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1. Introduction

The overall goal of this thesis (in form of a cumulative dissertation) is to develop a systems
biology framework in which Next-Generation Sequencing (NGS) and other high-throughput
data  sets are (compatibly) integrated, readable for humans (in form of text  and
visualizations) and computers (in form of parsable markup flat-files or databases). This
approach generates more specific diagnosis criteria and is potentially leading to ultimately
earlier and more efficient treatments. In addition, it provides the option to further integrate
and accumulate evidence for basic molecular mechanisms.

1.1 Methodological background

1.1.1 Semantic Web

In the Semantic Web paradigm there is, in contrast to other data storage models like the
relational one (of  MSSQL or  MySQL), no need to create static tables connected through
primary  keys and to  fulfil  specific  normalization  forms.  In  addition,  the  Semantic  Web
paradigm does not require any underlying infrastructure like a database on a dedicated
server  to  be  properly  read  but  can  be  organized  as  flat-files  (on  arbitrary  hardware
volumes), which are easier to share between collaborative scientists. The data is modeled
as a directed network where the edges are interpreted as “predicates”, the source nodes
as “subjects” and the target nodes as “objects”. Furthermore, each object may itself be a
subject  in  another  context.  In  particular,  this  allows  logical  links  between  different
knowledge domains which in many cases are not obvious. The Semantic Web paradigm is
being used intensively to develop the “Web 3.0” (Cheung et al. 2008; Hendler 2003), that
is,  to  further  exploit  and  make  sense  out  of  information  that  is  available  on  highly
distributed  resources  worldwide.  To  highlight  the  logical  construction  of  the  semantic
framework, this is usually presented by graphical networks (see Figure 1.1). Technically, it
is  sufficient  to  create  a  subject-predicate-object  triple  in  RDF (resource  description
framework)  files,  a  W3C recommendation  derived  from  XML (Extensible  Markup
Language) standard, so that the hierarchical model is extended to a network model which
makes it also possible to apply algorithms known from graph theory (Deus et al. 2008).
SPARQL (SPARQL Protocol And RDF Query Language) is usually used to query the data,
similar to what SQL does for relational databases. A possible application and the power of
this methodology is demonstrated by means of semantic music recommendations as
implemented on the commercial website last.fm.
After a user has listened to a piece of music, the system offers some recommendations for
music by similar artists. These recommendations are based on shared “attributes”  (also
termed “properties”, shown in Figure 1.1 as edges) and a similarity measure. If user
':alex:'  has  listened to music  by  the  'Beastie  Boys',  the  semantic  framework  would
recommend  further  listening  to  music  by  'Adam  Yauch'  because  he  is  one  of  the
'currentMembers' of this group. On the other hand, it would recommend music from the
same 'genre' 'Hardcore_Punk', e.g. by the group 'Black_Flag'. The innovation here is that
the inferences are not made by an administrator, but by the computer itself because it can
interpret the standardized RDF the schema is written in. An identical procedure has been
used on the “free reference manager and PDF organizer”  Mendeley.com for scientific
article recommendations,  Google  Knowledge  Graph  [URL:
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html ],  or
Facebook's derivative of it.

https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
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Figure 1.1: Linked dbpedia (Wikipedia entries as RDF) data collections (taken from Dengel et al. 2012)

1.1.2 Current Semantic Web implementations in Life Science

In recent years, there have been tremendous efforts made to set up biological databases
into semantic schemas. They are rapidly replacing tedious and unflexible Excel or MySQL
table-based  data  storage  and  include  the  EMBL  (European  Molecular  Biology
Laboratory)  /  EBI  (European  Bioinformatics  Institute)  RDF platform (Jupp  et  al.  2014)
integrating BioModels, BioSamples, ChEMBL, Ensembl, Expression Atlas, Reactome and
UniProt. Each one has its respective SPARQL endpoint and exemplary queries. Bio2RDF
(Belleau et al. 2008), which contains as of version 3 in 2014 almost 12M triples, can be
used complementary as it has converted mostly data sets not used at the EMBL / EBI,
such  as  dbSNP,  BioPortal,  DrugBank,  KEGG  (Kyoto  Encyclopedia  of  Genes  and
Genomes), MeSH (Medical Subject Headings), OMIM (Online Mendelian Inheritance in
Man) or Wormbase. SIDER (SIDER Side Effect Resource), which has been developed at
the  EBI,  but  thus  far  not  integrated  into  their  RDF  platform,  is  also  available  within
Bio2RDF. An extension for drug discovery and chemogenomics, called Chem2Bio2RDF,
has been previously released (Chen et al. 2010). However, the SPARQL endpoints seem
to be taken offline (as of 09/15/2016), but the flat-file can still be obtained and uploaded
locally. All  these resources use their own controlled vocabulary, or a mash-up obtained
through BioPortal (Whetzel et al. 2011) to preset terminology to be used and thus ensure
persistent  communication  between  federated  SPARQL  endpoints  and  scientists
exchanging  models  written  in  RDF  or  a  more  sophisticated  extension  capable  of
inferences, OWL (Web Ontology Language). The most prominent OWL attribute is perhaps
'owl:sameAs'  and  bidirectionally  links  two  objects  /  subjects  and  thus  indicating  their
equality. It can then be inferred in queries that each deregulation coupled to an official
gene is the same as the deregulation coupled to its synonym. The EMBL / EBI platforms
uses among others, as GO (Gene Ontology) or BioPax (Demir et al. 2010) for pathway or
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complex annotation, its own ontology called EFO (Experimental Factor Ontology; Malone
et al. 2010) to describe assay results, such as originally gene expression profiling. 

Since the creation of ontologies are mostly community-driven, including a long period of
feedback-based evaluation (such as surveys), I  will  limit  the description to the level of
simple local namespaces and attributes, thus, will not focus on the integration of public
data. I will, however, model own data sets within these thesis with terminology already
used within public repositories, and comply by recommendations of the  W3C Semantic
Web  Health  Care  and  Life  Sciences  Interest  Group (HCLS  IG:
https://www.w3.org/blog/hcls/ ). Terminal nodes (subjects) are preferably modelled as URIs
(Unified  Resource  Identifiers)  referencing  biological  entities  (e.g.
http://bio2rdf.org/hgnc.symbol:TCL1A)  linked  to  persistent  URLs  (Unified  Resource
Locations) with human-readable HTML sites when clicked on. These terms can further link
two graphs, e.g. overexpression and structural variations affecting the oncogene  TCL1A
(described later),  so they have to  be consistent  thoughout  data sets.  To achieve this,
identifiers.org (Juty  et  al.  2012)  offers  unambiguous  and  extensive  metadata  records.
Two commonly used, freely obtainable, „triple stores“ (semantic databases) are OpenRDF
Sesame (as used here) and JenaFuseki. The former has the advantage of more precise
administration tools and more tolerant data upload, while the latter can be used with the
Cytoscape plug-in RDFscape (Splendiani et al. 2008) to visualize queries. Both however
can be queried using standard SPARQL. Here is an example, where we fetch the official
ENSEMBL  identifier  from  the  Ensemb  SPARQL  endpoint  (
https://www.ebi.ac.uk/rdf/services/ensembl/sparql ):

PREFIX rdfs: <ht  tp://www.w3.org/2000/01/rdf-schema#>
PREFIX ensembl: <http://rdf.ebi.ac.uk/resource/ensembl/>
SELECT DISTINCT ?ensembl WHERE {
?ensembl rdfs:label "TCL1A" . FILTER(regex(?ensembl, "ENSG[0-9]"))  }

Namespaces are in the first two lines, which circumvents writing all the URI bases/prefixes
for each corresponding attribute.  As the third line is equivalent to SQL, we search for
unique („DISTINCT“) Ensembl identifiers („?ensembl“) which („WHERE“) satisfy the graph
pattern  in  the  forth  line.  Variables  (objects,  predicates  or  subjects)  with  a  preceding
question mark symbolize place holders for specific values matching the graph pattern.
Each pattern is terminated with a dot („.“) and further restricts the solution space. In this
case  only  Ensembl  identifiers  („?ensembl“)  with  a  corresponding  label  („rdfs:label“)
matching „TCL1A“ are returned. Since TCL1A has orthologues in many species, we need
to  further  restrict  it  to  the  human  version.  This  is  facilitated  by  a  regular  expression
(„regex(..)“) with the suffix matching the standard human Ensembl identifier.  The query
then returns: ensembl:ENSG00000100721  . The resulting identifier can further be used to get
all  triples  with  it  as  a  subject  and  thus  obtaining  meta-information  as  orthologues,
synonyms, UniProt ID or coding information with the following short-cut:

PREFIX ensembl: <http://rdf.ebi.ac.uk/resource/ensembl/>
DESCRIBE ensembl:ENSG00000139618

Besides directly pasting these queries into the web-interface of the SPARQL endpoint, it
can  also  be  adressed  on  the  UNIX  command-line  taken  advantage  of  the  RESTful
(Representational  state  transfer)  API  (Application  programming  interface)  and  result
downloads:

https://www.ebi.ac.uk/rdf/services/ensembl/describe?uri=http%3A%2F%2Frdf.ebi.ac.uk%2Fresource%2Fensembl%2FENSG00000100721
https://www.ebi.ac.uk/rdf/services/ensembl/sparql
http://bio2rdf.org/hgnc.symbol:TCL1A
https://www.w3.org/blog/hcls/
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wget -O test https://www.ebi.ac.uk/rdf/services/ensembl/sparql?query="PREFIX ensembl: 
<http://rdf.ebi.ac.uk/resource/ensembl/> DESCRIBE ensembl:ENSG00000139618"

Or within the statistical software environment R (R Core Team 2013):

library(SPARQL)
query <- "PREFIX ensembl: <http://rdf.ebi.ac.uk/resource/ensembl/> DESCRIBE 
ensembl:ENSG00000139618"
SPARQL(url="https://www.ebi.ac.uk/rdf/services/ensembl/sparql", query=query, format="csv")

In order to decrease the processing time of SPARQL queries, RDF data sets are stored in
different  files and uploaded into different  graphs.  For  ease of  overview,  separate data
repositories are further created which can then be accessed using federated queries.

1.2 Biological Background

Throughout evolution, humans developed an immune system to defend against different
kinds  of  pathogens  (bacterial,  viral,  or  fungal)  encountered  over  time.  As  in  other
vertebrates, but in contrast to e.g. some prokaryotes, this system is subdivided into the
innate,  as a first  barrier  and recruiter,  and the adaptive immune system with  memory
capacity.  Responsible  for  the latter  system are two kinds of  lymphocytes (subtypes of
white blood cells).  
The first of these present B-cells or B-lymphocytes which mature within the bone marrow
and are then released to the blood stream. Once the B-cell receptor (BCR) encounters and
binds an antigen (antibody-generating),  it  secretes antibodies or present them to other
immune cells which spawn a response. T-cell  progenitors also originate from the bone
marrow, but subsequently populate the thymus and differentiate into mature T-cells. Their
antigen receptors (T-cell receptors / TCRs) also recognize specific antigens and are further
divided into different subtypes. Both,  T- and B-cells,  go through different  differentiation
stages, which are characterized by distinct surface marker expressions that are gained or
lost, as well as by activation of associated cytokines that are expressed (e.g. interleukin 2,
IL-2, by promoting differentiation into e.g. regulatory, memory or effector T-cells) during this
transition (Figure 1.2). They also generate a large pool (repertoire) of potential responders
via somatic hypermutation and rearrangement of their receptor chains, which are positively
selected through clonal selection (Hodgkin et al. 2007). Traditionally, and also within this
thesis,  lymphocytes  are  characterized  using  flow  cytometry  (e.g.  FACS,  fluorescence-
activated  cell  sorting)  in  order  to  identify  different  surface  and  cytoplasmic  markers.
Recently, more deliberate approaches are being developed like measuring marker status
by  RNA-Seq  (transcriptome sequencing)  (Jaitin  et  al.  2014).  More  concepts  of  T-cell-
mediated immunity are reviewed in Warner, Oberbeck, Schrader et al. (submitted).

Cancer is a proliferative disorder of cells carrying mutations of hierarchical causality, which
cumulate over time, mostly leading to loss of function of tumor suppressors and gain of
function of  proto-oncogenes.  These different  aberrations  are characterized by different
hallmarks  such  as   „sustaining  proliferative  signaling,  evading  growth  suppressors,
resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating
invasion  and  metastasis“  (taken  from  Hanahan  &  Weinberg  2011;  Figure  1.3).
Disadvantageous  mutations  from  the  perspective  of  the  neoplasm  /  tumor  (and  its
supporting,  surrounding  cells;  the  microenvironment)  are  selected  against  (similar  to
Darwinian  selection)  and  thus  give  rise  to  further  clones  carrying  driver  mutations
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repressing other normal or less fit  cells.  These descendants may inherit  passenger or
private (subclonal) mutations. which may only come to effect (rise in variant allele fraction
or  cancer  cell  fraction;  both  measuring  tumor  allele  portion)  after  additional  selective
pressure as changing microenvironment or treatment-regimens (e.g. chemo-therapy), thus
leading to relapse (Cancer Genome Atlas Research Network 2013).

Figure  1.2: Simplified  schema  of  human  hematopoiesis.  Lymphocyte  lineage  is  depicted  on  the  right.
Different activation markers (not shown) are turned on/off during differentiation.
Original by A. Rad, modified by Mikael Häggström. CC BY-SA 3.0

There are five global types of cancers differentiated by tissue of origin, namely carcinomas
(of glands and organs), sarcomas (of bone, muscle, fat, or cartilage), melanomas (of the
skin), and lymphomas / leukemias (lymphocytes of the blood or lymphoid organs). The
latter are often difficult to segregate, especially in the case of (pro)lymphocytic leukemias
of mature cells. 
Lymphoid neoplasms originate predominantly from cells of the adaptive immune system,
namely B- and T-lymphocytes, and are sub-divided into over 50 distinct entities by the
WHO (Jaffe 2009). They can occur as primary leukemic forms or as solid lymphomas.
They are further divided according to their clinical course in acute and chronic condition,
needing either rapid treatment or sequentially evolving and worsening disease status.
Chronic lymphocytic leukemia (CLL),  arising from B-cells,  and it's  T-cell  pendant  T-cell
prolymphocytic leukemia (T-PLL) are two primary leukemic malignancies. Within the scope
of  my PhD thesis I developed bioinformatical tools to answer fundamental questions
concerning the biology of CLL and T-PLL in order to improve treatment and understanding
of these, so far, incurable diseases.
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Figure 1.3: Pictured are the 6 original „Hallmarks of cancer“ from Hanahan & Weinberg as common 
mechanistic ground for cancerogenesis, including 6 additional molecular stress sources from recent 
investigations. Taken from Luo et al. Cell. 2009 Mar 6; 136(5): 823–837. 

1.2.1 Chronic lymphocytic leukemia (CLL)

CLL  is the most frequent lymphatic  malignancy  in Western countries (incidence:
3/100.000) and up to now remains incurable. The median age of diagnosis lies around 72
years and many patients carry relevant comorbidities. 
On the molecular level  CLL patients are subdivided according to  the genetic aberrations
found in their malignant lymphocytes, which in many cases are chromosomal deletions
affecting  tumor  suppressors,  i.e.  in above 50% of  cases  most often the  del(13q14)
affecting mir-15a/mir16-1 and DLEU7 (not DLEU2!) cluster (Klein et al. 2010), as well as
del(11q) affecting ATM (Ataxia telangiectasia mutated) and del(17p) affecting TP53 (tumor
protein 53), or translocations or duplications like the trisomy 12 (12+) (Doehner et al. 2000;
Klein & Dalla-Favera 2010). It has been shown that the expression of specific oncogenic
factors like  TCL1A (T-cell lymphoma/leukemia 1A) is associated with worse prognosis in
CLL (Herling et al. 2009). Beta-2-microglobulin (β2-M), IGHV (immunoglobulin heavy chain
variable region genes) mutational status (pre- or post-germinal center, malignant B-cells of
origin) and ZAP70 (Zeta-Chain (TCR) Associated Protein Kinase 70kDa) serve as further
indicators of disease courses, while the latter seems to be the most accurate predictor for
genetic risk (Kienle et al. 2010). An interaction of  TCL1A with  ATM has previously been
described in CLL without 11q- (Garding et al. 2013).  High  TCL1A expression is further
correlated with usage of (mutated and unmutated) IGHV3-21 receptor genes (Mansouri et
al. 2010). There is also a morphologically distinct subset to atypical CLL and mantle-cell
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lymphoma  (another  B-cell  lymphoma)  called  B-cell  prolymphocytic  leukemia  and  a
transformation  to  a  high-grade Non-Hodgkin  lymphoma,  which  ~10% of  CLL undergo,
called Richter syndrome.
CLL patients are currently diagnosed using a flow cytometry-based analysis of a panel of
surface markers. A consensus consists of high CD19 (cluster of differentiation 19), CD23,
CD43, CD79a, and intermediate CD20, CD5 expression, as well  as weakly expressed
surface  immunoglobulin  M  (IgM)  and  IgD  (Gribben  2010).  For  novel  inhibitor  studies
patient samples are sequenced by targeted capture- or Amplicon-based sequencing. In
general CLL is characterized by mutational heterogeneity within NOTCH1 (notch 1), XPO1
(exportin 1), MYD88 (myeloid differentiation primary response gene 88) and KLHL6 (kelch-
like  6)  being  frequently  and  clonally  mutated  (Puente  et  al.  2011),  while  subclonal
mutations include those in SF3B1 (splicing factor 3b subunit 1) and TP53 (Landau et al.
2013).

1.2.2 T-cell prolymphocytic leukemia (T-PLL)

T-PLL is the T-cell pendant to B-CLL/B-PLL and represents  with an incidence of 0.6-2.1
per million in Western countries a very rare (approx. 2% of mature lymphocytic leukemias),
but also very aggressive mature T-cell leukemia. It is characterized by exponentially rising
white  blood  cell  counts (WBC)  able  to  disseminate  into  spleen  and  liver,  resulting  in
hepatosplenomegaly (abnormal  enlargement  of  both immunesystemic  organs liver  and
spleen), or skin (in about 20%). The median age at diagnosis is ~65 years, with a median
survival of 24 months. Treatment  options  are  currently  limited  to  allogenic  stem  cell
transplantation in younger / physically fit patients and standard chemotherapy (fludarabine,
cyclophosphamide,  mitoxantrone  (FCM))  combined  with  immunotherapy  with
Alemtuzumab  (anti-CD52).  The  initiating  event  in  T-PLL  is  either  the  inversion  or
translocation of chromosome 14 (inv(14) / t(14;14)) or the translocation of chromosome X
to 14 (t(X;14)) resulting in an juxtaposition of TCL1A / MTCP1 to TCRαδ (T-cell receptor
alpha/delta) segments and thus activating TCL1A (80%) or p13MTCP1 (P13p8mature T-
cell proliferation 1) respectively. Both proto-oncogenes can interact with AKT1 (RAC-alpha
serine/threonine-protein kinase 1) and AKT2 (PH domain) enhancing their phosphorylation
and leading to  their  nuclear  translocation  and activation  at  membrane sites.  Common
inmmunophenotypes  of  T-PLL  cases  include  CD4+/CD8- (60%),  CD4+/CD8+ (25%),
CD4-/CD8+ (15%),  but  also CD7+,  CD5+ or  CD2+  (Hopfinger  et  al.  2009). Additional
recurrent chromosomal abnormalities (Dürig  et  al.  2007)  involve chromosome 8
(amplifications  on  8q  (ampl(8q))  believed  to  affect  the  oncogene  MYC (avian
myelocytomatosis viral oncogene homolog)), chromosome 11 (deletion affecting ATM), but
large high-resolution studies have not been performed and the biological mechanisms
underlying this fatal disease are still poorly understood. For a more broad overview of
profiling data acquired so far in T-PLL, please refer to Schrader, Crispatzu et al. (in review)
Supplementary Table 1.1.

1.2.3 The proto-oncogene TCL1A

TCL1A's (often abbreviated as TCL1 or Tcl1) usual physiological function is temporally and
spatially  limited  during  embryonic  development,  before  it  is  silenced  (Teitell  2005).  In
adults, the 114-amino-acid protein TCL1A is mainly expressed in (CD3-)CD4-CD8- thymic
precursors  as  immature  T-cells,  pre  B-cells,  virgin  B-cells  (Pekarsky  et  al.  2001)  or
plasmacytoid dendritic  cells.  The post-embryonic activated  TCL1A is  linked to  adverse
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prognosis in CLL, and T-PLL, as well as diffuse large B-cell lymphoma (DLBCL), where it
co-occurs with MYC translocation. It is further highly expressed in primary mediastinal B-
cell lymphoma (Gualco et al. 2010), blastic natural killer-like T-cell lymphoma (Iqbal et al.
2011),  Burkitt's lymphoma, follicular lymphoma, mantle cell  lymphoma,  nodal marginal
zone and splenic marginal zone lymphoma (Aggarwal et al.  2009), as well as in 1-5%
cases  of  Ataxia  telangiectasia  (Gabellini  et  al.  2003)  where  it  is  linked  to  telomere
dysfunction. In seminoma testicular germ-cell tumors and intratubular germ cell neoplasia,
unclassified type (IGCNU) high TCL1A protein expression was recently observed (Lau et
al. 2010), suggesting not only a lymphoma/leukemia exclusivity.
Besides  the  interaction  of  TCL1A with  ATM described  within  CLL,  other  interactions
include NFKB1 (also in CLL) likely by forming a complex wih EP300 (E1A Binding Protein
P300) and CBP (CREB binding protein) similar to AKT (Chen et al. 2009) leading to the
inhibition of cell death. AP-1-dependent transcription is further inhibited as TCL1A interacts
with the transcription factors JUN, JUNB and/or FOS (Sivina et al. 2012). Further proof of
AKT1  phosphorylation  (at  site  p-Ser.473)  comes  from  Hu  et  al.  2008,  where  Oct4
repression reduced Tcl1 expression (and down-regulation of phosphorylated Akt1). 
A likely co-activation of other oncogenes may be induced by TCL1A and its inhibition of de
novo methyltransferases DNMT3A and DNMT3B as proposed in TCL1A-tg (transgenic)
mice (Palamarchuk et al. 2012).
Other PPI (protein-protein interaction) partners of TCL1A are visualized in Figure 1.4a.
While  TCL1A is neither frequently somatic mutated, nor is experiencing prominent copy-
number  losses  or  gains  it  is  likely  activated  through  enhancer-hijacking  (in  T-PLL)  or
mutations and deletions of  its  regulators experiencing a gain-of-function (e.g.  in  CLL).
Negative regulation is processed by miR targeting of miR-29b/c, miR-181b (Pekarsky et al.
2006), and miR-34b/c (Cardinaud et al. 2009), while miR-34a also functions as a (positive)
TP53 inducer (Mraz et al. 2009), as well as the just recently described miR-484 (Vasyutina
et al. 2014) affected by MECOM (MDS1 And EVI1 Complex Locus) downregulation in CLL
(overview:  Figure 1.4b). As there are barely any SNPs or structural variants in germline
tissues, one can exclude TCL1-related predispositions for leukemogenesis.
The  potential  of  decreased  apoptotic  sensitivity  induced  by  TCL1A also  comes  from
experiments studying cardiomyopathy, where low protein levels (and  MDR1 SNPs) are
associated with higher risk of chemo-induced heart failure in women.
In mice,  TCL1A is used as a human transgene to induce mouse leukemias resembling
either CLL (when transfecting B-cells) or T-PLL (when transfecting T-cells). MYC works as
a synergistic oncogene, while the overexpression of TCL1A may activate the endoplasmic
reticulum stress response (Kriss et al. 2012).
TCL1A forms the TCL1 family of oncogenes together with MTCP1, TCL6 (formely split into
two isoforms TNG1 and TNG2) and TCL1B (formerly known as TML1). Although TCL1B
seems to be not that essential to lymphoma development as TCL1A is, it is overexpressed
in  lung  metastasis-free  breast  cancers,  as  well  as  ERα+  (endrogen-receptor  alpha
positive) breast cancers when compared with ERα- ones (Badve et al. 2010). 
There have also been  TCL1B-tg mouse models proposed that developed angiosarcoma
on the intestinal tract (Hashimoto et al. 2013).  TCL1B is also highly expressed in mantle
cell lymphoma and also interacts with AKT1,  AKT2,  AKT3,  DNMT3A and UBC (Ubiquitin
C). Meanwhile barely is known about MTCP1 and TCL6 interactions besides AKT (Auguin
et al. 2004).
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Figure 1.4: a) PPI  network of  TCL1A and TCL1B obtained from  STRINGdb10 (Szklarczyk et  al.  2014).
Thickness  of  edge  corresponds  to  score  which  in  turn  corresponds  to  number  of  evidence  types  (co-
occurence, data- or literature mining, experimental assays). MTCP1 and its interactions with AKT1 and AKT2
(obtained through ConsensusPathDB (Kamburov et al. 2009)) were manually pasted into the graph, because
there was no STRINGdb10 entry. b) Prominent microRNAs targeting TCL1A with originating publication.

1.2.4 T-cell receptor (TCR) signaling

The TCRαδ components are located on chromosome 14. In T-PLL, some of its enhancers
are translocated/inverted to the TCL1A locus likely due to faulty TCR locus recombination
events in early thymic immature T-cells (Denny et al., 1986). This genetic alteration does
not  only  lead  to  post-thymic  activation  of  TCL1A,  but  might  also  induce  TCR
hypersensitivity (Herling et al. 2008). In general, genomic enhancers do not have to be in
direct proximity to the promoter region, they can rather be several kilobases downstream
or upstream (trans-regulatory) in contrast to  promoters (cis-regulatory). Direct interactions
are created through 3D confirmation changes such as DNA loops (Witte et al. 2015). The
expression of a surface TCR (sTCR+) is correlated to and linked to adverse prognosis just
like TCL1A+ status and AKT Ser-phosphorylation (Herling et al. 2008).
A  similar  mechanism  of  oncogene  activation  was  observed  in  group  3  and  4
medulloblastoma and coined „enhancer hijacking“ (Northcott et al. 2014), while samples
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carrying translocations (or other structural varations) were putting (super-)enhancers next
to the proto-oncogenes GFI1 or GFI1B (growth factor independent 1 family).

1.2.5 DNA damage response

DNA damage commonly  occurs  during  replication  processes  or  due  to  environmental
factors like UV light or toxicological substances. The cell has its way of dealing with this by
initiating the DNA damage response (DDR) which is comprised of either arresting the cell
cycle,  repairing  the  damage  or  ultimately  inducing  programmed  cell  death,  called
apoptosis. In later stages of genomic instability double-strand breaks (DSB) can appear
and are repaired through either homologous repair (HR) by  ATM among others, or non-
homologous end-joining (NHEJ) centrally via DNA-PKcs (DNA-dependent protein kinase
catalytic subunit;  gene is called  PRKDC).  ATM works with  CHEK2  (Checkpoint Kinase
2)/TP53 to initiate DDR, if this fails the damaged cell goes into apoptosis. Alternatively
ATR (Ataxia Telangiectasia And Rad3-Related Protein) can induce apoptosis right away
through  CHEK1/TP53.  Other,  earlier  lesions such as mismatches are repaired through
factors such as MSH3 or MSH4 (mutS homolog 3 and 4).
Although, even two decades ago, ATM mutations were already characterized in a couple
of T-PLL samples (Stilgenbauer et al. 1997), barely any functional validations have been
performed on this and other DDR genes within the disease.  In  CLL however,  there is
plenty of data available on the consequences and time line occurrences due to the high
interest in chemo-resistant 11q- (del(11q)) cases.

Table 1.1: ATM deletion and mutation status of both alleles plays a major role in leukemic
disease onset. We will later review this in our T-PLL samples by looking at our SNP arrays
and whole-exome sequencing data.

1st ATM allele 2nd ATM allele Consequence 

Mutated Potential wild-type Normal  or  impaired  DNA
damage  response.  Unknown
whether  this  produces  a
dysfunctional protein.

Deleted Potential wild-type Adverse  prognosis  in  CLL
(Döhner et al. 2000)

Deleted Deleted / mutated Worse  prognosis  in  CLL
(Austen et al. 2007), complete
dysfuntional  HR.  Possible
haploinsufficiency.

Germline mutated Germline mutated Ataxia  telangiectasia  (A-T)
alias  Louis–Bar  syndrome
and  predisposition  for
lymphoid malignancies

1.2.6 Advanced concepts in tumorigenesis

Due to progress in the field of cancer genomics additional constraints and features have
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been added to the „hallmarks of cancer“ to further understand the biology of neoplasms
and consequences of invasive treatments.

Gradual changes in chromosomal structure, referred to as genomic instability, give rise to
numerous copy-number aberrations for the tumor to pick the most advantageous from.
Breakage-fusion-bridge (BFB) cycles represent one of the mechanisms believed to occur
on  a  large  scale.  When  chromatids  lack  their  telomeres  (outer  ends  of  human
chromosomes), either due to rearrangements or low telomerase activity, they are fused
together.  During anaphase they are pulled apart  and shatter at  random places.  These
aberrations  are  preserved  and  get  even  worse  through  subsequent  replication  cycles
(modelled in Zakov et al. 2013), e.g. form isochromosomes, where one chromosome arm
is lost, while the other is amplified.
An opposing theory is the „catastrophic“ shattering and rearrangement of chromosome
parts within a single event in early tumors, referred to as chromothripsis (Zhang et al.
2013;  Bassaganyas  et  al.  2013).  Both  concepts  are  recently  being  investigated using
longitudinal sequencing and SNP array data of the same patient.

Telomeres are shortened with each replication cycle, thus symbolizing a type of molecular
clock. They are further capped so they do not fuse with other chromosome ends and
induce genomic instability. If they reach a critical shortening (Hayflick limit), the carrying
cells is either sent to apoptosis through TP53 (Verdun & Karlseder 2007) or to senescence
through RB1 (Gonzalez-Vasconcellos et al. 2013).  ATM is also believed to play a role in
telomere length maintenance due to its yeast and drosophila homologues Tel1 (Deng et al.
2008).
Evasion of short telomeres from termination is either by inactivation of the senescence or
apoptosis pathway genes or by overexpression of telomerase (Röth et al. 2007), which is a
polymerase adding TTAGGG repeats at the ends of telomeres.

Many tumors rely on the proliferative and anti-apoptotic signals induced by oncogenes and
may be targeted by inhibition of factors encoded by these malfunctioning genes, as done
with  BCR-ABL (fusion  protein)  tyrosine-kinase  inhibitors  for  chronic  myeloid  leukemia
(CML; An et al. 2010).
However,  other  cancer  entities or  subsets  seem not  to  depend on an oncogene as a
central node (hub) to establish an oncogenic phenotype. Disruption of this „non-oncogene
addiction“ (Luo et al. 2009) can be achieved by the concept of „synthetic lethality“ (Kaelin.
2005). Genes are considered „synthetic lethal“, where the mutation of one lets the tumor
thrive, but the aberration of the other leads to cell death. Candidates are often paralogues
or key players in the same or parallel pathway, e.g. as DNA-PKcs within NHEJ and ATM
within HR in CLL, or  TP53 and MK2 (MAPKAP kinase-2) in NSCLC (non-small-cell lung
carcinoma) (Morandell et al. 2013).
The ideal cancer treatment consists of selective killing of aberrant cells, while preserving
the  function  of  normal,  benign  cells.  In  modern  times  the  less  precisely  form  of
chemotherapy and radiation exploits DNA damage response and DNA polymerase, while
having cytotoxic effect also on benign cells. While more targeted treatments as DNA-PKcs
inhibitors (Riabinska et al. 2013) only target cells with a previous deactivation of ATM.

Cancer stem cells carrying properties just like stem cells,  i.e.  self-renewal capabilities,
were identified using experiments in murine model systems, just as the stem memory T-
cell population (Zhang et al. 2005; Gattinoni et al. 2009), and it remains to be evaluated to
which degree they influence tumor maintenance in humans. It is currently proposed that
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they circulate in the blood stream (as CTC; circulating tumor cells) and can re-activate
local / non-metastasized tumor cells (Kreso & Dick 2014).

1.2.7 Tumor evolution and clonal hierarchy

Other DNA damage response pathways besides those dealing with DSBs are frequently
negatively affected in cancer genomes. „DNA spellchecker“ subsequent to replication are
called mismatch repair (MMR) and represent the second most prominent disrupted DNA
repair mechanism. The inactivation by mutations of MSH genes (mutS homolog 2 / MSH2,
MSH3, MSH4, MSH5, MSH6) or the hypermethylation of MLH1 promoter further leads to
microsatellite instability (MSI; repeat indels) in colon, rectal,  stomach or uterine cancer.
Additionally, the inactivation of PolE (proofreading domain of DNA Polymerase E) results in
even higher  mutation rates.  Supek & Lehner  2014 compared single nucleotide variant
(SNV) distributions between cancer samples with functional mismatch repair and tumor
samples  where  MMR  is  rendered  dysfunctional.  They  observed  different  hotspots
suggesting  that  the  MMR mechanism scans  damages  in  essential,  euchromatic  early
replicating genes more efficiently.  Once MMR is deficient this bias disappears and the
whole genome is equally likely to be affected by somatic mutations. Thus the time of MMR-
defiency can be inferred by the flatness of the SNV distribution.

Dating  back  the  malignant  cell-of-origin  can  be  achieved  by  numerous  inferences  on
patient samples.  Besides the labor-intensive measurement of 14-C content within a cell
(Spalding et al. 2005), computational approaches allow to place samples onto a time line
of tumor development. Somatic mutations in microsatellites (MS), bi- or trinucleotide short-
tandem repeats (STR), are coupled to mitosis (mostly by replication slippage (mismatches
between DNA strands)), and accumulate in normal (and malignant) cells, since there is no
(or less) selection pressure in non-coding/non-regulatory regions, and can therefore be
used to estimate the depth of a cell by the number of cell divisions since zygote/oocyte
(Frumkin  et  al.  2005).  They  can  also  be  used,  when  comparing  the  diversity  of  MSI
distributions,  to  estimate  tumor  specimen  age,  as  was  already  evaluated  in
adenocarcinoma and invasive colorectal cancer (Shibata et al. 1996).
Wasserstrom et al. 2008 further observed that animals with mutations in mismatch repair
(MMR) genes display very high mutation rates in MS, so 100 alleles were sufficient to
estimate  with  precision  above  70% according  to  simulations.  Tandem-repeats  can  be
screened in preferably WGS (whole-genome sequencing) data (including loci  with less
selective pressure) with tools such as lobSTR (Gymrek et al. 2012) or MSIsensor (Niu et
al. 2014).
Another  measurement  for  neoplasia  progression  in  many  lymphoid  leukemia  is  the
reduction of immune response repertoire, e.g. in TCR (Clemente et al. 2013) especially by
the makeup of its  Vβ chain (clonal percentage), which is directly responsible for antigen
recognition. Tools like miTCR (Bolotin et al. 2013) are able to distinguish common errors
(PCR and sequencing) in deep-sequencing assays from somatic hypermutations leading
to TCR alpha and beta sequence / peptide variants. Alternatively RNA-seq transcripts can
be reconstructed by a combination of de novo assembly and homology search (as done in
Warner, Oberbeck, Schrader et al. (review)). 
The  calculated  distances  (diversity  and  similarity)  between  sample  repertoires  can  be
visualized in a phylogenetic tree and thus measuring the degree of monoclonality (time
between previous polyclonality and transformation).
Traditionally  leukemia  samples  can be ordered by  hematological,  kinetical  indices  like
WBC and LDT (lymphocyte doubling time). The former however is reset after cytotoxic
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treatment, while the latter is relational i.e. only works with a reference sample of the same
patient (Molica et al. 1987).
The most informative approach however still is the sequential sampling of genomics data
from  patients  along  their  disease  course,  called  clonal  evolution  or  clonality  analysis
(Landau et al. 2015). 
In contrast to the sequential model, as the stepwise adding of subclonal mutations on top
of  clonal  ones due to  growth  and subsequent  selection  leading to  enhanced survival,
recently an alternative model called “Big bang” (Sottoriva et al. 2015) has been proposed,
but  has  only  been  validated  in  solid,  colorectal  cancer.  Due  to  initial  intra-tumoral
heterogeneity and the absence of selective sweeps (displacement of unfavorable alleles
and rise in frequency of favorable alleles due to strong positive selection) in distinct probed
sides, an initial carcinogenic “burst” producing clonal and subclonal mutations right away
was postulated.

1.3 Aims

1.3.1 Development  of  a  semi-automated  pipeline  and  semantic  framework  for
integrated neoplasia-derived (meta-)data

Demands  for  bioinformatical  analysis  tools  appropriate  for  high-throughput  data are
continuously rising. The Semantic Web paradigm is known to be able to link information
previously thought to be unrelated or hard to combine.
In  my  dissertation,  I  developed  new  bioinformatics  tools  to  allow  an  improved  and
focussed investigation of high throughput data concerning chronic lymphocytic leukemia
(CLL)  and  T-cell  prolymphocytic  leukemia  (T-PLL).  These  tools  enabled  answering
fundamental  biological  questions  regarding  the  biology  of  these  incurable  lymphatic
malignancies. These questions relate (i) to the most closely related normal counterpart of
malignant  cells, (ii)  to  their  underlying  genetic  alterations  dividing  CLL/T-PLL into  new
subgroups and (iii)  by generating new hypotheses which were then tested in “wet lab”
experiments,  thus  giving rise  to  the  development  of  more  differentiated  treatment
strategies and disease models.
The core work is focused on the development of new bioinformatics analysis tools for the
integration  of  distinct  high-throughput  datasets  in  a  semantic  manner  to  automatically
generate linkage of knowledge and answer specific questions of lymphoid leukemias. To
demonstrate  how the  Semantic  Web paradigm is  supposed to  be  used for  this,  I  will
describe in Chapter 6 the respective semantic models that were applied to the respective
data set classes.
In a data-driven approach, key findings were stored in RDF triplets. The information is
further retrievable by the user through SPARQL queries and may be combined with other
neoplasia data. To achieve this,  I  used a Java-based software framework that enables
specific access and queries to the data models used. This software was then finally used
to generate integrated analyses of the data from the laboratories of Dr. M. Herling and Dr.
C.D.  Herling  (formely  Schweighofer),  in  shape  of  included  publications,  as  well  as
upcoming manuscripts for the Clinical Research Unit (KFO)-286 ("Exploiting defects in the
DNA damage  response  for  the  development  of  novel,  targeted  CLL therapy").  As  a
consequence, this process is continuing to be strongly driven by the applications and the
nature of the data itself.
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1.3.2 Validate the new semantic framework at the informative level in the biological
systems of lymphoid leukemias
Applying these newly developed statistical tools, this work aims at an improved biological
understanding of the so far incurable diseases T-PLL and CLL. These are based on the
integration of distinct data set types. Among the systemic questions that are answered are
the following: 

 Which mutations are found in genes of a defined expression level? 
 Are copy-number variations linked to the transcriptional activity of a gene? 
 Is there an allele-specific pattern in the expression of the gained copies? 
 Are there mutations that have been acquired in post-transcriptional processes? 

Our biological questions for the analysis are focused on three major categories:

A) The genomic landscape of T-PLL
We restrict this sub-aim to T-PLL, as for CLL, recurrent mutations have already shown to
discern clinically relevant subsets. Ultimate goal: Derive a refined molecular disease model
for T-PLL.

B)  Is  CLL/T-PLL  characterized  by  a  uniform  gene  expression  signature  or  can
heterogeneous  subgroups  be  identified?  And  how  are  TCL1  family  members
affected?
I)  Unsupervised:  if clusters and principal components are formed, what are the genes /
gene signatures defining those?
II) Supervised: according to pre-determined strata (categories provided), i.e. 

TCL1A status (protein level or at mRNA level or according to chromosome 14 status):
what are these 20% T-PLL that do not express TCL1A and / or show no specific
chromosomal aberration?

Treatment  effect:  what  are  the  differences  between  therapy-naive  and  pre-treated
cases?

What  are  the  differences  between  cases  at  first  diagnosis  and  samples  collected
during progressive disease?

Is  there  a  gene  signature  predicting  clinical  outcome  (long-survivors  vs.  bad
responders)?

Do patient subsets, as defined by their immunophenotype, correlate with subsets on
gene expression level?

Do cytogenetic aberrations associate with distinct gene expression profiles?

C) Which normal T-cell subtypes does T-PLL most closely resemble?
To investigate the resemblance of T-PLL tumor cells to physiological counterparts, T-PLL
cases were, e.g.  compared in their  gene expression and immunophenotype profiles to
those of normal T-cell controls from different T-cell subsets. To infer on the similarity of
phenotypic  profiles  and  clonality,  I  used  (unsupervised)  clustering  approaches  and
reconstructed the TCR repertoire.
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Abstract 

 

Next-Generation Sequencing (NGS) has turned from a new and experimental technology into 

a standard procedure for cancer genome studies and clinical investigation. While a multitude 

of software packages for cancer genome data analysis have been made available, these need to 

be combined into efficient analytical workflows that cover multiple aspects relevant to a 

clinical environment and that deliver handy results within a reasonable time frame. Here, we 

introduce QuickNGS Cancer as a new suite of bioinformatics pipelines which is focused on 

cancer genomics and significantly reduces the analytical hurdles that still limit a broader 

applicability of NGS technology, particularly to clinically driven research. QuickNGS Cancer 

allows a highly efficient analysis of a broad variety of NGS data types, specifically considering 

cancer-specific issues, such as biases introduced by tumor impurity and aneuploidy or the 

assessment of genomic variations regarding their biomedical relevance. It delivers highly 

reproducible analysis results ready for interpretation within only a few days after sequencing, 

as shown by a re-analysis of 140 tumor/normal pairs from The Cancer Genome Atlas 

(TCGA). In this re-analysis, the specific calling and filtering strategy of QuickNGS Cancer 

enabled the detection of a significant number of mutations in key cancer genes which were 

missed by an already well-established mutation calling pipeline. 

 

 

Introduction 

 

Over the past decade, large-scale cancer genome studies based on Next-Generation Sequencing 

(NGS) have shed light on tumorigenesis and treatment rationales of a multitude of cancers and 

novel subtypes (Vogelstein et al., 2013). These efforts were accompanied by the development of 

many software packages addressing cancer-specific peculiarities in the analysis of the massive 

amounts of data (reviewed by Ding et al., 2014). Such pecularities are for example the admixture of 

non-tumor tissue in tumor samples, subclonal heterogeneity through clonal evolution, and 

chromosomal aneuploidy frequently present in tumor cells. We introduce QuickNGS Cancer, an 

advanced set of computational workflows specifically focused on the analysis of cancer genomics 

data based on NGS. Our pipeline strongly reduces the time-wise effort for the primary analysis of 

NGS-based whole-genome (WGS), whole-exome (WXS) as well as whole-transcriptome (RNA-

Seq) and targeted sequencing data (amplicon or capture-based) and thus provides significant 

shortcuts to genetic discoveries of potential clinical and biological importance. The software was 
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developed as a computational workflow focused on clinical and experimental cancer research in the 

context of a large academic hospital. 

 

 

Materials and Methods 

 

Background: The workflows described in this paper are an important extension to our previously 

published NGS analysis system QuickNGS (Wagle et al., 2015) which is used as a backbone for the 

basic NGS data workup with QuickNGS Cancer. The basic principle of our QuickNGS analysis 

pipelines relies on the organization of available meta data in a MySQL database which is used to 

control the overall workflow composed of specific software applications for different kinds of 

analysis. The way in which NGS raw data is processed typically depends on meta information like 

the NGS library type and sequencing application (WXS, RNA-Seq, etc.), the location of the raw 

data files on the IT system, the species (human and mouse are supported), details on the submitting 

laboratory as well as links between samples to be compared from the same individual or patient (i.e. 

tumor versus non-tumor or follow-up samples). These meta data are fed into the QuickNGS 

database in the background of the pipeline, and the analysis can be started by dropping symbolic 

links to the raw data files into a dedicated stack directory on a multi-node compute cluster. A fully 

automated and highly standardized analysis procedure is then starting its operations in the 

background (Figure 1a, Table 1) while extracting all information required for the analysis from the 

background database. Once the workflow finishes, the results are uploaded into the database and 

can be accessed by the clinical or experimental scientist on a convenient login-protected website. 

They are presented in widely used output formats such as Excel tables, PDF files and browsable 

HTML reports. While the overall workflow is controlled by Bash scripts, the software is based on a 

careful selection of previously published NGS data analysis software and custom scripts written in 

Perl and R. 

 

Scope: QuickNGS Cancer specifically extends the QuickNGS workflow by the implementation of 

analytical tools focused on the identification of somatic versus germline gene variation, the 

visualization of potential tumor-specific genetic alterations, and evaluation of their potential 

biological and clinical relevance. It encompasses solutions for (1) tumor/normal WXS and (2) 

tumor/normal WGS, both with automated adoption of tumor purity metrics into downstream 

analyses, (3) tumor RNA-Seq and (4) targeted sequencing (amplicon or capture-based). As many 

cancer genome studies currently rely on WXS or WGS data obtained from cancer cells, the WXS 
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workflow is the one we focus on to describe in this manuscript. 

 

Analysis approach: In the current version, the workflow for WXS data analysis comprises an initial 

quality check with FastQC followed by a sequence alignment with BWA (Li and Durbin, 2009) and 

BAM file post-processing for PCR duplicate removal, local realignment around indels and base 

quality score recalibration (BQSR) according to the recommendations of the GATK Best Practices 

(DePristo et al., 2011; van der Auwera et al., 2013). Upon completion of these steps, the pipeline 

continues the analysis by germline SNP calling with GATK (McKenna et al., 2010) and germline 

structural variant calling with Delly (Rausch et al., 2012). For somatic mutation calling, the pipeline 

uses a combination of 4 different mutation callers, namely VarScan2 (Koboldt et al., 2012) for 

variants with high and MuTect (Cibulkis et al., 2013) for variants with low allele frequency, as well 

as Strelka (Saunders et al., 2012) and SomaticSniper (Larson et al., 2012), and reports all variants 

which are detected by at least two of these algorithms. For classification of the germline SNPs as 

well as somatic mutations regarding their position relative to genes and their effect on protein 

biosynthesis, the pipeline relies on SnpEff (Cingolani et al., 2012), whereas predictions of their 

pathogenicity are based on PolyPhen2 (Adzhubei et al., 2010), SIFT (Kumar et al., 2009), 

MutationTaster (Schwarz et al., 2011), and CADD (Kircher et al., 2014). These predictions are 

extracted from a database assembled  by the developers of ANNOVAR for usage with their 

software (Wang et al., 2010). The classifications into nonsense, missense and synonymous variants 

as well as the predictions of their respective pathogenicity are an important vehicle to narrow down 

the extremely large lists of somatic mutations in order to identify relevant variants of highest 

clinical or biological interest. In addition, the tumor read fraction as provided in the candidate lists 

can be used as an indicator to distinguish passenger from driver mutations. For predisposing SNPs, 

the minor allele frequency as provided in the variant lists can be used to further narrow down the 

results. The minor allele frequencies are extracted from dbSNP (currently version 147) which 

includes SNPs from the 1000 Genomes Project as well as the Exome Sequencing Project (ESP). 

The analysis of somatic copy number gains and losses is based on EXCAVATOR2 (Aurizio et al., 

2016). Furthermore, the pipeline uses TitanCNA (Ha et al., 2014) to assess the overall ploidy of the 

underlying cancer genome and the purity of the tumor samples in a two-step iterative optimization 

with ploidy set to 2 and purity to 0.5 as initial values. Alternatively, the database can be supplied 

with an a priori known percentage of tumor purity. The estimated purity (or the purity specified in 

the database) is automatically adopted into the downstream analyses of somatic aberration of the 

genome. Finally, the Binary Alignment/Map (BAM) files are uploaded into a personalized track 

hub to be used for visualization on the UCSC Genome Browser (Kent et al., 2002). 
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The workflow for WGS analysis is mostly composed of the same steps as the WXS pipeline. 

However, the WGS copy number analysis is based on a gene-wise segmentation of the genome 

because ExomeDepth operates on targeted regions such as the exome, not the entire genome. For 

the analysis of amplicon-based targeted sequencing data, the removal of PCR duplicates is skipped 

during BAM file preprocessing because the presence of duplicates is actually desired for amplicon 

sequencing. As targeted panel sequencing frequently does not comprise matched normal samples, 

our software offers a modification of the WXS workflow where all parts comprising comparisons 

between tumor and non-tumor samples can be bypassed. 

The RNA-Seq pipeline is specifically designed for the discovery of fusion transcripts and the 

detection of differences in gene expression between tumor and non-tumor samples. In detail, the 

workflow comprises an initial quality check with FastQC, a basic sequence alignment with Tophat2 

(Kim et al., 2013), a search for cancer-specific fusion transcripts with JAFFA (Davidson et al., 

2015), gene quantification with Cufflinks2 (Trapnell et al., 2010) as well as the analysis of 

differentially expressed and differentially spliced genes between tumor and non-tumor samples 

using DESeq2 (Love et al., 2014) and DEXSeq (Anders et al., 2012). The data is visualized by 

wiggle files uploaded into a personalized track hub for usage in the UCSC Genome Browser. 

 

Integration into QuickNGS: We have integrated the QuickNGS Cancer workflows described in this 

paper as an add-on into the framework of our previously published QuickNGS analysis system. A 

typical installation is operated by expert staff in a central genomics or bioinformatics lab, whereas 

clinical or experimental scientists can use the system by getting access to a personalized login area 

and understand the results without specific knowledge in bioinformatics or NGS analysis. The 

integration into the QuickNGS framework makes the QuickNGS Cancer analyses very efficient and, 

in principle, scalable to cancer cohorts of arbitrary size limited only by the availability of hardware 

resources. 

 

Software Availability: The source code can be obtained from http://bifacility.uni-

koeln.de/quickngs/web under the General Public License (GPL3).  

 

 

Results 

 

In order to demonstrate the mode of operation and efficiency of QuickNGS Cancer and to highlight 

its potential impact to the cancer genomics field, we have used the system to re-analyze a (random) 
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selection of 140 tumor/normal exome pairs from The Cancer Genome Atlas (TCGA). Among the 

malignancies covered by the analysis are acute myeloid leukemia (AML), urothelial carcinoma, 

lower grade glioma, invasive breast carcinoma, colon adenocarcinoma, renal clear cell carcinoma, 

hepatocellular carcinoma, ovarian serous cystadenocarcinoma, pancreatic adenocarcinoma, and 

prostate adenocarcinoma (10 cases each) as well as lung adenocarcinoma and melanoma (20 cases 

each). After providing sample information and the raw file locations for the 280 samples (140 

tumors and 140 normals) to the QuickNGS background database, we linked the 560 FastQ files 

(forward and reverse reads each) into the QuickNGS stack directory. These preparing steps could be 

finished in less than one hour. The reads for patient TCGA-4T-AA8H, for instance, were 101bp 

long with an overall count of 135.6M reads (tumor) and 115.4M reads (normal). For this patient, the 

overall computations took 212.76 CPU hours with a peak memory usage of 32.1 GB. The total time 

requirement highly depends on the degree of parallelization that can be achieved and thus on the 

availability of high-performance computing (HPC) resources. Importantly, our approach is scalable 

to arbitrarily many parallel instances of the pipeline. Upon completion, the software created a 

browsable analysis report (Figure 2a) providing access to the following files: 

 

• Lists of (1) somatic point mutations (i.e. single nucleotide variants or small insertions and 

deletions), (2) somatic structural variants, and (3) somatic copy number alterations in three 

Excel files for each tumor/normal pair. Each table is enriched with comprehensive 

annotations describing the variants' role in the tumor and potential pathogenic impact 

• 21genome in two Excel files for each tumor/normal pair. The tables are enriched with the 

same annotations as those for the somatic variants 

• Per-chromosome plots of somatic copy number aberrations (Figure 2b) and loss of 

heterozygousity (LOH) for each tumor/normal pair 

• Barplots summarizing the total size of somatic copy number aberrations (Figure 2c), the 

number of somatic mutations (Figure 2d) for all tumor/normal pairs as well as the target 

enrichment performance in the NGS library preparation 

• A table summarizing the characteristics of all tumor/normal pairs (Table 3) and a table with 

statistics on the NGS libraries for all samples 

• Two FastQC reports for the forward and reverse reads of each sample in the analysis 

• Link for quick visualization of the BAM files using a local track hub for the UCSC Genome 

Browser (Kent et al., 2002). 
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For instance, QuickNGS Cancer discovered 2904 somatic mutations in the 10 renal clear cell 

carcinoma samples. Among these mutations, we observed 1219 transitions (mutations from a 

pyrimidine base to a pyrimidine base or from a purine base to a purine base) compared to 1355 

transversions (mutations from a pyrimidine base to a purine base or vice versa) and 330 small 

insertions and deletions. Among the 2904 somatic mutations, 592 were identified to cause a change 

in the resulting amino acid sequence (non-synonymous mutations). 

The results of our meta analysis are summarized in Table 2. We observed the highest rates of non-

synonymous mutations for cutaneous melanoma (13.4/Mb), colon adenocarcinoma (11.2/Mb) and 

lung adenocarcinoma (9/Mb). The mutation rates computed by QuickNGS Cancer compare well 

with previously published mutation rates for the cancer types analyzed (Figure 1 in Kandoth et al., 

2013). Next, we compared the mutation counts in the QuickNGS Cancer results to those from an 

official analysis by the TCGA consortium using the Firehose pipeline 

(http://www.broadinstitute.org/cancer/cga/Firehose) which we obtained from the Firebrowse portal 

(http://firebrowse.org). The number of mutations called by QuickNGS Cancer deviates by less than 

20 mutations from the number called by the Firehose pipeline for 6 of the tumor types analyzed 

(bladder, brain, kidney, liver, ovary, pancreas, and prostate; Table 2a). For 4 tumor types, the 

average mutation count obtained by QuickNGS Cancer exceeded that from the Firehose pipeline by 

20 or more (AML, breast, ovary and skin), whereas the average count was smaller by 20 or more 

for the remaining 2 tumor types (colon and lung). In order to also judge the quality of the mutation 

calls, we checked the mutation status of the 10 most frequently mutated genes in each cancer type 

according to the International Cancer Genome Consortium (ICGC) Data Portal (e.g. 

https://dcc.icgc.org/projects/KIRC-US). In total, 182 of the mutations in these key genes could be 

detected by both analysis approaches (QuickNGS Cancer and Firehose), 120 were detected only by 

QuickNGS Cancer and 27 could be detected only by the Firehose pipeline (Figure 1b, Table 2b; 13 

samples from the colon and ovary cohorts excluded). The mutation rates and the actual lists of 

mutations were extracted from two different tables on the Firebrowse portal. Examples of 

additional calls of QuickNGS Cancer are listed in Supplementary Table 1 alongside with the 

respective read coverages on both alleles in the tumor and normal samples. 

The largest average overall size of regions with somatic copy number gain (amplifications) 

occurred in ovarian serous cystadenocarcinoma (462.7 Mb) and lung adenocarcinoma (281.5 Mb), 

whereas the largest average overall size of regions with copy number loss (deletions) occurred in 

ovarian serous cystadenocarcinoma (460.7 Mb) and urothelial carcinoma (294.2 Mb). As no files 

with processed copy number information based on WXS data are provided by the TCGA data 

portal, we overlapped somatic copy number aberrations computed by our pipeline with SNP array 
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data obtained from the TCGA data portal (Table 2a). The given percentage represents the fraction 

of SNP array-based regions with aberrant copy number which could also be detected from the WXS 

data after our analysis with QuickNGS Cancer. The largest overlap of amplified regions was 

observed for hepatocellular carcinoma (84.1%) and the smallest overlap for pancreatic 

adenocarcinoma (49.3%). For regions of copy number loss, the largest overlap was observed for 

hepatocellular carcinoma (94.5%) and the smallest overlap for prostate adenocarcinoma (34.1%).  

The complete list of results for all 140 samples reveals that the mutation rates as well as the overall 

size of somatic copy number events are highly variable for all cancer types (Supplementary Table 

2).  

 

 

Discussion 

 

We have introduced here QuickNGS Cancer, a computational analysis system which allows semi-

automated analyses of high-throughput NGS data with a specific focus on the evaluation of genetic 

data sets obtained from cancer specimens. Our system provides rapid data processing and practical 

usability with minimal user interaction required. In comparison with other analysis approaches 

(Table 4), QuickNGS Cancer is the only one to automatically estimate the tumor purity from NGS 

data and use this estimate in the downstream steps of the analysis. Furthermore, QuickNGS Cancer 

can be used for a comparatively large scope of applications and provides a comprehensive and 

handy report on somatic variation of the cancer genome. In comparison with other analysis 

approaches for cancer genomics, it is the only software which is also applicable to mouse data.  

Finally, QuickNGS Cancer inherits the efficiency of its overall approach from the actual QuickNGS 

platform. This efficiency is enabled by the overall workflow being controlled by the database at the 

core of the system. Thus, our new pipelines make the high degree of automation and reproducibility 

of the actual QuickNGS platform accessible also to cancer genome analysis. 

We have demonstrated the high efficiency of the overall approach as well as the practical usability 

of the system to quickly create large-scale analyses with a scope of results that is currently 

considered state of the art. We have shown this by means of a re-analysis of 140 tumor/normal 

exome pairs from TCGA. As our pipeline uses an integrative approach by employing a combination 

of four somatic mutation callers, for instance VarScan2 (Koboldt et al., 2012) for calls of mutations 

with high and MuTect (Cibulkis et al., 2013) for low allele frequency (Wang et al. 2013), we 

obtained slight differences in the total number of somatic mutations observed (Table 2a, 

Supplementary Table 2). QuickNGS Cancer was able to detect a significant number of mutations in 
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key cancer genes which were missed by the Firehose pipeline, whereas the Firehose pipeline 

detected only a few mutations missed by QuickNGS Cancer (Table 2b). While we have not 

systematically assessed the false-positive and false-negative rates of the mutation calls from 

QuickNGS Cancer, its proven potential to find mutations in genes which are known to be frequently 

mutated in the respective cancer type underlines the superiority of our analysis approach over other 

methods. We believe that this improvement can be attributed to the fact that a consensus calling 

approach employing several different mutation callers generally outperforms any individual caller 

(Ewing et al., 2016). 

In the comparative analysis of the results on somatic copy number aberrations between QuickNGS 

Cancer and SNP array data obtained from the same samples, the aberrations were highly 

reproducible for most, but not all samples (Table 2a, Supplementary Table 2). Given that the data 

were generated by two completely different laboratory assays, a variability between the regions that 

both methods detect as aberrant is to be expected, in particular in the presence of tumor/normal 

contamination in both approaches. 

In summary, QuickNGS Cancer minimizes time and effort for comprehensive cancer genome data 

analysis based on multiple NGS applications and makes high-quality data analyses accessible also 

for non-expert researchers within a reasonable time frame. The code is available online and can be 

adopted by any lab. While scalable to unlimited sample throughput, QuickNGS Cancer is capable of 

boosting cancer genome analyses to population-scale studies enabled by the most recent 

developments in sequencing technology. Besides its attractive front-end, the QuickNGS framework 

further offers a back-end with an integrated MySQL database making it possible to combine NGS 

analysis results, e.g. RNA-Seq and WXS, to elucidate allele-specific expression or gain/loss-of-

function by expert SQL queries. Future tasks in the development of our pipelines will be an analysis 

module for the identification of  significantly mutated genes, mutation hotspots and co-occurences 

as described for instance by Cheng et al., 2015, as well as the development of automated searches 

for viral sequences (transcripts and integration sites) in tumor samples. The visualization can be 

extended by including graphical representations of structural variations as e.g. with Circos 

(Krzywinski et al. 2009). Finally, new features could enable comparative analyses of cancer 

genomes between different study cohorts or sequential time points. 
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Task Software (version) Reference 

Basic QC FastQC (0.10.1)  

Read Alignment BWA (0.7.7) Li and Durbin, 2009 

BAM file post-processing GATK (3.3.0): 

- IndelRealigner 

- BaseRecalibrator 

McKenna et al., 2010 

Picard (1.88): 

- PCR duplicate removal 

http://broadinstitute.github.io/picard 

Germline SNP calling GATK (3.3.0): 

- UnifiedGenotyper 

McKenna et al., 2010 

Germline SV calling Delly (2.0.1) Rausch et al., 2012 

Tumor purity and ploidy TitanCNA (1.8.0) Ha et al., 2014 

Somatic mutation calling VarScan2 (2.3.7) Koboldt et al., 2012 

MuTect (1.1.4) Cibulkis et al., 2013 

SomaticSniper (1.0.5.0) Larson et al., 2012 

Strelka (1.0.15) Saunders et al., 2012 

Somatic SV calling Delly (2.0.1) Rausch et al., 2012 

Evaluation of variants SNPeff (3.4) Cingolani et al., 2012 

ANNOVAR (2015-12-14): 

- PolyPhen2 predictions 

- SIFT predictions 

- MutationTaster predictions 

- CADD predictions 

Wang et al., 2010 

Copy number analysis ExomeDepth (1.1.6) Plagnol et al., 2012 

EXCAVATOR (1.1) Magi et al., 2013 

Raw data visualization UCSC Genome Browser Kent et al., 2002 

 

Table 1: List of the software tools used by the WXS pipeline of QuickNGS Cancer as of version 

1.2.1. The selection of softwares is likely to be modified according to the future evolution of NGS 

analysis algorithms. The tools used in the most recent QuickNGS Cancer release will be available 

on the QuickNGS website which also contains information on the software tools used by other 

QuickNGS Cancer pipelines. 
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Tissue n Purity Ploidy Mutations Mutation 

Rate 

Amplified Deleted 

  QuickNGS 

[%] 

TCGA 

[%] 

QuickNGS 

(std. dev.) 

