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Abstract

In this work a highly efficient, closed-shell restricted Hartree-Fock self-consistent-field
(SCF) program has been developed. It has been written as a part of the “Quantum
Objects Library” (QOL), which is developed at the Institute for Theoretical Chemistry
at the University of Cologne.
In the implementation presented here, the explicit transformation of the two-electron

integrals from the primitive to the radial contracted, angularly transformed basis is
avoided. The density matrix is obtained by diagonalizing the Fock matrix in the radial-
angular-transformed basis. It is transformed to the primitive basis, and contracted
with the integrals to give the Fock matrix, also in the primitive basis. To assure that
solutions of the Fock equations are obtained in the transformed basis, the Fock matrix is
transformed back to the radial contracted, angularly transformed basis after the density
contraction step.

Both one- and two-electron integrals are calculated using the ansatz of Obara-Saika
(OS). For the evaluation of the two-electron integrals a code-generating ansatz is used.
At compile time optimized code is generated, to be called at runtime. Numerical insta-
bilities inherent in the Obara-Saika scheme were analyzed and eliminated. The code-
generating ansatz was also used for the implementation of the density contraction. Con-
traction codes for both primitive and radial-angular-transformed bases were developed.
Both two-electron integral evaluation and density contraction implementations have been
optimized by explicit use of streaming single instruction multiple data (SIMD) extensions
(SSE).

Integral prescreening has been implemented on basis of the Schwarz inequality, and the
differential density scheme is used. Convergence acceleration has been realized by im-
plementing the direct inversion of the iterative subspace (DIIS) method. The developed
SCF program has been parallelized using the open multi-processing (OMP) application
programming interface (API).

In final performance comparisons to commercially available programs competitive re-
sults were obtained.
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Kurzzusammenfassung

In dieser Arbeit wurde ein hocheffizientes, closed-shell restricted Hartree-Fock self-consis-
tent-field (SCF) Programm entwickelt. Es wurde in die "‘Quantum Objects Library"’
(QOL) integriert, die am Institut für Theoretische Chemie der Universität zu Köln ent-
wickelt wird.
In der hier vorgestellten Implementierung wird die explizite Transformation der Zwei-

Elektronen Integrale aus der primitiven in die radial kontrahierte, sphärisch trans-
formierte Basis umgangen. Durch Diagonalisierung der Fock Matrix in der radial-
sphärisch transformierten Basis wird die Dichte Matrix erhalten. Diese wird in die
primitive Basis transformiert und mit den Integralen kontrahiert, wodurch die Fock
Matrix ebenfalls in ihrer primitiven Darstellung vorliegt. Um sicherzustellen dass die
Lösungen der Fock Gleichungen in der transformierten Basis erhalten werden, wird die
Fock Matrix nach der Dichte Kontraktion zurück in die radial-sphärische Basis trans-
formiert.
Sowohl Ein- als auch Zwei-Elektronen Integrale werden mit dem Verfahren von Obara-

Saika (OS) berechnet, wobei für die Zwei-Elektronen Integrale ein Code generierender
Ansatz gewählt wurde. Dabei wird zum Zeitpunkt der Kompilierung optimierter Code
generiert, der zur Laufzeit ausgeführt wird. Die numerischen Instabilitäten des Obara-
Saika Verfahrens wurden analysiert und beseitigt. Auch auf die Implementierung der
Kontraktion der Dichte wurde der Code generierende Ansatz angewandt, wobei Spe-
zialisierungen sowohl für primitive als auch für sphärisch transformierte Basen erzeugt
wurden. beide Implementierungen, Integral Berechnung und Dichte Kontraktion, wur-
den optimiert durch die explizite Berücksichtigung der streaming single instruction mul-
tiple data (SIMD) extensions (SSE).
Eine Abschätzung der Integral Größenordnungen wurde auf Basis der Schwarz’schen

Ungleichung umgesetzt, und das differential density scheme wird benutzt. Zur Kon-
vergenz Beschleunigung kommt das direct inversion of the iterative subspace (DIIS)
Verfahren zum Einsatz. Das entwickelte SCF Programm wurde mittels der open multi-
processing (OMP) Programmierschnittstelle (API) parallelisiert.
In finalen Vergleichen zu kommerziell erhältlichen Programmen wurden konkurrenz-

fähige Resultate im Hinblick auf die Performanz erreicht.
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1. Introduction

The main objective of quantum chemistry is the mathematical description of atomic
and molecular systems. Such systems are characterized by the Schrödinger equation [1],
the required information can be obtained from the associated wave function. As closed
solutions of this equation only exist for the most simple problems, approximations have
to be introduced for the treatment of more complicated systems. One of the most central
approximations is the restriction of the wave function to the electronic problem [2]. Two
other widely used approximations are the treatment in the non-relativistic framework,
and the neglection of time dependence. These three approximations are used in this
work.
Even in this approximation however, except for one-electron systems, closed solutions

are not available. A first, and central, ansatz to find approximate solutions for the many-
electron problem has been given by Hartree and Fock [3–7]. In Hartree-Fock theory, the
many-electron problem is transformed to effective one-electron problems, in which the
influence of the remaining electrons is treated in an average way. However, the obtained
integro-differential equations are still complicated to solve. Only further approximations
made these equations applicable to a wider range of problems. By projection to a finite
space, i.e. by introducing finite basis sets, the complicated integro-differential equations
can be formulated as rather simple matrix problems. In the restricted (spin-free), closed-
shell formulation, which this work is concerned about, the matrix eigenvalue equation
of Roothaan and Hall [8, 9] is obtained. As the Fock matrix to be diagonalized in this
equation depends on its solution, the Roothaan-Hall equation has to be solved iteratively.
Starting with an guess for the solutions, these equations are solved iteratively, until the
corresponding field becomes self-consistent.

Even neglecting electron correlation, the ground state wave function obtained from the
Hartree-Fock equations is not sufficient to describe all systems accurately. Nevertheless,
Hartree-Fock theory still plays a central role in quantum chemistry. Despite the age of
the theory, the wave functions obtained from Hartree-Fock calculations are widely used.
They constitute the entry point for a multitude of advanced ab-initio calculations.

With increasing computational resources and advances in theory, programs were made
available to treat a variety of chemical problems in an standardized way. Still, vast
resources are needed to address even systems of moderate size. Over the years, a lot
of development [10–12] has been invested in optimizing the algorithms involved in the
calculation of the Hartree-Fock ground state wave function. Target of most of these
optimizations is the efficient treatment of the vast number of two-electron integrals
arising. They scale with the fourth power of the system size and constitute a bottleneck
of Hartree-Fock calculations. Various compromises have therefore been introduced, to
computationally simplify the evaluation of those integrals.
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1. Introduction

Among the first of these compromises has been the development of direct SCF calcula-
tions [13]. Theoretically, the two-electron integrals stay constant in each SCF iteration.
In the first implementations, they were therefore calculated once, and stored to disk. In
these conventional SCF calculations however, the treatable system size is limited by the
physically available disk space. In direct implementations, the integrals are recalculated
in each iteration, and processed immediately. By removing the disk size limitations,
larger systems became accessible, although at the cost of increased computational time.
In the long run, the direct implementation became state of the art. This is also due to the
advent of advanced prescreening [14, 15] methods, by which a large number of integrals
can be neglected. Especially in the context of the differential density scheme [13,14,16],
the calculation of a certain integral can be dynamically determined in each iteration.
One of the major breakthroughs however has been the introduction of primitive Carte-

sian Gaussians [17] as basis functions. Using these functions constitutes another com-
promise of theory and technical realization. Although rather poorly suited to describe
the physical reality, they are now used almost exclusively in electronic structure calcu-
lations. This is due to the fact that they greatly simplify the calculation of the costly
two-electron integrals. Their lack of physical description is accounted for by increasing
the number of functions included, thus spanning the space required for a certain accu-
racy. In practice, the correct radial description is achieved by linear combinations of
several primitive Cartesian Gaussians of differing exponents. Another set of linear com-
binations transforms these functions to spherical harmonics. This has implications to
the practical realization, as quantities have to be transformed from and to this different
basis sets. Nevertheless the ease of integration of primitive Cartesian Gaussians justifies
these implications.
The restricted, closed-shell SCF implementation presented in this work now focuses

on these implications. In common implementations, the transformation to the radial
contracted and angularly-transformed basis is applied to the primitive integrals. These
transformed integrals are then contracted with the transformed density. In this work
a different ansatz is implemented. The contraction of the density with the integrals is
performed in the primitive basis. After diagonalizing the Fock matrix, in the transformed
basis, the resulting density is transformed to the primitive basis. After contraction with
the primitive integrals the resulting Fock matrix is then transformed back to the radial-
angular basis. Thus it is assured that the actual solution of the Fock equations is
obtained in the transformed basis.
The restricted, closed-shell SCF program presented here has been written as part of

the Quantum Objects Library (QOL) [18] program package of the Institute for Theoreti-
cal Chemistry at the University of Cologne. Most of the techniques used in commercially
available programs were included. Thus the results presented here constitute not a proof
of concept study, but a fully comparable production code. Among the techniques imple-
mented are integral prescreening based on the Schwarz inequality, in the context of the
differential density scheme. Convergence acceleration is used with the direct inversion of
the iterative subspace (DIIS) [19] ansatz. One- and two-electron integrals are calculated
using the Obara-Saika scheme [20, 21]. For the two-electron integrals a highly efficient
code-generated ansatz has been chosen, in which the integration code is automatically

2



generated at compile time, for arbitrary integrals. The density contraction also has
been implemented using the code-generating ansatz. At compile time, efficient code is
generated to be called at runtime. This has been done for contractions in primitive
bases, as well as for contractions in spherical-harmonic basis sets. Both integration and
contraction have been optimized by explicit use of streaming single instruction multiple
data (SIMD) extensions (SSE).
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2. Hartree-Fock Theory

In this chapter, the key steps of the derivation of the restricted closed-shell Hartree-
Fock equations will be shown. The discussion given here follows the books of Szabo and
Ostlund [22], Levine [23] and Helgaker, Jørgensen and Olsen [24], to which the reader is
referred to for more detailed informations.

2.1. Electronic Solutions for Restricted Closed-Shell
Systems

Quantum chemistry is concerned with finding approximate solutions for the non-rela-
tivistic, time independent Schrödinger equation.

ĤΨ = EΨ (2.1)

The Hamilton operator

Ĥ = −
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
rAB

(2.2)

describes the interactions of the M nuclei and N electrons of the system of interest,
using the indices A and B to indicate nuclei, and i and j for the electrons. The first
two terms describe the kinetic energies of electrons and nuclei. The third their Coulomb
attraction. The fourth and fifth the repulsion of electrons and nuclei, respectively. MA is
the mass ratio of nucleus A to an electron, ZA the charge of that nucleus. The distances
of nuclei and electrons are depicted by r.
In the Born-Oppenheimer [2] approximation the fact is used that electrons move much

faster than nuclei. They can be considered to move in the field of fixed nuclei. Within
this approximation, the second term of (2.2), the kinetic energy of the nuclei, can be
neglected and the nuclear repulsion is just a constant. In this ansatz, the electronic
problem is solved using the electronic hamiltonian.

Ĥelec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
(2.3)

Finding approximate solutions for the electronic Schrödinger equation is the concern of
Hartree-Fock theory.

ĤelecΦelec = EelecΦelec (2.4)

7



2. Hartree-Fock Theory

The solutions of this equation depend parametrically on the coordinates of the nuclei,
giving different wave functions and energies for different nuclear arrangements.
To obtain the total energy of the system, the constant nuclear repulsion has to be

taken into account.

Etot = Eelec +
M∑
A=1

M∑
B>A

ZAZB
rAB

(2.5)

As this work is only concerned with solutions of the electronic Schrödinger equation
(2.4), the subscript elec to the hamiltonian, energy and wave function will be dropped in
the following.
The electronic wave function will be set up from linear combinations of products of

spin orbitals. In a spin orbital χ, one electron is described by the product of its spatial
distribution ψ(r) and one of the two spin functions α(ω) or β(ω).

χ(x) = ψ(r)α(ω) or χ(x) = ψ(r)β(ω) (2.6)

Here the spatial and spin coordinates r and ω are collected to x. The spatial orbitals
are assumed to form an orthonormal set, from which orthonormality in the set of the
spin orbitals follows. ∫

χ∗i (r)χj(r)dr = 〈χi|χj〉 = δij (2.7)

To account for the indistinguishability of the electrons and the antisymmetry of the
wave function, Slater determinants [25] are used to set up the wave function.

Φ(x1, x2, . . . , xN) = (N !)−1/2

∣∣∣∣∣∣∣∣∣
χi(x1) χj(x1) · · · χk(x1)
χi(x2) χj(x2) · · · χk(x2)

...
...

...
χi(xN) χj(xN) · · · χk(xN)

∣∣∣∣∣∣∣∣∣ ≡ |χiχj . . . χk〉 (2.8)

In this Slater determinant, N electrons occupy N spin orbitals. No specification is made
as to which electron occupies which spin orbital, thus ensuring indistinguishability. An-
tisymmetry is met by the mathematical properties of the determinant [26]. Interchange
of two rows changes the sign of the determinant. This corresponds to an interchange of
two electrons. The Pauli exclusion principle [27] is met by another property of the de-
terminant. Two electrons occupying the same spin orbital results in two equal columns,
for which the determinant is zero.
In Hartree-Fock theory, a single determinant ansatz is used to describe the ground

state of an N -electron system.

|Φ0〉 = |χ1χ2 . . . χN〉 (2.9)

Specifically, this work is concerned with solutions for closed-shell systems, using a set

8



2.1. Electronic Solutions for Restricted Closed-Shell Systems

of restricted spin orbitals. In a restricted set of spin orbitals, two spin orbitals χ(x) are
built from one spatial orbital ψ(r), one with α- and the other with β-spin, respectively.
In a closed-shell system with N electrons, the ground state is then built from N/2 spatial
orbitals, each of which is doubly occupied.

|Φ0〉 = |ψ1α ψ1β · · · ψN/2α ψN/2β〉 (2.10)

The expectation value for the ground state energy can be expressed in terms of spatial
orbitals. Application of the Slater-Condon [28, 29] rules and integrating out spin gives
the Hartree-Fock ground state energy E0.

E0 = 〈Φ0|Ĥ|Φ0〉 =

N/2∑
i

〈i|ĥ|i〉+
1

2

N/2∑
ij

(2 〈ij|ij〉 − 〈ii|jj〉) (2.11)

Here, the one-electron part of the hamiltonian is given by

〈i|ĥ|j〉 =

∫
ψ∗i (r1)

(
−1

2
∇2 −

M∑
A

ZA
r1A

)
ψj(r1)dr1 (2.12)

and the two-electron part by

〈ij|kl〉 =

∫∫
ψ∗i (r1)ψ

∗
j (r2)

1

r12
ψk(r1)ψl(r2)dr1dr2 (2.13)

Note that the physicists notation will be used for all two-electron integrals over spatial
functions. The specific nature of those functions will be implied by the context.

Now the variational principle states that the expectation value of the trial function
|Φ0〉 is always greater than or equal to the exact electronic energy.

E ≤ 〈Φ0|Ĥ|Φ0〉 = E0 (2.14)

The strategy is then to minimize E0 by varying the spatial orbitals ψ. This can be
done using Lagranges’ method of undetermined multipliers, under the constraint of
orthonormal spatial orbitals. Doing so leads to the restricted, canonical closed-shell
Fock equation.

f̂ |ψa〉 = εa |ψa〉 (2.15)

It is of the eigenvalue form, determining the spatial orbitals and their energy ε. The
restricted, closed-shell Fock operator is defined as

f̂(1) = ĥ(1) +

N/2∑
b

(
2Ĵb(1)− K̂b(1)

)
(2.16)

It is an effective one-electron operator. Similar to (2.12), operators depending only on

9



2. Hartree-Fock Theory

the coordinate of one electron are collected in the one-electron operator ĥ.

ĥ(1) = −1

2
∇2

1 −
∑
A

ZA
r1A

(2.17)

The effects of the other electrons are included in an averaged way by the summation
over the two-electron operators Ĵ and K̂. The local Coulomb operator

Ĵb(1)ψa(1) =

[∫
ψ∗b (2)ψb(2)

r12
dx2

]
ψa(1) (2.18)

can be interpreted as a classical potential. The non-local exchange operator

K̂b(1)ψa(1) =

[∫
ψ∗b (2)ψa(2)

r12
dx2

]
ψb(1) (2.19)

has no classical interpretation.

2.2. The Roothaan-Hall Equations

The integro-differential equation (2.15) can be turned into a set of algebraic equations,
which can be solved by standard matrix techniques. After Roothaan, this is accomplished
by introducing a set of k known basis functions φ, in which the molecular orbital (MO)
ψ are linearly expanded.

ψl =
k∑
j

Cjlφj (2.20)

Using this expansion in (2.15), multiplying with φ∗m on the left and integrating, the
Roothaan equations are obtained.

k∑
j

Cjl

∫
φ∗m(1)f̂(1)φj(1)dr1 = εl

k∑
j

Cjl

∫
φ∗m(1)φj(1)dr1 (2.21)

Introducing the Fock

Fmj =

∫
φ∗m(1)f̂(1)φj(1)dr1 (2.22)

and the overlap matrix

Smj =

∫
φ∗m(1)φj(1)dr1 (2.23)

10



2.2. The Roothaan-Hall Equations

the Roothaan Hall equations can be written in the generalized eigenvalue form.

FC = SCε (2.24)

The Fock matrix is

F = Hcore + G (2.25)

where the one-electron part Hcore is the sum of kinetic- and nuclear attraction integrals.

Hcore
ij = −1

2

∫
φ∗i (1)∇2φj(1)dr1 −

∑
A

∫
φ∗i (1)

ZA
r1A

φj(1)dr1 (2.26)

= Tij + Vij (2.27)

For the two-electron part G, in terms of two-electron integrals over the basis functions
|i〉 = φi(r), the following is obtained.

Gij =
∑
kl

Dkl

[
〈ik|jl〉 − 1

2
〈ik|lj〉

]
(2.28)

Here the density matrix D has been introduced as the product of the ’occupied’ columns
of the expansion coefficients.

Dij = 2

N/2∑
k

CikC
∗
jk ≡ Cocc ·C∗occ (2.29)
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3. Integral Evaluation

Integrals over basis functions are of central importance in electronic structure theory,
both from a theoretical and technical point of view. In technical terms, this is due to the
sheer number of integrals arising already for calculations of small systems. Especially the
two-electron integrals, scaling with the fourth power of the number of basis functions,
turn out to be rather demanding in terms of computational resources. An optimal
implementation is therefore mandatory for highly efficient production codes.
Several schemes exist to evaluate integrals over basis functions. This work focuses

on the implementation of the recurrence relations of Obara and Saika [20, 21]. Other
evaluation schemes, such as the Gaussian quadrature [30, 31], the McMurchie-Davidson
scheme [32] and the method of Pople et al. [33, 34] will not be discussed.

It shall be noted that most of the discussion given in this chapter follows the one given
in the book of Helgaker, Jørgensen and Olsen [24].

3.1. Primitive Cartesian Gaussians

Of great importance is the choice of basis functions to be integrated over. In the long
run, primitive Cartesian Gaussian (PCG) [17] functions became the state of art, trading
their lack of correct physical description for ease of integration [24]. They are specified
by an exponent a, a center A and have a total angular momentum of l = i+ j + k,

G i
j
k

(r, a, A) = xiAy
j
Az

k
A exp(−ar2A) = Ga(r). (3.1)

The vector rA = r−A is the distance relative to the center. Note that in the abbreviated
form Ga(r), exponent, center and angular momentum information are collected to the
single index a.
Their main advantage is that they are separable with respect to the three Cartesian

directions:

exp

(
−a
(√

x2A + y2A + z2A

)2
)

= exp(−ax2A) exp(−ay2A) exp(−az2A) (3.2)

This drastically simplifies the evaluation of integrals. The physically better suited Slater
type functions lack this separability.

exp(−arA) = exp

(
−a
√
x2A + y2A + z2A

)
6= f(x)f(y)f(z) (3.3)

13



3. Integral Evaluation

Another property is that the product of two (or any number of) PCG’s can be written
in terms of a different, single PCG. This is the Gaussian product rule [17]. Separability
can be used, giving the product of two spherical (l = 0) Gaussians in x-direction as

exp(−ax2A) · exp(−bx2B) = Kx
ab exp(−px2P ) (3.4)

Where

p = a+ b (3.5)

Px =
aAx + bBx

p
(3.6)

XAB = Ax −B (3.7)

µ =
ab

a+ b
(3.8)

Kx
ab = exp(−µX2

AB) (3.9)

For arbitrary l, the one-dimensional Gaussian overlap distribution is just

Ωx
ij(x) = xiAx

j
BK

x
ab · exp(−px2p) (3.10)

Applying this to all Cartesian direction, the general, three-dimensional Gaussian overlap
distribution Ωab(r) = Ga(r) ·Gb(r) can be split up into one-dimensional parts

Ωab(r) = Ω ij
kl
mn

(r) = Ωx
ij(x)Ωy

kl(y)Ωz
mn(z) (3.11)

The trivial relationships

Ωx
i+1,j = xAΩx

ij (3.12)
Ωx
i,j+1 = xBΩx

ij (3.13)

lead to the recurrence relation

Ωx
i,j+1 − Ωx

i+1,j = XABΩx
ij. (3.14)

Finally, the derivatives of the Gaussian overlap distributions with respect to the center
coordinates are

∂Ωx
ij

∂Ax
= 2aΩx

i+1,j − iΩx
i−1,j (3.15)

∂Ωx
ij

∂Bx

= 2bΩx
i,j+1 − iΩx

i,j−1 (3.16)
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3.1. Primitive Cartesian Gaussians

3.1.1. Shells and Shell Batches

Central to all integration schemes presented in this work is the concept of grouping basis
functions into shells. A shell is defined as the set of functions located on the same center
and having the same angular momentum and exponent. For l = 1, some center A and
some exponent a, this particular p-shell consists of the three functions

pAa,x = xA exp(−ar2A) (3.17)
pAa,y = yA exp(−ar2A) (3.18)
pAa,z = zA exp(−ar2A) (3.19)

Mostly, shells will be addressed solely by their angular momentum, i.e. p, f and so on.
If a distinction for shells of equal angular momenta has to be made, a combined index
will be used, i.e. a pi-shell is supposed to have a different center and or exponent than
a pj-shell.

Generally, the number of PCG’s in a given shell of angular momentum l is

Npcg
l =

(l + 1)(l + 2)

2
(3.20)

A shell batch is the set of integrals arising from the combination of two (one-electron
integrals) or four (two-electron integrals) shells. Again, shells will be denoted by their
angular momenta, using indices when necessary. The two-electron dpss-batch for exam-
ple can have two distinctive (dpsisj), or equal (dpsisi) s-shells.

Consider for example the shell batch pipjsksl, with arbitrary labeled functions.

pipjsksl ≡

〈
ab
c

de
f

 | (g) (h)〉


Combining the functions in the shells leads to the following nine integrals. The order
of the functions is in accordance to the order of the shells. Permutations of the shells
leading to an according permutation of the functions in the integrals.

〈ad|gh〉 〈bd|gh〉 〈cd|gh〉
〈ae|gh〉 〈be|gh〉 〈ce|gh〉
〈af |gh〉 〈bf |gh〉 〈cf |gh〉

The generation of the integrals of a batch is just the Cartesian product of the four sets
of functions (shells): {a, b, c} x {d, e, f} x {g} x {h}. In this case the Cartesian product
is associative.

Neglecting redundancies, the number of integrals present in a batch is then just the
product of the shell sizes.

The reason to impose this grouping of integrals into batches is technical, based on
the reusage of shared quantities within the calculation of integrals of a given batch. For
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3. Integral Evaluation

example, all prefactors (3.5) to (3.9) of a Gaussian overlap distribution (3.11) depend
only on the exponents (a and b) and centers (A and B). Thus, computing them once
prior to the evaluation of all Nl,i ·Nl,j Gaussian overlap distributions, and reusing them
when needed, clearly saves computational cost compared to repeated recomputation.
Additionally, the integration schemes used for this work are recursive, involving a lot
of intermediates. Again, most of these intermediates are needed for the calculation of
different integrals in a given batch. Calculation of one batch as a whole exploits this by
reusing those intermediates, compared to a costly recalculation in an individual integral
evaluation scheme.

3.2. The Obara-Saika Scheme

In this work, the recurrence relations derived by Obara et al. [20, 21] will be used to
evaluate all integrals necessary for a Hartree-Fock SCF calculation. It will be used in the
modified version introduced by Head-Gordon and Pople [35], Hamilton and Schäfer [36]
and Lindh, Ryu and Liu [37].
Generally, integrals over PCG’s of specific angular momenta are expressed in terms

of integrals of in- or decreased angular momenta. Starting with integrals over spherical
PCG’s (l = 0), integrals for higher angular momenta can be obtained by application
of the recurrence relations. For the spherical recursion seeds analytical expressions are
known.
Each PCG has three dimensions of angular momentum l = i + j + k. To specify a

one-electron integral (two PCG’s), six indices are needed, 12 for a two-electron integral
(four PCG’s), respectively. However, based on the separability of the PCG’s, there is no
mixing of directions in the Obara-Saika schemes. To increment some angular momentum
in x-direction, only in- or decrements in the x-direction are needed. This allows for some
simplification in the notation, by omitting the unneeded directions. The actual direction
the recurrence relation is applied to is given implicitly by the direction of the associated
center coordinate.
Explicit derivations will be shown for the one-electron overlap and kinetic-energy

integrals. For Coulomb integrals, both one- and two-electron, the derivation will be
skipped, an extensive derivation can be found in the book of Helgaker et al. [24].

3.2.1. Overlap- and Kinetic-Energy Integrals

Overlap Integrals

The overlap integrals Sab are of the form

Sab =

∫ ∞
−∞

G∗a(r)Gb(r) dr = 〈a|b〉 (3.21)

As the PCG’s used in this work are real, complex conjugation has no effect and will
be omitted from now on (this concerns all integrals over PCG’s). Thus, the overlap
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3.2. The Obara-Saika Scheme

integrals are just integrals over a Gaussian overlap distribution and can be separated in
the three Cartesian directions.

Sab =

∫ ∞
−∞

Ωab dr (3.22)

=

∫ ∞
−∞

Ωx
ij dx

∫ ∞
−∞

Ωy
kl dy

∫ ∞
−∞

Ωz
mn dz

= Sxij S
y
kl S

z
mn

The horizontal recurrence relation follows directly from integrating (3.14):

Sxi,j+1 − Sxi+1,j = XABS
x
ij (3.23)

Additionally, the overlap integrals are invariant to identical translations of the centers
A and B

∂Sxij
∂Ax

+
∂Sxij
∂Bx

= 0 (3.24)

Insertion of the definition (3.22) and application of the derivatives of the Gaussian
overlap distributions (3.15) and (3.16) then gives the recurrence relation

2aSxi+1,j − iSxi−1,j + 2bSxi,j+1 − jSxi,j−1 = 0 (3.25)

Finally, using the horizontal recursion (3.23), the Obara-Saika recurrence relations for
the overlap integrals can be obtained

Sxi+1,j = XPAS
x
ij +

1

2p

(
iSxi−1,j + jSxi,j−1

)
(3.26)

Sxi,j+1 = XPBS
x
ij +

1

2p

(
iSxi−1,j + jSxi,j−1

)
(3.27)

The center of charge P and the total exponent p have their origin in the Gaussian overlap
distribution, eqns. (3.6) and (3.5), respectively.

The recursion seed, Sx00 is just the integral of a spherical Gaussian distribution

Sx00 = Kx
ab

∫ ∞
−∞

exp(−px2P ) = Kx
ab

√
π

p
(3.28)

The actual overlap integral Sab can then be calculated from (3.22).

Kinetic-Energy Integrals

The kinetic-energy integrals

Tab =

∫ ∞
−∞

Ga(r)(−
1

2
∇2)Gb(r)dr = 〈a|T̂ |b〉 (3.29)
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3. Integral Evaluation

are closely related to the overlap integrals. In a first step, the integral is separated into
Cartesian directions via the Laplace-operator

Tab = −1

2

(
〈Ga|

∂2

∂x2
|Gb〉+ 〈Ga|

∂2

∂y2
|Gb〉+ 〈Ga|

∂2

∂z2
|Gb〉

)
(3.30)

Now the separability of the PCG’s shows the dependence on the overlap integrals

−1

2
〈Ga|

∂2

∂x2
|Gb〉 = SyklS

z
mn

(
−1

2
〈Gx

i |
∂2

∂x2
|Gx

j 〉
)

= SyklS
z
mnT

x
ij (3.31)

which gives the total kinetic-energy integral as

Tab = T xijS
x
klS

x
mn + SyijT

y
klS

y
mn + SzijS

z
klT

z
mn (3.32)

Using

∂Gx
i

∂x
= −∂G

x
i

∂Ax
(3.33)

the kinetic-energy integral can be written in terms of a differentiated overlap integral

T xij = −1

2
〈Gx

i |
∂2

∂x2
|Gx

j 〉 = −1

2

∂2

∂A2
x

Sxij (3.34)

The final recurrence relations for the one dimensional kinetic-energy integrals can then
be obtained by differentiation of the overlap recurrence relations (3.26) and (3.27) with
respect to Ax.

T xi+1,j = XPAT
x
ij +

1

2p

(
iT xi−1,j + jT xi,j−1

)
+
b

p

(
2aSxi+1,j − iSxi−1,j

)
(3.35)

T xi,j+1 = XPBT
x
ij +

1

2p

(
iT xi−1,j + jT xi,j−1

)
+
a

p

(
2bSxi,j+1 − iSxi,j−1

)
(3.36)

The recursion seed is

T x00 =

[
a− 2a2

(
X2
PA +

1

2p

)]
Sx00 (3.37)

3.2.2. Coulomb Integrals

The derivation of the Coulomb integrals∫ ∞
−∞

Ga(r)Gb(r)

rC
dr = 〈a| 1

rC
|b〉 (3.38)
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3.2. The Obara-Saika Scheme

and ∫ ∞
−∞

∫ ∞
−∞

Ga(r1)Gc(r2)Gb(r1)Gd(r2)

r12
dr1dr2 = 〈ac|bd〉 (3.39)

shall not be repeated here, only key steps will be shown. An extensive derivation can
be found in the book of Helgaker et al. [24].

The Boys Function

Central to the evaluation of the Coulomb integrals (3.38) and (3.39) is the inverse dis-
tance operator 1

r
. Due to its presence, the Coulomb integrals can not be factored in

the Cartesian directions. However, the inverse distance operator can be expressed as an
one-dimensional integral over a spherical PCG.

1

r
=

1√
π

∫ ∞
−∞

exp(−r2t2)dt (3.40)

This is the key step in the evaluation of Coulomb integral over PCG’s. It leads to their
expression in terms of a special class of functions, the Boys function [17]

FN(x) =

∫ 1

0

exp(−xt2)t2Ndt (3.41)

The integration over the whole one- or two-particle space has been reduced to a one-
dimensional integration over a fixed interval.

One-Electron Integrals

The Obara-Saika recurrence relations for the one-electron Coulomb integrals are ex-
pressed in terms of auxiliary integrals ΘN

ij;kl;mn. The superscript N having its origin in
the order of the Boys function and the subscripts specifying the angular momenta in x-,
y- and z-direction. The integrals with N = 0 are the actual Coulomb integrals.

Θ0
ij
kl
mn

= 〈a| 1

rC
|b〉 (3.42)

Similar to the overlap and kinetic-energy integrals, recurrence relations exist to increase
angular momenta for the bra-index i.

ΘN
i+1,j = XPAΘN

ij +
1

2p

(
iΘN

i−1,j + jΘN
i,j−1

)
−XPCΘN+1

ij − 1

2p

(
iΘN+1

i−1,j + jΘN+1
i,j−1

)
(3.43)

Again, the prefactors arising from the Gaussian overlap distribution (3.5) to (3.9). For
the ket-index j the horizontal recurrence relation

ΘN
i,j+1 = ΘN

i+1,j +XABΘN
ij (3.44)
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3. Integral Evaluation

is obtained.

Note that the recurrence relations operate solely within some Cartesian direction (here:
x-direction), thus indices for the remaining (untouched) directions have been omitted.
The direction of the recurrence is implicitly stated by the prefactors (XIJ). Additionally,
and contrary to the kinetic-energy and overlap integrals, the Coulomb integrals depend
on the parameter N . It is introduced by the recursion seeds, which are given by the
scaled Boys function of order N .

ΘN
00
00
00

=
2π

p
Kxyz
ab FN(pR2

PC) (3.45)

Here, the one dimensional pre-exponential factors have been abbreviated to (see eqn.
(3.9)).

Kxyz
ab = Kx

abK
y
abK

z
ab (3.46)

Two-Electron Integrals

Similarly to the one-electron Coulomb integrals, the two-electron integrals are expressed
in terms of the auxiliary integrals ΘN

ijkl;mnop;qrst. Again, N is connected to the Boys
function and the subscripts specify the angular momenta of the integral. The zeroth
order in N integrals are the two-electron Coulomb integrals

Θ0
ijkl
mnop
qrst

= 〈ac|bd〉 (3.47)

The recursion seeds are given by the scaled Boys function of order N .

ΘN
0000
0000
0000

=
2π5/2

pq
√
p+ q

Kxyz
ab K

xyz
cd FN(αR2

PQ) (3.48)

In principle, recursion relations for each index can be obtained from the original Obara-
Saika recurrence relation

ΘN
i+1,jkl = XPAΘN

ijkl −
α

p
XPQΘN+1

ijkl +
i

2p

(
ΘN
i−1,jkl −

α

p
ΘN+1
i−1,jkl

)
+

j

2(p+ q)
ΘN+1
i,j−1,kl +

k

2p

(
ΘN
ij,k−1,l −

α

2p
ΘN+1
ij,k−1,l

)
+

l

2(p+ q)
ΘN+1
ijk,l−1 (3.49)

Here, q and Q are the equivalents of p and P , related to Gc and Gd. The reduced
exponent α is

α =
pq

p+ q
(3.50)
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3.2. The Obara-Saika Scheme

Using index substitution and renaming variables leads to the recurrence relation for the
j index.

ΘN
i,j+1,kl = XQCΘN

ijkl +
α

q
XPQΘN+1

ijkl +
j

2q

(
ΘN
i,j−1,kl −

α

q
ΘN+1
i,j−1,kl

)
+

i

2(p+ q)
ΘN+1
i−1,jkl +

l

2q

(
ΘN
ijk,l−1 −

α

q
ΘN+1
ijk,l−1

)
+

k

2(p+ q)
ΘN+1
ij,k−1,l (3.51)

Similar equations can be found for the k and l indices, respectively. Using these equations
leads to rather complicated expressions, as each recurrence involves up to eight contri-
butions and recurrences in every index. Fortunately, a four step ansatz exists [35–37],
using simpler recurrence relations.

By setting j = k = l = 0 in (3.49), the vertical recurrence relation for the i-index is
obtained.

