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1 Introduction

The present thesis investigates the coordination of nuclear and prenuclear rising pitch

accents in the acoustic and articulatory domain in German. In the past thirty years,

there have been many studies investigating the alignment of intonational events relative

to segmental structure. Specifically, researchers have looked at the synchronization of low

and high turning points of rising pitch accents with landmarks in the acoustic domain

such as the beginning or end of the accented syllable with which the pitch accent is

phonologically associated. Most of these studies have found, however, that the beginning

of an accentual rise is stably aligned with the beginning of the accented syllable, while the

end of the accentual rise is highly sensitive to, for example, syllable structure, word length

and phrasal position (see, for example, Ladd 2008, Prieto 2011, D’Imperio 2012).

The work reported on here focuses on the coordination of pitch accents with articulatory

gestures in the framework of Articulatory Phonology, which views dynamically-defined

gestures as phonological primitives (Browman & Goldstein 1989, 1990). In this framework,

phonological structure is directly reflected in the timing between articulatory gestures.

This intergestural timing successfully can be modelled by associating articulatory gestures

with non-linear planning oscillators, or clocks, that are coupled with each other (Saltzman

& Kelso 1987, Saltzman et al. 2006, Nam, Goldstein & Saltzman 2009). The organisation

1



1 INTRODUCTION

of consonants and vowels in a syllable arise from specific coupling structures underlying

the interarticulatory timing. More recently, the concept of gestures has been applied to

the laryngeal system by integrating (lexical) tones (Gao 2009, Hsieh 2011), (post-lexical)

pitch accents and boundary tones (Mücke et al. 2012, Niemann et al. 2011, Katsika et al.

2014) into the syllable coupling network.

A major goal of this study is thus to contribute to the growing body of evidence of

a tight link between the laryngeal system (forming the tune of an utterance) and the

supralaryngeal system (forming articulatory movements and ultimately producing the

sounds) of speech. For rising nuclear accents, for example, we have found evidence for a

stable, or at least a more stable, coordination between the accentual rise of the pitch

accent with landmarks in the articulatory domain as compared to landmarks in the

acoustic domain (cf. Niemann, Grice & Mücke 2014, Niemann & Mücke 2015). This

thesis provides an in-depth exploration of the timing of both nuclear and prenuclear pitch

accent relative to segmental and articulatory landmarks. The analysis not only focuses

on timing patterns found across speakers, but also provides evidence for speaker-specific

strategies. More specifically, a dynamical model for text-tune coordination is provided by

employing prosodic gestures, the π-gesture and the µ-gesture, in the coupled oscillator

model.

This study employs electromagnetic articulography (EMA) to examine the temporal

relationship between accentual rises and oral constriction gestures in German in order to

shed light on their coordination as a function of phrasal position, syllable structure and

word boundary. This thesis is structured as follows: In Chapter 2, the basic concepts of

the prevailing model of intonation, the Autosegmental-Metrical model, will be introduced.

In particular, the Segmental Anchoring Hypothesis will be presented, which posits that

2



tones are attached to the segmental string in a regular and predictable way. The following

section reviews studies on different languages investigating the numerous factors that

have been found to effect the alignment of pitch accents.

Chapter 3 introduces the framework of Articulatory Phonology and focuses on patterns

of intergestural coordination. Therefore, the coupled oscillator model of syllable structure

rooted in Articulatory Phonology is introduced. Recently, this model has been applied to

higher prosodic units such as the intonation phrase involving boundary- and stress-related

effects on gestural timing. The chapter concludes with a review of studies that have

adapted the concept of gestures to tonal events such as pitch accents or lexical tones.

Chapter 4 gives an overview of the methods of the current study by presenting details

on the speakers, speech material, the recording procedure, data processing and the

annotation scheme.

Results are presented in Chapter 5 (nuclear accents) and Chapter 6 (prenuclear accents).

The analyses include both the alignment of the rising pitch accents relative to segmental

boundaries and the coordination of the rising pitch accents with consonantal and vocalic

gestures produced by the lips and the tongue body, respectively. Different stability

patterns are suggested. Chapter 7 provides a dynamical model for the articulatory data

in terms of different coupling structures. For this purpose, different sources of variability

caused by the dynamical behaviour of the articulatory system are taken into account.

Chapter 8 summarises the findings of this study and suggests possible future directions

for research.
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2 Intonation

2.1 The Autosegmental-Metrical model of intonation

When we speak, we do not utter each sound in isolation and one after another like pearls

on a necklace. We also do not talk in monotonous way. Rather, we integrate speech

units into chunks and produce them with a tune. Generally speaking, speech can be

broken down into a segmental and a suprasegmental part. The segmental part refers to

the sounds produced by our articulators such as a voiced labial nasal [m] produced by

closing the lips while lowering the velum, allowing the airflow to pass through the nasal

cavity at the same time. Voicing is provided by continuous vocal fold oscillations. The

suprasegmental part is said to be superimposed on the segmental part and refers to the

prosody involving, on the one hand, the intonation and the rhythm of an utterance and,

on the other hand, the stress and accentuation of words and, more specifically, syllables.

Physiologically, the intonation, or tune, of an utterance is generated by rapid changes of

the frequency, the vocal fold oscillations (fundamental frequency, F0). The perceptual

counterpart is pitch; fast vocal fold oscillations (high F0) lead to the perception of a high

tone, while slow vocal fold oscillations (low F0) lead to the perception of a low tone.
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2 INTONATION

In general, there are two different approaches to the phonology of intonation (see Arvaniti

2011 for an extensive overview). On the one hand there are configurational models that

treat intonation as holistic F0 contours with a specific meaning (e.g. Bolinger 1951,

Jones 1972, Hirst & Di Cristo 1998). On the other hand, there are compositional models

that claim that an F0 contour can be deconstructed into smaller units. However, the

nature of these smaller units is controversial. While some researchers have worked with

local F0 movements (’t Hart, Collier & Cohen 1990, Halliday 1970, O’Connor & Arnold

1973, Crystal 1972) others have claimed tonal targets in F0 space to be tonal primitives

(e.g. Trager & Smith 1951, Pike 1945, Hockett 1955, Bruce 1977). One of today’s

prevailing approaches to the intonational analysis of the world’s languages is provided

by the Autosegmental-Metrical model, which views intonation as a sequence of single

tonal targets (Pierrehumbert 1980, Beckman & Pierrehumbert 1986, Pierrehumbert &

Beckman 1988, Ladd 2008).

The Autosegmental-Metrical model (henceforth: AM model) claims that the intonation

of an utterance rests on a different tier, or level, than the segmental part. Both tiers itself

host their own items or segments. Originally describing tone languages, Goldsmith (1976)

proposes the two tiers to be one tonal and one phonemic tier, the former containing

a “H” (high tone) or “L” (low tone) indicating changes in pitch height, and the latter

containing “C” or “V” indicating consonantal or vocalic phonemes. The cohesion between

the elements on the segmental tier and the elements on the tonal tier is indicated by

association lines that “represent simultaneity in time” (ibid.: 10). Figure 2.1 illustrates

this association. “X” denotes an autosegment.

As indicated by Goldsmith’s (1976) use of high and low tones, the AM model is a

target-based model in that rising or falling F0 contours are modeled as a sequence of low
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2.1 THE AUTOSEGMENTAL-METRICAL MODEL OF INTONATION

Figure 2.1: Autosegmental representation.

and high tonal targets corresponding to local minima (L) and local maxima (H) in the

F0 trace. Thus, it appears that the intonation of a given utterance is underspecified:

“[. . . ] these L and H do not exhaustively represent the course of F0. Pho-
netically, the reflexes of L and H tones are tonal targets (typically, though not
necessarily, F0 minima and and maxima respectively), with the pitch between
them being generated by interpolation” (Arvaniti 2011: 267).

Another central part of the AM model is a hierachical organisation of speech units. That

is, segments are integrated into syllables which themselves are dominated by higher

prosodic units such as the foot or the phonological word. Figure 2.2 shows the prosodic

organisation of the utterance <Two many cooks spoil the broth>.

Segments are grouped into syllables (σ). Syllabes are dominated by feet, (F) which them-

selves are grouped into phonological words (ω) and phonological phrases (ϕ). Phonological

phrases, in turn, are integrated into Intonational Phrases (ι), ultimately constituting

the utterance (υ). However, while the existence of very low levels (syllable, foot) and

very high levels (utterance, Intonational Phrase) of the prosodic hierarchy are widely

accepted, the intermediate levels and the criteria determining which units on one level are

dominated by a higher-level unit is highly theory- and language-specific (see Shattuck-

Hufnagel & Turk (1996) for an extensive discussion on this). Phonetic evidence for a

hierarchical organisation of speech comes from a number of studies investigating acoustic

and articulatory charateristics at the boundaries of prosodic constituents. In general,

segments display longer durations before and after boundaries, caused by a slowdown
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2 INTONATION

Figure 2.2: Prosodic organisation of the utterance <Too many cooks spoil the broth>. A) Schema-
tized F0 contour, B) analysis from Gussenhoven 2002, C) analysis based on Pierrehumbert
1990 and Pierrehumbert & Beckman 1988 (reprinted from Grice 2006: 781).

of the articulators involved in processes known as final lengthening and domain initial

strengthening (see Cho 2016 for an overview).

As for the tonal structure of an utterance, the AM model basically claims two different

types of tones: pitch accents and edge tones, the latter often called boundary tones.

While pitch accents are associated with a metrically stressed syllable, the tone bearing

unit, boundary tones are associated with phrasal edges. In the both analyses given in

Figure 2.2 (B and C), the intonation(al) phrase is marked by an obligatory boundary tone
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2.1 THE AUTOSEGMENTAL-METRICAL MODEL OF INTONATION

(L1 and L%, respectively). In addition, the analysis in (C) posits additional boundary

tones associated with the edge of the intermediate phrase (H- and L-).

Pitch accents can either be mono- or bitonal and are marked by an asterisk. In addition,

pitch accents are specified according to their position in the phrase. The last fully-fledged,

and usually the most prominent, pitch accent is called the nuclear accent, while preceding

pitch accents are called prenuclear accents.

The analysis given in Figure 2.2 (B) makes use of both mono- and bitonal pitch accents.

Specifically, the syllables <too> and <spoil> are associated with a H* pitch accent,

while the syllables <cooks> and <broth> are associated with L*+H and H*+L pitch

accents, respectively. The analysis given in Figure 2.2 (C) uses only monotonal accents,

i.e. H* and L*. The rise on the accented syllable <cooks> and the fall on the accented

syllable <broth> is the result of the interpolation between the monotonal pitch accents

and the following high and low boundary tones, respectively, attached to the intermediate

phrases.

Next to pitch accents and boundary tones, there is also a phrase accent (often called

phrase tone), that “is primarily an edge tone, but is realized on stressed syllables some

distance from the edge of the phrase” (Grice 2006: 783). The phrase accent is associated

with a phrasal edge but has a (secondary) association with the tone bearing unit.

Figure 2.3 presents the prosodic organisation of the Japanese utterance <Ane-no akai

se’etaa-wa do’ko desu ka>. For Japanese, Pierrehumbert & Beckman (1988) posit an

additional phrase below the intermediate phrase, namely the accentual phrase. Both

the left and the right edge of the accentual phrase are associated with tones (H or L).

However, these tones can have a secondary association with the tone bearing unit, i.e.
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secondary association to the first sonorant mora of
the phrase (m). The accentual phrase initial tone goes
to the second mora (since the first is already taken
by the higher level edge tone). The accentual phrase
final edge tone, L, is secondarily associated with the
first mora of the next accentual phrase, and the initial
tone of that accentual phrase goes to the second
mora. However, note that not all edge tones have a
secondary association.
Edge tones for tonally demarcated phrases may

also be secondarily associated to internal constituents
other than the mora (or syllable). There can, for
example, be a secondary association to a word or
foot. This is then realized by an association to the
strongest element of that word or foot (for many
languages this means that there is an association
with a stressed syllable). This is the case for the phrase
accent, a tone or tonal structure that is primarily an
edge tone, but is realized on stressed syllables some
distance from the edge of the phrase. Grice et al.
(2000a) pointed out that phrase accents can serve
both head-marking and edge-marking functions (see
Figure 3), either simultaneously or in linguistically
conditioned alternation.1

Figure 7 shows an example of the phrase accent
H tone in the LHL question tune in Standard Greek.
H alternates between being prominence lending, as
in (A), and delimiting, as in (B). Observe that in (A)
H co-occurs with a stressed syllable in a similar way
to the H* pitch accent in Figure 3, whereas in (B) it
is towards the end of the phrase.

Grice et al. (2000a) showed that when there is no
postnuclear stressed syllable available as anchor for a
phrase-accent, it occurs close to the phrase edge. It
can therefore alternate between head marking (as in
(A), when there is a postfocal stress) and edge mark-
ing (as in (B), when there is none). They show that this
alternation is characteristic of phrase accents in many
languages.

Their analysis of the English fall-plus-rise can
be seen as additional evidence for a compositional
analysis of nuclear contours: H* L-H%. L-has a sec-
ondary association to a stressed syllable after the
nuclear one, as in (3) below, where there is a fall
starting on the nuclear syllable, ‘REA’ of ‘REASON-
ABLE,’ and the rise begins on the word ‘costs’.
The symbols before these two words are tonetic stress
marks as used in the British School (see, e.g.,
Cruttenden, 1997), they are used iconically to sym-
bolize a fall beginning high in the speaker’s pitch
range and a rise beginning low. The word bearing
the nuclear accent is in upper case, the one bearing
the phrase accent is in italics.

(3) It seems perfectly \ REASONABLE
to take the /costs into account.

1In fact, the term ‘phrase accent,’ sometimes also called ‘phrase
tone,’ had been previously used to denote a tone of unclear status
occurring between the nuclear pitch accent and the edge tone of the
intonation phrase. Grice et al. redefine the term, giving it a clear
definition and functionality. The phrase accent is not to be confused
with the phrasal accent, which is another term used by researchers
concentrating on prosodic structure for nuclear accent – the final
accent in the phrase.

Figure 6 Prosodic structure and tonal association for the sentence ‘‘Ane-no akai se’etaa-wa do’ko desu ka?’’ (Where is big sister’s red
sweater?), from Pierrehumbert and Beckman (1988: 21) with kind permission fromMIT Press. Japanese has lexical tones (HL on se’ and
do’); other tones are intonational.

Intonation 783

Figure 2.3: Prosodic organisation of the Japanese utterance <Ane-no akai se’etaa-wa do’ko desu
ka> (reprinted with permission from Pierrehumbert & Beckman 1988: 21).

the mora in the case of Japanese.

Evidence for the phrase accent in European languages comes from a study conducted

by Grice, Ladd & Arvaniti (2000). The authors closely examined what they called the

“Eastern European Question Tune”, which they analysed as “a low nuclear accent (L*)

followed by a final rising-falling pitch movement [. . . ] analysed as a sequence of a phrase

accent (H-) and low boundary tone (L%)” (Grice, Ladd & Arvaniti 2000: 148). The

occurrence of the H- phrase accent, however, is variable and depends on its proximity

to the preceding nuclear L* accent. More specifically, the H- phrase accent is realised

on the phrase-final syllable when the preceding nuclear L* accent is associated with a

syllable in the same (phrase-final) word, but it can be realised earlier when the nuclear

L* accent is associated with a syllable in a word preceding the phrase-final word. Due to

the variable occurrence of the H- phrase accent, the authors conclude that
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2.1 THE AUTOSEGMENTAL-METRICAL MODEL OF INTONATION

“ [. . . ] phrase accents are edge tones with a secondary association to an
ordinary tone-bearing unit. These secondary associations can be to syllables
which are at or near the periphery of the phrase (e.g. to the penultimate or final
syllable). However, they can also be to syllables which are considerably distance
[sic!] from the phrase edge, in which case the docking site is a stressed syllable”
(Grice, Ladd & Arvaniti 2000: 180).

In a nutshell, the Autosegmental-Metrical model posits two different tonal primitives,

namely L and H. These tones, or combinations of them, are the basis for pitch accents and

edge tones. Pitch accents are associated with tone bearing units, for example, stressed

syllables. Edge tones are associated with phrasal edges such as the intonational phrases.

In addition, there are phrase accents, which have an association with both phrasal edges

and tone bearing units. The next section will elaborate on the phonological concept of

tonal association and its phonetic counterpart, tonal alignment, in more detail.
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2 INTONATION

2.2 Tonal association and tonal alignment

Tonal association is concerned with the connection between units on the tonal tier and

units on the phonemic, or CV, tier. Tonal association is a purely phonological concept and

can be seen as the “abstract [. . . ] property of ‘belonging together’ in some way” (Ladd

2008: 179). In contrast, tonal alignment refers to the actual temporal occurence of tonal

events with respect to acoustically defined landmarks in the segmental string. Following

the idea of a level-based understanding of intonation, these tonal targets correspond to

low and high turning points in the F0 contour. Most of the studies conducted in the last

decades have focused on the tonal alignment of pitch accents with their (phonologically)

associated accented syllables, that is, the alignment of F0 peaks and/or valleys relative

to segmental landmarks.

However, it must be noted that the relation between phonological association and phonetic

alignment is not straightforward. For example, Arvaniti, Ladd & Mennen (1998) have

shown that in Greek both the beginning and the end of a prenuclear accentual rise

tends to align outside the accented syllable with which the pitch accent is associated.

Instead, the beginning and end of the rise align at fixed distances before and after the

accented syllable, respectively. This raises the question as to how to incorporate these

findings into the phonological representation in terms of the association of pitch accents.

However, Ladd (2008) points out that differences in the alignment of pitch accents do

not necessarily entail different phonological associations and states that

“ [a]ssociation should be kept as a phonological concept, and detailed differences
of alignment should generally not be given a direct phonological representation”
(Ladd 2008: 179).
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2.3 TONAL ALIGNMENT WITH SEGMENTS

Rather, differences in tonal alignment of a pitch accent should be treated like gradual

realisations of the same phonological concept. There are, however, studies showing that

the alignment of pitch accents is indeed systematically affected by both phonological

and phonetic factors. The majority of these studies address questions such as to what

extent the alignment of pitch accents is affected by focus, syllable structure, speech rate,

position within the intonation phrase and eventually the language under investigation.

The following sections will explicitly focus on effects of syllable structure, word boundary

and phrasal position. The goal of this section is twofold: It will be shown that, first,

the end of an accentual rise, the F0 peak, is highly variable in its alignment with the

segmental string and, second, that articulatory landmarks provide more adequate anchor

points than segmental ones.

2.3 Tonal alignment with segments

This section reviews studies investigating the alignment of pitch accents with landmarks in

the segmental string. It starts with an illustration of the Segmental Anchoring Hypothesis

first mentioned in Ladd et al.’s (1999) seminal paper on prenuclear rising pitch accents

in British English. It will be shown, firstly, that the duration of a pitch accent, i.e.

the time interval between two phonologically specified tonal targets, is not fixed and,

secondly, that tonal targets are attached to anchors in the segmental string such as the

acoustic boundary between two segments. A number of studies will be reviewed that

have challenged the segmental anchoring hypothesis by showing that syllable structure,

vicinity to a word or phrasal boundary and accent status have an effect on the temporal

alignment of tonal targets.
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2.3.1 The Segmental Anchoring Hypothesis

The Segmental Anchoring Hypothesis (see also Arvaniti 2012, D’Imperio 2012, and Prieto

2011) states that a pitch accent’s tonal targets are tied to landmarks in the segmental

string, where

“ [. . . ] the beginning and end of a linguistically significant pitch movement are
anchored to specific locations in segmental structure, which means that the slope
and duration of the pitch movement vary according to the segmental material
with which it is associated” (Ladd 2006: 19).

These anchors can be segmental boundaries such as the acoustic boundary between the

consonant and the vowel within a syllable or a time point within a segment such as

the acoustic midpoint of a vowel. The phenomenon of segmental anchoring dates back

to a study on prenuclear rising pitch accents in Greek. Based on previously published

data (Arvaniti & Ladd 1995), Arvaniti, Ladd & Mennen (1998) found that low and

high F0 turning points (L and H) in a prenuclear rising pitch accent were aligned at

fixed distances to segmental boundaries irrespective of the acoustic duration of the

accented and postaccented syllable. More specifically, L was aligned shortly before the

acoustic onset of the accented syllable, whereas H was aligned shortly after the onset

of the postaccented vowel following the accented syllable, “[. . . ] even in the presence of

large differences in the combined duration of the accented syllable and the immediately

following consonant” (Arvaniti, Ladd & Mennen 1998: 24).

These findings led to another study in which the term segmental anchoring was introduced:

For British English, Ladd et al. (1999) showed that the shape of a pitch accent is

determined by speech rate and, as a consequence of the rate, by the acoustic duration of
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the segments of the target word on which the accent is produced. One of the aims of

this study was to argue against what the authors call the “constant duration hypothesis”

and the “constant slope hypothesis”. Specifically, they argue against considerations

by Fujisaki (1983) who posits the F0 rise duration to have a fixed length (“constant

duration”) and Ashby (1978) who argued in favor of a strong correlation between rise

duration and rise excursion (“constant slope”). Another motivation for Ladd et al.’s study

was to reinforce the assumption of a pitch accent as being composed of tonal targets

whose alignment with the segmental string determines the shape of the pitch accent.

Before reviewing Ladd et al’s (1999) study in detail, the predictions of the “constant

slope” and “constant duration” hypothesis will be presented.

C1 V1 C2 V2

a

C1 V1 C2 V2

a

Figure 2.4: Predictions of the “constant duration hypothesis”: alignment of a rising pitch accent at
normal speech rate (left-hand side) and slow speech rate (right-hand side), following
Ladd et al. (1999).

Figure 2.4 gives an example of a rising pitch accent aligning with a CVCV target word

at a normal speech rate (left-hand side) and at a slow speech rate (right-hand side), with

longer acoustic segments. The accented syllable is shaded (C1 and V1). The rise duration

is indicated by the letter “a” and, according to the “constant duration hypothesis”,

remains constant between the two speech rates. In both examples the beginning of the

accentual rise aligns shortly after the syllable onset. However, the end of the accentual

rise aligns later at a normal speech rate than at a slow speech rate, though the rise

duration remains constant. More specifically, the end of the rise aligns at the end of

the postaccented consonant in the second syllable at a normal speech rate, whereas it
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aligns at the end of the accented vowel at the slow speech rate. A different outcome is

predicted by the “constant slope hypothesis”.

C1 V1 C2 V2

a

C1 V1 C2 V2

a2

b b2

Figure 2.5: Predictions of the “constant slope hypothesis”: alignment of a rising pitch accent at
normal speech rate (left-hand side) and slow speech rate (right-hand side), following
Ladd et al. (1999).

Figure 2.5 displays the predictions of the “constant slope hypothesis” at a normal speech

rate (left-hand side) and a slow speech rate (right-hand side). The “constant slope

hypothesis” posits that the ratio between the duration of the accentual rise and the pitch

excursion of the accent (as indicated by letter “b”) remains constant. In this way, a

higher pitch excursion is predicted at a slower speech rate such that the ratios a:b and

a2:b2 remain constant.

What Ladd et al. (1999) found was neither a constant duration nor a constant slope

of the pitch accent. Instead, they report on fixed distances, or lags, between the tonal

targets and segmental anchors in English prenuclear accents. Target words in the study

displayed simple C1 V1 C2 V2 structures, where C1 and V1 denoted the accented syllable.

First, they showed a strong positive correlation between the speech rate and the duration

between the F0 turning points, thus rejecting the constant duration hypothesis. Second,

they found no effect of speech rate on the pitch excursion, thus rejecting the constant

slope hypothesis. Third, they found no effect of speech rate on the alignment of the

low F0 turning point relative to the onset of C1, providing evidence that it is robustly
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aligned shortly before the beginning of the accented syllable. However, the authors do

report on an effect of speech rate on the alignment of the high F0 turning point relative

to the onset of the postaccented syllable C2 and relative to the onset of the postaccented

vowel V1. Three out of six speakers aligned the F0 max later in the slow speaking rate

condition. The authors then presumed that a segmental boundary might not be the

anchor point for the F0 max. Instead, they compared the alignment of F0 max relative

to the onset of the postaccented consonant C2 as a proportion of the duration of this

consonant. This re-calculation of the data and the dismissal of a speaker from the set

pointed to a stable, proportional alignment of F0 max. The authors conclude that

“ [. . . ] there was clear evidence that both the beginning and the end of the
accentual rise investigated are anchored to specific locations in the segmental
string: the beginning (L) of the rise is timed to co-occur with the beginning of
the onset consonant of the stressed syllable, and the end (H) is timed to occur
somewhere late in the consonant following the stressed vowel” (Ladd et al. 1999:
1553).

The basic concept of tonal targets as anchored to segmental landmarks has gained a lot

of attention in the last decades. While some studies on different languages have shown

comparable results, there are a number of studies challenging the Segmental Anchoring

Hypothesis, instead showing that the alignment of tonal targets is subject to a great deal

of variation. These studies will be reviewed in the next sections.

2.3.2 Prosodic effects on tonal alignment

A seminal study on F0 peak alignment is Silverman & Pierrehumbert (1990), which

investigated the alignment of prenuclear H* accents in American English. The speech
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material consisted of mono-, di- and trisyllabic target words, each with the prenuclear

H* accent on the first syllable (<Ma>, <Mom>, <Mama>, <Mamalie>). On this basis,

the authors varied the distance between the prenuclear H* accent on the target syllable

<Ma> (or <Mom>) and an upcoming nuclear H+L* accent. This nuclear accent was

produced either on the first syllable of the next word or after the injection of an another

unstressed syllable. One example is the utterance <Ma Lemm> where the prenuclear

H* accent on <Ma> was followed by a nuclear H+L* accent on <Lemm>. Another

example was the utterance <Mama Le Mann> where prenuclear H* accent on <Ma>

was followed by the nuclear H+L* accent on the syllable <Mann>. Utterances were

categorised according to whether there was a word boundary after the prenuclear syllable

<Ma> (<Ma> vs. <Mama> and <Mamalie>) and whether there was a stress clash in

terms of the nuclear syllable adjacently following the prenuclear one (<Ma Lemm> and

<Mom Lemm> vs. the other utterances).

Two speakers were asked to read the utterances at a slow, normal and fast speaking

rate. The F0 peak alignment of the prenuclear H* accent was investigated by relating

the F0 peak to the onset of the accented vowel /a/ as a function of the rhyme duration,

i.e. the duration of /a/ in <Ma> or <Mamalie> and <om> in <Mom>, respectively.

Essentially, the authors made three important findings. First, they found a correlation

between F0 peak alignment and rhyme duration in that the F0 peak aligns later when

the rhyme is longer. Second, the F0 peak was found to align earlier in monosyllables

than in di- or trisyllables, even though the rhyme duration was longer, and third, the F0

peak was found to align earlier when the syllable bearing the nuclear accent adjacently

followed the prenuclear one:

“When a syllable is lengthened from being spoken more slowly, the peak will
occur corresponding [sic!] later. In contrast, when the lengthening is induced
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by the right-hand prosodic context, the later part of the syllable undergoes
disproportionately more lengthening and at the same time the peak will occur
earlier in the syllable rhyme. In addition to this length-related effect, for one of
the speakers a leftward push on the prenuclear peak is exerted by the upcoming
nuclear pitch accent” (Silverman & Pierrehumbert 1990: 95).

Although the F0 peak alignment was affected by these prosodic factors, the authors point

to a stable alignment of the F0 peak, when it is measured from the the vowel onset as a

proportion of the rhyme duration. They conclude that “[. . . ] it is not the absolute peak

delay, but rather the peak placement in proportion to the syllable rhyme length, that

exhibits the most regular pattern” and “that the effects [. . . ] on the proportional peak

alignment are independent of speaking rate” (Silverman & Pierrehumbert 1990: 87).

The finding that an accentual F0 peak is affected by so called “right-hand prosodic

context” is corroborated by a study from Prieto, van Santen & Hirschberg (1995) on

nuclear rising accents in Mexican Spanish. The authors investigated the alignment of

both the beginning and the end of a nuclear H* rise in trisyllabic target words with

stress on one of the three syllables. These target words were embedded in three different

prosodic positions: in the middle of a phrase, before the end of an intermediate phrase

and before the end of an intonational phrase. Furthermore, the distance between the

nuclear syllable under investigation and the following stressed syllable was varied by

changing the stress on the following word. Both the beginning and the end of the rise

were measured relative to the onset of the accented syllable.

As a rule, the onset of the rise was not affected by the factors under investigation,

indicating a stable alignment with the onset of the accented syllable. It “[. . . ] was

generally located precisely at the syllabic onset or just a few milliseconds into the onset”

19



2 INTONATION

(Prieto et al. 1995: 446). The F0 peak, however, was highly sensitive to the factors under

investigation. More specifically, H aligned earlier before an intonational phrase boundary

than in the middle of a phrase. It also aligned earlier in target words with stress on the

final syllable as compared to target words with stress on the initial or middle syllable.