QuickNGS 

[count] 

TCGA 

[count] 

QuickNGS 

[1/Mb] 

QuickNGS 

[Mb] 

Overlap w/ 

TCGA [%] 

QuickNGS 

[Mb] 

Overlap w/ 

TCGA [%] 

AML 10 45.5 100.0 0.1 38.5 8.8 1.1 75.6 49.5 59.0 34.1 

Bladder   10 62.6 78.2 0.3 192.3 201.4 5.8 188.0 83.9 294.2 78.8 

Brain  10 74.6 67.5 0.2 31.0 30.5 0.9 180.2 61.3 251.1 84.4 

Breast  10 68.7 75.5 0.2 108.7 36.5 2.0 239.8 81.1 90.2 77.0 

Colon 10 59.2 74.5 0.2 503.8 552.7 11.2 267.3 67.3 147.0 57.4 

Kidney 10 52.5 78.0 0.4 59.2 47.3 1.5 181.9 79.6 165.7 70.9 

Liver 10 79.1 87.5 0.3 77.5 87.5 1.7 247.9 84.1 177.8 94.5 

Lung 20 51.8 76.8 0.2 299.5 391.2 9.1 281.5 76.7 227.3 65.9 

Ovary 10 82.7 90.8 0.2 70.4 40.5 2.0 462.7 81.7 460.7 83.8 

Pancreas  10 43.6 60.5 0.3 56.1 68.6 1.7 137.9 49.3 77.3 44.8 

Prostate 10 35.3 71.5 0.2 53.2 43.6 1.6 73.6 49.6 110.6 48.1 

Skin 20 60.6 85.8 0.1 442.2 212.7 13.4 190.5 67.9 290.7 62.9 

(Table 2a) 

 

Tissue Key genes n Mutations 

   QuickNGS only 

[count] 

TCGA only 

[count] 

Both 

[count] 

AML PTPN11, TP53, NOTCH1, DNMT3A, KCNJ12, KMT2D, WT1, NRAS, 

IDH1, KIT 

10 4 1 6 

Bladder TP53,LRP1B,LRP2,FGFR3,RYR2,KDM6A,LRP1,SACS, RYR1,COL7A1 10 15 2 11 

Brain IDH1,TP53,ATRX,CIC,NOTCH1,FUBP1,STK19,NF1, PTEN,ARID1A 10 1 0 20 

Breast PIK3CA, TP53, TTN, TTN-AS1, RP11-245C23.3, PCDHGA1, PCDHGA2, 

PCDHGA3, PCDHA1, CDH1 

8 4 1 7 

Colon APC, PCDHA1, PCDHA3, TTN, PCDHA2, CTC-554D6.1, PCDHA4, 

TTN-AS1, PCDHA5, PCDHA6 

0 N/A N/A N/A 

Kidney VHL, snoU13, MUC4, PBRM1, TTN, TTN-AS1, MUC16, PCDHGA1, 
CROCCP2, PCDHGA2 

9 10 3 11 

Liver TP53,ARID1A,ALB,LRP1B,RYR2,ARID2,AXIN1,FBN2,ABCA13,APOB 8 6 3 6 

Lung TP53, TTN, TTN-AS1, MUC16, CSMD3, PCDHGA1, RYR2, PCDHGA2, 
PCDHGA3, ZFHX4 

12 24 8 39 

Ovary TP53,BRCA1,RYR2,PKHD1,LRP2,RB1,NF1,TENM2, ABCA3,RYR1 5 4 4 5 

Pancreas TP53,SMAD4,CDKN2A,KRAS,ARID1A,KMT2C,LRP1B,TTN,RYR2, 
TGFBR2 

10 10 3 23 

Prostate TP53,KMT2C,FOXA1,PTEN,RYR2,MYO15A,FBN1, 
LRP1B,TTN,CACNA1E 

10 9 4 2 

Skin BRAF,LRP1B,MGAM,PKHD1L1,SCN11A,SCN10A, 

NRAS,CACNA1E,SCN5A,MYO18B 

19 33 4 56 

(Table 2b) 
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Table 2: Results of a re-analysis of the exomes for 140 tumor/normal pairs from The Cancer 

Genome Atlas (TCGA). (a) The values represent the mean across all samples of the respective 

cancer entity. For genomic ploidy, the standard deviation is given instead of the mean (which is 

close to 2 in all cases) in order to highlight how aneuploidy varies across samples. For somatic 

mutations, the results computed by the QuickNGS Cancer pipeline are displayed together with data 

obtained from the Firebrowse portal (http://firebrowse.org). In addition, the overall sizes of regions 

with aberrant copy number according to QuickNGS Cancer are given together with the percentage 

of these regions which is also present in SNP array data obtained from Firebrowse. (b) Number of 

mutations in key genes of the respective cancer types according to the ICGC Data Portal. n 

represents the number of samples for which detailed mutation data was available not only from 

QuickNGS Cancer, but also from the Firebrowse portal, and the number of mutations is reported 

only for these samples. The table shows how many mutations could be detected only by QuickNGS 

Cancer, only by the Firehose pipeline and by both systems. 
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Tumor Normal Purity Ploidy MutRate Amplified Deleted 

TCGA-A3-3308-01A-01D-0966-08 TCGA-A3-3308-11A-01D-0966-08 80 2.4 1.2 132.4 5.7 

TCGA-A3-3317-01A-01D-0966-08 TCGA-A3-3317-11A-01D-0966-08 80 2.1 1.6 32.9 38.4 

TCGA-A3-3358-01A-01D-1534-10 TCGA-A3-3358-11A-01D-1534-10 60 1.7 1.4 5.0 147.6 

TCGA-A3-A6NL-01A-11D-A33K-10 TCGA-A3-A6NL-11A-11D-A33K-10 85 2.4 2.7 28.9 101.1 

TCGA-B0-4818-01A-01D-1501-10 TCGA-B0-4818-11A-01D-1501-10 90 2.1 1.1 155.9 9.1 

TCGA-B0-4852-01A-01D-1501-10 TCGA-B0-4852-11A-01D-1501-10 85 2.1 1.6 322.0 66.4 

TCGA-B0-5075-01A-01D-1462-08 TCGA-B0-5075-11A-01D-1462-08 75 2.1 2.1 260.1 276.7 

TCGA-B0-5077-01A-01D-1462-08 TCGA-B0-5077-11A-01D-1462-08 80 2.3 1.3 229.5 126.5 

TCGA-B0-5080-01A-01D-1501-10 TCGA-B0-5080-11A-01D-1501-10 80 2.9 0.6 212.3 0.0 

TCGA-B0-5084-01A-01D-1462-08 TCGA-B0-5084-11A-01D-1462-08 85 1.7 1.6 263.0 867.3 

 

Table 3: Tumor statistics provided by the QuickNGS Cancer pipeline after an analysis of paired 

tumor/normal WXS data obtained from 10 renal clear cell carcinoma patients. Key features of the 

individual tumors are summarized in one table to provide the user with a quick overview of the 

peculiarities of the cancer exomes analyzed and their variation across patients. 
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 QuickNGS Cancer Galaxy with BioBlend  

(Giardine et al. 2005; 

Sloggett et al.,  2013) 

ExScalibur  

(Bao et al., 2015)  

cBio in R 

(CDGS-R) 

(Cerami et al., 2012) 

Species Human and mouse All Human Human 

Applications - germline and somatic SNVs/ 

InDels and structural variants  

- copy number analysis 

- fusion transcripts 

- differential gene expression 

  and splicing 

Universal framework - germline and somatic 

SNVs/ InDels 

- somatic SNVs/InDels 

- copy number analysis 

- differential mRNA 

  expression or protein  

  status 

Protocols WXS, WGS, panel 

sequencing, RNA-Seq 

Universal framework WXS WXS, WGS, RNA-Seq, 

mRNA arrays, SNP 
arrays, prosphoproteomics 

Reproducibility Results kept in database Repeat analysis based on 

workflow file 

Results archived N/A 

Purity / ploidy 

estimates 

yes can be integrated no no 

Architecture HPC 

Database 

Webserver 

HPC 

Webserver 

HPC Local installation (R API) 

User interaction / 

automation 

Low / high Low / high Low / high High / high 

Ease of use - Copy data to HPC cluster 

- Upload meta data to DB 

- Link files into stack 

  directory 

- Upload data to webserver 

- Start workflow in a web 

  browser window 

- Copy data and 

  configuration files to 

  HPC cluster 

- Start script in a shell 

  window 

Applicable only to 

processed or public data 

Scalibility & 

extendability 

Requires shell programming Workflow editor Requires programming Applicable only to 
processed or public data 

 

Table 4: Comparison of key features between QuickNGS Cancer and other freely available cancer 

genomics analysis suites. Our software is the only one to employ an integrated purity and ploidy 

estimation and also uses this for downstream analysis. The scope of applications covered by 

QuickNGS Cancer is the largest among all analysis systems. In contrast to the other softwares, 

QuickNGS Cancer is able to also handle mouse data. Finally, QuickNGS Cancer inherits from the 

actual QuickNGS system its database-supported approach by which the sample meta data as well as 

the analysis results are managed in a very efficient way. This makes all analyses highly 

reproducible and enables minimum requirements for interactions by the user. 
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Figure 1: Features of the QuickNGS analysis workflows. (a) Flow chart describing the workflows for targeted 
gene panels, WXS and WGS. To initiate the analysis, the user uploads a text file with FastQ file names as 

well as a BED file describing the target library (e.g. TruSeq for targeted panels, NimbleGen SeqCap EZ 2 or 

3, Agilent SureSelect V4 for WXS). In addition, the user provides meta information on the samples such as a 
sample label, the species and the laboratory which has generated the data. Estimates of the tumor purity 
(e.g. obtained by pathology review or cell sorting) can either be provided by the user or will be estimated 

with TitanCNA. After this information has been provided, the pipeline is started in a fully automated way. (b) 
The mutation calling strategy of QuickNGS Cancer enables the detection of mutations in key cancer genes of 

140 tumor samples obtained from The Cancer Genome Atlas (TCGA). In particular, the QuickNGS Cancer 
workflow discovered more key gene mutations in these samples that are missed by the Firehose pipeline 

than vice versa.  
Figure 1  
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Figure 2: Results for an analysis run of the WXS workflow. (a) Upon completion of the analysis, a password-
protected entry point is created for a clinician or experimental scientist. Result tables and graphics are 
provided as well as general information on the analysis run (PI name blurred). (b) Global graphics on 

somatic copy number aberrations are generated automatically and made available for download. Depicted 
here is a deletion of chromosome 17p as observed in chronic lymphocytic leukemia (CLL). (c) Genomic 

complexity (total size of somatic copy number aberrations) is characterized in two barplots for all samples. 
Here, the plots are shown for the 10 renal clear cell carcinoma samples from our TCGA meta analysis. The 
size of regions with a particular number of copies of the genomic locus are displayed in a cumulative way 

and separately for genomic amplifications (red bars) and deletions (blue bars). (d) Counts of somatic 
mutations are displayed in cumulative barplots for the entire cohort analyzed. The counts are shown 

separately for non-synonymous (light red) and potentially damaging mutations (dark red) as well as all 
other mutations (grey) in a cumulative way. All potentially damaging mutations are also non-synonymous 
mutations. Thus, the variability of the mutation landscape across the cohort can be captured at a glance.  

Figure 2  
197x185mm (300 x 300 DPI)  
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Barcode Entity Gene Chromosome Position

TCGA-AB-2806 Acute myeloid leukemia KMT2D 12 49053728

TCGA-AB-2812 Acute myeloid leukemia WT1 11 32396363

TCGA-AB-2803 Acute myeloid leukemia WT1 11 32392014

TCGA-AB-2810 Acute myeloid leukemia KIT 4 54678289

TCGA-BT-A20J Urothelial carcinoma LRP2 2 169170537

TCGA-BT-A20J Urothelial carcinoma RYR2 1 237445394

TCGA-BT-A2LA Urothelial carcinoma TP53 17 7674893

TCGA-BT-A2LA Urothelial carcinoma LRP2 2 169185798

TCGA-BT-A2LA Urothelial carcinoma KDM6A X 44961350

TCGA-BT-A2LB Urothelial carcinoma COL7A1 3 48586068

TCGA-GC-A3BM Urothelial carcinoma LRP1B 2 140950476

TCGA-GC-A3BM Urothelial carcinoma RYR1 19 38512145

TCGA-K4-A5RI Urothelial carcinoma TP53 17 7674220

TCGA-K4-A5RI Urothelial carcinoma LRP1 12 57201707

TCGA-UY-A8OB Urothelial carcinoma TP53 17 7674903

TCGA-UY-A8OB Urothelial carcinoma RYR1 19 38460341

TCGA-UY-A8OB Urothelial carcinoma COL7A1 3 48584550

TCGA-BT-A20Q Urothelial carcinoma RYR1 19 38525240

TCGA-2F-A9KQ Urothelial carcinoma FGFR3 4 1804372

TCGA-CS-5394 Lower grade glioma NF1 17 31320344

TCGA-GI-A2C9 Breast invasive carcinoma PCDHA1 5 140870667

TCGA-BH-A1FC Breast invasive carcinoma PCDHGA1 5 141355743

TCGA-3C-AALI Breast invasive carcinoma TP53 17 7675064

TCGA-BH-A0B3 Breast invasive carcinoma PCDHGA3 2 141371420

TCGA-GI-A2C9 Breast invasive carcinoma TTN-AS1 2 178649908

TCGA-3C-AALI Breast invasive carcinoma TTN-AS1 2 178672157

TCGA-A3-3317 Renal clear cell carcinoma snoU13 4 34966246

TCGA-B0-5084 Renal clear cell carcinoma MUC4 3 195762138

TCGA-A3-A6NL Renal clear cell carcinoma MUC4 3 195780991

TCGA-A3-3358 Renal clear cell carcinoma MUC4 3 195783887

TCGA-A3-A6NL Renal clear cell carcinoma TTN 2 178571586

TCGA-A3-3358 Renal clear cell carcinoma TTN 2 178582407

TCGA-B0-5077 Renal clear cell carcinoma TTN-AS1 2 178688975

TCGA-B0-4852 Renal clear cell carcinoma TTN-AS1 2 178757760

TCGA-A3-3308 Renal clear cell carcinoma TTN-AS1 2 178757430

TCGA-A3-A6NL Renal clear cell carcinoma MUC16 19 8902282

TCGA-B0-4852 Renal clear cell carcinoma MUC16 19 8894710

TCGA-B0-5084 Renal clear cell carcinoma CROCCP2 1 16623975

TCGA-A3-A6NL Renal clear cell carcinoma CROCCP2 1 16619912

TCGA-2V-A95S Hepatocellular carcinoma ARID1A 1 26775642

TCGA-BC-A10Q Hepatocellular carcinoma ALB 4 73404298

TCGA-2V-A95S Hepatocellular carcinoma ALB 4 73415096

TCGA-2Y-A9GT Hepatocellular carcinoma ALB 4 73411964

TCGA-FV-A3I0 Hepatocellular carcinoma LRP1B 2 140269225

TCGA-DD-A1EI Hepatocellular carcinoma LRP1B 2 140269356

TCGA-BC-A10Q Hepatocellular carcinoma LRP1B 2 140850350

TCGA-BC-A10U Hepatocellular carcinoma RYR2 1 237601816

TCGA-2V-A95S Hepatocellular carcinoma RYR2 1 237590862

TCGA-2Y-A9GT Hepatocellular carcinoma RYR2 1 237623936

TCGA-BC-A10W Hepatocellular carcinoma LRP1B 2 140444546
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TCGA-56-7222 Lung squamous cell carcinoma TP53 17 7675101

TCGA-43-7657 Lung squamous cell carcinoma TP53 17 7676273

TCGA-56-7580 Lung squamous cell carcinoma TP53 17 7676185

TCGA-77-8008 Lung squamous cell carcinoma TP53 17 7673610

TCGA-22-5481 Lung squamous cell carcinoma TP53 17 7674262

TCGA-77-7338 Lung squamous cell carcinoma TP53 17 7675136

TCGA-21-5783 Lung squamous cell carcinoma TP53 17 7676032

TCGA-18-3412 Lung squamous cell carcinoma TP53 17 7674250

TCGA-09-0367 Ovarian serous cystadenocarcinoma TP53 17 7675232

TCGA-04-1655 Ovarian serous cystadenocarcinoma TP53 17 7674252

TCGA-09-1670 Ovarian serous cystadenocarcinoma TP53 17 7673806

TCGA-09-1673 Ovarian serous cystadenocarcinoma TP53 17 7675088

TCGA-09-0367 Ovarian serous cystadenocarcinoma RYR2 1 237792380

TCGA-04-1331 Ovarian serous cystadenocarcinoma RYR2 1 237792398

TCGA-04-1655 Ovarian serous cystadenocarcinoma RYR2 1 237237880

TCGA-09-0367 Ovarian serous cystadenocarcinoma LRP2 2 169212098

TCGA-09-1670 Ovarian serous cystadenocarcinoma NF1 17 31265251

TCGA-04-1542 Ovarian serous cystadenocarcinoma RYR1 19 38455542

TCGA-04-1655 Ovarian serous cystadenocarcinoma RYR1 19 38517570

TCGA-2J-AAB4 Pancreatic adenocarcinoma SMAD4 18 51058133

TCGA-2J-AAB8 Pancreatic adenocarcinoma CDKN2A 9 21974777

TCGA-2J-AAB4 Pancreatic adenocarcinoma KMT2C 7 152235689

TCGA-2J-AAB1 Pancreatic adenocarcinoma TTN 2 178802347

TCGA-2J-AAB6 Pancreatic adenocarcinoma RYR2 1 237819279

TCGA-EJ-7782 Prostate adenocarcinoma TP53 17 7675139

TCGA-EJ-7782 Prostate adenocarcinoma KMT2C 7 152235676

TCGA-CH-5767 Prostate adenocarcinoma TTN 2 178539904

TCGA-G9-6499 Prostate adenocarcinoma KMT2C 7 152273892

TCGA-EJ-7330 Prostate adenocarcinoma LRP1B 2 140868061

TCGA-BF-A1Q0 Cutaneous melanoma BRAF 7 140808925

TCGA-BF-A5ER Cutaneous melanoma BRAF 7 140753336

TCGA-BF-A1PZ Cutaneous melanoma LRP1B 2 140683450

TCGA-BF-A3DL Cutaneous melanoma LRP1B 2 140982112

TCGA-BF-A5EO Cutaneous melanoma LRP1B 2 140989672

TCGA-BF-A1PX Cutaneous melanoma LRP1B 2 140509958

TCGA-D3-A1Q3 Cutaneous melanoma LRP1B 2 140492584

TCGA-D3-A2J6 Cutaneous melanoma LRP1B 2 140776176
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RefAllele AltAllele RefReadsT AltReadsT RefReadsN AltReadsN

G A 44 7 51 1

C CGACCG 127 55 211 7

C T 405 12 420 0

G A 2 9 5 0

C G 135 23 121 1

C T 41 19 88 2

C T 1 26 32 0

G A 70 56 143 2

C T 0 22 19 3

C T 150 30 170 0

G A 6 14 18 1

G A 45 33 82 3

C T 25 47 83 0

C A 102 40 116 0

TTC T 15 18 24 0

C A 31 7 28 0

G A 51 30 66 0

G C 12 11 28 0

A G 84 67 193 1

A T 6 5 23 1

T C 66 10 183 2

C T 42 15 27 0

G T 104 193 24 0

C A 38 20 40 5

A T 14 11 18 1

C T 65 18 57 0

G T 5 6 10 0

C A 6 9 10 2

G T 51 24 45 7

C T 44 7 56 1

C A 74 6 148 1

C A 209 10 200 0

A C 12 9 15 0

C A 154 55 164 0

T G 40 9 69 0

T C 25 8 19 0

C A 31 13 51 0

C T 36 11 92 6

T G 47 15 72 3

GC G 86 24 68 0

C T 113 75 377 3

G T 98 36 128 0

A G 62 17 85 0

G T 50 8 43 0

G A 55 15 71 0

C A 53 11 92 0

C A 11 9 13 0

G A 159 23 143 0

A T 34 16 64 0

G A 86 55 266 0
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C A 12 61 93 0

CTGTAGATGC 162 61 242 1

C A 162 70 268 0

T C 56 21 80 0

T C 11 37 35 0

G A 53 25 221 0

AGCCCAGACGA 42 12 73 0

C G 9 34 66 2

G A 33 190 130 0

C A 9 82 108 1

C T 14 115 94 0

C T 8 139 83 1

T C 31 32 26 5

C T 12 19 31 5

C T 3 5 9 0

T A 374 110 564 0

G T 57 191 311 0

G A 122 11 162 2

C T 15 6 30 0

GC G 166 32 50 0

GGCCA G 152 22 33 0

A G 41 5 10 0

G A 71 20 24 0

G A 114 28 48 0

C T 34 6 64 1

CA C 18 5 10 0

C T 63 26 157 0

C A 10 12 14 2

TA T 15 6 29 1

G T 234 15 71 0

A T 51 53 103 0

G T 6 5 14 0

C T 35 26 68 0

G A 60 18 66 0

C A 126 13 105 0

G T 98 8 30 0

C A 66 6 57 0
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Callers

strelka,mutect

varscan2,strelka

strelka,mutect

varscan2,somaticsniper.strelka

strelka,mutect

varscan,somaticsniper,strelka,mutect

varscan,somaticsniper,strelka,mutect

varscan,somaticsniper,strelka,mutect

varscan,somaticsniper,strelka

strelka,mutect

varscan,somaticsniper

varscan,somaticsniper,strelka

varscan,somaticsniper,strelka,mutect

varscan,somaticsniper,strelka,mutect

varscan,somaticsniper

varscan,somaticsniper,strelka,mutect

varscan,somaticsniper,strelka,mutect

varscan,somaticsniper,strelka,mutect

varscan,somaticsniper,strelka,mutect

varscan2,strelka

varscan2,mutect

Varscan2,somaticsniper,strelka,mutect

Varscan2,somaticsniper,strelka,mutect

Varscan2,somaticsniper,strelka,mutect

Varscan2,somaticsniper,strelka,mutect

Varscan2,somaticsniper,strelka,mutect

Varscan2,strelka

Varscan2,somaticsniper

Varscan2,somaticsniper

Varscan2,strelka

somaticsniper,strelka

strelka,mutect

Varscan2,somaticsniper,strelka

varscan2,somaticsniper,strelka,mutect

varscan2,strelka,mutect

Varscan2,somaticsniper

varscan2,somaticsniper,strelka,mutect

Varscan2,somaticsniper

Varscan2,somaticsniper

varscan2,strelka

varscan2,somaticsniper,strelka,mutect

varscan2,somaticsniper,strelka,mutect

varscan2,somaticsniper,strelka,mutect

strelka,mutect

varscan2,somaticsniper,strelka,mutect

strelka,mutect

varscan2,somaticsniper,strelka,mutect

strelka,mutect

varscan2,somaticsniper,strelka,mutect

varscan2,somaticsniper,strelka,mutect
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varscan,somaticsniper,strelka,mutect

varscan,strelka

varscan,somaticsniper,strelka,mutect

varscan,somaticsniper,strelka,mutect

varscan,somaticsniper,strelka,mutect

varscan,somaticsniper,strelka,mutect

varscan,strelka

varscan,somaticsniper,strelka

varscan2,somaticsniper,strelka,mutect

varscan2,somaticsniper,strelka

varscan2,somaticsniper,strelka,mutect

varscan2,somaticsniper,strelka,mutect

varscan2,strelka

varscan2,somaticsniper,strelka

varscan2,somaticsniper,strelka

varscan2,somaticsniper,strelka,mutect

varscan2,somaticsniper,strelka,mutect

strelka,mutect

varscan2,strelka,mutect

varscan2,strelka

varscan2,strelka

varscan2,strelka

varscan2,somaticsniper,strelka,mutect

varscan2,strelka,mutect

varscan2,strelka

varscan2,strelka

varscan2,somaticsniper,strelka,mutect

varscan2,somaticsniper

varscan2,strelka

strelka,mutect

varscan,somaticsniper,strelka,mutect

Varscan,strelka,mutect

varscan,somaticsniper,strelka,mutect

varscan,somaticsniper,strelka,mutect

strelka,mutect

strelka,mutect

strelka,mutect
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ListID TumorBarcode MatchedNormalBarcode

LAML_1 TCGA-AB-2802-03B-01W-0728-08 TCGA-AB-2802-11B-01W-0728-08

LAML_2 TCGA-AB-2803-03B-01W-0728-08 TCGA-AB-2803-11B-01W-0728-08

LAML_3 TCGA-AB-2804-03B-01W-0728-08 TCGA-AB-2804-11B-01W-0728-08

LAML_4 TCGA-AB-2806-03B-01W-0728-08 TCGA-AB-2806-11B-01W-0728-08

LAML_5 TCGA-AB-2813-03B-01W-0728-08 TCGA-AB-2813-11B-01W-0728-08

LAML_6 TCGA-AB-2808-03B-01W-0728-08 TCGA-AB-

LAML_7 TCGA-AB-2809-03D-01W-0755-09 TCGA-AB-2809-11D-01W-0755-09

LAML_8 TCGA-AB-2810-03B-01W-0728-08 TCGA-AB-2810-11B-01W-0728-08

LAML_9 TCGA-AB-2811-03B-01W-0728-08 TCGA-AB-2811-11B-01W-0728-08

LAML_10 TCGA-AB-2812-03B-01W-0728-08 TCGA-AB-

Mean

Standard deviation

BLCA_1 TCGA-2F-A9KQ-01A-11D-A38G-08 TCGA-2F-A9KQ-11A-11D-A38J-08

BLCA_2 TCGA-BT-A20J-01A-11D-A14W-08 TCGA-BT-A20J-11A-11D-A14W-08

BLCA_3 TCGA-BT-A20Q-01A-11D-A14W-08 TCGA-BT-A20Q-11A-11D-A14W-08

BLCA_4 TCGA-BT-A20T-01A-11D-A14W-08 TCGA-BT-A20T-11A-11D-A14W-08

BLCA_5 TCGA-BT-A20V-01A-11D-A14W-08 TCGA-BT-A20V-11A-11D-A14W-08

BLCA_6 TCGA-BT-A2LA-01A-11D-A18F-08 TCGA-BT-A2LA-11A-11D-A18F-08

BLCA_7 TCGA-BT-A2LB-01A-11D-A18F-08 TCGA-BT-A2LB-11A-11D-A18F-08

BLCA_8 TCGA-GC-A3BM-01A-11D-A22Z-08 TCGA-GC-A3BM-11A-11D-A22Z-08

BLCA_9 TCGA-K4-A5RI-01A-11D-A289-08 TCGA-K4-A5RI-11A-11D-A289-08

BLCA_10 TCGA-UY-A8OB-01A-12D-A42E-08 TCGA-UY-A8OB-11A-12D-A42H-08

Mean

Standard deviation

LGG_1 TCGA-CS-4942-01A-01D-1468-08 TCGA-CS-4942-10A-01D-1468-08

LGG_2 TCGA-CS-4943-01A-01D-1468-08 TCGA-CS-4943-10A-01D-1468-08

LGG_3 TCGA-CS-4944-01A-01D-1468-08 TCGA-CS-4944-10A-01D-1468-08

LGG_4 TCGA-CS-5393-01A-01D-1468-08 TCGA-CS-5393-10A-01D-1468-08

LGG_5 TCGA-CS-5394-01A-01D-1468-08 TCGA-CS-5394-10A-01D-1468-08

LGG_6 TCGA-CS-5395-01A-01D-1468-08 TCGA-CS-5395-10A-01D-1468-08

LGG_7 TCGA-CS-6188-01A-11D-1893-08 TCGA-CS-6188-10A-01D-1893-08

LGG_8 TCGA-DB-5277-01A-01D-1468-08 TCGA-DB-5277-10A-01D-1468-08

LGG_9 TCGA-DB-5278-01A-01D-1468-08 TCGA-DB-5278-10A-01D-1468-08

LGG_10 TCGA-DB-5280-01A-01D-1468-08 TCGA-DB-5280-10A-01D-1468-08

Mean

Standard deviation

BRCA_1 TCGA-E2-A15K-01A-11D-A12Q-09 TCGA-E2-A15K-11A-13D-A12Q-09

BRCA_2 TCGA-BH-A0DT-01A-21D-A12B-09 TCGA-BH-A0DT-11A-12D-A12B-09

BRCA_3 TCGA-BH-A1FC-01A-11D-A13L-09 TCGA-BH-A1FC-11A-32D-A188-09

BRCA_4 TCGA-BH-A0BW-01A-11D-A10Y-09 TCGA-BH-A0BW-11A-12D-A10Y-09

BRCA_5 TCGA-BH-A18R-01A-11D-A12B-09 TCGA-BH-A18R-11A-42D-A12B-09

BRCA_6 TCGA-BH-A0E0-01A-11W-A071-09 TCGA-BH-A0E0-11A-13W-A10F-09

BRCA_7 TCGA-GI-A2C9-01A-11D-A21Q-09 TCGA-GI-A2C9-11A-22D-A21Q-09

BRCA_8 TCGA-BH-A0B3-01A-11W-A071-09 TCGA-BH-A0B3-11B-21W-A100-09

BRCA_9 TCGA-3C-AAAU-01A-11D-A41F-09 TCGA-3C-

BRCA_10 TCGA-3C-AALI-01A-11D-A41F-09 TCGA-3C-

Mean

Standard deviation

COAD_1 TCGA-AZ-6600-01A-11D-1771-10 TCGA-AZ-6600-11A-01D-1771-10

COAD_2 TCGA-AA-3663-01A-01D-1719-10 TCGA-AA-3663-11A-01D-1719-10
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COAD_3 TCGA-AA-3489-01A-21D-1835-10 TCGA-AA-3489-11A-01D-1835-10

COAD_4 TCGA-AA-3655-01A-02D-1719-10 TCGA-AA-3655-11A-01D-1719-10

COAD_5 TCGA-AA-3713-01A-21D-1719-10 TCGA-AA-3713-11A-01D-1719-10

COAD_6 TCGA-AA-3511-01A-21D-1835-10 TCGA-AA-3511-11A-01D-1835-10

COAD_7 TCGA-AZ-6598-01A-11D-1771-10 TCGA-AZ-6598-11A-01D-1771-10

COAD_8 TCGA-4T-AA8H-01A-11D-A40P-10 TCGA-4T-AA8H-10B-01D-A40P-10

COAD_9 TCGA-A6-5659-01A-01D-A270-10 TCGA-A6-5659-11A-01D-1650-10

COAD_10 TCGA-F4-6704-01A-11D-1835-10 TCGA-F4-6704-11A-01D-1835-10

Mean

Standard deviation

KIRC_1 TCGA-A3-3308-01A-01D-0966-08 TCGA-A3-3308-11A-01D-0966-08

KIRC_2 TCGA-A3-3317-01A-01D-0966-08 TCGA-A3-3317-11A-01D-0966-08

KIRC_3 TCGA-A3-3358-01A-01D-1534-10 TCGA-A3-3358-11A-01D-1534-10

KIRC_4 TCGA-A3-A6NL-01A-11D-A33K-10 TCGA-A3-A6NL-11A-11D-A33K-10

KIRC_5 TCGA-B0-4818-01A-01D-1501-10 TCGA-B0-4818-11A-01D-1501-10

KIRC_6 TCGA-B0-4852-01A-01D-1501-10 TCGA-B0-4852-11A-01D-1501-10

KIRC_7 TCGA-B0-5075-01A-01D-1462-08 TCGA-B0-5075-11A-01D-1462-08

KIRC_8 TCGA-B0-5077-01A-01D-1462-08 TCGA-B0-5077-11A-01D-1462-08

KIRC_9 TCGA-B0-5080-01A-01D-1501-10 TCGA-B0-

KIRC_10 TCGA-B0-5084-01A-01D-1462-08 TCGA-B0-5084-11A-01D-1462-08

Mean

Standard deviation

LIHC_1 TCGA-DD-A3A3-01A-11D-A22F-10 TCGA-DD-A3A3-11A-11D-A22F-10

LIHC_2 TCGA-FV-A3I0-01A-11D-A22F-10 TCGA-FV-A3I0-11A-11D-A22F-10

LIHC_3 TCGA-BC-A10Z-01A-11D-A12Z-10 TCGA-BC-A10Z-11A-11D-A12Z-10

LIHC_4 TCGA-DD-A39X-01A-11D-A20W-10 TCGA-DD-A39X-11A-11D-A20W-10

LIHC_5 TCGA-BC-A10W-01A-11D-A12Z-10 TCGA-BC-A10W-11A-11D-A12Z-10

LIHC_6 TCGA-DD-A1EI-01A-11D-A12Z-10 TCGA-DD-A1EI-11A-11D-A12Z-10

LIHC_7 TCGA-BC-A10Q-01A-11D-A12Z-10 TCGA-BC-A10Q-11A-11D-A12Z-10

LIHC_8 TCGA-BC-A10U-01A-11D-A12Z-10 TCGA-BC-A10U-11A-11D-A12Z-10

LIHC_9 TCGA-2V-A95S-01A-11D-A36X-10 TCGA-2V-A95S-10D-01D-A370-10

LIHC_10 TCGA-2Y-A9GT-01A-11D-A382-10 TCGA-2Y-A9GT-10A-01D-A385-10

Mean

Standard deviation

LUSC_1 TCGA-56-7222-01A-11D-2042-08 TCGA-56-7222-11A-01D-2042-08

LUSC_2 TCGA-22-5489-01A-01D-1632-08 TCGA-22-5489-11A-01D-1632-08

LUSC_3 TCGA-43-7657-01A-31D-2122-08 TCGA-43-7657-11A-01D-2122-08

LUSC_4 TCGA-56-7580-01A-11D-2042-08 TCGA-56-7580-11A-01D-2042-08

LUSC_5 TCGA-43-6143-01A-11D-1817-08 TCGA-43-6143-11A-01D-1817-08

LUSC_6 TCGA-77-8008-01A-21D-2184-08 TCGA-77-8008-11A-01D-2184-08

LUSC_7 TCGA-22-5481-01A-31D-1945-08 TCGA-22-5481-11A-01D-1945-08

LUSC_8 TCGA-77-7338-01A-11D-2042-08 TCGA-77-7338-11A-01D-2042-08

LUSC_9 TCGA-56-7731-01A-11D-2122-08 TCGA-56-7731-11A-01D-2122-08

LUSC_10 TCGA-21-5783-01A-41D-2184-08 TCGA-21-

LUSC_11 TCGA-21-5784-01A-01D-1632-08 TCGA-21-5784-10A-01D-1632-08

LUSC_12 TCGA-18-3406-01A-01D-0983-08 TCGA-18-3406-11A-01D-0983-08

LUSC_13 TCGA-18-3407-01A-01D-0983-08 TCGA-18-3407-11A-01D-0983-08

LUSC_14 TCGA-18-3408-01A-01D-0983-08 TCGA-18-3408-11A-01D-0983-08

LUSC_15 TCGA-18-3409-01A-01D-0983-08 TCGA-18-3409-11A-01D-0983-08

LUSC_16 TCGA-18-3410-01A-01D-0983-08 TCGA-18-3410-11A-01D-0983-08

LUSC_17 TCGA-18-3411-01A-01D-0983-08 TCGA-18-3411-11A-01D-0983-08

LUSC_18 TCGA-18-3412-01A-01D-0983-08 TCGA-18-3412-11A-01D-0983-08
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LUSC_19 TCGA-18-3414-01A-01D-0983-08 TCGA-18-3414-11A-01D-0983-08

LUSC_20 TCGA-18-3415-01A-01D-0983-08 TCGA-18-3415-11A-01D-0983-08

Mean

Standard deviation

OV_1 TCGA-04-1331-01A-01W-0486-08 TCGA-04-

OV_2 TCGA-04-1332-01A-01W-0486-08 TCGA-04-1332-10A-01W-0487-08

OV_3 TCGA-04-1341-01A-01W-0486-08 TCGA-04-

OV_4 TCGA-04-1343-01A-01W-0486-08 TCGA-04-

OV_5 TCGA-04-1367-01A-01W-0492-08 TCGA-04-

OV_6 TCGA-04-1542-01A-01W-0553-09 TCGA-04-

OV_7 TCGA-04-1655-01A-01W-0633-09 TCGA-04-

OV_8 TCGA-09-0367-01A-01W-0371-08 TCGA-09-

OV_9 TCGA-09-1670-01A-01W-0633-09 TCGA-09-

OV_10 TCGA-09-1673-01A-01W-0633-09 TCGA-09-

Mean

Standard deviation

PAAD_1 TCGA-H6-A45N-01A-11D-A26I-08 TCGA-H6-A45N-11A-12D-A26I-08

PAAD_2 TCGA-H6-8124-01A-11D-2396-08 TCGA-H6-8124-11A-01D-2396-08

PAAD_3 TCGA-YB-A89D-01A-12D-A36O-08 TCGA-YB-A89D-11A-11D-A36O-08

PAAD_4 TCGA-HV-A5A3-01A-11D-A26I-08 TCGA-HV-A5A3-11A-11D-A26I-08

PAAD_5 TCGA-2J-AAB1-01A-11D-A40W-08 TCGA-2J-AAB1-10A-01D-A40W-08

PAAD_6 TCGA-2J-AAB4-01A-12D-A40W-08 TCGA-2J-AAB4-10A-01D-A40W-08

PAAD_7 TCGA-2J-AAB6-01A-11D-A40W-08 TCGA-2J-AAB6-10A-01D-A40W-08

PAAD_8 TCGA-2J-AAB8-01A-12D-A40W-08 TCGA-2J-AAB8-10A-01D-A40W-08

PAAD_9 TCGA-2J-AABE-01A-12D-A40W-08 TCGA-2J-AABE-10A-01D-A40W-08

PAAD_10 TCGA-2J-AABF-01A-31D-A40W-08 TCGA-2J-AABF-10A-01D-A40W-08

Mean

Standard deviation

PRAD_1 TCGA-2A-A8VL-01A-21D-A377-08 TCGA-2A-A8VL-10A-01D-A37A-08

PRAD_2 TCGA-2A-A8VO-01A-11D-A377-08 TCGA-2A-A8VO-10A-01D-A37A-08

PRAD_3 TCGA-EJ-7782-01A-11D-2114-08 TCGA-EJ-7782-11A-01D-2114-08

PRAD_4 TCGA-EJ-7785-01A-11D-2114-08 TCGA-EJ-7785-11A-01D-2114-08

PRAD_5 TCGA-EJ-7330-01A-11D-2114-08 TCGA-EJ-7330-11A-01D-2114-08

PRAD_6 TCGA-CH-5767-01A-11D-1786-08 TCGA-CH-5767-11B-01D-1786-08

PRAD_7 TCGA-HC-7740-01A-11D-2114-08 TCGA-HC-7740-11A-01D-2114-08

PRAD_8 TCGA-EJ-7123-01A-11D-1961-08 TCGA-EJ-7123-11A-01D-1961-08

PRAD_9 TCGA-G9-6499-01A-12D-1961-08 TCGA-G9-6499-11A-02D-1961-08

PRAD_10 TCGA-EJ-7331-01A-11D-2114-08 TCGA-EJ-7331-11A-01D-2114-08

Mean

Standard deviation

SKCM_1 TCGA-BF-A1PU-01A-11D-A19A-08 TCGA-BF-A1PU-10A-01D-A19A-08

SKCM_2 TCGA-BF-A1PV-01A-11D-A19A-08 TCGA-BF-A1PV-10A-01D-A19A-08

SKCM_3 TCGA-BF-A1PX-01A-12D-A19A-08 TCGA-BF-A1PX-10A-01D-A19A-08

SKCM_4 TCGA-BF-A1PZ-01A-11D-A19A-08 TCGA-BF-A1PZ-10A-01D-A19A-08

SKCM_5 TCGA-BF-A1Q0-01A-21D-A19A-08 TCGA-BF-A1Q0-10A-01D-A19A-08

SKCM_6 TCGA-BF-A3DL-01A-11D-A20D-08 TCGA-BF-A3DL-10A-02D-A20D-08

SKCM_7 TCGA-BF-A3DM-01A-11D-A20D-08 TCGA-BF-A3DM-10A-02D-A20D-08

SKCM_8 TCGA-BF-A5EO-01A-12D-A27K-08 TCGA-BF-A5EO-10A-01D-A27N-08

SKCM_9 TCGA-BF-A5EQ-01A-21D-A27K-08 TCGA-BF-A5EQ-10A-01D-A27N-08

SKCM_10 TCGA-BF-A5ER-01A-12D-A27K-08 TCGA-BF-A5ER-10A-01D-A27N-08

SKCM_11 TCGA-D3-A1Q3-06A-11D-A196-08 TCGA-D3-A1Q3-10A-01D-A198-08

SKCM_12 TCGA-D3-A1Q5-06A-11D-A196-08 TCGA-D3-A1Q5-10A-01D-A198-08
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SKCM_13 TCGA-D3-A1Q6-06A-11D-A196-08 TCGA-D3-A1Q6-10A-01D-A198-08

SKCM_14 TCGA-D3-A1Q7-06A-11D-A19A-08 TCGA-D3-A1Q7-10A-01D-A19A-08

SKCM_15 TCGA-D3-A1Q8-06A-11D-A19A-08 TCGA-D3-A1Q8-10A-01D-A19A-08

SKCM_16 TCGA-D3-A1Q9-06A-11D-A19A-08 TCGA-D3-A1Q9-10A-01D-A19A-08

SKCM_17 TCGA-D3-A2J6-06A-11D-A19A-08 TCGA-D3-A2J6-10A-01D-A19A-08

SKCM_18 TCGA-D3-A2J7-06A-11D-A196-08 TCGA-D3-A2J7-10A-01D-A198-08

SKCM_19 TCGA-D3-A2J8-06A-11D-A196-08 TCGA-D3-A2J8-10A-01D-A198-08

SKCM_20 TCGA-D3-A2J9-06A-11D-A196-08 TCGA-D3-A2J9-10A-01D-A198-08

Mean

Standard deviation
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Entity Tumor ploidy

QuickNGS Histology Difference QuickNGS

Acute myeloid leukemia 23 100 -77.0 2.2

Acute myeloid leukemia 22 100 -78.0 2.1

Acute myeloid leukemia 34 100 -66.0 1.9

Acute myeloid leukemia 66 100 -34.0 1.9

Acute myeloid leukemia 86 100 -14.0 2.0

Acute myeloid leukemia 73 100 -27.0 2.1

Acute myeloid leukemia 68 100 -32.0 2.0

Acute myeloid leukemia 37 100 -63.0 2.2

Acute myeloid leukemia 23 100 -77.0 2.2

Acute myeloid leukemia 23 100 -77.0 2.2

Acute myeloid leukemia 45.5 100.0 -54.5 2.1

Acute myeloid leukemia 24.9 0.0 24.9 0.1

Urothelial carcinoma 68 75 -7.0 2.1

Urothelial carcinoma 47 75 -28.0 2.0

Urothelial carcinoma 34 80 -46.0 2.1

Urothelial carcinoma 90 75 15.0 1.8

Urothelial carcinoma 76 60 16.0 2.2

Urothelial carcinoma 65 90 -25.0 2.2

Urothelial carcinoma 63 80 -17.0 2.2

Urothelial carcinoma 51 97 -46.0 2.0

Urothelial carcinoma 73 75 -2.0 2.5

Urothelial carcinoma 59 75 -16.0 2.7

Urothelial carcinoma 62.6 78.2 -15.6 2.2

Urothelial carcinoma 15.9 9.9 21.8 0.3

Lower grade glioma 74 60 14.0 2.0

Lower grade glioma 94 70 24.0 1.9

Lower grade glioma 77 60 17.0 2.1

Lower grade glioma 75 75 0.0 2.2

Lower grade glioma 76 80 -4.0 2.0

Lower grade glioma 24 75 -51.0 2.3

Lower grade glioma 70 70 0.0 2.2

Lower grade glioma 84 60 24.0 1.9

Lower grade glioma 94 60 34.0 2.1

Lower grade glioma 78 65 13.0 1.8

Lower grade glioma 74.6 67.5 7.1 2.0

Lower grade glioma 19.6 7.5 23.7 0.2

Breast invasive carcinoma 30 90 -60 1.8

Breast invasive carcinoma 99 70 29 1.8

Breast invasive carcinoma 60 80 -20 2.2

Breast invasive carcinoma 52 70 -18 1.8

Breast invasive carcinoma 73 75 -2 2.1

Breast invasive carcinoma 66 70 -4 2.2

Breast invasive carcinoma 77 90 -13 2.1

Breast invasive carcinoma 58 70 -12 2.0

Breast invasive carcinoma 78 80 -2 2.2

Breast invasive carcinoma 94 60 34 2.4

Breast invasive carcinoma 68.7 75.5 -6.8 2.1

Breast invasive carcinoma 20.3 9.6 26.2 0.2

Colon adenocarcinoma 51 80 -29 2.4

Colon adenocarcinoma 59 70 -11 2.3

Tumor purity [%]
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Colon adenocarcinoma 42 70 -28 1.8

Colon adenocarcinoma 76 70 6 2.1

Colon adenocarcinoma 49 70 -21 2.1

Colon adenocarcinoma 64 70 -6 2.1

Colon adenocarcinoma 35 80 -45 2.0

Colon adenocarcinoma 68 70 -2 1.6

Colon adenocarcinoma 84 85 -1 2.0

Colon adenocarcinoma 64 80 -16 2.2

Colon adenocarcinoma 59.2 74.5 -15.3 2.1

Colon adenocarcinoma 15.2 6.0 15.6 0.2

Renal clear cell carcinoma 28 80 -52 2.4

Renal clear cell carcinoma 45 80 -35 2.1

Renal clear cell carcinoma 42 60 -18 1.7

Renal clear cell carcinoma 52 85 -33 2.4

Renal clear cell carcinoma 88 90 -2 2.1

Renal clear cell carcinoma 42 85 -43 2.1

Renal clear cell carcinoma 46 75 -29 2.1

Renal clear cell carcinoma 45 80 -35 2.3

Renal clear cell carcinoma 58 60 -2 2.9

Renal clear cell carcinoma 79 85 -6 1.7

Renal clear cell carcinoma 52.5 78.0 -25.5 2.2

Renal clear cell carcinoma 18.2 10.3 17.6 0.4

Hepatocellular carcinoma 85 95 -10 2.3

Hepatocellular carcinoma 89 70 19 2.8

Hepatocellular carcinoma 95 100 -5 1.9

Hepatocellular carcinoma 55 90 -35 1.8

Hepatocellular carcinoma 92 95 -3 1.9

Hepatocellular carcinoma 33 60 -27 2.4

Hepatocellular carcinoma 91 90 1 2.1

Hepatocellular carcinoma 83 95 -12 1.9

Hepatocellular carcinoma 68 80 -12 2.0

Hepatocellular carcinoma 100 100 0 2.0

Hepatocellular carcinoma 79.1 87.5 -8.4 2.1

Hepatocellular carcinoma 21.0 13.4 15.0 0.3

Lung squamous cell carcinoma 71 60 11 2.3

Lung squamous cell carcinoma 42 80 -38 2.2

Lung squamous cell carcinoma 60 95 -35 2.3

Lung squamous cell carcinoma 55 60 -5 2.1

Lung squamous cell carcinoma 62 85 -23 2.2

Lung squamous cell carcinoma 26 60 -34 2.1

Lung squamous cell carcinoma 66 85 -19 2.0

Lung squamous cell carcinoma 43 60 -17 2.3

Lung squamous cell carcinoma 25 75 -50 2.1

Lung squamous cell carcinoma 50 70 -20 2.2

Lung squamous cell carcinoma 26 70 -44 2.1

Lung squamous cell carcinoma 65 80 -15 2.4

Lung squamous cell carcinoma 42 70 -28 2.2

Lung squamous cell carcinoma 51 80 -29 2.2

Lung squamous cell carcinoma 49 90 -41 1.9

Lung squamous cell carcinoma 73 80 -7 1.9

Lung squamous cell carcinoma 69 85 -16 2.1

Lung squamous cell carcinoma 65 80 -15 1.9
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Lung squamous cell carcinoma 49 80 -31 1.8

Lung squamous cell carcinoma 47 90 -43 2.2

Lung squamous cell carcinoma 51.8 76.8 -25.0 2.1

Lung squamous cell carcinoma 14.9 10.8 15.2 0.2

Ovarian serous cystadenocarcinoma 86 88 -2 2.1

Ovarian serous cystadenocarcinoma 100 89 11 2.0

Ovarian serous cystadenocarcinoma 81 80 1 2.1

Ovarian serous cystadenocarcinoma 71 88 -17 2.0

Ovarian serous cystadenocarcinoma 92 95 -3 2.1

Ovarian serous cystadenocarcinoma 57 80 -23 2.3

Ovarian serous cystadenocarcinoma 95 95 0 2.6

Ovarian serous cystadenocarcinoma 78 95 -17 2.1

Ovarian serous cystadenocarcinoma 76 99 -23 2.1

Ovarian serous cystadenocarcinoma 91 99 -8 2.0

Ovarian serous cystadenocarcinoma 82.7 90.8 -8.1 2.1

Ovarian serous cystadenocarcinoma 12.8 7.0 11.4 0.2

Pancreatic adenocarcinoma 56 50 6 1.5

Pancreatic adenocarcinoma 79 95 -16 1.9

Pancreatic adenocarcinoma 27 70 -43 2.3

Pancreatic adenocarcinoma 46 60 -14 2.6

Pancreatic adenocarcinoma 27 40 -13 1.8

Pancreatic adenocarcinoma 31 50 -19 2.2

Pancreatic adenocarcinoma 60 80 -20 2.5

Pancreatic adenocarcinoma 26 50 -24 2.2

Pancreatic adenocarcinoma 31 70 -39 2.3

Pancreatic adenocarcinoma 53 40 13 2.0

Pancreatic adenocarcinoma 43.6 60.5 -16.9 2.1

Pancreatic adenocarcinoma 18.1 18.0 17.2 0.3

Prostate adenocarcinoma 19 70 -51 1.9

Prostate adenocarcinoma 57 85 -28 2.2

Prostate adenocarcinoma 58 70 -12 1.9

Prostate adenocarcinoma 23 70 -47 2.0

Prostate adenocarcinoma 31 80 -49 2.5

Prostate adenocarcinoma 33 60 -27 1.9

Prostate adenocarcinoma 23 65 -42 1.9

Prostate adenocarcinoma 63 65 -2 2.1

Prostate adenocarcinoma 22 70 -48 2.3

Prostate adenocarcinoma 24 80 -56 2.1

Prostate adenocarcinoma 35.3 71.5 -36.2 2.1

Prostate adenocarcinoma 17.2 7.8 18.2 0.2

Cutaneous melanoma 63 95 -32 2.2

Cutaneous melanoma 48 95 -47 2.0

Cutaneous melanoma 31 85 -54 2.2

Cutaneous melanoma 67 95 -28 2.3

Cutaneous melanoma 58 70 -12 2.0

Cutaneous melanoma 75 95 -20 2.0

Cutaneous melanoma 23 95 -72 2.1

Cutaneous melanoma 86 70 16 1.9

Cutaneous melanoma 100 75 25 1.9

Cutaneous melanoma 80 96 -16 2.1

Cutaneous melanoma (metastatic) 100 95 5 2.0

Cutaneous melanoma (metastatic) 99 85 14 2.1
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Cutaneous melanoma (metastatic) 73 85 -12 2.2

Cutaneous melanoma (metastatic) 21 75 -54 2.4

Cutaneous melanoma (metastatic) 46 85 -39 2.1

Cutaneous melanoma (metastatic) 58 85 -27 2.1

Cutaneous melanoma (metastatic) 61 90 -29 1.9

Cutaneous melanoma (metastatic) 51 85 -34 1.9

Cutaneous melanoma (metastatic) 35 75 -40 2.3

Cutaneous melanoma (metastatic) 37 85 -48 2.1

Cutaneous melanoma 60.6 85.8 -25.2 2.1

Cutaneous melanoma 24.7 8.8 25.7 0.1
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TargetRegion [Mb]Mutation Rate

QuickNGS TCGA Difference QuickNGS QuickNGS only TCGA only

15 7 8 32.9 0.5 0 0

20 12 8 32.9 0.6 1 0

33 6 27 32.9 1.0 0 0

152 14 138 32.9 4.6 1 0

35 14 21 32.9 1.1 0 0

62 8 54 38.8 1.6 0 0

13 3 10 38.8 0.3 0 1

27 11 16 32.9 0.8 1 0

14 N/A N/A 32.9 0.4 0 0

14 4 10 32.9 0.4 1 0

38.5 8.8 32.4 34.1 1.1 0.4 0.1

40.9 4.1 42.2 2.5 1.3 0.5 0.3

63 61 2 32.9 1.9 1 0

362 413 -51 32.9 11.0 2 0

81 89 -8 32.9 2.5 1 0

202 220 -18 32.9 6.1 0 1

81 91 -10 32.9 2.5 0 0

217 149 68 32.9 6.6 3 0

428 481 -53 32.9 13.0 1 0

92 100 -8 32.9 2.8 2 1

118 114 4 32.9 3.6 2 0

279 296 -17 32.9 8.5 3 0

192.3 201.4 -9.1 32.9 5.8 1.5 0.2

128.9 148.1 33.4 0.0 3.9 1.1 0.4

22 36 -14 32.9 0.7 0 0

27 25 2 32.9 0.8 0 0

21 23 -2 32.9 0.6 0 0

26 30 -4 32.9 0.8 0 0

51 16 35 32.9 1.6 1 0

46 54 -8 32.9 1.4 0 0

33 34 -1 32.9 1.0 0 0

46 47 -1 32.9 1.4 0 0

12 11 1 32.9 0.4 0 0

26 29 -3 32.9 0.8 0 0

31.0 30.5 0.5 32.9 0.9 0.1 0.0

12.7 13.1 13.0 0.0 0.4 0.3 0.0

48 28 20 44.1 1.1 0 0

13 7 6 44.1 0.3 0 0

128 55 73 44.1 2.9 1 0

62 52 10 44.1 1.4 0 1

21 14 7 44.1 0.5 0 0

38 20 18 38.8 1.0 0 0

200 92 108 63.6 3.1 2 0

67 24 43 38.8 1.7 1 0

46 N/A N/A 63.6 0.7 0 N/A

464 N/A N/A 63.6 7.3 2 N/A

108.7 36.5 35.6 48.9 2.0 0.6 0.1

136.8 28.1 37.0 10.4 2.1 0.8 0.4

133 317 -184 45.1 2.95 3 N/A

1554 1413 141 45.1 34.46 9 N/A

# Mutations # Mutations in key genes
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93 87 6 45.1 2.06 7 N/A

82 170 -88 45.1 1.82 1 N/A

796 926 -130 45.1 17.65 9 N/A

122 118 4 45.1 2.71 9 N/A

1845 1678 167 45.1 40.91 9 N/A

110 N/A N/A 45.1 2.44 8 N/A

223 212 11 45.1 4.94 9 N/A

80 53 27 45.1 1.77 2 N/A

503.8 552.7 -5.1 45.1 11.2 6.6 N/A

669.2 624.4 115.6 0.0 14.8 3.3 N/A

40 N/A N/A 32.9 1.2 1 2

54 50 4 32.9 1.6 1 0

63 45 18 44.1 1.4 2 0

122 N/A N/A 45.1 2.7 4 N/A

50 42 8 44.1 1.1 1 0

70 51 19 44.1 1.6 2 0

70 65 5 32.9 2.1 0 1

44 39 5 32.9 1.3 1 0

25 46 -21 44.1 0.6 0 0

54 40 14 32.9 1.6 2 0

59.2 47.3 6.5 38.6 1.5 1.4 0.3

26.0 8.4 12.6 6.0 0.6 1.2 0.7

46 46 0 45.1 1.02 0 0

80 69 11 45.1 1.77 1 0

155 138 17 45.1 3.44 0 1

56 105 -49 45.1 1.24 0 1

102 129 -27 45.1 2.26 1 0

42 65 -23 45.1 0.93 1 0

35 34 1 45.1 0.78 2 0

99 114 -15 45.1 2.20 1 0

85 N/A N/A 45.1 1.88 3 N/A

75 N/A N/A 45.1 1.66 2 N/A

77.5 87.5 -10.6 45.1 1.7 1.1 0.3

36.0 39.1 22.0 0.0 0.8 1.0 0.5

303 N/A N/A 32.9 9.21 9 N/A

199 209 -10 32.9 6.05 2 0

119 N/A N/A 38.8 3.07 6 N/A

121 N/A N/A 32.9 3.68 7 N/A

276 268 8 32.9 8.39 4 1

140 N/A N/A 32.9 4.26 4 N/A

231 N/A N/A 32.9 7.02 5 N/A

105 N/A N/A 32.9 3.19 4 N/A

175 N/A N/A 32.9 5.32 8 N/A

338 N/A N/A 32.9 10.27 9 N/A

156 185 -29 32.9 4.74 1 1

170 225 -55 32.9 5.17 4 1

116 126 -10 32.9 3.53 1 0

73 78 -5 32.9 2.22 0 1

2358 2432 -74 32.9 71.67 1 1

206 230 -24 32.9 6.26 1 0

293 318 -25 32.9 8.91 2 1

163 159 4 32.9 4.95 3 0
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295 306 -11 32.9 8.97 4 1

152 158 -6 32.9 4.62 1 1

299.5 391.2 -19.8 33.2 9.1 3.8 0.7

490.4 646.6 24.0 1.3 14.9 2.8 0.5

123 54 69 32.9 3.7 1 0

64 23 41 32.9 1.9 0 1

41 N/A N/A 32.9 1.2 0 N/A

79 43 36 32.9 2.4 0 2

100 57 43 32.9 3.0 2 0

89 52 37 38.8 2.3 1 1

47 41 6 38.8 1.2 3 N/A

48 N/A N/A 32.9 1.5 3 N/A

48 22 26 38.8 1.2 2 N/A

65 32 33 38.8 1.7 1 N/A

70.4 40.5 36.4 35.3 2.0 1.3 0.8

27.0 13.7 17.6 3.0 0.9 1.2 0.8

52 40 12 32.9 1.58 1 0

35 40 -5 32.9 1.06 1 0

119 192 -73 32.9 3.62 3 0

37 30 7 32.9 1.12 0 0

82 93 -11 32.9 2.49 1 1

30 40 -10 32.9 0.91 2 1

67 76 -9 32.9 2.04 1 0

52 68 -16 32.9 1.58 1 1

35 44 -9 32.9 1.06 0 0

52 63 -11 32.9 1.58 0 0

56.1 68.6 -12.5 32.9 1.7 1.0 0.3

27.4 47.7 23.0 0.0 0.8 0.9 0.5

19 14 5 32.9 0.58 1 0

26 14 12 32.9 0.79 0 0

285 147 138 32.9 8.66 3 1

22 11 11 32.9 0.67 1 0

35 29 6 32.9 1.06 2 1

35 25 10 32.9 1.06 1 0

15 10 5 32.9 0.46 0 0

42 127 -85 32.9 1.28 0 0

36 37 -1 32.9 1.09 1 1

17 22 -5 32.9 0.52 0 1

53.2 43.6 9.6 32.9 1.6 0.9 0.4

82.0 50.2 53.6 0.0 2.5 1.0 0.5

606 N/A N/A 32.9 18.4 1 0

249 N/A N/A 32.9 7.6 1 0

374 N/A N/A 32.9 11.4 2 1

719 N/A N/A 32.9 21.9 1 0

2058 N/A N/A 32.9 62.6 7 0

356 N/A N/A 32.9 10.8 1 1

382 N/A N/A 32.9 11.6 1 0

480 N/A N/A 32.9 14.6 3 0

474 N/A N/A 32.9 14.4 5 0

152 N/A N/A 32.9 4.6 4 N/A

297 32 265 32.9 9.0 4 0

300 287 13 32.9 9.1 1 0
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807 637 170 32.9 24.5 0 0

70 75 -5 32.9 2.1 0 1

183 191 -8 32.9 5.6 2 0

52 32 20 32.9 1.6 0 0

207 15 192 32.9 6.3 2 0

261 294 -33 32.9 7.9 1 0

726 509 217 32.9 22.1 1 0

90 55 35 32.9 2.7 0 0

442.2 212.7 86.6 32.9 13.4 1.9 0.2

440.0 218.2 111.1 0.0 13.4 1.9 0.4
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Both QuickNGS [Mb] Overlap w/ QuickNGS [Mb] Overlap w/ TCGA [%]

3 99.2 4.0 1.6 84.0

0 9.2 59.1 2.9 25.1

0 227.6 42.3 10.3 5.7

0 98.9 94.8 100.1 53.9

1 90.5 82.8 204.2 65.3

1 116.9 20.4 70.8 12.2

0 70.7 46.4 168.8 17.9

0 23.5 45.3 16.6 44.2

1 4.7 68.9 10.0 10.2

0 15.1 31.4 4.5 22.8

0.6 75.6 49.5 59.0 34.1

1.0 68.3 27.8 75.2 26.4

0 137.5 76.5 452.1 76.8

2 108.4 89.8 58.2 83.9

1 86.0 86.1 175.4 90.4

2 91.3 71.7 414.1 88.5

0 475.2 93.6 181.6 66.3

0 146.5 92.0 499.3 87.7

4 28.2 67.1 104.7 86.6

2 84.9 96.7 695.7 87.0

0 191.1 92.1 234.4 49.4

0 530.6 72.9 126.4 71.4

1.1 188.0 83.9 294.2 78.8

1.4 172.0 10.7 208.9 13.1

3 286.3 59.5 95.4 86.1

3 161.3 82.9 308.6 96.6

1 147.8 23.8 168.8 94.7

2 233.4 48.9 58.9 81.8

3 48.7 30.2 217.6 63.3

1 319.8 86.1 292.2 68.6

0 227.9 84.5 157.3 97.7

2 343.0 93.9 944.8 83.3

2 30.8 46.2 151.6 99.0

3 2.9 57.1 115.8 72.7

2.0 180.2 61.3 251.1 84.4

1.1 122.4 24.6 256.5 12.9

1 282.7 79.0 278.0 98.4

1 107.3 89.6 44.8 96.7

1 525.3 72.8 22.4 99.7

1 122.3 98.7 70.9 1.3

0 252.2 64.5 15.3 38.3

1 232.5 80.8 26.5 79.3

1 327.5 87.8 91.3 95.4

1 306.9 82.4 22.2 68.4

N/A 123.7 74.4 142.6 98.5

N/A 117.9 80.7 187.7 93.9

0.9 239.8 81.1 90.2 77.0

0.4 131.4 9.6 87.5 32.9

N/A 59.0 99.7 133.0 21.7

N/A 249.7 60.5 1.1 95.1

# Mutations in key genes Amplified [Mb] Deleted [Mb]
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N/A 49.5 12.3 0.1 0.0

N/A 321.6 58.8 250.1 96.4

N/A 148.6 83.1 74.7 0.6

N/A 352.3 72.6 392.1 84.5

N/A 734.2 93.2 261.3 4.0

N/A 246.6 88.1 82.8 92.1

N/A 429.7 41.0 274.4 79.2

N/A 81.4 63.8 0.0 100.0

N/A 267.3 67.3 147.0 57.4

N/A 209.4 26.4 139.1 44.5

1 132.4 87.3 5.7 17.4

0 32.9 54.4 38.4 52.4

0 5.0 67.0 147.6 56.2

N/A 28.9 90.3 101.1 96.3

3 155.9 98.9 9.1 31.8

3 322.0 74.9 66.4 98.6

1 260.1 87.8 276.7 63.5

2 229.5 90.9 126.5 89.0

0 212.3 67.9 0.0 100.0

0 263.0 63.9 867.3 89.4

1.1 181.9 79.6 165.7 70.9

1.3 102.6 14.9 277.0 31.1

0 474.6 86.5 86.7 97.9

0 316.4 79.5 509.3 99.6

1 245.6 97.7 252.4 98.2

0 148.1 78.1 55.2 91.6

1 328.2 83.6 316.7 98.2

1 125.6 99.6 17.9 99.3

1 13.3 99.7 128.7 99.4

1 544.6 92.1 341.8 79.3

N/A 160.9 89.9 44.9 97.3

N/A 121.5 34.7 23.9 84.3

0.6 247.9 84.1 177.8 94.5

0.5 168.0 19.1 168.1 7.2

N/A 258.1 71.8 676.5 97.1

4 308.0 75.7 55.2 74.7

N/A 357.3 77.2 104.8 74.3

N/A 240.9 60.3 27.0 13.2

4 577.7 92.9 622.6 95.3

N/A 66.5 25.7 27.0 22.6

N/A 642.1 87.1 284.6 62.5

N/A 252.6 91.2 111.9 31.0

N/A 66.4 50.5 64.0 17.4

N/A 386.6 87.8 207.8 93.4

3 83.5 88.8 26.4 66.5

3 217.1 74.3 96.7 0.1

2 89.2 88.7 150.5 78.2

1 178.6 91.3 436.8 85

6 0.5 20.9 123.5 79.4

4 106.6 97.3 623.6 95.3

4 515.8 85.9 321.3 55.6

0 449 92.6 220.8 84
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4 607.2 78.6 327 93.9

4 225.8 95.2 37.5 99.1

3.3 281.5 76.7 227.3 65.9

1.6 195.1 21.8 212.3 31.8

3 474.4 80.8 681.6 90.1

0 197.5 66.5 260.1 85.2

N/A 722.5 90.2 85.8 99.9

0 398.3 75.4 179.0 94.8

2 37.7 55.7 243.6 82.3

0 1056.5 83.2 1154.5 87.4

N/A 716.4 83.7 590.1 75.7

N/A 0.0 100.0 432.4 58.1

N/A 541.0 89.8 603.8 73.1

N/A 482.6 91.7 375.8 91.3

1.0 462.7 81.7 460.7 83.8

1.4 326.7 13.0 313.2 12.2

1 98.1 15.9 12.2 10.1

2 135.5 34.2 109.8 61.9

1 73.8 8.6 2.0 88.5

3 507.0 81.6 440.8 93.6

2 89.2 14.1 4.1 20.7

1 122.1 41.1 14.8 10.4

3 233.1 62.5 133.4 90.3

3 34.9 81.2 29.3 22.0

2 70.3 95.7 17.1 27.6

5 14.5 57.7 9.0 22.5

2.3 137.9 49.3 77.3 44.8

1.3 143.0 31.2 135.9 34.9

0 63.2 25.6 63.7 69.0

0 93.4 42.9 60.4 81.2

0 101.1 98.4 342.1 72.1

0 11.7 36.8 86.5 1.7

0 5.2 55.8 67.8 11.0

0 170.7 54.4 145.5 97.6

0 16.5 14.9 13.0 39.2

1 105.3 64.6 91.4 39.6

1 131.5 82.1 108.7 59.1

0 37.4 20.4 126.9 10.3

0.2 73.6 49.6 110.6 48.1

0.4 55.9 27.0 89.5 33.0

3 96.1 57.1 775.2 90.2

2 243.6 72.6 435.5 73.6

4 10.2 43.4 3.7 16.6

1 213.4 68.4 401.4 67.2

2 427.4 86.4 474.2 66.3

4 246.1 78.0 324.0 55.6

3 106.8 89.0 380.7 58.6

2 172.2 91.4 435.5 70.1

5 516.6 74.5 428.8 62.2

N/A 449.6 85.6 271.7 79.1

0 272.9 80.1 16.6 88.3

3 456.4 48.9 620 88.3
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7 111.4 47.6 132.7 41.9

1 195.8 48.1 3.7 58.8

2 110.2 89.1 46.7 66.5

2 173.2 80.7 484.4 91.7

0 202.7 85.1 482.6 78.7

6 79.0 67.4 4.2 26.2

6 16.2 21.6 98.7 32.8

0 59.7 49.9 241.6 48.8

2.8 190.5 67.9 290.7 62.9

2.1 139.0 20.6 236.2 22.6
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ABSTRACT 39 

T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell 40 

malignancy. To address the vastly incomplete molecular concept of T-PLL, we 41 

applied large-scale profiling of alterations in gene expression, allelic copy number 42 

(CN), and nucleotide variants in 94 well-characterized patients. Key aspects were 43 

validated in various experimental models. The dominant trunk of T-PLL’s molecular 44 

make-up is a unique and functionally synergistic combination of TCL1-45 

overexpression and damaging ATM lesions. We identified novel tumor-specific hot-46 

spots for CN variability, fusion molecules, transcript variants, and progression-47 

associated dynamics. Annotated to axes of the DNA damage response, cytokine 48 

signaling, and histone modulation, the lesional spectrum of T-PLL determines a 49 

specific phenotype of impaired damage sensing and processing, telomere attrition, 50 

and chromosomal complexity alongside an abrogated p53-mediated cell death 51 

execution. We present a first model of T-PLL evolution resolved for pivotal 52 

(epi)genetic alterations integrated with landmarks of cellular dysfunctions and extract 53 

from that novel specific drug sensitivities. 54 

 55 

 56 

 57 

STATEMENT OF SIGNIFICANCE 58 

The low incidence of T-PLL impedes systematic studies of this aggressive and highly 59 

chemotherapy-resistant mature T-cell leukemia, which continues to be associated 60 

with limited therapeutic options and poor patient outcomes. As the first integrative 61 

multi-level analysis of genetic lesions on a large set of clinically well-characterized T-62 

PLL, this report provides a comprehensive disease modeling around the central 63 

leukemogenic cooperation of overexpressed TCL1 and hypomorphic ATM, that serve 64 

as diagnostic hallmarks and that underlie a unique phenotype of selectively impaired 65 

DNA damage responses, which in turn can be reinstated by novel epi-/genome 66 

targeting compounds. 67 
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INTRODUCTION 68 

T-cell prolymphocytic leukemia (T-PLL) is the most frequent mature T-cell leukemia1, 69 

yet with an incidence of ≈0.6/million in Western countries, it is still an orphan disease. 70 

It typically presents in the 6-7th decade of life at stages of exponentially rising 71 

lymphocyte counts in peripheral blood (PB) accompanied by hepato-splenomegaly, 72 

lymphadenopathy, and bone marrow (BM) involvement1,2. Its chemo-refractory 73 

behavior is reflected in a poor patient survival (usually <3 years)1,3,4. Even following 74 

responses to the monoclonal antibody alemtuzumab, eventually all patients relapse3. 75 

A major reason for the limited therapeutic options that aim at the molecular make-up 76 

of T-PLL towards sustained clonal eradication is our rudimentary understanding of 77 

key mechanisms that underlie progression and resistance. 78 

Karyotypes of T-PLL are often complex5 and include recurrent rearrangements at 79 

chromosome (chr.)14, resulting in juxtaposition of TCL1A (T-cell leukemia/lymphoma 80 

1A) at 14q32.1 to T-cell receptor (TCR) gene enhancers6. This prevents physiological 81 

post-thymic silencing of TCL1A. TCL1A is the namesake of a 3-paralogue family7 82 

further including TCL1B and MTCP1. The X-chromosomal MTCP1 is involved in rare 83 

