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Abstract

Conventional superconductors are one of the most well known example of macro-
scopic quantum phenomena, therefore superconducting circuits have emerged as a
promising platform for qubits, quantum information processing and simulating light-
matter interactions. The endeavor of simulating exotic physics on superconducting
circuits is also accompanied with search of new circuit elements, apart from already
existing elements such as capacitors, inductors and Josephson junctions, that can
help in reproducing these novel phenomena experimentally. In this thesis we discuss
three different projects that are unified by presence of exceptional points and non-
Hermitian topology, that touch on one or both of these aspects of superconducting
circuits. In the first project we study a system with both supercurrents and lossy
currents in order to unify the two distinct ways of detecting fractional charges. We
find that charge quantization is here a conserved property of the detector basis of the
Lindbladian, while charge fractionalization is a topological property of its complex-
valued eigenspectrum. We show that already conventional superconductor-normal
metal hybrid circuits exhibit a variety of topological phases, including an open quan-
tum system version of a fractional Josephson effect, due to the presence of exceptional
points in its spectrum. In the second project we study topology of a dissipative sys-
tem, that can mimic some essential features of an Andreev bound state spectrum of
a multi-terminal Josephson junction. We find that this system indeed has topolog-
ical properties that are encoded in an open system version of Chern number. We
also find the full counting statistics for this toy model and conclude that this Chern
number is not measurable via any regular transport experiment. Finally in the third
project we show how superconducting circuit hardware can implement a variety of
classical and quantum spacetime geometries on lattices, by both using established
circuit elements and introducing new ones. We demonstrate the possibility of a met-
ric sharply changing within a single lattice point, thus entering a regime where the
modulation of system parameters is (in a sense) trans-Planckian, and the Hawking
temperature ill-defined. In fact, our approach suggests that stable, thermal event
horizons are incompatible with strictly discrete lattice models. Contrary to regular
Hawking radiation (nonzero boson occupation number), the instability manifests as
an accumulation of charge and phase quantum fluctuations over short time scales —
a robust signature even in the presence of an environment. Moreover, we present
a loop-hole for the typical black/white hole ambiguity in lattice simulations: excep-
tional points in the dispersion relation allows for the creation of pure black (or white)
hole horizons, at the expense of radically changing the interior wormhole dynamics.
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1. Introduction

1.1. Superconducting circuits: fractional charges,
dissipation and event horizons

The recent push to implement quantum computation and construct usable technol-
ogy for communication based on quantum effects, has brought forth superconducting
circuits as a promising platform [Les+20; Bac+21; Cle420; Lac+19]. This is due
to the fact that superconductors are one of the most well-understood examples of
a macroscopic quantum phenomenon, with a coherent many-body state of electrons
condensed into Cooper pairs. This state is characterized with a complex-valued order
parameter Ae'?, where the superconducting phase ¢ represents in a sense a counting
field for the number of Cooper pairs stored in the condensate [Tin04]. In short, the
order parameter being 2m-periodic in ¢ expresses the fact that the condensate hosts
an integer number of Cooper pairs, in a very similar way to solid state band structure
theory, where any discrete lattice gives rise to a Brillouin zone. Also, superconduct-
ing circuits provide a high degree of tunability since they can be fabricated on a
chip using standard lithographical technologies [Gao+21]. These circuits consists of
superconductors (called superconducting islands) connected via Josephson junctions
or any other element that does not destroy the supercurrent. The study of super-
conducting circuits for simulating light-matter interactions is termed circuit quantum
electrodynamics (circuit QED) [BGO23] in analogy with cavity QED [Kim98|. Just
like cavity QED, circuit QED (cQED) also serves as a platform to simulate exotic
physics. Studying dynamical Casimir effect [Wil+11], soliton dynamics [Ust98], topo-
logically protected qubits [Gla+09] and quantum phase transitions [Fv01] are just a
few examples of superconducting circuits being used to simulate novel phenomena in
condensed matter physics. Simulating the aforementioned exotic phenomena often
requires devising the energy dependence of the superconducting circuit on its param-
eters in a specific manner, this leads us to another aspect of research in cQED, which
is to design and implement new circuit elements apart from the standard toolbox
of resistors, capacitors and inductors. The Josephson junction (JJ) is one famous
example of such a circuit element, more currently, there are proposals to implement
a whole host of other circuit elements with different energy contributions:: Majorana
junctions [FK09], quantum version of gyrators [VD14], multi-stable JJs [Smi+22] etc.

The Josephson junction can be described by an energy contribution to the circuit,
of the form of —F;cos(¢) (where E; is the Josephson energy, and ¢ here denotes
the difference of superconducting phases of the two bulks connected by the junction).
In alignment with the above Brillouin zone analogy, the 2w-periodic cos(¢) energy
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describes sequential tunneling of integer Cooper pairs across the junction. On the
other hand the Majorana junctions are predicted to show a 4m-periodic (~ cos¢/2)
Josephson effect [FK09], this is due to the fact that Majorana particles carry a fraction
of charge of a Cooper pair (half to be specific). While Cooper pairs are composite
particles (half a Cooper pair is simply a single electron), it may at a first glance
seem unproblematic to fractionalize the Cooper pair, it nonetheless has to be noted
that unpaired electrons cannot be part of the actual superconducting condensate —
at least when implementing the topological superconductor by proximitizing a given
material, such as nanowires [KOB19] or topological insulators [FK08] with a regu-
lar s-wave superconductor. Moreover, there exist generalizations to junctions with
parafermions [ZK14b; Ort+15] where not only Cooper pairs, but the actual funda-
mental electron charge seems broken. As a matter of fact, charge quantisation is also
seemingly violated if one naively tries to quantise the classical description of a regu-
lar, linear inductor, with an energy of the form ~ ¢2, which thus, strangely, provides
a quasiparticle with infinitely small fractional charge [Koc+09]. Hence cQED is not
only a tool to put quantum effects to practical use, it also compels us to look closely
at some fundamental aspects of condensed matter physics. Charge franctionalization
and how to reconcile it with charge quantization [RB82] is not only of interest within
the realm of superconducting circuits, but also connects to a very large body of work
in strongly correlated quantum systems, for instance fractionally charged anyons in
the fractional quantum Hall effect [KF94], or Luttinger liquid theory [GGM10]. In
the absence of superconductivity (and thus of a superconducting phase ¢), one first of
all needs a different transport quantity to describe fractional charges, such as charge
counting fields [Riw19], and one needs to include dissipative transport. A general-
ized understanding of charge franctionalization and quantization in hybrid systems
containing both supercurrents and lossy currents (which was so far missing in the
existing literature) is the main accomplishment of the first project of this thesis (Ch.
2). A 2m-periodic phase is not only rooted in the physical concept of charge quan-
tization, but can also be regarded as providing a closed base manifold, on which a
given topological number, such as the Chern number (see further below for a defini-
tion/further details) can be defined. In fact, as shown in [Riw+16a], one does not
need topological superconductors to engineer a topological state in a circuit: regular
4-terminal Josephson junctions naturally provide the necessary degrees of freedom to
realize Weyl points in the Brillouin zone defined by 3D space of the three indepen-
dent superconducting phase differences. The Chern number, defined in a 2D slice in
¢-space, can be nonzero due to the topological charge carried by the Weyl points, and
lead to a quantized supercurrent response. However, once again, dissipative processes
add considerable complexity, and even threaten to thwart a direct observation of the
topological effect: poisoning by non-equilibrium quasiparticles leads to fluctuations of
the Chern number, thus washing out the quantization of the current response. This
leads to the second project, where nonequilibrium generalizations of Chern numbers
in the context of quasiparticle poisoning in multiterminal junctions are studied (Ch.
3).
In the first two projects of this thesis (chapters 2 and 3), we will work with dissipa-
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tive systems i.e. systems that are connected to an external environment. Taking into
account, dissipation results in a more realistic modelling of superconducting circuits,
which is essential if we ever hope to use them as a basis for realistic devices. Ad-
ditionally in the last decade non-equilibrium systems, which include both externally
driven systems and dissipative systems, have received increasing attention as they
offer a whole new range of phenomena that are impossible in equilibrium systems.
Such as the realisation of continuous time crystals [Kon+22; Liu+23], Floquet states
(achieved by periodic driving of a system) [Tsu24], observation of topological prop-
erties in dissipative systems that are topologically trivial in the closed limit [MPS15]
etc.

Fractional charges in condensed matter systems are primarily studied in two dif-
ferent ways, first in case of non-equilibrium transport by finding the full counting
statistics (FCS) of the system, second in case of coherent transport (supercurrent)
by studying the phase picked up by the fractional charge when moving through a
magnetic field. As alluded to earlier, studying charge fractionalization in presence
of both supercurrents and lossy currents is the goal of the first project of this thesis
(Ch. 2), therefore we will study a superconducting circuit that hosts both coherent
and dissipative currents, and therefore aim to unify the two methods of studying
fractional charges. As we will see, the existence of fractional charges, regardless of
which approach we take to study them, will have an intimate connection with the
existence of exceptional points in the spectrum of the Lindbladian superoperator that
encodes the transport properties of the system. In the last section of this project we
will also provide a proposal to experimentally observe a 47-periodic Josephson effect
using weak measurements.

Exceptional points are defined as points in parameter space where two eigenvalues
and eigenvectors of a system coalesce into one. They are an important feature of open
quantum systems where the generator of time evolution, unlike a closed system, is
a non-Hermitian operator. Exceptional points are a widely studied topic in context
of topology of non-equilibrium systems [Li+23], and their appearance in our work
does imply presence of topological properties in the system, which will be discussed
in chapter 2. Taking a cue from this result, we will further explore different notions
of topology in open quantum systems in Ch.3 with multi terminal Josephson junction
as the model system. Multi terminal Josephson junctions, which consist of more
than two superconductors connected to a central scattering region, have emerged
as a promising platform for simulating condensed matter models with topological
properties [Riw+16a; XVL17; XVL18]. In particular our focus will be to extend the
result of Riwar et. al. ([Riw+16a]), we will use the proposed extension of the tenfold
way for quadratic Lindbladians [LMC20], to study the topology of a multi terminal
Josephson junction in presence of quasiparticle poisoning which acts as a source of
dissipation. We will find that a notion of topological invariant can indeed be defined
even in the presence of dissipation.

The third and final project of this thesis (Ch. 4) is concerned with simulation of
analog event horizons. While this may superficially seem like quite a rift from above
subjects regarding superconducting circuits, topology, dissipation, and exceptional
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points, the results presented below will show remarkable parallels. The study of ana-
log event horizons in condensed matter system is a long standing area of research, since
it is more experimentally accessible than the study of astrophysical horizons. There
have been both theoretical [Unr81; KBW20; STW20; De 4+21; Gar+00; Gar+01] and
experimental [Stel4; Mun+19; RBF22] works on the subject, some of which indeed
use superconducting circuits [Nat+09; KHF20; TD19; Lanl5]. Our proposal differs
in a number of manners from existing works. One of the main differences is that we
do not go to a continuous limit but rather fully embrace the discreteness of the cir-
cuit network, such that the lattice nature of the simulation gives us some unexpected
results such as unavoidable dynamical instabilities and ambiguity about the nature
of the event horizon (i.e. whether it is a black hole or a white hole). The issue of
dynamical instabilities can actually be attributed to the appearance of exceptional
points, which occur despite the system Hamiltonian being Hermitian. While the full
explanation for this is quite involved and will be dealt with in the main text of the
thesis, we here sketch a simplified picture. First, note that the emergence of an event
horizon (in the same spirit as the original Unruh proposal [Unr81]) in a lattice model
requires in essence a chain with inverted (negative) spring constants. Take for in-
stance the circuit version of a harmonic oscillator, the LC resonator, where inverting
the sign of the spring constant can be regarded as making the inductance L negative.
The resonance frequency 1/ v/ LC thus becomes imaginary — a transition that can be
described simply as passing through an exceptional point (see also the square root
discussion of exceptional points above). Such an instability can be avoided, and the
system stabilized to real eigenvalues, when adding nonreciprocal interactions in the
circuit which imitate a Lorentz boost. As it turns out, such a nonreciprocal pro-
cess can be provided by the Chern number of multiterminal junctions. However, the
stabiliziation of the full lattice, especially for inhomogeneous systems requires a deli-
cate fine-tuning of system parameters, and can thus in general only be approximately
satisfied, leading to latent generic instabilities.

There is a second way, in which periodicity breaking and exceptional points enter
— and fundamentally connect to black and white holes. Namely, in lattice models,
and event horizon can never be purely black or white hole [De +21], but is always a
combination of both. This fact is straightforwardly related to the Nielsen-Ninomiya
theorem [NN81]. In 3D lattice systems, it guarantees that Weyl points always emerge
as pairs with opposite topological charge. In 1D lattices (the focus of Ch. 4), the
dispersion relation of a massless field always has to cross zero energy at least twice
within the Brillouin zone. As we show, under appropriate arrangement of the circuit
elements within the lattice, one can engineer dispersion relations with exceptional
points, leading to a periodicity breaking in the dispersion relation, where at least a
part of the spectrum is complex-valued. In this case, event horizons can be true black
or white holes, at the cost of severe instabilities within the wormhole interior. Overall
this project uses existing elements of cQED in novel ways, like inductors, capacitors,
and nonreciprocal elements, and proposing new elements, like negative inductors (by
using transient flux quench in Josephson junctions), as well as quantum inductors.
The latter, though, not studied in this thesis, is a part of the larger work that contains
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the final project.
This thesis is organised as follows

1. The remaining sections of this introductory chapter contains preliminary reviews
of basic notions and mathematical methods relevant this thesis.

2. Chapter 2 contains the first project, where we study how fractional charges
appear in a conventional superconducting-normal metal hybrid circuit.

3. In chapter 3 we investigate a toy model realisable using superconducting circuits
that hosts topological properties in presence of dissipation.

4. Finally in chapter 4 we use existing elements of circuit QED and propose new
ones in order to realise an analog event horizon in a superconducting circuit.

5. Finally appendices A, B, C, D, E, F and G provide additional important calcu-
lations to support the work in the main thesis.

Further introduction to the topics mentioned above and their relevance in supercon-
ducting circuits will be given at the beginning of the corresponding chapter. Chapters
2 and 4 contain works that have either appeared as a publication or are being prepared
as such, and include a high degree of collaboration with the coauthors of the corre-
sponding papers. The coauthors will be credited in the beginning of the corresponding
chapters and specifically in sections of the chapters.

Note on notations: We will denote many body operators with a hat, for example
an annihilation operator will be represented as a, while the operators that act on
single particle spaces do not have any special notation, it should be clear from the
context of the equation. Also A =1 in this thesis unless stated otherwise.

1.2. Circuit QED: a quick review

In this section we will give a quick overview of cQED by going over how one begins to
study superconducting circuits using Lagrangians and Hamiltonians. For a more de-
tailed and thorough introduction to the subject, the e-book by Ciani et. al. [CDT24]
and the review paper by Blais et. al. [Bla+21] are recommended, these also serve as
the main references for this section. The approach to dealing with general electrical
circuits in cQED is to first write down the Lagrangian, that corresponds to the clas-
sical equations of motion i.e. Kirchhoft’s laws for currents and voltages. Then, find
the Hamiltonian and finally promote the classical variables to quantum operators by
imposing commutation relations on them. We will focus on the following three circuit
elements: capacitors, inductors and Josephson junctions, since they are not only the
most commonly occurring ones, but they also serve as building blocks for new and
more complicated circuit elements.

The circuits generally consists of branches and nodes, where each branch is a two
terminal circuit element and nodes are points where two or more branches meet. We
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finish

start

Figure 1.1.: Schematic of a branch with a two terminal circuit element, represented by
a rectangle, connected to two nodes. The arrow represents the direction
of flow of the current in the branch Ij.

can also have four terminal circuit elements, we are going to discuss one such element,
called gyrator, near the end of this section. Lastly to be precise we need to assign a
direction to the branches, we do this by calling one of the nodes, for a given branch,
as finish and the other one as start (see Fig.1.1). As per convention positive current
flows from the finish node to the start node and we define the branch voltage as
Vi = Viinish = Vstare. Instead of working with currents and voltages we will define the
branch-flux variables ®(t) as

dd,
Vp(t) = —. 1.1
(=2 (1)
We will assume that at ¢ - —oo all electromagnetic fields and potentials were zero,
hence we can write

B, (1) = f Vi (t)dt. (1.2)

Like voltages we can also define node fluxes as ®, = @ tinisn — Pstare. For supercon-
ducting circuits the branch-flux variable also directly relates to the superconducting
phase drop over the piece of superconducting material representing the branch.

1.2.1. Capacitors, inductors and LC oscillators

Now we will construct the Lagrangian for linear capacitors and linear inductors in
terms of the branch-flux ®, and its time derivative ®;, which will play the role of
position and velocity (of a mechanical system) respectively. First let us consider an
inductive branch with current I,(¢) at some time ¢, then for an infinitesimal time dt
the charge transported from finish node to start node is I,(t)dt. If the branch voltage
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is V4(t), the work done on the element is dW =V, (¢)1,(t)dt. The total energy stored
in the inductive element can be written as

ORN RIGIIGLE (1.3)

For a linear inductor the current can be written as

Dy (t
B =20, (1.4
where L denotes its inductance. Hence the total energy is
(1)
t) = 2= 1.
Us(t) 5T (1.5)
For a linear capacitor, we use the relation ) = C'V in the following form
dVi
Iy(t)=C— 1.6
where C' is its capacitance. We get the following expression for energy
1 o 1 .y
U(t) = 5CVE(H) = 5CR ). (1.7)

As a concrete example for circuit quantisation let us take a look at the example
of an LC oscillator. It consists of a capacitor and an inductor in parallel (Fig.1.2),
since they are connected in parallel the voltages in both the branches must be equal
by Kirchhoft’s law of voltages. Hence we only have a single independent branch-flux
Oy = & — Oyroung, which we can write in terms of node fluxes. Since the only thing
that matters is the difference of the node fluxes we can set ®gounqa = 0 without loss of
generality to get ®, = ®. As stated earlier the branch flux and its time derivative play
the role of position and velocity respectively, therefore when writing the Lagrangian
we associate the energy of the inductive element with potential energy and the energy
of the capacitive element with kinetic energy. Further below, we will discuss a special
case of a nonreciprocal element, a gyrator, which cannot be categorized as purely
kinetic nor purely potential energy, as its energy depends on both ¢ and é. Hence
the Lagrangian for an LC circuit is

©2(¢)
2L

L= %C@Q(t) - (1.8)

where we have already substituted the branch flux with the node flux. To get the
Hamiltonian, we first define the conjugate variable

oL

== =09, 1.9
) (1.9)
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which has the dimensions of charge hence the symbol. Using Legendre transformation
we get
()  2(t)

%zq@—ﬁz—+

. 1.1
2C 2L (1.10)

Now we promote the variables to Hermitian quantum operators ¢ - ¢ and ¢ — $ and
impose the commutation relation

|&,q] = in. (1.11)

The Hamiltonian along with the commutation relation is clearly a quantum harmonic
oscillator and can be easily solved by using the method of ladder operators.

Now we introduce some dimensionless variables to work with that will be used for
the rest of this thesis

27 d

= — 1.12
6= (112
_q
n=_—,

2e

where @y = h/2e is the superconducting flux quantum and the variable n measures
the number of charges in units of two times the elementary charge e, this definition is
appropriate for superconducting circuits since the relevant "particles" are the Cooper
pairs which carry a charge of 2e. The Hamiltonian becomes

H = Ech? + EL¢?, (1.13)

where we have introduced the charging energy

(2¢)?
Eqr= 1.14
C 20 ) ( )
and the inductive energy
(I)2
Ep=—2 1.15
LT gn2r (1.15)
also the commutation relation now reads
[6,7] = i. (1.16)

Next, we replace the linear inductor in the LC circuit with a Josephson junction.
Josephson junction is characterised by two relations

Iy = I.sin p, (1.17)
de 21V,
- 1.18
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e e
C —— L C —— >< E,

p— J:_

a) b)

Figure 1.2.: a) Figure showing a schematic of an LC oscillator with one independent
node flux ®. b) Here the linear inductor of the LC oscillator is replaced
by a Josephson junction.

where [, and V}, are the branch current and voltage respectively. Also I is the critical
current, which depends on properties of the junction like the material, thickness, area
etc. Most importantly, ¢ is the superconducting phase difference between the two
superconductors that form the Josephson junction and lies in the interval [0,27),
which is different from the branch flux variable ®; or its dimensionless counterpart
¢y = Dp/Py that takes any value in R. Nonetheless, here we are going to make
the identification ¢ = ¢, the mathematical justification for this identification is too
involved for this quick review, therefore we refer to the section 4.1.1 in [CDT24]. With
this identification we can write the first Josephson relation as

Ib=]cSiIl¢)b, (119)

and get the energy associated with the Josephson junction

¢ P (t'=t)
U, = f Vo(#) L, (#)dt! = 1D, f sin gyddy = — By cOS B (1.20)
) @y (t'=-00)
Here we have defined the Josephson energy as
IC(I)O
E; = 1.21
7T o (1.21)

and dropped a constant term that arises out of our assumption that ¢, (' = —o0) = 0.
Finally we can write down the Lagrangian for the circuit in Fig. 1.2(b) as

- )
E:%(I)2+chosao, (1.22)

where we have again set the ground flux to zero and replaced the branch flux with
the node flux. The conjugate variable is ¢ = 9L/0® = C'® and therefore the quantised
Hamiltonian is

Hzg—O—EJcosao, (1.23)
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Figure 1.3.: Every Josephson junction has an intrinsic capacitance, in circuits this
fact is conveyed by drawing a box around the two crosses that denotes a
JJ.

and in terms of dimensionless variables it can be written as
H = Ech® - E;cos ¢. (1.24)

This Hamiltonian is taken to be the one that describes a general Josephson junction
since every junction comes with an intrinsic capacitance, this capacitance is often
denoted as C';. In fact the compact circuit symbol for a JJ is designed with this fact
in mind (see Fig. 1.3). If a JJ is additionally shunted by another capacitor Cy then
the effective capacitance of the system will be C'=C, + C}.

Our work will also feature a nonreciprocal four terminal circuit elements, called gy-
rators. Classical gyrators, are already widely in use in circuit engineering and signal
processing [Abd+13; KSA20; MC15; MC17], whose consistent circuit theoretical de-
scription goes back to the work by Tellegen [Tel48]. These are however generally large
clunky objects operating in a finite frequency window. Various recent works strive

towards a realisation and a consistent description of quantum mechanical gyrators
[VD14; Rym+21; Sel+23; VH24|. As defined by Tellegen, the fundamental equation

of a gyrator is
L\ (0 -G\ (W
()& 7)(5) =

where I, I, are the currents flowing through port 1 and port 2 respectively, and V7, V5
are the voltages across port 1 and port 2 respectively, see Fig. 1.4. We will use the
gyrator as an effective two terminal element, by grounding the nodes with fluxes ®3
and P4, as shown in Fig. 1.5, which is an example of a minimal circuit that contains
gyrator as a two terminal element. The Lagrangian for this circuit can be written as

1 . 1 . G . .
L= 50@% + 50@3 ty (01D — D1 D,). (1.26)

10



1.2. Circuit QED: a quick review

(O D,

Figure 1.4.: Schematic of a gyrator, a four terminal and two-port element, the left
port (port 1) contains two nodes with node fluxes ®; and @3, while the
right port (port 2) contains two nodes with node fluxes ®, and ®,.

L

Figure 1.5.: A minimal circuit containing a gyrator and capacitors. The nodes with
fluxes ®3 and @, (in Fig. 1.4) have been grounded. Hence the node fluxes
®; and P, are equal to the branch fluxes.

11



1. Introduction

The contribution of the gyrator element to this Lagrangian is such that when we write
the equations of motion in terms of currents and voltages, we get back the defining
equation for the gyrator (Eq. (1.25)). The Hamiltonian of this minimal circuit is

~A \2 A \2
i +0.5% G i — 0.5+ Gb
_ (@ + 2; ) +<QQ 2; ) . (1.27)

Gyrator will play an indispensable role in Ch. 4, where we will need it to tilt the
dispersion relation of a JJ array. A connection to the work of Riwar et. al. [Riw+16a]
can also be made, the Chern number that quantizes the transconductance of the multi-
terminal Josephson junction essentially provides a source of gyration (see Eq. (3.5)).

Before ending this section we will just state the following facts without going into
any mathematical details:

1. if a circuit has a constant voltage source V', then we define a line as a path in
the circuit that starts from the branch that is grounded and ends at the branch
that is connected to the voltage source without any breaks. Then we have the
following constraint for the branch fluxes across a line

3 o=V, (1.28)

beline

which is just the Kirchhoft’s law of voltages.

2. If instead of forming a line we choose the branches such that they form a closed
loop, then we have the following constraint on the branch fluxes

Y D= Doy, (1.29)

beloop

where ®.y. is the (time independent) external flux passing through the loop in
question.

In our discussion above we associated the energy of capacitive element with kinetic
energy and that of inductive elements with potential energy. It is worth pointing out
that there is no fundamental reason to make this association, in fact for the case of
quantum phase-slip junctions this approach fails due to the Lagrangian being non-
convex (hence the Legendre transform to the Hamiltonian is no longer possible). We
also did not deal with the case of time dependent external fluxes as it is still a topic
of current research, for some approaches to this problem see [Bla+21; RD22].

1.3. POVMs and weak measurements

In this section we give a brief introduction to weak measurements, that will be useful
for section 2.6 when we use them to simulate a counting field (x) and give an experi-
mentally realisable way to observe a 4m-periodic Josephson effect. First let us begin
by stating the measurement postulate of quantum mechanics [Bru02]:

12



1.3. POVMs and weak measurements

Postulate 1. A physical observable of a quantum system is represented by a Hermi-
tian operator that acts on the elements of the Hilbert space of the quantum system.
The only possible outcome of the measurement of an observable are the eigenvalues
of the corresponding operator.

Let us consider a quantum system described by the state [¢0), and a Hermitian
operator O that corresponds to some physical observable. The possible results of
the measurement are the eigenvalues, {0,}, of O. The probability of measuring a
particular eigenvalue is given by

p(0n) = tr (Pup), (1.30)

where p describes the state of the system and P, is the projection operator for the
eigenspace of o,. After the measurement the system is in the state

T
j= LnPln (1.31)

tr (Pp)
The projection operators corresponding to a Hermitian observable are orthogonal
(Hermitian) and have the following properties P, P, = d,, P, and ¥, P, = I, where I
is the identity operator on the Hilbert space. The second property is just a restate-
ment of the fact that summing over all probabilities for a measurement gives unity,
the measurements described by this postulate are called projective or von Neumann
measurements. So far we have just repeated what is taught to undergraduates in an
introductory quantum mechanics course, albeit in terms of density operator instead
of state vectors, in the next paragraph we are going to reformulate the measurement

postulate.

Now, consider a case where the system of interest (S) is coupled to an auxillary
system (A), such that the composite system is described by the state p = ps ® pa.
Then following the measurement postulate the probability to obtain an experimental
value m can be specified with an orthogonal projection operator P,

p(m) =tr (Pmp) )
p(m) = trs (Emps) - (1.32)

Here E,, = tra (Pynpa) is an operator that acts only on the Hilbert space of the
system (S), the subscripts in the trace operation indicate over which Hilbert space
the trace is being taken. Using the properties of the projection operator it can be
easily deduced that FE,, is a positive operator and again due to probability conservation
> Em =1s. If we have a set of projection operators on the composite system {P,,}
from that we can deduce the set of positive operators {E,,} that can be used to
obtain the measurement probabilities. The operators E,, are called POVM (positive
operator valued measure) elements and the whole set of {E,,} is called the POVM.
This example provides us a way to generalise the measurement postulate with the
help of POVMs [Bru02].

13



1. Introduction

Postulate 2. Quantum measurement is defined by a collection of positive operators
{E,,} acting on the Hilbert space of the system that satisfy Y., E,,, = I. The index m
refers to the possible outcomes of the experiment. If a system is in a state p then the
probability that the result of the experiment is m is given by

p(m) =tr (E,.p). (1.33)

Note that the second measurement postulate does not add anything fundamentally
new to quantum mechanics since we reached it by using the postulate of projective
measurements and the idea of composite quantum systems. Indeed given any POVM
on a Hilbert space (H) it is always possible to construct a set of orthogonal projec-
tion operators that act on a space obtained by extending H and gives us the correct
measurement probabilities by using the projective measurement postulate, this is the
statement of Neumark’s theorem (section 9-6 of [Per95]) whose proof we are not going
to present here. But despite this, POVM formalism is quite helpful, since extend-
ing the Hilbert space of a system to cast every measurement in form of orthogonal
projections just adds complexity and shields us from understanding the physics.

One might immediately see an important fact missing from the POVM approach
to measurements, we cannot write the state of the system after the measurement
in terms of elements of POVM. First we would like to point out that in many real
world experiments only the measurement statistics is of interest and not the state of
the system after the measurement. Secondly, if we further know a set of operators
M., such that F,, = ¥, M:nkak then we can write the state of the system after
measurement as

S Munkp M},

p= p(—m)M. (1.34)

Here, M,,, are called measurement operators, for the special case of F,, = MJ@Mm,
i.e index k only takes one value, the measurement preserves the purity of the states.

1.3.1. Weak measurements

After reviewing the POVM formalism of the measurement postulate we are in position
to discuss weak measurements. Broadly speaking there are two distinct ways we can
call a measurement weak [Bru02]. To see this let us consider a two level system with
states |0) and |1) and the following POVM

Eo =10) (0] + (1 —¢€) [1) (1],
B =) (1], (1.35)

where € << 1. We can define the following measurement operators

My = [0) (0] + VI €[1) (1]
My = Vel (1] (1.36)

14



1.3. POVMs and weak measurements

It is easy to check that Fy and F,; are positive operators and Fy + F; = I. If the
system is in the state [)) = a|0) + B|1) such that |o|* + |8]° = 1, then the probability
of the outcome labelled 0 is given by p(0) = 1-¢|8|* and the probability of obtaining
the outcome labelled 1 is p(1) = €|4|”. Hence for most experiments the measurement
outcome 0 will be obtained and the state of the system changes very little

T a|0)+ﬁ\/1—6|1)‘

) N

But with a small probability we obtain the the outcome labelled 1, in this case the
state of the system is drastically changed to W) = [1). Therefore this measurement
is weak in the sense that for most replication of this process we obtain very little
information about the system and the state of the system is changed very little about
but on rare occasions the state of the system is drastically changed and we obtain
ample information about the system.

On the other hand we can also construct the following POVM

(1.37)

By =12 510) 0]+ S 1),
Ey= =0y (o] + 1+€|1><1|,
M, - 1+e |1
10y (0 1+€|1>< 1), (1.38)

Starting with the same state of the two level system as in the last example, the
probabilities for outcomes labelled 0 and 1 are

ol =18
2

2 112

p(l):%_em 2|5| |

p(0) =
(1.39)

The states of the system after these measurements are (up to first order in ¢)

o) = o (1+€]8) [0) + B (1 - elaf?) 1),
1) » o (1-¢€|B]*)10) + B (1+€|a*)|1). (1.40)

Since the probability of the two measurement outcomes are almost equal and the
state of the system changes very little, an individual measurement represented by
this POVM does not contain much useful information. To get a good understanding
of the state of the system the measurements have to be repeated sufficient amount
of times so that the state of the system eventually drifts towards either |0) or |1)
depending on |o|* and |5[.

15
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Before finishing this review of weak measurements we would like to state a result
for a system that is under continuous measurement from [Cre+06]. Suppose a system
that evolves autonomously due to its own Hamiltonian H is under continuous mea-
surement, where the measurement outcomes can be described by a set of measurement
operators {M;} that can be used to construct a POVM. By continuous measurement
we mean that the measurements take place instantaneously and randomly in time at
an average rate R, hence this result will only be true for time scales > 1/R. Consider
a short time interval 0t (that is still large compared to 1/R), during this time interval
the probability that a measurement takes place is Rt we also assume that the time
interval is short enough so that the possibility of two or more measurements can be
neglected. If a measurement takes place then the density operator evolves as

p(t +6t) = ZM,-p(t)Mj, (1.41)

and in absence of a measurement taking place the system evolves under its own
Hamiltonian

p(t +6t) = p(t) —i [H, p(t)] ot. (1.42)

To lowest order in dt we can write down the total change in the density operator by
adding the two processes, weighted by their probabilities of occurrence

p(t+dt) = (1-Rot) (p(t) —i[H,p(t)]dt) + Rt (Z Mip(t)MiT) ,

p(t+38) = plt) _
ot

AH O R (S0 - (1) (1)

Taking the limit 6t - 0 we get the differential equation

= =i LH O]+ R (MM - 5011, p(0)}). (1.44)
where we have used the fact that Y, MJMi = I to write the equation in Lindblad
form. As we will see in Sec. 1.4, Lindblad equation is a generic master equation for
systems that evolve under a Hamiltonian and a weak dissipative environment, hence
continuous measurements seem to simulate the effect of weak dissipation. This result
is in general true for any kind of (continuous) measurement but we will use it in
section 2.6 specifically for weak measurement.

1.3.2. Full counting statistics

So far we have talked about how POVMs provide a way to obtain measurement
statistics for a system, a related and very useful concept is that of full counting
statistics (FCS), which has been widely used in mesoscopic physics [LLL96; BSO01;
BNO03; Bel05; Gus+06; Mat+14; YTW16]. Consider a detector connected to a system
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of interest, where the measurement operators are given by Eq. (1.35), such that the
detector registers a click every time a projective measurement happens (i.e. outcome
corresponding to Mj). This information about the detector can be included in the
density matrix p(t) - p(n,t) by introducing a new variable n, that tells us how many
times the detector has registered clicks up to time t.

We can find the probability of registering n clicks up to time t as

P(n,t) =tr(p(n,t)), (1.45)

note that p(n,t) contains a degree of freedom for detector as well therefore it does
not completely fit the definition of a density matrix, hence its trace is not necessarily
unity. To get the FCS we define the following Fourier transform

m(x,t) = > P(n,t)e™X, (1.46)

where y is called the counting field. It should be noted that, although we introduced
FCS by using an example of weak measurement it is not a necessity, all one needs
to define an FCS is some form of measurement statistics (here it was P(n,t)). For
example in [LLL96] it is the electron counting statistics and in [LRS14] it is the number
of photons counted by the detector. It might seem a little artificial to introduce this
quantity, but for charge transport one can obtain quantities like the average current
and average noise as follows

(1) = =i Jim £ ImOG0O)
t—oo aX =0
2
(8) = 2 lim £+ Z0mbet)) (1.47)
t—oo t 8X2 =0

as well as higher moments. One can equivalently introduce the quantity p(x,t) =
>, p(n,t)e™X and find its equation of motion of the form

dip(x,t) = K(x,t)p(x; 1), (1.48)

where K (x,t) in general is non-Hermitian (especially if we include continuous mea-
surements). As pointed out in [RD22] and [Li+23], the eigenvalues of K(x,t) can
undergo braid phase transitions and introduce topological properties in otherwise con-
ventional systems. We will build on this result in the first project in Ch. 2, especially
on the result in the former paper.

1.4. Open quantum systems and third quantisation
We have mentioned about how taking dissipation into account for quantum systems

results in more realistic models, and the fact that open (dissipative) quantum systems
sometimes display features that are absent from their non-dissipative counterparts. In
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this section we give a brief introduction to how open quantum systems are dealt with
mathematically, this will lead us through topics like Lindblad equation, exceptional
points and finally to the work of Tomaz Prosen about specifically dealing with Lind-
blad equations that are quadratic in fermionic operators, sometimes termed as "third
quantization'. As shown by [LMC20] Prosen’s formalism allows one to easily extend
the famous ten-fold classification of topological insulators and superconductors to the
systems governed by quadratic Lindblad equations, this will be of particular use to
us in Ch. 3 where we study such a system and try to find some notion of topology
that can be associated with it.

The fact that the time evolution of an isolated quantum system is governed by
a Hermitian Hamiltonian, is necessary to conserve the norm of the wave function.
Hence when discussing open systems, where some loss of information is expected,
lifting the condition of Hermiticity is an obvious way forward. This leads us to the
first approach used in working with dissipative systems, where the governing equation
is Schrodinger-like but the Hamiltonian is no longer Hermitian. This approach arises
naturally in gain loss systems [KYZ16; FEG17; El-+18], one aspect that makes this
approach rather useful is that if the non-Hermitian Hamiltonian has combined parity-
time (P7) symmetry then the eigenvalues are guaranteed to be real even in absence
of Hermiticity. We won’t go into much detail about this approach here since it will
not be of much use to us, but it is a very interesting and active area of research, for
a thorough review see [YU20].

The second approach to studying open quantum systems is via the Gorini Kos-
sakowski Sudarshan Lindblad equation (GKSL equation) or just Lindblad equation,
which is a quantum master equation. Consider a composite system that consists of
the system of interest denoted by S and other system that acts as the environment.
The Hamiltonian of the composite system can be written in the following form

H=Hg+ Hepy + Hiye (1.49)

where Hg and H,,,. are free Hamiltonians of the system and bath respectively, and
H,,¢. is the interaction Hamiltonian between them. The complete mathematical model
of the total system is often much too complicated. The environment can be, for
example a reservoir (environment with infinite degree of freedoms) or a bath (reservoir
in thermal equilibrium state), in which case the exact solution would require solving
an infinite hierarchy of coupled equations of motion. We regard an open system S to
be singled out by the fact that all observations of interest refer to this subsystem. If
the total system is described by the density matrix p then we define pg = tre,,.p as
the reduced density matrix for S. At time ¢ we can find the reduced density matrix
by

pS(t) = treny. (U(tv tO)p(tO)UT(tv to)) (150)
where U(t,tg) is the time evolution operator of the composite system.