The F0 peak also aligned earlier in syllables that were immediately followed by another

stressed syllable leading to a stress clash.

Ladd, Mennen & Schepman (2000) investigated the effect of syllable structure on the

alignment of F0 peaks in prenuclear rising accents in Dutch. In both of their experiments

they measured the beginning of the prenuclear rise relative to the onset of the stressed

syllable. The end of the rise, the F0 peak, was measured relative to the end of the

stressed vowel. Speech material included target words with either phonologically long,

or tense, vowels and phonologically short, or lax, vowels. As in other languages such

as German, phonological vowel length correlates with syllable structure. In trochaic

disyllables with a long stressed vowel, the consonant following the vowel is the onset of

the second syllable, while in disyllables with a phonologically short stressed vowel, the

following consonant is analysed as an ambisyllabic segment (i.e., it fills both the coda

position of the first and the onset position of the second syllable).

Figure 2.6 illustrates the syllabification of the trochaic disyllabic words <Miete> (/mi:t@/)

and <Mitte> (/mIt@/), respectively. In /mi:te/ (left-hand side) the postvocalic consonant

/t/ is syllabified as the onset (O) of the second syllable whereas in /mIt@/ this consonant

fills both the position of the coda consonant of the first syllable (C) and the onset of

the second syllable. The reason for the consonant being analysed as ambisyllabic is that,

in German, as rule, either the nucleus (N) or the rhyme (R) must branch (Hall 2011).1

1It must be noted that reduced vowels in unstressed syllables such as schwa are an exception to this
rule.
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C1 V: C2 V2 C1 V C2 V2

O N O N

/m      i:       t      ə/ /m     ɪ      t       ə/
x x x x x x x x x

O N O NC

R R R

σ σ

R

σ σ

Figure 2.6: Syllabification of syllables with a phonologically long stressed vowel (left-hand side) and
a phonologically short stress vowel (right-hand side)

In /mi:t@/ the long vowel /i:/ fills two positions (x x) on the skeletal tier thus enabling

the nucleus to branch. In /mIt@/ the short vowel /I/ fills only one position (x) on the

skeletal tier. As a result, the rhyme branches and incorporates the postvocalic consonant

/t/ as a coda consonant.

Usually, the difference between phonologically long and short vowels involves different

phonetic vowel durations, with phonologically short vowels exhibiting a shorter intrinsic

vowel duration. In Dutch, however, long /i:/ and short /I/ have the same phonetic

duration. This fact was one of reasons behind Ladd et al’s (2000) study in that the

authors wanted to show that a difference in F0 peak alignment was not due to a phonetic

adjustment of the vowel duration, but rather to the phonological distinction between

long and short vowels. They hypothesized that the anchor point of the F0 peak is the

syllable edge.

Their first experiment with different vowel qualities such as /y:/, /Y/, /o:/ and /O/

confirmed that the beginning of the prenuclear rise was aligned shortly before the onset

of the stressed syllable and that phonological length difference did not influence its

alignment. More specifically, L aligned 3 ms before the syllable onset in syllables with a
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long vowel, and 1 ms before it with a short vowel. In contrast, H was affected by the

phonological vowel length.

Figure 2.7: F0 peak alignment in syllables with phonologically long and short vowels (reprinted with
permission from Ladd, Mennen & Schepman 2000: 2692).

Figure 2.7 displays the alignment of H (red line) in relation to the acoustic offset of the

accented vowel (white box). In long vowels, H aligned at the end of the stressed vowel

(12 ms before the end of the vowel) and in short vowels, it aligned within the following

consonant (25 ms after the end of the vowel). This result led to a second experiment in

which the authors only used target words involving /i:/ and /I/ whose phonetic durations

were not significantly different. In contrast to the expectation, in both conditions, the

F0 peak aligned after the vowel. Crucially, the F0 peak aligned later in the short vowel

/I/ than in the long vowel /i:/. More specifically, H aligned 32 ms after the onset of the

postaccented consonant in /I/ and 21 ms after this landmark in /i:/. These findings were
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2.3 TONAL ALIGNMENT WITH SEGMENTS

against the assumption that in phonologically long vowels, the F0 peak aligns at the

syllable edge, i.e. the end of the vowel. The explanation that the authors offer is that

the phonologically long vowel /i:/ does not provide enough time for the prenuclear rise

to be completed. They state:

“[W]hen the actual duration of the ’long’ vowel is relatively short [. . . ], the
end of the rise is aligned later than the end of the vowel, though still earlier than
the end of the rise accompanying a short vowel” (Ladd et al. 2000: 2693).

In addition to the study by Ladd, Mennen & Schepman (2000), Wichmann, House

& Rietveld (2000) provided evidence for the F0 peak being strongly affected by the

position of the syllable in the phrase. The authors investigated rising pitch accents

produced by speakers of Southern Standard British English. Speakers had to read a text

in which each of the four target words2 were placed in “paragraph-initial”, “sentence-

initial” and “sentence-final” position. In paragraph-initial position, the target word was

also utterance-initial. In sentence-initial position, the target word was preceded by an

unstressed syllable. In sentence-final position, the target word was utterance-final.

The authors measured the proportional alignment of the F0 peak relative to the onset

of the accented syllable. In both paragraph-initial and sentence-initial position the

F0 peak aligned after the accented syllable, with the F0 peak aligning even later in

paragraph-initial position. In sentence-final position, the F0 peak aligned earlier, namely

within the accented syllable.

Figure 2.8 depicts their data on the F0 peak alignment. The accented syllable is shaded.

The location of the F0 peak (H) is indicated by the red arrow. In both paragraph-initial

2Target words included di-, tri- and tetrasyllabic words with stress either on the first or second syllable:
<carTEsian>, <COMmon>, <comPENdium>, <enLIGHtenment>.
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Figure 2.8: Illustration of Wichmann, House & Rietveld’s (2000) data.

and sentence initial position, the F0 peak aligns shortly after the acoustic offset of the

accented syllable. More specifically, it aligns 32 ms and 11 ms after the offset, respectively.

In sentence final position, the F0 peak is retracted into the accented syllable and aligns

82 ms before the syllable offset.

Schepman, Lickley & Ladd (2006) investigated the alignment of nuclear rising pitch

accents in Dutch. The purpose of this study was, on the one hand, to disentangle

the effects of stress clash and word length. On the other hand, the authors wanted to

unscramble the effects of syllable structure and phonological vowel length previously

reported in Ladd et al. (2000). Thus, Schepman et al. (2006) designed a corpus including

mono- and disyllabic target words, each having either a phonologically long or short

stressed vowel. Target words were embedded into carrier phrases and were followed by

either a stressed monosyllable or a disyllable with stress on the second syllable. The

beginning of the nuclear rise was measured relative to the onset of the accented syllable.

The end of the nuclear rise was measured relative to the end of the accented vowel. This

landmark was the nearest one to the F0 peak.
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2.3 TONAL ALIGNMENT WITH SEGMENTS

As expected, the beginning of the nuclear rise was stably aligned with the onset of

the accented syllable, ranging from 3 ms before the syllable onset in phonologically

short vowels to 5 ms after the syllable onset in phonologically long vowels. Suprisingly,

the alignment of the F0 peak was not affected by syllable structure nor by the “right

hand” context, which involved a stress clash when the accented syllable was immediately

followed by another stressed syllable. Figure 2.9 displays the data for the F0 peak

alignment from Schepman et al. (2006).

*CV:C # ‘CV:C

*CV:C # CV.‘CV:C

*CV:.CV # ‘CV:C

*CV:.CV # CV.‘CV:C

*CVC # ‘CV:C

*CVC # CV.‘CV:C

*CVCV # ‘CV:C

*CVCV # CV.‘CV:C

stress clash

stress clash

stress clash

stress clash

{
{
{
{

monosyll

monosyll

disyll

disyll

{
{

long V

short V

Figure 2.9: Alignment of nuclear F0 peaks as a function of prosodic structure (extended and reprinted
with permission from Schepman, Lickley & Ladd 2006:11).

The red bars indicate the first and third segments, the consonants, of the target words.

The white bar indicates the accented vowel, with the line representing the F0 peak. In

all cases, the F0 peak aligned within the accented vowel and was only affected by the

phonological vowel length. In target words with a long vowel, the F0 peak aligned on

average 56 ms before the end of the vowel, whereas in target words with a short vowel,

the F0 peak aligned on average 16 ms before the end of the vowel. The structure of the

target word or the presence of stress clash induced by a syllable immediately following

the accented one did not play a significant role in determining the alignment of the F0
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peak. The authors conclude that “there is a fairly fixed pattern of alignment for long

vowels and another for short vowels” (Schepman et al. 2006: 15).

These findings are in contrast with those reported by Silverman & Pierrehumbert (1990)

and Prieto, van Santen & Hirschberg (1995) in that the F0 peak was not affected by the

right-hand prosodic context in case of a stress clash. Schepman et al.’s (2006) explanation

for this absent effect is based on the finding that nuclear accents as a whole align earlier

possibly due to a following a low phrase accent. They state that

“[. . . ] the right context established by the seperate intonational event (phrase
accent [. . . ]) is the most important factor determining the alignment of the peak
in nuclear accents, important enough that it overrides the subtle effects of syllable
structure and stress clash” (Schepman et al. 2006: 17).

The finding that phonological vowel length plays a crucial role in determining F0 peak

alignment was corroborated by a study from Ladd et al. (2009) in which the authors

investigated F0 peak alignment in both prenuclear and nuclear rising pitch accents in

two varieties of English (Scottish Standard English vs. Received Pronunciation). Again,

their corpus consisted of target words with phonologically long and short stressed vowels

such as /i:/ and /I/. For prenuclear accents, the authors were able to clearly show that

the F0 peak globally aligned earlier in syllables with a long vowel than in syllables with a

short vowel. More specifically, the F0 peak aligned 27 ms before the vowel offset in long

vowels and 19 ms after the vowel offset in short vowels. In contrast, the beginning of

the prenuclear rise was not affected by any of the factors under investigation. It aligned

shortly after the onset of the syllable.

The follow-up experiment on nuclear accents3 yielded similar results. Here, monosyllabic
3I am referring to their third experiment, as in their second experiment, the authors could not reliably
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target words were placed in phrase-final position. The F0 peak alignment was measured

from both the onset and the end of the accented vowel. In phonologically long vowels, the

F0 peak aligned 111 ms before the vowel offset. In phonologically short vowels, it aligned

90 ms before the vowel offset. This indicates that in long vowels, the F0 peak aligned

earlier. However, phonological vowel length had an effect the actual vowel duration in

that long vowels were produced with a longer duration. The F0 peak aligned 37 ms after

the vowel onset in long vowels and 26 ms after the vowel onset in short vowels, indicating

in earlier alignment for short vowels. The authors, however, concede that an effect of

phonological vowel length can be masked when the accented syllable is produced in

phrase-final position, suggesting “[. . . ] that any underlying effect of vowel length may be

overridden by the need to align the nuclear peak early enough to execute the phrase-final

fall” (Ladd et al. 2009: 158).

Effects of syllable structure on F0 peak alignment were further supported by a study from

Prieto & Torreira (2007). The authors investigated the alignment of prenuclear rising

pitch accents in Peninsular Spanish. The beginning of the rise was related to the onset of

the stressed syllable while, the end of the rise was related to two different landmarks in

the segmental string: the offset of the stressed vowel and the syllable boundary. While

the beginning of the rise displayed a stable alignment “[. . . ] realized within 20 ms of the

onset of the syllable” (Prieto & Torreira 2007: 491), the end of the rise was affected by

syllable structure. In target words with an open syllable, such as in <PaLOma>, the

vowel offset and the syllable offset coincide, while in target words with a closed syllable,

such as <BelMONdo>, the syllable offset coincides with the end of the coda consonant.

With respect to the vowel offset, the F0 peak aligned later in closed syllables than in open

syllables, i.e. it aligned after the vowel offset. With respect to the syllable boundary, the

identify the F0 peak.
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F0 peak aligned earlier in a closed syllable, i.e. it aligned before the syllable boundary,

within the coda consonant. The authors conclude that their results “[. . . ] demonstrate

that tonal H turning points are not anchored at acoustic segmental landmarks such as

the vocalic or the syllabic offsets” (Prieto & Torreira 2007: 491).

Rathcke & Harrington (2007) report on syllable structure and word boundary effects

in German nuclear accents. Their corpus included target words with open and closed

stressed syllables (entailing different phonological vowel lengths) produced either in

phrase-final position or followed by one or two unstressed syllables (such as <Lie>,

<Liener>, <Lienerer> and <Linn>, <Linner> and <Linnerer>). A professional speaker

then produced a H* accent on the stressed syllable.4 The proportional alignment of the

F0 peak was investigated by means of its alignment relative to the syllable onset divided

by the syllable duration.

Figure 2.10: Alignment of nuclear F0 peaks as a function of syllable structure and postnuclear
syllables (reprinted with permission from Rathcke & Harrington 2007: 984).

Figure 2.10 displays the data from Rathke & Harrington (2007), showing the F0 peak

alignment of the H* accent in open (left-hand side) and closed syllables (right-hand side)

as a function of the number of postnuclear syllables (from none to two). Zero denotes the

4The authors investigated both a H* and H+L* accent, but I will focus on the H* as it is a rising
accent and thus more comparable to previous research.
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syllable onset while one denotes the syllable offset. The authors state that the F0 peak

aligned later in open syllables and that it aligned later in target words followed by one or

two unstressed syllables. However, the authors report on an interaction between syllable

struture and the number of postnuclear syllables. Although they do not report any

posthoc comparisons, a visual inspection of the data suggests that there is no difference

F0 peak alignment between the accented syllables followed by one or two postnuclear

syllables belonging to the same word.

Similar results were obtained by Mücke & Hermes (2007), who investigated nuclear rising

L+H* accents in German. Their corpus was based on two speakers of Austrian German

(Vienna variety) included monosyllabic and trochaic disyllabic target words produced

with either a long or short stressed vowel, i.e. /a/ vs. /a:/. Target words were placed

in both phrase-medial and phrase-final position. The F0 peak alignment was measured

relative to the end of the target word. Figure 2.11 displays their data.

Confirming previous work, the accentual F0 peak aligned earlier in phrase-final target

words than in phrase-medial target words, as indicated by the dashed arrow. In addition,

the authors report on an earlier F0 peak alignment in long vowels than in short vowels

in both mono- and disyllabic target words.

Kleber & Rathcke (2008) investigated the alignment of prenuclear rising accents in

German (Upper Saxon variety). Based on 12 speakers, their corpus, an extension of

Atterer & Ladd (2004), involved target words in phrase-initial position with the stressed

syllable being either the very first syllable or preceded by one or two unstressed syllables

(e.g., <Mangelhafte ...>, <Die mangelhaften ...>, <In Ermangelung ...>. As in Rathcke

& Harrington (2007) both the beginning and the end of the prenuclear rise were measured
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Figure 2.11: Alignment of nuclear rising accents as a function of vowel length and phrasal position
(reprinted with permission from Mücke & Hermes 2007: 999).

as a proportion in relation to the syllable onset. Figure 2.12 shows their alignment data

as a function of number of syllables preceding the stressed syllable. Zero denotes the

onset of the syllable. While the beginning of the rise (left-hand side) was aligned earlier

when the stressed syllable was preceded by one or two syllables5, in contrast, the end

of the rise (right-hand side) was not affected by the number of syllables preceding the

stressed one.

Mücke et al. (2009) directly compared the alignment of nuclear and prenuclear rising pitch

accents in two varieties of German. Based on two subjects from each variety (Düsseldorf

and Vienna), their corpus included trochaic disyllabic target words with either an open

or closed stressed syllable (e.g., /"ma:mi/ vs. /"mami/). The accentual F0 peaks were

5The alignment difference between target words having one vs. two preceding syllables was not
significant.
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Figure 2.12: Alignment of L and H in prenuclear rising pitch accents in German, Upper Saxon variety
(reprinted with permission from Kleber & Rathcke 2008: 8).

measured relative to their nearest segmental landmarks, i.e. the prenuclear F0 peak was

related to both the onset and the offset of the postaccented vowel, and the nuclear peak

was related to both the onset and the offset of the postaccented consonant.

With respect to the accent status, the nuclear F0 peaks regularly aligned earlier than

the prenuclear F0 peaks. The nuclear F0 peaks aligned well within the postaccented

consonant while the prenuclear F0 peaks aligned within the postaccented vowel. With

respect to syllable structure, the nuclear F0 peaks aligned significantly later in closed than

in open syllables, i.e. in both syllable structures, the F0 peak aligned in the postaccented

consonant but later when the stressed syllable was closed. The same effect could not be

ascertained for the prenuclear accents in that only one of the four speakers aligned the

F0 peak later in closed syllables.

Figure 2.13 displays data from Mücke et al. (2009) for two speakers. In both open

and closed syllables the F0 peak aligned within the postvocalic consonant C2, although

slightly later in closed syllables. More strikingly, the F0 peak aligned consistently earlier

in nuclear F0 peaks than in prenuclear F0 peaks, as indicated by the shift.
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Figure 2.13: Alignment of nuclear F0 peaks as a function of syllable structure and accent status.
The shift illustrates an earlier alignment of nuclear F0 peaks compared to prenuclear
ones (reprinted with permission from Mücke et al. 2009: 334).

This finding is perfectly in line with research from Silverman & Pierrehumbert (1990).

Although they do not compare the alignment of prenuclear and nuclear F0 peaks in

their study, they relate their findings on prenuclear accents to work carried out by Steele

(1986) who investigated the alignment of nuclear F0 peaks and state that

“One difference remains between our data on prenuclear H* accents and Steele’s
data for the same accents in nuclear position; namely that peaks are absolutely
earlier” (Silverman & Pierrehumbert 1990: 96).

So far, it has been shown that the the beginning of a rising pitch accent shows a rather

stable alignment with the onset of the stressed syllable while the end of the rise, the F0

peak, is subject to a great deal of variation. In a nutshell, there is evidence that accentual

F0 peaks tend to align earlier in open than in closed syllables. It seems that in open

syllables the F0 peak tends to align at the end of the stressed vowel, whereas in closed

syllables it tends to align in the coda consonant. F0 peaks also tend to align considerably

earlier in phrase-final position as compared to in non-final positions in the phrase. A

great alignment difference can also be found when comparing nuclear to prenuclear rising
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pitch accents in that nuclear F0 peaks align considerably earlier than prenuclear ones.

More subtle effects have been found between mono- and disyllabic target words in that

in the former the F0 peak aligns slightly earlier.

Recent studies have attempted to find more stable timing patterns between tonal targets

and landmarks in the articulatory domain. The following section will address these

studies in detail.

2.4 Tonal alignment with articulatory gestures

This section reviews studies that have examined the alignment of tonal targets with

respect to landmarks in the articulatory domain, looking specifically at the timing of

F0 peaks with consonantal gestures articulated with the lips and the tongue tip. These

studies have attempted to find stable alignment lags with articulatory landmarks, such

as the maximum lip opening, that are not affected by prosodic factors. In other words,

researchers have sought find articulatory landmarks that serve as more stable anchors to

F0 peaks. This section is divided into two parts: the first examines the alignment of F0

peaks with nearby articulatory gestures, the second examines F0 peak alignment with

non-nearby articulatory gestures.

2.4.1 Nearby landmarks

D’Imperio et al. (2007) investigated the effects of speech rate, syllable structure and accent

type on the alignment of nuclear rising pitch accents in Neapolitan Italian. Previous
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studies (D’Imperio 2000, 2002) have already shown that both yes/no questions and

statements are produced with a rising pitch accent but that yes/no questions involve

a later F0 peak alignment relative to the acoustic vowel onset than statements. Pitch

accents in yes/no questions are thus analysed as L+H* while pitch accents in statements

are analysed as L*+H.

Based on data from one speaker, the corpus involved trochaic target words with open

and closed syllables such as /"ma.ma/ and /"mam.ma/ that were embedded in carrier

phrases either produced as a yes/no question or as a statement. Both renditions were

recorded at a normal and at a fast speaking rate. In the acoustics, the F0 peak was

related to the onset and offset of the stressed vowel. In statements, the F0 peak was

found to align at the end of the vowel while in questions the F0 peak aligned later, within

the following consonant. The effect of speech rate was not clear as with respect to vowel

onset, the F0 peak in statements remained stable while in questions it aligned earlier at a

fast speech rate. With respect to the vowel offset, the F0 peak alignment remained stable

in questions while it was affected by speech rate in statements. In addition, alignment

lags were rather large. The authors conclude that

“[a] stable, albeit large, temporal alignment of a tonal and segmental event
would not constitute sufficient evidence for a synchronization of laryngeal and
supralaryngeal gestures” (D’Imperio et al. 2007: 580).

Thus, the F0 peak was related to two nearby articulatory landmarks: the early F0 peak

in statements (L+H*) was measured relative to the peak velocity of the postvocalic

consonant’s closing gesture; the late F0 peak (L*+H) in yes/no questions was measured

relative to the maximum constriction following the peak velocity of this gesture. The

key finding was that both F0 peaks roughly co-occured with these landmarks in the
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articulation, i.e. the early F0 peak co-occured with the peak velocity of the consonantal

closing gesture while the late peak co-occured with the following maximum constriction.

The upper panel of Figure 2.14 displays the alignment of the F0 peak in statements

relative to the peak velocity, while the lower panel displays the F0 peak in yes/no

questions relative to the maximum constriction, i.e. the maximum lip closure in the

postvocalic consonant.
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Figure 2.14: F0 peak alignment relative to the peak velocity (upper panel) and maximum constriction
(lower panel) of the postvocalic consonant, labial data only (extended and adapted
from D’Imperio et al. 2007: 591)

However, speech rate had an effect on these alignment patterns as in statements the

F0 peak aligned slightly later at a fast rate. The authors compared their articulatory

alignment data with the data for acoustic alignment and found that “all the results
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confirmed the observation that articulatory latencies are smaller than acoustic ones.”

(D’Imperio et al. 2007: 592). The authors, however, highlight that the lags between the

articulatory landmarks and the F0 peaks were not any more stable than the acoustic

ones:

“H targets of nuclear rises in Neapolitan statements appear to be more closely,
though not more stably, synchronized with the articulatory dimension of peak veloc-
ity within the trajectory of the primary constrictor than with two of the most com-
monly employed acoustic segmental landmarks” (D’Imperio et al. 2007: 592).

Similar results were obtained by Prieto et al. (2007), who looked at the alignment of rising

nuclear pitch accents in Catalan. Based on data from one speaker, their corpus included

target words with open and closed syllables such as /mi.ma.mi/ and /mi.mam.zi/. In the

acoustics, the F0 peak was related to the syllable offset. In open syllables, the F0 peak

aligned roughly with the syllable edge, i.e. it aligned with the vowel offset. In closed

syllables the F0 peak aligned earlier with respect to the syllable edge; more specifically,

it aligned in the coda consonant following the stressed vowel. In the articulation, the

F0 peak was related to nearby landmarks in the articulation, namely the peak velocity

and the maximum constriction of the consonantal closing gesture following the stressed

vowel. The key finding was that the F0 peak aligned in a time window between these

two articulatory landmarks. As in D’Imperio et al. (2007), alignment lags between the

F0 peak and articulatory landmarks were smaller than between F0 peaks and landmarks

in the segmental string. However, F0 peaks aligned later in target words with a closed

syllable than with an open syllable.

Mücke & Hermes (2007) investigated the aligment of phrase-medial and phrase-final

nuclear rising accents in German. For all their test conditions (long vs. short vowel,
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mono- and disyllabic target words), they found that the F0 peak aligned well within the

consonantal closing gesture, i.e. the lip closing gesture in the consonant following the

stressed vowel.

Figure 2.15: F0 peak alignment relative to lip closing gesture (reprinted with permission from Mücke
& Hermes 2007: 1000).

Figure 2.15 presents the data from Mücke & Hermes (2007). The F0 peak (the black dot

along the S-shaped curve) was related to the consonantal closing gesture following the

stressed vowel. As a rule, the F0 peak aligned earlier in phrase-final position than in

phrase-medial position, and earlier in monosyllables than in disyllables.

A more detailed analysis of German rising accents is provided by Mücke et al. (2009)

who investigated the timing of both nuclear and prenuclear rising accents in trochaic

disyllabic target words with an open or closed stressed syllable. The accentual F0 peaks

were related to their nearest articulatory landmarks. The alignment of nuclear F0 peaks

was measured relative the consonantal target in the unstressed syllable, corresponding

to the maximum lip/tongue tip closure. As prenuclear F0 peaks aligned later, they

were measured relative to the following maximum opening of the consonantal gesture

(“transvocalic target”). For nuclear accents, the effect of syllable structure found in the

acoustics (see Section 2.3 was still present in that the F0 peak aligned later in closed

syllables. For prenuclear accents, the attested effect of syllable structure diminished.

Figure 2.16 summarises the findings from D’Imperio et al. (2007), Prieto et al. (2007),
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Figure 2.16: F0 peak alignment relative to consonantal constriction gestures. Italian data from
D’Imperio et al. (2007), Catalan data from Prieto et al. (2007), German data from
Mücke et al. (2009) and Mücke & Hermes (2007)

Mücke & Hermes (2008) and Mücke et al. (2009). All nuclear F0 peaks align well within

a time window between the peak velocity and the maximum constriction gesture for

the postvocalic consonant. These studies have shown that alignment lags between the

F0 peak and articulatory landmarks tend to be smaller compared to those relative to

acoustic landmarks, however the alignment is not necessarily more stable. For example,

syllable structure and phrasal position have an effect on the alignment lag between the

F0 peak and the articulatory landmarks.

2.4.2 Non-nearby landmarks

A different approach was taken by Mücke, Grice & Hermes (2008). Based on data from

two speakers from Mücke et al. (2009), they investigated the alignment of accentual

F0 peaks relative to both nearby and what they call “non-nearby landmarks”. More

specifically, the F0 peak was aligned to the consonantal gesture it was produced with

(nearby landmark) as well as to the transvocalic target (non-nearby landmark); this
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2.4 TONAL ALIGNMENT WITH ARTICULATORY GESTURES

transvocalic target corresponds to the maximum opening of the consonantal gesture

during the accented vowel.6

Figure 2.17: F0 peak alignment relative to articulatory gestures. The dashed line indicates the
transvocalic target, i.e. the maximum opening of the consonantal gesture (reprinted
with permission from Mücke, Grice & Hermes 2008).

As can be seen in Figure 2.17, the F0 peak aligns well within the postvocalic consonantal

gesture for C2 in both open and closed syllables. The F0 peak, however, aligns later in

closed syllables than in open syllables with respect to this landmark. Surprisingly, this

alignment difference between open and closed syllables disappeared when the F0 peak

was related to the transvocalic target, which instead indicated a stable timing pattern.

The authors state that “the effect [of syllabe structure] disappears for H relative to the

underlying gestural representation” (Mücke, Grice & Hermes 2008).

Even though the alignment lag between the F0 peak and the transvocalic target was

larger than that between the F0 peak and the onset of the postaccented consonant, it

6This articulatory landmark roughly corresponds to the vocalic target derived from the tongue body
movement for the production of the vowel.
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was not affected by syllable structure and was thus found to be more stable. This finding

runs against D’Imperio et al.’s (2007) claim that only nearby landmarks can serve as

an anchor for tonal events. However, the interplay between the tonal tier and the text

tier can be captured in coordinatory terms, that is, tonal targets must not necessarily

co-occur with articulatory landmarks to indicate a coupling between the two systems.

Rather, a variable alignment of tonal targets could be the result of specific underlying

coordination between the tone and articulatory gestures. Evidence for this comes from a

number of studies claiming tonal targets to be the onset and offset of a so-called tone

gestures whose coordination with articulatory gestures can be explained in terms of

coupling structures with oral constriction gestures.

The next chapter will introduce the basic concepts of Articulatory Phonology and will

review studies on tonal alignment treating tones, be they pitch accents or lexical tones,

as tone gestures.
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3 Articulatory Phonology

This Chapter provides an overview of Articulatory Phonology (see e.g., Browman &

Goldstein 1986, 1989, 1992), a framework that treats articulatory gestures as fundamental

phonological units. This chapter is divided into four sections. The first introduces the

basic concepts of Articulatory Phonology. The main focus of the second section is the

dynamical nature of gestures, which has been modelled by employing nonlinear dynamics.

The third part focuses on the relationship between intergestural timing patterns and

low-level prosodic units such as the syllable by presenting the coupled oscillator model of

syllable structure. The fourth section illustrates how high-level prosodic units involving

prosodic phrasing, tone and intonation have been successfully implemented into the

framework of Articulatory Phonology.

3.1 Basic concepts

Classical approaches to phonology such as generative phonology (Chomsky & Halle 1968)

assume a gap between the phonology and the phonetics of a given language. That is,

phonology and phonetics operate on two different levels, or domains, as phonology is
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3 ARTICULATORY PHONOLOGY

treated as being discrete and phonetics as being continuous, with a sharp distinction

made between the two domains. Thus, these approaches require an interface between

the two domains, i.e. a kind of translator that takes the phonological primitive, the

segment, as its input and transforms it via rule-based routines into actual speech output.