ΘN
i+1,000 = XPAΘN

i,000 −
α

p
XPQΘN+1

i,000 +
i

2p

(
ΘN
i−1,000 −

α

p
ΘN+1
i−1,000

)
(3.52)

Using translational invariance (compare (3.24)), increments in the j-index can be gen-
erated using the electron transfer recursion.

ΘN
i,j+1,00 = −bXAB + dXCD

q
ΘN
i,j,00 +

i

2q
ΘN
i−1,j,00 +

j

2q
ΘN
i,j−1,00 −

p

q
ΘN
i+1,j,00 (3.53)

Similarly to (3.52), a different electron transfer can be obtained by setting l = k = 0 in
(3.51).

ΘN
i,j+1,00 = XQCΘN

ij00 +
α

q
XPQΘN+1

ij00 +
i

2(p+ q)
ΘN+1
i−1,j00

+
j

2q

(
ΘN
i,j−1,00 −

α

q
ΘN+1
i,j−1,00

)
(3.54)

Finally, increments for the k- and l-index are generated by the horizontal recursions
(compare (3.14)).

ΘN
i,j,k+1,l = ΘN

i+1,j,k,l +XABΘN
i,j,k,l (3.55)

ΘN
i,j,k,l+1 = ΘN

i,j+1,k,l +XCDΘN
i,j,k,l (3.56)
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4. Symmetry In Two-Electron
Integrals And Batches

Generally put, the bottleneck of the assembly of the Fock matrix is the number of two-
electron integrals to be calculated and contracted with the density matrix. They scale
with the fourth power of the basis functions present in the system of interest. One way
to reduce the number of integrals to be calculated is to take symmetries into account.
This reduces the number of significant integrals by about an factor of eight.

4.1. Two-Electron Integral Symmetry

The general integral over PCG’s is of the form

〈pr|qs〉 =

∫
Gp(r1)Gr(r2)

1

r12
Gq(r1)Gs(r2)dr12 (4.1)

There are three symmetries leaving this integral invariant. Clearly, the interchange of
the basis functions depending on r1, Gp(r1) and Gq(r1), does not change the value of
the integral.

〈pr|qs〉 = 〈qr|ps〉 (4.2)

This holds equivalently for the functions depending on r2.

〈pr|qs〉 = 〈ps|qr〉 (4.3)

Finally, the two-electron integrals are invariant with respect to particle exchange, giving

〈pr|qs〉 = 〈rq|sq〉 (4.4)

Each of these symmetries only leads to equivalent integrals if certain inequalities con-
cerning the involved functions are met. For the particle one symmetry, interchange of
the bra1 and ket1 functions only leads to a symmetry equivalent integral if

p 6= q (4.5)

In integrals where p = q, particle one exchange just produces the same integral again,
〈pr|ps〉 → 〈pr|ps〉. Obviously, this also holds for the other two symmetries as well.
Particle two symmetry, or exchange of the bra2 with the ket2 function, only gives a
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4. Symmetry In Two-Electron Integrals And Batches

symmetry-equivalent integral if

r 6= s (4.6)

Finally particle exchange symmetry is met if

p 6= r and q 6= s (4.7)

Each of these symmetries, if present, doubles the number of symmetry equivalent inte-
grals. The total number nse of symmetry equivalent integrals for an index combination
with s symmetries present is just

nse = 2s (4.8)

In the integral 〈pp|pp〉, no symmetry is present and nse = 1. No symmetry equivalent
integrals exist. On the other hand, in the integral 〈pr|qs〉, all three symmetries are
present, nse = 8 and seven symmetry equivalent integrals can be found. An example
for an integral with one symmetry present is 〈pr|pr〉. Particle exchange gives the one
symmetry equivalent integral as 〈rp|rp〉.
Integral ’classes’ with all three symmetries present will be termed as symmetric. Asym-

metric classes are then the ones having one or more symmetries broken, respectively.
The idea now is to exploit this during the integral evaluation. Instead of calculating

all nse symmetry-equivalent integrals, only one ’non-redundant’ integral of the particular
class is calculated. The exact number of non-redundant two-electron integrals in a system
with n basis functions is

Nnr =
1

8
(n4 + 2n3 + 3n2 + 2n) (4.9)

Taking this into account, of all the n4 integrals, only about one eighth have to be
calculated.

4.2. Symmetry in Batches of Two-Electron Integrals

As explained in section 3.1.1, the n basis functions are grouped into shells. The integrals
arising from some tuple of shells are called shell batches. Now the symmetry properties of
the two-electron integrals can equally be applied to four-tuple shell batches. Introducing
a p-shell to be holding the three p-functions px, py and pz, and an s-shell to be holding
one s-function, some psss-batch will consist of the integrals

pisjsksl ≡


pi,xpi,y
pi,z

 sjsksl

 ≡

〈pi,xsj|sksl〉
〈pi,ysj|sksl〉
〈pi,zsj|sksl〉
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4.2. Symmetry in Batches of Two-Electron Integrals

Particle exchange gives the three integrals 〈sjpi,x|slsk〉, 〈sjpi,y|slsk〉 and 〈sjpi,z|slsk〉,
which are contained in the shell batch sjpxslsk.

This is generally applicable, the rules being identical to those for the two-electron inte-
grals, replacing functions with shells. The total number of non-redundant shell batches
is also given by equation (4.9), substituting the number of basis functions n with the
number of shells. The set of non-redundant shell batches holds all non-redundant inte-
grals. However, some redundant integrals are reintroduced if the tuple is asymmetric.
In the pipisisi batch for example the particle exchange symmetry (4.7) is broken. The
batch contains, among others, the integrals 〈pi,xpi,y|sisi〉 and 〈pi,ypi,x|sisi〉 which are
symmetrically identical. There is no simple formula to calculate the number of redun-
dancies reintroduced this way. Table 4.1 shows the percentage of redundant integrals
introduced in the set of non-redundant batches for some model systems. Their number
clearly decreases with increasing molecule and/or basis size to a negligible amount. Even
for high percentages however, the technical benefits from calculating integrals as batches
outweigh the overhead introduced (see section 12.1.1).

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pV6Z
CH4 5.19 5.24 4.42 3.46 2.76
C2H6 3.13 3.18 2.70 2.12 1.70
C4H10 1.74 1.78 1.52 1.20 0.96
C6H14 1.21 1.23 1.05 0.83 0.67
C8H18 0.92 0.94 0.81 0.64 0.51

Table 4.1.: Percentage of redundant integrals in the set of non-redundant batches

Concluding, the exploitation of integral symmetries by omitting the calculation of re-
dundant integrals can be done in terms of non-redundant shell batches, the overhead
reintroduced being negligible.
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5. Density Contraction
In Hartree-Fock theory, the two-electron part G of the Fock matrix is calculated by
contraction of the density matrix D with the two-electron integrals 〈ij|kl〉

Gij =
∑
kl

Dkl [〈ik|jl〉 − 0.5 〈ik|lj〉] (5.1)

This step is of the order of integrals, making an efficient implementation mandatory. As
the integration is performed on the basis of integral batches, the approaches to density
contraction presented in this work are also in terms of a batchwise contraction.

5.1. Integral Contributions

Central aspect of the ansatz presented here is the exploitation of symmetry equivalent
integrals. As has been shown before in section 4.1, considering only non-redundant
integrals reduces the number of integrals to be taken into account by about an factor of
eight. Obviously, reducing the number of integrals also reduces the amount of effort to
be put into contracting them with the density, given an effective strategy can be found
to be applied to eqn. (5.1). Starting point in discussing the density contraction is the
analysis of the contributions of symmetry-equivalent integrals to the Fock matrix. In
doing so, symmetric integrals have to be distinguished from asymmetric ones.

5.1.1. Symmetric Integrals

For each integral with four different basis functions 〈pr|qs〉, eight symmetry equivalent
ones exist. This corresponds to 16 contributions of the same integral to G. Of these,
eight arise from the first integral of equation (5.1), the other eight from the second,
respectively.

Gpq += Drs 〈pr|qs〉 Gps −= 0.5Drq 〈pr|qs〉
Gpq += Dsr 〈ps|qr〉 Gpr −= 0.5Dsq 〈ps|qr〉
Gqp += Drs 〈qr|ps〉 Gqs −= 0.5Drp 〈qr|ps〉
Gqp += Dsr 〈qs|pr〉 Gqr −= 0.5Dsp 〈qs|pr〉
Grs += Dpq 〈rp|sq〉 Grq −= 0.5Dps 〈rp|sq〉
Grs += Dqp 〈rq|sp〉 Grp −= 0.5Dqs 〈rq|sp〉
Gsr += Dpq 〈sp|rq〉 Gsq −= 0.5Dpr 〈sp|rq〉
Gsr += Dqp 〈sq|rp〉 Gsp −= 0.5Dqr 〈sq|rp〉
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5. Density Contraction

Using the symmetry of the density matrix Dij = Dji, the eight contributions on the left
can already be reduced to four, i.e. Gpq += 2Drs 〈pr|qs〉, and so on. Additionally, again
using the symmetry of D, the contributions to some element Gij are the same as to the
element Gji. This can be exploited by considering only one of the two contributions. By
doing so for all integrals, contracting to some temporary matrix G‘, some contributions
will be added to G‘

ij, and some to G‘
ji. The exact matrix element can then be retrieved

by

Gij = Gji = G‘
ij +G‘

ji (5.2)

The actual contributions of all symmetry-equivalent integrals {〈pr|qs〉} to be calculated
then are

Gpq += 2.0Drs 〈pr|qs〉 Gps −= 0.5Drq 〈pr|qs〉
Grs += 2.0Dpq 〈pr|qs〉 Gpr −= 0.5Dqs 〈pr|qs〉

Grq −= 0.5Dps 〈pr|qs〉
Gqs −= 0.5Dpr 〈pr|qs〉 (5.3)

The index combinations in D and G correspond to the unique two-tuples which can be
built from four indices, neglecting the order. For each contribution, the indices in D
and G are disjunct, respectively.

5.1.2. Integrals with Broken Symmetries

In the same way, contributions for integrals with broken symmetries can be obtained.
They are different to the ones obtained for the symmetric integrals 〈pr|qs〉. The class
of integrals having only the particle exchange symmetry, 〈pr|pr〉 = 〈rp|rp〉, gives the
following contributions to G

Gpp += Drr 〈pr|pr〉 Gpr −= 0.5Drp 〈pr|pr〉
Grr += Dpp 〈pr|pr〉 (5.4)

For reasons to be made clear later in section 13.2.2, the connection of these contributions
and the contributions of a symmetric integral shall be shown in detail for this particular
class of integrals. Application of the symmetry breaking q → p and s → r to the
contributions of the symmetric integral (5.3) gives

Gpp += 2.0Drr 〈pr|pr〉 Gpr −= 0.5Drp 〈pr|pr〉
Grr += 2.0Dpp 〈pr|pr〉 Gpr −= 0.5Dpr 〈pr|pr〉

Grp −= 0.5Dpr 〈pr|pr〉
Gpr −= 0.5Dpr 〈pr|pr〉
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5.2. Shell Batch Contributions

As these contributions have to be ’corrected’ using (5.2), the diagonal elements on the
left are doubled, and the off-diagonal elements on the right can be factored.

Gpp += 4.0Drr 〈pr|pr〉 Gpr −= 2.0Drp 〈pr|pr〉
Grr += 4.0Dpp 〈pr|pr〉 (5.5)

Comparing this to the actual contributions (5.4), (5.5) gives the correct contributions
with respect to the indices. The numerical value however, is off by an factor four.
This factor four is connected to the symmetry of the integrals. For the 〈pr|pr〉 class of
integrals the number of the symmetry equivalent integrals nprprse = 2 and for the 〈pr|qs〉
class nprqsse = 8. The fraction of the two is just the missing factor four. In other words,
the contributions of the 〈pr|pr〉 class can be emulated by the formulas obtained for
the symmetric 〈pr|qs〉 class, by taking the missing symmetry into account. Here the
correction factor would be fs = 1

4
.

In fact, this holds for all asymmetric classes of integrals. Their contributions can be
calculated via the formulas (5.3), correcting them for symmetries using

fs =
2s

nprqsse
=

2s

8
(5.6)

Here, s is the number of symmetries present in the class of interest.

5.2. Shell Batch Contributions

5.2.1. Symmetric Batches

In a symmetric batch prqs all shells, and therefore also the basis functions, are different.
Accordingly, the integrals appearing in this shell batch are built from different basis
functions and are all symmetric. The eqns. (5.3) can be applied to all integrals of this
batch.

5.2.2. Batches with Broken Symmetries

In an asymmetric batch, the broken symmetry might lead to integrals from different
symmetry classes. This happens if the symmetry broken shells are of a size larger
than one. Consider for example the pisjpisj-batch. In terms of batch symmetries, it is
invariant only under the particle exchange symmetry. However, due to the equality of
the p-shells, the functions on these indices can be equal or unequal. If they are unequal,
symmetry is reintroduced, i.e. the integral 〈pi,xsj|pi,ysj〉 is invariant with respect to the
interchange of functions on particle one (the p-functions), in addition to the particle
exchange symmetry of the batch. On the other hand, if the two p functions are equal
〈pi,xsj|pi,xsj〉, the integral is of the symmetry of the batch.

Nevertheless, as shown in section 5.1.2, the contributions by the asymmetric integrals
can be calculated in a general way by taking the correction (5.6) into account. Thus,
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5. Density Contraction

in a first ansatz, the strategy to calculate the contributions from an asymmetric batch
is similar to the one for symmetric batches. The only change being to calculate the
correction for the particular integral. This might lead to different correction factors
within a certain integral batch.
Additionally, reintroduction of symmetry also reintroduces redundancies. In the above

example, besides the integral 〈pi,xsj|pi,ysj〉, the symmetry equivalent 〈pi,ysj|pi,xsj〉 is
present in the batch. By the above ansatz, both are treated as if ’non-redundant’, and
their contributions are considered twice. Therefore, in addition to the correction (5.3), a
second correction has to be applied to account for redundant integrals. Generally, each
reintroduced symmetry doubles the number of symmetrically equivalent integrals in a
given batch. The correction to account for non-redundant integrals then is

fnr =
1

2r
(5.7)

Where r is the number of reintroduced symmetries. The total correction for some integral
in an asymmetric batch is then given by

f = fs · fnr =
2s

82r
(5.8)

Again, s is the number of symmetries of the integral.
Fortunately, it can be shown that the product of these two corrections is constant for

a given batch. Consider some batch with sb symmetries. Reintroducing r symmetries in
an integral gives the number of symmetries s for the integral as

s = sb + r (5.9)

The general correction factor for some integral (5.8) then becomes

f =
2sb+r

82r
=

2sb

8
= fs,batch (5.10)

The correction for each integral in an asymmetric batch is just the symmetry correction
fs, based on the symmetries of the batch, regardless of the symmetry and/or redundancy
of the individual integral.
Putting the above together, contracting the density with the integrals can be done

in a general way in terms of non-redundant integral batches. After calculation of the
integrals, the symmetry of the batch is used to calculate the correction (5.10). All
integrals can then be contracted in the same way using (5.3), including the appropriate
correction.
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6. Basis Transformations

As shown in section 2.2, by expanding the MO’s in terms of a finite set of basis func-
tions, the Hartree-Fock equation can be formulated as a rather simple matrix eigenvalue
equation. Over the years, a lot of effort has been put in determining the explicit form
of these basis functions. There will be no exhausting overview given on this topic, a
detailed overview can be found in [24]. Various compromises lead to the ansatz used
in this work. In a general sense, atomic orbitals (AO) are used, meaning that atom-
centered basis functions are provided for each atom of some molecule. The nature of
these atomic basis functions is based on the solutions for the one-electron central field
problem. Conceptually this results in a separation of the atomic wave function in a
radial and angular part.

ψ(r, φ, θ)AO = R(r) · A(φ, θ) (6.1)

6.1. Atomic Basis Functions

6.1.1. The Angular Basis

In the one-electron central field ansatz, the angular part of (6.1) is independent of
the form of the central field. It is given by the eigenfunctions of the total angular
momentum operator. Several expressions for these solutions exist. In this work, the real
solid harmonics Slm are used. More specific, they are expressed in terms of Cartesian
directions.

Slm(x, y, z) = Nlm

(l−|m|)/2∑
t=0

t∑
u=0

[|m|/(2−vm)]+vm∑
v=vm

C lm
tuv x

2t+|m|−2(u+v) y2(u+v) zl−2t−|m| (6.2)

C lm
tuv = (−1)t+v−vm

(
1

4

)t(
l
t

)(
l − t
|m|+ t

)(
t
u

)(
|m|
2v

)
(6.3)

Nlm =
1

2|m|l!

√
2(l + |m|)!(l − |m|)!

2δ0m
(6.4)

vm =

{
0 m ≥ 0
1
2

m < 0
(6.5)

|m| ≤ l (6.6)

Similarly to the PCG’s, the solid harmonics are grouped into shells, depending on their
angular momentum. As |m| ≤ l, the number of functions in a shell of solid harmonics
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6. Basis Transformations

with angular momentum l is

N sh
l = 2l + 1 (6.7)

For a given l, (6.2) can be easily evaluated. Doing so for e.g. l = 2, using the notation
Slm = lm and spectroscopic symbols (l = 2 corresponds to a d-shell), gives

d2+ =
1

2

√
3(x2 − y2) (6.8)

d1+ =
√

3xz (6.9)

d0 =
1

2
(3z2 − r2) (6.10)

d1− =
√

3yz (6.11)
d2− =

√
3xy (6.12)

The sum of the exponents of the Cartesian directions in (6.2) is equal to l. Comparing
this to the definition of a shell of PCG’s in section 3.1.1, the Cartesian powers in (6.2)
are closely related to the set (shell) of Npcg

l = 1
2
(l + 1)(l + 2) PCG’s of a given l. The

transformation (6.2) can be interpreted as a transformation of a shell of PCG’s to a
shell of solid harmonic Gaussians and written as a matrix vector multiplication. For the
d-functions (6.8) to (6.12) this gives


d2+
d1+
d0
d1−
d2−

 exp(−ar2A) =


√
3
2

0 −
√
3
2

0 0 0

0 0 0
√

3 0 0
−1

2
0 −1

2
0 0 1

0 0 0 0
√

3 0

0
√

3 0 0 0 0




x2

xy
y2

xz
yz
z2

 exp(−ar2A) (6.13)

The explicit formulation is arbitrary, as the representation of the coefficient matrix
depends on the ordering of the source and target functions, respectively.
Having an actual basis of PCG’s with different angular momenta, exponents and

centers, the whole basis can be transformed to solid harmonic Gaussians using the matrix
vector multiplication ansatz of (6.13). Given the PCG’s are ordered in terms of shells,
the corresponding transformation matrix will be block diagonal, with entries given by
(6.2). Defining the solid harmonic Gaussians as |sn〉 = Snlm exp(−anr2An

) and using
|pn〉 = xinyjnzkn exp(−anr2An

) for a PCG, this transformation of the whole basis can be
written in a general way.

|sn〉 =
M∑
i

T ain |pi〉 (6.14)

Here M is the size of the primitive basis and the T ain are the angular transformation
coefficients. The basis of the |si〉’s will be termed as the angular transformed, or short
angular basis. The basis of the PCG’s as the primitive basis, respectively.
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6.1. Atomic Basis Functions

6.1.2. The Radial Basis

For the radial part, a functional form of exp(−ar2) has been chosen due to ease of inte-
gration. As it does not resemble the charge distribution of an atomic system accurately,
linear combinations of those Gaussians with different exponents aλ on the same center
A are used to account for that.

φµ(r, A) =
Nr∑
λ

Cλµ exp(−aλr2A) (6.15)

Again, this corresponds to a matrix vector multiplication. Equivalently, using |rµ〉 for
an arbitrary radial transformed PCG, and T riµ for the radial transformation coefficients,
the radial transformation of an whole basis of PCG’s with different angular momenta,
exponents and centers can be written as

|rµ〉 =
M∑
i

T riµ |pi〉 (6.16)

Again, the form of the transformation matrix Tr depends on the ordering of the source
and target functions. Ordering those with respect to the sets to be radial contracted
leads to a block-diagonal transformation matrix Tr. The coefficients T riµ are given by
(6.15). The basis of the |rµ〉’s will be referred to as the radial transformed, or short
radial basis.

6.1.3. Atomic Basis Functions in Terms of Primitive Cartesian
Gaussians

The atomic basis functions used in this work are set up from solid harmonics of a given l
andm for the angular part, which are combined with the radially contracted functions of
equation (6.15). The solid harmonics are in this equation expressed in terms of PCG’s.
The Anm and the according Cartesian powers in, jn and kn are given by equations (6.2)
to (6.6) (see equation (6.13)).

ψlmµ(r, A) = φµ(r, A) · Slm(r, A)

=
Nr∑
λ

Cλµ exp(−aλr2A)

Npcg∑
n

Anmx
in
A y

jn
A z

kn
A

=
Nr∑
λ

Cλµ

Npcg
l∑
n

Anm
(
xinA y

jn
A z

kn
A exp(−aλr2A)

)
=

Nr∑
λ

Cλµ

Npcg
l∑
n

Anm Gin
jn
kn

(r, aλ, A) (6.17)

The AO’s ψlmµ(r, A) are expressed as linear combinations of the PCG’s (3.1).
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6. Basis Transformations

Following the definitions (6.14) and (6.16), the full set of atomic basis functions
|AOi〉 = ψlimiµi(r, Ai) for a given system can be expressed in terms of the primitive
basis. The obtained basis will be referred to as the atomic-orbital or AO-basis. Synony-
mously, the term radial angular transformed basis shall be used.

|AOi〉 =
M ‘∑
j

T aji

M∑
k

T rkj |pk〉 =
M∑
k

M ‘∑
j

T rkjT
a
ji |pk〉 =

M∑
k

T raki |pk〉 (6.18)

In this formulation, the radial transformation is performed ’first’. The following angular
transformation transforms theM ′ radial basis functions to the AO basis. This defines the
dimensions and structures of the involved transformation matrices Ta and Tr. The order
of transformations can be interchanged, i.e. performing the angular transformation first.
In doing so the form of the intermediate transformation matrices changes, the overall
transformation matrix Tra however stays the same.
Of course the transformation can be applied one at a time.

|AOi〉 =
M ‘∑
j

T aji

(
M∑
k

T rkj |pk〉

)
=

M ‘∑
j

T aji |rj〉 (6.19)

6.2. Explicit Expressions for Basis Transformations

6.2.1. Two-Electron Integrals

The two-electron integral in some transformed basis {|a〉} of size n

〈ab|cd〉 =

∫∫
a(1)b(2)

1

r12
c(1)d(2)dr1dr2 (6.20)

can be expressed in terms of the untransformed basis by inserting the respective trans-
formation

|a〉 =
m∑
i

Cia |i〉 (6.21)

for each function. Here m is the basis size of the untransformed basis, and the Cia are
the transformation coefficients.

〈ab|cd〉 =

∫∫ m∑
i

Ciai(1)
m∑
j

Cjbj(2)
1

r12

∑
k

Ckck(1)
m∑
l

Cldl(2)dr1dr2

=
m∑
i

Cia

m∑
j

Cjb

m∑
k

Ckc

m∑
l

Cld 〈ij|kl〉 (6.22)
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6.2. Explicit Expressions for Basis Transformations

This holds for the transformation from the primitive basis to radial-, angular- or radial-
angular-transformed bases, as well as for the transformation of the AO-basis to the
MO-basis.

Complexity

Technically, this is a rather demanding operation, scaling with the fifth power of the
basis functions n. The transformation (6.22) can be performed one index at a time. The
transformation of the ket2 index d for example is given by

〈ij|kd〉 =
m∑
l

Cdl 〈ij|kl〉 (6.23)

There are m3n target integrals 〈ij|kd〉. To calculate each of those, m-operations are
needed, giving the total cost as O(m4n). The other indices scale similarly, shifting
powers from m to n. The exact scaling is O(nm4 + n2m3 + n3m2 + n4m). As m = xn,
with x being a constant depending on the exact type of the transformation, the total
scaling is of O(n5) times a constant depending on x.
Additionally, all m4 untransformed integrals 〈ij|kl〉 are needed to calculate each of the

n4 transformed integrals. Storing and handling them turns out to be rather demanding
in terms of system resources, even for small systems. This especially holds for the
MO-transformation, where the sums run over the size of the whole AO-basis m.
For the radial and angular transformation, on the other hand, this formal scaling is

drastically reduced. As mentioned in section 6.1.3, these two transformations operate on
a subset of basis functions. As a consequence, the sums in (6.22) no longer run over the
whole untransformed basis size m, but rather over the size of the subset. Effectively, this
reduces the formal scaling by an order of magnitude to O(n4). There is no simple formula
to show this. However the idea shall be sketched by transforming a hypothetical basis
consisting solely of primitive d-shells to a basis of the corresponding solid harmonics. The
transformation of a d-shell is explicitly given in (6.13). Generally, including coefficients
equal to zero, six primitive d-functions are needed to calculate each solid harmonic.
Again transforming the last index, for each integral in (6.23) only six functions are
needed.

〈ij|kdsh〉 =
6∑
l

cld 〈ij|kdcart〉 (6.24)

There are still m3n target integrals, however now each of these needs only a constant
amount of operations (six). The exact scaling for this index is of O(6m3n). The sums in
the transformation of the other indices also scale with the constant factor six instead of
the basis size m. Overall this brings down the formal scaling by one order of magnitude
from O(n5) to O(n4). Furthermore, the transformation can be blocked, as only a subset
of the untransformed integrals is needed for a particular transformed one, reducing the
number of integrals to be held in memory simultaneously.
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6. Basis Transformations

The same argument holds for a generalization for arbitrary angular or radial transfor-
mations, effectively changing the number of elements in the sums from m to a constant.
As these constants depend on the actual transformation (angular momentum and radial
contraction length), the exact scaling depends on the system (molecule, basis set). Nev-
ertheless the constants do not depend on m, bringing the overall formal scaling down to
m4.

6.2.2. The Density Matrix

The charge density for a closed-shell molecule with N electrons and N/2 occupied MO-
orbitals is [22]

ρ(r) = 2

N/2∑
k

MOk(r)MOk(r) (6.25)

The n MO’s are expressed in terms of n AO’s, the expansion coefficients being the
eigenvectors of the Fock matrix in AO-basis.

|MOl〉 =
n∑
i

Cil |AOi〉 (6.26)

The charge density (6.25) in the AO-basis then is

ρ(r) = 2

N/2∑
k

n∑
i

CikAOi(r)
n∑
j

CjkAOj(r)

=
n∑
ij

2

N/2∑
k

CikCjk

AOi(r)AOj(r) (6.27)

Giving the density matrix in AO-basis as

DAO
ij = 2

N/2∑
k

CikCjk (6.28)

Or, using Cocc for the first N/2 ’occupied’ columns of C

DAO = CoccC
T
occ (6.29)
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6.2. Explicit Expressions for Basis Transformations

Similarly, the charge density can be expressed in the primitive basis, using the expansion
of the AO’s in the m PCG’s (6.18).

ρ(r) = 2

N/2∑
k

n∑
i

Cik

m∑
µ

T raµi pµ(r)
n∑
j

Cjk

m∑
ν

T raνj pν(r)

=
m∑
µν

 n∑
i

n∑
j

T raµi

2

N/2∑
k

CikCjk

T raνj
 pµ(r)pν(r) (6.30)

Now, using (6.28), the density in the primitive basis can be written in terms of the
AO-density.

Dp
µν =

n∑
i

n∑
j

T raµiD
AO
ij T raνj (6.31)

Or equivalently

Dp = Tra ·DAO · (Tra)T (6.32)

Note that, following equation (6.18), the radial and angular transformations can be
applied successively and in the order desired.

6.2.3. The Two-Electron Part of the Fock Matrix

The two-electron part G of the Fock matrix in the AO-basis is [22]

GAO
ac =

n∑
b

n∑
d

DAO
bd

[
〈ab|cd〉 − 1

2
〈ab|dc〉

]
(6.33)

The AO-integrals can be expressed in the primitive basis using equation (6.22), with T raij
as the expansion coefficients for the radial angular transformation.

GAO
ac =

n∑
b

n∑
d

DAO
bd

[
m∑
i

T raia

m∑
j

T rajb

m∑
k

T rakc

m∑
l

T rald

(
〈ij|kl〉 − 1

2
〈ab|dc〉

)]
(6.34)

=
m∑
i

m∑
k

T raia

[
m∑
j

m∑
l

(
n∑
b

n∑
d

T rajb D
AO
bd T

ra
ld

)(
〈ij|kl〉 − 1

2
〈ij|lk〉

)]
T rakc (6.35)

=
m∑
i

m∑
k

T raia

[
m∑
j

m∑
l

Dp
jl

(
〈ij|kl〉 − 1

2
〈ij|lk〉

)]
T rakc (6.36)

GAO
ac =

m∑
i

m∑
k

T raia G
p
ikT

ra
kc (6.37)
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6. Basis Transformations

Here, in (6.36) the expression for the AO-density in the primitive space (6.31) has
been used. Similarly, comparing to (6.33), the quantity in braces in (6.36) is the two-
electron part of the Fock operator in the primitive basis. Equation (6.37) then gives the
relationship of G in the primitive with the radial angular transformed basis.
Equivalently, (6.37) can be written in matrix form.

GAO = (Tra)T ·Gp ·Tra (6.38)

Again, the transformations can also be applied one at a time, in the order desired.
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Bottleneck of solving the Hartree-Fock equations is the number of two-electron integrals
arising, as they formally scale to the fourth power of the system size n. Now integral
prescreening uses the fact that, especially for large molecules, most of the two-electron
integrals are small in magnitude. Neglecting integrals smaller than some allowed error
leads to a drastic reduction of integrals to be calculated, without introducing considerable
errors to the calculation. It can be shown that by including only significant integrals,
the scaling with respect to the system size is reduced by two orders of magnitude to
O(n2) [38].

7.1. The Schwarz Inequality

The value of two-electron integrals in the form

〈ab|cd〉 =

∫∫
a(1)b(2)

1

r12
c(1)d(2)dr1dr2

can be estimated using the Schwarz inequality [14]. It gives with

| 〈ij|kl〉 | ≤
√
〈ii|kk〉

√
〈jj|ll〉 = SikSjl ≡ Smaxint (7.1)

an upper bound for the two-electron integrals based on the square roots of the diagonal
elements Sik =

√
〈ii|kk〉. This upper bound can then be used to identify integrals of

negligible value in advance and skip their calculation accordingly. In the following, the
integrals Sik shall be termed Schwarz integrals, taking the square root into account.

7.1.1. Batches of Integrals

As integrals are going to be calculated in terms of batches, (7.1) is not applied on
individual integrals, but has to be extended to batches. One consequence of this is a
loss of granularity. If only one integral in a batch of negligible integrals is of significant
value, the whole batch has to be calculated. However, individual integral evaluation
is technically severely more demanding than evaluating whole batches. The additional
cost introduced by calculating batches which contain some negligible integrals is clearly
outweighed by the effort saved in evaluating integral batches as a whole.

On the other hand, it can be shown that the computational effort to decide if any
batch is negligible is essentially identical to deciding if a single integral can be skipped.
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This shall be exemplified by considering the pipjsksl shell batch, using arbitrary indices.

pipjsksl ≡

〈
ab
c

de
f

 | (g) (h)〉


This particular batch consists of nine integrals, each of which can be estimated using
(7.1). Explicitly doing so gives:

| 〈ad|gh〉 | ≤
√
〈aa|gg〉 ·

√
〈dd|hh〉 = Sag · Sdh

| 〈ae|gh〉 | ≤
√
〈aa|gg〉 ·

√
〈ee|hh〉 = Sag · Seh

| 〈af |gh〉 | ≤
√
〈aa|gg〉 ·

√
〈ff |hh〉 = Sag · Sfh

| 〈bd|gh〉 | ≤
√
〈bb|gg〉 ·

√
〈dd|hh〉 = Sbg · Sdh

| 〈be|gh〉 | ≤
√
〈bb|gg〉 ·

√
〈ee|hh〉 = Sbg · Seh

| 〈bf |gh〉 | ≤
√
〈bb|gg〉 ·

√
〈ff |hh〉 = Sbg · Sfh

| 〈cd|gh〉 | ≤
√
〈cc|gg〉 ·

√
〈dd|hh〉 = Scg · Sdh

| 〈ce|gh〉 | ≤
√
〈cc|gg〉 ·

√
〈ee|hh〉 = Scg · Seh

| 〈cf |gh〉 | ≤
√
〈cc|gg〉 ·

√
〈ff |hh〉 = Scg · Sfh

Now the Schwarz integrals on the left of the estimate arise from combinations of functions
of the pi- and sk-shells, and the ones on the right from the functions in the pj- and sl-
shells, respectively. Additionally, each Schwarz integral arising from the pi, sk-set is
combined with each from the pj, sl set. Thus an upper bound for all integrals in this
batch can be obtained by the product of the maximum of the Schwarz integrals from
the pi, sk set with the maximum of the Schwarz integrals from the pj, sl set, giving the
Schwarz upper-bound for the batch, Smaxbatch as

|{〈pipj|sksl〉}| ≤ Smaxbatch = max({Sag, Sbg, Scg}) ·max({Sdh, Seh, Sfh}) (7.2)

The integrals of a batch can be generated from the functions in the shells by the Cartesian
product. Similarly, the Schwarz integrals can be generated from the Cartesian product
of the functions in the corresponding shells, {pi} x {sk} and {pj} x {sl}, respectively.
The above can then be generalized to any batch 〈IJ |KL〉. The upper bound of the

batch is the maximum of the Schwarz integrals arising from the Cartesian product of
functions in the I- and K-shell times the maximum of the ones from the J- and L-shells.

|{〈IJ |KL〉}| ≤ Smaxbatch = max({S{I}x{K}}) ·max({S{J}x{L}}) (7.3)

As will be shown in section 11.1.2, the Schwarz integrals are evaluated once for a specific
calculation. Now instead of storing the individual Schwarz integrals, the maxima of
(7.3) are determined and stored instead. Compared to the full SCF calculation, the cost
of this step is negligible (see section 11.1.2). During the calculation, each batch can
then be estimated by comparing two numbers, the stored maxima. This is of the same
computational cost as estimating a single integral.
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7.2. Density Screening

7.2. Density Screening

As the two-electron integrals (7.1) contribute to the Fock matrix by being contracted
with the density, determination of significant integrals via (7.3) is not sufficient. On
the one hand, significant contributions might be neglected. On the other hand, small
density elements can tip the scale, leading to an even higher number of negligible integral
contributions. This is of particular interest in the scope of the differential density scheme
(see section 11.4).

To arrive at a sufficient criterion, the elements of the density to be contracted with
a certain integral have to be taken into account. These density elements are given by
(5.3). For some symmetric integral 〈ij|kl〉, (7.1) has therefore to be extended to

|G(〈ij|kl〉)| ≤ Smaxint ·max({2Dik, 2Djl, 0.5Dij, 0.5Dil, 0.5Djk, 0.5Dkl})
≡ Smaxint ·Dmax

int (7.4)

For unsymmetrical integrals, the correction (5.6) has to be taken into account.