Let us assume that it is possible to prepare the initial state of the composite system
as a product state, i.e.

p(to) = ps(to) ® penv.(to)- (1.51)
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1.4. Open quantum systems and third quantisation

Since peny.(to) is positive and has a unit trace, there always exist a set of orthonormal
eigenvectors {|v)} such that

penv.(tO) = ZAV|V> <V|v (1'52>
where A, are the non-negative eigenvalues. Hence we get
ps(t) = treny. (U(t,t0)p(to)UT (£, 10)) ,

ps(t) =X (U(ut())ps(to) oS M ) (] U*(m)) ).

ps(t) = K (t,t0)ps(te) Kl (t,t0), (1.53)

where the operators K, (t) that only act on the Hilbert space of S are called Kraus
operators and are given by

K (t,t0) = /A (ul (U(t0) [v) (1.54)

The representation of the equation of motion in terms of these Kraus operators is
called Kraus operator sum representation (OSR). Since we want the reduced density
matrix ps(t) to have a unit trace, this imposes the following condition on the Kraus
operators

ZKZV(t7t0)KMV(t7tO) :]L (155)
%

where I is the identity operator on the reduced Hilbert space. This is reminiscent of the
measurement, operators we came across while discussing POVMs in Sec. 1.3, indeed
OSR can capture, among other things, the descrition of non-selective measurements
and therefore the measurement operators are sometimes called Kraus operators. If
we consider the Kraus OSR as a map that maps a density matrix from some initial
time to final time, F'(p(to)) — p(t), then it can be shown to have following properties:
trace preserving, linear, and completely positive [Lid20].

Our goal is to write a differential equation for time evolution of the density matrix,
for that we will first make two assumptions:

1. first, the system we are interested in is time translationally invariant, hence the
term ty that has appeared so far can be set to zero.

2. secondly, we make the Markovian approximation i.e., the system has no memory.

Using Taylor expansion near ¢ = 0 we can write
ps(dt) = ps(0) + psdt + O(dt?), (1.56)
and from the Kraus OSR we get

ps(dt) = 3 Ka(dt)ps(0)KL(dt), (1.57)
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where we hve collected the indices p and v into one index «. Next we have to find the
Kraus operators such that the OSR time evolution matches the Taylor expansion, for
this one of the Kraus operators will need to contain the identity operator. Hence we
can write

Ko(dt) =1+ Lodt, (1.58)
this gives us
Ko(dt)ps(0) K (dt) = ps(0) + [Lops(0) + ps(0) L} ] dt + O(dt?). (1.59)
Thus we pick all other Kraus operators as
Ko =VdtL,, a>1, (1.60)
which acts on the density matrix as
Kaps(0)K]! = Lops(0)L} dt. (1.61)

We now also impose the condition for trace preservation Y5 KIK,=Tup to o(dt?),
which gives

T=0+|Lo+Li+ > LiL,|dt+O(dt?). (1.62)
a>1
Next we write Ly as a sum of a Hermitian and anti-Hermitian operator Lo= A -iH
where Af = A and HT = H. This gives the following identity

A——— > LI L. (1.63)
a>1

Finally putting all this in the OSR time evolution equation and defining pglo =
(ps(dt) - ps(0))/dt, we get

. . 1

Psli-o = =i [H, ps(0)] + Y (LapS(O)LL - §{L2La,Ps(0)}) : (1.64)
a>1

Now we make use of the Markov approximation and claim that this equation is true

for all times, since for every small time step the rate of change of the system will

only depend on its current state, we also re-scale the L, operators as L, = /7. La to

make them dimensionless. Hence the final equation we get is

pS(t) == H pS(t) Z Ve ( apS(t - %{LLLava(t)}) ) (1'65)

a>1

where v, = \/[74]>. The generator of the evolution, £ from the equation pg = Lpg, is
called the Lindbladian. The L, are called the Lindblad or dissipation operators. The
operator H is Hermitian and can be interpreted as the Hamiltonian of the system
plus a correction called the Lamb shift, this detail becomes obvious if we derive the
Lindblad equation microscopically which can be found in Ch. 3 of [BPO7].
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1.4.1. Exceptional points

Hermitian matrices, at least the ones that are finite dimensional, can always be di-
agonalized, which means they have as many linearly independent eigenvectors as the
number of eigenvalues (this is just the spectral theorem for finite dimensions). Non-
Hermitian matrices have no such guarantee, sometimes they can be defective i.e. the
number of linearly independent eigenvectors are less than the number of eigenvalues.
Keeping this in mind let us consider the following non-Hermitian Hamiltonian [Li+23]

H:(""O_ny " ) (1.66)
K wo + 17y

which is a simple model of two coupled resonators with same frequency (wp), such
that the loss of one resonator is equal to the gain of the other one (+7), and & is the
coupling strength. The eigenvalues of this (non-Hermitian) Hamiltonian are

E. =wy+\/K2-72 (1.67)

if the system parameters can be externally controlled then we see that for x >~ both
eigenvalues are real while for k < v both of them become complex. For k =, both
the eigenvalues are same F, = E_ = wy, this is not the ordinary degeneracy that one
might encounter working with a Hermitian Hamiltonian, this becomes clear if we try

to find its eigenvectors, of which it only has one (1 i)T.

If we were to look at the above Hamiltonian as a function of one of parameters
(say 7), then at the point x = v in the parameter space it will appear as if the
two eigenvalues and eigenvectors are coalescing into each other. This is how we
define exceptional points (EPs), i.e. as points in parameter space where two or more
eigenvalues and eigenvectors coalesce. The points where more than two eigenvalues
(and eigenvectors) meet are called higher order EPs, although they have recently
started become subject of interest [Bud+19; OY19], most works concerning EPs still
focus on the case of only two eigenvalues and eigenvectors, therefore that is what we
will discuss here.

EPs have been studied in areas of physics such as optics [Hlu+21; Xia+21],acoustics
[Din+18] and quantum mechanics [Ozt+21; Lia+21], but here we will focus on the
effect the presence EPs has on the topology of the spectrum of the corresponding non-
Hermitian system. For this purpose we will consider the following 2 * 2 non-Hermitian
Hamiltonian [DFM22]

0 1
H(z)= (1 z) , (1.68)
where z € C. The eigenvalues of this Hamiltonian are

z+V22+4

E.(z2) = 5 ,

(1.69)
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Figure 1.6.: If two eigenvalues go around a branch point, i.e. an exceptional point,
then they braid around each other.

to find the exceptional points we set F,(z) = E_(z) and find that at points z = +2i
in the parameter space the eigenvalues and eigenvectors coalesce. Note that in the
expression for eigenvalues we have a square root of a complex function, which we
know is multi-valued function that is dealt with by introducing branch cuts. The end
point of a branch cut is called branch point and in context of non-Hermitian matrices
it is precisely the EP. An interesting thing to consider is the behavior of eigenvalues
near the EPs, we can do this by expanding the parameter z near one of the EPs,
z =2i(1+02/2), where 0z is small. The difference of eigenvalues near the EP looks
as follows

B, - B|=2|V52], (1.70)

up to the leading order. As it turns out this square root behavior is generic for EPs
where two eigenvalues and eigenvectors meet.

In simplified terms, the vicinity of an exceptional point can be described by the
two solutions of the square root function +1/\ of a complex number A. To foreshadow
the connection to charge fractionalization, we make the following observation: when
following a circle around the singular point z = 0, after one revolution around the
origin, one adiabatically connexts +v/X with —v/A (and vice versa), and only returns
to the origin after a second turn (see Fig. 1.6). This behaviour can be regarded as
a braid, breaking periodicity in the circle, which (as we will show in Ch. 2) can be
connected to fractional charges, if the parameters appearing in A are connected to
transport quantities, such as the superconducting phase or the counting field.

Since eigenvalues of non-Hermitian Hamiltonians are complex, and therefore two
dimensional, there is a possibility of forming loops by changing the parameters of
the system in an appropriate way. This fact is captured by defining the eigenvalue
winding number as

w = L j]g dz0,Indet (H(z) - E,.), (1.71)
2mi 2

where C' denotes a closed path generated by varying the parameter z that maps to a
closed loops for eigenvalues in the complex plane and E, is arbitrary reference energy;,
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1.4. Open quantum systems and third quantisation

this definition can be expanded if more than one parameter is involved. By Stokes
theorem we know that the above integral will vanish unless the path C' encloses some
singularities. Note that winding number is also defined for Hermitian systems, for
example in the SSH model, but it is not defined for eigenvalues since real eigenvalues
cannot form closed loops. For the simple example we have used so far the winding
number reduces to

W =V, + Vs,

1 1
w = %;j{dzé?z (arg (E, - E.)) + %ggdzaz (arg(E--E.)),  (L72)

where we have set the reference energy E, equal to the energy at the EP and v, (s) is
called the eigenvalue vorticity. If we vary the parameter z such that the eigenvalues
form two separate closed loops then the winding number comes out to be 0, but if
the eigenvalues form a single closed loop then it comes out to be -1, hence indicating
a topological transition in the spectrum. In the second case there is only one loop
becuase it encloses an EP and the eigenvalues have braided around each other. The
topological distinction between the two loops has to do with the fact that if a loop
does not pass through a branch cut it can be reduced to a single point with smooth
deformations but if a loop does pass through a branch cut (if it contains an EP it will
necessarily has to) it cannot be reduced to a single point.

1.4.2. Third quantisation

Here we review the approach to solving Lindblad master equation that is quadratic in
fermionic operators, developed by Prosen in [Pro08; Prol10], called third quantisation.
We will use this in Sec.3.4 to study topology of a system described by a quadratic
Lindbladian.

Let us consider a system of n Fermions, described by a quadratic Lindblad equation
. A O
p=-i[H,p] +Z(LMpLL— 5{LLLM,p}). (1.73)
o

First we write the n fermionic operators in terms of 2n Majorana operators, hence we
can write the Hamiltonian and dissipation operators as

2n
A=Y a;Hy;a, (1.74)
i,7=1
and
R 2n
Ly =Y 16, (1.75)
i=1
where
{@i,@j} = 25i,j7 (176)
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because of the above commutation relation we can always write the first quantized
Hamiltonian as an anti-symmetric matrix, i.e. H” = —H this also makes it a purely
imaginary matrix.

Next step is to assign a Hilbert space structure to the space of operators X, which
is a 227 = 4" dimensional space. We define the canonical basis for this space |P,) ,
where

2n
P, =]]a&" w; €{0,1}, (1.77)
i=1
the inner product is defined as
(2] y) = 47tr (aly). (1.78)

We also define creation and annihilation operators on this space of operators, as
follows

Cj |Pw) = 0w, 1|6 Py) (1.79)
é;r ’Pw) :5101',0 |&jpw>7 (180)

these operators follow the standard fermionic anti-commutation relations.
Now we are ready to write the Lindblad operator in the canonical basis we just
defined, we start with the commutator part of the Lindblad equation

Lop=[H,p]. (1.81)

Since I is a Lie algebra, one defines the adjoint representation of a Lie derivative for
an arbitrary A € IC back on K as, adA|B) = |[A4, B]) . It is now straightforward to
compute the action of a Lie derivative of a product of two Majorana operators on an
arbitrary basis element

add,éy | Py) = |6G Py) — | Pubijéy)
2 (5wj,15wk,0 + 5wj,06wk,l) |dj@kpw>
2 (eler - efe;) [Py) . (1.82)

Hence for the Hamiltonian we get

2n
Lo=43 & Hje. (1.83)

j,k=1

Now let us consider the action of dissipation operators

2n
Lup= 2LuPLL - {LLLM7 p} = ; Ll L (1.84)
k=1
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1.4. Open quantum systems and third quantisation

where

A

L kp = bpby = {andij, p} - (1.85)

Again we proceed by computing the actions of ﬁjyk on elements of the canonical basis
of operator Fock space K. In order to do so, it is crucial to observe that the question
whether &; commutes or anticommutes with P, depends on the number of a-fermions

A

lw| = ¥;w; in P, namely P,&; = (—1)|w|+wj &;P,, and hence
L |Pu) = [2(-1)"1™ dds = andiy - (-1)"" Gty | [P) (1.86)

Observing that

&5 Pu) = (&5 +¢;) [Pu)
(-1)" [a;Pu) = (&) = &) |P)
(-1)"Na; P,) = exp (inN) |P,) (1.87)

where N = > é;é] One can derive that

Liy=(1+exp (inN)) (2&}@2 - é}ek —éle;) + (1-exp (inN)) (26,8, — &6 - ekéj) .
(1.88)

Obviously, the maps ljm, and hence also the total Lindblad part of Liouvillean
> Ly, do not conserve the number of a-fermions. But they conserve its parity, i.e.
the product of any two creation/annihilation a-Fermi maps commutes with the parity
operation P = exp (MN ), with respect to which the operator space can be decom-
posed into a direct sum K = K* & K-, and even/odd operator spaces are orthogonally
projected as K* = (1 + exp (mrN )) KC. Thus, the positive parity subspace K* is a linear
space spanned by |P,) with even |w]. All the maps £, now act separately on K+
and ﬁj’klci c K*. For example, the maps defined on even parity subspace are indeed
quadratic in a-fermions

Lk

. = delel - 2efe, —2ele;. (1.89)

We shall focus on physical observables which are products of an even number of
Majorana fermions, so we shall in the following discuss only Liouville dynamics on
the subspace K*. Putting the previous results together we get

Lo=-2"(2iH+M+MT)e+2e"- (M- MT) e,
L,=4¢"- (=iH -Re[M])é+4ié' - Im[M] ¢, (1.90)

where M is a complex Hermitian matrix parametrizing the Lindblad operators

M =Y Lusl i (1.91)
I
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Using the fact that M is Hermitian we can write

A« o -XT'Y &
»C+:(QT Q)( 0 X)(QT)’ (1.92)
where
X =-2iH +2Re[M],
Y =4ilm[M]. (1.93)

Here we take a side step to prove some results that will be useful later, first let us
look at the definition of the Hermitian matrix My, =}, l#,jl;k and consider the case
where p = 1, then keeping in mind that we started with a system of n Fermions we
can write

0 - 1 0 I 0 -« 1\

M=[1: - P i = s e et | (1.94)
0 - 1, ol 0 - 1, 0 - 1,

)
=}

3 x

This is the sufficient condition for M to be positive semi-definite, if we generalise to the
case p > 1, then it can be straight forwardly argued that M is a sum of positive semi-
definite matrices, hence in turn itself is positive semi-definite. , this also implies that
X + XT =4Re[M] > 0. Consider an eigenvalue /5 and the corresponding eigenvector
|v) of X, then

Xlv) = Blv),
XY =5 )", (1.95)

since X is purely real. Taking appropriate dot products we show that
) (X + XT) o) = 2Re[ 8] [v) o). (1.96)

then the strict positivity of |v)'[v) and non negativity of [v) (X + XT)|v) imply
Re[/] > 0.

Our next goal is to write the Lindbladian operator obtained in Eq.(1.92) in a form
similar to a diagonalised second quantised operator. To that end, define

1
ayj =ﬁ(éj+cj)a
g5 = —= (&~ 21). (1.97)

These follow the anti-commutation relations {a, ;,adyr} = 0,01, Where p,v = 1,2.
Hence the Lindbladian can be written as

L.=a" A-a- A, (1.98)
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1.4. Open quantum systems and third quantisation

~ ~ ~ ~ ~ T . . .
where a = ( a1 -+ Qron Q21 - Q22q ) and A is a complex anti-symmetric 4n *
4n matrix with

(-2 + 2T M] 2 M
- L2iMT —2iH - 2ilm[M] |’
=-2ilb® H-20,® RG[M] -2 (0'1 —iag) ®III1[M],
J

We can define the following unitary transformation

A=UAUT, (1.100)
-XT'Y
= ( 0 X ), (1.101)
where
1 1 —

Since A and A are connected by a unitary transformation, they will have the same
eigenvalues. Using the formula for a special case of determinant of a block matrix

(km( PQ ):cwt(P)det(S),
0 S

we can deduce that the set of eigenvalues of A will be the union of the sets of eigen-
values of X and —X, hence we have shown that the eigenvalues of A come in pairs of
(Bi, =B:).

In order to diagonalise the Lindbladian we have to diagonalise the matrix A, in
general there is no guarantee that this matrix will be diagonalisable but here we
will assume that to be the case. We will arrange the eigenvalues of A as follows
( 51 5271 —51 _6271 ), such that Re[ﬁl] 2 RG[BQ] 2 Re[ﬁgn] 2 0, this order-
ing allows us to conclude that {;}#" are the eigenvalues of X. Due to our assumption
of diagonalisability, the matrix A will have 4n linearly independent eigenvectors and
as a result of the matrix being anti-symmetric these eigenvectors can be normalised
as follows

[0:)" Jv;) = Jij, where J =01 ® I, (1.103)

Let V' be a matrix such that its rows are the eigenvectors of A, combined with how
we have arranged our eigenvalues the first 2n rows of V' will contain eigenvectors

corresponding to the eigenvalues ( B o Bon ) and the last 2n rows will contain
eigenvectors corresponding to the eigenvalues ( -8y - —Dop ), hence we can write
AVT =VTD,
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vvt=J (1.104)
where D = diag( b1 - Bon —=P1 o+ —[an ) Combining the above two equations
we get

A=VTAV, where A = DJ. (1.105)
Define new operators as
. T ,
bj =|v;)" a, for 1<j<2n
b, =v;)" @, for 2n+1<j <4n. (1.106)

These operators follow the almost canonical anti-commutation relations {Z;j, Bk} =0,
{13;, IA);} =0, {Isj, IA);} = 0y, this is a direct consequence of the second line of Eq.(1.104)
and the commutation relations of the Majorana operators defined in Eq.(1.97). We
can finally write the Lindbladian as

2n 2n
L, :_226jb;‘bj+(25j_140)]1- (1107)
j=1 j=1
Now we will show that the last term in Eq.(1.107) is actually 0. We can write

A = 2tr (M) = 2tr (Re[M]), (1.108)

since the imaginary part of a Hermitian matrix is always anti-symmetric. Also since
{B;}?n are eigenvalues of X, we can write

2n

S8 = tr (X) = 2tr (Re[M]), (1.109)

izl
here we have used the fact that H” = —H. Finally,

2n
L, =-2Y pB;bb;. (1.110)
j=1

We can write the eigenvalues of the Lindbladian superoperator L, in term of eigen-
values of Z as

2n
No=-23 B, (L111)
7=1

where v; € {0,1} and v = {vy, v, -, 19, }.
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1.5. Introduction to the tenfold way

1.5. Introduction to the tenfold way

Here we will review the famous tenfold way, that classifies topological insulators
(TIs) and topological superconductors (T'SCs) into ten symmetry classes [Sch+4-08;
Ryu+10; Kit09; Chi+16], depending on which symmetry the system possesses. This
will serve as the jumping off point to discuss the extension of this classification for
non-Hermitian systems in the next section, the results of which we will use in Ch. 3
to find topological properties of an open system.

To begin consider a second quantised free fermionic Hamiltonian

0= &\ Hyxe, (1.112)
J,K

where the fermionic creation and annihilation operators follow the canonical anti-
commutation relations {éir,,éK} = 0k, the capitalised indices represent collection of
quantum numbers for e.g. site index, spin or other relevant quantum numbers for
the system and H ;g is the gapped first quantised Hamiltonian. The framework of
tenfold way uses the two anti-unitary symmetries of H, namely time-reversal and
particle-hole symmetry, to classify the first quantised Hamiltonian into ten symmetry
classes. To understand this classification better, first we need to understand how
these symmetries act on the Hamiltonian.

1. Time-reversal symmetry (TRS): Time reversal 7 is an anti-unitary opera-
tor that acts on the fermionic annihilation operators as follows

Te, T =3 (Ur) ek,
K
TiT ' =, (1.113)

where Ur must be a unitary matrix to preserve the canonical anti-commutation
relations. For this operation to be a symmetry of the system, the operator must
commute with the second quantised Hamiltonian THT'=H , this leads to the
following condition for the first quantised Hamiltonian

USH*Up = H. (1.114)

Applying the time-reversal operator twice we get
(U;Ur) H (U;U7) = H, (1.115)
since first quantised Hamiltonian can always be written in the irreducible repre-
sentation, the above condition in conjunction with Schur’s lemma implies that

UzUr = el using the fact that Uy is unitary it can be deduced that

UpUp = 1. (1.116)
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Applying the time-reversal operator twice on a fermionic annihilation operator
we see that 72¢;7 2 =Y i (UjUr) ;5 ¢k = £C;, hence in a fermionic system the
time-reversal operator squares to

72 = (1) when UzUy = 41, (1.117)
where N = > éTJé J is the number operator.

2. Particle-hole symmetry (PHS): Particle-hole transformation C is a unitary
transformation that transforms fermionic annihilation operators into creation
operators

Ce,C7 = > (U) sk &l (1.118)
K

and vice-versa, again to preserve the canonical anti-commutation relations Ug
must be a unitary matrix. If this transformation is a symmetry of the system,
i.,e. CHC ' = H, then for the first quantised Hamiltonian we get

ULH Uy = -H, (1.119)

and trH = 0. Using similar arguments as for the time-reversal operator, we can
deduce that

¢? = (+1)" when UpUe = <L (1.120)

3. Chiral symmetry (CS): This symmetry is defined as the combination of time-
reversal and particle-hole symmetries, a system might not fulfill the criteria for
the two symmetries discussed above, but it can still have the symmetry that is
the combination of the two, the so called chiral symmetry

S=T-C. (1.121)
This transformation acts as follows on the fermionic annihilation operators
Se; 871 =Y (ULUS) ¢ ke (1.122)
K

and if the transformation satisfies SHS! = H, then the conditions on the first
quantised Hamiltonian are

ULHUg = -H, where Ug = UcUr, (1.123)
and trH = 0. Using the same reasoning that we used to derive 72 = C? = (:I:l)N,
we can deduce that U2 = ¢®l. Redefining Us — €*/2Uyg, the conditions on the

single particle Hamiltonian for chiral symmetry simplifies to
(H,Us} =0, UZ=UlUs=1L (1.124)

As a final remark, the analysis in this section does not apply to TSCs, since the
second quantised Hamiltonian does not contain any pairing terms (for e.g. ¢é;¢k),
but a similar analysis can be repeated by writing the superconductor Hamiltonian in
BdG form and using Nambu operators instead of fermionic operators.

30



1.5. Introduction to the tenfold way

1.5.1. Periodic table of Tls and TSCs

After the above discussion, we are now in position to classify the gapped single parti-
cle Hamiltonians into symmetry classes in terms of non-unitary symmetries. It should
be noted that using unitary symmetries that commute with the first quantised Hamil-
tonian, we can write it in a block diagonal form, such that the unitary symmetries
will act trivially on each block. It is these irreducible blocks, without any unitary
symmetries, that we wish to classify. So far we have discussed the following

THT=H, T=UpK, U;Up==+I,
C'HC=-H, C=Uck, ULUc =+,
S1'HS=-H, S=Us, U:=I, (1.125)

where Ur, Us and Ug are unitary matrices and X is the complex conjugation operator.
As it turns out this list is exhaustive, i.e. without loss of generality we can assume
there is only one operator 1" representing TRS and only one operator C' representing
PHS. If this was not the case, say there were two operators C; and Cs that represented
PHS, then their combination C; - Cy will act as unitary symmetry and it would be
possible to bring H into a block diagonal form such that Ug, - U, will act trivially on
each block. Thus on each block Ug, and Ug, will be trivially related to each other,
hence we can just use a single operator corresponding to PHS, similar argument can
be used to prove uniqueness of the TRS operator. On the other hand, the combination
of TRS and PHS (T'-C), the chiral symmetry, is indeed a unitary operator but instead
of commuting with H it anti-commutes, hence it is necessary to take it into account
separately.

It is easy to see, why the above three symmetries lead to ten symmetry classes for
the single particle Hamiltonians. Let us begin with how H transforms under TRS(T),
first option is that H is not invariant under 7', second option is that it is invariant
under 7" and 72 = +I and the third option is that H is invariant under 7" and T2 = -I.
Similarly we get three cases for PHS, hence the combination of both gives us 3*3=9
cases. For chiral symmetry, in the eight out of nine cases mentioned above it is easy
to deduce its presence or absence just by looking at how the Hamiltonian transforms
under TRS and PHS. For the ninth case where both TRS and PHS are absent, the
chiral symmetry can be absent or present, resulting in (3 *3) -1+ 2 =10 cases.

The table 1.1 lists the ten symmetry classes that are used to classify Tls and
TSCs, these symmetry classes were first described by Altland and Zirnbauer [Zir96;
AZ97] in context of disordered fermionic systems, and are therefore sometimes called
Altland-Zirnbauer (AZ) classes. The table 1.1 also is written in such a way as to
separate the so called complex classes A and AIII from the rest of the so called real
classes. This nomenclature is due to the fact that these eight classes have at least
one anti-unitary symmetry which imposes a relation between the real and imaginary
part of the corresponding Hamiltonian, while for the two complex classes the real and
imaginary part of the corresponding Hamiltonians are completely independent.

Before ending this section we say a few words about topological invariants, they
play the same role for classification of topological phases of matter as the order pa-
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Class

Table 1.1.: Listed in this table are ten symmetry classes for fermionic gapped first

32

quantised Hamiltonians. The time evolution operator constructed from
the single particle Hamiltonian e’ belongs to a symmetric space, the
first column in the table denotes the name given to this symmetric space
by Elie Cartan in his classification. The labels TRS, PHS and CS represent
the time-reversal, particle-hole and the chiral symmetries respectively. For
TRS and PHS the label 0 means that the Hamiltonian is not invariant
under that transformation, while the + signs mean that the transformation
is a symmetry and the corresponding operators square to +I. For CS the
labels 0 and 1 denote its absence or presence respectively. The columns
labelled with different values of d (spatial dimension), tells us if for a given
d there exist a topologically non-trivial ground state. The symbols Z, 27
and Zs represent the nature of topological invariant that characterises a

symmetry class, and the symbol ’0’ represents that all the ground states
are topologically trivial.

TRS | PHS | CS | d=0 | d=1 | d=2 | d=3 | d=4 | d=5 | d=6 | d=7
Complex classes
A 0 0 0 7 0 7 0 7 0 Z 0
AIIT 0 0 1 0 7 0 Z 0 7 0 7
Real classes
Al + 0 0 7 0 0 0 27, 0 Lo Lo
BDI + + 1 Lo Z 0 0 0 27, 0 Lo
D 0 + 0 Zio Lo 7 0 0 0 27, 0
DIII - + 1 0 Zio iy ) 0 0 0 27,
All - 0 0 27, 0 Zio Zig 7 0 0 0
CII - - 1 0 27 0 Zig Zig 7 0 0
C 0 - 0 0 0 27, 0 Zig Ly Z 0
CI + - 1 0 0 0 27, 0 Zig Lo Z



1.6. Extending the tenfold classification

rameter in the Landau-Ginzburg theory of phase transitions. Hence the value of
the topological invariant is an indication of the phase of the matter, which can be
calculated experimentally by observing a quantity that is proportional to the said
topological invariant, for example: transverse conductivity in integer quantum hall
effect [Hat97]. As shown in Table 1.1, topological invariants can take variety of differ-
ent values depending on the symmetry class and the spatial dimension of the system,
the ones in the table means the following:

1. topological invariants in Z can take integer values (0,+1,+2,...),
2. topological invariants in 27 can take even integer values (0,+2, +4,...),
3. topological invariants in Z, can take two values, generally denoted as {-1,+1}.

Some well known topological invariants are the winding number in the SSH model
[IMAG16] and the Chern number for the Haldane model [Hal88|. Chern number, or
its modified version for non-Hermitian Hamiltonians, will be the relevant topological
invariant in the second project in Ch. 3, for a dissipative toy model that is realised
via multi-terminal Josephson junction. Chern number for closed systems is defined
by Berry curvature, consider a gapped quantum system described by a wave function
[(k)), then the Berry connection is defined as follows

A(k) =i (¢ (k)| Vi [ (k)) (1.126)
and Berry curvature is
B(k) = Vi x A(k), (1.127)

finally the Chern number can be written as
1
C=— /B(k)-dS, (1.128)
27
BZ

where the integral is taken over the entire Brillouin zone.

1.6. Extending the tenfold classification

It will be in our interest in Ch. 3 to discuss the topology of a non-Hermitian system
described by Lindblad equation, hence in this section we review the proposed exten-
sion of the classification of TIs and TSCs to non-Hermitian systems. Characterising
non-Hermitian systems with topological properties has been a focus of research for
more than a decade now [RL09; HH11]. Here we focus on the work of Kawabata et.
al. [Kaw+19a] where the authors claim to develop a complete theory of symmetry
and topology in non-Hermitian physics and show that presence of non-Hermiticity
ramifies the ten symmetry classes to 38 symmetry classes, and on the work of Lieu
et. al. [LMC20] where the authors use the work by Kawabata et. al. to show
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that the fermionic systems described by quadratic Lindbladians can be classified into
ten symmetry classes that reduce to the Altland-Zirnbauer classes in the absence of
dissipation.

We start with the observation that for non-Hermitian matrices the operation of
complex conjugation is not equal to the operation of transpose unlike the case of
Hermitian matrices. Hence if we take the example of TRS for closed systems which
is given by

ULH*Up=H, UjUrp =4I, (1.129)

the complex conjugation can be replaced by a transpose but if we want to extend this
condition to include non-Hermtian matrices we will have to make a choice between
the two operations. Similar problem arises when extending the concept of PHS and
CS. To develop the expression for the action of symmetries we define the second
quantised time reversal and particle hole transformation as in Egs. (1.113) and (1.118)
respectively, then we follow a similar procedure as for the closed system (except there
no constraint due to Hermiticity) and end up with the following definitions of TRS,
PHS and CS for single particle non-Hermitian Hamiltonians respectively

TIH*T, =H, TiT,=1, T:T,==<I,
C'HTC_=-H, C'C_=1, C*C.=4+I,
I"HIT=-H, T''=T, T?=1I (1.130)

Here, as with the closed system, chiral symmetry is defined as the combination
of time reversal and particle hole symmetries. The equations in (1.130) serve as a
natural extension of symmetry operations that give us Altland-Zirnbauer (AZ) classes,
we can also define a variant of TRS with transpose and a variant of PHS with complex
conjugation as

CIHTC,=H, Cic,=1, C*C, =4I,
T'H*T =-H, T'T =1, T'T =+l (1.131)

These new variants of TRS and PHS are termed TRST and PHS' respectively, also
it is easy to notice that combining TRS and PHS gives the same result as combining
TRSt and PHS', hence we don’t need to define a new chiral symmetry operator. TRST,
PHS' and CS also generate ten symmetry classes that are called AZT symmetry classes
(see table 1.2). We also define a new symmetry the sublattice symmetry (SLS)

SHST=-H, StS=1, S%=1, (1.132)

which is equivalent to CS for the Hermitian case. The symmetries discussed in Eqgs.
(1.130), (1.131) and (1.132) results in 38 distinct symmetry classes, which can be
counted as follows: the original 10 AZ symmetry classes, 6 additional AZT symmetry
classes and 22 symmetry classes originating by combining AZ classes with SLS, any
other combination of the aforementioned symmetries can be expressed in terms of
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1.6. Extending the tenfold classification

these 38 classes [Kaw+19a]. The reason AZ' only result in six new classes is due to
the fact that the classes A and AIIl are common to both AZ and itself, furthermore the
class Al in AZ class and class D in AZT class are equivalent due to the fact that when
a non-Hermitian Hamiltonian H respects TRS another non-Hermitian Hamiltonian
iH respects PHST [Kaw+19b], similarly class AII is equivalent to class Ct.

Another aspect of tenfold classification is the presence of a gap in the spectrum
of the first quantised Hamiltonian, which in the case of non-Hermitian Hamiltonians
becomes a little complicated since in general they can have complex eigenvalues. The
energy gap of a closed system can be contracted to a point since the spectrum is one
dimensional, this point is generally termed the Fermi energy Er, thus naturally and
uniquely a system can be said to have a energy gap if no energy bands cross the point
E = Er. For the case of open systems, the energy gap is not necessarily contractible
to a point since the spectrum is two dimensional, hence the energy gap can be either
a forbidden point (point gap) or a forbidden line (line gap) in the complex plane.
Importantly the definitions of of the two energy gaps are independent of each other,
the choice of the gap depends on the physical problem. The topological classification
also depends on the kind of the gap in the system, two systems with same symmetries
and same dimensions can have different topological characterisations if the type of
gaps they exhibit are different (table III in [Kaw+19a]). The precise definition of the
gaps are as follows:

Point gap: A non-Hermitian Hamiltonian H (k) is said to have a point gap if and

only if it is invertible, i.e. det H(k) # 0,V k, and all the eigenenergies are nonzero,
ie. E(k)+#0,V k.
In principle the point gap can exist at any arbitrary value in the complex plane, but
the presence of symmetries often restrict the eigenvalues. For example in presence of
TRS the eigenenergies must come in pairs of (£, £*) and in presence of SLS they must
come in pairs of (E,-F), thus zero energy is a convenient choice for the definition of
the point gap.

Line gap: A non-Hermitian Hamiltonian H (k) is said to have a real (imaginary)
line gap if and only if it is invertible, i.e. det H(k) # 0,V k, and the real (imaginary)
part of the eigenenergies is nonzero, i.e. ReE(k) #0,V k (ImE(k) #0,V k).

Again the choice of real and imaginary axes as the defining lines in the complex plane
instead of an arbitrary line has to do with the restrictions imposed by symmetries on
the eigenvalues.

Kawabata et. al. provided the topological classification of non-Hermitian Hamil-
tonians based on 38 symmetry classes, different types of gap and spatial dimensions.
The different phases of topologically nontrivial non-Hermitian Hamiltonians are dis-
tinguished by topological invariants such as winding numbers and Chern numbers.
We will not go into detail of how to calculate these invariants for each case, but we
will expand upon the Chern number later in section 3.4 when discussing our specific
model.

So far we have discussed general open systems described by a non-Hermitian Hamil-
tonian, now we discuss the work of Lieu et. al. [LMC20] which specializes the work
of Kawabata et. al. to dissipative fermionic systems described by quadratic Lindbla-
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Class TRS | PHS | TRST | PHST | CS | d=0 | d=1 | d=2 | d=3
Complex classes
A 0 0 0 0 0 7 0 7 0
ATl 0 0 0 0 1 0 7 0 Z
Real AZ classes
Al + 0 0 0 0 7 0 0 0
BDI + + 0 0 1 Ziy 7 0 0
D 0 + 0 0 0 Zio Zo Y/ 0
DIII - + 0 0 1 0 Zio o 7
Al - 0 0 0 0 27 0 Lo o
CII - - 0 0 1 0 27 0 o
C 0 - 0 0 0 0 0 27 0
CI + - 0 0 1 7 0 7 0
Real AZT classes
ATt 0 0 + 0 0 7 0 0 0
BDIt 0 0 + + 1 o 7 0 0
Df 0 0 0 + 0 Ziy iy 7 0
DIIIf 0 0 - + 1 0 Zio oy 7
AITY 0 0 - 0 0 27 0 Lo o
CIIf 0 0 - - 1 0 27 0 Zio
Cf 0 0 0 - 0 0 0 27 0
CIf 0 0 + - 1 0 0 0 27,

Table 1.2.: Listed in this table are 16 distinct symmetry classes out of 38 symmetry
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classes found by Kawabata et. al. while extending the tenfold classification
to non-Hermitian systems. The topological equivalence of classes Df(CT)
and AI(AIT) and the fact that the classes A and AIIT are common to both
AZ and AZT results in 16 distinct classes instead of 20. The labels + and 0
here have the same meaning as in the table 1.1. The columns labelled with
different values of d (spatial dimension), tells us if for a given d there exist
a topologically non-trivial non-Hermitian Hamiltonian in presence of a real
line gap. The complete topological classification is much richer than what
we have presented here, since it contains more symmetry classes that arise
by combining AZ classes with SLS and additional types of gaps namely,
point gap and imaginary line gap. For a detailed description of topological
classifiction of non-Hermitian Hamiltonians one can look at the original
work [Kaw+19a].



1.6. Extending the tenfold classification

dians. Consider a system described by the Lindblad equation

i% =L(p)=[H,p]+i ; (2L,pLl, - {LiL,. p}), (1.133)
this equation describes the non-unitary time evolution of the density matrix. Here,
the Hamiltonian H encodes to the coherent time evolution, while the so called jump
or dissipation operators [A/M describe the gains and losses in the system. Also the
above Lindblad equation is written in a non-standard form, since we have multiplied
1 on both sides, this was done so that in absence of dissipation operators the equation
will reduce to the standard Schrédinger equation.

In general a Lindblad equation can be solved by vectorising the density matrix and
writing the Lindbladian superoperator £ as a matrix. For a system of n fermions this
amounts to diagonalising a 22" x 22" matrix, which can get very numerically expensive.
But for the case when the Hamiltonian H is quadratic and the dissipation operators
ZA}H are linear in fermionic operators the problem becomes much simpler. In his work
on quadratic Lindblad equations, Prosen [Pro08; Pro10] has been able to show that
for such systems we can work with 4n x 4n matrix. We have given a detailed review
of Prosen’s approach in Sec. 1.4, here we will just use the results.

