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Introduction

Many societies strive to build electricity systems that supply low-cost, reliable, and green
power. A key challenge is that these systems must also be resilient to extreme weather
events, which often simultaneously reduce power supply and increase demand. In the
coming decades, electricity systems may become more vulnerable because intermittent
renewables and the electrification of heating will make the system even more sensitive to
extreme weather (Cramton, 2022).

A particularly extreme weather event sparked the motivation for writing this thesis:
The winter storm Uri in Texas in February 2021. Uri brought sustained cold weather
for multiple days. The cold snap reduced electricity supply because 30 GW of thermal
plants became unavailable when gas pipelines froze and technical instruments failed.
At the same time, demand for electric heating soared to record levels. With demand
far outstripping supply, system operator ERCOT imposed controlled rolling outages on
roughly 20% of the system. These outages had catastrophic consequences: 246 deaths
and over $100 billion in property damage (Cramton, 2022).

The Texas winter storm illustrates how extreme weather can create severe scarcity
of electricity. Many economists argue that high short-term electricity prices are critical
for managing scarcity and avoiding blackouts. High prices send scarcity information to
market participants, incentivizing them to reduce demand and increase supply (Cramton,
2017).

Yet, scarcity prices are unpopular because they yield seemingly unjustified profits for
some generators and expose market participants to enormous financial risk. Consequently,
many regulators weaken scarcity price signals by setting price caps or by promoting
fixed-price tariffs as default for consumers. These measures erode incentives to cut demand
or boost supply during scarcity. When price signals are diluted, regulators use alternative
tools to manage scarcity, such as rationing. However, rationing creates severe problems
during extreme weather events, as the rolling outages in Texas reveal.

1



INTRODUCTION 2

Motivated by the Texas winter storm, this thesis examines how prices can be used
to manage scarcity during extreme weather. It investigates two overarching research
questions: First, can dynamic electricity prices incentivize consumers to play a more
active role in mitigating scarcity events? If consumers’ response to dynamic prices was
weak, it would not be effective to expose them to short-term scarcity prices. Second,
how can consumers and generators manage the financial risks created by high scarcity
prices? Enabling market participants to effectively manage these risks is likely essential
for increasing the popularity of scarcity pricing.

Chapter 1, “Resilient electricity requires consumer engagement”1, co-authored with
Emmanuele Bobbio, Stephanie Chan, Peter Cramton, David Malec, Axel Ockenfels, and
Lucy Yu, addresses the first of the above research questions. We analyze a large sample
of UK households on dynamic tariffs linked to day-ahead prices. Using a fixed-effects
regression model, we estimate households’ price elasticities and investigate whether certain
technologies (e.g., electric vehicles) boost price responsiveness.

We find a relatively large and significant average own-price elasticity of -0.26. Cross-
price elasticities are mostly small and insignificant, indicating that consumers do not
substantially shift usage across time. Households with at least one low-carbon technology
exhibit higher price responsiveness, particularly electric vehicle owners who also have
batteries and solar PV, with elasticities exceeding -0.5. In addition, we conduct a thought
experiment to derive the share of price-responsive demand in Texas that would have been
sufficient to avoid outages during the winter storm if price-responsive consumers in Texas
were as price-responsive as the average UK household in our sample. We find that the
winter storm outages could have been avoided if only 44% of Texan consumers had been
as price-responsive as the UK households that we study.

Chapter 1 points out that residential consumers on dynamic electricity tariffs are
price-sensitive and can, therefore, play a vital role in lowering demand during scarcity
events. However, scarcity prices create risks for households on dynamic tariffs because
they can lead to very high electricity bills. Chapter 2, therefore, studies how to help
households manage these risks by combining dynamic electricity tariffs with forward
contracts. Such a hedged tariff is supposed to protect households from high scarcity prices
while preserving the incentive to reduce electricity consumption during scarcity events.

1This chapter contains the current version of the working paper Cramton et al. (2025a). Earlier versions
of this working paper were published under the same title by Bobbio et al. (2022b) and Bobbio et al.
(2024). An earlier version of this working paper was also published under the preliminary title “Price
responsive demand in Britain’s electricity market” by Bobbio et al. (2022a).



INTRODUCTION 3

Chapter 2 is titled “Hedging households against extreme electricity prices”2 and
was single-authored. It employs the same large dataset of UK households on a dynamic
electricity tariff as Chapter 1. In Chapter 2, I use a utility maximization model to derive
each household’s optimal hedge share, i.e., the optimal share of its typical electricity
consumption that the household should buy forward. I also investigate how effectively
the optimal hedge protects households from volatility of their monthly electricity bills.

I find that the average optimal hedge share is 59%, varying strongly across households.
Parts of this between-household variation in hedge shares relate to technology ownership:
Homes with electric heating and electric vehicles opt for higher hedge shares, while those
with solar PV and battery storage choose lower ones. In addition, I reveal that households
can better manage risks if they choose different hedge shares for different times of day.
Time-dependent hedge shares take into account how a household’s daily demand pattern
is correlated with aggregate load and prices.

My novel theoretical contribution in Chapter 2 is that an increase in price elasticity of
demand raises households’ optimal hedge shares if they experience a positive correlation
between electricity prices and their weather-related desire to consume electricity. The
more price-elastic the household is, the more it uses the forward hedge to mitigate its
exposure to spot prices.

Moreover, Chapter 2 highlights that the optimal forward hedge is effective in reducing
the volatility of monthly electricity bills, on average, by 18%. On the other hand, I show
that the optimal hedge only leads to small welfare gains for the households in the UK.
The reason is that, during the sample period, the UK households are only exposed to
relatively small price spikes compared to the day-ahead price spikes observable in Texas.
The welfare gains from optimal hedging strongly increase when exposing UK households
to a simulated Texas-style extreme weather event with high prices for multiple days in a
row.

Chapter 2 points out that hedging with forward contracts can be an effective risk
management strategy for households. In Chapter 3, we study hedging strategies for
electricity generation companies and load-serving entities (LSEs) in the ERCOT day-
ahead electricity market in Texas. Chapter 3 is titled “Hedging electricity price spikes
with forwards and options”3 and is co-authored with Peter Cramton, Jason Dark, Darrel
Hoy, and David Malec. In our model, generators and LSEs choose the optimal mix of
forward contracts and European call options. We are particularly interested in how this

2This chapter contains the current version of the working paper Brandkamp (2025). An abstract of
this working paper was also published in the conference proceedings of IAEE (2024) and EAERE (2024).

3This chapter contains the current version of the working paper Brandkamp et al. (2025).
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optimal mix is affected by the frequency and size of day-ahead price spikes in a delivery
period.

To model price spikes, we estimate a regime-switching model that allows simulating
joint distributions of hourly day-ahead prices, net load, renewable generation, and daily
gas prices in the ERCOT market between 2011 and 2022 (Coulon et al., 2013). We also
run a merit order dispatch model for a large sample of power plants to obtain distributions
of hourly profits for different power plant technologies.

We show that frequent and large price spikes in a delivery period can cause significant
worst-case losses for generators and LSEs. Depending on their level of risk aversion, the
agents trade off minimizing worst-case losses versus minimizing profit variance when
selecting their optimal hedge strategies. In delivery periods with large price spikes,
generators and LSEs choose larger option holdings and smaller forward positions to be
protected against worst-case losses. The LSE relies more on options than the generator,
as price spikes result in more extreme negative profit tails for the LSE.

Yet, when forwards and options are combined, the resulting reduction in profit
volatility and worst-case losses is only marginal compared to a hedging strategy that only
uses forward contracts. Hedging with forwards-only is almost as effective as combining
forwards and options because day-ahead profits are roughly linear in day-ahead prices.
Finally, we show that raising the option strike price of the option drives agents to choose
more forwards and fewer options. Overall, our findings in Chapter 3 suggest that hedging
with forwards and options is effective in lowering profit variability and worst-case losses,
even under intense price spikes.

Chapter 3 characterizes optimal hedging strategies for arbitrage-free forward and
option prices. In Chapter 4, we build on these optimal hedging strategies to simulate
market equilibria in a forward energy market with a novel market design. In equilibrium,
forward and option prices for electricity typically deviate from arbitrage-free levels
(Bessembinder & Lemmon, 2002, Redl et al., 2009, Botterud et al., 2010). Therefore,
Chapter 4 extends the analysis in Chapter 3 and simulates hedging strategies for forwards
and option prices that deviate from arbitrage-free levels.

Chapter 4 is titled “A Forward Energy Market to Improve Reliability and Resiliency”4

and is co-authored with Peter Cramton, Jason Dark, Darrel Hoy, David Malec, Axel
Ockenfels, and Chris Wilkens. The main contribution of this chapter is to propose a novel
market design for forward electricity contracts and options. Participants in this market

4This chapter contains the current version of the working paper Cramton et al. (2025b). Parts of
the analysis in the paper were also published as related policy white papers under Cramton (2023) and
Cramton et al. (2024b).
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can trade thousands of granular hourly delivery periods for up to four years ahead. To
facilitate trading so many granular products simultaneously, we apply the flow trading
technology by Budish et al. (2023) to electricity markets.

As a proof of concept, Chapter 4 develops a large-scale simulation of ERCOT’s
day-ahead and forward energy market between 2011 and 2022, building on the day-ahead
market simulations in Chapter 3. We use these simulations to analyze generators’ and
LSEs’ demand curves for forwards and options.

Our main finding is that the slope of net demand curves for forward and option
products depends strongly on agents’ risk preferences. Highly risk-averse agents display
almost vertical demand curves. High risk aversion would, therefore, likely lead to market
clearing prices for forwards and options that are well above arbitrage-free levels. By
contrast, when risk aversion is more moderate, market participants are willing to exploit
arbitrage opportunities, likely causing market clearing prices to align closer to arbitrage-
free benchmarks. The study also reveals that demand for both forwards and options is
more sensitive to changes in forward prices than option prices. Moreover, agents often
take especially large arbitrage positions during peak periods prone to extreme price
spikes. Finally, lowering the strike price of the option encourages heavier use of options
and smaller forward positions. A lower strike price also induces agents to take larger
arbitrage positions in both forwards and options.

In the future, we plan to extend the research in Chapter 4 to analyze how equilibrium
prices and quantities in our proposed forward energy market evolve over time as they get
closer to their physical delivery periods. We also aim to investigate how the forward energy
market impacts generators’ and LSEs’ expected profit, profit volatility, and downside tail
risks.

Overall, the chapters in this thesis highlight how scarcity prices can play a crucial
role in improving the resilience of electricity systems to extreme weather events. At the
same time, it is essential to combine scarcity pricing with granular hedging products to
allow consumers and electricity producers to manage the financial risks involved.

From a policy perspective, regulators should foster the development of accessible
hedging products, which may require substantial efforts to educate consumers about the
benefits of hedged dynamic electricity tariffs. In wholesale markets, policymakers should
establish centralized platforms offering granular and liquid hedging instruments.

Taken together, these measures would enable consumers and producers to manage
the risks posed by scarcity pricing effectively. At the same time, combining scarcity prices
and hedging preserves consumers’ and producers’ incentives to align their behavior with
the needs of the electricity system during extreme weather events.
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The research idea was jointly developed by all authors. Stephanie Chan and David Malec
provided and cleaned the dataset and conducted preliminary analyses. Emmanuele Bobbio
and I carried out the econometric and statistical analysis. Peter Cramton, Emmanuele
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Chapter 1

Resilient electricity requires
consumer engagement

This chapter is co-authored with Emmanuele Bobbio, senior lead economist at PJM
Interconnection, Stephanie Chan, a data scientist at the Centre for Net Zero, Peter
Cramton, Professor of Economics at University of Maryland, David Malec a research
associate at the University of Maryland, Axel Ockenfels, Professor of Economics at the
University of Cologne and Director at the Max Planck Institute for Research on Collective
Goods in Bonn, and Lucy Yu, chief executive officer at the Centre for Net Zero.

This chapter contains the current version of the working paper Cramton et al. (2025a).
Earlier versions of this working paper were published under the same title by Bobbio
et al. (2022b) and Bobbio et al. (2024). An earlier version of this working paper was also
published under the preliminary title “Price responsive demand in Britain’s electricity
market” by Bobbio et al. (2022a).

Abstract

Active consumers are essential to transitioning to a flexible, resilient energy system.
Electricity markets balance supply and demand with price. Historically, this price response
has come almost entirely from supply. However, when much of supply is intermittent or
in-flexible, price-responsive demand becomes essential for energy reliability. It is also key
to building resiliency into a system facing more extreme events in a changing climate.
We measure how price-responsive consumers are in Britain from August 2020 to August
2021 with half-hourly individual household data. Our sample includes customers with
a dynamic rate that tracks wholesale cost and flat-rate customers used to control for

8
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weather and other factors. A one percent increase in price reduces demand by 0.26
percent. This elasticity is larger for consumers owning low-carbon technologies. This
price response is sufficient to maintain system balance in extreme events even when most
consumers are unresponsive. Regulators can encourage price-responsive demand through
retail choice and subsidizing enabling technologies. Regulators can also protect consumers
with man-dated hedging in dynamic plans. Low-income households benefit most from
such policies.

Declarations

This research is funded by the Deutsche Forschungsgemeinschaft (German Research
Foundation) under Germany’s Excellence Strategy–EXC 2126/1–390838866 and the
European Research Council under the European Union's Horizon 2020 research and
innovation program, grant 741409.

1.1 Introduction

In February 2021, winter storm Uri blanketed Texas with extreme cold for several
days. Thermal generators failed, and heating demand surged, creating a 37% shortfall
between electricity demand and supply. The system operator, ERCOT, had to order
controlled outages to keep the system balanced and avoid a cascading blackout. Over
four million Texans were without power for several days. Many were without water as
the interconnected critical infrastructures failed - first gas, then electricity, then water.
Hundreds of people died. Dollar damages totaled many tens of billions. Cramton (2022)
provides details.

Climate change makes extreme events more salient, frequent, and severe (Cohen et al.,
2021). Research on how to make critical infrastructure more resilient to extreme weather
is needed. So far, the burden of balancing the power system during extreme events has
fallen almost exclusively on the supply side. Demand hardly reacts to improve resiliency
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since households and businesses generally pay a flat rate per kilowatt-hour of electricity,
irrespective of market conditions. Flat rates are simple and limit variations in electricity
bills. Still, flat rates are inefficient in today's electricity markets, where the social cost of
generating electricity varies from -$0.50 to $9.00/kWh, depending on time and location.

Here, we provide new and strong evidence that demand-side policies promoting
price-responsive demand and energy efficiency offer significant opportunities to build
system resiliency. They are an essential element of any least-cost approach to improving
resiliency - a lesson relevant to electricity markets worldwide.

Price-responsive demand is enabled by smart meters - measuring use at each time
and location - and smart markets that enable consumers’ price response to be expressed,
either individually for wholesale consumers or in aggregate for retail consumers. The
increase in bid-in demand has many efficiency, reliability, and resiliency benefits.

We divide our analysis into three parts. Firstly, we show that domestic consumers
significantly respond to electricity prices using a large sample of 4,148 households in
the UK. The households receive dynamic rates that follow wholesale electricity prices
on a half-hourly basis. We estimate households' price elasticity of electricity demand
using a fixed effects regression model while exploiting the price-consumption patterns of
households on flat rates as controls for other sources of variation.

Our results indicate that a one percent price increase induces domestic consumers to
reduce consumption by, on average, 0.26 percent. The elasticity is larger for households
owning low-carbon technologies, particularly electric vehicles, which also tend to be more
flexible and have stronger financial incentives to respond to prices. For future work, it will
be crucial to estimate how consumers' price response changes in a dynamic framework in
which a rising share of households adopts these low-carbon technologies.

Importantly, we do not aim to estimate the price elasticity of demand for the general
population of electricity consumers in the UK. The price elasticity of the UK’s general
population is likely low, as other studies suggest (Fabra et al., 2021). In our study, we
estimate the price elasticity of first movers who self-selected into a dynamic tariff and
who are very different from today’s average consumers. First movers likely have a larger
price elasticity as they are potentially more aware of their electricity prices and are
more likely to have low-carbon technologies. These characteristics make first movers
more representative than today’s average consumers for an increasingly large share of
households in the future. In the upcoming decade, more households will adopt low-carbon
technologies and will likely have larger price elasticities than today’s consumers. Therefore,
it is important to study the price elasticity of first movers while emphasizing that we do
not generalize our results to the population of today’s consumers.
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In the second part of the analysis, we conduct a thought experiment to study how
price-responsive consumers can make power systems more resilient against extreme events
like the Texas winter storm. In this event, the electricity price surged to $9.00/kWh for
multiple days due to the electricity shortage. About 999/1000 Texan households did not
respond to the high shortage price because they had a conventional fixed-price tariff.
In contrast, the 1/1000 set of consumers on dynamic rates had a strong incentive to
reduce consumption in response to extreme shortage prices. Price-responsive consumers
on dynamic rates help restore the balance between supply and demand and prevent
outages. We estimate the share of price-responsive consumers on dynamic rates that
would have been necessary to prevent outages during the Texas electricity crisis if these
consumers were as price-elastic as the UK consumers in our sample.

We find that power outages during the Texas winter storm could have been avoided
if 44% of Texan consumers had a price-responsive rate and responded in line with UK
consumers. The thought experiment is not meant to provide a precise estimate of the
share of price-responsive demand required to avoid outages but rather illustrates that an
achievable share of price-responsive consumers can help make power systems resilient to
extreme weather events.

That said, dynamic rates without proper risk protection are unacceptable for domestic
consumers. Designed incorrectly, dynamic rates can make households vulnerable to
extremely high prices during shortage events, leading to exorbitant electricity bills. In
the third part of our analysis, we subsequently argue that it is essential and possible
to accompany dynamic electricity rates with additional regulatory measures to protect
households from price risk.

Our results suggest regulators should promote dynamic electricity pricing with forward
hedging to protect consumers from high prices while encouraging price responsiveness.
We conjecture that low-income households would benefit most from reduced consumption
incentives and energy efficiency subsidies. Additionally, policies should accelerate smart
meter adoption and enhance competition to offer innovative pricing plans. These measures
will help prevent power outages, drive investments in low-carbon technologies, and support
a faster and more resilient green energy transition. We will get back to policy implications
in our concluding section.

Regulators should also combine dynamic pricing with low-income subsidies for energy
efficiency investments. Dynamic pricing makes investments in energy efficiency measures
like insulation more appealing since energy efficiency protects households from high prices.
These subsidies ensure that low-income households also benefit from dynamic pricing.
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Moreover, regulators need to implement enabling policies for rapid adoption of demand
response. For instance, they should support an accelerated smart meter roll-out and
intensify retail competition to encourage electricity suppliers to offer innovative, dynamic
plans.

Implementing the above regulatory measures is essential to make dynamic electricity
rates with a forward hedge appealing to consumers. Attractive dynamic rate plans
encourage domestic consumers to actively participate in the energy transition. They
induce consumers to mitigate demand peaks and help prevent power outages during
extreme weather events. Demand response also motivates households to invest in low-
carbon technologies like electric vehicles, battery storage, and energy efficiency - which
are essential to decarbonization. Dynamic electricity prices are vital for a fast, efficient,
and resilient green transition, and should be rapidly adopted at scale.

We structure the paper as follows: In Section 1.2, we connect our research to the
literature on dynamic electricity prices and price-responsive demand. Section 1.3 describes
the UK household-level data on electricity prices and consumption. Section 1.4 presents
the regression model we employ to estimate households' price elasticity of electricity
demand. Section 1.5 discusses our estimation results. In section 1.6, we conduct a thought
experiment to illustrate how price-responsive consumers can strengthen resiliency during
extreme weather events. Section 1.7 evaluates additional policy measures regulators
should implement alongside dynamic electricity rates. Section 1.8 concludes.

1.2 Literature

A large literature stresses the benefits of exposing domestic consumers to dynamic
electricity prices (Allcott, 2011, Borenstein, 2005, Houthakker, 1951). Dynamic prices
increase the efficiency of the power system as they help align electricity consumption
with the short-run marginal cost of power generation. Thereby, they create incentives for
efficient short-run generation and long-term investment (Borenstein & Holland, 2005),
mitigate market power (Poletti & Wright, 2020), and potentially reduce carbon emissions
(Cahana et al., 2022, Holland & Mansur, 2008).

Adding to the above literature, we highlight an additional benefit: dynamic prices
for domestic consumers make power systems more resilient to extreme weather events.
Previous research has recognized that price-responsive consumers can improve system
resiliency by lowering peak demand during extreme weather. However, this research
mainly focused on demand response from large industrial consumers (Wang et al., 2017).
We analyze the essential role of price-responsive households for resiliency in the future.
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Previous estimates for short-term price elasticities differ widely, given that existing
studies vary in sample sizes and granularity of price changes. Most research builds
on experiments and small-scale field studies (Allcott, 2011, Faruqui & Sergici, 2010).
Moreover, rather than analyzing fully dynamic real-time prices, most studies examine
less granular time-of-use (Braithwait, 2000, Harding & Lamarche, 2016, Train & Mehrez,
1994) or critical peak prices (Bollinger & Hartmann, 2020, Faruqui & George, 2005,
Faruqui et al., 2014, Jessoe & Rapson, 2014). Only a few papers investigate large datasets
containing individual customers exposed to dynamic real-time prices (Fabra et al., 2021,
Stumpe, 2022).

Overall, the above literature suggests that the price response of domestic electricity con-
sumers is small, with own- and cross-price elasticities mostly below –0.2 (Andruszkiewicz
et al., 2019, Harding & Sexton, 2017). The literature also discusses three types of enabling
technologies that raise consumers' price elasticity. The first type contains devices like
in-home displays and phone apps that give consumers feedback about their consumption
and prices. Multiple studies find that these information technologies increase demand
response, especially during peak-price hours (Allcott, 2011, Faruqui et al., 2014). For
instance, Jessoe and Rapson (2014) find that in-home displays increase households' price
elasticity by roughly three standard deviations. The second technology type consists of
devices that automize consumers' demand response, e.g., smart thermostats and smart
EV charging (Faruqui & Sergici, 2011, Wolak, 2010). Bollinger and Hartmann (2020)
show that these automation technologies increase price elasticities more than information
technologies. The third type includes flexibility technologies like electric vehicles, electric
heating, and battery storage that make households' electric load more flexible.

There is limited household-level research on the effect of flexibility technologies on
consumers' price elasticities. Reiss and White (2005) and Wolak (2010) reveal that electric
heating and cooling ownership strongly increases price response for small experimental
samples. Ruan et al. (2022) simulate price-responsive demand with various electric
appliances and estimate time-varying price elasticities. Their simulations show that a
smart, dynamic pricing mechanism can reduce the peak-to-average demand ratio when
low-carbon technologies are applied.

We contribute to this literature by estimating the effect of several flexibility technolo-
gies on price elasticities for a large observational sample of households. Our sample also
allows studying the impact of the combination of multiple flexibility technologies (e.g.,
electric vehicle plus battery storage) on demand response.

We also add to a literature addressing concerns that might explain why regulators
rarely implement dynamic prices. One concern is that dynamic pricing exposes domestic
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consumers to unacceptable risk by making their electricity bills more volatile (Burger
et al., 2020, Faruqui, 2012). To tackle this concern, we discuss combining dynamic
electricity tariffs with a forward hedge to shield residential consumers from high prices.
Several authors propose forward hedges for industrial electricity consumers (Borenstein,
2007b, Schlecht et al., 2024, Wolak & Hardman, 2022). Some US electricity suppliers have
already offered forward hedges to industrial consumers (Barbose et al., 2005, Braithwait
& Eakin, 2002). However, few studies look at households. One exception is a pilot study
by Stavrogiannis (2010) who finds that forward hedging effectively reduces household bill
volatility.

Yet, several authors raise concerns about dynamic pricing from a social justice
perspective. Cahana et al. (2022) and Horowitz and Lave (2014) find that low-income
households are likely to be worse off on dynamic rates since they often do not have the
necessary appliances to respond to prices. Our contention is that consumer flexibility will
be a central part of the future energy system, and therefore developing our understanding
of dynamic pricing will allow us to address any distributional impacts. We argue that
forward hedging can actually make dynamic pricing more attractive for low-income
households. At the same time, we emphasize that regulators should address social justice
concerns by accompanying dynamic pricing with low-income subsidies for energy efficiency
measures and for other technologies (e.g., smart thermostats) that help low-income
households to be price-responsive.

1.3 Data Sources

Global electricity supplier Octopus Energy provided anonymized, half-hour electricity
smart meter customer readings on three plans: fixed, dynamic (wholesale-linked), and
electric vehicle (EV) rates. Our sample of 15,000 British customers consists of approxi-
mately 5,000 consumers randomly sampled from each plan from August 2020 to August
2021. All had smart meters since at least August 2020.

Fixed-rate
Fixed-rate customers pay a constant price for electricity for all half hours of the day.

The fixed rate differs between households depending on their grid supply area and the
specific fixed-rate plan they chose. Eight percent of fixed-rate customers experience a
minor adjustment of their fixed rate once during the sample period.

Dynamic rate
The dynamic rate reflects day-ahead auction prices for electricity. Figure 1.1 depicts

the half-hourly day-ahead wholesale prices for the Great Britain price zone obtained from
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EPEX SPOT (2023). The graph reveals that wholesale electricity prices are relatively
low and stable during the sample period and rarely exceed 10 p/kWh. However, while
the overall volatility of wholesale prices is low, there are a few price spike hours in which
wholesale prices are very high.
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Figure 1.1: Half-hourly day-ahead wholesale electricity prices in the Great Britain price
zone obtained from EPEX SPOT (2023)

The final dynamic prices that households pay add distribution costs and a peak time
premium to the wholesale prices.1 Octopus designed the plan to encourage consumers
to shift their consumption outside the 4-7 pm peak. Customers have forward notice of
these half-hourly prices, made available every evening between 4-8 pm for the next day. A
negative wholesale price can result in a negative customer price, known as plunge pricing.
However, a cap at 35p/kWh – roughly double a fixed rate – protects customers from
surge pricing.

EV rate
EV plans offer electricity at two rates: an off-peak price during fixed charging hours,

such as 00:30 - 04:30, and a peak price approximately three times higher. Pricing depends
slightly on geographic location. Octopus designed the plan to incentivize consumers to
charge their EVs in the off-peak window.

1For every half-hourly interval, Octopus Energy multiplies the day-ahead auction price with a distri-
bution charge multiplier that ranges from 2 to 2.4, depending on the grid supply area the household lives
in. Between 4 pm and 7 pm, Octopus Energy also adds a peak-time premium that ranges from 11 to 14
p/kWh, depending on the grid supply area. Afterward, VAT is added. The resulting price is the dynamic
price for the half-hourly interval unless it exceeds the price cap of 35 p/kWh. If the price exceeds the
price cap, the price is set to 35 p/kWh Octopus Energy (2019).
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Our analysis below only focuses on customers with dynamic and fixed rates. Each
consumer is associated with up to one year of smart meter readings from August 2020
to August 2021. As users are free to switch plans across this period, they may belong
to multiple groups across the whole period. For instance, a user on a dynamic rate may
choose to migrate to an EV rate at any point.2

Figure 1.2 shows the number of customers on the fixed and dynamic tariffs during
the sample period. It highlights that surprisingly many households switch to another
tariff or supplier during the sample period. Switching tariffs or suppliers is very common
in Britain. 20 percent of British electricity consumers switched to a different supplier
in 2020 (DESNZ, 2023). The share of customers who switch internally to another tariff
offered by the same supplier was even 29 percent in Britain in 2019 (ACER, 2021). The
frequent switching behavior explains why many consumers leave their tariff during the
sample period.
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Figure 1.2: Number of customers by tariff type

Figure 1.2 also highlights that the consumers in our sample self-selected in and out
of the dynamic tariff. Since dynamic tariffs are new and uncommon in the UK, the
households on dynamic rates are likely first movers and not representative of the UK’s
general population. As discussed in the introduction, we do not aim to estimate the price
elasticity for today’s general population, but only for the first movers because the first
movers might be more representative of a growing share of tomorrow’s consumers. The

2A small proportion of users participate in export plans, which are structured as separate plans. A
user may be in multiple plans at the same point in time in this instance.
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estimation results in section 5 should, therefore not be generalized to the population of
today’s consumers.

Table 1.1 provides summary statistics for households’ electricity consumption on
dynamic and fixed tariffs respectively, broken down by season and by time of day.
Electricity consumption refers to consumption per half-hourly interval. Households on
dynamic tariffs have a higher mean consumption and a higher average standard deviation
of their consumption (Avg SD) than households on fixed tariffs. These statistics reinforce
the hypothesis that households who self-selected into dynamic tariffs are systematically
different from households on fixed tariffs. The higher consumption level of dynamic
households suggests that these households likely have higher income levels.

Electricity consumption in kWh Price in pence/kWh
Tariff type Mean Avg SD Min Max Mean Avg SD Min Max

All observations
Dynamic 0.37 0.49 0 5.29 14.78 7.12 -9.88 35.00
Fixed 0.24 0.27 0 5.29 14.90 0.19 5.78 33.86

By season
Dynamic fall 0.43 0.52 0 5.29 11.99 6.89 -9.88 35.00
Dynamic spring 0.31 0.42 0 5.29 17.55 6.14 -1.33 35.00
Dynamic summer 0.28 0.40 0 5.29 16.05 6.59 0.80 35.00
Dynamic winter 0.43 0.48 0 5.29 14.71 7.12 0.29 35.00
Fixed fall 0.26 0.27 0 5.29
Fixed spring 0.21 0.24 0 5.29
Fixed summer 0.20 0.23 0 5.28
Fixed winter 0.28 0.27 0 5.29

By time of day
Dynamic afternoon 0.34 0.36 0 5.29 19.73 9.06 0.42 35.00
Dynamic evening 0.39 0.41 0 5.29 15.02 6.40 -2.52 35.00
Dynamic morning 0.33 0.36 0 5.29 13.95 4.26 -5.04 35.00
Dynamic night 0.43 0.59 0 5.29 10.40 3.76 -9.88 29.74
Fixed afternoon 0.31 0.30 0 5.28
Fixed evening 0.28 0.26 0 5.29
Fixed morning 0.25 0.25 0 5.29
Fixed night 0.13 0.13 0 5.29

Table 1.1: Number of customers by customer groups and plans

Consumption is higher in fall and winter than in summer and spring for both customer
groups. Interestingly, consumption is highest at night for households on dynamic tariffs,
while it is lowest at night for households on fixed tariffs. This suggests that dynamic
households might shift significant load from electric heating or vehicles to night hours.
Across almost all seasons and times of day, the maximum consumption is 5.29 kWh, which
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is likely an administrative upper measurement limit set by the retailer. This maximum
limit is only reached for 60 half-hourly observations.

On average, retail prices for households on dynamic and fixed tariffs are almost equal.
The average standard deviation of half-hourly prices per household on dynamic tariffs is
quite large (the non-zero standard deviation for fixed tariff stems from period changes
in fixed electricity prices). Dynamic prices can go significantly negative but do so only
in 0.3% of the half-hourly periods we observe. Dynamic prices are largest in spring and
summer and peak in the afternoon.

Low-carbon technology ownership survey data
When users sign up for a dynamic rate, Octopus Energy asks them to complete

a survey to indicate their ownership of various low-carbon technologies (LCTs). The
survey queries information on four LCTs: 1) smart thermostats, 2) electric vehicles, 3)
residential solar, and 4) battery storage. Boolean flags indicate the stated ownership
of these technologies. In addition, we add information on electric heating ownership
that is not survey-based but inferred from the lack of a gas contract with Octopus
Energy—households generally purchase electricity and gas from the same provider in
Britain.3

Table 1.2 shows the number of customers on dynamic and fixed rates by ownership
of low-carbon technologies (LCTs). We only have information on LCT ownership for a
subsample of households since many households did not participate in the survey.

1.4 Methodology

We employ a time segment fixed effects regression model to estimate price elasticities of
electricity demand. A time segment is defined as the combination of year, month, day of
the week, and half-hour interval.

The fixed effects control for periodicity and trends. They capture how consumption
and prices move relative to one another after accounting for their characteristic values in
a particular time segment. Electricity consumption and prices are positively correlated
and vary systematically across years, seasons, and throughout the day. Consumption and
prices are higher in the early morning than at night, and the afternoon peak occurs later
in the summer than in the winter. However, their joint distribution is approximately

3Our indicator of electric heating ownership is relatively imprecise. Some customers who do not have
a gas contract with Octopus Energy might purchase gas from another supplier or might use oil heating.
Therefore, we might falsely assume some gas heating owners use electric heating. This imprecision will
likely lead to a downward bias of our estimates for electric heating ownership because gas heating owners
are arguably less responsive to electricity prices than electric heating owners.
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Customer groups Dynamic rate Fixed-rate
1 All customers 4148 5904
3 At least one LCT 2593 647
2 No LCT 99 12
4 Inferred electric heating only 414 162
5 Inferred electric heating + 411 94

smart thermostat
6 EV only 1025 352
7 Solar only 138 27
8 Battery only 49 12
9 EV + solar 280 45
10 EV + battery 66 16
11 Solar + battery 124 21
12 EV + solar + battery 177 20

Table 1.2: Number of customers by low-carbon technology ownership

stable for a particular time segment. For example, consumption and prices on Monday at
7:30 behave similarly, regardless of whether it is the first or second Monday of March
2021. We can view each time segment as a repeated experiment where we draw four or
five consumption-price pairs—depending on the number of weeks in a month.

Using fixed effects for these time segments, we estimate the following model by OLS:

ln(𝐶𝑑
𝑡 ) = 𝑐𝑠(𝑡) +

16
∑

𝑗=−16
𝛾𝑗 ln(𝑃𝑡+𝑗) + 𝜃 ln(𝐶𝑓

𝑡 ) + 𝜀𝑡

𝑡 denotes time in half-hour increments. 𝐶 is the average consumption of households on
dynamic plans (superscript 𝑑) and fixed rates (superscript 𝑓); 𝑃 is the average retail price
paid by households on dynamic rates. 𝑐𝑠(𝑡) denotes the fixed effect for time segment 𝑠(𝑡).
𝜀 is the error term, which we assume is independently and identically distributed and
uncorrelated with regressors 𝑃 and 𝐶𝑓. Since we are interested in capturing the average
price elasticity of households on dynamic tariffs, we do not estimate the above equation
on a household level. We regress the log average consumption of households on dynamic
tariffs on the log dynamic price and the log average consumption of households on fixed
tariffs.

The specification assumes that the demand curve is isoelastic – if the price increases
by 𝑥%, consumption varies by 𝛾 × 𝑥% regardless of the consumption and price level.
Households may respond to a higher price by shifting consumption to other time intervals
when the price is lower, e.g., running the dishwasher or charging the electric vehicle
earlier or later. At 16:00, households on dynamic plans learn prices for the following
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day. Thus, the model includes contemporaneous and earlier and later prices, spanning a
±8-hour window for 33 elasticity coefficients 𝛾j , 𝑗 = −16, … , +16.

The model includes the average consumption of households on a fixed rate as control
for demand shocks. A positive demand shock increases the price, affecting households'
consumption on dynamic plans both directly and indirectly – via the price. The demand
shock impacts households on fixed rates only directly since they do not face price changes.
Controlling for fixed-rate consumption, therefore, allows isolating the effect of a price
change on the consumption of households on dynamic plans.

Failure to control for demand shocks positively biases the contemporaneous elasticity
coefficient. Interestingly, the response to prices turns out to be sufficiently strong; estimat-
ing the model without control delivers a statistically and economically significant negative
coefficient. As expected, introducing the control increases the coefficient's magnitude
in absolute value. The estimated coefficient on the control is not statistically different
from one, indicating that the direct effect of demand shocks is similar for customers on
dynamic and fixed rates.

On the other hand, we assume that the price response of consumers on dynamic
rates does not have a measurable impact on wholesale electricity prices. Only a tiny
share of households receives dynamic rates in the UK. Moreover, households’ electricity
consumption only accounts for 38% of aggregate electricity demand in the UK (DESNZ,
2023). Aggregate demand hardly changes if only a tiny share of households adjusts
demand in response to prices, even if this price response is large. Hence, the responsive
demand has a negligible effect on aggregate demand and wholesale electricity prices. In
contrast, the price response of households likely impacts aggregate demand and prices in
countries like Spain, where most households receive dynamic prices. In such a setting,
using an instrument like wind generation forecasts is necessary to avoid a simultaneous
equation bias (Fabra et al., 2021).

Our analysis first examines how households on dynamic plans respond to prices. Then,
we stratify the analysis by low-carbon technology (LCT) ownership status. For example,
we estimate the model by restricting attention to households with electric vehicles.

One drawback of our analysis is that most households did not participate in the LCT
survey. Moreover, only customers who switched to a dynamic rate were asked to complete
the survey. Therefore, we only have LCT information for households on fixed rates if
they switch to a dynamic rate at some point. These customers on fixed rates might differ
from fixed-rate customers who never switched to a dynamic rate.

We drop all households without LCT ownership information for all regressions that
analyze the effect of owning an LCT. This filtering leaves only a few observations for some
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LCTs, especially for fixed-rate customers (see Table 1.2). For example, we only have twelve
customers on fixed rates with no LCTs. Thus, we estimate the model using a generic
control group with all 5,904 households on fixed rates, irrespective of LCT ownership
status. As a robustness check, we also run the model using smaller LCT-group-specific
control groups. Our results are robust to using these narrower control groups compared
to using the generic group. Results for the LCT-group-specific controls are shown in
Figure A.1 in Appendix A.

1.5 Empirical findings on households’ consumption response
to prices

Figure 1.3 displays the price elasticity coefficients of our baseline regression model. The
coefficients describe how households react when electricity prices marginally increase in
period 0h. The figure's x-axis shows the seventeen half-hourly periods before and after
the price increase. The time lags and leads capture whether households shift consumption
to adjacent periods in response to a price increase in 0h. The y-axis depicts the price
elasticity of electricity consumption.
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Figure 1.3: Consumption response due to price shock at period 0h

Figure 1.3 reveals that households react substantially to a price increase in period
0h with an average own-price elasticity of -0.26. The figure also suggests that customers
modestly increase demand in adjacent periods when the price increases in period 0h.
However, these cross-price elasticities are generally not statistically significant – see Table
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A.1 in Appendix A. Thus, customers' willingness or ability to shift consumption over
time appears limited.

Figure 1.4 highlights that customers' response to prices only moderately differs across
seasons. Average own-price elasticities are slightly larger in summer (-0.297) and winter
(-0.273) than in spring (-0.246) and fall (-0.223). As Table A.1 in Appendix A reveals,
the differences in own-price elasticity between summer and winter and fall or spring are
statistically significant. Households might be more able to adjust their consumption in
seasons with more extreme temperatures since they can adjust their use of air conditioning
and electric heating. However, differences across seasons are overall minor.
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Figure 1.4: Consumption response due to price shock at period 0h by season

In contrast, the consumption response varies significantly over the day, as Figure
1.5 illustrates. Customers’ response to price changes is significantly stronger at night
(the own-price elasticity is -0.302 from midnight to 5:30) compared to all other times of
day (see Table A.1 for the precise estimation results). The price response in the evening
(-0.240 from 18:00 to 23:30) is also significantly larger than the response in the afternoon
and morning. The own-price elasticities in the afternoon (-0.157 from noon to 17:30) and
morning (-0.154 from 6:00 to 11:30) are smaller and statistically indistinguishable from
each other. Customers seem less willing to adjust their electricity usage in the morning
and afternoon. Postponing electricity-consuming activities during these times of day
might be impractical and too costly due to fixed working hours.

Low-carbon technologies: Octopus Energy surveys customers who sign up for a
dynamic rate and collects ownership information of low-carbon technologies (LCT). We
use this data to analyze whether LCT ownership impacts customers' reactions to price
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Figure 1.5: Consumption response due to price shock at period 0h by time of day

changes. We consider five LCTs: 1) electric heating, 2) smart thermostats, 3) electric
vehicles, 3) residential solar, and 4) battery storage.
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Figure 1.6: Consumption response due to price shock at period 0h by low-carbon technol-
ogy status

Figure 1.6 shows that customers owning at least one LCT are almost three times as
price responsive as customers who do not own any LCT. No-LCT customers have an
own-price elasticity of ‑0.101 compared to -0.282 for customers with at least one LCT.

Next, we consider specific combinations of LCTs. For conciseness, Figure 1.7 only shows
the own-elasticity coefficients. Table A.1 in Appendix A displays the complete estimation
results. The left side of Figure 1.7 indicates that low-carbon heating technologies do not
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increase customers' price responsiveness. The own-price elasticities are nearly the same
for customers with electric heating or electric heating and smart thermostats (and no
other LCT) as for customers without LCTs.

On the right side of Figure 1.7, we focus on the effect of the remaining LCTs, namely
electric vehicles, solar PV, and batteries.4 The own-price elasticity of customers who only
have an electric vehicle (EV only) is more than three times larger than that of customers
without any LCT. Electric cars require substantial energy, motivating consumers to charge
when electricity is cheaper. Pairing electric vehicles with solar and batteries increases
price responsiveness even further.
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Figure 1.7: Consumption response by low-carbon technology ownership status

Solar PV ownership also has a substantial effect on price responsiveness. Surprisingly,
batteries alone do not make customers more price-responsive than customers without
LCT. Moreover, customers who pair batteries with electric vehicles or solar PV are not
significantly more price responsive than customers who only use an EV or a solar panel.
Batteries are not yet endowed with software to take advantage of price changes because
dynamic rates remain rare (Green & Staffell, 2017).

1.6 Demand response and resiliency

In this section, we simulate a thought experiment to analyze if price-responsive consumers
can help make the power system resilient to extreme weather events like the Texas winter

4To increase the size of our sub-samples, we do not control for ownership of the low-carbon heating
technologies. For instance, ”EV only” customers have an electric vehicle, no solar PV, and no battery,
but they may have electric heating or own a smart thermostat. Low-carbon heating technologies do not
have a significant effect on price responsiveness, as discussed above.
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storm in February 2021. The left panel of Figure 1.8 illustrates a typical winter peak in
Texas. There is ample supply to meet demand. The market clears at a typical price under
$40 per megawatt-hour. The right panel in Figure 1.8 shows the supply and demand
picture during the height of the winter storm crisis. Generation outages caused supply
to fall about 35 gigawatts less than expected. Electric heating caused demand (the red
dashed line) to surge about 20 gigawatts higher than prior winter peaks. The gap between
demand and supply during the height of the storm was this difference between the red
dashed line and the maximum supply: 76 – 48 = 28 gigawatts or 37% of demand.

Figure 1.8: Price-responsive demand improves resiliency

When supply and demand curves do not intersect, the Texan system operator, ERCOT,
sets a high administrative shortage price of $9000 per megawatt-hour. However, domestic
demand was unresponsive to this shortage price during the winter storm because 99.75%
of Texas households had a fixed-rate plan.5 These households paid a fixed price of about
$110 per megawatt-hour, only 1.2% of electricity's value in a crisis.

In our thought experiment, we investigate whether the outage could have been avoided
if a larger share of consumers had been exposed to the shortage price during the winter
storm. We calculate the share of price-responsive consumers necessary to prevent outages
if the price-responsive consumers in Texas were as price-elastic as the UK consumers
in our sample, with an average price elasticity of -0.26. For this calculation, we assume
demand to be isoelastic, i.e., consumers' price elasticity is always -0.26 for all price levels.

5Personal communications with the two service providers offering dynamic rates revealed that fewer
than 50 thousand out of 26 million households had wholesale-passthrough rates at the time of the winter
storm.
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We find that if 44% of Texan consumers had a price-responsive rate and responded as
the UK consumers in our sample with a price-elasticity of -0.26, the need for controlled
outages is eliminated even at the height of the storm. As the green line in the right
panel of Figure 1.8 illustrates, a price increase causes electricity demand to fall if 44%
of consumers are price-responsive. Falling demand shrinks the gap between supply and
demand. The gap vanishes at the clearing price of $9000 per megawatt-hour. Thus, if a
sizeable minority of Texans had been price-responsive, Texas would have survived the
2021 storm without shortage.

Figure 1.9 illustrates the share of price-elastic consumers required to prevent power
outages during the Texas Winter storm based on varying levels of average price elasticity
among price-responsive households in our thought experiment. The results indicate that
if 79% of Texan households exhibited price elasticity like the UK households in our
sample without low-carbon technology (an average elasticity of 0.1 in absolute terms), the
outages could have been averted. Similarly, if 39% of Texan households had displayed an
average price elasticity of 0.37, as seen among EV-only owners in our sample, the outages
could have been avoided. Furthermore, if 36% of households had been as price-elastic
as those owning EV, solar, and battery (with an elasticity of 0.56 in our sample), the
outages could also have been prevented.
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This thought experiment rests on a strong assumption: the price-responsive customers
in Texas have the same average price elasticity as the British customers in our sample.
However, prices in Texas varied by a factor of eighty, while they only varied by a factor
of three for the British sample. During our study, the British retail price was capped at
35 pence per kilowatt-hour (£350/MWh). Whether Texan consumers would react more
or less strongly to the far higher price increases during the winter storm remains an open
question. It also rests on the strong assumption that supply is unresponsive to demand
elasticity, which appears unlikely in the long run.

We emphasize that the point of this thought experiment is not to precisely estimate the
price-responsive demand needed to survive the winter storm Uri. Instead, it demonstrates
the vital role engaged and price-responsive customers can play in making power systems
resilient during extreme weather events.

1.7 Policy levers and consumer protection

Regulators are concerned that dynamic rates make households vulnerable to extremely
high prices, and rightfully so. The 0.25% of Texas consumers with dynamic rates generated
widespread news coverage and public interest. Sensationalist reports of multi-thousand-
dollar bills were frequent, although these bills were rare. While these dynamic rates save
consumers money in the long run, they are problematic during a crisis if they are not
introduced with safeguards in place. The Texas Legislature's first law addressing the
crisis was to ban dynamic rates (Ferman, 2021).

