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Abstract 

 

With its ambitious vision of 2030, Saudi Arabia has recognized the need to reduce its 
dependence on fossil-based energy and has taken concrete steps to diversify its energy 
sources. Among the priorities is the development of renewable energy, including 
geothermal resources. This thesis focuses on the application of Electromagnetic (EM) 
methods, specifically Magnetotellurics (MT) and Transient Electromagnetics (TEM), 
for the exploration of geothermal resources in the Al-Lith’s area, western Saudi Arabia, 
one of the most promising sites for geothermal development in Saudi Arabia.  

To comprehensively investigate and explore the prospect of geothermal resources in the 
area, broadband MT data covering a period range of 0.001–512 seconds were acquired 
at 50 locations, along with 13 TEM soundings. The phase tensor and its skew 
calculations revealed a complex subsurface conductivity structure, characterized by 
predominantly 1D/2D geoelectric behavior for short periods (< 2 sec) and a more 
complex 3D structure for longer periods. Prior to the inversion of the MT data, 3D MT 
synthetic modeling and inversion studies were carried out to assess the detectability of 
geothermal anomalies, optimize survey parameters, and evaluate the sensitivity of 
various parameter inputs applied in the 3D inversion. In order to ensure the robustness 
of the inversion results, extensive 3D MT inversion tests were performed. The resistivity 
model derived from TEM data was incorporated to optimize the 3D MT inversion.  

The final 3D resistivity model, with an RMS of 1.96, provides a high-resolution image 
of the geothermal system, delineating the heat source, convection pattern, and 
groundwater system. The geothermal reservoir is represented by deep elongated 
conductive bodies (< 20 Ωm) extending from 2.5 to over 8 km in depth. The individual 
protrusions above the reservoir indicate the pathways for geothermal fluids, forming 
convection cells from the reservoir to the surface or near the surface, potentially leading 
to an active geothermal surface manifestation (hot spring). The outcome of this study 
serves as the key input to understanding the complexity and characterization of the 
geothermal system of the Al-Lith region, confirming its potential for geothermal 
exploration and development efforts in Saudi Arabia.  
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Zusammenfassung 

 

Mit seiner ehrgeizigen Vision für 2030 hat Saudi-Arabien die Notwendigkeit erkannt, 
seine Abhängigkeit von fossilen Energieträgern zu verringern, und hat konkrete Schritte 
zur Diversifizierung seiner Energiequellen unternommen. Eine der Prioritäten gehört 
die Entwicklung erneuerbarer Energien, einschließlich geothermischer Ressourcen. Diese 
Arbeit befasst sich mit deri Anwendung elektromagnetischer (EM) Methoden, 
insbesondere der Magnetotellurik (MT) und der Transienten Elektromagnetik (TEM), 
zur Exploration geothermischer Ressourcen im Gebiet von Al-Lith, das im westlichen 
Saudi-Arabien liegt. Die Region Al-Lith ist bekannt für geothermische 
Oberflächenerscheinungen wie heiße Quellen was sie zu einem der vielversprechendsten 
Standorte für die geothermische Entwicklung in Saudi-Arabien macht.  

Um das Potenzial geothermischer Ressourcen in diesem Gebiet umfassend zu 
untersuchen, wurden breitbandige MT-Daten mit einer Periodendauer von 0,001–512 
Sekunden an 50 Messpunkten erfasst, ergänzt durch 13 TEM-Sondierungen. 
Dimensionalitätsanalysen mittels Phasentensor und seiner Schiefe zeigten eine 
komplexe Leitfähigkeitsstruktur des Untergrunds, die sich durch ein überwiegend 
1D/2D-geoelektrisches Verhalten bei kurzen Perioden (< 2 Sek.) und eine komplexere 
3D-Struktur bei längeren Perioden auszeichnet. Vor der Inversion der MT-Daten 
wurden synthetische 3D-MT Modellierungen und Inversionsstudien durchgeführt, um 
die Erkennbarkeit geothermischer Anomalien zu bewerten, die Messparameter zu 
optimieren und die Empfindlichkeit verschiedener Parameter in der 3D-Inversion zu 
untersuchen. Um die Robustheit der Inversionsergebnisse zu gewährleisten, wurden 
umfangreiche 3D-MT-Inversionstests durchgeführt, bei denen verschiedene 
Startresistivitätsmodelle, Glättungsfaktoren, statische Verschiebungskorrekturen, 
Einfluss der Topographie und unterschiedliche Tensor-Datenarten variiert wurden. Das 
aus den TEM-Daten abgeleitete Resistivitätsmodell wurde als A-Priori-Information in 
das Startmodell integriert, um die 3D-MT-Inversion zu optimieren. 

