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Abstract 

Background:  Telomere maintenance mechanisms (TMM) are a hallmark of high-risk neuroblastoma, and are con‑
ferred by activation of telomerase or alternative lengthening of telomeres (ALT). However, detection of TMM is not yet 
part of the clinical routine, and consensus on TMM detection, especially on ALT assessment, remains to be achieved.

Methods:  Whole genome sequencing (WGS) data of 68 primary neuroblastoma samples were analyzed. Telomere 
length was calculated from WGS data or by telomere restriction fragment analysis (n = 39). ALT was assessed by 
C-circle assay (CCA, n = 67) and detection of ALT-associated PML nuclear bodies (APB) by combined fluorescence 
in situ hybridization and immunofluorescence staining (n = 68). RNA sequencing was performed (n = 64) to deter‑
mine expression of TERT and telomeric long non-coding RNA (TERRA). Telomerase activity was examined by telomer‑
ase repeat amplification protocol (TRAP, n = 15).

Results:  Tumors were considered as telomerase-positive if they harbored a TERT rearrangement, MYCN amplifica‑
tion or high TERT expression (45.6%, 31/68), and ALT-positive if they were positive for APB and CCA (19.1%, 13/68). If 
all these markers were absent, tumors were considered TMM-negative (25.0%, 17/68). According to these criteria, the 
majority of samples were classified unambiguously (89.7%, 61/68). Assessment of additional ALT-associated parame‑
ters clarified the TMM status of the remaining seven cases with high likelihood: ALT-positive tumors had higher TERRA 
expression, longer telomeres, more telomere insertions, a characteristic pattern of telomere variant repeats, and were 
associated with ATRX mutations.

Conclusions:  We here propose a workflow to reliably detect TMM in neuroblastoma. We show that unambiguous 
classification is feasible following a stepwise approach that determines both, activation of telomerase and ALT. The 
workflow proposed in this study can be used in clinical routine and provides a framework to systematically and reli‑
ably determine telomere maintenance mechanisms for risk stratification and treatment allocation of neuroblastoma 
patients.
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Background
Neuroblastoma is the most common extracranial solid 
cancer in childhood and arises from the developing sym-
pathetic nervous system [1, 2]. The clinical courses of 
neuroblastoma are diverse: Patients with low-risk neu-
roblastoma often show spontaneous regression, while 
high-risk patients die in about 50% from the disease 
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despite multimodal aggressive treatment [3]. Current 
risk stratification of neuroblastoma patients is primarily 
based on clinical variables and molecular markers, such 
as genomic amplification of MYCN [4]. While risk assess-
ment of neuroblastoma patients has been continuously 
improved over the last few decades, there are still sub-
groups of patients that may be misclassified by current 
strategies [5].

We have recently shown that the activation of telomere 
maintenance mechanisms (TMM) is a hallmark of high-
risk neuroblastoma, while such mechanisms are invari-
ably lacking in low-risk tumors [6]. Stabilization of the 
telomeres is an essential prerequisite for cancer cells to 
gain unlimited replicative capacity [7, 8]. Telomere main-
tenance may be mediated by a telomerase dependent or 
a telomerase independent pathway (Fig.  1A) [6, 9]. The 
telomerase dependent pathway is activated through tran-
scriptional upregulation of the gene telomerase reverse 
transcriptase (TERT) which is most frequently caused by 
amplification of the oncogene MYCN or by rearrange-
ments of the TERT locus in neuroblastoma [10]. The 
telomerase independent pathway, termed alternative 
lengthening of telomeres (ALT), comprises homologous 
recombination dependent replication of telomeres [11], 
but has not been completely elucidated on the molecular 
level so far. There are, however, several molecular altera-
tions and parameters associated with an ALT phenotype, 
such as mutations in the genes ATRX, DAXX, H3F3A or 
SMARCAL1 (Fig. 1A) [6, 12, 13].

The mechanistic classification of neuroblastoma based 
on TMM has been suggested as a diagnostic tool to accu-
rately predict the natural course of disease of neuro-
blastoma in clinical risk estimation systems. In addition, 
ALT-associated alterations and telomerase may offer spe-
cific therapeutic targets [13–15]. However, no consensus 
strategy for assessing TMM in neuroblastoma, especially 
for ALT, has been established yet. Telomerase-mediated 
TMM in neuroblastoma can be determined by detect-
ing the respective genomic alterations, i.e., amplification 
of MYCN (MNA) or rearrangements of TERT (TERT 
RA) [10], or by examining TERT expression levels [6, 9, 
10] or telomerase activity [6, 12]. Assessment of ALT has 
remained more challenging, as ALT-related molecular 
markers may lack sensitivity or specificity [9, 12, 16–20]. 
Both analysis of ALT-associated promyelocytic leukemia 
nuclear bodies (APB) and detection of extrachromosomal 
circular partially double-stranded telomeric DNA (C-cir-
cles) have been used to assess ALT in neuroblastoma, 
however, the accuracy and comparability of these two 
methods have not been systematically determined yet. In 
addition, it is not clear, still, which additional parameters 
may help to determine ALT in neuroblastoma in cases 
with conflicting results.

We here set out to develop a diagnostic workflow to 
reliably determine TMM in neuroblastoma in clinical 
practice by comprehensively characterizing features of 
telomere maintenance in a cohort of neuroblastoma 
samples covering the entire spectrum of the disease.

Results
To reliably determine telomerase and ALT-dependent 
TMM in neuroblastoma, we comprehensively examined 
TMM-related features in a cohort of 68 neuroblastoma 
samples, covering the entire spectrum of the disease 
(Additional file 1:Table S1). In a first step, we examined 
genomic alterations associated with induction of telom-
erase, i.e., TERT RA and MNA, as well as TERT mRNA 
expression levels. In addition, we assessed whether ALT 
was activated in the tumors by analysis of C-circles 
(CCA) and APB.