Regulators in other jurisdictions still allow dynamic rates but implement or plan
to implement measures to protect consumers from high electricity bills by limiting
their exposure to dynamic prices. For example, in response to the EU energy prices
following Russia's invasion of Ukraine, the European Commission recently stated that
a key objective of the envisioned electricity market design reform is to “enhance the
protection of consumers from volatile prices and to empower them with greater contract
choice” (European Commission, 2023) and that “this wider choice will allow consumers,
if they wish, to lock in secure, long-term prices to be shielded from sudden price shocks.”
(European Commission, 2023). Similarly, in the context of our study, the dynamic retail
price in Britain was capped at £350 per megawatt-hour in 2021. The cap is effective in
protecting consumers from high electricity bills. However, it is too low to ensure demand
response during a crisis. A price of £350 per megawatt-hour might not be high enough
to induce households to lower their heating in a winter storm.
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Moreover, with retail prices capped at £350 and wholesale prices uncapped, sustained
scarcity can cause provider bankruptcies. Britain's 2021 energy crisis demonstrated this
vulnerability. A sustained high gas price has led to high wholesale electricity prices,
bankrupting inadequately hedged providers (Thomas, 2021). The California 2000-2001
energy crisis had the same root cause (Cramton, 2017).

Instead of banning or capping dynamic rates, regulators should mandate forward hedg-
ing in plans that expose consumers to the wholesale spot price. A hedge is commonplace
among industrial consumers and can be implemented in understandable ways for retail
consumers. The service provider buys forward the consumer's expected consumption
and then only exposes the consumer on the margin to settle deviations from expected
consumption. The real-time price rewards the consumer for consuming less during a crisis.
In this way, a penalty (a large bill) becomes a reward (a large rebate).

For example, consider an electric-heated home on a fixed rate. Suppose the home
is near a hospital, so the electricity stayed on throughout the storm and consumed 0.4
megawatt-hours during the 4-day storm, double its typical usage. The household pays
0.4 × $110 = $44 for electricity during the event.

By contrast, suppose the household had a dynamic rate with hedging. The consumer
pays the $9, 000/MWh price only for deviations from expected consumption. The service
provider bought the consumer's expected demand of 0.2 megawatt-hours at the $110
forward price, a cost of 0.2 × $110 = $22. The high marginal price motivates the consumer
to put jackets on, turn down the thermostat, and consume only one-half of the typical
amount. The responsive consumer's bill for the crisis is $22 – 0.1 × $9000 = –$878.

Instead of exposing the consumer to downside risk, the price-responsive consumer
enjoys the opportunity to be rewarded for being flexible and making a socially beneficial
decision – consuming less so that others can warm their houses, too. Hedging transforms
downside risk into upside opportunity. Poorer consumers are more price-sensitive because
they spend more of their income on electricity and are apt to benefit the most from the
flexibility option. Furthermore, hedging brings an additional resiliency benefit by reducing
the chances of service provider default during extended periods of high wholesale prices.

The Texas Legislature's ban was a short-termist political response to the crisis. Instead,
the Legislature should instruct the regulator to prohibit unhedged plans but welcome
plans with hedging as an essential innovation. Indeed, the two Texas service providers
offering dynamic plans were about to introduce improved plans with hedging when the
storm struck (Cramton, 2022).

Rather than limit marginal exposure to spot prices, a necessary condition of economic
efficiency, regulators should foster resiliency and social justice with low-income subsidies
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that promote energy efficiency. The low-hanging fruits are improved insulation, caulking,
and other energy efficiency programs. The levelized cost of energy ($/MWh) of energy
efficiency programs in the US ranges from $12-49, with an average of $24 (Cohn, 2021).
By contrast, the levelized costs of energy for the most efficient production technologies
are $29-42 for solar photovoltaic, $26-54 for wind, and $44-73 for gas combined cycle
(Lazard, 2020). Mandates and low-income subsidies for high-efficiency heat pumps and
other appliances are also desirable. These steps create the most significant savings during
extreme weather events – and help achieve intelligent demand in the long term. Peak
demand falls, reducing the need for additional electricity infrastructure.

Many markets, especially in Europe, have taken great strides in promoting energy
efficiency through mandates and subsidies. Germany is a good example. By contrast,
much of the US still has poor energy efficiency, as seen in Texas. The reason is simple.
Traditional energy providers, the loudest policy voice, do not benefit from energy efficiency.
Consumers benefit, but the gains are often hidden and distant.

Apart from energy efficiency, a thoughtful acceleration of enabling policies is needed
to foster the rapid adoption of dynamic pricing. To allow price-responsive demand, we
must measure real-time electricity use. Smart meters need to be installed in each home.
This essential step has been progressed in many US markets and has been completed
in countries including Denmark, Sweden, and Finland, leaving the UK, Germany, and
others lagging.

Regulators can also promote price-responsive demand by supporting retail choice
so consumers can select a competitive rate that allows price response or by requiring
utilities to offer a dynamic rate with hedging to manage risk. As more consumers choose
the dynamic rate, resiliency improves. Regulators could even nudge consumers by making
the dynamic rate with hedging the default rate for those with supporting devices, such as
smart thermostats or electric vehicles. The dynamic rate is the default if the consumer
fails to select a rate (Berger et al., 2023).

Texas illustrates the enormous cost of a multi-day outage in our modern world.
Regulators can mitigate this cost with policies that foster electricity resiliency and
the benefits that flexibility affords as we power ourselves with an increasing share of
renewables. Price-responsive demand and energy efficiency are low-hanging fruit.

1.8 Conclusions

In this paper, we stress the vital role of engaged and price-responsive electricity consumers
for a successful green transition. This is a valuable, low-cost tool to help keep supply and
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demand in balance in a system powered increasingly by intermittent renewables. Using
domestic customer-level data from the UK, we first show that households are able and
willing to adjust their consumption in response to dynamic electricity prices. On average,
the price elasticity of demand is -0.26 for the households in our sample.

While this effect may partly reflect self-selection, rapid innovation in demand-response
technology and digitalization of energy systems will increase adoption and enable greater
price-responsive demand among all households. We provide suggestive evidence that
low-carbon technologies like electric vehicles significantly strengthen households' price
response. As more consumers adopt these technologies in the coming decades, demand
response from domestic consumers is expected to change and increase further. Therefore,
it should be a key focus of future research to study in a dynamic model how households'
response to electricity changes over time when an increasing share of consumers starts
using these technologies.

Several policy implications emerge. Most importantly, regulators should mandate
electricity suppliers to combine dynamic rates with a forward hedge. The hedge shields
households from high prices while preserving an incentive to be price-responsive, especially
during shortage events. The hedge makes dynamic pricing attractive for low-income
households since it rewards them for reducing consumption during shortages.

Regulators should also combine dynamic pricing with low-income subsidies for energy
efficiency investments. Dynamic pricing makes investments in energy efficiency measures
like insulation more appealing since energy efficiency protects households from high prices.
These subsidies ensure that low-income households also benefit from dynamic pricing.

Regulators need to implement enabling policies for rapid adoption of demand response.
For instance, they should support an accelerated smart meter roll-out and intensify retail
competition to encourage electricity suppliers to offer innovative, dynamic plans.

Implementing the above regulatory measures is essential to make dynamic electricity
rates with a forward hedge appealing to consumers. Attractive dynamic rate plans
encourage domestic consumers to actively participate in the energy transition. They
induce consumers to mitigate demand peaks and help prevent blackouts during extreme
weather events. Demand response also motivates households to invest in low-carbon
technologies like electric vehicles, battery storage, and energy efficiency - which are
essential to decarbonization. Dynamic electricity prices are vital for a fast, efficient, and
resilient green transition and should be rapidly adopted at scale.

We also highlight that price-responsive consumers can make power systems resilient
to extreme weather events like the Texas winter storm. In a thought experiment, we
estimate that power outages could have been avoided during the winter storm if 44% of
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Texan electricity consumers had been as price-responsive as the consumers in our UK
sample. Dynamic prices give households a strong incentive to reduce their consumption
when needed most, namely during extreme weather events. The broader adoption of
electric heating and cooling will make price-responsive households even more crucial
for system resiliency since domestic electricity consumption will likely correlate more
positively with extreme weather (Staffell et al., 2015).

However, the Texas winter storm also revealed that households cannot be fully exposed
to extremely high dynamic prices without proper risk protection. Hence, we argue that
regulators should mandate suppliers to combine dynamic rates with a forward hedge.
The forward hedge protects households from soaring prices and preserves an incentive
to be price-responsive, especially during extreme events. Moreover, regulators should
combine dynamic electricity rates with additional policy levers to address social justice
concerns like low-income subsidies for energy efficiency measures. Regulators should also
implement policies for a faster smart-meter rollout and intensified retail competition to
promote demand response.

Overall, price-responsive demand is fundamental for a reliable and resilient energy
system. Electricity, heat, and transport account for over 60% of global emissions (EPA,
2021). Dynamic rates strengthen incentives to adopt low-carbon technologies in all these
sectors. For instance, dynamic pricing supports investments in renewable generation
assets since it incentivizes consumers to shift consumption to periods when energy from
renewables is abundant. Similarly, price-responsive demand increases incentives to invest
in slow-ramping resources, like nuclear, because part of the adjustment to balance supply
and demand shifts to the demand side (Roques et al., 2005).

In the transport sector, dynamic electricity rates and electric vehicles exhibit strong
complementarity. Electric vehicles motivate consumers to be price-responsive since they
benefit from charging at night when the price is low. On the other hand, dynamic pricing
is a precondition for smart charging and discharging of electric vehicles. Electric vehicles
can generate additional value via vehicle-to-grid solutions. In combination with dynamic
pricing and battery storage, electric vehicles also have enormous potential for smoothing
the intermittent generation from renewables. By 2050, electric vehicles are projected
to increase electricity demand by 25% (Steinberg et al., 2017). Dynamic pricing can
transform electric vehicles from a challenge to an opportunity for the power grid.

Dynamic electricity prices thereby help decarbonize not only the electricity sector
but also other sectors of the economy. As such, dynamic pricing should be a central
component of any least-cost strategy aimed at accelerating the green transition.



Chapter 2

Hedging households against
extreme electricity prices

This chapter contains the current version of the working paper Brandkamp (2025). An
abstract of this working paper was also published in the conference proceedings of IAEE
(2024) and EAERE (2024).

Abstract

Dynamic electricity prices expose households to the risk of extremely high electricity
bills during scarcity events. To protect households from high scarcity prices, I explore
how to combine dynamic electricity prices with forward hedging. I derive household-
specific optimal forward hedge shares by applying a utility maximization model to 2,159
UK households exposed to dynamic prices. The average optimal hedge share is 59%
of households’ baseline consumption. Hedge shares are higher for electric heating and
electric vehicle owners and lower for solar PV and battery storage owners. My key
theoretical finding is that an increase in households’ price elasticity of demand raises
optimal hedge shares if households face positive correlation between electricity prices and
their weather-related desire to consume electricity. Forward hedging effectively reduces
electricity bill volatility by 18% for price-inelastic households. When exposing households
to scarcity events, hedging achieves sizable welfare gains equivalent to 19% reduction in
average electricity prices.

32
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2.1 Introduction

Many economists emphasize the benefits of exposing households to dynamic electricity
prices. Dynamic prices are linked to day-ahead electricity prices and fluctuate on a short-
term basis, e.g., every half hour. They incentivize households to reduce consumption during
periods of high aggregate demand or scarce electricity supply. Thereby, dynamic prices help
mitigate demand peaks and improve the integration of intermittent renewable generation
into the energy system. This makes electricity markets more efficient (Houthakker, 1951,
Borenstein & Holland, 2005, Borenstein, 2005, Allcott, 2011).1

A drawback of dynamic pricing is that it makes consumers vulnerable to extremely
high prices when electricity is scarce. When power demand exceeds supply, regulators

1Borenstein (2005) finds that broad adoption of dynamic prices would lead to substantial efficiency
gains in the long run, reducing consumers’ total electricity bill by 3-11% in California. In the short run,
Holland and Mansur (2006) obtain only small welfare gains for consumers that translate to a 0.24-2.5%
reduction in total electricity bills. Holland and Mansur (2006) also reveal that dynamic prices reduce the
volatility of wholesale electricity prices and load.



HEDGING HOUSEHOLDS AGAINST EXTREME ELECTRICITY PRICES 34

set high scarcity prices for electricity in many power markets (Cramton, 2017).2 For
example, during the winter storm in Texas in February 2021, a scarcity price of 9$/kWh
was enforced for more than 64 hours over multiple days in response to a severe electricity
shortage (ERCOT, 2022). As a result, the small minority of households exposed to
dynamic prices received electricity bills exceeding $100 per day (EIA, 2022). These
extremely high bills sparked a public debate about whether dynamic pricing is suitable
for households (McDonnel et al., 2021).

To address these concerns, economists proposed to complement dynamic price tariffs
with a forward hedge (Borenstein, 2007a, Wolak & Hardman, 2022, Winzer et al., 2024,
Schlecht et al., 2024). The objective of the forward hedge is to protect households from
high electricity prices while preserving incentives to reduce demand when needed most,
namely during scarcity events (Cramton et al., 2025a). The German government recently
introduced subsidized forward contracts known as gas and electricity price brakes to
reduce consumers’ exposure to soaring energy prices while incentivizing them to save
scarce energy (Dertwinkel-Kalt & Wey, 2023).

To illustrate how a forward hedge works, consider a household with a typical daily
consumption of 20 kWh. The household is offered to buy 100% of its typical consumption
forward at a price of 0.2$/kWh. It pays 4$ (=20kWh*0.2$/kWh) per day for this hedge.
During a Texas-style scarcity event, when the electricity price is 9$/kWh all day, the
household pays the scarcity price only for the deviation of its realized consumption from
the hedged quantity of 20 kWh. If the realized consumption is 20kWh, the household
only pays 4$ for the hedge and is fully protected from the high scarcity price.

If the household reduces its consumption below the hedged quantity, e.g., to 15 kWh,
it is remunerated for the negative deviation of 5 kWh at the scarcity price. This results in
a daily bill of −41$ (= 4$+(−5kWh)∗9$/kWh). The hedge rewards households for doing
what is socially desirable: reducing consumption when electricity is scarce. Conversely, if
the household consumes more than 20 kWh, say 25kWh, the positive deviation of 5kWh
leads to a high daily bill of 49$ (=4$ + 5 kWh ∗ 9$/kWh). This high bill creates a strong
incentive to reduce consumption during scarcity. At the same time, the hedge protects
the household from the far higher 225$ bill it would face without the hedge. Moreover,
the household can choose to hedge more than 100% of its typical consumption to be
better protected against high prices (Cramton et al., 2025a).

In this paper, I calculate household-specific optimal hedge shares, i.e., the optimal
share of typical consumption that a household should buy forward. I simulate these

2The objective of scarcity prices is to induce all available power plants to operate at maximum level
and to provide incentives for investments in additional generation capacity (Cramton, 2017).
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optimal shares for a dataset of 2,159 UK households that received half-hourly dynamic
prices but no forward hedge.

A hedge share is defined as optimal if it maximizes households’ expected utility.
Optimal hedge shares may vary by time of day to account for intraday load patterns. I
study how optimal hedge shares are influenced by households’ price elasticity of demand,
risk aversion, and ownership of technologies like electric heating and vehicles, and battery
storage. To estimate welfare gains, I calculate the price premia households should be
willing to pay for being optimally hedged.

To derive the optimal hedge shares, I solve a two-stage utility maximization model via
backward induction. In the second stage, households do not face any uncertainty. They
maximize their utility from electricity consumption and aggregate consumption of other
goods. I assume a constant-elasticity-of-substitution utility function and exogenously
choose households’ elasticity of substitution and their coefficient of relative risk aversion.
Moreover, I suppose that each household spends, on average, 2% of its income on electricity
since I observe household expenditure only for electricity and not for other goods. This
assumption is consistent with electricity’s average expenditure share in the UK (UK
ONS, 2021).

In the first stage of the model, households choose optimal hedge shares subject to
stochastic electricity prices and quantity shocks. Quantity shocks capture all factors except
prices that impact agents’ desire to consume electricity. For instance, the weather or a
national holiday influence households’ desire to consume. The model allows deriving the
unobservable quantity shocks as a residual of households’ observable unhedged electricity
demand.

My main contribution is to examine the interaction between price elasticity of demand
and optimal hedging when agents face two volatile factors: Prices and quantity shocks.
Previous literature analyzed how price elasticity affects optimal hedge shares when prices
are the unique volatile factor (Moschini & Lapan, 1992, Dionne & Santugini, 2015). They
argue that optimal hedge shares decline if agents’ price elasticity increases. Price-elastic
agents are less vulnerable to high prices because they can reduce demand when prices are
high. Hence, price-elastic agents need to hedge less when prices are the unique volatile
factor.

However, electricity consumers also face volatile quantity shocks. Their desire to
consume electricity depends heavily on external shocks like extreme weather. Only a few
authors consider how quantity shocks influence hedge shares (Losq, 1982, Cowan, 2004).
They find that optimal hedge shares increase if prices and quantity shocks are positively
correlated.
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My key result is that this correlation also determines how an increase in price
elasticity affects hedge shares. When prices and quantity shocks are positively correlated,
an increase in price elasticity raises hedge shares. Assume price elasticity increases for
a household with electric heating. During a winter storm, the increased price elasticity
induces this household to reduce consumption more strongly in response to high scarcity
prices. However, reducing consumption during a winter storm causes large disutility for
an electric heating owner since she needs electricity to heat her home. As a response, the
more price-elastic electric heating owner increases her hedge share to reduce her exposure
to spot prices. Lower spot price exposure allows her to maintain an acceptable level of
consumption even during a winter storm when both prices and her desire to consume
electricity are extremely high.

In contrast, when prices and quantity shocks are negatively correlated, an increase in
price elasticity decreases hedge shares. In this case, responding more strongly to high
prices causes small disutility because households’ desire to consume is low when prices are
high. Hence, increasing price elasticity makes households less vulnerable to high prices
since they respond by reducing consumption without suffering large disutility. Therefore,
they need to hedge less.

From these theoretical observations, I calculate optimal hedge shares for each house-
hold in my sample. The average optimal hedge share is 59% of households’ typical
consumption. Optimal hedge shares differ widely both between customers and for a
specific customer by time of day. Ownership of low-carbon technologies partly explains
the heterogeneity in hedge shares. Electric heating or electric vehicle owners have high
average hedge shares of 77% and 69%, respectively. These technologies likely increase the
positive correlation between prices and quantity shocks. On the other hand, solar PV
owners hedge on average only 22% of their typical consumption, indicating that their
electricity consumption from the grid is negatively correlated with prices. Battery storage
ownership is also associated with a slightly lower mean hedge share of 52%.

An exogenous increase in price elasticity of demand further amplifies the dispersion
in hedge shares. Some households respond to higher price elasticity by reducing their
hedge shares to exploit the negative correlation between prices and quantity shocks.
Other households with a positive correlation increase hedge shares. On average, optimal
hedge shares decline when price elasticity rises. In contrast, increasing risk aversion has a
positive effect on hedge shares. This positive effect rapidly diminishes with the level of
risk aversion.

The optimal hedge is effective in reducing the volatility of monthly electricity bills.
In my main specification, the optimally hedged tariff reduces households’ coefficient of
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variation of monthly bills, on average, by 18% compared to an unhedged tariff. Hedging
is particularly effective for households with large average hedge shares beyond 100% of
their typical consumption. For these households, the hedge reduces their coefficient of bill
volatility by 45%. Such households even experience lower bill volatility when optimally
hedged than under a fixed-price tariff. The fixed tariff protects households only from
price volatility, while the optimally hedged tariff protects from volatility in both prices
and consumption (Borenstein, 2007a).

An increase in price elasticity makes the optimal hedge less effective in reducing bill
volatility. Price-elastic households consume more when prices are high on the optimally
hedged tariff than on the unhedged tariff because the hedge weakens households’ exposure
to spot prices and lowers their price response. Consuming more when prices are high
raises bill volatility. When assuming high price elasticity, some households even face
higher bill volatility on the optimally hedged tariff than on the unhedged one.

Similarly, if households become more risk-averse, the optimally hedged tariff achieves
smaller reductions in bill volatility compared to the unhedged tariff. High risk aversion
induces households to choose higher hedge shares and thereby lowers households’ exposure
to spot prices. As explained above, low spot price exposure can increase bill volatility for
price-elastic households.

Optimal forward hedging results in tiny welfare gains for households during my
sample period. Augmenting a dynamic tariff with a forward hedge leads to a welfare gain
compared to an unhedged dynamic tariff that translates, on average, to a 0.3% reduction
in mean electricity prices. In contrast, dynamic pricing itself achieves more significant
average welfare gains equivalent to a 0.8-4% reduction in mean electricity prices.

The welfare gain from hedging increases to a more substantial 19% reduction in mean
electricity prices when simulating a scarcity event like the Texas winter storm. Hedging
is more valuable to consumers if they face worst-case events with extremely high prices.
I simulate such a scarcity event by artificially exposing households’ to extremely high
electricity prices over multiple days.

The small welfare gain from hedging without scarcity events can be partly explained
by electricity’s small share in household expenditure. UK households spend only 2% of
their income on electricity (UK ONS, 2021). Electricity’s expenditure share will likely
increase substantially in the upcoming decades due to electrification of mobility and
heating. Therefore, the relevance of hedging electricity prices might increase. However,
for the given sample, the average simulated welfare gain from hedging only increases to
1.6%, even when assuming that households spend a much larger income share of 10% on
electricity.
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My paper presents a partial equilibrium analysis. Households’ hedging decisions do
not affect electricity prices. In general equilibrium, where all consumers are on dynamic
and optimally hedged tariffs, the welfare effects of hedging are likely lower. Dynamic
pricing mitigates price peaks and, thereby, reduces price volatility. When price volatility
is lower, hedging creates smaller welfare benefits.

I structure my paper as follows: Section 2.2 relates this paper to the optimal hedge
literature. Section 2.3 describes a utility maximization model to derive optimal hedge
shares and price premia for the optimal forward hedge. In section 2.4, I parameterize
the model to simulate optimal hedge shares for real-world domestic consumers. Section
2.5 presents the data set, and section 2.6 discusses the simulation results. Section 2.7
concludes.

2.2 Literature review

This paper contributes to the literature on optimal forward hedge shares. Danthine (1978),
Holthausen (1979), and Feder et al. (1980) identify optimal hedge shares and production
decisions for price-inelastic firms when selling prices are uncertain. Their main insight is
the “separation result”: Production decisions only depend on the forward price and not
on risk attitudes. In contrast, hedge shares depend on risk attitudes and expectations
about future prices. Moreover, they find that price-inelastic firms should hedge 100% of
their production when forward hedge prices equal expected spot prices.

McKinnon (1967), Rolfo (1980), Losq (1982), and Lapan and Moschini (1994) derive
optimal hedge shares for firms in industries like agriculture where both prices and
production are uncertain. McKinnon (1967) highlights that a positive correlation between
prices and production is a major motive for firms to increase hedge shares beyond 100%.

The literature also explores how optimal hedge shares change when alternative risk
management tools are available. For example, if firms are price-elastic, their optimal
hedge share is lower since they can flexibly adjust their production after price uncertainty
resolves (Moschini & Lapan, 1992, Dionne & Santugini, 2015). Similarly, storage and
buffer stocks provide flexibility and reduce the need for high hedge shares (McKinnon,
1967, Newbery & Stiglitz, 1981, Gemmill, 1985, Gilbert, 1985). In the context of this
paper, battery storage will likely gain importance as a risk management tool for electricity
consumers.

Moreover, multiple authors derive optimal hedge shares when firms combine forward
contracts with alternative derivatives like options (Moschini & Lapan, 1992, Brown &
Toft, 2002, Gay et al., 2002, Mnasri et al., 2017). They argue that when the uncertainty
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concerning quantity is high, forward contracts are less effective than options to protect
firms from profit fluctuations. The key difference is that forward contracts have a linear
payoff structure, while options have a nonlinear one. When both prices and quantities
are uncertain, firms’ profits are nonlinear in prices. Therefore, nonlinear options provide
better risk protection (Moschini & Lapan, 1992, Sakong et al., 1993). Brown and Toft
(2002) customize the optimal payoff structure for a value-maximizing firm using a portfolio
of forward contracts and exotic nonlinear derivatives.

Studies on hedging for small retail consumers are rare since they typically do not have
access to forward markets (Newbery, 1989). Various researchers examine hedge decisions
for large consumers like load-serving entities in electricity markets. Load-serving entities
buy electricity on wholesale markets with volatile prices and sell it to retail consumers at
fixed rates. They face high price and demand uncertainty caused by unique characteristics
of electricity. Electricity demand fluctuates and is mostly price-inelastic. Large-scale
storage is often unavailable or expensive. Moreover, electricity prices and demand are
positively correlated as they both depend on weather conditions. Oum and Oren (2010),
Zhou et al. (2017), and Azevedo et al. (2007) characterize the optimal hedge position for
load-serving entities. They stress the importance of augmenting forward contracts with
nonlinear options, given the large quantity uncertainty that load-serving entities face.

Another tool that load-serving entities can use to mitigate risk is time-varying tariffs
like time-of-use, critical peak pricing, peak time rebate, or dynamic tariffs (Faruqui et al.,
2012). Time-varying tariffs reduce risk for load-serving entities as they mitigate the
positive correlation between wholesale prices and demand (Zhou et al., 2017). They do
so by charging end customers higher prices when wholesale prices are (expected to be)
high. Numerous studies reveal that end customers lower their electricity consumption in
response to high short-term prices. In a literature survey of 36 studies, Espey and Espey
(2004) report an average short-term price elasticity of electricity demand of −0.35.

On the other hand, time-varying tariffs increase the risk exposure for retail consumers,
especially on fully dynamic tariffs (Borenstein, 2007a, Faruqui et al., 2012). Many
economists acknowledge the need to augment dynamic tariffs with risk management tools
like price caps or collars3, forward contracts, or options (Barbose et al., 2004). Caps
and collars are suitable for protecting customers from high price spikes. However, caps
are typically too low to incentivize customers to lower consumption sufficiently during
scarcity events (Cramton et al., 2025a). Nonlinear derivatives like options are arguably
too complex, especially for households and small business consumers. Therefore, multiple

3Price collars allow the electricity price for retail consumers to vary, but it cannot be higher than a
specified price cap or lower than a price floor (Goldman et al., 2004).
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researchers propose forward contracts as an appropriate hedging tool for consumers
(Borenstein, 2007a, Wolak & Hardman, 2022, Cramton et al., 2025a, Schlecht et al.,
2024).

Since the 1990s, several US utilities have offered commercial customers dynamic
tariffs with a forward hedge, known as two-part tariffs (Braithwait & Eakin, 2002,
Barbose et al., 2005). While most utilities let customers only buy exactly 100% of their
typical consumption forward, some utilities allow them to choose a different hedge share
(O’Sheasy, 1998, Stavrogiannis, 2010). In this paper, I compare the effectiveness of a
simple 100% hedge tariff used by most utilities to a tariff with an optimal forward hedge.

My paper is closest to Borenstein (2007a), Stavrogiannis (2010), and Winzer et al.
(2024). They do not derive optimal hedge shares but simulate how effective various
arbitrary hedge shares are in reducing the volatility of electricity bills. For household
samples, Stavrogiannis (2010) and Winzer et al. (2024) find that a tariff with a 100%
forward hedge effectively reduces bill volatility compared to an unhedged dynamic tariff.
For a sample of large industrial consumers in California, Borenstein (2007a) reveals that
77% of consumers can reduce their bill volatility even further by choosing a hedge share
above 100%. Such consumers face a strong positive correlation between consumption and
prices. These findings suggest that a simple 100% hedge might only be optimal for a few
consumers.

My paper differs from Borenstein (2007a) and Stavrogiannis (2010) as they assume
consumers to be risk-neutral and price-inelastic. They suppose consumers do not change
their consumption when transferred to a dynamic tariff with a forward hedge. In contrast,
I study the interaction between price elasticity and hedging. Specifically, I simulate how
households adjust their consumption in response to being optimally hedged.

I build on models by Gilbert (1985) and Cowan (2004) to simulate optimal forward
hedge shares with quantity shocks. Cowan (2004) derives optimal hedge shares for price-
elastic and risk-averse electricity consumers facing quantity shocks. Hedge shares increase
in consumers’ coefficient of relative price risk aversion and the correlation between price
and quantity shocks. Hedge shares decline in consumers’ income elasticity of demand. I
extend Cowan’s (2004) analysis by examining the effect of an exogenous increase in price
elasticity on hedge shares. I also study how the ownership of technologies like electric
heating and battery storage affects hedging decisions.

Apart from the literature on optimal hedge shares, I also contribute to the literature
that studies how price stabilization and hedging influence consumer welfare (Waugh,
1944, Turnovsky et al., 1980, Newbery & Stiglitz, 1981, Gilbert, 1985, Cowan, 2004).
These authors emphasize that dynamic prices can increase welfare compared to stabilized
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prices, even for risk-averse consumers, if they are sufficiently price-elastic. Cowan (2004)
reveals that optimal forward hedging always positively impacts consumer welfare under
pure price volatility. I extend his analysis by showing that the positive welfare effect of
hedging declines the more negatively prices and quantity shocks correlate.

2.3 Model

2.3.1 Optimal hedge shares

Below, I employ a two-stage model based on Gilbert (1985) and Cowan (2004). It allows
for deriving optimal hedge shares via backward induction, starting with the second stage.

Second stage: Households choose between electricity consumption 𝑥 and aggregate
consumption of other goods 𝑦 to maximize the indirect utility function 𝑉:

𝑉 (𝑝, 𝑏, 𝜀, 𝑓, ℎ) = max
𝑥,𝑦

{𝑈(𝑥, 𝑦, 𝜀)|𝑥𝑝 + 𝑦 ≤ 𝑏 + (𝑝 − 𝑓)ℎ∗} (2.1)

Household utility depends on quantity shock 𝜀. The quantity shock captures all factors
except prices that impact households’ desire to consume electricity, such as weather,
national holidays, or a national sports event on TV. Households choose the optimal
consumption bundle subject to their income 𝑏,4 dynamic electricity price 𝑝 > 0, forward
hedge price 𝑓, and the optimal hedge quantity ℎ∗ that was chosen in stage 1. Prices for 𝑦
are normalized to 1. The indirect utility function 𝑉 is assumed to be concave in budget 𝑏
with 𝑉𝑏 > 0 and 𝑉𝑏𝑏 < 0 being its first and second derivatives with respect to 𝑏.

There is no uncertainty in the second stage. Households observe electricity prices and
quantity shocks.

First stage: Households choose the optimal hedge quantity ℎ∗ that maximizes their
expected utility given stochastic electricity prices ̃𝑝 and quantity shocks ̃𝜀.

ℎ∗ = arg max
ℎ

𝐸[𝑉 ( ̃𝑝, 𝑏, ̃𝜀, 𝑓, ℎ)] (2.2)

Following McKinnon (1967) and Lapan and Moschini (1994), prices and quantity shocks
can be correlated and are described via a bivariate normal distribution. Lapan and
Moschini (1994) find that optimal hedge shares are robust to assumptions on utility

4The budget constraint with a forward hedge can be formulated in two equivalent ways: The first
formulation is 𝑓ℎ + (𝑥 − ℎ)𝑝 + 𝑦 ≤ 𝑏. This formulation states that the household pays 𝑓ℎ for the forward
hedge and the dynamic price 𝑝 only for the deviation of its consumption 𝑥 from the hedge quantity ℎ.
Rearranging the first formulation leads to the second equivalent formulation 𝑥𝑝 + 𝑦 ≤ 𝑏 + (𝑝 − 𝑓)ℎ as
given in equation (2.1) (Braithwait & Eakin, 2002).
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functions and distributions of stochastic elements. For risk-averse profit-maximizing firms,
they derive similar hedge shares when comparing utility functions with constant absolute
risk aversion and constant relative risk aversion, respectively, both under normal and
lognormal distributions of prices and stochastic production.

Assuming an interior solution, the first-order condition of equation (2.2) is given by5

𝐸[𝑉𝑏( ̃𝑝 − 𝑓)] = 0 (2.3)

Letting 𝑝 = 𝐸[ ̃𝑝] and 𝜀 = 𝐸[ ̃𝜀] represent expectations of prices and quantity shocks, a
first-order Taylor approximation of 𝑉𝑏 about (𝑝, 𝜀) yields

𝑉𝑏 ≈ 𝑉𝑏 + 𝑉𝑏�̃�( ̃𝑝 − 𝑝) + 𝑉𝑏𝑏ℎ( ̃𝑝 − 𝑝) + 𝑉𝑏 ̃𝜀( ̃𝜀 − 𝜀). (2.4)

𝑉𝑏 = 𝑉𝑏(𝑝, 𝑏, 𝜀, 𝑓, ℎ) is the first derivative of household’s baseline utility level, i.e., its
utility from choosing the optimal consumption bundle when the random factors ̃𝑝 and ̃𝜀
are at their average. 𝑉𝑏�̃�, 𝑉𝑏𝑏, and 𝑉𝑏 ̃𝜀 denote derivatives of 𝑉𝑏 with respect to ̃𝑝, 𝑏, and
̃𝜀. In Appendix B.1, I insert equation (2.4) into (2.3) and solve for the optimal hedge

quantity ℎ∗.

ℎ∗ = −
𝑉𝑏�̃�

𝑉𝑏𝑏
− 𝑉𝑏 ̃𝜀

𝑉𝑏𝑏

𝜎�̃� ̃𝜀

𝜎2
�̃�

− 𝑏
𝜃

(𝑓 − 𝑝)
𝜎2

�̃�⏟
Speculation

(2.5)

𝜎�̃� ̃𝜀 is the covariance between prices ̃𝑝 and quantity shocks ̃𝜀, and 𝜎2
�̃� represents the

variance of prices. 𝜃 = −𝑉𝑏𝑏
𝑉𝑏

𝑏 is the coefficient of relative risk aversion at baseline.
Equation (2.5) reveals that ℎ∗ increases in 𝑉𝑏�̃� because 𝑉𝑏𝑏 < 0. If 𝑉𝑏�̃� > 0, a high

price is associated with a high marginal utility of income 𝑉𝑏. In this case, a large forward
hedge quantity ℎ∗ increases utility because the forward hedge increases income when
prices are high. Increased income causes large utility gains since 𝑉𝑏 is high when prices
are high (Cowan, 2004).

𝑉𝑏 ̃𝜀 captures how quantity shock ̃𝜀 influences the marginal utility of income 𝑉𝑏. If
𝑉𝑏 ̃𝜀 > 0 and 𝜎�̃� ̃𝜀 > 0, a large ̃𝜀 is associated with both high 𝑉𝑏 and high prices in
expectation. In this case, choosing a large hedge quantity ℎ∗ is beneficial because the
hedge increases income when both 𝑉𝑏 and prices are likely high. In contrast, if 𝑉𝑏 ̃𝜀 > 0
and 𝜎�̃� ̃𝜀 < 0, the agent hedges less since ̃𝑝 is likely low when ̃𝜀 is large. When a large ̃𝜀

5The second-order condition is 𝐸[𝑉𝑏𝑏(�̃� − 𝑓)2] < 0. It holds if agents are risk-averse and if there exists
some volatility in spot prices (Gilbert, 1985, Cowan, 2004). I assume both conditions hold for domestic
electricity consumers on dynamic tariffs.
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causes a high 𝑉𝑏, corresponding low prices raise the household’s real income. Therefore,
the household reduces ℎ∗.

The last term of equation (2.5) captures speculative motives for hedging. The house-
hold wants to speculate more the higher its income 𝑏 and the smaller its coefficient of
relative risk aversion 𝜃. Below, I assume that household customers do not hedge for
speculative reasons, i.e., households believe that 𝑓 = 𝑝. Thus, the last term in equation
(2.5) equals 0.

Equation (2.5) describes the optimal hedge quantity ℎ∗ for general concave utility
functions. To simulate hedge shares for real-world consumers, I assume that households’
consumption decisions can be described by a homothetic constant-elasticity-of-substitution
(CES) indirect utility function (Kihlstrom, 2009, Lau, 2016).

𝑉 (𝑝, 𝑏, 𝜀, 𝑓, ℎ) = 1
1 − 𝜃

[𝑏 + (𝑝 − 𝑓)ℎ∗]1−𝜃(𝜀𝑝1−𝛼 + 1) 1−𝜃
𝛼−1 (2.6)

where 𝛼 ≠ 1 is the elasticity of substitution. 𝜃 ≠ 1 is the coefficient of relative risk aversion
at baseline. CES utility functions are commonly used to model electricity consumption,
given their analytical tractability (Herriges et al., 1993, Schwarz et al., 2002, Goldman
et al., 2004, Faruqui & Sergici, 2011).6 Applying Roy’s identity to equation (2.6) yields
the Marshallian demand for electricity.

𝑥∗(𝑝, 𝑏, 𝜀, 𝑓, ℎ∗) = [𝑏 + (𝑝 − 𝑓)ℎ∗]𝜀𝑝−𝛼

(𝜀𝑝1−𝛼 + 1)
(2.7)

The Marshallian demand illustrates how the hedge affects electricity consumption. The
hedge adds (𝑝 − 𝑓)ℎ∗ to income 𝑏 to partially compensate for a change in 𝑝. It increases
households’ disposable budget when prices are high (𝑝 > 𝑓) and decreases budget when
they are low (𝑝 < 𝑓) (Braithwait & Eakin, 2002). Since households’ income elasticity of
demand equals 1, the hedge induces households to increase consumption when prices are
above their average 𝑝 = 𝑓.

6This CES specification has a major drawback: For constant prices and quantity shocks, homothecity
implies that the share of expenditure households spend on electricity remains constant when income
increases. Empirically, electricity’s expenditure share typically decreases with income. In the UK, electric-
ity’s expenditure share ranges from 4% for the lowest income decile to 1.3% for the highest decile in
2020 (UK ONS, 2021).
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In Appendix B.1, I substitute the derivatives of the CES indirect utility function (2.6)
into equation (2.5) to obtain the optimal hedge share:

ℎ∗

̂𝑥∗ = (1 − 1
𝜃

)(1 + 1
1 − 𝛼

𝜌𝑐𝑣( ̃𝜀)
𝑐𝑣( ̃𝑝)

) (2.8)

The optimal hedge share is the ratio of the absolute optimal hedge quantity ℎ∗ and
the baseline consumption ̂𝑥∗ = 𝑥∗(𝑝, 𝑏, 𝜀). ̂𝑥∗ defines what I previously called “typical
consumption”. It is not equal to the household’s average consumption but describes how
much a household consumes if ̃𝑝 and ̃𝜀 are at their average level. Equation (2.7) highlights
that ̂𝑥∗ does not depend on the hedge quantity ℎ∗ since 𝑝 = 𝑝 = 𝑓 at baseline. Hence, at
baseline, the optimally hedged household consumes as if it was unhedged.

On the right-hand side of equation (2.8), 𝜌 depicts the coefficient of correlation
between ̃𝑝 and ̃𝜀. 𝑐𝑣( ̃𝑝) and 𝑐𝑣( ̃𝜀) are the coefficients of variation of ̃𝑝 and ̃𝜀, respectively.
The optimal hedge share increases in the coefficient of relative risk aversion 𝜃. If prices and
quantity shocks are uncorrelated, the optimal hedge share approaches 1 when households
become infinitely risk-averse. The lower households’ risk aversion relative to their income
elasticity of demand, the more the optimal hedge share decreases.7

A positive correlation 𝜌 between quantity shocks and prices leads to higher optimal
hedge shares. For example, if a household uses electric heating, it likely has a high desire
to consume electricity when temperatures are low. Electricity prices are typically also
high when temperatures are low due to high aggregate demand. Thus, households with
electric heating face a positive correlation between electricity consumption and prices.
This positive correlation makes households vulnerable to high electricity prices since they
consume a lot when prices are high. Therefore, households with electric heating likely
have high optimal hedge shares.

An increase in the substitution elasticity 𝛼 further raises optimal hedge shares when
the correlation between price and quantity shocks is positive (at least for reasonably small
substitution elasticities, i.e., 𝛼 < 1). For a constant ℎ∗, increasing 𝛼 makes households’
price elasticity of demand 𝛾 more negative if the substitution effect of a price change
exceeds the income effect.

𝛾 = 𝜕𝑥∗

𝜕𝑝
𝑝
𝑥∗ = ℎ∗𝑝

[𝑏 + (𝑝 − 𝑓)ℎ∗]
− (1 − 𝑠)𝛼⏟⏟⏟⏟⏟
Substitution

effect

− 𝑠⏟
Income
effect

(2.9)

7In general, the first term of equation (2.8) is given as 1 − 𝜂
𝜃 for every concave utility function. 𝜂 is

the income elasticity of demand at baseline. 𝜂 = 1 for the CES utility function in equation (2.6).
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𝑠 = 𝑝𝑥∗(ℎ∗=0)
𝑏 < 1 is electricity’s expenditure share for unhedged households. For electricity

consumers, the substitution effect typically dominates the income effect since electricity’s
share in household income is small. Therefore, households’ demand becomes more price-
elastic when the substitution elasticity 𝛼 rises. An increase in price elasticity induces
households to reduce consumption when prices are high. When 𝜌 > 0, households
particularly dislike a reduction in consumption since high prices are associated with
a high desire to consume electricity. Thus, the household raises the hedge share ℎ∗ to
reduce its price elasticity. As equation (2.9) illustrates, hedging reduces price elasticity
since it mitigates exposure to spot prices. Thereby, the hedge ensures that consumption
does not decrease too much when both prices and the desire to consume are high. On
the other hand, increasing 𝛼 reduces hedge shares when 𝜌 < 0. A higher 𝛼 makes the
correlation between prices and consumption even more negative since more price-elastic
households consume more when prices are low and the desire to consume electricity is
high. In this case, the household reduces its hedge share since it wants to be exposed to
low spot prices when its consumption is high.

To sum up, with quantity shocks, an increase in price elasticity leads to lower hedge
shares only if the correlation between prices and quantity shocks is negative.

2.3.2 Price premia

This section derives the price premia households are willing to pay to receive a dynamic
electricity tariff with an optimal forward hedge. I follow the literature on the welfare effect
of price stabilization and use a fixed tariff as a benchmark (Hanoch, 1977, Turnovsky
et al., 1980, Newbery & Stiglitz, 1981, Gilbert, 1985). Thereby, I can derive price premia
for two tariffs: 1) An unhedged dynamic tariff and 2) A dynamic tariff with an optimal
forward hedge (optimally hedged tariff). This distinction allows disentangling the two
features of optimally hedged tariffs that impact consumer welfare: dynamic pricing and
forward hedging. Following Gilbert (1985) and Cowan (2004), I assume that the constant
price of the fixed tariff equals the mean dynamic price 𝑝 = 𝐸[ ̃𝑝].

Price premia for unhedged dynamic tariffs
In the first step, I derive the price premium 𝑔𝑝 that households are willing to pay

on top of the fixed price to avoid an unhedged dynamic tariff. When unhedged (ℎ = 0),
household’s utility function simplifies to

𝑉 (𝑝, 𝑏, 𝜀) = 1
1 − 𝜃

𝑏1−𝜃(𝜀𝑝1−𝛼 + 1) 1−𝜃
𝛼−1 (2.10)
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Price premium 𝑔𝑝 equals the percentage increase in fixed price 𝑝 that makes the household
indifferent in expectation between the fixed tariff and the unhedged dynamic tariff with
stochastic price ̃𝑝 (Gilbert, 1985).

𝐸[𝑉 ((1 + 𝑔𝑝)𝑝, 𝑏, ̃𝜀)] = 𝐸[𝑉 ( ̃𝑝, 𝑏, ̃𝜀)] (2.11)

In Appendix B.2, I apply Taylor approximations to both sides of equation (2.11) and
solve for 𝑔𝑝.

𝑔𝑝 = 1
2

( ̂𝛾 + 𝛽𝑢)⏟
= 𝑉𝑝𝑝

𝑉𝑝
𝑝

𝑐𝑣( ̃𝑝)2 + 𝜌𝑐𝑣( ̃𝑝)𝑐𝑣( ̃𝜀)[ 𝛽𝑢

1 − 𝛼
+ 1 − ̂𝑠] (2.12)

If 𝑔𝑝 is positive, households want to pay a premium for the fixed tariff. A negative 𝑔𝑝

indicates that households would choose the dynamic tariff even if the fixed price was
smaller than the average dynamic price. The first term on the RHS of equation (2.12)
captures the effect of pure price volatility on consumer welfare. This term increases in
𝑉𝑝𝑝
𝑉𝑝

𝑝 = ̂𝛾 + 𝛽𝑢, which is the absolute value of Turnovsky et al.’s (1980) coefficient of
relative price risk aversion.8 ̂𝛾 = −𝛼 − (1 − 𝛼)𝑠 equals electricity’s price elasticity of
demand at baseline. 𝛽𝑢 = 𝜕𝑉𝑏

𝜕�̃�
𝑝

𝑉𝑏
= (𝜃 − 1)𝑠 is the price elasticity of the marginal utility

of income at baseline for unhedged households. Overall, as long as 𝜌 = 0, dynamic prices
increase welfare for unhedged households if their price elasticity of demand ̂𝛾 exceeds the
price elasticity of their marginal utility of income 𝛽𝑢 in absolute values.

Term 2 of the RHS of equation (2.12) reveals that households do not only care about
price volatility but also about the correlation 𝜌 between prices and quantity shocks. Price
premium 𝑔𝑝 increases if 𝜌 > 0. The positive effect of a positive 𝜌 is amplified by an
increase of the price-elasticities of demand ̂𝛾 and of the marginal utility of income 𝛽𝑢 as
long as 𝛼 < 1 and 𝜃 > 1. Hence, households with price-elastic marginal utility of income
and high substitution elasticity suffer from dynamic prices if prices and quantity shocks
are positively correlated. If 𝜌 is negative, households benefit from dynamic pricing.

Price premia for dynamic tariffs with an optimal forward hedge
In the next step, I derive the price premium 𝑔𝑓 that denotes the percentage increase

in fixed price 𝑝 that makes the household indifferent in expectation between the fixed
tariff and the optimally hedged tariff (Gilbert, 1985).