T-PLL carrying the t(X;14) translocation. Transgenic (tg) mouse models emulating 84 

human T-PLL illustrate the T-cell oncogenic potential of TCL1A8 and MTCP19. 85 

Currently, the best established function of the 14kDa TCL1A protein is an adapter-86 

like engagement in kinase complexes, formed upon antigen-receptor input10 resulting 87 

in enhanced pro-survival signaling. 88 

Deletions of chr.11q leading to losses of the tumor suppressor ataxia telangiectasia 89 

mutated (ATM) as well as amplifications at chr.8q represent additional highly 90 

prevalent abnormalities in T-PLL5. While the sporadic form of T-PLL was associated 91 

with somatic ATM mutations11, it can also arise in cancer-predisposed adolescents 92 

with ataxia telangiectasia (A-T) that carry germline ATM inactivations12. ATM governs 93 

the maintenance of genomic integrity by orchestrating a proper DNA damage 94 

response (DDR), including double-strand break (DSB) repair, cell cycle control, and 95 

apoptosis regulation13. There are non-canonical DDRs in the absence of DNA 96 

damage, i.e. triggered by telomere, mitotic, replicative, or oxidative stressors14. 97 

Metabolic or redox-homeostatic roles are also recognized as novel ATM functions15.  98 

Although small series of genomic and transcriptomic profiling (summary in TableS1) 99 



62 / 316

 

 
 

4

provided important insights, we still face an overall sketchy molecular landscape and 100 

disease concept of T-PLL. Here, we report an integrated genetic and functional study 101 

on a large T-PLL patient cohort to delineate the spectrum of alterations and their 102 

mechanistic impact in T-cell transformation. For relevant clinical associations, we 103 

selected treatment-naive samples from patients that were included in prospective 104 

multi-centric phase-II trials or that were documented in a nationwide T-PLL registry, 105 

providing thorough clinical (e.g. outcomes after uniform front-line therapy), immuno-106 

phenotypic, and cytogenetic data (TableS2, Fig.S1, Online Methods). 107 

This study reveals that virtually all cases of T-PLL harbor a dysregulation of a mem-108 

ber of the TCL1 oncogene family predominantly in conjunction with damaging lesions 109 

affecting the ATM tumor suppressor. Elevated levels of the TCR-signaling enhancer 110 

TCL1A as the most discerning change in gene expression to normal T-cells were 111 

associated with downregulated negative TCR-signaling modulators, e.g. CTLA4, im-112 

plicating the importance of antigen-receptor input in T-PLL. A marked global com-113 

plexity of gene copy-numbers most frequently includes losses of ATM and gains of a 114 

chr.8q region commonly involving AGO2 and MYC. The overall mutational profile 115 

indicated a genotoxic signature of nucleotide exchanges. Most prevalent were clonal-116 

ly dominant variants in ATM with a previously undisclosed domain clustering. Also 117 

frequent were subclonal lesions in JAK1/STAT genes and in epigenetic regulators. 118 

We further describe novel gene fusions, transcript variants, and hierarchic changes 119 

upon tumor progression. Essentially, across all platforms, we define T-PLL by a 120 

unique combination of TCL1 overexpression with damaging ATM lesions. The effects 121 

imposed by TCL1 synergize with compromised ATM towards leukemic outgrowth, 122 

associated with a phenotype of impaired damage repair, eroded telomeres, and kar-123 

yotype complexity. The functionally hypomorphic ATM appears inefficient in alleviat-124 

ing a high redox burden and in evoking a p53-dependent apoptotic response. Novel 125 

bi-functional histone-modifying agents reinstated such cell death execution triggered 126 

by simultaneously inflicted genotoxic insults.  127 

Overall, we formulate a first comprehensive model of T-PLL pathogenesis. It is cen-128 

tered around the unique combination of constitutive TCL1 and deficient ATM as the 129 

common molecular trunk. The leukemogenic cooperation of these initiating core le-130 

sions involves perturbations of adequate stress responses, but also represents a 131 

specific interventional vulnerability. 132 
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RESULTS 133 

The hallmarks of TCL1A overexpression and dysregulated T-cell activation. 134 

PB-isolated tumor cells from 70 T-PLL exhibited a differential expression (|fold-135 

change (fc)| >1.5; q<0.05; p<0.05) of 2569 gene probes as compared to circulating 136 

CD3+ pan T-cells from 10 healthy donors (regular CD4+/8+ ratio of 1.5-2.5). 137 

Ingenuity® pathway analysis (IPA) assigned this set of differentially expressed genes 138 

to significantly enriched clusters that were functionally annotated to growth 139 

regulation, proliferation, cell cycle, chemotaxis, and immune signaling (i.e. cytokine, 140 

antigen receptor) (Fig.S2a, TableS3). Gene set enrichment analysis (GSEA) 141 

highlighted target genes of the transcription factor (TF) and histone-acetylase (HAT) 142 

recruiter MYC (encoding c-Myc) and signatures of irradiation response or epigenetic 143 

remodeling (Fig.S2b). We confirmed the deregulated expression of genes associated 144 

with T-PLL in meta-comparisons with small published cohorts at the global16 (GSEA; 145 

Fig.S2b) and gene-specific level (e.g. CDKN1B17; Fig.S2c). qRT-PCRs validated the 146 

differential expression for all of 21 selected transcripts (Fig.1a, S2c).  147 

Of all genes, TCL1A showed the highest degree of dysregulation (fc=33.9; p=0.3x10-148 
13; Student t-test; Fig.1a). Importantly, as we previously implicated TCL1A as a pro-149 

leukemogenic amplifier of T-cell signaling input10, the observed TCL1A upregulation 150 

was accompanied by deregulations of TCR pathway modulators, suggesting a net 151 

enhancement of TCR signaling. It included reduced expression of the negative-152 

costimulatory cytotoxic T-lymphocyte-associated protein 4 (CTLA4) (fc=-6.92; 153 

p=0.2x10-13) and of the repressive T-T homotypic receptor SLAMF6 (fc=-3.72; 154 

p=0.8x10-11), or overexpression of the tumor necrosis factor TNF (fc=9.98; p=0.2x10-155 
13) known to shape TCR signals via TNFR2 (Fig.1a). Upregulation of 156 

immunosuppressive CD83 (Fig.1a, TableS3) also indicates immune evasive 157 

properties. The other TCL1 family members were consistently upregulated as well: 158 

TCL1B (fc=4.53; p=0.6x10-5) and MTCP1p13 (fc=2.65; p=0.2x10-3; Fig.S2c). 159 

Suggesting an impact of constitutive MTCP1p13 comparable to the one by TCL1A, 160 

there was a considerable overlap of differentially expressed genes (229 of 412 161 

probes; e.g. CTLA4 and SLAMF6) between TCL1A-positive cases and those 4 162 

carrying an MTCP1-activating t(X;14). Further implicating a ‘uniform’ transcriptome of 163 

T-PLL, the gene expression profiles (GEPs) of the 2 exclusively TCL1B-positive 164 

cases were similar to those of TCL1A-positive or MTCP1-rearranged T-PLL. Overall, 165 
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proof of TCL1-gene family expression in 90.4% of cases correlated well with 166 

cytogenetic detection of locus rearrangements in 94,4% of cases (details in Fig.S2d). 167 

Postulating an initiating role of dysregulated TCL1 genes, we evaluated changes in 168 

GEPs in mice with early-onset T-lineage specific overexpression of TCL1A (Fig.1b). 169 

Already sub-clinical ‘chronic’ phase expansions (Fig.S2e) from spleens of these 170 

Lckpr-hTCL1Atg mice revealed a differential down-regulation of CTLA4 and SLAMF6 171 

and other changes, all in common with those observed in human T-PLL (p<0.05; 172 

|fc|>2; Fig.1b, TableS4). This signature of T-cell activation in conjunction with 173 

TCL1A-drive was preserved at the ‘exponential’ murine disease stage with additional 174 

deregulation of prominent markers of transformation, e.g. MYC (Fig.S2f, TableS4). 175 

The relevance of aberrant TCL1A in overt human leukemia was stressed by the poor 176 

prognostic impact of its high-level expression (Fig.1c). 177 

 178 

Large-scale somatic copy-number alterations (sCNAs) indicate a marked global 179 

complexity and involve ATM losses and gains of novel genes at 8q. 180 

Based on average abundance of large-fragment genomic lesions, T-PLL (n=83) is 181 

positioned near the “complex” end of the sCNA spectrum of hematopoietic and solid 182 

cancers (Fig.2a, Online Methods). The most frequent sCNAs (compared to pooled 183 

germlines from 13 cases and HapMap controls) were found at chr.11 (37%/52%), 184 

chr.8 (29%/42%), chr.22 (24%/24%), and chr.13 (14%/14%) (Fig.2b). GISTIC2.0 185 

analyses underlined the significance of lesions on chr.11 and chr.8 (Fig.S3a, 186 

TableS5). The inv(14) and t(14;14) (93% by FISH/karyotyping) were predominantly 187 

copy-neutral. We identified recurrent (affected in >20% of cases) gains (CN>2.5) in 188 

637 genes and losses (CN<1.5) in 1,685 genes (Fig.S3b, TableS6). The presence of 189 

complex karyotypes (>3 large-scale aberrations), a poor-outcome predictor in other 190 

leukemias, was a rather uniform feature (89.5%) and a higher sCNA load tended (low 191 

sample size) to associate with an inferior patient survival (p=0.09; Fig.S3c).  192 

Aberrations on chr.11 and chr.8 are described for T-PLL5 and have been intuitively 193 

linked to alterations of ATM and MYC. We defined here the minimally deleted and 194 

amplified regions (MDR/MAR) of these most prominent hot-spots compared to 195 

patient-derived germlines (Fig.2c, S3d). The chr.11 MDR was represented by strictly 196 

monoallelic losses of ATM carried by all MDR affected cases (31/83, 37.4%, average 197 

CN=1.79; less frequently involved genes in Fig.S3b). Identified as often co-deleted 198 
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adjacent to the MDR were the P53-suppressor network micro-RNAs miR34b/c. 199 

Genes encoding for ATM downstream effectors were affected in a minor subset 200 

(CHEK2 loss 13.3%; TP53 loss 4.8%). 201 

In contrast to the assumption of MYC being the primary target of the chr.8 associated 202 

gains, we identified AGO2 (argonaute RISC catalytic component 2), a pro-203 

proliferative/anti-apoptotic mediator of onco-miR/siRNA biogenesis and chromatin 204 

remodeling, to define this MAR in 28.9% of cases (51.2% when HapMap controlled; 205 

average CN=2.22; Fig.2c)). The AGO2 gain was independently validated using a 206 

specifically designed FISH probe (Fig.2d, S3e). MYC gains were involved in only 207 

70.8% of cases harboring a MAR on chr.8 (average CN=2.17; Fig.S3b, TableS6). 208 

The relevance of genomic alterations of genes encoding for miR/siRNA processing 209 

factors, although not mechanistically addressed here, is further underlined by 210 

uniparental disomies (UPDs) of AGO1/-3/-4 (all on chr.1) identified in 68.7% of cases 211 

(n=57/83; against HapMap; TableS6). Both, ATM losses and AGO2 over-212 

representations (mutually exclusive in 49% of cases), were each associated with a 213 

higher degree of CN-lesional complexity (genomic instability) outside their own 214 

affected regions (Fig.2e) and with specific GEPs (e.g. dysregulated SLAMF6 with 215 

chr.11 MDR or reduced CTLA4 with chr.8 MAR; Fig.S4a-c, TableS7,S8). Among the 216 

prominent CN lesions, ATM sCNAs were of negative prognostic impact (Fig.2f).  217 

Generally, CN losses/gains were not implicitly linked with altered expressions of the 218 

affected genes (Fig.S5a-c), likely because of not depicted regulatory aspects, 219 

including allele-dominance relationships or LOH scenarios. Moreover, chr.11 MDR-220 

independent losses of ATM expression and increased MYC levels irrespective of 221 

chr.8 gains were commonly observed (Fig.S4b, S6a-c, TableS3). This was 222 

recapitulated in TCL1A-initiated murine T-PLL: although the proliferations of Lckpr-223 

hTCL1Atg mice lacked ATM and MYC sCNAs, they harbored reduced and increased 224 

expression of these genes, respectively (Fig.S6d,e).  225 

 226 

The mutational landscape of T-PLL reveals driver lesions in DDR genes, 227 

dominated by clonal variants of ATM, but also in those affecting cytokine 228 

signaling and epigenetic control.  229 

Samples from 53 patients were subjected to whole-genome (WGS, 3 tumor/germline 230 

(t/g)-pairs, 1 tumor 'single'), whole-exome (WES, n=33; 13 t/g-pairs), targeted 231 
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amplicon (TAS, n=20), and Sanger resequencing (platform overlap in Fig.S1a). 232 

Purification and separation of t/g-paired material in a 2-step sorting procedure 233 

ensured average tumor purities >98% and contamination rates <2% in germline 234 

isolates (Fig.S1b). This high purity, together with the general diploid karyotype of T-235 

PLL cells (estimated with TitanCNA18 based on CNA datasets) facilitated specific 236 

somatic calls and reliable variant allele fraction (VAF) analyses for estimations of 237 

(sub)clonal sizes or cancer cell fractions. We applied various stringent analytical 238 

filters to identify mutations likely to be biologically relevant (Online Supplements). 239 

T-PLL displayed a median rate of exonic somatic mutations (~1.45 Mut/Mb) 240 

comparable to other hematologic and solid neoplasms (Fig.3a; TableS9). A global 241 

enrichment of G-to-T transversions indicates the presence of high-level genotoxic 242 

(i.e. oxidative) stress or an inefficient restorative response19 (Fig.S7a). Genome-wide 243 

SNV frequencies (range for individual WES t/g-pairs 38-161) were annotated in 244 

exonic regions or at splice sites (predicted to be damaging; Fig.3b). GSOA (gene set 245 

overrepresentation analysis) identified enrichments of e.g. cell-cell signaling, and 246 

histone modification associated gene sets (Fig.S7b). 247 

A ranking of the genes affected by those SNVs identified in WES and WGS t/g-pairs 248 

(Fig.3c, S7c) highlights ATM (76.9%, 10/13 cases) and STAT5B (53.8%; 7/13) by 249 

highest frequencies. Potential biological significance could also be ascribed to less 250 

frequently mutated genes based on their clustering in pathways like the DDR, i.e. its 251 

branches of nucleotide excision repair (ERCC1, ERCC6L2) or mismatch repair 252 

(MSH3, MSH6) as well as apoptosis/survival signaling, telomere maintenance, cell 253 

cycle regulation, and epigenetic modulation (TableS9). Aberrations of mismatch-254 

repair genes like short MSH3 nucleotide deletions in case TP002 were not 255 

associated with a generally higher number of SNVs (Fig.3b), base-exchange 256 

preferences, differences in mutation rates by loci, or microsatellite instability 257 

(Fig.S7d). In contrast to nodal mature T-cell lymphomas20, no recurrent TCR 258 

pathway mutations were enriched for in this set of T-PLL; only single hits targeting 259 

e.g. TEC, VAV3, or NFATC2. This suggests ‘sufficiency’ of the unique consistent 260 

overexpression of the TCR-signaling enhancer TCL1A9 in conjunction with 261 

downregulation of negative TCR co-stimulatory receptors (e.g. CTLA4, SLAMF6, 262 

above) to cause net activation of this pathway. 263 
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In the 13 WES data sets of paired g/t samples allowing stringent background 264 

estimation, 31 genes were identified as significantly mutated (MuSiC with FDR<0.1), 265 

including ATM, JAK3, STAT5B, ILK, CDC27, CXCR4, JAK1, and FBXW10. When 266 

pooled with pseudosomatic singleton WES, genes identified as significantly mutated 267 

(n=424 total) further include CXCR2, TP53, IL7R, EZH2, USP9X, MLH1, MSH4, 268 

HIST1H1A, KDM1B, FAT2, DDX11, and FASTKD1. This confirms the relevance of 269 

disturbed DNA repair and cytokine or apoptotic signaling. Importantly, only a small 270 

number of SNVs showed high VAFs (80-100%; 7 genes (0.7%), 14 cases; Fig.S7e 271 

for all SNVs), e.g. POT1, USP9X, or FASTK, but ATM was the only recurrently 272 

mutated gene with a VAF >80% and thus most likely is an early common-trunk driver 273 

(Fig.3d, TableS10). 274 

The observed high frequencies of mutations in JAK/STAT signaling components, 275 

shown previously also in smaller series21-23, underline their somatic character. Their 276 

low SNVs implicate these lesions as subclonal ‘late’ events (Fig.3d). Combining all 277 

sequencing approaches employed here, JAK1 (10.9%), JAK3 (21.8%), IL2RG 278 

(2.8%), or STAT5B (36.8%) were mutated in a total of 52.7% of cases. These were 279 

predominantly mismatch mutations in the SH2 (STAT5B) and pseudo-kinase 280 

(JAK1/JAK3) domains (Fig.S8a,b). The presence of these lesions did not translate 281 

into elevated JAK/STAT phospho-activation states (Fig.S8c), which will likely impede 282 

linear deductions of inhibitor sensitivities. Inferences on functional consequences of 283 

JAK/STAT mutations should also consider altered target binding properties, including 284 

dimerization. In fact, these SNVs did reveal associations with specific GEPs 285 

(Fig.S8d, TableS11, 12) including known JAK/STAT target genes. hTCL1A-tg 286 

murine T-PLL showed markedly elevated phosphorylation levels of activating 287 

JAK3/STAT5B motifs (Fig.S8e) corroborating a leukemogenic role of these relays of 288 

cytokine responses.  289 

Integration of sCNA and t/g-WES data to speculate on selection for dysfunctional 290 

targets revealed that 15 of the 1497 mutated genes (including read-throughs) were 291 

affected by gain of function (GOF, CNV>2.2, VAF>0.5) or loss of function (LOF, 292 

CNV<1.7, VAF>0.5) aberrations. Somatic mutations combined with focal 293 

gains/losses were found in 85% (11/13 t/g-pairs) of cases. They dominantly included 294 

the DDR master regulator ATM (9/10 mutated WES cases) and the histone-Lysine N-295 

methyltransferases EZH2 and KMT2D (1 case each; Fig.3e, TableS13). This 296 
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emphasizes the particular relevance of genes associated with DNA repair/damage 297 

responses and epigenetic regulation. Further genes simultaneously affected by 298 

sCNAs and SNVs included the telomere protective enzymes POT1, JAK1, and 299 

PCM1, which are all linked to hematologic malignancies. Associations of SNVs with 300 

UPDs were found in 92% of evaluated t/g-pairs, affecting 71 genes including 301 

IL1RAPL1 (2 cases), STAT5B (2 cases), CXCR5 (1 case), and ATM (1 case). 302 

SNVs affecting ATM were mostly missense mutations (n=35/41 lesions), less 303 

frequently nonsense (n=3/41) or frameshift insertion-deletions (InDels; n=3/41) 304 

(Fig.3f, validations in Fig.S9a), unlike the predominantly truncating lesions found in 305 

A-T individuals. We catalogued lesions at 23 unreported localizations. In contrast to 306 

previous studies suggesting an unbiased distribution of ATM SNVs across the entire 307 

molecule, our data from somatic ATM-SNV carrying T-PLL 35/53 (66%) in 308 

conjunction with those from previous series (Fig.S9b) revealed for the first time an 309 

obvious clustering of mutations in the FRAP/ATM/TRRAP (FAT) and PI3K domains 310 

(45/74 total SNVs). It is attractive to speculate whether this mediates selective 311 

defects of the various conventional (DNA repair, telomere maintenance) or newly 312 

ascribed (e.g. regulations of redox-equilibria, energy metabolism) functions of ATM15. 313 

 314 

The cooperating core lesions of ATM functional hypomorphism and TCL1A 315 

overexpression are accompanied by impaired DNA damage responses. 316 

The vast majority of T-PLL analyzed by GE, sCNA, and SNV profiling was affected 317 

by monoallelic CNAs or/and SNVs of ATM (42/49, 86%; Fig.4a). These cases 318 

generally showed a reduced ATM transcript abundance (global fc=-2.32, p=3.6x10-14 319 

vs normal T-cells). Most frequently, ATM was subject to an LOH event (CN<1.5; ATM 320 

mutated, VAF>20%) (n=24/42, 57%). ATM expression in the 14 T-PLL with ATM in 321 

SN-wt constellation was unchanged in the CN-biallelic subset (n=7, fc=1.03), but 322 

highly deregulated in the CN-monoallelic cases (n=7, fc=-3.26). Very low ATM mRNA 323 

levels were accompanied by an enriched deregulated expression of other DDR-324 

associated genes (TableS8), exemplified by RAD50 or FOXO3 and tended to be 325 

associated with a poorer patient outcome (Fig.4b). The SNV profile of the 7 ATM 326 

CN-biallelic/SN-wt T-PLL revealed one case with a TP53 mutation (TP032 (p.X215Q; 327 

VAF 0.23); CN=2), 3 DDX11 mutated cases (2 COSMIC annotated and one stop-328 

gain SNV), and one case (TP026) with multiple damaging mutations in the tumor 329 
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suppressors MSH4, FAT3, and XRCC2. Two cases were only subjected to a 330 

selected TAS panel, hence, may harbor similar mutations. We conclude that in a 331 

minority of T-PLL genome instability is mediated by mutations in regulators of DNA 332 

repair or a DDR other than ATM.  333 

The complex karyotypes of T-PLL and its chemo-refractory behavior prompted us to 334 

causally implicate the consistent multi-level alterations of ATM. Therefore, we 335 

examined the capacity of leukemic cells to mount an adequate response to DSBs. 336 

The induction/resolution kinetics and patterns of induced DSB platforms marked by 337 

ATM’s target γH2AX were aberrant in 82% of 22 T-PLL (Fig.4c). Considering the 338 

monoallelic genomic loss at the H2AX locus (H2FAX at chr.11q) in 19/83 cases and 339 

its T-cell lymphomagenic potential25, we also recorded activation of KAP1, a rather 340 

specific ionizing-irradiation (IR)-induced ATM substrate (Fig.S10a). KAP1 mediates 341 

relaxation of particularly mutation-prone heterochromatin regions in conjunction with 342 

ATM, facilitating repair and regulation of radio-sensitivity. Although 48% (11/23) of T-343 

PLL displayed a markedly diminished biochemical IR response (Fig.4d, S10b) that 344 

paralleled the altered γH2AX kinetics (Fig.S10c), there was a residual pATM/pKAP1 345 

induction in most cases (70% (16/23) of samples with responses of >20% of an ATM-346 

wt control line). Complete abrogation of such IR responses was found in the rare T-347 

PLL with truncating ATM SNVs in analogy to ATMmut/mut lymphoid A-T cells, while 348 

ATM-biallelic/wt cases showed a more ‘regular’ pattern (Fig.4d, S10b,c). Most 349 

importantly, irrespective of any (retained) pATM/pKAP1 activation, T-PLL cells failed 350 

to generate a distal pP53 response (all 9 analyzed cases; Fig.4d). Given the overall 351 

rarity of 17p sCNAs and TP53 SNVs (above) or their absence in these 9 cases, this 352 

generally implicates specific insufficiencies of p53 upstream activators (i.e. ATM). 353 

Furthermore, there was strikingly aberrant cytosolic retention of ATM upon DNA 354 

damage induction (8/11 cases; Fig4e, S10d). This deficient nuclear translocalization 355 

was irrespective of genomic ATM lesional status. The abnormally high TCR-induced 356 

ROS levels (Fig.S10e) and the markedly short telomeres of primary T-PLL cells 357 

(flow-FISH and WGS, Fig.4f, S10f-h) in correlation with the presence of ATM lesions 358 

further supported the notion of ATM’s (partial) functional incompetence. SNVs in 359 

actual telomere maintenance genes (3 in RTEL1, 1 each in DKC1, POT1, and TERT) 360 

implicate other, more direct influences on the telomere attrition phenotype of T-PLL. 361 
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Obviously, ATM impairments in T-PLL cells are not associated with elevated chemo-362 

/radiosensitivity. Therefore, we modeled the specific phenotypic impact of anti-363 

apoptotic TCL1A in the mature T-cell leukemia line HH (ATM-biallelic; Fig.S11a). In 364 

the presence of TCL1A, the extent of DSBs was increased and their processing was 365 

markedly protracted, as per kinetics of induced γH2AX, RAD51, and TP53BP1 foci 366 

and expression levels (Fig.4g, S11b-d). TCL1A also propagated telomere shortening 367 

and aneuploidy (Fig.4h,i), in line with the data from primary T-PLL cells and pointing 368 

towards a functional influence of TCL1A on ATM´s tasks of chromosome end 369 

protection and stability maintenance. This impact by TCL1A was likely not attributed 370 

to replicative stress, as there was no noticeable TCL1A-induced pro-proliferative 371 

effect (Fig.S11e). Affirmation of relevance of this TCL1/ATM synergism derived from 372 

a generated mouse model. It demonstrated the cooperative pro-T-lymphomagenic 373 

outcome of constitutively active TCL1A and ATM-impairment (Fig.4j, S11f-i).  374 

 375 
Structural variations (SVs) and high-resolution transcript assessment highlight 376 

novel fusions and exon usages of pivotal genes. 377 

Somatic intra- and inter-chromosomal SVs detected by WGS revealed a high 378 

heterogeneity among cases with COSMIC listed SVs recurrently affecting chr.8, 11, 379 

14, 16, and 21 (Fig.5a, TableS14). SVs identified in whole-transcriptome sequencing 380 

(WTS) data sets reflected fusion transcripts in 13/15 cases (TableS15; by TopHat-381 

Fusion). They included the hybrids: JAK2 (chr.9) - TCF3 (chr.19) as well as TRIM22 382 

(chr.11) - JAK2, KANSL1-ARL17A (both chr.17) in 3 cases, and 3 chr.8-intrinsic 383 

fusions involving PLEC with varying partners (CYHR1, GRINA, SHARPIN) (Fig.5b), 384 

the latter most likely generated by the complex rearrangements at chr.8. A SEPT-385 

ABL1 fusion reported in an anecdotal T-PLL26 or fusions found in nodal mature T-cell 386 

lymphomas27 were not identified. Somatic SVs detected in whole-genomic and 387 

exonic regions emphasized the inv(14) or t(14,14) as the most common structural 388 

aberrations (n=3/3 by WGS, 10/13 by WES; Fig.5c, S12a, TableS14).  389 

In TP003 the inv(14) links TCL1A to TRAJ49 (TCR-α joining element 49). This newly 390 

identified fusion transcript was validated using two additional methods: (1) 391 

bioinformatically using STAR 2.5 with STAR-Fusion and (2) by RT-PCR combined 392 

with Sanger Sequencing. As the first report of a TCL1A fusion instead of the usually 393 

more in-trans positioning, it was striking to observe expression of a viable transcript 394 

and of neighboring TCL1B alongside intermediate TCL1A protein levels (Fig.5b-d, 395 
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S12b). WES corroborated the SNP-array results of AGO2 being the most prevalent 396 

target of the sCNAs on chr.8 by showing its gains in 61% of cases (n=20/33; MYC397 

gain in only one case).398 

WTS confirmed the prominent overexpression of TCL1A and other top-scores from 399 

the GEP analysis (Fig.S13a,b, TableS16). There were novel variable TCL1A400 

transcripts with 4 dominant forms: TCL1A-001 (fc=39.27, p=3.1x10-8), a truncated401

TCL1A-007 (fc=29.2, p=1.2x10-7), TCL1A-201 (fc=11.4, p=3.4x10-5), and TCL1A-002 402 

(fc=8.3, p=3.4x10-6) (Fig.S13c). The downregulated ATM expression in T-PLL 403 

(above) was reflected by the significantly lower expression of 5/7 protein encoding 404 

transcript variants (Fig.S13d). Allowing inferences on tumor-associated alternative 405 

splicing, we identified 2865 genes (p<0.005; q<0.05; |log2-fc|>2) exhibiting a 406 

differential exon usage compared to healthy-donor T-cells (TableS17). Among the 407 

most significant were those from ATM, ATR, BCL2 (a short anti-apoptotic version 408 

preferentially expressed), histone modifiers including HDACs -2, -4, -5, -7, and -9, 409 

and TCR / cytokine signaling elements (PIK3R1, RELA, NFKB1, NFATC1) (Fig.5e). 410 

411

412 

We interrogated T-PLL cells for exploitable vulnerabilities, especially around their 413 

ATM-incompetence. Several strategies to intercept in synthetic lethal relationships 414 

including targeting of DNAPKcs, in conjunction with mTOR, even ATM itself, all in the 415 

context of etoposide or cyclophosphamide-mediated DNA damage, did not result in 416 

marked reductions of cell viability (Fig.S14a-e). Instead, several notions prompted us 417 
 (1) treatment 418 

resistance is linked to altered epigenetic codes, (2) histone deacetylase inhibitors 419 

(HDACi’s) show a high activity especially in T-cell tumors and might reprogram 420 

resistance in T-PLL28, (3) DNA-repair depends on histone modifications29, (4)421

sufficient ATM activation involves its HAT mediated acetylation30, and (5) our profiling 422 

data identify various recurrent dysregulations in histone modifiers (above; Fig.S15a, 423 

TableS18). For DSB induction, we opted for the multi-functional nucleoside-like 424 

alkylator bendamustine. It recently showed remarkable second-line activity in 425 

alemtuzumab-refractory T-PLL31 and its profile of preferred activation of nucleoside-426 

excision repair (NER) seemed ideal in the face of the multiple NER-gene SNVs 427 

discovered in our cohort. Encouraged by a reconstitution of a bendamustine-induced 428 
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DDR through the pan-HDACi SAHA (vorinostat), we explored a novel first-in-class 429 
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Evolution of genomic events during T-PLL progression. 440 

To reconstruct the chronology of genomic alterations and hierarchic changes in 441 

clinically overt T-PLL, follow-up sampling is important. However, given the regularly 442 

short survival of T-PLL patients, this imposes a major challenge. Here, sequential 443 

samples (diagnosis (t1) vs follow-up (F/U, t2)) of up to 5 T-PLL (constant sample444

purities), were analyzed (Fig.S16a). Progression-associated changes were most 445 

prominent at the global mRNA level (Fig.S16b, TableS19). The few genes with 446 

unchanged dysregulated levels were frequently those that most significantly 447 

contributed to the difference of T-PLL to normal T-cells, i.e. CTLA4, SLAMF6 (down-) 448 

or SERPINA1 (upregulated; Fig.1, S16b). We also observed an increase of genomic 449 

complexity (in agreement with karyotypic data) with a trend for more sequential gains 450 

or losses of genes at t2, p=0.06 (Mann-Whitney test, Fig.S17a,b, TableS20). In a 451 

time-line resolution of exonic SNVs we observed most mutated genes to overlap 452 

between t1 and t2 including the prominent mutations in ATM, STAT5B, JAK1, and/or 453 

JAK3 (Fig.7a, TableS21). Overall, there were t1-restricted calls, a slightly increased 454 

overall number of SNVs at F/U, and affected genes specifically enriched in the 455 

progressed / post-therapy relapse sample. These observations point towards 456 

ongoing genomic instability affecting large-scale genomic lesions as well as towards 457 

dynamic changes of SNV-defined clones, likely also influenced by therapy. This 458 

dynamic clonal composition is furthermore highlighted by changes of VAFs of specific 459 

SNVs, especially involving ATM and/or JAK1/JAK3/STAT5B (Fig.7a, S17b). For 460 

ATM in F/U case-1 (TP094), the VAF increase was attributable to the loss of the 461 

remaining wt-allele at t2 (CN<1.5, Fig.4a), which was accompanied by an increased 462 



73 / 316

 

 
 

15 

downregulation of ATM mRNA: fct1=-1.63 vs fct2=-2.35). SVs (WES-based) and their 463 

read depths revealed a slight increase in TCL1A/TCR breakpoint frequencies in all 464 

cases alongside increased TCL1A mRNA expression (average fct1=4.24, p=0.09 vs 465 

fct2=11.34, p=0.03) with an additional breakpoint appearing at t2 in 1 patient.  466 

Although TCL1A carried prognostic information, this derived from a rather moderate 467 

variability at generally high levels (Fig.1). Based on global gene expression changes, 468 

we performed regression modeling to more sensitively infer on a yet-indolent phase 469 

or a particularly aggressive course after diagnosis through identification of genes with 470 

a wider range of expression and outcome-associated changes. A most informative 471 

index of 2 differentially expressed genes (RAB25, KIAA1211L) originated from a 472 

learning cohort and provided high discriminatory power toward clinical outcome 473 

based on stratified index values in the test cohort (Fig.S17d, Online Supplements). 474 

 475 

  476 
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DISCUSSION 477 

In this largest reported cohort of T-PLL, for the first time virtually every case (95.2%) 478 

fulfilling the WHO classification criteria1,34, demonstrated a genomic rearrangement 479 

involving a TCL1 gene and/or its overexpression (Fig.S2d). TCL1A augments signals 480 

from the most central growth receptor of T-cells, the TCR10. As in TCL1A-initiated 481 

murine T-PLL, this primary step towards perturbation of a protective T-cell homeo-482 

stasis35 entails additional downregulation of negative TCR regulators (e.g. CTLA4, 483 

SLAMF6) upstream of a prominent activation / proliferation profile (e.g. MYC, 484 

NFKB2). This appears as a shared signature by all 3 TCL1 oncogenes. 485 

As a phenotypic hallmark of T-PLL, we identified a pronounced genomic instability, 486 

demonstrated by complex losses and gains with newly defined MDRs and MARs and 487 

by rearrangements including novel molecular hybrids. ATM is the gene most 488 

recurrently affected (86%, Fig.7b,c) by allelic losses (52%) and/or clonally dominant 489 

mutations (66%). Beyond the presence of such LOF lesions, T-PLL cells revealed 490 

aberrant DSB-induced recruitment and diminished activation of ATM and its 491 

substrates. Similar to ATMnull A-T cells, p53 activation was severely impaired.  492 

Obviously, major ATM/p53-mediated branches of the DDR to restore genome 493 

integrity or to execute a safeguarding apoptotic response, e.g. to oncogenic stressors 494 

or to therapy, are disrupted in T-PLL. We show that some functions of ATM (e.g. 495 

damage sensing, platform recruitment, selective target engagement) are preserved 496 

at sub-sufficient levels, which also might be due to incomplete compensation by 497 

stand-in’s (i.e. ATR). Importantly, we provide first hints that consequences of 498 

functional ATM deficiencies (e.g. in regulated redox homeostasis or maintenance of 499 

telomere length15) are aggravated by specific effects of TCL1 (Fig.4). In support, we 500 

previously showed TCL1A to augment mitochondrial ROS biogenesis37. As full ATM 501 

incompetence per se is pro-apoptotic, the coinciding impact of TCL1 likely perturbs 502 

such protective programs making this a powerful pro-leukemogenic liaison. In fact, 503 

TCL1A can rescue the apoptotic phenotype of A-T cells while potentiating their 504 

chromosome fragility12,38. 505 

Indeed, our genomic data implicate constitutive activation of TCL1 together with defi-506 

cient ATM as the central molecular feature (Fig.7c, both lesions in 75.9%) that is 507 

functionally cooperative to initiate T-PLL (Fig.4). This preferred lesional partnership is 508 
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not observed in other T-cell lymphomas34,39. The spectrum of further pivotal altera-509 

tions (Fig.7b-d) includes amplified programs of MYC or miR-based dysregulations 510 

(e.g. AGO genes, MIR34 cluster), mutations in the JAK/STAT axis (52.7%) potentially 511 

towards late-stage TCR/cytokine independence, or affected cell-cell interaction and 512 

immune evasion. Emerging data, e.g. on the impact of JAK/STAT signaling on non-513 

canonical functions of histone modulators like EZH240 indicate yet unrecognized 514 

cross-talk between the affected functional branches in T-PLL. Our data further indi-515 

cate no role for viral integration, kataegis/APOBEC events, or chromothripsis.  516 

Based on the overall recurrence of catalogued aberrations, the most commonly af-517 

fected functional branch was the DDR (Fig.7c). However, at the regulatory level the 518 

category of epigenetics, predominantly defined by histone modifying molecules 519 

(EZH2, HDACs, HATs, and HMTs) was most frequently involved. This is intriguing 520 

because chromatin modulation is an increasingly recognized determinant of proper 521 

DSB processing and dictates treatment resistance26-28. In light of the need for non-522 

conventional therapies in T-PLL, we devised from that a successful interventional 523 

strategy of a unique customized HDAC-inhibiting/DSB-inducing agent that reconsti-524 

tutes a sufficient DDR in preclinical T-PLL models and for which a clinical trial has 525 

been commenced (NCT02576496).  526 

Overall, the presented molecular profiling and functional interrogations allowed the 527 

formulation of a first integrative model of step-wise T-PLL leukemogenesis to be ex-528 

panded on (Fig.7e). It provides a concrete basis for refined diagnostics, prognostica-529 

tion, and therapeutic concepts in this problematic disease. 530 

 531 

  532 
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METHODS 533 

Materials, protocols, associated references, supplementary results, and source data 534 

files are available online. Accession codes: GEP, WES, WGS and WTS data sets 535 

have been deposited under GEO XXXXXX the dbGaP XXXXXX.  536 

  537 
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FIGURE LEGENDS 640 

 641 

Figure 1: Gene expression profiling highlights the central role of constitutive 642 

TCL1A in association with dysregulated T-cell receptor signaling modulators. 643 

a) Heatmap: Differentially expressed genes in primary human T-PLL vs normal 644 

peripheral blood (PB) T-cells with top-scoring TCL1A (even with MTCP1 rearranged 645 

cases not removed). Right: qRT-PCRs for prominent genes in 5 controls/cases each 646 

(further genes in Fig.S2c). b) We re-derived a high-fidelity model resembling human 647 

T-PLL8. Top: Lckpr-hTCL1A allele-targeting construct used; below: leukemic PB (left, 648 

mid panel) and splenomegaly (right) at overt disease stage. Heatmap: differential 649 

GEPs of murine splenic CD8+ T-cells at chronic stage (further data Fig.S2e,f). 650 

Comparison: normal splenic CD3+ T-cells from C57BL/6 (background-and age-651 

matched wild-type) animals (3 hybridizations from T-cell pools of 3 mice each (total 652 

n=9)). c) Kaplan-Meier plot of disease-specific overall survival (log-rank test, time 653 

from diagnosis to event) of uniformly treated T-PLL patients stratified by low/high 654 

TCL1A mRNA expression (n=42, excluding 5% quantile ‘buffer’).  655 
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 656 

Figure 2: Legend at next page. 657 
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Figure 2: Large-scale genomic aberrations dominantly involve losses of ATM 658 

on chr.11q and gains of AGO2 and MYC on chr.8q. 659 

a) Number of differentially sized sCNA lesions in this T-PLL cohort (n=83) compared 660 

to publically available Affymetrix SNP 6.0 primary array data sets (all HapMap 661 

controlled, meta-analysis procedure in Online Supplements). b) Ideograms with 662 

average abundance of large-scale genomic lesions (Fig.S3a, TableS5 for GISTIC2.0 663 

analyses). c) Minimally deleted region (MDR) on chr.11 centering on ATM and 664 

minimally amplified region (MAR) on chr.8 defined by AGO2 (for MDRs on chr.22 and 665 

chr.13 see Fig.S3d). d) Verification of AGO2 amplification in T-PLL 057 with biallelic 666 

MYC (CN=2). Circular Binary Segmentation (CBS) with p-value ≤0.01 detects AGO2, 667 

but not MYC as significantly amplified using FISH. e) Total number of significant 668 

global gains and losses in T-PLL ‘monoallelic’ (CN≤1.5), “biallelic” (CN=2), and 669 

‘multiallelic’ (CN≥2.5) for ATM / AGO2 excluding these affected regions. f) Different 670 

overall survival across 66 T-PLL subjects stratified by ATM CN. 671 

  672 



83 / 316

 

 
 

25 

 673 

Figure 3: Legend at next page. 674 
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Figure 3: The mutational landscape of T-PLL reveals recurrent targeting of 675 

specific functional branches and uncovers new monoclonal variations in ATM. 676 

a) WES of 13 T-PLL tumor/germline (t/g)-pairs: meta-analysis (details in Online 677 

Supplements) comparing mutation frequencies of T-PLL cells to other malignancies 678 

(* 2 T-LGL cases sequenced as part of this study). b) Number of somatic SNVs per 679 

t/g-pair resolved for locations and characteristics (also TableS9); overall 1213 distinct 680 

SNVs: 5 frameshift insertions, 12 frameshift deletions, 7 non-frameshift deletions, 7 681 

non-frameshift insertions, 38 synonymous, 762 non-synonymous, 19 splice sites, 96 682 

ncRNA CDS, 39 stop-gains, 2 stop-losses, 208 within UTRs, and 17 alterations of 683 

unknown function. c) Mutated genes (frequencies font-size coded) identified in t/g-684 

pairs by WES and WGS. d) Mean VAFs (over all mutated cases) of a selection of 685 

mutated genes. e) Integrated WES and sCNA data to identify genes with gain of 686 

function (GOF, CN>2.2, VAF>0.5) and loss of function (LOF, CN<1.7, VAF>0.5) 687 

aberrations. f) Mapped ATM mutations identified in WES (33 cases) and targeted 688 

sequencing (20 cases) data sets and their clustering with FAT domain enrichment. 689 

Confirmed somatic: t/g-pairs; potentially somatic: tumor singles; see also Fig.S9 for 690 

validations and integrated meta-data with published ATM mutations in T-PLL. 691 

  692 
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 693 

Figure 4: Legend at next page. 694 
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Figure 4: ATM lesions are accompanied by a phenotype of altered DNA damage 695 

response that cooperates with the impact of constitutive TCL1A. 696 

a) ATM CNs and VAFs and mRNA expression for 49 T-PLL. Largest subsets among 697 

the 42 CN/SNV affected cases: LOH genotype (enriched FAT domain SNVs, p=0.01) 698 

followed by ATM-mut./biallelic cases (enriched frameshift or nonsense SNVs, p=0.01 699 

Fisher's exact test). UPDs in 3 cases: TP010, TP023, and TP054. b) Shorter overall 700 

survival of T-PLL subjects with lower ATM mRNA expression (GEP arrays, 5% 701 

quantile ‘buffer’). c) Abnormal formation and kinetics of DSB-induced (etoposide) foci 702 

in T-PLL cells (1 case, IF microscopy). Frequently higher basal yH2AX focus counts 703 

(and protein levels, not shown) and insufficient or delayed induction with 704 

inefficient/protracted removal. d) KAP1 (n=23) and p53 (n=9) phosphorylation upon 705 

10Gy ionizing irradiation (IR) in T-PLL cells; ATM/P53-competent HEK293. 706 

Representative examples with robust pKAP1 induction (e.g. ATM-wt/CN=2) or with 707 

reduced activation (median purity of T-cells 97.5%; also Fig.S10a-c). Despite at least 708 

weak pATM/pKAP induction for most cases, none showed a pP53 response, 709 

irrespective of genomic ATM status (lanes separated for genotype-based ordering, 710 

see also Fig.S10b). e) Aberrant cytoplasmic ATM retention upon DSB induction in T-711 

PLL (also Fig.S10d). f) Reduced telomere lengths (flow-FISH, age-correlated) in T-712 

PLL (1 telomere fluorescence unit (TFU) corresponds to 1kb pairs); see also 713 

Fig.S10f-h for WGS-based analyses and associations with ATM lesions. g) Enforced 714 

TCL1A expression in HH T-cell leukemia (doxycycline-inducible iHH) impairs 715 

resolution of DSB marks (left, quantified focus counts, Fig.S11a-e for controls). 716 

TCL1A overexpression mediates telomere shortening (flow-FISH; h) and promotes 717 

aneuploidy (i). j) Accelerated T-cell lymphoma onset and shorter animal survival by 718 

the ATMfl/fl/hTCL1Atg genotype in a model of inducible ATM-impairment and 719 

overexpression of human (h) TCL1A (details in Fig.S11f,g and Online 720 

Supplements). 721 

  722 
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 723 

Figure 5: Legend at next page. 724 
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Figure 5: Key genes in T-PLL are affected by structural variations that generate 725 

fusion transcripts and show differential exon usage. 726 

a) WGS of 3 T-PLL t/g-pairs to map intra- and inter-chromosomal translocations: 6 727 

lesions affecting 4 distinct chromosomes (TP001), 10 lesions affecting 5 728 

chromosomes (TP002), and 31 lesions affecting 10 chromosomes (TP003) 729 

(Fig.S12a for WES derived data). b) Fusion transcripts (n=96, TopHat-Fusion and 730 

oncofuse algorithms) identified by WTS of 15 T-PLL compared to healthy donor T-731 

cells (n=4). Two examples: PLEC-GRINA from aberrations on chr.8 and TCL1A-732 

TRAJ49 from inv(14) (Fig.S12b for validation). c) Mapping of breakpoints involved in 733 

inv(14) or t(14;14); WES data on 36 (including 3 sequential) cases. d) The FISH-734 

confirmed inv(14) of TP003 (see b; TCL1A-TRAJ49 fusion) was associated with 735 

TCL1A protein expression (flow-cytometry). e) Differentially spliced genes (selection 736 

from TableS17) identified by comparing WTS data of primary T-PLL cells (n=15; red 737 

lines) to healthy-donor T-cells (n=4; blue). Green arrow: exons of significantly altered 738 

usage. 739 

  740 
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Figure 6: Legend at next page. 742 
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 770 

Figure 7: The integrated lesional make-up of T-PLL and a postulated disease 771 

model around the core lesions of TCL1/ATM as dominant drivers. 772 

a) VAFs of specific mutations in pivotal T-PLL genes (ATM, JAK1, JAK3, and 773 

STAT5B) at t1 and t2 plotted as continua. No ploidy-correction was necessary as 774 

there was no polyploidy (usually diploidy despite single chromosome aneuploidy or 775 

CN complexity). Asterisks: therapeutic strategies (details in Fig.S16a). b) Gene-776 

centric view of global molecular events across all analyzed T-PLL (one circle per 777 

gene). Somatic SNVs with at least one damaging prediction considered. Y-axis: 778 

sCNA-affected (CN-mean over all T-PLL); x-axis: SNV-affected (mean VAF over all 779 

detected mutations); circle size: SNV affected (frequency of SNV detected among all 780 

cases); circle border coloring: SNV FDR. c) Presence of dominant lesions / 781 

oncogenic events detected in GEP (high/low expression), sCNA (gain/loss), and SNV 782 

(mutation present/absent) profiling summarized for all T-PLL (red: lesion present, 783 

blue: lesion absent, grey: not analyzed). Chromosomal complexity: moderate with 784 

<2000 (n=25) and high with >5000 (n=26) sCNA-affected genes. d) GEPs 785 

summarized in meta-pathway heatmap. For each comparison the 50 most 786 

upregulated and 50 most downregulated (p<0.05) unique genes were used as an 787 

input for gene-set enrichment in GO and KEGG STRINGdb9_05 data bases. For 788 
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each GEP the 5 most significant pathways are pooled (p<0.05) as a matrix for visual 789 

overlap. Intensities correspond to the FDR of each GEP within a gene set and 790 

elucidate similar dysfunctions in T-PLL subsets, e.g. ‘regulation of T-cell activation’ in 791 

several AGO2 / MYC associated subsets. e) Extrapolated model of key aberrations 792 

and functional cellular consequences in T-PLL development. Chronology 793 

assumptions (i.e. early driver events of TCL1 and ATM in a recent thymic emigrant) 794 

are based on identified frequencies in sCNA data and tumor fractions in sequencing 795 

data sets. The ‘TCL1’-lesion refers to the deregulation of any TCL1 family member. 796 
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Figure S1: Study cohort of 94 T-PLL and controls – platforms and cell isolation. 43 
a) Purified T-cells from 94 T-PLL patients (TableS2  for additional information) were 44 
analyzed using various supplementing high-throughput profiling platforms (overlap 45 
indicated): Illumina HumanHT-12 v4 BeadChip arrays (n=70 cases) for gene 46 
expression profiling (GEP), Affymetrix SNP 6.0 arrays (n=83 cases) for analysis of 47 
somatic copy-number alterations (sCNAs), and the Illumina HiSeq2000 next-48 
generation sequencing (NGS) platform. On the latter, whole-genome sequencing 49 
(WGS; n=3 matched pairs of same-patient tumor/germline (t/g) DNA, one tumor 50 
single), whole-exome sequencing (WES; n=13 t/g-pairs in addition to n=23 tumor 51 
singles including 3 cases with sequential follow-up (F/U) samples), and whole-52 
transcriptome sequencing (WTS; n=15 tumors) were performed. Further cases (n=20 53 
tumor ‘singles’) were analyzed by a customized targeted amplicon sequencing (TAS) 54 
panel including ATM (exons 1-63), JAK1 (exons 9-15), and JAK3 (exons 10-17) 55 
using the Illumina MiSeq platform and STAT5B (exon 16) analyzed via Sanger-56 
sequencing based methods. CD3+ pan T-cells isolated from peripheral blood (PB) of 57 
healthy donors with a similar age-median were used as “normal” controls for GEP 58 
(n=10) and for WTS (n=4). For sCNA profiling patient-derived germline control DNA 59 
from 13 t/g pairs of the 83 cases) were used as a pooled reference alone or in 60 
combination with publically available HapMap data sets (http://hapmap.ncbi.nlm. 61 
nih.gov/).  62 
b) The isolation strategy of PB tumor cells and matched same-sample germline 63 
controls from PB mononuclear cells (PBMCs) of T-PLL patients employed a two-step 64 
magnetic separation (MACS columns) process (shown is case TP010). (1) Positive 65 
enrichment of T-PLL tumor cells: magnetic beads bound to anti-CD4 or anti-CD8 66 
antibodies (Microbeads, Miltenyi Biotec) and LS Columns (Miltenyi Biotec) were 67 
used. The specificity of beads was selected according to the individual 68 
immunophenotype. (2) Depletion of residual T-PLL cells from the flow-through 69 
designated as normal control: Depletion Columns (LD, Miltenyi Biotec) were used to 70 
remove residual CD4 or CD8 positive cells from the flow-through obtained from step 71 
1. For further details, see Online Methods  section. 72 
  73 
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 74 

Figure S2: Functional annotations of differentially  expressed genes in T-PLL 75 
with technical (qRT-PCR) and biological ( Lckpr-TCL1Atg mice) validations.  76 
a) Affiliation of differentially expressed genes (2569 genes; |fc|≥1.5; p ≤0.05; q ≤0.05) 77 
to functional groups in Ingenuity® Pathway Analysis (IPA): proportion of genes [%] 78 
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associated with the respective process in relation to the total number of differentially 79 
expressed genes and specific p-values (black bars). Gene sets belonging to the 80 
functional groups of ‘growth and proliferation’, ‘death and survival’, and ‘host defense 81 
and autoimmunity’ were most significantly enriched (see Fig.1a  for a heat map of 82 
TOP100; TableS3  for all differentially expressed genes). b) To test whether gene 83 
sets previously identified to be deregulated in T-cell malignancies or associated with 84 
T-PLL are differentially expressed in our set as well, we analyzed for overlaps using 85 
the Broad Institute’s GSEA1,2 platform in addition to general annotations by IPA 86 
(FDR<0.01, n=22 gene sets; across all MsigDB gene sets). Four examples of 87 
identified functional relevance to T-PLL show significant enrichments of genes that 88 
were: (1) previously associated with T-PLL (transcriptomes of 8 CD3+ normal donor-89 
derived PB cell samples vs 5 T- PLL3), (2) identified as MYC targets (transcriptional 90 
program of lymphocytes in response to MYC expression4), (3) activated by ionizing 91 
radiation regardless of ATM status in murine lymphoid tissue5, and (4) identified to be 92 
targets of epigenetic modification (microarray analyses of fibroblasts from DNMT1 93 
knockout mice6). c) qRT-PCR validations of GEP data, including genes encoding 94 
TCL1 family members (for TCL6 independent gene status is still controversial7), 95 
TCR-related signaling molecules, and apoptosis-/DDR-associated factors (5 T-PLL 96 
vs CD3+ pan T-cells from PB of 5 healthy donors; see Fig.1a  for examples of 97 
TOP100 differentially expressed genes). d) TCL1 gene family status by protein / 98 
mRNA: TCL1A and/or MTCP1 pos. in 90.4% (n=75/83) vs neg. or n/a in 9.6% (8 99 
cases). Of the latter, 2/8 showed elevated TCL1B expression, 2/8 were negative for 100 
all 3 TCL1 family members, and for 4/8 no additional data other than lack of TCL1A 101 
protein was available (n/a). Genomic data: (not shown): inv(14)/t(14;14) present in 102 
87.0% (n=47/54); t(X;14) in 7.4% (n=4/54). Overall, combining protein/mRNA with 103 
genomic information: 95.2% (n=79/83 cases) could be assigned to overexpression or 104 
genomic rearrangement of at least one TCL1 family member. GEPs of the 2 105 
exclusively TCL1B-pos. cases or of the 2 cases without detectable expression of any 106 
TCL1 family member were similar to those of TCL1A-pos or MTCP1-rearranged 107 
cases (not shown). e) Lckpr-TCL1A+/- T-cells and those of age-matched C57BL/6 108 
(wild-type) mice were enriched from splenic lymphocytes by MACS® protocols. 109 
Stages: ‘chronic phase’ (30-70% tumor cells in PB and spleen, average age 12 110 
months, n=3) and ‘exponential phase’ (mean PB lymphocyte doubling time (LDT) 12 111 
days; SEM 0.8; >80% tumor cells in PB, >90% in spleen, average age 15 months, 112 
n=5). Examples for cell populations submitted to GEP arrays (Fig.1b, S2f ) and used 113 
in immunoblots (Fig.S6e ). f) GEPs of TCL1A-induced murine T-cell leukemia at 114 
‘exponential phase’ (enriched splenic CD8+ T-cells) using Affymetrix GeneChip 115 
Mouse Gene 1.0 ST Arrays. Purified splenic CD3+ pan-T-cells isolated from C57BL/6 116 
mice (3 hybridizations from T-cell pools of 3 mice each (total n=9) were used as 117 
matched controls. Besides the commonly affected TCR signaling modulators 118 
SLAMF6 and CTLA4, we observed an additional deregulation of T-PLL characteristic 119 
oncogenes (e.g. MYC) in overt murine leukemia at the exponential growth phase. 120 
See also Fig.1b  showing the differential expression of genes in ‘chronic-phase’ 121 
expansions and TableS4  listing all differentially expressed genes.  122 
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 123 

Figure S3: Legend at next page. 124 
  125 
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Figure S3:  Lesions identified in sCNA profiling dominantly inc lude losses at 126 
chromosome 11 ( ATM) and novel gains located on chromosome 8 ( AGO2). 127 
Globally, we identified gains (CN>2.5) in 19,590 genes and losses (CN<1.5) in 128 
27,193 genes (TableS6 ). The number of sCNA-affected genes (median 3354) varied 129 
inter-individually (e.g. 13,862 in TP038 vs 42 in TP033). a) GISTIC2.0 8 analyses 130 
showing significant gains and losses in 83 T-PLL compared to 13 patient-derived 131 
normal DNAs confirmed the enrichment of lesions on chr.8 and chr.11 (compare Ta-132 
bleS5 and Fig.2b ). Among the genes that exhibit both focal gains and deletions (cen-133 
ters of wide peaks) with 90%-confidence level are GSTM1 (Glutathione S-134 
Transferase Mu 1; chr.1; CN=2.57) and LCE3C (Late Cornified Envelope 3C; chr.1; 135 
CN=1.64), which are also likely due to complex rearrangements. b) Heat map show-136 
ing the color-coded CN of TOP200 gained / lost genes (CN mean across all T-PLL; 137 
red: CN>2.5; blue: CN<1.5). Genes characterizing the minimally amplified region 138 
(MAR) on chr.8 and the minimally deleted region (MDR) on chr.11 (see Fig.2c ), were 139 
affected at the highest frequencies of CN events (in %; compare TableS6 ). Chr.11 140 
MDR: Slightly less frequently involved than ATM were the cell cycle factor NPAT, the 141 
mitochondrial acetyltransferase ACAT1, and the Ras ubiquitin ligase CUL5. Chr.8 142 
MAR: AGO2 is more frequently overrepresented than MYC. c) Kaplan-Meier plot of 143 
disease-specific overall survival (OS) of T-PLL subjects according to ‘CNA complexi-144 
ty’; stratification by total number of sCNAs (high: >100 genes affected; low: <50 145 
genes affected; log-rank test, time from diagnosis to event, n=63). For an association 146 
of MDR/MAR lesions with the total number of CN events and the association of ATM 147 
CN with OS see Fig.2e,f . Presence of the MAR on chr.8 did not correlate with OS. d) 148 
MDRs on chr.22 (top) and chr.13 (bottom) (supplementing data to Fig.2b,c ) showing 149 
restrictions to GSTT1 (glutathione S-transferase theta 1, lost in 24.1% of cases) and 150 
ANKRD10/ARHGEF7 (ankyrin repeat domain 10 / Rho guanine nucleotide exchange 151 
factor, lost in 15.7% of cases), respectively (average CN=1.91 / 1.82). e) Verification 152 
of biallelic AGO2 in healthy donor derived PBMCs using FISH (control for the FISH 153 
analyses of Fig.2d) .  154 
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 155 

Figure S4: Legend at next page. 156 
  157 
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Figure S4: Gene expression signatures associated wi th specific sCNAs or with 158 
cases defined by stratified expression of respectiv ely affected genes. 159 
Despite a considerable co-occurrence of the CNAs at chr.11 (MDR) and at chr.8 160 
(MAR) per each case, there was a sizable fraction of T-PLL with discordance be-161 
tween the presence of these CNAs, i.e. 49% of cases with an ATM loss did not har-162 
bor an AGO2 gain.  163 
a) Heat maps showing the differential expression (TOP100) of genes specifically as-164 
sociated with chr.11 MDR and with chr.8 MAR. For that, GEPs of cases carrying 165 
losses at chr.11 were compared to cases ‘biallelic’ for chr.11 (ATM CN<1.7 vs. CN=2 166 
according to comparison to HapMap controls; chr.8 affected cases excluded) and 167 
GEPs of cases with chr.8 gains were compared to cases ‘biallelic’ for chr.8 (AGO2 168 
CN>2.2 vs. CN=2 according to comparison to HapMap controls; chr.11 affected cas-169 
es excluded). Among the genes that ‘defined’ the global differences of T-PLL cells to 170 
normal T-cells regardless of sCNA status (see Fig.1a ) some were specifically asso-171 
ciated with these prominent sCNAs (i.e. SLAMF6 downregulation with presence of 172 
the chr.11 MDR and CTLA4 downregulation with chr.8 gains (MAR); TableS7  for ad-173 
ditional information). These MDRs/MARs are associated with intuitive fold-changes 174 
(fc) of expression of their defining genes, ATM and AGO2, respectively. There was 175 
no association of ATM or AGO2 expression levels with the ‘opposite’ sCNA lesion.  176 
b) Heat maps showing the differential expression (TOP100) of genes specifically as-177 
sociated with stratified ATM and AGO2 mRNA abundance; comparison: 10 T-PLL 178 
with highest vs. 10 cases with lowest expression (fc of ATM and AGO2 expression 179 
indicated). AGO2 mRNA levels are significantly elevated in cases with lowest ATM 180 
expression (FC= 1.73, p=0.02), while the generally low ATM expression is not differ-181 
ent between AGO2 high vs. low cases (see Table S8 ).  182 
c) Gene expression signatures associated with the presence of chr.8 and chr.11 CN 183 
lesions (see a) were compared to those derived from stratified ATM and AGO2 184 
mRNA levels (see b). The GEPs of exclusively chr.11- and chr.8-affected cases ap-185 
peared to be determined to a large degree by the minimal-region defining genes ATM 186 
and AGO2, based on marked overlap of GEPs: 501 of 860 differentially expressed 187 
genes associated with the chr.11 MDR are likewise associated with altered ATM 188 
mRNA expression; 62 of 493 differentially expressed genes associated with chr.8 189 
aberrations are likewise associated with altered mRNA AGO2 expression.  190 
Together, both frequent sCNAs and the respectively altered expression of their defin-191 
ing genes (ATM, AGO2) are associated with unique and joint signatures, but overall 192 
with a large number of genes that displayed the most differential expression (vs CD3+ 193 
pan T-cells) in the entire cohort of T-PLL (not stratified by any sCNA, Fig.1a ), i.e. 194 
CD83, SLAMF6, GIMAP5, GIMAP6, CTLA4, or MYC. Overall, this highlights gene-195 
specific and region-defined contributions to the overall GEP of T-PLL (TableS7, S8 ).  196 
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 197 

Figure S5: Legend at next page.  198 
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Figure S5: Associations of large-scale genomic lesi ons and deregulations of 199 
global gene expression in T-PLL. 200 
a) Circos plot mapping sCNAs and deregulations of gene expression on chromoso-201 
mal loci (%: frequencies of sCNA events across entire T-PLL cohort). b) GEPs super-202 
imposed on sCNAs with global data per case. CN lesions (exclusively monoallelic) 203 
were correlated with the differential expression of genes located in the respective 204 
regions. Although sCNA-associated changes in GEP were of generally intuitive direc-205 
tionality, a larger proportion of genes showed no down- / upregulation in the context 206 
of genomic losses / gains. c) Summary of b: pie charts illustrating the association of 207 
gene-specific sCNA events with differential expression of genes. For the majority of 208 
genes, their transcript abundance remained unchanged upon monoallelic losses or 209 
gains; a smaller percentage of sCNA-affected genes shows an altered expression 210 
intuitively corresponding to the respective genetic change (combination of GEP and 211 
sCNA profiling data; n=60 T-PLL cases; blue: downregulated; red: upregulated; 212 
white: unchanged; grey: not annotated (N/A). All CNA events are monoallelic. 213 
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 214 

Figure S6: Changes in transcript and protein abunda nce of ATM and MYC are 215 
not entirely explained by somatic CNA events on chr .11 and chr.8, respectively. 216 
a-c) Although the genes affected by the chr.11 MDR / chr.8 MAR showed decreased 217 
(ATM) and increased (AGO2, MYC) expression (array-based, qRT-PCR, immunob-218 
lots), this was rather generally disease-associated than confined to the presence of 219 
the specific genomic CN lesion (see also Fig.S4 ). a) qRT-PCR: mRNA expression of 220 
AGO2 and MYC was generally upregulated, while ATM expression was downregu-221 
lated in primary T-PLL cells (n=5 cases) vs. CD3+ pan T-cells isolated from PB of 222 
healthy donors (n=5); compare GEP data in TableS3 . b) mRNA expression values 223 
[log2] of MYC and AGO2 derived from GEP analyses in CD3+ pan T-cells isolated 224 
from healthy donors (green box), and T-PLL cases stratified as ‘AGO2/MYC biallelic’, 225 
and ‘AGO2/MYC multiallelic’ (red box) according to sCNA profiling (compare Fig.2  226 
and TableS6 ). While AGO2 mRNA levels showed a trend for a higher expression in 227 
‘AGO2 multiallelic’ cases, MYC mRNA expression seemed to be generally elevated 228 
in T-PLL irrespective of the presence of a MYC gain, pointing to additional mecha-229 
nisms upregulating MYC expression that are independent of genomic amplification. 230 
c) Immunoblots on primary human T-PLL cells, n=6 (ATM) and 7 cases (MYC), and 231 
CD3+ pan T-cells from PB of healthy donors. Quantifications according to HSC70 232 
loading control via ImageJ®. Protein expression of ATM and MYC was independent 233 
of the presence of the respective sCNA lesion, e.g. showing ATM absence (e.g. 234 
TP054 with biallelic ATM SNVs) and MYC upregulation in CN-biallelic cases. d, e) 235 
Murine TCL1A-driven T-PLL-like expansions generally revealed a lower sCNA abun-236 
dance and recurrence (average 70.7 sCNAs in chronic phase (n=3) and 74.8 sCNAs 237 
in exponential phase (n=5; CN<1.8 or >2.2)). d) qRT-PCRs of ATM and MYC mRNA 238 
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in splenic T-cells of background-matched wild-type and Lckpr-TCLA1+/- mice reveals a 239 
downregulation of ATM and an upregulation of MYC although respective genetic CN 240 
lesions are not observed in leukemic T-cells of these TCL1A-tg mice, again pointing 241 
at CN-independent modes of deregulation (see Fig.S2e  for cell enrichment, Fig1b, 242 
S2f and TableS4  for GEP derived mRNA expression levels). e) MYC protein expres-243 
sion in TCL1A-driven murine leukemic T-cell expansions: immunoblot of splenic T-244 
cells from background- and age-matched wild-type control mice (2 T-cell pools of 3 245 
mice each (total n=6)) and from Lckpr-TCL1A+/- mice with exponential phase leukemia 246 
(for definitions see Fig.S2 , n=5) corroborated the data on upregulation of MYC 247 
mRNA in the usually MYC ‘biallelic’ murine leukemias (see Fig.S2e  for cell enrich-248 
ments) and paralleled the sCNA-independent MYC upregulation in human T-PLL. 249 
Quantification: ß-actin ratio via ImageJ®.   250 
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 251 

Figure S7: Legend at next page. 252 
  253 



108 / 316

“Integrated genomic profiles of T-PLL” Schrader A, Crispatzu G. et al. 2016 SUPPLEMENTARY INFORMATION 

15 

Figure S7:  Characteristics of WES detected mutations in T-PLL.  254 
Whole exome sequencing (WES) of 13 T-PLL tumor/germline (t/g) control pairs tar-255 
geted 439,651 exons in 20,000 genes achieving a 44.1Mb target coverage at a min-256 
imum of 26-fold for both tumor and matched germlines. Since we observed a high 257 
portion of G>T (and C>A) transversions in one batch of WES samples indicative for 258 
oxidative DNA damage (8-oxoguanine (8-oxoG) lesions) during sample preparation, 259 
we applied additional filters similar to the ones used in Costello et al. 2013 9 (see 260 
online methods section for details). a) Left: Frequencies of somatic base exchanges 261 
calculated in the 13 t/g-paired WES data sets revealed a trend toward overrepresen-262 
tation of G-to-T transversions. Right: Lego plot of SNV (PopFreq<0.01 or COSMIC-263 
annotated, OxoG corrected) frequencies with trinucleotide context and overall per-264 
centages in pie chart. C-to-A and G-to-T transversions still represent the largest por-265 
tion of (39.8%) exchanges observed in a di-thymidine (T_T) context. b) GSOA in 266 
1497 genes harboring mutations in exonic regions (PopFreq<0.01) revealed an 267 
overrepresentation of generally cancer-associated pathways. Proportion of genes [%] 268 
associated with the respective process in relation to the total number of mutated 269 
genes (grey bars) and specific p-values (black bars) are given. c) The list of genes 270 
recurrently mutated with highest frequencies across all analyzed T-PLL cases is 271 
headed by ATM and STAT5B (only SIFT10/PolyPhen2 11 and PopFreq-filtered muta-272 
tions included; compare TableS9  and see Fig.3c for a selection of functionally anno-273 
tated genes). STAT5B affected cases were enriched for ATM SNVs (n=6/7, 85.71%). 274 
d) Mutation rates by locus mapped on chr.17 (found to carry most mutations) of case 275 
TP002, carrying a frameshift deletion mutation in the MSH3 gene encoding for a DNA 276 
mismatch repair factor. To assess for a potential regional mutational heterogeneity 277 
due to a dysfunctional mismatch-repair (mutations are no longer enriched in late rep-278 
licating heterochromatin12), we binned somatic mutations (paired; PopFreq<0.01 or 279 
COSMIC-annotated) into 1Mbp regions and mapped them to chr.17. We observed a 280 
regional mutational heterogeneity pointing to no particular defects within the mis-281 
match-repair system. There were no indications for specific microsatellite instability 282 
(only 1/11928 sites somatic by MSIsensor; 0.01%). e) Tumor fractions (variant allele 283 
fractions, VAFs) of all identified mutations detected in WES data (% positive reads) 284 
according to their overall frequencies (Y-axis). The incidence of mutations showing a 285 
high clonality (80-100% tumor fraction) was rather low (1.48% of all mutations) point-286 
ing to a small number of clonal driver mutations compared to a high number of sub-287 
clonal passenger SNVs (38.04% of all mutated genes with VAFs ≤10%; see also 288 
Fig.3d,e  and TableS9  for tumor fractions of specific genes). 289 
 290 
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 291 

