommeasurements requires terminating with a very coarse two-outcome POVM
measurement. It is very likely that a more fine grained-output statistics could be obtained with
comparable effort. The recovery protocol stated here, however, does not allow for advantageously
taking into account such refined information about the unknown state.

However, we still feel that mentioning these protocols is worthwhile, as they substantially
narrow down the gap between what can be proved (Theorem 5 and the protocols presented in
subsection 3.2) and what can be implemented efficiently in an actual quantum state tomography
experiment. Next, we provide ideas for further narrowing this gap and finding more protocols
that allow for efficient low rank quantum state tomography.

3.3. Outlook. The construction of approximate t-designs in Section 3.2.1 via projections from
higher-dimensional designs would be much stronger if an efficient protocol for the correspond-
ing POVM measurements could be provided. We leave this for future work. Alternatively, the
authors of [3] mention results by Kuperberg [46] who managed to construct exact t-designs
containing only O

(
n2t
)
vectors. They furthermore conjecture that their method of efficiently

implementing the corresponding POVM measurement also works for Kuperberg’s exact con-
struction. Trying to find such an implementation and combining it with Theorem 3 also does
constitute an intriguing follow up-project.

Diagonal-unitary designs are yet another generalization of the spherical design concept to a
more restrictive family of unitaries [58]. The notion of a diagonal-unitary design depends on
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choosing a reference basis and is therefore weaker than the unitary design notation from above.
Nevertheless, in [58, Proposition 1] it was shown that the orbit3 of a particular vector f1 ∈ Cn

under a diagonal-unitary t-designs still forms approximate complex projective t-designs with
trace-norm accuracy

θ1 =

(
n+ t− 1

t

)(
t(t− 1)

n
+O

(
1

n2

))
. (14)

A quick calculation reveals that this orbit forms a normalized tight frame. Unfortunately, the
trace-norm accuracy (14) is too weak for a direct application of Theorem 5. However, in [58,
Theorem 1] it is shown that the union of all 3-qubit phase-random circuits forms an exact
diagonal-unitary 4-design. Similar to local random circuits, such 3-qubit phase-random circuits
can in principle be implemented efficiently [58, Proposition 3] in an actual quantum mechanical
setup. Furthermore, comparing (14) with the accuracy relation θ∞ ≤ θ1 ≤ ntθ∞ – see Lemma
16 in the appendix – suggests that particular orbits of diagonal-unitary designs might possess
a much tighter operator-norm accuracy, if the spectrum of their (t-fold tensored) average were
sufficiently flat. Such a result, combined with Theorem 5, would lead to a tomography procedure
that is similar to the one of Section 3.2.2, but uses random 3-qubit phase gates instead of local
random circuits.

4. Proofs

Our proof technique consists in the application of a uniform version of Tropp’s bowling scheme,
see [74]. The crucial ingredient is a new method due to Mendelson [56] and Koltchiskii, Mendelson
[44] (see also [50]) to obtain lower bounds for quantities of the form infu∈E

∑m
j=1 |〈φj , x〉|2 where

the φj are independent random vectors in Rd and E is a subset of Rd. We start by recalling
from [74] the notions and results underlying this technique.

Suppose we measure x0 ∈ Rd via measurements y = Φx0 + ǫ ∈ Rm, where Φ is an m × d
measurement matrix and ǫ ∈ Rm vector of unknown errors. Let η ≥ 0 and assume ‖ǫ‖ℓ2 ≤ η.
For f : Rd → R ∪ {∞} proper convex we aim at recovering x0 by solving the convex program

minimize f(x) subject to ‖Φx− y‖ℓ2 ≤ η. (15)

Here, proper convex means that f is convex and attains at least one finite value.
Let K ⊆ Rd be a cone. Then we define the minimum singular value of Φ with respect to K as

λmin(Φ;K) = inf{‖Φu‖ℓ2 : u ∈ K ∩ Sd−1},

where Sd−1 is the unit sphere in Rd. For x ∈ Rd, we consider the (convex) descent cone

D(f, x) =
⋃

τ>0

{y ∈ Rd : f(x+ τy) ≤ f(x)}.

With these notions, the success of the convex program (15) can be estimated as follows.

Proposition 7. ([74], see also [20]) Let x0 ∈ Rd, Φ ∈ Rm×d and y = Φx0 + ǫ with ‖ǫ‖ℓ2 ≤ η.
Let f : Rd → R ∪ {∞} be proper convex and let x♯ be a solution of the corresponding convex
program (15). Then

‖x♯ − x0‖ℓ2 ≤ 2η

λmin(Φ;D(f, x0))
.

The crucial point for us is that in the situation that Φ is a random matrix with i.i.d. rows,
the following theorem can be applied to estimate λmin(Φ;D(f, x0)) (see also [44, 74, 56]).

3 For a diagonal-unitary design with respect to the standard basis e1, . . . , en, their result requires the first

Fourier vector f1 = 1√
n

∑n
i=1 ei as a fiducial. This vector is isomorphic to the |+〉⊗d =

(
1√
2
(e1 + e2)

)⊗d
state

which is well-known in quantum information theory.

85
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Theorem 8. (Koltchinskii, Mendelson; Tropp’s version [74]) Fix E ⊂ Rd and let φ1, . . . , φm be
independent copies of a random vector φ in Rd. For ξ > 0 let

Qξ(E;φ) = inf
u∈E

P{|〈φ, u〉| ≥ ξ}

and Wm(E, φ) = E sup
u∈E

〈h, u〉, where h =
1√
m

m∑

j=1

εjφj

with (εj) being a Rademacher sequence4. Then for any ξ > 0 and any t ≥ 0 with probability at

least 1− e−2t2

inf
u∈E

(
m∑

i=1

|〈φi, u〉|2
)1/2

≥ ξ
√
mQ2ξ(E;φ) − 2Wm(E, φ)− ξt.

Remark 9. We note that the above theorem is stated in [74] to hold with probability 1−e−t2/2.
Inspecting the proof, however, reveals that the probability estimate can actually be improved to

1− e−2t2 .

We will apply the notions in these results in the context of Theorems 2 and 3 as follows:

• identify Hn with Rd = Rn2

• Φ is the matrix of A in the standard basis, i.e., Φ(X)i = tr(aia
∗
iX)

• f : Hn → R ∪ {∞} is the nuclear norm, i.e., f(X) = ‖X‖1.
In particular,

D(f,X) =
⋃

τ>0

{Y ∈ Hn : f(X + τY ) ≤ f(X)}.

In Topp’s original bowling scheme, [74, Sections 7 and 8], a positive semidefinite matrix X
of rank 1 is fixed and Theorem 8 is then applied to EX = D(f,X) ∩ Sd−1, where Sd−1 =
{Z ∈ Hn : ‖Z‖2 = 1}. He then uses the Payley-Zygmund inequality to obtain a lower bound
for Q2ξ (after choosing some appropriate ξ) and finally applies arguments like conic duality to
bound Wm from above.

Our approach differs from the original bowling scheme in one aspect: instead of fixing one rank
r-matrix and focusing onEX , we are going to consider the unionEr = {X ∈ Hn : rank(X) ≤ r, X 6= 0}
of all low rank matrices. The rest of the proof essentially parallels the bowling scheme from [74].
However, we are going to require an auxiliary statement – Lemma 10 below – in order to obtain
a comparable upper bound on Wm. This slightly refined analysis is going to result in a uniform
recovery result whose probability of success equals the one for non-uniform recovery of a single
fixed X . Note that with such an approach, we do not need to use ε-nets in order to establish
uniformity.

For r ≤ n let

Kr =
⋃

X

D(f,X),

where the union runs over all X ∈ Hn \ {0} of rank at most r. We further define

Er = Kr ∩ Sd−1 =
⋃

X

EX ,

where EX = D(f,X) ∩ Sd−1. We recall that for a convex cone K ⊆ Rd, its polar cone is defined
to be the closed convex cone

K◦ = {v ∈ Rd : 〈v, x〉 ≤ 0 for all x ∈ K}.
A crucial ingredient for Theorems 2 and 3 is the following lemma.

4A Rademacher vector ǫ = (ǫj)mj=1 is a vector of independent Rademacher random variables, taking the values

±1 with equal probability.

86
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Lemma 10. Let A ∈ Hn be a Hermitian n× n-matrix. Then

sup
Y ∈Er

tr(A · Y ) ≤ 2
√
r‖A‖∞.

By duality and the matrix Hölder inequality this statement is equivalent to

‖Y ‖1 ≤ 2
√
r for all Y ∈ Er. (16)

The following proof is inspired by [74, Section 8], where similar arguments are used.

Proof. It is enough to show that, for any X ∈ Hn \ {0} of rank at most r, we have

sup
Y ∈EX

tr(A · Y ) ≤ 2
√
r‖A‖∞.

We may assume that X has precisely rank r ≥ 1. By weak duality for cones, see [74, Propo-
sition 4.2] or [33, eq. (B.40)], we have supY ∈EX

tr(A · Y ) ≤ distF (A,D(f,X)◦), where as usual
distF (A,D(f,X)◦) = infB∈D(f,X)◦ ‖A − B‖2. By [74, Fact 4.3], we know that the polar cone
D(f,X)◦ is the closure of

⋃
τ≥0 τ · ∂f(X). For S ∈ ∂f(X) and τ ≥ 0, it follows that

sup
Y ∈EX

tr(A · Y ) ≤ ‖A− τ · S‖2.

WriteX =
∑r

i=1 λixix
∗
i , where the xi are orthonormal and the λi are non-zero. Extend x1, . . . , xr

to an orthonormal basis x1, . . . , xn of Cn and write A in the form

A =
∑

ãi,jxix
∗
j .

(Hence the ãi,j form the matrix obtained from A by a basis change to x1, . . . , xn.) Define the
four blocks A1 =

∑
i,j≤r ãi,jxix

∗
j , A2 =

∑
i≤r,j>r ãi,jxix

∗
j , A3 =

∑
i>r,j≤r ãi,jxix

∗
j = A∗

2 and

A4 =
∑

i,j>r ãi,jxix
∗
j . It is well known that ∂‖X‖1 consists of all matrices of the form

S =

r∑

i=1

sgn(λi)xix
∗
i + S2,

where S2 ∈ Hn has the property that S2xi = 0 for all i ∈ {1, . . . , r} and ‖S2‖∞ ≤ 1. (See for
example [78], where the real analogue is shown.) Consider now

S =

r∑

i=1

sgn(λi)xix
∗
i + τ−1A4 ∈ ∂‖X‖1, where τ = ‖A4‖∞.

(If τ = 0, let S =
∑r

i=1 sgn(λi)xix
∗
i .) To simplify the notation, write S1 =

∑r
i=1 sgn(λi)xix

∗
i .

Then

‖A− τS‖2 = ‖A−A4 − τS1‖2 =
(
tr(A1 − τS1)

2 + 2tr(A∗
2A2)

)1/2

=
(
‖A1 − τS1)‖22 + 2‖A∗

2‖22
)1/2 ≤

(
2‖A1‖22 + 2‖τ · S1‖22 + 2‖A∗

2‖22
)1/2

=
(
2‖A · x1‖22 + . . .+ 2‖A · xr‖22 + 2‖τ · S1‖22

)1/2

≤
(
2r‖A‖2∞ + 2rτ2

)1/2 ≤ 2
√
r‖A‖∞,

since τ = ‖A4‖∞ ≤ ‖A‖∞ = λ. �

4.1. Proof of Theorem 2. In order to prove both statements of Theorem 2, it is enough by
Proposition 7 to show that for m ≥ cnr with probability at least 1− e−γm

inf
Y ∈Er




m∑

j=1

tr(aja
∗
jY )2




1/2

≥ c1
√
m

for suitable positive constants c, c1, γ. For ξ > 0 let

Qξ = inf
Z∈Er

P(|tr(aja∗jZ)| ≥ ξ). (17)
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12 RICHARD KUENG, HOLGER RAUHUT, AND ULRICH TERSTIEGE

Further let

H =
1√
m

m∑

j=1

εjaja
∗
j , (18)

where the εj form a Rademacher sequence independent of everything else, and introduce

Wm = E sup
Y ∈Er

tr(H · Y ).

By Theorem 8, for any ξ > 0 and any t ≥ 0 with probability at least 1− e−2t2 ,

inf
Y ∈Er




m∑

j=1

(tr(aja
∗
jY ))2




1/2

≥ ξ
√
mQ2ξ − 2Wm − ξt.

Following Tropp’s bowling scheme, we first estimate Q2ξ for a suitable ξ. As in [74], we conclude
from the Payley-Zygmund inequality (see e.g. [33, Lemma 7.16]) that

P{|〈aa∗, U〉|2 ≥ 1

2
(E|〈aa∗, U〉|2)} ≥ 1

4
· (E|〈aa

∗, U〉|2)2
E|〈aa∗, U〉|4 . (19)

(Here a follows the standard Gaussian distribution on Cn.) Assume now ‖U‖2 = 1 and write
U =

∑
i λiuiu

∗
i , where

∑
i λ

2
i = 1 and the ui are orthonormal. Then 〈aa∗, U〉 = tr(aa∗U) =∑

j λjtr(aa
∗uju

∗
j ) =

∑
j λj |u∗

ja|2 and hence,

|〈aa∗, U〉|2 =
∑

i,j

λiλj |u∗
i a|2|u∗

ja|2.

The u∗
ja form independent standard (complex) Gaussian random variables. To compute the

moments of a standard complex Gaussian random variable Z, write Z = X + iY where X,Y

are independent and N (0, 1
2 ) distributed. The 2k-th moment of X resp. Y is (2k)!

22kk!
, which

allows us to compute higher moment of Z, for example, E|Z|2 = EX2 + EY 2 = 1 and E|Z|4 =
EX4+2EX2EY 2+EY 4 = 2. Similarly, we obtain E|Z|6 = 6 and E|Z|8 = 24 (and more generally
E|Z|2k = k!). Thus, we conclude that

E|〈aa∗, U〉|2 =
∑

i6=j

λiλj + 2
∑

i

λ2
i =

∑

i,j

λiλj +
∑

i

λ2
i = (

∑

i

λi)
2 + 1 ≥ 1 (20)

and

(E|〈aa∗, U〉|2)2 = (
∑

i

λi)
4 + 2(

∑

i

λi)
2 + 1.

Expanding E|〈aa∗, U〉|4 in a similar way, we obtain

E|〈aa∗, U〉|4 =
∑

i,j,k,ℓ

λiλjλkλℓ +
∑

i,k,ℓ

λ2
iλkλℓ + 2

∑

i,k

λ2
iλ

2
k + 4

∑

i,k

λ3
iλk + 16

∑

i

λ4
i

= (
∑

i

λi)
4 + (

∑

i

λi)
2 + 2 + 4(

∑

i

λi)(
∑

i

λ3
i ) + 16

∑

i

λ4
i ,

where we used that
∑

i λ
2
i = 1. Again because of

∑
i λ

2
i = 1 we have |λi| ≤ 1 for all i and hence

|∑i λ
3
i | ≤

∑
i λ

2
i = 1 and similarly

∑
i λ

4
i ≤∑i λ

2
i = 1. Also observe that |∑i λi| ≤ 1+(

∑
i λi)

2.
Combining these inequalities with the above expressions for E|〈aa∗, U〉|4 and (E|〈aa∗, U〉|2)2, we
obtain the inequality

E|〈aa∗, U〉|4 ≤ 24(E|〈aa∗, U〉|2)2.
Combining this with (19) and (20), we obtain

Q1/
√
2 ≥ 1

96
.

Thus we choose ξ = 1
2
√
2
.

In order to estimate Wm, we use Lemma 10 to obtain

Wm = E sup
Y ∈Er

tr(H · Y ) ≤ 2
√
r · E‖H‖∞. (21)
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By the arguments in [75, Section 5.4.1] we have E‖H‖∞ ≤ c2
√
n ifm ≥ c3n for suitable constants

c2, c3, see also [74, Section 8]. Choosing t = c4
√
m and m ≥ cnr for suitable constants c, c4, the

proof of Theorem 2 is completed.

Remark 11. In [13], a uniform result for phase retrieval in the Gaussian case is proved using an
inexact dual certificate. One can write down a generalization of this dual certificate for the rank
r-case, but following the arguments of loc. cit., the resulting number of required measurements
then seems to depend significantly worse than linearly on r. It might be possible to rather adapt
the arguments in [38, 37] based on a different construction of a dual certificate in order to derive
linear scaling of m in r, but the resulting proof would be more complicated than ours (and likely
lead to more logarithmic factors).

4.2. Proof of Theorem 3. Let us now turn to proving the analogous result for complex pro-
jective 4-designs. It is convenient to rescale the (normalized) 4-design vectors as

w̃i :=
4
√
(n+ 1)n wi ∀i = 1, . . . , N. (22)

This mimics the expected length of random Gaussian vectors (which corresponds to E‖aj‖22 = n)
and we will call the system {w̃i} a super-normalized 4-design. We can apply the same technique
as in the proof of Theorem 2, provided that we can derive a suitable lower bound for Q2ξ for
some 0 < ξ < 1/2 and an upper bound for E‖H‖∞. The following two technical propositions
serve this purpose.

Proposition 12. Assume that a is drawn at random from a super-normalized weighted 4-design.
Then

Qξ = inf
Z∈Er

P (|tr (aa∗Z) | ≥ ξ) ≥ (1− ξ2)2

24
(23)

for all ξ ∈ [0, 1].

The proof of this statement is similar to the proof of Theorem 4 in [3] and – likewise – equation
(15) in [55]. However, since we are interested in a bound on the probability of an event happening,
rather than bounding an expectation value, we use the Payley-Zygmund inequality instead of

Berger’s one [9] (which states E [|S|] ≥ E
[
S2
]3/2 E

[
S4
]−1/2

).

Proof. The desired statement follows, if we can show that

P (|tr (aa∗Z) | ≥ ξ) ≥ (1 − ξ2)2

24
(24)

holds for any matrix Z ∈ Hn obeying ‖Z‖2 = 1. For such Z we define the random variable
S := |tr (aa∗Z) |. Since a is chosen at random from a (super-normalized) complex projective
4-design, we can use the design’s defining property (5) together with (6) to evaluate the second
and fourth moment of S. Indeed,

ES2 = Etr (aa∗Z)
2
= tr

(
E (aa∗)⊗2

Z⊗2
)
= tr

(
N∑

i=1

pi (w̃iw̃
∗
i )

⊗2
Z⊗2

)

= (n+ 1)n tr

(
N∑

i=1

pi (wiw
∗
i )

⊗2
Z⊗2

)
= (n+ 1)n

(
n+ 1

2

)−1

tr
(
PSym2Z⊗2

)

= 2tr
(
PSym2Z⊗2

)

and likewise

ES4 = Etr (aa∗Z)
4
= tr

(
N∑

i=1

pi (w̃iw̃
∗
i )

⊗4
Z⊗4

)
=

4!(n+ 1)n

(n+ 3)(n+ 2)
tr
(
PSym4Z⊗4

)
.

The remaining right hand sides are standard expressions in multilinear algebra and can for
instance be calculated using wiring calculus. Indeed, Lemma 17 in the appendix implies that

ES2 = 2tr
(
PSym2Z⊗2

)
= tr(Z)2 + tr(Z2) = tr(Z)2 + 1, (25)
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14 RICHARD KUENG, HOLGER RAUHUT, AND ULRICH TERSTIEGE

because tr(Z2) = ‖Z‖2F = 1 by assumption, hence,

(ES2)2 ≥ max{1, tr(Z)4}.

Similarly, Lemma 17 assures

ES4 =
4!(n+ 1)n

(n+ 3)(n+ 2)
tr
(
PSym4Z⊗4

)

=
(n+ 1)n

(n+ 3)(n+ 2)

(
6tr(Z4) + 8tr(Z)tr(Z3) + 6tr(Z)2tr(Z2) + 3tr(Z2)2 + tr(Z)4

)

≤
(
6tr(Z4) + 8tr(Z)tr(Z3) + 6tr(Z)2 + tr(Z)4 + 3

)
,

where the simplifications in the last line are due to tr(Z2) = ‖Z‖2F = 1 and (n+1)n
(n+3)(n+2) ≤

1. Using the hierarchy of Schatten-p-norms – in particular tr(Z4) = ‖Z‖44 ≤ ‖Z‖42 = 1 and
tr(Z3) ≤ ‖Z‖33 ≤ ‖Z‖32 = 1 – yields

ES4 ≤ 6tr(Z4) + 8tr(Z)tr(Z3) + 6tr(Z)2 + tr(Z)4 + 3

≤
(
6‖Z‖44 + 8‖Z‖33 + 10

)
max

{
1, tr(Z)4

}
≤ 24max

{
1, tr(Z)4

}
.

Having precise knowledge of the second and fourth moments and the trivial fact that tr(Z)2 ≥ 0
allows us to use the Payley-Zygmund inequality (for the random variable S2) to bound

P (|tr (aa∗Z) | ≥ ξ) = P
(
S2 ≥ ξ2

)
≥ P

(
S2 ≥ ξ2

(
1 + tr(Z)2

))

= P
(
S2 ≥ ξ2ES2

)
≥
(
1− ξ2

)2 (ES2)2

ES4

≥ (1− ξ2)2
max{1, tr(Z)4}

24max{1, tr(Z)4} =
(1 − ξ2)2

24
.

This completes the proof. �

Proposition 13. Let H be the matrix defined in (18), where the aj’s are chosen independently
at random from a super-normalized weighted 1-design. Then it holds that

E‖H‖∞ ≤ c4
√
n log(2n) with c4 = 3.1049, (26)

provided that m ≥ 2n logn.

Proof. Since the ǫj ’s in the definition of H form a Rademacher sequence, the non-commutative
Khintchine inequality [75, p. 19], see also [33, Exercise 8.6(d)], is applicable and yields

E‖H‖∞ = EaEǫ
1√
m

∥∥∥∥∥∥

m∑

j=1

ǫjaja
∗
j

∥∥∥∥∥∥
∞

≤
√

2 log(2n)

m
Ea

∥∥∥∥∥∥∥




m∑

j=1

(
aja

∗
j

)2



1/2
∥∥∥∥∥∥∥
∞

=

√
2 log(2n)

m
Ea

∥∥∥∥∥∥
√
(n+ 1)n

m∑

j=1

aja
∗
j

∥∥∥∥∥∥

1/2

∞

≤

√
2
√
2n log(2n)

m


Ea

∥∥∥∥∥∥

m∑

j=1

aja
∗
j

∥∥∥∥∥∥
∞




1/2

.

(27)

Here we have used super-normalization of our design vectors (aja
∗
j )

2 = ‖aj‖22aja∗j =
√
(n+ 1)naja

∗
j

according to (22), the fact that ‖Z1/2‖∞ = ‖Z‖1/2∞ holds for Z ∈ Hd arbitrary and Jensen’s in-
equality in the last estimate. It remains to bound E‖∑j aja

∗
j‖∞. To this end, we will use the
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matrix Chernoff inequality of Theorem 15 for Xj = aja
∗
j and calculate

‖Xj‖∞ = ‖aja∗j‖∞ = ‖aj‖22 ≤ max
1≤i≤N

‖w̃i‖22 =
√
(n+ 1)n ≤

√
2n =: R, (28)

‖
m∑

j=1

EXj‖∞ = ‖
m∑

j=1

N∑

i=1

piw̃iw̃
∗
i ‖∞ = m

√
n(n+ 1)

∥∥∥∥∥
N∑

i=1

piwiw
∗
i

∥∥∥∥∥
∞

= m
√
(n+ 1)n

∥∥∥∥
1

n
id

∥∥∥∥
∞

=
m
√
(n+ 1)n

n
≤

√
2m, (29)

where we once more have taken into account super-normalization and used the 1-design property.
Theorem 15 together with the assumption m ≥ 2n logn implies that, for any τ > 0,

E‖
m∑

j=1

aja
∗
j‖∞ ≤ eτ − 1

τ

√
2m+ τ−1

√
2n log(n) ≤ eτ − 1

τ

√
2m+ τ−1

√
2m/2

=

(
eτ − 1

τ

√
2 +

1√
2τ

)
m.

The choice τ = 1.27 approximately minimizes the above expression and yields

E‖
m∑

j=1

aja
∗
j‖∞ ≤ c5m with c5 = 3.4084.

Combining this estimate with (27) yields the desired statement with c4 = 23/4
√
c5 = 3.1049. �

Now we are ready to prove the second main theorem of this work.

Proof of Theorem 3. The proof of Theorem 2 shows that we only need suitable bounds for Q2ξ

and for E‖H‖∞ (both notions are defined analogously to the Gaussian case). Fix 0 < ξ < 1/2
arbitrary. For any such ξ, a lower bound for Q2ξ is provided by Proposition 12 and an upper
bound for E‖H‖∞ in this case can be obtained from Proposition 13. Setting m = C4nr logn,
choosing the constants C4, C5 and C6 appropriately (depending on the particular choice of ξ)
and applying Theorem 8 then yields the desired result in complete analogy to the Gaussian case
(proof of Theorem 2). �

Remark 14. The difference in the sampling rate m by a factor proportional to logn in Theo-
rems 2 and 3 stems from the fact that Proposition 13 is by a factor of

√
log(n) weaker than its

Gaussian analogue [75, Section 5.4.1], where E‖H‖∞ ≤ c2
√
n.

4.3. Proof of Theorem 2 for real Gaussian vectors. As already mentioned in paragraph
2.3.1 the proof of this statement is almost identical to the proof of Theorem 2. The only difference
is the estimate of Q2ξ. Using the moments of the real instead of the complex standard Gaussian
distribution, the reasoning in the proof of Theorem 2 yields the estimates E|〈aa∗, U〉|2 ≥ 2, (com-
pare also with [74]). Using real moments, one further obtains E|〈aa∗, U〉|4 ≤ 27(E|〈aa∗, U〉|2)2
(alternatively one can use Gaussian hypercontractivity as done in [74], which gives the factor 81
instead of 27.) This yields Q1 ≥ 1

108 , and the rest of the proof is the same as before.

4.4. Proof for recovery of positive semidefinite matrices. The only part in the proof of the
recovery result for positive semidefinite matrices stated in Section 2.3.2 that slightly differs from
the one for arbitrary Hermitian matrices, is the proof of a corresponding version of Lemma 10.
The subdifferential of the function f introduced in (9) slightly differs from the subdifferential of
the nuclear norm. For X =

∑r
i=1 λixix

∗
i , where all λi are nonzero, ∂f(X) consists of all matrices

of the form

S =

r∑

i=1

xix
∗
i + S2,
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where S2 ∈ Hn has the property that S2xi = 0 for all i ∈ {1, . . . , r} and all eigenvalues of S2 do
not exceed 1. Hence we choose (in the notation of the proof of Lemma 10)

S =

r∑

i=1

xix
∗
i + τ−1A4 ∈ ∂f(X).

Then the remainder of the proof of Lemma 10 is the same.

4.5. Proof of Theorem 5. The proof of this generalized statement proceeds along the same
lines as the one of Theorem 3. However, Propositions 12 and 13 – as well as their respective
proofs – have to be slightly altered due to the weaker requirements imposed by Theorem 5.

4.5.1. Generalized version of Proposition 12. Under the assumptions of Theorem 5, a weaker
version of (23), namely

Qξ = inf
Z∈Er

P (|tr (aa∗Z) | ≥ ξ) ≥ (1− 2ξ2)2

192
(30)

for all 0 ≤ ξ ≤ 1/
√
2 is still valid. This statement can be shown analogously to Proposition 12.

However, one has to establish bounds on the second and fourth moments in a slightly more
involved way, depending also on the type of design accuracy. Let us start with generalizing the
second moment estimate of S := |tr (aa∗Z) | for an approximate 4-design with operator norm
accuracy θ∞ ≤ 1/(16r2):

ES2 = (n+ 1)n

(
N∑

i=1

pi (wiw
∗
i )

⊗2
, Z⊗2

)

= 2
(
PSym2 , Z⊗2

)
+ (n+ 1)n

(
N∑

i=1

pi (wiw
∗
i )

⊗2 −
(
n+ 1

2

)−1

PSym2 , Z⊗2

)

≥ 2|
(
PSym2 , Z⊗2

)
| − (n+ 1)n

∥∥∥∥∥
N∑

i=1

pi (wiw
∗
i )

⊗2 −
(
n+ 1

2

)−1

PSym2

∥∥∥∥∥
∞

∥∥Z⊗2
∥∥
1

(31)

≥ 2|
(
PSym2 , Z⊗2

)
| − 2θ∞‖Z‖21 ≥ 2|

(
PSym2 , Z⊗2

)
| − 8r

16r2
,

> 2|
(
PSym2 , Z⊗2

)
| − 1/2, (32)

where we have used the fact that
(
PSym2 , Z⊗2

)
= |
(
PSym2 , Z⊗2

)
| (see Lemma 17), the matrix

Hölder inequality and the fact that ‖Z‖1 ≤ 2
√
r – see (16). The estimates for designs with

nuclear norm accuracy θ1 ≤ 1/4 is very similar. Replacing the matrix Hölder inequality in (31)
by

(
N∑

i=1

pi (wiw
∗
i )

⊗2 −
(
n+ 1

2

)−1

PSym2 , Z⊗2

)
≥ −

∥∥∥∥∥
N∑

i=1

pi (wiw
∗
i )

⊗2 −
(
n+ 1

2

)−1

PSym2

∥∥∥∥∥
1

∥∥Z⊗2
∥∥
∞

yields the same lower bound (32) due to ‖Z⊗2‖∞ = ‖Z‖2∞ ≤ ‖Z‖22 = 1 (where the last equality
follows from Z ∈ Er). Applying Lemma 17 then yields

ES2 ≥ tr (Z)
2
+ 1/2 and (ES2)2 ≥ 1

4
max{1, tr(Z)4}.
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which is the (slightly weaker) analogue of (25). Likewise we derive a fourth moment bound:

ES4 =
(
E
[
(aa∗)⊗4

]
, Z⊗4

)
= (n+ 1)2n2

(
N∑

i=1

pi (wiw
∗
i )

⊗4
, Z⊗4

)

≤ (n+ 1)2n2

(
n+ 3

4

)−1

|
(
PSym4 , Z⊗4

)
|

+ (n+ 1)2n2

∥∥∥∥∥
N∑

i=1

pi (wiw
∗
i )

⊗4 −
(
n+ 3

4

)−1

PSym4

∥∥∥∥∥
∞

∥∥Z⊗4
∥∥
1

≤ 4!(n+ 1)n

(n+ 3)(n+ 2)

(
|
(
PSym4 , Z⊗4

)
+ θ∞‖Z‖41

)
≤ |4!

(
PSym4 , Z⊗4

)
|+ 4!

16r2

16r2
.

As above, using the nuclear norm accuracy θ1 ≤ 1/4 instead of the operator norm accuracy
yields the bound E

[
S4
]
≤ |4!

(
PSym4 , Z⊗4

)
| + 4!/4 < |4!

(
PSym4 , Z⊗4

)
| + 4!. Lemma 17 yields

then in both cases

E
[
S4
]
≤ |4!tr

(
PSym4Z⊗4

)
|+ 24 ≤ 6tr(Z4) + 8|tr(Z)tr(Z3)|+ 6tr(Z)2 + tr(Z)4 + 27

≤ 48max{1, tr(Z)4},
compare the proof of Proposition 12. Having these bounds at hand, allows for applying the
Payley Zygmund inequality to obtain

P (|tr (aa∗Z) | ≥ ξ) = P
(
S2 ≥ ξ2

)
≥ P

(
S2 ≥ 2ξ2

(
1/2 + tr(Z)2

))
≥ P

(
S2 ≥ 2ξ2E

[
S2
])

≥ (1− 2ξ2)2
(ES2)2

ES4
≥ (1− 2ξ2)2

max{1, tr(Z)4}/4
48max{1, tr(Z)4} =

(1 − 2ξ2)2

192
.

The proof is completed.

4.5.2. Generalized version of Proposition 13. The assumptions in Theorem 5 assure that (26)
is still valid, possibly with a larger absolute constant c4. Again, the proof of this generalized
statement is very similar to the proof of Proposition 13. Indeed, only the bound (29) for the
matrix Chernoff inequality needs to be slightly altered. The assumption (11) implies that

‖
m∑

j=1

E [Xj ] ‖∞ ≤ m
√
(n+ 1)n

(
‖ 1
n
id‖∞ + ‖

N∑

i=1

piwiw
∗
i − 1

n
id‖∞

)
≤ 2

√
2m.

Consequently, applying the matrix Chernoff inequality yields (26) with a slightly larger absolute
constant c4.

5. Appendix

5.1. Schatten p-norms. Recall from Section 1.2 that for 1 ≤ p < ∞ , the Schatten-p-norm on
Hn is defined as

‖Z‖p = tr (|Z|p)1/p =

(
n∑

i=1

|λi|p
)1/p

,

where λ1, . . . , λn denote the n eigenvalues of Z ∈ Hn. For p = ∞ one defines similarly

‖Z‖∞ = max{|λ1|, . . . , |λn|},
i.e., ‖Z‖∞ is the spectral norm of Z. The Frobenius norm ‖ · ‖F = ‖ · ‖2 is induced by the the
Hilbert-Schmitt (or Frobenius) scalar product

(X,Y ) = tr (XY ) ,

which makes Hn a Hilbert space. The Schatten-p norms are non-increasing in p, i.e. for any
0 < p ≤ p′ ≤ ∞

‖Z‖p ≥ ‖Z‖p′ (33)
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18 RICHARD KUENG, HOLGER RAUHUT, AND ULRICH TERSTIEGE

holds for all Z ∈ Hn. The following relations provide converse inequalities for particular instances
of Schatten p-norms that are used frequently in our work:

‖Z‖1 ≤
√
rank(Z)‖Z‖2 and ‖Z‖2 ≤

√
rank(Z)‖Z‖∞ for all Z ∈ Hn. (34)

In addition, we often use a particular instance of the matrix Hölder inequality, namely

| (X,Y ) | ≤ ‖X‖1‖Y ‖∞ for all X,Y ∈ Hn. (35)

5.2. Matrix Chernoff inequality. The matrix version of the classical Chernoff inequality for
the expection of a sum of independent random matrices shown in [73, Theorem 5.1.1] (see also
[72]) reads as follows.

Theorem 15. Let X1, . . . , Xm be a sequence of independent random positive definite matrices
in Hn satisfying

‖Xℓ‖∞ ≤ L almost surely for all ℓ = 1, . . . ,m.

Then, for any τ > 0, their sum obeys

E‖
m∑

ℓ=1

Xℓ‖∞ ≤ eτ − 1

τ
‖

m∑

ℓ=1

EXℓ‖∞ + τ−1L logn.

5.3. Multilinear algebra. We briefly repeat some standard concepts in multilinear algebra
which are convenient for our proof of Proposition 12. They can be found in any textbook on
multilinear algebra – e.g. [49] – but we nonetheless include them here for the sake of being
self-contained.

Let V1, . . . , Vk be (finite dimensional, complex) vector spaces and let V ∗
1 , . . . , V

∗
k denote their

duals. A function f : V1 × · · · × Vk → C is multilinear, if it is linear in each space Vi. We
denote the space of such functions by V ∗

1 ⊗ · · · ⊗V ∗
k and call it the tensor product of V ∗

1 , . . . , V
∗
k .

Consequently, for one fixed n-dimensional vector space V , the tensor product (V )
⊗k

=
⊗k

i=1 V
is the space of all multilinear functions

f : (V )∗ × · · · × (V )∗︸ ︷︷ ︸
k times

7→ C, (36)

and we call the elementary elements z1⊗· · ·⊗zk the tensor product of the vectors z1, . . . , zk ∈ V .
With this notation, the space of linear maps V → V (n × n-matrices) corresponds to the

tensor product Mn := V ⊗ V ∗ which is spanned by {x⊗ y∗ : x, y ∈ V } – the set of all rank-1
matrices. Using this tensor product description of Mn allows for defining the (matrix) tensor
product M⊗k

n in complete analogy to above. We refer to its elements Z1⊗· · ·⊗Zk as the tensor
product of the matrices Z1, . . . , Zk ∈ Mn.

On this tensor space, we define the partial trace (over the i-th tensor system) to be the natural
contraction

tri : M⊗k
n → M⊗(k−1)

n

Z1 ⊗ · · · ⊗ Zk 7→ tr(Zi)Z1 ⊗ · · · ⊗ Zi−1 ⊗ Zi+1 ⊗ · · · ⊗ Zk.

The partial trace over multiple systems can then be obtained by concatenating individual traces
of this form, e.g.

tri,j = tri ◦ trj : M⊗k
n → M⊗(k−2)

n (37)

for 1 ≤ i < j ≤ k arbitrary and so forth. A particular property of arbitrary partial traces is
that they preserve positive semidefiniteness – see e.g. [61, Section 8.3.1] or any lecture notes
on quantum information theory. If a matrix Z ∈ M⊗k

n is positive semidefinite, then tri (Z) ∈
M⊗(k−1) is again positive semidefinite for any 1 ≤ i ≤ k. This behavior naturally extends to
multiple partial traces in the sense of (37). The full trace corresponds to

tr := tr1,...,k : M⊗k
n → C

Z1 ⊗ · · · ⊗ Zk 7→ tr(Z1) · · · tr(Zk).

This implies that the nuclear norm is multiplicative with respect to the tensor structure, i.e.,

‖Z1 ⊗ · · ·Zk‖1 = tr (|Z1| ⊗ · · · ⊗ |Zk|) = tr (|Z1|) · · · tr (|Zk|) = ‖Z1‖1 · · · ‖Zk‖1 (38)
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for Z1, . . . , Zk ∈ M arbitrary. A singular value decomposition – see e.g. [77, Lecture 2] – reveals
that the same is true for the operator norm, i.e.

‖Z1 ⊗ · · · ⊗ Zk‖∞ = ‖Z1‖∞ · · · ‖Zk‖∞. (39)

Let us now return to the k-fold tensor space V ⊗k of n-dimensional complex vectors. We define

the (symmetrizer) map PSymk : (V )⊗k → (V )⊗k via their action on elementary elements:

PSymk (z1 ⊗ · · · ⊗ zk) :=
1

k!

∑

π∈Sk

zπ(1) ⊗ · · · ⊗ zπ(k), (40)

where Sk denotes the group of permutations of k elements. This map projects (V )
⊗k

onto the

totally symmetric subspace Symk of (V )⊗k whose dimension [49, Exercise 2.6.3.5] is

dimSymk =

(
n+ k − 1

k

)
. (41)

Using these basic concepts of multilinear algebra and (6), we can show that every approximate
t-design is also an approximate design of lower order.

Lemma 16. Every approximate t-design of accuracy measured either in operator- or trace-
norm is also an approximate k-design of the same accuracy for any 1 ≤ k ≤ t. Furthermore the
accuracies θ∞ and θ1 are related via

θ∞ ≤ θ1 ≤ ntθ∞. (42)

This statement is implicitly proved in [3], where the authors use an equivalent definition of
approximate t-designs as averaging sets of complex polynomials of degree at most (t, t). With
this alternative definition, Lemma 16 follows naturally from the fact that every polynomial of
degree at most (k, k) with 1 ≤ k ≤ t is a particular instance of a degree-(t, t)-polynomial. Here we
provide an alternative proof that uses concepts from multilinear algebra and accesses Definition 4
directly. Such a proof idea is mentioned in [54, Section 2.2.3] and we include the full argument
here for the sake of being self-contained.

Proof of Lemma 16. Let us start with proving the statement for the accuracy measured in op-
erator norm. In this case, Definition 4 is equivalent to demanding

(1− θ∞)

∫

CPn−1

(ww∗)⊗t
dw ≤

N∑

i=1

pi (wiw
∗
i )

⊗t ≤ (1 + θ∞)

∫

CPn−1

(ww∗)⊗t
dw. (43)

The desired statement follows if we can show that (43) implies a corresponding inequality for
smaller tensor powers k. Fix 1 ≤ k ≤ t and note that the inequality chain (43) is preserved under
taking arbitrary partial traces, because partial traces respect the positive semidefinite ordering.
This in particular implies that

(1− θ∞)

∫

CPn−1

tr1,...,(t−k)

(
(ww∗)⊗t

)
dw ≤

N∑

i=1

pitr1,...,(t−k)

(
(wiw

∗
i )

⊗t
)

≤ (1 + θ∞)

∫

CPn−1

tr1,...,(t−k)

(
(ww∗)⊗t

)
dw

remains valid. Due to normalization ‖wi‖ℓ2 = 1 and and since we calculate the integrals using
preimages of the w ∈ CPn−1 in the unit sphere, these expressions can be readily calculated.
Indeed,

tr1,...,(t−k)

(
(wiw

∗
i )

⊗t
)
= (wiw

∗
i )

⊗k |〈wi, wi〉|2(t−k) = (wiw
∗
i )

⊗k

and∫

CPn−1

tr1,...,(t−k)

(
(ww∗)⊗t

)
dw =

∫

CPn−1

(ww∗)⊗k |〈w,w〉|2(t−k)dw =

∫

CPn−1

(ww∗)⊗k
dw.

The desired statement follows.
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The analogous statement for accuracy measured in trace-norm directly follows from the fact
that the nuclear norm is monotonic with respect to partial traces, i.e., ‖tri(Z)‖1 ≤ ‖Z‖1 for any
Z ∈ M⊗t

n and 1 ≤ i ≤ t [77, Lecture 2]. Combining this with the calculations above reveals that
∥∥∥∥∥

N∑

i=1

pi (wiw
∗
i )

⊗k −
∫

CPn−1

(ww∗)⊗k
dw

∥∥∥∥∥
1

=

∥∥∥∥∥tr1,...,t−k

(
N∑

i=1

pi (wiw
∗
i )

⊗t −
∫

CPn−1

(ww∗)⊗t dw

)∥∥∥∥∥
1

≤
∥∥∥∥∥

N∑

i=1

pi (wiw
∗
i )

⊗t −
∫

CPn−1

(ww∗)⊗t
dw

∥∥∥∥∥
1

≤ θ1.

Finally, inequality (42) directly follows from comparing trace and operator norm on M⊗t
n which

is isomorphic to the space of all nt × nt-dimensional matrices.
�

5.4. Wiring calculus in multilinear algebra. The defining properties (5), (10) of exact and
approximate complex projective t-designs are phrased in terms of tensor spaces. For calculations
in multilinear algebra – particularly if they involve (partial) traces– wiring diagrams [49, Chapter
2.11] are very useful, as they provide a way of computing contractions of tensors pictorially. Here
we give a brief introduction that should suffice for our calculations and defer the interested reader
to [38] and references therein for further reading.

In wiring calculus, every tensor is associated with a box, and every index corresponds to a line
emanating from this box. Two connected lines correspond to connected indices. The formalism
becomes much clearer when applying it to matrix calculus. A matrix Z : Cn → Cn can be viewed

as two-index-tensors Zi
j and is thus represented by a node Z with upper line corresponding to

the index i and the lower one to j. Two matrices Y, Z are multiplied by contracting Z’s upper
index with Y ’s lower one:

(Y Z)ij =

n∑

k=1

Y i
kZ

k
j .

In wiring calculus matrix multiplication is therefore represented by

Y Z =
Y

Z
.

Tensor products of matrices are arranged in parallel, i.e.,

Y ⊗ Z = Y Z .

Taking traces of tensor products, e.g.,

Y ⊗ Z 7→ tr(Y ⊗ Z) =

n∑

i,j=1

Y i
iZ

j
j

just corresponds to contracting parallel matrix indices and therefore

tr(Y ⊗ Z) = Y Z ,

which straightforwardly extends to larger (and smaller, namely tr(Z) = Z ) tensor systems.

Finally, we are going to require transpositions on (Cn)
⊗t

which act by interchanging the i-th
and j-th tensor factor. For example

σ(1,2) (x⊗ y ⊗ · · · ) = y ⊗ x⊗ · · · ,
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with x, y ∈ Cn arbitrary. Note that these transpositions generate the full group of permutations.
For (Cn)⊗2 there are only two transpositions, namely

1 = (trivial permutation) and σ(1,2) = .

But for higher tensor systems more permutations can occur. In wiring calculus, permutations
therefore act by interchanging different input and output lines.

We are now ready to prove the statements required in Proposition 12.

Lemma 17. For an abritrary Hermitian matrix Z ∈ Hn and a positive integer m, it holds

m!
(
PSymmZ⊗m

)
=

∑

(j1 ,...,jm)∈Nm
0∑m

k=1
kjk=m

m!∏m
k=1 jk! k

jk

m∏

k=1

tr(Zk)jk .

In particular, for m = 2 we obtain

2tr
(
PSym2Z⊗2

)
= tr(Z)2 + tr(Z2),

and for m = 4 we obtain

4! tr
(
PSym4Z⊗4

)
= tr(Z)4 + 8tr(Z)tr(Z3) + 3tr(Z2)2 + 6tr(Z)2tr(Z2) + 6tr(Z4).

Proof. We start with the case m = 2 and then extend the argument to the general case.
The basic formula for PSym2 is given by

PSym2 =
1

2

∑

π∈S2

π =
1

2

(
1 + σ(1,2)

)
,

and its pictorial counterpart is therefore

PSym2 =
1

2

(
+

)
.

Applying the graphical calculus introduced above then yields

2tr
(
PSym2Z⊗2

)
= 2

Z Z

PSym2 =

Z Z

+

Z Z

=

Z Z

+

Z

Z

= tr(Z)2 + tr(Z2),

which is the desired statement for m = 2.
Expanding m! (PSymmZ⊗m) analogously in the general case, we obtain for each π ∈ Sm one

summand which corresponds to a wiring diagram in which m copies of the node Z are involved.

More precisely, the wiring diagram corresponding to π is obtained by connecting for each i ∈
{1, . . . ,m} the output line of the i-th copy of Z to the input line of the π(i)-th copy of Z . If we

write π as a product of k cyclic permutations, π = c1 · · · ck, then the wiring diagram of π consists
of k closed loops, one for each of the cyclic permutations c1, . . . , ck. Write ci = (i1, . . . , iri). Then

the loop corresponding to ci connects ri copies of Z . Hence the contribution of π to the whole

sum is tr(Zr1) · · · tr(Zrk). Thus for a given partition m = r1 + . . . + rk of m, any element of
Sm which is the product of k cyclic (and disjoint) permutations of lengths r1, . . . , rk respectively
gives the same contribution tr(Zr1) · · · tr(Zrk).

Note that we can rewrite any partition of m in the form m = j1 · 1 + . . . + jm · m, where
ji counts how often the summand i appears in that partition. It remains to count for each
partition m = j1 · 1+ . . .+ jm ·m of m how many elements of Sm there are which are a product
of precisely j1 cyclic permutations of length 1, of precisely j2 cyclic permutations of length 2
and so on (all the cyclic permutations being disjoint). It is easy to see (and well known, see for
example [69, Proposition 1.3.2]) that there are precisely m!∏m

k=1 jk! k
jk

such permutations in Sm.

Each of them contributes a summand tr(Z1)j1 . . . tr(Zm)jm to m! (PSymmZ⊗m). This gives the
claimed formula. �
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[64] C. Schwemmer, G. Tóth, A. Niggebaum, T. Moroder, D. Gross, O. Gühne, and H. Weinfurter. Experimental
comparison of efficient tomography schemes for a six-qubit state. Phys. Rev. Lett., 113(4):040503, 2014.

[65] A. Scott. Tight informationally complete quantum measurements. J. Phys. A-Math. Gen., 39:13507–13530,
2006.

[66] P. Seymour and T. Zaslavsky. Averaging sets: A generalization of mean values and spherical designs. Adv.
Math., 52:213–240, 1984.

[67] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev. Phase Retrieval with
Application to Optical Imaging. Preprint, feb 2014. arXiv:1402.7350.

[68] V. Sidelnikov. Spherical 7-designs in 2n-dimensional Euclidean space. J. Algebr. Comb., 10:279–288, 1999.
[69] R. Stanley. Enumerative Combinatorics, Volume I. Cambridge University Press, 1997.
[70] J. Tanner and K. Wei. Normalized iterative hard thresholding for matrix completion. SIAM J. Sci. Comput.,

59(11):7491–7508, 2013.
[71] K. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized least squares

problems. Pac. J. Optim., 6:615–640, 2010.
[72] J. A. Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput. Math., 12(4):389–434,

2012.
[73] J. A. Tropp. User friendly tools for random matrices. An introduction. Preprint, 2012.
[74] J. A. Tropp. Convex recovery of a structured signal from independent random linear measurements.

ArXiv:1405.1102, 2014.
[75] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. Eldar and G. Kutyniok,

editors, Compressed Sensing: Theory and Applications, pages 210–268. Cambridge Univ Press, 2012.
[76] A. Walther. The question of phase retrieval in optics. Journal of Modern Optics, 10(1):41–49, 1963.
[77] J. Watrous. Theory of quantum information. lecture notes, 2011.
[78] G. A. Watson. Characterization of the subdifferential of some matrix norms. Linear Algebra Appl., 170:33–45,

1992.
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Abstract. The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of
linear measurements arises in a number of areas such as quantum state tomography, machine learning and
the PhaseLift approach to phaseless reconstruction problems. In order to derive rigorous recovery results, the
measurement map is usually modeled probabilistically and convex optimization approaches including nuclear
norm minimization are often used as recovery method. In this article, we derive sufficient conditions on the
minimal amount of measurements that ensure recovery via convex optimization. We establish our results
via certain properties of the null space of the measurement map. In the setting where the measurements are
realized as Frobenius inner products with independent standard Gaussian random matrices we show that
m > 10r(n1 + n2) measurements are enough to uniformly and stably recover an n1 × n2 matrix of rank
at most r. Stability is meant both with respect to passing from exactly rank-r matrices to approximately
rank-r matrices and with respect to adding noise on the measurements. We then significantly generalize this
result by only requiring independent mean-zero, variance one entries with four finite moments at the cost of
replacing 10 by some universal constant. We also study the particular case of recovering Hermitian rank-r
matrices from measurement matrices proportional to rank-one projectors. For r = 1, such a problem reduces
to the PhaseLift approach to phaseless recovery, while the case of higher rank is relevant for quantum state
tomography. For m ≥ Crn rank-one projective measurements onto independent standard Gaussian vectors,
we show that nuclear norm minimization uniformly and stably reconstructs Hermitian rank-r matrices with
high probability. Subsequently, we partially de-randomize this result by establishing an analogous statement
for projectors onto independent elements of a complex projective 4-designs at the cost of a slightly higher
sampling rate m ≥ Crn logn. Complex projective t-designs are discrete sets of vectors whose uniform
distribution reproduces the first t moments of the uniform distribution on the sphere. Moreover, if the
Hermitian matrix to be recovered is known to be positive semidefinite, then we show that the nuclear norm
minimization approach may be replaced by the simpler optimization program of minimizing the ℓ2-norm
of the residual subject to the positive semidefinite constraint. This has the additional advantage that no
estimate of the noise level is required a priori. We discuss applications of such a result in quantum physics
and the phase retrieval problem. Apart from the case of independent Gaussian measurements, the analysis
exploits Mendelson’s small ball method.

Keywords. low rank matrix recovery, quantum state tomography, phase retrieval, convex optimization,
nuclear norm minimization, positive semidefinite least squares problem, complex projective designs, random
measurements

MSC 2010. 94A20, 94A12, 60B20, 90C25, 81P50

1. Introduction

In recent years, the recovery of objects (signals, images, matrices, quantum states etc.) from incomplete
linear measurements has gained significant interest. While standard compressive sensing considers the
reconstruction of (approximately) sparse vectors [26], we study extensions to the recovery of (approximately)
low rank matrices from a small number of random measurements. This problem arises in a number of areas
such as quantum tomography [30, 24, 6], signal processing [2], recommender systems [16, 11] and phaseless
recovery [12, 10, 28, 29]. On the one hand, we consider both random measurement maps generated by
independent random matrices with independent entries and on the other hand, measurements with respect
to independent rank one measurements. We derive bounds for the number of required measurements in
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terms of the matrix dimensions and the rank of the matrix that guarantee successful recovery via nuclear
norm minimization. Our results are uniform and stable with respect to noise on the measurements and with
respect to passing to approximately rank-r matrices. For rank-one measurements the latter stability result
is new.

Let us formally describe our setup. We consider measurements of an (approximately) low-rank matrix
X ∈ Cn1×n2 of the form b = A(X), where the linear measurement map A is given as

A : Cn1×n2 → Cm, Z 7→
m∑

j=1

tr(ZA∗
j )ej . (1)

Here, e1, . . . , em denote the standard basis vectors in Cm and A1, . . . , Am ∈ Cn1×n2 are called measurement
matrices. A prominent approach [22, 56] for recovering the matrix X from b = A(X) consists in computing
the minimizer of the convex optimization problem

min
Z∈Cn1×n2

‖Z‖∗ subject to A(Z) = b, (2)

where ‖Z‖∗ = ‖Z‖1 =
∑n

j=1 σj(Z) denotes the nuclear norm with σj(Z) being the singular values of

Z ∈ Cn1×n2 and n = min{n1, n2}. Efficient optimization methods exist for this problem [55, 8]. In practice
the measurements are often perturbed by noise, i.e.,

b = A(X) + w, (3)

where w ∈ Cm is a vector of perturbations. In this case, we replace (2) by the noise constrained nuclear
norm minimization problem

min
Z∈Cn1×n2

‖Z‖∗ subject to ‖A(Z) − b‖ℓ2 ≤ η, (4)

where η corresponds to a known estimate of the noise level, i.e., ‖w‖ℓ2 ≤ η with ‖x‖ℓp = (
∑

j |xj |p)1/p being
the usual ℓp-norm. In some cases it is known a priori that the matrix X of interest is both Hermitian and
positive semidefinite (X < 0). Then one may replace (4) by the optimization problem

min
Z<0

tr(Z) subject to ‖A(Z) − b‖ℓ2 ≤ η. (5)

However, as we will see, the simpler least squares problem

min
Z<0

‖A(Z) − b‖ℓ2 (6)

works equally well or even better in terms of recovery under certain natural conditions. Apart from simplicity
and computational efficiency it has the additional advantage that no estimate η of the noise level is required.
We note that other efficient recovery methods exist as well [46, 25, 64], but we will not go into details here.

A question of central interest concerns the minimal number m of required measurements that guarantees
exact (in the noiseless case) or approximate recovery. While it is very hard to study this question for
deterministic measurement maps A, several results are available for certain models of random maps. We
will study several scenarios which all have in common that the matrices A1, . . . , Am ∈ Rn1×n2 in (1) are
independent draws of a random matrix Φ = (Xij)ij . We first consider the real-valued case, where all entries
Xij are independent and then move to a complex-valued scenario where Φ = aa∗ ∈ Cn×n is a rank one
matrix generated by a random vector a ∈ Cn. For the latter scenario we consider a being a complex
Gaussian random vector, or a being randomly drawn from a so-called (approximate) t-design. This last
setup has implications for quantum tomography and this part of the article can be seen as a continuation of
the investigations in [43]. Next, we describe the present state of the art of of the various setups and present
our results.
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1.1. Robust recovery from measurement matrices with independent entries. We call A a Gaussian
measurement map if the matrices A1, . . . , Am ∈ Rn1×n2 in (1) are independent realizations of Gaussian
random matrices, i.e., all entries of the Aj are independent standard Gaussian random variables. More
generally, A is called subgaussian, if the entries of all the Aj are independent, mean zero, variance one,
subgaussian random variables, where we recall that a random variable ξ is called subgaussian if P(|ξ| ≥ t) ≤
2e−ct2 for some constant c > 0. If

m ≥ Cr(n1 + n2) (7)

for some universal constant C > 0, then with probability at least 1− e−cm any rank r matrix X ∈ Cn1×n2 is
reconstructed exactly from subgaussian measurements b = A(X) via nuclear norm minimization (2) [56, 15].
Moreover, if noisy measurements b = A(X) + w with ‖w‖2 ≤ η of an arbitrary matrix X ∈ Cn1×n2 are
taken, then the minimizer X♯ of (4) satisfies, again with probability at least 1 − e−cm,

‖X −X♯‖F ≤ C′
√
r

inf
Z:rank(Z)≤r

‖X − Z‖∗ +
C′′η√
m

, (8)

where ‖A‖F =
√

tr(A∗A) denotes the Frobenius norm, tr being the trace. Note that

inf
Z:rank(Z)≤r

‖X − Z‖∗ =

n∑

j=r+1

σj(X) = ‖Xc‖∗,

where the singular values σj(X) are arranged in decreasing order and for X with singular value decomposition∑n
j=1 σj(X)ujv

∗
j the matrix Xc =

∑n
j=r+1 σj(X)ujv

∗
j . The error estimate (8) means that reconstruction is

robust with respect to noise on the measurements and stable with respect to passing to only approximately
low rank matrices. These statements are uniform in the sense that they hold for all matrices X simultaneously
once the matrix A has been drawn. They have been established in [15, 52, 56] via the rank restricted isometry
property (rank-RIP), see e.g. [26] for the standard RIP and its implications.

While the RIP is a standard tool by now, recovery of low rank matrices via nuclear norm minimization
is characterized by the so-called null space property [51, 58, 57, 26, 25], see below for details. By using this
concept, we are able to significantly relax from subgaussian distributions of the entries to distributions with
only four finite moments.

Theorem 1. Let A : Rn1×n2 → Rm, A(X) =
∑n

j=1 tr(XAj)ej, where the Aj are independent copies of a

random matrix Φ = (Xij)i,j with independent mean zero entries obeying EX2
ij = 1 and

EX4
ij ≤ C4 for all i, j and some constant C4.

Fix 1 ≤ r ≤ min{n1, n2} and 0 < ρ < 1 and set

m ≥ c1ρ
−2r(n1 + n2).

Then with probability at least 1 − e−c2m, for any X ∈ Rn1×n2 the solution X♯ of (4) with b = A(X) + w,
‖w‖ℓ2 ≤ η, approximates X with error

‖X −X♯‖F ≤ 2(1 + ρ)2

(1 − ρ)
√
r
‖Xc‖∗ +

(3 + ρ)

(1 − ρ)c3
· η√

m
. (9)

Here c1, c2, c3 are positive constants that only depend on C4.

In the special case, when Φ has independent standard Gaussian entries, we apply Gordon’s escape through
a mesh theorem [27] in order to obtain an explicit constant in the estimate for the number of measurements,
see Theorem 19. Roughly speaking, with high probability, any n1 × n2 matrix of rank r is stably recovered
from m > 10r(n1 + n2) Gaussian measurements. We remark that the explicit bound m > 3r(n1 + n2) has
been derived in [18], (see also [49] and [4, Section 4.4] for a phase transition result in this context), but
this bound considers nonuiform recovery, i.e. recovery of a fixed low rank matrix with a random draw of a
Gaussian measurement matrix with high probability. Moreover, no stability under passing to approximately
low rank matrices has been considered there. Our recovery result is therefore stronger than the one in [18],
but requires more measurements.
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1.2. Robust recovery of Hermitian matrices from rank-one projective measurements. Let us
now focus on the particular case of recovering complex Hermitian n× n matrices from noisy measurements
of the form (3), where the measurement matrices are proportional to rank-one projectors, i.e.,

Aj = aja
∗
j ∈ Hn (10)

where aj ∈ Cn. Here, Hn denotes the space of complex Hermitian n×n matrices, which has real dimension
n2. Measurements of that type occur naturally in convex relaxations of the phase retrieval problem [12, 10,
28, 29]. In fact, suppose phaseless measurements of the form bj = |〈x, aj〉|2 of a vector x ∈ Cn are given.
Then we can rewrite bj = tr(xx∗aja∗j ) = tr(XAj) as linear measurements of the rank one matrix X = xx∗.
We will expand on this aspect below in Section 2.1. Rank one measurements of low rank matrices feature
prominently in quantum state tomography as well, see also below.

The prior information that the desired matrix is Hermitian limits the search space in the convex opti-
mization problem (4) and it simplifies to

min
Z∈Hn

‖Z‖∗ subject to ‖A(Z) − b‖ℓ2 ≤ η. (11)

Arguably, the most generic measurement matrices of the form (10) result from choosing each aj to be an
independent complex standard Gaussian vector. For the particular case of phase retrieval — i.e., where the
matrix of interest X = xx∗ is itself proportional to a rank-one projector — uniform recovery guarantees by
means of (11) have been established for m = Cn independent measurements in [13]. Recently, this result
has been generalized to recovery of any Hermitian rank r-matrix by means of m = Crn such measurements
in [43]. Our refined analysis of the null space property enables us to further strengthen this result by
additionally guaranteeing stability under passing to approximately low rank matrices:

Theorem 2. Consider the measurement process described in (1) with m measurement matrices of the form
(10),where each ai is an independent complex standard Gaussian vector. Fix r ≤ n, 0 < ρ < 1 and suppose
that

m ≥ C1ρ
−2nr.

Then with probability at least 1 − e−C2m it holds that for any X ∈ Hn, any solution X♯ to the convex
optimization problem (11) with noisy measurements b = A(X) + ǫ, where ‖ǫ‖ℓ2 ≤ η, obeys

‖X −X♯‖F ≤ 2(1 + ρ)2

(1 − ρ)
√
r
‖Xc‖∗ +

(3 + ρ)C3

(1 − ρ)
· η√

m
. (12)

Here, C1, C2 and C3 denote positive universal constants. (In particular, for η = 0 and X of rank at most r
one has exact reconstruction.)

In addition to the Gaussian measurement setting, we also consider measurement matrices that arise
from taking the outer product of elements chosen independently from an approximate complex projective
4-design. Complex projective t-designs are finite sets of unit vectors in Cn that exhibit a very particular
structure. Roughly speaking, sampling independently from a complex projective t-design, reproduces the
first t moments of sampling uniformly from the complex unit sphere. Likewise, approximate complex pro-
jective t-designs obey such a structural requirement approximately — for a precise introduction, we refer
to Definition 27 below. As a consequence, they serve as a general purpose tool for partially de-randomizing
results that initially required Gaussian random vectors [42, 28]. This is also the case here and employing
complex projective 4-designs allows for partially de-randomizing Theorem 2 at the cost of a slightly larger
sampling rate. Here, we content ourselves with presenting and shortened version of this result and refer the
reader to Theorem 28 where precise requirements on the approximate design are stated.

Theorem 3. Let r, ρ be as in Theorem 2 and suppose that each measurement matrix Aj is of the form
(10), where aj, j = 1, . . . ,m, are chosen independently from a (sufficiently accurate approximate) complex
projective 4-design. If

m ≥ C4ρ
−2nr logn,

then the assertions of Theorem 2 remains valid, possibly with different universal constants.

Note that Theorems 1, 2, 3 resp. Theorem 19 below and their proofs are presented in condensed versions
in the conference papers [34] resp. [35].
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1.3. Recovery of positive semidefinite matrices reduces to a feasibility problem. Imposing ad-
ditional structure on the matrices to be recovered can further strengthen low rank recovery guarantees.
Positive semidefiniteness is one such structural prerequisite that, for instance, occurs naturally in the phase
retrieval problem, quantum mechanics and kernel-based learning methods [61]. Motivated by the former,
Demanet and Hand [21] pointed out that minimizing the nuclear norm — in the sense of algorithm (4) —
can be superfluous for recovering positive semidefinite matrices of rank one. Instead, they propose to reduce
the recovery algorithm to a mere feasibility problem and proved that such a reduction works w.h.p. for
rank one projective measurements onto Gaussian vectors (the measurement scenario considered in Theorem
2). Subsequently, this recovery guarantee was strengthened by Candès and Li [13]. Here, we go one step
further and generalize these results to cover uniform and stable recovery of positive semidefinite matrices
of arbitrary rank. Relying on ideas presented in [36], we establish the following statement. (We refer to
Section 1.4 for the definition of the Schatten p-norm ‖ · ‖p used in (13).)

Theorem 4. Fix r ≤ n and consider the measurement processes introduced in Theorem 2 (Gaussian vectors),
or Theorem 3 (complex projective 4-designs), respectively. Assume that m ≥ C1nr (in the Gaussian case)
resp. m ≥ C2snr logn (in the design case), where s ≥ 1 is arbitrary. Then, for 1 ≤ p ≤ 2 and any two
positive semidefinite matrices X,Z ∈ Hn,

‖Z −X‖p ≤ C3

r1−1/p
‖Xc‖1 +

C4r
1/p−1/2

√
m

‖A(Z) −A(X)‖ℓ2 (13)

holds universally with probability exceeding 1− e−C5m for the Gaussian case and 1− e−sr in the design case.
Here, C1, . . . , C5 denote suitable positive universal constants.

This statement renders nuclear norm minimization in the sense of (4) redundant and allows for a
regularization-free estimation. Moreover, knowledge of a noise bound ‖w‖ℓ2 ≤ η for the measurement
process (3) is no longer required, since we can estimate any X < 0 by solving a least squares problem of the
form (6), i.e.,

min
Z∈Hn

‖A(Z) − b‖ℓ2 subject to Z < 0. (14)

Theorem 4 then in particular assures that the minimizer Z♯ of this optimization program obeys

‖Z♯ −X‖F ≤ C3√
r
‖Xc‖1 +

C4√
m

∥∥A(Z♯) −A(X)
∥∥
ℓ2

≤ C3√
r
‖Xc‖1 +

2C4√
m
‖w‖ℓ2 ,

where w ∈ Rm represents additive noise in the measurement process. It is worthwhile to mention that if
a matrix X of interest has rank at most r and no noise is present in the sampling process (3), Theorem 4
assures

{Z : Z < 0, A(Z) = A(X)} = {X} (15)

with high probability. Hence, recovering X from noiseless measurements indeed reduces to a feasibility
problem.

We emphasize that Theorem 4 is only established for rank one projective measurements. For the other
measurement ensembles considered here — matrices with independent entries — one cannot expect such
a statement to hold. This pessimistic prediction is due to negative results recently established in [63,
Proposition 2]. Focusing on real matrices, the authors show that if the measurement matrices Aj are chosen
independently from a Gaussian orthogonal ensemble, then estimating any symmetric, positive semidefinite
matrix X via (14) becomes ill-posed, unless the number of measurements obeys

m ≥ 1

4
n(n + 1) = O(n2).

Finally, we want to point out that the fruitfulness of plain least squares regression for recovering positive
semidefinite matrices was already pointed out and explored by Slawski, Li and Hein [63]. However, there is
a crucial difference in the mindset of [63] and the results presented here. The main result [63, Theorem 2]
of Slawski et al. assumes a fixed signal X < 0 of interest and provides bounds for the reconstruction error
in terms of geometric properties of both X and the measurement ensemble. Conversely, Theorem 4 assumes
fixed measurements (e.g. m = Crn projectors onto Gaussian random vectors) and w.h.p. assures robust
recovery of all matrices X < 0 having approximately rank-r simultaneously.
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1.4. Notation. The Schatten p-norm of Z ∈ Cn1×n2 is given by

‖Z‖p =




n∑

j=1

σj(Z)p




1/p

, p ≥ 1,

where σj(Z), j = 1, . . . , n, denote the singular values of Z. It reduces to the nuclear norm ‖ · ‖∗ for p = 1
and the Frobenius norm ‖ · ‖F for p = 2. It is a common convention that the singular values of Z are
non-increasingly ordered. We write Z = Zr + Zc, where Zr is the best rank-r approximation of Z with
respect to any Schatten p-norm of Z.

2. Applications

2.1. Phase retrieval. The problem of retrieving a complex signal x ∈ Cn from measurements that are
ignorant towards phase information has long been abundant in many areas of science. Measurements of that
type correspond to

bi = |〈ai, x〉|2 + wi i = 1, . . . ,m, (16)

where a1, . . . , am ∈ Cn are measurement vectors and wi denotes additive noise. Recently, the problem’s
mathematical structure has received considerable attention in its own right. It is clearly ill-posed, since
all phase information is lost in the measurement process and, moreover, the measurements (16) are of a
non-linear nature. This second obstacle can be overcome by a trick [5] well known in conic programming:
the quadratic expressions (16) are linear in the outer products xx∗ and aia

∗
i :

bi = |〈ai, x〉|2 + wi = tr
(
(aiai)

∗
(xx∗)

)
+ wi. (17)

Note that such a “lift” allows for reinterpreting the phase-less sampling process as A(xx∗) = b + w. Also,
the new object of interest X := xx∗ is an Hermitian, positive semidefinite matrix of rank one. In turn, the
measurement matrices Ai = aia

∗
i are constrained to be proportional to rank-one projectors. Consequently,

such a “lift” turns the phase retrieval problem into a very particular instance of low rank matrix recovery —
a fact that was first observed by Candès, Eldar, Strohmer and Voroninski [12, 10]. Subsequently, uniform
recovery guarantees for m = Cn complex standard Gaussian measurement vectors ai have been established
which are stable towards additive noise. The main result in [13] establishes with high probability that for
any X = xx∗, solving the convex optimization problem (PhaseLift)

min
Z∈Hn

‖A(Z) − b‖ℓ1 subject to Z < 0 (18)

yields an estimator Z♯ obeying ‖Z♯ − xx∗‖2 ≤ C‖w‖1/m. If a bound ‖w‖ℓ2 ≤ η on the noise in the
sampling process (16) is available, an extension of [43, Theorem 2] (see section 2.3.2 in loc. cit) establishes
a comparable recovery guarantee via solving

min
Z∈Hn

tr(Z) subject to ‖A(Z) − b‖ℓ2 ≤ η, Z < 0 (19)

instead of PhaseLift. Our findings allow for establishing novel recovery guarantees for retrieving phases.
Indeed, since (17) assures that any signal of interest is positive semidefinite and has precisely rank one,
Theorem 4 is applicable and yields the following corollary.

Corollary 5. Consider m ≥ Cn phaseless measurements of the form (16), where each ai is a complex

standard Gaussian vector. Then with probability at least 1− e−C′m these measurements allow for estimating
any signal x ∈ Cn via solving

min
Z∈Hn

‖A(Z) − b‖ℓ2 subject to Z < 0. (20)

The resulting minimizer Z♯ of (20) obeys

‖Z♯ − xx∗‖ℓ2 ≤ C‖w‖ℓ2√
m

,

where C denotes a positive constant and w ∈ Rm represents additive noise in the sampling process (16).
An analogous statement is true — with a weaker probability of success 1 − e−s for s ≥ 1 — for m ≥

C′sn log(n) rank one projective measurements onto independent elements of an approximate 4-design.
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This recovery procedure is in spirit very similar to (18), but it utilizes an ℓ2-regression instead of an
ℓ1-norm minimization. Numerical studies indicate that algorithm (20) outperforms (19) as well as (18).
These studies were motivated and accompany actual quantum mechanical experiments and will be published
elsewhere [41].

Finally, we want to relate Corollary 5 to a non-convex phaseless recovery procedure devised by Candès,
Li and Soltanolkotabi [14]. There, the authors refrain from applying the aforementioned “lifting” trick
to render the phase retrieval problem linear. Instead, they use a careful initialization step, followed by
a gradient descent scheme (based on Wirtinger derivatives) to minimize the problem’s least squares loss
function directly over complex vectors z ∈ Cn. Mathematically, such an optimization is equivalent to
solving

min
Z∈Hn

‖A(Z) − b‖ℓ2 subject to Z < 0, rank(Z) = 1 (21)

and the rank-constraint manifests the problem’s non-convex nature. Hence, the convex optimization problem
(20) can be viewed as a convex relaxation of (21), obtained by omitting the non-convex rank constraint.

2.2. Quantum information. In this section we describe implications and possible applications of our
findings to problems in quantum information science. For the sake of being self-contained, we have included
a brief introduction to crucial notions of quantum mechanics in the appendix. Quantum mechanics postulates
that a finite n-dimensional quantum system is described by an Hermitian, positive semidefinite matrix X with
unit trace, called a density operator. This “quantum shape constraint” assures that all density operators
meet the requirements of Theorem 4. Furthermore, the rank-one projective measurements assumed in
that theorem can be recast as valid quantum mechanical measurements — see [43, Section 3] for possible
implementations and further discussion on this topic. Note, however, that such a reinterpretation is in general
not possible for the measurement matrices with independent entries considered in Theorem 1, because these
matrices fail to be Hermitian. With Theorem 4 at hand, we underline its implications for two prominent
issues in (finite dimensional) quantum mechanics.

2.2.1. Quantum state tomography. Inferring a quantum mechanical description of a physical system is equiv-
alent to assigning it a density operator (or quantum state) — a process referred to as quantum state tomog-
raphy [6, 23]. Tomography is now a routine task for designing, testing and tuning qubits in the quest of
building quantum information processing devices. Since the size of controllable quantum mechanical sys-
tems is ever increasing1 it is very desirable to exploit additional structure — if present — when performing
such a task. One such structural property — often encountered in actual experiments — is approximate
purity, i.e., the density operator X is well approximated by a low rank matrix. Performing quantum state
tomography under such a prior assumption therefore constitutes a particular instance of low rank matrix
recovery [30, 24].

The results presented in this paper provide recovery guarantees for tomography protocols that stably
tolerate noisy measurements and moreover are robust towards the prior assumption of approximate purity.
In the context of tomography, results of this type so far have already been established for m = Cnr log6 n
random (generalized) Pauli measurements [47, Proposition 2.3] via proving a rank-RIP for such measurement
matrices and then resorting to [15, Lemma 3.2]. However, this auxiliary result manifestly requires additive
Gaussian noise and using a type of Dantzig, or Lasso selector to recover the best rank-r approximation of a
given density operator. This is not the case for the result established here, where performing a plain least
squares regression of the form (14) is sufficient.

Corollary 6. Fix r ≤ n and suppose that the measurement operator A : Hn → Rm is of the form

A(X) =

m∑

i=1

√
(n + 1)n

m
〈ai, Xai〉ei + w ∈ Rm with m ≥ C1rn logn,

1Nowadays, experimentalists are able to create and control multi-partite systems of overall dimension n = 28 in their
laboratories [60]. This results in a density operator of size 256 × 256 (a priori 65 536 parameters).
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where each ai ∈ Cn is chosen independently from an approximate 4-design and w ∈ Rm denotes additive
noise. Then, the best rank-r approximation of any density operator X can be obtained from such measure-
ments via solving

min
Z∈Hn

‖A(Z) −A(X)‖ℓ2 subject to Z < 0, tr (Z) = 1. (22)

With probability at least 1 − e−C2m, the minimizer Z♯ of this optimization obeys

‖X − Z♯‖1 ≤ C3‖Xc‖1 + C4

√
r‖w‖ℓ2 , (23)

where C1, C2, C3 and C4 denote positive constants.

This statement is a direct consequence of Theorem 4. For the sake of clarity, we have re-scaled each

projective measurement with
√

(n+1)n
m . This simplifies the resulting expression (23) and moreover facilitates2

direct comparison with the main result in [47], as it closely mimics the scaling employed there.
Corollary 6 is valid for any type of additive noise and no a priori knowledge of its magnitude is required.

This includes the particularly relevant case of a Bernoulli error model — see e.g. [17, Section 2.2.2] and
also [24] — which is particularly relevant for tomography experiments. Also, note that the recovery error is
bounded in nuclear norm, instead of Frobenius norm. Such a bound is very meaningful for tomography, since
quantum mechanics is a probabilistic theory and the nuclear norm encapsulates total variational distance.
Moreover, Helstrom’s theorem [32] provides an operational interpretation of the nuclear norm distance
bounded in (23): it is proportional to the maximal bias achievable in the task of distinguishing the two
quantum states X and Z♯, provided that any physical measurement can be implemented.

Finally, note that the bound on the probability of failure in Corollary 6 is much stronger than the one
provided in Theorem 4. Such a strengthening is possible, because the trace of any density operator equals
one. We comment on this in Remark 34 below.

2.2.2. Distinguishing quantum states. One crucial prerequisite in the task of inferring density operators from
measurement data, is the ability to faithfully distinguish any two density operators via quantum mechanical
measurements. The most general notion of a quantum measurement is a positive operator valued mea-
sure (POVM) M = {Em : Em < 0,

∑
m Em = id} [53, Chapter 2.2]. A POVM M is called informationally

complete (IC) [62] if for any two density operators X 6= Z ∈ Hn there exists Em ∈ M ⊆ Hn such that

tr (EmX) 6= tr (EmZ) . (24)

This assures the possibility of discriminating any two quantum states via such a measurement in the absence
of noise. Without additional restrictions, such an IC POVM must contain at least n2 elements. However,
such a lower bound can be too pessimistic, if the density operators of interest have additional structure.
Approximate purity introduced in the previous subsection can serve as such an additional structural restric-
tion:

Definition 7 (Rank-r IC, Definition 1 in [31]). For r ≤ n, we call a POVM M = {Em}m∈I rank-r restricted
informationally complete (rank-r IC), if (24) holds for any two density operators of rank at most r.

Bounds for the number m of POVM elements required to assure rank-r-IC have been established in
[31, 37, 38]. These approaches exploit topological obstructions of embeddings for establishing lower bounds
and explicit POVM constructions for upper bounds. For instance, in [31] a particular rank-r-IC POVM
containing m = 4r(n− r) − 1 elements is constructed.

Focusing less on establishing tight bounds and more on identifying entire families of rank-r IC measure-
ments, Kalev et al. [36] observed that each measurement ensemble fulfilling the rank-RIP for some r ≤ n

is also rank-r IC. This in particular applies with high probability to m = C log6 n nr random (generalized)
Pauli measurements [47]. Theorem 4, and likewise Corollary 6, allow us to draw similar conclusions without
having to rely on any rank-RIP. Indeed, in the absence of noise, these results guarantee for any rank-r
density operator X

{Z : Z < 0, A(Z) = A(X)} = {X} (25)

2In fact by resorting to the Frobenius norm bound in Theorem 4 (instead of the nuclear norm bound employed to arrive at
Corollary 6), one obtains a performance guarantee that strongly resembles [47, Equation (8)] — the main recovery guarantee
in that paper.
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with high probability. If this is the case, the measurement operator A allows for uniquely identifying any
rank-r density operator X . This in turn implies that A is rank-r IC and the following corollary is immediate:

Corollary 8. Fix r ≤ n arbitrary and let C,C′ be absolute constants of sufficient size. Then

(1) Any POVM containing m = Cnr projectors onto Haar3 random vectors is rank-r IC with probability
at least 1 − eC2m.

(2) Any POVM containing m = C′nr logn projectors onto random elements of a (sufficiently accurate

approximate) 4-design is rank-r IC with probability at least 1 − e−C̃2m.

This statement is reminiscent of a conclusion drawn in [3, 48]: In the task of distinguishing quantum
states, a POVM containing a 4-design essentially performs as good as as the uniform POVM (the union of
all rank-one projectors).

Remark 9. In the process of finishing this article we became aware of recent work by Kech and Wolf [39],
who showed that the elements of a generic Parseval frame generate a rank-r IC map A if m ≥ 4r(n− r). In
fact, Xu showed in [68] that m ≥ 4r(n− r) is both a sufficient and necessary condition for identifiability of
complex rank r matrices in Cn×n. We emphasize, however, that these results are only concerned with pure
identifiability and do not come with a practical and stable recovery algorithm.

3. The null space property for low-rank matrix recovery

Let X ∈ Cn1×n2 . If X is only approximately of low-rank, then we would like to find a condition on the
measurement map A : Cn1×n2 → Cm that provides the control of the recovery error by the error of its best
approximation by low rank matrices. Moreover, it should also take into account that the measurements
might be noisy.

Definition 10. We say that A : Cn1×n2 → Cm satisfies the Frobenius robust rank null space property of
order r with constants 0 < ρ < 1 and τ > 0 if for all M ∈ Cn1×n2 , the singular values of M satisfy

‖Mr‖2 ≤ ρ√
r
‖Mc‖1 + τ‖A(M)‖ℓ2 .

The stability and robustness of (4) are established by the following theorem.

Theorem 11. Let A : Cn1×n2 → Cm satisfy the Frobenius robust rank null space property of order r with
constants 0 < ρ < 1 and τ > 0. Let n = min{n1, n2}. Then for any X ∈ Cn1×n2 any solution X♯ of (4)
with b = A(X) + w, ‖w‖ℓ2 ≤ η, approximates X with error

‖X −X♯‖2 ≤
2(1 + ρ)2

(1 − ρ)
√
r
‖Xc‖1 +

2τ(3 + ρ)

1 − ρ
η.

Theorem 11 can be deduced from the following stronger result.

Theorem 12. Let 1 ≤ p ≤ 2 and n = min{n1, n2}. Suppose that A : Cn1×n2 → Cm satisfies the Frobenius
robust rank null space property of order r with constants 0 < ρ < 1 and τ > 0. Then for any X,Z ∈ Cn1×n2 ,

‖Z −X‖p ≤ (1 + ρ)2

(1 − ρ)r1−1/p
(‖Z‖1 − ‖X‖1 + 2‖Xc‖1) +

τ(3 + ρ)

1 − ρ
r1/p−1/2‖A(Z −X)‖ℓ2. (26)

The proof requires some auxiliary lemmas. We start with a matrix version of Stechkin’s bound.

Lemma 13. Let M ∈ Cn1×n2 and r ≤ min{n1, n2}. Then, for p > 0,

‖Mc‖p ≤ ‖M‖1
r1−1/p

.

3 Haar random vectors are vectors drawn uniformly from the complex unit sphere in Cn. They can be obtained from
complex standard Gaussian vectors by rescaling them to unit length. Property (25) is invariant under such a re-scaling and
Theorem 2 therefore assures rank-r IC for both Gaussian and Haar random vectors.
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Proof. This follows immediately from [26, Proposition 2.3], but for convenience we give the proof. Since the
singular values of M are non-increasingly ordered, it holds

‖Mc‖pp =

n∑

j=r+1

(σj(M))p ≤ (σr(M))p−1
n∑

j=r+1

σj(M) ≤


1

r

r∑

j=1

σj(M)



p−1

n∑

j=r+1

σj(M)

≤ 1

rp−1
‖M‖p−1

1 ‖M‖1 =
‖M‖p1
rp−1

.

�

The next result shows that under the Frobenius robust rank null space property the distance between
two matrices is controlled by the difference between their norms and the ℓ2-norm of the difference between
their measurements.

Lemma 14. Suppose that A : Cn1×n2 → Cm satisfies the Frobenius robust rank null space property of order
r with constants 0 < ρ < 1 and τ > 0. Let X,Z ∈ Cn1×n2 and n = min{n1, n2}. Then

‖X − Z‖1 ≤ 1 + ρ

1 − ρ
(‖Z‖1 − ‖X‖1 + 2‖Xc‖1) +

2τ
√
r

1 − ρ
‖A(X − Z)‖ℓ2.

Proof. Theorem 7.4.9.1 in [33] states that for matrices A,B of the same size over C

‖A−B‖ ≥ ‖Σ(A) − Σ(B)‖,
where ‖ · ‖ is any unitarily invariant norm and Σ(·) denotes the diagonal matrix of singular values of its
argument. Hence,

‖Z‖1 = ‖X − (X − Z)‖1 ≥
n∑

j=1

|σj(X) − σj(X − Z)|

=

r∑

j=1

|σj(X) − σj(X − Z)| +

n∑

j=r+1

|σj(X) − σj(X − Z)|

≥
r∑

j=1

(σj(X) − σj(X − Z)) +

n∑

j=r+1

(σj(X − Z) − σj(X)) .

Hence,

‖(X − Z)c‖1 =

n∑

j=r+1

σj(X − Z) ≤ ‖Z‖1 −
r∑

j=1

σj(X) +

r∑

j=1

σj(X − Z) + ‖Xc‖1

≤ ‖Z‖1 − ‖X‖1 +
√
r‖(X − Z)r‖2 + 2‖Xc‖1.

Applying the Frobenius robust null space property of A we obtain

‖(X − Z)c‖1 ≤ ‖Z‖1 − ‖X‖1 + ρ‖(X − Z)c‖1 + τ
√
r‖A(X − Z)‖ℓ2 + 2‖Xc‖1.

By rearranging the terms in the above inequality we obtain

‖(X − Z)c‖1 ≤ 1

1 − ρ

(
‖Z‖1 − ‖X‖1 + τ

√
r‖A(X − Z)‖ℓ2 + 2‖Xc‖1

)
.

In order to bound ‖X −Z‖1 we use Hölder’s inequality, the Frobenius robust rank null space property of A
and the inequality above,

‖X − Z‖1 = ‖(X − Z)r‖1 + ‖(X − Z)c‖1 ≤ √
r‖(X − Z)r‖2 + ‖(X − Z)c‖1

≤ (1 + ρ)‖(X − Z)c‖1 + τ
√
r‖A(Z −X)‖ℓ2

≤ 1 + ρ

1 − ρ

(
‖Z‖1 − ‖X‖1 + τ

√
r‖A(X − Z)‖ℓ2 + 2‖Xc‖1

)
+ τ

√
r‖A(X − Z)‖ℓ2

=
1 + ρ

1 − ρ
(‖Z‖1 − ‖X‖1 + 2‖Xc‖1) +

2τ
√
r

1 − ρ
‖A(X − Z)‖ℓ2 .
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This concludes the proof. �

Now we return to the proof of the theorem.

Proof of Theorem 12. By Hölder’s inequality, Lemma 13 and the Frobenius robust rank null space property
of A

‖Z −X‖p ≤ ‖(X − Z)r‖p + ‖(X − Z)c‖p ≤ r1/p−1/2‖(X − Z)r‖2 + ‖(X − Z)c‖p

≤ ρ

r1−1/p
‖(X − Z)c‖1 + τr1/p−1/2‖A(X − Z)‖ℓ2 +

1

r1−1/p
‖X − Z‖1

≤ 1 + ρ

r1−1/p
‖X − Z‖1 + τr1/p−1/2‖A(X − Z)‖ℓ2. (27)

Substituting the result of Lemma 14 into (27) yields the desired inequality. �

As a corollary of Theorem 12 we obtain that if X ∈ Cn1×n2 is a matrix of rank at most r and the
measurements are noiseless (η = 0), then the Frobenius robust rank null space property implies that X is
the unique solution of

min
Z∈Cn1×n2

‖Z‖1 subject to A(Z) = b. (28)

It was first stated in [57] that a slightly weaker property is actually equivalent to the successful recovery of
X via (28).

Theorem 15 (Null space property). Given A : Cn1×n2 → Cm, every X ∈ Cn1×n2 of rank at most r is the
unique solution of (28) with b = A(X) if and only if, for all M ∈ kerA \ {0}, it holds

‖Mr‖1 < ‖Mc‖1. (29)

For the proof we refer to [57] and [26, Chapter 4.6]. According to Lemma 14, another implication of the
Frobenius robust rank null space property consists in the following error estimate in ‖ · ‖1 for the case of
noiseless measurements,

‖X −X♯‖1 ≤ 2(1 + ρ)

1 − ρ
‖Xc‖1.

The above estimate remains true, if we require that for all M ∈ kerA, the singular values of M satisfy

‖Mr‖1 ≤ ρ‖Mc‖1, 0 < ρ < 1.

This property is known as the stable rank null space property of order r with constant ρ. It is clear that if
A : Cn1×n2 → Cm satisfies the Frobenius robust rank null space property, then it satisfies the stable rank
null space property. The approach used in [54] to verify that the stable null space property accounts for
stable recovery of matrices which are not exactly of low rank, exploits the similarity between the sparse
vector recovery and the low-rank matrix recovery. It shows that if some condition is sufficient for stable and
robust recovery of any sparse vector with at most r non-zero entries, then the extension of this condition to
the matrix case is sufficient for the stable and robust recovery of any matrix up to rank r.

In order to check whether the measurement map A : Cn1×n2 → Cm satisfies the Frobenius robust rank
null space property, we introduce the set

Tρ,r :=

{
M ∈ Cn1×n2 : ‖M‖2 = 1, ‖Mr‖2 >

ρ√
r
‖Mc‖1

}
.

Lemma 16. If

inf{‖A(M)‖ℓ2 : M ∈ Tρ,r} >
1

τ
,

then A satisfies the Frobenius robust rank null space property of order r with constants ρ and τ .

Proof. Suppose that

inf{‖A(M)‖ℓ2 : M ∈ Tρ,r} >
1

τ
. (30)
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It follows that for any M ∈ Cn1×n2 such that ‖A(M)‖ℓ2 ≤ ‖M‖2

τ it holds

‖Mr‖2 ≤ ρ√
r
‖Mc‖1. (31)

For the remaining M ∈ Cn1×n2 with ‖A(M)‖ℓ2 > ‖M‖2

τ we have

‖Mr‖2 ≤ ‖M‖2 < τ‖A(M)‖ℓ2 .
Together with (31) this leads to

‖Mr‖2 ≤ ρ√
r
‖Mc‖1 + τ‖A(M)‖ℓ2 .

for any M ∈ Cn1×n2 . �

It is natural to expect that the recovery error gets smaller as the number of measurements increases. This
can be taken into account by establishing the null space property for τ = κ√

m
. Then the error bound reads

as follows

‖X −X♯‖2 ≤ 2(1 + ρ)2

(1 − ρ)
√
r
‖Xc‖1 +

2κ(3 + ρ)√
m(1 − ρ)

η.

An important property of the set Tρ,r is that it is imbedded in a set with a simple structure. The next
lemma relies on the ideas presented in [59] for the compressed sensing setting.

Lemma 17. Let D be the set defined by

D := conv
{
M ∈ Cn1×n2 : ‖M‖2 = 1, rankM ≤ r

}
, (32)

where conv stands for the convex hull.

(a) Then D is the unit ball with respect to the norm

‖M‖D :=

L∑

j=1


∑

i∈Ij

(σi(M))
2



1/2

,

where L = ⌈n
r ⌉,

Ij =

{
{r(j − 1) + 1, . . . , rj} , j = 1, . . . , L− 1,
{r(L − 1) + 1, . . . , n} , j = L.

(b) It holds

Tρ,r ⊂
√

1 + (1 + ρ−1)2D. (33)

Let us argue briefly why ‖ · ‖D is a norm. Define g : Cn → [0,∞) by

g(x) :=

L∑

j=1


∑

i∈Ij

(x∗
i )

2




1/2

,

where L and Ij are defined in the same way as in item (a) of Lemma 17. Then g is a symmetric gauge
function and ‖M‖D = g(σ(M)) for any M ∈ Cn1×n2 . The norm property follows from [33, Theorem 7.4.7.2].

Proof of Lemma 17. (a) Any M ∈ D can be written as

M =
∑

i

αiXi

with

rankXi ≤ r, ‖Xi‖2 = 1, αi ≥ 0,
∑

i

αi = 1.

Thus

‖M‖D ≤
∑

i

αi‖Xi‖D =
∑

i

αi‖Xi‖2 =
∑

i

αi = 1.
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Conversely, suppose that ‖M‖D ≤ 1, and let M have a singular value decomposition M = UΣV ∗ =
L∑

j=1

∑
i∈Ij

σi(M)uiv
∗
i , where ui ∈ Cn1 and vi ∈ Cn2 are column vectors of U and V respectively. Set Mj :=

∑
i∈Ij

σi(M)uiv
∗
i and αj := ‖Mj‖2, j = 1, . . . , L. Then each Mj is a sum of r rank-one matrices, so that

rankMj ≤ r, and we can write M as

M =
∑

j:αj 6=0

αj

(
1

αj
Mj

)

with ∑

j:αj 6=0

αj =
∑

j

‖Mj‖2 = ‖M‖D ≤ 1 and ‖ 1

αj
Mj‖2 =

1

αj
‖Mj‖2 = 1.

Hence M ∈ D.
(b) To prove the embedding of Tρ,r into a scaled version of D, we estimate the norm of an arbitrary

element M of Tρ,r. According to the definition of the ‖ · ‖D-norm

‖M‖D =

L∑

ℓ=1

[∑

i∈Iℓ

(σi(M))
2

] 1
2

= ‖Mr‖2 +

[
2r∑

i=r+1

(σi(M))
2

] 1
2

+

L∑

ℓ≥3

[∑

i∈Iℓ

(σi(M))
2

] 1
2

. (34)

To bound the last term in the inequality above, we first note that for each i ∈ Iℓ, ℓ ≥ 3,

σi(M) ≤ 1

r

∑

j∈Iℓ−1

σj(M)

and hence [∑

i∈Iℓ

(σi(M))2

]1/2
≤ 1√

r

∑

j∈Iℓ−1

σj(M).

Summing up over ℓ ≥ 3 yields

L∑

ℓ≥3

[∑

i∈Iℓ

(σi(M))
2

] 1
2

≤ 1√
r

∑

l≥2

∑

j∈Iℓ

σj(M) =
1√
r

n∑

j=r+1

σj(M) =
1√
r
‖Mc‖1.

and taking into account the inequality for the singular values of M ∈ Tρ,r

L∑

ℓ≥3

[∑

i∈Iℓ

(σi(M))
2

] 1
2

≤ ρ−1‖Mr‖2.

Applying the last estimate to (34) we derive that

‖M‖D ≤ (1 + ρ−1)‖Mr‖2+
[

2r∑

i=r+1

(σi(M))
2

] 1
2

≤ (1 + ρ−1)‖Mr‖2 +
(
1 − ‖Mr‖22

) 1
2 .

Set a = ‖Mr‖2. The maximum of the function

f(a) := (1 + ρ−1)a +
√

1 − a2, 0 ≤ a ≤ 1,

is attained at the point

a =
1 + ρ−1

√
1 + (1 + ρ−1)2

and is equal to
√

1 + (1 + ρ−1)2. Thus for any M ∈ Tρ,r it holds

‖M‖D ≤
√

1 + (1 + ρ−1)2,

which proves (33). �
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Remark 18. The previous results hold true in the real-valued case and in the case of Hermitian matrices,
when the nuclear norm minimization problem is solved over the set of matrices of that special type. As a
set D we then take the convex hull of corresponding matrices of rank r and unit Frobenius norm. The only
difference in the proof of Lemma 17 occurs at the point, where we have to show that any M with ‖M‖D ≤ 1

belongs to D. Say, M ∈ Cn×n is Hermitian and ‖M‖D ≤ 1. Then M = UΛU∗ =
L∑

j=1

∑
i∈Ij

σi(M)uiu
∗
i , where

ui ∈ Cn, and Mj :=
∑
i∈Ij

σi(M)uiu
∗
i is Hermitian. The rest of the proof remains unchained.

Employing the matrix representation of the measurement map A, the problem of estimating the prob-
ability of the event (30) is reduced to the problem of giving a lower bound for the quantities of the form
inf
x∈T

‖Ax‖2. This is not an easy task for deterministic matrices, but the situation significantly changes for

matrices chosen at random.

4. Gaussian measurements

Our main result for Gaussian measurements reads as follows.

Theorem 19. Let A : Rn1×n2 → Rm be the linear map (1) generated by a sequence A1, . . . , Am of indepen-
dent standard Gaussian matrices, let 0 < ρ < 1, κ > 1 and 0 < ε < 1. If

m2

m + 1
≥ r(1 + (1 + ρ−1)2)κ2

(κ− 1)2

[
√
n1 +

√
n2 +

√
2 ln(ε−1)

r(1 + (1 + ρ−1)2)

]2
, (35)

then with probability at least 1−ε, for every X ∈ Rn1×n2 , a solution X♯ of (4) with b = A(X)+w, ‖w‖ℓ2 ≤ η,
approximates X with error

‖X −X♯‖2 ≤ 2(1 + ρ)2

(1 − ρ)
√
r
‖Xc‖1 +

2κ
√

2(3 + ρ)√
m(1 − ρ)

η.

In order to prove Theorem 19 we employ Gordon’s escape through a mesh theorem that provides an
estimate of the probability of the event (30). First we recall some definitions. Let g ∈ Rm be a standard
Gaussian random vector, that is, a vector of independent mean zero, variance one normal distributed random
variables. Then for

Em := E ‖g‖2 =
√

2
Γ ((m + 1)/2)

Γ (m/2)

we have
m√
m + 1

≤ Em ≤ √
m,

see [27, 26]. For a set T ⊂ Rn we define its Gaussian width by

ℓ(T ) := E sup
x∈T

〈x, g〉,

where g ∈ Rn is a standard Gaussian random vector.

Theorem 20 (Gordon’s escape through a mesh [27]). Let A ∈ Rm×n be a Gaussian random matrix and T
be a subset of the unit sphere Sn−1. Then, for t > 0,

P
(

inf
x∈T

‖Ax‖2 > Em − ℓ(T ) − t

)
≥ 1 − e−

t2

2 . (36)

In order to apply this result to our measurement process (1) we unravel the columns of Aj , j = 1, . . . ,m,
into a single row and collect all of these in a m × n1n2-matrix A, so that n = n1n2 when applying (36).
In order to give a bound on the number of Gaussian measurements, Theorem 20 requires to estimate the
Gaussian width of the set Tρ,r from above. As it was pointed out in the previous section, Tρ,r is a subset of
a scaled version of D, which has a relatively simple structure. So instead of evaluating ℓ(Tρ,r), we consider
ℓ(D).
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Lemma 21. For the set D defined by (32) it holds

ℓ(D) ≤ √
r(
√
n1 +

√
n2). (37)

Proof. Let Γ ∈ Rn1×n2 have independent standard normal distributed entries. Then ℓ(D) = E sup
M∈D

〈Γ,M〉.
Since a convex continuous real-valued function attains its maximum value at one of the extreme points, it
holds ℓ(D) = E sup

‖M‖2=1
rankM≤r

〈Γ,M〉. By Hölder’s inequality,

ℓ(D) ≤ E sup
‖M‖2=1
rankM≤r

‖Γ‖∞‖M‖1 ≤
√
r sup

‖M‖2=1
rankM≤r

‖M‖2 Eσ1(Γ) ≤ √
r(
√
n1 +

√
n2),

where the last inequality follows from an estimate for the expectation of the largest singular value of a
Gaussian matrix, see [26, Chapter 9.3]. �

Proof of Theorem 19. Set t :=
√

2 ln(ε−1). If m satisfies (35), then

Em

(
1 − 1

κ

)
≥
√
r(1 + (1 + ρ−1)2)(

√
n1 +

√
n2) + t.

Together with (33) and (37) this yields

Em − ℓ(Tρ,r) − t ≥ Em

κ
≥ 1

κ

√
m

2
.

According to Theorem 20

P
(

inf
M∈Tρ,r

‖A(M)‖2 >

√
m

κ
√

2

)
≥ 1 − ε,

which means that with probability at least 1 − ε map A satisfies the Frobenius robust rank null space

property with constants ρ and κ
√
2√

m
. The error estimate follows from Theorem 11. �

5. Measurement matrices with independent entries and four finite moments

In this section we prove Theorem 1, which is the generalization of Theorem 19 to the case when the
map A : Rn1×n2 → Rm is obtained from m independent samples of a random matrix Φ = (Xij)i,j with the
following properties:

• The Xij are independent random variables of mean zero,
• EX2

ij = 1 and EX4
ij ≤ C4 for all i, j and some constant C4.

Note that (by Hölder’s inequality) C4 ≥ 1.
As before the idea of the proof is to show that the event (30) holds with high probability. In order to do

so we apply Mendelson’s small ball method [40, 50, 66] in the manner of [66].

Theorem 22 ([40, 50, 66]). Fix E ⊂ Rd and let φ1, . . . , φm be independent copies of a random vector φ in
Rd. For ξ > 0 let

Qξ(E;φ) = inf
u∈E

P{|〈φ, u〉| ≥ ξ}
and

Wm(E;φ) = E sup
u∈E

〈h, u〉,

where h = 1√
m

∑m
j=1 εjφj with (εj) being a Rademacher sequence 4. Then for any ξ > 0 and any t ≥ 0 with

probability at least 1 − e−2t2

inf
u∈E

(
m∑

i=1

|〈φi, u〉|2
)1/2

≥ ξ
√
mQ2ξ(E;φ) − 2Wm(E;φ) − ξt.

We start with two lemmas.

4i.e., the εj are independent and assume the values 1 and −1 with probability 1/2, respectively.
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Lemma 23.

inf
{Y,‖Y ‖2=1}

P(|〈Φ, Y 〉| ≥ 1√
2

) ≥ 1

4C5
,

where C5 = max{3, C4}.

Proof. Assume that Y has Frobenius norm one. The Payley-Zygmund inequality (see e.g. [26, Lemma 7.16],
and also [66]), implies

P{|〈Φ, Y 〉|2 ≥ 1

2
(E|〈Φ, Y 〉|2)} ≥ 1

4
· (E|〈Φ, Y 〉|2)2

E|〈Φ, Y 〉|4 . (38)

We compute numerator and denominator.