𝐸[𝑉 ((1 + 𝑔𝑓)𝑝, 𝑏, 𝜀)] = 𝐸[𝑉 ( ̃𝑝, 𝑏 + (𝑝 − 𝑓)ℎ∗, ̃𝜀)] (2.13)

8The income elasticity of demand at baseline equals 1 with CES preferences.
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Under the optimal hedge tariff, households buy the optimal hedge quantity ℎ∗ forward
as given in equation (2.8). Appendix B.2 demonstrates that the price premium 𝑔𝑓 equals

𝑔𝑓 = 𝑔𝑝 − 1
2

𝛽𝑢𝑐𝑣( ̃𝑝)2 − 1
2

𝛽𝑢

1 − 𝛼
𝜌𝑐𝑣( ̃𝑝)𝑐𝑣( ̃𝜀)(1 − ℎ∗

̂𝑥∗ )
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑔ℎ

(2.14)

𝑔𝑓 consists of two terms: 𝑔𝑝 captures the welfare effect of dynamic pricing as given in
equation (2.12). 𝑔ℎ = 𝑔𝑓 − 𝑔𝑝 describes the welfare effect of optimal forward hedging. If
𝑔ℎ < 0, the optimal hedge increases welfare compared to an unhedged dynamic tariff. 𝑔ℎ

will never be positive since households can always choose ℎ∗ = 0 and stay unhedged.
The optimal forward hedge increases welfare by making the marginal utility of income

𝑉𝑏 less elastic to price changes. When optimally hedged, the price elasticity of 𝑉𝑏 at
baseline is (see Appendix B.2)

𝛽ℎ∗ = 𝜕𝑉𝑏
𝜕 ̃𝑝

𝑝
𝑉𝑏

= 𝛽𝑢 − 𝜃𝑠ℎ∗

̂𝑥∗ (2.15)

𝛽𝑢 = (𝜃 − 1)𝑠 is the price elasticity of the marginal utility of income for unhedged
households. The higher the household’s optimal hedge share ℎ∗

�̂�∗ , the more declines the
price elasticity of the marginal utility of income 𝛽ℎ∗ . Inserting the optimal hedge share
in equation (2.8) into equation (2.15) yields

𝛽ℎ∗ = − 𝛽𝑢

1 − 𝛼
𝜌𝑐𝑣( ̃𝜀)

𝑐𝑣( ̃𝑝)
(2.16)

If 𝜌 = 0, the optimal hedge makes the marginal utility of income fully inelastic to
price changes (𝛽ℎ∗ = 0). Equation (2.14) reveals that for 𝜌 = 0, stabilization of 𝑉𝑏 raises
consumer welfare whenever 𝛽𝑢 > 0. 𝛽𝑢 is positive if households are sufficiently risk-averse
with 𝜃 > 1. The welfare benefit from hedging rises in the price volatility 𝑐𝑣( ̃𝑝)2 (Cowan,
2004).

If 𝛽𝑢 > 0, 𝜌 > 0 implies 𝛽ℎ∗ < 0. In this case, optimal hedging causes the marginal
utility of income 𝑉𝑏 to fall when prices increase. If 𝜌 > 0, the optimal hedge share is
very high. Hence, the hedge shifts much income to states of the world when prices are
high. This large income compensation reduces 𝑉𝑏 since 𝑉𝑏𝑏 < 0. For 𝜌 > 0, the income
compensation strongly raises welfare because both prices and the desire to consume are
high. On the other hand, equation (2.14) reveals that welfare benefit declines in the
optimal hedge share ℎ∗

�̂�∗ . The higher ℎ∗

�̂�∗ , the more decreases the benefit from hedging since
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hedging reduces households’ exposure to spot prices and, thereby, its price elasticity of
demand. For ℎ∗

�̂�∗ > 1, the negative effect on demand elasticity dominates such that the
welfare effect of the second term in 𝑔ℎ becomes negative. If 𝜌 < 0, the second term of 𝑔ℎ

will always lower welfare since households will never choose a hedge share larger than 1
when 𝜌 < 0.

2.4 Simulation

Below, I explain how the model in Section 2.3 allows simulating optimal hedge shares
and hedged electricity bills for real-world consumers. First, I define the hedge product
that consumers can buy. In the example in the introduction, I assumed that households
buy forward a particular share of their daily baseline consumption. However, such a daily
hedge ignores predictable intraday patterns of both consumption and prices. Baseline
electricity consumption and prices are typically low at night and high during morning and
evening peaks. A hedge contract should account for these daily load and price patterns
to better protect against bill volatility (Borenstein, 2007a).

To do so, I define a hedge time segment 𝑘 as a set of time intervals 𝑡.9 Households
choose a quantity to buy forward for every segment 𝑘. In the main specification, I define
hedge time segments for every half hour per day for weekdays and weekends. For instance,
8-8:30 am on weekdays is a time segment. Average prices and baseline consumption are
similar on weekdays 8-8:30 am, whether on Monday, Wednesday, or Friday (Cramton
et al., 2025a). Therefore, households buy the same hedge quantity for all intervals 𝑡
within 8-8:30 am on weekdays. Prices and baseline consumption in this time segment
likely differ from average prices and baseline consumption at midnight or 8-8:30 am on
weekends. Hence, households purchase different hedge quantities for those time segments
(See Appendix B.3 for a detailed discussion of time segments).

The approach results in 48 half-hourly hedge time segments and 48 corresponding
optimal hedge shares for weekdays and weekends, respectively. The advantage of such a
fine-grained hedge contract is that it should protect well from bill volatility. On the other
hand, a hedge contract with 96 different hedge shares is too complex to be implemented
in practice. Therefore, the fine-grained hedge contract should be considered a theoretical
benchmark that tests how effectively an optimally hedged tariff can reduce bill volatility.
In Appendix B.3, I compare the results of this theoretical benchmark to less fine-grained
hedge contracts that contain fewer and longer hedge time segments. Similar to Borenstein

9A time interval 𝑡 is a specific half-hourly period. For instance, “8-8:30 am on Monday, March 1st,
2021” is a time interval. This interval falls within the hedge time segment “8-8:30 am on weekdays”.
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(2007a), I find that choosing a more granular hedge time segment has only a small effect
on optimal hedge shares. However, I find that more fine-grained hedge segments lead to
a substantially larger reduction in bill volatility.

The households in my sample are currently unhedged. To simulate their optimal
hedge shares, I suppose that households’ observable unhedged half-hourly electricity
consumption 𝑥∗

𝑡 in interval 𝑡 can be described by the Marshallian demand in equation
(2.7). When households are unhedged, hedge quantity ℎ equals 0. I invert equation (2.7)
to obtain an expression for the unobservable quantity shocks 𝜀𝑡 in interval 𝑡 as a residual
of the unhedged Marshallian demand (Redding & Weinstein, 2019).10

𝜀𝑡 = 𝑥∗
𝑡𝑝𝛼

𝑡
𝑏𝑘 − 𝑥𝑡𝑝𝑡

(2.17)

I assume that households have a fixed budget 𝑏𝑘 for hedge time segment 𝑘. I do not
observe households’ monthly income, let alone their budget for a half-hourly time segment.
Surveys reveal that UK households spend on average 2% of their income on electricity
(UK ONS, 2021). Therefore, I assume that, in every segment 𝑘, households’ budget share
of electricity 𝑠𝑡 = 𝑥∗

𝑡𝑝𝑡
𝑏𝑘

is on average 2%, i.e., 𝑠𝑘 = 1
𝑇𝑘

∑𝑡∈𝑘 𝑠𝑡 = 2%. 𝑇𝑘 is the number of
time intervals 𝑡 that fall into segment 𝑘. Households’ absolute budget for segment 𝑘 can
then be derived as 𝑏𝑘 = 1

𝑇𝑘
∑𝑡∈𝑘

𝑥∗
𝑡𝑝𝑡
𝑠𝑘

.11

The assumption that households spend the same average share of their income on
electricity in every time segment implies that households have a higher absolute budget
for time segments in which they typically consume a lot. For instance, most households
have a higher absolute segment budget on weekdays, 8-8:30 am, than at midnight because
they typically consume more in the morning. Therefore, the segment budget follows each
household’s daily consumption pattern.

An important caveat for my analysis is that the assumption regarding the segment
budget 𝑏𝑘 affects the optimal hedge shares even for homothetic preferences. Changing
𝑏𝑘 also changes the derived quantity shocks 𝜀𝑡. Thereby, the choice of 𝑏𝑘 influences the

10The Marshallian demand is invertible since 𝑥𝑡 and 𝑦𝑡 are ”connected substitutes”, according to Berry
et al. (2013). The first condition for connected substitutes is that goods are weak gross substitutes. This
condition is satisfied since aggregate consumption of other goods 𝑦𝑡 weakly decreases in 𝜀𝑡 for all 𝑡 and
𝑝𝑡. The second condition for ”connected substitutes” requires “connected strict substitution” (Berry
et al., 2013) between all goods. This condition requires that any chain of substitution between goods
leads to the outside good (i.e., 𝑦𝑡). Since there are only two goods in the given application, electricity
consumption can only be substituted with the outside good (Berry et al., 2013, Berry & Haile, 2016).

11For a tiny number of time intervals (only 0.006% of all intervals), consumption is extremely high
such that the observed expenditure exceeds the segment budget 𝑏𝑘. For these rare intervals, I set the
household budget equal to the observed expenditure on electricity to ensure that households’ electricity
expenditure does not exceed their budget.
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correlation between quantity shocks and prices and, ultimately, the optimal hedge shares.
As a robustness check, I, therefore, run simulations for various average segment budget
shares 𝑠𝑘 in Appendix B.5. I find that a change in 𝑠𝑘 only slightly affects optimal hedge
shares.

To calculate 𝜀𝑡 in equation (2.17), I also choose the substitution elasticity 𝛼 as a
simulation parameter. Previous studies find that the short-run elasticity of substitution
for electricity ranges from 0.07 to 0.21 for domestic electricity consumers (Ericson, 2006,
Bartusch, 2011).12 For my main specification, I conservatively set 𝛼 = 0.1, assuming that
households have a relatively low ability to substitute electricity consumption with other
goods.

Having defined 𝑏𝑘 and 𝛼, I calculate the residual quantity shock 𝜀𝑡 in equation (2.17)
for every 𝑡 in the data set using the observed unhedged half-hourly electricity consumption
𝑥∗

𝑡 and prices 𝑝𝑡. Then, I calculate the following statistics for every segment 𝑘: 1) the
average quantity shock 𝜀𝑘 and average electricity price 𝑝𝑘, 2) the coefficients of variation
𝑐𝑣( ̃𝜀𝑘) and 𝑐𝑣( ̃𝑝𝑘), 3) the coefficient of correlation 𝜌𝑘 between price and quantity shocks.
These statistics allow calculating the baseline consumption ̂𝑥∗

𝑘.
Now, I am ready to calculate the optimal hedge share ℎ∗

𝑘
�̂�∗

𝑘
in equation (2.8) for segment

𝑘. For the main specification, I assume that domestic electricity consumers face high
levels of relative risk aversion with 𝜃 = 5. Most empirical studies estimate 𝜃 in the range
from 0 to 6 (Cowan, 2004, Lengwiler, 2004). To avoid speculation, I set the forward hedge
price equal to the average dynamic price in segment 𝑘, i.e., 𝑓𝑘 = 𝐸[𝑝𝑡∈𝑘].13 Moreover, I
follow Borenstein (2007a) and require the optimal hedge shares to lie between 0% and
200% of baseline consumption to avoid unreasonably extreme hedge shares.

In the next step, I derive monthly electricity bills for optimally hedged households. I
consider that the optimal hedge induces income- and price-elastic households to change
their consumption compared to the unhedged tariff. Thus, I calculate the hedged house-
holds’ electricity consumption 𝑥∗

𝑡∈𝑘 with the optimal hedge ℎ∗
𝑘 using the Marshallian

demand in equation (2.7). The electricity bill 𝐵𝑚 for month 𝑚 results by summing over
the expenditure for electricity and the forward hedge for all intervals 𝑡 ∈ 𝑚:

𝐵𝑚 = ( ∑
𝑡∈𝑚

∑
𝑡∈𝑚∪𝑘

[𝑥∗
𝑡𝑝𝑡 + (𝑓𝑘 − 𝑝𝑡)ℎ∗

𝑘]) ∗ 30
𝐷𝑎𝑦𝑠𝑚

(2.18)

12These estimates for the elasticity of substitution either refer to the substitution between electricity
and other energy carriers or the substitution between electricity consumption at different times of day.

13For existing two-part tariffs with a forward hedge, some utilities set the forward price even below the
average dynamic price to compensate customers for foregone cross-subsidies they would have received on
a fixed tariff (Borenstein, 2007a).
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where 𝐷𝑎𝑦𝑠𝑚 denotes the number of days the household spends on the tariff in month
𝑚. The last term normalizes the electricity bills to a 30-day month to make sure that bill
volatility is not caused by variation in the number of days the household spends on the
tariff (see Section 2.5 and Borenstein, 2007a).

2.5 Data

The data set contains anonymized smart meter readings of half-hourly electricity price
and consumption for 9,718 households in the UK provided by electricity supplier Octopus
Energy. 4,066 households are on dynamic tariffs (“dynamic households”), while 5,652
are on fixed ones (“fixed households”). The data contains smart meter readings for each
household for up to one year between August 2020 and August 2021 (Cramton et al.,
2025a).

Every day between 4-8 pm, Octopus Energy informs dynamic households about
the 48 half-hourly dynamic prices for the next day via a smart phone app. Dynamic
prices include distribution charges and a peak-time premium. Appendix B.4 explains how
dynamic prices are calculated.

Households pay dynamic prices only up to a price cap of 0.35£/kWh. The price cap
equals roughly twice the average dynamic price. During the sample period, the cap only
binds in 3% of the half-hourly periods. Therefore, the price cap has a negligible effect on
my analysis, as I discuss in Section 2.6.5.

Fixed households always receive a constant price for electricity. 8% of fixed tariff
customers experience a minor adjustment of their fixed rate once during the sample
period. Apart from these one-time adjustments, these households do not face any price
volatility. I do not employ households on fixed tariffs for the optimal hedge simulations.
Nevertheless, I report the descriptive statistics for these households as a benchmark to
analyze how dynamic prices affect consumption and electricity bills.

The households in this sample have been randomly chosen from Octopus Energy’s
customer base. However, households have self-selected into a tariff type. Hence, households
on dynamic tariffs might systematically differ from households on fixed ones. Households
can also switch to a different tariff or supplier during the sample period. Figure 2.1
reveals a surprisingly high attrition of households on both tariffs. I drop all households
for whom less than eight monthly electricity bills are observable to ensure a meaningful
analysis of bill volatility. Moreover, some households spend less than an entire month on
a specific tariff because they either leave or join the tariff in the middle of the month. I
exclude all observations for months if the household spends less than 15 days on the tariff.
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Figure 2.1: Number of customers by tariff type

This ensures that at least 720 half-hourly price-consumption observations are available
per household each month. The final dataset contains a relatively large sample of 2,159
dynamic households and 2,540 fixed households.

Tariff type mean SD14 min max
Electricity prices (pence/kWh)

Dynamic 15.4 7.3 0.1 35
Fixed 15.2 0.1 15.2 15.3

Monthly consumption (kWh)
Dynamic 516 406 0 4560
Fixed 334 239 0 5040

Monthly electricity bill (GBP)
Dynamic 77 61 0 766
Fixed 50 36 0 798

Table 2.1: Summary statistics

Table 2.1 presents summary statistics for households on dynamic and fixed tariffs. The
mean unweighted electricity price is very similar on both tariffs. The standard deviation
of dynamic prices is quite large. Differences in fixed prices are driven by different fixed
price levels across customers.

14Average household-specific standard deviation. Since households can choose between multiple different
fixed tariff products with different fixed rate levels, the standard deviation across all fixed prices is slightly
larger. In the context of this paper, the household-specific standard deviation is a more relevant indicator
of the price volatility that households perceive.
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Table 2.1 also reveals that dynamic households have a 54% higher average monthly
consumption than fixed households. The higher monthly consumption suggests that
households who self-select into dynamic tariffs systematically differ from fixed households.
Dynamic customers are first movers who might be exceptionally interested in their
electricity usage. Therefore, one should be careful to extrapolate the results of this paper
to the general population of domestic energy consumers. This paper is only informative
about whether forward hedging is effective for first-movers. Nevertheless, energy suppliers
should be particularly interested in how forward hedge tariffs work for first movers as
they will likely only sell forward hedges to first-movers in the foreseeable future.

Moreover, Table 2.1 shows statistics on households’ monthly electricity bills. I calculate
these bills by multiplying consumption and prices every half an hour and adding these
half-hourly expenditures every month. Following Borenstein (2007a), I normalize all
electricity bills to a 30-day month in order to avoid measuring bill volatility that is purely
driven by variation in days per month or the number of days a household spends on the
tariff in a given month (see Section 2.4). The higher average consumption of dynamic
customers likely drives their higher average electricity bills.

Percentiles
tariff type mean 0.01 0.1 0.5 0.9 0.99

Coeff. of variation of monthly bills per customer
Dynamic 0.32 0.10 0.16 0.26 0.57 1.06
Fixed 0.19 0.05 0.08 0.16 0.35 0.65

Coeff. of correlation between prices and consumption
Dynamic -0.007 -0.363 -0.225 -0.005 0.211 0.336

Table 2.2: Variation and correlation statistics

Since this study is concerned with hedging bill volatility for individual customers,
Table 2.2 reports the distributions of coefficients of variation for individual customers’
monthly bills (Borenstein, 2007a). The coefficient of variation of dynamic customers’
electricity bills is, on average, 67% higher than for fixed customers, suggesting that
dynamic prices increase bill volatility. While this might be unsurprising, it is striking that
fixed customers also face substantial bill volatility. Fluctuations in electricity bills are not
only caused by volatile prices but also by volatility in consumption (Borenstein, 2007a).

Moreover, fixed customers in the lowest percentile of the bill volatility distribution
have much lower volatility than dynamic customers in the same percentile. When moving
up the distribution, the difference in bill volatility between fixed and dynamic tariffs
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declines. Borenstein (2007a) observes a similar tendency in his study. This suggests that
dynamic prices might mainly increase bill volatility for customers who would have low
volatility under fixed tariffs (Borenstein, 2007a).

Table 2.2 also reports the distribution of the correlation coefficient between dynamic
electricity prices and consumption for dynamic customers. While the correlation between
prices and consumption is, on average, close to zero, it varies enormously between
customers. Some customers face either a significant negative or large positive correlation.

Number of Mean monthly Mean monthly
LCT ownership households consumption (kWh) electricity bill (GBP)
All customers 2159 516 77
Electric heating only 225 352 58
Electring heating +
smart thermostat 221 394 65
EV only 411 635 92
Solar only 101 365 51
Battery only 28 769 114
EV + solar 125 497 67
EV + battery 32 1088 156
Solar + battery 84 437 59
EV + solar + battery 82 592 74

Table 2.3: Summary statistics by low-carbon technology (LCT) ownership

Analyzing the same dataset, Cramton et al. (2025a) estimate an average price elasticity
of -0.26 for the households in this sample. For a sub-sample, they employ information on
low-carbon technology (LCT) ownership to show that technologies influence households’
price elasticity. Especially ownership of electric vehicles increases price elasticity.

In this paper, I analyze how LCT ownership impacts optimal hedge shares. Table
2.3 shows the number of customers for which information on technology ownership is
available. Octopus Energy conducted a survey to gather ownership information for electric
vehicles, solar PV, battery storage, and smart thermostats. For electric heating, ownership
is inferred from a lack of a gas contract with Octopus Energy since households in the UK
typically purchase electricity and gas from the same supplier (Cramton et al., 2025a).15

Electric vehicles (EV) or battery storage owners have above-average monthly electricity
consumption and monthly bills. Solar PV owners have lower consumption and bills

15This might not be an exact indicator for ownership of electric heating. Some households who are not
on a gas tariff with Octopus Energy might have oil heating rather than electric heating or buy gas from
another supplier (Cramton et al., 2025a).
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since they likely cover a portion of their electricity consumption via self-generated solar
electricity. Surprisingly, customers who likely have electric heating consume less electricity
than the average household. Given small sample sizes, the analysis for some LCT groups
(e.g., battery owners) should be interpreted cautiously.

2.6 Results

2.6.1 Optimal hedge shares

Figure 2.2 presents the distribution of optimal hedge shares that I simulate across all
households and time segments. On average, the optimal hedge share is 59% of baseline
consumption. There is substantial variation in optimal hedge shares. I set the optimal
hedge share to zero for a surprisingly large share of 14% of the time segments. Otherwise,
optimal hedge shares would be negative. The desire to hedge a negative quantity is caused
by a large negative correlation between prices and quantity shocks in these time segments.
Moreover, I set 3% of the hedge shares to 200% to avoid unreasonably large hedge shares.
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Figure 2.2: Distribution of optimal hedge
shares across all time segments
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Figure 2.3: Distribution of mean optimal
hedge shares by customer

Heterogeneity between households partly drives the considerable variation in optimal
hedge shares. Figure 2.3 shows the distribution of the mean optimal hedge share per
household. The mean hedge share for a particular household is defined as the average
of the household’s hedge shares across all time segments. The mean hedge shares differ
widely between households. Overall, mean optimal hedge shares are far smaller than the
ones Borenstein (2007a) simulates for a sample of price-inelastic industrial customers.
Most households find it optimal to hedge on average less than 100% of their baseline
consumption. Only 7% of households in this sample overhedge, i.e., hedge more than
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100% of their baseline consumption on average. In contrast, Borenstein (2007a) finds
that 77% of his inelastic customers should overhedge.

Table 2.4 suggests that ownership of low-carbon technologies (LCTs) partly explains
the heterogeneity in mean optimal hedge shares. Households with electric heating or an
electric vehicle (EV) have a larger mean optimal hedge share than the average household
in the sample. These appliances seem to increase the positive correlation between a
household’s consumption and prices. Surprisingly, solar PV owners have an average
optimal hedge share of only 21%. Solar PV likely results in a strong negative correlation
between prices and electricity consumption from the grid. As expected, the small sample
of battery storage owners also has a slightly below-average optimal hedge share of 51%.

Given their small sample sizes, the above results should be interpreted with caution
for solar PV and battery owners. I also stress that this paper does not establish a causal
relationship between technology ownership, optimal hedge shares, and bill volatility.
The above results merely provide first suggestive evidence that technology ownership
influences optimal hedge shares.

Optimal hedge share Average coefficient of bill variation
Households Average SD16 Optimal Optimal vs.

LCT ownership (#) (%) (%) Unhedged hedge Unhedged (%)
All customers 2159 59 37 0.34 0.28 -18
Electric heating only 225 76 38 0.25 0.19 -23
Electric heating
+ smart thermostat 221 76 35 0.24 0.17 -28
EV only 411 68 43 0.26 0.18 -30
Solar only 101 21 29 0.50 0.49 -1
Battery only 28 51 41 0.42 0.42 -2
EV + solar 125 28 38 0.37 0.36 -6
EV + battery 32 68 40 0.33 0.26 -26
Solar + battery 84 17 25 0.65 0.66 1
EV + solar + battery 82 20 31 0.48 0.48 0

Table 2.4: Optimal hedge shares and bill volatility by low-carbon technology (LCT)
ownership

Table 2.4 also indicates that heterogeneity between households is not the only reason
for the enormous variation in optimal hedge shares. Even for a specific household, optimal
hedge shares differ strongly by time of day. On average, the hedge share for a specific
household has a standard deviation of 37% across time segments.16 These differences
between time segments are likely caused by significant variations in household-specific
daily consumption patterns. In some time segments, a household’s consumption pattern

16Average of the standard deviation of optimal hedge shares for specific households across time segments.
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might align with the aggregate load pattern and is, therefore, positively correlated with
prices. The same household’s consumption can correlate negatively with aggregate load
and prices in other time segments. The fine-grained hedge tariff with small time segments
accounts for these household-specific consumption patterns to provide adequate protection
from bill volatility.

2.6.2 Bill volatility

In this section, I discuss how effectively the optimal hedge protects customers from
volatility of monthly electricity bills. Figure 2.4a compares the coefficients of variations
of bills for unhedged and optimally hedged tariffs across mean optimal hedge shares.
The optimally hedged tariff proves effective in reducing bill volatility. On average, the
optimally hedged tariff reduces the coefficient of variation of a household’s monthly bill
by 18% compared to an unhedged dynamic tariff. Hedging is even more effective for
households who overhedge. It reduces their coefficient of bill variation by 45% on average.
On the other hand, hedging hardly reduces bill volatility for households whose mean
optimal hedge share is less than 50%. Naturally, hedging does not significantly affect
households that only hedge a small share of their baseline consumption. These findings
are similar to the ones in Borenstein (2007a).
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(a) Unhedged tariff vs. optimally hedged
tariff
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(b) Comparison of various tariff types
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Figure 2.4: Distribution of mean optimal hedge shares by customer and coefficients of
variation of monthly bills by tariff type

I also compare the effectiveness of the optimally hedged tariff to a more straightforward
tariff in which households always buy 100% of their baseline consumption forward. Figure
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2.4b reveals that when always forced to buy a 100% hedge, households with a mean
optimal hedge share of less than 50% have a higher bill volatility than under the unhedged
tariff. Hence, a simple 100% hedge tariff is unsuitable for households with low mean
optimal hedge shares. On average, the 100% hedge tariff leads to a 15% higher coefficient
of variation of monthly bills than the optimally hedged tariff.

In addition, I compare the bill volatility of the previous tariffs to the one under a
fixed tariff. For customers with mean hedge shares above 100%, the optimally hedged
tariff results in lower bill volatility than the fixed tariff, as Figure 2.4b reveals. Borenstein
(2007a) reports similar results in his paper. He argues that the hedged tariff protects
households more effectively against price and quantity risks. The fixed tariff protects
only against price risks. Protection against quantity risk is essential for households who
overhedge since they face a positive correlation between prices and consumption.

Table 2.4 reveals that the optimal hedge reduces bill volatility most effectively for
households with electric vehicles and heating. For instance, optimal hedging reduces the
bill volatility for owners with only an EV by 30%. In contrast, hedging only slightly
reduces bill volatility for solar PV and battery owners with low hedge shares.

2.6.3 Price elasticity and risk aversion

Below, I analyze how risk aversion and demand elasticity affect hedge shares and bill
volatility. Figure 2.5 confirms that increasing substitution elasticity 𝛼 increases the
variation in mean optimal hedge shares when exogenous quantity shocks remain constant.17

Raising 𝛼 leads to lower hedge shares when the correlation between prices and quantity
shocks is negative and higher hedge shares when it is positive (see Section 2.3.1).

On average, higher substitution elasticity decreases mean optimal hedge shares.
Inelastic households (𝛼 = 0.001) have an average mean optimal hedge share of 60% with
a standard deviation of 36%. Elastic households (𝛼 = 0.6) show an average mean optimal
hedge share of 48% with a standard deviation of 47%. Moreover, a large 𝛼 increases the
share of households that overhedge or would even choose a negative hedge quantity if
allowed.

Hedging reduces bill volatility more effectively when households are price-inelastic.
For price-inelastic households (𝛼 = 0.001), the optimal hedge lowers the coefficient of bill
volatility by 21% compared to the unhedged dynamic tariff. It does so by mitigating house-

17Since quantity shock ̃𝜀𝑡 is a residual of the Marshallian demand function, it depends on 𝛼. To
calculate ̃𝜀𝑡 in Section 2.4, I use 𝛼 = 0.1 equal to the 𝛼 used in the main specification above. Quantity
shocks should be considered exogenous shocks to demand. Therefore, when studying the effect of a change
in 𝛼 on hedge shares, I hold quantity shocks constant to their level in the main specification.
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(a) 𝛼 = 0.001
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(b) 𝛼 = 0.1
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(c) 𝛼 = 0.6
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Figure 2.5: Distribution of mean optimal hedge shares by customer and coefficients of
variation of monthly bills by tariff type for different substitution elasticity 𝛼

holds’ exposure to high prices. At the same time, the hedge hardly reduces households’
price response compared to the unhedged tariff when households are price-inelastic.

For very price-elastic households (𝛼 = 0.6), the optimal hedge even increases bill
volatility on average by 5% relative to the unhedged tariff. Price-elastic households
respond less strongly to prices when optimally hedged relative to being unhedged.
Therefore, households consume more when prices are high on optimally hedged tariffs
than on unhedged ones. For some households, this leads to even more volatile bills on the
optimally hedged tariff than on the unhedged tariff. Households who decrease their hedge
when 𝛼 increases experience on average a higher bill volatility on the optimally hedged
tariff relative to the unhedged one. Households who increase the hedge in response to
higher price elasticity face lower average bill volatility when optimally hedged.

Moreover, optimally hedged households face an increase in bill volatility by 20%
when their price elasticity increases from 𝛼 = 0.001 to 𝛼 = 0.6. This reveals that when
price-elasticity rises, the volatility of the optimally hedged bill increases not only relative
to the unhedged bill but also in absolute terms. In contrast, the bill volatility of unhedged
households declines by 13% when increasing 𝛼 from 0.001 to 0.6.

Figure 2.6 shows that higher risk aversion results in higher hedge shares. Hardly
risk-averse households (𝜃 = 1.5) hedge far less than 100%. Few households still choose
substantial hedge shares as protection against a positive correlation between prices and
quantity shocks. When risk aversion increases, its impact on hedge shares diminishes.
The distribution of mean optimal hedge shares for 𝜃 = 20 only moderately differs from
the distribution for 𝜃 = 5 in the main specification in Figure 2.4b. Similar to an increase
in price elasticity, an increase in risk aversion makes hedging less effective in lowering
bill volatility relative to the unhedged tariff. Risk-aversion leads to higher hedge shares.
These higher hedge shares lower households’ exposure to spot prices and, therefore, allow
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households to consume more when prices are high. For high risk aversion (𝜃 = 20), this
leads, on average, even to slightly higher bill volatility on the optimally hedged tariff
compared to the unhedged tariff.
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(b) 𝜃 = 3
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Figure 2.6: Distribution of mean optimal hedge shares by customer and coefficients of
variation of monthly bills by tariff type for different levels of risk aversion 𝜃

2.6.4 Price premia

Figure 2.7 shows the price premia households are willing to pay to receive the forward
hedge by mean optimal hedge share. The negative price premium implies that the hedge
increases households’ welfare. However, the welfare effect of the forward hedge is small.
Compared to an unhedged dynamic tariff, the forward hedge reduces the mean electricity
price that makes households indifferent between the unhedged tariff and the optimally
hedged tariff by merely 0.3% (for the main specification with 𝛼 = 0.1). The welfare benefit
from hedging is most significant for households who hedge close to 100%. The hedge adds
the most value for these households by stabilizing the marginal utility of income while
still exposing households sufficiently to spot prices to keep demand price-elastic.

One reason for the small welfare effects of hedging might be electricity’s small share
in household expenditure. In the above simulations, I assumed that households spend on
average only 2% of their income on electricity, which is roughly the case in the UK (UK
ONS, 2021). Such a small expenditure share implies that a change in electricity prices
will have merely a small effect on households’ marginal utility of income. When the price
elasticity of the marginal utility is already tiny, the hedge can only add little value by
stabilizing it.

However, electricity’s share in household expenditure will likely increase in the
upcoming decades. Households will start using electricity for heating, cooling, and driving
cars. To assess how an increasing expenditure share of electricity affects the welfare
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(b) 𝛼 = 0.1
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Figure 2.7: Distribution of mean optimal hedge shares by customer and forward hedge
price premium 𝑔ℎ for different 𝛼

benefits of hedging, I run the above simulation assuming that households spend on average
10% of their income on electricity. Figure B.10 in Appendix B.6 reveals that a higher
expenditure share of electricity only slightly increases the welfare benefits from hedging.
On average, the welfare benefit translates to a 1.6% reduction in the mean electricity
price compared to a 0.3% reduction when electricity’s expenditure share remains at 2%.
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(b) 𝜃 = 3
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Figure 2.8: Distribution of mean optimal hedge shares by customer and forward hedge
price premium 𝑔ℎ by tariff type for different 𝜃

Figure 2.7 also highlights that increasing substitution elasticity 𝛼 further diminishes
the welfare benefit from hedging. The higher 𝛼, the smaller the share of households that
hedge close to 100%. Households who hedge roughly 100% benefit most from hedging.
When demand is elastic (𝛼 = 0.6), the hedge only achieves an average welfare benefit
of 0.05%. Meanwhile, Figure 2.8 depicts that an increase in risk aversion has a more
substantial effect on the welfare gain from hedging. For very small levels of risk aversion
(𝜃 = 1.5), the welfare gain from hedging amounts to only 0.04% expressed as a reduction
in mean electricity prices. If risk aversion is large (𝜃 = 20) hedging leads to a larger but
still surprisingly low 1.2% welfare gain.
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Figure 2.9 reveals that dynamic pricing has a much stronger effect on household
welfare than forward hedging. The figure shows the price premia for unhedged dynamic
tariffs 𝑔𝑝 and the optimally hedged dynamic tariffs 𝑔𝑓. 𝑔𝑓 hardly differs from 𝑔𝑝 since the
welfare effect of the forward hedge 𝑔ℎ = 𝑔𝑓 − 𝑔𝑝 is negligible relative to 𝑔𝑝. Compared to
a fixed tariff, the unhedged dynamic tariff leads to an average welfare gain equivalent to
a 1.4% reduction in average electricity prices for the main specification (𝛼 = 0.1). 58% of
households achieve higher welfare on the unhedged dynamic tariff than on the fixed tariff.
Households that benefit most from dynamic pricing also choose low hedge shares since
they have a negative correlation between electricity prices and their desire to consume
electricity. Households with a positive correlation are better off on a fixed tariff.

As expected, increasing demand elasticity makes unhedged dynamic tariffs more
attractive. When 𝛼 = 0.6, 85% of households prefer dynamic pricing over a fixed tariff.
The average welfare gain from dynamic pricing rises to 4%.
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Figure 2.9: Distribution of mean optimal hedge shares by customer and price premia 𝑔𝑝
and 𝑔𝑓 for different 𝛼

2.6.5 Scarcity price event

There are two additional reasons why hedging results in low welfare gains: First, households
in my sample are not fully exposed to day-ahead electricity prices but are protected
via a price cap. Since the price cap already protects households from high prices, the
hedge can only add small additional value. Second, households do not experience an
extreme scarcity event like the Texas winter storm during the sample period. The benefit
from hedging is larger when households experience worst-case events with extremely high
prices.

Figure 2.10b depicts how the performance of the optimal forward hedge changes
when removing the price cap and exposing households to fully dynamic prices. Removing
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the cap has a negligible effect on the distribution of mean optimal hedge shares and
bill volatility. Likewise, the welfare benefits from hedging only marginally increase after
removing the cap (see Figure 2.11b). The price cap has only tiny effects during my sample
period since dynamic prices rarely exceed the cap in only 3% of time intervals. At the
same time, price caps are suboptimal since they lower the incentive to respond to high
scarcity prices (Appendix B.4 provides statistics on dynamic prices after removing the
price cap).
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(c) Results without price cap
and scarcity event
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Figure 2.10: Distribution of mean optimal hedge shares by customer and coefficients of
variation of monthly bills by tariff type for different levels of price protection
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(c) Results without price cap
and scarcity event

Price premium for the forward hedge (𝑔ℎ)

Figure 2.11: Distribution of average optimal hedge shares by customer and forward hedge
price premium 𝑔ℎ by tariff type for different levels of price protection

In Figure 2.10c, I study how a scarcity event like the Texas winter storm with
extremely high prices over multiple days affects hedging and bill volatility. To do so, I run
the above simulations while removing the price cap and simulating a four-day scarcity
event: I manually choose a very high dynamic price of 3.5£/kWh, which is ten times the
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current price cap. I set this very high price for all 192 consecutive time intervals from 12
to 15 January 2021.

Figure 2.10c highlights that mean optimal hedge shares moderately increase to 63% on
average when households experience a scarcity event. The scarcity event mainly induces
households with initially low hedge shares to hedge more. When households face a scarcity
event, the hedge tariff becomes even more effective in reducing bill volatility. The optimal
hedge reduces households’ coefficients of bill volatility on average by 48% relative to the
unhedged tariff with a scarcity event.

Overall, the scarcity event only slightly increases bill volatility on an optimally hedged
tariff, as a comparison of Figures 2.10a and 2.10c reveals. The average coefficient of
variation of bills is 18% higher for the optimally hedged tariff with a scarcity event
compared to the optimally hedged tariff with a price cap. In contrast, bill volatility on an
unhedged tariff increases by 108% for unhedged tariffs when moving from an unhedged
price-capped tariff to an unhedged, fully dynamic tariff with a scarcity event. Surprisingly,
the optimally hedged tariff only results in slightly higher bill volatility than the fixed
tariff, even if a scarcity event occurs.

Figure 2.11c points out that the welfare benefits from hedging are substantially larger
with a scarcity event. The average welfare benefit with a scarcity event translates to
a 19% reduction in mean electricity prices compared to a 0.3% welfare benefit for the
price-capped tariff. This illustrates that welfare benefits from hedging might grow in
the future since households on dynamic tariffs will likely face more frequent and more
extreme scarcity prices.

2.7 Conclusion

Dynamic electricity prices have an enormous potential to make power markets more
efficient since they help align fluctuating electricity demand and supply. However, they
expose households to very high electricity prices when supply is scarce. In this paper,
I study how to augment dynamic electricity prices with a forward hedge. The forward
hedge should protect households from high prices while incentivizing them to adjust their
consumption to prices elastically.

Using a utility maximization model, I simulate optimal forward hedge shares for a
sample of 2,159 UK households exposed to dynamic prices. My main contribution is that
I study the relation between optimal hedge shares and households’ price elasticity of
demand when they face uncertainty about prices and quantity shocks.
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The simulations suggest that the households in my sample should hedge on average
59% of their baseline consumption. Optimal hedge shares differ strongly among households
and by time of day. These differences are due to significant variations in the correlation
between prices and the desire to consume electricity. Ownership of low-carbon technologies
like electric vehicles, solar PV, battery storage, and electric heating is correlated with
optimal hedge shares and might contribute to their considerable variation.

The central insight of this paper is that an exogenous increase in price elasticity can
increase or decrease hedge shares. Higher price elasticity increases hedge shares when
prices and the desire to consume electricity are positively correlated. In this case, the
household increases the hedge to ensure that it can maintain an acceptable level of
electricity consumption when both prices and its desire to consume are high. In contrast,
higher price elasticity reduces hedge shares when the correlation between prices and
quantity shocks is negative. Households reduce their hedge shares to raise their exposure
to spot prices when spot prices are negatively correlated with their desire to consume.

Optimal forward hedging effectively reduces the volatility of monthly electricity bills
by an average of 18%. The reduction in bill volatility is more significant when households
face a positive correlation between prices and quantity shocks. The optimal forward
hedge can even achieve lower bill volatility than a fixed tariff.

However, despite reducing bill volatility, the welfare gains from optimal forward
hedging are minimal. In the main specification, these welfare gains amount to just a 0.3%
decrease in mean dynamic electricity prices. Welfare gains from hedging remain small for
households with low price elasticity, high risk aversion, and even for households with a
much larger share of electricity in overall expenditure.

Welfare gains from hedging are much higher and equivalent to a 19% reduction in
mean electricity prices when households face a Texas-style scarcity event with extremely
high prices. Hedging might become more valuable in the future when extreme weather and
price events will occur more often. However, the given model might not fully capture the
benefits of protecting households from extreme worst-case events. Real-world households
might care more about avoiding extremely high worst-case bills than about maximizing
expected consumption utility or minimizing average bill volatility. Further research should
therefore analyze how to design optimal forward hedge tariffs that effectively protect
against worst-case outcomes.

In addition, the practical implementation of forward hedging requires further study.
Most importantly, it needs to be tested whether domestic consumers understand how
forward hedging works and which incentives it creates. The experience with the German
gas and electricity price breaks suggests that widespread adoption of forward hedging
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would require large efforts to educate consumers. Future research also needs to examine
the optimal length of the hedge time segments. Moreover, it is crucial to gain a better
understanding of how to determine households’ baseline consumption levels, especially
in the absence of historical price-consumption data. The need to determine a baseline
consumption level might also reduce competition in retail power markets. Incumbent
suppliers have an advantage in estimating baseline consumption based on historical data
and customer characteristics. Therefore, regulators should allow households to share their
historical price and consumption data with different retailers to ensure all suppliers can
offer equally attractive hedged tariffs.

Despite all these challenges, forward contracts will likely play a vital role as a
supplement to dynamic electricity prices in the future. Dynamic electricity pricing will
become even more relevant for making electricity markets efficient in a world with
primarily intermittent electricity supply. However, consumers and politicians have been
hesitant to widely adopt dynamic prices up until now. One of the main reasons for this
reluctance is that dynamic electricity prices can make households vulnerable to extremely
high prices. Forward hedging is a powerful tool to overcome these concerns as it partly
shields households from high prices while preserving the incentive to be price-responsive.
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Abstract

Day-ahead electricity markets expose power generators and load-serving entities (LSEs) to
large financial risks due to extreme price spikes and correlated load fluctuations. We study
how price spikes shape optimal hedging strategies for a risk-averse generator and LSE.
Drawing on a regime-switching and dispatch model for ERCOT’s day-ahead market, we
simulate optimal combinations of forward contracts and call options for granular delivery
periods. We find that large and frequent price spikes in a delivery period can result in
extreme worst-case losses. Agents, therefore, take larger call options and smaller forwards
positions in such spiky periods. Yet combining forwards and options only slightly reduces
profit variance and worst-case losses compared to a forwards-only strategy because profits
are almost linear in day-ahead prices. Finally, increasing the option strike price prompts
agents to choose larger forwards and smaller options positions. Our findings underscore

67
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that hedging with granular derivative products effectively reduces profit volatility and
worst-case losses even when extreme price spikes occur.
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3.1 Introduction

In recent decades, many countries have designed day-ahead electricity markets to procure
electricity at the least cost, to integrate fluctuating load and intermittent renewable
generation, and to send reliable scarcity signals (Cramton, 2017). A downside of day-ahead
markets is that they expose market participants to large financial risks. These risks occur
because load and day-ahead prices are extremely volatile. Day-ahead electricity prices
are far more volatile than prices for most other commodities and assets (Bessembinder &
Lemmon, 2002, Weron et al., 2004).1

Extreme price spikes partly drive day-ahead price volatility. Between 2011 and 2022,
the average day-ahead price was $43/MWh in the Texas ERCOT market, yet price spikes
between $200/MWh and $9, 000/MWh occurred in almost 900 hours (ERCOT, 2024a).
These price spikes arise from price-inelastic electricity demand, the lack of short-term
storage, market power, and the strong convexity of the merit order curve (Lu et al.,
2005). In the medium term, price volatility and spikes will likely increase further due
to growing intermittent renewables and more extreme weather (Ketterer, 2014, Peura

1For instance, the standard deviation of the percentage changes in average daily day-ahead prices
was 25% in ERCOT between 2011-22. The standard deviation of the daily percentage changes in the
S&P 500 stock prices was only 0.93% during the same period. For the WTI oil price, the figure is 2.67%.
(Bessembinder & Lemmon, 2002) provide similar statistics for PJM between 1997 and 2000 (ERCOT,
2024a).
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& Bunn, 2021). In the long term, price volatility and spikes might decline if electricity
demand becomes more price-elastic or if batteries provide short-term flexibility.

In addition to price risks, market participants face load fluctuations due to changing
weather conditions. High load often coincides with day-ahead price spikes (Afanasyev
et al., 2015). Because of this positive correlation between load and price spikes, unhedged
load-serving entities (LSEs) face large downside risks in day-ahead markets. Unhedged
LSEs must procure large quantities at high spike prices, creating a long left tail in
their day-ahead profit distribution. For generators, the positive correlation creates an
upside opportunity and a right tail in their profit distribution. Hence, the tails in LSEs’
and generators’ profit distributions have opposite signs. They require different hedging
strategies to hedge their respective right and left profit tails.

This paper simulates optimal hedge strategies for a representative generator and an
LSE in ERCOT’s day-ahead market. The agents can choose between forward contracts
and European call options. Our primary research question is how the frequency and size
of price spikes in a delivery period affect optimal hedge strategies. In addition, we study
how risk aversion shapes these hedge strategies in the presence of price spikes. We also
investigate how the magnitude of the call option’s strike price impacts hedging decisions
and profit distributions.

We begin by simulating the hourly profits of generators and LSEs in ERCOT’s day-
ahead market between 2011-22. Profits are simulated using the regime-switching model
by Coulon et al. (2013), which captures large price spikes. This model simulates joint
distributions of hourly day-ahead prices, hourly net load, and daily gas prices. We also
incorporate solar and wind generation profiles from ERCOT (2023). For each simulated
draw of hourly day-ahead price, gas price, and net load, we run a merit order model to
obtain hourly dispatch and profits for a sample of 655 power plants in Texas provided by
Mann et al. (2017) and ERCOT (2023). We assume that agents’ forwards and option
positions do not affect bidding behavior or day-ahead prices.

The regime-switching and dispatch models provide realistic distributions of hourly
day-ahead profits. Using these distributions, we simulate optimal quantities of forwards
and call options for a representative generator and LSE. We define a pair of forward and
option quantities as optimal if it maximizes the agent’s constant absolute risk aversion
utility.

Following Wolak (2022) and Cramton et al. (2025b), we consider forward and option
contracts with granular delivery periods: combinations of year-month-hour-weekend/week-
day, such as weekdays 4-5 pm in August 2019. These granular delivery periods allow
agents to better manage risks by tailoring hedges to daily and seasonal load or generation
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cycles (Winzer et al., 2024, Brandkamp, 2025). We assume that agents can buy the
granular hedge products at arbitrage-free prices. Ignoring arbitrage opportunities allows
us to focus on the risk-management motive for hedging. Our main specification sets
a high strike price of $200/MWh for the call option because the option is intended to
primarily cover large price spikes.