Figure S8: Legend at next page. 292 
  293 
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Figure S8: The prominent cluster of genomic alterat ions in JAK/STAT signaling 294 
pathway components confers specific gene expression  changes, but respec-295 
tive SNVs do not predict basal JAK/STAT phospho-act ivation levels.  296 
a) Missense mutations in STAT5B, JAK1, and JAK3 genes identified in whole-exome 297 
(WES) and targeted amplicon sequencing (TAS) data sets clustered within the SH2 298 
and pseudokinase domains (compare Fig.3  and TableS9 ). Confirmed somatic: 299 
tumor/germline (t/g)-pairs (WES; n=13); potentially somatic: tumor singles (WES: 300 
n=20; TAS: n=20). b) 3D-molecule structures of STAT5B, JAK1, and JAK3 with 301 
indicated (red arrow) locations of amino acid (aa) exchanges (via cBioPortal13). c) 302 
Immunoblot analysis showing protein levels with phosphorylation status (activating 303 
motifs) of JAK1, JAK3, and STAT5B in primary T-PLL cells (7 cases) with known 304 
STAT5B / JAK1 / JAK3 mutation status. No obvious association of analyzed basal 305 
phospho-activation levels with the presence of a respective mutation. Controls: CD3+ 306 
pan T-cells isolated from PB of healthy donors (n=2). Lysates from IL2 stimulated HH 307 
cells represent positive controls. Quantification: ImageJ®, represented as bar charts, 308 
Student’s t-test. d) Heat map showing the differential expression of genes (TOP100, 309 
178 differentially expressed probes) associated with STAT5B / JAK1 / JAK3 / IL2RG 310 
mutations. The comparison included: STAT5B / JAK1 / JAK3 / IL2RG mutated T-PLL 311 
(7 cases) vs. 4 T-PLL with wild-type constellation of all of these genes. Differentially 312 
expressed genes include e.g. IL1R2, CCR7, CD8B, JAK2, and known JAK/STAT 313 
target genes like IL8, MYC, and OAS1; compare TableS11  for all differentially 314 
expressed genes and TableS12  for an IPA® analysis showing the functional 315 
association of those genes to ‘cell death and survival’, ‘PI3K signaling’ and 316 
‘interleukin signaling’. e) Immunoblots showing protein levels with phospho-activation 317 
status of murine JAK1, JAK3, and STAT5B motifs (species-cross reactivity of the 318 
antibody) in primary splenic T-cells of Lckpr-hTCL1A+/- mice (overt exponential phase, 319 
n=5). Controls: splenic T-cells of genetic-background and age-matched wild-type 320 
animals (pools of T-cell isolates from 6 animals). Quantification: ImageJ®, 321 
represented as bar charts, Student’s t-test.   322 
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 323 

Figure S9: Validations of ATM somatic mutations and clustering of ATM SNVs 324 
in the FAT and PI3K domains. 325 
a) ATM mutations detected in tumor/germline (t/g)-pairs by whole-exome sequencing 326 
(WES) are validated by Sanger sequencing. Eight distinct SNVs were confirmed as 327 
somatic mutations present in 8/9 T-PLL (compare TableS9 ). b) Scheme of the ATM 328 
molecule with mapping of mutations identified by WES,  targeted amplicon 329 
sequencing (TAS), and Sanger sequencing (i) according to their description in this 330 
series vs previous publications14–18 (all published data sets carrying sequencing data 331 
on ATM in T-PLL were selected) and (ii) according to their calling from t/g-pairs 332 
(proven somatic, top) vs from tumor singles (potentially somatic, bottom). A clustering 333 
in the FAT and PI3K domains is revealed (compare Fig.3f  for a scheme showing 334 
ATM SNVs only identified as part of this study) and a dominant missense character 335 
of mutations is described (unlike the dominant truncating mutations identified in A.T 336 
individuals19). Mutations detected in more than one case carry information on the 337 
number of respective cases (case numbers in brackets).  338 
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 339 

Figure S10: Legend at next page.  340 
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Figure S10: ATM in primary T-PLL cells is hypomorph ic as per canonical effec-341 
tor functions like yH2AX focus induction, KAP1 and P53 phosphorylation, ATM 342 
nuclear translocalization, or telomere maintenance.  343 
a) Control system for activation of the ATM target KAP1 (see Fig.4d ): lymphoblastoid 344 
B-cell lines from A-T patients20 (AT65RM, ATM∆/∆, c.6573-9G->A/ c.8814_8824del11, 345 
ATM protein absent) or unaffected relatives (AT-CT, ATMwt) were pretreated with the 346 
ATM kinase inhibitor KU55933 at 50µM for 2hrs. Cells were then exposed to 10Gy 347 
ionizing irradiation (IR) and pKAP1Ser824 levels were detected 1hr thereafter by 348 
Western blot. IR-induced phosphorylation of KAP1 is only detectable in ATM wild-349 
type (wt) cells without KU55933 treatment underlining the specificity of ATM 350 
mediated KAP1 phosphorylation. b) KAP1Ser824 phosphorylation upon 10Gy IR was 351 
assessed in primary T-PLL cells of 23 cases. The 6 cases shown serve as 352 
informative supplementation to Fig.4d . Note that separation of lanes in the 353 
presentation of Western blot data was done in order to better assemble cases 354 
according to their ATM genotype. Overall, the bulk of cases showed residual pKAP1 355 
induction, despite genomic ATM lesions. T-PLL with ATM in CN-biallelic / SNV-wt 356 
constellation usually revealed IR-induced KAP1 phospho-activation, while the rare T-357 
PLL with truncating mutations (Q1906*, no ATM expression, comparable to A-T cells, 358 
above) or some few cases with CN monoallelic / ATM mutated status did not (i.e. 359 
TP055). c) There is a correlation of the capacity to phosphorylate KAP1 upon IR with 360 
the capacity to induce / remove yH2AX foci following etoposide treatment (see 361 
Fig.4c ). Cases with regular biochemical IR responses show normal yH2AX kinetics. 362 
More than half of cases with abnormal yH2AX platform induction / resolution show 363 
reduced pKAP1Ser824 responses. Quantification of IR response by densitometry of 364 
immunoblots: the levels of pKAPSer824 protein relative to pan-KAP1 and housekeeping 365 
controls were normalized to induced pKAP1Ser824 levels in the AT-CT control cell line 366 
(set to 100%). d) Subcellular ATM localization in IF microscopy of cytospins of 367 
untreated vs etoposide-treated primary T-PLL cells and PBMC controls 368 
(supplementary data for Fig.4e ; here all analyzed cases (top) and quantification (bar 369 
chart at bottom). Upper IF panel: Only 3 of 11 cases (green marks) show a 370 
predominant nuclear translocalization of ATM upon DSB induction comparable to 371 
healthy-donor PBMCs (one representative example of 3 experiments shown). Among 372 
cases with regular ATM subcellular kinetics, one harbored an ATM-biallelic / SNV wt 373 
constellation, one had an ATM biallelic genotype with a mutation (R1875fs), and one 374 
an ATM-monoallelic genotype with a mutation in the FATC domain of ATM 375 
(R3008H). The 8 cases without proper ATM translocalization (red marks) harbored 376 
heterogeneous, but usually showed affected (7 cases) ATM genotypes. Bottom: The 377 
proportion of nuclear ATM in relation to total ATM expression (quantification of 378 
fluorescence via ImageJ software per cell) upon etoposide induced DNA damage is 379 
shown as a bar chart (mean of 5 cells). e) 2',7'-dichlorodihydrofluorescein diacetate 380 
(H2DCFDA) based measurements of reactive oxygen species (ROS) induction upon 381 
T-cell receptor (TCR) activation comparing healthy T-cells (grey dots) to primary T-382 
PLL cases (information on the ATM genetic status: orange - CN<1.5, no mutation; 383 
red -  CN<1.5, mutated; black dots - no genomic ATM status available). Although 384 
ROS induction upon CD3/CD28 crosslinking seems to be independent of the 385 
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presence of an ATM sCNA / SNV, there was a generally higher increase of ROS 386 
levels in stimulated T-PLL cells compared to CD3+ pan T-cells isolated from PB of 387 
healthy donors. This observation might be linked (1) to a sub-standard performance 388 
of the ROS attenuator ATM in T-PLL, (2) to the TCR-sensitizer function of TCL1 21, 389 
(3) to TCL1's effect on mitochondrial ROS generation22, or (4) to other aberrancies 390 
such as inefficient buffer systems. It fits also well with the high abundance of G-to-T 391 
transversions observed among all WES-detected SNVs (compare Fig.S7a ), which 392 
can specifically result from ROS induced DNA damage23. f) Telomere lengths were 393 
evaluated according to WGS data using the ‘telseq’24 algorithm. The difference 394 
between tumor and germline samples (n=3 paired WGS data sets and the one WGS 395 
tumor ‘single’ included) is of borderline significance (p=0.1, Wilcoxon paired test; 396 
p=0.06 unpaired; consider small sample size). g) Telomere lengths in 26 primary T-397 
PLL cases (compare Fig.4f for an age-adjusted depiction), 4 CLL, 2 T-LGL, and 2 398 
cases of Sézary Syndrome. Measurements were done by flow-FISH and healthy 399 
controls were used for age-adaption as described previously25; one telomere 400 
fluorescence unit (TFU) corresponds to one kilobase pair(s). The data confirm 401 
indications of particularly short telomeres in T-PLL in a previous smaller series26. h) 402 
Telomere lengths (flow-FISH) were intuitively associated with ATM lesions (sCNAs 403 
and sSNVs) showing shorter telomeres in cases with low ATM CNs and high ATM 404 
VAFs.  405 
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Figure S11: Legend at next page.  407 
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Figure S11: Ectopic expression of TCL1A affects the DDR and cooperates with 408 
ATM deficiency towards accelerated T-cell leukemogenes is. 409 
Supplements to Fig.4g-j . a) Schematic representation of the TCL1A expression 410 
vector stably transfected in HH mature T-cell leukemia cells (resulting line ‘iHH’). 411 
TRE: tetracycline responsive element; puromycin: puromycin resistance cassette; 412 
IRES: internal ribosomal entry site; rtTA3: reverse tet-transactivator 3. Inducible 413 
TCL1A expression: upon doxycycline (Dox) treatment, release of the transactivator 414 
protein from TCL1A promoter binding results in induction of TCL1A transcription. b) 415 
Immunoblots for yH2AX in iHH / HH cells (no ATM sCNA, see also DSMZ catalogue 416 
#ACC707 for karyotype of HH cells) upon etoposide-induced DSBs (50µM; 1hr) 417 
monitored over 24hrs. Doxycycline-induced TCL1A expression enhances yH2AX 418 
levels in response to DSBs induction (compare Fig.4g , S11c,d  for parallel time lines 419 
of immunofluorescence (IF) microscopy based recordings of yH2AX foci). c) IF 420 
stainings of cytospins of iHH cells (+/- doxycycline pre-exposure) after DSB induction 421 
by etoposide (50µM; 1hr). Ectopic TCL1A expression and its impact on the kinetics of 422 
yH2AX, RAD51, and TP53BP1 focus induction / removal: delayed resolution in the 423 
presence of TCL1A. Representative images are shown; overall focus quantifications 424 
(counts) and representative yH2AX time lines are presented in Fig.4g ). d) As in c) for 425 
iHH cells (above), here for the parental HH cells, including doxycycline controls; 426 
representative images and focus counts (means, SEM) are shown. In the absence of 427 
a transfected TCL1A construct, no difference in focus induction and resolution was 428 
detected between the +/- doxycycline conditions. e) iHH-TCL1A cells and HH 429 
parental controls were treated with doxycycline for 24hrs (1µg/ml). Cell cycle profiles, 430 
determined by DNA content assessments using propidium-iodide based flow-431 
cytometry (2 replicates), showed no altered proliferation of TCL1A expressing HH 432 
cells, allowing to exclude increased replicative stress as a main cause for the altered 433 
DDR (net gain in genomic instability) in the presence of TCL1A.  434 
f) Hematopoetic stem cells (HSCs) of Rosa-CreERT2;ATMfl/fl mice were retrovirally 435 
transduced with hTCL1A or a GFP control vector and transplanted into irradiated 436 
hosts. Recombination of the ATM locus (fl/fl) was induced by tamoxifen (Tamox.) 437 
injections 8 weeks after transplantation (1mg/day i.p. injected for 5 consecutive days; 438 
see Fig.4j  for scheme of experimental setup and Kaplan-Meier analysis). Shown are 439 
PCR results from animals that were taken out from observation right after the end of 440 
tamoxifen injections. Neg. ctrl.: non-template H20 ctrl.; wt: B6/C57J splenocytes. The 441 
shorter PCR product indicates successful recombination at the Rosa-442 
CreERT2;ATMfl/fl locus. g) Evidence of hTCL1A protein expression (flow cytometry) 443 
in peripheral blood and thymus of a CD4+/8+ T-cell tumor (221 days post-transplant) 444 
from the ATMfl/fl/hTCL1Atg genotype (Fig.4j ). h) H&E staining of one exemplary 445 
thymoma (ATMfl/fl/hTCL1Atg mouse). i) qRT-PCRs of two tumor bearing mice: mouse 446 
1 (ATMfl/fl/hTCL1Atg Tamox. treated) and mouse 2 (ATMfl/fl/GFP Tamox. treated). A 447 
higher hTCL1A mRNA and a lower ATM mRNA expression was seen according to 448 
the targeted alleles in comparison to WT T-cells. Bone marrow (BM) represents non-449 
tumor bearing hematopoietic tissue and thymus represents tumor tissue of the 450 
analyzed diseased ATMfl/fl/hTCL1Atg and ATMfl/fl/GFPtg HSC targeted mice. This also 451 
speaks to the T-lineage specificity of the leukemogenic TCL1/ATM cooperation. 452 
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 453 

Figure S12: Novel structural variations (SVs) in T- PLL. 454 
a) SVs (color-coded inversions / translocations / deletions) detected in exonic regions 455 
are mapped to involved chromosomal loci for all T-PLL tumor/germline-pairs 456 
analyzed by WES (data supplementing WGS data of Fig.5a , see also TableS14 ). 457 
Based on the stringent filters applied, tandem-duplications were not detected and no 458 
SVs were detected in TP006 and TP010. b) Left: qRT-PCR analysis showing 459 
elevated TCL1A and TCL1B transcript levels in primary T-PLL cells of the TCL1A-460 
TRAJ49 carrying case TP003 compared to controls (CD3+ pan T-cells isolated from 461 
PB of healthy donors (n=5)). Mid: the fusion transcript was confirmed by Sanger 462 
sequencing of cDNA from TP003 (see Fig5b  for a schematic representation of the 463 
fusion transcript and Fig.5c,d  for the confirmation of the genomic inv(14) and 464 
residual TCL1A protein expression). Right: Validation of the fusion transcript TCL1A-465 
TRAJ49 expression via RT-PCR in case TP003 compared to healthy donor derived 466 
T-cells (NTC=’no template’ control). 467 
  468 
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 469 

Figure S13: WTS confirms patterns of differential g ene expression and 470 
identifies transcript variants of TCL1A and ATM. 471 
a) The TOP100 most variably expressed transcripts, based on the comparison of 472 
WTS data from 15 T-PLL to those from CD3+ pan T-cells isolated from PB of healthy 473 
donors (n=4) are represented in the heat map (compare TableS16 ). b) Overlap of 474 
significantly differentially expressed genes in T-PLL cells as detected by WTS data 475 
(15 T-PLL) vs GEP arrays (n=70 cases); see TableS16  for further information. c) 476 
Differential expression of variant TCL1A transcripts in primary T-PLL (n=15) 477 
compared to healthy-donor derived CD3+ T-cells (‘ctrl.’, n=4) revealed a congruent 478 
upregulation of all detected TCL1A transcripts in ‘TCL1A positive cases’ (TCL1A-479 
protein negative case as red dots) and identifies the high expression of a new shorter 480 
TCL1A variant (TCL1A-007). FPKM: fragments per kilobase of exon per million reads 481 
mapped. Generally, differential expression of transcripts was assessed using DESeq 482 
v1.14.0 by evaluating the expression of respective isoforms through a gapped 483 
alignment. In contrast to that, differential exon usage (DEU) as alternative splicing 484 
(compare Fig.5e ), evaluated via DEXSeq v1.8.0, gives a descriptive assessment on 485 
whether the particular exon bins (containing merged exons for ORF overlaps of 486 
multiple genes) are rather retained or skipped. Here, effects of differential expression 487 
were excluded. d) Differential expression of variant ATM transcripts (PCR) in T-PLL 488 
(n=15) compared to healthy-donor CD3+ T-cells (‘ctrl.’, n=4) confirmed 489 
downregulation of 5/7 protein coding ATM variants in T-PLL; those not differentially 490 
expressed are expressed at generally low levels in both, ctrl. and T-PLL. 491 
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 492 

Figure S14: Legend at next page.  493 
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Figure S14: Targeting of factors in potentially syn thetic lethal relationships to 494 
ATM does not affect T-PLL cell viability in the contex t of DNA damage . 495 
a) Primary T-PLL cells (suspension cultures if not indicated otherwise) from 20 cases 496 
were treated in vitro with the DNAPKcs inhibitor Compound 401 (‘+’ 0.25µM and ‘++’ 497 
0.5µM) in the context of etoposide-induced DNA damage (25µM, 96hrs). Cell viability 498 
measured as per LumiGlo® assay. Cases were grouped according to their ATM 499 
genotype in ‘ATM mono-allelic’ (CN<1.5, n=13) and ‘ATM bi-allelic’ (CN=2.0, n=7). 500 
Treatment with the DNAPKcs inhibitor alone showed no reduction of cell viability 501 
irrespective of the ATM genotype. b, c)  Primary T-PLL cells (b; 11 cases) as well as 502 
HH cells (c; 2 experiments) were treated in vitro for 48hrs with the dual 503 
DNAPKcs/mTOR inhibitor CC-115 at increasing concentrations in the context of 504 
etoposide-induced DNA damage. Apoptotic responses were assessed using 505 
AnxV/7AAD staining. b) Dose-response curves (LD50; absolute percentages of living 506 
cells by AnxV/7AAD flow cytometry). Only a subset of T-PLL (3 responders of 11 507 
cases) showed a dose-related selective cellular sensitivity towards CC-115 in the 508 
high nano- / low micro-molar range (LD50 1.5µM), however, which was not much 509 
affected by etoposide treatment (LD50 0.8µM; dashed). The distinct response 510 
profiles could not be explained by molecular genetic events like ATM sCNAs or 511 
SNVs. Note the slightly reduced basal ‘fitness’ of the responders. c) Proportions of 512 
AnxV/7AAD negative cells (ratio to control) are shown (means, SEM). Left: The 513 
minimal activity of CC-115 across all 11 T-PLL reflected the low proportion of cases 514 
achieving an LD50 (see b; 36.4%). There was no complete eradication of viable T-515 
PLL cells even at high CC-115 dosages (10µM) combined with high etoposide 516 
concentrations (20µM). Right: Although being more sensitive to etoposide treatment 517 
in general, HH cells show only minor responses to high doses of (10µM) CC-115 518 
treatment. d) DNA damage induction via cyclophosphamide (active metabolite 4-519 
OOH CTX) instead of etoposide: primary T-PLL cultures (n=5 cases) were treated 520 
with 2.5µM 4-OOH CTX and apoptotic responses to dual DNAPK/mTOR inhibition 521 
(CC-115) and DNAPKcs inhibition (Compound 401, KU-60648) were evaluated by 522 
AnxV/7AAD staining. Proportions of AnxV/7AAD negative cells (ratio to control) are 523 
shown (means, SEM). The ineffective killing of primary T-PLL cells via DNAPKcs and 524 
DNAPKcs/mTOR inhibition in the context of 4-OOH-CTX-induced DNA damage 525 
confirmed the low activity of this synthetic lethal approach for T-PLL and excludes a 526 
potential etoposide-restricted effect. e) Primary T-PLL cells (n=4 cases) in co-cultures 527 
with the human bone marrow stromal cell line NKtert were exposed to increasing 528 
concentrations of the ATM inhibitors KU-55933 (0.1-50µM), and KU-60019 (0.1-529 
20µM) in the context of etoposide-induced DNA damage (25µM) for 48hrs and cell 530 
death was quantified by AnxV/7AAD staining (means, SEM). ATM inhibition did not 531 
significantly synergize with etoposide-induced DNA damage. Killing of T-PLL cells 532 
was induced only at high inhibitor concentrations at which the (weak) protective effect 533 
of NKtert co-cultures is no longer observed.   534 
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535 
Figure S15:  536 

537 
 538 

a) Summary of aberrations in epigenetic modifiers (n=77 genes, TableS18) called in 539 
primary T-PLL cells by profiling of: GEP, sCNA, and SNVs (frequency cut-offs 540 
indicated). 541 
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Figure S16: Legend at next page.  562 
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Figure S16 : General data of  T-PLL cases with available sequential follow-up 563 
(F/U) samples and the analysis for evolution of tra nscriptomic changes. 564 
a) Among the total n=94 T-PLL cases analyzed, sequential samples were available 565 
for n=5 cases with sufficiently long F/U (13 samples, see Fig.7  for leukocyte counts 566 
and further results). The median total F/U time for all cases was 24 months (ranging 567 
from 16 to 85) and the median of sample intervals was 20.5 months. The first 568 
samples, close to initial diagnosis (treatment naïve) were followed by those after 569 
clinically relevant progression or relapse after therapy. These samples were analyzed 570 
by at least one of the profiling approaches: GEP, SNP-arrays (for sCNAs), and WES. 571 
For F/U case 1, one second sample was collected after 17 months. In F/U case 2, 572 
within 16 months 3 samples were collected and analyzed via sCNA profiling. In F/U 573 
case 3, 3 sequential samples were collected over a long course of 95 months and 574 
subjected to GEP, sCNA profiling, and WES. This patient received an FMC-A chemo-575 
immunotherapy (fludarabine, mitoxantrone, cyclophosphamide; followed by 576 
alemtuzumab) between 1st and 2nd sampling. F/U case 4: over 56 months, 3 samples 577 
were collected and analyzed via GEP and sCNA profiling. F/U case 5: 2 sequential 578 
samples within 24 months. This patient was heavily treated in-between with distinct 579 
chemo-immunotherapies: FCR (fludarabine, cyclophosphamide, rituximab), CHOP 580 
(cyclophosphamide, doxorubicine, vincristine, and prednisone), forodesine, and 581 
single-agent alemtuzumab. Here, sCNA profiling and WES were performed.  582 
b) GEP of 4 cases with available t1/t2-pairs. Differential expression calculated 583 
separately for each time point (vs healthy-donor T-cells). Selection from lists of 584 
differentially up- (red) and down-regulated (blue) genes at t1, t2, or with overlap 585 
(TableS19 ). The majority of transcripts was specifically restricted to either t1 or t2. 586 
  587 
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 588 

Figure S17: Changes in sCNAs and sSNVs during evolu tion of T-PLL through 589 
progression or relapse and creation of a prognostic  gene expression index. 590 
a) Total numbers of genes affected by sCNAs (gains=red / losses=blue) plotted for 5 591 
T-PLL follow up (F/U) pairs. Treatments and leukocyte counts at sampling are indi-592 
cated (also TableS2, S20 ). b) Five cases (FU1-5) with available SNP-array based 593 
F/U data were analyzed for time-resolved alterations of sCNAs (see also TableS20  594 
for all identified lesions). Somatic CNAs of selected genes (AGO2, MYC, XRCC6P4, 595 
MIR34B, ATM, and XRCC2) are depicted. Data sets (I-III) are ordered according to 596 
sampling, and the time intervals (months) are given underneath. Red arrows indicate 597 
chemotherapeutic treatment; green arrows correspond to an attentive strategy in-598 
between the samplings. We observe distinct scenarios of sCNA kinetics: respective 599 
gains and losses can be present from the outset (AGO2 in F/U case 1; AGO2, MYC, 600 
XRCC6P4 and XRCC2 in F/U case 2) or be acquired at later time points during dis-601 
ease progression (AGO2, MYC, MIR34B, ATM and XRCC2 in F/U case 3; XRCC2 in 602 
F/U case 5).  603 
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c) WES (3 pairs) at diagnosis (treatment-naïve, t1) and relapse/progression (t2). 604 
Numbers of genes mutated specifically at t1, at t2, and at both are indicated (exonic; 605 
PopFreq.<0.01; predicted to be damaging or COSMIC-annotated); specific examples 606 
from TableS21 . **MAPK11: VAF rose from t1 (0.28) to t2 (0.76) in TP095.  607 
d) Differential clinical outcome prognosticated by a 2-gene/3-probe gene expression 608 
index at the time of diagnosis. Note that T-PLL is a disease with a generally short 609 
survival, but with recognition of rare indolent phases. Top: mRNA levels of RAB25 610 
and both KIAA1211L probes (RAB25 or KIAA1211L alone are of insufficient power) 611 
as the 2 signature genes filtered through regression from the learning-set of T-PLL 612 
subjects (Online Supplements ). Below: Kaplan-Meier curves as application of the 613 
stratified index in the test cohort discriminating the overall survival outcome based on 614 
low vs high index values. The oncogenic RAS GTPase RAB25 was part of the 615 
TOP100 T-PLL signature (Fig.1,  TableS3 ) providing normal-T vs tumor-cell distinc-616 
tion. 617 
  618 
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Supplementary Table 1: Profiling data in larger cohorts of T-PLL. 10 
We summarize here published studies that presented immunophenotypic, cytogenet-11 
ic, genomic or transcriptomic data sets on sizable cohorts of T-PLL. Earlier studies, 12 
mostly based on clinical and flow-cytometric analyses revealed the non-descript T-13 
cell immunophenotype of T-PLL, its dominant involvement of TCL1A affecting cyto-14 
genetic lesions, and the loss of ATM by Karyotype G-banding, FISH, and microsatel-15 
lite typing1–5. In recent years, smaller series on gene expression profiling (GEP)6, 16 
copy-number (CN) screens6, targeted amplicon7–9 and whole exome10 sequencing 17 
(TAS, WES) provided isolated first fragments of genome-wide analyses. 18 

1st Authorref year 
# of 

cases 
Methods Main findings / comments 

Matutes5 1991 78 
Flow cytometry, Karyotype G-
banding 

IP: 65% CD4+ CD8-, 21% CD4+ and CD8+, 13% CD4- CD8+; 

genomic abnormalities: inv(14) with breakpoints at 14q11 and 
14q32 in 76% of cases, trisomy 8 in 53% of cases 

Stilgenbauer2 1997 24 
Karyotype G-banding, FISH, 
Sanger seq. 

identification of a small commonly deleted segment at 
11q22.3-23.1 (ATM) in 63% with mutations on the remaining 
allele in 25% of cases 

Stoppa-Lyonnet1 
1998 

15* LOH by microsatellite typing inactivation of the ATM gene in 67% of cases through LOH 

Hetet3 2000 21* LOH by microsatellite typing 
loss of heterozygosity of the 12p13 region, including the ETV6 
and CDKN1B genes in 43% of cases 

Soulier11 2001 22 Array CGH 
complex pattern of recurrent chromosomal losses and gains at 
e.g. 8p (86% of cases), 11q (68%), 22q11 (45%), 13q (41%), 
8q (82%), 14q32 (50%)  

Bradshaw12 2002 17 
Cloning breakpoints within the 
ATM gene, Southern blot 

identification of breakpoints within the ATM gene at the 
RGYW somatic hypermutation motif in 18% of cases 

Dürig6 2007 5 GEP, SNP-arrays 
differentially expressed genes enriched in genomic regions 
affected by recurrent chromosomal lesions (6p, 8q 6q, 8p, 
10p, 11q, and 18p)  

Herling4 2008 86 
Flow cytometry and Karyotype 
G-banding 

IP: 62% CD4+ CD8-, 35% CD4+ and CD8+, 4% CD4- CD8+; 
genomic abnormalities: inv(14)(q11;q32.1) or t(14;14) in 40%, 
trisomy 8 in 35%, -11 or deletion 11q22-23 in 33%, and -17 or 
isochromosome 17q or deletion 17p in 13% of cases 

Le Toriellec13 2008 47 
Microsatellite typing, Sanger 
seq. 

haploinsufficiency of CDKN1B in 43% of cases (partially 
based on data from Soulier et al. 2001) 

Bug14 2009 12 
Karyotype G-banding, GEP, 
SNP array, FISH 

recurrent loss, but lack of mutations, of the SMARCB1 tumor 
suppressor gene in 33% of cases 

Delgado15 2012 - Review, meta-data  update on molecular and cytogenetic abnormalities  

Bellanger7 2014 45 Sanger seq. recurrent JAK1/JAK3 somatic mutations in 49% of cases 
Bergmann8 2014 32 FISH, Sanger seq. mutations of JAK3 in 30% of cases 

His16 2014 25 Karyotype G-banding, FISH 
frequent TCL1A rearrangements (75% of cases), losses of 
ATM (64%), and gains of MYC (67%) 

Kiel10 2014 50 
WGS, WES, SNP-arrays, 
Sanger seq. 

mutations affecting EZH2, FBXW10, and CHEK2; dominant: 
JAK/STAT pathway component in 76% of cases 

Stengel9 2015 51 
Karyotype G-banding, FISH, 
array CGH, amplicon NGS, 
Sanger seq. 

deletions of ATM (69% of cases) and TP53 (31%); mutations 
in ATM (73%), TP53 (14%), JAK1 (6%), JAK3 (21%) 

López17 2016 43 

Targeted seq. of JAK/STAT 
genes via Sanger seq.; addi-
tional 54-gene panel (recur-
rently mutated in hematologi-
cal cancers) by amplicon NGS 

activating mutations in JAK3 (30%) and STAT5B (21%) in 
evaluated hot-spot regions, mutations in genes encoding for 
epigenetic regulators (EZH2 13%; TET2 17%; BCOR 9%) 

Summary on profiling studies in T-PLL. *paired tumor germline samples; IP – Immunophenotype; 
LOH – loss of heterozygosity, CGH – comparative genomic hybridization, GEP – gene expression 
profiling, SNP – single-nucleotide polymorphism, FISH – fluorescence in situ hybridization, NGS –
next-generation  sequencing, WES – whole-exome sequencing, WGS – whole-genome sequencing 
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MATERIAL AND METHODS 25 

1. Patient samples. 26 
Primary T-PLL cells were isolated from peripheral blood (PB) of 94 T-PLL patients 27 
diagnosed according to WHO criteria1,2. Differential diagnosis was based on clinical 28 
features, immunophenotyping (flow-cytometry and histochemistry; including 29 
TCL1A/MTCP1 expression), FISH/karyotypes, and molecular studies (TCR-30 
monoclonality)3. Human tumor samples were obtained from patients under IRB-31 
approved protocols following written informed consent according to the Declaration of 32 
Helsinki. Collection and use have been approved for research purposes by the ethics 33 
committee of the University Hospital of Cologne (#11-319). The cohort was selected 34 
based on uniform front-line treatment (87% of cases) with either single-agent 35 
alemtuzumab or fludarabine-mitoxantrone-cyclophosphamide (FMC) plus 36 
alemtuzumab chemo-immunotherapy (similar efficacy, see Refs.4–6) as part of the 37 
TPLL14 (NCT00278213) and TPLL2 (NCT01186640, unpublished) prospective clini-38 
cal trials or as included in the nation-wide T-PLL registry (IRB# 12-146) of the Ger-39 
man CLL Study Group (GCLLSG; TableS2). Patients had a median age of 62 years 40 
at diagnosis and included 1.5-times more men than women. Overall survival (OS) 41 
was measured as the time from diagnosis to disease-specific event or censoring. 42 
Kaplan-Meier curves were compiled with PRISM6; with log-rank statistics for 2-group 43 
comparisons.  44 
A small number of samples from other entities was included as references: T-cell 45 
large granular lymphocytic leukemia (T-LGL, n=2) for WES and telomere length as-46 
sessments, as well as Sézary Syndrome (SS, n=2) and chronic lymphocytic leukemia 47 
(CLL, n=4) for telomere length assessments. 48 
 49 
2. Flow cytometry, magnetic-bead based cell enrichment, and flow-FISH 50 
technique. 51 
Flow cytometry was performed on a Gallios (BeckmanCoulter) cytometer, using 52 
antibodies against human CD4-FITC (#317407), CD8-APC-Cy7 (#300926) and 53 
TCL1A-Alexa Fluor 647 (#330508; from own developed clone 1-21 7), all from 54 
BioLegend. Intracellular staining was performed according to the manufacturer’s 55 
instructions using the IntraPrep kit (BeckmanCoulter). We observed CD4 single 56 
positivity in 63%, CD8 single positivity in 24%, and CD4/CD8 double positivity in 14% 57 
of cases. Peripheral blood mononuclear cells (PBMCs) of T-PLL patients or healthy 58 
volunteers were obtained by density gradient centrifugation (Histopaque, Sigma 59 
Aldrich). DNAs of matched tumor/germline (t/g)-pairs were obtained after magnetic-60 
assisted cell sorting (MACS), separating CD4+ or CD8+ T-PLL cells from non-tumor 61 
hematopoietic cells with a final purity of >98% (Fig.S1b). We conceptualized this T-62 
cell enrichment to involve a sequential two-step separation process of which each 63 
was carried out according to the manufacturer’s (Miltenyi Biotec) instructions: (1) 64 
positive enrichment of T-PLL tumor cells followed by (2) depletion of residual T-PLL 65 
cells from the flow-through obtained from step 1 to recover a pure non-tumor cell 66 
fraction. According to the predominant immunophenotype, samples were first 67 
enriched for CD4+ (#130-045-101, Miltenyi Biotec) or CD8+ (#130-045-201, Miltenyi 68 
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Biotec) lymphocytes using microbeads of the MACS system (Miltenyi Biotec) and LS 69 
Columns (#130-042-401, Miltenyi Biotec). For depletion of the normal control 70 
fractions (neutrophils, monocytes, NK-cells, B-cells) by contaminating T-PLL cells, 71 
LD Depletion Columns (#130-042-901, Miltenyi Biotec) were used to remove residual 72 
CD4+ or CD8+ cells from the flow-through obtained from step 1. Purity of cell 73 
populations was assessed by flow cytometry. PBMCs of healthy volunteers were 74 
enriched for CD3+ pan T-cells using MACS beads (130-050-101, Miltenyi Biotec). 75 
Flow-FISH analyses for telomere length assessment was conducted as previously 76 
described in detail8–11. Healthy control lymphocytes (104 volunteers) were used for 77 
age-adaption of telomere length as reported previously10. 78 
Flow-cytometry based cell cycle analysis was performed according to Nicoletti12. 79 
Briefly, cells were harvested, vortexed intensely in Nicoletti buffer (0,1% w/v Sodium 80 
citrate, 0,1% v/v Triton-X100, 50µg/ml propidium iodide freshly added) and 81 
incorporation measured on a Gallios (BeckmanCoulter) cytometer. 82 

83 
3. Murine models for T-PLL or T-cell lymphoma. 84 
We re-derived the originally described hemizygous Lckpr-hTCL1A+/- transgenic (tg)85
mice13 from frozen sperm straws (JAX® mice research, The Jackson Laboratory) by 86 
egg fertilization and embryo transfer. They represent an autochthonous model for 87 
human T-PLL. Following the early (thymic) onset of constitutive expression of human 88 
TCL1A, according to the activity of the proximal Lck promoter, the animals develop a 89 
CD8+ disease that resembles human T-PLL14. 90 
To test drug efficacies ( ) in vivo, transplantable leukemias/lymphomas 91 
derived from our CD2-MTCP1p13 tg mice15 (predominantly blood, spleen, bone92
marrow) and from our ∆JAK1 mice (more nodal/spleen manifesting mature T-cell 93 
lymphoma based on insertional mutagenesis activating JAK1)16 were i.p. / i.v.94 
injected into background-matched recipients to facilitate the generation of uniform 95 
cohorts, which is not possible in the original systems due to long latencies and their 96 
wider ranges (despite 100% penetrance) of clinical disease onset. The CD2-97 
MTCP1p13 tg system is a T-PLL model analogous to TCL1A-tg, but transplantable 98 
lines with slow and fast (latter chosen here) growth kinetics were only established for 99 
the CD2-MTCP1p13 model at the time of study. Transfer model from CD2-MTCP1p13100 
mice: 1x107 cells were i.p. injected into syngeneic recipients (n=26). Starting on day 101 
10 post transplantation (homogeneous distribution of WBC counts), mice were 102 

 103 
(day 10 at 60 mg/kg, days 15, 17, 21 at 20mg/kg), and (day 10 at 50 104 
mg/kg, days 15, 17, 21 at 20mg/kg). Animals were randomly assigned to treatment 105 
groups (unblinded). Transfer model from ∆JAK1 mice: 2.5x106 cells were 106 
transplanted intravenously into Rag-1-deficient mice. Recipients of comparable 107 
leukocyte counts were divided randomly into 4 cohorts: 18 mg/kg each for 108 

  109 
In order to test the in vivo pro-leukemogenic cooperation of ATM loss with 110 
TCL1A overexpression, hematopoietic stem cells (HSCs) from Rosa26-111 
CreERT2;ATMfl/fl mice17 were isolated and retrovirally transduced in vitro with an 112 
expression vector for human TCL1A or GFP. Transduced HSCs were re-transplanted 113 
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into sub-lethally irradiated background-matched 8-week old recipients and tamoxifen 114 
at 1mg/day was i.p. injected for 5 consecutive days to generate ATM deficiency from 115 
the recombined ATMfl/fl alleles. Results (see also Fig.4j): At the time of last analysis 116 
(500 days), the thymic T-cell lymphomas arising from tamoxifen treated mice trans-117 
planted with HSCs harboring the ATMfl/fl/hTCL1Atg genotype showed an accelerated 118 
onset and a shorter animal survival (5/5 succumbed; median OS 221 days) com-119 
pared to reconstitution with single-hTCL1A overexpressing (ATMfl/fl/hTCL1Atg, not 120 
treated with tamoxifen, 5/5 succumbed, median OS 370 days), single-ATM-k.o. 121 
(ATMfl/fl/GFP, treated with tamoxifen, 2/5 succumbed, median not reached), or non-122 
targeted control HSCs (0/5 succumbed). 123 
All experiments involving living animals were conducted according to the German 124 
Animal Welfare Act (approval numbers: 20.12.A166 (Lckpr-hTCL1A mice), 2012.A394 125 
(in vivo treatment of CD2-MTCP1p13 and ∆JAK1 transplants), F21/03_RP_Darmstadt 126 
(transplantation of sub-lethally irradiated mice with genetically modified HSCs).  127 
 128 
4. Gene expression profiling (GEP). 129 
4.1 GEP of human T-PLL cells. 130 
Sample preparation: PBMCs isolated from T-PLL patients (>95% purity of T-cells) 131 
and CD3+ T-cells isolated from PB of healthy donors (see paragraph 2 for detailed 132 
descriptions on cell purification) were submitted to RNA isolation using the mirVana 133 
kit (Invitrogen). GEP analyses were conducted using Illumina HumanHT-12 v4 134 
BeadChip arrays according to manufacturer’s instructions.  135 
Bioinformatics: We used the Illumina proprietary software GenomeStudio v1 to 136 
background-correct and to initially annotate the probes of the HumanHT-12 v4 137 
Expression BeadChip. We filtered samples and genes by detection p-values and 138 
fluorescence intensities for at least 2/3 hits (p<0.05) to reduce false calls. Batch-139 
effects were corrected by the ComBat18 method which uses an empiric Bayesian 140 
model framework19. Since the official Illumina HumanHT-12 v4 Expression BeadChip 141 
annotation is outdated, we used the data mining tool biomaRt20, version 75 of the 142 
Ensembl database with R, version 3.1.0, and Bioconductor, version 2.10 21.  143 
T-PLLs (n=70) and normal controls (CD3+ T-cells from 10 healthy donors) were 144 
grouped and tested separately for differential expression using the Student’s t-test on 145 
log-transformed fluorescence values (normally distributed). Fold-changes (fc) were 146 
calculated on the fluorescence values without logarithmic transformation. False 147 
Discovery Rates (FDRs) were calculated using the R package “qvalue”. Hierarchical 148 
clustering was carried out using the R package gplots, version 2.15.0 (distance 149 
function: euclidean; clustering: complete linkage). In Fig.1a, the dendrogram was 150 
manually cut to obtain clusters with unique expression patterns. Gene expression 151 
overlaps between human and mouse were evaluated using Venny®. Functional 152 
analyses of (differentially expressed) genes was carried out using Ingenuity® 153 
Pathway Analysis (IPA, http://www.ingenuity.com/products/ipa), ConsensusPathDB 154 
(GSOA)22, Broad GSEA 2-2.2.1, and KEGG/GO enrichment from the R package 155 
STRINGdb, version 9_05.  156 
For identification of prognostic GEP signatures, GEPs of T-PLL cases with longest 157 
(>800 days, 5 cases) overall survival (OS; time from diagnosis to death of disease; 158 
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no other events included) were compared with GEPs of cases with shortest OS 159 
(<300 days, n=5) using “Significance analysis of microarrays” (SAM) analysis in 160 
survival mode23 (1st training set of 10 cases). We only considered cases in which the 161 
sampling date was no longer than 6 months from diagnosis and with similar 162 
lymphocyte doubling times (LDTs) at presentation. From an initial most informative 163 
index-set of 5 differentially expressed probes (RAB25, KIAA1211L-probe1, 164 
KIAA1211L-probe2, GIMAP6, FXYD2; FDR<0.1), linear regression24 (and one outlier 165 
removal by setting OS<200 days, 2nd training set of 9 cases), followed again by SAM 166 
analysis (survival mode), resulted in a 2-gene/3-probe set (ILMN_1791826 mapping 167 
to 4 transcripts including RAB25-001/ENST00000361084 responsible for standard 168 
protein ENSP00000354376; ILMN_1776121 and ILMN_3243366 both mapping to 169 
KIAA1211L-001/ENST00000397899 responsible for standard protein 170 
ENSP00000380996; no other probes mapping to both genes) as the most robust 171 
predictors (only when combined). Their probe sets were used to calculate an 172 
expression index (via additive model fit using Tukey's median polish procedure25) on 173 
the test set of uniformly treated 40 cases of the GEP-analyzed T-PLL cohort (9 cases 174 
of training set (above) excluded) fulfilling the respective criteria (available GEP and 175 
OS data). Kaplan-Meier curves (log-rank tests for differences) were created based on 176 
stratified values per patient of this “2-gene/3-probe prognostic expression index”. 177 
Ranking the cases solely based on these expression indices, the 5 T-PLL with the 178 
lowest values indeed showed significantly superior OS (only 2 of these 5 cases 179 
received an allogenic stem cell transplantation) over those with higher expression 180 
index values (index fc=-1.62; Fig.17d).  181 
 182 
4.2 GEP in murine T-cell leukemia.  183 
Sample preparation: Murine spleens removed post-mortem were meshed through a 184 
100µm cell strainer (BD Biosciences) and lymphoid cells were isolated using density 185 
gradient centrifugation. Cells were subsequently enriched for CD8+ lymphocytes 186 
using MACS beads (130-049-401, Miltenyi Biotec). RNAs were isolated from murine 187 
tissues using the mirVana kit (Invitrogen). We hybridized 3 control RNA samples 188 
(pooled from CD3+ T-cells enriched from 9 spleens of age- and background-matched 189 
wt animals), as well as RNAs isolated from CD8+-enriched splenic T-cells of 3 190 
“chronic phase” and of 5 “exponential phase” Lckpr-hTCL1A+/- mouse lymphoma 191 
samples on Affymetrix Mouse Gene 1.0 ST Arrays. Definition of stages: “chronic” - 192 
30-70% tumor cells in PB and spleen, average age 12 months; “exponential” - mean 193 
PB lymphocyte doubling time (LDT) 12 days (SEM 0.8), >80% tumor cells in PB, 194 
>90% in spleen, average animal age 15 months.  195 
Bioinformatics: Arrays were pre-processed, background-corrected (RMA), quantile-196 
normalized, and separately analyzed (chronic phase vs ctrl., exponential phase vs 197 
ctrl.) with the „affy“ R-package. Annotation of mouse probe sets and human 198 
orthologues was carried out with biomaRt. We did not only overlap Ensembl IDs, but 199 
converted MGI gene names and overlapped them with official gene symbols as well. 200 
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5. Somatic copy-number alterations (sCNAs) / loss-of-heterozygosity (LOH). 201 
5.1 sCNAs in human T-PLL cells. 202 
Sample preparation: DNAs were isolated from PBMCs of T-PLL patients (n=83, 203 
>95% purity of T-cells) that included 13 CD4/CD8-enriched/depleted tumor/germline 204 
(t/g) pairs (see chapter 3.2 for details on cell purification) using the QIAamp DNA Kit 205 
(Qiagen). SNP-array analyses were conducted using Affymetrix SNP 6.0 chips 206 
according to manufacturer’s instructions.  207 
Bioinformatics: To globally infer on sCNAs across the T-PLL genome, the T-PLL 208 
data sets were compared to the pooled controls (non-tumor hematopoietic cell DNA 209 
as ‘germline’ from T-PLL patients, n=13) obtained by the Affymetrix Power Tools, 210 
version 1.14.2 with duplicate SNP/CN markers (by identical position) removed. We 211 
segmented the called SNP / copy number (CN) markers by the CBS algorithm 212 
(default options, p<0.01) within the DNAcopy R-package26 and converted the output 213 
files to .seg files to view them in the “Integrative Genome Viewer”27. Since the CBS 214 
algorithm only reports significantly altered segments/regions and therefore disregards 215 
gene structure (perhaps splits them in two or more segments), we mapped regions 216 
on gene CDS (based on version 75 of the Ensembl annotation) within the 217 
GenomicRanges R package, version 1.16.4, and clustered CNs by gene names and 218 
100kb regions with the gplots R package. We calculated the frequency by which 219 
samples surpassed CN thresholds (CN<1.5 for losses, CN>2.5 for gains) enabling 220 
the identification of the minimal (common) deleted or amplified regions 221 
(MDRs/MARs) and their prevalence across the T-PLL cohort (Parker et al. 2011 28). 222 
Hot spots of sCNAs were identified by visual inspection, by genes (CDS ranges) 223 
assigned to segments called by the CBS algorithm as well as by confirmatory 224 
GISTIC2.029 analyses (with removal of centromeric and telomeric regions with 225 
options: -smallmem 1 -broad 1 -brlen 0.98 -conf 0.99 -armpeel 1 -qvt 0.05). 226 
To evaluate CNNLOH (copy-number neutral LOH) / UPD (uniparental disomy), 227 
we focused on those genes that show LOH and are in a biallelic state (CN between 228 
1.9 and 2.1). We obtained genotypes from the SNP array data using Affymetrix 229 
Power Tools, version 1.14.2, and the Birdseed30 algorithm, and mapped specific 230 
SNPs to the genes by version 75 of the Ensembl annotation.  231 
A meta-comparison of published data on neoplasms hybridized to Affymetrix 232 
GenomeWide SNP 6.0 arrays31–37 available at GEO38 was performed to compare the 233 
spectrum of sCNAs with the one of our T-PLL data set. The HapMap39 data set 234 
“GenomeWideSNP_6.hapmap270.na32.r1.a5.ref” obtained from the Affymetrix 235 
support site served as a reference. Each sample was analyzed via CBS and those 236 
with significant gains or losses (CN>2.5 or CN<1.5) were selected. We grouped 237 
these segments into region size bins for each sample, i.e. one for segments of size 238 
from 1bp to 1000bp, one for 1001bp to 10000bp, and so on. This enabled 239 
comparisons between the CN spectra across experiments and entities. 240 
 241 
5.2 sCNAs in murine T-cell leukemia 242 
Sample preparation: We hybridized DNA samples (QIAamp DNA Kit, Qiagen) onto 243 
the Affymetrix MOUSEDIVm520650 chip. We compared 4 controls (DNA isolated 244 
from normal liver tissues of age- and background-matched wild-type mice) to 3 245 
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‘chronic phase’ and 5 ‘exponential phase’ (defining features in 4.2) splenic isolates 246 
from T-cell leukemia / lymphoma bearing Lckpr-hTCL1A+/- mice.  247 
Bioinformatics: Arrays were pre-processed and separately analyzed (‘chronic 248 
phase’ vs. ctrl., ‘exponential phase’ vs. ctrl.) with the ‘mouseDivGeno’ R-package.  249 
 250 
6. Whole-exome sequencing (WES). 251 
Sample preparation: DNAs were isolated from CD4 or CD8 enriched tumor/germline 252 
(t/g)-pairs (n=13, see chapter 2 for details on cell purification) using the QIAamp DNA 253 
Kit (Qiagen). Exomes were prepared by fragmenting 1µg of DNA using sonication 254 
technology (Bioruptor, Diagenode, Liège, Belgium) followed by end repair and 255 
adapter ligation including incorporation of Illumina TruSeq index barcodes. After size 256 
selection and quantification, pools of 5 libraries were each subjected to enrichment 257 
using the SeqCap EZ v2 Library kit from NimbleGen and following the NimbleGen 258 
SeqCap EZ Library SR User's Guide version 3.0 protocol40. 259 
Bioinformatics: We sequenced 13 T-PLL (t/g)-pairs and 26 T-PLL t-single samples 260 
(from 23 cases, with F/U samples on 3 of them) using the Illumina HiSeq2000 at the 261 
Cologne Center for Genomics (CCG), except for 8 t/g-pairs and 8 tumor singles that 262 
were analyzed at another facility (University of Michigan, collaborator/co-author K.E.-263 
J.) for evaluations of data robustness. The mean 30x coverages were: ~422,768 264 
exons for the CCG facility and ~307,245 exons for the outside facility41; median 265 
insert-sizes: 194bp for CCG facility and 254bp for outside facility. Assembly was 266 
performed with BWA 0.6.2 42 on the UCSC hg19 reference genome. After sorting and 267 
indexing of the resulting BAM files with SAMtools, version 0.1.19, PCR duplicates 268 
were removed with Picard 1.88. Exonic regions (based on Ensembl 71) were re-269 
aligned and the base quality scores were re-calibrated according to the Genome 270 
Analysis Toolkit Best Practices recommendations43,44. For ‘somatic’ comparisons we 271 
used the same-patient pair-matched germline if available, otherwise a representative 272 
germline sample obtained from the same batch (‘predicted somatic’) was used.  273 
For somatic single-nucleotide variants (sSNVs) MuTect 1.1.4 and MuSic 274 
algorithms45,46 were employed with default parameters, while for somatic InDels 275 
(insertions and deletions) VarScan 2.3.6 47 was used. We also used Genome 276 
Analysis Toolkit UnifiedGenotyper 2.7-4 48 for SNVs and InDels. Mutations were 277 
annotated using ANNOVAR49 with the associated packages NCBI dbSNP 138 50, 278 
COSMIC 70 WGS51, ESP6500-SI (W. NHLBI GO Exome Sequencing Project 279 
Seattle), 1000G April 2012 52, ExAc0.3 (Exome Aggregation Consortium, Cambridge, 280 
MA (http://exac.broadinstitute.org [06/08/2015 accessed via ANNOVAR])), NCI60 53, 281 
and clinVar release 20150330 54. For proven somatic mutations we used standard 282 
MuTect filters, as well as 1000G and/or ESP6500-SI frequency and/or ExAc0.3 with 283 
minor allele fraction (MAF) <0.01 (“PopFreq <0.01”). InDel consequences were 284 
evaluated by PROVEAN55.  285 
SNVs were filtered by the (i) exclusion of potential SNPs by eliminating SNVs with a 286 
population frequency >0.01 (PopFreq<0.01 considered as SNV, which applies for all 287 
reported SNVs), (ii) by determination of genes that are enriched for likely damaging 288 
mutations using PolyPhen2 56(score ≥0.957) and SIFT57(score ≤0.05) algorithms, 289 
followed by a filter for expressed genes (GE arrays), (iii) by a statistical comparison 290 
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of observed and expected mutation rates (WUSTL MuSiC). Since we observed a 291 
high portion of G>T (and C>A) transversions in one batch of WES samples indicative 292 
for oxidative DNA damage (8-oxoguanine (8-oxoG) lesions) during sample 293 
preparation, we applied additional filters similar to the ones used in Costello et al. 294 
2013 58. First we ran MuTect v2 to obtain FoxoG ratios (fraction of alternate allele 295 
supporting reads with G>T on read 1 and C>A on read 2 or vice versa; not to be 296 
confused with "strand bias") and tumor loads (estimated log odds that the observed 297 
number of alternate allele reads from the tumor sample could have arisen from a 298 
reference allele) for each mutation we previously screened with the less stringent 299 
MuTect v1. We discarded all G>T and C>A mutations with tumor fractions below 0.5 300 
that were not found by MuTect v2 (and therefore no FoxoG ratios and tumor loads 301 
available). We further discarded all G>T and C>A mutations not surpassing the 302 
empirical filter of Costello et al. 2013: tumor loads > −10 + (100/3) * FoxoG. A Lego 303 
plot of SNV frequencies with trinucleotide contexts was prepared using a modified 304 
source code by developer Christopher Wardell (https://github.com/cpwardell/ 305 
3dbarplot). 306 
We calculated the mutational frequency without background-correction, by dividing 307 
the average number of somatic mutations per sample per target Mb (SeqCap3: 308 
64'000'000 bp). Since we also ran samples on the lower targeting SeqCap2, the 309 
mutational frequency is actually underestimated (conservative estimate). Mutation 310 
frequencies of other neoplasms were obtained with the same caller46 (‘Published 311 
validation rates of calls made by previous versions of MuTect in coding region’).  312 
We inferred structural variations by mapping distance and order of paired-end 313 
reads59 using DELLY (version 0.5.5 60) and filtered for a minimum genotype quality of 314 
100, for no LowQual entries, and for split-read support (more precise breakpoint 315 
localization). CN neutral entries in the database of genomic variants 316 
(GRCh37_hg19_variants_2013-07-23 61) were further used to filter within a 1kb 317 
breakpoint window. The resulting list was then annotated with the COSMIC SV data 318 
sheet (02/04/2014 last modified; liftOver from hg38 to hg19 with UCSC Utilities web-319 
GUI) and visualized with circos 0.64 62.  320 
For the detection of sCNAs in WES data, we used “ExomeDepth, version 1.0.7“ 321 
with default settings, which evaluates significant drops of coverage. As the reference 322 
set, we pooled all germline samples obtained from the same batch of the respective 323 
tumor sample. Potential microsatellite-instability (MSI) was assessed using 324 
MSIsensor63 with default settings. Sequential samples were compared in a pair-325 
wise fashion: sample at F/U vs sample at diagnosis.  326 
 327 
7. Whole-genome sequencing (WGS). 328 
Sample preparation: DNA extraction was performed as described under 5 for WES. 329 
Sample processing for WGS was performed as previously reported40. 330 
Bioinformatics: We sequenced 3 T-PLL t/g-pairs and one T-PLL tumor single on an 331 
Illumina HiSeq2000 using the same settings as for WES analysis, except for different 332 
target regions for alignment and mutation calling, including non-coding (nc) regions. 333 
The Broad Institute hg19 Catalog of long-intergenic non-coding RNAs64, Gencode 334 
lncRNAsv7 summary table (05/02/2012 accessed), mirBase Release 20 65 (around 335 
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2000 validated and over 4000 predicted miRNAs), FANTOM5 hg19 enhancer sites66 336 
(accession 29/11/2012), and promoter regions derived from version 71 of the 337 
Ensembl annotation (-2000 to +200bp of TSS) were used. Telomere lengths were 338 
analyzed using ‘telseq’67.  339 
 340 
8. Whole-transcriptome sequencing (WTS). 341 
Sample preparation: PBMCs of T-PLL patients (>95% purity of T-cells) and CD3+ T-342 
cells isolated from PB of healthy donors (see 2 for details on cell purifications) were 343 
subjected to RNA isolation using the mirVana kit (Invitrogen). WTS analyses were 344 
conducted using the Illumina HiSeq2000platform as previously described68.  345 
Bioinformatics: Reads were mapped to the human reference genome, build 346 
GRCh37, using Tophat v2.0.10 69 and the genome annotation based on the Ensembl 347 
database, version 75. After duplicate removal, the read counts were further 348 
processed using DESeq v1.14.0 70 and DEXSeq v1.8.0 71 to analyze differentially 349 
expressed and differentially spliced genes between all 15 T-PLL samples and 4 350 
healthy-donor derived control T-cell samples. Fusion events were analyzed using 351 
Tophat-Fusion72 and the associated downstream filtering pipeline (Tophat-Fusion 352 
Post). Alternatively with less stringent quality filters, but with calculation of oncogenic 353 
potential, we used oncofuse73 with two complementary filters: passenger probability 354 
<0.001, driver probability >0.999 and minimum support reads >10, as well as 355 
passenger probability <0.01, driver probability >0.99, and minimum support reads 356 
>100. In a validation approach we aligned reads with STAR_2.5.2a 74 in 2-pass mode 357 
to the GRCh37/hg19 reference genome. Sub-routine STAR-Fusion was used to 358 
evaluate fusion transcripts. General overlap to results obtained by TopHat-Fusion 359 
was quite low (sample-wise: 21/96; global by gene partners: 30/96), however all 360 
prominent hits were confirmed: TCL1A-TRAJ49 as well as PLEC with other genes on 361 
chr.8 (i.e. ZC3H3 or SHARPIN). WTS samples were screened for SNVs (as anchor 362 
points for allele-specific expression) with GATK UnifiedGenotyper 2.7-4 and very low 363 
quality thresholds (--filter_mismatching_base_and_quals--filter_reads_with_N_cigar-364 
stand_call_conf5-stand_emit_conf2). Cuffdiff (cufflinks-2.2.1.Linux_x86_64) was 365 
used to generate FPKM values (fragments per kilobase of exon per million reads 366 
mapped). VirusFinder2.0 75, did not identify any viral transcripts except for 367 
J02482/Coliphage phi-X174, a control in the sequencing run. The integration-site file 368 
was empty, therefore no whole-genome screens were performed. 369 
 370 
9. Targeted amplicon sequencing (TAS) and Sanger sequencing. 371 
T-PLL tumor singles of 20 cases were analyzed by a customized targeted amplicon 372 
sequencing (TAS) panel that we designed. It covered ATM (ex.1-63), JAK1 (ex.9-15), 373 
JAK3 (ex.10-17) using the Illumina MiSeq platform, and STAT5B (ex.16) using 374 
Sanger sequencing (see Table S23 for oligo-nucleotides).  375 
Sample preparation: Amplicons were generated using standard PCRs. Products 376 
were purified using the ZR-96 DNA Clean-up Kit (Zymo Research), and an equimolar 377 
amplicon-pool was prepared for each patient. Library preparation was conducted 378 
using the TruSeq DNA LT Sample Prep Kit (Illumina) with 1µg amplicon DNA. 379 
Amplification was carried out using 8 cycles. The MiSeq Reagent Kit v3 (Illumina) 380 
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was used for sequencing and the samples were analyzed on the MiSeq NGS 381 
platform. Library preparation and sequencing was performed according to the 382 
manufacturer´s instruction at the Cologne Center for Genomics (CCG).  383 
Bioinformatics: For read alignment and further read processing, we followed the 384 
same strategy as for WES (above). The Genome Analysis Toolkit Unified Genotyper 385 
2.7-4 43 was used without down-sampling (dCov=10000) to call mutations (SNVs and 386 
InDels). We calculated the VAF with “bam-readcount” (https://github.com/ 387 
sjackman/bam-readcount, accessed 19/12/2014) with minimal mapping and a base 388 
quality of 20. A Phred-scaled quality of at least 100 and a depth of coverage of at 389 
least 10 was presumed to restrict false positives. We further used the same filters as 390 
for potential somatic mutations in WES.  391 
Sanger sequencing: Primers spanning all regions of interest were designed and 392 
used for PCRs according to standard protocols. PCR products were sequenced 393 
using the Big Dye Terminator Sequencing v3.1 kit and ABI PRISM 3730XL DNA 394 
Analyzer (Applied Biosystems). Capillary electrophoresis was carried out at the CCG. 395 
For electropherogram analysis SnapGene (v2.8.2, SnapGene) and 4Peaks (v1.8, 396 
nucleobytes) were used. 397 
 398 
10. Integrative approaches of bioinformatic analyses. 399 
Major analysis steps were executed through our ‘Cancer Pipeline’ (Crispatzu et al. 400 
submitted) within the QuickNGS76 framework and downstream Semantic Web 401 
applications. Thus, mutation analysis results are written in the RDF/N3 (resource 402 
description framework) format, and stored in a jetty-6.1.26 servlet engine running an 403 
OpenRDF Workbench Version 2.6.10 Sesame server. Combinatorial (with patient 404 
data) and multiple data set analyses (Fig.3e, Fig.4a, Fig.S6b, and Fig.7b-d) as well 405 
as sample organization was done by implementing queries that were further 406 
processed with the R-package “SPARQL 1.16”. 407 
 408 
11. Quantitative real-time PCR. 409 
Total RNA was extracted from human CD3+ pan T-cells and murine CD8+ T-cells 410 
following manufacturer’s instructions (mirVana, Invitrogen and RNeasy Mini Kit, 411 
Qiagen). Total sample RNA was reverse-transcribed into polydT cDNAs using 412 
SuperScript II reverse transcriptase (Invitrogen). Real-time quantitative PCR on 413 
human and murine mRNA was carried out using an ABI 7500 Fast System. Primers 414 
were designed using ABI Primer Express software (Table S23). Each PCR reaction 415 
was performed in duplicates using the Power SYBR Green PCR Master Mix (Applied 416 
Biosystems) in 96-well optical reaction plates with the following profile: one cycle at 417 
95°C for 10min, and then 40 cycles, each at 95°C for 30s, at 60°C for 30s, and at 418 
72°C for 30s. Final elongation was carried out at 72°C for 30s. Primers of the genes 419 
encoding human and murine β-actin were used as standard references for 420 
quantification using the 2(-Delta Delta C(T)) method77. 421 
 422 
12. Cell cultures and cell lines. 423 
RPMI-1640 medium (Sigma-Aldrich) supplemented with 1% L-Glutamine (200 mM; 424 
Sigma-Aldrich), 10% fetal bovine serum (FBS) (Sigma-Aldrich) and Penicillin / 425 
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Streptomycin (100U / 0.1M; PAA) was used for in-vitro experimentation on 426 
suspension cultures of primary T-PLL cells, the HH / iHH-TCL1A cell lines, the A-T 427 
derived B-lymphoblastoid cells, as well as for co-culture experiments with stromal 428 
feeder cells (below). Suspension cells were maintained at a density of 1.0-3.0x105 429 
cells/ml (HH/iHH-TCL1A system and A-T lines) and of 1.0x106 cells/ml (T-PLL cells). 430 
Culturing was done in a HERAcell incubator (Thermo Scientific Heraeus) at 37°C and 431 
5% CO2 with 90% humidity. 432 
The cell lines HH (from the ATCC), NKtert (human bone marrow stromal cells; from 433 
RIKEN Cell Bank), and the A-T patient derived lines (gift of L. Chessa, Rome, Italy) 434 
were originally acquired in 2011 and before. Only original stock propagated 435 
immediately upon arrival for 2 to 3 passages was picked for studies and cultures 436 
terminated after the 10th round of passaging (4-6 weeks). Upon thawing for 437 
experimentation in 2011-16, all lines were authenticated by characteristic growth 438 
behavior and by flow cytometry confirming their characteristic immunophenotype. 439 
Each thawed passage was tested for Mycoplasma infection by standard PCR 440 
protocols (primers: for1: 5’-acaccatgggagytggtaat-3’, rev1: 5’-441 
cttcwtcgattycagacccaaggcat-3’, for2: 5’-gtgsggmtggatcacctcct-3’, rev2: 5’-442 
gcatccaccawawacyctt-3’). 443 
HH/iHH-TCL1A system: CD4+ mature T-cell leukemia HH cells were originally 444 
isolated from a patient with Sézary Syndrome78. iHH-TCL1A cells of inducible TCL1A 445 
expression were created by genetic modification of the parental HH (TCL1A 446 
negative) line by transfection with lentiviral expression vectors (TRMPVIR system79) 447 
encoding for human TCL1A under control of the doxycycline-inducible tet-on 448 
promotor (Fig.S11) and by subsequent puromycin selection. TCL1A was induced in 449 
iHH cells by exposure to 1µg/ml doxycycline (in ddH2O, D9891-1G, Sigma-Aldrich) 450 
for 24hrs, or longer if otherwise indicated.  451 
The A-T patient derived B-lymphoblastoid cell lines80 ‘AT65RM’ (ATM∆/∆: c.6573-452 
9G->A/ c.8814_8824del11; ATM protein absent) and ‘AT-CT’ (ATMWT control from 453 
unaffected relative) were used to assess (ATM related) specificity of pKAPSer824 454 
induction.  455 
For co-culture experiments human bone marrow stromal cells NKtert cells 456 
(RIKEN BRC, Japan) were seeded at concentrations of 1.5x104 cells/well and 457 
incubated at 37°C in 5% CO2. After 24hrs NKtert cells at ≈60-80% confluency were 458 
inhibited with 0.02mg/ml Mitomycin C for 3hrs and then washed twice with PBS (Life 459 
Technologies). After another 24hrs, 4x105 T-PLL cells were added per well (with and 460 
without feeder cell support) and treated for 24-48hrs with the indicated substances. 461 
For detection of levels of reactive oxygen species (ROS) 6-well plates (Sarstedt, 462 
Germany) were coated with anti-CD3 (OKT3, in house, 10µg/mL) and anti-CD28 463 
(15E8, in house, 20µg/mL) in PBS (Life Technologies) for 1hr at 37°C. The solution 464 
was gently aspirated and T-PLL cells (1x106/ml) were added. Flow-cytometry based 465 
analyses of intracellular ROS levels was conducted as described81. 466 
 467 
13. Chromosome counts. 468 
TCL1A expression in iHH-TCL1A cells was induced by 10µg/ml doxycycline treat-469 
ment. iHH cells supplemented with doxycycline vs control conditions without doxycy-470 
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cline were cultured in parallel for 8 weeks to allow the accumulation of TCL1-induced 471 
changes (i.e. aneuploidy). Cells were maintained at a density of 1.0-3.0x105 cells/ml 472 
as described above. Sustained TCL1A expression was controlled by flow cytometry 473 
and/or immunoblots. Following cell cycle synchronization of cells in mitosis 474 
by 14hrs treatment with 10mg/ml nocodazole, metaphase preparations were per-475 
formed as described82. After staining with 1% Giemsa solution, metaphase images 476 
were captured at 100x magnification by a Zeiss Axio Scope.A1 fluorescence micro-477 
scope and chromosome numbers were quantified. 478 