In contrast, Articulatory Phonology integrates phonetics and phonology in one single

system by stating that “these apparently different domains are [. . . ] in fact the low and

high dimensional description of a single (complex) system” (Browman & Goldstein 1995:

177).

According to Articulatory Phonology, gestures rather than segments are the primitives of

a given language. These gestures are isomorphous in that they are cognitive and physical

at the same time: on the one hand they are abstract phonological entities specifying

phonological contrast and, on the other hand, they are concrete units of action performed

by the articulators:

“Gestures are characterizations of discrete, physical real events that unfold
during the speech production process. Articulatory Phonology attempts to
describe lexical units in terms of these events and their interrelations, which
means that gestures are basic units of contrast among lexical items as well as
units of articulatory action” (Browman & Goldstein 1992: 156).

Articulatory gestures are linked to the human articulators in a functional way, that is,

they do not describe the actual movement of an articulator but rather the linguistic task

that is assigned to it. For example, a speech task could be a full oral closure between

the tongue tip and the alveolar ridge and at the same time a lowering of the velum to

produce the alveolar nasal consonant /n/, or raising and fronting of the tongue body

and a simultaneous protrusion of the lips to produce the vowel /y/. In order to fulfill the

speech task, a set of variables is involved, called tract variables.
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Figure 3.1 displays the five tract variables implemented in Articulatory Phonology (left-

hand side) and their linked organ groups (right-hand side). Tract variables are specified

either one- or two-dimensionally.

Figure 3.1: Tract variables in Articulatory Phonology (reprinted with permission from Browman &
Goldstein 1990: 344).

The velum (VEL) and the glottis (GLO) are aech specified one-dimensionally, where the

velic aperture controls for nasality and the glottal aperture controls for voicing. The

lips, the tongue tip and the tongue body are specified two-dimensionally. The lips are

controlled for degree of protrusion (LP) and aperture (LA); for example, the lips are

protruded in the case of /y/ but are retracted in the case of /i/, and the lip aperture is

greater in the case of /a/ than in the case of /i/. The tongue tip and the tongue body

are each controlled for their constriction location (TTCL and TBCL, respectively) and

their constriction degree (TTCD and TBCD, respectively) each. The production of the
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3 ARTICULATORY PHONOLOGY

velar fricative /x/, for example, involves a constriction between the tongue body and the

velum in order to generate aerial friction. A change in degree of constriction could result

in full closure thus switching from /x/ to /k/.

In Articulatory Phonology the structure of a linguistic unit, a syllable or a word, is

represented in gestural scores involving the activation of gestures corresponding to their

tract variables. In other words, a gestural score reflects the workflow of specific speech

tasks assigned to the articulators.

“[. . . ] we represent linguistic structures in terms of coordinated articulatory
movements called gestures, that are themselves organized into a gestural score
that resembles an autosegmental representation” (Browman & Goldstein 1990:
341).

Two gestural scores are presented in Figure 3.2 for the utterances <mad> and <ban>,

respectively. The tract variables velum, tongue tip, tongue body, lips and glottis are

displayed on the right-hand side. The gestural activation is indicated by the grey boxes.

For the production of /m/ in /mad/ the lips need to be closed (“bilabial closure”) while

at the same time the velum needs to be lowered (“wide”). For the production of the

vowel /a/, the tongue body needs to be lowered (“pharyngeal wide”). The final consonant

/d/ is produced by a full closure between the tongue tip and the alveolar ridge (“alveloar

closure”). Both utterances /mad/ and /ban/ involve the same number of articulatory

gestures. The crucial difference, however, is down to the timing between the gestures. In

/mad/, the velic gesture controlling for nasal airflow is timed with the bilabial gesture;

together they produce the word-initial /m/. In /ban/, the velic gesture is timed with the

alveolar closure, thus producing the word-final /n/. It must be noted, however, that the

temporal coordination of this velic gesture with the alveolar closure is still a matter of
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3.2 GESTURAL DYNAMICS

research. There is evidence for both a simultaneous and sequential timing of the two

gestures (see Goldstein, Byrd & Saltzman 2006 for a discussion).

Figure 3.2: Gestural scores for the utterances <mad> and <ban> (reprinted with permission from
Goldstein, Byrd & Saltzman 2006: 226).

These gestural scores illustrate another central part of Articulatory Phonology: Lexical

contrast is not specified in terms of phonologial processes such as elision (deleting

segments), epenthesis (adding segments) or methathesis (swapping segments). Rather, it

is the timing between articulatory gestures (intergestural timing) that specifies lexical

contrast. Before intergestural timing and its relation to syllable structure are explained

later on in Section 3.3, the next section will introduce the concepts of nonlinear dynamics.

More specifically, it will be shown that the employment of potential functions gives

rise to the phonological grammar and eventually to the linguistic structure of a given

language.

3.2 Gestural dynamics

Similar to more traditional phonological approaches, Articulatory Phonology differentiates

between vocalic and consonantal units by “[. . . ] posit[ing] two functional tiers, a vocalic

one and a consonantal one” (Browman & Goldstein 1990: 351). In gestural terms, these
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3 ARTICULATORY PHONOLOGY

tiers refer to vocalic and consonantal gestures. The gestural distinction between vowels

and consonants dates back to analyses by Öhman (1966) who investigated formants

and formant transitions in VCV sequences such as /agi/ or /ida/ in American English

speakers. More specifically, Öhman (1966) showed that the frequency of the second

formant (F2) of a given vowel depends on the vowel preceding or following it. In the

example /agi/, /i/ shows a lower F2 than it would show if produced in isolation. From

an articulatory point of view, this indicates that the tongue gesture for /i/ in /agi/ is

slightly retracted, thus lowering F2. Vice versa, /a/ shows a higher F2 than it would

show in isolation. Metaphorically speaking, Öhman (1966) concluded that vowels behave

like a rubber band with consonants being put on it.

“a VCV utterance [. . . ] can not be regarded as a linear sequence of three
successive gestures. We have clear evidence that the stop-consonant gestures are
actually superimposed on a context-dependent vowel substrate that is present
during all of the consonantal gesture” (Öhman 1966: 165).

The description of articulatory trajectories derived from consonantal and vocalic gestures

involves the application of task dynamics, “[. . . ] a general model of skilled movement

control that was developed originally to explain nonspeech tasks such as reaching and

standing upright” (Hawkins 1992: 9). Task dynamics (Saltzman 1985, Saltzman & Kelso

1987, Saltzman & Munhall 1989, Saltzman 1995) account for the inherent dynamics of

gestures and give rise to their spatial dimensions by applying nonlinear mathematics:

“[...] gestures are dynamical in that their model employs the mathematics
of linear and nonlinear dynamics. The model takes the form of an invariant
mathematical law. This law is hypothesized to give rise to the continuous
movement of gestures” (Gafos & Beňuš 2006: 915).

Hence, the dynamics of a gesture can be captured by a differential equation of a critically
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damped mass-spring system given in Equation 3.1.

mẍ+ bẋ+ k(x− x0) = 0 (3.1)

where m represents the mass associated with a given tract variable, b represents the

system’s damping and k represents the stiffness of the spring. The current position of the

tract variable is given by x whereas x0 represents its target, for example, a constriction

at the alveolar ridge for the production of a plosive /t/. The spring’s velocity (ẋ) and its

acceleration ẍ can be derived from x.

In Articulatory Phonology, the timing between articulatory gestures is crucial to their

linguistic analysis. Studies from non-speech research fields (see Turvey, Schmidt &

Rosenblum 1989 and Turvey 1990 for overviews) have already shown that the most

stable timing pattern between two coordinated movements (e.g., oscillatory interlimb

coordination) is the in-phase timing, that is, where movements start simultaneously.

Movements can also easily coordinated in anti-phase mode, that is, where they start

sequentially. However, as speed increases, movements that are coordinated anti-phase,

eventually switch into in-phase coordination, indicating that the in-phase mode is a

stronger attractor for coordination.

Figure 3.3 displays the time course of experiments reported in Kelso (1981), Kelso (1984)

and Kelso & Scholz (1985). Subjects had to oscillate their left and right index fingers in

opposite directions, i.e. while one index finger was raised the other one had to be lowered

simultaneously. The speed of the fingers oscillating was set by a metronome becoming

faster over the time course of the experiment. Figure 3.3 (A) shows the displacement,
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Figure 3.3: Time course of two index fingers transitioning from anti-phase to in-phase (reprinted
with permission from Kelso et al. 1987: 80).

or position, of the two index fingers. While the right index finger was raised (ABD:

abduction), the left index finger was lowered (ADD: adduction). Figure 3.3 (B) and

Figure 3.3 (C) provide the point estimate of the relative phase and the continuous relative

phase, respectively. The relative phase is the difference between the two phases of the

index fingers. In the beginning, the relative phase amounts to 180◦, i.e. both index

fingers are oscillating in anti-phase. As speed increases, the index fingers abruptly switch

to an in-phase mode. That is, their relative phase amounts to 360◦ (or 0◦). The result is

an overlap between the position of the right and left index fingers in Figure 3.3 (A).

This coordinated behaviour of the two index fingers (the two oscillators) has been modelled

in terms of a potential function (Haken-Kelso-Bunz potential function) capturing the

transition from anti-phase to in-phase oscillations (Haken, Kelso & Bunz 1985). Figure
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3.4 displays three possible outcomes of the HKB potential function given in Equation

3.2.

V (ψ) = −a cos(ψ) − b cos(2ψ) (3.2)

The variable ψ represents the relative phase between the two oscillators, i.e. the difference

between the two phases (φ2 − φ1). The relationship between the variables a and b

determines the shape of the potential function, i.e. they serve as the control parameter to

the function. In all three examples given in Figure 3.4 the control parameter b amounts

to 1, while a changes. Specifically, a amounts to the value 1 in the example on the

left-hand side, to the value 2 in the middle and to the value 4 on the right-hand side.

Figure 3.4: Landscapes of the HKB potential function (adapted from Nam, Goldstein & Saltzman
2009: 304).

The graph on the left-hand side displays three local minima at −180◦, 0◦ and 180◦.

However, the minimum, or basin, at 0◦ is lower than at −180◦ or 180◦. In other words,

the 0◦ phasing is a stronger attractor than the −180◦ or 180◦ phasing. Applied to the

index fingers oscillating, this indicates that at a slow rate the fingers can be oscillated

both in-phase (both fingers up and down the same time, 0◦) or in anti-phase (fingers go

up and down sequentially, −180◦ or 180◦). As speed increases, represented by increasing
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the value of a in the given example, the graph changes its form. The basins at −180◦ and

180◦ flatten out, indicating that the index fingers are more likely to oscillate in-phase.

On the right-hand side of Figure 3.4 there are no longer any basins for −180◦ and 180◦,

i.e. the index fingers only oscillate in-phase. In other words, there is a critical shift from

anti-phase to in-phase. Rosenbaum (2009) employs the metaphor of a marble to illustrate

the transition from in-phase to anti-phase mode. In an initial state the marble (the black

dot in Figure 3.4) can roll into the basins at −180◦, 0◦ or 180◦ (left-hand side). As the

shape shifts, there is only one basin left at 0◦ into which the marble can roll (right-hand

side).

Potential functions such as the HBK potential function have not only been used to model

intergestural timing but have also been applied to more general linguistic phenomena such

as vowel harmony in Hungarian. By means of electromagnetic articulatory recordings,

Gafos & Beňuš (2006) investigated the displacement of vocalic gestures, i.e. the horizontal

tongue body movement accompanying the production of vowels. Vowel harmony refers

to the phenomenon that in some languages vowels in suffixes have similar or even the

same phonetic features as the vowels in the word stem. An example given by Gafos &

Benus is the use of the dative suffixes /nak/ and /nek/. In traditional phonological terms,

Hungarian uses the feature [back] to differentiate between front and back vowels. Front

vowels have the feature [-back] whereas back vowels have the feature [+back]. These

features spread to adjacent vowels in suffixes; a word stem with a vowel specified as

[+back] will have a suffix containing a vowel that has a [+back] specified vowel, too. Thus,

the suffix /nak/ occurs with word stems having a back vowel such as /ház/, resulting in

/ház-nak/, whereas the suffix /nek/ occurs with word stems having a front vowel such

as /öröm-nek/. However, there are so-called transparent vowels that “may intervene

between the trigger and the target vowel even when they bear the opposite value for
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the harmonizing feature” (Gafos & Beňuš 2006: 925). In other words, a vowel specified

as [-back] can occur between the stem vowel and the suffix vowel, although both are

specified as [+back]. An example would be /buli-nak/, where the intervening vowel /i/

is specified as [-back], whereas the stem vowel /u/ (the trigger) and the suffix vowel /a/

(the target) are specified as [+back]. However, the authors point out that even though

these transparent vowels are perceptually equivalent (i.e., the /i/ in /buli-nak/ and

the /i/ in /bili-nek/ sound the same), they may have different underlying articulatory

characteristics. The authors assume that front vowels occuring between front vowels are

more fronted than front vowels occuring between back vowels and that both vowels can

captured by using nonlinear dynamics. They hypothesize that:

“[. . . ] transparency emerges from nonlinearities in the relation between ar-
ticulation and sound. In a nutshell, we hypothezise that the /i/ in /zafir-ban/
[...] is retracted articulatory as compared to /i/ in zefir-ben [...], but that this
retraction falls within that limited region of articulatory variation that does not
result in any significant acoustic consequences. If this hypothesis is correct it
would provide the basis for a principled understanding of the cooccuring of two
properties of the phenomenon, the nature of the harmonizing parameter (tongue
body retraction) and the set of transparent vowels in Hungarian (/í, i, é, e/)”
(Gafos & Beňuš 2006: 915).

Their articulatory data from three speakers showed that the tongue body is indeed

more fronted for a transparent vowel that was followed by a suffix with a front vowel as

compared to a transparent vowel that was followed by a suffix with a back vowel. In other

words, more fronted transparent vowels are likely to trigger suffixes with a vowel specified

as [-back] whereas less fronted vowels are likely to trigger suffixes with a [+back] vowel.

To model the continuous tongue body movement that leads to the choice of suffixes with

either [+back] or [-back] vowels, the authors employed the potential function given in
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Equation 3.3.1

V (x) = Rx− x2

2 + x4

4 (3.3)

where R represents the control parameter, i.e. the degree of retraction of the tongue

body while producing the transparent vowel. Figure 3.5 displays this potential function

with the control parameter R ranging between 0.2 and 1.2. The x-axis represents the

horizontal displacement (backness and frontness) of the tongue body movement for the

transparent vowel.

Figure 3.5: Landscapes of the potential function predicting the selection of either [+back] or [-back]
vowels in Hungarian suffixes (reprinted with permission from Gafos & Beňuš 2006: 934).

The plots on the left-handside and in the middle show monostable systems, i.e. one basin

in either the back or the front region. In the system of the left-hand side, a suffix with

a back vowel is chosen, or triggered, as its attractor is situated in the back region of

the x-axis. The opposite is true for the system in the middle of Figure 3.5. Here, the
1It must be noted that Gafos & Beňuš 2006 make use of the additional parameter λ referring to Tuller
et al. 1994 who introduced this parameter to account for covariates in the experimental conditions.
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attractor is situated in the front region, thus a suffix with a front vowel is most likely to

occur. Particularly, the potential function can also form a bistable system (see right-hand

side of Figure 3.5) to account for the occurence of both back or front vowels in suffixes.

3.3 Coupled Oscillator model of syllable structure

Within the coupled oscillator model of syllable structure, gestures, whether consonantal

or vocalic gestures, are associated with nonlinear oscillators, or clocks, that are coupled

in a pairwise fashion with each other to determine intergestural timing (Goldstein et al.

2008, Nam & Saltzman 2003). The model states that intergestural timing, determined

by the coupling of consonantal and vocalic gestures, gives rise to the syllable structure

(Goldstein, Chitoran & Selkirk 2007, Goldstein et al. 2008, Nam, Goldstein & Saltzman

2009).

Crucially, this intergestural coupling remains syllable-internal, i.e. the coupling of

consonantal and vocalic gestures only arises within the syllable. However, it should

be noted that it is not the vocalic and consonantal gesture themselves that are being

coupled. Rather, their associated oscillators are coupled with each other. Along the line

of the experiments conducted on interlimbic coordination (see Section 3.2.), Articulatory

Phonology proposes two coupling modes: in-phase and anti-phase, i.e. gestures start

either simultaneously or sequentially.

An example of a coupling structure and its relation to syllable constituents is given

in Figure 3.6 displaying the gestural timing in the word /bIt/. For reasons of clarity,

only oral gestures are shown in the gestural score and the coupling structure. The
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Figure 3.6: Gestural scores (left-hand side) and corresponding coupling structure (right-hand side)
for the syllable /bIt/ (oral gestures only).

gestural score on the left-hand side provides the timing of the articulatory gestures. The

consonantal gesture for /b/, labial closure, starts at the same time as the vocalic gesture

for /I/, palatal narrow. However, the consonantal gesture has a higher degree of stiffness,

thus achieving its target earlier than the vocalic gesture, ensuring that both sounds

/b/ and /I/ are are perceptually recovered. The following consonantal gesture for /t/,

alveolar closure, is initiated when the vocalic gesture has nearly completed its execution.

The right-hand side of Figure 3.6 displays the coupling structure for the articulatory

timing in /bIt/. Crucially, the coupling structure correlates with the syllable structure in

that the nucleus is coupled in-phase with the onset while it is coupled anti-phase with the

coda consonant. In this example, the vocalic gesture for the nucleus /i/ (V) is coupled

in-phase with the onset consonant /b/ (C) while it is coupled anti-phase with the coda

consonant /t/ (C). This coupling structure leads to the timing displayed in the gestural

score.

Figure 3.7 illustrates the outcome of an in-phase coupling by means of articulatory

gestures involved in the production of the word /lina/ taken from the utterance <Er

geht mit der Lina viel lieber> (He goes with Lina preferentially). The upper trajectory

displays the vertical position of the tongue tip while the lower trajectory displays the
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vertical position of the tongue body. Both the consonantal gesture for /l/ (the syllable

onset) and the vocalic gesture for /i/ (the syllable nucleus) start at same time. The

starting point is indicated by the black dot. However, the consonantal gesture reaches its

target earlier than the vocalic target, leading to the perceptual sequence of /l/ and /i/.

Figure 3.7: Trajectories derived from sensors on the tongue tip (upper trajectory) and the tongue
body (lower trajectory).

When another consonant is added to the syllable, the intergestural timing changes as a

function of whether this consonant is added to the left edge (filling another onset position

in the syllable hierarchy such as in CCV) or the right edge (filling another coda position

in the syllable hierarchy such as in VCC). Browman & Goldstein (1988) investigated the

relative timing of articulatory gestures in American English. Their target words involved

structures such as /pi # C(CC) ats/ with the target either produced with one, two or

three consonants. In addition, the word boundary was sometimes shifted resulting in the

structure /piC # C(C) ats/. For both conditions two line-up points, or anchors, were
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defined. The midpoint of the /p/ closure in /pi/ (or /piC/) served as the left anchor,

while the articulatory target of /t/ in /ats/ served as the right anchor. The authors

calculated three temporal intervals: the distance or duration between the left edge, the

right edge and the c-center, i.e. the temporal midpoint of all consonantal targets. With

respect to the right anchor, the authors found that the c-center of the consonant involved

in the sequence /pi # C(CC) ats/ showed the lowest standard variation. With respect to

the left anchor, the left-edge showed the lowest standard variation. The authors conclude

that pre- and postvocalic consonants are timed differently and state that

“[. . . ] while initial consonants are related to their words in terms of a single
global metric for the entire cluster, the C-center, final consonants appear to be
related to their words in terms of the local metric of achievement of targets [. . . ]
rather than in terms of C-centers” (Browman & Goldstein 1988: 149).

While prevocalic consonants, i.e. consonants that form the syllable onset, are timed

globally, postvocalic consonants, i.e. consonants that form the syllable coda, are timed

locally in that their left edge aligns with the preceding anchor. What Browman &

Goldstein found in syllable onsets was dubbed the c-center effect describing “the fact

that, as consonants are added to onsets, the resulting timing of all consonant gestures

changes with respect to the following vowel in a way that preserves the overall timing of

the center of the consonant sequence with respect to the vowel” (Saltzman et al. 2006:

69).

Two different coupling structures have been proposed for the timing patterns of consonant

clusters in complex onsets and codas, respectively. Figure 3.8 shows the syllabification

(upper panel), the gestural scores (middle panel) and the underlying coupling structures

(lower panel) for the syllables /spIt/ and /tIps/.
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Figure 3.8: Syllabification (upper panel), gestural scores (middle panel) and corresponding coupling
structures (lower panel) for the syllables /spIt/ and /tIps/ (oral gestures only).

In /spIt/, both oral consonantal gestures belonging to the syllable onset, the /s/ (critical

closure) and the /p/ (labial closure), are coupled in-phase with the vocalic gesture

/I/ (palatal narrow) leading to a competitive interaction between the gestures as both

consonantal gestures cannot start with the vocalic gesture at the same time. Thus, an

anti-phase coupling between the two consonantal gestures is provided.2 This coupling

structure leads to the c-center effect, i.e. the vowel adjacent consonantal gesture shifts to

the right to make room for the added consonant. The consonantal gesture belonging to

the syllable coda, /t/ (alveolar closure) is coupled anti-phase with the vocalic gesture.
2It must be noted that the exact phasing relation between consonants in a cluster is still a matter of
debate, see Goldstein (2011) and Saltzman et al. (2006).

57



3 ARTICULATORY PHONOLOGY

Prototypically, the consonantal gesture for /s/ starts first, then the vocalic gesture for

/I/ is initiated followed by the consonantal gesture for /p/. Eventually, the consonantal

gesture for /t/ is initiated.

In contrast, the coupling structure for /tIps/ provides no competitive coupling between

the consonantal gestures as there is only one consonantal gesture in the syllable onset.

This gesture for /t/ is coupled in-phase with the vocalic gesture for /I/. The postvocalic

consonantal gesture for /p/ is coupled anti-phase with the vocalic gesture and the last

consonantal gesture for /s/ is only coupled anti-phase to the preceding consonantal

gesture. As a result, the consonantal and vocalic gestures start simultaneously with the

following gestures initiated sequentially.

Figure 3.9 schematizes the c-center effect resulting from a competitive coupling structure.

The dashed lined represents the c-center as the temporal midpoint of all consonantal

targets incorporated in the syllable onset. When consonants are added to word-initial

CV structures and the language under investigation allows the consonants to enter the

syllable internal gestural network (such as in <lay> to <play> and <splay>), then the

vowel-adjacent consonant is expected to shift rightwards to make room for the added

consonant(s). Vice versa, a consonant is expected to shift leftwards when other consonants

are added betweem it and the vowel. In sum, the temporal distance between the c-center

and the following vowel is said to remain stable across all syllable structures.

In the last twenty years, researchers have intensively investigated intergestural timing

patterns in word-initial and word-final consonant clusters to shed light on their status

in the syllable as complex onsets or codas (see also Tilsen et al. 2012 for an extensive

overview). The rationale behind these studies is that
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Figure 3.9: Schematic illustration of the c-center effect (after Saltzman et al. 2006: 69).

“If the coupling model is correct in hypothesizing that complex onsets have a
competitive coupling graph, then it should be possible to use the consequences
of the competition (e.g., the rightward shift of the final C) as a diagnostic that a
C sequence is syllabified as an onset” (Goldstein, Chitoran & Selkirk 2007: 243.)

For American English, Browman & Goldstein (1988), and more recently Marin & Pouplier

(2010), have shown that word-initial clusters form complex onsets in that a C-center effect

can be observed. In contrast, word-final consonants in American English do not show a

c-center effect.3 Further evidence for word-initial clusters being timed globally and thus

forming complex syllable onsets comes from studies on Romanian (Marin 2013), German

(Pouplier 2012), French (Kühnert, Hoole & Mooshammer 2006), Georgian (Goldstein,

Chitoran & Selkirk 2007) and Polish (Mücke et al. 2010, but see Pastätter & Pouplier

2014). Languages that do not allow word-initial consonants to form a complex onset

include Moroccan Arabic (Shaw et al. 2009) and Tashlhyit Berber (Hermes et al. 2011,

Goldstein, Chitoran & Selkirk 2007). In these languages, no C-center effect was observed,
3However, it should be noted that some wordfinal clusters, especially those produced with the lateral
approximant /l/ do show a C-Center like organisation, i.e. the consonant following the vowel is
retracted towards the vowel.
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i.e. the consonant preceding the vowel does not shift towards the vowel. Rather, there

was a stable timing pattern between the vowel and the preceding consonant indicating

that the added consonants are not integrated into the syllable internal gestural network.

However, there is evidence that some languages allow for both simple and complex onsets:

Hermes et al. (2008) investigated word-initial consonant clusters in Italian and found

that clusters containing the sibilant /s/ such as in /spina/ do not show the c-center

effect while clusters without this sibilant such as in /prima/ do. In Italian, there is a

morphological alternation between the masculine articles <il> and <lo>. The article

<il> occurs before nouns beginning with one consonant or a consonant cluster except for

/s/+C(C) clusters. In the case of /s/+C(C) clusters the article <lo> is used. Hermes

et al. (2008) shed light on the syllabification of such /s/+C(C) clusters showing that

these clusters do not form complex onsets. Adding an /s/ to the cluster /pr/ does not

affect the intergestural timing between the vowel and the preceding consonant. More

specifically, the vowel-adjacent consonant does not shift towards the vowel to make room

for the added /s/. Thus, the /s/ is analysed as not being part of the syllable onset.

Rather, the /s/ is directly linked to the syllable or word node in the syllable hierarchy

(see Hermes, Mücke & Grice 2013 for a detailed phonological analysis).

3.4 Prosody in Articulatory Phonology

This section deals with coupling structures that have been proposed to model articulatory

timing involving higher levels of the prosodic hierarchy, i.e. the articulatory timing at

prosodic boundaries and the coordination of articulatory gestures with lexical tones,

pitch accents and boundary tones.
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A huge number of studies have shown that articulatory timing is sensitive to prosodic

structure. More specifically, gestural execution slows down at the edges of prosodic

domain and thus overlap less in time (cf. Byrd 2000, Cho 2006, Cho & Keating 2001,

Fougeron 2001, Tabain 2003, Krivokapić & Byrd 2012). Rather than modelling these

boundary effects on the articulatory timing for each articulatory gesture separately, Byrd

(2000), Byrd et al. (2000) and Byrd & Saltzman (2003) propose a prosodic gesture, the

π-gesture, that models interarticulatory timing in the vicinity of prosodic boundaries (see

also Saltzman et al. 2008 for a task dynamics application). The π gesture comes without

any constriction, rather it modifies articulatory gestures in terms of their stiffness, such

that boundary-adjacent gestures become less stiff and thus slow down:

“We refer to such prosodic boundary gestures as π-gestures. Like articulatory
gestures, π-gestures have an inherent temporal extent. The π-gestures are
hypothesized to cause slowing at phrase edges by affecting the ongoing stiffness
parameter values of all constriction gestures that are active within the π-gesture’s
activation interval. Stronger π-gestures slow the local speaking rate more (i.e.,
lower stiffness more) than weaker π-gestures. The prosodic boundary strength
defines the activation level of a π-gesture” (Byrd 2000: 13).

Figure 3.10 schematizes the π-gesture’s mode of operation. As articulatory gestures

(constrictions) are produced at a prosodic boundary, their associated oscillators are

affected by the π-gesture in that it slows down their execution. The degree of influence

depends on the proximity to the boundary. Boundary-adjacent gestures are more affected

by the π-gesture than non-adjacent gestures. In other words, as the activation of the

π-gesture increases, it increasingly slows down the articulatory gestures. However, the

exact domain or scope of the π gesture and whether pre- and postboundary gestures

are affected equally is still a matter of debate (Byrd & Saltzman 2003, Krivokapić 2007,

Krivokapić & Byrd 2012).
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Figure 3.10: Illustration of the π-gesture affecting articulatory timing (reprinted with permission
from Byrd, Krivokapić & Lee 2006: 1591).

Another prosodic of gestures includes the µ-gestures (modulation gestures), proposed to

model the effect of stress on intergestural timing (cf. Saltzman et al. 2008). Rather than

generally slowing down the articulators at prosodic boundaries, µ-gestures can modulate

specific constrictions both temporally (µT -gesture) and spatially (µS-gesture).

Besides modelling the articulatory timing at prosodic boundaries, recent work has focussed

on the coordination of articulatory gestures with so-called tone or tonal gestures. Gao

(2009) first applied the concept of gestures as supralaryngeal movements to laryngeal

movements. A tonal gesture is described as a “coordinated articulatory action to achieve

a desired tonal goal and thus defined as dynamical system in F0 space” (Mücke et al.