7.2.1. Batches of Integrals

According to Haeser et al. [14], equation (7.4) can be extended to integral batches.
The idea is to get an upper bound for a batch of integrals by combining the maximum
integral contribution (7.3) with the maximum density element associated with the actual
batch. Similar to 7.1.1, the density elements in (7.4) are replaced by the maxima over the
elements generated by the Cartesian product of the corresponding shells. The maximum
density element for the batch is then

Dmax
batch = max({2 ·max({D{I}x{K}}, {D{J}x{L}}),

0.5 ·max({D{I}x{J}}, {D{I}x{L}}, {D{J}x{K}}, {D{K}x{L}})}) (7.5)

The upper bound for contributions to the Fock matrix for some batch 〈IJ |KL〉 is then
just

|G(〈IJ |KL〉)| ≤ Smaxbatch ·Dmax
batch (7.6)

Again, for unsymmetrical batches the correction (5.10) has to be taken into account.
Note that batches can be overestimated by this measure, as the maximum integral

contribution Smaxbatch and the maximum density element Dmax
batch are not necessarily linked.

However, as will be shown in section 11.1.5, this is of no practical concern.
Similarly to the application of the Schwarz inequality to batches of integrals, the

maximamax({D{I}x{K}}) can be determined in advance and used when required. Again,
the computational effort to estimate one batch of integrals is equal to estimating one
individual integral.
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Condition (7.6) can now be used to identify integral batches which give significant
contributions to the Fock matrix. A batch has to be calculated if

Smaxbatch ·Dmax
batch ≥ t (7.7)

where t is some threshold representing the maximum magnitude of contributions to be
included.

7.3. The Differential Density Scheme

The differential density scheme [13, 14, 16] can be used to further increase the number
of negligible integral batches. The Hartree-Fock equations have to be solved iteratively.
The differential density is the difference of the density of the current and previous iter-
ation.

∆D = Di −Di−1 (7.8)

Now by using

Di = Di−1 + ∆D (7.9)

the contraction of integrals and density to the two-electron part G of the Fock matrix
(5.1) can be reformulated in terms of the differential density.

Gij(D
i) =

∑
kl

Di
kl [〈ik|jl〉 − 0.5 〈ik|lj〉]

=
∑
kl

(Di−1
kl + ∆Dkl) [〈ik|jl〉 − 0.5 〈ik|lj〉]

=
∑
kl

Di−1
kl [〈ik|jl〉 − 0.5 〈ik|lj〉] +

∑
kl

∆Dkl [〈ik|jl〉 − 0.5 〈ik|lj〉]

Gij(D
i) = Gij(D

i−1) +Gij(∆D) (7.10)

Incrementing the previous Gi−1 by G(∆D) gives the current two-electron part of the
Fock matrix.
Using this ansatz in combination with prescreening, an even higher amount of integrals

can be neglected. The Schwarz inequality (7.1) gives a constant result for the magnitudes
of the integrals of a certain system. Equivalently, especially near convergence, the density
is almost constant, giving a constant amount of vanishing contributions. The differential
density ansatz now exploits just this. As convergence is approached, more and more
elements of the differential density tend to zero, thus increasing the amount of integrals
which can be neglected.
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Implementation
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8. Technical Details

8.1. Programs Used

The MOLPRO [10] program package has been used, in the version 2012.1.7. It has been
compiled from the sources. The compiler used has been the GNU Compiler Collection,
in version 4.9.2. MOLPRO has been configured using the default options, with the
exception of the LAPACK/BLAS libraries. For these the libraries provided by INTELs
Math Kernel Library [39] have been used, in version 11.0. In particular, the integral-
direct Hartree-Fock SCF [37,40] program was used. Only the basis sets of section 8.2.1
were used.
TURBOMOLE has been used in version 6.6 [11].
The QOL has been compiled with the GNU Compiler Collection, in version 4.9.2. For

LAPACK/BLAS, the libraries provided by INTELs Math Kernel Library, in version 11.0
have been used. Additionally, the BOOST library [41], version 1.59 has been used.

Debian Wheezy has been used as operating system as well as all associated packages.

8.2. Basis Sets and Geometries

Great care has been taken to use identical inputs for all programs used. In the case of
this work, the most sensitive inputs are basis sets and geometries.

8.2.1. Basis Sets

To assure the use of identical basis sets in different programs, a unified ansatz has been
chosen for their generation. Source for the basis sets used has been the EMSL basis
set exchange library [42, 43]. From this site, all basis sets used in this work have been
obtained, in the DALTON [12] file format. This format has been chosen due to its ease
of parsability. From these source files, basis set input files have then be generated, in
the MOLPRO, TURBOMOLE and QOL formats, in an automated way. The naming
conventions have been chosen according to the name given the basis set in the EMSL
basis set exchange library.

Four different types of basis sets have been used, differentiated by their radial contrac-
tion pattern. The patterns included are depicted in figure 8.1. In segmented contractions
(figure 8.1a), each primitive Gaussian contributes to only one contracted function. The
Def2 [44–47] basis set were used, of double-, triple- and quadruple-zeta quality. The re-
strictions of the segmented basis sets are completely dropped in the generalized contrac-
tions (figure 8.1b), in which each primitive contributes to each contracted function. For
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these bases atomic natural orbital basis sets have been used, in particular the roos-aug-
dz-ano, roos-aug-tz-ano and ano-rcc [48–50] basis sets. Finally the correlation consistent
basis sets cc-pV*Z have been used, from double- to hextuple-zeta quality [51–54]. They
constitute a compromise of the segmented and general contraction patterns (figure 8.1c
and figure 8.1d). Two flavours of these basis sets have been included in this work. In
MOLPRO, the cc-pV*Z basis sets are included as depicted in figure 8.1c. In TURBO-
MOLE on the other hand, the contraction pattern of figure 8.1d is used [55,56]. In both
programs, they are selected using the same keyword, i.e. cc-pvtz, although this results
in the use of slightly different basis sets. In the EMSL basis set exchange library, the
latter are available by selecting the use of ’optimized general contractions’. To distin-
guish between these two flavours, the correlation consistent basis sets using the pattern
of figure 8.1c are referred to as cc-pV*Z, and the ones of figure 8.1d by cc-pV*Z-ogc.

(a) Segmented. (b) General.

(c) Correlation consistent. (d) Correlation consistent, using optimized
general contractions.

Figure 8.1.: Basis set types used, with respect to their radial contraction pattern.

8.2.2. Input Geometries

All geometries used in this work have been obtained with the TURBOMOLE program
package. Geometry optimizations have been performed, using DFT with the functional
BP86 [57–61] in the RI [62] approximation. The basis set used was TURBOMOLEs
TZVP [46] basis.
Small deviations are introduced to SCF results by slightly different input geometries.

Such slight changes are easily introduced by unit conversions, using differing constants
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for the angstrom to Bohr conversion. To prevent this, the following route has been taken
to generate identical input geometries for TURBOMOLE, MOLPRO and the QOL. The
final geometries have been obtained from the TURBOMOLE calculations in xyz-format
using t2x -c. These were then retransformed to Bohr using x2t. From this file, the
final inputs for MOLPRO and the QOL were generated, resulting in identical geometry
inputs for all programs investigated.

8.3. Computational Details

8.3.1. Computational Facilities

All calculations have been performed on hosts which are part of the computational
facilities of the Institute for Theoretical Chemistry, University of Cologne. In each of
those hosts, two sockets hold four Intel(R) Xeon(R) E5520 CPU’s each, with a clock
rate of 2.27 GHz. Figure 8.2 shows the CPU/cache topology of one of these hosts. All
used hosts share this topology, although different amounts of RAM are installed. All
hosts operate under the Debian/Wheezy operating system.

Machine (24GB)

NUMANode P#0 (12GB)

Socket P#0

L3 (8192KB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#0

L2 (256KB)

L1 (32KB)

Core P#1

PU P#1

L2 (256KB)

L1 (32KB)

Core P#2

PU P#2

L2 (256KB)

L1 (32KB)

Core P#3

PU P#3

NUMANode P#1 (12GB)

Socket P#1

L3 (8192KB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#4

L2 (256KB)

L1 (32KB)

Core P#1

PU P#5

L2 (256KB)

L1 (32KB)

Core P#2

PU P#6

L2 (256KB)

L1 (32KB)

Core P#3

PU P#7

Figure 8.2.: Topology of one of the hosts used in this work.

8.3.2. Calculational Details

If not stated otherwise, all timings presented in this work have been generated in the
same way. They were run on one of the hosts above, sequentially. For each calculation,
the absence of interfering jobs has been assured.
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9. Numerics

9.1. Numerical Errors

The source of numerical errors in computational calculations is the finite representation
of floating point numbers. Generally, a floating point number is expressed in the form

x = (−1)s ·m · be (9.1)

Beside the sign s, the first non-zero digits are stored in the mantissa m and the magnitude
of the number is given by the exponential part be, with respect to some basis b. In
principal, any floating point number can be expressed this way. In practice however,
infinite mantissas can not be handled and have to be truncated. In modern computers,
two main types of floating point numbers are available, of single (float) and double
(double) precision. Of course the basis in which they are represented is base-2, i.e.
b = 2. In the IEEE norm 754 [63], 64-bit are reserved for a double. One bit is needed
for the sign, eleven bits are used for the exponent and the remaining 52 bits for the
mantissa. In decimal numbers, the range spanned by such a number is from 10−308 to
10+308, with about 15 to 17 significant digits for the mantissa.

Of the several sources of numerical errors, only the one arising from subtraction and
addition of numbers of vastly differing magnitudes shall be discussed in detail. The
general mechanism shall be exemplified using decimal numbers, and five digits for the
mantissa. Before adding two numbers a and b, they have to be normalized to a common
exponent.

a = 1.2345 · 105

b = 1.2345 · 10−4 = 0.0000000012345 · 105

Of course, the exact outcome of the addition is

a+ b = 1.2345000012345 · 105

However, as only five digits are available for the mantissa, the result is truncated. In
this five digits representation, the value of b is completely lost, giving the result of a+ b
as exactly a. If this would be the final result, the actual error is negligible, compared to
the magnitudes involved. If used as an intermediate though, rather substantial errors
might arise. Suppose the following equation:

−a+ (a+ b) (9.2)
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In the five digit representation, (a+b) equates to exactly a, giving the total result as zero.
Algebraically however, the result obviously is b. Contrarily, computing equation (9.2)
as (−a + a) + b gives, even in the five digit representation, the correct result b. Thus,
addition and subtraction might break, if large magnitude differences are involved, the
associativity law.

9.1.1. Absolute and Relative Errors

In analyzing numerical instabilities, the correct interpretation of arising deviations is
mandatory. As it turns out, the obvious absolute error abs = |x0 − x| is not sufficient
in such a classification. This is due to the fact that the magnitude of the numbers is
not taken into account, which is shown in the following three examples, again using five
significant digits.

|1.2345 · 10+10 − 1.2346 · 10+10| = 1.11 · 108

|1.2345 · 10−10 − 1.2346 · 10−10| = 1.11 · 10−12

|1.2345 · 10−10 − 1.3456 · 10−10| = 1.1111 · 10−11

Although the error in the mantissa is identical for the first two examples, the obtained
absolute errors differ vastly, based on the magnitudes. In the third example, only one
significant digit is identical in the two numbers, making them clearly more ’different’
than the pairs above. The absolute error however appears to be comparable to that of
example two and negligible compared to example one.
To account for that, the relative error rel = |x0−x|

x0
is introduced. Application to the

above example gives:

|1.2345 · 10+10 − 1.2346 · 10+10|/1.2345 · 10+10 = 8.1 · 10−5

|1.2345 · 10−10 − 1.2346 · 10−10|/1.2345 · 10−10 = 8.1 · 10−5

|1.2345 · 10−10 − 1.3456 · 10−10|/1.2345 · 10−10 = 8.1 · 10−2

Now the relative error for the first two examples is identical, which is in accord to
their identical mantissas. The relative error of the third example is magnitudes higher,
classifying the corresponding numbers as more different.
The negative decadic logarithm of the relative error can be interpreted as the first

differing digit in the operands.

9.1.2. Numerical Analysis

Analysis and interpretation of numerical instabilities is not trivial. The tools and tech-
niques used in this work shall be introduced here, using a real life example from the
Obara-Saika context. As mentioned previously, severe errors might arise by the addi-
tion of numbers with largely different magnitudes. An example is the calculation of the
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prefactor XPA of the vertical recurrence relation (equation (3.52)).

XPA = Px − Ax (9.3)

The center-of-charge coordinate Px of two PCG’s centered on A and B, with exponents
a and b, is just

Px =
aAx + bBx

a+ b
(9.4)

Now as Px is needed not only to calculate XPA, an approach would be to calculate
Px once, thus saving unnecessary computational resources. However, this gives rise
to numerical noise in the calculation of XPA, when using equation (9.3). Reducing
equation (9.3) to the common denominator gives

XPA =
aAx + bBx −aAx − bAx

a+ b
= − b

a+ b
(Ax −Bx) (9.5)

The term aAx of equation (9.4) gets canceled. For large a, in calculating Px singularly,
this term however becomes of leading magnitude, throwing away significant digits of
bBx. For sufficiently large differences in magnitudes, the numerical information of bBx

is completely lost, giving an error in the calculation of XPA.
This is summarized in table 9.1. For varying a, the results forXPA using equation (9.3)

and equation (9.5) are shown, to ten significant digits, in addition to the respective
absolute and relative errors. Bx and b have been set to 1, and Ax to 2.

a XPA(9.3) XPA(9.5) abs((9.5),(9.3)) rel((9.5),(9.3))
10−17 −1.00000000 · 10+00 −1.00000000 · 10+00 0.0 · 10+00 0.0 · 10+00

10−01 −9.09090909 · 10−01 −9.09090909 · 10−01 1.1 · 10−16 1.2 · 10−16

10+01 −9.09090909 · 10−02 −9.09090909 · 10−02 2.8 · 10−17 3.1 · 10−16

10+02 −9.90099009 · 10−03 −9.90099009 · 10−03 1.6 · 10−17 1.6 · 10−15

10+05 −9.99990000 · 10−06 −9.99990000 · 10−06 5.4 · 10−17 5.4 · 10−12

10+07 −9.99999900 · 10−08 −9.99999900 · 10−08 6.7 · 10−17 6.7 · 10−10

10+13 −9.99200722 · 10−14 −9.99999999 · 10−14 8.0 · 10−17 8.0 · 10−04

10+16 0.00000000 · 10+00 −9.99999999 · 10−17 1.0 · 10−16 1.0 · 10+00

Table 9.1.: Calculation of XPA using the algebraically identical equations (9.3) and (9.5).
Shown are explicit values, and their absolute and relative errors, for varying a.

Clearly, the two algebraically identical equations produce different results for increasing
a. It shall be noted that the absolute error stays about constant, and relatively small,
for all a. The relative error however increases with increasing a. Starting with a = 102,
less and less significant digits are identical, giving a totally different result for a = 1016.
Although the absolute errors are small, it shall be pointed out that in the Obara-

Saika scheme, due to the massive number of appearing intermediates, even small errors
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could propagate to substantially influence the final result. This is shown in detail in
section 12.3.

The boost::multiprecision Library

For the calculation of XPA two algebraically identical equations can be given, producing
different numerical results. In this case, based on the analysis given in the text, equa-
tion (9.5) appears to give the correct result. Nevertheless, at this point, this can not be
put to the test.
To analyze numerical issues properly, the boost::multiprecision library [41] has been

used in this work. It provides with mpfr_float_backend an floating point type with an
adjustable number of significant decimal digits. Using this type, calculations can be per-
formed with the desired degree of accuracy, and easily compared to the results obtained
with the standard floating point types. Due to C++’s powerful template mechanism, code
maintenance is reduced to a minimum. Listing 9.1 exemplifies this for the above men-
tioned calculation of −a + (a + b) versus (−a + a) + b. In this example the number of
significant digits for the mpfr_float_backend type is set to 500, and the result is compared
to the one obtained with the standard double type.

1 template <class T> void f() {
2 T a = 555e10 , b = 555e-10;
3 cout << -a + (a + b) << endl;
4 cout << (-a + a) + b << endl;
5 }
6
7 int main (int argc , char* argv []) {
8 f<number <mpfr_float_backend <500> > >();
9 f<double >();

10 }
11
12 // output:
13 // number <mpfr_float_backend <500> >
14 5.55e-08
15 5.55e-08
16 // double
17 0
18 5.55e-08

Listing 9.1: Use of the boost::mpfr_float_backend high accuracy type.

By templating the functions relevant to some calculation, using the high accuracy boost
type becomes identical to the use of standard types, giving a powerful means to analyze
possible numerical issues. In this case, using the double type, a + b equates to a, due
to the differences in magnitudes. Therefore −a + (a + b) equates to zero, giving the
algebraically wrong result. The boost type however produces the correct result.
Now this high accuracy type can be used to further analyze the two calculation path-

ways for the prefactor XPA. In table 9.2 the relative error for the XPA values obtained
with the high accuracy type using 500 digits is shown, for equations (9.3) and (9.5),
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respectively. For the purpose of comparison, the results obtained with the standard
double type are repeated.

a rel(boost<500>)((9.5),(9.3)) rel(double)((9.5),(9.3))
1.0 · 10−17 2.4 · 10−501 0.0
1.0 · 10−1 2.7 · 10−501 1.2 · 10−16

1.0 · 102 8.5 · 10−500 1.6 · 10−15

1.0 · 105 7.5 · 10−497 5.4 · 10−12

1.0 · 107 9.8 · 10−495 6.7 · 10−10

1.0 · 1013 2.4 · 10−488 8.0 · 10−4

1.0 · 1016 4.2 · 10−486 1.0

Table 9.2.: Relative errors of XPA obtained using the algebraically identical equations
(9.3) and (9.5). Compared are the values of XPA calculated with the high accuracy type
using 500 digits and the standard double.

The relative error from the calculations using the high accuracy type shows the same
increase as observed for the double type. With increasing a, more and more significant
digits are lost. For a = 1016, the accuracy of the double type is reduced to zero significant
digits, loosing 16 digits compared to a = 10−17. Using the high accuracy type, again 15
significant digits are lost in the same range.

However, as the high accuracy type still reproduces over 480 significant digits of XPA,
regardless of the equation used, it is well suited to determine which of the equations
(9.3) or (9.5) gives the correct result. The result of this comparison is summarized
in table 9.3, stating the relative errors of XPA calculated with the high accuracy type
using equation (9.3) and the results obtained with the standard double type, for both
equation (9.3) and equation (9.5).

a rel(boost<500>(9.3),double(9.3)) rel(boost<500>(9.3),double(9.5))
1.0 · 10−17 0.0 0.0
1.0 · 10−1 1.2 · 10−16 0.0
1.0 · 102 1.6 · 10−15 0.0
1.0 · 105 5.5 · 10−12 0.0
1.0 · 107 6.6 · 10−10 0.0
1.0 · 1013 8.0 · 10−4 0.0
1.0 · 1016 1.0 1.2 · 10−16

Table 9.3.: Relative errors of XPA obtained using the algebraically identical equations
(9.3) and (9.5). Results for the standard double type are compared to the XPA values
obtained with the high accuracy type, using 500 digits and equation (9.3).

Obviously, and as obtained by manual inspection, equation (9.5) gives the correct result
for XPA, whereas the evaluation from the precalculated Px (9.3) suffers from numerical
instabilities.
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To represent molecules, basis sets and the iteration over associated quantities, the class
structures already present in the QOL have been used for most parts of the implemen-
tations presented in this work. They are part of the QOL [18] and will be not discussed
in detail, only a short overview of how they are used will be given.

10.1. Molecules and Basis Sets

10.1.1. Input Format

Molecules and basis sets are initialized from text files. The format to specify the molec-
ular geometry follows MOLPROs input specifications.

1 geometry = {
2 C -0.865463 -1.35994 0
3 H -0.174658 -3.31368 0
4 H -0.174491 -0.382957 1.6921
5 H -0.174491 -0.382957 -1.6921
6 H -2.93784 -1.35995 0
7 };

Listing 10.1: Geometry specification for CH4.

Coordinates are expected to be given in atomic units.
Basis sets are read from XML files, using a format specified within the QOL. They

are generated from DALTON basis set files as described in section 8.2.1. Listing 10.2
shows the cc-pVDZ basis for hydrogen as an example.

1 <CartesianGaussianBasisEntry >
2 <Comment >
3 ! cc -pVDZ EMSL Basis Set Exchange Library 23/01/15 3:23
4 ! HYDROGEN (4s,1p) -> [2s,1p]
5 </Comment >
6
7 <AngularMomentumGroup l="0">
8 <ZetaContraction
9 zeta="13.0100000"><Coefficients > 0.0196850 0.0000000

</Coefficients >
10 </ZetaContraction >
11 <ZetaContraction
12 zeta="1.9620000"><Coefficients > 0.1379770 0.0000000

</Coefficients >
13 </ZetaContraction >
14 <ZetaContraction
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15 zeta="0.4446000"><Coefficients > 0.4781480 0.0000000
</Coefficients >

16 </ZetaContraction >
17 <ZetaContraction
18 zeta="0.1220000"><Coefficients > 0.5012400 1.0000000

</Coefficients >
19 </ZetaContraction >
20 </AngularMomentumGroup >
21
22 <AngularMomentumGroup l="1">
23 <ZetaContraction
24 zeta="0.7270000"><Coefficients > 1.0000000 </Coefficients >
25 </ZetaContraction >
26 </AngularMomentumGroup >
27 </CartesianGaussianBasisEntry >

Listing 10.2: cc-pVDZ basis for hydrogen

Note that there is no explicit reference (despite the comment) to the element type in
the XML file. This is resolved internally by the QOL, the element type being deduced
from the file name (here: H.xml).

10.1.2. Technical Representation

Within the QOL, molecules are represented by the class Molecule, and the system of
interest by one of the CGBTree_* classes. Their usage is rather straightforward, the
Molecule being constructed from the text file holding the molecular geometry, and the
CGBTree_* classes from a string specifying the directory holding the xml files, relative
to ~/QOLBasis, and the molecule. The CGBTree_*’s are available in several flavours. Of
interest is CGBTree_Plain, by which a basis of primitive Cartesian Gaussians is spec-
ified. The radial-angular-transformed bases of section 6.1.3 can be represented by
CGBTree_Contracted_AngularTransformed, respectively. Listing 10.3 shows this for hydrogen
in a cc-pVDZ basis, in the primitive- and radial-angular-transformed bases, respectively.

1 Molecule molecule("~/H.in");
2
3 CGBTree_Plain <double > pBasis(molecule , "emsl/cc-pvdz");
4
5 CGBTree_Contracted_AngularTransformed <double > tBasis(molecule ,

"emsl/cc -pvdz");

Listing 10.3: Initialization of different basis types

So far, only abstract representations of the system of interest have been generated.

10.2. Iterators

Several iterator classes are available to make use of the bases introduced above. They
are templated, the basis type being the template argument, and can thus be used in a
almost identical fashion for all basis types.
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10.2.1. Basis Iterators

The simplest type of iterator is a basis iterator, which is implemented in the class
CGBTree_Iterator. It loops over the basis functions present in some system. In the QOL,
iterations are not implemented in a flat, but in a structured way. Instead of a single
loop, four levels of hierarchy are provided. At the first level, all centers of the system
are looped over. The second level then loops over the different angular momenta of the
current center. The third level now differs, depending on the basis used. In a primitive
basis, the loop is over the different exponents for the actual center-angular combination.
If the radial angular transformed basis is chosen, the loop iterates over the contractions
for the current tuple. At this point, the iteration runs over the shells of the system, in the
primitive-, or AO-basis. The fourth level then gives access to the individual functions of
the shell. Listing 10.4 applies this to the example given above, using a primitive basis.

1 Molecule molecule("~/H.in");
2
3 CGBTree_Plain <double > pBasis(molecule , "emsl/cc-pvdz");
4
5 typedef CGBTree_Iterator <CGBTree_Plain <double > > ITERATOR;
6
7 ITERATOR pIter(pBasis);
8
9 for (typename ITERATOR :: SubIter11 i1(pIter); i1.valid(); ++i1) {

10 cout << "center␣" << pIter.i1()->first << endl;
11
12 for (typename ITERATOR :: SubIter22 i2(pIter); i2.valid(); ++i2) {
13 cout << "␣␣angular␣" << pIter.i2()->first.l() << endl;
14
15 for (typename ITERATOR :: SubIter33 i3(pIter); i3.valid(); ++i3) {
16 cout << "␣␣␣␣exponent␣" << pIter.i3()->first.zeta() << endl;
17
18 for (typename ITERATOR :: SubIter44 i4(pIter); i4.valid(); ++i4)

{
19 cout << "␣␣␣␣␣shell␣" << pIter.i4()->first <<
20 cout << "␣␣␣␣index␣" << pIter.i4()->second <<
21 cout << "␣␣␣␣␣␣ITER␣" << pIter << endl;
22 }
23 }
24 }
25 }

Listing 10.4: Iterating over a primitive basis.

The primitive basis can be easily changed to the radial-angular-transformed basis by
changing the basis template in the typedef from CGBTree_Plain to CGBTree_Contracted_
AngularTransformed.
The properties of the basis are accessed by the methods i1() to i4() of the iterator. In

the example this is done at the beginning of the actual loops changing the quantity, but
this is not restrictive. In fact properties can be queried anywhere in the loops, regardless
of the actual level.
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The output of the above example is given in listing 10.5. On the left, before ITER, the
hierarchical access to the basis can be seen. On the right, the actual basis function is
shown.

1 center [0 0 0]
2 angular 0
3 exponent 13.01
4 shell (0, 0, 0) index 0 ITER [[0 0 0], s, (13.01) ,

(0, 0, 0) (#0)]
5 exponent 1.962
6 shell (0, 0, 0) index 1 ITER [[0 0 0], s, (1.962) ,

(0, 0, 0) (#1)]
7 exponent 0.4446
8 shell (0, 0, 0) index 2 ITER [[0 0 0], s, (0.4446) ,

(0, 0, 0) (#2)]
9 exponent 0.122

10 shell (0, 0, 0) index 3 ITER [[0 0 0], s, (0.122) ,
(0, 0, 0) (#3)]

11 angular 1
12 exponent 0.727
13 shell (1, 0, 0) index 4 ITER [[0 0 0], p, (0.727) ,

(1, 0, 0) (#4)]
14 shell (0, 1, 0) index 5 ITER [[0 0 0], p, (0.727) ,

(0, 1, 0) (#5)]
15 shell (0, 0, 1) index 6 ITER [[0 0 0], p, (0.727) ,

(0, 0, 1) (#6)]

Listing 10.5: Output of looping over the primitive basis structure of H in a cc-pVDZ
basis

10.2.2. Two- and Four-Index Iterators

Similar iterators are provided to loop over pairs and quadruples of basis functions. Two-
index iterations, needed for one particle matrix elements such as overlap and kinetic-
energy integrals, are provided by the CGBTree_HermitianTupel2_Iterator class. Loops
over four-index quantities, such as the two-electron integrals, are implemented via the
CGBTree_HermitianTupel4_Iterator class. Only the CGBTree_HermitianTupel4_Iterator will
be discussed in some detail, as the use of the two-index iterator is essentially identical.
Both iterators are implemented as the basis iterator, resembling the four-fold hierarchy

of the basis in the same way. The first level generates all center-quadruples, for each
of which all angular tuples are iterated over, followed by exponents/contractions and
the individual shell functions. Note that the first three levels effectively iterate over the
integral batches. The fourth level, iteration over all two-electron integrals is not needed
in most cases.
As indicated in the name, using these two iterators will not give all n2 or n4 possible

combinations of basis-functions. Both are written to take integral/batch symmetries
into account, iterating only over all non-redundant tuples.
An example for hydrogen in a cc-pVDZ basis is given in listing 10.6.
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1 Molecule molecule("~/H.in");
2
3 typedef CGBTree_Plain <double > BasisType;
4 BasisType basis(molecule , basis);
5
6 typedef TwoParticleBasis <BasisType , TwoParticleFunctionPair >

BasisType2;
7 BasisType2 basis2(basis);
8
9 typedef CartesianGaussian_UnitarySpace2 <BasisType > USpace;

10 USpace uSpace(basis2);
11
12 typedef CGBTree_HermitianTupel4_Iterator <BasisType > PI4;
13 typedef typename PI4:: SubIter11 I11;
14 typedef typename PI4:: SubIter22 I22;
15 typedef typename PI4:: SubIter33 I33;
16 typedef typename PI4:: SubIter44 I44;
17 PI4 pIter4(uSpace);
18
19 for (I11 i1(pIter4); i1.valid (); ++i1) { // center
20 for (I22 i2(pIter4); i2.valid (); ++i2) { // angular
21 for (I33 i3(pIter4); i3.valid (); ++i3) { // exponent
22 for (I44 i4(pIter4); i4.valid (); ++i4) { // shell
23 int idx_bra1 = pIter4.i4().bra.i1->second;
24 int idx_bra2 = pIter4.i4().bra.i2->second;
25 int idx_ket1 = pIter4.i4().ket.i1->second;
26 int idx_ket2 = pIter4.i4().ket.i2->second;
27 cout << idx_bra1 << "␣" << idx_bra2 << "␣" << idx_ket1 << "␣

" << idx_ket2 << endl;
28 }
29 }
30 }
31 }

Listing 10.6: Iterating over four-index tuples.

Despite the additional two-particle definitions, the use of the CGBTree_HermitianTupel4_
Iterator is almost identical to the basis iterator. Similarly, the basis can be changed by
simply replacing the basis class in the BasisType typedef. The access methods are also
identical, just extended by bra/ket and i1/i2 to indicate which function of the quadruple
to access.
Iteration order and naming convention are based on the physicist notation

〈ij|kl〉 =

∫
i(1)j(2)k(1)l(2)r−112 dr1dr2

referring with bra to the functions i and j, and with ket to k and l, respectively. The
particle is identified by i1 and i2. The use of the two-index iterator is essentially the
same, although the specification of the particle (i1 and i2) is not necessary in this case.
Note that, in the case of a four-index iteration, each of the four level loops masks a

four-fold loop, one for each index, giving the four index iteration as a loop over a 16
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dimensional quantity. In the two-index case, two loops are masked by each level.
Finally, listing 10.7 shows part of the output of the code of listing 10.6, in a formatted

way. Shown is the fourth level loop over the pppp-batch with four equal p-shells, each of
which holds the basis functions 4, 5 and 6. Clearly the neglection of redundant tuples can
be seen, for example the tuples 5444, 4544 and 4454 are identical to 4445 and omitted.

1 4 4 4 4 4 4 4 6 5 5 5 6 4 6 6 6
2 4 4 4 5 4 4 5 6 4 5 6 6 5 6 6 6
3 4 4 5 5 5 4 5 6 5 5 6 6 6 6 6 6
4 4 5 4 5 4 4 6 6 4 6 4 6
5 4 5 5 5 4 5 4 6 4 6 5 6
6 5 5 5 5 4 5 5 6 5 6 5 6

Listing 10.7: Part of the output of looping over the four-index tuples of H in a cc-pVDZ
basis. Index tuples are given for the pppp-batch.

10.2.3. Arbitrary Level and Notation Iteration

The iterators provided by the QOL lack certain functionalities, which could not be added
to the existing framework. Therefore a new iteration approach has been implemented,
to overcome those shortcomings. The major property to be changed in the two-particle
iterator was to alter the order of iteration from physicist to chemist notation. A great
deal of quantities arising are particle bound, for example the Schwarz integrals and
parts of the shell batch data. Iteration in the physicist notation constantly breaks the
particle correlation, leading to redundancies and the recalculation/reloading of various
quantities. Closely connected is the possibility to fully access the four-fold loops at
each level, allowing for a efficient factoring out of quantities at loop access. Thirdly, at
some point in the implementation, the change of the fixed center-angular-exponent-shell
hierarchy became desirable.
A general scheme has been devised to ensure non-redundant iteration for all six pos-

sible hierarchies, in physicists or chemist notation, using a simple piece of code. Under-
standing this is non-trivial and shall be explained in detail.
To do so, the angular loop of the center-angular-exponent hierarchy shall be used. To

simplify manners, the exponent part is going to be neglected for now. The physicists
notation 〈ij|kl〉 =

∫
i(1)j(2)r−112 k(1)l(2)dr1dr2 is going to be used, depicting i as bra1,

j as bra2 and k and l as ket1 and ket2, respectively. Suppose some centers A and B,
associated with the following angular momenta.

A← {0, 1, 2}
B ← {0, 1}

For the angular loop of the bra1 center, no restriction exists, all indices can be used.
For the bra2 angular loop, restrictions exist, if some condition is met. This condition

is the equality of the bra1 and bra2 and the ket1 and ket2 centers. In this case, the bra2
loop has to start with the angular momentum of the current bra1 index. For example
in the center pattern AABB, with the bra1 angular momentum being one, starting
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the bra2 loop with angular momentum 0 leads to the iteration seed 10ij, with i and j
determined by the following ket1 and ket2 loops. As the combination 01ij has already
be iterated over, iterating over 10ij will only give redundant patterns.
The ket1 loop is bound to the bra1 center, as interchange gives a symmetry equivalent

integral. In the case of equal bra1 and ket1 centers, the ket1 angular iteration has to
start with the current angular momentum of the bra1 loop. This prevents the generation
of i.e. 1i0j as an iteration seed.
Similar interchange of bra2 and ket2 centers leads to the first restriction of the ket2

loop. If both centers are equal, the ket2 angular loop has to start with the angular
momentum of the bra2 position. An additional restriction exists if the bra1, bra2 and
ket1, ket2 centers are equal. For the center pattern AABB (or AAAA), the angular
pattern iijk exist. In such a case the ket2 angular momentum has to be bound to the
ket1 angular momentum. An example would be the angular seed 221k (for AABB).
Starting the ket2 loop by 0 would give 2210, which has already been generated by the
previous seed 220k.

This can be generalized by thinking of the centers in the example as index containers.
In the same manner as the centers of a center tuple hold sets of angular momenta,
the angular momenta of an angular tuple hold sets of exponents. For these the same
restrictions as derived for the angular loop of a center tuple hold. Equivalently the level
assignment can be changed, i.e. starting by angular momenta with assigned centers with
assigned exponents. Each level loop can be expressed in four loops over the index sets,
using the restrictions above to ensure iteration over non-redundant tuples.

Listing 10.8 shows the loop for level two in the center (Point3D), angular (int), exponent
(double) hierarchy.