Das endgültige 3D-Resistivitätsmodell, mit einem RMS von 1,96, liefert ein 
hochauflösendes Bild des geothermischen Systems, das die Wärmequelle, das 
Konvektionsmuster und das Grundwassersystem abbildet. Das geothermische Reservoir 
wird durch tiefreichende, langgestreckte leitfähige Strukturen (< 20 Ωm) dargestellt, 
die sich von 2,5 bis über 8 km Tiefe erstrecken. Einzelne aufsteigende Strukturen über 
dem Reservoir deuten auf Aufstiegswege für geothermische Flüssigkeiten hin, die 
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Konvektionszellen vom Reservoir bis zur Oberfläche oder in oberflächennahe Bereiche 
bilden und möglicherweise zu aktiven geothermischen Manifestationen (heiße Quellen) 
führen. Die Ergebnisse dieser Studie stellen einen entscheidenden Beitrag zum 
Verständnis der Komplexität und Charakterisierung des geothermischen Systems der 
Al-Lith-Region dar und bestätigen dessen Potenzial für die geothermische Exploration 
und Entwicklung in Saudi-Arabien.  
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Chapter 1  
Introduction 

 

1.1 Motivation 

Geothermal energy has emerged as a promising renewable energy source with the 
potential to play a significant role in the global energy landscape. Geothermal resources, 
which harness the Earth's internal heat, offer a continuous and low-carbon power source 
that can supplement and diversify the energy mix in many regions. This type of energy 
is required to replace the carbon dioxide spewed by oil, coal, and other fossil fuels, 
which are the main source of global warming emissions, one of humanity's most pressing 
existential issues today. To control these global warming phenomena, it is imperative 
to enhance energy efficiency and to transition from fossil fuels and other 
environmentally harmful energy sources to renewable and sustainable energy 
alternatives. Unlike fossil fuels, geothermal power generation does not produce harmful 
greenhouse gas emissions, making it a sustainable option for energy production. 
Therefore, geothermal energy is one of the geo-resources that serve as a critical 
foundation for facilitating reductions in gas emissions (Herrington, 2021; Younger, 
2014). 

In addition to its environmental benefits, geothermal energy also offers practical 
advantages in terms of its accessibility and versatility. Geothermal resources are widely 
distributed across the globe, with significant potential in regions with high volcanic and 
tectonic activity. Furthermore, geothermal energy can be used not only for electricity 
generation but also for direct heating and cooling applications, making it a versatile 
energy solution for a variety of residential, commercial, and industrial needs (Lund & 
Toth, 2021). As the global demand for renewable and sustainable energy sources 
continues to rise, the development of geothermal energy resources will become 
increasingly important. With its clean, continuous, and versatile nature, geothermal 
energy has the potential to play a vital role in the transition towards a more sustainable 
energy future (Adams et al., 2015; Zhang et al., 2019).  

The Kingdom of Saudi Arabia has long been recognized as a global leader in the oil 
and gas industry, but as the world transitions towards renewable energy, the country 
has also set its sights on tapping into the vast potential of geothermal resources 
(Melouah et al., 2023). This shift is a key component of Saudi Arabia's Vision 2030, a 
strategic plan aimed at diversifying the nation's economy, reducing its reliance on fossil 
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fuels, and achieving Net Zero carbon emission by 2060  (Ali et al., 2021; Hassan, 2020). 
Saudi Arabia possesses significant geothermal energy resources, particularly in its 
western region along the Red Sea coast, where numerous tectonic activities, volcanic 
fields, and hot springs are located, as shown in Figure 1.1 (Aboud et al., 2021; Demirbas 
et al., 2016; Lashin, Al Arifi, et al., 2015; Rehman & Shash, 2005). By harnessing these 
geothermal assets, Saudi Arabia can not only contribute to global efforts to combat 
climate change but also bolster its economic diversification efforts. By diversifying its 
energy mix and reducing its reliance on fossil fuels, the Kingdom can enhance its energy 
security, create new economic opportunities, and contribute to a more sustainable 
future for the region and the world (Aldabesh et al., 2021; Melouah et al., 2023). 