Using Prosen’s formalism the Linbladian superoperator can be written as

foo(é é)( ~ZT —2Im[M] )(

10>

= 0 A

10>

: ) - 2itr[M] (1.134)

where Z = H +iRe[M] and ¢é = (é,-+,¢2,). The égT) superoperators follow the
fermionic canonical anti-commutation relations (CAR) {éz,éj} = 0ij, {éj,é;r} =0 and
{¢,¢;} = 0. The upper diagonal form of the Lindbladian implies that its spectrum

only depends on the eigenvalues of Z, it can be diagonalised in terms of quasiparticles
L=-4> \bib;, (1.135)

where the quasiparticles follow the almost CAR {b;, B;} = 0y, {b), 13;} =0 and {b;,b;} =
0. The eigenvalues of Z have to follow some generic restrictions: i) Im[A;] > 0 since
elements of density matrix can only decay and not amplify with time, and ii) the
eigenvalues always come in pairs of (A,-A*) in order to preserve the Hermiticity of
the density matrix at all times.

The eigenvalues of the non-Hermitian matrix Z plays the same role for quadratic
Lindbladians as the eigenvalues of the single particle Hamiltonian play for the second
quantised Hamiltonian in the case of closed systems. Hence, while investigating the
topological properties of a system described by a quadratic Lindbladian it is natural
to look at the symmetry classification of the matrix Z. As discussed earlier in this
section, for non-Hermitian matrices the time-reversal and particle-hole symmetries
can be generalised in two ways given by Eqgs. (1.130) and (1.131). Let us assume
that for Z the correct way to generalise time-reversal is via complex conjugation
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(TI Z*T, = Z), then this would imply that every eigenvalue of Z will have a conjugate
partner, this implies that for every decaying mode (Im[A] > 0) of Z there will be an
amplifying mode (Im[A*] <0), which is unphysical. Similarly using the transpose for
particle-hole symmetry (C1ZTC_ = —Z) implies the eigenvalues always come in pairs
of (A,=A), which again leads to an amplifying mode. Hence for Z the unique way to
generalise symmetries is given by Eq. (1.131)

Time-reversal: Ci1Z7C, = Z, clo, = I, C:C, =4l
Particle-hole: T1Z*T.=-Z, T'T =1, T*T. =<,
Chiral: T''ZT=-Z T'=T, I?=L (1.136)

The fact that for quadratic Lindbladians the time-reversal symmetry takes the form of
the first line in Eq. (1.136) can also be ascertained from the microscopic derivation of
Lindblad equation, as shown in supplementary material of [LMC20]. The restriction
that all eigenvalues of Z should follow Im[A] > 0, also allows us to rule out the
possibility of using either a point gap or an imaginary line gap to determine its
symmetry class. This is due to the fact that for both, the point gap and imaginary
line gap, the eigenvalues of Z can be deformed to a single point without closing the
gap. Hence to determine the symmetry class of Z, we should ascertain if it satisfies
the conditions in Eq. (1.136) and if its spectrum has a real line gap.

38



2. Fractional charges and fractional
Josephson effect in
superconductor-normal metal
hybrid circuits

2.1. Introduction

The notion of fractional charges plays an omnipresent role in condensed matter
physics, especially in lower dimensional systems, such as in 1D Luttinger liquids
[PGLO00; Imu+02; Tra+04; Ste4+07; GGM10], or in the 2D fractional quantum Hall
effect [TSG82; Lau83; KF94; Sam+97; de-497], as well as in topological supercon-
ductors, where the presence of Majorana- or parafermions gives rise to a fractional
Josephson effect [Kit01; FK09; ZK14a; Ort+15]. While the literature on how to de-
fine and detect a fractional charge e* # e (e being the elementary charge) is of course
much vaster than we could possibly account for in this small introduction, we can
nonetheless identify two main and seemingly distinct flavours, which we here intend
to unify. As we argue below, this attempt of a unification is deeply rooted in the un-
derstanding, that fundamentally, charge of any electronic system must be quantized
in integer units of the elementary charge e, such that any charge fractionalization
effect can only be meaningfully defined in terms of the topological properties of the
time evolution of a system coupled to a transport detector.

In a non-equilibrium transport situation, e* may be extracted from the transport
statistics. This idea was pioneered by Kane and Fisher [KF94], who showed that
the Fano factor (the noise-to-current ratio) returns e*/e, provided that the transport
statistics is Poissonian. Very recently, this idea was generalized to a generic non-
Poissonian transport regime, when considering the topological properties [Riw19] of
the entire full-counting statistics (FCS) [LLL96]. This definition hinges on the time-
dependent dynamics of the moment generating function m (x) = ¥y eX¥ P (N), where
X is the so-called counting field, and P (N) is the probability of having transported
N electrons. If N is integer, then m is obviously 27-periodic in y for all times. Effec-
tive quantum field theories hosting fractionally charged excitations may in principle
predict a moment generating function m with broken periodicity. However, it was
understood already, that the elementary charge being fundamental for any electronic
system, this broken periodicity must be artificial. That is, such effective field theories
must have a limited validity for sufficiently high cumulants, and the 27-periodicity of
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m (x) must be restored [Ari98; GGM10; IAC13; Riwl19; Riw21]|. On the other hand,
generic open quantum systems with a transport detector were shown to undergo dy-
namical phase transitions [Pis04; Ubb+12; FG13; Bra+17] leading to a braiding of the
complex eigenspectrum of the Lindbladian along the counting field [RS13; LRS14].
The main nontrivial contribution of [Riwl9] is the realization, that the resulting
breaking of the 27-periodicity of the complex eigenspectrum, which governs the time
evolution of P (N), and thus of m(x), should be interpreted as transport carrying
fractional charges in the same sense as the known examples from strongly correlated
systems. In short, fundamental charge quantization is thus a property of the detector
basis, whereas fractional charges are a property of the open system eigenspectrum.
Based on this realization, Ref. [Riwl9] argued that fractional charges are already
observable for standard sequential electron tunneling through a quantum dot in a
purely dissipative transport regime, not requiring any material-specific properties or
interactions.

Fractional charges can also be defined without the explicit need for nonequilib-
rium transport (and transport statistics measurements) by the phase picked up when
travelling through a magnetic field, ¢ = e* [ dvA(x) /h, where for anyonic excita-
tions, e* can be directly linked to the nontrivial exchange statistics [LM77; Wil82;
ASW84; Bar+20; 20]. This notion of fractional charges is at the heart of the frac-
tional Josephson effect due to the presence of exotic excitations, such as Majorana- or
parafermions [Kit01; FK09; ZK14a; Ort+15; Kap+19]. Here, e* defines the periodic-
ity with which the supercurrent depends on the superconducting phase bias ¢, since
in superconducting transport, the phase enters as e**¢. For a pure superconducting
regime, it is usually possible to describe the dissipation-free current in the form of a
low-energy Hamiltonian H(¢). It may therefore be tempting to just equip H with
the periodicity in ¢ given by the fractional Josephson effect. However, also in the
context of superconducting circuits, there is a lingering question about the impor-
tance of charge quantization in various contexts, such as for charge noise sensitivity
of the fluxonium [Koc+09; Man+09; MY20], when coupling Josephson junctions to
an electromagnetic environment [Mur+20; HS21; Mur+21; Kau+21], or when consid-
ering the physics of quantum phase slip junctions [KR23]. Specifically for topological
superconductors, the presence of Majorana fermions provides a degenerate ground
state with even and odd fermion parity, allowing for coherent transport processes
which transport a single elementary charge e instead of the Cooper pair charge 2e
in the ordinary Josephson effect. However, there is a fundamental incompatibility
between charge stored in the topological part of the circuit (integer multiples of e)
and the charge stored in the trivial parts of the device (integer multiples of 2¢). This
interplay can lead to instabilities of the fractional Josephson effect for certain circuit
configurations [Hec+11]. The relevance of this incompatibility has also been recently
studied for time-dependent driving and capacitive coupling [KHR22], giving rise to a
purely geometric correction term. Generally it was argued [Riw21], that for super-
conducting systems, the periodicity in ¢ of a Hamiltonian (describing a given circuit
element) is defined by the unit of charge which a detector, a magnetic field or another
circuit element couples to, whereas fractional Josephson effects, and the associated
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fractional charges, are defined in the periodicity of the eigenspectrum. This argu-
ment thus corresponds to a quantum mechanical counterpart to the statement made
for purely dissipative systems in Ref. [Riw19].

The question which has, to the best of our knowledge, not yet been addressed, is how
exactly the fractional Josephson effect and fractional charges measured in the trans-
port statistics are related, and importantly, how to generalize to a situation where
dissipative non-equilibrium currents and equilibrium supercurrents coexist. When
combining supercurrents and FCS [RN04], the counting field y appears as a shift in
¢, suggesting that the fractional charge in the moment generating function is directly
inherited from the periodicity of the Josephson relation. However, we show that the
picture becomes much more complex when including nonequilibrium currents, and
that in the most generic situation, charge fractionalization expresses itself as excep-
tional points (EP) in the 2D space spanned by the independent superconducting phase
¢ and the counting field y. Charge fractionalization in the current statistics and the
fractional Josephson effect are thus in general related, but nonetheless distinct effects.
Moreover, and similar in spirit to Ref. [Riw19], we can show that in a generic open
system context, no exotic materials are required to engineer topological phase tran-
sitions giving rise to fractional charges, and a fractional Josephson effect. Curiously,
we find that poisoning due to out-of-equilibrium quasiparticles, usually a nuisance
for superconducting circuits [LGL05; Sha+08; Cat+11; LM12; FK09; Hec+11; RL12;
GC11; BWT12; Pek+13]), is in the particular case studied here a necessary ingredient
driving the topological transitions.

For concreteness, we consider a minimal heterostructure model of a single-level
quantum dot coupled to two phase-biased superconductors (S) allowing for a super-
current to flow, and an additional normal metal (N), providing a nonequilibrium
electron source. Quantum dot heterostructures have been widely studied in the past
both theoretically [FR98; Kan98; CAH00; CLM01; PGKO07; Sot+10; Hil+11; Fut+13;
Sot+14; WK17] and experimentally [Her+10; Hof+10; Dir+11], with a recently re-
vived interest in connection with a possible probing of the Higgs mode [HS22|, and
observation of transition from normal Josephson junction to a 7 junction [SMH22].
In particular, the inclusion of a counting field has been discussed in Ref. [SK14].

While all of our results have been obtained specifically for this model, we believe
that our findings regarding the connection between the fractional Josephson effect and
fractional charges are generic, so long as the dynamics is described by a Lindbladian.
In particular, we find that the aforementioned EPs give rise to phase transitions which
can carry a trivial or fractional charge in x (along the lines of [Riw19]) for different
values of ¢, and at the same time a conventional or fractional Josephson effect for
different values of y. Our work can thus be seamlessly embedded in a larger currently
ongoing effort to generalize the notion of topological phase transitions to open quan-
tum systems [RL09; RL10; Die+11; Bar+13; BD15; RLL; Eng+17; Bar+18; MCI18;
EKB19; Kaw+19a; MC19; KR19; LMC20], especially when expressed via EPs in
the open system eigenspectrum [Hei04; Heil2; Kun+18; Kaw+19a; WJS19; MB21;
BBK21; Avi+19; San+16], by here assigning them the explicit role of generators of
fractional charges and a fractional Josephson effect.
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Let us take some time here to comment on our choice of considering the Lindbladian
approach for an open quantum system. In particular, the time-local approximation
allows us to classify the open system dynamics in a formally similar way as the
closed system, by analyzing the topological properties of the eigenspectrum of the
Lindbladian superoperator. On the one hand we stress that there are a number of
examples, where this approach proved to be very successful to accurately model real
experimental systems, such as time dependently driven electron pumps [Roc+13],
or the full-counting statistics in quantum dots [F1i+09], notably even at finite fre-
quency [Ubb+12]. On the other hand, it would of course be desirable to not be
restricted to weak coupling, and work towards a classification scheme of quantum sys-
tems strongly coupled to the environment. Here, the most general way of describing
a dissipative system would be via a time non-local kernel that incorporates memory
effects, as in the Nakajima-Zwanzig quantum master equation [Nakb8; Zwa60]. It
might thus seem, that our topological analysis may be restricted to weak coupling to
an environment. However, we would like to point out a recent important work by
Nestmann et. al. [NBW21], which shows that it is possible to establish a connec-
tion between the above time non-local master equation, and a time-local one (which
still captures the strong coupling to the environment), via a fixed point relation. It
is therefore perceivable that our classification approach is in principle generalisable
to systems with strong coupling to the environment. However such an effort is well
beyond the scope of the present work, and would likely be envisaged as a future
project.

Finally, we explicitly illuminate the role of transport detectors, for different trans-
port measurement schemes. For instance, a generic model of a charge meter constantly
entangling with the measured transport processes [PWS17; PWS; SKB09] suppresses
all supercurrents, but nonetheless provides a new type of fractional transport phase,
which was not yet predicted in Ref. [Riw19], consisting of a statistical mix of trivial
and fractional charges. This is constrasted with a complementary understanding of
FCSs, where the cumulant generating function is reconstituted by measuring individ-
ual cumulants of the current statistics (in the spirit of the FCS as defined in Ref.
[RNO04]), where supercurrents persist, and the aforementioned EP phase-transitions
are (at least in principle) measurable. However, because the materials in the here
considered circuit are trivial, the fractional Josephson effect is only visible at finite
counting fields y, and its unambiguous observation would thus in principle require the
measurement of cumulants of arbitrarily high order. In order to circumvent this issue,
we study alternatively quantum weak measurements of the supercurrent. While weak
measurement of the current could be envisaged by means of Faraday rotation (explic-
itly proposed to weakly measure spins, e.g., in Ref. [Liu+10]), we strive to propose
an “all-circuit” realization of weak measurement using SQUID detectors, inspired by
Ref. [Ste4+01]. We show in particular that a certain post-processing of the classical
information obtained by the weak measurement allows to simulate the influence of a
finite counting field, and thus induces the protected fractional Josephson effect. This
principle can to some extend be understood as a new paradigm of the information
of a weak detector being used to “filter out” transport processes with integer Cooper
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pairs in favour of fractional Cooper pair processes, importantly, without the need of
real-time feedback [Vij+12].

This work was done in collaboration with J. Schwibbert and R.-P. Riwar and has
appeared as a paper in PRB [JSR23]|, the part of the work done by them will be ex-
plicitly stated. This chapter of the thesis is organized as follows. In Sec. 2.2 we set the
stage by reviewing generic features of conventional and fractional Josephson effects
by comparing the quantum dot circuit with a Majorana-based circuit. In the same
section we define a notion of an open system fractional Josephson effect in presence of
a generic coupling to a bath. This is followed by Sec. 2.3 where we explicitly introduce
dissipation by means of a coupling between normal metal-induced dissipative mech-
anism for the quantum dot circuit. In Sec. 2.4 two common versions of full-counting
statistics are introduced and the relevant features with respect to topological trans-
port are elucidated. In Sec. 2.5 we discuss various topological phase transitions which
arise due to the interplay of dissipation and transport measurement, and argue how
they can be interpreted as fractional charges and a fractional Josephson effect, re-
spectively. Based on these results, we investigate in Sec. 2.6 how continuous weak
measurement of the current can serve as a means to reach the part of the phase space
with finite counting field, where the fractional Josephson effect can be observed. The
conclusions are presented in Sec. 2.7. Finally, the appendices A and B detail the
derivation of how to extract higher cumulants of all eigenmodes and the calculation
of the scattering properties of the SQUID detector used for weak measurement respec-
tively. In the original paper there are two more appendices, credited to Schwibbert
and Riwar, that include important derivations and intermediate results, such as the
computation of the open system eigenmodes and their interpretation, the calculation
of the position of exceptional points. They are not included in the thesis but will be
referenced in the text as their results show up. Finally some of the calculations for
[JSR23] are part of J. Schwibbert’s master thesis [Sch20], it will also be referenced in
the relevant parts.

2.2. Integer versus fractional Josephson effect and
open quantum system generalization

Consider two superconducting contacts with a phase difference ¢ (which may be
controlled, e.g., by a magnetic field). These superconductors may be brought into
electrical contact through various ways, for instance by an insulating barrier (the SIS
junction) [Jos74] or via more general weak links [Bee91]. In this work, we consider
for concreteness weakly coupled tunnel junctions, which have a single quantum dot
level [K6n99]! sandwiched in between, see Fig. 2.1a. The quantum dot itself is de-
scribed by a single level at energy e, which can be at most doubly occupied (due to

'Note however, that we expect our conclusions qualitatively hold also for other systems providing a
single-level charge level in between the superconductors, such as a superconducting charge island
(Cooper pair transistor in the regime of large charging energies, see, e.g., [Cot02]).
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spin degeneracy). The double occupation comes in addition with the energy cost U
due to Coulomb interactions. The Hamiltonian thus reads

n(A-1)

Hdotzﬁﬁ'l‘U 9 5

(2.1)

the total occupation number on the single level being 7 = 3, dd,, where df,“ an-
nihilates (creates) an electron with spin o =1,]. The eigenstates of Hgyo are |0),
1), = d}|0), and |2) = didi |0), where |0) is the empty state, d,|0) = 0. The coupling to
the superconductors will in leading order introduce coherent transitions between the
|0) and |2) states, such that the transport can be captured in terms of the Hamiltonian
(detailed calculation of this result can be found in Appendix B of [Sch20])

H(¢) = Hyot + Hy (9) , (2.2)

where the exchange of Cooper pairs is described by

Ejp, + Eypei®
—HL I dld] + e (2.3)

Hy () =
The origin of this additional pairing term is the proximity effect, here considered
in the limit of large superconducting gaps A [RA00; VMYO03; Cho+04; Fut+09;
Sot+10], such that F,, = I's, where I'g, is the normal state tunneling rate between
the quantum dot and the corresponding contact a = L,R. That is, the relevant
correlation time of the superconducting reservoir is A~!. In some sense, the tunnel
coupling to the superconductor reservoirs already represent an opening of the local
quantum system to a reservoir. However, since supercurrents are mediated entirely
without dissipation (at least in this approximation) this effect can be captured by a
low-energy Hamiltonian. Hence, the dissipation-free circuit constitutes our “closed”
quantum system.
While these individual processes each give rise to single Cooper pair tunneling
processes (~ e*?), the presence of the quantum dot level modifies the overall trans-
port behaviour. Namely, the Hamiltonian H (¢) has the even eigenstates |+) =

:%¢1i5m)i§?Wv¢1¢5p>wmh

2
5 __ €+ U : (24)
2+ U+ |Eyp + Ejpeid]?
and the corresponding eigenenergies
—2¢-U £/ (2e+ U)2 +|Ep + l’fmemﬂ2
€. (¢) = \/ : (2.5)

2

Since the odd parity states |1,) cannot partake in the Cooper pair transport, they
remain eigenstates also for the full H, with the unchanged eigenenergy €. The above
energies €, (¢) are no longer a pure cosine (as for instance for the standard Josephson
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effect), but the spectrum remains in general 27-periodic, see Fig. 2.1c, signifying
integer multiple Cooper pair tunnelings as explained initially in this paragraph.

There is however one special point in parameter space, where the 2m-periodicity
is broken: for € = -U/2 and E;; = E;g = E;, the minigap closes, such that e, =
+Fjcos(¢/2), and the eigenvalues exchange places when progressing ¢ by 27, see
Fig. 2.1d. Here, it seems that the transport can be described by means of a fractional
transport of Cooper pairs, transferred in half-integer portions.

This is highly reminiscent of topological Josephson junctions based on Majorana
fermions, where the fractional Josephson effect hinges upon the topological contacts
having an even and odd ground state [FK09]. Here, the Hamiltonian is commonly
given in the form

HM = ’LEM COS (gb/?) Y1,LY2R (26)

describing the coupling of Majorana edge states on the left and right 7,5, via a
junction, see Fig. 2.1b (see, e.g., Ref. [12]). This Hamiltonian has the exact same 47-
periodic eigenvalues €, (¢) = £ Fy; cos(¢/2) (see again Fig. 2.1d), which we associate to
the eigenvectors |+) 2. Note that of course, the eigenstates |+) of the Majorana circuit
are different from the eigenstates |+) of the quantum dot circuits. We nonetheless
choose the same notation for simplicity - the reason for this will become obvious
below.

Now, the reader might perhaps be surprised by such seemingly naive (or even
slightly brazen) juxtaposition of a regular quantum dot circuit and a Majorana-based
junction. Indeed, one might for instance argue that no experiment could ever tune
both Ej jr and € to such perfection as to make the mini-gap disappear completely.
However, it should be noted that in Majorana circuits, finite size effects are known to
induce a small gapping, due to a coupling of the Majoranas on the same chain (i.e.,
terms of the form ~ y2 1711, or ~ 2 ry1,r) [Kit01; LSD10; Wan+]. A gapping and thus
a restoring of a 27-periodic spectrum was also predicted when a Majorana-junction
and a regular Josephson junction are coupled in parallel to form a SQUID [Hec+11].
As a consequence, the line between fractional and regular Josephson effect starts to
blur, as a minigap may likely be present for both trivial and topological circuits.

Alternatively, one might have tried to argue that while the energy spectrum of both
systems looks similar, the Hamiltonian has a fundamentally different periodicity in
¢, with Eq. (2.3) being 27r-periodic whereas Eq. (2.6) appears genuinely 4m-periodic.
Such arguments can however likewise be easily defused. If the phase bias ¢ is station-
ary, the periodicity of the Hamiltonian is a simple gauge choice and not of relevance.
For instance, we could have redistributed the phase drop in Eq. (2.3) symmetrically
over both junctions with a factor e*¢/2, thus achieving a 4m-periodic Hamiltonian.
However, this basis choice becomes relevant (i.e., it ceases to be a mere gauge choice)
if ¢ becomes time-dependent due to driving with magnetic fields [YSK19a; RD22],
or a dynamical quantum operator due to the addition of a capacitor [KHR22], or

2We note that for the open Majorana circuit, each of the eigenvalues is two-fold degenerate, cor-
responding to overall even and odd parity. For our purposes, this distinction is of no further
importance.
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if non-local correlation measurements are performed [Riw21]. Here, the appropriate
rule of thumb [Riw21] is that the relevant charge (and the corresponding charge unit)
is the charge that a magnetic field, a capacitor, or a detector couple to. For instance,
for the Majorana circuit, Eq. (2.6), a detector could measure the charge being trans-
ported across the actual Majorana junction, marked with an arrow in Fig. 2.1b. Then,
the 4m-periodic basis choice given in Eq. (2.6) is correct, since the Majorana wires
physically exchange the charge e. If the same detector would however measure the
charge entering one of the s-wave superconductor bulks, which proximitize the topo-
logical nanowire (the green bulks in Fig. 2.1b), then the correct basis choice must be
a 2m-periodic one (e.g. via the unitary transformation proposed by Ref. [Hec+11]),
to account for the fact, that the trivial, s-wave part of the circuit can in its ground
state only accept integer Cooper pairs with charge 2e.

The above short review leads us to two conclusions. First, whether a system pro-
vides a fractional or regular Josephson effect should be best described exclusively by
the periodicity of the eigenspectrum, and not of the Hamiltonian, as the latter is
either a gauge choice (for constant phase bias), or fixed by external factors. Second,
even if a system consists of topological superconductors, there are many nontrivial
factors that may lead to an instability of the fractional Josephson effect, by introduc-
ing a minigap, and restoring 2m-periodicity. In the following, we will show with the
example of the trivial quantum dot system, that the inclusion of a non-equilibrium
quasiparticle reservoir, and the addition of a transport detector can as a matter of
fact undo the gapping, and restore an open system version of the fractional Joseph-
son effect, without the need for fine-tuning any system parameters. As already stated
in the introduction, this effort will furthermore shed light on the intricate relation-
ship between the fractional Josephson effect and fractional charges, as defined in the
transport statistics [Riw19].

However, before continuing, we need to develop as a next preparatory step a gener-
alization of the notion of a fractional Josephson effect for open systems. To this end,
we consider either the quantum dot circuit, Eq. (2.2), or the Majorana circuit de-
scribed in Eq. (2.6), and add a generic open system dynamics to it. For this purpose,
we take as the basis the two closed system eigenstates |+) with eigenenergies e, (¢),
where €, can now either be 27-periodic or 47-periodic, see Fig. 2.1c and d. In the next
section, we discuss a concrete model for open system dynamics for the quantum dot
circuit; here, on this general, illustrative level, we are merely concerned with simple
generic open system processes, which consists of stochastic transitions between the
|+) and |-) states. Such processes can be described by a Lindblad quantum master
equation for the density matrix p =3, .. Py [n) (7],

= =il (0).p)+ LT (aspa) = 5 {alas. 0} 1)

with ay = |£) (F|, such that T'; represents the rate for a stochastic jump from |¥) to

[£).
While in the closed system, we had the real eigenvalues €, (¢), the Lindblad equa-
tion gives rise to a set of complex eigenvalues {\, }, describing both the coherent and
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Figure 2.1.: Generalization of integer versus fractional Josephson effect for open quan-

tum systems. We compare a conventional circuit, such as the quantum
dot proximitized with two superconductors (essentially a Cooper pair
transistor) (a), with a topological circuit, hosting Majorana fermions (b).
Both circuits are subject to the phase bias ¢. For the closed system, the
regular and fractional Josephson effect can be distinguished by either a
2m-periodic (c), or a 4m-periodic (d) energy spectrum as a function of ¢.
When including a simple, generic open system dynamics, see Eq. (2.7),
the purely real spectrum in (c,d) gets replaced by a complex spectrum
A(®) (e,f), where the real part describes dissipation and decoherence,
whereas the imaginary part represents the coherent dynamics. When
drawing the complex spectrum of the open system parametrically with
respect to ¢ (from 0 to 2, in the sense indicated by the arrow), we see
that in the regular Josephson effect, the eigenvalues with finite imaginary
part return to their initial values after a progression of ¢ from 0 to 27 (e).
For the fractional Josephson effect, these two eigenvalues swap places (f).
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dissipative dynamics, see Fig. 2.1e and f. In addition, while the closed system could
be described by just two eigenvalues, due to the two degrees of freedom + and —, for
the open system, we have four eigenvalues due to the enlarged structure of the density
matrix. The eigenvalue 0 represents the fact that there is a unique stationary state,
pst = (T |=)(~|+ T4 [+) (+]) / (Ty + T_). The eigenvalue — (I, + I'_) corresponds to the
decay of the diagonal density matrix elements (if the states |+) encode a qubit, this
would be the T time). Finally, there are the eigenvalues =i (e, —e_) — (I'y +I'_) /2,
belonging to the eigenoperators |+) (¥| which describe the coherent oscillations, in-
cluding the decoherence rate (I'y + T'_) /2 (T time). Only this last pair of eigenvalues
depends on ¢, such that the integer and fractional Josephson effects can be charac-
terized by means of their ¢-dependence. In order to represent the (now) complex
eigenspectrum, we choose a parametric plot, where the real and imaginary parts of A
are shown as two independent axes, and the resulting curves are parametrized by ¢
(in Figs. 2.1e and f). In the regular Josephson effect the eigenvalues with finite imag-
inary part (coherent dynamics) map onto themselves when running ¢ from 0 to 2w,
see Fig. 2.1e. This is in contrast to the fractional Josephson effect, where the same
two eigenvalues swap places, see Fig. 2.1f. The two resulting open system spectra
are thus still topologically distinct, as one cannot continuously map from one to the
other. This allows for a straightforward topological classification of the open system
dynamics.

2.3. The model: superconductor-normal metal hybrid
circuit

Let us now introduce a microscopic model for the open system dynamics of the quan-
tum dot circuit. In addition to the two superconductors, we include a tunnel coupling
to a third, normal metal reservoir, see Fig. 2.2a. This coupling introduces dissipative,
stochastic transport events. Since pairing (A) is absent in the normal metal, it can in
lowest order only introduce processes which flip the parity within the quantum dot.
We here focus on the regime where the chemical potential of the normal metal is large
with respect to the system dynamics (u > €,U, E},). Therefore, for the computation
of the dynamics due to the normal metal (by means of a standard sequential tunneling
approximation, see Ref. [K6n99]), we may disregard the internal coherent dynamics.
Consequently, the normal metal will mainly act as a source of quasiparticles, thus
inducing the nonequilibrium stochastic transitions, |0) — [1,) and |1,) - |2). Includ-
ing the stochastic processes, the dynamics of the system is described by the quantum
master equation p = Lp, with

L(¢)-=—-i[H(¢),-]+ Wy, (2.8)

where H(¢) is the Hamiltonian given in Eq. (2.2), and the kernel due to the normal
metal processes, Wy, is of the Lindblad form

Wy =InY (dI, -d, - % {d,di, -}) , (2.9)
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the calculation to obtain this form of the kernel Wy can be found in Appendix B of
[Sch20]. We note that strictly speaking, the superconductors themselves should like-
wise contribute to parity switches due to a finite quasiparticle population. However,
even though quasiparticles are known to occur with a much higher concentration that
what is expected from a thermal equilibrium distribution [MAAQ09; Ris+13], they are
nonetheless dilute (with a concentration of typically 1076 ~ 10-5 with respect to the
Cooper pair density [RC19]), such that the normal metal influence may be expected
to be dominant, even when E; > I'y, especially due to the large chemical potential.

The processes |0) - |1,) and |1,) - |2) both occur with the same rate. This is
in particular due to p > U, such that effectively, the many-body interaction is no
longer visible within the dissipative dynamics. This is why, for the remainder of this
work, we will set U = 0 without loss of generality. As another important observation,
let us point out that contrary to the generic open system discussion in the previous
section, the kernel Wy here gives rise to relaxation and decoherence in a basis which is
different from the eigenbasis of the local dynamics H. This will render the dynamics
much more complex, especially when including a transport detector, as we show in
what follows.

However, before we continue with transport measurements and transport statistics,
let us briefly describe the system dynamics of p. As already introduced in Sec. 2.2 the
system dynamics is governed by the set of generally complex eigenvalues {\,} of the
superoperator L, Eq. (2.8), with the corresponding eigenoperators. In absence of the
parity drive, I'y = 0, the dynamics of the density matrix is given by the eigenmodes
of —i[H,-] alone. The eigenoperators |+) (+|,|-) (|, |1,) (15|, all have eigenvalues 0,
meaning that they correspond to the eigenstates of H. The eigenoperators |+) (F| with
the eigenvalues —i (€, — €5) indicate the coherent dynamics. With finite I'y, the even
and odd subsectors couple. The eigenvalues are now 0,-I'y, -2y, —i (€L — ) = ['y,
where —I'y is doubly degenerate, see Fig. 2.2b. These eigenvalues can be interpreted
as the decay of physical quantities as discussed in Refs. [Spl4+10; Con+12; SW12]. For
this purpose, one needs to consider the structure of the corresponding eigenoperators.
While it is possible to find a closed form for the eigenoperators for arbitrary system
parameters, the expressions are quite cumbersome and thus not very instructive. We
therefore consider the here relevant limit I'y <« |e; — e_|, where we may simplify the
expressions considerably (done explicitly by Schwibbert and Riwar in Appendix A of
[JSR23]). Namely, we find that the eigenoperators belonging to A, = =i (€. —€5) -I'y
are still approximately given by |£) (F|, which now represent the coherent oscillations
damped with the decoherence rate I'y. The eigenvalue A\g = 0 corresponds to the
stationary state of the quantum master equation,

7w @|+)(+|+1_T522|10)(10|+$|—)<—|. (2.10)

We observe that even though the parity switching rate is small, the occupation of the
odd state is of the same order as the even state in pst. This is simply due to the fact
that while parity switches from even to odd are rare, the same is true for the reversed
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process from odd to even. Hence the system spends an approximately equal amount
of time in either parity sector. The eigenvalue A\, = -2I'y indicates the decay of the
fermion parity, given by the operator p = €™ as discussed also in Ref. [SW12]. The

doubly degenerate eigenvalue A\, = —I'y relates to two processes. For one, to the
decay of spin, §= Y, 0]1,)(1,|, and for another, to the decay of what we refer to as
the pseudo-charge number € = |[+) (+| - |-) (=|. We baptize it in this way because in

the absence of the proximity effect, F; - 0, we find ©— |2) (2| - |0) (0] =7 - 1.

With respect to the Josephson effect, note that the normal metal itself merely in-
troduces relaxation and decoherence, but does not alter the periodicity of the eigen-
spectrum with respect to ¢: the coherent oscillations still occur with the frequency
e, —€_, which, as discussed above, are usually 27 periodic in ¢ (unless the system pa-
rameters are tuned to very special values). Hence, in the generic case of a spectrum
with a minigap, the complex open system spectrum has the same topology as the one
shown in Fig. 2.1e. This will change now, when considering the combination of open
system dynamics and transport measurements. Let us point out though, that while
the transport measurement is indispensable, the presence of a nonequilibrium drive
due to the voltage-biased normal metal is equally important. For a pure equilibrium
drive, the kernel L would satisfy an equivalent of a PT symmetry, where braid phase
transitions are forbidden even in the presence of a counting field [RS13; Riw19).

2.4. Different flavors of full-counting statistics

Generally, for a superconducting junction described by a Hamiltonian H (¢), the
operator for the supercurrent across the junction can be defined as I = 2ed,H (¢). In
Eq. (2.3), the phase bias is attached to the right contact, such that the operation 9,
actually returns the current to the right,

I= ieEJRei‘bd;rdI +h.c. = Igp. (2.11)

By means of a simple unitary transformation, the Josephson energy could be modified
as B+ Ejpe’® - E e @+ E g, such that here, the current at the left interface would
be measured. In accordance with what we stated in the introduction and in Sec. 2.2,
the position of measurement is not a mere gauge choice, and gives rise to different
predictions. Here, this difference is in particular due to the addition of a third (normal
metal) contact, which injects an additional dissipative displacement current. For the
remainder of this thesis we will stick for concreteness to the explicit example where
the current is measured at the right contact (see also Fig. 2.2a). In order to map
these results to the case where the detector is on the left, one has to mirror the entire
device (that is exchange E;;, < E;r). Let us note that yet another physically distinct
scenario would be to distribute the phase bias across both junctions with a factor ¢,
ie., B+ Ejpet® » Eje? + E;pet1-0%¢ This would express the situation when
a current detector couples to both currents at the left and right junction with this
prefactor. Our results would certainly be sensitive to the value of (. We disregard
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Figure 2.2.: (a) Sketch of the system under consideration. A central charge island
(quantum dot) is connected to a left and right superconductor, with a
phase bias ¢. The normal metal pumps quasiparticles into the system
with the rate I'y. A detector with counting field x measures current into
the right superconductor. (b) The complex eigenspectrum of the quantum
master equation {A} for y = 0. The eigenmodes can be interpreted as
follows. There is a stationary state related to the eigenvalue A\g = 0.
The nonzero eigenvalues can be associated to the decay of the parity,
pseudocharge (see main text) and spin, A,zs, respectively, and to the
coherent dynamics ..
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this option for simplicity, assuming that it is physically possible to build a current
detector which couples only to the right contact.

For starters, let us point out that in the absence of the normal metal, the even
parity eigenstates |+) exhibit a dc Josephson effect,

(I), =2edye.. (2.12)

In the odd parity sector, the system is “poisoned”, and no supercurrent flows, see
also discussion after Eq. (2.5). For the current expectation value, the main influence
of the normal metal is a reduction of the supercurrent in the stationary state, due to
the finite occupation of the poisoned state, see Eq. (2.10).

In the following, we now want to go way beyond the current expectation value, and
describe the entire FCS of the transport, where the interplay between quasiparticle-
induced dissipation and current measurement will give rise to a plethora of nontrivial
effects. However, before going down that road, we have to explicitly address the fact
that there are several different ways to define the FCS, which correspond to different
measurement schemes. While these differences do not play a role for purely dissipative
transport, in the presence of supercurrents, these different “flavours” of FCS give rise
to markedly different results, and in particular to different interpretations of the
observed topological transitions.

2.4.1. Averaging time-resolved current measurements

In the context of superconducting transport, a straightforward access to FCS is due
to [RNO4], whereby the quantum master equation is supplemented with a counting

field x, p(x) = L (x, ) p(x), such that
L(x.¢) =-i[H(¢-x) - H(¢p+x)]+Wn-. (2.13)

The cumulant generating function for the transported charges after a measurement
(integration) time 7, ¢(x,7), is then computed via the moment generating function
m (x,7), defined as

m(x, 6,7) = tr [0 ] = reluom), (2.14)

where pg is the initial state (which becomes irrelevant for large measurement times
7). Derivatives of the cumulant generating function provide the cumulants C. For
instance, the average current is given as

(I} =Ch = —iedyd|, ., (2.15)
and the current noise (usually denoted by the letter S) is given as
S =Cy= (~i) o] - (2.16)

and so forth. In order to appreciate the difference to the other important notion of
FCS (explained below), we have to go beyond this formal definition, and recapitulate
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Figure 2.3.: Different approaches to FCS. (a) The current at the right junction may
be projectively measured at a given time ¢, and current measurements
at different times can be correlated and integrated over time, in order to
obtain the cumulants C}. In between measurements, the system propa-
gates freely. The cumulant generating function can then be reconstructed
in a Taylor series. In this approach, the counting field y is a fictitious
quantity. (b) An ideal detector may be coupled at the right contact, such
that for each transported Cooper pair, the detector changes its state
|IN) = |N + 1) where N stands for the number of transported Cooper
pairs. The detector thus continuously entangles with the system. As a
consequence, the counting field x is here an actual physical quantity: the
detector momentum, related to N by a Fourier transform (FT'). However,
after a projective measurement of the detector state, the information of
the dissipation-free supercurrent is lost.
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in detail, how the current is actually measured in order to obtain the above cumulants.
For this purpose, let us examine the first couple of statistical moments a little more
closely. The first moment (giving rise to the current expectation value I = C) returns

—iedy ml, o = —ietr [[ dt ") G L (@)l -0 M9 pg (2.17)
0

where )
—e (9XL|X_>0- =e{0,H (¢),} = 3 {1,-}, (2.18)

with the anticommutator {,-}. As we see, the FCS as defined above corresponds to
a system evolving freely (that is, without any detection event) for most of the time,
and a projective current measurement at a precise time step t;, and subsequently,
integrating over all times ¢; from 0 to a total measurement time 7, as schematically
represented in Fig. 2.3a. The zero-frequency limit of the FCS is when the measurement
time approaches infinity, 7 - oo. The picture becomes even more detailed, when going
to the next moment, providing the current-current correlations,

5 \2 o N2 .
(—i2e) 8>2<m‘x_)0 = (—i2e)" tr [/ dtlew)( t1) aiL (gb)‘xﬁo eL(¢>)t1pO]
0

T t1
+ 2r [f di / dtye (@) (T=t1) {1,-} eL(@)(t1-t2) {I1,-} eL(¢)t2p0] . (2.19)
0 0

While both the first and second line now indicate two current measurements, the time
difference between these two measurements is of the essence. While the second line
accounts for projective current measurements at times ¢ and t9, which are sufficiently
far apart (with an unimpeded system evolution for the rest of the time interval),
the first line describes two current measurements that occur within time intervals
which are short with respect to the superconductor correlation time A-! (see also
previous section). For the interested reader, we refer to the diagrammatic language
for noise, which was first developed for time-independent systems [Thi+03; Thi+05a;
Thi+05b], subsequently generalized to time-dependent systems [RSK13] as well as
finite frequency noise [DS18]. In this language, measurements according to the first
line are represented by diagrams where the two current operators appear within the
same irreducible block.