Assessment of telomerase‑mediated telomere 
maintenance
Telomerase-mediated TMM was determined by detec-
tion of MNA or TERT RA using FISH, and by analysis 
of TERT RNA expression levels using RNA sequencing 
(Additional file 2: Table S2). Based on RNA sequencing 
data of a larger neuroblastoma cohort [21], a thresh-
old for high versus low TERT expression was defined 
(Additional file 4: Fig. S1A) according to the definition 
of a threshold that had been used previously [6]. Appli-
cation of the threshold to the study cohort revealed 
elevated TERT expression in 50.0% of the cases (32/64) 
(Fig. 1B). MNA and TERT RA occurred in 20.6% of the 
tumors (14/68) each, with co-occurrence of these alter-
ations in three cases. The latter cases were excluded 
from statistical comparisons between MNA and TERT 
RA tumors. All tumors bearing MNA or TERT RA had 
elevated TERT expression levels, except one case with 
MNA (mean log2 TERT expression score: TERT RA 
(n = 9), 12.1; MNA (n = 9), 9.0; other (n = 25), 7.1; ALT 
(n = 12), 6.0; Additional file 4: Fig. S1B). Enzymatic tel-
omerase activity determined by TRAP assay revealed 
significantly higher activity in TERT rearranged and 
MNA cases (n = 9) as compared to other cases (n = 6; 
mean relative telomerase activity, 720 versus 164, 
p = 0.002, Additional file 4: Fig. S1C).

In line with our previous studies, we defined neuro-
blastomas as telomerase positive if TERT expression 
was above the threshold, if they harbored a TERT RA, 
or if they were MYCN amplified, as the latter had been 
shown to directly upregulate TERT expression in neu-
roblastoma [10, 13].
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Genomic alterations and biomarkers associated with telomerase and ALT activation in neuroblastoma are indicated. B TMM characteristics and 
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Assessment of alternative lengthening of telomeres
Activation of ALT was assessed by detection of APB 
and by CCA. APB were observed in 27.9% of the tumors 
(19/68; Fig.  1B). As CCA results depend on a threshold 
of a reference sample, we investigated the impact of vari-
ous published experimental strategies on the detection of 
ALT (Additional file 5: Fig. S2A and B) [22, 23]. Accord-
ing to this approach, we defined two distinct thresholds 
and determined the overlap of CCA with APB results 
(Additional file  5: Fig. S2B). The first threshold (th1) 
considered samples as ALT-positive in which C-circle 
signal intensity was ≥ 5% relative to the signal of the ALT-
positive neuroblastoma cell line CHLA-90 [9]. The sec-
ond threshold (th2) defined the level for CCA positivity 
as ≥ 20% of signal intensity of CHLA-90 and at least four-
fold the area under the curve of polymerase-free dot-blot 
[12]. We found that the two thresholds revealed 16 and 
12 ALT-positive cases respectively. Th1 revealed a larger 
overlap with results from APB analysis (94.0%, 63/67; 
Additional file 5: Fig. S2B), and was therefore selected for 
further analysis (Additional file 5: Fig. S2C).

Classification of neuroblastoma samples according to TMM
Based on these results, we classified all neuroblastoma 
samples into three subgroups according to their TMM 
status (Fig. 1C): (i) Telomerase-positive tumors (TEL[+]), 
defined by the presence of MNA, TERT RA, or high 
TERT expression, and absence of APB or C-circle posi-
tivity; (ii) ALT-positive tumors (ALT[+]), defined by the 
absence of alterations associated with telomerase activa-
tion and by the presence of concordant positive results 
in APB analysis and CCA; (iii) TMM-negative tumors 
(TMM[−]) defined by the absence of all these altera-
tions. According to these definitions, 89.7% of the tumors 
(61/68) were classified unambiguously (TEL[+], n = 31; 
ALT[+], n = 13; TMM[−], n = 17; Fig.  1B and C). Of the 
remaining seven cases, two had high TERT expression 
and characteristics of ALT, and four had discordant 
results for APB and CCA. One tumor could not be clas-
sified unambiguously as only results for APB but not for 
CCA were available due to material shortage.

Characteristics of TMM subgroups
To identify criteria that may help to unambiguously clas-
sify tumors into TEL[+], ALT[+], and TMM[−] subgroups, 
we determined a panel of additional features that have 
been associated with telomere maintenance mechanisms 
previously (Fig. 1C and Additional file 6: Fig. S3).

Mutations associated with the ALT phenotype
We found ATRX mutations in 8/68 samples (11.8%), 6 of 
which were classified as ALT[+] neuroblastomas, and 2 of 
which were ambiguous. In ALT[+] tumors, we observed 

deletions affecting exons 2–9 in two of the tumors, and 
deletions of exons 2–10 in two other tumors, one of 
which showed an additional deletion of exons 11–12. Fur-
thermore, a nonsense mutation at position (c.853G > T) 
was detected. The largest deletion affected exons 2–15. 
In the two ATRX mutated tumors with ambiguous TMM 
status, we detected a deletion of exons 2–10 in one of 
these, and a deletion of exons 2–9 in the other one. We 
did not observe any mutations in the ATRX complex 
partner genes DAXX and H3F3A [24] nor mutations in 
SMARCAL1 [25, 26].