E|〈Φ, Y 〉|2 =
∑

i,j,k,l

E(XijXkl) · YijYkl =
∑

i,j

EX2
ij · Y 2

ij =
∑

i,j

Y 2
ij = 1.

Likewise,

E|〈Φ, Y 〉|4 =
∑

i1,...,i4,j1,...,j4

E(Xi1j1 · · ·Xi4j4) · Yi1j1 · · ·Yi4j4

=
∑

i,j

EX4
ij · Y 4

ij + 3
∑

i1,i2,j1,j2
(i1,j1)6=(i2,j2)

E(X2
i1j1X

2
i2j2 ) · Y 2

i1j1Y
2
i2j2

=
∑

i,j

EX4
ij · Y 4

ij + 3
∑

i1,i2,j1,j2
(i1,j1)6=(i2,j2)

Y 2
i1j1Y

2
i2j2 ≤

∑

i,j

C4 · Y 4
ij + 3

∑

i1,i2,j1,j2
(i1,j1)6=(i2,j2)

Y 2
i1j1Y

2
i2j2

≤ C5

∑

i1,i2,j1,j2

Y 2
i1j1Y

2
i2j2 = C5(

∑

i,j

Y 2
ij)

2 = C5.

Combining this with (E|〈Φ, Y 〉|2)2 = 1 and the estimate (38), the claim follows. �

Lemma 24. Let Φ1, . . . ,Φm be independent copies of a random matrix Φ as above. Let ε1, . . . , εm be
independent Rademacher variables independent of everything else and let H = 1√

m

∑m
k=1 εkΦk. Then

E‖H‖∞ ≤ C1

√
n.

Here C1 is a constant that only depends on C4.

Proof. Let S =
∑m

k=1 Φk. We first desymmetrize the sum H (see [45, Lemma 6.3]) and obtain

E‖H‖∞ ≤ 2√
m
E‖S‖∞.

Therefore, it is enough to show that E‖S‖∞ ≤ c3
√
mn for a suitable constant c3. The matrix S has

independent mean zero entries, hence by a result Lata la (see [44]) the following estimate holds for some
universal constant C2,

E‖S‖∞ ≤ C2


max

i

√∑

j

ES2
ij + max

j

√∑

i

ES2
ij + 4

√∑

i,j

ES4
ij


 .

Denoting the entries of Φk by Xk;ij , we have Sij =
∑

k Xk;ij . Hence, using the independence of the Xk;ij , we

obtain ES2
ij = E(

∑
k Xk;ij)

2 =
∑

k EX2
k;ij = m. Thus,

√∑
j ES2

ij ≤ √
nm for any i and

√∑
i ES2

ij ≤
√
nm

for any j. Finally to estimate 4

√∑
i,j ES4

ij we calculate ES4
ij = E(

∑
k Xk;ij)

4. Using again that the Xk;ij

are independent and have mean zero we obtain

ES4
ij =

∑

k

EX4
k;ij + 3

∑

k1 6=k2

EX2
k1;ijEX

2
k2;ij .
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Using that EX2
k;ij = 1 for all i, j, k, we obtain ES4

ij ≤ C5m
2, where C5 = max{3, C4} and hence

4

√∑

i,j

ES4
ij ≤ 4

√
C5m2n2 = 4

√
C4

√
mn.

Hence, indeed E‖S‖∞ ≤ c3
√
mn for a suitable constant c3 that depends only on C4. �

Proof Theorem 1. Let now Tρ,r and D be the sets defined in Section 3, but restricted to the real-valued
matrices. By Hölder’s inequality, for any n1 × n2 matrix Y of Frobenius norm 1 and rank at most r and
any n1 × n2 matrix H ,

〈H,Y 〉 ≤ ‖Y ‖1‖H‖∞ ≤ √
r‖H‖∞.

Hence

sup
Y ∈D

〈H,Y 〉 ≤ √
r‖H‖∞. (39)

Let H = 1√
m

∑m
j=1 εjΦj and let ξ = 1

2
√
2

and E = Tρ,r. Then it follows from Theorem 22 that for any t ≥ 0

with probability at least 1 − e−2t2

inf
Y ∈Tρ,r

(
m∑

i=1

|〈Φi, Y 〉|2
)1/2

≥
√
m

2
√

2
Q 1√

2
(Tρ,r; Φ) − 2Wm(Tρ,r,Φ) − 1

2
√

2
t. (40)

Using Lemma 23 and the fact that all elements of Tρ,r have Frobenius norm 1, we obtain

Q 1√
2
(Tρ,r; Φ) ≥ 1

4C5
. (41)

Combining now the fact that Tρ,r ⊆
√

1 + (1 + ρ−1)2D (see Lemma 17) with estimate (39) and Lemma 24
leads to

Wm(Tρ,r,Φ) ≤
√

1 + (1 + ρ−1)2
√
r E‖H‖∞ ≤ C1

√
1 + (1 + ρ−1)2

√
r
√
n. (42)

Using (40), (41) and (42) we see that choosing m ≥ c1ρ
−2nr and t = c4m for suitable constants c1, c4, we

obtain with probability at least 1 − e−c2m

inf
Y ∈Tρ,r

(
m∑

i=1

|〈Φi, Y 〉|2
)1/2

≥ c3
√
m

for suitable constants c2, c3. Now the claim follows from Lemma 16 and Theorem 11 (both of which also
hold in the real valued version by the same proofs respectively). �

6. Rank one Gaussian measurements

In this section we prove Theorem 2. The proof technique is an application of Mendelson’s small ball
method analogous to the proof of Theorem 1. Let

TH
ρ,r :=

{
M ∈ Hn : ‖M‖2 = 1, ‖Mr‖2 >

ρ√
r
‖Mc‖1

}
.

Let Tρ,r be defined as TH
ρ,r but with Hn replaced by the set of all complex n× n-matrices (i.e. it is defined

as before with n1 = n2 = n). Then TH
ρ,r ⊆ Tρ,r. It is enough to show that with high probabiliy

inf
Y ∈TH

ρ,r




m∑

j=1

|〈aja∗j , Y 〉|2



1/2

≥ √
m/C3 (43)

We apply Theorem 22 with E = TH
ρ,r. The next lemma estimates the small ball probability Q 1√

2
(E;φ) used

in Mendelson’s method.

Lemma 25 (see [43]). Q 1√
2
(E;φ) := infu∈E P{|〈aa∗, u〉| ≥ 1√

2
} ≥ 1

96 .
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Let now (as in [66, 43])

H =
1√
m

m∑

j=1

εjaja
∗
j , (44)

where the εj form a Rademacher sequence. For any M ∈ Hn and any n× n matrix Y of Frobenius norm 1
and rank at most r

〈M,Y 〉 ≤ ‖Y ‖1‖M‖∞ ≤ √
r‖M‖∞.

Since E = TH
ρ,r ⊆ Tρ,r ⊆

√
1 + (1 + ρ−1)2D, this implies

Wm(E, φ) = E sup
Y ∈E

〈H,Y 〉 ≤
√

1 + (1 + ρ−1)2
√
rE‖H‖∞.

As in [43] we use now that by the arguments in [67, Section 5.4.1] we have E‖H‖∞ ≤ c2
√
n if m ≥ c3n for

suitable constants c2, c3, see also [66, Section 8]. Now the claim of Theorem 2 follows from Theorem 22,
comp. the proof of Theorem 1. �

Remark 26. Inspecting the above proof, resp. the proofs of the cited statements in [43], we see that the real
valued analogue of Theorem 2 is also true. We even may assume for this that the aj are i.i.d. subgaussian
with k-th moments, where k ≤ 8, equal to the corresponding k-th moments of the Gaussian standard
distribution. The constants then depend only on the distribution of the aj. We also note that a similar
statement in the real case for the recovery of positive semidefinite matrices using subgaussian measurements
has been shown by Chen, Chi and Goldsmith in [19] using the rank restricted isometry property.

7. Rank one measurements generated by 4-designs

Recall the definition of an approximate, weighted t-design.

Definition 27 (Approximate t-design, Definition 2 in [3]). We call a weighted set {pi, wi}Ni=1 of normalized
vectors an approximate t-design of p-norm accuracy θp, if

∥∥∥∥∥
N∑

i=1

pi (wiw
∗
i )

⊗t −
∫

‖w‖ℓ2
=1

(ww∗)
⊗t

dw

∥∥∥∥∥
p

≤
(
n + t− 1

t

)−1

θp. (45)

A set of unit vectors obeying θp = 0 for 1 ≤ p ≤ ∞ is called an exact t-design, see [62] and also [43, 28].

Theorem 28. Let {pi, wi}Ni=1 be a an approximate 4-design with either θ∞ ≤ 1/(16r2), or θ1 ≤ 1/4 that

furthermore obeys
∥∥∥
∑N

i=1 piwiw
∗
i − 1

n id
∥∥∥
∞

≤ 1
n . Suppose that the measurement operator A is generated by

m ≥ C4ρ
−2nr logn

measurement matrices Aj =
√
n(n + 1)aja

∗
j , where each aj is drawn independently from {pi, wi}Ni=1. Then,

with probability at least 1 − e−C5m, A obeys the Frobenius robust rank null space property of order r with
constants 0 < ρ < 1 and τ = C6/

√
m. Here, C4, C5 and C6 denote positive constants depending only on the

design.

Theorem 3 readily follows from combining this statement with Theorem 12.

Proof of Theorem 28. We start by presenting a proof for measurements drawn from an exact 4-design.
Paralleling the proof of Theorem 2, the statement can be deduced from Theorem 22 by utilizing results from
[43]. Provided that a is randomly chosen from a re-scaled, weighted 4-design (such that each element has

Euclidean length ‖wi‖ℓ2 = 4
√

(n + 1)n), [43, Proposition 12] implies that

inf
Z∈Tρ,r

P (|tr (aa∗Z) | ≥ ξ) ≥ inf
‖Z‖2=1

P (|tr (aa∗Z) | ≥ ξ) ≥ (1 − ξ2)2

24
(46)
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is valid for all ξ ∈ [0, 1]. Now let H =
∑m

i=1 ǫiaia
∗
i be as in Theorem 22. Lemma 17 together with the fact

that D is the convex hull of all matrices of rank at most r and Frobenius norm 1 allows us to conclude for
m ≥ 2n logn, that,

Wm (Tρ,r, aa
∗) = E sup

M∈Tρ,r

tr (HM) ≤
√

1 + (1 + ρ−1)2 E sup
M∈D

tr (HM)

≤
√

1 + (1 + ρ−1)2 sup
M∈D

‖M‖1E‖H‖∞ ≤
√

1 + (1 + ρ−1)2
√
r E‖H‖∞

≤ 3.1049
√

1 + (1 + ρ−1)2rn log(2n),

where the last bound is due to [43, Proposition 13]. Fixing 0 < ξ < 1/2 arbitrarily and inserting these two
bounds into Theorem 22 completes the proof.

An analogous statement for approximate 4-designs — with slightly worse absolute constants — can be
obtained by resorting to the generalized versions of [43, Propositions 12 and 13] presented in Section 4.5.1
in loc. cit. which are valid for approximate 4-designs that satisfy the conditions stated in Theorem 28. �

8. The positive semidefinite case

Finally, we focus on the case, where the matrices of interest are Hermitian and positive semidefinite and
establish Theorem 4. In order to arrive at such a statement, we closely follow the ideas presented in [36]
which in turn were inspired by [9] containing an analogous statement for a non-negative compressed sensing
scenario.

We require two further concepts from matrix analysis. For every positive semidefinite matrix W < 0 with
eigenvalue decomposition W =

∑n
i=1 λiwiw

∗
i we define its square root to be W 1/2 :=

∑n
i=1

√
λiwiw

∗
i . In

other words, W 1/2 is the unique positive semidefinite matrix which acts on the eigenspace corresponding
to the eigenvalue λi of W by multiplication by

√
λi. Note that this matrix obeys W 1/2 ·W 1/2 = W . Also,

recall that the condition number κ(W ) of a matrix W is the ratio between its largest and smallest nonzero
singular value. For an invertible Hermitian matrix with inverse W−1 this number equals

κ(W ) = ‖W‖∞‖W−1‖∞.

Suppose that the measurement process (3) is such that there exists t ∈ Rm which assures that W :=∑m
j=1 tjAj is positive definite. We define the artificial measurement map

AW 1/2 : Hn → Rm, Z 7→ A(W−1/2ZW−1/2) (47)

and the endomorphism
Z 7→ Z̃ := W 1/2ZW 1/2 (48)

of Hn. Note that these definitions assure

A(Z) = AW 1/2(Z̃) for all Z ∈ Hn (49)

and the singular values of Z and Z̃ satisfy

σj(Z̃) ≤ ‖W 1/2‖2∞σj(Z) = ‖W‖∞σj(Z), σj(Z) ≤ ‖W−1/2‖2∞σj(Z̃) = ‖W−1‖∞σj(Z̃), (50)

see [7, p. 75]. Consequently, the mapping (48) preserves the rank of any matrix. The following result assures
that the artificial measurement operator AW 1/2 obeys the Frobenius robust rank null space property, if the
original A does.

Lemma 29. Suppose that A satifies the Frobenius robust rank null space property of order r with constants
ρ and τ and suppose that W =

∑m
j=1 tjAj is positive definite. Then AW 1/2 also obeys the Frobenius robust

rank null space property of order r, but with constants ρ̃ = κ(W )ρ and τ̃ = ‖W‖∞τ .

Proof. Let Z̃ ∈ Hn. Relations (49), (50) together with the Frobenius robust rank null space property of A
imply that

‖Z̃r‖2 ≤ ‖W 1/2‖2∞‖Zr‖2 ≤ ‖W‖∞
(

ρ√
r
‖Zc‖1 + τ‖A(Z)‖ℓ2

)

≤ ‖W‖∞‖W−1‖∞ρ√
r

‖Z̃c‖1 + ‖W‖∞τ‖AW 1/2(Z̃)‖ℓ2 .
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�
Lemma 30. Suppose there is t ∈ Rm such that W :=

∑m
j=1 tjAj is positive definite. Let X̃, Z̃ be positive

semidefinite. Then,
‖Z̃‖1 − ‖X̃‖1 ≤ ‖t‖ℓ2‖AW 1/2(Z̃ − X̃)‖ℓ2 .

Proof. The claim follows from positive semidefiniteness of both Z̃ and X̃ and our choice of the endomorphism
(48). Indeed,

‖Z̃‖1 = tr(Z̃ − X̃) + ‖X̃‖1 = tr(W 1/2(Z −X)W 1/2) + ‖X̃‖1 = tr(W (Z −X)) + ‖X̃‖1

=

m∑

j=1

tj tr(Aj(Z −X)) + ‖X̃‖1 = 〈t,A(Z −X)〉 + ‖X̃‖1

= 〈t,AW 1/2(Z̃ − X̃)〉 + ‖X̃‖1 ≤ ‖t‖ℓ2‖AW 1/2(Z̃ − X̃)‖ℓ2 + ‖X̃‖1.
Here X resp. Z denote the preimage of X̃ resp Z̃ under the map (48). �

This simple technical statement allows us to establish the main result of this section.

Theorem 31. Suppose there exists t ∈ Rm such that W :=
∑m

j=1 tjAj is positive definite and A satisfies

the Frobenius robust rank null space property with constants 0 < ρ < 1
κ(W ) and τ > 0. Let 1 ≤ p ≤ 2. Then,

for any X,Z < 0,

‖Z −X‖p ≤ 2Cκ(W )

r1−1/p
‖Xc‖1 + r1/p−1/2‖A(Z) −A(X)‖ℓ2‖W−1‖∞

(
C‖t‖2√

r
+ D‖W‖∞τ

)
(51)

with constants C = (1+κ(W )ρ)2

1−κ(W )ρ and D = 3+κ(W )ρ
1−κ(W )ρ .

Proof. Let X,Z < 0 be arbitrary. Then

‖Z −X‖p =
∥∥∥W−1/2

(
Z̃ − X̃

)
W−1/2

∥∥∥
p
≤ ‖W−1‖∞‖Z̃ − X̃‖p

holds and the resulting matrices Z̃, X̃ are again positive-semidefinite. Also, since A satisfies the Frobenius
robust rank null space property with constants 0 < ρ < 1

κ(W ) and τ > 0, Lemma 29 assures that AW 1/2 does

the same with constants 0 < ρ̃ < 1 and τ̃ = ‖W‖∞τ > 0. Combining this with Theorem 12 and Lemma 30
implies

‖Z̃ − X̃‖p ≤ C

r1−1/p

(
‖Z̃‖1 − ‖X̃‖1 + 2‖X̃c‖1

)
+ D‖W‖∞τr1/p−1/2‖AW 1/2(Z̃ − X̃)‖ℓ2

≤ C

r1−1/p

(
‖t‖ℓ2‖AW 1/2(Z̃ − X̃)‖ℓ2 + 2‖X̃c‖1

)
+ D‖W‖∞τr1/p−1/2‖AW 1/2(Z̃ − X̃)‖ℓ2

≤ 2C

r1−1/p
‖X̃c‖1 + r1/p−1/2‖AW 1/2(Z̃ − X̃)‖ℓ2

(
C‖t‖ℓ2√

r
+ D‖W‖∞τ

)
.

The desired statement follows from this estimate by taking into account (49) and (50). �
Note that in contrast to other recovery guarantees established here, Theorem 31 does not require any

convex optimization procedure. However, it does require the measurement process to obey an additional
criterion: the intersection of the span of measurement matrices with the cone of positive definite matrices
must be non-empty. We show that this is the case for the rank-one projective measurements introduced
in the previous section with high probability. Since it has already been established that sufficiently many
measurements of this kind obey the Frobenius robust rank null space property with high probability (see
Theorems 2 and 28 and their respective proofs), Theorem 4 can then be established by taking the union
bound over the individual probabilities of failure.

Proposition 32. Suppose m ≥ 4n and let A1, . . . , Am be matrices of the form aja
∗
j , where each ai ∈ Cn is

a random complex standard Gaussian vector. Then with probability at least 1 − 2e−C10m, W := 1
m

∑m
j=1 Aj

is positive definite and obeys
max

{
‖W‖∞, ‖W−1‖∞, κ(W )

}
≤ C11. (52)
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Here, C9, C10, C11 > 0 denote universal positive constants.

Note that such a construction corresponds to setting t = 1
m(1, . . . , 1)T ∈ Rm which obeys ‖t‖ℓ2 = 1/

√
m.

Proof. For the sake of simplicity, we are going to establish the statement for real standard Gaussian vec-
tors. Establishing the complex case can be done analogously and leads to slightly different constants. Let
e1, . . . , em denote the standard basis in Rm. We define the auxiliary m × n matrix A :=

∑m
i=1 eia

∗
i which

obeys

1

m
ATA =

1

m

m∑

i=1

aie
∗
i

m∑

j=1

eja
∗
j =

1

m

m∑

i=1

aia
∗
i =

1

m

m∑

i=1

Ai = W.

Also, by construction, A is a random matrix with standard Gaussian entries. Essentially, this relation
implies that mW is Wishart-distributed. From (8) and the defining properties of eigen- and singular values
we infer that

√
λmin(W ) =

1√
m

√
λmin (ATA) =

1√
m
λmin

(√
ATA

)
=

1√
m
σmin(A) (53)

and an analogous statement is true for the largest eigenvalue λmax(W ). Since A is a Gaussian m×n matrix,
concentration of measure implies that for any τ̃ > 0

√
m−√

n− τ̃ ≤ σmin(A) ≤ σmax(A) ≤ √
m +

√
n + τ̃ (54)

with probability at least 1 − 2e−τ̃2/2 — see e.g. [67, Corollary 5.35] or [26, Theorem 9.26]. Combining this
with (53), recalling the assumption m ≥ 4n and defining τ = τ̃ /

√
m allows for establishing

1

2
− τ ≤ 1 −

√
n

m
− τ ≤

√
λmin(W ) ≤

√
λmax(W ) ≤ 1 +

√
n

m
+ τ ≤ 3

2
+ τ

with probability at least 1−2e−mτ2/2. This inequality chain remains valid, if we square the individual terms.
Setting τ = 1/4 thus allows us to conclude

max

{
λmax(W ), λ−1

min(W ),
λmax(W )

λmin(W )

}
≤
(

3/2 + τ

1/2 − τ

)2

= 49 = C11, (55)

with probability at least 1 − 2e−m/32. �

Alternatively, we could have relied on bounds on the condition number of Gaussian random matrices
presented in [20]. While these bounds would be slightly tighter, we feel that our derivation is more illustrative
and it suffices for our purpose.

Proposition 33. Suppose m ≥ C̃4nr logn and let A1, . . . , Am be matrices of the form aja
∗
j , where each

aj ∈ Cn is chosen independently from a weighted set {pi, wi}Ni=1 of vectors obeying ‖wi‖2ℓ2 =
√
n(n + 1) for

all 1 ≤ i ≤ N and ∥∥∥∥∥
N∑

i=1

piwiw
∗
i −

√
n + 1

n
id

∥∥∥∥∥
∞

≤ 1

2
. (56)

Then with probability at least 1 − e−γC̃4r, the matrix W := 1
m

∑m
j=1 Aj is positive definite and obeys

max
{
‖W‖∞, ‖W−1‖∞, κ(W )

}
≤ 8. (57)

Here, C̃4 > 1 and 0 < γ ≤ 1 denote absolute constants of adequate size.

Note that condition (56) is slightly stronger than the corresponding condition in Theorem 28. Also, the

construction of W again uses t = 1
m (1 . . . , 1)

T ∈ Rm.
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Proof. In order to show this statement, we are going to employ the matrix Bernstein inequality5 [65, Theorem
6.1], see also [1], in order to establish

∥∥∥∥∥W −
√

n + 1

n
id

∥∥∥∥∥
∞

≤ 3

4
(58)

with high probability. Let λ1(W ), . . . , λn(W ) denote the eigenvalues of W . Then such a bound together
with the definition of the operator norm assures

1 − λmin(W ) ≤
√

n + 1

n
− λmin(W ) ≤

∣∣∣∣∣

√
n + 1

n
− λmin(W )

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣∣∣∣

√
n + 1

n
− λi(W )

∣∣∣∣∣

=

∥∥∥∥∥

√
n + 1

n
id−W

∥∥∥∥∥
∞

≤ 3/4,

λmax(W ) −
√

n + 1

n
≤
∣∣∣∣∣λmax(W ) −

√
n + 1

n

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣∣∣∣

√
n + 1

n
− λi(W )

∣∣∣∣∣

=

∥∥∥∥∥W −
√

n + 1

n
id

∥∥∥∥∥
∞

≤ 3/4.

This in turn implies λmin(W ) ≥ 1/4 as well as λmax(W ) ≤ 3/4+
√

n+1
n ≤ 2 for n ≥ 2 and the desired bound

(57) readily follows.
It remains to assure the validity of (58) with high probability. To this end, for 1 ≤ k ≤ m, we define the

random matrices Mk := 1
m (aka

∗
k − E [aka

∗
k]), where each ak is chosen independently at random from the

weighted set {pi, wi}Ni=1. This definition assures
∥∥∥∥∥W −

√
n + 1

n
id

∥∥∥∥∥
∞

=

∥∥∥∥∥
m∑

k=1

(
Mk + E [aka

∗
k]
)
−
√

n + 1

n
id

∥∥∥∥∥
∞

≤
∥∥∥∥∥

m∑

k=1

Mk

∥∥∥∥∥
∞

+
1

2
(59)

via the triangle inequality and assumption (56) and along similar lines

‖E [aka
∗
k]‖∞ ≤ 1

2
+

√
n + 1

n
≤ 2 (60)

readily follows for any 1 ≤ k ≤ m. The random matrices Mk have mean-zero by construction and each of
them obeys

‖Mk‖∞ =
1

m
‖aka∗k − E [aka

∗
k]‖∞ ≤ 1

m
max {‖aka∗k‖∞, ‖E [aka

∗
k] ‖∞} =

1

m
‖ak‖2ℓ2 =

√
(n + 1)n

m
,

as well as

∥∥E
[
M2

k

]∥∥
∞ =

1

m2

∥∥∥E
[
(aka

∗
k)

2
]
− E [aka

∗
k]

2
∥∥∥
∞

=
1

m2

∥∥∥
√

(n + 1)nE [aka
∗
k] − E [aka

∗
k]

2
∥∥∥
∞

=
2

m2
max

{√
(n + 1)n ‖E [aka

∗
k]‖∞ , ‖E [aka

∗
k]‖2∞

}
≤ 2

√
(n + 1)n

m2
.

Hence ∥∥∥∥∥
m∑

k=1

E
[
M2

k

]
∥∥∥∥∥
∞

≤ 2
√

(n + 1)n

m
.

5Resorting to the matrix Chernoff inequality would allow for establishing a similar result. However, in the case of an exact
tight frame, the numerical constants obtained by doing so are slightly worse.
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These bounds allow us to set R :=

√
(n+1)n

m , σ2 :=
2
√

(n+1)n

m and apply the matrix Bernstein inequality
([65, Theorem 6.1], [1]) in order to establish

Pr

[∥∥∥∥∥
m∑

k=1

Mk

∥∥∥∥∥
∞

≥ τ

]
≤ n exp

(
− τ2/2

σ2 + Rτ

)
≤ n exp

(
− 3τ2m

16
√

(n + 1)n

)

for 0 < τ ≤ σ2/R = 2. Setting τ = 1/4 and inserting m ≥ C̃4nr log(n) (where C̃4 is large enough) assures

that (58) holds with probability of failure smaller than e−γC̃4r via (59) for a suitable γ > 0. �
Finally, we are ready to prove Theorem 4.

Proof of Theorem 4. We content ourselves with establishing the design case and point out that the Gaussian
case can be proved analogously (albeit with different constants). Fix 0 < ρ < 1/8 and suppose that

m ≥ C3

(
1 +

(
1 + ρ−1

)2)
nr logn

measurement vectors have been chosen independently from an approximate 4-design. Theorem 28 then
assures that the resulting measurement operator A obeys the robust Frobenius rank null space property

with constants ρ < 1/8 and τ ≤ C̃6/
√
m with probability at least 1 − e−C̃5m. Likewise, Proposition 33

assures that with probability at least 1− e−γC̃4r, setting t = 1√
m

(1, . . . , 1)T ∈ Rm leads to a positive definite

W =
∑m

j=1 tjAj obeying κ(W ) ≤ 8. Note that such a t obeys ‖t‖ℓ2 = 1/
√
m and also 0 < ρ < 1/8 ≤ 1/κ(W )

holds by construction. The union bound over these two assertions failing implies that the requirements of
Theorem 31 are met with probability at least

1 − e−C̃5m − e−γC̃4r ≥ 1 − e−γ̃C̃4r,

where γ̃ denotes a sufficiently small absolute constant and C̃4 = m/nr logn. The constants C4 and s

presented in Theorem 4 then amount to s = γ̃C̃4 and C2 ≥ C̃4. Inserting ‖t‖ℓ2 = 1/
√
m and the bounds on

‖W‖∞, ‖W−1‖∞, κ(W ) from Proposition 33 into (51) yields

‖Z −X‖p ≤ 2Cκ(W )

r1−1/p
‖Xc‖1 + r1/p−1/2‖A(Z) −A(X)‖ℓ2‖W−1‖∞

(
C‖t‖2√

r
+ D‖W‖∞τ

)

≤ 16C

r1−1/p
‖Xc‖1 + 8r1/p−1/2‖A(Z) −A(X)‖ℓ2

(
C√
rm

+
9DC̃6√

m

)

≤ C3

r1−1/p
‖Xc‖1 +

C4r
1/p−1/2

√
m

‖A(Z) −A(X)‖ℓ2

with constants C3 = 16C and C4 = 8C+8DC̃6 (where C,D were introduced in Theorem 31 and C̃6 is ). �
Remark 34. In Corollary 6 we focus on recovering density operators, i.e., positive semidefinite matrices X
with trace one. This trace constraint can be re-interpreted as an additional perfectly noiseless measurement

b0 = tr (idX) = tr(X) = 1

corresponding to the measurement matrix A0 = id. Setting t = (1, 0, . . . , 0)T ∈ Rm+1 in Theorem 31
then leads to W = id which obeys ‖W‖∞ = ‖W−1‖∞ = κ(W ) = 1 and furthermore assures that the

endomorphism (48) is trivial, i.e. Z̃ = Z for all Z ∈ Hn. Moreover, these properties render the estimate
provided in Lemma 30 redundant, because any two density operators X,Z obey

‖Z̃‖1 − ‖X̃‖1 = ‖Z‖1 − ‖Z‖1 = tr (Z) − tr (X) = 0.

Such a refinement then allows for dropping the term containing ‖t‖ℓ2 in (51) and by inserting W = id we
arrive at the following conclusion: Any measurement operator A that obeys the Frobenius robust rank null
space property with constants 0 < ρ < 1 and τ > 0 assures for 1 ≤ p ≤ 2 and any two density operators
X,Z:

‖Z −X‖p ≤ 2 (1 + ρ)
2

1 − ρ
‖Xc‖1 + τ

r1/p−1/2(3 + ρ)

1 − ρ
‖A(Z) −A(X)‖ℓ2 .

Corollary 6 then follows from combining this assertion with Theorem 28 and setting p = 1.
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Württemberg.

Appendix

A brief review of finite-dimensional quantum mechanics. For the sake of being self-contained we
briefly recapitulate crucial concepts of (finite dimensional) quantum mechanics without going too much into
detail. For further reading on the topics introduced here, we defer the interested reader to [53, Chapter 2.2].

An isolated quantum mechanical system is fully described by its density operator. For a finite n-
dimensional quantum system, such a density operator corresponds to an Hermitian, positive semidefinite
matrix ρ with unit trace.

The most general notion of a measurement is that of a positive operator-valued measure (POVM). For an
n-dimensional quantum system, a POVM corresponds to a collection M = {Em}m∈I of positive semidefinite
n× n matrices that sum up to identity, i.e.,

∑

m∈I

Em = id .

The indices m ∈ I indicate the possible measurement outcomes of performing such a POVM measurement.
Upon performing M on a system described by ρ, quantum mechanics then postulates that the probability
of obtaining the outcome (labeled by) m corresponds to

p(m, ρ) = tr (Emρ) .

Repeating the same measurement (i.e., preparing ρ and measuring M) many times allows one to estimate
the n probabilities p(λi, ρ) ever more accurately.

Note that the definitions of ρ and M assure that p(m, ρ)m∈I is in fact a valid probability distribution.
Indeed, p(m, ρ) ≥ 0 follows from positive-semidefiniteness of both ρ and Em. Unit trace of ρ assures proper
normalization via

∑

m∈I

p(m, ρ) =
∑

m∈I

tr (Emρ) = tr (id ρ) = tr(ρ) = 1.
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ABSTRACT. In this work we analyze the problem of phase retrieval from Fourier measure-
ments with random diffraction patterns. To this end, we consider the recently introduced
PhaseLift algorithm, which expresses the problem in the language of convex optimization.
We provide recovery guarantees which requireO(log2 d) different diffraction patterns,
thus improving on recent results by Candès et al. [1], whichrequireO(log4 d) different
patterns.

1. INTRODUCTION

1.1. The problem of phase retrieval. In this work we are interested in the problem of
phase retrievalwhich is of considerable importance in many different areasof science,
where capturing phase information is hard or even infeasible. Problems of this kind occur,
for example, in X-ray crystallography, diffraction imaging, and astronomy.

More formally,phase retrievalis the problem of recovering an unknown complex vector
x ∈ Cd from amplitudemeasurements

(1) yi = |〈ai, x〉|2 i = 1, . . . ,m,

for a given set of measurement vectorsa1, . . . , am ∈ Cd. The observationsy are insensi-
tive to a global phase changex 7→ eiφx – hence in the following, notions like “recovery”
or “injectivity” are always implied to mean “up to a global phase”. Clearly, the most fun-
damental question is: Which families of measurement vectors{ai} allow for a recovery of
x in principle? I.e., for which measurements is the mapx 7→ y defined by (1) injective?

Approaches based on algebraic geometry (for example [2, 3])have established that for
determiningx, 4d + o(1) genericmeasurements are sufficient and4d − O(log d) such
observations are necessary. Here, “generic” means that themeasurement ensembles for
which the property fails to hold lie on a low-dimensional subvariety of the algebraic variety
of all tight measurement frames.

This notion of generic success, however, is mainly of theoretical interest. Namely,
injectivity alone neither gives an indication on how to recover the unique solution, nor is
there any chance to directly generalize the results to the case of noisy measurements. It
should be noted, however, that recently the notion of injectivity has been refined to capture
aspects of stability with respect to noise [4].

Paralleling these advances, there have been various attempts to find tractable recovery
algorithms that yield recovery guarantees. Many of these approaches are based on a linear
reformulation in matrix space, which is well-known in convex programming. The crucial

∗Corresponding author: richard.kueng@physik.uni-freiburg.de
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underlying observation is that the quadratic constraints (1) on x are linear in the outer
productX = xx∗:

yi = |〈ai, x〉|2 = tr ((aia
∗
i )X) .

Balan et al. [5] observed that for the right choice ofd2 measurement vectorsai, this linear
system in the entries ofX admits for a unique solution, so the problem can be explicitly
solved using linear algebra techniques. This approach, however, does not make use of the
low-rank structure ofX , which is why the required number of measurements is so much
larger than what is required for injectivity.

ThePhaseLiftalgorithm proposed by Candès et al. [6, 7, 8] uses in addition the prop-
erty thatX is of rank one, so even when the number of measurements is smaller thand2

and there is an entire affine space of matrices satisfying (1.1),X is the solution of smallest
rank. While finding the smallest rank solution of a linear system is, in general, NP hard,
there are a number of algorithms known to recover the smallest rank solution provided the
system satisfies some regularity conditions. The first such results were based on convex
relaxation (see, for example, [9, 10, 11]). PhaseLift is also based on this strategy. For
measurement vectors drawn independently at random from a Gaussian distribution, the
number of measurements required to guarantee recovery withhigh probability was shown
to be of optimal order, scaling linearly in the dimension [7,8] – see also [12] for a com-
parable statement valid for recovering matrices of arbitrary rank. A generalized version
of this result—valid for projective measurements onto random subspaces rather than ran-
dom vectors—was established in [13]. Moreover, Ref. [14] even identifies a deterministic,
explicitly engineered set of4d − 4 measurement vectors and proves that PhaseLift will
successfully recover generic signals from the associated measurements. Conversely, any
complex vector is uniquely determined by4d− 4 generic phaseless measurements [15].

Since these first recovery guarantees for the phase retrieval problem, recovery guaran-
tees have been proved for a number of more efficient algorithms closer to the heuristic
approaches typically used in practice. For example, in [16], an approach based on polar-
ization is analyzed and in [17], the authors study an alternating minimization algorithm.
In both works, recovery guarantees are again proved for Gaussian measurements. Further
numerical approaches have been proposed and studied in [18].

To relate all these results to practice, the structure of applications needs to be incorpo-
rated into the setup, which corresponds to reducing randomness and considering structured
measurements. For PhaseLift, the first partial derandomization has been provided by the
authors of this paper, considering measurements sampled from spherical designs, that is,
polynomial-size sets which generalize the notion of a tightframe to higher-order tensors
[19]. Recently, this result has been considerably improvedin [12]. Arguably, these deran-
domized measurement setups are still mainly of theoreticalinterest.

A structured measurement setup closer to applications is that of coded diffraction pat-
terns. These correspond to the composition of diagonal matrices and the Fourier transform
and model the modified application setup where diffraction masks are placed between the
object and the screen as originally proposed in [20]. The first recovery guarantees from
masked Fourier measurements were provided for polarization based recovery [21], where
the design of the masks is very specific and intimately connected to the recovery algo-
rithm. The required number of masks isO(log d), which corresponds toO(d log d) mea-
surements.

For the PhaseLift algorithm, recovery guarantees from masked Fourier measurements
were first provided in [1]. The results requireO(d log4 d) measurements and hold with
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high probability when the masks are chosen at random, which is in line with the observation
from [20] that random diffraction patterns are particularly suitable.

In this paper, we consider the same measurement setup as [1],but improve the bound
on the required number of measurements toO(d log2 d).

2. PROBLEM SETUP AND MAIN RESULTS

2.1. Coded diffraction patterns. As in [1], we will work with the following setup:
In every step, we collect the magnitudes of the discrete Fourier transform (DFT) of a

random modulation of the unknown signalx. Each such modulation pattern is modeled
by a random diagonal matrix. More formally, forω := exp

(
2πi
d

)
ad-th root of unity and

{e1, . . . , ed} the standard basis ofCd, denote by

(2) fk =

d∑

j=1

ωjkej

thek-th discrete Fourier vector, normalized so that each entry has unit modulus. Further-
more, consider the diagonal matrix

(3) Dl =

d∑

i=1

ǫl,ieie
∗
i

where theǫl,i’s are independent copies of a real-valued2 random variableǫ which obeys

E[ǫ] = E[ǫ3] = 0,

|ǫ| ≤ b almost surely for someb > 0,(4)

E[ǫ4] = 2 E[ǫ2]2 and we define ν := E
[
ǫ2
]
.(5)

Then the measurements are given by

(6) yk,l = |〈fk, Dlx〉|2 1 ≤ k ≤ d, 1 ≤ l ≤ L.

It turns out (Lemma 7 below) that condition (5) onǫ ensures that the measurement ensem-
ble forms a spherical2-design, which draws a connection to [5] and [19].

As an example, the criteria above include the model

(7) ǫ ∼





√
2 with prob.1/4,

0 with prob.1/2,

−
√
2 with prob.1/4.

which has been discussed in [1]. In this case, each modulation is given by a Rademacher
vector with random erasures.

2.2. Convex Relaxation. Following [5], we rewrite the measurement constraints as the
inner product of two rank1 matrices, one representing the signal, the other one the mea-
surement coefficients. In the coded diffraction setup, we obtain, as in [1], that the inner
product of (6) can be translated into matrix form by applyingthe following “lifts”:

X := xx∗ and Fk,l := Dlfkf
∗
kDl.

2 Ref. [1] also included a strongly related model whereǫ is a complex random variable. We have opted to
keepǫ real, which implies that theDl are hermitian. This, in turn, has allowed us to slightly simplify notation
throughout.
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Occasionally, we will make use of the representation with respect to the standard basis,
which reads

(8) Fk,l =

d∑

i,j=1

ǫl,iǫl,jω
k(i−j)eie

∗
j .

With these definitions, thedL individual linear measurements assume the following
form

yk,l = Tr (Fk,lX) k = 1, . . . , d, 1 ≤ l ≤ L.

and the phase retrieval problem thus becomes the problem of finding rank 1 solutions
X = xx∗ compatible with these affine constraints. Rank-minimization over affine spaces
is NP-hard in general. However, it is now well-appreciated [9, 10, 11, 7] that nuclear-
norm based convex relaxations solve this problems efficiently in many relevant instances.
Applied to phase retrieval, the relaxation becomes

argminX′ ‖X ′‖1(9)

subject to tr (Fk,lX
′) = yk,l k = 1, . . . n, 1 ≤ l ≤ L,

X ′ = (X ′)
∗

X ′ ≥ 0,

which has been dubbedPhaseliftby its inventors [6, 7, 8]. For this convex relaxation,
recovery guarantees are known for measurement vectors drawn i.i.d. at random from a
Gaussian distribution [7, 8],t-designs [19, 12], or in the masked Fourier setting [1].

We want to point out that access to additional information can considerably simplify
Phaselift. In particular, knowledge of the signal’sintensityy0 = ‖x‖2ℓ2 results in an addi-
tional trace constraint which together withX ′ ≥ 0 implies‖X ′‖1 = y0 for any feasible
X ′. Consequently, minimizing the nuclear norm becomes redundant and (9) can be re-
placed by the feasibility problem

find X ′(10)

subject to tr (Fk,lX
′) = yk,l k = 1, . . . n, 1 ≤ l ≤ L,

X ′ = (X ′)
∗

tr(X ′) = y0,

X ′ ≥ 0.

2.3. Our contribution. In this paper, we adopt the setup from [1]. Our main message is
that recovery ofx can be guaranteed already for

L ≥ C log2 d

random diffraction patterns, provided that the signal’s intensityy0 = ‖x‖2ℓ2 is known3.
This improves the bound given in [1] by a factor ofO(log2 d). It is significant, as it
indicates that the provably achievable rates are approaching the ultimate limit. Indeed,
for the Rademacher masks with random erasures introduced above, a lower bound for the
number of diffraction patterns required to allow for recovery with any algorithm is given
byO(log d). This follows from a standard coupon collector’s argument similar to the ones
provided in [10, 11]. For completeness, the lower bound is precisely formulated and proved
in Lemma 19 in the appendix.

3 This can, for instance, be achieved by starting the measurement process with a trivial modulation pattern—
i.e. D0 corresponds to the identity matrix—and summing up thed corresponding measurements (6).
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Thus there cannot be a recovery algorithm requiring fewer thanO(log d) masks and
there is only a singlelog-factor separating our results from an asymptotically tight solution.

More precisely, our version of [1, Theorem 1.1] reads:

Theorem 1 (Main Theorem). Let x ∈ Cd be an unknown signal with‖x‖ℓ2 = 1 and let
d ≥ 3 be an odd number. Suppose thatL complete Fourier measurements using indepen-
dent random diffraction patterns (as defined in Section 2.1)are performed.

Then with probability at least(1 − e−ω) Phaselift (the convex optimization problem
(9) endowed with the additional constrainttr(X ′) = 1, or the feasibility problem(10))
recoversx up to a global phase, provided that

L ≥ Cω log2 d.

Here,ω ≥ 1 is an arbitrary parameter andC a dimension-independent constant that can
be explicitly bounded.

The numberC is of the formC = C̃ b8

ν4 log
2
2

(
b2/ν

)
, whereb andν were defined in (4)

and (5), respectively. Also,̃C an absolute constant for which an explicit estimate can be
extracted from our proof.

For the benefit of the technically-minded reader, we briefly sketch the relation between
the proof techniques used here, as compared to References [1] and [19].

• The general structure of this document closely mimics [19] (which bears remark-
able similarity to [1], even though the papers were written completely indepen-
dently and with different aims in mind).
• From [1] we borrow the use of Hoeffding’s inequality to boundthe probability of

“the inner product between the measurement vectors and the signal becoming too
large”. This is Lemma 13 below. Our previous work also bounded the probability
of such events [19, Lemma 13]—however in a weaker way (relying only on certain
tth moments as opposed to a Hoeffding bound).
• Both [19, 1] as well as the present paper estimate the condition number of the

measurement operator restricted to the tangent space atxx∗ (“robust injectivity”).
Our Proposition 8 improves over [1, Section 3.3] by using an operator Bernstein
inequality instead of a weaker operator Hoeffding bound.
• Finally, we use a slightly refined version of the golfing scheme to construct an

approximate dual certificate (following [11, Section III.B]).

2.4. More general bases and outlook.The result allows for a fairly general distribution
of the masksDl, but refers specifically to the Fourier basis. An obvious question is how
sensitively the statements depend on the properties of thisbasis.

We begin by pointing out that Theorem 1 immediately implies acorollary for higher-
dimensional Fourier transforms. In diffraction imaging applications, for example, one
would naturally employ a 2-D Fourier basis

(11) fk,l =

dx∑

i=1

dy∑

j=1

ωik
dx
ωjl
dy
ei,j ,

with dx anddy the horizontal and vertical resolution respectively,ωd := exp
(
2πi
d

)
, and

ei,j the position space basis vector representing a signal located at coordinates(i, j). Su-
perficially, (11) looks quite different from the one-dimensional case (2). However, a basic
application of the Chinese Remainder Theorem shows that ifdx anddy are co-prime, then
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the 2-D transform reduces to the 1-D one for dimensiondxdy (in the sense that the respec-
tive bases agree up to relabeling) [22]. An analogous resultholds for higher-dimensional
transforms [22], proving the following corollary.

Corollary 2. Assumed =
∏k

i=1 di is the product of mutually co-prime odd numbers
greater than3. Then Theorem 1 remains valid for thek-dimensional Fourier transform
overd1, . . . , dk.

More generally speaking, our argument employs the particular properties of Fourier
bases in two places: Lemma 7 and Lemma 9.

The former lemma shows that the measurements are drawn from an isotropic ensem-
ble (or tight frame) in the relevant space of hermitian matrices. A similar condition is
frequently used in works on phase retrieval, low-rank matrix completion, and compressed
sensing (e.g. [19, 1, 23, 24, 11]). Properties of the Fourierbasis are used in the proof of
Lemma 7 only for concreteness. Using relatively straight-forward representation theory,
one can give a far more abstract version of the result which isvalid for any basis satisfying
two explicit polynomial relations (cf. the remark below thelemma). The combinatorial
structure of Fourier transforms is immaterial at this point.

This contrasts with Lemma 9 which currently prevents us fromgeneralizing the main
result to a broader class of bases. Its proof uses explicit coordinate expressions of the
Fourier basis to facilitate a series of simplifications. Identifying the abstract gist of the
manipulations is the main open problem which we hope to address in future work.

We make use of the condition thatd be odd only for Lemma 7. While that particular
Lemma fails to hold for even dimensions, we find it plausible that the result as a whole
remains essentially true for even dimensions.

It would also be interesting to use the techniques of the present paper to re-visit the
problem of quantum state tomography [25, 26, 27, 28] (which was the initial motivation
for one of the authors to become interested in low-rank recovery methods). Indeed, the
original work on quantum state tomography and low-rank recovery [25] was based on a
model where the expectation value of a Pauli matrix is the elementary unity of information
exctractable from a quantum experiment. While this correctly describes some experiments,
it is arguably more common that the statistics of the eigenbasis of an observable are the
objects that can be physically directly accessed. For this practically more relevant case, no
recovery guarantees seem to be currently known and the methods used here could be used
to amend that situation.

3. TECHNICAL BACKGROUND AND NOTATION

3.1. Vectors, Matrices, and matrix valued Operators. The signalsx are assumed to live
in Cd equipped with the usual inner product〈·, ·〉. We denote the induced norm by

‖z‖ℓ2 =
√
〈z, z〉 ∀z ∈ Cd.

Vectors inCd will be denoted by lower case Latin characters. Forz ∈ Cd we define the
absolute value|z| ∈ Rd

+ component-wise|z|i = |zi|.
On the level of matrices we will exclusively encounterd × d hermitian matrices and

denote them by capital Latin characters. Endowed with the Hilbert-Schmidt (or Frobenius)
scalar product

(12) (Z, Y ) = tr(ZY )
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the spaceHd of all d× d hermitian matrices becomes a Hilbert space itself. In addition to
that, we will require three different operator norms

‖Z‖1 = tr(|Z|) (trace or nuclear norm),

‖Z‖2 =
√
tr(Z2) (Frobenius norm),

‖Z‖∞ = = sup
y∈Cd

|〈y, Zy〉|
‖y‖2ℓ2

(operator norm).(13)

In the definition of the trace norm,|Z| denotes the unique positive semidefinite matrix
obeying|Z|2 = Z2 (or equivalently|Z| =

√
Z2 which is unique). For arbitrary matrices

Z of rank at mostr, the norms above are related via the inequalities

‖Z‖2 ≤ ‖Z‖1 ≤
√
r‖Z‖2 and ‖Z‖∞ ≤ ‖Z‖2 ≤

√
r‖Z‖∞.

Recall that a hermitian matrixZ is positive semidefinite if one has〈y, Zy〉 ≥ 0 for all
y ∈ Cd. We writeY ≥ Z iff Y − Z is positive semidefinite.

In this work, hermitian rank-1 projectors are of particularimportance. They are of the
form Z = zz∗ with z ∈ Cd. The vectorz can then be recovered fromZ up to a global
phase factor via the singular value decomposition. In this work, the most prominent rank-1
projectors areX = xx∗ andFk,l = Dlfk(Dlfk)

∗.
Finally, we will also encountermatrix-valued operatorsacting on the matrix spaceHd.

Here, we will restrict ourselves to operators that are hermitian with respect to the Hilbert-
Schmitt inner product. We label such objects with calligraphic letters. The operator norm
becomes

(14) ‖M‖op = sup
Z∈Hd

| tr(ZMZ)|
‖Z‖22

.

It turns out that only two classes of such operators will appear in our work, namely the
identity map

I : Hd → Hd

Z 7→ Z ∀Z ∈ Hd

and (scalar multiples of) projectors onto some matrixY ∈ Hd as given by

ΠY : Hd → Hd

Z 7→ Y (Y, Z) = Y tr(Y Z) ∀Z ∈ Hd.

An important example of the latter class is

Π
1

: Z 7→ 1 tr(1Z) = tr(Z)1 ∀Z ∈ Hd.

Note that the normalization is such that1
dΠ1 is idempotent, i.e. a properly normalized

projection. Indeed, forZ ∈ Hd arbitrary it holds that

(15) (d−1Π
1

)2Z = d−2
1 tr(1Π

1

Z) = d−2 tr(1) tr(Z)1 = d−1Π
1

Z.

The notion of positive-semidefiniteness directly translates to matrix valued operators. It
is easy to check that all the operators introduced so far are positive semidefinite. From (15)
we obtain the ordering

(16) 0 ≤ Π
1

≤ dI.
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3.2. Tools from Probability Theory. In this section, we recall some concentration in-
equalities which will prove useful for our argument. Our first tool is a slight extension of
Hoeffding’s inequality [29].

Theorem 3. Let z = (z1, . . . , zd) ∈ Cd be an arbitrary vector and letǫi, i = 1, . . . d,
be independent copies of a real-valued, centered random variableǫ which is almost surely
bounded in modulus byb > 0. Then

(17) Pr

[∣∣∣∣∣
d∑

i=1

ǫizi

∣∣∣∣∣ ≥ t‖z‖ℓ2

]
≤ 4 exp

(
−t2/(4b2)

)
.

One way to prove this statement, is to split upz into x + iy with x, y ∈ Rd and not-
ing that‖z‖ℓ2 ≥ (‖x‖ℓ2 + ‖y‖ℓ2) /

√
2 holds. Splitting up the sum into real and imagi-

nary parts, applying the triangle inequality and boundingPr
[∣∣∣
∑d

i=1 ǫixi

∣∣∣ ≥ t‖x‖ℓ2/
√
2
]

andPr
[∣∣∣
∑d

i=1 ǫiyi

∣∣∣ ≥ t‖y‖ℓ2/
√
2
]

individually by means of Hoeffding’s inequality (or

a slightly generalized version of [30, Corllary 7.21]) thenestablishes (17) via the union
bound.

Secondly, we will require two matrix versions of Bernstein’s inequality. Such matrix
valued large deviation bounds have been established first inthe field of quantum infor-
mation by Ahlswede and Winter [31] and introduced to sparse and low-rank recovery in
[25, 11]. We make use of refined versions from [32, 33], see also [30, Chapter 8.5] for
the former. Note that asHd is a finite dimensional vector space, the results also apply to
matrix valued operators as introduced in section 3.1.

Theorem 4(Uniform Operator Bernstein inequality, [32, 11]). Consider a finite sequence
{Mk} of independent random self-adjoint matrices. Assume that eachMk satisfiesE [Mk] =
0 and‖Mk‖∞ ≤ R (for some finite constantR) almost surely. Then with the variance pa-
rameterσ2 := ‖∑k E

[
M2

k

]
‖∞, the following chain of inequalities holds for allt ≥ 0.

(18)

Pr

[∥∥∥
∑

k

Mk

∥∥∥
∞
≥ t

]
≤ d exp

(
− t2/2

σ2 +Rt/3

)
≤
{
d exp(−3t2/8σ2) t ≤ σ2/R

d exp(−3t/8R) t ≥ σ2/R.

Theorem 5 (Smallest Eigenvalue Bernstein Inequality, [33]). LetS =
∑

k Mk be a sum
of i.i.d. random matricesMk which obeyE [MK ] = 0 andλmin(Mk) ≥ −R almost surely
for some fixedR. With the variance parameterσ2(S) = ‖∑k E

[
M2

k

]
‖∞ the following

chain of inequalities holds for allt ≥ 0.

Pr [λmin(S) ≤ −t] ≤ d exp

(
− t2/2

σ2 +Rt/3

)
≤
{
d exp(−3t2/8σ2) t ≤ σ2/R

d exp(−3t/8R) t ≥ σ2/R.

Finally, we are also going to require a type of vector Bernstein inequality. Note that,
sinceHd is ad2-dimensional real vector space, the statement remains valid for a sum of
random hermitian matrices.

Theorem 6(Vector Bernstein inequality). Consider a finite sequence{Mk} of independent
random vectors. Assume that eachMk satisfiesE [Mk] = 0 and‖Mk‖2 ≤ B (for some
finite constantB) almost surely. Then with the variance parameterσ2 :=

∑
k E

[
‖Mk‖22

]
,

Pr

[∥∥∥∥∥
∑

k

Mk

∥∥∥∥∥
2

≥ t

]
≤ exp

(
− t2

4σ2
+

1

4

)

holds for anyt ≤ σ2/B.
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This particular vector-valued Bernstein inequality is based on the exposition in [34,
Chapter 6.3, equation (6.12)] and a direct proof can be foundin [11].

4. PROOF INGREDIENTS

4.1. Near-isotropicity. In this section we study themeasurement operator4

R : Hd → Hd, R :=
L∑

l=1

Ml with(19)

MlZ :=
1

ν2dL

d∑

k=1

ΠFk,l
Z =

1

ν2dL

d∑

k=1

Fk,l tr(Fk,lZ),(20)

which just corresponds toR = 1
ν2dLA∗A, whereν was defined in (5).

The following result shows that this operator isnear-isotropicin the sense of [19, 6].

Lemma 7 (R is near-isotropic). The operatorR defined in (19) isnear-isotropicin the
sense that

(21) E[R] = LE [Ml] = I +Π
1

or E [R(Z)] = Z + tr(Z)1 ∀Z ∈ Hd.

A proof of Lemma 7 can be found in [1]. However, we still present a proof – which is
of a slightly different spirit – in the appendix for the sake of being self-contained.

Two remarks are in order with regard to the previous lemma.
First, it is worthwhile to point out thatnear-isotropicityof R is equivalent to stating

that the set of all possible realizations ofDlfk form a 2-design. This has been made
explicit recently in [35, Lemma 1]. The notion of higher-order spherical designs is the
basic mathematical object of our previous work [19] on phaseretrieval.

Second, our proof of Lemma 7 uses the explicit representation of the measurement vec-
tors with respect to the standard basis. As alluded to in Section 2.4, a more abstract proof
can be given. We sketch the basic idea here and refer the reader to an upcoming work for
details [36]. Consider the case whereǫ is a symmetric random variable (i.e., whereǫ has
the same distribution as−ǫ). In that case, the distribution of theDl is plainly invariant
under permutations of the main diagonal elements and under element-wise sign changes.
These are the symmetries of thed-cube. They constitute the groupZd

2⋊Sd, sometimes ref-
ered to as thehyperoctahedral group. Using a standard technique [37, 38], conditions for
near-isotropicity can be phrased in terms of the representation theory of the hyperoctahe-
dral group acting onSym2(Cd). This action decomposes into three explicitely identifiable
irreducible components, from which one can deduce that near-isotropicity holds for any
basis that fulfillls two 4th order polynomial equations [36].

Let now x ∈ Cd be the signal we aim to recover. Since the intensity ofx (i.e., its
ℓ2-norm) is known by assumption, we can w.l.o.g. assume that‖x‖ℓ2 = 1. As in [7, 19, 1]
we consider the space

(22) T :=
{
xz∗ + zx∗ : z ∈ Cd

}
⊂ Hd

which is the tangent space of the manifold of all rank-1 hermitian matrices at the point
X = xx∗. The orthogonal projection onto this space can be given explicitly:

PT : Hd → Hd

Z 7→ XZ + ZX −XZX(23)

= XZ + ZX − tr(XZ)X.(24)

4 We are going to use the notationsM(Z) andMZ equivalently.
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The Frobenius inner product allows us to define an ortho-complementT⊥ of T in Hd. We
denote the projection ontoT⊥ byP⊥

T and decompose any matrixZ ∈ Hd as

Z = PTZ + P⊥
T Z =: ZT + Z⊥

T .

We point out that, in particular,

(25) PTΠ1PT = ΠX and ‖PTZ‖∞ ≤ 2‖Z‖∞

holds for anyZ ∈ Hd. The first fact follows by direct calculation, while the second one
comes from

‖ZT ‖∞ = ‖Z − Z⊥
T ‖∞ ≤ ‖Z‖∞ + ‖Z⊥

T ‖∞ ≤ 2‖Z‖∞

where the last estimate used the pinching inequality [39] (Problem II.5.4).

4.2. Well-posedness/Injectivity. In this section, we follow [7, 11, 1] in order to establish
a certain injectivity property of the measurement operatorA.

Our Proposition 8 is the analogue of Lemma 3.7 in [1]. The latter contained a fac-
tor of O(log2 d) in the exponent of the failure probability, which does not appear here.
The reason is that we employ a single-sided Bernstein inequality, instead of a symmetric
Hoeffding inequality.

Proposition 8 (Robust injectivity, lower bound). With probability of failure smaller than

d2 exp
(
− ν4L

C1b8

)
the inequality

(26)
1

ν2dL
‖A(Z)‖2ℓ2 >

1

4
‖Z‖22

is valid for all matricesZ ∈ T simultaneously. Hereb andν are as in (4, 5) andC1 is an
absolute constant.

We require bounds on certain variances for the proof of this statement. The technical
Lemma 9 serves this purpose.

Lemma 9. LetZ ∈ T be an arbitrary matrix and letMl be as in (20). Then it holds that

(27)
∥∥
E

[
Ml(Z)2

]∥∥
∞ ≤

30b8

ν4L2
‖Z‖22,

and

(28)
∥∥
E

[
(PTMl(Z))2

]∥∥
∞ ≤ tr

(
E

[
(PTMl(Z))

2
])
≤ 60b8

ν4L2
‖Z‖22.

In the following proof we will use that fora, b ∈ Zd = {0, . . . , d− 1} one has

(29)
1

d

d∑

k=1

ωk(a⊖b) = δa,b =

{
1 if a = b,

0 else.

The symbols⊕ and⊖ denote addition and subtraction modulod.
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Proof of Lemma 9.Let y, z, v ∈ Cd be vectors of unit length. Compute:

ν4L2
E [Ml(yy

∗)Ml(zz
∗)] v

=
1

d2

d∑

k,j=1

E






d∑

i3,i4=1

ǫi3ǫi4ω
k(i3−i4)ȳi3yi4






d∑

i5,i6=1

ǫi5ǫi6ω
j(i5−i6)z̄i5zi6


(30)

×
d∑

i1,i2,i7,i8=1

ǫi1ǫi2ω
k(i2−i1)ǫi7ǫi8ω

j(i8−i7)ei2δi1,i8vi7




=
∑

i1,...,i7

E

[
ǫ2i1ǫi2 · · · ǫi7

]
(
1

d

∑

k

ωk(i2+i3−i1−i4)

)
1

d

∑

j

ωj(i5+i1−i6−i7)




× ȳi3yi4 z̄i5zi6vi7 ei2

=
∑

i1,...,i7

E

[
ǫ2i1ǫi2 · · · ǫi7

]
δi1,(i2⊕i3⊖i4)δi1,(i6⊕i7⊖i5)ȳi3yi4 z̄i5zi6vi7 ei2(31)

=
∑

i2,...,i7

E

[
ǫ2i2⊕i3⊖i4ǫi2 · · · ǫi7

]
δi2,(i4⊕i6⊕i7⊖i3⊖i5)ȳi3yi4 z̄i5zi6vi7 ei2 ,(32)

where in (30) we have inserted the definition ofMl, in (31) have made use of (29), and in
(32) we have eliminatedi1. We now make the crucial observation that the expectation

(33) E

[
ǫ2i2⊕i3⊖i4ǫi2 · · · ǫi7

]

vanishes unless every number ini2, . . . , i7 appears at least twice. More formally, the ex-
pectation is zero unless the set{2, . . . , 7} can be partitioned into a disjoint union of pairs
{2, . . . , 7} = ⋃

{k,l}∈E{k, l} such thatik = il for every{k, l} ∈ E (in graph theory,E
would be a set of edges constituting amatching). Indeed, assume to the contrary that there
is somej such thatij is unmatched (i.e.,ij 6= ik for all k 6= j). We distinguish two cases:
If ij 6= i2 ⊕ i3 ⊖ i4, thenǫj appears only once in the product in (33) and the expectation
vanishes becauseE[ǫj ] = 0 by assumption. Ifij = i2 ⊕ i3 ⊖ i4, then the same conclusion
holds because we have also assumed thatE[ǫ3j ] = 0 (this is the only point in the argument
where we need third moments ofǫ to vanish).

With this insight, we can proceed to put a tight bound on theℓ2-norm of the initial
expression.

‖ν4L2
E [M(yy∗)M(zz∗)] v‖ℓ2

=
∥∥∥

d∑

i2,...,i7=1

E

[
ǫ2i2⊕i3⊖i4ǫi2 · · · ǫi7

]
δi2,(i4⊕i6⊕i7⊖i3⊖i5)ȳi3yi4 z̄i5zi6vi7 ei2

∥∥∥
ℓ2

≤
∥∥∥

d∑

i2,...,i7=1

E

[
ǫ2i2⊕i3⊖i4ǫi2 · · · ǫi7

]
ȳi3yi4 z̄i5zi6vi7 ei2

∥∥∥
ℓ2

≤
∑

matchingsE

∥∥∥
∑

i2,...,i7
ik=il for {k,l}∈E

∣∣
E

[
ǫ2i2⊕i3⊖i4ǫi2 · · · ǫi7

]
ȳi3yi4 z̄i5zi6vi7

∣∣ ei2
∥∥∥
ℓ2

≤ b8
∑

matchingsE

∥∥∥
∑

i2,...,i7
ik=il for {k,l}∈E

|ȳi3yi4 z̄i5zi6vi7 | ei2
∥∥∥
ℓ2
,(34)
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where the three inequalities follow, in that order, by realizing that making individual coef-
ficients ofei2 larger will increase the norm; restricting to non-zero expectation values as
per the discussion above; and using the assumed bound|ǫ| ≤ b.

Now fix a matchingE. Let x(1) be the vector in{v, ȳ, y, z̄, z} whose index in (34) is
paired withi2. Label the remaining four vectors in that set byx(2), . . . , x(5), in such a way
thatx(2) andx(3) are paired and the same is true forx(4) andx(5). Then the summand
corresponding to that matching becomes

‖
d∑

a,b,c=1

∣∣∣x(1)
a x

(2)
b x

(3)
b x(4)

c x(5)
c

∣∣∣ ea‖ℓ2

=

(
d∑

b=1

|x(2)
b x

(3)
b |
)(

d∑

c=1

|x(4)
c x(4)

c |
)∥∥∥∥∥

d∑

a=1

|x(1)
a |ea

∥∥∥∥∥
ℓ2

≤ 1,

by the Cauchy-Schwarz inequality and the fact that all thex(i) are of length one. As there
are15 possible matchings of6 indices, we arrive at

‖E [M(yy∗)M(zz∗)] v‖ℓ2 ≤
15b8

ν4L2
.

Finally, let Z ∈ T . As Z has rank at most two, we can choose normalized vectors
y, z ∈ Cd such thatZ = λ1yy

∗ + λ2zz
∗. Then

∥∥
E[M(Z)2]

∥∥
∞ ≤

2∑

i,j=1

|λi| |λj |
15b8

ν4L2
= ‖Z‖21

15b8

ν4L2
≤ ‖Z‖22

30b8

ν4L2
.

For (28) we start by noting positive-semidefiniteness ofE

[
(PTMl(Z))

2
]

implies the

first inequality. In order to bound the trace-term, we insert(23) forPT , expand the product,
cancel terms usingX2 = X = xx∗ and use cyclicity of the trace to arrive at

tr
(
E

[
(PTMl(Z))

2
])

= 2 tr
(
E

[
XMl(Z)2

])
− tr (E [(XMl(Z))(Ml(Z)X)])

≤ 2 tr
(
X E

[
Ml(Z)2

])
= 2〈x,E

[
Ml(Z)2

]
x〉

≤ 2‖E
[
Ml(Z)2

]
‖∞.

The upper bound in (28) is thus implied by (27). �

With Lemma 9 at hand, we can proceed to the lower bound on robust injectivity.

Proof of Proposition 8.We strongly follow the ideas presented in [19, Proposition 9] and
aim to show the more general statement

(35) Pr
[
(ν2dL)−1‖A(Z)‖2ℓ2 ≤ (1− δ)‖Z‖22 ∀Z ∈ T

]
≤ d2 exp

(
−ν4δ2L

C̃1b8

)

for anyδ ∈ (0, 1), whereC̃1 is a numerical constant.
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PickZ ∈ T arbitrary and usenear isotropicity(21) ofR in order to write

(ν2dL)−1‖A(Z)‖2ℓ2

= (ν2dL)−1
L∑

l=1

d∑

k=1

(tr(Fk,lZ))
2
= tr

(
Z

1

ν2dL

L∑

l=1

d∑

k=1

Fk,l tr(Fk,lZ)
)

= tr(ZRZ) = tr (Z(R−E[R])Z) + tr (Z(I +Π
1

)Z)

= tr (ZPT (R−E[R])PTZ) + tr(Z2) + tr(Z)2

≥ tr (ZPT (R−E[R])PTZ) + tr(Z2)

≥ (1 + λmin (PT (R−E[R])PT ))‖Z‖22,(36)

where we have used the fact thatM ≥ λmin(M)I for any matrix valued operatorM as
well asPTZ = Z. Therefore it suffices to to bound the smallest eigenvalue ofPT (R −
E[R])PT from below. To this end we aim to use the Operator Bernstein inequality –
Theorem 5 – and decompose

PT (R−E[R])PT =

L∑

l=1

(
M̃l −E[M̃l]

)
with M̃l = PTMlPT ,

whereMl was defined in (20). Note that these summands have mean zero byconstruction.
Furthermore (25) implies

− 1

ν2L
I − 1

ν2L
ΠX ≤ − 1

ν2L
PTIPT −

1

ν2L
PTΠ1PT = − 1

L
PTE[R]PT

= −PTE[Ml]PT ≤ M̃l −E[M̃l],

where the last inequality follows from̃Ml ≥ 0. This yields an a priori bound

λmin(M̃l −E[M̃l]) ≥ −2/(ν2L) =: −R.

For the variance we use the standard identity

0 ≤ E
[
(M̃l −E[M̃l])

2
]
= E

[
M̃2

l

]
−E

[
M̃l

]2
≤ E

[
M̃2

l

]

and focus on the last expression. For obtaining a bound on thetotal variance we are going
to apply (14) to‖E[M̃2

l ]‖op. To this end, fixZ ∈ T arbitrary – this restriction is valid, due

to the particular structure of̃Ml – and observe

| tr
(
Z E

[
M̃2

l

]
Z
)
| = |E [tr (Ml(Z)PTMl(Z)]) | = | tr

(
E

[
(PTMl(Z))2

])
|

≤ 2‖E
[
(PTMl(Z))2

]
‖∞ ≤

120b8

ν4L2
‖Z‖22.

The first equality follows from inserting the definition (20)ofMl and rewriting the expres-
sion of interest. For the second equality, we have used the fact thattr(ABT ) = tr(ATBT )
for any matrix pairA,B ∈ Hd (PT is an orthogonal projection with respect to the Frobe-
nius inner product) and the last estimate is due to (28) in Lemma 9. SinceZ ∈ T was arbi-
trary, we have obtained a bound on‖E[M̃2

l ]‖op which in turn allows us to setσ2 := 120b8

ν4L
for the variance. Now we are ready to apply Theorem 5 which implies

Pr [λmin (PT (R−E[R])PT ) ≤ −δ] ≤ d2 exp

(
−ν4δ2L

C̃1b8

)
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for any 0 ≤ δ ≤ 1 < 60b8/ν2 = σ2/R andC̃1 is an absolute constant. This gives a
suitable bound on the probability of the undesired event

{λmin (PT (R−E[R])PT ) ≤ −δ} .

If this is not the case, (36) implies

(dL)−1‖A(Z)‖2ℓ2 > (1− δ)‖Z‖22
for all matricesZ ∈ T simultaneously. This proves (35) and settingδ = 3/4 yields
Proposition 8 (withC1 = 16

9 C̃1). �

For our proof we will also require a uniform bound on‖A(Z)‖ℓ2 .

Lemma 10(Robust injectivity, upper bound). LetA be as above. Then the statement

(37)
1

dL
‖A(Z)‖2ℓ2 ≤ b4d‖Z‖22

holds with probability 1 for all matricesZ ∈ Hd simultaneously.

Proof. Estimate

1

dL
‖A(Z)‖2ℓ2 =

1

dL

∑

k,l

(tr(fkf
∗
kDlZDl))

2 ≤ max
1≤k≤d

‖fkf∗
k‖22

1

dL

∑

l

‖DlZDl‖22

≤ d‖Dl‖4∞‖Z‖22 ≤ db4‖Z‖22,

where the first inequality holds because thefkf
∗
k ’s are mutually orthogonal. The second

inequality follows from the fact that the Frobenius norm (and more generally: any unitarily
invariant norm) is symmetric [39, Proposition IV.2.4] – i.e.,‖ABC‖2 ≤ ‖A‖∞‖B‖2‖C‖∞
for anyA,B,C ∈ Hd – and the last one is due to the a-priori bound‖Dl‖∞ ≤ b. �

5. PROOF OF THEMAIN THEOREM / CONVEX GEOMETRY

In this section, we will prove that the convex program (9) indeed recovers the signal
x with high probability. A common approach to prove recovery is to show the existence
of anapproximate dual certificate, which in our problem setup can be formalized by the
following definition.

Definition 11 (Approximate dual certificate). Assume that the sampling process corre-
sponds to (6). Then we callY ∈ Hd an approximate dual certificateif Y ∈ rangeA∗

and

(38) ‖YT −X‖2 ≤
ν

4b2
√
d

as well as ‖Y ⊥
T ‖∞ ≤

1

2
.

The following proposition, showing that the existence of such a dual certificate indeed
guarantees recovery, is just a slight variation of Proposition 12 in [19]. For completeness,
we have nevertheless included a proof in the appendix.

Proposition 12. Suppose that the measurement gives us access to‖x‖2ℓ2 and yk,l =

|〈fk, Dlx〉|2 for 1 ≤ k ≤ n and 1 ≤ l ≤ L. Then the convex optimization (9) recov-
ers the unknownx (up to a global phase), provided that (26) holds and an approximate
dual certificateY exists.
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Proposition 12 proves the Main Theorem of this paper, provided that an approximate
dual certificate exists. A first approach to construct an approximate dual certificate is to set

(39) Y = R(X)− tr(X)1.

Note that any suchY is indeed in the range of our measurement process and, in expectation,
yields an exact dual certificate,E[Y ] = X . One can then show using an operator Bernstein
or Hoeffding inequality thatY is close to its expectation, but the number of measurements
required is too large to make the result meaningful. This obstacle can be overcome using
the golfing scheme, a refined construction procedure originally introduced in [11].

A main difference between our approach and the approach in [1] is that the authors of
that paper use Hoeffding’s inequality in the golfing scheme,while we employ Bernstein’s
inequality. The resulting bounds are sharper, but require to estimate an additional variance
parameter.

An issue that remains is that such bounds heavily depend on the worst-case operator
norm of the individual summands. In this framework these areproportional to|〈fk, Dlx〉|2,
which a priori can reachb2d (recall that‖fk‖22 = d). To deal with this issue, we follow the
approach from [19, 1] to condition on the event that their maximal value is not too large.

Lemma 13. For Z ∈ T abitrary and a parameterγ ≥ 1 we introduce the event

(40) Uk,l :=
{
| tr(Fk,lZ)| ≤ 23/2b2γ log d‖Z‖2

}
,

If Dl is chosen according to (3) it holds that

max
1≤k≤d

Pr
[
U c
k,l

]
≤ 4d−γ .

In the following, we refer toγ as thetruncation rate(cf. [19]). Here, we fix

(41) γ = 8 + log2
(
b2/ν

)
,

for reasons that shall become clear in the proofs of Propositions 16 and 17. Hereb andν
are as in (4) and (5).

Proof of Lemma 13.Fix Z ∈ T arbitrary and apply an eigenvalue decomposition

Z = λ1yy
∗ + λ2zz

∗

with normalized eigenvectorsu, v ∈ Cd. Then one has for1 ≤ k ≤ d:

Pr
[
U c
k,l

]
≤ Pr

[
| tr(Fk,lZ)| ≥ 2b2γ log d‖Z‖1

]

≤ Pr
[
|λ1||〈fk, Dl, y〉|2 + |λ2||〈fk, Dl, z〉|2 ≥ (|λ1|+ |λ2|)2b2γ log d

]

≤ Pr
[
|〈fk, Dly〉| ≥

√
2b2γ log d

]
+ Pr

[
|〈fk, Dlz〉| ≥

√
2b2γ log d

]
,

where the last inequality uses a union bound. The desired statement thus follows from

Pr
[
|〈fk, Dlu〉| ≥ b

√
2γ log d‖u‖ℓ2

]
≤ 2d−γ ∀u ∈ Cd ∀1 ≤ k ≤ d,

which we now aim to show. Fix1 ≤ k ≤ d andz = (z1, . . . , zd) ∈ Cd arbitrary and insert
the definitions offk andDl to obtain

|〈fk, Dlu〉| = |
d∑

i=1

ǫi
(
ωkiui

)
| = |

d∑

i=1

ǫiũi|.
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Here we have defined̃u =
(
ωku1, . . . , ω

k(d−1)ud−1, ud

)
. Note that‖ũ‖ℓ2 = ‖u‖ℓ2 = 1

holds and applying Theorem 3 therefore yields

Pr

[∣∣∣∣∣
d∑

i=1

ǫiũi

∣∣∣∣∣ ≥ b
√
2γ log d

]
= Pr

[∣∣∣∣∣
d∑

i=1

ǫiũi

∣∣∣∣∣ ≥ b
√
2γ log d‖ũ‖2

]

≤ 2 exp (−γ log d) = 2d−γ .

�

This result will be an important tool to bound the probability of extreme operator norms.

Definition 14. For Z ∈ T arbitrary and the correspondingUk,l introduced in (40) we
define the truncated measurement operator

(42) RZ :=
L∑

l=1

MZ
l with MZ

l :=
1

ν2dL

d∑

k=1

1Uk,l
ΠFk,l

,

where1Uk,l
denotes the indicator function associated with the eventUk,l.

We now show that in expectation, this truncated operator is close to the original one.

Lemma 15. Fix Z ∈ T arbitrary and letRZ andMZ
l be as in (42). Then

‖E[R−RZ ]‖op ≤ 4b4

ν2
d2−γ ,

‖E[(Ml(W ))
2 − (MZ

l (W ))2]‖∞ ≤ 8b8

ν4L2
d4−γ‖W‖2∞,

E

[∥∥Ml −MZ
l

∥∥2
op

]
≤ 4b8

ν4L2
d4−γ .

for anyW ∈ Hd.

Proof. Note thatE [R] = LE[Ml] as well asE[RZ ] = LE
[
MZ

l

]
. For the first statement,

we can therefore fix1 ≤ l ≤ L arbitrary and considerL‖E[Ml−MZ
l ]‖op. Due to Jensen’s

inequality this expression is majorized byLE
[∥∥Ml −MZ

l

∥∥
op

]
. Inserting the definitions

and applying Lemma 13 then yields the first estimate via

LE
[
‖Ml −MZ

l ‖op
]
≤ 1

ν2d
E

[
d∑

k=1

(1− 1Uk,l
)
∥∥ΠFk,l

∥∥
op

]
≤ b4d2

ν2d

d∑

k=1

E

[
1Uc

k,l

]

=
b4d2

ν2d

d∑

k=1

Pr
[
U c
k,l

]
≤ b4d2

ν2
max
1≤k≤d

Pr[U c
k,l] ≤

4b4

ν2
d2−γ ,
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where the second inequality is due to‖ΠFk,l
‖op ≤ b4d2 (which follows by direct calcula-

tion). Similarly
∥∥∥E
[
(Ml(W ))

2 −
(
MZ

l (W )
)2]∥∥∥

∞

=

∥∥∥∥∥∥
1

(ν2dL)2

d∑

k,j=1

E

[
(1− 1Uk,l

1Uj,l
) tr(Fk,lW ) tr(Fj,lW )Fk,lFj,l

]
∥∥∥∥∥∥
∞

≤ 1

ν4L2d2

d∑

k,j=1

E

[
1Uc

k,l∪Uc
j,l
| tr(Fk,lW ) tr(Fj,lW )|‖Fk,l‖∞‖Fj,l‖∞

]

≤ b8d4

ν4L2
‖W‖2∞ max

1≤k,j≤d

(
Pr[U c

k,l] + Pr[U c
j,l]
)
≤ 8b8

ν4L2
d4−γ‖W‖2∞

Here we have used| tr(Fk,lW )| ≤ b2d‖W‖∞ for anyW ∈ Hd and‖Fk,l‖∞ ≤ b2d (both
estimates are direct consequences of the definition ofFk,l). Finally

E

[∥∥Ml −MZ
l

∥∥2
op

]
≤ 1

(ν2dL)2
E



(

d∑

k=1

(1− 1Uk,l
)‖ΠFk,l

‖op
)2



≤ b8d4

ν4d2L2

d∑

k,j=1

E

[
1Uc

k,l
1Uc

j,l

]
≤ b8d4

ν4L2
max
1≤k≤d

Pr
[
U c
k,l

]

≤ 4b8

ν4L2
d4−γ

follows in a similar fashion. �

We will now establish two technical ingredients for the golfing scheme.

Proposition 16. Assumed ≥ 3, fixZ ∈ T arbitrary and letRZ be as in (42). Then

(43) Pr
[
‖P⊥

T (RZ(Z)− tr(Z)1)‖∞ ≥ t‖Z‖2
]
≤ d exp

(
− tν4L

C2b8γ log d

)

for anyt ≥ 1/4 andγ defined in (41). HereC2 denotes an absolute constant.

Proof. Assume w.l.o.g. that‖Z‖2 = 1. By Lemma 7,

P⊥
T E[R(Z)] = P⊥

T (Z + tr(Z)1) = 0 + tr(Z)P⊥
T 1,

becauseZ ∈ T by assumption. We can thus rewrite the desired expression as

‖P⊥
T (RZ(Z)−E[R(Z)]) ‖∞

≤ ‖P⊥
T (RZ(Z)−E[RZ(Z)]) ‖∞ + ‖P⊥

T E [RZ(Z)−R(Z)] ‖2
≤ ‖RZ(Z)−E[RZ(Z)]‖∞ + ‖E[RZ −R]‖op‖Z‖2
≤ ‖RZ(Z)−E[RZ(Z)]‖∞ + t/4.(44)

In the third line, we have used that‖P⊥
T W‖ ≤ ‖W‖ for anyW ∈ Hd and any unitarily

invariant norm‖ · ‖ (pinching, cf. [39] (Problem II.5.4)). The last inequalityfollows from

(45) ‖E[RZ −R]‖op ≤
4b4

ν2
d2−γ ≤ b4

ν2
24−γ ≤ 1

16
≤ t

4
,
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which in turn follows from Lemma 15 and the assumptions ond, t andγ. By (44), it
remains to bound the probability of the complement of the event

E := {‖RZ(Z)−E[RZ(Z)]‖∞ ≤ 3t/4}
To this end, we use the Operator Bernstein inequality (Theorem 4). We decompose

RZ(Z)−E[RZ(Z)] =

L∑

l=1

(Ml −E[Ml]) with Ml :=MZ
l (Z),

whereMZ
l was defined in (42). To find an a priori bound for the individualsummands, we

write, using thatFk,l ≥ 0 holds for all1 ≤ k ≤ d,

‖Ml −E [Ml] ‖∞ ≤ ‖Ml‖∞ + ‖E
[
Ml(Z)−MZ

l (Z)
]
‖∞ + ‖E [Ml(Z)] ‖∞

≤ ‖Ml‖∞ +
1

L
‖E
[
Rl −RZ

l

]
‖op‖Z‖2 +

1

L
‖Z + tr(Z)‖∞

≤
∥∥∥∥∥

1

ν2dL

d∑

k=1

1Uk,l
| tr(Fk,lZ)|Fk,l

∥∥∥∥∥
∞

+
1

L

(
b4

ν2
d2−γ + 1 +

√
2

)
‖Z‖2

≤ b4

ν2L

(
23/2γ log d+ d2−γ + 3

)
‖Z‖2 ≤

608b8γ log d

3ν4L
=: R.

Here we have employed near-isotropy ofR, the first estimate in Lemma 15 and the fact that
Z ∈ T has rank at most two. The last but one inequality follows from1

d

∑d
k=1 fkf

∗
k = 1,

‖D2
l ‖∞ ≤ b2, andν ≤ b2. The last estimate is far from tight, but will slightly simplify the

resulting operator Bernstein bound. For the variance we start with the standard estimate

E

[
(Ml −E[Ml])

2
]
= E

[
M2

l

]
−E[Ml]

2 ≤ E
[
M2

l

]

and bound this expression via

‖E
[
M2

l

]
‖∞ =

∥∥∥E
[(
MZ

l (Z)
)2]∥∥∥

∞

≤
∥∥∥E
[(
MZ

l (Z)
)2 − (Ml(Z))

2
]∥∥∥

∞
+
∥∥∥E
[
(Ml(Z))

2
]∥∥∥

∞

≤ 8b8

ν4L2
d4−γ‖Z‖2∞ +

30b8

ν4L2
‖Z‖22,

where we have used Lemmas 15 and 9. Using‖Z‖∞ ≤ ‖Z‖2 = 1 and noting thatν ≤ b2

entailsγ = 8 + 2 log2(b
2/ν) ≥ 8 we conclude

‖
L∑

l=1

E[M2
l ]‖∞ ≤

L∑

l=1

‖E[M2
l ]‖∞ ≤

8b8

ν4L
d−4 +

30b8

ν4L
≤ 38b8

ν4L
=: σ2.

Our choice forR now guaranteesσ2/R = 3/(16γ log d) ≤ 3t/4 for anyt ≥ 1/4 (here we
have usedγ ≥ 1 and our assumptiond ≥ 3 which entailslog d ≥ 1). Consequently

Pr [Ec] = Pr

[∥∥∥∥∥
L∑

l=1

(Ml −E[Ml])

∥∥∥∥∥
∞

> 3t/4

]
≤ d exp

(
− tν4L

C2b8γ log d

)

with C2 an absolute constant. This completes the proof. �
Proposition 17. Assumed ≥ 2 and fixZ ∈ T arbitrary and letRZ be as in(42) with γ
defined in(41). Then

(46) Pr [‖PT (RZ(Z)− Z − tr(Z)1)‖2 ≥ c‖Z‖2] ≤ exp

(
− c2ν4L

C3b8γ log d
+

1

4

)
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holds for any1/(2 logd) ≤ c ≤ 1. Here,C3 is again an absolute constant.

Proof. Similar to the previous proof, we start by assuming‖Z‖2 = 1 and usingnear-
isotropyofR to bound the desired expression by

‖PT (RZ(Z)−E [R(Z)]) ‖2
≤ ‖PT (RZ(Z)−E [RZ(Z)]) ‖2 + ‖PTE [R(Z)−RZ(Z)] ‖2
≤ ‖PT (RZ(Z)−E [RZ(Z)]) ‖2 + ‖PTE [R−RZ ] ‖op‖Z‖2
≤ ‖PT (RZ(Z)−E [RZ(Z)]) ‖2 + c/4.

Here, we have used‖PTW‖2 ≤ ‖W‖2 for any matrixW (this follows e.g. from the
entry-wise definition of the Frobenius norm) and a calculation similar to (45):

‖E [RZ −R] ‖op ≤
4b4

ν2d
d3−γ ≤ b4

ν2 log d
25−γ ≤ 1

8 log d
≤ c

4
,

where we have usedd ≥ 2, γ ≥ 8 and the assumptionc ≥ 1/(2 log d). Paralleling our
idea from the previous proof, we define the event

E′ := {‖PT (RZ(Z)−E[RZ(Z)])‖∞ ≤ 3c/4}
which guarantees that the desired inequality is valid. However, in order to bound the
probability of (E′)c, this time we are going to employ the vector Bernstein inequality—
Theorem 6. Decompose

PT (RZ(Z)−E [RZ(Z)]) =

L∑

l=1

(
M̃l −E

[
M̃l

])
.

Note that theM̃l’s are related toMl in the previous proof viaM̃l = PTMl = PTMZ
l (Z).

and in particular,M̃l has at most rank two. Consequently

‖M̃l −E
[
M̃l

]
‖2 ≤

√
2‖PTMl‖∞ + ‖PTE

[
MZ

l (Z)−Ml(Z)
]
‖2 + ‖PTE [Ml(Z)] ‖2

≤ 23/2‖Ml‖∞ + ‖E
[
Ml −MZ

l

]
‖op‖Z‖2 +

1

L
‖PT (Z + tr(Z)1) ‖2

≤ 8b2γ log d

ν2L
‖Z‖2‖D2

l ‖∞ +
4b4

ν2L
d2−γ‖Z‖2 +

‖Z‖2 + | tr(Z)|
L

≤ 15b4γ log d

ν2L
‖Z‖2 =: B,

where we have used near-isotropy ofMl, the estimate of‖Ml‖∞ presented in (46),‖PT1‖2 =

‖X‖2 = 1 and| tr(Z)| ≤ ‖Z‖1 ≤
√
2‖Z‖2 =

√
2, becauseZ ∈ T has rank at most two.

For the variance, we estimate

E

[∥∥∥M̃l −E
[
M̃l

]∥∥∥
2

2

]
= E

[∥∥PT

(
MZ

l (Z)−E
[
MZ

l (Z)
])∥∥2

2

]

≤ E

[
‖PTMl(Z)‖22

]
+E

[∥∥PT

(
MZ

l (Z)−Ml(Z)
)∥∥2

2

]

+
∥∥PTE

[
MZ

l (Z)−Ml(Z)
]∥∥2

2
+ ‖PTE [Ml(Z)]‖22

≤ E

[
tr
(
(PTMl(Z))2

)]
+

1

L2
‖PT (Z + tr(Z)1)‖22

+ 2E
[∥∥Ml(Z)−MZ

l (Z)
∥∥2
op

]
‖Z‖22

≤ 60b8

ν4L2
‖Z‖22 +

‖Z‖22 + tr(Z)2

L2
+

8b8

ν4L2
d4−γ‖Z‖22.(47)
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Applying b2 ≥ ν, tr(Z)2 ≤ 2‖Z‖22 = 2 andd4−γ ≤ 1 (because we chooseγ ≥ 8) allows
us to upper-bound (47) by71b8/(ν4L2) and set

L∑

l=1

E

[∥∥∥M̃l −E
[
M̃l

]∥∥∥
2

2

]
≤ 71b8

ν4L
≤ 15b8γ log d

ν4L
=: σ.

Again, the last estimate is far from tight, but assuresσ2/B = b4/ν2 ≥ 1. Applying the
vector Bernstein inequality—Theorem 6—fort = 3c/4 yields the desired bound on the
probability of(E′)c occurring.

�

We are now ready to construct a suitable approximate dual certificate in the sense of
Definition 11. The key idea here is an iterative procedure – dubbed thegolfing scheme–
that was first established in [11] (see also [40, 24, 1, 19]).

Proposition 18. Assumed ≥ 3 and letω ≥ 1 be arbitrary. If the total number ofL of
diffraction patterns fulfills

(48) L ≥ Cω log2 d,

then with probability larger than1 − 5/6e−ω, an approximate dual certificateY as in
Definition 11 can be constructed using the golfing scheme. Here,C is a constant that only
depends on the probability distribution used to generate the random masksDl.

To be concrete, the constantC depends on the truncation rateγ – which we have fixed
in (41) – and the a-priori boundb andν of the random variableǫ used to generate the
diffraction patternsDl:

(49) C = C̃γ
b8

ν4
log2

(
b2/ν

)
= C̄

b8

ν4
log22

(
b2/ν

)
,

whereC̃ andC̄ are absolute constants.

Proof of Proposition 18.This construction is inspired by [24, 40] and [41]. As in [11], our
construction ofY follows a recursive procedure ofw iterations which can be summarized
in the pseudo-code described in Algorithm 1. It depends on a number of parameters –
w,Li, r, c.f. Input section of the algorithm – the values of which will be chosen below. If
this algorithm succeeds, it outputs three lists

Y = [Y1, . . . , Yr+2] , Q = [Q0, . . . , Qr+2] , and ξ = [ξ1, . . . , ξw+2].

They obey iterative relations of the following form (c.f. [24, Lemma 14]):

Y := Yr+2 = RQr+1(Qr+1)− tr(Qr+1)1+ Yr+1

= · · · =
r+2∑

i=1

(
RQi−1 (Qi−1)− tr (Qi−1)1

)
and

Qi = X − PTYi = PT

(
Qi−1 + tr(Qi−1)1−RQi−1(Qi−1)

)

= . . . =

i∏

j=1

PT

(
I +Π

1

−RQj−1

)
Q0.

5 Similar to [19] we use use of pseudo-code for a compact presentation of this randomized procedure. How-
ever, the reader should keep in mind that the construction ispurely part of a proof and should not be confused
with the recovery algorithm (which is given in Eq. (9)).
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Algorithm 1: Pseudo-code5 that summarizes the randomized “golfing scheme” for
constructing an approximate dual certificate in the sense ofDefinition 11.

Input :
X ∈ Hd # signal to be recovered
w ∈ N # maximum number of iterations (after the first two steps)
{Li}w+2

i=1 ⊂ N # number of masks used inith iteration
r # requirer “successful” iterations after the first two

# (i.e. iterations where we enter the innerif -block)

Initialize:
Y = [ ] # a list of matrices inHd, initially empty
Q = [X ] # a list of matrices inT , initialized to holdX as its only element
i = 1 # number of current iteration
ξ = [0, . . . , 0] # array ofw + 1 zeros;ξi will be set to 1 ifith iteration succeeds

Body:
for 1 ≤ i ≤ 2 do

setQ to be the last element ofQ andY to be the last element ofY
SampleLi masks independently according to (3) and constructRQ according to
Def. 14if (43),(46)hold forRQ andQ ∈ T with parameterst = 1/8,
c = 1/

√
2 log d then

ξi = 1
Y ←RQQ− tr(Q)1+ Y , appendY to Y
Q← X − PTY , appendQ toQ i← i+ 1

else
abort and reportfailure

end
end
while 3 ≤ i ≤ w + 2 and

∑i
j=3 ξj ≤ r do

setQ to be the last element ofQ andY to be the last element ofY,
sampleLi+2 masks independently according to (3); constructRQ according to
Def. 14.
if (43), (46) hold forRQ andQ ∈ T with parameterst = log d/4, c = 1/2 then

ξi = 1
Y ←RQQ− tr(Q)1+ Y , appendY to Y
Q← X − PTY , appendQ toQ

end
i← i+ 1

end
if
∑w+2

i=3 ξi = r then
reportsuccessand outputY,Q, ξ

else
reportfailure

end

We now set

r = ⌈1
2
log2 d⌉+ ⌈log2(b2/ν)⌉+ 1
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This choice, together with the validity of properties (43) and (46) for t = 1/8, c =
1/
√
2 log d in the first two steps and fort = log d/4, c = 1/2 in each remaining update

(Yi → Yi+1 andQi → Qi+1, respectively) together withQ0 = X then guarantee

‖YT −X‖2 = ‖Qr+2‖2 ≤ ‖Q‖0
1

2 log d

r+2∏

i=3

1

2
=

1

log d
2−(r+1) ≤ ν

4b2
√
d
,

‖Y ⊥
T ‖∞ ≤

r+2∑

i=1

∥∥PT

(
RQi−1(Qi−1)− tr(Qi−1)1

)∥∥
∞

≤ 1

8
‖Q0‖2 +

1

8
‖Q1‖+

r+2∑

i=3

log d

4
‖Qi−1‖2

≤


1

8
+

1

8
√
2 log d

+

r+2∑

i=3

log d

4

(
1√

2 log d

)2 i−2∏

j=1

1

2


 ‖Q0‖2

≤ 1

4

∞∑

i=0

2−i =
1

2

which are precisely the requirements (38) onY .
What remains to be done now is to choose parametersw and{Li}w+2

i=1 such that the
probability of the algorithm failing is smaller than56e

−ω. Recall that theξi’s are Bernoulli
random variables that indicate whether thei-th iteration of the algorithm failed (ξi = 0) or
has been successful (ξi = 1). The complete Algorithm 1 fails exactly if one of the first two
iterations fails

(50) ξ1 = 0 or ξ2 = 0

or fewer thanr of the remaining ones succeed

(51)
w+2∑

i=3

ξi < r.

We start by estimating the probability of (50) occuring. Setting

L1 = L2 = C5
b8

ν4
ωγ log2 d

for a sufficiently large absolute constantC5, and using the union bound over Propositions
16 and 17 (forZ = X), one obtains

Pr [ξ1 = 0]

≤ Pr [(43) fails to hold in the first step] + Pr [ (46) fails to hold in the first step]

≤ exp

(
− (1/

√
2 log d)2ν4L1

C3b8γ log d
+

1

4

)
+ d exp

(
− 4−1ν4L1

C2b8γ log d

)
≤ 1

6
e−ω.(52)

An analogous bound holds for the probability ofξ2 = 0.

We turn to (51). Our aim is to boundPr
[∑w+2

i=3 ξi < r
]

by a similar expression involv-

ing independentBernoulli variablesξ′i. To achieve this, we observe

Pr

[
w+2∑

i=3

ξi < r

]
= E

[
Pr

[
ξw+2 < r −

w+1∑

i=3

ξi|ξw+1, . . . , ξ3

]]
.
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Conditioned on an arbitrary instance ofξw+1, . . . , ξ3, the variableξw+2 follows a Bernoulli
distribution with some parameterp (ξw, . . . , ξ2). Now note that ifξ ∼ B(p) is a Bernoulli
variable with parameterp, then for every fixedt ∈ R, the probabilityPrξ∼B(p) [ξ < t] is
non-increasing as a function ofp. This observation implies that the estimate

(53) Pr

[
w+2∑

i=3

ξi < r

]
≤ Pr

[
ξ′w+2 +

w+1∑

i=3

ξi < r

]

is valid, provided thatξ′w+1 is an independentp′-Bernoulli distributed random variable
with

p′ ≤ min
ξw+1,...,ξ3

p (ξw+1, . . . , ξ3) .

A combination of Propositions 16 and 17 provides a uniform lower bound onp (ξw+1, . . . , ξ3).
Indeed, settingZ = Qw and invoking them with

L := C4
b8

ν4
γ log d

– whereC4 is a sufficiently large constant – assures a probability of success of at least
9/10 for anyQ. This estimate is in particular independent ofξw+1, . . . , ξ3. Consequently,
by choosingp′ = 9/10 andLi = L for all 3 ≤ i ≤ w+ 2, we can iterate the estimate (53)
and arrive at

(54) Pr

[
w+2∑

i=3

ξi < r

]
≤ Pr

[
ξ′w+2 +

w+1∑

i=3

ξi < r

]
≤ · · · ≤ Pr

[
w+2∑

i=3

ξ′i < r

]
,

where theξ′i’s on the right hand side are independent Bernoulli variables with parameter
9/10. A standard one-sided Chernoff bound (e.g. e.g [42, SectionConcentration: Theorem
2.1]) gives

Pr

[
w+2∑

i=3

ξ′i ≤ w(9/10− t)

]
≤ e−2wt2 .

Choosingt = 9/10− r/w, we then obtain

Pr

[
w+2∑

i=3

ξ′i < r

]
≤ Pr

[
w+2∑

i=3

ξ′i ≤ r

]
= Pr

[
w+2∑

i=3

ξ′i ≤ w (9/10− t)

]

≤ exp

(
−2w

(
9

10
− r

w

)2
)
.(55)

Setting the number of iterations generously to

w = 10ωr = 10ω

(
⌈1
2
log2 d⌉+ ⌈log2(b2/ν)⌉+ 1

)

guarantees

2w

(
9

10
− r

w

)2

≥ 20ωr (8/10)2 ≥ 12ωr ≥ ω + log 2,

where we have usedω ≥ 1 in the first and last step. From this estimate we can conclude

(56) Pr

[
w+2∑

i=3

ξi < r

]
≤ e−ω−log 2 =

1

2
e−ω

which suffices for our purpose.
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The desired bound of56e
−ω on the probability of the algorithm failing now follows from

taking the union bound over (52) and two times (56).
Finally we note that with our construction the total amount of masks obeys

L =

w+2∑

i=1

Li = 2C5
b8

ν4
ωγ log2 d+ 10ω

(
⌈0.5 log2 d⌉+ ⌈log2(b2/ν⌉

)
C4

b8

ν4
γ log d

≤ C̃γ
b8

ν4
log2

(
b2/ν

)
ω log2 d = Cω log2 d

for a sufficiently large absolute constantC̃ (recall that we have chosenγ = 8+log2
(
b2/ν

)

in (41)) andC as in (49). �

We now have all the ingredients for the proof of our main result, Theorem 1.

Proof of the Main Theorem.With probability at least1 − 5/6e−ω, the construction of
Proposition 18 yields an approximate dual certificate provided that the total number of
masksL obeys

L ≥ C̄
b8

ν4
log22

(
n2/ν

)
ω log2 d,

whereC̄ is a sufficiently large constant. In addition, by Proposition 8, one has (26) with
probability at least1 − 1/6e−ω, potentially with an increased value of̄C. Thus the result
follows from Proposition 12 and a union bound over the two probabilities of failure. �
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Thomas Strohmer, Götz Pfander, and Nate Strawn, for stimulating conversations on the
topic of this paper. The authors also acknowledge inspiringdiscussions with Emmanuel
Candès, Yonina Eldar, and David James. We would also like tothank the anonymous refer-
ees for extremely helpful comments and suggestions which allowed us to further improve
the presentation of our results.

The work of DG and RK is supported by the Excellence Initiative of the German Fed-
eral and State Governments (Grants ZUK 43 & 81), by scholarship funds from the State
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6. APPENDIX

Lemma 19. Consider as signal the first standard basis vectore1 ∈ Cd. Let aℓ, ℓ =
1, . . . ,m = Ld. Then for everyδ > 0 there existsc > 0 such that the following holds
for the measurement vectors corresponding toL < c log2 d masked Fourier measurements
of e1 as introduced in Section 2.1 with random masksǫℓ drawn independently at random
according to the distribution given in(7). With probability at least1 − δ, there exists
another signal that produces the exact same measurements. Thus no algorithm will be
able to distinguish these signals based on their measurements.