 
Figure 1.1: Saudi Arabia's map showing the main geothermal features, including volcanic fields (red 
polygons), hot springs (red triangles), and measurements of heat flow. Figure taken from Aboud et al. 
(2021). 

Several exploration campaigns and research studies have been carried out to investigate 
the potential of the geothermal resources of Saudi Arabia (Al-Dayel, 1988; 
Chandrasekharam et al., 2014, 2015; Demirbas et al., 2016; Hussein et al., 2013; Lashin 
et al., 2014; Lashin & Al Arifi, 2014; Ouda et al., 2022; Ashadi et al., 2024). The 
aforementioned geothermal studies suggested that Al-Lith area, located south of 
Jeddah, is known for its geothermal activity and is considered one of the most 
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prominent sites for geothermal resources in the Kingdom of Saudi Arabia (Aboud et 
al., 2021; Hussein et al., 2013; Lashin et al., 2014; Lashin, Pipan, et al., 2015). Its 
geothermal reserve holds a significant promise for providing clean power energy on a 
long-term basis. Although geothermal energy utilization for power generation is not yet 
economically viable, some direct-use applications of low-grade geothermal resources 
have already been implemented. In 2023, the construction of the Hot Spring Park near 
the Ain Al-Harrah hot spring was completed, featuring amenities such as steam baths, 
swimming pools, and children’s playgrounds (Figure 1.2). Despite this, geothermal 
energy studies in Al-Lith require more detailed and comprehensive investigations to 
fully characterize the geothermal system. A critical missing component in these studies 
is a deep subsurface geoelectrical/electromagnetic survey, which is essential for 
understanding the geothermal reservoir’s structure and potential. 

 
Figure 1.2: Photo showing the Hot Spring Park near the Ain Al-Harrah hot spring, featuring amenities 
such as steam baths, swimming pools, and children’s playgrounds. 

Among the geophysical methods employed in geothermal exploration, electromagnetic 
(EM) methods have proven to be particularly effective due to their ability to effectively 
map the subsurface electrical properties and identify key features, such as heat sources, 
faults, fractures, and fluid pathways. The EM methods can also be used to assess the 
depth and extent of geothermal resources, which is essential for the development and 
exploitation of geothermal energy (Adams et al., 2015). During the last decades, the 
applied EM method has become an industry standard for geothermal exploration due 
to its ability to detect conductive zones commonly present in a geothermal system 
(Muñoz, 2014; Wright et al., 1985). Enhanced hardware, interpretation methodologies, 
data processing tools, and modeling software have further increased the popularity of 
EM over other geophysical methods (Spichak & Manzella, 2009). Among several EM 
techniques, Magnetotelluric (MT) has become the most widely used for exploration in 
the geothermal field due to its relatively low cost, highly effective, and deep subsurface 
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penetration (Pellerin et al., 1996). In addition to MT, the Transient Electromagnetic 
(TEM) method is also used in geothermal exploration, albeit less frequently. TEM is 
particularly effective for investigating shallow subsurface features and for providing 
higher-resolution data in the near-surface region. Integrating MT and TEM data allows 
for static shift corrections and improves the accuracy of subsurface models (Cumming 
& Mackie, 2010; Pellerin & Hohmann, 1990). Advanced 3D inversion techniques should 
be applied to the acquired geophysical data to develop robust resistivity models, which 
can delineate the geothermal reservoir's depth, extent, and fluid pathways—crucial for 
resource assessment and development (Árnason et al., 2010). 

The key motivations for this thesis are: 

1. Bridging knowledge gaps in the geothermal exploration in Saudi Arabia. While 
previous studies in the Al-Lith region have primarily focused on surface 
manifestations, such as hot springs and geochemical analyses of thermal waters, 
there remains a significant need to investigate the subsurface characteristics, 
depth, and fluid circulation within the geothermal reservoir. 
 