At any rate, it is interesting to note that if the current detector fails to measure
time-resolved currents on a time-scale smaller than A~!, the first line will be absent
altogether. This can be understood as a high-frequency cut-off for the FCS. Such a
deficient detector would return a different moment generating function, given as

Meut-off (X7 b, 7_) = tr [eLcut—off(X7¢)7'p0:| 7 (220)

with
Lewcont (%, 8) = L(9) +ig-{1.7}. (2:21)
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which is nothing but a first order in y approximation of the full L (¢,x). Thus,
while the eigenspectrum of Leyof (¢, X) asymptotically approaches the one for the
full L(¢,x) for low values of x (low cumulants), the global properties (arbitrarily
high cumulants) differ decisively. In particular, while the full L is 27-periodic in Yy,
L(¢,x+2m)=L(¢,x), reflecting the fact that the detector measures the supercurrent
in integer portions of Cooper pairs, this information is lost in Leyog. Likewise, we
cannot in general hope to see the same topological phase transitions along y for the
two scenarios. We conclude that if we are interested in understanding and measuring
the global properties of the FCS with respect to x (relevant for fractional charges as
defined in [Riw19]) by means of projective current measurements, a current detector
which can resolve beyond the time-scale A~! is required.

2.4.2. Continuous entanglement with a charge transport detector

This subsection is credited to Schwibbert. There is a different approach to FCS,
whereby an explicit detector is included in the model description of the system [LLLI6;
SKB09; PWS; PWS17], keeping track of the number of charges exchanged at a given
interface. Hence, the counting field y is here not merely an auxiliary mathematical
object without any physical meaning. To the contrary, it has a well-defined precise
interpretation: x is the detector momentum [PWS; PWS17]. Because of this, the
global properties defined in y-space are much more tangible compared to the notion
described in the above section, where large x can only be reached by measuring a
sufficiently high number of cumulants. Here, an analysis (read-out) of the detector
state may directly provide the moment generating function for finite y, in contrast
to the previously introduced approach, where m as a function of y would have to be
reconstructed essentially by analytic continuation, starting from y = 0.

Following the lines of [SKB09; PWS; PWS17], a detector measuring transport at the
interface to the right superconductor can be modeled by supplementing the proximity
Hamiltonian H; with the detector degrees of freedom |N) indicating the number N
of measured Cooper pair transport events,

1 .
> H; = (EJL +Ejpe® Y |N - 1) (N|) dld +h.c. (2.22)
N

Thus, the detector state changes as |[N) - |N £ 1), for each Cooper pair leaving or
entering the right contact, see also Fig. 2.3b. Note that the detector itself is ideal
in the sense that it does not have any internal dynamics apart from this coupling
(i.e., the Hamiltonian of the isolated detector is zero). The quantum system plus
detector have a much larger state space, described by the density matrix pg,p =
v p(N,N')®|N)(N'|, illustrating the fact that the detector will be entangled
with the system during the measurement. Similar to the previous notion of FCS, 7
here stands for the total measurement time. Whereas in Sec. 2.4.1 7 represented the
total time interval over which the current measurements should be averaged, here 7
stands for the total time elapsed since the coupling to the detector (and thus the
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build up of entanglement) started. Also for continuous entanglement, a related zero-
frequency FCS can be defined, by analyzing the asymptotic behaviour for 7 - oo.

The additional detector degree of freedom can be compactified by a double Fourier
transform,

p(x.0x) = 3 2 eIV (NN (2.23)
N N’

resulting in the quantum master equation

P (x,0x) = Lee (X, 0X, 0) p (X, 0X) - (2.24)

We note that the Lindbladian describing the continuous entanglement with the de-
tector, Lcg, is related to the above, first version of FCS, described by L (x,¢) in
Eq. (2.13), as

Leg (X, 0x:¢) = L (X, ¢ - 0x).- (2.25)

The variables x and dx can be thought of as the classical and quantum component
of the detector momentum. As we see, the classical detector momentum corresponds
to the counting field introduced in the FCS of Ref. [RNO04].

The quantum part éy on the other hand simply enters as a shift in the supercon-
ducting phase, and may therefore at first sight seem innocuous. It is however this
shift, which makes all the difference. Namely, for the continuously entangling detec-
tor, the moment generating function is defined as the Fourier transform of a projective
measurement of the detector state in its eigenbasis | V),

27

mer (1) = D p(NN. D) = [ Fruloteaenl (220

where for the second identity, we used the fact that the integration over dy results in
the projection onto the diagonal elements p (N, N’) — p (N, N). Importantly, due to
0x appearing as a shift in ¢, we can relate this moment generating function to the
first one, Eq. (2.14), as follows

27
mce (XaT) = [ %m (X7¢7T) . (227)
0

Overall, we note that since Loy and likewise mcg, Egs. (2.25) and (2.27), can be
constructed from L and m respectively, Egs. (2.13) and (2.14), we consider L to be
the more fundamental construction of FCS. Therefore, it will suffice to analyse the
topological properties of L(x, ).

However, the above phase shift dy plays an important role when it comes to an-
alyzing the topological eigenspectrum of L, due to the presence of supercurrents.
If supercurrents were absent, there would be no phase-dependence of the transport
m (x,®) = m(x), such that m and mcg are equivalent. However, for supercurrents
being present, the two notions of FCS differ, in that the supercurrents are averaged
out in mcg. One can convince oneself of this fact, simply by means of the Josephson
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relations given in Eq. (2.12), where fo% dpls. ~ €. (2m) — e, (0) must be zero, due to
the 2m-periodicity of the eigenspectrum e, in ¢. This cancellation of the supercurrent
is a consequence of the detector always being ideally coupled to the interface at which
it counts the number of transported Cooper pairs. It thus entangles with the coher-
ent transport (and the entanglement continuously increases as the measurement goes
on), such that when projectively reading out the detector state, the information about
the supercurrent is destroyed. Nonetheless, such a continuously entangled detector
may serve for an understanding of the topology of the dissipative part of transport.
Moreover, as we will show below, such a detector will give rise to a novel transport
phase, which can be interpreted as a statistical mix between a fractional and a trivial
transport.

Let us conclude this section by pointing out the following. In this work, we aim
at understanding the topological properties of the eigenspectrum of L along both
the x and ¢ coordinates. While this is endeavour is formally well-defined, thanks
to Eq. (2.13), from a more practical point of view, we see that both of the above
flavours of FCS come with their advantages and disadvantages. Ultimately we have
the choice between measuring individual cumulants without destroying the supercur-
rent information (in accordance with the construction of L), which however allows us
to only explore the vicinity of x » 0 (since the measurement of arbitrarily high cumu-
lants is experimentally challenging), or, via Lcg, explore the full y-space (since the
detector and thus x are here physical) but at the expense of losing the supercurrent
information, and thus losing the ¢-dependence. Moreover, realistically, a detector
measuring the charge that arrived at one of the superconducting contacts most likely
involves supplementing said contact with a capacitance, which thus renders the de-
tector nonideal (its Hamiltonian is no longer zero). This leads us to consider below a
third variation to obtain information about the transport statistics: continuous weak
measurement. However, this approach is very challenging to cast into a general form,
which is why we first present our results for the topology of L, and identify a par-
ticularly interesting topological regime, for which we formulate a specifically tailored
version of weak transport measurement.

2.5. Fractional charge versus fractional Josephson
effect

This section is credited to Schwibbert and Riwar. We have so far established a
framework to describe the open system dynamics of a superconductor-normal metal
hybrid circuit, including the FCS, based on the Lindbladian L (i, ¢) in Eq. (2.13). Let
us now explore the topological properties of the eigenspectrum of L (x, ¢), {\. (x, )}
In order to analyze the topology of the eigenspectrum, keeping track of the eigenvalue
labelling will be important. In Sec. 2.3, we have already introduced the labelling
{Ao, As, Ap, As .}, motivated by the physical interpretation of the decay processes of the
corresponding eigenmodes. When including the counting field y, the eigenspectrum
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will be modified, A, (¢) = A\.(x, ¢). For finite x we will still use the same labelling of
indices, which is however somewhat tricky because of braid phase transitions, whereby
certain eigenvalues swap places. We therefore use the convention, that the labelling
n shall be done according to Sec. 2.3 at the reference point y = 0.

As detailed in the previous section, the counting field and the superconducting
phase difference appear per se as independent parameters. Similarly to Refs. [RS13;
LRS14; Riwl19], it turns out that the nonequilibrium drive via the normal metal
will give rise to topological transitions in the spectrum A,. However, in Refs. [RS13;
LRS14; Riw19] only the counting field y was considered as a relevant coordinate. Here,
we have the 2D space (x,¢). In 2D, exceptional points appear, as we will explain in
more detail below. When considering cuts of the complex spectrum along either x or
¢, these exceptional points generate a braid phase transition, and a resulting broken
periodicity in either x or ¢. We will interpret phases with a broken periodicity along y
as a transport with fractional charges (along the lines of Ref. [Riw19]). Intriguingly,
including here the superconducting phase ¢, our theory also predicts braid phase
transitions in ¢. There are several nontrivial phases, which can be classified as a
fractional Josephson effect, in the sense of having a spectrum with broken periodicity
in ¢. We will refine this statement in the following. Importantly, since transitions
along both coordinates appear due to exceptional points in the 2D space (x,¢),
we conclude that the fractional charge defined in the transport statistics (x) and
the fractional Josephson effect (¢) are intimately related, but distinct concepts in a
generic open system context.

2.5.1. Braid phase transitions due to exceptional points in
counting field and superconducting phase

In order to describe the topological phase transitions in the spectrum of L(x,¢),
we first have to establish some technical details regarding braid theory. As already
stated, in general, the eigenspectrum of L (x, ), {\. (x,®)}, is complex. Considering
the space spanned by (x, ), we can think of the eigenspectrum as a complex band
in a 2D Brillouin zone (where x and ¢ are coordinates of the 2D torus). Therefore,
the touching of two complex bands, A, = A+, leads to two independent conditions,
which may be satisfied for particular values of both x and ¢. That is, a touching of
two complex bands occurs in isolated points on the 2D torus. In Fig. 2.4a, we show
the location of exceptional points for a chosen parameter set. As it turns out, band
degeneracy points can occur for typical system parameters (see caption of Fig. 2.4).
Locally, at the degeneracy points, the two eigenvalues partaking in the degeneracy
can be described by a complex square root function +/z (where z ~ y +1i¢). In the
literature of topological transitions in open quantum systems, these touching points
are commonly referred to as exceptional points, see, e.g., Ref. [BBK21] (and references
therein).

When choosing a closed path in (), ¢) around an exceptional point, the two eigen-
values which touch at the exceptional points, perform a braid. Thus, to each of the

o8



2.5. Fractional charge versus fractional Josephson effect

exceptional points, one may assign generators of the braid group; the braid generator
may be considered as a generalization of the notion of a topological charge carried by
a degeneracy point (see, e.g., [Riwl9]). Given a certain ordering of the eigenvalues,
the index j of the braid generator o; (see Fig. 2.4b) indicates, which two eigenvalues
perform a braid. We here choose the order of the labels as Ao, A\s, A\_, A, see, e.g.,
Fig. 2.6. For instance, the braid generator ¢; thus braids A\g with ., oo braides A,
with A\_ and finally o3 braids A_ with A\,. Note that the eigenvalues A, . are inert,
in the sense that they depend neither on y nor ¢, and do not partake in braiding.
This is why we do not have to include them for the analysis of the topology of the
eigenspectrum. While 9, A\; = 0 can be understood by the complete symmetry of the
system with respect to spin, d, A7 = 0 stems from the effective elimination of the
many-body interactions within the dissipative (quasiparticle-induced) processes, due
to u > U. At any rate, we only have to consider braid generators with four strands.
For four strands, the set of three braid generators, o, o9, and o3, see Fig. 2.4b, is
complete and describes the whole braid group. For convenience, we have furthermore
introduced a braid generator to directly braid the first and fourth strand (Mg and A,,),
o4 = 0] 10g loyoi05. This generator is however non-fundamental in the sense that it
can be constructed out of 0y 9 3.

Due to the 2m-periodicity of L in x and ¢, there must be an overall conservation
of the “braid charge” (similar to [Riw19], where this was discussed for complex x).
As a consequence, to each exceptional point with a given braid generator o; (see Fig.
2.4b), there must exist a partner point, with the inverse braid generator. These two
partner points are connected by a line, see 2.4a. In fact, since the exceptional points
are locally described by the square root function, these lines can be understood as the
corresponding branch cuts, with the two partner points as origin points for the branch
cut. When considering the spectrum along one particular parameter (either y or ¢,
see red arrows in Fig. 2.4a), the braid word for the spectrum can be constructed as
follows. One simply has to add for each branch cut which is crossed, the corresponding
braid generator in the order it is crossed. In order to know the chirality of the braid
generator (i.e., whether one has to add a given o; or 0;1) one may follow a “right
hand rule”: take the cross product of the tangential vector indicating the path taken
(red arrow in Fig. 2.4a) and the tangential vector of the branch cut, at the given
point, where these two lines cross. The direction of the cross product vector decides
the chirality. In Fig. 2.4a, we show two examples of paths (as red arrows), one along
x for a fixed value of ¢, and conversely one along ¢ with fixed y. Along these paths,
the topological phases discussed below emerge (marked with a star and an inverse
star symbol, cf Secs. 2.5.2 and 2.5.3).

At this point, let us comment on the importance of the fact that the dissipative
processes due to Wy relax into a basis different from the eigenbasis of H. If the
coupling to the environment would be such that the dissipative processes occurred
in the basis of H, as is the case, e.g. in Eq. (2.7), then the addition of the counting
field x would not give rise to any interesting topological transitions. Here, the eigen-
values A\ (¢) = xi[e () —e_(¢)] - (I'y + '_)/2 would simply receive a x-dependence
as A\i(x,0) = Files(p+x) —€e-(¢6—x)] - (I'y +T-)/2. Due to e, being gapped for

29



2. Fractional charges and fractional Josephson effect in superconductor-normal
metal hybrid circuits

the quantum dot circuit, the complex spectrum eigenspectrum would here be trivial
for all values of (x,¢). The normal metal providing an out-of-equilibrium electron
source thus plays an essential role as the driver of topological phase transitions. We
note that usually, processes which change the parity of superconducting circuits are
considered detrimental (referred to as quasiparticle poisoning, see, e.g., Refs. [LGLO5;
Sha+08; Cat+11; LM12; FK09; Hec+11; RL12; GC11; BWT12; Pek+13]). Here, we
provide a rare counter example, where they are at the origin of an interesting effect.

2.5.2. Fractional charges

Let us now analyze explicitly the plethora of braid phase transitions of the eigenspec-
trum of L (i, ¢) along y with fixed ¢. While we could in principle use the information
of the exceptional points in (x, ¢)-space, as discussed above, we note that for explicit
calculations, there is a mathematically more efficient approach, which was discussed
in Ref. [Riw19] (and further detailed in Appendix B of [JSR23]). Namely, the trick is
to describe braid transitions in L () (for fixed ¢) by generalizing to complex counting
fields eX - z € C (and e~ — 1/z), such that the real counting fields are represented
on the unit circle, |z| = 1. The exceptional points now do no longer appear in the
2D space of (x,¢), but in the complex 2D space of z. A braid phase transition in
the x-space occurs when an exceptional point traverses the unit circle. Therefore, in
order to keep track of the topological phases, we simply have to compute the number
of exceptional points residing within the unit circle. Based on the definition for L
in Eq. (2.13), we find that the positions of the exceptional points can be obtained
analytically by means of the quartic equations,

4 4
Ypiz'=0 and ) ¢z'=0, (2.28)
i=0 i=0

where the coefficients p; and ¢; depend on all the system parameters and ¢. Their
explicit forms are given in Appendix B of [JSR23|. Note that both equations have to
be fulfilled individually, such that there are two sets of roots for z, one for the first, and
one for the second polynomial equation. As explained above, for a given root zg, one
simply has to test if |z9| $ 1 and count the total number of roots inside the unit circle,
which enables us to draw maps of the topological phases as in Fig. 2.5 as a function
of all the system parameters and ¢. We find overall four different types of braids for
the eigenspectrum along , which are labelled in Fig. 2.5b with the sphere, triangle,
upside down triangle, and star symbols, and explicitly drawn at example points in
parameter space in Fig. 2.6. In the upper left corner of each panel in Fig. 2.6, we also
provide the braid word describing the topology of the spectrum.

There is a trivial phase, shown in Fig. 2.6a (sphere symbol). Here, the eigenvalues
{X0, As; Ap, A_} do not swap places within the entire interval x € [0,27). There are
two topological phases (triangle, and upside-down triangle), shown in Figs. 2.6b and
c. In Fig. 2.6b, the eigenvalues related to the stationary state Ag and the parity decay
Ap perform a braid. However, this braid does not break the 27-periodicity in x, as
they braid twice, as indicated by the braid words o404 and o505.
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2w+
A
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Figure 2.4.: (a) Positions of exceptional points in (x,¢)-space for E;;, = E;p = Ey,
e =0.1E;, and I'y = 0.5F;. To each exceptional point, one may assign
braid generators (similar to a topological charge), marked with solid and
empty circles. Since four eigenvalues partake in braid phase transitions,
we need the braid group for four strands, given in b). In fact, this braid
group is complete already with the first three generators, o1, 09, and os.
The fourth braid generator is only added for convenience; it can be ex-
pressed as 04 = 07 03 090103. Due to overall “braid charge” conservation,
each exceptional point must have its negative counter part, to which the
inverse braid generator is assigned. Such a pair of exceptional points is
connected via an arrow (solid purple and dashed green). The braids along
a particular axis (either y or ¢, see two examples marked with red arrows),
see subsequent figures, can be constructed from a) by the following rule.
To know the topology (i.e., the braid word) of a spectrum along a given
path, one needs to assemble all the generators of the connection lines of
two exceptional points, in the order they are crossed. For instance, the
red arrow along y, gives rise to the braid word (o10304)> = (020103),
which corresponds to the topological phase given in Fig. 2.6d. The red
line along ¢ [see inset of a)], returns the braid word oy030407 03! = 09,
and thus the topological phase from Fig. 2.8d.
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Finally, there is a topological phase where the 27-periodicity in y is broken, see
Fig. 2.6d. After progression of x by 27 the eigenvalues Ao and A, as well as A\, and A_
have swapped places, leading to an overall 47-periodicity of the spectrum. Along the
lines of Ref. [Riw19], such a spectrum can be interpreted as transporting a charge with
half the unit as compared to the 2m-periodic phases. For the sake of completeness,
let us reiterate the arguments of Ref. [Riw19]. First of all, note that as per the two
definitions of the FCS, Egs. (2.13) and (2.25), the charge is counted in units of Cooper
pairs, with charge 2e. The trivial phases with a spectrum 27-periodic in y therefore
transport charges in units of 2e. The in the 4m-periodic phase, the transported charge
is e* = 2¢/2 = e. Charge quantization is broken in the sense that physically, the s-wave
superconducting contacts can only accept integer Cooper pairs (due to the large A
limit). The non-equilibrium drive due to the normal-metal induces the topological
phase of Fig. 2.6d, where the contacts seem to accept half-integer Cooper pairs. In
fact, this breaking of charge quantization seems already to some extent indicative of
a fractional Josephson effect, which we will discuss in detail in moment.

According to Ref. [Riw19], there are two important ways to define fractional charges
in y. Let us first consider the zero-frequency limit of FCS. As already mentioned
above, the measurement time 7 is here to be taken as infinite, 7 — co. Consequently,
in the transport statistics, only the eigenvalue with the least negative real part, \g is
visible (see also Ref. [NB02; BN03]), as can be seen when considering the definition of
the moment generating function m in Eq. (2.14). As 7 increases, all higher eigenmodes
Anz0 become exponentially suppressed. In fact, the cumulant generating function in
this limit can be computed simply as

lim e(x, 7) = Ao(X) - (2.29)

That is, for a hypothetical experimenter measuring the true zero-frequency FCS,
the information of the higher modes would be lost. However, something nontrivial re-
mains. Suppose that we were able to measure a sufficiently large number of cumulants
C to reconstruct ¢(), and thus m(x), for finite values of x. This would essentially
correspond to analyzing the eigenvalue A(x) first close to x ~ 0 and then analyti-
cally continuing to finite yx. If the cumulants C} are measured up to a sufficiently
high (ideally infinitely high) order k, the cumulants could thus be used to reconstruct
the periodicity of Ay in x and thus determine unit of the charge being transported.
Curiously, when the zero mode Ay partakes in a braid phase transision, the analytic
continuation would clearly provide a 4m-periodic moment generating function, indi-
cating transport in units of e, in spite of the system physically transporting charges
into the superconducting reservoirs in units of 2e.

The interpretation of the broken periodicity as a fractional charge works also for
finite measurement times 7, when the transport statistics still depend on 7, and the
decaying modes \,.q are still detectable. Here, Ref. [Riw19] argues, that the spectrum
consisting of complex bands with broken periodicity in x can be exactly mapped to
a fictitious open quantum system which transports charges in units given by the
periodicity in . In the topological phase shown in Fig. 2.6d, both Ay and A, as well
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as A, and A_ merge into two complex bands, each with periodicity 47. Thus, this
corresponds to two fictitious bands transporting charge e instead of 2e.

There is an additional final point to be discussed. Namely, the spectrum as shown
in Fig. 2.6 can only be measured when adopting the first version of FCS, outlined
in Sec. 2.4.1, i.e., when projectively measuring the current at local times, and corre-
lating them to obtain the transport statistics. If the FCS is instead measured with
a continuously entangling detector, according to Eq. (2.27) the moment generating
function is integrated over ¢. Since the moment generating function is a regular
expectation value, the integral over ¢ (including the normalization prefactor 1/27)
can be understood effectively as a statistical average over a homogeneous probability
distribution in ¢. It is in this sense, that the transport statistics obtained via mcg
are to be understood as a statistical mix of different topological phases. For instance,
in Fig. 2.5 for a given € one can draw a horizontal line along ¢, and thus evaluate
how many distinct topological phase regions the line crosses. In particular, there is
thus the possibility to observe a statistical mix of topological phases with different
transported charge units, either the charge 2e for the phases in Figs. 2.6a, b, and ¢
or the charge e for Fig. 2.6d. Such an effect was not posssible in Ref. [Riw19], where
only normal metal contacts were considered, and thus the FCS was ¢-independent.

2.5.3. Fractional Josephson effect

As we have seen just now, one particular topological phase along x (Fig. 2.6d) indi-
cated transport with a charge e instead of 2e which would be the default charge of the
superconducting contact. Here, we want to analyse the topological properties of the
eigenspectrum along ¢ for different values of x. To this end, we proceed similarly as
above, this time, by replacing ¢ — Z (and e7*® - 1/Z) and analyzing the positions of
exceptional points in the space of general, complex Z. Also here, this position can be
evaluated again by means of a quartic equation with the same form as in Eq. (2.28),
with z - Z and the new coefficients p;, ¢; = D;, §;, depending on y instead of ¢. Again,
their explicit form is given in Appendix B of [JSR23].

The resulting map of topological phases is shown in Fig. 2.7. Here, there are overall
five different phases to be observed, a trivial one, and four topologically nontrivial
ones, denoted by the square, diamond, pentagon and inverted star symbols (as in-
dicated in Fig. 2.7b). Here, all of the nontrivial phases break 27m-periodicity along
¢. Hence, in this broad sense, all of these phases may be interpreted as a fractional
Josephson effect. In particular, apart from the 4m-periodic phases in Fig. 2.8a and b
(denoted with the square and diamond symbols), there is in fact an 87-periodic phase
(pentagon symbol), where all four non-inert eigenvalues partake in a braid. Here, we
can think of the interaction with the magnetic field generating the phase bias ¢ in
terms of a charge e/2, similar to parafermionic circuits [ZK14a; Ort+15]. Note that
a fractional charge e/2 could not be observed in the topological properties along x
discussed previously. We can therefore see this as a nice example illustrating why the
topological properties along y and along ¢ should in general be considered distinct
effects. Topological transitions along both parameters are related due to their com-
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A Ejr/Ey;=0.8 A Ejr/Ey;=0.6
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Figure 2.5.: Map of the different topological phases of the eigenspectrum A, (x) (with
n ={0,+,—,p}), as a function of the detuning €, and the phase bias ¢,
for different asymmetries of the Josephson energies, E;./E; (a-d). In
(b) we mark all four possible topological phases with the symbols of
circle, triangle, inverted triangle, and star. Out of those, only the yellow
phase (star) is a topological phase with fractional charge e* = e/2. For
asymmetric junctions, E;p/E; = 0.8 (see panel ¢), this phase is connected
for all ¢ for a certain interval of e close to 0.
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m[\/E, m[\/E;
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Figure 2.6.: The real and imaginary parts of the spectrum \,(x) (with n =

{0,+,-,p}), drawn parametrically for x = [0,27), for the four different
topological phases mapped out in Fig. 2.5 (a-d), and the definitions for
the generators of the braid group, o123 (e). The corresponding inverse
generators ai12,3 can be constructed by braiding with opposite chirality.
There is a trivial phase (a), where all complex eigenvalues form separate
bands. The corresponding braid word is trivial. In (b) the eigenvalues \q
and A, braid twice, such that the total spectrum remains 27-periodic
in x. This spectrum can be described by the braid word o404 with
o4 = o7'03'090501. In (¢) the same double braiding occurs but with
the eigenvalues A\, and A\_, characterized by the braid word g905. Finally,
in (d) the braid leads to eigenvalues Ay and \,, respectively A, and A_,
swapping places. Here, the eigenspectrum is 47-periodic in x, thus break-
ing the 2m-periodicity of L (x). Here, the transport can be described by
eigenmodes with fractional charge e* = ¢/2.
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mon generation by means of the exceptional points in (,¢), as shown in Fig. 2.4,
however, as it turns out, their configuration may be such that different braid phases
occur along the two parameters.

In addition, there is a topological phase (inverted star symbol in Fig. 2.7b) which
deserves the label of a fractional Josephson effect in a more narrow sense. Namely, the
complex spectrum here (shown in Fig. 2.8d) can be continuously mapped to the open
system spectrum of the actual Majorana-fermion circuit, shown in Fig. 2.1f. That
is, the shape of the eigenvalues in Fig. 2.8d permits the explicit interpretation of the
spectrum as two eigenvalues related to the coherent (Hamiltonian) dynamics A, which
have now a closed minigap, and remaining standard eigenvalues related to decay and
stationary state, which do not partake in the braid. Importantly, we note that for a
closed system, the gap in the Josephson spectrum can only be closed when using at
least four superconducting contacts (and thus three phase differences ¢; 5 3) as shown
in Ref. [Riw+16b]. As already pointed out in Sec. 2.2, for the circuit considered
here, with only two superconducting contacts (and the single phase difference ¢), the
closed system cannot stabilize a closing of the minigap: any deviation from € = 0
or E;;, = E i opens a gap. Here we show, that a gap closing can be stabilized by
means of the interplay between a nonequilibrium drive (due to the normal metal) and
a measurement of the transport statistics (nonzero x).

Let us conclude this section by summarizing, that for a generic open quantum
circuit, the emergence of fractional charges defined in the FCS (x) and a fractional
Josephson effect, indicating the unit of charge with which the magnetic field interacts
(¢) are in so far related, as they are generated by exceptional points in the 2D space
spanned by (x,¢). They are however also distinct in the sense that these exceptional
points produce different braids when analyzing the spectrum either along the x-space
(where either 27- or 4m-periodic spectra emerge) or along the ¢-space (where we find
27-, 4m- and even 8m-periodic spectra). Moreover, we can show that the fractional
Josephson effect, and thus a closing of the minigap in the Josephson energy (imaginary
part of the complex eigenspectrum) can be stabilized when combining nonequilibrium
and transport measurements, a feature which is impossible for a closed (dissipation-
free) circuit.

Finally, let us explicitly point out what we have already indicated at the beginning
of Sec. 2.4. Namely, there is a left-right asymmetry in the occurrence of topological
phases, as can be seen when swapping E;;, <> Er, e.g., when comparing Figs. 2.5a
and c as well as Figs. 2.7a and c¢. This is due to the fact, that the current is measured
asymmetrically (at the right contact), as we have discussed when defining the current
operator, Eq. (2.11). Exact left-right symmetry is only achieved by mirroring the
circuit and the detector placement.

2.6. Finite counting field as weak measurement

While we have learned above that a trivial circuit with a quantum dot coupled to
superconducting and normal metal contacts provide an unexpected wealth of open
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Figure 2.7.: Map of the different topological phases of the spectrum A, (¢), as a func-
tion of the detuning €, and the counting field y, for different asymmetries
of the Josephson energies, E;;/E; (a-d). Apart from the trivial phase,
there are here four distinct topological phases, marked in (b) with the
symbols of square, rhombus, pentagon, and inverted star. For each topo-
logical phase at a given (e, x), there is a partner phase at (—¢,x) which
can be obtained through complex conjugation of the bands A\, — A\Z.
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Figure 2.8.: The real and imaginary parts of the spectrum A, (¢), drawn parametri-
cally for ¢ = [0,27), for the four different topological phases mapped out
in Fig. 2.7 (a-d). In all phases, the 27-periodicity in ¢ is broken. In (a)
and (d), two eigenvalues participate in a braid, either \g and A, in (a), or
Ay and A_in (d). In (b), both Ay and A, as well as A\, and A_ exchange
places during a 2m-sweep of ¢. In (c), all eigenvalues interchange, leading
to an 8m-periodic phase. The phase depicted in (d) has a mapping to a
closed system fractional Josephson effect including weak dissipation. The
other phases (a-c) do not have such a correspondence, since they involve

the eigenvalues \g and A, (see also main text).
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system topological phase transitions, there are some important remaining caveats es-
pecially with regard to the nature of the detector. In particular, the observation of
the topological phase transitions along ¢-space (see Figs. 2.8) are in fact virtually
impossible, when adhering to the idealized detection schemes depicted in Fig. 2.3. As
for the detection scheme with time-local projective current measurements, Fig. 2.3a,
the finite y parameter regime can only be approached, by measuring an increasing
number of cumulants Cj, of the supercurrent (and, in fact, by including finite mea-
surement times 7 in order to extract all the eigenmodes, see Appendix A) and then
analytically continuing the eigenmodes A, () starting from the extracted 0¥\, (0). It
goes without saying that, such a procedure is in and of itself extremely challenging
expermentally. Moreover, note also, that there is no convergence if we aim to go
across a topological phase transition. Let us explicitly illustrated this fact with the
example of the topological spectrum shown in Fig. 2.8d. For x = 0 (while keeping
all other parameters the same) the spectrum is trivial. The analytically continued
eigenvalues, starting at x = 0, are defined as

2
X0 8) = 0(0,6) + X DN D)o + 5 BN o+ (2:30)

Now we can compare the analytically continued eigenspectrum to the exact one (with-
out expansion around y = 0) to see if they still braid in the same way, keeping all other
parameters same. In Fig. 2.9a we compare the parametric plots of the analytically
continued eigenvalues to second order and exact eigenvalues for finite counting field,
and can easily conclude that analytically continued eigenvalues do not reproduce the
same braid. We find that the 47-periodic fractional Josephson effect only emerges
when going to arbitrary high order cumulants, which is an outright prohibitive re-
quirement from an experimental viewpoint.

This issue could be avoided if x was a real, physical parameter, which it is not when
utilizing time-local current correlations (Fig. 2.3a). It would be, if instead an explicit
physical detector was present (Fig. 2.3a), however, here there is the aforementioned
problem, that the continuous entanglement between system and detector destroys the
information of the supercurrent. This prompts us to study alternative measurement
schemes, where the transport measurement satisfies both the requirements of the
counting field being physical, and at the same time preserving information about the
supercurrent. As it turns out, these requirements can be met by a weak continuous
measurement of the current.

Weak measurement has been studied extensively in several contexts (for an instruc-
tive review, see Ref. [Cle+10]). A weak continuous measurement of the current could
for instance be envisaged along similar lines as in Ref. [Liu+10], where it was proposed
to weakly measure spins via an incident polarized photon beam and exploiting the
Faraday effect. Due to the magnetic field emitted by the supercurrent, it is in princi-
ple perceivable to use a similar setup here to obtain information about the transport.
However, in the light of massive experimental advances in the interaction and con-
trol of superconducting circuits with transmission lines [Wal4-04; Gu+17; Wenl7], we
deem it informative to briefly sketch an “all-circuit” realization of the weak measure-
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Figure 2.9.: (a) The dashed lines are analytically continued eigenvalues up to second
order, while the solid lines are eigenvalues with a finite counting field (see
also Fig. 2.8d). The analytically continued eigenvalues match asymptot-
ically only away from ¢ = m. Near ¢ = m however, they do not perform
the same braiding as in Fig. 2.8d, such that the topological phase cannot
be observed. (b) The solid lines are again eigenvalues for ideal detec-
tor kernel with finite counting field (Fig. 2.8d), and the dashed lines are
eigenvalues for the weak measurement kernel. The eigenvalues do not
match up exactly (due to a distortion, see main text), but they exhibit
the same braiding. These plots are for the following parameter values:

€ _ E _ 'y _ _ wmor _ _
5= 0.007, 21 = 1.0, £ = 0.2, y = ~0.04, 92 = 0,02 and ¢ = 7/2.
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ment (i.e., without relying on polarized photon beams). For this purpose we study
coherent scattering in a nearby SQUID inductively coupled to the circuit, loosely
inspired by Ref. [Ste401]. In the following we will provide a highly simplified model
of a SQUID detector and its interaction with the circuit, as a proof of principle for
a weak measurement of the supercurrent, and show how it can be used to simulate a
counting field. Finally, we will investigate as an example, how the topological phase
from Fig. 2.8d can be probed with this setup.

2.6.1. SQUID detector for weak current measurement

The SQUID detector consists of two superconducting lines connected via two Joseph-
son junctions (with Josephson energy E;squip) in parallel, see Fig. 2.10. The weak
measurement is then implemented by means of the following points. (i) The current
from the main circuit produces a magnetic field that can interact with the SQUID. The
interaction strength can be estimated based on Ampere’s law, see, e.g., Ref. [Riw21].
(ii) If we send a signal from one end of the detector it will be reflected and transmitted
at the SQUID. (iii) The reflection and transmission coeflicients are sensitive to the
flux enclosed by the SQUID and therefore depend on the current from the quantum
dot.

As we will develop now, a subsequent evaluation of the scattered state will provide
us with classical information about the supercurrent without completely suppressing
it. In particular, we will show that the measurement is weak because of a highly
reflective nature of the SQUID (i.e., full reflection is the default event, without ob-
taining any information about the current), and continuous in the sense that there
is a repeated initiation of incoming waves after a given time interval, the inverse of
which represents the detection frequency.