We simulate optimal forward and option quantities for all 576 unique granular delivery
periods in 2019. We show that the frequency and size of day-ahead price spikes differ
sharply across these periods. Spikes tend to be small and rare at night and in winter but
larger and more frequent during daytime and summer. These varying levels of ”spikiness”
allow for the analysis of how price spikes shape hedge strategies.

Large price spikes can lead to extreme worst-case losses. We find that the LSE and
the generators trade-off minimizing worst-case losses versus minimizing profit variance
when choosing optimal hedge strategies. They do not optimize expected profit because,
with arbitrage-free prices, expected profit is constant no matter how many forwards and
options the agent buys. In periods with larger price spikes, the generator and the LSE
both rely more on options than forwards to mitigate worst-case losses. The LSE uses
options more heavily because price spikes create longer negative profit tails for the LSE
than for the generator. Agents’ risk aversion is crucial for determining how much they
focus on worst-case losses or on variance.

Agents who are nearly risk-neutral focus on minimizing profit variance (Min-Var). In
low-spike periods, both sides hold forwards and options in comparable proportions. The
LSE typically buys around six times as many forwards as options, while the generator
sells five times as many forwards as options. This results in variance-minimizing forward
volumes of roughly 90-110% of expected generation for the generator and 100-110%
of expected load for the LSE. Min-Var option positions are smaller (about 15-20% of
expected quantities for the LSE and 20% for the generator)

In periods with heavier price spikes, the nearly risk-neutral generator only slightly
lowers its short-forward ratio and keeps its option ratio constant. By contrast, the nearly
risk-neutral LSE strongly reduces its long forward ratio to roughly 80% and increases its
option ratio to 30-40%, ending up close to a 2:1 forward-to-option mix. Thus, the LSE
heavily relies on options to protect against price spikes, even if it is nearly risk-neutral.

The more risk-averse the LSE becomes, the more it shifts focus to ever more extreme
parts of its worst-case loss tail. It, therefore, replaces forwards with options, reducing
their proportion to almost 2:1 in periods with small spikiness. In spiky periods, the LSE
buys even more options than forwards. This strategy reduces tail losses but raises profit
variance compared to the Min-Var hedge strategy.
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When the generator becomes risk-averse, it reduces its short option position. Shorting
options can trigger large losses in spiky delivery periods. For high-risk aversion, the
generator, therefore, prefers to buy options rather than sell them. A long option position
offsets the substantial losses from shorting forwards when price spikes occur. The downside
is that buying call options increases the variance of the generator’s profits because it
leads to positive payoffs when the generator’s day-ahead profit is high. Therefore, the
risk-averse generator increases its short forward position to balance the long option payoff
in spiky periods. The generator’s long option position is smaller than the LSE’s because
it has a less extreme worst-case loss tail. The reason is that the generator is more flexible
in reducing its generation quantities when prices are unfavorable.

Overall, combining forwards and options is effective in reducing profit variance and
worst-case risks compared to a fully unhedged strategy. However, we also compare the
combined strategy to one that only hedges with forwards. Surprisingly, the combined
strategy only marginally reduces profit variance and achieves only small benefits with
respect to worst-case losses compared to the forwards-only strategy. The reason is that
the generator’s and LSE’s day-ahead profits are roughly linear in the day-ahead price.
Under linear payoffs, linear forwards hedge effectively, and nonlinear options add little
value (Lapan et al., 1991). This explains why nearly risk-neutral agents use few options.
The small added benefit of reduced worst-case losses justifies higher option holdings for
more risk-averse agents.

Finally, we study how the magnitude of the call option strike price affects hedging in a
delivery period with large price spikes. We analyze strike prices ranging from 100$/MWh
and 1, 000$/MWh. The LSE buys more forwards and fewer options when the strike price
rises. With a high strike price, the option offers no protection against moderate spikes,
making the option less attractive compared to the forwards. More risk aversion reinforces
this tendency, with increased forward buying and decreased option buying. The almost
risk-neutral generator also increases its short forwards and decreases its short options
when the strike rises. If the generator is risk-averse, long option positions increase in the
strike price for low strike prices below 400$/MWh but decline for higher strike prices.

A low strike price slightly increases agents’ profit variance. On the other hand, a low
strike price enables the LSE to choose hedge strategies that lead to smaller tail losses, at
least when its risk aversion is low. The reason is that the low strike price induces the LSE
to buy more options, leading to lower tail losses but higher variance. In contrast, the
higher option holdings chosen under low strike prices increase tail losses for the generator
unless it is very risk-averse.



HEDGING ELECTRICITY PRICE SPIKES 72

It, therefore, depends on agents’ risk preferences, which strike price the market
designer should choose. A smaller strike price has the advantage of offering better spike
protection for the LSE. The LSE has less flexibility and is more vulnerable to extreme
negative profit tails than the generator. Some researchers also opt for low strike prices
because low strikes might improve generators’ strategic bidding incentives in day-ahead
markets (Willems, 2005, Zhang et al., 2012). Yet, determining the exact strike price level
requires further research.

Our paper shows that forwards and options enable participants in day-ahead markets
to effectively manage risk created by extreme price spikes. Regulators should encourage
hedging by establishing liquid markets for forwards and options with standardized
contracts. Obliging LSEs to hedge a particular share of their expected load could also
increase liquidity and coordinate trade (Cramton et al., 2025b).

High liquidity will mitigate price premia and arbitrage between day-ahead and deriva-
tive markets. Regulators could further reduce price premia by facilitating arbitrageurs and
financial institutions to trade in electricity markets. However, some level of price premia
will likely persist even in liquid electricity markets. It would be interesting to study how
the above optimal hedging strategies change when arbitrage is possible. Finally, future
research could study in which market equilibria the generator’s and LSE’s strategies
result.

The following section relates our paper to the literature on optimal hedging strategies
in electricity markets. Section 3.3 introduces the generator’s and LSE’s profit and utility
functions. Section 3.4 describes the simulation of the day-ahead market profits, including
the regime-switching model and the merit order dispatch model. Section 3.5 defines the
forwards and option contracts and calculates arbitrage-free forwards and option prices.
Section 3.6 simulates optimal hedging strategies and examines how they depend on price
spikes and risk preferences. Section 3.7 concludes.

3.2 Literature review

Hedging is essential in day-ahead markets for electricity generators and load-serving
entities (LSEs). Their load and day-ahead prices fluctuate strongly, creating extreme
financial risks.

Forward contracts are the most widely used hedging instrument for generators and
LSEs (Deng & Oren, 2006). A comprehensive literature identifies the optimal forward
quantity a commodity producer or consumer should buy. Danthine (1978), Holthausen
(1979), Feder et al. (1980), and McKinnon (1967) show that when price and quantity
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uncertainties are independent, agents should sell exactly their expected quantity forward.
They can sell less than their expected quantity forward if they are flexible to change their
quantity in response to fluctuating prices, as most electricity generators are (Moschini &
Lapan, 1992, Dionne & Santugini, 2015). McKinnon (1967), Rolfo (1980), Losq (1982),
Lapan and Moschini (1994), and Borenstein (2007b) reveal that agents hedge more than
their expected quantity when prices and output are positively correlated. LSEs often face
such a positive correlation. Jin (2007) and Lien (2010) show that a right-skewed profit
distribution also increases the optimal forward position for producers.

Building on the above theoretical insights, many studies identify the optimal quantity
of forward contracts for electricity generators (Näsäkkälä & Keppo, 2005, Conejo et al.,
2008) and load-serving entities (Woo et al., 2004, Kettunen et al., 2009, Deng et al.,
2020). Yet, several researchers argue that linear forward contracts alone are an ineffective
hedging instrument if day-ahead market profits are not linear in the day-ahead price.
Nonlinearity arises if load and prices are correlated (Sakong et al., 1993), if load or
generation is price-elastic (Moschini & Lapan, 1992), or if cost functions are nonlinear.

Various papers demonstrate that nonlinear profits can be hedged effectively by
combining linear forwards with nonlinear derivatives such as options (Moschini & Lapan,
1992, Moschini & Lapan, 1995, Oum et al., 2006). Oum and Oren (2010), Zhou et al.
(2017), and Hess (2021) describe the optimal combination of forwards and options for
LSEs. They emphasize that hedging with options is beneficial for LSEs since they face
large non-traded uncertainty in load that is correlated with prices. Oum et al. (2006)
and Oum and Oren (2010) derive the optimal payoff function of an exotic option for
an LSE and show that this optimal payoff function can be replicated with a portfolio
of forwards and standard European options. For generators, Azevedo et al. (2007),
Sanchez et al. (2010) and Ocakoglu and Tolga (2018) also stress the benefits of combining
options and forwards. Other authors emphasize the advantages of combining electricity
forward contracts with exotic swing or Asian options (Hambly et al., 2008, Fanelli et al.,
2016), fuel-spread options (Aïd et al., 2013), or weather derivatives (Lee & Oren, 2009,
Bhattacharya et al., 2020, Matsumoto & Yamada, 2021).

While options and forwards are useful risk-management tools, agents can also use
them to speculate if forward and option prices are not arbitrage-free. Forwards and
options can skew the profit distribution to the right if arbitrage opportunities exist
(Lapan et al., 1991, Vercammen, 1995). Lien (2010) show that price spikes increase the
optimal forward position of producers when the forward price is larger than the expected
day-ahead price and reduce the forward position when the forward price is negatively
biased. Arbitrage opportunities between day-ahead, and forward and option markets are
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widespread in electricity markets and are an important driver of hedging behavior (Redl
et al., 2009, Botterud et al., 2010). Nevertheless, in this paper, we focus on arbitrage-free
prices to study the risk management motive for hedging in isolation.

Large day-ahead price spikes are another important factor that shapes LSEs’ and
generators’ hedge strategies. Price spikes make generators’ day-ahead profit distribution
right-skewed and LSEs distribution left-skewed. Vercammen (1995) and Barbi and
Romagnoli (2018) point out that agents can use forwards and options to reshape their
profit distributions. LSEs can go long in forwards and options to offset their negative
tail and thereby reduce worst-case losses. For generators, spike prices lead to large
upside potential that is reduced by short positions. Vercammen (1995) shows that
risk-averse generators might still prefer short forward and option positions to lower
profit volatility. However, short positions can cause large worst-case losses if price
spikes occur. Bessembinder and Lemmon (2002) suggest that such spikes create a risk
premium in forward and option prices since risk-averse generators and speculators require
compensation for short positions. LSEs, meanwhile, should be willing to pay this premium
to avoid large losses under spike conditions.

Traditionally, researchers model price spikes by assuming lognormally distributed
day-ahead prices, enabling closed-form solutions for forward and option positions under
mean-variance or CARA utility (Oum et al., 2006). In recent years, however, price spikes
have become so extreme that lognormal distributions no longer fit. Numerous authors
instead use regime-switching models to describe these extreme price spikes (Hamilton,
1990, de Jong & Huisman, 2002, Weron et al., 2004). Coulon et al. (2013) simulate
quantities for forwards and options, respectively, that separately minimize profit variance
for an LSE. They also provide suggestive evidence that combining options and forwards
will further reduce profit variance. Yet, LSEs and generators may also worry about
downside tail risks if prices spike severely, so they might not minimize variance alone.
Risk-averse LSEs with large negative profit tails could prioritize worst-case losses over
mere variance reduction.

We, therefore, extend Coulon et al.’s (2013) in three ways. First, we derive combined
optimal forward and option positions for LSEs and generators under extreme price spikes,
assuming CARA utility. We study how the level of risk aversion influences hedging
strategies and profit distributions. Supplementing Coulon et al.’s (2013) analysis, we also
compare a combined forward–option strategy to a forward-only strategy.

Second, we examine how option and forward quantities change with the “spikiness”
of a given delivery period’s price distribution, measured via the option-to-forward price
ratio, which is strongly correlated with spike size and frequency.
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Third, we investigate how the call option’s strike price influences hedging effectiveness
in high-spike conditions. This analysis builds on Oum et al. (2006), and shows how
forward and option quantities depend on the option’s strike prices. We study how the
strike price affects profit variance and tail profits.

3.3 Hedging with forwards and options

This section describes how electricity generators and load-serving entities (LSE) determine
the optimal quantities of forwards and call option contracts. LSE’s and generator’s (GEN)
respective profits from selling electricity in the day-ahead market in hourly period 𝑡 are

𝜋𝐿𝑆𝐸
𝐷𝐴𝑡

= (𝑅𝑌 − 𝑃𝑡)𝑞𝑡 𝜋𝐺𝐸𝑁
𝐷𝐴𝑡

= 𝑃𝑡𝑞𝑡 − 𝑐𝑡(𝑞𝑡)

𝑃𝑡 denotes the day-ahead electricity price in hour 𝑡. 𝑞𝑡 is the load that the LSE procures
or the generator produces. 𝑅𝑌 is the fixed retail price in year 𝑌 that the LSE charges
to its end-consumers. 𝑐𝑡(𝑞𝑡) represents the generator’s cost function. The shape of 𝑐𝑡(𝑞𝑡)
changes over time since generation costs change with fuel prices.

Generators and LSEs can hedge their day-ahead market risk by purchasing forwards
or call option contracts. The focus on forwards and call options is not restrictive because
the combination of these contracts can replicate positions equal to many other classical
derivatives, including put and straddle positions (Cox & Rubinstein, 1985). When buying
forwards and call options, agent 𝑖 ∈ {LSE, GEN} has the following profit function in
each hourly period 𝑡 ∈ 𝑀:

𝜋𝑖
𝑡 = 𝜋𝑖

𝐷𝐴𝑡
− (𝐹 𝑝

𝑀 − 𝑃𝑡)ℎ𝑀 − (𝑉𝑀 − 𝑣𝑡)𝑧𝑀

ℎ𝑀 is the quantity of forward contract 𝑀 agent 𝑖 buys. 𝑀 defines the delivery period that
the forward and option contracts cover. For instance, 𝑀 could contain all baseload hours
in June 2026. If ℎ𝑀 = 1𝑀𝑊, this means that the agent would buy 1𝑀𝑊 of forward
energy in all baseload hours in June 2026 (Coulon et al., 2013). 𝐹 𝑝

𝑀 is the forward price
for contract 𝑀. 𝑉𝑀 is the price for the call option, 𝑧𝑀 is the quantity of option contracts,
and 𝑣𝑡 is the gross value of the call option defined as:

𝑣𝑡 =
⎧{
⎨{⎩

𝑃𝑡 − 𝐾𝑀 if 𝑃𝑡 ≥ 𝐾𝑀

0 if 𝑃𝑡 < 𝐾𝑀
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𝐾𝑀 is the option’s strike price. Forward and option quantities ℎ𝑀 and 𝑧𝑀 can be positive
or negative. A negative quantity means that agent 𝑖 sells electricity forward or sells
a call option. It might seem natural that LSEs want to buy electricity forward and
generators want to sell it. However, LSEs and generators can buy positive and negative
quantities. Importantly, we assume that the chosen forwards and option prices do not
affect prices and quantities in the day-ahead markets. Several authors reveal that forward
and option positions improve bidding incentives and make day-ahead market equilibria
more competitive (Allaz & Vila, 1993, Willems, 2005, Zhang et al., 2012). We abstract
from these effects in our day-ahead market simulation.

When agent 𝑖 chooses the optimal quantities of forwards ℎ𝑀 and options 𝑧𝑀, she
faces uncertainty about the day-ahead price 𝑃𝑡 and her realized load 𝑞𝑡 in period 𝑡. The
generator’s cost function 𝑐𝑡(𝑞𝑡) is also uncertain when forward and option quantities are
chosen because 𝑐𝑡(𝑞𝑡) depends on fuel prices in period 𝑡. Given this uncertainty, agent 𝑖
chooses the optimal 𝑧𝑀 and ℎ𝑀 for contract 𝑀 that maximize its expected utility:

𝑚𝑎𝑥
ℎ𝑀,𝑧𝑀

𝐸[𝑈(𝜋𝑖
𝑡∈𝑀)]

The first-order conditions are given as:

𝜕𝐸[𝑈(𝜋𝑖
𝑡)]

𝜕𝐻
= 𝐸[𝑈′(𝜋𝑖

𝑡∈𝑀)(𝐹 𝑝
𝑀 − 𝑃𝑡∈𝑀)] = 0

𝜕𝐸[𝑈(𝜋𝑖
𝑡)]

𝜕𝑍
= 𝐸[𝑈′(𝜋𝑖

𝑡 𝑖𝑛𝑀)((𝑣𝑡∈𝑀 − 𝑉𝑀))] = 0

If we aimed to solve this problem analytically, we would have to make assumptions
about the shape of the utility function and the joint distribution of the random factors
prices, load, and costs (Moschini & Lapan, 1995). Several authors solve variants of this
problem analytically, assuming a constant absolute risk aversion (CARA) utility function
and joint normally distributed load and prices (Lapan et al., 1991, Moschini & Lapan,
1995). We will not follow their approach because load and prices are not jointly normally
distributed for electricity generators and LSEs. The main reason is that the electricity
price distribution is strongly right-skewed. Assuming a normal distribution of electricity
prices is not suitable for us, since we are interested in how to hedge when prices exhibit
large spikes. Hence, we will assume a CARA utility function and solve the above problem
numerically. To do so, the following section describes a regime-switching model of the
ERCOT day-ahead market that allows simulating strongly skewed distributions of prices,
load, and costs.
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3.4 Day-ahead market simulation

3.4.1 Regime-switching model

This section aims to simulate realistic distributions of generators’ and LSEs’ day-ahead
market profits. We follow Coulon et al. (2013) and build a regime-switching model that
allows estimating the joint distribution of the most relevant determinants of day-ahead
profits: day-ahead prices, gas prices, net load, and solar and wind generation. To calibrate
the model, we use data on hourly day-ahead prices from ERCOT (2024a), and hourly
system load data from ERCOT (2024b) for all hours from 2011 to 2022. Moreover, we
use daily Henry Hub gas price data for 2011-22 from EIA (2024). We also use hourly
generation profiles for 218 wind farms and 189 solar farms that operate in ERCOT. The
generation profiles were created by ERCOT (2023). In addition, we use data on hourly
solar and wind generation from ERCOT (2024c).

Figure 3.1a depicts the average daily day-ahead electricity price in ERCOT and the
daily Henry Hub gas price between 2011 and 2022. Modeling the day-ahead electricity
prices is challenging because they experience extreme spikes. Moreover, day-ahead prices
follow strong seasonal, weekly, and daily cycles. The literature that aims to model
these features can be broadly categorized into two streams. The first stream consists of
structural models. These models derive electricity prices from a merit order approach that
considers the costs of all power plants and their operational constraints. An advantage
of a structural model is that it offers an intuitive explanation of price formation and
allows analyzing how capacity expansion and changes in the resource structure affect
electricity prices (Carmona et al., 2013). A disadvantage is that structural models struggle
to explain extreme price spikes where prices far exceed generators’ marginal costs. The
second literature stream uses reduced-form models. Such models describe the evolution
of electricity prices as a pre-specified stochastic process. They often include price spikes
using regime-switching or jump processes. However, reduced models do not capture how
price spikes depend on the factors that influence electricity prices, like fuel prices, outages,
and load (Carmona et al., 2013). Most importantly, for our purpose of deriving optimal
hedge positions, a model of day-ahead profits must capture the fact that price spikes are
positively correlated with load and gas prices.

Following Barlow (2002), several authors combined the two above literature streams.
They describe electricity day-ahead prices as a function of relevant determinants, especially
load and fuel prices. These determinants are assumed to follow correlated stochastic
processes. In some models, the determinants influence the probability of a price jump or
regime switch to account for price spikes. Most models include load (Barlow, 2002) and
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Figure 3.1: Empirical data from ERCOT on prices, renewable generation, and load in
2011-22

fuel prices (Carmona et al., 2013) as crucial determinants of power prices. The literature
considers gas as a marginal fuel to explain most variation in electricity prices (Füss et al.,
2015). In Carmona et al. (2013), the electricity price depends on multiple fuels like coal
and gas. Other authors also include plant outages as a determinant of power prices.

This paper employs such a combined regime-switching model by Coulon et al. (2013).
In their model, the following equation describes the hourly day-ahead electricity price 𝑃𝑡:

𝑃𝑡 = 𝐺𝑡 exp (𝛼𝑚𝑘
+ 𝛽𝑚𝑘

𝐿𝑡 + 𝛾𝑚𝑘
𝑋𝑡) (3.1)
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𝐺𝑡 is the daily gas price, and 𝐿𝑡 is the hourly net load, i.e., load minus intermittent solar
and wind generation. 𝑋𝑡 is a residual process and 𝑚𝑘 ∈ {1, 2} indicates whether prices
are in the normal price regime 1 or in the spike price regime 2. The above exponential
expression for the electricity spot price is commonly used in the literature (Eydeland &
Geman, 1999). The advantage of this exponential form is that the resulting day-ahead
prices 𝑃𝑡 are lognormally distributed in each price regime. This allows for deriving
closed-form solutions for forward and option prices (Coulon et al., 2013, Füss et al.,
2015).

Following Coulon et al. (2013), we rely on gas as the price-setting marginal fuel.
Figure 3.1a reveals that average daily electricity prices are closely linked to daily gas
prices, even though daily electricity prices show larger spikes than gas prices. We model
logarithmic gas prices 𝐺𝑡 as an Ornstein-Uhlenbeck (OU) process (Coulon et al., 2013,
Schwartz, 1997).

𝑑 log𝐺𝑡 = 𝜅𝐺(𝑚𝐺 − log𝐺𝑡)𝑑𝑡 + 𝜂𝐺𝑑𝑊 (𝐺)
𝑡 (3.2)

In contrast to Coulon et al. (2013), we use net load 𝐿𝑡 rather than load as a second
determinant of power prices in equation 3.1. Coulon et al. (2013) use load because solar
and wind generation was still negligible in Texas during their observation period between
2005 and 2011. Over the last decade, the rising share of wind and solar generation has
become an important determinant of day-ahead electricity prices. Solar and wind plants
have near-zero marginal costs and are usually dispatched when there is sun or wind and
no curtailment. Since intermittent renewable generation shifts the merit order curve, net
load rather than load determines prices in day-ahead markets with significant renewable
generation (Ketterer, 2014, Peura & Bunn, 2021).

Figure 3.1b reveals that ERCOT’s hourly system load shows strong, predictable
seasonal cycles and is increasing over time. Figure 3.1c highlights that the aggregate solar
and wind generation is also increasing over time. Surprisingly, Figure 3.1d indicates that
hourly net load is not increasing even though load and solar and wind generation are
all increasing. Even the daily standard deviation of the net load stays relatively stable
over time. This suggests a strong positive correlation between load and solar and wind
generation in ERCOT.

Following Coulon et al. (2013), we decompose net load 𝐿𝑡 into a seasonal component
𝑆(𝑡) and a deseasonalized component 𝐿𝑡.

𝐿𝑡 = 𝑆(𝑡) + 𝐿𝑡 (3.3)
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Seasonal component 𝑆(𝑡) is estimated separately for every hour ℎ of the day.

𝑆(𝑡) = 𝑎1(ℎ) + 𝑎2(ℎ) cos(2𝜋𝑡 + 𝑎3(ℎ)) + 𝑎4(ℎ) cos(4𝜋𝑡 + 𝑎5(ℎ)) + 𝑎6(ℎ)𝑡 + 𝑎7(ℎ)1𝑤𝑒

(3.4)

𝑎1 represents the long-term average net load in hour ℎ. 𝑎2 controls the amplitude of
seasonal variations, while 𝑎3 sets the starting point of the seasonal cycles. Similarly,
𝑎4 and 𝑎5 capture higher-frequency daily net load cycles. 𝑎6 describes long-term linear
trends, and 𝑎7 considers that net load is typically lower on weekends. Deseasonalized net
load 𝐿𝑡 is modeled by the following OU process:

𝑑𝐿𝑡 = −𝜅𝐿𝐿𝑡 𝑑𝑡 + 𝜂𝐿 𝑑𝑊 (𝐿)
𝑡 (3.5)

The above process models deseasonalized net load to be normally distributed and mean-
reverting. The deseasonalized net load process and the gas price process in equation 3.2
are assumed to be uncorrelated (i.e., 𝑊 (𝐿)

𝑡 and 𝑊 (𝐺)
𝑡 are independent).

While net load and gas prices are crucial, there are additional important determinants
of power prices, such as generator or transmission outages. Coulon et al. (2013) do not
explicitly model these factors but include them as a residual, unobserved process 𝑋𝑡.

𝑋𝑡 = 𝑆𝑋(𝑡) + 𝑋𝑡 (3.6)

𝑆𝑋(𝑡) is the seasonal component of 𝑋𝑡 that accounts for seasonal and daily cycles in the
frequency of outages and transmission constraints.

𝑆𝑋(𝑡) = 𝑏1(ℎ) + 𝑏2(ℎ) cos(2𝜋𝑡 + 𝑏3(ℎ)) + 𝑏4(ℎ) cos(4𝜋𝑡 + 𝑏5(ℎ)) (3.7)

As above, the deseasonalized residual 𝑋𝑡 follows an OU process

𝑑𝑋𝑡 = −𝜅𝑋𝑋𝑡 𝑑𝑡 + 𝜂𝑋 𝑑𝑊 (𝑋)
𝑡 (3.8)

The random elements of the deseasonalized net load 𝑊 (𝐿)
𝑡 and the deseasonalized residual

load 𝑊 (𝑋)
𝑡 may be correlated. Transmission or generator outages are more likely under

extreme weather conditions when net load is typically high. 𝐿𝑡 and 𝑋𝑡 are OU processes
with mean zero since their means are subtracted by their seasonal components 𝑆(𝑡) and
𝑆𝑋(𝑡).
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In day-ahead price equation 3.1, indicator 𝑚𝑘 determines whether prices are in normal
regime 1 or spike regime 2. 𝑚𝑘 is chosen by an independent coin flip:

𝑚𝑘 =
⎧{
⎨{⎩

1 with probability 1 − 𝑝𝑠Φ (𝐿𝑡−𝜇𝑠
𝜎𝑠

)

2 with probability 𝑝𝑠Φ (𝐿𝑡−𝜇𝑠
𝜎𝑠

)

The probability of being in spike regime 2 increases in deseasonalized net load 𝐿𝑡. 𝜙(⋅)
is the normal cumulative distribution function. 𝑝𝑠 gives the probability of being in
spike regime 2 when 𝐿𝑡 goes to infinity. 𝜇𝑠 and 𝜎𝑠 are parameters that govern how the
spike probability depends on deseasonalized net load. Following Coulon et al. (2013),
we set 𝜇𝑠 = 0 and 𝜎𝑠 = 𝜂𝐿

√2𝜅𝐿
such that the parameters equal the mean and standard

deviation of the stationary distribution of observed deseasonalized net load 𝐿𝑡. Thereby,
the probability of a price spike becomes linear in the quantile of 𝐿𝑡 (Coulon et al., 2013).

Day-ahead price equation 3.1 has the same exponential form for regimes 1 and 2.
Since the parameters 𝛼𝑚𝑘

, 𝛽𝑚𝑘
, and 𝛾𝑚𝑘

differ between the two regimes, the model
allows for a steeper relationship between net load and prices in spike regime 2 (Coulon
et al., 2013).

3.4.2 Simulating day-ahead market outcomes

In this section, we simulate hourly day-ahead market states, i.e., we draw values from the
joint distribution of day-ahead electricity prices, gas prices, net load, and solar and wind
generation. We first estimate the parameters of the day-ahead price equation 3.1 using

20
11

20
13

20
15

20
17

20
19

20
21

20

40

60

Year

E
R
C
O
T

L
o
a
d

(G
W

)

Hour 8 Seasonal Fit (weekdays)

Hour 8 Seasonal Fit (weekends)

(a) Hour 8 Seasonal Component

20
11

20
13

20
15

20
17

20
19

20
21

20

40

60

Year

E
R
C
O
T

L
o
a
d

(G
W

)

Hour 16 Seasonal Fit (weekdays)

Hour 16 Seasonal Fit (weekends)

(b) Hour 16 Seasonal Component

Figure 3.2: ERCOT system load seasonal components for hours 8 and 16.
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data on hourly day-ahead electricity prices, net load, and daily gas prices between 2011
and 2022. To do so, we fit the coefficients of the seasonal net load component 𝑆(𝑡) in
equation 3.4. The estimated coefficients can be found in Table C.1 in Appendix C.1 for
every hour of the day. Figure 3.2 shows net load and its seasonal components for weekends
and weekdays between 8 am and 4 pm.2 The figure reveals that seasonal variation in net
load is much larger for the peak hour 4 pm compared to the less peaky hour 8 am. After
calculating the seasonal component of net load, we obtain the deseasonalized net load 𝐿𝑡

using equation 3.3.
We can now estimate the remaining parameters in price equation 3.1 using the

likelihood function:3

ℒ𝑃(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾1, 𝛾2, 𝑝2) = ∏
𝑡

⎧{
⎨{⎩

𝑝𝑠𝜙 (𝐿𝑡 − 𝜇𝑠
𝜎𝑠

) 1
𝛾2

√
2𝜋

exp⎛⎜
⎝

− (
log ( 𝑃𝑡

𝐺𝑡
) − 𝛼2 − 𝛽2𝐿𝑡

𝛾2
)

2

⎞⎟
⎠

(3.9)

+ (1 − 𝑝𝑠𝜙 (𝐿𝑡 − 𝜇𝑠
𝜎𝑠

)) 1
𝛾1

√
2𝜋

exp⎛⎜
⎝

− (
log ( 𝑃𝑡

𝐺𝑡
) − 𝛼1 − 𝛽1𝐿𝑡

𝛾1
)

2

⎞⎟
⎠

⎫}
⎬}⎭

The estimation models the deseasonalized residual process 𝑋𝑡 as normal random
noise (Coulon et al., 2013). The estimated parameters are given in Table 3.1.

𝛼1 𝛽1 𝛾1 𝛼2 𝛽2 𝛾2 𝑝𝑠

1.279 2.39 × 10−5 0.308 -0.035 7.12 × 10−5 1.065 0.161

Table 3.1: Estimated parameters for the day-ahead price function in equation 3.1

As expected, 𝛽2 > 𝛽1, which means that the exponential relation between net load
and prices is steeper in spike price regime 2 than in price regime 1. 𝛾2 > 𝛾1 implies that
random shocks like plant outages also have a stronger effect on prices in the spike regime
than in the normal regime. 𝑝𝑠 = 16.1% reveals that prices are in the spike regime in
8.05%(𝑝𝑠/2) of hours because the spike probability 𝑝𝑠Φ (𝐿𝑡−𝜇𝑠

𝜎𝑠
) fluctuates symmetrically

between 0 and 𝑝𝑠 in each hour 𝑡 (Coulon et al., 2013).
Using the estimated parameters in Table 3.1, we rearrange price equation 3.1 to back

out the residual process 𝑋𝑡.
2Figure 3.2 was also created by Coulon et al. (2013) and is replicated here for our different observation

period.
3We follow Coulon et al. (2013) and remove all hourly observations where 𝑃𝑡/𝐺𝑡 < 0.1, i.e., the

electricity price is very small relative to the gas price. Only 6 out of 105,158 hours are removed. Eliminating
these small outliers is supposed to improve the fit of the likelihood estimation (Coulon et al., 2013).
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𝑋𝑡 = 𝑝𝑠𝜙 (𝐿𝑡 − 𝜇𝑠
𝜎𝑠

) (
log ( 𝑃𝑡

𝐺𝑡
) − 𝛼2 − 𝛽2𝐿𝑡

𝛾2
) + (1 − 𝑝𝑠𝜙 (𝐿𝑡 − 𝜇𝑠

𝜎𝑠
)) (

log ( 𝑃𝑡
𝐺𝑡

) − 𝛼1 − 𝛽1𝐿𝑡

𝛾1
)

Afterward, we employ equation 3.7 to fit the seasonal component 𝑆𝑋(𝑡) (see Table C.1
in Appendix C.1 for the estimated coefficients) and obtain the deseasonalized residual
process 𝑋𝑡 using equation 3.6. Having determined 𝐿𝑡 and 𝑋𝑡, we now jointly estimate
the parameters of the correlated OU processes 𝑑𝐿𝑡 and 𝑑𝑋𝑡 in equations 3.5 and 3.8 by
maximizing the following likelihood function

ℒ𝑂𝑈(𝜅𝐿, 𝜂𝐿, 𝜅𝑋, 𝜂𝑋, 𝜈) =
𝑁

∏
𝑡=2

1
2𝜋√det(Σ)

exp(−1
2

It
𝑇Σ−1It)

with It = (
𝑑𝐿𝑡

𝑑𝑋𝑡
). The variance-covariance matrix of the bivariate normal processes is

Σ = (
𝜎2

𝐿 𝜈𝜎𝐿𝜎𝑋

𝜈𝜎𝐿𝜎𝑋 𝜎2
𝑋

) (3.10)

𝜈 is the correlation coefficient between 𝑑𝐿𝑡 and 𝑋𝑡, 𝜎2
𝐿 = 𝜂2

𝐿(1−𝑒−2𝜅𝐿𝑑𝑡)
2𝜅𝐿

is the variance of

𝑑𝐿𝑡, and 𝜎2
𝑋 = 𝜂2

𝑋(1−𝑒−2𝜅𝑋𝑑𝑡)
2𝜅𝑋

is the variance of 𝑋𝑡.
Similarly, we maximize the following likelihood function to estimate the parameters

of the OU process of the log gas price, assuming that 𝑑 log𝐺𝑡 is not correlated with 𝑑𝐿𝑡

and 𝑑𝑋𝑡.

ℒ𝐺(𝜅𝐺, 𝑚𝐺, 𝑒𝑡𝑎𝐺) = 1

√2𝜋𝜂2
𝐺𝑑𝑡

exp(−(𝑑 log𝐺𝑡 − 𝜅𝐺(𝑚𝐺 − log𝐺𝑡)𝑑𝑡)2

2𝜂2
𝐺𝑑𝑡

)

The estimated parameters for the three OU processes are shown in Table 3.2.

𝜅𝐿 𝜂𝐿 𝜅𝐺 𝜂𝐺 𝑚𝐺 𝜅𝑋 𝜂𝑋 𝜈

125.571 84,329.524 3.524 0.915 1.159 996.966 40.406 0.092

Table 3.2: Estimated parameters relating to the stochastic processes for 𝐺𝑡, 𝐿𝑡, and 𝑋𝑡.

𝜅𝐺 = 3.524 reveals that gas prices need more than two months to revert to their
mean. However, gas prices mean-revert much faster from 2011-22 than from 2005-11, as
estimated by Coulon et al. (2013). 𝜅𝐿 = 125.571 indicates that the net load typically
requires around two days to revert to its seasonal mean, reflecting net load’s dependence
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on multi-day weather movements. Net load mean reverts slightly slower than load in
Coulon et al.’s (2013) earlier time period because net load is likely more weather-dependent
than load. Deseasonalized net load is volatile, as the large 𝜂𝐿 indicates. 𝜅𝑋 = 996.966
implies that the residual process reverts to its seasonal mean after roughly 6 hours. Plant
or transmission outages likely only affect prices for a couple of hours, as Coulon et al.
(2013) also find.

Using the above estimated parameters, we simulate the deseasonalized OU processes for
net load, log gas prices, and the residual process. After adding their seasonal components,
we insert the simulated values for net load, gas price and the residual process into equation
3.1 to calculate the corresponding day-ahead electricity prices.

To examine how well the simulated prices and quantities match the observed empirical
values, we simulate 20 market states for each of the 105,158 observed hourly periods,
leaving us with more than 2.1 million simulated market states. Figure 3.3 compares the
histograms of the simulated hourly day-ahead prices (left side) with the histograms of
the day-ahead prices that were observed in ERCOT between 2011-22 (right side). Figures
3.3a and 3.3b show the distribution of the simulated and observed “normal” prices below
$200/MWh. The simulated and observed distributions below $200/MWh look similar and
resemble a lognormal distribution. The standard deviation of the simulated prices below
$200/MWh is $23.1/MWh, slightly smaller than the standard deviation of $25.0/MWh
for the observed prices.

Figures 3.3c and 3.3d depict the distribution of price spikes above $200/MWh. 1.4%
of the simulated prices and 1.7% of the observed prices exceed $200/MWh. In rare cases,
the regime-switching model simulates unreasonably large day-ahead prices since the
model does not consider the administrative price cap of $9, 000/MWh. In only 0.007%
of the simulated hours, prices exceed the $9, 000/MWh cap. To make the simulated
prices consistent with the actually observed prices, we also cap prices at $9, 000/MWh.
Simulated spike prices are mostly smaller than $4, 000/MWh. In contrast, a larger share
of observed spike prices falls between $4, 000/MWh and $9, 000/MWh. This shows that
there is room for improving our simulation of the long right-tail of day-ahead prices.
However, our model captures price spikes in ERCOT reasonably well to analyze the
effects of the price spikes on hedging behavior.

In Appendix C.3, we also compare the simulated and observed distributions for gas
prices, net load, and load. To derive load, we also simulate aggregate and plant-level
wind and solar generation using plant-level wind and solar generation profiles provided
by ERCOT (2023). The model we use to simulate plant-level hourly wind and solar
generation is presented in Appendix C.2.
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Figure 3.3: Histogram of day-ahead electricity prices below and above $200/MWh for
simulated and observed data between 2019-22

3.4.3 Day-ahead market quantities and profits

We calculate the generators’ and LSEs’ load in every market state based on the above
day-ahead market states. For LSEs, load is assumed to be price-inelastic and to be related
to aggregate load 𝑄𝑡 as follows:

𝑞𝑡 = 𝑠𝑄𝑡 + 𝜀𝑡
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𝑠 is a fixed market share of the LSE. 𝜀𝑡 is a random noise process such that the LSE’s
load fluctuates around its share in aggregate load (Peura & Bunn, 2021).

Technology Plant Count Capacity (MW) % in Total Capacity
Wind 218 39,203 27.29
Solar 189 24,701 17.19
Gas Combined Cycle 68 35,132 24.45
Gas Steam Turbine 46 11,970 8.33
Gas Open Cycle 83 6,438 4.48
Gas Combustion Engine 10 671 0.47
Lignite 12 7,142 4.97
Coal 20 12,637 8.80
Hydro 5 555 0.39
Nuclear 4 4,981 3.47
Biogas 4 93 0.06
Biomass 2 150 0.10

Table 3.3: Overview of plant types, their counts, nameplate capacities, and shares in total
capacity

To determine generation quantities and profits for power plants, we employ the merit
order dispatch model proposed by Mann et al. (2017). We compiled a dataset of 655 power
plants located in Texas. Table 3.3 shows the number of power plants and their nameplate
capacity by generation technology. Except for wind and solar plants, plant-level data on
capacity, commissioning dates, heat rates, and variable costs are borrowed from Mann
et al. (2017). For solar and wind farms, plant-level data on capacity and commissioning
dates are obtained from ERCOT (2023) and are supplemented by web searches for some
individual plants. Marginal costs for power plant 𝐺𝐸𝑁 are defined as (Mann et al., 2017).

𝑐𝐺𝐸𝑁
𝑡 = 𝐹𝑃 𝐺𝐸𝑁

𝑡 ∗ Marginal heat rate𝐺𝐸𝑁 + Variable O&M Cost𝐺𝐸𝑁

𝑐𝐺𝐸𝑁
𝑡 is zero for solar, wind, hydro, and biomass plants (Mann et al., 2017). For all
other technologies, marginal costs fluctuate with their fuel price 𝐹𝑃 𝐺𝐸𝑁

𝑡 . Fuel prices
for biomass and uranium are taken from Mann et al. (2017) and are held constant over
time. Prices for coal and lignite in Texas are assumed to change on a yearly basis and are
provided by EIA (2018) and EIA (2023). We allow the gas price to change daily following
the Henry Hub wholesale market gas price EIA (2024). Figure 3.1a in section 3.4.1 plots
the daily gas price during our simulation period. We ignore fixed costs for all generation
technologies. In every period, each plant has a forced outage with a probability of 15%
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For the merit order model, we first focus on dispatchable power plants (all plants
except wind and solar). Let 𝑁𝑡 = 1, 2, ..., 𝑛 be the list of dispatchable power plants that
do not have an outage in period 𝑡. Plants in 𝑁𝑡 are sorted by their marginal costs such
that 𝑐1

𝑡 ≤ 𝑐2
𝑡 ... ≤ 𝑐𝑛

𝑡 . Each plant’s marginal cost and its position in the merit order list
𝑁𝑡 varies over time according to its time-varying fuel price 𝐹𝑃 𝐺𝐸𝑁

𝑡 . In every period 𝑡,
the goal of the merit order dispatch model is to choose each plant’s generation 𝑞𝑖

𝑡 such
that the aggregate costs of electricity generation are minimized.

min
{𝑞𝑖

𝑡}

𝑛
∑
𝑖=1

𝑐𝑖
𝑡𝑞𝑖

𝑡

subject to the constraints that the aggregate generation of dispatchable plants equals
aggregate net load and that each plant respects its capacity limits.

𝑛
∑
𝑖=1

𝑞𝑖
𝑡 = 𝐿𝑡

0 ≤ 𝑞𝑖
𝑡 ≤ 𝑞𝑖

max, ∀𝑖 ∈ 𝑁

To meet these constraints and achieve the cost-minimizing dispatch, we start with the
first plant in the merit order and dispatch each plant at its maximum capacity until the
cumulative dispatched capacity meets or exceeds the net load.

𝑞𝑖
𝑡 =

⎧
{{{
⎨
{{{
⎩

𝑞𝑖
max, if ∑𝑖

𝑗=1 𝑞𝑗
max ≤ 𝐿𝑡

𝐿𝑡 − ∑𝑖−1
𝑗=1 𝑞𝑗

max, if ∑𝑖−1
𝑗=1 𝑞𝑗

max < 𝐿𝑡 ≤ ∑𝑖
𝑗=1 𝑞𝑗

max

0, if ∑𝑖−1
𝑗=1 𝑞𝑗

max ≥ 𝐿𝑡

This merit order dispatch model aims to derive reasonable generation quantities for a
diverse set of power plants. Notably, the model ignores many operational constraints
(e.g., ramp-up times and minimum generation constraints) and non-convexities in the
plant’s cost functions (e.g., ramp-up costs).

3.5 Forward and option contracts

This section defines the option and forward contracts the generator and LSE can buy. In
electricity markets, forward and option contracts have delivery periods, typically a year,
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quarter, or month. The contract specifies a quantity of electricity, typically (𝑒.𝑔., 1𝑀𝑊ℎ),
that has to be sold or bought every hour during the delivery period (Coulon et al., 2013).

Following Cramton et al. (2025b) and Coulon et al. (2013), we derive hedging strategies
for options and forwards that cover much more granular delivery periods. The granular
periods allow market participants to tailor their forward and option positions to their
seasonal and daily load patterns. Thereby, market participants can manage quantity risks
more effectively. Moreover, incentives to bid competitively in the day-ahead market are
stronger if forward and option quantities are linked to the expected load on an hourly
level.

Therefore, we define a delivery period of 𝑀 as a unique combination of year-month-
hour-weekend/weekdays. For instance, market participants can purchase options and
forwards covering all hourly periods that fall within 𝑀 =“weekdays 3-4 pm in July
2019”. In this paper, we simulate the optimal hedging strategies for all combinations
of year-month-hour-weekend/weekdays in 2019. We initialize the simulation on 𝑡 =
December 1, 2018, when the generator and the LSE take all hedging decisions. We assume
𝐿𝑡 = 𝑋𝑡 = 0, 𝑙𝑜𝑔(𝐺𝑡) = 𝑚𝐺 at decision time 𝑡 (Coulon et al., 2013). Moreover, we set a
risk-free interest rate of 2% and a high strike price for the call option of $200/MWh. We
set such a high strike price since the option should only cover the tail of the day-ahead
price distributions (Cramton et al., 2025b).

Since forward contracts do not involve upfront payments, we can derive the arbitrage-
free forward price 𝐹(𝑡, 𝑀) for all hours 𝑘 that fall in delivery period 𝑀 using the
no-arbitrage relationship under a risk-neutral measure ℚ (Coulon et al., 2013).

𝐹(𝑡, 𝑀) = 𝔼ℚ
𝑡 [𝑃𝑘∈𝑀]

Similarly, the arbitrage-free call option price for delivery period 𝑀 with 𝑘 ∈ 𝑀 is

𝑉 (𝑡, 𝑀) = 𝔼ℚ
𝑡 [𝑒−𝑟(𝑘−𝑡)(𝑃𝑘 − 𝐾)+]

Coulon et al. (2013) derive closed-form solutions for the arbitrage-free prices using the
parameters estimated in the regime-switching model. We calculate the forward and option
prices numerically based on the distribution of the day-ahead prices that we simulated
using the regime-switching model. We have to calculate the prices numerically for two
reasons: First, we cap the day-ahead prices at $9, 000/MWh to make the simulated
day-ahead prices consistent with observed prices in ERCOT. Second, we numerically
calculate the optimal quantities of forwards and options using a distribution of simulated
day-ahead prices. Since the day-ahead price distribution has long tails, we would need to
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draw extremely large samples to obtain day-ahead price distributions that are consistent
and arbitrage-free with the closed-form option and forward prices implied by the regime-
switching model. Drawing these large samples is computationally infeasible. Our numerical
forward and option prices converge to the closed-form prices implied by the regime-
switching models for large samples if we remove the $9, 000/MWh price cap.

Numerically, the arbitrage-free forward price in the delivery period 𝑀 can simply be
calculated as the mean of the simulated day-ahead prices in 𝑀. Figure 3.4 illustrates the
forward prices for each combination of year- month-hour-weekend/weekdays in 2019.4

Forward prices are below $50/MWh for most hours. In a few afternoon peak hours during
summer, forward prices reach more than $100/MWh since day-ahead prices are high on
average and face large spikes during these hours.