Long telomeres and a high telomere content are 
associated with ALT[+] in neuroblastoma
Since abundant telomeric sequences are characteristic for 
the ALT phenotype [27], we calculated the telomere con-
tent by inferring telomeric reads from WGS data (n = 68, 
Additional file 2: Tab. S2). Telomere content can reliably 
be calculated over a broad range of sequencing cover-
age and is positively correlated (linearly in unaltered 
normal controls) with read depth (Additional file 7: Fig. 
S4A). The telomere content, which was determined as 
the ratio between tumor and normal counts, was signifi-
cantly higher in ALT[+] (n = 13) than in TEL[+] (n = 31) 
or TMM[−] neuroblastomas (n = 17, Fig.  2A). Consider-
ing that matched normal samples might not always be 
available in clinical practice, we examined whether the 
telomere content computed from tumor samples only 
would provide similar results. We found that the tel-
omere content of tumors only was also strongly associ-
ated with the ALT phenotype and was highly correlated 
with telomere content ratios of tumor/normal pairs 
(Additional file  7: Fig. S4B and C). We also determined 
telomere restriction fragment lengths by southern blot 
analysis (n = 39). Similarly to telomere content, telomere 
restriction fragments of ALT[+] neuroblastomas (n = 8) 
were significantly longer than those of TEL[+] tumors 
(n = 16), whereas they did not differ significantly between 
ALT[+] and TMM[−] cases (n = 12, Fig.  2B). Although 
telomeres were longest in ALT[+] tumors in both analy-
ses, the results of the two methods did not correlate sig-
nificantly (Fig.  2C), suggesting that these assays may be 
complementary in detecting ALT-positive cases. In addi-
tion to the longer mean telomere restriction fragments, 
ALT[+] tumors appeared to have more heterogeneous tel-
omere restriction fragments (Additional file 8: Fig. S5).

We further examined whether telomere content 
and telomere length correlated with other ALT-asso-
ciated parameters. C-Circle expression intensity was 
positively correlated with telomere content (p < 0.001, 
Fig.  3A), but not with the lengths of telomere restric-
tion fragments (p = 0.176, Fig. 3B). By contrast, both tel-
omere content and telomere restriction fragments were 
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Fig. 2  Telomere content and telomere restriction fragment analysis in TMM subgroups. A Telomere content (TC) calculated from WGS data, 
displayed as tumor/normal ratio, in telomere maintenance defined subgroups. Mean telomere content: TMM[−], 0.87; ALT[+], 6.39; TEL[+], 0.96. 
Kruskal–Wallis test and Dunn’s multiple comparison test were used for statistical analysis; ambiguous cases were excluded. Whiskers are limited 
to 1.5 × interquartile range. B Telomere restriction fragment (TRF) analysis, displayed in kilobase pairs (kbp), in telomere maintenance defined 
subgroups. Mean telomere length: TMM[−], 8.39; ALT[+], 10.66; TEL[+], 6.36. Kruskal–Wallis test and Dunn’s multiple comparison test were used 
for statistical analysis; ambiguous cases were excluded. Whiskers are limited to 1.5 × interquartile range. C Correlation analysis of TRF and TC in 
neuroblastoma samples (n = 36). Ambiguous cases were excluded from calculation of Pearson correlation

(See figure on next page.)
Fig. 3  Association of telomere content and telomere restriction fragment lengths with ALT associated variables and ALT status. A Correlation 
analysis of telomere content (TC), displayed as tumor/normal ratio, and C-circle signal intensity. B Correlation analysis of telomere restriction 
fragment (TRF) lengths, displayed in kilobase pairs (kbp), and C-circle signal intensity. C Correlation analysis of TC and log2 TERT mRNA expression 
levels. D Correlation analysis of TRF and log2 TERT mRNA expression levels. Correlation coefficients were calculated according to Pearson; 
ambiguous cases were excluded from calculations. E Receiver operating curve (ROC) for ALT prediction by TC in neuroblastoma samples (n = 61). F 
ROC for ALT prediction by TRF in neuroblastoma samples (n = 36)
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Fig. 3  (See legend on previous page.)
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negatively correlated with TERT expression (p = 0.048 
and p = 0.028, Fig. 3C, D).

We also investigated the performance of telomere con-
tent and telomere length in identifying ALT in neuro-
blastoma. To this end, we computed receiver operating 
characteristics (ROC) curves on the cohort of cases with 
unambiguous TMM status and calculated the area under 
the curve (Fig. 3E, F). The AUC was ≥ 0.9 for both meth-
ods, suggesting that both are well suited to discriminate 
between ALT-positive and -negative cases [28]. To assess 
whether a combination of the two methods might fur-
ther improve ALT detection, we performed binary logis-
tic regression and calculated predicted probabilities for 
the combined ROC curve and AUC. A combination of 
telomere content and telomere length, however, did not 
improve ALT detection over telomere content alone sub-
stantially (Additional file 9: Fig. S6A). Based on the calcu-
lated coordinates of ROC curves, we propose a threshold 
of 1.22 (sensitivity 92.3%, specificity 89.6%, Fig.  3E) for 
detection of ALT by telomere content, and a threshold of 
9.01  kb (sensitivity 87.5%, specificity 85.7%, Fig.  3F) for 
detection of ALT by telomere length in independent neu-
roblastoma cohorts (Additional file 3: Tab. S3).

TERRA expression is elevated in ALT‑positive 
neuroblastoma
The expression of telomeric long non-coding RNA 
(TERRA) is associated with ALT in childhood neuro-
blastoma [12]. We, therefore, determined normalized 
TERRA read counts in TMM subgroups and found that 
TERRA was significantly higher in ALT[+] compared to 
TMM[−] and TEL[+] neuroblastomas (Fig. 4A, Additional 
file  2: Tab. S2). Furthermore, TERRA expression corre-
lated significantly with the intensity of the C-circle sig-
nal (p < 0.001, Fig. 4B), with telomere content (p < 0.001, 
Fig.  4C) and with telomere restriction fragment lengths 
(p = 0.044, Fig. 4D). To assess the performance of TERRA 
expression in predicting ALT, we computed the ROC 
curve also for this variable. The AUC was 0.826 and thus 
substantially inferior to both the AUC of ROC curves 
determined for telomere content or telomere restriction 
fragment lengths (Additional file 9: Fig. S6B).