In order to describe the scattering problem, let us start by writing down the Hamil-
tonian for the SQUID detector. Overall it is composed of three parts, Hsqump =
Hp + Hr +V describing the left (right) conductor line Hy, (Hg) and the SQUID part
connecting the two, V. Each of these subparts can be written as

- L s ( s+ J) 2.31

L a0 2 e 2\ (2:31)
1 & 1 & Pi+1 — Pj 2

e 2, ( j J) 9.3

"9, j;qﬂ 2L0; 2 (2:32)
_ 2

V= —2l62 cos (1 — o) » 7y (8012—6900) + const. (2.33)

where we chose for convenience a discrete lattice representation of the conductor
lines [Poz12], which are characterized by the capacitances Cy and the inductances
Ly. The charge and phase variables ¢; and ¢, on the lattice nodes j satisfy the
commutation relations [g¢;, p;/] = i2ed,;. The interaction with the circuit is included
via the coupling prefactor in V' (which is chosen to have the units of an inverse
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Figure 2.10.: Setup for weak measurement by means of a SQUID detector. An incom-
ing wave packet will be scattered at the SQUID. The inductive coupling
between the main circuit and the SQUID shall be tailored such that the
outgoing scattered state depends on the supercurrent entering the su-
perconductor on the right. A subsequent projective measurement of the
scattered state realizes a form of weak measurement of the supercurrent.
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2.6. Finite counting field as weak measurement

inductance). When tuning the externally applied flux to half flux quantum, we get
Y= 262)\EJ,SQUID[ R (234)

where [ is the current operator, as defined in Eq. (2.11). The coupling constant A
can be estimated from Ampere’s law (as already mentioned, see Ref. [Riw21]). Note
that for simplicity, we assume that the signals will have low amplitudes in ¢, such
that we may expand V up to quadratic order, see Eq. (2.33). The tuning to half-flux
makes the SQUID highly reflective; for I = 0, the SQUID can be considered as a hard
wall from the point of view of an incident wave, and only weakly transmittive for a
finite I since the local inductance of the SQUID is very high. Strictly speaking, for
two disconnected wires (as for I =0), the phase difference (1 — ¢p) is not in general
guaranteed to remain small. However, one can easily connect the two transmission
lines in a loop, so that even when + = 0 the phase difference remains small, at least for
a sufficiently small loop inductance. Also, note that for simplicity, we assumed the su-
perconductor line to be without resistance. Of course realistically resistance is always
present [Sch83; Bul84; HG97]. According to [HG97] the coupling to continuous modes
in the loop leads to the renormalization of the Josephson energy, but this does not
qualitatively change our idea of using the SQUID detector. The other more drastic
effect the dissipation can have is that the superconducting loop itself might undergo
a superconductor to insulator phase transition. As predicted in [Sch83; Bul84], this
puts a limitation on the transmission line parameters. To be precise if the parameter

g, where g7! = %f\ / é—g, is below a certain threshold g. then the superconducting loop

will act as a insulator [HG97]. We further note, that the existence of dissipative quan-
tum phase transitions is currently still subject to debate [Mur+20; HS21; Mur+21].
Overall, our specific proposal of a circuit realization of weak current measurement
should really only be considered a proof of concept, and may easily serve as blueprint
for other (more) feasible realizations.

Let us briefly touch on an important point regarding the spatial resolution of the
current measurement. Namely, depending on the circuit geometry and detector place-
ment, the SQUID could in principle couple to both the left and right supercurrents
(and thus fails to reproduce the topological phase transitions discussed above, and
in general complicate the discussion). In the most generic case, we would thus ac-
tually have a nonzero ( parameter, describing this nonideal coupling, see the dis-
cussion in Sec. 2.4 after Eq. (2.11). In order to avoid such subtleties, we assume
that the SQUID is placed more towards the right contact than the actual quantum
dot. This is fine, because it is plausible to assume that the Cooper pairs, once they
enter the right contact, are distributed very fast (according to the group velocity of
the Nambu-Goldstone mode within the superconductor bulk, see, e.g., Ref. [AS10]).
Hence, the bottleneck current is the tunneling current between dot and superconduct-
ing contact, which can be still observed deep within the right contact, neglecting the
high-frequency displacement currents inside the bulk.

To continue, we note that the individual Hamiltonians Hj r each have a linear
dispersion relation, for bosonic modes propagating in 1D, Ej ~ wy|k| (valid for |k| < 1),
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with wy = 1/v/LoCy and the unitless wave vector k. We then assume that one creates
an incoming signal at a certain energy F with wave vector kg = F/wy, carried by the
conductor lines, which can scatter at the SQUID. The transmission amplitude can be
computed by means of the Fisher-Lee formula [FL81],
tH(E)=—-ivg  lm G(E)e*e0) (2.35)
j—00,j/—>—00
where vg = Oy Ey|p,-p and G;.j,(E) is the retarded single-particle (here, single-boson)
Green’s function. We obtain I
(E) = —i 122 (2.36)
kg
The explicit calculation is shown in Appendix B. This final result is valid up to
first order in 7 (in accordance with the assumption that tunneling is weak, [t| < 1).
Importantly, for half flux @ = ®¢/2, which will be our default parameter setting
from now on, the transmission coefficient is directly proportional to the current I, see
Eq. (2.34). In particular, it changes sign if the current changes sign. Due to left-right
symmetry of SQUID detector we can easily deduce that

t“"(E) =t} E) = t(F)
r(E) =r(E) = r(F) (2.37)

Thus, the reflection and transmission coefficients can be cast into a standard scattering

matrix
rL ¢R r ot
() () .

Since the scattering matrix is unitary (STS =), we can deduce two equations that give
us a relation between the reflection and transmission coefficients. The first equation
is r*t + t*r = 0 which leads us to conclude that the reflection coefficient must be
real since the transmission coefficient in Eq. (2.36) is imaginary. The other equation,
conservation of probability |¢|? + |r|> = 1, lets us calculate the amplitude of r.
As already stated above the SQUID is weakly transmitting, therefore most of the
signal will be reflected,
r=1-dr (2.39)

with 0r < 1. From this, we derive
|t]> = 207 (2.40)
upto first order in dr. These identities will help us now in constructing the Master

equation including the influence of the SQUID detector.

2.6.2. Master equation including weak measurement

Now we are ready to develop the master equation for the quantum dot system in
presence of the SQUID detector and show how it simulates a counting field. To
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2.6. Finite counting field as weak measurement

write down the master equation we need Kraus operators that describe the weak
measurement, process.

For simplicity, we assume that the scattering time of the wave packet at the SQUID
is very short, much shorter than the dynamics due to the coupling with the supercon-
ductors (defined by the energy scale ~ £, yr) and the coupling to the normal metal
(~ I'ny). Thus, we are entitled to treat the different parts of the system dynamics
independently, and add them up for the final Master equation.

Keeping therefore the circuit state constant, let the initial state of the circuit plus
detector (no normal metal) before scattering at the SQUID be the factorized state

W) = [c_ 1LY+ Cor [T} + Coy o)) +Cs |1+>] ® [in,R) (2.41)

where the states |Iz), |lo,) (0 =1, 1) are the eigenvectors of the current operator I and
C%,Cy, are complex-valued wave function amplitudes, satisfying the normalization
condition |C_|* +|Co|* +|Co,|* + |C4> = 1. The vector |in,R) represents the normalized
state that depicts the incoming signal, without loss of generality assumed to originate
from the right end of the conductor line. For the sake of completeness, let us provide
the explicit forms of the current operator eigenbasis, in terms of the quantum dot
charge basis, |0),]1,),|2), as introduced below Eq. (2.1). The eigenstates with nonzero
eigenvalues I = Fel g are given as |I;) = (|0)  ie¢|2)) /v/2, and the degenerate pair
of zero eigenvalues Iy, = 0 belong to the eigenvectors |y, ) = [1,).

After scattering, the factorized initial state gets weakly entangled, resulting in the
final state

|We) = [t_C_ 1I_) +t,.C,|L,) ] ® [out,L) + [T_C_ 11_) + 3" Coo [ Los) + 7+ C4 | 1) ] ®|out,R) ,

(2.42)
where r, and t, are reflection and transmission coefficients, respectively, correspond-
ing to eigenvalues I,. We have furthermore made use of the fact, that for Iy, = 0, the
signal gets completely reflected (due to the half-flux tuning).

In fact, the above final state shown in Eq. (2.42) is meaningful, if the experimenter
is merely measuring the presence or absence of a transmitted wave. We note however,
that an additional important piece of information can be extracted from the scattered
state: the aforementioned sensitivity of the transmission amplitude on the sign of the
current, t_ = —t,. In terms of the outgoing signal, this sign change can be understood
as a m-phase shift, which could in principle be detected by an appropriate interference
setup. Then, we have three instead of two detection outcomes, which should therefore
be cast into the final wave function

|Ui) =t_C_|I_) ® |out,L-) +t,C, |I,) ® |out,L+)

2.43
+|r_C_IL) + > Cop |Lo) + 7.C, |I+)] ® [out,R) , (2.43)

where the states |out,LF) represent a measurement of a transmitted wave (outgoing

to the left) including a determination of its relative phase shift with respect to the
initial wave, leading to the extra index ¥.
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Depending on the two possible detection scenarios, we have either two or three
possible measurement outcomes for the ancilla system, denoted by the index ¢ € {0, 1},
or g € {—,0,+}. The projection onto the different measurement outcomes is described
in the second scenario by the three Kraus operators

M = to| L) (L] (2.44)

Mo = 1[I + ¥ [Too) {Too| + 7 | 1) (L] (2.45)

For the first scenario, the ¥ outcomes are merged into a single Kraus operator M; =
M_+ M,. Independent of the specific measurement basis, it is easy to check that the
requirement M; M, = 1 is satisfied. We notice, that due to the highly reflective
nature of the SQUID, we may use Eq. (2.39), to express the Kraus operator

MO =1+ 5M0 s (246)

where 0 M, scales linear in ér, and thus quadratic in ¢, see also Eq. (2.40). The Kraus
operators Mz on the other hand scale linearly in ¢. This different scaling behaviour is
important now for the derivation of the Master equation including weak measurement

We now assume that there is a repetition of incoming signals according to a mea-
surement frequency w,,, that is, the weak entanglement and subsequent projective
measurement occurs on average every time interval ~ 1/w,,. The time evolution of
the density matrix due to this process (still neglecting the influence from the super-
conducting and normal metal contacts) can then be given as

0= W (Z MypM] - p) . (2.47)

The right-hand side can be expanded up to second order in ¢, resulting in the Master
equation
p=wn(Ko+ K +K,)p, (2.48)

with the definitions of the superoperators K;- = Mz - Mz and Ky = dMy -+ - d M.
This equation is the specific case of the master equation we derived for continuous
measurement at the end of Sec. 1.3.

These superoperators can be reexpressed using the quantum dot creation and an-
nihilation operators as follows,

Ko =-20r (1+dldld,d;)- (1 +dld]d,d;)

K.-=A-A- % {5rei¢didi — dre”d, d;, }

K.=A-A+ % {ore®dld! - ore7?d,d;, -} (2.49)
where A is a Hermitian operator given by

A=Vor (L+iedld —ie"%d,d, +didld,d;) . (2.50)
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2.6. Finite counting field as weak measurement

In order to derive the above K superoperators, we have used the property t_; = —ty,
which further implies |t_y|* = |t1° = [t|* and 67—y = dr = r. We notice that K, are
actually of the form K, = A- A Fdr/(2eE;g){l,-} with the current operator I as
defined in Eq. (2.11). This observation will be of great use in a moment.

Let us now reintroduce the dynamics due to the superconducting and normal metal
contacts, captured by the Lindbladian L(¢), see Eq. (2.8). In addition, we keep a
register n which stores the classical information of the outcome of the above described
weak continuous measurement, p - p(n). The full master equation can be written as

p(n) = [L(¢) + wnKo] p(n) + wp Kyp(n F1) + w, K_p(n+1) . (2.51)

Note that for the K -term, we have included both of the above scenarios of either being
able to distinguish the current direction or not. The resulting information processing
protocols are the following. If the current direction cannot be distinguished, then
K,p(n¥1) » K,p(n+1), such that the register n is simply increased by +1, when
having measured a nonzero current (events described by Kz). The absence of a
transmitted signal corresponds to a measurement of zero current, resulting in no
change in the detector count. If the current direction can be distinguished, we may
engage in a different protocol, K,p(n¥1) - K,p(n-1). Here, for a measurement of
the eigenvalue I_, the detector count goes down by one, and and for a measurement
of I, the detector count goes up by one.

To proceed, let us define the Fourier transform as p(&) = ¥, €™¢p(n) with a new
counting field ¢, which is distinct from, but (as we show now) to some extent related
to, the original counting field . The Fourier transformed master equation becomes

p(&) = [L((b) + Wi Ko + wp K e + me_e”E] p(&) . (2.52)

Crucially, it can be shown that for £ = /2, the weak measurement part in Eq. (2.52)
can be brought into a very similar form as the kernel in Eq. (2.21), provided that
our detector is able to distinguish between positive and negative currents, e** — 7%
for K_. Note that setting £ to a strong nonzero value (i.e., £ = 7/2) is no problem
whatsoever: the detector is here physically realized, and the experimenter will be
able to directly access the classical probability distribution of measurements along
the space n (the space conjugate to £). Hence, the choice £ = m/2 simply corresponds
to a particular way of evaluating (post-processing) the classical information. At any
rate, plugging in £ = /2, we then find

W OT

p(r)2) = [L(¢) Ko —i

(1. o2 (2.53)

eEJR

Indeed with the replacement

E
Wi O — —X% (2.54)

the kernel including the weak measurement can be mapped (up to the extra term
Ky, which we discuss in a moment) onto the kernel with small but finite y. Of
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course, we can therefore not hope to probe the global properties of the kernel for all
X- However, this form of weak measurement can be used to “simulate” the presence
of a small but finite counting field. Importantly, here the simulated x enters as a
system parameter influencing the dynamics, and is no longer related to the transport
measurement (as the latter is encoded in the new classical counting field £). Hence,
we are no longer required to expand in Y, and can thus avoid any problems related
to analytic continuation, and the topological phase transition shown in Fig. 2.8d can
now be observed.

Let us now comment on the effect of aforementioned the extra term K,. While the
presence of K does distort the spectrum, we observe that the braid group of the two
eigenvalues ), is preserved, when setting the weak measurement parameters (w,, and
dr) to values that correspond to the value of x [according to Eq.2.54] in Fig. 2.8d.
As a proof of principle, we show the new eigenvalues for the weak measurement in
comparison with old ones, for finite y, in Fig. 2.9b. Let us repeat that this recreation
of the braid phase transition via weak measurement is only possible if the detector
is able to distinguish the sign of the current (see above discussion), as otherwise, the
weak measurement kernel cannot be mapped onto Leygom(¢, X)-

To conclude, let us provide a short interpretation of the above concept. In the
absence of the weak current measurement (or transport measurement in general, y =
0), the complex open system spectrum is trivial, and the eigenvalues belonging to the
coherent time evolution, A\, are gapped, see Fig. 2.1e. This corresponds to the trivial
Josephson effect. The reason why they are gapped is simply because it is in general
impossible to tune the system parameters to the perfectly symmetric values E;;, = E g
and € =0 (due to U =0). The weak measurement can close the gap, and thus correct
for the “failure” to tune to perfect symmetry. We note that we have to set the new
counting field £ to a precise value (7/2) to accomplish this. This is however no real
limitation: the weak measurement has provided us with an entire array of classical
information [encoded in the register n, p(n), see Eq. (2.51)], and setting £ = /2 is just
a particularly chosen way to evaluate (post-process) this information. Figuratively
speaking, this particular choice of post-processing the classical information “filters
out” transport processes with integer Cooper pair charge 2e in favour of processes
with fractional charge e.

2.7. Conclusions

We studied the topology of the transport properties of a generic quantum system
where supercurrents and dissipative currents coincide, in terms of the transport de-
grees of freedom of the counting field x and the superconducting phase bias ¢. We
found that fractional charges defined in the full-counting statistics are related to frac-
tional charges visible in the Josephson effect in a generic open quantum system via
exceptional points defined in the 2D base space (x, ¢) — as a matter of fact, the excep-
tional points can be considered as the generators of these fractional charges. While
thus related, the two notions of fractional charges are nonetheless distinct in the sense
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that they are defined along two independent spaces. By means of the concrete model
of a hetero-structure circuit, where a quantum dot is coupled to superconducting
and normal metal contacts, we showed that the intricate interplay between transport
measurement and nonequilibrium drive gives rise to a plethora of topological phases,
surprisingly including a phase which can be interpreted as an open system version of a
fractional Josephson effect, in spite of the system being composed of trivial materials.

In addition, we elucidated different flavours of full-counting statistics based on
different implementations of the transport detector, and their relevance for observing
different topological phases. For a continuously entangling detector, a novel type
topological phase emerges, which can be interpreted as a statistical mix of fractional
and integer charges defined in the counting field y. However, as we pointed out, such
detectors destroy the information about the supercurrent, and thus cannot directly
measure a fractional Josephson effect. A complementary approach for obtaining the
full-counting statistics involves time-local measurements of the current, leaving the
system be in between measurements. While this approach preserves supercurrents, it
cannot detect topological transitions away from zero counting field. This prompted
us to develop a third notion of full-counting statistics relying on a continuous weak
measurement of the supercurrent. We sketched a proof of principle for an all-circuit
implementation of such a weak measurement by means of SQUID detectors. This
approach preserves supercurrents, and importantly enables us to reach topological
phases at finite counting fields.

As a final note, we believe that the “revival” of a fractional Josephson effect by
means of a weak supercurrent measurement might be an interesting effect also for
actual Majorana junctions, since the gap closing in the Josephson relation may not
be fully protected due to finite size effects. The applicability of weak measurement
and nonequilibrium driving to induce topological protection will likely be subject of
future research.
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3.1. Introduction

Broadly speaking, two things are said to be topologically similar if they can be mapped
to each other by continuous deformations, a famous example that often comes up in
popular science communication is the fact that a coffee mug and a torus are topo-
logically similar. It is in this sense that we encountered topological regions in the
eigenspectrum of the superconductor-normal metal hybrid circuit in chapter 2, the
behaviour of eigenvalues in the topological and trivial regions could not be mapped
to one other with only continuous deformations. We also encountered the fact that
dissipation played an essential part in realising this topology by helping to avoid the
fine-tuning problem. Now we would like to further explore the connection between
topology of superconducting circuits and dissipation. A straight forward way would
be to consider the same Lindbladian as the last chapter, and investigate it for dif-
ferent notions of topology, for e.g. using Lieu et. al’s [LMC20] work on extending
the tenfold classification to quadratic Lindbladians. Unfortunately it turns out this
particular Lindbladian does not show any interesting properties in this regard, but
if we make the system two dimensional (i.e. two superconducting phases instead of
one) we do get something interesting. Therefore our goal in this chapter is to study
a dissipative toy model inspired from our previous work and see what topological
properties it holds and how to, if possible, realise it experimentally.

This chapter of the thesis is organised as follows: first we give a brief overview
of topology and related concepts in condensed matter systems in Sec. 3.2. Then in
Sec. 3.3 we review the work of Riwar et. al. [Riw-+16a] on topology of multi terminal
Josephson junctions (MTJJs) since they are one of the platforms where our toy model
could be experimentally realised. We also argue how the topological properties of
MTJJs becomes experimentally inaccessible in presence of dissipation and therefore
we need to consider a notion of topology that takes into account open quantum
systems. Finally in Sec. 3.4 we study our toy model, the Hamiltonian for which
resembles the two dimensional Chern Hamiltonian, and investigate its topological
properties using the ideas discussed in Sec. 1.6.

3.2. Topological phases of matter

Characterisation and classification of different phases of matter and the study of phase
transitions has always been an essential goal of condensed matter physics, one famous
example of which is Ginzburg-Landau theory of continuous phase transitions [HK15].
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This theory has two essential ingredients: i) the observation that a phase transition
to a more 'ordered state’ is accompanied by spontaneous breaking of a symmetry,
and ii) a phenomenological order parameter that becomes nonzero as the system
transitions to the more ordered state. The discovery of integer quantum Hall effect
(IQHE) in 1980 [KDP80] goes against the Ginzburg-Landau paradigm. In this effect
the Hall resistance of a 2D electron gas is observed to be quantised R, = h/ne?, where
n € N. The transition between states of different Hall resistances is not accompanied
by breaking of any symmetry, hence indicating presence of a different kind of phase
transition.

The explanation of IQHE [Lau81; Tho+82] resulted in a new approach to classify
phases of matter, one related to the topology of the wave function. IQHE turned
out to be the first observation of a new class of materials called topological insulators
(TTs) with many others being predicted and observed [KM05; FKMO07; MB07; BHZ06;
FKO07; Kon+07; Hsi+08]. The topological insulators are defined as free fermionic
systems that are gapped in the bulk but host gapless modes at the boundary. These
systems are topological in the sense that the states with gapless boundary modes
cannot be continuously deformed to a trivial insulating state, i.e. state with no
gapless boundary modes, without closing the gap in the bulk or without breaking
the symmetries of the Hamiltonian. This indifference to smooth deformation can also
help us characterise these topological phases with the help of topological invariants
(as in the case of IQHE), which are integrals over the momentum space. Using the
analogy between the Bogoliubov de-Gennes (BdG) Hamiltonian for quasiparticles
of superconductors and Hamiltonian of a band insulator, the study of TIs can be
generalised to study of topological superconductors (TSCs) [Roy08; Qi+09], for a
more detailed review of TIs and TSCs the following reviews [HK10; QZ11] are a good
starting point.

Currently, the zoo of topological materials is ever growing. By taking into account
crystal symmetries in addition to internal symmetries of the Hamiltonian the existence
of topological crystalline insulators and topological semi-metals have been predicted
and confirmed [Wie+22], superconducting heterostructures have also emerged as a
promising platform to construct topological metamaterials [Riw+16a; Eri+17; MH17;
XVL17; XVL18; Kle+21; Kle+20; Wei+21], and study of topology in non-equilibrium
systems (driven or dissipative) has also led to exciting insight into the role topology
can play even in more realistic systems [RL09; Kaw+19a; LMC20; YU20; BBK21,
Lin+13; Har+20]. Since topological properties of materials is currently a very active
area of research this list of works on topological materials is certainly not exhaustive.

3.3. Multi terminal Josephson junction

Multi terminal Josephson junctions (MTJJs) are a generalisation of Josephson junc-
tions, instead of two junctions being connected by a thin non-superconducting film,
MTJJs consist of multiple superconductors connected to a central scattering region.
They have emerged as one of the candidates for creating topological metamaterials
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Figure 3.1.: A schematic diagram for a particular case of a multi terminal Joseph-
son junction (MTJJ) with five superconducting islands connected to a
central scattering region S. Due to the gauge invariance we set the super-
conducting phase labelled ¢ to zero (i.e. ground) and all other phases
are measured with respect to it.

using superconducting nanostructures [Riw+16a; XVL17; XVL18]. Particularly in
the work by Roman et. al. [Riw+16a] the authors were able to show that an n
terminal MTJJ can display properties of an (n—1) dimensional topological material.
Since this result is relevant for this chapter of the thesis, in this section we will give
a brief summary of this paper.

Consider an MTJJ (Fig.3.1) with n superconducting leads connected to a scatter-
ing region with the same superconducting gap A but with different superconducting
phase ¢,. Since due to gauge invariance only the difference of the phases matter,
therefore we set one of them, say ¢y = 0. Andreev bound state (ABS) energy spec-
trum, that describes the subgap physics of the junction, provides a way to investigate
the properties of this junction. Andreev bound states are formed due to Andreev
reflections between superconducting and normal regions, and resemble the states of
a particle in a box where the role of "walls" is played by the superconductor-normal
region interfaces. The ABS energy spectrum is found to have gap closings at some
specific points in the space spanned by the superconducting phases. The lowest ABS
band can be effectively described by two-by-two Weyl Hamiltonian near these gap
closings

3
HWeyl = Z hjaja
J=1

82



3.3. Multi terminal Josephson junction

hj = 25¢aMaj’ (3'1>

where o; are Pauli matrices, the fields h; depend on d¢; = ¢, - gb§.0) via the real matrix

M, gbg.o) denotes the values of superconducting phases at the gap is closing and, « is
the index for superconducting leads.

The structure of the Weyl Hamiltonian implies that we need at least three inde-
pendent parameters to tune the system to gap closing, hence we need at least a four
terminal MTJJ (i.e. three independent phases) to observe Weyl singularities. The
presence of Weyl singularities serves as the motivation to study the topology of the
junction, which can be characterised by a set of Chern numbers. A Chern number is
defined as the integral over the Berry curvature in the subspace spanned by any two
of the superconducting phases, say ¢, and ¢z, where the Berry curvature of a bound
state with band index k and spin o is defined in terms of the wavefunction |¢y,) as

awka awka )
a¢a a¢6 7

it turns out to be independent of the spin. The total Chern number associated with
phases ¢, and ¢z is then given by

B = —21m< (3.2)

cof =5 cp? (n;m - %) , (3.3)
ko

where ny, = 0,1 is the occupation number and
T T Baﬁ
Caﬂ:[da[d —E_ 3.4
O ¢ . P (3.4)

Finally, if the superconducting lead corresponding to the phase ¢z is biased by a
voltage V3 then the direct current in the superconducting lead « is given by

2
Ie = —4%0&5\/5, (3.5)
hence the transconductance matrix for the D.C. response of the junction can give us
information about its topology, this is the main result of Riwar et. al. [Riw+16a].
Let us return to Eq.(3.3) and notice that if the occupation number ny, fluctuates
with time then the contribution of the band £ to the total Chern number fluctuates
as well. This fluctuation is symmetric since the contribution of an empty band is
—C,?B , C,?ﬁ for a completely filled band and zero for a singly occupied band, therefore
this will average out to zero. One possible cause for such a fluctuation in occupation
number are the quasiparticles in the superconductors with energy higher then the
superconducting gap A. Hence while obtaining the D.C. response of the junction
the total Chern number C'*? needs to be averaged over as well, since it is fluctuat-
ing with time therefore the simple relation between the D.C current and the total
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3. Topology in dissipative systems

Chern number will disappear and the topology of the junction will be hidden from
experiments. To account for the quasiparticles in the junction, without making the
problem intractable, we can treat them as a source of dissipation, which leads us to
an obvious question. In presence of dissipation is there still some notion of topology
of the junction that can be detected by experiments?

To answer the above question we will use the notions of topology that have been
developed for non-Hermitian systems, that were discussed in 1.6, and apply those ideas
to a dissipative toy model that can be realised in MTJJs and simulates some essential
features of ABS, and additionally hosts a non-Hermitian topological invariant, and
examine if an experimentally observable quantity that depends on this topological
invariant is available.

3.4. Dissipative Chern Hamiltonian

Finally, we come to our original goal of studying a dissipative toy model that could
be simulated by an MTJJ. As stated earlier the Hamiltonian we consider is the two
dimensional extension of the Hamiltonian in Eq. (2.2) that resembles a 2d Chern
insulator Hamiltonian

H = A(¢1,62) (d}d: +did, - 1) + B,y (sin ¢y — isin ¢) djd] + By (sin ey +isingy) dydy,
(3.6)

where A(¢1,¢2) =+ Eyy (cos ¢p + cos¢o) and the operators cZ@, CZET) follow standard
CAR. This Hamiltonian can be thought of as describing the lowest energy ABS band
in a four terminal junction, where one of the three independent superconducting
phases is fixed by threading an external flux through a loop (Fig.(3.2)).

As a quick aside, the Hamiltonian in Eq.(3.6) becomes the standard Chern Hamil-
tonian if we replace the superconducting phases with the pseudo-momenta ¢; — k;.
But it does not lie in the same symmetry class as the standard Chern Hamiltonian,
because the pseudo-momenta are odd under particle-hole transformation (k; - —k;)
but the superconducting phases are even (¢; - ¢;) [ZK14a] (both are odd under
time-reversal). Using the conditions in Eq.(1.125) we can deduce that the Hamilto-
nian in Eq.(3.6) lies in the symmetry class C. If we calculate the Chern number for
this Hamiltonian, we find that it is 0 for || > 2, -1 for -2 <6 <0 and 1 for 0 < < 2,
this agrees with the information in table 1.1 that tells us that for a Hamiltonian in
class C and in two dimensions the topological invariant lies in Z.

The quasiparticles are nothing but the excitations in superconductors that destroy
the fermion parity of the ABS, therefore the dissipation can be described by the
fermionic operators d@ and ci?). Hence the dissipation operators that will enter the
Lindblad equation are

IAJI = \/ITICZM -EQ = \/F_Qd/\h f/3 = \/F_3d¢7 f/4 = \/F_4d\1 (37)
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3.4. Dissipative Chern Hamiltonian

)

4’1 B - ¢3

Figure 3.2.: Schematic of a four terminal multi terminal Josephson junction, where
one of the three independent superconducting phases is fixed by threading
an external flux ® via a loop.

Iy (T'g) and T's (T'y) respectively describe the rate of relaxing and pumping for the par-
ticle described by d; (d}). Writing the fermionic creation and annihilation operators
in terms of Majoranas

dKTrZOAél_'-i@Q - ATZOAél—’i@27
2 2
dg + 2@4 A dg - 2@4
JI = 2 = a, = 9 ) (38)
the Hamiltonian becomes
Qq
O=(an & a5 & )H Zz (3.9)
Oy
where
A . By sings - B, 7 8in ¢
H = —(¢1’¢2) Lo ® 0 e 01 ® -ZE sho ZE tnes |
4 O 1 1 0 _1 O 7 wJ4 1 7 wJ4 2
(3.10)

and the Hermitian matrix M that encodes the effect of dissipation operators is

1 0 M 7:1—‘1*1—‘3 O O o+l Z.l—\271—‘4
M:(o 0)®(_i% F1+4F:3 1o 1]® _Z.r%m FQZ“M . (3.11)
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3. Topology in dissipative systems

Finally the Z = H +iRe[M] matrix can be written as

I+ (10 10\ I,-T,(1 0 10
Z=H+i 3 (O 1)®(O 1)+z 3 o -1 1®l o 1) (3.12)

here we have defined I'y =I'; + I's and I') = 'y + Iy for the sake of convenience.
The eigenvalues of Z are

A = z% - é\/(n _T})2 - 4A2 —4E2  (sin ¢y +sin? ¢y) — i4A(T; - T)),
Ay = z% - é\/(n _T,)2-4A2 - AE2 (sin? ¢y +sin? ) + idA(T; - T)),
A = z’FT;H + é\/(n _T,)2-4A2 - A2 (sin? ¢y +sin? ) — idA(T; - T)),
Ao = Z% + é\/(FT -T))2 - 4A2 - 4E2 , (sin® ¢ +sin® ¢p) +i4A (T4 - T), (3.13)

the eigenvalues are indexed such that the ones with negative index have negative
real part when I'; = I'). The analysis of these eigenvalues tells us that for |J| < 2,
the topologically interesting regime in absence of dissipation, there is no real line
gap. Also, these eigenvalues contain square roots of complex functions therefore
appearance of EPs is guaranteed, which makes calculating Berry curvature and other
such quantities impossible. Because of these problems and looking at the form of
eigenvalues in Eq.(3.13), we specialize to the case I'y = ') = T', here the eigenvalues
simplify to

r 1
)\1 = )\2 = ZZ + Z_L\/A2 + EZ}J (Sil’l2 (z)l +Sil’12 (ﬁg),

All=Ag= Zg - ;L\/AQ + E? | (sin® ¢y +sin® ¢). (3.14)

Hence the eigenvalues become degenerate, but it can be checked that these are not
defective, i.e. we can still find four linearly independent eigenvectors for Z. More
importantly we get eigenvalues with a real line gap that closes at § = -2,0, 2 for some
specific values of ¢ and ¢9, taking a cue from the closed system we would expect
the topological invariant to change as we move across these points in the parameter
regime. But before we can start looking for topological invariants we need to look
at the symmetries of Z and determine if it lies in a symmetry class that allows for
topological phases in two dimensions.
The matrix Z in the case of symmetric dissipation I'y = I') reduces to

10 iL —iA(¢1’¢2) 0 1 _Z’ij sin ¢o Z'EwJ sin ¢1
_ 4 4 4 4
Z = 01 ® iA(¢i7¢2) iE + -1 0 ® Z-EwJZintin Z-EwJZintﬁz )

' (3.15)

the function A(¢q, ¢2) contains cosines of ¢ and ¢ and therefore is an even function
of these variables. Below we go case by case and see which of the three conditions in
Eq.(1.136) are applicable for our model.
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3.4. Dissipative Chern Hamiltonian

1. Time-reversal symmetry: For Z to have time-reversal symmetry we must find
a unitary matrix C, such that it can connect Z7(—=¢1,—¢2) to Z(¢1, p2) with a
similarity transformation. Writing out Z7(-¢1, —¢2) explicitly

1 0 iL jA1:¢2)
ZT(_¢17_¢2) = ( 0 1 ) ® ( _iA((gla(bQ) E
4

vy

( 0 1 ) ( i Eszin $2 iEw(]Zin 1 ( )
* ® - B, sin¢ - .7 sin ¢ ’ 316
-1 0 7 J4 L J4 2

we see that we need a unitary matrix of the form

1 0 w z
C+ _( 0 1 )®( _eiez* eiew* )7 (3'17)

where the second matrix in the above equation is a generic 2*2 unitary matrix
defined by three numbers w, z, 6 such that |w[>+|z]> = 1 and 6 € R. This generic
matrix should satisfy the following two matrix equations

w z r A w* —e Wz r -A
( _6102* e’iGw* ) ( A T )( o e—iew ) = ( A r )7 (318)
w z —singy sin ¢ w* —e Wz ) [ —singy sing,
—eilz* e+ sing;  sin ¢, 2* ey |\ sing; singy |
(3.19)

Solving these two equations we conclude that no such unitary matrix exist,
hence there is no time-reversal symmetry.

2. Particle-hole symmetry: Since Z is a purely imaginary matrix by construction
and the superconducting phases do not change under particle-hole transfor-
mation, therefore we have —Z*(¢p1,¢2) = Z(p1,¢2), hence our model trivially
satisfies the condition for particle-hole symmetry.

3. Chiral symmetry: Since this is a combination of time-reversal and particle-hole
symmetries and time-reversal is absent for this case therefore chiral symmetry
is also absent.

From the above discussion and looking at the table 1.2, we conclude that our system
lies in the class Dt which does host topologically nontrivial non-Hermitian matrices
in two dimensions, and the corresponding topological invariant lies in Z.

3.4.1. Calculation of the topological invariant

The Z topological invariants of systems in even spatial dimensions d = 2n with real
line gap, are given by the nth Chern number C,, (Appendix H [Kaw+19a]). To define
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3. Topology in dissipative systems

this Chern number we will first discuss diagonalisation of non-Hermitian matrices.
Consider a general non-Hermitian square matrix B of dimension p* p, if this matrix is
diagonalisable (i.e. it has p linearly independent eigenvectors) then we can decompose
it as follows

B- ZA ) (] (3.20)

where |u,) and ((u,| are right and left eigenvectors of B corresponding to the eigen-
value )\,. These are defined as follows
Blup) = Aplup)
B fup)) = A} Jup)) - (3.21)

The left and right eigenvectors satisfy the following orthonormality conditions

((up| ug) = 0pg, {1y [1g)) = bpg, (3.22)

and the following completeness relations
D lup) ((upl = 7 Tup)) (| = 1. (3.23)
p p

The indices p and ¢ in the above formulas are band indices, we will use the convention
such that bands below the real line gap are denoted by negative integers and the ones
above the gap are denoted by positive integers.

In order to define the nth Chern number we first define the non-Abelian Berry con-
nection as a matrix-valued one-form, for the bands below the gap, whose components
are defined as

2n

Apg = ) {{up| Oug) diy  p,q <0 (3.24)

i=1

The Berry curvature is a matrix-valued two-form whose components are given by

qu = dqu + Z Apm A Amqa P,q < 07 (325)

m<0

expanding the above expression in terms of eigenvectors we obtain

Fpq = Zn: (((3kiup| 3kjuq> + Z ((up | Ok, tum ) ((wm] 8k.7.uq>) dk; A dk;,

inj=1 m<0
2n
Foa =Y. ({0 upl (1— Zo|um)<(um|) |0k, uq) dk; A dkj, (3.26)
inj=1 m<
where we have used the fact that Ok, ((uy|ug) =0 = ((up| Ok, uyg) = — ({(On,up| ug)-

The Chern number can now be computed using the following expression

C, :%(%)n/tr (F"), (3.27)
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3.4. Dissipative Chern Hamiltonian

since the Berry curvature is a matrix-valued two-form, the expression ™ implies ma-
trix multiplication with the caveat that the components of the matrix are multiplied
by exterior product. The above definitions of Berry connection, curvature and there-
fore the Chern number can equivalently be defined for bands with positive indices,
in that case the change in topological invariant as we go from one phase to the other
will have the same absolute value but sign will be flipped.

For our model, a system with two spatial dimensions and four bands (two above
the real line gap and two below), the relevant topological invariant is the first Chern
number, which simplifies to

1 2 2w

Cl = Z L / / (((a¢1up| a¢2up> - <<a¢>2up| a(blup)) d¢ld¢2 (328)

~, 21
P==2 774720 ¢3=0

To compute this Chern number numerically we use the algorithm described in Fukui
et. al. [FHSO05], we present a modified version of the algorithm here for the case of
non-Hermitian Hamiltonians. Let us say we have to calculate the Chern number for
the band |u (¢;,,¢j,)) (with ((u(;,,¢;,)| as the corresponding left eigenvector), we
begin by discretising the Brillouin zone into lattice points denoted by the ordered pair

(¢j1 ’ (z)]z )7 where

~ 27J,

¢ju N jM: (0,1,"',NM—1), (329)
I

hence the total number of lattice points in the Brillouin zone are N;N,. We assume
that the state |u (¢;,, ¢;,)) is periodic on the lattice, |u (¢;, + 27, ¢;,)) = [u (¢, 05,)) =
|u (¢j17¢j2 + 27T)>'
Now we define the U(1) link variable as follows

((u (@5, Do) u )y + 27/ N1, ¢,))
[(Cw (051 52w (D, + 27/ Ny, )|
((u (@5, Do) u ()i, §js + 27/ N2))
((u (50, Do) u (5,5 bjy + 2/ N2)) |
The link variable is defined as long as the expressions in the denominator do not

become zero, if this happens it can be avoided by shifting the lattice infinitesimally.
From the link variable we define the lattice field strength by

F(6,,05,) =In[Uy (65, 8;,) Uz (65, + 27/ Ny, 6,) U (b5, 65, + 27/ No) ™ Us (1, 63,) -
(3.31)

Ui (¢j17¢j2) =

U2 (¢j17¢j2) = (330)

Note that the field strength is defined within the principal branch of logarithm i.e.
—T< F (¢4, 04,) i <. It can also be easily shown that this field strength is invariant
under the gauge transformation |u (¢;,,¢;,)) = €M®1%2) [u(¢;,,¢;,)). Finally the
Chern number associated with the band |u (¢, ¢;,)) is given by

C~(1: Z F(¢j1?¢j2) (332)

J1 ’¢j2

)
27r¢
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3. Topology in dissipative systems

The above algorithm has to be modified to include the case of degenerate eigenval-
ues, let us assume that the following states are degenerate |uy), [ug), -, [uar), then we
define the following multiplets

¥=(lur) Jug) - luar)),

o
v=| i [, (3.33)

({un]

now the U(1) link variables are defined as

det (¢ (¢5,. 05,) ¥ (05, + 27/ N1, ,))
|det (v (¢5,. 05,) ¥ (05, + 21/ N1, b3))|
det (¢ (., 05,) ¥ (0, by, + 21/ N2))
[det (9 (651, 03.) © (95, b5 + 27/ No) )|
The definition of field strength remains the same and the Chern number follows from
that. The numerically calculated Chern number C; converges to the analytical value

(' the smaller we make the lattice spacing. The figure (3.3) shows the Chern number
for our system with respect to the parameter 9.

