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ZUSAMMENFASSUNG 

Eine verringerte Aktivität des evolutionär hochkonservierten Insulin/Insulin-ähnlichem 

Wachstumsfaktor-Signalweges (IIS) verlängert die Lebenszeit von Nematoden, 

Fruchtfliegen und Mäusen. In Nematoden und Fruchtfliegen ist der Forkhead Box-O 

(FOXO) Transkriptionsfaktor notwendig für den lebensverlängernden Effekt durch 

verringerten IIS, und auch erhöhte FOXO Aktivität alleine verlängert das Leben. FOXO 

Transkriptionsfaktoren sind jedoch nicht nur am Alterungsprozess beteiligt, sondern auch 

an der Entwicklung und dem Stoffwechsel eines Organismus. Daher ist es essentiell zu 

verstehen, durch welche molekularen Mechanismen der FOXO Transkriptionsfaktor diese 

Prozesse steuert. 

 

In meiner Doktorarbeit habe ich mithilfe der Fruchtfliege Drosophila melanogaster 

untersucht, wie die Aktivität von FOXO reguliert wird und welche unterschiedlichen 

Funktionen dFOXO hat. Ich habe neue dfoxo-null Mutanten generiert, mit denen ich 

unterschiedliche Modifikationen von dfoxo in das Genom inserieren konnte. Insertion des 

Wildtyp-dFOXOs oder von dFOXO mit FLAG-Tag am C-Terminus hatte keinen Effekt 

auf die Funktion von dFOXO und wurde verwendet, um die in vivo Funktion von dFOXO 

zu charakterisieren. Außerdem habe ich dfoxo Allele generiert, die das Binden von 

dFOXO an DNA in vivo verhindern. Diese Mutanten erlaubten die Separierung von 

dFOXO Funktionen, die abhängig (Fertilität, Resistenz gegen oxidativen Stress und 

Lebensspanne) und unabhängig (Gewicht und Lipid-Verbrauch während Hungerperioden) 

von der Interaktion von dFOXO mit der DNA sind. Unsere Ergebnisse weisen darauf hin, 

dass dFOXO die Genexpression und Autophagie in Hungerperioden unabhängig von der 

Fähigkeit an DNA zu binden moduliert, vermutlich durch die Interaktion mit einem 

anderen Transkriptionsfaktor. 

 

Zudem habe ich dfoxo Mutanten erzeugt, die Acetylierung an einem konservierten Lysin-

Rest imitieren oder verhindern. Unsere Experimente lassen vermuten, dass diese 

posttranslationalen Modifikationen auch den Phosphorylierungs-Status von dFOXO 

beeinflussen. Außerdem scheint dFOXO-Acetylierung eine wichtige Rolle  in der 

Antwort auf den Entzug von Aminosäuren zu spielen, jedoch müssen weitere 

Experimente den verantwortlichen Mechanismus identifizieren. 
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Zusammenfassend beschreibt diese Doktorarbeit ein neues Genome Editing-Werkzeug 

zur Modifikation des dfoxo locus und separiert wichtige Funktionen des FOXO 

Transkriptionsfaktors in Drosophila melanogaster. 
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SUMMARY 

Reduced activity of the highly evolutionarily conserved insulin/insulin-like growth factor 

signalling pathway (IIS) has been shown to increase lifespan in nematode worms, fruit 

flies and mice. In both worms and flies the single Forkhead Box-O (FOXO) transcription 

factor is required for increased lifespan from reduced IIS, and increased FOXO activity 

itself lengthens life. However, FOXO transcription factors are involved in the regulation 

of diverse cellular and organismal processes besides ageing, including development and 

metabolism. It is therefore of crucial importance to understand the molecular mechanisms 

by which this transcription factor acts to regulate those processes.  

 

During my PhD, I used the fruit fly Drosophila melanogaster to investigate how FOXO 

activity is regulated and tried to dissect the different functions associated with dFOXO. I 

have generated novel dfoxo-null mutant lines that allow me to reintroduce modified 

versions of the dfoxo gene. Wild type and C-terminal tagged reinsertion lines seem to 

have no effect on normal dFOXO function and, hence, were used to better characterize 

dFOXO regulation in vivo. Next, I generated dfoxo mutant alleles that abolished DNA 

binding in vivo. dFOXO-DBD mutant flies permitted the separation of dFOXO-functions 

that are dependent (fecundity, redox stress resistance, and lifespan) or independent (body 

weight and lipid usage under starvation) of dFOXO-DNA binding. Our results suggest 

that dFOXO modulates gene expression and autophagy under starvation conditions 

independent of DNA binding, probably through the interaction with another transcription 

factor.  

 

On the other hand, I generated dfoxo alleles that either mimic or abolish acetylation within 

conserved lysine residues. Our results indicate that this post-translational modification 

regulates dFOXO-phosphorylation state. Moreover, dFOXO-acetylation seems to play a 

crucial role in the response associated with amino acid starvation. However, further 

studies should identify the mechanisms at play.  

 

In conclusion, this PhD thesis describes a gene-editing tool for the dfoxo locus and 

separates some of the important functions associated with FOXO transcription factors in 

Drosophila.   
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1.1 AGEING AND THE INSULIN SIGNALLING PATHWAY  

The idea of immortality has intrigued humans for thousands of years. Whether it was 

alchemists trying to create the philosophers’ stone, explorers trying to find the fountain of 

youth, or the promise of an afterlife by most religions, the idea of eternal live has shaped 

humanity. For a long time ageing has been regarded as an immutable process due to 

damage accumulation over time that leads to functional decline and finally death. 

However, this view was challenged by the identification of a mutation in a single gene 

called daf-2 in the roundworm Caenorhabditis elegans (C. elegans), which resulted in 

worms that lived twice as long as their wild type counterparts (Kenyon et al., 1993). This 

observation changed our entire perspective of the ageing ‘process’ and led to the 

conclusion that longevity is amenable to genetic interventions, just like other biological 

processes.  

 

Daf-2 encodes the C. elegans homolog of the insulin/insulin-like growth factor (IGF) 

receptor (Kimura et al., 1997), an upstream component of the insulin/IGF-signalling (IIS) 

pathway. Similar to the worm daf-2 mutants, reduced IIS can increase lifespan in other 

animal models, including fruit flies and mammals. In Drosophila, mutations of the 

insulin-like receptor (InR) extend lifespan (Tatar et al., 2001). Similarly, removal of InR 

in adipose tissue or full-body heterozygous mutants of the IGF-1 receptor (IGF-1R) in 

mice is able to extend lifespan when compared to their respective controls (Bluher, 2003; 

Holzenberger et al., 2003). Moreover, removal of the insulin receptor substrate in flies  

(chico) or mice (IRS1) extends lifespan and, at least in mice, it seems to cause a delay in 

ageing (Clancy et al., 2001; Selman et al., 2008; Tu et al., 2002). These observations make 

the IIS pathway a prominent target of ageing research. Importantly, the invertebrate 

models C. elegans and Drosophila are ideal to the study the relationship between IIS and 

ageing due to their short lifespan and the diverse molecular/genetic tools available (Piper 

et al., 2005).  

 

The IIS pathway is an evolutionarily conserved nutrient-sensing network that plays key 

roles in diverse cellular and organismal processes, including growth, metabolism, stress 

response, reproduction and lifespan (Piper et al., 2005). IIS is activated by insulin-like 

peptides (ILPs), hormonal signals secreted, for example, in response to nutrient 

availability. Mammalian genomes code for at least eight ILPs (Wallis, 2009), including 

insulin and insulin-like growth factor-1 (IGF-1). In worms, 40 ILPs have been identified, 
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whereas flies express at least eight peptides (Lau and Chalasani, 2014). Interestingly, IIS 

manipulation at the ligand level can also extend lifespan in flies, as mutation of the 

Drosophila ILP (DILP) 2, or the triple dilp2-3,5 mutation, produces longer lived flies 

(Grönke et al., 2010). Unlike worms and flies, where all ILPs seem to transduce the signal 

through the single insulin-like receptor (the aforementioned Daf-2 and InR), mammals 

have multiple IIS-related receptors that, in most cases, bind a particular ILP with higher 

affinity than the rest (Fernandez and Torres-Alemán, 2012). Despite the differences, 

insulin or ILPs regulation by a favourable nutritional status has similar consequences in 

different organisms, inducing growth by stimulating protein synthesis, and promoting 

energy storage in the form of glycogen and fat (Piper et al., 2005).  

 

Under nutrient availability, circulating insulin interacts with the insulin receptor, which 

activates a complex phosphorylation cascade (Figure 1.1) that leads to, among others, 

glucose uptake by the muscle and fat body, while at the same time inhibiting glucose 

production by the liver (Boucher et al., 2014; Saltiel and Kahn, 2001). In simplified terms, 

insulin promotes a conformational change in the InR that allows auto-phosphorylation and 

phosphorylation of at least nine different targets, including a group of four proteins known 

as insulin receptor substrates (IRS1-4) (Patti and Kahn, 1998). In Drosophila, there is only 

one homolog protein of IRS (chico) (Clancy et al., 2001). When phosphorylated, IRS1 

functions as a scaffold and allows the interaction with several regulatory proteins, most 

importantly, Phosphatidylinositol 3-OH kinase (PI3K). Activated PI3K in turn catalyzes 

the conversion of phosphatidylinositol 2-phosphate (PIP2) to phosphatidylinositol 3-

phosphate (PIP3) (Vadas et al., 2011).  

 

Proteins baring a pleckstrin homology (PH) domain can interact with PIP3 and hence be 

recruited to the cell membrane. This translocation to the membrane activates a series of 

kinases, of which Phosphoinositide-dependent kinase 1 (PDK1) is best characterized. The 

interaction between PIP3 and PDK1 leads to the phosphorylation and therefore activation 

of another fundamental kinase called protein kinase B (PKB or AKT). Importantly, AKT 

also contains a PH domain, which facilitates its localization to the membrane and 

therefore activation by PDK1 upon insulin signaling. Among its many targets, AKT 

phosphorylates the family of transcription factors Forkhead Box O (FOXO). The AKT 

dependent phosphorylation of FOXO proteins on three highly conserved residues induces 

their nuclear exclusion, in part by facilitating the interaction with scaffold protein 14-3-3, 
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and hence the down regulation of FOXO-dependent target genes (Piper et al., 2005). In 

contrast, under reduced nutrient availability, IIS is reduced, repression of FOXO factors is 

released and a plethora of target genes are therefore activated (Figure 1.1). While 

mammalian genomes encode for four different FOXO genes (FOXO1, 3, 4 and 6), 

invertebrate organisms like C. elegans and Drosophila contain only one homolog, termed 

daf16 and dfoxo, respectively (Jünger et al., 2003; Lin et al., 1997; Ogg et al., 1997; Puig 

et al., 2003). 

 

 

 
Figure 1.1 Simplified representation of the highly conserved Insulin/Insulin-like growth 
factor signalling (IIS) pathway. Under nutrient availability (fed state), secreted insulin initiates a 
phosphorylation cascade that culminates in the repression of FOXO transcription factors by 
nuclear exclusion. On the other hand, under reduced nutrients (starved state), FOXO repression is 
released and transcription of multiple target genes can be initiated.  
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1.2. FOXO TRANSCRIPTION FACTORS 

FOXO coding genes were first identified as chromosomal translocations associated with 

different kinds of cancer, i.e. the genomic fusions between PAX3 and FOXO1 was 

described in alveolar rhabdomyosarcomas (Galili et al., 1993). Multiple studies have now 

proven that FOXO proteins are in fact powerful tumour suppressors (Fu and Tindall, 

2008).  

 

FOXO proteins belong to the Forkhead family of transcription factors characterized by 

their evolutionary conserved ~100-amino-acid monomeric DNA binding domain (DBD) 

(Burgering, 2008) (Figure 1.2A). The DBD, also called winged helix domain, is a variant 

of the helix-turn-helix motif that consists of three α-helices and two loops or ‘butterfly 

like wings’ (Brent et al., 2008; Weigelt et al., 2001) (Figure 1.2B). Over 100 proteins 

belong to the Forkhead family and are classified according to the sequence similarity of 

their DBDs, into sub-categories denoted by a capital letter (Kaestner et al., 2000), e.g. 

Forkhead box subgroup O ! FOXO.  

 

FOXO proteins also have a characteristic lysine-rich nuclear localization signal (NLS) 

embedded at the 5’ end of their DBD (Brownawell et al., 2001; Zhang et al., 2002). Of 

note, a key residue phosphorylated by AKT is part of the NLS and it mediates the 

interaction with 14-3-3 (Obsilova et al., 2005) (Figure 1.2A). This phosphorylation-

dependent interaction masks the NLS sequence from the nuclear import machinery and 

allows FOXO shuffling to the cytoplasm. 

 

In addition to the NLS, mammalian FOXO1, 3 and 4 have a leucine-rich nuclear exclusion 

signal (NES) that, just like the AKT-phosphorylation/interaction with 14-3-3, is required 

to mediate FOXO translocation to the cytoplasm under high nutrient availability (Brunet 

et al., 2002). Interestingly, neither DAF-16 nor dFOXO seem to have a conserved NES, 

suggesting that FOXO shuttling out of the nucleus is NES-independent in those species. 

Similarly, mammalian FOXOs contain a conserved LXXLL motif that mediates 

interaction with Sirt1 (Nakae et al., 2006) and, possibly, nuclear hormone receptors 

(NHRs), however, this motif seems to be absent in flies and worms (van der Vos and 

Coffer, 2008). 
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Figure 1.2 The FOXO DNA binding domain (DBD) is conserved in evolution.  
(A) Amino acid alignment of the DBD of four different FOXO proteins using MUSCLE (Edgar, 
2004). Residues highlighted in blue show some degree of conservation between all species. 
Orange residues represent the partially conserved nuclear localization signal (NLS). Consensus 
symbols indicate the degree of conservation: an * (asterisk) indicates perfect conservation whereas 
a : (colon) or a . (Period) indicate conservation of stronger or weaker similar properties. Within the 
NLS, the red colon (:) highlights the conserved residue phosphorylated by AKT. (B) Crystal 
structure of FOXO1-DBD in contact with DNA. Blue structure covers evolutionarily conserved 
residues, as in the alignment. “Wing 2” points at the position wing 2 would be, since it was not 
part of the crystal structure. Displayed as stereo pair – PDB code 3CO6 (Brent et al., 2008). 
 

Unlike other FOXO paralogs, Drosophila FOXO (dFOXO) has polyglutamine (polyQ) 

repeats within its C-terminal domain. PolyQ regions have been well studied in the context 

of human neurodegenerative diseases (Orr and Zoghbi, 2007). However, we now know 

that eukaryotic transcription factors are rich in polyQ repeats (Gemayel et al., 2010) and 

that these repeats modulate the transcription factor activity by tuning its solubility and 

interactions (Gemayel et al., 2015). These polyQ regions can mediate interaction with 

other polyQ regions, facilitating co-regulation between transcription factors (Atanesyan et 
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al., 2012). How the polyQ regions within dFOXO modulate its activity or interactions is 

still unknown.  

 

In mammals, FOXO proteins are expressed throughout the body, regulate different tissue-

specific functions (Salih and Brunet, 2008) and several cellular processes such as 

apoptosis, stress response and cell cycle (Burgering, 2008). For example, FOXO1 is a key 

component of energy metabolism and is predominantly expressed in white adipose tissue, 

liver and muscle (Gross et al., 2008; Kousteni, 2012; Matsumoto et al., 2007). 

Additionally, FOXO proteins modulate immune function (Kim et al., 2013; Ouyang et al., 

2012) and play important roles in stem cell maintenance in diverse tissues including 

muscle, neurons and the hematopoietic stem cell pool (Gopinath et al., 2014; Miyamoto et 

al., 2007; Paik et al., 2009). How exactly FOXO proteins coordinate such a vast range of 

processes is still largely unknown. 

 

Due to the high degree of conservation, FOXO paralogs virtually share identical DBDs, 

allowing them to bind the same DNA motifs and therefore have, at least partially, 

redundant functions. A recent meta-analysis of FOXO-target-genes across tissues found 

that, even though specific FOXO proteins have tissue specific targets, there is a core set of 

genes regulated across tissues, and even species (Webb et al., 2016). These conserved 

target genes are involved in metabolism, proteostasis, stress resistance and growth factor 

signalling (Webb et al., 2016). This observation indicates that regulation of those core 

processes, which are fundamental for ageing modulation, is the main function of FOXO 

factors across evolution.  

 

The presence of only one FOXO orthologue makes C. elegans and Drosophila ideal 

model systems to study FOXO function independent of redundancy between FOXO 

paralogues. In both organisms, FOXO factors are mediators of IIS action, and the removal 

of FOXO function suppresses lifespan-extension upon reduced IIS (Kenyon et al., 1993; 

Slack et al., 2011; Yamamoto and Tatar, 2011). Moreover, foxo-null mutants are short-

lived in worms and flies, indicating that FOXO proteins are required for normal ageing 

(Lin et al., 2001; Slack et al., 2011). In addition, DAF-16 over-expression is sufficient to 

extend lifespan in the worm (S T Henderson and Johnson, 2001). Similarly, muscle- or 

fat-specific over-expression of dFOXO increases longevity in flies (Demontis and 

Perrimon, 2010; Giannakou et al., 2004; Hwangbo et al., 2004), suggesting that tissue-
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specific functions of dFOXO are important for regulating organismal features, including 

ageing. These observations are consistent with studies in C. elegans that highlight the gut, 

which also functions as adipose tissue, as a key factor for modulating ageing (Libina et al., 

2003).  Even though many of the downstream gene targets of FOXO proteins have been 

identified in multiple organisms (Webb et al., 2016) , the exact mechanisms by which 

FOXO factors modulate lifespan are unclear. 

 

Both DAF-16 and dFOXO have different isoforms. In C. elegans there are three isoforms 

with distinct tissue specificity and impact on ageing (Kwon et al., 2010). In contrast, 

Drosophila has four isoforms that differ in their 5’UTR, which contains internal ribosomal 

entry sites (IRES) which are important to mediate translation of dfoxo under low 

nutritional conditions (Villa-Cuesta et al., 2010).  Two of those four dfoxo transcripts 

produce a 613aa protein (the preferred version for transgene generation), whereas the 

other two produce a 10aa longer version. Whether these isoforms are preferentially 

expressed in specific tissues or the amino acid difference is biologically relevant is still 

unknown. 

 

In summary, FOXO proteins are evolutionarily conserved factors that modulate the 

organismal response to different kinds of environmental stress. Indeed, FOXO proteins are 

now seen as fundamental mediators of homeostasis maintenance (Eijkelenboom and 

Burgering, 2013), even though the mechanisms by which these proteins regulate so many 

processes are still unclear.  



1.INTRODUCTION 
 

10	
  

1.3 FOXO activity is regulated by post-translational modifications  

FOXO proteins are metabolic nodes where multiple pathways converge. Hence, it is 

perhaps not surprising that these proteins are regulated by a great number of post-

translational modifications (PTMs) (Figure 1.3). In 2008, Calnan and Brunet proposed that 

different PTM combinations on FOXO could work as a ‘code’ to elicit a specific 

transcriptional output in response to diverse stimuli (Calnan and Brunet, 2008). FOXO 

PTMs include phosphorylation, methylation, acetylation, mono- and poly-ubiquitination, 

O-glycosylation and poly-ADPribosylation (Daitoku et al., 2011; Klotz et al., 2015; Zhao 

et al., 2011). However, it is not clear to what extent these different PTMs contribute to 

FOXO-dependent regulation of lifespan. Nevertheless, this FOXO code modulates target 

genes involved, in grand terms, in three kinds of biological processes: metabolism, stress 

response and cell proliferation/apoptosis (Calnan and Brunet, 2008).  

 

1.3.1 FOXO phosphorylation 

AKT-dependent phosphorylation of FOXO proteins takes place at three evolutionary 

conserved residues that are part of a motif recognized by this kinase (Figure 1.3). Even 

though AKT phosphorylation is the best characterized FOXO-PTM, FOXO factors are 

phosphorylated by a panoply of kinases (Klotz et al., 2015). For example, AKT works in 

concert with serum- and glucocorticoid-inducible kinase 1 (SGK1), a kinase also activated 

by PI3K, to phosphorylate at the three conserved residues and inactivate FOXO3a (Brunet 

et al., 2001) (Figure 1.3A). While AKT prefers to phosphorylate the FOXO3 residue 

S253, SGK1 prefers S315, suggesting that the combination of both enzymes is what 

allows full FOXO phosphorylation under high nutrient conditions (Brunet et al., 2001).  

 

AKT/SGK1 phosphorylations do not only reduce DNA binding affinity but also induce 

the interaction with the scaffold protein 14-3-3. T32 and S253 phosphorylation mediates 

the 14-3-3 interaction, which changes and probably masks the NLS sequence within 

FOXO, since S253 is buried within the NLS (Brunet et al., 1999; Obsilova et al., 2005) 

(Figure 1.3A). Nuclear exclusion of FOXO1 by IGFR1 signalling seems to be 14-3-3 

independent, suggesting that at least one additional mechanism can shuttle FOXO1 into 

the cytoplasm (Rena et al., 2001). On the other hand, Drosophila has an additional 

scaffold protein that modulates the AKT-phosphorylation of dFOXO, called Melted, 

which seems to recruit dFOXO to the cell membrane and hence allow dFOXO and AKT 

to be in close proximity under activated IIS (Teleman et al., 2005). Nevertheless, once in 
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the cytoplasm, phosphorylated FOXO can undergo ubiquitination followed by 

proteosomal degradation (Aoki et al., 2004; Huang et al., 2005; Matsuzaki et al., 2003; 

Plas and Thompson, 2003). What exactly leads to FOXO degradation or cytoplasmic 

retention is currently unclear. 

 

Phosphorylation of FOXO proteins can, however, also induce nuclear localization and/or 

activation (Figure 1.3). For example, cyclin-dependent kinase 1 (Cdk1) phosphorylation 

induces FOXO1-dependent transcription and causes cell death in neurons (Yuan et al., 

2008). In Drosophila cell culture, multiple kinases were shown to modulate dFOXO 

transcriptional activity (Mattila et al., 2008). However, it is currently unclear whether 

these phosphorylations actually take place in vivo and whether they have a physiological 

consequence. Additionally, FOXO proteins are phosphorylated by AMPK (AMP-activated 

protein kinase) and JNK (Jun-N-terminal kinase) in response to nutritional or oxidative 

stress respectively (Essers et al., 2004; E. L. Greer et al., 2007; Eric L. Greer et al., 2007). 

The control that these two kinases exert over FOXO seems to be evolutionarily conserved. 

Moreover, both AMPK and JNK contribute to the modulation of longevity in worms and 

flies, however, the exact mechanism behind this function are not fully understood (Biteau 

et al., 2011; Burkewitz et al., 2014).  

 

1.3.2 FOXO acetylation 

FOXO activity can also be regulated by acetylation and deacetylation of specific lysine 

residues. In fact, acetylation was shown to both activate (Motta et al., 2004; Perrot and 

Rechler, 2005) and repress (Frescas et al., 2005; Fukuoka et al., 2003; Jing et al., 2007; 

Matsuzaki et al., 2005; Mihaylova et al., 2011; Wang et al., 2011, 2007) FOXO proteins. 