Fraction of telomere variant repeats (TVR) singletons are 
depleted in ALT‑positive neuroblastoma
Telomeres of cancer cells of distinct TMM subtypes 
may differ in their composition and content of so-called 
telomere variant repeats (TVR), which are variations 
of the most common telomeric hexamer (TTA​GGG​
, t-type) [29]. We, therefore, examined telomeric reads 
for the most common (TTA​GGG​, TGA​GGG​, TCA​
GGG​, TTG​GGG​) and all other variants (NNNGGG) of 

TVRs (Additional file  2: Tab. S2). Overall, all variants 
were more prevalent in ALT[+] neuroblastoma (Fig. 5A). 
Another study has reported that TVR ‘singletons’, which 
are defined as a telomeric hexamer of the NNNGGG 
type surrounded by at least three t-type repeats on either 
side [(TTA​GGG​)3 – NNNGGG – (TTA​GGG​)3], may be 
more suitable to discriminate between TMM subgroups 
[8]. It has to be considered, though, that singleton counts 
increase with higher overall telomere content [8]. We 
thus screened telomeric reads for TVR singletons and 
compared the fraction of singleton counts in distinct 
TMM subtypes after normalization to telomere content. 
We observed a strong depletion of the TTT​GGG​ single-
ton in ALT[+] neuroblastoma (n = 13, p < 0.001, Fig. 5B), 
which is in line with a previous pan-cancer study [8]. We 
also found that the TGA​GGG​ singleton was depleted 
in ALT[+] neuroblastomas (n = 13) compared to TEL[+] 
cases (n = 31, p = 0.013, Fig. 5C), whereas it was enriched 
in ALT-positive samples across multiple cancer types [8].

Telomere insertions occur at high frequencies 
in ALT‑positive neuroblastoma
It has been shown recently that intrachromosomal inser-
tions of telomeric DNA correlate with ALT-associated 
mutations across multiple cancer types [8]. We, there-
fore, used WGS data to systematically screen for tel-
omere insertions and examined potential associations 
with the distinct TMM-subgroups (Additional file 2: Tab. 
S2). Overall, we detected 134 breakpoints, representing 
133 telomere insertions that affected 40% of the samples 
(27/68). The vast majority of insertions were defined as 
one-sided (99%, 132/133), meaning that only one break-
point per insertion was detected, while two breakpoints 
in opposite directions were detected for only one inser-
tion. The number of telomere insertions significantly 
correlated with telomere content (spearman correlation, 
r = 0.407, p < 0.001; Additional file  10: Fig. S7A). The 
prevalence of telomere insertions differed considerably 
between TMM-subgroups: 77% (10/13) of ALT[+] sam-
ples harbored telomere insertions, whereas the fraction 
was 32% (10/31) and 6% (1/17) in TEL[+] and TMM[−] 
samples, respectively (Fig.  5D). We also noted that all 
samples bearing ATRX mutations harbored at least one 
telomere insertion and thus had the highest frequency of 
such alterations (Additional file 10: Fig. S7B).

Classification of ambiguous cases into TMM subgroups
We finally aimed to determine the TMM status in those 
seven cases that had remained ambiguous in our initial 
classification. In detail, 4/7 cases had discordant results 
in CCA and APB analysis, whereas only APB but no 
CCA was available in one case (Additional file 11: Fig. 
S8). Two cases of these showed high TERT expression 
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Fig. 5  Additional features for TMM classification of ambiguous neuroblastoma cases. A Heatmap showing the telomere content of distinct 
telomere variant repeat types in neuroblastoma samples (n = 68). B Log2 singleton ratio for TTT​GGG​ and C TGA​GGG​ singletons, normalized by 
telomere content, in TMM defined subgroups. Kruskal–Wallis test and Dunn’s multiple comparison test were used for statistical analysis; ambiguous 
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Dunn’s multiple comparison test were used for statistical analysis; ambiguous cases were excluded from statistical analysis. No., number; amb., 
ambiguous cases. E TMM classification of seven ambiguous neuroblastoma cases that could not be classified by standard criteria. High TERRA 
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despite the presence of either APB or C-circles, and 
two additional cases had high TERT expression despite 
the presence of both APB and C-circles. To define the 
TMM status of these cases, we took all available infor-
mation into account, i.e., genomic alterations, TERT 
expression, telomerase activity, CCA and APB results, 
telomere content and telomere length, TERRA expres-
sion, TVR singletons and telomere insertions (Fig. 5E). 
In case NB05, which was CCA-positive and APB-nega-
tive, we detected MNA, high TERT expression and high 
telomerase activity, whereas the telomere content and 
TERRA expression were low and no ALT-associated 
TVR depletion or telomere insertions were found, sug-
gesting that NB05 was TEL[+]. Case NB45 was CCA-
negative and ABP-positive, and showed a high telomere 
content and telomere insertions while lacking TERRA 
expression. However, as this tumor harbored a TERT 
rearrangement and high TERT expression, we consid-
ered this case as TEL[+]. In case NB43, which also was 
CCA-negative and ABP-positive, we detected TERRA 
expression, a high telomere content, telomere inser-
tions and low TERT expression, supporting the notion 
that this case was ALT[+]. Similarly, case NB68 was 
CCA-negative and APB-positive and had a particu-
larly high telomere content, telomere insertions, and 
a low fraction of TVR singletons along with no evi-
dence of TERT activation, suggesting that this tumor 
was ALT[+]. NB46, for which only APB was available, 
showed an ATRX mutation, high telomere content, 
TVR singleton depletion and telomere insertions, and 
was thus likely to be ALT[+]. In NB50, we detected high 
TERT expression, however, many other features, i.e., 
CCA, APB, ATRX mutation, telomere content, TERRA 
expression, telomere insertions, and a low fraction of 
TVR singletons supported an ALT[+] phenotype. Simi-
larly, we found multiple features of ALT in NB54 (CCA, 
APB, high telomere content, long telomere restric-
tion fragments, low fraction of TVR singletons and 
one telomere insertion) despite high TERT expression, 
thus pointing towards an activated ALT[+] pathway. 
Together, two of the ambiguous cases were classified as 
TEL[+] and five as ALT[+].