Proof. As e1 as well as any other standard basis vectoreℓ is 1-sparse, their phaseless
measurements corresponding to one mask will just consist ofthe entry-wise absolute values
first (or ℓ-th, respectively) column of the corresponding masked Fourier transform matrix.
As all entries of the Fourier transform matrix are of unit modulus, the measurements of
eℓ are hence completely determined by the vectorvℓ consisting of theℓ-th entry of every
mask. As a consequence,e1 andeℓ produce the same measurements if the entries ofv1
andvℓ have the same absolute value. There areL masks, and each entry’s absolute value
can be either0 or

√
2. So there are2L possible choices for|vℓ|. For eachℓ > 1, one of

them is drawn uniformly at random. Hence by the coupon collector’s problem, avℓ with
the same absolute values asv1 appears again with high probabilty within the firstΘ(L2L)
draws, where by increasing the constant, one can make the probability arbitrarily small.
ForL < c log2(d), we obtainL2L < cdc log2(d), which for c small enough is less than
d− 1. Thus there will exist anothervℓ with |vℓ| = |v1|, which proves the lemma. �
Proof of Lemma 7.We prove formula (21) in a way that is slightly different fromthe proof
provided in [1]. We show that the set of all possibleDlfk’s is in fact proportional to a 2-
design and deducenear-isotropicityofR from this. We refer to [19] for further clarification
of the concepts used here. Concretely, for1 ≤ l ≤ L we aim to show

(57)
1

ν2d

d∑

k=1

E

[
F⊗2
k,l

]
= 2PSym2 ,

wherePSym2 denotes the projector onto the totally symmetric subspace of Cd ⊗Cd. Near
isotropicity ofR directly follows from (57) by applying [35, Lemma 1] (withα = β = 1):

E [R]Z =
1

ν2dL

d∑

k=1

L∑

l=1

E [Fk,l tr(Fk,lZ)] =
1

ν2d

d∑

k=1

E [Fk,1 tr(Fk,1Z)] = (I+Π
1

)Z.
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So let us proceed to deriving equation (57). We do this by exploring the action of the
equation’s left hand side on a tensor productei ⊗ ej (1 ≤ i, j ≤ d) of two standard basis
vectors inCd. Here it is important to distinguish two special cases, namely i = j and
i 6= j. For the former we get by inserting standard basis representations

1

ν2d

d∑

k=1

E

[
F⊗2
k

]
(ei ⊗ ei) =

1

ν2d

d∑

k=1

E

[
ǫ2i 〈fk, ei〉2D⊗2(fk ⊗ fk)

]

=
1

ν2

d∑

a,b=1

E

[
ǫ2i ǫaǫb

]
(
1

d

d∑

k=1

ωk(a+b−2i)

)
(ea ⊗ eb)

=
1

ν2

d∑

a,b=1

δ(a⊕b),(2i)E
[
ǫ2i ǫaǫb

]
(ea ⊗ eb),

where we have used (29) and the fact that for oddd, there is a multiplicative inverse of2
modulod. NowE[ǫa] = E[ǫb] = 0 implies that one obtains a non-vanishing summand
only if a = b. Therefore one in fact gets

1

ν2d

d∑

k=1

E

[
F⊗2
k

]
(ei⊗ei) =

1

ν2

d∑

a=1

δ(2a),(2i)E
[
ǫ2i ǫ

2
a

]
(ea⊗eb) =

1

ν2
E

[
ǫ4i
]
(ei⊗ei) = 2(ei⊗ei),

where we have used the moment condition (5) in the last step. This however is equivalent
to the action of2PSym2 on symmetric basis states.

Let us now focus on the second case, namelyi 6= j. A similar calculation then yields

1

ν2d

d∑

k=1

E

[
F⊗2
k

]
(ei ⊗ ej) =

1

ν2

d∑

a,b=1

E [ǫiǫjǫaǫb] δ(a+b),(i+j)(ea ⊗ eb).

Again,E[ǫ] = 0 demands that theǫ’s have to “pair up”. Sincei 6= j by assumption, there
are only two such possibilities, namely(i = a, j = b) and(i = b, j = a). Both pairings
obey the additional delta-constraint and we therefore get

1

ν2d

d∑

k=1

E

[
F⊗2
k

]
(ei ⊗ ej) =

1

ν2
E

[
ǫ2i ǫ

2
j

]
(ei ⊗ ej + ej ⊗ ei) = (ei ⊗ ej) + (ej ⊗ ei),

where we have once more used (5) in the final step. This, however is again just the action of
2PSym2 on vectorsei⊗ej with i 6= j. Since the extended standard basis{(ei ⊗ ej)}1≤i,j≤d

forms a complete basis ofCd ⊗Cd, we can deduce equation (57) from this.
�

Proof of Proposition 12.Let X ′ be an arbitrary feasible point of (9) and we decompose it
asX ′ = X + ∆, where∆ is a feasible displacement. Feasibility then impliesA(X ′) =
A(X) and consequentlyA(∆) = 0 must hold. The pinching inequality [39] (Problem
II.5.4) now implies

‖X ′‖1 = ‖X +∆‖1 ≥ ‖X‖1 + tr(∆T ) + ‖∆⊥
T ‖1

andX is guaranteed to be the minimum of (9) if

(58) tr(∆T ) + ‖∆⊥
T ‖1 > 0

is true for any feasible displacement∆. Therefore it suffices to show that (58) is guaranteed
to hold under the assumptions of the proposition. In order todo so, we combine feasibility
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of ∆ with Proposition 8 and Lemma 10 to obtain

(59) ‖∆T ‖2 <
2√
ν2dL

‖A(∆T )‖ℓ2 =
2

ν
√
dL
‖A(∆⊥

T )‖ℓ2 ≤
2b2
√
d

ν
‖∆⊥

T ‖2.

Feasibility of∆ also implies(Y,∆) = 0, becauseY ∈ range(A∗) by definition. Combin-
ing this insight with (59) and the defining property (38) ofY now yields

0 = (Y,∆) = (YT −X,∆T ) + (X,∆T ) + (Y ⊥
T ,∆⊥

T )

≤ ‖YT −X‖2‖∆T ‖2 + tr(∆T ) + ‖Y ⊥
T ‖∞‖∆⊥

T ‖1
< tr(∆T ) + ‖YT −X‖22b2

√
d/ν‖∆⊥

T ‖2 + ‖Y ⊥
T ‖∞‖∆⊥

T ‖1
≤ tr(∆T ) + 1/2‖∆⊥

T ‖2 + 1/2‖∆⊥
T ‖1

≤ tr(∆T ) + ‖∆⊥
T ‖1,

which is just the optimality criterion (58). �
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A complex projective t-design is a configuration of vectors which is “evenly distributed” on a sphere
in the sense that sampling uniformly from it reproduces the moments of Haar measure up to order
2t. We show that the set of all n-qubit stabilizer states forms a complex projective 3-design in dimen-
sion 2n. Stabilizer states had previously only been known to constitute 2-designs. The main technical
ingredient is a general recursion formula for the so-called frame potential of stabilizer states. To es-
tablish it, we need to compute the number of stabilizer states with pre-described inner product with
respect to a reference state. This, in turn, reduces to a counting problem in discrete symplectic vec-
tor spaces for which we find a simple formula. We sketch applications in quantum information and
signal analysis.

I. INTRODUCTION AND MAIN RESULTS

A. Introduction

In its simplest incarnation, a D-dimensional complex

projctive t-design is a set of unit-length vectors inCD that
is evenly distributed on the sphere in the sense that sam-
pling uniformly from this set reproduces the moments
of Haar measure up to order 2t [1–5] (see Definition 1
below for a precise definition). In a variety of contexts
such a design structure is important:

In numerical integration, designs are known as cuba-
tures. It follows from the definition that the average of
a homogeneous polynomial p of order 2t over the com-
plex unit sphere equals p’s average over the design. If
the design has small order, this realization can be made
the basis for fast numerical procedures that compute
integrals of smooth functions over high-dimensional
spheres.

In quantum information theory, designs are a widely-
employed tool for derandomizing probabilistic construc-
tions. Recall that the probabilistic method [6] is a pow-
erful proof technique originally designed to tackle prob-
lems in combinatorics. At its core is the observation that
the existence of certain extremal combinatorial struc-
tures often can be be proved by showing that a suit-
ably chosen random construction would produce an ex-
ample with high probability. In quantum information,
randomized construction often rely on randomly chosen
Hilbert space vectors [7]. While this method has brought
about spectacular successes (such as the the celebrated
proof of strict sub-additivity of entanglement of forma-
tion [8]), it suffers e.g. from the problem that generic
Haar-random states of large quantum systems are un-
physical: they cannot be prepared from separable inputs
using a polynomial number of operations [9]. Designs,
in contrast, can be chosen to consist solely of highly-
structured and efficiently preparable vectors, while re-
taining “generic” properties in a precise sense. Thus
considerable efforts have been expended at designing
complex projective designs (and their unitary cousins)

[3, 10–13].

Lastly, randomized constructions in Hilbert spaces
have completely classical applications, e.g. in signal anal-
ysis. Take for instance the highly active field of com-
pressed sensing and related topics [14]: There, one is
interested in reconstructing objects that possess some
non-trivial structure (e.g. sparsity, or low rank) from a
small number of linear measurements. Strong recov-
ery guarantees can be proven for randomly constructed
measurement vectors. Once more, this raises the prob-
lem of finding sets of structured and well-understood
measurements that sufficiently resemble the properties
of generic random vectors. The use of designs for this
purpose has been proposed in [15–17].

Despite this wealth of applications and non-
constructive existence proofs [18], explicit constructions
for complex designs remain rare. There are varios
infinite families of complex projective 2-designs (e.g.
maximal sets of mutually unbiased bases [19, 20],
stabilizer states, or symmetric informationally complete
POVMs [2]); sporadic solutions for higher orders
[11, 21, 22]; and approximate constructions involving
random circuits [13]. To the best of our knowledge, an
infinite set of explicit complex projective 3-designs has
not been identified before.

Here, we show that the set of all stabilizer states in di-
mension 2n forms a complex projective 3-design for all
n ∈ N.

Recall that the stabilizer formalism is a ubiqutous tool
in quantum information theory [9, 23]. Stabilizer states
(and, slightly more general, stabilizer codes) are joint
eigenvectors of generalized Pauli matrices. Constituting
the main realization of quantum error correcting codes
[23], they can be efficiently prepared [24] and described
in terms of polynomially many parameters [9]. Yet they
exhibit non-trivial properties like multi-partite entangle-
ment [25]. Stabilizer states were instrumental in the de-
velopment of measurement-based quantum computa-
tion [26, 27]. In several precise ways, they can be seen
as the discrete analogue of Gaussian states [28]. Beyond
quantum information, stabilizer states have proved to
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be versatile enough to provide powerful models for one
of the most influential recent development in theoretical
condensed mater physics: the study of topological order
[29, 30].

Our main result thus identifies yet another aspect ac-
cording to which stabilizer states capture properties of
generic state vectors.

B. Designs and frame potential

In order to state our results more precisely, we need
to give a formal definition of complex projective designs
and introduce the related notion of frame potential. Fol-
lowing [4, 31, 32], we define

Definition 1. Fix a dimension D and let µ be a probability

measure on the unit sphere in CD. The measure µ is a com-
plex projective t-design if, for any order-t polynomial p, we
have

Ex,y∼µ

[
p
(
|〈x, y〉|2

)]
=
∫

x,y
p
(
|〈x, y〉|2

)
dxdy, (1)

where the right-hand-side integration is with respect to the
uniform (Haar) measure on the sphere.

In other words, sampling according to µ should give
the same expectation values as sampling according to
the uniform measure for any random variable that is a

polynomial in |〈x, y〉|2 of order at most t. From now on,
we will only be concerned with the case where µ is the
uniform measure on a finite set of unit vectors.

It is not hard to see that µ fulfills (1) for all polyno-
mials of order t or less, if equality holds for the specific
case of p(z) = zt. The resulting value is the t-th order
frame potential [33]

Ft(µ) := Ex,y∼µ

[
|〈x, y〉|2t

]
. (2)

It is known that the Haar integral on the r.h.s. of (1) min-
imizes the frame potential over the set of all measures µ
and that, in fact, its value is given by

Ft(µ) ≥ Wt (D) :=

(
D + t − 1

t

)−1

. (3)

This relation is known as Welch bound [34] or Sidelnikov
inequality [35]. In summary, we have:

Theorem 1 ([4, 31–33]). Fix a dimension D and let µ be a

probability measure on the unit sphere inCD . The measure µ
is a complex projective t-design if and only if its frame poten-
tial meets the Welch bound

Ft(µ) = Wt(D).

C. Main results

At the heart of this work is an explicit characteriza-
tion of the frame potential assumed by the uniform dis-
tribution over stabilizer states in prime power dimen-
sions D = dn. We denote the set of stabilizer states on(
Cd
)⊗n ≃ CD by Stabs(d, n). The unitary symmetry

group of the set of stabilizer states is the Clifford group
(for a precise definition, see Section II C). All results are
then implied by the following recursion formula over
the dimension’s exponent n = logd(D).

Theorem 2 (Main Theorem). Let d be a prime number and
let t ∈ N+. Then for all dimensions D = dn, the frame

potential Ft(Stabs(d, n)) of stabilizer states in CD is deter-
mined by the following recursion formula over n:

Ft(Stabs(d, 1)) =
d2−t + 1

(d + 1)d
, (4)

Ft (Stabs(d, n + 1))

Ft (Stabs(d, n))
=

dn−(t−2)+ 1

d (dn+1 + 1)
. (5)

Comparing this explicit characterization of the frame
potential to the Sidelnikov inequality (3) allows us to
draw the following conclusions:

Corollary 1. Let dn be a prime-power dimension. Then the
following statements are true

1. Stabs(d, n) forms a complex projective 2-design.

2. Stabs(d, n) constitutes a complex projective 3-design if
and only if d = 2.

3. The set Stabs(d, n) does not constitute a complex pro-
jective 4-design.

4. The Clifford group does not act irreducibly on

Sym4(CD) ⊂ (
CD
)⊗4

. In particular, it is not a uni-
tary 4-design.

As indicated before, the first fact was already widely
known [11, 19, 20]. The other results, however, are new
to the best of our knowledge. We reemphasize that these
assertions follow immediately form the Main Theorem,
which may be of independent interest.

D. Applications and Outlook

Here, we sketch relations of the result to problems
from signal analysis and quantum physics. Elaborating
on these connections will be the focus of future work.

In low-rank recovery [14, 36–38], a low-rank matrix X
is to be reconstructed from few linear measurements
of the form yi = tr (XAi). In the phase retrieval prob-
lem [15, 39, 40] one aims to recover a complex vector

x ∈ CD from the absolute value of a small number of
measurements yi = |〈x, ai〉| that are ignorant towards

156



3

phase information. This task can be reduced to a partic-
ular instance of rank-one matrix recovery by rewriting
the measurements as [41, 42]

y2
i = tr

(|x〉〈x| |ai〉〈ai|
)
,

i.e. by setting X = |x〉〈x| and Ai = |ai〉〈ai|. For both
problems, strong recovery guarantees for randomly con-
structed measurements are known. Oftentimes these
rely on generic (e.g. Gaussian) measurement ensembles
and employing complex projective designs to partially
derandomize these result has been proposed in both
contexts [15, 16, 43].

Regarding both low rank matrix recovery and phase
retrieval, it is known that sampling measurement vec-
tors independently from a 2-design does not do the job
[15], while 4-designs already have an essentially optimal
performance [43, 44]. However, the remaining interme-
diate case for t = 3 is not yet fully understood. Numeri-
cal studies conducted by Drave and Rauhut [45] indicate
that random stabilizer-state measurements perform sur-
prisingly well at that task. The combinatorial properties
of prime power stabilizer states – e.g. Theorem 2 – may
help to clarify this situation. We believe this to be a po-
tentially very insightful open problem.

Finally, we want to point out that one nice structural
property of stabilizer states is that they come in bases,
i.e. the set of all stabilizer states is a union of different
orthonormal bases (see e.g. Theorem 3 below). This al-
lows for a considerably more structured random mea-
surement protocol: Select one such basis at random and
iteratively measure the trace inner product of an un-
known low rank matrix with all projectors onto the in-
dividual basis vectors. After having acquired D data
points that way, choose a new stabilizer basis at random
and repeat. We refer to [46] for a detailed description
of such a protocol. It should be clear that it has imme-
diate applications to quantum state tomography. In the
above paper, non-trivial recovery statements have been
announced for t-designs that admit such a basis struc-
ture and have strength t ≥ 3. Again, stabilizer states
obey these criteria and have been used for the numerical
experiments conducted there. However the announced
recovery statement suffers from a non-optimal sampling
rate for 3-designs and the rich combinatorial structure of
stabilizer bases might help to amend that situation.

E. Relation to previous work and history

After completion of this work (first announced at the
QIP 2013 conference [47]), we became aware of the fact
that a close analogue of our main result follows from a
statement proved in the field of algebraic combinatorics
[48] in 1999. The object of study there is a real version

of stabilizer states in R2n
, as well as their symmetries,

which are given by a real version of the Clifford group.
The key result is that under the action of the real Clif-

ford group, the space Sym3(R2n
) decomposes into ir-

reps in exactly the same way as it does under the action
of the full orthogonal group O(2n) [48, 49]. This implies
[50, 51] that any orbit of the real Clifford group gives
rise to a set that reproduces moments of Haar measure
up to order 6 (the established – if confusing – terminol-
ogy is to refer to such sets as spherical 6-designs [1], while
the complex-valued analogue would be called a complex
projective 3-design [2]).

The findings of [48] are formulated in the language
of algebraic invariant theory. While the present authors
were trying to relate them to the results we had estab-
lished in the context of quantum information, we be-
came aware of yet another development. Huangjun
Zhu [52] independently derived a very simple and el-
egant proof showing that the complex Clifford group
in dimensions d = 2n actually forms a unitary 3-design
[10, 11]. This means that the the irreducible repre-
sentation spaces of the action of the Clifford group on(
C2n)⊗3

coincide with those of the full unitary group

U(d). In particular, the Clifford group acts irreducibly

on Sym3(Cd) which, in turn, implies that that any orbit
of the group constitutes a complex projective 3-design.
The work of Zhu thus fully implies our main result.
What is more, the proof is simpler.

The appeal of the question treated here was under-
scored even more, when we learned a few days prior to
submission of this paper to the arxiv e-print server, that
yet another researcher – Zak Webb – had independently
obtained results related to the ones of Zhu [53].

In comparision to these works, our proof methods are
completely different: We rely on counting structures in
discrete symplectic vector spaces in order to compute
the angle set between stabilizer states, whereas [48] is
based on algebraic invariant theory and [52] on char-
acter theory. As a corollary, we derive an expression
for the number of stabilizer states with prescribed inner
product to a reference state. This finding might be of
independent interest. Also, we show that the set of sta-
bilizer states fails to be a 4-design in dimensions 2n and
that stabilizer states in dimensions other than powers of
two do not even constitute a 3-design. The simultane-
ously submitted papers seem to have left this possibility
open.

II. PROOF OF THE MAIN STATEMENT

A. Outline

We already mentioned in the introduction that there
is a geometric approach to stabilizer states building on
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the theory of discrete symplectic vector spaces1. This
phase space formalism will be introduced in Section II B.
We formally define stabilizer states and explain how to
compute inner products in this language in Section II C.
We then move on to briefly introducing Grassmannians
and some core concepts of discrete symplectic geome-
try. These tools will be used to establish Theorem 2 in
Section III.

B. Phase Space Formalism

We start by considering a d-dimensional Hilbert space
H, equipped with a basis {|q〉 | q ∈ Q}, where the con-
figuration space Q is given by Q := {0, . . . , d − 1} ⊂ Z

with arithmetics modulo d. Following [54, 55], we de-

fine two phase factors τ := eπi(d2+1)/d = (−1)deπi/d

and ω := τ2 = e2πi/d. For q, p ∈ Q, we introduce the
shift and boost operators defined by the relations

shift: x̂(q)|x〉 = |x + q〉, boost: ẑ(p)|x〉 = ωpx|x〉 (6)

for all x ∈ Q.
For p, q ∈ Q, the corresponding Weyl operator (or gen-

eralized Pauli operator) is defined as

w(p, q) = τ−pqẑ(p)x̂(q). (7)

Again following [54, 55], we adopt the convention that
any artihmetic expression in the exponent of τ is not un-
derstood to be modulo d, but rather as taking place in
the integers. This makes a difference for even dimen-
sions (see below). One could argue that it would be
slightly cleaner to syntactically distinguish the modu-
lar operations appearing in (6) from the non-modular
arithmetic in (7). However, the implicit convention does
declutter notation and we feel it is ultimately benefitial.

This definition is consistent with established conven-
tions. For example, one recovers the usual Pauli ma-
trices for the qubit case d = 2. We use the notation
V := Q × Q and consequently write w(v) := w(vp, vq)
for elements v = (vp, vq) ∈ V. Furthermore we define
the standard symplectic form

[u, v] := upvq − uqvp = uT Jv (8)

where

J =

(
0 1
−1 0

)

and u = (up, uq), v = (vp, vq) ∈ V. If d is prime,
the space V together with the non-degenerate symplec-
tic product (8) forms a symplectic vector space which

1 This is connected to the fact that stabilizer states are the natural
discrete analogue of Gaussian states of bosonic systems, where the
symplectic structure is well-appreciated. For a concise introduction
of this point of view, see [28].

is called phase space due to its resemblance to the phase
space appearing in classical mechanics.

The Weyl operators obey the composition and commu-
tation relations

w(u)w(v) = τ[u,v]w(u + v), (9)

w(u)w(v) = ω[u,v]w(v)w(u) ∀u, v ∈ V. (10)

which can be verified by direct computation.
It is worthwhile to point out that for odd d, the ring

Zd contains a multiplicative inverse of 2, namely 2−1 =
1
2 (d + 1) ∈ Zd. This in particular assures that τ is a dth
root of unity and hence the phase factors in (7, 9) de-
pend only on, respectively, pq and [u, v] modulo d. In
even dimensions, however, τ has order 2d. This some-
what complicates the theory of stabilizer states in the
even-d case – c.f. Section II C.

The preceeding definitions have been made with a
single d-dimensional system in mind. We now extend
our formalism to n such systems. The corresponding
configuration space is Q = Zn

d with elements q =
(q1, . . . , qn) and qi ∈ Zd. The associated phase space
will be denoted by V := Q × Q ≃ Z2n

d (dim V = 2n).
It carries a symplectic form given by the natural multi-
dimensional analogue of (8):

[u, v] := uT Jv, J =

(
0n×n In×n

−In×n 0n×n

)
.

With elements (p, q) ∈ V, we associate Weyl operators

w(p, q) =w(p1, . . . , pn, q1, . . . qn)

=w(p1, q1)⊗ . . . ⊗ w(pn, qn)

acting on the tensor product space
(
Cd
)⊗n

. With these
definitions, the composition and commutation relations
(9, 10) remain valid for n > 1.

We conclude this section with two formulas that will
be important in what follows and can both be verified
immediately. First, the Weyl operators are trace-less,
with the exception of the trivial one:

tr (w(v)) = dnδv,0. (11)

Second, for any vector v ∈ V and any subspace W ⊆ V
one has

∑
w∈W

ω[v,w] =

{
|W| if [v, w] = 0 ∀w ∈ W,

0 else.
(12)

C. Stabilizer States

Here, we will cast the established theory [9, 23] of sta-
bilizer states into the language of symplectic geometry
required for our proof. For previous similar expositions,
see [28, 56].

158



5

Note that Equation (10) implies that two Weyl oper-
ators w(u) and w(v) commute if and only if [u, v] = 0.
Now consider the image of an entire subspace M ⊆ V
under the Weyl representation. We define

w(M) = {w(m) : m ∈ M}

and observe that w(M) consists of mutually commut-
ing operators if and only if [m, m′] = 0 holds for all
m, m′ ∈ M. Spaces having this property are called
isotropic. Assume now that M is isotropic.

If d is odd, then the w(M) not only commute, but ac-
tually form a group w(u)w(v) = w(u + v). That’s be-
cause in (9), the phase factor depends on [u, v] modulo
d, which is zero by assumption for u, v ∈ M. For even
dimensions, however, [u, v] might equal d and in this
case, the product w(u)w(v) = −w(u + v) does not lie
in w(M) (in other words, v 7→ w(v) is only a projective
representation of the additive group of M). This would
create problems in our analysis below. Fortunately, it
turns out that one can choose phases c(v) ∈ {±1} such
that v 7→ c(v)w(v) does become a true representation of
M. We will now describe this construction.

To this end, choose a basis B = {u1, . . . , udim M} of
M. For a given element m ∈ M, let m = ∑i miui be
the expansion of m with respect to this basis. Define the
(basis-dependent) Weyl operators to be:

wB(m) := ∏
i=1

w(ui)
mi . (13)

Using the fact that the w(ui) commute, one then obtains
for m, m′ ∈ M

wB(m)wB(m
′) =

n

∏
i=1

w(ui)
mi

n

∏
i=1

w(ui)
m′

i

=
n

∏
i=1

w(ui)
mi+m′

i = wB(m + m′).

This is the desired representation of M.
Stabilizer states turn out to be related to maximal

isotropic spaces M. We call a subspace M ⊆ V La-
grangian (LAG) – or maximally isotropic – if every vector
v ∈ V that commutes with all elements of M is already
contained in M. This is precisely the case if

M = {v ∈ V : [v, m] = 0 ∀m ∈ M} =: M⊥,

where M⊥ denotes the symplectic complement of M.
A basic result of symplectic geometry (e.g. Satz 9.11 in
[57]) states that this condition is fulfilled if and only if

dim M = 1
2 dim V = n, or equivalently |M| = dn.

We are now ready to state the relation between La-
grangian subspaces and state vectors in Hilbert space:

Theorem 3 (Stabilizer States). Let M ⊂ V be a Lagrangian
subspace, let B be a basis of M. Then the following assertions
are valid:

1. Up to a global phase, every v ∈ M singles out one unit
vector |M, v〉 ∈ H – called a stabilizer state that ful-
fills the eigenvalue equations

ω[v,m]wB(m)|M, v〉 = |M, v〉 ∀m ∈ M. (14)

2. Two elements u, v ∈ M define the same stabilizer
state if and only if they belong to the same affine space
[v]M := {v + m, m ∈ M} modulo M. If this is not
the case, the resulting stabilizer states are orthogonal,
i.e. 〈M, u|M, v〉 = 0.

3. V can be decomposed into a union of dn = dim(H)
different affine spaces modulo M. Via (14), this union
defines an orthonormal basis of stabilizer states associ-
ated with M.

This statement implies that each stabilizer state is
uniquely characterized by a Lagrangian subspace M ⊂
V and one particular affine space [v]M modulo M. In
the remainder of this article it will be convenient to rep-
resent each such affine space by a representative ζ ∈
[v]M ∈ V contained in it. We have opted to denote such
representatives of cosets ζ, ι ∈ V by greek letters to no-
tationally underline their origin.

Proof of Theorem 3. Define

ρM,v := d−n ∑
m∈M

ω[v,m]wB(m)

and compute

ρ2
M,v =d−2n ∑

m,m′∈M

ω[v,m]ω[v,m′]wB(m)wB(m′)

=d−2n ∑
m,m′∈M

ω[v,m+m′]wB(m + m′)

=d−n ∑
m∈M

ω[v,m]wB(m) = ρM,v,

as well as

tr ρM,v =d−n ∑
m,∈M

ω[v,m] tr wB(m)

=d−n tr wB(0) = 1

where we have employed (11). The first relation implies
that ρM,v is a projection and the second one that is has
rank one. One can check by direct calculation that

ω[v,m]wB(m)ρM,v = ρM,v,

holds for every m ∈ M. Consequently, the so that the
any vector from the range of ρM,v fulfills all eigenvalue
equations. However, since ρM,v has rank one, its range
corresponds to a single vector that we can associate with
|M, v〉 ∈ H up to a global phase. This proves the first
claim up to uniqueness which we are going to establish
later on.
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For the second claim, fix u, v ∈ V and observe

tr (ρM,uρM,v) =d−2n ∑
m,m′∈M

ω[u,m]ω[v,m′]tr
(
wB(m + m′)

)

=d−2n ∑
m,m′∈M

ω[u,m]ω[v,m′]dnδm+m′,0

=d−n ∑
m∈M

ω[u−v,m]

=d−n

{
|M| if [u − v, m] = 0 ∀m ∈ M,

0 else,

where we have used (12). But because M is maximally
isotropic, [u − v, m] = 0 ∀m ∈ M implies u − v ∈ M.
Thus, there is one ρM,u for each affine space u + M ⊂
V, and two distinct affine spaces give rise to othogonal
states which is just the second claim.

Finally, note that there are |V/M| = dn = dimH
such affine spaces, which proves that one obtains an
ortho-normal basis in this way. Moreover, this estab-
lishes the uniqueness part of the first statement and im-
plies, justifying that |M, v〉 is well-defined up to a global
phase.

In the remainder of this section, we will show how
to choose consistent bases for two, possibly intersecting,
Lagrangian spaces M, N and use these results to come
up with formulas for the inner product between two ar-
bitrary stabilizer states.

Lemma 1 (Compatible bases). Let M, N ⊂ V be two La-
grangian subspaces. Then there exists bases BM of M and
BN of N such that wBK

(m) = wBM
(m) = wBN

(m) for any
m ∈ M ∩ N. What is more, for m ∈ M and n ∈ N, it holds
that

tr
(
wBM

(m)wBN
(−n)

)
= dnδm,n. (15)

Proof. Choose a basis {u1, . . . , udim M∩N} of M ∩ N. By
elementary linear algebra, it can be extended both to a
basis BM of M and to a basis BN of N. The first claim
follows immediately from (13). For the second claim,
note that for from (9), we have that wBM

(m)wBN
(−n) =

±w(m − n). Thus, by (11), the trace in (15) vanishes un-
less m = −n. In that case, however, m, n ∈ K and thus,
by construction of the bases, wBM

(m) = wBK
(m) and

wBN
(−n) = wBK

(−n). Thus

wBM
(m)wBN

(−n) = wBK
(m − n) = wBK

(0) = w(0).

The claim then follows from (11).

We conclude this subsection with an important obser-
vation: The overlap of different stabilizer states is fully
characterized by the geometric intersection of their un-
derlying Lagrangian subspaces.

Lemma 2 (Overlap of stabilizer states). Let
|M, ζ〉, |N, ι〉 ∈ H be two stabilizer states characterized by
Lagrangian subspaces M, N ⊂ V (as well as corresponding

bases BM and BN if d is even) and representatives ζ, ι ∈ V
of cosets [ζ]M ∈ V/M and [ι]N ∈ V/N, respectively. Then,
setting K = M ∩ N, their inner product is given by

|〈M, ζ|N, ι〉|2 =

{
d−n|K| if [ζ, m] = [ι, m] ∀m ∈ K,

0 else.

(16)

Proof. The claim follows from direct computation. Ac-
cording to Lemma 1 we can pick bases BK of K :=
M ∩ N, BM of M and BN of N that are compatible with
each other. With respect to these bases we can write

|M, ζ〉〈M, ζ| = d−n ∑
m∈M

ω[ζ,m]wBM
(m),

|N, ι〉〈N, ι| = d−n ∑
m′∈N

ω−[ι,m′]wBN
(−m′).

Formula (15 ) now implies

|〈M, ζ|N, ι〉|2
=tr (|M, ζ〉〈M, ζ||N, ι〉〈N, ι|)
=d−2n ∑

m∈M
∑

m′∈N

ω[ζ,m]−[ι,m′]tr
(
wBM

(m)wBN
(−m′)

)

=d−n ∑
m∈M∩N

ω[ζ−ι,m]

=d−n

{
|M ∩ N| if [ζ − ι, m] = 0 ∀m ∈ M ∩ N

0 else,

where the last equation follows from formula (12).

D. Grassmannian subspaces and discrete symplectic
geometry

Let Q be a n-dimensional vector space over the fi-
nite field Zd. The Grassmannian G(d, n, k) is the set of
k-dimensional subspaces of V. A standard result – e.g
formula (9.2.2) in [58] – says that the size of G is given
by the Gaussian binomial coefficient:

|G(d, n, k)| =
(

n

k

)

d

:=

{
∏k−1

i=0
dn−i−1
dk−i−1

if k ≤ n,

0 else.
(17)

This is the analogue of the familiar binomial coefficient
for the finite field Zd. As such it exhibits similar proper-
ties, such as (n

k)d
= ( n

n−k)d
(symmetry), (n

n)d
= (n

0)d
= 1

(trivial coefficients) and Pascal’s identity

(
n

k

)

d

= dk

(
n − 1

k

)

d

+

(
n − 1

k − 1

)

d

. (18)

For further reading and proofs of these identities we re-
fer to Chapter 9 in [58] and move on to introducing some
core concepts of symplectic geometry:

Let V be a 2n-dimensional symplectic vector space
over the finite field Zd. A polarization (M, N) of V is
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the choice of two Lagrangian subspaces M, N which are
transverse in the sense that their direct sum spans the
entire space, i.e M ⊕ N = V. For a fixed Lagrangian M
we define the set

T (M) = {N | N Lagrangian; (M, N) is a polarization of V}
of all Lagrangian subspaces transverse to M. The set
T (M) appears in various contexts. For instance it labels
all graph states (in a sense explaind below) in quantum
information theory [25]

For the purpose of our counting argument, we need
to compute the size of T (M) ∈ V.

Proposition 1. Let V be a 2n-dimensional symplectic space
over Zd and let M be an arbitrary Lagrangian subspace.
Then, the cardinality of T (M) amounts to

T (d, n) :=
∣∣T (M)

∣∣ = d
1
2 n(n+1).

Proof. Fix M and note that a subset N ⊂ V has to be both
Lagrangian and transverse to M in order to lie in T (M).
These conditions can be made more explicit if we choose
a basis b1, . . . , b2n of V which obeys

M = span {b1, . . . , bn} and
[
bi, bj

]
= δn⊕i,j,

where ⊕ denotes addition modulo 2n. Such a basis al-
lows us to fully characterize any subspace N by a n ×
2n-generator matrix GN with column vectors a1, . . . , an

obeying span {a1, . . . , an} = N. Moreover, it will be
instructive to partition each generator matrix into two

n × n blocks A and B, i.e. GN =

(
A
B

)
. Due to our

choice of basis the generator matrix GM of M is particu-

larly simple, namely GM = ( In×n 0n×n )
T

. Transver-
sality can be restated in terms of these generator ma-
trizes: M ⊕ N = V if and only if the 2n × 2n-matrix
( GM GN ) has full rank. Due to the particular form of
GM this is however equivalent to demanding rank(B) =
n. Thus we can convert GN into the equivalent genera-

tor matrix G̃N =
(

ÃT In×n

)T
(and generators ã1, . . . ãn

as above) by applying a Gauss-Jordan elimination in the
columns of GN.

The generator matrix G̃N characterizes a Lagrangian
subspace if and only if [ãi, ãj] = 0 holds for all i, j =
1, . . . , n. These requirements can be summarized in a

single matrix equality, namely that G̃T
N JG̃N must iden-

tically vanish. Inserting the particular form of G̃N and
carrying out the math reveals that this is equivalent to

demanding that ÃT − Ã must be the zero matrix. Hence,
a subspace N is a polarization of M if and only if its gen-
erator matrix (with respect to the basis chosen above) is

Gauss-Jordan equivalent to GN = ( A In×n )
T

, where A
is a symmetric n× n-matrix over Zd. Therefore there is a
one-to-one correspondence between polarizations N of
M and symmetric n × n-matrizes over Zd. The dimen-

sionality of the latter is 1
2 n(n + 1) which completes the

proof.

The one-to-one correspondence between polariza-
tions of M and symmetric matrices in this proof gives
additional meaning to the set T (M). Recall that a stabi-
lizer state |N, ζ〉 is a graph state if N possesses a generator

matrix of the form ( A In×n )
T

, where A is a symmetric
n × n-matrix. Hence, T (M) is the set of all Lagrangian
subspaces N which lead to graph states.

The name graph state pays tribute to the fact that A
can be interpreted as the adjacency matrix of a (possi-
bly weighted) graph. Graph states possess a rich struc-
ture and many properties of |N, ζ〉 can be deduced from
the corresponding graph alone. However, here we con-
tent ourselves with pointing out the analogy between
graph states and T (M). For further reading we defer
the reader to [25].

Let us now turn to subspaces of the symplectic vector
space V. It is clear that a proper subspace W ⊂ V is itself
a vector space, however in general it fails to be symplec-
tic. This is due to the fact that the standard symplectic
inner product (8) of V becomes degenerate if we restrict
it to W. Therefore important tools – such as Proposi-
tion 1 – cannot be directly applied to the proper sub-
space W. However, this problem can be (partly) circum-
vent by applying a linear symplectic reduction. For W ⊆ V
we define the quotient

Ŵ = W/(W⊥ ∩ W). (19)

This space carries the non-degenerate symplectic form

[
[v], [w]

]
Ŵ

:= [v, w]V (20)

which is easily seen not to depend on the representatives

for [v] and [w]. Consequently, the space Ŵ endowed
with [·, ·]Ŵ is a symplectic vector space. We will need
such a reduction in the proof of Theorem 4.

III. PROOF OF THE MAIN THEOREM

In this section we show our main result – Theorem 2 –
which provides an explicit recursion fully characterizing
the frame potential Ft(Stabs(d, n)) of stabilizer states in
prime power dimensions D = dn. We denote the set of

all stabilizer states by Stabs(d, n) =
{

x1, . . . , xS(d,n)

}
⊂

CD, where S(d, n) := | Stabs(d, n)| is just the cardinal-
ity of that set. Recall that in our framework each sta-

bilizer state xi ∈ CD is specified by a Lagrangian sub-

space M in V = Z2n
d and a representative ζ ∈ V of the

coset [ζ]M ∈ V/M. The Clifford invariance [28] of sta-
bilizer states allows us to calculate any frame potential
Ft(Stabs(d, n)) by counting intersections of Lagrangian
subspaces. This is the content of the following result that
considerably simplifies the expression for frame poten-
tials.

Lemma 3. Let D = dn be a prime power. The t-th frame
potential of the set of all stabilizer states in dimension D is
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given by

Ft(Stabs(d, n)) =
1

S(d, n)

n

∑
k=1

κM(d, n, k)d(1−t)(n−k),

(21)
where κM(d, n, k) is the number of Lagrangian subspaces N
whose intersection with an arbitrary fixed Lagrangian sub-
space M is k-dimensional.

Proof. Stabilizer states constitute an orbit of a particular
finite unitary group – the Clifford group. Due to this
symmetry, the second summation in Ft(Stabs(d, n)) is
superfluous and we can write

Ft(Stabs(d, n)) =
1

S(d, n)2

N

∑
i,j=1

∣∣〈xi, xj〉
∣∣2t

=
1

S(d, n)

N

∑
i=1

|〈xk, xi〉|2t , (22)

where xk ∈ Stabs(d, n) is an arbitrary fixed stabilizer
state. Theorem 3 assures that any such xk is unambigu-
ously specified by a Lagrangian subspace M of V and
coset [ζ]M ∈ M/V. Since the choice of xk in (22) was
arbitrary, we can choose xk = |M, 0〉 – i.e. it is specified
by M and the particularly simple representative 0 ∈ V
of the coset [0]M. Such a choice of xk together with The-
orem 3 allows us to rewrite (22) as

Ft(Stabs(d, n)) =
1

S(d, n) ∑
N LAG

∑
[ζ]N∈V/N

|〈N, ζ|M, 0〉|2t ,

(23)
because instead of summing over stabilizer states, we
may as well sum over their characterizing Lagrangian
subspaces and cosets instead. Such a reformulation al-
lows us to employ Lemma 2 which implies

|〈N, ζ|M, 0〉|2t =

{
d−nt|K|t if [ζ, m] = 0 ∀m ∈ K,

0 else,

where K = M ∩ N denotes the intersection. If this in-
tersection is k-dimensional, |K| = dk and consequently

|〈N, ζ|M, 0〉|2t = d−t(n−k), provided that [ζ, m] = 0
for all elements m ∈ K. This requirement for a non-

vanishing overlap is met if and only if ζ ∈ K⊥. The num-
ber of representatives ζ which obey this property (and
single out different stabilizer states) is given by the or-

der of the quotient space |K⊥/N|. Since N ⊆ K⊥ (which

follows from K ⊆ N and N⊥ = N), such a quotient
space is well defined and its order amounts to

|K⊥/N| = ddim(K⊥/N) = d2n−k−n = dn−k.

Consequently, for each pair of Lagrangians M, N with

k-dimensional intersection, dn−k out of a total of dn sta-
bilizer states specified by N give rise to a non-vanishing

overlap |〈N, ζ|M, 0〉|2t = d−t(n−k) with the fixed stabi-
lizer state xk = |M, 0〉. Inserting this insight into (23)
reveals

Ft(Stabs(d, n)) =
1

S(d, n) ∑
N LAG

d(1−t)(n−dim(N∩M))

=
1

S(d, n)

N

∑
k=1

κM(d, n, k)d(1−t)(n−k),

where we have replaced the summation over the differ-
ent Lagrangian subspaces with an equivalent summa-
tion over the dimension k of the intersections M∩ N.

Lemma 3 shows that we can compute the stabilizer
frame potential Ft(Stabs(d, n)) provided that the num-
ber κM(d, n, k) is known for any Lagrangian subspace M
and any intersection space dimesion k ∈ {0, . . . , n}. The
following two statements characterize that number.

Theorem 4. Let V be a 2n-dimensional symplectic space
over Zd. Fix an arbitrary Lagrangian subspace M and a k-
dimensional subspace K of M. The number of Lagrangian
subspaces N that obey M ∩ N = K equals

T (d, n − k) = d
1
2 (n−k)(n−k+1).

The fact that each Lagrangian M admits |G(d, n, k)| =
(n

k)d
different k-dimensional subspaces K (formula (17))

immediately yields the following corollary.

Corollary 2 (Expression for κM(d, n, k) ). Let V be a 2n-
dimensional symplectic space over Zd. For an arbitrary La-
grangian subspace M ⊂ V and k ∈ {0, . . . , n}, the number
of Lagrangian subspaces N whose intersection with M is k-
dimensional amounts to

κM(d, n, k) =

(
n

k

)

d

d
1
2 (n−k)(n−k+1). (24)

Proof of Theorem 4. We need to count in how many ways
one can choose a Lagrangian space N ⊂ V that inter-
sects M exactly in K. Our strategy will be to relate the
set of such extensions N of K to a set T as in Proposi-

tion 1. To that end, set Ŵ := K⊥/K. Note that K ⊆ K⊥
(because K ⊆ M and M is Lagrangian) implies

Ŵ = K⊥/K = K⊥/
(
K ∩ K⊥) = K⊥/

(
(K⊥)⊥ ∩ K⊥).

Therefore Ŵ is the linear symplectic reduction of K⊥ as

defined in (19). The space Ŵ endowed with the induced
symplectic product [·, ·]Ŵ defined in (20) forms a sym-
plectic vector space with dimension

dim Ŵ = dim K⊥/K = 2n − k − k = 2(n − k).

Note that any isotropic space N containing K is in par-

ticular contained in K⊥. The canonical projection N 7→
N/K sets up a one-to-one correspondence between n-

dimensional subspaces of K⊥ containing K and (n − k)-
dimensional subspaces of Ŵ. We need two properties of
this correspondence:
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(i) N/K ⊂ Ŵ is isotropic if and only if N ⊂ V is.
Proof: This follows immediately from (20).

(ii) N/K ⊂ Ŵ is transverse to M/K if and only if M ∩
N = K. Proof: Basic linear algebra shows

(M + N)/K ≃ M/K + N/K.

For the left hand side:

dim(M + N) = dim(M) + dim(N)− dim(M ∩ N)

≤ 2n − k

with equality if and only if M∩ N = K. Hence dim(M+
N)/K ≤ 2(n − k) with the same condition for equality.
For the right hand side:

dim(M/K) + dim(N/K) ≤ dim M + dim N − 2 dim K

= 2(n − k)

with equality if and only if the two spaces are transverse.

It follows that M/K is a Lagrangian subspace of Ŵ
and there is a one-to-one correspondence between La-
grangian spaces N intersecting M in K and Lagrangian

subspaces of Ŵ transverse to M/K. Employing Propo-
sition 1 then yields the desired result.

Finally, we are going to require an explicit characteri-
zation of the number S(d, n) of stabilizer states. We bor-
row it from [28, Corollary 21]:

Proposition 2 (Number of stabilizer states). For H =(
Cd
)⊗n

, the cardinality S(d, n) of Stabs(d, n) ⊂ H
amounts to

S(d, n) = | Stabs(d, n)| = dn
n

∏
j=1

(
dj + 1

)
(25)

and thus obeys the recursion

S(d, n)

S(d, n + 1)
=

1

(dn+1 + 1)d
. (26)

Formula (25) combined with Corollary 2 allows us to
write down the frame potential (Lemma 3) explicitly:

Ft(Stabs(d, n)) =
1

S(d, n)

n

∑
k=0

(
n

k

)

d

d
1
2 (n−k)(n−k+3−2t)

(27)
with S(d, n) defined in (25). Note that this is a purely
combinatorical expression that depends solely on d and
n. Analyzing its recursive dependence on n allows us to
establish the main result of this work – Theorem 2.

Proof of Theorem 2. Let us start with the base case (4)
which is readily established. Indeed, setting n = 1
and evaluating formula (27) reveals that for any d and
t Ft(Stabs(d, n)) amounts to

1

(d + 1)d

((
1

0

)

d

d
1
2 (4−2t) +

(
1

1

)

d

)
=

d2−t + 1

(d + 1)d
,

where we have used (n
0)d

= (n
n)d

= 1. Let us now move
on to establishing the recursive behavior. Replacing n by
(n + 1) in formula (27) and employing Pascal’s identity
(18) as well as trivial coefficients for Gaussian binomials
yields

Ft (Stabs(d, n + 1)) =
1

S(d, n + 1)

n+1

∑
k=0

(
n + 1

k

)

d

d
1
2 (n+1−k)(n+1−k+3−2t)

=
1

S(d, n + 1)

((
n + 1

0

)

d

d
1
2 (n+1)(n+4−2t)+

n

∑
k=1

(
n + 1

k

)

d

d
1
2 (n+1−k)(n−k+4−2t)+

(
n + 1

n + 1

)

d

)

=
1

S(d, n + 1)

(
d0

(
n

0

)

d

d
1
2 (n+1)(n+4−2t)+

n

∑
k=1

(
dk

(
n

k

)

d

+

(
n

k − 1

)

d

)
d

1
2 (n+1−k)(n−k+4−2t)+

(
n

n

)

d

)

=
1

S(d, n + 1)

(
n

∑
k=0

dk

(
n

k

)

d

d
1
2 (n+1−k)(n−k+4−2t)+

n+1

∑
k=1

(
n

k − 1

)
d

1
2 (n−(k−1))(n−(k−1)+3−2t)

)
, (28)

where we have encorporated the first and last terms
in the first and second summation, respectively.
Note that the second summation just corresponds to

∑n
k=0 (

n
k)d

d
1
2 (n−k)(n−k+3−2t) – which in that very form

also appears in (27). Importantly, a similar equivalence
is true for the first sum appearing in (28). Taking a closer
look at the overall exponent of d in that summation re-
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veals

k +
1

2
(n + 1 − k)(n − k + 4 − 2t)

=n − (t − 2) +
1

2
(n − k)(n − k + 3 − 2t)

and the first term is independent of the summation in-
dex. Consequently the first sum in (28) actually cor-

responds to dn−(t−2) ∑n
k=0 (

n
k)d

d
1
2 (n−k)(n−k+3−2t) and we

can conclude

Ft(Stabs(d, n + 1))

=
S(d, n)

S(d, n + 1)

(
dn−(t−2)+ 1

)

× 1

S(d, n)

n

∑
k=0

(
n

k

)

d

d
1
2 (n−k)(n−k+3−2t)

=
dn−(t−2)+ 1

d(dn+1 + 1)

1

S(d, n)

n

∑
k=0

(
n

k

)

d

d
1
2 (n−k)(n−k+3−2t)

=
dn−(t−2)+ 1

d(dn+1 + 1)
Ft (Stab(d, n))

where we have employed (26).

We conclude this article with presenting a proof of
Corollary 1 which establishes some substantial insights
into the structure of stabilizer states.

Proof of Corollary 1. Start with the case t = 2. Then the
result of Theorem 2 reads

F2(Stabs(d, 1)) =
2

d(d + 1)

F2(Stabs(d, n + 1))

F2(Stabs(d, n))
=

dn + 1

d(dn+1 + 1)
.

But the Welch Bound (3) satisfies identical relations:

W2(d) =
2

d(d + 1)
(29)

W2(d, n + 1)

W2(d, n)
=

(dn+1
2 )

(dn+1+1
2 )

=
(dn + 1)dn

(dn+1 + 1)dn+1
(30)

The 3-design case can be proved along similar lines.
We have

F3(Stabs(d, 1)) =
1 + d−1

(d + 1)d
(31)

F3(Stabs(d, n + 1))

F3(Stabs(d, n))
=

dn−1 + 1

d(dn+1 + 1)
(32)

and the Welch bound satisfies

W3(d) =

(
d + 2

3

)−1

=
6

(d + 2)(d + 1)d
(33)

W3(d
n+1)

W3(dn)
=

(dn + 2)(dn + 1)

(dn+1 + 2)(dn+1 + 1)d
. (34)

The two base values (31) and (33) coincide for d ≤ 2.
Otherwise, the former is strictly larger than the latter.
Comparing the recursion factors yields

Eq. (34)

Eq. (32)
=

(dn + 2)(dn + 1)

(dn+1 + 2)((dn−1 + 1)
(35)

=
d2n + 3dn + 2

d2n + (2/d + d)dn + 2
≤ 1 (36)

with equality if and aonly if d = 1, 2. Consequently we
have F3(Stabs(d, n)) = W3(d

n) for any n ∈ N+ if and
only if d ≤ 2.

Finally, let us move on the the 4-design case, where
we have

F4 (Stabs(d, 1)) =
1 + d−2

(d + 1)d
, (37)

F4 (Stabs(d, n + 1))

F4 (Stabs(d, n))
=

dn−2 + 1

(dn+1 + 1)d
, (38)

(39)

and

W4(d) =
24

(d + 3)(d + 2)(d + 1)d
(40)

W4(d
n+1)

W4(dn)
=

(dn + 3)(dn + 2)(dn + 1)

(dn+1 + 3)(dn+1 + 2)(dn+1 + 1)d
. (41)

Comparing (37) to (40) reveals F4 (Stabs(d, 1)) ≥
W4 (d) with equality if and only if d = 1. An analo-
gous relation holds for (38) and (41) which assures that
F4(Stabs(d, n)) and W4(d

n) only ever coincide in the
trivial case d = 1.

For the final claim of Corollary 1, note that the set of
stabilizer states in prime-power dimensions form one
orbit under the action of the Clifford group [28]. Also,
any orbit of a unitary t-design is a complex projective
t-design [10, 11]. Thus Claim 3 implies that the Clifford
group is not a 4-design. Peter Turner has made us aware
of the fact that the frame potential of group orbits only
depends on the action of that group on the totally sym-

metric space Symt(CD). Following the reasoning of [11],
a group acting irreducibly on that space has the property
that any orbit constitutes a complex projective t-design.
Thus, the stronger statement in Claim 4 is also implied
by Claim 3.
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Abstract—Recent insights concerning the PhaseLift algorithm for
retrieving phases have furthered our understanding of low rank matrix
recovery from rank-one projective measurements. Motivated by the
structure of certain quantum mechanical experiments, we introduce
a particular class of such rank-one measurements: orthonormal basis
measurements. One such measurement corresponds to choosing an
orthonormal basis and treating all the rank-one projectors onto different
basis elements as a series of consecutive measurement matrices. We
elaborate on performing low-rank matrix recovery from few, sufficiently
random orthonormal basis measurements and sketch applications of
such a procedure in quantum physics. We conclude this article by
presenting numerical experiments testing such an approach.

Index Terms—Low rank matrix recovery, quantum information theory,
phase retrieval

I. INTRODUCTION

A. Low rank matrix recovery

The young but already extensive field of low rank matrix recovery
uses ideas from compressed sensing to reconstruct a given matrix of
low rank from highly incomplete data in a computationally efficient
way. Here we shall restrict our attention to hermitian n× n matrices
which form a real n2-dimensional vector space Hn. Let X ∈ Hn be
a rank-r matrix of interest (r � n) and suppose that we have access
to m linear measurements of the form

yi = tr (AiX) i = 1, . . . ,m, (1)

where A1, . . . , Am ∈ Hn denote measurement matrices. Having data
of this form at hand, the analogy to compressed sensing [1] suggests
to exploit the low-rank structure of X by means of a constrained
nuclear-norm1 minimization

minimize
Z∈Hn

‖Z‖∗ (2)

subject to tr (ZAi) = yi i = 1, . . . ,m,

which can be solved computationally efficiently. One aim of low-rank
matrix recovery is to identify instances for which m = Crnpolylog(n)
measurements of the form (1) suffice to prove that the convex program
(2) recovers the sought for X with high probability. Up to date many
such instances have been identified [2]–[8].

1In a sense, the nuclear norm ‖X‖∗ = tr (|X|) is the natural non-commutative
analogue of the `1-norm which features prominently in compressed sensing [1].
Furthermore, low rank assures that the matrix of interest is sparse in its eigenbasis.

B. The phase retrieval problem

The problem of retrieving a complex signal x ∈ Cn from
measurements of the form

yi = |〈ai, x〉|2 i = 1, . . . ,m, (3)

where a1, . . . , am ∈ Cn are measurement vectors, has long been
abundant in many areas of science. Recently, its mathematical structure
has received considerable attention in its own right. The problem is
clearly ill-posed, since all phase information is lost in the measurement
process and the measurements (3) are furthermore of a non-linear
nature. This second obstacle can be overcome by a trick [9] well
known in conic programming: the quadratic expressions (3) are linear
in the outer products xx∗ and aia∗i :

yi = |〈ai, x〉|2 = tr
(
(aiai)

∗
(xx∗)

)
.

Since the object of interest – X := xx∗ ∈ Hn – is proportional to a
rank-one projector, such a “lift” turns the phase retrieval problem into
a particular instance of low rank matrix recovery – a fact that was first
observed by Candès, Eldar, Strohmer and Voroninski [10]. In turn, the
measurement matrices Ai = aia

∗
i are constrained to be proportional

to rank-one projectors as well. These structural constraints prevent a
direct application of results from low-rank matrix recovery, because
signal and measurements fail to be sufficiently incoherent2 in the
sense of [5], [11]. Nonetheless, phase retrieval recovery guarantees by
means of the optimization (2) – dubbed PhaseLift for this particular
setting – have been established for different types of measurements.

The chronologically first result [12] of this kind proves a non-
uniform recovery guarantee for m = Cn log(n) measurement vectors
ai sampled independently and uniformly from the complex unit sphere.
This recovery guarantee was partially derandomized (at the cost of a
larger sampling rate) in [13] using the concept of spherical t-designs.
Both results were improved by means of uniform counterparts [14],
[15] getting by with lower sampling rates3.

Motivated by actual experimental setups, Candès, Li and
Soltanolkotabi [16] furthermore established a non-uniform recovery
guarantee for L = C log4(n) complete Fourier basis measurements

2Roughly, the incoherence paramter caputures the well-posedness of the inverse
problem.

3In fact, both references establish an optimal sampling rate (up to a multiplicative
constant) for measurement vectors drawn independently and uniformly from the complex
unit sphere.978-1-4673-7353-1/15/$31.00 c©2015 IEEE
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that are randomly distorted. To be more concrete, one such measure-
ment encompasses n distorted Fourier vectors of the form ak,l = Dlfk
(1 ≤ i ≤ k), where each Dl (1 ≤ l ≤ L) is an instance of a random
matrix diagonal in the standard basis – e.g. a diagonally embedded
Rademacher vector with random erasures. Subsequently, a recovery
guarantee requiring fewer – namely L = C log2(n) – such coded
diffraction patterns was established in [17].

We conclude this section by pointing out that PhaseLift is just one
possibility for solving the phase retrieval problem. Other approaches
rely on polarization identities [18], alternate projections [19], or
Wirtinger flow methods [20].

II. LOW RANK MATRIX RECOVERY FROM ORTHONORMAL BASIS
MEASUREMENTS

Given these recent advances regarding the phase retrieval problem,
it seems natural to ask, whether these insights can be translated to
general low rank matrix recovery from certain types of rank-one
projective measurements. A first step in this direction was done in
[15], where uniform recovery guarantees for inferring hermitian rank
r-matrices from m = Crn projectors onto i.i.d Gauss-random vectors,
or from m = Crn log(n) projectors onto randomly chosen elements
of a spherical 4-design, were established.

Here – inspired by coded diffraction patterns [16], [17] – we
shall focus on randomly distorted basis measurements instead. More
formally: let X ∈ Hn be a rank-r matrix of interest and consider n
consecutive measurements of the form

y1,l = tr ((Dlb1b
∗
1D
∗
l )X) = 〈Dlb1, X Dlb1〉,

... (4)
yn,l = tr ((Dlbnb

∗
nD
∗
l )X) = 〈Dlbn, X Dlbn〉,

where b1, . . . , bn denotes an arbitrary orthonormal basis of Cn and
Dl is an instance of a random n × n matrix. Motivated by typical
quantum mechanical experiments – see Section III – we consider the
special case, where each Dl is unitary. Consequently each distorted
orthonormal basis measurement corresponds to measuring a different
orthonormal basis b(l)1 , . . . , b

(l)
n :

y1,l = tr
(
b
(l)
1

(
b
(l)
1

)∗
X
)

= 〈b(l)i , X b
(l)
1 〉,

... (5)

yn,l = tr
(
b
(l)
1

(
b
(l)
1

)∗
X
)

= 〈b(l)n , X b(l)n 〉.

Regarding such types of measurements, the following question is
imminent:

Are there unitary transformations Dl – or equivalently: orthonor-
mal bases b

(l)
1 , . . . , b

(l)
n – such that the convex optimization

(2) allows for recovering an unknown rank-r matrix X from
L = Crpolylog(n) orthonormal basis measurements of the form
(4), or (5), respectively?

It is highly conceivable, that this is the case for unitaries Dl chosen
uniformly from the Haar measure – or equivalently: orthonormal
bases b(l)1 , . . . , b

(l)
n obtained by choosing n standard complex Gaussian

vectors independently at random and orthonormalizing them (e.g. by
means of Gram-Schmitt). Clearly, such a procedure requires one to
be able to choose from a continuous, very generic union of bases.
However, the results in [13], [15] suggest that such a requirement

might not be necessary and that more structured, finite unions of
bases may suffice to establish low rank matrix recovery guarantees
by means of nuclear norm minimization. For going further into that
direction – and, by doing so, partially derandomizing the recovery
scheme proposed above – we rely on the concept of spherical designs.
These finite sets of unit vectors were first introduced in [21] and
serve as a general purpose tool for partial derandomization – see [13],
[22] for further reading on this aspect of spherical designs. To mimic
the problem’s structure, we need to equip spherical designs with an
additional structural property. This results in the following definition.

Definition 1 (spherical t-design with basis structure). We call a finite
union Λt = {b(i)1 , . . . , b

(i)
n }Ni=1 ⊂ Cn of orthonormal bases a spherical

t-design with basis structure, if the uniform distribution over the Nn
elements of Λt reproduces the first 2t moments of standard complex
Gaussian vectors renormalized to unit length.

Although demanding such an orthonormal basis structure in addition
to the t-design property might seem alien at first sight, there are
numerous examples for designs that admit it. Examples include
arbitrary orthonormal bases (1-designs), maximal sets of mutually
unbiased bases (2-designs) [23] which exist in prime power dimensions,
stabilizer states (3-designs in power-of-two-dimensions) [24] and orbits
{Uib1, . . . , Uibn}Ni=1 of an arbitrary orthonormal basis under the action
of a unitary t-design4 {Ui}Ni=1 [25], [26] (which constitute a spherical
t-designs of the same order).

Similar to [13], t-designs with basis structure suffice to establish a
non-uniform recovery guarantee for measurements of the form (5):

Theorem 2 (Low rank matrix recovery from orthonormal basis
measurements). Let X ∈ Hn be an arbitrary matrix of rank r and let
Λt be a t-design (t ≥ 3) with basis structure in the sense of Definition
1. Then choosing

L = Ctn2/tr log2(n) (6)

different bases independently and uniformly at random from Λt and
performing the corresponding orthonormal basis measurements of the
form (5) suffices to recover X by means of the convex optimization
(2) with high probability.

Note that the requirement t ≥ 3 on the design order is in fact
necessary. Similar to [13, Theorem 2], a counter-example can be
constructed for t = 2 using mutually unbiased bases. While Theorem
2 is non-trivial – as it allows for recovering X from a total of
m = Ln = Ctn1+2/tr log2(n) � n2 measurements (provided that
r � n and n is large enough) – the required number L of orthonormal
basis measurements contains the term n2/t. As a consequence, the
sampling rate only becomes optimal up to polylog-factors, if we
allow the design order t to grow logarithmically with the dimension
(t = 2 log(n)). However, we believe that the factor n2/t in (6) is
an artifact of the proof technique employed. It uses ideas presented
in [13] which resulted in a similar non-optimal factor appearing in
the sampling rate. There, employing different techniques allowed for
eradicating such a factor and substantially strengthening the statement
[15]. In turn, we believe that a more careful analysis will allow for

4Unitary t-design are a natural generalization of the spherical design concept to
unitaries. These finite sets of unitary matrices reproduce the Haar-uniform distribution
over the unitary group up to 2t-th moments.
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establishing a recovery guarantee getting by with a sampling rate that
already for t = 3, or t = 4, is optimal up to polylog-factors.

Furthermore, we want to point out that there is crucial difference
between Theorem 2 and the main result established in [13] (and
its generalization presented in [15]). There it is assumed that each
measurement is sampled independently and uniformly from Λt – which
strongly resembles the design’s defining property (see Definition 1).
In Theorem 2, on the other hand, one entire basis is selected at
random and n corresponding orthonormal basis measurements of
the form (5) are carried out. Evidently, these n measurements are
correlated. Such a situation bears more similarity to coded diffraction
patterns [16], [17] than it does to independent sampling of individual
design elements. In order to establish Theorem 2 we pay tribute to
this fact and combine proof techniques from [17] (which can handle
such correlated measurements) with others from [13] (that exploit
the underlying design-structure). A detailed presentation of such a
proof would go beyond the scope of this article and will be presented
elsewhere.

Finally we want to point out that Theorem 2 is stated for noiseless
measurements only. We leave establishing stability towards noise for
future work.

III. MOTIVATION: QUANTUM STATE TOMOGRAPHY

In this section, we briefly want to motivate the measurement setups
introduced in (4) and (5) without going into too much detail. For
further reading on the topics introduced here, we defer the interested
reader to [27, Chapter 2.2]. In quantum mechanics, the state of an
isolated finite n-dimensional quantum system is fully described by a
positive-semidefinite hermitian matrix ρ ∈ Hn with unit trace. Such
a matrix is called a density operator. Estimating the density operator
of a given quantum system is an important task in quantum physics
known as quantum state tomography [28], [29]. When performing
this task, it is highly desirable to exploit additional structure – if
present – especially when n is large5. One such structural property –
often encountered in actual experiments – is approximate purity, i.e.
the density operator ρ is well approximated by a low rank matrix.
Performing quantum state tomography under the prior assumption of
approximate purity therefore constitutes a particular instance of low
rank matrix recovery [31], [32].

The dynamics of an isolated quantum system – i.e. some physical
evolution – corresponds to a unitary transformation ρ 7→ ρ′ = UρU∗

of the system’s density operator ρ.
Finally, after preparing a quantum system ρ and letting it undergo

some physical evolution U , a typical experiment is terminated
by performing a measurement on the resulting system ρ′. While
substantially more general types of measurements are possible, non-
degenerate projective measurements constitute a particular important
subclass. Each such measurement is described by a non-degenerate
hermitian matrix M =

∑n
i=1 λibib

∗
i with eigenvalues λi ∈ R and

a corresponding orthonormal eigenbasis {b1, . . . , bn} ⊂ Cn. Upon
performing such a measurement on a system described by ρ, quantum
mechanics postulates that the probability of obtaining the outcome λi
is given by

p(λi, ρ) = tr (bib
∗
i ρ) = 〈bi, ρ bi〉.

5Nowadays, experimental physicists are able to create and control multi-partite
quantum systems of overall dimension n = 28 in their labs [30]. This results in a
density operator of size 256× 256 (a priori 65 536 parameters).

Repeating such an experiment (i.e. preparing ρ and measuring M )
many times allows one to estimate the n probabilities p(λi, ρ) ever
more accurately.

Consequently, combining a certain unitary evolution U of a density
operator ρ with performing a non-degenerate projective measurement
M =

∑
i λibib

∗
i , results in estimating n numbers of the form

p (λi, ρ
′) = tr (bib

∗
iUXU

∗) = 〈U∗bi, XU∗bi〉 i = 1, . . . , n. (7)

This exactly corresponds to one orthonormal basis measurement
introduced in (4) (with Dl = U∗) and the corresponding experiment
is sketched in Figure 1. With such a setup at hand, Theorem 2 yields
the following corollary relevant for quantum state tomography.

ρ U M

Fig. 1. Pictorial description of a typical quantum mechanical experiment. In
a first step, a quantum system described by a density operator ρ is produced.
The system then undergoes some physical evolution characterized by a unitary
matrix U : ρ 7→ ρ′ = UρU∗. The experiment is concluded by performing
a measurement M . If M =

∑n
i=1 λibib

∗
i is a non-degenerate projective

measurement, information about ρ′ can be gained via (7) by repeating
the experiment many times and inferring the probabilities p(λi, ρ

′) of the
individual measurement outcomes λi occurring.

Corollary 3 (Quantum state tomography from sufficiently random
evolutions). Let ρ be a density operator of rank r ≤ n and let M =∑n

i=1 λibib
∗
i denote a fixed non-degenerate projective measurement.

Then, L = Cr log3(n) independent instances of the basic experimental
protocol described in Figure 1 suffice to recover ρ via (2) with high
probability, provided that the unitary evolutions are chosen from a
sufficiently generic set – e.g. a unitary 2 log(n)-design.

Some remarks on the practicality of the protocol presented in
Corollary 3 may be appropriate: The postulates of quantum mechanics
demand that each instance of the scenario depicted in Figure 1 needs
to be repeated many times in order to infer the resulting probability
distribution. This obstacle is of a fundamental nature and cannot easily
be overcome. However, when it comes to imposing evolutions, some
unitaries are considerably more challenging to realize than others.
While the effort for implementing a generic Haar-random unitary
evolution is considerable, implementing an evolution corresponding to
a random element of a weighted, approximate unitary t-design can be
done much more easily [33]. Practicality issues of this type were our
main motivation for focusing on t-designs with basis structure, as they
include orbits {Uib1, . . . , Uibn}Ni=1 of any orthonormal basis under a
the action of a unitary t-design as a special case. Consequently, the
results in [33] assure that the L different instances of the experiment
proposed in Corollary 3 can be implemented in a practical way6.

Note that Corollary 3 is not the first approach to use low rank
matrix recovery techniques for quantum state tomography. Up to
now, recovery of approximately pure density operators by means
of the convex optimization problem (2) has been established for

6Technically, this conclusion is only valid if Theorem 2 remains true for weighted,
approximate t-designs with basis structure. That this is indeed the case, will be
established elsewhere.
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independently chosen (generalized) Pauli measurements [5], [31]
which can be implemented in a practical way for various experimental
setups. For this type of measurements, the statistics is well understood
[32], uniform recovery guarantees have been established [6] and the
procedure has been tested in experiments [34]. However, all the exist-
ing results manifestly require performing at least m = C ′rn log(n)
independently chosen Pauli-type measurements, each of which can
be interpreted as a highly degenerate projective measurement7. Here,
we propose and establish a novel approach that goes beyond the
Pauli setting and exploits a much more fine-grained measurement
outcome statistics. Arguably, our protocol requires a more complicated
experimental setup and the theoretical assertions are weaker (so far),
but it gets by with only L = Cr log3(n) different measurement
settings.

IV. NUMERICAL EXPERIMENTS

Finally, we complement our theoretical observations and claims
with numerical experiments. These were implemented in Matlab, using
CVX [35]. To this end, we used stabilizers states [27, Chapter 10.5] –
a highly structured union of orthonormal bases that forms a 3-design
in power-of-two-dimensions [24] (this is false for other dimensions).
Due to their rich combinatorial structure, choosing one stabilizer basis
independently at random can be implemented efficiently and we have
used this in our numerical simulations. The results for dimensions
n = 16 and n = 32 are depicted in Figure 2. In each case we ran
a total of 30 independent experiments for matrix ranks between 1
and 3n/4 (x-axis) and the number L of measured stabilizer bases
ranging from 1 to 70 and 1 to 120, respectively (y-axis). For each
experiment we first constructed a rank-r test matrix X =

∑r
i=1 viv

∗
i ,

where each vi ∈ Cn was a standard Gaussian random vector and
renormalized X to Frobenius norm one. We then chose L stabilizer
bases uniformly at random and for each such basis, we evaluated
the n measurement outcomes y1,l, . . . , yn,l according to (5). Using
these Ln data points, we ran the convex optimization (2) and declared
the recovery a “success” if the Frobenius-norm distance between the
reconstructed matrix X] and the true test signal X was smaller than
10−3. Figure 2 illustrates the resulting empirical success probability
for dimensions n = 16 and n = 32: black corresponds to only failures,
white to exclusively successes.
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[2] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization,”
Found. Comput. Math., vol. 9, no. 6, pp. 717–772, 2009.

[3] E. J. Candès and Y. Plan, “Tight oracle bounds for low-rank matrix recovery
from a minimal number of random measurements,” IEEE Trans. Inform. Theory,
vol. 57, no. 4, pp. 2342–2359, 2011.

[4] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization.” SIAM Rev., vol. 52, pp.
471–501, 2010.

[5] D. Gross, “Recovering low-rank matrices from few coefficients in any basis,”
IEEE Trans. Inform. Theory, vol. 57, pp. 1548–1566, 2011.

[6] Y.-K. Liu, “Universal low-rank matrix recovery from pauli measurements,” Adv.
Neural Inf. Process. Syst., pp. 1638–1646, 2011.

170



[7] A. Ahmed, B. Recht, and J. Romberg, “Blind deconvolution using convex
programming,” preprint, 2012.

[8] Y. Chen, “Incoherence-optimal matrix completion,” preprint arXiv:1310.0154,
2013.

[9] R. Balan, B. G. Bodmann, P. G. Casazza, and D. Edidin, “Painless reconstruction
from magnitudes of frame coefficients.” J. Fourier Anal. Appl., vol. 15, pp.
488–501, 2009.

[10] E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via
matrix completion,” SIAM J. Imaging Sci., vol. 6, pp. 199–225, 2013.

[11] E. J. Candès and T. Tao, “The power of convex relaxation: Near-optimal matrix
completion,” IEEE Trans. Inform. Theory, vol. 56, pp. 2053–2080, 2010.

[12] E. J. Candès, T. Strohmer, and V. Voroninski, “Phaselift: exact and stable signal
recovery from magnitude measurements via convex programming.” Commun.
Pure Appl. Math., vol. 66, pp. 1241–1274, 2013.

[13] D. Gross, F. Krahmer, and R. Kueng, “A partial derandomization of PhaseLift
using spherical designs,” J. Fourier Anal. Appl., vol. 21, pp. 229–266, 2015.

[14] E. Candès and X. Li, “Solving quadratic equations via PhaseLift when there are
about as many equations as unknowns,” Found. Comput. Math., pp. 1–10, 2013.

[15] R. Kueng, H. Rauhut, and U. Terstiege, “Low rank matrix recovery from rank
one measurements,” preprint arXiv:1410.6913, 2014.

[16] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval from coded diffraction
patterns,” Appl. Comput. Harmon. Anal., 2014.

[17] D. Gross, F. Krahmer, and R. Kueng, “Improved recovery guarantees for phase
retrieval from coded diffraction patterns,” Appl. Comput. Harmon. Anal., to appear,
preprint arXiv:1402.6286.

[18] B. Alexeev, A. S. Bandeira, M. Fickus, and D. G. Mixon, “Phase retrieval with
polarization,” SIAM J. Imaging Sci., vol. 7, pp. 35–66, 2014.

[19] P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating
minimization,” in Advances in Neural Information Processing Systems, 2013, pp.
2796–2804.

[20] E. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval via wirtinger flow:
Theory and algorithms,” preprint arXiv:1407.1065, 2014.

[21] P. Delsarte, J. Goethals, and J. Seidel, “Spherical codes and designs.” Geom.
Dedicata, vol. 6, pp. 363–388, 1977.

[22] R. Kueng, D. Gross, and F. Krahmer, “Spherical designs as a tool for derandom-
ization: The case of PhaseLift,” in 11th international conference on Sampling
Theory and Applications (SampTA 2015), Washington, USA, May 2015.

[23] A. Klappenecker and M. Rotteler, “Mutually unbiased bases are complex projective
2-designs,” in 2005 IEEE International Symposium on Information Theory (ISIT),
Vols 1 and 2, 2005, pp. 1740–1744.

[24] R. Kueng and D. Gross, “Stabilizer states are complex projective 3-designs in
qubit dimensions,” in preparation, 2015.

[25] C. Dankert, R. Cleve, J. Emerson, and E. Livine, “Exact and approximate unitary
2-designs and their application to fidelity estimation,” Phys. Rev. A, vol. 80, no. 1,
p. 012304, 2009.

[26] D. Gross, K. Audenaert, and J. Eisert, “Evenly distributed unitaries: on the
structure of unitary designs.” J. Math. Phys., vol. 48, pp. 052 104, 22, 2007.

[27] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information.
Cambridge university press, 2010.

[28] K. Banaszek, M. Cramer, and D. Gross, “Focus on quantum tomography,” New J.
Phys., vol. 15, p. 125020, 2013.

[29] C. Ferrie and R. Kueng, “Have you been using the wrong estimator? These guys
bound average fidelity using this one weird trick von Neumann didn’t want you
to know,” preprint arXiv:1503.00677, 2015.

[30] P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint,
M. F. Brandl, V. Nebendahl, C. F. Roos et al., “A quantum information processor
with trapped ions,” New J. Phys., vol. 15, no. 12, p. 123012, 2013.

[31] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “state tomography
via compressed sensing,” Phys. Rev. Lett., vol. 105, p. 150401, 2010.

[32] S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, “Quantum tomography via
compressed sensing: error bounds, sample complexity and efficient estimators,”
New J. Phys., vol. 14, p. 095022, 2012.

[33] F. G. Brandao, A. W. Harrow, and M. Horodecki, “Local random quantum circuits
are approximate polynomial-designs,” preprint arXiv:1208.0692, 2012.
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Abstract

Compressed sensing is the art of reconstructing a sparse vector from its inner products
with respect to a small set of randomly chosen measurement vectors. It is usually
assumed that the ensemble of measurement vectors is inisotropic positionin the sense
that the associated covariance matrix is proportional to the identity matrix. In this
paper, we establish bounds on the number of required measurements in theanisotropic
case, where the ensemble of measurement vectors possesses anon-trivial covariance
matrix. Essentially, we find that the required sampling rategrows proportionally to the
condition number of the covariance matrix. In contrast to other recent contributions to
this problem, our arguments do not rely on anyrestricted isometry properties(RIP’s),
but rather on ideas from convex geometry which have been systematically studied in
the theory of low-rank matrix recovery. This allows for a simple argument and slightly
improved bounds, but may lead to a worse dependency on noise (which we do not
consider in the present paper).

Keywords: Compressed sensing,ℓ1 minimization, the LASSO, the Dantzig selector,
restricted isometries, anisotropic ensembles, sparse regression, operator Bernstein
inequalities, non-commutative large deviation estimates, the golfing scheme. Subject
Classification: (94A12, 60D05, 90C25).

1. Introduction and Results

Compressed sensing is a highly active research field in statistics and signal analysis
[1, 2, 3, 4]. It can be thought of as being concerned with establishing Nyquist-type
sampling theorems for signals which are sparse, rather thanband-limited.

More precisely, letx ∈ Cn be a vector with no more thans non-zero entries (i.e.x
is s-sparse). Suppose we have no information aboutx apart from its sparsity and the
inner products〈ai, x〉, i = 1, . . . ,m betweenx andm ≪ n vectorsai. The central
question is: under what conditions onm and theai’s is it possible to uniquely and
computationally efficiently recoverx? Early celebrated results [1, 2, 3] established e.g.
that if the measurement vectors{ai}mi=1 are randomly chosen discrete Fourier vectors

1Contact: www.qc.uni-freiburg.de
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andm = O(s log n), then, with high probability, the unknown vectorx is the unique
minimizer of theℓ1-norm in the affine space defined by the known inner products.

The precise statement of our results in this introductory section will follow very
closely the exhibition in [5]. The reason for this approach,and the relation of the
present paper with other work (in particular [6]), is statedin Section 2.

We make the following definitions: LetF be a distribution of random vectors on
C

n. Let a1, . . . , am be a sequence of i.i.d. random vectors drawn fromF . Define the
sampling matrix

A :=
1√
m

m∑

i=1

eia
∗
i ,

wheree1, . . . , em denote the canonical basis vectors ofCm. Once more, letx be ans-
sparse vector. We aim to prove that with high probability thesolutionx⋆ to the convex
optimization problem

min
x̄∈Cn

‖x̄‖1 subject to Ax̄ = Ax, (1)

is unique and equal tox given that the number of measurementsm is large enough.
It turns out that the required size ofm depends only on two simple properties of

the ensembleF . These are identified below:

CompletenessWe require that the ensembleF is completein the sense that theco-
variance matrixΣ = E[aa∗]1/2 is invertible. Thecondition number2 of Σ will
be denoted byκ.

Most of the previous work has focused on the case where the covariance matrix is
proportional to the identity matrixΣ ∝ 1 (however, see Section 2). We refer to this
case as theisotropicone.

In order to describe the second relevant property of the ensemble, we have to fix
a scale. Indeed, note that the minimizer of the convex problem (1) is invariant under
re-scaling of the ensemble (i.e. substitutingai by νai for a numberν 6= 0). The
same is true for the condition numberκ. Thus, we are free to pick an advantageous
scale, without affecting the notions introduced so far. In the isotropic case, a natural
normalization convention [5] consists in requiring thatE[aa∗] = 1. This option is not
available in the more general, anisotropic case, we are interested in here. Instead, we
will implicitly demand from now that

λmax(E[aa
∗]) = λmin(E[aa

∗])−1, (2)

whereλmax, λmin denote the maximal and the minimal eigenvalue respectively. In the
isotropic case, this reduces to the normalizationE[aa∗] = 1 used in [5].

The fact that (2) can always be achieved (and further properties that follow from it)
will be established in Lemma 8 below. With this convention, we define:

2 Recall that the condition number of a matrix is the ratio between its largest and its smallest singular
value.
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Incoherence The incoherence parameteris the smallest numberµ such that

max
1≤i≤n

|〈a, ei〉|2 ≤ µ, max
1≤i≤n

∣∣〈a,E[aa∗]−1 ei
〉∣∣2 ≤ µ (3)

holds almost surely.

The previously known isotropic result we aim to generalize is:

Theorem 1([5]). Letx be ans-sparse vector inRn. If we demand isotropy (E[aa∗] =
1) and if the number of measurements fulfills

m ≥ Cωµs logn,

then the solutionx⋆ of the convex program (1) is unique and equal tox with probability
at least1− 5

n − e−ω.
In the statement above,Cω may be chosen asC0 (1 + ω) for some positive numer-

ical constantC0

Our main theorem reads:

Theorem 2 (Main Theorem). Let x ∈ Cn be ans-sparse vector, letω ≥ 1. If the
number of measurements fulfills

m ≥ Cκµω2s logn,

then the solutionx⋆ of the convex program (1) is unique and equal tox with probability
at least1− e−ω.

In the statement above,C is a constant less than18044. Forn, s sufficiently large,
the value may be improved toC ≤ 228. We have made no attempts to optimize these
constants.

Comparing these two theorems, we see that the effect of dropping the isotropy
constraint on the ensemble can essentially be captured in a single, simple quantity:
the condition numberκ of the covariance matrix. All other minor differences between
Theorem 1 and Theorem 2 result from slightly different prooftechniques.

1.1. Improvements

A first way of improving the result is based on a definition borrowed from [6, Def.
1.2] 3:

Definition 3. Thelargest and smallests-sparse eigenvalueof a matrixX are given by

λmax(s,X) := max
v,‖v‖0≤s

‖Xv‖2
‖v‖2

, λmin(s,X) := min
v,‖v‖0≤s

‖Xv‖2
‖v‖2

,

3 In fact, our definition differs very slightly from [6]: theirρmax(s,X) is the square of ourλmax(s,X).
We opted for this change because the notions defined here reduce to the ordinary eigenvalues in the case of
s = n.
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where‖v‖0 = |supp(v)| denotes the cardinality of the support (i.e. the sparsity) of v.
Thes-sparse condition number4 ofX is

cond(s,X) :=
λmax(s,X)

λmin(s,X)
.

Based on this notion, one can state a strictly stronger version of the Main Theorem
(which is the form we will prove in Section 3):

Theorem 4. With

κs := max
{
cond(s,Σ), cond(s,Σ−1)

}
,

the conclusion of the main Theorem 2 continues to hold if the lower bound onm is
weakened to

m ≥ Cµκs ω
2s logn,

for the same constantC.

We further suspect that the second incoherence condition in(3) can be relaxed.
Two alternative bounds not relying on that condition are stated in Proposition 5 below.
(The modifications of our proof necessary to arrive at these improved estimates will be
sketched after Lemma 9).

Proposition 5. LetK be a constant such that

2
∥∥[aa∗,E[aa∗]−1]

∥∥
∞ ≤ K

holds almost surely, where[·, ·] denotes the commutator ([A,B] = AB − BA) and
‖ · ‖∞ is the operator norm.

If the requirement (3) is not necessarily fulfilled, the conclusions of Theorem 2
remain valid if the sampling rate is bounded below by either

m ≥ Cκµω2s2 logn (4)

or
m ≥ C(κµs+K)ω2 logn. (5)

The commutator bound (5) is particularly relevant for ensembles corresponding to
non-uniform samples from an orthogonal basis. In that case,E[aa∗] andaa∗ commute
with probability one, so thatK may be chosen to be zero.

There is another degree of freedom which we have not yet systematically explored:
Note that the minimizer of the convex optimization (1) does not change if we re-scale

4 Estimatingcond(s,X) is equivalent to computing the RIP constants ofX (c.f. e.g. [7]). There are
currently no tractable methods known for computing these numbers for any concrete set of matrices. We want
to emphasize that while the mathematical concept of “RIP constants” appears in our sharpened result, its use
here is completely different from the way it would be employed in RIP-based approaches to compressed
sensing. To wit, we apply the concept to theexpected sensing matrix(and its inverse), but not to any actual
instances.
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individual vectorsai 7→ νiai for some set of non-zero numbersνi. While we have
chosen aglobalscale for the covariance matrix (c.f. Lemma 8), the individual weights
remain free parameters that may be used to optimize the sampling rate. Pursuing this
problem further seems likely to be fruitful.

We remark that the incoherence conditions can be relaxed to hold only with high
probability. This opens up our results to, for example, the case of Gaussian measure-
ment vectors. The details can be developed in complete analogy to Ref. [5, Appendix
B].

Lastly, all statements remain true if the measurement vectors are drawn “without
replacement” instead of independently – c.f. [8] for details.

2. Relation with previous work and history

Most results on sparse vector recovery have relied on certain conditions that quan-
tify how much a given sampling matrixA distorts the geometry of the set of all sparse
vectors. By far the most prominent example in that regard is the restricted isometry
property(RIP) [3, 6] which measures the extent to whichA deviates from preserving
Euclidean distances between sparse vectors. Conceputallyclose variations of the RIP
include therestricted eigenvalue conditionintroduced in [9], or therestricted corre-
lation assumption[10]. Another example is thewidth propertyadvanced in [11]—a
Banach space-theoretic condition that seems to be weaker than the RIP.

From roughly 2008 on, the conceptually strongly related problem of recovering a
low-rank matrix from few expansion coefficients with respect to a fixed matrix basis has
come more and more into focus [12, 13]. There seems to be no easy way to directly
translate the geometric approaches mentioned above to the general low-rank matrix
recovery problem. Instead, the pioneering publications onthe matrix problem used
fairly elaborate methods from convex duality theory [12, 13]. (However, c.f. [14, 15,
16] for interesting special cases where RIP-based techniquesareapplicable to low-rank
matrix recovery problems; and [17] for a related “restricted strong convexity” property
with consequences for matrix recovery).

In [18, 19] the second author and his collaborators introduced a simplified approach
to the low-rank matrix recovery problem. While these works still build on the convex
framework of [12, 13], they incorporate several new ideas. These include the use of
non-commutative large deviation theorems originating from quantum information the-
ory [20, 21], randomized constructions based on i.i.d. samples of the measurement
vectors, and a certain iterative “golfing scheme” for the construction of inexact dual
certificates. These techniques were later modified and adapted to the original sparse-
vector setting in [5]. This showed that the conceptual closeness of the matrix and the
vector theory may be used to devise very similar proofs.

This “RIPless” approach to compressed sensing leads arguably to simpler proofs
and gives tighter bounds at least for the noise-free recovery problem. As far as we
know, RIP-based arguments still perform superior in the important noisy regime.

The work [5] did not include a systematic study of non-isotropic ensembles (how-
ever, “small” deviations from isotropy were discussed in Appendix B). In fact, E.
Candès [5] suggested to us the problem of finding a generalization of the golfing
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scheme that could cope with anisotropic ensembles. This hasbeen achieved by the
first author of this paper during a research project under thesupervision of the second
author [22]. This explains the close relation between [5] and the present work.

An analysis of anisotropic compressed sensing within the original RIP framework
has been carried out by other authors, most notably in [6]. Since their paper does not
directly address the noise-free case, a direct comparison of statements is difficult. The
closest result to ours seems to appear in Section 1.3, where abound of

m ≥ O
(
sM2 logn log3(s logn)

)

for the sampling rate is given. The quantityM is an upper bound on the largest coeffi-
cient for the measurement vectorsai, related to our parameterµ. Thebig-Ohnotation
hides a constant proportional toκ (ρ−1 in the language of [6]). Thus, the basic structure
of the solutions is very similar. However, some important differences are these:

• We do not incur thelog3-term, which is a major advantage of our method. Up to
a constant factor, our required sampling rate corresponds to the theoretical lower
limit.

• The result in [6] holdsuniformly in the sense that with their probability of suc-
cess, one obtains a sampling matrix which works simultaneously for all sparse
vectors. This is not the case for us.

• We have proved no results on noise-resilience. While, following [5], it should be
straight-forward to do so, the results may be worse than the RIP-based ones in
[6].

• The proof methods are completely different.

3. Proof

The proof is conceptually close to [5], which in turn closelyresembles [19]. Here
we give a largely self-contained presentation.

3.1. Notation

Throughout this paper, we will use the following conventions:
If a statements holds almost surely, we will abbreviate thisby a.s. In the case of vectors,
‖ · ‖p denotes theℓp-norm, whereas in the operator case‖ · ‖p refers to the Schatten-p
norm (i.e. theℓp-norm of the singular values). The letterz will always denote a vector
in Cn supported on a setT of cardinality at mosts (i.e.z is s-sparse).T c shall denote
the complement ofT , andPT (PT c) refers to the orthogonal projector onto the set of
all vectors supported onT (T c). Finally we will use the following technical definitions:

X = (E[aa∗])−1 = Σ−2, XT = PTXPT .

6

178



3.2. Large deviation bounds

A central role in the argument is played by certain large deviation bounds for sums
of matrix-valued random variables. These have been introduced in [20] in the con-
text of quantum information theory. The first application tomatrix completion and
compressed sensing problems, as well as the first “Bernsteinversion” taking variance
information into account, appeared in [18, 19]. The versionwe will be making use of
derives from Theorem 1.6 in [21].

Proposition 6 (Matrix Bernstein inequality [21]). Consider a finite sequence{Mk} ∈
Cd×d of independent, random matrices. Assume that each random matrix satisfies
E [Mk] = 0 and‖Mk‖∞ ≤ B a.s. and define

σ2 := max

{
‖
∑

k

E (MkM
∗
k ) ‖∞, ‖

∑

k

E (M∗
kMk) ‖∞

}
.

Then for allt ≥ 0,

Pr

(
‖
∑

k

Mk‖∞ ≥ t

)
≤ 2d exp

(
− t2/2

σ2 +Bt/3

)
. (6)

We will also require a vector-valued deviation estimate. While one could in prin-
ciple obtain such a statement by applying Proposition 6 to diagonal matrices, a di-
rect argument does away with the dimension factord on the r.h.s. of (6). This will
save a logarithmic factor in the sampling rate of the Main Theorem. The particular
vector-valued Bernstein inequality below is based on the exposition in [23] (Chapter
6.3, equation (6.12)), with a direct proof appearing in [19].

Proposition 7 (Vector Bernstein inequality). Let {gk} ∈ Cd be a finite sequence of
independent random vectors. Suppose thatE [gk] = 0 and‖gk‖2 ≤ B a.s. and put

σ2 ≥∑k E
[
‖gk‖22

]
. Then for all0 ≤ t ≤ σ2/B:

Pr

(∥∥∥∥∥
∑

k

gk

∥∥∥∥∥
2

≥ t

)
≤ exp

(
− t2

8σ2
+

1

4

)
.

3.3. Fundamental estimates

We adopt the structure and nomenclature of this section from[5]. The following
elementary bounds will be used repeatedly:

|〈ak, z〉|2 ≤ sµ‖z‖22, |〈ak, Xz〉|2 ≤ sµ‖z‖22, (7)

‖PTak‖22 ≤ µs, ‖PTXak‖22 ≤ µs. (8)

Also, we will always assume thatm ≥ s.
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Lemma 8 (Scaling). Let ã be a random vector such thatE[ãã∗] is invertible.
There is a numberν such that, witha := νã, it holds that

κs = λmax(s,E[aa
∗]) = λmin(s,E[aa

∗])−1

for all 1 ≤ s ≤ n. This resealed ensemble fulfills:

κsµ ≥ 1. (9)

Proof. The first assertion follows immediately for

ν =
(
λmax(s,E[ãã

∗])λmin(s,E[ãã
∗])
)− 1

4 .

For the second claim: By definitionµ ≥ maxi |〈a, ei〉|2 holds almost surely, so that in
particular

µ ≥ E

[
max

i
|〈a, ei〉|2

]
.

For everyi, the function
a 7→ |〈a, ei〉|2

is convex, which implies that

a 7→ max
i

|〈a, ei〉|2 = max
i

e∗i (aa
∗)ei

is convex (as the pointwise maximum of convex functions). Hence, by Jensen’s in-
equality,

E

[
max

i
|〈a, ei〉|2

]
≥ max

i
e∗iE[aa

∗]ei = max
i

〈ei,E[aa∗]ei〉
≥ λmin (1,E[aa

∗]) ≥ λmin (s,E[aa
∗]) .

Thereforeµ ≥ λmin (s,E[aa
∗]). Together withκs = λ−1

min (s,E[aa
∗]), this implies

µκs ≥ 1.

The estimates in this proof are tight in the sense that there are ensembles for which
each inequality above turns into an equality. A straightforward example for such an en-
semble is given by picking super-normalized Fourier basis vectorsfk (with coefficients
(fk)l = e2πi

kl
n ) according to the uniform probability distribution.

Lemma 9 (Local isometry). LetT andPT be as in the notation section. Then for each
0 ≤ τ ≤ 1

2 :

Pr (‖PT (XA∗A− 1)PT ‖∞ ≥ τ) ≤ 2s exp

(
− m

sµκs

τ2

2 (1 + 2τ/3)

)

Proof. Let us decompose the relevant expression:

PT (XA∗A− 1)PT =
1

m

m∑

i=1

Mk,

8
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whereMk := PT (Xaka
∗
k − 1)PT . Note thatE[Mk] = 0.

We aim to apply the Matrix Bernstein inequality. To this end,we estimate

‖Mk‖∞ ≤ ‖PTXaka
∗
kPT ‖2 + 1

= ‖PTXak‖2 ‖a∗kPT ‖2 + 1

≤ µs+ 1 ≤ 2µsκs =: B.

Furthermore:

‖E [MkM
∗
k ]‖∞

= ‖E [(PT (Xaka
∗
k − 1)PT ) (PT (aka

∗
kX − 1)PT )]‖∞

=
∥∥∥E [PTXaka

∗
kPT aka

∗
kXPT ]− E [PTXaka

∗
kPT ]− E [PTaka

∗
kXPT ] + PT

∥∥∥
∞

= ‖E [PT (Xak 〈ak, PTak〉 a∗kX − 1)PT ]‖∞
≤ max (‖µsE [PTXaka

∗
kXPT ]‖∞ , 1)

≤ max (µs ‖XT ‖∞ , 1) ≤ max (µsκs, 1) = µsκs.

Similarly,

‖E [M∗
kMk]‖∞ = ‖E [PT (ak 〈ak, XPTXak〉 a∗k − I)PT ]‖∞

≤ max (‖sµE [PT aka
∗
kPT ]‖∞ , 1) (10)

≤ max
(
sµ
∥∥PTX

−1PT

∥∥
∞ , 1

)
≤ µsκs.

Thus:

max

{
‖

m∑

k=1

E (MkM
∗
k ) ‖∞, ‖

m∑

k=1

E (M∗
kMk) ‖∞

}
≤ msµκs =: σ2.

Applying the Matrix Bernstein inequality fors-dimensional matrices (PT (XA∗A− 1)PT

has rank at mosts) with t = mτ yields the desired result.

The estimate (10) is the only place in the proof where the second incoherence prop-
erty in (3) is essentially used. A careful analysis shows that in all other cases, one can
do without it, possibly at the price of replacingκs by κ (which is the reason why we
have not spelled it out). In order to obtain the results of Proposition 5, the bound (10)
has to be modified. To arrive at (4), use

‖E [M∗
kMk]‖∞ ≤ E [‖[M∗

kMk]‖∞]

≤ E [‖PTaka
∗
kPT 〈ak, XPTXak〉‖∞]

≤ sµE [〈ak, XPTXak〉] = sµE [tr (aka
∗
kXPTX)]

= sµ tr
(
X−1XPTX

)
= sµ tr (PTX) ≤ s2µκs.

9

181



And for (5):

‖E [PT aka
∗
kXPTXaka

∗
kPT ]‖∞

=
∥∥E [PTXaka

∗
kPTXaka

∗
kPT ] + E [PT [aka

∗
k, X ]PTXaka

∗
kPT ]

∥∥
∞

≤ ‖E [PTXaka
∗
kPT aka

∗
kXPT ]‖∞ + 2 ‖E [PT [aka

∗
k, X ]PTXaka

∗
kPT ]‖∞

≤ µsκs +K ‖E [PTXaka
∗
kPT ] ‖∞

= µsκs +K ‖PTXX−1PT ‖∞
= µsκs +K.

Lemma 10 (Low-distortion). Let z, T, PT be as in the notation section. For each
0 ≤ τ ≤ 1 it holds that

Pr
(
‖PT (1−A∗AX) z‖2 ≥ τ ‖z‖2

)
≤ exp

(
− mτ2

16sµκs
+

1

4

)
.

Proof. The structure of the proof closely follows the one of Lemma 9.Set

gk := PT (1− aka
∗
kX) z.

We bound

‖gk‖2 = ‖PT (1− aka
∗
kX)z‖2

≤ ‖z‖2 + ‖PTak〈ak, Xz〉‖2
≤ ‖z‖2 + sµ‖z‖2 ≤ 2sµκs‖z‖2 =: B

and

E[‖gk‖22] ≤ E[‖PT ak〈ak, Xz〉‖22] + ‖z‖22
= E

[
‖PTak‖22|〈ak, Xz〉|2

]
+ ‖z‖22

≤ sµE
[
〈Xz, ak〉〈ak, Xz〉

]
+ ‖z‖22

= sµ〈Xz,E[aka
∗
k]Xz〉

]
+ ‖z‖22

= sµ〈Xz, z〉+ ‖z‖22 ≤ 2sµκs‖z‖22

so that
m∑

k=1

E[‖gk‖22] ≤ 2msµκs‖z‖22 =: σ2

and thusσ
2

B = m‖z‖2. The advertised statement follows by applying the vector Bern-
stein inequality fort = mτ .

Lemma 11(Off-support incoherence). Let z, PT c again be as in the notation section.
Then for eachτ ≥ 0:

Pr
(
‖PT cA∗AXz‖∞ ≥ τ ‖z‖2

)
≤ 2n exp

(
− 3mτ2

2µκs(3 +
√
sτ)

)
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Proof. Fix i ∈ T c and use the following decomposition:

〈ei, A∗AXz〉 = 1

m

m∑

i=1

Mk,

whereMk := 〈ei, aka∗kXz〉 = 〈ei, ak〉〈ak, Xz〉. Note that we have:

E[Mk] = 〈ei,E[aka∗k]Xz〉 = 〈ei, z〉 = 0,

becauseei ∈ T c. Bound

|Mk| = |〈ei, ak〉〈ak, Xz〉| ≤ √
sµκs‖z‖2 =: B,

and

E[MkM
∗
k ] = E[M∗

kMk] = E[|〈ak, ei〉|2|〈ak, Xz〉|2]
≤ µE[〈Xz, aka

∗
kXz〉] = µ〈Xz, z〉

≤ µ‖XT‖∞‖z‖22 ≤ µκs‖z‖22.

Therefore we can setσ2 := mµκs‖z‖22. Applying the Matrix Bernstein inequality for
d = 1 and the union bound over alli ∈ T c yields the claim.

Lemma 12 (Uniform off-support incoherence). Let T c, PT be as in the notation sec-
tion. For 0 ≤ τ ≤ 1 we have

Pr

(
max
i∈T c

‖PTXA∗Aei‖2 ≥ τ

)
≤ n exp

(
− mτ2

8sµκs
+

1

4

)

Proof. Fix i ∈ T c and decompose:

PTXA∗Aei =
1

m

m∑

k=1

gk,

wheregk := 〈ak, ei〉PTXak. It holds thatE[gk] = 0. Next, bound

‖gk‖2 = |〈ak, ei〉|‖PTXak‖2 ≤ sµ =: B.

Furthermore:

E[‖gk‖22] ≤
∑

i∈T

µE[〈ei, Xaka
∗
kXei〉] ≤

∑

i∈T

µ‖XT‖∞ ≤ sµκs.

We can therefore setσ2 := msµκs and apply the Vector Bernstein inequality fort =
mτ . Noting thatσ2/B = mκs ≥ m finishes the proof.
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3.4. Convex geometry

Our aim is to prove that the solutionx⋆ to the optimization problem (1) equals the
unknown vectorx. One way of assuring this is by exhibiting adual certificate[24].
This method was first introduced in [2] and is now standard. Wewill use a relaxed
version of this first introduced in [19] and later adapted from matrices to vectors in [5].
Our version further adapts the statement to the anisotropicsetting.

Lemma 13(Inexact duality). Letx ∈ Cn be as-sparse vector, letT = supp (x).
Assume that

‖ (PTXA∗APT )
−1 ‖∞ ≤ 2, (11)

maxi∈T c‖PTXA∗Aei‖2 ≤ 1 (12)

and that there is a vectorv in the row space ofA obeying

‖vT − sgn (x) ‖2 ≤ 1

4
(13)

‖vT c‖∞ ≤ 1

4
. (14)

Then the solutionx⋆ of the convex program (1) is unique and equal tox.

Proof. Let x̂ = x + h be a solution of the minimization procedure. We note that
feasibility requiresAh = 0. To prove the claim it suffices to showh = 0. Observe:

‖x̂‖1 = ‖x+ hT ‖1 + ‖hT c‖1
= 〈sgn (x+ hT ) , x+ hT 〉+ ‖hT c‖1
≥ 〈sgn (x) , x〉+ 〈sgn (x) , hT 〉+ ‖hT c‖1
≥ ‖x‖1 − |〈sgn (x) , hT 〉|+ ‖hT c‖1.

Feasibility requires〈v, h〉 = 0 (sincev is in the row space ofA) and therefore:

|〈sgn (x) , hT 〉| = |〈sgn (x) − vT , hT 〉+ 〈vT , hT 〉|
= |〈sgn (x) − vT , hT 〉 − 〈vT c , hT c〉|
≤ |〈sgn (x) − vT , hT 〉|+ |〈vT c , hT c〉|
≤ ‖sgn (x)− vT ‖2‖hT ‖2 + |〈vT c , hT c〉|

≤ 1

4
‖hT ‖2 + |〈vT c , hT c〉|,

where we have used (13). Together with:

|〈vT c , hT c〉| ≤ ‖vT c‖∞‖hT c‖1 ≤
1

4
‖hT c‖1,

this implies:

|〈sgn (x) , hT 〉| ≤
1

4
(‖hT‖2 + ‖hT c‖1) .
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Furthermore due to (11) and (12) it holds that

‖hT ‖2 = ‖ (PTXA∗APT )
−1

(PTXA∗APT )hT ‖2
= ‖ (PTXA∗APT )

−1
(PTXA∗A) (h− hT c) ‖2

= ‖ − (PTXA∗APT )
−1

(PTXA∗A)hT c‖2
≤ 2‖PTXA∗APT ch‖2
≤ 2maxi∈T c‖PTXA∗Aei‖2‖hT c‖1
≤ 2‖hT c‖1,

All this together implies:

‖x̂‖1 ≥ ‖x‖1 −
1

4
‖hT ‖2 +

3

4
‖hT c‖1

≥ ‖x‖1 +
1

4
‖hT c‖1.