The reasons for such discrepancies are currently under investigation, but one possible 

explanation is that activating-acetylation seems to occur at the carboxy-terminal region of 

the protein, whereas repressive-acetylation takes place close to and within the NLS. Of 

note, Drosophila does not have any lysine residues in its carboxy-terminal region, 

suggesting that this acetylation is not evolutionarily conserved. Of the two, repressive-

acetylation is better understood. This process can reduce FOXO DNA-binding ability and 

increase its sensitivity to phosphorylation by AKT, which in turn results in reduced 

transcriptional activity (Brent et al., 2008; Brunet et al., 2004; Matsuzaki et al., 2005; 

Qiang et al., 2010). 
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In mammals, FOXO proteins are acetylated by the co-activators p300 and cAMP response 

element-binding protein (CREB)-binding protein (CBP) and deacetylated by Sirt1 

(Matsuzaki et al., 2005). Additionally, class II histone deacetylases (HDACs) were shown 

to modulate FOXO acetylation status in both mice and flies in response to nutritional 

stress (Mihaylova et al., 2011; Wang et al., 2011).  

 

A mouse knock-in study revealed a fundamental role of FOXO1 acetylation in the 

regulation of glucose and lipid metabolism. An acetylation-mimicking-FOXO1 allele is 

lethal during early development, whereas the acetylation-null allele has a distinct 

metabolic phenotype, where mice seem to relay mostly on lipids as an energy source 

(Banks et al., 2011). The putatively acetylated lysine residues are mostly localized within 

the NLS of FOXO factors and are evolutionarily conserved. Deacetylation of these 

conserved residues by HDAC4 was recently suggested to allow dFOXO transcriptional 

regulation of the starvation response (Wang et al., 2011). Furthermore, dFOXO and 

FOXO1 seem to be promptly acetylated upon re-feeding of the flies and mice respectively 

(Banks et al., 2011; Wang et al., 2011). On the other hand, the transcriptional co-factor 

KDM5 (also known as Lid) seems to also interact with HDAC4 to facilitate FOXO 

deacetylation in order to elicit a transcriptional response under oxidative stress (Liu et al., 

2014). On the other hand, cell culture and xenograft experiments indicate that acetylated 

FOXO1 is able to interact with ATG7 (autophagy related gene 7) in the cytoplasm to 

induce autophagy under serum starvation or oxidative stress (Zhao et al., 2010). These 

observations suggest acetylation may regulate multiple functions of FOXO proteins. 

However, the precise role of FOXO regulation by acetylation, and its effect on lifespan, is 

currently unclear.  

 

In summary, FOXO proteins are regulated by multiple PTMs, however, it is not clear how 

these modifications regulate each other in vivo nor the biological consequences of their 

interaction at the cell, tissue or organism level.  Thus, it would be important to develop a 

tool that would allow the in vivo identification and characterization of FOXO PTMs. 
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Figure 1.3 Phosphorylation and acetylation on mammalian FOXO compared to Drosophila 
dFOXO.  
(A) Repressive-phosphorylation (red P) by AKT takes place at three evolutionarily conserved 
residues in both mammals and flies. Two of these residues mediate the interaction with scaffold 
protein 14-3-3. In contrast, many kinases are known to activate (green P) FOXO factors in 
mammals. Some of these kinases, including AMPK and JNK, can also activate Drosophila FOXO. 
However, the exact residues where the modifications take place are unknown. (B) Repressive 
acetylation of mammalian FOXO proteins was shown to take place at different lysine residues 
within the NLS. Since some of these residues are evolutionarily conserved, it was proposed that 
this kind of acetylation also happens in the fly. Conversely, activating-acetylation of FOXO 
proteins has only been reported in mammals. DBD-DNA binding domain; NLS-Nuclear 
localization signal; NES-Nuclear exclusion signal; NID-NHR interacting domain; Q-Glutamine 
rich region. 
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1.4 FOXO is regulated by protein-protein interactions 

The best-characterised FOXO interactor is the scaffold protein 14-3-3. Under high insulin 

levels, AKT-dependent phosphorylated FOXO interacts with 14-3-3 and is therefore 

excluded from the nucleus (Figure 1.4A) (Brunet et al., 2002). However, multiple 

interaction partners are known to regulate FOXO function, while at the same time FOXO 

proteins are able to function as co-regulators and modulate the role of other transcription 

factors (Daitoku et al., 2011; van der Vos and Coffer, 2008). 

 

In mammals, FOXO proteins have been shown to interact with a wide range of nuclear 

hormone receptors (NHRs), including the androgen, progesterone, glucocorticoid, retinoic 

acid, peroxisome and thyroid hormone receptors (van der Vos and Coffer, 2008). 

Interaction of FOXO with non-steroid receptors leads to co-activation, while biding to 

steroid NHRs leads to the opposite effect, co-repressing target genes (Zhao et al., 2001). 

This kind of interaction can lead to expression alteration of both NHR and/or FOXO target 

genes (Figure 1.4B). For example, binding of the androgen receptor can suppress FOXO1 

transcriptional activity in prostate cancer cells (Li et al., 2003). Moreover, FOXO1 

interacts with Hepatocyte Nuclear Factor-4 (HNF4) (Hirota et al., 2003). However, the 

consequences of this interaction seem to be complex. Under fasting conditions, FOXO 

binds to HNF4 and represses certain HNF4-target genes while at the same time it has a 

synergistic effect on HNF4 and FOXO1 shared target genes (Hirota et al., 2008). 

However, whether the repressive and/or synergistic interaction is evolutionarily conserved 

and the exact mechanism by which this kind of regulation takes place is currently 

unknown.  

 

FOXO factors translocate to the nucleus and are hyper-activated under stressful 

conditions, such as starvation or oxidative stress (S T Henderson and Johnson, 2001). For 

example, it was recently reported in mammalian cell culture that FOXO4 is able to interact 

with a transporter called Transportin1 specifically under Redox stress (Putker et al., 2013). 

Of note, this interaction seems to be evolutionarily conserved since DAF-16 is able to 

interact with Transportin1, and its worm homolog IMB-2, to regulate this translocation 

(Putker et al., 2013) (Figure 1.4C). On the other hand, a study on a human cancer cell line 

showed that, upon oxidative stress or serum starvation, cytosolic FOXO1 lost the 

interaction with NAD-dependent histone deacetylase, SIRT2. This release led to FOXO1 

acetylation, which in turn was then able to induce autophagy by interacting with ATG7 
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(Zhao et al., 2010) (Figure 1.4D). Nevertheless, whether any of these stress-induced 

interactions has a role in the regulation of ageing through FOXO factors is still unknown. 

 

1.4.1 FOXO functions independent of DNA binding  

Besides their prominent role as transcriptional regulators, FOXO proteins also have 

functions that are independent of the genes they regulate, making the understanding of 

their functions ever more complex. For example, FOXO1 over-expression in mammalian 

cell culture inhibits cell cycle progression by down-regulating D-type cyclins and inducing 

apoptosis. At the same time, inhibition of cell cycle progression is independent of the 

ability of FOXO1 to bind to DNA. Over-expression of a FOXO1 DNA binding mutant 

blocked cell cycle, but it did not affect apoptosis, suggesting that some functions of 

FOXO1 may not require DNA binding ability (Ramaswamy et al., 2002). FOXO1 also 

regulates progesterone receptor A activity independently of DNA binding (Rudd et al., 

2007) and cytoplasmic FOXO1 was shown to mediate autophagy in a human cancer cell 

line (Zhao et al., 2010) (Figure 1.4D). These results suggest that FOXO proteins may act 

as transcriptional co-regulators and that DNA binding is not required to fulfil these 

functions. Interestingly, some of the FOXO1 effects on energy metabolism seem to be 

DNA-binding-independent, as seen in cell culture (Matsumoto et al., 2006), and liver-

specific mouse mutants (Cook et al., 2015). The liver-specific study further suggests that 

FOXO1 may partially regulate liver lipogenesis, acting as a co-activator of another 

transcription factor (Cook et al., 2015). The putative interaction partner mediating these 

effects is still unidentified. Whether any of the dFOXO DNA-binding-independent 

functions are evolutionarily conserved, and their effect on ageing, is currently unknown. 
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Figure 1.4 Simplified representation of different FOXO interactions   
(A) AKT-dependent phosphorylation of FOXO factors mediates the interaction with scaffold 
protein 14-3-3, which in turn induces nuclear exclusion. This mode of FOXO regulation is 
evolutionarily conserved. (B) Nuclear FOXO can interact with multiple NHRs. This interaction 
can lead to expression or repression of FOXO and/or NHR target genes. (C) Redox stress can 
induce the interaction of FOXO with TNPO1, which leads to nuclear translocation followed by up-
regulation of genes involved in redox stress response. This type of interaction seems to be 
evolutionarily conserved between worms and mice (see text). (D) Cytosolic FOXO loses the 
interaction with SIRT1 under starvation or redox stress, which leads to acetylated FOXO 
accumulation, interaction with ATG7 and induction of autophagy. NHR-Nuclear hormone 
receptor; TNPO1-Transportin; ATG7-Autophagy related gene 7. 
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1.5 Metabolism regulation and FOXO factors  

Nutrient availability modulates the behaviour and metabolism of all organisms. The IIS 

pathway plays a fundamental role integrating nutrient sensing and energy homeostasis, for 

example, by repressing FOXO factors under nutrient abundance and, conversely, releasing 

said repression upon starvation periods (Saltiel and Kahn, 2001). FOXO proteins play 

critical roles in metabolism homeostasis; however, it is currently not fully understood how 

these transcription factors modulate the diverse processes involved in glucose and lipid 

metabolism. 

 

Among mammalian FOXO proteins, FOXO1 is portrayed as the key regulator of energy 

metabolism (Kousteni, 2012). This protein is prominently expressed in tissues relevant for 

glucose homeostasis, such as liver, pancreas and adipose tissue. Moreover, FOXO1 

mediates the organismal response to reduced nutrients (low insulin), stimulating hepatic 

glucose production and inhibiting adipogenesis (Matsumoto et al., 2007; Nakae et al., 

2002; Qiao and Shao, 2006). For example, hepatic glucose production is induced by up-

regulating pepck, which codes for the phosphoenolpyruvate carboxykinase, the limiting 

enzyme for gluconeogenesis. In addition, FOXO1 induces the Adipose triacylglycerol 

lipase (ATGL) expression in both adipose tissue and liver (Chakrabarti and Kandror, 

2009; Zhang et al., 2016). ATGL is the limiting rate enzyme regulating lipolysis and its 

expression can therefore stimulate triacylglycerol (TAG) usage (Zimmermann, 2004).  

Moreover, starvation induces FOXO-dependent expression of eukaryotic initiation factor 

4E binding protein (4EBP), which in turn dampens translation.  

 

TAG reservoirs are found in lipid droplets, conserved cellular structures that are present 

across all organisms and have acquired multiple regulatory roles, such as lipid 

homeostasis, throughout evolution (Murphy, 2012). Consistently, lipid droplets are found 

across Drosophila tissues and serve mainly as TAG stores (Kuhnlein, 2012). Under 

fasting conditions, TAG stores are hydrolyzed in the cytosol by lipases, such as ATGL, 

into free fatty acids (FFA), which in turn are transported into the mitochondria to undergo 

β-oxidation and serve as an energy source. Fasting also induces autophagy, a process in 

which a double membrane vesicle, termed autophagosome, grows and engulfs organelles 

or cytoplasmic entities to later fuse with the lysosome and break its cargo down for energy 

production (Russell et al., 2014). The autophagy machinery can uptake TAGs and, with 
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the help of specialized lysosomal-associated-lipases, hydrolyze them to release FFA in a 

process termed lipophagy (Singh et al., 2009).  

 

FOXO factors promote autophagy in different cell types, such as neurons and hepatocytes, 

by up-regulating multiple autophagy-related genes and have therefore another layer of 

control over the starvation response (Webb and Brunet, 2014). A recent study implicated 

FOXO1 in the regulation of ATG14, a protein that mediates the autophagosome fusion 

with lysosomes, and hence is fundamental for proper autophagy (Diao et al., 2015; Xiong 

et al., 2012). While ATG14 knockdown induced lipid accumulation in the liver, its over-

expression protected the liver from fat accumulation under high fat diet, suggesting 

ATG14 is in fact a critical regulator of lipid homeostasis (Xiong et al., 2012). 

Furthermore, FOXO1 mediates the expression of lysosomal acid lipase (Lipa) in adipose 

tissue (Lettieri Barbato et al., 2013). In this study, nutrient restriction stimulated Lipa 

expression in a FOXO1-dependent manner, and Lipa expression was required for 

lipophagy induction (Lettieri Barbato et al., 2013). In accordance with these phenotypes, 

lipa mutant mice are unable to properly mobilize TAGs in the liver (Du et al., 2001). 

These observations implicate FOXO factors as key modulators of the starvation response 

at multiple levels.   

 

1.5.1 dFOXO and metabolism regulation in Drosophila 

During the last 15 years, Drosophila has been increasingly used as a powerful model to 

study the evolutionarily conserved mechanisms of energy homeostasis. The fly has 

functionally analogous tissues to those found in mammals that mediate energy storage in 

the form of glycogen and lipids when conditions are favourable (Baker and Thummel, 

2007; Kuhnlein, 2012). For example, the fly fat tissue acts both as liver and adipose tissue 

in mammals, storing energy and modulating its usage under nutrient depravation. Under 

nutritional stress, these energy stores are mobilized to provide energy for the cells (Baker 

and Thummel, 2007).  

 

A great number of the proteins involved in the response to energy deprivation have a clear 

homolog in the fly. For example, the Drosophila homolog of 4ebp (termed thor) is one of 

the best characterized dFOXO target genes (Puig et al., 2003). Under nutritional stress, 

dFOXO induces 4ebp expression, which in turn dampens general translation, ensuring 

careful allocation of energy recourses. Moreover, Drosophila brummer (bmm – the 
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homolog of mammalian ATGL) is also the rate limiting enzyme during lipolysis (Grönke 

et al., 2005). bmm was recently characterised as a dFOXO target gene by showing 

transcriptional induction under starvation in a dFOXO-dependent manner (Wang et al., 

2011). These results highlight FOXO as a key mediator of metabolism in flies and 

mammals. Indeed, it was recently suggested that metabolic regulation by FOXO factors is 

evolutionarily conserved, at least based on common target genes across species (Webb et 

al., 2016). 

 

In addition to bmm transcriptional regulation under starvation, dFOXO also stimulates 

expression of lip4 (lipase 4 – a homolog of mammalian Lipa) by direct binding to its 

promoter (Vihervaara and Puig, 2008). Moreover, dFOXO regulates the expression of 

atg8 in the muscle, a key protein involved in autophagy induction (Bai et al., 2013). These 

results suggest that dFOXO, just like its mammalian counterparts, may in fact be able to 

regulate autophagy and lipophagy in Drosophila. However, this hypothesis awaits 

experimental testing.  
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1.6 Aim of the thesis 

FOXO transcription factors are involved in several cellular and physiological processes, 

such as development, metabolism and ageing. In order to exert control over such diverse 

functions among different tissues, these proteins are regulated by multiple PTMs and 

protein-protein interactions. The multiple functions and levels of regulation make the 

study of FOXO factors complex. Moreover, mammalian genomes encode four FOXO 

paralogs that are able to target common genes, making it harder to determine the role of 

FOXO proteins in diverse processes.  Drosophila only has one dfoxo gene, making it a 

simpler model to understand the regulation and functions of FOXO transcription factors. 

Hence, I aimed to generate a genetic tool that would allow me to modify the endogenous 

dfoxo gene. With this, I would be able to dissect the different dFOXO-associated functions 

by generating in locus mutant alleles of specific regions.  

 

Genomic engineering of the dfoxo locus 

Until now, full dfoxo removal or over-expression have been used to characterize the 

functions related to this transcription factor in Drosophila. However, many of these 

studies neglect the presence of endogenous dFOXO and overlook the secondary effects of 

over-expressing proteins in an organism. Therefore, I aimed to generate a genetic tool that 

would allow me, and others in the future, to modify the endogenous dfoxo gene. This tool 

would enable us to study in vivo any dfoxo-mutant allele. 

 

Generation and evaluation of dFOXO DNA binding mutants  

Preliminary studies suggest FOXO transcription factors may have functions independent 

of DNA binding. Hence, I aimed to determine which processes could be regulated by 

FOXO in the absence of DNA binding ability. For this, I planned to generate two dfoxo 

mutant alleles, using the newly generated gene-editing tool, which would abolish the 

protein-DNA interaction.  

 
Generation and evaluation of dFOXO lysine acetylation mutants  

How acetylation regulates FOXO functions is not fully understood. Thus, I aimed to 

generate dfoxo mutant alleles to either mimic or abolish acetylation in conserved residues. 

Using these mutants, I intend to determine the in vivo roles of dFOXO acetylation.   
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2.1 Generation, maintenance and characterization of transgenic fly lines 

2.1.1 Genomic engineering of the dfoxo locus (see also, Results 2.2) 

The new dfoxo∆V1, ∆V2 and ∆V3 knockout founder lines were generated by genomic 

engineering as previously reported (Huang et al., 2009). In a first step, each of the dfoxo 

target regions, V1, V2, or V3 (Figure 2.3), were substituted by a whitehs marker gene and 

an attP-site using ends-out homologous recombination. For this, ~4Kb flanking sequences 

of each target region were cloned into a pBlueScript II SK(+) vector, using ET 

recombineering (Muyrers et al., 1999; Zhang et al., 1998) and the respective primers 

SOL572-579 Supplementary Table S1).  As template for the ET recombineering, a BAC 

clone that contains the dfoxo locus (CH321-24|13, BACPAC resource center, Oakland, 

California) was used. After sequence verification using sequencing primers SOL580-607 

and SOL628-635 (Supplementary Table S1), homologous arms were brought into the 

pGX-attP targeting vector (Huang et al., 2009). To target the V1 region, we cloned a 

pGXattP vector containing homologous arms 1 and 2; for the V2 region, arms 1 and 4; 

and for the V3 region arms 3 and 4 (Figure 2.3). P-element-mediated transformation was 

done by the BestGene Drosophila embryo injection service (Chino Hills, USA) to 

generate transgenic flies carrying the pGXattP donor constructs for targeting the V1, V2 

and V3 region.   

 

Crosses for ends-out homologous recombination were set for direct targeting as described 

before (Huang et al., 2008) (Figure 2.4). Subsequently, the whitehs marker gene was 

mapped to the third chromosome using a TM3 Sb balancer chromosome. Homozygous 

flies carrying the whitehs marker on the third chromosome were screened by PCR for the 

absence of the corresponding region of the dfoxo gene using primers SOL665/666 for V1, 

SOL667/668 for V2 and SOL669/670 for V3 (Supplementary Table S1). We obtained one 

knockout founder (KO) line for V1, V2 and V3. Subsequently, KO flies were crossed with 

cre-recombinase expressing flies to remove the whitehs marker gene (Groth et al., 2004). 

The generated w[-] lines, denoted dfoxo∆V1w[-], ∆V2w[-] and ∆V3w[-], were brought 

into a fly line expressing the ΦC31-integrase (Groth et al., 2004), and used as parental 

lines for any future reinsertion within the dfoxo locus. 

 

To generate the dfoxo gene replacement constructs, the genomic regions V2 and V3 were 

cloned in the pBlueScript II SK(+) vector by ET recombineering using primers 

SOL681/682 and SOL683/682, respectively (Supplementary Table S1). Inserts were 
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sequence verified using primers SOL690/700 (Supplementary Table S1). Subsequently, 

reinsertion inserts were transferred to the pGEattBGMR vector (Huang et al., 2009) by 

restriction enzyme cloning using NheI and AscI to cut vector and insert. Ligation was 

carried out overnight at 18ºC according to standard T4-ligase protocols (NEB). The V1 

region was PCR-cloned in the same vector using the In-Fusion system (Clontech) with 

pBS-V2 as template and primers SOL795/796 (Table 2.1 and Supplementary Table S1). 

Mutations on the pBS-V3-3xFLAG construct were introduced using QuickChange II XL 

site-directed mutagenesis (Agilent Technologies) and the V3-mutant-3xFLAG sequence 

was subsequently In-Fusion (Clonetech) cloned in the pGEattBGMR vector using the 

respective primers (Table 2.1 and Supplementary Table S1). pGEattBGMR gene 

replacement constructs were injected into embryos of the respective KO-parental lines 

∆V1w[-] or ∆V3w[-]. Microinjections were done by Jacqueline Dols of the transgenic fly 

core facility of the Max-Planck Institute for Biology of Ageing. 

 
Table 2.1. Transgenic dfoxo alleles. Transgenic dfoxo flies generated by embryo microinjection. 
Injected vector was always pGEattBGMR. InFusion templates labeled V1short, V3short or V3-
MAD-3xFLAG were synthesized by Eurofins. Primer sequences are summarized in supplementary 
Table S1. 
 

dfoxo  knock-in 
lines 

Mutagenesis 
primers on pBS-

V3 
InFusion primers  InFusion PCR 

template  Seq primers 

V3 

  

SOL813-817 pBS-V3 

SOL692-700 V3-3xFLAG 

SOL728-729 

V3short-3xFLAG 

V3-Tev-BLRP V3short-Tev-BLRP 

V3-mCherry V3short-mCherry SOL692-700 and 
SOL717-721 

V3-DBD1-3xFLAG SOL809-810 

SOL813-824 
pBS-V3 with 

corresponding 
mutation 

SOL692-700 

V3-DBD2-3xFLAG SOL811-812  

V3-5KR-3xFLAG 
SOL393-394, 

SOL397-398 and 
SOL563-564 

V3-5KQ-3xFLAG 
SOL514-515, 

SOL516-517 and 
SOL561-562 

V3-MAD-3xFLAG 

  

SOL813-814 V3-MAD-3xFLAG SOL692 

V1 SOL795-796 pBS-V2 SOL690-691 

3xFLAG-V1 SOL713-714 3xFLAG-V1short SOL690-691 and 
SOL717-718 
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2.1.2 Fly maintenance  

Fly stocks were maintained and experiments were conducted at 25ºC on a 12:12 h 

light:dark cycle at 65% humidity. To generate experimental flies, larvae were reared at 

controlled densities by transferring 20µl of eggs ("egg squirts") into a fly stock bottle 

containing 1SYA food (5% w/v sucrose, 10% w/v brewer’s yeast, 1,5% w/v agar) (Bass et 

al., 2007). Freshly eclosed adult flies were allowed to mate for 48h before being sorted 

according to gender. All fly lines used for experiments were backcrossed for at least 6 

generations into the outbred, wild-type white Dahomey (wDahT) strain (Grönke et al., 

2010). This line was previously treated with tetracycline and does not contain the 

endosymbiotic bacterium Wolbachia. All fly lines used in this PhD thesis are summarized 

in Table 2.2.  

 

2.1.3 Fly lines used in this study 

Table 2.2. Drosophila stocks used in this study. Balancer and experimental flies were 
backcrossed into the wDahT background for at least 6 generations. G.E = Genomic Engineering; 
VB = Victor Bustos. 