Ul (¢j17 ¢j2) =

Us (¢j1’ ¢j2) = (334)

C

2

N RN T S S N 2‘ 6/Ew,/

-2

Figure 3.3.: Plot of the Chern number versus the parameter 0 that varies from
-2.5FE,; to 2.5E, ;. Other energy scale in the system is the dissipa-
tion rate which is set to I' = 0.3F,,;, while the lattice spacing is set by
using the following parameters N; = Ny = 100. We see that as expected
the Chern number is zero for |d| > 2 indicating that the system is topolog-
ically trivial, and is finite for |[§| < 2. Additionally there are two distinct
topological regions marked by C} = +2.
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3.5. Conclusion

3.4.2. Preliminary result for measurement

After confirming that our model indeed hosts a non-Hermitian topological invariant,
the next step is to find an experimentally measurable quantity that reflects this topol-
ogy. As a first step, taking inspiration from our previous work on superconductor-
normal metal hybrid circuit, we introduce a counting field in the system to model a
detector, this allows us to access the full counting statistics of the junction which can
then be used to obtain experimental observables. The counting field (x) modifies the
Lindbladian as follows

dp . |
i = (H (914 x.02) p= pH (61~ x.62)) +i 3 (2LupL], = {L}.Ly,0})
=1,
d ~ N
Zd_/t) = cos X [H (¢1,02) , p] +sinx {0s H (¢1,02) , p} +i (2LﬂpLL - {LLme}) ,
p=t

(3.35)

the choice to add the counting field to the phase ¢; is arbitrary. Once we have the
modified form of the Lindblad equation, we can reapply the formalism proposed by
Prosen to write the Lindbladian superoperator in following form

£=2( ¢) H cos (x) —iRe[M] sin(x) 0y, H - 2Im[M]
- —sin (x) 0y, H H cos (x) +iRe[M]

1>

; ) - 2itr [M],
(3.36)

10>

here H and M matrices are the same ones that were defined in absence of the counting
field, the dependence of the Hamiltonian on the superconducting phases have been
hidden to make the equation more readable.

We can clearly see from Eq.(3.36) that inclusion of counting field in the system
removes the straight forward dependence of the spectrum of the Lindbladian on the
block matrix on the main diagonal. Hence the topology of the complete Lindbladian
can no longer be ascertained by just looking at the topology of the block matrix on
the main diagonal.

3.5. Conclusion

Unfortunately due to time constraints this project had to be paused here, and the
question of if there exist a measurement that can reflect the topology of this dissipative
system remains open. One possibility of confirming at least some part of our result
is via direct observation of the eigenspectrum of the Lindbladian and looking for the
gap closing. We can obtain the eigenvalues of the Lindbladian from the eigenvalues
of Z (Eq.(1.111))

)\1 = O, )\2 = —4ir, )\3 = )\4 = )\5 = )\6 = —ZiF,

A7 =)g = =il - \/(6 + By (cos ¢y +cos dn))” + E? | (sin® ¢y +sin® ¢y),

91



3. Topology in dissipative systems

Ao =M1 = =il + \/(5 + By (cosy +cosdn))” + E? | (sin® ¢y + sin® ¢p),
A1 =A2 = -3 - \/(5 + By (cos gy +cos dn))” + E? | (sin® ¢y + sin® ¢p),
A3 =Ag = -3 + \/(5 + By (cos gy +cos o)) + E? | (sin® ¢y + sin® ¢y),
A5 = — 20 — 2\/(6 + By (cos gy +cosgn))’ + E? , (sin® ¢y + sin® ¢p),
Mg = — 200 + 2\/(6 + By (cos gy +cosgn))” + E? | (sin® ¢y + sin® ¢p).

We see that at the point of gap closing the eigenvalues of the Lindbladian become
imaginary (except for A\;). The real gap closing is shown for the eigenvalues A\; and
Ag is shown in Fig.

Re(1)

SIE,,

Figure 3.4.: Plot of the real parts of the eigenvalues A; (blue lines) and g (orange
lines), since for all other eigenvalues the real part is either 0 or similar.
The real gap closes for 6 = -2F),,;,0,2F,,;, here we have shown it only in
the vicinity of § = 0, the values of the superconducting phases where the
gap closes are ¢ =7, =0 and ¢; =0, ¢ = 7.

Before closing this chapter we would like to reiterate what our preliminary results
mean. We have shown that our toy model with symmetric dissipation is topologically
non trivial for -2F,,; < § < 2F,,;, and that this topology is encoded in the open
system version of the Chern number, which is well defined even in presence of quasi-
particle poisoning. But we have also shown that this Chern number cannot appear
in any regular transport measurement. We did this by introducing a counting field in
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the system Lindbladian and finding the FCS, the form of the Lindbladian with the
counting field immediately told us that no cumulant of the transport statistics can
reflect this Chern number in an experiment.
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4. Utilizing and extending
superconducting circuit toolbox to
simulate analog event horizons

4.1. Introduction

Unifying quantum mechanics and gravity poses several theoretical [tV74; GS86; Pen14|
and experimental challenges [Hos+85; MP88; Lee+20; Wes+21; Ger+11; Eib+13;
Rom17; Pin+18; Fei+19; Del+20; Teb+21], which motivates studying analogs of
relativistic quantum effects in experimentally accessible systems [BLV11]. Several
ideas have therefore been proposed for simulating gravitational effects in solid-state
systems — for example, holographic ideas borrowed from string theory [SY93; Sacl5;
BAK16; KS18; KS19; Jaf+22], or cosmological particle creation [BLV03; FF04; FS04;
Jai+07; PFL10; Ste+22], or more directly, using Unruh’s proposal of "sonic black
holes" [Unr81] as an inspiration to simulate black holes in labs. Along these lines,
apparent event horizons and the resulting Hawking radiation have been studied on
various platforms [KBW20; STW20; De +21; Nat+09; KHF20; TD19; Lan15; Sab18;
Sab16], most notably in ultracold atomic gases [Gar+00; Gar+01; Stel4; Mun+19;
RBF22].

There remain however a number of open questions. First, so far for solid state
implementations the metric usually changes only over a finite “healing length”. If the
surface gravity (for analog black holes surface gravity corresponds to the rate of change
of the group velocity with which a signal will move in the given metric [Mun+19]) is
too weak, the resulting small Hawking temperature may thus be below the threshold
of the system’s intrinsic temperature [Rob12] — an obstacle that (at least up to now)
seems to have only been overcome for cold atom simulators [Mun+19]. Relatedly,
systems with an apparent event horizon generically do not have a well-defined ground
state, such that any coupling to the environment leads to an instability, making it
extremely challenging to distinguish intrinsic radiation due to the horizon (which
would actually simulate aspects of a universe with nontrivial spacetime metric) and
radiation due to environment induced relaxation. In addition, even in the absence
of environment, the closed system can in some platforms be spontaneously unsta-
ble [Gar+00; Gar+01]. Furthermore, lattice realizations (which ultimately concerns
all solid state systems) add a number of interesting but challenging facets, such as a
natural (though possibly artifical) resolution of the trans-Planckian problem [Jac91;
Bro+95; SU05; HF23|, and most notably, the fact that any event horizon has both
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black and white hole character, since the dispersion relation in a periodic Brillouin
zone must necessarily cross zero at least twice [De +21].

Superconducting circuits are one of the prime candidates for building large-scale
quantum hardware [Arul9; Wu 21; Kja+20]. The behaviour of these circuits and
their interactions with quantised electromagnetic fields in the microwave range are
described by circuit quantum electrodynamics (cQED), a formalism that reduces cir-
cuits to lumped elements whose phase and charge are canonically conjugate [YD84;
BKDO04; UH16; VD17; Bla+04; Bla4+07; BGO20; Bla+21; RD22]. The toolbox of
superconducting circuits includes nonlinear elements such as Josephson junctions and
linear elements such as capacitors and inductors. Our work will also feature nonre-
ciprocal multi-port circuit elements. Classical nonreciprocal elements called gyrators
(or their close cousins, circulators), are already widely in use in circuit engineering
and signal processing [Abd+13; KSA20; MC15; MC17], whose consistent circuit the-
oretical description goes back to the work by Tellegen [Tel48]. These are however
generally large clunky objects operating in a finite frequency window. Various recent
works strive towards a realisation and a consistent description of quantum mechanical
gyrators [VD14; Rym+21; Sel+23; VH24]. Moreover, it has recently been realised
[VH24; Riw23; MTY24] that the same nonreciprocal behaviour also occurs due to
topological transitions in the transport degrees of freedom of multiterminal junctions
[Riw+16a; FAB21; Pey+21; Wei+21; Kle+21; HR22], whose size can be on the meso
scale and the gyration behavior emerges in the D.C. limit. Over the course of decades,
it has been shown that networks of superconducting circuits can give rise to a large
number of physical phenomena and imitate various quantum field theories from other
domains [KM89; Ust98; Wal+00; Fv01; CABO8; Gla+09; THD12; HTK12; HG19;
TD19; Ole+22; WMB24; Flu+12; Wil411]. However, the exploration of analog grav-
ity phenomena has so far been limited to Hawking-like radiation in Josephson junction
arrays [Nat+09; KHF20; Kat+21; Kat2la; Kat21b; Kat+23; TD19; Lanl15]|, which,
due to the nature of their proposal leave only little control over the shape of the
spacetime geometry, or recreation of a limited class of curved spacetimes by means of
flux control of SQUID arrays [Sab18; Sab16].

In this work, we demonstrate that networks of Josephson junctions and gyrators
can be used as an engineering tool for simulations of quantum-gravity phenomena
with unprecedented tunability capabilities, and generate surprising insights specific
to lattice systems. The basic idea is that arrays of these elements result in a (nearly)
massless scalar field theory describing a quantum field — the superconducting phases
of the charge islands — propagating across a lattice with spatially varying analog
spacetime metric. The latter essentially encompasses the local dispersion relation, i.e.,
the velocities with which right and left signals move with respect to the laboratory
frame. Note, however, that although the model consists of quantum fields propagating
on a fixed lattice of quantum circuit elements, this does not necessarily correspond
to the semi-classical limit (i.e. quantum field theory on fixed background spacetime).
The fixed laboratory coordinates (space and time of the experimenter implementing
the device) do not have to coincide with space or time coordinates emerging from
hypothetical observers within the toy universe, see also discussion in the outlook.
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horizons

To create an apparent horizon we need a boundary between the "normal region'
(region where the signals can move in both directions) and a wormhole region where
the signals only move in one direction, i.e. a region with overtilted dispersion rela-
tion. As it turns out such a region can be created with negative inductors, which we
propose to achieve by adapting recent insights in flux quench of regular Josephson
junctions [YSK19b; RD22]. Tunable 0 -7 junctions [PB18; Li419; Ke+19] may offer
an alternative pathway towards negative inductances.

Already for such classical metric profiles, we make a number of important obser-
vations specific to lattice simulations. The exceptional tunability of the individual
energy scales in the lattice allows to change the analog metric over only a few lattice
sites, which would yield for typical charging and Josephson energies Hawking tem-
peratures in the 100mK up to 1K range, thus comfortably exceeding usual cryogenic
temperatures. But as we show, this comes at the price of a fundamental impossibility
to create stable event horizons for strictly discrete lattice systems. Instead, the sys-
tem becomes unstable right after the quench, resulting in an immediate evaporation
starting out from the event horizon. We here embrace this instability, and show how
to realize systems with a change of the spacetime over a single lattice point, where
the rate of change of the metric itself is ill-defined at the horizon (in the style of
Refs. [Jac91; Bro+95; SU05|, we refer to this change in the metric as being “trans-
Planckian”) resulting in a likewise ill-defined Hawking temperature. We thus create
a system where the signatures of wormhole collapse are fully disjoint from any finite
surface gravity effects at the horizon — and in doing so, provide an answer to the ques-
tion of what happens at an event horizon in the otherwise highly speculative limit
of diverging surface gravity. We show that the instability leads to an accumulation
of charge and phase quantum fluctuations, which we expect to be a highly robust
signature with respect to environment-induced dissipation, since the latter reduces
quantum fluctuations (instead of increasing them).

Moreover, we find an instructive loop-hole to the aforementioned ambiguity of
black- versus white hole event horizons in lattice systems. Namely, the inductive
coupling can go either via nearest or next-to-nearest neighbour nodes. For the for-
mer, the dispersion relation inside the wormhole region exhibits an exceptional point,
such that the eigenspectrum no longer crosses zero energy twice, but instead takes a
detour on the complex plane to satisfy periodicity. We thus realize lattice versions of
event horizons which are definitely either black- or white hole, but not both. However,
this feature radically changes the dynamics in the interior of the wormhole: instead
of an evaporation from the horizons outwards the entire wormhole interior evaporates
everywhere immediately after the quench.

Lastly, while we mostly consider long chains in the main part of this work, as they
provide a clean interpretation of the effects in the context of curved spacetime, we
are aware that they may be challenging to realize experimentally. In the outlook, we
therefore also propose experiments on only few lattice points as proofs of principle,
which already contain much of the pertinent phenomenology present in long chains.

This work started off as a group project and therefore has contributions from all,
past and present, group members. T. Herrig and C. Koliofoti contributed to the
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initial stages of the project and were instrumental in discarding a lot of false starts.
A. Kenawy wrote the first version of the code and obtained preliminary numerical
results, while O. Kashuba helped with the extension of Klich’s determinant formula
(see App. E). Also, D. Kruti and C. Koliofoti were of great help in understanding the
subtleties of already established results about astrophysical event horizons, while R.-
P. Riwar helped with placing this project in context of much larger body of already
existing work regarding analog event horizons in condensed matter physics. This
chapter of the thesis is organized as follows, section 4.2 is a brief review of scalar
field theories on curved spacetime, and a summary of our main accomplishments of
this work. In section 4.3 we introduce and study the two circuits that will host the
apparent horizons that we wish to investigate, we especially focus on the different
effect that negative inductances have on the dispersion relations of these two circuits
anticipating the differences between the horizons in them. Section 4.4 is a brief detour,
where we expand upon the idea of using flux quench on a Josephson junction to get a
negative inductance, and in section 4.5 we study and characterize the horizons in the
two aforementioned circuits, by looking at the time evolution of quantum fluctuations
of the conjugate charge and the phase difference. In section 4.6 we hypothesize on
the long time fate of the analog horizons and argue that the effect of this intrinsic
evaporation is easily distinguishable from the effect of coupling to the environment.
This section also acts as a bridge to the idea of quantum inductors and using them to
observe quantum superpositions of two spacetime geometries, this part of the work
is not included in the thesis since its main contibutors are D. Kruti and R.-P. Riwar,
but can be found in [Jav-+24].

4.2. Curved space time metrics and the circuit
simulator

4.2.1. Brief review of field theories with curved spacetime and
stability considerations

To set the stage, let us reiterate basic notions related to field theories with nontrivial
spacetime metric.

Within this brief review, questions regarding the stability of the considered sys-
tems will emerge. To this end, we begin by providing a number of general statements
regarding bosonic Hamiltonians (as we focus on scalar bosonic quantum fields). The
quantum systems we consider are all described by a Hermitian Hamiltonian. In accor-
dance with Refs. [Gar+00; Gar+01; Nak+08; Min+07], we point out that hermiticity
does mot guarantee stability of the system, due to the special symplectic structure
of the Bogoliubov transformation. In particular, two cases need to be distinguished.
It may happen that certain eigenvalues are negative, such that the system has no
well-defined many-body ground state. Such systems however still evolve in a stable
fashion, unless they are coupled to an environment, which will in general lead to a
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collapse of the system, as negative energy bosonic states can now be occupied by
extracting energy from the bath. In the second case, some eigenenergies may become
complex (again, this is consistent with Hermitian Hamiltonians, see Refs. [Gar4-00;
Gar+01]). Such systems are spontaneously unstable, as they do not require a coupling
to a bath to collapse.

In continuous field theories, the action of a field ¢ in a d + 1-dimensional spacetime
is generally given as

1
=3 f dtdiz\/=g ¢ 9,6 0,0 , (4.1)

where the metric tensor g"” can in general depend on all coordinates. Within actual
general relativity, the metric tensor of course encompasses the entire causal structure
of spacetime. However, it is understood since a long time that a wide variety of
nonrelativistic systems (condensed matter and beyond) may be described by an action
of the same form, however with typical velocities much below the speed of light.
These systems provide an analog spacetime in the sense that g*” looses its concrete
relativistic interpretation.

For simplicity, let us consider 1 + 1 dimensions (note that our simulator recipe works
also for more spatial dimensions, as we point out in a moment), and focus on metrics
that depend only on the position coordinate, i.e., metrics that are stationary in the
laboratory frame. Here we write the action explicitly in a matrix form as

1 2 O
s=5 [dz( a0 0.0 )( ot )( a;(i) , (4.2)

where v and v are two independent functions of x. Note that the matrix represent-
ing the spacetime metric has determinant -1, such that the \/-g prefactor is here
irrelevant. For actions of this form, it is always possible to make a coordinate trans-
formation [Rob12]

gle g~

€T , 1
y—t—fdxm (4.3)

T , 1
z:t+fdxm, (4.4)

to bring the action into the simple form

S = f dydz0,6 0,6 . (4.5)

In these coordinates, the classical Euler-Lagrange equation is simply 9,0,¢ = 0, whose
solutions are arbitrary superpositions of functions that depend either only on y, or
only on z. Transforming back to (¢, x)-coordinates via Eqs. (4.3) and (4.4), these two
separate solutions correspond to waves propagating locally either with velocity u + v
or u—v. For constant u,v (and u > 0), the theory is readily quantized, yielding the
Hamiltonian

H= /dkwkalak , (4.6)
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where for bosonic fields, [ak,a,t,] = d(k — k’). The dispersion relation wy = ulk| + vk
readily provides the group velocity of quantum excitations, such that the classical y
and z type solutions here correspond to k >0 and k < 0, respectively. For |v| < u, the
system describes a regular analog light cone with H having only positive many-body
eigenvalues, where v corresponds to a finite tilt of the dispersion relation.

For |[v| > u the dispersion relation is overtilted, such that one of the branches
(either k£ < 0 or k£ > 0) has now negative energies. Negative energies are meaningful
in the following sense. As already pointed out above, the Hamiltonian H here has in
principle no more well-defined ground state — indicating a serious instability. However,
the eigenvalues remain real, such that the closed quantum system still evolves in a
stable fashion. In particular, with a Galilei transformation ! by, e.g., —v, we can undo
the tilt (the dispersion relation goes to u|k|) and thus return to a regular Hamiltonian
with a well-defined ground state. Consequently, for the closed quantum system, there
is nothing special about whether or not a particular branch has negative eigenenergies.
Matters are markedly different, once we consider open quantum systems. Here, the
Galilei transformation applies to both the system Hamiltonian, as well as to the
interaction with the environment. Hence, one cannot change a system from stable to
unstable by merely moving with respect to it — thus avoiding what would otherwise
be a serious conundrum. However, the inverse may well happen: if we fine tune the
parameters of the system such that it implements an overtilted dispersion relation in
the laboratory rest frame, the coupling to the environment may indeed be such that
the system collapses on very fast time scales (usually given by the typical relaxation
rates of the considered quantum hardware).

Returning to spatially varying spacetime metrics, apparent event horizons emerge
in this field theory when at a given point v crosses from |v| < |u| to |v| > |u|, such that
there no longer exist a global transformation to a flat spacetime. Consequently, the
system is separated at the horizon into two halves, one with a well-defined ground
state (regular or no tilt in the dispersion relation) and one with no ground state
(overtilted). In principle, one could now expect already the closed quantum system
to be unstable as the two halves could exchange energy (which would thus lead to
complex eigenvalues). But as is well known [Rob12], this does not happen for this
particular system. Even in the presence of such a horizon, the system is still described
by regular, real eigenvalues, such that at least for the closed system, the evolution
is still stable (though in general not in a well-defined ground state). The reason
for this is that on both sides of the horizon, the above coordinate transformation to
(y, ) still applies, such that for these coordinates, there still exist two well-defined
branches of the wave solutions moving at different speeds relative to the lab frame.
At the horizon, the transition from |v| < |u| to |v] > |u| results in one — but only one —
of the two coordinate transformations (either y or z, depending on the sign of v) to
be singular. Consequently, the branch without singularity simply moves through the
event horizon as if it wasn’t there. The other branch (with the singularity) is causally

!Galilei transformations are of course allowed for the here considered simulator systems which
operate at velocities far below the speed of light.
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disconnected at the horizon, because wave solutions come to a stand-still. Hence the
left and right hand side of this branch do not couple.

Since the system is however not in a ground state, meaningful quantum measure-
ments are best defined by anchoring all observables to a basis with well-defined ground
state. This is commonly done [Rob12] by imagining the system to be prepared (in
the distant past) in the ground state of a spacetime metric without horizon (e.g.,
perfectly flat spacetime). When now defining measurements with respect to the new
eigenbasis, Hawking radiation emerges. A frequency decomposition of this radiation
reveals that it is of thermal nature, given by the surface gravity — e.g., for constant u,
the temperature is thus proportional to the energy scale d,v, evaluated at the horizon.

Crucially, while for the closed system (or for the actual universe) it therefore seems
plausible to have stable spacetime metrics with horizons and a related thermal Hawk-
ing radiation, it has to be noted that for simulators coupled to an environment, the
above is a highly precarious situation — precisely because of the lack of a well-defined
ground state. For instance, while the branch with the singularity may well be exactly
separated at the horizon for the closed system, the overtilted part very likely becomes
unstable simply due to coupling with the environment (see our above Galilei trans-
formation argument, respectively its inverse). Moreover, it cannot be excluded that
a (ever so slightly) nonlocal coupling to an environment effectively couples the two
causally separated branches, such that energy can be exchanged across the singularity
via environment-assisted tunneling. As we now go on to lattice simulators, stability
concerns only pile up.

4.2.2. Simulation with circuit networks

Here, we summarize our simulation idea by means of quantum circuits, and indicate
the main accomplishments of our work.

As we see in Eq. (4.2), for a system to emulate a field moving on a nontrivial
spacetime, we need interactions that provide the terms ~ ¢2, ~ ¢ 9,6, and ~ (9,¢)2.
Quantum circuit theory [BKD04; VD17; Rym+21; RD22] readily provides elements
that (in a certain continuum limit) provide such interactions. For a superconducting
node j, a finite capacitance (C;) provides to the Lagrangian £ an energy contribution

of the form o,

C: | b,

L— L+ 2] : (4.7)
2 \2e

whereas a finite inductance (L;) between two neighbouring nodes j+1 and j provides

1 §b j+1 — Qb ?
L—~>L-— J—”) . 4.8
oL ( 2e (4:8)

In the continuum limit ¢; - ¢(z), we indeed get the terms ~ ¢2 and ~ (9,¢)2
respectively.

However, this alone does not provide a tilt of the dispersion relation. This is where
gyrators come into play. As pointed out in Ref. [Rym+21], a three-port gyrator,
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connecting two neighbouring nodes ¢,,; and ¢, to ground (whose phase is set to zero)
can be described by the following contribution to the Lagrangian 2,

L—L+ Gj(¢j¢j+1 - ¢j¢j+1) ; (4.9)

where the parameter G is proportional to the transconductance of the gyrator,

oL :
2€Ij = % = Gj¢j+l = 2€Gj‘/j+1 (410)
J
oL :
26[j+1 = W = _Gj(bj = _QeGj‘/j . (411)
j+

The gyrator thus has a typical circular transport behaviour, i.e., a voltage at j (j+1)
induces a current (with reversed sign) at j+1 (j). The continuum limit (at least a naive
continuum limit, as we discuss in detail below) yields indeed a term of the sought-
after form ~ $8x¢ and thus provides a tilt. In fact, it is precisely the above circular
transport behaviour, which allows us to develop an illustrative intuitive picture for the
physical origin of the tilt. Essentially, the gyrator acts as a “conveyer belt” for plasmon
excitations within the chain, transporting signals in opposite directions with different
group velocity. Thus it has in essence the same effect as a Galilei transformation (at
least in the continuum limit), except that we can in principle control it locally within
a given chain by modulating the value of G as a function of j.

The above ingredient list is in principle sufficient to simulate analog spacetime ge-
ometries with finite curvature. Also, while 1D and 2D arrays are likely most straight-
forwardly implemented on a circuit board, with appropriate 3D stacking one could
potentially also reach a higher number of spatial dimensions. The above realizations
mark a first central accomplishment of this work, where

(i) we identify a minimal set of circuit elements to realize scalar discrete field the-
ories with any shape of stationary analog spacetime geometry.

For illustration purposes and practicality, we stick to 1D arrays in the remainder of
this work. However, even in the 1 + 1 dimensional problem, there are a number of
interesting challenges which we attack in the following. As we argue in more detail
below, already for flat spacetime, an overtilt (with a negative energy branch) is not
straightforward to realize. As can be seen when comparing Eq. (4.2) with the inductor
contribution of Eq. (4.8) an overtilt |v| > u requires negative inductances. As a second
main result (developed in the subsequent section),

(ii) we show how to realize negative inductances via transient flux drive of Josephson
junctions, and thus create overtilted dispersion relations and analog (apparent)
event horizons.

2Note that the gyrator Lagrangian can be subject to gauge transformations, such that its form is
not uniquely determined.
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This particular implementation of negative inductances via a flux quench is first of all
of fundamental interest, as (contrary to other realizations [Gar+00; RBF22]) we do
not require a continuous non-equilibrium drive to maintain the event horizons. As we
detail further below, the absence of a well-defined ground state is merely the result
of an approximation valid at short times. The exact quantum field theory retains
a ground state at all times, which will ultimately be reached again via relaxation
processes, thus potentially offering the possibility of a complete wormhole evaporation
simulation emerging naturally from the hardware. Moreover, the setup we propose
allows for a radical change of the spacetime geometry over only a few lattice sites (and
as we show in a moment, even over a single lattice bond). With the energy scales
of the local charging energy given by F¢ and when using Josephson junctions as
inductive elements E;, we would thus (at least in principle) be able to reach Hawking
temperatures (as defined above) on the order of ~ \/EcFE; which (taking as a typical
transmon qubit frequency the value of 1GHz ~ 10GHz) can yield up to 0.1K ~ 1K
(which is above typical cryogenic temperatures).

However, in addition to the already mentioned general stability issues related to the
environment, the circuit simulation reveals fundamental lattice-specific spontaneous
instabilities (due to complex eigenvalues), which are already present when disregard-
ing the environment. We expect those to impede a straightforward observation of
thermal Hawking radiation. Instead,

(iii) we propose to directly probe the spontaneous collapse of systems with apparent
event horizons by means of accumulating quantum fluctuations, which we argue
to be distinguishable from collapse due to dissipative processes.

At any rate, some of the lattice-specific stability issues can be appreciated on the
general level here, others will be shown subsequently for a specific model. On a gen-
eral footing, we see in Eq. (4.2) that any (constant or spatially dependent) local tilt
v (which in our simulation would be implemented by constant or spatially varying
gyrator parameters ;) must equally appear in the (9,¢)? term, as the corresponding
matrix element g'' (u,r =1 is the space-space component) is proportional to v? —u?.
In other words, a finite nonreciprocity in the circuit needs to be “countered” by a cor-
responding inductive interaction, in order to realize actions of the form of Eq. (4.2).
Consequently, we would need an according spatially dependent tuning of the local
inductance profile L; which matches exactly with the values of G;. But first of all,
such a perfect fine tuning is realistically not possible, such that the condition g = -1 is
in general only approximately, but never exactly, fulfilled. Hence, the mapping onto
Eq. (4.5) is likewise not exact, and we cannot guarantee a perfect causal decoupling
across the horizon, and the closed system might become spontaneously unstable over
already short time scales. In fact, below we refrain from a simulation with constant
metric determinant ¢ (in fact, we will modify the inductances rather than the gyrator
values), such that the systems we consider do not map to Eq. (4.5) in the continuum
limit. Furthermore, with the Hawking temperature being defined (at least in contin-
uous field theories) as the derivative of the group velocity (i.e., the surface gravity)
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at the event horizon, there emerges the curious question of what happens to the ob-
servables of the system when considering a very sharp (discontinuous) change of the
metric at the horizon, and how such a diverging surface gravity is regularized. In
what follows we will provide an answer to that question for lattice simulators.

Moreover, there is a deeper issue that our discrete circuit realization unravels, which
is true even if perfect tuning of G, and L; would be available. To see this, consider
first an (infinite) array where all gyrators have the same parameter G; = G. Here, we
can reformulate the nonreciprocal part of the Lagrangian as follows,

G Y (050501 = 0165) = G Y, &5 (051 = Gj01) - (4.12)
J J

Thus, we see that in order to have the correct counter term in the g'' component
for the lattice, we actually do not need nearest neighbour inductive coupling [as in-
dicated in Eq. (4.8)] but instead next-to-nearest neighbour coupling, ~ (¢j.1 — ¢j-1)%.
As further detailed below, because of this fundamental feature of the gyrator ele-
ment, nearest and next-to-nearest neighbour inductive couplings have fundamentally
different stability properties. In particular,

(iv) we find an important loop hole to the ambiguous black and white-hole nature of
lattice event horizons (through an exceptional point in the dispersion relation)
leading to a fundamentally different behaviour in the wormhole interior.

Finally, when returning to a spatially varying G, we can draw another important
conclusion. Namely, for a general gyrator Lagrangian of the form

> G (0501 = jard;) =
J

i (4.13)
Z ¢ (Gj10j1 = Gije1)
J
it turns out to be impossible to find exact inductive counter terms: as can be seen
in the right-hand side of above equation, the Lagrangian can no longer be factored
into simple phase differences (due to G; # Gj_1). The only possibility to counter the
above expression in terms of inductive couplings is to add inductors to ground, and
thus abandon charge conservation within the array. While charge leakage to ground
is very much a potential reality (especially if the realization of the gyrators is not
ideal, leading to additional inductive shunts), nonetheless

(v) we conclude that for generic circuits networks, nonreciprocal interactions cannot
be exactly countered by charge conserving inductive interactions.

The breaking of charge conservation (which is physical as it corresponds to leakage
to ground) effectively provides a mass term in the theory. In fact, we will include a
(finite but very small) mass term in the following, but for a different reason: it allows
us to deal with the otherwise problematic zero mode in the boson Hamiltonian.

To summarize, items (i) and (v) have already been fully demonstrated within the
above general reasoning, and require no further illustration. Items (ii-iv) on the other
hand are now explicitly shown in what follows, by considering a concrete setup.
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4.3. Setup

We here show with two example circuit models the capability of circuit arrays to
engineer nontrivial dispersion relations with analog wormholes. The first proposed
circuit consists of an array of J nodes (with periodic boundary conditions, i.e., J+1 =
1), interconnected via Josephson junctions in parallel with 3-port gyrators, as depicted
in Fig. 4.1a). The complete Lagrangian of the circuit will consist of three parts,
namely a capacitive Lagrangian in Eq. (4.7), a gyrator Lagrangian in Eq. (4.9) and a
term for the Josephson junctions £, = Z;Ll Ejcos(¢ji1 — ¢j + ¢ext,;). Here, E; is the
Josephson energy and ¢ey: ; is the external flux coupling to each Josephson junction.
This flux, and its time-dependent control, will play a pivotal role in what follows.

By standard circuit theory methods [BKD04; VD17; CDT24], we find that the
Hamiltonian of this array takes the form

J 2
H = Z;ECI:Nj +G(Pj1 — ¢j—1)]
=

J
= > Eycos(¢jin = ¢ + Pextj); (4.14)

j=1

with the charging energy
(2¢)?
Ec = .
“~ 2C

The number operator N; and the phase ¢; satisfy the canonical commutator [¢;/, N;] =

7/5‘7]’ .

As stated in the previous section, the stability of circuits where Josephson junctions
connect nearest neighbours nodes and the ones where Josephson junctions couple next
nearest neighbour nodes is very different. Therefore, to illustrate their differences
the second circuit we study has next nearest neighbour connections via Josephson
junctions, see Fig. 4.1b). The Hamiltonian for such a circuit is

7 2
Jj=

J
- Z £ COS(¢J’+1 —¢j1 + ¢ext,j) . (4.15)
j=1

Considering the system at low energies (close to the many-body ground state), the
phases on the nodes will approach an equilibrium configuration minimizing the total
Josephson junction energy of the array. For sufficiently long arrays, we find either
D1 = G & =Pext,j + 0051 = 605 (for H) O @ju1 = §jo1 ¥ =Pextj + 01 = 0pjy (for H').
Assuming Eo < Ej, the quantum fluctuations around the equilibrium value will be
small, d¢; << 1. Consequently, the Josephson term in Hamiltonians (4.14) and (4.15)
can be approximated by

J
v Y Ep(0¢;.1 —0¢;)* + const.
po
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a) U—v u+v

Figure 4.1.: Wormbhole simulations with quantum circuits. In circuits a) and b) (near-
est and next-to-nearest Josephson coupling, respectively) the presence of
gyrators tilts the dispersion relation giving left and right moving wave
packets different speeds. The circuit ¢) is obtained by inverting the signs
of a finite connected region inductances of circuit a). This is achieved by
a flux quench induced by a localized current (inset), shifting the super-
conducting phase difference across the junction by 7, leading to negative
inductance. This creates two boundaries between the normal and over-
tilted regions, which act as the apparent horizons. Horizons for the circuit
with Josephson junctions connecting next-nearest neighbors b) can be ob-
tained in a similar manner.
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J
~ z E,L((Sd)]url - 5¢j71)2 + const., (416)
j=1

where d¢; still satisfy the same commutation relations with /N;. The inductive energy
is BV = EQ)2.

With the quadradic approximation of the Josephson energies, the total Hamilto-
nian describes a noninteracting boson field. Moreover, close to the ground state, the
externally applied flux ¢y ; could be eliminated from the problem. It would there-
fore seem that neither the nonlinearity of the Josephson junction, nor the external
flux play a role. However, as we will show in Sec. 4.4, transient flux-control and the
compact cosine behaviour of the Josephson energy will allow us to generate nontriv-
ial features related to quantum gravity. In particular, we will be able to modulate
the effective inductive energy Ep highly locally, and in particular, render it negative,
allowing for the creation of instabilities that will lead to non-thermal Hawking radia-
tion. Note that the nonlinearity of the Josephson energy was likewise of importance
for earlier proposals to measure Hawking-like radiation emerging from soliton excita-
tions in Josephson junction arrays [KHF20]. We will comment on similarities with —
but also significant differences to — our approach further below.

For the above conventional non-interacting boson problem, translational invari-
ance allows us to analytically diagonalize the Hamiltonians (4.14) and (4.15), H() =
Yom Wbl b (where index m goes from —J/2+1 to J/2), to get the dispersion relations

(Appendix C)
2
Wi = 2\/ B2, + AEcG sin (”Tm) ,

Wl = 2/ E2p!, + AEcGsin (%Tm) , (4.17)

where b,,, (bl,) are bosonic annihilation (creation) operators satifying [by,, bl ] = Gy
and

B 4E-G?sin? (Z’T—m) +4F) sin® (%) +M

J
m EC 7
| AEcG?sin’ (22) ;41172 sin® (%57) + M (4.18)
C

where we will set £} = E /4 for the ease of comparing the two spectra in the linear
approximation. The quantum number m enumerates the momentum of bosonic exci-
tations, where we can define the wave vector as k = 2rm/J, such that wl) — w® (k).
Note that we have introduced a very small mass term M (H") - H) + M ¥, $?) to
avoid the well-known diagonalization issues with the zero modes. We take whenever
possible the limit M — 0. The mass term physically corresponds to a small leak-
age of supercurrent towards ground, which could, e.g., originate from an imperfect
implementation of the gyrator element.
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Figure 4.2.: The above two figures show that the low-momentum eigenvalues (blue
lines) of the circuit Hamiltonians (4.14) and (4.15) can be approximated
by the linear dispersion relation (4.19) (orange lines) at low energies. The
branches of the dispersion relation correspond to right and left movers
with speeds u +v. One crucial point about the eigenvalues in b) is that
near k = 7 the dispersion relation (brown lines) is the mirror image of
the dispersion near k = 0, which is a feature that the eigenvalues in
a) do not have. Parameters used: Ec/Ey, = 1.3, E}/E, = 0.25,G = 0.6,
and J = 50. To lift the degeneracy at zero energy, a small mass term is
used (~ 1073EL).