Figure 3.4: Forward electricity prices for year-month-hour products for weekdays in 2019
4The forward prices are calculated from the perspective of 𝑡 = 12/01/2018.
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The arbitrage-free price for the call option with strike price 𝐾 =$200/MWh for all
hours 𝑘 ∈ 𝑀 is given as

𝑉 (𝑡, 𝑀) = 𝔼ℚ
𝑡 [𝑒−𝑟(𝑘−𝑡)(𝑃𝑘 − 𝐾)+]

= 𝔼ℚ
𝑡

⎡⎢
⎣

𝑒−𝑟(𝑘−𝑡) 𝑃𝑟𝑜𝑏(𝑃𝑘 > 𝐾)⏟⏟⏟⏟⏟⏟⏟
Spike frequency

∗ 𝐸[𝑃𝑘 − 𝐾|𝑃𝑘 > 𝐾]⏟⏟⏟⏟⏟⏟⏟⏟⏟
Expected spike size

⎤⎥
⎦

(3.11)

Figure 3.5 shows the option prices for the combinations of year-month-hour-weekend
products. Option prices differ widely between products because the frequency and
expected size of day-ahead price spikes differ by time of day and season. For instance, in
a peak delivery period like Weekdays 4-5 pm in August 2019, day-ahead prices exceed
the $200/MWh strike price in 19% of simulated hourly periods and reach a maximum
of $9, 000/MWh. In off-peak hours on Weekends, 1-2 am in July, the day-ahead price
exceeds the day-ahead price in only 0.3% of the simulated hourly periods and reaches a
far smaller maximum of $426/MWh.

Figure 3.5: Option prices for year-month-hour products for weekdays for a spike price of
$200/MWh in 2019
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The primary channel through which day-ahead price spikes affect the optimal quantity
of forwards and options is that price spikes change the relative prices of forwards and
options. The three graphs in Figure 3.6 show the frequency of day-ahead price spikes
(𝑃𝑟𝑜𝑏(𝑃𝑘 > 𝐾)) on the x-axes and the expected spike size (𝐸[𝑃𝑘 − 𝐾|𝑃𝑘 > 𝐾]) on
the y-axes for all 576 year-month-hour-weekend/weekday delivery periods in 2019. The
graphs reveal a strong positive correlation between the frequency and the average size of
the spikes. The color shades highlight the arbitrage-free forward prices (Graph 3.6a) and
option prices (Graph 3.6b) increase in spike frequency and size.

However, option prices rise much stronger in spike frequency and size than forward
prices. As Equation 3.11 points out, option prices only depend on spike prices. In contrast,
forward prices take the expectation across all day-ahead prices such that price spikes
have a weaker effect on the forward price than on the option price. Graph 3.6c highlights
that the relative price ratio of option-to-forward prices increases in spike frequency and
size. Therefore, the relative price ratio can be interpreted as a measure of the “spikiness”
of the day-ahead price distribution because it is strongly correlated with spike frequency
and size. In the following, we analyze how the spikiness of a delivery period, as measured
by the option-to-forward price ratio, affects the demand for options and forwards.
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Figure 3.6: Forwards prices, option prices, and option-to-forwards price ratio for granular
delivery periods by spike frequency and expected spike size

3.6 Optimal hedging strategies

In this section, we numerically simulate static optimal hedging strategies for a represen-
tative generator and a representative LSE. The generator mimics a large incumbent with
147 power plants and a cumulative operating capacity of 34 GW. The plants were selected
from our sample of power plants based on Mann et al. (2017) and ERCOT (2023) in order
to form a representative and diverse generation portfolio. Figure 3.7 shows the share of
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capacity by technology, highlighting that the generator is technologically diversified and
owns plants with varying marginal costs. For each of the generator’s power plants, we
simulate hourly dispatch and profits using the merit order model in section 3.4.3.

0%3%

26%

1% 7% 11%

11%

4%

22%

16%
Plant Types

Biogas
Coal
Gas Combined Cycle
Gas Combustion Engine
Gas Open Cycle
Gas Steam Turbine
Lignite
Nuclear
Onshore wind
Solar

Figure 3.7: Share of technologies in the plant portfolio of a representative generator with
34 GW installed capacity

The LSE is assumed to serve on average 5% of the load in ERCOT. Its hourly load is
imperfectly correlated with aggregate load (see section 3.4.3). The retail price equals the
average annual day-ahead price plus a 10% retail margin (Peura & Bunn, 2021).

To isolate the distinct roles of forwards and options, we start deriving the optimal
quantity of forwards only, assuming that options are not available. In section 3.6.2, we
present hedging strategies that combine forwards and options.

3.6.1 Hedging strategies with forwards only

We define a quantity of forward contracts as optimal if it maximizes the agent’s expected
utility for a given constant absolute risk aversion (CARA) coefficient. This optimal
quantity is expressed as a forward hedge ratio, i.e., the optimal quantity of forward
contracts as a percentage of the agent’s expected load during the contract’s delivery period.
There are 576 unique granular year-month-hour-weekend/weekday delivery periods in
2019.

Figure 3.8a shows the optimal forward ratio for an LSE for all 576 delivery periods
in 2019 as a function of the option-to-forward price ratio in each delivery period. The
larger the option-to-forward price ratio, the larger the frequency and size of day-ahead
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Figure 3.8: LSE’s and generator’s optimal forward ratio by option-to-forward price ratio
for delivery period weekdays 4-5 pm in August 2019

price spikes in the delivery period. We show the hedge ratios for two levels of relative risk
aversion: 0.001 and 1. A relative risk coefficient of 0.001 means the LSE is almost risk
neutral, while 1 implies strong risk aversion. Despite using a CARA utility function, we
relate hedge ratios to relative risk aversion to make risk preferences comparable between
agents with different profit scales.5

Figure 3.8a reveals that the frequency and size of price tails have only a tiny impact
on the optimal forward ratios for the LSE when only forwards are available. When the
LSE is almost risk-neutral with a risk coefficient of 0.01, the forward ratios are not
sensitive to price spikes and vary between 108-122%. For a higher risk aversion of 1, the

5Raskin and Cochran (1986) demonstrate that absolute risk aversion coefficients are hardly comparable
between agents whose profits or wealth differs in scale. Assume agent A’s profits fluctuate around an
average of 100$ and agent B’s profits fluctuate around 1000,000$. The CARA coefficient measures how
the agents’ marginal utility of profits changes when profits increase by an absolute amount, say 1$.
Intuitively, a 1$ increase in profits should change A’s marginal utility of profits much more than B’s
because the 1$ causes a much larger relative profit increase for A. To make risk preferences comparable
between A and B, we select a risk preference expressed as a coefficient of relative risk aversion. When
calculating hedge ratios, we first assume a relative risk parameter. Then, we divide this relative risk
parameter by an agent’s average profit during the hedge contract’s delivery period. This transforms the
relative risk parameter into an absolute risk parameter. The absolute and relative coefficients describe the
same preferences, at least locally at the agent’s average profit. We assume this absolute risk parameter to
be constant across profit levels (CARA). Hence, the CARA parameter represents the same preferences as
the relative risk aversion coefficient locally at the agent’s average profit. Expressing risk preferences in
terms of relative risk in a CARA framework is common in the optimal hedge literature (Newbery, 1989,
Lapan & Moschini, 1994).
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LSE’s forward ratios slightly decline when day-ahead price tails become more severe.
However, risk preferences are far more relevant for the LSE’s forward ratios than price
spikes. When the LSE dislikes risk with a risk coefficient 1, it strongly overhedges with
hedge ratios between 160-230%.

The generator’s short forward position is also not sensitive to the frequency and
size of price spikes for low risk aversion, as Figure 3.8b shows. The nearly risk-neutral
generator chooses short forward positions of 98-120% of expected generation. For high
risk aversion of 1, the generator chooses smaller short positions of only 58-93%. Its short
forward ratio is slightly higher in periods with heavier price spikes.
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Figure 3.9: LSE and generator’s optimal forward ratio by relative risk aversion for delivery
period weekdays 4-5 pm in August 2019

To better understand how price spikes shape the above hedge strategies, we deep dive
into peak delivery period Weekdays 4-5 pm in August 2019. This peak delivery period
has frequent and large price spikes, which is reflected in a high option-to-forward price
ratio of 68%. Figure 3.9 shows the optimal forward ratios for this peak delivery period as
a function of the agents’ relative risk aversion. The forward ratios for a CARA utility
maximizing LSE increase in risk aversion for low levels of relative risk aversion below
1 (Graph 3.9a). If risk aversion increases beyond 1, the hedge ratio remains constant.
Irrespective of its risk aversion, the LSE wants to over the hedge, i.e., it wants to buy
forward between 7%-64% more than its expected load. In contrast, the generator takes
a short forward position that declines in risk aversion (Graph 3.9b). The generator’s
optimal hedge ratios are also more sensitive to increases in risk aversion, even for large
risk coefficients.

As a comparison, the dashed line illustrates the optimal forward ratio if the agents
want to minimize their profits’ variance (Min-Var). For low-risk aversion, the CARA-
optimal forward ratio equals the Min-Var forward ratio. The Min-Var ratio is a 106% short
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position for the generator and a 107% long position for the LSE. Hence, the generator
and the LSE want to hedge roughly the opposite quantities if they are almost risk-neutral.
The Min-Var hedge ratio requires agents to slightly overhedge, which indicates that their
load is positively correlated with day-ahead prices (McKinnon, 1967, Borenstein, 2007b).
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Figure 3.10: LSE’s and generator’s profit standard deviation, 𝐶𝑉 𝑎𝑅𝛼=5% profit outcome,
and minimum profit relative to mean unhedged day-ahead (DA) profit by forward ratio
for delivery period Weekdays 4-5 pm in August 2019

To rationalize the above strategies, Figure 3.10 examines how the forward hedge ratio
affects the LSE’s and generator’s profit volatility, their conditional value at risk at the
5% level (𝐶𝑉 𝑎𝑅𝛼=5%)6, and worst-case minimum profit relative to their respective mean
unhedged day-ahead profit. The average profit is not affected by the quantity of forwards
since the forward price is arbitrage-free (Coulon et al., 2013).

Figure 3.10 highlights that agents’ hedge strategies are driven by a trade-off between
minimizing profit variance and maximizing worst-case tail outcomes. Both agents choose

6𝐶𝑉 𝑎𝑅𝛼=5% is the average of the lowest 5% of the profits in the profit distribution. Suppose profit 𝜋
takes random values {𝜋1, 𝜋2, … , 𝜋𝑁} with probabilities {𝑝1, 𝑝2, … , 𝑝𝑁}. Reorder these values such that
𝜋(1) ≤ 𝜋(2) ≤ … ≤ 𝜋(𝑁) with corresponding probabilities 𝑝(1), 𝑝(2), … , 𝑝(𝑁). Let the partial sums be
𝑃(𝑘) = ∑𝑘

𝑖=1 𝑝(𝑖), for 𝑘 = 1, … , 𝑁. Define 𝛼 = 0.05 and find the smallest 𝑘 such that 𝑃(𝑘) ≥ 𝛼. Then

CVaR𝛼=5% = 1
𝛼 [∑𝑘−1

𝑖=1 𝜋(𝑖) 𝑝(𝑖) + 𝜋(𝑘) (𝛼 − 𝑃(𝑘−1))] (Shapiro et al., 2021).
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the Min-Var hedge ratio that minimizes profit variance if they are nearly risk-neutral.
However, the generator’s Min-Var ratio is a 106% short forward position, which leads to
substantial negative tail losses as measured by a negative 𝐶𝑉 𝑎𝑅𝛼=5% profit and negative
minimum profit (Graphs 3.10e and 3.10f). A short position causes large losses when price
spikes occur. The more the generator dislikes risk, the more it reduces the short position
to avoid tail losses at the expense of an increase in profit variance (Graph 3.10a).

The risk-averse LSE also aims to reduce its tail losses by choosing a long forward
position that exceeds its Min-Var position. The LSE needs to buy more than its expected
quantity forward to be well protected against price spikes because spikes often occur
when the load is above average. For high-risk aversion greater 1, the LSE chooses a hedge
ratio of 164% because this ratio maximizes its worst-case minimum profit (Figure 3.10c).
However, the worst-case minimizing ratio of 164% leads to high tail losses 𝐶𝑉 𝑎𝑅𝛼=5%

and high-profit volatility. Yet, the profit volatility for a hedge ratio of 164% is still much
lower than the profit volatility for an unhedged 0% hedge ratio, as the dashed red line in
Graph 3.10a reveals.

Noticeably, the LSE’s 𝐶𝑉 𝑎𝑅𝛼=5% tail loss is already minimized at a forward ratio of
125%. The reason for this large difference between the 𝐶𝑉 𝑎𝑅𝛼=5% minimizing ratio and
the worst-case minimizing ratio of 164% is that there are few extreme negative outliers
in the LSE’s day-ahead profit distribution. These outliers are so extreme that the LSE
starts focusing primarily on these worst-case outliers, even for moderate risk aversion.
In contrast, the generator does not exclusively focus on the minimum profit, even for
high risk aversion. Its day-ahead profit distributions do not exhibit such large negative
tails because the generator has more flexibility to shut down its plants when prices are
unfavorable.

In Appendix C.4 we present forward hedging strategies for an off-peak period with
small and rare price spikes: Weekends, 4 am in May 2019. Forward hedging strategies in
the off-peak period look very similar to the peak period. When the LSE is very risk-averse,
it chooses larger forward ratios in off-peak periods than in peak periods. The generator’s
hedge ratios are almost the same in peak and off-peak periods. Price spikes only have a
small effect on hedge ratios when hedging with forwards only.

Overall, hedging with forwards only is surprisingly effective in reducing volatility and
worst-case outcomes for a delivery period with extreme price spikes like Weekdays 4-5
pm in August 2019. The reason is that the generator’s and LSE’s unhedged day-ahead
market profit in the peak period is roughly a linear function of the day-ahead price as
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Figure 3.11 highlights.7 One might have expected a strongly nonlinear relation between
day-ahead prices and unhedged profits during a peak period since spike prices are often
correlated with high load. However, Figure C.3 in Appendix C.3 reveals only a weak
positive correlation between simulated load and prices for the peak delivery period
Weekdays 4-5 pm in August 2019. In particular, very high spike prices are only slightly
positively correlated with load. Spike prices likely depend much more on net load and
random factors like outages than on load in modern electricity markets.

It is widely assumed that adding nonlinear options to a linear forward hedge strategy
creates little benefits if profits are linear in prices and if forward and option prices are
arbitrage-free (Lapan et al., 1991). In the following, we analyze whether options can still
play a role in the generator’s and LSE’s hedging strategy in the presence of large price
spikes.
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Figure 3.11: LSE’s and generator’s day-ahead market profit, forward contract payoffs,
and total hedged profit as a function of the day-ahead price for delivery period weekdays
4-5 pm in August 2019

3.6.2 Hedging with forwards and options

When combining forwards and options, hedging strategies become far more sensitive
to severe price tails. Figures 3.12a and 3.12b present the optimal forward and option
ratios for the LSE’s combined hedging strategy for the 576 delivery periods in 2019 as a
function of the delivery period’s options-to-forward price ratio. A delivery period with a

7The forward contract payoff shown in Figure 3.11 is the payoff of a Min-Var hedge strategy chosen by
a nearly risk-neutral agent. The Min-Var hedge achieves the lowest profit variance by choosing a forward
position that is roughly the opposite of the day-ahead position.
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high options-to-forward price ratio has large and frequent price spikes. The LSE’s forward
ratios decline when a delivery period has more severe price spikes. The more risk-averse
the LSE, the more sensitive its forward ratio to price tails.
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Figure 3.12: LSE’s and generator’s optimal forward and option ratios by option-to-forward
price ratio for delivery period weekdays 4-5 pm in August 2019
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Figure 3.12b highlights that the option ratios for the almost risk-neutral LSE only
slightly increase from 15-20% to 30-40% when day-ahead price distributions become
spikier (relative risk coefficient 0.001). In the high risk aversion case (risk coefficient of
1), the LSE selects much higher option ratios of 74-109% in spiky periods. In periods
with rare and small price spikes, the LSE takes smaller option ratios for most periods.
However, there are a few outlier periods in which the LSE selects large long positions or
small short positions. In these periods, price spikes are extremely rare, and the option
price is almost zero. A single extreme price spike can dominate the tail of the price
distribution in such a period. Therefore, the option ratio in these low-spike periods is
sensitive to outliers in the simulated tail of the profit distribution and is not stable across
repeated draws of profit distributions.

Overall, the risk-averse LSE chooses a higher option than forward ratios in periods
with large price spikes. In contrast, the almost risk-neutral LSE relies more on forwards
than options when price spikes are severe.

The generator’s short forward position declines in the option-to-forward price ratio
for small risk aversion (0.001), as Figure 3.12c illustrates. For large risk aversion (1), the
short forward position increases in price spikiness. Analogously to the LSE, the almost
risk-neutral generator takes only small short positions in options, mainly around 20%
with a few larger outliers (Figure 3.12d). The short option position remains small if
the day-ahead price distribution becomes spikier. The risk-averse generator (1) chooses
almost exclusively long option positions, mostly around 20-40%. These long positions
slightly increase when price spikes are large and frequent.
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Figure 3.13: LSE’s and generator’s optimal forward and option ratio by relative risk
aversion for delivery period weekdays 4-5 pm in August 2019

We deep dive again into peak delivery period weekdays 4-5 pm in August 2019. Figure
3.13a shows the LSE’s optimal forward and option ratios across risk-aversion levels. For
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this peak period, the importance of options in the LSE’s hedging strategy increases
relative to forwards when the LSE becomes more risk-averse. As mentioned above, when
the CARA minimizing LSE is almost risk-neutral, it buys the number of forwards and
options that minimize the variance of profits (Min-Var). The Min-Var hedge position
buys options and forwards roughly in the ratio 2:1. Buying 2 call options and 1 forward
contract replicates the payoff of a long straddle. A long straddle position is known to
effectively reduce profit variance (Lapan et al., 1991).

The optimal option ratio rapidly increases in the LSE’s risk aversion. The forward
ratio also sharply declines for low-risk aversion. However, the forward ratios increase
for intermediate risk aversion and decline afterward. The LSE’s forward ratios are less
sensitive to risk preferences than option ratios. The LSE starts buying more options than
forwards in this peak delivery period, even for small levels of risk aversion.

For the generator, Figure 3.13b highlights that the almost risk-neutral generator takes
a minimum variance (Min-Var) strategy that is similar to the LSE’s strategy but with
opposite signs since the generator goes short in forwards and options. The generator
slightly increases its short position in forwards for intermediate risk levels. At the same
time, the short option position decreases more strongly. The generator’s option position
transitions to a long position for larger risk aversion.

The pink line in Figure 3.14 depicts the agents’ standard deviation of profits,
𝐶𝑉 𝑎𝑅𝛼=5% tail loss, and worst-case minimum loss as a function of the optimal for-
ward and option ratios that are associated with a relative risk aversion level. For instance,
at a risk coefficient of 0.001, the LSE chooses a 76% forwards ratio and 32% options
ratio because this Min-Var portfolio leads to the lowest standard deviation of its profits
(Graph 3.14a). The nearly risk-averse generator also chooses the Min-Var hedge portfolio
(Graph 3.14d).

For small risk aversion, both agents focus more on improving the 𝐶𝑉 𝑎𝑅𝛼=5% lowest
profit outcomes, which comes at the expense of larger profit variance. The LSE can
reduce the 𝐶𝑉 𝑎𝑅𝛼=5% tail loss by buying more options and fewer forwards. Going long in
options protects more effectively from price spikes than forwards. The generator protects
from price spikes by gradually turning its short option position into a long one. Going
long in options has the disadvantage of increasing the generator’s profit variance because
the long option has a high payoff when the generator’s day-ahead profits are high anyway.
The generator balances the long option position with a larger short forward position to
limit the increase in variance.

The more risk-averse the generator and LSE become, the more they focus on ever
more extreme parts of the lower end of their profit distribution. The highly risk-averse
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Figure 3.14: LSE’s and generator’s profit standard deviation, 𝐶𝑉 𝑎𝑅𝛼=5%, and minimum
profit relative to mean unhedged day-ahead (DA) profit by relative risk aversion level for
delivery period Weekdays 4–5 pm in August 2019

LSE buys even more options to reduce the minimum worst-case loss at the expense of a
larger 𝐶𝑉 𝑎𝑅𝛼=5% tail loss. The generator also reduces its long option and short forward
positions to achieve a marginal increase in its lowest worst-case profit.

Figure 3.14 also reveals that the combined forwards and options strategy (pink
line) add only limited value compared to the optimal forwards-only strategy (green
line). Compared to the forwards-only strategy, the combined strategy achieves only tiny
improvements in profit standard deviation and minimum loss. The improvements in
terms of 𝐶𝑉 𝑎𝑅𝛼=5% tail outcomes are more substantial, but these improvements seem
negligible compared to the improvements achieved relative to the unhedged day-ahead
𝐶𝑉 𝑎𝑅𝛼=5% outcome, as Figure C.8 in Appendix C.5 reveals. As discussed above, the
forwards-only strategy achieves excellent results thanks to the linear relationship between
day-ahead prices and profits. Even though options do not add large benefits, the agents
still take significant option positions when they are risk-averse because the option achieves
small improvements in the tail and worst-case profits. These small improvements can
cause large utility increases for risk-averse agents.

Overall, Figure C.8 in Appendix C.5 shows that the combined strategy and the
forwards-only strategy achieve enormous reductions in profit variance, 𝐶𝑉 𝑎𝑅𝛼=5% tail
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loss, and worst-case loss compared to the case when the LSE trades fully unhedged in the
day-ahead market. Compared to remaining unhedged, hedging with either forwards-only
or combining forwards and options proves effective in managing tail risks and profit
variance.

In Appendix C.4, we also examine the optimal combined forwards and options strategy
for off-peak period Weekends 4-5 am in May 2019, which has small and rare spike prices.
Compared to the peak period, the LSE relies far less on long option positions and chooses
larger forward quantities in the off-peak period (see Figure C.6 in Appendix C.4). The
generator also chooses only very small long option positions for moderate risk levels and
small short option ratios for high risk aversion. Choosing a small long option or even a
short option position allows the generator to reduce its short forward position for high
risk levels in the off-peak periods. This contrasts with the above peak period, where the
risk-averse generator selects long option and large short forward positions. In the off-peak
period, the combined hedge strategy is more effective in reducing profit variance and
the 𝐶𝑉 𝑎𝑅𝛼=5% loss compared to the forwards-only strategy, as Figure C.7 in Appendix
C.4 emphasizes. The combined strategy only marginally improves worst-case minimum
outcomes for high risk levels relative to the forwards-only approach.

3.6.3 Hedging and option strike prices

In the next section, we analyze how the demand for forwards and options change if
we choose a different strike price for the call option. So far, we set the strike price to
$200/MWh such that the option covers only the extreme tails of the price distribution.
Choosing a lower strike price makes the option more valuable relative to the forward
since the option is more frequently in the money if the strike price is low. The higher
option value is reflected in a higher arbitrage-free option price.

Figure 3.15 shows the arbitrage-free option price as a function of the strike price for
peak delivery period weekdays 4-5 pm in August 2019. The negative relation between
option and strike price slightly diminishes in the strike price. The option price is high even
for a large strike price of $1, 000/MWh. The reason is that there is a low probability of 6%
that the simulated day-ahead prices exceed the high $1, 000/MWh strike price but a high
expected spike size of $2, 648/MWh. In contrast, if the strike price is only $100/MWh,
the spike probability rises to 38%, but the expected spike size is only $590/MWh. This
small average spike size explains why the $100/MWh strike price option has only a
moderately higher value than the option with a $1, 000/MWh strike price. For off-peak
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Figure 3.15: Arbitrage-free option price as a function of the call option’s strike price for
delivery period weekdays 4-5 pm in August 2019

delivery periods, a high $1, 000/MWh strike price leads to an option price of zero since
the option will never be in the money for such a high strike price.

Figure 3.16 depicts the generator’s and LSE’s forward and option ratios as a function
of the call option’s strike price for different risk preferences for peak delivery period
weekdays 4-5 pm in August 2019. The LSE buys more forwards and fewer options when
the strike price increases. The option becomes less effective in protecting the LSE from
price spikes if the strike price is high. The more risk-averse the LSE, the more sensitive
is its forward and option demand to higher strike prices.

The generator also sells more forwards and fewer options when the strike price is high
for low-risk aversion (0.001). In contrast, for high-risk aversion (1), the generator’s short
forward position and its long option position decline when the strike price is large.

Figure 3.17 shows the standard deviation of profits, 𝐶𝑉 𝑎𝑅𝛼=5% tail outcome, and
worst-case-minimum profit as a function of the agent’s optimal combination of forwards
and options that are linked to a relative risk aversion level for different strike prices. If the
strike price is low, agents’ standard deviation of profits is larger compared to higher strike
prices, especially for high risk levels (Graphs 3.17a and 3.17d). This higher standard
deviation is caused by the large option positions the agents hold when strike prices are
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(b) LSE’s option ratios
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Figure 3.16: LSE’s and generator’s optimal forward and option ratios by option strike
price for delivery period weekdays 4-5 pm in August 2019

small. However, the differences in profit standard deviation and minimum worst-case
profits (Graphs 3.17c and 3.17f) among different strike prices are small.

For the LSE, small strike prices lead to small 𝐶𝑉 𝑎𝑅𝛼=5% tail losses for small risk
aversion levels and high 𝐶𝑉 𝑎𝑅𝛼=5% losses for high risk aversion (Graph 3.17b). By
contrast, small strike prices lead to smaller positive 𝐶𝑉 𝑎𝑅𝛼=5% profits for the nearly



HEDGING ELECTRICITY PRICE SPIKES 105

0.0 0.5 1.0 1.5 2.0
Relative risk coefficient

10

15

20

25

30

35

40

St
. D

ev
./m

ea
n 

un
he

d.
 D

A 
pr

of
it

Strike prices ($/MWh)
100
200
400
600
800
1000

(a) LSE’s standard deviation of
profits

0.0 0.5 1.0 1.5 2.0
Relative risk coefficient

14

12

10

8

CV
aR

=
5%

/m
ea

n 
un

he
dg

ed
 D

A 
pr

of
it

Strike prices ($/MWh)
100
200
400
600
800
1000

(b) LSE’s 𝐶𝑉 𝑎𝑅𝛼=5% profit

0.0 0.5 1.0 1.5 2.0
Relative risk coefficient

300

250

200

150

100

50

Pr
of

it 
m

in
/m

ea
n 

un
he

dg
ed

 D
A 

pr
of

it

Strike prices ($/MWh)
100
200
400
600
800
1000

(c) LSE’s minimum profit

0.0 0.5 1.0 1.5 2.0
Relative risk coefficient

0.4

0.5

0.6

0.7

0.8

St
. D

ev
./m

ea
n 

un
he

d.
 D

A 
pr

of
it

Strike prices ($/MWh)
100
200
400
600
800
1000

(d) Generator’s standard
deviation of profits

0.0 0.5 1.0 1.5 2.0
Relative risk coefficient

0.4

0.5

0.6

0.7

CV
aR

=
5%

/m
ea

n 
un

he
dg

ed
 D

A 
pr

of
it

Strike prices ($/MWh)
100
200
400
600
800
1000

(e) Generator’s 𝐶𝑉 𝑎𝑅𝛼=5%
profit

0.0 0.5 1.0 1.5 2.0
Relative risk coefficient

10

8

6

4

Pr
of

it 
m

in
/m

ea
n 

un
he

dg
ed

 D
A 

pr
of

it

Strike prices ($/MWh)
100
200
400
600
800
1000

(f) Generator’s minimum profit

Figure 3.17: LSE’s and generator’s profit standard deviation, 𝐶𝑉 𝑎𝑅𝛼=5% and minimum
profit relative to mean unhedged day-ahead (DA) profit by relative risk aversion level for
delivery period Weekdays 4–5 pm in August 2019 for different strike prices

risk-neutral generator and substantially higher 𝐶𝑉 𝑎𝑅𝛼=5% profits for the risk-averse
generator 3.17f. Hence, it depends on the risk preferences of market participants whether
high or low strike prices provide better protection.

3.7 Conclusion

Day-ahead electricity markets exhibit extreme price fluctuations and sudden price spikes.
The price spikes are often positively correlated with load. The positive correlation
between load and price spikes poses substantial financial risk for load-serving entities
(LSEs) because they have to sell large quantities at extremely high prices and sell the
electricity at much lower prices to end-consumers. For generators, price spikes create
upside opportunities but substantially increase the variance of profits. Generators and
LSEs might, therefore, want to hedge parts of their profits.

In this paper, we characterize optimal hedge strategies for a representative generator
and an LSE in the ERCOT day-ahead market in Texas. We let the generator and the
LSE choose the optimal portfolio of a forward contract and a call option that maximizes
their constant absolute risk aversion utility function. Our research addresses the question
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of how price spikes, risk aversion, and option strike prices jointly shape the selection of
forward and call option contracts.

To obtain realistic profit distributions, we first simulate hourly day-ahead prices and
aggregate load under a regime-switching model for the Texas ERCOT market based on
Coulon et al. (2013). We then apply a merit order dispatch model to simulate hourly
generation quantities for a large sample of power plants. Afterward, we define 576 granular
delivery periods for the option and forward contracts for each unique combination of
year-month-hour-weekend/weekday in 2019. We find that the frequency and size of
day-ahead price spikes differ widely between these delivery periods. This allows us to
examine how different levels of spikiness in the day-ahead price distribution alter hedge
choices for different delivery periods.

We compare the performance of various hedge portfolios, including forwards-only and
mixed portfolios of forwards and call options, under differing levels of risk aversion and
strike prices. Our results indicate that agents with low-risk aversion primarily rely on
forward contracts, adding modest option positions. More risk-averse participants take
larger long-option positions to protect their worst-case outcomes.

Surprisingly, the additional risk protection from combining forwards and options
remains limited. Using options adds small extra value in terms of reducing variance and
improving worst-case outcomes because the generator and the LSE’s day-ahead market
profits are roughly linear in the day-ahead price. Combined with linear forward contracts,
nonlinear options achieve little additional benefits in terms of risk hedging when profits
are linear (Lapan et al., 1991). Risk-averse agents still take long option positions because
even small improvements in worst-case outcomes can raise utility when risk aversion is
high.

Lastly, we show that a higher option strike price induces the generator and the LSE
to rely more on forward contracts and less on options. When the strike price is high, the
option offers limited protection from relatively high prices that are below the strike price.
Therefore, agents shift their portfolio from options to forwards.

Overall, our paper highlights that forwards and option contracts can effectively reduce
financial risks for a generator and an LSE in the ERCOT day-ahead market in terms
of profit variance and worst-case tail losses. We emphasize that we derived our optimal
hedge strategies under the assumption of arbitrage-free prices. It would be interesting to
analyze how arbitrage opportunities that often occur in electricity markets affect optimal
hedging strategies. In forward markets, positive price premia occur in peak demand
delivery periods with high price spikes (Redl et al., 2009, Bunn, 2006). These positive
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risk premia might hinder LSEs from buying sufficient forwards and option contracts to
effectively hedge their large tail risks during peak delivery periods.

Therefore, policymakers should implement measures to reduce price premia in for-
wards and option markets to facilitate hedging and risk management. Price premia are
partly driven by a lack of liquidity in these markets (Bevin-McCrimmon et al., 2018).
Policymakers could increase market liquidity by fostering the use of centralized markets
for forwards and options with centrally defined delivery periods. They might even oblige
LSEs to purchase forward a particular share of their expected demand to increase market
liquidity. Price premia could also be reduced by facilitating the participation of financial
institutions in forwards and options markets to increase arbitrage and improve price
discovery (Cramton et al., 2025b).

The above measures might make hedging in day-ahead markets an even more effective
risk management tool for electricity generators and LSEs. When market participants are
well hedged, the enormous risk inherent in day-ahead electricity markets is carried on
many shoulders. Hedging enables market participants to deal with extreme price spikes
that are necessary as scarcity signals in short-term power markets.
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Abstract

We propose a novel forward electricity market design that enables efficient and granu-
lar hedging in the face of growing electrification and intermittent renewables. Market
participants can trade thousands of forward contracts and European call options, each
tailored to granular delivery windows spanning up to four years ahead. To implement
this market, we apply Budish et al.’s (2023) flow trading framework to electricity markets.
Flow trading encourages incremental trading and supports liquidity provision via frequent
batch auctions. To illustrate our design, we develop a twelve-year simulation of ERCOT’s
day-ahead market from 2011 to 2022. We derive demand curves for forwards and options
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for representative generators and load-serving entities. Our analysis reveals that risk
preferences significantly shape these demand curves. Risk preferences determine the price
elasticity of demand for forwards and options and influence to what extent market-clearing
prices exceed arbitrage-free levels. Moreover, we find that setting a higher option strike
price reduces arbitrage positions and makes options less attractive relative to forwards.
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4.1 Introduction

As the world transitions to net zero, nearly all sectors must be electrified, causing the
electricity sector to double over the next three decades and spurring rapid innovation
in both supply and demand. With an increasing share of intermittent renewables and
more frequent extreme weather, balancing supply and demand every second becomes
more challenging. A transparent and efficient forward energy market is needed to provide
robust price signals for guiding investment and operating decisions consistent with the
maximization of social welfare (Cramton, 2017).

Existing forward energy markets are inefficient since they suffer from a lack of liquidity,
leading to unreliable forward price signals. This hinders generation companies and load-
serving entities (LSEs) from making efficient operational and investment decisions,
and complicates risk management in day-ahead and real-time markets (Newbery, 2016,
Cramton, 2017). Additionally, existing forward and option contracts feature broad
delivery periods that do not align with actual load and generation patterns, limiting their
effectiveness as hedging instruments. Insufficient hedging leaves participants vulnerable to
extreme events like the 2021 Texas winter storm or the 2001 Californian electricity crisis
and can lead to bankruptcies and market failures (Borenstein, 2002, Cramton, 2022).
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In this paper, we propose a novel market design for forward electricity. Participants
can trade forward contracts and European call options with a high strike price, e.g.,
$1, 000/MWh. At any point in time, agents can trade thousands of these derivative
products with granular delivery periods for every combination of year-month-hour-
weekend/weekday up to four years ahead. For example, a monthly product could cover
weekdays from 8-9 am in August 2018. Daily products for each day-hour combination
are also available for the next 30 days ahead. These granular products allow market
participants to choose hedge positions that closely follow their load profiles (Cramton
et al., 2024a).

We employ the new flow trading technology by Budish et al. (2023) to enable market
participants to trade such a large number of granular products. Flow trading makes it
easy and computationally feasible to trade numerous products simultaneously. It also
incentivizes gradual, small-quantity trades in hourly frequent batch auctions (Budish
et al., 2015). Gradual trade guarantees a constant flow of liquidity, mitigates adverse
price impact caused by large orders, and reduces opportunities to exercise market power
(Budish et al., 2023, Cramton et al., 2024a).

As a proof of concept, we develop a full-scale twelve-year simulation of Texas’ ERCOT
market between 2011 and 2022. ERCOT provides an interesting case study because it
has state-of-the-art day-ahead and real-time markets that send reliable short-term price
signals with high scarcity prices up to $9, 000/MWh. These scarcity prices can cause
enormous downside risks, especially for LSEs.

We simulate ERCOT’s day-ahead market using the regime-switching model developed
by Coulon et al. (2013) and Brandkamp et al. (2025). The regime-switching model simu-
lates joint hourly distributions of day-ahead prices, net load, and gas prices. Generation
profiles for multiple solar and wind farms are simulated following Brandkamp et al.
(2025). We then apply Mann et al.’s (2017) merit order dispatch model to calculate
hourly dispatch and profits for a large sample of 655 existing power plants that operate
in ERCOT. We group these power plants into representative generation portfolios to
calculate profits for generation companies. Moreover, we simulate profits for a set of
representative load-serving entities (LSEs) that serve a certain share of aggregate load
(Brandkamp et al., 2025).

For each representative generator and LSE, we calculate their net demand curves1

for each granular forward and option product. We obtain agents’ net demand curves by
numerically deriving the optimal quantities of forwards and options for a given pair of

1Net demand is demand minus supply. A net demand curve gives the net demand for each product as
a function of the product prices.
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forward and option prices. A pair of option and forward quantities is called optimal if it
maximizes the agents’ expected utility from profits for given prices. We assume agents to
be risk-averse with constant absolute risk aversion utility.

Our research aims to use these net demand curves and the flow trading methodology
to determine unique market clearing prices and quantities in each hourly frequent batch
auction between 2011 and 2022. In this framework, we intend to analyze how equilibrium
prices and quantities evolve as they approach their physical delivery periods. We also
explore how and why market clearing prices differ from arbitrage-free price levels. In
addition, we want to study how agents’ risk aversion affects market equilibria and net
demand for forwards and options. Finally, we investigate how the forward energy market
impacts generators’ and LSEs’ expected profit, profit volatility, and downside tail risks.

In the current version of our paper, we focus on an analysis of generators’ and LSEs’
net demand curves. Our main finding is that agents’ risk preferences strongly impact
the slope of their net demand curves. When generators and LSEs are highly risk-averse,
net demand curves are almost vertical since agents are hardly willing to take risks to
exploit arbitrage opportunities. The generator is more willing to arbitrage even for high
risk levels, because the generator faces less extreme downside risks in the day-ahead
market than the LSE (Brandkamp et al., 2025). However, since demand curves are almost
vertical for highly risk-averse agents, forward and option prices need to be substantially
above their arbitrage-free levels to allow the market to clear.

When agents are less risk-averse, their appetite for arbitrage increases. In particular,
the generators’ net demand curve becomes less vertical. For reasonably low risk-aversion
levels, the market will, therefore, likely clear at prices that deviate less than 10% from
their arbitrage-free levels.

When generators and LSEs are nearly risk-neutral, our model results in enormous
arbitrage positions. Such large arbitrage positions seem unrealistic since participants in
real-world derivatives market face collateral requirements that still need to be incorporated
into our model.

We also study the price elasticity of net demand for forwards and options. Notably,
net demand for both forwards and options is more sensitive to changes in forward prices
than option prices. Net demand is also more elastic to negative biases in the forward price
than to positive ones, especially in delivery periods with large day-ahead price spikes.
Positive forward price biases encourage agents to take a short position in forwards. Such
a short position can lead to extremely large losses when day-ahead price spikes occur.
Therefore, agents require a larger price compensation for increasing their short position
compared to increasing their long position.
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Additionally, we reveal that agents take larger arbitrage positions in peak delivery
periods with large price spikes than in off-peak periods with small and rare price spikes.
Arbitrage is more lucrative when large price spikes occur. In off-peak periods, net demand
curves for forwards and options become almost vertical in the option price. The reason
is that the option price is tiny compared to the forward price because an option with a
strike price of $1, 000/MWh is hardly ever in the money in off-peak periods. Therefore,
changes in the tiny option price are almost irrelevant to net demand.

Finally, we examine how net demand curves change if we choose a lower option strike
price of $200/MWh. Overall, a lower strike price induces agents to take larger option
positions and smaller forward positions. With a lower strike price, the option becomes
more valuable as it protects agents against moderate price spikes, as Brandkamp et al.
(2025) also demonstrate for arbitrage-free prices. In addition, we show that a lower
strike price encourages agents to take larger arbitrage positions compared to a higher
$1, 000/MWh strike price.

In the next section, we relate our paper to the literature on forward market design.
Section 4.3 describes our proposed forward market design and summarizes Budish et al.’s
(2023) flow trading approach. Section 4.4 presents our simulation of ERCOT’s day-ahead
market and calculates day-ahead profits for representative generators and LSEs. In section
4.5, we derive net demand curves for these representative agents and sketch suitable
trading strategies in the forward energy market. Section 4.6 presents simulation results
and analyzes agents’ net demand curves and substitution behavior between forwards
and options. Section 4.7 reflects on the political implications of our novel market design.
Section 4.8 concludes.

4.2 Related literature

Forward energy markets enhance efficiency by strengthening generators’ incentives for
competitive bidding in short-term markets (Allaz & Vila, 1993) and by enabling partici-
pants to hedge price and quantity risks. However, existing forward markets face significant
challenges. The two most prominent challenges are illiquidity and market incompleteness,
or the limited number of available products.

Indeed, many forward markets suffer from low liquidity, particularly for contracts
beyond one year (Newbery, 2016, Genoese et al., 2016). Illiquidity leads to high price
premia and unreliable price signals, as Redl et al. (2009) reveal. Illiquid markets might
also make it impossible for load-serving entities (LSEs) to hedge sufficiently to be resilient
against extreme weather events. Insufficient hedging on the demand side can lead to
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bankruptcies and market failures, as seen in the 2001 California electricity crisis and the
2022 European energy crisis (Borenstein, 2002, Joskow, 2008, Cramton, 2022).

Additionally, illiquid forward markets fail to support generators in managing risks
from long-term investments. Liquidity for contracts beyond three years rapidly drops to
zero (Keppler et al., 2023), discouraging investment in capital-intensive generation assets
with long amortization periods. This challenge is particularly relevant for capital-heavy
solar and wind assets. Effective hedging can lower the cost of capital for these assets
(Genoese et al., 2016).

Another shortcoming of existing forward markets is that they offer only a small
number of broad derivative products with monthly, quarterly or yearly delivery periods
for base and peak load. These broad products fail to account for the seasonal and daily
patterns of generators’ and LSEs’ load.

To address the above shortcomings, researchers and regulators propose several market
design innovations. One approach is offering more granular hedge products for specific
clusters of hours. Granular products make risk management more effective as they align
hedge positions with seasonal and diurnal load and generation patterns (Borenstein,
2007a, Boroumand et al., 2015, Wolak, 2022, Brandkamp, 2025). However, granular
products require complex trading strategies and may further fragment liquidity - at least
under the existing trading rules.

An alternative solution is load-following forward contracts, used in some U.S. and
Australian markets. The seller of the forward contract agrees to supply a fraction of
the buyer’s realized demand in every hour of the contract period (Brown & Sappington,
2023). Load-following forward contracts facilitate risk management as they align hedges
with load patterns. However, load-following contracts raise average wholesale prices and
reduce welfare because they discourage generators from bidding aggressively in day-ahead
markets when demand is low, as Brown and Sappington (2023) highlight.

Addressing the lack of liquidity, regulators often mandate generators or LSEs to sell
or buy a share of their load forward (de Frutos & Fabra, 2012, Wolak, 2022). In our
proposal, we also include mandatory purchase obligations for LSEs to foster liquidity
and coordinate trade.

However, mandatory forward obligations alone are not sufficient to guarantee liquidity
and reliable price signals. For instance, the Australian electricity market has established
mandatory purchase obligations but does not provide LSEs with sufficient means for
satisfying these requirements. Many LSEs, especially small retailers, have had trouble
finding counter-parties for mandated contracting at reasonable and stable prices (ACCC,
2023).
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Another proposal is that regulators purchase long-term electricity contracts via
contracts-for-difference as Schlecht et al. (2024) and Fabra (2023) suggest. The regulator’s
role is to provide liquidity and reduce risk by offering a reliable counter-party. Schlecht
et al. (2024) and Fabra (2023) envision that the regulator should purchase long-term
contracts via big-event auctions. They acknowledge that these auctions might suffer
from a lack of competition and market power. Schlecht et al. (2024) also emphasize that
regulator-backed long-term contracts for generators might mute demand response if the
regulator does not pass on short-term electricity prices to the demand side.

Our proposal takes a different approach to address the above shortcomings. Our core
innovation is to enable market participants to trade thousands of granular products
gradually over time. This approach ensures liquidity and reliable price signals while
allowing market participants to hedge seasonal and diurnal load variations effectively. As
discussed below, some elements of our framework have been developed in earlier studies,
especially in research focusing on financial markets. We see our contribution in combining
these elements and tailoring them to the unique characteristics of electricity markets.

To make gradual trade of many granular products possible, we apply the flow trading
methodology developed by Budish et al. (2023) to electricity markets. Flow trading
builds on three principles: 1) Trade gradually in frequent batch auctions, 2) bundle
traded products in portfolios, and 3) express preferences over portfolios as piecewise
linear demand curves. As opposed to many financial markets, which are continuous in
time while clearing discrete quantities, the flow-trading approach relies on discrete timing
(the frequent batch auctions) and trading continuous quantities (Budish et al., 2023).

It has long been established that trading gradually over time enhances market
efficiency since it allows market participants to minimize adverse price impact (Black,
1971, Kyle, 1985, Vayanos, 1999). Gradual trade is executed in frequent batch auctions
that discretize trading to avoid a wasteful arms race for trading speed (Budish et al.,
2015). Graf et al. (2024) provide evidence that frequent batch auctions also raise liquidity
in electricity markets compared to continuous trade. Kyle and Lee (2017) argue that
agents should express their preferences as piece-wise linear demand curves since piece-wise
linear demand guarantees the existence of market clearing prices and makes finding these
prices computationally fast (Budish et al., 2023). Portfolio trading allows arbitrage among
correlated assets and reflects substitution or complementarity between them, as is known
from the combinatorial auctions literature (Budish et al., 2023, Cramton et al., 2024a).

Leveraging the power of flow trading, our forward energy market enables participants
to trade thousands of time- and location-specific derivatives gradually. Our approach is
closest to Wolak’s (2022) Standardized Fixed Price Forward Contact (SFPFC) mechanism,
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which proposes granular hourly forward contracts. The main difference is that Wolak
(2022) envisions SFPFCs to be traded in big-event auctions while we propose gradual
trade over time. Big event auctions allow market participants to exercise market power
and make it more difficult to manage price risk than under gradual trade. In addition,
Wolak’s (2022) approach proposes far fewer products in the forward energy market since
our market includes both forward contracts and call options with high time and locational
granularity.

Like Wolak (2022), we advocate mandatory forward purchase obligations for LSEs.
However, we propose a linear increase in obligations from zero four years ahead to 100
percent one day ahead. In contrast, Wolak (2022) envisions steep increments for the
purchase obligations: 85 percent four years ahead, 87 percent three years ahead, 90
percent two years ahead, and 100 percent one year ahead. A linear schedule allows LSEs
to incorporate new information gradually, improving risk management and reducing price
impacts. Moreover, gradual trade creates ample liquidity in each frequent batch auction
since each market participant trades a rich set of products in every auction.

In a related paper, Cramton et al. (2024a) apply the ideas used in our forward energy
market to the market for intersatellite communication capacity.