Fly line Chr. Designed by/obtained from Function 
w;;TM3Sb/+ 3 Bloomington Balancer  
w;;TM6B/+ 3 Bloomington Balancer  

w;;MKRSSb/+ 3 Bloomington Balancer  
w;CyO/+ 2 Bloomington Balancer  

w;UAS-Lip3RNAi 2 VDRC (108639) Experiments 
w;;UAS-Lip3-3xHA 3 FlyOrf (F002854) Experiments 
w;S1106GS-Gal4 2 Bloomington Experiments 

w;;FB-Gal4 2 Bloomington Experiments 
w;;GS-Gal4 3 Bloomington Experiments 
w;6934-hid   (Huang et al., 2009) G.E. 

w;6938   (Huang et al., 2009) G.E. 
w,pGXattP-V1 Donor 1 VB G.E. 
w;pGXattP-V2 Donor 2 VB G.E. 
w;pGXattP-V3 Donor 2 VB G.E. 

w,Cre;Sco/CyO   (Huang et al., 2009) G.E. 
w,vas-int;;TM6B/MKRSSb   (Huang et al., 2009) G.E. 

w,vas-int;dfoxo∆V1w[-] 3 VB Microinjection 
w,vas-int;dfoxo∆V2w[-] 3 VB Microinjection 
w,vas-int;dfoxo∆V3w[-] 3 VB Microinjection 

w;;dfoxo∆94 3 (Slack et al., 2011) Experiments 
w;;dfoxo∆V1 3 VB Experiments 
w;;dfoxo∆V2 3 VB Experiments 
w;;dfoxo∆V3 3 VB Experiments 



2.MATERIALS & METHODS 

26	
  

w;;dfoxo-V3 3 VB Experiments 
w;;dfoxo-V3-3xFLAG 3 VB Experiments 

w;;dfoxo-V3-Tev-BLRP 3 VB Experiments 
w;;dfoxo-V3-mCherry 3 VB Experiments 

w;;dfoxo-V3-DBD1-3xFLAG 3 VB Experiments 
w;;dfoxo-V3-DBD2-3xFLAG 3 VB Experiments 
w;;dfoxo-V3-MAD-3xFLAG 3 VB Experiments 
w;;dfoxo-V3-5KR-3xFLAG 3 VB Experiments 
w;;dfoxo-V3-5KQ-3xFLAG 3 VB Experiments 

w;;dilp2-3,5 3 (Grönke et al., 2010) Experiments 
w[DhaT]   (Grönke et al., 2010) Experiments 

w;;dilp2-3,5, dfoxo∆V3 3 VB Experiments 
w;;dilp2-3,5, dfoxo-V3-

3xFLAG 3 VB Experiments 

w;;dilp2-3,5, dfoxo-V3-
DBD1-3xFLAG 3 VB Experiments 

w;;dilp2-3,5, dfoxo-V3-
DBD2-3xFLAG 3 VB Experiments 

w;S1106GS-Gal4;dfoxo∆V3 3 VB Experiments 
w;;UAS-Lip3-3xHA, 

dfoxo∆V3 3 VB Experiments 

 

 

2.1.4 Lifespan and fecundity assays 

For lifespan assays, 48h mated flies were sorted by sex at a density of 10 flies per small 

glass vial and 10 vials per genotype (n=100). Flies were tipped to fresh food 3 times per 

week and dead flies were scored. For fecundity assays, in parallel to the lifespan, 10 vials 

per genotype with 3 flies per vial were used. During the first 3 weeks, eggs laid per vial 

were counted after egg-laying periods of ~20h. 

 

2.1.5 Stress assays and fly experiments 

For stress assays, flies were sorted at 20 flies per wide plastic vial, 5 vials per genotype 

(n=100), and kept on 1SYA food for 7 days before starting the stress unless otherwise 

specified. Starvation food contained 1% w/v agarose, food for oxidative stress assays 

contained 5% w/v sucrose, 1,5% w/v agarose and 5% v/v H2O2 (Grönke et al., 2010). 

Dead flies were scored three times per day. In the case of yeast or sugar starvation, the 

respective component was omitted during normal 1SYA preparation and dead flies were 

scored every 2-3 days while tipping flies into fresh food vials.  
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For over-expression or RNAi-mediated knock down of gene expression the corresponding 

UAS-lines were mated with Gal4 driver lines (see Table 2.2) for induction of constitutive 

expression or with GS-driver lines (Roman et al., 2001) for inducible expression. When 

using an inducible GS-driver line, food was supplemented with RU486 (Sigma) at a 

concentration of 200µM in 1SYA or at 50µM in starvation food. The respective controls 

contained equivalent volumes of the drug carrier ethanol. 

 

2.1.6 Fly developmental time and body weight 

Fly development and body weight were measured similarly to protocols described 

previously (Grönke et al., 2010). Briefly, for developmental timing, eggs laid over 3h on 

grape juice plates were collected and transferred to 1SYA food at a density of 50 eggs per 

vial and 10 vials per genotype. Upon eclosion of the first flies, their numbers were 

counted at regular intervals.  

 

For body weight determination, batches of 5 flies were flash frozen in liquid nitrogen and 

weighted on a ME235S analysis balance (Sartorius Mechatronics). A total of 50 flies per 

genotype was measured.  
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2.2 Biochemistry and molecular biology methods 

2.2.1 DNA extraction for genotyping 

DNA from single whole flies was extracted as previously described (Gloor et al., 1993). 

Briefly, individual flies were homogenized in 50µl of squishing buffer (10mM Tris, 

25mM NaCl, 1mM EDTA and freshly added proteinase K to 200µg/ml) and incubated for 

30min at 37ºC. This was followed by proteinase K inactivation at 95ºC for 2min. PCR was 

done according to manufacturer instructions for the HotStar Taq Plus polymerase 

(Qiagen) using 1µl of DNA template.   

 

For genotyping of live flies, a single leg was removed from the fly and incubated in 50µl 

of lysis buffer (10mM Tris pH 8, 50mM KCl, 0.5% tween and freshly added proteinase K 

to 200µg/ml) at 65ºC for 1h. Proteinase K was then inactivated for 10min at 95ºC. HotStar 

Taq Plus (Qiagen) was used as polymerase following manufacturer instructions. All PCR 

products were analyzed on 0.5-2% agarose gels according to the expected band size. Flies 

identified as positive by PCR were subsequently further mated.  

 

2.2.2 RNA extraction and qPCR Analysis 

Total RNA from five 7-day-old female flies (control) or 7-day-old plus 48h starved female 

flies, per biological replicate, was extracted using standard Trizol (Invitrogen) protocols 

and treated with DNAse I (Ambion). Reverse transcription of 1µg total RNA was done 

using the SuperScript VILO kit (Invitrogen). Quantitative real-time PCR was done using 

Taqman probes (Applied Biosystems) (Table 2.3) in a 7900HT real-time PCR machine 

(Applied Biosystems). Relative gene expression was determined by the ∆∆CT method 

(Livak and Schmittgen, 2001) and normalized to actin (act5C) and/or RNA polymerase II 

(RpII). Four independent biological replicates per genotype were analyzed. A 

representative graph is shown and data are presented as fold change relative to controls. 

Control and starved flies from the same genotype were compared by unpaired student t-

test method and significance is indicated in graphs as: ns = p>0.05; * p<0.05; ** p<0.01; 

*** p<0.005.  
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Table 2.3. Taqman probes for relative mRNA quantification by qPCR 
 

Gene Taqman probe  Gene Taqman probe 
acc Dm01811986_g1  fasn-1 Dm01801118_g1 

act5C Dm02361909_s1  InR Dm02136224_g1 
atg14 Dm02145973_g1  lip3 Dm02135029_g1 
atg5 Dm01833509_g1  lip4 Dm01810401_g1 
atg8 Dm01825265_g1  npc2b Dm02140219_g1 
bmm Dm01805237_g1  pepck Dm01816546_s1 

dfoxo-V1 Dm02140211_g1  rpII Dm01813383_m1 
dfoxo-V3 Dm02140205_g1  thor Dm02136224_g1 

 

2.2.3 Chromatin preparation, immunoprecipitation and qPCR 

Chromatin extraction and immunoprecipitation were done according to a previous 

protocol (Alic et al., 2011) and slightly modified to adjust to a smaller scale. Briefly, ~100 

7-day-old flies per biological replicate were homogenized in 1ml PBS supplemented with 

Protease inhibitors and 0.5% formaldehyde in a small dounce homogenizer with a loose 

pestle (20 strokes). Three biological replicates were used per genotype. Samples were then 

transferred to a 2ml tube, allowed to crosslink for 10min in total and the reaction was 

subsequently quenched with 250µl of 2.5M glycine. Chromatin was then centrifuged at 

12000rpm for 20min at 4ºC, washed twice with FA/SDS buffer (50mM Hepes-KOH 

pH7.5, 150mM NaCl, 1mM EDTA, 0.1% Na Deoxycholate, 0.1% SDS, 1% Triton-X 100 

and freshly added 1mM PMSF), resuspended in the same buffer and rotated for 1h at 4ºC. 

After centrifugation (12000rpm for 20min at 4ºC), chromatin was resuspended in 1ml 

FA/SDS buffer and sheared in a Covaris M220 Focused-ultrasonicator™ with 1 ml 

millitubes (AFA fiber), to a ~500bp average size.  

 

Chromatin immunoprecipitation was done using 600µl of resuspended chromatin and 25µl 

of anti-DYKDDDDK (FLAG) micro beads (Miltenyi). Beads were later eluted in 100µl of 

pronase buffer (25mM Tris pH7.5, 5mM EDTA, 0.5%SDS) and incubated at 65ºC for 

20min to elute chromatin. After removal of the beads, eluted chromatin samples were 

treated with 6.25µl of pronase (Sigma) for 1h at 37ºC followed by overnight incubation at 

65ºC to induce decrosslinking. Samples were then treated with 3.3µl of 1mg/ml RNAse A 

(Qiagen) for 1h at 37ºC. Chromatin was purified with a PCR purification kit (Qiagen). For 

ChIP-qPCR detection of the 4ebp promoter region, triplicates from 3 biological replicates 
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of each genotype were analyzed by the ∆∆CT method. Values are expressed as percentage 

input and the primers used were reported elsewhere (SOL988/989) (Liu et al., 2014). 

 

2.2.4 Lipid assays 

Triglyceride storage quantification was performed as previously described (Grönke et al., 

2003). Briefly, four flies per biological replicate and five biological replicates per 

genotype were homogenized in 1ml PBS, 0.05% Tween using a Fastprep-24 system (MP 

Biomedicals™). The homogenate was then inactivated at 70ºC for 5minutes and 

centrifuged. 50µl aliquots of the supernatants were incubated with 200µl of pre-warmed 

Infinity™ Triglycerides reagent (Thermo Scientific). Absolute values were determined 

using a Triglyceride standard (Cayman Chemical). Triglyceride values were normalized to 

protein content measured by BCA assay (Pierce).  

 

2.2.5 Immunoprecipitation  

At least 60 flies were homogenized with a dounce homogenizer (20 strokes) in 1ml cold 

RIPA buffer (Pierce) supplemented with EDTA-free protease and phosphatase inhibitors 

(Roche). Lysate was then centrifuged at 15000 rpm for 15min at 4ºC to remove debris, 

followed by a filtration step using VDR 0.45µm centrifuge filters to remove residual 

debris and fat. A part of the lysate (50µl) was kept as input sample and the rest (~700µl) 

was incubated with 50µl anti-DYKDDDDK micro beads (Miltenyi) for 30-45min at RT. 

The mixture was then put on a pre-equilibrated magnetic column and non-bound proteins 

were separated by gravity flow. Washing was done twice with 1ml RIPA buffer and once 

with 500µl wash buffer (20mM Tris pH 7.5). Elution was carried out by boiling the beads 

with sample buffer (50mM Tris pH 6.8, 2%SDS, 10%glycerol, 1% -mercaptoethanol, 

12.5mM EDTA, 0.02% bromophenol blue) or by incubating the beads with 3xFLAG 

peptide (100µg/ml in TBS - Sigma) for 2h at room temperature. IP Samples (5-15µl) were 

run on 7.5% SDS polyacrylamide gels (SDS-PAGE) (BioRad) for western blot analysis.  
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2.2.6 Western Blot 

At least five flies were homogenized on ice in 200µl RIPA buffer (50 mM Tris-HCl, pH 

7.4, 1% NP-40, 0.5% Na-deoxycholate, 0.1% SDS, 150 mM NaCl, 2 mM EDTA, 50 mM 

NaF, protease and phosphatase inhibitors (Roche)) and incubated for 20-30min. 

Subsequently, samples were centrifuged for 15 min at 15.000 rpm at 4ºC and protein 

content was quantified with BCA (Pierce). Proteins were separated on a 7.5% SDS-PAGE 

(BioRad). Proteins were then transferred to nitrocellulose membranes (GE healthcare) by 

wet transfer at 100V for 30min. After membrane blocking with 5% Milk TBS-T buffer, 

primary antibody incubation was done overnight at 4ºC. Membranes were then incubated 

with secondary antibodies coupled with HRP for 1h at RT. Antibodies were diluted in 5% 

Milk TBS-T buffer (Table 2.4). Protein detection was done by incubating membranes with 

ECL Prime (Amersham) for 5min, followed by detection using a Chemidoc station 

(BioRad) at high-resolution mode. Western blot bands quantification was done using 

Image J (Scion Software).  

 
Table 2.4. Antibodies used in this study. 
 

Antibody Dilution Source 
dFOXO 1:5000 Dr. Nazif Alic (Giannakou et al., 2007)  
dHNF4 1:1000 Prof. Thummel (Palanker et al., 2009)  

FLAG (M2) 1:5000 Sigma (F1804) 
GADPH 1:1000 Santa Cruz Biotechnology (sc-25778) 

H3 1:5000 Sigma (H0164) 
HA (HA-7) 1:5000 Sigma (H9658) 

P-AKT-substrate 1:1000 Cell Signaling (9614) 
α-Tubulin 1:10000 Sigma (T9026) 
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2.2.7 Mass spectrometry 

To identify post-translational modifications of the dFOXO protein we used mass 

spectrometry on dFOXOFLAG protein purified by immunoprecipitation (compare 2.2.5). 

Mass spectrometry was done at the Mass Spectrometry core facility of the Max-Planck 

Institute for Biology of Ageing. Purified dFOXOFLAG protein (~50µg) was diluted in 

digestion buffer (100mM Tris, 6M Guanidinium chloride, 5mM TCEP, 10mM CAA) and 

digested with trypsin (1µg - Promega) at 37ºC or 1h treatment with Chemotrypsin (1µg - 

Promega). Samples were then acidified with 2µl of 50% formic acid (FA) to stop 

digestion, and peptides were purified on a C18 stage tip (Hubner et al., 2010). Peptides 

were eluted in 100µl of elution buffer (60% Acetonitril (ACN), 0.1% FA) and dried in a 

Speed-Vac for 45min at 45ºC, then resuspended in 20µl of 0.1% FA and used for liquid 

chromatography coupled Mass spectrometry (LC-MS) on a Q Exactive Hybrid-

Quadrupol-Orbitrap Mass Spectometer (ThermoFischer). Peptide analysis and post-

translational modification identification was performed by the Mass Spectrometry core 

facility. 

  

2.3 Drosophila cell culture methods 

2.3.1 Cloning of cell culture plasmids 

The dfoxo ORF was cloned into a pUbiP-EGFP-rfA vector, kindly donated by Alf Herzig, 

using the Gateway system (ThermoFischer). Mutations in the dfoxo ORF were introduced 

using QuickChange II XL site-directed mutagenesis (Agilent Technologies) using the 

same mutagenesis primers as for dfoxo-V3 constructs (Table 2.1 and Supplementary Table 

S1). The dHNF4 ORF was PCR amplified using cDNA clone RE09535 (Berkeley 

Drosophila Genome Project) as template and primers SOL1160/1162 and Phusion High 

Fidelity Master Mix (ThermoFischer). The SOL1160 primer introduces an N-terminal 

3xHA tag to the dHNF4 protein. The 3xHA the dHNF4 PCR product was then cloned in 

the pUbiP, kindly donated by Alf Herzig, by InFusion cloning and sequence verified with 

primers SOL1160-1171. 

 

The pACT-renilla construct was kindly donated by Prof. Michael Hoch. The pGL-InR 

luciferase and pGL-4xFRE (4xFOXO Responsive Element) luciferase constructs were 

reported elsewhere (Puig et al., 2003). Lip3-short and lip3-long promoter regions were 

PCR amplified from wDahT DNA using primers SOL 1093/1094 and SOL1092/1094 

respectively (Supplementary Table S1). Amplified sequences were then cloned in the 
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pGL3 vector (Promega) backbone by InFusion cloning and sequenced verified using 

primers SOL1092-1094 and SOL1139-1140. Supplementary Table S1). 

 

2.3.2 Cell culture maintenance, luciferase assay and cell imaging 

Drosophila S2-R+ (Schneider’s line 2 receptor plus) cells (Schneider, 1972)were grown at 

25ºC on Schneider’s Medium (Gibco™) supplemented with 10% FCS, penicillin and 

streptomycin. Cells were maintained through serial passage. 

 

For luciferase assay, cells were grown on 96-well plates and transfection of 1,25µg of total 

DNA (1:10 ration for luciferase:renilla constructs) was done using the Qiagen-Effectene® 

transfection reagent according to the manufactures instructions (Qiagen). Measurement of 

firefly and renilla luciferase was done with Dual-Glo kit according to manufacturer’s 

instructions (Promega) 24h after transfection in a Infinity200 multimode reader (Techan). 

Data is presented as average fold change of firefly/renilla values ± standard error of the 

mean (SEM).  

 

For imaging of EGFP-dFOXO subcellular localization, cells were grown on a µ-slide 

(Ibidi) and transfected with pUbi-EGFP constructs. Transfection was carried out with 

1.25µg of total DNA as described before with Effectene® transfection reagent (Qiagen). 

24h after transfection, cells were starved on serum-free medium (Schneider’s medium) for 

2h and nuclei were stained with Hoechst 33342 (Sigma). Imaging was performed in a 

fluorescent microscope at 64x magnification (Leica DMI4000B). After the initial imaging, 

cells were then treated with 10µg/ml insulin (Sigma) in serum-free medium for 10min and 

imaged again.  

 

2.4 Statistical Analysis 

For lifespan and stress assays statistical analysis was performed in Excel (Microsoft) using 

log-rank test. All other data, presented as average ± standard error of the mean (SEM), 

were analyzed in Graphpad Prism®. Differences were calculated either by two-tailed 

unpaired Student’s t-test or one-way ANOVA followed by Dunnett’s test to compare to a 

control sample (specified in each experiment). ns – p>0.05; * p<0.05; ** p<0.01; *** 

p<0.005.	
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3.1 INTRODUCTION 

FOXO transcription factors are key regulators of multiple organismal processes such as 

development, metabolism and ageing. Therefore, FOXO proteins are under tight 

regulatory control of several upstream signalling networks including the IIS, TOR and 

AMPK pathways. These pathways regulate FOXO activity by PTMs, and direct protein-

protein interactions. However, the exact mechanisms by which FOXO proteins are 

regulated are not well understood. Moreover, preliminary cell culture studies suggest 

FOXO proteins may also have regulatory roles independent of DNA binding (Matsumoto 

et al., 2006; Ramaswamy et al., 2002; Rudd et al., 2007), adding an extra level of 

complexity. Thus, in order to separate the different functions associated with FOXO 

proteins, it is critical to better understand how these transcription factors are regulated in 

vivo. Here, I used genomic engineering in the fruit fly Drosophila melanogaster to 

establish a tool that allows dfoxo gene editing and analysis of dFOXO function in vivo. 

This new model permits quick and easy generation of any desired dfoxo allele in the fly. 

As a proof of principle, I used this knock-in platform to generate two novel dfoxo alleles 

containing mutations within the DBD. Furthermore, I used these mutants to separate the 

physiological functions that are dependent and independent of dFOXO DNA-binding.  

 

3.2 RESULTS 

3.2.1 Genomic Engineering of the Drosophila foxo locus 
The first step in the genomic engineering protocol (Huang et al., 2009) is the replacement 

of the endogenous dfoxo gene by an attP site using ends-out homologous recombination. 

AttP is a small DNA sequence, used as a target site of the ϕC31-Integrase, that can be 

used to re-introduce mutated versions of the dfoxo gene by site-directed integration 

(Huang et al., 2009) (Figure 3.1A-D).  

 

3.2.1.1 Generation of dfoxo parental knock-out lines 

Since homologous recombination and site-directed integration are more efficient with 

shorter deletions and shorter DNA fragments respectively (Huang et al., 2009), we 

designed three different donor constructs to cover the whole coding sequence of the dfoxo 

gene. The donor constructs had homologous arms flanking one of the exon-clusters of 

interest within dfoxo, arbitrarily denoted V1, V2 and V3, respectively (Figure 3.1A-B): V1 

is a small ~1 kb region (exons coding for amino acids 1-145), V3 represents a ~3 kb 

sequence (exons coding for amino acids 146-613) and V2 is a large (16kb) sequence 
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encompassing the whole protein coding part of the dfoxo gene. This strategy allows re-

introduction of any desired mutation into the dfoxo open reading frame (ORF) once the 

‘parental knock-out lines’ are generated.  

 

 
Figure 3.1. Genomic engineering of the dfoxo locus.  
(A) Schematic view of the dfoxo gene locus. Boxes represent UTRs (white boxes) and the CDS 
(black boxes) within the exons. Regions to be deleted were arbitrarily denoted V1 (1Kb), V3 
(3Kb) and V2 (16Kb – which includes V1 and V3). (B) Representation of donor constructs used 
for ends-out homologous recombination. Three different donor constructs were created, covering 
three different regions of the dfoxo gene (V1, V2and V3). Donor constructs were cloned into the 
pGXattP vector, which contained the denoted homologous arms flanking an attP site, to allow 
targeted reinsertion, and a mini-white+ marker gene to facilitate detection of successful reinsertion 
events. (C) Primer combinations used to screen (SOL665-670) and validate (all other SOLs) 
correct recombination events in the newly generated dfoxo-null lines (dfoxo∆V1, dfoxo∆V2 and 
dfoxo∆V3). Primers in red bind inside the pGE vector and only amplify bands if correct 
recombination took place. (D) dfoxo replacement constructs coding for wild type or N-/C-terminal 
tagged versions of the gene. WT = wild type.  
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To generate the homologous recombination constructs (Figure 3.1B), we cloned the 

relevant homologous arms into the pGX-attP vector (Huang et al., 2009). This vector has 

an attP-50 cassette between the homologous arms along with a mini-white marker gene to 

allow easy detection of transgenic flies. Homologous recombination donor constructs, 

targeting each of the desired dfoxo regions (V1, V2 and V3), were introduced into the 

Drosophila genome by P-element mediated germline transformation.  

 

Ends out homologous recombination crosses using the transgenic dfoxo donor lines were 

carried out as described before (Huang et al., 2008) (Figure 3.2A). Homologous 

recombination screens for the V2 and V3 region were done as part of this PhD project, 

whereas the homologous recombination screen for the V1 region was done by Dr 

Sebastian Grönke. First, dfoxo donor males were crossed with females of the fly line 

6934-hid. Offspring embryos of this cross were heat shocked to induce expression of 

Flipase (FLP) and the homing endonuclease I-SceI. These enzymes cut specific DNA 

sequences within the donor construct and release the targeting cassette including the 

homologous arms and attP replacement cassette as a linear DNA fragment (Figure 3.2A). 

This linearized targeting cassette is able to move within the nucleus and find the dfoxo 

flanking arm regions to undergo homologous recombination. The heat shock also induced 

expression of the pro-apoptotic gene head involution defective (hid), which induced 

apoptosis specifically in males, since the corresponding transgene is integrated on the Y 

chromosome. Expression of hid killed developing males and therefore assured that all 

females remained virgins, which facilitated the collection of white/mosaic eyed females.  

 

In order to identify homologous recombination events I employed the rapid targeting 

scheme (Rong and Golic, 2001). Therefore, females from the first crossing round were 

mated to flies expressing FLP (6938). In case of a successful homologous recombination 

event, only one FRT target sites will be present at the endogenous dfoxo locus and the 

FLP cannot cut out the targeting cassette. This will result in flies that have red eyes 

without mosaicism. In contrast, improper targeting events where the construct was not 

mobilized will cause mosaic eyes because both FRT sites are still present in the targeting 

construct. Flies with red eyes were collected and individually mated to TM3 Sb balancer 

flies to test whether the white marker gene was inserted on the third chromosome, where 

the dfoxo gene locus is located. Flies were made homozygous for the targeting event and 
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screened by PCR with primers within the excised regions (Figure 3.1A-C and Figure 

3.2B) to identify targeted homologous recombination events. Numbers of flies used in the 

different crossing rounds are indicated in Figure 3.2A. Although several fly lines were 

established in which the white marker gene did move to the third chromosome, 30 for V2 

and 18 for V3, only one fly line per targeted region was identified as a true homologous 

recombination event for the dfoxo gene locus (Figure 3.2).  