2. Demonstrating the integration of MT and TEM methods. This research 
highlights the value of integrating MT and TEM methods to develop a more 
reliable subsurface resistivity model. Such an approach is crucial for delineating 
fluid pathways, assessing geothermal potential, and characterizing reservoir 
structures. 
 

3. Identifying key geothermal features and assessing energy potential. By 
characterizing geothermal reservoirs, this research directly supports Saudi 
Arabia’s Vision 2030 by contributing to sustainable energy development and 
resource management. 

 

1.2 Thesis Outline 

This thesis is structured to provide a logical progression from foundational concepts to 
detailed analysis and interpretation of results. Chapter 1 serves as the introduction, 
outlining the motivation behind this research, highlighting the significance and 
objectives that drive the study. Chapter 2 explores the theoretical aspects of 
electromagnetic methods in applied geophysics, laying the groundwork for the 
methodologies employed in the thesis. In Chapter 3, the focus shifts to the inversion 
theory of electromagnetic data, specifically addressing the inversion methods utilized 
in this study. Chapter 4 offers an overview of various geothermal energy resources, 
including a discussion on geothermal resources and exploration activities in Saudi 
Arabia. Chapter 5 describes the field survey conducted at Al-Lith region, detailing how 
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the data was collected and outlining the primary geological features of the study area. 
A comprehensive description of the processing applied to the datasets from both MT 
and TEM measurements, along with an analysis of the processed data, is provided in 
Chapter 6. Moving on to Chapter 7, a comprehensive exploration of 3-D synthetic 
modeling and inversion studies is presented. This section elaborates on the principles 
of 3-D MT forward modeling and the subsequent inversion studies conducted, 
showcasing how these techniques contribute to a deeper understanding of the subsurface 
structures.  

Chapter 8 offers an in-depth look at the 3D inversion scheme that was utilized to 
analyze the MT data collected from the Al-Lith area. It begins with a thorough 
overview of the selected inversion parameters, discussing their significance in achieving 
accurate models. This chapter also highlights the innovative approach of optimizing 3D 
MT inversion by incorporating TEM data as prior information to enhance the 
robustness of the inversion results. Finally, Chapter 9 wraps up the thesis with the 
presentation of a preferred model for the resistivity distribution of the subsurface, along 
with an interpretation of these results. This chapter synthesizes the main findings, 
highlighting their implications and providing recommendations for future research 
directions in geothermal exploration and geophysical methodologies. 
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Chapter 2  
EM Methods in Applied Geophysics 

 

The subsequent chapter delineates the theoretical foundations of applied 
electromagnetic (EM) methods, which are widely used in geophysics to investigate the 
subsurface's electrical properties. Two common EM techniques employed in this thesis 
are Magnetotellurics (MT) and Transient Electromagnetics (TEM). Each technique has 
unique advantages and applications depending on the survey objectives and geological 
context. These applied EM methods are based on Maxwell’s equations, which govern 
the propagation and diffusion of electromagnetic waves. The chapter begins with a brief 
overview of the electrical properties of Earth materials, followed by the derivation of 
the diffusion equation. Next, an overview of the MT method is provided, detailing its 
transfer functions and main characteristics. Finally, the fundamental aspects of the 
TEM technique are discussed. 

 

2.1 Electrical Properties of Earth Materials 

The electrical properties of earth materials are fundamental to many geophysical 
methods, especially EM methods used to explore the subsurface. These properties, 
primarily electrical conductivity and resistivity, influence how materials respond to 
electromagnetic fields. Understanding these properties helps geophysicists interpret the 
underlying geological structure from electromagnetic surveys and other geophysical 
techniques. 

2.1.1 Electrical Resistivities of Rocks and Minerals 

Electrical resistivity (𝜌𝜌) is a measure of how strongly a material opposes the flow of 
electric current. Since the 1940s (e.g. Archie, 1942), numerous studies have investigated 
the electrical conductivity of rocks, driven by the need to understand subsurface 
properties for resource exploration, including geothermal energy, oil and gas, and 
minerals. Figure 2.1 shows the typical values of resistivity and conductivity of various 
rock materials. 
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Figure 2.1: Electrical resistivity and conductivity values of rocks and other common Earth materials 
(Miensopust, 2010). The values were taken from (Palacky, 1988), and references therein. 