479 
14. FISH analysis and karyotyping. 480 
FISH analysis was conducted according to manufacturer’s instructions using probes 481 
targeting AGO2 (customized at Empire Genomics, Custom FISH Probe, Clone Li-482 
brary: RPCI-11 (RP11), Clone Name: 628B24), CEP8 (Metasystems, XCE8, D-0808-483 
050-OR), and TCRα / TCRδ sequences (LSI TCR alpha/delta dual color Break Apart 484 
rearrangement Probe, 05N41-020, Abbott Molecular). The latter probe set was used 485 
to supplement karyotypic data in order to confirm inv(14) or t(14;14) associated rear-486 
rangements of TCR gene elements as part of the aberrations that activate TCL1A487 
expression. Karyotyping and metaphase analyses were conducted as previously de-488 
scribed4,83.489 

490 
15. In vitro drug treatment and cell viability. 491 
The ATM inhibitors KU55933 84 (118500-2MG) and KU-60019 85 (4176; TOCRIS 492 
Bioscience), the DNAPKcs inhibitor Compound 401 (234501-5MG; Calbiochem / 493 
Merck KGaA)86, the dual DNAPK/mTOR inhibitor CC-115 87 (Celgene), 494 

 88 , the HDAC 495 
inhibitor SAHA89 (vorinostat; SML0061-5mg, Sigma-Aldrich), the nitrogen mustard 496 
alkylating agent 4-Hydroperoxy-Cyclophosphamide (active metabolite of 497 
cyclophosphamide)90 (sc-206885, Santa Cruz Biotechnology), and the 498 
topoisomerase inhibitor etoposide91 (E1383, Sigma-Aldrich) were solved in DMSO 499 
(Carl Roth). The alkylating agent  was solved in 500 
methanol and the DNA-PK inhibitor KU-60648 93 (S1570, Selleckchem) was solved in 501 
ethanol. Drug exposures were done at the indicated concentrations and times. 502 
Dosing was based on published ranges and own IC50/LD50 titrations. ‘Non-503 
responders’ for a given inhibitor are samples for which the IC50 or LD50 was not 504 
reached, while ‘responders’ could be assigned a concise value. Apoptosis was 505 
determined using dual staining for Annexin-V (AnxV) and 7AAD via flow cytometry. 506 
The colorimetric MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide) 507 
assay as well as CellTiter-Glo Luminescent Cell Viability Assay from Promega 508 
assessed metabolic activity of cells and by that viability (duplicates per sample). 509 

510
16. Irradiation response. 511 
Cell lines and primary T-PLL cells were cultured in standard RPMI-1640 medium 512 
(plus supplements, see 12) and DNA damage was induced using 10Gy gamma 513 
irradiation by a BIOBEAM GM instrument (Gamma-Service Medical) equipped with a 514 
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Cs137 radionuclide source. After irradiation, cells were incubated for 1hr at 37°C, 5% 515 
CO2 and subsequently harvested for immunoblotting. 516 
 517 
17. Immunoblots. 518 
Western blots on whole-cell protein lysates were performed as previously 519 
described94. The primary antibodies included: phospho-STAT5BTyr694 (#9359), 520 
STAT5B (#9363), phospho-JAK1Tyr1022/1023 (#3331), JAK1 (#3344), phospho-521 
JAK3Tyr980/981 (#5031), JAK3 (#8863), phospho-p53Ser15 (#9286), p53 (#2524), acetyl-522 
p53Lys382 (#2525), acetyl-Histone H3Lys18 (#D8Z5H), PARP (#9542), γH2AXSer139 523 
(#9418), phospho-TIF1betaSer824 (pKAP1; #4127), TIF1beta (KAP1; #5868), Tubulin 524 
(#I1602) and GAPDH (#3683), all from Cell Signaling Technology; ATM (sc-23921), 525 
β-actin (sc-1615), and HSC70 (sc-7298), all from Santa Cruz Biotechnology; 526 
phospho-ATMSer1981 (LS-C50096) from LifeSpan BioSciences, and c-Myc 527 
(DLN07722) from Dianova. Development and use of our anti-TCL1A antibody (clone 528 
1-21) in T-PLL has been described20. All primary antibodies were used at 1:1,000 529 
dilutions, except for anti-GAPDH (1:3,000 dilution) and anti-β-actin (1:5,000 dilution). 530 
As secondary HRP-coupled antibodies we used: anti-goat (sc-2020), anti-mouse (sc-531 
2314), and anti-rabbit (sc-2313), all from Santa Cruz Biotechnology, according to the 532 
manufacturer’s instructions. Western blots were developed using Western Bright™ 533 
ECL (Advansta). Chemiluminescence was detected using Autoradiography Film 534 
Blue, 8x10 (Santa Cruz Biotechnology) and the developer machine CAWOMAT 2000 535 
IR. Signal intensities were recorded by densitometry (ImageJ software). 536 
 537 
18. Immunofluorescence microscopy. 538 
Cytospins were prepared using 1.0x105 primary T-PLL or HH / iHH-TCL1A cells in a 539 
Cytospin3 cytocentrifuge (Thermo Shandon) at 800xg for 5min. Cells were fixed for 540 
15min at 4°C in 3% PFA with 2% Sucrose in PBS. Cell permeabilization (10mM 541 
PIPES pH6.8, 100mM NaCl, 300mM Sucrose, 3mM MgCl2, 1mM EDTA, 0.5% Tri-542 
tonX 100) and cytoskeleton stripping (10mM Tris-HCl pH7.4, 10mM NaCl, 3mM 543 
MgCl2, 2% Tween20, 0.5% Sodium deoxycholate) was performed on ice each for 544 
10min. Blocking was carried out using 5% BSA/PBS for 45min at room temperature. 545 
Primary antibodies against yH2AX (#050636, Millipore/Merck Chemicals), RAD51 546 
(#ab63801, Abcam), TP53BP1 (#4937, Cell Signaling Technology/New England Bi-547 
olabs), and ATM (sc-23921) were used at 1:200 dilution in 5% BSA/PBS over night at 548 
4°C in a wet chamber. The secondary antibodies donkey anti-mouse (AF488 labeled) 549 
and donkey anti-rabbit (Cy3 labeled) (#715-545-150 and #711-165-152, Jackson La-550 
boratories/Dianova) were diluted at 1:400 in 5% BSA/PBS. Incubation was carried 551 
out for 3hrs at room temperature. Slides were washed 3 times for 10min with 5% 552 
BSA/PBS and once shortly with PBS to remove BSA. Slides were coverslipped with 553 
Mowiol (Carl Roth) containing Hoechst 33258 (140µM, Sigma-Aldrich). Samples 554 
were analyzed using an Axio Scope.A1 fluorescence microscope (Zeiss). Repre-555 
sentative images were captured using AxioVision software (Zeiss). Quantification of 556 
yH2AX, RAD51, and TP53BP1 foci was performed by manually counting the foci in 557 
30 nuclei per time-point (means with SEM calculated). Cytosolic or nuclear ATM lo-558 
calization was assessed by measuring fluorescence intensity using the ImageJ 559 
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software. Fluorescence signals derived from the whole cell and from the nucleus 560 
were determined separately in 5 cells per sample and condition. Whole cell fluores-561 
cence was set to 100 % to calculate the percentile distribution of nuclear fluores-562 
cence intensity as previously described95.  563 
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Key Points 36 

• the activated memory-type T-PLL cells differ from normal T-lymphocytes by aber-37 

rant TCR-responses including anergy to apoptotic triggers  38 

• the kinase enhancer TCL1A lowers activation thresholds conferring a permissive 39 

role of tonic TCR input, implicated in T-PLL pathogenesis 40 

  41 
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Abstract 42 

T-cell prolymphocytic leukemia (T-PLL) is a rare malignancy, yet represents the most 43 

common mature T-cell leukemia. It is a chemotherapy-resistant and poor-prognostic 44 

tumor. Its T-cell differentiation stage and effector functions are insufficiently charac-45 

terized. Constitutive transcriptional activation of the T-cell leukemia 1A (TCL1A) on-46 

cogene is considered the initiating leukemogenic event, but the concise mechanisms 47 

of peripheral T-cell transformation are elusive. We therefore addressed the ‘T-cell-48 

ness’ of T-PLL and interrogated the modulatory impact by TCL1A. Immunophenotyp-49 

ic and gene expression profiles revealed a spectrum of memory-type differentiation 50 

with predominant central-memory stages and frequent non-canonical patterns. Virtu-51 

ally all T-PLL expressed a T-cell receptor (TCR) and/or CD28-coreceptor, but without 52 

overrepresentation of genetic or surface TCR-clonotypes. T-PLL cells revealed an 53 

activated phenotype and highest multi-parameter scores correlated with inferior clini-54 

cal outcomes. Fittingly, they also showed resistance to stimulation-induced cell 55 

death. TCR-engagement of T-PLL cells evoked an altered metabolic signature and a 56 

prominent Th1-cytokine program. Loss of negative-regulatory TCR-coreceptors and 57 

overexpressed TCL1A distinguished the typically TCR-hyperresponsive T-PLL lym-58 

phocytes from normal T-cells. In fact, enforced TCL1A enhanced TCR-mediated ki-59 

nase phosho-activation and second messenger generation and reduced input 60 

thresholds for IL-2 release. Such features were resembled in mice of TCL1-initiated 61 

protracted T-PLL development. Equipped with monoclonal epitope-defined TCRs, 62 

these Lckpr-TCL1A T-cells gained a pre-leukemic growth advantage in scenarios of 63 

pulsed or continuous low-level receptor stimulation. Overall, we propose a model of 64 

TCR-driven T-PLL pathogenesis, in which the presence of constitutively elevated 65 

TCL1A enhances TCR-downstream signaling and drives accumulation of memory-66 

type cells that utilize amplified, hence permissive, low-level cognate antigen input.   67 
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Introduction  68 

T-cell prolymphocytic leukemia (T-PLL) is the most common mature T-cell leuke-69 

mia.1 Characterized by the expansion of peripheral T-cells, T-PLL typically presents 70 

with exponentially rising tumor burden in peripheral blood (PB) paralleled by spleno-71 

megaly, lymphadenopathy, and bone marrow (BM) infiltration.2,3 The T-cells of T-PLL 72 

show a classical CD2+,5+,7+ post-thymic immunophenotype and bear no autoag-73 

gressive features.3–5 T-PLL shows poor responses to conventional cytostatics. The 74 

induced remissions after anti-CD52 alemtuzumab are not sustained.6,7 With a medi-75 

an overall survival (OS) of <3 years, T-PLL patients still face a dismal prognosis.2,6,7 76 

The most characteristic molecular hallmark of T-PLL are the rearrangements 77 

inv(14)(q11;q32) and t(14;14)(q11;q32), that juxtapose the T-cell leukemia 1A 78 

(TCL1A) oncogene locus under in-trans control of TCRα/δ gene enhancers.8 The 79 

resulting aberrant expression of TCL1A is found in the majority of T-PLL.2,9 As pe-80 

ripheral T-cells lack TCL1A expression, this abrogation of TCL1A silencing upon 81 

thymic exit is considered causal in the initiation of T-PLL. Transgenic (tg) TCL1A is 82 

oncogenic in mice by inducing mature T-cell leukemias that resemble human T-PLL.8  83 

A mechanistic concept of TCL1A-mediated T-cell transformation is still evolving. We 84 

previously showed that in T-PLL cells TCL1A is recruited to TCR-induced protein 85 

complexes involving the signaling components ZAP70, LCK, and AKT.3,9 A physical 86 

interaction of TCL1A with the oncogenic Ser/Thr kinase AKT enhances its catalytic 87 

activity.9–11 Given our observation that TCL1A expression itself is inefficient in per-88 

turbing the tight homeostatic control in polyclonal settings12, we postulated a cooper-89 

ativity of TCL1A with TCR signals to promote clonal escape and leukemic outgrowth. 90 

The maturation stage and effector profile of the T-PLL cell are insufficiently estab-91 

lished and cannot be inferred from the non-descript clinical presentations. Further-92 

more, the mechanisms of T-cell transformation in T-PLL are largely elusive. With 93 

focus on the most central receptor in growth and differentiation of T-cells, the TCR, 94 

we phenotypically and functionally characterized the T-cells of 105 well-defined T-95 

PLL, and interrogated the modulatory impact of TCL1A. The memory-type T-PLL 96 

cells were of variable clonotypic origin and differed from normal T-cells by high acti-97 

vation levels and aberrant TCR-elicited intracellular and effector responses. We pro-98 

vide data of a leukemogenic synergism of ‘tonic’ TCR signaling with elevated TCL1A. 99 
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Methods  100 

T-PLL patients, cell lines, and mice.   101 

PB was obtained from 105 T-PLL patients (details in Table S1) after informed con-102 

sent according to GCP guidelines and institutional review-board approved protocols 103 

(#11-319). PB mononuclear cells (PBMCs) from T-PLL patients and healthy donors 104 

were isolated by density gradient centrifugation. The PB samples of healthy donor- 105 

derived (mean age 29 years) normal T-cells, used as controls throughout, were at 106 

average composed of 42,1% naïve, 33.7% pan-memory T-cells, 3.5% CD45RO/RA 107 

double-positive, and 20,3% double-negative T-cells.  108 

Primary murine mononuclear cells were isolated from spleen and LN. Cell lines and 109 

culture methods are described in online Supplements. Animal procedures were 110 

approved by local officials (2012.A166, 2012.A394, FK/1050, 8.87-50.10.35.08.071, 111 

84-02042012A417, 84-02042012A339).  112 

Detailed descriptions of mouse models, compound preparations, reagents, their 113 

sources, protocols for flow cytometry, quantitative real-time PCR (primers), gene ex-114 

pression profiling (GEP), next generation sequencing (NGS), cell-based assays (cell 115 

cycle, apoptosis, viability, metabolic activity), transfection and transduction, im-116 

munoblots, cytomorphology, immunofluorescence, and statistics are given in the 117 

online Supplements. 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 

 131 
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Results 132 

T-PLL cells retain TCR/coreceptor expression and display a spectrum of 133 

memory-like phenotypes. 134 

The thymic event of TCL1A activation would implicate a prominent naïve compart-135 

ment. This contrasts a suggested subtle oncogenic impact of TCL1A without acute 136 

maturation blocks. Therefore, the definite differentiation stage of T-PLL had to be 137 

resolved. Furthermore, in our TCR-centric oncogenic concept of mature T-cell tu-138 

mors13, T-PLL needed to be studied for the presence of viable TCR/corecepor input.  139 

T-PLL cells from 79 patients were subjected to multi-parameter immunophenotyping. 140 

Virtually all cases expressed the surface TCRα/β (85%); if TCR-negative, the cells 141 

retained the CD3 subunit and/or the CD28 coreceptor (both in 63/74; 85%; Fig.1A). 142 

No case lacked all 3 receptors. T-PLL cells were predominantly CD4 single-positive 143 

(63%), followed by CD8 single-positives (24%), and CD4/CD8 double-positives 144 

(14%), independent of CD45RA/RO isoform expression (Fig.1B).  145 

The majority of T-PLL (87%) was composed of a dominant T-memory sub-146 

population, indicated by CD45RO expression (45/79 cases, 57%) or by coexpressing 147 

CD45RA and CD45RO (n=19/79, 24%); some cases were composed of 2 distinct 148 

populations with at least one of CD45RO phenotype (n=5/79, 6%; Fig.1B; TableS2). 149 

The most frequent phenotype within CD45RA-/RO+ or CD45RA+/RO+ cases was a 150 

CCR7+/CD62L+ pattern of central memory T-cells (TCMs; n=35/64, 55%). Of the few 151 

CD45RA+/RO- cases (7/79, 9%), 6 resembled classical CCR7+/CD62L+ naïve T-cells. 152 

A small number of cases showed transitional phenotypes of effector memory (EM)-153 

like or of terminally differentiated EM T-cells with CD45RA (T-EMRA). Exemplary 154 

cases for each conventional and non-canonical pattern are illustrated in Fig.S1A,B. 155 

In addition to the manual hierarchical gating, a spanning-tree progression analysis of 156 

density-normalized events (SPADE)14 was applied to the flow cytometry datasets. 157 

Using this algorithm, we identified distinct cell populations with similar marker intensi-158 

ties (Fig.1C, S1C) and confirmed the dominant TCM phenotype in T-PLL.  159 

We next performed array-based gene expression profiling (GEP) of 70 PB T-PLL 160 

samples to relate global transcriptomes to those of healthy PB isolated CD4+ naïve 161 

T-cells (CD45RA+/RO-; 10 donors), CD4+ pan-memory T-cells (CD45RO+/RA-, 10 162 

donors), and CM T-cells (CD45RO+/RA-, CCR7+; 10 donors; TableS3; details on iso-163 
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lation in online Supplements). In comparative algorithms, signatures that best dis-164 

cerned these healthy T-cell populations from each other were first identified. Guided 165 

by these most informative gene sets, T-PLL expression profiles revealed a higher 166 

similarity to memory T-cells, especially TCMs, as compared to naïve T-cells 167 

(Fig.1D,E, S2A,B). qRT-PCR analyses confirmed the T-cell subset-specific expres-168 

sion of 6/6 best-classifier genes in representative T-PLLs (Fig.S2C). GEP-based 169 

similarities of T-PLL cells to TCMs were further confirmed by applying published15 T-170 

memory signatures gene sets (Fig.S2D).  171 

Interestingly, the rare tumor-immunophenotype resembling naïve T-cells was asso-172 

ciated with a better prognosis compared to cases of CM- and EM-phenotype 173 

(Fig.1F). Although, this is based on small subsets of short-lived patients, we ob-174 

served such a relationship already in an independent cohort.16 175 

The predominant memory phenotype at the stage of overt leukemia leaves early 176 

changes undisclosed. Therefore, we took advantage of Lckpr-TCL1A mice with early-177 

onset (thymic) TCL1A overexpression. They develop a CD8+ T-PLL-like disease af-178 

ter a latency of 10-20 months.8 Splenic T-cells of pre-leukemic Lckpr-TCL1A animals 179 

(definition of leukemic stages in online Supplements) were composed of 25% naïve 180 

and 65% TCM, similar to wild-type controls (Fig.1G). However, this significantly 181 

shifted towards a predominance of CD44+/CD62L- TEM in spleens of leukemic Lckpr-182 

TCL1A mice (means: 9.6% (WT) vs 94.1% (Lckpr-TCL1A)) with a near-complete ex-183 

haustion of the naïve compartment. T-cells in Lckpr-TCL1A mice retained expression 184 

of CD3 and CD28 throughout leukemic evolution (Fig.S2E). The skewing of T-cell 185 

subsets in these murine TCL1A-driven expansions hence resembled the dominance 186 

of memory T-cells in human T-PLL. Intriguingly, the presence of enforced TCL1A 187 

does apparently not impose abnormal post-thymic subset distributions in early de-188 

velopment (young mice). We conclude that the memory-pool accumulations at the 189 

leukemic stages are activation-enforced over a protracted course.  190 

Overall, T-PLL is predominantly composed of cells at the memory stage. Besides a 191 

frequent CM subtype, the spectrum also entails prevalent non-canonical profiles of 192 

post-naïve T-cell differentiation. We conclude that there is no evidence for a matura-193 

tion block in T-PLL cells by constitutive TCL1A expression. We propose that relevant 194 
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TCR-mediated T-cell activation had occurred during disease development or is still in 195 

place at the overt TCR/corereptor positive leukemia.  196 

The constitutional TCR profile of T-PLL is diverse. 197 

High-throughput sequencing of the rearranged TCRβ loci in 105 T-PLL (Fig.2A), us-198 

ing consensus primer-sets17, revealed a random distribution of TCR-Vβ chains, with 199 

TRBV20.1 (8%), TRBV27 (7%), TRBV12.3 (6%), and TRBV19 (5%) as the most 200 

prevalent. The detected TCR-Vβ was usually monoclonal, but a small subset (5% T-201 

PLL) showed a polyclonal Vβ-gene composition.  202 

Transcriptome sequencing in 15 T-PLL confirmed the productive mRNA expression 203 

by the rearranged TCR genes as identified at the genomic level (Fig.2B). Compared 204 

to the TCRα and TCRβ diversities of healthy pan-CD3+ T-cells (4 donors), a restrict-205 

ed TCR repertoire of T-PLL samples was evident in the 15 analyzed cases. The 206 

marked overall TCR diversity across T-PLL samples was further corroborated by 207 

translating the trinucleotide code into amino acid sequences of the TCRα/β CDR3 208 

regions, which showed no overlap (TableS4). 209 

A subset of T-PLL (n=73) was also evaluated for Vβ-chain protein expression via 210 

flow cytometry (Fig.2C). The panel of antibodies specific to 24 TCR-Vβ families cov-211 

ered ~70% of the whole TCR-Vβ repertoire and proved useful in assessing T-PLL 212 

clonality and expressed TCR-specificities, with an inter-method correlation of 67% 213 

compared to genomic TCR analysis. As most prevalent, clonal TRBV12 (Vβ8) ex-214 

pression was observed in 7% of cases (n=5/73).  215 

This high TCR-repertoire diversity was also observed in leukemias of Lckpr-TCL1A 216 

mice (Fig.2D,E), in which chronologic assessments suggested evolution from a pol-217 

yconal background. The arising T-cell expansions were evaluated by flow-cytometric 218 

Vβ-spectratyping comparing splenic T-cells of young (10 weeks) vs old (clinically 219 

leukemic; 10-16 months) Lckpr-TCL1A mice, and each vs age-matched wild-type 220 

controls. Young Lckpr-TCL1A animals showed the same polyclonal Vβ-spectrum as 221 

young and old wild-type controls. In contrast, leukemic Lckpr-TCL1A mice showed an 222 

oligo/monoclonal Vβ-chain expression, however, as in human T-PLL, without bias 223 

towards specific Vβ-chains. 224 

Overall, with the limitations of an under-powered T-PLL sample number against the 225 

diversity by TCRα/β-recombination, there seems to be no significant overrepresenta-226 
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tion of specific clonal Vα- and Vβ-chains across T-PLL cases. Up to this point, this 227 

does not preclude the relevance of a certain antigen or of non-specific general TCR-228 

stimulation in T-PLL. In fact, shared epitopes are detected by TCR-proteins of vari-229 

ous genomic constitutions. As typical in memory T-cells, low-level tonic TCR-230 

activation can also occur through self-MHC in the absence of cognate antigen. 231 

T-PLL cells display a markedly activated phenotype. 232 

To assess the basal activation status of T-PLL cells, we profiled up to 75 cases for 233 

established T-cell activation and proliferation markers, and for cytokine and chemo-234 

kine receptors. T-PLL cells showed a heterogeneous, however, an overall elevated 235 

expression of CD38, CD69, CD40L, and Ki-67, when compared to healthy PB-236 

derived T-cells. This was also observed for the cytokine receptors CD25 (IL-2Rα), 237 

CD122 (IL-2Rβ), CD124, and CD127 (Fig.3A). An elevated expression of chemo-238 

kine-receptors was seen for CCR3 and CCR4, but not for CCR5, CXCR3, and 239 

CXCR4 (Fig.3A, S3A). The pattern of marker expression was not associated with 240 

specific T-cell subsets (Fig.S3B, TableS5 for global correlation analysis). Expression 241 

of at least 2 activation / proliferation markers (n=31/53 cases; 58.0%) was associat-242 

ed with an inferior OS as opposed to those T-PLL showing a ‘low’ cell-activation sta-243 

tus (0-1 marker; n=22/53 cases; 42.0%, P=0.0012; Fig.3B).  244 

An activated T-cell phenotype can be induced by (constant) antigen-driven triggering 245 

of the TCR or by downregulation of inhibitory coreceptors. Accordingly, PD-L1, PD1, 246 

OX40, 4-1BB, CTLA-4, and LAG3 were found to be downregulated (Fig.3C,D) in T-247 

PLL compared to healthy PB-derived T-cells, both at the mRNA and surface protein 248 

level. Furthermore and in contrast to normal T-cells, T-PLL lymphocytes did not up-249 

regulate these immune checkpoint regulators upon stimulation (Fig.S3C). In con-250 

junction with a markedly distinct tumor-to-normal overexpression of the kinase-251 

coactivator TCL1A (Fig.3C), this further implicates that the transformed T-cells have 252 

escaped from autoregrulatory programs to ensure an elevated net-level of activation. 253 

TCR activation triggers an aberrant T-cell response in T-PLL. 254 

To address whether TCR stimulation produces a functional response in T-PLL cells, 255 

prominent sinaling pathways and effector functions were evaluated (Fig.S4A for in-256 

vitro T-PLL cell viability in response to TCR activation). Upon anti-CD3/CD28 cross-257 

linking, most (67%; 8/12) T-PLL triggered a strong Ca2+-efflux and 33% (4/12) 258 
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showed a weak response. Ca2+-releases were enhanced (75%; 9/12) or suppressed 259 

(25%; 3/12,) by CD28 costimulation (Fig.4A).  260 

T-cell activation entails metabolic changes; we proposed that the malignat T-cell 261 

phenotype does as well. Mitochondrial respiration and glycolysis, including their 262 

TCR-induced patterns, were assessed in T-PLL (n=4) and healthy T-cells (n=4) by 263 

measuring oxygen consumption rates (OCR) and extra-cellular acidification rates 264 

(ECAR), respectively. Fitting the more activated leukemic phenotype, an increased 265 

basal and stimulation-induced respiration was observed in T-PLL samples 266 

(Fig.S4B). Suggesting a prominent anaerobic leukemic profile, levels of basal gly-267 

colysis were elevated in T-PLL cells (P=0.002; Fig.4B) and their ECARs rose to 268 

higher levels upon CD3/CD28 engagement (P=0.04). Reactive oxygen species 269 

(ROS) as byproducts of the respiratory chain and intracellular signaling intermedi-270 

ates, were induced to higher levels in the leukemic cells (Fig.4C). We had previously 271 

shown in leukemic B-cells that TCL1A can impose elevated ROS biogenesis.18 272 

Furthermore, TCR stimulation induced cell-cycle progression from G1-to-S and G2-273 

M phases more readily in T-PLL cells than in healthy CD3+ pan-T-cells (Fig.4D). T-274 

PLL cells also displayed stimulation-induced changes in memory- and activation-275 

marker expression, similar to normal T-cell controls (Fig.S4C,D). The observed re-276 

acquisition of CD45RA upon repeated TCR stimulation (Fig.S4C) is a known pattern 277 

in re-activated primed T-cells.19 Inhibitors of ITK (in part also of RLK and JAK3) sup-278 

pressed the activation-induced stimulation of T-cell viability (Fig.4E). 279 

T-PLL cells also revealed an enhanced activation-induced cytokine production. Par-280 

ticularly, there was a more robust secretion of the predominantly T-helper cell type 1 281 

(Th1)-associated cytokines IFNγ, IL-2, IL-10, TNFα/β, GM-CSF, IL-8, IP-10, MIP-1α, 282 

and LIF as compared to healthy T-cell controls (Fig.4F). The releases of IL-1RA/-2/-283 

6/-10/-13/-17A/-18/-23/-31, TNFα/β, IFNγ, IP-10, GM-CSF, LIF, MCP-1, and MIP-1α 284 

were strongly increased; and decreased for RANTES and EGF, in TCR-stimulated T-285 

PLL cells over healthy controls (TableS6).  286 

With the limited conclusions from mRNA levels on pathway activities, the profiles of 287 

TCR-signaling gene transcripts were altered in human and murine (Lckpr-TCL1A) T-288 

PLL (over normal T-cells) and indicated a higher activity state (Fig.4G).  289 
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T-PLL cells show a reduced propensity to undergo activation-induced or FAS-290 

ligand mediated cell death. 291 

In normal T-cells, activation-induced cell death (AICD) is triggered by interaction of 292 

CD95 (FasR) and its ligand CD95L through repeated stimulation of the TCR.20 A po-293 

tential incapability of T-PLL cells to undergo AICD could, at least in part, explain the 294 

initial uncontrolled expansion of activated T-cells. In fact, there was an almost 3-fold 295 

decrease in apoptosis upon repeated stimulation in T-PLL over healthy PB-derived 296 

T-cells (Fig.5A). Downregulated of CD95 only partly explained this aberrant re-297 

sponse, as loss of its surface expression was observed in 50% of cases (n=39/68 298 

cases; P<0.001; Fig.5B). The remaining cases even showed upregulation of CD95 299 

(n=29/68; 43%; P=0.002) and CD95L. Since antibody-mediated engagement of 300 

CD95 in 12 primary leukemic samples did not induce apoptosis we conclude that the 301 

CD95-signaling pathway is not functional in T-PLL (Fig.5C). Indeed, both CD95-low 302 

and CD95-high cases were resistant to CD95-ligand mediated apoptosis. Fittingly, 303 

expression levels of CD95 did not correlate with clinical outcome (data not shown). 304 

Other apoptotic achses might also be dysfunctional in T-PLL, as transcript-levels of 305 

negative regulators of apoptosis, such as BCL2 or FYN were downregulated and 306 

transcript levels of positive regulators, such as BCL6 and TNFα were upregulated 307 

(Fig.S5, TableS7). 308 

TCL1A enhances the intracellular and effector responses to TCR stimulation. 309 

While peripheral T-cell lack TCL1A, it is overexpressed in the majority of T-PLL cas-310 

es (94%; n=66/70; Fig.3C) and higher levels correlate with a poorer prognosis 311 

(Fig.6A), as we indicated already in smaller series.7 In earlier studies, we could as-312 

sociate higher TCL1A protein expression across T-PLL samples with a more robust 313 

in-vitro growth response to TCR stimuli.9 To specifically address the impact of high-314 

level TCL1, we used HH human mature T-cell leukemia cells and Jurkat T-cell lines, 315 

both modified by constitutive TCL1A transgenes (comparable protein levels to those 316 

of human T-PLL, Fig.S6A). We used both systems, as it has been controversial and 317 

model-related, which TCR-kinase is most affected by TCL1A.9,21,22 We observed 318 

here in stable transfectants of HH and Jurkat T-cells a stronger and earlier phos-319 

pho(p)-activation of ERK1/2 upon TCR cross-linking in the TCL1A+ sublines over 320 

their GFP-transfected TCL1Aneg. parental lines (Fig.S6C,D). In a refined system, 321 

TCL1A was modulated by Tet-regulated expression in HH cells (iHH-TCL1A) allow-322 
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ing its titration. Basal TCR-downstream p-kinase levels were slightly increased by 323 

TCL1A, but TCR-induced responses were enhanced by earlier and higher increases 324 

in pAKT and pERK levels (vs doxycycline-untreated controls; Fig.6B,C). This signal-325 

enhancing effect was more pronounced and TCL1A-level related for pERK1/2. Ca2+ 326 

flux assays confirmed the TCR-signal amplifying effect by TCL1A and revealed that 327 

peaked and prolonged activation were impacted by TCL1A rather in the context of 328 

the CD3 (TCR) signal than under CD28-coreceptor stimulation (Fig.6D).  329 

To assess a key distal effector function as well as to address aspects of saturations 330 

and signal replacements, we recorded IL-2 release kinetics in experiments of titrated 331 

dosages of anti-CD3, anti-CD28, and TCL1A using the iHH-TCL1A system (Fig.6E, 332 

S6E). The presence of TCL1A potentiated IL-2 secretion at sub-maximal intensities 333 

of CD3 engagement, whereas the maximally stimulated levels of IL-2 were inde-334 

pendent of TCL1A. There was hardly any effect by TCL1A on isolated or additional 335 

CD28-coreceptor stimulation in this system.  336 

As autocrine IL-2 (triggered by TCR signals) is another major growth input of T-cells, 337 

we studied TCL1A’s influence on IL-2 responses. For that we employed the IL-2 de-338 

pendent murine T-cell line CTLL-2; with and without transfected human TCL1A 339 

(Fig.6F). Introduction of TCL1A conferred increased p-levels of AKT and ERK1/2 340 

under conditions of required and supra-maximal IL-2 dosages. This translated into a 341 

noticeable growth advantage: cell numbers of TCL1A expressing CTLL-2 cells in-342 

creased with rising IL-2 concentrations, while CTLL-2 GFP-control cells maintained 343 

similar numbers (Fig.6F, right). TCL1A did not confer IL-2 independence. 344 

Together, these findings corroborate the proactive impact of TCL1A at the variaous 345 

levels of TCR-induced intracellular (p-kinase activation, Ca2+ flux) and effector re-346 

sponses (IL-2 secretion, IL-2 dependent growth), those that we also observed to be 347 

aberrant in T-PLL cells. This led us to postulate that TCL1A mediates its transform-348 

ing influence in a synergistic relationship with TCR-singaling. As particularly memory 349 

T-cells rely on constant provision of TCR input, TCL1A could be understood as a 350 

means to promote signal threshold reduction and permissive growth amplification. 351 

Modelled chronic TCR stimulation facilitates TCL1A-driven transformation. 352 

To assess for a viable TCR-TCL1A cooperation towards T-cell transformation in vivo, 353 

we utilized ovalbumin (OVA)-specific T-cells from TCR-tg (OT-1) mice for defined 354 
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TCR stimulation. Isolated OT-1 T-cells were retrovirally transduced to express 355 

TCL1A-GFP, transplanted into RAG1-/- mice, and repeatedly stimulated in vivo with 356 

OVA-peptides (Fig.7A). Blood samples from recipient mice were analyzed every 4 357 

weeks by flow cytometry (Fig.7B). In contrast to unstimulated cohorts, the number of 358 

PB circulating CD3+ T-cells transiently decreased in the PB of OVA stimulated con-359 

trol (GFP) and TCL1A-expressing OT-1 T-cell recipient mice within 12 weeks after 360 

the first OVA injection (Fig.7B, left). However, only stimulated mice transplanted with 361 

TCL1A+ OVA T-cells showed a reemergence of CD3+ T-cells in PB subsequent to 362 

their initial decline, whereas GFP only OT-1 T-cells remained barely detectable. The 363 

number of TCL1A / GFP expressing cells within the CD3+ population rose in stimu-364 

lated mice and in those with unstimulated TCL1A-expressing cells, but remained 365 

stable in unstimulated mice with GFP-control cells (Fig.7B, right). Importantly, the 366 

presence of TCL1A combined with TCR stimulation mediated the earliest and 367 

strongest T-cell expansion. Interestingly, in this system TCL1A-negative TCR-368 

stimulated T-cells showed the same kinetics as TCL1A-positive TCR-unstimulated T-369 

cells. Knowing that the OT-1 receptor carries intrinsic activity in the absence of 370 

OVA23, this supports our concept of TCL1A promoting low-level TCR input and obvi-371 

ates requirements of strong TCR activation.  372 

To address the initial loss of stimulated cells from PB, we performed biolumines-373 

cence imaging 12 weeks after the first stimulation. It revealed that transplanted cells 374 

rather relocalized by accumulating in the spleen and other abdominal regions of 375 

stimulated recipients of OT-1GFP and  OT-1TCL1A cells (Fig.7C), with a much stronger 376 

signal in the stimulated TCL1A cohort (Fig.7D).  377 

Immunophenotyping of the PB T-cells revealed a TEM profile for the TCL1A-378 

transduced T-cells in OVA stimulated recipients, based on expression of CD44, but 379 

lack of CD69, CCR7, and CD62L (Fig.S7). This resembled the phenotype of leuke-380 

mic Lckpr-TCL1A mice (Fig.1G). The T-cells of the other cohorts showed a slightly 381 

different pattern. Their T-cells were of intermediate memory T-cell phenotype, show-382 

ing CD62L expression on almost half of the cells in stimulated GFP only recipients 383 

and on all cells in unstimulated cohorts (Fig.S7). This implicates the stimulated OT-384 

1TCL1A cells as the most activated cells among these conditions. 385 
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Unstimulated recipient mice of OT-1TCL1A T-cells developed lymphoid malignancies 386 

between 7-20 months after transplantation, whereas OT-1TCL1A harbouring mice re-387 

ceiving OVA injections showed an earlier onset of the disease between 6.5-13.5 388 

months (Fig.7E). Diseased mice had splenomegaly and lymphadenopathy at various 389 

extends. Histology and zytomorphology showed medium-sized lymphoid cells with 390 

scant basophilic cytoplasm in the spleen and PB (Fig.7F). The tumor had the de-391 

scribed TEM phenotype (CD3+, CD44+, mostly lacking CCR7 and CD62L; Fig.7F). 392 

To corroborate these findings in a refined model system, we we took advantage of 393 

the carcinoembryonic antigen (CEA) tg mouse, which delivers a constant low-level 394 

CEA recognized by T-cells expressing a chimeric antigen receptor (CAR) with speci-395 

ficity for CEA.24 In addition to such optimized form of chronic low-input TCR-396 

stimulation, this CAR-mediated type of tissue-associated recognition of a surface 397 

self-antigen is MHC-independent. Furthermore, autologous repopulation of the host 398 

after lympho-depletion better mimics the homeostatic control enforced by a physio-399 

logical polyclonal setting and by that places more competition on the experimentally 400 

modified cells. Splenocytes from 6-weeks old CARCEA vs Lckpr-TCL1A vs CARCE-401 
AxLckpr-TCL1A mice (for inter-crosses see Online Supplements) were transplanted 402 

into CEA-tg recipients and CD3+ T-cells monitored (Fig.7G). To this end, we ob-403 

served that before the eventual fast incline of only the TCL1A-tg clones and pertur-404 

bation of cross-control, there was a protracted phase of smoldering expansion. In 405 

support of our TCR-TCL1A synergistic concept, at these early stages, there was a 406 

growth advantage of CARCEAxLckpr-TCL1A T-cells over Lckpr-TCL1A cells (Fig.7H).  407 

Together, both experimental in vivo systems of defined chronic TCR-stimulation to 408 

TCLA1 overexpressing T-cells expand on our in-vitro observations of TCL1A as a 409 

TCR-signaling enhancer.    410 
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Discussion 411 

The functional features and signal dependencies of the T-PLL cell need to be better 412 

understood to develop more effective treatments for this poor-prognostic disease. 413 

With this study we describe a cohort of T-PLL cases that is sufficiently large to allow 414 

definition of key phenotypic and functional features, including their natural variation.  415 

Based on immunophenotyping and global gene expression, we established a high 416 

similarity of T-PLL cells to memory T-cells in the vast majority of cases (>85%), 417 

specificially to CD45RO+, CCR7+ CM T-lymphocytes. Previous descriptions also 418 

suggested a memory stage of maturation in 40-60% of cases3,5,9,16,25, but were solely 419 

based on CD45RO expression. However, advances in the definition of physiologic T-420 

cell subsets enabled us to refine the spectrum of the memory-type subsets in T-PLL. 421 

We revealed a continuum of memory stages with often non-conventional patterns, 422 

which in conjunction with the activated phenotype and retained TCR-/coreceptor ex-423 

pression of the tumor cell implicates continued TCR-mediated activation. The high-424 

level CD7 expression observed in 94% (85/90) of our cases (not shown), however, 425 

argues agains exhaustion.26,27 These features can be chronologically recapitulated in 426 

models of TCL1A-driven murine T-PLL (Fig.1G). An expanding memory pool had 427 

also been described for mice with lymphocytic overexpression of the TCL1 gene 428 

family member MTCP1.28 429 

The memory phenotype suggests (auto)antigen experience or at least MHC-driven 430 

activation and differentiation of the TCL1A-affected precursor during clonal out-431 

growth. Chronic antigen stimulation is implicated in other T-cell malignancies as well, 432 

e.g. by auto-immune triggers in T-cell large granular lymphocyte leukemia (T-LGL) or 433 

by (bacterial) dermatitis in the cutaneous T-cell lymphomas of mycosis fungoides 434 

(MF) and Sezary Syndrome (SS).29 In support, these entities show indications of a 435 

biased TCRβ gene usage.30–32 Interestingly, malignant T-cells of MF were character-436 

ized as TEM and those of SS as TCM.33 The diverse TCRβ receptoire found in our 437 

cohort of T-PLL (Fig.2) does not discard an antigen-dependent pathogenesis. In fact, 438 

it remains to be determined, if the slight overrepresentations of certain TCRβ’s at 439 

frequencies of 5-8% constitute receptors that facilitate more permissive signaling. 440 

Moreover, even if considering T-PLL of random clonotypic origin, its TCL1A-driven 441 

development could involve activation by any TCR-mediated signal (e.g. variety of 442 
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antigens or sole self-MHCs). Of note, in our TCR-centric concept of T-cell lympho-443 

mas, there are also entities in which the precursor lost TCR expression and survival 444 

input is provided by oncogenes acting as TCR-signaling mimics or stand-in’s.13,34  445 

T-PLL cells do not behave like physiologic CM T-cells upon repetitive antigen stimu-446 

lation. Healthy TCM increase CD95 expression to facilitate regulatory apoptotic re-447 

sponses. In T-PLL, CD95 is downregulated or dysfunctional (Fig.5). Generally, 448 

memory T-cell subsets are characterized by a marked longevity. Especially TCM 449 

have been shown to additionally harbor stem-cell like properties representing early 450 

differentiated progenitors with self-renewal capacity.35,36 Acquisition of proliferative 451 

stem-cell like capacities and loss of the capability to respond to extrinsic apoptotic 452 

signals might be an oncogenic mechanism of persistence of T-PLL cells.  453 

Our cell line data demonstrate TCL1A to augment intracellular signaling and effector 454 

responses, particularly following low-intensity TCR stimulation. This effect seemed 455 

more pronounced in the context of a CD3 (TCR) signal, as also supported by a more 456 

obvious pERK1/2 modulation, as compared to the CD28-coreceptor signal, mostly 457 

mediated via AKT.37 This reconciles data from various model systems.9,21,22 In ex-458 

trapolation, we argue that the inappropriate expression of this proto-oncogene in the 459 

affected peripheral T-cells enables sustenance as a quiescent memory fraction by 460 

amplifications of low-level TCR input through signal sensitization. Fittingly, human T-461 

PLL cells show such a reduced TCR-activation threshold. The previously unrecog-462 

nized Th1 program elicited by TCR stimulation of T-PLL cells (Fig.4F) is in agree-463 

ment with TCL1A’s enhancement of IFN-γ production in primed Th1 cells.21 464 

In our in-vivo model systems, TCL1A-transduced T-cells showed an accelerated 465 

outgrowth upon repeated TCR stimulation. This provides evidence that the modula-466 

tion by TCL1A in an oncogenic cooperation with TCR signals is indeed relevant. Our 467 

data also implicate that TCL1A rather augments TCR responsiveness in the early 468 

stages of leukemic development. We speculate that by lowering the TCR signaling 469 

threshold, TCL1 propels the transition of naïve T-cells into an expanding T-memory 470 

pool as the origin of T-PLL outgrowth. These TCL1A-affected cells would be more 471 

self-sustaining due to the ability to more efficiently utilize low affinity TCR signals, 472 

potentially through self-antigen. Our system of CARs as powerful TCR surrogates 473 
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underlines that physiological levels of an auto-antigen, in this case CEA, can be suf-474 

ficient to trigger the TCL1A mediated amplification of T-cells in vivo.  475 

Our data sustain a concept of T-PLL as an (auto)antigen/(self)MHC-TCR-promoted 476 

disease with TCL1A acting as an TCR-signaling enhancer. It entails the accumula-477 

tion of memory-type cells utilizing low-level TCR activation to acquire competitive 478 

advantages towards homeostatic escape and full transformation. Initiated as a 479 

TCL1A-affected thymic emigrant rather than being subject of a primary maturation 480 

block at the memory-stage, the CM-like phenotype of T-PLL cells likely reflects the 481 

terminal line of differentiation at which additional oncogenic forces come to carry to 482 

completely perturb the homeostatic control. Future work will have to integrate this T-483 

cell development based model with the defined roles of aberrant pathways instructed 484 

by the genomic lesions in ATM or JAK/STAT signaling.38   485 
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Figure 1: The TCR-positive T-PLL cells cover a spectrum of memory pheno-619 

types with a predominant CM fraction and frequent unconventional patterns. 620 

A-C) Surface (s) marker expression (multi-parameter flow cytometry) in PB-derived 621 

primary T-PLL cells. A) TCR- and co-stimulatory receptor components: TCRα/β, 622 

TCRγ/δ, CD3, CD28 (n=74 cases). Of the 5 sCD3-negative cases, 4 showed cyto-623 

plasmic CD3 positivity. B) Distribution of T-helper (CD4) / cytotoxic (CD8) markers 624 

and of markers of naïve / memory differentiation: CD45RA, CD45RO, CCR7, and 625 

CD62L (n=79; Table S2 for marker-defined subsets). Gating strategies and exem-626 

plarily plots per category are given in Fig.S1A. C) Confirmatory SPADE analyses14 627 

of markers; one exemplary T-PLL shown, others in Fig.S1C). Tree structure of 628 

SPADE with cell populations visualized as nodes. Size and colour of these nodes 629 

represent the number of cells and intensity of marker expression, respectively. T-PLL 630 

nodes (identified by high expression of CD3 and TCL1A), reveal low expression of 631 

CD45RA alongside high expression of CD45RO, CCR7, and CD62L, thus, reflecting 632 

a central memory (CM) T-cell phenotype. D, E) GEP: primary T-PLL cells (n=70 cas-633 

es), healthy PB-derived naïve, pan-memory, and CM T-cells (n=10 donors each). 634 

Principal component analyses (PCA) of signature genes defining healthy naïve and 635 

memory T-cell subsets (25 most differentially expressed genes after comparing the-636 

se healthy donor-derived T-cell substes; +FC sorted; p-value cutoff 0.05). Most in-637 

formative genes are plotted underneath. For heatmaps showing signature gene ex-638 

pression in T-PLL vs control samples (unsupervised clustering) see Fig.S2A,B. D) 639 

PCA for memory T-cell signature genes (pan-memory vs naïve T-cells). First 2 di-640 

mensions are plotted and account for 47.50% and 9.38% of variance (third dimen-641 

sion: 6.99%). E) PCA for CM T-cell signature (CM T-cells vs pan-memory T-cells). 642 

First 2 dimensions are plotted and account for 41.88% and 13.89% of variance (third 643 

dimension: 8.74%). F) Kaplan-Meier plot of disease-specific overall survival (log-rank 644 

test, time from diagnosis to event) of uniformly treated T-PLL patients stratified by 645 

CD45RA/RO surface expression (n=52 cases, 1 EMRA case, 2 CD45RA-/RO- cases 646 

excluded). CD4/CD8 expression is not associated with differential disease outcomes 647 

(not shown). G) TCL1-driven accumulation of EM pool: flow cytometry of murine 648 

spleen-derived lymphocytes from young (10 weeks) or old (10-16 months) Lckpr-649 

TCL1A mice (n=5) vs age-matched C57/B6J wild-type controls. 650 

651 
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25 

Figure 2: The TCRs in T-PLL are not restricted to specific clonotypes.  655 

A) Clonal genomic TRB rearrangements as detected by amplicon based NGS (Illu-656 

mina MiSeq platform) in primary PB-derived T-PLL cells (n=105 cases). Sequencing 657 

libraries were prepared using modified biomed-2 primers for complete TRB rear-658 

rangements.17 B) Transripts of TCR alpha and beta chains (usage of distinct V- and 659 

J-segments) as detected by RNAseq (Illumina HiSeq2000 platform) in primary PB-660 

derived T-PLL cells (n=15 cases; >95% purity of T-cells) and healthy donor PB-661 

derived CD3+ T-cells. C) Flow-cytometric Vβ-spectratyping in primary PB-derived T-662 

PLL cells (n=73 cases) using the IO beta mark kit (Beckman Coulter; ~70% cover-663 

age of the potential Vβ spectrum). Vβ-negativity (despite CD3 expression, ‘suspect-664 

ed clonality’) in 33 cases (45%). Distinct expression of at least 1 Vβ-family in 40 cas-665 

es (55%); of those there were 37 monoclonal cases and 3 cases with 2 clones (indi-666 

cated by 1 symbol each:  ⃰, ◊, ✧). D, E) Vβ-chain spectratyping in splenocytes from 667 

young (10 weeks) and old leukemic (10-16 months) Lckpr-TCL1A mice compared to 668 

age- and background-matched wild-type controls (n=5 each) D) Representative ex-669 

amples per cohort shown. E) Summary of Vβ spectratypes observed in leukemic 670 

Lckpr-TCL1A mice. Malignant cells show dominant expression of 2 Vβ-chains per 671 

sample in 4 animals (indicated by 1 symbol each: ◊, ⃰, Δ, □).  672 
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Figure 3: T-PLL cells reveal an increased activation status and a signature of 687 

immune checkpoint inhibition. 688 

A) Significantly increased percentages of cells (flow cytometry) expressing activation 689 

/ proliferation markers as well as cytokine (IL-2, -4, -7) and chemokine receptors in 690 

T-PLL (up to 75 cases) over normal PB T-lymphocytes (10 healthy donors). T-PLL 691 

cases are color coded (green: low activity; red: high activity) according to stratified 692 

activation status defined in (B). B) Kaplan-Meier plot of disease-specific overall sur-693 

vival (log-rank test, time from diagnosis to event) of uniformly treated T-PLL patients 694 

categorized by ‘activation phenotype’ (flow cytometry): Analyte cut-offs: CD122 695 

(>10% pos. cells), CD25 (>50% pos. cells), CD38 (>50% pos. cells), CD40L (>5% 696 

pos. cells), CD69 (>5% pos. cells), and Ki-67 (>20% pos. cells). Strata: number of 697 

activation / proliferation markers expressed above threshold (low: 0/1 marker, high: 698 

≥2 markers). C, D) Elevated TCL1A gene expression and significantly reduced ex-699 

pression of negative TCR-regulatory receptors (‘immune checkpoint molecules’) are 700 

distinct features of T-PLL cells over PB normal T-cells. C) Transcript abundaces (ar-701 

ray-based GEP) in the 3 isolated normal T-cell subsets (each from 10 healthy do-702 

nors) compared to 70 T-PLL. D) Surface receptors (flow cytometry) in CD3 gates of 703 

healthy volunteer derived PBMCs (10 donors) vs 14 T-PLL samples. See Fig.S3B 704 

for impaired TCR-induced increases in immune-checkpoint marker expression in T-705 

PLL cells. 706 

  707 



180 / 316

Warner et al, TCR signaling and TCL1A in T-PLL 

  

Main Manuscript 

28 

 708 

 709 

 710 

50

40

30

20

0

EC
AR

 [m
m

pH
/m

in
]

w/o  CD3/CD28

0 20 40 60 80
0

10

20

30

40

50
HD 
PLLoligomycin FCCP antimycine

rotenone

minutes

EC
A

R
 [m

pH
/m

in
]

10

minutes
4020 60 800

unstimulated

healthy donor pan T cells (n=4)
T-PLL cells (n=4)

w/o  CD3/CD28

0 20 40 60 80
0

10

20

30

40

50
HD 
PLLoligomycin FCCP antimycine

rotenone

minutes

EC
A

R
 [m

pH
/m

in
]

* * * ** ** **

*** * *
** * *

* p ≤ 0.05
** p ≤ 0.01
*** p ≤ 0.001

w CD3/CD28

0 20 40 60 80
0

50

100

150
HD 
PLL

oligomycin FCCP antimycine
rotenone

minutes

EC
A

R
 [m

pH
/m

in
]

EC
AR

 [m
m

pH
/m

in
]

minutes
4020 60 800

anti-CD3/CD28 stimulated

healthy donor pan T cells (n=4)
T-PLL cells (n=4)

w/o  CD3/CD28

0 20 40 60 80
0

10

20

30

40

50
HD 
PLLoligomycin FCCP antimycine

rotenone

minutes

EC
A

R
 [m

pH
/m

in
]

150

100

0

50

healthy donor pan-T-cells (n=4)T-PLL cells (n=4)

w/o  CD3/CD28

0 20 40 60 80
0

10

20

30

40

50
HD 
PLLoligomycin FCCP antimycine

rotenone

minutes

EC
A

R
 [m

pH
/m

in
]

w/o  CD3/CD28

0 20 40 60 80
0

10

20

30

40

50
HD 
PLLoligomycin FCCP antimycine

rotenone

minutes

EC
A

R
 [m

pH
/m

in
]

anti-CD3/CD28 cross-linkedunstimulated

*

300

200

100

0

m
e
ta

b
o
lic

a
ct

iv
ity

[%
]

(r
e
la

tiv
e
 t
o

u
n
st

im
u
la

te
d

co
n
tr

o
l)

ctr
l

1µ
M

2.5
µM 5µ

M
10
µM

10
µM

0

100

200

300

m
et
ab
ol
is
ch
e
A
kt
iv
itä
ti
n
%

(r
el
at
iv
zu
ru
ns
tim
ul
ie
rt
en
K
on
tr
ol
le
)

PRN-694 BMS-
509744

n=3

unstimuliert
anti CD3/CD28
PMA/Ionomycin

**

ctrl 1 µM 2.5 µM 5 µM 10 µM 10 µM

PRN-694 BMS-
509744

unstimulated

anti-CD3/CD28

PMA/Ionomycin

P=0.031

P=0.0046

P=0.048

IF
Nγ IL-

2
IL-

10
TNFα

TNFβ

GM-C
SF

IL-
8

IP
-1

0

MIP
-1
α LIF

0

2500

5000

7500

10000
20000

420000
1000000

1400000 *
* *

%
 o

f u
ns

tim
ul

at
ed

 c
on

tro
l

Figure 4 

D 

C ROS induction B 

G 

n=3 T-PLL 

F 

Metabolic phenotype 

Pharmacologic inhibition of ITK 

wtA
_1

71
21

4
wtB

_1
71

21
4

wtC
_1

71
21

4
m92

32
_1

71
21

4
PL

L4
1_

17
12

14
PL

L7
_1

71
21

4
PL

L2
8_

17
12

14
PL

L3
4_

17
12

14
PL

L3
5_

17
12

14
PL

L6
_1

71
21

4
PL

L8
_1

71
21

4

10349603#Il10�001#IL10

10599802#Cd40lg�001#CD40LG

10547894#Cd4�001_Cd4�003#CD4

10397346#Fos�001_Fos�002_Fos�003_Fos�004#FOS

10459944#Nfatc1�204_Nfatc1�202_Nfatc1�203_Nfatc1�201#NFATC1

10575160#Nfat5�001_Nfat5�002_Nfat5�004_Nfat5�005_Nfat5�007_Nfat5�008_Nfat5�201_Nfat5�202#NFAT5

10346799#Icos�002_Icos�001#ICOS

10346790#Ctla4�001_Ctla4�002#CTLA4

10375145#Lcp2�001_Lcp2�002_Lcp2�201#LCP2

10456296#Malt1�001#MALT1

10346783#Cd28�001_Cd28�002#CD28

10421293#Ppp3cc�201#PPP3CC

2 4 6 8 10

Value

0
2

4
6

Color Key
and Histogram

C
ou

nt wt
T�PLL early
T�PLL late

PPP3CC

CD28

MALT1

LCP2

CTLA4

ICOS

NFAT5

NFATC1

FOS

CD4

CD40LG

IL10

wtA
_1

71
21

4
wtB

_1
71

21
4

wtC
_1

71
21

4
m92

32
_1

71
21

4
PL

L4
1_

17
12

14
PL

L7
_1

71
21

4
PL

L2
8_

17
12

14
PL

L3
4_

17
12

14
PL

L3
5_

17
12

14
PL

L6
_1

71
21

4
PL

L8
_1

71
21

4

10349603#Il10�001#IL10

10599802#Cd40lg�001#CD40LG

10547894#Cd4�001_Cd4�003#CD4

10397346#Fos�001_Fos�002_Fos�003_Fos�004#FOS

10459944#Nfatc1�204_Nfatc1�202_Nfatc1�203_Nfatc1�201#NFATC1

10575160#Nfat5�001_Nfat5�002_Nfat5�004_Nfat5�005_Nfat5�007_Nfat5�008_Nfat5�201_Nfat5�202#NFAT5

10346799#Icos�002_Icos�001#ICOS

10346790#Ctla4�001_Ctla4�002#CTLA4

10375145#Lcp2�001_Lcp2�002_Lcp2�201#LCP2

10456296#Malt1�001#MALT1

10346783#Cd28�001_Cd28�002#CD28

10421293#Ppp3cc�201#PPP3CC

2 4 6 8 10

Value

0
2

4
6

Color Key
and Histogram

C
ou

nt wt
T�PLL early
T�PLL lateLckpr-TCL1A “exponential phase” splenocytes (n=5)

Lckpr-TCL1A “chronic phase” splenocytes (n=3)

wild type pan-CD3+ splenocytes (n=3)GEP of human TCR pathway 
components 

GEP of murine TCR pathway 
components 

A 
Ca2+ induction 

Cell cycle transition 

* P≤0.05 

Profiles of released cytokines 

266 genes 758 genes

ITK

1474 genes

TCR pathway gene set T-PLL

downregulated compared to healthy donor derived pan-T-cells (FC < -1.5)
upregulated compared to healthy donor derived pan-T-cells (FC > 1.5)

IKBKB
281 genes Lck PIK3CA

TNF CBLB

6 genes

PPP3CC

CARD11

CD40LG CTLA4

20 genes

CD28
CD4

MALT1

NFATC1

LCP2

CTLA4 IL10

ICOS

NFAT5

CD40LG

FOS

PPP3CC

early leukemic Lckpr-TCL1Amice (n=3) late leukemic Lckpr-TCL1Amice (n=5)

downregulated compared to wt mice (n=3)

upregulated compared to wt mice (n=3)

p654 lymphocyte gate

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

50

100

150

200

OKT3 10µl crosslink
OKT3 10µl crosslink + CD28

time

re
la

tiv
e 

in
cr

ea
se

 in
 fl

uo
-4

 M
FI

 [%
]p704

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

50

100

150

200
OKT3 10µl crosslink

OKT3 10µl crosslink + CD28

time

re
la

tiv
e 

in
cr

ea
se

 in
 fl

uo
-4

 M
FI

 [%
]

p703

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

50

100

150

200

OKT3 10µl crosslink
OKT3 10µl crosslink + CD28

timere
la

tiv
e 

in
cr

ea
se

 in
 fl

uo
-4

 M
FI

 [%
]

TP017
(6/12)

TP018
(3/12)

TP0696

an
ti-

C
D

3,
 a

nt
i-C

D
28

an
ti-

C
D

3

Strong response Weak response Strong response

time [min]

TP093
(2/12)

p543

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

50

100

150

200

OKT3 10µl crosslink
OKT3 10µl crosslink + CD28

weak CD28 diminished

time

re
la

tiv
e 

in
cr

ea
se

 in
 M

FI
 [%

] TP046
(1/12)

Weak response

CD28-inhibitedCD28-enhanced

1 2 3 4 5 6 7 8 9
time [min]

1 2 3 4 5 6 7 8 9
time [min]

1 2 3 4 5 6 7 8 9
time [min]

1 2 3 4 5 6 7 8 9

T-PLL (n=5)

healthy donor pan-T-cells (n=3)

Data 1

un
sti

m G
1

cd
3 G

1

cd
28

 g1

CD3/C
D28

 G
1

un
sti

m S
cd

3 S

cd
28

 S

CD3/C
D28

 S

un
sti

m M
cd

3 M

cd
28

 M

CD3/C
D28

 M
0

20

40

60

80

100

G0/G1 S G2/M

* P≤0.05

Data 1

un
sti

m G
1

cd
3 G

1

cd
28

 g1

CD3/C
D28

 G
1

un
sti

m S
cd

3 S

cd
28

 S

CD3/C
D28

 S

un
sti

m M
cd

3 M

cd
28

 M

CD3/C
D28

 M
0

20

40

60

80

100

G0/G1 S G2/M

*
*

100

C
el

ls
 [%

]

80

60

40

20

0

*

unstimulated

anti-CD3

anti-CD28

anti-CD3/28

pan-T-cells
of healthy donors (n=4) T-PLL (n=3)

-1 -1-10

0

10

20

30
p = 0.0424

 re
la

tiv
e 

in
cr

ea
se

 in
 M

FI
 [%

]
re

la
tiv

e 
in

cr
ea

se
 in

 M
FI

 [%
]

H
2D

C
FD

A 
pr

ob
e

ctrl. T-PLL

P=0.042

n=5 n=12

healthy donor
pan-T-cells

E 



181 / 316

Warner et al, TCR signaling and TCL1A in T-PLL 

  

Main Manuscript 

29 

Figure 4: A TCR-hyperreactive phenotype is common to T-PLL cells.  711 

A) Ca2+ flux upon CD3/28 cross-linking was assessed in primary T-PLL cells (12 712 

cases). Four exemplary cases: TP0173 (strong response, CD28-enhanced), TP093 713 

(strong response, CD28-inhibitory), TP100 (weak response, CD28-enhanced), 714 

TP046 (weak response, CD28-inhibitory). B) Basal (left) and stimulation-induced 715 

(right) extracellular acidification rates (ECARs; by XF96e Extracellular Flux Analyzer, 716 

Seahorse Bioscience; see Fig.S4B for OCR data) in T-PLL (n=4) and healthy pan-T-717 

cell controls (n=4). T-PLL cells reveal a significantly (P=0.0022) increased basal gly-718 

colysis. Upon CD3/28 cross-linking, the increase in ECARs is ≈1.8 times higher in T-719 

PLL than in healthy-donor T-cells (P=0.043). C) 2',7'-dichlorodihydrofluorescein di-720 

acetate (H2DCFDA) based measurements of reactive oxygen species (ROS) induc-721 

tion upon TCR activation comparing healthy T-cells (grey dots) to primary T-PLL 722 

cases (black dots). A generally higher increase of ROS levels in stimulated T-PLL 723 

cells compared to CD3+ pan-T-cells isolated from PB of healthy donors is observed. 724 

D) The impact of CD3/28 cross-linking on cell-cycle progression was investigated in 725 

T-PLL cells (n=3) and healthy T-cells (n=4) using propidium iodide staining and flow 726 

cytometry. Upon TCR stimulation, T-PLL cells enter the cell cycle more readily than 727 

healthy T-cells (and healthy-donor derived memory (CD45RO+) T-cells, not shown). 728 

The combination of CD3 and CD28 engagement has the strongest potential to in-729 

duce proliferation in T-PLL and controls. E) ITK inhibition via PRN-694 (relevant 730 

IC50s: ITK - 0.3nM; RLK - 1.4nM; JAK3 - 30nM) in unstimulated and stimulated T-731 

PLL (readout lumiglo). No direct effect on viability at low concentrations, however, 732 

induction of an increased level of viability (increased light units compared to control) 733 

via CD3/CD28 cross-link (P=0.049) / PMA stimulation (P=0.032) is abolished at 734 

2.5µM PRN-694. Comparable results were achieved for ITK inhibitor BMS-509744 735 

(IC50: ITK - 15nM).39 F) Cytokine secretion of anti-CD3/28-stimulated CD3+ pan-T-736 

cells and T-PLL cells in relation to their unstimulated controls, analyzed on a 45-737 

analyte human cytokine array. Only highly secreted cytokines in TCR-stimulated T-738 

PLL cells are shown. T-PLL cells reveal a stronger response to TCR crosslinking 739 

than healthy controls, whereas healthy controls responded better to PMA/Ionomycin 740 

stimulation (data not shown). G) Genes associated with TCR signaling pathway(s): 741 

Differential expression in human T-PLL and in chronic / exponential phase murine 742 

leukemic T-cell expansions (Lckpr-TCL1A mice). 743 
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Figure 5: T-PLL cells show a marked defect in the execution of AICD. 748 

A) Apoptosis induction upon repeated TCR activation: Healthy donor PB-derived T-749 

cells (n=3 donors) and PB-derived primary T-PLL cells (n=8 cases) were cultured in 750 

the presence of 10U/mL IL-2 and stimulated either once with PHA on day 1 or day 6, 751 

or repeatedly on day 1 and day 6 (1 µg/mL). Cells were stained with Annexin V / 752 

7AAD and analyzed by flow cytometry. B) CD95L (n=70 T-PLL cases) and CD95 753 

(n=68 T-PLL cases) expression detected by flow cytometry in healthy donor PB-754 

derived T-cell controls (n=10) and PB-derived primary T-PLL cells. The number of 755 

CD95L positive cells is heterogeneous but significantly (P=0.0011) increased in T-756 

PLL samples. Expression of CD95 reveals a broader range in the T-PLL samples 757 

than in healthy controls allowing an allocation in CD95low (n=39; P<0.001) and 758 

CD95high (n=29; P=0.002). C) PB-derived primary T-PLL cells (n=12 cases) were 759 

investigated for their apoptotic response to agonistic CD95 crosslinking: readout An-760 

nexin V / 7AAD staining, flow cytometry analysis. T-PLL samples were classified in 761 

groups with low (<50%) and high (≥50%) surface CD95 expression (CD95low (n=6, 762 

blue dots marked in ‘B’ for CD95 expression levels of evaluated cases) and CD95high 763 

(n=6, red dots marked in ‘B’)). T-PLL cells are resistant to extrinsically induced apop-764 

tosis via CD95 activation. Positive controls: Hut78 mature T-cell lymphoma line, 765 

healthy donor PB-derived pan-T-cells (n=3 donors). 766 
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Figure 6: TCL1A mediates enhanced TCR-downstream signaling. 785 

A) Kaplan-Meier plot of disease-specific overall survival (log-rank test, time from di-786 

agnosis to event) of uniformly treated T-PLL patients stratified by TCL1A protein ex-787 

pression (flow cytometry derived dataset; TCL1A low <5% pos. cells; TCL1A high 788 

≥5% pos. cells). B) Enforced low and high level TCL1A expression in HH T-cell leu-789 

kemia (doxycycline-inducible iHH-TCL1A cell line) expedites and enhances phos-790 

phorylation of AKT (pAKT) and pERK1/2 upon CD3/CD28 cross-linking in a concen-791 

tration dependent manner. The similar expression of surface CD3/CD28 in both HH 792 

sublines is shown in Fig.S6B. C) Desitometric quantification of immunoblot results 793 

from ‘A’. D) Jurkat and Jurkat-TCL1A cells were loaded with the Ca2+ indicator dye 794 

fluo-4 and were stimulated as indicated with either 10 µg/mL soluble anti-CD3 anti-795 

body (OKT3), 20 µg/mL anti-CD28 antibody (15E8) or in combination at t=0. Each 796 

antibody was cross-linked using 10 µg/mL anti-IgG antibodies. Changes in intracellu-797 

lar Ca2+ levels were measured over time on a single cell level. Isolated anti-CD3 an-798 

tibody stimulation leads to an increased Ca2+ signal in Jurkat-TCL1A cells compared 799 

to TCL1A- Jurkat cells. Cross-linking with anti-CD28 antibody alone leads only to a 800 

minor Ca2+ flux in TCL1A-positive Jurkat cells. Co-stimulation with anti-CD3/CD28 801 

antibodies causes a strong and fast Ca2+ signal in Jurkat cells that decreases over 802 

time. In comparison, Jurkat-TCL1A cells reveal a stronger extended Ca2+ flux. E) IL-803 

2 secretion in response to TCL1A modulated TCR activation. Multidimensional titra-804 

tion of TCL1A expression / TCR activation in iHH-TCL1A cell line system via combi-805 

nations of TCL1A (no, low, high doxycycline), CD3 (low 0.1 µg/mL, high 1.0 µg/mL), 806 

and CD28 (low 0.2 µg/mL, high 2.0 µg/mL) crosslinking antibodies. Readout: IL-2 807 

ELISA. TCL1A increases IL-2 secretion upon submaximal levels of TCR stimulation 808 

via low dose CD3 antibody (1 µg/mL) disregarding of additional CD28 activation. F) 809 

IL-2 dependent murine CTLL-2 cell system: CTLL-2 cells transduced with TCL1A or 810 

GFP control were treated with IL-2. Left: Phosphorylation of AKTS473 and 811 

ERK1/2Thr202/Tyr204 as detected by flow cytometry. Phospho-kinase responses are 812 

generally higher in TCL1A expressing CTLL-2 cells compared to GFP only control 813 

cell line. Right: Viablity (total cell number) in response to increasing IL-2 concentra-814 

tions. Ectopic TCL1A expression does not override IL-2 dependence of CTLL-2 cells, 815 

but enables CTLL-2 cells to execute a higher proliferative response upon stimulation 816 

with increasing IL-2 concentrations. 817 
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Figure 7: Modelling of chronic TCR-stimulation confers competitive growth 820 

benefits to TCL1A expressing T-cells. 821 

A) Schematic outline of the experimental procedure. Cell suspensions from spleens 822 

and lymph nodes of OT-1 mice (tg for a monoclonal OVA-peptide responsive TCR) 823 

were retrovirally transduced with a TCL1A-GFP or a GFP only cDNA construct and 824 

transplanted into lymphodeficient RAG1-/- recipients. Recipient mice received intra-825 

peritoneal injections of the OVA peptide (aa 257-264) or PBS every 2 weeks. B) 826 

Blood samples were taken from unstimulated (green, w/o stim) and stimulated (red, 827 

OVA stim) GFP only (circle) and TCL1A (triangle) OT-1 T-cell recipient mice every 4 828 

weeks and analyzed by flow cytometry. Mean percentage of CD3+ cells gated on live 829 

cells (left), and GFP+ cells gated on CD3+ cells (right) was compared between differ-830 

ent cohorts throughout the observation time. Experiment was started with 5 mice per 831 

group. Mean with SEM. C) Unstimulated and stimulated recipient mice of TCL1A-Luc 832 

or T-Sapphire-Luc (control) transduced OT-1 T-cells were imaged 12 weeks after the 833 

first OVA injection. All pseudocolor images were adjusted to the same threshold. D) 834 

Quantification of bioluminescence imaging signal intensities in each cohort. Signal 835 

intensities (average radiance (photons/s/cm2/sr)) are shown as relative values set-836 

ting untreated controls to 100. E) Mean overall survival (OS) of unstimulated and 837 

stimulated TCL1A-GFP or GFP only transduced OT-1 T-cell recipient mice. F) Histo-838 

pathologic and immunophenotypic characterization of tumors induced by TCL1A-839 

transduced OT-1 T-cells in immunodeficient recipient mice. G) Experimental proce-840 

dure: splenocytes isolated from Lckpr-TCL1A, CARCEA, and CARCEAxLckpr-TCL1A 841 

mice were transplanted into lympho-depleted (Cyclophosphamide/Fludarabine) CEA-842 

tg mice. H) Blood samples were taken from CEA-tg recipients of CARCEA (blue), 843 

Lckpr-TCL1A (green), or CARCEAxLckpr-TCL1A (red) tg cells every 4 weeks and ana-844 

lyzed by flow cytometry for repopulation of GFP+ (CAR) or TCL1A+ cells (gated on 845 

CD3+ cells). Statistical significance is shown for Lckpr-TCL1A and CARCEAxLckpr-846 

TCL1A recipient mice. 847 
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Figure S1: The (central) memory-like T-cell phenotype of T-PLL cells - 
immunophenotypes. 
A) Flow cytometric analysis of CD45RA/CD45RO, CCR7, and CD62L surface 

expression in exemplary T-PLL cases (data supplementing Fig.1B, gating strategy is 

illustrated via red arrows). For composition / surface marker combinations of single 

categories please refer to TableS2. B) Flow cytometric analysis of 5 T-PLL cases 

(right) showing a ‘composite’ expression of CD45RA/RO resembling healthy PB 

derived distributions of memory / naïve surface makers (left). C) SPADE1 analyses of 

memory markers in a subsets of T-PLL cases (3 batches analyzed). Batches were 

defined according to flow cytometry analyses per individuel sample that were 

performed as one set at the same day using exactly the same flow-cytometer 

settings. 
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Figure S2: The (central) memory-like T-cell phenotype of T-PLL cells – gene 
expression profiling (GEP). 
A, B) Heatmaps showing the expression (red=up-regulation, blue=down-regulation) 

of (A) (pan-) memory vs naïve and of (B) effector-memory (EM) vs central-momory 

(CM) signature genes in T-PLL and healthy T-cell samples (compare PCA analysis in 

Fig.1D,E). C) Confirmations by qRT-PCR: mRNA levels of some of the memory-vs-

naïve best-distinguishing signature genes (OLFM4, HLA-DRB1, and DPYSL4) in T-

PLLs cells or naïve and memory T-cells of healthy donors. Differential gene-

expression of the memory-vs-central-memory signature genes ANKRD55, TSHZ2, 

and LRRN3 was confirmed in T-PLL cells or central-memory and memory T-cells of 

healthy donors. D) The expression of a T-cell subset specific gene signature as 

reported by Haining and colleagues2 was evaluated in the 70 GEPs of primary T-PLL 

cells and in PB isolated healthy donor-derived naïve vs pan-memory vs CM T-cells 

(n=10 donors each (unsupervised hierarchical clustering). Again, the majority of T-

PLL cases showed a gene expression most similar to memory T-cells / CM T-cells. 