 

In order to verify correct homologous recombination, we performed long-range PCR 

analysis using primers inside the recombination cassette and outside the homologous arms 

(Figure 3.1C and 3.2C). Long-range PCR confirmed the correct recombination events for 

the newly generated dfoxo∆V2 and dfoxo∆V3 lines. In contrast, the long range PCR covering 

arm1 in the line dfoxo∆V1 did not look as expected. However, after removal of the white 

marker gene (see below), PCR with new primers (SOL791-794) showed the expected 

banding pattern, suggesting proper homologous recombination (Figure 3.1C and 3.2C).  
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Figure 3.2. Generation of new dfoxo alleles by ends-out homologous recombination.   
(A) Crossing scheme to generate novel dfoxo-null (∆) lines by ends-out homologous 
recombination (∆V1*, ∆V2 and ∆V3, where ∆V3 is used as a representative example) accompanied 
by the fly numbers used for each cross. y-yellow; w-white; hs-heat shock; hid-head involution 
defective,; Flipase (FLP)-recombinase that recognizes FRT (flipase recognition sites) in the ∆V3-
Donor sequence; I-SceI – endonuclease that recognizes I-SecI sites in the ∆V3-Donor sequence; 
CyO and TM3Sb- balancer chromosomes for Chr.2 and 3, respectively. (B) PCR screening 
identified novel dfoxo-null (∆) alleles using allele specific primer combination (see also Figure 3.3 
and supplemental Table S1). (C) Validation of the correct homologous recombination by long 
range PCR followed by normal PCR on the ∆V1 line to confirm correct reinsertion after removal 
of the white gene (refer to text). *Dr. Sebastian Grönke performed crossings for the ∆V1 allele. 
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3.2.1.2 Generation of dfoxo replacement lines 

In order to use the attP site within the knockout parental lines dfoxo∆V1, dfoxo∆V2 and 

dfoxo∆V3 as a landing site for exogenous DNA sequences, it was necessary to remove the 

mini-white gene marker and to introduce a vasa-ΦC31-integrase expressing construct. 

Therefore, two more crosses were carried out (Figure 3.3A). In the first cross, dfoxo 

homologous recombination event males were mated to females expressing a Cre-

recombinase. The white marker gene is flanked by two loxP sites and was therefore 

removed by the Cre expression. Resulting flies had white eyes and were then crossed to 

flies carrying a vasa-ΦC31-integrase construct (Figure 3.3A), which allows for germ-line 

specific-expression of the ΦC31-integrase (Huang et al., 2009).  

 

To verify that we could introduce modified dfoxo sequences into the attP site at the 

endogenous dfoxo locus, we used the newly generated dfoxo∆V3-attP fly line. The dfoxo∆V3-

attP fly line was chosen because the V3-exon cluster covers the majority of the dfoxo 

ORF. We first introduced a wild type dfoxo gene (control) and a Carboxy-terminally 

FLAG-tagged dfoxo gene, as well as Biotin ligase recognition peptide (BLRP) and 

mCherry tags, respectively (Figure 3.1D and 3.3B). We chose the FLAG-tag because it 

allows easy detection on western blot and immunoprecipitation to enrich dFOXO protein. 

In contrast to the specific dFOXO antibody, the anti-FLAG antibody is not limiting and is 

available in unlimited amounts, one of the big advantages of the newly generated dFOXO 

line. The mCherry-tagged protein was chosen mainly to monitor the subcellular 

localization of dFOXO in vivo, since shuttling between nucleus and cytosol is a key 

regulatory mechanism of FOXO transcription factors. The introduction of the small BLRP 

tag will permit the study of dFOXO in a tissue specific manner (Beckett et al., 1999). 

dFOXO-BLRP flies could be combined with lines expressing BirA in certain tissues. BirA 

adds a biotin moiety to the BLRP tag and allows subsequent purification of biotinylated 

FOXO. This would allow us to evaluate tissue-specific, post-translational modifications of 

dFOXO or tissue-specifically target genes by ChIP-chip. After generation, the 

replacement lines were verified by PCR and subsequent sequencing. In addition, we have 

also successfully generated re-insertion fly lines for the dfoxo∆V1-attP site (data not 

shown). These lines were verified by sequencing but remain to be fully characterized. 
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Figure 3.3. Crossing scheme and PCR verification for gene replacements at the dfoxo V3 
locus. (A) Crossing scheme to bring dfoxo∆V3 into the phage integrase ΦC31 (vas-int) 
background. y-yellow; w-white; cre-recombinase to remove additional DNA containing the vector 
backbone and the white marker gene located between two loxP sites; Balancer chromosomes for 
chr. 2 (CyO) and chr. 3 (TM6B and MKRSSb). (B) PCR analysis confirmed the correct reinsertion 
of V3 (wild-type or tagged) gene replacement constructs. Table to the right summarizes the 
number of lines obtained per number of injected embryos. Fw primer binds to the reintroduced 
fragment whereas Rv primer binds to arm4 outside of the reinsertion region. 
 

In order to validate the newly generated dfoxo mutants and to test whether the gene 

replacement constructs restored dFOXO function, we first checked the expression of dfoxo 

mRNA by quantitative Real-Time (qRT)-PCR (Figure 3.4A). qRT-PCR confirmed the 

lack of mRNA expression of the corresponding sequence in the dfoxo mutant lines (∆ 

lines) and showed wild type-like expression levels in the dfoxo gene replacement lines 

(Figure 3.4A). As a positive control for the null alleles, we used a previously generated 

dfoxo-null line (dfoxo∆94) (Slack et al., 2011). Expression of npc2b, a gene directly 

downstream of dfoxo was not changed in the dfoxo mutant or re-insertion fly lines, 

demonstrating that the introduced modification is specific to the dfoxo gene and does not 

affect the neighbour gene (Figure 3.4B). dFOXO protein was not detected in the dfoxo 

mutants, but was restored in the gene replacement lines, consistent with the qRT-PCR 

results (Figure 3.4C). In addition, dFOXO-V3FLAG was specifically detected at the 
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expected size using an anti-FLAG antibody, indicating proper expression of the tagged 

dFOXOs. Furthermore, subcellular localization of dFOXO-V3mCherry was observed in vivo 

and it was localized in the nucleus in the larval epidermis under the tested conditions 

(Figure 3.4D). This line was used by Dr. Parisa Kakanj to study the relationship between 

the IIS pathway and wound healing (Kakanj et al. in press).  

 

 
Figure 3.4. Molecular validation of novel dfoxo-null mutants and V3 gene replacement lines. 
(A) Quantitative PCR analysis of relative mRNA levels of dfoxo transcript using probes against 
the V1 region (black) or the V3 region (red) in the dfoxo-null ∆94, (Slack et al., 2011), ∆V1, ∆V2 
and ∆V3, wild type (wDahT) or gene replacement lines V3, V3FLAG, V3BLRP and V3mCherry. Pairwise 
comparison between control (wDahT) and all other genotypes tested with the same probe 
(***p<0.001, Students t-test). (B) Relative mRNA levels of npc2b, a gene located directly 
downstream of the dfoxo locus (see also Figure 3.5), were unaffected by dfoxo mutations or gene 
replacements. Pairwise comparison between control (wDahT) and all other genotypes tested with the 
same probe (n.s. p>0.05, Students t-test).  (C) Western blot on whole-body protein extracts from 
female flies confirmed dFOXO expression in all gene replacement lines and FLAG tagged-FOXO 
specifically in dFOXO-V3FLAG line. Red arrow shows unspecific band (D) Live imaging of larval 
epidermis confirms the expression and nuclear localization of dFOXO-V3mCherry. Larvae drawing 
by Joana Gonçalves and imaging performed by Dr. Parisa Kakanj. (Kakanj et al, in press). 
 

To study physiological phenotypes of the newly generated dfoxo alleles, all mutant fly 

lines were backcrossed into a common genetic background, the outbred wDahT fly strain 

(Grönke et al., 2010). Removal of the dfoxo gene yields smaller flies with a slight delay in 
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development (Jünger et al., 2003; Slack et al., 2011). Consistent with these phenotypes, 

the newly generated dfoxo-null alleles (∆V1, ∆V2 and ∆V3) had reduced body weight and 

were developmentally delayed when compared to the wild type control (wDahT) (Figure 

3.5A-C). These phenotypes were fully rescued in the replacement lines, independent of the 

presence of a tag. Moreover, in replacement lines V3 and V3FLAG the fecundity observed 

in dfoxo-null (∆V3) flies was rescued (Figure 3.5D). dfoxo-null mutants are sensitive to 

starvation and are short-lived (Slack et al., 2011). This was also the case for the dfoxo-null 

alleles (∆V1, ∆V2 and ∆V3), whereas the dfoxo replacement constructs were able to fully 

rescue these phenotypes in both male and female flies (Figure 3.6A-D).  

 

 
Figure 3.5. Body weight and development time of the novel dfoxo-null mutant and V3 gene 
replacement flies. (A) Female and (B) male dfoxo-null (∆) flies had reduced body weight when 
compared to wild type (wDahT). This reduction in body weight was fully reversed in all V3 
replacement lines (n=50/genotype and gender). n.s. p>0.05, ***p<0.001, one-way ANOVA with 
post-hoc Dunnett’s comparison test with control (wDahT). (C) All dfoxo-null (∆) mutant flies were 
developmentally delayed with respect to wild type control and gene replacement flies. n=500 eggs 
per genotype. (D) dfoxo-null line ∆V3 showed reduced cumulative eggs laid than wild type flies, 
as reported before (Slack et al., 2011). The gene replacement lines V3 and V3FLAG showed wild 
type-like fecundity. 
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In summary, I have successfully generated three novel dfoxo-null mutants (∆V1, ∆V2 and 

∆V3) and shown that the dfoxo∆V3 line can be used to reinsert modified alleles of the dfoxo 

gene to study its in vivo function. The C-terminal insertion of the tag did not seem to 

interfere with dFOXO function.  

 

 

 
Figure 3.6. Starvation and lifespan of dfoxo-null mutants and V3 gene replacement flies. 
Starvation assay for females (A) and males (B) showed that all dfoxo-null mutants (∆) were 
starvation-sensitive, whereas the gene replacement lines (V3x) rescued this sensitivity. Flies of 
each genotype were placed on starvation medium after 2 days on 1xSYA food (n=100/genotype). 
***p<0.001 log-rank test for comparison of dfoxo-nulls (∆) vs control (wDahT) flies.  (C) Female 
and (D) male lifespan assays showed dfoxo-null lines were shorter-lived than wild type control 
(wDahT), whereas V3x replacement lines rescued this shortening. Flies of each genotype were 
placed on 1xSYA food and followed throughout life (n=100/genotype). ***p<0.01 log-rank test 
for comparison of dfoxo-nulls (∆) vs control (wDahT) flies. 
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3.2.2 Dissection of dFOXO functions independent of DNA binding 

Mammalian cell culture studies suggest that FOXO transcription factors may have 

functions independent of DNA binding (Matsumoto et al., 2006; Ramaswamy et al., 2002; 

Zhao et al., 2010). More recently, a study in mice further suggests that FOXO1 can 

modulate lipid biosynthesis in the liver, probably working as a transcriptional co-

regulator, independent of DNA binding (Cook et al., 2015). However, it is currently 

unknown whether this DNA-binding-independent function of FOXO proteins is restricted 

to lipid metabolism or is also involved in regulation of other physiological processes like 

development or lifespan. Furthermore, it is unknown if FOXO’s DNA-binding-

independent functions are evolutionary conserved or originated recently in the mammalian 

homologs. To determine whether any of the dFOXO-associated functions are DNA 

binding-independent in Drosophila, I decided to generate endogenous DNA-binding 

mutants. 

 

3.2.2.1 Identification of DNA binding deficient dFOXO 

FOXO proteins share a highly evolutionarily conserved DNA binding domain (DBD) 

(Figure 3.7A). Therefore, I generated eGFP-tagged dFOXO constructs and mutated one 

(H150A) or two residues (H150A and N146A) within the DBD to obtain two independent 

mutants (DBD1 and DBD2, respectively). Both these conserved residues are in direct 

contact with DNA according to the crystal structure of FOXO1 (Brent et al., 2008) (Figure 

3.7B) and mutation of the H150 homolog residue alone is sufficient to abolish DNA 

binding of mammalian FOXO1 (Ramaswamy et al., 2002; Tang et al., 1999). Unlike wild 

type dFOXO, DBD mutants are unable to drive luciferase expression under two different 

promoters, 4xFOXO responsive elements (4xFRE) and Insulin receptor (InR) (Figure 

3.7C). This suggests that single mutations within the DBD are sufficient to abolish the 

ability of dFOXO to induce transactivation of target genes. Remarkably, mutation of these 

residues does not interfere with the protein’s ability to translocate between cytoplasm and 

nucleus in response to nutritional cues (starvation vs insulin) (Figure 3.7D). These 

experiments suggest that mutations H150A and N146A interfere with the DNA binding 

ability of dFOXO. 
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Figure 3.7. The residues mediating dFOXO–DNA interaction are evolutionary conserved. 
(A) Protein alignment of the FOXO DNA binding domain (DBD) between mouse (FOXO1, 
FOXO3), worm (DAF16) and fly (dFOXO) showed a high degree of conservation. Blue 
background highlights identical (*), strongly similar (:) or weakly similar (.) residues between 
sequences. Red residues are conserved mediators of DNA interaction. (B) Crystal structure of 
FOXO1 DBD bound to DNA (3CO6) (Brent et al., 2008) showed the critical location of residues 
histidine and asparagine that allows them to mediate DNA interaction. Blue resides are identical or 
similar to dFOXO as shown in the sequence alignment. Red residues are conserved mediators of 
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DNA interaction. (C) Luciferase reporter assay showed mutation of one or both residues is 
sufficient to abolish dFOXO transactivation activity. S2-R+ cells were transfected with 
pBluescript (pBS), EGFP tagged dFOXO, -DBD1 or -DBD2 along with reporter luciferase 
constructs 4xFRE-Luc or InR-Luc. n.s. p>0.05, *p<0.05, **p<0.01, ***p<0.001, one-way 
ANOVA with post-hoc Dunnett’s comparison with pBS. (D) All dFOXO proteins were able to 
respond to nutritional cues in Drosophila cell culture, as shown by representative fluorescent 
microscopy images. S2-R+ cells transfected with EGFP tagged dFOXO, -DBD1 and -DBD2, 
maintained in serum-free medium (2h) and later treated with insulin (10mM) for 10mins. Scale bar 
= 5µm. 
 

3.2.2.2 Generation and validation of in locus dfoxo-DBD mutants 

Taking advantage of the already validated dfoxo-editing tool and the ∆V3-attP line, we 

reintroduced two V3FLAG constructs with mutations for DBD1 (H150A) and DBD2 

(H150A and N146A) (Figure 3.8A). Reinsertion of these two constructs restored normal 

dFOXO mRNA and protein levels (Figure 3.8B-C). To verify that mutation of those 

residues also interfered with DNA binding in vivo, we performed a chromatin 

immunoprecipitation (ChIP) followed by qPCR on mock (V3), replacement (V3FLAG) and 

mutant (V3FLAG-DBD2, from here on called DBD2) flies. We evaluated enrichment of 

proteins on the promoter regions of the known dFOXO target thor (homolog of 

mammalian 4E-BP). As expected, we found dFOXO, and not DBD2, on the promoter of 

thor (Figure 3.8D), consistent with the hypothesis that the DBD2 mutations interfere with 

DNA binding of dFOXO in vivo. 

 

To evaluate which of the dFOXO functions were affected by the DBD mutations, we 

tested phenotypes associated with lack of dfoxo (Slack et al., 2011). Both DBD mutants 

have reduced daily and cumulative levels of female fecundity compared to the V3FLAG 

flies  (Figure 3.9A-B). Furthermore, DBD mutants have a reduced lifespan and reduced 

hydrogen peroxide resistance in both males and females (Figure 3.9C-F). These results 

indicate that mutation of the DBD yields a dFOXO protein unable to fulfill many of the 

functions associated with this transcription factor. Even more, it suggests that normal 

fecundity, lifespan and oxidative stress resistance require a transcriptional output that is 

dFOXO-dependent.  
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Figure 3.8. Generation and molecular validation of dFOXO-DBD mutants in vivo.  
(A) Schematic view of the dfoxo gene locus and the gene replacement constructs used to generate 
the DBD mutant lines. Boxes represent UTRs (white boxes) and the CDS (black boxes) within the 
exons. Regions arbitrarily denoted V1 (1Kb) and V3 (3Kb). (B) Quantitative PCR analysis of 
relative mRNA levels of dfoxo showed transcript levels restored to normal in DBD gene 
replacement lines. Probes against the V1 region (black) or the V3 region (red) were used in dfoxo-
null (∆V3) and gene replacement lines V3FLAG, DBD1 (V3-DBD1FLAG) and DBD2 (V3-
DBD2FLAG). (C) Western blot on whole-body protein extracts from female flies confirmed proper 
dFOXOFLAG expression in all gene replacement lines. (D) Chromatin Immunoprecipitation (ChIP) 
experiment showed dFOXO (V3FLAG), but not DBD2 nor a mock control (V3 without FLAG), can 
be found at the promoter region of the know dFOXO-target gene 4ebp. Chromatin was evaluated 
by qPCR using primers SOL988-989, previously reported in (Liu et al., 2014). 
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Figure 3.9. DBD mutations interfere with normal dFOXO functions in vivo.  
(A) Daily and (B) cumulative fecundity was equally reduced in dfoxo-null (∆V3) and DBD 
mutants when compared to V3FLAG flies. n.s. p>0.05, ***p<0.001, one-way ANOVA with post-
hoc Dunnett’s comparison with ∆V3 flies (C) Female and (D) male lifespan assays showed DBD 
mutants were, just like ∆V3, shorter lived than V3FLAG flies. ***p<0.001 log-rank test for 
comparison of dfoxo-null (∆V3) or DBD mutants vs control (V3FLAG). Flies of each genotype were 
placed on 1xSYA food and followed throughout life (n=100/genotype). (E) Female and (F) male 
∆V3 and DBD flies were sensitive to oxidative stress when compared to V3FLAG. ***p<0.001 log-
rank test for comparison of dfoxo-null (∆V3) or DBD mutants vs control (V3FLAG). Flies of each 
genotype were placed on H2O2 media after seven days on 1xSYA food (n=100/genotype). 
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3.2.2.3 dFOXO regulates body size independent of DNA binding  

Lack of dfoxo causes delayed development and smaller body size (Slack et al., 2011). 

Therefore, we evaluated whether DBD mutations would interfere with fly development. 

DBD mutants were developmentally delayed (Figure 3.10A), even though the delay was 

not as strong as the one observed for the dfoxo-null mutant allele dfoxo∆V3. Surprisingly, 

DBD mutants showed normal hatching rates and bodyweights for both males and females 

(Figure 3.10B-D), suggesting that these phenotypes are regulated independently of DNA 

binding.  

 

 
Figure 3.10. dFOXO regulates some developmental features independent of DNA binding. 
(A) DBD mutants showed a small developmental delay with respect to V3FLAG although not as 
drastic as the one in dfoxo∆V3 flies. (B) The characteristic reduced eclosion rate of dfoxo-null flies 
was fully rescued by the DBD mutants. (n=500; eggs per genotype were picked on 1xSYA food 
and followed at 25°C). (C) Female and (D) male DBD mutants restore normal body weight 
(n=50/genotype and gender). ***p<0.001, one-way ANOVA with post-hoc Dunnett’s comparison 
with ∆V3 flies. (E) dfoxo∆V3 and DBD mutant flies were unviable when placed in a dilp2-3,5 
background, a model of reduced insulin signalling (Grönke et al., 2010). n=~600 eggs per 
genotype were squirted on 1xSYA food and followed at 25°C. 
. 
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When we introduced the DBD mutants in a model of reduced IIS, the dilp2-3,5 mutant 

background (Grönke et al., 2010), this combination caused lethality, similar to the effect 

with the dfoxo-null (∆V3) allele (Figure 3.10E). Similarly, over-expression of dFOXO and 

the DBD mutants using a constitutive driver, da-Gal4 caused lethality during development 

(data not shown). These observations suggest that some functions of dFOXO during 

development are independent of DNA binding and, hence, further studies are required to 

understand the mechanism by which dFOXO regulates them.  

 

3.2.2.4 dFOXO promotes lipid usage independent of DNA binding 

FOXO transcription factors, especially FOXO1, have important functions in carbohydrate 

and lipid metabolism in response to insulin (Kousteni, 2012). Moreover, dFOXO is a 

mediator of the starvation response in Drosophila (Chatterjee et al., 2014; Teleman et al., 

2008). Several studies in mammalian cell culture and a recent in vivo study in mice 

suggest that the ability of FOXO1 to regulate lipid metabolism in the liver is, at least 

partially, independent of its DNA binding ability (Cook et al., 2015; Matsumoto et al., 

2006). However, the mechanism by which this is achieved is still unclear.  

 

To test whether lipid metabolism was altered in the DBD mutants, we first evaluated 

starvation sensitivity as a proxy for lipid storage. Surprisingly, reintroduction of the DBD 

mutants was able to fully rescue, in males and females, the starvation sensitivity observed 

in dfoxo-null (∆V3) flies (Figure 3.11A-B). This sensitivity to starvation in the dFOXO∆V3 

flies compared to the other genotypes could be due to either reduced lipid synthesis or 

impaired mobilization of fat stores. Thus, we evaluated the lipid content of pre-starvation 

and starved-to-death flies. We observed no significant differences between genotypes pre-

starvation (Figure 3.11C-D), suggesting that fat synthesis and storage is not affected by 

lack of dFOXO or in the DBD mutants. In fact, mRNA levels of two key enzymes for 

TAG biosynthesis, fasn-1 and acc, were not changed under normal conditions in any of 

the tested genotypes (Figure 3.12A). Moreover, feeding of a high sugar or high fat diet 

lead to an increase of lipid accumulation in all the genotypes (Figure 3.12B), suggesting 

that lack of dFOXO function does not affect fatty acid synthesis.  
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Figure 3.11. dFOXO regulates lipid usage independent of DNA binding.  
(A) Starvation assay for females and (B) males showed DBD mutants, unlike ∆V3 flies, were as 
resistant to starvation as V3FLAG flies. ***p<0.001 log-rank test for comparison of dfoxo-null 
(∆V3) and V3FLAG or DBD mutant flies. Flies of each genotype were placed on starvation medium 
after 7 days on 1xSYA food (n=100/genotype). (C) TAG content of female or (D) male flies 
before starvation or post-mortem revealed dfoxo-null (∆V3) flies had problems mobilizing fat 
stores, whereas DBD mutants rescued this phenotype. Five biological replicates per assay were 
used, each of them with n=4 flies/genotype and gender. §-marked samples had no detectable TAG 
content.  
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Figure 3.12. dFOXO does not seem to be required for fat synthesis.  
(A) Key enzymes involved in TAG biogenesis (fasn-1 and acc) were expressed at comparable 
levels as assessed by quantitative PCR of relative mRNA levels (B) TAG content of female flies 
kept for seven days on control (1xSYA), high fat (5% soy oil) and high sugar (4xSugar on 
1xSYA) food showed all genotypes were able to built extra fat. Five biological replicates per assay 
were used, each of them with n=4 flies/genotype and gender. 
 

dfoxo∆V3 null mutants flies had increased lipid levels post mortem compared to dfoxo 

replacement (V3FLAG) and DBD mutants flies. There was no significant difference 

between pre-starvation and post-mortem lipid levels in the dfoxo∆V3 null mutants, 

suggesting that dFOXO function is required for lipid mobilization under starvation. In 

contrast, dFOXO-V3FLAG and -DBD mutant flies mobilized most of their lipid stores 

under starvation, suggesting that the presence of dFOXO, but not its DNA binding ability, 

is required to fully mobilize fat under starvation (Figure 3.11C-D). Upon starvation 

dFOXO migrates into the nucleus in cell culture (Figure 3.7D). Likewise, starvation 

induces dFOXO nuclear localization in vivo in the fat body of adult flies (Chatterjee et al., 

2014). This observation suggests that dFOXO could be required in the nucleus, perhaps as 

a co-factor, to regulate expression of genes involved in the starvation-response 

independent of DNA binding.  