4.3 The forward energy market

4.3.1 Product definitions

We propose a forward energy market that is centrally operated by the system operator. It
is a financial market that trades derivatives of day-ahead energy. Day-ahead energy trades
on a nodal level in advanced electricity markets. Our forward energy market aggregates
the nodal day-ahead products to load zone levels to limit the number of products while
taking the regional characteristics of the electricity system into account (Cramton et al.,
2024a).

The forward energy market allows trading three derivative products in each load zone
(see Table 4.1): First, financial forward energy contracts that should be the primary risk
management tool for market participants. Second, European call options with a very high
strike price, e.g., 1000$/MWh. We set such a high strike price because the option’s main
objective is to manage risks created by large price spikes. The call options are purely
financial, unlike capacity markets’ reliability options, which bundle a physical component
(Cramton et al., 2013). Third, Renewable Energy Certificates (RECs) that let market
participants manage jurisdictional renewable requirements.
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Types of contract Financial forwards
(derivatives of Call options
day-ahead prices) Renewable energy certificates
Time granularity Monthly products: year–month–hour–we/wd

Daily products (only month-ahead): date–hour
Locational granularity Zonal
Market horizon 4 years ahead until delivery
Auction frequency Hourly

Table 4.1: Forward market product definition

Trading starts four years before the physical delivery of the energy. The three above
products are traded for granular delivery periods defined as combinations of year-month-
hour-weekend/weekday (Cramton et al., 2024a). For example, Weekdays 8-9 am in May
2018 is a delivery period. The granular delivery periods enable traders to align their
derivative purchases with the seasonal and daily cycles of their physical load. We call
these granular products “monthly products”. Starting four years ahead, agents can trade
2,304 monthly products per zone (48 months, 24 hours per day, and 2 weekend/weekday
combinations, which gives 48*24*2=2,304 products).

As an illustration, Figure 4.1 shows simulated arbitrage-free forward prices for all
year-month-hour-weekend products between 2019 and 2022 in the Texas ERCOT market
(Cramton et al., 2024a). The graph reveals that the monthly forward prices follow seasonal
and daily load cycles, with low prices in shoulder months and at night, and high prices
during summer and afternoon peak hours.

Figure 4.1: Illustrative forward electricity prices for year-month-hour products for week-
days from 2019 to 2022
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In addition to the monthly products, there are “daily products” that start trading
30 days before the physical delivery. A daily product is a combination of date and hour
of day. For example, 8-9 am on May 15, 2018 would be a daily delivery period. At each
point in time, there are 720 (=30*24) daily products for the next 30 days ahead. The
daily products should gradually link the coarser monthly products with the underlying
day-ahead quantities (Cramton et al., 2024a).

Starting four years ahead of physical delivery, the forward energy market lets agents
repeatedly trade every available monthly and daily product in every hour using frequent
batch auctions. The bidding window in each batch auction starts one minute after the
hour and lasts until the hour’s end. During the bidding window, agents can adjust their
orders. The final orders at the end of the bidding window are binding. Only these binding
orders are used in the market clearing optimization (Budish et al., 2023, Cramton et al.,
2024a).

To increase liquidity and coordinate trade, regulators should implement a modest
purchase obligation for LSEs. The obligation starts at 0 percent 48 months ahead and
increases linearly to 100 percent of the realized real-time load one day ahead. The LSE
can cover its obligation with forward energy or energy options.

The purchase obligation is based on the LSE’s real-time load. Recognizing that real-
time load is uncertain, the LSE likely wants to buy most of its anticipated load as forward
energy and some as energy options to manage risk. For example, the LSE may buy its
expected load as forward energy and then sufficient energy options to cover extreme
demand scenarios. The LSE is motivated to buy enough energy and options to cover
realized load, even in extreme events. The LSE has two incentives to purchase ahead: 1)
it must buy any shortfall at the real-time price, and 2) it pays a penalty introduced by
the regulator for under-purchases of its real-time load. The system operator can raise
the penalty factor if experience shows that LSEs are purchasing too few options to cover
extreme events. Underestimations of the load that exceeds a specified tolerance may also
increase collateral requirements.

It may seem extremely complex for market participants to jointly trade thousands of
monthly and daily derivative products on an hourly basis. The forward energy market
will use the flow trading methodology developed by Budish et al. (2023), which makes
trading thousands of products easy for traders and computationally feasible for market
operators. The above market design is closely linked to Cramton et al. (2024a) who
propose to apply a similar design to the market for intersatellite communication capacity.
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4.3.2 Flow trading methodology

Flow trading lets market participants place sustained portfolio orders that incentivize a
smooth trade flow among multiple products. Flow trading exploits the power of convex
optimization to simultaneously find market equilibria for a large number of products. The
ability to trade thousands of products makes the forward energy market more complete.
Moreover, granular products combined with hourly frequent batch auctions allow agents
to adjust their portfolio positions efficiently as information changes over time (Cramton
et al., 2024a).

We summarize the key features of the flow trading bidding language by presenting two
theorems from Budish et al. (2023) and an immediate corollary. The following content
until the corollary closely follows Budish et al. (2023). Moreover, the below description
follows Cramton et al. (2024a), who apply Budish et al.’s (2023) methodology in an
analogous way to the market for intersatellite communication capacity.

In each frequent batch auction, flow trading asks traders to submit their orders for a
portfolio of products rather than for individual monthly or yearly products. Each order 𝑖
for the portfolio of products must be expressed as a piece-wise linear net demand curve
𝐷𝑖(𝑝𝑖):

𝐷𝑖(𝑝𝑖|w𝑖, 𝑞𝑖, 𝑝𝐿
𝑖 , 𝑝𝐻

𝑖 ) ∶= 𝑞𝑖 trunc( 𝑝𝐻
𝑖 − 𝑝𝑖

𝑝𝐻
𝑖 − 𝑝𝐿

𝑖
) where trunc(𝑧) =

⎧{{
⎨{{⎩

1, for 𝑧 ≥ 1,

𝑧, for 0 ≤ 𝑧 < 1,

0, for 𝑧 ≤ 0.
(4.1)

When net demand 𝐷𝑖(𝑝𝑖) is positive, the trader buys the portfolio while negative net
demand indicates that the trader sells it. 𝑝𝑖 is the price of the portfolio in order 𝑖.
w𝑖 = (𝑤𝑖1, ..., 𝑤𝑖𝑁)𝑇 is a vector of portfolio weights and 𝑤𝑖𝑛 gives the weight of product 𝑛
in portfolio order 𝑖. A positive weight means that the product is bought, while a negative
weight means that it is sold (Budish et al., 2023, Cramton et al., 2024a).

Net demand 𝐷𝑖(𝑝𝑖) is represented as flows over batch intervals, constrained by a
cumulative quantity limit 𝑄max

𝑖 > 0. The flow rate 𝑞𝑖 > 0 gives the maximum quantity
of portfolio units the agent wants to buy per batch auction until the cumulative limit
𝑄max

𝑖 is reached. The flow rate allows agents to distribute their trades over time while
constantly adjusting the speed at which they trade (Budish et al., 2023, Cramton et al.,
2024a).
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Moreover, net demand 𝐷𝑖(𝑝𝑖) is characterized by a lower limit price 𝑝𝐿
𝑖 and an upper

limit price 𝑝𝐻
𝑖 with 𝑝𝐿

𝑖 < 𝑝𝐻
𝑖 . At prices equal to or below 𝑝𝐿

𝑖 , the agent wants to buy the
portfolio at the maximum flow rate 𝑞𝑖 in each batch auction. At prices above 𝑝𝐻

𝑖 , the
agent has zero demand for the portfolio. Between these bounds [𝑝𝐿

𝑖 , 𝑝𝐻
𝑖 ], the demand

linearly decreases from full quantity at 𝑝𝐿
𝑖 to zero at 𝑝𝐻

𝑖 . For a sell order, both limit
prices are encoded as negative numbers with 𝑝𝐿

𝑖 < 𝑝𝐻
𝑖 (Budish et al., 2023, Cramton

et al., 2024a).
Net demand 𝐷𝑖(𝑝𝑖) for the portfolio in order 𝑖 is a function of portfolio price 𝑝𝑖:

𝑝𝑖 = w𝑇
𝑖 𝜋 =

𝑁
∑
𝑛=1

𝑤𝑖𝑛𝜋𝑛. (4.2)

𝜋 = (𝜋1, … , 𝜋𝑁)𝑇 denotes a column vector containing the prices for all individual products
𝑛 = 1, ..., 𝑁. The inner product of the product prices and the portfolio weights 𝑤𝑖 give
the portfolio price (Budish et al., 2023, Cramton et al., 2024a).

Let 𝑉𝑖(𝑥𝑖) be the dollar utility of order 𝑖 for net demand 𝑥𝑖 = 𝐷𝑖(𝑝𝑖) in portfolio
units per hour. To determine 𝑉𝑖(𝑥𝑖), we express agents’ marginal utility function 𝑀𝑖(𝑥𝑖)
as an inverse demand curve 𝑝𝑖 = 𝑀𝑖(𝑥𝑖). The inverse demand curve maps order 𝑖’s net
demand 𝑥𝑖 ∈ [0, 𝑞𝑖] into prices 𝑝𝑖 ∈ [𝑝𝐿

𝑖 , 𝑝𝐻
𝑖 ] (Budish et al., 2023, Cramton et al., 2024a).

Rearranging equation 4.1 gives

𝑀𝑖(𝑥𝑖) = 𝑝𝐻
𝑖 − (𝑝𝐻

𝑖 − 𝑝𝐿
𝑖 )

𝑞𝑖
𝑥𝑖, 𝑥𝑖 ∈ [0, 𝑞𝑖] (4.3)

𝑀𝑖(𝑥𝑖) is the marginal as-bid flow value in dollars per portfolio unit (Budish et al., 2023).
The utility function 𝑉𝑖(𝑥𝑖) is defined as the integral over the marginal utility function in
the interval [0, 𝑥𝑖]:

𝑉𝑖(𝑥𝑖) = ∫
𝑥𝑖

0
𝑀𝑖(𝑢) 𝑑𝑢. (4.4)

𝑉𝑖(𝑥𝑖) is quadratic and strictly concave in net demand 𝑥𝑖 because marginal utility is
linear in 𝑥𝑖 (Budish et al., 2023, Cramton et al., 2024a):

𝑉𝑖(𝑥𝑖) = 𝑝𝐻
𝑖 𝑥𝑖 − (𝑝𝐻

𝑖 − 𝑝𝐿
𝑖 )

2𝑞𝑖
𝑥2

𝑖 (4.5)

Budish et al. (2023) assume that 𝑉𝑖(𝑥𝑖) is defined for all 𝑥𝑖 ∈ ℝ where the constraint
𝑥𝑖 ∈ [0, 𝑞𝑖] is imposed by the order specification in equation 4.1 (Cramton et al., 2024a).

After all market participants have submitted their orders at the end of the frequent
batch auction, the market operator’s auction platform processes all orders to find the
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market equilibrium. The equilibrium prices and quantities should maximize as-bid social
welfare. ”As-bid” means that the system operator assumes that the net demand curves
reflect the participants’ marginal value or marginal cost. Social welfare is maximized
when aggregate net demand is zero, and the market clears (Budish et al., 2023, Cramton
et al., 2024a).

Budish et al. (2023) formulate the problem of finding market-clearing prices “as two
optimization problems: a primal problem of finding quantities that maximize as-bid dollar
value and a dual problem of finding prices that minimize the cost of non-clearing prices”.
The first-order conditions for these two problems allow for deriving market-clearing prices
and quantities (Budish et al., 2023, Cramton et al., 2024a). The system operator acts
analogously to a social planner and selects a vector of trade rates x = (𝑥1, ..., 𝑥𝐼) for all
submitted orders 𝑖 to maximize aggregate utility:

max
x

𝑉 (x) =
𝐼

∑
𝑖=1

𝑉𝑖(𝑥𝑖), x ∈ ℝ𝐼, (4.6)

subject to:

𝐼
∑
𝑖=0

𝑥𝑖w𝑖 = 0 (market-clearing constraints) (4.7)

𝑥𝑖 ∈ [0, 𝑞𝑖] for all 𝑖 (trade-rate constraints) (4.8)

The objective function 𝑉 (x) is concave since it is a sum of concave functions. The above
problem can be written as a quadratic program since the objective function is quadratic
and the constraints are linear. Introducing matrix and vector notation, let W be the
𝑁 × 𝐼 matrix whose 𝑖th column is w𝑖. Let p𝐻 represent the column vector whose 𝑖th
element is 𝑝𝐻

𝑖 . Let D denote the 𝐼 ×𝐼 positive definite diagonal matrix whose 𝑖th diagonal
element is (𝑝𝐻

𝑖 − 𝑝𝐿
𝑖 )/𝑞𝑖 (Budish et al., 2023, Cramton et al., 2024a). Then, the problem

in equation 4.6 can be rewritten as:

max
x

[x𝑇p𝐻 − 1
2

x𝑇Dx] subject to Wx = 0, 0 ≤ x ≤ q (4.9)

Below, we summarize how Budish et al. (2023) demonstrate that there exist quantities
that maximize aggregate utility (Theorem 1) and that there exist market-clearing prices
(Theorem 2).

Theorem 1 (Budish et al., 2023). There exists a unique vector of trade rates x, which
solves the maximization problem in Equation 4.9.
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To prove Theorem 1, Budish et al. (2023) use the duality between the problems of
finding optimal prices and quantities. They define the following Lagrangian function

𝐿(x, 𝜋, 𝜆, 𝜇) = x𝑇p𝐻 − 1
2

x𝑇Dx − 𝜋𝑇Wx + 𝜇𝑇x + 𝜆𝑇(q − x) (4.10)

The Lagrangian has three constraints: (1) the market clears (Wx = 0); (2) trade
rates are greater than or equal to zero (x ≥ 0); (3) the trade rates are less than or equal
to their maxima (x ≤ q) (Budish et al., 2023, Cramton et al., 2024a). The dual problem
related to the primal problem of maximizing aggregate utility in equation 4.9 is given as

̂𝐺(𝜋, 𝜆, 𝜇) = max
𝑥

𝐿(𝑥, 𝜋, 𝜆, 𝜇), 𝜋 ∈ ℝ𝑁, 𝜇 ≥ 0, 𝜆 ≥ 0 (4.11)

The dual problem is a minimization problem with infimum 𝑔 given as (Budish et al.,
2023, Cramton et al., 2024a):

𝑔 ∶= inf
𝜋,𝜆,𝜇

̂𝐺(𝜋, 𝜆, 𝜇) subject to 𝜋 ∈ ℝ𝑁, 𝜇 ≥ 0, 𝜆 ≥ 0. (4.12)

The dual problem in equation 4.12 is formulated as an infimum rather than a minimum
because we still need to show that there exists a solution (𝜋, 𝜆, 𝜇) that attains the infimum
(Budish et al., 2023, Cramton et al., 2024a).

Theorem 2 (Existence of market-clearing, Budish et al., 2023). There exists at least
one optimal solution (𝜋, 𝜆, 𝜇) to the dual problem in equation 4.12. The solutions x and
(𝜋, 𝜆, 𝜇) are a primal-dual pair which satisfies the strict duality relationship 𝑔 = 𝑉 (𝑥).

Budish et al. (2023) prove Theorem 2 by using the properties that the primal objective
function 𝑉 (x) is strictly concave and bounded since 𝑉 (x) is the sum of a finite number
of concave quadratic and bounded functions. Moreover all constraints are linear and the
no-trade constraint (x = 0) is feasible as it clears the market. With a concave primal
problem, a finite supremum on the primal problem, feasibility, and linear constraints,
there must then be a dual solution that attains the same value, guaranteeing the existence
of market‐clearing prices (Cramton et al., 2024a).

Budish et al. (2023) stress that Theorem 2 does not imply that market-clearing prices
are unique. Market-clearing prices form a convex set and may be unbounded. For instance,
if all orders are buy orders and there are no sell orders, any sufficiently high price clears
the market at zero trade. When there is a single buy order and a single sell order for the
same product with the same maximum rate, and the buyer’s lower price limit exceeds
the seller’s, an interval of prices allows execution (Cramton et al., 2024a).
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Uniqueness of prices is important for the transparency of the market-clearing rules
(Cramton et al., 2024a). Therefore, Budish et al. (2023) introduce the following tie-
breaking rule that guarantees unique prices: “If more than one price vector supports
the optimal quantity vector, select the price vector closest to the prior price vector in
Euclidean distance” (Budish et al., 2023).

Corollary 1 (Uniqueness of quantities and prices, Cramton et al., 2024a). Prices and
quantities are unique with the closest-to-prior-prices rule.

Proof. The set of prices that support the unique optimal quantities is convex. The closest
point in a convex set to a given point is unique (Cramton et al., 2024a).

The closest-to-prior-prices tie-breaking rule ensures a unique mapping of orders
into prices and quantities that maximizes as-bid social welfare. It is especially well-
suited to frequent batch auctions, where prices shift gradually as persistent orders trade
incrementally (Cramton et al., 2024a).

Flow trading makes it computationally feasible to find unique prices and quantities
quickly, even for thousands of products. The flow trading problem is an instance of a
“global consensus” problem, which can be efficiently solved via the alternating direction
method of multipliers (ADMM) (Boyd et al., 2011). Indeed, we can fully parallelize the
solution over each participant’s sub-problem, enabling any solution speed with additional
GPUs. Furthermore, ADMM methods are trivially warm-started, allowing the reuse of
the prior solution to achieve rapid convergence (Cramton et al., 2024a).

Budish et al. (2023) highlight how computation times increase with the number of
orders and products. For instance, with a large number of 100,000 orders and 10,000
products, the computation to find unique prices and quantities takes about 100 seconds
when running it on a single server. Hence, clearing the market every hour is feasible even
with large numbers of orders and products (Budish et al., 2023, Cramton et al., 2024a).

4.3.3 Market settlement and collateral requirements

The market operator publishes the unique prices determined by the above flow trading
methodology in the first minute of the hour. It also publicly releases the slope of aggregate
net demand for each product as an indication of market liquidity. This makes the forward
energy market highly transparent (Cramton et al., 2024a).

The market operator updates each trader’s position according to the quantities implied
by prevailing prices. Throughout the bidding window, traders can view and download
both current prices and their revised positions. Every hour, the market operator repeats
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this procedure. Orders stay active unless modified or canceled. If nothing changes, the
trader does not need to act. Those same orders will continue to be processed every hour
until a trader submits an update (Cramton et al., 2024a).

Every hour, the market operator updates each trader’s settlement and alerts the
trader whenever its excess collateral falls below a warning threshold. If a trader’s collateral
becomes negative, any trades that would further increase its collateral requirement are
not allowed. For every order, any part that would unbalance the trader’s position is
removed (Cramton et al., 2024a).

Because the system operator has full visibility into each agent’s position, the system
operator can implement highly optimized collateral requirements that maximize resiliency
against systemic events with minimal collateral. The collateral requirements depend on
deviations from balanced positions. The exact market rules for collateral requirements
will be based on a to-be developed optimization. This approach aims to maximize market
stability while minimizing participants’ unnecessary capital commitments (Cramton et al.,
2024a).

The essential inputs in determining collateral are 1) the participant’s current position,
2) the participant’s expected load, and 3) the participant’s expected energy production
(Cramton et al., 2024a). Each participant reports 2 and 3 to the system operator. Excessive
imbalances between estimated and realized load and production increase the participant’s
collateral requirements, consistent with the higher default risk from larger imbalances. The
system operator maintains 1. When the system operator evaluates reported production
during net peak load conditions, 3 defines the participant’s capacity value or accredited
capacity (Cramton et al., 2024a).

Bilateral forward contracts outside the centralized market are allowed, but must be
reported to the system operator to take these contracts into account when adjusting
collateral requirements.

Based on the above market rules, we will proceed with a proof-of-concept simulation
of our forward energy market for the ERCOT market in Texas. As a first step, the next
section introduces a model of ERCOT’s day-ahead market. The day-ahead market is
fundamental for the forward energy market.

4.4 Market simulation

In this section, we describe our model of the ERCOT day-ahead market. We jointly model
hourly day-ahead electricity prices, hourly net load, hourly solar and wind generation,
and daily gas prices for all hours between 2011 and 2022. After simulating joint draws of
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day-ahead prices, renewable generation, gas prices, and net load, we employ a merit order
dispatch model to obtain hourly generation quantities and profits for a large sample of
power plants.

The regime-switching market model employed here was initially developed by Coulon
et al. (2013) and simulated for the ERCOT day-ahead market between 2005 and 2011.
In Brandkamp et al. (2025), the model was adapted to account for renewable generation
and was calibrated to data from 2011 and 2022. In this paper, we use the model and
simulation results created by Brandkamp et al. (2025) and only summarize the main
features of their simulation. We refer to Coulon et al. (2013) and Brandkamp et al. (2025)
for a detailed exposition of the model.

4.4.1 Day-ahead market model

Coulon et al. (2013) and Brandkamp et al. (2025) simulate day-ahead prices 𝑃𝑡 in hour 𝑡
using the following exponential function:

𝑃𝑡 = 𝐺𝑡 exp(𝛼𝑚𝑘
+ 𝛽𝑚𝑘

𝐿𝑡 + 𝛾𝑚𝑘
𝑋𝑡) (4.13)

𝐺𝑡 is the daily gas price and 𝐿𝑡 denotes hourly net load (i.e., load minus wind and solar
generation). 𝑋𝑡 is a residual process reflecting outages or transmission constraints. Index
𝑚𝑘 ∈ {1, 2} indicates that the price is in “normal” regime 1 or in “spike” regime 2. The
probability of being in the spike regime increases with net load. Because the exponential
function amplifies 𝐿𝑡 and 𝑋𝑡 differently in each regime, the model captures both typical
price variability and rare but severe price spikes. We cap the simulated day-ahead prices
at 9,000$/MWh to account for the price cap in the ERCOT day-ahead market (Coulon
et al., 2013, Brandkamp et al., 2025).

We let the logarithm of gas price 𝐺𝑡 follow an Ornstein-Uhlenbeck (OU) process:

𝑑(log𝐺𝑡) = 𝜅𝐺(𝑚𝐺 − log𝐺𝑡) 𝑑𝑡 + 𝜂𝐺 𝑑𝑊 (𝐺)
𝑡 (4.14)

To capture daily and seasonal cycles, we deseasonalize net load 𝐿𝑡 = 𝑆(𝑡) + 𝐿𝑡 into a
seasonal term 𝑆(𝑡) and a mean-reverting residual component 𝐿𝑡 for every hour of day ℎ:

𝑆(𝑡) = 𝑎1(ℎ) + 𝑎2(ℎ) cos(2𝜋𝑡 + 𝑎3(ℎ)) + 𝑎4(ℎ) cos(4𝜋𝑡 + 𝑎5(ℎ)) + 𝑎6(ℎ)𝑡 + 𝑎7(ℎ)1𝑤𝑒

(4.15)

𝑑𝐿𝑡 = − 𝜅𝐿 𝐿𝑡 𝑑𝑡 + 𝜂𝐿 𝑑𝑊 (𝐿)
𝑡 (4.16)
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where 1𝑤𝑒 indicates weekends (Coulon et al., 2013). Similarly, residual process 𝑋𝑡 =
𝑆𝑋(𝑡) + 𝑋𝑡, is deseasonalized:

𝑆𝑋(𝑡) = 𝑏1(ℎ) + 𝑏2(ℎ) cos(2𝜋𝑡 + 𝑏3(ℎ)) + 𝑏4(ℎ) cos(4𝜋𝑡 + 𝑏5(ℎ)) (4.17)

𝑑𝑋𝑡 = − 𝜅𝑋 𝑋𝑡 𝑑𝑡 + 𝜂𝑋 𝑑𝑊 (𝑋)
𝑡 (4.18)

𝑋𝑡 captures unobserved supply and transmission constraints and random shocks. The
deseasonalized OU processes 𝐿𝑡 and 𝑋𝑡 may be correlated, reflecting the fact that extreme
demand conditions often coincide with plant and transmission outages due to extreme
weather (Coulon et al., 2013, Brandkamp et al., 2025).

Indicator 𝑚𝑘 defines if day-ahead prices are in normal regime 1 or spike regime 2 (see
Equation 4.13). 𝑚𝑘 is realized by an independent coin flip:

𝑚𝑘 =
⎧{
⎨{⎩

1 with probability 1 − 𝑝𝑠Φ (𝐿𝑡−𝜇𝑠
𝜎𝑠

)

2 with probability 𝑝𝑠Φ (𝐿𝑡−𝜇𝑠
𝜎𝑠

)

𝜙(⋅) represents the normal cumulative distribution function (cdf). The probability of
switching to spike regime 2 rises with the deseasonalized net load 𝐿𝑡, where 𝜇𝑠 = 0 and
𝜎𝑠 = 𝜂𝐿

√2𝜅𝐿
are the mean and standard deviation of the stationary distribution of 𝐿𝑡. In

both regimes, day-ahead prices follow the same exponential form in Equation 4.13, but
differ in their parameters 𝛼𝑚𝑘

, 𝛽𝑚𝑘
, 𝛾𝑚𝑘

. In the spike regime, these parameters produce
a sharper sensitivity of prices to net load and residual shocks, capturing rare yet extreme
price events (Coulon et al., 2013, Brandkamp et al., 2025).

Brandkamp et al. (2025) calibrate the above regime-switching model to hourly data
for ERCOT between 2011 and 2022. Hourly day-ahead electricity prices come from
ERCOT (2024a), and hourly system load data from ERCOT (2024b). Daily Henry Hub
gas price data is obtained from EIA (2024). In addition, Brandkamp et al. (2025) employ
hourly generation profiles of 218 wind farms and 189 solar farms, simulated by ERCOT
(2023), and supplement them with aggregate hourly renewable generation data from
ERCOT (2024c).

To calibrate the model to the data, Brandkamp et al. (2025) first deseasonalize net
load and the residual process 𝑋𝑡. The estimated parameters of the seasonal processes in
Equations 4.15 and 4.17 are presented in Appendix C.1 in Brandkamp et al. (2025). Next,
maximum likelihood is used to estimate the parameters of the OU processes in Equations
4.14, 4.16, and 4.18, and the exponential day-ahead price Equation 4.13 (Coulon et al.,
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2013, Brandkamp et al., 2025). The estimated parameters are summarized in Tables 4.2
and 4.3.

𝜅𝐿 𝜂𝐿 𝜅𝐺 𝜂𝐺 𝑚𝐺 𝜅𝑋 𝜂𝑋 𝜈

125.571 84,329.524 3.524 0.915 1.159 996.966 40.406 0.092

Table 4.2: Estimated parameters relating to the stochastic processes for 𝐺𝑡, 𝐿𝑡, and 𝑋𝑡.

𝛼1 𝛽1 𝛾1 𝛼2 𝛽2 𝛾2 𝑝𝑠

1.279 2.39 × 10−5 0.308 -0.035 7.12 × 10−5 1.065 0.161

Table 4.3: Estimated parameters for the day-ahead price function in equation 4.13

𝛽2 > 𝛽1 implies that net load and day-ahead prices have a steeper exponential relation
in spike regime 2 than in normal regime 1. 𝛾2 > 𝛾1 means that random shocks such as
plant or transmission outages also have a stronger effect on day-ahead prices in the spike
regime. 𝑝𝑠 = 16.1% indicates that day-ahead prices are in the spike regime in 8.05%
(𝑝𝑠/2) of hours (Coulon et al., 2013, Brandkamp et al., 2025).

In addition to the above regime-switching model, we also utilize the model of hourly
solar and wind generation that Brandkamp et al. (2025) estimate for 218 wind farms and
189 solar farms using their generation profiles provided by ERCOT (2023). The model
allows simulating plant-level hourly solar and wind generation. It captures daily and
seasonal generation cycles and accounts for the correlation between each plant’s hourly
generation and aggregate wind and solar generation (Brandkamp et al., 2025).

4.4.2 Merit-order model

Based on the above day-ahead market model, Brandkamp et al. (2025) use a merit order
model to simulate dispatch and profits for a sample of 655 power plants that operate in
the ERCOT market. Table 4.4 summarizes the number of plants and their capacities by
technology. For conventional plants, plant-level data on capacity, commissioning dates,
heat rates, and variable costs are provided by Mann et al. (2017). For solar and wind
farms, plant-level data on capacity and commissioning dates is obtained from ERCOT
(2023).

Employing Brandkamp et al.’s (2025) regime switching model and the renewable
generation model, we first simulate a large number of day-ahead market states. We define
a market state as a set of hourly day-ahead price 𝑃𝑡, net load 𝐿𝑡, gas price 𝐺𝑡, and hourly
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Technology Plant Count Capacity (MW) % in Total Capacity
Wind 218 39,203 27.29
Solar 189 24,701 17.19
Gas Combined Cycle 68 35,132 24.45
Gas Steam Turbine 46 11,970 8.33
Gas Open Cycle 83 6,438 4.48
Gas Combustion Engine 10 671 0.47
Lignite 12 7,142 4.97
Coal 20 12,637 8.80
Hydro 5 555 0.39
Nuclear 4 4,981 3.47
Biogas 4 93 0.06
Biomass 2 150 0.10

Table 4.4: Overview of plant types, their counts, nameplate capacities, and shares in total
capacity.

solar and wind generation values. For each set of values, we determine hourly dispatch
and profit for each conventional plant using a standard merit order model as presented
in Brandkamp et al. (2025). In addition, we use Brandkamp et al.’s (2025) renewable
generation model to simulate corresponding generation and profits for the solar and wind
plants.

The large number of simulated market states provides us with a rich distribution of
hourly day-ahead prices, quantities, and profits. Using these distributions, we continue
deriving optimal trading strategies in our forward energy market.

4.5 Trading in the forward energy market

4.5.1 Optimal forwards and option quantities

In this section, we characterize optimal trading strategies for market participants following
Brandkamp et al. (2025). We start by modeling day-ahead market profits for a load-serving
entity (LSE) and a generator (GEN) in hour 𝑡 as:

𝜋𝐿𝑆𝐸
𝐷𝐴𝑡

= (𝑅𝑌 − 𝑃𝑡)𝑞𝑡 𝜋𝐺𝐸𝑁
𝐷𝐴𝑡

= 𝑃𝑡𝑞𝑡 − 𝑐𝑡(𝑞𝑡)

where 𝑃𝑡 is the day-ahead price, 𝑞𝑡 is the agent’s load or generation, 𝑅𝑌 the fixed retail
rate in year 𝑌, and 𝑐𝑡(𝑞𝑡) the generator’s cost function. For some generation technologies,
costs may vary with fuel prices on a yearly or daily basis (Brandkamp et al., 2025).
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Both agents can hedge their day-ahead market risk by buying or selling forwards and
European call options. The total hedged profit for agent 𝑖 ∈ {LSE, GEN} in hour 𝑡 is:

𝜋𝑖
𝑡 = 𝜋𝑖

𝐷𝐴𝑡
− (𝐹 𝑝

𝑀 − 𝑃𝑡) ℎ𝑀 − (𝑉𝑀 − 𝑣𝑡) 𝑧𝑀,

ℎ𝑀 and 𝑧𝑀 are the quantities of forwards and call option contracts for delivery period
𝑀. 𝐹 𝑝

𝑀 is the forward price in delivery period 𝑀, 𝑉𝑀 is the option price and 𝑣𝑡 =
max{𝑃𝑡 − 𝐾𝑀, 0} is the option payoff with strike price 𝐾𝑀 (Brandkamp et al., 2025).

Forwards and option quantities ℎ𝑀 or 𝑧𝑀 can be positive or negative. Negative
quantities indicate that the agent sells, while positive quantities indicate that it buys.
Importantly, we assume that the chosen forwards and option quantities do not affect
agents’ bidding incentives, and equilibrium prices and quantities in the day-ahead market
(Brandkamp et al., 2025).

Agents select the optimal forwards and option quantities ℎ𝑀 and 𝑧𝑀 under uncertainty
about day-ahead prices 𝑃𝑡, load 𝑞𝑡, and generation costs 𝑐𝑡(⋅). We define option and
forward quantities as optimal if they maximize agent 𝑖’s expected utility from profits in
delivery period 𝑀 (Brandkamp et al., 2025):

max
ℎ𝑀, 𝑧𝑀

𝐸[ 𝑈(𝜋𝑖
𝑡∈𝑀)] (4.19)

The optimal quantities ℎ∗
𝑀(𝐹 𝑝

𝑀, 𝑉𝑀) and 𝑧∗
𝑀(𝐹 𝑝

𝑀, 𝑉𝑀) that solve the above problem are
functions of the prices for forwards and options 𝐹 𝑝

𝑀 and 𝑉𝑀. Unlike Brandkamp et al.
(2025), we let agents express preferences for forwards and options quantities for prices
that may deviate from arbitrage-free levels. To integrate this with the flow trading
methodology (Section 4.3.2), agents specify their net demand for a combined portfolio of
forwards and options as a downward sloping piece-wise linear function of the portfolio
price (i.e., a linear combination of forwards and option prices).

To simulate optimal net demand curves, we assume that agents have constant abso-
lute risk aversion (CARA) utility functions. With CARA utility, we require numerical
optimization to find optimal forwards and option quantities because day-ahead market
profits are not normally distributed due to price-spikes and correlation between prices
and load (Lapan et al., 1991, Brandkamp et al., 2025).

4.5.2 Trade-to-target strategies

At any given time, the net demand curve specifies the optimal forward and option
quantities based on current information about the distribution of day‐ahead prices and
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load. However, executing the entire net demand in a single order would adversely affect
market prices. Instead, large agents typically split their orders into smaller chunks and
trade gradually to mitigate price impact (Budish et al., 2023). Trading gradually also
has the advantage that agents can constantly adjust their orders in response to new
information. Incremental trading, thereby, facilitates risk management (Cramton et al.,
2024a).

Flow trading makes gradual trade over time much easier than conventional limit order
bids. Flow trading asks agents to express a trade rate, which determines how fast agents
want to trade to satisfy their net demand. This makes it easy to split the large total
net demand into small fractions that are traded over time (Budish et al., 2023). Agents
can adjust trade rate and net demand curves every hour to respond to new information
(Cramton et al., 2024a).

A straightforward strategy within this framework is “trade-to-target”. Agents set their
net demand as a target to be reached by the start of physical delivery. They also specify
the trade rate at which they want to move toward the target. For instance, an LSE may
choose a net demand target for forwards equal to the expected load it needs to serve
during the delivery period. The LSE could select the trade rate such that the fraction of
net demand it purchases increases linearly from zero to its target as time moves from
48 months ahead to day-ahead. Its call option target may be enough to cover potential
demand surges during extreme weather (Cramton et al., 2024a).

Figure 4.2: Illustration of a trade-to-target strategy for an LSE (not to scale)
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Figure 4.2 illustrates a trade-to-target strategy for an LSE that has a 50 percent
renewable energy requirement. The LSE purchases 50 percent of its expected demand
with renewable energy certificates (RECs, green) and the remaining forward energy
without RECs (blue). To cover unanticipated demand, it buys energy options (red).
Beginning one month ahead, the LSE may purchase forward reserves (yellow) to get some
additional forward energy if required by expected market conditions. Target purchases
are completed one day ahead. Agents then respond to new information with intraday
adjustments until real time.

Flow trading also makes it easy for the LSE to substitute forwards and options if their
relative prices change since net demand is always expressed for a portfolio of forwards
and options (Cramton et al., 2024a).

In the next section, we describe how we aim to simulate linear trade-to-target strategies
in the forward energy market for representative LSEs and generators with diverse risk
preferences, load-serving obligations, and power plant portfolios. We plan to derive
forward market clearing prices and quantities using Budish et al.’s (2023) flow trading
methodology. We will use these clearing prices and quantities to calculate hourly hedged
profits for each market participant.

4.6 Simulation results

In this section, we numerically simulate hedging strategies for a set of representative
generators and LSE for all hours in 2019. We initialize the simulation on 𝑡 = December
1, 2018 and run hourly frequent batch auctions in each hour until December 31, 2019. At
the start of the simulation, we initialize all random processes at their long-term average,
i.e., 𝐿𝑡 = 𝑋𝑡 = 0, 𝑙𝑜𝑔(𝐺𝑡) = 𝑚𝐺 (Coulon et al., 2013, Brandkamp et al., 2025). Moreover,
we set the risk-free interest rate at 2% and choose a high call option strike price of
$1, 000/MWh so that the option covers only the tail of the day‐ahead price distribution.

We create a set of representative generation companies and load-serving entities
(LSEs) to analyze a realistic market structure. For the generation side, we create 10
generation companies by allocating the 655 power plants in our sample to one of these
companies such that the resulting power plant portfolios mimic representative generation
firms (Mann et al., 2017). As an example, the capacity mix of three generation companies
is shown in Figure 4.3. The capacity mixes for all other generation companies are given
in Figures D.8 and D.9 in Appendix D.4 (Brandkamp et al., 2025).

Generation owner 1 in Figure 4.3b represents a large incumbent generation firm with
147 power plants and 34 GW installed capacity. Its plant portfolio is technologically
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Figure 4.3: Capacity mix per owner in % of total capacity (total capacity in brackets)

well-diversified and representative for the Texan market. Owner 5 in Graph 4.3c is a
smaller-mostly conventional generation company with 8 GW installed capacity and 29
plants. More than two-thirds of its portfolio consists of gas plants. Owner 8 in Figure
4.3d mimics a small renewable-only player who has 3 GW installed capacity across 16
solar and wind farms. Due to their different size and technology mix, these generation
companies might have very different hedging needs (Brandkamp et al., 2025).

On the demand side, we also create 20 representative LSEs. We assume that each
LSE serves, on average, a certain share of aggregate load. Demand market shares range
from 2% to 12% of aggregate load. Based on Brandkamp et al. (2025), each LSE’s load
follows aggregate load while a random noise process causes the LSE’s load to occasionally
deviate from aggregate load. We assume perfect competition on the demand side, i.e.,
all LSEs charge their end-customers the same retail price equal to the average annual
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day-ahead price plus a 10% margin that allows LSEs to cover their fixed costs and to
make a profit (Peura & Bunn, 2021, Brandkamp et al., 2025).

Below, we present simulated net demand curves to examine agents’ preferences for
forwards and options. We focus on simulating hedging strategies for incumbent generation
owner 1 (see Figure 4.3b) and for a medium-size LSE with 5% market share.

Figure 4.4 shows matrices of optimal forward and call option ratios for the monthly
delivery period on Weekdays 4-5 pm in August 2019. These ratios are expressed as a
fraction of the agents’ expected load in the delivery period. A 2% option bias indicates that
the option price is 2% above its arbitrage-free level. For these matrices, we parameterize
agents’ risk preferences using a moderate relative risk coefficient of 0.2.2 The delivery
period Weekdays 4-5 pm in August 2019 is a peak period with large and frequent price
spikes (Brandkamp et al., 2025)

Graph 4.4b reveals that the moderately risk-averse LSE wants to buy 98% of its
expected load in forwards and 57% in options when both forwards and options have zero
bias (i.e., prices are at their arbitrage free levels). The generator wants to sell 102% of
expected load in forwards and only 2% in options for unbiased prices. With a negative
forward bias, the generator reduces its short forward position and the LSE increases its
long forward position (Graphs 4.4a and 4.4c). To offset the large forward position, the
LSE cuts its long option position while the generator takes large short option positions
(Graphs 4.4b and 4.4d). Conversely, a positive forward bias makes buying forwards less
attractive such that the LSE reduces its long forward position and the generator goes
short in forwards. At the same time, a high forward price prompts both players to buy
more options (or at least sell less of them). Similarly, a negative option price bias makes
buying options more attractive relative to buying forwards and vice versa.

For both agents, forward and option ratios are more elastic to forward prices than to
option prices. Figures 4.5a and 4.5c show the agents’ downward-sloping inverse demand
curves for forwards when fixing the option price at its arbitrage-free level (zero bias).
Plots 4.5b and 4.5d depict the inverse demand curves for options when holding the
forward price unbiased. The plots highlight that the own-price elasticity of the option
demand is smaller than for the forward demand. Especially, the LSE’s option demand is

2Following the literature, we transform the relative risk coefficient as an input for CARA utility
functions in order to make risk preferences comparable between players who have very different profit
scales. To do so, we choose a relative risk coefficient as an exogenous parameter. Then, we divide the
relative risk coefficient by the agent’s average profit in the delivery period to translate the relative risk
coefficient into an absolute risk coefficient. Locally, at the average profit level, the relative risk coefficient
and the absolute risk coefficient describe the same risk aversion level. We assume this absolute risk
coefficient to be constant across all profit levels to use it as an input for the CARA utility function
(Raskin & Cochran, 1986, Newbery, 1989, Lapan & Moschini, 1994, Brandkamp et al., 2025).
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(a) LSE’s forward ratios
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(b) LSE’s option ratios
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(c) Generator’s forward ratios
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(d) Generator’s option ratios

Figure 4.4: LSE and generator’s optimal forward and option ratios as a function of the
bias in forward and option prices for peak delivery period weekdays 4-5 pm in August
2019 for a relative risk coefficient of 0.2

hardly elastic to the option price (Plot 4.5b). In addition, Figure D.1 in Appendix D.1
indicates that the cross-price elasticity of the option demand with respect to the forward
price exceeds its own-price elasticity. Option demand rises in the forward price. Demand
for forwards is moderately elastic to option prices. However, the forward’s own-price
elasticity is larger than its cross-price elasticity with respect to the option price, especially
for the generator.

The forward-price elasticity of forwards and options is larger for negative biases than
for positive ones. This asymmetry arises because a positive forward bias induces a short
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(c) Generator’s forward ratios
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Figure 4.5: LSE and generator’s net demand curves for forwards and options for peak
period weekdays 4-5 pm in August 2019

forward position. Such short position can incur extreme losses during peak periods with
high price spikes (Brandkamp et al., 2025). Consequently, both the generator and the
LSE take only small speculative short positions even if there is a large positive bias in the
forward price. Negative forward biases induce larger speculative long positions because
long positions do not trigger large losses when spike prices occur.

Overall, the generator takes larger arbitrage positions in response to biased prices,
likely because the LSE faces more extreme tail risks in the day‐ahead market (Brandkamp
et al., 2025). Therefore, the LSE is more cautious when speculating. Notably, the generator
takes substantial arbitrage positions for relatively small price biases of −10% to 10% for
this peak period, where large and frequent price spikes make speculation highly profitable.
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(a) LSE’s forward ratios
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(b) LSE’s option ratios
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(c) Generator’s forward ratios
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Figure 4.6: LSE and generator’s optimal forward and option ratios as a function of the
bias in forward and option prices for off-peak delivery period weekends 4-5 am in May
2019 for a relative risk coefficient of 0.2

In contrast, Figure 4.6 presents similar matrices for the off-peak period weekends
4-5 am in May 2019, when price spikes are small and rare. Here, both agents take much
smaller arbitrage positions. Arbitrage is less attractive in off-peak periods with smaller
price spikes. Moreover, in the off-peak period, net demand is almost insensitive to changes
in the option price. The option has a very small value relative to the forward because
simulated day-ahead prices hardly ever exceed the strike price of $1, 000/MWh in this
off-peak period. Nonetheless, both agents still opt for substantial short option positions.
The LSE finds it optimal to short options to offset its large long forward position.
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Remarkably, even with a 10% positive forward bias, the generator only wants to sell
at most 130% of expected demand forward while the LSE wants to buy at least 167%
forward. If only these two agents participated in the in the market, an even larger forward
bias would be required to clear the market.

However, risk preferences play a key role in agents’ appetite for arbitrage. Appendix
D.2 compares the ratio matrices for nearly risk-neutral agents (relative risk coefficient
0.001) with those for highly risk-averse agents (risk coefficient 1), both for the off-peak
and peak period.

Both agents take very large arbitrage positions when they are nearly risk-neutral.
Interestingly, the almost risk-neutral LSE wants to speculate more with options in the
off-peak period than in the peak period as a comparison of Figures D.2a, D.2b, D.4a,
and D.4b in Appendix D.2 highlight. By contrast, the moderately risk-averse LSE (risk
coefficient 0.2) wants to arbitrage more in the peak period than in the off-peak period,
as shown above.

The arbitrage positions for the nearly risk-neutral agents are likely unrealistically
large. Even risk-neutral agents likely take smaller arbitrage positions due to collateral
requirements. So far, we have not modeled these requirements. In the future, we will
extend the objective function in equation 4.19 in section 4.5.1 such that it contains a
penalizing collateral component that increases when agents take speculative imbalanced
positions to limit arbitrage.

The figures in Appendix D.2 also reveal that the agents speculate much less when
they are highly risk-averse (risk coefficient 1). Especially in the off-peak period, highly
risk-averse agents barely arbitrage. It would likely require very large positive biases in
options and forward prices to clear the market if all market participants were highly
risk-averse. However, it seems unlikely that the majority of generation companies and
LSEs are highly risk-averse.

A distinctive feature of our market design is the high strike price of $1, 000/MWh for
the call option. Appendix D.3 explores the impact of a lower strike price of $200/MWh on
net demand. For arbitrage-free prices, Brandkamp et al. (2025) finds that a lower strike
price induces agents to choose more options and fewer forwards because the option grants
better protection from moderate price spikes if the strike price is lower. In Appendix D.3,
we reproduce this finding. In addition, we show that a low strike price of $200/MWh
incentivizes larger arbitrage positions compared to the higher $1, 000/MWh strike price.
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4.7 Discussion

In the above simulations, we have analyzed how generators and LSEs can use forwards
and options in our forward energy market to manage risk. The essential innovation of our
proposal is that forwards and options are traded gradually. In a next step, our research
project aims to demonstrate that gradual trade leads to smooth and slow movements
of prices and quantities. Our approach is designed to achieve smooth price movements
because it incentivizes market participants to provide a constant flow of liquidity for
thousands of granular products. Price signals for forward energy, thereby, become more
stable and reliable (Cramton et al., 2024a).