Consequently‖x̂‖1 = ‖x‖1 demands‖hT c‖1 = 0, which in turn implies‖hT‖2 = 0,
because‖hT ‖2 ≤ 2‖hT c‖1. Thereforeh = 0 which corresponds to a unique minimizer
(x̂ = x).

3.5. Construction of the certificate

It remains to show that a dual certificatev as described in Lemma 13 can indeed be
constructed. We will prove:

Lemma 14. Letx ∈ Cn be ans-sparse vector, letω ≥ 1. If the number of measure-
ments fulfills

m ≥ 18044κsµω
2s logn,

then with probability at least1− e−ω, the constraints (11, 12) will hold and a vectorv
with the properties required for Lemma 13 exists.

This lemma immediately implies the Main Theorem.
The proof employs a recursive procedure (dubbed the “golfingscheme”) to construct
a sequencevi of vectors converging to a dual certificate with high probability. The
technique has been developed in [18, 19] in the context of low-rank matrix recovery
problems and has later been refined for compressed sensing in[5]. Here, we further
modify the construction to handle anisotropic ensembles.

Proof. The recursive scheme consists ofl iterations. Thei-th iteration depends on
three parameters:mi ∈ N; ci, ti ∈ R which will be chosen in the course of the later
analysis. To initialize, set

v0 = 0

(thevi for 1 ≤ i ≤ l will be defined iteratively below). We will use the notation

qi = sgn (x)− PT vi.
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Thei-th step of the scheme proceeds according to the following protocol: We sam-
plemi vectors from the ensembleF . Let Ã be themi × n-matrix whose rows consists
of these vectors. We check whether the following two conditions are met:

‖PT

(
1− m

mi
Ã∗ÃX

)
PT qi−1‖2 ≤ ci‖qi−1‖2, (15)

‖ m

mi
PT cÃ∗ÃXPT qi−1‖∞ ≤ ti‖qi−1‖2. (16)

If so, set

Ai = Ã, vi =
m

mi
A∗

iAiXPT (sgn (x)− vi−1) + vi−1

and proceed to stepi+ 1. If either of (15), (16) fails to hold, repeat thei-th step with a
fresh batch ofmi vectors drawn fromF . Denote the number of repetitions of thei-th
step byri.

We now analyze the properties of the above recursive construction. The following
identities are easily verified by repeating the given transformations inductively:

v := vl =
m

ml
A∗

lAlXPT (sgn(x)− vl−1) + vl−1

=
m

ml
A∗

lAlXPT ql−1 + vl−1

= . . . =

l∑

i=1

m

mi
A∗

iAiXPT qi−1, (17)

qi = sgn(x)− PT vi

= sgn(x)− PT

(
m

mi
A∗

iAiXPT (sgn(x)− vi−1) + vi+1

)

= (sgn(x)− PT vi−1)−
m

mi
A∗

iAiXPT (sgn(x)− vi−1)

= PT

(
1− m

mi
A∗

iAiX

)
qi−1

= . . . =

i∏

j=1

PT

(
1− m

mi
A∗

jAjX

)
PT sgn (x) . (18)
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Together with (15) and (16), one obtains

‖ql‖2 ≤ cl‖ql−1‖2 ≤
l∏

i=1

ci‖q0‖2 =
l∏

i−1

ci‖sgn (x) ‖2 =
√
s

l∏

i=1

ci,

‖vT c‖∞ =

∥∥∥∥∥PT c

(
l∑

i=1

m

mi
A∗

iAiXPT qi−1

)∥∥∥∥∥
∞

≤
l∑

i=1

∥∥∥∥
m

mi
PT cA∗

iAiXPT qi−1

∥∥∥∥
2

≤
l∑

i=1

ti‖qi−1‖2 ≤ √
s


t1 +

l∑

i=2

ti

i−1∏

j=1

cj


 .

Following [19], we choose the parametersl, ci, ti as

l =

⌈
1

2
log2 s

⌉
+ 2, c1 = c2 =

1

2
√
logn

, t1 = t2 =
1

8
√
s
,

and fori ≥ 3

ti =
logn

8
√
s
, ci =

1

2
.

A short calculation then yields

‖vT c‖∞ ≤ 1

4
, ‖v − sgn(xT )‖2 = ‖ql‖2 ≤ 1

4
,

which are conditions (13) and (14).
Next, we need to establish that the total number

l∑

i=1

miri

of sampled vectors remains small with high probability. More precisely, we will bound
the probability

p3 := Pr

(
(r1 > 1) or (r2 > 1) or

l∑

i=1

ri ≥ l′
)

for somel′ to be chosen later.
To that end, denote byp1(i) the probability that (15) fails to hold in any given batch

of the i-th step. Analogously, letp2(i) be the probability of failure for (16). Lemmas
10 and 11 give the estimates

p1 (i) ≤ exp

(
− mic

2
i

16sµκs
+

1

4

)
, p2 (i) ≤ 2n exp

(
− 3mit

2
i

2µκs (3 +
√
sti)

)
.
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We choose

l′ = 4(ω + log 12 +
2

3
l), m1 = m2 = 694κsµωs logn,

and fori ≥ 3
mi = 694κsµωs.

Such a choice can be guaranteed by a total sampling ratem ≥ 18044κsµω
2s logn and

ensures

p1(i) + p2(i) ≤
1

6
e−ω ≤ 1

12

for all i. (It is easily seen that for forn ≫ 1, a bound ofm ≥ 228κsµω
2s logn is

sufficient. The constants appearing here are highly unlikely to be optimal.) Note that

l∑

i=1

ri ≥ l′

only if fewer thanl of the firstl′ batches of vectors satisfied both (15) and (16). This
implies that

Pr

(
l∑

i=1

ri ≥ l′
)

≤ Pr(N ≤ l− 1)Bin(l′, 1112 )
,

where the r.h.s. is the probability of obtaining fewer thanl outcomes in a binomial pro-
cess withl′ repetitions and individual success probability11/12. We bound this quan-
tity using a standard concentration bound from [25] (C. McDiarmid’s section ”Concen-
tration”):

Pr (|Bin (n, p)− np| > τ) ≤ 2 exp

(
− τ2

3np

)
.

This yieldsPr
(∑l

i=1 ri ≥ l′
)
≤ 1

6e
−ω for our choice ofl

′
. Putting things together,

we have

p3 ≤ 3
1

6
e−ω =

1

2
e−ω

according to the union bound. In addition, we have to take into account that properties
(11) and (12) can fail as well. We denote these probabilitiesof failure byp4 andp5.
Lemmas 9 and 12 give:

p4 ≤ 2sexp

(
− 6m

7sµκs

)
, p5 ≤ nexp

(
− m

8sµκs
+

1

4

)
.

Our sampling ratem guaranteesp4 ≤ 1
4e

−ω as well asp5 ≤ 1
4e

−ω. Applying the
union bound now yields our desired overall error bound (p3 + p4 + p5 ≤ e−ω).
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4. Conclusion and Outlook

In this paper, we have shown that proof techniques based on duality theory and the
“golfing scheme” are versatile enough to handle the situation where the ensemble of
measurement vectors is not isotropic.

An obvious future line of research would be to translate these results to the low-
rank matrix recovery problem. Given the high degree of similarity between [19] and
[5], this should be a conceptually straight-forward task. This would further generalize
the scope of this proof method, beyond ortho-normal operator bases [19] and tight
frames [26].

Also, Proposition 5 suggests that the second incoherence property (3) can be re-
laxed or maybe even disposed of. We leave this as an open problem.
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Abstract

We investigate recovery of nonnegative vectors from non–adaptive compressive measurements in the presence

of noise of unknown power. It is known in literature that under additional assumptions on the measurement design

recovery is possible in the noiseless setting with nonnegative least squares without any regularization. We show that

such known uniquenes results carry over to the noisy setting. We present guarantees which hold instantaneously by

establishing the relation to the robust nullspace property. As an important example, we establish that an m×n random

iid. 0/1–valued Bernoulli matrix has with overwhelming probability the robust nullspace property for m = O(s log(n))
and is applicable in the nonnegative case. Our analysis is motivated by applications in wireless network activity

detection.

I. INTRODUCTION

Recovery of lower complexity objects by observations far below the Nyquist rate has applications in physics,

applied math, and many engineering disciplines. Moreover,it is one of the key tools for facing challenges in data

processing (like big data and the Internet of Things), wireless communications (the 5th generation of the mobile

cellular network) and large scale network control. Compressed Sensing (CS), with its origin in the recovery of

sparse or compressible vectors has, in particular, stimulated the research community to investigate further directions

of compressibility and low-dimensional structures which allow the recovery from low-rate samples and with efficient

algorithms. In many applications, the objects of interest exhibit further structural constraints which should by exploited

in reconstuction algorithms. Take, for instance, the following setting which appears naturally in communication

protocols: the components of sparse information carrying vectors are taken from a finite alphabet or the data vectors

are lying in specific subspaces. Similarly, in network traffic estimation and anomaly detection from end-to-end

measurements, the parameters are restricted to particular lower-dimensional domains. Finally, the signals occurring

in imaging problems are typically constrained to non-negative intensities.

Our work is partially inspired by the task of identifiying sparse network activation patterns in a large-scale

asynchronous wireless network: suppose that, in order to indicate its presence, each active device node transmits an

individual sequence into a noisy wireless channel. All such sequences are multiplied with individual, but unknown,
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channel amplitudes1 and finally superimposed at the receiver. The receiver’s task then is to detect all active devices and

the corresponding channel amplitudes from this global superposition (note that each device is uniquely characterized

by the sequene it transmits). This problem can be re-cast as the task of estimating non-negative sparse vectors from

noisy linear observations.

Such non-negative and sparse structures also arise naturally in certain empirical inference problems, like network

tomography [1], [2], statistical tracking (see e.g. [3]) and compressed imaging of intensity patterns [4]. The underlying

mathematical problem has received considerable attention in its own right [5], [6], [7], [8], [9]. It has been shown

that measurement matrices A ∈ Rm×n coming from outwardly s–neighborly polytopes [10] and matrices A ∈M+

whose row span intersects the positive orthant2 [11] maintain an intrinsic uniqueness property for non-negative,

s-sparse vectors even in the underdetermined setting (m < n). Such uniqueness properties in turn allow for entirely

avoiding CS algorithms in the reconstruction step. From an algorithmic point of view, this is highly beneficial.

However, all the statements mentioned above are manifestly focussed on idealized scenarios, where no noise is

present in the sampling procedure.

Motivated by device detection, we shall overcome this idealization and devise recovery protocols that are robust

towards any form of additive noise. Our results have the added benefit that no a-priori bound on the noise step is

required in the reconstruction algorithm.

A. Main Results

Let us introduce some notation and then state our main findings. Throughout our work we endow Rn with the

partial ordering induced by the nonnegative orthant, i.e. x ≤ z if and only if xi ≤ zi for all 1 ≤ i ≤ n. Here,

xi = 〈ei,x〉 are the components of x with respect to the standard basis {ei}ni=1. Similarly, we write x < z if strict

inequality holds in each component. Consequently, we write x ≥ 0 to indicate that x is (entry-wise) nonnegative.

For 1 ≤ p ≤ ∞, we denote the `p–norms of vectors by ‖ · ‖`p and ‖ · ‖ is the usual operator/matrix norm. The

sparsity of a vector x is denoted by ‖x‖`0 := |supp(x)| ≤ s where supp(x) := {i : xi 6= 0} is its support in the

standard basis.

Mathematically, we are interested in recovering sparse, nonnegative vectors x ∈ Rn from m� n erronous linear

measurements of the form yi = aTi x+ei. Here, the vectors ai ∈ Rn model the different measurement operations and

ei is additive noise of arbitrary size and nature. By encompassing all ai’s as rows of a sampling matrix A ∈ Rm×n

and defining y = (y1, . . . , ym)T , as well as e = (e1, . . . , em)T , such a sampling procedure can succingtly be written

as

y = Ax + e. (1)

Several conditions on A are known which are sufficient to ensure that a sparse vector x can be robustly estimated

from measurements y. A famous condition is the restricted isometry property (RIP). A matrix Ã is said to

1This can be justified under certain assumptions like pre-multiplications using channel reciprocity in time–division multiplexing.
2See (7) below for a precise definition.
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be s–RIP, if it acts almost isometrically on s–sparse vectors, meaning that there exists a δs ∈ [0, 1) such that

|‖Ãx‖2`2 −‖x‖2`2 | ≤ δs‖x‖2`2 for all s–sparse x. When dealing with random matrices A, one has also to distinguish

between uniform and non–uniform guarentees3. It is a well-known fact that RIP is only sufficient but not necessary

for uniform recovery. Overcoming this asymmetry, the notion of a nullspace property assures that no s-sparse vectors

lie in the kernel of A. Hence, the NSP is both a sufficient and necessary condition for recovery. Proving that (1)

indeed allows for robustly recovering any s-sparse x in the presence of noise therefore is equivalent to establishing

that A obeys a robust nullspace property of order s (NSP) [12, Chapter 4]. Our first main technical contribution is

a substantial strengthening of the implications of such an NSP for reconstructing nonnegative sparse vectors:

Theorem 1. Suppose that A obeys the NSP of order s ≤ n from Def. 3 and moreover admits a strictly–positive

linear combination of its rows (A ∈M+, i.e., ∃t ∈ Rm such that w = AT t > 0). Then, the following bound holds

for any s-sparse x ≥ 0 and any z ≥ 0:

‖x− z‖`2 ≤
D′√
m
‖A(z− x)‖`2 . (2)

The constant D′ only4 depends on the quality of NSP and the conditioning of the strictly positive vector w.

We are interested in retrieving x from the measurements y in (1). Inserting this equation into the r.h.s of (2) and

applying the triangle inequality reveals

‖x− z‖`2 ≤
D′√
m

(‖Az− y‖`2 + ‖e‖`2) ∀z ≥ 0.

This data-dependent bound suggests to minimize its right hand side over the “free parameter” z ≥ 0 in order to get

an estimator x] of x, i.e.

x] = arg min
0≤z∈Rn

‖Az− y‖`2 . (3)

This is a simple nonnegative least squares regression (NNLS) that does not require any assumptions on the noise e.

Since the target vector x is itself nonnegative and therefore a feasible point of (3), we can furthermore conclude

‖x− x]‖`2 ≤
D′√
m

(arg min
z≥0

‖Az− y‖`2 + ‖e‖`2)

≤ D′√
m

(‖Ax− y‖`2 + ‖e‖`2) =
2D′√
m
‖e‖`2 ,

(4)

where we have once more resorted to (1). Consequently, Theorem 1 assures that solving (3) yields an estimator of

any s-sparse vector x ≥ 0. Moreover, this estimator is robust towards additive noise in the sampling process. Such a

recovery guarantee is (up to multiplicative constants) as strong as existing ones for different reconstruction algorithms,

including the LASSO and Dantzig selectors, as well as basis pursuit denoising (BPDN) (see [12] and references

therein). However, on the contrary to them, algorithms for solving (3) require neither an explicit a-priori bound

3Non-uniform guarantees hold w.h.p. for priorly fixed vectors x, while uniform guarantees assure recovery of all s-sparse vectors simultaneously.

RIP is an example for the latter.
4See Theorem 4 below for explicit dependencies.
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η ≥ ‖e‖`2 on the noise, nor an ‖ · ‖`1 regression term. This remarkable simplicity is caused by the non-negativity

constraint z ≥ 0 and the geometric restrictions it imposes. Also, these assertions stably remain true, if we consider

approximately sparse target vectors instead of perfectly sparse ones (see Theorem 4 below).

In order to underline the applicability of Theorem 1, we consider nonnegative 0/1–Bernoulli sampling matrices

and prove that they meet the requirements of said statemnt with high probability (w.h.p).

Theorem 2. Let A be a sampling matrix whose entries are independently chosen from a 0/1–Bernoulli distribution

with parameter p ∈ [0, 1], i.e. Pr[1] = p and Pr[0] = 1− p. Fixing s ≤ n and setting

m ≥ C

(p(1− p))2
s

(
log(n) +

p

1− p

)
(5)

assures that A obeys the NSP from Definition 3 and the vector w := AT
(

1
pm1

)
obeys max1≤i≤n |wi − 1| < 1/2

(and is thus strictly positive) with probability at least 1− (n+ 1)e−C
′p2(1−p)2m.

Combining this statement with (4) implies that w.h.p. such Bernoulli matrices allow for uniformly and stably

reconstructing sparse, nonnegative vectors x via Alg. (3). We demonstrate this numerically in Figure 1. Up to

our knowledge, this is the first rigorous proof that 0/1–matrices tend to obey a strong version of the nullspace

property. The challenging difference to existing NSP and RIP results is the fact that the individual random entries

of A are not centered, (E [Ak,j ] = p 6= 0). Thus, the covariance matrix of A admits a condition number of

κ(E[ATA]) = 1 + pn
1−p , which underlines the ensemble’s anisotropy. Traditional proof techniques, like establishing

an RIP, are either not applicable in such a setting, or yield sub-optimal results [13], [14]. This is not true for

Mendelson’s small ball method [15], [16] (see also [17]), which we employ in our proof. This method is a strong

general purpose tool whose applicability only requires row-wise independence, not centeredness. In the conceptually

similar problem of reconstructing low rank matrices from rank-one projective measurements (which arises e.g. from

the PhaseLift approach for phase retrieval [18]), applying this technique allowed for establishing strong null space

properties, despite a similar degree of anisotropy in the sampling model [19]. A detailed survey of the applicability

of Mendelson’s small ball method for compressed sensing was recently presented in [20].

Organization of the Paper: In Section II we explain our motivating application in more detail and rephrase activity

detection as a nonnegative sparse recovery problem. Then, we provide an overview on prior work and known results

regarding this topic. In Section III we show that recovery guarentees in the presence of noise are governed here by

the robust nullspace property (see here [12]) under nonnegative constraints which hasn’t been fully analyzed so far

in literature. It turns out that this property assures that any nonnegative s–sparse vector can be robustly recovered

using conventional nonnegative least–squares. We stress out that such an algorithm requires no apriori–knowledge

on the norm of the noise vector. Finally, in Section IV we analyze binary measurements matrices having iid. random

0/1–valued entries and we show that with overwhelming probability such matrices admit the robust nullspace

property on nonnegative vectors. We obtain this result make use of a recent tool, known as “Mendelson’s small ball

method” which has already used by one of the authors in a related matrix recovery problem [19].
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Fig. 1: Phase transition for NNLS in (3) – for iid. 0/1–Bernoulli measurement matrices in the noiseless case. More

details are given in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Activity Detection in Wireless Networks

Let A = (sj)
n
j=1 ∈ Rm×n be a matrix with n real columns sj ∈ Rm. In our network application [21], the columns

sj are the individual sequences of length m transmitted by the active devices. These sequences are transmitted

simultaneously and each of them is multiplied by an individual amplitude that depends on transmit power and

other channel conditions. In practice this can be achieved for example using the channel reciprocity principle in

time-division multiplexing so that the devices have knowledge about the complex channel coefficients and perform a

corresponding pre-multiplication to correct for the phase. At a single receiver, all these modulated sequences are

superimposed, because a single wireless medium is shared by all devices. We model such a situation by an unknown

non-negative vector 0 ≤ x ∈ Rn, where xi > 0 indicates that a device with sequence i is active with amplitude xi

(xi = 0 implies that a device is inactive). We point out that, due to path loss in the channel, the individual received

amplitudes xi of each active device are unknown to the receiver as well. Here, we focus on networks that contain a

large number n of registered devices, but, at any time, only a small unknown fraction, say s� n, of these devices

are active.

Communicating activity patterns, that is supp(x) = {i : xi 6= 0}, and the corresponding list of received

amplitudes/powers (x ≥ 0 itself) in a traditional way would require an O(n) resources to perform this task. We aim

therefore for a reduction of the signaling time m by exploiting the facts that (i) x ≥ 0 is non-negative and (ii) the

vector x is s-sparse, i.e. ‖x‖`0 ≤ s. Hence, we assume that s ≤ m� n. Obviously, in such a scenario the resulting

system of linear equations cannot be directly inverted. A reasonable approach towards recovery is to consider the
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program:

arg min‖x‖`0 s.t. Ax = y & x ≥ 0

Combinatorial problems of this type are infamous for being NP-hard in general. A common approach to circumvent

this obstacle is to consider convex relaxations. A prominent relaxation is to replace ‖·‖`0 with the `1-norm. The

resulting algorithm can then be re-cast as an efficiently solvable linear program. However, such approaches become

more challenging when robustness towards additive noise is required, in particular if the type and the strength of the

noise is itself unknown. In our application, noisy contributions inevitable arises due to quantization, thermal noise

and other interferences. If the noisy measurements are of the form (1) (i.e. y = Ax + e where the vector e is an

additive distortion) a well–known modification is then to consider

arg min‖x‖`1 s.t. ‖Ax− y‖`2 ≤ η & x ≥ 0. (6)

While this is not a linear problem anymore, it is still convex and is computationally tractable. In practice further

modifications are necessary to solve such problems also sufficiently fast and efficiently, see [21]. However, having

access to an apriori bound η on ‖e‖`2 is essential for (i) posing this problem and (ii) solving it using certain

algorithms (stopping conditions etc.). Suppose, for instance, that e is iid normal distributed. Then ‖e‖2`2 admits a

χ2-distribution of order m and feasibility is assured w.h.p., when taking η in terms of second moments. However,

much less is known for different noise distributions or for situations, where second moment information about the

noise is challenging to acquire.

One option to tackle problems of this kind is to establish a quotient property for the measurement matrix A [12].

However, this property is geared towards Gaussian measurements and it is challenging to establish it, if A follows a

different random model. We shall show below that, interestingly, requiring A ∈M+ instead allows for drawing

similar conclusions.

B. Prior Work on Recovery of Nonnegative Sparse Vectors

One of the first works in the noiseless setting is due to Donoho et al.n [4] on the “nearly black object”. It

furthers understanding of the “maximum entropy inversion” method to recover sparse (nearly–black) images in radio

astronomy. In [10], Donoho and Tanner investigated this subject more directly. The question is, when A intrinsically

ensures that for each s–sparse x(0) only one solution is feasible:

{y |Ax = Ax(0) &x ≥ 0} = {x(0)}

At the center of their work is the notion of outwardly s–neighborly polytopes. Assume w.l.o.g. that all columns sj

of A are non-zero and define their convex hull

PA := conv(s1, . . . , sn).

This polytope is called s-neighborly, if every set of s vertices spans a face of PA. If this is the case, the polytope

P 0
A := conv(PA ∪ {0}) is called then outwardly s-neighborly. They then move on to prove that the solution to

arg min‖x‖`0 s.t. Ax = y
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is unique if and only if P 0
A is outwardly s–neighborly (see [10]). Another notion is the set of full-rank m×n-matrices

having intersection of its row space with the positive orthant as introduced in [11]:

M+ = {A : ∃t ∈ Rm A∗t > 0}. (7)

Note that both structures are related in the sense that A ∈ M+, if and only if 0 /∈ PA [22]. In [11] Bruckstein

et al. investigated the recovery of nonnegative vectors by (6) and modifications of OMP using a coherence-based

approach. They obtained numerical evidence for unique recovery in the regime s = O(
√
n). Later, Wang and

coauthors [22] have analyzed non-negativity priors for vector and matrix recovery using an RIP-based analysis.

Concretely, they translated the well–known RIP–result of random iid. ±1–Bernoulli matrices (see for example [23])

to 0/1-measurements in the following way. Let

1n := (1, . . . , 1)T

denote the “all-ones” vector in Rn. Perform measurements using an (m+ 1)× n matrix A1 =
(
1Tn |AT

)T
which

consists of an all-ones row 1n appended by a random iid. 0/1–valued m× n matrix A. By construction, the first

noiseless measurement on a nonnegative vector x returns its `1–norm ‖x‖`1 = 〈1n,x〉. Rescaling and substracting

this value from the m remaining measurements then results in ±1–measurements. This insight allows for an indirect

nullspace characterization of A in terms of the RIP–constant δ2s (see above, paragraph below (1)) of iid ±1–Bernoulli

random matrices Ã. More precisely [24]: For each v ∈ N (Ã) in the nullspace N (Ã) of Ã, an (`1, `1)–nullspace

property is valid. Mathematically this means

‖vS‖`1 ≤
√

2δ2s
1− δ2s

‖vS̄‖`1 (8)

for all v ∈ N (Ã) and |S| ≤ s. Combining this with N (A1) ⊂ N (Ã) then allows for proving unique recovery in

regime s = O(n) with overwhelming probability.

However, so far, all these results manifestly focus on noiseless measurements. Thus, the robustness of these

approaches towards noise corruption needs to be examined. Foucart, for instance, considered the `1–squared

nonnegative regularization [9]:

min
x≥0
‖x‖2`1 + λ2‖Ax− y‖2`2 (9)

which can be re-cast as nonnegative least-squares problem. He then showed that for stochastic matrices5 the solution

of (9) converges to the solution of (6) for λ→∞.

Contrary to this, we aim at establishing even stronger recovery guarantees that, among other things, do not require

an a priori noise bound. We have already mentioned that the quotient property would assure such bounds for

Gaussian matrices in the optimal regime. But m×n Gaussian matrices fail to be inM+ with probability approaching

one as long as limn→m/n < 1
2 [22]. On the algorithmic side, there exists variations of certain regression methods

where the regularization parameter can be choosen independent of the noise power – see the overview article [25]

5Recall that a matrix is stochastic, if all entries are non-negative and all columns sum up to one.
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for more details. For the LASSO selector, in particular, such modifications are known as the “scaled LASSO” and

“square root LASSO” [26], [27].

Non-negativity as a further structural constraint has also been investigated in the statistics community. But these

works focus on the averaged case with respect to (sub–)Gaussian additive noise, whereby we consider instantaneous

guarantees. Slawski and Hein [8], as well as Meinshausen [7] have recently investigated this averaged setting.

III. NULLSPACE PROPERTY WITH NONNEGATIVE CONSTRAINTS

We use the following notation. For a given vector x ∈ Rn and a set S ⊂ [n] := [1 . . . n] we denote by xS the

vector containing only the coefficients of x in S. Let S̄ the complement of S in [1 . . . n] such that x = xS + xS̄ .

The `q–error of the best s–term approximation of a vector x will be denoted by σk(x)`q . The well–known convex

relaxation of the `0-minimization with respect to an apriori `2–bound η on the residual Ax− y is basis pursuit

denoising (BPDN):

∆η(y) = arg min‖x‖`1 s.t. ‖Ax− y‖`2 ≤ η (10)

A. The robust nullspace property

Let us recall the definition of the `2–robust nullspace property with respect to the `2–norm [12, Def. 4.21].

Definition 3 (`2–robust nullspace property). A m× n matrix A satisfies the `2-robust null space property of order

s with parameters ρ ∈ (0, 1) and τ > 0, if:

‖vS‖`2 ≤
ρ√
s
‖vS̄‖`1 + τ ‖Av‖`2 for all v ∈ Rn (11)

holds for all S ⊂ [n] with |S| ≤ s.

The `2-robust nullspace property order s (s–NSP) allows for drawing the following conclusion [12, Theorem

4.25]: for any x, z ∈ Rn

‖x− z‖`2 ≤
C√
s

(‖z‖`1 − ‖x‖`1 + 2σs(x)`1) +D ‖A(x− z)‖`2 (12)

is true, where C = (1+ρ)2

1−ρ and D = 3+ρ
1−ρτ . Replacing z with the BPDN minimizer xη = ∆η(y) from (10) for the

sampling model y = Ax + e then implies

‖x− xη‖`2 ≤
2C√
s
σs(x)`1 +D ‖y − e−Axη‖`2 ≤

2C√
s
σs(x)`1 +D ‖y −Axη)‖`2 + ‖e‖`2

≤ 2C√
s
σs(x)`1 + (D + 1)η, (13)

provided that ‖e‖`2 ≤ η is true. This estimate follows from combining ‖xη‖`1 ≤ ‖x‖`1 and with ‖y −Axη)‖`2 ≤ η.

Once more, we point out that this estimate is only valid if an appropriate η is known.
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B. Nonnegative Constraints

Here we will prove now a variation of (12) (Theorem 4.25 in [12]) which holds for nonnegative vectors and

matrices in M+. For such matrices we define a condition number by

κ(A) = min{‖W‖‖W−1‖ |∃t withW = diag(AT t) > 0} (14)

Note that for diagonal matrices W with non-negative entries κ(W) = ‖W‖‖W−1‖.

Theorem 4. Let A ∈M+ obeying the s-NSP with parameters ρ and τ , and let κ = κ(A) be its condition number.

If κρ < 1, then

‖x− z‖`2 ≤
2C√
s
σs(x) +D (‖t‖`2 + τ) ‖A(x− z)‖`2

is true for all nonnegative vectors x, z ∈ Rn. The constants amount to

C = κ
(1 + κρ)2

1− κρ and D = κ
3 + κρ

1− κρ. (15)

Comparing this to (12) reveals, that the `1–term (‖z‖`1−‖x‖`1) has disappeared. Let us exploit this by reproducing

the steps in (13). If we once more use y = Ax + e, and apply the triangle inequality, we obtain

‖x− z‖`2 ≤
c1√
s
σs(x)`1 + c2 ‖y −Az‖`2 + ‖e‖`2 (16)

This simple observation already highlights that CS–oriented algorithms, which essentially minimize the `1–norm, are

not required anymore in the non–negative case. Instead, in order to get good estimates it makes sense to minimize

the r.h.s. of the bound over the “free” parameter z ≥ 0. Doing so, results in s nonnegative least–squares estimate

for x by minimizing ‖y −Az‖`2 subject to z ≥ 0. To prove this theorem, we will need two auxiliar statements.

Lemma 5. Suppose that A obeys the s–NSP with parameters ρ and τ , and set W = diag(w), where w > 0 is

strictly positive. Then, AW−1 also obeys the s–NSP with parameters ρ̃ = κ(W)ρ and τ̃ = ‖W‖τ .

Proof: First, since W is diagonal we can conclude for any vector v ∈ Rn and any set S ⊂ [n] that

W−1vS = (W−1v)S (same for S̄). Also, A obeys the s-NSP which in turn implies for any |S| ≤ s:

‖vS‖`2 = ‖WW−1vS‖`2 ≤ ‖W‖‖(W−1v)S‖`2 ≤ ‖W‖
(
ρ√
s
‖(W−1v)S̄‖`2 + τ‖AW−1v‖`2

)

= ρ̃σs (v) + τ̃‖AW−1v‖`2 .

Lemma 6. Suppose that W := diag
(
AT t

)
> 0 for some t ∈ Rm. Then any pair x, z ≥ 0 obeys

‖Wz‖`1 − ‖Wx‖`1 ≤ ‖t‖`2‖A (x− z) ‖`2 (17)

Proof: Note that, by construction, W is symmetric and preserves positivity of vectors. These features together

with positivity of z imply

‖Wz‖`1 =〈1,Wz〉 = 〈W1, z〉 = 〈diag(AT t)1, z〉 = 〈AT t, z〉 = 〈t,Az〉.
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An analogous reformulation is true for ‖Wx‖`1 and combining these two reveals

‖Wz‖`1 − ‖Wx‖`1 = 〈t,A (z− x)〉 ≤ ‖t‖`2‖A(z− x)‖`2

due to Cauchy-Schwarz.

Proof of Theorem 4: The assumption A ∈ M+ assures that there exists t ∈ Rm such that w = AT t > 0

and we define W := diag(w). By construction, W is invertible and admits a condition number κ = ‖W‖‖W−1‖.
Thus, we can write

‖x− z‖`2 = ‖W−1W (x− z) ‖`2 ≤ ‖W−1‖‖W(x− z)‖`2

for any pair x, z > 0. Now, since A obeys the s–NSP, Lemma 5 assures that AW−1 has s–NSP as well, with

parameters ρ̃ = κρ and τ̃ = ‖W‖τ . Thus, from (12) we conclude that for vectors Wx and Wz we have

‖W(x− z)‖`2 ≤
C ′√
s

(‖Wz‖`1 − ‖Wx‖`1 + 2σs(Wx)`1) +D′‖A(x− z)‖`2
(17)
≤ 2C ′‖W‖√

s
σs(x)`1 + (

C ′‖t‖`2√
s

+D′)‖A(x− z‖`2 .

Here, we invoked Lemma 6 in the last step, as well as the relation σs(Wx)`1 ≤ ‖W‖σs(x)`1 . The constants above

amount to C ′ = (1+ρ̃)2

1−ρ = (1+κρ)2

1−κρ and D′ = 3+ρ̃
1−ρ̃ τ̃ = 3+κρ

1−κρ‖W‖τ. So, in summary we obtain

‖x− z‖`2 ≤
2C ′κ√
s
σs(x)`1 + ‖W−1‖(C

′‖t‖`2√
s

+D′)‖A(x− z‖`2 .

We shall simplify the second term further by using the fact that (1 + x)2 ≤ 3 + x for any x ∈ [0, 1], i.e., C ′ and

D′/τ are both upper bounded by 3+κρ
1−κρ‖W‖. Consequently,

‖x− z‖`2 ≤ 2
κC ′√
s
σs(x) +

3 + κρ

1− κρκ (‖t‖`2 + τ) ‖A (x− z) ‖`2 ,

and setting C := κC ′ and D = 3+κρ
1−κρκ proves the claim.

IV. ROBUST NSP FOR 0/1-BERNOULLI MATRICES

In this section, we prove our second main result, namely Theorem 2. Said statements summarizes two results,

namely (i) 0/1-Bernoulli matrices A with m = Cs log(n) rows obey the robust null space property of order s

and (ii) the row space of AT allows for constructing a strictly positive vector w = AT t > 0 (that is sufficiently

well-conditioned). We will first state the main ideas and prove both statements in subsequent subsections.

A. Sampling model and overview of main proof ideas

Let us start by formally defining the concept of a 0/1-Bernoulli matrix.

Definition 7. We call A ∈ Rm×n a 0/1-Bernoulli matrix with parameter p ∈ [0, 1], if every matrix element [A]i,j

is an independent realization of a Bernoulli random variable b with parameter p, i.e.

Pr [b = 1] = p and Pr [b = 0] = 1− p.
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Recall that such a Bernoulli variable obeys E [b] = p and Var(b) = E
[
(b− E[b])

2
]

= p(1− p). By construction,

the m rows a1, . . . ,am of such a Bernoulli matrix are independent and obey

E [ak] =

n∑

j=1

E [Ak,j ] ej = p

n∑

j=1

ej = p1.

This expected behavior of the individual rows will be crucial for addressing the second point in Theorem 2: setting

w :=
1

pm

m∑

k=1

ak = AT

(
1

pm
1

)

results in a random vector w ∈ Rn that obeys E [w] = 1 > 0. Applying a large deviation bound will in turn imply

that a realization of w will w.h.p. not deviate too much from its expectation 1 and thus remains strictly positive.

We will do this in Subsection IV-C.

However, when turning our focus to establishing null space properties for A, working with 0/1-Bernoulli entries

renders such a task more challenging. The simple reason for such a complication is that the individual random

entries of A are not centered, i.e. E [Ak,j ] = p 6= 0. Combining this with independence of the individual entries

yields

E
[
aka

T
k

]
= p211T + p(1− p)I.

This matrix admits a condition number of κ
(
E
[
aka

T
k

])
= 1 + pn

1−p which underlines the ensemble’s anisotropy.

Traditional proof techniques, e.g. establishing an RIP, are either not applicable in such a setting, or yield sub-optimal

results [13], [14]. This is not true for Mendelson’s small ball method [15], [16] (see also [17]) – a strong general

purpose tool whose applicability only requires row-wise independence. In the conceptually similar problem of

reconstructing low rank matrix from rank-one projective measurements (which arises e.g. from the PhaseLift approach

for phase retrieval [28], [18]) applying this technique allowed for establishing strong null space properties, despite a

similar degree of anisotropy in the sampling model [19]. In the next subsection, we adapt the ideas from said paper

to our Bernoulli model and succeed in establishing the NSP presented in Theorem 2.

Finally, we point out that a detailed survey of the applicability of Mendelson’s small ball method for compressed

sensing was recently presented in [20]. However, there centeredness of the individual matrix entries is a key

assumption which is not met in our 0/1-Bernoulli model.

B. Null Space Properties for 0/1-Bernoulli matrices

Recall that Definiton 3 states that a m × n matrix A obeys the robust null space property with parameters

ρ ∈ (0, 1) and τ > 0, if

‖vS‖`2 ≤
ρ√
s
‖vS̄‖`1 + τ‖Av‖`2 (18)

is true for all vectors v ∈ Rn and support sets S ∈ [n] with support size |S| ≤ s. Demanding such generality in

the choice of the support set is in fact not necessary, see e.g. [12, Remark 4.2]. For a fixed vector v, the above

condition holds for any index set S, if it holds for an index set Smax containing the s largest (in modulus) entries
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of v. Introducing the notation vs := vSmax
and vc := vS̄max

, the robust null space property (18) holds, provided

that every vector v ∈ Rn obeys

‖vs‖`2 ≤
ρ√
s
‖vc‖`1 + τ‖Av‖`2 . (19)

Note that this requirement is invariant under re-scaling and we may w.l.o.g. assume ‖v‖`2 = 1. Moreover, for fixed

parameters s and ρ, any vector v obeying ‖vs‖`2 ≤ ρ√
s
‖vc‖`1 is guaranteed to fulfill (19) by default. Consequently,

when aiming to establish null space properties, it suffices to establish condition (19) for the set of unit-norm vectors

that do not obey this criterion:

Tρ,s :=

{
v ∈ Rn : ‖v‖`2 = 1, ‖vs‖`2 >

ρ√
s
‖vc‖`1

}
.

As a result, a matrix A obeys the NSP (18), if

inf {‖Av‖`2 : v ∈ Tρ,s} >
1

τ
, (20)

holds, where τ > 0 is the second parameter appearing in (18). The task of establishing this is somewhat simplified

by the observation that the set Tρ,s exclusively contains vectors that are effectively sparse:

Lemma 8. For fixed s and ρ, every vector v ∈ Tρ,s obeys

‖v‖`1 ≤
√
s

1 + ρ

ρ
‖v‖`2 .

Proof: Note that any vs is s-sparse by construction and thus obeys ‖vs‖`1 ≤
√
s‖vs‖`2 . Combining this with

the triangle inequality and the defining feature of the set Tρ,s yields

‖v‖`1 = ‖vs + vc‖`1 ≤ ‖vs‖`1 + ‖vc‖`1 ≤
√
s‖vs‖`2 +

√
s

ρ
‖vs‖`2

and the claim readily follows from ‖vs‖`2 ≤ ‖v‖`2 .

Despite such a geometric insight, proving (20) for a given A is still a daunting task. This situation greatly changes,

if we assume that our sampling matrix A consists of m rows a1, . . . ,am that are independent instances of a random

vector a ∈ Rn. Assuming this, (20) is equivalent to showing

inf
v∈Tρ,r

(
m∑

k=1

|〈ak,v〉|2
)1/2

>
1

τ
. (21)

Independence of the ak’s then allows for establishing this (w.h.p.) by resorting to Mendelson’s small ball method

[15], [16], [17]:

Theorem 9 (Koltchinskii, Mendelson; Tropp’s version [17]). Fix E ⊂ Rn and let a1, . . . ,am be independent copies

of a random vector a ∈ Rn. Set h = 1√
m

∑m
k=1 εkak, where ε1, . . . , εm is a Rademacher sequence, and for ξ > 0

define

Qξ (E,a) = inf
u∈E

Pr [|〈a,u〉| ≥ ξ] , as well as Wm (E,a) = E
[

sup
u∈E
〈h,u〉

]
.
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Then, for any ξ > 0 and t ≥ 0 the following is true with probability at least 1− e−2t2 :

inf
u∈E

(
m∑

k=1

|〈ak,u〉|2
)1/2

≥ ξ√mQ2ξ(E,a)− ξt− 2Wm(E,a). (22)

In order to establish (21), we can set E = Tρ,s, choose ξ and t appropriately and establish suitable bounds for

Qξ(Tρ,s,a) and Wm(Tρ,r,a). Note that the geometric insight provided in Lemma 8 considerably simplifies this last

task. It assures

Wm(Tρ,s,a) = E

[
sup

u∈Tρ,s
〈h,u〉

]
≤ sup

u∈Tρ,s
‖u‖`1E [‖h‖`∞ ] ≤ √s1 + ρ

ρ
E [‖h‖`∞ ]

and it suffices bound E [‖h‖`∞ ] from above. We do this by adapting the techniques from [29, Proposition 13] to the

vector case. The calculations are detailed in the appendix and yield

E [‖h‖`∞ ] ≤
√

4p(1− p)
(

3 log(2n) +
p

1− p

)
(23)

under the assumption that the sampling rate m exceeds log(n)
p2(1−p)2 . Such a bound allows us to deduce

Wm (Tρ,s,a) ≤ 1 + ρ

ρ

√
4sp(1− p)

(
3 log(2n) +

p

1− p

)
(24)

without having to pay too much attention to the complicated geometry of the set Tρ,s. Likewise, said set is strictly

contained in the unit sphere Sn−1 ∈ Rn. For fixed ξ > 0, this allows us to bound Q2ξ(Tρ,s,a) from below by

establishing a global lower bound on Pr [|〈a,u〉| ≥ 2ξ] that is valid for any u ∈ Sn−1. We do this in the appendix

and obtain

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
≥ 4

13
p(1− p)(1− θ2)2 ∀z ∈ Sn−1 and θ ∈ [0, 1].

The structure of such a global bound suggests choosing ξ = 1
4

√
p(1− p) for which we can conclude

Q2ξ(Tρ,s,a) ≥ 4p(1− p)( 3
4 )2

13
>
p(1− p)

6
. (25)

Such a choice of ξ, setting t = p(1−p)
12

√
m and envoking the bounds (24) and (25) into (22) implies

inf
v∈Tρ,s

‖Av‖`2 ≥
√
p(1− p)3

24

√
m−

√
p(1− p)3

48

√
m− 2

1 + ρ

ρ

√
4sp(1− p)

(
3 log(2n) +

p

1− p

)

=
√
p(1− p)

(
p(1− p)

48

√
m−

√
16

(1 + ρ)2

ρ2
s

(
3 log(2n) +

p

1− p

))

with probability at least 1− e−
p2(1−p)2

72 m. This prompts us to demand

m ≥ C1(1 + ρ)2

p2(1− p)2ρ2
s

(
log(n) +

p

1− p

)
, (26)

where C2 is a sufficiently large constant (note that this justifies the assumption m ≥ log(n)
p2(1−p)2 made before). Then

the above inequality implies that there is another constant C2 > 0 (whose size depends on the choice of C) such that

inf
v∈Tρ,s

‖Av‖`2 ≥
√
p(1− p)3

C2

√
m. (27)
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with probability of failure bounded by e−
p2(1−p)2

72 m. Comparing this bound to (21) allows us to set τ = C2√
p(1−p)3√m

and we arrive at the main result of this section:

Theorem 10. Let A : Rn → Rm be a 0/1-Bernoulli matrix with parameter p ∈ [0, 1] and fix s ≤ n and ρ ∈ [0, 1].

Then, there are constants C1 and C2 such that choosing the number of rows to be

m = C1
(1 + ρ)2

p2(1− p)2ρ2
s

(
log(n) +

p

1− p

)
(28)

assures that A obeys the robust NSP of order s with parameters ρ and τ = C2√
p(1−p)3√m

. Hereby, the probability

of failure is bounded by e−
p2(1−p)2

72 m.

This is a more detailed version of the first claim presented in Theorem 2. We see that sampling rate, size of

the NSP-parameter τ and the probability bound all depend on the Bernoulli parameter p ∈ [0, 1]. Factoring out the

p-dependence of m by writing m = m̃
p2(1−p)2 we obtain a probability bound of e−

m̃
72 which is independent of p. On

the other hand τ = C2√
p(1−p)m̃

still exhibits a p-dependence.

Finally, we point out that when opting for a standard Bernoulli process, i.e. p = 1
2 , the assertions of Theorem 10

considerably simplify, because p(1− p) = 1
4 . Inserting this, we obtain:

Corollary 11. Fix s ≤ n, ρ ∈ [0, 1] and let A be a standard (m× n) 0/1-Bernoulli matrix (i.e. p = 1
2 ) with

m ≥ 17C1
(1 + ρ)2

ρ2
s log(n).

Then with probability at least 1− e−
m

1152 this matrix obeys the NSP of order s with parameters ρ and τ = C2

2
√
m

.

Herce, C1 and C2 are the constants from Theorem 10.

C. 0/1-Bernoulli matrices lie in M+

We now move on to showing that 0/1-Bernoulli matrices are very likely to admit the second requirement of

Theorem 4. Namely, that there exists a vector w = AT t that is strictly positive which is equivalent to demanding

A ∈ M+. Concretely, we show that setting t = 1
pm1 ∈ Rm results in a strictly positive vector w ∈ Rn whose

conditioning obeys

κ(w) =
maxk |〈ek,w〉|
mink |〈ek,w〉|

≤ 3. (29)

To do so, we note that w = 1
pm

∑m
k=1 ak has expectation E [w] = 1, which is – up to re-scaling – the unique

non-negative vector admitting κ(1) = 1. After having realized this, it suffices to use a concentration inequality to

prove that w.h.p. w does not deviate too much from its expectation 1. We do this by invoking a Bernstein inequality

which implies:

Theorem 12. Suppose that A : Rn → Rm is a 0/1-Bernoulli matrix with parameter p ∈ [0, 1] and set

w = AT t ∈ Rn with t =
1

pm
1 ∈ Rm. (30)
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Then with probability at least 1− ne−
3
8p(1−p)m maxi |〈ei,w〉| ≤ 3

2 and mini |〈ei,w〉| ≤ 1
2 which in turn implies

(29).

Proof: Instead of showing the claim directly, we prove that a stronger statement, namely

|〈ei,w〉 − 1| ≤ 1

2
1 ≤ i ≤ n, (31)

is true with probability of failure bounded by ne−
3
8p(1−p)m. If such a bound is true for all i, it is also valid for

maximal and minimal components and we obtain

max
i
|〈ei,w〉| ≤ max

k
|〈ei,w〉 − 1|+ 1 ≤ 3

2
and min

k
|〈ei,w〉| ≥ 1−min

i
|〈ei,w〉 − 1| ≥ 1

2
,

as claimed. In order to prove (31), we fix 1 ≤ i ≤ n and focus on

|〈ei,w〉 − 1| =
∣∣∣∣∣

1

pm

m∑

k=1

〈ei,ak〉 − 1

∣∣∣∣∣ =
1

pm

∣∣∣∣∣
m∑

k=1

(bk,i − E [bk,i])

∣∣∣∣∣ .

Here, we have used 〈ei,ak〉 = 〈ek,Aei〉 = bk,i, which is an indepenent instance of a Bernoulli random variable

with parameter p. Thus we are faced with bounding the deviation of a sum of m centered, independent random

variables ck := bk,i − E [bk,i] from its mean. Each such variable obeys

|ck| ≤ max {p, 1− p} ≤ 1 and E
[
c2k
]

= Var(bk,i) = p(1− p).

Applying a Bernstein inequality [12, Theorem 7.30] reveals

Pr

[
|〈ei,w〉 − 1| ≥ 1

2

]
≤ Pr

[
|〈ei,w〉 − 1| ≥ 1− p

2

]
= Pr

[∣∣∣∣∣
m∑

k=1

ck

∣∣∣∣∣ ≥
mp(1− p)

2

]
≤ exp

(
−3

8
p(1− p)m

)
.

Combining this with a union bound assures that |〈ei,w〉 − 1| < 1
2 is simultaneously true for all 1 ≤ i ≤ n with

probability at least 1− ne−
3
8p(1−p)m.

D. Proof of Theorem 2

Finally, these two results can be combined to yield Theorem 2. It readily follows from taking a union bound over

the individual probabilities of failure. Theorem 10 requires a sampling rate of

m ≥ C1
(1 + ρ)2

p2(1− p)2ρ2
s

(
log(n) +

p

1− p

)
(32)

to assure that a corresponding 0/1-Bernoulli matrix obeys a strong version of the NSP with probability at least

1− e−
p2(1−p)2

72 m. On the other hand, Theorem 12 asserts that choosing w = AT 1
pm1 for 0/1-Bernoulli matrices A

results in a well-conditioned and strictly positive vector w with probability at least 1−ne−
3
8p(1−p)m. The probability

that either of these assertions fails to hold can be controlled by the union bound over both probabilities of failure:

Pr [Thm. 10 fails to hold ∪ Thm. 12 fails to hold] ≤Pr [Thm. 10 fails to hold] + Pr [Thm. 12 fails to hold]

≤e−
p2(1−p)2

72 m + ne−
3p(1−p)

8 m ≤ (n+ 1)e−
p2(1−p)2

72 m.

Finally, we focus on 0/1-Bernoulli matrices A for which both statements are true and whose sampling rate

exceeds (32). Theorem 10 then implies that A obeys the s-NSP with a pre-selected parameter ρ ∈ [0, 1] and
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τ = C2√
p(1−p)3√m

. Moreover, the vector selection t = 1
pm1 in Theorem 12 obeys ‖t‖`2 = 1

p
√
m

. As a result, the

implication of Theorem 4 reads for any x, z ≥ 0:

‖x− z‖`2 ≤
2C√
s
σs(x) +D (‖t‖`2 + τ) ‖A(x− z)‖`2

=
2C√
s
σs(x) +D

(
1

p
√
m

+
C2√

p(1− p)3√
m

)
‖A(x− z)‖`2

≤2C√
s
σs(x) +

D(1 + C2)
√
p(1− p)3

‖A(x− z)‖`2√
m

.

The constant D(1+C2)√
p(1−p)3

is the explicit value of D′ in Theorem 1 for the case of 0/1-Bernoulli matrices with parameter

p ∈ [0, 1].

V. NUMERICAL EXPERIMENTS

In the following we evaluate the nonnegative least squares (NNLS) in (3) and we compare this to the results

obtained with basis pursuit denoising (BPDN) in (10). The NNLS has been computed using the lsqnonneg

function in MATLAB which implements the “active-set” Lawson–Hanson algorithm [30]. For the BPDN the SPGL1

toolbox has been used [31].

In a first test we have evaluated numerically the phase transition of NNLS in the 0/1–Bernoulli setting for

the noiseless case. The dimension and sparsity parameters are generated uniformely (in this order) in the ranges

n ∈ [10 . . . 500], m ∈ [10 . . . n] and s ∈ [1 . . .m]. Thus, the sparsity/density variable is ρ = s/m and the subsampling

ratio is δ = m/n. The m× n measurement matrix A is generated using the iid. 0/1–Bernoulli model with p = 1/2.

The nonnegative s–sparse signal 0 ≤ x ∈ Rn to recover is created as follows: the random support supp(x) is

obtained from taking the first s elements of a random (uniformely–distributed) permutation of the indices (1 . . . n).

On this support each value is the absolute value of an iid. standard (zero mean, unit variance) Gaussian, i.e., xi = |gi|
with gi ∼ N(0, 1) for all i ∈ supp(x). An event counts as successful once ‖x− x̂‖`2 ≤ 10−3‖x‖`2 . The resulting

phase transition diagram, shown in Figure 1 above, demonstrates that NNLS indeed reliable recovers nonnegative

sparse vectors without any `1–regularization.

In the second experiment we consider the noisy case. Beside its simplicity, the important feature of NNLS is that

no a-priori norm assumptions on the noise are necessary as it is required for the BPDN. As illustrated in (4), a

result of Theorem 1 is that the NNLS estimate x] fullfils:

‖x− x]‖`2 ≤
2C√
m
‖e‖`2 (33)

A similar bound is valid for the BPDN (see (13)) estimate xη when ‖e‖`2 ≤ η, i.e., once ‖e‖`2 is known. Interestingly,

even under this prerequisites the performance of NNLS is considerable better then BPDN in our setting. This is

visualized in Figure 2 where each component ej of e is iid. Gaussian distributed with zero mean and variance

σ2
e = 1/100. There recovery has been identified as “successful” if (33) is fulfilled for 2C =

√
10.
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(a) (b)

Fig. 2: Comparison of NNLS in (3) with BPDN in (10) for iid. 0/1–Bernoulli matrices in the noisy setting.

VI. CONCLUSIONS

In this work we have shown that nonnegativity is a tremendeous important additional property when recoving

sparse vectors. This situation is relevant in many applications and we are motivated here by activity detection

in wireless networks using individual sequences. Designing measurement matrices such that convex hull of its

columns (the sequences) is sufficiently well-separated from the origin recovery allow for remarkable simple recovery

algorithms which are prone to noise and blind in a sense that no regularization and a priori information on the noise

is required. We have demonstrated this feature by strengthen the implications of the robust nullspace property for

the nonnegative setting. Furthermore, we have shown that iid. binary measurements fullfill w.h.p. this property and

are simultaneously well-conditioned and can be used therefore for recovering nonnegative and sparse vectors in the

optimal regime.
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APPENDIX: PROOFS OF EQUATIONS (23) AND (25)

Here we provide proofs of the two bounds (23) and (25) on which we built our argument that 0/1-Bernoulli

matrices obey the robust NSP. Since both are rather technical and not essential for understanding the main ideas, we

decided to present them in this appendix.
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Preliminaries

In order to prove the remaining estimates we rely on a couple of probabilistic standard tools which we shall

summarize here. Recall that a Rademacher sequence (ε1, . . . , εm) is a sequence of m independent dichotomic

random variables obeying Pr [εk = 1] = Pr [εk = −1] = 1
2 .

Theorem 13 (Khintchine Inequality, Corollary 8.7 in [12]). Let c ∈ Cm and ε1, . . . , εm be a Rademacher sequence.

Then for all q > 0 (
E

[∣∣∣∣∣
m∑

k=1

εkck

∣∣∣∣∣

q])1/q

≤ 23/(4q)e−1/2‖c‖`2 .

Theorem 14 (Non-commutative Khintchine inequality: Exercise 8.6 (d) in [29]). Let M1, . . . ,Mm be hermitian

n× n matrices and suppose that (ε1, . . . , εm) is a Rademacher sequence. Then

E

[∥∥∥∥∥
m∑

k=1

εkMk

∥∥∥∥∥

]
≤
√

2 log(2n)

∥∥∥∥∥
m∑

k=1

M2
k

∥∥∥∥∥

1/2

.

Theorem 15 (Matrix Chernoff for expectation values: Theorem 5.1.1 in [32] (see also [33]). Let {Mk}mk=1 be a

sequence of independent, random, non-negative n× n matrices obeying ‖Mk‖ ≤ R almost surely. Then, for any

t > 0 their sum obeys

E

[∥∥∥∥∥
m∑

k=1

Mk

∥∥∥∥∥

]
≤ et − 1

t

∥∥∥∥∥
m∑

k=1

E [Mk]

∥∥∥∥∥
∞

+
R

t
log(n).

Theorem 16 (Paley-Zygmund Inequality). Let X be a non-negative random variable with bounded second moment.

Then

Pr [X ≥ θE [X]] ≥ (1− θ)2E[X]

Var(X) + E [X]
2 ,

where Var(X) = E
[
(X − E[X])2

]
is the variance of X .

Bounding E [‖h‖`∞ ] for 0/1-Bernoulli matrices

In this section, we prove that the bound presented in (23) holds in the Bernoulli setting. Let A be a 0/1-Bernoulli

matrix with parameter p and m rows a1, . . . ,am ∈ Rn. The vector h := 1√
m

∑m
k=1 εkak was introduced in

Theorem 9 and in (23) we claimed that this vector obeys

E
[
‖h‖`∞

]
≤
√

4p(1− p)
(

3 log(2n) +
p

1− p

)
, (34)

provided that m ≥ log(n)
p2(1−p)2 . When aiming to prove this, we first minimize the anisotropic impact of A’s rows.

Recalling E [ak] = p1, we introduce ãk := ak − p1, and likewise h̃ := 1√
m

∑m
k=1 εkãk, which obey

h = h̃ +
p√
m

(
m∑

k=1

εk

)
1 (35)

by construction. Applying the triangle inequality reveals

E
[
‖h‖`∞

]
≤ E

[∥∥∥h̃
∥∥∥
`∞

]
+

p√
m
E

[∣∣∣∣∣
m∑

k=1

εk

∣∣∣∣∣

]
‖1‖`∞ (36)
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and we may bound the two terms individually. For the second term, we resort to the classical Khintchine inequality

(with q = 1 and c = 1) and obtain

p√
m

(
m∑

k=1

εk

)
1 ≤ p23/4e−1/2

√
m

‖1‖`2‖1‖`∞ ≤
√

2p, (37)

because ‖1‖`2 =
√
m‖1‖`∞ =

√
m and 23/4e−1/2 ' 1.02.006 <

√
2. For the remaining estimate of E

[∥∥∥h̃
∥∥∥
`∞

]
,

we find it advantageous to work with an equivalent matrix problem

E
[∥∥∥h̃

∥∥∥
`∞

]
= E

[∥∥∥diag
(
h̃
)∥∥∥
∞

]
=

1√
m
E

[∥∥∥∥∥
m∑

k=1

εkdiag (ãk)

∥∥∥∥∥
∞

]

that can be tackled by consecutively applying matrix Khintchine and Chernoff inequalities. Exploiting the randomness

in (ε1, . . . , εm), by applying Theorem 14 assures

E
[∥∥∥h̃

∥∥∥
`∞

]
=

1√
m
EaEε

[∥∥∥∥∥
m∑

k=1

εkdiag (ã)k

∥∥∥∥∥
∞

]
≤
√

2 log(2n)

m
Ea



∥∥∥∥∥
m∑

k=1

diag (ãk)
2

∥∥∥∥∥

1/2

∞




≤
√

2 log(2n)

m

(
Ea

[∥∥∥∥∥
m∑

k=1

diag (ãk)
2

∥∥∥∥∥
∞

])1/2

, (38)

where we have also employed Jensen’s inequality. Now, note thate the matrices diag (ãk)
2 are all positive semidefinite

and obey
∥∥∥diag (ãk)

2
∥∥∥ =

∥∥∥diag (ak − p1)
2
∥∥∥ ≤ max

{
p2, (1− p)2

}
,

E
[
diag (ãk)

2
]

=
n∑

i=1

E
[
(〈ei,ak〉 − p)2

]
eie

T
i = p(1− p)I.

This is true, because each 〈ei,ak〉 is an independent instance of a Bernoulli variable with parameter p. Thus,

Theorem 15 is applicable and setting t = 1 implies for

Ea

[∥∥∥∥∥
m∑

k=1

diag (ãk)
2

∥∥∥∥∥
∞

]
≤(e− 1)

∥∥∥∥∥
m∑

k=1

p(1− p)I
∥∥∥∥∥
∞

+ max
{
p2, (1− p)2

}
log(n)

≤ep(1− p)m+ max
{
p2, (1− p)2

}
log(n).

Inserting this into (38) yields

E
[∥∥∥h̃

∥∥∥
`∞

]
≤
√

2 log(2n)

(
ep(1− p) +

log(n)

m

)
(39)

and turning back to (36), we see that

E
[
‖h‖`∞

]
≤
√

2 log(2n)

(
ep(1− p) +

log(n)

m

)
+
√

2p

holds. In order to simplify this further, we now use the prior assumption m ≥ log(n)
p2(1−p)2 which assures

log(n)

m
≤ p2(1− p)2 ≤ 1

4
p(1− p),
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because p(1− p) ≤ 1
4 for all p ∈ [0, 1]. Combining this with e + 1

4 < 3 allows us to deduce

E
[
‖h‖`∞

]
≤
√

6p(1− p) log(2n) +
√

2p.

Finally, we use the elementary inequality
√
a+
√
b ≤

√
2(a+ b) ∀a, b ≥ 0 to obtain

E
[
‖h‖`∞

]
≤
√

2 (6p(1− p) log(2n) + 2p2) =

√
4p(1− p)

(
3 log(2n) +

p

1− p

)
,

which is the estimate presented in (34).

A. Bounding Pr [|〈a, z〉| ≥ θ‖z‖`2 ] for 0/1-Bernoulli vectors

In this final section we prove that for any unit vector z = (z1, . . . , zn)T ∈ Sn−1 and any θ ∈ [0, 1/2], the bound

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
≥ 4

13
p(1− p)(1− θ2)2 (40)

holds in the Bernoulli setting. Here, the probability is taken over instances a ∈ Rn of the i.i.d. row distribution in

a 0/1-Bernoulli matrix. Hence, a =
∑n
i=1 biei, where each bi is an independent Bernoulli random variable with

parameter p. This estimate is going to rely on the Paley-Zygmund inequality and a few standard, but rather tedious,

moment calculations for Bernoulli processes. We start by exploiting

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
= Pr

[
〈a, z〉2 ≥ θ2p(1− p)

]
, (41)

because the latter expression is easier to handle. Introducing the nonnegative random variable S := 〈a, z〉2 =
∑n
i,j=1 bibjzizj ,, we see

E [S] =
∑

i 6=j
E [bi]E [bj ] zizj +

n∑

i=1

E
[
b2i
]
z2
i = p2〈1, z〉+ p(1− p)‖z‖2`2 ≥ p(1− p) (42)

(recall that each bi is an independent Bernoulli variable with parameter p). This calculation together with (41)

implies

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
≥ Pr

[
S ≥ θ2E [S]

]
. (43)

Since S ≥ 0 by definition, the requirements for Paley-Zygmund – Theorem 16 – are met and said Theorem implies

Pr
[
S ≥ θ2E [S]

]2 ≥ (1− θ2)2E [S]

Var(S) + E [S]
2 . (44)

We have already computed E [S] in (42), but we still have to compute its variance. We defer this calculation to the

very end of this section and for now simply state its result:

Var(S) = 2E [S]
2 − 2p4〈1, z〉+ 4p2(1− p)(1− 2p)〈1, z〉

n∑

i=1

z3
i + p(1− p)(1− 6p(1− p))‖z‖4`4 . (45)

We now move on to bound these contributions individually by a multiple of E [S]
2. We can omit the second term

and obtain

4p2(1− p)(1− 2p)〈1, z〉
n∑

i=1

z3
i ≤4p2(1− p)2〈1, z〉‖z‖3`2 = 4p2(1− p)2〈1, z〉 ≤ 4p2(1− p)2 max

{
〈1, z〉2, 1

}

≤2

p

(
p2〈1, z〉2 + p(1− p)

)2
=

2

p
E [S]

2
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for the third term. The fourth term can be bounded cia

p(1− p)(1− 6p(1− p))‖z‖4`4 ≤ p(1− p)‖z‖4`2 ≤
1

p(1− p)E [S]
2
.

and combining all these bounds implies

Var(S) ≤
(

2 +
2

p
+

1

p(1− p)

)
E [S]

2
=

3− 2p2

p(1− p)E [S]
2 ≤ 3

p(1− p)E [S]
2
.

Inserting this upper bound into the Paley-Zygmund estimate (44) yields

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
≥ (1− θ2)2E [S]

2

Var(S) + E [S]
2 ≥

(1− θ2)2E [S]
2

( 3
p(1−p) + 1)E [S]

2 ≥
4

13
p(1− p)(1− θ2)2,

as claimed in (25) and (40), respectively. In the last line, we have used p(1− p) ≤ 1
4 for any p ∈ [0, 1].

Finally, we provide the derivation of Equation (45). We use our knowledge of E[S] = p2〈1, z〉+ p(1− p)‖z‖2`2
together with the elementary formula

(bi − p)(bj − p) = (bibj − p2)− pbi − pbj + 2p2

to rewrite S − E[S] as

S − E [S] =
n∑

i,j=1

bibjzizj − p2
∑

i 6=j
zizj − p

n∑

i=1

z2
i =

∑

i 6=j

(
bibj − p2

)
zizj +

n∑

i=1

(
b2i − p

)
z2
i

=
∑

i 6=j

(
(bi − p)(bj − p) + pbi + pbj − 2p2

)
zizj +

n∑

i=1

(
b2i − p

)
z2
i

=
∑

i 6=j
(bi − p) (bj − p) zizj +

n∑

i=1

(
b2i − p

)
z2
i + p

∑

i 6=j
bizizj + p

∑

j 6=i
bjzjzi − 2p2

∑

i 6=j
zizj

=
∑

i 6=j
(bi − p) (bj − p) zizj +

n∑

i=1

(
b2i − p

)
z2
i + 2p

n∑

i,j=1

bizizj − 2p

n∑

i=1

biz
2
i − 2p2

n∑

i,j=1

zizj + 2p2
n∑

i=1

z2
i

=
∑

i 6=j
(bi − p) (bj − p) zizj +

n∑

i=1

(
b2i − p

)
z2
i + 2p

n∑

i,j=1

(bi − p) zizj − 2p
n∑

i=1

(bi − p) z2
i

=2
∑

i<j

(bi − p) (bj − p) zizj + 2p〈1, z〉
n∑

i=1

(bi − p) zi + (1− 2p)

n∑

i=1

(bi − p) z2
i .

Here we have exploited symmetry in the first term and b2i = bi to further simplify that expression. For notational

simplicity, it makes sense to define the random variable b̃i := bi−p which obeys E
[
b̃i

]
= 0 and E

[
b̃2i

]
= Var(bi) =

p(1− p). Introducing such a notation simplifies the above expression to

S − E [S] = 2
∑

i<j

b̃ib̃jzizj + 2p〈1, z〉
n∑

i=1

b̃izi + (1− 2p)
n∑

i=1

b̃iz
2
i .
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Employing the binomial formula (a+ b+ c)2 = a2 + 2ab+ 2ac+ b2 + 2bc+ c2, we obtain

Var(S) =E
[
(S − E [S])

2
]

= 4
∑

i<j

∑

k<l

E
[
b̃ib̃j b̃k b̃l

]
zizjzkzl + 8p〈1, z〉

∑

i<j

n∑

k=1

E
[
b̃ib̃j b̃k

]
zizjzk

+4(1− 2p)
∑

i<j

n∑

k=1

E
[
b̃ib̃j b̃k

]
zizjz

2
k + 4p2〈1, z〉2

n∑

i,j=1

E
[
b̃ib̃j

]
zizj

+4p(1− 2p)〈1, z〉
n∑

i,j=1

E
[
b̃ib̃j

]
ziz

2
j + (1− 2p)2

n∑

i,j=1

E
[
b̃ib̃j

]
z2
i z

2
j .

Centeredness of b̃ together with the summation constraints (i < j) and (k < l) implies that summands in the first

term vanish, unless i = k andj = l. This in turn implies

4
∑

i<j

∑

k<l

E
[
b̃ib̃j b̃k b̃l

]
zizjzkzl =4

∑

i<j

E
[
b̃2i

]
E
[
b̃2j

]
z2
i z

2
j = 2p2(1− p)2

∑

i6=j
z2
i z

2
j

=2p2(1− p)2




n∑

i,j=1

z2
i z

2
j −

n∑

i=1

z4
i


 = 2p2(1− p)2

(
‖z‖4`2 − ‖z‖4`4

)
.

Using a similar argument allows us to conclude that the second and third term must identically vanish (because the

index constraints i < j prevents i = j = k and, consequently, at least one index must always remain unpaired). We

can exploit E
[
b̃ib̃j

]
= p(1− p)δi,j in the remaining terms to conclude

Var(S) =2p2(1− p)2
(
‖z‖4`2 − ‖z‖4`4

)
+ 4p3(1− p)〈1, z〉2‖z‖2`2

+4p2(1− p)(1− 2p)〈1, z〉
n∑

i=1

z3
i + p(1− p)(1− 2p)2‖z‖4`4 .

Slightly rewriting this expression then yields the result presented in (45)
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Improving compressed sensing with the diamond norm
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Abstract

In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a
minimal number of linear measurements. Within the paradigm of compressed sensing,
this is made computationally efficient by minimizing the nuclear norm as a convex
surrogate for rank. In this work, we identify an improved regularizer based on the
so-called diamond norm, a concept imported from quantum information theory. We
show that – for a class of matrices saturating a certain norm inequality – the descent
cone of the diamond norm is contained in that of the nuclear norm. This suggests
superior reconstruction properties for these matrices and we explicitly characterize
this set. We demonstrate numerically that the diamond norm indeed outperforms the
nuclear norm in a number of relevant applications: These include signal analysis tasks
such as blind matrix deconvolution or the retrieval of certain unitary basis changes,
as well as the quantum information problem of process tomography with random
measurements. The diamond norm is defined for matrices that can be interpreted as
order-4 tensors and it turns out that the above condition depends crucially on that
tensorial structure. In this sense, this work touches on an aspect of the notoriously
difficult tensor completion problem.

1 Introduction

The task of recovering an unknown low-rank matrix from a small number of measurements
appears in a variety of contexts. Examples of this task are provided by collaborative
filtering in machine learning [1], quantum state tomography in quantum information [2, 3],
the estimation of covariance matrices [4, 5], or face recognition [6]. If the measurements
are linear, the technical problem reduces to identifying the lowest-rank element in an affine
space of matrices. In general, this problem is NP-hard and it is thus unclear how to
approach it algorithmically [7].

In the wider field of compressed sensing [8], the strategy for treating such problems
is to replace the complexity measure – here the rank – with a tight convex relaxation.
Often, it can be rigorously proved that the resulting convex optimization problem has the
same solution as the original problem for many relevant problems, while at the same time
allowing for an efficient algorithm. The tightest (in some sense [9]) convex relaxation of
rank is the nuclear norm, i.e. the sum of singular values. Minimizing the nuclear norm
subject to linear constraints is a semi-definite program and great number of rigorous per-
formance guarantees have been provided for low-rank reconstruction using nuclear norm
minimization [2, 10–17].

The geometry of convex reconstruction schemes is now well-understood (c.f. Figure 2).
Starting with a convex regularizer f (e.g. the nuclear norm), geometric proof techniques
like Tropp’s Bowling scheme [18] or Mendelson’s small ball method [19, 20] bound the
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reconstruction error in terms of the descent cone of f at the matrix that is to be recov-
ered. Moreover, these arguments suggest that the error would decrease if another convex
regularizer with smaller descent cone would be used. This motivates the search for new
convex regularizers that (i) are efficiently computable and (ii) have a smaller descent cone
at particular points of interest.

In this work, we introduce such an improved regularizer based on the diamond norm
[21]. This norm plays a fundamental role in the context of quantum information and
operator theory [22]. For this work, it is convenient to also use a variant of the diamond
norm that we call the square norm. While not obvious from its definition, it has been found
that the diamond norm can be efficiently computed by means of a semidefinite program
(SDP) [23–25]. Starting from one such SDP characterization [25], we identify the set of
matrices for which the square norm’s descent cone is contained in the corresponding one
of the nuclear norm. As a result, low-rank matrix recovery guarantees that have been
established via analyzing the nuclear norm’s descent cone [16, 18] are also valid for square
norm regularization, provided that the matrix of interest belongs to said set. What is more,
bearing in mind the reduced size of the square norm’s descent cone, we actually expect an
improved recovery. Indeed, with numerical studies we show an improved performance.

Going beyond low-rank matrix recovery, we identify several applications. In physics,
we present numerical experiments that show that the diamond norm offers improved per-
formance for quantum process tomography [26]. The goal of this important task is to
reconstruct a quantum process from suitable preparations of inputs and measurements on
outputs (generalizing quantum state tomography, for which low-rank methods have been
studied extensively [2, 3, 27, 28]. We then identify applications to problems from the
context of signal processing. These include matrix versions of the phase retrieval problem
[29–36], as well as a matrix version of the blind deconvolution problem [15]. Recently, a
number of bi-linear problems combined with sparsity or low-rank structures have been in-
vestigated in the context of compressed sensing, with first progress on recovery guarantees
being reported [15, 37]. The present work can be seen as a contribution to this recent
development.

We conclude the introduction on a more speculative note. The diamond norm is defined
for linear maps taking operators to operators – i.e., for objects that can also be viewed as
order-4 tensors. We derive a characterization of those maps for which the diamond norm
offers improved recovery, and find that it depends on the order-4 tensorial structure. In
this sense, the present work touches on an aspect of the notoriously difficult tensor recovery
problem (no canonic approach or reference seems to have emerged yet, but see Ref. [38] for
an up-to-date list of partial results). In fact, the “tensorial nature” of the diamond norm
was the original motivation for the authors to consider it in more detail as a regularizer –
even though the eventual concrete applications we found do not seem to have a connection
to tensor recovery. It would be interesting to explore this aspect in more detail.

2 Preliminaries

In this section, we introduce notation and mathematical preliminaries used to state our
main results. We start by clarifying some notational conventions. In particular, we intro-
duce certain matrix norms and the partial trace for operators acting on a tensor product
space. Moreover, we summarize a general geometric setting for the convex recovery of
structured signals.
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2.1 Vectors and operators

Throughout this work we focus exclusively on finite dimensional mostly complex vector
spaces V,W whose elements we mostly denote by lower case latin letters, e.g. x ∈ V.
Furthermore we assume that each vector space V is equipped with an inner product 〈·, ·〉V
– or simply 〈·, ·〉 for short – that is linear in the second argument. Such an inner product
induces the Euclidean norm

‖x‖F :=
√
〈x, x〉V ∀x ∈ V (1)

and moreover defines a conjugate linear bijection from V to its dual space V∗: to any x ∈ V
we associate a dual vector x† ∈ V∗ which is uniquely defined via x†y = 〈x, y〉V ∀y ∈ V.
The vector space of linear maps from V toW is denoted by L(V → W). Its elements being
operators are denoted by capital latin letters (e.g. X,Y, U, V ) and often we also refer to
them as matrices. When dealing with endomorphisms, we write L(V) = L(V → V) for the
sake of notational brevity. The adjoint X† ∈ L(W → V) of an operator X ∈ L(V → W)
is determined by 〈X†x, y〉V = 〈x,Xy〉W for all x ∈ V and y ∈ W and we call an operator
X ∈ L(V ) self-adjoint, or Hermitian, if X† = X. A self-adjoint operator X is positive
semidefinite, if it has a non-negative spectrum. A particularly simple example for such an
operator is the identity operator 1V ∈ L(V). The set of positive semidefinite operators in
L(V) forms a convex cone which we denote by Pos(V) [39]. This cone induces a partial
ordering on L(V) and we write X � Y if X−Y ∈ Pos(V). On L(V) we define the Frobenius
(or Hilbert-Schmidt) inner product to be

〈X,Y 〉L(V) := Tr(X†Y ) ∀X,Y ∈ L(V), (2)

where Tr(Z) denotes the trace of an operator Z ∈ L(V ). In addition to that, we are going
to require three different matrix norms

‖X‖∗ := Tr
(√
X†X

)
(nuclear norm/trace norm), (3)

‖X‖F :=
√
〈X,X〉 (Frobenius norm), (4)

‖X‖ := sup
x∈V

‖Xx‖F
‖x‖F

(spectral norm). (5)

The Frobenius norm is induced by the inner product (2), while the nuclear norm requires
the operator square root: for X ∈ Pos(V) we let

√
X ∈ Pos(V) be the unique positive semi-

definite operator obeying
√
X

2
= X. Note that these norms correspond to the Schatten

1-, Schatten 2- and Schatten∞-norms, respectively. All Schatten norms are multiplicative
under taking tensor products. The Frobenius norm is preserved under any re-grouping of
indices, the prime example of such an operation being the vectorization of matrices. This
fact justifies our convention to extend the notation ‖ · ‖F to the 2-norms of vectors and
(later on) tensors.

A crucial role is played by the space of bipartite operators L(W⊗V), by which we refer
operators that act on a tensor product space. For such operators we define the partial trace
TrW : L(W ⊗V)→ L(V) as the linear extensions of the map given by

TrW(Y ⊗X) := Tr(Y )X , (6)

where X ∈ L(V) and Y ∈ L(W), see also Figure 1. Finally, we define our improved
regularizer on L(W ⊗V) to be

‖X‖� := max{‖(1W ⊗A)X(1W ⊗B)‖∗ : A,B ∈ L(V), ‖A‖F = ‖B‖F =
√

dim(V)} . (7)

3 219



X

V∗

V

W∗

W

TrW7→ X

V∗

V

Figure 1: Tensor network diagrams: tensors are denoted by boxes with one line for each index.
Contraction of two indices corresponds to connection of the corresponding lines.
Left: A bipartite operator X ∈ L(W ⊗ V) viewed as a tensor in W ⊗ V ⊗W∗ ⊗ V∗, i.e., as a
tensor with four indices.
Right: Its partial trace TrW(X) as an operator on V.

It is easy to see that ‖ · ‖� is a norm and we call it the square norm. It will become clear
later on that the square norm is closely related to the diamond norm ‖ · ‖� from quantum
information theory [23]. As we will discuss in Section 5.1, ‖X‖� = dim(V)

∥∥J−1(X)
∥∥
�,

where J denotes the so-called Choi-Jamiołkowski isomorphism. Both square and diamond
norm can be calculated by a semidefinite program (SDP) satisfying strong duality [25].
Also, note that the pair A = B = 1V is admissible in the maximization (7). Inserting it
recovers ‖X‖∗ and establishes the bound ‖X‖∗ ≤ ‖X‖�. This bound plays a crucial role
for our results.

2.2 Convex recovery of structured signals

In this section, we summarize a recent but already widely used geometric proof technique
for low-rank matrix recovery. Mainly following Ref. [18], we devote this section to explain-
ing the general reconstruction idea.

In the setting of convex recovery of structured signals, one obtains ameasurement vector
y ∈ Cm of a signal x0 ∈ V in some vector space V via a measurement map A : V → Cm,

y = A(x0) + ε , (8)

where ε ∈ Cm represents additive noise in the sampling process. Throughout, we assume
linear data acquisition, i.e., A is linear.

The goal is to efficiently obtain a good approximation to x0 given A and y for the case
where one only has knowledge about some structure of x0. Of course, it is desirable that
the number m of measurements yi required for a successful reconstruction is as small as
possible. For several different structures of the signal x0 a general approach of the following
form has proven to be very successful [40]. One chooses a convex function f : V → R that
reflects the structure of x0 and performs the following convex minimization

xfη = arg min{f(x) : ‖A(x)− y‖F ≤ η} , (9)

where η ≥ 0 is some anticipated error bound.
Next, we give two definitions and a general error bound that has proven to be helpful

to find such recovery guarantees. The descent cone of a convex function is the set of non-
increasing directions u. From the convexity of the function, it follows that the descent cone
is a convex cone. The following definitions can also be found, e.g., in Ref. [18].

Definition 1 (Descent cone). The descent cone D(f, x) of a proper convex function f :
V → R at the point x ∈ V is

D(f, x) :=
⋃

τ>0

{u ∈ V : f(x+ τu) ≤ f(x)} . (10)
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The minimum singular value of a linear map A is the minimal value of ‖A(x)‖F taken
over all x with ‖x‖F = 1. Restricting this minimization to a cone yields the minimum
conic singular value.

Definition 2 (Minimum conic singular value). Let A : V → Cm be a linear map and
K ⊂ V be a cone. The minimum singular value of A with respect to the cone K is defined
as

λmin (A;K) := inf
x∈K
‖A(x)‖F
‖x‖F

. (11)

Proposition 3 (Error bound for convex recovery, Tropp’s version [18]). Let x0 ∈ V be a
signal, A ∈ L(V → Cm) be a measurement map, y = A(x0)+ε a vector of m measurements
with additive error ε ∈ Cm, and xfη be the solution of the optimization (9). If ‖ε‖F ≤ η
then ∥∥xfη − x0

∥∥
F
≤ 2η

λmin (A; D(f, x0))
. (12)

Note that the statement in Ref. [18] shows this result for real vector spaces only.
However, taking a closer look at the proof reveals that it also holds for complex vector
spaces as well. We make the following simple but important observation:

Observation 4 (Improved recovery). The smaller the descent cone the better the recovery
guarantee.

An important example is low-rank matrix recovery. Here, x0 = X0 is some n1 × n2

matrix with rank(X0) = r and a low-rank provides structure that allows for reconstruction
from a dimension sufficient number of measurements. For this case, choosing f = ‖ · ‖∗ to
be the nuclear norm has proven very successful, as the nuclear norm is the convex envelope
of the matrix rank [9]. In order to give a concrete bound, consider a real matrix X0 and m
measurements yj = Tr

(
A†jX0

)
+ εj with each Aj being a real random matrix with entries

drawn independently from a normalized Gaussian distribution. Then one can show that
(see, e.g., Ref. [18])

λmin (A; D(‖ · ‖∗ , X0)) ≥
√
m− 1−

√
3r(n1 + n2 − r)− t (13)

with probability 1−e−t
2/2 (over the random measurements). As a consequence, a number of

& 3 rank(X0)(n1 +n2−rank(X0)) measurements are enough for a successful reconstruction
of the real-valued matrix X0 with high probability.

3 Results

We show that for certain structured recovery problems, replacing the regularizer f in a
convex recovery (9) by an optimized regularizer f� can potentially improve performance;
see also Figure 2. For the case where f is the nuclear norm and f� the square norm, we
show such an improvement with numerical simulations in Section 5.

Proposition 5 (Optimizing descent cones). Let C ⊂ V be a convex set and I be a compact
index set. Moreover, let {fi}i∈I be a family of upper semi-continuous convex functions
fi : C → R. Define another convex function f� as the point-wise supremum f�(x) :=
supi∈I fi(x). Then

D(f�;x) ⊂
⋂

i∈I(x)

D(fi;x) (14)

for any x ∈ C, where I(x) := {i ∈ I : fi(x) = f�(x)} is the active index set at x with the
convention

⋂
i∈∅D(fi;x) := V.
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0

ker(A)

‖A(u)‖F ≤ 2η

D(f∗;x0)

D(f�;x0)

D(f1;x0)

D(f2;x0)

Figure 2: Extension of the geometric arguments [18] used to establish Proposition 3. The descent
cone D(f�;x0) of the optimized regularizer f� is contained in an intersection of descent cones.

Proof of Proposition 5. By cone(S) :=
⋃
τ>0{τs : s ∈ S} we will denote the cone generated

by a set S. According to Definition 1 of the descent cone, we have

D(f�;x) =
⋃

τ>0

{u | sup
i∈I

fi(x+ τu) ≤ f�(x)} . (15)

Writing the supremum as an intersection yields

D(f�;x) =
⋃

τ>0

⋂

i∈I
{τu | fi(x+ u) ≤ f�(x)} (16)

⊂
⋂

i∈I
cone{u | fi(x+ u) ≤ f�(x)} . (17)

By Bε ⊂ V we denote the ball around the origin of radius ε. Now, consider a non-active
index i ∈ I \ I(x). As fi is upper semi-continuous, there exists ε > 0 such that for all
u ∈ Bε we have fi(x+ u) < f�(x). Hence, the set Bε ⊂ {u | fi(x+ u) ≤ f�(x)} and hence
the corresponding cone in Eq. (17) is the entire space. Therefore, every non-active index i
can be omitted in the intersection,

D(f�;x) ⊂
⋂

i∈I(x)

cone{u | fi(x+ u) ≤ fi(x)} . (18)

The definition of the descent cone of fi finishes the proof.

The square norm (7) is a particular instance of such a supremum over nuclear norms.
Thanks to the following nuclear norm bound (20), Proposition 5 can lead to an improved
recovery for any bipartite operator X ∈ L(W ⊗V) satisfying

‖X‖∗ = ‖X‖� . (19)

Here, we will only need the lower bound on the square norm but, in order to fully relate it
to the usual matrix norms, we also provide two upper bounds.

Proposition 6 (Bounds to the square norm). For any X ∈ L(W ⊗V)

‖X‖∗ ≤ ‖X‖� , (20)
‖X‖� ≤ dim(V) ‖X‖∗ , (21)
‖X‖� ≤ dim(W ⊗V) ‖X‖ . (22)
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Our second main result fully characterizes the set of operators satisfying Eq. (19).

Theorem 7 (Extremal operators). Let X ∈ L(W ⊗ V) be a bipartite operator. Then
Eq. (19) holds if and only if

TrW
(√
XX†

)
= TrW

(√
X†X

)
=
‖X‖∗

dim(V)
1V . (23)

For now, we content ourselves with sketching the proof idea and present the full proof
later.

Proof idea. For the case where Eq. (19) is satisfied, we exploit it to single out a primal fea-
sible optimal point. Exact knowledge of this point together with complementary slackness
then allow to severely restrict the range of possible dual optimal points. Relation (23) is
an immediate consequence of these restrictions.

To show the converse, we insert a particular feasible point into the dual SDP of the
square norm. Eq. (23) enables us to explicitly evaluate the objective function at this point.
Doing so yields ‖X‖∗ which in turn implies ‖X‖� ≤ ‖X‖∗ by weak duality. Combining
this implication with the converse bound from Proposition 6 establishes ‖X‖ = ‖X‖�, as
claimed.

As an implication of Theorem 7 and Proposition 5 we obtain the following.

Corollary 8 (Intersection of descent cones). Let X ∈ L(W ⊗V) satisfy Eq. (19). Then

D(‖ · ‖� ;X) ⊂
⋂

(A,B)∈I(X)

D(‖(1W ⊗A)( · )(1W ⊗B)‖∗ ;X) , (24)

where I(X) contains all A,B ∈ L(V ) with ‖A‖F = ‖B‖F = 1 and being active in the sense
that ‖X‖� = ‖(1W ⊗A)X(1W ⊗B)‖∗.

For instance, setting A = B = 1V gives an element of I(X) and yields the inclusion
D(‖ · ‖� ;X) ⊂ D(‖ · ‖∗ ;X) for any X satisfying Eq. (19). As an immediate application,
we will see in the next section that the square norm inherits recovery guarantees from the
nuclear norm.

4 Applications to low-rank matrix recovery

In this section we focus on low-rank matrix recovery of Hermitian bipartite operators
X0 ∈ L(W ⊗ V) that are either real-valued or complex-valued. As already mentioned in
Section 2.2, there the task is to efficiently recover an unknown matrix X0 of low-rank r
from m noisy linear measurements of the form

yi = Tr (AiX0) + εi, i = 1, . . . ,m , (25)

where A1, . . . , Am ∈ L(W⊗V) are the measurement matrices and ε1, . . . , εm ∈ Rm denotes
additive noise in the sampling process. By introducing a measurement mapA : L(W⊗V)→
Rm of the form A(X0) =

∑m
i=1 Tr (AiX0) ei, where e1, . . . , em denotes the standard basis

in Rm, the entire measurement process can be summarized as

y = A(X0) + ε . (26)
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Here, y = (y1, . . . , ym)T ∈ Rm contains all measurement outcomes and ε ∈ Rm denotes the
noise vector. If a bound ‖ε‖F ≤ η on the noise is available, many measurement scenarios
have been identified where estimating X0 by

X∗η := arg min{‖X‖∗ : ‖A(X)− y‖F ≤ η} (27)

from noisy data of the form (26) stably recovers X0. Note that by employing the well-
known SDP formulation of the nuclear norm [41] this optimization can be recast as

X∗η = arg min
X,Y,Z

1
2

(
Tr(Y ) + Tr(Z)

)

subject to

(
Y −X
−X† Z

)
� 0 ,

Y, Z ∈ Pos(W ⊗V) ,
‖A(X)− y‖F ≤ η .

(28)

What is more, several of these recovery guarantees can be established using the geometric
proof techniques presented in Section 2.2. For results established that way, combining
Observation 4 with Corollary 8 allows us to draw the following conclusion.

Implication 9 (Inheriting recovery guarantees). For bipartite operators X0 ∈ L(W ⊗ V)
that satisfy ‖X‖∗ = ‖X‖�, any recovery guarantee for nuclear norm minimization, which
is based on the nuclear norm’s descent cone, also holds for square norm minimization.

This insight indicates that replacing nuclear norm regularization (27) by

X�
η := arg min{‖X‖� : ‖A(X)− y‖F ≤ η} (29)

results in an estimation procedure that performs at least as well whenever ‖X0‖ = ‖X0‖∗.
In fact, Observation 4 suggests that it may actually outperform traditional recovery pro-
cedures. Also, the SDP formulation for the square norm [25] allows one to recast the
optimization (29) as

X�
η = arg min

X,Y,Z

dim(V)
2

(
‖TrW(Y )‖+ ‖TrW(Z)‖

)

subject to

(
Y −X
−X† Z

)
� 0 ,

Y, Z ∈ Pos(W ⊗V) ,
‖A(X)− y‖F ≤ η ,

(30)

which, just like the optimization (28), is a convex optimization problem that can be solved
computationally efficiently. In the remainder of this section, we present three measurement
scenarios for which Implication 9 holds. The first one is a version of Ref. [18, Example
4.4] which is valid for reconstructing real-valued matrices. In its original formulation with
nuclear norm minimization, it follows from combining Proposition 3 and Eq. (13).

Proposition 10 (Stable recovery of real matrices via Gaussian measurements). Let X0 ∈
L(W ⊗ V) be a real valued, bipartite matrix of rank r that obeys ‖X0‖� = ‖X0‖∗. Also,
suppose that each measurement matrix Ai is a real-valued standard Gaussian matrix and
the overall noise is bounded as ‖ε‖F ≤ η. Then, m ≥ Cr dim(W ⊗V) noisy measurements
of the form (26) suffice to guarantee

∥∥X�
η −X0

∥∥
F
≤ C ′η√

m
(31)

with probability at least 1− e−C
′′m. Here, C, C ′ and C ′′ denote absolute constants.
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With high probability (w.h.p.), this statement assures stable recovery, meaning that
the reconstruction error (31) scales linearly in the noise bound η and inversely proportional
to
√
m.
For the sake of clarity, we have refrained from providing explicit values for the constants

C,C ′ and C ′′ in Proposition 10. However, resorting to Tropp’s bound (13) on the minimal
conical eigenvalue of a Gaussian sampling matrix reveals that stably recovering any rank-r
matrix obeying Eq. (19) requires roughly

m & 6r(dim(V) dim(W)− r) (32)

independently selected Gaussian measurements.
Proposition 10 is a prime example for a non-uniform recovery guarantee: For any fixed

rank-r matrix X0 obeying Eq. (19), m randomly chosen measurements of the form (8)
suffice to stably reconstruct X0 w.h.p. For some measurement scenarios, stronger recovery
guarantees can be established. Called uniform recovery guarantees, these results assure
that one choice of sufficiently many random measurements w.h.p. suffices to reconstruct
all possible matrices of a given rank.

A uniform recovery statement can be established for the following real-valued measure-
ment scenario [17]: suppose that with respect to an arbitrary orthonormal basis of W⊗V,
each matrix element of Ai is an independent instance of a real-valued random variable a
obeying

E [a] = 0, E
[
a2
]

= 1 and E
[
a4
]
≤ F, (33)

where F ≥ 1 is an arbitrary constant. Measurement matrices of this form can be considered
as a generalization of Gaussian measurement matrices, where each matrix element corre-
sponds to a standard Gaussian random variable. In Ref. [17] – see also Refs. [42, 43] – a
uniform recovery guarantee for such measurement matrices has been established by means
of the Frobenius robust rank null space property [17, Definition 10]. Such a proof technique
is different from the geometric one introduced in Section 2.2. However, as laid out in
the appendix, some auxiliary statements allow for reassembling technical statements from
these works to yield a slightly weaker, but still uniform, statement by means of analyzing
descent cones. Implication 9 is applicable for such a result and yields the following.

Proposition 11 (Stable, uniform recovery of real matrices via measurement matrices with
finite fourth moments). Consider the measurement process described in Eq. (26), where each
Ai ∈ L(W ⊗V) is an independent random matrix of the form (33). Fix r ≥ 1 and suppose
that m ≥ CF r dim(W⊗V). Then, w.h.p., every real-valued matrix X0 ∈ L(V⊗W) of rank
at most r and obeying ‖X‖∗ = ‖X‖ can be stably reconstructed from the measurements (26)
by means of square norm minimization (29). Here, CF is a constant that only depends on
the fourth-moment bound F .

We conclude this section with two uniform recovery guarantees for Hermitian low-rank
matrices from measurement matrices Ai that are proportional to rank-one projectors, i.e.,
Ai = aia

∗
i for some ai ∈ W ⊗ V. Originally established for nuclear norm minimization in

Ref. [16], by using an extension of the geometric proof techniques presented in Section 2.2,
Implication 9 is directly applicable to such measurements.

Proposition 12 (Stable, uniform recovery of Hermitian matrices from rank-one mea-
surements). Consider recovery of Hermitian rank-r matrices X ∈ L(W ⊗ V) that obey
‖X‖� = ‖X‖∗ from rank-one measurements of the form Ai = aia

∗
i . Let n = dim(W ⊗ V).

Then stable and uniform recovery guarantees for square norm minimization (29) analogous
to Proposition 11 hold if either
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1. the measurements ai are m ≥ CGrn random Gaussian vectors in W ⊗V or

2. the measurements ai are m ≥ C4Drn log(n) vectors drawn uniformly from a complex
projective 4-design.

Once more, CG and C4D denote absolute constants of sufficient size.

In the statement above, a complex projective t-design is a configuration of vectors which
is “evenly distributed” on a sphere in the sense that sampling uniformly from it reproduces
the moments of Haar measure up to order 2t [44–46]. More precisely,

1

N

N∑

j=1

(wjw
†
j)
⊗t =

∫

‖w‖F=1
(ww†)⊗tdw. (34)

The second statement in Proposition 12 can be seen as “partial derandomization” of the
first one [35]

5 Application to the recovery of linear maps on operators

Now we come to three concrete applications concerning linear maps that take operators in
L(V) to operators in L(W). Our reconstruction based on the square norm can be applied to
such maps by identifying them with operators in L(W⊗V). We start with introducing some
relevant notation and explain such an identification, the Choi-Jamiołkowski isomorphism,
in more detail. Then we present numerical results on retrieval of certain unitary basis
changes, quantum process tomography, and blind matrix deconvolution.

5.1 Notation concerning linear maps on operators

Our square norm is closely related to the diamond norm, which is defined for linear op-
erators M : L(V) → L(W) that map operators to operators. We call such objects maps
and denote their space by L(V,W) := L (L(V)→ L(W)), or simply by L (V) := L (V,V).
We also denote maps by capital latin letters. Concretely, for M ∈ L(V,W) and X ∈ L(V)
we write M(X) ∈ L(W). A particularly simple example is the identity map 1L(V) ∈ L(V)
which obeys 1L(V)(X) = X for all X ∈ L(V).

We would like to identify maps in L(V,W) with operators in L(W ⊗ V), for which we
have discussed certain reconstruction schemes. For this purpose, we employ a very useful
isomorphism, called the Choi-Jamiołkowski isomorphism [47, 48]. In order to explicitly
define this isomorphism, we fix an orthogonal basis (ei) of V. This also gives rise to an
operator basis

Ei,j := eie
T
j ∈ L(V) (35)

and we define vectorization vec : L(V)→ V ⊗ V by the linear extension of

vec(Ei,j) := ei ⊗ ej . (36)

Then the Choi-Jamiołkowski isomorphism J is defined by

J : L(V,W)→ L(W ⊗V)

M 7→
dim(V)∑

i,j=1

M(Ei,j)⊗ Ei,j .
(37)
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M

V∗

V

W

W∗
J7→ M

V∗

V

W

W∗
TrW7→ M

V∗

V

Figure 3: Tensor network diagrams: tensors are denoted by boxes with one line for each index.
Contraction of two indices corresponds to connection of the corresponding lines.
Left: Order-4 tensor M as a map from L(V) ∼= V ⊗ V∗ to L(W) ∼=W ⊗W∗.
Middle: Its Choi-matrix J(M) as an operator on W∗ ⊗ V ∼=W ⊗V.
Right: Its partial trace TrW(J(M)) as an operator on V.

The resulting operator J(M) is called the Choi matrix of M . It can be straightforwardly
checked that Eq. (37) is equivalent to setting

J(M) =
(
M ⊗ 1L(V)

)(
vec(1V) vec(1V)T

)
. (38)

Although not evident from Eq. (37), this isomorphism is actually basis independent. In-
deed, it is just an instance of the natural isomorphismW⊗W∗⊗V∗⊗V ∼=W⊗V∗⊗W∗⊗V.
This identification is illustrated in Figure 3, and discussed in more detail in the appendix.

Similarly to the definition of the spectral norm (5), the nuclear norms on L(V) and
L(W) induce a norm on L(V,W),

‖M‖∗→∗ := sup
X∈L(V)

‖M(X)‖∗
‖X‖∗

. (39)

Perhaps surprisingly, the induced nuclear norm of maps of the form M ⊗ 1L(V) can be
computed efficiently [23–25], as explained in detail below. This motivates studying the
diamond norm [21]

‖M‖� :=
∥∥M ⊗ 1L(V)

∥∥
∗→∗ . (40)

It plays an important role in quantum mechanics [21] and is also the core concept of this
work. Using the Choi-Jamiołkowski isomorphism, the diamond norm (40) can indeed be
written [25] as

‖M‖� =
‖J(M)‖�
dim(V)

, (41)

where the square norm was defined variationally in Eq. (7). Hence, for the case of a
measurement map A : L(V,W)→ Cm, the reconstruction based on the square norm (30)
can also be written as

M�η = arg min 1
2 ‖TrW(Y )‖+ 1

2 ‖TrW(Z)‖

subject to

(
Y −J(M)

−J(M)† Z

)
� 0 ,

Y, Z ∈ Pos(W ⊗V) ,
‖A(M)− y‖F ≤ η .

(42)

5.2 Retrieval of certain unitary basis changes

Our problem of retrieval of unitary basis changes is motivated by the phase retrieval prob-
lem. Retrieving phases from measurements that are ignorant towards them has a long-
standing history in various scientific disciplines [29]. A discretized version of this problem

11 227



Diamond norm, Gaussian measurement

Local dimension
2 4 6 8

N
um

be
r 

of
 m

ea
su

re
m

en
ts

50

100

150

200

250

300

350

400

# 
er

ro
r 

<
=

 1
e-

05
 o

ut
 o

f 1
00

 tr
ia

ls

0

20

40

60

80

100

# measurements
200 250 300 350 400

# 
er

ro
r 

<
=

 1
e-

05

0

20

40

60

80

100
n =8

|| ||
*
, A

G

|| ||
*
, A

str

|| || }, A
G

|| || }, A
str

Figure 4: Retrieval of M(X) = UXV for the case of real numbers and ε = 0. U, V ∈ O(n)
are orthogonal matrices. The plots show the number of trails out of 100 with small errors,
‖M�eps −M0‖F ≤ 10−5 and ‖M∗eps −M0‖F ≤ 10−5, respectively, and with η chosen as machine
precision eps.
Left: Diamond norm minimization with Gaussian measurements for different local dimensions
n.
Right: Comparison of diamond norm and nuclear norm with Gaussian and structured mea-
surements. Note that the structured measurements improve the reconstruction based on the
diamond norm while for the reconstruction based on the nuclear norm Gaussian measurements
turn out to work better. The computation time needed for the recovery is approximately the
same for both methods.

can be phrased as the task of inferring a complex vector x ∈ Cn from measurements of the
form

yi = |〈ai, xi〉|2 , (43)

where a1, . . . , am ∈ Cn. Recently, the mathematical structure of this problem has received
considerable attention [29–36]. One way of approaching this problem is to recast it as a
matrix problem which has the benefit that the measurements (43) become linear. Indeed,
setting X := xx† and Ai = aia

†
i reveals that

yi = |〈ai, x〉|2 = Tr
(
aia
†
ixx
†) = Tr (AiX) . (44)

This “lifting” trick allows for re-casting the phase retrieval problem as the task of recovering
a Hermitian rank-one matrix X = xx† from linear measurements of the form Ai = aia

†
i .

Recently, Ling and Strohmer [49] used similar techniques to recast the important prob-
lem of self-calibration in hardware devices as the task to recover a non-Hermitian rank-one
matrix X = xy† from similar linear measurements.