 

Starvation induces the transcription of multiple genes (Chatterjee et al., 2014; Zinke et al., 

2002).  To test how starvation-induced genes were regulated in the DBD mutants, we 

evaluated their mRNA levels under control and starvation conditions (Figure 3.13A-F). 

Expression of the insulin receptor (InR), a known dFOXO target, was increased by ~2 fold 

upon starvation in all genotypes. This indicates that, although a dFOXO target (Alic et al., 

2011; Puig et al., 2003), InR expression under starvation is largely independent of this 
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transcription factor (Figure 3.13A). In contrast, expression of thor was fully dependent on 

dFOXO’s ability to bind DNA, since neither dfoxo∆V3 nor the DBD mutants showed 

increased expression of thor under starvation (Figure 3.13B). Phosphoenolpyruvate 

carboxykinase (pepck), the rate-limiting enzyme of gluconeogenesis, was induced by 

starvation in all genotypes, indicating that dFOXO is not required for its transcription 

(Figure 3.13C). These results suggest that starvation-induced thor-repression of 

translation, but not gluconeogenesis, is dependent on dFOXO and its ability to bind DNA. 

 

Among the multiple starvation-induced genes, lipases required for triglyceride (TAG) 

hydrolysis are of prime importance for survival under starvation. Brummer (bmm), the 

Drosophila homolog of mammalian adipose triglyceride lipase (ATGL), is the rate 

limiting enzyme for cytosolic TAG hydrolysis (Grönke et al., 2005). Bmm was recently 

shown to be a dFOXO target under starvation conditions (Wang et al., 2011). 

Consistently, dfoxo-null (∆V3) and -DBD mutants were unable to properly up-regulate 

bmm under starvation (Figure 3.13D). This observation indicates that, even though 

dFOXO enhances bmm expression under starvation, this is not fully required for proper 

lipid mobilization, since the DBD mutants are able to survive fasting similar to wild type 

flies. Similarly, lipase 4 (lip4), a lipase associated with the lysosome and presumably 

involved in TAG hydrolysis by the lipophagosome, was shown to be a dFOXO target 

(Vihervaara and Puig, 2008). However, lip4 is greatly induced in the presence or absence 

of dFOXO (Figure 3.13E), suggesting that other factors may also regulate its expression 

under starvation.  

 

Lipase 3 (lip3), another putative lysosome associated lipase, is greatly induced in wild 

type larvae under starvation, similar to lip4 (Zinke et al., 2002, 1999). Lip3 expression 

seems to be fully dependent on the starvation stimuli, since its mRNA is almost 

undetectable under control conditions in all tissues of larvae or adult flies according to 

FlyAtlas (Chintapalli et al., 2007). Consistently, lip3 expression was strongly induced in 

V3FLAG, but not in dfoxo∆V3, flies (Figure 3.13F). Surprisingly, DBD mutants were able to, 

at least partially, rescue lip3 expression under starvation conditions (Figure 3.13F). This 

observation indicates that lip3 starvation-induced expression is dependent on dFOXO but 

not on its DNA binding ability, suggesting dFOXO indirectly regulates the expression of 

lip3.  
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Figure 3.13. dFOXO regulates multiple genes involved in the starvation response.  
(A-F) Relative mRNA levels of starvation-inducible genes (InR, thor, pepck, bmm, lip3 and lip4) 
under control (black) or starved (48h – blue) conditions assessed by qPCR. n.s. p>0.05, *p<0.05, 
**p<0.01, ***p<0.001, Students t-test. 
 

In summary, dFOXO promotes lipid usage, partly in a DNA binding-independent manner. 

One possible explanation for this is that, under starvation, dFOXO may act as a co-

activator of different transcription factors to facilitate the expression of fasting-inducible 

genes, such as lip3. Therefore, we decided to evaluate which transcription factor(s) could 

regulate lip3 expression and test whether lip3 is in fact a limiting factor for lipid usage 

under starvation. 

 

3.2.2.5 dHNF4 seems to regulate lip3 expression in an indirect manner. 

In order to better understand how lip3 is regulated under starvation, we looked at the 

promoter region of this gene for binding motifs of different transcription factors. To do 

this, we used the motif scanning program FIMO (Grant et al., 2011) to compare the 

promoter sequence to several databases containing characterized motifs of different 

transcription factors in diverse model organisms. Among the many suggested motifs, two 

seemed very relevant for this study, a FOXO motif ~250bp upstream of the start codon 

and a HNF4 motif ~1380bp upstream. The same HNF4 motif was discovered using 

NHRscan tool (Sandelin and Wasserman, 2005). Drosophila HNF4 (dHNF4) is a known 

mediator of the starvation response and, when mutated, lip3 is no longer induced under 

fasting conditions (Palanker et al., 2009). The presence of a FOXO and a HNF4 motif 
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opened the possibility of direct regulation of lip3 by these transcription factors. To test 

whether dHNF4 regulates lip3 transcription we generated two luciferase-reporter 

constructs: a long (~1600 bp) lip3 promoter region, containing both the HNF4 and FOXO 

motifs, and a short (~600 bp) lip3 promoter region, which contains only the FOXO motif 

(Figure 3.14A). Unexpectedly, over-expression of dHNF4 did not enhance, but rather 

repressed, the expression of both lip3-promoter constructs (Figure 3.14B-C). This 

repression was observed even in the presence of a known dHNF4 activating ligand, 

palmitic acid (Palanker et al., 2009). This observation suggests that, at least in vitro, lip3 

may not be a dHNF4 direct target.  

 

 
Figure 3.14. dHNF4 does not induce lip3 expression in cell culture. 
(A) Schematic representation of the reporter luciferase constructs generated to drive luciferase 
expression under the lip3 long (1.3Kb) or short (0.6Kb) promoter regions. Bioinformatic analysis 
revealed the presence of, among many others, putative binding sites for HNF4 and FOXO factors 
in the lip3 promoter – Analysis performed by the Bioinformatic core facility. (B) Luciferase 
reporter assay showed dHNF4 represses gene expression under the lip3 promoter, even in the 
presence of its reported activator (Palmitic acid – PA) (Palanker et al., 2009). S2-R+ cells were 
transfected with pBluescript (pBS) or dHNF4HA along with reporter luciferase constructs lip3-
long-Luc or lip3-short-Luc. Luciferase assay performed by Ralf Meilenbrock. (C) Western blot of 
independently transfected cell confirmed the correct overexpression of dHNF4 under the tested 
conditions.  
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A mammalian cell culture study previously reported that FOXO1 and HNF4 are able to 

synergistically up-regulate Glucose-6-phosphatase under fasting conditions (Hirota et al., 

2008). Moreover, dHNF4 mediates the expression of genes involved at different levels of 

starvation response (Palanker et al., 2009). Hence, we decided to test whether the 

expression of some of these putative, highly expressed, dHNF4 targets are affected by 

dfoxo mutation. The selected genes are involved in free fatty acid (FFA) transport into 

mitochondria (AcCoAS, CG2107, colt), and the β-oxidation cascade (CG9577, scully, 

yip2). Even though the expression patterns are somewhat variable, none of the tested 

genes seemed to depend on dFOXO for normal expression under control or starved 

conditions (Figure 3.15A-F). This suggests that, at least for these genes, there is no 

synergy between dFOXO and dHNF4.  

 

 
Figure 3.15. Relative expression of dHNF4-target genes (involved in the starvation response) 
is dFOXO independent.  (A-F) Relative mRNA levels of dHNF4-regulated genes, involved in 
free fatty acid transport into mitochondria (AcCoAS, CG2107, colt), and β-oxidation (CG9577, 
scully, yip2), under control (black) or starved (48h – blue) conditions was unaffected by the 
presence of dFOXO. n.s. p>0.05, *p<0.05, **p<0.01, ***p<0.001, Students t-test. 
 

In summary, even though dHNF4 is a fundamental mediator of the starvation response in 

Drosophila, the regulation it exerts on target genes associated with starvation seems to be 

independent of dFOXO. Future studies should address whether dHNF4 and dFOXO can 

physically or genetically interact under different circumstances.  
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3.2.2.6 Is lip3 fundamental for lipid mobilization under starvation? 

lip3 expression is strongly up-regulated upon starvation in larvae (Zinke et al., 2002, 

1999). Therefore, we considered that the lack of lip3 induction in the dfoxo∆V3 flies could 

be limiting for lipid mobilization under starvation. To test if reduced lip3 induction can 

cause starvation sensitivity, we constitutively overexpressed Lip3RNAi, in fat tissue (FB- 

and GS-Gal4) or whole body (da-Gal4), and evaluated the starvation sensitivity of these 

flies. When compared to the respective driver controls, these flies were slightly more 

sensitive to starvation (Figure 3.16A). However, the UAS control line (Lip3RNAi/+) also 

showed a mild detrimental effect, suggesting the observed effects could be due to leaky 

expression of Lip3RNAi. We also checked lip3 expression levels while overexpressing 

Lip3RNAi in the whole fly and found a ~60% reduction of lip3 mRNA levels upon 

starvation (Figure 3.16B). This reduction, although significant, may not be sufficient to 

completely block lip3 function in the starvation response. In the future, it would be 

interesting to generate a full lip3 knockout to assess whether lip3 function is essential for 

lipid mobilization under starvation conditions.  

 

 
Figure 3.16. Partial lip3 repression by RNAi is insufficient to mimic the starvation sensitivity 
from dfoxo-null mutation. (A) Constitutive lip3RNAi over-expression showed a small increase in 
starvation-sensitivity compared to the driver controls, but was unaffected when compared to the 
UAS control line (UAS-Lip3RNAi/+). ***p<0.001 log-rank test for comparison of RNAi over-
expression lines vs the respective driver control. n.s. p>0.05 log-rank test for comparison of  RNAi 
over-expression lines vs UAS-lip3/+ line. da – whole body driver; FB and GS – Fat body 
‘specific’ driver. Flies of each genotype were placed on starvation media after seven days on 
1xSYA food (n=100/genotype). (B) Relative mRNA levels of lip3 under control (black) or starved 
(48h – blue) conditions showed a reduction in expression of ~60%. n.s. p>0.05, *p<0.05, 
**p<0.01, ***p<0.001, Students t-test. 
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To determine whether lack of lip3 induction is in fact limiting the starvation resistance of 

foxo-null flies, we decided to overexpress lip3 in dfoxo∆V3 flies and assess their starvation 

resistance. Therefore, we used the S1106 gene switch driver that induces expression only 

in the presence of the drug RU486 (Giannakou et al., 2007; Roman et al., 2001). We 

observed an increase in dFOXO protein levels, consistent with a previous study where 

starvation was shown to induce dfoxo expression (Villa-Cuesta et al., 2010) (Figure 

3.17A). Moreover, we saw some Lip3HA protein even in the absence of RU486 (Figure 

3.17A), indicating leaky expression, resulting in a constitutive but mild overexpression. 

Nevertheless, Lip3HA overexpression was not sufficient to rescue the starvation sensitivity 

of dfoxo-null flies (Figure 3.17B), suggesting that additional dFOXO-dependent 

mechanisms are required for proper lipid mobilization.  

 

 
Figure 3.17. lip3 overexpression in the fat body does not rescue the starvation sensitivity 
dfoxo-null flies. (A) Western blot on whole-body protein extracts from female flies showed lip3HA 
over-expression under the control of the S1106GS-Gal4 inducible driver, even in the absence of 
RU. (B) lip3HA over-expression under the S1106GS-Gal4 driver in the dfoxo-null background 
(∆V3) did not increase nor restore wild type starvation resistance. ***p<0.001 log-rank test for 
comparison of dfoxo-null background lines (∆V3) vs control (V3FLAG). Flies of each genotype 
were placed on starvation medium after seven days on 1xSYA food (n=100/genotype). 
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TAG hydrolysis, to release FFAs as β-oxidation substrate and thereby increase energy 

production, is catalyzed by lipid-droplet associated enzymes, such as Bmm lipase and by a 

mechanism called lipophagy. Lipophagy involves the autophagic machinery, which 

engulfs lipid droplets and, after fusing with the lysosome, pH sensitive lipases, such as 

lip4 and lip3, hydrolyze these lipids. In order to test whether dFOXO function is important 

for starvation-induced autophagy in Drosophila and whether this function requires 

dFOXO DNA binding ability, we did a western blot analysis with dfoxo-null (∆V3), wild 

type replacement (V3FLAG) and DBD mutant flies using an antibody against the 

autophagy-cargo protein Ref2p, known as p62 in mammals. Ref2p accumulates when 

autophagy is disturbed and can therefore be used as a marker for deficient autophagy 

(Nagy et al., 2015; Pankiv et al., 2007). Under long-term starvation conditions, Ref2p 

accumulated in dfoxo-null flies, but not in replacement (V3FLAG) flies (Figure 3.18A-B), 

indicating that dFOXO is required for proper starvation-induced autophagy. Interestingly, 

Ref2p accumulation was much lower in the DBD mutants compared to dfoxo-null flies, 

suggesting that dFOXO, but not its DNA binding activity, is fundamental for starvation-

induced autophagy.  

 

Mammalian FOXO transcription factors are able to transcriptionally regulate multiple 

genes involved in autophagy, such as atg5, LC3 (atg8) and atg14, in different tissues 

(Webb and Brunet, 2014). This function seems to be evolutionarily conserved since 

muscle-specific over-expression of dFOXO can up-regulate atg8a and, hence, induce 

autophagy (Bai et al., 2013). Moreover, atg14 expression is critical for lipophagy 

induction in the mouse liver under starvation conditions (Xiong et al., 2012). Therefore, 

we tested the transcript levels of three important autophagy-related genes, atg5, atg8a and 

atg14. Starvation induced a mild, but consistent, expression of the three atg genes in 

replacement (V3FLAG), dfoxo-null and DBD mutant flies (Figure 3.18C-E), indicating that 

dFOXO function is not required for their starvation-dependent induction. This observation 

suggests that lack of atg gene expression is not sufficient to explain the autophagy 

deficiency of dfoxo-null mutants and that there must be another currently unknown 

mechanism.  
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Figure 3.18. Autophagy is disrupted in fasted dfoxo-null flies and the dFOXO-DBD mutants 
rescue this phenotype. (A) Western blot on whole-body protein extracts from female flies 
showed the accumulation (improper autophagy) or absence (correct autophagy) of the autophagy 
associated protein Ref2p (p62) under starvation (five days). (B) Ref2p band quantification of the 
previous Western blot with respect to tubulin loading control (quantification was done in Image J). 
(C-E) Relative mRNA of autophagy related genes (atg5, atg8a, and atg14) evaluated by qPCR 
showed dFOXO independence for its induction under starvation. Control (black) or starved (48h) 
samples are compared. n.s. p>0.05, *p<0.05, **p<0.01, ***p<0.001, Students t-test.  
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In summary, it is possible that a combination between disturbed autophagy and improper 

expression of fasting-induced proteins/enzymes, such as lip3, are the reason behind the 

defective starvation response observed in dfoxo-null flies. With this in mind, we propose a 

model where starvation induces dFOXO nuclear retention and therefore induction of direct 

and indirect target genes, which in turn are involved in TAG usage as an energy source via 

cytoplasmic hydrolysis and/or lypophagy (Figure 3.19). In contrast, dfoxo-null flies would 

only be able to partially use TAGs through cytoplasmic hydrolysis, whereas the lipids 

engulfed by the autophagy machinery would be inaccessible to degradation by either lack 

of proper enzymes (lip3) or a currently unknown mechanism limiting autophagy (Figure 

3.19). Future studies should 1) try to elucidate the relationship between dFOXO and 

starvation-induced autophagy and 2) identify the putative interaction partner facilitating 

transcriptional regulations of genes indirectly activated by dFOXO.  

 

 

 
Figure 3.19. Schematic model of dFOXO action under starvation 
In the presence of dFOXO (left), starvation induces dFOXO nuclear localization and the 
regulation of two different groups of target genes, direct targets, such as bmm (homolog of 
mammalian atgl) and thor (homolog of mammalian 4ebp), and indirect targets, possibly regulated 
by dFOXO acting as a co-activator (such as lip3). At the same time, lipid droplets are used as an 
energy source by direct TAG hydrolysis by Bmm and other cytoplasmic lipases. In parallel, part of 
these TAGs can be processed by the autophagy machinery and hydrolysed in the autolysosome 
(resulting from autophagosome and lysosome fusion) by different lysosome associated lipases. In 
contrast, in the absence of dFOXO (right) there is no proper induction of fasting associated genes 
and, more importantly, the autophagy machinery does not seem to function properly. I propose 
that in the absence of dFOXO, the TAGs normally used by the autophagy machinery become 
sequestered, causing the flies to die, unable to fully use its lipid stores.  
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3.2.2.7 Generation of a putative dominant negative dFOXO  

Hetero-allelic combinations of loss-of-function mutants dfoxo21 and dfoxo25, have been 

traditionally used to study FOXO function in Drosophila (Giannakou et al., 2008; Jünger 

et al., 2003; Min et al., 2008). The dfoxo21 and dfoxo25 mutations were generated by EMS 

treatment that introduced premature stop codons within the DNA binding domain of 

dFOXO, resulting in truncated dFOXO proteins (Jünger et al., 2003). Recently, it was 

suggested that these truncated dFOXO proteins are still expressed and able to bind to 

DNA and may act as dominant negative rather than loss-of function dfoxo alleles (Alic et 

al., 2011; Slack et al., 2011).  

 

In order to test if a shorter version of dFOXO could work as a dominant negative, we 

cloned a version called dFOXO-MAD (lacks Minimal Activation Domain), which 

contains the whole DBD and the NLS by introducing a stop codon at position 226 (Figure 

3.20A). Consistent with this idea, cell culture over-expression of this protein termed 

MAD, was unable to induce transactivation of a luciferase reporter gene under a 4xFRE 

promoter (Figure 3.20B). Moreover, MAD remained nuclear even in the presence of 

insulin (Figure 3.20C), suggesting this protein cannot respond to nutritional cues and 

therefore remains in the nucleus.   

 

To investigate the putative dominant negative role in vivo, we generated a dfoxo-MAD 

replacement line (Figure 3.21A) and characterized phenotypes associated with dfoxo loss-

of function. Consistent with the dfoxo-null mutation, MAD mutants were short lived and 

were sensitive to oxidative stress (Figure 3.21B-E). Interestingly, comparable to the DBD 

mutants, the dfoxo-MAD flies were not sensitive to starvation (Figure 3.21F-G). Even 

though more experiments are required, these results imply that, if the DBD and MAD 

mutants regulate the starvation response by similar mechanisms, this would probably be 

through direct interaction with different proteins within the nucleus independent of both 

DNA binding and transactivation activity. It would therefore be interesting to further 

characterize the MAD mutant and its role in the starvation response.  
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Figure 3.20. Removal of dFOXO – Minimal Activation Domain (MAD ) 
(A) Representation of dFOXO-MAD (removal of MAD) protein overexpressed in cell culture that 
lacks every amino acid following of the NLS (nuclear localization signal) and is N-terminally 
EGFP tagged (B) Luciferase reporter assay showed MAD removal abolished transactivation 
activity in Drosophila cell culture. S2-R+ cells were transfected with pBluescript (pBS), EGFP 
tagged dFOXO or EGFP tagged MAD along with reporter luciferase construcs 4xFRE-Luc. (C) 
dFOXO-MAD proteins localized in the cell nucleus independent of nutritional cues (starvation vs 
insulin) in Drosophila cell culture as shown by representative fluorescent microscopy images. S2-
R+ cells transfected with EGFP tagged -dFOXO or -MAD and maintained in serum-free medium 
(2h) and later treated with insulin (10mM) for 10mins. Scale bar = 5µm. 
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Figure 3.21. Generation and characterization of dFOXO-MAD mutant in vivo  
(A) Depiction of the dfoxo locus and the V3FLAG or MAD gene replacement constructs. Note that 
the MAD sequence lacks most of the coding exons of the V3 cluster but is still contains the C-
terminal 3xFLAG tag and the unmodified 3’UTR. Boxes represent UTRs (white boxes) and the 
CDS (black boxes) within the exons. Regions arbitrarily denoted V1 (1Kb) and V3 (3Kb). (B) 
Female and (C) male lifespan assays showed MAD mutants are short lived when compared to 
V3FLAG flies. ***p<0.001 log-rank test for comparison of dfoxo-null (∆V3) or MAD vs control 
(V3FLAG). Flies of each genotype were placed on 1xSYA food and followed throughout life 
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(n=100/genotype). (D) Female and (E) male ∆V3 and MAD flies were sensitive to oxidative stress 
when compared to V3FLAG.  ***p<0.001 log-rank test for comparison of dfoxo-null (∆V3) or MAD 
vs control (V3FLAG). Flies of each genotype were placed on H2O2 media after seven days on 
1xSYA food (n=100/genotype). (F) Female and (E) male MAD flies, unlike ∆V3, were as 
resistant so starvation as control flies (V3FLAG). ***p<0.001 log-rank test for comparison of dfoxo-
null (∆V3) vs control (V3FLAG) or MAD. Flies of each genotype were placed on starvation media 
after seven days on 1xSYA food (n=100/genotype). 
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3.3 DISCUSSION 

FOXO transcription factors are evolutionarily conserved downstream mediators of the IIS 

pathway (Piper et al., 2005). In addition to the IIS, several signaling pathways converge 

on FOXO proteins to regulate multiple cellular processes, such as development, 

metabolism, and ageing (Eijkelenboom and Burgering, 2013). Thus, a plethora of 

interaction partners and PTMs regulate FOXO proteins. However, the specifics of how a 

single transcription factor can be involved in such diverse range of activities are still 

unclear. In order to separate the different modes of FOXO action and their role in, for 

example, ageing modulation, it is fundamental to understand their regulation under 

different conditions.  

 

Studies designed to elucidate the role of FOXO transcription factors were traditionally 

based on the generation of foxo-null or foxo over-expression mutants in multiple model 

organisms such as mice, worms and flies (Burgering, 2008). However, this kind of 

approach has multiple limitations. First, total removal of foxo genes in flies and worms 

perturbs different phenotypes, such as size, reproduction and longevity, but it does not 

provide an answer as to how FOXO regulates those phenotypes (Jünger et al., 2003; 

Kenyon et al., 1993; Puig et al., 2003; Slack et al., 2011; Tissenbaum and Ruvkun, 1998). 

In mammals it is even more complex, as foxo1 null mutants are lethal due to improper 

angiogenesis, foxo3 nulls had a mild age-dependent infertility and foxo4 nulls have no 

obvious phenotype (Furuyama et al., 2004; Hosaka et al., 2004). Second, overexpression 

studies often overlook the effects of endogenous-wild type FOXO and cannot rule out 

secondary effects due to the over-expression (Giannakou et al., 2004; Samuel T. 