E) A-C) Surface marker expression of CD3 and CD28 (flow cytometry) in murine 

spleen-derived CD5+ T-cells from young (2 months) and old (>15 months) Lckpr-

TCL1A mice vs age-matched C57/B6J wild-type controls. 
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P<0.0001 
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P<0.0001 

Correlation coefficient 
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P=0.0029
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Figure S3: Immunophenotypic profiles of T-PLL cells. 
A) Healthy PB T-cells (n=10 donors) and PB-derived primary T-PLL cells (n=79 

cases) were analyzed by flow cytometry for the expression of chemokine receptors 

CCR4, CCR5, and CXCR3 (data supplementing Fig.2A). B) Correlation-matrix 

(color-coded coefficients): expression of the markers or their informative 

combinations (subset-defining) quantified via flow cytometry (% positive cells) was 

correlated across cases of the cohort of 79 T-PLL. Noteworthy positive correlations 

were: CD28 with CD127 expression (ρ=0.642; P=4.87x10-7), of the activation 

markers CD40L and CD69 (ρ=0.609; P=0.0283), and of CD38 with CD69 (ρ=0.5; 

P=8.68Ex10-4). Specific memory marker immunophenotypes (CD45RA/RO, CCR7, 

CD62L; see Fig.1B and TableS3) did not correlate with a specific expression pattern 

of other investigated markers. C) Flow-cytometric analysis of immune-checkpoint 

receptors upon anti-CD3/CD28 and PMA/Ionomycin stimulated primary T-PLL cells 

vs healthy donor-derived CD3 pan-T-cell controls. A certain anergy of T-PLL cells to 

TCR-induced upregulation of negative auto-regulatory receptors is observed. 
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Figure S4: TCR activation triggers proliferation of T-PLL cells. 
A) Anti-CD3/CD28 and IL-2 stimulated primary T-PLL cells as suspension cultures. 

Viability was assessed in T-PLL cells (n=5) using the CellTiter-Glo® luminescent 

assay by quantifying ATP. All investigated samples surface CD3, CD28, CD25, and 

CD122 with the exception of one, which revealed no expression of the IL-2 receptor 

chains CD25 and CD122. Cells were stimulated with different combinations of IL-2 

(low 2.5 ng/mL, high 25 ng/mL) and cross-linking antibodies against CD3 (low 0.1 

µg/mL, high 1 µg/mL) and CD28 (low 0.2 µg/mL, high 2 µg/mL). Viability was 

measured after 24 h. B) Basal oxygen consumption rate (OCR) as an indicator for 

mitochondrial respiration was assessed in T-PLL cells (n=4) and healthy donor-

derived pan-T-cell controls (n=4). Baseline respiration is slightly increased in T-PLL 

cells as compared to healthy controls prior to stimulation (not significant). CD3/28 

cross-linking leads to an increased OCR with slightly higher levels on T-PLL cells 

(not significant). C, D) The surface expression of CD45RA and activation markers 

(CD25, CD38, CD69, and Ki-67) increased in T-PLL cells upon stimulation with anti-

CD3/28 antibodies and PMA/Ionomycin (24hrs, detection via flow cytometry), 

comparable to healthy donor-derived pan-T-cells (n=5 donors) and healthy memory 

(CD45RO+) T-cells (data not shown).  
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Figure S5: Altered gene expression of apoptosis regulators in T-PLL. 
Transcripts of genes regulating apoptotic pathways were found to be differently 

expressed in T-PLL cells (n=70) compared to healthy donor pan-T-cell controls 

(n=10). The heatmap shows highly expressed genes in red and downregulated 

genes in blue. The annotated genes (right) represent the most informative highly 

differentially expressed genes (P<0.05).  
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Figure S6: TCL1A enhances TCR triggered signaling responses. 
A) TCL1A protein expression levels were assessed in the doxycycline-inducible iHH-

TCL1A cell line compared to PB-derived primary T-PLL cells. TCL1A expression is 

even higher in primary cases compared to the iHH-TCL1A system. B) CD3 and 

CD28 surface expression levels in HH and iHH-TCL1A cell line as detected by 

flowcytometry. C, D) TCR responses in stably TCL1A expressing cell lines: The 

Jurkat T-cell line / the HH T-cell line were stably transfected with either TCL1A or 

GFP as a control. Transfected cells were stimulated using anti-CD3 (10 µg/mL) and 

anti-CD28 (20 µg/mL) antibodies and phosphorylation of effector kinase ERK1/2 was 

investigated by immunoblotting. Phosphorylation of ERK1/2 (pERK1/2) is accelerated 

and enhanced in the context of overexpressed TCL1A. E) Additional conditions from 

the TCL1A / CD3 / CD28 titration experiment in iHH-TCL1A cells (data 

supplementing Fig.6D). Different concentrations and combinations of TCL1A (no, 

low, high), and anti-CD3 (low 0.1 µg/mL, high 1.0 µg/mL), and anti-CD28 (low 0.2 

µg/mL, high 2.0 µg/mL) crosslinking antibodies were used. Readout: IL-2 release as 

detected by ELISA.  
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Figure S7: Immunophenotypic characterization of transduced OT-1 T-cells in 
peripheral blood of recipient mice.  
Mature OT-1 T-cells carrying monoclonal TCR’s that specifically recognize ovalbumin 

(OVA) were retrovirally transduced with a TCL1A-GFP or a GFP-only cDNA construct 

and transplated into immunodeficient RAG-/- mice. Mice were repeatedly stimulated in 

vivo with OVA-peptides (experimental strategy in Fig.7A). GFP+ cells in the PB of 

PBS-injected (w/o stim) and OVA-stimulated (OVA-stim) T-cell recipient mice (GFP-

only or TCL1A OT-1 T-cells) were characterized by flow cytometry for memory 

marker expression CCR7, CD62L, CD69, and CD44 at 36 weeks after 

transplantation. Plots show mean percentages with standard deviations (SD) of sub-

gates of 5 analyzed animals. 
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2. Supplementary Tables 

Table S1: Cohort of analyzed T-PLL cases. 

(see Excel file) 

 

A total of 105 patients with T-PLL (58 men; 38 women; 9 n/a) were diagnosed at a 

median age of 66 years. The rearrangements inv(14)(q11;q32) and t(14;14)(q11;q32) 

were detected in 85% (n=57/67) and TCL1A protein expression by flow cytometry in 

79% (n=64/81; >5% TCLA positive cells) of analyzed cases. The immunophenotype 

CD4+/CD8- was present in 59% (n=57/97) of analyzed cases, CD4+/CD8+ in 25% 

(n=24/97), CD8+/CD4- in 15% (n=15/97), and CD8-/CD4- in 1% (n=1/97). The minor 

differences to the reported frequencies in the Result section orginiated from the 

variable cohort size of cases that were analyzed for the multi-analyte memory- / 

activation marker set (n=79) as compared to all 96 cases with available CD45RO/RA 

data. 
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Table S2: Surface marker expression defining naïve / memory T-cell like 
subsets in T-PLL. 
Categories shaded in light blue represent T-cell subsets that are observed in healthy 

individuals3, categories in dark blue represent aberrant surface marker combinations 

newly identified in primary T-PLL. 

Category CD45RA CD45RO CCR7 CD62L T-PLL cases 
n        % 

CD45RA+ / CD45RO-     7 9 

Naïve + - + + 7 9 

CD45RA- / CD45RO+     46 58 

Effector Memory - + - - 5 6 

Effector Memory CD62L+ - + - + 1 1 

Central Memory - + + + 25 32 

Transitional - + + - 7 9 

Memory mixed - + +/- +/- 2 3 

EMRA + - - - 1 1 

n/a     5 6 

CD45RA+ / CD45RO+     19 24 

Effector Memory (CD45RA+) + + - - 1 1 

Effector Memory (CD45RA+) CD62L+ + + - + 1 1 

Central Memory (CD45RA+) + + + + 10 13 

Transitional (CD45RA+) + + + - 3 4 

memory mixed (CD45RA+) + + +/- +/- 2 3 

n/a     2 3 

CD45RA / CD45RO composite +/- +/- +/- +/- 5 6 

CD45RA- / CD45RO- - - +/- +/- 3 4 
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Table S3: Gene expression signatures defining T-cell differentiation subtypes. 
25 genes that represent specific gene expression signatures for naïve (out of a total 

of n=2078), (pan-) memory (n=2316), CM (n=185) and EM (n=634) T-cells (excluding 

unannotated probes; P<0.05; q<0.1). They were received by comparative GEP 

analysis between listed healthy T-cell subsets (see supplementary methods for 

details). 

TOP25 Mem vs Naïve 
(Mem-TC Signature) 

TOP25 Naïve vs Mem  
(Naïve-TC Signature) 

TOP25 Mem vs CM  
(EM-TC Signature) 

TOP25 CM vs Mem 
(CM-TC Signature) 

Gene Symbol FC Gene Symbol FC Gene Symbol FC Gene Symbol FC (Entrez ID) (Entrez ID) (Entrez ID) (Entrez ID) 
CAMP 58.15 KRT72 14.46 OLFM4 10.69 ANKRD55 2.63 (820) (140807) (10562) (79722) 

HLA-DRA 43.15 MMP28 9.57 TMEM158 10.19 TSHZ2 1.86 (3122) (79148) (25907) (128553) 
LYZ 42.91 KRT73 8.51 CAMP 9.68 SLC22A23 1.8 (4069) (319101) (820) (63027) 

FCER1A 39.97 EDAR 6.38 GZMH 9.59 PRO0628 1.79 (2205) (10931) (2999) (29053) 
HLA-DQA1 30.26 DACT1 5.87 GNG11 9.18 TXK 1.77 (3117) (51339) (2791) (7294) 

FCN1 29.83 ADTRP 5.61 CA2 8.96 MEOX1 1.76 (2219) (84830) (760) (4222) 
OLFM4 27.69 NOG 5.11 GP9 8.91 EPHX2 1.75 (10562) (9241) (2815) (2053) 
NAPSB 27.09 FHIT 4.93 FGFBP2 8.87 CCR7 1.73 (256236) (2272) (83888) (1236) 
CPVL 26.11 LRRN3 4.8 F13A1  8.83 ABLIM1 1.72 (54504) (54674) (2162) (3983) 

S100A9 25.51 CELA1 4.67 NRGN  8.64 LINC00402 1.72 (6280) (1990) (4900) (100507612) 
HLA-DRB5 24.71 DPYSL4 4.61 SDPR  8.54 KLHL3 1.71 (3127) (10570) (8436) (26249) 

S100A8 23.2 SERPINE2 4.39 RGS18 8.24 RP11-664D1.1  1.71 (6279) (5270) (64407) (105369609) 
HLA-DRB4 23.2 SGK223 4.39 ITGB5 8.19 SNORD104 1.67 (3126) (157285) (3693) (692227) 

TCN1 19.67 AC084018.1 4.04 C2orf88 8.19 MAN1C1 1.62 (6947) (338799) (84281) (57134) 
HLA-DRB6 18.55 BACH2 4.02 TUBB1 7.98 PRG4 1.62 (3128) (60468) (81027) (10216) 

CEBPD 18.09 PCSK5 3.9 TCN1  7.94 CERS6 1.61 (1052) (5125) (6947) (253782) 
TYROBP 17.65 ANKRD55 3.85 MS4A7  7.85 NDUFB1 1.6 (7305) (79722) (58475) (4707) 

HLA-DRB1 16.77 RNF175 3.78 LYN 7.75 TRABD2A 1.6 (3123) (285533) (4067) (129293) 
PGLYRP1 16.16 DSC1  3.75 NFE2 7.7 GRAP 1.6 (8993) (1823) (4778) (10750) 

LILRA3   SCML1 3.74 PTGS1 7.64 MCF2L-AS1 1.59 (11026) 15.83 (6322) (5742) (100289410) 
CSF1R 15.54 SATB1 3.68 LILRA3 7.62 USP10 1.59 (1436) (6304) (11026) (9100) 

FGR 15.23 APBA2 3.68 RAB32 7.55 TCEA3 1.58 (2268) (321) (10981) (6920) 
SIRPA 15.03 FAM134B 3.61 SH3BGRL2 7.41 TRIB2 1.58 (140885) (54463) (83699) (28951) 

IL8 14.96 PDE9A 3.6 MPL 7.34 LEF1 1.58 (3576) (5152) (4352) (51176) 
S100A12 

14.34 
EPHX2 

3.48 
RAB31 

7.05 
C1orf228 

1.57 
(6283) (2053) (11031) (339541) 
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Table S4: Amino acid translation of the CDR3 region of T-PLL cells. 

Patient ID Amino Acid Sequence Length (aa) 

TRAV   
TP001 AVRDFSGGYNKLI 13 
TP002 ALDENTDKLI 10 
TP003 ALDEGNNNDMR 11 
TP010 APPAPNQAGTALI 13 

TP012 AVNFFGQKLL 10 
AMRETLTGNQFY 12 

TP025 VVIQTGANNLF 11 
TP034 AVGDYGGSQGNLI 13 

TP035 AVANSNSG 8 
AVANSNSGYALN 12 

TP036 AEYSSASKII 10 
TP037 AGSYNTDKLI 10 
TP040 ALSDGTNAGKST 12 
TP042 AASRVYKLS 9 
TRBV   
TP002 ASSLEWGNYEQY 12 

TP007 ASRSGRNYGYT 11 
ASSLGQGNSPLH 12 

TP012 

AIRENTEAF 9 
ASSRSIQETQY 11 

ASSLGPPVNEKLF 13 
ASSLPRGLDFSYEQY 15 

TP025 

SVEGGQFYEQY 11 
SVEQDSGANVLT 12 

ASSPGQGEGYEQY 13 
GSSLVGRTGKQETQY 15 

TP034 ASSLSYGTGYMNTEAF 16 
TP035 AVRGASYEQY 10 
TP037 ASSSEGSTDTQY 12 
TP038 ASSPGQGAMNTEAF 14 
TP040 ASSLVMGREEKLF 13 
TP042 EGAGLLQY 8 
TP051 ASSLGQGNSPLH 12 
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Table S5: Correlation Matrix of surface marker expression. 

(see Excel file) 
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Table S6: Cytokine release in TCR-stimulated T-PLL cells. 
Analyzed cytokines are listed in 3 categories based on the level of cytokine release 

that was increased (red), without difference (blue) or decreased (green) in TCR-

stimulated T-PLL cells as compared to TCR stimulated healthy donor pan-T-cells.  

Cytokine	 Healthy	donor	pan-T-cells	(n=3)	 T-PLL	(n=5)	 	

pg/ml	 Unstimulated	
(Mean	±	SEM)	

anti-CD3/CD28	
(Mean	±	SEM)	

Unstimulated	
(Mean	±	SEM)	

anti-CD3/CD28	
(Mean	±	SEM)	

	

IL-2	 0	±	0	 65	±	41.4	 0.4	±	0.4	 4789.0	±	990.8	 	
IL-8	 25.76	±	13	 223.8	±	94.3	 69.1	±	33	 1605.9	±	584.4	

GM-CSF	 0	±	0	 11.6	±	11.6	 0	±	0	 1205.8	±	9939.6	
TNF-α	 0	±	0	 17	±	11.6	 0.2	±	0.2	 535.6	±	110	
MIP-1α	 1.9	±	0.2	 25.6	±	12	 11.1	±	4.2	 312.2	±	76.1	
MIP-1β	 39.5	±	5	 80.7	±	14.1	 41.3	±	16.9	 404.6	±	81.4	
TNF-β	 0	±	0	 0	±	0	 0	±	0	 258.2	±	170.8	
SDF-1α	 22.8	±	9.8	 44.2	±	10.6	 104	±	40.9	 255.1	±	92.9	
IL-10	 0.36	±	0.01	 4	±	2.2	 0.4	±	0.1	 208.1	±	119.1	
IP-10	 5	±	0.8	 7.6	±	1.7	 0.8	±	0.8	 177	±	86.3	
IFNγ	 3.6	±	2	 4.2	±	2.6	 3.1	±	3.1	 141.7	±	93.1	
LIF	 0.1	±	0.1	 0.6	±	0.6	 0.2	±	0.1	 141.3	±	62.2	
IL-22	 154.75	±	80.6	 12.1	±	12.1	 126.2	±	57.3	 135.9	±	29.3	
IL-1RA	 387.98	±	201.2	 0	±	0	 214.9	±	189.9	 120.6	±	50.8	
IL-23	 30.1	±	16.1	 0	±	0	 65	±	30.5	 113.4	±	41.6	
MCP-1	 4	±	2	 2.3	±	1.2	 37.3	±	14.6	 95.8	±	41.6	
VEGF-A	 21.2	±	9.5	 16.8	±	1.1	 13	±	9.8	 89.7	±	29.6	
IL-31	 148	±	74.6	 0	±	0	 117.4	±	95.4	 56.1	±	38.9	
IL-9	 22.54	±	15	 17.2	±	4	 19.4	±	12.5	 53.6	±	13.3	
IL-13	 7.9	±	4	 0	±	0	 4.5	±	3.4	 13.4	±	9.7	
IL-15	 4.2	±	4.2	 0	±	0	 4.6	±	4.6	 7.6	±	3.3	
GRO-α	 19.4	±	7.2	 9.6	±	1.1	 16.4	±	8.1	 25.6	±	5.8	
IL-18	 35	±	21.2	 0	±	0	 20.6	±	13	 24.5	±	7.5	
PlGF-1	 5.8	±	1	 7.9	±	0.6	 4	±	2	 19.8	±	5.4	
IL-6	 18.4	±	9.2	 0	±	0	 13.3	±	10.8	 18.6	±	9	
IL-21	 10.5	±	6	 0	±	0	 6.4	±	5.5	 8.7	±	4.8	
IL-4	 12.63	±	 0	±	0	 7.0	±	7.0	 7.8	±	3.4	

VEGF-D	 0	±	0	 2	±	1	 1	±	1	 6	±	1.1	
HGF	 0	±	0	 0	±	0	 0.5	±	0.3	 5.6	±	2.4	
FGF-2	 17.8	±	8.9	 0	±	0	 11.8	±	8.8	 5.2	±	3.6	
IL-1α	 0.7	±	0.1	 1.4	±	0.2	 0.8	±	0.5	 5.0	±	1.7	
IL-27	 48.3	±	25.3	 0	±	0	 27.9	±	26.5	 3.3	±	3.3	
Eotaxin	 0.6	±	0.2	 0.91	±	0.3	 0.7	±	0.49	 3.2	±	0.4	
IL-1β	 1.9	±	1.1	 0	±	0	 1.1	±	1.1	 2.0	±	1.4	

PDGF-BB	 6.17	±	0.8	 3.4	±	1.7	 2.3	±	1	 3.6	±	0	 	
IL-5	 0	±	0	 0	±	0	 0.2	±	0.2	 0	±	0	
IL-7	 0.2	±	0.1	 0.1	±	0.04	 0.2	±	0.1	 0.4	±	0.13	
IL-12	 1.9	±	0.9	 0.57	±	0.03	 1.2	±	0.7	 0.6	±	0.2	
SCF	 2.7	±	1.4	 0	±	0	 2.1	±	1.9	 0.1	±	0.1	
NGF-β	 22.3	±	17.7	 0	±	0	 16.1	±	16.1	 0	±	0	
BDNF	 1.9	±	0.1	 0	±	0	 0.8	±	0.8	 0	±	0	
IL-17A	 0	±	0	 1.1	±	1.1	 0.2	±	0.2	 0	±	0	

RANTES	 15.1	±	1.4	 28.3	±	1.9	 1.9	±	1.4	 16	±	7	 	
EGF	 1.3	±	0.2	 2.9	±	0.6	 0	±	0	 0.1	±	0.1	
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Table S7: Expression of genes involved in the regulation of apoptotic pathways 
in T-PLL. 

Gene Symbol Fold Change P-value 

BAG4  
1.85 1.42E-05 
1.96 1.21E-07 

BCL11B  -1.7 2.77E-10 

BCL2  
-2.61 4.58E-15 
-2.55 2.78E-17 

BCL2L11  1.98 0.00984 
BCL2L13  -1.68 1.40E-12 
BCL2L2  1.56 0.000201 

BCL3  1.82 0.00984 
BCL6  3.16 1.58E-07 

BCL7A  1.64 0.0142 
BCL7B  1.68 0.000909 

BCLAF1  1.93 1.06E-05 
BIRC7  3.01 0.00184 

BNIP1  
1.54 0.0222 
1.55 0.00594 

CARD11  -1.54 6.90E-07 
CARD8  -1.6 1.63E-07 

CASP1  
-1.6 1.19E-07 

-1.54 1.46E-10 
CASP4  -1.51 1.45E-11 

CASP6  
-1.88 3.85E-09 
-1.85 0.000118 
-1.57 1.32E-08 

CASP8  
1.5 0.000885 

1.58 0.00528 

CD79A  
1.72 8.83E-05 
2.73 5.24E-05 

CDKN1B  -2.61 6.74E-12 

  -2.15 4.97E-18 

FYN 
 -2.17 2.84E-12 
 -1.98 2.27E-13 

  -1.91 4.27E-14 
GZMA  -2.85 3.68E-07 
H1F0  3.96 0.000203 

HIST1H1B  1.89 0.00798 
HIST1H1C  2.42 0.00431 
HIST1H1D  3.9 0.0027 
HIST1H1E  5.8 5.96E-05 

ITGB1 
 -2.28 6.12E-05 
 -2.03 0.000104 
 -1.76 2.62E-05 

NLRC3  -1.63 6.60E-06 
PIK3R1  -1.53 3.22E-06 

PLEC 
 1.63 0.00143 
 1.63 0.00579 

PTPN13  -1.68 0.000217 
TNF  9.63 6.72E-11 
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Table S8: Next-generation sequencing of the genomic rearranged TRB locus - 
PCR conditions. 
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3. Supplementary Methods  

3.1 Human T-PLL samples 
Patients were diagnosed with T-PLL according to WHO criteria.4,5 Differential 

diagnosis was based on clinical features, immunophenotyping (flow-cytometry and 

histochemistry; including TCL1A/MTCP1 expression), FISH/karyotypes, and 

molecular studies (TCR-monoclonality).6 The cohort was selected based on uniform 

front-line treatment (87% of cases) with either single-agent alemtuzumab or 

fludarabine-mitoxantrone-cyclophosphamide (FMC) plus alemtuzumab chemo-

immunotherapy as part of the TPLL1 (NCT00278213) and TPLL2 (NCT01186640, 

unpublished) prospective clinical trials or included in the nation-wide T-PLL registry 

(IRB# 12-146) of the German CLL Study Group (GCLLSG). 

 

3.2 Mouse models  
TCR tg OT-1, RAG1-deficient, and Lckpr-TCL1A mice were obtained from the 

Jackson laboratory (Bar Harbor, ME, USA) and CARCEA mice from the Patterson 

Insitute, Manchester, UK.7 CARCEA and Lckpr-TCL1A mice were crossbred for ten 

generations to generate double tg animals (CARCEAxLckpr-TCL1A).  

Animals were bred and housed in animal facilities of the Georg-Speyer-Haus 

(Frankfurt, Germany) and University Hospital Cologne (Cologne, Germany) under 

specific pathogen-free conditions.   

For the OT-1 transplantation model, 5x106 retrovirally transduced OT-1 T-cells were 

injected intravenously into each RAG1-/- recipient. Recipient mice received 

intraperitoneal injections of 25µg OVA (257-264) in PBS mixed in a 1:1 ratio with 

incomplete Freund’s adjuvant (IFA) every two weeks for in vivo stimulation of OT-1 T-

cells. Control mice received PBS/IFA (1:1) injections.   

For the CAR transplantation model, CEA-tg recipient mice (2-7 months old) were 

treated with cyclophosphamide (200 mg/kg intravenously) on day 1 and fludarabine 

(150 mg/kg intravenously) on day 4; lympho-depletion was verified by flow cytometry 

(FSC/SSC) on day 8. Donor splenocytes from CARCEA, Lckpr-TCL1A and 

CARCEAxLckpr-TCL1A mice (12-16 weeks old) were isolated by density gradient 

centrifugation. Splenocytes (1x107) were injected intravenously into each CARCEA 

recipient.  
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In both models, repopulation of transplanted cells was monitored by flow cytometric 

analysis of blood samples taken from lateral tail vein. Symptomatic/leukemic were 

examined for pathological abnormalities, including histology, morphology, white blood 

cell (WBC) counts, and flow cytometry. Sections of formalin-fixed, paraffin-embedded 

organs were stained with hematoxylin/eosin (HE) and blood smears with May-

Gründwald-Giemsa.  

 

3.3 Cell isolation and flow cytometry 
Cell isolation: Healthy T-cell populations were enriched from PBMCs by negative 

selection using the following kits according to the manufacturer’s instructions 

(Miltenyi Biotec): pan-T-cell isolation kit, naïve CD4+ T-cell isolation kit II, memory 

CD4+ T-cell isolation kit, and CD4+ central memory T-cell isolation kit. Purity of each 

population (>98%) was assessed by flow cytometry. 

Flow cytometry: The following antibodies from BioLegend (BL), Beckman Coulter 

(BC), BD Biosciences (BD), eBioscience (eB), and Miltenyi Biotec (MB) were used: 

TCL1A-PE/APC (eBio1-21, eB), TCL1A-A647 (1-21, BL), CD1a-AF700 (HI149; BL), 

CD3e-PE (145-2C11; MB), CD3-APC (SK7; BL), CD3-PB (HIT3a; BL), CD4-APC-

Cy7/PE (OKT4; BL), CD4-KO (13B8.2; BC), CD5-ECD (BL1a; BC), CD5-PC7 

(UCHT2; BL), CD7-FITC (CD7-6B7; BL), CD8-APC-Cy7/AF488 (HIT8a; BL), CD8-

PC5.5 (RPA-T8; BL), CD19-APC (HIB19; BL), CD19-ECD (J3-119; BC), CD25-APC 

(BC96; BL), CD28-AF700 (CD28.2; BL), CD38-PC5.5 (HIT2; BL), CD40L-APC-

eF780 (24-31; eB), CD44-VB (IM7.8.1; MB), CD44-PC7 (IM7; BL), CD45-PB (HI30; 

BL), CD45RA-PE (HI100; BL), CD45RO-AF700 (UCHL1; BL), CD62L-APC (MEL-14; 

BD), CD62L-APC-Cy7 (DREG-56; BL), CD69-APC-Cy7 (FN50; BL), CD95-PC7 

(DX2; BL), CD95L-PE (NOK-1; BL), CD122-APC (TU27; BL), CD124-PE (hIL4R-

M57, BD), CD127-AF488 (A019D5; BL), CCR3-AF647 (5E8; BL), CCR4-PC5.5 

(TG6/CCR4; BL), CCR5-FITC (HEK/1/85a; BL), CCR7-PC5.5 (G043H7; BL), 

CXCR3-PB (G025H7; BL), CXCR4-PC7 (12G5; BL), CXCR5-PC5.5 (TG2/CXCR5; 

BL), Bcl2-AF647 (100; BL), GATA3-PC7 (L50-823; BD), Ki67-FITC (Ki-67; BL). 

Intracellular staining was performed using the IntraPrep kit (BeckmanCoulter) 

according to the manufacturer’s instructions. TCR clonality was assessed by flow 

cytometry using the Human IOTest Beta Mark TCR V Kit (BeckmanCoulter) and the 

Mouse Vβ TCR Screening Panel (BD Pharmingen) according to the manufacturer’s 
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instructions. Analyzes were performed on a Gallios cytometer (BeckmanCoulter) and 

MACSQuant Analyzer (Miltenyi Biotec) using Kaluza (BeckmanCoulter) and FlowJo 

software (FlowJo, LLC).   

SPADE analysis: FlowCore (R package version 1.38.0) was used to read in/out FCS 

/ LMD data files and compare / match their marker names for each batch. SPADE1 

was used in R for each batch separately with default parameters and excluding fwd / 

bwd scatter for clustering & tree construction. 

 

3.4 RNA extraction 
RNA was extracted from 1x107 PBMCs of T-PLL patients (>95% purity of T-cells) and 

PB T-cell populations (naïve, pan memory and CM) of healthy donors using the 

mirVana Kit (Invitrogen). 

 

3.5 Gene expression profiling (GEP) 
GEP assays were performed on Illumina HumanHT 12 v4 BeadChip arrays 

according to the manufacturer’s instructions. GEP data have been submitted to the 

GEO database under accession number GSEXXX.  

The Illumina proprietary software GenomeStudio v1 was used to background-correct 

and initially annotate the probes of the HumanHT-12 v4 Expression BeadChip. 

Batch-effects were corrected by batch-strata and the ComBat method.8 The data 

mining tool biomaRt was used via R 3.1.0 Bioconductor 2.10 for probe annotation.9 

Q-values were calculated via the q-value library. Hierarchical (unsupervised) 

clustering was done with heatmap.2 from the gplots_2.15.0 library (distance function: 

euclidean; clustering: complete linkage). PCAs were computed with method prcomp() 

from the stats library.  

 

3.6 Quantitative real-time PCR 
Total RNA was reverse-transcribed using SuperScript II reverse transcriptase 

(Invitrogen). Real-time PCR was performed using an ABI 7500 Fast System (Applied-

Biosystems) in the presence of SYBR-green (Applied-Biosystems). Levels of mRNA 

were quantified using the comparative CT method and normalized to beta-actin.10  

The following primers were used: ANKRD55 forward (Fw) 5’-

GAAGGCCGAATGTGTCCAGTCACT-3’, reverse (Rev) 5’-
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GAGGGGGTCGAGTAGGCTCTGTTC-3’; Beta-Actin Fw 5’-TCCCTCACAG 

CACTAGTATTTCATG-3’, Rev 5’-GAATCGGCTGTGTTCTCACAAG-3’; DPYSL4 Fw 

5’-AGCGCCTGCCGTGGTCATAAG-3’, Rev 5’-CGGGCCCGTCATACAGTCCAC-3’; 

HLA-DRB1 Fw 5’-GAGCTCCCCACTGGCTTTGTCTG-3’, Rev 5’-CTCCCCCACGTC 

GCTGTCG-3’; LRRN3 Fw 5’-ATGCCACTCCGAATTCATGTGCT-3’, REV 5’-CCAAG 

GCCTGATTTCACACGTACA-3’; OLFM4 Fw 5’-GAT CAAAACACCCCTGTCGTC 

CAC-3’, Rev 5’-TCAATGGCGCCACCCAATACA-3’; TSHZ2 Fw 5’-CTCCTCGTCCG 

TCCCTGTGTCA-3’, Rev 5’-GCCGAGGAGAAAACAGCAGGCAC-3’.  

 

3.7 Cell lines, primary cells, cell culture and in vitro stimulation 
All cell lines and human primary cells (T-PLL, healthy controls) were cultured in 

RPMI-1640 Medium (Sigma-Aldrich) supplemented with 1% L-Glutamine (200 mM; 

Sigma-Aldrich), 10% fetal bovine serum (FBS) (Sigma-Aldrich) and Penicillin / 

Streptomycin (100U / 0.1M; PAA). Cells were maintained at a density of 1-3x105/ml 

(HH and Jurkat cells) and 1x106 cells/ml (T-PLL cells). 

For primary human T-cell stimulation, cells (4.5x105 cells/mL) were plated into 6- or 

96-well plates, which were pre-coated with various concentrations of anti-CD3 

epsilon and/or anti-CD28 antibodies at 37°C for 1h or at 4°C overnight. Anti-

CD3/CD28 antibodies were either self-produced (OKT3, 15E8) or purchased from 

Biolegend (OKT3; 28.2). PMA (phorbolmyristylacetate) and ionomycin were used at a 

final concentration of 100ng/mL and 1mM, respectively. 

Primary murine mononuclear cells were isolated from spleen and LNs of TCR tg OT-

1 mice and cultivated in RPMI 1640 (Thermo Scientific), supplemented with 10% fetal 

calf serum (Merck Millipore), 2% L-glutamine (Thermo Scientific), 1% Pen/ Strep 

(Thermo Scientific), 1% sodium pyruvate (Thermo Scientific), 1% nonessential amino 

acids (Invitrogen), and 0.1% β-mercaptoethanol (Thermo Scientific) at a density of 

2.5x106 cells per ml. For OT-1 T-cell stimulation, ovalbumin (OVA) peptide (257-264) 

(10ng/ml) and IL-2 (10U/ml) were added to the medium. 

 

3.8 Next-generation sequencing of the genomic rearranged TRB locus 
The amplicon next generation sequencing (NGS)-based detection of clonal TRB 

rearrangements was performed on Illumina MiSeq sequencer. Sequencing libraries 

were prepared as previously described11, using modified biomed-2 primers for 



214 / 316

Warner et al, TCR signaling and TCL1A in T-PLL 

  

Supplements 

27 

complete TRB rearrangements12 for the 1st PCR, and primers harboring Illumina 

sequencing adaptors and barcodes for the 2nd PCR. The PCR conditions for both 

PCRs are shown in Supplementary Table S8. After the 1st PCR, the PCR products 

were diluted 0×, 10×, or 100×, depending on the intensity of the band detected by the 

Agarose gel electrophoresis and 1µl of such PCR product was used for the 2nd PCR 

reaction. After 2nd PCR, the concentration of the resulting PCR products was 

measured using the Quant-iT™ PicoGreen® dsDNA Assay Kit (ThermoFisher 

Scientific) and the PCR products were pooled into 3 subpools in equimolar ratios. 

Each subpool was purified via the extraction from the 2% agarose gel, using the 

MinElute Gel extraction kit (Qiagen). The concentration of each subpool after gel 

extraction was measured using the Quant-iT™ PicoGreen® dsDNA Assay Kit 

(ThermoFisher Scientific) and the final pool with the concentration of 7pM was used 

for sequencing. Sequencing was performed on the MiSeq sequencer, using the 

2x250 bp v2 chemistry, according to the manufacturer’s instructions. 

The raw sequencing data were demultiplexed using bcl2fastq conversion software 

(Illumina) with 0 mismatches in barcode sequences allowed. Resulting fastq files 

were analysed using the bioinformatics tool Vidjil.13 Only clones with frequency > 

15% were reported. 

 

3.9 Reconstruction of TCR chains with RNA-Seq 
Whole transcriptome sequencing (RNAseq) analyses were conducted using the 

Illumina HiSeq2000 platform as previously described.14 Similarly to the protocol on 

reconstruction of immunoglobulin chains with RNA-Seq by Bachy and colleagues15, 

we de novo assembled T-cell receptor (alpha, beta, gamma and delta) V-D-J 

transcripts in T-PLL (n=15) and normal CD3+ pan-T-cells (n=4). Reads were aligned 

with STAR_2.5.2a16 in 2-pass mode to the GRCh37/hg19 reference genome. Those 

reads mapping to the TCR alpha, beta, gamma and delta loci were extracted with 

bedtools.17 TCR genes and pseudogenes were identified from the Gencode project 

annotation version 2418 lifted to GRCh37/hg19. The number of reads mapping to 

each gene or pseudogene was counted with HTSeq-0.6.1 (www-

huber.embl.de/users/anders/HTSeq/doc/overview.html) in default exon-union mode. 

Due to TCR segment rearrangements (including fragmentation and fusion of multiple 

segments) default gapped read aligner fail to align all TCR gene or pseudogenes. 
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We therefore extracted unmapped reads from the STAR aligment with Picard tools 

(https://broadinstitute.github.io/picard/) and function SamToFastq 

(VALIDATION_STRINGENCY=SILENT) in order to reconstruct TCR chains for each 

sample with the de novo transcription assembler Trinity 2.1.119; ran in non-genome-

guided mode, minimum contig length 200, without Jaccard clipping, without digital 

normalization). 

From the individual reconstructed transcriptome, transcripts bearing homology to 

human TCR genes and pseudogenes were identified with NCBI BLAST20 using a 

database downloaded from IMGT.21 From these homology-bearing Trinity transcripts, 

we constructed a new reference transcriptome and remapped all reads to it with the 

bowtie2 short read aligner.22 Read counts, FPKM (Fragments Per Kilobase Million) 

and TPM (Transcripts Per Kilobase Million) for each transcript were calculated with 

eXpress version 1.5.1.23 

Reconstructed transcripts were further annotated using IgBLAST24 wrapped in the 

MIGMAP package (https://github.com/mikessh/migmap: HTS-compatible wrapper for 

IgBlast V-(D)-J mapping tool). We only accepted following criteria (in decreasing 

priority): in-frame chains, or chains containing two out of three homologues 

segments, or containing at least one homologues segment and one ambiguous. The 

IMGT alignments found in the Supplements can also be used to investigate (the 

degree of) somatic hypermutations. 

Decrease in TCR repertoire was measured by number of unique reference segments 

with non-zero read count and reconstructed transcripts with non-zero TPM. Both 

were compared with Wilcoxon rank sum test in T-PLL vs CD3+ pan-T-cells and 

visualized in 3D bar plot (R-3.2.2 library latticeExtra) for segment and chain co-

occurences/exclusivity.  

 

3.10 Transfection and transduction 
The human cell line HH (TCL1A-negative) was transfected with a doxycycline-

inducible TRMPVIR vector containing TCL1A.25 For induction of TCL1A expression, 

transfected HH cells (iHH-TCL1A) were treated with 1µg/ml (high expression) or 

0.125µg/ml (low expression) doxycycline for 24h. Jurkat-TCL1A and Jurkat-GFP cells 

were established as previously described.26 OVA-stimulated OT-1 T-cells were 

transduced in vitro with a retroviral vector co-expressing human TCL1A and a GFP or 
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luciferase reporter on 2 consecutive days. The retroviral TCL1A plasmid was 

generated by cloning cDNA of human TCL1A (Michael Teitell, UCLA, USA) into the 

previously described gamma retroviral vector MP91-GFP.27 MP91-GFP (GFP only) 

was used as a control vector. For in vivo imaging experiments, GFP was replaced 

with a firefly luciferase reporter and either T-Sapphire or human TCL1A were cloned 

in front of the IRES. Retroviral vectors were produced by calcium-phosphate 

mediated transient transfection of 293T human embryonic kidney cells as previously 

described 27.  

 

3.11 Cell cycle analysis 
For cell cycle analysis the DNA intercalating dye propidium iodide (PI) was used. 

Analysis was carried out by flow cytometry. Per sample 1*106 cells were washed 

once with cold PBS and thoroughly resuspended in 500 µL PBS. While vortexing the 

sample for 30 s 4 mL of ice cold 70 % ethanol were added drop wise. The samples 

were fixed for at least 2 h or over night at -20°C. The fixed cells were pelleted at 350 

x g for 5 min and the ethanol thoroughly decanted. Cells were resuspended in 4 mL 

PBS and incubated for 1 min at RT before washing. The cells were then resuspended 

in 500 µL PI staining solution (0.1 % (v/v) Triton X-100, 0.2 mg/mL RNAse A, 0.02 

mg/mL propidium iodide in PBS), incubated for 30 min at RT and analyzed 

immediately. 

 

3.12 Viability assay 
Cell viability was assessed using the CellTiter-Glo® (Promega) luminescent cell 

viability assay according to the manufacturers instructions. The assay was performed 

in black 96-well plates (BD Biosciences) to reduce scattered light.  

 

3.13 Apoptosis assays 
Cell viability was determined by Annexin V and 7AAD (BD Biosciences) staining 

according to the manufacturer’s instructions. Specific cell death was calculated using 

the formula ((viabilitybaseline - viabilitytreated) / viabilitybaseline*100), wherein Annexin V / 

7AAD double negative cells are considered as live cells. 

Apoptosis was induced using a LEAF (Low Endotoxin, Azide-Free) agonistic CD95 

antibody (EOS9.1, BioLegend). 1 x 106 T-PLL cells were incubated for 6 h at 37°C 
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with 1 µg/mL agonistic CD95 antibody in RPMI 1640 medium containing 10 % FCS. 

H2O2 (6%) treated cells were used as a positive control. Apoptosis was assessed by 

Annexin V and 7AAD staining.  

 

3.14 Assessment of metabolic activity 
Bioenergetics of T-PLL samples and MACS enriched pan-T-cells of healthy 

donorswere determined using the XF96e Extracellular Flux Analyzer (Seahorse 

Bioscience, North Billerica, MA, USA). Cells were seeded in specialized tissue 

culture plates (240.000 cells/well) and subsequently immobilized using CELL-TAK 

(BD Biosciences). One hour prior measurement cells were incubated at 37 °C in a 

CO2-free atmosphere. First, basal oxygen consumption rate (OCR) (an indicator for 

mitochondrial respiration) and extracellular acidification rate (ECAR) (an indicator for 

lactic acid production or glycolysis) were detected. Next, OCR and ECAR responses 

towards the application of glucose (10 mM), oligomycin (1 µM), and 2-DG (100 mM) 

were evaluated. Cells were stimulated using activating anti-CD3/CD28 antibodies (T-

cell activation/expansion Kit, Miltenyi Biotec) in a cell to bead ratio of 1:2. 

 

3.15 ELISA (enzyme-linked immuno sorbend assay) and cytokine array 
Quantification of IL-2 was carried out using the human IL-2 ELISA MAX Deluxe Set 

(BioLegend) according to the manufacturers instructions. Secreted proteins were 

detected using the ProcartaPlex Human Cytokine/Chemokine/Growth Factor Panel 1 

(45 plex) according to manufacturers instructions. 

 

3.16 Immunoblots 
Western Blotting was performed on whole-cell lysates as previously described.28 The 

following primary antibodies were used at 1:1,000 dilutions: anti-TCL1A (clone 1-

21)29; phospho-AKTSer473 (D9E), pan-AKT (40D4), phospho-ERK1/2Thr202/Tyr204 (n/a), 

and ERK1/2 (3A7) from Cell Signaling Technologies; beta-Actin (C-11) and β-Tubulin 

(H-235) from Santa Cruz Biotechnology. HRP-conjugated species-specific secondary 

antibodies were purchased from Santa Cruz Biotechnology. Protein bands were 

visualized by Western Bright ECL (Advansta) and detected using autoradiography 

films (Blue, 8x10; Santa Cruz Biotechnology) and the X-ray film processor 
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CAWOMAT 2000 IR. Signal intensities were quantified using ImageJ densitometry 

software (http://rsb.info.nih.gov/ij/). 

 

3.17 Bioluminescence imaging 
In vivo imaging was performed for recipient mice of OT-1 T-cells transduced with 

luciferase vectors four weeks after transplantation and repeated every four weeks. 

Biolumuniescence was detected with the IVIS Imaging System Lumina II 

(PerkinElmer, Waltham, Massachusetts, USA). Anesthetized mice were shaved and 

injected intraperitoneally with 150µl D-Luciferin (15mg/ml) 10min before imaging. 

Images were taken in ventro-dorsal and latero-lateral position and acquired after an 

exposure time of 2 and 5 minutes using binning 4. Signal intensity was quantified as 

average radiance of photons emitted per second and area (p/s/cm²/sr) within a region 

of interest (ROI) using the Living Image Software 4.0 (PerkinElmer, Waltham, 

Massachusetts, USA). 

 

3.18 Statistics 
Results are presented as mean ± standard error of the mean (SEM). The student t 

test (GraphPad Prism, version 5.0a) was used to determine statistical significance. P 

values < .05 were considered significant. 
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Abstract: In cancer research, transcriptional aberrations are often deduced from mRNA-based gene 
expression profiling (GEP). Although transcriptome sequencing (RNA-seq) has gained ground in the 
recent past, mRNA-based microarrays remain a useful asset for high-throughput experiments in 
many laboratories. Possible reasons are the lower per-sample costs and the opportunity to analyze 
obtained GEP data in association with published data sets. There are established and widely used 
methods for the analysis of microarray data, which increase the comparability of different GEP data 
sets and facilitate data-mining approaches. However, analytic pitfalls, such as batch effects and 
issues of sample purity, e.g. by complex tissue composition, are often not properly addressed by 
these standard approaches. Moreover, most of these tools do not capitalize on the full range of public 
data sources or do not take advantage of the analytic possibilities for functional interpretation or of 
comprehensive meta-analyses. We present an overview of the most critical steps in the analysis of 
microarray-based GEP data. We discuss software and database query solutions that may be useful for 
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each step and for generally overcoming analytic challenges. Aside from machine-learning 
applications to classify and cluster samples, we describe clinical applications of GEP, including a 
novel exploratory algorithm to identify potential biomarkers of prognosis in small sample cohorts as 
demonstrated by exemplary data from lymphatic leukemias. Overall, this review and the attached 
source code provide guidance to both molecular biologists and bioinformaticians / biostatisticians to 
properly conduct GEP analyses as well as to evaluate the clinical / biological relevance of  
obtained results. 

Keywords: Cancer genomics; gene expression profiling; microarray; RNA-Seq; survival analysis; 
CLL; T-PLL; leukemia; lymphoma; TCL1; contamination; SVM; random forest 
 

1. Introduction 

Traditionally, gene expression analysis includes reverse transcription of mRNA into cDNA and 
probing of gene transcripts of interest by specific primers designed for target PCR amplification 
(gold standard), followed by quantitative, semi-quantitative (e.g. qRT-PCR), or electrophoresis (e.g. 
Southern blotting) detection methods. Based on efforts provided by the Human Genome Project [1,2] 
and studies on expressed sequence tags (ESTs) in mammalian genomes, cDNA hybridization array 
chips have originally been designed to investigate deregulated mRNA expression of distinct and 
well-characterized gene transcripts in various diseases. Modern mRNA-microarray platforms apply 
one or two-color fluorescence labeling (i.e. Cyanine3 / Cy3 for green and Cy5 for red dye 
fluorescence) for one or two samples to be loaded on the chip, respectively, and allow the detection 
of more than 47 000 transcripts. In contrast to two-color arrays (e.g. HuA1 by Agilent Technologies, 
Santa Clara, CA, USA), one-color arrays, are most commonly used today (e.g. HG-U133 Plus 2.0 by 
Affymetrix, Inc., Santa Clara, CA, USA, or BeadArray HT-12v4, Illumina, Inc., San Diego, CA, 
USA) and represent the focus of this review. 

The past few years have seen the advent of transcriptome sequencing (RNA-seq) based on the 
next-generation sequencing (NGS) technology using high-throughput platforms, such as the GA IIx 
or HiSeq2000 sequencer from Illumina. RNA-seq does not require the prior design of specific probes, 
rendering it a highly versatile approach for gene expression profiling (GEP). Accordingly, a number 
of publications on the genomic landscape of various neoplasms have applied RNA-seq to investigate 
gene-specific aspects such as differential splicing and exon usage [3], hidden viral transcripts [4], 
and cancer-specific fusion transcripts [5]. However, published reports using RNA-seq in cancer often 
lack statistical power for comprehensive gene expression analyses due to a limited sample size. In 
contrast, mRNA-based microarrays have remained the initial method of choice for high-throughput 
analyses of gene expression in many laboratories. Reasons for this include the associated lower  
per-sample costs as well as the availability of already published microarray-derived GEP data in 
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public databases. Many of these data sets were processed by established and widely used methods, 
thereby improving their comparability and the suitability for data-mining approaches. 

Within this review, we present an overview of critical steps in the analysis of microarray-based 
GEP data (see overview in Figure 1) and the corresponding library and code information 
(summarized in Table 1 and 2). We will discuss step-by-step software and database query solutions 
that may be useful for data analysis, to avoid analytic pitfalls, and to provide an increased capability 
for clinical and biological interpretation of data. To illustrate the proposed analytic steps, we present 
analyses on exemplary data of previously published and own GEP data, all obtained in patients with 
B- and T-cell leukemias or lymphomas. 

2. Quality Control can Greatly Differ by Platform 

There are various possibilities to apply basic steps of quality control (QC) prior to or during 
preprocessing of GEP raw data. In order to avoid false estimates of background intensities and false 
inputs for normalization, removal of potential problematic samples and probes before data 
preprocessing is essential towards a correct interpretation of data. Problematic samples often present 
as outliers in density distributions or in an unsupervised cluster analysis on global gene expression 
values (after data preprocessing). The latter, e.g. in form of dendrograms (Code 1) or principal 
component analyses (PCA; Code 2), is created by using the R [7] library arrayQualityMetrics from 
Bioconductor [8] with its informative HTML report per array.  

Numerous methods and libraries for R are available for more specific quality assessments for 
each of the three major microarray platforms. Affymetrix arrays can be analyzed using the 
affyQCReport and simpleaffy libraries (see Table 1 for all library references), which normalize 
expression values using housekeeping genes (e.g. calculating the actin3/actin5 ratio), while the 
affyPLM library allows calculation of important quality measures such as the normalized unscaled 
standard error (NUSE) and relative log expression (RLE) as well as their plotting across samples 
(Code 3). The quality of data obtained with Illumina chips can be assessed by statistical standard 
measurements (mean and standard deviation) or outlier detection using the lumiQ function within the 
lumi library (Code 4). Possible slide inhomogeneities (i.e. scratches) or contamination on two-color 
arrays may be detected with the imageplot function of the limma library. This package also allows 
the calculation of the RNA Integrity Number (RIN) as a measure of mRNA degradation with a 
subsequent option to remove samples below a given threshold. 
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Figure 1. Flow chart describing a suggested GEP protocol. Steps in yellow boxes are 
modular and may function somewhere independently downstream of the steps in grey 
boxes. The red text refers to those figures of this review that illustrate the respective step. 

3. Proper Preprocessing of Raw Data 

A first step in the standard analysis protocol of cDNA microarrays usually is the conversion of 
hybridization image spots obtained by array scanners into raw gene expression values. For 
Affymetrix chips this is normally done either by using the freeware Affymetrix Power Tools or the R 
library affy. For Illumina’s BeadChips the proprietary GenomeStudio software or manual decryption 
via the R library beadArray may be used. For two-color arrays, scanner output files, e.g. in TIF 
format, can easily be read with the read.maimages function from the limma R library. 

In a second step, background correction is conducted by subtracting technical noise from 
biological variation. This is accomplished by using e.g. RMA [9] for Affymetrix arrays or the 
bgAdjust function from the lumi R library for Illumina arrays, which employs a similar algorithm as 
GenomeStudio (Code 5). In order to account for outliers and to remove systematic variation, 
normalization of expression values is required. The most common procedures include  
quantile-normalization, which preserves the rank, but may eliminate small differences in expression 
values, and LOESS (locally weighted scatterplot smoothing)-normalization, which does the opposite. 
Robust splice normalization (RSN) aims to combine the advantages of both methods through a 
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monotonic splice fit to one reference sample, while simple scaling normalization (SSN) forces 
samples to have the same scale and background. Both approaches are included in the lumi R library 
for Illumina arrays. For two-color arrays it may be essential to further account for dye biases in the 
normalization [10] and to normalize within the array itself (between both color-labeled samples) and 
between all two-color arrays of the cohort, e.g. by use of the limma R library. Variance-stabilizing 
normalization (VSN) constitutes another method for combining background correction and 
normalization [11], while preserving biological variation. It is implemented in the vsn (Code 6) 
library, applicable to arrays of all major platforms. Within the normalization process raw intensities 
are usually transformed, either into a log2 scale or glog in case of VSN, in order to smoothen 
extreme values. 

4. Probe Annotation and Deconvolution 

Frequent impediments for GEP data analysis are missing array annotations or outdated 
annotation files provided by the manufacturers (e.g. frequently old GenBank predictions are 
included). Data-mining tools such as biomaRt [12] can be used to acquire up-to-date probe 
information (Code 7). They may also be helpful in assigning probes to transcripts, thereby enabling 
filtering for redundancies of probes, which map primarily to transcripts that are prone to  
nonsense-mediated mRNA decay (NMD) or to unprocessed pseudogenes. Deconvolution of genes 
with known transcript variants of differential function into probed isoforms may also be important 
for extrapolations on biological relevance. An example is the apoptosis regulator myeloid cell 
leukemia sequence 1 (MCL1), of which the longer isoform (MCL1-001) has been reported to 
enhance survival by inhibiting apoptosis, while its shorter isoform (MCL1-002) acts as a  
pro-apoptotic molecule [13]. 

5. Exploring Differentially Expressed Genes Considering the “Multiple Comparisons 
Problem” 

Raw data preprocessing and QC is followed by the actual statistical analysis, usually in the form 
of probe-by-probe hypothesis tests for differential expression including: (1) two-group mean 
comparisons using a Student’s t-test (parametric, i.e. presuming a known statistical distribution), (2) 
empirical Bayes / moderated t-tests (for low sample size; e.g. n < 10; parametric), (3) Mann-Whitney-U 
tests (for samples with low variability; non-parametric) (Code 8), (4) multiple-group tests by means 
of an analysis of variance (ANOVA; parametric) (Code 9), or (5), a Jonckheere test (trend test;  
non-parametric). However, statistical testing of all genes / transcripts detected by an array requires 
correction for multiple testing, in order to avoid a substantial number of false-positive findings [14,15]. 
For example, using a significance level of 0.05 for each of 10,000 tests would result in approximately 
0.05 * 10,000 = 500 significant rejections by chance, even if all null hypotheses of no differential 
expression were true. To this end, we can either control the family-wise error rate (FWER) to curtail 
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the number of statistically significant results, e.g. by use of the (conservative) Bonferroni correction, 
in which the significance level for each probe-specific test equals the FWER (e.g. 0.05) divided by 
the total number of tested probes, or by some permutation / resampling approach. Furthermore, we 
can aim for controlling the false-discovery rate (FDR), i.e. the proportion of falsely rejected null 
hypotheses, e.g. using the Benjamini-Hochberg’s procedure, q-values, or other approaches. It should 
be noted, however, that control of the FDR, while very helpful in limiting the number of erroneously 
followed-up probes, does not imply a notion of statistical significance. The procedures by Bonferroni 
and by Benjamini-Hochberg are implemented in the multtest library [16], while the qvalue library 
provides an implementation for the rank-preserving q-value calculation (Code 10). 

Nominally differentially expressed probes (e.g. with a single-test level of p < 0.05) can also be 
filtered by multiple-testing correction, for example by applying a q-value / FDR cutoff (common  
cut-off, e.g. 0.1) to ensure a low proportion of false-positives in the set of probes to be subsequently 
followed up. To reduce time in the analysis, it may also be useful to exclude genes / probes that are 
not expected to be differentially expressed either due to biologically low variability in the 
investigated samples, or due to technically low detectability on the array. This can be achieved either 
by non-specific filtering of expression values restricted to a given range (e.g. the shortest interval 
containing half of the data by standard deviation (sd) or interquartile range) or by setting an 
empirical cut-off to the coefficient of variation (sd/mean), e.g. the top 10 percent or a fixed value of 
0.6. Note, however, that this may increase the rate of false-negative findings (Code 11). 

6. Pitfalls: Batch-correction and Contamination Estimation 

When comparing GEP data obtained in the same laboratory, but with two or more different 
batches of arrays, the results will deviate from one another beyond the expected biological and array-
specific technical variation. Batch correction addresses this issue. Two approaches commonly 
considered to be performing best [17] are mean-centering and a Bayesian framework named  
ComBat [18] (Figure 2a–c; Code 12).  

A particular problem for cancer transcriptomics / genomics is the contamination of cancer 
tissues by normal cells (irrespective whether to consider them as actual milieu components) and vice 
versa. Even in lymphomas and lymphoid leukemias, such problems are encountered in lymph-node 
samples or in the seemingly ‘pure’ blood samples, as these are also of mostly multicellular 
composition. Tools like ESTIMATE [19] can weigh specific markers (e.g. indicating an immune or 
stromal cell origin) within gene expression profiles in the form of gene set enrichment analyses and 
thus evaluate the degree of purity. Unfortunately, due to intrinsic aberrations of ‘immune cell’ genes 
within tumor cells of leukemias / lymphomas, the immune gene set used within ESTIMATE is not 
reliable for the enrichment analysis within these malignancies (Figure 2d; Code 13). An alternative 
approach especially for leukemias / lymphomas might be CellMix [20] which uses gene sets from 
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specific immune cell subsets, e.g. CD4+ and CD8+ T-lymphocytes, CD14+ monocytes, CD19+  
B-lymphocytes, CD56+ natural killer cells, and CD66b+ granulocytes. 

 

 

Figure 2. a) PCA (principal component analysis) of the 1000 most variable genes (by variation 
coefficient) within 12 distinct batches of our T-PLL (T-cell prolymphocytic leukemia) data set 
reveals batch-specific clustering. b) After batch correction samples do not cluster anymore due 
to technical bias, but rather due to biological information when annotated as in c). c) Entity 
information can be included in ComBat (besides batch information) to fit batches. T-PLL 
samples (further divided by different oncogene protein status) and normal T-cells form a cloud, 
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while stimulated T-helper cells (TH1 and TH2) form another cloud. d) ESTIMATE plots of 
fitted purities from two samples within the publicly available breast cancer data set  
GSE2990 [48] (n = 189 invasive breast carcinomas; including 64 estrogen receptor  
(ER)-positive tumors, histologic grade 1 and 3 tumors; Affymetrix HG-U133A). Upper panel: 
When comparing the black dot to gray dots (all other samples), one can observe that the sample 
is among those with highest purity. Lower panel: sample among those with lowest purity. 

7. Making Use of Public Databases 

Two public databases are commonly used for the comparison of own microarray data with 
independent data sets, for example in a meta-analysis, namely the GEO (gene expression omnibus) 
database [21] (http://www.ncbi.nlm.nih.gov/geo) and the ArrayExpress database [22] 
(https://www.ebi.ac.uk/arrayexpress), with GEO featuring a larger number of integrated samples. 
Both platforms use distinct annotation / meta-data file systems. In GEO, samples are either described 
in MIAME Notation in Markup Language (MINiML; pronounced 'minimal') or SOFT formatted 
family files. In ArrayExpress, sample and data relationships (SDR) are described in the SDRF format, 
while protocol information is stored in the Investigation Description Format (IDF). Both databases 
offer processed numerical gene expression values (in the form of matrices) stored in regular text 
format (txt), or raw data in CEL or idat (for Affymetrix or Illumina chips) files. GEO and 
ArrayExpress also provide respective R libraries to automate queries and processing of differential 
expression analyses, namely GEOquery and ArrayExpress.  

Analysis results for data sets within ArrayExpress are further integrated in the 'Gene expression 
atlas' of the EMBL / EBI (http://www.ebi.ac.uk/gxa). The latter provides information about gene and 
protein expression in animal and plant samples for different cell types, tissues, developmental stages, 
diseases, and other conditions from 1572 studies as of August 2015 [23]. The human data sets are 
currently exported into an RDF version accessible via a SPARQL Endpoint 
(http://www.ebi.ac.uk/rdf/services/atlas/sparql; accessed 02/21/2016). 

Implemented queries include: 

• “Query 1: Get experiments where the sample description contains diabetes” 
• “Query 2: Get differentially expressed genes where factor is asthma” 
• “Query 3: Show expression for ENSG00000129991 (TNNI3)” 
• “Query 4: Show expression for ENSG00000129991 (TNNI3) with its GO annotations from 

Uniprot (Federated query to http://sparql.uniprot.org/sparql)” 
• “Query 5: For the genes differentially expressed in asthma, get the gene products associated 

to a Reactome pathway” 
• “Query 6: Get all mappings for a given probe e.g. A-AFFY-1/661_at” 
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Query 2 and 5 can be further modified in order to compare gene dysregulation in other types of 
diseases, e.g. in lymphoid leukemias, such as chronic lymphocytic leukemia (CLL; Table 3). User’s 
familiarity with the underlying ontologies (controlled vocabulary; [24]) is, however, necessary to 
construct queries. 