In this section, we consider the matrix-analogue of such a task and set V = Cn = W
but keep V and W as labels. Concretely, we consider maps M ∈ L(V,W) of the form

M(X) = UXV , (45)

where U and V are fixed unitaries. Note that any such map has a Choi matrix of the form

J(M) =M ⊗ 1L(V) vec(1L(V)) vec(1L(V))
†

=
(
U ⊗ 1L(V) vec(1L(V))

) (
V ⊗ 1L(V) vec(1L(V))

)†
,

(46)

which corresponds to an outer product of the form xy†. Moreover, unitarity of both U and
V assures that all such maps meet the requirements of Theorem 7.
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We aim to numerically recover such maps from two different types of measurements: (i)
Gaussian measurements and (ii) structured measurements. The Gaussian measurements
are given by a measurement map AG : L(V,W) → Cm with real and imaginary parts of
all of its components drawn from a normal distribution with zero mean and unit variance.
In the case of structured measurements, M receives rank-1 inputs and then inner products
with regular measurement matrices are measured. More precisely, the measurement map
Astr : L(V,W)→ Cm is given by

Astr(M)j := Tr
(
AjM(xjy

†
j)
)
, j ∈ [m] , (47)

where xj , yj are chosen uniformly from the complex unit sphere {z ∈ V : ‖z‖F = 1} ⊂ V.
The matrices Aj , on the other hand, are independent instances of the random matrix
UDV , where D ∈ L(V) is a fixed, real-valued diagonal matrix and both U and V are
chosen independently from the unique unitarily invariant Haar measure over U(dim(V)).
For our numerical studies, we restrict ourselves to even dimensions n = dim(V) and set
D = 2

n(1,−1, 2,−2, . . . , n/2,−n/2). This in particular assures ‖D‖ = 1. As we will see,
similar types of measurements can be used in quantum process tomography and blind
matrix deconvolution.

For both measurement setups, we find that diamond norm reconstruction outperforms
nuclear norm reconstruction; see Figure 4. Interestingly, the structured measurements are
better than the Gaussian measurements for the diamond norm reconstruction, while for
the nuclear norm reconstruction we find the converse.

Finally, we would like to to point out that Ling and Strohmer introduced a new al-
gorithm – dubbed “SparseLift” – to efficiently reconstruct the signals they consider and
simultaneously promote sparsity [49]. It is an intriguing open problem to compare the
performance of SparseLift to the constrained diamond norm minimization advocated here
for different types of practically relevant measurement ensembles. We leave this to future
work.

5.3 Quantum process tomography

The problem of reconstructing quantum mechanical processes from measurements is re-
ferred to as quantum process tomography. As explained in the next paragraph, quantum
processes are described by maps that saturate the norm inequality (19) and thus are natural
candidates for diamond norm-based methods.

Preliminaries. A positive semidefinite operator ρ ∈ Pos(V) with unit trace Tr(ρ) =
‖ρ‖∗ = 1 is called a density operator and a matrix representation is a density matrix.
The convex space of density operators is denoted by D(V) ⊂ Pos(V) and its elements are
referred to as quantum states. The extreme elements of D(V) are called pure states and are
given by rank-one operators of the form ψψ† with 2-norm normalized state vectors ψ ∈ V.
An observable is a self-adjoint operator A ∈ Herm(V) and the expectation value of A in
state ρ ∈ D(V) is Tr(ρA). Note that in the case where ρ and A are diagonal, ρ corresponds
to a classical probability vector and A to a random variable also with expectation value
Tr(ρA). For the following definitions it is helpful to know that quantum systems are
composed to larger quantum systems by taking tensor products of operators. A map
M ∈ L(V,W) is called completely positive if J(M) ∈ Pos(W ⊗ V) with J from Eq. (38).
This is the case if and only if for every vector space V the mapM⊗1L(V) preserves the cone
Pos(V ⊗W) of positive semidefinite operators. M ∈ L(V,W) is called trace preserving if
Tr(M(X)) = Tr(X) for all X ∈ L(V). The convex space of maps that are both, completely
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positive and trace preserving is denoted by CPT(V,W) ⊂ L(V,W) and its elements are
quantum operations as they map density operators to density operators and they are also
called quantum channels. The Kraus rank of a quantum channel M ∈ CPT(V,W) is the
rank of its Choi matrix J(M). A channel M ∈ CPT(V,W) of Kraus rank r can be written
as

M(ρ) =
r∑

j=1

KjρK
†
j , (48)

where Kj ∈ L(V → W) are so-called Kraus operators satisfying
∑r

j=1K
†
jKj = 1V , and no

other such decomposition has fewer terms. A special role is played by unitary channels,
which are channels of unit Kraus rank. In this case, the single Kraus operator in the Kraus
representation (48) has to be unitary. Unitary quantum channels describe coherent opera-
tions in the sense that for isolated quantum systems (i.e., systems that are decoupled from
anything else) one can only have unitary quantum channels. Quantum channels describing
situations where the system is affected by noise have Kraus ranks larger than one. In many
experimental situations, one aims at the implementation of a unitary channel, but actually
implements a channel whose Kraus rank is larger than one, but is still approximately low.
Therefore, process tomography of quantum channels with low Kraus rank is an important
task in quantum experiments. Also, in the context of quantum error corretion, low-rank
deviations turn out to have a particularly adverse impact [50]. This underscores the need
to design efficient estimation protocols for this case.

In the next paragraph, we present numerical results showing that, indeed, replacing the
nuclear norm with the diamond norm in a straightforward “compressive process tomogra-
phy” improves the results. We find it plausible that using the diamond norm as a “drop in
replacement” for the nuclear norm will also lead to improvements in other, more advanced
process tomography schemes. For example, Kimmel and Liu [51] combine compressed pro-
cess tomography with ideas from randomized benchmarking [52, 53]. This combination
allows recovery using only Clifford measurements that are robust to state preparation and
measurement (SPAM) errors. Their recovery guarantees are based on the geometric argu-
ments presented in Section 2.2. It thus seems fruitful to conduct numerical experiments
using the diamond norm in their setting.

Numerical results for quantum process tomography. The task is to reconstruct
M0 ∈ CPT(V,W) from measurements of the form

y = A(M0) + ε, (49)

where A : L(V,W) → Rm encodes linear data acquisition, y ∈ Rm summarizes the mea-
surement outcomes, and ε ∈ Rm represents additive noise. The most general measurements
conceivable in this context are so-called process POVMs [54]. However, here we consider
the case where A is given by the preparation of pure states given by state vectors ψj ∈ V
and measurements of observables Aj ∈ Herm(W), where j ∈ [m]. This yields similar
measurements as in Section 5.2,

yj = A(M0)j := Tr
(
AjM0(ψjψ

†
j)
)

+ εj , j ∈ [m] , (50)

where each ψj ∈ V is chosen uniformly and independently from the complex unit sphere
in V. Each observable Aj ∈ Herm(W) is of the form Aj = UjDU

†
j , where each Uj ∈

U(dim(W)) is drawn independently from the Haar measure over all unitaries. Once more,
D ∈ Herm(W) is a fixed Hermitian operator with non-degenerate spectrum. With this
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Figure 5: Retrieval of quantum channels acting on two qubits (n = 4) with ε = 0. The plots show
the number of trails out of 100 with small errors,

∥∥M�eps −M0

∥∥
F
≤ 10−5 and

∥∥M∗eps −M0

∥∥
F
≤

10−5, respectively, and with η chosen as machine precision eps.
Left: Diamond norm recovery for different Kraus ranks.
Right: Comparison of diamond norm and trace norm of the Choi matrix for Kraus rank
r = 2. The diamond norm recovery works with fewer measurements than the conventional
nuclear norm recovery, while the computation time is approximately the same.

measurement setup, quantum channels can be recovered from few measurements. Once
more, diamond reconstruction outperforms the conventional nuclear norm reconstruction,
see Figure 5.

5.4 Blind matrix deconvolution

The blind deconvolution scheme as considered in Ref. [15] aims to reconstruct unknown
vectors h ∈ Rk and m ∈ Rn. From this, length L signals are being generated as

w = Bh and x = Cm, (51)

for known B ∈ L
(
Rk → RL

)
and C ∈ L

(
Rn → RL

)
. The observed quantity is the circular

convolution of w and x,

y = w ∗ x =
L∑

i=1




L∑

j=1

wj xi−j+1 mod L


 ei , (52)

where (e1, . . . , eL) denotes the standard basis of RL. This gives rise to a bi-linear problem,
which can still be solved using a lifting technique to a variant of the matrix completion
problem.

The type of problem considered in this work allows for the blind matrix deconvolution,
in which not vectors h,w, but orthogonal or unitary matrices U, V reflecting unknown
rotations are reconstructed.

In this new problem, for known B,C ∈ L
(
CN → CL

)
and real vectors h(q),m(q) ∈ RN

with q ∈ [Q], that are an input to the problem, we seek to reconstruct U, V ∈ U(n) from
the circular convolutions y(q) = w(q) ∗ x(q) of w(q) and x(q), where now

w(q) = BUh(q),

x(q) = CVm(q),
(53)
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Figure 6: Blind matrix deconvolution: Measurement vectors in green, fixed operations in blue,
and unknown signal in red.

see also Figure 6. The observations are given by the Q vectors y(q) = w(q) ∗ x(q) or,
equivalently, by

ŷ(q) = ŵ(q) ◦ x̂(q)

= (FBUh(q)) ◦ (FCVm(q)) ,
(54)

where Fj,k := e2πi (j−1)(k−1)/N/
√
N defines the Fourier transform F and (a◦ b)j := ajbj the

Hadamard product of vector a and b. Let us denote the j-th rows of FB and FC by b̂l
and ĉl, respectively. Then

y
(q)
l = b̂Tl Uh

(q) ĉlV m
(q) = Tr(El Uρ

(q)V T ) (55)

with the unit rank matrices El := ĉTl b̂l and ρ
(q) := h(q)m(q)T .

Indeed, this is precisely a problem of the form discussed here,

y
(q)
l = 〈E†l ,M(ρ(q))〉 (56)

with V =W = Cn and
M(X) = UXV . (57)

Up to a phase, U and V can be trivially reconstructed from M up to phase. That is to
say, a matrix version of blind deconvolution can readily be cast into the form of problems
considered in this work. Numerically, we find a recovery from few samples and that the
diamond norm reconstruction outperforms the nuclear norm based reconstruction from
Ref. [15] adapted to our setting; see Figure 7. Many practical application of this problem
are conceivable: The reconstruction of an unknown drift of a polarization degree of freedom
in a channel problem is only one of the many natural ramifications of this setup.

6 Proofs

In this section, we prove Proposition 6 and an extension of Theorem 7. In order to do
so, we first define a generalization of the sign matrix to matrices that are not necessarily
Hermitian. This will give rise to the left and right absolute values of arbitrary matrices.
Then we introduce SDPs, complementary slackness, and state the SDP for the square norm
in standard form. Combining all these concepts, this section cumulates in the proofs of
Proposition 6 and Theorem 7.

6.1 Auxiliary statements

The singular value decomposition of a matrix X ∈ L (Cn) is

X = UΣV †, (58)

where U, V ∈ U(n) are unitaries and Σ ∈ Pos(Cn) is positive-semidefinite and diagonal.
This decomposition allows one to define a “sign matrix” of X:
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Figure 7: Blind matrix deconvolution with N = 6 and ε = 0. The plots show the number of trials
out of 100 with small errors,

∥∥M�eps −M0

∥∥
F
≤ 10−5 and

∥∥M∗eps −M0

∥∥
F
≤ 10−5, respectively,

and with η chosen as machine precision eps.
Left: Recovery via diamond norm. Right: Recovery via nuclear norm.
The diamond norm recovery works with fewer measurements than the nuclear norm recovery,
while the computation time is approximately the same.

Definition 13 (Sign matrix). For any matrix X ∈ L (Cn) with singular value decomposi-
tion (58) we define its sign matrix to be SX := V U †.

Note that the sign matrix is in general not unique, but always unitary and it obeys

XSX = UΣU † =
√
XX†, (59)

X†S†X = V ΣV † =
√
X†X. (60)

Therefore, SX indeed generalizes the sign-matrix sign(X) (which is defined exclusively for
Hermitian matrices) upon right multiplication.

The following auxiliary statement will be required later on and follows from a Schur
complement rule.

Lemma 14. For every A ∈ L(V → W), one has
(
‖A‖1W ±A
±A† ‖A‖1V

)
� 0 . (61)

6.2 Semidefinite programming

Semidefinite programs (SDPs) are a class of optimization problems that can be evaluated
efficiently, e.g. by using CVX [55, 56].

Definition 15 (Semidefinite program). A semidefinite program is specified by a triple
(Ξ, C,D), where C ∈ Herm(V) and D ∈ Herm(W) are self-adjoint operators and Ξ :
L(V) → L(W) is a Hermiticity preserving linear map. With such a triple, one associates
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a pair of optimization problems:

Primal: maximize Tr(CZ) (62)
subject to Ξ(Z) = D , (63)

Z � 0 , (64)
Dual: minimize Tr(DY ) (65)

subject to Ξ†(Y ) � C , (66)
Y ∈ Herm(W) . (67)

Z] ∈ Herm(V) is called primal feasible if it satisfies Eq. (63) and Eq. (64). It is called
optimal primal feasible if, additionally, for Z = Z] in Eq. (62) the maximum is attained.
Similarly, Y ] ∈ Herm(W) is called dual feasible if it satisfies Eq. (66) and optimal dual
feasible, if for Y = Y ] the minimum in Eq. (65) is attained.

SDPs that exactly reproduce the problem structure outlined in this definition are said
to be in standard form. But for specific SDPs, equivalent formulations might often be more
handy.

Weak duality refers to the fact that the value of the primal SDP cannot be larger than
the value of the dual SDP, i.e., that Tr(CZ) ≤ Tr(DY ) for any primal feasible point Z
and dual feasible point Y . An SDP is said to satisfy strong duality if the optimal values
coincide, i.e., if for some optimal primal feasible and dual feasible points Z] and Y ] it hols
that Tr(CZ]) = Tr(DY ]). In fact, from a weak condition, called Slater’s condition, strong
duality follows.

Lemma 16 (Complementary slackness [39]). Suppose that (Ξ, C,D) characterizes an SDP
that obeys strong duality and let Z] ∈ Herm(V) and Y ] ∈ Herm(W) denote optimal primal
and dual feasible points, respectively (i.e. Tr

(
CZ]

)
= Tr

(
DY ]

)
). Then

Ξ†(Y ])Z] = CZ] and Ξ(Z])Y ] = DY ]. (68)

The following, somewhat exhaustive, classification of the square norm’s SDP will be
instrumental later on.

Lemma 17 (SDP for the diamond norm in standard form [25]).
Let X ∈ L(W ⊗ V)) be a bipartite operator. Then its square norm ‖X‖� can be evaluated
by means of an SDP (Ξ, C,D) that satisfies strong duality. In standard form, it is given
by the block-wise defined matrices

C =
dim(V)

2




0V 0V 0† 0†

0V 0V 0† 0†

0 0 0W⊗V X
0 0 X† 0W⊗V


 ∈ Herm (V ⊕ V ⊕ (W ⊗V)⊕ (W ⊗V)) , (69)

D =




1 0 0†W⊗V 0†W⊗V
0 1 0TW⊗V 0TW⊗V

0W⊗V 0W⊗V 0W⊗V 0W⊗V
0W⊗V 0W⊗V 0W⊗V 0W⊗V


 ∈ Herm (C⊕ C⊕ (W ⊗V)⊕ (W ⊗V)) , (70)

where 0W⊗V ∈ W⊗V denotes the zero-vector, and 0 ∈ L(V → W⊗V), as well as 0V ∈ L(V)
represent zero matrices of appropriate dimension. Finally, the map

Ξ : Herm ((V ⊕ V ⊕ (W ⊗V)⊕ (W ⊗V))→ Herm (C⊕ C⊕ (W ⊗V)⊕ (W ⊕V)) (71)
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acts as

Ξ




W0 · · ·
· W1 · ·
· · Z0 ·
· · · Z1


 =




Tr(W0) 0 0†W⊗V 0†W⊗V
0 Tr(W1) 0†W⊗V 0†W⊗V

0W⊗V 0W⊗V Z0 − 1W ⊗W0 0W⊗V
0W⊗V 0W⊗V 0W⊗V Z1 − 1W ⊗W1


 (72)

and has an adjoint map given by

Ξ†




λ0 · · ·
· λ1 · ·
· · Y0 ·
· · · Y1


 =




λ01V − TrW (Y0) 0V 0† 0†

0V λ11V − TrW (Y1) 0† 0†

0 0 Y0 0W⊗V
0 0 0W⊗V Y1


 , (73)

where 0W⊗V ∈ L(W ⊗V), once more, represents a zero-matrix.

Lemma 17 presents an SDP for the square norm in standard form. Although this
standard form is going to be important for our proofs, it is somewhat unwieldy. Fortunately,
elementary modifications [25] allow to reduce the SDP to the following pair.

Primal: ‖X‖� = max 1
2 Tr(XZ) + 1

2 Tr(X†Z†)

subject to

(
1W ⊗ ρ Z
Z† 1W ⊗ σ

)
� 0 ,

Tr(ρ) = Tr(σ) = dim(V) ,

ρ, σ ∈ Pos(V) ,

Z ∈ L(W ⊗V)

(74)

Dual: ‖X‖� = min dim(V)
2

(
‖TrW(Y )‖+ ‖TrW(Z)‖

)

subject to

(
Y −X
−X† Z

)
� 0 ,

Y, Z ∈ Pos(W ⊗V) .

(75)

This simplified SDP pair for the square norm comes in handy for establishing the final
claim in Proposition 6. For Hermitian matrices, the first two bounds presented there were
already established in Ref. [57, Lemma 7]. Here, we show that an analogous strategy
remains valid for matrices that need not be Hermitian.

Proof of Proposition 6. Let us start with recalling the variational definition (7) of the
square norm:

‖X‖� := max{‖(1W ⊗A)X(1W ⊗B)‖∗ : A,B ∈ L(V), ‖A‖F = ‖B‖F =
√

dim(V)}.
As already mentioned, inserting A = B = 1 into Eq. (7) establishes the lower bound (20)
(‖X‖∗ ≤ ‖X‖�). Also, a generalized version of Hölder’s inequality assures

‖(1W ⊗A)X(1W ⊗B)‖∗ ≤ ‖1W ⊗A‖ ‖X‖∗ ‖1W ⊗B‖ ≤ ‖A‖F ‖B‖F ‖X‖∗ (76)

for any A,B ∈ L(V) and X ∈ L(W⊗V). Inserting this bound into the variational definition
of ‖X‖� results in ‖X‖� ≤ dim(V) ‖X‖∗, which is the second bound.

For the final bound (‖X‖� ≤ dim(W ⊗ V) ‖X‖) we consider the simplified version of
the square norm’s dual SDP (75). Lemma 14 assures that setting Y = Z = ‖X‖1W⊗V
results in a feasible point of this program. Inserting this point into the objective function
yields a value of dim(W) dim(V) ‖X‖, because ‖TrW (1W⊗V)‖ = ‖dim(W)1V‖ = dim(W).
The bound follows from this value and the structure of the optimization problem (75).
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6.3 Proof of Theorem 7

In this section, we prove an extension of Theorem 7. In particular, this more general result
relates Theorem 7 to optimal feasible points in Watrous’ SDP from Lemma 17. These will
contain the generalizations of the sign matrix from Definition 13.

Theorem 18 (Extremal operators as optimal feasible points). Let X ∈ L(W ⊗ V) be a
bipartite operator and set n := dim(V). Then the points (i)–(v) are equivalent:
(i) X satisfies

‖X‖� = ‖X‖∗ , (77)

(ii) Some Z] ∈ Herm((V ⊕ V ⊕ (W ⊗V)⊕ (W ⊗V)) of the form

Z] :=
1

n




1V 0V 0† 0†

0V 1V 0† 0†

0 0 1W⊗V S†X
0 0 SX 1W⊗V


 (78)

is a primal optimal feasible point for Watrous’ SDP (Ξ, C,D) from Lemma 17.
(iii) Some Y ] ∈ Herm (C⊕ C⊕ (W ⊗V)⊕ (W ⊕V)) of the form

Y ] =
1

2




‖X‖∗ · · ·
· ‖X‖∗ · ·
· · n

√
XX† ·

· · · n
√
X†X


 . (79)

is a dual optimal feasible point for Watrous’ SDP (Ξ, C,D) from Lemma 17.
(iv) X satisfies

TrW
(√

XX†
)
∝ TrW

(√
X†X

)
∝ 1V . (80)

(v) X satisfies

TrW
(√

XX†
)

= TrW
(√

X†X
)

=
‖X‖∗
n

1V . (81)

Similar to the actual SDP, the optimal feasible points presented in Theorem 18 have
simplified counterparts that correspond to optimal feasible points of the simplified SDPs
(74) and (75). For the sake of completeness, we present them in the following corollary.

Corollary 19. For any X ∈ L(W ⊗ V), optimal feasible points of the primal SDP (74)
and the dual SDP (75) for the square norm are given by the following.

Primal optimal feasible point: Z = SX , ρ = σ = 1V and (82)

Dual optimal feasible point: Y =
√
XX†, Z =

√
X†X . (83)

This statement follows straightforwardly from Theorem 18 by considering the reduced
formulations (74) and (75) of the SDP from Lemma 17.

Proof of Theorem 18. For X = 0 all statements are evident. From now on, we assume that
X 6= 0, or, equivalently, X 6= 0.
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Proof of (i) ⇒ (ii). Note that Z] � 0 by Lemma 14. Straightforward evaluation of Ξ(Z])
from Lemma 17 reveals that Z] is indeed a primal feasible point:

Ξ
(
Z]
)

=




1
n Tr(1V) 0 0†W⊗V 0†W⊗V

0 1
n Tr(1V) 0†W⊗V 0†W⊗V

0W⊗V 0W⊗V 1
n1W⊗V − 1W ⊗ 1

n1V 0W⊗V
0W⊗V 0W⊗V 0W⊗V 1

n1W⊗V − 1W ⊗ 1
n1V




=




1 0 0†W⊗W 0†W⊗W
0 1 0†W⊗V 0†W⊗V

0W⊗V 0W⊗V 0W⊗V 0W⊗V
0W⊗V 0W⊗V 0W⊗V 0W⊗V


 = D .

(84)

In order to show optimality, we evaluate the primal SDP’s objective function given by C in
Eq. (69). Employing formulas (59) and (60) to express the absolute values of X, we obtain

Tr
(
CZ]

)
=
n

2
Tr







0V 0V 0† 0†

0V 0V 0† 0†

0 0 0W⊗V X
0 0 X† 0W⊗V




1

n




1V 0V 0† 0†

0V 1V 0† 0†

0 0 1W⊗V S†X
0 0 SX 1W⊗V







=
1

2

(
Tr (XSX) + Tr

(
X†S†X

))

=
1

2

(
Tr
(√

XX†
)

+ Tr
(√

X†X
))

=
1

2
(‖X‖∗ + ‖X‖∗) = ‖X‖∗ .

(85)

By assumption (77), this is indeed optimal.

Proof of (ii) ⇒ (iii) and (iv): Strong duality of Watrous’ SDP from Lemma 17 assures
that an optimal dual solution Y ] exists and that complementary slackness holds. Since Ξ†

from Eq. (73) does not depend on block off-diagonal terms, optimal feasibility only depends
on the block diagonal parts. Hence, we write Y ] as

Y ] =




λ0 · · ·
· λ1 · ·
· · Y0 ·
· · · Y1


 . (86)

Complementary slackness (Lemma 16) implies that

Ξ†
(
Y ]
)
Z] =

1

n




λ01V − TrW (Y0) 0V 0† 0†

0V λ11V − TrW (Y1) 0† 0†

0 0 Y0 0W⊗V
0 0 0W⊗V Y1







1V 0V 0† 0†

0V 1V 0† 0†

0 0 1W⊗V S†X
0 0 SX 1W⊗V




=
1

n




λ01V − TrW (Y0) 0V 0† 0†

0V λ11V − TrW (Y1) 0† 0†

0 0 Y0 Y0 S
†
X

0 0 Y1 SX Y1


 (87)

and

CZ] =
1

2




0V 0V 0† 0†

0V 0V 0† 0†

0 0 XSX X

0 0 X† X†S†X


 (88)
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must equal each other. This in turn demands

Y0 =
n

2
XSX =

n

2

√
XX† as well as (89)

Y1 =
n

2
X†S†X =

n

2

√
X†X, (90)

where we have once more employed identities (59) and (60) for SX to obtain the absolute
values of X. Equality of (87) and (88) in the first two diagonal entries (also guaranteed by
complementary slackness) furthermore assures

λ01V − TrW (Y0) = λ01V −
n

2
TrW

(√
XX†

)
= 0V and (91)

λ11V − TrW (Y1) = λ01V −
n

2
TrW

(√
X†X

)
= 0V . (92)

Hence,

λ0 n =
n

2
‖TrW(Y0)‖∗ =

n

2
‖X‖∗ and (93)

λ1 n =
n

2
‖TrW(Y1)‖∗ =

n

2
‖X‖∗ (94)

and both, (iii) and (iv) follow.

Proof of (iv) ⇒ (v): Let c1, c2 > 0 be constants such that

TrW
(√

XX†
)

= c11V and (95)

TrW
(√

X†X
)

= c21V . (96)

Taking the trace of both equations and recognizing the nuclear norm reveals that

‖X‖∗ = Tr
(√

XX†
)

= Tr
(

TrW
(√

XX†
))
‖X‖∗ = c1 Tr (1V) = c1 n (97)

and, similarly,
‖X‖∗ = c2 n , (98)

which proves the claimed implication.

Proof of (v) ⇒ (i): The crucial observation for this implication is that Assumption (v)
alone assures that Y ] defined in Eq. (79) with all off-diagonal blocks set to zero is a feasible
point of Watrous’ dual SDP, albeit not necessarily an optimal one. This claim is easily verified
by direct computation. Inserting this dual feasible point into the SDP’s objective function
results in

Tr
(
DY ]

)
= Tr







1 0 0†W⊗V 0†W⊗V
0 1 0TW⊗V 0TW⊗V

0W⊗V 0W⊗V 0W⊗V 0W⊗V
0W⊗V 0W⊗V 0W⊗V 0W⊗V




1

2




‖X‖∗ 0 0†W⊗V 0†W⊗V
0 ‖X‖∗ 0TW⊗V 0TW⊗V

0W⊗V 0W⊗V n
√
XX† 0W⊗V

0W⊗V 0W⊗V 0W⊗V n
√
X†X







=
1

2
(‖X‖∗ + ‖X‖∗) = ‖X‖∗ . (99)

Since every dual SDP corresponds to a constrained minimization, evaluating the dual objec-
tive function at any feasible point results in an upper bound on the optimal value. In our
case, obtain the upper bound ‖X‖� ≤ ‖X‖∗, which together with the converse bound from
Proposition 10, implies equality between the two.
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7 Discussion and outlook

We conclude by mentioning several observations and research directions that may merit
further attention.

Measurement errors. In our analysis we considered reconstructed matrices X�
η and X∗η

from Eqs. (29) and (27) that are required to be η-close to the ideal operator X0. Such a
reconstruction stably tolerates additive errors ε as in Eq. (8) as long as they obey ‖ε‖F ≤ η.
For operators X0 satisfying the extremality (19) we prove that recovery guarantees for X∗η
are inherited by X�

η . A similar situation is true for the reconstruction of maps M0 by
means of diamond norm minimization. For the idealized setting of noiseless measurements
(ε = 0), we demonstrate numerically that often

∥∥M�η −M0

∥∥
F
vanishes while

∥∥M∗η −M0

∥∥
F

is large. A numerical analysis for the noisy case ε > 0 yields similar results as for ε = 0. For
the noisy case the phase transition from having no recovery to almost always recovering the
signal up to η & ‖ε‖F broadens equally for both diamond and nuclear norm regularization.

Partial derandomizations. While initial theoretical results often rely on measurements
that follow a Gaussian distribution, later on significant effort has been put into derandom-
izing the measurement process. On the one hand, recovery guarantees for structured
measurements were proven [32]. On the other, also the distributions form which the mea-
surements are drawn were partially derandomized [16, 17, 35] (see also Section 4), relying
on above mentioned t-designs. The later methods rely on an analysis of the measure-
ment map’s descent cone. Hence, such recovery guarantees for partially derandomized
measurements are also inherited by our reconstruction via diamond norm minimization.
In a similar setting, a partial derandomization of the random unitaries used as part of
the measurements for the retrieval of unitary basis changes (Section 5.2) and for quantum
process tomography (Section 5.3) seems very promising. Here, structural insights [58–61]
on unitary designs could be used in future work.

Improvement from structured measurements. We numerically performed the re-
construction of unitary basis changes in Section 5.2 for two different measurement settings:
Gaussian measurements and certain structured measurements. For the nuclear norm, the
reconstruction from Gaussian measurements performed slightly better than the one from
structured measurements, just as expected. Perhaps surprisingly, we observed the converse
for the diamond norm reconstructions. Here, the structure of the measurements seems to
be favourable for the reconstruction process. This observation motivates the search for re-
covery guarantees for diamond norm reconstruction with structured measurements. Such
structured measurements are also crucial for the quantum process tomography in Sec-
tion 5.3 and blind matrix convolution in Section 5.4.

CPT as a constraint in the quantum channel reconstructions. A map M ∈
L(V,W) is a quantum channel if and only if

M †(1W) = 1V and J(M) � 0 . (100)

When aiming at reconstructing quantum channels, these additional constraints can, in
principle, be included in the SDPs (29) and (27) for the diamond norm and nuclear norm
reconstructions. Doing so leads to a significant overhead in the numerical reconstruc-
tion process. Numerically, one can observe that the recovery success of the diamond
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norm reconstruction (29) is unchanged, while the nuclear norm reconstruction (27) per-
forms significantly better. In fact, it seems to perform roughly as good as the diamond
norm reconstruction when these constraints are included in the SDP (27). In this sense,
the CPT structure can be used in the nuclear norm reconstruction at the expense of a
longer computation time to reduce the number of measurements, while in the diamond
norm reconstruction the CPT structure is already inbuilt. The run-time of the diamond
norm reconstruction and the nuclear norm reconstruction are practically the same for a
given number of measurements and scales polynomially with the number of constraints.
Therefore, the diamond norm reconstruction can help to render larger quantum systems
accessible to quantum process tomography.
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A Appendix

In this appendix we provide known material to make this work more self contained. We
provide SDPs for the nuclear norm and the spectral norm, and introduction to tensor
products and a basis independent definition of the Choi-Jamiołkowski isomorphism. Also,
we devote a subsection to low-rank matrix recovery. There we show how the statements
presented in Section 4 can be derived using geometric proof techniques. On the contrary
to the other supplementary chapters, this section does include technical novelties.

A.1 Basic concepts of multilinear algebra and the Choi-Jamiołkowski
isomorphism

The core objects of this work are tensors of order four and naturally fall into the realm
of multilinear algebra. Here we give a brief introduction on core concepts of multilinear
algebra that can be found in any textbook on that topic. Our presentation here is influenced
by [62]. Let V1, . . . ,Vk be (finite dimensional, complex) vector spaces with associated dual
spaces V∗1 , . . . ,V∗k . A function

f : V1 × · · · × Vk → C (101)

is multilinear, if it is linear in each Vi. The space of such functions constitutes the tensor
product of V∗1 , . . . ,V∗k and we denote it by V∗1 ⊗· · ·⊗V∗k . By reflexivity V ∼= V∗∗, the tensor
product V1 ⊗ · · · ⊗ Vk is the space of all multilinear functions

f : V∗1 × · · · × V∗k → C. (102)

Its elementary elements z1⊗· · ·⊗zk are the tensor product of vectors x1 ∈ V1, . . . , xk ∈ Vk
which alternatively can be constructed by means of the Kronecker product – however, such
an explicit construction requires explicit choices of bases in V1, . . . ,Vk.
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With such a notation, the space of linear maps V → W (matrices) corresponds to the
tensor product W ⊗ V∗ which is spanned by rank-one operators {y ⊗ x∗ : x ∈ V, y ∈ W}.
With this identification, it is straightforward to define the tensor product of L (W1 →W2)
and L (V1 → V2) to be

L (W1 →W2)⊗ L (V1 → V2) ∼= (W2 ⊗W∗1 )⊗ (V2 ⊗ V∗1 ) ∼= L (V1 ⊗W1 → V2 ⊗W2) .
(103)

Analogously to before, the elementary Y ⊗X of this space are the tensor product of maps
Y ∈ L (W1 →W2) and X ∈ L (V1 → V2). Restricting to tensor products of endomor-
phisms, i.e. W2

∼= W1 and V2
∼= V1, the partial trace (over the first tensor factor) for

elementary elements to be

TrW : L(W)⊗ L(V)→ L (W)

Y ⊗X 7→ Tr(X)Y
(104)

and extend it linearly to L(W)⊗L(V). Note that with the identification L(W) ∼=W⊗W∗,
TrW corresponds to the natural contraction between W and W∗. This is illustrated in
Figure 3.

Similarly to L (V1 → V2), the maps L(L(V1 → V2) → L(W1 → W2)) introduced in
Section 5.1 can be viewed as elements of the tensor product space

(W2 ⊗W∗1 )⊗ (V2 ⊗ V∗1 )∗ ∼=W2 ⊗W∗1 ⊗ V∗2 ⊗ V1 , (105)

which can be seen as a four-linear vector space. There are several equivalent ways to
interpret its elements. For the given applications of our work, we have made heavy use of
the Choi-Jamiołkowski isomorphism which acts on four-linear tensors by permuting tensor
factors:

J : V1 ⊗ V2 ⊗ V3 ⊗ V4 → V1 ⊗ V3 ⊗ V2 ⊗ V4

v1 ⊗ v2 ⊗ v3 ⊗ v4 7→ v1 ⊗ v3 ⊗ v2 ⊗ v4 .
(106)

Applied to the four-linear space of maps (105) we obtain

L(L(V1 → V2)→ L(W1 →W2)) ∼= L(V2 ⊗ V∗1 →W2 ⊗W∗1 )
∼=W2 ⊗W∗1 ⊗ V∗2 ⊗ V1 ,

(107)

and
L(W1 ⊗ V∗1 →W2 ⊗ V∗2 ) ∼=W2 ⊗ V∗2 ⊗W∗1 ⊗ V1 (108)

which are basis independent. Consequently the Choi-Jamiołkowski isomorphism is linear
bijection from maps to operators

J : L(L(V1 → V2)→ L(W1 →W2))→ L(V∗1 ⊗W1 → V∗2 ⊗W2) . (109)

Its explicit definitions (37) and (38) in the main text are just basis-dependent realization of
this more general identification. We illustrated this fact pictorially in Figure 3 by resorting
to tensor network [63] or wiring diagrams [64].

A.2 Uniform recovery guarantees and partial derandomizations

Our main geometric insight – Corollary 8 – asserts that any square norm descent cone is
always contained in the corresponding one of the nuclear norm, provided that the operators
in question obey ‖X‖� = ‖X‖∗. When applying this idea to low-rank matrix recovery, we
started with mentioning Proposition 10. This is a non-uniform recovery guarantee that is
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stable towards additive noise. However, with some additional work, Corollary 8 allows for
stronger conclusions. Some of them are summarized in Proposition 11 and Proposition 12,
respectively. Here, we outline how these results are obtained. In Section 2.2 we introduced
widely used geometric proof techniques for low-rank matrix recovery mainly following Ref.
[18]. These aim at recovery of a fixed object X0 of interest and thus it suffices to focus on
precisely one descent cone, namely D(X0, ‖ · ‖∗), or D(X0, ‖ · ‖�), respectively. By taking
a closer look at the actual proof techniques – most notably Mendelson’s small ball method
[19], or Tropp’s bowling scheme [18] – one can see that such a restriction to a single object
of interest is not necessary. Up to our knowledge, this was first pointed out in Ref. [16]
and at the heart of this observation is the following technical statement.

Lemma 20. Fix 1 ≤ r ≤ n and let Kr =
⋃
X D(‖ · ‖∗ , X) ⊂ L(V) be the union of all

descent cones anchored in nonzero matrices 0 6= X ∈ L(V) of rank at most r. Then, every
element Y ∈ Kr obeys

‖Y ‖∗ ≤ (1 +
√

2)
√
r ‖Y ‖F . (110)

For Hermitian matrices, a slightly stronger statement of this type was presented in
[16, Lemma 10]. Here wo provide a different proof that does not require Hermiticity and
exploits a variant of pinching.

Lemma 21 (Pinching inequality). Let P,Q ∈ L(V) be orthogonal projectors with comple-
ments P⊥ = 1L(V)−P and Q⊥ = 1L(V)−Q. Also, let ‖ · ‖p be any Schatten-p norm. Then,
every Z ∈ L(V) obeys

‖PZQ‖pp + ‖P⊥ZQ⊥‖pp ≤ ‖Z‖pp . (111)

Proof. Note that for any Z ∈ L(V ) it follows from the definition of the Schatten-p norms
that the left hand side of Eq. (111) coincides with ‖PZQ+P⊥ZQ⊥‖pp. Using this identity
and the decomposition

PZQ+ P⊥ZQ⊥ =
1

2
Z +

1

2

(
P − P⊥

)
Z
(
Q−Q⊥

)
(112)

allows us to conclude

‖PZQ+ P⊥ZQ⊥‖pp =
∥∥1

2
Z +

1

2

(
P − P⊥

)
Z
(
Q−Q⊥

)∥∥p
p

≤1

2
‖Z‖pp +

1

2

∥∥(P − P⊥
)
Z
(
Q−Q⊥

)∥∥p
p

=
1

2
‖Z‖pp +

1

2
‖Z‖pp = ‖Z‖pp ,

(113)

where we have exploited unitary invariance of Schatten-p norms and the fact that both
P − P⊥ and Q−Q⊥ are unitary matrices.

Proof of Lemma 20. It suffices to prove this statement for any fixed descent cone KX ,
where X ∈ L(V) has rank at most r. Let C := ran(X) and R := ran(X†) be the column
and row ranges of X (these need not coincide, since X need not necessarily be Hermitian)
and let PC , PR ∈ L(V) be orthogonal projections onto these subspaces. Note that if X has
a singular value decomposition X = UΣV †, then PC = UΣ0U † and PR = V Σ0V †, where
Σ0 is defined component-wise by Σ0

i,j := 1 if Σi,j 6= 0 and Σ0
i,j := 0 otherwise. Introducing

orthogonal complements P⊥C = 1V(L) − PC and P⊥R = 1L(V) − PR allows us to define

P⊥T : L(V)→ L(V), Z 7→ P⊥C ZP
⊥
R . (114)
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This is an orthogonal projection with respect to the Frobenius inner product (2) and obeys
P⊥T X = 0 by construction. Its complement amounts to

PTZ = Z − P⊥U ZP⊥R = PCZ + ZPR − PCZPR (115)

which obeys PTX = X. Note that this is a straightforward generalization of the T -
space introduced in [13, Equation (2)] to non-Hermitian matrices. Analogously to there,
a decomposition Z = ZT + Z⊥T := PTZ + P⊥T Z is valid for every Z ∈ L(Z) and every
ZT := PTZ has rank at most 2r by construction.

Now choose Y ∈ KX and note that by definition ‖X‖∗ ≥ ‖X + τY ‖∗ must be valid for
some τ > 0. Combining this with Lemma 21 (Pinching) assures

‖X‖∗ ≥ ‖X + τY ‖∗ ≥ ‖PC(X + τY )PR‖∗ +
∥∥P⊥C (X + τY )P⊥R

∥∥
∗

= ‖X + τPCY PR‖∗ +
∥∥P⊥T (X + τY )

∥∥
∗ = ‖X + τPCY PR‖∗ + τ

∥∥Y ⊥T
∥∥
∗ ,

(116)

where we have employed PCXPR = X and P⊥T X = 0. Also, note that Hölder’s inequality
assures |Tr (UZ) | ≤ ‖Z‖∗ for any Z ∈ L(V) and unitary U . Employing this for U = SX ,
where the sign matrix SX of X was defined in Def. 13, reveals

‖X + τPCY PR‖∗ ≥ Tr (SXX) + τ |Tr (SXPCY PR)| ≥ ‖X‖∗ − τ ‖SX‖ ‖PCY PR‖∗
≥ ‖X‖∗ − τ

√
r ‖PCY PR‖F ≥ ‖X‖∗ − τ

√
r ‖Y ‖F ,

(117)

where we have in addition used that PCY PR has rank at most r and Frobenius norm
smaller than or equal to ‖Y ‖F. Combining the bounds (116) and (117) implies

‖X‖∗ ≥ ‖X‖∗ + τ
(∥∥Y ⊥T

∥∥
∗ −
√
r ‖Y ‖F

)
. (118)

Since τ > 0, this bound implies
∥∥Y ⊥T

∥∥
∗ ≤
√
r ‖Y ‖F. Finally, this relation allows us to infer

the result,
‖Y ‖∗ =

∥∥YT + Y ⊥T
∥∥
∗ ≤ ‖YT ‖∗ +

∥∥Y ⊥T
∥∥
∗

≤
√

2r ‖YT ‖F +
√
r ‖Y ‖F = (1 +

√
2)
√
r ‖Y ‖F ,

(119)

where we also exploited the fact that YT has rank at most 2r.

Lemma 20 asserts that any matrix that lies in the nuclear norm’s descent cone of
any low-rank matrix, is “effectively” a low-rank matrix as well. This structural property
together with Mendelson’s small ball method is enough to bound the minimal conic singular
value of a measurement map A with respect to the union of all possible descent cones.
Here we provide a particular realization of Mendelson’s small ball method that is directly
applicable to low-rank matrix recovery (see e.g. Ref. [16, Section 4]).

Theorem 22 (A variant of Mendelson’s small ball method). Let L ⊂ L(V) be real subspace
of linear maps and let A : L → Rm be a measurement map A(X) =

∑m
i=1 Tr (AiX) ei,

where each Ai is an independent copy of a random matrix A ∈ L(V) and e1, . . . , em denotes
the standard basis in Rm. Also, let Er = {Y ∈ Kr : ‖Y ‖F = 1}, where Kr was defined in
Lemma 20. Then for any ξ, t > 0, the bound

λmin (A,Kr) ≥ ξ
√
mQ2ξ (Er;A)− 2Wm (Er,A)− ξt (120)
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holds with probability at least 1− e−2t2. Here

Qξ (Er, A) = inf
Y ∈Er

Pr
[∣∣Tr(A†Y )

∣∣ ≥ ξ
]

(121)

Wm (Er,A) = E
[

sup
Y ∈Er

Tr(H†Y )

]
, where H =

1√
m

m∑

j=1

εjAj (122)

and ε1, . . . , εm being a Rademacher sequence1.

Important examples for the space of considered operators are L = Herm(V) and real
matrices.

Thanks to Lemma 20 and Hölder’s inequality we can boundWm (Er,A) in Theorem 22
by

Wm (Er,A) = E
[

sup
Y ∈Er

Tr
(
H†Y

)]
≤ E

[
sup
Y ∈Er

‖Y ‖∗
∥∥H†

∥∥
]

≤ E
[

sup
Y ∈Er

(1 +
√

2)
√
r ‖Y ‖F ‖H‖

]
= (1 +

√
2)
√
rE [‖H‖] ,

(123)

which is much easier to handle. This simplification together with Mendelson’s small ball
method – Theorem 22 – and the geometric error bound for convex recovery – Proposition 3
– provide a convenient sufficient means to assure that a given measurement processA allows
for uniform and stable low-rank matrix recovery via nuclear norm minimization:

Proposition 23 (Sufficient criteria for uniform recovery). Let A : L(V)→ Cm be a mea-
surement map as defined in Theorem 22 and fix 1 ≤ r ≤ n. Suppose that this measurement
map obeys Q2ξ(Er;A) ≥ C1 for some ξ > 0 and also E [‖H‖] ≤ C2

√
m/r, where C1 and

C2 are positive constants obeying ξC1 > 2(1 +
√

2)C2.
Then, with probability at least 1 − e−C

∗
4m, this measurement map is capable of stably

reconstructing any matrix X0 of rank at most r from noisy measurements of the form
y = A(X0) + ε obeying ‖ε‖F ≤ η by means of nuclear norm minimization. Concretely, the
solution X∗η of the optimization (27) obeys

∥∥X∗η −X0

∥∥
F
≤ η

C∗3
√
m
. (124)

Here C∗3 , C
∗
4 > 0 denote sufficiently small absolute constants.

Note that unlike Proposition 10, such a recovery statement is uniform, in the sense that
with high probability a single measurement map suffices to recover any low-rank matrix.
However, it still relies on the geometric proof technique of bounding the widths of nuclear
norm descent cones. This is because the set Kr is just the union over all possible nuclear
norm descent cones anchored at matrices of rank at most r. As a result, Observation 4
(“the smaller the descent cone, the better the recovery”) is also valid in this setting and
Corollary 8 allows us to draw the following conclusion.

Corollary 24 (Uniform recovery from square norm regularization). The assertions of
Proposition 23 remain true for recovery via square norm regularization (29), for the case of
uniform recovery of rank-r maps X0 ∈ L (V ⊗W) satisfying ‖X0‖� = ‖X0‖∗. Moreover, the
corresponding constants obey C�3 ≥ C∗3 and C�4 ≥ C∗3 , meaning that the recovery statement
cannot be worse.

1 A Rademacher sequence is a sequence of independent random variables that take the values ±1 with
equal probability.
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Proof of Proposition 23. Theorem 22 together with Eq. (123) and the assumptions on A
assure for any t > 0

λmin (A,Kr) ≥ξ
√
mQ2ξ(Er;A)− 2Wm(Er,A)− ξt

≥ξ√mQ2ξ(Er;A)− 2(1 +
√

2)
√
rE [‖H‖]− ξt

≥ξC1

√
m− 2(1 +

√
2)C2

√
m− ξt

(125)

with probability at least 1 − e−2t2 . Introducing C3 = (ξC1 − 2(1 +
√

2)C2)/2 – which is
strictly positive by assumption – and setting t = C3

√
m/ξ then implies

λmin (A,Kr) ≥ C3

√
m (126)

with probability at least 1 − e−C4m, where C4 = C2
3/ξ

2 > 0. With such an estimate at
hand, the claim follows from applying Proposition 3.

We conclude this section with presenting a selection of measurement ensembles that
meet the criteria of Proposition 23 and as a consequence also the ones of Corollary 24. We
start with measurement ensembles that allow for recovering real-valued matricesX ∈ L(V).

Corollary 25. Suppose that V is a real-valued vector spaces and let A : L(V) → Rm be
the measurement map A(X) =

∑m
i=1 Tr (AiX) ei, where each Ai is a random matrix with

independent entries obeying

E [ai,j ] = 0, E
[
a2
i,j

]
= 1, E

[
a4
i,j

]
≤ F, (127)

where F is a constant. Then a sampling rate of m ≥ Crn suffices to meet the requirements
of Proposition 23.

The result quoted in Corollary 25 was not established as a subroutine of a geometric
proof technique for nuclear norm recovery, but consists of auxiliary statements that help to
establish the Frobenius stable null space property [17, Definition 10] – a powerful alternative
to geometric proof techniques relying on Proposition 3. However, if embedded properly
into the framework of geometric recovery proof techniques, the auxiliary statements in
Ref. [17] – see also Ref. [42, 43] – can still be used to establish recovery guarantees that
rely on bounding the widths of descent cones. For our purposes, such a geometric proof
environment is crucial, and this entire section is devoted to develop it. However, we point
out that introducing and analyzing the square norm analogue of the Frobenius stable null
space property – which is geared towards nuclear norm minimization – does constitute an
intriguing follow-up problem. We leave this to future work.

Proof of Corollary 25. For a proof of this statement, we utilize auxiliary statements from
Ref. [42]. Lemma 11 in loc. cit. asserts that such random matrices with bounded fourth
moments obey Q1/

√
2 ≥ 1/4 max {3, F}, where F is the fourth-moment bound. Also, Ref.

[42, Lemma 12] assures E [‖H‖] ≤ CF
√
n, where CF is a constant that only depends on

F . This in particular assures

E [‖H‖] ≤ CF
√
n ≤ CF√

C

√
m

r
(128)

and we can set ξ = 2−3/2, C2 = CF /
√
C and C1 = 1/4 max {3, F}. Choosing the constant

C in the sampling rate large enough assures that these constants obey ξC1 > 2(1 +
√

2)C2

for ξ = 2−3/2 and all the requirements of Proposition 23 are met. The claim then follows
from applying this statement.
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We conclude this section with embedding the main results of Ref. [16] into this frame-
work. In fact, the entire apparatus presented in this section is a condensed version of
the proofs in loc. cit. However, the reader’s convenience, we include the corresponding
statement here as well.

Corollary 26. Consider measurement maps A : Herm(V) → Rm of the form A(X) =∑m
i=1 Tr (AiX) ei. Then the following measurement ensembles meet the requirements of

Proposition 23, if restricted to the recovery of Hermitian matrices:

1. m ≥ CGrn and each Ai = aia
†
i corresponds to the outer product of a complex standard

Gaussian vector ai ∈ V with itself,

2. m ≥ C4Drn log(2n) and each Ai = aia
†
i is the outer product of a randomly selected

element ai of a complex projective 4-design.

Once more, CG and C4D denote sufficiently large constants.

Proof. Let us start with the Gaussian case. In Ref. [16, Section 4.1.] the boundsQ1/
√

2 ≥ 1/96

and E [‖H‖] ≤ c1
√
n are derived under the assumption m ≥ c2n, where c1 is sufficiently

large. Thus, similarly to the proof of Corollary 25, setting ξ = 2−3/2 and choosing the
constant CG in m sufficiently large indeed meets the requirements of Proposition 23.

For the 4-design case, [16, Proposition 12] assures that the boundQξ (Er,A) ≥
(
1− ξ2

)2
/24

is valid for any ξ ∈ [0, 1]. Also, Ref. [16, Proposition 13] implies

E [‖H‖] ≤ 3.1049
√
n log(2n) ≤ 3.1049√

C4D

√
m

r
, (129)

where we have inserted m ≥ C4Drn log(2n). Thus, choosing ξ appropriately and the
constant C4D in the sampling rate m large enough again assures that the requirements of
Proposition 23 are met.
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Bell’s Theorem shows that quantum mechanical correlations can violate the constraints that the
causal structure of certain experiments impose on any classical explanation. It is thus natural to ask
to which degree the causal assumptions – e.g. “locality” or “measurement independence” – have
to be relaxed in order to allow for a classical description of such experiments. Here, we develop
a conceptual and computational framework for treating this problem. We employ the language of
Bayesian networks to systematically construct alternative causal structures and bound the degree
of relaxation using quantitative measures that originate from the mathematical theory of causality.
The main technical insight is that the resulting problems can often be expressed as computationally
tractable linear programs. We demonstrate the versatility of the framework by applying it to a variety
of scenarios, ranging from relaxations of the measurement independence, locality and bilocality
assumptions, to a novel causal interpretation of CHSH inequality violations.

The paradigmatic Bell experiment [1] involves two
distant observers, each with the capability to perform
one of two possible experiments on their shares of a
joint system. Bell observed that even absent of any
detailed information about the physical processes in-
volved, the causal structure of the setup alone implies
strong constraints on the correlations that can arise
from any classical description [2]. The physically well-
motivated causal assumptions are: (i) measurement inde-
pendence: experimenters can choose which property of
a system to measure, independently of how the system
has been prepared; (ii) locality: the results obtained by
one observer cannot be influenced by any action of the
other (ideally space-like separated) experimenter. The
resulting constraints are Bell’s inequalities [1]. Quan-
tum mechanical processes subject to the same causal
structure can violate these constraints – a prediction
that has been abundantly verified experimentally [3–
7]. This effect is commonly referred to as quantum non-
locality.

It is now natural to ask how stable the effect of quan-
tum non-locality is with respect to relaxations of the
causal assumptions. Which “degree of measurement
dependence”, e.g., is required to reconcile empirically
observed correlations with a classical and local model?
Such questions are not only, we feel, of great relevance
to foundational questions – they are also of interest
to practical applications of non-locality, e.g. in crypto-
graphic protocols. Indeed, eavesdroppers can (and do
[8]) exploit the failure of a given cryptographic device
to be constrained by the presumed causal structure to
compromise its security. At the same time, it will often
be difficult to ascertain that causal assumptions hold
exactly – which makes it important to develop a sys-
tematic quantitative theory.

Several variants of this question have recently at-

tracted considerable attention [9–20]. For example,
measurement dependence has been found to be a very
strong resource: If no restrictions are imposed on possi-
ble correlations between the measurement choices and
the source producing the particles to be measured, any
nonlocal distribution can be reproduced [21]. What
is more, only about about 1/15 of a bit of correlation
between the source and measurements is sufficient to
reproduce all correlations obtained by projective mea-
surements on a singlet state [10, 12, 13]. In turn, con-
sidering relaxations of the locality assumption, Toner
and Bacon showed that one bit of communication be-
tween the distant parties is again sufficient to simulate
the correlations of singlet states [9].

In this paper we provide a unifying framework for
treating relaxations of the measurement independence
and locality assumptions in Bell’s theorem. To achieve
this, we borrow several concepts from the mathemat-
ical theory of causality, a relatively young subfield of
probability theory and statistics [22, 23]. With the aim
of describing the causal relations (rather than mere cor-
relations) between variables that can be extracted from
empirical observations, this community has developed
a systematic and rigorous theory of causal structures
and quantitative measures of causal influence.

Our framework rests on three observations (details
are provided below): (i) Alternative causal structures
can systematically be represented using the graphical
notation of Bayesian networks [22]. There, variables are
associated with nodes in a graph, and directed edges
represent functional dependencies. (ii) These edges can
be weighted by quantitative measures of causal influ-
ence [22, 24]. (iii) Determining the minimum degree of
influence required for a classical explanation of observ-
able distributions can frequently be cast as a computa-
tionally tractable linear program.
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The versatility of the framework is demonstrated in
a variety of applications. We give an operational mean-
ing to the violation of the CHSH inequality [25] as the
minimum amount of direct causal influence between
the parties required to reproduce the observed corre-
lations. Considering the Collins-Gisin scenario [26], we
show that quantum correlations are incompatible with a
classical description, even if we allow one of the parties
to communicate its outcomes. We also show that the re-
sults in [10, 13] regarding measurement-independence
relaxations can be improved by considering different
Bell scenarios. Finally, we study the bilocality assump-
tion [27, 28] and show that although it defines a non-
convex set, its relaxation can also be cast as a lin-
ear program, naturally quantifying the degree of non-
bilocality.

Bayesian networks and measures for the relaxation
of causal assumptions— The causal relationships be-
tween n jointly distributed discrete random variables
(X1, . . . , Xn) are specified by means of a directed acyclic
graph (DAG). To this end, each variable is associated
with one of the nodes of the graph. One then says
that the Xi’s form a Bayesian network with respect to
the graph, if every variable can be expressed as a deter-
ministic function Xi = fi(PAi, Ni) of its graph-theoretic
parents PAi and an unobserved noise term Ni, such that
the Ni’s are jointly independent [29]. This is the case if
and only if the probability p(x) = p(x1, . . . , xn) is of the
form

p(x) =
n

∏
i=1

p(xi|pai). (1)

This identity encodes the causal relationships implied
by the DAG [22].

As a paradigmatic example of a DAG, consider a bi-
partite Bell scenario (Fig. 1a). In this scenario, two sepa-
rated observers, Alice and Bob, each perform measure-
ments according to some inputs, here represented by
random variables X and Y respectively, and obtain out-
comes, represented by A and B. The causal model in-
volves an explicit shared hidden variable Λ which me-
diates the correlations between A and B. From (1) it
follows that p(x, y, λ) = p(x)p(y)p(λ) — which reflects
the measurement independence assumption. It also fol-
lows that a = fA(x, λ, nA), b = fB(y, λ, nB). We incur
no loss of generality by absorbing the local noise terms
NA, NB into Λ and will thus assume from now on that
a = fA(x, λ), b = fB(y, λ) for suitable functions fA, fB.
This encodes the locality assumption. Together, these
relations imply the well-known local hidden variable
(LHV) model of Bell’s theorem:

p(a, b|x, y) = ∑
λ

p(a|x, λ)p(b|y, λ)p(λ). (2)

(a) Bipartite	Bell (b) Rel.	of	locality (c) Rel.	of	locality

(d) General	comm. (e) Rel.	of	meas.	ind. (f) Bilocality

FIG. 1. (a) LHV model for the bipartite Bell scenario. (b) A
relaxation of locality, where A may have direct causal influ-
ence on B. (c) Another relaxation in which X may have direct
causal influence on B. (d) The most general communication
scenario from Alice to Bob. (e) A relaxation of measurement
independence, where the two inputs may be correlated, via a
common ancestor, with the hidden variable Λ. (f) The bilocal-
ity scenario for which the two sources Λ1 and Λ2 are assumed
to be independent. Round edges stand for observable vari-
ables while squares represent non-observable (hidden) ones.

Causal mechanisms relaxing locality (Fig. 1b–d) and
measurement independence (Fig. 1e) can be easily ex-
pressed using Bayesian networks. The networks them-
selves, however, do not directly quantify the degree of
relaxation. Thus, one needs to devise ways of checking
and quantifying such causal dependencies. To define
a sensible measure of causal influence we introduce a
core concept from the causality literature – interventions
[22].

An intervention is the act of forcing a variable, say Xi,
to take on some given value x′i and is denoted by do(x′i).
The effect is to erase the original mechanism fi(pai, ni)
and place Xi under the influence of a new mechanism
that sets it to the value x′i while keeping all other func-
tions f j for j 6= i unperturbed. The intervention do(x′i)
amounts to a change in the decomposition (1), given by
[30]

p(x|do(x′i)) =

{
∏n

j 6=i p(xj|paj) if xi = x′i ,
0 otherwise.

(3)

Considering locality relaxations, we can now define a
measure CA→B for the direct causal influence of A into B
for the model in Fig. 1b:

CA→B = sup
b,y,a,a′

∑
λ

p(λ)|p(b|do(a), y, λ)− p(b|do(a′), y, λ)|.

(4)
It is the maximum shift (averaged over the unobserv-
able Λ) in the probability of B caused by interventions
in A. Similarly, one can define CX→B for the DAG in
Fig. 1c and in other situations. To highlight the rele-
vance of this measure, we note that a variation of it,
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known as average causal effect, can be used to quantify
the effect of a drug in remedying a given symptom
[22]. We are also interested in relaxations of measure-
ment independence. Considering the case of a bipartite
scenario (illustrated in Fig. 1e and that can be easily
extended to multipartite versions), we can define the
measure

MX,Y:λ = ∑
x,y,λ
|p(x, y, λ)− p(x, y)p(λ)|. (5)

This can be understood as a measure of how much the
inputs are correlated with the source, i.e. how much the
underlying causal model fails to comply with measure-
ment independence.

The linear programing framework—Given some ob-
served probabilities and a particular measure of relax-
ation, our aim is to compute the minimum value of the
measure compatible with the observations. As sketched
below, this leads to a tractable linear program as long
as there is only one unobserved variable Λ. (How-
ever, even in case of several hidden variables, variants
of these ideas can still be used). Details are given in the
Appendix.

For simplicity we consider the usual Bell scenario
of Fig. 1a. The most general observable quantity is
the joint distribution p(a, b, x, y) = p(a, b|x, y)p(x)p(y).
Since we control the “inputs” X and Y, their distribu-
tion carries no information and we may thus restrict at-
tention to p(a, b|x, y). This conditional probability is, in
turn, a linear function of the distribution of Λ. To make
this explicit, represent p(a, b|x, y) as a vector p with
components pj labeld by the multi-index j = (a, b, x, y).
Similarly, identify the distribution of Λ with a vector
with components qλ = p(Λ = λ). Then from the
discussion above, we have that p = Tq where T is a
matrix with elements Tj,λ = δa, fA(x,λ)δb, fB(y,λ). Condi-
tional expectations that include the application of a do-
operation are obtained via a modified T matrix. E.g.,
q′j = p(a, b|x, y, do(a′)) = T′q for T′j,λ = δa,a′δb, fB(y,λ).
The measures C and M are easily seen to be convex
functions of the conditional probabilities p(a, b|x, y) and
their variants arising from the application of do’s – and
thus convex functions of q. Hence their minimization
subject to the linear constraint Tq = p for an empiri-
cally observed distribution p is a convex optimization
problem. This remains true if only some linear function
Vp = VTq (e.g. a Bell inequality) of the distribution p is
constrained. The problem is not manifestly a (compu-
tationally tractable) linear program (LP), since neither
objective function is linear in q. However, we establish
in the appendix that it can be cast as such:

Theorem 1. The constrained minimization of the measures
C and M over hidden variables reproducing any observed

probability distribution can be reformulated as a primal linear
program (LP). Its solution is equivalent to

max
1≤i≤K

〈vi, Vp〉, (6)

where the {vi}K
i=1 are the vertices of the LP’s dual feasible

region.

This result highlights another nice aspect of our
framework. Unlike the results in [11–17], (6) is a closed
form-expression valid for any distribution (or observa-
tion derived from it by a linear function Vp), not just
the value of a specific Bell inequality. This allows for a
much more detailed description.

In the following sections, we apply our framework to
a variety of applications. We focus on the results while
the more technical proofs are given in the Appendices.

Novel interpretation of the CHSH inequality— As a first
application, we show that a violation of the CHSH in-
equality can be interpreted as the minimal direct causal
influence between the parties required to simulate the
observed correlations.

Intuitively, the more nonlocal a given distribution is,
the more direct causal influence between Alice and Bob
should be required to simulate it. We make this in-
tuition precise by considering the models in Fig. 1b–c
and the CHSH scenario (two inputs, two outputs for
both Alice and Bob). For any observed distribution
p(a, b|x, y), we establish in the Appendix that

min CA→B = min CX→B = max [0, CHSH] , (7)

where the maximum should be taken over all the eight
symmetries under relabelling of inputs, outputs, and
parties of the CHSH quantity [25]

CHSH = p(00|00) + p(00|01) + p(00|10)

− p(00|11)− pA(0|0)− pB(0|0),
(8)

where the last two terms represent the marginals for
Alice and Bob respectively. The CHSH inequality stip-
ulates that for any LHV model, CHSH ≤ 0. Eq. (7)
shows that, regardless of the particular distribution, the
minimum direct causal influence is exactly quantified
by the CHSH inequality violation.

Inspired by the communication scenario of Toner and
Bacon [9] (Fig. 1d), we can also quantify the relaxation
of the locality assumption as the minimum amount of
communication required to simulate a given distribu-
tion. We measure the communication by the Shannon
entropy H(m) of the message m which is sent. For a
binary message, we can use our framework to prove, in
complete analogy with (7), that

min H(m) = h(CHSH) (9)
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if CHSH > 0 and 0 otherwise, where h(v) =
−v log2 v − (1 − v) log2(1 − v) is the binary entropy.
We note that for maximal quantum violation CHSH =
1/
√

2− 1/2, as produced by a single state, a message
with H(m) ≈ 0.736 bits is required. This is less than
the 1 bit of communication required by the protocol of
Toner and Bacon [9] for reproducing arbitrary correla-
tions of a singlet.

Quantum nonlocality is incompatible with some local-
ity relaxations— Given that violation of CHSH can be
directly related to relaxation of locality, one can ask
whether similar interpretations exists for other scenar-
ios. For example, we can consider a setting with three
inputs and two outputs for Alice and Bob, and consider
the causal model in Fig. 1b. Similar to the usual LHV
model (2), the correlations compatible with this model
form a polytope. One facet of this polytope is

〈E00〉 − 〈E02〉 − 〈E11〉+ 〈E12〉 − 〈E20〉+ 〈E21〉 ≤ 4, (10)

where Exy = 〈AxBy〉 = ∑a,b(−1)a+b p(a, b|x, y). This in-
equality can be violated by any quantum state |ψ〉 =√

ε|00〉 +
√

(1− ε)|11〉 with ε 6= 0, 1. Consequently,
any pure entangled state – no matter how close to sep-
arable – generates correlations that cannot be explained
even if we allow for a relaxation of the locality assump-
tion, where one of the parties communicates its mea-
surement outcomes to the other.

How much measurement dependence is required to
causally explain nonlocal correlations?— The results in
Refs. [10, 12, 13] show that measurement dependence
is a very strong resource for simulating nonlocal cor-
relations. In fact, a mutual information as small as
I(X, Y : λ) ≈ 0.0663 is already sufficient to simulate
all correlations obtained by (any number of) projective
measurements on a single state [12, 13]. Given the fun-
damental implication and practical relevance of increas-
ing these requirements, we aim to find larger values
for I(X, Y : λ) by means of our framework. The result
of [12, 13] leaves us with three options, regarding the
quantum states: either non-maximally entangled states
of two qubits, two-qudit states, or states with more than
two parties.

Regarding non-maximally entangled two-qubit
states, we were unable to improve the minimal mutual
information. Regarding qudits, we have considered
relaxations in the CGLMP scenario [31] – a bipartite
scenario, where Alice and Bob each have two inputs
and d outcomes. The CGLMP inequality is of the form
Id ≤ 2. Assuming that a particular Id-value is observed
in the setting of Fig. 1e, we numerically obtain the very
simple relation

minM = max [0, (Id − 2)/4] (11)

up to d = 8. Via the Pinsker inequality [32, 33], (11)
provides a lower bound on the minimum mutual in-
formation I(X, Y : λ) ≥ M2 log2 e. This bound im-
plies that for any Id ≥ 3.214, the mutual information
required exceeds the 0.0663 obtained in Ref. [13]. Us-
ing the results in Ref. [34] for the scaling of the optimal
quantum violation with d, one sees that this requires
d ≥ 16. However, we note that the bounds provided by
the Pinsker inequality are usually far from tight, leav-
ing a lot of room for improvement. Moreover – as de-
tailed in the Appendix – a corresponding upper bound
(obtained via the solution to the minimization of M)
is larger than the values obtained in [12, 13] as soon
as d ≥ 5. Though this upper bound is not necessarily
tight, we highlight the fact that for d = 2 it gives exactly
I(X, Y : λ) = 0.0463, the value analytically obtained in
[12, 13].

Regarding multipartite scenarios, we have considered
GHZ correlations [35] in a tri-partite scenario where
each party has two inputs and two outputs. We numer-
ically obtain 0.090 ≤ I(X, Y, Z : λ) ≤ 0.207. This im-
plies that increasing the number of parties can consid-
erably increase the measurement dependence require-
ments for reproducing quantum correlations.

Bilocality scenario— To illustrate how the formalism
can also be used in generalized Bell scenarios [27, 28,
36, 37], we briefly explore the entanglement swapping
scenario [38] of Fig. 1f (a more detailed discussion is
given in the Appendix). As can be seen from the DAG,
the hidden variables in this scenario are independent
p(λ1, λ2) = p(λ1)p(λ2), the so-called bilocality assump-
tion [27, 28].

As in Ref. [27, 28], we take the inputs x, z and the
outputs a, c to be dichotomic while b takes four val-
ues which we decompose in two bits as b = (b0, b1).
The distribution of hidden variables can be orga-
nized in a 64-dimensional vector q with components
qα0,α1,β0,β1,γ0,γ1 , where αx specifies the value of a for a
given x (and analogously for γ, c and z) and βi speci-
fies the value of bi. Thus together the indices label all
the deterministic functions for A, B, C given their par-
ents. As shown in [27, 28], the bilocality assumption
is equivalent to demanding qac

α0,α1,γ0,γ1
= qa

α0,α1
qc

γ0,γ1
,

where qac
α0,α1,γ0,γ1

= ∑β0,β1
qα0,α1,β0,β1,γ0,γ1 is the marginal

for AC etc. Similar to (5) a natural measure MBL of
non-bilocality quantifies by how much the underlying
hidden variable distribution fails to comply with this
constraint:

MBL = ∑
α0,α1,γ0,γ1

|qac
α0,α1,γ0,γ1

− qa
α0,α1

qc
γ0,γ1
|. (12)

ClearlyMBL = 0, if and only if the bilocality constraint
is fulfilled. However, demanding bilocality imposes a
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quadratic constraint on the hidden variables. This re-
sults in a non-convex set which is extremely difficult
characterize [27, 28, 36, 37]. Nevertheless, our frame-
work is still useful, as using the marginals for a given
observed distribution to constrain the problem further,
the minimization of MBL can be cast in terms of a lin-
ear program with a single free parameter, which is then
further minimised over (see Appendix).

As an illustration we consider the non-bilocal dis-
tribution found in Refs. [27, 28]. It can be obtained
by projective measurements on a pair of identical two-
qubit entangled states $ = v|Ψ−〉〈Ψ−| + (1 − v)I/4.
This distribution violates the bilocality inequality B =√
|I| +

√
|J| ≤ 1 giving a value B =

√
2v. Using our

framework we find MBL = max(2v2 − 1, 0). Thus, for
this specific distribution, MBL = B2 − 1, so there is a
one-to-one correspondence between the violation of the
bilocality inequality and the minimum relaxation of the
bilocality constraint required to reproduce the correla-
tions. This assigns an operational meaning to B.

Conclusion— In this work we have revisited nonlocal-
ity from a causal inference perspective and provided a
linear programming framework for relaxing the mea-
surement independence and locality assumptions in
Bell’s theorem. Using the framework, we have given
a novel causal interpretation of violations of the CHSH
inequality, and we have shown that quantum correla-
tions are still incompatible with classical causal models
even if one allows for the communication of measure-
ment outcomes. This implies that quantum nonlocality
is even stronger than previously thought. Considering a
variety of scenarios, we also have shown that the results
in Refs. [10, 12, 13] regarding the minimal measurement
dependence required to simulated nonlocal correlations
can be extended. Finally we explained how the relax-
ation of the bilocality assumption naturally quantifies
the degree of non-bilocality in an entanglement swap-
ping experiment.

In addition to these results, we believe the generality
of our framework motivates and – more importantly –
provides a basic tool for future research. For instance, it
would be interesting to understand how our framework
can be generalized in order to derive useful inequalities
in the context of randomness expansion, following the
ideas in [14]. Another natural possibility, inspired by
[39, 40], would be to look for a good measure of genuine
multipartite nonlocality, by considering specific under-
lying signalling models. Finally, it would be interesting
to understand how our treatment of the bilocality prob-
lem could be generalized and applied to the characteri-
zation of the non-convex compatibility regions of more
complex quantum networks [36, 41–44].
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APPENDIX

For the sake of being as self-contained as possible,
we start the appendix with reviewing basic concepts
in convex optimization. We then use these concepts to
establish Theorem 1 – our main technical result. As
detailed below, the measures of direct causal influence
(4) and measurement dependence (5), respectively, can
be recast as vector norms. Their minimization, subject
to the specific constraints of each of the causal models
in Fig. 1 is then explored in detail.

REVIEW OF LINEAR PROGRAMMING

Linear Programming (LP) is a very powerful and
widely used tool for dealing – both practically and the-
oretically – with certain families of convex optimiza-
tion problems. We refer to [45, 46] and references
therein for an overview. From now on we assume that
vectors x ∈ R

n are represented in the standard basis
{ei}n

i=1, i.e. x = ∑n
i=1 xiei. In this representation, the

two vectors 0n := (0, . . . , 0)T (the “zero”-vector) and
1n := (1, . . . , 1)T (the “all-ones” vector) will be of par-
ticular importance. Furthermore, we are frequently go-
ing to concatenate vectors x ∈ R

n and y ∈ R
m via

x ⊕ y := ∑n
i=1 xiei + ∑m

j=1 yien+j ∈ R
n+m. Also, 〈·, ·〉

shall denote the standard inner product of finite dimen-
sional real vector spaces.

There are many equivalent ways of defining the stan-
dard form of primal/dual LP’s. Here we adopt the for-
malism of [47]. A convex optimization problem fits the
framework of linear programming, if it can be reformu-
lated as

γ = min
ξ∈Rn

〈c, ξ〉 (13)

subject to Φξ ≥ b

ξ ≥ 0n,

where c ∈ R
n as well as b ∈ R

m are vectors and
Φ : Rn → R

m corresponds to an arbitrary real m× n-
matrix. The inequality signs here denote generalized
inequalities on Rn and Rm, respectively. To be concrete,
two vectors x, y ∈ Rn obey y ≥ x if and only if yi ≥ xi
holds for all i = 1, . . . , n.

It is very useful to consider linear programming
problems in pairs. An optimization of the form (13)
is called a primal problem in standard form and is accom-
panied by its dual problem (in standard form):

β = max
ζ∈Rm

〈ζ, b〉 (14)

subject to ΦTζ ≤ c

ζ ≥ 0m.

Here, ΦT : Rm → R
n denotes the transpose of Φ (with

respect to the standard basis). For a given pair of lin-
ear programs, we call ξ ∈ Rn primal feasible if it obeys
the constraints Φξ ≥ b and ξ ≥ 0n. Likewise, we call
ζ ∈ Rm dual feasible if ΦTζ ≤ c and ζ ≥ 0m hold. Fur-
thermore, we call an LP primal feasible, if it admits at
least one primal feasible variable ξ and dual feasible, if
there exists at least one dual feasible ζ. One crucial
feature of linear programming problems is the follow-
ing theorem (see e.g. [46, Theorem IV.6.2 and Theo-
rem IV.7.2])

Theorem 2 (Weak+Strong Duality). Any primal feasible
ξ and any dual feasible ζ obey

〈c, ξ〉 ≥ 〈ζ, b〉 (weak duality). (15)

Furthermore, if a given LP is either primal or dual feasible,
problems (13) and (14) are equivalent, i.e.

γ = β (strong duality). (16)

Strong duality is a very powerful tool, as it allows one
to switch between solving primal and dual problems at
will. Moreover, the general framework of linear pro-
gramming is surprsingly versatile, because many non-
linear convex optimization problems can be converted
into a corresponding LP. Here, we content ourselves
with two examples which will turn out to be important
for our analysis.

Example 3 (`1-norm calculation, [45] p. 294 ). Let x ∈
R

n be an arbitrary vector. Then

‖x‖`1 = min
t∈Rn

〈1n, t〉 (17)

subject to −t ≤ x ≤ t. (18)

Note that the constraint (18) implicitly assures t ≥ 0n.

Example 4 (`∞-norm calculation, [45] p. 293). Let x ∈
R

n be an arbitrary vector. Then

‖x‖`∞ = min
v∈R

v (19)

subject to −v1n ≤ x ≤ v1n. (20)

Note that the constraint −v1n ≤ x is redundant if the vector
of interest obeys x ≥ 0n. Also, (20) implicitly assures v ≥ 0.

The primal LPs in examples 3 and 4 are not yet in
standard form (13). However, they can be converted
into it by applying some straightforward reformula-
tions – we will come back to this later.

Another useful feature of LPs is that different mini-
mization procedures of the above kind can be combined
in order to yield an LP for a more complicated opti-
mization problem. An instance of such a combination
is the following result which will turn out to be crucial
for our analysis.
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Lemma 5. Let {x1, . . . , xL} ⊂ Rn be an arbitrary family of
L vectors. Then

max
1≤i≤L

‖xi‖`1 = minimize
t1,...,tL∈Rn

v∈R

v

subject to
v ≥ 〈1n, ti〉
−ti ≤ xi ≤ ti

}
1 ≤ i ≤ L

which is a primal LP, albeit not yet in standard form. Also,
the constraints implicitly assure t1, . . . , tL ≥ 0n and v ≥ 0.

Proof. We introduce the non-negative auxiliary vector

u :=
L

∑
i=1
‖xi‖`1ei ∈ RL.

The equivalence

max
i=1,...,L

‖xi‖`1 = ‖u‖`∞

then follows from the definition of the `∞-norm. Re-
placing this `∞-norm calculation by the corresponding
LP (example 4 for non-negative vectors) and including
L unconstrained `1-norm calculations – one for each
component of u – as “subroutines” (example 3) yields
the desired statement.

Finally it is worthwhile to mention that constrained
norm-minimization, e.g.

β = min
x∈Rn

‖x‖`1 subject to Ax ≥ c,

can also be reformulated as a LP, because the constraint
is linear. To this end, simply include the additional lin-
ear constraint in the LP for calculating ‖x‖`1 :

γ = min
x,t∈Rn

〈1n, t〉 (21)

subject to −t ≤ x ≤ t

Ax ≥ c.

Clearly, this is a LP. Pushing this further, one can also
handle certain types of non-linear constraints, e.g.

γ̃ = min
x∈Rn

‖x‖`p subject to ‖Ax‖`q ≤ c

for p, q ∈ {1, ∞} within the linear programming for-
malism.

USEFUL RESULTS REGARDING LP’S

We can now use these concepts and techniques to ob-
tain a linear programming formalism for a particular
family of convex optimization problems that is relevant

for our analysis. As detailed in the following two sec-
tions, the measures of direct causal influence (4) and
of measurement dependence (5) can be cast as a `∞-
norm and `1-norm, respectively. This in turn allows us
to state the associated equivalent dual problem for the
minimization of each of these two measures, which is
the scope of the following theorems.

Theorem 6. Let A be a real m× n-matrix, {Mi}L
i=1 a fam-

ily of L real valued k × n-matrices and let p ∈ R
m be an

arbitrary vector. Then, the convex optimization problem

γ = min
q∈Rn

max
1≤i≤L

‖Miq‖`1

subject to Aq = p

〈1n, q〉 = 1

q ≥ 0

can be reformulated as a primal LP. Its associated dual prob-
lem is given by

maximize
yi∈Rk ,z∈Rm

wi ,u∈R

〈p, z〉+ u

subject to ATz + u1n ≤
L

∑
i=1

MT
i yi

−wi1k ≤ yi ≤ wi1k i = 1, . . . , L
L

∑
i=1

wi ≤ 1,

w1, . . . , wL ≥ 0.

Proof. Combining Lemma 5 – for xi = Miq ∈ Rk for i =
1, . . . , L – with the constrained minimization argument
from (21) shows that the convex optimization problem
(22) is equivalent to solving

minimize
t1,...,tL∈Rk ,q∈Rn

v∈R

v (22)

subject to Aq = p

〈1n, q〉 = 1

v ≥ 〈1k, ti〉
−ti ≤ Miq ≤ ti

}
i = 1, . . . , L

q ≥ 0

which is clearly a LP. Note that the remaining optimiza-
tion variables v ∈ R and ti ∈ Rk are also implicitly con-
strained to be non-negative. So, in order to convert (22)
into a primal LP in standard form (13), we define

ξ := v⊕
L⊕

i=1

ti ⊕ q, c := 1
L⊕

i=1

0k ⊕ 0n and

b := (0)⊕L ⊕ (0k ⊕ 0k)⊕L ⊕ p⊕ (−p)⊕ 1⊕ (−1).

Counting the dimensions of the resulting vector spaces
reveals ξ, c ∈ R

1+Lk+n and b ∈ R
L+2Lk+2m+2. Also,
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the (implicit and explicit) non-negativity constraints on
v, t1, . . . , tL and q guarantee ξ ≥ 01+Lk+n. Due to our
choice of b, we can incorporate all relevant constraints
of (22) in the compact expression

Φξ ≥ b,

where Φ is the (L + 2Lk + 2m + 2)× (1 + Lk + n)-matrix
defined by

Φ =




1 −1T
k 0T

k · · · 0T
k 0T

n
...

...
1 0T

k · · · 0T
k −1T

k 0T
n

0k 1k×k Ok×k · · · Ok×k M1
0k 1k×k Ok×k · · · Ok×k −M1
...

...
0k Ok×k · · · Ok×k 1k×k ML
0k Ok×k · · · Ok×k 1k×k −ML
0m Om×k · · · · · · Om×k A
0m Om×k · · · · · · Om×k −A
0 0T

k · · · · · · 0T
k 1T

n
0 0T

k · · · · · · 0T
k −1T

n




in the (extended) standard bases of the spaces R1+Lk+n

and RL+2Lk+2m+2. Our definitions of ξ, c, b and Φ now
indeed convert (22) into primal standard form (13). Its
dual then simply corresponds to (14) which can be fur-
ther simplified. The structure of b suggests decompos-
ing the dual variable ζ ∈ RL+2Lk+2m+2 into

ζ :=
L⊕

i=1

wi

L⊕

i=1

(
y′i ⊕ y′′i

)
⊕ z′ ⊕ z′′ ⊕ u′ ⊕ u′′ (23)

with wi, u′, u′′ ∈ R, y′i, y′′i ∈ Rk and z′, z′′ ∈ Rm. Using
this decomposition of ζ, we obtain the following con-
straints from ΦTζ ≤ c:

AT(z′ − z′′) + 1n(u′ − u′′) ≤
L

∑
i=1

Mi
(
y′′i − y′i

)
,

y′i + y′′i ≤ wi1k for i = 1, . . . , L,
L

∑
i=1

wi ≤ 1.

Also, due to ζ ≥ 0L+2Lk+2l+2, all the optimization vari-
ables are non-negative. The objective function corre-
sponds to

〈ζ, b〉 = 〈p, z′ − z′′〉+ u′ − u′′.

The particular form of objective function and con-
straints suggests to replace the non-negative variables
z′, z′′ ∈ Rm and u′, u′′ ∈ R by

z := z′ − z′′ and u := u′ − u′′

which are not constrained to be non-negative anymore.
Also, y′i + y′′i ≤ wi1k together with y′i, y′′i ≥ 0 implies
the equivalent constraint

−wi1k ≤ y′′i − y′i ≤ wi1k

for all 1 ≤ i ≤ L. This motivates to define yi := y′′i − y′i
which is bounded by the above inequality chain, but
also not constrained to be non-negative. Putting every-
thing together yields the desired statement

Theorem 7. Let A be a real valued m× n matrix, {Mi}L
i=1

be a family of real valued k × n-matrices, N a real valued
l × n-matrix and let p ∈ Rm as well as c ∈ R be arbitrary.
The convex optimization problem

γ = min
q∈Rn

‖Nq‖`∞ (24)

subject to max
1≤i≤L

‖Miq‖`1 ≤ c

Aq = p

〈1n, q〉 = 1

q ≥ 0

can be converted into a primal LP. Its associated dual LP
corresponds to

β = max
x∈Rl ,yi∈Rk ,z∈Rm

u,v,wi∈R

〈p, z〉+ u− cv (25)

subject to ATz + u1n ≤
L

∑
i=1

MT
i yi + NTx

−wi1k ≤ yi ≤ wi1k i = 1, . . . , L
L

∑
i=1

wi ≤ v

‖x‖`1 ≤ 1

w1, . . . , wL, v ≥ 0.

Proof. Proceeding along similar lines as in the previous
proof one can show that (24) is equivalent to solving

minimize
t1,...,tL∈Rk ,q∈Rn

v,ṽ∈R

ṽ (26)

subject to −ṽ1l ≤ Nq ≤ ṽ1l

v ≤ c
v ≥ 〈1k, ti〉
−ti ≤ Miq ≤ ti

}
i = 1, . . . , L

Aq = p

〈1n, q〉 = 1

q ≥ 0n,

which is again clearly a primal LP. Moreover, it strongly
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resembles the linear program (22). Indeed, defining

c̃ := 1⊕ 0
L⊕

i=1

0k ⊕ 0n,

and extending ξ, b, as well as Φ from the proof of The-
orem 6 to

ξ̃ := ṽ⊕ ξ, b̃ := 0l ⊕ 0l ⊕ (−c)⊕ b

and

Φ̃ =

(
1l ⊕ 1l ⊕ 0 B

0L+2Lk+2m+2 Φ

)
,

where

B :=




0l Ol×k · · · · · · Ol×k N
0l Ol×k · · · · · · Ol×k −N
−1 0T

k · · · · · · 0T
k 0T

n




converts (26) into primal standard form. Going to the
dual and simplifying it in a similar way as shown in
the previous proof – decompose ζ̃ into x′ ⊕ x′′ ⊕ v⊕ ζ,
where ζ was defined in (23) – yields the desired state-
ment upon noticing that 〈1l , x′ + x′′〉 ≤ 1 together with
x′, x′′ ≥ 0l is equivalent to demanding that x := x′ − x′′

obeys ‖x‖`1 ≤ 1, but is not constrained to be non-
negative anymore.

Corollary 8. Suppose the `1-norm constraint in the convex
optimization (24) is omitted, then the corresponding dual LP
simplifies to

β = max
x∈Rl ,z∈Rm ,u∈R

〈p, z〉+ u (27)

subject to ATz + u1n ≤ NTx

‖x‖`1 ≤ 1.

If the normalization condition 〈1n, q〉 = 1 is dropped as well,
the optimization parameter u assumes 0 and need not be con-
sidered in the dual optimization.

Proof. Omitting the `1-norm constraint is equivalent to
letting the constraint c go to infinity. Since (−cv) is part
of the dual’s objective function (25), this limit enforces
v = 0. This in turn demands wi = 0 and consequently
yi = 0k for all i = 1, . . . , L. As a result, we obtain the
first desired statement.

The second simplification requires a closer look at the
proof of Theorem 7. Doing so reveals that the con-
straint 〈1n, q〉 = 1 results in the additional dual opti-
mization parameter u. Omitting this constraint in the
primal therefore implies that u has to be dropped ac-
cordingly.

Finally we are going to present the derivation of the
second part of Theorem 1, namely that solving an arbi-
trary feasible primal LP (in standard form), is equiva-
lent to maximizing the dual problem over finitely many
points – the vertices of the dual feasible set.

Proposition 9. Consider a primal feasible LP whose opti-
mal value γ is bounded from below. Then this optimum is
attained at one vertex di of the dual feasible region D :={

ζ ∈ Rm : ΦTζ ≤ c, ζ ≥ 0m
}

:

γ = β = max
1≤i≤K

〈di, b〉,

Possible unbounded directions (rays) of D can be safely ig-
nored.

Note that all the measures we consider – (4), (5) and
(12) in the main text – are non-negative by construction.
Consequently, any reformulation of calculating (or op-
timizing over) these measures as a primal LP results in
a bounded optimal value γ ≥ 0. Hence, Proposition
9 is applicable, provided there is at least one hidden
variable that reproduces the observed distribution, thus
establishing that the LP is primal feasible.

Proposition 9 establishes that the relevant part of the
dual feasible region is bounded. It can be deduced from
duality – Theorem 2 – and is standard. In order to be
self-contained, we provide a slightly different proof that
exploits the geometry of linear programs more explic-
itly.

Proof of Proposition 9. The fact that the primal LP is fea-
sible and bounded assures that there is at least one dual
feasible point via strong duality – Theorem 2. The dual
feasible region D is defined by n + m linear inequalities
and therefore has the structure of a convex polyhedron.
We have just established that this polyhedron is non-
empty, but it is not necessarily bounded. To see this,
suppose for now that c ≥ 0n holds (this is not neces-
sary, but will simplify our argument). If ΦT has a non-
trivial kernel, then each element ζ̄ ∈ ker

(
ΦT) ∩Rm

+ is
not affected by the linear inequalities, because

ζ̄ ≥ 0m and ΦT ζ̄ = 0n ≤ c.

Consequently, D contains the convex cone C :=
ker

(
ΦT) ∩Rm

+. Conversely, it is easy to show that the
unbounded part of D is fully contained in C. This al-
lows us to make a Minkowski decomposition

D = C + P = {c + p : c ∈ C, p ∈ P} ,

where C is the unbounded conic part and P denotes
the polyhedron’s remaining part. We now aim to show
that elements ζ̄ ∈ C do not contribute to the actual opti-
mization procedure and can therefore safely be ignored.
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To this end, we combine the primal problem’s (13) con-
straint Φξ − b ≥ 0m with the dual constraint ζ ≥ 0m to
obtain 〈ζ, b〉 ≤ 〈ζ, Φξ〉 for any primal feasible ξ ∈ Rn.
Such a ξ is guaranteed to exist due to Theorem 2 and in
particular implies for any ζ̄ ∈ C:

〈ζ̄, b〉 ≤ 〈ζ̄, Φξ〉 = 〈ΦT ζ̄, ξ〉 = 0.

Here, the last equality is due to ζ̄ ∈ ker
(
ΦT). There-

fore elements of C manifestly do not contribute to the
maximization and we can focus on the remaining set
P . By construction, P is a bounded polyhedron and
thus a polytope which can be characterized as the con-
vex hull conv(d1, . . . , dK) of its extremal points (Weyl-
Minkowski Theorem [46, Corollary 4.3]). However, it
is a well known fact that the maximum of a linear (or
more generally: any concave) function over a convex
polytope is attained at one of its extreme pointes, i.e.
vertices.

RELAXATION OF LOCALITY

In this section we will analyze the relaxation of the
locality assumption, as exemplified by the DAGs de-
picted in Fig. 1b–d. In particular, we will show that
evaluating the minimal direct causal influence – see
equation (4) in the main text – that is required to simu-
late a given non-local distribution can be recast as a LP.
Consequently, it can be determined efficiently for any
observed probability distribution.

We begin analyzing in details the scenario depicted in
Fig. 1c. There, the input X of Alice has a direct causal
influence over the outcome B of Bob. We consider the
general, finite case where Alice has mx inputs and oa
outputs, that is, x = 0, . . . , mx − 1 and a = 0, . . . , oa − 1
(and analogously for Bob). Variations of this signalling
model can be easily constructed and will be briefly dis-
cussed at the end of this section.

The signalling model in Fig. 1c requires a hidden
variable λ assuming n = omx

a o
mxmy
b possible values. The

causal structure assures a = fA(x, λ) which resembles
the LHV model (Fig. 1a). This is not the case for b,
which can depend on x,y and λ – i.e. b = fB(x, y, λ).
Consequently there are omx

a possible deterministic func-
tions fA and o

mxmy
b possible deterministic functions

fB. In turn, we can split up the hidden variable into
λ = (λa, λb) = (α0, . . . , αmx−1, β0,0, β0,1, . . . , βmx−1,my−1)
where αx = 0, . . . , oa− 1 determines the value of a given
x. Similarly, βx,y = 0, . . . , ob − 1 specifies the value of b
given x and y. Following (1) the observed distribution
can be decomposed in the following way:

p(a, b|x, y) = ∑
λ

p(a|x, λ)p(b|x, y, λ)p(λ). (28)

Given such a signalling model and some observed
constraints, our task is to find the minimum value of
CX→B. Similarly to (4), this quantity can be defined as

CX→B = sup
b,y,x,x′

∑
λ

p(λ)|p(b|do(x), y, λ)− p(b|do(x′), y, λ)|,

(29)
which quantifies the amount of signalling required to
explain the observation. Moving on, we note that

∑
λ

p(λ)|p(b|do(x), y, λ)− p(b|do(x′), y, λ)|

= ∑
λ

p(λ)|δb, fB(x,y,λ) − δb, fB(x′ ,y,λ)| (30)

= ∑
i

qivi = 〈v, q〉,

where we have identified p(λ) with the n-dimensional
vector q via 〈ei, q〉 = p(λi). The vector v = v(x, x′, y, b)
only consists of 1’s and 0’s and fully characterizes the
action of the Kronecker-symbols in (30). By doing so,
the measure of causal influence (29) can be recast as

CX→B = max
i=1,...,L

〈q, vi〉 = ‖Cq‖∞. (31)

Here, the index i parametrizes one of the L possible in-
stances of (x, x′, y, b) with x 6= x′ and vi = v(x, x′, y, b)
denotes the vector corresponding to that instance. The
last equality in (31) then follows from introducing C :=
∑L

i=1 |ei〉〈vi| and the definition of the `∞-norm. Con-
sequently, minimizing CX→B over all hidden variables
that are compatible with our observations is equivalent
to solving

minimize
q∈Rn

‖Cq‖∞ (32)

subject to VTq = Vp

〈1n, q〉 = 1 (33)

q ≥ 0n.

Corollary 8 assures that this optimization problem can
be translated into a LP in standard form. As already
mentioned in the main text, Vp denotes the vector
representing the correlations under consideration – the
probability distribution itself (V = 1) or a function of
it, e.g., a Bell inequality ( V = |e1〉〈b| for some b ∈ Rm)
– and the matrix VT maps the underlying hidden vari-
able states to the actually observed vector Vp .

Given any observed distribution Vp of interest, one
can easily implement this linear program and solve it
efficiently. However, we are also interested in deriv-
ing an analytical solution which is valid for any vector
p encoding the full probability distribution p(a, b|x, y).
Subjecting to the full probability distribution p in par-
ticular guarantees that the normalization constraint (33)
is already assured by Tq = p. This allows for dropping
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this constraint without loss of generality. Proposition 9
serves precisely the purpose of obtaining such an ana-
lytical expression, as it – in combination with Corollary
8 – assures that solving (32) is equivalent to evaluating

max
1≤i≤K

〈di, Vp〉,

where {di}K
i=1 denotes the vertices of the dual feasible

region in (27). Standard algorithms like PORTA [48]
allow for evaluating these extremal points. We have
performed such an analysis for the particular case of
the CHSH scenario (mx = my = oa = ob = 2). We
list all the 13 vertices of the LP’s dual feasible region in
Table I. Nicely, we see that all the extremal points can be
divided into three types: i) the trivial vector 0m, ii) the
symmetries of the CHSH inequality vector, for example

pAB
00|00 + pAB

00|01 + pAB
00|10 − pAB

00|11 − pA
0|0 − pB

0|0 (34)

and iii) the non-signalling conditions, for instance

− pAB
01|00 − pAB

11|00 + pAB
01|10 + pAB

11|10. (35)

Here, we have used the short hand notation pAB
ab|xy =

p(a, b|x, y) and similarly for the marginals.
For any non-signalling distribution, the conditions of

the third type vanish and the corresponding vertices
need not be considered. Therefore we arrive at the re-
sult stated in the main text, namely

min CX→B = max [0, CHSH] ,

where the maximum is taken over all the eight symme-
tries of the CHSH inequality.

Having such a causal interpretation of the CHSH in-
equality at hand, one can wonder the same holds true
for other Bell inequalities, for instance the (I3322 ≤ 0)-
inequality [26] (three inputs for Alice and Bob with two
outcomes each). Dwelling on the model in Fig. 1c we
show that the I3322 inequality only provides a lower
bound to the actual value of CX→B required to simu-
late a given nonlocal distribution. This is illustrated in
Fig. 2. To be more concrete, we consider the particular
full probability distribution

p(a, b|x, y) = vpPR + (1− v)pW, (36)

where

pPR (a, b|x, y) =





1/2 if a + b = 1 mod 2, x + y = 3,
1/2 if a + b = 0 mod 2, x + y 6= 3,
0 otherwise,

denotes the generalization of the PR box maximally vi-
olating the I3322-inequality (achieving I3322 = 1) and

pW (a, b|x, y) = 1/4

plus non-signalling

FIG. 2. The value of min CX→B as function of the I3322 value.
The black curve represents the case where the full probability
distribution defined in (36) is taken into account. The red
curve is obtained by minimizing CX→B for a given value of
I3322 subject to non-signalling and normalization constraints.

denotes the uniform distribution (achieving I3322 =
−1). Such a full probability distribution results in
I3322 = 2v− 1. We numerically see that

CX→B = max [0, (2v− 1)/2] = max [0, I3322/2]

holds, if we take into account the full probability dis-
tribution. However, if we instead only impose a fixed
value of the I3322-inequality (plus nonsignalling and
normalization constraints) we numerically (see Fig. 2)
arrive at

min CX→B =





0 for I3322 ≤ 0,
(2/5) ∗ I3322 for 0 ≤ I3322 ≤ 0.714,
(1/4) ∗ (3I3322 − 1) for 0.714 ≤ I3322 ≤ 1.

This shows that different distributions achieving the
same value for I3322 may have quite different require-
ments in order to be simulated. Moreover, this result
highlights another nice aspect of our framework. Un-
like the results in [11–17], it can take into account the
full probability distribution, not just the value of a spe-
cific Bell inequality. This allows for a much more accu-
rate description.

An almost identical analysis can be done for the
model displayed in Fig. 1b. Using (1), the observed dis-
tribution can be decomposed as:

p(a, b|x, y) = ∑
λ

p(a|x, λ)p(b|a, y, λ). (37)

Using the measure of direct causal influence (4) for
CA→B, revisiting the CHSH scenario, we can once more
conclude

min CA→B = max [0, CHSH] . (38)

In particular, this implies that such a model – where one
of the parties communicates its outcomes – is capable
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List of extremal points
# p00

00 p01
00 p00

10 p00
11 p01

00 p01
01 p01

10 p01
11 p10

00 p10
01 p10

10 p10
11 p11

00 p11
01 p11

10 p11
11

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 -1/2 0 1/2 0 -1/2 -1 -1/2 0 -1/2 0 1/2 0 1/2 0 -1/2
3 0 -1/2 0 1/2 0 -1/2 -1 -1/2 0 1/2 0 -1/2 0 -1/2 0 1/2
4 0 -1/2 0 1/2 0 1/2 0 -1/2 0 -1/2 0 1/2 0 -1/2 -1 -1/2
5 0 -1/2 0 1/2 0 1/2 0 -1/2 0 1/2 0 -1/2 -1 -1/2 0 -1/2
6 0 1/2 0 -1/2 0 -1/2 0 1/2 0 -1/2 0 1/2 0 -1/2 - 1 -1/2
7 0 1/2 0 -1/2 0 -1/2 0 1/2 0 1/2 0 -1/2 -1 -1/2 0 -1/2
8 0 1/2 0 -1/2 0 1/2 1 1/2 0 -1/2 0 1/2 -1 -1/2 -1 -3/2
9 0 1/2 0 -1/2 0 1/2 1 1/2 0 1/2 0 -1/2 -1 -3/2 -1 -1/2

10 0 -1 0 -1 0 0 0 0 0 1 0 1 0 0 0 0
11 0 0 0 0 0 -1 0 -1 0 0 0 0 0 1 0 1
12 0 0 0 0 0 1 0 1 0 0 0 0 0 -1 0 -1
13 0 1 0 1 0 0 0 0 0 -1 0 -1 0 0 0 0

TABLE I. Extremal points for the feasible region in the dual problem (27) associated with the CHSH scenario. In the notation
above, pxy

ab corresponds to p(a, b|x, y). The extremal points 2-9 can be easily seen to correspond to the symmetries of the CHSH
inequality. Take for instance point 2 which can be written as the CHSH operator in (34). The extremal points 10-13 correspond
to the non-signalling conditions. For instance, point 10 corresponds to (35) and is zero for any non-signalling distribution.

of simulating any nonlocal distributions in the CHSH
scenario.

Interestingly, things change drastically if we move on
to the I3322 scenario. It is worthwhile to point out that
model (37) restricts the hidden variables to a region
characterized by finitely many inequalities. Therefore,
analogously to the usual LHV model (2), the feasible re-
gion is a polytope. Using the software PORTA we found
different classes of non-trivial inequalities that define
the compatibility region of this model. As shown in
the main text – equation (10) – one of these inequalities
corresponds to

IA→B = 〈E00〉− 〈E02〉− 〈E11〉+ 〈E12〉− 〈E20〉+ 〈E21〉 ≤ 4,

where Exy = 〈AxBy〉 = ∑a,b(−1)a+b p(a, b|x, y). We
now show that this inequality can be violated by any
quantum state |ψ〉 =

√
ε|00〉+

√
(1− ε)|11〉 with ε 6=

0, 1. To arrive at such a statement, it suffices to con-
sider that Alice and Bob perform projective measure-
ments on the X-Z plane of the Bloch sphere. More con-
cretely, Alice measures observables of the form OA

x =
cos(θA

x )Z + sin(θA
x )X and so does Bob whose observ-

ables we denote by OB
x . Here, X and Z refer to the

Pauli matrices. For such particular measurements, the
correlators Exy = 〈AxBy〉 simply correspond to

Exy = cos(θA
x ) cos(θB

y ) + 2
√

ε(1− ε) sin(θA
x ) sin(θB

y ).

Choosing the angles such that θA
0 = 0, θA

1 = π, θA
2 =

π/2, θB
0 = 0 and θB

2 = −π we obtain

IA→B = 3 + cos(θB
1 ) + 2

√
ε(1− ε) sin(θB

1 ).

This expression exceeds 4 for any ε 6= 0, 1, pro-
vided that we choose θB

1 sufficiently small compared

to 2
√

ε(1− ε). This result shows that even relaxing
some of assumptions in Bell’s theorem – in this par-
ticular case, the fact that Alice outcomes cannot have a
direct causal influence over Bob outcomes – may not be
enough to causally explain quantum correlations.