1 typedef typename vector <pair <Point3D <double >,
2 vector <pair <int ,
3 vector <pair <double , int > > > > > >:: const_iterator

L1;
4
5 typedef typename vector <pair <int ,
6 vector <pair <double , int > > > >:: const_iterator L2;
7
8 // L1 l1_b1 , l1_b2 , l1_k1 , l1_k2;
9

10 for (L2 l2_b1 = l1_b1 ->second.begin(); l2_b1 != l1_b1 ->second.end();
++l2_b1)

11 {
12 for (L2 l2_k1 = (l1_b1 == l1_k1) ? l2_b1 : l1_k1 ->second.begin();

l2_k1 != l1_k1 ->second.end(); ++l2_k1)
13 {
14 for (L2 l2_b2 = (( l1_b1 == l1_b2) && (l1_k1 == l1_k2)) ? l2_b1 :

l1_b2 ->second.begin(); l2_b2 != l1_b2 ->second.end(); ++ l2_b2)
15 {
16 L2 l2_k2 = l1_k2 ->second.begin();
17
18 if (l1_b2 == l1_k2)
19 l2_k2 = l2_b2;
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20 if ( (l1_b1 == l1_b2) && (l1_k1 == l1_k2) && (*l2_b1 ==
*l2_b2))

21 l2_k2 = l2_k1;
22 for (; l2_k2 != l1_k2 ->second.end(); ++l2_k2)
23 {
24 }
25 }
26 }
27 }

Listing 10.8: General loop structure for non-redundant hierarchical iterations.
Specialisation for level two angular iteration.

The loop-structure itself is general, the specialization to a specific hierarchy is done with
the typedef’s in the beginning.
Listing 10.8 gives the non-redundant tuples in terms of the physicists notation. The

chemists notation (ik|jl) =
∫
i(1)k(1)r−112 j(2)l(2)dr1dr2 = 〈ij|kl〉 can be generated from

the physicists notation by interchange of bra2 (j(2)) and ket1 (k(1)) functions. Using
this in listing 10.8, i.e. interchanging the bra2 and ket1 loops gives the leveled, non-
redundant iteration in chemist notation.
Obviously, this structure can be easily downgraded to two- and one-index iterations.
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Integral prescreening has been implemented for primitive Cartesian Gaussian bases. In a
first ansatz, prescreening is performed in terms of batches. As described in section 7.1.1,
a batch 〈IJ |KL〉 of integrals can be neglected if its maximum contribution to the Fock
matrix is less than some given threshold T .

|G(〈IJ |KL〉)| ≤ Smaxbatch ·Dmax
batch ≤ T (11.1)

The maximum integral value Smaxbatch can be estimated by the product of two maxima over
certain sets of Schwarz integrals Sij =

√
〈ii|jj〉. The first set consists of the Schwarz

integrals arising from the Cartesian product of the functions in the I- and K-shells, the
second is obtained in the same way from the J- and L-shells.

Smaxbatch = max({S{I}x{K}}) ·max({S{J}x{L}}) (11.2)

For the maximum density contribution, similar maxima over sets of density matrix
elements are needed. Again, the sets are built from the Cartesian product of functions
in pairs of shells.

Dmax
batch = max({2 ·max({D{I}x{K}}, {D{J}x{L}}),

0.5 ·max({D{I}x{J}}, {D{I}x{L}}, {D{J}x{K}}, {D{K}x{L}})}) (11.3)

11.1. General Implementation

Before delving into the optimized specializations of the implementation, the basic ideas
shall be sketched. Central is the concept of generating maxima over certain elements
of Schwarz integrals, or density matrix elements. Now the Schwarz integrals Sij can be
interpreted as a matrix having the same structure as the density matrix. By structure
the order of basis function is meant. In the QOL framework, the ordering is given
by the iteration, resulting in the center-angular-shell-function hierarchy introduced in
section 10.2.1. The individual maxima to calculate the maximum contribution of a
batch are generated from matrix elements arising from the combination of two shells.
In the QOL ordering of basis functions, these matrix elements correspond to blocks in
the respective matrices. The maxima have then to be built over the elements of these
blocks. Figure 11.1 exemplifies this for some model system, consisting of one center,
with two s- and p-shells. On the left in figure 11.1a, the full n x n matrix is shown,
emphasizing the shell blocks the maxima have to be generated for. Figure 11.1b on the
right then shows the corresponding matrix of the maxima, in terms of the shells of the
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system.

s s px py pz px py pz
0 1 2 3 4 5 6 7

s 0

s 1

px 2

py 3
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px 5
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pz 7

max

(a) Full Schwarz integral- or density-
matrix. Shell blocks over which maxima
have to be generated are emphasized.

s s p p

0 1 2 3

s 0

s 1

p 2

p 3

(b) The reduced block-maxima matrix.

Figure 11.1.: Reduction of the full Schwarz integral- or density-matrix to the block-
maxima form. In terms of shell batches.

Note that, as both the Schwarz integral and density matrices are symmetric, i.e. Sij = Sji
and Dij = Dji, also the block maxima reduced matrices are symmetric.

11.1.1. The MapperWithMatrix Ansatz

This block maxima generation is identical for the Schwarz and density estimate. For
both, the block maxima reduced matrices of figure 11.1b are generated prior to the
calculation, accessing their elements when needed. For the Schwarz integrals, this can
be done once for the entire Hartree-Fock calculation. The density maxima, on the other
hand, have to be updated with changing density matrices, i.e. in each iteration.
Internally, the Schwarz and density estimates are handled by two classes, Schwarz-

Estimate and DensityEstimate, respectively. The logic to store, update and access the
block maxima matrices is handled by the class MapperWithMatrix. It stores the correspond-
ing block maxima matrix and provides a means to translate between basis function- and
shell indices. The basic idea is represented by a simple vector<int> _idxMap, of size n. Its
index corresponds to the index of the basis function, the value at a certain index being
the index of the shell. The above example of one center with two s- and p-shells results
in the following structure.

s s px py pz px py pz
idx 0 1 2 3 4 5 6 7

_idxMap[idx] 0 1 2 2 2 3 3 3

Table 11.1.: Mapping indices from basis functions to shells.
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The eight basis functions correspond to four shells. The matrices holding the max-
ima therefore are of the size 4 x 4. The access, in terms of basis function indices, is
accomplished via the _idxMap translator.

1 // matrix <double > _maxVals;
2 double & MapperWithMatrix :: operator () (int i, int j)
3 { return _maxVals(_idxMap[i], _idxMap[j]); }

Listing 11.1: Accessing the _maxVals matrix.

11.1.2. Initialization

In the DensityEstimate class, the initialization/update of the maxima is then simply
handled by the loop in listing 11.2. The density elements are stored in the matrix
_D, and the maxima are handled by the MapperWithMatrix _D_MWM. First, the underlying
matrix _maxVals is reset to zero. In the following loop over the elements of the density
matrix, the shell pair maxima are updated by determining the maxima of the current
shell pair maxima and the actual density matrix element.

1 // matrix <double > _D;
2 // MapperWithMatrix <double > _D_MVM;
3 void DensityEstimate <double >:: update () {
4 _D_MVM._maxVals () *= 0.0; // reset _maxVals matrix
5 for (int row = 0; row < _D.rows(); ++row)
6 for (int col = 0; col < _D.cols(); ++col)
7 _D_MWM(row ,col) = max(_D_MWM(row ,col), fabs(_D(row , col)));
8 }

Listing 11.2: Updating the density matrix block-maxima.

Initialization of the maximum values of the Schwarz integrals is principally identical,
the difference being the embedding into the calculation of the integrals. The integration
is performed according to section 12.4, where it will be discussed in detail. Worth
mentioning is the fact that, for the Schwarz integrals being a two-index quantity, a
two index iteration ansatz is sufficient. A minor drawback is that due to the fact that
integrals are evaluated in batches, a lot of unneeded integrals are calculated in addition
to the Schwarz integrals. This is shown in table 11.2, for various molecules and basis
sets.
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Calculated Schwarz-Integrals Overhead (%)
C4H10 Def2-SVP 103137 14673 85.8
C4H10 cc-pVDZ 106741 16069 84.9
C4H10 Def2-TZVP 618480 40872 93.4
C4H10 cc-pVDZ 106741 16069 84.9
C4H10 cc-pVQZ 10097685 248625 97.5

Alanine Def2-SVP 164791 20083 87.8
Alanine cc-pVDZ 171649 22549 86.9
Alanine Def2-TZVP 1194768 66282 94.5
Alanine cc-pVDZ 171649 22549 86.9
Alanine cc-pVQZ 12915397 289039 97.8

Table 11.2.: Overhead of unneeded integrals when calculating the Schwarz integrals
〈ii|jj〉.

This has been not further optimized. The reason is summarized in table 11.3, which
compares the timings, in seconds, of the initialization of the Schwarz maxima (includ-
ing integration), to the full time needed to perform the Hartree-Fock calculation. For
completeness sake, timings for updating the density maxima are included. Shown are
results for serotonine in various basis sets.

Serotonine Schwarz Init Density Update Full SCF Calculation
Def2-SVP 0.02 0.002 144.45
Def2-TZVP 0.27 0.006 1205.46
Def2-QZVP 2.04 0.028 15661.81

cc-pVDZ 0.03 0.002 172.82
cc-pVTZ 0.11 0.007 1346.57
cc-pVQZ 1.75 0.024 12328.92
cc-pV5Z 6.29 0.079 109297.09
cc-pV6Z 33.54 0.204 690142.58

roos-aug-dz-ano 0.11 0.015 7632.52
roos-aug-tz-ano 0.54 0.030 35534.73
ano-rcc 1.90 0.050 122815.99

Table 11.3.: Timing comparison of the initialization/update of the _maxVals matrices
versus the full SCF calculation. Serotonine in various basis sets, in seconds.

Obviously, both initializing the Schwarz integral- and updating the density-maxima are
negligible compared to the effort needed to perform the full SCF calculation.
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11.1.3. Calculation of the Estimate

Accessing the maximum values is of course identical to updating. The batchMax method
of the SchwarzEstimate class returns the estimate of the maximum integral value for some
batch, having as arguments the indices of any of the basis functions of the corresponding
shells. The MapperWithMatrix _S_MWM gives the respective maxima, their product being the
estimate as given by (11.2).

1 const double SchwarzEstimate :: batchMax(int p, int r, int q, int s)
const {

2 return _S_MWM(p, q) * _S_MWM(r, s); }

Listing 11.3: Calculation of the Schwarz estimate.

Similarly, the maximum density element is generated using (11.3), implemented in
DensityEstimate.

1 const double DensityEstimate :: batchMax(int p, int r, int q, int s)
const {

2 double m = 0.5 * _D_MWM(p,r);
3 m = max(m, 2.0 * _D_MWM(p,q));
4 m = max(m, 0.5 * _D_MWM(p,s));
5 m = max(m, 0.5 * _D_MWM(r,q));
6 m = max(m, 2.0 * _D_MWM(r,s));
7 m = max(m, 0.5 * _D_MWM(q,s));
8 return m;
9 }

Listing 11.4: Calculation of the density estimate.

Those two methods are then combined to calculate the maximum contribution of some
batch. Recall that the effective iteration over batches is at the third level of the four-
index iteration. Here the indices of the involved basis functions are queried. Those
are needed to calculate the symmetry correction of equation (5.10), and to retrieve the
maximum values. The product of symmetry correction and maximum values is then
compared to some threshold, skipping the current batch if the criterion is met.

1 // int idx [4];
2 // SchwarzEstimate se;
3 // DensityEstimate de;
4 for (I33 i3(pIter4); i3.valid (); ++i3) {
5 idx [0] = pIter4.i4().bra.i1->second;
6 idx [1] = pIter4.i4().bra.i2->second;
7 idx [2] = pIter4.i4().ket.i1->second;
8 idx [3] = pIter4.i4().ket.i2->second;
9

10 symCorr = calcSymCorr(idx[0], idx[1], idx[2], idx [3]);
11
12 if ( (se.batchMax(idx[0], idx[1], idx[2], idx [3]) *
13 de.batchMax(idx[0], idx[1], idx[2], idx [3]) *
14 symCorr) < thresh)
15 continue;
16 }

Listing 11.5: Combination of Schwarz and density estimate.
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11.1.4. Accuracy

The accuracy of the two-electron energy obtained when activating integral prescreening
is shown in table 11.4. The calculations have been performed on serotonine, in the
cc-pVQZ basis. One SCF iteration has been performed, using the density obtained
with TURBOMOLEs extended Hückel guess. For varying thresholds, the absolute and
relative deviations to the energy obtained with disabled prescreening (threshold = 0)
are listed. Additionally, the amount of integrals included (in percent) and the speedup
in terms of execution time are shown.

Threshold |Et=0 − Et| |Et=0 − Et|/|Et=0| Calculated Timing
integrals (%) speedup

0.0 0.00 0.00 100 1.0
10−12 −4.20 · 10−10 2.10 · 10−13 27 3.5
10−11 −5.20 · 10−9 2.60 · 10−12 24 3.9
10−10 −6.80 · 10−8 3.40 · 10−11 22 4.2
10−09 −7.50 · 10−7 3.80 · 10−10 19 4.8
10−08 −5.20 · 10−6 2.60 · 10−9 16 5.6
10−07 −9.20 · 10−6 4.60 · 10−9 14 6.6
10−06 2.90 · 10−4 −1.50 · 10−7 11 8.2
10−05 1.70 · 10−2 −8.60 · 10−6 8 10.8
10−04 3.00 · 10−1 −1.50 · 10−4 5 15.7
10−03 3.70 −1.90 · 10−3 3 26.7

Table 11.4.: Accuracy with varying prescreening thresholds, for serotonine in a cc-pVQZ
basis. Corresponding percentage of calculated integrals and resulting speedup.

Clearly, the error in the energy increases with increasing threshold. However, considering
that a common convergence criterion for the energy is about 10−7, an accuracy below this
number can be achieved by thresholds of 10−10 and smaller. In this work a threshold of
10−11 is used, reproducing the exact energy, in this example, to eleven significant digits,
corresponding to an absolute error of about 10−9. This accuracy has been obtained by
including only about 25% of all integrals, leading to a speedup of the calculation of
about a factor of four.

11.1.5. Quality of the Estimate

The prescreening ansatz implemented here is not able to detect all negligible integrals.
Three mechanisms have been identified by which non-significant integrals are included
in the calculation. Before discussing them in detail, the amount of accessible vanishing
contributions shall be shown. Table 11.5 lists the percentage of integrals giving contri-
butions of less than 10−11, with respect to the non-redundant integrals present in the
system, as obtained by (11.2). Shown are the results obtained for the first SCF iteration,
for a selected set of molecules and basis functions. The density matrices used are initial
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guess densities, obtained with the TURBOMOLE program package, using the extended
Hückel guess.

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z
C4H10 42.09 41.01 44.90 51.49
Alanine 52.64 48.37 50.12 54.24

Serotonine 75.89 73.88 75.34 77.37
C36H53N7O9 97.68 97.42 - -

Table 11.5.: Percentage of negligible integral contributions as detected by the imple-
mented prescreening ansatz. Listed are contributions of magnitudes smaller than 10−11.

In this set of systems, even for small molecules in small basis sets already 40 percent
of integral contributions can be neglected. This number increases only marginally with
increasing basis size, but hugely with increasing molecule size. For the largest molecule
C36H53N7O9 with 105 atoms only 2.32 percent of the 1242204008100 non-redundant
integrals have to be included in the calculation.

Overestimation of the Batch Contributions

As has been pointed out in section 7.2.1, estimating a batch by (11.2) might overestimate
the maximum contribution. This is due to the fact that the maximum integral value
Smaxbatch, and the maximum density element Dmax

batch are not necessarily linked. In such
cases the estimated contribution turns out to be higher than the one accessible using
the individual approach (7.4).

To detect the amount of screenable batches missed by this overestimation, batches
surviving (11.2) have been analyzed in detail. After passing the estimate (11.2), the
maximum contribution of that batch has been determined by application of the individ-
ual estimate to each integral. Indeed batches could be identified this way which passed
the estimate (11.2), but nevertheless gave a maximum contribution to the Fock matrix
smaller than the threshold of 10−11. The results obtained for the set of molecules and
basis sets introduced in table 11.5 are shown in table 11.6. The same calculational details
were used. Shown is the percentage of screenable integrals with respect to the number
of surviving ones.

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z
C4H10 0.41 1.70 3.91 6.98
Alanine 0.73 2.41 5.11 8.49

Serotonine 1.31 2.99 6.06 9.53
C36H53N7O9 2.01 5.39 - -

Table 11.6.: Amount of integrals missed by overestimation, in percent. Relative to
integrals surviving the implemented screening.
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The number of integrals included but giving vanishing contributions is of significant
amount. It increases with increasing molecular and basis set size. For serotonine in a
cc-pV5Z basis, about one tenth of the integrals calculated correspond to batches giving
negligible contributions.
Unfortunately, the effort to detect such batches, i.e. using (7.4) to determine the

maximum batch contributions, is of significantly higher cost compared to the overhead
to calculate the not detected batches. Application of (11.2), in technical terms, requires
a maximum to be built over six numbers (Dmax

batch), which has to be multiplied by two
numbers (Smaxbatch). In the individual approach (7.4), the same number of operations has
to be performed for each integral in the batch, followed by the determination of the
maximum value.

Batches with Significant and Insignificant Contributions

Second source for screenable, but unnecessarily calculated integrals is the evaluation of
integrals in terms of batches. Even one significant integral contribution leads to the
calculation of the whole batch, including vanishing contributions.
To detect their number, all integrals surviving both the batch based screening (11.2),

and the individual batch screening presented above have been analyzed individually,
using (7.4). Their number is summarized in table 11.7, again using the set of molecules
and basis sets of above. Shown is the percentage with respect to integrals passing (11.2).

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z
C4H10 8.39 14.27 19.90 24.50
Alanine 11.30 16.69 21.35 24.68

Serotonine 20.46 26.31 30.87 33.83
C36H53N7O9 17.53 23.36 - -

Table 11.7.: Amount of integrals missed by the batch screening ansatz, in percent. Rel-
ative to integrals surviving the implemented screening.

An even higher amount of additionally screenable integrals can be found, again increasing
with increasing molecule and basis set size. For serotonine in a cc-pV5Z basis, one third
of the calculated integrals could be neglected.
However, as will be shown in detail in section 12.1.1, no really feasible way to calculate

integrals individually exists in the framework of the OS scheme. As integrals of a given
batch are closely bound together by the recursion intermediates, the computational cost
to calculate an integral individually is close to the cost of a whole batch. Additionally,
adapting the code-generating scheme of section 12.4 to individual integrals would result
in a huge amount of code and access logic. Consider for example a psss batch. Of the
three integrals in this batch, none, one, two or three might be negligible, giving a total
of eight possibilities to be taken into account.
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Integrals not Subject to the Schwarz Inequality

Thirdly, there are integrals giving vanishing contributions which can not be detected
using the Schwarz inequality (7.1). Their number has been determined similarly to the
methods described above, analyzing only the integrals which survived all three presented
screening hierarchies. For each of those integrals, the exact maximum contribution (5.3)
has been compared to the threshold of 10−11. The percentage of negligible integrals with
respect to the integrals calculated after application of (11.2) is shown in table 11.8.

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z
C4H10 12.75 13.40 14.34 15.43
Alanine 15.40 14.93 14.87 15.23

Serotonine 21.31 20.41 19.73 18.95
C36H53N7O9 25.19 23.24 - -

Table 11.8.: Amount of integrals missed by the Schwarz inequality, in percent. Relative
to integrals surviving the implemented screening.

Again, quite a substantial number of integrals passing the implemented prescreening
ansatz turn out to give vanishing contributions to the Fock matrix. The reasons for
integrals being missed by the Schwarz inequality shall not be discussed here, it shall
only be mentioned that at least a subset of those might be accessible by the multipole
screening method of Lambrecht et al. [15].

11.2. Exploiting Basis Set Hierarchies

The concept of shifting the interpretation of contributions to the Fock matrix from a
singular integral ansatz to estimating batches at once can be extended to further levels of
hierarchies. The center-angular-exponent hierarchy introduced with the QOL iterators
is particularly well suited for such an ansatz. For example, especially in sufficiently
large systems, there will be center combinations for which all integral contributions
are negligible. Similarly, there are cases for which all integrals of a particular angular
combination of a certain center combination can be discarded on the whole. It will be
shown that these negligible sets of integrals can be determined in a very efficient manner,
leading to a considerable speedup of the calculation.

In the ansatz introduced above, the estimation of the maximum contribution of a
batch has been based on the determination of maxima over sets of elements arising from
the combination of shell pairs. In a similar manner, maximum contributions can be
estimated for larger subsets of integrals. Considering some center combination ABCD,
the Schwarz integrals needed to estimate all integrals associated with this center tuple
arise from the Cartesian product of basis functions on the centers A combined with C,
and B withD, respectively. The same holds for the maximum density element associated
with this center combination, which can be determined from the function combinations
of the center pairs (A,B), (A,C), (A,D), (B,C), (B,D) and (C,D).
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Conceptually this is identical to the block maxima generation on batch level (see
section 11.1), extended to blocks of centers and angular momenta. In total, such maxima
can be generated for the three hierarchies of the iteration, leading to the block maxima
structure depicted in figure 11.2. Shown is a system with two centers, each of which
holds two s-shells, and two p-shells. The block maxima shown correspond to the batch-,
angular-, and center-hierarchies, in clock-wise fashion.
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Figure 11.2.: Block maxima reduction for the three hierarchies. Batch-, angular- and
center-maxima blocks are shown in clockwise fashion.

Having introduced the MapperWithMatrix class in section 11.1.1, the additional levels of
hierarchy can be realized in a straight forward way by implementing different _idxMap’s,
one for each hierarchy. Using the above example, the following structure is obtained:

s s px py pz px py pz s s px py pz px py pz

idx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
center _idxMap[idx] 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
angular _idxMap[idx] 0 0 1 1 1 1 1 1 2 2 3 3 3 3 3 3
batch _idxMap[idx] 0 1 2 2 2 3 3 3 4 5 6 6 6 7 7 7

Table 11.9.: Mapping indices. Basis function indices to center-, angular- and batch-
indices.

Now the MapperWithMatrix can represent any of the three hierarchies, depending on the
index mapping used. The access method to the maximum values does not change, as
the logic is hidden in the index map.
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The DensityEstimate and SchwarzEstimate classes have to be extended by methods
referring to the additional hierarchies. The update of the density maxima is simply
changed to listing 11.6.

1 // matrix <double > _D;
2 // MapperWithMatrix_Center <double > _D_MVM_Center;
3 // MapperWithMatrix_Angular <double > _D_MVM_Angular;
4 // MapperWithMatrix_Batch <double > _D_MVM_Batch;
5 void DensityEstimate <double >:: update () {
6 _D_MVM_Center._maxVals () *= 0.0; // reset _maxVals matrix
7 _D_MVM_Angular._maxVals () *= 0.0;
8 _D_MVM_Batch._maxVals () *= 0.0;
9

10 for (int row = 0; row < _D.rows(); ++row)
11 for (int col = 0; col < _D.cols(); ++col)
12 {
13 _D_MWM_Center(row ,col) = max(_D_MWM_Center(row ,col),

fabs(_D(row , col)));
14 _D_MWM_Angular(row ,col) = max(_D_MWM_Angular(row ,col),

fabs(_D(row , col)));
15 _D_MWM_Batch(row ,col) = max(_D_MWM_Batch(row ,col),

fabs(_D(row , col)));
16 }
17 }

Listing 11.6: Updating the density matrix maxima in the three level approach.

Similar initializations have to be performed for the Schwarz estimate. Additionally
to the batchMax methods of both estimates, the centerMax and angularMax methods are
provided. The full loop for prescreening is shown in listing 11.7. At each level of
hierarchy, after obtaining indices, the maximum Fock contribution for the associated
integrals is calculated. If the criterion is met, the whole set of underlying integral
batches is neglected.

Note that the symmetry correction is only available at the zeta level of hierarchy.
However, as the symmetry correction is always smaller or equal one, the worst case is
an overestimation of the estimate at the levels one and two. Additional overestimation
arises, identically to the batch estimate, by the fact that the maximum Schwarz- and
density-estimates are not necessarily linked.

1 for (I11 i1(pIter4); i1.valid (); ++i1) {
2 // obtain indices
3 if ( (se.centerMax(idx[0], idx[1], idx[2], idx [3]) *
4 de.centerMax(idx[0], idx[1], idx[2], idx [3]) *) < thresh)
5 continue;
6
7 for (I22 i2(pIter4); i2.valid (); ++i2) {
8 // obtain indices
9 if ( (se.angularMax(idx[0], idx[1], idx[2], idx [3]) *

10 de.angularMax(idx[0], idx[1], idx[2], idx [3]) *) <
thresh)

11 continue;
12
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13 for (I33 i3(pIter4); i3.valid (); ++i3) {
14 // obtain indices and symCorr
15 if ( (se.batchMax(idx[0], idx[1], idx[2], idx [3]) *
16 de.batchMax(idx[0], idx[1], idx[2], idx [3]) *
17 symCorr) < thresh)
18 continue;
19 }
20 }
21 }

Listing 11.7: Querying the three level prescreening machinery.

Now the computational effort to determine the estimate is identical at each level. For
the maximum Schwarz integral values two numbers have to be read from matrices, and
for the maximum density element the maximum over six numbers has to be determined.
For a given vanishing tuple (center or angular), the computational cost is thus reduced
to one call to the max functions, compared to calls for each batch contained in the specific
tuple.

11.2.1. Results

As the effects of the hierarchical screening show most prominently for large molecules,
they shall be discussed in detail for the hexa-peptide C36H53N7O9. Results are shown
for the first SCF iteration, in a cc-pVDZ basis, using a threshold of 10−11. The density
matrix used has been obtained with the TURBOMOLE program package, using the
extended Hückel guess (see section 15.2.1). The iteration hierarchy was center-angular-
batch, in physicist notation. As is shown in table 11.10, there are about 120 billion
batches in this particular system, for each of which the prescreening machinery has to
be queried at batch level, discarding 98 percent as non-significant.

Level Queries Discarded Discarded(%)
Batch 121,781,735,481 119,835,900,493 98

Table 11.10.: Prescreening queries for C36H53N7O9 in a cc-pVDZ basis. Plain batch
approach.

Table 11.11 now shows the results for the same calculation, with activated hierarchical
screening. Shown are the queries to the prescreening machinery for the individual levels,
and the number and percentage of queries leading to a neglection of the whole subset.
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Level Queries Discarded Discarded(%)
Center 15,487,395 9,921,863 64
Angular 215,934,075 122,458,704 57
Batch 31,393,945,305 29,448,110,317 94

Sum 31,625,366,775

Table 11.11.: Prescreening queries for C36H53N7O9 in a cc-pVDZ basis. Hierarchical
approach.

Already at the center level, about two thirds of 15 million non-redundant center tuple
turn out to give vanishing contributions and can be neglected without detailed exam-
ination. For the surviving center tuples, another 57 percent of the angular tuples can
be skipped in their entirety. On the batch level, about 31 billion batches remain to
be queried individually. All in all, about 32 billion queries to the prescreening machin-
ery have been performed, which is four times less than the 120 billion of the one level
approach.

The wall clock time needed for the construction of the Fock matrix for both approaches
is summarized in table 11.12. Deployment of the hierarchical approach gives a speedup
of 2.9 compared to the one level approach. Both timings have been generated using the
same code base, the difference being only the added screening hierarchies.

Plain Hierarchical
4998.86 1772.25

Table 11.12.: Timings for the generation of the first Fock matrix for C36H53N7O9, in a
cc-pVDZ basis, in seconds. Physicists notation iteration order.

As already mentioned, the effects of the hierarchical approach are only dominant in
large molecules, which can be taken from table 11.13. Shown is the relationship of total
queries and timings for some molecules and basis sets. Again, results are taken from the
generation of the first Fock matrix, using TURBOMOLEs initial guess density.
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Plain/Hierarchical
Queries Timings

C4H10 cc-pVDZ 0.99 0.97
cc-pVTZ 1.00 0.99

Alanine cc-pVDZ 1.00 0.97
cc-pVTZ 1.00 0.99

Serotonine cc-pVDZ 1.07 1.01
cc-pVTZ 1.07 1.01

C36H53N7O9 cc-pVDZ 3.85 2.94
cc-pVTZ 3.33 2.13

Table 11.13.: Comparison of the plain and hierarchical approaches in terms of queries
and timings.

Even for serotonine, having 25 atoms, the effect of the hierarchical approach does not
show. For the 105-atom hexa-peptide C36H53N7O9, however, the effect is considerable,
although slightly decreasing with increasing basis size.

11.3. Iteration in Chemists Notation. Further Levels
of Hierarchy

The hierarchical screening approach introduced above can be applied equally to itera-
tion schemes based on physicists- or chemists-notation, respectively. By using chemists
notation, however, two additional levels of hierarchy can be introduced. Consider some
center-angular tuple (IJ |KL), at the third level of iteration. The outer two loops iterate
over all shell tuples in I and J . For each given shell tuple i and j, the two inner loops
iterate over the shell tuples in K and L. A further hierarchy can be introduced to gen-
erate maximum contributions for the integrals which can be built from the combination
of two shells i and j, and the two sets of shells K and L. For the Schwarz estimate, on
the one hand the maxima over i and j are needed, to be combined with the maxima over
K and L. Now the maxima for the i and j combination correspond to the level three
batch maxima, whereas the K and L maxima correspond to the level two, or angular,
maxima. These are already available in the three level hierarchical approach. For the
density maximum, in addition to the combinations of i and j, as well as K and L, hybrid
maxima are needed. These arise from the mixed particle pair combinations (i,K), (i, L),
(j,K) and (j, L). They can be generated using the block maxima approach introduced
above, mixing pairs of different hierarchies. This is depicted in figure 11.3, showing
the third level hybrid structure on the left. A certain shell (identified via the rows in
the matrix) is combined with a set of shells of the same angular momentum, local to a
center.
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Figure 11.3.: Block maxima reduction for the hybrid levels. Batch level on the left,
Angular level on the right.

In addition, the same argument leads to a hybrid hierarchy at the second, the angular
level of hierarchy. At the two outer iterations, a set of angular functions is combined
with all functions of the two centers at the inner loops. The particle one/two pairs can
similarly be obtained from the level one/two block maxima matrices. For the mixed pairs
hybrid block maxima have to be generated. Their structure is depicted in figure 11.3,
on the right.
The implementation is identical to the one introduced above, the only difference being

the addition of the two hybrid matrices to DensityEstimate. The internal _maxVal access is
handled equivalently, using two different _idxMaps according to the hierarchy requested.
The effect shall be shown for the hexa-peptide C36H53N7O9, using the same calcu-

lational details as in the examples above. Results for the three level approach have
already been shown in table 11.11, the results for the five fold hierarchical approach are
summarized in table 11.14.

Level Queries Discarded Discarded(%)
Center 15,487,395 9,921,863 64
Angularhyb 37,706,614 12,294,798 33
Angular 146,665,057 53,189,686 36
Batchhyb 1,110,714,365 781,395,831 70
Batch 8,979,069,367 7,033,234,379 78

Sum 10,289,642,798

Table 11.14.: Prescreening queries for C36H53N7O9 in a cc-pVDZ basis. Five level hier-
archical approach.

A considerable number of subsets can be discarded at the newly introduced hybrid
levels. At the angular stage 33 percent of all queried subsets contain only negligible
integrals, and on the batch stage 70 percent of the queries lead to vanishing contributions.
Compared to the three level hierarchy approach, the total number of queries is reduced
by a factor of three, from about 30 to ten billion queries.
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Again this significantly affects the timings obtained for the Fock matrix generation,
as shown in table 11.15.

Three Level Five Level
898.81 642.09

Table 11.15.: Timings for the generation of the first Fock matrix for C36H53N7O9, in a
cc-pVDZ basis, in seconds. Chemists notation iteration order.

Although not as prominent as in the transition from one to three hierarchies, still a
speedup of about 1.4 could be achieved by introducing the two additional hierarchies.
Note that the timings given in in table table 11.15 have been both generated using
the chemists notation iteration ansatz, contrary to the physicists ansatz used in the
introduction of the three level ansatz. The timings of table 11.12 and table 11.15 can
therefore not be compared directly.
Similar to the introduction of the center- and angular-hierarchies, the effect of the two

hybrid hierarchies only shows significantly for sufficiently large molecules. Table 11.16
gives an overview over the decrease of both timings and prescreening queries, comparing
the three-level results with the five-level ansatz. Shown is the same set of molecules
as in table 11.13, using the same computational details. Although the number of total
queries decreases already for small molecules, the timings are only visibly affected for
large molecules.

3Level/5Level
Queries Timings

C4H10 cc-pVDZ 1.20 1.02
cc-pVTZ 1.18 1.01

Alanine cc-pVDZ 1.32 1.03
cc-pVTZ 1.27 1.01

Serotonine cc-pVDZ 1.85 1.11
cc-pVTZ 1.74 1.04

C36H53N7O9 cc-pVDZ 3.07 1.41
cc-pVTZ 2.98 1.20

Table 11.16.: Comparison of the three- and five-level prescreening approaches in terms
of queries and timings.

11.4. The Differential Density Scheme

To conclude the discussion of the implemented prescreening machinery, the differential
density scheme shall be introduced here, as the amount of negligible integrals is sig-
nificantly increased within this ansatz. Recalling section 7.3, the Fock matrix can be
constructed incrementally, contracting the integrals not with the current density, but

78



11.4. The Differential Density Scheme

with the differential density.

G(i) = G(i−1) + G(D(i) −D(i−1)) = G(i−1) + G(∆D) (11.4)

The implementation is straight forward, giving the call to the Fock matrix generator the
differential density as argument instead of the actual density.

The changes in the density during an SCF calculation are moderate. Thus the values
of the differential density are rather small in magnitude, especially if convergence is ap-
proached. The maximum contribution of some set of integrals depends on the maximum
density element involved. Thus, in the differential density scheme, an increasing number
of integrals can be neglected with increasing convergence. Using the actual density, on
the other hand, leads to a rather constant amount of negligible integrals. This follows
again from the moderate changes of the density matrix, giving a constant amount of
small elements during the calculation. The Schwarz integrals, of course, stay constant
in each iteration.

Table 11.17 summarizes this for serotonine in a cc-pVQZ basis. For each iteration the
percentages of integrals to be calculated, and the required time (in seconds) are shown,
with and without the differential density scheme enabled. The initial guess has been
obtained from atomic densities. The prescreening threshold has been set to 10−11, and
the energy convergence threshold to 10−7. For both cases the same code base has been
used, differing only in the activation of the differential density scheme.

Calculated integrals (%) Required time (seconds)
Itrn Conventional Incremental Conventional Incremental % Of conventional
1 0.60 0.60 47 47 100
2 22.24 22.22 1522 1515 100
3 22.20 20.87 1520 1432 94
4 22.19 19.80 1518 1361 90
5 22.18 18.47 1518 1273 84
6 22.18 16.80 1518 1162 77
7 22.18 15.62 1518 1083 71
8 22.18 14.30 1518 995 66
9 22.18 13.75 1518 958 63
10 22.18 12.28 1518 860 57
11 22.18 11.52 1516 807 53

Sum 15208 11478 75

Table 11.17.: Comparison of the conventional and incremental Fock matrix generation
schemes. In terms of calculated integrals and required time.