Henderson and Johnson, 2001; Hwangbo et al., 2004; Libina et al., 2003). Therefore, it is 

of great interest to better understand the role of FOXO proteins under less artificial 

conditions and at a higher resolution level, such as identification of functions associated 

with specific domains, interaction partners or PTMs. Thus, Drosophila, with its single 

FOXO homolog, its short lifespan, and the multiple tools available for genetic 

manipulation, constitutes a powerful model to study FOXO proteins. 
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3.3.1 Genomic engineering of the foxo locus 

Gene-editing technologies have long been desired to study the functions associated with 

specific genes, and multiple paradigms, especially in Drosophila, have been developed to 

achieve modifications with single-nucleotide resolution (Venken et al., 2016). Among the 

different technologies, Genomic engineering appears as a highly efficient technique able 

to, first, reliably knock-out target genes and second, have high and fast levels of 

reintroduction of desired genetic sequences (Huang et al., 2009).  Hence, we used genomic 

engineering on the dfoxo locus and generated three knockout parental lines that would 

allow us to modify the entire dfoxo gene. The generation of the ‘knock-out parental line’, 

where the endogenous sequence is replaced by an attP ‘landing site’, is normally seen as 

the limiting step in this technic (Huang et al., 2009). However, once generated, the 

reintroduction of any desired sequence in the attP site by the Φ31-integrase is highly 

specific and efficient, even when using large sequences (Huang et al., 2009; Venken et al., 

2010). Hence, the novel generated dfoxo∆-attP lines constitute an extraordinary tool that, 

not only permitted the generation of the mutants described in this thesis, but will also 

allow future researchers to modify the endogenous dfoxo gene in whichever preferred 

way. 

 

Since the year 2012, a different tool for gene-editing has exploded in popularity, namely, 

the CRISPR-Cas9 system (clustered regularly interspaced short palindromic repeats-

CRISPR-associated protein 9) (Jinek et al., 2012). This highly simplified system is based 

on a bacterial and archaeal adaptive immune system that protects them against foreign 

DNA (Bhaya et al., 2011). The engineered CRISPR-Cas9 system is composed of two 

components, a single guide RNA, which confers the specificity, and a nuclease (Cas9) 

able to induce double strand breaks. Thus, CRISPR-Cas9 constitutes a fast and versatile 

option to generate, among others, deletions, insertions or sequence replacements in diverse 

organisms, including Drosophila (Doudna and Charpentier, 2014). Worth noting, the 

CRISPR-Cas9 tools were only available after we had started this project (Bassett et al., 

2013; Gratz et al., 2013; Jinek et al., 2012), and, even though this is a powerful technique, 

it has some limitations that our genomic engineering approach overcomes. For example, 

CRISPR-Cas9 is highly specific thanks to its 20 base-pair guide RNA, however, great 

efforts are still underway to try to minimize off-target effects (Koo et al., 2015). In 

contrast, the off-target effects of attB mediated integration are <6%, even for constructs 

over 120Kb (Venken et al., 2010). Moreover, CRISPR-Cas9 targeting is limited by the 
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presence of so-called protospacer adjacent motifs (PAMs), a short sequence that must be 

immediately downstream of the target DNA (Esvelt et al., 2013; Gasiunas et al., 2012). 

This limitation is not present with genomic engineering, as integration takes place at the 

previously integrated attP ‘landing site’. In addition, nuclease-assisted gene replacement, 

such as CRISPR-Cas9, requires a donor sequence and is based on homologous 

recombination. This process is less efficient and has more stringent size limitations than 

those observed in integrase-mediated replacement (Venken et al., 2016). Last, attB/attP 

reinsertion permits unrestricted modifications of the target gene before reintroduction. For 

example, we generated knock-in lines that contained modifications at opposite ends of the 

integrated sequence dfoxo-V3, for example, mutations within the DBD and a carboxy-

terminal tag.  

 

In conclusion, we have generated a powerful tool that allows efficient dfoxo gene editing 

in Drosophila. This constitutes a novel way of studying mutations within the dfoxo gene 

and permitted us to separate different functions associated with this transcription factor. 

 

3.3.2 FOXO functions dependent of DNA binding  

Previous studies showed FOXO transcription factors may have functions independent of 

DNA binding (Matsumoto et al., 2006; Ramaswamy et al., 2002; Rudd et al., 2007). This 

observation is consistent with a study in the mouse liver showing that, unlike FOXO1 null 

mutants, FOXO1 DBD mutants have normal lipid biosynthesis after refeeding (Cook et 

al., 2015). This observation suggested that, at least in the liver, dFOXO modulates lipid 

synthesis independent of DNA binding. However, the exact mechanisms behind this 

putative role are not fully understood. Moreover, it is unclear whether the DNA-binding-

independent functions are evolutionarily conserved or can modulate any of the other 

FOXO-dependent processes. Using the newly developed genomic engineering of the 

dfoxo locus, we generated two endogenous mutants that contain one (H150A) or two 

(N146A, H150A) point substitutions within the evolutionarily conserved DBD. Mutation 

of one (Ramaswamy et al., 2002) or both (Matsumoto et al., 2006) homologous residues in 

mammalian FOXO1 is sufficient to abolish DNA binding in vitro and in cell culture. 

Hence, we argued that mutation on one or both residues should be sufficient to abolish 

dFOXO DNA binding in Drosophila. In accordance, we see that both DBD mutants are 

unable to activate transactivation in cell culture, and DBD2 is unable to bind the 4ebp 

promoter region in vivo. Yet, it is still possible that these DBD mutants are able to bind 
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DNA with a much lower affinity. However, we deem this possibility unlikely since the 

DBD mutants, much like dfoxo-null flies, have reduced fecundity, are sensitive to 

oxidative stress and are short lived. These observations have two connotations: first, DBD 

mutations do in fact interfere with dFOXO functions in vivo and second, the regulation of 

fecundity, redox stress and lifespan is fully dependent on dFOXO binding DNA. In 

agreement with our results, a recent study comparing FOXO target genes across tissues 

and organisms found a core set of conserved gene-targets implicated in the regulation of 

oxidative stress and ageing (Webb et al., 2016).  

 

In conclusion, we have generated two independent fly lines (DBD1 and DBD2) that 

express a dFOXO protein unable to bind DNA in vivo. DBD mutant flies phenocopy foxo-

null flies, as both have reduced fecundity, reduced oxidative stress resistance and reduced 

lifespan. In contracts, dFOXO-DBD mutants, but not foxo-null flies, yield flies of normal 

body size and are able to induce lipid mobilization under starvation.  

 

3.3.3 Body size and developmental effects mediated by dFOXO 

The regulation of body size in Drosophila has been extensively studied over the past two 

decades. Size determination depends on nutritional, i.e. amino acid (AA) abundance, and 

environmental cues, i.e. temperature, that in turn regulate signaling pathways and 

hormonal systems (Mirth and Shingleton, 2012). The signaling pathways, such as IIS and 

Target of Rapamycin (TOR), determine growth rate, whereas the hormonal systems seem 

to regulate growth duration (Mirth and Shingleton, 2012). Importantly, the crosstalk 

between the nutritional signaling pathways and the hormonal systems is in the end 

responsible for determining body size (Mirth and Shingleton, 2012).  

 

Mutation of dfoxo gene produces smaller than wild type flies, similar to models of reduced 

insulin signaling (Clancy et al., 2001; Puig et al., 2003; Slack et al., 2011). These 

observations imply that dFOXO hyperactivation (reduced IIS) or hypoactivation 

(increased IIS or dfoxo removal) have a similar consequence for Drosophila body size. It 

is clear that IIS negatively regulates growth (Piper et al., 2005), but the reasons behind 

reduced body size in the dfoxo-null mutants are not entirely clear. However, dFOXO 

regulates expression of Steppke, a cytohesin required for correct IIS (Fuss et al., 2006), 

suggesting dfoxo-null mutants do not express normal levels of Steppke and therefore may 

also mimic this aspect of reduced IIS during development. Moreover, dFOXO is required 
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to achieve normal expression levels of dilp 2, 3 and 5 (Slack et al., 2011). Mutation of 

these peptides, which are all secreted by the insulin producing cells (IPCs) in the 

Drosophila brain, yields smaller flies due to their regulation on systemic growth (Grönke 

et al., 2010).  

 

In contrast to dfoxo-null flies, male and female DBD mutants have normal body weight 

after hatching, suggesting that FOXO-regulation of body size is independent of DNA 

binding. Similarly, eclosion rates are also restored to normal levels in dFOXO-DBD 

mutants. These observations suggest these developmental features are independent of 

DNA binding and could be consistent with a recent report by Koyama et al. In their study, 

they described a direct interaction between dFOXO and Ultraspiracle (Usp) that regulates 

the production of Ecdysone hormone to regulate body size (Koyama et al., 2014). The 

dFOXO-region interacting with Ups localizes downstream of the DBD and should not be 

affected by the DBD mutations. It is therefore possible that the regulation dFOXO exerts 

over Usp is independent of the ability of dFOXO to bind DNA, a possibility that requires 

experimental testing.  

 

On the other hand, we also observed that developmental timing is only partially affected 

in dFOXO-DBD mutants. Moreover, foxo-null and DBD mutant flies do not develop in 

the absence of dilp2-3,5, a model of reduced IIS (Grönke et al., 2010), indicating that 

some developmental parameters do rely on dFOXO binding DNA target sequences. The 

mechanisms behind developmental regulation by dFOXO are still under investigation. 

However, previous studies suggest IIS is in fact a link between growth rate and duration 

(Mirth et al., 2014). Our results suggest this link could in fact be further separated based 

on dFOXO’s ability to bind DNA.    

 

3.2.4 Lipid metabolism regulation by FOXO 

Mammalian FOXO1 orchestrates energy metabolism in response to insulin signaling in 

different tissues including the liver, muscle and adipose tissue (Kousteni, 2012). In 

Drosophila, dFOXO is also required to regulate energy balance in response to nutritional 

cues (Wang et al., 2011). Interestingly, lipid synthesis in the mouse liver seems to be 

regulated, at least partially, by FOXO1 independent of DNA binding (Cook et al., 2015). 

In contrast, our results indicate that lipid biogenesis under high nutrient availability is 

dFOXO-independent, but in response to starvation requires dFOXO presence but not its 
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ability to bind DNA. The former observation is consistent with previous studies in 

Drosophila that showed lipid biosynthesis to be independent of dFOXO (DiAngelo and 

Birnbaum, 2009). These results are also in line with adipose cell culture studies where 

FOXO1 was shown to regulate energy expenditure (Nakae et al., 2008). It would be 

therefore important to determine whether FOXO1 can regulate lipid synthesis and/or 

usage independent of DNA binding in the mammalian adipose tissue, since the 

discrepancy could arise from tissue-specific functions.  

 

The mechanisms by which dFOXO regulates lipid mobilization under starvation are 

unclear. However, different target genes involved in lipid metabolism have been 

previously characterized. For example, a study reports lip4, a putative lysosomal 

associated lipase (Lipa), as a dFOXO target that is up-regulated under starvation in a 

dFOXO-dependent manner (Vihervaara and Puig, 2008). Our results however, are 

inconsistent with this observation. Normal expression of lip4 under control conditions and 

correct induction upon starvation in the foxo-null flies indicates that dFOXO is not 

required for lip4 transcriptional regulation. However, that does not rule out the possibility 

that dFOXO is able to bind and regulate this gene under different conditions. Worth 

noting, the regulation of lip4 by dFOXO could be tissue specific and could therefore be 

masked in our qPCR results as we used whole body RNA. Similarly, pepck, the limiting 

enzyme during gluconeogenesis, was already shown to have reduced expression upon 

starvation of foxo-null flies (Wang et al., 2011). Interestingly, starvation induces greater 

than wild types transcription of this gene in the foxo-nulls. This could be seen as a 

compensatory mechanism due to the inefficient usage of fat stores. Of note, our outbred 

flies (wDahT) have remarkably high levels of fat and are, in general terms, healthier than 

laboratory inbred lines used by others (such as w1118) (Swindell and Bouzat, 2006; 

Toivonen et al., 2007). This difference in genetic background could explain some of the 

discrepancies observed in starvation resistance among different Drosophila studies.  

 

On the other hand, starvation induces expression of bmm and ATGL in flies and mice 

respectively. These enzymes act as limiting factors for lipolysis, and are therefore 

fundamental mediators of the starvation response (Grönke et al., 2005; Zimmermann, 

2004). Importantly, transcriptional regulation of bmm and ATGL was previously reported 

to be dependent on FOXO transcription factors (Chakrabarti and Kandror, 2009; Wang et 

al., 2011; Zhang et al., 2016). Our results confirm this observation, as dfoxo-null and DBD 
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mutants do not reach the normal levels of bmm induction under starvation. However, 

dFOXO-DBD mutants were able to fully mobilize their lipids under starvation, suggesting 

that bmm regulation, at least at the transcriptional level, is not required for correct lipid 

mobilization. 

 

3.2.5 Lip3 could be a limiting factor for fat mobilization 

In addition to bmm and lip4, dFOXO is thought to regulate lip3, as dfoxo-null flies are 

unable to induce its expression under starvation (Wang et al., 2011). Lip3 is another 

putative lysosomal associated lipase, homologous to mammalian Lipa. Mutation of the 

Lipa gene results in Wolman disease, which is characterized by the accumulation of 

cholesteryl esters and triglycerides in cells and tissues across the body (Anderson et al., 

1994, 1993). This observation implies lysosomal lipases have a fundamental regulatory 

role in lipid usage in mammals.  

 

In Drosophila, lip3 is heavily induced by starvation and its expression is completely 

abrogated when flies are fed sugar (Zinke et al., 2002, 1999), suggesting that carbohydrate 

metabolism may be a key component on its regulation. In addition, and according to 

FlyAtlas, lipases bmm, lip4 and CG5966 are all expressed to some extent in the larval and 

adult tissues under fed conditions, whereas lip3 levels are almost undetectable (Chintapalli 

et al., 2007). Moreover, lip3 seems to be induced upon long-term starvation, as it is barely 

detectable after 6h starvation in adult flies (Chatterjee et al., 2014). These results suggest 

that lip3 may in fact be fundamental for lipid usage under prolonged starvation. In 

accordance with this, our results suggest that lip3 mRNA levels are very low under control 

conditions and its transcription is greatly induced under starvation. Interestingly, lip3 

transcription seems to be dependent on dFOXO, but not its ability to bind DNA, as 

dFOXO-DBD mutants are able to induce wild-type-like gene expression levels.  However, 

Lipa regulation by FOXO1 is, at least partially, regulated by direct DNA interaction, as 

FOXO1 was shown to bind the Lipa promoter and regulate its expression in vivo (Lettieri 

Barbato et al., 2013), Thus, it remains to be determined whether Lipa regulation by 

FOXO1 could also occur in a DNA-binding-independent manner, as it seems to be the 

case for lip3 in Drosophila. 

 

In order to test whether lip3 could have an upstream regulatory role on lipolysis, and 

therefore limit starvation sensitivity, we overexpressed Lip3RNAi in whole fly and in fat 
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tissue. Lip3RNAi over-expression reduced starvation resistance only marginally. However, 

the lack of starvation sensitivity of Lip3RNAi expressing flies could possibly be explained 

by the incomplete repression of the gene under starvation, since lip3 mRNA was reduced 

by ~60%. Hence, it would be important to evaluate the function of this lipase by 

generating a full knockout of the lip3 gene to determine if it can act as a limiting factor for 

lipolysis, as Lipa seems to be in mammals (Anderson et al., 1994, 1993). 

 

3.2.6 Lip3 regulation by dHNF4  

dFOXO seems to work as a co-factor for lip3 regulation, as either dFOXO wild type or a 

DBD mutant is required for lip3 expression under starvation. However, the question of 

which transcription factor is dFOXO interacting with to regulate the starvation response, 

and at least lip3 transcription, remains open. One strong candidate was nuclear 

transcription factor dHNF4 (Hepatic nuclear factor 4), since dhnf4 mutant flies are unable 

to induce genes involved in lipid mobilization and ß-oxidation, and thus sensitive to 

starvation (Palanker et al., 2009). Among the deregulated genes is lip3, which is not 

induced upon starvation of dhnf4-nulls, similar to our observation on dfoxo-null flies. This 

result implies that lip3 requires both dHNF4 and dFOXO for its expression under fasting. 

Motif detection analysis showed that the promoter region of lip3 seems to contain a HNF4 

motif. However, Drosophila dHNF4 over-expression seems to repress a luciferase reporter 

gene, cloned under the lip3 promoter, in cell culture. The cell culture cell line used (S2R+ 

cells) expresses wild type dFOXO (Chintapalli et al., 2007); thus, our observation 

suggests lip3 regulation is not merely dependent on the presence of dFOXO and dHNF4. 

One possible explanation for this the lack of induction is that S2-R+ cells are derived from 

embryonic tissue (Schneider, 1972) and may not recapitulate the conditions necessary for 

lip3 induction. Moreover, the over-expressed dHNF4 may interfere with dFOXO-

dependent lip3 expression by sequestering this transcription factor, as mammalian cell 

culture studies suggest HNF4 can physically interact with FOXO1 (Hirota et al., 2003). 

Under these cell culture conditions, mammalian FOXO1 bound the DBD of HNF-4, 

repressing its ability to bind DNA (Hirota et al., 2003). In contrast, both FOXO1 and 

HNF4 could synergise to up-regulate the expression G6Pase, an enzyme involved in 

gluconeogenesis, under fasting conditions in mammalian cell culture and in vivo (Hirota et 

al., 2008). At the same time, FOXO1 could repress glucose carboxykinase (GcK), 

probably through an inhibitory interaction with HNF4 (Hirota et al., 2008). Hence, it 

would be important to determine how FOXO1 and HNF4 modulate their interaction and 
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whether this is conserved in flies. In addition, it is critical to create a positive control and 

verify that over-expressed dHNF4 protein is able to induce transcription in the Drosophila 

cell culture system.  

 

Expression of six prominent dHNF4 target genes under starvation is not disturbed by 

mutations in the dfoxo gene, suggesting dHNF4-dependent starvation response does not 

require dFOXO. Thus, the question of which putative interaction partner could regulate 

starvation along with dFOXO is still unclear. A key mediator of nutrient sensing is the 

mechanistic Target of Rapamycin (mTOR), a kinase part of mTOR complex 1 (mTORC1) 

that is activated under nutrient abundance (Dibble and Manning, 2013). mTORC1 

phosphorylates multiple targets and one of them, the recently described transcription 

factor repressed by TOR (REPTOR) (Tiebe et al., 2015), could be a putative dFOXO 

interaction partner. REPTOR is phosphorylated and therefore negatively regulated by 

mTORC1 under fed conditions and, analogous to IIS and dFOXO regulation, repression is 

abolished under starvation (Tiebe et al., 2015). Interestingly, REPTOR and its binding 

partner (REPTOR-BP) seem to bind the same enhancer regions as dFOXO proteins, and 

the two transcription factors seem to interact genetically (Tiebe et al., 2015). This 

observation opens the possibility of REPTOR/REPTOR-BP and dFOXO physically 

interacting, as they are both activated under starvation and share genomic binding loci. 

Therefore, future studies should address whether these proteins can indeed interact and, 

with that, modulate lipid usage under starvation. Moreover, our preliminary results with 

the dFOXO-MAD mutant, a mutant that lacks the N-terminal minimal activation domain, 

suggest that a shorter version of the protein is sufficient to rescue the starvation sensitivity 

observed in dfoxo-null flies. This observation indicates that a hypothetical interaction 

partner mediating the starvation response, perhaps REPTOR and/or REPTOR-BP, could 

interact with the N-terminal region of dFOXO, a possibility that will be addressed in the 

future.  

 

3.2.7 dFOXO is required for starvation-induced autophagy. 

In addition to cytoplasmic hydrolysis of TAG stores by enzymes such as ATGL and Bmm 

(Grönke et al., 2005; Zimmermann, 2004), starvation also induces autophagy (Neufeld, 

2010). Autophagy is a process in which cytoplasmic components of the cell are engulfed 

by specialized membranes, to form the so called autophagosome, followed by fusion with 

the lysosome and therefore breakdown the cargo into its smaller parts (Neufeld, 2010). 
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The autophagy machinery can assist in TAG usage under starvation in a process called 

lipophagy (Singh et al., 2009). Our results indicate that autophagy is perturbed when 

dfoxo-null flies are starved, suggesting disturbed lipophagy might be at least partially 

responsible for inefficient TAG mobilization in dfoxo-null mutants. However, our results 

indicate that transcriptional induction under starvation of three fundamental autophagy 

related genes (atg) genes (atg5, 8a and 14) is not altered by removal of dfoxo. These genes 

were reported to be FOXO targets in different mouse tissues (Webb and Brunet, 2014), 

and atg8a seems to be a dFOXO target in the fly muscle (Bai et al., 2013). This 

observation suggests that, at least under full starvation and at this time point (48h 

starvation), dFOXO is not required to regulate those autophagy components at the 

transcriptional level. Yet, it is possible that dFOXO is required for starvation induced 

autophagy by regulating different genes. In accordance, FOXO1 and FOXO3 seem to be 

required for starvation induced autophagy in skeletal muscle (Hariharan et al., 2010; 

Mammucari et al., 2007).  

 

Mutation of the dfoxo gene alters autophagy, however, it is hard to determine which of the 

different steps in autophagy is affected. There could be at least 5 different mechanisms 

affecting autophagy in an organism: reduced autophagy induction, enhanced autophagy 

repression, altered cargo recognition, inefficient autophagosome/lysosome fusion, or 

inefficient degradation of the cargo (Wong and Cuervo, 2010). Under nutritionally rich 

conditions, the presence of AAs activates mTORC1, which in turn would actively repress 

autophagy by phosphorylating ATG13 (Lum et al., 2005; Neufeld, 2010). Phosphorylation 

of ATG13 in turn prevents the formation of a complex with ATG1 and ATG17. 

Conversely, under reduced nutrients, ATG13 phosphorylation is lost, permitting complex 

formation, which increases ATG1 kinase activity and, therefore, autophagy induction 

(Kamada et al., 2000). Hence, enhanced autophagy repression or reduced autophagy 

induction, at least as regulated by mTORC1, are very unlikely to be the reason behind the 

observed autophagy deregulation, since full starvation should prevent activation of 

mTORC1.  

 

In contrast to autophagy induction, our results indicate that dFOXO is required for lip3 

expression. If this putative lysosome-associated lipase is indeed fundamental for TAG 

hydrolysis, inefficient degradation of the cargo could be the culprit behind inefficient 

autophagy. However, our results demonstrate that lip3 overexpression is not sufficient to 
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rescue the starvation sensitivity observed in dfoxo-null flies, suggesting that additional 

mechanisms might be in play. In order to test which autophagy step might be affected, 

future studies could determine whether TAGs accumulate in autolysosomes (structures 

formed from autophagosome and lysosome fusion events) or whether autolysosomes are 

formed at all. Exactly which mechanisms behind autophagy dysfunction are responsible 

for the observed phenotype will be addressed in the future.  
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4.1 INTRODUCTION 

FOXO proteins modulate a plethora of cellular and organismal processes, including 

ageing and metabolism. It is therefore not surprising that these factors can be regulated by 

no less than six different PTMs (Daitoku et al., 2011; Zhao et al., 2011). In mammals, 

FOXO acetylation reduces DNA binding affinity and facilitates phosphorylation by AKT, 

inducing nuclear exclusion (Brent et al., 2008; Brunet et al., 2004; Matsuzaki et al., 2005; 

Qiang et al., 2010). Moreover, FOXO acetylation seems to modulate metabolism, as a 

knock-in mouse bearing a FOXO1 acetyl-null mutant relies on fat, and not sugar, as an 

energy source (Banks et al., 2011). In Drosophila, only dFOXO phosphorylation by 

different kinases, including IIS-activated AKT, has been widely studied (Mattila et al., 

2008). More recently, acetylation was suggested to also influence dFOXO activity (Wang 

et al., 2011). However, the exact mechanism by which acetylation regulates dFOXO 

activity is not fully understood. To better understand the role of dFOXO acetylation I 

generated endogenous dfoxo mutants to either mimic or abolish acetylation in conserved 

lysine residues. These dFOXO mutants allowed the in vivo separation of functions 

associated with dFOXO acetylation.  