A similar analysis can be performed for the commu-
nication model of Fig. 1d. Such a model implies the
following decomposition of the distribution observed:

p(a, b|x, y) = ∑
λ,m

p(a|x, λ)p(m|x, a, λ)p(b|m, y, λ)p(λ).

Such an expression suggests to decompose the hidden
variable into λ = (λα, λβ, λm). By doing so, one can
perform an analysis similar to the one above and define
a measure of causal influence similar to (4). However,
inspired by the communication model of Toner and Ba-
con [9], we directly proceed to analyzing the amount of
communication between Alice and Bob required to clas-
sically reproduce the distribution observed. We quan-
tify the information content of a binary message m sent
from Alice to Bob via its Shannon entropy H(m). Due
to the highly non-linear character of entropies, the op-
timizations involving H(m) are quite hard in general.
Fortunately in the particular case of binary messages,
minimizing H(m) is equivalent to minimizing

p(m = 0)= ∑
a,x,λ

p(m = 0|x, a, λ)p(a|x, λ)p(x)p(λ) (39)

= (1/mx) ∑
a,λ

p(m = 0|x, a, λ)p(a|x, λ)p(λ)

= 〈v, q〉.

Here, we have once more identified p(λ) with the vec-
tor q and the components of v correspond to vi =
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∑a p(m = 0|x, a, λi)p(a|x, λi). Also, we have without
loss of generality considered a uniform distribution of
Alice’s inputs – i.e. p(x) = 1/mx – in the second
line. Consequently, the constrained minimization of
p(m = 0) (and thus H(m)) simply corresponds to

minimize
q∈Rn

〈v, q〉

subject to Tq = p

〈1n, q〉 = 1

q ≥ 0n,

which is clearly a primal LP. Computing the extremal
points of the dual problem allows us to infer a novel
relation between the degree of nonlocality and the min-
imum communication required to simulate it. Namely,
min p(m = 0) = max [0, CHSHΠ] which in turn implies

min H(m) =

{
h (CHSH) for CHSH ≥ 0,
0 else.

Here, h denotes the binary entropy given by h(v) =
−v log2 v− (1− v) log2(1− v).

These results on the relaxation of the locality assump-
tion, in addition to fundamental implications and rele-
vance in nonlocal protocols, can also be used to com-
pute the minimum causal influences/communication
required to causally explain the nonlocal correlations
observed in experimental realizations of Bell’s tests
where the space-like separation is not achieved [6, 7].

MEASUREMENT DEPENDENCE MODELS

In this section we focus on the measureMX,Y:λ – see
equation (5) in the main text – which quantifies the
degree of measurement dependence in a given causal
model. Similar to the previous section, we are going to
show that determining the minimal degree of measure-
ment dependence required to reproduce a given non-
local distribution can be done via solving a LP.

To illustrate this, we consider the simplest scenario
of measurement dependence in detail. Such a model
is displayed in Fig. 1e and involves a bipartite Bell sce-
nario, where the measurement inputs X of Alice and Y
of Bob, respectively, can be correlated with the source
Λ producing the particles to be measured.

Without loss of generality, we model such correla-
tions by introducing an additional hidden variable µ
which serves as a common ancestor for x, y and λ.
This suggests to decompose this common ancestor into
µ = (µx, µy, µλ). We can assume x = µx, y = µy and
λ = µλ without loss of generality (x, y and λ are de-
terministic functions of their common ancestor µ). If
Alice’s apparatus has mx inputs (i.e. x = 0, . . . , mx − 1)

and oa outputs (i.e. a = 0, . . . , oa − 1), and similarly
for Bob, n = mxmyomx

a o
my
a different instances of µ suf-

fice to fully characterize the common ancestor’s influ-
ence. Similar to the previous section, we can use this
discrete nature of µ to identify any probability distri-
bution p(µ) : Ξ → [0, 1] uniquely with a non-negative,
real vector q via

qi = 〈ei, q〉 = p(µi) i = 1, . . . , n. (40)

Likewise, we can rewrite the observed probability dis-
tribution p(a, b|x, y) as

p(a, b|x, y)

=
1

p(x, y) ∑
µ,λ

p(a|x, λ)p(b|y, λ)p(x|µ)p(y|µ)p(λ|µ)p(µ)

=
1

p(x, y) ∑
µλ

p(a|x, µλ)p(b|y, µλ)p(µλ)

= 〈v(x, y, a, b, λ), q〉.

The usefulness of such vectorial identifications becomes
apparent when taking a closer look at the measure of
correlation (5). Indeed,

M= ∑
x,y,λ
|p(x, y, λ)− p(x, y)p(λ)| (41)

= ∑
x,y,λ
|∑

µ

δλ,µλ
(δx,µx δy,µy − p(x, y))p(µ)|

= ∑
x,y,λ
|〈v(x, y, λ), q〉|

= ‖Mq‖`1 ,

where M denotes the real k × n matrix M =

∑k
j=1 |ej〉〈v(x, y, λ)|. Note that this matrix implicitly de-

pends on p(x, y). However, p(x, y) is an observable
quantity and thus available. Moreover, one is typically
interested in the case, where said distribution for the in-
puts is uniformly distributed – i.e. p(x, y) = 1/(mxmy).

It is worthwhile to point out that different measures
of measurement dependence have been considered in
the literature. For instance, in Ref. [12] the following
measure of correlation has been proposed:

MHall = sup
x,x′ ,y,y′

∑
y
|p(λ|x, y)− p(λ|x′, y′)|.

Similarly to (41), we can rewrite this measure as a `1-
norm, namely

MHall = max
i=1,...,L

‖Miq‖`1 .

The constrained minimization of both M and MHall
consequently corresponds to the following optimiza-
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tion:

minimize
q∈Rn

max
i=1,...,L

‖Miq‖`1 (42)

subject to Vq = p̃

〈1n, q〉 = 1

q ≥ 0n,

Theorem 6 assures that such an optimization can be re-
cast as a primal LP in standard form.

In this work we have opted to focus on the measure
defined in (41). The reason for that is two-fold. Firstly,
such a choice assures L = 1 and numerically solv-
ing the corresponding LP is substantially faster. The
second reason stems from the fact that (41) is propor-
tional to the variational distance between the distribu-
tions p(x, y, λ) and p(x, y)p(λ). Knowledge of the total
variational distance allows to lower-bound the mutual
information between (X, Y) and Λ via the Pinsker in-
equality [32, 33]:

I(X, Y : Λ) ≥M2 log2 e.

A converse bound on I(X, Y : Λ) is obtained by not-
ing that the (linear program) solution to the minimiza-
tion ofM returns a specific hidden variable model, for
which we can readily compute the mutual information.

Using measure (41), we have considered many dif-
ferent Bell scenarios. This was already mentioned in
the main text. In particular we refer to Fig. 3 where we
consider the CGLMP scenario [31] – a bipartite model,
where Alice and Bob measure one out of two observ-
ables each of them having d possible outcomes. The
corresponding CGLMP inequality is of the form Id ≤ 2,
where the local bound of 2 and the maximal viola-
tion of 4 are independent of the number of possible
outcomes d. Imposing the value of the Id inequality
ad imposing non-signalling and the normalization con-
straints we numerically obtain a very simple relation up
to d = 8, namely

minM = max [0, (Id − 2)/4] .

Conversely, we have also considered specific quan-
tum realizations. For d = 2, 5, 7 we have numerically
optimized over quantum states and projective mea-
surements maximizing the corresponding Id inequal-
ity. With the resulting quantum probability distribu-
tion at hand, we computed M and inferred lower and
upper bounds for I(X, Y : Λ) in turn. These results
are depicted in Fig. 3 and we refer to the corresponding
section in the main text for further insights concerning
measurement dependence.

d=7

d=5

d=2

Upper bound for a singlet state

FIG. 3. Upper bound for I(X, Y : λ) computed as a function of
the visibility V for d = 2, 5, 7 (green, blue and red curves, re-
spectively). The black dashed curve correspond to the upper
bound I(X, Y : Λ) ≈ 0.0663 obtained in [13] for singlet states.
The solid curves correspond to vpQ

max + (1− v)pW were pQ
max

was obtained by maximizing the quantum violation of Id over
pure states and projective measurements.

BILOCALITY SCENARIO

In LHV models for multipartite Bell scenarios, it
is usually assumed that the same hidden variable is
shared among all the parties. That is, a Bell inequal-
ity violation rules out any shared LHV. However, in
quantum information protocols it is often the case that
different parties receive particles produced by indepen-
dent sources, e.g. in quantum networks [36, 41–44]. It is
then natural to focus on LHV models which reproduce
the independence structure of the sources. That is, each
hidden variable can only be shared between parties re-
ceiving particles from the same source. Such models
are weaker than general LHV models, i.e. they form a
subset of all the models where the hidden variables can
be shared arbitrarily among the parties.

A particular case is an entanglement swapping sce-
nario [38] involving three parties A, B and C which
receive entangled states from two independent sources.
The DAG of Fig. 1f shows an LHV model with indepen-
dent variables for this scenario. The assumption that
the sources are independent, p(λ1, λ2) = p(λ1)p(λ2),
is known as bilocality [27, 28]. With this assumption,
in analogy with the usual LHV decomposition (2), the
correlations for this scenario must fulfil

p(a, b, c|x, z) = ∑
λ1,λ2

p(λ1)p(λ2) (43)

p(a|x, λ1)p(b|λ1, λ2)p(c|z, λ2).

Note that the set of bilocal correlations is non-convex
because of the nonlinearity of the bilocality assump-
tion. This makes the set extremely difficult character-
ize [27, 28, 36, 37, 49, 50]. In the following, we intro-
duce a measure of relaxation of bilocality, and we show
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that, despite the non-convex nature of the measure, it
can nevertheless be computed by means of a linear pro-
gram.

For fixed numbers mx, mz and oa, ob, oc of the in-
put x, z and output a, b, c values, there is a finite
number n = omx

a obomz
c of deterministic strategies. We

can label the deterministic strategies for a by symbols
ᾱ = α0, . . . , αmx where αx is the value of a when the
input is x. Similarly, we label the functions for b by
β and for c by γ̄ = γ0, . . . , γmz . Thus, the distribution
over the deterministic strategies can be identified with
an n-dimensional vector q, analogous to the case in the
main text for usual LHV models. The vector q then has
components qᾱ,β,γ̄. Defining the marginals

qac
ᾱ,γ̄ = ∑

β

qᾱ,β,γ̄

qa
ᾱ = ∑

β,γ̄
qᾱ,β,γ̄, qc

γ̄ = ∑
β,ᾱ

qᾱ,β,γ̄,
(44)

the bilocality assumption is equivalent to the require-
ment

qac
ᾱ,γ̄ = qa

ᾱqc
γ̄. (45)

In analogy with the measure (5) of measurement depen-
dence, the degree of non-bilocality can be measured by
how much the distribution over the LHVs fail to com-
ply with this criterion. We define the measure of non-
bilocality as

MBL = ∑̄
α,γ̄
|qac

ᾱ,γ̄ − qa
ᾱqc

γ̄|. (46)

ClearlyMBL = 0 if and only if the bilocality constraint
is fulfilled.

The non-bilocality measure is quadratic in the dis-
tribution over the the deterministic strategies. Thus,
it is not obvious that linear programming will be
helpful in computing MBL or that the computation
can be made efficient. However, we notice that, for
given observed correlations, there are restrictions on the
marginals qa

ᾱ and qc
γ̄ imposed by the observed distribu-

tion p(a, b, c|x, z) because of the constraint (43) that the
LHV must reproduce the observations. This constraint
can be written

p(a, b, c|x, z) = ∑
ᾱ,β,γ̄

δa,αx δb,βδc,γz qᾱ,β,γ̄. (47)

Depending on the observed distribution, there may be
no or just a few free parameters ν which determine qa

ᾱ =
fᾱ(ν). We can then rewriteMBL as

MBL(ν) = ∑̄
α,γ̄
|qac

ᾱ,γ̄ − fᾱ(ν)qc
γ̄|. (48)

For fixed ν the measure MBL(ν) is linear and its min-
imum can be found via a linear program, as we now
show.

As previously, the first step is to writeMBL(ν) as an
`1-norm. For a given value of ν, we can write

MBL(ν) = ∑̄
α,γ̄
|∑

β

qᾱ,β,γ̄ − fᾱ(ν) ∑
ᾱ′ ,β

qᾱ′ ,β,γ̄| (49)

= ∑̄
α,γ̄
| ∑

ᾱ′β′γ̄′
Mν

ᾱγ̄,ᾱ′β′γ̄′qᾱ′β′γ̄′ | (50)

= ‖Mνq‖`1 , (51)

where Mν is a matrix of dimension l × n, with l =
omx

a omz
c and entries Mν

ᾱγ̄,ᾱ′β′γ̄′ = δᾱ,ᾱ′δγ̄,γ̄′ − fᾱ(ν)δγ̄,γ̄′

(where δᾱ,ᾱ′ = δα0,α′0
· · · δαox ,α′ox

etc.). Minimisation of
MBL(ν) for given, observed correlations p(a, b, c|x, z) is
then equivalent to

minimize
q∈Rn

‖Mνq‖1

subject to Aq = p

〈1n, q〉 = 1

q ≥ 0n,

(52)

where p is the k-dimensionsal vector representing the
observed correlations, with k = oaobocmxmz, and A is a
k× n matrix which encodes the constraint (47) that the
LHV must reproduce the observations. The entries of
A are Aabcxz,ᾱβγ̄ = δa,αx δb,βδc,γz . From Theorem 6, the
minimisation (52) is equivalent to the linear program

minimize
t∈Rl

〈1l , t〉

subject to − t ≤ Mνq ≤ t,

Aq = p,

〈1n, q〉 = 1,

q ≥ 0n

(53)

Thus, minimisingMBL(ν) for fixed ν is indeed a linear
program. To find the minimum of the measure MBL
we must minimise also over ν and hence we have an
optimisation over a linear program. In order to verify
non-bilocality of a given distribution we need to check
that the minimum over ν is non-zero, or equivalently
that the minimum ofMBL(ν) is non-zero for all values
of ν in the allowed range. On the other hand, if we
find a value of ν such thatMBL(ν) = 0 this is sufficient
to show that the distribution is bilocal (and as a by-
product we get an explicit bilocal decomposition).

Bilocality with binary inputs

To illustrate our framework, and to compare with
previous results, we now consider the case where the
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FIG. 4. MBL(ν) as a function of ν for three different values
of the visibility (v = 0.75 (blue curve), v = 0.80 (red curve)
and v = 0.85 (black curve)). The dashed lines correspond to
the minimum and maximum values of the parameter ν that
are compatible with the probability distribution. We observe
that for the specific distribution considered the minimum of
MBL(ν) is achieved for ν = 1/4.

inputs and ouputs of A and C are all dichotomic (oa =
oc = mx = mz = 2), and the output of B takes four val-
ues (ob = 4) that we decompose as b = (b0, b1) where b0,
b1 are bits. Furthermore, we consider the distribution
[27, 28]

pv (a, b, c|x, z) = v2 p (a, b, c|x, z) + (1− v2)
1

16
(54)

with

p (a, b, c|x, z) =
1

16

(
1 + (−1)a+c (−1)b0 + (−1)x+z+b1

2

)

(55)
This distribution can be obtained by using shared
Werner states with visibility v, that is $ = v|Ψ−〉〈Ψ−|+
(1− v)I/4, on which Alice and Charlie perform mea-
surements given by A0 = C0 = 1√

2
(Z + X) and A1 =

C1 = 1√
2
(Z − X), while Bob measures in the Bell ba-

sis assigning b0b1 = 00, 01, 10, 11 to |Φ+〉, |Φ−〉, |Ψ+〉
and |Ψ−〉. As shown in [27, 28] this distribution is
non-bilocal. Taking the marginal of (47) gives p(a|x) =

∑ᾱ δa,αx qᾱ, explicitly for the distribution (54)

p(a = 0|x = 0) = qa
0,0 + qa

0,1 =
1
2

p(a = 0|x = 1) = qa
0,0 + qa

1,0 =
1
2

p(a = 1|x = 0) = qa
1,0 + qa

1,1 =
1
2

p(a = 1|x = 1) = qa
0,1 + qa

1,1 =
1
2

.

(56)

This implies that qa
0,0 = qa

1,1 and qa
1,0 = qa

0,1 = 1/2− qa
0,0

and thus we have a single free parameter ν = qa
0,0. The

parameter is further constrained by the full distribution

p(a, b, c|x, z). To determine its range we run the follow-
ing two linear programs

minimize 〈c, q〉
subject to Aq = p,

q ≥ 0n,

(57)

and

maximize 〈c, q〉
subject to Aq = p,

q ≥ 0n,

(58)

where 〈c, q〉 = qa
0,0. These two linear programs define

a range νmin ≤ ν ≤ νmax. In some particular cases
νmax = νmin, in which case the minimisation over ν is
superfluous and the minimum ofMBL is directly given
by a linear program and is thus analytical. However, in
general these bounds are different. For the distribution
(54) with v = 1, we have νmax = νmin = 1/4, while for
v = 0.8 we have νmin = 0.16 and ν = 0.34. In gen-
eral what we observe is that for any v, the minimum
MBL(ν) occurs at ν = 1/4. This is illustrated Fig. 4.

In Fig. 5 we show how the minimum ofMBL depends
on the visibility. We also show the value of the bilocality
quantity B =

√
|I|+

√
|J| given in [27, 28], where

I =
1
4

1

∑
x,z=0
〈AxB0Cz〉,

J =
1
4

1

∑
x,z=0

(−1)x+z〈AxB1Cz〉,
(59)

and

〈AxByCz〉 = ∑
a,b0,b1,c

(−1)a+by+c p(a, b0, b1, c|x, z). (60)

In [27, 28] it was shown that bilocality implies B ≤ 1.
For the distribution (54) on the other hand, I = J = 1

2 v2

and therefore B =
√

2v. From the numerical results in
Fig. 5 one can easily fit the data and find minMBL =
B2 − 1. Thus the violation of the bilocality corresponds
exactly to how much bilocality must be relaxed to re-
produce the observed distribution.

Bilocality with ternary inputs

To sketch how the linear framework could be used in
more general bilocality scenarios we consider the case
where Alice and Charlie can perform three different
measurements. We again consider the case of trivial
marginals p(a|x) = 1/2. This imposes the following
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FIG. 5. Minimum of the non-bilocality measure MBL vs. vis-
ibility v (blue). We also show the bilocality quantity B (red).
Our measure can be understood as the amount of correlation
between the sources required to simulate the observed corre-
lations.

constraints on qa
α0,α1,α2

p(a = 0|x = 0) = qa
0,0,0 + qa

0,0,1 + qa
0,1,0 + qa

0,1,1 =
1
2

p(a = 0|x = 1) = qa
0,0,0 + qa

0,0,1 + qa
1,0,0 + qa

1,0,1 =
1
2

p(a = 0|x = 2) = qa
0,0,0 + qa

0,1,0 + qa
1,0,0 + qa

1,1,0 =
1
2

p(a = 1|x = 0) = qa
1,0,0 + qa

1,0,1 + qa
1,1,0 + qa

1,1,1 =
1
2

p(a = 1|x = 1) = qa
0,1,0 + qa

0,1,1 + qa
1,1,0 + qa

1,1,1 =
1
2

p(a = 1|x = 2) = qa
0,0,1 + qa

0,1,1 + qa
1,0,1 + qa

1,1,1 =
1
2

,

(61)

which implies that

qa
011 =

1
2
− qa

000 − qa
001 − qa

010

qa
101 =

1
2
− qa

000 − qa
001 − qa

100

qa
110 =

1
2
− qa

000 − qa
010 − qa

100

qa
111 = −1

2
+ 2qa

000 + qa
001 + qa

010 + qa
100.

(62)

This means that we now have four free parameters ν =
(qa

000, qa
001, qa

010, qa
100) . To linearizeMBL in this case, we

need to optimize over these four variables.

In practice, given a certain distribution p(a, b, c|x, z),
we first fix a certain value for qa

000 = c0 in the range
qmin

000 ≤ qa
000 ≤ qmax

000 . We then solve a linear pro-
gram to find the bounds for the next free parameter
qmin

001 ≤ qa
001 ≤ qmax

001 but now imposing also the con-
straint that qa

000 = c0. Fixed qa
000 = c0 and qa

001 = c1 we
look for the bounds of the next free parameter qmin

010 ≤
qa

010 ≤ qmax
010 . We now run the linear program for the re-

maining free parameter in the range qmin
100 ≤ qa

100 ≤ qmax
100

determined by the probability distribution and the con-
straints qa

000 = c0, qa
001 = c1, qa

010 = c2.

For a sufficiently good discretization of these contin-
uous free parameters, we can be quite confident about
the non-bilocality of the distribution if we find no val-
ues for which MBL 6= 0. On the other hand, if we find
any values for the free parameters such that MBL = 0,
then we can immediately conclude that the distribution
is bilocal. To illustrate this we have tested the distri-
bution obtained with two maximally entangled states
|Ψ−〉 when Alice and Charlie measure the three observ-
ables X, Y, Z while Bob measures in the Bell basis. It is
possible to show that this distribution is bilocal by set-
ting qa

000 = 0 and qa
001 = qa

010 = qa
100 = 1/4.
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We give bounds on the average fidelity achievable by any quantum state estimator, which is ar-
guably the most prominently used figure of merit in quantum state tomography. Moreover, these
bounds can be computed online—that is, while the experiment is running. We show numerically
that these bounds are quite tight for relevant distributions of density matrices. We also show that
the Bayesian mean estimator is ideal in the sense of performing close to the bound without requiring
optimization. Our results hold for all finite dimensional quantum systems.
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I. INTRODUCTION

Inferring a quantum mechanical description of a physical system is equivalent to assigning it a quantum state—a
process referred to as tomography. Tomography is now a routine task for designing, testing and tuning qubits in the
quest of building quantum information processing devices [1]. In determining how “good” one is performing this
task, a figure of merit must be reported. By far the most commonly used figure of merit for quantum states is fidelity
[2, 3]. Nowadays, fidelity is used to compare quantum states and processes in a wide variety of tasks, from quantum
chaos to quantum control to the continuous monitoring of quantum systems [4–10]. One might find it surprising,
then, that the technique which optimizes performance with respect to fidelity is not known.

For d-dimensional state space,

S :=
{

σ ∈ L
(

Cd
)

: σ ≥ 0, Tr(σ) = 1
}

, (1)

the fidelity between two states ρ, σ ∈ S is defined to be [2, 3],

F(ρ, σ) := ‖√ρ
√

σ‖2
1 =

[
Tr
√√

ρσ
√

ρ

]2
. (2)
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Define the average fidelity with respect to some measure dρ as Eρ[F(ρ, σ)]1. We want the average of this to be as large
as possible. Thus, the problem can be succinctly stated as follows:

maximize Eρ[F(ρ, σ)]

subject to Tr(σ) = 1,
σ ≥ 0.

(3)

In the context of tomography, we think of ρ as the “true state” and σ as the estimated state. An estimator is a
function from the space of data to quantum states σ : data 7→ σ(data) ∈ S , where data are the results of a sequence
of quantum measurements. Since both the true state and data are unknown, we take the expected value with respect
to the joint distribution of (ρ, data) to obtain the average fidelity:

f (σ) = Eρ,data[F(ρ, σ(data))]. (4)

We want this to be as large as possible. The estimator which maximizes this quantity is equivalent to the estimator
maximizing the following posterior average fidelity for every data set:

f (σ|data) = Eρ|data[F(ρ, σ(data))]. (5)

An estimator which maximizes this is called a Bayes estimator2. Bayes estimators are useful both to understand
Bayesian optimality and to provide upper bounds for the worst case performance.

Now here is the subtle and important point: the measurements performed, the data themselves and the distribu-
tion from which they were generated are not important once the posterior distribution has been calculated. If we
know the solution for every measure dρ, then we know the solution for the posterior measure dρ|data. For brevity,
then, we will drop this conditional information from now on and the problem reduces again to (3).

II. SUMMARY OF RESULTS

In this work, we provide absolute benchmarks for the average fidelity performance of any tomographic estimation
strategy by way of upper and lower bounds. This is important because, in the field of quantum tomography, a
common theme is to compare estimators. Up to date many options are available: linear inversion [1], maximum
likelihood [12], Bayesian mean [13], hedged maximum likelihood [14], and compressed sensing [15, 16]—to name a
few. Often estimators are compared by simulating measurements on ensembles of states drawn according to some
measure and averaging the fidelity. This can only provide conclusions about the relative performance of estimators.
Thus, our bounds can be used to benchmark the fidelity performance of other candidate estimators.

We complement our theoretical findings with numerical experiments. These demonstrate the relative tightness
of our bounds and, in particular, reveal that the Bayesian mean estimator is an excellent choice—owing to its near-
optimal performance and ease of implementation. Importantly, both the mean of the distribution and our bounds
can be computed online—that is, the estimator and its performance can be computed while data is being taken. In
the context of Bayesian quantum information theory [13], our findings lend credence to the standard approach of
using the mean of the posterior distribution as an estimator is a near-optimal one.

We note that this problem has been solved for the case of a single qubit (d = 2). Bagan et al [6] have given the
optimal estimator (and measurement!) for any isotropic prior measure. Unfortunately, by making heavy use of the
Bloch representation of a qubit, the methods do not generalize. Whereas, our bound holds for all distributions of
states in any dimension and coincides with the results of [6] for the case of a single qubit.

A. Ensembles of pure states

We first present the analytically soluble case of measures supported only on pure states. Such a case is common
in theoretical studies which average the performance of their protocols over the popular choice of the unique Haar
invariant measure on pure states. The solution is organized into the following theorem:

1 Expectation values will always be denote with a subscript which specifies the implicit distribution of variables being averaged over.
2 The terminology and objective functions used here can be seen as standard generalizations of those familiar in decision theory. See, e.g., [11].
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Theorem 1. Choose an arbitrary dimension d and assume that the integration measure dρ is supported only on pure states.
Then, the state which solves the optimization problem (3) is the eigenvector of Eρ[ρ] with maximal eigenvalue. It achieves a
maximal fidelity of

∥∥Eρ [ρ]
∥∥

∞.

The proof is a simple exercise in linear programming. When ρ is a pure state, the fidelity simplifies to F(ρ, σ) =
Tr(ρσ). Linearity allows us to bring the expectation inside the trace so that the problem becomes

maximize Tr(Eρ[ρ]σ)

subject to Tr(σ) = 1,
σ ≥ 0.

(6)

The solution can be found in many textbooks covering linear programming—e.g. [17]. This solution also coincides
with the one noted for a distribution supported on two states in [18].

B. General measures on mixed states

For measures with support on mixed states, the situation is markedly different. Our main technical contribution
are new upper bounds for this case. We obtain them by replacing the fidelity function—which is notoriously diffi-
cult to grasp—in the main optimization problem (3) by quantities that are easier to handle in full generality. One
rather straightforward approach to do so is to relate the fidelity function f (ρ, σ) between arbitrary states ρ, σ ∈ S to
corresponding Schatten-p-norm distances

‖ρ− σ‖p =
(
Tr
(
|ρ− σ|p

))1/p ,

with 1 ≤ p ≤ ∞ and |X| =
√

X∗X for any X ∈ L
(

Cd
)

. This can be done by employing the well-known and often
used Fuchs-van de Graaf inequalities [19]

1−
√

F (ρ, σ) ≤ 1
2
‖ρ− σ‖1 ≤

√
1− F(ρ, σ) ∀ρ, σ ∈ S .

This inequality together with the hierarchy of Schatten-p-norms assures

F (ρ, σ) ≤ 1− 1
4
| ρ− σ‖2

1 ≤ 1− 1
4
‖ρ− σ‖2

2 , (7)

for any two quantum states ρ, σ ∈ S . Replacing the objective function in the central optimization problem (3) by
such an upper bound results in a different optimization which admits a general analytic solution. Clearly, such a
relaxed optimum bounds the original figure of merit from above and allows us to establish our second main result.

Theorem 2. For any finite dimension d and any distribution dρ, the maximal average fidelity achieved by any estimator σ ∈ S
obeys

max
σ∈S

Eρ [F(ρ, σ)] ≤ 1− 1
4

Tr
(

Eρ

[
ρ2
]
−Eρ [ρ]2

)
. (8)

Note that the expression on the right hand side of (8) can be interpreted as a non-commutative generalization
of the variance of a probability distribution. Having already outlined the main ideas necessary to establish such a
result, we refer to Section IV B for a complete proof.

Another way of establishing upper bounds on the average fidelity involves the concept of super-fidelity, which
provides the following upper bound on the fidelity [20]:

F(ρ, σ) ≤ Tr (ρσ) +
√

1− Tr (ρ2)
√

1− Tr (σ2). (9)

Although more involved, we shall see that such an approach yields strictly better bounds than the ones presented in
Theorem 2. For brevity, we define ρ̂ := Eρ[ρ] and pρ := Eρ

[√
1− Tr(ρ2)

]
, such that inequality (9) assures

max
σ∈S

Eρ [F (ρ, σ)] ≤ max
σ∈S

(
Tr (ρ̂σ) + pρ

√
1− Tr (σ2)

)
, (10)
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for any distribution dρ. Although more tractable than the original problem, the optimization on the right hand
side still requires solving a non-commutative maximization over all quantum states σ ∈ S . However, applying a
corollary of the famous Birkhoff-von Neumann theorem—see e.g. [21, Theorem 8.7.6]—allows for restricting this
optimization to density operators σ that commute with the distribution’s mean ρ̂—see Lemma 1 below. If r̂1, . . . , r̂d
denote the eigenvalues of ρ̂ such a restriction assures that solving the right hand side of (10) is equivalent to

maximize
d

∑
i=1

r̂isi + pρ

√√√√1−
d

∑
i=1

s2
i

subject to
d

∑
i=1

si = 1, (11)

si ≥ 0 1 ≤ i ≤ d,

which is a commutative convex optimization problem. We refer to Lemma 1 below for a detailed proof of this
assertion. Note that, if the measure dρ is supported exclusively on pure states, pρ vanishes and (11) reduces to
Theorem 1 which is tight.

In order to obtain analytical bounds for mixed states, we further relax (11) by replacing the non-negativity con-
straints (si ≥ 0) by the weaker demand that the optimization vector (s1, . . . , sd)T ∈ Rd is contained in the Euclidean
unit ball—i.e. ∑d

i=1 s2
i ≤ 1. As we shall show in Section V, such a simplification is the tightest possible ellipsoidal

relaxation of (11) and allows us to apply the method of Lagrangian multipliers in a straightforward fashion. Doing
so results in the main theoretical statement of this paper.

Theorem 3. For any finite dimension d and any distribution dρ over states, the fidelity achieved by any estimator σ ∈ S is
bounded from above by

Eρ[F(ρ, σ)] ≤ 1
d


1 +

√
d− 1

√√√√d

(
Eρ

[√
1− Tr (ρ2)

]2
+ Tr

(
Eρ [ρ]2

))
− 1


 . (12)

The matrix achieving this optimum corresponds to

σ] =
1
d
1+

√√√√ d− 1

d
(

p2
ρ + Tr (ρ̂2)

)
− 1

(
ρ̂− 1

d
1

)
, (13)

where 1 ∈ L
(

Cd
)

denotes the identity matrix.

Again, we content ourselves here with outlining the proof architecture necessary to establish such a result and
refer to Section IV for a detailed analysis.

Note that since we relaxed the maximization constraints, σ] in general fails to be positive-semidefinite and is
thus not a valid density operator, though we do not use it as such. In particular, the bound is not tight when dρ
is supported only on pure states—as might be evident from the possibility of non-positive states arising from the
(ρ̂− 1

d1) term in (13). On the other hand, the distribution is known and thus in the case of a distribution supported
only on pure states, one should consult the exact solution in Theorem 1.

Conversely, if σ] happens to be a state, it also solves the optimization (11) and the analytical bound (12) exactly
reproduces an a priori tighter one. In all of our numerical experiments, some of which are presented below, this was
indeed the case.

It is also worthwhile to point out that super-fidelity—the bound in (9)—and the actual fidelity coincide for one
qubit, i.e. for d = 2 [20]. Also replacing positive semidefiniteness by bounded purity yields the same feasible set for
that particular case. Consequently the bound (12) reproduces one of the main results in [6]:

Corollary 1. In the single-qubit case (i.e. d = 2) the bound (12) exactly reproduces the maximum average fidelity in [6,
Equation (2.9)] and σ] is the optimal estimator.

Finally, we want to emphasize that establishing bounds on the average fidelity by using the super-fidelity instead
of the Fuchs-van de Graaf inequalities leads to strictly better results:

Corollary 2. Let the dimension d and the distribution dρ over states be arbitrary. Then, the bound presented in Theorem 2
(Fuchs van-de Graaf inequality) is either trivial—i.e. equal to one—or it strictly majorizes the one presented Theorem 3 (super-
fidelity).
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FIG. 1. The average fidelity as a function of the number of single-shot measurements of the Haar uniform measurement. The
prior distribution is here is also the Haar uniform measure on two qubits. The lines are the medians and shaded areas the
interquartile ranges over 100 trials.

III. NUMERICAL EXPERIMENTS

Note that fidelity achieved by any estimator is a lower bound on the one achieved by the optimal estimator. A
particularly convenient and generally well motivated [18] estimator is the mean of the distribution ρ̂ = Eρ[ρ]. Our
findings underline that for distributions of states relevant to tomography, the mean is very near-optimal. In the
context of tomography the mean is furthermore arguably the most convenient estimator, since every other quantity
of interest requires its calculation anyway.

Finding an analytical expression for the posterior distribution is a very challenging problem, let alone performing
the multidimensional integrals required for the calculation of the expectations above. Thus, we turn to numerics.
In particular, we use the Sequential Monte Carlo (SMC) algorithm, which has been successfully applied to quantum
statistical problems in the context of dynamical parameter estimation [22–24] and quantum state estimation [25–27].
Also, this algorithm is available as an open-source implementation in Python [28].

Employing SMC allows us to perform the Bayesian updating and averaging. A complete and detailed discussion
of the algorithm appears in Ref. [23] and thus we will not repeat the details here, but we will sketch the idea. The
algorithm starts with a set of quantum states {ρj}n

j=0, the elements of which are called particles. Here, n = |{ρj}| is
the number of particles and controls the accuracy of the approximation. By approximating the prior distribution by
a weighted sum of Dirac delta-functions,

Pr(ρ) ≈
n

∑
j=1

wjδ(ρ− ρj), (14)

Bayes’ rule then becomes

wj 7→ Pr(data|ρj)wj, (15)

followed by a normalization step. The SMC algorithm is designed to approximate expectation values, such that

Eρ[ f (ρ)] ≈
n

∑
j=1

wj f (ρj), (16)

for any function f . In other words, the SMC algorithm allows us to efficiently compute the multidimensional in-
tegrals with respect to the measure defined by the posterior probability distribution. We use this algorithm, as
implemented by [28], to numerically compute averages arising in simulated tomography experiments. By doing so,
we explore the efficacy of our claims for a variety of distributions relevant to practice and found natural in experi-
mentation.

Recall the sharp distinction between measures supported on pure states and those with full support. We use the
fact that Theorem 1 provides us with the optimal estimator in the former case to lend support to the claim that
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FIG. 2. These plots depict the average fidelity as a function of the number of single-shot measurements of the Haar uniform
measurements.
First column: The prior distribution is here is Hilbert-Schmidt measure on two and three qubit mixed quantum states.
Second column: The prior distribution for the upper plot is the Arcsine distribution while for the lower plot the Bures distribu-
tion was used—both are supported on two qubit mixed quantum states (again, see [30] for a review of distributions of density
matrices).
In all cases, the solid lines are the medians and shaded areas illustrate the interquartile ranges over 100 trials.

the mean estimator is a good candidate for a computationally simple, yet still near-optimal, alternative to solving
the optimization problem in general. In Figure 1, we present the results of numerical simulations on two qubits.
Plotted is the average fidelity achieved by the optimal estimator (see Theorem 1) and the mean estimator Eρ[ρ].
The average is taken with respect to a distribution that begins as the Haar invariant measure on pure states and is
updated through simulated measurement data, where the measurement is the “uniform POVM” consisting of all
pure states, distributed uniformly according to the Haar measure. For independent measurements—i.e. local, non-
adaptive ones—this measurement is optimal [29, Theorem 3.1]. We see that the mean estimator’s fidelity tracks the
optimal fidelity quite well.

In Figure 2, we plot the average fidelity of the mean estimator against our bound (12) for measures supported also
on mixed quantum states. Again, we simulate measurement data to get an accurate sense of how well the average
fidelity of the mean estimator performs with respect to our bound for distributions relevant to tomography. In this
case, the prior distribution is either the Hilbert-Schmidt measure (left column), or the arcsine and Bures distributions
[30] for two qubits (right column). In each case, many other natural distributions appear as we update our prior
through Bayes’ rule. We see again that the mean estimator is a “good” estimator in that it comes close to the bound
on the optimal fidelity and is the easiest non-trivial average quantity to evaluate.

IV. PROOFS

In this section we provide detailed derivations and proofs of the statements presented in Section II.
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A. A detailed proof of Theorem 2

Recall that in Theorem 2 we have claimed that the bound

max
σ∈S

Eρ [F(ρ, σ)] ≤ 1− 1
4

Tr
(

Eρ

[
ρ2
]
−E [ρ]2

)
, (17)

is valid for any prior distribution dρ. In order to derive such a statement, we start with inequality (7)

F(ρ, σ) ≤ 1− 1
4
‖ρ− σ‖2

2,

which is a direct combination of the Fuchs-van de Graaf inequalities and the norm inequality ‖ · ‖2 ≤ ‖ · ‖1. As such
it is valid for any two states ρ, σ ∈ S which in turn assures that it remains valid upon taking expectations over dρ on
both sides:

Eρ [F(ρ, σ)] ≤ 1− 1
4

Eρ

[
‖ρ− σ‖2

2

]
. (18)

Moreover, we can optimize over σ on both sides to obtain

max
σ∈S

Eρ [F(ρ, σ)] ≤ 1− 1
4

min
σ∈S

Eρ

[
‖ρ− σ‖2

2

]
. (19)

The minimum on the right-hand side can in fact be calculated analytically. To this end, we define the function

f (σ) := Eρ

[
‖ρ− σ‖2

2

]
= Tr

(
Eρ

[
ρ2
])
− 2Tr

(
Eρ[ρ]σ

)
+ Tr

(
σ2
)

.

Note that f (σ) is convex, because it corresponds to a weighted average of convex norm-functions ‖σ− ρ‖2
2 and its

matrix-valued derivative corresponds to

f ′(σ) = −2Eρ [ρ] + 2σ. (20)

This derivative vanishes if and only if σ] = Eρ [ρ] holds and convexity of f (σ) implies that this critical state corre-
sponds to the unique minimum. The corresponding function value amounts to

f
(

σ]
)

= Tr
(

Eρ

[
ρ2
])
− Tr

(
Eρ [ρ]2

)
(21)

and reinserting this global minimum into (19) yields the desired bound (17).

B. A detailed derivation of Theorem 3

Our main theoretical statement—Theorem 3—follows from a three step procedure which was already briefly out-
lined in Section II.

The first step invokes the concept of super-fidelity [20] which assures

max
σ∈S

Eρ [F (ρ, σ)] ≤ max
σ∈S

(
Tr (ρ̂σ) + pρ

√
1− Tr (σ2)

)
,

with ρ̂ = Eρ [ρ] and pρ = Eρ

[√
1− tr (ρ2)

]
for any distribution dρ. As it turns out, the optimization on the right

hand side of this equation is much more tractable than the original problem on the left hand side. This is manifested
by the following technical statement which is a direct consequence of the celebrated Birkhoff-von Neumann theorem.

Lemma 1. Fix any pρ ≥ 0 and suppose that ρ̂ ∈ S is an arbitrary density operator with eigenvalue decomposition ρ̂ =

∑d
i=1 r̂i|bi〉〈bi|. Then the optimization

maximize
σ∈L(Cd)

Tr (ρ̂σ) + pρ

√
1− Tr (σ2), (22)

subject to σ ≥ 0, Tr(σ) = 1.
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is equivalent to solving

maximize
s1,...,sd∈R

d

∑
i=1

r̂isi + pρ

√√√√1−
d

∑
i=1

s2
i , (23)

subject to
d

∑
i=1

si = 1,

si ≥ 0 1 ≤ i ≤ d.

Moreover, there is a one-to-one correspondence between any feasible array (s1, . . . , sd) of this problem and the density operator
σ̃ = ∑d

i=1 si|bi〉〈bi|.
Proof. At the heart of this statement is an immediate corollary of the Birkhoff-von Neumann Theorem—see e.g. [21,
Theorem 8.7.6]. For d× d Hermitian matrices ρ, σ this corollary assures

Tr (ρσ) ≤
d

∑
i=1

risi, (24)

where ri and si denote the eigenvalues of ρ and σ, respectively, arranged in non-increasing order. If ρ̂ has eigenvalue
decomposition ρ̂ = ∑d

i=1 r̂i|bi〉〈bi|, the right hand side of (24) corresponds to Tr (ρ̂σ̃) where σ̃ = ∑d
i=1 si|bi〉〈bi|. Clearly,

if σ ∈ S was a quantum state to begin with, so is σ̃, because the spectra of σ and σ̃ coincide. Moreover, such a
definition assures that both states have equal purity, i.e. Tr(σ2) = Tr(σ̃2). Consequently, for any feasible point σ of
the optimization (22), there is a σ̃ of the above form which admits a larger value in the optimization. Inserting the
particular form of σ̃ into this program results in (23).

In order to arrive at the bound presented in Theorem 3, we employ one more relaxation which is going to allow us
to solve the resulting problem analytically in full generality. To be concrete, we replace the non-negativity constraints
(si ≥ 0) in (23) by the weaker demand that the optimization vector (s1, . . . , sd)T ∈ Rd is contained in the Euclidean
unit ball—i.e. ∑d

i=1 s2
i ≤ 1. Note that we explore the geometric properties of such a relaxation in Section V. In a

nutshell it corresponds to the tightest possible elliptical relaxation of the feasible set in (22). By doing so, we arrive
at the problem

maximize
s1,...,sd∈R

d

∑
i=1

r̂isi + pρ

√√√√1−
d

∑
i=1

s2
i , (25)

subject to
d

∑
i=1

si = 1,
d

∑
i=1

s2
i ≤ 1,

which can be solved analytically via the method of Lagrangian multipliers:

Lemma 2. Let r̂1, . . . , r̂d denote the eigenvalues of any density operator and fix pρ > 0. Then the problem (25) has a unique
solution. The optimal value corresponds to

1
d

(
1 +
√

d− 1
√

d
(

p2
ρ + Tr (ρ̂2)

)
− 1

)

and the array (s]1, . . . , s]d) achieving this optimum corresponds to the particular matrix

σ] =
1
d
1+

√√√√ d− 1

d
(

p2
ρ + Tr (ρ̂2)

)
− 1

(
ρ̂− 1

d
1

)
. (26)

Note that this result together with the relaxations outlined in this section immediately implies Theorem 3 upon
inserting the definitions of pρ and ρ̂. The assumption pρ > 0 is furthermore non-critical, because, by definition,
pρ = 0 if and only if dρ is supported exclusively on pure states. This particular case, however, is already fully
covered by Theorem 1.
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Proof of Lemma 2. Throughout this proof we shall represent the eigenvalues of the density operator ρ̂ as a vector
r̂ = (r̂1, . . . , r̂d)T ∈ Rd. Likewise we shall encompass the scalar optimization variables si in the vector s ∈ Rd.
Furthermore, let 0 = (0, . . . , 0)T and 1 = (1, . . . , 1)T denote the “all-zeros” and “all-ones” vectors on Rd, respectively.
For x, y ∈ Rd, we will also make use of the standard inner product 〈x, y〉 = ∑d

i=1 xiyi and the vectorial inequality
x ≥ y shall indicate component-wise inequality, i.e. xi ≥ yi for all 1 ≤ i ≤ d.

In such a vectorial form, the optimization problem (23) corresponds to

maximize f (s) = 〈r̂, s〉+ pρ

√
1− 〈s, s〉,

subject to g (s) = 〈1, s〉 = 0. (27)
〈s, s〉 ≤ 1.

Note that (27) is a convex optimization problem, as it requires maximizing a concave function over a convex set.
As such, it has a unique maximum. One way of finding this maximum is to apply standard techniques such as the
Karush-Kuhn-Tucker (KKT) multiplier method [17] which are designed to take into account the inequality constraint
(28).

However, here we opt for a less direct but considerably more convenient and less cumbersome approach: we
ignore the inequality constraint in (27) for now and employ the standard technique of Lagrangian multipliers (for
equality constraints) in order to find the unique critical point s] of the optimization. In a second step, we are going to
verify that this vector strictly obeys the additional inequality constraint, we have ignored so far, i.e. 〈s], s]〉 < 1. This
in turn implies that said inequality constraint is not active at the critical point which in retrospect confirms that we
were in fact right to ignore it in the first place. Finally, the fact that we face a convex optimization problem assures
that this unique critical point indeed yields the sought for global maximum of (27).

In order to find the critical point s] in question we define the Lagrangian function

L(s) = f (s) + λg(s), (28)

where we have—as already announced—ignored the inequality constraint 〈s, s〉 ≤ 1. As a consequence, λ ∈ R

denotes the single Lagrangian multiplier associated with the remaining normalization constraint. The necessary
condition for an optimal solution of (27) then reads

r̂− pρs√
1− 〈s, s〉

+ λ1 = 0. (29)

Taking the inner product of this vector-identity with the “all-ones” vector 1 results in

0 = 〈1, 0〉 = 〈1, r̂〉 − pρ〈1, s〉√
1− 〈s, s〉

+ λ〈1, 1〉 = 1− pρ√
1− 〈s, s〉

+ dλ, (30)

where we have used 〈1, r̂〉 = ∑n
i=1 r̂i = Tr (ρ̂) = 1 and the normalization constraint, which likewise assures 〈1, s〉 = 1.

This equation allows us to replace
√

1− 〈s, s〉 by pρ

1+dλ and reinserting this into (29) results in the equivalent vector
equation

r̂− (1 + dλ) s + λ1 = 0. (31)

This can be readily inverted to yield

s =
1

1 + dλ
(r̂ + λ1) . (32)

In order to determine the value of λ, we revisit (30) which in combination with (32) demands

p2
ρ = (1 + dλ)2 (1− 〈s, s〉) = (1 + dλ)2 − 〈r̂, r̂〉 − 2λ〈1, r̂〉 − λ2〈1, 1〉, (33)

= d(d− 1)λ2 + 2(d− 1)λ + 1− Tr
(

ρ̂2
)

, (34)

where we have once more used 〈1, r̂〉 = 1 as well as 〈r̂, r̂〉 = ∑n
i=1 r̂2

i = Tr
(
ρ̂2). This results in the quadratic equation

λ2 +
2
d

λ− 1
d(d− 1)

(
p2

ρ + Tr
(

ρ̂2
)
− 1
)

, (35)
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for λ whose two possible solutions correspond to

λ± = −1
d


1∓

√√√√d
(

p2
ρ + Tr (ρ̂2)

)
− 1

d− 1


 . (36)

Note that the argument of the square-root is non-negative, because the purity Tr
(
ρ̂2) of any quantum state is lower-

bounded by 1/d. Also, the second solution λ− is vacuous, since it leads to an immediate contradiction. Indeed, it
follows by inspection that λ− < −1/d holds. Together with (30) this implies the contradictory relation

√
1− 〈s, s〉 =

pρ

1 + dλ−
< 0, (37)

because pρ is positive by assumption.
Consequently we are left with one meaningful value λ+ for the Lagrangian multiplier and inserting it into (32)

yields the unique critical solution

s] =
1
d

1 +

√√√√ d− 1

d
(

p2
ρ + Tr (ρ̂2)

)
− 1

(
r̂− 1

d
1
)

. (38)

Recall that throughout this proof we are exploiting a one-to-one correspondence between vectors s = (s1, . . . , sn)T ∈
Rd and hermitian d× d-matrices σ = ∑n

i=1 si|bi〉〈bi| that commute with ρ̂. Consequently, the critical vector s] corre-
sponds to the critical matrix presented in (26).

Plugging the critical point s] into the objective function f (s) furthermore yields the corresponding critical function
value

f
(

s]
)

= 〈r̂, s]〉+ pρ

√
1− 〈s], s]〉 =

〈r̂, r̂〉+ λ+〈1, r̂〉
1 + dλ+

+
p2

ρ

1 + dλ+
=

d
(

p2
ρ + Tr

(
ρ̂2))− 1 + 1 + dλ+

d(1 + dλ+)
,

=
1
d


1 +

d
(

p2
ρ + Tr

(
ρ̂2))− 1

1 + dλ+


 =

1
d

(
1 +
√

d− 1
√

d
(

p2
ρ + Tr (ρ̂2)

)
− 1

)
,

where we have once more replaced
√

1− 〈s]+, s]+〉 by pρ

(1+dλ+)
and combined that with the fact that (1 + dλ+) =

√
d(p2

ρ+Tr(ρ̂2))−1
d−1 holds.

With such a unique critical point s] at hand, we are now ready to show that it strictly obeys the inequality constraint
〈s], s]〉 we have ignored so far. By employing the same equalities we have used in the previous paragraph, we can
readily establish such a claim:

〈s], s]〉 = 1− (1− 〈s], s]) = 1−
p2

ρ

(1 + dλ+)2 < 1. (39)

The strict inequality on the right follows from the fact that pρ > 0 holds by assumption. This indeed establishes,
that s] is also a critical point of the optimization problem (27). Since this optimization corresponds to maximizing a
concave function over a convex set, the unique critical point s] must correspond to the unique maximum of (27).

C. Detailed proofs of Corollary 1 and Corollary 2

We conclude the proof section with providing detailed proofs of the remaining statements, namely that Theorem 3
reproduces the main result in [6] for the particular case of a single qubit, i.e. d = 2 (Corollary 1) and that the bounds
presented in Theorem 3 are strictly better than the ones outlined in Theorem 2 (Corollary 2).

278



11

Proof of Corollary 1. We start this section by pointing out that in the particular case of dimension d = 2, the
two relaxations we have employed in the previous subsection are not relaxations at all. Indeed, for dimension
two, fidelity and super-fidelity coincide, and moreover the sets

{
(y1, y2)T ∈ R2 : y1 + y2 = 1, y1, y2 ≥ 0

}
and

{
(y1, y2) ∈ R2 : y1 + y2 = 1, y2

1 + y2
2 ≤ 1

}
coincide (this one-to-one correspondence is illustrated in Figure 3 be-

low). These low-dimensional equivalences assure that all the relaxations employed in the derivation of Theorem 3
are actually tight. Consequently, in this particular low-dimensional case, we solve the actual problem of interest.

For deducing the claimed statement from this fact, we consider Equation (2.9) in [6]:

F =
1
2

(
1 + ∑

χ

‖Vχ‖2

)
. (40)

Here χ simply means the the data generated via the measurement. The vector Vχ is defined as follows:

Vχ = Eρ[r Pr(χ|ρ)], (41)

where r is related to the usual Bloch vector r = (x, y, z) via

r =

(√
1− ‖r̂‖2

2, r
)

. (42)

We point out that this F is not the same average fidelity we have considered but the following quantity (which
corresponds to our Eq. (4) above):

F = max
σ

Eρ

[
Eχ|ρ[F(ρ, σ(χ)]

]
. (43)

Note however that, by employing Bayes’ rule, this is equal to

F = max
σ

Eχ

[
Eρ|χ[F(ρ, σ(χ)]

]
, (44)

and thus maximizing the posterior average fidelity is equivalent to maximizing the total average fidelity. Our bound
applies directly to the former but trivially extends to the latter.

Thus, to establish Corollary 1, we need to extract the posterior average fidelity from the expressions above. First,
using Bayes’ rule, we calculate

Vχ = Pr(χ)Eρ|χ[r]. (45)

Using the fact that ‖r‖2
2 = 2Tr(ρ2)− 1 and

Tr(Eρ|χ[ρ]2) =
1
2

(
1 +

∥∥∥Eρ|χ [r]
∥∥∥

2

2

)
, (46)

we find

‖Vχ‖2
2 = Pr(χ)2

(
2Eρ|χ

[√
1− Tr(ρ2)

]2
+ 2Tr

(
Eρ|χ[ρ]2

)
− 1

)
. (47)

Plugging this back into (40), we have

F =
1
2


1 + ∑

χ

Pr(χ)

√
2Eρ|χ

[√
1− Tr(ρ2)

]2
+ 2Tr

(
Eρ|χ[ρ]2

)
− 1


 , (48)

=
1
2


1 + Eχ



√

2Eρ|χ

[√
1− Tr(ρ2)

]2
+ 2Tr

(
Eρ|χ[ρ]2

)
− 1




 , (49)

= Eχ


1

2


1 +

√
2Eρ|χ

[√
1− Tr(ρ2)

]2
+ 2Tr

(
Eρ|χ[ρ]2

)
− 1




 . (50)
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Thus, implied by the results of [6], the maximum posterior average fidelity (dropping the χ for parallelism) is

max
σ

Eρ[F(ρ, σ)] =
1
2


1 +

√√√√2

(
Eρ

[√
1− Tr(ρ2)

]2
+ Tr

(
Eρ[ρ]2

)
)
− 1


 . (51)

This coincides with our main result (12) for dimension d = 2.

Proof of Corollary 2. For notational simplicity, let us introduce the short-hand notation

sρ := Tr
(

Eρ

[
ρ2
])
− Tr

(
Eρ [ρ]2

)
, (52)

such that the bound presented in Theorem 2 simply reads maxσ∈S Eρ [F(ρ, σ)] ≤ 1 − sρ

4 . Note furthermore that
0 ≤ sρ ≤ 1 holds. As already mentioned, the lower bound follows from invoking Jensen’s inequality, while the
upper bound is a simple consequence of the fact that the purity of any state is at most one. A vanishing sρ would
correspond to a trivial Fuchs-van de Graaf bound of one which is the first case instance covered by Corollary 2.
Therefore we can from now on safely assume that sρ > 0 holds. Under this assumption we prove the second claim
by starting with the bound presented in Theorem 3 and upper-bounding it via a chain of inequalities which will
ultimately lead to the bound presented in Theorem 2. Indeed, pick any dimension d and an arbitrary distribution dρ
over states. Then Jensen’s inequality assures

Eρ

[√
1− Tr (ρ2)

]2
≤ 1−Eρ

[
Tr
(

ρ2
)]

, (53)

and the right hand side of expression (12) in Theorem 3 can be upper-bounded by

1
d

+

√
d− 1
d

√
d− 1− dsρ, (54)

because the square root function is monotonically-increasing on the positive reals. Adding and subtracting sρ in the
last square root and once more invoking monotonicity allows us to continue via

1
d

+

√
d− 1
d

√
(d− 1)(1− sρ)− sρ <

1
d

+
d− 1

d

√
1− sρ, (55)

where we have used sρ > 0 in the last line to obtain strict inequality. Since the square root is a concave function, the
inequality

√
1− sρ ≤ 1− 1

2 sρ is valid for any sρ ≤ 1 and consequently

1
d

+
d− 1

d

√
1− sρ ≤ 1− d− 1

2d
sρ, (56)

is true. Finally, we use the simple fact that d−1
d ≥ 1

2 holds for any d ≥ 2 to arrive at 1− 1
4 sρ which is just the Fuchs-

van de Graaf bound. Since a strict inequality sign connects the expressions in (55), the claimed strict majorization
follows.

V. GEOMETRIC INTERPRETATION OF THE RELAXATION LEADING TO Equation 25

Recall that in order to arrive at Theorem 3, we have replaced the feasible set

∆d−1 =
{

s ∈ Rd : 〈1, s〉 = 1, s ≥ 0
}

, (57)

of the optimization problem (11) by

E∆d−1 =
{

s ∈ Rd : 〈1, s〉 = 1, 〈s, s〉 ≤ 1
}

, (58)

which is a convex outer approximation of ∆d−1. This follows from the basic fact that x2 ≤ x holds for any x ∈ [0, 1].
Since the vector components si of any s ∈ ∆d−1 have to obey si ∈ [0, 1], we can readily conclude

〈s, s〉 =
d

∑
i=1

s2
i ≤

d

∑
i=1

si = 1. (59)
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Note that the converse is true if and only if d = 1, 2—a fact which we have exploited in proving Corollary 1.
Geometrically, the former set corresponds to the standard simplex in Rd. In this section we prove that the latter

one is in fact the minimum volume covering ellipsoid of the standard simplex which furthermore corresponds to a
(d− 1)-dimensional Euclidean ball. For dimensions two and three this situation is illustrated in Figure 3.

FIG. 3. Geometric relation between the standard simplex ∆d−1 and its outer approximation E∆d−1 : Geometrically, the latter set corre-
sponds to the minimum volume outer ellipsoid of the standard simplex. The figure illustrates this relation for dimensions d = 2
and d = 3. Note that for d = 2, the two sets coincide.

Proposition 1 (Geometric nature of E∆d−1 ). The convex outer-approximation E∆d−1 of the d-simplex corresponds to a (d− 1)-

dimensional Euclidean ball with radius
√

d−1
d and center 1√

d
1 which is contained in the (d − 1)-dimensional hyperplane

H1,1 :=
{

s ∈ Rd : 〈1, s〉 = 1
}

.

Proof. By definition, the set E∆d−1 corresponds to the intersection of the Euclidean unit ballB1(0) =
{

s ∈ Rd : 〈s, s〉 ≤ 1
}

and the hyperplaneH1,1. This assures E∆d−1 ⊆ H1,1 by construction.
One way to establish that E∆d−1 is furthermore itself an Euclidean ball, is using “generalized cylindrical coordi-

nates” for the Euclidean unit ball Bd(0, 1): Such coordinates use the fact that Bd(0, 1) is equivalent to the union of
a family of (d − 1)-dimensional unit balls. More concretely: let z ∈ Rd be an arbitrary unit vector and let ζ ∈ R

denote a parameter. For each value of this parameter, we define the hyperplane H̃z,ζ =
{

s ∈ Rd : 〈z, s〉 = ζ
}

which

in particular contains the vector ζz by construction. Furthermore, let B̃d−1(z, ζ) ⊂ H̃z,ζ be the (d− 1)-dimensional
Euclidean ball with radius

√
1− ζ2 and center ζz that is contained in the hyperplane H̃z,ζ . Clearly each element in

such a union of sets is contained in the d-ball, and letting ζ range from−1 to 1 covers the entire d-ball. In order to see
this, decompose any s ∈ Bd(0, 1) as s = 〈s, z〉z + z⊥ such that 〈z⊥, z〉 = 0 and set ζ = 〈s, z〉. Pythagoras’ theorem
then assures ‖z⊥‖2 ≤

√
1− ζ2 and consequently s ∈ B̃d−1(z, ζ).

The structure of the particular problem at hand suggests to fix z = 1√
d

1. Indeed, such a particular choice of z

assures equality of the hyperplaneH1,1 which contains E∆d−1 and the hyperplane H̃ 1√
d

1, 1√
d
, we have just introduced.

Consequently, the “cylindrical representation” of the Euclidean unit ball assures that the intersection E∆d−1 = B1(0)∩
H1,1 corresponds to the (d− 1)-ball B̃d−1( 1√

d
1, 1√

d
) associated with the hyperplane H̃ 1√

d
1, 1√

d
and a parameter value

ζ = 1√
d

. By definition, this ball has center 1
d 1 and radius

√
1− ζ2 =

√
d−1

d which completes the proof.

The next statement establishes that our choice of replacing the original feasible set ∆d−1 in the proof of Theorem 3
by the larger convex set E∆d−1 is in a precise sense the tightest possible elliptic relaxation of the original optimization
problem.

Proposition 2. The set E∆d−1 is the unique minimal volume covering ellipsoid of the standard simplex ∆d−1.

The proof exploits the following standard result about Löwner-John ellipsoids that is originally due to John. How-
ever, here we make use of a slightly more general version presented in [31].
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Theorem 4 (Theorem 2.1 in [31]). Let K ⊂ Rd be a convex body and let K be contained in the Euclidean unit ball Bd(0).
Then the following statements are equivalent:

1. Bd(0) is the unique minimum volume ellipsoid containing K.

2. There exist contact points u1, . . . , um lying both in the boundary of K and Bd(0), and positive numbers λ1, . . . , λm,
m ≥ d, such that

m

∑
i=1

λiui = 0 and
m

∑
i=1

λi|ui〉〈ui| = 1. (60)

Proof. In Proposition 1 we have established that the set E∆d−1 corresponds to a (d − 1)-ball with radius
√

d−1
d and

center 1
d 1 that (like the standard simplex) is contained in the hyperplane H1,1. A quick calculation reveals that all

vertices of the standard simplex ∆d−1—which are just the standard basis vectors e1, . . . , ed—have Euclidean distance√
d−1

d to the ball’s center. Consequently they are contained in the boundary of the ball E∆d−1 and we have found suf-
ficiently many contact points for applying Theorem 4. Since volume is translationally invariant we can furthermore
shift the coordinate’s origin into the point 1

d 1 (which is the center of the ball E∆d−1 ). This has the advantage that the
affine space H1,1 containing both ∆d−1 and E∆d−1 turns into H1,0 which is a linear subspace. Note that with respect
to the (translated) standard basis, the orthogonal projection onto this subspace is given by

P = 1− 1
d
|1〉〈1|.

With respect to this new coordinate system, the d contact points (vertices of the simplex) amount to ẽi = ei − 1
d 1.

Choosing unit weights λi = 1 for all m = d contact points ui = ẽi and calculating

m

∑
i=1

λiui =
n

∑
i=1

ẽi =
n

∑
i=1

(
ei −

1
d

1
)

= 0 (61)

reveals that the first condition for Theorem 4 is fulfilled. A similar calculation reveals

m

∑
i=1

λi|ui〉〈ui| = 1− 1
d
|1〉〈1|.

This, however equals just the projector P onto the subspace H1,0 which contains the entire (d − 1)-dimensional
problem of interest. Restricted to its range, a projector corresponds to the identity which establishes the second
condition for Theorem 4. Since this statement is invariant under re-scaling, we can also apply it here, where the

radius of the (d− 1)-dimensional surrounding Euclidean ball is not one but
√

d−1
d .

VI. CONCLUSION

In this work we have derived upper bounds on the average fidelity of any estimator with no restrictions on the
dimension or the distribution being averaged over. Furthermore, we have shown a sharp distinction in the opti-
mization problems of maximizing average fidelity between measures supported only on pure states and those with
full support. In the former case, we have provided the exact optimal estimator, while in both cases we argued based
on numerical evidence that the mean estimator is a good proxy for the optimal solution.

Interestingly, we found that the analytical bound (12) (which is based on super-fidelity [20]) is strictly tighter than
a corresponding one obtained using the well known, and often used, Fuchs-van de Graaf inequalities [19].

These results have obvious applications to practical Bayesian quantum tomography [13], since the bound can be
computed online—that is, it is only a property of the current distribution under consideration. But we also expect our
bound to be of interest in other theoretical work on tomography, where a benchmark is needed to make statements
about absolute average performance of some candidate protocol.
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Achieving error rates that meet or exceed the fault-tolerance threshold is a central goal for quantum com-
puting experiments, and measuring these error rates using randomized benchmarking is now routine. However,
direct comparison between measured error rates and thresholds is complicated by the fact that benchmarking
estimates average error rates while thresholds reflect worst-case behavior when a gate is used as part of a large
computation. These two measures of error can differ by orders of magnitude in the regime of interest. Here we
facilitate comparison between the experimentally accessible average error rates and the worst-case quantities
that arise in current threshold theorems by deriving relations between the two for a variety of physical noise
sources. Our results indicate that it is coherent errors that lead to an enormous mismatch between average and
worst case, and we quantify how well these errors must be controlled to ensure fair comparison between average
error probabilities and fault-tolerance thresholds.

The fault-tolerance threshold theorem is a fundamental re-
sult that justifies the tremendous interest in building large-
scale quantum computers despite the formidable practical dif-
ficulties imposed by noise and imperfections. This theorem
gives a theoretical guarantee that quantum computers can be
built in principle if the noise strength and correlation are be-
low some threshold value [1–3].

To make precise statements of threshold theorems, we must
quantify the strength of errors in noisy quantum operations.
Ideally we would do this in terms of quantities that can be
measured in experiments. A standard measure for quantifying
errors in quantum gates is given by the average error rate,
which is defined as the infidelity between the output of an
ideal unitary gate U and a noisy version EU with noise process
E , uniformly averaged over all pure states,

r(E) = 1−
∫

dψ 〈ψ|E
(
|ψ〉〈ψ|

)
|ψ〉 . (1)

This quantity has many virtues: it can be estimated efficiently
for any ideal gate U , and in a manner that is independent of
state preparation and measurement (SPAM) errors by using
the now standard method of randomized benchmarking [4–7].
Recent experimental implementations include [8–17].

The major drawback of using Eq. (1) to quantify gate er-
rors is that it is only a proxy for the actual quantity of in-
terest, the fault-tolerance threshold. This is because r cap-
tures average-case behavior for a single use of the gate, while
fault tolerance theorems characterize noise in terms of worst-
case performance when the gate is used repeatedly in a large
computation. The importance of this distinction has recently
been emphasized by Sanders et al [18]. For some noise types
(such as pure dephasing and depolarizing noise) the worst-
and average-case behavior essentially coincide [19]. However
for other classes of errors, notably errors in detuning and cal-
ibration that lead to over or under rotation, the worst-case be-
havior is proportional to

√
r and can be orders of magnitude

worse than the average in the relevant regime of r � 1, as we
will discuss in more detail below. Thus it is not possible to

directly compare a measured value of r to a threshold result.
Despite this, experimentalists are increasingly wishing to re-
late the results of benchmarking experiments to fault tolerance
thresholds. There is thus a pressing need for techniques that
allow for direct comparison between experimentally measur-
able error rates and fault-tolerance thresholds.

In this Letter, we investigate the relationship between
worst-case and average-case error for a wide range of error
models that are relevant to experiments. Firstly, we show that
while closed form expressions do not typically exist, well-
established theoretical techniques of convex optimization are
often sufficient to determine the relationship between average-
case and worst-case errors for models of physical interest. The
details of these computations are largely relegated to the Sup-
plementary Material. Secondly, we study a wide range of
error models for one-qubit gates. Our main example is of a
one-qubit gate with combined dephasing and calibration error.
This allows us to demonstrate the crossover between a regime
dominated by dephasing, where average-case and worst-case
errors are not too different, and the limit of a unitary noise,
where the worst-case error scales like

√
r. We then turn to

general bounds on worst-case error, showing that it scales as√
r for all unitary errors and that for a wide class of errors it

can be accurately estimated in terms of r and a recently intro-
duced measure of how close an error process is to being uni-
tary. Finally, conventional benchmarking experiments contain
a lot more information than is required just to extract r. We
find that this information can often be used to show that the
worst-case error has an unfavourable scaling. This is an area
that we hope will attract much more study in future.

Fault-tolerance thresholds. A wide range of fault-
tolerance thresholds have been reported. The value of the
threshold depends greatly on the fault tolerant procedures that
are used, on the noise model that is assumed, and whether the
threshold is determined from (possibly conservative) analytic
bounds on the error, or from (possibly optimistic) numerical
simulations. We emphasize that the errors that are given in
theoretical fault tolerance papers typically refer to some mea-
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sure of worst-case error. For example the widely known re-
sults of Aliferis and collaborators [20–22] use concatenated
error correcting codes and consider a stochastic adversarial
noise model that includes all of the noise processes that we
will discuss in this paper. These papers find that large-scale
quantum computation can be performed for errors below a
few times 10−4, when that error is quantified by a measure of
worst-case error such as the diamond distance that we discuss
below. For more optimistic noise models and for fault-tolerant
protocols such as the widely known surface code approaches,
the threshold is around 10−2 based on numerical simulations
of Pauli errors [23]. For Pauli noise however there is no sig-
nificant difference between worst-case and average-case er-
rors [19]. The performance of these schemes in the presence
of coherent errors is not yet understood.

It is possible to state a version of the threshold theorem di-
rectly in terms of r, but given current knowledge the thresh-
olds in these theorems would be roughly the square of current
thresholds (around 10−8 for [20–22]). It is unclear if this can
be significantly improved upon since it may be that it is the
worst-case error that is physically relevant to the success of
the computation. However, our results here motivate research
into whether current fault tolerance results could be strength-
ened to provide significantly improved thresholds when ex-
pressed in terms of r for error models sufficiently general to
include coherent errors.

Diamond distance. We will now describe the most com-
monly used metric of worst-case error for quantum processes.
Any candidate measure of distance ∆(E ,F) between noise
operations E and F should satisfy certain desirable proper-
ties [24]. (The operation F should be thought of as a per-
fect identity gate for our purposes.) First, like any good dis-
tance measure it should have the structure of a metric, which
in particular means it should be symmetric, positive, and obey
the triangle inequality. Less obviously, but even more impor-
tantly, it should obey two additional properties: chaining and
stability. The chaining property,

∆(E2E1,F2F1) ≤ ∆(E1,F1) + ∆(E2,F2) , (2)

says that composing two noisy operations cannot amplify the
error by more than the sum of the two individual errors. Thus,
errors can grow at most linearly in the number of operations.
The stability property states that the error metric for a single
gate should be independent of whether that gate is embedded
in a larger computation. So we require

∆(I ⊗ E , I ⊗ F) = ∆(E ,F) , (3)

where I is the identity operation. This ensures that our mea-
sure is robust even if the input to the gate is entangled with
other qubits in the computation.

The diamond distance, whose formal definition is

D(E ,F) = 1
2 max

ρ
‖I ⊗ F(ρ)− I ⊗ E(ρ)‖1 , (4)

satisfies each of these physically motivated desiderata [1]. It
also has an appealing operational interpretation as the maxi-
mum probability of distinguishing the output of the noisy gate

from the ideal output [1, 25]. It is not obvious from the defi-
nition how to do practical computations with this quantity, but
it can be computed efficiently using the methods of semidef-
inite programming [26–28]. Because of these properties, the
diamond distance is an ideal measure for quantifying noise for
the purposes of a fault-tolerance threshold, although in princi-
ple other quantities could be employed as well [2].

The only drawback of this quantity is that it is not known
how to measure it directly in experiments. It is therefore of in-
terest to have a conversion to, or at least bounds for, diamond
distance in terms of the average gate fidelity. To date, the best
known bounds for a d-level quantum gate are [29]

d+1
d r ≤ D ≤

√
d(d+ 1)r ,

but it is unknown for what conditions these bounds are tight.
Single-qubit calibration and dephasing errors. In order

to discuss the relationship between average-case and worst-
case errors in quantum computing demonstration experiments
we will now analyze in detail a simple but physically relevant
noise model for a single-qubit gate. Suppose that the gate is
implemented by the noisy control Hamiltonian Hc = J(t)σz .
Due to experimental imperfections the control J(t) that is
implemented is distinct from the nominal control J0(t) that
would perfectly implement the required gate. Physically, this
noise results in two distinct types of errors: dephasing, where
δJ(t) = J−J0 varies stochastically between uses of the gate,
and calibration error where δJ takes the same fixed value
each time the gate is used. Where δJ(t) is stochastically vary-
ing we assume that the noise level does not change with time,
and that that the noise spectrum for δJ(t) is mainly confined
to frequencies f > 1/tg , where tg is the time required to
perform the gate. When averaged over uses of the gate the re-
sulting noisy operation is EU where U is the desired gate and
the noise process amounts to

E(ρ) = pσze
−iδσzρeiδσzσz + (1− p)e−iδσzρeiδσz . (5)

In this noise model the dephasing noise rate p arises from
the time-varying noise on the gate, while the unitary over ro-
tation δ results from the fixed miscalibration of the control
pulse J(t). (Although we speak here in terms of calibration
errors, this also approximately captures the effects of highly
non-Markovian errors arising from very low-frequency noise
in J(t).)

This noise model roughly captures many experimental
gates, but more importantly it will demonstrate the range of
behaviors that can be expected in terms of the relationship be-
tween average-case and worst-case error. Specifically when
δ = 0 we have a pure dephasing process. For such errors [19]
the worst case error scales like r, so this is the most favor-
able possible behavior. On the other hand for p = 0 we have
a purely unitary rotation error that has the worst possible be-
havior, where the worst-case error scales like

√
r.

Using well-known techniques [30, 31] we find the aver-
age error rate for this calibration and dephasing (CD) noise
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FIG. 1. Average error rate r and worst-case error rate (diamond dis-
tance) D for a combination of dephasing and unitary errors. The
logarithmic plot is of D/r, which quantifies how much greater the
worst-case error is than the average case as a function of a unitary
over rotation angle δ and a dephasing probability p, where the exact
noise process is given in Eq. (5). When p ≥ δ, then D and r are
comparable to within a small factor, but as soon as δ > p then D
rapidly becomes much greater than r.

to be rCD = 2
3

(
p cos(2δ) + sin2 δ

)
. Employing the semidef-

inite programming approach of Refs. [19, 26], we can eval-
uate the diamond distance for this noise channel and find
DCD =

√
3
2rCD − p(1− p). A logarithmic plot of the ratio

DCD/rCD is shown in Figure 1.
In the interesting regime of low error we find rCD '

2(p + δ2)/3, while DCD '
√
p2 + δ2. From this we can

see that when p � |δ| we have DCD ' 3rCD/2, as for a pure
dephasing process, and there is no great difference between
worst-case and average-case errors. But as the calibration er-
ror grows, the worst-case error grows significantly. When cal-
ibration error dominates, |δ| � p, we find DCD '

√
3rCD/2.

In this regime an average error rate rCD of around 10−4 corre-
sponds to a more than one percent worst-case error. Physically
then, we see that as dephasing error is reduced in a particu-
lar experimental setting, this places more stringent demands
on the calibration required if the average error rate r is to be
compared directly to a fault-tolerance threshold.

Single-qubit relaxation errors. Another natural single-
qubit noise process to consider is qubit relaxation or ampli-
tude damping errors (spontaneous emission or a T1 process
in NMR language), at finite temperature. In this process a
qubit with energy splitting E is coupled to a bath at temper-
ature T . Define as in [32] the probability for a decay pro-
cess during the action of the gate is γp and the probability
to go from the ground to the excited state is γ(1 − p). The
ratio of upgoing to downgoing transition rates p/(1 − p) =

p

0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.2 0.3 0.4 0.5
r

0.2

0.4

0.6

0.8

1.0

D

FIG. 2. Tradeoff between average error rate r and the worst-case er-
ror rate in terms of the diamond distanceD for the thermal amplitude
damping channel, where the parameter p controls the temperature
with p = 1 corresponding to zero temperature and p = 1/2 cor-
responding to infinite temperature. The dashed line is the previous
best upper bound [29], while the upper black line is the new bound
derived here. The zero-temperature limit (p = 1) gives the least fa-
vorable scaling of D with r, but in every case the bound D ≤ 3r
holds. The infinite-temperature limit (p = 1/2) recovers the known
value of D = 1.5r.

exp(−E/kBT ) is the Boltzmann factor, which allows us to
identify p = 1/2 as infinite temperature and p = 1 as zero
temperature. For this amplitude damping (AD) noise chan-
nel we find rAD =

(
1 − √1− γ + γ/2

)
/3. Although we

have no closed form expression for the worst-case error for
these channels, we have adapted standard techniques in the
analysis of semidefinite programs to find the bound DAD ≤
3rAD max{p, 1 − p}. Therefore we have a guarantee that the
average-case and worst-case errors are not too different. Com-
paring with a direct evaluation of the semidefinite program we
find DAD ' 3rAD for zero temperature (p = 1) and low noise
rAD � 1, so this is the tightest bound possible. In the limit
of high temperature p→ 1/2 we approach a dephasing chan-
nel and recover the formula DAD = 3rAD/2. This behavior is
illustrated in Figure 2.

Leakage errors Another important class of errors encoun-
tered in experiment is leakage errors. Modified random-
ized benchmarking protocols for leakage errors are proposed
in [33, 34]. In Ref. [33] it was shown that a nearly trivial mod-
ification of a standard benchmarking protocol in the presence
of leakage errors can still be used to determine the average
error rate r, so we again use this figure of merit for compari-
son. For a leakage model we need to consider a larger space
of states, so we add a leakage level |l〉 to the two-qubit states
|0〉, |1〉. We follow [34] in distinguishing coherent and inco-
herent leakage errors and compare the average-case error to
the true worst-case error; this will be the diamond distance
on the full state space including both the leakage and qubit
states. Fault-tolerance theorems also exist for leakage error
processes [35] and this is the appropriate noise measure to
compare with the numerical values found in those papers.

As an example of incoherent leakage (IL) we will consider
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the case where the qubit state |1〉 relaxes to |l〉with probability
p. A benchmarking experiment (following [33]) then obtains
the average-case error rIL = [1 − √1− p + p]/3 where this
is now the infidelity averaged over states initially in the qubit
subspace. Since this process is so similar to the amplitude
damping channel we can use analogous techniques to find the
inequalityDIL ≤ 2rIL. Thus for this error process the average-
case and worst-case error again almost coincide.

As an example of coherent leakage (CL), consider the uni-
tary noise process ECL(ρ) = U(δ)ρU(δ)† given by U(δ) =
exp[−iδ(|1〉〈l| + |l〉〈1|)]. For this noise process one obtains
rCL = [1− cos δ − cos2 δ]/3. However, as for the unitary er-
rors discussed above, the worst-case error can be much larger
than this. We find

√
3rCL/2 ≤ DCL = | sin δ| ≤ √2rCL

for all δ ∈ [−π/2, π/2] and consequently the worst case er-
ror scales like

√
rCL. Where leakage errors are possible, it

would be important to use the methods of [34], or some other
method to bound coherent leakage errors, before comparing
the average-case error r to a fault-tolerance threshold.

Unitary errors. In looking at these examples we have
found that unitary or nearly unitary errors appear to result
in the largest difference between average-case and worst-case
errors. This is true in general. For unitary errors in a d-
dimensional space we find the following inequalities

√
d+1
d

√
rU ≤ DU ≤

√
(d+ 1)d

√
rU.

Thus any unitary error has a worst-case error scaling like
√
rU.

A general inequality. For a large and important class of
noise processes, the worst-case error can be directly estimated
from benchmarking-type data without side information about
the type of error, which generally requires doing full quan-
tum process tomography [36], or one of its SPAM-resistant
variants [37, 38]. In Ref. [39] a quantity called the unitarity
u(E) of a noise process E was defined (see the Supplemen-
tary Material for a precise definition), and it was shown that
this can be estimated efficiently and accurately using bench-
marking. We find that for all unital noise (i.e. noise where the
maximally mixed state is a fixed point) with no leakage, the
unitarity and the average error rate together give a characteri-
zation of the worst-case error via the inequality [40]

cd

√
u+

2dr

d− 1
− 1 ≤ D ≤ d2cd

√
u+

2dr

d− 1
− 1 , (6)

where cd = 1
2 (1 − 1

d2 )1/2. Since the unitarity generally
obeys the inequality u ≥ (1 − dr/(d − 1))2 (see Ref. [39])
we find (for unital noise without leakage) that the worst-
case error scaling matches the average-case if and only if
u = 1− 2dr/(d− 1) +O(r2).

To illustrate the power of Inequality (6), we immediately
find that for the single-qubit calibration and dephasing noise
model, the condition 1 − uCD = 4rCD + O(r2CD) is both nec-
essary and sufficient to recover the favorable linear scaling
between the worst- and average-case errors. In fact, the worst-
case error for this channel can be expressed directly in terms

of the unitarity as DCD =
√

3
2rCD − 3

8 (1− uCD). And be-
cause the unitarity can be estimated from a benchmarking-
type experiment, this gives direct experimental access to
worst-case errors for this family of noise models without the
need for expensive tomographic methods.

Moreover, Inequality (6) allows us to get insights into gen-
eralizing our conclusions for single-qubit models to few-qubit
systems such as those required for entangling quantum gates.
A natural generalization of our CD model to two-qubit cal-
ibration and dephasing errors would be an independent de-
phasing rate p on each qubit and unitary noise given by eiHCD2

where HCD2 = δ1σ
(1)
z + δ2σ

(2)
z + εσ

(1)
z σ

(2)
z . The semidef-

inite programming approach is possible here, but becomes
unwieldy because there are so many free parameters. How-
ever, both the average error rate and the unitarity are readily
computed as in the appendix. Inequality (6) then allows one
to easily and generally explore the tradeoffs in the calibra-
tion accuracy of the δ and ε parameters such that the overall
error remains roughly consistent between average and worst
case. Furthermore, since uCD2 can be measured efficiently in
a benchmarking experiment, large values of u can be used to
herald that an experiment has left the favorable scaling regime
and more characterization and calibration must be done.

Conclusion and Outlook. We have seen that many realis-
tic noise processes admit a linear relation between the average
error rate (which is accessible experimentally) and the worst-
case error (which is the relevant figure of merit for fault toler-
ance). The exceptions to this rule are highly coherent errors,
where the worst-case error scales proportionally to the square
root of the average error rate.

While our methods and results are very general, there are
noise sources that we have not tried to fit into our error tax-
onomy. Errors such as crosstalk [41], time-dependent or non-
Markovian noise [42, 43] should be amenable to these meth-
ods, however, and extending our results to cover such noise is
an important avenue for future work.

Finally, we reiterate that it is an interesting open question if
it is possible to prove a fault-tolerance threshold result directly
in terms of r without the lossy conversion toD. Fault-tolerant
circuits are not perfectly coherent since measuring error syn-
dromes necessarily removes certain coherences, and this may
provide an avenue to develop stronger theorems.
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SUPPLEMENTARY MATERIAL

Quantum states and operations

A d-level quantum system is fully characterized by its is density operator ρ, which is a Hermitian, positive semidef-
inite d × d matrix obeying Tr(ρ) = 1. A quantum operation or channel E is a completely positive linear map from
density operators to density operators [32, 45].

There are a number of representations of a completely positive operator, each of which is useful for different
purposes. The most well known is the representation in terms of Kraus operators. These are a set of operators {Ki}
that encapsulate the channel’s action via E(ρ) =

∑
iKiρK

†
i . Moreover,

∑
iK
†
iKi ≤ I holds, where I is the identity

matrix, and equality occurs when E is trace preserving.
Other representations include the Liouville operator L(E) =

∑
iKi ⊗ Ki where ⊗ denotes the tensor product.

The Liouville operator is also known as the transition matrix, or natural representation. It is a matrix that acts on the
vector obtained by stacking the columns of ρ, which we denote |ρ) as in [29], in the same way that E acts on the
density operator ρ. That is L(E)|ρ) = |E(ρ)).

Lastly, we will have cause to use the Choi-Jamiołkowski matrix of a quantum operation E , J(E) =
d(IA ⊗ EB)(|ψBell〉〈ψBell|). Here I is the identity channel and |ψBell〉 = 1√

d

∑d
j=1 |j〉 ⊗ |j〉 is the maximally

entangled state between systems A and B (this definition differs by a factor of d to that in [29], instead we use the
definition found in [19, 45] so as to be consistent with the semidefinite program in [26], which would otherwise re-
quire minor modification). It can be computed from the Kraus operators {Ki}with the formula J(E) =

∑
i |Ki)(Ki|

(where (Ki| = ¯|Ki)
T ).

This representation is useful because, unlike the other representations mentioned here, J(E) is positive semidefinite
for any completely positive quantum operation (the Kraus operators and Liouville operator need not even have a
complete set of eigenvectors).

We will be interested in relating the average infidelity r(E) to the diamond distance D(E) as defined in the main
text in Eqs. (1) and (4), respectively. (We will always be comparing a noise process to the identity channel, so we
write the diamond distance with only one argument for brevity.) A useful formula is provided by the following
relation which is a generalization of the main results in [30, 31] to completely positive maps that are not necessarily
trace preserving.

Proposition 1. Let E be a completely positive (but not necessarily trace preserving) map with Liouville representa-
tion L(E). Then

Favg(E) =
Tr[L(E)] + Tr[E(I)]

d(d+ 1)
, (7)

where Favg(E) = 1− r(E) is the average fidelity and d is the system size.

Note that this formula covers the main results in [30, 31] as a special case. Indeed, any trace preserving map obeys
Tr (E(I)) = d and Eq. (7) reduces to [31][Proposition 1] and [30][Equation (3)], respectively. For the scope of our
work, such a generalization is very useful, since it will allow us to evaluate the fidelity of leakage processes averaged
over qubit states.

Proof of Proposition 1. One way of proving the generalized formula (7) is to follow Nielsen’s simplified proof steps
[30] of the original formula [31] without assuming that E is trace preserving. At the core of this proof is the fact that
the average fidelity is invariant under twirling, i.e. Favg (E) = Favg (ET ) for ET (ρ) :=

∫
dUU †E

(
UρU †

)
U †. Here

dU denotes the unique unitarily invariant (Haar) measure over the unitary group U(d) normalized to one (
∫

dU = 1).
The same is true for the r.h.s. of Eq. (7). Indeed, suppose that E has Kraus representation E(ρ) =

∑
iKiρK

†
i .
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Twirling it results in the map ET (ρ) =
∫

dUU †
∑

i(KiUρU
†K†i )U whose Liouville representation obeys

Tr (L (ET )) =Tr

(∫
dU
∑

i

Ū †K̄iŪ ⊗ U †KiU

)
=

∫
dU
∑

i

Tr
(
Ū †K̄iŪ

)
Tr
(
U †KiU

)

=
∑

i

Tr
(
K̄i

)
Tr (Ki)

∫
dU = Tr

(∑

i

K̄i ⊗Ki

)
= Tr (L (E)) .

Also

Tr (ET (I)) =

∫
dUTr

(
U †E

(
UIU †

)
U
)

= Tr (E (I))

which establishes twirl invariance of the r.h.s. of (7). As a result, it suffices to establish the claimed equality for
twirled maps only. However, due to Schur’s Lemma, every twirl of a completely positive map is proportional to a
depolarizing operation

ET (ρ) = Dp,q(ρ) := pρ+ qTr(ρ)I ∀ρ (8)

with parameters p, q that may depend upon the original map E . Nielsen [30] established this by using the following
elementary argument based on the observation that any twirled channel obeys

V ET (ρ)V † = ET
(
V ρV †

)
∀V ∈ U(d), ∀ρ (9)

which is readily established by direct computation. Now let X = |x〉〈x| be a rank one projector, set X⊥ = I −X
and let V be an arbitrary unitary operator obeying V XV † = X . Inserting these particular choices into (9) reveals
ET (X) = ET

(
V XV †

)
= V ET (X)V † which in turn implies ET (X) = (p + q)X + qX⊥ = pX + qI for some

p, q ∈ R. A priori, the parameters p, q may depend on the choice of X , but (9) implies that they are actually the
same for any choice of X . From this, Formula (8) is readily deduced, e.g. by inserting eigenvalue decompositions
ρ =

∑d
i=1 λi|xi〉〈xi| of arbitrary density operators and exploiting linearity.

As a result, it suffices to establish Formula (7) exclusively for depolarizing maps Dp,q of the form (8) with pa-
rameters p, q. Noting that such a map has Liouville representation L (Dp,q) = pI ⊗ I + qd|ψBell〉〈ψBell|, where
|ψBell〉 = 1√

d

∑d
i=1 |i〉 ⊗ |i〉 denotes a maximally entangled state, and calculating

Favg (Dp,q) =p

∫
dψ〈ψ|ψ〉〈ψ|ψ〉+ q

∫
dψTr (|ψ〉〈ψ|) 〈ψ|I|ψ〉 = p+ q,

Tr (L (Dp,q)) =pTr (I ⊗ I) + qdTr (|ψBell〉〈ψBell|) = d2p+ dq,

Tr (Dp,q (I)) =pTr (I) + qTr (I)2 = dp+ d2q

reveals

Tr (L (Dp,q)) + Tr (Dp,q) = (d+ 1)d(p+ q) = (d+ 1)dFavg (Dp,q) ,

thus establishing the desired statement.

Semidefinite Programming

It is possible to efficiently calculate the diamond norm of a linear operator through the use of a semidefinite program
if a full description of the channel is known [26–28].

A semidefinite program (SDP) is a form of mathematical optimization problem (specifically a convex optimization
problem; see [46, 47] for a review). A mathematical optimization problem is very generally a specification of some
objective function to be maximized (or minimized), subject to some constraints on allowed variables in the form of
inequalities involving constraint functions. This can be stated in the form
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Maximize: f0(z)
Subject to: fi(z) ≤ bi, i = 1, ...,m.

where f0 is the objective function, the fi’s and bi’s encode the constraint functions, and z is the variable to be
changed so as to maximize f0(z). Any value of z which meets the constraints of the problem is called feasible. In
some contexts these problem specifications are called programs.

A convex optimization problem is a mathematical optimization problem in which the set of all feasible points
is a convex set and the objective function to be maximized is concave, i.e. it satisfies f(τ x + (1 − τ)y) ≥
τ f (x) + (1− τ) f(y) for any τ ∈ [0, 1] and feasible x, y. Note that minimising a convex function f0 over a convex
set also fits this framework, because it is equivalent to maximising (−f0) which is concave. Concave functions
have many desirable properties that render convex optimization tasks easier than general optimization problems (e.g.
concavity assures that any local maximum is also a global maximum) [48].

Finally, a semidefinite program is a particular instance of a convex optimization problem where one aims to maxi-
mize a linear function (which is both concave and convex) over a convex subset of the cone of positive semidefinite
matrices [48]. This cone induces a partial ordering on the space of all hermitian d×d matrices. Concretely, we write
X ≥ Y if and only if X − Y is positive semidefinite. With this notational convention, every SDP is of the form

Maximize: Tr (CX)
Subject to: Ξ(X) ≤ B,

X ≥ 0 .
(10)

and is specified by a triple (Ξ, B, C): B and C are hermitian matrices (not necessarily of the same dimensions) and
Ξ is a linear map between these matrices spaces. An SDP of the form (10) is called a primal program. In a geometric
sense, the problem here is to move as far along the direction of C as possible, while remaining inside the convex
region specified by the matrix inequalities [46–48]. A wide variety of problems can be cast in terms of semidefinite
programs and efficient methods are known that can solve them. Thus, finding an expression for a problem in terms
of a semidefinite program reduces it to one in which the solution is easily found numerically, and sometimes even
analytically.

Attached to every primal problem is another semidefinite program (10), known as its dual program. In a sense, it
corresponds to a reverse problem and is given by

Minimize: Tr (ZB)
Subject to: Ξ∗(Z) ≥ C

Z ≥ 0,
(11)

which is again completely specified by the triple (Ξ, C,B). Here, Ξ∗ denotes the adjoint map of Ξ with respect to
the trace-inner product, i.e. the unique map obeying Tr (Ξ∗(Z)X) = Tr (Z Ξ(X)) for all hermitian matrices X and
Z.

Primal and dual SDP’s are intimately related. In particular they have the property that any feasible value of the
primal objective Tr(CX) is less than or equal to any feasible value of the dual objective Tr(ZB). Using the fact that
positive semidefinite matrices A,B,C ≥ 0 obey Tr(AB) ≤ Tr(AC) if and only if B ≤ C allows for an easy proof
of this feature [48] via

Tr (CX) ≤ Tr (Ξ∗(Z)X) = Tr (Z Ξ(X)) ≤ Tr (ZB) ,

where we also have employed the constraints in (11) and (10), respectively. This result is known as weak duality.
Typically an even stronger relation – called strong duality – is true, namely that the optimum values of both problems
coincide.

Weak duality allows us to find an upper bound for the optimum value of (10) in the form of any feasible value of
(11). To be more explicit, if Z is feasible, then Tr(ZB) must be larger than or equal to any feasible Tr(CX). This
in particular includes the maximal value Tr(CX]) of (10). However, since Tr(CX]) is maximal, it is by definition
larger than or equal to any feasible value of Tr(CX). Consequently, the feasible values Tr(CX) and Tr(ZB) certify
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that the optimum primal value Tr(CX]) is in a certain range. These bounds are said to be certificates. Throughout
this work, we will employ such certificates in order to find bounds for the diamond norm. What is more, if we can
find a pair of feasible pointsX,Z that obey Tr(CX) = Tr(ZB), then weak duality dictates that we have analytically
found the optimum value for the program. We will also appeal to this fact later.

Semidefinite programs for the diamond distance

Watrous has provided several characterisations of the diamond distance in terms of semidefinite programs [26, 28].
We reproduce here a simplified version that can be used when the operator in question is a difference of quantum
channels ∆ = E − F [26], as this will always be the case for us. Given this condition, the following pair of primal
and dual SDP’s has an optimal value of D = 1

2‖∆‖�:

Primal problem

Maximize: 〈J(∆),W 〉
Subject to: W ≤ ρ⊗ Id,

Tr(ρ) = 1,
W ∈ Pos(A⊗B),
ρ ∈ Pos(A).

(12)

Dual problem

Minimize: ‖TrB(Z)‖∞
Subject to: Z ≥ J(∆),

Z ∈ Pos(A⊗B).
(13)

Here 〈X,Y 〉 = Tr(X†Y ) is the Hilbert-Schmidt inner product of the matrices X and Y , Pos(A⊗B) denotes the
cone of positive semidefinite operators acting on the system A⊗B and TrB(X) is the partial trace of X over system
B, i.e. the subsystem of X obtained when subsystem B is discarded. Also, ‖X‖∞ denotes the operator norm of X ,
which is the maximum eigenvalue of X (if X ≥ 0). Further information on these functions and spaces can be found
in [32, 45].

Note that, stated as it is, the primal problem is almost, but not quite, of the primal SDP form introduced in (10).
However, some straightforward manipulations allow one to convert this problem into such a standard form. Perhaps
a bit surprisingly, the same is true for the dual problem which can also be recast as an instance of a dual SDP
problem [26].

Finally, note that if Π+ is the projector onto the positive eigenspace of J(∆), then ρ = 1
dI , W = 1

dΠ+ are valid
primal feasible values and Z = Π+J(∆)Π+ is dual feasible. These feasible points were identified by Magesan,
Gambetta, and Emerson [19], and inspired by their approach we will use similar constructions of primal and dual
feasible points to get bounds on the diamond norm for various noise processes.

Dephasing and calibration errors for a single qubit

The channel described in the main text has Kraus operators K0 =
√

1− pU(δ) and K1 =
√
pU(δ)σz , where

U(δ) = exp(−iδσz). Using the formula above for the average fidelity it is straightforward to show that

rCD =
2

3

[
p cos(2δ) + sin2 δ

]
.

Likewise evaluating the upper and lower bounds on DCD arising from the primal and dual feasible solutions of
Ref. [19] we find them to be equal and so obtain the result

DCD =
1

2

∣∣∣∣1− (1− 2p)e2iδ

∣∣∣∣ .

A simple algebraic manipulation then shows the result claimed in the main text

DCD =

√
3

2
rCD − p(1− p).
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Thermal relaxation of a single qubit

This one-qubit channel EAD is characterized by 2 parameters p, γ ∈ [0, 1] and four Kraus operators [32, Chapter
8.3.5]

K0 =
√
p

(
1 0
0
√

1− γ

)
, K1 =

√
p

(
0
√
γ

0 0

)
, K2 =

√
1− p

(√
1− γ 0
0 1

)
, K3 =

√
1− p

(
0 0√
γ 0

)
.

Repeating the procedure outlined in the previous subsection, we will use a refined dual feasible point to find a bound
on the diamond distance in terms of the average fidelity. This feasible point improves over what can be obtained
using the Magesan-Gambetta-Emerson feasible solution [19].

Theorem 1. For the one-qubit amplitude damping channel defined above, the following relation is valid for any
choice of parameters p, γ ∈ [0, 1]:

DAD ≤ 3rAD max{p, 1− p}.
Proof. We first compute the Choi-Jamiołkowski matrix J(∆) for ∆ = I − EAD. In the basis |00〉 , |01〉 , |10〉 , |11〉,
this matrix is

J(∆) =




(1− p)γ 0 0 1−√1− γ
0 −(1− p)γ 0 0
0 0 −pγ 0

1−√1− γ 0 0 pγ


 . (14)

The middle block is already negative semidefinite and so our dual feasible point Z can afford to have zero support
on this subspace and still meet the constraints of Eq. (13). Let us therefore make the ansatz that

Z =




x+ y0 0 0 x
0 0 0 0
0 0 0 0
x 0 0 x+ y1


 = 2x|ψBell〉〈ψBell|+ y0|00〉〈00|+ y1|11〉〈11| (15)

where x =
(
1−√1− γ + γ/2

)
/2 and we will determine the parameters y0, y1 ≥ 0. Such a choice of parameters

assures that Z is positive semidefinite.
The only other constraint that must be respected is that Z − J(∆) must be positive semidefinite. Let us define

x− =
(
1−√1− γ − γ/2

)
/2 ≥ 0. Here we have used the elementary relation 1 − √1− γ ≥ γ

2 (which follows
from concavity of the square root). Secondly we can define |ψ−Bell〉 = (|00〉 − |11〉)/

√
2. In terms of this we may

write

Z − J(∆) =2x−|ψ−Bell〉〈ψ−Bell|+ [y0 − (1/2− p)γ]|00〉〈00|+ [y1 + (1/2− p)γ]|11〉〈11|
+ (1− p)γ|01〉〈01|+ pγ|10〉〈10|. (16)

Accordingly, this difference is positive semidefinite, if both

y0 − (1/2− p)γ ≥ 0 and y1 + (1/2− p)γ ≥ 0

hold. Setting y0 = max{γ/2 − pγ, 0} and y1 = max{0, pγ − γ/2} satisfies the requirements. The two cases
correspond to p ≤ 1/2 and p ≥ 1/2 respectively. Such a choice of parameters assures that Z is a valid feasible point
of the dual SDP (13) of the channel’s diamond distance. Its objective function value amounts to

‖trB (Z) ‖∞ =‖2x trB (|ψBell〉〈ψBell|) + trB (y0|00〉〈00|+ y1|11〉〈11|) ‖∞
= max{x+ y0, x+ y1}
=(1−

√
1− γ + γ/2)/2 + γ|1− 2p|/2

≤(1−
√

1− γ + γ/2)(1 + |1− 2p|)/2
=(1−

√
1− γ + γ/2) max{p, 1− p} .
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The inequality arises because 1−√1− γ ≥ γ/2 as noted above.
Using the formula of Eq. (7), one easily obtains rAD = 1

3

(
1−√1− γ + γ

2

)
. From this we may conclude

DAD =
1

2
‖∆AD‖� ≤ ‖trB(Z)‖∞ ≤ (1−

√
1− γ + γ/2) max{p, 1− p} = 3rAD max{p, 1− p}.

This is the inequality that was to be proven.

Incoherent leakage errors

Our model of incoherent leakage errors for a single qubit is typical of a physical leakage process that may occur.
We assume that the qubit state |1〉 can relax to a leakage state |l〉. We specify the noise process in terms of a leakage
probability p and Kraus operators

K0 = |0〉〈0|+
√

1− p|1〉〈1|+ |l〉〈l|, K1 =
√
p|l〉〈1|.

To compute the average fidelity over initial qubit states we note that this average fidelity is unchanged if we
replace the noise process with the a noise map where the Kraus operators are ΠqKiΠq and Πq = |0〉〈0| + |1〉〈1|
is the projector on the qubit subspace. The resulting process maps the qubit subspace to the qubit subspace and is
completely positive but not trace preserving. We can thus evaluate the average fidelity using Proposition 1 which is
valid for non-trace-preserving maps. Given this we find rIL = [4− (1 +

√
1− p)2 + p]/6 = [1−√1− p+ p]/3.

Note that if the average fidelity is computed over the full three-level space, the answer is slightly different and
corresponds to [1 − √1− p + p/4]/3. Using this alternate characterization of average error rate gives only minor
quantitative and no qualitative changes to our conclusions. We therefore choose the average only over the qubit space
as a more physically motivated quantity.

To bound the diamond norm error we modify the dual feasible solution that worked for the thermal relaxation
process above. The Choi matrix of the channel difference is

J (∆IL) = −p|11〉〈11|+ p|1l〉〈1l|+
(√

1− p− 1
)

(|00〉〈11|+ |11〉〈00|+ |ll〉〈11|+ |11〉〈ll|) .