Stable and transparent price signals provide market participants with crucial infor-
mation for efficient operation and investment. Granular forward prices enable demand
and supply resources to create maximum value in their operation throughout the day,
season, and year. This value motivates efficient investment, the main driver of competition.
Reliable prices also stimulate innovation in new resource types, especially resources that
create value by flexibly responding to prices. Batteries and other low-carbon technologies
are good examples. Demand-side innovation benefits from transparent prices. LSEs and
other service providers can offer valuable services that optimize the use of low-carbon
technologies to maximize consumer welfare. Energy efficiency programs also benefit from
the multi-year forward price information.

In addition, the forward energy market would improve resiliency and reliability.
Robust forward prices would amplify incentives to invest in technologies encouraging
price-responsive demand, such as electric vehicles and smart homes. Retail providers
would be encouraged to offer dynamic rate plans that allow consumers to create value
by being flexible. These dynamic rates could include automatic hedging via forward
purchases such that the dynamic rate reduces downside consumer risk relative to a
fixed rate (Brandkamp, 2025). Reliable price information four years ahead would give
households, service providers, and industry the information necessary to make these
investment decisions.

Long-term price signals also support generation companies in managing the substantial
risks involved in investing in new generation assets. Thereby, the forward energy market
might replace capacity markets and strategic reserves, or at least reduce their relevance.
Capacity markets are adopted to strengthen investment incentives. Flaws in the day-
ahead and real-time markets may depress spot revenues below desired investment levels.
The flaws are 1) a too-low price cap, 2) treatment of nonconvex costs, and 3) unpriced
operator decisions, such as intraday commitments for reliability. These flaws create a
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“missing money” problem (Joskow, 2008, Cramton et al., 2013). Capacity markets address
the missing money problem by creating additional revenue streams for generators.

The major problem of capacity markets is market power. Capacity markets use
big-event auctions to procure capacity. Typically, a single auction procures 100 percent
of the required capacity three years ahead. Since some market participants are dominant,
the scope for exercising market power is considerable. Modern capacity markets rely on
procedures to mitigate market power such as price caps or minimum offer prices. However,
these procedures are controversial and imperfect (Patterson & Reiter, 2016, Macey &
Ward, 2021).

By contrast, our forward energy market leaves little room for exercising market
power since it encourages granular and gradual trade over many years. Participants
trade forward small quantities from near-balanced positions (anticipated load + sales ≈
anticipated production + purchases). Therefore, they have little incentive or opportunity
to exercise market power.

At the same time, the forward energy market effectively addresses the three above
flaws that capacity markets are supposed to tackle: With a robust forward energy market,
the regulator can raise the price cap because market participants are in a nearly balanced
position and sufficiently hedged from high real-time prices. Nonconvex costs become
less important with robust forward prices that introduce a significant volume of convex
arbitrage bids. If the forward energy market was combined with intraday rolling settlement,
the intraday reliability decisions would be optimized and efficiently priced. By contrast,
existing capacity markets do not directly address these underlying spot market problems.

Ditching capacity markets will not compromise reliability and resiliency. LSEs have a
strong incentive to buy forward, especially with options, because the joint occurrence of
day-ahead price spikes and high retail demand exposes LSEs to enormous downside risk.
In addition, the regulator should introduce a penalty that LSEs pay for any quantity not
purchased in advance. The penalty provides an extra incentive to purchase energy options
for load that is not expected but may develop in real time. Real-time purchases and
imbalance penalties are paid from collateral. The collateral requirement increases with
the size of the imbalance, consistent with the higher default risk from larger imbalances.
Generation companies’ incentives to sell options stem from LSEs’ willingness to pay
a small risk premium to be protected from adverse downside risks. The risk premium
provides an additional revenue stream that helps generators to cover their investment
costs.

These incentives to buy options should be strong enough for the generators and LSEs
to take action to cover their load even in extreme weather events. Resiliency depends on
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these incentives. The regulator should raise the day-ahead price cap or the penalty factor
if the incentives prove too weak. These parameters need to be set to achieve reliability
and resiliency goals. The penalty factor is easy to raise if experience demonstrates that
LSEs buy insufficient load forward to cover extreme events.

Overall the forward energy market is effective in guaranteeing the reliability and
resiliency of the electricity system and in offering attractive risk management tools. Yet,
one might wonder if it is necessary that the system operator establishes such a new
centrally-organized market. Private exchanges like ICE and CME have already organized
established markets for forward energy contracts and options.

However, these private markets have severe problems. Liquidity in private exchanges
is poor for products more than one year ahead. There are significant frictions due to
the duopoly providers’ profit incentives, which include charging high fees for services,
such as low-latency data feeds and co-location services, that are only needed because
of a flawed trading format (Budish et al., 2015). The trading format provides too little
time and location product granularity, and participants need expensive algorithmic tools
to slice orders into thousands of pieces to limit adverse price impact. Because of these
misaligned incentives of the private exchanges, the forward energy market can and should
be managed by the independent system operator, which alone is motivated to adopt an
efficient and transparent firm energy market.

Through knowledge of positions, the system operator can establish highly optimized
collateral requirements that maximize market resiliency to systemic events with minimal
collateral. The collateral requirement depends on deviations from balanced positions.
Markets fail when counter-parties become unreliable. Optimized collateral is critical to
minimizing this vulnerability at the least cost.

4.8 Conclusion

Electricity markets worldwide need to foster rapid innovation to accommodate the energy
transition. Innovation is best accomplished with a market design grounded on first
principles. The foundation is the spot market, which optimizes the operation of existing
resources to satisfy electricity needs at the least cost. Complementing an efficient spot
market, we propose a novel forward market design that allows trading of granular forward
contracts and European call options, enabling hedge positions closely aligned with actual
load profiles. Our design leverages Budish et al.’s (2023) flow trading technology to ensure
liquidity and mitigate price impact through gradual, small-quantity trades in hourly
batch auctions.
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In this project, we develop a full-scale, proof-of-concept simulation of our forward en-
ergy market design within Texas’s ERCOT market spanning twelve years. This simulation
aims to demonstrate the feasibility of our novel market design. Using a regime-switching
model, we simulate the distribution of day-ahead profits for representative generators
and LSEs. Based on these day-ahead profit distributions, we derive net demand curves
for forwards and options for CARA utility-maximizing agents.

Our simulations indicate that risk preferences critically shape agents’ net demand
curves. With high risk aversion, both generators and LSEs tend toward nearly vertical
net demand curves because agents are unwilling to take on arbitrage risk. Such high risk
aversion would force market clearing prices for forwards and options to be substantially
above arbitrage-free levels. Generators display a greater willingness to arbitrage as they
face lower downside risks in the day‐ahead market than LSEs. As risk aversion diminishes,
net demand curves become less vertical, especially for generators. Flatter demand curves
will likely lead market-clearing prices to converge closer to arbitrage-free benchmarks.
However, nearly risk-neutral behavior produces unrealistically large arbitrage positions,
underscoring the need to incorporate collateral requirements in our simulations in the
future.

We also observe that net demand for both forwards and options is more responsive
to changes in forward prices than in option prices. Moreover, net demand demand reacts
more acutely to negative forward price biases than to positive ones. A positive bias in the
forward price incentivizes large short positions, which can trigger large downside risks.

In peak periods marked by large price spikes, arbitrage positions are considerably
larger than in off-peak periods. Net demand for forwards and options becomes almost
inelastic to the option price in off-peak periods because the option has a very small value
in off-peak periods with rare and small price spikes.

Lastly, lowering the option strike price from $1, 000/MWh to $200/MWh shifts agents’
behavior by increasing option positions and reducing forward positions, as the lower
strike offers better protection against moderate price spikes. Moreover, agents tend to
engage more in arbitrage with a lower strike price.

In our future work, the simulated net demand curves above will feed as trading
strategies into the flow trading methodology to yield market clearing prices and quantities
in each hourly batch auction. We will investigate how clearing prices and quantities evolve
as they get closer to their physical delivery periods. We will examine to what extend
equilibrium prices deviate from arbitrage-free levels. Moreover, how agents’ expected
profits, volatility, and downside tail risk are affected by trading in a liquid forward energy
market.
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To implement our market design in practice, we suggest an incremental approach:
Initially, the market operator should introduce an hourly, 30-day ahead forward energy
(and reserve) market while retaining existing capacity requirements. The incremental
implementation would operate as described above but with a weakening of the mandatory
purchase obligation. The obligation starts at 0 percent of the anticipated load 30 days
ahead to avoid a discontinuous purchase obligation. LSE obligations could increase linearly
from 0 to 100 percent from 30 to 1 day ahead.

The incremental approach allows stakeholders to experience the benefits of liquid
forward trading and improved price signals without overhauling current capacity mecha-
nisms. Incremental adoption can occur at a modest cost and with little delay because
the changes do not alter the core systems. Subsequent extension to a longer forward
window is easy. Forward trading is particularly valuable within the 30 day window before
physical delivery due to higher volumes and volatility.

Following this incremental approach, regulators could pilot our forward energy market
without interfering with existing market design. When the advantages of our design for
price discovery and risk management become apparent, regulators can easily extend the
market by including more products and extending the trading period to four years ahead
or even longer.
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Appendix A

Appendix to Chapter 1

Table A.1 shows the results for the fixed-effects regression model, including all time leads
and lags. The regressions for the low-carbon technology (LCT) groups on the following
page contain the consumption of all 5,904 households on fixed tariff as control (See
Section 4). Regression results for narrower LCT-group-specific controls are presented in
Figure A.1 and Table A.2 below.

Table A.1: Fixed effects regression results with country-wide controls for electricity
consumption of customers on fixed rates

Regres-
sors All customers winter spring

sum-
mer fall

night
(0-6)

morn-
ing
(6-12)

after-
noon
(12-18)

evening
(18-24)

const -0.002*** -0.001 -0.001 -0.000 -
0.004***

-0.003** -0.001 -0.001 -0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001)
-8h 0.042*** 0.017 0.026* 0.040** 0.057*** 0.037*** 0.011 0.004 0.005

(0.007) (0.011) (0.016) (0.016) (0.011) (0.011) (0.011) (0.011) (0.011)
-7.5h 0.014* 0.024* 0.012 0.027 0.009 -0.001 0.003 0.001 0.014

(0.008) (0.014) (0.020) (0.019) (0.014) (0.014) (0.013) (0.013) (0.012)
-7.0h -0.000 -0.000 -0.008 -0.009 0.001 0.001 -0.002 -0.001 -0.004

(0.008) (0.014) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012)
-6.5h 0.015* 0.008 0.024 -0.004 0.015 0.019 0.010 0.007 0.014

(0.008) (0.014) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012)
-6h 0.003 0.009 0.005 -0.034* 0.000 -0.006 -0.003 0.005 0.037***

(0.008) (0.015) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012)
-5.5h 0.001 0.004 0.023 0.009 -0.002 0.017 -0.009 0.015 0.019

(0.008) (0.015) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012)
-5.0h 0.010 0.003 0.032 0.008 -0.000 0.009 0.016 -0.001 0.011

(0.008) (0.015) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012)
-4.5h 0.005 0.012 -0.013 0.011 0.004 0.013 0.004 0.004 -0.008

(0.008) (0.015) (0.020) (0.020) (0.014) (0.014) (0.013) (0.014) (0.012)
-4h 0.017** 0.015 0.001 0.014 0.013 0.024* 0.007 0.006 -0.001

(0.008) (0.015) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012)
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Table A.1 (continued)

Regres-
sors All customers winter spring

sum-
mer fall

night
(0-6)

morn-
ing
(6-12)

after-
noon
(12-18)

evening
(18-24)

-3.5h 0.002 0.014 -0.005 -0.007 0.007 0.003 0.011 0.022 -0.000
(0.008) (0.015) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012)

-3.0h 0.003 0.006 -0.006 -0.003 0.004 0.019 0.011 0.004 0.000
(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.013) (0.012)

-2.5h 0.011 0.017 0.029 0.016 0.008 0.015 0.008 0.018 -0.004
(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.013) (0.012)

-2h -0.000 0.003 0.008 0.002 0.000 0.003 0.009 0.010 -0.012
(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012)

-1.5h 0.005 -0.000 -0.012 -0.001 -0.004 0.004 0.007 0.022 -0.013
(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012)

-1.0h 0.002 0.012 0.029 -0.003 0.002 0.021 0.020 0.020 0.010
(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012)

-0.5h -0.018** -0.006 -0.035* 0.003 -0.029** -0.007 0.025* -0.011 -0.022*
(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012)

0h -0.265*** -
0.273***

-
0.246***

-
0.297***

-
0.223***

-
0.302***

-
0.154***

-
0.157***

-
0.240***

(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012)
0.5h -0.030*** -0.030** -0.035* 0.017 -0.029** -

0.060***
0.006 -0.020 0.046***

(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012)
1.0h -0.002 -0.007 -0.004 0.027 0.002 0.003 0.022* 0.022 0.026**

(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012)
1.5h 0.013 0.010 -0.002 0.016 0.016 -0.011 -0.003 0.001 0.032**

(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012)
2h 0.017** 0.008 0.019 0.026 0.005 0.030** 0.002 0.010 0.042***

(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012)
2.5h 0.018** 0.021 0.001 0.019 0.012 0.019 0.024* 0.009 0.004

(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012)
3.0h 0.012 0.001 0.052** 0.006 0.015 0.009 0.016 0.018 0.003

(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.013) (0.012)
3.5h 0.019** 0.018 0.025 0.026 0.028* 0.012 -0.001 0.007 0.016

(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.013) (0.012)
4h 0.018** 0.005 0.001 0.044** 0.019 0.011 -0.007 -0.004 0.019

(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012)
4.5h 0.010 0.014 0.017 -0.003 0.003 0.005 0.001 -0.001 0.010

(0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012)
5.0h 0.015* 0.026* 0.003 -0.011 0.010 -0.019 0.014 -0.012 0.017

(0.008) (0.014) (0.020) (0.020) (0.014) (0.014) (0.013) (0.014) (0.012)
5.5h 0.009 0.004 -0.009 -0.009 0.003 -0.022 0.004 0.001 0.018

(0.008) (0.014) (0.020) (0.020) (0.014) (0.014) (0.013) (0.014) (0.012)
6h 0.002 0.003 0.011 -0.013 -0.000 0.002 -0.022* 0.019 0.007

(0.008) (0.014) (0.020) (0.020) (0.014) (0.014) (0.013) (0.014) (0.012)
6.5h 0.001 -0.001 0.013 -0.013 0.003 0.003 0.010 -0.005 -0.005

(0.008) (0.014) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012)
7.0h 0.008 -0.000 -0.010 0.023 0.012 -0.001 -0.013 0.005 0.007

(0.008) (0.014) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012)
7.5h 0.003 -0.004 -0.003 -0.013 0.014 0.012 0.012 0.016 -0.009

(0.008) (0.014) (0.020) (0.019) (0.014) (0.014) (0.013) (0.013) (0.012)
8h 0.008 0.033*** -0.005 -0.010 -0.006 0.015 0.035*** 0.003 -0.001

(0.007) (0.011) (0.016) (0.016) (0.011) (0.011) (0.011) (0.011) (0.011)
delta_ln 1.008*** 1.226*** 1.043*** 0.838*** 0.804*** 0.568*** 1.112*** 1.055*** 0.899***
_watt_fixed (0.009) (0.016) (0.015) (0.021) (0.022) (0.031) (0.014) (0.009) (0.020)
Observa-
tions

17,105 4,200 4,247 4,295 4,263 4,233 4,257 4,260 4,257

R2 0.484 0.657 0.570 0.354 0.362 0.434 0.628 0.784 0.415
Adjusted
R2

0.483 0.655 0.567 0.348 0.357 0.429 0.625 0.782 0.410

Residual
Std. Error

0.070
(df=17070)

0.063
(df=4165)

0.061
(df=4212)

0.054
(df=4260)

0.090
(df=4228)

0.098
(df=4198)

0.054
(df=4222)

0.042
(df=4225)

0.062
(df=4222)

F Statistic
(omitting all
regressors)

471.336***
(df=34;
17070)

235.063***
(df=34;
4165)

164.230***
(df=34;
4212)

68.553***
(df=34;
4260)

70.542***
(df=34;
4228)

94.636***
(df=34;
4198)

209.497***
(df=34;
4222)

451.391***
(df=34;
4225)

88.134***
(df=34;
4222)
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Table A.1 (continued)

Regres-
sors All customers winter spring

sum-
mer fall

night
(0-6)

morn-
ing
(6-12)

after-
noon
(12-18)

evening
(18-24)

F Statistic
(omitting time
leads and lags)

58.241**
(df=32;
17070)

21.934**
(df=32;
4165)

10.757**
(df=32;
4212)

6.900**
(df=32;
4260)

13.258**
(df=32;
4228)

18.206**
(df=32;
4198)

9.938**
(df=32;
4222)

11.865**
(df=32;
4225)

11.228**
(df=32;
4222)

Note:
*p<0.1;**p<0.05;***p<0.01
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Table A.1 (continued)

Regressors No LCT
At least
one LCT

Inf.
electric
heating
only

Inf.
electric
heat. +
smart
thermost. EV only

Solar
only

Battery
only EV + solar

const -0.001 -0.002*** -0.001** -0.001* -0.002** -0.003 -0.001 -0.003**
(0.001) (0.001) (0.000) (0.000) (0.001) (0.002) (0.001) (0.001)

-8h -0.003 0.046*** 0.011* -0.003 0.060*** 0.028 0.011 0.087***
(0.013) (0.007) (0.006) (0.006) (0.010) (0.022) (0.018) (0.018)

-7.5h 0.017 0.011 -0.005 0.014** 0.004 0.024 0.015 0.009
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

-7.0h -0.008 -0.001 -0.003 -0.012* -0.002 0.004 0.033 0.007
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

-6.5h 0.011 0.015* 0.002 0.003 0.012 0.010 -0.007 0.030
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

-6h 0.023 0.003 0.004 0.008 0.010 -0.027 -0.026 0.020
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

-5.5h 0.005 0.001 -0.002 -0.007 0.008 -0.006 0.017 -0.004
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

-5.0h 0.004 0.011 -0.000 0.015** 0.010 0.009 0.003 0.027
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

-4.5h 0.010 0.006 -0.002 -0.001 0.011 0.012 -0.001 -0.001
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

-4h -0.026 0.020** 0.010 -0.014* 0.029** 0.015 0.001 0.029
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

-3.5h -0.015 0.003 -0.003 0.002 -0.001 0.001 -0.018 0.011
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

-3.0h 0.022 -0.000 0.002 0.014** -0.008 0.014 0.021 -0.007
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

-2.5h 0.016 0.010 0.009 0.006 0.005 0.020 0.026 0.021
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

-2h 0.017 0.000 0.000 -0.001 -0.001 0.013 -0.010 0.001
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

-1.5h -0.018 0.006 -0.002 -0.005 0.003 0.011 0.024 0.014
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

-1.0h 0.003 0.002 -0.000 0.001 -0.002 0.033 -0.005 -0.009
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

-0.5h 0.006 -0.020** -0.014* -0.008 -0.022* -0.006 -0.039* -0.044**
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

0h -0.101*** -0.282*** -0.070*** -0.079*** -0.368*** -0.263*** -0.114*** -0.435***
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

0.5h -0.024 -0.031*** -0.007 -0.028*** -0.018 -0.060** -0.041* -0.047**
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

1.0h 0.014 -0.004 -0.001 -0.002 -0.012 0.026 0.006 -0.001
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

1.5h 0.014 0.014 0.018** 0.000 0.002 0.050* 0.017 0.027
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

2h 0.006 0.017* 0.003 0.013* 0.008 0.043 0.030 0.027
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

2.5h 0.004 0.018** 0.001 0.005 0.016 0.046 0.013 0.033
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

3.0h 0.018 0.012 -0.005 0.000 0.007 0.021 0.056** -0.005
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

3.5h 0.015 0.019** 0.003 0.003 0.023* 0.021 0.030 0.028
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

4h 0.016 0.019** 0.007 -0.004 0.031** 0.007 0.012 0.023
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

4.5h -0.011 0.012 0.007 0.011 0.017 -0.007 0.003 0.023
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

5.0h -0.002 0.017* 0.008 0.001 0.014 0.019 0.005 0.025
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

5.5h 0.014 0.009 -0.003 0.009 0.014 0.016 -0.009 0.020
(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)

6h 0.008 0.001 -0.011 -0.003 0.005 -0.011 0.024 -0.008
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Regressors No LCT
At least
one LCT

Inf.
electric
heating
only

Inf.
electric
heat. +
smart
thermost. EV only

Solar
only

Battery
only EV + solar

(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)
6.5h 0.018 -0.001 -0.005 -0.009 -0.002 -0.015 0.022 0.004

(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)
7.0h -0.024 0.009 -0.001 -0.003 0.018 0.010 0.013 0.002

(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)
7.5h 0.005 0.002 -0.006 -0.002 0.005 -0.013 -0.010 -0.004

(0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022)
8h 0.010 0.007 0.013** 0.005 0.017* -0.048** 0.017 -0.012

(0.013) (0.007) (0.006) (0.006) (0.010) (0.022) (0.018) (0.018)
delta_ln_ 1.331*** 0.965*** 0.766*** 0.716*** 0.709*** 2.176*** 2.223*** 1.183***
watt_fixed (0.017) (0.009) (0.008) (0.008) (0.014) (0.030) (0.023) (0.024)
Observa-
tions

17,049 17,105 17,054 17,105 17,096 17,105 17,049 17,105

R2 0.286 0.455 0.335 0.354 0.266 0.245 0.361 0.193
Adjusted
R2

0.285 0.454 0.334 0.353 0.264 0.243 0.360 0.191

Residual
Std. Error

0.128
(df=17014)

0.073
(df=17070)

0.065
(df=17019)

0.059
(df=17070)

0.106
(df=17061)

0.233
(df=17070)

0.181
(df=17014)

0.183
(df=17070)

F Statistic
(omitting all
regressors)

200.905***
(df=34;
17014)

419.567***
(df=34;
17070)

252.189***
(df=34;
17019)

274.979***
(df=34;
17070)

181.800***
(df=34;
17061)

162.757***
(df=34;
17070)

282.433***
(df=34;
17014)

119.738***
(df=34;
17070)

F Statistic
(omitting
time leads
and lags)

6.026**
(df=32;
17014)

56.016**
(df=32;
17070)

2.351**
(df=32;
17019)

3.605**
(df=32;
17070)

35.602**
(df=32;
17061)

6.944**
(df=32;
17070)

10.674**
(df=32;
17014)

20.466**
(df=32;
17070)

Note: *p<0.1; **p<0.05; ***p<0.01

Table A.1 (continued)

Regressors EV + battery Solar + battery EV + solar + battery

const -0.002 -0.003 -0.003*
(0.001) (0.002) (0.002)

-8h 0.029 0.065*** 0.073***
(0.019) (0.023) (0.021)

-7.5h 0.007 0.015 0.070***
(0.023) (0.028) (0.026)

-7.0h 0.015 0.025 0.010
(0.023) (0.028) (0.026)

-6.5h 0.031 0.026 0.021
(0.023) (0.028) (0.026)

-6h -0.006 -0.019 0.013
(0.023) (0.029) (0.027)

-5.5h 0.015 -0.006 -0.005
(0.023) (0.029) (0.027)

-5.0h -0.004 0.014 0.010
(0.023) (0.029) (0.027)

-4.5h 0.010 -0.008 -0.010
(0.023) (0.029) (0.027)

-4h 0.015 0.005 0.030
(0.023) (0.029) (0.027)
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Regressors EV + battery Solar + battery EV + solar + battery

-3.5h 0.011 -0.006 0.003
(0.023) (0.029) (0.027)

-3.0h 0.015 -0.004 0.017
(0.023) (0.029) (0.027)

-2.5h 0.005 0.047 0.018
(0.023) (0.029) (0.027)

-2h -0.004 0.024 0.016
(0.023) (0.029) (0.027)

-1.5h 0.010 0.022 -0.001
(0.023) (0.029) (0.027)

-1.0h 0.014 0.066** 0.036
(0.023) (0.029) (0.027)

-0.5h -0.044* -0.035 -0.019
(0.023) (0.029) (0.027)

0h -0.266*** -0.357*** -0.561***
(0.023) (0.029) (0.027)

0.5h -0.066*** -0.046 -0.069**
(0.023) (0.029) (0.027)

1.0h 0.013 0.051* 0.045*
(0.023) (0.029) (0.027)

1.5h 0.016 0.032 0.053**
(0.023) (0.029) (0.027)

2h 0.029 0.045 0.043
(0.023) (0.029) (0.027)

2.5h 0.040* 0.037 0.074***
(0.023) (0.029) (0.027)

3.0h 0.059** 0.086*** 0.065**
(0.023) (0.029) (0.027)

3.5h 0.028 0.009 0.049*
(0.023) (0.029) (0.027)

4h 0.020 -0.012 -0.000
(0.023) (0.029) (0.027)

4.5h 0.011 0.026 -0.003
(0.023) (0.029) (0.027)

5.0h 0.016 0.023 0.027
(0.023) (0.029) (0.027)

5.5h 0.015 -0.022 0.014
(0.023) (0.029) (0.027)

6h 0.002 -0.003 -0.012
(0.023) (0.029) (0.027)

6.5h 0.000 0.014 0.000
(0.023) (0.028) (0.026)

7.0h 0.002 0.015 0.008
(0.023) (0.028) (0.026)

7.5h 0.003 0.030 -0.014
(0.023) (0.028) (0.026)

8h 0.004 -0.042* -0.006
(0.019) (0.023) (0.021)

delta_ln 1.357*** 2.516*** 1.987***
watt_fixed (0.025) (0.031) (0.028)
Observations 17,101 17,105 17,105
R2 0.174 0.304 0.267
Adjusted R2 0.172 0.302 0.266
Residual Std. Error 0.193 (df=17066) 0.237 (df=17070) 0.220 (df=17070)
F Statistic (omitting all
regressors)

105.696*** (df=34; 17066) 218.937***
(df=34; 17070)

183.060***
(df=34; 17070)

F Statistic (omitting time leads
and lags)

16.329**
(df=32; 17066)

15.527**
(df=32; 17070)

28.579**
(df=32; 17070)

Note: *p<0.1; **p<0.05; ***p<0.01
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Figure A.1 shows the regression results for narrower LCT-group-specific controls while
the above Table A.1 shows the regression results for the generic country-wide control
groups that are presented in the results in section 1.5.

Figure A.1: Own-price elasticities with LCT-group-specific controls for electricity con-
sumption of customers on fixed rates
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Figure A.2 shows the regression results for narrower LCT-group-specific controls while
the above Table A.1 shows the regression results for the generic country-wide control
groups that are presented in the results in section 1.5.

Table A.2: Fixed effects regression results with LCT-group-specific controls for electricity
consumption of customers on fixed rates

Regres-
sors No LCT

At least
one LCT

Inf.
electric
heating
only

Inf.
electric
heating +
smart
thermo-
stat EV only

Solar
only

Battery
only

EV +
solar

const -0.002* -0.002*** -0.001** -0.001* -0.002*** -0.004** -0.002 -0.003**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.001)

-8h 0.020 0.048*** 0.024*** 0.007 0.069*** 0.083*** 0.045** 0.103***
(0.015) (0.007) (0.008) (0.007) (0.011) (0.023) (0.022) (0.019)

-7.5h 0.011 0.011 -0.007 0.011 -0.001 0.007 0.004 0.007
(0.018) (0.009) (0.009) (0.008) (0.013) (0.029) (0.027) (0.023)

-7.0h -0.020 -0.001 -0.009 -0.017** -0.006 -0.006 0.014 -0.003
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

-6.5h 0.000 0.016* -0.004 -0.000 0.007 -0.010 -0.014 0.021
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

-6h 0.017 0.002 0.002 0.007 0.009 -0.017 -0.029 0.018
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

-5.5h 0.005 0.002 0.000 -0.007 0.011 -0.003 0.012 -0.003
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

-5.0h 0.008 0.012 0.002 0.019** 0.013 0.023 0.003 0.030
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

-4.5h 0.019 0.006 0.003 0.003 0.015 0.028 0.013 0.006
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

-4h -0.017 0.019** 0.015 -0.011 0.032** 0.003 0.010 0.035
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

-3.5h -0.006 0.003 0.000 0.004 0.001 0.008 -0.003 0.016
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

-3.0h 0.025 0.000 0.002 0.015* -0.005 0.002 0.029 -0.004
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

-2.5h 0.019 0.010 0.010 0.008 0.006 0.021 0.019 0.024
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

-2h 0.025 0.001 0.005 0.002 0.001 0.026 0.000 0.006
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

-1.5h -0.006 0.007 0.005 0.004 0.011 0.021 0.051* 0.023
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

-1.0h 0.025 0.004 0.011 0.012 0.008 0.062** 0.035 0.009
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

-0.5h 0.032* -0.020** -0.000 0.006 -0.009 0.028 0.004 -0.023
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

0h -0.076*** -0.281*** -0.057*** -0.067*** -0.354*** -0.228*** -0.079*** -0.415***
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

0.5h -0.008 -0.031*** 0.003 -0.019** -0.011 -0.053* -0.021 -0.034
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

1.0h 0.019 -0.004 0.001 0.002 -0.010 0.034 0.016 0.005
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

1.5h 0.014 0.014 0.019** 0.001 0.005 0.057* 0.024 0.030
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

2h -0.002 0.018** -0.004 0.005 0.004 0.017 0.015 0.020
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

2.5h -0.006 0.018** -0.003 0.000 0.012 0.008 -0.011 0.022
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

3.0h 0.010 0.013 -0.008 -0.004 0.003 0.010 0.041 -0.015
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

3.5h 0.012 0.018** -0.002 0.001 0.019 0.001 0.023 0.024
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

4h 0.019 0.019** 0.010 -0.003 0.033** 0.018 0.015 0.027
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)
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Table A.2 (continued)

Regres-
sors No LCT

At least
one LCT

Inf.
electric
heating
only

Inf.
electric
heating +
smart
thermo-
stat EV only

Solar
only

Battery
only

EV +
solar

4.5h -0.012 0.013 0.006 0.011 0.014 -0.016 0.004 0.023
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

5.0h -0.005 0.017* 0.006 -0.001 0.013 0.009 -0.001 0.026
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

5.5h 0.011 0.010 -0.002 0.008 0.014 0.027 -0.014 0.019
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

6h 0.008 0.001 -0.010 -0.003 0.003 0.013 0.024 -0.008
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

6.5h 0.012 -0.001 -0.006 -0.012 -0.004 -0.012 0.017 0.001
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

7.0h -0.036** 0.009 -0.009 -0.008 0.014 -0.006 -0.001 -0.005
(0.018) (0.009) (0.010) (0.009) (0.014) (0.029) (0.027) (0.024)

7.5h -0.001 0.002 -0.010 -0.004 0.005 -0.017 -0.020 -0.006
(0.018) (0.009) (0.009) (0.008) (0.013) (0.029) (0.027) (0.023)

8h 0.026* 0.008 0.022*** 0.010 0.021* -0.009 0.040* -0.000
(0.015) (0.007) (0.008) (0.007) (0.011) (0.023) (0.022) (0.019)

delta_ln 0.011*** 0.970*** 0.065*** 0.051*** 0.111*** 0.081*** 0.104*** 0.070***
watt_fixed (0.001) (0.010) (0.003) (0.002) (0.005) (0.003) (0.004) (0.004)
Observa-
tions

16,951 17,105 17,054 17,105 17,096 15,590 17,049 17,105

R2 0.020 0.437 0.034 0.043 0.171 0.073 0.053 0.090
Adjusted
R2

0.018 0.435 0.033 0.041 0.169 0.071 0.051 0.088

Residual
Std. Error

0.150
(df=16916)

0.074
(df=17070)

0.078
(df=17019)

0.071
(df=17070)

0.113
(df=17061)

0.237
(df=15555)

0.220
(df=17014)

0.194
(df=17070)

F Statistic 9.924***
(df=34;
16916)

388.987***
(df=34;
17070)

17.852***
(df=34;
17019)

22.485***
(df=34;
17070)

103.435***
(df=34;
17061)

35.780***
(df=34;
15555)

28.165***
(df=34;
17014)

49.479***
(df=34;
17070)

Note:
*p<0.1; **p<0.05; ***p<0.01

Table A.2 (continued)

Regressors EV + battery Solar + battery EV + solar + battery

const -0.003* -0.004* -0.005**
(0.002) (0.002) (0.002)

-8h 0.054*** 0.112*** 0.095***
(0.021) (0.027) (0.030)

-7.5h 0.005 0.004 0.051
(0.025) (0.033) (0.037)

-7.0h 0.001 0.003 -0.007
(0.026) (0.034) (0.038)

-6.5h 0.024 0.010 0.027
(0.026) (0.034) (0.038)

-6h -0.010 -0.027 0.016
(0.026) (0.034) (0.037)

-5.5h 0.014 -0.003 -0.022
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Regressors EV + battery Solar + battery EV + solar + battery

(0.026) (0.034) (0.037)
-5.0h 0.005 0.023 0.007

(0.026) (0.034) (0.037)
-4.5h 0.019 0.008 0.001

(0.026) (0.034) (0.037)
-4h 0.025 0.021 0.034

(0.026) (0.034) (0.037)
-3.5h 0.018 0.006 0.005

(0.026) (0.034) (0.037)
-3.0h 0.014 -0.002 0.026

(0.026) (0.034) (0.037)
-2.5h 0.006 0.052 0.018

(0.026) (0.034) (0.038)
-2h 0.007 0.037 0.017

(0.026) (0.034) (0.038)
-1.5h 0.029 0.049 0.013

(0.026) (0.034) (0.038)
-1.0h 0.041 0.107*** 0.013

(0.026) (0.034) (0.039)
-0.5h -0.021 0.015 0.031

(0.026) (0.034) (0.039)
0h -0.244*** -0.313*** -0.601***

(0.026) (0.034) (0.039)
0.5h -0.047* -0.015 -0.043

(0.026) (0.034) (0.039)
1.0h 0.017 0.064* 0.059

(0.026) (0.034) (0.039)
1.5h 0.026 0.035 0.060

(0.026) (0.034) (0.039)
2h 0.025 0.023 0.047

(0.026) (0.034) (0.038)
2.5h 0.023 0.015 0.076**

(0.026) (0.034) (0.038)
3.0h 0.049* 0.070** 0.047

(0.026) (0.034) (0.037)
3.5h 0.025 0.003 0.038

(0.026) (0.034) (0.037)
4h 0.029 -0.003 0.001

(0.026) (0.034) (0.037)
4.5h 0.012 0.025 -0.006

(0.026) (0.034) (0.037)
5.0h 0.016 0.018 0.006

(0.026) (0.034) (0.037)
5.5h 0.012 -0.023 0.012

(0.026) (0.034) (0.037)
6h 0.001 -0.002 -0.028

(0.026) (0.034) (0.037)
6.5h -0.002 0.007 -0.007

(0.026) (0.034) (0.037)
7.0h -0.009 -0.001 -0.018

(0.026) (0.034) (0.037)
7.5h -0.001 0.025 -0.011

(0.026) (0.033) (0.037)
8h 0.031 -0.019 -0.043

(0.021) (0.027) (0.030)
delta_ln_ 0.005 -0.007** -0.021***
watt_fixed (0.004) (0.003) (0.002)
Observations 16,173 17,103 11,633
R2 0.033 0.028 0.073
Adjusted R2 0.031 0.026 0.070
Residual Std. Error 0.209 (df=16138) 0.280 (df=17068) 0.244 (df=11598)
F Statistic 16.242*** (df=34; 16138) 14.212*** (df=34; 17068) 26.810*** (df=34; 11598)
Note: *p<0.1; **p<0.05; ***p<0.01
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Appendix to Chapter 2

B.1 Derivation of the optimal hedge share ℎ∗

In this section, I derive the expressions for the optimal hedge share ℎ∗ as given in
equations (2.5) and (2.8). The derivations follow Gilbert (1985) and Cowan (2004). The
first-order condition of the optimization problem in the first stage in equation (2.3) can
be rewritten as (Losq, 1982):

𝐸[𝑉𝑏( ̃𝑝 − 𝑝)] = 𝐸[𝑉𝑏(𝑓 − 𝑝)] (B.1.1)

One can approximate 𝑉𝑏 by a first-order Taylor approximation of 𝑉𝑏 about (𝑝, 𝜀).

𝑉𝑏 ≈ 𝑉𝑏 + 𝑉𝑏�̃�( ̃𝑝 − 𝑝) + 𝑉𝑏𝑏ℎ( ̃𝑝 − 𝑝) + 𝑉𝑏 ̃𝜀( ̃𝜀 − 𝜀) (B.1.2)

Plugging equation (B.1.2) into (B.1.1) leads to:

𝑉𝑏�̃�𝐸[( ̃𝑝 − 𝑝)2] + 𝑉𝑏𝑏ℎ𝐸[( ̃𝑝 − 𝑝)2] + 𝑉𝑏 ̃𝜀𝐸[( ̃𝜀 − 𝜀)( ̃𝑝 − 𝑝)] = 𝑉𝑏(𝑓 − 𝑝)

where 𝐸[( ̃𝜀 − 𝜀)] = 0 and 𝐸[( ̃𝑝 − 𝑝)] = 0 because 𝐸[ ̃𝑝] = 𝑝 and 𝐸[ ̃𝜀] = 𝜀.
With 𝜎2

�̃� = 𝐸[( ̃𝑝 − 𝑝)2] and 𝜎�̃� ̃𝜀 = 𝐸[( ̃𝜀 − 𝜀)( ̃𝑝 − 𝑝)], one can solve for the absolute
optimal hedge quantity ℎ∗:

ℎ∗ = −
𝑉𝑏�̃�

𝑉𝑏𝑏
− 𝑉𝑏 ̃𝜀

𝑉𝑏𝑏

𝜎�̃� ̃𝜀

𝜎2
�̃�

+ 𝑉𝑏

𝑉𝑏𝑏

(𝑓 − 𝑝)
𝜎2

�̃�
(B.1.3)

168
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As discussed in Section 2.3.1, the last term of the above equation equals zero since I
assume that households do not hedge for speculative reasons, i.e., households believe that
the forward hedge price 𝑓 equals the mean dynamic price 𝑝.

In the next step, I aim to express the optimal hedge quantity ℎ∗ in equation (B.1.3)
as a share of the baseline consumption level ̂𝑥∗ = 𝑥∗(𝑝, 𝑏, 𝜀). At baseline, Roy’s identity
is given as ̂𝑥∗ = −𝑉�̃�

𝑉𝑏
.1 Following Turnovsky et al. (1980) and Gilbert (1985), one can

differentiate Roy’s identity at baseline with respect to 𝑏, which leads to

𝑉𝑏�̃� = −𝑉𝑏𝑏 − 𝑉𝑏
𝜕 ̂𝑥∗

𝜕𝑏

𝑉𝑏�̃� = (𝜃 − 𝜂) ̂𝑥∗ 𝑉𝑏
𝑏

(B.1.4)

𝜂 = 𝜕�̂�∗

𝜕𝑏
𝑏
�̂�∗ is the income elasticity of electricity demand, and 𝜃 = −𝑉𝑏𝑏

𝑉𝑏
𝑏 is the coefficient

of relative risk aversion at baseline consumption. Inserting equation (B.1.4) into (B.1.3)
gives

ℎ∗ = (1 − 𝜂
𝜃

) ̂𝑥∗ − 𝑉𝑏 ̃𝜀

𝑉𝑏𝑏

𝜎�̃� ̃𝜀

𝜎2
�̃�

(B.1.5)

For the simulation of optimal hedge shares, I assume that the following CES indirect
utility function can describe households’ consumption decisions.

𝑉 ( ̃𝑝, 𝑏, ̃𝜀, 𝑓, ℎ) = 1
1 − 𝜃

[𝑏 + ( ̃𝑝 − 𝑓)ℎ∗]1−𝜃( ̃𝜀 ̃𝑝1−𝛼 + 1) 1−𝜃
𝛼−1 (B.1.6)

Applying Roy’s identity, the Marshallian demand functions are given as

𝑥∗ = [𝑏 + ( ̃𝑝 − 𝑓)ℎ∗] ̃𝜀 ̃𝑝−𝛼

( ̃𝜀 ̃𝑝1−𝛼 + 1)
(B.1.7)

𝑦∗ = [𝑏 + ( ̃𝑝 − 𝑓)ℎ∗]
( ̃𝜀 ̃𝑝1−𝛼 + 1)

The first derivative of 𝑉 = 𝑉 ( ̃𝑝, 𝑏, ̃𝜀, 𝑓, ℎ) with respect to 𝑏 is

𝑉𝑏 = [𝑏 + ( ̃𝑝 − 𝑓)ℎ∗]−𝜃( ̃𝜀 ̃𝑝1−𝛼 + 1) 1−𝜃
𝛼−1 (B.1.8)

1In general, Roy’s identity with a forward hedge is given as 𝑥∗ − ℎ = − 𝑉�̃�
𝑉𝑏

(Gilbert, 1985).
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Taking the derivative of 𝑉𝑏 with respect to 𝑏 and ̃𝜀, respectively, gives

𝑉𝑏𝑏 = −𝜃[𝑏 + ( ̃𝑝 − 𝑓)ℎ∗]−𝜃−1( ̃𝜀 ̃𝑝1−𝛼 + 1) 1−𝜃
𝛼−1 (B.1.9)

𝑉𝑏 ̃𝜀 = [𝑏 + ( ̃𝑝 − 𝑓)ℎ∗]−𝜃 1 − 𝜃
𝛼 − 1

( ̃𝜀 ̃𝑝1−𝛼 + 1) 1−𝜃
𝛼−1 −1 ̃𝑝1−𝛼 (B.1.10)

Evaluating equations (B.1.9) and (B.1.10) at baseline (with ̃𝑝 = 𝑝 = 𝑓 and ̃𝜀 = 𝜀) leads
to

𝑉𝑏 ̃𝜀

𝑉𝑏𝑏
= (1 − 1

𝜃
) 1

𝛼 − 1
̂𝑥∗ 𝑝
𝜀

(B.1.11)

Moreover, from equation (B.1.7) one can derive the income elasticity of electricity
demand at baseline 𝜂 = 𝜕 ̂𝑥∗

𝜕𝑏
𝑏
̂𝑥∗ = 1. The optimal hedge equation (B.1.5) can then be

rewritten as

ℎ∗ = (1 − 1
𝜃

) ̂𝑥∗ + (1 − 1
𝜃

) 1
1 − 𝛼

̂𝑥∗ 𝑝
𝜀

𝜎�̃� ̃𝜀

𝜎2
�̃�

(B.1.12)

ℎ∗

̂𝑥∗ = (1 − 1
𝜃

) ∗ (1 + 1
1 − 𝛼

𝜌𝑐𝑣( ̃𝜀)
𝑐𝑣( ̃𝑝)

)

which equals the optimal hedge share in equation (2.8). 𝜎�̃� and 𝜎 ̃𝜀 denote the standard
deviations of ̃𝑝 and ̃𝜀. Moreover, 𝑐𝑣( ̃𝑝) = 𝜎�̃�

𝑝 and 𝑐𝑣( ̃𝜀) = 𝜎�̃�
𝜀 are the coefficients of

variations of ̃𝑝 and ̃𝜀, respectively.
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B.2 Derivation of the price premia

In this appendix, I derive the expressions for the price premia 𝑔𝑝 and 𝑔𝑓 as defined in
equations (2.12) and (2.14), respectively.

Derivation of 𝑔𝑝:
𝑔𝑝 equals the percentage increase in fixed price 𝑝 that makes the household indifferent

in expectation between the fixed tariff and the unhedged dynamic tariff with stochastic
price ̃𝑝 (Gilbert, 1985).