The first thing to note is the exceedingly small amount of integrals to be calculated in
the first iteration. This is due to the use of the atomic densities guess, in which densities
are calculated for each atom individually, and inserted in the initial guess density in a
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block diagonal fashion. Therefore a huge number of density elements turn out to be
zero, leading to almost all integral contributions to be negligible.
The effects of the differential density scheme then show starting with the third itera-

tion. In each iteration, the amount of integrals to be taken into account decreases. In the
conventional calculation, the number of integrals to be discarded stays about constant.
In this example, by employing the differential density scheme, only half of the integrals
to be included in the second iteration have to be considered in the last. Equivalently,
the time needed to perform one iteration decreases accordingly. All in all, performing
the calculation using the differential density scheme, only 75 percent of the time of the
conventional calculation is needed.
As pointed out by others [14], constructing the Fock matrix incrementally introduces

an error to the calculation. There are schemes to minimize this error [14], but they have
not been implemented in this work. For the calculation presented above, serotonine
in a cc-pVQZ basis, the error introduced to the energy is shown in table 11.18. Both
absolute and relative error of the energy calculated within the differential density scheme,
compared to the conventionally obtained, are shown, for each iteration, respectively.

Itrn abs(E) rel(E)
1 0.00 0.00
2 1.81 · 10−9 3.17 · 10−12

3 6.48 · 10−9 1.14 · 10−11

4 2.10 · 10−8 3.68 · 10−11

5 2.83 · 10−8 4.96 · 10−11

6 3.09 · 10−8 5.43 · 10−11

7 3.54 · 10−8 6.22 · 10−11

8 3.90 · 10−8 6.85 · 10−11

9 3.91 · 10−8 6.87 · 10−11

10 4.23 · 10−8 7.43 · 10−11

11 4.61 · 10−8 8.09 · 10−11

Table 11.18.: Comparison of the conventional and incremental Fock matrix generation.
In terms of energy difference.

In this example, the absolute error stays below the energy convergence criterion of 10−7.
The energy of the conventional approach being reproduced by the differential density
scheme to ten significant digits.
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Scheme

In the following, the evaluation of two-electron integrals will be shown in detail. One-
electron integrals can be handled using the same techniques and will be briefly addressed
in section 12.5.

In the Obara-Saika scheme, as has been shown in section 3.2, the two-electron inte-
grals are expressed in terms of auxiliary integrals ΘN

ixjxkxlx;iyjykyly ;izjzkzlz
. The subscripts

describe the Cartesian powers of the corresponding primitive Cartesian Gaussians, and
with li = ix+ iy + iz their total angular momentum. Auxiliary integrals with N = 0 rep-
resent the final target integrals. Recursion seeds are the scaled Boys functions of order
N , with all subscripts (angular momenta) equal to zero. The target integrals are built
from these functions by iterative application of the Obara-Saika recurrence relations.
Already introduced in section 3.2.2, they shall be repeated here. As in- and decrements
are restricted to one Cartesian direction, they are given in the one-dimensional form,
omitting unaltered subscripts. The direction of the transfer is implied by the prefactors.
To generate angular momenta on the first, the bra1 index, the vertical recurrence

relation (V) is used.

V: ΘN
i+1,000 = XPAΘN

i,000 −
α

p
XPQΘN+1

i,000 +
i

2p

(
ΘN
i−1,000 −

α

p
ΘN+1
i−1,000

)
(12.1)

Angular momenta on the second, the bra2 index are generated by the electron transfer
recursion. Two different expressions have been implemented in the course of this work
(E1 and E2).

E1: ΘN
i,j+1,00 =

bXAB + dXCD

q
ΘN
i,j,00 +

i

2q
ΘN
i−1,j,00 +

j

2q
ΘN
i,j−1,00 −

p

q
ΘN
i+1,j,00 (12.2)

E2: ΘN
i,j+1,00 = XQCΘN

ij00 +
α

q
XPQΘN+1

ij00 +
i

2(p+ q)
ΘN+1
i−1,j00

+
j

2q

(
ΘN
i,j−1,00 −

α

q
ΘN+1
i,j−1,00

)
(12.3)

The two horizontal recurrence relations H1 and H2 finally generate angular momenta on
the ket1 and ket2 indices, respectively.

H1: ΘN
i,j,k+1,l = ΘN

i+1,j,k,l +XABΘN
i,j,k,l (12.4)

H2: ΘN
i,j,k,l+1 = ΘN

i,j+1,k,l +XCDΘN
i,j,k,l (12.5)

81



12. The Obara-Saika Integration Scheme

12.1. General Considerations

12.1.1. Batchwise Evaluation

Due to the iterative application of the Obara-Saika recurrence relations, a lot of inter-
mediate integrals are involved even in the calculation of simple (small angular momenta)
integrals. These intermediates turn out to be not unique to a certain integral. Figure 12.1
exemplifies this for the nine integrals of a ppss-batch, using the electron transfer E1. The
target integrals are in the top, the recursion seeds in the bottom row. The numbers in
square brackets correspond to N , and the four by four character matrix to the angular
momenta of the auxiliary integral, in x-, y- and z-direction. The arrows indicate the
intermediates needed to calculate a particular integral or intermediate.

[0]
ssss
ssss
ssss

[0]
ssss
ssss
psss

[1]
ssss
ssss
ssss

[0]
ssss
ssss
ppss

[0]
ssss
ssss
dsss

[1]
ssss
ssss
psss

[0]
ssss
spss
psss

[0]
ssss
psss
psss

[0]
ssss
psss
ssss

[0]
ssss
psss
spss

[0]
ssss
ppss
ssss

[0]
ssss
dsss
ssss

[1]
ssss
psss
ssss

[0]
spss
ssss
psss

[0]
psss
ssss
psss

[0]
spss
psss
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[0]
psss
psss
ssss

[0]
psss
ssss
ssss

[0]
psss
ssss
spss

[0]
psss
spss
ssss

[0]
ppss
ssss
ssss

[0]
dsss
ssss
ssss

[1]
psss
ssss
ssss

[2]
ssss
ssss
ssss

Figure 12.1.: Intermediates needed to calculate all integrals of a ppss-batch, and their
dependencies.

The first thing to note is that almost all intermediates are shared among multiple target
integrals, or intermediates (having more than one arrow pointing at them). This is the
strongest argument for the calculation of integrals in terms of batches. This way the
intermediates need only to be calculated once, to be used without reevaluation when
necessary.
Additionally, all targets and intermediates share the same centers and exponents.

The prefactors of the recurrence relations (12.1) to (12.5) are therefore constant for all
intermediates of a batch. Similar to the intermediates, calculating them once and reusing
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them for the whole batch saves considerable computational effort compared to repeated
reevaluation.

Based on this, the integration of a batch has been split into a three-fold approach.
In the first step, the prefactors for the target- and intermediate integrals are calculated.
They will be referred to as shellBatchData. In the second step, the recursion seeds are
calculated from the prefactors and the Boys function. In the final step, the intermediate-
and target integrals are then calculated from the prefactors and the recursion seeds.

12.1.2. Batchwise Recursion

The Obara-Saika recurrence relations can be interpreted in terms of the total angular
momenta of a batch. For all integrals of a batch, by in- or decrementing the Cartesian
powers of all functions of some shell, the associated total angular momentum li = ix +
iy + iz is in- or decremented accordingly.

Consider the nine target integrals of the ppss0-batch of figure 12.1. The first recurrence
relation to be applied is the electron transfer (12.2) E1. The first term decrements each
integral at the bra2 index, giving the three psss integrals shown in figure 12.1 in the
second to last row (with N = 0). They constitute the full psss0 batch. In the second
term of E1, the bra1 index is decremented in addition to the bra2 index, resulting in
the recursion seed ssss0. The third term has no effect in this example, as negative bra2
indices are generated. The last term finally increments the bra1- , and decrements the
bra2-index. The resulting six dsss appear in the second row of figure 12.1, and again
constitute the full dsss0 batch.
Thus, by replacing the individual Cartesian powers of equations (12.1) to (12.5) by

the total angular momenta of some batch, the recursion dependencies of whole batches
can be analyzed. For the vertical transfer V (equation (12.1)), the following is obtained.

V : ΘN
li+1,000 ← ΘN

li,000
, ΘN+1

li,000
, ΘN

li−1,000, ΘN+1
li−1,000 (12.6)

In doing so, the four-dimensional integral recursion (ix, iy, iz, N), can be brought down
to the two-dimensional description (li, N), and analyzed graphically.

li

N

Figure 12.2.: Batch dependencies for the vertical transfer.

For the seven dimensional electron transfer E1, similar batch dependencies can be given.

E1 : ΘN
li,lj+1,00 ← ΘN

li,lj ,00
, ΘN

li−1,lj ,00, ΘN
li,lj−1,00, ΘN

li+1,lj ,00
(12.7)
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12. The Obara-Saika Integration Scheme

The E1 case, as N is not affected by the recurrence relation, is two-dimensional in li and
lj.

li

lj

Figure 12.3.: Batch dependencies for the electron transfer E1.

This is different in the alternative electron transfer E2, having the batch dependencies

E2 : ΘN
li,lj+1,00 ← ΘN

li,lj ,00
, ΘN+1

li,lj ,00
, ΘN+1

li−1,lj ,00, ΘN
li,lj−1,00, ΘN+1

li,lj−1,00 (12.8)

Here, N is part of the recurrence relation. Nevertheless, the three-dimensional depen-
dency pattern (li, lj, N) can be visualized.

li

lj

N

Figure 12.4.: Batch dependencies for the electron transfer E2.

The two horizontal transfers

H1 : ΘN
li,lj ,lk+1,ll

← ΘN
li+1,j,k,l, ΘN

i,j,k,l (12.9)
H2 : ΘN

li,lj ,lk,ll+1 ← ΘN
li,j+1,k,l, ΘN

i,j,k,l (12.10)

are two dimensional, as N is not affected.
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li

lk

(a) Horizontal transfer H1.

lj

ll

(b) Horizontal transfer H2.

Figure 12.5.: Batch dependencies for the horizontal transfers.

12.1.3. Transfer Order

Generally, the recursion pathway for a given integral is not unique, several possibilities
exist. Considering the integral 〈fxyzpx|gy2z2s〉, the electron transfer can be applied to
the bra2 index, in x-direction. Another possibility is the application of the H1 transfer,
in either y- or z-direction.

In this work, the type of transfer to be used will be determined by the angular pattern
of the particular batch. The integral of the example above belongs to a FPGS batch.
The only recursion relation which can be applied to all integrals is the horizontal transfer
H1, decrementing the ket1 shell from g to f . The electron transfer mentioned in the
example above, for example, can not be applied to the integral 〈fx3px|gx4s〉.

Within some batch, given a recursion relation, the direction of the transfer is chosen
for each integral individually. Transfer directions are checked for in the order x, y and z,
and taken if possible. For the 〈fxyzpx|gy2z2s〉 integral, H1 would be applied in y-direction.

Optimal Shell Permutation

Due to permutational symmetry up to eight symmetry equivalent representations of a
batch can exist, of which only one is calculated. The particular pattern appearing in the
calculation depends on the iteration. Using the iterators of section 10.2.2, on a center
pattern of four different centers, the batches having one d and three s-shells will appear
as DSSS, SDSS, SSDS and SSSD, respectively.
Of these four patterns, the DSSS ordering is optimal in terms of the Obara-Saika

recurrence relations, as only the vertical transfer has to be applied. The other three,
however, can be brought to match this optimal pattern by permuting them according to
the symmetry-equivalence permutations of section 4.1.
Generally, as the Obara-Saika recurrence relations shift angular momenta from the left

to the right, the optimal shell permutation is the one with the maximum total angular
momentum as far to the left as possible. A class has been included to the QOL [18] to
accomplish this, the OptimalShellOrderingPermutation. Using it, each batch appearing in
a calculation is brought to its optimal permutation, minimizing the amount of recurrence
relations to be applied.
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12. The Obara-Saika Integration Scheme

12.2. Existing Implementations

Starting points of the implementation of the Obara-Saika integration scheme have been
two approaches already implemented into the QOL framework by Michael Hanrath [18].
A careful examination will show various flaws and benefits of these implementations,
depending on the approach chosen. In both cases, the electron transfer E1 of equa-
tion (12.2) has been used.

12.2.1. Generic Implementation

In this ansatz, integral evaluation is handled by one generic function, capable of process-
ing any shell batch given. On the one side, this has the positive effect of possessing a
very small code footprint, thus not polluting the instruction cache. On the other hand,
handling all shell batches in a generic way introduces a lot of redundancies. To illustrate
this, listing 12.1 shows the code for the vertical transfer V (equation (12.1)).

1 for (int l=1; l<maxL; ++l) // batch loop
2 for (CartesianShellIterator i(l); i.valid(); ++i) // shell loop

(i=1: p (x y z))
3 for (int N=0; N<maxL -l; ++N) // boys order loop
4 {
5 int direction = i.maxPower ();
6 switch (direction)
7 {
8 case 0: // recursion in x
9 t1(i.x, i.y, i.z)[N] =

10 + this ->PA.x * t1.g(i.x-1, i.y, i.z)[N]
11 - this ->alpha_p_PQ.x * t1.g(i.x-1, i.y, i.z)[N+1]
12 + (i.x.l() -1 > 0 ?
13 (i.x.l() -1)*this ->_2p * (t1.g(i.x-2, i.y, i.z)[N] -

this ->alpha_p * t1.g(i.x-2, i.y, i.z)[N+1])
14 : 0
15 );
16 break;
17
18 case 1: // recursion in y
19 // as above , in y
20 break;
21
22 case 2: // recursion in z
23 // as above , in z
24 break;
25 }
26 }

Listing 12.1: generic, vertical

In general, the information how to process a given integral has to be regenerated for each
target and intermediate, at runtime. In line 5 the direction of the transfer is queried,
to be used in the switch statement of line 6. For the actual calculation (line 9, in x-
direction), the necessary integrals have to be retrieved from the container t1. Due to
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the form of the vertical transfer, another if statement has to be processed (line 12), to
determine if the terms three and four of the vertical transfer have to be included. All
of this information solely depends on the angular momenta of the processed batch, thus
being constant for all batches of the same angular pattern. For all batches of a given
angular momentum, the only variables are the prefactors (i.e. this->PA.x in line 10).
For example, in the calculation of alanine in a cc-pVTZ basis, about six million different
PSSS batches survive prescreening (using a threshold of 10−11). Looking at the corre-
sponding six million pxsss-integrals, the transfer direction x is reevaluated six million
times, followed by entering the corresponding case, calculation of the container indices
and neglection of terms three and four. Clearly, the reevaluation of this information is
redundant. Additionally, most of the redundant operations correspond to conditional
statements, leading to possibly inefficient branching. Obviously, the same considerations
apply to integrals involving all four recurrence relations, in an even more pronounced
way.
To store the target- and intermediate integrals, the four-dimensional structure t1 is

used. Three dimensions correspond to the Cartesian powers ix, iy and iz of the bra1
shell, the fourth to the order N of the auxiliary integral. To store all auxiliary integrals
of a given N , a simple three dimensional array with dimensions of (l + 1) is used, one
dimension for each direction. This form greatly simplifies element access, but is far from
memory efficient. To store integrals up to d-functions, a (3 × 3 × 3) array is needed,
holding 27 elements. However, for up to d-functions only ten integrals exist (one s, three
p and six d), thus most of the space allocated by the array is unused. The reason for
this is that in the plain (l + 1)3 approach, space is allocated for unneeded integrals of
higher angular momenta. In the (3 × 3 × 3) array for up to d-functions for example
the 2, 2, 2 index is available, corresponding to the unneeded l = 6 integral ix2y2z2sss.
Additionally, the ten needed integrals are not stored consecutively, introducing gaps in
memory. These considerations hold for the four-dimensional integrals accessible solely by
the vertical transfer. In the general case, thirteen dimensions are needed to identify an
integral, four times three Cartesian directions, plus the order N . The above mentioned
problems of unused elements and non-consecutive storage are even more dominant in
such a thirteen dimensional storage container.

12.2.2. The Code-Generation Approach

These shortcomings are efficiently addressed by the code-generated ansatz. The key
point is the decoupling of recursion structure and runtime execution. At compile time,
the structure needed to calculate some given batch, in terms of its angular pattern, is
analyzed. Based on this analysis, optimized code is generated to perform the integration
for all batches of this particular angular pattern. These codes are then called at runtime.
It shall be noted that a two-fold approach has been chosen. In the first step, the vertical-
and electron transfer relations are applied. In the second step, if necessary, the target
integrals are generated via the horizontal transfers.
As an example, a DSSS-batch shall be analyzed. Its recursion relations are shown in

figure 12.6.
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Figure 12.6.: Intermediates needed to calculate all integrals of a dsss-batch, and their
dependencies.

The code produced for this batch using the code-generated ansatz is shown in listing 12.2.
1 void dsss(
2 const shellBatchData <double > & sd,
3 const double * boys ,
4 double * out)
5 {
6 double tmp [2];
7 tmp [0] = sd.PAx * boys [0] - sd.apPQx * boys [1];
8 tmp [1] = sd.PAx * boys [1] - sd.apPQx * boys [2];
9 out [0] = sd.PAx * tmp [0] - sd.apPQx * tmp[1] + sd._2p * (boys [0] -

sd.ap * boys [1]);
10 tmp [0] = sd.PAy * boys [0] - sd.apPQy * boys [1];
11 tmp [1] = sd.PAy * boys [1] - sd.apPQy * boys [2];
12 out [1] = sd.PAx * tmp [0] - sd.apPQx * tmp [1];
13 out [2] = sd.PAy * tmp [0] - sd.apPQy * tmp[1] + sd._2p * (boys [0] -

sd.ap * boys [1]);
14 tmp [0] = sd.PAz * boys [0] - sd.apPQz * boys [1];
15 tmp [1] = sd.PAz * boys [1] - sd.apPQz * boys [2];
16 out [3] = sd.PAx * tmp [0] - sd.apPQx * tmp [1];
17 out [4] = sd.PAy * tmp [0] - sd.apPQy * tmp [1];
18 out [5] = sd.PAz * tmp [0] - sd.apPQz * tmp[1] + sd._2p * (boys [0] -

sd.ap * boys [1]);
19 }

Listing 12.2: Generated code for the dsss batch.

Clearly, no conditionals have to be evaluated. Additionally, memory utilization can be
optimized rather efficiently. The intermediates are saved in the array tmp, and overwrit-
ten if not needed anymore. For the six intermediates of the dsss batch, only space for
two elements has to be allocated. In addition to those, three recursion seeds (stored
in the array boys) are needed. With the six target integrals (stored in out), the total
number of elements to store summarizes to eleven elements, all of which appear consec-
utively in memory. In the generic ansatz, for this batch 81 elements had to be allocated
((3× 3× 3) for the Cartesian directions, times 3 for N).
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The drastic increase in performance of the code-generated ansatz, compared to the
generic implementation, is shown in table 12.1. Shown are the results obtained for the
first SCF iteration of alanine in a cc-pVTZ basis. Prescreening has been enabled for
both runs, using a threshold of 10−11. The density used was the initial density obtained
with TURBOMOLE.

Generic Code-generated Factor
Time (seconds) 286 37 7.7
Cycles 724,599,731,069 92,883,969,691 7.8

Branches 130,540,564,523 2,996,474,218 43.6
Branch misses 2.74% 1.88% -

L1 iCache loads 543,403,235,479 54,983,338,589 9.9
L1 iCache load-misses 0.44% 16.75% -

L1 dCache loads 517,098,487,403 42,792,799,864 12.1
L1 dCache load-misses 2.35% 1.01% -

L1 dCache stores 130,425,312,803 23,222,007,623 5.6
L1 dCache store-misses 3.37% 0.24% -

Table 12.1.: Performance comparison of the generic versus the code-generated approach
for alanine in a cc-pVTZ basis.

Even though the shown calculations correspond to a full SCF iteration, changing only
the integration kernel from generic to code-generated results in a significant decrease of
all shown performance counters, giving a total speedup of about a factor of eight from
286 seconds to 37 seconds of wall clock time. Of special interest is the almost 50-fold
decrease of performed branches, clearly related to the conditionless realization of the
Obara-Saika recurrence relations in the code-generated ansatz.

Of particular note however are the iCache loads. Although reduced by an order of
a magnitude in the code-generated implementation, the percentage of missed iCache
loads increases to almost 17 percent. This is due to the amount of code needed to
calculate a batch. Generally speaking, one line of code is generated for each integral and
intermediate. For the FFSS batch with 100 target integrals, 554 intermediates have to
be calculated, resulting in a code size of over 654 lines. The resulting byte-code has a
size of about 30K, which almost fills the typical instruction cache size of 32K.
Unfortunately, the amount of code generated not only has implications on the run-

time, but also on the compile time. The 120524 lines of code needed to calculate an
FFFF -batch put, even if chunked to 1000 lines of code per file, time critical strains
on the compiler. In fact, generating batches involving g-functions or higher produces
an impractical amount of code. Table 12.2 shows the amount of generated code for the
vertical-, electron- and horizontal transfer substructures, in dependence of the maximum
angular momentum l.
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lmax V/E1 H1/H2
0 222 204
1 1,394 1,160
2 18,153 30,879
3 178,857 608,804
4 1,176,162 7,124,017
5 5,755,160 57,529,321
6 22,659,255 -

Table 12.2.: Lines of generated code for vertical/electron transfer(V,E1) and horizontal
(H1 and H2) recursions as a function of lmax.

Clearly, the lions share corresponds to the horizontal transfers, by which most of the
target integrals are generated.

12.3. Numerical Instabilities

In the existing approaches presented above, the four step Obara-Saika recurrence rela-
tions [35–37] are used, employing the electron transfer E1 (equation (12.2)). This ansatz,
in particular the E1 transfer, suffers from numerical instabilities. The mechanism respon-
sible is comparable to the one found in the calculation of the prefactor XPA, as discussed
in section 9.1.2. In particular, terms present in the vertical transfer (12.1) get canceled
by terms present in the electron transfer (12.2). If those terms get large, the numerical
information of the smaller ones is lost, thus introducing numerical instabilities.
The source of the problem can be analyzed by inspecting the first electron transfer

level of E1, i.e. setting j in equation (12.2) to zero.

ΘN
i,1,00 = − b

q
XABΘN

i,000 +
i

2q
ΘN
i−1,000 −

d

q
XCDΘN

i,000 −
p

q
ΘN
i+1,000 (12.11)

The last term, −p
q
ΘN
i+1,000, contains the vertical transfer (12.1). Insertion gives

ΘN
i,1,00 = − b

q
XABΘN

i,000 + i
2q

ΘN
i−1,000 −

d

q
XCDΘN

i,000

+p
q
b
p
XABΘN

i,000 −
p
q
i
2p

ΘN
i−1,000 +

p

q

α

p
XPQΘN+1

i,000 +
p

q

iα

2p2
ΘN+1
i−1,000 (12.12)

The terms b
q
XABΘN

i,000 and i
2q

ΘN
i−1,000 appear in both transfer relations and cancel each

other. In this work, the Obara-Saika recurrence relations are solved iteratively. To
calculate e.g. ΘN

i,1,00, first all intermediates are evaluated. Thus, similar to the calcula-
tion of XPA, if the canceling terms b

q
XABΘN

i,000 and i
2q

ΘN
i−1,000 are sufficiently larger in

magnitude than the surviving terms numerical noise is introduced.
Unfortunately, this cancellation of terms is not only present for electron transfers with

j = 0, but also for higher electron transfers. For such cases, repetitive insertion of the
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adequate intermediate formulas finally leads to the ΘN
i+1,000 terms, again introducing the

canceling terms of equation (12.12).
An in depth analysis of the conditions leading to numerical instabilities is non-trivial.

Large values of p (= a + b) compared to q (= c + d) could be identified to produce
numerical errors. In the case of large b’s, inspection of the vertical transfer

ΘN
i+1,000 = − b

p
ΘN
i,000 +

i

2p
ΘN
i−1,000 −

q

p+ q
XPQΘN+1

i,000 +− i

2p

q

p+ q
ΘN+1
i−1,000

shows that the prefactor of the first term approaches one, while the prefactors of the
remaining terms approach zero. Thus, at least parts of the numerical information of the
remaining terms vanishes due to the significantly larger first term. As this is just the
term which gets canceled, the exact result is lost.

For large a, a similar, simple interpretation is not possible. The prefactor of the last
term of equation (12.3) tends more rapidly to zero than the prefactors of the remaining
terms. To estimate their relative magnitudes, the prefactors alone are not sufficient, the
intermediates would have to be included.

However, if p gets large compared to q, the prefactor p
q
amplifies the value of ΘN

i+1,000

in equation (12.12), including possible numerical errors. Additionally this term then
becomes the largest (leading) contribution, further destroying numerical information.

To analyze the numerical properties of the Obara-Saika scheme, the high resolution
floating point type of the boost library introduced in section 9.1.2 has been used. Via
the template mechanism of C++, the same piece of code can be used to be executed with
the desired type.
The subtlety of the numerical instabilities of the Obara-Saika scheme is shown in

table 12.3. Here the numerical values of the intermediates needed to calculate a fx3gx4ss
integral are shown. The integrals are part of the calculation of alanine in a cc-pVTZ
basis. The particular center pattern was C1C3O1C3, with the exponents a = 0.761,
b = 15330, c = 0.318 and d = 0.318. The results obtained with the high accuracy type
using 500 digits are compared to the results using the standard double type, showing all
equal significant digits plus the first differing one.
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Integral boost<500> double
Vertical Transfer

psss 2.782 239 881 132 851 5 · 10−7 2.782 239 881 132 851 7 · 10−7

dsss 6.095 248 400 768 226 · 10−7 6.095 248 400 768 227 · 10−7

fsss 1.335 337 969 206 090 · 10−6 1.335 337 969 206 091 · 10−6

gsss 2.925 458 474 266 312 · 10−6 2.925 458 474 266 314 · 10−6

hsss 6.409 138 087 948 996 · 10−6 6.409 138 087 948 999 · 10−6

isss 1.404 133 078 844 736 · 10−5 1.404 133 078 844 737 · 10−5

jsss 3.076 237 510 475 794 · 10−5 3.076 237 510 475 796 · 10−5

Electron Transfer

spss 1.797 123 976 7 · 10−8 1.797 123 976 6 · 10−8

ppss 3.937 053 127 8 · 10−8 3.937 053 127 6 · 10−8

dpss 8.625 166 023 6 · 10−8 8.625 166 023 0 · 10−8

fpss 1.889 585 739 5 · 10−7 1.889 585 739 6 · 10−7

gpss 4.139 698 319 91 · 10−7 4.139 698 319 97 · 10−7

hpss 9.069 299 301 1 · 10−7 9.069 299 301 5 · 10−7

ipss 1.986 926 156 3 · 10−6 1.986 926 156 2 · 10−6

pdss 2.274 101 43 · 10−7 2.274 101 41 · 10−7

ddss 4.982 03 · 10−7 4.982 02 · 10−7

fdss 1.091 456 5 · 10−6 1.091 456 8 · 10−6

gdss 2.391 162 8 · 10−6 2.391 162 2 · 10−6

hdss 5.238 595 · 10−6 5.238 598 · 10−6

dfss 2.0 · 10−7 1.6 · 10−7

ffss 4.59 · 10−7 4.9 · 10−7

gfss 9.9 · 10−7 8.8 · 10−7

fgss 2.6 · 10−6 0.0045

Table 12.3.: Values for the fx3gx4ss-integral and needed intermediates (all in x-direction).
The values were calculated in double precision and with the boost 500 digits type, re-
spectively. The accuracy obtained is indicated by the amount of digits. Shown are all
equal digits and the first differing one.

In the final integral, the actual value of about 10−6 has been overestimated by a factor
of approximately 1700, giving a totally wrong number and magnitude of 0.0045 in the
double calculation. At the vertical transfer stage, no numerical errors can be observed.
At the electron transfer stage, however, the accuracy decreases with increasing j, loosing
about four to five significant digits at each level.
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12.3.1. Solutions

Swapping

The first solution to the problem of numerical instabilities is based on their appearance
for p > q. If such a case is encountered, the whole batch is permuted, swapped, to negate
the condition. In particular, particle symmetry is used, and a batch ACBD is permuted
to CADB. Although this leads to numerically stable code, as shown in section 12.3.2, the
implications in terms of code efficiency are not optimal. Using this approach introduces
several complications to the production code, which will be discussed in section 12.4.4.

Algebraic Solution

The algebraic solution is based on equation (12.12). For j = 0, 1 and 2 canceling terms
have been removed from the electron transfer E1 by repeated insertion and reapplication
of the appropriate recurrence relations. The following equations have been obtained.
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These are just the first solutions for the alternative electron transfer, which has been
obtained from the original Obara-Saika recurrence relation.
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(12.15)

The alternative electron transfer (12.15) indeed turns out to be numerically stable (see
section 12.3.2), without the need of swapping. Additionally, as will be shown in sec-
tion 12.4.4, its structure is far better suited for the implementation presented there.
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12.3.2. Results

Three implementations of the integration have been analyzed with respect to their nu-
merical stability. On the one hand the electron transfer E1 has been examined, using the
swapped and unswapped ansatz. Additionally, the numerical properties of the alterna-
tive electron transfer E2 have been included, using the implementation of section 12.4.
All three have been set up to use the standard double floating point type. For the com-
parison, the high accuracy boost type has been used, with 500 significant digits. It has
been set up to perform the integration without swapping, using the electron transfer E1.

The analysis has been performed on the H4 system, using an artificial basis. This
artificial basis has been chosen to examine a wide range of exponents. Starting point
for the artificial basis were the minimum and maximum exponents for up to i-functions.
The set of atoms they were chosen from was H, C, N, O, S and Cl and the basis sets were
cc-pV{D,T,Q,5,6}Z, Def2-{S,TZ,QZ}VP, roos-aug-dz,tz-ano and ano-rcc. For l values
larger than one, the maximum exponent has been scaled by a factor of ten. Additionally,
the exponents 1 and 5 have been added to each angular momentum. The used exponents
are summarized in table 12.4.

l = 0 1 2 3 4 5 6
0.02526 0.0229 0.0798831 0.1010651 0.25 0.6115 1.0409000

1 1 1 1 1 1 1
5 5 5 5 5 5 5

7733000 6091 82.53 54.3 52.11 38.72 27.73

Table 12.4.: Exponents used in the artificial basis.

To get the full picture, for each integral calculated using the three pathways described
above, the absolute and relative errors with respect to the value obtained with the boost
high accuracy data type have been calculated. The frequency of the absolute/relative
error distribution has then been determined. This has been accomplished using a grid,
spanning the range of 10−100 to 10100, in 200 logarithmic steps, respectively. Additionally,
integrals have been assigned to sets of batches, depending on their angular momentum.
I.e. for l = 2, only batches with at least one angular momentum equal to two and the
rest smaller or equal to two have been taken into account. The results obtained for the
H4 molecule in the artificial basis are shown in the figures 12.7a to 12.7f. The horizontal
line at r = 1 indicates integrals with an absolute error of the magnitude of the actual
integral. The second horizontal line at r = 10−8 indicates seven reproduced significant
digits.
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(a) Maximum angular momentum l = 1.

(b) Maximum angular momentum l = 2.

(c) Maximum angular momentum l = 3.
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(d) Maximum angular momentum l = 4.

(e) Maximum angular momentum l = 5.

(f) Maximum angular momentum l = 6.

Figure 12.7.: Frequencies of absolute/relative error correlations for H4 in the artificial
basis, with respect to the maximum angular momentum of the integrals. Shown are
comparisons of the boost 500 type to the E1 transfer in its swapped and unswapped
realization, and to the E2 transfer, all in double precision.
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Clearly, in the unswapped case, the error distributions are shifted to high absolute
and relative errors, with increasing l. For l = 6, the absolute errors reach values of 1050,
with corresponding relative errors of 1080. In the unswapped case, although the relative
error increases with increasing l to values of about 1020, the absolute error nevertheless
stays smaller than one. An even better trend can be observed for the alternative electron
transfer calculations. Although the relative error still increases to values larger than one,
the overall distribution indicates mostly a reproduction of under seven significant digits.
To further investigate the error distribution, absolute and relative errors have been

determined with respect to the magnitude of the integral. The results for H4 in the
artificial basis are shown in figure 12.8. For all integrals of a certain magnitude 10i, the
corresponding maximum absolute and relative errors are shown.

Figure 12.8.: Distribution of maximum absolute and relative errors for H4 in the artificial
basis, with respect to the magnitudes of the integrals. In all cases the integrals are
compared to the BOOST<500> type. On the left the deviations of the unswapped E1

ansatz are shown. In the middle the swapped E1 results are shown, and on the right the
E2 approach.

In all three implementations, the maximum errors can be found for integrals of small
magnitude. In the unswapped case, however, the maximum relative and absolute errors
are huge. I.e. the correct integral of 4.00 · 10−26 gets calculated to 1.1 · 1048. Contrary,
the other two implementations give absolute errors smaller than one. In the swapped
implementation however, in all small integrals the maximum absolute error is larger than
the integral (red line). The integral 4.6 · 10−13 for example is calculated to 4.6 · 10−7.
In the alternative electron transfer case finally, the relative error is even smaller. The
absolute error grows to the magnitude of the corresponding integral in the range of about
10−30 to 10−15. The integral of value −1.34 · 10−25 is calculated to −5.9 · 10−20.
Still, some integrals are calculated to a significantly different number than the boost

500 value. The reason for this overestimation is numerical noise. The integrals are
built from a huge sum, with summands of differing magnitudes. Especially if the final
result is small, such sums are susceptible to numerical noise. Even two almost canceling
summands of higher magnitude, appearing somewhere in the sum taint the final result.
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As for certain exponent combinations the factor p/q still gets large, such noise can not
be avoided.
The use of the artificial basis with exaggerated exponents amplifies this noise. This

can be seen by comparing the results obtained in this artificial basis to the results of the
methanolamine calculation in a unmodified cc-pV6Z basis shown in figure 12.9.

Figure 12.9.: Distribution of maximum absolute and relative errors for methanolamine
CH5NO in the cc-pV6Z basis, with respect to the magnitudes of the integrals. In all
cases the integrals are compared to the BOOST<500> type. On the left the deviations
of the unswapped E1 ansatz are shown. In the middle the swapped E1 results are shown,
and on the right the E2 approach.

Still not free of errors, the alternative electron transfer ansatz reproduces all integrals
to at least one significant digit. Additionally, all potentially problematic deviations are
linked to integrals of small magnitude.
The error introduced in the SCF energy has not been investigated in terms of the

high accuracy type. It shall however be noted that the extensive comparisons versus
TURBOMOLE and MOLPRO in section 15.1.1 and section 15.2.1 did not show any
significant deviations.