We choose

Z =
(

1−
√

1− p
)

(|00〉〈00|+ |ll〉〈ll|+ |00〉〈ll|+ |ll〉〈00|) + p|1l〉〈1l|.

as dual feasible point. It is clear that Z ≥ 0 and the second feasibility condition follows from

Z − J (∆IL) =3
(

1−
√

1− p
)
|ψBell〉〈ψBell|+

[
p−

(
1−

√
1− p

)]
|11〉〈11|,

where here |ψBell〉 :=
∑3

i=1(|i〉 ⊗ |i〉)/
√

3. A routine calculation verifies that the coefficient in front of |11〉〈11| is
nonnegative for any p ∈ [0, 1] and Z − J (∆IL) is thus positive semidefinite. Inserting Z into the dual problem’s
objective function (13) yields

DIL ≤ ‖TrB (Z)‖∞ =
∥∥∥
(

1−
√

1− p
)

(|l〉〈l|+ |0〉〈0|) + p|1〉〈1|
∥∥∥
∞

= p ≤ 2rIL. (17)

This is the inequality that we wished to show. (The final inequality follows because p = (p + 2p)/3 ≤ 2(1 −√
1− p+ p)/3 = 2rIL since p/2 ≤ 1−√1− p as noted above.)
We may also consider the following alternative model for incoherent leakage in d-dimensional quantum systems:

EIL(ρ) = pPρP + (1− p)ρ,

with p ∈ [0, 1] and P is a rank-deficient orthogonal projection (i.e. P ≥ 0, P 2 = P and 1 ≤ tr(P ) ≤ d − 1).
For single qubits (d = 2), P necessarily coincides with a pure quantum state and we recover the incoherent leakage
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model examined in [34, Eq. (25)]. This channel model has the advantage that we can exactly determine its diamond
distance:

DIL = p. (18)

The related computations greatly simplifies if we exploit unitary invariance of both diamond distance and average
error rate [49]. This unitary invariance allows us to w.l.o.g. assume that P is diagonal in the computational basis:
P =

∑rank(P )
k=1 |k〉〈k|. The Choi matrix of ∆IL = I − EIL then amounts to

J (∆IL) = dI ⊗ (I − EIL) (|ψBell〉〈ψBell|) = pd (|ψBell〉〈ψBell| − |ψP 〉〈ψP |) ,

where |ψP 〉 = 1√
d

∑d
k=1 |kk〉 = 1√

d

∑rank(P )
k=1 |kk〉. In order to obtain an upper bound, we choose the following

feasible point of the diamond distance’s dual SDP: Z = pd|ψBell〉〈ψBell|. Clearly, this matrix is a feasible point,
because Z ≥ 0 and Z − J(∆IL) = pd|ψP 〉〈ψP | ≥ 0. It’s corresponding objective function value amounts to

‖trB(Z)‖∞ = pd‖trB (|ψBell〉〈ψBell|) ‖∞ = pd‖1

d
I‖∞ = p,

which serves as our upper bound on DIL.
For a lower bound, we turn to the primal SDP of the diamond distance. We set ρ = |d〉〈d| and W = |dd〉〈dd|

which is a feasible pair of primal variables (W ≤ ρ ⊗ I, tr(ρ) = 1 and W,ρ ≥ 0). Evaluating the primal objective
function at this point results in

(J(∆IL),W ) =dp |〈dd|ψBell〉|2 − pd |〈dd|ψP 〉|2 = p.

Note that this lower bound on DIL coincides with the upper bound established below. Weak duality allows us to
conclude (18).

Finally, the average error rate of EIL can be readily computed via Formula (7) and amounts to

rIL = p

(
1− tr(P )(tr(P ) + 1)

(d+ 1)d

)
∈
[

2p

d+ 1
, p

(
1− 2

d(d+ 1)

)]
.

The upper bound is saturated for rank-one projectors P , while the lower bound is achieved for projectors with
rank(P ) = d− 1. Comparing this to DIL = p reveals

DIL =

(
1− tr(P )(tr(P ) + 1)

(d+ 1)d

)
rIL ≤

d+ 1

2
rIL.

The upper bound provided here is tight for (d − 1)-dimensional projections and becomes increasingle loose for
more rank-deficient ones. For single qubits (d = 2), however, the upper bound is tight and we obtain DIL = 3

2rIL..
Finally, choosing d = 3 and rank(P ) = 2 mimics the dimensionalities ocurring in our previous model for incoherent
leakage. For such a choice, we obtain

DIL = 2rIL,

which agrees with (17), but is slightly stronger.

Coherent leakage errors

The coherent leakage process that we consider is a unitary error process

U(δ) = exp[−iδ(|1〉〈l|+ |l〉〈1|)] = |0〉〈0|+ cos(δ)(|1〉〈1|+ |l〉〈l|)− i sin(δ)(|1〉〈l|+ |l〉〈1|), (19)

where δ ∈ [−π, π] mediates the error strength. We can derive the average-case error using the same trick as above
of projecting onto the qubit subspace. Note that ΠqUΠq = |0〉〈0| + cos(δ)|1〉〈1|. As a result we find rCL =
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[2 − cos δ − cos2 δ]/3. Unlike the incoherent case, the average error rate here is by coincidence the same if we
compute it in the projected space or in the three-level space.

On the other hand the computation of the diamond norm distance is more straightforward for unitary error models
such as this, since the optimization over input states entangled with an ancilla in the definition is not required.
More details of the computation of the diamond norm distance for general unitary errors are given in the following
subsection. The result of Corollary 1 is that DCL = | sin δ|.

To relate worst-case and average-case error, we employ the relation 4 sin2(δ/2) ≥ sin2 δ which assures

rCL = (1− cos δ)/3 + (1− cos2 δ)/3 = 2 sin2(δ/2)/3 + sin2(δ)/3 ≥ sin2(δ)/2 = D2
CL/2.

On the other hand we can place a lower bound on the diamond norm distance. To tighten it, we will consider the case
of moderately small error with δ ∈ [−π/2, π/2]. This assures cos2 δ ≤ cos δ and we obtain

rCL = (1− cos δ)/3 + (1− cos2 δ)/3 ≤ 2[1− cos2(δ)]/3 = 2 sin2(δ)/3 = 2D2
CL/3.

So for the restricted range of δ ∈ [−π/2, π/2] we have
√

3rCL/2 ≤ DCL ≤
√

2rCL

which is the inequality we intended to show and demonstrates that the diamond norm distance scales with
√
rCL.

Unitary errors

In this section we do not restrict ourselves to qubits anymore and consider d-dimensional unitary channels, i.e.

ρ 7→ UρU †

where U : Cd → Cd is a unitary matrix (UU † = U †U = I). As we will show now, all channels of this form admit
the unfavorable “square root” behavior where the worst-case error is roughly equal to the square root of the average
case error. We summarize our results as follows.

Theorem 2. Fix a dimension d and let EU be a unitary channel. Then
√
d+ 1

d

√
rU ≤ DU ≤

√
(d+ 1)d

√
rU. (20)

Moreover, for single-qubit unitary channels, the lower bound holds with equality, i.e. DU =
√

3rU/2.

While the lower bound in (20) is tight, we do not know if the dimensional dependence in the upper bound can be
further improved and leave this for future work.

Proof of Theorem 2. Every unitary matrix U is normal and as such has an eigenvalue decomposition

U =

d∑

k=1

eiδk |k〉〈k|,

with eigenvalues eiδk on the complex unit circle and an orthogonal eigenbasis {|k〉}dk=1 of Cd. It greatly facilitates
our work if we define the maximally entangled state |ψBell〉 = 1√

d

∑d
k=1 |k, k〉 with respect to this eigenbasis. With

such a choice, the channel’s Choi matrix simply corresponds to

J (EU) = d(EU ⊗ I) (|ψBell〉〈ψBell|) = d (U ⊗ 1) |ψBell〉〈ψBell|
(
U † ⊗ 1

)
= d|φU〉〈φU|,
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where |φU〉 = 1√
d

∑d
k=1 eiδk |kk〉 is again a maximally entangled state. The channel’s average error rate then corre-

sponds to

rU =
d− 〈ψBell|J (EU) |ψBell〉

d+ 1
=
d− d |〈ψBell|φU〉|2

d+ 1
=
d2 −

∣∣∣
∑d

k=1 eiδk
∣∣∣
2

d(d+ 1)
. (21)

For the upper bound in (20), we use the fact that the Choi matrix of the channel difference ∆U = EU − I assumes
the form

J (∆U) = d
(

(U ⊗ 1) |ψBell〉〈ψBell|
(
U † ⊗ 1

)
− |ψBell〉〈ψBell|

)

which is proportional to the difference of two rank-one projectors. Such a matrix has two non-zero eigenvalues

λ± = ±d
√

1− |〈ψBell|φU〉|2 = ±
√

(d+ 1)d
√
rU

and corresponding normalized eigenvectors |v+〉, |v−〉 ∈ Cd2 – see e.g. [45, Example 2.3]. Setting Z =
λ+|v+〉〈v+| ≥ 0 yields a valid dual feasible point for the diamond norm’s dual SDP (13) and inserting it into
the program’s objective function reveals

DU ≤ ‖TrB (Z)‖∞ ≤ ‖TrB (Z) ‖1 = Tr (Z) = λ+〈v+|v+〉 = λ+ =
√

(d+ 1)d
√
rU,

as claimed. Here we have made use of the basic norm inequality ‖ · ‖∞ ≤ ‖ · ‖1 and the fact that the partial trace
preserves positive semidefiniteness which in turn assures ‖TrY (Z)‖1 = Tr (TrY (Z)) = Tr(Z).

For the lower bound, we use the fact that for the difference of two unitary channels, diamond norm and induced
trace norm coincide [45, Theorem 20.7]. This in turn assures

DU =
1

2
‖EU − I‖1→1 =

1

2
max
‖x‖`2=1

∥∥∥U |x〉〈x|U † − |x〉〈x|
∥∥∥

1
= max
‖x‖`2=1

√
1− |〈x|U |x〉|2, (22)

where the last simplification once more exploits that the matrix of interest is a difference of two rank-one projectors.
Choosing the particular vector x̃ =

∑n
k=1 |k〉/

√
d allows us to also conclude

DU ≥
√

1− |〈x̃|U |x̃〉|2 =
1

d

√√√√d2 −
∣∣∣∣∣
d∑

k=1

eiδk

∣∣∣∣∣

2

=

√
d+ 1

d

√
rU, (23)

which is the lower bound presented in (20).
For single-qubit unitary channels this argument can be substantially strengthened: in fact the inequality sign in

(23) can be replaced with actual equality. To see this, we first note that any unitary channel EU is invariant under a
global phase change U 7→ eiφU in the defining unitary matrix. For two-dimensional unitaries, this gauge freedom
assures that we can w.l.o.g. assume that U is of the form eiδ|0〉〈0|+ e−iδ|1〉〈1| with δ ∈ [−π, π]. This in turn assures
that any vector x = x1|0〉+ x2|1〉 ∈ C2 obeys

|〈x, Ux〉|2 =
∣∣∣eiδ|x1|2 + e−iδ|x2|2

∣∣∣
2

= |x1|4 + 2 cos (2δ) |x1|2|x2|2 + |x2|4.

Clearly, this function is ignorant towards individual phases of x1, x2 and when attempting to minimize it, we may
focus on real coefficients only. Taking into account normalization allows us to restrict x1 to the interval [0, 1] and
setting x2

2 = 1− x2
1. Doing so reveals

min
‖x‖`2=1

|〈x, Ux〉|2 = min
x1∈[0,1]

(
x4

1 + 2 cos(2δ)x2
1(1− x2

1) +
(
1− x2

1

)2)
= min

x1∈[0,1]

(
4 sin2(δ)

(
x4

1 − x2
1

)
+ 1
)

(24)

and maximizing the expression on the r.h.s. of (22) is therefore equivalent to finding the minimum of the particularly
simple double-well potential (24). The minimal value of the latter is achieved for x1 = 1/

√
2, which in turn assures

that the vector x̃ = (|0〉+ |1〉) /
√

2 in fact minimizes |〈x, Ux〉|2 and – as claimed – the inequality sign in (23) can
be replaced by equality.
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Similar techniques can be employed to exactly characterize the diamond distance of single qubit coherent leakage,
as it was introduced in the previous subsection.

Corollary 1 (Diamond distance of coherent leakage). Consider the three-level coherent leakage channel U(δ) with
δ ∈ [−π, π] introduced in (19). Then, its diamond distance amounts to DCL = |sin(δ)| .

Proof. We start by noting that U(δ) as introduced in (19) admits an eigenvalue decomposition of the form U(δ) =(
|v0〉〈v0|+ eiδ|v+〉〈v+|+ e−iδ|v−〉〈v−|

)
, where |v0〉, |v+〉, |v−〉 form an orthonormal basis of C3. Since this channel

is unitary, we can employ the particularly simple formula (22) to calculate it’s diamond distance:

DCL = max
‖x‖`2=1

√
1− |〈x|U(δ)|x〉|2 (25)

Now note that for any vector x = x1|v0〉+x2|v+〉+x3|v−〉 (represented with respect to the eigenbasis of U(δ)), we
have

|〈x|U(δ)|x〉|2 =
∣∣∣|x1|2 + |x2|2 eiδ + |x3|2 e−iδ

∣∣∣
2
.

An analysis similar to the one presented at the end of the proof of Theorem 2 reveals that such an expression is
minimal for x1 = 0 and |x2|2 = |x3|2 = 1/2. Inserting such an optimal vector into (25) implies

DCL = max
‖x‖`2=1

√
1− |〈x|U(δ)|x〉|2 =

√
1− cos2(δ) = |sin(δ)| ,

as claimed.

The unitarity and average error rate for two-qubit processes

We now consider the noise process on two qubits in the main text, generated by eiHCD2 where HCD2 = δ1σ
(1)
z +

δ2σ
(2)
z + εσ

(1)
z σ

(2)
z . Because the unitarity and average error rate can be computed directly, without the need of

analyzing a semidefinite program, we can simply use the formulas (7) and (31) (below) and do a direct computation.
The average error rate is given by

rCD2 =
1

10

[
4(2p− 1) cos(2δ) cos(2ε)− (1− 2p)2 cos(4δ) + 4p(1− p) + 5

]
,

and the unitarity is given by

uCD2 = 1
15

(
[8p(1− p)− 4]2 − 1

)
.

Here for simplicity we have choosen δ1 = δ2 = δ. This computation is routine, so we omit the details.

The unitarity as a witness for unfavorable scaling

The key message of this work is that the diamond distance D(E) of an error channel E may be proportional to the
square root of its average error rate r(E). This is undesirable, since it underlines that D(E) – which is the crucial
number for fault tolerance – may be orders of magnitude larger than r(E) – a quantity that is routinely estimated
via randomized benchmarking techniques. However, in our case studies we have found that for many channels this
worst case behavior does not occur and there is a linear relationship D(E) = O (r(E)). In this section, we provide
a necessary and sufficient criterion for such a desirable relationship. It is based on the unitarity, a scalar that was
introduced in [39] and quantifies the coherence (i.e. the “unitarity”) of a given noise channel E . To properly define it,
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we associate E with a reduced map E ′ that obeys E ′(I) = 0 as well as E ′(X) = E(X)− Tr(E(X))√
d

I for every traceless
X . We define the unitarity of E to be the following averaged quantity of the reduced map E ′:

u (E) :=
d

d− 1

∫
dψTr

(
E ′(|ψ〉〈ψ|)†E ′(|ψ〉〈ψ|)

)
. (26)

Defined that way, the unitarity obeys u(I) = 1 and its definition in terms of E ′ makes it sensitive towards possible
non-unital and trace decreasing features of E . In particular, it is also insensitive to unitary rotations, in the sense
that if U and V are unitary quantum channels, then u (UEV) = u (E) holds true for any quantum channel E . As a
result, the unitarity is independent of unitary pre- and post-rotations on the noise [39]. The unitarity boasts many
other desirable properties and – perhaps most importantly – can be efficiently estimated via a modified randomized
benchmarking experiment [39]. Moreover, it is related to the average error rate by means of the following inequality.

Proposition 2. Let E be a not necessarily trace preserving quantum operation obeying Tr
(
E(I)

)
≤ Tr(I). Then the

unitarity and average error rate of E obey

u(E) ≥
(

1− dr(E)

d− 1

)2

, (27)

where d denotes the dimension of the system.

This is a slightly more general version of the inequality in [39][Proposition 8] and we provide a new proof based
on fundamental Schatten-norm inequalities below. For now, we content ourselves with stating the main result of this
section: for a large family of error channels, nearly saturating the bound (27) is a necessary and sufficient condition
for the desirable scaling relation D(E) = O(r(E)).

Theorem 3. Let E be an arbitrary unital and trace-preserving channel. Then the diamond distance D(E) scales
linearly in the average error rate r = r(E), if and only if the bound (27) is saturated up to second order in r(E), i.e.

u(E) =

(
1− dr

d− 1

)2

+O
(
r2
)
. (28)

Since both r(E) and u(E) can be efficiently estimated in actual experiments, Theorem 3 provides an efficient
means to check whether or not D(E) and r(E) are of the same magnitude. It immediately follows from the following
technical result.

Proposition 3. Let E be a unital and trace-preserving quantum operation. Then D := D(E), r := r(E) and
u := u(E) are related via

cd

√
u+

2dr

d− 1
− 1 ≤ D ≤ d2cd

√
u+

2dr

d− 1
− 1, (29)

where cd = 1
2

(
1− 1

d2

)1/2 ∈
[√

3
4 ,

1
2

]
that only depends on the system dimension d.

To deduce Theorem 3 from this statement, let us start with assuming that (28) holds. Inserting this expression for
u into the upper bound provided by Proposition 3 yields

D ≤ d2cd

√(
1− dr

d− 1

)2

+O(r2) +
2dr

d− 1
− 1 = d2cd

√
d2

(d− 1)2
r2 +O (r2) = O (r) ,

as claimed. Conversely, suppose by contradiction that u =
(

1− dr
d−1

)2
+ O(r). Employing the lower bound

provided by Proposition 3 in a similar fashion assures D(E) = O(
√
r) which definitely does not scale linearly in r.

In order to establish the remaining statements – Proposition 3 and Proposition 2 – it is very useful to choose a
particular Liouville representation of error channels E . Concretely, we let {B1, . . . , Bd2} be a unitary operator basis
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obeying B1 = 1√
d
I and Tr

(
B†iBj

)
= δi,j (e.g. the normalized Pauli’s with the identity as first element). If defined

with respect to such a basis, L(E) admits the following block structure

L(E) =

(
1
dTr (E(I)) esdl

enu Eu

)
, (30)

where esdl, enu ∈ Cd2−1 encapsulate state dependent leakage and non-unitarity, respectively. With such a Liouville
representation, the unitarity of E is proportional to the squared Frobenius (or Hilbert-Schmidt) norm of the unital
block Eu [39][Proposition 1]:

u(E) =
1

d2 − 1
‖Eu‖22 . (31)

Moreover, such a block-matrix structure lets us establish the following relation [39][Proposition 9]

‖J(E)‖22 = (d2 + 1)u(E) + ‖enu‖2`2 + ‖esdl‖2`2 +
1

d
Tr (E(I)) . (32)

between the unitarity and the channel’s associated Choi matrix. Having laid out these relations, we are ready to prove
the main technical result of this section.

Proof of Proposition 3. We start with pointing out that the statement’s assumptions assure that both enu and esdl

vanish. This considerably simplifies the block structure (30) of L(E) as well as relation (32). At the heart of
this statement is an inequality that relates the diamond norm of any map M to different Schatten-norms of its
corresponding Choi matrix:

1

d
‖J(M)‖1 ≤ ‖M‖� ≤ ‖J(M)‖1, (33)

see e.g. [29][Lemma 7]. Recalling D(E) = 1
2‖∆‖� and weakening this estimate by employing the Schatten norm

inequalities ‖X‖2 ≤ ‖X‖1 ≤ rank(X)‖X‖2 allows us to deduce

1

2d
‖J(∆)‖2 ≤ D(E) ≤ d

2
‖J(∆)‖2, (34)

because J(∆) has at most rank d2. Note that an analogous relation can be derived using the diamond norm bound
presented in [50] instead of (33). As a matter of fact, the assumptions on E allow us to calculate ‖J(∆)‖2 explicitly.
To do so, start with

‖J(∆)‖22 = ‖J(I −E)‖22 = ‖d|ψBell〉〈ψBell|−J(E)‖22 = d2〈ψBell, ψBell〉2−2d〈ψBell|J(E)|ψBell〉+‖J(E)‖22 (35)

and note that the second term is related to the average error rate via

〈ψBell|J(E)|ψBell〉 = (d+ 1)Favg(E)− 1 = (d+ 1)(1− r(E))− 1.

This can readily be deduced from (7) by inserting the identity Tr (L(E)) = d〈ψBell|J(E)|ψBell〉 and noting that
Tr (E(I)) = Tr(I) = d holds, because E is trace-preserving. In turn, equation (32) allows to replace the last term in
Eq. (35) by

‖J(E)‖22 = (d2 − 1)u(E) +
1

d2
Tr (E(I))2 + ‖esdl‖2`2 + ‖en‖2`2 = (d2 − 1)u(E) + 1,

where we have used our assumptions that E is both unital and trace preserving to considerably simplify this expres-
sion. Inserting these identities into Eq. (35) reveals

‖J(∆)‖22 =d2 − 2d(d+ 1)(1− r(E)) + 2d+ (d2 − 1)u(E) + 1

=(d2 − 1)u(E) + 2d(d+ 1)r(E) +−d2 + 1

=(d2 − 1)

(
u(E) +

2dr(E)

d− 1
− 1

)
.

Plugging this explicit expression into the inequality chain Equation 34 then establishes the claim.
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Finally, we provide a proof of Propostion 2.

Proof of Proposition 2. The claim can be deduced from the fundamental norm inequality ‖X‖21 ≤ rank(X)‖X‖22.
Now, let L(E) be the particular block matrix representation (30). By construction Eu has rank at most (d2 − 1) and
we infer that

Tr(Eu)2 ≤ ‖Eu‖21 ≤ rank(Eu)‖Eu‖22 = (d2 − 1)2u(E) (36)

must hold, where we have employed Eq. (31). Also, Formula (7) together with the definition of the error rate implies

Tr(L(E)) + Tr(E(I)) = d(d+ 1)Favg(E) = d(d+ 1)(1− r(E)).

This in turn allows us to calculate

Tr(Eu) =Tr(L(E))− 1

d
Tr(E(I)) = Tr(L(E)) + Tr(E(I))− d+ 1

d
Tr(E(I))

=d(d+ 1)(1− r(E))− d+ 1

d
Tr(E(I)) ≥ d(d+ 1)(1− r(E))− (d+ 1)

=d(d+ 1)

(
d− 1

d
− r(E)

)
,

and combining this estimate with (36) readily yields the claimed bound.
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3 Additional results

This section is devoted to three novel results that were obtained in a recent collaboration
with Zhu, Grassl and Gross [KZG16a; KZG16b; ZKGG16]. The publication drafts are ready
for presentation and I include them in this chapter. I want to emphasize that the first paper
[ZKGG16]—where the main representation theoretical result is derived—is in large parts the
work of Zhu and Gross. However, Grassl and myself did provide relevant contributions. In
contrast to this, I am the main contributor to the follow-up results presented in the other two
drafts [KZG16a; KZG16b].
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The Cli�ord group fails gracefully to be a unitary 4-design

Huangjun Zhu,1 Richard Kueng,1 Markus Grassl,2 and David Gross1

1Institute for Theoretical Physics, University of Cologne, Germany
2Max Planck Institute for the Science of Light, Leuchs Division, 91058 Erlangen, Germany

(Dated: September 5, 2016)

A unitary t-design is a set of unitaries that is �evenly distributed� in the sense that the average of
any t-th order polynomial over the design equals the average over the entire group. In various �elds
� e.g. quantum information theory � one frequently encounters constructions that rely on matrices
drawn uniformly at random from the unitary group. It can often been shown that it su�ces to sample
these matrices from a t-design, for su�ciently high t. This results in more explicit, derandomized
constructions. The most prominent unitary t-design considered in quantum information is the multi-
qubit Cli�ord group. It is known that if forms a 3-design, but, unfortunately, not a 4-design. Here,
we give a simple, explicit characterization of the way in which the Cli�ord group fails to constitute
a 4-design. Our results show that for various applications in quantum information theory and in the
theory of convex signal recovery, Cli�ord orbits perform almost as well as true 4-designs. Technically,
it turns out that in a precise sense, the 4th tensor power of the Cli�ord group a�ords only one more
invariant subspace than the 4th tensor power of the unitary group. That additional subspace is a
stabilizer code � a structure extensively studied in the �eld of quantum error correction codes. This
allows for an explicit analysis.
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I. INTRODUCTION

A. Designs and derandomizations

A d-dimensional complex projective design is a con�guration of vectors that are �evenly distributed� on the unit
sphere in Cd. More precisely, a set of unit-length vectors is a complex projective t-design, if sampling uniformly from
the set gives rise to a random vector whose �rst 2t moments agree with the moments of the uniform measure on
the sphere. This property makes designs a useful tool for the derandomization of constructions that rely on random
vectors. To motivate our work, we mention one example from signal analysis and one from quantum information
theory.

1. Application: Phase Retrieval

The signal analysis example is the problem of phase retrieval : Let x be an unknown vector in Cd. Assume we have
access to a set of �phase insensitive linear measurements�

yi = |(ai, x)|, i = 1, . . . ,m. (1)

Here, the ai ∈ Cd are a given set of measurement vectors. The task now is to recover x given y1, . . . , yn. There are
many practical applications � for example in optical microscopy, where information about a sample is encoded in
the electro-magnetic light �eld, but where only phase-insensitive intensity measurments are usually feasible. From a
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mathematical point of view, the absolute value in Eq. (1) means that we are facing a non-linear inverse problem �
which are often di�cult to solve in theory in practice.
A recent research program has investigated the use of algorithms based on convex optimization for the purpose of

solving the phase retrieval problem. First theoretical results have shown that certain convex algorithms do indeed
recover x with high probability, if the measurements ai are random Gaussian vectors or drawn uniformly from the
unit-sphere in Cd [1, 2]. However, in many practical applications, such measurements cannot be realized. Therefore,
we are facing the task of re-proving those guarantees for measurements that are ideally deterministic, or, if randomized,
at least drawn from a �smaller� and �more highly structured� set of vectors than from the entire unit-sphere. Such
derandomized versions of have indeed been established for a variety of models�see e.g. Refs. [3, 4].
Starting with [5], some of the present authors have been interested in using spherical designs as �general-purpose�

tool for derandomzing phase retrieval algorithms. The basic insight is that protocols that ostensibly require Gaussian
vectors often only rely on certain measure concentration estimates that can be derived already from information about
�nite moments. Case in point is Ref. [6], which was proven initially for Gaussian measurements and then generalized
� with comparatively few additional e�orts � to any set of vectors which forms a 4-design.

2. Application: POVM norm constants

We take a related example from quantum information theory. In quantum mechanics, the state of a d-level system is
encoded in a positive semi-de�nite d×d-matrix, the so-called density operator. A measurement maps density operators
to classical probability distributions over a space of outcomes. The fundamental property of quantum complementarity
means that classical measurements necessarily entail a loss of information about the quantum system.
One way of precisely measuring this information loss is as follows: The (single-shot) statistical distinguishability of

two classical probability distributions p, q is measured by the total variational distance, or half their `1-norm distance
dc(p, q) := 1

2‖p − q‖`1 . Analogously, the optimal probability of distinguishing between two quantum states ρ, σ is

given by one half the Schatten-1 norm (or trace norm or nuclear norm) of their distance: dq(ρ, σ) := 1
2‖ρ − σ‖∗.

Quantum measurements are represented by (certain) linear maps Λ from the set of density matrices to the set of
classical probability distributions. The fact that �information is lost� in such a process can e.g. be made precise by
stating that Λ is a strict contraction:

dc(Λ(ρ),Λ(σ)) ≤ CΛdq(ρ, σ),

for some POVM norm constant CΛ < 1. It thus makes sense to ask for an optimal measurement, i.e. one that
maximises CΛ. It has been shown that the uniform POVM achieves this goal [7]. This measurement maps quantum
states to probability distributions on the complex unit sphere, where the density p(ψ) at the vector ψ is proportional
to tr ρ |ψ〉〈ψ|.
The situation is now very similar to the one considered in the phase retrieval example above: The uniform POVM is

optimal, but impractical to implement in large quantum experiments. However, as has been shown already in Ref. [7],
restricing the uniform POVM to a set of vectors that form a 4-design gives rise to a quantum measurement which
matches the optimal scaling behavior.

3. Outline of result: Overcoming the �t = 3-barrier�

One major drawback of the program of using complex projective designs for derandomization is that there has
been little progress in constructing explicit families of t-designs for t > 3. There are are various constructions using
�structured randomness� � most notably the random circuit model that yields approximate designs in any dimension
and of any degree [8, 9]. While the resulting designs are su�ciently well-structured for some tasks in quantum
information theory, they are arguably not as explicit as one could hope for.
This situation seems all the more unsatisfactory, as there are various applications � including the two examples

given above � where 2-designs are essentially useless (c.f. [7, 10]), 3-designs give �rst non-trivial improvements [10],
and 4-designs show already optimal behavior.
The only explicit in�nite family of complex projective 3-designs known to us are the orbits of the complex Cli�ord

group [11�13]. Unfortunately, it has also been shown that Cli�ord orbits are not, in general, 4-designs [11�13].
The main result of the present work is that while Cli�ord orbits fall short of constituting 4-designs, their 4th

moments can be explicitly calculated. The results are su�ciently well-behaved that for several applications, Cli�ord
orbits turn out to perform nearly as well as 4-designs or Gaussian random vectors would. In order to establish these
statements, we give an explicit description of the irreducible representations of the 4th tensor power of the Cli�ord
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group. In a precise sense, it turns out that the 4th tensor power of the Cli�ord group a�ords only one more invariant
subspace than the 4th tensor power of the unitary group. That additional subspace is a stabilizer code � a structure
extensively studied in the �eld of quantum error correction codes [14, 15]. This allows for an explicit analysis.
This paper contains only the representation-theoretic analysis of the 4th tensor power of the Cli�ord group. In

two companion papers, we apply this technical result to the applications mentioned in the introduction: In [16],
we establish performance guarantees for phase retrieval from stabilizer measurements; while [17] discuss the norm
constants of stabilizer POVMs. The reason for splitting our discussion three-ways is that we target both problems
form theoretical physics and from applied mathematics and that the respective communities employ very di�erent
language.

II. MATHEMATICAL BACKGROUND

In this section we review the mathematical background on complex projective designs and unitary designs.

A. Projective t-designs

Complex projective t-designs are of interest to a number research areas, such as approximation theory, combinatorics,
experimental designs etc. Recently, they have also found increasing applications in many quantum information
processing tasks, such as quantum state estimation [18�20], quantum state discrimination [7], and derandomization
[21]. Here we review three equivalent de�nitions of (complex projective) t-designs; cf. [18, 22, 23].
Let Hom(t,t)(Cd) be the space of polynomials homogeneous of degree t in the coordinates of |ψ〉 ∈ Cd (with respect

to a given basis) and homogeneous of degree t in the coordinates of 〈ψ|.
De�nition 1. A set of K pure states {|ψj〉} in dimension d is a (complex projective) t-design if

1

K

∑

j

p(ψj) =

∫
p(ψ)dψ ∀p ∈ Hom(t,t)(Cd), (2)

where the integral is taken with respect to the normalized Haar measure induced by the action of the unitary group.

To derive simpler criteria on t-designs, we need to introduce several additional concepts. Let Symt(Cd) be the

t-partite symmetric subspace of (Cd)⊗t with corresponding projector P Sym
t . The dimension of Symt(Cd) reads

DSym
t =

(
d+ t− 1

t

)
. (3)

The tth frame potential of {|ψj〉} is de�ned by

Φt({|ψj〉}) :=
1

K2

∑

j,k

|〈ψj |ψk〉|2t. (4)

Proposition 1. The following statements are equivalent:

1. {|ψj〉} is a t-design.

2. 1
K

∑
j(|ψj〉〈ψj |)⊗t = P Sym

t /DSym
t .

3. Φt({|ψj〉}) = 1/DSym
t .

Remark 1. In general, Φt({|ψj〉}) ≥ 1/DSym
t , and the lower bound is saturated i� {|ψj〉} is a t-design.

Proof. Let L(Symt(Cd)) be the space of linear operators acting on Symt(Cd). There is a one-to-one correspondence
between polynomials p ∈ Hom(t,t)(Cd) and operators A ∈ L(Symt(Cd)),

A 7→ pA, pA(ψ) := tr
[
A(|ψ〉〈ψ|)⊗t

]
. (5)

Therefore,

1

K

∑

j

pA(ψj) =
1

K
tr

[
A
∑

j

(|ψj〉〈ψj |)⊗t
]
,

∫
pA(ψ)dψ = tr

[
A

∫
(|ψ〉〈ψ|)⊗tdψ

]
. (6)
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It follows that {|ψj〉} is a t-design i�

1

K

∑

j

(|ψj〉〈ψj |)⊗t =

∫
(|ψ〉〈ψ|)⊗tdψ =

1

DSym
t

P Sym
t . (7)

Here the second equality follows from the fact the tth symmetric subspace is irreducible under the action of the unitary
group. This observation con�rms the equivalence of statements 1 and 2. The equivalence of statements 2 and 3 is a
consequence of the following equation,

∥∥∥∥
1

K

∑

j

(|ψj〉〈ψj |)⊗t −
1

DSym
t

P Sym
t

∥∥∥∥
2

2

= Φt({|ψj〉})−
1

DSym
t

, (8)

where ‖·‖2 denotes the Hilbert-Schmidt norm or the Frobenius norm. This equation implies that Φt({|ψj〉}) ≥ 1/DSym
t ,

and the lower bound is saturated i� Eq. (7) is satis�ed.

Any t-design in dimension d has at least

(
d+ dt/2e − 1

dt/2e

)(
d+ bt/2c − 1

bt/2c

)
(9)

elements, where dt/2e denotes the smallest integer not smaller than t/2, and bt/2c the largest integer not larger than
t/2 [18, 24, 25]. The bound is equal to d, d2, d2(d+ 1)/2, d2(d+ 1)2/4 for t = 1, 2, 3, 4, respectively. A t-design is tight
if the lower bound is saturated. A 1-design is tight i� it de�nes an orthonormal basis; a 2-design is tight if and only
it de�nes a symmetric informationally complete measurement (SIC) [18, 22, 23, 26, 27]. Other prominent examples
of 2-designs include complete sets of mutually unbiased bases (MUB) [28�30].

B. Unitary t-designs

Let Hom(t,t)(U(d)) be the space of polynomials homogeneous of degree t in the matrix elements of U ∈ U(d) and
homogeneous of degree t in thhe matrix elements of U∗ (the complex conjugate of U ; the Hermitian conjugate of U
is denoted by U†).

De�nition 2. A set of K unitary operators {Uj} is a unitary t-design if

1

K

∑

j

p(Uj) =

∫
dUp(U) ∀p ∈ Hom(t,t)(U(d)), (10)

where the integral is taken over normalized Haar measure. This equation remains intact even if Uj are multiplied by
arbitrary phase factors, so what we are concerned are actually projective unitary t-designs.

The tth frame potential of {Uj} is de�ned as

Φt({Uj}) :=
1

K2

∑

j,k

| tr(UjU†k)|2t. (11)

As shown in the proof of Proposition 2 below,

Φt({Uj}) ≥ γ(t, d) :=

∫
dU | tr(U)|2t, (12)

and the lower bound is saturated i� {Uj} is a unitary t-design [31�33]. The value of γ(t, d) has been computed
explicitly: it is equal to the number of permutations of {1, 2, . . . , t} with no increasing subsequence of length larger
than d [34, 35]. Here we only need the formula in the following two special cases [32],

γ(t, d) =

{
(2t)!

t!(t+1)! d = 2,

t! d ≥ t.
(13)

Like projective t-designs, there are many equivalent de�nitions of unitary t-designs.
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Proposition 2. The following statements are equivalent:

1. {Uj} is a unitary t-design.

2. 1
K

∑
j tr
[
BU⊗tj A(U⊗tj )†

]
=
∫

dU tr
[
BU⊗tA(U⊗t)†

]
for all A,B ∈ L((Cd)⊗t).

3. 1
K

∑
j U
⊗t
j A(U⊗tj )† =

∫
dUU⊗tA(U⊗tj )† for all A ∈ L((Cd)⊗t).

4. 1
K

∑
j U
⊗t
j ⊗ (U⊗tj )† =

∫
dUU⊗t ⊗ (U⊗tj )†.

5. 1
K

∑
j U
⊗t
j ⊗ (U⊗tj )∗ =

∫
dUU⊗t ⊗ (U⊗tj )∗.

6. Φt({Uj}) = γ(t, d).

Proof. Note that tr
[
BU⊗tA(U⊗t)†

]
is a homogeneous polynomial in Hom(t,t)(U(d)) and that all polynomials of this

form for A,B ∈ L((Cd)⊗t) span Hom(t,t)(U(d)). Therefore, statements 1 and 2 are equivalent. The equivalence of
statements 2 and 3 is obvious.
The equivalence of statements 1 and 4 follows from the following equation,

tr
{
V (B ⊗A)[U⊗t ⊗ (U⊗t)†]

}
= tr

{
BU⊗tA(U⊗t)†

}
, (14)

where V is the swap operator of parties 1, 2, . . . , t with the parties t+ 1, t+ 2, . . . , 2t. The equation in statement 5 is
a partial transposition of the one in statement 4.
The equivalence of statements 5 and 6 follows from the following equation

∥∥∥∥
1

K

∑

j

U⊗tj ⊗ (U⊗tj )∗ −
∫

dUU⊗t ⊗ (U⊗t)∗
∥∥∥∥

2

= Φt({Uj})− γ(t, d). (15)

Most known examples of unitary designs are constructed from subgroups of the unitary group, which are referred
to as (unitary) group designs henceforth. Given a �nite group G of unitary operators, the frame potential of G takes
on the form

Φt(G) =
1

|G|
∑

U∈G
| tr(U)|2t. (16)

Let G be the quotient of G over the phase factors. Then

Φt(G) = Φt(G) =
1

|G|
∑

U∈G
| tr(U)|2t. (17)

This formula is applicable whenever G is a �nite group even if G is not. Note that Φt(G) is equal to the sum of
squared multiplicities of irreducible components of τ t(G) := {U⊗t|U ∈ G} [31], which coincides with the dimension
of the commutant of τ t(G). Recall that the commutant A′ of a set of operatators A is the algebra of all operators
commuting with every element of A:

A′ = {B|[A,B] = 0 ∀A ∈ A}. (18)

Let H be a subgroup in G. It is clear that every irreducible representation of τ t(G) on
(
Cd
)⊗t

is also invariant under
τ t(H) and thus forms a representation space of H. However, these spaces need not be irreducible under the action
of H. As a consequence, Φt(H) ≤ Φt(G) for any subgroup H in G, and the equality is saturated i� every irreducible
component of τ t(G) is also irreducible when restricted to τ t(H); that is, τ t(G) and τ t(H) decompose into the same
number of irreducible components.
At this point, it is instructive to review the representation theory of U(d) on the space of all tensors (Cd)⊗t from

the point of view of Schur-Weyl duality. By de�nition the unitary group U(d) acts on Cd. The action extends to the
diagonal action on (Cd)⊗t,

U 7→ τ t(U) : |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψt〉 7→ U |ψ1〉 ⊗ U |ψ2〉 ⊗ · · · ⊗ U |ψt〉 ∀|ψj〉 ∈ Cd, U ∈ U(d). (19)
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Meanwhile, the symmetric group St acts on the tensor product space (Cd)⊗t by permuting tensor factors:

π(|ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψt〉) = |ψπ1〉 ⊗ |ψπ2〉 ⊗ · · · ⊗ |ψπt〉 ∀|ψj〉 ∈ Cd, π ∈ St. (20)

The diagonal action of U(d) and the permutation action of St on (Cd)⊗t commute with each other. Schurl-Weyl duality
states that (Cd)⊗t decomposes into multiplicity-free irreducible representations of U(d)× St [36]. More precisely,

(
Cd
)⊗t

=
⊕

λ

Hλ =
⊕

λ

Wλ ⊗ Sλ. (21)

Here the λ's are non-increasing partitions of t into no more than d parts, Wλ is the Weyl module carrying the irrep of
U(d) associated with λ, and Sλ the Schur module on which St acts irreducibly. We denote the dimensions of Sλ and
Wλ by dλ and Dλ, respectively. Note that dλ equals the multiplicity of the Weyl module Wλ, and, likewise, Dλ is the
multiplicity of the Schur module Sλ. As an implication, the commutant of the diagonal action of the unitary group is
generated by all permutations of the tensor factors. When λ = [t] is the trivial partition, then Wλ = Symt(Cd) and
St acts trivially on Sλ ' C. In particular, it follows that the space Symt(Cd) carries an irreducible representation of
U(d).
The discussion above leads to a number of equivalent characterizations of t-designs constructed from groups.

Proposition 3. The following statements concerning G ≤ U(d) are equivalent:

1. G is a unitary t-design.

2. Φt(G) = γ(t, d).

3. τ t(G) decomposes into the same number of irreps as τ t(U(d)).

4. Every irreducible component in τ t(U(d)) is still irreducible when restricted to τ t(G).

5. τ t(G) and τ t(U(d)) has the same commutant.

6. The commutant of τ t(G) is generated by all the permutations of tensor factors.

For example, G is a 1-design i� it is irreducible, in that case, G has at least d2 elements, and the lower bound is
saturated i� it de�nes a nice error basis, that is, tr(UjUk) = dδjk for Uj , Uk ∈ G [37]. The group G is a unitary 2-design
i� τ t2(G) has only two irreducible components, which correspond to the symmetric and antisymmetric subspaces of
the bipartite Hilbert space. Prominent examples of unitary group 2-designs include Cli�ord groups and restricted
Cli�ord groups in prime power dimensions [31, 38�41].

Proposition 4. Any orbit of pure states of a unitary group t-design forms a complex projective t-design.

Proof. Let G be a unitary group t-design, then τ t(G) acts irreducibly on Symt(Cd). Therefore,
∑

U∈G

(
U |ψ〉〈ψ|U†

)⊗t
=
∑

U∈G
U⊗t(|ψ〉〈ψ|)⊗t(U⊗t)† ∝ P Sym

t (22)

for any pure state |ψ〉. It follows that any orbit of pure states of G forms a complex projective t-design.

III. DECOMPOSITION OF THE FOURTH TENSOR POWER OF THE CLIFFORD GROUP

A. Pauli group and Cli�ord group

Let F2 = Z2 = {0, 1} be the �nite �eld of integers with arithmetic modulo 2. We label the Pauli matrices on a
single qubit by elements of F2

2 in the following way:

σ(0,0) =

(
1 0
0 1

)
, σ(0,1) =

(
0 1
1 0

)
, σ(1,0) =

(
1 0
0 −1

)
, σ(1,1) =

(
0 −i
i 0

)
.

A Pauli operator on n qubits is de�ned as the tensor product of n Pauli matrices. Concretely, each a ∈ F2n
2 de�nes a

Pauli operator as follows,

Wa := σ(a1,a2) ⊗ · · · ⊗ σ(a2n−1,a2n).
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Every pair of Pauli operators either commute or anticommute,

WaWb = (−1)〈a,b〉WbWa, (23)

where 〈a, b〉 = aTJb is the symplectic product with J being the 2n× 2n block diagonal matrix over F2 with n blocks
of ( 0 1

1 0 ) on the diagonal. Let

P̄n = {Wa | a ∈ F2n
2 }

be the set of all n qubit Pauli operators. The Pauli group on n-qubits is the group generated by all the Pauli operators
in P̄n,

Pn = 〈P̄n〉 = {ijWa | a ∈ F2n
2 , j ∈ Z4}.

In the following discussion P̄n is also identi�ed as the projective Pauli group, the quotient group of Pn with respect
to the phase factors. As a group, P̄n is isomorphic to F2n

2 .
Let Sp(2n,F2) be the symplectic group composed of all 2n×2n matrices over F2 that satisfy the following equation

FJFT = J. (24)

The n-qubit Cli�ord group Cn is the normalizer of the n-qubit Pauli group Pn. For every Cli�ord unitary U ∈ Cn,
there is a unique symplectic matrix F ∈ Sp(2n,F2) such that

UWaU
† = (−1)f(a)WFa ∀a, (25)

for a suitable sign function f from F2n
2 to F2. Conversely, for each F ∈ Sp(2n,F2) there exists a Cli�ord unitary and

a suitable function f such that the above equation is satis�ed. Let Cn be the projective Cli�ord group. Then Cn/P̄n
is isomorphic to Sp(2n,F2).
The Cli�ord group plays an important role in quantum computation [14, 15, 42, 43], quantum error correction

[14, 15], and randomized benchmarking [44�46]. Many nice properties of the Cli�ord group are closely related to the
fact that the group is a unitary 2-design [8, 31�33, 38�41, 47]. Recently, it is shown that the Cli�ord group Cn forms
a unitary 3-design but not a 4-design [11�13]. The fourth frame potential of Cn reads [12],

Φ4(Cn) =





15 n = 1,

29 n = 2,

30 n ≥ 3.

(26)

Comparison with Eq. (13) shows that the frame potential of the Cli�ord group is quite close to that of a 4-design. This
observation indicates that the fourth tensor power of the Cli�ord group has only a few more irreducible components
than that of the whole unitary group, as spelled out more precisely in the next section.

B. A special stabilizer code

To state our main result precisely, we need to de�ne a certain stabilizer code. Recall that a stabilizer group is an
abelian subgroup of the Pauli group that does not contain −1. The order of any n-qubit stabilizer group is a divisor
of d = 2n. Those n-qubit stabilizer groups of order d are called maximal. A stabilizer code is the common eigenspace
of operators in a stabilizer group [14, 48]. If the stabilizer group has order 2m with m ≤ n, then the stabilizer code
has dimension 2n−m. When the stabilizer group is maximal, the stabilizer code has dimension 1 and reduces to a
stabilizer state.
Whenever k is even, the following set of Pauli operators

Sn,k = {τk(Wa) | a ∈ F2n
2 }

commute with each other. The set is also invariant under the diagonal action of the Cli�ord group. If in addition
k is a multiple of 4, then Sn,k is also closed under multiplication and thus forms a stabilizer group. Let Vn,k be the
stabilizer code de�ned by the joint +1 eigenspace of operators in Sn,k. The dimension of the stabilizer code is dk−2,
and the projector onto it is given by

Pn,k =
1

|Sn,k|
∑

a∈F2n
2

τk(Wa). (27)
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The stabilizer code Vn,k and projector Pn,k are invariant under the action of the symmetric group Sk, which acts

on
(
Cd
)⊗k

by permuting the k tensor factors. Meanwhile, they are also invariant under the diagonal action of the

Cli�ord group. In other words, Vn,k a�ords a representation of the Cli�ord group Cn and also Cn. Given that Vn,k
is a common +1 eigenspace of τk(Wa) for all Pauli operators Wa, it follows that the Pauli group P̄n acts trivially on
Vn,k. Therefore, Vn,k a�ords a projective representation of the symplectic group Sp(2n,F2), which is isomorphic to

Cn/P̄n. When n 6= 2, 3, Sp(2n,F2) has trivial Schur cover [49], so the projective representation can be turned into
ordinary representation with a suitable choice of phase factors.
In the rest of this section, we construct an orthonormal basis for Vn,k, though this is essential to understand our

main result. First consider the special case n = 1. Let u ∈ Fk2 and de�ne ũ := a+ (1, 1, . . . , 1) as the bitwise �NOT� of

u. If k is a multiple of 4 and a has even number of digits equal to 1, then the state |φu〉 := (|u〉+ |ũ〉)/
√

2 is a common
+1 eigenstate of τk(Wa) for all single qubit Pauli operators Wa; that is, |φu〉 ∈ V1,k. Now it is straightforward to
verify that the follow set

{|φu〉|u ∈ Fk1 ,
k∑

j=1

uj = 0, u1 = 0} (28)

forms an orthonormal basis of V1,k.
Simple analysis shows that Vn,k and Pn,k can be written as tensor products as follows,

Vn,k = V ⊗n1,k , Pn,k = P⊗n1,k . (29)

So an orthonormal basis of Vn,k can be constructed by taking tensor product of the basis of V1,k.

C. Main results

The most concise way to state our main result is in terms of the commutant of τ4(Cn). The classic Schur-Weyl
duality states that the commutant of τk(U(d)) is generated by the symmetric group Sk with permutation action [36].
If d = 2n and we restrict from τ4(U(d)) to the subgroup τ4(Cn), the commutant becomes larger. Our main result
says that there is only one additional generator: the stabilizer projector Pn,4 introduced above.

Theorem 1 (Main Theorem). The commutant τ4(Cn)′ of the diagonal action of the Cli�ord group on
(
Cd
)⊗4

is
generated as an algebra by S4 (permuting tensor factors) and the stabilizer projection Pn,4.

Next, we will give a more concrete formulation of the main result. To this end, recall that Schur-Weyl duality can
be used to �nd the decompositoin

(
Cd
)⊗4

=
⊕

λ

Hλ =
⊕

λ

Wλ ⊗ Sλ (30)

of
(
Cd
)⊗4

into irreps of U(d)×S4. Here, the λ's are partitions of 4 into no more than d parts, Wλ is the Weyl module
carrying an irrep of U(d) and Sλ the Schur module on which S4 acts irreducibly; the group U(d)×S4 acts irreducibly
on each Hλ. The dimensions of Sλ and Wλ are denoted by dλ and Dλ, respectively, as listed in Table I. Note that dλ
equals the multiplicity of the Weyl moduleWλ, and, likewise, Dλ is the multiplicity of the Schur module Sλ. Let G be
a subgroup of U(d), then the number of irreducible components of G×S4 on Hλ is equal to the number of irreducible
components of G on Wλ. In particular, G × S4 is irreducible on Hλ i� G is irreducible on Wλ. The multiplicity of
each irrep of G appearing in Hλ is always a multiple of dλ.
Now recall that Vn,4 is the stabilizer code de�ned above. We denote its orthgonal complement by V ⊥n,4 and de�ne

the spaces

H+
λ := Hλ ∩ Vn,4, H−λ := Hλ ∩ V ⊥n,4.

Because Vn,4 is invariant under the action of S4, and because the Sλ are irreducible under the same action, it follows
that for each λ, there is a subspace W+

λ ⊂Wλ such that

H+
λ = W+

λ ⊗ Sλ.
Likewise,

H−λ = W−λ ⊗ Sλ,
where W−λ is the ortho-complement, within Wλ, of W

+
λ .

The dimensions of these spaces can be computed explicitly.
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TABLE I. Dimensions of the Schur modules, Weyl modules and irreducible components of the n-qubit Cli�ord group appearing
on (Cd)⊗4, where d = 2n.

λ dλ Dλ D+
λ D−

λ

[4] 1 d(d+1)(d+2)(d+3)
24

(d+1)(d+2)
6

(d−1)(d+1)(d+2)(d+4)
24

[1, 1, 1, 1] 1 d(d−1)(d−2)(d−3)
24

(d+1)(d+2)
6

(d+1)(d−1)(d−2)(d−4)
24

[2, 2] 2 d2(d2−1)
12

(d2−1)
3

(d2−4)(d2−1)
12

[2, 1, 1] 3 d(d−2)(d2−1)
8

0 d(d−2)(d2−1)
8

[3, 1] 3 d(d+2)(d2−1)
8

0 d(d+2)(d2−1)
8

Lemma 1. Let D±λ = dimW±λ . The values of D±λ for partitions λ of 4 are given in Table I. In addition, dimH±λ =

dλD
±
λ .

Then the main theorem can be expressed equivalently in each of the following two ways.

Corollary 1. Whenever they are non-trivial, the spaces W±λ carry irreducible representations of the n-qubit Cli�ord

group Cn, while H
±
λ carry irreducible representations of Cn × S4.

Corollary 2. Under the action of Cn × S4, the space
(
Cd
)⊗4

decomposes into these irreps:

(
Cd
)⊗4

=
⊕

λ;s=± |Dsλ 6=0

W s
λ ⊗ Sλ.

D. Proofs

In this section, we prove Lemma 1 and derive from it our main result Theorem 1.

Proof of Lemma 1. Let Hλ,Wλ, Sλ be the representation spaces appearing in the Schur-Weyl decomposition in
Eq. (30). Let Pλ be the projector onto Hλ. We have

Pλ =
dλ
24

∑

σ∈S4

χλ(σ)Uσ, (31)

where Uσ is the unitary operator that realizes the permutation of the tensor factors corresponding to σ, and χλ is
the character of the irrep of S4 corresponding to the partition λ; see Table II. For example, the projectors onto the
symmetric and antisymmetric subspaces are respectively given by

P[4] =
1

24

∑

σ∈S4

Uσ, (32)

P[14] =
1

24

∑

σ∈S4

sgn(σ)Uσ, (33)

where sgn(σ) is equal to 1 for even permutations and −1 for odd permutations.
Note that Pλ commutes with the projector Pn,4 onto the stabilizer code, so the dimension of Vn,4 ∩Hλ is given by

dλD
+
λ = tr(Pn,4Pλ). Therefore,

D+
λ =

1

dλ
tr(Pn,4Pλ) =

1

d2dλ

∑

a

tr(W⊗4
a Pλ)

=
1

d2

[
Dλ +

1

24

∑

σ∈S4

∑

06=a∈F2n
2

χλ(σ) tr
(
UσW

⊗4
a

)]
. (34)

Let l(σ) be the number of cycles in σ with even lengths. If a 6= 0, then

tr(UσW
⊗4
a ) =

{
0 σ contains a cycle of odd length,

dl(σ) otherwise.
(35)
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TABLE II. Characters of the symmetric group S4.

cycle type (14) (22) (2, 12) (3, 1) (4)

order 1 2 2 3 4

# 1 3 6 8 6

χ1 = [4] 1 1 1 1 1

χ2 = [1, 1, 1, 1] 1 1 −1 1 −1

χ3 = [2, 2] 2 2 0 −1 0

χ4 = [2, 1, 1] 3 −1 −1 0 1

χ5 = [3, 1] 3 −1 1 0 −1

According to Table II, the symmetric group S4 has 3 permutations of cycle type (22) and six permutations of cycle
type (4), while all other permutations contain at least one cycle of odd length. In conjunction with the above two
equations, this observation enables us to compute D+

λ and then D−λ , with the result shown in Table I.

An alternative proof � which is slightly longer, but may give a better feeling for the spaces involved � is presented
in Appendix C.

Proof of Theorem 1. Note that Theorem 1 and Corollary 1 are equivalent. To prove Theorem 1, it su�ces to prove
Corollary 1, which states that the spaces W±λ carry irreducible representations of the n-qubit Cli�ord group Cn
whenever W±λ are non-trivial.
The sum of squared multiplicities of irreducible components in τ4(Cn) is equal to the fourth frame potential of the

Cli�ord group Cn, as shown in Eq. (26). When n ≥ 3, both Vn,4∩Hλ and V ⊥n,4∩Hλ are nontrivial invariant subspaces
of Cn × S4 for λ = [4], [1, 1, 1, 1], [2, 2]. So the frame potential of Cn is at least

Φ4(Cn) ≥ d2
[4] + d2

[1,1,1,1] + d2
[2,2] +

∑

λ

d2
λ = 30. (36)

The lower bound is saturated i� all the representations of Cn a�orded by W±λ for D±λ 6= 0 are irreducible and

inequivalent. If any of W±λ is reducible, then Φ4(Cn) would be strictly larger than 30, in contradiction with Eq. (26).
This contradiction con�rms Corollary 1 in the case n ≥ 3, from which Theorem 1 follows. The proofs for the special
cases n = 1, 2 are similar.

IV. t-DESIGNS FROM CLIFFORD ORBITS

In this section we determine all Cli�ord covariant t-designs in the case of a single qubit. We then show that random
orbits of the Cli�ord group are very good approximation of 4-designs. Furthermore, we introduce several simple and
e�cient methods for constructing exact and approximate �ducial states of 4-design.

A. Cli�ord covariant t-designs for qubit

Now the t-partite symmetric subspace has dimension t + 1, so the frame potential of a qubit t-design is equal to
1/(t+1). Since the Cli�ord group is a unitary 3-design, every orbit of the Cli�ord group forms a complex projective 3-
design. The unique shortest orbit is composed of six stabilizer states, which form a complete set of mutually unbiased
bases. When represented on the Bloch sphere, the six states form the vertices of the octahedron.
To derive a simple criterion on those orbits that form 4-design, suppose the �ducial state has Bloch vector (x, y, z)

with x2 + y2 + z2 = 1. Then the fourth frame potential of the Cli�ord orbit is given by

Φ4(x, y, z) =
21− 6(x4 + y4 + z4) + 5(x4 + y4 + z4)2

96
. (37)

The orbit forms a 4-design i� x4 + y4 + z4 = 3/5, in which the case Φ4(x, y, z) attains the minimum 1/5. The orbit
forms a 5-design under the same condition. One explicit solution is given by

x =

√
5 + 2

√
10

15
, y = z =

√
5−
√

10

15
. (38)
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By contrast, Φ4(x, y, z) is maximized when x4 +y4 +z4 = 1, in which case the Bloch vector corresponds to a stabilizer
state.
When the condition x4 + y4 + z4 = 3/5 is satis�ed, the sixth and seventh frame potential satisfy the following

equation

8Φ7(x, y, z)− 1 = 4[7Φ6(x, y, z)− 1] =
11(1− 21x2 + 105x4 − 105x6)

2400

=
11(1− 21y2 + 105y4 − 105y6)

2400
=

11(1− 21z2 + 105z4 − 105z6)

2400

=
11[3− 7(x6 + y6 + z6)

480
. (39)

The orbit forms a 6-design i� x2, y2, z2 are distinct roots of the equation 1−21u+ 105u2−105u3 = 0, which are given
by

uj =
1

3

(
1 + 2

√
2

5
cos

θ + 2jπ

3

)
, θ = arctan

3
√

10

20
, j = 1, 2, 3. (40)

Equivalently, the orbit forms a 6-design i� x6 +y6 +z6 = 3/7 or if x2y2z2 = 1/105 (assuming x4 +y4 +z4 = 3/5). The
same condition also guarantees that the orbit forms a 7-design. There are 48 solutions in total, which compose two
Cli�ord orbits. When represented on the Bloch sphere, the two orbits can be converted to each other by inversion.
The two orbits are not unitarily equivalent, but are equivalent under antiunitary transformations. Actually the 48
solutions form one orbit under the action of the extended Cli�ord group, the group generated by the Cli�ord group
and complex conjugation with respect to the computational basis. Since any qubit 8-design has at least 25 elements
according to Eq. (9), no Cli�ord orbit can form an 8-design.
Calculation shows that a random Cli�ord orbit is approximately a t-design for t up to 7. The ratio of the average

frame potential over the minimum potential is given by

(t+ 1)E[Φt(x, y, z)] =





1 t = 3,
127
126 t = 4,
43
42 t = 5,
1795
1716 t = 6,
1381
1287 t = 7.

(41)

B. Random Cli�ord orbits are good approximation to 4-designs

In this section we show that random Cli�ord orbits are very good approximation to projective 4-designs. Recall
that τ4(Cn) has two irreducible components W±[4] in the totally symmetric space W[4] = Sym4(C2n). According to

Table I, the dimensions of W[4] and W
±
[4] are

D[4] =
d(d+ 1)(d+ 2)(d+ 3)

24
,

D+ := D+
[4] =

(d+ 1)(d+ 2)

6
,

D− := D−[4] =
(d− 1)(d+ 1)(d+ 2)(d+ 4)

24
.

(42)

The projectors P± onto the two irreps W±[4] read

P+ = Pn,4P[4], P− = (1− Pn,4)P[4]. (43)

where Pn,4 is the projector onto the stabilizer code de�ned in Eq. (27) and P[4] is the projector onto W[4].
As an implication of Corollary 2, we have

Corollary 3. Let X be the orbit of any normalized vector ψ ∈ C2n under the action of the Cli�ord group Cn. Then

1

|X|
∑

φ∈X

(
|φ〉〈φ|

)⊗4
= α+P+ + α−P−,
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where

α+ =
1

D+
tr
[
P+(|ψ〉〈ψ|)⊗4

]
=

1

D+
tr
[
Pn,4(|ψ〉〈ψ|)⊗4

]
, D+α+ +D−α− = 1. (44)

The state |ψ〉 is a �ducial state of a 4-design i� α− = α+ = 1/D[4], that is,

β+(ψ) := tr
[
Pn,4(|ψ〉〈ψ|)⊗4

]
=
D+

D[4]
=

4

d(d+ 3)
. (45)

The deviation of the Cli�ord orbit of ψ from 4-design can be characterized by

ε(ψ) =
D[4]

D+
β+(ψ)− 1, (46)

which satis�es β+(ψ) = D+[1 + ε(ψ)]/D[4]. Note that |ε(ψ)| is the operator norm of the deviation

D[4]

|X|
∑

φ∈X

(
|φ〉〈φ|

)⊗4 − P[4].

It also determines the fourth frame potential of the Cli�ord orbit of ψ as follows,

Φ4(orb(ψ)) =
β+(ψ)2

D+
+
β−(ψ)2

D−
=

1 +D+ε(ψ)2/D−
D[4]

, (47)

where β−(ψ) = 1− β+(ψ).
To determine potential deviation, note that d2Pn,4 =

∑
aW

⊗4
a . So β+(ψ) is proportional to the second frame

potential of the orbit of |ψ〉 under the action of the Pauli group. De�ne characteristic function Ξ(ψ) as the vector
composed of the d2 elements

Ξa(ψ) = tr(Wa|ψ〉〈ψ|). (48)

Then β+(ψ) = ‖Ξ(ψ)‖4l4/d2. Since {Wa} forms a nice error basis and Hermitian operator basis, we have

‖Ξ(ψ)‖2l2 =
∑

a

tr
[
W⊗2
a (|ψ〉〈ψ|)⊗2

]
= d, ‖Ξ(ψ)‖l∞ = max

a
tr(Wa|ψ〉〈ψ|) = 1. (49)

Consequently,

2d

d+ 1
≤ ‖Ξ(ψ)‖4l4 ≤ d, (50)

which implies

2

d(d+ 1)
≤ β+(ψ) ≤ 1

d
, − d− 1

2(d+ 1)
≤ ε(ψ) ≤ d− 1

4
. (51)

The upper bound in Eq. (50) follows from the Hölder inequality; it is saturated i� Ξ(ψ) has d entries equal to 1 and
all other entries equal to 0; this can happen i� |ψ〉 is a stabilizer state. The lower bound is saturated i�

Ξa(ψ) =
1√
d+ 1

∀a 6= 0, (52)

in which case the d2 states Wa|ψ〉 for a ∈ F2n
2 form a symmetric informationally complete measurement (SIC), which

happens to be a minimal 2-design [18]. According to Godsil and Roy [50], SIC �ducial states of the n-qubit Pauli
group can exist only for n = 1, 3. As an implication of Eq. (51), the frame potential satis�es

1

D[4]
≤ Φ4(orb(ψ)) ≤ 1

D[4]

(
1 +

d− 1

4(d+ 4)

)
, (53)

where the lower bound is saturated i� the orbit forms a 4-design, and the upper bound is saturated i� the orbit
consists of stabilizer states, that is, ψ is a stabilizer state.
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In the rest of this section we compute the variance of the deviation parameter ε(ψ) of a random Cli�ord orbit
and thereby show that random Cli�ord orbits are very good approximation to 4-designs. Suppose ψ is distributed
according to the Haar measure. The �rst and second moments of β+(ψ) are given by

E[β+(ψ)] = tr(Pn,4E[(|ψ〉〈ψ|)⊗4]) =
1

D[4]
tr(Pn,4P[4]) =

4

d(d+ 3)
, (54)

E[β+(ψ)2] =
1

D[8]
tr(P⊗2

n,4P[8]) =
16(d2 + 15d+ 68)

d2(d+ 3)(d+ 5)(d+ 6)(d+ 7)
, (55)

where the last equality was derived in the appendix. The variance reads

Var[β+] = E[β2
+]− E[β+]2 =

96(d− 1)

d2(d+ 3)2(d+ 5)(d+ 6)(d+ 7)
. (56)

As a consequence of the above equations,

E[ε(ψ)] = 0, E[ε(ψ)2] =
Var[β+]

E[β+]2
=

6(d− 1)

(d+ 5)(d+ 6)(d+ 7)
. (57)

This equation enables us to determine the ratio of the average fourth frame potential over the minimum frame potential
(the potential for a 4-design),

D[4]E[Φ4] = 1 +
D+

D−
E[ε(ψ)2] = 1 +

24

(d+ 4)(d+ 5)(d+ 6)(d+ 7)
. (58)

Equations (57) and (58) show that random Cli�ord orbits are very good approximation to 4-designs.
The following lemma is useful for deriving large-deviation bound for the frame potential of random Cli�ord orbits.

Lemma 2 (Levy). Let f : S2d−1 → R be Lipschitz-continuous with Lipschitz constant η, that is,

|f(x)− f(y)| ≤ η‖x− y‖, (59)

where ‖x − y‖ is the Euclidean norm in the surrounding space R2d of S2d−1. Drawing a point in S2d−1 at random
with respect to the uniform measure on the sphere yields

Prob{|f(x)− E[f ]| ≥ ε} ≤ 2 exp
( −dε2

9π3η2

)
. (60)

Lemma 3. The function ψ → β+(ψ) is Lipschitz-continuous with Lipschitz constant 8/d, that is,

β+(ψ)− β+(ϕ) ≤ 8

d
‖|ψ〉 − |ϕ〉‖. (61)

Question: How much can we improve this lemma.

Lemma 4. Suppose ψ is drawn randomly according to the Haar measure. Then

Prob{|β+(ψ)− E[β+(ψ)]| ≥ ε} ≤ 2 exp
(
− d3ε2

576π3

)
. (62)

This large deviation bound is not very good. We expect that there is a much better bound, but how can we get
better bounds?

C. Fiducial states of exact 4-designs up to �ve qubits

In this section we propose a method for constructing exact �ducial states of 4-designs of the Cli�ord group. Exact
�ducial states up to �ve qubits are constructed explicitly.
Recall that an n-qubit state |ψ〉 is a �ducial state for a 4-design i� ‖Ξ(ψ)‖4l4 = 4d/(d+ 3) Suppose ψ = ψ1 ⊗ ψ2 is

a tensor product of an n1-qubit state and an n2-qubit state with n1 + n2 = n. Then ‖Ξ(ψ)‖4l4 = ‖Ξ(ψ1)‖4l4‖Ξ(ψ2)‖4l4
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since Pn,4 can be written as a tensor product Pn,4 = Pn1,4 ⊗ Pn2,4. In the case of a single qubit, let ψ(x, y, z) be a
�ducial state with Bloch vector (x, y, z), where x2 + y2 + z2 = 1; then

‖Ξ(ψ)‖4l4 = 1 + x4 + y4 + z4. (63)

The state generates a 4-design i� x4 + y4 + z4 = 3/5 as pointed out in Sec. IVA. Let ψT be the magic state (also

a SIC �ducial) with Bloch vector (1, 1, 1)/
√

3. Then �ducial states of 4-designs for n = 2, 3, 4 can be constructed as
follows,





ψT ⊗ ψ(x, y, z), x4 + y4 + z4 = 5/7, n = 2;

ψ⊗2
T ⊗ ψ(x, y, z), x4 + y4 + z4 = 7/11, n = 3;

ψ⊗3
T ⊗ ψ(x, y, z), x4 + y4 + z4 = 8/19, n = 4.

(64)

There are also many other constructions.
In dimension 8, the set of Hoggar lines forms a SIC that is covariant with respect to the three-qubit Pauli group

[26, 51, 52]. One �ducial state of the SIC is given by

|ψHog〉 =
1√
6

(1 + i, 0,−1, 1,−i,−1, 0, 0)T. (65)

Note that ‖Ξ(ψHog)‖4l4 = 16/9 attains the minimum over all three-qubit states. This observation enables us to
construct �ducial states of 4-designs for n = 4, 5,

{
ψHog ⊗ ψ(x, y, z), x4 + y4 + z4 = 17/19, n = 4;

ψHog ⊗ ψT ⊗ ψ(x, y, z), x4 + y4 + z4 = 8/19, n = 5.
(66)

The tensor-product construction of �ducial states of 4-designs also has a limitation. Consider tensor products of
qubit magic states and ψHog for example,

‖Ξ(ψ⊗nT )‖4l4 =
(4

3

)n
.

‖Ξ(ψ⊗nHog)‖4l4 =
(16

9

)n/3
=
(4

3

)2n/3

, 3|n.
(67)

As n increases, ‖Ξ(ψ⊗nT )‖4l4 and ‖Ξ(ψ⊗nHog)‖4l4 increase exponentially with n. By contrast, the value required for a
4-design approaches the constant 4. The following proposition clari�es this limitation; see the appendix for a proof.

Proposition 5. Suppose a 4-design �ducial state of the n-qubit Cli�ord group is a tensor product of m states ψ =
⊗mj=1ψj, where ψj is an nj-qubit state with

∑
j nj = n and n1 ≥ n2 ≥ · · · ≥ nm. Then m ≤ 3 except when n = 4. If

m = 3, then n2 = n3 = 1, except when (n1, n2, n3) = (2, 2, 1) or (n1, n2, n3) = (3, 2, 1).

D. Algorithms for constructing �ducial states of 4-designs

Here we present two algorithms for constructing �ducial states of 4-designs. Let |ψ〉 be an n-qubit state. Recall
that |ψ〉 is a �ducial state of a 4-design i� β+(ψ) = 4/[d(d+ 3)] or, equivalently, i� ε(ψ) = 0; cf. Eqs. (45) and (46).
Given two n-qubit states |ψ1〉, |ψ2〉, if γ(|ψ1〉) > 0 and γ(|ψ2〉) < 0, then any continuous curve of pure states joining
|ψ1〉 and |ψ2〉 contains a 4-design �ducial. The following bisection algorithm is based on this simple observation. Let
ε0 be the precision required.
Algorithm 1:

1. Generate two states |ψ1〉, |ψ2〉 such that ε(ψ1) > 0, ε(ψ2) < 0, and 〈ψ1|ψ2〉 6= 0. Choose suitable phase factors
so that 〈ψ1|ψ2〉 > 0.

2. Let |ψ′3〉 = (|ψ1〉+ |ψ2〉)/2 and |ψ3〉 = |ψ′3〉/
√
〈ψ′3|ψ′3〉. If |ε(ψ3)| ≤ ε0, stop.

3. If γ(ψ3) ≥ 0, then replace |ψ1〉 with |ψ3〉; otherwise, replace |ψ2〉 with |ψ3〉. Repeat Steps 2,3.
Remark 2. |ψ1〉 can be chosen to be a stabilizer state, while a potential candidate for |ψ2〉 is an eigenstate of a Singer
unitary introduced in the next section. In Step 2 we may also use weighted sum of |ψ1〉, |ψ2〉, say

|ψ′3〉 =
|ψ1〉ε(ψ1)− |ψ2〉ε(ψ2)

ε(ψ1)− ε(ψ2)
. (68)
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The second algorithm is based on the tensor product construction discussed in the previous section.
Algorithm 2:

1. Generate an (n− 1)-qubit state |ψn−1〉 such that β+(ψn−1) ≤ 3/d(d+ 3), where d = 2n.

2. Let c = 4/[d(d+3)β+(ψn−1)]. Choose a qubit state |ψ〉 with Bloch vector (x, y, z) such that x4 +y4 +z4 = c−1.
Then |ψn−1〉 ⊗ |ψ〉 is a �ducial state of a 4-design.

Remark 3. The qubit state required in Step 2 can always be found. Note that 1/3 ≤ c− 1 ≤ 2(d+ 2)/(d+ 3)− 1 < 1
since β+(|ψn−1〉) ≥ 1/2n(2n−1 + 1) = 2/d(d+ 2), where the lower bound is saturated i� |ψn−1〉 is a SIC �ducial state
of the (n− 1)-qubit Pauli group; cf. Eq. (51).
In general, it is still not clear that there exists an (n− 1)-qubit state |ψn−1〉 such that β+(ψn−1) ≤ 3/d(d+ 3), but

we believe that the answer is positive. Actually, any eigenstate of a Singer unitary might satisfy the requirement; see
the next section.

E. Approximate �ducial states of 4-designs from MUB cycler

Let {|ψrj 〉}r,j be a set of mutually unbiased bases, where r labels the basis, and j labels each element in a basis. A
balanced state |ψ〉 with respect to {|ψrj 〉}r,j is a state that looks the same from every basis in the set, that is, the set

of probabilities {|〈ψrj |ψ〉|2}j is independent of r. If there exists a unitary operator that cycles through all the bases,
then any eigenstate of the unitary operator is a balanced state. For example, the complete set of MUB constructed
by Wootters and Fields [29] has a cycler when the dimension is a power of 2, that is d = 2n. Each MUB cycler is a
special element in the Cli�ord group, which is also known as a Singer unitary [53]. The group generated by a Singer
unitary is called Singer unitary group. All Singer unitary groups are conjugated to each other in the Cli�ord group,
all of them have the same order of d+1 (modular phase factors). In addition, each Singer unitary has a nondegenerate
spectrum, so the eigenbasis is well-de�ned. In the case of a qubit, each Singer unitary has order 3, and each eigenstate
of a Singer unitary is a SIC �ducial and a magic state.
When n is a power of 2, a simple construction of Singer unitaries (MUB cyclers) was presented in Ref. [54]. Here

we are interested in constructing approximate �ducial states of 4-designs from the eigenstates of a Singer unitary. For
n = 1, 2, 4, 8, numerical calculation shows that all eigenstates |ψn〉 of a Singer unitary for given n have the same value
of ε(ψn) [cf. Eq. (46)]. Let |ψT〉 be a single qubit magic state. Calculation shows that

−ε(|ψn〉 ⊗ |ψT〉) =





2
9 n = 1,

0.12 n = 2,

0.0312 n = 4,

0.0020 n = 8.

(69)

The magnitude of the deviation ε(ψn⊗ψT) is around 1/2n+1, which has the same order of magnitude as the standard
deviation of ε(ψ) for a random (n + 1)-qubit state |ψ〉; cf. Eq. (57). The orbit generated from |ψn〉 ⊗ |ψT〉 is a very
good approximation to a 4-design. Exact 4-design �ducial state can be constructed using algorithm 2 in the previous
section. In addition, |ψn〉 or |ψn〉 ⊗ |ψT〉 can serve as an input to Algorithm 1 presented in the previous section.

Conjecture 1. Suppose |ψn〉 is any eigenstate of a Singer unitary operator in the n-qubit Cli�ord group. Then

lim
n→∞

ε(ψn ⊗ ψT) = 0. (70)

This conjecture implies that the orbit generated by (n + 1)-qubit Cli�ord group from |ψn〉 ⊗ |ψT〉 converges to a
4-design with respect to the operator norm. Equation (70) has several equivalent formulations, one of which reads

lim
n→∞

‖Ξ(ψn)‖4l4 = 3. (71)

V. OPEN PROBLEMS

1. Is there any orbit of the Cli�ord that forms a t-design for t > 4? The answer is positive when n = 1. It seems
that the same should hold for larger n.

2. What is the maximum t such that there is an orbit of the Cli�ord group that forms a t-design. The answer is 7
when n = 1. How about approximate t-designs?

3. Prove Conjecture 1.
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TABLE III. Permutations of S8 without cycle of odd length. N1 is the number of permutations of a given cycle type; N2

is the number of balanced permutations (those in A ) of a given cycle type; N3 = N3+ − N3−, where N3± is the number of
permutations of a given cycle type that belong to A±. The sets A and A± are de�ned in the text. Note that N3++N3− = N2.

cycle type (24) (22, 4) (42) (2, 6) (8)

N1 105 1260 1260 3360 5040

N2 9 252 684 1440 5040

N3 9 108 108 288 432

Appendix A: Derivation of Eq. (55)

In this appendix, we derive the second moment of β+(ψ), as presented in Eq. (55).

E[β+(ψ)2] =
1

D[8]
tr(P⊗2

n,4P[8]) =
1

d4D[8]

∑

a,b

tr(P[8]W
⊗4
a ⊗W⊗4

b ) =
16(d2 + 15d+ 68)

d2(d+ 3)(d+ 5)(d+ 6)(d+ 7)
, (A1)

where Wa are n-qubit Pauli operators, P[k] is the projector onto k-partite symmetric subspace of (Cd)⊗k with d = 2n,
and D[k] is the rank of P[k] or the dimension of the k-partite symmetric subspace. In deriving the las equality in
Eq. (A1), we have made use of the following formula

tr(P[8]W
⊗4
a ⊗W⊗4

b ) =





D[8] Wa = Wb = 1,
D[8]

D[4]

3d2+6d
24 Wa = 1,Wb 6= 1 orWb = 1,Wa 6= 1,

1
2688 (7d4 + 84d3 + 308d2 + 336d) Wa = Wb 6= 1,

1
4480 (d4 + 28d3 + 236d2 + 560d) Wa,Wb 6= 1,WaWb = WbWa,

1
4480 (d4 + 12d3 + 44d2 + 48d) Wa,Wb 6= 1,WaWb = −WbWa.

(A2)

To derive Eq. (A2), we recall the following facts,

P[k] =
1

k!

∑

σ∈Sk
Uσ, trk P[k] =

D[k]

D[k−1]
P[k−1], (A3)

where trk means the partial trace over party k. If a 6= 0, then

tr(UσW
⊗k
a ) =

{
0 σ contains an cycle of odd length,

dl(σ) otherwise.
(A4)

where l(σ) is the number of cycles in σ with even lengths. The cycle types of elements in S8 without cycle of odd
length are listed in Table III.
The �rst case in Eq. (A2) is trivial. When Wb = 1,Wa 6= 1,

tr
(
P[8]W

⊗4
a ⊗W⊗4

b

)
=
D[8]

D[4]
tr
(
P[4]W

⊗4
a

)
, (A5)

recall that the symmetric group S4 has three permutations of cycle type 22, six permutations of cycle type 4, and all
other permutations contain at least one cycle of odd length (cf. II). The case Wa = 1,Wb 6= 1 has the same result.
When Wb = Wa 6= 1, the result follows from Eqs. (A3), (A4), and Table III.
To settle the last two cases in Eq. (A2), we need to introduce some terminology. A permutation in S8 is balanced

if each cycle involves even number of parties both in the �rst four parties and in the second four parties. De�ne
A as the subset of balanced permutations in S8. Each permutation in S8 induces a permutation on the vector
v = (a, a, a, a, b, b, b, b). De�ne

A+ = {σ ∈ A | σ induces even number of transpositions between a and b}. (A6)

A− = {σ ∈ A | σ induces odd number of transpositions between a and b}. (A7)

Note that A = A+ ∪A−.
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If Wb,Wa 6= 1, Wb 6= Wa, and WbWa = WaWb, then

tr(UσW
⊗4
a ⊗W⊗4

b ) =

{
dl(σ) σ ∈ A ,

0 σ /∈ A .
(A8)

If WbWa = −WaWb, then

tr(UσW
⊗4
a ⊗W⊗4

b ) =





dl(σ) σ ∈ A +,

−dl(σ) σ ∈ A−,

0 otherwise.

(A9)

Now the last two cases in Eq. (A2) can be determined by virtue of Table III and the above two equations.

Appendix B: Proof of Proposition 5

Proof. Let dj = 2nj and suppose m = 4. Then

‖Ξ(ψ)‖4l4 =

4∏

j=1

‖Ξ(ψj)‖4l4 ≥
4∏

j=1

2dj
dj + 1

≥
(4

3

)3 2n−2

2n−3 + 1
. (B1)

If n ≥ 5, then

(4

3

)3 2n−2

2n−3 + 1
− 2n+2

2n + 3
=

5× 2n+2(2n − 24)

27(2n + 3)(2n + 8)
> 0. (B2)

So the state ψ cannot generate a 4-design.
Now suppose m = 3, so that n1 + n2 + n3 = n. If n3 = 2, then

‖Ξ(ψ)‖4l4 ≥
(8

5

)3

=
512

125
≥ 4 >

4d

d+ 3
, (B3)

which leads to a contradiction. If n3 = 1, n1, n2 ≥ 3, then n ≥ 7,

‖Ξ(ψ)‖4l4 −
2n+2

2n + 3
≥

4∏

j=1

2dj
dj + 1

− 2n+2

2n + 3
≥ 4

3

16

9

2n−3

2n−4 + 1
− 2n+2

2n + 3
=

2n+2(5× 2n − 336)

27(2n + 3)(2n + 16)
> 0. (B4)

So ψ cannot be a 4-design �ducial. If n3 = 1, n1, n2 ≥ 2, then n ≥ 5,

‖Ξ(ψ)‖4l4 −
2n+2

2n + 3
≥

4∏

j=1

2dj
dj + 1

− 2n+2

2n + 3
≥ 4

3

8

5

2n−2

2n−3 + 1
− 2n+2

2n + 3
=

2n+2(2n − 72)

15(2n + 3)(2n + 8)
. (B5)

If in addition n ≥ 7, then ‖Ξ(ψ)‖4l4 ≥ 2n+2/(2n + 3), so that ψ cannot be a 4-design �ducial. This observation
completes the proof of the proposition.

Appendix C: Alternative proof of Lemma 1

When n = 1, the following four states

|φ0〉 := |0000〉+ |1111〉,
|φ1〉 := |1001〉+ |0110〉,
|φ2〉 := |0101〉+ |1010〉,
|φ3〉 := |0011〉+ |1100〉.

(C1)

form an orthonormal basis of Vn,4. The symmetric group S4 (permuting the four tensor factors) �xes |φ0〉 and acts
like S3 on the |φ1〉, |φ1〉, |φ2〉. For general n, we have that

Vn,4 = V ⊗n1,4 .

322



19

One orthonormal basis of Vn,4 is composed of the following 4n states

|φi1i2,...,in〉 = |φi1〉 ⊗ · · · ⊗ |φin〉, i1, i2, . . . , in ∈ {0, 1, 3, 4}. (C2)

Each state is labeled by a length-n word i1, . . . , in with ij ∈ {0, 1, 3, 4}. Each permutation in the symmetric group S4

induces a permutation on the basis states and a corresponding permutation on the words, which acts on all letters
simultaneously. We get these orbits:

1. One orbit containing 0×n, referred to as type I orbit below.

2. Any string in {0, i}×n (for given i ∈ {1, 2, 3}) excluding 0×n generates an orbit of size 3 . There are 2n− 1 such
orbits of length three, referred to as type II orbits below..

3. We have accounted for 3× (2n−1)+1 = 3×2n−2 strings. The remaining ones have either two or three distinct
non-zero letters. These strings are partitioned into orbits of length 6, referred to as type III orbits below.

The three type of strings are referred to as type I, II, III strings below; the corresponding orbits are referred to with
similar names. The total number of orbits is

2n +
4n − 3× 2n + 2

6
=

4n + 3× 2n + 2

6
=

(2n + 2)(2n + 1)

6
=

(d+ 2)(d+ 1)

6
. (C3)

Now we are ready to construct an orthonormal basis for the totally W+
[4] = Vn,4 ∩ Sym4(Cd). For each string

s ∈ {1, 2, 3}n, let orb(s) be the orbit of the string under the action of S4. Then

P[4]|φs〉 =
1

|orb(s)|
∑

r∈orb(s)

|φs〉 (C4)

Note that P[4]|φs〉 ∈W+
[4] only depends on orb(s) and that the states corresponding to di�erent orbits are orthogonal.

Let S be a subset of {0, 1, 3, 4}n that contains exactly one string from each orbit. Then

{
√
|orb(s)|P[4]|φs〉|s ∈ S } (C5)

is an orthonormal basis for W+
[4]. In particular, the dimension of W+

[4] is equal to the total number of orbits, that is,

D+
[4] = dim(W+

[4]) =
(d+ 2)(d+ 1)

6
. (C6)

Now consider the subspace W+
[14]. Note that P[14]|φs〉 = 0 when s is an type I or type II string. An orthonormal

basis for W+
[14] is

{
√
|orb(s)|P[14]|φs〉|s ∈ S is of type III}. (C7)

The dimension of W+
[14] is equal to the number of type III orbits, that is,

D−[14] = dim(W+
[14]) =

(d− 2)(d− 1)

6
. (C8)

It is more involved to compute the dimension W+
[22], but it is also unnecessary if we can compute the dimension of

W+
[2,1,1] and W

+
[3,1]. With Lemma 5 below one can show that P[2,1,1]|φs〉 = 0 and P[3,1]|φs〉 = 0 for all strings s. So

both W+
[2,1,1] and W

+
[3,1] have dimension 0. It follows that

D+
[4] +D+

[14] + 2D+
[22] = d2, (C9)

which implies that D+
[22] = (d2 − 1)/3.

Lemma 5. Let H be the unique order-4 normal subgroup of S4. Then
∑
σ∈gH χλ(σ) = 0 for λ = [2, 1, 1], [3, 1] and

all g ∈ S4.
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We study the reconstruction of hermitian low rank matrices from an undersampled number of
measurements via nuclear norm minimization. We consider the particular scenario, where the mea-
surements correspond to rank-one projectors onto orbits of the Clifford group chosen uniformly at
random. This includes stabilizer states as a particular special case. Novel results about the higher
moments of the multi-qubit Clifford group [1] allow us to establish reconstruction guarantees for
m ≥ Cnrκ(r) log(n) measurements. The factor κ(r) depends on the choice of fiducial. For stabilizer
states it amounts to r. This reconstruction is stable towards both additive noise and the model as-
sumption of low rank. If the matrix of interest is in addition positive semidefinite, reconstruction
may be performed by a constrained nuclear norm minimization.

Our results in particular imply near-optimal performance guarantees for phase retrieval via
PhaseLift.

I. INTRODUCTION AND MAIN RESULTS

A. Phase retrieval and low rank matrix recovery

The problem of retrieving phases has a long history
in many different scientific disciplines. Accordingly, the
problem’s mathematical structure has received consid-
erable attention in its own right. Mathematically, the
discrete version of the phase retrieval problem asks to
reconstruct an unknown complex vector x ∈ Cd from
measurements of the form

yk = |〈ak, x〉|2 + ek 1 ≤ k ≤ d. (1)

Here, a, . . . , am ∈ Cd model linear measurements, while
the absolute values assure that the corresponding obser-
vations yk are ignorant towards complex phases. Finally,
the ek’s model additive noise of unknown size and struc-
ture.

Importantly, a measurement process of the form (1) is
not linear in x. This non-linearity can be overcome by
“lifting” the problem to the outer-product xx∗ of x [2, 3]:

yk = |〈ak, x〉|2 + ek = tr (aka∗k xx∗) + ek. (2)

Known as “PhaseLift” [4], such a trick seemingly changes
the problem’s nature and asks for estimating the posi-
tive semidefinite, rank-one matrix xx∗ from linear mea-
surements. Such a task is a particular instance of low
rank matrix recovery. Building on ideas from compressed
sensing, low rank matrix recovery aims at estimating an
unknown d× d matrix X ∈ Md from m� d2 linear mea-
surements of the form

yk = tr (AkX) + ek 1 ≤ k ≤ m, (3)

under the prior assumption that X is (approximately)
low rank. By defining the measurement operator

A : Md → Rm (4)

Z 7→
m

∑
k=1

tr (AkZ) ek,

where e1, . . . , em denotes the standard basis in Rm, an
entire measurement process can succingtly be written as

y = A(X) + e (5)

with y = (y1, . . . , ym)T and e = (e1, . . . , em)T . Up to
date, several measurement ensembles A1, . . . , Am ∈ Md
have been identified [5, 6] for which any rank r matrix
can be stably estimated from

m = Crdpolylog(d)

noisy measurements of the form (3). With a notable ex-
ception [7], these results rely on randomly selected mea-
surements. In order to deal with noise corruption, an a
priori bound η ≥ ‖e‖`q on that noise is required. Subse-
quently, the actual reconstruction is carried out by solv-
ing

Z] = arg min ‖Z‖1 (6)
subject to ‖A(Z)− y‖`q ≤ η

algorithmically. This is a computationally tractable con-
vex optimization task. With high probability, the quality
of such a reconstruction is then bounded by this a-priori
chosen noise bound η. A typical uniform recovery guar-
antee (see also Theorem 2 below) for a measurement op-
erator A assures

‖X− Z]‖2 ≤ C
η√
m

for all target matrices X ∈ Md with rank(X) ≤ r.

B. Clifford Orbits

Throughout this section (and the remainder of this pa-
per) we shall assume that the dimension d is a power of
two.

Let U1, . . . , Ud2 denote the Pauli matrices and Wk :=
1√
d

Wk their re-normalized counterparts. These matrices
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form a unitary operator basis of Hd with respect to the
Frobenius inner product:

(Wk, Wl) =
1
d

(Uk, Ul) =
δk,l

d
‖Uk‖2

2 = δk,l .

The characteristic function

w : Hd → Rd2
(7)

X 7→
d2

∑
k=1

(Wk, X) ek, (8)

maps every hermitian matrix to the vector of expansion
coefficients with respect to the basis W1, . . . , Wd2 . We
point out that the characteristic function is an isometry,
i.e. ‖w(Z)‖`2 = ‖Z‖2 ∀Z ∈ Hd. In addition, it obeys

‖w(X)‖`∞ = max
1≤k≤d2

1√
d
|(Uk, X)| ≤ ‖X‖1√

d
∀X ∈ Hd

(9)
according to the Hoelder inequality.

The Clifford group C(d) is the group of unitary trans-
formations that—up to a global phase—maps Pauli
matrices to Pauli matrices under conjugation. It has
many remarkable properties. One of them is that
in qubit dimensions it forms a unitary 3-design [8, 9].
Roughly speaking, unitary t-designs are discrete sub-
sets of the unitary group U(d) that reproduce the Haar
measure up to t-th moments. We refer to [1] for fur-
ther information. This in turn implies that every orbit
Oz = {Cz : C ∈ C(d)} forms a complex projective 3-
design. Similar to unitary 3-designs, complex projective
3-designs reproduce the first 2t moments of the uniform
distribution over the complex unit sphere Sd−1.

Stabilizer states form the smallest Clifford orbit. The
fact that they also constitute a complex projective 3-
design was independently derived by a subset of the au-
thors [14].

The 3-design property of any Clifford orbit in partic-
ular implies that a random vector a ∈ Cd chosen uni-
formly from such an orbit obeys

Ea∈Oz [aa∗] =
1
d
1, (10)

Ea∈Oz

[
Ten3 (aa∗)

]
=

(
d + 1

2

)−1
PSym2 , (11)

Ea∈Oz

[
Ten3 (aa∗)

]
=

(
d + 2

3

)−1
PSym3 .

Here, Tenk(Z) = Z⊗k denote the canonical k-fold tensor
product of a matrix Z ∈ Hd.

Recently, we were able to extend this knowledge
about moments to order four:

Theorem 1 (Corollary 3 in [1]). For any power of two d,
uniformly sampling a ∈ Sd−1 from a Clifford orbit with fidu-
cial z ∈ Sd−1 results in a distribution obeying

E
[
Ten4 (aa∗)

]
= d

(
d + 2

3

)−1

(α1(z)P1 + α2(z)P2) ,

where P1, P2 ∈ Ten4(Hd) are orthogonal projections that
commute with PSym4– the projector onto the totally symmet-

ric subspace. Defining Q = ∑d2

k=1 Ten4(Wk) allows to char-
acterize them explicitly by

P1 = PSym4 Q and P2 = PSym4 (I−Q)

and the coefficients amount to

α1(z) =‖w(zz∗)‖4
`4

and α2(z) = 4
1− ‖w(zz∗)‖4

`4

(d + 4)(d− 1)
,

where w(·) : Hd → Rd2
is the isometry introduced in (7).

C. Main results

The results in [10, 11] highlight that random measure-
ment projectors onto elements of a 4-design admit a re-
quired sampling rate of m = rd log(d). This is opti-
mal up to a single log-factor. In general, Clifford orbits
Oz ⊂ Sd−1 fail to constitute a 4-design. In our main
results, we pay the prize for this lack of structure by re-
quiring a (potentially trivial) oversampling factor. De-
pending only on the Clifford orbit’s fiducial z ∈ Sd−1

and a parameter ρ ∈]0, 1[ it amounts to

κ(z, ρ) :=
1
ρ

max
{

1, rd‖w(zz∗)‖4
`4

}
∈
[

1
ρ

,
r
ρ

]
, (12)

where w : Hd → Rd2
is the i The lower bound on

κ(z, ρ)’s range is trivial, while the upper bound follows
from Lemma 3 below. In our reconstruction guarantee,
this factor will feature not only in the sampling rate, but
also in the reconstruction bound and the failure proba-
bility.

Theorem 2. Let d be a power of two, z ∈ Sd−1 and fix
1 ≤ r ≤ d, ρ ∈ ]0, 1[. Consider a measurement operator
A containing

m ≥ C1

ρ2 κ2
zrd log(d). (13)

projectors Ak = aka∗k onto uniformly sampled elements of

z’s Clifford orbit. Then, with probability 1− e
−C2

m
κ2

z , a noisy
measurement process of the form A(X) = y + e suffices to
stably reconstruct the best rank-r approximation of any X ∈
Hd. Concretely, the solution Z] of (6) obeys

‖X− Z]‖2 ≤
C(ρ)√

r
σr(X) + D(ρ)κ(z, ρ)

Motivated by the structure of PhaseLift (1) we focus
our attention on estimating low rank matrices X that
are in addition positive-semidefinite (psd) and rank-one
projective measurements Ak = aka∗k which are also psd.
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Such a restriction to psd target matrices X and mea-
surements Ak has a crucial advantage. As pointed out
in [11–13], such positive semidefinite shape constraints
often render nuclear norm minimization superfluous in
the algorithmic reconstruction step. This in particu-
lar allows for replacing (6) by a simple constrained `q-
regression (q ≥ 1):

Z] = arg min
Z is psd

‖A(Z)− y‖`q
. (14)

Compared to (6), Algorithm (14) has the considerable
advantage of not requiring an a-priori bound η on the
noise corrupting the measurement process. From a prac-
tical perspective, this feature is highly desirable and our
main result has this feature:

Theorem 3. Let d be a power of two, z ∈ Sd−1, fix 1 ≤ r ≤ d
and ρ ∈

]
0, 1

2

[
. Let w(·) : Hd → Rd2

be the isometry
introduced in (7) and define

κz :=
1
ρ

max
{

1, rd‖w(zz∗)‖4
`4

}
∈
[

1
ρ

,
r
ρ

]
. (15)

Consider a noisy measurement operator A containing

m ≥ C1

ρ2 κ2
zrd log(d). (16)

projectors Ak = aka∗k onto uniformly sampled elements of

z’s Clifford orbit. Then, with probability 1− de
− C2m

max{κ2
z ,d} , a

noisy measurement process of the formA(X) = y + e suffices
to stably reconstruct the best rank-r approximation of any psd
matrix X ∈ Hd. Concretely, for any q ≥ 1, the solution Z] of
Algorithm (14) obeys

‖X− Z]‖2 ≤
C3(ρ)√

r
σr(X)1 + C4(ρ)

κz
√

(d + 1)d
m1/q ‖e‖`q ,

where σr(X)1 = inf {‖X− Z‖1, Z has rank r} is the nu-
clear norm error of best rank-r approximation to the matrix
X. Here, C1, C2 are absolute constants and C3(ρ), C4(ρ) de-
pend exclusively on the choice of ρ (see (46) and (47) below
for explicit dependencies).

We note that Lemma 3 below assures that

‖w (zz∗) ‖4
`4
≤ 1

d
∀z ∈ Cd (17)

is true. So, in the worst case the sampling rate required
in (16) amounts to

m ≥ C1

ρ4 r3d log(d). (18)

While sub-optimal in the rank parameter, its depen-
dence on the ambient dimension d is optimal up to a
single log-factor. Clearly, different choices of fiducials
z ∈ Cd lead to different requirements on the sampling
rate:

1. Stabilizer states: (e.g. z = e1) (17) is tight, which
results in the worst case (18).

2. “Magic states:” For d = 2n set z = Tenn(m) and
choose m ∈ Cd such that

mm∗ =
1
2

(
I± 1√

3
U1 ±

1√
3

U2 ±
1√
3

U3

)
,

where U1, U2, U3 ∈ H2 denote the non-identity
Pauli matrices[21]. By construction such a x obeys
‖w(zz∗)‖4

`4
< d−

3
2 , which results in a required

sampling rate

m ≥ C1

ρ4 max
{

1,
r2

d

}
rd log(d)

that is order-optimal for any rank parameter 1 ≤
r ≤
√

d.

3. 4-design fiducial: if z ∈ Cd obeys ‖w(zz∗)‖4
`4

=
4

d(d+3)
, the corresponding Clifford orbit forms a

complex projective 4-design [1]. This work also
shows that such a choice is always feasible and in-
serting such a ‖w(zz)‖4

`4
into (16) results in a sam-

pling rate requirement

m ≥ 4C1

ρ4 rd log(d) (19)

which is always order-optimal. This result should
not come as a surprise, since order optimal uni-
form recovery guarantees have already been es-
tablished in [10, 11] based on the 4-design prop-
erty alone.

Finally, let us turn our attention to the particular case
of phase retrieval. The PhaseLift approach by construc-
tion assures that the target signal is a psd matrix with
rank-one, i.e. σ1(xx∗)1 = 0. Setting r = 1 and employ-
ing (17) we thus may conclude the following from The-
orem 3:

Corollary 1 (PhaseLift with Clifford orbits). Let d be a
power of two and suppose that a1, . . . , am are

m ≥ C1d log(d) (20)

uniformly sampled elements of any Clifford orbit. Then, with
probability at least 1− de−C̃2m, the associated phaseless mea-
surements yk = |〈ak, x〉|2 + ek allow for estimating any xx∗
(and thus x) by employing Algorithm (14) with any q ≥ 1.
Its minimizer is guaranteed to obey

‖Z] − xx∗‖`2 ≤ C3

√
(d + 1)d
m1/q ‖e‖`q . (21)

Any Clifford orbit forms a 3-design [8, 9, 14]. Viewed
from this angle, Corollary 1 may be viewed as a substan-
tial strengthening of the main result in [15] for particular
3-designs.
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Note that the factor
√

(d + 1)d in (21) is an artifact of
our normalization. If we change the normalization of
the sampling vectors from one to 4

√
(d + 1)d – a length

that closely resembles the expected length of random
Gaussian vectors – we obtain measurements of the form

ỹk = |〈ãk, x〉|2 + ẽk with ãk =
√

(d + 1)dak (22)

and ẽ =
√

(d + 1)de, because the noise term is ampli-
fied as well. For re-scaled measurements of this form
and q = 1, Corollary 1 assures whp that for any x ∈ Cd,
solving

Z] = arg min
Z is psd

m

∑
k=1
|〈ãk, Zãk〉 − ỹk| (23)

yields a matrix obeying

‖Z] − xx∗‖2 ≤ C3
‖ẽ‖`2

m
. (24)

Up to a single log-factor in the sampling rate (20) and
a slightly weaker bound on the probability of failure
(de−C̃2m vs. O (e−γm)) this special case reproduces the
main result in [16] – the strongest recovery guarantee
for PhaseLift with Gaussian measurements available.

II. PROOFS

A. Null space properties under positive semidefinite
constraints

Low rank matrix recovery aims to reconstruction
rank-r matrices X ∈ Hd form an incomplete collection
of m linear, and potentially noisy, measurements (3). A
necessary and sufficient criterion for this to be uniformly
possible (i.e. all matrices of rank ≤ r may be recovered),
is that the measurement operator A obeys a null space
property [17]. A strong matrix version thereof was intro-
duced in [11]:

Definition 1 (Definition 3.1 in [11] for hermitian ma-
trices). For fixed r and q ≥ 1, a measurement operator
A : Hd → Rm obeyes the `q-robust null space property
of order r (r/`q-NSP) with constants ρ ∈]0, 1[ and τ > 0,
if

‖Zr‖2 ≤
ρ√
r
‖Zc‖1 + τ‖A(Z)‖`q ∀Z ∈ Hd. (25)

Here Zr denotes the best rank-r approximation of Z and
Zc = Z−Zr is the error matrix of best rank-r approximation.
Consequently, ‖Zc‖1 equals σr(Z)1 introduced in Theorem 3.