8. Meta Analyses: Exploring Possible Phenotypic Markers across Different Conditions 

For conceptualizing a pharmacologic compound (e.g. inhibitor) acting against a specific gene 
product or for designing specific gene-knockouts within a model organism, it may be particularly 
important to know in what conditions and disease subtypes expression of a distinct gene is up- or 
down-regulated and to which degree (basal or extreme). Integrative analyses of expression changes 
within a multitude of samples of the same entity, or model organism, or any other comparable 
biological system as well as across initially separately analyzed (and published) series (cohorts) are 
often called gene expression meta-analyses. In the following we describe multiple ways to conduct a 
meta-analysis of GEP data with their limitations and advantages. 

The first approach includes construction and sending of specific queries to the EMBL / EBI 
RDF platform. Querying can further be semi-automated using the SPARQL R library, which allows 
the investigation of different data sets in a specific condition, e.g. comparisons of CLL vs. normal  
B-cells, or between distinct groups of tumor samples stratified by a characteristic of interest, e.g. 
immunoglobulin heavy chain (IGHV) gene mutated vs. unmutated CLL. Results are usually 
tabularized and fold-changes visualized within a heatmap (Figure 3a; Suppl. Table 1; Code 14). 

Since not all 'ArrayExpress' data sets are yet integrated into the EMBL / EBI RDF platform and 
the GEO database contains additional data sets, the manual download, processing, and integration of 
such additional data is often necessary. 

Therefore, a second, more hands-on approach to meta-analyses is a search by keyword, e.g. 
'chronic lymphoid', within GEO and / or ArrayExpress (or any other public database). Once the data 
set has been picked, it is background-corrected and the annotated replicates can be combined with 
their original samples by calculating their mean. Afterwards all samples within the data set are 
normalized (e.g. quantile-normalized). 

Probe sets of a gene which map to retained / dysfunctional transcripts (or which map to more 
retained / dysfunctional transcripts than other probe sets of the same gene) should be removed to 
obtain meaningful expression values (Suppl. Table 2). For example, BCL2L11 on Affymetrix  
HG-U133 Plus 2.0 chips has two probes, one hybridizes two protein-coding and six NMD  
(nonsense-mediated decay) transcripts, the other one hybridizes two protein-coding and eight NMD 
transcripts. Thus, ambiguous expression values of this gene have to be evaluated with caution. The 
residual unambiguous probe sets assigned to a gene are then further summarized by calculation of 
average expression values per gene. 
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For further evaluation of the GEP meta-analysis, three different techniques for integration can 
be used to observe gene expression patterns and entity clustering: 

1) The first method quantile-normalizes a matrix of average gene expressions across entities 
from different experiments and finally gives a visual approximation. If there is also a tumor 
suppressor gene (very low expression) and an oncogene (very high expression) in the gene set to be 
evaluated, one can expect an expression range similar to the whole transcriptome. It should be noted 
that in previous Affymetrix sets, such as HG-U133A, some genes (e.g. BMF and BOK) are not 
covered by specific probes on the array and, therefore, need to be imputed by the median of the 
respective data set. This guarantees that in the heatmap (or PCA) these genes are not visualized as 
up- or down-regulated; they in fact can be manually labeled (blackened). Expression values from all 
data sets are merged into one matrix and again quantile-normalized to account for variability in 
platform specifications and noise. A more suitable approach than normalizing on each gene set 
separately might be to normalize on the whole combined transcriptome (intersection of all probed 
genes). However, this would disregard genes not covered by all platforms used. The resulting 
heatmap (generated by function heatmap.2, library gplots; Figure 3b) shows the expression of 
selected genes and transcripts in their respective data set and can be additionally subdivided by the 
different entities (median across samples of an entity). 

2) Batch effects cannot be entirely excluded by using method 1) as may be observed by a bias in 
clustering of samples from the same experiment. Therefore, we recommend a novel method called 
inSilicoMerge [25], which combines data sets and removes their batch effect with a choice of various 
methods, such as the empirical Bayes method ComBat (Figure 3c). 

Unfortunately, data sets from different platforms can only be combined gene-wise, meaning that 
e.g. MCL1 would not be deconvolutable into its isoforms MCL-001 / MCL1-long and  
MCL-002 / MCL1-short. 

3) For an advanced evaluation, one can further perform differential expression analysis for data 
sets with different control samples (of varying quality, number, and specificity) available for 
comparison, such as ’normal‘ non-malignant cells or bulk tissue specimens. Fold-changes with a  
p-value < 0.1 (trend) or < 0.05 (significant) are extracted to compare normal-matched gene 
expression between different experiments and probe targets representing different gene transcripts or 
protein isoforms. The results are again visualized by a heatmap, either in the order obtained by 
hierarchical clustering (using Euclidean distance) or in order of rows sorted by gene name. 

As exemplified by illustration of expression levels of Death-Associated Protein Kinase (DAPK) 
gene family members in subsets of CLL and normal B-cells (Figure 3d), this method allows different 
disease vs. ’normal‘ comparisons and facilitates the evaluation of which genes are exclusively  
down- or up-regulated and which show no clear pattern or which are specific to small subgroups. In 
the meta-analysis itself every differential expression analysis is further evaluated by statistical testing. 
Default setting is the Student’s t-test, except for low variation or non-normal distributions, for which 
the non-parametric Wilcoxon rank sum test is recommended. 
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Figure 3. a) Potential ERCC1 deregulations in normals B-cells, B-cell lymphomas / 
leukemias (mantle-cell lymphoma, chronic lymphocytic leukemia (CLL) and chronic myeloid 
leukemia (CML)) and chronic conditions are queried within EMBL / EBI Gene Expression 
Atlas RDF (see Table 3 for exact query). The output, in table format, can be further exported 
into e.g. csv format. Fold-changes can be further visualized as in c). b) Example taken  
from [49] (Fig. 1a): mature T-cell lymphomas and normal T-cell subsets are grouped by 
expression of pro- and anti-apoptotic BCL2 family genes / isoforms. The long MCL1 isoform 
seems to be used throughout malignant and benign T-cells, while BCL2A1 and BCL2L11 
seem to be especially upregulated in malignant T-cells. Samples were quantile-normalized on 
the basis of 12 markers. c) Example taken from [50]. i+iii) illustrating different unsupervised 
clustering results (principal component analysis and heatmap) as CD1d-restricted murine 
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natural killer T-cell lymphoma seems to be most similar to T-cell prolymphocytic leukemia 
(T-PLL) and hepatosplenic T-cell lymphoma (HSTL). ii) Variables factor maps (produced by 
libraries like FactoMineR) show what marker contributes (or correlates) the most to each 
principal component and thus carries the highest specificity. Platform overlap was reduced to 
gene level, then batch-corrected using ComBat and quantile-normalized. d) Example taken 
from [51]. Fold-changes were calculated according to labeled comparisons for each Death-
Associated Protein Kinase (DAPK) gene family member, then the range was cut off and 
results were visualized. Color bars used for 3 distinct comparisons: (1) CLL vs. normal B 
cells (various subtypes); (2) CLL with IGHV unmutated vs. mutated gene status; (3) CLL 
with post-to-pretreatment and other clinical comparisons. 

9. Functional Analyses: the More the Merrier 

In the abundance of genes obtained as significantly dysregulated, the role or function of a 
specific gene is often unknown and it is therefore encouraged to group them functionally by software 
tools often coined as ’pathway analysis‘ or ’enrichment‘ tools. One of the most user-friendly, 
however, costly tools is QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, 
www.qiagen.com/ingenuity/). Users can upload their differential expression results in the format of 
Excel tables into the Java GUI (graphical user interface). Annotation in the form of chip design or 
symbol identifiers (such as Gene Symbol, Ensembl ID or GenBank ID) can be selected for a given 
column as well as statistical parameters in separate columns, such as p-values, fold-changes,  
q-values / FDRs or simply expression values (fluorescence in microarrays or FPKM (fragments per 
kilobase of exon per million reads mapped) for RNA-seq). The list can be further restricted to a 
given range (e.g. p-value < 0.05). The selected genes are subsequently assembled into manually 
curated biological or toxicological / pharmacological pathways provided with an E-value (chance of 
a random hit). One advantage of IPA compared to other tools is the easy visualization of results by 
intuitive geometric forms, i.e. nodes / genes are drawn as distinct geometric symbols and edges / 
protein modifications in distinct line types. Similar graphs can be drawn with igraph in R, but are 
restricted to users that are more experienced in bioinformatics. 

Other user-friendly and open-source alternatives include DAVID [26], gene set  
over-representation analysis (GSOA) by ConsensusPathDB [27] (Suppl. Figure 2), and gene set 
enrichment analysis (GSEA; Figure 4a) by the Broad Institute [28]. All three tools can be operated 
from web GUIs, while the first two options also offer an R implementation or in the case of GSEA, 
also a JAVA desktop application. 

For more advanced users and those seeking to work with protein identifiers (complementary to 
above mentioned tools) STRINGdb10 [29] is a potential alternative. Within the R library PPI 
(protein-protein interaction) graphs (nodes colored according to fold-change and also reachable via 
web link) and enrichments (including p-values and number of observed and expected interactions) 
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are calculated (Figure 4b; Code 15). Therein, inputs are the corresponding proteins of the most 
significantly dysregulated probes in different gene expression comparisons. Edges between proteins 
are colored according to evidence level, e.g. co-expression, literature mining, or experimental assays 
such as yeast2hybrid (y2h). The same R library can also be used for KEGG and GO (gene ontology) 
enrichment analyses (Code 16). RNA-to-protein inference can however only be approximate due to 
different half-lifes and decay rates as well as due to variable post-transcriptional and  
post-translational modifications. 

 

Figure 4. Results of differential expression analysis of 70 samples of T-cell 
prolymphocytic leukemia (T-PLL) and normal CD3+ T-cells from 10 healthy donors 
were further functionally annotated. a) Enrichment plot of Broad GSEA (gene set 
enrichment analysis) of the most deregulated (|fc|>1.5; q < 0.05) genes between T-PLL and 
normal CD3+ T-cells shows strong correlation (hit accumulation at the front of enrichment 
profile in dark and peak in green) to the results of a previous T-PLL gene expression data  
set [52]. b) Example of a PPI (protein-protein interaction) graph output from STRINGdb_v10 
with a significant enrichment (59 more PPIs than expected). URL at the bottom is 
automatically generated and serves as an archive for the output. 
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10. Standard Survival Analysis and An Exploratory / Heuristic Approach 

Besides parameters of more established nature (routinely tested), e.g. in CLL those from clinical 
chemistry, such as β2

An univariate analysis compares time-to-event parameters for two subgroups divided by a gene 
expression or other marker status (see [32] for an introduction). For multivariate analysis, multiple 
genes or markers are considered for a competing subset comparison (see [33] for an introduction). 
For the former there are standard methods implemented within the R library survival with functions 
survdiff to test the differences of survival times with the log-rank test [34] and survfit to plot the 
survival times with the Kaplan-Meier estimator [35] (Code 17). A multivariate analysis allows 
ranking of the most significant markers contributing to an adverse prognosis. It is usually conducted 
with the Cox Proportional Hazards [36] (CoxPH) model. 

 microglobulin [30] or from immunophenotyping, such as ZAP70 [31], the 
expression of a single gene or a gene set detected by microarray-based GEP can also serve as a 
marker, or a scored combination of them, that predict clinical outcomes. Such prognostic estimations 
are predominantly measured in subgroup differences of time-to-event metrics like overall survival 
(OS; from date of diagnosis or less correctly from first day of treatment or study randomization to 
last follow-up (FU) or death) or progression-free survival (PFS; from first day of treatment or 
randomization to disease progression or death). Other measurements include time-to-treatment (TTT; 
from diagnosis or randomization to first day of treatment), time-to-next-treatment (TTNT; end of 
first to beginning of next treatment), time-to-treatment-failure (TTF; time from diagnosis or 
randomization to treatment dismissal), or event-free survival (EFS; time from diagnosis or 
randomization to disease progression, death or treatment dismissal). These parameters are either 
right-censored (date of death or progression after study window, thus unknown) or left-censored 
(study entry is unknown) to deal with missing time points or events (death or progression). Here we 
focus on right-censored data.  

As evidence provided by different data sources and methods strengthens a given hypothesis, it 
is important to validate identified markers of prognosis in an independent patient cohort. However, 
this is often difficult due to a limited availability of reasonably-sized data sets for comparison. 
Possible causes may be a low disease incidence (e.g. notorious for mature T-cell lymphomas) or 
general difficulties in obtaining primary tumor samples (e.g. due to the need of invasive procedures 
to be consented by the patient). Another factor imposing limitations on sample size is the uniformity 
of received treatments, which must apply to a given patient cohort in order to reliably predict related 
outcomes. For GEP studies in such scenarios, we propose an alternative algorithm for the 
identification of prognostic gene expression signatures, which we demonstrate by the example of 
GEP data generated from peripheral blood tumor samples of patients with T-cell prolymphocytic 
leukemia (T-PLL) and CLL. We obtained gene expression profiles from 49 T-PLL samples with 
available OS status and from 58 chemoimmunotherapy-treated CLL patients with available PFS data, 
both from Illumina HumanHT-12 v4.0 Expression BeadChips. 
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In a first training set of 10 T-PLL, 5 patients with longest OS (time from diagnosis to death of 
disease, > 800 days) were compared to those with shortest OS (< 300 days, n = 5) using the 
‘Significance analysis of microarrays’ (SAM) analysis in survival mode via the R library  
samr [37]. We only considered expression profiles from patients in whom corresponding samples 
had been obtained within 6 months from diagnosis (ensuring similarities between specimen and 
clinical data) and who had presented with similar lymphocyte doubling times as an indicator of 
disease kinetics at the time of sample. From an initial most informative index-set of 5 differentially 
expressed probes (RAB25, KIAA1211L-probe1, KIAA1211L-probe2, GIMAP6, FXYD2; FDR < 0.1), 
linear regression [38] and removal of one outlier by setting OS<200 days, resulted in a 2nd

11. Sample Classification by Supervised (Machine Learning) Approaches 

 training 
set of nine cases. Another subsequent SAM (survival mode) resulted in a 2-gene / 3-probe set as the 
most robust combined predictor of OS. These probe sets were used to calculate an expression index 
via an additive model fit using Tukey's median polish procedure [39] (medpolish function within the 
standard stats library) on a test set of 40 uniformly treated T-PLL (the nine training cases excluded) 
fulfilling the criteria of available array data and OS information. Kaplan-Meier curves (log-rank tests 
for differences) were created based on stratified per patient-values of this “2-gene / 3-probe 
prognostic expression index” (RAB25 and the two KIAA1211LL transcripts either merged or 
separated; Figure 5a). Ranking the cases solely based on these expression indices, the five T-PLL 
cases with the lowest values indeed showed significantly superior OS over those five cases with 
highest or 35 cases with higher (Figure 5b; Suppl. Figure 3a) expression index values (index fold-
change (fc) = −2.37; Figure 5b; index fc = −1.62; Suppl. Figure 3a). A similar approach was used to 
identify signature genes associated with PFS in chemoimmunotherapy-treated CLL (Figure 5c; Suppl. 
Figure 3b; Code 18) resulting in a predictive 4-gene / 7-probe index (including GPD1L, TNFSF12, 
JHDM1D, TBCD, AARS2, MTG1, and TNIP). In both cohorts, the detected differential expression of 
signature genes and their association with clinical outcome requires further validation, e.g. by  
qRT-PCR, in independent samples before considering them further as valid markers. 

When dealing with large data sets (e.g. a gene expression matrix) that incorporate different 
clinical or molecular information (‘features‘), and if a group status (‘class‘) of clinical or biological 
interest (e.g. treatment responder vs. non-responder) is known, the application of discrimination (or 
supervised learning) methods can be considered. Such methods aim to train classifiers (logistic, 
linear, or non-linear) that are able to predict the status of future samples based on certain features 
(e.g. treatment response). In general, it is important to validate classification rules obtained from 
training data in an independent test set, preferably obtained from another set of patients from a 
different laboratory / trial group, in order to avoid a biased data interpretation. When there is no 
independent set available, an internal cross-validation can be performed. Therein, the available 
patient samples are repeatedly separated into a training set and a test set, while subsequently 
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observing the average classification performance by the number of false positives and false negatives 
obtained through the classifier. 

 

Figure 5. We explored alternative approaches to obtain prognostic values in a 49-case cohort of 
T-cell prolymphocytic leukemia (T-PLL) (Schrader, Crispatzu et al. submitted) with available 
overall survival (OS) data as well as in a chemoimmunotherapy-treated cohort of chronic 
lymphocytic leukemia (CLL) (Herling et al. unpublished; n = 58 with available progression-free 
survival (PFS) status). a-b) The five T-PLL patients with each the highest and lowest OS 
(without censored / alive ones) were considered for a ‘Significance analysis of microarrays’ 
(SAM) analysis in survival mode. The resulting probe sets / transcripts were used to calculate an 
expression index a) (via additive model fit using Tukey's median polish procedure) on the test 
set of residual cases. Kaplan-Meier (log rank; time in days) curves were created based on 
stratified values per patient of this ‘prognostic expression index’. b) Five patients with lowest 
index expression vs. residual 35 patients of test set (see Suppl. Figure 3 for 5 vs. 5). c) The same 
approach was used for ten chemoimmunotherapy-treated CLL with the highest and lowest PFS. 
The index was calculated on probe set / transcript level and again evaluated in especially 
indolent and aggressive patient samples (here ten with lowest and highest index expression) 
within the test set. In both cohorts, of T-PLL and CLL, a high index expression was linked to an 
adverse prognosis. 

 



237 / 316

 264 

AIMS Medical Science Volume 3, Issue 3, 248–271. 

A popular supervised learning approach are support vector machines [40] (SVM; R libraries 
gmum.r or e1071). They try to separate classes by projecting features and their interactions into  
high-dimensional space and subsequently by searching for either linear (Figure 6a-b) or non-linear 
(Figure 6c; Suppl. Figure 4) separating hyperplanes in the original feature space (Code 19). 

 

 

Figure 6. a) Support vector machine (SVM) classifies samples of T-cell prolymphocytic 
leukemia (T-PLL) based on TCL1A protein status (positive, intermediate, negative; by flow-
cytometry) predicted by TCL1A and TCL1B mRNA expression. As one can see in the top left 
two samples are misclassified by SVM as TCL1A-negative (red, but squared symbols). b) SVM 
of T-PLL samples of different TCL1A protein status (“dim” being intermediate) by numerous 
mRNA markers performs more robust classification. c) Example of a linear (upper panel) and 
a non-linear, radial / polynomial fit (lower panel) of a SVM. T-PLL samples which carry the 
ATM gene in mutated vs. unmutated constitution are classified by their status of ATM deletion 
and AGO2 amplification. Results, as seen by approximate pattern in linear and more distinct 
pattern in non-linear classifier, elucidating that ATM unmutated samples are more likely to be 
biallelic for ATM and AGO2. 
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Decision trees (R libraries rpart, tree or party; Code 20) can also divide samples according to a 
class variable into further most informative binary portions of gene expression signatures (Figure 7a–b)  
or of other molecular features (i.e. mutational or cytogenetic strata in CLL) (Figure 7c–f;  
Suppl. Figure 5); measured by ANOVA for numerical or by entropy for categorical values. When 
looking for a cut-off for adverse prognosis, they can be further used in the form of regression  
trees [41]. Different parameters can be controlled in this approach, such as the maximum size of a 
tree or the number of portions / bins. It is recommended to keep these relatively low in the training 
set to avoid “overfitting” and thus enable re-evaluation in the test set. Random forests [42] (as an 
assembly of permutated decision trees) can be used to determine the chance of observing random 
tree branching (library randomForest) (Code 21). Both algorithms are also included in the rattle 
library, which offers a user-friendly GUI with interactive plots and a selection menu for class 
variable and co-variates as well as algorithm and parameter choices. For a more detailed review on 
current machine learning algorithms in GEP, we refer to [43]. 
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Figure 7. a) Example of a rpart decision tree. Chronic lymphocytic leukemia (CLL) samples 
are stratified according to TCL1A protein status. Model design then includes IGHV gene 
mutation status, mRNA markers linked to adverse prognosis (from algorithm described in 
Figure 5c), and further clinical features. IGHV gene mutations status, as seen in top of branch, 
is the most informative divider. When left out in b) an mRNA marker linked to adverse 
prognosis (with somewhat arbitrary cut-off for illustrative purposes) functions as the most 
informative divider. c-e) ctree offers more intuitive visualizations of decision trees. c) When 
stratifying CLL samples by TCL1A mRNA expression, IGHV mutations status is the most 
informative divider. d) This is confirmed when stratifying CLL samples by IGHV mutations 
status (switching the comparison) hence TCL1A mRNA expression is the most informative 
discriminator. e) T-cell prolymphocytic leukemia (T-PLL) samples stratified by ATM mutation 
status. Co-variates include ATM deletion, miR-34B deletion, MYC amplification, AGO2 
amplification, MYC mRNA upregulation, ATM mRNA downregulation, and TCL1A mRNA 
upregulation. ATM deletion status seems to be the most informative co-variate, however due to 
the excessive size of the tree (controlled by pruning and number of bins) there is a risk of 
“overfitting”. f) Shown is a more feasible and smaller decision tree. Again, the most informative 
co-variate seems to be the status of ATM gene deletion. Followed by AGO2 amplification status. 
This is further confirmed in random forests (permutated decision trees) in order to circumvent 
‘overfitting’ (not shown). 

12. Discussion 

In this review we discuss procedures to optimize GEP analyses. We highlight the importance of 
advanced preprocessing, such as batch correction and admixture modeling, but also appraise the 
versatility and sophistication of analysis and classification algorithms. Many of the presented 
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methods, originally established for microarray data analysis, can also be applied to RNA-seq data (on 
the basis of read counts instead of fluorescence values). In addition to GEP, it is always desirable to 
aim for additional genetic information, including (somatic) copy-number alterations, structural 
variation, and genotyping of nucleotide variants for a most comprehensive genetic workup of the 
investigated cancer specimen. Epigenomic data, e.g. from methylome and ChIP-seq experiments 
may be added as a second layer. Besides setting up an own data repository in MySQL or RDF for 
managing internal data, one may also investigate the cBioPortal for Cancer Genomics [44]. TCGA 
(https://tcga-data.nci.nih.gov/tcga), ICGC (https://dcc.icgc.org), and other large curated data sets 
provide user-friendly search engines with multiple visualization options. Another helpful tool for 
combining gene expression data with available genomic knowledge in a network-based analysis is 
Expander [45]. Overall, this review and the attached source codes may provide guidance to both 
molecular biologists and bioinformaticians / biostatisticians to properly conduct GEP analyses from 
microarrays and to go beyond the application of standard analytic tools to optimally interpret the 
clinical and biological relevance of the obtained results. 
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Supplement Materials 

 

Suppl. Figure 1. Flow chart describing a GEP protocol. Steps in 
yellow boxes are modular and may be applied somewhere downstream.
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Suppl. Figure 2. Screenshot of the results from the gene set over-representation analysis 
(GSOA) by ConsensusPathDB with the most upregulated (|fc| > 1.5; q < 0.05) genes 
between T-PLL and normal CD3+ T-cells from healthy donors as input. 
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Suppl. Figure 3. We explored alternative approaches to obtain prognostic values in a  
T-PLL cohort (Schrader, Crispatzu et al. submitted; n = 49 with available overall survival 
(OS) status), as well as in a chemoimmunotherapy-treated CLL cohort (Herling et al. 
unpublished; n = 58 with available progression-free surival (PFS) status). a-b) The five  
T-PLL patients with the highest and lowest OS (without censored / alive ones) were considered 
for a “Significance analysis of microarrays” (SAM) analysis in survival mode. The resulting 
probe sets/transcripts were used to calculate an expression index a) (via additive model fit using 
Tukey's median polish procedure) on the test set of residual cases. Kaplan-Meier (log rank; 
Time in days) curves were created based on stratified values per patient of this “prognostic 
expression index”. b) Five patients with lowest index expression vs. five patients with highest 
index expression within test set. c) The same approach was used for ten  
chemoimmunotherapy-treated CLL with the highest and lowest PFS. The index was calculated 
on gene level and evaluated in 10 patients with lowest and highest index expression within test 
set. In both cohorts, of CLL and T-PLL, a high index expression was linked to  
adverse prognosis. 
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Suppl. Figure 4. Expression values of two genes within two 
predetermined classes are simulated to further show importance of 
appropriate classifier scale. Upper panel: Linear classifier fails to 
separate classes. Lower panel: shows more satisfying example of a 
non-linear separation through (sets of) hyperplane(s).  



249 / 316

 5 

 

 

Suppl. Figure 5. ctree offers more intuitive visualizations of decision trees. When stratifying CLL 
samples by TCL1A mRNA expression, IGHV gene mutations status is the most informative divider. 
This is confirmed when stratifying CLL samples by IGHV mutations status (switching the 
comparison) hence TCL1A mRNA expression is the most informative discriminator. When leaving 
IGHV mutation status out in Figure 7 c), then TCL1B mRNA expression is the next best divider. 
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6. Semantic Web approaches: Case studies

To  demonstrate  how  the  Semantic  Web  paradigm  is  supposed  to  be  used  for  the
development of the semantic framework and how the user can set the framework up, I will
describe very detailed below the models that are applied to different data set classes in
form of case studies with accompanying source code snippets in R and SPARQL.  The
information stored in these models can be cross-linked i.e. using a controlled vocabulary
(or when further refined: a unified ontology) with unique gene names (e.g.  TCL1A). This
linkage  of  information  brings  up  new  hypotheses,  indirect  connections  and  a  broader
picture of knowledge and is also easily (globally) sharable and self-descriptive.

In a data-driven approach, key findings are modeled in semantic schemas to capture all 
necessary information. These files, containing millions of RDF triples ( subject predicate 
object . ), are then stored in a „triple store“ (semantic database; see Figure 6.1). The 
information is retrievable by the user through SPARQL queries and was mainly used here 
to generate integrated analyses of the data from the M. Herling / C. D. Herling (formely C. 
D. Schweighofer) group experiments.

Each high-throughput  data set  and Excel  sheet  containing clinical  data was iteratively
refined by  adding attributes  and URIs (with  default  namespace  gen:  ).  If  dealing  with
ambiguous information, a blank node (see 6.2) was inserted. After conversion by custom-
written scripts to the RDF Notation 3 (n3), every model was loaded into an OpenRDF-
Sesame data store (URL: http://www.openrdf.org/ ) wrapped around a Java-based HTTP
servlet  (URL:  http://www.eclipse.org/jetty/ ,  jetty-6.1.26)  enabling specific  access to  the
data models used through queries.

Approximations  of  these  models  were  visualized  with  Cytoscape  v.2.8.1  (URL:
ttp://www.cytoscape.org/). Alternatively Protégé (URL: http://protege.stanford.edu/ ) can be
used to view whole ontologies.

I separated public and private data into two separate triple stores. The latter is only 
accessible for lab members (by University of Cologne namespace / domain, htaccess 
password, IP, MAC address or a combination of them) through a web-GUI front-end and 
direct queries to private data (Figure 6.2). The public triple-store can be mirrored with 
predefined queries through the PHP library sparqllib.php (SPARQL RDF library for PHP; 
©2010-2012 Christopher Gutteridge, University of Southhampton) and it is thus further 
possible to navigate through each patient by listing all high-throughput analysis results and
the non-dereferencable clinical data (Figure 6.3a) and through each gene by listing each 
alteration in each patient (Figure 6.3b).

Upload and automatic conversion into the RDF format (and storage) can be included so 
that researchers and clinicians can use these models for information exchange, 
complementary to tables in spreadsheet format. The triple store (making use of the 
underlying graph structure) then makes it possible to automatically combine knowledge 
through graph algorithms. Either directly with the Cytoscape plug-in RDFscape and Jena 
or through SPARQL and RCytoscape within R in combination with OpenRDF-Sesame (as 
done here).

Attributes are only linked / compared to ontology terms in Table S6.1, and not replaced, to
accurately mirror the process of modeling. Often one starts with a set of attributes in order
to not overmodel right away, and just then replace iteratively old with existing vocabulary.
Sometimes ontology terms are also replaced by more frequently used ones.

http://protege.stanford.edu/
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a)

b)

Figure 6.1: a)  List of data repositories used within our OpenRDF-Sesame triple store. Each repository is
created as a „Native Java Store“ to keep the memory usage down and will contain multiple uploaded RDF/n3
files. Multiple repositories are preferred above on single, because it eases export, import and speeds up
queries due to lower solution space. b) System information of used desktop PC on which OpenRDF-Sesame
ran. When not running any queries, only 14.5% memory were used. Default  namespace (URI prefix) is:
PREFIX gen: <http://localhost:8080/openrdf-sesame/repositories/general#>
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a)

b)

Figure 6.2: a) Public store model.  Clinical  data  is  enclosed in blue,  while high-throughput analyses are
enclosed in red. Both can be combined through the PATIENT_ID („P1177_“, dark red node) b) Private store
model with added  de-anonymizable data (dark red nodes),  which is only accessible within  jetty-6.1.26  /
OpenRDF-Sesame 2.6.10 with htaccess and IP-restriction or in newer versions (URL: http://rdf4j.org ), and
better HTTP support, with the jetty security concept realms.

http://rdf4j.org/
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a)
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b)

Figure 6.3: When the outside user is not supposed to access the SPARQL-point directly, queries can be
predefined, inserted into  sparqlllib.php PHP code and thus mirrored through HTML web pages.  a) Patient
view gives an overview of all aberrations plus clinical data of the individual. Sensitive data are blurred out
here and are only accessible through a private store. b) Gene view (i.e. here ATM) shows that the majority of
T-PLL cases carry mono-allelic losses and clonal mutations. The user can further click on an attribute (e.g. a
gene within the patient view or gen:T-PLL within the gene view) and browse through all results of a generic
query where the attribute is either subject or object of any triple in the store.
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In  the  following chapter  I  further  present  semantic  applications  to  biological  questions
(mentioned in 1.3 Aims) who profit from an integrative design. As well as frequently asked
questions in the daily life of a molecular biologists which are hampered by e.g. relational
database queries, such as:

 How to add a 'PATIENT_ID' into triple store.

 How to modify a 'PATIENT_ID' in triple store.

 Is gene X deregulated in a specific condition or disease?

 Is gene X mutated? And which allele or in which clonal fraction? 

 How often is gene X mutated in a cohort and is a given mutation predicted to be
damaging?

 Is gene X, which is mutated, also expressed (surpassing a given quantile)?

 Which genes are expressed between strata: gene deleted cases vs. bi-allelic cases,
mutated vs. non-mutated cases, treatment-responders vs. non-responders or late
vs. early?

 Is gene X expressed in other CLLs or B-cell lymphomas?

 Is gene X mutated modified in other T-PLL cases of other labs?

 Is gene  X  up- or downregulated in human disease, as well as in murine disease
model (i.e. T-PLL and TCL1A-tg mice)?

 Is gene X expression correlated with other genes?

 Does gene X further interact with other proteins? Or is it further influenced by distal
and trans-regulators? 

 Which samples are already analysed? Which are planned? What is the platform
overlap?

 Which genes exhibit dosage effects?

 Which  mutations  are  generally  affected  further  by  copy-number  alterations  and
result in over- or underexpression?

 Describe mutational landscape of gene X.

 Describe survival signature of indolent or aggressive phenotype. 

6.1 Introduction: Basal functions

Before converting a data table (delimited by a special character; in the data format of csv,
tsv or  XLS),  one  has  to  remove  potentially  problematic  characters  or  signs  (such  as
umlauts in the German language or other Unicode/UTF-8 non-conform ones, spaces, tabs,
question  or  exclamation  marks).  These  can  further  disrupt  formations  of  URIs,  their
representation in RDF formats such as n3/turtle or their downstream processing in HTML
via sparqllib.php. Commata have to be further replaced by dots when dealing with dates
and decimal numbers (01,01,2016 → 01.01.2016; 3,14… → 3.14...).
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I integrated an R function to remove common special characters and convert data matrices
(with predicate names within header) into n3 format (not XML-based, rather SPARQL-
oriented  and  therefore  more  intuitive  for  querying).  The  function  requires  a  character
vector  of  data  types  (for  the  objects/classes)  corresponding  to  the  predicate  names
(therefore same length) and an index for the subject. Standard name spaces or prefixes
(e.g. PREFIX hgnc: <http://bio2rdf.org/ns/hgnc#>) can be attached. Within the matrix itself
lie the object values (either as URI or string which will be converted to xsd (XML Schema
Definition) data types).

# functions needs a matrix to convert, the index of the originating node /
subject, the type of the other objects and the standard namespace prefix (e.g.
„gen:“).

graphCSV <- function(mat, idx, cTypes, URI_tmp) {

    if((dim(mat)[2]) != 2) {

        for(l in 1:length(mat[,idx])) {

            for(k in 1:(length(cTypes[-idx]))) {

                if(mat[,-idx][l,k] != "" && !is.na(mat[,-idx][l,k])) { 

                    if(cTypes[-idx][k] == "URI") {

# print triples consisting of subjects (with index „idx“), predicate and objects
(every index except „idx“) with namespace prefixes (URI_tmp) for each matrix
entry

                        cat(paste(URI_tmp, mat[l,idx], " ", URI_tmp, 
colnames(mat)[-idx][k], " ", URI_tmp, mat[,-idx][l,k], " .\n", sep=""))

                    } else {

# print as above, only object is not an URI, but rather a xsd datatype

                        cat(paste(URI_tmp, mat[l,idx], " ", URI_tmp, 
colnames(mat)[-idx][k], " \"", mat[,-idx][l,k], "\"^^xsd:", cTypes[-idx][k], 
" .\n", sep=""))

                    }

                }

            }

        }

    }

    if((dim(mat)[2]) == 2) { # if matrix is actually just 2 subject-object 
vectors

        for(l in 1:length(mat[,idx])) {

            if(mat[,-idx][l] != "" && !is.na(mat[,-idx][l])) { 

                if(cTypes[-idx] == "URI") {

                    cat(paste(URI_tmp, mat[,idx][l], " ", URI_tmp, colnames(mat)
[-idx], " ", URI_tmp, mat[,-idx][l], " .\n", sep=""))

                } else {
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                    cat(paste(URI_tmp, mat[,idx][l], " ", URI_tmp, colnames(mat)
[-idx], " \"", mat[,-idx][l], "\"^^xsd:", cTypes[-idx], " .\n", sep=""))

                }

            }

        }

    }

}

6.2 Sample Organization

The root subject of each analysis is a 'PATIENT_ID', which identifies a human individual
(triple:  'PATIENT_ID'  http://purl.uniprot.org/core/organism  taxon:9606  . )  or  a  model
organism (with taxon:10090 for mouse,  taxon:10116 for rat,  taxon:6239 for C. elegans,
taxon:7227 for Drosophila or taxon:7955 for Danio rerio). It then is further defined by global
molecular  or  clinical  strata,  such  as  oncogene  status  (  gen:hasMTCP1status or
gen:hasTCL1Astatus  ),  diagnosis  or  phenotype  (  gen:hasDiagn ).  Within  SPARQL,  a
'PATIENT_ID' is inserted (a), deleted (b) and modified (c) as follows:

# a) inserting gen:P1_1105_1387_1389_1392_ with clinical information

INSERT DATA { gen:P1_1105_1387_1389_1392_ gen:Skin_infiltration 
"false"^^xsd:boolean . }

# b) deleting P1107_

DELETE gen:P1107_ ?a ?c WHERE { gen:P1107_ ?a ?c }

# c) renaming P1107_ to gen:P967_958_1107_53965_

INSERT gen:P967_958_1107_53965_ ?a ?c WHERE { gen:P1107_ ?a ?c }

Each 'PATIENT_ID' has to be unique and can have further samples (  gen:hasSample ),
either differing by sampling date or labels such as 'replicate', 'early',  'FU' (follow-up) or
'late'.  The latter three are corresponding to sequential samples especially important for
temporal analyses (Figure 6.4). The former is important when combining duplicates into
one sample (for variance stabilization). The approach to combine different 'SAMPLE_ID's
through the predicate „owl:sameAs“ makes it hard to rank or organize them temporally and
was therefore not used.

Each sample can have an analysis (  gen:hasAnalysis )  of  different classical  molecular
biology or high-throughput methods, whose RDF attribute names here are inspired by the
GEO (Barrett et al. 2013) analyses. Analyses carry results (  gen:hasResult  ) in form of
blank nodes ( e.g.  <analysisName>_<analysisDate>_res<i>, with integer i=0...n ) as an
extra step to guarantee unambiguity.

Through the semantic framework it is possible to combine not only different data sets over
a 'PATIENT_ID', but also to connect clinical information with the results of high-throughput
data sets (also from other laboratories, such as the EMBL/EBI RDF platform). So one can
calculate median/mean measurements over all patient or correlate clinical information, as
well as sample grouping by using certain thresholds (e.g. TCL1A protein expression > X)
to diagnose malignancies (e.g. when threshold is surpassed, T-PLL is annotated).
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Figure 6.4: Upper: Malignant patient model.  Yellow nodes depict
'PATIENT_ID's that are linked to their samples, which are further
optionally  annotated  as  replicates  or  sequential  samples.  These
'PATIENT_ID's  can  then  also  be  linked  to  diagnosis,  molecular
status  or  alternative  descriptors  (  gen:CaseID  ).  Bottom  right:
Normal  patient  model.  Besides sequential  samples or  replicates,
'PATIENT_ID's may also be linked to benign control samples.
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6.3 Semantic model for novel exploratory survival algorithm

The algorithm presented in Crispatzu et al. 2016 relies on clinical and gene expression
data, which is in our case modeled and stored in the semantic database. In order to do
survival analysis and evaluate potential prognostic marker or marker sets linked to adverse
patient outcome, one has to know the dates of certain events or at least their range. Dates
can  be  in  the  form  of  'date  of  birth'  (  gen:Date_of_birth )  and  'date  of  decease'  (
gen:Date_of_death ) or 'age at diagnosis' ( gen:Age_at_Diagn ) to calculate potential age
bias / demographic at risk. The latter parameter is favoured in a public database because
the other two can easily dereference the patient (Google search of 'date of decease' may
come  up  with  an  obituary  notice  and  thus  clear  name)  and  leading  to  privacy
infringements. However it  may be important to double-check, thus the dates should at
least be kept in a separate closed database.

Further parameters include 'date of diagnosis' (  gen:Date_of_Diagn ) and status at last
follow-up (F/U) to evaluate overall survival (OS; gen:Overall_Survival_status_as_last_FU)
and  progression-free  survival  (
gen:PFS_date_of_first_therapy_until_date_of_relapse_or_death_or_date_of_last_FU ). In
order to censor patients and/or to account only for disease-specific events, one can further
use gen:Disease_related_death. Dates are stored in xsd datatypes (i.e. xsd:date) and may
have to be converted.

To guarantee the similarity of clinical features and sampled molecular features, one can
further  restrict  the  analysis  to  samples  taken  at  most  six  month  after  diagnosis  (
gen:less_than_6month_between_sample_and_diagnosis  ). This circumvents for example
noise introduced by kinetics or disease progression such as LDT or high WBC.

Figure 6.5: Edges in red highlight treatment regimens. While nodes in dark red show the link that the patient
is not censored, i.e. died through disease-specific causes and can thus be included into our survival analysis.
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The  model  needed  to  evaluate  survival  analysis  is  shown  in  Figure  6.5.  We  only
considered the 6 month-restricted samples with disease-specific death with the 5 highest
and 5 lowest overall survival ('OS hi vs. OS lo') for our T-PLL samples. Sample grouping is
done by matching survival annotations with gene expression array names within R via
SPARQL library.  I  further  implemented  an  automated  method  to  facilitate  differential
expression analysis and getting the 100 (or any other positive integer) most significant
deregulated genes sorted by fold change. This gives us a first hint which genes are linked
to extreme indolence or aggressiveness instead of calculating Cox statistics and Kaplan-
Meier curves for every gene variation and outcome in our T-PLL data sets. The necessary
query is as follows:

SELECT DISTINCT ?pat ?sample ?os ?mo6 WHERE { ?pat gen:Diagn gen:T-PLL . ?pat 
gen:OS_diagnosis_to_last_FU ?os . ?pat gen:hasSample ?sample . 

    OPTIONAL { ?sample gen:less_than_6month_between_sample_and_diagnosis ?
mo6 } . 

    ?pat gen:Overall_Survival_status_as_last_FU "DOD"^^xsd:string . ?pat 
gen:Disease_related_death "true"^^xsd:boolean . }

6.4 Gene expression meta-analysis using EMBL / EBI RDF: AtlasRDF

The 'Gene expression  atlas'  of  the  EMBL /  EBI  (  http://www.ebi.ac.uk/gxa )  “provides
information about gene and protein expression in animal and plant samples of different cell
types,  organism parts,  developmental  stages,  diseases and other  conditions”  of  “1572
studies as of August 2015” (taken from Petryszak et al. 2016). The human data sets are
currently  exported  into  an  RDF  version  accessible  via  SPARQL  endpoint  (
http://www.ebi.ac.uk/rdf/services/atlas  /  sparql; AtlasRDF accessed on 09/29/2016).

In order to process the SPARQL query results in R, I attached a helpful wrapper function,
which parses prefixes, replaces empty entries and deletes namespace prefixes in results:

queryProc <- function(queryString, prefixes, endpoint, showPrefixes=T) {

    tmpF <- gsub(" $", "", gsub("^ ","",strsplit(prefixes,"PREFIX")[[1]]))

    tmpF <- gsub(">", "", tmpF[which(tmpF!="")])

    sS <- strsplit(tmpF, " ")

    qStat <- SPARQL(url=endpoint, query=paste(prefixes,queryString))$results

    for(i in 1:length(sS)) {

        for(j in 1:length(qStat[,1])) {

            if(showPrefixes) {

              qStat[j,] <- gsub(">", "", gsub(sS[[i]][2], sS[[i]][1], 
qStat[j,]))

            } else {

                qStat[j,] <- gsub(">", "", gsub(sS[[i]][2], "", qStat[j,]))

            }

            qStat[j,] <- gsub("^NA$",NA, qStat[j,])

        }

    }

http://www.ebi.ac.uk/rdf/services/atlas/sparql
http://www.ebi.ac.uk/rdf/services/atlas/
http://www.ebi.ac.uk/gxa
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    return(qStat)

}

To construct another query like Example #2 on AtlasRDF to be semi-automately directed
within R SPARQL, one must only be a bit familiar with the underlying ontologies:

# read in a txt file with gene names and store it in a vector (here "tel)

# load helper functions

source("/home/gc/workspace/AG_Herling/Semantic_Framework/functions/basic.R")

library("biomaRt")

human <- useMart("ENSEMBL_MART_ENSEMBL",

    dataset="hsapiens_gene_ensembl",

    host="feb2014.archive.ensembl.org",

    path="/biomart/martservice", archive=FALSE)

# convert gene names (e.g. "ATM") to ENSEMBL IDs

bm <- getBM(attributes = c("chromosome_name", "ensembl_gene_id", 
"wikigene_name"), filters = "wikigene_name", values = tel, mart = human)

bm <- bm[grep("ENS", bm[,2]),]

# only get IDs from top level assembly

bm <- bm[grep("^[0-9][0-9]*$|^X$|^Y$", bm[,1]),]

qS_all <- data.frame()

# for each ENSEMBL ID, get dysregulations in CLL and other chronic malignancies

for(j in 1:length(bm[,2])) {

    qS <- paste("SELECT distinct ?expUri ?valueLabel ?pvalue \

    WHERE { ?expUri atlasterms:hasAnalysis ?analysis . \

    ?analysis atlasterms:hasExpressionValue ?value . \

    ?value atlasterms:pValue ?pvalue . \

    ?value atlasterms:isMeasurementOf ?probe . \

    ?value rdfs:label ?valueLabel . \

    ?value atlasterms:isMeasurementOf ?probe  . \

    ?probe atlasterms:dbXref identifiers:", bm[j,2] ,"  . \

    FILTER(regex(?valueLabel , \"CLL\") || regex(?valueLabel, \"hronic\")) }", 
sep="") # filtered with regular expressions for experiment labels which contain 
keywords

    try(qS_res_orig <- queryProc(qS, prefixes, 
"http://www.ebi.ac.uk/rdf/services/atlas/sparql", F), silent=T)

    qS_all <- rbind(qS_all, qS_res_orig)

}

write.csv(qS_all, "~/qS_all.csv")
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6.5 Further mRNA array-based gene expression meta-analyses based on gene sets

Since not all 'Gene expression atlas' data sets are thus far integrated into the EMBL / EBI
RDF platform and the GEO database (Barrett et al. 2013) has further data sets, one is
obliged to manually integrate these extra ones.

For  a  more detailed description we further  did  differential  expression analysis  for  only
those data sets with a normal pool (of varying quality, number and specificity) of samples.
Fold changes with p-value < 0.1 (trend) or p-value < 0.05 were extracted to compare
normal-matched  gene  regulation  per  experiment  and  probe  target.
Instead of patterns of expression level, one can now observe different disease vs. "normal"
comparisons and which genes are exclusively down- or up-regulated and which show no
clear pattern or are specific to small subgroups.

The preprocessing of gene sets and sample grouping was further automated by means of
the Semantic Web (Figure 6.6). Genes are stored in a new RDF data structure similar to a
list. The subject identified by the predicate 'gen:is_a_geneset'' has many members with the
predicate  'gen:hasGeneSetMember'',  who are  then  further  annotated by  HUGO/HGNC
gene  symbols  and  Ensembl  identifiers  (hgnc:Symbol and  gen:hasHumanEnsembl
respectively).

Each  integrated  GEO  or  ArrayExpress  data  set  is  modeled  with  array
platform/manufacturer  (  gen:platform ),  reference  (  gen:Source_of_sample ),  a
background-corrected, quantile-normalized and annotated csv file ( gen:hasFileName ), as
well as one or multiple analyses (  atlasterms:hasAnalysis ) differing by sample grouping
done  by  custom-written  regular  expressions  (  gen:hasGroup1RegExpr,
gen:hasGroup2RegExpr ) (Figure 6.7). They can be queried as follows:

SELECT DISTINCT ?a ?c ?d ?e ?g1 ?g2 ?lab ?source WHERE { ?a 
atlasterms:hasAnalysis ?c . ?a gen:Source_of_sample ?source . ?a gen:hasFileName
?d . ?a gen:platform ?e. ?c rdfs:label ?lab . ?c gen:hasGroup1RegExpr ?g1 . ?c 
gen:hasGroup2RegExpr ?g2 . }

The analyses names (or labels by rdfs:label) further describe to which meta-analysis they
belong to (CLL, NBC (normal B-cells),  BCL (B-cell  lymphoma) or MTCL (mature T-cell
lymphoma/leukemia)  to  name  a  few).  In  the  meta-analysis  itself  every  differential
expression  analysis  is  further  annotated  by  the  statistical  test  used.  The  default  is
Student's t-test, except for low variation comparisons whereas Wilcoxon rank sum test is
forced.

Figure 6.6: GeneSet
model linking AKT1 (et
al.) to MYC's PPI
network neighbors.
Name (central node)
of the gene set is
colored in yellow.



263 / 316

Figure 6.7: Meta model. Central node, naming the data set, is colored in yellow and linked to technical details
and analysis. Analysis itself is linked to meta-data of differential expression analysis. 

Publicly  available  data  sets  investigating  normal  T-cell  subsets  are  similar  modeled .
However  instead  of  grouping  samples  and  comparing  them  pairwise  in  differential
expression analysis and hierarchical clustering, each sample group (e.g. CD4+ or CD8+ T-
cells) is visualized in a PCA on the basis of our memory/naive/CM signatures (see Warner,
Oberbeck, Schrader et al.). These signatures can be stored as a gene set list or calculated
on-the-fly. I further implemented an automated function to run PCAs on a given cohort and
given gene set (data not shown).

6.6 Comparative methodology illustrated on copy-number data

Besides  traditional  platforms  like  SNP arrays,  it  is  also  possible  to  call  copy-number
variations  by  WGS or  WES (Nam et  al.  2015).  The  segmentation  and  (LOH)  calling
algorithms differ quite a bit due to the unequal variance and noise in read coverage. It is
therefore interesting to observe whether and to which extent called copy-number variations
overlap. Similar to GEP, every sample can also have a copy-number variation analysis.
Either  by  WES  ( Y  gen:sample1  X  .  Y  gen:aType  gen:Copy-
Number_Variation_by_Whole_exome_sequencing  .;  Figure  6.8a)  or  SNP  arrays  (  X
gen:hasAnalysis Y . Y gen:aType gen:Copy-Number_Variation_by_SNP_arrays .;  Figure
6.8b).  Control  samples  can  either  be  paired  ( Y  gen:sample2  ?s2  )  or  pooled  (
FILTER(regex(xsd:string(?s2),"pool")) ).  Every  result  of  the  analysis  has  (at  least)  the
predicates  copy-number  (  gen:CopyNumber  )  and  a  HGNC/HUGO  gene  symbol  (
hgnc:Symbol ).

Most segmentation algorithm run on genomic ranges not on coding ranges, therefore a
gene can be split in two with different copy-numbers assigned to it. I wrote a function that
averages copy-number per gene after SPARQL querying:
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# functions expects the SPARQL query result table, index for PATIENT_ID to link 
average and an index for values to be averaged 

mDupl <- function(mat, patIdx, valIdx) {

    dupl <- unique(mat[which(duplicated(mat[, patIdx])), patIdx])

        if(length(dupl) > 0) {

        for(i in 1:length(dupl)) {

            dM <- mean(as.numeric(mat[which( mat[, patIdx]== dupl[i]), valIdx]),
na.rm=T)

            mat[which(mat[, patIdx]== dupl[i])[1], valIdx] <- dM

            lenD <- length(which(mat[, patIdx]== dupl[i]))

            mat <- mat[-which(mat[, patIdx]== dupl[i])[2:lenD],]

        }

    }

    replace_idx <- which(mat[,valIdx] == "NaN")

    if(length(replace_idx) > 0) { mat[replace_idx, valIdx] <- NA }

    return(mat)

}

The code to integrate pooled SNP 6.0, SNP 6.0 compared to HapMap and WES copy-
numbers is as follows:

# loading all basal functions, including „rmDupl()“

source("/home/gc/workspace/AG_Herling/Semantic_Framework/functions/basic.R")

gS <- "SELECT DISTINCT ?gene WHERE {  ?a2 gen:aType gen:Copy-
Number_Variation_by_SNP_arrays . ?a2 gen:hasResult ?r2 . ?r2 gen:CopyNumber ?cn2
. ?r2 hgnc:Symbol ?gene}"

genes <- queryProc(gS, prefixes, "http://localhost:8080/openrdf-
workbench/repositories/CNA/query", F)

ovMat <- matrix(0, ncol=12, nrow=length(genes))

ovMat[,c(1,4,7,10)] <- 2 # default: bi-allelic

for(i in 1:length(genes)) {

    d1 <- paste("SELECT DISTINCT ?pat ?cn ?gene ?orig WHERE { 

    SERVICE <http://localhost:8080/openrdf-workbench/repositories/GEX/query> { ?
orig gen:Diagn gen:T-PLL . ?orig gen:hasSample ?pat } . 

    ?a1 gen:aType gen:Copy-Number_Variation_by_Whole_exome_sequencing . ?a1 
gen:sample1 ?pat . ?a1 gen:sample2 ?s2 . FILTER(regex(xsd:string(?s2),\"pool\"))
. OPTIONAL { ?a1 gen:hasResult ?r1 .?r1 gen:CopyNumber ?cn . ?r1 hgnc:Symbol 
<http://bio2rdf.org/hugo:", genes[i],"> } } ORDER by ?orig", sep="")

    r1 <- queryProc(d1, prefixes, "http://localhost:8080/openrdf-
workbench/repositories/ngs/query", F)

    r1 <- rmDupl(r1,4,2)
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    r1[which(is.na(r1[,2])),2] <- 2

    m1 <- mean(as.numeric(r1[,2]))

    g1 <- length(which(as.numeric(r1[,2]) > 2.2)) / length(r1[,2]) * 100

    l1 <- length(which(as.numeric(r1[,2]) < 1.8)) / length(r1[,2]) * 100

    d2 <- paste("SELECT DISTINCT ?pat ?cn2 ?gene ?orig WHERE { 

    SERVICE <http://localhost:8080/openrdf-workbench/repositories/GEX/query> { ?
orig gen:Diagn gen:T-PLL . ?orig gen:hasSample ?pat } . 

    ?pat gen:hasAnalysis ?a2 . ?a2 rdfs:label ?lab . FILTER(regex(xsd:string(?
lab),\"pool\")) . ?a2 gen:aType gen:Copy-Number_Variation_by_SNP_arrays . 
OPTIONAL { ?a2 gen:hasResult ?r2 . ?r2 gen:CopyNumber ?cn2 . ?r2 hgnc:Symbol 
<http://bio2rdf.org/hugo:", genes[i],"> } }", sep="")

    r2 <- queryProc(d2, prefixes, "http://localhost:8080/openrdf-
workbench/repositories/CNA/query", F)

    r2 <- rmDupl(r2,4,2)

    r2[which(is.na(r2[,2])),2] <- 2

    m2 <- mean(as.numeric(r2[,2]))

    g2 <- length(which(as.numeric(r2[,2]) > 2.2)) / length(r2[,2]) * 100

    l2 <- length(which(as.numeric(r2[,2]) < 1.8)) / length(r2[,2]) * 100

    d3 <- paste("SELECT DISTINCT ?pat ?cn2 ?gene ?orig WHERE { 

    SERVICE <http://localhost:8080/openrdf-workbench/repositories/GEX/query> { ?
orig gen:Diagn gen:T-PLL . ?orig gen:hasSample ?pat } . 

    ?pat gen:hasAnalysis ?a2 . ?a2 rdfs:label ?lab . FILTER(regex(xsd:string(?
lab),\"hapmap\")) . ?a2 gen:aType gen:Copy-Number_Variation_by_SNP_arrays . 
OPTIONAL { ?a2 gen:hasResult ?r2 . ?r2 gen:CopyNumber ?cn2 . ?r2 hgnc:Symbol 
<http://bio2rdf.org/hugo:", genes[i],"> } }", sep="")

    r3 <- queryProc(d3, prefixes, "http://localhost:8080/openrdf-
workbench/repositories/CNA/query", F)

    r3 <- rmDupl(r3,4,2)

    r3[which(is.na(r3[,2])),2] <- 2

    m3 <- mean(as.numeric(r3[,2]))

    g3 <- length(which(as.numeric(r3[,2]) > 2.2)) / length(r3[,2]) * 100

    l3 <- length(which(as.numeric(r3[,2]) < 1.8)) / length(r3[,2]) * 100

    r4 <- t(cbind(cbind(t(r1),t(r2)), t(r3)))

    r4[which(is.na(r4[,2])),2] <- 2

    m4 <- mean(as.numeric(r4[,2]))

    g4 <- length(which(as.numeric(r4[,2]) > 2.2)) / length(r4[,2]) * 100
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    l4 <- length(which(as.numeric(r4[,2]) < 1.8)) / length(r4[,2]) * 100

    ovMat[i,] <- c(m1,l1,g1, m2,l2,g2, m3,l3,g3, m4,l4,g4)

    print(i)

}

colnames(ovMat) <- c("WES Mean", "WES Loss Freq.", "WES Gain Freq.",

            "Ctrl Mean", "Ctrl Loss Freq.", "Ctrl Gain Freq.",

            "Hapmap Mean", "Hapmap Loss Freq.", "Hapmap Gain Freq.",

            "Combi Mean", "Combi Loss Freq.", "Combi Gain Freq.")

write.table(ovMat, "~/ovMat.csv", row.names=F)

### ### ###

a)
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b)

Figure 6.8: a) WES CNV model in paired mode. Pooled setting can be described by multiple gen:sample2
attributes. Except for copy-number and gene name, every other attribute is optional. Result can have multiple
affected genes who have to be averaged later on. b) SNP 6.0 model with 'PATIENT_ID' depicted in yellow
which is  further  linked to  analysis  and results  with  only  one affected gene and copy-number.  Label  on
analysis describes protocol and „pooled“ comparison.

ATM deletions  are  confirmed  by  FISH,  classical  cytogenetics  and  previous  reports  in
Affymetrix  SNP 6.0  arrays  (e.g. Dürig  et  al.  2007).  We  therefore  use  our  FISH  and
classical cytogenetics annotations of each 'PATIENT_ID' to validate our SNP 6.0 calls, and
SNP 6.0 calls to validate CNV calls in WES.

6.7 Dosage effect

For each patient every genes copy-number (  ?pat gen:hasSample ?sample .  ?sample
gen:hasResult ?res . ?res gen:CopyNumber ?cn . ?res hgnc:Symbol ?gene ) was fetched
and fold changes of each gene for each patient compared to the CD3+ normal T-cell pool
(n=10) were calculated. I only considered those genes who are upregulated and have a
gain, those who are downregulated and have a loss (both intuitive) and those who are
upregulated  and  have  a  loss  or  downregulated  and  have  a  gain  (counter-intuitive).
Providing us with four categories (2x2 count matrix) or even more when including non-
spotted  or  stable  genes.  The  counter-intuitive  cases  may  be  hints  for  allele-specific
expression and/or gene dosages, meaning the allele which is affected by a copy-number
event is not favoured by the transcription machinery (see Schrader, Crispatzu et al. Figure
S5b,c).

In  Schrader,  Crispatzu  et  al.,  we also  observed that  not  MYC (Dürig  et  al.  2007)  but
actually  AGO2 is  the  most  frequently  amplified  gene  in  T-PLL.  MYC however  is  still
upregulated in many cases not exhibiting a respective amplification or is stable in cases
exhibiting  a  respective  amplification.  Similar  to  the  investigation  of  dosage  effects,  I
queried the AGO2 and MYC copy-number for each patient ( ?pat gen:hasSample ?sample
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.  ?sample  gen:hasResult  ?res  .  ?res  gen:CopyNumber  ?cn  .  ?res  hgnc:Symbol
hugo:MYC )  and again  calculated  fold  changes in  the  respective  patients.  Expression
levels of bi-allelic and amplification-carrying patients were then compared and visualized in
boxplots.  Only  AGO2 (p=0.000503, fc=1.63),  not  MYC (p=0.821,  fc=0.0246),  seems to
respond to sCNAs in T-PLL (Schrader, Crispatzu et al. Figure S6a,b). The code to obtain
MYC boxplots and statistical measurements of its dosage effect is as follows:

matMyc <- matrix("", nrow=length(tmpA), ncol=5)

# tmpA are all T-PLL patients

for(i in 1:length(tmpA)) {

    qS <- paste("SELECT DISTINCT ?orig ?snp WHERE { ?orig gen:hasSample gen:", 
tmpA[i]," . OPTIONAL { gen:", tmpA[i]," gen:hasAnalysis ?a1 . ?a1 rdfs:label ?
lab . FILTER(regex(xsd:string(?lab),\"pool\")) . ?a1 gen:aType gen:Copy-
Number_Variation_by_SNP_arrays . ?a1 gen:hasResult ?r1 . ?r1 gen:CopyNumber ?snp
. ?r1 hgnc:Symbol <http://bio2rdf.org/hugo:MYC> } . }", sep="")

    matMyc[i,1:2] <- unlist(queryProc(qS, prefixes, 
"http://localhost:8080/openrdf-workbench/repositories/NGS/query", F))

    qS <- paste("SELECT DISTINCT ?orig ?snp2 WHERE { ?orig gen:hasSample gen:", 
tmpA[i]," . OPTIONAL { gen:", tmpA[i]," gen:hasAnalysis ?a2 . ?a2 rdfs:label ?
lab2 . FILTER(regex(xsd:string(?lab2),\"hapmap\")) . ?a2 gen:aType gen:Copy-
Number_Variation_by_SNP_arrays . ?a2 gen:hasResult ?r2 . ?r2 gen:CopyNumber ?
snp2 . ?r2 hgnc:Symbol <http://bio2rdf.org/hugo:MYC> } . }", sep="")

    matMyc[i,3] <- unlist(queryProc(qS, prefixes, 
"http://localhost:8080/openrdf-workbench/repositories/NGS/query", F))[2]

    qS <- paste("SELECT DISTINCT ?orig ?wes WHERE { ?orig gen:hasSample gen:", 
tmpA[i]," . OPTIONAL { ?a1 gen:aType gen:Copy-
Number_Variation_by_Whole_exome_sequencing . ?a1 gen:sample1 gen:", 
tmpA[i]," . ?a1 gen:sample2 ?s2 . FILTER(regex(xsd:string(?s2),\"pool\")) . ?a1 
gen:hasResult ?r1 . ?r1 gen:Exon ?ex . ?r1 gen:CopyNumber ?wes . ?ex hgnc:Symbol
hugo:MYC } . }", sep="")

    matMyc[i,4] <- unlist(queryProc(qS, prefixes, 
"http://localhost:8080/openrdf-workbench/repositories/NGS/query", F))[2]

    qS <- paste("SELECT DISTINCT ?orig ?fish WHERE { ?orig gen:hasSample gen:", 
tmpA[i]," . OPTIONAL { ?orig gen:MYC_amplification_by_cytogenetics_FISH ?
fish } . }", sep="")

    matMyc[i,5] <- unlist(queryProc(qS, prefixes, 
"http://localhost:8080/openrdf-workbench/repositories/NGS/query", F))[2]

}

mycGain <- union(union(union(which(as.numeric(matMyc[,2]) > 2.2), 
which(as.numeric(matMyc[,3]) > 2.2)), which(as.numeric(matMyc[,4]) > 2.2)), 
which(matMyc[,5] == T) )

mycBi   <- intersect(intersect(intersect(which(is.na(matMyc[,2])), 
which(is.na(matMyc[,3]))), which(is.na(matMyc[,3]))), which(matMyc[,5] == F) ) 
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spray <- as.data.frame(cbind( c( colMeans(combat_edata[myc_idx, 
TPLL[mycGain]]) , colMeans(combat_edata[myc_idx, TPLL[mycBi]]), 
colMeans(combat_edata[myc_idx, panT]) ), c(rep("ampl(MYC)", length(mycGain)), 
rep("MYC~", length(mycBi)), rep("panT", length(panT))) ) )

colnames(spray) <- c("expr","entity")

spray <- as.data.frame(spray)

spray[,1] <- as.numeric(as.character(spray[,1])) #!!!

res <- getDiffExprVal(TPLL[mycGain], TPLL[mycBi], combat_edata)                 
# [1] "37 vs. 14"

p_myc <- res[[2]]

q_myc <- res[[3]]

fc_myc <- res[[1]]

pdf(file="~/MYC_boxplot_responseToGain_noNA.pdf")

boxplot(expr ~ factor(entity), data=spray, main=paste("Dotplot for MYC 
(n=",length(geneIdx),"); p-val=", signif(mean(p_myc[geneIdx]),digits=3),

    ", fc=", signif(mean(fc_myc[geneIdx]),digits=3), sep="") , 
ylab="log2(expr)", las=2)

    stripchart(expr ~ factor(entity), data=spray, vertical = TRUE, method = 
"jitter", pch = 21, col = c("maroon"), bg = c("bisque"), add = TRUE)

dev.off()

6.8 Dysregulation overlap of human disease to disease model sample

To evaluate how certain models mimic a disease, one can compare the gene expression
profilings of the affected animals with patient data (as done in Warner, Oberbeck, Schrader
et al. Figure 4g). Here, we only overlaped dysregulated genes between late (exponential
phase) and early (preleukemic phase) TCL1A-tg mice (Figure 6.9) and T-PLL for runtime
reasons:

# get sign. differentially expressed genes in mice

s1 <- "SELECT DISTINCT ?gene ?p ?fc ?p2 ?fc2 WHERE { \

    ?orig gen:Diagn gen:T-PLL . ?orig gen:hasSample ?sample2 . ?sample2 
gen:isEarlyOf ?orig . \

    ?orig gen:hasSample ?sample1 . OPTIONAL { ?sample1 gen:isLateOf ?orig } . 
OPTIONAL { ?sample1 gen:isFuOf ?orig } . \

    ?a1 gen:hasGroup1Member ?sample1 . ?a1 gen:hasGroup2Member ?sample2 .  \

    ?a1 gen:aType gen:Gene_expression_profiling_by_mRNA_arrays . ?a1 
gen:hasResult ?r1 . \

    ?r1 gen:hasILMN_ID ?ilmn . ?ilmn hgnc:Symbol ?gene . \

    ?r1 gen:fold_change ?fc . ?r1 atlasterms:pValue ?p . ?r1 gen:q-value ?q . 
FILTER(abs(?fc) > 2 && ?p < 0.05) }"

t1 <- queryProc(s1, prefixes, "http://localhost:8080/openrdf-
workbench/repositories/GEX/query", F)
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# get sign. differentially expressed genes in humans

s2 <- "SELECT DISTINCT ?gene ?p ?fc ?p2 ?fc2 WHERE { \

    ?g1 gen:Diagn gen:Lckpr_hTCL1A_pn_transgenic_mouse . ?g2 gen:Diagn 
gen:Lckpr_hTCL1A_pn_transgenic_mouse . \

    ?a2 gen:hasGroup1Member ?g1 . ?a2 gen:hasGroup2Member ?g2 . ?a2 
gen:hasResult ?r2 . \

    ?r2 gen:hasAffymetrixID ?affy . ?affy hgnc:Symbol ?gene . \

    ?g1 rdfs:label \"exponential phase\"^^xsd:string . ?g2 rdfs:label \"chronic 
phase\"^^xsd:string . \

    ?r2 gen:fold_change ?fc2 . ?r2 atlasterms:pValue ?p2 . ?r2 gen:q-value ?q2 .
FILTER(abs(?fc2) > 2 && ?p2 < 0.05) }" 

t2 <- queryProc(s2, prefixes, "http://localhost:8080/openrdf-
workbench/repositories/GEX/query", F)

intersect( t1[,1], t2[,1]) # overlap of both

Figure 6.9: Mouse GEP model with malignant and benign samples depicted in yellow. Results consist of
different statistical measurements of differential expression and (in lower branches of graphic) annotation of
affymetrix probes in order to link results to human orthologues.
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6.9 Regulatory gene network analysis

By  adding  further  predicates  one  can  compare  co-expression  (  ?analysis  gen:aType
gen:Co-expression_analysis_by_mRNA_arrays  ) results similar to GEP results with each
other. They can further be annotated when assigning pathway links to each gene and test
for  over-representation. Each co-expression result has two HUGO/HGNC gene symbols
( ?res gen:Gene1 ?gene . ?res gen:Gene2 ?gene ), a p-value ( atlasterms:pValue ) and a
correlation coefficient ( gen:rho ). One can further filter correlated genes by dysregulation
of one or both genes, as we did previously within late vs. early T-PLL and mice models.
We therefore looked for co-expressed genes (each gene a query) within our human late
vs.  early  gene  set.  We  then  constructed  a  bidirectional  graph  (gene1 correlates  with
gene2, therefore gene1 also correlates with gene2) and passed it on to Cytoscape 2.8.1
with RCytoscape:

geneN <- unique(t1[,1])

matR <- matrix("", ncol=4)

for(i in 1:length(geneN)) {

    s3 <- paste("SELECT DISTINCT ?gene1 ?gene2 ?p ?rho WHERE { ?r1 gen:Gene1 ?
gene1 . ?r1 gen:Gene2 ?gene2 . FILTER(regex(xsd:string(?gene1), \"", 
geneN[i],"\") || regex(xsd:string(?gene2), \"", geneN[i],"\")) . ?r1 gen:rho ?
rho . ?r1 atlasterms:pValue ?p . FILTER(abs(?rho) > 0.8 && ?p < 0.05) }", 
sep="")

    t3 <- tryCatch(as.matrix(queryProc(s3, prefixes, 
"http://localhost:8080/openrdf-workbench/repositories/GEX/query", F)), 
error=function(e) { t3 <- c("", "", "", "") } )

    matR <- rbind(matR, t3)

}

matR <- matR[-which(matR[,1]==""),]

uMat <- tab <- unique(matR[,c(1,2)])

tt <- unique(unlist(sapply(t[,1], function(a) which(a == uMat[,1]))))

uMat <- uMat[tt,]

tt <- unique(unlist(sapply(t[,2], function(a) which(a == uMat[,1]))))

uMat <- uMat[tt,]

both <- unique(c(t1[,1], t2[,2]))

both <- both[which(!is.na(both))]

rEG <- new("graphNEL", nodes=both, edgemode="directed")

 

for(k in 1:(dim(tab)[1])) {

    if((length(which(both == tab[k,1])) > 0) && (length(which(both == tab[k,2]))
> 0)) { #!!!

        rEG <- addEdge(tab[k,1], tab[k,2], rEG, 1) 

        rEG <- addEdge(tab[k,2], tab[k,1], rEG, 1) 

    }



272 / 316

}

rEGi <- igraph.from.graphNEL(rEG)

write.graph(rEGi, "~/test.gml", format="graphml")

###

library("Rgraphviz")

library("RCytoscape")

rEG <- initEdgeAttribute (rEG, "weight", "numeric", 1.0)

#in Cytoscape 2.8.1: Plugins > CytoscapeRPC > Activate CytoscapeRPC > OK        
cw <- new.CytoscapeWindow ('broad', graph=rEG)

displayGraph(cw)

### ### ###

Within  Cytoscape  2.8.1,  we  only  looked  at  co-expressed  cliques (Figure  6.10a) and
searched for potential mutual cis- and transregulatory elements (e.g. transcription factors
activating or miRNAs repressing both co-expressed genes) with CyTargetLinker (Kutman
et al. 2013; Figure 6.10c,d):

Press Ctrl+A > Layout > yFiles > Organic

Mark clique manually > Ctrl+I > Delete

Plugins > CyTargetLinker plugin > Load Regulatory Interaction Networks > select 
your network attribute (canonicalName) > OK

While  additionally  PPI  can  be  screened  for  with  stringApp in  Cytoscape  3.4  (Figure
6.10b):

File > Import > Network > Public Databases... > Data Source: STRING: protein 
query > type in genes (i.e. STK17B, PSMD12, RNF11, GPCPD1) > Import

App > STRING > Expand network > OK > Layout > yFiles Layouts > Organic
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a) b)

c)        d)

Figure 6.10: a) Initial clique graph of four co-expressed genes. Arch of STK17B to itself can be interpreted as
co-expression between two probes / isoforms and thus be neglected.  b)  Screening for PPI by  stringApp
elucidates that  RNF11and PSMD12 actually interact with each other. Even though the confidence score is
rather low, it originates from an experimental assay and not data-mining-based inference. In order to observe
potential  transitive  relationships,  the  PPI  network  was  expanded  (by  10  nodes)  and  one  can  see  that
STK17B and GPCPD1 both interact with UBC. c) First part of CyTargetLinker-based network integrating data
from MicroCosm v5 Homo sapiens, ENCODE network (distal) and ENCODE network (proximal). miR-507
and miR-338-5p both regulate  STK17B and  PSMD12  expression.  d) While in the second part,  miR-19b
regulates both RNF11 and GPCPD1.  Further literature mining and re-evaluation in the whole T-PLL cohort
(or a second independent one) is needed to evaluate a potential disease mechanism.
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6.10 Comparative SNV analysis

Again, SNV or indel screening results in WES or WGS are modeled similar to our GEP or
sCNA/CNV  analyses  (Figure  6.11).  The  only  exception  is  the  analysis  type
( gen:germline_SNV_by_Sanger_sequencing,
gen:germline_SNV_by_Targeted_sequencing,  gen:somatic_SNV_by_Whole-
exome_sequencing, gen:somatic_SNV_by_Whole-genome_sequencing) and a couple of
added predicates to the results, such as chromosome ( omim_vocabulary:chromosome ),
position ( gen:position ), reference allele ( gen:ref_allele ), mutated allele ( gen:alt_allele ),
tumor fraction (TF) / variant allele fraction (VAF) ( gen:tumor_f ), optional predictions by
SIFT  (  gen:whole-exome_SIFT_score),  PolyPhen2  (  gen:whole-
exome_PolyPhen2_HDIV_score ),  RadialSVM  (  gen:whole-exome_RadialSVM_score  ),
LR  (  gen:whole-exome_LR_score )  and  CADD  (  gen:whole-exome_CADD_score ),
COSMIC 70 annotations (  gen:COSMIC_ID ), read depth (gen:Depth ), phred-based call
quality ( gen:QUAL ) and an optional dbSNP_138 entry ( gen:snp138 ). 