12.4. Code Reduction by Using a Different
Code-Generating Ansatz

Although highly efficient for batches with small angular momenta, the code-generated
ansatz of section 12.2.2 becomes impractical if applied to large angular momenta. This is
due to the amount of generated code. At runtime the huge bytecode size leads to costly
instruction cache misses, increasing with the size (angular momenta) of the batches.
At compile time, on one hand the actual generation of the recursion structure becomes
rather demanding. To use, for example, basis sets of cc-pV6Z quality, IIII-batches have
to be calculated. Having 28 functions in an I-shell, 614,656 target integrals need to be
calculated for one batch. To do so, 9,285,371 intermediates are needed, giving a total
of 9,900,027 integrals to be taken into account. No timings have been generated for the
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analysis of such a batch. However, to analyze the 84,181 integrals of an FFFF batch,
about six seconds are needed, and about twelve seconds for the 122,523 integrals of an
GFFF batch. On the other hand, compilation of codes of the size of millions of lines of
codes becomes almost impossible.
In the following, two techniques are presented, by which the amount of generated code

has been drastically reduced. Still, the main objective has been a code-generated ansatz,
thus evaluating the recursion structure at compile time.

12.4.1. Removing Redundancies, the Splitted Integration Ansatz

In a first step, analysis of the existing code-generated ansatz revealed that a substantial
amount of the code generated is in fact redundant. This is conceptually shown in
figure 12.10, which gives the full V and E1 dependencies of a FFSS batch, in terms of
the batch-recursion interpretation of section 12.1.2.

li

lj

N

Figure 12.10.: Full recursion of a FFSS batch, using E1 and V.

In the existing code-generated ansatz, the code to calculate such an FFSS batch con-
tains code for all intermediates. The redundancies now become clear by considering
that each intermediate batch needed to calculate the FFSS batch can be a target batch
itself. As a target batch, again all intermediates have to be included in its code. For
example the code to calculate the FDSS batch is contained and repeated in the code
of the FFSS batch. In fact the code to calculate a specific batch explicitly appears in
each target batch it is an intermediate of.
To remove these redundancies, a ’splitted’ ansatz has been developed to implement

the Obara-Saika recurrence relations. In a first step, code is generated to calculate each
batch individually, from their actual dependencies. This is shown in listing 12.3, for
the PPSS batch, using the electron transfer E1. According to the batch dependencies
(12.7), the PPSS batch depends on the PSSS- and DSSS batches, and the recursion
seeds SSSS.
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1 void PPSS(
2 double * out ,
3 const shellBatchData & sbd ,
4 const double * psss ,
5 const double * dsss ,
6 const double * ssss)
7 {
8 out [0] = sbd.b_AB_d_CD_q.x * psss [0] - sbd.p_q * dsss [0] + sbd._2q

* ssss [0] ;
9 out [1] = sbd.b_AB_d_CD_q.y * psss [0] - sbd.p_q * dsss [1];

10 out [2] = sbd.b_AB_d_CD_q.z * psss [0] - sbd.p_q * dsss [3];
11
12 out [3] = sbd.b_AB_d_CD_q.x * psss [1] - sbd.p_q * dsss [1];
13 out [4] = sbd.b_AB_d_CD_q.y * psss [1] - sbd.p_q * dsss [2] + sbd._2q

* ssss [0];
14 out [5] = sbd.b_AB_d_CD_q.z * psss [1] - sbd.p_q * dsss [4];
15
16 out [6] = sbd.b_AB_d_CD_q.x * psss [2] - sbd.p_q * dsss [3];
17 out [7] = sbd.b_AB_d_CD_q.y * psss [2] - sbd.p_q * dsss [4];
18 out [8] = sbd.b_AB_d_CD_q.z * psss [2] - sbd.p_q * dsss [5] + sbd._2q

* ssss [0];
19 }

Listing 12.3: Calculating a PPSS batch individually from its dependencies.

Again, using the code-generated approach, no conditionals appear. The information that
the second term of equation (12.2) vanishes in all target integrals, and that the third
term only contributes to the first, fifth and ninth integral are determined at compile
time.
The indices used to access the individual integrals are determined by the particular

order in which the individual functions of a shell are stored. A detailed discussion of
this order will be given in section 12.4.2.
These individual snippets are then bound together to calculate the respective target

batches, using a separate function. Listing 12.4 shows this for the full PPSS batch.
1 void ppss(
2 const shellBatchData & sbd ,
3 const double * boys ,
4 double * out)
5 {
6 // Vertical transfer
7 double psss [6];
8 PSSS <1>(psss , sbd , boys);
9

10 double dsss [6];
11 DSSS <0>(dsss , sbd , psss , boys);
12
13 // Electron transfer
14 PPSS(out , sbd , psss , dsss , boys);
15 }

Listing 12.4: Calculating a PPSS batch individually from its dependencies.
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Prior to the call to the PPSS function (line 14) of listing 12.3, which calculates the target
integrals, the dependencies are calculated via the PSSS and DSSS functions (lines eight
and eleven). These are implemented similar to the PPSS function, however using the
corresponding vertical transfer relations. Note that they are templated with respect to
the maximum order N which is needed for the particular batch (see section 12.4.3 for
details).

Splitting the implementation of the integration in this way ensures that the size in-
tensive evaluation code is implemented only once, for a given batch. These codes then
do not have to be repeated explicitly every time a specific batch needs to be calculated,
but can be replaced by a call to the appropriate function.

It shall be noted that with this ansatz the effective byte size of the codes to be called is
not reduced. Nevertheless, using this approach makes batches of high angular momenta
partly accessible at compile time.

One reason is the decreased generation time. The full thirteen dimensional recurrence
relations need only to be taken into account in the individual batch calculation, where
the integrals of one target batch are evaluated from their dependencies. In each of these
individual codes, exactly one recurrence relation has to be applied.

To bind these functions together to calculate the requested target integrals, the much
simpler, both in terms of dimensions and required intermediates, batch recursion formu-
las (12.6) to (12.10) of section 12.1.2 can be used.

It shall be noted that, in terms of compilation time, the overall code sizes are decreased.
Nevertheless batches of high angular momenta still lead to impractical code sizes, as the
calculation of one integral requires one line of code. A GGGG batch, for example,
contains 50,625 integrals, leading to the same amount of lines of code, even in the
individual batch approach.

12.4.2. Shell Ordering and Index Relations

Central to the generation of the actual integration code is the effective handling of
integral storage and access. Unfortunately, these two contradict each other. In terms
of ease of access, as the auxiliary integrals are thirteen dimensional, a multidimensional
array of the same dimension would provide the simplest access structure, accessing each
integral via its Cartesian powers and order N in such an array. However, as pointed
out in the discussion of the general integration approach in section 12.2.1, in doing
so a lot of memory is allocated but unused, introducing unwanted gaps in memory.
Additionally, the structure of such a multidimensional array leads to non-locality of
integrals of a given batch in terms of their memory location. Integrals of a given batch
end up scattered over a sometimes huge area of memory. As they however are needed at
the same time (batchwise integration), reading them from differing memory locations is
far from optimal.

This ease of access multidimensional structure has therefore been abandoned in favour
of a tightly packed memory alignment of integrals of a given batch. This however leads
to somewhat complicated access methods.
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Doing so is closely connected to the specific ordering of basis functions of a shell.
There is no unique ordering. A d-shell for example consists of the six functions dx2 ,
dy2 , dz2 , dxy, dxz and dyz. These six functions can be arranged in 6! = 720 different
ways. In the general case, having n functions in a shell, n! possible orderings exist. In
batches, the integrals can be thought of to be generated from the Cartesian product of
the functions in the shells of this batch. The N resulting integrals can again be ordered
in N ! different ways.
The ordering for basis functions and integrals in batches used in this work is not

arbitrary, but based on the ordering defined by the QOL iterators. Starting point is
the ordering of basis functions in shells, which is given in table 12.5, for shells up to
f -functions.

l
1 x y z
2 xx xy yy xz yz zz
3 xxx xxy xyy yyy xxz xyz yyz xzz yzz zzz

idx 0 1 2 3 4 5 6 7 8 9

Table 12.5.: Shell ordering for l up to three.

Integrals in batches are then stored in one-dimensional arrays. In particular, they are
ordered in a ’right to left’ fashion, with respect to the shells building the batch. In a
FDSS batch for example, the first six integrals correspond to the fx3 function, combined
with the d-functions, in the order given in table 12.5. The next six integrals are built
from the second f -functions fx2y of table 12.5, again combined with the corresponding
d-functions, and so on. Each integral can then be identified using a unique linear index.
Equivalently, the integrals can be accessed via their shell indices and shell sizes. For the
FDSS-batch, the corresponding formula would be idx(f) ∗ dSize+ idx(d).
The ordering of table 12.5 is generated using two nested for loops, iterating over the

functions of a shell of angular momentum l, in terms of their Cartesian powers, as shown
in listing 12.5.

1 int idx = 0;
2 for (int z = 0; z <= l; ++z) {
3 for (int y = 0; y <= l - z; ++y, ++idx) {
4 int x = l - (x + y);
5 }
6 }

Listing 12.5: Generator of the shell ordering of table 12.5.

At the inner loop, for each function of the shell, the linear index idx and the three
Cartesian powers x, y and z are known.
Additionally, by inspection of listing 12.5, a function can be given to calculate the

linear index idx from the Cartesian powers. For two given fixed Cartesian powers z′
and y′, the added loop iterations give the linear index for this particular function. If z
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in listing 12.5 is equal to z′, the inner y-loop has been fully run for z’s in the range of
0 . . . (z′−1). For a given z, this inner loop is accessed (l−z+1) times. The linear index
is then just the sum of all this inner loop accesses, plus y′.

idx(x′, y′, z′) = y′ +
z′−1∑
i=0

(l − i+ 1)

= y′ + lz′ + z′ − z′(z′ − 1)

2
(12.16)

Subtracting this formula from its increment in one of the Cartesian directions gives the
correlation of the linear index of some arbitrary function and its corresponding in- or
decrement, with respect to the Cartesian direction (the primes have been dropped in
these formulas).

idx(x+ 1, y, z)− idx(x, y, z) = z (12.17)
idx(x, y + 1, z)− idx(x, y, z) = z + 1 (12.18)
idx(x, y, z + 1)− idx(x, y, z) = l + 2 (12.19)

The d-function dxz for example has the index 3 (see table 12.5). Incrementing this
function in x-direction gives the f -function fx2z. According to equation (12.17), the
index of this f -function is then calculated as 3 + 1 = 4. For the y-increment idx(fxyz) =
3 + 1 + 1 = 5 is obtained, and for the z increment idx(fxz2) = 3 + 2 + 2 = 7.

12.4.3. Generation of the Individual Batch Codes

Two approaches will be discussed here, beginning with the plain (’unrolled’), one integral
per line, ansatz introduced above. Afterwards it will be shown that a substantial subset
of those codes can be expressed in a rather compact form, by transforming them to a
looped (’rolled’) structure.

The Plain Approach

Implementing the plain approach is straight forward. For a given target batch, the
integrals this batch consists of are generated using the shell iterator of listing 12.5. To
each of these integrals, the corresponding transfer relation is then applied. The transfer
direction is deduced from the particular integral, using the first applicable direction, in
the order x before y before z. For a PSPS-batch, using the horizontal transfer H1, the
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following is obtained.

Θ0
1010
0000
0000

= Θ0
2000
0000
0000

+XABΘ0
1000
0000
0000

Θ0
1000
0010
0000

= Θ0
1000
1000
0000

+ YABΘ0
1000
0000
0000

Θ0
1000
0000
0010

= Θ0
1000
0000
1000

+ ZABΘ0
1000
0000
0000

Θ0
0010
1000
0000

= Θ0
1000
1000
0000

+XABΘ0
0000
1000
0000

Θ0
0000
1010
0000

= Θ0
0000
2000
0000

+ YABΘ0
0000
1000
0000

Θ0
0000
1000
0010

= Θ0
0000
1000
1000

+ ZABΘ0
0000
1000
0000

Θ0
0010
0000
1000

= Θ0
1000
0000
1000

+XABΘ0
0000
0000
1000

Θ0
0000
0010
1000

= Θ0
0000
1000
1000

+ YABΘ0
0000
0000
1000

Θ0
0000
0000
1010

= Θ0
0000
0000
2000

+ ZABΘ0
0000
0000
1000

Note that the transfer directions for the integrals of this batch are unique, i.e. for each
integral only transfers in one direction can be applied.
From these equations, the corresponding code is then generated by determining the

indices of the participating integrals and intermediates using the ordering definitions
given in section 12.4.2. For the PSPS-batch, the code shown in listing 12.6 is obtained.

1 void PSPS(
2 double * out ,
3 const shellBatchData & sbd ,
4 const double * dsss ,
5 const double * psss) {
6 out [0] = dsss [0] + sbd.AB.x * psss [0];
7 out [1] = dsss [1] + sbd.AB.y * psss [0];
8 out [2] = dsss [3] + sbd.AB.z * psss [0];
9 out [3] = dsss [1] + sbd.AB.x * psss [1];

10 out [4] = dsss [2] + sbd.AB.y * psss [1];
11 out [5] = dsss [4] + sbd.AB.z * psss [1];
12 out [6] = dsss [3] + sbd.AB.x * psss [2];
13 out [7] = dsss [4] + sbd.AB.y * psss [2];
14 out [8] = dsss [5] + sbd.AB.z * psss [2];
15 }

Listing 12.6: Unrolled version of the calculation of a PSPS-batch.

Of special interest here is the linearity of the indices. For the target- and the PSSS-
batch, the elements are accessed consecutively. The DSSS-intermediate integrals how-
ever are accessed non-consecutively. In this example, this is of no concern in terms of
performance. With increasing batch-sizes, such jumps span a wider region of memory,
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leading to inefficient memory access patterns.
The origin of these jumps can be found in the specific ordering of functions in a shell

as defined by listing 12.5. The determination of an optimal shell- or batch ordering,
with respect to index linearity is rather complex, due to the vast number of possible
orderings. No optimizations with respect to the ordering have been performed.

For batches to be generated by the other recurrence relations, the same strategy as
shown for the H1 relation has been used.

’Rolling’ the Code by Introducing Loops

As mentioned above, the plain approach leads to rather huge code- and byte-code sizes,
as each integral to be calculated results in one line of code. This size however can be
drastically reduced by transforming the plain integration codes to a looped, ’rolled’,
structure. This has been done for the horizontal- and vertical transfer relations.

The Horizontal Transfers The uniformity of the code resulting from application of
the horizontal transfers (see listing 12.6) allows for a reformulation in looped form. In
the PSPS example of listing 12.6, two loops of the form of listing 12.5 can be used,
one for the bra1 p-shell, and one for the ket1 p-shell, respectively. The indices of the
target out array can then easily generated from the total loop index. The indices of the
PSSS-intermediates are determined by the bra1 loop, and the corresponding transfer
directions by the ket1 loop. Unfortunately, the indices of the DSSS-intermediates can
not be deduced in a similar simple manner. They can, however, be calculated using
the index relations of equation (12.17) to equation (12.19). In this example, a particular
DSSS integral is generated by increasing the bra1 p-function of the target PSPS integral
in one of the Cartesian directions. As both the index of the p-function and the transfer
direction are known for every target integral, the index of the corresponding d-function
can be calculated using the appropriate index relation. The index of the py function in a
p-shell for example is one. Incrementing this function in z-direction gives the d function
dyz. According to equation (12.19), the index of this function in the d-shell can then be
calculated as idx(dyz) = 1 + 1 + 2 = 4. This integral is calculated in listing 12.6 in line
eleven.
Putting the above together, the PSPS integration can be performed in a looped form,

as is shown in listing 12.7.
1 void PSPS(
2 double * out ,
3 const shellBatchData & sbd ,
4 const double * psss ,
5 const double * dsss) {
6 int uI[3];
7 int bra1Idx = 0;
8 for (int bra1z = 0; bra1z <= 1; ++bra1z) {
9 for (int bra1y = 0; bra1y <= 1 - bra1z; ++bra1y , ++ bra1Idx) {

10 uI[0] = bra1Idx + bra1z;
11 uI[1] = bra1Idx + bra1z + 1;
12 uI[2] = bra1Idx + 1 + 2;
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13
14 *(out ++) = dsss[uI[0]] + sdb.AB.x * *(psss);
15 *(out ++) = dsss[uI[1]] + sdb.AB.y * *(psss);
16 *(out ++) = dsss[uI[2]] + sdb.AB.z * *(psss ++);
17 }
18 }
19 }

Listing 12.7: Rolled version of the PSPS-batch.

In lines eight and nine, the loop over the bra1 p-shell can be found. The index of
the according p-function, bra1Idx, is then used in lines ten to twelve to calculate the
incremented index uI, for each transfer direction. This index is then used in lines 14 to
16 to access the correct DSSS-intermediate. The inner ket1 loop mentioned above is
not introduced, but kept unrolled.
In this example, not much is gained in terms of code size compared to the plain

approach of listing 12.6. For batches of higher angular momentum however, similar
compact formulations exist, drastically reducing the needed code size. Listing 12.8 for
example shows the code to calculate an FFFS batch.

1 void FFFS(
2 double * out ,
3 const shellBatchData & sbd ,
4 const double * ffds ,
5 const double * gfds) {
6
7 int uI[3];
8 int bra1Idx = 0;
9

10 for (int bra1z = 0; bra1z <= 3; ++bra1z) {
11 for (int bra1y = 0; bra1y <= 3 - bra1z; ++bra1y , ++ bra1Idx) {
12
13 uI[0] = 6 * 10 * (bra1Idx + bra1z);
14 uI[1] = 6 * 10 * (bra1Idx + bra1z + 1);
15 uI[2] = 6 * 10 * (bra1Idx + 3 + 2);
16
17 for (int b2I = 0; b2I < 10; ++b2I) {
18 *(out ++) = gfds[uI[0]+ b2I *6+0] + sbd.AB.x[0] * *(ffds ++);
19 *(out ++) = gfds[uI[0]+ b2I *6+1] + sbd.AB.x[0] * *(ffds ++);
20 *(out ++) = gfds[uI[0]+ b2I *6+2] + sbd.AB.x[0] * *(ffds);
21 *(out ++) = gfds[uI[1]+ b2I *6+2] + sbd.AB.y[1] * *(ffds ++);
22 *(out ++) = gfds[uI[0]+ b2I *6+3] + sbd.AB.x[0] * *(ffds ++);
23 *(out ++) = gfds[uI[0]+ b2I *6+4] + sbd.AB.x[0] * *(ffds);
24 *(out ++) = gfds[uI[1]+ b2I *6+4] + sbd.AB.y[1] * *(ffds ++);
25 *(out ++) = gfds[uI[0]+ b2I *6+5] + sbd.AB.x[0] * *(ffds);
26 *(out ++) = gfds[uI[1]+ b2I *6+5] + sbd.AB.y[1] * *(ffds);
27 *(out ++) = gfds[uI[2]+ b2I *6+5] + sbd.AB.z[2] * *(ffds ++);
28 }
29 }
30 }
31 }

Listing 12.8: Rolled version of the FFFS-batch.
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Almost identical to the code of the PSPS-batch, a plain loop for the bra2 f -shell had to
be added (line 17). Additionally, the incremented g-index uI needs to be offset by the size
of the f - and d-shells present in the intermediate GFDS-batch (10 ∗ 6 in lines 13 to 15).
Again, the inner f -loop has been kept unrolled (lines 18 to 27), due to its unnecessarily
complicated looped form. Its particular structure is generated at compile time, taking
care of which transfer relation to be applied to a given integral, and the explicit offsets
and increments in accessing the intermediate GFDS- and FFDS-integrals.
The about 30 lines of code needed in the rolled approach correspond to a saving of code

size of about a factor of 30, compared to the 1000 lines needed in the plain approach. In
terms of byte-code size, for the horizontal part of calculating the FFFS-batch using the
original code-generated approach, about 216 kByte are obtained. In the rolled approach
the size of the resulting code amounts to only about 5 kByte.
Additionally, the factor which determines the size of these rolled codes is the size of

the unrolled shell. The IIIS-batch for example has the same structure as the FFFS-
batch, the main difference being that the unrolled i-shell corresponds to 28 functions,
compared to the ten of the f -shell.
It shall be noted that the code in listing 12.8 could be generalized to all batches of the

form XY FS, with arbitrary angular momenta X and Y . For different angular momenta
at the bra1 and bra2 shells, only the loop boundaries and size offsets change. These
could easily be given as arguments to a generalized XYFS function. Nevertheless, explicit
code has been generated for each XY FS-batch, thus allowing for the compiler to include
specific optimizations, based on the actual loop and offset sizes.
The above has been introduced for the H1 transfer, the similar H2 transfer can be

implemented in an almost identical manner.

The Vertical Transfer The code reduction ansatz of rolling has been applied to the
vertical transfer relation as well. The repeating pattern for this relation is the order N
of the batch. The actual implementation follows the ideas introduced for the horizontal
transfers, and will not be repeated. Exemplary, the code for the DSSS-batch is given
in listing 12.9.

1 template <int N> void DSSS(
2 double * out ,
3 const shellBatchData & sbd ,
4 const double * psss ,
5 const double * ssss) {
6 for (int i = 0; i <= N; ++i) {
7 double x = sbd._2p * (ssss[(i * 1) + 0] - sbd.alpha_p *

ssss [((i + 1) * 1) + 0]);
8
9 *(out ++) = sbd.PA.x * psss[(i * 3) + 0] - sbd.alpha_p_PQ.x *

psss [((i+1) * 3) + 0] + x;
10 *(out ++) = sbd.PA.x * psss[(i * 3) + 1] - sbd.alpha_p_PQ.x *

psss [((i+1) * 3) + 1];
11 *(out ++) = sbd.PA.y * psss[(i * 3) + 1] - sbd.alpha_p_PQ.y *

psss [((i+1) * 3) + 1] + x;
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12 *(out ++) = sbd.PA.x * psss[(i * 3) + 2] - sbd.alpha_p_PQ.x *
psss [((i+1) * 3) + 2];

13 *(out ++) = sbd.PA.y * psss[(i * 3) + 2] - sbd.alpha_p_PQ.y *
psss [((i+1) * 3) + 2];

14 *(out ++) = sbd.PA.z * psss[(i * 3) + 2] - sbd.alpha_p_PQ.z *
psss [((i+1) * 3) + 2] + x;

15 }
16 }

Listing 12.9: Rolled version of the DSSS-batch.

Similar to the horizontal transfers, the loop over the decremented shell is kept unrolled
(lines nine to 14). Rolling is done with respect to the maximal orderN for which integrals
or intermediates are needed. This number depends on the context in which the batch is
requested. For a final target, only the zeroth order has to be calculated. For intermediate
batches, higher values of N are needed, depending on the actual target batch. To allow
for compiler optimizations, the order has been implemented as a template argument. By
explicit instantiations, the compiler can then generate optimized code for that particular
N -value. Again the actual code size is determined by the size of the unrolled shell.

The Electron Transfers No simple rolled expression could be found for the electron
transfer relations. This is due to the fact that, in both transfers, terms appear which
have to be multiplied by the Cartesian power of the bra1 shell, in the requested transfer
direction. For the E1 transfer, the term of interest is i

2q
Θi−1,j,00. Taking the PPSS-batch

as an example, the inner loop runs over the three p-functions of the bra2 p-shell. For
each of these functions, the transfer direction is unique, x for the px function, and y
and z for the remaining, respectively. The outer loop again runs over three p-functions.
For the bra1 px function, the i

2q
term only appears for the transfer in x-direction (the

’first’ bra2 loop integral: pxspxs). For the bra1 py function it appears if the transfer is
in y-direction (the ’second’ bra2 loop integral pyspys) and for the bra1 pz function for
z-transfers (the ’third’ bra2 loop integral). In each bra1 loop iteration, the i

2q
term is

needed at a different position in the bra2 loop. For shells of higher angular momenta,
this gets even more complicated, as also different values of i are possible, depending
on the actual function at the bra1 index. Nevertheless, the electron transfers could be
brought to a rolled formulation, but only for the cost of a conditional if query, needed
to decide the presence of the i

2q
term, for each integral. As this reintroduces possibly

costly branching, the plain approach of section 12.4.3 has been chosen to implement
the electron transfers. For these transfers, the code size is determined by the product
of the shell sizes of the participating shells. To address basis sets of cc-pV6Z quality,
the maximum electron transfer to be taken into account is the OOSS-batch, of angular
momenta li = lj = 12. For this batch about 8500 lines of code are needed in the plain
approach.
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12.4.4. Comparison of the Electron Transfers E1 and E2

From a strict analysis of the electron recursion formulas (12.2) and (12.3), the E1 transfer
appears to be superior to the E2 formulation. Only four terms are present in the E1

transfer, compared to the five of the E2 relation. Additionally, only in- and decrements
of the bra1 and bra2 indices are required for the E1 recurrence. In the E2 transfer,
additional increments of N are needed.
However, the E2 relation lacks the numerical problems inherent in the E1 transfer

(see section 12.3). Although these numerical issues can be avoided in the E1 transfer by
swapping (interchanging) particle one and two indices, this has to be accounted for, at
both the code-generation and runtime execution stages, respectively.

At the code-generation stage, code for more angular patterns has to be generated. The
swapped form of the FSFS batch for example is the SFSF batch. As it is not of the
optimal shell ordered form, it would not be included in the standard implementation. To
treat swapped batches however, it has to be included. There is a non-negligible number
of such angular patterns to be included, thus significantly more code has to be generated
to account for swapping.

Also at runtime, swapping puts strains on the integration engine. For each batch it
has to be determined if swapping has to be applied, which introduces additional logic.
The criterion for swapping is based on the relative magnitudes of the exponents of a
particular batch: a + b > c + d. In the iteration hierarchy center - angular - exponent,
this criterion has to be evaluated at the innermost level of iteration. A consequence of
this is an inefficient instruction cache utilization. Without swapping, all exponents (third
level) connected to a certain center/angular pattern (levels one and two) can be handled
by one integration code. With swapping enabled, these codes have to be sometimes
replaced by their swapped versions, in an irregular manner. As the integration codes,
even of the optimized code reduced versions, tend to be large for high angular momenta,
frequent code changes are non-optimal.

Finally, even if more complicated (N is involved in the recurrences), the E2 is better
suited for the splitted integration implementation presented in this work. This can be
shown by comparing the full recursion pathways arising from both transfers. This is
done in figure 12.11, for the FFSS batch.
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(a) Electron Transfer E1.
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(b) Electron Transfer E2.

Figure 12.11.: Recursion pathways for the FFSS-batch, using the E1 and E2 transfers.

In this example, 24 intermediate batches are needed in the E2 case, compared to 29
for the E1 recurrence. Additionally, in the E1 route intermediates of larger size (which
increases with li and lj) have to be calculated (li = 4, 5, 6).
The main point however is that in the context of the splitted integration ansatz,

electron transfers of the same li and lj, but different N can be handled by the same
code. For the E2 path, ten batches have to be calculated using the electron transfer
recursion. However, only six different codes have to be used. The FDSS0 and FDSS1

batches, for example, can be calculated using the same function, with different arguments
for N . Using the E1 path, nine batches have to be calculated using the electron transfer.
In this case, also nine codes have to be called, one for each batch, respectively.
All in all, the E2 transfer route turns out to be superior to the E1 ansatz. Mostly this

is due to the fact that swapping is not needed for the E2 recurrence relation.

12.5. One-Electron Integrals

The one-electron integral evaluation has been reimplemented by the author. In the
original implementation [18], each integral was evaluated individually, by recursively
applying the corresponding recurrence relations (equations (3.26), (3.27), (3.35), (3.36),
(3.43) and (3.44)).
In the improved implementation, integrals are evaluated in terms of batches. Sec-

ondly, the expensive recursion ansatz was replaced by a generic implementation, using
the approaches presented in section 12.4. Finally, overlap- and kinetic integrals were
evaluated in one go, based on the equations (3.35) and (3.36).
The improvements made are shown by the wall clock time needed for the calculation of
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the one-electron integrals. Table 12.6 lists the timings obtained for serotonine in the ano-
rcc basis and the resulting speedups, for existing- and reimplementation, respectively.

Wallclock time Speedup
Previous Version Reimplementation

Overlap 4.56 0.19 88Kinetic 12.01
Nuclear Potential 474.32 4.97 95

Sum 490.89 5.16 95

Table 12.6.: Wall clock times (in seconds) for the generation of the one-electron integrals
and corresponding speedups.

The generation of the one-electron integrals has been significantly improved. In this
example, the overall calculation has been sped up by a factor of about 100. In general,
the speedups depend on basis set and molecule size, as is shown in table 12.7, in which
the total (all three one-electron integrals) speedup of the reimplementation versus the
previous implementation is summarized. Speedups of up to about 2000 are observed.

Basis C4H10 Serotonine C36H53N7O9

cc-pVDZ 3 5 4
roos-aug-dz-ano 6 8 6
cc-pVTZ 11 16 14
roos-aug-tz-ano 18 24 21
cc-pVQZ 52 72 68
ano-rcc 64 95 91
cc-pV5Z 248 361 343
cc-pV6Z 1297 1960 -

Table 12.7.: Speedups of the reimplementation of the one-electron integral calculation
routines versus the previous implementation.

111





13. Density Contraction

Conceptually, the implementation of the density contraction follows the pathway taken
for the implementation of the Obara-Saika recurrence relations. Starting point has been
an already existing, generic implementation by Michael Hanrath [18]. Basically, this
ansatz had similar shortcomings as were present in the generic integration code. In this
work, they have been addressed by a code-generated approach. A first, plain implemen-
tation lead again to impractical code sizes. In a second implementation, practical code
sizes have been achieved by rolling the density contraction codes.

13.1. Existing Implementation

The previous implementation was based on treating non-redundant integrals. In an
approach similar to the one presented in section 5.1, integral contributions to the Fock
matrix have been determined, based on their symmetry class. This leads to the generic
implementation shown in listing 13.1.

1 // matrix J; // coulomb part of G
2 // matrix K; // exchange part of G
3
4 // calculate the integral batch
5
6 // loop over the non -redundant integrals of that batch
7 for (typename Iterator :: SubIter44 i4(iPrim); i4.valid(); ++i4) {
8 // int a,b,c,d; // indices of current integral
9

10 // double intVal; // value of integral <ab|cd >
11 double intValHalf = 0.5 * intVal;
12
13 int symClass = (b == d) |
14 ((a == c) << 1) |
15 ((a == b && c == d) << 2);
16
17 switch(symClass) {
18 case 3: // <ab|ab>
19 J(a,c) += intVal*D(d,b);
20 J(b,d) += intVal*D(c,a);
21
22 K(a,d) -= intValHalf*D(c,b);
23 K(b,c) -= intValHalf*D(d,a);
24 break;
25
26 case 7: // <aa|aa>
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27 J(a,c) += intVal*D(d,b);
28
29 K(a,d) -= intValHalf*D(c,b);
30 break;
31
32 // similar for the remaining cases: 0 1 2 and 4
33
34 default: throw;
35 }
36 }

Listing 13.1: Generic contraction

After each batch is calculated, all of its non-redundant integrals are accessed sequentially
(loop in line seven). After retrieving its value and indices (lines eight and ten, no
actual code shown), the symmetry class symClass of the particular integral is calculated
(line thirteen). Based on this symmetry class, the integral is then contracted with the
density (lines 17 to 35). Explicit code is shown only for integrals of type 〈ab|ab〉 and
〈aa|aa〉. The code for the remaining classes is similar, although different for each class,
respectively. With G = J + K, a distinction of Coulomb- and exchange-contributions
has been introduced.
As mentioned, several shortcomings exist in this ansatz. On one hand, a lot of possibly

inefficient branching is introduced by the switch / case conditional of line 17. Addition-
ally, for a particular batch- (or angular-) pattern, the logic needed to contract that
batch is independent of the actual integral- and density-matrix values. Nevertheless, it
is regenerated during runtime for each appearing batch.

13.2. Code-Generated Implementation

Identically to the integration, these shortcomings have been addressed by a code-genera-
ted ansatz. Again, the logic of the contraction is analyzed at compile time, and optimized
code is automatically generated for each requested angular pattern. These optimized
code fragments are then called at runtime.

13.2.1. Plain Approach

Starting point of the code-generated density contraction has been a brute force plain ap-
proach. In this ansatz, the sole angular pattern is not sufficient to treat the contraction
of the density with the integrals. This is due to different symmetry properties of batches
with identical angular patterns. For the angular pattern DPSP for example, two dif-
ferent contraction routes appear. One is connected to batches with different p-shells. In
these DPiSPj-batches, only integrals with four different functions appear. In batches
with equal p-shells DPiSPi, on the other hand, integrals with four different functions
are mixed with integrals in which the two p-functions are identical. As integrals with
equal p-functions contract differently than integrals with four different functions (see
section 5.1.2), two different codes are needed, one to contract the DPiSPj batches, and
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one for the DPiSPi ones, respectively. The actual number of different routes depends
on the specific angular pattern, and the potential equalities or inequalities. For batches
with only one angular momentum, i.e. PPPP , 15 different contraction routes have to
be taken into account.
In the automatic code-generation, the full set of integrals is generated for each batch

pattern, without respect to symmetry. Their contributions to the Fock matrix are then
computed, and related to the actual integral sequence of the batch. The order of integrals
is given by the implementation of the Obara-Saika scheme (see section 12.4.2). The
obtained information is then used to generate the actual code. Exemplary, listing 13.2
shows the code for a PSiSjSi-batch.
The extension _0010 identifies shell equalities. As p- and s-shells are different per

definition, no distinction has been made between the first and remaining shells. The
equalities for the three s-shells are then given by 010, indicating the equality of the first
and third s-shell, and the difference of the second.

1 void psss_0010(
2 const double * in ,
3 Matrix <double > & G,
4 const Matrix <double > & D,
5 const int * BI) {
6 double d[9];
7 double g[9];
8
9 d[0] = D(BI[1]+0 ,BI [2]+0);

10 d[1] = D(BI[1]+0 ,BI [1]+0);
11 d[2] = D(BI[0]+0 ,BI [2]+0);
12 d[3] = D(BI[0]+0 ,BI [1]+0);
13 d[4] = D(BI[0]+1 ,BI [2]+0);
14 d[5] = D(BI[0]+1 ,BI [1]+0);
15 d[6] = D(BI[0]+2 ,BI [2]+0);
16 d[7] = D(BI[0]+2 ,BI [1]+0);
17
18 g[0] = d[0] * in[0] * -0.5;
19 g[1] = d[1] * in[0] * 1;
20 g[2] = d[2] * in[0] * 2;
21 g[3] = d[3] * in[0] * -0.5;
22
23 g[4] = d[0] * in[1] * -0.5;
24 g[5] = d[1] * in[1] * 1;
25 g[2] += d[4] * in[1] * 2;
26 g[3] += d[5] * in[1] * -0.5;
27
28 g[6] = d[0] * in[2] * -0.5;
29 g[7] = d[1] * in[2] * 1;
30 g[2] += d[6] * in[2] * 2;
31 g[3] += d[7] * in[2] * -0.5;
32
33 G(BI[0]+0,BI [1]+0) += g[0];
34 G(BI[0]+0,BI [2]+0) += g[1];
35 G(BI[1]+0,BI [1]+0) += g[2];
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36 G(BI[1]+0,BI [2]+0) += g[3];
37 G(BI[0]+1,BI [1]+0) += g[4];
38 G(BI[0]+1,BI [2]+0) += g[5];
39 G(BI[0]+2,BI [1]+0) += g[6];
40 G(BI[0]+2,BI [2]+0) += g[7];
41 }

Listing 13.2: Code-generated contraction of a PSiSjSi batch.