For small k, the system exhibits a linear dispersion relation, [see Figs. 4.2a) and 4.2b)],

w(k) &' (k) = 2/4E2G? + EcEy K| + 4EcGF. (4.19)

In the relativistic sense, this would correspond to the analog speed of light, where
the two branches k£ > 0 and k£ < 0 denote right and left moving signals, respectively
[see also Eq. (4.6)]. Importantly, we see in general different analog speeds of light
u+v (u-wv) for excitations moving to the left, k < 0 (right, £ > 0) [as illustrated
in Figure 4.1a) and b)], with u o< 2\/4E2G? + EcEy, and v o< 4EcG. A nonzero v
corresponds to a tilt of the dispersion relation, which is only possible for a nonzero
gyrator, G # 0, due to the aforementioned “conveyer belt” dynamics.

Moreover, we observe that on this coarse-grained level (small k essentially corre-
sponds to taking the continuum limit of the lattice grid), the two models exhibit the
exact same dispersion relation. Note however, that the next-nearest neighbour model
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hosts a second low-energy point with linear dispersion relation at k ~ 7 [see Fig. 4.2b)].
The dispersion tilt here is always opposite to the one at k ~ 0. This feature emerges
for the following reason. In the absence of the gyrators, the model ‘H’ has two disjoint
low-energy fields for even and odd lattice sites, resulting in a m-periodic Brillouin
zone. The gyrators couple these two separate modes, restoring 2m-periodicity with
respect to k (due to the alternating tilt), but keeping the two low-energy solutions
intact. In essence, while model H hosts a single low-energy analog light field, model
H' hosts two separate fields with opposite dispersion relation. This detail will play
an even more prominent role in what follows.

In order to engineer analog wormholes with event horizons, we need to specifically
create a dispersion relation with an overtilt where |v| > u — at least in a finite region
of the device. Here, our resulting dispersion relation, Eq. (4.19), provides us with a
significant challenge: if both the inductive and capacitive energies Ey, E¢ are positive,
then it can be easily shown that u > |v|, independent of the specific parameter values.
Consequently, an overtilt must necessarily involve negative capacitances or negative
inductances. In the next section, we will explicitly discuss possibilities to render either
E¢ or Ep, negative, and point out in particular, why we expect negative Fy, to be the
more feasible of the two options.

In the remainder of this section, we proceed by discussing the consequences a nega-
tive inductance has on the dispersion relation. As already stated, for small k£ we thus
get an overtilted linear dispersion relation in both models, see Figs. 4.3a) and 4.3b).
As the slope of the dispersion relation now has the same sign for both positive and
negative k, we get signals propagating in the same direction. If we now join regions
with regular (u > |v]) and overtilted (u < |v]) dispersion relation, we could indeed
engineer analog wormholes. But before we embark on that, we need to discuss in
detail the behaviour of the dispersion relations, Eq. (4.17), for large k. Namely, when
considering the full Brillouin zone (i.e., for -7 < k < ), we see that the two models
(nearest versus next-nearest neighbour) differ significantly. In particular, for the near-
est neighbor coupling, we observe that outside the range —ky < k < ko the dispersion
relation becomes complex, see Fig. 4.3a), where kq is determined by the condition

. 2(k0) A4EcG? - |E|
smt |\ ==
2 4EcG?

This transition point is equivalent to an exceptional point in the system. Crucially,
this finding is in stark contrast to the model circuit where the Josephson junctions
connect the next nearest neighbors. Here, for parameter regime 4E-G? + Ef, > 0,
we can overtilt the dispersion relation without encountering complex eigenvalues, see
Fig. 4.3b).

There are several reasons why both of these models are interesting in their own
right. First, let us comment in more detail on stability. In principle, the inversion
of inductance (or capacitance for that matter) indicates a spontaneous electrostatic
instability. This can be understood already on a much simpler level of a single LC
circuit, with a resonance frequency ~ / EpE¢c. Swapping the sign of the inductance
leads to an imaginary frequency. Note that for transient times, this result is by no

(4.20)
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Figure 4.3.: The principle behind the topological loop-hole for black versus white hole
horizons in lattice systems via exceptional point. In panels a) and b), we
show the complete dispersion of the circuit Hamiltonians (4.14) and (4.15)
with negative inductances. When the Josephson junctions connect near-
est neighbors, a), the eigenspectrum is complex (blue line represents real
part of the eigenvalues and yellow line the imaginary part). The points
where the eigenvalues go from real to complex are exceptional points
(marked by red dots). Consequently, the spectrum only crosses zero once
at k =0, and satisfies the periodicity constraint of the Brillouin zone via
a detour in the complex plane. For next nearest neighbor coupling, b),
the spectrum is real for all values of k, and crosses zero twice, again with
mirror images at k = 0 and k& = 7. The low momentum eigenvalues (or-
ange line) for both the circuits do show an overtilt, which is required to
create a horizon. Parameters are same as in Fig. 4.2, except the signs for
E;, and Ej are flipped.
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means problematic (see also Sec. 4.2.1), as such an imaginary frequency corresponds
to placing a localized wave function on the tip of an inverted harmonic potential.
For transient times, we can by all means obtain physically meaningful results from
the Schrodinger equation. In particular, note that such an evolution will result in
an exponential blowing up of quantum fluctuations of both canonically conjugate
quantities, here, charge and phase (as we will see later also in explicit calculations).
This might at first sight seem counterintuitive. The most common situation for generic
quantum wave functions is that the uncertainty in one of the two conjugate spaces
is inversely proportional to the uncertainty in the other. But note that inverted
potentials provide very special wave functions over time that spread both in position
(e.g., @) space, as the wave function evolves from the tip of the parabola to both sides,
as well as increasing uncertainty in momentum (e.g., V) space, since the particle wave
gets more and more accelerated as it rolls down both sides of the inverted parabola.
The theory is only problematic in the long-time limit, due to the formal removal of
a well-defined ground state. We note that our realization of negative inductances
via the inherent nonlinearity of the Josephson effect provides a very neat conceptual
realization of instabilities, while (in principle) retaining a well-defined ground state
for long times, as we explain in more detail further below. We also note that a recent
work [RSB24] has explored a related but distinct concept of negative mass resonators
in cQED architectures, by strongly driving a weakly nonlinear superconducting LC
circuit [Fan+21], leading effectively to negative susceptibility.

To proceed, we note that in the 1D chain models we consider, there are ways to
stabilize the system in spite of negative inductances, in line with the discussion in
Sec. 4.2. Indeed, the gyrators play the pivotal role for stabilization: in the Hamiltoni-
ans of Egs. (4.14) and (4.15), when we expand the term in the first line ~ F¢, we get
an effective inductive element due to a nonzero G, ~ EcG?*(¢;1 — ¢;j-1)%. This is an
effective inductive contribution due to the gyrator, which is guaranteed to be positive
even when Fj < 0 (as long as E¢ > 0). But as already foreshadowed in Sec. 4.2.2,
this effective inductive contribution couples next-nearest neighbour sites. Hence, a
negative next-nearest inductor [Eq. (4.14)] can be exactly compensated by a positive
next-nearest neighbour contribution of the gyrator. The negative nearest neighbour
inductor model [Eq. (4.15)] on the other hand cannot exactly be compensated by the
gyrators, hence the presence of the exceptional point.

Let us now take a bit of a more formal perspective on the above observation for
generic wormhole simulations, which will allow us to demonstrate one of the central
results of this work, see also item (iv) in Sec. 4.2.2. Namely, there is a simple topologi-
cal connection between overtilted spectra, Brillouin zone sizes, and exceptional points.
For discrete lattice implementations the dispersion relation is always 27 periodic in
k. Crucially, an overtilted spectrum means that the energies cross from positive to
negative values at the transition points k = 0,27,.... If the spectrum is real for all &,
then periodicity in momentum space always guarantees that an overtilted spectrum
near a certain value of £ must have an overtilted partner at another value of k with op-
posite tilt direction, as a periodic spectrum must traverse the zero-energy line an even
number of times. Consequently, for any lattice implementation, it seems unavoidable
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that what appears like a black hole horizon near one value of k, must necessarily
have a white hole horizon partner at another value of k. This fact has already been
pointed out in the context of analog black-hole simulations in tilted Weyl semimetal
structures [De +21]. Our next-nearest neighbour model confirms this expectation,
where the overtilt point at k ~ 0 has an inverted partner point at k ~ +m, see Fig. 4.3
b). These two k points can be individually addressed when preparing, e.g., Gaussian
wave packets centered either around k ~ 0 (wave packets that are smooth in j space)
and k ~ +7 (wave packets with alternating even-odd signs in j space).

Crucially, the nearest-neighbour model provides an intriguing loop hole: here, the
overtilt at £ ~ 0 has no partner point with inverted tilt, very simply because the
dispersion relation satisfies the periodicity constraint in k£ by taking, in a sense, a
“detour” in the complex plane — by courtesy of the exceptional point. Consequently,
the spectrum crosses the zero energy line only once. We are thus able to conclude
that there is after all a case, where black and white hole horizons can be created
independently in a lattice. This comes at the cost of a spontaneous instability within
the overtilted region, which, importantly, is present even in the absence of an event
horizon. This finding will be of great importance when interpreting the origin of
radiation in the presence of event horizons in Sec. 4.5 below.

4.4. Realizing negative inductance through quench

As noted above, an overtilt in the dispersion relation is realized by means of either
negative capacitances or negative inductances. We here present ideas for the engi-
neering of both features, and then argue, why we expect the latter to be more feasible,
thus demonstrating claim (ii) in Sec. 4.2.2,

Negative (and other nonlinear) capacitances are an interesting topic within quan-
tum circuits, which date back to various pioneering ideas by Little [Lit64] and Lan-
dauer [Lan76], and have recently been a focal point of research, either in the form
of ferroelectric materials [CJG15; Zub+16; Hof+18; Hof+20], or capacitively-coupled
polarizers inducing pairing in quantum dots [Ham+16; Pla+18]. Specifically within
the circuit QED context, it has recently been proposed that negative capacitances
exist in the sense of an emf-induced renormalization [RD22|, or that the charge in
the quantum phase slip energy contribution can be fractionalized and thus rendered
incommensurate [Her+23a; Her+23b]. There is, however, the problem that negative
capacitances correspond to an electrostatic instability, and are thus only meaning-
ful either as partial capacitances (where another capacitance in parallel guarantees
total positivity on a given charge island) or in a transient regime. Since we are in-
terested in the latter (after all, Hawking radiation is manifestly a transient feature),
this means that the capacitance should have to be tunable on very fast time scales,
which seems challenging, especially on the small scales of the here proposed circuit
QED architecture.

This is why we move on to ideas on how to bring about a transient behaviour
within the inductive (Josephson junction) element. Remember that we focus on a
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regime of 'y > E- where the cosine of the Josephson energy can be approximated as
a parabola with the inductive energy E ~ E; of an effectively regular linear inductor
(rendering the resulting plasmon field effectively non-interacting, as shown above).
Nonetheless, we can exploit the nonlinear inductive behaviour. Suppose there is a
mechanism, allowing for a fast, transient switch from —cos(¢; — ¢;-1) (e.g., for the
nearest neighbor model) to +cos(¢; — ¢;-1). If that switch occurs sufficiently fast,
the circuit degrees of freedom have no time to adjust, such that the many-body wave
function immediately after the switch remains localized on what is now the maximum
(and not the minimum) of the cosine. Expanding for small phase differences localized
around said maximum, we can realize a sign switch of the inductive energy, £, - —Fy,
leading to the sought-after overtilt in the dispersion relation (see the orange lines in
Fig. 4.2). Specifically, in the next section, we discuss the possibility of applying an
inverted inductance only in part of the system to create event horizons separating
regions with u < |v| from unquenched regions with u > |v].

Our proposal, thus, requires a mechanism to locally address the Josephson junc-
tions in a way to create connected regions with inverted inductance. We note that
so-called tunable 0 — 7 junctions are a subject of ongoing research and have multiple
proposals for their implementation, including the theoretical proposal about Joseph-
son junctions with a high-spin magnetic impurity sandwiched between two super-
conductors [PB18], experimental realization in ballistic Dirac semimetal Josephson
junctions [Li+19] and another experimental realization in Indium antimonide (InSb)
two dimensional electron gases [Ke+19].

We here point out a feasible alternative, where inductance inversion is also possible
for regular superconductor-insulator-superconductor Josephson junctions. Namely, a
nearby current source can likewise induce a phase shift of w. This idea is based on
the results of Ref. [RD22] where a gauge invariant formulation of time-dependent flux
driving was derived. Gauge aspects are of utmost importance to understand how
time-dependent flux is allocated in circuits involving multiple Josephson junctions,
such as SQUIDs or junction arrays [YSK19b; RD22; KR23]. Previous to Ref. [RD22],
it was expected that the ordinary lumped element approach to circuit QED is valid
in the presence of time-dependent flux. In this standard framework, it was recently
shown [YSK19b] that the allocation of the time-dependent flux within the device
(and thus, of the induced electric fields) is given by the capacitive network of the
involved charge islands. If this observation were generally true, it would be difficult
to locally address certain junctions with high local precision, unless the capacitive
network would be engineered accordingly. However, as shown in Ref. [RD22], the
connection between flux allocation and the capacitive network is valid only in special
cases; in general, both device geometry and magnetic field distribution lead to a highly
nontrivial flux allocation.

We here adopt this principle to show that the individual junctions can be addressed
by small current loops, (one loop per junction) where a time-dependent drive (inset in
Fig. 4.1) provides a shift inside the Josephson energies of the form cos(@;.1—¢;+¢5),
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Figure 4.4.: Mllustration of non-local effects of the current loop flux drive.

where

ext 27T
o= 5 f dl-A . (4.21)
J

Here @ is the flux quantum and A is the vector potential in the irrotational gauge
[YSK19b; RD22] accounting for the magnetic field emitted by the current carrying
loop sources. Note that since the magnetic field decays only as a power law, one may
have to take into account non-local effects, that is, the current loop at junction j
influences not only the phase drop at junction j but also at the other junctions j’,
see Fig. 4.4). We can generically write down the equation

J
¢ (t) = Z;O‘j,j’[j(t) : (4.22)

where the matrix « contains the information about the geometric details of the circuit,
and accounts for the screening of the magnetic field (Meissner effect) as well as the
screening of the induced electric field (Thomas-Fermi screening). In order to know
what exact current pulses need to be applied in order to create a desired target phase
profile 95 (e.g., ¢§* = m within a given connected interval, jo < j < ji1, and ¢§* =0
everywhere else, which gives the black and white hole horizons, see sections below),
one simply needs to invert the square matrix a. Generally, we note that for our
purposes, the precision requirements are not so stringent: as long as deviations from
the target phase profile are small (with respect to 7), the inductances in the array
are still inverted, resulting in the desired apparent event horizon.

The computation of matrix « is in general a complicated numerical task. We can
however provide a rough estimate by assuming the junctions to be arranged in a
straight line, and applying the Biot-Savart law (similar in spirit to Ref. [Riw21]). To
this end, we assume that each current-carrying wire j is described by a small current
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Figure 4.5.: Plot of current profiles for different parameters, in order to create the
target phase shift profile of exactly 7 within a connected region in the
junction array (from j = jo to j = j;). We have plotted three current
profiles, that were obtained for a system with 50 sites with jo = 15 and
j1 = 35, with different ratios of Al to Az as shown in the graph. The
parameter R does not have a significant effect on the nature of the current
profile, only on the magnitude of the ration ,/1,, hence we set R/Ax = 1.

element of length AL. For small current loops with radius R, we can simply set
AL ~ R 3. Assuming Coulomb gauge (equivalent to the irrotational gauge, up to
screening of induced charges on the superconducting surfaces [RD22], which we here
neglect for simplicity) we have to solve VZA = —pj with the current density j for a
small current carrying element. Assuming an infinitesimal, delta-like current element
j ~d(x)x, and plugging the resulting A into Eq. (4.22), we find

v R
Io \/Az2(j-j)2 + A2

(4.23)

Q@5

where Az is the separation between Josephson junctions, and Al is the separation
between current loop j and junction j. The characteristic current I is given as
It = oL/ (29g), where L is the length of path £; in Eq. (4.22). It represents the
size of the fine structure containing the Josephson junction (Niemayer-Dolan bridge).
For a typical size of £ ~ 10um, we find Iy ~ 10uA (which is at the upper bound
of the current that can usually pass through flux lines). Note that this is a crude
upper bound for Iy. Very likely, Iy is reduced significantly due to screening of the
electric field which has here been neglected. We therefore expect that a flip of the
phase by ~ 7 is feasible. The other central figure of merit is the speed with which the

3Note that the most common designs for flux control, the loops have a radius larger than the
separation of the input and output lines, such that the representation of the source as a small
current carrying element is strongly simplified. A current source with ring geometry could be
more precise, but complicates the here presented estimate.
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phase flip can be performed. Defining the ramping time from zero current to target
current for a single flux line as At;, the phase flip is guaranteed to be nonadiabatic
for VEcE;At; < 1. This requires either the use of sub-GHz qubit designs, similar in
spirit to a recent proposal in Ref. [Sel+23], or ultrafast (~ 100 gigasamples per second)
arbitrary waveform generators. The latter may cause problems with usual Al-based
architecture, but improvements were very recently demonstrated in connection with
Nb-based circuits [Anf+24].

For the matrix given in Eq. (4.23), we can explicitly compute a required current
profile that needs to be applied in order to swap the phases by +7 within a connected
part of the 1D chain. Blue dots in Fig. 4.5 show that if Al < Az, a is almost perfectly
diagonal, such that there is a one-to-one correspondence between the desired target
phase profile and the required current profile that has to be applied to the individual
loops. Note however that the onset of non-local effects may play a role even for
(moderately) small Al/Az (orange and brown dots in Fig. 4.5), where we need to
apply a slightly nonlocal current profile to have a sharp, local switch from positive to
negative inductances within the 1D chain.

Note that the flux drive may in general not only couple to the Josephson junctions
but also to the gyrators shunted in parallel. In accordance with Ref. [RD22], such a
stray coupling can be neglected if the surface charges induced by the time-dependent
flux drive (these are the charges screening the induced electric field) are mostly al-
located near the junction. We expect this scenario to be plausible if junction and
gyrator are sufficiently spatially separated with respect to the length scale on which
the magnetic field varies. If such a spatial separation cannot be guaranteed, then one
would have to take into account the microscopic and geometric details of the gyrator
which is beyond the scope of this work.

To conclude this section, we point out similarities and differences to previous pro-
posals creating analog event horizons and Hawking radiation in solid state systems.
Specifically, the analog Hawking radiation previously predicted in Josephson junction
arrays [KHF20] relies on the creation of solitons, where within the finite extension
of the soliton (over many lattice sites), the inductance can likewise be regarded as
effectively negative within the soliton profile. The procedure we produce on the other
hand involves creating +m shifts on a connected series of junctions, which in essence
corresponds to a tightly packed generation of “half”-solitons with the width of a single
lattice site. Our system thus seems arguably much less stable. But first, as indicated
already, the nonreciprocity provided by the gyrators allows for a stabilization of the
system even with inverted inductors, due to an extra (positive) inductive contribu-
tion. Second, the extra tilting mechanism provided by the gyrators allows for the
explicit realization of arbitrary (on-demand) spacetime geometries, and in addition,
the explicit creation of wormholes with (in principle) distinguishable black and white
hole horizons. As for the evolution of the unstable system beyond transient times, we
provide some thoughts in Sec. 4.6. Another important difference is that we here have
in principle perfect control on the position of the horizon, contrary to the solitons
studied in Ref. [Nat+09; KHF20], which are autonomously moving with respect to
the lab frame. Moreover, we can create an event horizon with the precision of a single
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lattice site. This is in contrast to all other analog Hawking radiation proposals (cold
atoms, circuits, tilted Weyl semimetals), where the analog metric always changes over
a finite width (a healing length). This is an interesting caveat specifically regarding
the existence of a well-defined Hawking temperature, or more generally, how to make
sense of horizons with diverging surface gravity, as already indicated in Sec. 4.2.

4.5. Analog horizons via flux quench

Once the optimization problem of the current profile has been solved, the sign of
the Josephson energy can be flipped for a region of the circuits described by the
Hamiltonians (4.14) and (4.15), resulting in two horizons in the circuits (Fig. 4.1c).
In the presence of horizons, the energy spectrum is in general complex for both nearest
and next-to-nearest neighbour implementations.

The presence of tilted dispersion relations and horizons can be probed by means of
injecting wave packets within the chains, and probe their time of flight. For example,
within an overtilted region, wave packets can only move in one direction. At a white
hole horizon, an incoming wave packet comes to a stand still. Such features represent
a first experimentally available signature of the nontrivial spacetime geometry. Note
that for the time evolution of the wave packets, the distinction between nearest and
next-to-nearest neighbour coupling is not that important, under the condition that
the experimenter is able to prepare wave packets close to k ~ 0 or k ~ w. These two
types of excitations clearly distinguish between black and white hole horizon as they
probe only a local part of k space. In addition, aspects of the wormhole stability
(or instability) are not immediately visible in the wave packet amplitude (until the
moment when the evaporation starts changing the spacetime geometry itself, see also
Sec. 4.6 below).

We therefore present in addition a more sophisticated measurement which is able
to probe radiation due to instabilities in a more direct fashion. Namely, this section
examines how to characterize the system via two point charge and phase correlation
functions. As foreshadowed above, while for a stable system, quantum fluctuations
remain bounded over time, they start to diverge in the presence of complex eigen-
values. In the quadratic approximation, see Eq. (4.16), it is convenient to express
the charge and phase operators for the circuits (4.14) and (4.15), in terms of bosonic
operators

= g —dl
N = s (0-a)), (129
¢, = L (aj+al), (4.25)

V2

that obey the following commutation relations [aj,a},] = 9,5, laj,a;] =0. Now, cal-
culating the two point correlation functions for charge and phase operators turns
into calculating the correlation functions of the form (aj(t)a},(t’)), (a}(t)a;,(t’)),

(a;(t)ay (1)), and {af(t)a; (t')).
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We are going to calculate these correlations using two methods: 1) direct diago-
nalization and 2) an extension of Klich’s determinant formula [K1i02]. The reason for
the multi-pronged approach will be explained in detail below. To summarize, 1) is
in principle very straightforward to implement and program, and is more versatile,
as it would allow computing all types of observables, not only correlations. But di-
agonalization is not applicable in the presence of exceptional points, which is where
method 2) comes into play, since it only requires exponentiation of the matrix with
exceptional points.

As previously stated, once the system has been quenched, its state is in a highly
excited state, were the new ground state is removed from the theory (a well-defined
procedure for times sufficiently close to the quench). In order to anchor the theory
to a well-defined ground state (necessary to compute observables in a well-defined
way), we choose to perform computations with respect to the ground state of the
unquenched system. Since the diagonalization of the quenched Hamiltonian is being
performed with respect to a state that is in general not its eigenstate, we will need
a generalised version of bosonic Bogoliubov transformations. These transformations
are discussed in Appendix D.

Implementing the Bogoliubov transformations on the quenched Hamiltonian, men-
tioned in the previous paragraph, requires diagonalizing a non-Hermitian matrix.
This can pose a problem if the matrix has defective eigenvalues (exceptional points).
We therefore suggest another method of calculating the correlations after the quench.
Consider the following way to write a two point correlation

(al(B)a;(1) = &y [0 0)
Tr (eﬁ-t>t€xa;raj 671’H>t€*BH<)
= lim :
ﬁ-’oo Tr (6—6H<)

where ‘H. and H. are the unquenched and quenched Hamiltonians respectively. The
many body traces in the above expression can be calculated by an extension of Klich’s
trace-determinant formula. The original formula was introduced to calculate the trace
of many body operators by replacing it by a determinant of the corresponding first
quantized operator [K1i02]. The extension of this formula is described in appendices E
and F. This approach bypasses the problem posed by defective eigenvalues but it is also
considerably slower than diagonalization for numerics, hence limiting the size of the
systems we can work with. Another important remark: in the derivation (Appendix
E) we have to assume the existence of a ground state for a non-Hermitian operator,
which is not guaranteed. For some context about diagonalizing quadratic bosonic non-
Hermitian operators we also refer the reader to Ref. [KH23], where the concept of third
quantization [Pro08] was extended to the bosonic Linblad equation. In Ref. [KH23|,
the existence of a ground state (or more appropriately, a non-equilibrium steady state)
is always guaranteed due to the form of the Lindblad equation. Crucially, we do not
have this constraint.

The system we will study here has fifty sites (J = 100) with the wormhole located
between j, = 30 and j; = 70. For convenience, we impose periodic boundaries in

(4.26)
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position space (i.e., the 1D chain is closed into a loop). The parameters of the system
are |E| = |E| = 342E¢, G =24 and M = 3« 107*E¢. As already pointed out, in
each of the following figures of correlation functions the result could be obtained by
both diagonalization and the generalized Klich determinant. The time steps in the
following plots are dt = 0.0031E;" for the circuit with nearest neighbor coupling and
6t = 0.031E;! for the next-to-nearest neighbor coupling.

First, let us examine the plots of correlation functions for the circuit with only
nearest neighbor coupling, Figs. 4.6 and 4.7. We see that both phase and charge
quantum fluctuations diverge after the quench. The system has two boundaries (red
dotted lines) between the wormhole and the normal regions, that act as the horizons
(located at jo and ji). If we initialize low energy excitations (for this circuit this
means excitations near k = 0) in the region with overtilted dispersion, they move from
the left horizon to the right horizon, hence we label them as the black and the white
hole horizon respectively. The black hole horizon radiates away with time, as can
be inferred by the accumulation of quantum fluctuations near it with time (which
indicates presence of radiation), while the white hole horizon does not radiate. This
explicitly confirms the previously discussed fact that for the nearest neighbour system,
black and white hole horizons are distinguishable. The wormhole region also starts
radiating due to the presence of the exceptional point (as likewise already discussed in
Sec. 4.3). We observe that the decay in the wormhole interior is much faster than the
one induced by the presence of the horizons, which leads to the correlation functions
growing much more rapidly inside the wormhole, before the black hole horizon show
any appreciable decay. Overall, the above thus illustrates the possibility to create
lattice simulations of wormholes with distinguishable black and white hole horizons,
at the cost of a strong instability of the wormhole interior.

Now, let us focus on the circuit where Josephson junctions connect next nearest
neighbors. Low-energy excitations in this circuit can be either near k£ =0 or k£ = +m.
For excitations (inside the wormhole region) near k = 0, similar to the previous circuit,
the left boundary (jo) acts as the black hole horizon and the right one (j;) as the
white hole. In contrast, for excitations near k£ = +7 the left boundary acts as the
white hole horizon and right boundary as the black hole. This symmetry is also
reflected in the correlation plots in Figs. 4.8 and 4.9, where we can observe both
horizons radiating away identically. Also, the only instability in this circuit is due to
the horizons, leading to a much slower collapse.

We can contrast above findings with a numerical calculation on a lattice with in-
creasingly smooth variation of circuit parameters. Naively one would expect that
there exists a continuum limit where the lattice theory maps back to the continuous
Lagrangian (see Eq. (4.1)), where stable solutions exist (non-complex eigenvalues)
and where horizons are unambiguously either black or white holes. Our calculation
reveals the following (see Appendix G): while solutions with real-valued eigenfrequen-
cies exist (reproducing thermal Hawking radiation) there remain two caveats. First
of all the black/white hole ambiguity remains for the next nearest coupling model —
giving rise to radiation close to both k£ = 0 and k = 7 sectors. Secondly, the Boltz-
mann factor (expressing Hawking radiation) receives a renormalisation that depends
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Figure 4.6.: Time evolution of quantum fluctuations of phase difference for a system
with Josephson junctions connecting the nearest neighbors. Red dotted
lines denote the position of the apparent horizons, i.e., boundaries be-
tween the wormhole and normal regions. Here, the fluctuations visibly
distinguish between a pure black (pure white) hole horizon, where quan-
tum fluctuations accumulate (or not). More over, the interior between
the two horizons is here unstable, such that quantum fluctuations diverge
immediately within the entire wormhole region.

strongly on the details of the discretisation, which likewise cannot be removed by
simply letting the lattice constant go to zero. Overall we can distinguish three types
of field theories, which are all demonstrably distinct from one another. Lattice theo-
ries can either be considered in an unstable regime where parameters change abruptly
with respect to the lattice constant, or a stable regime with smooth changes. However
even the latter does not simply map to the continuous model.

4.6. Perspective on wormhole evaporation over long
times and path to quantum inductors

As shown in the previous section, charge and phase fluctuations accumulate very
rapidly due to the fundamental instability inherent to the wormhole horizons or in-

terior (in case of nearest neighbour inductive coupling). In particular, the more the
system accumulates charge and phase fluctuations over time, the more the quadratic
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Figure 4.7.: Time evolution of quantum fluctuations of conjugate charge for a system
with Josephson junctions connecting the nearest neighbors.

approximation of the Josephson energy becomes inaccurate, such that predicting the
system dynamics for long times becomes a much harder task (as the system can no
longer be approximated by non-interacting bosons). This is well beyond the scope of
the present work. We nonetheless find it illustrative to speculate on a qualitative level
about the long term fate of the wormhole — especially as it allows us to distinguish be-
tween intrinsic (spontaneous) collapse, and dissipative relaxation. In addition, some
of the resulting concepts provide an interesting segue to the subsequent idea: quantum
superpositions of the spacetime geometry.

To this end, let us take into account interactions with an environment. For the sake
of simplicity and concreteness, we consider the phase difference ¢; —@;_1 + @ext,j across
a single junction. At the beginning of the wormhole quench, this phase difference is
either localized around 0 (minimum of the cosine, if the junction is positioned outside
the wormhole) or around +7 (maximum of the cosine, inside the wormhole). In the
presence of the instability, the quantum fluctuations of this phase difference blow up
over time, as shown in the previous section. Now suppose that the environment en-
tangles (either weakly or strongly) with the current across this junction. This means
that the phase difference gets spontaneously projected onto a more localized state.
Notably, this type of environment-induced process thus diminishes quantum fluctua-
tions. We note that the same picture holds in perfect analogy for the accumulation of
charge noise quantum fluctuations, respectively, the reduction thereof by a dissipative
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Figure 4.8.: Time evolution of quantum fluctuations of phase difference for a system
with Josephson junctions connecting the next-nearest neighbors. Here,
(and contrary to Figs. 4.6 and 4.7) both horizons have black as well as
white hole character, such that the two horizons are not easily distinguised
when considering the spatial dependence of the fluctuations. On the other
hand, the wormhole interior is here (at least initially) stable, and quantum
fluctuations grow only from the horizons outwards.

process extracting information about the charge.

To proceed, note that the location of the wave function now is no longer at 0 or
7, but can be (with a finite probability) at a certain distance from the minimum or
maximum. With the new location updated, we again quadratically expand the cosine
around the new peak position of the phase difference. Importantly, due to the co-
sine behaviour of the junction the resulting effective inductance is now different (the
curvature of the cosine obviously changes as a function of the position at which it is
calculated). Thus, as time progresses, and the phase difference starts to classically
diffuse after repeated environment-induced measurements, the effective inductance at
a given junction likewise fluctuates classically. At this point, the impact of such dis-
sipative processes could likewise be detectable in time-of-flight measurements of wave
packets within the array. At any rate, the most likely long-term outcome is that all
phase differences relax to the ground state, equivalent to the complete evaporation of
the analog wormhole. We note that for a system on a ring (with periodic boundaries),
or a system with a finite mass term (Cooper-pair leakage to ground), the emergence
of soliton states might be a possibility.
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Figure 4.9.: Time evolution of quantum fluctuations of conjugate charge of a system
with Josephson junctions connecting the next-nearest neighbors.

Let us repeat that even though the environment will undoubtedly have a big impact
on the system dynamics (especially beyond the immediate transient time scale), the
experimental signatures could not be more different. Analog Hawking radiation leads
to an increase of quantum fluctuations, whereas the environment induces classical
fluctuations. Thus, the observation of the former can distinguish between how the
system intrinsically reacts to the creation of an instability, as compared to the impact
of external perturbations.

To conclude this section, we consider the very hypothetical case of negligible cou-
pling to the environment, as it reveals an interesting additional idea which we pursue
in the remainder of this work. If we assume that the build-up of quantum fluctua-
tions of the phase could progress unimpeded over longer times, the nonlinearity of
the Josephson energies results not in classical fluctuations of the effective inductance
(as in the previous paragraph), but in a system that has to be interpreted as being
in a quantum superposition of different effective inductances — a form of quantum
superposition of the spacetime geometry itself. However, within the above considered
setting, this effect is likely not to survive for very long due to environment-induced
decoherence of the quantum fluctuations, and even for a highly protected system,
it would be hard to analyse the effect in an unambiguous way. This serves as the
motivation for the next part of this project, which is not included in this thesis. We
modify the idea of quantum superposition of different effective inductances by not re-
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lying on instabilities (and thus not requiring any ultra-fast quenches), but instead on
more general notions of Josephson junctions with multiple minimas. This endeavour
will on the one hand introduce the notion of a quantum inductance, and with it, a
likely more stable version of a quantum superposition of the analog spacetime. As
is shown in Sec. VII of [Jav+24] there exists protocols allowing classical signals to
entangle with quantum spacetime, marking a highly non-trivial form of backaction
between fields and the spacetime they traverse.

4.7. Conclusions and outlook

In this chapter of the thesis we have proposed using quantum circuits to implement
analog horizons. Even though it is a well explored concept in solid state systems in
general, we here explicitly demonstrate the capacity of superconducting circuits to
emulate arbitrary spacetime configurations. By identifying a minimal fundamental
set of necessary circuit elements, we further unravel a number of surprising findings
pertinent to lattice systems, which allow in particular to create horizons where the
change in metric parameters happens at trans-Planckian length scales, allowing us to
disentangle the effect of a finite healing length from the effect of a horizon — and in
doing so, exploring the extreme regime of horizons with diverging surface gravity. To
implement the analog horizons in a quantum circuit, we proposed a general way of
creating negative inductances with Josephson junctions transiently driven by nearby
current loops. We further uncovered two subtly distinct ways to engineer a region
with overtilted dispersion relation, either with inductive coupling of nearest or next-
to-nearest neighbour nodes. While for the latter, horizons have a combination of black
and white hole character (as is the most usual case in lattices), the former [Eq.(4.14)]
hosts two distinct kinds of horizons, one that acts purely as a black hole horizon and
the other as a white hole horizon. For this second type of circuit, it is not only the
horizons, but also the region between the horizons (wormhole interior) that is unstable
due to the presence of an exceptional point. This instability also contributes to the
observed radiation (in addition to the evaporation of the horizons) as can be confirmed
by tracking the quantum fluctuations of phase difference and conjugate charge with
time (Figs. 4.6 and 4.7). In addition to Bogoliubov diagonalization, we used an
extension of Klich’s trace-determinant formula to obtain the correlation functions
numerically. The proof of this extension remains elusive for a general operator, but in
the parameter regime where the generalised Bogoliubov transformation is applicable,
the results of both numerical methods agree.

In this work, in addition to standard circuit elements, we have also included ele-
ments that are still being developed experimentally (such as quantum gyrators), or
introduced a new way to realise effective negative inductance, which, although it is
based on existing elements and ideas such as Josephson junctions and flux drive, are
here proposed to be operated in previously unexplored regimes. We here therefore
point at feasible small scale experimental test that can act as proof of principle for the
basic physical principles behind the considered physics. For instance, our proposal
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can be tested on a single transmon, where the qubit frequency becomes imaginary
VE;Ec - \/-E;Ec for transient times. The resulting accumulation of phase or
charge quantum fluctuations (or limits thereof due to coupling to the environment)
can thus be tested in an “imaginary” qubit device. Such a study might be also of
some fundamental interest, when extending the description of the junction beyond
the quadratic approximation, where the expansion around the energy minimum or
the energy maximum can be regarded as real and imaginary twins of nonlinear dy-
namics — ready to be explored in future works. Finally this work also serves as basis
for us to develop the idea of quantum inductors and use them to simulate quantum
superposition of spacetimes (Sec. VII of [Jav+24]). An idea that as far as we know
has been unexplored in condensed matter physics until now.
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A. Extracting derivatives of
eigenvalues from experiments

In the main text, we argue that the y-derivatives of eigenvalues \ can be extracted
from experimental data. We here briefly explain this statement. It is rooted in the first
definition of FCS with time-local current measurements, as explained in Sec. 2.4.1 of
the main text. Here, one measures the cumulants, as defined in Egs. (2.15) and (2.16).
The moment and cumulant generating functions can be expressed in terms of the
eigenmodes of L(y,¢) as

m (x,7) = em0OT) = tr [eLO0O)7 p |
= 3 Mt [In (x, 6)) (n (X )] po]

ean(XK/))

_ Z et (@) T+an (x,0)

- eAO(X7¢))T+a0(X7¢) + Z eAn(X7¢)T+an(X7¢) (A‘l)

n#0

where A\, (x, @) are the eigenvalues of L(x,¢) while |n(x,¢)) and (n(x, )| are its
right and left eigenvectors, respectively. We know that A\ (0,¢) = 0 and g (0,¢) =0
if py is the stationary state. The moment and cumulant generating functions can
be expanded about y = 0. For notational simplicity, we omit the addition of the
(—i)* prefactor for the k-th cumulant, and we likewise neglect the elementary charge
prefactor e. Note that the physically measurable cumulants C}, in the main text and
the below defined ¢ are related as Cy = (—ie)*c,. At any rate, we find

1 (x:6.7) %m0 (6,7) 4 X0 (6,7) + 5 (6,7) + .
i (6,7) = D (x,6,7)

(0 6m) w0 (6,7) + X1 (6,7) + 5P (6.7) +
0 (6,7) = Bhe (x,6,7)|

x—0

(A.2)

x—0

Now we can define the derivatives of the cumulant generating function in terms of
the derivatives of the moment generating function via the natural logarithm

%ln 1+xmy (¢,7) + %XQmQ (6, 7)+.. ] =co (o, 1)+ xe1 (o, 7) + %XQCQ (6, 7)+...