2012: 209). This definition is reasonable as F0 is explicitly linked to glottal gestures in

that it it is determined by rate of vocal fold vibration (see Laver 1994 for a discussion).

In contrast to an autosegmental-metrical analysis of tonal events, this approach treats

tones, whether lexical tones or pitch accents, as action units. Figure 3.11 provides
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an analysis of a bitonal pitch accent analysed in the two different frameworks. In the

AM model, this bitonal pitch accent is analysed as having two tonal targets, L and H,

corresponding to the beginning and the end of the accentual rise in the F0 trace. The

gestural analysis treats the accentual rise as one tone gesture, a high tone gesture (H

gesture) with L and H denoting its beginning and end, respectively. Along this line, a

falling pitch accent would be analysed as a low tone gesture (L gesture).

F0
L

H

high gesturelow gesture

onset
beginning of low
gesture unclear target

AM analysis:

Gestural analysis:

F0min

F0max

Figure 3.11: Autosegmental-metrical and gestural analysis of a bitonal pitch accent (adapted from
Niemann et al. 2011 and Mücke et al. 2012)

Gao (2009) modelled the coordination of the four lexical tones in Mandarin Chinese

with articulatory gestures using the concept of tone gestures. For the lexical tones she

proposed four different tone gestures (see Figure 3.12). Both tone 1, a high-level tone,

and tone 3, a low-falling tone, are modelled as single tone gestures, a high gesture for

tone 1 and a low tone gesture for tone 3. Tone 2, a rising tone, and tone 4, a high falling

tone, are modelled as a combination of low and high tone gestures. For tone 2, Gao

assumes the two tone gestures to be coupled in-phase as indicated by a simultaneous

start. For tone 4, she proposes an anti-phase coupling as indicated by the sequential

execution of the tone gestures.
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Figure 3.12: Proposed tone gestures for the four lexical tones in Mandarin Chinese (from Gao 2009:
43).

In her articulatory study, Gao examined the temporal lags between the onsets of the

vocalic, consonantal and tone gestures. More specifically, she calculated the lags between

the onset of the tone gesture relative to the onset of the consonantal and vocalic gestures,

respectively. In addition, the lag between the onset of the vocalic gesture and that of

the consonantal gesture was calculated. Her results show that tone gestures behave

like consonants that are added to the syllable onset, that is, there is a c-center like

coordination between the tones, the consonant and the vowel. First, the consonantal

gesture starts, followed by the vocalic gesture and the tone gesture(s). Particularly,

for tone 1, tone 2 and tone 3 the onset of the vocalic gesture roughly co-occurs with

the midpoint between the onsets of the consonantal and tone gestures. For tone 4, the

vocalic gesture starts significantly later and roughly starts with the first tone gesture.

Gao (2008) proposes two different coupling structures (see Figure 3.13). For tone 1, tone

2 and tone 3 the tone gesture is coupled in-phase with the vowel gesture but is coupled

in an anti-phase mode with the consonant gesture. This coupling structure results in

a sequential activation of the articulatory gestures as can be seen in the score on the

right-hand side in Figure 3.13. For tone 4, Gao proposes the additional tone gesture to

be coupled in-phase with the vowel and to be coupled anti-phase with the other tone
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gesture. This competitive coupling results in the vocalic gesture starting with the tone

gesture.

Tone 1, tone 2 and tone 3

vowel

consonant

C

V
in-phase

anti-phase

Tone 4

tone

vowel

consonant

tone

T

tone

C

V

T T

tone

Figure 3.13: Gestural scores and corresponding coupling structures for lexical tones in Mandarin
Chinese (after Gao 2009).

Hsieh (2011) extends the findings on lexical tones in Mandarin Chinese by modelling their

coordination with task dynamics (TADA, cf. Nam et al. 2004). This study highlights the

fact that the realisation of tone 3 depends on the contextual and contonal environment.

Hsieh (2011) identifies three realisations of tone 3: a falling-rising contour (“full tone

3”), a low falling contour (“low tone 3”) and tone 3 surfacing as tone 2, a rising contour

(“sandhi tone 3”). Unlike Gao’s (2009) approach, Hsieh (2011) provides two tone gestures,

high and low, for the three realisations of tone 3. Figure 3.14 provides an overview of

the underlying coupling structure for three realisations of tone three. The falling-rising

contour (“full tone 3”) can be modelled with the low tone gesture (L) being coupled

in-phase with the vowel, and the high tone gesture (H) being coupled anti-phase with

the vowel. This structure resembles the coupling structure given for coda consonants

that are also coupled anti-phase with the vowel. When tone 3 surfaces as a falling tone

(“low tone 3”), e.g. when it is followed by another high tone, its high gesture is obscured
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by the existing high gesture being coupled in-phase with the following vowel. Thus, only

the falling part of the contour is realized. The coupling structure for the rising contour

in “sandhi tone 3” is similar to the structure for the falling-rising contour in “full tone 3”.

Hsieh (2011) hypothesized that this variation can be explained in terms of an additional

in-phase coupling between the low and high tone gesture.

C

V
in-phase

anti-phase

L

full tone 3

falling-rising

low tone 3

falling

sandhi tone 3

rising

H

V

L

H

V

H C

V

L H

Figure 3.14: Coupling structure for tone 3 variations in Mandarin Chinese (after Hsieh 2011).

Apart from these studies that have looked investigated the coordination of lexical tones

with articulatory gestures, there are studies that looked at the coordination of post-lexical

tones such as pitch accents and boundary tones. Niemann et al. (2011) examined the

coordination of rising nuclear pitch accents in German and Italian. Based on articulatory

data from two speakers of each language, our corpus included trochaic CV.CV target

words such as /"lina/ or /"nina/. In the acoustic domain, the beginning of the accentual

rise was related to the acoustic onset of the stressed syllable. In the articulatory domain,

the beginning of the accentual rise was related to the onset of the vocalic gesture

(tone-vowel-lag), i.e. the onset of the tongue body movement for the accented vowel. In

addition, the lag between the onset of the vocalic gesture and the onset of the consonantal

gesture was calculated for the stressed syllable (consonant-vowel-lag). On the acoustic

surface, the beginning of the accentual rise aligns shortly before the acoustic syllable

onset in Italian. In German, however, the rise starts significantly later. It aligns in
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the onset consonant or even later in the stressed vowel. In the articulatory domain, we

showed that in Italian the onset of the high tone gesture co-occured with both the onset

of the consonantal and the onset of the vocalic gesture while in German, the high tone

gesture was initiated significantly later. We account for these differences by proposing

two different coupling structures for the two languages. Figure 3.15 displays gestural

scores based on means from one speaker of each language and the proposed coupling

structures.

Figure 3.15: Gestural scores and coupling structures for Italian (upper panel) and German (lower
panel) (from Niemann et al. 2011).

In the Italian data, upper panel, the tone gesture (“high gesture”) for the accentual rise,

the consonantal gesture (“alv clo”) for the alveolar closure in /n/ and the vocalic gesture

(“palatal narrow”) for the vowel /i:/ start simultaneously. In terms of coupling, the high

gesture (H) is coupled in-phase with the vocalic gesture (H) leading to a synchronous

start for the two. For German, we propose an additional tone gesture, a low tone gesture

(L), that is coupled in-phase with the vocalic gesture. As in a consonant clusters, the tone

gestures are coupled anti-phase with each other. This competitive coupling structure
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leads to the delayed start of the high tone gesture resulting in a later alignment of the

accentual rise on the acoustic surface.

Tonal tier:

Syllable tier:

L   +   H

σ*

tonal root

low gesture high gesture

vowel

Catalan

Gestural analysis:

L   +   H

σ*

German (Vienna)

low gesture high gesture

vowel

in-phase

anti-phase

Figure 3.16: Gestural and autosegmental-metrical analysis for accentual rises in Catalan (left-hand
side) and German (right-hand side) (adapted from Mücke et al. 2012: 225).

Similar coupling structures have been proposed by Mücke et al. (2012) by comparing the

coordination of high tone gestures in Catalan and German (Vienna variety). Similar to

the Italian data in Niemann et al. (2011), Mücke et al. (2012) found that in Catalan the

accentual rise starts earlier than in German. In gestural terms, the high tone gesture

is initiated with the vocalic gesture at the same time resulting in an earlier accentual

rise compared to German where the high tone gesture is initiated later. The authors

also outline the connection between an autosegmental-metrical analysis and the gestural

analysis of early and late accentual rises on the acoustic surface. Figure 3.16 illustrates

their analysis in terms of tonal association in the autosegmental-metrical model and in

terms of gestural coupling in the framework of Articulatory Phonology.

Mücke et al. (2012) propose two tone gestures, low (L) and high (H), for the two
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languages. In Catalan, the low tone gesture is not coupled with the vocalic gesture

resulting in a simultaneous activation of the high tone gesture and the vocalic gesture.

In terms of tonal association, only H is associated with the accented syllable. In German,

the low tone gesture is coupled in-phase with the vowel leading to a competitive structure

that results in a later aligned accentual rise. In terms of tonal association, both tones L

and H are associated with the accented syllable.

Katsika et al. (2014) modelled the coordination of boundary tones with consonantal

and vocalic gestures in Greek by employing both the π-gesture and the µ-gesture. More

specifically, they examined the onset of low and high boundary tone gestures in phrase-

final trisyllabic target words with a CV.CV.CV structure. In addition, they varied

the stress position resulting in target words such as /"ma.mi.ma/, /ma."mi.ma/ and

/ma.mi."ma/. Katsika et al. (2014) found that the onset of the boundary tone gesture

accompanying the final syllable co-occured roughly with the target of the vocalic gesture

in that syllable. For example, the onset of a high boundary tone gesture co-occured

with the maximum tongue body lowering for the production of the vowel /a/ in the

final syllable /ma/. The authors thus propose an anti-phase coupling between the

boundary tone and the vocalic gesture similar to the coupling structure for the Mandarin

lexical tone 3 provided by Hsieh (2011). The position of stress in the trisyllabic target

words also affected the onset of the boundary tone gesture. More specifically, stress

attracted the activation of the boundary tone gesture, i.e. it was activated earlier in

/"ma.mi.ma/ than in /ma.mi."ma/. Figure 3.17 provides a coupling structure involving

the vocalic gesture, the boundary tone gesture as well as the use of the π-gesture and

the µ-gesture. The upper panel shows the coupling for target words with stress on the

antepenultimate syllable such as in /"ma.mi.ma/, the middle panel coupling for target

words with penultimate stress (/ma."mi.ma/) and the lower panel coupling for target
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words with final stress (/ma.mi."ma/). As a rule, the µ-gesture is always coupled in-phase

with the vocalic gesture of the stressed syllable to mark stress, and the π-gesture is always

coupled anti-phase with the vocalic gesture of the final syllable to mark the boundary.

Figure 3.17: Coordination and coupling between vocalic and boundary tone gestures involving
µ-gestures and π-gestures (reprinted with permission from Katsika et al. 2014: 80).

In addition, Katsika et al. (2014) assume a specific coupling of “[a] currently uncertain

type” (ibid: 79) between the π-gesture and the µ-gesture as denoted by the “+” symbols.

Importantly, Katsika et al. (2014) hypothesized that boundary tone gestures might

not be coupled with the vocalic gesture, rather they assume that “[. . . ] their timing is

controlled indirectly via the coordination of the π-gesture” (ibid: 79). Thus, the onset

of the boundary tone gesture is initiated earlier in target words with antepenultimate

and penultimate stress. In target words with final stress, it is initiated later as both the

π-gesture and the µ-gesture are coupled with the vocalic gesture in the final syllable.

The present thesis investigates the coordination of both rising nuclear and prenuclear

pitch accents with oral constriction gestures by means of articulatory data collected
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from four speakers of German. The next chapter will explain the methods and recording

procedure in detail.
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4.1 Speakers and recordings

This thesis reports on articulatory and acoustic data that were recorded at the Institut

für Linguistik - Abteilung Phonetik at the University of Cologne. Four German female

subjects (S1-S4) aged between 26 and 32 years participated in the study. All speakers

shared a similar educational background and grow up north of the Benrather isogloss.1

Speakers S1 and S4 come from Lower Franconia (Wesel), S2 comes from Eastphalia

(Brilon) and S3 from Lower Saxony (Löningen). None of the speakers reported on any

hearing disorders or speaking disfluencies. Speakers were renumerated for their efforts.

The kinematic data were obtained with a 3D Electromagnetic Articulograph2. The

articulograph creates a low-energy magnetic field capable of capturing the movements of

sensor coils attached to the speakers’ articulators. Using fibrin glue, sensor coils were

placed on the upper and lower lips, the tongue tip (1 cm behind the tip), the tongue

blade (2 cm behind the tip) and the tongue body (3 cm and 4 cm behind the tip). Two

additional sensors on the upper gums and on the bridge of the nose served as reference
1The Benrather isogloss is a major linguistic border separating Middle German from Low German.
2AG 500 from (Carstens Medizinelektronik GmbH).
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coils to correct for head movements. Figure 4.1 shows the positioning of coils for one

subject before the recording session.

Figure 4.1: Position of the sensor coils attached to the subject’s articulators.

Kinematic data were recorded with a sampling rate of 200 Hz. Acoustic data were

recorded with the built-in, time-synchronized microphone and digitized at 16 kHz and 16

bit. At the end of each recording session, the sensors from the upper and lower lips served

as reference points for the calculation of the occlusal plane3. Using the standard software

provided with the articulograph, all kinematic data were processed and corrected for

head movement. Data were then converted to the Simple Signal File Format by means

of the software EMA2SSFF.4 Both acoustic and articulatory data were labelled using

the EMU Speech Database System (Harrington 2010).

3These sensors were attached to a bite plate and inserted into the subject’s mouth between the tongue
and palate. Subjects were instructed to keep their tongues still while the position of the sensor coils
was recorded.

4Version 3.08.2, developed and programmed by Frank Christian Stoffel.

74



4.2 SPEECH MATERIAL AND DATA ELICITATION

4.2 Speech material and data elicitation

The speech material was designed to test for the effects of accent (nuclear vs. prenu-

clear), syllables structure (open vs. closed syllable) and word length (monosyllables

vs. disyllables). In addition, the corpus was designed to test for the effects of phrasal

position (phrase-initial, phrase-noninitial and phrase-final position). The following section

illustrates the speech material including the carrier sentences in more detail.

The corpus consisted of four target words differing in word length and syllable structure.

Target words were either troachic disyllabes and had either an open or closed stressed

syllable. (/ma:/, /mam/, /"ma:.mi/ and /"mam.zi/). Table 4.1 gives an overview of all

target words with, together with the orthographic representation that was presented to

the subjects.

Table 4.1: Speech material.

Orthographic Phonemic CV
Ma /ma:/ CV:
Mahmi /"ma:mi/ CV:CV
Mamm /mam/ CVC
Mamsi /"mam.zi/ CVC.CV

All target words were embedded in carrier sentences designed to elicit either a nuclear or

a prenuclear rising pitch accent on the stressed syllables /ma/ and /mam/, respectively.

In both accent conditions, the target word was produced both in phrase-initial and in

phrase-noninitial position. In addition, target words bearing a nuclear accent were also

produced in phrase-final position. All carrier sentences were uttered as an answer in

small question and answer pairs. The basic structure of the carrier sentences for target
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words in phrase-noninitial position is given in Table 4.2.5

In Table 4.2 target words are shaded and the accented syllable of each target word is in

bold. Ambisyllabic consonants are shown in parentheses. Note that all target words were

embedded in carrier sentences having the same sequence of strong and weak syllables,

thus ensuring no unintended effects of stress clash on the pitch accent realisation on the

accented syllable.

Table 4.2: Basic corpus for target words in phrase-noninitial position. Target words are shaded. σ*
denotes the accented syllable. Stressed and unstressed syllables are marked by σ and σ′,
respectively.

target word σ σ* σ σ σ σ σ′ σ σ σ’ σ

/ma:/ Die Mah mi(n) (n)e ra li sier te das Wa(s) (s)er
/ma:.mi/ Die Mah mi ma ni pu lier te die Brem se
/mam/ Die Mamm si mul ta ni sier te die Hand lung
/mam.zi/ Die Mamm si ma ni pu lier te das Fahr zeug

Prior to the recordings, subjects were familiarised with the target words, i.e. the target

words were presented as female first names by the experimenter. The elicitation of either

a nuclear or a prenuclear rising pitch accent on the syllables /ma:/ or /mam/, respectively,

was ensured by pairing the carrier sentence with a question in a small question-answer

pair. Questions were recorded by a professional speaker and were designed to elicit either

a nuclear or a prenuclear rising accent on the test syllable. Each question-answer-pair

was presented to the subjects on a computer screen.6. Simultaneously, subjects heard the

question via the computer’s built-in loudspeaker and were asked to read the answer in a

comfortable and natural way. Figure 4.2 shows an example slide from the question-answer

pairs presented to the subjects during the recording sessions.

5Note that the verb <simultanisierte> in the carrier sentence with the target word /mam/ is a
pseudoword. However, it follows German phonotactics and its content can easily be deduced as
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Figure 4.2: Example of a question and answer pair presented to the subjects.

The order of the question-answer-pairs was pseudo-randomized. Carrier sentences with

the same target word or with target words in the same phrasal position did not appear

adjacently. Each question-answer pair was repeated 8 times. In sum, 640 tokens were

recorded (nuclear: 4 target words x 3 phrasal positions x 8 repetitions x 4 speakers = 384

tokens; prenuclear: 4 target words x 2 phrasal positions x 8 repetitions x 4 speakers = 256

tokens). Tokens that were not produced with a rising pitch accent or were misproduced

due to mispronounciation were excluded from the analysis. In total, 544 tokens went into

the analysis. In the following, I will discuss the question-answer pairs for target words in

phrase-initial and phrase-noninitial position (both nuclear and prenuclear) and then for

target words in phrase-final position (only nuclear).

Carrier sentences in phrase-initial and phrase-noninitial position were identical between

the nuclear and prenuclear data. In phrase-initial position target words were placed

at the left edge of an intonation phrase boundary.7 In phrase-noninitial position, an

unstressed syllable, the definite article <Die>, occurred before the target word. For all

phrasal positions, questions were designed to elicit a rising pitch accent on the syllable

making something simultaneous.
6Microsoft PowerPoint for Mac 14.2.1
7Target words could not be placed in utterance-initial position as the articulatory onset of consonantal
and vocalic gestures could not have been properly identified.
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/ma:/ or /mam/. For nuclear accents, questions were designed so that the target words

were part of the contrastive focus; in prenuclear accents, target words were part of the

broad focus of the answer (cf. Büring 2007).

In the following, I will present the carrier sentences for target words in-phrase initial

position first (both nuclear and prenuclear data), then I will present the carrier sentences

for target words in phrase-noninitial positoin (both nuclear and prenuclear). Subsequently,

I will present them for target words in phrase-final position (only nuclear).

Table 4.3: Question and answer pairs for target words in phrase-initial position (nuclear data).

target Q/A question and answer pair

/ma:/
question Dachte sie dann: Daniel mineralisierte das Wasser?

Did she think: Daniel mineralised the water?

answer [Dann dachte sie:]IP [Ma mineralisierte das Wasser.]IP

Then she thought: Ma mineralised the water.

/ma:.mi/
question Dachte sie dann: Lukas manipulierte die Bremse?

Did she think: Lukas manipulated the brakes?

answer [Dann dachte sie:]IP [Mahmi manipulierte die Bremse.]IP

Then she thought: Mahmi manipulierte die Bremse.

/mam/
question Dachte sie dann: Sarah simultanisierte die Handlung?

Did she think: Sarah simultanised the plot?

answer [Dann dachte sie:]IP [Mamm simultanisierte die Handlung.]IP

Then she thought: Mamm simultanised the plot.

/mam.zi/
question Dachte sie dann: Lena manipulierte das Fahrzeug?

Did she think: Lena manipulated the car?

answer [Dann dachte sie:]IP [Mamsi manipulierte das Fahrzeug.]IP

Then she thought: Mamsi manipulated the car.

Table 4.3 shows the question-answer pairs with target words in phrase-initial position

(nuclear data). The stressed syllable is in bold. Square brackets indicate an intonational

phrase boundary. The nuclear rising pitch accent on the target word was elicited by

asking a question such as <Dachte sie dann: X mineralisierte das Wasser> (<Did she
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think: X mineralised the water?>) where X denotes another first name; thus the target

word in the answer, the carrier sentence, occurred as part of the contrastive focus.

Table 4.4: Question and answer pairs for target words in phrase-initial position (prenuclear data).

target Q/A question and answer pair

/ma:/
question Was dachte sie dann?

What did she think then?

answer [Dann dachte sie:]IP [Ma mineralisierte das Wasser.]IP

Then she thought: Ma mineralised the water.

/ma:.mi/
question Was dachte sie dann?

What did she think then?

answer [Dann dachte sie:]IP [Mahmi manipulierte die Bremse.]IP

Then she thought: Mahmi manipulierte die Bremse.

/mam/
question Was dachte sie dann?

What did she think then?

answer [Dann dachte sie:]IP [Mamm simultanisierte die Handlung.]IP

Then she thought: Mamm simultanised the plot.

/mam.zi/
question Was dachte sie dann?

What did she think then?

answer [Dann dachte sie:]IP [Mamsi manipulierte das Fahrzeug.]IP

Then she thought: Mamsi manipulated the car.

Table 4.4 displays the question-answer set for target words bearing a prenuclear accent in

phrase-initial position. Note that the carrier sentences are identical to those in the nuclear

data. However, a prenuclear rising pitch accent was elicited here by asking the question

<Was dachte sie dann?> (<What did she think then?>) in all cases; thus the target word

in the answer occurred as part of the broad focus. While speakers produced a prenuclear

rising pitch accent on the stressed syllable /ma:/ or /mam/, in almost all instances, they

produced a nuclear falling accent on the stressed syllable in the phrase-final word, e.g. in

<Wasser> in the carrier sentence <Dann dachte sie: Ma mineralsierte das Wasser>.

Table 4.5 shows the question-answer pairs with target words in phrase-noninitial position
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Table 4.5: Question and answer pairs for target words in phrase-noninitial position (nuclear data).

target Q/A question and answer pair

/ma:/
question Mineralisierte der Daniel das Wasser?

Did Daniel mineralise the water?

answer [Die Ma mineralisierte das Wasser]IP

The Ma mineralised the water

/ma:.mi/
question Manipulierte der Lukas die Bremse?

Did Lukas manipulate the brakes?

answer [Die Mahmi manipulierte die Bremse]IP

The Mahmi manipulated the brakes.

/mam/
question Simultanisierte die Sarah die Handlung?

Did Sarah simultanise the plot?

answer [Die Mamm simultanisierte die Handlung]IP

The Mamm simultanised the plot.

/mam.zi/
question Manipulierte die Lena das Fahrzeug?

Did Lena manipulate the car?

answer [Die Mamsi manipulierte das Fahrzeug.]IP

The Mamsi manipulated the car.

(nuclear data). The carrier sentences are similiar to those in Table 4.3, however, they were

produced as one intonational phrase, instead of two, and the unstressed syllable <Die>

preceded the target word. Again, a nuclear rising pitch accent was elicited by asking a

question in this case such as <Mineralisierte X das Wasser?> (<Did X mineralise the

water?>).

Table 4.6 displays the question-answer set for target words bearing the prenuclear accent

in phrase-noninitial position. The carrier sentences are identical to the nuclear ones in

the same position. The prenuclear rising pitch accent was elicited by asking the question

<Was hat die X gestern gemacht> (<What did X do yesterday?>) where X denotes the

target word. Thus, the target word occurred as given information in broad focus. Similar

to the carrier sentences with the target word in phrase-initial position, speakers produced
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a prenuclear rising pitch accent on the stressed syllable /ma:/ or /mam/, and a nuclear

falling accent on the stressed syllable in the phrase-final word, e.g. in <Wasser> in the

carrier sentence <Die Ma mineralisierte das Wasser>.

Table 4.6: Question and answer pairs for target words in phrase-noninitial position (prenuclear data).

target Q/A question and answer pair

/ma:/
question Was hat die Ma gestern gemacht?

What did Ma do yesterday?

answer [Die Ma mineralisierte das Wasser]IP

The Ma mineralised the water

/ma:.mi/
question Was hat die Mahmi gestern gemacht?

What did Mahmi do yesterday?

answer [Die Mahmi manipulierte die Bremse]IP

The Mahmi manipulated the brakes.

/mam/
question Was hat die Mamm gestern gemacht?

What did Mamm do yesterday?

answer [Die Mamm simultanisierte die Handlung]IP

The Mamm simultanised the plot.

/mam.zi/
question Was hat die Mamsi gestern gemacht?

What did Mamsi do yesterday?

answer [Die Mamsi manipulierte das Fahrzeug.]IP

The Mamsi manipulated the car.

In phrase-final position (only nuclear data), target words were placed in utterance-final

position. Table 4.7 shows the question-and-answer pairs with target words in phrase-final

position (nuclear data). While the carrier sentences are different from those with target

words in phrase-initial and phrase-noninitial position, they share the same sequence

of strong and weak syllables. In the case of monosyllabic target words, the accented

syllables coincides with the final syllable in the intonation phrase. A nuclear rising pitch

accent was elicited by asking a question such as <Hat sie dann den X gesehen?> (<Did

she see the Daniel?>) where X denotes another first name. Again, target words occurred

as part of the contrastive focus in the answer.
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Table 4.7: Question and answer pairs for target words in phrase-final position (nuclear data).

target Q/A question and answer pair

/ma:/
question Hat sie dann den Daniel gesehen?

Did she see the Daniel?

answer [Sie sah dann die Ma.]IP

Then she saw the Ma.

/ma:.mi/
question Hat sie dann den Lukas gesehen?

Did she see the Lukas?

answer [Sie sah dann die Mahmi.]IP

Then she saw the Mahmi.

/mam/
question Hat sie dann die Sarah gesehen?

Did she see the Sarah?

answer [Sie sah dann die Mamm.]IP

Then she saw the Mamm.

/mam.zi/
question Hat sie dann die Lena gesehen?

Did she see the Lena?

answer [Sie sah dann die Mamsi.]IP

Then she saw the Mamsi.

The next section presents detailed information on both the data annotation and the

calculation of alignment lags for the beginning and end of the accentual rise relative to

landmarks in both the acoustic and articulatory domain.
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4.3 Data labelling and processing

The EMU Speech Database System (Cassidy & Harrington 2001, Bombien et al. 2006,

Harrington 2010) was used to create a database for each subject and condition. To look

at the effects of phrasal position, word length and syllable structure on the alignment of

nuclear and prenuclear accents, target words were labelled in the acoustic (segmental

boundaries, F0 targets) and articulatory (onsets and targets of consontal and vocalic

gestures) domain. With the exception of tonal targets (local minima and maxima) in

the F0 trace, both acoustic and articulatory data were manually labelled in EMU. The

beginning and end of each accentual rise was manually labelled in PRAAT (Boersma &

Weenink 2010).8 All data were extracted and transferred to R (R Core Team 2013)9 via

the EMU/R interface10. The following section will present the data labelling in more

detail.

4.3.1 Acoustic labelling

In the acoustic domain, segmental boundaries were annotated by means of an oscillogram

and wide-band spectrogram with a bandwidth of 300 Hz. Figure 4.3 depicts the annotation

of segmental boundaries of the target word /ma:mi/ in phrase-initial position (nuclear

pitch accent). The target sentence was <Dann dachte sie, Mahmi manipulierte die

Bremse> (“Then she thought, Mahmi manipulated the brakes”).

8Version 6.0.17
9Version 2.15.1 for extraction and version 3.1.2. for analysis

10Jonathan Harrington, Tina John, others and IPS LMU Muenchen & IPDS CAU Kiel (2012).
emu: Interface to the Emu Speech Database System. R package version 4.3. http://CRAN.R-
project.org/package=emu
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Figure 4.3: Annotation of acoustic boundaries and the beginning and end of the nuclear rise (L and
H, respectively) for /ma:mi/ in phrase-initial position (data from S1).

In the F0 trace, local minima and maxima of the rising nuclear (or prenuclear) accent

were identified and labeled as the beginning and the end of the accent. As can be seen in

Figure 4.3 above, the accentual rise starts shortly after the start of the accented vowel

V1 and, in this example, reaches its peak in the postaccented consonant C2.

Figure 4.4 provides an example of the target word /ma:mi/ produced in phrase-final

position (nuclear pitch accent). The target sentence was <Sie sah dann die Mahmi>

(“Then she saw the Mahmi”). Compared to the F0 peak in phrase-initial position, the

F0 peak aligns earlier, namely at the end of the accented vowel V1.

An example of a prenuclear rise is given in Figure 4.5. The target sentence was <Die

Mahmi manipulierte die Bremse> (“The Mahmi manipulated the brakes.”) with a

prenuclear rise accompanying the target word /ma:mi/. Compared to the nuclear F0

peak position, the F0 peak aligns considerably later in the prenuclear rise.