Figure 6.11: WES SNV/indel model. Depicted in yellow is the analysis name (consisting of 'PATIENT_ID',
analysis date and analysis type to secure unambiguity) which is linked to a results with a vast amount of
mutation annotations.

We  thus  can  convert  results  from other  groups  (identifier  in  PATIENT_ID  or  analysis
description) and compare their findings to ours.
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SELECT DISTINCT ?pat ?ana ?gene ?lab { 

?pat gen:hasAnalysis ?ana . 

?pat gen:Diagn gen:T-PLL . 

?ana gen:aType gen:somatic_SNV_by_Whole-exome_sequencing . 

FILTER(regex(xsd:string(?pat), "Mayo")) . # filter by working group name

?ana gen:hasResult ?res . 

?res hgnc:Symbol ?gene . 

OPTIONAL { ?res rdfs:label ?lab } .

} ORDER by ?gene

6.11 Loss- and gain-of-function analysis

When  querying  sCNA,  UPD  and  mutations  with  accompanying  VAF,  one  can  further
combine them patient-wise and infer loss- and gain-of-function. Meaning that if "the tumor"
selects the dysfunctional gene by a second-hit, e.g. when there is a SNV that increases in
VAF due to a mono-allelic loss of the other allele (CN < 1.8 & VAF > 0.5) or when there is a
SNV that increases in VAF due to a gain (amplification or UPD) of the potential same (!)
allele  (CN  >  2.2  &  VAF  >  0.5  or  VAF  >  0.5  &  UPD).  UPD  (  ?analysis  gen:aType
gen:Uniparental_disomy_by_SNP_arrays ) is similarly modeled as sCNA, only it carries no
numerical value (nothing like gen:CopyNumber), but rather a boolean value (Figure 6.12).

source("workspace/AG_Herling/Semantic_Framework/functions/basic.R")

# PAIRED SOMATIC + UPD

qS <- "SELECT DISTINCT ?orig ?pat WHERE { SERVICE 
<http://localhost:8080/openrdf-workbench/repositories/GEX/query> { \

?orig gen:Diagn gen:T-PLL . ?orig gen:hasSample ?pat } . ?pat gen:hasAnalysis ?
a1 . ?a1 gen:aType ?type . \

FILTER(regex(xsd:string(?type), \"somatic_SNV_by_\")) . FILTER 
regex(xsd:string(?a1), \"Mi_7_Okt_123438_CEST_2015_WES_gaIIx\") . }"

iS <- queryProc(qS, prefixes, "http://localhost:8080/openrdf-
workbench/repositories/ngs/query", F)

bAl <- matrix(ncol=3)

for(i in 1:length(iS[,2])) {

    qS <- paste("SELECT DISTINCT ?pat ?gene ?tf WHERE { gen:", iS[i,2], " 
gen:hasAnalysis ?a1 . ?a1 gen:aType ?type . FILTER(regex(xsd:string(?type),
\"somatic_SNV_by_\")) . ?a1 gen:hasResult ?r1 . ?r1 gen:alt_allele ?alt . ?r1 
gen:position ?pos . ?r1 gen:tumor_f ?tf . ?r1 hgnc:Symbol ?gene . SERVICE 
<http://localhost:8080/openrdf-workbench/repositories/CNA/query> { gen:", 
iS[i,2], " gen:hasAnalysis ?a2 . ?a2 gen:aType 
gen:Uniparental_disomy_by_SNP_arrays . ?a2 gen:hasResult ?r2 . ?r2 hgnc:Symbol ?
gene } } ORDER BY DESC(?orig)", sep="")

    biAl <- try(queryProc(qS, prefixes, "http://localhost:8080/openrdf-
workbench/repositories/ngs/query", F), silent=T)

    if (is(biAl, "try-error")) { biAl <- matrix(c(iS[i,2], "X", "X"), ncol=3); }

    if(dim(biAl)[1] >= 1) { biAl[,1] <- iS[i,2]; }



276 / 316

    bAl <- t(cbind(t(bAl), t(biAl)))

    print(i)

}

bAl <- bAl[-1,]

library("WriteXLS")

bAl <- as.data.frame(bAl, row.names=F)

colnames(bAl) <- c("Sample_ID", "Gene", "VAF")

WriteXLS(c("bAl"), "~/SNV_UPD_second_hit.xls", SheetNames=c("bi-affected"), 
AdjWidth = F, BoldHeaderRow = TRUE, col.names = T, FreezeRow=1)

6.12 Combinatorial “bubble” analysis integrating as much data sets as possible to
visualize

Building up on  6.11, one can further include gene expression (by fold changes of each
patient compared to the average of a CD3+ normal T-cell  pool),  UPD status, mutation
frequency and FDR of each mutated gene (see Schrader, Crispatzu et al. Figure 7b).

Figure 6.12: UPD model with pseudo-boolean value. 'PATIENT_ID' depicted in yellow either has an UPD
result with affected gene („true“) or it does not („false“). 

6.13 Combinatorial “bubble” analysis restricted to one gene and it's clonal evolution

Similar to  6.12,  one can restrict the bubble plot to only one gene (like  ATM;  Schrader,
Crispatzu et al.  Figure 4a) and further include coloring of sequential cases ( X rdfs:label
„early“^^xsd:string or rdfs:label „late“^^xsd:string ) and SNV-affected protein domains (like
FAT or PI3K modeled with the attribute gen:AA_Change_refGene ). One can then further
divide  into  mutiple  mutation  (  gen:ExonicFunc_refGene or  gen:mutation_type ),  single
mutation affected, as well as unmutated cases and test for enrichments (by Fisher table
count  test)  of  domain  disruptions  or  gene  expression  dysregulations  (comparing  fold
changes), as well  as co-occurence with mutations of other genes (such as  STAT5B or
TCL1A mRNA overexpression):
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# STAT5B SNVs / indels in all patients, incl. pseudo-somatic singletons

qS <- "SELECT DISTINCT ?orig ?pat ?gene ?pos ?type ?tf ?sift ?phen1 ?phen2 WHERE
{ \

SERVICE <http://localhost:8080/openrdf-workbench/repositories/GEX/query> { ?orig
gen:Diagn gen:T-PLL . ?orig gen:hasSample ?pat . } \

?pat gen:hasAnalysis ?a1 . ?a1 gen:aType ?type . FILTER(regex(xsd:string(?type),
\"_SNV_by_\")) . \

OPTIONAL { ?a1 gen:hasResult ?r1 . ?r1 gen:alt_allele ?alt . ?r1 gen:position ?
pos . ?r1 hgnc:Symbol ?gene . \

FILTER(regex(xsd:string(?gene), \"STAT5B$\")) . ?r1 gen:tumor_f ?tf . OPTIONAL {
?r1 gen:whole-exome_SIFT_score ?sift .  \

OPTIONAL { ?r1 gen:PolyPhen2_HDIV_score ?phen1 } . OPTIONAL { ?r1 
gen:PolyPhen2_HVAR_score ?phen2 } } } }"

pat_STAT5Bm_paired <- queryProc(qS, prefixes, "http://localhost:8080/openrdf-
workbench/repositories/ngs/query", F)

# ATM SNVs / indels in all patients, incl. pseudo-somatic singletons

qS <- "SELECT DISTINCT ?orig ?pat ?gene ?type ?tf ?sift ?phen1 ?phen2 WHERE { \

SERVICE <http://localhost:8080/openrdf-workbench/repositories/GEX/query> { ?orig
gen:Diagn gen:T-PLL . ?orig gen:hasSample ?pat . } \

?pat gen:hasAnalysis ?a1 . ?a1 gen:aType ?type . FILTER(regex(xsd:string(?type),
\"_SNV_by_\")) . \

OPTIONAL { ?a1 gen:hasResult ?r1 . ?r1 gen:alt_allele ?alt . ?r1 gen:position ?
pos . ?r1 hgnc:Symbol ?gene . \

FILTER(regex(xsd:string(?gene), \"ATM$\")) . ?r1 gen:tumor_f ?tf . OPTIONAL { ?
r1 gen:whole-exome_SIFT_score ?sift .  \

OPTIONAL { ?r1 gen:PolyPhen2_HDIV_score ?phen1 } . OPTIONAL { ?r1 
gen:PolyPhen2_HVAR_score ?phen2 } } } }"

pat_ATMm_paired <- queryProc(qS, prefixes, "http://localhost:8080/openrdf-
workbench/repositories/ngs/query", F)

a1 <- unique(pat_ATMm_paired[which(!is.na(pat_ATMm_paired[,3])),1])

a2 <- unique(pat_STAT5Bm_paired[which(pat_STAT5Bm_paired[,4] == "40359729"),1])

pp <- length(intersect(a1,a2))                      # 8

pn <- length(setdiff(a1,a2))                        # 28

np <- length(setdiff(a2,a1))                        # 1

nn <- length(unique(pat_STAT5Bm_paired[,1]))-length(union(a1,a2))   # 18

fisher.test(rbind(c(nn, np), c(pn, pp)))

# p-value = 0.01875 -> 0.1411

fisher.test(rbind(c(nn, np), c(pn, pp)), alternative="greater")

# p-value = 0.009376 -> 0.1052
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6.14 Gene set to abberations

As mentioned in 6.4 and 6.5 gene sets can be stored in a Semantic Web list structure or
just  as a regular character  vector  in  R. Each gene can then be iteratively queried for
various kinds of mutations, such as sCNA, SNVs or indels (even SVs, GEP or fusion-
transcripts).  We manually  curated  three  gene  sets  for  DNA damage response  (DDR),
epigenetic modifiers (EPI) and telomere maintenance genes (TELO), since we previously
observed these pathways as overrepresented in GEP and point mutation analysis.

6.15 Binary or gradual summary table

To come up with an initial disease model, observe patient clusters and mutation overview,
one can combine above mentioned single steps (6.6, 6.11, 6.14) and store their results in
a binary or multivariate/numerical summary table (see  Schrader, Crispatzu et al.  Figure
7c). We therefore queried first all patients and linked samples, since we want to visualize
aberrations throughout the disease course, including classical cytogenetics, such as TCR
or  TCL1A locus  rearrangements  (  gen:Molecular_data_TCR_gene_rearrangement  &
gen:TCL1_rearrangement respectively).  The  numerical  results  from  the  queries  (are
converted  to  binary  values  and)  can  be  visualized  in  R  with  the  tableplot or
ComplexHeatmap package. Before passing the summary table to the plotting functions
one can order them by frequency of certain genes. One can further use these tables to
automatically identify clusters and most informative subsets for a better clinical guidance
by machine learning techniques, such as decision trees (within the  rattle package) and
SVM.

In practice decision trees divide a table of different variables (numerical, binary, cardinal)
into the most variable (by ANOVA) categories according to a (linear) fit and are able to
handle  missing  information  (by  using  the  next  best  variable).  Reasoning can  then be
obtained by following the tree from leaf to root (see Crispatzu et al. 2016, Figure 7).

6.16 Telomere length corralations

As short  telomeres are frequently seen in T-PLL (Röth et al.  2007),  we measured the
telomere length by flow-FISH (Baerlocher et al. 2006) of different leukemia/lymphomas in
collaboration with the F. Beier group. While the T-PLL has by far the shortest ones (already
age-corrected), possible causes still remain unknown (see Schrader, Crispatzu et al. 2016
Figure 4f).  I  therefore  modelled  telomere length  for  each analysed patient  (  ?patient
gen:Delta_Lympho ?delta ). It  is then possible to correlate telomere lengths against all
annotated parameters, such as OS, WBC,  ATM mRNA expression,  ATM copy-number,
ATM VAF and TCL1A mRNA expression. We put our focus on ATM, hence its homologue
in yeast Tel1 is responsible for telomerere maintenance and  ATM abberations  and high
telomerase activity, as well as chromosome instability are frequently seen in A-T (Gabellini
et al. 2003; Petrinelli et al. 2001).

# querying telomere length and different ATM dysfunctions

qS <- "SELECT DISTINCT ?orig ?pat ?delta ?tf WHERE { ?orig gen:Diagn gen:T-PLL .
?orig gen:hasSample ?pat . ?pat gen:Delta_Lympho ?delta . SERVICE 
<http://localhost:8080/openrdf-workbench/repositories/ngs/query> {?pat 
gen:hasAnalysis ?a1 . ?a1 gen:aType ?type . FILTER(regex(xsd:string(?type),
\"_SNV_by_\")) . FILTER(!regex(xsd:string(?type), \"Sanger\")) . ?a1 
gen:hasResult ?r1 . ?r1 gen:alt_allele ?alt . ?r1 gen:position ?pos . ?r1 
hgnc:Symbol ?gene . FILTER(regex(xsd:string(?gene), \"ATM$\")) . ?r1 gen:tumor_f
?tf . } }"
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telo_q <- queryProc(qS, prefixes, "http://localhost:8080/openrdf-
workbench/repositories/GEX/query", F)

# sign. negative correlation between telomere lengths and ATM VAF in T-PLL

cor.test(as.numeric(telo_q[,3]), as.numeric(telo_q[,4]))

# p-value = 0.005047; cor = -0.6638087 

6.17 Trace back fusion-transcript to structural variation (or copy-number variations)

Fusion-transcripts are modeled similar to co-expression results (Figure 6.13). They also
carry predicates for HUGO/HGNC gene symbol pairs for both ends of the fused transcript.
In  addition  they  carry  different  predicates,  such  as  read  depth  and  read  support  (
gen:NrOfSpanningReads,  gen:NrOfSpanningMatePairs,
gen:NrOfSpanningMatePAirsOneEndsSpansFusion ). 

Both HGNC/HUGO gene symbols can be matched to those of sCNA and thus infer the
root causes.

Structural  variants  have  two  sets  of  coordinates  (  gen:LeftChr1,  gen:RightChr2,
gen:LeftPos1, gen:RightPos2 ). Their coordinates can further be used to overlap (with a
threshold range) the CDS of fusion-transcripts and infer whether the root cause is a SV
(Figure 6.14). 

Figure 6.13: Fusion-transcript model with coordinates and coverage information. 'PATIENT_ID‘ is shown in
yellow and can be queried for other analyses.
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Figure 6.14: SV model with vast amount of coverage and genotype information.
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6.18 Correlation of breakpoint distance to affected gene expression

The  range  information  of  structural  variants  can  further  be  combined  with  mRNA
expression  levels.  So the  breakpoint  of  inversion in  chr.  14 can be linked to  different
TCL1A  levels  (protein  and  mRNA)  and  thus  elucidating  activation  and  silencing
mechanisms. Pairwise correlation of the mRNA expression of each TCL1 family member
probe (TCL1A, TCL1B, TCL6, MTCP1) and average breakpoint distance to the TCL1 locus
(end of TCL1A CDS) can further be visualized ( pairs() ). No sign. correlation was however
observed. 

Therefore non-linear correlations were investigated with the calculation of pairwise mutual
informations as well (see Discussion).

As a FACS cut-off to determine the TCL1A protein status of a T-PLL sample, we used
<=5% of cells for negative cases, between 5% and 50% for intermediate/dim cases and
>50% for positive cases (  gen:hasTCL1A_FACS ).  Since negative cases can have low
TCL1A protein, but high mRNA expression levels, it is important not to falsely impute from
array data. Only dim cases may be declared as positive cases (  gen:hasTCL1Astatus  ),
when additionally to their intermediate protein levels, they show high mRNA expression
level. When status overlap, MTCP1 status has priority over TCL1A status.

6.19 Correlations of Vbeta chains and surface markers

Surface marker status and vBeta spectratyping for each patient is assigned in continuous
expression values (% T-cells gated; gen:percentage_Vbeta8_CD5p_T-cells_gated ).

Pairwise  spearman  correlations  were  calculated  to  measure  co-occurences  and  thus
subpopulations.  The  correlations  of  the  expression  frequencies  of  immunophenotypic
markers in T-PLL cells isolated from peripheral blood, such as surface markers (Warner,
Oberbeck,  Schrader  et  al.  Figure  S3b)  and  Vbeta  chains  (data  not  shown)  are  then
visualized in a heatmap.

6.20 FACS sample organization and SPADE analysis

The results of immunophenotyping by manual gating of FACS (fluorescence-activated cell
sorting)  analyses are by default  (e.g.  in Beckman & Coulter  Gallios Flow Cytometers)
stored in  LMD or  fcs files. These can be read by proprietary software or in R with the
library  flowCore and accompanying  flowViz. Besides numerical  values used for gating,
marker name and descriptions are stored. When dealing with a multitude of these files the
semantic database can be used to store all FACS metadata and through its queries full
batches or specific tubes with overlapping marker can be selected (Figure  6.15).  This
overlap can then further be used for automatic,  agglomerative clustering of cell-sorting
values by SPADE (Qui et al. 2011). In Warner, Oberbeck, Schrader et al. (Figure 1c, S1c)
we used this sort of data-mining and unbiased population detection  to observe a higher
central-memory phenotype compared to a transitional one.
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Figure 6.15: FACS model describing a marker within a specific tube. 'PATIENT_ID' depicted in yellow can
have several tubes.

6.21 Temporal analysis

Due to the patient and sample organization mentioned in  6.2 one can further investigate
the disease course or treatment responses. I  queried for each patient, if  available, the
earliest (  “early”^^xsd:string or “FU”^^xsd:string ) and latest sample (  “FU”^^xsd:string  or
”late”^^xsd:string )  and gathered their  corresponding gene expression array sample to
analyse differential expression (late vs. early). A similar analysis can be done with sCNAs
(by  gen:CopyNumber ),  SVs  (by  gen:NrOfSpanningReads  ),  or  SNVs  /  indels  (by
gen:tumor_f ). If  no gene is significantly differential altered (gained or lost, amplified or
deleted,  re-arranged or  point  mutated),  the load (number of  losses & gains,  structural
variants or point mutations) can be sequentially compared or known (dys)functional genes
are case study-wise compared (see Schrader, Crispatzu et al. Figure S16).

6.22 Further case studies planned

6.22.1 TCL1A-interactor status and clinical subsets in CLL 

Since  TCL1A is small molecule with no targetable binding pocket and therefore hard to
circumvent its TCR-modifying and AKT-enhancing functions with current inhibitors, it may
be possible to inhibit his interactors or the formed complex. We therefore investigated the
therapeutic response of  TCL1A and its interactors in CLL following FCR chemotherapy.
We used STRING (Szklarczyk et al. 2015) and its PPI networks (target network as basis)
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for compound screening. When no overlap is present, then we want to know what is the
shortest path (BFS; breadth-first-search) to common hubs and co-expressed genes.

6.22.2 Potential compounds

I already mentioned some first practical uses of the EMBL / EBI RDF platforms. Besides a
SPARQL  endpoint  for  'Gene  expression  Atlas',  there  are  numerous  others  like  the
'ChEMBL' (Gaulton et al. 2012) one. With the information of GEP and SNV enrichment in
our T-PLL cohort, one can further link frequently aberrated genes with external information,
such as results from compound assays to find possible intervention clues, e.g. screening
for possible inhibitors of upregulated genes.

6.22.3 Search for in vivo/in vitro models for selected gene set aberrations

A selected  number  of  genes  (gene  set)  are  queried  for  deregulations  in  lymphoid
leukemias  (such  as  CLL).  Each  gene  should  be  deregulated  in  at  least  three
distinct/independent (no re-used samples from same or cooperating investigators) with the
same fold change direction (all three up- OR downregulated, not up- AND downregulated)
to exclude batch-effects and guarantee consistency. These unambiguous deregulation are
then looked for in different model organisms and overlapping inducable therapy, stimuli or
other interventions (e.g. „tamoxifen-treated Danio rerio vs. wt Danio rerio“). Ideally they are
multiple distinct experiments with the same experimental conditions and same observed
deregulations found. 

Even though differing from human samples in setting and whole-transcriptome, they may
explain or allow to study specific pathway or gene set aberrations. 

6.22.4 Boolean networks executable

We  calculated  pairwise  Pearson  correlation  coefficients  between  the  approx.  25000
annotated  genes  on  our  T-PLL GEP Illumina  HumanHT-12  v4  Expression  BeadChip
(n=83)  and  additionally  overlapped  the  highest  absolute  values  (rho>0.8)  and  most
significant  (p-value<0.01)  correlations  with  significant  deregulations  (|FC|  >  2;  p-
value<0.01) between T-PLL and normal CD3+ T-cells. These co-expression graphs can be
overlapped with  annotated pathways (as a further  restriction)  with  help of  a  Semantic
framework (Dehmer et al. 2011). These reduced networks can then be used as basis for
Boolean networks (Wang 2008) to e.g. investigate TCL1A-enhanced TCR signaling in T-
PLL. In concrete terms Boolean networks can be employed by modeling usual pathway
maps as logical gates and play through all possibilities of how one gene activates another
by  state  frequencies.  Updates  of  network  nodes  can  be  realized  as  synchronous  or
asynchronous (Albert et al. 2008).

6.22.5 Integrative benchmark of high-throughput analyses

The  downstream  RDF  parsers  (data  not  shown)  of  the  QuickNGS  Cancer pipeline
(Crispatzu, Kulkarni et al.) enable us to evaluate the performance of certain NGS tools with
differing  runtime parameters.  Mentioned parsers  write  a  RDF log  file  with  job  name (
gen:<SAMPLE_ID>_<analysisDate> ),  linked  to  sample  name  (  gen:produces )  and
software  meta-information  (Figure  6.16).  Through  the  calculation  of  the  average  or
maximal runtime, one can then avoid possible downtimes or premature aborts of pipeline
steps.
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Figure 6.16: Job model which elucidates that one job can produce multiple analyses which in turn can be
linked to the 'PATIENT_ID' and its molecular and clinical  information.  The job node itself  can further be
annotated with runtime parameters and meta-information of used NGS tools.
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Table S6.1: Currently used terms in our models and proposed replacements for the near future. Ontology
matches were investigated using BioPortal (Noy et al. 2009).
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7. Discussion

Within this thesis, I presented a novel hands-on approach for integrative analysis of high-
throughput  data  sets.  The  newly  developed  tools  which  enable  scientists  to  answer
sophisticated questions across multiple data types in form of queries to a Semantic Web
server  (without  the need to handle dozens of Excel  sheets)  were applied to  lymphoid
leukemia data sets of T-PLL and CLL. Upstream of this framework lies a NGS platform for
semi-automated  analysis  of  cancer  genomics  data.  An  additional  plug-in  converts  the
output into RDF. Downstream of the semantic framework, functional data was combined as
a contribution to subsequent publications.

7.1 Semi-automated cancer genomics pipeline enables rapid data processing and
delivers semantic output for integrative analyses

Within  the  first  publication  (Crispatzu,  Kulkarni  et  al.),  we  introduced  a  novel  semi-
automated  pipeline  for  the  analysis  of  cancer  genomics  data  ranging  from  DNA
sequencing data as whole-genome, whole-exome and target capture- or amplicon-based
sequencing to RNA-Seq in mice and humans. It allows the identification of basic genetic
(not epigenetic thus far) aberrations found in cancer genomes, such as single or multiple
nucleotide  variants,  structural  variations,  copy-number  aberrations,  as  well  as  the
identification of differential expression and exon usage or fusion transcripts in dependence
with important parameters as tumor ploidy and specimen purity (pre-set or automatically
inferred).  The  pipeline  is  embedded  in  the  MySQL-  and  HPC  (high  performance
computing)-based framework QuickNGS (Wagle et al. 2015) with an easy-to-use graphical
front-end.  For  the  integrative,  downstream  analyses  presented  in  the  other  three
publications (Schrader, Crispatzu et al.; Warner, Oberbeck, Schrader et al.; Crispatzu et al.
2016), I further used a plug-in in form of multiple parser and add-on tools to convert the
pipeline results into RDF. 
Within Schrader, Crispatzu et al. and a previous version of  QuickNGS Cancer, we used
ExomeDepth (Plagnol et al. 2012) to call somatic copy-number aberrations, and Tophat-
Fusion (Kim  et  al.  2011)  to  detect  fusion  transcripts  in  T-PLL.  Both  tools  have  been
recently shown to perform generally adverse (Nam et al. 2016; Liu et al. 2016) compared
to e.g. EXCAVATOR2 (D'Aurizio et al. 2016) and Jaffa (Davidson et al. 2015) respectively.
They were therefore replaced with the mentioned, superior programs and the data within
Schrader, Crispatzu et al. was re-evalulated with SNP array analysis and  STAR-Fusion
(Dobin et al. 2012) / Jaffa respectively. This analysis confirmed our results in key findings.
Since the submitted version only marks a ground stone, further modifications according to
novel benchmarks and algorithms are necessary. This includes foremost sequential and
comparitive sample analysis, as well as detection of significantly mutated genes (MuSiC
(Dees et al. 2012), MutSigCV (Lawrence et al. 2013)), mutation hotspots, contexts and co-
occurences  in  the  light  of  clonal  evolution  and  treatment  response.  Generally  more
sophisticated, publication-ready graphical representations, e.g. of structural variations with
Circos (Krzywinski et al. 2009), are needed as well. More advanced add-ons may then
include  detection  of  viral  transcripts  or  integration  sites  (Li  et  al.  2015),  as  well  as
measurements of chromothripsis and microsatellite instability (Niu et al. 2014) or inference
of possible drug targets.
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7.2  Integrative  framework  provides  means  to  describe  the  ATM/TCL1-centered
genomic landscape of T-PLL

We presented the most recent, most diverse (in terms of proto-oncogene status and data
sets) and largest reported cohort of T-PLL, including sequential samples. The integrative
capabilities of the semantic framework really came to fruition here, as it was applied to
possible  dosage  effects  (6.7),  second  hit  analysis  (6.11),  clonal  evolution  (6.13)  and
correlation  analysis  with  molecular  and  clinical  parameters  (6.3).  In  terms  of  gene
expression  profiling,  compared  to  normal  CD3+  T-cells,  we  found  overexpression  of
TCL1A,  MTCP1 or  TCL1B in the majority of cases possibly leading to further aberrant
expression of negative TCR regulatory genes like SLAMF6 or CTLA4, which seem also to
be integral in its clonal evolution in patients and murine models mimicking T-PLL. The
TP53-dependent arrest mediator RPRM (reprimo) was further among the most highly and
variable  expressed genes across  T-PLL.  In  prostate  cancer  (Ellinger  et  al.  2008)  and
gastric cancer (Bernal et al. 2008) RPRM is hypermethylated, in vitro it is highly expressed
in  response  to  DNA damage,  and  in  vivo it  inhibits  tumorigenesis  (Ooki  et  al.  2013).
However its exact function in the dysfunctional DDR of T-PLL has to be further evaluated.
The lack of much overlap between deregulated and aberrantly lost / amplified genes in T-
PLL and Lckpr-hTCL1A-tg mice model surprised us. This may be explained by the complex
interplay  of  deregulated  factors  like  TCL1A, ATM or  JAK3,  which  were  not  initially
perturbed  in  Lckpr-hTCL1A-tg mice.  TCL1A upregulation  itself  therefore  may  not  be
enough  to  induce  genomic  instability,  but  rather  the  consequence  of  the  structural
rearrangements leading to or descending from the inv(14). This phenotypic hallmark of T-
PLL, likely due to failed maintenance of telomeres and aberrant DSB-induced recruitment
and diminished activation of  ATM and its substrates is demonstrated by complex losses
and gains. These cumulative copy-number events in T-PLL are ranking above CLL and just
below  solid  tumors  and  ALCL  (Anaplastic  large  cell  lymphoma)  when  compared  by
frequencies. Screening for somatic copy-number aberrations in SNP arrays and whole-
exome sequencing data confirmed the deletion of chromosome 11q (52%), affecting ATM
and the  TCL1A regulator  miR-34b/c, and the isochromosome 8 or amplification of  8q.
However we were able, through FDR correction and FISH confirmation, to dispute MYC as
being the most frequently gained gene on chromosome 8. Rather the argonaute 2 protein,
AGO2,  was  amplified  in  the  majority  of  cases.  Other  argonaute  family  members
AGO1/3/4, which are located on other chromosomes, were affected by high-frequent UPD
(uniparental disomy). Their dysfunction in miR-processing and nuclease activity (only of
AGO2) within T-PLL, as well as how mutations of miR-484 (mutated in n=1/3 WGS cases)
may affect  TCL1A and thus T-PLL tumorigenesis, may be investigated in the future by
means  of  comparative  microRNA-sequencing  between  normal  T-cells,  ampl(AGO2)  or
UPD(AGO1/2/4)  cases and biallelic,  heterozygotic  T-PLLs.  Within  melanoma,  AGO2 is
dowregulated  only  at  the  protein  level,  not  as  mRNA (Völler  et  al.  2013),  while  in
hepatocellular carcinoma  miR-99a is overexpressed which in turn downregulates  AGO2
(Zhang  et  al.  2014).  Oncogenic  interactions  with  KRAS leading  to  decreased  gene-
silencing have also been observed (Shankar et al. 2016).
At the mutational level, we observed clonally dominant  ATM mutations in the majority of
cases (66%), due to loss of the remaining functional allele or UPD of the mutated allele.
The residual cases contain mutations of other DDR or MMR genes, such as ERCC6L2 or
MSH3,  epigenetic regulators (e.g.  EZH2) or mostly mutually exclusive, subclonal  JAK3
(15.38%) and STAT5B (53.84%) SNVs potentially leading towards late-stage TCR/cytokine
independence. This is in contrast to T-LGL (T-cell large granular lymphocytic leukemia)
patients, the mature T-cell leukemia T-PLL is most often misdiagnosed as, where STAT5B
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is only mutated in a low fraction (~2%), while the orthologue STAT3 with its SH domain
(exon 21) is being predominantly mutated (28% to 40%; Koskela et al. 2012).
T-PLL samples further exhibit shorter telomeres than any other T-cell lymphoma/leukemia
investigated,  as  well  as  CLL,  where  shorter  telomeres  have  been  previously  only
described in T-cells of ZAP70+/CD38+ subtypes (Röth et al. 2008). Whether this is cause
or effect of genomic instability is unclear, however reduced telomere length correlated with
variant allele fraction (VAF) of ATM mutations, as well as ATM copy-number decrease.
ATM mutations, while being the most common denominator in T-PLL besides TCL1A, are
virtually absent in T-LGL, as are other DDR gene defects. Globally, we barely see any
clonal mutations in T-PLL besides ATM, but an excessive amount of G>T & C>A mutations
is observed. After filtering for potential OxoG (8-Oxoguanine) bias during sample
preparation (Costello et al. 2013), we propose that this may be due to unrepaired DNA
damage  induced  by  functional  ATM deficiencies  in  interplay  with  TCL1A-augmented
mitochondrial ROS biogenesis (Prinz et al. 2015). The mutational signature most closely
resembles the ones of ageing and smoking (Figure 7.1), hinting towards a synergy of non-
predisposed accumulations and exterior influences or oxidative damage. ROS may further
function  as  an  activating  molecule  in  TCR signaling  or  vice  versa  (Sena et  al.  2013;
Williams & Kwon 2004). Since our synthetic lethality approach, i.e. DNA-PKcs inhibitors,
failed  to  induce  apoptosis  in  T-PLL,  probably  due  to  residual  function  of  ATM and
incomplete compensation by stand-in’s (i.e.  ATR), we explored alternative approaches to
reconstitute sufficient DDR response and targeting of epigenetic aberrations in T-PLL. We
tested an unique customized HDAC-inhibiting / DSB-inducing agent that has shown such
promising results in primary T-PLL cells, mice transplanted with JAK1-initiated and CD2-
hMTCP1p13-tg mice  cells,  that  a  clinical  trial  has  already  been  commenced
(NCT02576496).  Possible synergies with telomerase inhibitors (as in Röth et al.  2007)
were not investigated. The exact mechanism, which gene signature (or perhaps TP53
itself) is (de)methylated or (de)acetylated before and after , can be elucidated
by comparative  methylome profiling  and chromatin  immunoprecipitation  of  treated and
non-treated patients in the near future. We can then further investigate the proposed link
between  JAK3 mutations  in  T-PLL (n=3/13)  and  its  possible  phosphorylation  of  EZH2
(n=2/13 mutated in T-PLL, with second hit deletion), leading to its loss of methyltransferase
activity (tumor suppressive) and switching to transcription co-activation (oncogenic) (Yan
et al. 2016). EZH2 can further be phosphorylated by AKT (TCL1 family interaction partner)
and thus its H3K27me3 enzyme activity be inhibited (Cha et al. 2005).
Since  lesions  in  ATM and  STAT5B are  co-occuring,  while  JAK3 is  mostly  exclusive,
inhibitors may be (only) a complementary approach to these parallel aberrations. Within
three distinct fusion detection programs, we further observed a multitude of JAK-affected
genomic  fusions:  TRIM22:JAK2 (n=1/15)  in  all  three  (Tophat-Fusion,  STAR-Fusion &
Jaffa), as well as JAK1:PTMA (n=1/15) in only Jaffa. We are in the process of validating
these by Sanger sequencing and induction experiments.
In summary, we were able to formulate a first integrative model of step-wise T-PLL
leukemogenesis  (Figure  7.2)  providing a  concrete  basis  for  refined  diagnostics,
prognostication, and therapeutic concepts in this problematic disease. 
When re-considering the sampling of patient data over the last 4 years due to recent drop
in costs and availability in standard analysis tools, data like SNP arrays, mRNA arrays and
whole-genome sequencing seem now obsolete for our cohort. Somatic copy-number
aberrations and structural variation could have been easily called on a larger whole-exome
cohort. Non-coding or regulatory mutations showed a heterogeneous pattern that could
have been more precisely determined by e.g. miRNA-sequencing or methylome arrays of
a medium-sized cohort. While gene expression profiling could have been conducted via
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RNA-Seq, further increasing sample size to study differential splicing and fusion detection.
It is therefore mandatory to expand our model with novel NGS data, preferably with many
sequential samples.

Figure 7.1: Mutational signature of T-PLL (average over 13 paired WES) mostly resembles “Signature 1B”
(60.7%;  Age;  among  them CLL)  and  “Signature  4”  (12.1%;  Smoking;  especially  in  solid  tumors).  from
Alexandrov et al. 2013.
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Figure 7.2: Summarized clonality analysis of 3

sequential T-PLL patient pairs. Variant allele fractions

(VAFs) are depicted on both axis. Time point 1 (t1)

on the x-axis. Time point 2 (t2) on the y-axis. Color of

nodes symbolizes degree of up- (red) or down-

regulation (blue) of the respective gene between t2

and t1. As sample pair at bottom has no

corresponding microarrays, color gradient is absent.

Size of the „bubbles“ corresponds to copy-number

(CN=1=small; CN=3=large). All values were retrieved

from and integrated with the semantic framework.

Fitted histograms on tops depict VAFs and show that

besides ATM and JAK3 (highlighted in orange font)

barely any genes experience clonal shifts.
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7.3  T-PLL  most  closely  resembles  central  memory  T-cells  as  shown  through  a
combination of immunophenotyping, GEP and mouse models

To determine which kind of T-cells T-PLL cells most closely resemble and which functional
properties  are  retained,  we  used  the  same  gene  expression  cohort  as  in  Schrader,
Crispatzu et al. and combined it with immunophenotyping data through our Semantic Web
approach. Both ways of stratification revealed phenotypes of different T-cell differentiation
stages.  The  two  most  common immunophenotypes,  by  manual  gating  and  automatic,
agglomerative  clustering,  seem  to  be  a  memory  phenotype  (57%  of  cases;  with
predominance of a CD45RO+,  CCR7+ central  memory (CM) pattern)  and a transitional
double-positive (CD45+CD45RA+) effector phenotype (30%). 
In  T-LGL (chronic  lympho-proliferation  of  CD3+CD57+,  activated  effector  cytotoxic  T-
lymphocytes) on contrary, a dominant cytotoxic CD8 phenotype is more prevalent than the
CD4  one  and  is  subdivided  by  different  TCRs  into  subtypes  CD8+/TCRαβ+,
CD4+/TCRαβ+ and TCRγδ+. It is likely that all are chronically stimulated by different auto
antigens leading to a survival advantage compared to other T-cells within the patient.
Chronic antigen stimulation is thought to be involved due to dermatitis in the development
of  CTCL (cutaneous T-cell  lymphoma)  as  well.  Malignant  T-cells  from leukemic  CTCL
patients were characterized also as CM (Campbell et al. 2010).
We further observed a reduction of TCR repertoire in T-PLL when compared to CD3+ pan
T-cells,  suggesting  that  after  transformation  only  especially  advantageous  chains  are
selected  and  the  repertoire  is  rendered  monoclonal.  It  is  unknown  whether  this
monoclonality is static (dominant clone persists) or dynamic (dominant clone is overturned,
but monoclonality persists) like in T-LGL (Clemente et al. 2013). T-ALL (precursor T acute
lymphoblastic  leukemia/lymphoma)  RNA-Seq  data  is  deposited  within  the  ICGC
(International  Cancer  Genome  Consortium)  repository,  but  access  is  so  far  further
restricted  by  the  submitter.  Once  obtained,  we  can  compare  the  reconstructed  TCR
repertoire of naïve lymphocytes from very young patients with our antigen-experienced T-
PLLs.

T-PLL cells  may  still  harbor  stem-cell  like  properties  representing  early  differentiated
progenitors with self-renewal capacity (Stemberger et al. 2009; Mueller et al. 2013), even
though they do not behave like physiologic CM T-cells upon repetitive antigen stimulation,
i.e. CD95 (Fas receptor) is downregulated and cannot react to apoptotic signals. Thus CM-
like phenotype of T-PLL cells may represent the differentiation stage where oncogenic
forces finally overthrow the homeostatic survival control,  rather than T-PLL cells arising
from CM cells.

Herling et al. 2008 previously elucidated that TCR-expressing T-PLL with higher  TCL1A
levels  show  a  more  robust  growth  in  vitro  over  those  cases  with  low  TCL1A levels
(associated with reduced TCR response). Here, we postulated  TCL1A as a sensitizer to
TCR  signals  by  reducing  the  TCR  activation  threshold  for  self-antigens  to  be  more
efficiently ‘utilized'. Thus driving transition of affected naïve T-cells into an expanding T-
memory pool as the origin of T-PLL outgrowth. This may only be required in early stages of
leukemia development. Sequential analysis is then not fruitful comparing early and late
samples in the clinical course, but rather between pre-clinical samples and those after
leukemogenesis onset.
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7.4 Semantic database enables exploratory survival analyses and meta-analyses (in
lymphoid leukemias) to obtain novel aberration markers

An  ideal  gene-expression  profiling  protocol,  including  batch  correction  and  admixture
modeling, as well as classification algorithms, was constructed. We also presented a novel
exploratory survival algorithm, with a cut-off still somewhat arbitrary and thus a need for
more sophisticated learning algorithm for stratification limit. Still we were able to obtain
reproducible gene signatures (CLL: GPD1L, TNFSF12, JHDM1D, TBCD, AARS2, MTG1 &
TNIP ; T-PLL:  RAB25 &  KIAA1211L ) linked to adverse prognosis in especially indolent
and aggressive patient samples. These can be complementary to routinely tested markers
(similar  to Kienle et  al.  2010),  e.g.  in  CLL those  from clinical  chemistry,  such  as  β2
microglobulin (Gentile et al. 2009) or from immunophenotyping, such as ZAP70 (Wiestner
et al. 2003), and in T-PLL TCL1A and TCR expression (Herling et al. 2008) and relocation
status, as well as  ATM expression and copy-number status (see Schrader, Crispatzu et.
al).
We further exemplified the machine-learning capabilities of R with input from the semantic
framework.  By  means  of  SVM  (support  vector  machines)  we  observed  that  ATM
unmutated T-PLL samples are more likely to be biallelic for ATM and AGO2. Whereas in
CLL, we found that the most informative variable for positive TCL1A status is unmutated
IGHV, followed just then by TCL1B and previously calculated gene expression signature
genes using decision trees.

7.5 Refinement of TCL1A's role in T-PLL

For the first time virtually every T-PLL case (95.2%) fulfilling the WHO classification criteria
(Herling  et  al.  2004),  demonstrated  a  genomic  rearrangement  involving  a  TCL1 gene
and/or its overexpression (Schrader, Crispatzu et al. Fig. S2d). TCL1A augments signals
from the most central growth receptor of T-cells, the TCR (Herling et al. 2008) perturbing a
protective T-cell homeostasis (Newrzela et al. 2008), as confirmed in TCL1A-tg murine T-
PLL. Only one out of 8 cases classified as TCL1A/t(X;14) double-negative (by protein and
cytogenetics/WES) showed strictly no inv(14). Four of these cases, carrying GEPs, were
associated  with  a  consistent  average  upregulation  of  TCL1B (fc=1.41;  p=0.0045)
compared to CD3+ pan T-cells, but revealed gene expression profiles (GEPs) resembling
those of ‘conventional’ TCL1A- or MTCP1-positive cases. TCL6 is only slightly upregulated
in T-PLL compared to normal CD3+ T-cells (FC=1.61, p=0.0172; q=0.0732), suggesting
only a passenger role. Via RNA-Seq, we observed significantly upregulation of  TUNAR
(Tcl1  Upstream  Neuron-Associated  lincRNA)  which  is  evolutionary  conserved  in
vertebrates, as in mouse embryonic stem cells (mESCs) it was shown to be essential for
pluripotency maintenance, while in zebrafish knockdown caused neurological dysfunction
(Lin  et  al.  2014).  Its  role  in  T-PLL  (and  other  lymphoid  leukemias)  remains  to  be
determined, it however is only overexpressed in TCL1A+ T-PLLs (Figure 7.3).

Since,  we  observed  an  increase  of  TCL1A expression  comparing  early  (FC=4.24;
p=0.0877) and late follow-up T-PLL (FC=11.3; p=0.0258) samples vs. normal CD3+ T-
cells, and a slight increase in the number of inv(14) breakpoints in WES, we postulate that
TCL1A may be up-modulated with tumor progression as it is still  required to uphold its
genomic  instability  program  (aneuploidy  and  telomere  attrition)  and  growth-promoting
effects  in  cooperation  with,  likely  TCL1B/TCL1A/MTCP1-declining  activity  of,  TCR
(Warner, Oberbeck, Schrader et al.).
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Figure 7.3: FPKM (Fragments Per Kilobase Of Exon Per Million Fragments Mapped) values in 15 RNA-Seq
T-PLL samples characterizing TCL1 gene family expression. TCL1B, as well as novel TUNAR, seem to be
co-expressed  with  TCL1A.  Whereas  MTCP1 is  only  highly  expressed  in  MTCP1A+  cases,  including
TCL1A+/MTCP1+ double-positive cases.

To elucidate the molecular mechanisms central to TCL1A- T-PLLs, we tested which genes
are differentially expressed when comparing T-PLL of different TCL1A protein expression
levels. Therefore, we divided our samples into three distinct groups:  TCL1A+ with high
expression,  TCL1A- with  very  little  (should  account  for  ~20% of  patients)  and  TCL1A
intermediate or “dim” which lie between them and for which FACS analysis is ambiguous.
There was a considerable overlap (229/412 probes; e.g.  CTLA4 and  SLAMF6,  but not
MYC,  ATM,  RPRM and  TNF) of differentially expressed genes between  TCL1A positive
cases  and  those  6  carrying  an  MTCP1-activating  t(X;14),  against  normal  T-cells,
respectively.  This observation implicates a proliferative impact of  constitutive MTCP1p13

comparable to TCL1A.
Similar to case studies 6.8 and 6.9, we can query for deregulated TCL1 family members in
RDF-converted GEP results and observe potential patterns.

While investigating the expression of MTCP1, we found a problem in nomenclatura. CMC4
(Cx9C motif-containing  protein  4;  URL:  http://www.uniprot.org/uniprot/P56277  )  is  also
called  MTCP1B (MTCP1NB;  p8;  p8MTCP1)  with  two  transcripts  (both  coding).  While
MTCP1 (  URL:  http://www.uniprot.org/uniprot/P56278  )  is  equivalent  to  MTCP1A (13;
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p13MTCP1) with five transcripts (two of which are coding). Both have the same promoter,
hence UniProt  and GeneCards elucidates that  they "...  could be considered the same
gene".  In  contrast  to  the  outdated  TNG1 and  TNG2,  who were  merged to  TCL6,  the
MTCP1 gene is split into two isoforms.

Only  a  few genes (mostly  unannotated  or  pseudogenes) show exclusive  gains  in  the
TCL1A+  subgroup  and  exclusive  losses  in  the  TCL1A-  ones  or  vice  versa.TCL1A is
neither significantly amplified or lost in all entities.

Interestingly, the 8 cases classified as  TCL1A/MTCP1-negative (by mRNA and protein)
showed a  detection  of  an  inv(14)  in  7/8  cases  including  classical  cytogenetics.  Since
further inversion breakpoints in the TCRαδ and TCL1A locus within exonic regions can be
observed in 19/36 T-PLL WES cases (across all  TCL1A expression statuses, including
even  TCL1A-  cases),  we propose that  the  inv(14)  seems to  be  a  necessary,  but  not
sufficient condition for TCL1A activation in T-PLL. The t(14;14) is only present in one case
and is called by delly not as a interchromosomal translocation, but rather a deletion of a
large segment spanning from 14q11.2 and 14q32 (of one chr.  14) and a similar sized
tandem duplication within the other chr. 14.
Since the number of supporting reads in WGS (including non-coding regions) and WES
ranges  from  10  to  20 and  2  to  34  respectively,  as  well  as  the  maximum  of  other
inversions/translocations being up to ~100, we conclude that inv(14)/t(14;14) may be only
present in multiple subclones (max ~10-35%). Different breakpoints may be due to (early)
incorrect DDR of the founder clone within cell replication, while the subclonal status may
be sufficient to drive tumorigenesis.
When screening for fusion transcripts within our RNA-Seq samples (n=15), one out of two
TCL1A- (protein) cases exhibited a fusion-transcript of  TCL1A-TRAJ49 (in middle of the
last  TCL1A exon).  The breakpoint can be seen in coverage drop when visualizing the
WES and RNA-Seq sample and was confirmed with manually designed primers (Sanger).
Interestingly the mRNA level of TCL1A is up-regulated compared to normal CD3+ T-cells
(in GEP, as well as qRT-PCR), but seems to be degraded later on resulting in negative
TCL1A protein status as measured by FACS.
The same can probably be observed in the other WES TCL1A- cases (with breakpoint in
last TCL1A exon, but not RNA-sequenced). In P202_ (TCL1A- patient), the inversion likely
results in the fusion-transcripts TCL1A-TRAJ47 (breakpoint right at start of  TRAJ47) and
TCL1A-TRAV38-2DV9 (breakpoint right after the end of  TRAV38-2DV9), as well as the
mRNA probe still being highly expressed. P1_/P1387_ also has breakpoints within the last
TCL1A  exon  likely  resulting  in  fusion-transcripts  TCL1A-TRAV26-2 (breakpoint  after
TRAV26-2) and TCL1A-TRAJ10 (breakpoint in middle of TRAJ10).
The  other TCL1A-  case  in  RNA-seq  (P1344_1347_)  seems to  have  no  breakpoint  in
TCL1A, but its mRNA is down-regulated in contrast to P1323_72909_.
We correlated (with Spearman) the expression of markers and breakpoint distance to 
TCL1A (also between each other) by queries to our semantic database. The “consensus” 
breakpoint was first averaged by mean and the distance was calculated to the TCL1A 
CDS (resulting in a clonal estimate). No correlation trend between breakpoint distance to 
TCL1A and MTCP1, TCL1B or TCL6 expression was observed. However, there was a 
high mutual information (MI=0.502529; p'<0.002 ; 99.8%-Quantile=0.4667893 (with 
sampling)) between average breakpoint distance to TCL1A and TCL1A mRNA e 
xpression. A pattern can be specifically seen in those cases with breakpoints within and 
right upstream of the last TCL1A exon.
To observe the possible  consequences of  ‘enhancer  hijacking’,  as seen also in  T-ALL
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(inversion  in  chr.  14  also  involving  the  TCRαδ locus),  different  B-cell  lymphomas
(translocations involving the IGHV locus) or just recently in medulloblastoma (translocation
involving GF1; Northcott et al. 2014), we tried to correlate the number of juxtapositioned
enhancer elements to the TCL1A locus with its respective expression value.
We  therefore  introduced  different  enhancer  coordinates  found  within  the  FANTOM5
(FANTOM Consortium and the RIKEN PMI and CLST (DGT)) Phase2.0 project.

We further binned the juxtapositioned regions into 0.1 Mbp and counted the number of
enhancers within these bins (taken from the FANTOM5 Phase2.0). Since P1331_ does not
differ in counts within the last bin before TCL1A from P1323_72909_ (TCL1A- case) and
has  the  same  TCL1A breakpoint  as  P1323_72909_,  we  conclude that  the  breakpoint
within the TCRαδ locus seems to be of key role here. Likely introducing an in-frame fusion-
transcript of TCL1A-TRAJ44. Unfortunately this case has not been RNA-sequenced, so we
have to design new primers for Sanger validation. 
So  a  breakpoint  in  the  last  TCL1A exon  seems  to  be  necessary  (P202_,
P1323_72909_/P1346_,  P1_/P1387_),  but  not  sufficient  condition  (P1331_)  for  TCL1A
silencing.
Translocation breakpoints in every of our 4 MTCP1+ WES cases, suggest that t(X;14) is a
necessary and sufficient condition for MTCP1 activation in T-PLL. Two out of 4 MTCP1+
cases further are characterized as TCL1A+, while the residual two are TCL1A-, suggesting
no mutual exclusivity.
Since TCL1A has no targetable binding pockets and is thus hard to design an inhibitor for,
disruption of its (rearranged TCR) enhancer complexes in T-PLL may be a potential target,
as recently done by inhibiting  BRD4 and thus  MYC in multiple melanomas (Lovén et al.
2013).

7.6 Refinement of TCL1A's role in CLL

To investigate the role of the TCL1 proto-oncogene family in between treatment of CLL, we
compared  58  FCR  (Fludarabine,  Cyclophosphamide,  Rituximab)-treated  patients  on
Illumina HumanHT-12 v4.0 Expression BeadChips with available PFS data and different
TCL1A statuses  (by  mRNA  and  immunohistochemistry  (IHC))  through  semantic
integration.
Besides a  linear  gene-by-gene fit  for  each comparion's  p-values,  we further  used the
number  of  significantly  deregulated  probes  (p-value<0.05  and  q-value<0.1)  and  the
TCL1A mRNA fold change itself  as a metric to judge sample grouping. We found that
TCL1A IHC status comparisons perform adverse to the TCL1A mRNA expression high
(n=12)  vs.  low (n=12)  comparison as  it  has  the  most  significantly  deregulated probes
(n=263; |FC|>1.5).  TCL1A is of course one of them (FC=6.18, p-value=5.560424e-08, q-
value=n.s). CLL with IGHV mutated (n=17) vs. unmutated (n=31) returned 114 significantly
deregulated  probes.  TCL1A is  downregulated  (FC=-1.98,  p-value=0.002,  q-
value=2.084989e-03) as well.

PPI graphs and enrichments were calculated with STRINGdb10. As input we used the
corresponding  proteins  of  the  most  significantly  deregulated  probes  in  different  gene
expression  comparisons.  Grouping  of  gene  expression  samples  and  subsequent
differential expression by immunohistochemistry status of TCL1A yielded no significantly
PPI  enrichments.  However  TCL1A mRNA  expression  high  vs.  low  (http://string-
db.org/10/p/55184371)  and  FCR-treated  CLL  with  IGHV mutated  vs.  unmutated
(http://string-db.org/10/p/14054372) did.  The former comparison (n=93 proteins) yielded

http://string-db.org/10/p/14054372
http://string-db.org/10/p/55184371
http://string-db.org/10/p/55184371
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117 PPI (27 more than expected; p-value: 0.004), while the latter (n=86 proteins) returned
107 PPI (19 more than expected: p-value: 0.029). Nodes are colored according to fold
changes  (red=upregulated,  blue=downregulated).  Edges  are  colored  according  to
evidence level.
Grouping by  IGHV mutation status and  TCL1A mRNA expression results in significantly
GO enrichments, including biological processes „leukocyte “ and „lymphocyte activation“.
While IHC status comparisons yielding no significantly KEGG enrichments.

The meta-analysis of fold changes of known TCL1A interactors within different subgroups
suggests regulatory resemblance of IGHV unmutated and TCL1A mRNA high expressing
FCR-treated  CLL  subgroups.  Known  TCL1A interactors  were  extracted  from  the
STRINGdb10 and their highest fold change was visualized in different comparisons (p-
value<0.05; data not shown). Only B4GALT2 is constantly downregulated in all three IHC
comparisons.  Interestingly  both  in  IGHV unmutated  vs.  mutated  and  TCL1A mRNA
expression high vs. low, the  TCL1A protein interactors  L1TD1,  SEPT10,  TCL1B,  XBP1
and ZAP70 are upregulated, while RHOH, HMGXB4 and AKT3 are downregulated.

7.7 Semantic framework summary

The term "semantic framework" is not meant to describe a single program, but rather a
collection  of  Semantic  Web  tools  to  analyse,  convert  and  combine  data  in  the  most
automatically and consistent manner. The different case studies in  Chapter 6 elucidate
this approach and enable the reader to apply mentioned semantic tools to his/her data.
Overall, in contrast to other database schemas (Table 7.1), the Semantic Web approach
made it possible to combine the analyses of such heterogeneous data within all  these
different projects (Schrader, Crispatzu et al.; Warner, Oberbeck, Schrader et al.; Crispatzu
et al. 2016; Crispatzu, Kulkarni et al.). This generated novel hypothesis which were further
functionally validated. It  can further serve as a starting point  in finding context-specific
information in multigene regulatory networks, which can be overlapped and the consensus
can be visualized.

Table 7.1: Illustrative comparison between common database schemas.
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7.8 Semantic framework outlook

One disadvantage of the current models (described in  Chapter 6) remains the lack of
generality  to  improve  distributed  querying  and  overlaps  with  foreign  data  sources.
However,  the more (diverse) data is integrated,  the more the underlying vocabulary is
tested and expanded through new terms of established ontologies.
As  the  number  of  triples  increases,  it  may  further  be  mandatory  to  set  up  more
sophisticated  server  solutions.  Triples  stored  in  RDF  can  be  converted  and  further
processed into the Hadoop framework, thus allowing large-scale computations on cloud-
computing architectures like Amazon Web Servers (AWS). Our current solution is running
a virtual machine hosting a Semantic Web server called from HPC resources (all from our
local computing center). Statistical programming can also be upscaled by using Big Data-
tailored products like R Enterprise.
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Abstract

Within  this  thesis  I  developed  a  new  approach  for  the  analysis  and  integration  of
heterogeneous leukemic data sets applicable to any high-throughput analysis including
basic research. All layers are stored in a semantic graph which facilitates modifications by
just  adding  edges  (relationships/attributes)  and  nodes  (values/results)  as  well  as
calculating  biological  consensus  and  clinical  correlation.  The  front-end  is  accessible
through a GUI (graphical user interface) on a Java-based Semantic Web server. I used
this  framework  to  describe  the  genomic  landscape  of  T-PLL  (T-cell  prolymphocytic
leukemia), which is a rare (~0.6/million) mature T-cell malignancy with aggressive clinical
course, notorious treatment resistance, and generally low overall survival.
We have conducted gene expression and copy-number profiling as well as NGS (next-
generation sequencing) analyses on a cohort comprising 94 T-PLL cases.  TCL1A (T-cell
leukemia/lymphoma  1A)  overexpression  and  ATM (Ataxia  Telangiectasia  Mutated)
impairment  represent  central  hallmarks  of  T-PLL,  predictive  for  patient  survival,  T-cell
function and proper DNA damage responses. We identified new chromosomal lesions,
including a gain of  AGO2 (Argonaute 2, RISC Catalytic Component; 57.14% of cases),
which is decisive for the chromosome 8q lesion. While we found significant enrichments of
truncating  mutations  in  ATM mut/no  del  (p=0.01365),  as  well  as  FAT (FAT  Atypical
Cadherin)  domain  mutations  in  ATM mut/del  (p=0.01156),  JAK3 (Janus  Kinase  3)
mut/ATM del  cases  may  represent  another  tumor  lineage.  Using  whole-transcriptome
sequencing, we identified novel structural variants affecting chromosome 14 that lead to
the expression of a TCL1A-TCR (T-cell receptor) fusion transcript and a likely degradated
TCL1A protein. Two clustering approaches of normal T-cell  subsets vs. leukemia gene
expression profiles,  as well  as immunophenotyping-based agglomerative clustering and
TCR repertoire reconstruction further revealed a restricted, memory-like T-cell phenotype.
This is to date the most comprehensive, multi-level, integrative study on T-PLL and it led to
an evolutionary disease model and a histone deacetylase-inhibiting / double strand break-
inducing treatment that performs better than the current standard of chemoimmunotherapy
in preclinical testing.
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Zusammenfassung

In  dieser  Dissertation  habe  ich  eine  neue  Herangehensweise  entwickelt,  welche  die
Analyse  und  Integration  von  heterogenen  Leukämiedatensätzen  erleichtert,  sowie
anwendbar  auf  eine  Vielzahl  hochdurchsatzbasierter  Grundlagenexperimente  ist.  Alle
Datenschichten  werden  in  einem  semantischem  Graphen  gespeichert,  was  wiederum
Änderungen in Form des Hinzufügens von Kanten (Beziehungen/Attribute) und Knoten
(Werte/Resultate)  möglich  macht,  sowie  generell  das  Errechnen  von  biologischem
Konsens und klinischer Korrelationen. Das System ist erreichbar durch eine graphische
Benutzeroberfläche  auf  einem  Java-basiertem  Semantic  Web-Server.  Ich  nutzte  das
Rahmenprogramm weiterhin zum Beschreiben der genomischen Landschaft der T-PLL (T-
Zell  prolymphozytische  Leukämie),  einer  seltenen (~0.6/Millionen)  Erkrankung  reifer  T-
Zellen mit aggressivem klinischem Verlauf, notorischer Behandlungsresistenz und generell
niedriger Überlebensrate.
Wir erstellten Genexpressions- und Kopiernummer-Profile,  sowie NGS (next-generation
sequencing)  innerhalb  einer  Kohorte  von  94  T-PLL  Patienten.  TCL1A (T-cell
leukemia/lymphoma  1A)  Überexpression  und  ATM (Ataxia  Telangiectasia  Mutated)
Beeinträchtigung  repräsentieren  zentrale  Charakteristiken  der  T-PLL,  prädiktiv  für  das
Überleben des Patienten, T-Zell-Funktion und reibungsloses Antworten auf DNA-Schaden.
Wir  haben  neue  chromosomale  Läsionen  identifiziert,  einschließlich  einer
Kopienzahlamplifikation in  AGO2 (Argonaute 2, RISC Catalytic Component; 57.14% der
Fälle),  welches maßgeblich  für  die  Läsion  in  Chromosom 8q  ist.  Weil  wir  signifikante
Anreicherungen  von  trunkierenden  ATM Mutationen  in  ATM mutiert/ohne  Deletion
(p=0.01365),  sowie  FAT (FAT  Atypical  Cadherin)-Domänen-Mutationen  in  ATM
mutiert/deletiert  (p=0.01156)  fanden,  könnte  es  sich  bei  JAK3 (Janus  Kinase  3)
mutierten/ATM deletierten Fällen um Fälle  einer  separaten Tumor-Enwicklungslaufbahn
handeln. Mithilfe von Transkriptom-Sequenzierung identifizierten wir neuartige strukturelle
Variationen, die Chromosom 14 beeinflussen und zur Expression eines TCL1A-TCR (T-
Zell-Rezeptor) Fusionstranskriptes führen, welches wahrscheinlich in einem degradiertem
TCL1A  Protein  resultiert.  Zwei  Gruppierungsansätze  zwischen  den  Genexpressions-
Profilen  von  normalen  T-Zellen  und  leukämischen  Fällen,  sowie
Immunophenotypisierungs-basiertem  agglomerativen  Gruppierungen  und  der
Rekonstruktion des TCR-Repertoire veranschaulichten einen restriktiven, memory-like T-
Zell Phenotyp. Dies ist damit die bis dato umfangreichste und integrativste Studie der T-
PLL, durch welche ein evolutionäres Krankheitsmodell etabliert werden konnte und eine
Histon-Deacetylase-hemmende /  Doppelstrangbrüche-induzierende  Behandlung,  die
besser  in  prä-klinischen  Tests  abschneidet  als  der  momentane  Standard  der
Chemoimmuntherapie.
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