Validity of a r/`q-NSP assures that any matrix Z with
rank at most r need obey ‖Z‖2 ≤ τ‖A(Z)‖`q . This as-
sures that no such matrix can lie inA’s null space. While
such a criterion is clearly neccessary for uniform rank-r
matrix recovery, the following statements shows that it
is also sufficient.

Theorem 4 (Theorem 3.3 in [11] for hermitian matrices).
Fix r, q ≥ 1 and suppose that A : Hd → Rm obeys a r/`q-
NSP with constants ρ ∈]0, 1[ and τ > 0. Then

‖Z− X‖2 ≤
Cρ√

r
(‖Z‖1 − ‖X‖1 + 2‖Xc‖1) (26)

+Dρτ‖A(Z− X)‖`q ∀X, Z ∈ Hd,

with Cρ = (1+ρ)2

1−ρ and Dρ = 3+ρ
1−ρ .

The nuclear norm difference ‖Z‖1 − ‖X‖1 appearing
in (26) motivates to perform a constrained nuclear norm
minimization (6) in order to estimate a matrix X from
noisy measurements y = A(X) + e with ‖e‖`q ≤ η. By
construction, the target matrix X is a feasible point of
this algorithm which implies ‖Z]‖1 ≤ ‖X‖1 and

‖A(X)− Z)‖`q ≤‖A(X)− y‖`q + ‖A(Z)− y‖`q

≤‖e‖`q + η ≤ 2η.

Inserting these features into (26) assures

‖Z] − X‖2 ≤
2Cρ√

r
σr(X)1 + 2Dρτη, (27)

provided that A obeys a r/`q-NSP. This stable and uni-
form recovery guarantee for constrained nuclear norm
minimization underlines that a NSP is also sufficient for
matrix recovery.

In this work we shall assume more structure: namely
that the target matrices are also psd. For a pair of
psd matrices X, Z, the nuclear norm difference in (26)
amounts to

‖Z‖1 − ‖X‖1 = tr(Z)− tr(X) = tr (I(Z− X)) . (28)

In addition, a measurement operator A containing m
random Clifford orbit measurements Ak = aka∗k obeys

d
m

E [A∗(1)] = E

[
m

∑
k=1

d
m

Ak

]
= I, (29)

because every Clifford orbit forms a tight frame (10).
Here, A∗ : Rm → Hd denotes the adjoint of A and
1 = (1, . . . , 1)T ∈ Rm is the “all-ones” vector. Combin-
ing these two statements assures

‖Z‖1 − ‖X‖1 =
d
m
〈1, E [A] (X− Z)〉

≤ d

m
1
q
‖E [A] (X− Z)‖`q

for any pair of psd matrices X, Z. So, at least in expec-
tation, the nuclear norm difference (‖X− Z‖1) between
psd matrices is controllable by means of ‖A(X−Z)‖`q –
the second term featuring in (26). This is a strong indi-
cation that for psd matrices, the first term in said bound
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is superfluous. And it certainly is, if (29) were also true
for A’s concrete realization – this realization is due to
Kalev[22] et. al. [12]. One of the main results in [11] fur-
ther generalizes this statement: for measurements form-
ing a tight frame, any actual realization of A∗(1) does
not deviate much from its expectation whp [11, Propo-
sition 8.3]:

Pr
[∥∥∥∥

d
m
A∗(1)− I

∥∥∥∥
∞
≥ β

]
≤ de−

3β2m
8(d−1) ∀β ∈ [0, 1[. (30)

This readily follows from applying a matrix Bernstein
deviation inequality (see e.g. proof of Proposition 8.3
in [11]). Theorem 8.1 in [11] then assures that validity
of ‖A∗(1)− I‖∞ < β suffices to omit the nuclear norm
terms in (26) , provided that both X and Z are psd. This
omission comes at the price of larger constants Cρ, Dρ

and tighter conditions on ρ that all depend on β ∈ [0, 1[.
These dependences is particularly simple for β =

√
2−1√
2+1

,
where we obtain:

Corollary 2. Suppose thatA : Hd → Rm obeys a r/`q-NSP

with parameters ρ ∈
]
0, 1

2

[
and τ > 0 that in addition obeys

∥∥∥∥
d
m
A∗(1)− I

∥∥∥∥
∞
<

√
2− 1√
2 + 1

. (31)

Then,

‖Z− X‖2 ≤
C̃ρ√

r
‖Xc‖1 + D̃ρ

(
d

m
1
q

+ τ

)
‖A(X− Z)‖`q

is true for any pair of psd matrices X, Z ∈ Hd. The constants

amount to C̃ρ = 4 (1+2ρ)2

1−2ρ and D̃ρ = 2 3+2ρ
1−2ρ .

Moreover, if A consists of m projectors onto uniformly
sampled elements of a tight frame, then (31) holds with prob-
ability at least 1− de−C4

m
d−1 .

B. A null space property for Clifford orbits

Recall that a measurement operator A : Hd → Rm

obeys a r/`q-NSP, if

‖Zr‖2 ≤
ρ√
r
‖Zc‖1 + τ‖A(Z)‖`q ∀Z ∈ Hd.

For any fixed r and ρ, all matrices Z ∈ Hd obeying
‖Zr‖2 ≤ ρ√

r‖Zc‖1 meet this requirement by default.
Also, the NSP is invariant under scaling, which allows
us to set ‖Z‖2 = 1 without loss of generality. So, when
aiming to establish a r/`q-NSP with constant ρ ∈ [0, 1[
for any A, we may restrict our attention to

Tρ,r =

{
Z ∈ Hd : ‖Zr‖2 >

ρ√
r
‖Zc‖1, ‖Z‖2 = 1

}
⊂ Hd.

(32)

And a measurement operator A obeys the r/`q-NSP
with constants ρ ∈]0, 1[ and τ > 0, if

inf
Z∈Tρ,r

‖A(Z)‖`q
≥ 1

τ
. (33)

Note that the parameters r, ρ implicitly feature in the
definition of Tρ,r, while τ is inversly proportional to the
best lower bound we manage to establish in (33). The
space Tρ,r is contained in Hd – a d2-dimensional real vec-
tor space. Moreover, the “effective rank” of any Z ∈ Tρ,r
cannot be too large:

Lemma 1. Let Tρ,r ⊂ Hd be the set introduced in (32) for
some ρ ∈]0, 1[ and 1 ≤ r ≤ d. Then:

‖Z‖2
1 =
‖Z‖2

1
‖Z‖2

2
≤
(

ρ + 1
ρ

)2
r ∀Z ∈ Tρ,r. (34)

Proof. Combining ‖Zr‖1 ≤
√

r‖Zr‖2 with the defining
property of Z ∈ Tρ,r reveals

‖Z‖1 = ‖Zr‖1 + ‖Zc‖1 ≤
ρ + 1

ρ

√
r‖Zr‖2,

and the claim follows from ‖Zr‖2 ≤ ‖Z‖2 = 1.

Also, A : Hd → Rm is comprised of m independently
selected projectors onto random elements of a Clifford
orbit. The real-valued structure of the underlying vec-
tor space together with independence of the individ-
ual measurement matrices allows us to employ Mendel-
son’s small ball method [18–20]. This strong probabilis-
tic anti-concentration inequality will enable us to estab-
lish (33) with high probability.

Theorem 5 (Mendelson’s small ball method). Fix E ⊂
Rd arbitrary and let φ1, . . . , φm ∈ Rd be independent copies
of a random vector φ. For ξ > 0 define

Qξ (E; φ) = inf
z∈E

Pr [|〈φ, z〉| ≥ ξ] , and (35)

Wm(E; φ) =E

[
sup
z∈E
〈h, z〉

]
with (36)

h =
1√
m

m

∑
k=1

εkφk ∈ Rd, (37)

where ε1, . . . , εm is a Rademacher sequence. Then for any
ξ > 0 and t ≥ 0, the following bound is true with probability
at least 1− e−2t2

:

1√
m

inf
z∈E

m

∑
k=1
|〈φk, z〉| ≥ ξ

√
mQ2ξ(E; φ)− 2Wm(E; φ)− ξt.

(38)

We emphasize that this is not the standard result
known as “Mendelson’s small ball method”. The latter
establishes a lower bound on infz∈E

√
∑m

k=1 |〈φk, z〉|2.
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As such, the assertion of Theorem 5 is stronger, but is
also implied by Mendelson’s original proof. Adapting
this statement to the cause at hand yields the following
corollary which we are going to employ in order to es-
tablish (33).

Corollary 3 (Consequence of Remark 5.1 in [11]). Fix r,
ρ and let Tρ,r ⊂ Hd be the set introduced in (32). Suppose
that A : Hd → Rm is a measurement operator containing m
independent instances of a single random matrix A ∈ Hd as
individual measurements. Then for any q ≥ 1, ξ > 0 and
t ≥ 0

inf
Z∈Tρ,r

‖A(Z)‖`q

≥m
1
q− 1

2
(
ξ
√

mQ2ξ(Tρ,r; A)− 2Wm(Tρ,r, A)− ξt
)

is true with probability at least 1− e−2t2
. Here Q2ξ(E; A)

and Wm(E, A) are the parameters defined in (35) and (36).

Proof. Hd is a real-valued vector space isomorphic to
Rd2

. By assumption, we may also identify each Ak with
an instance φk of the random “vector” A := φk ∈ Rd2 '
Hd. We may also identify any Tρ,r ⊂ Hd ' Rd2

with the
set E in Theorem 5. Said theorem is applicable and al-
lows us to bound

inf
Z∈Tρ,r

1√
m

m

∑
k=1
|(Ak, z)| = inf

Z∈Tρ,r

1√
m
‖A(Z)‖`1

from below. Finally, we employ the basic norm inequal-

ity ‖z‖1 ≤ m1− 1
q ‖z‖`q ∀z ∈ Rm, ∀q ≥ 1 [17, Equation

A.3] to conclude

inf
Z∈Tρ,r

‖A(Z)‖`q ≥ m
1
q− 1

2 inf
Z∈Tρ,r

1√
m
‖A(Z)‖`1

and the claim follows with Mendelson’s bound (38).

In our sampling model, A consists of m projectors
Ak = aka∗k , where each ak is sampled uniformly from a
Clifford orbit Oz ⊂ Cd. The choice of a fiducial z ∈ Sd−1

is arbitrary. According to Equation 10 each Clifford or-
bit forms a tight frame. Combining this feature with the
structural insights from Lemma 1 allows us to establish
the following bound:

Proposition 1. For any z ∈ Sd−1, let A = aa∗ be a projector
onto a ∈ Oz chosen uniformly at random. Also, fix 1 ≤
r ≤ d, ρ ∈]0, 1[ and m ≥ 2d log(d). Then the parameter
Wm(Tρ,r, A) featuring in Corollary 3 obeys

Wm(Tρ,r; A) ≤ 6.2098
ρ

√
r log(2d)

d + 1
.

Proof. This proof closely resembles a comparable anal-
ysis provided in [10]. Matrix Hoelder together with

Lemma 1 assures

Wm(Tρ,r; A)= E

[
sup

Z∈Tρ,r

(H, Z)

]
≤ sup

Z∈Tρ,r

‖Z‖1E [‖H‖∞]

≤ ρ + 1
ρ

√
rE [‖H‖∞] ≤ 2

ρ

√
rE [‖H‖∞] ,

where H = 1√
m ∑m

k=1 εkaka∗k . Each ak is by assumption
chosen from a tight frame and normalized to one. This,
together with the assumption m ≥ 2d log(d), allows for
bounding E [‖H‖∞] by means of [10, Proposition 13].
Adapting said statement to unit normalization of the
ak’s yields

E [‖H‖∞] ≤ 3.1049

√
log(2d)

d + 1

and the claim readily follows.

Establishing a sufficiently tight lower bound on the
other parameter – Qξ

(
Tρ,r; aa∗

)
defined in (35) – for Clif-

ford orbits is considerably more challenging. The rea-
son for this complication is that Clifford orbits in gen-
eral do not constitute a complex projective 4-design. As
demonstrated in [10, 11], a 4-design property alone al-
lows for achieving the task at hand by applying a Paley-
Zygmund argument. Unfortunately, Clifford orbits in
general do not have this structural property.

However, novel insights about the structure of the
Clifford group [1] – see also section I B – allow us to still
carry out a similar Paley-Zygmund argument.

Lemma 2. Fix Z ∈ Tρ,r for some 1 ≤ r ≤ d, ρ ∈]0, 1[ and
define the random variable S := 〈a, Za〉, where a is uniformly
chosen from a Clifford orbit Oz with fiducial z ∈ Sd−1. Then

E
[
S2
]

=
1 + tr(Z)2

(d + 1)d
≥ 1

(d + 1)d
and (39)

E
[
S4
]
≤84κzE

[
S2
]2

, (40)

(41)

where κz = max
{

1, rd‖w(zz∗)‖4
`4

}
was defined in (15).

While (39) directly follows from the 2-design prop-
erty of Clifford orbits, establishing the bound (40) is
considerably more challenging. Said bound constitutes
this work’s main technical contribution. We devote sec-
tion II D to proving it. We point out that a comparable
bound for 4-designs would read E

[
S4] ≤ 24E

[
S2]2 [10,

Proof of Proposition 12]. Inequality (40) is weaker than
such a 4-design bound. The nature of this bound will
ultimately result in the additional factor κz featuring in
Theorem 3.
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Proposition 2. For any z ∈ Sd−1m let A = aa∗ be a pro-
jector onto a ∈ Oz chosen uniformly at random. Then the
parameter Qξ(Tρ,r, A), featuring in Corollary 3, obeys

Qξ

(
Tρ,r; A

)
≥ 1

κz

(
1−

(√
(d + 1)dξ

)2
)2

for any 0 ≤ ξ ≤ 1√
(d+1)d

, 1 ≤ r ≤ d and ρ ∈]0, 1[.

Proof. Fix Z ∈ Tρ,r, ξ ≥ 0 and define the real-valued ran-
dom variable S = 〈a, Zz〉, where a is chosen uniformly
from Oz. Then

Pr [|〈a, Za〉| ≥ ξ] =Pr [|S| ≥ ξ] = Pr
[
S2 ≥ ξ2

]

≥Pr
[
S2 ≥ (d + 1)dξ2E

[
S2
]]

,

where the last inequality is due to (39). Applying the
Paley-Zygmund inequality to the non-negative random
variable S2 assures

Pr
[
S2 ≥ (d + 1)dξ2E

[
S2
]]
≥
(

1− (d + 1)dξ2
)2 E

[
S2]2

E [S4]

≥ 1
κz

(
1− (d + 1)dξ2

)2
,

where the last line is due to (40). Since such a lower
bound is valid for any Z ∈ Tρ,r we may conclude that it
also holds for

Qξ

(
Tρ,r; A

)
= inf

Z∈Tρ,r
Pr [|〈a, Za〉| ≥ ξ] .

We have now assembled all necessary ingredients to
lower bound infZ∈Tρ,r ‖A(Z)‖`q

for any choice of q, r, d.

Applying Corollary 3 with ξ = 1
4
√

(d+1)d
and t =

√
C̃2m
κz

– where C̃2 is a sufficiently small constant – implies

inf
Z∈Tρ,r

‖A(Z)‖`q
≥m

1
q− 1

2


√m

Q 1
2
√

(d+1)d
(Tρ,r; A)

4
√

(d + 1)d
− 2Wm(Tρ,r; A)−

√
C̃2m

4
√

(d + 1)dκz




≥ m
1
q− 1

2

κz
√

(d + 1)d

(
9ρ
√

m
1344

− 13
ρ

√
κ2

zrd log(2d)−
√

C̃2m
4

)
(42)

with probability at least 1− e
− 2C̃2m

κ2
z . In the last line, we

have inserted the bounds provided by Proposition 1 and
Proposition 2, respectively. Let us now fix

m ≥ C1

ρ2 κ2
zrd log(2d),

where C1 is a sufficiently large constant. Such a choice
assures that the bracket in (42) is lower bounded by

√
m

C3
,

where C3 is constant. Inserting this novel bound into
(42) allows us to conclude

inf
Z∈Tρ,r

‖A(Z)‖`q ≥
m

1
q− 1

2
√

(d + 1)d

√
m

C3κz
=

m
1
q

C3κz
√

(d + 1)d

with high probability. Comparing this bound to (33) re-
veals that it in turn establishes a NSP for A:

Theorem 6. Fix 1 ≤ r ≤ d, ρ ∈]0, 1[, q ≥ 1 and z ∈ Sd−1

and κz defined in (15). Suppose that A : Hd → Rm contains

m ≥ C1

ρ2 κ2
zrd log(2d)

projectors onto randomly selected elements of the Clifford or-

bit Oz. Then, with probability at least 1 − e
− C̃2m

κ2
z , this A

obeys the r/`q-NSP from Definition 1 with paramters

ρ and τ =
C3κz

√
(d + 1)d

m
1
q

.

Here, C1, C̃2, C3 denote constants of sufficient size.
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C. Algorithmic Implications and proof of Theorem 3

If Corollary 2 is valid, it has profound algorithmic im-
plications for recovering psd matrices with low rank [11]
(see also [13] for similar approach to compressed sens-
ing). If we fix ρ ∈

]
0, 1

2

[
and 1 ≤ r ≤ d, a combination of

said statement with Theorem 6 assures thatA consisting
of m = C1κzrd log(2d) random Clifford measurements
obeys

‖X− Z‖2

≤ C̃ρ√
r
‖X1‖1 + D̃ρ

(
d

m
1
q

+ τ

)
‖A(X− Z)‖`q

≤ C̃ρ√
r
‖X1‖1 + D̃ρ

(
d

m
1
q

+
C3κz

√
(d + 1)d

m
1
q

)
‖A(X− Z)‖`q

≤ C̃ρ√
r
‖X1‖1 +

2C3D̃ρ

m
1
q

κz

√
(d + 1)d ‖A(X− Z)‖`q

∀X, Z psd

(43)

with probability of failure bounded by

de−
C4m
d+1 + e

− C̃2m
κ2

z ≤ (d + 1)e
− min{C4,C̃2}

max{κ2
z ,d+1} ≤ de

− C2m

max{κ2
z ,d}
(44)

according to the union bound. Once more, C2 is a con-
stant.

If we now aim at recover a psd target matrix X from
noisy measurements of the form

A(X) = y + e

(see (5)), this sampling process implies

‖A(X−Z)‖`q = ‖A(Z)−y− e‖`q ≤ ‖A(Z)−y‖`q + ‖e‖`q

for any psd Z. Fixing the target matrix X and inserting
this bound into (43) assures

‖X− Z‖`q

≤ C̃ρ√
r
‖Xc‖1 +

2C3D̃ρ

m
1
q

κz

(
‖A(Z)− y‖`q + ‖e‖`q

)
∀Z psd.

(45)

In order to obtain a good estimate, it thus makes sense to
minimize the r.h.s. of this bound over the free parameter
Z:

Z] = arg min
Z psd

‖A(X)− y‖`q .

This is the psd least squares regression advertised in
(14). Crucially, this program does only depend onA and
the data y. It does not require any a priori assumptions
on the noise term e. Also, Z = X is a feasible point of
this optimization, and so

‖A(Z])− y‖`q ≤ ‖A(X)− y‖`q = ‖e‖`q .

From this and (45) we thus may conclude

‖X− Z]‖`q ≤
C̃ρ√

r
‖Xc‖1 +

4C3D̃ρ

m
1
q

κz‖e‖`q .

Setting

C3(ρ) =C̃ρ = 4
(1 + 2ρ)2

1− 2ρ
and (46)

C4(ρ) =4C3D̃ρ = 8C3
3 + 2ρ

1− 2ρ
(47)

yields the main assertation of Theorem 3. The expres-
sion in (44) bounds the probability of this conclusion
failing and the proof of Theorem 3 is complete.

D. Proof of Lemma 2

The first statement follows directly from the fact that,
endowed with uniform weights, every Clifford orbit
forms a 2-design – equation (11). For any Z ∈ Hd this
implies

E
[
〈a, Za〉2

]
=tr

(
E
[
Ten2(aa∗)

]
Ten2(Z)

)

=

(
d + 1

2

)−1
tr
(

PSym2 Ten2(Z)
)

=
tr
(
Z2)+ tr (Z)2

(d + 1)d
,

where the last line e.g. follows from [10, Lemma 17].
Equation (11) is equivalent to this statement, because ev-
ery Z ∈ Tρ,r obeys tr(Z2) = ‖Z‖2

2 = 1.
For the second bound, we heavily rely on Theorem 1.

Said statement assures that choosing a uniformly from a
Clifford orbit Oz with z ∈ Sd−1 assures

1
d

(
d + 2

3

)
E
[
〈a, Za〉4

]

=
1
d

(
d + 2

3

)(
E
[
Ten4 (aa∗)

]
, Ten4(Z)

)

=α1(z)
(

P1, Ten4(Z)
)

+ α2(z)
(

P2, Ten4(Z)
)

, (48)

for any Z ∈ Hd. Recall that α1(z), α2(z), as well as P1
and P2 were introduced in said theorem. For the first
inner product we may conclude
∣∣∣
(

P1, Ten4(Z)
)∣∣∣ ≤

(
P1,
∣∣∣Ten4(Z)

∣∣∣
)
≤
(

Q, Ten4 (|Z|)
)

=
d2

∑
k=1

(
Ten4(Wk), Ten4(|Z|)

)

=
d

∑
k=1

(Wk, |Z|)4 = ‖w(|Z|)‖4
`4

, (49)
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using several inequalities valid for positive-semidefinite
matrices, as well as P1 ≤ Q = ∑d2

k=1 Ten4(Wk). The fol-
lowing Lemma allows us to relate ‖w(|Z|)‖4

`4
to the “ef-

fective rank” of Z.

Lemma 3. Any Z ∈ Hd with ‖Z‖2 = 1 obeys

‖w(Z)‖4
`p
≤ 1

d
‖Z‖2

1.

Proof. Fix Z ∈ Hd. Then w(Z) is a vector in Rd2
which

in particular obeys

‖w(Z)‖4
`4
≤ ‖w(Z)‖2

`2
‖w(Z)‖2

`∞
.

Since w : Hd → Rd2
is an isometry, we have ‖w(Z)‖2

`2
=

‖Z‖2
2. Also, Matrix Hoelder assures

‖w(Z)‖2
`∞

= max
1≤k≤d2

(Wk, Z)2 ≤ ‖Wk‖2
∞‖Z‖2

1 ≤
1
d
‖Z‖2

2,

and the claim follows.

We note in passing that this bound also assures

κz =
1
ρ

max
{

1, ‖w(zz)∗‖4
`4

}
≤ r

ρ
∀z ∈ Sd−1,

because ‖zz∗‖1 = ‖zz∗‖2 = 1.
At this point the restriction Z ∈ Tρ,r becomes im-

portant. Under this assumption, a combination of (49),
Lemma 3 and Lemma 1 assures

∣∣∣
(

P1, Ten4(Z)
)∣∣∣ ≤ 1

d
‖|Z‖2

1 =
1
d
‖Z‖2

1 ≤
2r
ρd

(50)

for any Z ∈ Tρ,r.
Let us now move on to bound the second inner prod-

uct in (48). Using P2 = PSym4 − P1 and (50) allows us to
conclude
∣∣∣
(

P2, Ten4(Z)
)∣∣∣ ≤

∣∣∣
(

PSym4 , Ten4(Z)
)∣∣∣+

∣∣∣
(

P1, Ten4(Z)
)∣∣∣

≤
∣∣∣
(

PSym4 , Ten4(Z)
)∣∣∣+ 2r

ρd
.

The remaining inner product is a standard expression
in multilinear algebra and can for instance be computed
using [10, Lemma 17]. Further bounding the resulting
expressions results in
∣∣∣
(

PSym4 , Ten4(Z)
)∣∣∣ ≤ max

{
‖Z‖4

2, tr(Z)4
}
∀Z ∈ Hd

as is shown, for instance, in [10, Proof of Proposition 12].
Employing the trivial bound r ≤ d, as well as ‖Z‖2 = 1
allows us to conclude

∣∣∣
(

P1, Ten4(Z)
)∣∣∣ ≤max

{
1, tr(Z)4

}
+

2r
ρd

≤3
ρ

(
1 + tr(Z)2

)2
∀Z ∈ Tρ,r.

Finally, let us turn to the constants featuring in (48).
Lemma 3 assures

0 ≤ α2(z) =4
1− ‖w(zz∗)‖4

`4

(d + 4)(d− 1)
≤ 4

(d + 4)(d− 1)
.

Fixing Z ∈ Tρ,r and putting together all these individual
bounds yields

E
[
〈a, Za〉4

]
≤
(

d + 2
3

)−1
dα1(z)

∣∣∣
(

P1, Ten4(Z)
)∣∣∣+

(
d + 2

3

)
dα2(z)

∣∣∣
(

P2, Ten4(Z)
)∣∣∣

≤
(

d + 2
3

)−1
(

2rd‖w(zz∗)‖4
`4

dρ
+

12d
(
1 + tr(Z)2)2

(d + 4)(d− 1)ρ

)

≤84
ρ

max
{

1, rd‖w(zz∗)‖4
`4

}(1 + tr(Z)2

(d + 1)d

)2

= 84κzE
[
〈a, Za〉2

]2
,

where the last equality is due to (39).
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Helstrom’s Theorem assert that the maximal probability of correctly distinguishing two quantum
states is proportional to their trace distance. However, achieving this bound requires one to be able
to perform arbitrary measurements that depend on the particular choice of state.

Following Matthews et al. [1], we consider the task of distingushing arbitrary quantum states via a
fixed measurement. In particular, we focus on multi-qubit dimensions and POVMs that correspond
to orbits of the Clifford group. We show that the distinguishing capabilities of such measurements
depend on the rank of the states to be distinguished: if both states are approximately pure, Clifford
orbits perform essentially optimally. However, if the states are close to maximally mixed, the maximal
bias achievable becomes considerably worse.

I. INTRODUCTION

A. Distinguishing quantum states

On the space of d-dimensional quantum states Sd, the
trace distance

d (ρ, σ) =
1
2
‖ρ− σ‖1

constitutes a very prominent and meaningful distance
measure. It features prominently in Helstrom’s Theorem
[2]. Seid theorem asserts that the maximal probability
of correctly identifying one out of two known quantum
states ρ, σ ∈ Sd with a single measurement (“single-
shot”) amounts to

PrHelstrom =
1
2

+ d
(

1
2

ρ,
1
2

σ

)
, (1)

provided that both ρ and σ appear with equal proba-
bility. A slight generalization of this statement takes
into account the possibility that ρ occurs with probal-
ity τ ∈ [0, 1] and σ with probability 1− τ. The optimal
success probability then becomes

PrHelstrom =
1
2

+ d (τρ, (1− τ)σ) ,

which reduces to (1), if τ = 1
2 . This corresponds to a

maximal bias

βHelstrom(ρ, σ, τ) = d (τρ, (1− τ)σ) ≤ 1

towards correctly identifying the state. If τ ∈ [0, 1] and
ρ, σ ∈ S

(
Sd
)

are known, this maximal bias is achiev-
able by an optimal strategy involving a two-outcome
projective measurement[16]. However, such a measure-
ment is optimized to distinguish ρ from σ and may per-
form considerably worse (or even fail completely) at dis-
tinguishing other pairs of states.

Addressing this lack of universality, Matthews,
Wehner and Winter [1] turned this problem around: in-
stead of fixing the state pair ρ, σ and varying the mea-
surement, they consider a fixed POVM measurement —

i.e. a family of positive semidefinite operators {Mk}N
k=1

that sum up to unity: ∑N
k=1 Mk = I — and analyze its

performance at distinguishing all possible pairs of states
ρ, σ ∈ S

(
Cd
)

. Born’s rule asserts that such a POVM
maps any state ρ ∈ Sd to a discrete probability vector

pρ =M(ρ) =
N

∑
k=1
|ek〉tr (Mkρ) ∈ RN

which encompasses all the classical information about
ρ that is accessible to us. So, distinguishing ρ from σ
necessarily reduces to the task of distinguishing pρ from
pσ. If ρ and σ are equiprobable, the optimal decision rule
for doing so is the maximum likelihood rule[17]. It results
in a bias proportional to the total variational distance of
pρ and pσ:

βM

(
ρ, σ,

1
2

)
=

1
4

∥∥pρ − pσ

∥∥
`1

=

∥∥∥∥M
(

1
2

ρ− 1
2

σ

)∥∥∥∥
`1

.

If ρ occurs instead with probability τ 6= 1
2 this bias gen-

eralizes to

βM (ρ, σ, τ) = ‖M (τρ− (1− τ)σ)‖`1
.

Helstrom’s Theorem demands

βM (ρ, σ, τ) ≤ βHelstrom(ρ, σ, τ)

for all ρ, σ ∈ Sd and any τ ∈ [0, 1]. On the contrary, ifM
is informationally completete,

βM (ρ, σ, τ) > 0 ∀ρ, σ ∈ Sd, ∀τ ∈ [0, 1]

follows by definition. What is more, informational com-
pleteness ofM assures that

‖ · ‖M = ‖M (·)‖`1

does consitute a norm on Hd — the vector space of all
hermitian d× d-matrices. Since all norms are equivalent
on finite dimensional Hilbert spaces, there is a constant
λM such that

λM‖X‖1 ≤ ‖X‖M ∀X ∈ Hd.
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This constant λM allows us to relate the optimal distin-
guishability bias achievable by the fixed measurement
M to Helstrom’s optimal one:

βM(ρ, σ, τ) ≥ λM βHelstrom(ρ, σ, τ) (2)

for any ρ, σ ∈ Sd and any τ ∈ [0, 1]. Matthews et al. then
moved on to derive sharp bounds on λM for different
families of informationally complete POVMsM : Hd →
RN [1]. While these bounds have the advantage of being
universal, they may be too pessimistic, if the states ρ, σ ∈
Sd have additional structure. We will come back to this
in section II.

B. Complex projective designs

A natural candidate for a single POVM that should
perform well at distinguishing quantum states is the
uniform POVM Munif consisting of all projectors onto
elements of the complex unit sphere in Cd. The asso-
ciated distinguishability norm of this POVM obeys [1,
Theorem 8]

‖ρ−σ‖Munif
≥ 1√

d

(√
2
π
− o(1)

)
‖ρ−σ‖1 ∀ρ, σ ∈ Sd

This in turn implies λMunif
= O

(
d−

1
2

)
for the constant

defined in (2), provided that τ = 1
2 .

While the uniform POVM is excellent to provide a
benchmark for the capability of distinguishing quantum
states by means of a fixed quantum measurement, the
POVM is far too big for all practical purposes. Natural
candidates for “coarse-graining” the uniform POVM are
complex projective t-designs [3–5]. A t-design POVM
may be viewed as a subset of the uniform POVM that
“evenly” approximates the latter up to a certain degree:

Definition 1 (Complex projective design). A (proper)
complex projective t-design is a set of unit vectors
{|xk〉}N

k=1 ⊂ Cd whose outer products obey

1
N

N

∑
k=1
|xk〉〈xk|⊗t =

∫

‖v‖`2 =1
dv|v〉〈v|⊗t, (3)

where integration on the r.h.s. is taken with respect to the
uniform measure on the complex unit sphere. Likewise, we

call the set
{

d
N |xk〉〈xk|

}N

k=1
a t-design POVM.

Ambainis and Emerson [4] observed that 4-design
POVMs already essentially match the distinguishability
capacity of the uniform POVM, see also [1, Eq. (15)].
Our first contribution consists of a slight generalization
of these results:

Theorem 1 (Performance of 4-designs). LetM4D be a 4-
design POVM. Then

‖X‖M4D >
0.32√

rank(X)
‖X‖1 ∀X ∈ Hd. (4)

This in particular implies that the distinguishability constant
(2) obeys λM4D >

0.32√
d

. If X has rank 2, then

‖X‖M4D >
1√

12.2 rank(X)
‖X‖1. (5)

If X has rank 2 and is traceless, then

‖X‖M4D >
1√

12 rank(X)
‖X‖1. (6)

The original statements in [1, 4] require X to be trace-
less, which is not the case here. This generalization
comes at the prize of a sligthly smaller constant in (4)
(0.32 vs. 1

3 for traceless matrices).
In stark contrast to this almost optimal behaviour of

4-designs, 2-design POVMs perform remarkably bad at
distinguishing quantum states:

Theorem 2 (Theorem 12 in [1]). Let M2D be a 2-design
POVM. Then

‖X‖M2D ≥
1

2(d + 1)
‖X‖1 (7)

for any traceless operator X ∈ Hd which in turn implies
λM2D ≥ 1

2(d+1)
, provided that τ = 1

2 in (2).

The factor 1
d+1 in (7) is unavoidable without further

assumptions on the 2-design POVM [1, Section 2.C].

II. MAIN RESULTS

Very little is known about the distinguishability qual-
ity of POVMs in the intermediate regime between 2- and
4-designs. The main scope of this work is to fill this gap.

To this end we consider POVMs that correspond to
orbits of the multi-qubit Clifford group (d = 2n). The
Clifford group plays a fundamental role in many areas
of quantum information science, such as quantum com-
puting, quantum error correction, tomography and ran-
domized benchmarking. In qubit dimensions d = 2n,
the Clifford group C(d) ⊂ U(d) corresponds to the nor-
malizer of the Pauli group — i.e. up to global phases
every C ∈ C(d) maps Pauli operators onto Pauli opera-
tors under conjugation.

Definition 2 (Clifford POVM). Set d = 2n and fix |z〉 ∈
Cd with unit length. Let {Ck|z〉 : Ck ∈ C(d)} denote the
orbit of z under the Clifford group and N its cardinality. We
then define the asociated Clifford POVM (anchored at |z〉)
to be

MC,z =

{
d
N

Ck|z〉〈z|C†
k : Ck ∈ C(d)

}
.
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The multi-qubit Clifford group has a very rich struc-
ture. Among other things it forms a unitary 3-design
[6, 7]. Unitary t-design are a generalization of the
complex projective t-design concept to unitary matri-
ces [8, 9]. They have the particular property that ev-
ery orbit of a unitary t-design is proportional to a com-
plex projective t-design. This in turn implies that every
Clifford POVM is also a 3-design POVM (provided that
d = 2n). Multiqubit stabilizer states—arguably the most
prominent Clifford orbit which arises e.g. from choos-
ing z to be any vector in the (extended) computational
basis)—are a particularly prominent example. For this
particular orbit, the 3-design property was established
independently [10].

A. Main technical results

In a recent survey we have analyzed the fourth mo-
ments of the multiqubit Clifford group [11] from a rep-
resentation theoretic perspective. It turns out that these
moments are very similar to the corresponding mo-
ments of the full unitary group, although the group does
not constitute a unitary 4-design [6]. In turn, this insight
allows us to compute the first four moments of Clifford
orbits. They behave very similarly to the corresponding
moments of a complex projective 4-design—see Theo-
rem 6 below. This information allows us to adapt the
proof technique from Theorem 1 [1, 4] and prove a cor-
responding statement for Clifford orbits. Interestingly,
the capacity for distinguishing different states depends
on the choice of the Clifford orbit’s fiducial z. Recall
that the characteristic function of a quantum state ρ ∈ Sd
amounts to

w(ρ) =
1√
d

d2

∑
k=1

tr (Wkρ) |ek〉 ∈ Rd2
, (8)

where W1, . . . , Wd2 ∈ Hd denote the d-dimensional Pauli
matrices (d = 2n) and |e1〉, . . . , |ed2〉 is the standard basis
of Rd2

. Our main technical result reads as follows:

Theorem 3. Fix d = 2n and letMC,z be a Clifford POVM
resulting from a unit-length fiducial |z〉 ∈ Cd. Then

‖X‖MC,z ≥
‖X‖1√

[6d‖w(|z〉〈z|)‖4
`4

rank(X) + 10] rank(X)

for any X ∈ Hd. Here the constant 10 may be replaced by 9
if X is traceless.

According to the theorem,

‖X‖MC,z ≥
‖X‖1

4
√

rank(X)
(9)

for any X ∈ Hd obeying rank(X) ≤ 1/(d‖w(|z〉〈z|)‖4
`4

)

and

‖X‖MC,z ≥
‖X‖1

4
√

d‖w(|z〉〈z|)‖2
`4

rank(X)
(10)

otherwise.
For a typical Clifford orbit, the value of ‖w(|z〉〈z|)‖4

`4

is usually very close to ‖4
`4
≤ 4/(d(d + 3)) [11]. Such

orbits behavior almost exactly as 4-designs according to
the following theorem.

Theorem 4. Fix d = 2n and letMC,z be a Clifford POVM
resulting from a unit-length fiducial |z〉 ∈ Cd which obeys
‖w(|z〉〈z|)‖4

`4
≤ 6/(d(d + 3)). Then

‖X‖MC,z ≥
‖X‖1√

22 rank(X)

for any X ∈ Hd. Here the constant 22 may be replaced by 21
if X is traceless.

It is worthwhile to point out that, unlike its counter-
parts Theorem 1 for 4- and 2-design POVMs (Theorem 1
and Theorem 2), the statement in Theorem 3 is very sen-
sible towards the rank of the matrix X considered. If
rank(X) is below a certain threshold (which depends
on the choice of fiducial), the favourable bound (9) ap-
plies. Such a situation is comparable to the 4-design
case. However, above this threshold one needs to resort
to the much weaker bound (10) whose scaling is com-
parable to the 2-design case, provided that rank(X) ap-
proaches d.

The following converse statement shows that such a
behavior is essentially unavoidable

Theorem 5. Fix d = 2n, letMC,z denote a Clifford POVM
with fiducial |z〉 ∈ Cd and fix W ∈ Hd to be any Pauli matrix
(W 6= I). Then

‖W‖MC,z =

√
d‖w(|z〉〈z|)‖`1 − 1
(d + 1)(d− 1)

‖W‖1. (11)

The coefficient in the theorem satisfies

1
d + 1

≤
√

d‖w(|z〉〈z|)‖`1 − 1
(d + 1)(d− 1)

≤ 1√
d + 1

, (12)

which follows from the property of the characteristic
function for a pure state. Here the lower bound is sat-
uratd if and only z is a stabilizer state, and the upper
bound is saturated iff

|〈z|Wk|z〉| =
1√

d + 1
, ∀2 ≤ k ≤ d2, (13)

in which case the orbit of z under the action of the
Pauli group forms a symmetric informationally com-
plete POVMs []. The lower bound in (12) can be im-
proved if ‖w(|z〉〈z|)‖`4 is known,

√
d‖w(|z〉〈z|)‖`1 − 1
(d + 1)(d− 1)

≥

√
d

‖w(|z〉〈z|)‖2
`4

− 1

(d + 1)(d− 1)
(14)
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which follows from the equation below,

‖w(|z〉〈z|)‖`1 ≥

√√√√‖w(|z〉〈z|)‖6
`2

‖w(|z〉〈z|)‖4
`4

=
1

‖w(|z〉〈z|)‖2
`4

. (15)

We now move on to discussing the implications of our
findings for three different Clifford orbits:

(i) Stabilizer states: multi-qubit stabilizer states form a
particular Clifford orbit with N = 2n ∏n

j=1
(
2j + 1

)

elements. The characteristic function of any sta-
bilizer state has precisely d non-vanishing compo-
nents with constant modulus 1√

d
—see section III G

below. This in turn implies d‖w(|z〉〈z|)‖4
`4

= 1
for any stabilizer state fiducial |z〉 ∈ Cd. Conse-
quently, (9) is only valid for rank-one matrices X,
where

√
rank(X) and rank(X) coincide. In turn

we need to conclude

‖X‖Mstab
≥ 1

4rank(X)
‖X‖1, (16)

for any X ∈ Hd. This is a worst case behav-
ior for any Clifford orbit. However, Theorem 5
assures that such a scaling is unavoidable: the
characteristic function of any stabilizer state obeys
‖w(|z〉〈z|)‖`1 =

√
d and inserting this into (11) re-

veals

‖W‖Mstab
=

d
d + 1

‖W‖1

rank(W)
(17)

for any Pauli matrix W 6= I. This equation implies
that (16) is actually tight up to multiplicative con-
stants.

(ii) Magic state fiducial: Let |z〉〈z| = ρ⊗n
magic be the n-fold

tensor product of a the single qubit “magic state”

ρmagic =
1
2

(
I +

1√
3

(W1 + W2 + W3)

)
∈ S2.

Such a fiducial obeys d‖w (|z〉〈z|) ‖4
`4

= ( 2
3 )n < 1√

d
(see Eq. (38) below). This is considerably smaller
than the analogous quantity for stabilizer states. In
turn, Theorem 3 implies that Clifford orbit POVMs
with a magic state fiducial obey

‖X‖MC,magic ≥
1

4
√

rank(X)
‖X‖1

for any X ∈ Hd with rank(X) ≤ ( 3
2 )n. For matri-

ces X whose rank exceeds ( 3
2 )n, (10) still assures

‖X‖MC,magic ≥
( 3

2 )n/2‖X‖1

4rank(X)
>

d0.29‖X‖1

4rank(X)
(18)

which outperforms the analogous bound for stabi-
lizer states by a factor of d0.29. Conversely, Theo-
rem 5 assures

‖W‖C,magic ≤
d0.45‖W‖1

rank(W)
,

because
√

d‖w(|z〉〈z|)‖`1 = (1 +
√

3)n ≤ d1.45 (see
Eq. (39) below). Unlike before, this bound is to
weak to assure tightness of (18) (up to multiplica-
tive constants). However, asymptotically it does
rule out the possibility of an (optimal) 4-design
scaling for this type of Clifford orbits.

(iii) 4-design fiducial: As pointed out in [11], particu-
lar choices of fiducials |z〉 ∈ Cd result in Clifford
orbits that actually form a complex projective 4-
design. The necessary and sufficient requirement
for such fiducials is ‖w(|z〉〈z|)‖4

`4
= 4

d(d+3)
. Ac-

cording to Theorem 1,

‖X‖MC,4D ≥
0.32√

rank(X)
‖X‖1 ∀X ∈ Hd.

This bound is optimal up to a small multiplicative
constant since

‖W‖MC,4D ≤
1√

d + 1
‖W‖1 <

1√
rank(W)

‖W‖1

for any Pauli matrix W that is not proportional to
the identity, according to Theorem 5 and (12).

B. Implications for distinguishing quantum states

Let us now turn back our attention to the task of dis-
tinguishing different quantum states in the single shot
limit. Matthews et al. introduced the proportionality
constant λM (2) to compare the performance of a fixed
POVMM directly to Helstrom’s optimal strategy. With-
out putting further restrictions on the states ρ, σ ∈ Sd to
be distinguished, Theorem 3 only allows us to infer

λMC,z ≥
1√

d[6d2‖w(|z〉〈z|)‖4
`4

+ 10]
(19)

When ‖w(|z〉〈z|)‖4
`4
≤ 6/(d(d + 3)), Theorem 4 implies

that

λMC,z ≥
1√
22d

. (20)

For Clifford POVMs with fiducial |z〉 ∈ Cd. For the
particular case of multi-qubit stabilizer states, we have

1√
6d
≤ λMstab

≤ 1
d + 1

. (21)
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Here the lower bound is derived in section III; the upper
bound follows from (17)[18] and is strictly speaking only
valid for τ = 1

2 . This highlights that the constant λMstab
scales like λM2D from Theorem 2—despite the fact that
multi-qubit stabilizer form in fact a 3-design.

For Clifford orbits with a magic state fiducial we ob-
tain

1
4d0.71 ≤ λMC,magic ≤

1
d0.55 .

This bound is more reassuring. Qualitatively, it as-
sures that the capacity of such POVMs to distinguish
quantum states is at least “half way” between the ex-
isting 2-design (λ2d ≥ 1

2(d+1)
) and 4-design guarantees

(λ4d ≥ 1
4
√

d
). Naively, one may expect precisely such a

behavior for 3-designs.
We emphasize that the constant λM is a worst case

promise for correctly distinguishing any pair of states
ρ, σ ∈ Sd. In particular, it may be too pessimistic for
more concrete scenarios where additional structure is
present. One model assumption, which is often met
in practice, is approximate purity. In the extreme case,
where both ρ and σ are assumed to be pure, Theorem 3
assures λMC,z |ρ,σ pure ≥ 1/

√
44 for any Clifford orbit,

including stabilizer states. A slightly better bound is de-
rived in section III,

λMC,z |ρ,σ pure ≥
1
6

. (22)

Up to a multiplicative constant, this reproduces the 4-
design behavior. It is worthwhile to point out that 2-
design POVMs do not allow for exploiting purity at all.
Matthews et al. [1, Section 2.C] the following bound
showed

λM2D |ρ,σ pure ≤
1

d + 1
without further assumptions on the 2-design POVM.
Similar conclusions may be drawn if we relax the model
assumption of purity to low rank. As the rank constraint
r increases, the bounds on λMC,z |ρ,σ rank r become grad-
ually weaker until they approach (19) for r = d.

Finally, we point out that the rank(X)-parameter in

Theorem 3 may be replaced by ‖X‖
2
1

‖X‖2
2
—see (34) and (36)

below. This ratio may be viewed as a robust measure for
“effective rank”. One particular scenario, where such a
generalization is useful is the task of deciding whether
a pure state ρ = |φ〉〈φ|, or the maximally mixed state 1

d I

was prepared under the assumption of equiprobability
(τ = 1

2 ). Lemma 1 below assures that X = 1
2 φ− 1

2d I has
“effective rank” less than 4 and consequently

βMC,z

(
ρ,

1
d

I,
1
2

)
≥ 1

12
βHelstrom

(
ρ,

1
d

I,
1
2

)

for any Clifford orbit. This means that the optimal bias
achievable with such a POVM measurement is directly
comparable to Helstrom’s optimal one.

III. PROOFS

A. Mathematical preliminaries

Throughout this work we will exclusively consider
multi-qubit dimensions d = 2n. Let W1, . . . , Wd2 ∈ Hd
denote the d2 Pauli operators and w(·) the associated
characteristic function introduced in (8). Also, note that
d = 2n assures that every Wk is actually a tensor prod-
uct Wk = ⊗σk1 ⊗ · · · ⊗ σkn of single qubit Pauli matrices
σ0, σ1, σ2, σ3 ∈ H2.

We endow the vector spaces Cd′ and Rd′ with the
usual `p-norms among which the `4-norm of the char-
acteristic function (8) will be the most prominent:

‖w(ρ)‖4
`4

=
1
d2

d2

∑
k=1

tr (Wkρ)4

On the level of hermitian matrices X ∈ Hd, let |X| =√
XX† denote the matrix absolute value. We then de-

fine the Schatten-p-norms to be ‖X‖p = (tr (|X|p))1/p.
These are related via ‖X‖q ≤ ‖X‖p for all X ∈ Hd and
p ≤ q. Moreover, the trace norm (p = 1) and the Hilbert-
Schmidt norm (p = 2) obey the following converse rela-
tion: ‖X‖1 ≤

√
rank(X)‖X‖2 ∀X ∈ Hd.

The main technical prerequisite for Theorem 3 is the
following statement.

Theorem 6 ( from [11]). Fix d = 2n and let MC,z =

{|xk〉 : xk = Ckz, Ck ∈ C(d)} ⊆ Cd be a Clifford orbit with
fiducial z ∈ Cd and N elements. Then

1
N

N

∑
k=1

(|xk〉〈xk|)⊗4 = d
(

d + 2
3

)−1

(α1(z)P1 + α2(z)P2) ,

where P1, P2 are orthogonal projections obeying P1 + P2 =
PSym4 —the projector onto the totally symmetric subspace of

H⊗4
d . Defining Q = 1

d2 ∑d2

k=1 W⊗4
k allows to characterize

them explicitly by

P1 = PSym4 Q and P2 = PSym4 (I−Q)

and the coefficients amount to

α1(z) = ‖w(|z〉〈z|)‖4
`4

, α2(z) = 4
1− ‖w(|z〉〈z|)‖4

`4

(d + 4)(d− 1)
.

According to [11], the coefficient α1(z) satisfies

2
d(d + 1)

≤ α1(z) ≤ 1
d

, (23)

which implies that

4
d(d + 4)

≤ α2(z) ≤ 4(d + 2)

d(d + 1)(d + 4)
,

− 2
d(d + 1)

≤ α1(z)− α2(z) ≤ 1
d + 4

,

− d
d + 4

≤ α1(z)− α2(z)

α1(z)
≤ 4

d + 4
.

(24)

341



6

It is insightful to compare this statement to the defin-
ing property (3) of a complex projective 4-design:

1
N

n

∑
k=1

(|xk〉〈xk|)⊗4 =
∫

‖v‖`2 =1
dw (|w〉〈w|)⊗4 (25)

=

(
d + 3

4

)−1
PSym4 .

The last equality is a consequence of Schur’s Lemma
well known in quantum information science—see e.g.
[3, Lemma 1].

From such a comparison it becomes apparent that
Clifford orbit fiducials |z〉 ∈ Cd result in a complex pro-
jective 4-design, precisely if ‖w(|z〉〈z|)‖4

`4
= 4

d(d+3)
. In-

deed, such a choice assures α1(z) = α2(z) = 4
d(d+3)

for
the constants occurring in Theorem 6 which in turn im-
plies the defining property (25) of a 4-design.

However, Theorem 6 also implies that Clifford orbits
in general do not have this very particular behavior and
consequently fall short of being complex projective 4-
designs. Fortunately, the deviation from this ideal be-
havior is benign: the fourth moment average decom-
poses into exactly two projectors P1, P2 instead of just
PSym4 . As we shall see in the next subsection, this devi-
ation is mild enough to adapt the proof technique from
Theorem 1 by Ambainis and Emerson [4] (see also [1,
Section 2.B] to Clifford orbits.

B. Proof of Theorem 1

At the heart of the proof of Theorem 1 (see [1, 4]) is the
following moment inequality by Berger [12]:

E [|S|] ≥
√

E [S2]
3

E [S4]
(26)

is true for any real valued random variable S.

Now, let M4D =
{

d
N |xk〉〈xk|

}N

k=1
be a 4-design

POVM, fix X ∈ Hd arbitrary and define the N-variate
random variable

SX = 〈xk|X|xk〉 with probability
1
N

. (27)

Accordingly,

‖X‖M4d
=

d
N

N

∑
k=1
|〈xk|X|xk〉| = dE [|SX |] ≥ d

√√√√E
[
S2

X
]3

E
[
S4

X
] .

(28)

Accordingly, it suffices to bound the moments E
[
S2

X
]
,

as well as E
[
S4

X
]

appropriately. Since any complex pro-
jective 4-design in particular also constitutes a 2-design,

the first quantity amounts to

E
[
S2

X

]
=

1
N

N

∑
k=1

tr (|xk〉〈xk|X)2

=tr

(
1
N

N

∑
k=1

(|xk〉〈xk|)⊗2 X⊗2

)

=

(
d + 1

2

)−1
tr
(

PSym2 X⊗2
)

=
tr
(
X2)+ tr(X)2

(d + 1)d
, (29)

where the last equation follows from PSym2 = 1
2 (I + F)

with F denoting the Flip-operator on a bi-partite system
(see e.g. [13, Lemma 6], or [14, Lemma 17]).

For a corresponding bound of E
[
S4] the 4-design

property of the POVM is of crucial importance. With-
out requiring further assumptions (25) assures

E
[
S4

X

]
=tr

(
1
N

N

∑
k=1

(|xk〉〈xk|)⊗4 X⊗4

)

=

(
d + 3

4

)−1
tr
(

PSym4 X⊗4
)

≤ 10.1
d(d + 1)(d + 2)(d + 3)

[
tr
(

X2
)

+ tr(X)2
]

=
10.1d(d + 1)

(d + 2)(d + 3)
E
[
S2
]2

, (30)

where the inequality follows from Lemma 2 in the ap-
pendix. Here we content ourselves to state that [14,
Lemma 17] allows for evaluating tr

(
PSym4 X⊗4

)
explic-

itly without requiring X to have vanishing tace. Ambai-
nis and Emerson [4], as well as Matthews, Wehner and
Winter [1] made this assumption (tr(X) = 0) to consid-
erably simplify evaluating this fourth moment bound
and obtain a slightly better constant ( 1

3 vs 1
5 obtained

here). Inserting these bounds into (28) reveals

‖X‖M4d
≥ d

√
E [S2]

3

E [S4]

=

√√√√ (d + 2)(d + 3)

(d + 1)2
(‖X‖2

2 + tr(X)2)3

24‖X‖2
2tr(PSym4 X⊗4)

‖X‖2

≥
√√√√ (‖X‖2

2 + tr(X)2)3

24‖X‖2
2tr(PSym4 X⊗4)

‖X‖2

≥ 1√
9.673

‖X‖2 >
0.32√

rank(X)
‖X‖1,

where the third inequality follows from Lemma 3 in the
appendix. Since the choice of X ∈ Hd is arbitrary, (4) in
Theorem 1 readily follows.
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To derive (5) and (6) in Theorem 1, note that

‖X‖M4d
≥
√√√√ (‖X‖2

2 + tr(X)2)3

24‖X‖2
1tr(PSym4 X⊗4)

‖X‖1

≥ 1√
12.12

‖X‖1 > 0.287‖X‖1,

where the second inequality follows from Lemma 4
given that X has rank 2. This equation confirms (5). If in
addition X is traceless, then

24‖X‖2
1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

= 12. (31)

according to Lemma 4 in the appendix, from which (6)
follows.

C. Proof of Theorem 4 and Theorem 3

Now let us move on to prove Theorem 3—a simi-
lar statement for Clifford POVMs. Fix d = 2n and let
MC,z =

{
d
N |xk〉〈xk|

}N

k=1
be a Clifford orbit POVM with

fiducial |z〉 ∈ Cd (i.e. |x1〉 = |z〉, |xk〉 = Ck|z〉, . . . with
Ck ∈ C(d)). We fix X ∈ Hd and define define the ran-
dom variable SX in analogy to (27). Doing so assures

‖X‖MC,z = E [|SX |] ≥ d

√√√√E
[
S2

X
]3

E
[
S4

X
]

via Berger’s inequality.
As already pointed out in section II, any Clifford or-

bit does constitute a complex projective 3-design. This
in turn implies that (29) remains valid, because said
derivation just requires a 2-design structure:

E
[
S2

X

]
=
‖X‖2

2 + tr(X)2

(d + 1)d
.

However, deriving a corresponding bound for E
[
S4

X
]

is considerably more challenging, because Clifford or-
bits in general fall short of being a complex projective

4-design. Instead, we restort to Theorem 6 which im-
plies

E
[
S4

X

]
= tr

(
1
N

(|xk〉〈xk|)⊗4 X⊗4
)

= d
(

d + 2
3

)−1 (
α1(z)tr

(
P1X⊗4

)
+ α2tr

(
P2X⊗2

))
,

(32)

where P1, P2 ∈ H⊗4
d and α1(z), α2(z) were introduced in

said theorem.
We bound the two occurring terms individually. For

the first term, we obtain

tr(P1X⊗4) =tr
(

P1

∣∣∣X⊗4
∣∣∣
)

= tr
(

PSymQ|X|⊗4
)

≤tr
(

Q|X|⊗4
)

=
1
d2

d2

∑
k=1

tr
(

W⊗4
k |X|⊗4

)

=
1
d2

d2

∑
k=1

tr (Wk|X|)4

by invoking some standard trace inequalities. Hoelder’s
inequality together with the fact that the characteristic
function (8) is an isometry allows us to simplify further:

tr(P1X⊗4) ≤ 1
d2

d2

∑
k=1

tr (Wk|X|)4

≤ 1
d2

d2

∑
k=1
‖X‖2

1‖WK‖2
∞tr (Wk|X|)2

=
‖X‖2

1
d
‖w(|X|)‖2

`2
=
‖X‖2

1‖X‖2
2

d
. (33)

The last equation is due to the fact that the Schatten-
p norms of X and |X| coincide by definition. Together
with (24) and (32), this equation implies

E
[
S4

X

]
= tr

(
1
N

(|xk〉〈xk|)⊗4 X⊗4
)

= d
(

d + 2
3

)−1 (
(α1(z)− α2(z))tr

(
P1X⊗4

)
+ α2tr

(
PSym4 X⊗4

))
,

≤
(

d + 2
3

)−1
|α1(z)− α2(z)|‖X‖2

1‖X‖2
2 +

24
d(d + 1)2(d + 4)

tr
(

PSym4 X⊗4
)

.
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Consequently,

‖X‖MC,z ≥ d

√√√√E
[
S2

X
]3

E
[
S4

X
] ≥ ‖X‖2√

κ(X, z)
≥ ‖X‖1√

κ(X, z) rank(X)
, (34)

where

κ(X, z) =

6(d+1)2

d+2 |α1(z)− α2(z)|‖X‖2
1‖X‖4

2 + 24(d+1)
d+4 ‖X‖2

2tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

≤
6d(d+1)2

(d+2)(d+4)
α1(z)‖X‖2

1‖X‖4
2 + 24(d+1)

d+4 ‖X‖2
2tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

≤ d + 1
d + 4

(
6dα1(z)

‖X‖2
1

‖X‖2
2

+ 9.673

)

≤6dα1(z)
‖X‖2

1
‖X‖2

2
+ 10 ≤ 6dα1(z) rank(X) + 10 = 6d‖w(|z〉〈z|)‖4

`4
rank(X) + 10. (35)

Here the second inequality in (36) follows from Lemma 3 in the appendix. The above two equations confirm Theo-
rem 3. If X is traceless, the bound on K(X, z) can be improved slightly,

κ(X, z) =≤ d + 1
d + 4

(
6dα1(z)

‖X‖2
1

‖X‖2
2

+ 9

)
≤ 6dα1(z)

‖X‖2
1

‖X‖2
2

+ 9 ≤ 6dα1(z) rank(X) + 9. (36)

If ‖w(|z〉〈z|)‖4
`4

= α1(z) ≤ 6/(d(d + 3)), then

− 2
d(d + 1)

≤ α1(z)− α2(z) ≤ 2
(d− 1)(d + 4)

. (37)

Therefore,

κ(X, z) ≤
12‖X‖2

1
d‖X‖2

2
‖X‖6

2 + 24‖X‖2
2tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

≤ 12‖X‖2
1

d‖X‖2
2

+ 10 ≤ 12 rank(X)

d
+ 10 ≤ 22,

from which Theorem 4 follows. If X is traceless, the bound on K(X, z) can be improved slightly,

κ(X, z) ≤ 12‖X‖2
1

d‖X‖2
2

+ 9 ≤ 12 rank(X)

d
+ 9 ≤ 21.

D. Proof of (21) and (22)

If z is a stabilizer state, then dα1(z) = 1, so that

κ(X, z) ≤ d + 1
d + 4

(6d + 10) ≤ 6d,

‖X‖MC,z ≥
‖X‖1√

κ(X, z) rank(X)
≥ ‖X‖1√

6d
.

This equation confirms the lower bound in (21); the upper bound follows from (17) as mentioned before.
According to the same reasoning that leads to (34),

‖X‖MC,z ≥ d

√√√√E
[
S2

X
]3

E
[
S4

X
] ≥ ‖X‖1√

µ(X, z)
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where

µ(X, z) =

6(d+1)2

d+2 |α1(z)− α2(z)|‖X‖4
1‖X‖2

2 + 24(d+1)
d+4 ‖X‖2

1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

≤
6‖X‖2

1‖X‖4
2 + 24‖X‖2

1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

≤36.

Here the second inequality follows from Lemma 5 in the appendix given that X has rank 2. As an immediate
consequence, ‖X‖MC,z ≥ ‖X‖1/6, from which (22) follows.

E. Proof of Theorem 5

At the heart of this proof is the fact that by definition
the multi-qubit Clifford group is the normalizer of the

Pauli group P(d) = {±Wk,±iWk}d2

k=1 and it acts tran-
sitively on Pauli operators up to overall phase factors.
This fact in particular implies that

‖W‖MC,z =
d

|C(d)|
|C(d)|
∑
j=1

∣∣〈Cjz|W|Cjz〉
∣∣

=
d

|C(d)|
|C(d)|
∑
j=1

∣∣∣〈z|C†
j WCj|z〉

∣∣∣

=
d

d2 − 1

d2

∑
k=2
|〈z|Wk|z〉| .

Using 〈z|W1|z〉 = 〈z|z〉 = 1 and the definition (8) of the
characteristic function this expression amounts to

‖W‖MC,z =
d(∑d2

k=1 |tr (W|z〉〈z|)| − 1)

d2 − 1

=
d
(√

d‖w(|z〉〈z|)‖`1 − 1
)

d2 − 1

=

√
d‖w(|z〉〈z|)‖`1 − 1
(d + 1)(d− 1)

‖W‖1,

because ‖W‖1 = d for any Pauli matrix.

F. Proof of the certainty relation for stabilizer bases

Our derivation closely resembles a similar analysis
for 2-designs presented in [1]. Fix d = 2n and let
B(k)

stab =
{

b(k)
1 , . . . , b(k)

d

}
denote the M = ∏n

j=1
(
dj + 1

)

different multi-qubit stabilizer bases. Note that this im-
plies that there are N = dM different stabilizer states
in total. Now, we fix φ = |φ〉〈φ| and apply Jensen’s in-

equality to conclude

1
M

M

∑
k=1

S2

(
B(k)

stab(φ)
)

=
1
M

M

∑
k=1
− log

(
d

∑
j=1

∣∣∣〈b(k)
j |φ〉

∣∣∣
4
)

≤− log

(
1
M

M

∑
k=1

d

∑
j=1

∣∣∣〈b(k)
j |φ〉

∣∣∣
4
)

=− log

(
d
N

N

∑
k=1

∣∣〈xj|φ〉
∣∣4
)

G. Characteristic function of different fiducial vectors

The characteristic functions of stabilizer states is well-
known. Nonetheless, we shall also derive them here for
the sake completeness. In qubit dimensions d = 2n, ev-
ery stabilizer state |z〉 ∈ Cd is defined to be the unique
common eigenvector of d commuting elements of the
Pauli group P(d) = {±Wk,±iWk}d

k=1 that must not con-
tain−I. This in turn implies (see e.g. [15, Exercise 10.34])

|z〉〈z| = 1
d ∑

k∈S
φkWk φk ∈ {±1} .

Here S ⊂
{

1, . . . , d2} denotes a subset of cardinality
|S| = d. Mutual orthogonality of the Pauli matrices with
respect to the Hilbert-Schmidt inner product then im-
plies

w(|z〉〈z|) =
1√
d

d2

∑
j=1

tr

(
Wj

1
d ∑

k∈S
φkWk

)
|ej〉

=d−
3
2

d2

∑
j=1

∑
k∈S

φktr
(
WkWj

)
|ej〉

= ∑
k∈S

φk√
d
|ek〉.

Accordingly,

‖w(|z〉〈z|)‖p
`p

= ∑
k∈S

∣∣∣∣
φk√

d

∣∣∣∣
p

= d1− p
2

for any 1 ≤ p < ∞.
Let us now turn our attention to the characteristic

function of the “magic product state” |z〉〈z| = ρ⊗n ∈
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H2n with ρ = 1
2

(
σ + 1√

3
(σ1 + σ2 + σ3)

)
∈ Hd. Here

σ0, . . . , σ3 ∈ H2 denote the single qubit Pauli matrices
with the convention σ0 = I. We will content ourselves
with directly computing `p norms of the characteristic
function. To this end, we use the fact that every d = 2n-
dimensional Pauli matrix admits a tensor product de-
composition

Wk = σk1 ⊗ · · · ⊗ σkn k j ∈ {0, 1, 2, 3}

into single qubit Pauli’s. Doing so implies

‖w(ρ⊗n)‖p
`p

=d−
p
2

3

∑
k1,...,kn=0

∣∣tr
(
Wk1 ⊗ · · · ⊗Wkn ρ⊗n)∣∣p

=d−
p
2

3

∑
k1,...,kn=0

∣∣tr
(
Wk1 ρ

)
· · · tr (Wkn ρ)

∣∣p

=d−
p
2

n

∏
j=1

3

∑
kj=0

∣∣∣tr
(

Wkj
ρ
)∣∣∣

p

=d−
p
2

n

∏
j=1

(
1 + 3

(
1√
3

)p)

=d−
p
2

(
1 + 3

(
1√
3

)p)n

,

where the last line is due to “magic state’s” particular
structure. For p = 4 we thus obtain

‖w(|z〉〈z|)‖4
`4

=
1
d2

(
1 +

3
9

)n
=

4n

22n3n

=
1
3n =

(
1
9

) n
2
<

(
1
8

) n
2

= d−
3
2 . (38)

Similarly:

√
d‖w(|z〉〈z|)‖`1 =

(
1 +
√

3
)n

< d1.45. (39)

H. Entropic uncertainty and certainty relations for
stabilizer bases

Lemma 1. Let ρ ∈ Sd be quantum state with rank(ρ) = r.
Then the “effective rank” of X = ρ− 1

d I amounts to

reff(X) :=
‖X‖2

1
‖X‖2

2
≤ 4rank(ρ)(d− rank(ρ))

d

≤4 max {r, d− r} .

The first bound is saturated by quantum states ρ that are max-
imally mixed on an r-dimensional subspace, while the second
bound is saturated, if ρ is pure.

We provide a proof of this elementary statement in the
appendix.
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Appendix

I. Derivation of the 4-design bound presented in (4)

Previous derivations [1, 4] of the fourth moment
bound presented in (4) have assumed X to be traceless.
This additional assumption considerably simplifies the
task at hand. Here, we prove a similar bound valid for
arbitrary X ∈ Hd at the cost of a slightly larger multi-
plicative constant. At the heart of this derivation is [14,
Lemma 17] which provides a closed-form expression for
the object at hand:

Lemma 2. Suppose X is a nonzero Hermitian operator and y = |tr(X)|/‖X‖2. Then

24tr
(

PSym4 X⊗4
)

(tr(X2) + tr(X)2)
2 ≤ 3 +

6 + 8y− 2y4

(1 + y2)2 ≤ 3
5

(7 + 4 · 21/3 + 3 · 22/3) ≈ 10.08113. (40)

Here the second inequality is saturated iff y = 21/3 − 1; the first one cannot be saturated except when y = 1 and X has rank 1,
but it can be approached with arbitrarily small gap.

When X is trace less, Lemma 2 implies that

24tr
(

PSym4 X⊗4
)

(tr(X2) + tr(X)2)
2 < 9, (41)

where the upper bound can be approached with arbitrarily small gap.

Proof. According to [14, Lemma 17],

24tr
(

PSym4 X⊗4
)

=
(

tr(X)4 + 8tr(X)tr(X3) + 3tr(X2)2 + 6tr(X)2tr(X2) + 6tr(X4)
)

=3
(

tr(X2) + tr(X)2
)2

+ 8tr(X)tr(X3) + 6tr(X4)− 2tr(X)4

≤3
(
‖X‖2

2 + tr(X)2
)2

+ 8|tr(X)|‖X‖3
3 + 6‖X‖4

4 − 2tr(X)4

≤3
(
‖X‖2

2 + tr(X)2
)2

+ 8|tr(X)|‖X‖3
2 + 6‖X‖4

2 − 2tr(X)4, (42)

where the first inequality is saturated iff X ≥ 0 or X ≤ 0, and the second one is saturated iff ‖X‖4 = ‖X‖3 = ‖X‖2,
that is, X has rank 1. Consequently,

24tr
(

PSym4 X⊗4
)

(tr(X2) + tr(X)2)
2 ≤ 3 +

8|tr(X)|‖X‖3
2 + 6‖X‖4

2 − 2tr(X)4

(
‖X‖2

2 + tr(X)2
)2 = f (y) := 3 +

6 + 8y− 2y4

(1 + y2)2

≤ 3
5

(7 + 4 · 21/3 + 3 · 22/3) ≈ 10.08113. (43)

Here the first inequality is saturated iff X has rank 1 (in which case y = 1). To derive the second inequality, note that

f ′(y) =
8(1− 3y− 3y2 − y3)

(1 + y2)3 , (44)

which is positive when 0 ≤ y < 21/3 − 1 and negative when y > 21/3 − 1. So the maximum of f (y) for y ≥ 0 is
attained when y = 21/3 − 1, in which case

f (21/3 − 1) =
3
5

(7 + 4 · 21/3 + 3 · 22/3). (45)
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Although the first inequality in 41 can not be saturated except when y = 1, the bound can be approached arbitrarily
close if we do not impose any restriction on the rank of X. To show this point, suppose X = diag(ak,−1,−1, . . . ,−1)
has rank k + 1, where a is a real constant to be determined later. Then

tr(X) = k(a− 1), ‖X‖2
2 = a2k2 + k, tr(X3) = a3k3 − k ‖X‖4

4 = a4k4 + k. (46)

Assuming y ≥ 0, y 6= 1, k ≥ y2, and let

a =
k +

√
ky2(1 + k− y2)

k(1− y2)
. (47)

Then tr(X)tr(X3) ≥ 0, |tr(X)|/‖X‖2 = y,

lim
k→∞

a =
1

1− y
, lim

k→∞

|tr(X3)|
‖X‖3

2
= 1, lim

k→∞

‖X‖4

‖X‖2
= 1, (48)

which implies that

lim
k→∞

24tr
(

PSym4 X⊗4
)

(tr(X2) + tr(X)2)
2 = 3 +

6 + 8y− 2y4

(1 + y2)2 . (49)

Lemma 3. Suppose X is a nonzero Hermitian operator and y = |tr(X)|/‖X‖2. Then

24tr
(

PSym4 X⊗4
)

tr(X2)

(tr(X2) + tr(X)2)
2 ≤ 3(1 + y2)2 + 6 + 8y− 2y4

(1 + y2)3 < 9.673. (50)

Here the first inequality cannot be saturated except when y = 1 and X has rank 1, but it can be approached with arbitrarily
small gap.

Proof. The lemma follows from Lemma 2 except for the second inequality in Equation 50. To derive this inequality,
let

f (y) =
3(1 + y2)2 + 6 + 8y− 2y4

(1 + y2)3 ; (51)

then

f ′(y) = −2(−4 + 21y + 20y2 + 10y3 + y5)

(1 + y2)4 . (52)

Note that (1 + y2)4 f ′(y) is monotonic decreasing with y when y ≥ 0 and has a unique real root y0 > 0. Therefore,
the maximum of f (y) is attained when y = y0. Now it is straightforward to verify that f (y0) < 9.673. Calculation
shows that

y0 ≈ 0.163078, f (y0) ≈ 9.67249. (53)

Lemma 4. Suppose X is a rank-2 Hermitian operator. Then

24‖X‖2
1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

≤ 5
81

(95 + 32
√

10) ≈ 12.1107. (54)

If X is in addition traceless, then

24‖X‖2
1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

= 12. (55)
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Proof. Note that the left hand side of (60) is invariant when X is multiplied by any nonzero real constant. Without
loss of generality, we may assume that the two nonzero eigenvalues of X are equal to 1, x with −1 ≤ x ≤ 1. Then

‖X‖1 = 1 + |x|, ‖X‖2 = 1 + x2, tr
(

PSym4 X⊗4
)

= 1 + x + x2 + x3 + x4, (56)

so that

24‖X‖2
1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

= f (x) :=
3(1 + |x|)2(1 + x + x2 + x3 + x4)

(1 + x + x2)3 . (57)

If x ≥ 0, then f (x) ≤ 3 according to the following equation,

(1 + |x|)2(1 + x + x2 + x3 + x4)− (1 + x + x2)3 = −x2(2 + 3x + 2x2) ≤ 0. (58)

If −1 ≤ x < 0, then

f (x) :=
3(1− x)2(1 + x + x2 + x3 + x4)

(1 + x + x2)3 , f ′(x) =
3(−1 + x)(1 + x)(4 + 4x− x2 + 4x3 + 4x4)

(1 + x + x2)4 .

Let x0 be the unique real root of 4 + 4x− x2 + 4x3 + 4x4 which lies between −1 and 0, then f ′(x) ≥ 0 if −1 ≤ x ≤ x0
and f ′(x) ≤ 0 if x0 ≤ x ≤ 0. Therefore, the maximum of f (x) is attained when x = x0, in which case

f (x0) =
5

81
(95 + 32

√
10). (59)

If X is in addition traceless, then x = −1, so (55) follows from Equation 57.

Lemma 5. Suppose X is a rank-2 Hermitian operator. Then

6‖X‖4
1‖X‖2

2 + 24‖X‖2
1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

≤ 36, (60)

where the upper bound is saturated iff X is traceless.

Proof. As in the proof of Lemma 4, we may assume that the two nonzero eigenvalues of X are equal to 1, x with
−1 ≤ x ≤ 1. Then

6‖X‖4
1‖X‖2

2 + 24‖X‖2
1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

= f (x) :=
6(1 + |x|)4(1 + x2) + 24(1 + |x|)2(1 + x + x2 + x3 + x4)

8(1 + x + x2)3 .

When x ≥ 0, it is straightforward to verify that f (x) ≤ 9. When −1 ≤ x < 0,

f (x) =
6(1− x)4(1 + x2) + 24(1 + x + x2 + x3 + x4)

8(1 + x + x2)3 =
3(1− x)2(5 + 2x + 6x2 + 2x3 + 5x4)

4(1 + x + x2)3 ,

whose derivative is given by

f ′(x) =
3(−23 + 9x2 − 9x4 + 23x6)

4(1 + x + x2)4 ≤ 0,

Therefore, f (x) ≤ f (−1) = 36, and the upper boud is saturated iff x = −1, in which case X is traceless.

J. Proof of Lemma 1

We start by computing the Hilbert-Schmidt norm of
X = ρ

−
1
d I:

‖X‖2
2 =tr

(
ρ2
)

+
1
d2 tr(I) = tr

(
ρ2
)
− 1

d
.

Recall that the minimal purity of any rank-r state is 1
r

which in turn impies

‖X‖2
2 ≥

d− r
dr

. (61)
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For computing the trace norm, we employ an eigen-
value decomposition ρ = ∑r

k=1 λk|k〉〈k| of ρ and in turn
write I = ∑d

k=1 |k〉〈k|. Consequently

‖X‖1 =
r

∑
k=1

∣∣∣∣λk −
1
d

∣∣∣∣+
d

∑
k=r+1

1
d

≤

√√√√r
r

∑
k=1

(
λk −

1
d

)2
+

d + r
d

,

because ‖x‖`1 ≤
√

r‖x‖`2 for any x ∈ Cr. Applying
∑r

k=1 λ2
k = tr(ρ2), ∑r

k=1 λk = tr(ρ) = 1 and resorting to
(61) we obtain

‖X‖1 ≤

√√√√r
r

∑
k=1

(
λk −

1
d

)2
+

d + r
d

=

√
r
(

tr(ρ2)− 1
d
− d− r

d

)
+

d− r
d2

=

√
r
(
‖X‖2

2 −
r
d

d− r
rd

)
+
√

r

√
d− r

d

√
d− r

dr

≤
√

r
(

1− r
d

)
‖X‖2

2 +

√
r

d− r
d
‖X‖2

=2

√
r

d− r
d
‖X‖2.

Combining these two relations implies

reff(X) =
‖X‖2

1
‖X‖2

2
=

4r(d− r)

d
,

as claimed. The second bound follows from the fact that
max {r, d− r} ≤ d−1

d ≤ d− 1 for any 1 ≤ r ≤ d− 1 (the
case r = d is trivial, because it implies X = 0). Conse-
quently:

4r(d− r)

d
=

4
d

max {r, d− r}min {r, d− r}

≤4
d− 1

d
min {r, d− r} .

The fact that both bounds are saturated, follows from
a straightforward computation for ρ = ∑r

k=1 |k〉〈k| (first
bound) and then setting r = 1 and r = d − 1, respec-
tively (second bound).
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4 Conclusion and Outlook

4.1 Summary

Convex signal reconstruction combines techniques from linear algebra, convex optimization
and probability theory. The aim is to solve ill-posed inverse problems via convex optimization.
In many instances, rigorous mathematical performance guarantees can be obtained for such
procedures.

The most prominent examples are compressed sensing and low rank matrix reconstruction.
Strong reconstruction guarantees typically require “generic cases”, for example situations
where the measurements correspond to random Gaussian vectors and matrices, respectively.
See for instance [BDDW08; RFP10]. In addition, proofs of convergence can be obtained for
more restricted sets of measurements if the obey particular properties, such as incoherence
and isotropy. Examples include discrete Fourier vectors in compressed sensing [CRT06] and
Pauli matrices in matrix reconstruction [Gro11; Liu11].

The main objective of this thesis was to devise novel proof techniques that are able to handle
further structural restrictions on the measurement process.

An important special case, where this is necessary, is phase retrieval. This is the task of
reconstructing a complex vector x ∈ Cn from quadratic measurements that are ignorant to-
wards phase information. This problem is ubiquitous in many scientific disciplines, including
X-ray crystallography, astronomy and quantum mechanics. As pointed out by Candès et al.
[CESV15], this quadratic inverse problem can be re-cast as a particular instance of low rank
matrix reconstruction: Both, the signal and the measurements are proportional to rank-one
projectors. Measurements of this type fail to obey incoherence and isotropy. These issues
may be overcome for Gaussian measurement vectors, or vectors chosen uniformly from the
complex unit sphere Sn−1. It turns out that strict isotropy is not a necessary requirement, and
such “generic instances” guarantee a strong notion of probabilistic incoherence. This in turn
allowed Candès and Li to prove phaseless reconstruction guarantees that scale linearly in the
dimension n [CL14].

In order to partially derandomize this result, Gross, myself and Krahmer have resorted to
spherical t-designs [GKK15a; KGK15]. These amount to finite configurations of vectors that
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are “evenly distributed” in the sense that they reproduce the first 2t moments of the uniform
distribution over Sn−1. In turn, we could relate a relaxed notion of isotropy to the defining
property of a spherical 2-design [GKK15a]. The structure of a spherical 2-design alone, how-
ever, is insufficient for strong constructive results. Complementing this no-go result, we could
prove that spherical 4-designs already enable optimal reconstruction [KRT15]. This leaves the
case t = 3 as an intriguing open case. In [KG15], we could identify a particular instance of
a spherical 3-design: stabilizer states in power-of-two dimensions. This family of vectors has
several descriptions:

(i) They may be viewed as a generalization of both the standard basis and the discrete
Fourier basis.

(ii) In quantum information theory, stabilizer states arise naturally as the joint eigenvectors
of n commuting Pauli matrices.

(iii) They form the smallest orbit of a prominent symmetry group. This group is known as
Clifford group in quantum information, the oscillator group in finite Weyl-Heisenberg
analysis and the metaplectic representation of Sp(F2, 2n) in mathematical physics.

In an ongoing collaboration with Zhu, Gross and Grassl we could prove close-to-optimal
convex reconstruction guarantees for phase retrieval from random stabilizer states [KZG16b;
ZKGG16].

Shifting focus more towards practical applicability of PhaseLift, Gross, Krahmer and
myself considered random diffraction patterns. Introduced Candès, Li and Soltanolkotabi
[CLS15], this structured measurement setup mimics diffraction imaging experiments that uti-
lize “masks”. These authors then proved that C log4(n) randomly chosen diffraction patterns
(each of which contains n correlated measurement vectors) suffice w.h.p. to recover a given
vector x ∈ Cn via PhaseLift. Gross, Krahmer and myself improved on this result by showing
that already C log2(n) such patterns suffice to derive an analogous statement [GKK15b]. This
improvement is only a single log-factor away from the information theoretic lower bound for
such types of measurements.

Our occupation with the particular aspects of phase retrieval has led to further insights
within the field of convex signal reconstruction. These results include reconstruction proofs
applicable to compressed sensing from anisotropic measurements [KG14], an improved noise-
robustness for compressed sensing of non-negative vectors [KJ16], and identifying the dia-
mond norm as an improved regularizer for certain low rank matrix reconstruction problems
[KKEG16].

The mathematical techniques that are typically employed in convex signal reconstruction
lend themselves to tackling a great variety of different problems in many scientific disciplines.
Being a physicist by training, I have focused on several open problems in quantum information
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theory. By applying techniques from convex optimization, I could contribute novel insights to
the study of Bell inequalities [CKBG15], the task of comparing experiments to the Threshold
Theorem in quantum error correction [KLDF16], quantum state discrimination from stabilizer
state measurements [KZG16a] and a novel benchmark for fidelity optimization in Bayesian
quantum estimation [KF15].

4.2 Outlook

We conclude this work by mentioning several observations and research directions that may
merit further attention.

4.2.1 Sparse reconstruction of positive vectors

Positivity constraints can have profound impacts on compressed sensing, see e.g. [BEZ08;
DT05; SH+13]. Bruckstein et al. for instance showed that positivity renders `1-minimization
superfluous, if the row span of the measurement matrix A intersects the positive orthant
[BEZ08]. It is phrased for noiseless measurements and we generalize it to the noisy case
[KJ16]. We prove that solving

minimize
z≥0

‖Az− y‖`2
. (4.1)

allows for stably reconstructing any positive s-sparse vector if the measurement matrix A
obeys a nullspace property and its row span intersects the positive orthant. An analogous
statement holds true for positive semidefinite matrix reconstruction [KKRT16].

Unlike constrained `1-norm minimization, such a constrained least-squares regression does
not require an a-priori noise bound η ≥ ‖ε‖`2

. Moreover, the minimal function value f (z]) =∥∥Az] − t
∥∥
`2

always provides a lower bound on the noise strength:

f (z]) ≤ ‖ε‖`2
. (4.2)

This already provides some information about the noise present in the sampling process. How-
ever, a converse bound

f (z]) ≥ c ‖ε‖`2
(4.3)

would be considerably more desirable. Such a relation would allow for inferring an upper

noise bound η := f (z])
c directly from the reconstruction algorithm (4.2). In turn, this would

allow for inferring a “confidence region”: If the measurement matrix A admits a strong notion
of the NSP, the original vector x is contained in B =

{
z ∈ Cn :

∥∥z− s]
∥∥
`2
≤ C′

c f (z])
}

.
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Importantly, this region B would be completely specified by the solution of (4.2).

Clearly, the desired relation (4.3) cannot hold in full generality. It is possible to violate it
by choosing ε adversely with respect to A and x. However, numerical experiments conducted
with i.i.d. Gaussian noise suggest that (4.3) holds w.h.p. for stochastic noise. I believe that
the prospect of a “self certifying” compressed sensing protocol, in the sense of the previous
paragraph, merits further attention.

4.2.2 Tensor reconstruction

Our original motivation for [KKEG16] was the seemingly tensorial nature of the diamond
norm. The diamond norm is defined for linear maps M : Mn → Mm that map square
matrices onto square matrices:

‖M‖� = sup
N≥0

sup
X∈Mn⊗MN

‖M⊗ IN(X)‖1
‖X‖1

(4.4)

Here, IN : Z → Z denotes the identity on MN. This is a stabilized version of the induced nu-
clear norm. Among other things, this stabilization is responsible for the fact that the diamond
norm can be evaluated by means of a semidefinite program (SDP). Our working definition as
a particular matrix norm, results from choosing an appropriate matrix representation ofM. In
turn, we have focused on the implications of such a norm for matrix reconstruction [KKEG16].
Alternatively, the diamond norm (4.4) may be viewed as a norm for mapsM with an order-
four tensorial structure. It would be interesting to explore this aspect of the diamond norm in
the future.

Another promising objective is to consider tensor reconstruction of highly structured tensor
families. Permutation invariant tensors, i.e. elements of H⊗N

n (where N is much larger than
n) that are invariant under any permutation of the individual matrix spaces Hn, are highly
promising. In quantum mechanics, such tensors describe bosonic systems. Classically, they
stand in one-one correspondence to homogeneous polynomials of degree N in n variables. One
strong indication that this special case is considerably simpler to treat than the general problem
is given by the fact that the dimension of the totally symmetric space grows only polynomially
in N, as opposed to exponential. Results might shed light onto conceptual problems like the
relation between rank and symmetric rank of symmetric tensors, and might have applications
for relevant problems such as learning polynomial functions.

354



4.2 Outlook

4.2.3 Entropic uncertainty relations for stabilizer states

Heisenberg’s uncertainty relation is one of the most famous aspects of quantum mechanics.
Roughly speaking, it show that it is impossible to prepare quantum systems with sharply
defined position and momentum (“preparation uncertainty”):

∆P∆Q ≥ h̄
2

.

Here, ∆P and ∆Q denote the standard deviations of momentum and position, respectively.
Subsequently, Robertson [Rob29] generalized this relation to arbitrary observables A, B and
pure quantum states ψψ∗:

∆A∆B ≥ |〈ψ, [A, B] ψ〉| . (4.5)

Here [·, ·] denotes the commutator. Importantly, this relation depends on the quantum state.
In fact, for finite dimensional quantum systems (ψ ∈ Cn, A, B ∈ Hn) it is always possible to
choose ψ such that that (4.5) becomes trivial [Deu83].

One way to overcome this drawback is to use entropies as a quantitative measure of un-
certainty, rather than standard deviations. This approach has become increasingly popular in
quantum information science, see for instance [CBTW15], and plays a key role in quantum
cryptography.

A particularly strong entropic uncertainty relation is true for two measurements E and F
which correspond to the standard and Fourier basis of Cn, respectively. Born’s rule im-
plies that performing such measurements on a quantum state ρ ∈ Hn results in n-variate
probability distributions, e.g. p(E, ρ) = (〈e1, ρe1〉, . . . , 〈en, ρen〉)T. If we quantify the un-
certainty associated with such outcome probability distributions by means of the Shannon
entropy H(p) = −∑n

k=1 pk log2(pk) these two measurements obey

H (E, ρ) + H (F, ρ) ≥ 1
2

log2(n) ∀ρ.

This is an extreme case of a more general entropic uncertainty relation by Maassen and Uffink
[MU88]. It is a consequence of minimal coherence (1.17) between standard and Fourier ba-
sis and, in some sense, highlights the validity of incoherence as a structural requirement for
compressed sensing.

Entropic uncertainty relations may be phrased for more than two basis measurements. For
instance, a complete set of (n + 1) mutually unbiased bases M1, . . . , Mn+1 ⊂ Cn obey

1
n + 1

n+1

∑
k=1

H (Mk, ρ) ≥ log2(n + 1)− 1 ∀ρ. (4.6)
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This is a very strong bound, since the individual entropic terms on the left hand side are upper-
bounded by log2(n). Interestingly, this relation can be derived by exploiting the fact that a
complete set of mutually unbiased forms a spherical 2-design, see e.g. [WW10].

In prime power dimensions n = ad, stabilizer states form another prominent set of N =

∏n
j=1
(
aj + 1

)
orthonormal bases Sk whose union is a spherical 2-design. In analogy to (4.6)

one can prove
1
N

N

∑
k=1

H (Sk, ρ) ≥ log2(n + 1)− 1 ∀ρ. (4.7)

In [KG15], we could show that, in power of two dimensions (a = 2), stabilizer states actually
constitute a spherical 3-design. Moreover, the results presented in Chapter 3 exactly charac-
terize the fourth moment of such an ensemble. This additional information may be sufficient
for further improving the already strong entropic uncertainty relation (4.7).

4.2.4 Clustering

Clustering is a prominent problem in unsupervised learning theory. Given a finite set of points
the task is to partition it into k disjoint subsets such that an a priori chosen dissimilarity func-
tion is minimized. A particularly illustrative example for such a task is Euclidean clustering:
All points are elements of Rn and their similarity is mediated by the Euclidean distance. A
popular choice for the dissimilarity function is then minimizing the squared pairwise distances
between points within a cluster. This problem is NP hard in general, but Lloyd’s algorithm
provides a popular heuristic for solving it. The undesirable fact that this computationally fast
heuristic tends to not always converge to the true solution has prompted further investigation.
Recently, LP and SDP relaxations of the k-means problem have been proposed [Awa+15;
IMPV15]. For certain distributions of the data points – the stochastic ball model – these meth-
ods provably recover the underlying cluster structure w.h.p., provided that the individual balls
admit a minimal separation distance. The minimal required distances put forth in [Awa+15]
and [IMPV15], respectably, differ from each other and neither seems to be optimal. It is plau-
sible that employing more sophisticated proof techniques—most notably the “golfing scheme”
for constructing approximate dual certificates (see e.g. [GKK15a; GKK15b])—would allow
for further tightening this separation criterion.

356



5 Bibliography

[AC07] P. Aliferis and A. W. Cross. “Subsystem fault tolerance with the Bacon-Shor
code”. In: Phys. Rev. Lett. 98.22 (2007), p. 220502.

[AE07] A. Ambainis and J. Emerson. “Quantum t-designs: t-wise independence in the
quantum world”. In: Twenty-Second Annual IEEE Conference on Computa-
tional Complexity (CCC’07). 2007, pp. 129–140.

[AFZ15] D. M. Appleby, C. A. Fuchs, and H. Zhu. “Group theoretic, Lie algebraic and
Jordan algebraic formulations of the SIC existence problem”. In: Quantum Inf.
Comput. 15.1-2 (2015), pp. 61–94.

[Awa+15] P. Awasthi, A. S. Bandeira, M. Charikar, R. Krishnaswamy, S. Villar, and R.
Ward. “Relax, no need to round: Integrality of clustering formulations”. In:
Proceedings of the Conference on Innovations in Theoretical Computer Sci-
ence. ACM. 2015, pp. 191–200.

[Bag+06] E Bagan, M. Ballester, R. D. Gill, A Monras, and R Munoz-Tapia. “Optimal
full estimation of qubit mixed states”. In: Phys. Rev. A 73.3 (2006), p. 032301.

[Bar02] A. Barvinok. A course in convexity. Vol. 54. American Mathematical Society
Providence, RI, 2002.

[BBCE09] R. Balan, B. G. Bodmann, P. G. Casazza, and D. Edidin. “Painless reconstruc-
tion from magnitudes of frame coefficients”. In: J. Fourier Anal. Appl. 15.4
(2009), pp. 488–501.

[BDDW08] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. “A simple proof of
the restricted isometry property for random matrices”. In: Constr. Approx. 28.3
(2008), pp. 253–263.

[BE13] C. Bachoc and M. Ehler. “Tight p-fusion frames”. In: Appl. Comput. Harmon.
Anal. 35.1 (2013), pp. 1–15.

[Bel64] J. S. Bell. “On the Einstein–Podolsky–Rosen Paradox”. In: Physics 1 (3 1964),
p. 195.

[BEZ08] A. M. Bruckstein, M. Elad, and M. Zibulevsky. “On the uniqueness of non-
negative sparse solutions to underdetermined systems of equations”. In: IEEE
Trans. Inform. Theory 54.11 (2008), pp. 4813–4820.

357



5 Bibliography

[BHH12] F. G. Brandao, A. W. Harrow, and M. Horodecki. “Local random quantum
circuits are approximate polynomial-designs”. In: preprint arXiv:1208.0692
(2012).

[BK10] R. Blume-Kohout. “Optimal, reliable estimation of quantum states”. In: New J.
Phys. 12.4 (2010), p. 043034.

[BV04] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University
Press, 2004.
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[CSV13] E. J. Càndes, T. Strohmer, and V. Voroninski. “Phaselift: Exact and stable signal
recovery from magnitude measurements via convex programming”. In: Com-
mun. Pure Appl. Math. 66.8 (2013), pp. 1241–1274.

[DCEL09] C. Dankert, R. Cleve, J. Emerson, and E. Livine. “Exact and approximate uni-
tary 2-designs and their application to fidelity estimation”. In: Phys. Rev. A 80
(1 2009), p. 012304.

[DDM03] J. Dehaene and B. De Moor. “Clifford group, stabilizer states, and linear and
quadratic operations over GF (2)”. In: Phys. Rev. A 68.4 (2003), p. 042318.

[Deu83] D. Deutsch. “Uncertainty in Quantum Measurements”. In: Phys. Rev. Lett. 50
(9 1983), pp. 631–633.

[DGS77] P. Delsarte, J.-M. Goethals, and J. J. Seidel. “Spherical codes and designs”. In:
Geom. Dedicata 6.3 (1977), pp. 363–388.

[DLHP05] P. De La Harpe and C. Pache. “Cubature formulas, geometrical designs, repro-
ducing kernels, and Markov operators”. In: Infinite groups: geometric, combi-
natorial and dynamical aspects. Springer, 2005, pp. 219–267.

[Don06] D. L. Donoho. “Compressed sensing”. In: IEEE Trans. Inform. Theory 52.4
(2006), pp. 1289–1306.

[DT05] D. L. Donoho and J. Tanner. “Sparse nonnegative solution of underdetermined
linear equations by linear programming”. In: Proc. Nat. Acad. Sci. 102.27
(2005), pp. 9446–9451.
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6.2 Abstract

Convex signal reconstruction is the art of solving ill-posed inverse problems via convex op-
timization. It is applicable to a great number of problems from engineering, signal analysis,
quantum mechanics and many more. The most prominent example is compressed sensing,
where one aims at reconstructing sparse vectors from an under-determined set of linear mea-
surements. In many cases, one can prove rigorous performance guarantees for these convex
algorithms. The combination of practical importance and theoretical tractability has directed
a significant amount of attention to this young field of applied mathematics.

However, rigorous proofs are usually only available for certain “generic cases”—for in-
stance situations, where all measurements are represented by random Gaussian vectors. The
focus of this thesis is to overcome this drawback by devising mathematical proof techniques
can be applied to more “structured” measurements. Here, structure can have various mean-
ings. E.g. it could refer to the type of measurements that occur in a given concrete application.
Or, more abstractly, structure in the sense that a measurement ensemble is small and exhibits
rich geometric features.

The main focus of this thesis is phase retrieval: The problem of inferring phase information
from amplitude measurements. This task is ubiquitous in, for instance, in crystallography,
astronomy and diffraction imaging. Throughout this project, a series of increasingly better
convex reconstruction guarantees have been established. On the one hand, we improved re-
sults for certain measurement models that mimic typical experimental setups in diffraction
imaging. On the other hand, we identified spherical t-designs as a general purpose tool for the
derandomization of data recovery schemes. Loosely speaking, a t-design is a finite configura-
tion of vectors that is ”evenly distributed” in the sense that it reproduces the first 2t moments
of the uniform measure. Such configurations have been studied, for instance, in algebraic
combinatorics, coding theory, and quantum information. We have shown that already spher-
ical 4-designs allow for proving close-to-optimal convex reconstruction guarantees for phase
retrieval.

The success of this program depends on explicit constructions of spherical t-designs. In this
regard, we have studied the design properties of stabilizer states. These are configurations of
vectors that feature prominently in quantum information theory. Mathematically, they can be
related to objects in discrete symplectic vector spaces—a structure we use heavily. We have
shown that these vectors form a spherical 3-design and are, in some sense, close to a spherical
4-design. Putting these efforts together, we establish tight bounds on phase retrieval from
stabilizer measurements.

While working on the derandomization of phase retrieval, I obtained a number of results
on other convex signal reconstruction problems. These include compressed sensing from
anisotropic measurements, non-negative compressed sensing in the presence of noise and
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identifying improved convex regularizers for low rank matrix reconstruction. Going even
further, the mathematical methods I used to tackle ill-posed inverse problems can be applied
to a plethora of problems from quantum information theory. In particular, the causal struc-
ture behind Bell inequalities, new ways to compare experiments to fault-tolerance thresholds
in quantum error correction, a novel benchmark for quantum state tomography via Bayesian
estimation, and the task of distinguishing quantum states.
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6.3 Kurzzusammenfassung

Konvexe Signalrekonstruktion ist die Kunst des Lösens schlecht gestellter inverser Probleme
mittels konvexer Optimierung. Sie ist auf eine große Anzahl von Problemen im Ingenieur-
wesen, der Signalanalyse, der Quantenmechanik und vielen weiteren anwendbar. Der bekan-
nteste Anwendungsfall ist Compressed Sensing, dessen Ziel es ist, dünnbesetzte Vektoren
aus einer unterbestimmten Menge an linearen Messungen zu rekonstruieren. In vielen Fällen
ist es möglich, rigorose Leistungsgarantien für diese konvexen Algorithmen zu beweisen.
Die Kombination aus praktischer Bedeutung und theoretischer Beweisbarkeit hat zu einem
beträchtlichen Interesse an diesem jungen Teilgebiet der angewandten Mathematik geführt.

Nichtsdestotrotz, sind rigorose mathematische Beweise für gewöhnlich nur für gewisse
“generische Fälle” vorhanden—zum Beispiel Instanzen, wo alle Messungen zufälligen Gauss-
Vektoren entsprechen. Das Thema dieser Arbeit ist es diese Beeinträchtigung durch das
Entwickeln neuer mathematische Beweistechniken zu beheben, welche auf “strukturiertere”
Messinstanzen anwendbar sind. Wohlgemerkt, kann Struktur hier mannigfaltig ausgelegt wer-
den. Zum Beispiel könnte sie auf Messprozesse in konkreten Anwendungen hindeuten. Oder,
abstrakter, Struktur im Sinne eines kleinen Messensembles, welches besondere geometrische
Eigenschaften aufweist.

Ein wichtiger Aspekt dieser Arbeit ist Phase Retrieval. Darunter versteht man die Auf-
gabe komplexe Phaseninformation aus Amplitudenmessungen zu gewinnen. Dieses Problem
ist allgegenwärtig in vielen Disziplinen, zum Beispiel in Kristallographie, Astronomie und
“Diffraction Imaging”. Im Laufe dieses Projektes wurde eine Reihe stetig besser werdender
konvexer Rekonstruktionsgarantien hergeleitet. Auf der einen Seite haben wir bestehende
Resultate verbessert, welche für Messmodelle gelten die typische experimentelle Prozeduren
in “Diffraction Imaging” imitieren. Auf der anderen Seite, haben wir sphärische t-Designs
als Allzweck-Werkzeug für das Derandomisieren von Datenrekonstruktionsverfahren iden-
tifiziert. Vereinfacht gesagt, ist ein t-Design eine Konfiguration endlich vieler Vektoren,
welches “gleichverteilt ist” in dem Sinn, dass sie die ersten 2t Momente der uniformen
Verteilung auf der Sphäre reproduziert. Derartige Konfigurationen wurden zum Beispiel im
Rahmen der algebraischen Kombinatorik, der Kodierungstheorie und in der Quanteninforma-
tionstheorie untersucht. Wir haben gezeigt, dass bereits sphärische 4-Designs es erlauben,
beinahe optimale konvexe Rekonstruktionsgarantien für Phase Retrieval herzuleiten.

Der Erfolg eines solchen Programms hängt stark von expliziten Konstruktionen sphärischer
t-Designs ab. Um das zu erreichen, haben wir die Designeigenschaften von Stabilsatorzuständen
untersucht. Diese sind eine in der Quanteninformationstheorie sehr wichtige Vektorkonfigu-
ration. In mathematischer Hinsicht können sie mit diskreten symplektischen Vektorräumen in
Verbindung gebracht werden—Eine Struktur die wir stark ausnützen. Wir haben gezeigt, dass
diese Vektoren ein sphärisches 3-Design bilden, welche zudem einem 4-Design in gewisser
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Weise nahekommen. In dem wir diese Errungenschaften mit den Obengenannten verbinden,
leiten wir optimale Schranken für Phase Retrieval mittels Stabilisatorzuständen her.

Im Verlauf meiner Arbeit an der Derandomisierung von Phase Retrieval habe ich eine
Anzahl an weiteren Resultaten im Rahmen der konvexen Signalanalyse erarbeitet. Diese
beinhalten Compressed Sensing von anisotropen Messungen, verrauschtes nicht-negatives
Compressed Sensing, und das Identifizieren eines besseren konvexen Regularisierers für bes-
timmte Matrixrekonstruktionsprobleme. Darüber hinaus, können die mathematischen Meth-
oden, welche ich zum Bearbeiten schlecht-gestellter inverser Probleme verwendet habe, auf
eine Vielzahl an Problemen der Quanteninformation angewendet werden. Konkret handelt es
sich hierbei um die kausale Struktur hinter Bellungleichungen, neue Möglichkeiten Experi-
mente mit dem “Fault-Tolerance Threshold” zu vergleichen, einen neuen Maßstab für Quan-
tenzustandstomographie durch Bayes’sche Schätztheorie, und die Aufgabe Quantenzustände
zu unterscheiden.
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