The next section provides detailed information on the annotation carried out in the
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Figure 4.4: Annotation of acoustic boundaries and the beginning and end of the nuclear rise (L and
H, respectively) for /ma:mi/ in phrase-final position (data from S1).

Figure 4.5: Annotation of acoustic boundaries and the beginning and end of the prenuclear rise (L
and H, respectively) for /ma:mi/ in phrase-noninitial position (data from S1).
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articulatory domain.

4.3.2 Articulatory labelling

In the articulatory domain, both consonantal gestures and vocalic gestures were labelled

for each accented syllable. Consonantal gestures were identified via the Lip Aperture

Index (Byrd 2000), which displays the interlip distance. In this trajectory, the target

(the maximum lip closure) of the wordinitial consonant C1 [m], the occurence of the peak

velocity of the opening gesture, the maximum lip opening, the occurence of the peak

velocity of the following closing gesture and the target of the following consonant C2 [m]

were labelled.
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Figure 4.6: Annotated landmarks for bilabial gestures in the target word /ma:mi/. Upper panel: lip
aperture, middle panel: velocity, lower panel: acceleration.
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Figure 4.6 displays the target word /ma:mi/ with the interlip distance, the derived

velocity and acceleration. The maximum lip closure for the production of C1 (“targC1”),

the maximum lip opening (“onsC2”) and maximum closure for the production of C2

(“targC2”) were labelled by means of zero-crossings in the velocity trace. The time point

where the opening gesture reaches its peak velocity (“relC1pvel”) and the time point

where the closing gesture reaches its peak velocity (“onsC2pvel”) were labelled by means

of zero-crossing in the acceleration trace.
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Figure 4.7: Annotated landmarks for vocalic gestures in /ma:mi/. Upper panel: Velocity, lower
panel: vertical movement of the most back sensor coil on tongue.

Vocalic gestures were labelled in the vertical trajectory of the tongue body (most

back sensor coil on the tongue). Vowel-to-vowel articulation differs from consonantal

articulation in that the articulatory target of a vocalic gesture corresponds to the onset

of the following vocalic gesture. That is, the target of a vocalic gesture is at the same

time the onset of a following vocalic gesture. Vocalic gestures were identified in terms
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of local maxima and minima, the former corresponding to the onset (“onsV”) of the

articulatory gesture for /a/ (= the articulatory target for the preceding /i/) and the

latter corresponding to the articulatory target for /a/ (“targV”). Figure 4.7 displays

the annotation of the vocalic gesture in the target word /ma:mi/. The onset of the

articulatory gesture for /a/ was labeled by means of a negative zero-crossing in the

velocity trace, while its target was labeled by means of a positive zero-crossing.
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4.3.3 Derived variables and calculations

This section presents the derived variables under investigation. Both nuclear and prenu-

clear rises were related to landmarks in the acoustic signal and articulatory traces

summarised in Table 4.8 and Table 4.9. The landmark closest to the beginning of the

accentual rise (L) was the acoustic vowel onset. Thus, L was measured relative the

acoustic vowel onset both in absolute terms (LtoV1ons) and as a proportion of the

vowel duration (LtoV1.prop). In addition, L was measured as a proportion of the total

syllable duration (LtoSyll.prop). This measurement accounts for different expected

syllable durations for open and closed syllables. The landmark nearest to the end of the

accentual rise (H) was the end of the syllable. Thus, H was measured relative to the end

of the accented vowel [a:] in [ma:] or ["ma:.mi] or the end of the coda consonant [m] in

[mam] or ["mam.zi] (HtoEndSyll). In addition, H was calculated as a proportion of the

total syllable duration (HtoSyll.prop).

In the articulation, L was measured relative to nearby landmarks in the articula-

tory domain, namely the articulatory target of the consonantal closing gesture for

C1 (LtotargC1) and the peak velocity of its release (LtorelC1pvel). H was measured

relative to a non-nearby or distant landmark. It was related to the articulatory target of

the vocalic gesture of V1, i.e. the maximum tongue body lowering for the production of

/a:/ or /a/.(HtotargV).

For each analysis, data were submitted to a repeated measures ANOVA with speaker

as a random factor and position (phrase-initial, phrase-noninitial, phrase-final), syll

(open, closed) and word length (monosyllabic, disyllabic) as independent variables. An

effect was deemed to be significant at alpha = 0.05. Effect sizes will be reported by means
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Table 4.8: Measurements applied in the acoustic domain.
Measure Description Schema

LtoV1ons Onset of the accentual rise relative
to onset of accented vowel

LtoV1.prop
Onset of the accentual rise relative
to onset of accented vowel in rela-
tion to the vowel duration

LtoSyll.prop
Onset of the accentual rise relative
to the syllable onset in relation to
the syllable duration

HtoEndSyll

End of the accentual rise relative
to the end of the accented syllable.
In open syllables, this landmark
corresponds to the end of the vowel.
In closed syllables, it corresponds
to the end of the coda consonant.

HtoSyll.prop
End of the accentual rise relative
to the syllable onset in relation to
the syllable duration
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Table 4.9: Measurements applied in the articulatory domain.
Measure Description Schema

LtotargC1 Onset of the accentual rise relative
to the maximum closure in C1

LtorelC1pvel
Onset of the accentual rise relative
to peak velocity of the C1 release
gesture

HtotargV
End of the accentual rise relative
to the articulatory target of the
accented vowel /a/ or /a:/

of the generalized eta square coefficient η2. This coefficient describes the proportion of

a variance for a model that is explained by a given factor and ranges between 0 and

1. Values between 0.01 and 0.05 indicate a small effect size, values between 0.06 and

0.13 indicate a medium effect size and values above 0.14 a large effect size (Ellis 2010:

40). Where significant interactions between the factors were found, posthoc tests11 were

conducted in order to find out which data sets differed significantly from one another.

Linear mixed effects modeling (see Chapter 7) was carried out using the R package lme4

(Bates et al. 2015).

11Tukey’s HSD (Honestly Significant Difference) tests
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5 Results: Nuclear Accents

This chapter presents results for the effects of phrasal position, word length and syllable

structure on the alignment of nuclear pitch accents. Section 5.1 investigates the alignment

in the acoustic domain while section 5.2 investigates the alignment in the articulatory

domain. Section 5.3 summarises the findings.

5.1 Alignment relative to acoustic landmarks

This section presents results for the nuclear pitch accent alignment relative to acoustic

landmarks. First, we look at the alignment of the beginning of the nuclear rise which

was measured relative to the acoustic onset of the accented vowel. In addition, it was

measured as a proportion of both the vowel duration and the total syllable duration.

Then we look at the alignment of the end of the nuclear rise which was measured relative

to the end of the accented syllable. In addition, the end of the rise was measured as a

proportion of the total syllable duration.
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5.1.1 Acoustic alignment of L

In this section, we look at the alignment of the start of the nuclear rise, first in absolute

terms (relative to the acoustic vowel onset), then in relative terms (relative to the vowel

duration and the total syllable duration, respectively).
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Figure 5.1: Mean alignment lags (in ms) for L relative to the onset of the accented vowel (LtoV1ons).

Figure 5.1 shows means by speaker for the beginning of the accentual rise relative to

the acoustic onset of the accented vowel V1 in phrase-initial, phrase-noninitial and

phrase-final position. Zero denotes the acoustic onset of the accented vowel V1. Positive

values indicate that L occurs after the vowel onset, while negative values indicate that it
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occurs before it, that is in the preceding consonant. Full data including averages across

speakers, phrasal position and syllable structure are given in Table 5.1.

Table 5.1: Mean alignment lags (in ms) for L relative to the onset of the accented vowel (standard
deviation in parentheses).

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ 18
(6)

-65
(9)

22
(15)

14
(3)

-4
(38) 1

(37)
-2
(35)

/ma:mi/ 29
(9)

-47
(8)

24
(9)

23
(16)

6
(34)

closed /mam/ 10
(7)

-56
(22)

2
(38)

13
(10)

-10
(36) -5

(34)/mamzi/ 18
(5)

-53
(17)

18
(7)

10
(4)

-1
(32)

noninitial

open

/ma:/ 16
(6)

-51
(7)

23
(6)

4
(25)

-1
(32) 5

(32)
-1
(30)

/ma:mi/ 32
(15)

-21
(31)

34
(15)

-6
(23)

10
(32)

closed /mam/ 3
(18)

-51
(12)

21
(5)

-18
(18)

-12
(30) -6

(28)/mamzi/ 18
(6)

-23
(21)

19
(6)

-12
(19)

0
(32)

final

open

/ma:/ 0
(20)

-54
(8)

-69
(6)

-67
(9)

-46
(33) -36

(36)
-36
(35)

/ma:mi/ 17
(8)

-41
(24)

-56
(8)

-52
(5)

-24
(36)

closed /mam/ 11
(6)

-62
(12)

-60
(5)

-66
(13)

-42
(35) -36

(35)/mamzi/ 20
(8)

-52
(10)

-55
(9)

-51
(11)

-30
(35)

In phrase-initial and phrase-noninitial position, L is aligned at the boundary between

C1 and V1 (on average 2 ms before V1 in phrase-initial position and 1 ms before V1 in

phrase-noninitial position). In phrase-final position, speakers align L 36 ms before V1.

However, an rmANOVA revealed no effect of position [F(2,6) = 3.56, p≥0.05, η2=0.52]

but small effects of syll [F(1,3) = 49.79, p<0.01, η2=0.02] and word length [F(1,3)
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= 17.70, p<0.05, η2=0.08]. Specifically, L is aligned slightly later in open syllables as

compared to closed syllables, and it aligns later in disyllables than in monosyllables.

In phrase-initial position, L aligns 6 ms later in open syllables as compared to closed

syllables. In phrase-noninitial position, it aligns 11 ms later in open syllables as compared

to closed syllables. In all phrasal positions, L aligns later in disyllabic target words than

in monosyllabic ones. Averaged across all positions, it aligns 51 ms before the onset of

V1 in /ma:/ while it aligns only 3 ms before the onset of V1 in /ma:mi/. The same

pattern applies to closed syllables. L aligns 21 ms before V1 in /mam/ while it aligns 10

ms before it in /mamzi/.

The alignment of L is, however, highly speaker-specific. For example, in all phrasal

positions, Speaker S1 aligns L after the acoustic onset of V1 while speaker S2 aligns L

before it. In non-final positions, speakers S3 and S4 align L at the boundary between C1

and V1 and shift it leftwards into C1 in phrase-final position.

The subtle effects of syll and word length possibly show that L is not aligned at a

fixed distance from the onset of the accented vowel. Instead, it could be the case that L

aligns at a fixed proportion of the vowel duration. Thus, the alignment of L as a function

of the vowel duration was investigated (Figure 5.2). This measurement sets the vowel

duration to 100 % (or 1). Values below zero indicate that L is aligned before the acoustic

onset of the vowel, and values between zero and one indicate that it is aligned within the

accented vowel. For example, a value of 0.5 would indicate that L is aligned in the middle

(50 %) of the accented vowel. Data for all speakers are given in Table 5.2. These were

submitted to an rmANOVA with the same factors used in the analysis above. Unlike for

the absolute measurement, none of the factors reached significance (position: [F(2,6) =

2.80, p≥0.05, η2=0.39, syll [F(1,3) = 3.32, p≥0.05, η2=0.18] and word length [F(1,3)
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Figure 5.2: Mean alignment lags for L relative to the onset of the accented vowel as a function of
the vowel duration (LtoV1.prop).

= 6.27, p≥0.05, η2=0.03]), showing evidence of a stable alignment for L relative to the

vowel. However, there were speaker-specific differences. As with the absolute alignment

of L relative the vowel onset, speakers S3 and S4 align L earlier in phrase-final position

while speakers S1 and S2 do not adjust alignment of L as a function of position in the

phrase.

The stable alignment of L is further supported by the analysis of its alignment as a

proportion of the entire syllable duration. This analysis not only takes different vowel

durations into account but also considers durational differences due to different syllable

97



5 RESULTS: NUCLEAR ACCENTS

Table 5.2: Mean alignment lags for L relative to the onset of the accented vowel as a function of
the vowel duration (standard deviation in parentheses).

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ 0.12
(0.04)

-0.43
(0.06)

0.13
(0.08)

0.09
(0.02)

-0.03
(0.25) 0.00

(0.26)
-0.06
(0.40)

/ma:mi/ 0.23
(0.08)

-0.40
(0.08)

0.16
(0.06)

0.17
(0.11)

0.03
(0.28)

closed

/mam/ 0.12
(0.08)

-0.85
(0.32)

0.02
(0.42)

0.17
(0.13)

-0.17
(0.51) -0.11

(0.49)/mamzi/ 0.22
(0.06)

-0.83
(0.29)

0.21
(0.09)

0.14
(0.05)

-0.05
(0.47)

noninitial

open

/ma:/ 0.10
(0.04)

-0.30
(0.04)

0.15
(0.03)

0.02
(0.16)

0.00
(0.19) 0.03

(0.22)
-0.04
(0.31)

/ma:mi/ 0.24
(0.13)

-0.17
(0.26)

0.23
(0.10)

-0.05
(0.18)

0.07
(0.24)

closed

/mam/ 0.04
(0.20)

-0.70
(0.18)

0.23
(0.05)

-0.23
(0.24)

-0.18
(0.39) -0.10

(0.36)/mamzi/ 0.21
(0.07)

-0.33
(0.31)

0.22
(0.06)

-0.15
(0.26)

-0.02
(0.31)

final

open

/ma:/ 0.01
(0.07)

-0.23
(0.06)

-0.27
(0.03)

-0.35
(0.05)

-0.20
(0.15) -0.18

(0.19)
-0.32
(0.36)

/ma:mi/ 0.11
(0.05)

-0.24
(0.14)

-0.35
(0.07)

-0.33
(0.03)

-0.14
(0.23)

closed

/mam/ 0.10
(0.05)

-0.83
(0.19)

-0.53
(0.06)

-0.75
(0.14)

-0.47
(0.40) -0.44

(0.42)
/mamzi/ 0.20

(0.08)
-0.74
(0.15)

-0.62
(0.12)

-0.70
(0.17)

-0.40
(0.45)

structures. Figure 5.3 displays the alignment of L as a proportion of syllable duration.

Zero denotes the onset of the accented syllable, and one denotes the end of the accented

syllable. In target words with an open syllable, the end of the accented syllable refers to

the acoustic offset of the vowel /a:/. In closed syllables, it refers to the end of the coda

consonant /m/. Table 5.3 provides full data for each condition.

In all phrasal positions, speakers show a stable alignment in that they align L within the
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Figure 5.3: Mean alignment lags for L as a function of the syllable duration (LtoSyll.prop).

first half of the syllable. Phrase-initially, L aligns at 26 % of the syllable duration while

phrase-noninitially, it aligns at 39 % of the syllable duration and phrase-finally, it aligns

at 22 % of the duration. The rmANOVA revealed neither an effect of position [F(2,6)

= 3.12, p≥0.05, η2=0.47] nor one of syll [F(1,3) = 7.93, p≥0.05, η2=0.13]. There

was a subtle but significant effect of word length [F(1,3) = 18.65, p<0.05, η2=0.13],

suggesting that L is aligned slightly earlier in monosyllables than in disyllables. Averaged

across all positions and both syllable structures, L aligns at 25 % of the syllable duration

in monosyllables as compared to 34 % of the syllable duration in disyllables.

Taken together, these findings show evidence of a stable alignment for the beginning of
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5 RESULTS: NUCLEAR ACCENTS

the accentual rise in the acoustic domain. Both absolute and proportional measurements

show a relatively stable alignment of L with the beginning of the accented vowel. Of

the three applied measurements, the alignment of L measured as the proportion of the

accented vowel sticks out as none of the investigated factors reached significance here.

Table 5.3: Mean alignment lags for L as a function of the syllable duration (standard deviation in
parentheses).

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ 0.37
(0.04)

0.01
(0.05)

0.36
(0.05)

0.39
(0.04)

0.27
(0.17) 0.30

(0.17)
0.26
(0.14)

/ma:mi/ 0.42
(0.06)

0.07
(0.03)

0.41
(0.03)

0.43
(0.07)

0.33
(0.17)

closed

/mam/ 0.24
(0.04)

0.08
(0.04)

0.22
(0.08)

0.32
(0.01)

0.21
(0.10) 0.23

(0.11)/mamzi/ 0.29
(0.04)

0.07
(0.02)

0.30
(0.05)

0.31
(0.05)

0.24
(0.11)

noninitial

open

/ma:/ 0.44
(0.03)

0.26
(0.02)

0.50
(0.03)

0.40
(0.09)

0.40
(0.10) 0.44

(0.12)
0.39
(0.11)

/ma:mi/ 0.54
(0.09)

0.38
(0.15)

0.56
(0.06)

0.39
(0.09)

0.47
(0.13)

closed

/mam/ 0.32
(0.06)

0.27
(0.02)

0.41
(0.02)

0.28
(0.07)

0.32
(0.07) 0.34

(0.07)/mamzi/ 0.39
(0.02)

0.35
(0.08)

0.41
(0.04)

0.32
(0.09)

0.36
(0.07)

final

open

/ma:/ 0.24
(0.05)

0.22
(0.02)

0.11
(0.02)

0.13
(0.03)

0.17
(0.07) 0.23

(0.12)
0.22
(0.10)

/ma:mi/ 0.43
(0.03)

0.30
(0.08)

0.18
(0.03)

0.17
(0.03)

0.30
(0.13)

closed

/mam/ 0.26
(0.02)

0.20
(0.02)

0.11
(0.02)

0.11
(0.05)

0.17
(0.08) 0.21

(0.09)/mamzi/ 0.35
(0.03)

0.26
(0.03)

0.19
(0.03)

0.16
(0.04)

0.36
(0.09)
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5.1 ALIGNMENT RELATIVE TO ACOUSTIC LANDMARKS

5.1.2 Acoustic alignment of H

This section investigates the alignment of the accentual peak relative to acoustic land-

marks. It was measured both from the acoustic offset of the syllable–the most nearby

landmark–and as function of the total syllable duration.
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Figure 5.4: Mean alignment lags (in ms) for H relative to the end of the accented syllable
(HtoEndSyll).

Figure 5.4 and Table 5.4 provide data for the alignment of the accentual peak relative to

the acoustic offset of the accented syllable. In target words with an open syllable, this

landmark corresponds to the end of the vowel /a:/ while in target words with a closed

syllable, it corresponds to the end of the coda consonant /m/. Positive values indicate

that the F0 peak occurs after the syllable boundary, while negative values indicate that
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5 RESULTS: NUCLEAR ACCENTS

it occurs before it.

In contrast to the alignment of L, the alignment of H is highly variable. The rmANOVA

confirmed large effects of position [F(2,6) = 49.45, p<0.001 η2=0.86], syll [F(1,3)

= 22.91, p<0.05, η2=0.66] and word length [F(1,3) = 58.17, p<0.01, η2=0.76], as

well as an interaction between word length and position [(F(2,6) = 53.26, p<0.001,

η2=0.69].

Table 5.4: Mean alignment lags (in ms) for H relative to the acoustic offset of the accented syllable
(standard deviation in parentheses).

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ 11
(21)

-67
(17)

10
(6)

-24
(8)

-18
(36) -4

(33)
-28
(36)

/ma:mi/ 32
(4)

-16
(4)

33
(9)

-3
(14)

11
(23)

closed

/mam/ -46
(9)

-80
(21)

-70
(20)

-54
(9)

-62
(21) -50

(21)/mamzi/ -32
(8)

-58
(9)

-27
(7)

-39
(11)

-38
(15)

noninitial

open

/ma:/ 3
(18)

-77
(24)

19
(5)

-26
(12)

-20
(40) -7

(35)
-35
(40)

/ma:mi/ 28
(7)

-15
(7)

27
(11)

-23
(20)

4
(27)

closed

/mam/ -56
(14)

-102
(19)

-66
(8)

-56
(14)

-70
(24) -61

(24)/mamzi/ -30
(10)

-73
(10)

-57
(18)

-48
(17)

-51
(21)

final

open

/ma:/ -163
(28)

-171
(19)

-181
(9)

-132
(8)

-162
(25) -101

(71)

-122
(75)

/ma:mi/ -14
(5)

-43
(30)

-22
(6)

-44
(12)

-28
(18)

closed /mam/ -193
(20)

-236
(11)

-247
(12)

-152
(11)

-202
(41) -140

(74)
/mamzi/ -56

(15)
-82
(8)

-89
(14)

-61
(12)

-70
(18)

On average, H aligns 28 ms before the syllable boundary in phrase-initial position
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5.1 ALIGNMENT RELATIVE TO ACOUSTIC LANDMARKS

and 35 ms before it in phrase-noninitial position. Phrase-finally, though, H is shifted

leftwards and aligns 122 ms before the syllable boundary. Posthoc tests showed that the

difference between the peak alignment in phrase-initial and phrase-noninitial position

was not significant while the two groups significantly differ from the peak alignment in

phrase-final position.

However, the magnitude of this leftward shift depends on the word length. While

there is a rather small position-induced peak shift in disyllables, there is huge shift in

monosyllables. In the phrase-initial /mamzi/, for example, the accentual peak aligns,

on average, 38 ms before the syllable boundary. In phrase-final position, it aligns 32

ms earlier, resulting in an alignment of 70 ms before the syllable boundary. In the

phrase-initial /ma/, on the other hand, it aligns, on average, 18 ms before the syllable

boundary. In phrase-final position, it aligns 144 ms earlier, i.e. it occurs 162 ms before

the syllable boundary. Thus, monosyllabic target words show a greater position-induced

leftward shift of the accentual peak as compared to disyllabic target words.

Next to phrasal position, syllable structure plays a significant role in determining the

peak alignment. Relative to the syllable boundary, H aligns later in open than in closed

syllables in all three positions. More specifically, it aligns after the accented vowel

in open syllables and within the coda consonant in closed syllables. In phrase-initial

position, speakers align the F0 peak, on average, 4 ms before the syllable boundary in

open syllables, while they align it 50 ms before it in closed syllables. In phrase-noninitial

position, similarly, the F0 peak aligns, on average, 7 ms before the syllable boundary

in open and 61 ms before it in closed syllables. In phrase-final position, the F0 peak

generally aligns earlier overall, but the effect of syllable structure persists in the same

direction. Specifically, the F0 peak aligns, on average, 101 ms before the syllable boundary
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5 RESULTS: NUCLEAR ACCENTS

in open syllables and 140 ms before it in closed syllables.

Even though all speakers show later F0 peaks in open syllables with respect to the

syllable boundary, they produce somewhat different alignment patterns: Speaker S1 and

speaker S2 consistently align H after the syllable boundary in open syllables, while they

align it before it in closed syllables. On the other hand, speaker S2 and speaker S4 align

all accentual F0 peaks before the syllable boundary but produce an alignment difference

between open and closed syllables such that the F0 peak aligns later in open syllables.

As indicated by the interaction, the effect of word length was only apparent in

phrase-final positions. Here, the peak aligns earlier in monosyllables than in disyllables.

In the other phrasal position, the F0 peak alignment does not differ significantly between

mono- and disyllablic target words. Phrase-initially, H aligns shortly before or after the

syllable boundary in open syllables (18 ms before the boundary in /ma:/ and 11 ms after

it in /ma:mi/). Phrase-finally, H aligns significantly earlier in /ma:/ than in /ma:mi/.

On average, the F0 peak aligns 162 ms before the syllable boundary in /ma:/ and 28 ms

after it in /ma:mi/.

In sum, these results indicate that F0 peak alignment is highly sensitive to the prosodic

factors investigated. First, it aligns earlier in phrase-final position than in non-final

position within the phrase. Alignment differences between initial and non-initial position

were not significant. Second, it aligns later with respect to the syllable boundary in target

words with an open syllable. More specifically, speakers align the F0 peak roughly at

the end of the accented vowel in open syllables and within the coda consonant in closed

syllables. Third, the F0 peak aligns earlier in monosyllables as compared to disyllables in

phrase-final position, while word length played almost no role in nonfinal position.
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5.1 ALIGNMENT RELATIVE TO ACOUSTIC LANDMARKS

To account for possible differences due to influences of speaking rate and syllable structure,

the F0 peak position was measured relative to the total syllable duration. Specifically,

the F0 peak alignment was measured as the lag between the F0 peak and the syllable

onset, and divided by the syllable duration. Figure 5.5 presents the F0 peak alignment

as a proportion of the total syllable duration. Full data are provided in Table 5.5.
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Figure 5.5: Mean alignment lags for H as a function of the syllable duration (HtoSyll.prop).

Zero denotes the acoustic onset of the stressed syllable, i.e. the onset of /m/. One

denotes the end of the stressed syllable, i.e. either the offset of /a:/ in /ma:/ and /ma:mi/

or the offset of the second /m/ in /mam/ and /mamzi/. Values above one indicate that

the peak aligns outside the stressed syllable.
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Table 5.5: Mean alignment lags for H as function of the syllable duration (standard deviation in
parentheses).

position syllable
structure

target
word S1 S2 S3 S4 x̄ mean mean

initial

open

/ma:/ 1.05
(0.10)

0.69
(0.07)

1.05
(0.03)

0.89
(0.03)

0.92
(0.17) 0.99

(0.16)
0.89
(0.16)

/ma:mi/ 1.18
(0.02)

0.91
(0.02)

1.16
(0.05)

0.98
(0.07)

1.06
(0.13)

closed

/mam/ 0.81
(0.04)

0.67
(0.07)

0.75
(0.07)

0.78
(0.03)

0.75
(0.07) 0.79

(0.08)/mamzi/ 0.85
(0.03)

0.74
(0.04)

0.89
(0.02)

0.82
(0.04)

0.83
(0.07)

noninitial

open

/ma:/ 1.01
(0.07)

0.74
(0.06)

1.07
(0.02)

0.90
(0.05)

0.93
(0.14) 0.98

(0.13)
0.88
(0.14)

/ma:mi/ 1.13
(0.03)

0.94
(0.03)

1.10
(0.04)

0.90
(0.09)

1.02
(0.11)

closed

/mam/ 0.81
(0.04)

0.69
(0.05)

0.80
(0.03)

0.80
(0.05)

0.77
(0.06) 0.79

(0.07)/mamzi/ 0.88
(0.04)

0.76
(0.03)

0.82
(0.05)

0.81
(0.06)

0.82
(0.06)

final

open

/ma:/ 0.54
(0.04)

0.54
(0.04)

0.51
(0.03)

0.56
(0.02)

0.54
(0.03) 0.70

(0.19)
0.66
(0.17)

/ma:mi/ 0.94
(0.02)

0.86
(0.09)

0.92
(0.02)

0.83
(0.04)

0.90
(0.06)

closed

/mam/ 0.50
(0.04)

0.45
(0.01)

0.44
(0.02)

0.53
(0.03)

0.48
(0.05) 0.62

(0.15)/mamzi/ 0.80
(0.05)

0.76
(0.03)

0.73
(0.04)

0.77
(0.04)

0.77
(0.05)

As expected, the rmANOVA revealed large effects of position [F(2,6) = 24.97, p<0.01,

η2=0.77], syll [F(1,3) = 19.97, p<0.05, η2=0.67] and word length [F(1,3) = 72.73,

p<0.01, η2=0.68] as well as interactions between position and word length [(F(2,6)

= 61.62, p<0.001, η2=0.50] and position and syll [(F(2,6) = 6.81, p<0.05, η2=0.16].

The results are similar to those in Figure 5.4 where the F0 peak was measured relative

to the syllable offset. Speakers align accentual peaks earlier in phrase-final position.

The alignment difference between F0 peaks in initial and noninitial position was not

106



5.1 ALIGNMENT RELATIVE TO ACOUSTIC LANDMARKS

significant. On average, speakers align the F0 peak at 89 % of the syllable duration in

phrase-initial, at 88 % of the syllable in phrase-noninitial and at 66 % of the syllable in

phrase-final position.

In non-final positions, the peak aligns earlier in closed than in open syllables. For example,

phrase-initially, H aligns at 79 % of the syllable duration in closed syllables while it

aligns at 99 % of the duration in open syllables. The factor word length did not play

a significant role in F0 peak alignment in the non-final position.

The picture changes in phrase-final position: Here, syllable structure did not have a

significant effect on F0 peak alignment. Instead, word length had an effect on the

alignment such that H aligns earlier in mono- than in disyllabic target words. On average,

speakers align H at 54 % of the syllable duration in /ma:/ and align it significantly later

in /ma:mi/ (at 90 % of syllable duration). The same applies to target words with a closed

syllable. In /mam/, H aligns at 48 % of the syllable duration and is pushed rightwards

in /mamzi/ (to 77 % of syllable duration).