Every contraction is formulated in a three step ansatz. Prior to the contraction, the
density elements needed for the particular batch are copied to a local array (d, lines nine
to 16). In the second step, these local elements are then contracted with the integrals
(lines 18 to 31), where the prefactors have been determined at the code-generation stage.
The target of this contraction is again not the global G, but the local array g. This local
array then gets written back to the actual G matrix in the final contraction step (lines
33 to 40).

This local formulation has been chosen to optimize memory accesses. Despite the
overhead introduced by first reading from the density and writing back to G, the con-
traction can in this way be performed on compact memory structures. In almost all
cases the matrix elements needed for the contraction are scattered over wide regions of
memory, making their access inefficient. The actual indices to be used are generated by
the code-generation engine, and can be optimized for access linearity.

Finally, the actual D and G matrix elements can be identified by the base-index BI.
It points to a four dimensional array, holding the indices of the first functions of each
shell of the actual batch. As the functions of a shell appear contiguous in the basis, the
indices of subsequent functions in a shell can be generated implicitly from this index.
For example the index of the third p-function of the second p-shell in a PPSS batch
would be BI[1]+2. Thus a general way to access the particular matrix elements needed
in the contraction code is available.

Results

To get a reliable comparison of the efficiencies of the generic versus the plain code-
generated approach, production runs on real life examples have been performed. With
the exception of the contraction approach, the same codes for the rest of the calculation
have been used. Any change of performance relevant quantities can thus be directly
correlated with the corresponding contraction ansatz. In table 13.1, results obtained for
the first SCF iteration of serotonine in a cc-pVTZ basis are shown. Prescreening has
been turned on, using a threshold of 10−11 and the density used was the initial density
obtained with TURBOMOLE.
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Generic Code-generated Factor
Time (seconds) 825.31 468.16 1.8
Cycles 2,082,878,883,368 1,180,716,426,905 1.8

Branches 170,724,018,453 41,112,915,867 4.2
Branch misses 0.8% 1.7% -

L1 iCache loads 1,261,368,941,506 596,193,676,312 2.1
L1 iCache load-misses 3.7% 26.8% -

L1 dCache loads 1,279,215,100,424 506,590,272,422 2.5
L1 dCache load-missses 1.0% 2.0% -

L1 dCache stores 415,486,002,081 230,501,994,069 1.8
L1 dCache store-misses 1.0% 1.6% -

Table 13.1.: Performance comparison of the generic versus the code-generated approach
for serotonine in a cc-pVTZ basis.

Similar to changing the integration kernel from generic to code-generated, a significantly
increased performance can be observed for the code-generated contraction. By chang-
ing the contraction kernel to the code-generated version, the overall wall clock time is
reduced by almost a factor of two. Attributing to the branchless generated code, the
number of branches to evaluate could be reduced by a factor of four. The various cache
accesses have also been reduced by factors of about two.

However, and again comparable to the code-generated integration, the number of
missed instruction cache loads is drastically increased to over 25 percent. This is again
due to the plain approach chosen for the contraction, leading to huge code sizes, both
in terms of lines of code and object file sizes. For each integral, between one (〈aa|aa〉
integrals) and six (〈ab|cd〉 integrals) lines of code are needed. For an FFFF -batch with
four different f -shells, this amounts to 60000 lines of code. Additionally, the code for
reading to the local copy of D and writing back to the global G has to be taken into
account. For the aforementioned FFFF -batch, another 1200 lines of code are needed.
Again similar to the integration codes, this ansatz is only practicable for basis sets which
use up to f functions.

13.2.2. Rolling the Code

Using the ideas presented in section 5.2, the density contraction can be formulated in a
rather compact form. As has been shown, each integral of a given, non-redundant batch
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gives the following contribution to the Fock matrix.

Gpq += fs · 2.0 ·Drs · 〈pr|qs〉
Grs += fs · 2.0 ·Dpq · 〈pr|qs〉
Gps −= fs · 0.5 ·Drq · 〈pr|qs〉
Gpr −= fs · 0.5 ·Dqs · 〈pr|qs〉
Grq −= fs · 0.5 ·Dps · 〈pr|qs〉
Gqs −= fs · 0.5 ·Dpr · 〈pr|qs〉 (13.1)

Here fs is the symmetry correction of equation (5.10), depending on the actual batch.
Using these equations, a simple loop can be given to contract all integrals of some

batch. This loop is the basis for the rolled contraction ansatz and shown in listing 13.3.

1 // batch: <b1 b2|k1 k2>
2 // density: matrix D
3 // G: matrix G
4 // integrals: array I
5 int c = 0;
6 for (int b1 = 0; b1 < b1_size; ++b1)
7 for (int b2 = 0; b2 < b2_size; ++b2)
8 for (int k1 = 0; k1 < k1_size; ++k1)
9 for (int k2 = 0; k2 < k2_size; ++k2, ++c) {

10 G(BI[0]+b1 ,BI[2]+k1) += 2.0 * f * D(BI[1]+b2,BI[3]+k2) * I[c];
11 G(BI[1]+b2 ,BI[3]+k2) += 2.0 * f * D(BI[0]+b1,BI[2]+k1) * I[c];
12 G(BI[0]+b1 ,BI[3]+k2) -= 0.5 * f * D(BI[1]+b2,BI[2]+k1) * I[c];
13 G(BI[0]+b1 ,BI[1]+b2) -= 0.5 * f * D(BI[2]+k1,BI[3]+k2) * I[c];
14 G(BI[2]+k1 ,BI[3]+k2) -= 0.5 * f * D(BI[0]+b1,BI[1]+b2) * I[c];
15 G(BI[1]+b2 ,BI[2]+k1) -= 0.5 * f * D(BI[0]+b1,BI[3]+k2) * I[c];
16 }

Listing 13.3: Generic rolled contraction loop, in terms of the global G and D matrices.

The integrals, stored in the array I, are accessed linearly (using the counter c). Each
integral is then contracted with the density according to equation (13.1) (lines nine to
14). The particular D and G elements are accessed via the base-index BI, where the
actual offset is calculated from the loop-counters of lines five to eight. These loops run
over the sizes of the shells associated with the actual batch, reproducing the order in
which the integrals are stored by the Obara-Saika implementation.
It shall be noted here that this ansatz works for integral batches in any basis, and any

ordering of integrals. For a different integral ordering, the loops in lines five to eight
have to be permuted to represent the given order (implying that there is some structure
in the integral ordering). The basis of the integrals is addressed by the shell sizes in
the four loops. For batches in the primitive basis, npl = (l+1)(l+2)

2
has to be used, and

nshl = 2l + 1 for spherical-harmonic bases, respectively.
All six formulas of equation (13.1) can be formulated as matrix vector multiplications
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by interpreting D and G as vectors, and the integrals as a matrix.

~G(pr) = −fs · 0.5· Ipr,qs ~D(qs)

~G(qs) = −fs · 0.5· ~DT
(pr)·Ipr,qs

~G(pq) = +fs · 2.0· Ipq,rs ~D(rs)

~G(rs) = +fs · 2.0· ~DT
(pq)·Ipq,rs

~G(ps) = −fs · 0.5· Ips,rq ~D(rq)

~G(rq) = −fs · 0.5· ~DT
(ps)·Ips,rq (13.2)

Although this would allow for the use of effective LAPACK/BLAS routines, it has not
been used in the implementation. To use this formulation, the integrals have to be
resorted two times, to give the needed matrix structures. Furthermore, for each of
the six equations, one LAPACK/BLAS call is needed, which effectively iterates over
all integrals each time. In the formulation of listing 13.3 however, the integrals are
iterated over just once. Finally, a huge amount of the D and G vectors are small in the
batch formulation (i.e. three elements for a ps vector). In such cases the performance
gain of the LAPACK/BLAS routines is negligible. Thus a further optimized version of
listing 13.3 has been used in the final density contraction implementation.

Shell Pairs

To optimize memory usage, the same three-fold contraction ansatz as in the plain im-
plementation has been chosen for the rolled ansatz. Copying from D and writing back
to G can be greatly simplified by having a look at the particular indices involved in
the contraction of equation (13.1). To contract one integral, six D-elements are needed,
and written to six G-elements. The indices of these elements are just the six possible
two-combinations obtainable from the four indices p, r, q and s, in both cases. The
connection of the corresponding D and G elements then is mutually exclusive. Each
D-element is contracted into the G element having the two indices not used in that D
element. Dpq is contracted to Grs and so on. Index combinations of the same (pq and
rs) and mixed particles give the factors 2.0 and −0.5, respectively.
In the extension to batches, instead of six matrix elements, six sets of matrix elements

are needed, respectively. These sets arise from the two combinations of the shells of the
particular batch. For some batch PRQS, the shell pairs PR, PQ, PS, RQ, RS and QS
arise. From each of these shell pairs, the associated set of elements can be obtained by
the Cartesian product of the functions in the particular shells. Note that such sets of
elements have already been introduced in the context of prescreening (section 11.1).
Additionally it shall be noted that the constants in (13.1), i.e. fs ·2.0 and −fs ·0.5, can

be factored out of the actual contraction. This can be done in two different ways. On
one hand the multiplication can be performed when reading from D to the local array.
On the other hand it can be performed when writing back to G. In both ways the flop
count is reduced, as in almost all cases the number of D, G elements is smaller than
the number of integrals. In the FFFF -batch for example, 10000 integrals have to be
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contracted. Each integral has to be multiplied by the two constants (2fs and −0.5fs),
giving 20000 prefactor multiplications. However, each FF -shell pair holds 100 elements.
With six pairs, 600 elements have to be read from D and 600 written back to G. Doing
the prefactor multiplication in one of these steps replaces the 20000 multiplications by
600.
The above can then be used to simplify the three parts copying, contracting and

writing back. Instead of one local array for d and g, two times six individual ones are
introduced, one for each shell pair of D and G, respectively. Listing 13.4 shows this for
the copy of the density elements arising from the bra1 and ket1 shell pair.

1 double d_b1k1[b1_size * k1_size ];
2 double f2 = f * 2.0;
3 for (int i = 0; i < b1_size; ++i)
4 for (int j = 0; j < k1_size; ++j)
5 d_b1k1[i * k1_size + j] = f2 * D(BI[0]+i, BI[2]+j);

Listing 13.4: Copying of the density elements associated with the bra1 ket1 shell pair
to the corresponding local array.

Here the rectangular block of D is copied to the linear array d_b1k1, saving the block-
matrix elements in row-major order. The prefactor f2 is also already multiplied into
the local representation. The remaining local d arrays are filled similarly, using the
appropriate shell sizes, prefactors and base-indices. Writing the six local g arrays back
to G is conceptually identical.
Using these local arrays, the contraction loop of listing 13.3 is replaced by the one

shown in listing 13.5.
1 int c = 0;
2 for (int b1 = 0; b1 < b1_size; ++b1)
3 for (int b2 = 0; b2 < b2_size; ++b2)
4 for (int k1 = 0; k1 < k1_size; ++k1)
5 for (int k2 = 0; k2 < k2_size; ++k2, ++c) {
6 g_b1k1[b1 * k1_size + k1] += d_b2k2[b2 * k2_size + k2] * I[c];
7 g_b2k2[b2 * k2_size + k2] += d_b1k1[b1 * k1_size + k1] * I[c];
8 g_b1k2[b1 * k2_size + k2] += d_b2k1[b2 * k1_size + k1] * I[c];
9 g_b1b2[b1 * b2_size + b2] += d_k1k2[k1 * k2_size + k2] * I[c];

10 g_k1k2[k1 * k2_size + k2] += d_b1b2[b1 * b2_size + b2] * I[c];
11 g_b2k1[b2 * k1_size + k1] += d_b1k2[b1 * k2_size + k2] * I[c];
12 }

Listing 13.5: Generic rolled contraction loop, in terms of the local matrix
representations, with factored out prefactors.

Clearly, the access to the local arrays is as linear as possible.

Block-Linearization

The D and G elements needed to contract a particular batch appear as individual blocks
in the full matrix. Due to the way matrices are stored internally, accessing one of these
blocks is far from memory efficient. Although being two-index quantities, matrices are
stored linearly. In the case of C++, elements are stored in row major order. The
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consequence is that two neighboring row elements are in adjacent memory locations.
Two neighboring column elements however are separated in memory by the dimension
of the matrix. In terms of reading blocks from a linear matrix representation, this results
in non-contiguous memory accesses, which leads to performance loss. Pictorially, this
is shown in figure 13.1, showing the matrix structure and shell pair block layout for a
simple system with one s- and p-shell. The numbers in the matrix correspond to the
linear position in memory.

s px py pz
s 0 1 2 3

px 4 5 6 7

py 8 9 10 11

pz 12 13 14 15

Figure 13.1.: Row major order matrix indices, and element correspondence to shell pair
blocks.

Obviously, to read the ps- and pp blocks, non-contiguous memory accesses are needed.
This problem has been addressed by block linearization of the corresponding matrices (D
and G). Effectively, the matrices are resorted in memory with respect to linearization of
shell pair blocks. For the example shown in figure 13.1, this resorting gives the memory
layout shown in figure 13.2.

s px py pz
s 0 1 2 3

px 4 7 8 9

py 5 10 11 12

pz 6 13 14 15

Figure 13.2.: Block linearized matrix storage of shell pair block matrices.

In the block-linearized form, each shell pair block appears contiguous in memory.
In each iteration, the current density is block linearized. This linearized representation

is then contracted with the integrals to give the two-electron part G of the Fock matrix,
also in block linearized form. After all integrals are contracted, the linearized G is
then resorted to give the canonical matrix structure. The cost for this resorting step
is negligible, compared to the generation of the Fock matrix. For serotonine in a cc-
pVTZ basis with 815 primitive basis functions, resorting one 815 x 815 matrix takes
about 0.007 seconds. To generate the Fock matrix for this system, 162 seconds are
needed, in the first iteration. This number has been generated using the final, fastest,
version of the SCF code. Accessing elements in these linearized matrices is however
slightly more costly compared to accessing the standard matrices. As only whole shell
pair blocks are needed in the implementation, individual element access has not been
explicitly included. The access to the shell pair blocks has been implemented using the
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MapperWithMatrix class presented in the prescreening implementation of section 11.1.1,
on batch level. The underlying matrix of this class now holds the indices of the first
elements of the shell pair blocks. Querying the mapper with arbitrary basis-function
indices then gives the starting index of the according shell pair block in the linearized
matrix. For each batch, six of these indices have to be queried. They can be used to
identify both D and G elements.
Having the external matrices in linearized form, the contraction of listing 13.5 can be

expressed in terms of those arrays, without the need to copy to the local representations.
However this is not as efficient as doing the copy explicitly. The reason is, on one hand,
that by copying the elements, they are already read to the cache, thus reducing costly
cache misses at the later contraction stage. On the other hand, by copying, the shell
pair blocks become contiguous in memory, which further optimizes memory usage.

Final Implementation

In principle, the ideas presented above can be used to implement a generic version of
the rolled contraction ansatz. The code structure is the same for each batch, the only
input are the memory addresses of the needed shell pair blocks and the shell sizes of
the batch. Nevertheless an explicit implementation for each angular pattern has been
chosen. In this way, the actual loop lengths are hardcoded, thus allowing the compiler
to perform efficient optimizations. The actual code shall not be shown explicitly. To
copy from D and write back to G, code similar to the one shown in listing 13.4 is used,
with the modification of reading from the linearized version of D. For the contraction,
the code of listing 13.5 is used.
Contrary to the plain implementation, only one function per angular pattern has to

be implemented. In the rolled ansatz, the symmetry distinctions necessary are taken
care of by the factor fs.
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Results

Reliable results for the rolled contraction ansatz have again been obtained by performing
production runs, with changed underlying contraction kernels. For the rest of the calcu-
lation the same code has been used (see section 13.2.1). Table 13.2 repeats the results
obtained for serotonine in the cc-pVTZ basis already shown in table 13.1, in addition to
the results obtained using the rolled contraction ansatz.

Generic Code-generated
Plain Rolled

Time (seconds) 825.31 468.16 319.26
Cycles 2,082,878,883,368 1,180,716,426,905 805,490,143,574

Branches 170,724,018,453 41,112,915,867 46,072,615,242
Branch misses 0.8% 1.7% 1.7%

L1 iCache loads 1,261,368,941,506 596,193,676,312 507,203,828,123
L1 iCache load-misses 3.7% 26.8% 9.5%

L1 dCache loads 1,279,215,100,424 506,590,272,422 468,880,988,703
L1 dCache load-missses 1.0% 2.0% 1.7%

L1 dCache stores 415,486,002,081 230,501,994,069 243,041,661,625
L1 dCache store-misses 1.0% 1.6% 1.2%

Table 13.2.: Performance comparison of the generic versus both code-generated ap-
proaches for serotonine in a cc-pVTZ basis.

A significant speedup of about 1.5, compared to the plain approach, has been achieved.
One of the reasons is the optimized instruction cache handling. Less loads are needed
and, more importantly, the iCache misses were reduced from about 25 to 10 percent.

It shall be noted that the above speedup of 1.5 corresponds to the full Fock matrix
generation, of which the density contraction is just one step among others. In table 13.3,
the attempt has been made to isolate the time needed to perform the sole contraction.
This has been done by running two calculations for each contraction method, respec-
tively. The first of these calculations is just the full Fock matrix generation. For the
second calculation, the density contraction has been turned off. For serotonine in the
cc-pVTZ basis, this contractionless calculation took about 221 seconds (the same for
all contraction types, as these codes were kept identical). The difference of these two
timings then gives a rough estimate for the time needed to perform the contraction.
It has to be noted that the contraction timings obtained this way are not to be taken
absolute. This is due to the fact that by omitting the contraction, less strains are put
to the various system resources (especially the caches), and therefore the rest of the
calculation (integration etc.) is executed in a different environment.

The results obtained are shown in table 13.3, giving the full timings, and the estimates
for the contraction step. Speedups are reported with respect to the generic approach.
For the contraction estimates, the percentage of the full calculation is reported.
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Type Full Speedup Contraction Speedup
Generic 825.31 1 604.73(73.27%) 1

Code-generated, plain 468.16 1.8 247.58(52.88%) 2.4
Code-generated, rolled 319.26 2.6 98.68(30.91%) 6.1

Table 13.3.: Timings, in seconds, and speedups for the full Fock matrix generation and
the estimated contraction steps.

Given the significant speedups of 1.8 and 2.6 of the code-generated contractions in the
full calculations, the actual contraction has been speed up by a factor of 2.4 in the plain
approach. The rolled approach executes about six times faster than the generic code,
bringing the amount of time spent for the contraction down from two thirds of the whole
Fock matrix generation to one third.
This is not an isolated effect, as is shown in table 13.4. Calculations as for serotonine

in the cc-pVTZ basis have been performed for a variety of molecules and basis sets.
Shown are the timings for all three contraction approaches, and the speedups of the
code-generated with respect to the generic ansatz.

Basis Molecule Fock matrix generation (seconds) Speedups
Generic Code-generated to generic

Plain Rolled Plain Rolled
Def2-SVP Alanine 6.56 3.49 3.15 1.90 2.08

Serotonine 60.75 32.55 29.39 1.87 2.07

cc-pVDZ Alanine 8.02 4.30 3.91 1.87 2.05
Serotonine 77.57 42.18 38.30 1.84 2.03

roos-aug-dz-ano Alanine 332.90 152.27 124.11 2.19 2.68
Serotonine 4085.08 1915.08 1522.55 2.13 2.68

Def2-TZVP C4H10 30.45 16.57 13.08 1.84 2.33
Alanine 64.77 35.04 25.63 1.85 2.53

Serotonine 705.17 393.59 284.37 1.79 2.48

cc-pVTZ C4H10 68.13 37.48 26.79 1.82 2.54
Alanine 92.92 51.76 35.59 1.80 2.61

Serotonine 825.31 468.16 319.26 1.76 2.59

roos-aug-tz-ano C4H10 1583.10 857.37 545.39 1.85 2.90
Alanine 2156.70 1201.91 743.54 1.79 2.90

Table 13.4.: Timings, in seconds, and speedups for the full Fock matrix generation for
various molecules and basis sets.

For the plain approach, speedups of about 1.8 are observed, with the exception of the
roos-aug-dz-basis. The speedups for the rolled ansatz increase with increasing basis set
size, to almost a factor of three for the roos-aug-tz-ano basis.
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14. Fock Matrix Generation

Fock matrix assembly is realized by putting the parts introduced above together. All re-
sults presented in the following are based on the same algorithmic structure. Listing 14.1
shows the key steps involved in the Fock matrix generation.

1 basisTransformation.radAng_2_prim(D_radAng , D_prim);
2 densityEstimate.update(D_prim);
3 blockLinearizer.linearize(D_prim , D_prim_lin);
4
5 for () { // first iteration hierarchy
6 for () { // second iteration hierarchy
7 for () { // third iteration hierarchy
8
9 // calculate integral batch

10 // contract integral batch with density
11
12 }
13 }
14 }
15
16 blockLinearizer.deLinearize(G_prim_lin , G_prim);
17 basisTransformation.prim_2_radAng(G_prim , G_radAng);

Listing 14.1: General Fock matrix assembly algorithm.

Explicit integral transformation is avoided in the ansatz presented here. This is realized
by transforming density and Fock matrices from and to the respective bases (section 6.2.2
and section 6.2.3). These transformations are the introductory and closing steps of the
Fock matrix generation. In line one the radial angular transformed density (D_radAgn)
is transformed to the primitive basis (D_prim). In the next steps, the density estimate is
updated (line two) and the density matrix is block linearized (line three). The actual
integral calculation and density contraction steps are then performed (lines five to 14),
in which the two-electron part G of the Fock matrix is obtained in the primitive basis, in
block linearized form. In lines 16 and 17 this matrix is then delinearized and transformed
back to the radial angular transformed basis.

The basis transformation, matrix (de)linearization and estimate update steps (lines
one, two, three, 16 and 17) are not relevant to the performance. For the system with
17437 basis functions discussed in section 16, 22 seconds are needed for their execution.
For the actual Fock matrix assembly part of listing 14.1, lines five to 17, several

strategies have been realized, and analyzed. Different iteration schemes (see section 10)
have been combined with the available integration schemes (see section 12.2.2 and sec-
tion 12.4). Not all results will be reported here, only the key steps leading to the finally
used implementation.
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14.1. Results

Performance analyses will be shown for the Fock matrix generation, lines five to 17, of
listing 14.1. All results presented here have been obtained in an unified way. The input
densities used are the initial densities obtained from TURBOMOLE using the extended
Hückel guess, as described in section 15.2. Prescreening has been used, neglecting inte-
gral contributions smaller than 10−11. In doing so, the presented results correspond to
the first iteration of an actual SCF calculation. All calculations have been performed
on one of the Xeon(R) E5520 hosts introduced in section 8.3.1. They have been run
sequentially, assuring no interfering jobs. In all comparisons presented, only the codes
for the part of interest were changed, using the same codebase for the remaining steps.
In doing so, fair comparisons have been realized. For the density contraction step the
approach presented in section 13.2.2 has been used for all calculations.

14.1.1. Comparison of the Integration Codes

In a first step, the quality of the developed integration codes shall be analyzed by com-
paring their performance to the code-generated ansatz which was already implemented
in the QOL [18]. Table 14.1 compares the results obtained with the rolled, splitted
ansatz of section 12.4 with the previous implementation of section 12.2.2. For the pre-
vious implementation the electron transfer E1 is used, for the splitted, rolled ansatz the
E2 transfer as well. The results shown were obtained in the center-angular-zeta iteration
framework of section 10.2.2. In table 14.1, the results obtained for alanine in correlation
consistent basis sets of increasing quality are shown.

Implementation
Previous Splitted, rolled

E1 E1 E2

cc-pVDZ 3.796 3.886 3.277
cc-pVTZ 36.919 35.503 32.493
cc-pVQZ - 417.876 319.676

Table 14.1.: Performance comparisons for alanine in selected integration implementa-
tions, in seconds.

Almost identical results are obtained for the E1 transfer, in the double- and triple-
zeta basis sets. However, due to the huge code sizes of the previous implementation,
results for quintuple-zeta quality could only be obtained with the splitted, rolled ansatz.
The reason for the equal performances of the E1 realizations is a performance shift
with increasing batch size. For small batch sizes, the previous implementation is highly
efficient, whereas the splitted ansatz gives poorer results due to function-call overhead.
For large batch sizes the splitted, rolled ansatz is more efficient, lacking the huge code
sizes present in the previous implementation. A combination of the two approaches,
based on the batch sizes, leads indeed to improved performance.
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The E2 transfer, realized for the rolled, splitted ansatz shows increased performance
for all basis set qualities. This is mainly due to the missing swap logic which is needed in
the E1 transfer to assure numerical stability (see section 12.3). Secondly the E2 transfer
is better suited for the splitted, rolled ansatz, as has been shown in section 12.4.4.

In the following, integration will be performed using the E2 transfer in the rolled,
splitted implementation.

14.1.2. Comparison of the Iteration Hierarchies

As discussed briefly in section 11.2.1 and section 11.3, the influence of the iteration struc-
ture shall be shown here explicitly. Included in the comparison are iteration schemes of
the center-angular-zeta hierarchy, in the physicists’ (see section 10.2.2) and chemists’
(section 10.2.3) notations, respectively. Integration method was the rolled, splitted
ansatz, using the E2 transfer. The results for molecules of varying size in basis sets
of differing quality are summarized in table 14.2.

Notation
Physicists’ Chemists’ Speedup

Alanine cc-pVQZ 329.92 322.45 1.02

Serotonine cc-pVDZ 36.74 27.69 1.33
Serotonine cc-pVTZ 267.53 239.37 1.12
Serotonine cc-pVQZ 2726.44 2624.83 1.04
Serotonine cc-pV5Z 27 393.41 26 939.78 1.02
Serotonine roos-aug-dz-ano 1424.66 1253.70 1.14
Serotonine roos-aug-tz-ano 6843.99 6588.91 1.04

C36H53N7O9 cc-pVDZ 1645.41 868.87 1.89
C36H53N7O9 Def2-SVP 1303.05 748.28 1.74

Table 14.2.: Performance comparison of the center-angular-zeta iteration hierarchy, in
physicist’ and chemists’ notation (in seconds).

For all molecules and basis sets under investigation, the chemists’ notation ansatz proved
to be superior. Although only marginal for molecules of moderate size, speedups of
almost 2 are observed for large molecules.

14.1.3. Streaming SIMD Extensions

All integration types (except the generic) and the rolled density contraction of sec-
tion 13.2.2 have been adapted to explicitly use streaming SIMD extensions. Shortly put,
these extensions allow the simultaneous multiplication of two double precision numbers
with one instruction. These new instructions are partly included by the compiler itself,
at least for simple constructs. For more complicated codes, manual modifications are
necessary. In the QOL [18], this problem is addressed in a very elegant manner, by
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providing a type for these extensions. Its usage is depicted in listing 14.2, in comparison
to the use of the standard double precision type in listing 14.3.

1 int main() {
2 SIMD_Class <SIMD_Type <double , SIMD_128Bit > > a(0.1, 0.3);
3 SIMD_Class <SIMD_Type <double , SIMD_128Bit > > b(0.2, 0.4);
4
5 cout << a*b << endl;
6 }
7 // assembly
8 // ..
9 // mulpd %xmm1 , %xmm0

10 // ..

Listing 14.2: Multiplication using the SIMD_class type.

1 int main() {
2 double a = 0.1;
3 double b = 0.2;
4
5 cout << a*b << endl;
6 }
7 // assembly
8 // ..
9 // mulsd -40(%rbp), %xmm0

10 // ..

Listing 14.3: Multiplication using a standard double.

In the assembly excerpts it can be seen that by using the SIMD_Class type indeed two
multiplications are carried out with one instruction (mulpd: multiply ’packed double’). In
the double implementation, the instruction mulsd (multiply ’scalar double’) is executed.

Integration and density contraction codes have been modified for explicit use of stream-
ing SIMD extensions using this type. The results obtained by using these extensions
are summarized in table 14.3, for various molecules and basis sets of differing quality,
compared to the double implementation. For the integration the rolled, splitted ansatz
with the E2 transfer is used, in chemists’ notation center-angular-zeta iteration.
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double SIMD_Class Speedup
Alanine cc-pVDZ 2.75 2.47 1.11
Alanine cc-pVTZ 26.07 19.51 1.34
Alanine cc-pVQZ 312.80 208.86 1.50

Serotonine cc-pVTZ 217.95 161.52 1.35
Serotonine cc-pVQZ 2521.12 1685.52 1.50
Serotonine cc-pV5Z 26 939.78 17 459.71 1.54
Serotonine roos-aug-dz-ano 1253.70 947.23 1.32
Serotonine roos-aug-tz-ano 6588.91 4339.88 1.52

C36H53N7O9 Def2-SVP 748.28 679.57 1.10
C36H53N7O9 cc-pVDZ 868.87 787.04 1.10

Table 14.3.: Performances of the standard double implementation compared to the
SIMD_Class realization, in seconds.

In all cases increased performance can be observed. Independent of molecular size, the
speedups obtained depend on quality and type of the basis set. For Def2 and corre-
lation consistent basis sets, speedups of about 1.1 are gained for basis sets supporting
d-functions. For basis sets with up to f -functions, speedups of about 1.3 are obtained.
Speedups of 1.5 and higher are observed for basis sets with quintuple-zeta and higher
quality.

For the generally contracted roos-aug-*-ano basis sets, speedups of 1.3 are already
obtained at double-zeta quality. In the triple-zeta case a speedup of 1.5 is observed.
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15. Comparisons to the
TURBOMOLE and MOLPRO
Program Packages

The final version of the QOL SCF program developed in this work has been compared
to the SCF versions of the TURBOMOLE and MOLPRO packages.

In a first step, the accuracy of the QOL has been compared to the commercially
available codes. Obviously, the main reason for doing so is to assure the correctness
of the developed codes. As will be shown, doing such comparisons based solely on the
energies obtained during the SCF calculation is not sufficient to investigate the influence
of various optimizations present in the commercial codes. To overcome this, the actual
matrices involved have been obtained during the MOLPRO and TURBOMOLE calcu-
lations, to the extent possible. With this information available, the influence of various
optimizations, such as convergence acceleration, have been studied at great detail. This
information has then be used to fine-tune the commercial codes, to assure that identical
optimizations were used, at least qualitatively. Such runs then have been the basis for
the performance comparisons performed.

15.1. MOLPRO

In MOLPRO, to the authors knowledge, no option exists to print actual matrices (like
the density or the Fock matrix) in each iteration. To nevertheless obtain the matrices
of interest, in each iteration, a modified version of MOLPRO has been used.

The code for the direct SCF procedure is located in the MOLPRO source directory
in the file src/scf/rhfpro.F. This file has been modified to write the matrices of interest
to the output, in each iteration. This has been accomplished by the following output
statement.

1 write (*,*) ’density ’,iter , (q(idapos+jheld), jheld=0,ntdg -1)

Here, the density is written, all elements in one line. The string density is user defined,
and iter is the current SCF iteration. The first density element can be accessed by
q(idapos), and the remaining ones by incrementing the user defined counter jheld. In
the source file, this statement has been put after the call to update_densities (line 497).
The write statements for the other matrices (F, G, S and Hcore) are similar, and not
repeated here.

It shall be noted that the matrix elements obtained are given in full accuracy. Printed
are 16 significant digits, and the according exponent.
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15.1.1. Accuracy

Critical for in depth accuracy comparisons are the inputs used for the calculations.
The identity of molecular geometries and basis sets has been assured as described in
section 8.2.1. Of similar importance is the initial guess for the molecular orbitals. In
MOLPRO, the default guess has been chosen, which uses atomic densities. To ensure
identical start vectors in the QOL calculations, the density matrices obtained from the
corresponding MOLPRO calculations have been used as initial guess.
Starting points have been default MOLPRO SCF calculations. The input for such a

calculation, for C4H10 in a cc-pVTZ basis is shown in listing 15.1.
1 direct;
2 nosym;
3 include ,/ basisSets/emsl/cc -pvtz/HCNOSCl.molpro;
4 bohr;
5 include ,/ geometries/c4h10.in;
6 {hf ,accuracy=8,energy =1e-7,direct ,thrdisk =1e999 ,thrint =1e-11}

Listing 15.1: Default MOLPRO input.

All calculations have been performed using the direct SCF ansatz, not exploiting sym-
metries (lines one and two). Basis sets and molecular geometries (in Bohr) are read
from files (lines three to five). Finally, the SCF calculation is performed. For the energy,
the convergence threshold has been set to 10−7. Setting the option accuracy to eight
corresponds to an effective threshold for the change of the norm of the density difference
of
√

10−8 = 10−4. In MOLPRO, the norm of a symmetric matrix M with dimension n
is calculated as

norm(M) =

√∑n
i<=j(Mij)2

n(n+ 1)/2
(15.1)

To check for convergence of the density, the density difference is used in this norm:
M = Dk −Dk−1, where k is the current iteration.
Additionally, no integrals are written to disk (thrdisk), and the prescreening thresh-

old has been set to 10−11. It shall be noted that the differential density scheme and
prescreening on the density matrix are enabled by default.
The results of this calculation can now be compared to the SCF program developed

in the course of this work. For the QOL calculation, the same values for energy-,
density difference- and prescreening thresholds have been set. The one-electron energy
convergence threshold needed for the TURBOMOLE comparisons of section 15.2.1 has
been disabled. Also the differential density scheme has been used. As mentioned, the
initial density has been taken from the MOLPRO calculation. Additionally, DIIS has
been enabled in the QOL, using the four last densities in the interpolation. The DIIS
error vector has been set to (S−1/2FDS1/2 - transpose).
Both calculations reached convergence after eight iterations. The results obtained by

comparing both energies and Fock matrices are summarized in table 15.1, for each iter-
ation, respectively. For the energies, absolute and relative errors are shown, in addition
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to the norm of the difference of the Fock matrices.

Iteration ∆E rel(E) norm(∆F)
1 −2.9 · 10−10 1.9 · 10−12 5.0 · 10−10

2 −1.9 · 10−9 1.2 · 10−11 4.5 · 10−10

3 −2.6 · 10−9 1.7 · 10−11 5.0 · 10−10

4 −1.2 · 10−8 7.7 · 10−11 6.7 · 10−10

5 −5.2 · 10−9 3.3 · 10−11 8.3 · 10−10

6 −1.5 · 10−7 9.3 · 10−10 3.2 · 10−6

7 −9.8 · 10−9 6.2 · 10−11 1.0 · 10−6

8 −8.6 · 10−9 5.5 · 10−11 6.8 · 10−7

Table 15.1.: Comparison of the default MOLPRO SCF calculation with the QOL results,
for C4H10 in the cc-pVTZ basis. For each iteration, absolute and relative energy errors,
and Fock matrix difference norms are shown, in Hartree.