Workflow for TMM assessment in neuroblastoma
Taken together, our data indicate that assessment of 
multiple parameters related to TMM allows determin-
ing the TMM status also in those neuroblastoma cases 
that have remained ambiguous. In our cohort, CCA 
was false negative in two cases (NB43 and NB68) and 
false positive in one case (NB05), whereas APB analy-
sis was false positive in one case (NB45, Fig. 5E). Based 
on these findings, we propose a workflow to reliably 

determine TMM in neuroblastoma, taking into account 
a stepwise approach of diagnostic assays (Fig. 6).

Discussion
Maintenance of telomeres is a hallmark of high-risk neu-
roblastoma [6, 10]. Activation of TMM is mediated via a 
telomerase-dependent or via an alternative, telomerase-
independent pathway [6]. Despite its potential prognos-
tic value, assessment of TMM is not part of the clinical 
routine in neuroblastoma patients yet [30, 31], and no 
guidelines have been established on how TMM should 
be determined. Here, we propose a stepwise diagnostic 
workflow for TMM assessment in neuroblastoma based 
on extensive characterization of primary tumor sam-
ples. The workflow also considers individual conditions 
of clinical centers, like availability of material, access to 
NGS techniques, and experience of investigators (Fig. 6).

For assessment of telomerase activation, we recom-
mend determining MYCN copy number status by FISH 
as the first step, which is a well-established method and 
part of the clinical routine for decades [30]. In MYCN 
non-amplified tumors, we recommend subsequently 
determining the genomic status of TERT by FISH or 
by WGS, if available [10, 32]. This stepwise approach 
will identify the vast majority of TEL[+] tumors. If nei-
ther MNA nor TERT RA are detected, we recommend 
determining TERT expression levels by RNA sequenc-
ing or RNA expression microarrays to identify cases with 
elevated TERT expression but lacking corresponding 
genomic alterations.

Detection of ALT is more challenging, as the underly-
ing mechanisms have remained largely elusive [33], and 
ALT-positivity is thus identified by analysis of phenotypic 
characteristics that are associated with ALT in the major-
ity, but not necessarily all cases (e.g., C-circles [9, 17], 
APB [9, 16] or ATRX mutations [12, 18]). Detection of 
C-circles or APB is frequently used for ALT assessment 
[6, 9, 12], however, no consensus exists on ALT detec-
tion in neuroblastoma. We evaluated both methods and 
found that the two assays revealed identical results in all 
except four cases (94%, 63/67). Discordant results of APB 
detection and CCA have been reported also in previous 
studies [9, 16, 17, 34, 35]. Although C-circle detection 
is supposed to be highly specific for ALT-positive cells, 
low signals can be obtained also from normal healthy tis-
sue [36], especially from blood samples [22] (Additional 
file  5: Fig. S2A). Likewise, occasional formation of APB 
in ALT-negative cells, such as small APB-like bodies in 
healthy tumor-adjacent tissue, has been reported [37, 
38]. Thus, both methods lack specificity and sensitivity 
in detecting ALT. In our study, APB detection appeared 
to perform slightly more accurately than CCA, since only 
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one sample was misclassified by APB analysis, whereas 
three were misclassified by CCA. Another poten-
tial advantage of APB analysis may be the fact that this 
method is based on microscopic evaluation of tumor tis-
sue sections, which may allow the identification of intra-
tumoral heterogeneity. On the other hand, APB detection 
can be challenging in some instances, and thus requires a 
certain extent of investigator experience. A potential lim-
itation of CCA may be the inconsistency in definitions of 
appropriate detection thresholds and reference cell lines 
[9, 12, 16, 17, 35, 39], as different thresholds may lead to 
different results (Additional file 5: Fig. S2B). By contrast, 
the continuous nature of C-circle signals may be advanta-
geous for quantitatively monitoring ALT activity in longi-
tudinal samples [34, 40, 41]. Taken together, we consider 
both APB detection and CCA as appropriate for ALT 
assessment as a first step. Because of the considerations 
mentioned above, however, we prioritize APB analysis if 
appropriate expertise is available, and recommend per-
forming CCA additionally, at least in cases with incon-
clusive APB results.

If the ALT status cannot be determined unequivocally 
by APB analysis and CCA, we recommend analyzing 

telomere lengths as a next step, preferentially by telomere 
content assessment using WGS data. In our study, tel-
omere content and—to a lesser extent—telomere restric-
tion fragments correlated well with ALT-associated 
markers, such as C-circle and low TERT expression, 
supporting the association of ALT and long telomeres 
[8, 11, 12, 27]. Both methods may have limitations: Tel-
omere restriction fragment analysis can be affected by 
the variability of sub-telomeric regions and hybridization 
issues, whereas calculation of the telomere content can 
be imprecise due to unstable karyotypes of cancer cells 
[42]. We found, however, that both methods may be suit-
able for ALT assessment in neuroblastoma if appropriate 
thresholds are being used. We also showed that telomere 
content parameters can be inferred from relatively low 
sequencing coverage [43] and from tumor WGS data 
only, without the necessity to sequence matched normal 
DNA.

In difficult-to-classify cases, we recommend consid-
ering additional analyses to further evaluate ALT-asso-
ciated characteristics. Expression of TERRA has been 
associated with ALT-positive cancers [8, 12, 44], which 
was also observed in this study. We further show that 
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examination of telomeric variant repeats [8] may be help-
ful for determine the TMM status, as they differ in con-
tent and composition dependent on ALT status [29, 45, 
46]. In addition, we found enrichment of telomere inser-
tions in ALT[+] cases in our study, which have previously 
been shown to accumulate in cancers with ALT-associ-
ated mutations and to correlate with telomere content 
[8]. Finally, detection of ALT-associated mutations may 
contribute to determine the ALT status in neuroblas-
toma, as reported for other cancer types [8, 44]. Such 
analyses, however, can merely supplement other diag-
nostic assays, as they may have a high specificity, but low 
sensitivity for detection of ALT [12, 18]. Thus, detection 
of ALT-associated genomic mutations may be comple-
mentarily used to confirm ALT positivity, however, the 
absence of such mutations does not substantiate ALT 
negativity.