𝐸[𝑉 ((1 + 𝑔𝑝)𝑝, 𝑏, ̃𝜀)] = 𝐸[𝑉 ( ̃𝑝, 𝑏, ̃𝜀)] (B.2.1)

When the household is on the unhedged dynamic tariff or the fixed tariff, the household
does not hedge, i.e., ℎ = 0. A first-order Taylor approximation of the left-hand side of
equation (B.2.1) yields

𝑉 ((1 + 𝑔𝑝)𝑝, 𝑏, ̃𝜀) ≈ 𝑉 + 𝑉�̃� ∗ 𝐸[(1 + 𝑔𝑝)𝑝 − 𝑝]

≈ 𝑉 + 𝑉�̃� ∗ 𝑔𝑝𝑝

A second-order Taylor approximation of the right-hand side of equation (B.2.1) about
(𝑝, 𝜀) yields

𝑉 ( ̃𝑝, 𝑏, ̃𝜀) ≈ 𝑉 + 𝑉�̃�𝐸[ ̃𝑝 − 𝑝] + 𝑉 ̃𝜀𝐸[ ̃𝜀 − 𝜀]

+ 1
2

𝑉�̃��̃�𝐸[( ̃𝑝 − 𝑝)2] + 1
2

𝑉 ̃𝜀 ̃𝜀𝐸[( ̃𝜀 − 𝜀)2]

+ 𝑉 ̃𝜀�̃�𝐸[( ̃𝜀 − 𝜀)( ̃𝑝 − 𝑝)]

≈ 𝑉 + 1
2

(𝑉�̃��̃�𝜎2
�̃� + 𝑉 ̃𝜀 ̃𝜀𝜎2

̃𝜀) + 𝑉 ̃𝜀�̃�𝜎 ̃𝜀�̃�

The term 𝑉 ̃𝜀 ̃𝜀 above can be neglected for comparing the relative welfare between the two
price regimes. 𝑉 ̃𝜀 ̃𝜀 is not affected when moving from fixed to dynamic prices. Therefore,
it does not affect the relative welfare difference between the fixed and dynamic prices
measured by 𝑔𝑝 (Gilbert, 1985). Inserting the Taylor approximations into equation (B.2.1)
and solving for 𝑔𝑝 leads to

𝑔𝑝 = 1
2

𝑉�̃��̃�

𝑉�̃�𝑝
𝜎2

�̃� +
𝑉 ̃𝜀�̃�

𝑉�̃�𝑝
𝜎�̃� ̃𝜀 (B.2.2)
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Using the indirect CES utility function (2.10) for unhedged households (ℎ∗ = 0), the
relevant derivatives can be derived as

𝑉�̃� = 1
𝛼 − 1

𝑏1−𝜃( ̃𝜀 ̃𝑝1−𝛼 + 1) 1−𝜃
𝛼−1 −1(1 − 𝛼) ̃𝜀 ̃𝑝−𝛼

= −𝑉𝑏𝑥∗ (B.2.3)

𝑉 ̃𝜀 = 1
𝛼 − 1

𝑏1−𝜃( ̃𝜀 ̃𝑝1−𝛼 + 1) 1−𝜃
𝛼−1 −1 ̃𝑝(1−𝛼)

𝑉 ̃𝜀�̃� = −𝑏1−𝜃( ̃𝜀 ̃𝑝1−𝛼 + 1) 1−𝜃
𝛼−1 −1 ̃𝑝−𝛼[ 𝛽𝑢

1 − 𝛼
+ 1 − ̂𝑠]

=
𝑉�̃�

̃𝜀
[ 𝛽𝑢

1 − 𝛼
+ 1 − ̂𝑠] (B.2.4)

Moreover, Turnovsky et al. (1980) and Cowan (2004) show that differentiating Roy’s
identity 𝑉�̃� = − ̂𝑥∗𝑉𝑏 w.r.t. ̃𝑝 results in

𝑉�̃��̃� = −𝜕 ̂𝑥∗

𝜕 ̃𝑝
𝑉𝑏 − ̂𝑥∗𝑉𝑏�̃� (B.2.5)

Inserting Roy’s identity at baseline 𝑉𝑏 = −𝑉�̃�
�̃�∗ and equation (B.1.4) into the above

equation (B.2.5) gives the absolute value of Turnovsky et al.’s (1980) coefficient of relative
price risk aversion

𝑉�̃��̃�

𝑉 ̃𝑝
𝑝 = ̂𝛾 + ̂𝑠(𝜃 − 𝜂) (B.2.6)

Plugging equations (B.2.3), (B.2.4), and (B.2.6) into equation (B.2.2) and evaluating
them at baseline leads to

𝑔𝑝 = 1
2

𝑉�̃��̃�

𝑉�̃�
𝑝

𝜎2
�̃�

𝑝2 +
𝜎�̃�

𝑝
𝜎 ̃𝜀
𝜀

𝜎�̃� ̃𝜀[ 𝛽𝑢

1 − 𝛼
+ 1 − ̂𝑠]

= 1
2

[ ̂𝛾 + 𝛽𝑢]𝑐𝑣( ̃𝑝)2 + 𝜌𝑐𝑣( ̃𝑝)𝑐𝑣( ̃𝜀)[ 𝛽𝑢

1 − 𝛼
+ 1 − ̂𝑠]

The above equals the price premium for the unhedged dynamic tariff in equation (2.12).
𝛽𝑢 = 𝜕𝑉𝑏

𝜕�̃�
𝑝

𝑉𝑏
= (𝜃 − 1)𝑠 is the price elasticity of the marginal utility of income at baseline

for unhedged households.
Derivation of 𝑔𝑓:
𝑔𝑓 denotes the percentage increase in fixed price 𝑝 that makes the household indifferent

in expectation between the fixed tariff and the optimally hedged dynamic tariff (Gilbert,
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1985).

𝐸[𝑉 ((1 + 𝑔𝑓)𝑝, 𝑏, ̃𝜀)] = 𝐸[𝑉 ( ̃𝑝, 𝑏 + (𝑝 − 𝑓)ℎ∗, ̃𝜀)] (B.2.7)

A second-order Taylor approximation of the RHS of equation (B.2.7) about (𝑝, 𝜀) yields

𝑉 ( ̃𝑝, 𝑏, ̃𝜀) ≈ 𝑉 + 𝑉�̃�𝐸[ ̃𝑝 − 𝑝] + 𝑉𝑏𝐸[ ̃𝑝 − 𝑝]ℎ∗ + 𝑉 ̃𝜀𝐸[ ̃𝜀 − 𝜀]

+ 1
2

𝑉�̃��̃�𝐸[( ̃𝑝 − 𝑝)2] + 1
2

𝑉𝑏�̃�𝐸[( ̃𝑝 − 𝑝)2]ℎ∗ + 1
2

𝑉 ̃𝜀 ̃𝜀𝐸[( ̃𝜀 − 𝜀)2]

+ 𝑉 ̃𝜀�̃�𝐸[( ̃𝑝 − 𝑝) ∗ ( ̃𝜀 − 𝜀)]

≈ 𝑉 + 1
2

(𝑉�̃��̃�𝜎2
�̃� + 𝑉 ̃𝜀 ̃𝜀𝜎2

̃𝜀) + 𝑉 ̃𝜀�̃�𝜎�̃� ̃𝜀 + 1
2

𝑉𝑏�̃�ℎ∗𝜎2
�̃�

Following analogous steps as for 𝑔𝑝, 𝑔𝑓 is given as

𝑔𝑓 = 1
2

𝑉�̃��̃�

𝑉�̃�𝑝
𝜎2

�̃� +
𝑉 ̃𝜀�̃�

𝑉�̃�𝑝
𝜎�̃� ̃𝜀 + 1

2
𝑉𝑏�̃�

𝑉�̃�𝑝
ℎ∗𝜎2

�̃� (B.2.8)

The first two terms of the above expression equal the ones for 𝑔𝑝 in equation (B.2.2).
However, when optimally hedged, Roy’s identity changes to (Gilbert, 1985)

𝑉�̃� = −𝑉𝑏(𝑥∗ − ℎ∗) (B.2.9)

Differentiating expression (B.2.9) with respect to 𝑏 yields

𝑉𝑏�̃� = 𝑉�̃�𝑏 = −𝑉𝑏𝑏(𝑥∗ − ℎ∗) − 𝑉𝑏
𝜕𝑥∗

𝜕𝑏

= −𝑉𝑏𝑏𝑥∗ − 𝑉𝑏𝑏
𝑉𝑏

𝑉𝑏𝑏𝑏
𝜕𝑥∗

𝜕𝑏
𝑏
𝑥∗ 𝑥∗ + 𝑉𝑏𝑏ℎ∗

= −𝑉𝑏𝑏(𝜃 − 1
𝜃

)𝑥∗ + 𝑉𝑏𝑏ℎ∗

Evaluating the above equation at baseline with 𝜂 = 1 and using the optimal hedge
quantity ℎ∗ = (1 − 1

𝜃 ) ̂𝑥∗(1 + 1
1−𝛼𝜌 𝑐𝑣( ̃𝜀)

𝑐𝑣(�̃�)) gives

𝑉𝑏�̃� = −𝑉𝑏𝑏(𝜃 − 1
𝜃

) ̂𝑥∗ + 𝑉𝑏𝑏(𝜃 − 1
𝜃

) ̂𝑥∗ + 𝑉𝑏𝑏(𝜃 − 1
𝜃

) ̂𝑥∗( 1
1 − 𝛼

𝜌𝑐𝑣( ̃𝜀)
𝑐𝑣( ̃𝑝)

) (B.2.10)

= − 𝛽𝑢

1 − 𝛼
𝑉𝑏
𝑝

𝜌𝑐𝑣( ̃𝜀)
𝑐𝑣( ̃𝑝)

(B.2.11)
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where 𝛽𝑢 = 𝑉𝑏�̃�
𝑝

𝑉𝑏
= (𝜃 − 1)𝑠 is the price-elasticity of marginal utility of income for the

unhedged household (when ℎ∗ = 0). As shown above, one can derive an expression for
𝑉�̃��̃� from Roy’s identity in equation (B.2.9) as

𝑉�̃��̃� = −𝑥∗
�̃�𝑉𝑏 − 𝑉𝑏�̃�(𝑥∗ − ℎ∗)

= −𝛾𝑥∗

𝑝
𝑉𝑏 + 𝑉𝑏�̃�

𝑉�̃�

𝑉𝑏

Evaluating the above expression at baseline and using (B.2.11), one gets

𝑉�̃��̃� = 𝛾
𝑉�̃�

𝑝
− 𝛽𝑢

1 − 𝛼
𝜌𝑐𝑣( ̃𝜀)

𝑐𝑣( ̃𝑝)
𝑉�̃�

𝑝
(B.2.12)

where I used that at baseline, Roy’s identity is ̂𝑥∗ = −𝑉�̃�
𝑉𝑏
. Hence,

𝑉�̃��̃�

𝑉�̃�𝑝
𝜎2

�̃� = 𝛾𝑐𝑣( ̃𝑝)2 − 𝛽𝑢

1 − 𝛼
𝜌𝑐𝑣( ̃𝑝)𝑐𝑣( ̃𝜀) (B.2.13)

From equation (B.2.11) it also follows that

𝑉𝑏�̃�

𝑉�̃�𝑝
ℎ∗𝜎2

�̃� = − 𝛽𝑢

1 − 𝛼
𝑉𝑏

𝑉�̃�
𝜌𝑐𝑣( ̃𝜀)𝑐𝑣( ̃𝑝)ℎ∗

= 𝛽𝑢

1 − 𝛼
𝜌𝑐𝑣( ̃𝜀)𝑐𝑣( ̃𝑝)ℎ∗

̂𝑥∗ (B.2.14)

Moreover, one also needs to derive expressions for 𝑉 ̃𝜀�̃� when optimally hedged. Fol-
lowing the same steps as for 𝑔𝑝 above, one can show that for the optimally hedged tariff,
𝑉 ̃𝜀�̃� is equivalent to equations (B.2.4) for the unhedged dynamic tariff when evaluated at
baseline. Therefore, one can plug equations (B.2.4), (B.2.13), and (B.2.14) into equation
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(B.2.8) to obtain

𝑔𝑓 = 1
2

𝛾𝑐𝑣( ̃𝑝)2 + 𝜌𝑐𝑣( ̃𝑝)𝑐𝑣( ̃𝜀)[ 𝛽𝑢

1 − 𝛼
+ 1 − ̂𝑠]

− 1
2

𝛽𝑢

1 − 𝛼
𝜌𝑐𝑣( ̃𝑝)𝑐𝑣( ̃𝜀) + 1

2
∗ 𝛽𝑢

1 − 𝛼
𝜌𝑐𝑣( ̃𝑝)𝑐𝑣( ̃𝜀)ℎ∗

̂𝑥∗

= 1
2

[ ̂𝛾 + 𝛽𝑢]𝑐𝑣( ̃𝑝)2 + 𝜌𝑐𝑣( ̃𝑝)𝑐𝑣( ̃𝜀)[ 𝛽𝑢

1 − 𝛼
+ 1 − ̂𝑠]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑔𝑝

−1
2

𝛽𝑢𝑐𝑣( ̃𝑝)2

− 1
2

𝛽𝑢

1 − 𝛼
𝜌𝑐𝑣( ̃𝑝)𝑐𝑣( ̃𝜀)(1 − ℎ∗

̂𝑥∗ )

= 𝑔𝑝 − 1
2

𝛽𝑢𝑐𝑣( ̃𝑝)2 − 1
2

𝛽𝑢

1 − 𝛼
𝜌𝑐𝑣( ̃𝑝)𝑐𝑣( ̃𝜀)(1 − ℎ∗

̂𝑥∗ )

This expression equals the price premium for the optimally hedged tariff in equation
(2.14).
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B.3 Robustness checks for different hedge time segments

In this appendix, I analyze the effect of choosing different hedge time segments on optimal
hedge shares and bill volatility. As explained in Section 2.4, I define a hedge time segment
for every half hour per day separately for weekdays and weekends in my main specification.
For instance, 8-8:30 am on weekdays is a time segment. 8-8:30 am on weekends is a
different time segment. In my main specification, I end up with 96 distinct time segments
for all 48 half-hourly periods on weekends and weekdays, respectively. I can define even

Table B.1: Description of different hedge time segments

Time segment Number of segments
definition Description per customer
Season and half hour customer-season-weekend-half hour 384
Main specification customer-weekend-half hour 96
Season and time of day customer-season-weekend-time of day 32
Time of day customer-weekend-time of day 8
Season customer-season-weekend 8
None customer 1

more fine-grained time segments by differentiating the main specification by season as
shown in Table B.1.2 For instance, the specification “Season and half an hour” defines
8-8:30 am on weekdays in February as a time segment and 8-8:30 am on weekdays in
June as another segment. As Table B.1 highlights, this leads to 384 (4*96) segments per
customer.

The specification “Season and time of day” leads to less fine-grained time segments.
This specification differentiates by season, but groups periods in broader time of day
categories.3 For instance, 8-8:30 am on weekdays in February would fall in the winter-
morning-weekday time segment. This specification results in 32 different time segments.

The specification “Time of day” only differentiates between time of days and week-
day/weekends. Thus, 8-8:30 am on weekdays in February would be the same time segment
as 8-8:30 am on weekdays in June.

In contrast “Season” differentiates by season and weekday/weekends but not by time
of day. In this specification, 8-8:30 am on weekdays in February is the same segment as
20-20:30 am on weekdays in March but a different segment than 8-8:30 am on weekdays

2I define “winter” as January to March, “spring” as April to June, “summer” as July to September,
and “autumn” as October to December.

3I define “night” as midnight to 6:00, “morning” as 6:00 to 12:00, “afternoon” as noon to 18:00, and
evening as 18:00 to 24:00.
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in June. The specifications “Time of day” and “Season” lead to 8 segments per customer,
respectively.

Finally, the specification “None” is the less fine-grained as it counts all time intervals
into the same time segment. This assumes that customers buy the same quantity forward
for every time interval.
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Figure B.1: Distribution of optimal hedge shares across all customers by hedge time
segment specification

Figure B.1 highlights that the distribution of optimal hedge shares across all customers
is very similar for the different hedge time segment specifications. The average optimal
hedge share ranges between 52% (“None”) and 70% (“Season and time of day”). The less
fine-grained the hedge specification, the smaller is the share of very large hedge shares
(greater 150%) and the larger is the share of hedge shares that I set to zero.

Figure B.2 shows the coefficients of variations of monthly electricity bills for unhedged
and optimally hedged tariffs across mean optimal hedge shares per household for the
different hedge time segment specifications. This Figure reveals an even clearer trend in
mean optimal hedge ratios. The less fine-grained the time segments, the more dispersed
are the mean optimal hedge ratios between customers. Without any time segments
(“None”) more than 40% of households do not hedge at all while a substantial share of
households choos a mean optimal hedge share larger than 100%.
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As expected, less fine-grained time segments are less effective in reducing bill volatility.
Without any time segments (“None”) the optimally hedged tariff tends to reduce the
coefficient of variation of monthly bills only by 3% relative to the unhedged tariff. The
fine-grained main specification leads to a much larger reduction in bill volatility of 19%
when moving from the unhedged to the optimally hedged tariff. Interestingly, the even
more fine-grained specification “Season and half hour” achieves only a smaller reduction
in bill volatility of 14%. Hence, while an increase in granularity of time segments seems
to overall reduce bill volatility, too granular specifications seem to raise volatility.
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Figure B.2: Distribution of average optimal hedge shares by customer and coefficients of
variation of monthly bills by hedge time segments
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B.4 Dynamic prices with removed price cap

This appendix explains how Octopus Energy calculates dynamic prices and provides
descriptive statistics for day-ahead and dynamic prices. Dynamic prices are tied to day-
ahead electricity prices. Figure B.3 shows the distribution of the half-hourly electricity
day-ahead prices for the Great Britain (GB) price zone during the sample period obtained
from EPEX SPOT (2023). Day-ahead prices are relatively low and rarely exceed 20
p/kWh. However, while overall volatility is small, there are a few significant price spike
hours, in which day-ahead prices are very high. Figure B.4 reveals that day-ahead prices
remain on average roughly stable over time during the study period.

0 25 50 75 100 125 150
Day-ahead prices (Pence/kWh)

0%

10%

20%

30%

40%

50%

R
el

at
iv

e
fre

qu
en

cy
of

ha
lf-

ho
ur

ly
pr

ic
es

Figure B.3: Relative distribution of day-
ahead electricity prices in the Great
Britain price zone (EPEX SPOT, 2023)
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Figure B.4: Half-hourly day-ahead elec-
tricity prices in the Great Britain price
zone (EPEX SPOT, 2023)

Dynamic prices are based on day-ahead prices. In addition, they contain distribution
charges and a peak-time premium. For every half-hourly interval, the day-ahead price is
multiplied by a distribution charge multiplier that ranges from 2 to 2.4, depending on
the grid supply area the household is located in. Between 4 pm and 7 pm, a peak-time
premium is added that ranges from 11p to 14p, depending on the grid supply area.
Afterward, VAT is added. The resulting price is the dynamic price for the respective
half-hourly interval unless it exceeds the price cap of 35 p/kWh. If the calculated price
exceeds the price cap, the dynamic price is set to 35 p/kWh (Octopus Energy, 2019).

For 0.3 percent of the half-hourly intervals, households received weakly negative prices
due to excess supply in the day-ahead market. I exclude these rare weakly negative price
events since the model in Section 2.3 only applies to positive prices.
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Figure B.5: Relative distribution of dy-
namic prices with price cap
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Figure B.6: Relative distribution of dy-
namic prices without price cap

Figure B.5 shows the distribution of dynamic prices that households on dynamic tariff
actually paid with a price cap for the first grid supply area.4 The graph reveals that
dynamic prices are quite volatile at a relatively low level below the price cap. Figure B.6
shows the distribution of dynamic prices when removing the price cap. While dynamic
prices only exceed the price cap in 3% of the half-hourly time intervals, the uncapped
distribution has a very long tail that consists of a few rare, very high prices. Moreover,
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Figure B.7: Relative distribution of dynamic prices without price cap and with scarcity
event

Figure B.7 reveals that the distribution of dynamic prices hardly changes when households
are exposed to the scarcity event. As explained in Section 2.6.5, I simulate a four-day
scarcity event by removing the price cap and manually setting the dynamic price to
350p/kWh for all 192 consecutive time intervals from 12 to 15 January 2021. I choose the

4Dynamic prices for other grid supply areas slightly differ due to minor differences in grid charges and
peak-time premia.
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scarcity price to equal ten times the price cap. These simulated scarcity prices account
for only 1% of half-hourly dynamic prices.

Table B.2 compares the distribution of the dynamic prices with and without a price
cap and with a scarcity event. The Table highlights that the removal of the price cap and
the scarcity event have only small effects on the mean of the dynamic prices but a much
larger effect on their standard deviation (SD) due to much higher maximum values.

Tariff type mean SD min 1% 10% 25% 50% 75% 90% 99% max
Dynamic capped 15.4 7.4 0.0 3.1 8.1 10.4 13.3 18.7 27.3 35.0 35.0
Dynamic removed cap 15.8 11.4 0.0 3.1 8.1 10.3 13.1 18.5 27.0 43.1 386.4
Dynamic scarcity event 20.1 40.0 0.0 3.1 8.1 10.3 13.1 18.7 27.9 350.0 350.0
Fixed 15.1 0.1 10.5 19.9

Table B.2: Distribution of dynamic prices and fixed prices (pence/kWh)
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B.5 Additional results for different shares of electricity in
household expenditure

This appendix tests the robustness of the optimal hedge shares to vary the assumption
with respect to the average share of electricity 𝑠𝑘 in household expenditure in hedge time
segment 𝑘. In the main specification, I assume that each household spends on average
𝑠𝑘 = 2% of its household budget on electricity in every hedge time segment (see discussion
Section 2.4). In this section, I test how the optimal hedge shares and bill volatility change
when changing 𝑠𝑘 to 1%, 5%, and 10%, respectively.
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(a) 𝑠𝑘 = 1%
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(b) 𝑠𝑘 = 2%
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(c) 𝑠𝑘 = 5%
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Figure B.8: Distribution of average optimal hedge shares by customer and coefficients of
variation of monthly bills by tariff type for different average segment budget shares 𝑠𝑘

Figure B.8 highlights that the mean optimal hedge shares hardly changes when the
average time segment budget share 𝑠𝑘 rises. For 𝑠𝑘 = 1%, households’ mean optimal
hedge share is on average 59% compared to 57% when 𝑠𝑘 = 10%. However, the variance
in mean optimal hedge shares between households slightly rises.
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The Figure also shows that the bill volatility for households on the optimally hedged
tariff increases relative to the unhedged tariff when 𝑠𝑘 increases. For small segment budget
shares of 𝑠𝑘 = 1%, the optimal hedged tariff achieves on average a 19% lower coefficient
of variation of monthly electricity bills than the unhedged tariff compared to 5% when
𝑠𝑘 = 10%.

On the other hand, Figure B.9 points out that an increase in budget share raises the
welfare benefits from hedging. For small segment budget shares (𝑠𝑘 = 1%), the average
welfare benefit achieved by the forward hedge only amounts to a 0.13% decrease in mean
electricity prices. For large budget shares (𝑠𝑘 = 10%), the welfare benefits climb to 1.6%.

0 25 50 75 100 125 150
Mean optimal hedge share (%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Pe
rc

en
to

fh
ou

se
ho

ld
s

−0.15

−0.10

−0.05

Pr
ice

pr
em

iu
m

(%
)

gh

(a) 𝑠𝑘 = 1%

0 25 50 75 100 125 150
Mean optimal hedge share (%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Pe
rc

en
to

fh
ou

se
ho

ld
s

−0.3

−0.2

−0.1

Pr
ice

pr
em

iu
m

(%
)

gh

(b) 𝑠𝑘 = 2%

0 25 50 75 100 125 150
Mean optimal hedge share (%)

0

2

4

6

8

10

12

Pe
rc

en
to

fh
ou

se
ho

ld
s

−0.8

−0.6

−0.4

−0.2

Pr
ice

pr
em

iu
m

(%
)

gh

(c) 𝑠𝑘 = 5%

0 25 50 75 100 125
Mean optimal hedge share (%)

0

2

4

6

8

10

Pe
rc

en
to

fh
ou

se
ho

ld
s

−2.0

−1.5

−1.0

−0.5

Pr
ice

pr
em

iu
m

(%
)

gh

(d) 𝑠𝑘 = 10%
Price premium for the forward hedge (𝑔ℎ)

Figure B.9: Distribution of average optimal hedge shares by customer and hedge price
premium 𝑔ℎ for different average segment budget shares 𝑠𝑘
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B.6 Additional results for the price premia when increasing
electricity’s expenditure share

Figure B.10 shows the price premium households are willing to pay for the forward hedge
when electricity’s expenditure share increases from 𝑠𝑘 = 2% to 𝑠𝑘 = 10%.

The graph indicates that increasing the portion of expenditure on electricity to
𝑠𝑘 = 10% only has a marginal impact on enhancing the welfare advantages of hedging.
For the main specification with 𝛼 = 0.1, the larger expenditure share of 𝑠𝑘 = 10% leads
to a welfare improvement that corresponds to a decrease of 1.6% in the average electricity
price, as opposed to a 0.3% decrease observed when the expenditure share on electricity
remains at 2%.
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Figure B.10: Distribution of average optimal hedge shares by customer and hedge price
premium 𝑔ℎ with an expenditure share of electricity of 10%
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Appendix to Chapter 3

C.1 Coefficients of the seasonal components of net load 𝑆(𝑡)
and the residual process 𝑆𝑋(𝑡)

Table C.1: Coefficients for the seasonal components of net load and the residual process
(inspired by Coulon et al., 2013, net load is shown in MW)

Hour Parameters for 𝑆(𝑡) Parameters for 𝑆𝑋(𝑡)
𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5

0 202376.95 -5785.52 -0.61 4662.38 -0.76 -86.43 4.14 -0.31 -0.15 2.12 0.29 2.34
1 162445.84 -4920.87 -0.68 4583.09 -0.76 -67.32 -46.24 -0.53 -0.08 2.02 0.20 2.26
2 116833.06 -4251.69 -0.74 4554.41 -0.76 -45.07 -207.68 -0.65 0.07 -0.52 0.12 2.16
3 68011.24 -3755.37 -0.80 4532.40 -0.76 -20.95 -464.66 -0.66 0.16 -0.35 0.10 2.24
4 16100.24 -3323.39 -0.88 4566.24 -0.75 5.08 -1050.37 -0.54 0.28 -0.48 0.13 2.53
5 24236.35 -2896.22 -1.00 4608.91 -0.76 2.00 -2413.85 -0.26 0.46 -0.57 -0.21 5.68
6 96901.72 -2392.27 5.03 4454.63 -0.81 -32.52 -4495.02 0.26 0.93 -0.49 0.19 2.67
7 77293.43 -2188.93 -1.29 4452.25 -0.78 -22.11 -4885.41 0.17 0.83 -0.53 0.19 2.69
8 262755.59 -3035.20 -0.93 4646.54 -0.76 -113.71 -3932.05 0.07 0.67 -0.58 0.22 2.59
9 528066.45 -4439.00 -0.77 4711.01 -0.77 -244.72 -3261.66 0.03 0.60 5.62 -0.26 5.72
10 624256.69 -6603.83 -0.63 5018.46 -0.78 -291.73 -2969.80 0.00 0.51 5.54 0.28 2.59
11 605929.00 -9059.86 -0.55 5236.95 -0.81 -281.93 -2810.74 0.01 -0.38 2.25 0.32 -3.63
12 545398.21 -11253.77 -0.51 5285.51 -0.86 -251.28 -2748.23 0.06 -0.26 1.90 0.31 -3.62
13 512030.39 -13002.78 -0.49 5164.70 -0.91 -234.16 -2946.51 0.24 -0.22 0.64 0.30 -3.40
14 501096.98 -14226.35 -0.48 4974.34 -0.95 -228.37 -2998.73 0.49 -0.51 -0.02 -0.29 0.06
15 504599.44 -14833.20 -0.48 4759.61 -0.97 -229.89 -2959.78 0.85 0.94 2.97 -0.34 0.24
16 438199.50 -14661.10 -0.48 4627.56 -0.94 -196.78 -2939.22 1.03 1.00 2.99 -0.35 0.08
17 286718.22 -13319.79 -0.53 4862.27 -0.81 -121.55 -2707.58 0.87 0.13 -0.38 0.22 1.82
18 191466.85 -11511.85 -0.56 5261.76 -0.81 -74.47 -2454.90 0.59 0.72 -0.58 -0.23 -0.06
19 94055.47 -10570.78 -0.56 4931.22 -0.91 -26.67 -2277.90 0.34 -0.63 2.29 -0.46 -0.26
20 148836.53 -10014.19 -0.50 4697.71 -0.93 -54.37 -2217.77 0.19 -0.63 2.07 0.44 -3.60
21 285398.54 -9292.12 -0.47 4803.80 -0.82 -123.14 -1882.68 -0.04 0.50 5.47 0.32 2.52
22 311614.80 -8071.18 -0.50 4752.58 -0.77 -137.74 -1349.12 -0.12 0.42 5.49 0.31 2.48
23 328296.86 -6669.25 -0.52 4692.68 -0.80 -147.50 -919.84 -0.21 -0.29 2.38 0.30 2.36

185



APPENDIX TO CHAPTER 3 186

C.2 Solar and wind generation model

In this appendix, we explain our renewable generation model and show some simulated
solar and wind generation data.

For our renewables generation model, we use hourly generation profiles for 218 actually
existing wind farms and 189 existing solar farms as provided by ERCOT (2023). The
generation profiles were created using the Weather Research and Forecasting (WRF)
model to simulate historical meteorological conditions. Plant-specific characteristics and
observed generation data were incorporated to model operational and planned wind and
solar plants. The final profiles were validated against observed generation, capturing
seasonal, diurnal, and ramping behaviors. Details on the creation of the hourly generation
profiles can be found in ERCOT (2022) and UL Services Group (2022). In addition to
plant-level data, we use hourly data on aggregate wind and solar generation from ERCOT
(2024c).1 For all these time series, we have hourly data from 2011-22.

The basic idea of our renewable generation model can be summarized as follows: First,
we group the observed hourly data into year-month-hour groups to capture seasonal
and time-of-day patterns in wind or solar generation. Next, we simulate aggregate solar
and wind generation within each group based on its historical mean and variability.
Then, we use the plant-specific correlation with the aggregate output to adjust each
plant’s individual generation around its specific historical mean. Finally, we draw random
variation around that conditional mean to randomly simulate hourly generation for each
plant.

Let 𝐺𝑝,𝑡 be the generation of plant 𝑝 in hour 𝑡 as given in the ERCOT (2023)
generation profile for plant 𝑝. Each hour 𝑡 belongs to a year-month-hour group, which we
denote by 𝑔. For example, 𝑔 could represent all observations for January 2015 at 3:00
pm. Grouping the generation captures seasonal and time-of-day cycles in solar and wind
generation. Let GroupMean𝑝,𝑔 and GroupStd𝑝,𝑔 be the mean and standard deviation of
plant 𝑝 in group 𝑔.

Similarly, let 𝐺agg,𝑡 denote the observed aggregate wind (or solar) generation at time
𝑡. For each group 𝑔, we define AggMean𝑔 and AggStd𝑔 to be the mean and standard
deviation of the observed aggregate generation. We also calculate the correlation 𝜌𝑝,𝑔

between a plant 𝑝’s observed generation 𝐺𝑝,𝑡 and the observed aggregate generation
𝐺agg,𝑡 in each group 𝑔.

For wind and solar generation, respectively, we first simulate aggregate generation
values 𝐺agg,𝑡 by drawing from a normal distribution centered at zero with standard

1We aggregate the 15-minute-level aggregate solar and wind generation to hourly generation
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deviation AggStd𝑔 and then shifting by the group mean AggMean𝑔. Concretely, for each
hour 𝑡 in group 𝑔:

𝑍𝑔,𝑡 ∼ 𝒩(0, AggStd2
𝑔 ),

𝐺agg,𝑡 = 𝑍𝑔,𝑡 + AggMean𝑔.

We set all negative simulated values to zero to ensure that simulated aggregate generation
remains nonnegative.

Once the aggregate generation 𝐺agg,𝑡 is simulated, we model plant-level generation
conditional on 𝐺agg,𝑡. Thereby, we capture that a wind plant’s generation is typically
correlated with aggregate wind generation. For each plant 𝑝 in group 𝑔, we treat the
correlation 𝜌𝑝,𝑔 as the slope of a linear relationship between plant level generation 𝐺𝑝,𝑡

and aggregate generation 𝐺agg,𝑡.

𝛽𝑝,𝑔 = 𝜌𝑝,𝑔 ×
GroupStd𝑝,𝑔

AggStd𝑔
.

The coefficient 𝛽𝑝,𝑔 measures how much plant 𝑝’s generation changes with a unit change
in the aggregate generation. Given the simulated aggregate generation 𝐺agg,𝑡, we write
the conditional mean of plant 𝑝’s generation as:

𝔼[𝐺𝑝,𝑡 ∣ 𝐺agg,𝑡] = GroupMean𝑝,𝑔 + 𝛽𝑝,𝑔(𝐺agg,𝑡 − AggMean𝑔).

This shifts the plant’s mean generation GroupMean𝑝,𝑔 in response to deviations of the
simulated aggregate generation from its own aggregate group mean. Here, we take into
account that a wind plant’s generation is typically lower if aggregate wind generation is
low. Assuming a bivariate normal relationship between each plant’s generation and the
aggregate generation, the conditional variance of 𝐺𝑝,𝑡 given 𝐺agg,𝑡 is

Var[𝐺𝑝,𝑡 ∣ 𝐺agg,𝑡] = GroupStd2
𝑝,𝑔(1 − 𝜌2

𝑝,𝑔).

Finally, we randomly draw a generation value 𝐺𝑝,𝑡 for plant 𝑝 conditional on the simulated
aggregate generation 𝐺agg,𝑡:

𝐺(sim)
𝑝,𝑡 ∼ 𝒩(𝔼[𝐺𝑝,𝑡 ∣ 𝐺agg,𝑡], Var[𝐺𝑝,𝑡 ∣ 𝐺agg,𝑡]),
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Again, we set negative generation values to zero. The result 𝐺(sim)
𝑝,𝑡 represents the simulated

generation of plant 𝑝 in hour 𝑡, given the simulated aggregate generation 𝐺agg,𝑡 and the
historical correlation, mean, and variance patterns observed in group 𝑔.
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Figure C.1: Histogram of solar and wind generation for simulated and observed data
between 2019-22

Figure C.1 shows histograms of the simulated and the observed aggregate solar and
wind generation for 2019-2022. The simulated data in Graphs C.1a and C.1c is the
histogram of the sum of the simulated hourly generation for all solar and wind plants,
respectively. Graphs C.1b and C.1d show the histogram of observed hourly solar and
wind generation.

The graphs reveal that our solar and wind generation model creates hourly generation
values that have quite similar distributions to the observed aggregate data. The only
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major difference is that the simulated solar and wind data shows some large outliers that
are not observed in our data.
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C.3 Histogram of hourly load, net load, and gas prices for
simulated and observed data between 2019-22

In this appendix, we show histograms of simulated and observed hourly load, net load,
and gas prices. In addition, we plot the relationship between load and day-ahead prices
for a generator and an LSE

The left column in Figure C.2 shows the simulated data and the right column shows
the respective observed data. Figures C.2a and C.2b show that simulated and observed
hourly load have similar distributions. However, observed load is more right-skewed
than simulated load. This right-skewness in observed load might be driven by a positive
correlation between net load and renewable generation. Our model treats net load and
renewable generation as independent, which is a limitation.

Simulated and observed net load have more similar distributions as Figures C.2c
and C.2d highlight. Yet, observed net load has a slightly higher standard deviation than
load. The distribution of observed and simulated gas prices also look reasonably similar
(Graphs C.2e and C.2f).
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Figure C.2: Histogram of hourly load, net load, and gas prices for simulated and observed
data between 2019-22
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In Figure C.3, we also plot the relationship between simulated load and day-ahead
prices for an LSE and the generator. In both cases, we only find a moderate positive
correlation between load and day-ahead prices.

In particular, it is surprising that very high peak prices even occur when load is below
its average. On the other hand, we also sometimes observe low prices when load is really
high. These plots reveal that spike prices are not mainly driven by high load, but likely
by high net load in combination with random shocks like outages.

(a) LSE (b) Generator

Figure C.3: Relationship between LSE and generator’s load and day-ahead electricity
prices in peak delivery period 4-5 pm in August 2019
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C.4 Hedge strategies for an off-peak delivery period

In this appendix, we deep dive on off-peak delivery period Weekends 4-5 am in May 2019
which has very rare and small price spikes.
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Figure C.4: LSE and generator’s optimal forward ratio by relative risk aversion for
off-peak delivery period weekends 4-5 am in May 2019

Figure C.4 shows the optimal forward ratios of the LSE and the generator as a
function of their risk-aversion levels for off-peak delivery period weekends 4-5 am in May
2019. The graphs reveal that the hedge strategies are very similar to the strategies in a
peak period as shown in Figure 3.8. Interestingly, the LSE chooses higher hedge ratios in
the off-peak than in the peak period. This might indicate that the LSE’s load experiences
larger positive outliers relative to average load in the off-peak than in the peak period.
For the generator, the hedge ratios in the peak and off-peak periods are almost identical
when hedging with forwards only.

Figure C.5 shows how the forward ratio affects the LSE and generator’s profit volatility,
their conditional value at risk at the 5% level (𝐶𝑉 𝑎𝑅𝛼=5%), and worst-case minimum
profit relative to their respective mean unhedged day-ahead profit. The Figure higlights
that in the off-peak period, agents face the same trade-off between minimizing variance,
and maximizing 𝐶𝑉 𝑎𝑅𝛼=5% or worst-case minimum profit as discussed in section 3.6.1.

Figure C.6 below shows the optimal forwards and option ratios for the combined
hedge strategy as a function of agents risk aversion for the off-peak period weekends 4-5
am in May 2019. Figure C.6a highlights that the LSE buys more options than forwards
for moderate risk aversion in the off-peak period. When the LSE’s risk aversion increases
further, its option ratio rapidly declines while the forward ratio increases. Thus, the
highly risk-averse LSE relies far less on options in the off-peak period compared to the
peak period.
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(b) LSE’s 𝐶𝑉 𝑎𝑅𝛼=5% profit

0 50 100 150 200
Forward Hedge Ratio (%)

1000

800

600

400

200

0

M
in

 p
ro

fit
/m

ea
n 

pr
of

it

Forward hedged profit
Unhedged day-ahead profit

(c) LSE’s minimum profit

150 125 100 75 50 25 0
Forward Hedge Ratio (%)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

St
d.

 d
ev

. p
ro

fit
/m

ea
n 

pr
of

it Forward hedged profit
Unhedged day-ahead profit

(d) Generator’s standard
deviation of profits

150 125 100 75 50 25 0
Forward Hedge Ratio (%)

1.50

1.25

1.00

0.75

0.50

0.25

CV
aR

=
5%

te
xt

pr
of

it/
m

ea
n 

pr
of

it

Forward hedged profit
Unhedged day-ahead profit

(e) Generator’s 𝐶𝑉 𝑎𝑅𝛼=5%
profit
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Figure C.5: LSE and generator’s profit standard deviation, 𝐶𝑉 𝑎𝑅𝛼=5% profit outcome,
and minimum profit relative to mean unhedged day-ahead (DA) profit by forward ratio
for off-peak delivery period weekends 4-5 am in May 2019
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Figure C.6: LSE and generator’s optimal forward and option ratio by relative risk aversion
for off-peak period weekends 4-5 am in May 2019

Similar to the LSE, the generator also relies less on long option positions in the
off-peak period (Graph C.6b). It only chooses small long option positions for moderate
risk aversion levels and short positions for all other levels.

Figure C.7 depicts the agents’ standard deviation of profits, 𝐶𝑉 𝑎𝑅𝛼=5% tail loss, and
worst-case minimum loss as a function of the optimal forward and option ratios that are
associated with a relative risk aversion level. For the off-peak period, the Figure points
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out that the combined option and forward strategy is more successful in reducing profit
variance compared to the forwards only strategy. The combined strategy also achieves
substantial improvements in 𝐶𝑉 𝑎𝑅𝛼=5%, especially for the LSE. For the generator, the
combined strategy trades off improvements in 𝐶𝑉 𝑎𝑅𝛼=5% versus high worst-case losses
for low-risk aversion levels. Overall, combining forwards and options hardly improves
minimum worst-case losses relative to the forward-only strategy.
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Figure C.7: LSE and generator’s profit standard deviation, 𝐶𝑉 𝑎𝑅𝛼=5%, and minimum
profit relative to mean unhedged day-ahead (DA) profit by relative risk aversion level for
off-peak period weekends 4-5 am in May 2019
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C.5 Comparison of profit performance metrics of hedging
strategies relative to the unhedged day-ahead profit

Figures C.8 shows the standard deviation of profits, 𝐶𝑉 𝑎𝑅𝛼=5% tail profit outcome, and
worst-case minimum loss for the generator and LSE as a function of the optimal forward
and option ratios that are associated with a relative risk aversion level. In contrast
to Figure 3.14 in section 3.6.2, this Figure also shows the profit standard deviation,
𝐶𝑉 𝑎𝑅𝛼=5%, and worst-case minimum loss for the LSE and generator if they trade fully
unhedged in the day-ahead market.

All three metrics are significantly improved when hedging with either forwards and
options or with forwards only compared to the unhedged day-ahead strategy. In contrast,
the added value of combining forwards and options relative to forwards only is almost
negligible compared to the added value of hedging with either strategy relative to
remaining unhedged.
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Figure C.8: LSE and generator’s profit standard deviation, 𝐶𝑉 𝑎𝑅𝛼=5%, and minimum
profit relative to mean unhedged day-ahead (DA) profit by relative risk aversion level for
delivery period Weekdays 4–5 pm in August 2019
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Appendix to Chapter 4

D.1 Net demand curves for forwards and options

In this appendix, we investigate how the net demand for forwards reacts to the option
price and how the net demand for options reacts to the forward price. Figures D.1a (LSE)
and D.1c (generator) indicate that net demand for forwards increases in the option price
when fixing the forward price at arbitrage-free levels. Similarly, demand for options also
increases in the forward price when setting the option price to its unbiased values as
Figures D.1b (LSE) and D.1d (generator) highlight. For both agents, option demand is
highly sensitive to the forward price. By contrast, forwards demand is less sensitive to
changes in the option price.
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Figure D.1: LSE and generator’s inverse net demand curves for forwards as a function the
option price and for options as a function of the forward price for peak period weekdays
4-5 pm in August 2019 by risk aversion
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D.2 Net demand heat maps by risk preferences

In this appendix, we show additional heat maps for forward and option ratios as a
function of forward and option prices to study how agents’ risk preferences affect their
net demand for forwards and options. The first two figures show the demand matrices
for the off-peak period weekends 4-5 am in May 2019 for the LSE (Figure D.2) and the
generator (Figure D.3), respectively. Figures D.4 (LSE) and D.5 (generator) present the
same matrices for the peak period August 4-5 pm in August 2019.
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(a) Almost risk-neutral LSE’s forward ratios
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(b) Almost risk-neutral LSE’s option ratios
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(c) Highly risk-averse LSE’s forward ratios
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(d) Highly risk-averse LSE’s option ratios

Figure D.2: LSE’s optimal forward and option ratios as a function of the bias in forward
and option prices for off-peak delivery period weekends 4-5 am in May 2019 for near risk
neutrality (risk coefficient of 0.001) and high risk aversion (risk coefficient 1)
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Figures D.2 (LSE) and D.3 (generator) show the heat maps for almost risk-neutral
agents (with relative risk coefficient of 0.001) and highly risk-averse agents (risk coefficient
1). The nearly risk-neutral agents take very large speculative arbitrage positions compared
to the moderate risk-aversion level of 0.2 analyzed in Figure 4.4 in 4.5.1. The highly risk-
averse generator takes much smaller arbitrage positions than the moderately risk-averse
generator while the highly risk-averse LSE hardly arbitrages.
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(a) Almost risk-neutral generator’s forward
ratios
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(b) Almost risk-neutral generator’s option
ratios
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(c) Highly risk-averse generator’s forward ratios
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(d) Highly risk-averse generator’s option ratios

Figure D.3: Generator’s optimal forward and option ratios as a function of the bias in
forward and option prices for off-peak delivery period weekends 4-5 am in May 2019 for
near risk neutrality (risk coefficient of 0.001) and high risk aversion (risk coefficient 1)
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Figures D.4 (LSE) and D.5 (generator) show the analogous heat maps for the peak
period. In the peak period, the almost risk-neutral agents also heavily arbitrage, while
the risk-averse agents take smaller arbitrage positions.

-10 -5 -2 -1 0 1 2 5 10
Forward bias (% deviation from arbitrage-free forward price)

-10

-5

-2

-1

0

1

2

5

10

Op
tio

n 
bi

as
 (%

 d
ev

ia
tio

n 
fro

m
 a

rb
itr

ag
e-

fre
e 

op
tio

n 
pr

ice
)

852 -30 -449 -576 -697 -814 -926 -1239 -1700

1526 445 -41 -186 -323 -454 -580 -926 -1426

2023 771 231 72 -78 -220 -355 -725 -1253

2210 888 327 163 9 -137 -276 -655 -1194

2410 1010 426 257 98 -53 -196 -585 -1134

2626 1138 529 354 189 34 -113 -512 -1073

2859 1271 636 454 283 123 -29 -438 -1012

3697 1714 981 776 585 407 240 -206 -820

5928 2655 1669 1408 1170 951 750 223 -476

100000

50000

0

50000

100000

Fo
rw

ar
d 

ra
tio

 (%
)

(a) Almost risk-neutral LSE’s forward ratios
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(b) Almost risk-neutral LSE’s option ratios
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(c) Highly risk-averse LSE’s forward ratios
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(d) Highly risk-averse LSE’s option ratios

Figure D.4: LSE’s optimal forward and option ratios as a function of the bias in forward
and option prices for peak delivery period weekdays 4-5 pm in August 2019 for near
risk-neutrality (risk coefficient of 0.001) and high risk aversion (risk coefficient 1)
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(a) Almost risk-neutral generator’s forward
ratios
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(b) Almost risk-neutral generator’s option
ratios
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(c) Highly risk-averse generator’s forward ratios
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(d) Highly risk-averse generator’s option ratios

Figure D.5: Generator’s optimal forward and option ratios as a function of the bias in
forward and option prices for peak delivery period weekdays 4-5 pm in August 2019 for
near risk-neutrality (risk coefficient of 0.001) and high risk aversion (risk coefficient 1)



APPENDIX TO CHAPTER 4 203

D.3 Net demand heat maps for a low strike price

In this appendix, the below figures examine the impact of selecting a lower strike price of
$200/MWh on agents’ net demand. Figure D.6 depicts the off-peak results and Figure
D.7 the peak results. With the low strike price, agents choose larger option positions and
smaller forward positions compared to the high strike price of $1, 000/MWh, as shown in
Graph 4.4 in Section 4.6. Brandkamp et al. (2025) have already established this finding
for arbitrage-free prices. Additionally, the below figures demonstrate that a lower strike
price of $200/MWh encourages agents to take larger arbitrage positions compared to a
higher strike price of $1, 000/MWh.
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(a) LSE’s forward ratios
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(b) LSE’s option ratios
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(c) Generator’s forward ratios
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(d) Generator’s option ratios

Figure D.6: LSE and generator’s optimal forward and option ratios as a function of the
bias in forward and option prices for off-peak period weekends 4-5 am in May 2019 for a
relative risk coefficient of 0.2 and a low strike price of $200/MWh
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(a) LSE’s forward ratios
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(b) LSE’s option ratios
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(c) Generator’s forward ratios
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(d) Generator’s option ratios

Figure D.7: LSE and generator’s optimal forward and option ratios as a function of the
bias in forward and option prices for peak period weekdays 4-5 pm in August 2019 for a
relative risk coefficient of 0.2 and a low strike price of $200/MWh
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D.4 Capacity mixes of the representative generators

The below figures show the capacity mixes of the simulated representative generation
companies we created based on the power plant datasets by Mann et al. (2017) and
ERCOT (2023). For each generation company, its total installed capacity and its number
of power plants are given in brackets.
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Figure D.8: Capacity mix per owner in % of total capacity (total capacity and number of
plants in brackets)
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Figure D.9: Capacity mix per owner in % of total capacity (total capacity and number of
plants in brackets)(continued)
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