With a slight deviation in iteration six, the energies calculated with MOLPRO are
reproduced by the QOL SCF program with high accuracy. A different behaviour can
be observed for the norm of the Fock matrix differences. It stays about constant for the
first five iterations, with a magnitude of about 10−10. After the fifth iteration, a drop of
about three orders of magnitude can be observed.

It shall be noted that the Fock matrices calculated by MOLPRO and the QOL still
are almost identical. Consider on the one hand that in the context of the performed cal-
culations the density matrices are taken to be converged if the norm of their difference is
smaller than 10−4, which is two magnitudes larger than the largest Fock matrix difference
norm. On the other hand, as mentioned, no observable change of the energy differences
results from the increased difference norms. Nevertheless, the observed changes in mag-
nitude indicate different internal pathways of calculation taken by MOLPRO and the
QOL.

Obviously, the change observed in the difference norms is also present in the individual
elements of the Fock matrices. For each matrix element, the absolute and relative errors
have been calculated, for each iteration, respectively.

∆F abs
ij = |FMOLPRO

ij − FQOL
ij | (15.2)

∆F rel
ij =

∆F abs
ij

|FMOLPRO
ij |

(15.3)

In table 15.2, the maxima of these deviations

εabs = max(∆Fabs) (15.4)
εrel = max(∆Frel) (15.5)
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are shown, in addition to the corresponding actual matrix elements.

v = arg max(F(ε)) (15.6)

Itrn εabs vMOLPRO vQOL εrel vMOLPRO vQOL

1 3 · 10−9 1.755 · 10−3 1.755 · 10−3 1 · 10−2 1.793 · 10−8 1.771 · 10−8

2 3 · 10−9 −1.229 · 10−3 −1.229 · 10−3 4 · 10−2 6.167 · 10−9 5.920 · 10−9

3 4 · 10−9 −1.207 · 10−3 −1.207 · 10−3 8 · 10−3 −1.173 · 10−7 −1.163 · 10−7

4 5 · 10−9 −5.408 · 10−4 −5.408 · 10−4 4 · 10−2 6.323 · 10−9 6.094 · 10−9

5 6 · 10−9 −5.400 · 10−4 −5.400 · 10−4 7 · 10−2 −2.158 · 10−8 −2.002 · 10−8

6 1 · 10−4 −1.121 · 101 −1.121 · 101 1 · 101 4.659 · 10−9 6.091 · 10−8

7 2 · 10−5 −1.122 · 101 −1.122 · 101 7 · 10−1 1.305 · 10−8 2.165 · 10−8

8 1 · 10−5 −1.122 · 101 −1.122 · 101 2 · 10−1 1.837 · 10−8 2.212 · 10−8

Table 15.2.: Comparison of the default MOLPRO SCF calculation with the QOL results,
for C4H10 in the cc-pVTZ basis. For each iteration, the maximum absolute and relative
errors of the individual Fock matrix element differences are shown, and the associated
matrix elements (in Hartree).

In the first five iterations, as the maximum relative errors show, the individual matrix
elements have been reproduced to at least one significant digit. The maximum absolute
errors found in the first five iterations are small. Again, starting with the sixth iteration,
both absolute and relative errors increase. The maximum relative errors however are
connected to matrix elements of small magnitude.
The deviations found in the last three iterations are connected to convergence ac-

celeration methods. MOLPROs default DIIS implementation, for example, is rather
sophisticated, and has not been included in the QOL. However, a DIIS implementa-
tion using the same error vector as used in the QOL is available in MOLPRO with the
keywords iptyp=’base’,maxdis=5. It shall be noted that in MOLPROs implementation,
the maxdis value is used for the dimension of the DIIS matrix, resulting in an effective
DIIS length of four (in accordance to the length set in the QOL calculation). Addi-
tionally, level-shifting, which is not available in the QOL, is enabled by default. It has
been disabled by adding the option shift,0.0,0.0 to the MOLPRO input. Finally, re-
orthonormalization after ten iterations (the default) has effectively been turned off with
the option orth,100. Listing 15.2 shows the changed hf directive.

1 {hf ,iptyp=’base’,maxdis=5, diis_start =0,accuracy=8,
2 energy =1e-7,direct ,thrdisk =1e999 ,thrint =1e-11;
3 orth ,100
4 shift ,0.0 ,0.0}

Listing 15.2: Default MOLPRO input.

Using these options, the Fock matrices calculated by MOLPRO are reproduced by the
QOL to great accuracy, in each iteration. This is summarized in table 15.3, again
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showing absolute and relative errors of the energies and the norms of the Fock matrix
difference.

itrn ∆E rel(E) norm(∆F)
1 −2.9 · 10−10 1.9 · 10−12 5.0 · 10−10

2 −1.9 · 10−9 1.2 · 10−11 4.5 · 10−10

3 −2.6 · 10−9 1.7 · 10−11 5.0 · 10−10

4 −1.2 · 10−8 7.7 · 10−11 6.7 · 10−10

5 −5.2 · 10−9 3.3 · 10−11 8.3 · 10−10

6 −6.9 · 10−9 4.4 · 10−11 9.3 · 10−10

7 −9.8 · 10−9 6.2 · 10−11 1.0 · 10−9

8 −1.3 · 10−8 8.0 · 10−11 9.4 · 10−10

Table 15.3.: Comparison of the adjusted MOLPRO SCF calculation with the QOL re-
sults, for C4H10 in the cc-pVTZ basis. For each iteration, absolute and relative energy
errors, and Fock matrix difference norms are shown, in Hartree.

Again, the energies are reproduced with high accuracy. Additionally, the increase in the
Fock matrix difference norms observed in the previous example vanish.

Similar results are found for the individual matrix elements, as shown in table 15.4.
Again, maxima were calculated over the absolute and relative individual matrix element
deviations (see equation (15.2) to equation (15.5)). Additionally, the associated matrix
elements are shown (equation (15.6)), for each iteration, respectively.

Itrn εabs vMOLPRO vQOL εrel vMOLPRO vQOL

1 3 · 10−9 1.755 · 10−3 1.755 · 10−3 1 · 10−2 1.793 · 10−8 1.771 · 10−8

2 3 · 10−9 −1.229 · 10−3 −1.229 · 10−3 4 · 10−2 6.167 · 10−9 5.920 · 10−9

3 4 · 10−9 −1.207 · 10−3 −1.207 · 10−3 8 · 10−3 −1.173 · 10−7 −1.163 · 10−7

4 5 · 10−9 −5.408 · 10−4 −5.408 · 10−4 4 · 10−2 6.323 · 10−9 6.094 · 10−9

5 6 · 10−9 −5.400 · 10−4 −5.400 · 10−4 7 · 10−2 −2.158 · 10−8 −2.002 · 10−8

6 6 · 10−9 −3.556 · 10−3 −3.556 · 10−3 3 · 10−2 5.927 · 10−8 6.091 · 10−8

7 7 · 10−9 −3.556 · 10−3 −3.556 · 10−3 9 · 10−2 1.981 · 10−8 2.165 · 10−8

8 6 · 10−9 3.196 · 10−3 3.196 · 10−3 1 · 10−1 2.016 · 10−8 2.212 · 10−8

Table 15.4.: Comparison of the adjusted MOLPRO SCF calculation with the QOL re-
sults, for C4H10 in the cc-pVTZ basis. For each iteration, the maximum absolute and
relative errors of the individual Fock matrix element differences are shown, and the
associated matrix elements (in Hartree).

With maximum absolute deviations of about 10−9 in each iteration, at least one sig-
nificant digit has been reproduced, for all matrix elements. Again, the largest relative
errors correspond to Fock matrix elements of small magnitude.

It shall be noted here that the deviations observed in small matrix elements are nu-
merical noise. Each matrix element is generated from a huge sum of numbers of varying
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magnitudes. As has been explained in section 9.1.2, such sums are easily affected by
numerical errors, especially if the final result is small. In such cases, just two almost
canceling numbers of higher magnitude will taint the final result.

Another detail worth mentioning is the number of iterations in MOLPRO calculations.
As it turns out, one additional iteration is performed by MOLPRO after convergence is
reached. In this final iteration, some orthonormalization is performed, not changing the
final SCF energy. This has been confirmed by inspecting the source code of MOLPRO.

Concluding, the energies and Fock matrices calculated by MOLPRO have been repro-
duced almost to the number by the QOL calculation. This indicates strongly that, at
least qualitatively, the same internal pathways for the calculations have been performed.
Different internal routes, although not observable in the energy differences, do show in
the corresponding Fock matrices, as has been shown.

This analysis has been performed for all systems shown in the following performance
comparison.

15.1.2. Performance

The performance comparisons presented here are based on the insights gained in the ac-
curacy analysis. Having established qualitatively identical internal calculation pathways,
a fair performance analysis can be executed.

The QOL SCF program has been run with the options described in section 15.1.1.
The input densities used have been obtained using the modified MOLPRO version. The
results obtained from these calculations can then be compared to the corresponding
MOLPRO runs. For these performance runs the original, unmodified, serial version of
MOLPRO has been used, which was built from the sources as described in section 8.1.
For all calculations the input options of listing 15.2 have been used.

Each of the calculations has been run on one of the Intel(R) Xeon(R) E5520 hosts
of section 8.3.1, assuring the same physical layout (CPU type and cache sizes) has
been used. Additionally, great care has been taken to ensure the absence of interfering
processes. With the exception of operating system relevant processes, no other jobs than
the SCF calculation were allowed to be executed on the particularly systems.

The performance of the calculations performed has been determined in terms of wall
clock time only. For both programs, several runs on the same system have been per-
formed to check for timing deviations. The time -p command has been used to compare
internal with external timings. In MOLPRO calculations, internal timings can be taken
from the output file. In the QOL, timings are gathered with time.h, and for wall clock
timings the clockid_t CLOCK_REALTIME has been used. The results for five separate SCF
runs on C4H10 in a cc-pVTZ basis are shown in table 15.5.
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MOLPRO QOL
Internal time -p Internal time -p

264.09 264.15 96.46 96.77
263.58 263.64 96.39 96.70
262.81 262.88 96.15 96.46
262.57 262.63 96.92 97.26
262.70 262.75 96.64 96.94

Average 263.15 ± 0.66 263.21 ± 0.25 96.51 ± 0.29 96.83 ± 0.30

Table 15.5.: Timings obtained for the SCF calculation of C4H10/cc-pVTZ in five separate
runs, for MOLPRO (adjusted input) and the QOL, in seconds.

For both programs, the internally obtained wall clock timings correspond to the exter-
nally measured time. Additionally, no severe deviations of the timings are observed in
separate runs, respectively. The timings reported in the following are therefore based
on single runs.

To gather more performance relevant data, all calculations have been run with the
perf utility. By using this utility, no overhead is introduced. Running the C4H10/cc-
pVTZ MOLPRO calculation with perf, internally 264.27 seconds are reported, the perf
utility giving 264.34 seconds. For the corresponding QOL calculation, 96.60 seconds are
measured internally, and 96.92 seconds by perf. Both results are in accordance with the
timings measured without perf.

As mentioned previously, in MOLPRO calculations one additional orthonormalization
iteration is performed after convergence. This has been accounted for in the speedups
reported in table 15.6. In the C4H10/cc-pVTZ case, the MOLPRO output gives the
time for this iteration as 21.3 seconds. The MOLPRO calculation without this iteration
then takes 242.97 seconds. Recalling the accuracy analysis of section 15.1.1, the same
information is obtained by the QOL, in 96.60 seconds. This corresponds to a speedup
of 2.5 of the QOL SCF program versus MOLPROs SCF version.

Using an identical approach, timings have been generated for a set of molecules, in
various basis sets. The speedups obtained are summarized in table 15.6.
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C4H10 Alanine Serotonine C36H53N7O9

Def2-SVP 1.7 1.7 1.7 1.8
Def2-TZVP 1.7 1.9 2.1 2.2
Def2-QZVP 2.5 2.5 2.6 -

cc-pVDZ-ogc 1.7 1.7 1.8 1.8
cc-pVTZ-ogc 2.4 2.4 2.4 2.5
cc-pVQZ-ogc 2.6 2.6 2.6 -
cc-pV5Z-ogc 2.8 2.8 - -
cc-pV6Z-ogc 3.1 3.3 - -

cc-pVDZ 1.7 1.7 1.8 1.9
cc-pVTZ 2.5 2.5 2.6 2.8
cc-pVQZ 2.7 2.7 2.8 -
cc-pV5Z 2.9 2.8 2.9 -
cc-pV6Z 3.0 3.1 3.4 -

roos-aug-dz-ano 1.2 1.3 1.3 -
roos-aug-tz-ano 1.9 2.0 2.2 -

ano-rcc 4.0 4.1 4.9 -

Table 15.6.: Speedups of SCF runs performed with the QOL, versus MOLPRO.

In all cases, the QOL SCF program is faster than MOLPROs version. For the roos-aug-
dz-ano bases, almost equal timings were obtained. In the case of the ano-rcc basis sets,
speedups of about four to five can be observed. For all molecules and basis sets, the
speedups increase with increasing molecule- or basis size.

15.2. TURBOMOLE

No source code has been available for the TURBOMOLE program package. Neverthe-
less, the matrices of interest could be obtained, on a per iteration basis. This has been
accomplished by setting the debug option of the scfdiis keyword to 2. In doing so den-
sity and Fock matrices are written in each iteration, except the last. It has to be noted
that a fixed format is used for this output. One digit before, and eight digits after the
decimal point are given, regardless of the actual magnitude of the number. The number
10−8 is printed as 0.00000001. Full accuracy is not available.

15.2.1. Accuracy

Unfortunately, the TURBOMOLE and MOLPRO programs can not be adjusted to
give identical results. The main reason is that TURBOMOLE uses the change of the
one-electron energy as a convergence criterion, which is not available in MOLPRO.
The threshold for this criterion can not be set, and therefore not be disabled (at least
to the authors knowledge). Among the other reasons are mutually exclusive initial

140



15.2. TURBOMOLE

guesses, i.e. the extended Hückel guess of TURBOMOLE is not present in MOLPRO,
and MOLPROs atomic density guess not in TURBOMOLE. Using the null guess was
also not possible, as MOLPRO then starts the DIIS expansion at iteration two, which
could not be overwritten by the diis_start option. This behaviour is hard coded in the
MOLPRO sources and has not been changed. Concluding, the QOL SCF calculations
of the comparison to MOLPRO could not be used in the TURBOMOLE comparison,
they had to be repeated with a different set of input options.

Similar to the steps explained in section 15.1.1, advanced convergence acceleration
techniques available in TURBOMOLE have been turned of. In detail, damping has
been turned off by setting the start, step and min options of the scfdamp keyword to zero.
Orbital shifting has been turned off by setting scforbitalshift to noautomatic. Damping
in DIIS has been disabled by setting the qscal option of the scfdiis keyword to one.
The following other options have been set: The default DIIS error vector FDS− SDF
has been used, with an expansion length of five. To prevent integrals to be written
to disc, thize and thime have been set to the largest possible values of 1099 and 9999.
The prescreening threshold scftol was set to 10−11. The differential density scheme has
been used, restricting TURBOMOLE to use only the last differential density by setting
scfdenapproxl to one. The energy convergence criterion scfconv has been set to seven,
corresponding to an convergence threshold of 10−7. This results in a one-electron energy
threshold of 10−4. For all calculations, geometries and basis sets have been used as
described in section 8.2.1. Geometries have been transformed internally to generalized
internal coordinates (ired in define). The external basis sets have been made available
to TURBOMOLE via the ~/.definerc file and used with the lib sub-menu of define. MO
start vectors have been generated with define, using the extended Hückel guess (eht).

The QOL calculations then have been performed emulating the TURBOMOLE in-
puts. Convergence thresholds for energy and one-electron energy were set to 10−7 and
10−4, respectively. Density difference convergence has been turned off. DIIS conver-
gence acceleration has been turned on, using the error vector FDS − SDF, for the
last five iterations. The differential density scheme has been used, and the prescreening
threshold was set to 10−11. Initial densities were obtained from the densities printed by
TURBOMOLE.

By performing the calculations using these options, the TURBOMOLE calculations
could be reproduced by the QOL SCF program to great accuracy. This is shown in
table 15.7, for C4H10 in a cc-pVTZ basis. Both calculations reached convergence after
eight iterations. Summarized are absolute and relative errors of the energy, and the
norms of the Fock matrix differences (for the last iteration, TURBOMOLEs Fock matrix
was not available).

141



15. Comparisons to the TURBOMOLE and MOLPRO Program Packages

itrn ∆E rel(E) norm(∆F)
1 −4.4 · 10−7 2.8 · 10−9 5.5 · 10−9

2 −2.0 · 10−8 1.3 · 10−10 3.5 · 10−9

3 −5.8 · 10−9 3.7 · 10−11 2.9 · 10−9

4 −7.5 · 10−9 4.7 · 10−11 2.9 · 10−9

5 −1.1 · 10−8 6.8 · 10−11 2.9 · 10−9

6 −1.1 · 10−8 6.7 · 10−11 2.9 · 10−9

7 −1.1 · 10−8 7.1 · 10−11 2.9 · 10−9

8 −1.3 · 10−8 8.5 · 10−11 -na-

Table 15.7.: Comparison of the adjusted TURBOMOLE SCF calculation with the QOL
results, for C4H10 in the cc-pVTZ basis. For each iteration, absolute and relative energy
errors, and Fock matrix difference norms are shown, in Hartree.

In all iterations, both energies and Fock matrices are reproduced almost identically. The
somewhat diminished accuracy of the energy in the first iteration is connected to the
density guess. In the QOL calculation, the density printed by TURBOMOLE was used.
As mentioned, this density is not available in full accuracy, but only to the eighth digit
after the decimal point. This leads to the slight discrepancy of the energy observed
in the first iteration. The (QOL) Fock matrix built from this density however is then
almost identical to the one obtained with TURBOMOLE. This observation again shows
how sensitive the calculations respond to slight changes of the internal quantities.
Again, also individual matrix elements of the Fock matrix were investigated. The

maximum absolute and relative errors (equation (15.2) to equation (15.5)), and the
associated matrix elements (equation (15.6)) are shown in table 15.8, for each iteration,
respectively.

Itrn εabs vTURBOMOLE vQOL εrel vTURBOMOLE vQOL

1 7 · 10−8 −1.151 · 101 −1.151 · 101 2 · 10−1 −2.000 · 10−8 −2.423 · 10−8

2 5 · 10−8 −1.108 · 101 −1.108 · 101 2 · 10−1 −1.000 · 10−8 −1.175 · 10−8

3 3 · 10−8 −4.983 · 10−5 −4.986 · 10−5 5 · 10−2 1.000 · 10−7 9.544 · 10−8

4 2 · 10−8 4.568 · 10−5 4.570 · 10−5 5 · 10−2 6.000 · 10−8 5.719 · 10−8

5 3 · 10−8 −4.536 · 10−5 −4.539 · 10−5 7 · 10−2 5.000 · 10−8 5.372 · 10−8

6 3 · 10−8 4.509 · 10−5 4.512 · 10−5 1 · 10−1 2.000 · 10−8 1.715 · 10−8

7 2 · 10−8 4.514 · 10−5 4.516 · 10−5 3 · 10−1 1.000 · 10−8 1.319 · 10−8

Table 15.8.: Comparison of the adjusted TURBOMOLE SCF calculation with the QOL
results, for C4H10 in the cc-pVTZ basis. For each iteration, the maximum absolute
and relative errors of the individual Fock matrix element differences are shown, and the
associated matrix elements (in Hartree).

In all iterations, the Fock matrices were reproduced within the accuracy available from
TURBOMOLE. For the matrix elements connected to the maximum relative errors, for
the TURBOMOLE case, the shown non-zero digits were the only numerical information
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present. Again, it shall be noted that the diminished accuracy present in the QOL initial
density does not show in the calculated Fock matrices.

Concluding, it could be shown that, by setting the appropriate options, the results ob-
tained with TURBOMOLE were reproduced by the QOL with high accuracy. Given the
sensitivity of the resulting quantities, qualitatively identical internal calculation path-
ways were assured.

This analysis has been performed for all systems shown in the following performance
comparison.

15.2.2. Performance

Having established qualitatively identical calculation pathways for TURBOMOLE and
the QOL, performance analyses were conducted. Separate calculations have been per-
formed, using the options established in the accuracy comparison, with the exception of
printing the matrices. This has been done to not taint the results. As for the MOLPRO
calculations of section 15.1.2, all calculations were executed on the Intel(R) Xeon(R)
E5530 hosts of the compute cluster of the Institute for Theoretical Chemistry (see sec-
tion 8.3.1). Only serial runs were performed, again assuring the absence of interfering
processes.

Again the performance analysis has been based on the wall time needed for the calcu-
lations. In a first step, the internally reported time of TURBOMOLE has been compared
to the externally measured one (time -p). Additionally it has been assured that no sig-
nificant deviations in the timings appear in several runs on the same system. The results
obtained with TURBOMOLE for C4H10 in the cc-pVTZ basis are shown in table 15.9.
Although already shown in table 15.5, the QOL calculations are repeated here, using
the settings of the TURBOMOLE context.

TURBOMOLE QOL
Internal time -p Internal time -p

326 326.31 115.44 116.10
327 327.51 115.59 116.89
326 326.49 115.56 116.70
327 326.70 115.36 116.64
327 326.86 115.22 115.58

Average 326.6 ± 0.55 326.77 ± 0.46 115.43 ± 0.15 116.38 ± 0.55

Table 15.9.: Timings obtained for the SCF calculation of C4H10/cc-pVTZ in five separate
runs with TURBOMOLE, using the adjusted input, in seconds.

Again, the internally reported timings correspond to the externally measured ones, and
no severe deviations in the timings are observed. The speedups reported in the following
are therefore based on singular runs.

It shall be noted here that the significant differences for the time required to calculate
C4H10 in cc-pVTZ basis with the QOL are caused by the different convergence criteria
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applied. Besides the total energy criterion, TURBOMOLE uses the change in the one-
electron energy. MOLPRO however uses the norm of the density difference and the
total energy. The corresponding changes for the C4H10/cc-pVTZ (QOL) calculation are
summarized in table 15.10.

Itrn ∆E ∆E1 norm(∆D)
1 −2.87 · 102 −4.62 · 102 3.28 · 10−2

2 −5.15 · 10−1 −8.38 1.74 · 10−2

3 −4.11 · 10−2 3.08 4.42 · 10−3

4 −5.40 · 10−3 −8.12 · 10−1 1.04 · 10−3

5 −1.71 · 10−4 −1.50 · 10−2 2.12 · 10−4

6 −1.40 · 10−5 3.91 · 10−3 6.66 · 10−5

7 −8.62 · 10−7 3.68 · 10−3 1.98 · 10−5

8 −2.14 · 10−8 −3.07 · 10−4 3.92 · 10−6

9 −3.86 · 10−10 1.04 · 10−4 9.90 · 10−7

10 −2.06 · 10−9 −1.87 · 10−5 1.46 · 10−7

Table 15.10.: Changes of total energy, one-electron energy and density difference norm
during the calculation of C4H10 in cc-pVTZ basis. Obtained with the QOL SCF program,
in Hartree.

For this calculation, the norm of the density difference satisfies the convergence cri-
terion of 10−4 in the sixth iteration. The total energy criterion of 10−7 is satisfied in
iteration eight. The one-electron energy criterion of 10−4 at iteration 10. With the
MOLPRO criteria, the calculation is considered to have converged at iteration eight.
TURBOMOLE however considers the calculation converged at iteration ten.

Contrary to MOLPRO, all TURBOMOLE and QOL calculations converged after the
same number of iterations, respectively. No adjustments were applied. The results
obtained for the timing comparison are summarized in table 15.11. Shown are the
speedups of the QOL SCF code versus TURBOMOLE dscf program.
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15.2. TURBOMOLE

C4H10 Alanine Serotonine C36H53N7O9

Def2-SVP 0.7 0.8 0.8 0.7
Def2-TZVP 1.0 1.1 1.1 0.9
Def2-QZVP 1.4 1.4 1.3 -

cc-pVDZ-ogc 1.2 1.4 1.3 1.0
cc-pVTZ-ogc 1.5 1.6 1.5 1.3
cc-pVQZ-ogc 1.6 1.6 1.5 -
cc-pV5Z-ogc 1.6 1.6 1.5 -
cc-pV6Z-ogc 1.6 1.6 1.5 -

cc-pVDZ 2.4 3.0 3.2 2.9
cc-pVTZ 2.8 3.2 3.2 3.1
cc-pVQZ 2.6 2.8 2.7 -
cc-pV5Z 2.2 2.3 2.3 -
cc-pV6Z 2.0 2.1 - -

roos-aug-dz-ano 27.6 34.1 34.5 -

Table 15.11.: Speedups of SCF runs performed with the QOL, versus TURBOMOLE.

TURBOMOLE is specially optimized for effective treatment of segmented basis sets. For
the Def2-SVP basis set, the TURBOMOLE calculations were in all cases executed in less
time than needed with the QOL code. However, with increasing angular momenta of the
basis, the QOL SCF program started to need less time than TURBOMOLE, although
only slightly. With the Def2-TZVP bases, about similar results were obtained, the QOL
then being faster for Def2-QZVP bases.
Being optimized for segmented basis sets, generally contracted bases are handled

poorly by TURBOMOLE, explaining the huge speedups observed for the ANO basis.
The correlation consistent basis sets are somewhat in the middle of those two extremes.

In the QOL case, based on the internal structure (see section 14), the same amount
of time is needed for a particular quality, regardless of the use of optimized general
contractions.

With TURBOMOLEs internal cc-pV*Z-ogc block-segmented basis sets (figure 8.1d),
speedups of about 1.5 were observed, in most cases. Again the speedups increase with
the basis size. A decrease is visible for large molecules.

A somewhat different trend is present in the correlation consistent basis sets without
general contractions. Not optimized for such basis sets, TURBOMOLE takes longer to
finish these calculations, up to a factor of three for C36H53N7O9. With increasing basis
set size, the speedups first increase, peaking at the triple-zeta quality basis sets. For
basis sets of higher angular momenta the speedups then decrease successively.

A similar behaviour can be observed for the dependence on molecular size, for constant
basis sets. The speedups first increase, having their maxima by alanine or serotonine.
The largest investigated molecule C36H53N7O9 then shows decreased speedups, some-
times lower than observed for butane.
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16. Applications

In the SCF program developed in this work no hard coded restrictions exist with respect
to the size of the system under investigation. This shall be demonstrated with the results
obtained for the 1021 atom cluster C315Cl1H511N82O107S5 [64] shown in figure 16.1.

Figure 16.1.: Structure of the 1021 atom cluster C315Cl1H511N82O107S5.

The calculation presented here has been carried out in a genuine cc-pVDZ basis (without
using optimized general contractions, see section 8.2.1). Using the cc-pVDZ basis for
this cluster results in 17437 basis functions in the primitive, and 9719 in the radial
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16. Applications

contracted, angular transformed basis. The calculation has been performed on a multi-
core host at the facilities of the Institute of Theoretical Chemistry, University of Cologne.
On the used host 32 Intel(R) Xeon(R) E5-4620 CPU’s with a clock rate of 2.2 GHz are
available. The OMP parallelized version of the SCF program was used, utilizing all 32
cores. With an atomic densities guess and convergence thresholds of 10−6 and 10−4 for
energy and density difference norm, the calculation converged after 13 iterations to an
energy of −27151.235243 Hartree. DIIS convergence acceleration has been used with
the FDS − SDF error vector and an expansion length of five. The differential density
scheme was used, and integral contributions smaller 10−11 were neglected.
Finishing the calculation took 35 days, 9 hours and 36 minutes of CPU time. With

the use of OMP parallelization, 28 hours and 38 minutes of real time were needed,
corresponding to a factor of about 30.
Two aspects shall be pointed out. On one hand, the pre SCF initializations are

negligible compared to the actual SCF calculation. In the initialization step, one-electron
and Schwarz integrals are calculated, besides the initialization of various other quantities.
The 3 hours 13 minutes CPU time needed correspond to about 13 minutes realtime
achieved by OMP parallelization.
On the other hand, the iteration steps are dominated by diagonalization of the Fock

matrix and the calculation and contraction of the two-electron integrals. Table 16.1
shows the observed CPU timings, for all iterations. In the first iteration the Fock matrix
is not diagonalized, the density is obtained from the guess. Additionally the percentages
of the diagonalization and integration/contraction steps with respect to the time needed
for the whole iteration are shown.

Fock matrix diagonalization Integration/density contraction

Itrn Time Percentage of Time Percentage of
whole iteration whole iteration

1 0 0 32415 98
2 5560 2 344748 98
3 53396 15 310589 85
4 54798 16 279259 83
5 54541 18 254848 82
6 54397 20 214340 80
7 55036 22 189077 77
8 54675 24 169474 75
9 54605 25 164294 75
10 55074 28 141933 72
11 54239 31 120229 69
12 54754 32 115184 67
13 54455 36 96012 64

Table 16.1.: CPU times for Fock matrix diagonalization and integration/contraction
steps, per iteration, in seconds. Percentages with respect to the whole iteration.
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The other steps to be performed in each iteration, such as the basis transformation of
the density and Fock matrices, as well as their block linearization/delinearization and
the update of the density thresholds are negligible compared to the diagonalization and
integration/contraction steps. For these steps about 22 seconds (CPU time) are needed
in the calculation shown. The DIIS step takes about 600 seconds of CPU time, which is
still negligible.

With exception of iteration two, almost constant time is needed to diagonalize the
Fock matrix. Due to the use of the differential density scheme, more and more integral
contributions can be neglected with increasing convergence of the density. The resulting
decrease of time needed for the integration/contraction step shifts the relative share
needed compared to the Fock matrix diagonalization. Being almost negligible in the
first few iterations, the percentage of time needed for the diagonalization step increases
to almost 40 percent in the last iteration.

It shall be noted that this calculation could not be carried out using the TURBO-
MOLE [11] and MOLPRO [10] versions available. In both programs restrictions exist
for the number of atoms. In TURBOMOLE, a maximum of 700 atoms is supported. In
MOLPRO, a hardcoded limit of 1000 atoms exists.
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Part IV.

Summary and Outlook
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In this work, a highly efficient restricted closed-shell Hartree-Fock SCF program has
been developed. In technical realizations of the Hartree-Fock equations, the main bot-
tleneck is the evaluation and processing of the two-electron integrals. These integrals
scale with the fourth power of the system size. The difficulties arising in their handling
have been addressed at several levels.

Connected to the two-electron integrals are different bases appearing in Hartree-Fock
implementations. For ease of integration, integrals are evaluated over primitive Carte-
sian Gaussians. The Hartree-Fock equations however are solved in a basis of radial
contracted spherical harmonics. In this context, the integrals are transformed to the
radial angular transformed basis after evaluation. This transformation is avoided in the
ansatz presented in this work, by transforming the density and Fock matrices instead. In
particular, the radial angular transformed density is transformed to the primitive basis
prior to integral evaluation. During the integration step, this primitive density is con-
tracted with the integrals to give the Fock matrix. The final Fock matrix, in primitive
basis, is then transformed back to the radial angular transformed basis, in which it is
diagonalized to give the updated density matrix.

The evaluation of the integrals is based on the recursion relations of Obara and Saika.
The numerical instabilities inherent in the common four step Obara-Saika scheme have
been analyzed and successfully removed. For the implementation a code-generating
ansatz has been chosen. Instead of evaluating the complicated recursion relations at
runtime, the iterative structure is processed at compile time. A black box code-generator
has been realized, by which the recursion relations are analyzed, and optimized code is
generated in an automated way, for batches of all angular momenta. These codes are
then called at runtime.

The contraction of the integrals with the density has also been addressed using the
code-generating ansatz. Optimized code is generated at compile time in a black box
fashion, for batches of arbitrary angular momenta. Contraction codes for both primitive
and spherical harmonic bases have been realized.

The implementations of both integration and density contraction have been extended
to the explicit use of streaming SIMD extensions. Overall speedups of the calculations
of up to a factor of 1.5 were observed.
To accelerate individual iterations, prescreening of integrals has been included. Based

on the Schwarz inequality, the magnitude of integrals is estimated prior to the actual
evaluation. For integrals which give negligible contributions, their calculation can be
omitted, which drastically reduces the amount of integrals to be calculated. This is even
more amplified by incremental Fock matrix generation schemes, such as the differential
density scheme implemented. With increasing convergence of the density, more and more
integrals can be neglected, leading to decreasing iteration times throughout a calculation.
For the technical realization a hierarchical ansatz has been used, capable of neglecting
whole groups of integrals, at different levels of the Fock matrix generation. This turned
out to be quite efficient, especially for large molecules.

Convergence acceleration has been realized with the DIIS scheme, in which the current
density matrix is approximated by linear combinations of a given number of previous
densities.
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The developed SCF program is competitive to commercially available solutions, both
in terms of capability and performance. It therefore constitutes no proof of concept
study. In the comparisons to MOLPRO, speedups of 1.2 to 4.9 have been observed,
depending on molecule- and basis size. For common correlation consistent basis sets
speedups of 1.7 to 3.4 are reported. The best results of speedups of 4.0 to 4.9 were
obtained for the ano-rcc basis sets with generalized contractions.
In comparisons to TURBOMOLE, the observed speedups are not as pronounced, since

an optimized treatment of segmented basis sets is used in this program. It shall however
be noted that TURBOMOLE is not well suited for generalized contractions.
Although comparable in most aspects of capability, the program developed lacks func-

tionalities present in commercially available programs. First of all, gradients are not
available. Furthermore, advanced convergence acceleration and stabilization methods
are missing. The DIIS approach implemented could be improved, and level-shifting and
damping included.
Conceptually, the work presented here for restricted closed-shell systems should easily

be extended to the unrestricted open-shell case.
In terms of performance, several extensions seem promising. On one hand, prescreen-

ing might be further optimized by including estimates beyond the Schwarz inequality.
On the other hand, reintroducing integral transformations might prove favourable in
some cases, especially in the context of segmented basis sets. Finally there are hints
that the Obara-Saika integration might be improved by drastically reducing the number
of intermediates needed to calculate certain batches.
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Abbreviations and Acronyms

AO Atomic Orbital
API Application Programming Interface
BLAS Basic Linear Algebra Subprograms
CPU Central Processing Unit
DFT Density Functional Theory
DIIS Direct Inversion of the Iterative Subspace
EMSL Environmental Molecular Science Laboratory
IEEE Institue of Electrical and Electronics Engineers
LAPACK Linear Algebra Package
MO Molecular Orbital
OMP Open Multi-Processing
OS Obara-Saika
PCG Primitive Cartesian Gaussian
QOL Quantum Objects Library
RAM Random-Access Memory
SCF Self-Consistent Field
SIMD Single Instruction Multiple Data
SSE Streaming SIMD Extensions
XML Extensible Markup Language
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