 

4.2 RESULTS 

4.2.1 Mutation of putatively acetylated residues 

It was recently suggested that two Lys residues within the NLS could be acetylated to 

regulate dFOXO function in response to nutritional cues (Wang et al., 2011). This 

suggestion is based on evolutionary conservation of those two residues and on mutation 

studies in FOXO1 (Banks et al., 2011; Qiang et al., 2010; Wang et al., 2011). However, 

which specific dFOXO residues are acetylated is currently unknown. LAceP, a lysine 

acetylation prediction tool (Hou et al., 2014), highlights exclusively the five-lysine 

residues within the dFOXO-NLS as probable residues undergoing acetylation. Moreover, 

a protein alignment between human, worm and fly FOXO proteins showed that these 

residues are evolutionarily conserved (Figure 4.1A). This observation is specially 

intriguing, because lysine residues that are acetylated are more likely to be evolutionarily 

conserved (Weinert et al., 2011). Therefore, we generated two dFOXO mutants to either 

mimic (Lys substituted by Gln - 5KQ) or abolish (Lys substituted by Arg - 5KR) 

acetylation within those five Lys residues (Figure 4.1B).  
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Figure 4.1. FOXO NLS is rich in lysine residues (K) and it is partially conserved throughout 
evolution. (A) Protein alignment of the FOXO NLS between mouse (FOXO1, FOXO3), worm 
(DAF16) and fly (dFOXO) showed a high degree of conservation. Orange background highlights 
the NLS. Identical (*), strongly similar (:) or weakly similar (.) residues between sequences. Red 
lysine residues are conserved in Drosophila. (B) Schematic representation overexpressed proteins 
in Drosophila cell culture with mutations to either mimic (5KQ) or abolish (5KR) lysine-
acetylation. Both proteins have a N-terminal EGFP-tag. (C) Unlike dFOXO and acetyl-null (5KR) 
mutant, which localized mostly in the nucleus, acetyl-mimetic mutants (5KQ) were mostly 
cytoplasmic under starvation. Representative fluorescent microscopy images of Drosophila cells 
(S2-R+) transfected with EGFP tagged dFOXO, -5KR and -5KQ, maintained in serum-free 
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medium (2h) and later treated with insulin (10mM) for 10mins. Scale bar = 5µm. (D) Luciferase 
reporter assay showed dFOXO and both acetylation mutants have comparable levels of 
transactivation under normal transfection conditions for two independent reporter constructs 
(4xFRE-Luc or InR-Luc). In contrast, transfection in the presence of insulin yielded reduced 
transactivation activity of acetyl-mimic mutants (5KQ) when compared to dFOXO or acetyl-null 
mutant (5KR). S2-R+ cells were transfected, in the absence or presence of insulin (10mM), with 
pBluescript (pBS), EGFP tagged dFOXO, -5KR or -5KQ along with reporter luciferase constructs 
4xFRE-Luc or InR-Luc. Luciferase activity shown as fold increase relative to pBS (1 fold – not 
shown). n.s. p>0.05, *p<0.05, **p<0.01, ***p<0.001, one-way ANOVA with post-hoc Dunnett’s 
comparison with pBS. Luciferase assay performed by Ralf Meilenbrock. 
 

Mammalian cell culture studies have shown that acetylated FOXO1 remains cytoplasmic 

under serum starvation (Banks et al., 2011; Qiang et al., 2010). Consistently, an eGFP-

tagged dFOXO-5KQ (acetylation-mimic) protein was partially retained in the cytoplasm 

under starvation (Figure 4.1C). In contrast, the dFOXO-5KR (acetylation-null) protein 

localized to the nucleus under starvation and migrated into the cytoplasm upon insulin 

treatment comparable to the dFOXO wild type protein (Figure 4.1C). Both acetylation 

mutants were able to induce the expression of two different dfoxo luciferase reporter 

constructs (4xFRE and InR) to the same extent as the dFOXO wild type protein, implying 

that the acetylation-mimicking mutations do not fully prevent nuclear localization of 

dFOXO (Figure 4.1D). Interestingly, when reporter construct activity was measured under 

insulin treatment, the 5KQ mutant protein had a reduced luciferase activity (Figure 4.1D). 

This might suggest that the acetyl-mimic dFOXO protein has a higher probability to 

localize to the cytosol and is therefore more sensitive to the inhibitory effect of insulin 

treatment. In summary, these results suggest that the mutated lysine residues seem to have 

a direct effect on dFOXO regulation.  

 

4.2.2  In vivo generation of dFOXO acetylation mutants 

Taking advantage of the dfoxo genomic engineering tool described above, we generated 

endogenous dFOXO mutants containing mimicking or abolishing mutations of 5 lysine 

residues (Figure 4.2A, compare Figure 3.8). First, we evaluated the protein levels and 

observed that overall dFOXO protein levels were comparable between dFOXO wild type, 

5KQ and 5KR mutants. In the western blot analysis dFOXO protein shows two prominent 

bands, whereby the upper band is thought to represent a phosphorylated version of 

dFOXO that includes the three AKT-dependent phosphorylation sites (Puig et al., 2003). 

Interestingly, in the acetyl-mimicking dFOXO 5KQ mutant, the upper band was weaker 

when compared to replacement wild type and acetyl-null (5KR), flies (Figure 4.2B). This 
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result might suggest a reduction in AKT-phosphorylation in the dFOXO 5KQ protein. 

With this in mind, we performed an immunoprecipitation on replacement (V3FLAG) or 

acetyl-mutant flies and tested for AKT-dependent phosphorylation by using an antibody 

that recognizes AKT-phosphorylated consensus sites (Cell Signaling Technologies). Wild 

type dFOXO showed a homogeneous pattern with relatively equal abundance of, at least 

two, phosphorylated species (Figure 4.2C). It is worth highlighting that the phospho-Akt-

substrate antibody detected both dFOXO bands, suggesting that AKT-dependent 

phosphorylation is probably not sufficient to explain the size shift between the two 

dFOXO bands on the western blot analysis. Intriguingly, the acetyl-mimic mutations 

(5KQ) shifted the ‘band balance’ towards the faster migrating, and presumably less 

phosphorylated form, whereas the acetyl-null mutation (5KR) seems to do the opposite 

(Figure 4.2C). This observation suggests that acetylation may indeed modify the AKT-

dependent phosphorylation state of dFOXO in vivo. 

 

 
Figure 4.2. Generation and validation of dFOXO-acetyl-lysine mutants in vivo  
(A) Depiction of the dfoxo locus and gene replacement constructs used to generate the dFOXO-
acetylation mutant lines. Boxes represent UTRs (white boxes) and the CDS (black boxes) within 
the exons. Regions arbitrarily denoted V1 (1Kb) and V3 (3Kb). (B) Western blot on whole-body 
protein extracts from female flies confirmed proper expression in all gene replacement lines 
(dFOXO-V3FLAG, V3-5KRFLAG and V3-5KQFLAG). (C) Western blot analysis of 
immunoprecipitated (IP) dFOXO (V3FLAG) showed that under standard conditions both dFOXO 
bands were phosphorylated. In the 5KQ (acetyl-mimic) mutant dFOXO’s lower band seemed to be 
more phosphorylated where as it was the opposite for 5KR (acetyl-null). Anti-P (phosphor akt-
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substrate) recognises phosphorylated residues within an AKT phosphorylation motif. dFOXO had 
three of these motifs, which were phosphorylated in response to insulin signalling. 
 

Preliminary phenotyping of 5KQ and 5KR mutant animals did not identify any obvious 

abnormalities of these mutants, with mutant flies having normal body weight, 

development and fecundity (as these data are still preliminary they were not included 

here). Moreover, both females and males have a normal lifespan (Figure 4.3A-B), and 

female mutants were as resistant to starvation and oxidative stress as wild type 

replacement flies (Figure 4.3C-D). These results suggest that, even though these acetyl-

mutations may interfere in vivo with the phosphorylation state of dFOXO, this is not 

sufficient to affect these normal functions of this transcription factor.  

 

 
Figure 4.3. Mutation of acetyl-lysine residues does not interfere with normal dFOXO 
functions in vivo. (A) Female and (B) male lifespan assays showed acetyl-lysine mutants lived as 
long as gene replacement flies (V3FLAG). ***p<0.001 log-rank test for comparison of dfoxo-null 
(∆V3) vs V3FLAG, 5KR or 5KQ. Flies of each genotype were placed on 1xSYA food and followed 
throughout life (n=100/genotype). (C) Female 5KR and 5KQ flies showed similar resistance to 
oxidative stress as control flies (V3FLAG). ***p<0.001 log-rank test for comparison of dfoxo-null 
(∆V3) vs V3FLAG, 5KR or 5KQ. Flies of each genotype were placed on H2O2 media after 7 days on 
1xSYA food (n=100/genotype). (D) Starvation assay for females showed 5KR and 5KQ mutants, 
unlike ∆V3 flies, were as resistant to starvation as V3FLAG. ***p<0.001 log-rank test for 



4.FOXO ACETYLATION 
 

88	
  

comparison of dfoxo-null (∆V3) vs V3FLAG, 5KR or 5KQ. Flies of each genotype were placed on 
starvation medium after seven days on 1xSYA food (n=100/genotype). 
 

FOXO acetylation is highly regulated, both in mice and flies, by the nutritional state, 

where acetylation is reduced under starvation and increased after refeeding (Banks et al., 

2011; Wang et al., 2011). Recent studies seem to reinforce the link between acetylation 

and the regulation of autophagy (Bánréti et al., 2013). Furthermore, acetylated FOXO1 is 

able to interact with ATG7 in the cytosol and induce autophagy in mammalian cell culture 

and in vivo (Zhao et al., 2010). With this in mind, we decided to test the response of the 

mutant flies to two diets to address if dFOXO acetylation might affect autophagy. Diet 

one, which served as a control, contained yeast, agar and no sugar, whereas diet two was 

composed of sugar and agar, but no yeast. The lack of yeast depletes amino acids from the 

diet and should induce autophagy (Mortimore and Schworer, 1977). In addition, along 

with replacement (V3FLAG), dfoxo-null and acetylation mutant flies, we included the DBD 

mutants in order to test whether the response requires DNA-binding of dFOXO. As 

expected, flies required dFOXO to have a ‘normal lifespan’ under "no-sugar" conditions 

and this was fully dependent on dFOXO DNA binding ability but not on acetylation status 

(Figure 4.4A-B). dfoxo-null mutants (∆V3) were also sensitive to the absence of yeast, 

demonstrating that dFOXO function is important for the response to amino acid starvation 

(Figure 4.4C-D). Interestingly, acetyl-mimicking (5KQ) flies were also sensitive to yeast 

deficiency, whereas dFOXO DBD mutants showed no (DBD1) or only a weak (DBD2) 

response. These findings implicate acetylation of dFOXO in the response to yeast 

starvation and suggest that that at least part of the response does not require dFOXO DNA 

binding ability (Figure 4.4C-D). 

 

In the future, we will test these flies on a chemically defined diet (Piper et al., 2014) to 

verify if the short lifespan of dFOXO-5KQ mutants is caused by amino acid starvation. In 

addition, we plan to perform IPs on control versus amino acid-starved flies to see how the 

phosphorylation state of dFOXO changes under those conditions. Moreover, we will 

determine if autophagy status is altered on the different dietary regimes. The possibility of 

FOXO activity being affected by amino acids would give an additional layer of 

complexity to FOXO regulation and nutrient sensing.  
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Figure 4.4. dFOXO acetylation could be required to modulate a response to amino acid 
starvation. (A-B) Trial #1 and #2 of female flies on no-sugar-food (1YA) showed dfoxo-null 
(∆V3) and DBD mutant flies were sensitive whereas acetylation mutants (5KR and 5KQ) behaved 
as gene replacement flies (V3FLAG). ***p<0.001 log-rank test for comparison of dfoxo-null (∆V3), 
DBD1 or DBD2 vs V3FLAG, 5KR or 5KQ. Flies of each genotype were placed on 1YA media after 
7 days on 1xSYA food (n=100/genotype). (C-D) Trial #1 and #2 of female flies on no-yeast-food 
(1SA) showed dfoxo-null (∆V3) and acetyl-mimetic (5KQ) flies were sensitive to the absence of 
yeast. In contrast, acetyl-null (5KR) and the DBD mutants were unaffected by this diet when 
compared to control flies (V3FLAG). ***p<0.001 log-rank test for comparison of dfoxo-null (∆V3) 
or 5KQ vs V3FLAG, 5KR, DBD1 or DBD2. Flies of each genotype were placed on 1SA media after 
seven days on 1xSYA food (n=100/genotype). 
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4.2.3 Identification of dFOXO post-translational modifications 

In order to better characterise dFOXO regulation, we plan to use dFOXO-V3FLAG to 

identify novel post-translational modifications and protein interaction partners. This 

includes the putative but yet unidentified lysine acetylated residues. This system has the 

advantage that it would not require any artificial over-expression and would therefore 

minimise potential artificial effects. As a first step, I standardized an anti-FLAG IP 

protocol (see materials and methods) using whole fly extracts and evaluated efficiency of 

dFOXO purification by western blot (Figure 4.5A). In a preliminary assay, the eluted 

dFOXO protein has been evaluated twice by sequential digestion with trypsin and 

chymotrypsin followed by mass spectrometry. Mass spectrometry analysis was done in 

collaboration with the mass spectrometry core facility of the Max-Planck Institute for 

Biology of Ageing. The combined results cover 52.2% of the protein (Figure 4.5B). In 

order to maximize the number of post-translational modifications to be identified, and 

therefore have a better picture on how dFOXO is regulated, future efforts should further 

increase the protein coverage. Nevertheless, these trial experiments have already detected 

five phosphorylation residues (Figure 4.5B, red residues - S42, T44, S62, T63 and S66), 

four of which were previously unknown, one oxidized methionine (M21) and N-terminal 

acetylation. Phosphorylation of Threonine 44 (T44) is evolutionarily conserved and falls 

in an AKT phosphorylation motif composed by RxRxx(S/T), where x represents any 

amino acid. In contrast, the biological relevance of the remaining phosphorylated residues 

is currently unknown and awaits investigation.  

 

 
Figure 4.5. Validation of IP-MS protocol.  
(A) Western blot using FLAG antibody (M2) showed proper enrichment of dFOXO protein in the 
elution following the described IP protocol for gene replacement flies (V3FLAG). NBP (non-bound 
proteins), W (Wash), Elu1 (Elution 1). (B) Protein sequence of dFOXO highlights regions 
detected during MS analysis after trypsin digest (orange) or chymotrypsin digest (green). 
Phosphorylated residues detected are highlighted in red. 
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As described at the beginning of this thesis, identification of dFOXO interaction partners 

is critical in order to better understand its roles and ways of regulation. This endogenously 

tagged dFOXO-V3FLAG tool can also be used to identify novel interaction partners under 

different stress conditions. This approach should broaden or understanding of the biology 

behind FOXO transcription factors. Moreover, the dfoxo gene-editing tool will allow the 

evaluation of any novel PTM or interaction partner by the generation of mutant alleles.  
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4.3 DISCUSSION  

FOXO transcription factors are evolutionary conserved modulators of homeostasis. In 

order to participate in processes as diverse as body weigh determination, metabolism and 

ageing modulation, FOXO proteins are regulated by multiple PTMs, of which 

phosphorylation and acetylation are the best understood (Daitoku et al., 2011; Zhao et al., 

2011). In mice, starvation prompts FOXO1 nuclear localization, whereas refeeding 

induces acetylation, subsequent AKT-dependent phosphorylation, and finally nuclear 

exclusion (Banks et al., 2011; Qiang et al., 2010). Therefore, acetylation of specific lysine 

resides within, or close to, the NLS, seem to play a critical role in FOXO regulation by 

reducing DNA binding affinity and facilitating phosphorylation (Brent et al., 2008; Brunet 

et al., 2004; Matsuzaki et al., 2005; Qiang et al., 2010). Moreover, a recent knock-in study 

demonstrated that a FOXO1 allele bearing acetyl-mimic mutations causes lethality during 

development, whereas acetyl-null mutant mice are viable and use fat, not sugar, as a 

preferred energy source (Banks et al., 2011). Similarly, refeeding seems to promote 

dFOXO acetylation in the fly (Wang et al., 2011). Moreover, cytoplasmic Daf-16, the 

worm FOXO homolog, seems to be constantly acetylated, and different kinds of stressors, 

such as heat shock or oxidative stress, induce deacetylation and therefore allow for nuclear 

localization (Chiang et al., 2012). Thus, regulation of FOXO factors by acetylation seems 

to be evolutionary conserved, however, the in vivo consequences of this modification are 

not fully understood.  

  

To investigate whether acetylation could modulate any of the dFOXO-associated 

functions in vivo, we generated knock-in dfoxo alleles that either mimic (5KQ) or abolish 

(5KR) acetylation on conserved lysine residues within the NLS. We chose these residues 

based on 1) evolutionary conservation, since acetylated-lysine residues are more likely to 

be conserved (Weinert et al., 2011) and 2) these five residues being predicted to be 

acetylated by LAceP, a bioinformatics tool that predicts acetylation based on 

physicochemical characteristics of the amino acids surrounding lysine residues (Hou et al., 

2014). Thus, even though it is still possible that dFOXO-acetylation takes place in 

different lysine residues, we deemed these five amino acids as the most likely candidates 

to undergo this modification.  
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dFOXO mutants that abolish acetylation (5KR) behave exactly as wild type flies for all 

tested phenotypes so far. These results, albeit preliminary, indicate that acetylation of 

lysine residues within the NLS does not modulate the way dFOXO regulates processes 

such as redox stress resistance, full starvation response and longevity. This observation 

could be in line with acetylation having a fundamental role in FOXO regulation upon 

refeeding in both mice and flies (Banks et al., 2011; Wang et al., 2011). However, we 

have not been able to reproduce detection of acetylated-dFOXO after refeeding with our 

V3FLAG (not shown), even after following the described protocol for flies (Wang et al., 

2011). This could however be due to the different fly strains used, since the wDahT flies 

used in this study are more resistant to starvation and it would therefore be important to 

standardize the starvation and refeeding times.   

 

Similar to FOXO1 knockout mice (Furuyama et al., 2004; Hosaka et al., 2004), FOXO1 

mice knock-in carrying an acetyl-mimic allele, where seven lysine residues were replaced 

by glutamine (7KQ), are developmentally lethal due to incomplete vascular development 

(Banks et al., 2011),. Worth noting, in addition to five lysine residues within the NLS, 

foxo1-7KQ mice have two extra residues mutated (Banks et al., 2011; Qiang et al., 2010), 

however, those residues are not evolutionarily conserved either in flies or worms. The 

developmental lethality observed in foxo1-null and foxo1-7KQ mice suggest FOXO1 is 

required to be in a non-acetylated state in order to allow correct angiogenesis (Banks et al., 

2011). In contrast, foxo3-null and foxo4-null mice are viable (Castrillon et al., 2003; 

Hosaka et al., 2004), much like daf16 mutant worms (Kenyon et al., 1993) and dfoxo-null 

flies (Puig et al., 2003; Slack et al., 2011) indicating that, under optimal conditions, only 

FOXO1 is required for mammalian development.  

 

Unlike the foxo1-7KQ mice, acetyl-mimic mutations in dFOXO (5KQ) produce viable and 

seemingly healthy flies that are indistinguishable from wild type or acetyl-null mutant 

flies, with one exception. Yeast starvation, which is assumed to be an AA starvation diet, 

requires dFOXO to elicit a proper response, as shown by previous studies where dfoxo-

null larvae and flies died prematurely on AA starvation diet (Hilliker et al., 2008; Slade et 

al., 2016). Consistent with this observation, dfoxo∆V3 flies are sensitive to AA starvation. 

Interestingly, dFOXO mutants that mimic acetylation (5KQ) are also sensitive to this diet, 

unlike wild type (V3FLAG) and acetyl-null (5KR) flies. This observation suggests dFOXO 

is required, in a non-acetylated state, to respond to AA starvation. Interestingly, the AA 
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starvation response has been associated with a decrease in histone deacetylation, at least in 

specific promoter regions of genes associated with this kind of stress (Shan et al., 2012). 

How AA starvation can modify the acetylation state of different proteins is still under 

investigation. Moreover, a not-fully defined mechanisms involved in AA starvation leads 

to the activation of c-Jun N-terminal kinase (JNK), which in turn phosphorylates and 

activates the histone acetyl transferase ATF2 (Averous et al., 2004; Bruhat et al., 2007; 

Chaveroux et al., 2009; Fu et al., 2011). This is interesting because JNK is also able to 

phosphorylate and activate FOXO proteins, specially under oxidative stress, in mammals, 

worms, flies and even Hydra (Eijkelenboom and Burgering, 2013). Hence, it is possible 

that AA starvation-induced JNK activation would also induce FOXO phosphorylation, 

which could be in turn affected by the acetylation status of the protein, or vice versa. 

 

On the other hand, AA starvation represses mechanistic Target of Rapamycin (mTOR) 

complex 1 (mTORC1), preventing ATG13 phosphorylation and therefore inducing 

autophagy by allowing the formation of an ATG complex containing the kinase ATG1 

(Kamada et al., 2000). Interestingly, mice over-expressing a FOXO1 protein containing 

mutations that make the protein constitutively nuclear and that inhibit its interaction with 

Sirt1 (NAD dependent histone deacetylase), inhibited glucose-deprivation-induced 

autophagy (Hariharan et al., 2010). This observation suggests that starvation induced 

autophagy, but this response seems to require FOXO1 in a non-acetylated state (Hariharan 

et al., 2010). This could indicate that our dFOXO acetyl-mimic mutants (5KQ) may be 

unable to induced autophagy under AA starvation, a possibility that will be addressed in 

the future.  

 

The response to AA starvation seems to depend on dFOXO, but not on its DNA binding 

ability, since the dFOXO-DBD mutants are not (as) sensitive to this stress. This 

observation suggests that the role of dFOXO in AA starvation is not direct transactivation 

of target genes, and therefore it most likely behaves as a co-activator. However, it remains 

to be seen whether AA starvation actually induces dFOXO nuclear localization. In line 

with this idea, flies carrying a hypomorphic mutation for the akt gene are significantly 

longer lived than control flies under AA starvation (Slade et al., 2016). This result 

suggests that AA starvation induces AKT activation, and therefore possible dFOXO 

inactivation (cytosolic retention), which in turn would be detrimental for the AA 

starvation response. Furthermore, the AA starvation resistance seen in the akt mutant flies 
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is completely abolished in the absence of dFOXO (Slade et al., 2016), indicating that 

perhaps hypo-phosphorylated dFOXO, e.g. nuclear dFOXO, is fundamental to mediate 

this response. Nevertheless, this hypothesis should be tested in the future.       