Conclusions
We here present a diagnostic workflow to reliably assess 
TMM in primary neuroblastoma samples. Our study 
thus may guide neuroblastoma reference laboratories in 
setting up appropriate diagnostic assays, provide a frame-
work for establishing comparability of TMM results, and 
ultimately guide pediatric oncologists in accurate risk 
assessment of neuroblastoma patients.

Methods
Patients and cohort
We retrospectively analyzed primary neuroblastoma 
samples, for all of which whole genome sequencing 
(WGS) data were available. Samples were obtained from 
patients enrolled in the clinical trials NB97 (n = 14), 
NB2004 (n = 51) or NB2016 Registry (n = 3) of the 
Gesellschaft für Pädiatrische Onkologie und Hämatologie 
(GPOH). Informed consent was given from all patients or 
their guardians. The Institutional Review Board of the 
Medical Faculty of the University of Cologne granted 
the ethical approval for the use of specimens. Since the 
availability of WGS data was our defining criteria for the 
cohort, part of the information on patient samples had 
been published in previous studies [10, 21, 47]. Most 
patients were diagnosed with Stage 4 disease according 
to INSS (66.2%, n = 45), however, all other stages were 
represented in the cohort (Stage 1: 11.8%, Stage 2: 10.3%, 
Stage 3: 4.4%, Stage 4S: 7.4%, Additional file 1: Tab. S1). 
The gender ratio was distributed with 54.4% male and 
45.6% female patients.

To detect and assess TMM in neuroblastoma, we 
applied different experimental and sequencing-based 
approaches. MYCN copy number was obtained from a 
routine diagnostic workup by FISH (n = 68). TERT RA 
were called from WGS data (n = 68), partly supplemented 

by FISH to visualize the rearrangements (n = 23). TERT 
expression was obtained from RNA sequencing data 
(n = 64). The threshold for defining high versus low 
TERT expression was calculated on RNA sequencing 
data of a large neuroblastoma cohort [21] as described 
previously for microarray analysis [6]. Samples were con-
sidered ‘high’ if TERT expression was above 7.58 (Addi-
tional file 4: Fig. S1A). ALT detection was based on APB 
Immuno/FISH (n = 68) and CCA (n = 67). Telomere 
lengths were obtained from telomere restriction frag-
ment (TRF) analysis (n = 39), or telomere content (TC) 
was calculated from WGS data (n = 68). TERRA expres-
sion was calculated from RNA sequencing data (n = 64). 
Telomere insertions, telomere variant repeats (TVR) 
content and composition, and ALT-associated somatic 
mutations were called from WGS data (n = 68). Telomer-
ase activity was determined by TRAP assay (n = 15).

WGS data analyses
Paired-end WGS data was available for the whole cohort 
and part of WGS data analysis was published previ-
ously [10, 47]. Library preparation and data analysis 
(i.e., sequence alignment, mutation and rearrangement 
calling) were carried out as reported before [10]. Mean 
read depth was between 24 and 65 × for tumor and 11 
and 49 × for normal samples (Additional file 7: Fig. S4A, 
Additional file  2: Tab. S2). Telomere content was esti-
mated by counting reads containing at least four times 
the most common t-type repeat sequence (TTA​GGG​ 
or its reverse complement) in paired tumor and normal 
samples. The counts were further normalized by the total 
number of reads in the sample and the final estimates 
for each patient are given as the ratio between tumor 
and normal. WGS with read depths around 10x (Addi-
tional file 7: Fig. S4A) or, alternatively, WES, is sufficient 
to obtain sufficient reads to calculate telomere content 
statistics [10, 43]. If no (matched) normal samples are 
available, the normalized telomeric read counts of single 
tumor samples are still sufficient to distinguish ALT posi-
tive cases comparable to matched tumor/normal pairs 
(Additional file 7: Fig. S4B and C). Similar ratios of other 
TVR sequences of type NNNGGG and TVR-singletons 
were computed with TelomereHunter [48] (Version 
1.0.4) using default parameters. Singletons were defined 
as TVRs flanked by three t-type repeats [(TTA​GGG​
)3-NNNGGG-(TTA​GGG​)3] and their ratios were further 
divided by telomere content for comparison between 
TMM subgroups.

For telomeric insertion detection, an approach by 
Siverling et  al. [8] was adapted. In detail, the Telomer-
eHunter output was used to identify ‘telomere insertion’ 
read pairs, where one mate was classified as telomere 
read and the other mate mapped onto the genome in a 
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non-telomeric or -centromeric region. Next, the genome 
was split up into 1 kb windows and windows with at least 
three previously identified ‘telomere insertion’ read pairs 
in the tumor sample and none in the normal were consid-
ered as approximate candidates for insertion sites. Every 
candidate window was then searched for soft-clipped 
alignments marking the exact breakpoint. These ‘telom-
eric’ soft-clipped sequences were required to be at least 
15 bp long, contain at least two t-type repeats (TTA​GGG​ 
or the reverse complement) and start at the same posi-
tion (± 1  bp). Breakpoints with at least two ‘telomeric’ 
soft-clipped reads were then considered for a final visual 
inspection using the IGV [49, 50] to remove false positive 
detections (e.g., in regions with simple nucleotide repeats 
or t-type repeats in the reference genome). While it is 
possible to omit the comparison to a matched normal 
sample, it is advised to use matched tumor/normal pairs 
to reduce the number of false-positive candidates.