In sum, these results confirm that there is no stable F0 peak alignment with respect to

acoustic landmarks. Peak alignment is highly variable in that it is sensitive not only to

phrasal position but also to word length in terms of number of syllables and syllable

structure. In general, H aligns earlier in phrase-final position than in nonfinal position

(phrase-initial and phrase-noninitial). In the nonfinal positions, speakers align H at

the end or shortly after the end of the accented syllable in open syllables (= within

or after the stressed vowel). In closed syllables, speakers align H considerably later

within the coda (= before the syllable boundary). Word length was only important in

phrase-final position: Here, speakers align H earlier in monosyllables than in disyllables.
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5 RESULTS: NUCLEAR ACCENTS

More specifically, the F0 peak aligns considerably early before the offset of the stressed

vowel in /ma:/, shortly before the vowel offset in /ma:mi/ and /mam/, but still in the

coda consonant in /mamzi/.

This chapter has shown that the beginning of the accentual rise tends to be stably

aligned with the stressed vowel. The alignment of the end of the accentual rise, the F0

peak, however, is highly variable. The next section will examine the alignment of both

beginning and end relative to articulatory landmarks.
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5.2 Alignment relative to articulatory landmarks

This section examines the alignment of the accentual rise relative to articulatory land-

marks. The beginning of the accentual rise was measured relative to its nearby landmark

in the articulatory domain, namely the articulatory target of the consonantal closing

gesture for /m/ and the peak velocity of its release. The end of the accentual rise, on

the other hand, was measured relative to the articulatory target of the vocalic gesture,

determined to be the maximum of the tongue body lowering gesture for the production

of the accented vowel (/a:/ or /a/).

5.2.1 Articulatory alignment of L

Figure 5.6 displays the mean alignment lags for the beginning of the accentual rise relative

to the maximum labial closure, that is the articulatory target for the consonant /m/.

Full data are given in Table 5.6. Zero denotes the point in time where the lip closure

reaches its maximum. Positive values indicate that L aligns after this landmark. An

rmANOVA only detected a small effect of word length ([F(1,3) = 10.93, p<0.05],

η2=0.05]). L aligns slightly earlier in monosyllables than in disyllables. For example,

phrase-noninitially, speakers align L 50 ms after the maximum closure in /ma:/ while

they align it 10 ms later in /ma:mi/.

The factors syll and position did not reach significance (syll: [F(1,3) = 2.42, p≥0.05,

η2=0.01], position: [F(2,6) = 4.19, p≥0.05, η2=0.56]. On average, speakers align L 65

ms after the maximum closure in phrase-initial position. In phrase-noninitial position, L

is aligned 50 ms after the closure, and in phrase-final position, it is aligned 15 ms after it.
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Figure 5.6: Mean alignment lags (in ms) for L relative to the maximum closure in /m/(LtotargC1).

However, as in the acoustics, speakers show different alignment strategies with respect to

phrasal position. Speaker S1 and speaker S2 do not (or only slightly) adjust the timing

of L, i.e. L is not shifted leftwards in phrase-final position. In contrast, speakers S3 and

S4 shift L such that it aligns earlier in phrase-final position. For example, speakers S1

aligns L 69 ms after the maximum closure in the phrase-initial /mamzi/ and she aligns it

57 ms after it in phrase-final position. Speaker S3, in contrast, aligns L 96 ms after the

maximum closure in phrase-initial /mamzi/. She then retracts L in phrase-final position,

as it aligns only 7 ms after the closure.

In summary, there is evidence for a rather stable alignment for L relative to the maximum

labial closure for /m/. Support comes from the rmANOVA indicating only a small effect
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Table 5.6: Means alignment lags (in ms) for L relative to the maximum closure in /m/ (standard
deviation in parentheses).

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ 69
(5)

3
(12)

96
(17)

91
(25)

63
(41) 67

(37)
65
(33)

/ma:mi/ 83
(14)

22
(6)

96
(4)

89
(19)

71
(33)

closed

/mam/ 64
(9)

24
(17)

73
(40)

80
(8)

58
(30) 63

(28)/mamzi/ 69
(9)

26
(11)

91
(9)

81
(8)

67
(26)

noninitial

open

/ma:/ 62
(4)

5
(15)

83
(11)

51
(25)

50
(31) 55

(33)
50
(30)

/ma:mi/ 77
(17)

33
(35)

93
(16)

39
(22)

60
(33)

closed

/mam/ 43
(18)

14
(10)

83
(6)

28
(20)

41
(29) 45

(26)/mamzi/ 56
(7)

37
(24)

77
(6)

32
(19)

49
(23)

final

open

/ma:/ 39
(24)

12
(9)

-9
(4)

-15
(10)

6
(27) 14

(29)
15
(29)

/ma:mi/ 54
(10)

27
(24)

2
(10)

-7
(5)

25
(29)

closed

/mam/ 55
(5)

9
(10)

-4
(7)

-18
(14)

11
(31) 16

(30)/mamzi/ 57
(12)

15
(7)

9
(9)

-6
(12)

22
(27)

of word length. The factor position failed to reach significance. This result, however,

is only side of the coin. The speaker-specific analysis revealed that indeed two of the

speakers (S3 and S4) align L considerably earlier in phrase-final position, that is, shortly

before or after the maximum labial closure. For example, speaker S4 aligns L 81 ms after

the maximum labial closure in /mamzi/ in phrase-initial position but in phrase-final

position, this speaker aligns L 6 ms before the maximum labial closure. Averaged across

all speakers and syllable structures, however, L aligns after the maximum closure. Thus,
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5 RESULTS: NUCLEAR ACCENTS

it was related to the point in time where the release of the closure reaches its peak

velocity.

Figure 5.7 displays the alignment of L relative to the peak velocity of the consonantal

release gesture, i.e. the point in time where the lip opening movement reaches its

maximum velocity. Full data are given in Table 5.7.
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Figure 5.7: Mean alignment lags (in ms) for L relative to the peak velocity of the opening gesture
from /m/ to /a/ (LtorelC1pvel).

On average, speakers align L 11 ms before reaching the gesture’s peak velocity in phrase-

initial and phrase-noninitial position, and 50 ms before it in phrase-final position. Again,

the rmANOVA revealed only a medium effect of word length ([F(2,6) = 13.61, p<0.05,

η2=0.09]). The factors syll and position did not reach significance (syll: [F(1,3) =
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5.2 ALIGNMENT RELATIVE TO ARTICULATORY LANDMARKS

0.71, p≥0.05, η2=0.00], position: [F(2,6) = 4.21, p≥0.05, η2=0.55]). More specifically,

L aligns slightly earlier in monosyllables than in disyllables with respect to this landmark.

In the phrase-initial /ma:/, L aligns on average 17 ms before the lip opening gesture

reaches its peak velocity. In /ma:mi/, it aligns only 6 ms before it. The same pattern

holds for target words with a closed syllable, too. In the phrase-final /mam/, for example,

L aligns 52 ms before the peak velocity, while in /mamzi/ it aligns 38 ms before it.

Table 5.7: Mean alignment lags (in ms) for L relative to the peak velocity of the opening gesture
from /m/ to /a/ (standard deviation in parentheses)

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ -3
(6)

-76
(11)

13
(15)

6
(3)

-17
(38) -12

(35)
-11
(33)

/ma:mi/ 9
(10)

-55
(7)

15
(10)

13
(16)

-6
(32)

closed

/mam/ 2
(8)

-56
(21)

-5
(38)

9
(9)

-14
(34) -10

(32)/mamzi/ 11
(4)

-52
(17)

13
(7)

5
(3)

-5
(29)

noninitial

open

/ma:/ -4
(7)

-61
(9)

11
(8)

-8
(25)

-16
(30) -9

(30)
-11
(28)

/ma:mi/ 12
(16)

-29
(32)

22
(15)

-17
(23)

-3
(30)

closed

/mam/ -6
(19)

-55
(13)

14
(5)

-25
(19)

-19
(29) -13

(26)/mamzi/ 10
(7)

-25
(20)

12
(6)

-19
(19)

-6
(22)

final

open

/ma:/ -27
(21)

-64
(4)

-81
(4)

-75
(9)

-62
(26) -52

(30)
-48
(32)

/ma:mi/ -7
(7)

-50
(22)

-72
(8)

-63
(5)

-40
(30)

closed

/mam/ -2
(5)

-70
(12)

-72
(6)

-73
(14)

-52
(34) -45

(33)/mamzi/ 5
(10)

-56
(8)

-60
(7)

-57
(10)

-37
(31)

Individual speakers, however, use different alignment strategies. Again, speakers S1 and
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5 RESULTS: NUCLEAR ACCENTS

S2 do not (or just slightly) adjust the beginning of the accentual rise according to phrasal

position. For example, speaker S1 aligns L 5 ms after the peak velocity in phrase-initial

and 3 ms after the peak velocity in phrase-noninitial position. Phrase-finally, she aligns it

7 ms before it. In contrast, speaker S3 aligns L 9 ms and 15 ms after the peak velocity in

phrase-nonfinal positions and retracts it up to 72 ms before it in phrase-final position.

Summarising the results for the alignment of L relative to landmarks in the articulatory

domain, there is evidence for a stable alignment for L between the maximum lip closure–

the articulatory target for /m/–and the peak velocity of the opening gesture. The

alignment was affected neither by the phrasal position nor by the syllable structure of the

target words. Word length only had a marginal effect such that L aligns slightly earlier

in monosyllables than in disyllables. A positional effect was observable for two of the

speakers; they align L earlier in phrase-final position. However, this factor did not reach

significance in the rmANOVA. Also, the exact timing of L seems to be speaker-specific but

constrained to the time interval between the consonantal gesture’s maximum constriction

and the release’s peak velocity.
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5.2 ALIGNMENT RELATIVE TO ARTICULATORY LANDMARKS

5.2.2 Articulatory alignment of H

This section examines the alignment of H relative to the articulatory target of the vowel

gesture, that is, the time point of the maximum tongue body lowering during the vocalic

opening for the accented vowel (/a:/ or /a/). Figure 5.8 displays the mean alignment

lags, full data are provided in Table 5.8. Positive values indicate that the F0 peak aligns

after the vowel target while negative values indicate that it aligns before it. All lags were

submitted to an rmANOVA.
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Figure 5.8: Mean alignment lags (in ms) for H relative to the articulatory vowel target for /a/
(HtotargV)

Quite notably, the rmANOVA did not reveal an effect of syll ([F(1,3) = 0.11, p≥0.05],

η2=0.02) but did reveal a large effect of position ([F(2,6) = 32.83, p<0.001], η2=0.69)
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and a small effect of word length ([F(1,3) = 15.69, p<0.05], η2=0.10), as well as an

interaction between position and word length ([F(2,6) = 10.44, p<0.05], η2=0.26).

Table 5.8: Mean alignment lags (in ms) for H relative to the articulatory vowel target for /a/
(standard deviation in parentheses).

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ 91
(16)

97
(21)

178
(66)

122
(15)

120
(48) 115

(40)
107
(41)

/ma:mi/ 100
(8)

101
(16)

136
(53)

106
(12)

110
(30)

closed

/mam/ 111
(22)

102
(18)

78
(90)

136
(20)

107
(47) 99

(40)/mamzi/ 103
(4)

106
(19)

53
(36)

112
(5)

92
(32)

noninitial

open

/ma:/ 60
(15)

51
(20)

65
(7)

73
(15)

62
(16) 65

(19)
58
(32)

/ma:mi/ 78
(13)

65
(17)

84
(12)

48
(19)

68
(21)

closed

/mam/ 67
(15)

73
(21)

-23
(15)

76
(21)

51
(44) 52

(39)

/mamzi/ 56
(31)

78
(11)

19
(27)

54
(36)

53
(34)

final

open

/ma:/ -20
(15)

4
(19)

-1
(19)

-67
(33)

-22
(35) 8

(45)
16
(50)

/ma:mi/ 45
(4)

77
(37)

32
(11)

35
(15)

45
(21)

closed

/mam/ 18
(14)

19
(7)

-53
(82)

13
(14)

-1
(50) 23

(53)/mamzi/ 61
(17)

84
(10)

-25
(22)

66
(16)

51
(42)

Posthoc tests showed a three-way distinction between phrasal positions. H aligns signifi-

cantly earlier in phrase-final position than in phrase-noninitial position and significantly

earlier in phrase-initial position. On average, H aligns only 16 ms after the vowel target

in phrase-final position while it aligns 58 ms after in phrase-noninitial position and 107

ms after it in phrase-initial position.
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The effect of word length is limited to the target words in phrase-final position. Here,

H aligns earlier in monosyllables than in disyllables. On average, H aligns 22 ms before

the articulatory vowel target in /ma:/ while it aligns 45 ms after it in /ma:mi/. The

same applies to target words with a coda consonant. In /mam/, speakers align H 1 ms

before the vowel target whereas in /mamzi/, they align it 51 ms after it.

It is worth noting that syllable structure did not play a significant role in determining

F0 peak alignment. Phrase-initially, H aligns on average 115 ms after the vowel target

in open syllables while it aligns 99 ms after it in closed syllables. Phrase-noninitially, it

aligns, on average, 65 ms after the vowel target in open syllables and 52 ms after it in

closed syllables. Phrase-finally, H aligns, on average, 8 ms after the vowel target in open

syllables and 23 ms after it in closed syllables.
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5.3 Summary (acoustics and articulation)

This section summarises the findings on the alignment of the nuclear rise relative to

landmarks both in the acoustics and articulation. It starts with a summary of the results

for the alignment relative to segmental boundaries, then presents the results for the

alignment relative to landmarks in the articulatory trace.

The alignment of the nuclear pitch accent relative to acoustic landmarks in the segmental

string reveals two distinct characteristics for the beginning and the end of the accentual

rise. While the beginning of the rise tends to be robustly aligned with the onset of the

stressed vowel, the accentual peak is sensitive to all prosodic factors under investigation:

phrasal position, syllable structure and word length.

Table 5.9 sums up the statistical analyses for the acoustic alignment of L. A significant

effect is indicated by the effect size η2 (n.s. = not significant). Only word length and

syllable structure had an effect on the alignment of L and these were both found to have

small effects. No significant interactions were found in the rmANOVAs. In open syllables,

L aligns slightly earlier as compared to closed syllables. In monosyllables, too, it aligns

slightly earlier as compared to disyllables.

Table 5.9: Overview of the statistical analyses for the acoustic alignment of L.

LtoV1ons LtoV1ons.prop LtoSyll
Position n.s. n.s. n.s.
Syllable structure η2 = 0.02 n.s. n.s.
Word length η2 = 0.08 n.s. η2 = 0.13

Figure 5.9 illustrates the findings for the stable alignment of L using data from speaker

S1.
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Figure 5.9: Acoustic alignment of L (data from speaker S1).

Each box corresponds to a segment of the target word; the accented syllable is shaded.

Values below each box indicate the segmental duration averaged across all repetitions. The

dotted line displays the alignment of L. The red arrows indicate the absolute alignment

of L relative to the acoustic onset of the target word and the onset of the accented vowel.

The values in parentheses indicate the proportional alignment of L relative to the total
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syllable duration. The alignment of L in phrase-initial1 position is displayed on the

left-hand side, the alignment in phrase-final position is shown on the right-hand side. In

all target words, this speaker aligns L shortly after the acoustic onset of the stressed

vowel. This alignment lag between L and the vowel onset was affected neither by the

phrasal position nor by the word length, nor by the syllable structure, indicating that

this landmark is an appropriate anchor point for the onset of the accentual rise.

Table 5.10 sums up the statistical analyses for the acoustic alignment of H. All factors

under investigation had an effect on the alignment of H. More specifically, H aligns

earlier in phrase-final position as compared to the nonfinal positions. With respect to

the syllable boundary, it aligns earlier in closed as compared to open syllables, and it

aligns earlier in monosyllables than in disyllables.

Table 5.10: Overview of the statistical analyses for the acoustic alignment of H.

HtoEndSyll HtoSyllDur
Position η2 = 0.86 η2 = 0.77
Position x Syllable Structure n.s. η2 = 0.16
Position x Word length η2 = 0.69 η2 = 0.50
Syllable structure η2 = 0.66 η2 = 0.67
Word length η2 = 0.76 η2 = 0.68

Figure 5.10 exemplifies the highly variable timing for H relative to acoustic landmarks,

again using data from speaker S1. Here, the dotted line represents the timing of the

accentual peak. The red arrows show the absolute peak alignment relative to the onset

of the target word and relative to end of the accented vowel. In addition, alignment lags

between the F0 peak and the end of the accented syllable are presented for target words
1The results from phrase-noninitial position were not included in this figure because they did not differ
significantly from the phrase-initial ones.
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with a closed syllable.
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Figure 5.10: Acoustic alignment of H (data from speaker S1).

Phrase-initially, the accentual peak aligns after the stressed vowel in open syllables (11

ms after in /ma:/ and 32 ms after in /ma:mi/) while in closed syllables, it aligns in the

coda consonant (60 ms after the vowel offset in /mam/ and 57 ms after in /mamzi/).

Phrase-finally, F0 peaks are shifted leftwards, with monosyllables showing the largest
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effect. In /ma:/ and /mam/, the peak aligns 163 ms and 192 ms before the syllable offset,

respectively, while in /ma:mi/ and /mamzi/ it aligns 14 ms and 55 ms, respectively,

before it.

To sum up the results for the alignment in the acoustic domain, there is evidence for a

stable alignment for the beginning of the accentual rise relative to the vowel duration

of the accented vowel. In contrast, the end of the accentual rise is highly variable. It

aligns earlier in phrase-final position than in nonfinal position, earlier in monosyllables

than in disyllables and earlier in open syllables than in closed syllables. The next section

summarises the findings for the alignment in the articulatory domain.

Table 5.11 sums up the statistical analyses for the articulatory alignment of L. Neither

phrasal position nor syllable structure had a significant effect on the alignment of L. It

was solely affected by word length such that L aligns slightly earlier in monosyllabic

target words as compared to disyllabic ones.

Table 5.11: Overview of the statistical analyses for the articulatory alignment of L.

LtotargC1 LtorelC1pvel
Position n.s. n.s.
Syllable structure n.s. n.s.
Word length η2 = 0.05 η2 = 0.09

Figure 5.11 illustrates the findings for L using data from speaker S1 for all four target

words, in both phrase-initial and phrase-final position. The trajectory represents the

lip aperture, i.e. the closing and opening gesture for the word-initial /m/. The arrows

indicate the interval between the maximum constriction of the lips and the beginning of

the accentual rise.
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Figure 5.11: Articulatory alignment of L (data from speaker S1).

In all target words, L aligns after the maximum closure, i.e. within the consonant’s

release gesture. The alignment of L roughly coincides with the peak velocity of the release.

More specifically, in the disyllables /ma:mi/ and /mamzi/, L aligns 83 ms and 69 ms after

the maximum closure, respectively. It aligns slightly earlier in the monosyllables, being

aligned 69 ms and 64 ms after the maximum closure in /ma:/ and /mam/, respectively.

123



5 RESULTS: NUCLEAR ACCENTS

Phrasal position, on the other hand, did not have any effect on the alignment of L.

Finally, Table 5.12 sums up the statistical analyses for the articulatory alignment of

H. In contrast to the articulatory alignment of L, the articulatory alignment of H was

significantly affected by position, with an interaction between position and word length.

In general, the F0 peak aligns earlier in phrase-final position than in phrase-initial

or noninitial position. The effect of word length was constrained to target words in

phrase-final position. In this position, H aligns earlier in monosyllables as compared to

disyllables.

Table 5.12: Overview of the statistical analyses for the articulatory alignment of H.

HtotargV
Position η2 = 0.69
Syllable structure n.s.
Word length η2 = 0.10
Position x Word length η2 = 0.26

Figure 5.12 illustrates the findings for H using data from speaker S1. In this figure, the

end of the accentual rise was related to the articulatory target of the vowel gesture, i.e.

the maximum tongue body lowering in the vertical dimension for the production of the

accented vowel (/a:/ or /a/). Arrows indicate the time interval between the articulatory

vowel target and the F0 peak.

The figure clearly illustrates the positional effect on F0 peak alignment with respect to

the articulatory vowel target. On average, this speaker aligns H between 91 ms and 111

ms after the vowel target in phrase-initial position, between 56 ms and 78 ms after it in

phrase-noninitial position and between -20 ms and 61 ms after it in phrase-final position.

In other words, the F0 peak is pushed leftwards from phrase-initial to phrase-final position.
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Figure 5.12: Articulatory alignment of H (data from speaker S1).

In final position, word length is a significant F0 peak alignment predictor in that H aligns

earlier in monosyllables than in disyllables. On average, speaker S1 aligns H 45 ms after

the gestural vowel target in /ma:mi/. In its monosyllabic counterpart /ma:/, however, H

aligns 20 ms before the vocalic gesture reaches its target. The same applies to the closed

syllables /mam/ and /mamzi/. In /mamzi/, the speaker aligns H 61 ms after the vowel

target, while she aligns H 18 ms after it in /mam/.

In sum, speakers show a stable yet speaker-specific alignment for the beginning of the
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nuclear rise relative to the consonantal release gesture. There was neither an effect of

phrasal position nor of syllable structure on the alignment of L relative to the articulatory

landmarks (L to both the maximum lip constriction and the peak velocity of the release

gesture). The factor word length only played a minor role, resulting in a marginally

earlier alignment in monosyllables than in disyllables.

The end of the nuclear rise displays a stable alignment relative to the articulatory target

of the vocalic gesture in that it was not affected by syllable structure. However, phrasal

position and word length did have an effect on F0 peak alignment. It aligns earlier in

phrase-final position as compared to non-final positions. Furthermore, in phrase-final

position it aligns earlier in monosyllables than in disyllables.
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6 Prenuclear accents

This chapter presents the results of the investigation into the alignment of prenuclear

pitch accents relative to acoustic and articulatory landmarks. Section 6.1 investigates

the alignment in the acoustic domain while Section 7.2 investigates the alignment in the

articulatory domain. Section 6.3 summarises the findings.

6.1 Alignment relative to acoustic landmarks

This section examines the prenuclear pitch accent alignment relative to acoustic landmarks.

As in the analysis of the nuclear accents, the beginning of the prenuclear rise was measured

in both absolute (relative to the acoustic onset of the accented vowel) and relative terms

(as a proportion of the vowel duration and as a proportion of the total syllable duration,

respectively). The end of the prenuclear rise was measured relative to the end of the

accented syllable and as a proportion of the total syllable duration.
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6.1.1 Acoustic alignment of L

In this section, we look at the start of the prenuclear rise, first in absolute terms relative

to the acoustic onset of the accented vowel, then in proportional terms relative to the

vowel duration and the total syllable duration. Figure 6.1 shows the alignment lag from

the beginning of the rise relative the beginning of the accented vowel. Full data are given

in Table 6.1. Zero denotes the onset of the vowel. Negative values indicate that L aligns

before the onset, while positive values indicate that it aligns after the onset.
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Figure 6.1: Mean alignment lags (in ms) for L relative to the acoustic vowel onset (LtoV1ons).

In general, all speakers align L after the acoustic vowel onset. An rmANOVA did not

reveal any effect of word length [F(1,3) = 6.43, p≥0.05, η2=0.18] nor of position
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6.1 ALIGNMENT RELATIVE TO ACOUSTIC LANDMARKS

[F(1,3) = 1.75, p≥0.05, η2=0.05]. On average, L aligns 37 ms after the vowel onset in

phrase-initial position and 34 ms after it in phrase-noninitial position.

Table 6.1: Mean alignment lags (in ms) for L relative to acoustic vowel onset (standard deviation in
parentheses).

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ 36
(20)

62
(13)

27
(12)

41
(28)

41
(22) 46

(27)
37
(27)

/ma:mi/ 55
(41)

66
(22)

30
(7)

43
(28)

50
(30)

closed

/mam/ 22
(13)

54
(12)

8
(8)

27
(11)

28
(20) 29

(26)/mamzi/ 17
(7)

59
(52)

20
(13)

26
(13)

30
(31)

noninitial

open

/ma:/ 21
(6)

86
(14)

11
(24)

34
(12)

38
(34) 39

(30)
34
(26)

/ma:mi/ 31
(14)

66
(30)

24
(28)

38
(10)

39
(26)

closed

/mam/ 17
(4)

47
(14)

16
(10)

8
(32)

23
(22) 29

(20)/mamzi/ 26
(10)

53
(14)

27
(9)

28
(16)

36
(16)

Syllable structure, however, did have large effect on the alignment of L (syll [F(1,3)

= 25.45, p<0.05, η2=0.46]), such that L aligns earlier in closed syllables as compared

to open syllables. In phrase-initial position, L aligns on average 46 ms after the vowel

onset in open syllables and 29 ms after it in closed syllables. The same applies to target

words in non-initial position. Here, L aligns 39 ms after the acoustic vowel onset in open

syllables and 29 ms after it in closed syllables. This alignment difference between open

and closed syllables could indicate that the vowel onset may not be an appropriate anchor

for L. Thus, the alignment of L relative to total vowel duration was investigated.

Figure 6.2 presents the alignment of L relative to the acoustic vowel onset as a proportion

129



6 PRENUCLEAR ACCENTS

of the accented vowel duration. Data are provided in Table 6.2. Zero denotes the vowel

onset while, one denotes the vowel offset. In general, all speakers align L well within the

accented vowel.
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Figure 6.2: Mean alignment lags for L as a proportion of the vowel duration (LtoV1.prop).

This time, the rmANOVA showed no effect of syll [F(1,3) = 1.08, p≥0.05, η2=0.11]

but did show effects word length [F(1,3) = 62.67, p<0.01, η2=0.34] and position

[F(1,3) = 18.11, p<0.05, η2=0.15]. Overall, L aligns slightly earlier in monosyllables as

compared to disyllables, and slightly earlier in phrase-noninitial position as compared to

phrase-initial position. On average, it aligns at 40 % of the vowel duration in phrase-initial

position and at 33 % of the vowel duration in phrase-noninitial position.
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6.1 ALIGNMENT RELATIVE TO ACOUSTIC LANDMARKS

The effect of word length is evident in the earlier alignment of L in monosyllables

as compared to disyllables; speakers align L earlier in monosyllables irrespective of

phrasal position. For example, phrase-initially, L aligns at % 31 of the vowel duration

in /ma:/ while it aligns 44 % of the vowel duration in /ma:mi/. The same applies to

closed syllables; for example, in phrase-noninitial position, L aligns at 28 % of the vowel

duration in /mam/ at 44 % of the vowel duration in /mamzi/.

Table 6.2: Means alignment lags for L as a proportion of the vowel duration (standard deviation in
parentheses).

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ 0.27
(0.14)

0.44
(0.09)

0.21
(0.10)

0.33
(0.22)

0.31
(0.16) 0.38

(0.21)
0.40
(0.32)

/ma:mi/ 0.45
(0.29)

0.59
(0.17)

0.28
(0.06)

0.38
(0.23)

0.44
(0.23)

closed

/mam/ 0.29
(0.17)

0.79
(0.17)

0.11
(0.10)

0.36
(0.15)

0.38
(0.29) 0.41

(0.40)/mamzi/ 0.23
(0.10)

0.92
(0.79)

0.26
(0.18)

0.41
(0.24)

0.44
(0.48)

noninitial

open

/ma:/ 0.15
(0.04)

0.56
(0.07)

0.08
(0.19)

0.26
(0.10)

0.26
(0.22) 0.30

(0.22)
0.33
(0.24)

/ma:mi/ 0.27
(0.13)

0.56
(0.23)

0.20
(0.23)

0.35
(0.07)

0.34
(0.21)

closed

/mam/ 0.21
(0.05)

0.59
(0.16)

0.18
(0.11)

0.09
(0.36)

0.28
(0.27) 0.36

(0.25)/mamzi/ 0.32
(0.12)

0.67
(0.19)

0.32
(0.11)

0.48
(0.19)

0.44
(0.21)

The exact timing of L as a proportion of the accented vowel duration seems, however,

highly speaker-specific and not systematic. As can be seen in Figure 6.2, speakers S1, S3

and S4 generally align L in the first half of the accented vowel (as indicated by values

between 0 and 0.5). In contrast, speaker S2 generally aligns L in the second half of the

vowel (as indicated by values above 0.5). As for the effect of position and word length,

speakers S1 and S3 only show subtle alignment differences, while speakers S2 and S4
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produce somewhat clearer differences. More specifically, speaker S2 produces a clear

alignment distinction between all target words in the phrase-initial condition while this

distinction disappears in phrase-noninitial position. The opposite is true for S4, who does

not differentiate between the target words in phrase-initial but does in phrase-noninitial

position.

To sum up, there are conflicting results for the alignment of L relative to the acoustic

onset of the accented vowel. In absolute terms, L was not affected by position or word

length but it was found to align earlier in closed syllables than in open syllables. This

difference disappears when taking the vowel duration into account. This proportional

measure of alignment shows, however speaker-specific effects of position and word length:

L aligns slightly earlier in noninitial position as compared to initial position and earlier

in monosyllables than in disyllables.

A considerably clearer picture can be drawn from the evaluation of the beginning of the

prenuclear rise relative to the syllable onset when it is considered in relation to the total

syllable duration (Figure 6.3, data in Table 6.3). Here, zero denotes the acoustic onset of

the syllable; one indicates the end of the syllable, which refers either to the vowel offset

in open syllables or the end of the coda consonant in closed syllables. The rmANOVA

revealed large effects of all factors (position [F(1,3) = 10.44, p<0.05, η2=0.44], syll

[F(1,3) = 497.66, p<0.001, η2=0.87] and of word length [F(1,3) = 242.84, p<0.001,

η2=0.40]).