 

Our results indicate that acetylation of the mutated lysine restudies is detrimental for the 

nutritional response involved in AA, but not full, starvation. This observation has two 

connotations. First, since both acetyl-null and acetyl-mimic are resistant to full starvation, 

the absence of sugar overrules the presence or absence of acetylation on dFOXO. This 

observation could be consistent with our observation that lipid usage under full starvation 

is dependent on dFOXO but not its direct interaction with DNA, as acetylation was 

reported to interfere with DNA biding (Brunet et al., 2004; Daitoku et al., 2004; 

Matsuzaki et al., 2005). Second, it implies that AA starvation induces dFOXO 

deacetylation, which in turn is a prerequisite to exert the appropriate response to this kind 

of stress. Hence, it would be important to determine if HDAC4 mediates dFOXO 

deacetylation under AA starvation, just as it seems to do under full starvation (Wang et al., 

2011). However, AA starvation seems to repress or down-regulate HDAC4 activity in 

mammalian cell culture (Palmisano et al., 2012) and it would therefore be important to test 

this in vivo. Nevertheless, other deacetylases could regulate this modification on dFOXO. 

For example, mammalian and worm FOXO proteins seem to be regulated by SIRT 

proteins, NAD-dependent histone deacetylase (Brunet et al., 2004; Chiang et al., 2012; 

Frescas et al., 2005; Wang et al., 2007). In accordance, a genetic link was recently 

reported between Sir2, the Drosophila homolog of Sirt1, and dFOXO (Palu and Thummel, 

2016). However, whether this is a direct interaction is still unclear. Moreover, Sirt1-

dependent deacetylation of FOXO1 was shown to be fundamental for glucose-starvation-

induced autophagy (Hariharan et al., 2010), suggesting this as a possible mechanism 

regulating AA starvation survival in our dFOXO acetyl-mutant flies. In addition, FOXO 

acetylation seems to occur under refeeding conditions in both flies and mice (Banks et al., 

2011; Wang et al., 2011). Hence, it would be interesting to assess whether the dFOXO 

acetylation mutants are able to elicit a proper refeeding response after full or AA 

starvation.    

 

Acetylation seems to regulate AKT-dependent phosphorylation of FOXO proteins (Banks 

et al., 2011; Matsuzaki et al., 2005; Qiang et al., 2010). Consistent with these 

observations, our results indicate that acetylation of the NLS lysine residues seems to 
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modulate dFOXO migration on SDS-PAGE studies. Acetyl-null mutants seem to migrate 

normally while acetyl-mimic dFOXO seems to accumulate in the lower band. 

Traditionally, the SDS-PAGE migration shift from the lower to higher band has been 

attributed to phosphorylation of the highly conserved AKT-substrate residues. However, 

we can detect phosphorylation on AKT-motifs in both bands. Previous studies have shown 

that FOXO3 migration-shift depends exclusively on AKT-dependent phosphorylation of 

residue S315 (Brunet et al., 1999). Interestingly, the observed shift in dFOXO seems to be 

fully dependent on phosphorylation, as phosphatase treatment collapses both bands into 

the lower molecular weight, in vitro (Puig et al., 2003) and in vivo (Alic et al., 2011).  

Whether phosphorylation of the last AKT-phosphorylated residue facilitates any other 

phosphorylation, or is solely responsible for the migration-shift, is currently unknown. 

Our results suggest that acetylation of the lysine residues within the NLS may specifically 

regulate phosphorylation of the FOXO3 S315 homologous residue (dFOXO S259) and 

thus modulate whatever the cause for the migration shift is.   

 

It is worth noting that acetyl-mimic modifications, e.g. replacement of lysine by glutamine 

residues, are a great approach to better understand this modification.  Lysine residues are 

positively charged at physiological pH and this charge is abolished upon acetylation. 

Hence, glutamine mimics the charge disappearance associated with lysine-acetylation. 

However, this mimic does not recapitulate acetyl-lysine mediated interaction with proteins 

containing a so-called Bromodomain (Filippakopoulos and Knapp, 2014). Therefore, any 

conclusions drawn from such mutations should consider this limitation. Nevertheless, the 

observation that acetyl-mimic dFOXO flies, but not acetyl-null, are sensitive to AA 

starvation indicates that the regulation of this response is most likely independent of any 

putative acetyl-lysine mediated interaction.  

 

In conclusion, our results suggest that dFOXO-acetylation may play a critical role in the 

AA starvation response. Future studies should address whether this response is in fact 

triggered by AA deprivation, for example by using a chemically defined diet (Piper et al., 

2014), and determining the mechanisms behind FOXO acetylation in response to AA 

availability signalling. In addition, we have developed an IP-MS coupled system that will 

allow us to detect dFOXO-acetylated residues. Moreover, this tool will also allow 

identification other PTMs, helping us better understand of dFOXO regulation in vivo. 
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5.1 CONCLUSIONS AND FUTURE PERSPECTIVES 

In this study, we described the generation and validation of a genetic tool that permits 

reliable modification of the endogenous dfoxo locus. Thus far, we have used this tool to 

generate novel mutant alleles that abolish DNA binding, allowing us to dissect different 

dFOXO-regulated functions in the fly. Being a transcription factor, it is no surprise 

dFOXO’s ability to bind DNA is required for most of its known functions, such as 

fecundity, oxidative stress resistance and lifespan. Remarkably, dFOXO is able to regulate 

body weight and lipid usage under starvation independent of DNA-binding. The 

mechanisms by which the DBD mutants modulate starvation resistance are still unclear. 

However, our experiments suggest a possible synergistic effect between two systems. The 

first system refers to direct and indirect regulation of enzymes involved in lipolysis, such 

as bmm and lip3, and the second one refers to modulation of starvation-induced 

autophagy. Both systems are probably working in concert to allow proper mobilization of 

lipids under starvation. Hence, the next step would be to identify which proteins are 

involved in the indirect gene regulation and to identify how exactly is autophagy being 

limited in the absence of dfoxo. Moreover, it would be interesting to determine which 

transcription factor dFOXO is interacting with to modulate the starvation response.  

 

The results associated to our second set of mutant dfoxo alleles, which mimic or abolish 

acetylation of evolutionarily conserved lysine residues within the dFOXO NLS, have three 

major connotations: first, acetylation does not seem to play a role in many of the functions 

associated with dFOXO, such as development, full starvation and ageing. Second, 

acetylation seems to play a fundamental role in dFOXO phosphorylation in vivo, but the 

biological relevance of this observation is still unclear. Third, dFOXO is required in a 

non-acetylated state to respond to AA starvation. Even though preliminary, these results 

are the firsts steps to better understanding how dFOXO is associated to amino acid 

sensing, a link not previously described. 

 

Finally, the tools generated here will allow future research to further separate dFOXO-

associated functions, by better understanding the regulation of this transcription factor. 

For example, researchers will be able to detect dFOXO interaction partners and PTMs in a 

system with minimal artificial effects. Hence, endogenous dFOXO levels could be 

monitored biochemically (FLAG tag) or in vivo (mCherry tag) to assess the role this 

transcription factor plays in the multiple functions with which it is associated.  
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Once we have a better understanding of how FOXO factors are regulated, and in turn are 

able to modulate a great number of cellular processes, we will be able to separate the 

beneficial and detrimental effects of FOXO manipulation in ageing studies. With that, we 

might be a step closer to preventing age-associated diseases, even if dFOXO does not turn 

out to be our internal fountain of youth.  
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Supplementary Table S1. Primers used during this PhD thesis.  
Fw – forward. Rv – reverse. 
 

Stock 
number 
(SOL) 

Oligo name Sequence 

202 pGX-attP 5´SpeI CTCGACACCGGTATAACTTCGTATAATG 
205 pGX-attP 3´KpnI CACTACGCCCCCAACTGAGAGAAC 
238 Foxo primer GAGAACAACAAGAAGATAAGTCCGCC 
376 Foxo sequencing 1 GGCCCAGGCTGACCCACAC 
377 Foxo sequencing 2 CCGGCAAGTCATCCTGGTG 
378 Foxo sequencing 3 CCCGCCCCCGCCCTATC 
379 Foxo sequencing 4 GCGGCCTGCTGGACATCA 
380 Foxo sequencing 5 CGGCTACCACAAATCTGAATGCTC 
381 Foxo sequencing 6 ATTGCGACGCGATGAGTTCTTCT 

382 Foxo ORF 
5´primer CACCATGATGGACGGCTACGCGC 

383 Foxo ORF 
3´primer CTAGTGCACCCAGGATGGTGGC 

384 Foxo 25 3´ primer CACATTCTGGACCATTCACTCGTAAATC 

385 Foxo DBD 1x 5 
primer GGAAGAACTCCATACGTGCCAATCTGTCGCTGC 

386 Foxo DBD 1x 3´ 
primer GCAGCGACAGATTGGCACGTATGGAGTTCTTCC 

387 Foxo DBD 2x 5´ 
primer TGGAAGGCCTCCATACGTGCCAATCTGTCGCTGCAC 

388 Foxo DBD 2x 3´ 
primer GTGCAGCGACAGATTGGCACGTATGGAGGCCTTCCA 

393 Foxo 3KR 5´ 
primer CCGGAGGCCAGGCCCGGCAGGTCTGTGCGCCG 

394 Foxo 3KR 3´ 
primer CGGCGCACAGACCTGCCGGGCCTGGCCTCCGG 

397 Foxo 3KR 5´ 
primer II CCGGTACGAGAGGCGGCGCGGCAGGGCC 

398 Foxo 3KR 3´ 
primer II GGCCCTGCCGCGCCGCCTCTCGTACCGG 

463 pGE attB amp 5´ GGGAATAAGGGCGACACGGA 
514 Foxo 2KQ 5´ CCGGAGGCCCAGCCCGGCCAGTCTGTGCGCCG 
515 Foxo 2KQ 3´ CGGCGCACAGACTGGCCGGGCTGGGCCTCCGG 
516 Foxo 3KQ 5´ CCCGGTACGAGCAGCGGCGCGGCAGGGCC 
517 Foxo 3KQ 3´ GGCCCTGCCGCGCCGCTGCTCGTACCGGG 
561 Foxo-5KQ 5’ CGCGGCAGGGCCCAGCAGCGGGTGGAGGCA 
562 Foxo 5KQ 3’ TGCCTCCACCCGCTGCTGGGCCCTGCCGCG 
563 Foxo 5KR 5’ CGCGGCAGGGCCAGGAGGCGGGTGGAGGCA 
564 Foxo 5KR 3’ TGCCTCCACCCGCCTCCTGGCCCTGCCGCG 

572 
dFOXO G. 
engineering 1st 
Arm fw 

GCTGCTAGGCCGCCTTTGAGCAGCTGTTCCGGATTGACTTGGCCTCGC
CAGCGGCCGCCACAACATACGAGCCGGAAGCATA 

573 
dFOXO G. 
engineering 1st 
Arm rv 

TGTATGAGTACTCTGAACAAGATATATAGTCATGTACAACTTTAAAT
GATGCGGCCGCATGTGCGCGGAACCCCTATTTG 

574 
dFOXO G. 
engineering 2nd 
Arm fw 

ATTTGTGGCTTTGATTATGAAGATTAAACTTAAGCTTAGTAAGTATAA
AAACTAGTCACAACATACGAGCCGGAAGCATA 

575 
dFOXO G. 
engineering 2nd 
Arm rv 

ATAGCAAAGACAGAGGCGACACGGAAGCAGCCGCGCCCTCGATTCT
GTTCCTCGAGATGTGCGCGGAACCCCTATTTG 

576 
dFOXO G. 
engineering 3rd 
Arm fw 

GAACCAAAGACTAAAGACTAAACAAATCGGCCAGATACAATTTATG
ATGAGCGGCCGCCACAACATAGAGCCGGAAGCATA 

577 
dFOXO G. 
engineering 3rd 
Arm rv 

ATTGCTTACAAATCGTTACATCAGCGCGATGAGTTCCCAAGGATTTG
CAAGGTACCATGTGCGCGGAACCCCTATTTG 
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578 
dFOXO G. 
engineering 4th 
Arm fw 

AACTGCTAATACTCCGCAGGATAACTTAAGTTTAACTTAAGTTAGCT
GTAGGCGCGCCCACAACATACGAGGGAAGCATA 

579 
dFOXO G. 
engineering 4th 
Arm rv 

GTGGCACATCTAATCACAGGCCTTGGCATACAGTCAGTCAGTCAGTC
AATCTCGAGATGTGCGCGGAACCCCTATTTG 

580 dFOXO Arm1 
sequencing  CCACGTTTATCGGCGTATATCT 

581 dFOXO Arm1 
sequencing  GTAAGCTGTGACGCAGTAGAT 

582 dFOXO Arm1 
sequencing  AAGGCCTGCAGATATAATCATACA 

583 dFOXO Arm1 
sequencing  CGCGCGACCCTATCTAAATTAT 

584 dFOXO Arm1 
sequencing  TGAGTACCTGAAGTGCATTTCAAT 

585 dFOXO Arm1 
sequencing  AATGTGCGAGGCATTTAAACAAGA 

586 dFOXO Arm1 
sequencing  GAAGAATGAGGAGCAAAACGAAAT 

587 dFOXO Arm2 
sequencing  TTTACATCGCAGCATACGTAAATA 

588 dFOXO Arm2 
sequencing  ATTTTTGCTGATACTTCAGCACTC 

589 dFOXO Arm2 
sequencing  GTTTGTCTATGGATAATCGAACTA 

590 dFOXO Arm2 
sequencing  ATTGAACCGGTGCCAAGTATT 

591 dFOXO Arm2 
sequencing  GCCTTATCATAATGGGCCTTAT 

592 dFOXO Arm2 
sequencing  GGGAATGAGAACAAATACGAGA 

593 dFOXO Arm2 
sequencing  TACCACTGACTGATGATTGCATAA 

594 dFOXO Arm3 
sequencing  TTATGTTGTCACTCGCAGCCAT 

595 dFOXO Arm3 
sequencing  GGGTTTAAACCGTTGAATATGTC 

596 dFOXO Arm3 
sequencing  TTGTGATTCACGCTCGATGCA 

597 dFOXO Arm3 
sequencing  AATGCTCTCGCGTTCTTTAGG 

598 dFOXO Arm3 
sequencing  AACAGAGAAGCAGCTTCCACT 

599 dFOXO Arm3 
sequencing  TTTAGCCTGACTAACAGTGGG 

600 dFOXO Arm3 
sequencing  CGTTCCGAGAAATCCAGAAATC 

601 dFOXO Arm4 
sequencing  TTAAGTCCTTTTCAATTTGGGTGC 

602 dFOXO Arm4 
sequencing  TTAAAACTGAGATTCGACACGGTT 

603 dFOXO Arm4 
sequencing  CAATCGCATGACGTGCTAATAA 

604 dFOXO Arm4 
sequencing  CCCCCAAACTTCTATTCTTTGA 

605 dFOXO Arm4 
sequencing  AATTAGCGACAGGATTTGTCC 

606 dFOXO Arm4 
sequencing  ATAATGACGTGACAGGAGCTA 

607 dFOXO Arm4 
sequencing  ATGGATGGAAGTGAAGTCAAGT 

628 dFOXO Arm1 
sequencing extra CGCTCGGTACAAATCTTCAGGTGG 

629 dFOXO Arm2 
sequencing extra CAGCATTGAAAAGGGGCAACCGGT 

630 dFOXO Arm3 CCCCGATTCATTCGGCTAATTGCT 
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sequencing extra 

631 dFOXO Arm3 
sequencing extra AAGTACCTTTTCGGTAAAGACCTT 

632 dFOXO Arm3 
sequencing extra TACTTGGCTGGATTTGCTTTACCA 

633 dFOXO Arm3 
sequencing extra CGCCGGACACACACAGCGAAAATG 

634 dFOXO Arm4 
sequencing extra GCACCCCCGTTAAATATGCACTGG 

635 dFOXO Arm4 
sequencing extra TAACTTCTGCCTTTTTCCCGGCAC 

661 Before Arm1 
dFOXO CGTCGCCTGTCTGATTCCCCCTGA 

662 After Arm2 
dFOXO TACACGTTCGAGCCCCCTTTGCAC 

663 Before Arm3 
dFOXO CGTCTGCTGCCATCTTGCTAAAGC 

664 After Arm4 
dFOXO CGCTTTATGGCCGCCACTCCTTGG 

665 dFOXO small 
deletion fw TGCAACTGCACAACGAACTTTTCT 

666 dFOXO small 
deletion rv ATAGATTTCCCCATGCATTGCG 

667 dFOXO large 
deletion fw GCTATCTCCAGAGCTGAAGTTT 

668 dFOXO large 
deletion rv CATACGTATGCACATGATTGACTG 

669 dFOXO medium 
deletion fw TGCACAACCGCTTTATGAGGGT 

670 dFOXO medium 
deletion rv CAGTTGATAGTTACCTGTGGAG 

681 dFOXO 
replacement V2 fw 

TTAAATACAAATCTAATCAAGCTACTAAAGATTAATTTAAAATTACTT
TGGCTAGCCACAACATACGAGCCGGAAGCATA 

682 
dFOXO 
replacement V2 
and V3 rv 

TATTTGGGATAAAGGGTACAAAAATATCTCAGTTTAATATCACTTTA
ATTGGCGCGCCATGTGCGCGGAACCCCTATTTG 

683 dFOXO 
replacement V3 fw 

ATATATTTTGCAAAAACCGAAATATATTGAATGTAAAAGAATTGCAA
AATGCTAGCCACAACATACGAGCCGGAAGCATA 

690 dFOXO Exon 
sequencing CTTTAGTAGCTTGATTAGATTTGT 

691 dFOXO Exon 
sequencing AATAGACTCACAGCAGGCTATA 

692 dFOXO Exon 
sequencing TCTTTTACATTCAATATATTTCGG 

693 dFOXO Exon 
sequencing AGATACTCCTTGCTATTATATCTT 

694 dFOXO Exon 
sequencing AGTGGCGGTGGCTTCCAATTAT 

695 dFOXO Exon 
sequencing TTCAGTGCCGCCTCGGGACT 

696 dFOXO Exon 
sequencing CCAGCTTGGAAGGTAATTATGA 

697 dFOXO Exon 
sequencing CAGTTGCTGCTAAATAATAACAAC 

698 dFOXO Exon 
sequencing TCCATCATGGGGTAGAAAAGTT 

699 dFOXO Exon 
sequencing GAGAACGAGAGAGAAACATATATG 

700 dFOXO Exon 
sequencing TAACGATCATCCTTGCGATTTGGA 

713 Tags V1short PCR 
fw GTATGTTGTGGCTAGCCAAAGTAATTTTAAATTAATC 

714 Tags V1short PCR 
rv TTGGATCTGGCCCGGGTCTGTGGCTCGA 

717 FOXO Tags seq1 ATTGATTGCGAAGCTTTCACATTC 
718 FOXO Tags seq2 CTGTGGCTCGAAGCCCACGT 
719 FOXO Tags seq3 TCGAACTCGTGGCCGTTCAC 
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720 FOXO Tags seq4 TCCCCTCAGTTCATGTACGG 
721 FOXO Tags seq5 CAACATCAAGTTGGACATCACCTC 

722 
Verify FOXO V1 
or V2 reinsertion 
fw 

ACAAGATATATAGTCATGTACAAC 

723 Verify FOXO V1 
or V2 reinsertion rv CAAATCTAATCAAGCTACTAAAGA 

724 Verify FOXO V1 
reinsertion rv AGAAAACGTAGTGCAATTTGTGGC 

725 Verify FOXO V3 
reinsertion fw ATTGCTTACAAATCGTTACATCAG 

726 Verify FOXO V3 
reinsertion rv GCAAAAACCGAAATATATTGAATG 

727 Verify FOXO V2 
or V3 reinsertion rv TTGAAACCGAACGGTGCGGT 

728 shortV3 Tags PCR 
fw TCACAGCCCAGCGTGGTGACCTCGCCACCATCCT 

729 shortV3 Tags PCR 
rv AGTTATGGTACCGGCGCGCCAATTAAAGTGATATTA 

791 dFOXO∆V1 end of 
Arm1 fw CGACATATATGTATGAGTACTCTG 

792 dFOXO∆V1 loxP 
rv GCATACATTATACGAAGTTATGG 

793 dFOXO∆V1 attP 
fw GCGGGCTAGCACATATGC 

794 dFOXO∆V1 
Beginning of Arm2 CGTAGTGCAATTTGTGGCTTTG 

809 dFOXO-V3-DBD1 
fw CGTTCTCGTTACAGAACTCCATACGTGCCAATCTGTCGCTGC 

810 dFOXO-V3-DBD1 
rv GCAGCGACAGATTGGCACGTATGGAGTTCTGTAACGAGAACG 

811 dFOXO-V3-DBD2 
fw CGTTCTCGTTACAGGCCTCCATACGTGCCAATCTGTCGCTGC 

812 dFOXO-V3-DBD2 
rv GCAGCGACAGATTGGCACGTATGGAGGCCTGTAACGAGAACG 

813 dFOXO-V3 fw CATGCAATGCGGCCGCTAGCATTTTGCAATTCTTTTACA 

814 dFOXO-V3-MAD 
rv CAGGATGGTGGCGAGGTCACCCTACTTGTCATCGTCATCCTTG 

817 dFOXO-V3 rv CGAAGTTATGGTACCGGCGCGCCAATTAAAGTGATATTAAACTGAGA 

823 pUbiP-EGFP-
dFOXO seq CCGACCACTACCAGC 

824 dFOXO-V3 rv for 
tags AGGATGGTGGCGAGGTCACCACGCTGGGCTGTGAGTA 

883 dFOXO-V3 fw GCAATGCGGCCGCTAGCATTTTGC 
884 dFOXO-V3 rv GTACCGGCGCGCCAATTAAAGTGA 

885 dFOXO-V3 shorter 
for seq rv GTTGATAGTTACCTGTGGAGCGGA 

886 dFOXO-V3 shorter 
for seq fw TGGAGAACTTTCCCGTGGGCAATC 

887 dFOXO∆V3 end of 
Arm3 fw GACGAGGTCTGGTGAAGACA 

988 Thor1 ChIP-qPCR 
fw GAATGCGATTGGCGTTTAGT 

989 Thor1 ChIP-qPCR 
rv CTCGCCTTGAGCTCTTGTTT 

1092 lip3-promoter-fw-
long TCTATCGATAGGTACCCGCCTATATCAGTAGCTAATATG 

1093 lip3-promoter-fw-
short TCTATCGATAGGTACTTGCTGGCGTGATTCAGGCA 

1094 lip3-promoter-rv CCGGAATGCCAAGCTCGCAGTACTATGATCCGTG 

1127 UAS-Lip3 
genotype fw ATGACAAGAGGAGCGTTAAAAGTG 

1128 UAS-Lip3 
genotype rv TAGGTGTTGCCTCGGGCATT 

1139 Lip3 promoter seq 
extra#1 GTCCAATAGTCCACCGTAAC 

1140 Lip3 promoter seq CATAACATTGGCATTCTTGGCC 
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extra#2 

1160 3xHA-HNF4 fw TATGACGTCCCGGACTATGCAGGATCCTATCCATATGACGTTCCAGA
TTACGCTGGTAGCGGCAGCGGTAGCATGATGAAGCATCCGCAGGA 

1161 HNF4 rv GATCCTCTAGACTAGCTAGCCTAGTAACCAGTCTCTGGCT 

1162 3xHA-HNF4 fw2 CGCAGAATAATCCAACTAGTATGTACCCATACGATGTTCCTGACTAT
GCGGGCTATCCCTATGACGTCCCGGACTATG 

1167 3xHA-HNF4 seq1 GTTGGCGTCGATAAATAAGTT 
1168 3xHA-HNF4 seq2 TGCATTATGTGGCTCTCCGA 
1169 3xHA-HNF4 seq3 AAGTGGGACTAACAGCAGTC 
1170 3xHA-HNF4 seq4 ATCACAAGGCACTGTCCAGA 
1171 3xHA-HNF4 seq5 ATGATTCCTTCCGGGCCTA 
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