RNA sequencing and TERRA expression analysis
Part of the RNA sequencing data had been published 
previously [21]. Gene expression was calculated as pre-
viously reported, using AceView Magic pipeline [10, 21] 
and AceView transcriptome reference (http://​www.​acevi​
ew.​org). TERRA expression was computed by first map-
ping the paired-end reads to the hg19 reference with 
STAR [51], and using TelomereHunter [48] with default 
parameters to count reads containing the four most com-
mon TVRs (TTA​GGG​, TGA​GGG​, TCA​GGG​, TTG​GGG​
). Individual counts were further normalized by the total 
number of reads and multiplied by 106. The total normal-
ized TERRA expression in a sample was defined as the 
sum of the four individual TERRA values.

TERT break‑apart FISH
TERT rearrangements were detected as published pre-
viously [10]. Customized digoxigenin and biotin-labeled 
FISH probes were used for hybridization. Streptavidin-
Alexa-555 conjugate (1:500 in CAS-block, Invitrogen, 
S21381), and anti-digoxigenin-FITC (1:500 in CAS-block, 
Roche, 11 207 741 910) antibodies were used. Slides were 
counterstained with DAPI (containing 4′,6-diamidino-
2-phenylindole dihydrochloride, Vectorlab, H-1200–10). 
Microscopy was performed using a Leica DM5500 sys-
tem with Cytovision (Leica, version 7.7) and FIJI (version 
1.52p) software tools.

Combined immunofluorescence and FISH for APB
APB were detected by combined immunofluores-
cence and FISH as published previously with slight 
changes [52]. Slides were washed and fixed with 2% 
Paraformaldehyde. Graded ethanol dehydration was fol-
lowed by the application of a telomere PNA probe (Tel 

C-Alexa-Fluor-488, PNA). Denaturation was done at 
75 °C and hybridization was induced at 37 °C overnight. 
After washing, permeabilization and blocking, the pri-
mary antibody for immunofluorescence was applied 
(1:250 in blocking solution, PML antibody, rabbit, H-238, 
Santa Cruz Biotechnology, sc-621) at 4 °C overnight. The 
incubation with secondary antibody (1:2500 in 1X PBS, 
goat anti-rabbit Alexa Fluor 555, Invitrogen by Thermo 
Fisher Scientific, A27039), was followed by counterstain-
ing with DAPI. Microscopy was performed using a Leica 
DM5500 system with Cytovision (Leica, version 7.7) and 
ImageJ, FIJI (version 1.52p) software tools.

C‑circle assay
The CCA was performed according to previously pub-
lished protocols with few changes [36]. 60 ng of genomic 
DNA were digested at 37  °C for 1  h with restriction 
enzymes Hinf I, RSA l and RNAse, such that telomeric 
DNA including the C-circle molecules remained intact. 
Rolling circle amplification by Φ 29 polymerase (New 
England Biolabs, M0269S) was performed at 30  °C. The 
amplification products and a negative control for each 
sample without polymerase were dot-blotted. Further 
steps including hybridization to a DIG-labelled telomere 
probe and detection of the chemiluminescent signal were 
performed using the Telo-TAGGG Telomere Length 
Assay kit (Roche, 12 209 136 001) according to the manu-
facturer’s protocol.

Telomere length assay
The mean TRF was determined by the Telo-TAGGG 
Telomere Length Assay kit (Roche, 12 209 136 001) 
according to the manufacturer’s instructions. The opti-
cal density (OD) was obtained for each position i with 
the image processing software FIJI (Version 1.52p). Mean 
TRF was calculated by the equation: mean TRF = ∑ (OD 
i * Li) / ∑ (OD i) where Li is the length of the TRF at 
position i [53].

Telomerase activity
Telomerase activity was assessed as published previ-
ously [6] by the TeloTAGGG Telomerase PCR ELISAPLUS 
Kit (Sigma Aldrich, 12,013,789,001) according to the 
manufacturer`s instructions.

Cell lines
SK-N-FI  cells were obtained from ATCC (Manassas, 
VA, USA), and CHLA-90 cells were obtained from the 
Children’s Oncology Group (COG) Cell Culture and 
Xenograft Repository. Lan-6 and NBL-S were pur-
chased from DSMZ (Braunschweig, Germany). KELLY 
and SK-N-BE(2) cells were kindly provided by Dr. Olaf 
Witt and CLB-GA by Dr. Johannes Schulte. Cell lines 

http://www.aceview.org
http://www.aceview.org
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were validated by the DSMZ using STR profiling. LM-
216-J were kindly provided by Dr. Roderick O`Sullivan. 
CHLA-90 cells were cultured in IMDM (Thermo Fisher, 
12,440–053) supplemented with 20% heat-inactivated 
fetal bovine serum (Gibco, 10,500–064) and 1% Insu-
lin–transferrin–sodium selenite (ITS) media supplement 
(Sigma Aldrich, I1884). NBL-S were cultured in IMDM 
with 10% heat-inactivated fetal bovine serum. SK-N-FI 
were cultured in DMEM (Thermo Fisher, 11,995–065), 
10% heat-inactivated fetal bovine serum and 1% non-
essential amino acids (Thermo Fisher, 11,140,050). For 
Lan-6, DMEM was used supplemented with 20% heat-
inactivated fetal bovine serum. Kelly, CLB-GA and SK-
N-BE(2) cells were cultured in RPMI (Thermo Fisher, 
61,870-010) supplemented with 10% heat-inactivated 
fetal bovine serum. Cells were grown at 37 °C in a humid-
ified atmosphere with 5% CO2.

Statistics
For statistical analysis and illustration of data IBM SPSS 
statistics (Version 27.0.0), R (Version 4.1.1), GraphPad 
Prism (Version 9.0.1) and Adobe Illustrator (Version 
25.2) were used. Pearson test was used to detect correla-
tions between metrically scaled variables, e.g., telomere 
content, mean TRF, TERRA read count, C-circle signal, 
and TERT expression levels. Spearman correlation was 
used to detect correlation between telomere content 
and the number of telomere insertions. Comparisons 
between groups were computed with the Kruskal-Wallis 
test followed by Dunn’s multiple comparison test. Dif-
ferences between means of metric, normally distributed 
variables were tested by unpaired t-test or by ANOVA 
followed by Tukey post-hoc test if more than two sub-
groups were analyzed.