Al



A. Extracting derivatives of eigenvalues from experiments

I [ 1 xms (6,7) + ¢ (6.7) | = xms (607) + 502 [ (6,7) = i (9,7)] +

(A.3)
where we have used the Maclaurin series expansion In(1+2z) = x—22/2+23/3-.... An
order by order comparison yields the well-known relationships

¢o (¢,7) =0
o (6.7) = 2 (6,7)
& (6.7) =~ [ma (6,7) - m3 (6,7)] (A4)

To proceed we now have to find the relation between the derivatives of moment
generating function and the derivatives of eigenvalues. For the latter, we get

M (6 9) 7+ (1 0) = A (9) + O (9) + 30 (6) |
o @)+ xal @)+ P @]+ (@)

where )\glk)(gb) = O A (X ¢)|X%0, and the same for o (qb) Plugging this expansion of

A and « into the definition of the moment generating function, we get

mo(,7) =1 (A.6)
mi(6.7) = £ MO0 A0 () ol (4)]

ma(9.7) = Ze“o“@”a(”@[ AP (@) +af @)+ (A () +al (@) ] . (a7
Finally we can write the cumulants in terms of derivatives of eigenvalues
(1 (6.7) = £ O’ 30 (9) + 2o (0)]
2 (0.7) = SOl O A2 () 220 ()0l () + [\ ()] 7+ 2 (o (0)+ [0 @] )|

—ZeAsf’<¢>feA53><¢>T[ea5?><m;“(czb)e POND (9) 7+ e @ND (p) e @D ()

1
+ e @D (¢) e"‘fg)(‘b))\fll,) (o) + ;ea?%)aﬁ}) (9) eo‘g)(‘b)afj) (¢)] (A.8)

Just to briefly confirm, in the long time limit 7 - oo, the second cumulant becomes
co(p, 1) = —A(()Q)(gb). Now, the idea is the following. The quantities ¢; and cy are
measurable as a function of 7, when performing a finite frequency evaluation of current
and noise. Then, all quantities which have a distinct time-evolution (be it due to a

A2



different exponential decay due to A, or due to a prefactor with a different power-law
in 7) can be distinguished and extracted in principle by fitting of the 7-dependent
data, by an appropriately chosen fitting function.

Consequently, in addition to the decay rates AY, the following terms can be indi-
vidually extracted from the experimental data. For the first cumulant, these are

o1 =2 @O\ (¢) (A.9)
02 e @) oM (o) . (A.10)

From the second cumulant, we can independently extract

03,0 =¢™ N (9) + 208D (6) ol (9) (A.11)
0 2

010 =% @ AP ()] (A.12)
0 2

0 =@ (af? (9) + [0 ()]). (A.13)

Finally by taking different combination of these expressions we can get the first and
second order corrections of all eigenvalues, that is

AV () = 2 (A.14)
Ol,n
and ( ) )
)\7(12) _ 01,n03,n — 402 n04,n ) O4.n ' Al
(9) (A.15)
These individual results can be stitched together to get A, (x) ~ )\%0) + X)\fll) + %X%(f) ,

which we plot in Fig. 2.9a in the main text for A,. While in principle, this procedure
allows us to analytically continue the eigenvalues from y = 0 to finite x, we see that
this continuation fails to converge if there is a topological phase transition from zero
X to finite x, unless one measures cumulants up to infinite order in k, which is a
prohibitive requirement.
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B. Calculation of the transmission
coefficient for the squid detector

In the main text, we describe an all-circuit realization of continuous weak measure-
ment of the supercurrent. The decisive figure of merit is the transmission coefficient
of incoming waves towards the SQUID detector. To calculate this transmission co-
efficient, we start from the Hamiltonian description of the SQUID detector given in
Egs. (2.31-2.33), and first diagonalize the Hamiltonians for the left and right conduc-
tor lines, i.e. H; and Hp, using the following mode expansion

i [ dk (Cy\'* (K] . ;
Qj,L/RZ—EO[?(L—O) 28111(?)008(]{(]—1/2))[ak;7L/R—CLk7L/R:|

vir 1 [dk(Le\'" 1 . i
% —%f? 50 —kcos(k;(j—1/2))[ak,L/R+ak7L/R] (Bl)
0 2sin

The free Hamiltonians becomes

™

rdk . (k dk . (k
HO:HL®HR+HL®HR:wg/—sin(g)aZLak7L®]IR+HL®wg/—sin(§)a,tRakyR.
T ’ T P
0 0

(B.2)

We note that in the continuum limit (vanishing size of islands j), we recover a linear
dispersion relation ~ wok. For now we keep finite size effects, and take the continuum
limit at an appropriate later time.

Consequently, the interaction term can be expressed in terms of these bosonic
operators as follows,

V= (901 SOO)
[ L dkdk'’ COS COS K
0][ ' (2) []IL®ak,R+]IL®a£yR—ak7L®HR—aZ’L®HR]
CYO (27T) SlIl ) sin ( k2/ )
[]IL®ak'73+ﬂL®al]:;’,R_ak’,L®HR_a};/7L®]IR:| (B?))

We can now deploy the following important simplification. We will be considering
an incoming signal at a certain energy focussing on the limit of elastic interaction
(neglecting a small chance that the boson may be absorbed by the main circuit). In

B4



addition, we perform a rotation wave approximation, discarding the pair-wise creation
(annihilation) terms ~ afal (~ aa). This allows us to work in the single particle picture,
the relevant states being |0, k) and |k,0), where the first (second) states corresponds
to a single particle eigenstate of H; (Hg). The corresponding Green’s functions are

1

(Grw)ypp = (K, 0|m|k'>0)
(G ) g = (K, O|mlo,k’)
(Grw) r, = (0, K] m |K",0)
(G = (0. == [0, K (5.4)

According to the Fisher-Lee formula [FL81], for the transmission coefficient we need
to find (Ggx) rr- We can write the Dyson equation as

1 1 1

1

7 = l{;—k’ = k' k, k
(Gk,k)RL <07 |E—H+ZO+| 70) (07 |E—H[)+ZO+| 70>+<07 |

(B.5)

Since we consider only processes in V' conserving the total boson number, we can
insert the identity operator for single particle subspace

rdk
i :[—ko k.0
L 27T|7><7|

o

dk dk
H=HL@]IR=/ Sl 0 )(k1,0|+f S210,k2) (0, ke (B.6)
0 0
to get
1 A
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dk1 dks 1
MLy H i J o 1F1:0) k1,0|Vf ks, 0) (ks O 50
dk1 dk, 1
*”MEA%HW x 1o 0) hﬂvf o 0ROl E e
1 alk2 dks 1
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B. Calculation of the transmission coefficient for the squid detector

Assuming weak tunneling, we may deploy a perturbation theory up to first order in
the interaction V. To this end, we set H = Hy on the right side of Eq.B.5, to get

1 1 1
K0+ {0k v k.0
om0 O e e Vs T o 0
(B.8)

(Gk,k’)RL N (07 k|
1 1

=——(0,k|VI|K,0) ———m8 ——

E—wk+7;0+<7 | | ’ >E—wk/+i0+

Since without the interaction term V', there cannot be any coupling between the left
and right side of the system, the free Green’s function connecting the left and right

momenta is zero, i.e.
1

E- HO +110*
This leaves us with the task of computing the interaction term

L dkidks cOs cos (&2
(0, K[V [K,0 \/ O/f 1 (3)cos(%) (01 ® (0] ax.p[I @ ar p + 1 ® af,
Co (27T) sm kl)sm(]”)
CLle®]IR ak L®]IR:||:]IL®CL]€QR+]IL®CLL R CLk2L®]IR CLL L®]IR]ak,L|O>®|O)

_ _%\/é:‘;f f dkydks \;OS (?k) ;Os (522) [6(ks = K'Y (kr = ) + 5 (ks = k)5 (ks = )]

(0, K] k,0)=0 . (B.9)

_ 7 Lo COS(%)COS(%’) (B.10)
2V G (D (5)
Hence to first order we get
OS(%’) ! (B.11)

(Gr) ol /lo 1 COS(%)
kK RL:_
COE wy, + 107 \/51 %

Let us connect the above Green’s function to a Green’s function in position space,
using the following transformation

us

1= [ Peos kG- 1/2) ) (B.12)

0

e position space Green’s function is
Th t G ’s funct

(0,4

|j,70) ==

DO |2
ISl

1
E - H +1i0* T

[ [ O o 0 G- 112) (Grahg cos (b (7= 1/2)
Y (B.13)

Hence the transmission coefficient using Eq. (2.35) is
’y LO 3 1 . ik Y
th =l li 0.7l —— i’ Q) e"tku(-5")
WV G ot N0l g 1 0)e
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Lo y ]’I dk e~k /2¢i(k=kp)j 4 ¢ik/2e=i(k+kp)i cos (k/2)
= ’LU— 11m -
8\ Cyi—eo J E - 2wpsin (&) +i0* V/sin (k/2)

r Ak e—ik' [2¢i(k +kR)i 4 ik![20-i(K ~kpg)j’ /
. lim (/ dk' e e B +e B)" cos (k'/[2) ) (B.14)

m E - 2wysin (&) +40* Vsin (k'/2)

where kg is the wave vector corresponding to the energy at which the signal travels,
E = 2wy sin(kg/2). Let us focus on the first integral

f” dk e=ik/2¢i(k=kp)j 4 ¢ik/2e=i(k+kp)i cos (k/2) ik fd e—ik/2 pikj cos (k/2)
2 E- 2(,uosm(2)+20+ sin k/Q J 2wosm(2)+z()+\/sin(k;/2)

(B.15)

where we have ignored the term e “k*k£)j as it will become highly oscillatory in the
limit j — co. We furthermore consider energies sufficiently low, such that we can also
make a linear approximation for the sine and cosine functions

I e~ik/2¢ikj cos (k[2)  eikei /“’ dk et \/5 (B.16)
€ ~ T ————— - . .
S E- 2wosm( )+20+,/sjn(k/2) wo J kg-k+10"V k

This is in accordance with taking the continuum limit, i.e., the dimensions of the
islands j approaching zero.

To evaluate the remaining integral, we perform a contour integral in complex k-
space, where the contour is a quarter circle in the first quadrant centered at the origin
and with radius R, hence

eizj \/7 etki \/7 ZResze 6l]R(cos O+isinf) 2
ggﬁk};—z+z0+ le'kE k+10* f kg — Re® +i0* \| Re®
idk  eM /2
—\/ = - B.17
+Rf m kp—1ik+i0*t\ ik ( )

The left-hand side of the above can be evaluated using Residue theorem, to get

dz eiz] 2 2mi etzi 2
R . — (kg +i0")) —— [/ —
jﬂkE—eriO*\/; et (2= (ke +107)) e
2
]{/‘E+Z‘O+

. 2
= _9jetkmi, [ 2 (B.18>
V kg

To evaluate the right-hand side, we take the limit R — oo, hence the angular integral
goes to zero, which gives us

Fdk ek dk eki
2ietkE]
OfwkE k+20+\/7 \/_fwk,;—zk\[ v \/

i(kg+i0%)j

= -2ie
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B. Calculation of the transmission coefficient for the squid detector

ciikE orf ik G ]2
/34 iekeer C(k\/; ( E) —2ielkEj\/k,:' (B.19)
= E

Hence

A ik[2pi(k-kp)j 4 ik/2e—i(k+kE)j kE/2 o . [ 2 )
/‘d_e e E +6k COS( / ) Ne_ZkEJ ie”kEerfc(\/} /Z]CE) __2Z'ezk‘EJ =
J 7 E - 2w051n( )+ZOJr Vsin (k/2) ke ke

= derfc \/_\/@ \/:—2@\/7

(B.20)

Similarly for the second integral we get

r Ak e—ik 1200k +kR)i 4 ik'[20-i(K'-kE)i" cog (k'/2) [9 [9
o ~ @erfc \/ \/ZkE ——2@
0/ m E - 2wysin (&) +40* Vsin (k'/2) ki

(B.21)

Finally the transmission coefficient is

th = ZUSL =9 lim (zerfc \/_\/zk:E \ /— -2i\ [ — ) lim (zerfc V-7 \/zk:E \ /— =20\ [ — )
WO ]—>oo j ' >—00
(B.22)

where v = wgcos(kg/2) ~ wy. The error function parts in both the integrals goes to
zero in the respective limits. We thus arrive at Eq. (2.36) in the main text.
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C. Josephson junction array with
gyrators

Here we solve a JJ array with gyrators
J 2
H= [N+ Gy = 050)] + Er (670 - 6;)" + M2, (1)
j=1

and periodic boundary conditions, where we have introduced a mass term to regularize
the zero mode. Define the fourier transform as follows

L s ethmi N
k= ——= ) |
VOR= !
1 & i
Op=—=p e g, (C.2)
Jjia
2mm
km =T
J
where me {-J/2+1,-J/2+2,...,J/2}. The Hamiltonian can now be written as
J
2 2
M=o 3 NN+ i2Gsin( 200} (Noon} + Budndon| . (C3)
m=—<+1
2

where
4EcG?sin® (3) + 4Ey sin® (T9) + M
m — 9
Ec
and {,-} denotes the anti-commutator. Now, we write the Fourier transformed charge
and phase operators in terms of bosonic annihilation and creation operators

Np, = 7 (aem —al,) | (C4)
IO
Pm = \/5( m + —m) ’ (0-5)

that obey the following commutation relations [a,,, aln,] = Omm’y [@m, @] = 0. Finally,
the Hamiltonian becomes

am
J1
_ EC 2 1 1 A_p, EC + Qo EC T / aJ
%—de(am A_m Qp Qo )Hm a;[n +7(a0 ao)h GI) +7((I% CL% )h ai s
t 2
A—m

C9



C. Josephson junction array with gyrators

H=%§HMﬁ4b+H3, (C.6)
where
Hm=(6m+1)h+4Gsm(%%@)((g ;L)+(6m—1)(;i %’), (C.7)
h=Bo+ 1)+ (Bo-1) 0, (C.8)
h’:(6%+])ﬂ2+<6%—1)0w (C.9)

I, is a n-dimensional identity matrix while o, and o, are Pauli matrices. We will
focus on diagonalization of H; ,, in eq.(C.6), the same formalism can be used for the
other parts.

We will use the diagonalization of H;,, to outline some general properties of a
Bosonic Bogoliubov transformation. Our goal is to find new operators, b,,, bl, such
that

bim
E bom

7'[1,771 = TC( bj-n bim by, b, )TzAm bT ) (C]'O)
b,

where A,, is a diagonal matrix, and the new operators still satisfy the Bosonic com-
mutation relations. This entails finding a matrix @), such that

A = Qi Hy Qo (C.11)

(Lo
"l o -1, |

Since the column vector and the row vector in eq.(A10) are related by Hermitian
conjugation, this imposes the following condition

Q= T Qf, 7. (C.12)

Moreover the column (and the row) in eq.(A10) has internal structure as well, the
bottom half of the column contains Hermitian conjugates of the upper half, this results
in the following conditions

where

Q= TaQumTa, (C.13)
Am = _T:BAmT:m (014)

(0L
\L o)

where

C 10



Finally, we can write

am
E -m
’Hl,mZTC( ain aT—m am  G-m )TszTszAngml C;T <C15)
t
A_m
bm
E bom
== (O Bl b b ) el | (C.16)
i

The above procedure of Bogoliubov transformation is only applicable if A,, is a real
matrix, for complex matrix we will develop the procedure in the next section.
The complete diagonalized Hamiltonian is

J
H= 3 wpnbl b, (C.17)

Wi = 2/ B2 + 4EcGsin (%Tm) . (C.18)

We also investigate the arrays where the Josephson junction connects next nearest
neighbors, the Hamiltonian for such a system will be

<

H' = Z [Nj + G (a1 — ¢j—1)]2 +Ep (1 - ¢j—1)2 + M¢J2._ (C.19)

7=1
This Hamiltonian can be diagonalized in a similar way to get

L
2

H= > wpblbpn, (C.20)

—_J
m= 2+1

Wi = 20/ E23, + AEcG sin (QWT , (C.21)

4(EcG? + By)sin? (2
m EC
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D. Bogoliubov transformation for
calculating correlations after
quench

Consider the following Hamiltonian
J 2 9
H=3[N;+ Gy = 651) | + Bry (b0 - 6)° + M2, (D.1)
j=1

The term FEy ; indicates that the inductance can vary with site. Since there is no
translational invariance, we cannot use Fourier transform, instead we write the phase
and charge operators in terms of Bosonic annihilation and creation operators
1
_ T
Nj= NG (a;-aj), (D-2)
1

= —\a; CLT- .
¢J—ﬂ(3+])7 (D.3)

that obey the following commutation relations [a;, a;,] =0,j1, [aj,a;] = 0. This allows
us to write the Hamiltonian as

H =a'Ha, (D.4)

T
where a:( a; - ay ai aT] ) .
We begin with the unquenched Hamiltonian, where Ep ; = Ep, this is the same
Hamiltonian that we solved in appendix C, this time in position space, we can still
follow the same steps and diagonalize it without going to the Fourier space to get

H.=aH.a
=alZQZZA.Q'a
=blZAb (D.5)
J
= > (A by + A<,jbjb}) . (D.6)
j=1

Here
(I, O
Z_( 0 —]IJ)’
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and operators b(f) have the same commutation relations as a(t). The matrix @Q satis-
fies the conditions in eq.(C.12) and (C.13), while the diagonal matrix A. satisfies the
eq.(C.14). In position space the Hamiltonian does not break down into independent
blocks of 4 * 4 matrices, therefore the size of the matrices in the above equations have
to be changed appropriately.

Now we quench the system such that

EL': _EL j0<j<j17 (D 7)
K E;  everywhere else, .

for some arbitrary jo and j;. The quenched Hamiltonian can be written as

H.=aH.a
- alZPZZA. P a. (D.8)
The diagonal matrix A, is not necessarily real, therefore the eq.(C.12) and (C.13)

doesn’t hold, but these conditions translate to conditions on the first quantized matrix
as

H, = HI, (D.9)
HI = XH.X, (D.10)
(0 1,
X- ( B )

which still hold true. From this we can get some new properties

Pl=2XPTXZ, (D.11)
A= —XAX, (D.12)
As = M7IAZM, (D.13)

where M = ZP'ZP. One might notice that eq.(D.11) is just the combination of
eq.(C.12) and (C.13). The unquenched Hamiltonian can now be written as

M, = c*Zyyhsc (D.14)
- ]Z: (Asjces + As jeict) (D.15)
where
c‘=(CI e e CJ)
c=(er v oer o cy)

The new operators obey the following commutation relations [c;, ¢5,] = d;;, [¢;, ;] = 0,

[c;,c;,] = 0. These relations closely resemble Bosonic commutation relations, but

D 13



D. Bogoliubov transformation for calculating correlations after quench

it is important to note that the operators ¢§ and c¢; are not related by Hermitian
conjugation.

Any two point correlation of charge and phase operators can be written as a linear
combination of two point correlators of the a(f) operators, hence we focus on finding
the following correlation matrix

F(t,¢) = (a(t)al (1)), (D.16)

where the average is taken over the ground state of the equilibrium system. For a
total number of J sites F'is a 2J * 2J matrix with the substructure form

F(t,t) :( égii ggi; ) (D.17)

where A, B,C and D are block matrices of dimensions J * .J that contain the correla-
tions of the form (aj(t)a;,(t’)) ,(a}(t)a},(t’)) A{a;(t)a;(t')) and (a}(t)aj/(t’)) respec-
tively.

First let us calculate the correlation matrix for unquenched Hamiltonian

F(t,t) =Q(b(t)bl(t)) ZQ ™' Z. (D.18)

In this step we have used the fact that the matrices ) and Z5; commute with many-
body operator H.. Since the ground state of unquenched Hamiltonian is defined as
b;|0) =0 Vi, we get

]IQJ+Z

Fe(t, ) = Qe =2

0z (D.19)

Now we focus on the case where we quench the system. Namely, we prepare the
system in a ground state of a different Hamiltonian H. for times ¢ < 0, and immediately
switch the system to the Hamiltonian H. at time ¢ = 0 (and let it evolve for subsequent
t >0). Using the previous results we can finally write down the correlation matrix

F(t,t) = (a(t)al(t"))
= P{c(t)c*(t')) ZP'Z
= Pei2hst (cc?) ei2Mst 7 p-1 7
= Pe”201 Pl (aal) Z et Pty
— P67i2A>tP71Q <bb’[> ZQ71P€i2A>t’P71Z

_ Pe—i2A>tP—1QH2J + ZQ—1P€¢2A>t'P—1Z

2
H2J+Z

_ i) ; O le2H-t 7 (D.20)
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E. Klich’s determinant formula

Consider two second quantized operators A and B , such that
A=Y GilAl)did;,
0.
B=Y (il Blj)dld,,
0.

where A and B are first the quantized operators and the states |i) span the corre-
sponding single particle Hilbert space. Then it can be shown that [K1i02]

Tr (eAeB) =det(1—§eAeB)_€, (E.1)
where £ = 1 for Bosons and ¢ = -1 for Fermions (the creation and annihilation opera-
tors satisfy didj - fd}di =0;5)-

We are going to derive a similar formula for operators that also contain terms of the
form d,;d; and d}d}, we will work with Bosonic operators, the formula for Fermionic
operators can be derived in a similar way.

Consider an operator (not necessarily Hermitian) that can be written in terms of
Bosonic creation and annihilation operators as follows

;s 1 1 1 1
0 1 2
A= Z (ZZAEJ-)(Z]' + éajAgj)a; + §aiA§j)aj = 5./4 - §tI'A(O), (EQ)

i,5=1

(note: Tr is the trace for a many body operator while tr is the normal trace for a
matrix), here

A=alAa,
A0 A@)
A= 7.
A A0)
The matrices AM) and A® can always be written as symmetric matrices due to the
Bosonic commutation relations. This leads to the following property

XAX = AT, (E.3)

To calculate the trace of this many body operator, we can diagonalize ZA but since
it is not Hermitian, there is no guarantee that it is diagonalizable. Instead we find
Schur’s decomposition of ZA i.e.

ZA=UAUT, (E.4)
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E. Klich’s determinant formula

where U is a unitary matrix and A is an upper triangular matrix with eigenvalues of
Z A on its diagonal. Schur’s decomposition allows us to arrange the eigenvalues in
any order we want on the diagonal of A, we will choose the following arrangement

Diagh=( A1 = Ay Ay = =\ ), (E.5)

the above arrangement is possible because the eigenvalues of ZA come in pairs of
(A, =)), this fact can be ascertained from the following property

if (ZA-M\)™[A) =0
— (N ZX(ZA+N)" =0, (E.6)

for m > 1, the m # 1 cases correspond to generalized eigenvectors. The specific
arrangement of eigenvalues in eq.(E.5) also imposes a specific structure on the matrix
U, which is

U=(1\) = ) XZ\) - XZIN)), (E.7)

where |)\;) is the (generalized) eigenvector corresponding to the eigenvalue \;. The
eigenvectors are normalized as follows

I IA) = 0y (E.8)

Now we return to the problem of calculating the trace of the many body operator,
for that

A=a'Aa
=a'ZUZZAU'a
T
=(c{ SR o el ] )ZA(cl eocy CY o c{) , (E.9)

and the commutation relations for the new operators are [c;,c5,] = d;51, [cj,¢0] = 0,
[¢5,¢5,] = 0. Finally,

J J
Ai(Gei+ )+ Y Nyeies+ Y. Ricle;, (E.10)

ij=1 i<j,i=1

J
A=

i=1
where the terms N;; and R;; encompass the non-diagonal terms of the upper triangular
matrix A.

Define two states (0|, and |0) 5 such that

(0], =0 Vi, (E.11)
¢:|0) =0 Vi. (E.12)

Then it is easy to see that the operator Y7, cic; acts as a number operator. We can
define a basis for a Fock space in terms of the following states

on] 8N eNJ
_a G ey 0) . (E.13)

|nlan27”'anJ> '
nilngl--n !
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ciMesM20.0 g
<<n17n2a”'7nJ| :<O|L ! 2 J . <E14>
ni!ngl--n !
The states are normalized such that
((nh no,y -« nJ| |m17 mo,: -, mJ) = 6n1,m15n2,m2'”6nJ,mJ7 (E15>
and the resolution of the identity on the Fock space is
i- = Z Z |n1>n27 T nJ) ((nla n2, "',TLJ| . (E16)
TLl:O TLJ=0
The trace of the exponential of the many body operator can now be written as
Tre? = ¢mtrA” 2y A2

oo oo
_ trA©)2 Z Z ({n1,na, -, ny| €2y, ng, -+, 1)
n1=0 n =0

had > J 0 .
= Z Z ((nl’n2,...’nJ| ezizl’\i(cici+cici)/2 |n17n27...’nJ>

(E.17)

The terms Z;]jzl Ni;cie; and Z;-]<j i-1 Rijctc; change the number states in such a way

that no combination of them with each other or themselves can contribute to the
trace, therefore the only term that contributes is Y7, \; (ctc; +¢icp). This was the
reason why we chose a specific arrangement of eigenvalues in eq.(E.5).

We can write eq.(C18) as

Tre = e rA/2 det(1-UUZe#4/%)1, (E.18)

which doesn’t appear to be universal on account of the appearance of the matrix U,
instead we will work with the following formula

12
[TreA] = det(2)e A det(1 - eZ4) 1, (E.19)

We still don’t have an expression which is analogous to the eq.(E.1), to derive such
an expression, consider another operator B that can be written in a form similar to
eq.(E.2), then it can be shown that

1,1 1
“A-Bl== E.2
[QA,QB] 26, (E.20)
where
C=a'Z[ZA,ZB]a.

Using the Baker-Campbell-Hausdorff we can get our final expression as

©AVT2
[Tr (eAeB)] = det(Z)e_"(A(O”B(O)) det(1 - e#4e?B) 1, (E.21)
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F. Correlation matrix from Klich’s
determinant formula

This section gives the expressions used to calculate the equal time correlation matrix
after the quench F.(t,t), using the formulas developed in the last section. Before we
give the general expressions, first let us note a result that will be used in the rest of
the section

lim

ﬁ—)OO

: 2
Tr (eAe*B?ﬂ) . A© det(1 - eZAe-PZH)-1
———— | =lme
Tr (e7¥) Broo det(1 — e FZH)1

-pAc \7!
_ i -t A 1 _O1e%A e

—trA(O) det (HQJ Q 1 ZAQ Z)_l : (Fl)

where the diagonal matrix A. of dimensions 2J has positive eigenvalues in the first
half on the diagonal and negative eigenvalues in the second half.
Now let us write down the expressions for elements of the correlation matrix

F(tt) = (al(t)a(t);) = 0 (eXaf(ma(t)J >X:0
(exal(Dialt);) — 1

~ i
5>1<I£10 ox
ox—0 (5
iy o By
= lim ) (F.2)
ox—0 (SX
where we have defined the operator y as follows
=0Y (laTMa + ltrM(O))
2 2 ’
M) MO
“\ m@ ()" (F3)

such that
M — (Mu))T
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M® =( M(z))T

The elements of the matrix M and the plus or minus sign in the definition of x
depend on the value of the indices ¢ and j.

. Tr(eiM>teXemiHoteBH<)?
\/hmﬁ”"" Te(ePH<)? 1

I exdxtrnr(0) det(l_eiZQJH>teé)(ZQJ]\/Ie—iZ2jH>te—,BZQJH<)_1 1
1mg_, = -
peo det(1-eBZ2sH<)"

, (F4)

= lim
5x—0 ox

(F.5)

where we have used Eq.(E.21). Expanding the exponentials upto first order in Jy,
and using the identity det (I+¢eA) ~» 1 +etr (A) + O (€2), we get

© -1/2

XM= (1 4 X4 [(O)-1piZHot 7 N e=iZHt () (1 — 7 -1
>zy(t t) = lim ( 2 [Q Q( 2! )]) : (F6)
ox—0 (SX
If trM(© =0
5 A A -1/2
(1+2tr[QLeiZH-tZMemi2Ho1Q) (Iy, - Z)]) ' -1
F.;(t,t) = lim
ox—0 ox

y 1— %Xtr [Q—leiZH>tZM€—iZH>tQ (]I2J _ Z)] _

¥ a0 5x
B _tr [QfleiZHgZMefiZHﬁQ (]IQJ - Z)] (F 7)
= 1 . .

instead if trM (%) =1 with a negative sign in the definition of ¥
5 1/2
e (14 2 [QreiZ Bt Z M eiZHtQ (I, - Z)]) ' -1
F> ij(ta t) = hm
’ ox— 5X
y e—%* e i [QLeiZHA Z M e ZHAQ (T - Z)] -
™ s Sx
1w [Q e ZMen Q) (L - 7)) (F.8)
=5 1 . .

and finally if trM () =1 with a plus sign in the definition of ¥

e (1+ L0 [Q 1€t Z M eiZ ot (T, - Z)])—1/2 .

F, ;;(t,t) = lim

ox—0 5X
y e%x —e 2 5Xtr [Q ezZH>tZMe—zZH>tQ (HZJ _ Z)] -1
- 5;13»10 5X
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F. Correlation matrix from Klich’s determinant formula

1 tr[Q et Z Me 2110 (Tyy — Z) ]
=== . (F.9)
2 4
The matrix M and the operator x will have the following forms depending on the

indices 7 and j.

e 1< Jj< Ut

The matrices M) and M) will only contain zeros, and

0 0 l+i,k+7,
Ml(k):{

1 l=ik=7,
. 1 1 0
X=0x éaTMa—itrM( )), (F.10)
the indices [ and k& run from 1 to J. Here, trM(©) =1 only if i = j otherwise it’s
ZEro.
e 1< Jg> J:

The matrices M(© and M) will only contain zeros, and

1 I=j-J k=1,

MY =31 I=ik=j-,
0 every other element,
1
X = 5X§aTMa. (F.11)
Here, trM (9 is always zero.
e 1> Jj< J:

The matrices M(© and M) will only contain zeros, and

1 l=jk=i-J
M2 =11 1=i-J k=]

0 every other element,
1
X = 5x§aTMa. (F.12)
Again, trM© is always zero.

o 1> J 5> J:

The matrices M) and M@ will only contain zeros, and

0 0 l+i—-J k+j-J,
Ml(k): . .
1 l=1-Jk=75-J,

1 1
X =0x (éaTMa + EtrM(O)) . (F.13)

Here, trM(©) =1 only if i = j otherwise it’s zero.
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G. Hawking-Unruh radiation on a
lattice

In this appendix we argue that the Hawking radiation can indeed be obtained on a
lattice if the change in the parameters of the system, equivalently the change in metric,
is smooth enough (with some restrictions). However as also pointed out in the main
text, there will be essential differences between continuum and lattice models. To
begin let us consider the following Lagrangian

£= [ar(5odr- 0,04 T (900) (G

this form of Lagrangian is what most works on analog horizons try to emulate [Rob12],
an important aspect of this field theory is that the determinant of the metric remains
constant. This is in contrast to our proposal, where we only modulate the inductance
with position, which does not conserve the determinant of the metric in the continuum
limit. But our goal here is to compare the result of lattice realisations and continuum
realisations, and since most existing continuum proposals for analog horizons use this
particular field theory, therefore we stick to this one.

Now we set this field theory on a one dimensional infinite lattice, the discretised
version of the Lagrangian is

Ax . Vi . U2 - U2 9
L=— ;%2 - ;chbj (Pje1 = Qj1) = ; 4quj (hja1 — Bj-1)" (G.2)

also note that since we consider next-to-nearest neighbour coupling, in order to avoid
any issues due to instabilities that do not arise from the presence of a horizon, also
in this model the lattice constant is best defined as 2Ax. The conjugate field is

1 oL 1.
¢; -

Ty = QAxagbj E 2uA (¢;+1 ¢jf1)7 (G~3)

hence using the Legendre transform we can write the Hamiltonian

U or U
H = 2A.Z‘§ zj:ﬂ'? + Ej ; {’7Tj, (¢j+1 - ij—l)} + zj:m (¢j+1 — ¢j—1)2 . (G4)
Now the equations of motion will be
ul —
; . ) . . ] 1 ]+1
202¢; = Vj10j01 — V1051 + U (o1 — Bjo1) - (5 = Bj2) - (95 = Djs2)
(G.5)
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G. Hawking-Unruh radiation on a lattice

for the translationally invariant case (v; = v) this reduces to

) . . w2 — 2
2Ax¢; =20 (¢j+1 - ¢j—1) — = (20 — ¢j2 — Pju2). (G.6)
2Ax
Using the following ansatz ¢;(t) = etei*Azi we get the dispersion relation
_ sin(kAx) sin (kAx)
we(k)=wv e EUUT A | (G.7)

in the limit Az — 0, this yields the same dispersion relation as in the continuum case.
Additionally in this dispersion relation the sector near k = 0 and k = m mirror each
other which is reminiscent of the dispersion relation in Eq. (4.17).

We now come to the inhomogeneous system, since the Lagrangian is still time
independent we can still write the ansatz ¢, (t) = e*t¢;, which gives us the following
recurrence relation

. . . u2 — v
- m—xqﬁj / UJH )1~ iw%%’—l + iw% (js1 = Pj1) = %—Agl (¢j = dj-2)

2 _

u ]+1
S (6 dyea), (G5)
which we can re-write as
4w Ax? 2iwAx 2iwAx
iio = L — .4 - . + . . -
Pj2 = @; u2— j2+1 j uz_ng+1 (0j-10j-1 = V1)) = o2 _U]HUJ (¢je1 = j-1)
u? —v?
+ 5 j (gbj ¢] 2) (GQ)
u j+1

We are interested in the solution to this recurrence relation for the following profile

v; = {UO I (G.10)

v ] — 00,

such that vy < u <wv;. With this profile of the parameter v;, in the asymptotically left
region the signals will move in both left and right directions while in asymptotically
right region the signals will only move towards right, and somewhere in the boundary
between these two region for some j’ we will have vy < u < vj,q, this is the event
horizon.

In general solving the recurrence relation in Eq.(G.9) for an arbitrary profile of v;
is not analytically possible, therefore we will tackle this problem numerically. We use
a linear profile for the parameter v; such that

0 7 <—=dJ,
Vj = Umax ey —J<j< (G.11)
Umax 7> J,
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where vVpax = 12_—“3 and a < J is a real number that decides the details of discretisation
of v; with respejct to u. For example, if a = 0 then v = u, or if o = 0.5 then u will
lie exactly in middle of v;; and vj.,;. The justification for using a linear profile is that
in the continuum limit if the change in metric across the horizon is smooth, then we
can always approximate this change in the region near the horizon as linear.

To construct scattering modes for the Hamiltonian we start with the following
incoming plane wave

Gin = Y, € 0<kAz <1, (G.12)

j<=J

in the region with v; = 0 and energy w, (k) = usin (kAx) /Az. Using the recurrence
relation we obtain the transmitted mode as shown in Fig. G.1, from this we conclude
that the scattering modes with positive energy are of the form

o= "+ C(wy) Y. (eimxj + ei(”_mx)j), (G.13)
j<=J j-J
where
~ 1 LA
k= N arcsin —ZLX _::L, (G.14)

is obtained by energy matching and C'(wy ) is a constant depending on the energy
of the incoming wave. To extract the form of the constant C'(wg +), we use the plot
in Fig. G.2 (a) and find that

C(wp.s) = yea®rs, (G.15)

The factor e™#.+/% ig the expected Hawking factor where a is the analog surface gravity,
which should be given by the derivative of the group velocity across the horizon, and
indeed from Fig. G.2 (b) we can see that

vmax
=5 (G.16)

i.e. it is the discrete derivative of the group velocity. In contrast to the continuum
version of this problem we also have the v term in addition to the Hawking factor
(e™k+/2).  As alluded to in the main text 7 depends on the exact details of the
discretisation of v;, if a = 0.5 and therefore u lies exactly in the middle of some v;
and v;,q then v = 1, as we change o and therefore the asymmetry of u with respect to
vj and vj,1, the value of v changes and becomes infinite for a = 0 (see Fig. G.2 (b)).
This can also be seen from the recurrence relation in Eq.(G.9), where if some v; = u,
the equation becomes non-analytic. Another thing we can gleam from Eq. (G.13) is
that the incoming mode scatters into two different modes with same energy but for
one of them its momentum is near & = 0 and for the other one the momentum is near
% = . This in turn implies that even for the case of smooth variation of parameters,
in a lattice model, the ambiguity between black/white hole nature of the horizon still
remains.
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Figure G.1.: In this figure we have plotted the absolute value of ¢; as a function of
J. Since the incoming mode was chosen to be a plane wave therefore
we see |¢;] =1 for j < —J. The transmitted mode (orange dotted lines),
obtained numerically, shows a beating pattern. To confirm that the
beating pattern is produced by a wave vector near % = 0 and the other
one near k = 7, we have also plotted a function A (eigmﬂ' + gi(m—kAa)j )) on

the same figure. We see that the theoretical and numerical transmitted

modes agree with each other if we scale the theoretical one appropriately

using the constant A.
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Figure G.2.:
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a) In this figure we have plotted the logarithm of maximum of |¢;(k)|,
where £ is the wave vector of the incoming mode, against k to extract the
constant C'(wg + ). Note that only the transmitted mode has been plotted.
We see that for different values of a the log plots differ by their intercepts,
this is the factor v that depends on the details of discretisation of v;. b)
Here we have isolated the plot of v = 0.5, such that v = 1.0, to confirm
that our theoretical prediction of the surface gravity a = vya/2JAx
matches the numerical calculation, which we can see it indeed does.
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