In general, speakers align L earlier in phrase-initial position. On average, it aligns at

45 % of the syllable duration, while it aligns significantly later (at 51 % of the syllable

duration) in phrase-noninitial position. Also, the prenuclear rise starts earlier in closed
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Figure 6.3: Mean alignment lags for L as a proportion of the syllable duration (LtoSyll.prop).

syllables than in open syllables. Phrase-initially, it starts at 55 % of the syllable duration

in open and at 35 % of the syllable duration in closed syllables. Phrase-noninitially, the

rise starts at 58 % of the syllable duration in open and (earlier) at 44 % of the syllable

duration in closed syllables. Word length also played a significant role in determining

the beginning of the accentual rise in that the rise starts earlier in monosyllables than in

disyllables.

Furthermore, there are some speaker-specific patterns. For example, phrase-initially,

speaker S3 aligns L roughly at the same time both in the monosyllabic /mam/ (28 %

of syllable duration) and the disyllabic /mamzi/ (27 % of syllable duration). Another
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Table 6.3: Mean alignment lags for L as a proportion of the syllable duration (standard deviation in
parentheses).

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ 0.47
(0.11)

0.60
(0.07)

0.43
(0.09)

0.55
(0.15)

0.51
(0.12) 0.55

(0.15)
0.45
(0.18)

/ma:mi/ 0.60
(0.22)

0.73
(0.10)

0.45
(0.06)

0.58
(0.14)

0.60
(0.17)

closed

/mam/ 0.28
(0.06)

0.50
(0.06)

0.20
(0.03)

0.42
(0.07)

0.35
(0.13) 0.35

(0.16)
/mamzi/ 0.27

(0.03)
0.54
(0.28)

0.27
(0.08)

0.37
(0.12)

0.36
(0.18)

noninitial

open

/ma:/ 0.46
(0.03)

0.74
(0.04)

0.47
(0.11)

0.55
(0.07)

0.55
(0.13) 0.58

(0.14)
0.51
(0.14)

/ma:mi/ 0.55
(0.09)

0.76
(0.13)

0.52
(0.15)

0.62
(0.05)

0.61
(0.14)

closed

/mam/ 0.37
(0.02)

0.56
(0.05)

0.36
(0.03)

0.34
(0.14)

0.41
(0.11) 0.44

(0.10)/mamzi/ 0.41
(0.05)

0.58
(0.05)

0.42
(0.03)

0.47
(0.07)

0.47
(0.08)

exception is speaker S4 who, phrase-initially, aligns L earlier in /mamzi/ (37 % of syllable

duration) than its counterpart /mam/ (42 % of syllable duration).

Even though speakers align L later in open than in closed syllables in relation to the

total syllable duration, there is evidence for a rather stable alignment with the accented

vowel. More specifically, for three of the four speakers, it consistently aligns in the first

half of the accented vowel.

134
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6.1.2 Acoustic alignment of H

This section investigates the alignment of the prenuclear F0 peak relative to acoustic

landmarks. This was measured from the acoustic offset of the syllable and as function of

the total syllable duration.
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Figure 6.4: Mean alignment lags (in ms) for H relative to the syllable offset (HtoEndSyll).

Figure 6.4 show the F0 peak alignment relative to the end of the accented syllable. Data

are given in Table 6.4. Zero denotes the syllable boundary, i.e. the vowel offset in target

words with an open syllable or the end of the coda consonant in target words with a

closed syllable.

With the exception of /mamzi/, all speakers align the prenuclear F0 peak after the
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Table 6.4: Mean alignment lags (in ms) for H relative to acoustic syllable offset (standard deviation
in parentheses).

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ 50
(22)

129
(31)

59
(43)

101
(51)

85
(48) 95

(42)
77
(60)

/ma:mi/ 91
(21)

136
(23)

89
(17)

97
(42)

104
(33)

closed

/mam/ -31
(8)

162
(30)

-23
(50)

8
(31)

27
(85) 59

(69)/mamzi/ 90
(11)

101
(37)

85
(9)

91
(23)

91
(22)

noninitial

open

/ma:/ 42
(16)

112
(17)

34
(15)

38
(21)

57
(37) 75

(40)
67
(57)

/ma:mi/ 88
(10)

144
(34)

65
(24)

79
(14)

94
(36)

closed

/mam/ -17
(13)

163
(34)

-15
(40)

-28
(22)

28
(86) 59

(68)/mamzi/ 81
(15)

100
(24)

85
(6)

91
(13)

89
(17)

syllable boundary. The rmANOVA showed no effect of position [F(1,3) = 2.81, p≥0.05,

η2=0.04] nor of syll [F(1,3) = 7.77, p≥0.05, η2=0.17] nor of word length [F(1,3) =

4.06, p≥0.05, η2=0.39].1

On average, H aligns 77 ms after the syllable boundary in phrase-initial position and 67

ms after it in phrase-noninitial position. In this position, the F0 peak aligns on average

75 ms after the syllable boundary in open syllables as compared to 59 ms after it in

closed syllables. The same pattern applies to the F0 peak alignment in phrase-initial

position. Here, H aligns on average 95 ms after the syllable boundary in open syllables as

compared to 59 ms in closed syllables. As none of the factors reached significance, there

1However, the statistical analysis did reveal a small three-way interaction between the three factors
under investigation [F(1,3) = 11.07, p<0.05, η2<0.01]. L aligns earlier in phrase-initial /mam/ than
in phrase-nonitial /ma:mi/.
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is only a (non-significant) trend for the F0 peak to align earlier in closed syllables.

Rather, the alignment of the prenuclear F0 peak appears to be speaker-specific. On the

one hand, Speaker S2 aligns H consistently after the syllable boundary with alignment

lags always greater than 100 ms. On the other hand, speakers S1, S3 and S4 align the

F0 peak shortly before the syllable boundary in /mam/ but after the boundary, within a

time span of 100 ms, in /ma:/, /ma:mi/ and /mamzi/. In other words, H aligns roughly

with the end of the coda consonant in /mam/ while it aligns after the coda consonant in

/mamzi/. In /ma:/ and /ma:mi/, these speakers align H after the vowel offset.

Figure 6.5: Mean alignment lags for H as a function of the syllable duration (HtoSyll.prop).

Figure 6.5 shows mean alignment lags of H as a function of syllable duration. Values
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below 1.0 indicate that it aligns before the syllable boundary, and values higher then 1.0

indicate that H aligns after the syllable boundary. Full data are given in Table 6.5.

Table 6.5: Mean alignment lags for H as a function of the syllable duration (standard deviation in
parentheses).

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ 1.28
(0.11)

1.67
(0.18)

1.35
(0.28)

1.58
(0.33)

1.47
(0.28) 1.57

(0.27)
1.43
(0.33)

/ma:mi/ 1.56
(0.14)

1.82
(0.11)

1.64
(0.10)

1.65
(0.37)

1.67
(0.22)

closed

/mam/ 0.86
(0.03)

1.47
(0.14)

0.90
(0.23)

1.03
(0.13)

1.12
(0.39) 1.30

(0.33)

/mamzi/ 1.46
(0.07)

1.52
(0.20)

1.41
(0.06)

1.49
(0.10)

1.47
(0.12)

noninitial

open

/ma:/ 1.19
(0.07)

1.44
(0.05)

1.15
(0.07)

1.18
(0.12)

1.24
(0.14) 1.35

(0.18)
1.29
(0.23)

/ma:mi/ 1.46
(0.07)

1.65
(0.15)

1.32
(0.12)

1.43
(0.12)

1.46
(0.15)

closed

/mam/ 0.94
(0.05)

1.60
(0.12)

0.94
(0.14)

0.89
(0.09)

1.10
(0.32) 1.23

(0.26)/mamzi/ 1.33
(0.06)

1.38
(0.09)

1.32
(0.03)

1.38
(0.04)

1.35
(0.06)

The rmANOVA revealed large effects of position [F(1,3) = 20.36, p<0.05, η2=0.28]

and syll [F(1,3) = 26.11, p<0.05, η2=0.41]. The factor word length did not reach

significance [F(1,3) = 7.59, p=0.07, η2=0.53]. In general, H aligns earlier in phrase-

noninitial than in phrase-initial position, and it aligns earlier in closed than in open

syllables. Speakers S1, S3 and S4 show roughly the same pattern: With the exception of

/mam/, the F0 peak always aligns after the syllable boundary. Speaker S2, in contrast,

aligns H after the syllable boundary in all target words.

For speakers S1 and S3, H aligns consistently earlier in the monosyllables /ma:/ and

/mam/ than in the disyllables /ma:mi/ and /mamzi/. Speaker S2 and S4 show a

138



6.1 ALIGNMENT RELATIVE TO ACOUSTIC LANDMARKS

different pattern. For speaker S2, H aligns later in the monosyllabic /mam/ than its

disyllabic counterpart /mamzi/. Speaker S3 shows an interaction between position and

syllable structure. Phrase-initially, H aligns later in /ma:mi/ than in /mamzi/. In

phrase-noninitial position, however, it aligns earlier.

Summarising the data, the end of the prenuclear rise aligns (with the exception of

/mamzi/ for three speakers) consistently after the syllable boundary. In relation to this

landmark, the F0 is not affected by the factors under investigation. However, in relation

to the syllable duration, the F0 peaks tend to earlier in closed than in open syllables.

Moreover, the F0 peak tends to align earlier in phrase-noninitial than in phrase-initial

position.
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6.2 Alignment relative to articulatory landmarks

This section examines the alignment of the prenuclear rise relative to landmarks in the

articulatory domain. As in the analysis of the nuclear rise, the beginning of the rise was

related to both the articulatory target for the word-initial /m/ and the peak velocity of

its release. The end of the rise was measured relative to the articulatory vowel target

corresponding to the maximum tongue lowering for the accented vowel.

6.2.1 Articulatory alignment of L
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Figure 6.6: Mean alignment lags (in ms) for L relative to the maximum closure in /m/ (LtotargC1).
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Figure 6.6 displays the alignment lags from the beginning of the rise relative to the

articulatory target of the initial consonant, i.e. the maximum lip closure in /m/. Full

Data are given in Table 6.6.

Table 6.6: Mean alignment lags (in ms) for L relative to the maximum closure in /m/ (standard
deviation in parentheses).

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ 88
(22)

125
(17)

105
(14)

98
(14)

104
(23) 109

(28)
101
(29)

/ma:mi/ 108
(43)

132
(22)

104
(7)

107
(34)

113
(31)

closed

/mam/ 77
(16)

125
(11)

82
(9)

91
(15)

93
(23) 94

(29)/mamzi/ 68
(5)

129
(51)

94
(10)

91
(18)

95
(34)

noninitial

open

/ma:/ 58
5)

134
(15)

65
(22)

75
(12)

84
(34) 73

(22)
77
(27)

/ma:mi/ 68
(13)

112
(37)

75
(26)

77
(14)

82
(28)

closed

/mam/ 56
(4)

96
(15)

65
(6)

46
(31)

66
(25) 83

(31)/mamzi/ 63
(10)

101
(12)

76
(9)

75
(15)

79
(18)

All speakers align L considerably after the lip closure, i.e. the articulatory target for /m/.

An overall rmANOVA revealed large effects of syll [F(1,3) = 61.77, p<0.01, η2=0.42]

and position [F(1,3) = 93.95, p<0.01, η2=0.74] with word length [F(1,3) = 5.08,

p≥0.05, η2=0.14] having no significant effect. In general, speakers align L slightly earlier

in phrase-noninitial position than in phrase-initial position. Phrase-initially, L aligns, on

average, 101 ms after the maximum lip closure, while phrase-noninitially, it aligns, on

average, only 77 ms after it.

The role of syllable structure expresses itself in different forms: Phrase-initially, L aligns
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slightly earlier in closed syllables (94 ms after the maximum lip closure) than in open

syllables (109 ms after it). Phrase-noninitially, it aligns earlier in open syllables (83 ms

after the maximum closure) than in closed ones syllables (73 ms after it).
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Figure 6.7: Mean alignment lags (in ms) for L relative to the peak velocity of the opening gesture
from /m/ to /a/ (LtorelC1pvel).

These effects, however, disappear when investigating the onset of the accentual rise

relative to the peak velocity of the consonantal release gesture, i.e. the point in time

where the lip opening movement reaches its maximum velocity. Figure 6.7 displays the

mean alignment of L relative to the peak velocity of the release of /m/. Data are given

in Table 6.7.

The rmANOVA did not find any effects to be significant at all. (syll [F(1,3) = 4.37,
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p≥0.05, η2=0.13]; position [F(1,3) = 8.53, p≥0.05, η2=0.18]; word length [F(1,3) =

8.86, p≥0.05, η2=0.22]). On average, speakers align L, on average, 30 ms after the peak

velocity of the consonant’s release gesture in phrase-initial position. In phrase-nonitial

position, speakers align it, on average, 34 ms after this landmark.

Table 6.7: Mean alignment lags (in ms) for L relative to the peak velocity of the release in /m/
(standard deviation in parentheses).

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ 15
(17)

53
(12)

19
(13)

31
(27)

30
(23) 35

(27)
30
(27)

/ma:mi/ 39
(41)

59
(22)

23
(6)

32
(27)

40
(30)

closed

/mam/ 18
(13)

53
(11)

5
(8)

23
(10)

24
(20) 26

(27)

/mamzi/ 14
(7)

60
(53)

18
(13)

24
(15)

28
(22)

noninitial

open

/ma:/ 1
(8)

74
(12)

0
(22)

22
(12)

24
(35) 25

(31)
24
(26)

/ma:mi/ 13
(15)

56
(30)

12
(28)

27
(10)

26
(27)

closed

/mam/ 11
(4)

44
(12)

10
(9)

-1
(31)

16
(23) 23

(21)/mamzi/ 17
(8)

49
(12)

21
(10)

29
(17)

29
(17)

Overall, speakers show a consistent alignment pattern in that none of the speakers show

different alignment strategies. With the exception of speaker S2, all speakers align L

within a time interval of, on average, 30 ms after the peak velocity of the release gesture.

Speaker S2, in contrast, aligns it later, between 44 ms and 74 ms after this landmark.

Summarising the results for the alignment of L relative to landmarks in the articulatory

domain, there is evidence of a rather stable alignment for L shortly after peak velocity

of the release gesture. None of the investigated factors had an effect on the alignment
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6 PRENUCLEAR ACCENTS

with respect to the peak velocity, indicating this landmark to be an appropriate anchor

point.
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6.2 ALIGNMENT RELATIVE TO ARTICULATORY LANDMARKS

6.2.2 Articulatory alignment of H

Figure 6.8 shows the mean alignment lags for the prenuclear peak relative to the articu-

latory target for /a/, i.e. the maximum tongue body lowering during the vocalic opening.

Data are given in Table 6.8.
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Figure 6.8: Mean alignment lags (in ms) for H relative to the articulatory vowel target in /a/
(HtotargV).

Similar to the results for the nuclear peak, the rmANOVA did not reveal effects of

syll ([F(1,3) = 0.61, p≥0.05], η2=0.03) or word length ([F(1,3) = 1.51, p<0.05],

η2=0.22). Instead, it showed an effect of position ([F(1,3) = 19.50, p<0.05], η2=0.22)

and a three-way interaction between word length, (syll and position ([F(1,3) =
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6 PRENUCLEAR ACCENTS

23.57, p<0.05], η2=0.00).2

Table 6.8: Mean alignment lags (in ms) for H relative to the articulatory vowel target in /a/ (standard
deviation in parentheses).

position syllable
structure

target
word S1 S2 S3 S4 mean mean mean

initial

open

/ma:/ 115
(27)

251
(27)

145
(61)

192
(42)

176
(65) 180

(52)
181
(68)

/ma:mi/ 162
(27)

218
(23)

180
(37)

175
(32)

184
(36)

closed

/mam/ 116
(9)

308
(28)

36
(41)

162
(23)

154
(102) 181

(82)/mamzi/ 216
(10)

224
(36)

166
(30)

237
(44)

208
(40)

noninitial

open

/ma:/ 89
(18)

210
(24)

76
(14)

100
(17)

119
(58) 132

(51)
143
(70)

/ma:mi/ 132
(11)

203
(36)

113
(26)

133
(14)

144
(40)

closed

/mam/ 80
(18)

295
(35)

29
(43)

90
(8)

127
(108) 154

(83)/mamzi/ 164
(29)

215
(31)

154
(14)

195
(14)

180
(35)

In general, H aligns earlier in phrase-noninitial position than in phrase-initial position.

Phrase-initially, H aligns 181 ms after the articulatory vowel target and phrase-noninitially,

143 ms after it. Even though the rmANOVA did not find any effect of word length, there

was a trend for the F0 peak to align earlier in monosyllables than in disyllables. For

example, phrase-noninitially, speakers align H, on average, 119 ms after the vowel target

in /ma:/ while they align it, on average, 144 ms after it in /ma:mi/. The same pattern

applies to target words with a closed syllable. In /mam/, H aligns 127 ms after the vowel

target while in /mamzi/, it aligns 180 ms after it.

It is worth noting that once again, syllable structure did not play a role in determining
2As the effect size was too small, a post-hoc test could not detect any statistically significant difference
between the conditions.
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6.2 ALIGNMENT RELATIVE TO ARTICULATORY LANDMARKS

F0 peak alignment. Phrase-initially, the F0 peak aligns, on average, 180 ms after the

articulatory vowel target in open syllables and 181 ms after it in closed syllables. Phrase-

noninitially, it aligns 132 ms after the vowel target in open syllables and 154 ms after it

in closed syllables.

The next section summarises the findings for the alignment of the prenuclear pitch accents

relative to landmarks in both the acoustic and articulatory domain.
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6 PRENUCLEAR ACCENTS

6.3 Summary (acoustics and articulation)

To sum up the results, there are landmark-specific effects on the alignment of L. All

investigated alignment lags were either affected by phrasal position, syllable structure or

word length. Table 6.9 sums up the statistical analyses for the acoustic alignment of L.

A significant effect is indicated by the effect size η2 (n.s. = not significant).

In general, L aligns earlier in closed than in open syllables and earlier in monosyllables

than in disyllables. The positional effect depends on the investigated alignment lag.

Within the vowel, L aligns a little earlier in noninitial position. Across the entire syllabe,

L aligns later in that position. Despite these effects, the overall impression is that L

aligns well within the accented vowel. For speakers S1, S2 and S4, L aligns well within

the first half of the vowel while speaker S2 shows a greater degree of variability in her

alignment.

Table 6.9: Overview of the statistical analyses for the acoustic alignment of L.

LtoV1ons LtoV1ons.prop LtoSyll
Position n.s. η2 = 0.15 η2 = 0.44
Syllable structure η2 = 0.46 n.s. η2 = 0.87
Word length n.s. η2 = 0.34 η2 = 0.40

Figure 6.9 illustrates the findings for the acoustic alignment of L using data from speaker

S1. The red arrows indicate the absolute alignment of L relative to the acoustic onset of

the target word and the onset of the accented vowel. The values in parentheses indicate

the proportional alignment of L relative to the total syllable duration.

The absolute alignment of L relative to the acoustic vowel onset is only affected by the

syllable structure of the target word. L aligns slightly later in open syllables than in
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/ma:mi/
44 ms 120 ms

C1 V1:
55 ms 

99 ms (60 % of Syll) 

67 ms 67 ms

C2 V2

/mamzi/
35 ms 75 ms

C1 V1

52 ms (27 % of Syll) 

86 ms 65 ms

C2 V2
55 ms

Cod

phrase-initial phrase-noninitial

76 ms 118 ms

C1 V1:
30 ms 

106 ms (55 % of Syll) 

65 ms 60 ms

C2 V2

73 ms 83 ms

C1 V1

26 ms 

99 ms   (41 % of Syll) 

88 ms 60 ms

C2 V2
56 ms

Cod

100 ms

/ma:/
49 ms 131 ms

C1 V1:

L

36 ms

/mam/
41 ms 76 ms

C1 V1

63 ms  (28 % of Syll) 

104 ms

Cod

77 ms 139 ms

C1 V1:
21 ms

99 ms    (46 % of Syll) 

78 ms 83 ms

C1 V1

95 ms   (37 % of Syll) 

98 ms

Cod

22 ms 17 ms

17 ms

85 ms    (47 % of Syll) 

L

L

L L

L

L

L

Figure 6.9: Acoust alignment of L (data from S1).

closed syllables. Phrase-initially, L aligns 36 ms after the vowel onset in /ma:/ and 22

ms after it in /mam/. In /ma:mi/, L aligns 55 ms after the vowel onset, while it aligns

17 ms after it in /mamzi/. Phrase-noninitially, L aligns 21 ms after the vowel onset in

/ma:/ and 17 ms after it in /mam/. In /ma:mi/, L aligns 30 ms after it while it aligns
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6 PRENUCLEAR ACCENTS

26 ms after it in /mamzi/.

The alignment of L in relation to the entire syllable duration was affected by all investi-

gated prosodic factors. L aligns earlier in phrase-initial than in phrase-noninitial position

and earlier in closed than in open syllables. It is worth noting, however, that these effects

seem to be highly speaker and even target word specific. For speaker S1 (see Figure 6.9),

an earlier alignment in phrase-initial position can ony be observed for closed syllables.

Specifically, in /mam/, L aligns at 37 % of the syllable duration in phrase-noninitial

position and earlier (at 28 % of the syllable duration) in phrase-initial position. The

same pattern applies to /mamzi/ where this speaker aligns L at 41 % and 27 % of the

syllable duration in phrase-noninitial and phrase-initial position, respectively. Also, an

earlier alignment of L in monosyllables as compared to disyllables can only be found in

target words with an open syllable: In the disyllabic word /ma:mi/ L aligns at 60 % of

the syllable duration while in /ma:/ it aligns earlier at 47 % of the syllable. There is

no such difference between the closed syllables /mam/ and /mamzi/ in phrase-initial

position. Here, L aligns at 28 % and 27 % of total syllable duration, respectively.

However, given these rather small differences between the conditions, the overall impres-

sion is that there is a fairly fixed alignment for the onset of the prenuclear rise. In all

investigated target words, L aligns within the accented vowel. Three of the four speakers

align L well within the first half of the accented vowel.

The alignment of H, in contrast, shows a different picture. Table 6.10 summarizes the

findings for the acoustic alignment of H.3

3The three-way interaction between position, syllable structure and word length was excluded from
this table as the effect size was lower than 0.01.
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6.3 SUMMARY (ACOUSTICS AND ARTICULATION)

Table 6.10: Overview of the statistical analyses for the acoustic alignment of H.

.

HtoEndSyll HtoSyll
Position n.s. η2 = 0.28
Syllable structure n.s. η2 = 0.41
Word length n.s. n.s.

The absolute alignment of H relative to the syllable boundary was not affected by

the investigated prosodic factors. However, speakers S1, S3 and S4 do make a clear

distinction between the peak alignment in the monosyllabic /mam/ and its disyllabic

counterpart /mamzi/. In /mam/, H aligns well within the accented syllable (in the

coda consonant /m/), whereas in /mamzi/, H aligns after the syllable boundary (in the

following unstressed syllable). Figure 6.10 illustrates this effect with data from speaker

S1.

The overall impression is that there is no F0 peak alignment difference between target

words in phrase-initial and phrase-noninitial position. In both positions, however, there

are three different alignment patterns for H. In the monosyllabic /ma:/, the F0 peak

crosses the word boundary in that it aligns within the next word. In the disyllables

/ma:mi/ and /mamzi/, the peak aligns well within the postaccented vowel V2. Finally,

in /mam/, the F0 peak aligns within the coda consonant.

In sum, the onset of the prenuclear rise is only marginally affected by the investigated

factors. It is rather stably aligned with the accented vowel. The accentual peak, on the

other hand, is sensitive to both syllable structure and word length. In all target words,

it occurs after the accented vowel. In monosyllables, it aligns either with the onset of

the next word (as in the case of /ma:/) or within the coda consonant (as in /mam/). In

disyllables, it aligns well within the postaccented vowel (as in /ma:mi/ and /mamzi/).
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Figure 6.10: Acoust alignment of H (data from S1).

Table 6.11 sums up the statistical analyses for the articulatory alignment of L. With

respect to the maximum lip closure, the onset aligns later in phrase-initial than in

phrase-noninitial position. In phrase-initial position, the onset was aligned slightly later
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6.3 SUMMARY (ACOUSTICS AND ARTICULATION)

in open as compared to closed syllables. In phrase-noninitial position, in contrast, the

onset was aligned slightly earlier in open as compared to closed syllables. These effects,

however, disappear when relating the onset of the prenuclear rise to the peak velocity of

the consonant’s release gesture. This lag was consistent across all investigated prosodic

factors. In other words, the onset of the prenuclear rise was not affected by phrasal

position, syllable structure or by word length.

Table 6.11: Overview of the statistical analyses for the alignment of L.

LtotargC1 LtorelC1pvel
Position η2 = 0.74 n.s.
Syllable structure η2 = 0.42 n.s.
Word length n.s. n.s.

Figure 6.11 illustrates the findings for L using data from speaker S1 for all four target

words in phrase-initial and phrase-noninitial position. The trajectory represents the lip

aperture, i.e. the closing and opening movement for the word-initial /m/. The black

dot in the release gesture represents the occurence of the peak velocity of the movement.

The arrows indicate the interval between the peak velocity and the beginning of the

prenuclear rise. In all target words, L aligns shortly after the peak velocity of the release.

It aligns between 1 ms (/ma:/ phrase-noninitially) and 39 ms (/ma:mi/, phrase-initially)

after the release.

Table 6.12 sums up the statistical analyses for the articulatory alignment of H. Like

for the nuclear F0 peaks, H was significantly affected by phrasal position only. In

general, the F0 peak aligns earlier in phrase-noninitial position than in phrase-initial

position. Furthermore, the statistical analysis revealed a three-way interaction between
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Figure 6.11: Articulatory alignment of L (data from speaker S1).

all investigated factors.4 There was no evidence of an effect of syllable structure or word

length; the alignment of the prenuclear F0 peaks did not change between target words

with open or closed syllables or between mono- or disyllabic target words.

Figure 6.12 illustrates the findings for H using data from speaker S1. In this figure,

4The effect size η2, however, was 0.00.
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Table 6.12: Overview of the statistical analysis for the articulatory alignment of H.

HtotargV
Position η2 = 0.52
Syllable structure n.s.
Word length n.s.
Position x Syllable structure x Word length η2 = 0.00

the end of the prenuclear rise was measured relative to the articulatory target of the

vowel gesture, i.e. the maximum tongue body lowering in the vertical dimension for

the production of the accented vowel (/a/ or /a:/). Arrows indicate the time interval

between the articulatory vowel target and the F0 peak.

In all target words, H aligns earlier in phrase-noninitial position. For example, phrase-

noninitially, it aligns 164 ms after the vowel target in /mamzi/ while phrase-initially, it

aligns 216 ms after it. Importantly, the rmANOVA revealed no effect of syllable structure

or word length.

Like in the nuclear accents, speakers show a stable yet speaker-specific alignment for both

the beginning and the end of the prenuclear rise relative to articulatory landmarks in

prenuclear accents. L is stably aligned shortly after the peak velocity of the consonantal

release gesture while H displays a stable alignment with the articulatory vowel target

which is only affected by phrasal position.
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Figure 6.12: Articulatory Alignment of H (data from speaker S1).
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7 Modelling nuclear and prenuclear

accents

This chapter compares the coordination of nuclear and prenuclear rising pitch accents

relative to landmarks in the articulatory domain. As pointed out in section 5.2 and section

7.2, the onset of the high tone gesture, L, is consistently aligned with an articulatory

landmark, namely the point in time where the release gesture of the word-initial consonant

/m/ reaches its peak velocity. In contrast, the target of the high tone gesture, H, shows

a stable coordination pattern with the articulatory target of the accented vowel (the

maximum tongue body lowering for the production of the vowel /a/ or /a:/). In what

follows, the coordination of the high tone gesture will be modeled in the articulatory

domain by using both a π-gesture and a µ-gesture in order to account for the attested

effects of phrasal position and word length.
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7 MODELLING NUCLEAR AND PRENUCLEAR ACCENTS

7.1 Onset of high tone gesture (L)

Figure 7.1 displays the coordination of the onset of the high tone gesture, L, relative to

the peak velocity of the opening gesture for C1 pooled across target words. Each facet

displays data from one speaker. Filled circles represent the nuclear data while empty

circles represent the prenuclear data. Zero denotes the time point at which the peak

velocity of the consonant’s release gesture occurs (dotted line). Full data are given in

Table 7.1.
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Figure 7.1: Mean alignment lags (in ms) for L relative to the peak velocity of the consonant’s release
gesture C1.