Abbreviations
ALT: Alternative lengthening of telomeres; APB: ALT-associated promyelo‑
cytic leukemia nuclear bodies; CCA​: C-circle assay; FISH: Fluorescence in situ 
hybridization; GPOH: Gesellschaft für pädiatrische Onkologie und Hämatolo‑
gie; IF: Immunofluorescence; MNA: MYCN amplification; RA: Rearrangement; 
TEL: Telomerase; TERRA​: Telomeric long non-coding RNA; TMM: Telomere 
maintenance mechanisms; TRF: Telomere restriction fragment; TVR: Telomere 
variant repeats; WGS: Whole genome sequencing.
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Additional file 1: Table S1. Neuroblastoma patient characteristics. 

Additional file 2: Table S2. Sequencing based metrics of neuroblastoma 
samples. 

Additional file 3: Table S3. Coordinates for ROC curve TC and TRF. 

Additional file 4: Figure S1. TERT expression and telomerase activity in 
neuroblastoma with activated telomere maintenance mechanism. (A) 

Distribution of TERT log2 expression values, determined by RNA sequenc‑
ing, in neuroblastomas harboring TERT rearrangements, and/or MNA 
or none of these alterations. The threshold at 7.58 was defined as the 
lowest expression value having a posterior probability ≥95% to fall within 
the distribution on the right (i.e., the group of tumors with TERT/MYCN 
alteration). (B) Log2 TERT mRNA expression levels, dependent on telomere 
maintenance subgroup. ANOVA, Tukey’s multiple comparison test. n=55, 
RNA sequencing data was available for 64 cases, however ambiguous 
cases (n=7) as well as cases that show MNA and TERT RA in the same 
tumor (n=3) were excluded (see also Fig. 1B). Whiskers are limited to 1.5x 
interquartile range. (C) Relative telomerase activity dependent on underly‑
ing alteration, determined by TRAP assay. Unpaired t-test. n=15. Whiskers 
are limited to 1.5x interquartile range. 

Additional file 5: Figure S2. Dependency of C-circle assay on threshold 
and reference cell line. (A) Southern blot of C-circle assay of different cell 
lines (CHLA-90: ALT[+], SK-N-BE(2): TEL[+], SK-N-FI: ALT[+], LM-216-J: ALT[+]), 
normal human tissue and neuroblastoma samples with high telomerase 
activity (all ALT-negative). Left columns: sample without polymerase, right 
columns: samples with polymerase. (B) Neuroblastoma samples for which 
APB and C-circle assay was available (n=67). Different thresholds applied 
to the same samples reveal different results. (th1) C-circle signal intensity 
≥5% relative to the signal of CHLA-90. (th2) C-circle signal intensity ≥20% 
relative to the signal of CHLA-90 and at least fourfold the area under 
the curve of polymerase-free dot-blot. Number of cases (n) classified as 
ALT-positive according to the respective threshold are indicated. (C) Rep‑
resentative image of southern blot of C-Circle assay of different cell lines 
and neuroblastoma samples. Left columns: sample without polymerase, 
right columns: samples with polymerase. ALT-positive cell line CHLA-90 
and ALT-negative cell line SK-N-BE are depicted at the top, ALT status 
according to threshold th1 as indicated. 

Additional file 6: Figure S3. Venn diagram on availability of experimental 
data. 

Additional file 7: Figure S4. Detection of telomeric reads and calculation 
of telomere content on WGS data. (A) Number of detected telomeric 
reads, i.e., reads containing at least four t-type repeats, in tumor and 
normal WGS data in relation to the mean read depth. Pearson correlation 
displayed for normal controls only. (B) Normalized telomere content calcu‑
lated from single tumor WGS data, dependent on telomere maintenance 
subgroups. Mean telomere content: TMM[-] 67.43, ALT[+] 339.33, TEL[+] 
54.19. Kruskal-Wallis test and Dunn’s multiple comparison test, n=61, 
ambiguous cases were excluded from statistical analysis. Whiskers are 
limited to 1.5x interquartile range. (C) Correlation analysis of telomere 
content calculated from tumor/normal ratios and the respective single 
tumor samples. 

Additional file 8: Figure S5. A distinct pattern of TRF southern blot 
analysis dependent on the TMM subgroup. Southern blot for telomere 
restriction fragment analyses of neuroblastoma samples and cell lines. 
ALT-positive cell line SK-N-FI and ALT-negative but telomerase-positive 
cell line Kelly were used on every blot with tumor samples as controls on 
every blot. 

Additional file 9: Figure S6. Features for prediction of TMM status in 
neuroblastoma. (A) Combined ROC for TC and TRF. After binary logistic 
regression and calculation of predicted probabilities, used for combined 
ROC, n=36. (B) ROC for normalized TERRA read count as a classifier for ALT, 
n=58. 

Additional file 10: Figure S7. Telomere insertions in ALT-positive neuro‑
blastoma. (A) Correlation analysis of numbers of telomere insertions into 
non-telomere regions and telomere content calculated on basis of WGS 
data, n=68. Ambiguous cases were excluded for spearman correlation. (B) 
Telomere insertions in the entire cohort and in subgroups of tumors with 
ATRX mutations. 

Additional file 11: Figure S8. Raw data of CCA and combined Immuno‑
fluorescence/FISH of ambiguous neuroblastoma cases. (A) Images of CCA 
and (B) combined Immunofluorescence/FISH of ambiguous neuroblas‑
toma samples with contrasting results as revealed by the two methods. 
Images of Immunofluorescence/FISH show ultrabright telomeric signals 
(green) and associated APBs (red) in ALT-positive cases, whereas the 
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ALT-negative sample (NB05) does not show prominent telomeric signals 
and only subtle PML bodies. (C) Example of one unambiguous ALT-nega‑
tive and one unambiguous ALT-positive neuroblastoma.
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