As data are unbalanced (only nuclear accents are produced in phrase-final position), a

generalized linear mixed effects model was performed to test for the effects of position

and accent on this alignment lag. Speaker was included as random factor, and by speaker
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7.1 ONSET OF HIGH TONE GESTURE (L)

random slopes were included for the factors accent and position. The model was tested

against models without the factors accent and position as well as against a null model

without any fixed effects to determine significant effects using likelihood ratio tests.

Table 7.1: Mean alignment lags (in ms) for the onset of the high tone gesture relative to peak
velocity of the consonant’s release gesture.

accent position S1 S2 S3 S4 mean mean

nuclear

initial 5
(9)

-60
(17)

9
(21)

8
(9)

-11
(33)

-22
(35)

noninitial 3
(15)

-42
(25)

15
(10)

-18
(21)

-11
(28)

final -7
(16)

-60
(13)

-72
(10)

-68
(13)

-48
(32)

prenuclear initial 21
(25)

56
(28)

16
(20)

28
(21)

30
(27) 27

(27)noninitial 10
(11)

56
(21)

11
(20)

19
(22)

24
(26)

The comparison of the full model against the null model revealed no significant difference

(χ2(4) = 8.85, p > 0.05). Statistically, neither accent nor position had an effect on the

onset of the high tone gesture relative to the peak velocity of the opening gesture for C1.

In both nuclear and prenuclear accents the onset of the tone gesture is stably coordinated

with the peak velocity. However, individual speakers show a high degree of variability.

While for speakers S1 and S3 the onset of the nuclear and the prenuclear tone gestures

start almost at the same time in phrase-initial and phrase-noninitial position, for speakers

S2 and S4, the prenuclear tone gesture starts later than the nuclear one. For example,

for speaker S1, the prenuclear tone gesture starts, on average, 5 ms after the release’s

peak velocity in phrase-initial position. The nuclear tone gesture, starts only 16 ms

later, namely 21 ms after the release’s peak velocity. In contrast, speaker S2 shows
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7 MODELLING NUCLEAR AND PRENUCLEAR ACCENTS

the greatest difference between the nuclear and prenuclear data. For this speaker, the

prenuclear tone gesture starts, on average, 60 ms before the peak velocity in phrase-initial

position. The nuclear tone gesture is initiated, on average, 56 ms after this articulatory

landmark. Another striking difference is in the coordination of the nuclear tone gesture

in phrase-final position. Speakers S2, S3 and S4 start the tone gesture considerably

before the peak velocity of the release, while speaker S1 starts the tone gesture almost

simultaneously with it.
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Figure 7.2: Density curve (averaged across all speakers and target words) for the coordination of
the onset of the tone gesture relative to the peak velocity of the consonant’s release
gesture (upper panel: nuclear data, lower panel: prenuclear data).
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7.1 ONSET OF HIGH TONE GESTURE (L)

In order to better understand the (speaker) variability, kernel density curves were

calculated. Kernel density curves estimate the underlying distribution of the data by

means of their frequency of occurence of different values of the investigated variable.

Figure 7.2 presents the coordination of the onset of the tone gesture, L, relative to the

peak velocity of the consonant’s release gesture showing the coordination of the onset

of the high tone gesture relative to the peak velocity of the consonant’s release gesture.

The upper panel shows the nuclear data, the lower panel shows the prenuclear data.

The solid line at 0 ms marks the occurrence of the peak velocity of consonant’s release

gesture. Phrasal position is coded for by different colors with red showing target words in

phrase-final position (only nuclear), while green shows target words in phrase-noninitial

position, and blue shows target words in phrase-initial position.

The prenuclear data (lower panel) consistently show a unimodal and almost symmetrical

distribution, with a clear peak occuring shortly after the peak velocity of the opening

gesture. Data from noninitial (green) and initial position (blue) almost completely

overlap indicating that speakers coordinate the onset of the high tone gesture, L, of the

prenuclear rise stably in relation to the peak velocity, irrespective of phrasal position,

word length or syllable structure. In contrast, the nuclear data (upper panel) show

a bimodal distribution with two density peaks. Data from phrase-initial (blue) and

phrase-noninitial (green) position overlap to a large degree, and their peaks roughly occur

with the peak velocity of the consonant’s release gesture. However, both show a second

distributional peak before this alignment point indicating that in some cases the tone

gesture starts before this landmark. The data from phrase-final position (red) show an

even earlier and higher initial peak, indicating that in most phrase-final target words the

high tone gesture starts considerably before the peak velocity of the consonant’s release

gesture. The question arises as to which factor contributes to this bimodal distribution
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in nuclear accents. To determine this, data were separated by both speaker and accent

as shown in the density curves in Figure 7.3.
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Figure 7.3: Density curve (averaged across target words) for the coordination of the onset of the
tone gesture relative to the peak velocity of the consonant’s release gesture.

The left panel shows the nuclear data, while the right panel shows the prenuclear data.

Each row displays data from one speaker. As expected, the density curves for the

prenuclear data overlap completely for all speakers. Looking at the nuclear accents, it

becomes clear that speakers employ different strategies for the coordination of the onset of

the high tone gesture. Specifically, for speakers S1 and S2, data from all phrasal positions

162
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overlap to a high degree indicating that these speakers do not change the onset the of the

high tone gesture, L, as a function of phrasal position. The crucial difference between

these speakers, however, is that speaker S1 consistently starts the high tone gesture

with the peak velocity of the consonant’s release, while speaker S2 starts the high tone

gesture earlier (at around 50 ms before the peak velocity of the consonant’s release). In

contrast, data from speakers S3 and S4 show a different pattern. For speaker S3, density

curves from phrase-initial and phrase-noninitial position overlap and show a peak shortly

after the peak velocity of the consonant’s release. For this speaker, however, the tone

gesture is initiated earlier in phrase-final position. An earlier start of the tone gesture

in phrase-final position can be observed for speaker S4, too. Data from this speaker

additionally show a somewhat distinct (and wider) density curve in phrase-noninitial

position indicating that in this position the high tone gesture is initiated intermediate

between the onset of the high tone gesture, L, in phrase-final and phrase-initial position.

In sum, the bimodal distribution for the (nuclear) density curves in Figure 7.2 result

from speaker-specific strategies. While half of the speakers do not adjust the onset of the

high tone gesture as a function of phrasal position, the other half does. Specifically, for

two speakers, the high tone gesture starts earlier in phrase-final position.

7.2 Target of high tone gesture (H)

Figure 7.4 shows the coordination for the target of the high tone gesture, H, relative

to the articulatory vowel target, i.e. the maximum tongue lowering for the accented

vowel (/a/ or /a:/), by speaker and phrasal position. Zero marks the occurrence of the

articulatory vowel target. Positive values indicate that the target of the high tone gesture,
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7 MODELLING NUCLEAR AND PRENUCLEAR ACCENTS

H, occurs after the articulatory vowel target. Full data are given in Table 7.2.
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Figure 7.4: Mean alignment lags (in ms) for the target of the high tone gesture relative to the
articulatory vowel target.

A generalized linear mixed effects model was performed to test for the effects of position

and accent on the coordination of the accentual F0 peak with the articulatory vowel

target. The model had the same structure as the one used to test for the effects on the

coordination of the tone gesture onset. A comparison of the model including position and

accent as fixed effects (full model) and the model without any fixed effects (null model)

showed a significant difference (χ2(4) = 18.12, p < 0.01). Post-hoc testing confirmed that

all but one pairwise comparisons were significant. The only non-significant difference

found was between prenuclear accents in noninitial position and nuclear accents in initial

position (β = 36.6, SE = 26.8, z = 1.37, p ≥ 0.05 ).

The nuclear tone gesture reaches its target, on average, 62 ms after the articulatory
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Table 7.2: Mean alignment lags (in ms) for the target of the high tone gesture relative to the
articulatory vowel target.

accent position S1 S2 S3 S4 mean mean

nuclear

initial 102
(16)

101
(18)

107
(78)

119
(18)

107
(41)

62
(54)

noninitial 65
(21)

68
(20)

35
(47)

62
(26)

58
(32)

final 27
(33)

50
(39)

-16
(53)

11
(53)

16
(50)

prenuclear initial 154
(46)

249
(45)

131
(70)

190
(43)

181
(68) 162

(72)noninitial 116
(39)

232
(49)

97
(53)

129
(45)

143
(70)

vowel target, while the prenuclear tone gesture reaches its target, on average, 100 ms

later. Moreover, both nuclear and prenuclear tone gestures reach their targets earlier in

phrase-initial position than in phrase-noninitial position. Phrase-finally (only nuclear), it

reaches its target, H, even earlier. Even though all speakers show the similar pattern,

the rather large standard deviations (as compared to the onset of the tone gesture) is

indicative of a high degree of variability.

Figure 7.5 presents density curves for the coordination of the target of the nuclear

(upper panel) and prenuclear (lower panel) high tone gesture. The solid line at 0 ms

marks the occurrence of the articulatory vowel target. When comparing the nuclear

data with the prenuclear data, the prencular data show wider distributions, with density

plateaus for both phrase-initial and phrase-noninitial position, indicating a high degree of

variability. The two density curves overlap to a large degree, too, reflecting only a subtle

difference between the coordination of the target of the high tone gesture (H) in the two

phrasal positions. In contrast, the density curves in the nuclear data show a more narrow

165



7 MODELLING NUCLEAR AND PRENUCLEAR ACCENTS

0.000

0.005

0.010

0.015

0.020

0.025

0.000

0.005

0.010

0.015

0.020

0.025

nuclear
prenuclear

−200 0 200
(H − targV)

de
ns

ity

position
final
noninitial
initial

Figure 7.5: Density curve (averaged across all speakers and target words) for the coordination of
the target of the tone gesture relative to the articulatory vowel target.

distribution with a distinguishable peak for each of the three phrasal positions. More

specifically, the peak for the phrase-final data occurs shortly after the articulatory vowel

target, followed by the peaks for phrase-noninitial and phrase-final position. That is, the

nuclear tone gesture reaches its target, H, earlier than in phrase-noninitial position and

earlier than in phrase-initial position. Section has already shown that the coordination

of the target of the prenuclear high tone gesture is only affected by phrasal position. The

target of the textitnuclear high tone gesture, H, is, however, affected by both phrasal
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position and word length. That is, phrase-finally, the tone gesture reaches its target

earlier in monosyllables than in disyllables.

Figure 7.6 shows density curves for the target of the nuclear high tone gesture relative to

the articulatory vowel target as a function of both phrasal position and target word.
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Figure 7.6: Density curves (averaged across all speakers) for the coordination of the target of the
tone gesture relative to the articulatory vowel target (nuclear data only).

Zero denotes the articulatory vowel target. While the coordination of the target of the

high tone gesture is not affected by the structure of the target words in the phrase-
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noninitial (green) and phrase-initial (blue) data, it changes as a function of word length

in phrase-final position (red). For example, in /mamzi/, the density curve representing

the phrase-final data (red) occurs after the articulatory vowel target and overlaps with

the phrase-noninitial curve (green) to a high degree. In /ma:mi/ and /mam/, it “moves”

towards the articulatory vowel target, and in /mam/ it even shows a peak before the

articulatory vowel target. In other words, the target of the nuclear high tone gesture is

reached earlier when there is less segmental material available as in /ma:/ as compared

to /mamzi/ where there is a second (unstressed) syllable on which the tone gesture can

reach its target.

Summarizing the data, the comparison of prenuclear and nuclear high tone gestures has

revealed the following patterns: The onset of both the nuclear and prenuclear high tone

gesture, L, tends to be coordinated with the peak velocity of the consonant’s release

gesture. However, there is a certain amount of speaker-specific variability in that some

speakers start the nuclear high tone gesture earlier in phrase-final position. The target

of the high tone gesture, H, is highly sensitive to accent status: High tone gestures

in prenuclear position show a high degree of variance in their coordination with the

articulatory vowel target and tend to reach their targets later than in nuclear position. In

contrast, nuclear high tone gestures show a tighter coordination pattern and reach their

targets with respect to their position in the phrase in the following order: phrase-final

< phrase-noninitial < phrase-initial. Moreover, in phrase-final position, the nuclear

high tone gesture reaches its target earlier in monosyllables as compared to disyllables.

The next section models these effects employing the π-gesture and the µ-gesture in the

coupled oscillator model of syllable structure.
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7.3 COUPLED OSCILLATORS

7.3 Coupled oscillators

This section summarizes the key results of the present study and presents three coupling

structures that account for the attested effects by employing prosodic gestures in the

framework of coupled oscillators. Figure 7.7 provides schematized scores and correspond-

ing coupling structures for prenuclear (upper panel) and nuclear (lower panel) high tone

gestures.

nuclear accents

low

V1

in-phase

anti-phase

high low (fall)low (fall)

prenuclear accents

C

high (rise)low (fall)

C

high

low

V1

C

high low

V1

C

V1

Figure 7.7: Schematized gestural scores and proposed coupling structures for nuclear (upper panel)
and prenuclear pitch accents (lower panel).

Mücke et al. (2012) and Niemann et al. (2011) (see section 3.4) have already modeled

rising pitch accents in German with two tone gestures, a low and a high tone gesture. The

target of the low tone gesture, L, is at at the same time the onset of the high tone gesture.

The coupling structures in Figure 7.7 extend this modeling to prenuclear accents. As

known from consonantal clusters in complex onsets, where both consonants are coupled

in-phase with the vocalic gesture, but are coupled in anti-phase with each other, a
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7 MODELLING NUCLEAR AND PRENUCLEAR ACCENTS

similar pattern is assumed for the rising pitch accent. Both nuclear and prenuclear rising

pitch accents consist of a high tone gesture and a preceding low tone gesture. Both are

coupled in-phase with the vocalic gesture and anti-phase with each each other leading

to a competitive structure. However, there is a crucial difference between nuclear and

prenuclear accents in that in nuclear accents an additional low tone gesture follows the

high tone gesture. The onset of this additional low tone gesture corresponds to the target

of the preceding high tone gesture. This additional tone gesture is coupled in anti-phase

with the preceding high tone gesture. It thus forces the high tone gesture to reach its

target, the F0 peak, earlier. In prenuclear accents, on the other hand, the high tone

gesture can be realized without any constraints as no low tone gesture follows, i.e. the

F0 peak can align later as compared to nuclear accents.

The proposal of an additional low tone gesture following the high tone gesture in nuclear

accents is similar to the concept of the phrase accent used in autosegmental-metrical

analyses (see section 2.1). Evidence for a low tone gesture following the high tone gesture

comes from visual inspection of nuclear and prenuclear accents. Usually, nuclear F0 peaks

are immediately followed by a sharp fall in F0 with an evident low “elbow”, whereas the

prenuclear accents show more variability. The overall impression is that the prenuclear F0

peak is followed by a sagging transition without a clearly identifiable low tone following

it.

Figure 7.8 presents gestural scores based on means for each of the four speakers (S1-S4)

producing the target word /ma:.mi/ in phrase-noninitial position. Each score consists of

two tiers: The “TB” (tongue body) tier indicates the vocalic gestures while the “Tone”

tier indicates the tone gestures. The box labeled “V1” represents the interval from the

onset to the target of the vocalic gesture, i.e. the tongue body lowering for the production
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Figure 7.8: Gestural scores for the four speakers producing the target word /ma:.mi/ in phrase-
noninitial position.
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of the accented vowel /a:/. The box labeled “V2” represents the vocalic gesture (tongue

body raising) for the following syllable, which contains the vowel /i/. The green boxes

represent the activation of the high tone gesture. Note that the onset of the low tone

gesture preceding the high tone gesture is not detectable in the signal. Zero denotes the

articulatory vowel target for the production of the vowel /a:/ (V1). The green arrow

indicates the time between the articulatory target and the end of the high tone gesture.

All speakers show a similar pattern: The nuclear high tone gestures reach their targets,

the F0 peaks, earlier than the prenuclear ones. This is caused by the following low tone

gesture coupled anti-phase with the high tone gesture in nuclear accents, inducing time

pressure on the realisation of the preceding high tone gesture.

The following coupling structures account for the positional effects found in both prenu-

clear and nuclear rising pitch accents.

Figure 7.9 shows schematized scores and the proposed coupling structures for (nuclear)

high tone gestures in phrase-initial (top panel), phrase-noninitial (middle panel) and

phrase-final position (lower pannel). The vocalic gesture representing the accented vowel

V1 is shaded. In phrase-initial position, both the π-gesture (marking the boundary) and

the µ-gesture (marking stress) are coupled anti-phase and in-phase, respectively, with

the vocalic gesture V1. In addition, the high tone gesture is coupled in-phase with the

vocalic gesture. This coupling structure results in a rightward shift of the target of the

high tone gesture; thus the F0 peak aligns later as compared to the other positions.

In phrase-noninitial position, a vocalic gesture (V0) precedes the accented vowel. This

vocalic gesture is coupled anti-phase with the π-gesture marking the boundary. In

this position, the π-gesture cannot exert time pressure on the high tone gesture; thus
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Figure 7.9: Schematized gestural scores and proposed coupling structures for the high tone gesture
in phrase-initial, phrase-noninitial and phrase-final position.

the F0 peak is realized somewhat earlier in phrase-noninitial position as compared to

phrase-initial position.

In phrase-final position, however, the high tone gesture needs to achieve its target earlier

as compared to the non-final positions. In this position, the π-gesture is coupled anti-

phase with the vowel in the following, phrase-final, unstressed syllable (V2). The time

pressure resulting from the upcoming low boundary tone (the end of the low tone gesture)

forces the high tone gesture to achieve its target earlier.

Figure 7.10 presents gestural scores based on means from the four speakers producing the

173



7 MODELLING NUCLEAR AND PRENUCLEAR ACCENTS

0 50 100 150 200-50-100-150-200

time
0 50 100 150 200-50-100-150-200

time

0 50 100 150 200-50-100-150-200

time
0 50 100 150 200-50-100-150-200

time

S1 

initial
highlow

highlow
non-initial

highlow
final

S2 

highlow

V1

highlow

highlow

S3

V1

highlow

highlow

highlow

highlow

S4

highlow

highlow

low

low

low

low

low

low

low

low

low

low

low

low

TB

Tone

TB

Tone

TB

Tone

/ma.:mi/

initial

non-initial

final

TB

Tone

TB

Tone

TB

Tone

V1 V2 V1 V2

V1 V2 V2

V1 V2 V1 V2

V2 V1 V2

V1 V2 V1 V2

V1 V2 V1 V2

Figure 7.10: Gestural scores for the four speakers producing the target word /ma:.mi/ in phrase-initial,
phrase-noninitial and phrase-final position.
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target word /ma:mi/ in phrase-initial, phrase-noninitial and phrase-final position that

illustrate the coordination of the high tone gesture relative to the articulatory target of

the vocalic gesture for the accented vowel V1. The arrows indicate the distance between

the articulatory vowel target and the target of the high tone gesture. Each speaker shows

a similar pattern: The high tone gesture reaches its target earliest in phrase-final position

(red), followed by the high tone gestures in phrase-noninitial (green) and phrase-initial

position (blue).

The last coupling structure is concerned with the difference between monosyllables and

disyllables bearing the nuclear pitch accent. In monosyllables, the high tone gesture

reaches its target, H, earlier as compared to disyllables, particularly in phrase-final

position.

in-phase

anti-phase

phrase-final: disyllables

V1

high lowlow

V2

phrase-final: monosyllables

V1

high lowlow

low

V1

high low

low
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high low

V2

µ �
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Figure 7.11: Schematized gestural scores and proposed coupling structures for phrase-final nuclear
accents.

Figure 7.11 provides schematized gestural scores and corresponding coupling structures

for the effect of word length in phrase-final position. The coupling structures given
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in Figure 7.11 account for this difference. In both disyllables and monosyllables the

π-gesture is coupled anti-phase with the boundary-adjacent vowel gesture. In disyllables,

the π-gesture is coupled with V2, while in monosyllabes it must be coupled with V1.

In line with Katsika et al. (2014) who assume that the pi-gesture serve as trigger for

the boundary tone gesture (here: low tone gesture), it seems plausible that the low

tone gesture is initiated earlier in monosyllables than in disyllables. In turn, an earlier

activation of the low tone gesture can only be achieved by superseding the high tone

gesture, thus leading to an earlier F0 peak alignment.

Figure 7.12 presents gestural scores based on means for the two maximally divergent

target words, the disyllabic target word /mam.zi/ and the monosyllabic target word

/ma:/, in phrase-final (nuclear) position.

The red box indicates the activation interval of the nuclear high tone gesture. Zero

denotes the articulatory vowel target, and the arrows indicate the time between the

articulatory vowel target and the target of the high tone gesture. Except for speaker

S3, the high tone gestures of all speakers reach their targets after the articulatory vowel

target in the disyllabic target word /mam.zi/. In the monosyllable /ma:/, however, it is

achieved before the articulatory vowel target (S1 and S4) or roughly co-occurs with it

(S2 and S3).

In summary, the coupled oscillator model of syllable structure including prosodic gestures

such as the π-gesture and µ-gesture provides suitable and sufficient tools for modeling

the coordination of both nuclear and prenuclear high tone gestures. The greatest benefit

of this model is that it copes with the inherint dynamical nature of gestures.
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Figure 7.12: Gestural scores for the four speakers producing the target word /ma:.mi/ in phrase-initial,
phrase-noninitial and phrase-final position.
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8 Summary and conclusion

This thesis has investigated nuclear and prenuclear rising pitch accents by means of their

alignment relative to specific landmarks in both the acoustic and articulatory domain.

While in the acoustic domain the timing of accentual rises is highly variable, stable

coordination patterns are found in the articulatory domain. This is likely due to the

fact that within the Segmental Anchoring Hypothesis (cf. Ladd et al. 1999, Ladd 2008)

tones are aligned with nearby landmarks. This approach investigates the co-occurrence

of tonal targets and segmental boundaries, which is a static perspective of the tune-text

relation. In contrast, the Articulatory Phonology approach (Browman & Goldstein 1989,

1992) defines tones as gestures that are temporally coordinated with oral constriction

gestures. Rising and falling tones, whether pitch accents or lexical tones, are represented

as high and low tone gesture, respectively. (Gao 2009, Mücke et al. 2012, Niemann

et al. 2011, Hsieh 2011). This approach allows for modeling variability of the tune-text

coordination with respect to different prosodic factors in a dynamic way. Within the

coupled oscillator model of syllable structure (Nam & Saltzman 2003, Goldstein et al.

2008, Nam, Goldstein & Saltzman 2009) the specific timing patterns of nuclear and

prenuclear high tone gestures with oral constriction gestures result from specific coupling

structures, that account for their coordination. Furthermore, effects of higher prosodic
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units such as the word or the intonational phrase can be modeled by using prosodic

gestures, the π-gesture and the µ-gesture, that can be attached to the tune-text couplings

in order to model stress- and boundary-related effects in both the temporal and spatial

domain.

Four subjects took part in this study, which employed kinematic recordings (electromag-

netic articulography) in order to trace the movements of the lips and the tongue body.

This study focuses on the effects of phrasal position, word length and syllable structure

on the alignment of nuclear and prenuclear rising pitch accents. More specifically, the

corpus included trochaic mono- and disyllabic target words each with an open and closed

stressed syllable. Carrier sentences were designed such that target words bearing a

nuclear or prenuclear rising accent were either placed in phrase-initial position (at the

left edge of an intonation phrase) or in phrase-noninitial position (with an unstressed

syllable preceding the accented syllable). In addition, target words bearing a nuclear

accent were also investigated in phrase-final position (at the right edge of an intonation

phrase). Both the beginning and the end of the accentual rises were measured relative

to acoustically-defined landmarks such as the acoustic onset of the accented vowel, and

to articulatory-defined landmarks such as the lip opening gesture and the articulatory

target of the accented vowel.

In the acoustics, the beginning of both nuclear and prenuclear rises tends to be stably

aligned with the accented vowel. More specifically, the beginning of the nuclear rise is

aligned shortly after or just before the onset of the accented vowel. The beginning of

the prenuclear rise aligns sometime later and displays subtle speaker-specific alignment

differences. In contrast, the end of the accentual rise, the F0 peak, is prone to a large

amount of variability. In general, prenuclear F0 peaks were found to align later than
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nuclear F0 peaks. More specifically, they tend to align after the syllable boundary in

monosyllables or even later, in the postaccented vowel, in disyllables. Furthermore,

prenuclear F0 peaks were less affected by the factors under investigation, i.e. the effects

were not as distinctive as for the nuclear F0 peaks, and they seem to be speaker-specific.

In contrast, nuclear F0 peaks were found to align within or shortly after the accented

syllable. Their alignment is highly variable. They tend to align earlier in phrase-final

position as compared to in non-final positions, earlier in open than in closed syllables

and earlier in monosyllables than in disyllables. These effects, however, interact and

are expressed differently, that is, the effect of phrasal position is more pronounced in

monosyllables than in disyllables and interacts with syllable structure. More specifically,

in nonfinal position, the F0 peak aligns with or shortly after the vowel offset in open

syllables, while it aligns later, in the coda consonant, in closed syllables. In these positions,

there is only a small alignment difference between monosyllabic and disyllabic target

words in that the F0 peak aligns sometime earlier in monosyllables. In phrase-final

position, however, a huge difference can be found between monosyllables and disyllables.

In monosyllables, the F0 peak is retracted into the accented vowel to a large degree,

whereas disyllables only show a small retraction in that direction.

In the articulation, the beginning of both the nuclear and prenuclear rise shows a stable

coordination pattern with the peak velocity of the consonant’s release gesture. This

coordination is not affected by phrasal position, word length or syllable structure. The

end of both nuclear and prenuclear accentual rises shows a stable coordination pattern

with the articulatory target for the accented vowel. This coordination is also not affected

by the syllable structure of the target words under investigation. However, there is an

effect of accent status. The end of the accentual rise, the F0 peak, is achieved earlier in

nuclear pitch accents than in prenuclear pitch accents. In addition, there is an effect of
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the upcoming phrase boundary on F0 peak alignment in nuclear accents. Due to time

pressure, the F0 peak aligns earlier in phrase-final position as compared to in nonfinal

positions. Furthermore, phrase-finally, the F0 peak aligns earlier in monosyllables as

compared to disyllables.

The coordination between high tone gestures and articulatory gestures in nuclear and

prenuclear accents can be modeled in the coupled oscillator model as follows: Prenuclear

rising pitch accents consist of two tone gestures, a high tone gesture and a low tone

gesture. As in consonant clusters, there is a competitive structure between the two tone

gestures as both are coupled in-phase with the vocalic gesture. In nuclear rising pitch

accents, the F0 peaks aligns earlier. Thus, another low tone gesture following the high

tone gesture is proposed. This low tone gesture is coupled anti-phase with the preceding

high tone gesture. This coupling structure exerts time pressure on the high tone gesture,

resulting in an earlier F0 peak alignment relative to the articulatory vowel target.

The positional effects are modeled by employing prosodic gestures, namely the π-gesture

and the µ-gesture. First, in phrase-initial position, both the π-gesture and the µ-gesture

are coupled anti-phase and in-phase, respectively, with the vocalic gesture. This coupling

structure leads to a rightward shift of the target of the high tone gesture resulting in

a later F0 peak alignment as compared to phrase-noninitial and phrase-final position.

Second, in phrase-noninitial position, an unstressed syllable precedes the accented syllable.

The vocalic gesture of this syllable is coupled anti-phase with the π-gesture. Only the

µ-gesture is coupled in-phase with the vocalic gesture of the accented syllable; thus

there is no leftward pressure in that the F0 peak aligns earlier than in phrase-initial

position. Third, in phrase-final position, the vocalic gesture of the accented syllable is

coupled in-phase with the µ-gesture. In disyllabic target words, the vocalic gesture of
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the following syllable is coupled anti-phase with the π-gesture. This coupling structure

exerts pressure on the target achievement of the high tone gesture. The result is an even

earlier F0 peak alignment in this position.

Furthermore, the earlier F0 peak alignment in phrase-final monosyllables as compared to

disyllables can be modelled as follows: In phrase-final monosyllables, both the π-gesture

and the µ-gesture are coupled anti-phase and in-phase, respectively, with the vocalic

gesture of that syllable; thus the high tone gesture must achieve its target earlier in this

position.

A following step will be the implementation of these coupling structures in TADA (cf.

Saltzman et al. 2008, Nam & Saltzman 2003), the TAsk-Dynamic Application, that

generates trajectories on the basis of coupling graphs specifying interarticulatory timing,

and a comparison of the results with the data obtained in this study. Another fruitful

starting point for further work would be the representation of the attested effects in

terms of potential functions (cf. Tuller et al. 1994, Gafos & Beňuš 2006). This would be

particularly interesting regarding the speaker-specific strategies revealed in the present

study and as to which control parameter can account for these.

In conclusion, this thesis provides further evidence that we obtain a better and deeper

understanding of speech, particularly of the synchronisation of text and tune, if we

regard it as a dynamical system involving the interplay of coordinative structures, thus

extending our knowledge from purely acoustic-based approaches.
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