The property of electrical resistivity is influenced by the mobility and density of charge 
carriers within the material, which refers to the so-called conduction mechanism. The 
conduction mechanisms in the Earth can be categorized into three main types (Caldwell 
et al., 1986): Electronic, ionic, and metallic conduction. Electronic conduction involves 
the movement of free electrons within the material. It is commonly observed in metallic 
minerals and rocks, such as sulfide ores (e.g., pyrite, chalcopyrite) and graphite. In ionic 
(electrolytic) conduction, the movement of charged ions, such as sodium (Na+), 
potassium (K+), or chloride (Cl-) ions, is the primary mechanism of electrical charge 
transport. This type of conduction is typically found in rocks and minerals that contain 
dissolved salts or ionic compounds, such as saline groundwater or evaporite deposits. 
Metallic conduction is a type of electronic conduction that occurs due to the mobility 
of free electrons in pure metals, which are very rare in the crust. This metallic 
conduction mechanism is in contrast with other conduction mechanisms, which involve 
the movement of different charge carriers (ions or electron-hole pairs).  

2.1.2 Electrical Resistivity of Rocks in Geothermal System 

Geothermal systems are complex environments where the interaction between hot fluids 
and the surrounding rock matrix can lead to significant changes in the physical and 
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chemical characteristics of the rock. One of the key parameters that is affected by these 
hydrothermal alteration processes is the electrical resistivity of the rock (Wyering et 
al., 2014). The high temperatures, the presence of hot (often saline) fluids, and 
alteration minerals (when present) can greatly influence the electrical properties of 
rocks (Caldwell et al., 1986; Ussher et al., 2000). Elevated temperatures in geothermal 
regions generally decrease rock resistivity because increased thermal energy enhances 
ion mobility in fluids. In more detail, at temperatures of 200 °C or lower for example, 
fluid resistivity decreases as temperature increases (Llera et al., 1990). Conversely, at 
temperatures of 300 °C or higher, the increased temperature of water leads to the 
dissociation of ions, resulting in higher fluid resistivity (Quist & Marshall, 1968). 

Regarding the alteration minerals, Caldwell et al. (1986) discovered that the presence 
of alteration minerals, often referred to as clay minerals, has a significant impact on 
bulk conductivity. Specifically, an increase of 10% in clay content within the rock 
samples decreases conductivity by one order of magnitude. They also noted that in 
geothermal rocks, temperature is a lesser factor compared to clay content, fluid 
conductivity, and porosity (Caldwell et al., 1986). 

Following the clay content, Caldwell et al. (1986) suggested that the next key factor 
influencing conductivity in geothermal rocks is a combination of the conductivity and 
porosity of the fluid. Laboratory measurements indicate that increasing porosity by one 
order of magnitude, for instance, from 0.01 to 0.1, results in an approximate increase 
of one order of magnitude in bulk conductivity (Caldwell et al., 1986; Hersir & Árnason, 
2013; Ussher et al., 2000). High salinity fluids lead to increased electrical conductivity 
due to enhanced ion mobility (Caldwell et al., 1986; Ucok et al., 1980). When salinity 
is raised by one order of magnitude (such as from 103 to 104 ppm NaCl), fluid 
conductivity increases by a similar magnitude, which subsequently results in nearly one 
order of magnitude increase in bulk conductivity (Hersir & Árnason, 2013). 

Therefore, the mixture of hot and saline fluids in permeable host rocks in geothermal 
environments leads to high conductivity. This low resistivity signature is an attractive 
target for Electromagnetic (EM) methods, including Magnetotellurics (MT). Enhanced 
hardware, methodologies, data processing, and modeling software have further 
increased the popularity of EM over other geophysical methods (Muñoz, 2014; Spichak 
& Manzella, 2009). 
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2.2 Maxwell’s Equations 

Maxwell's equations are the foundation of classical electromagnetism, describing how 
electric and magnetic fields propagate and interact with matter (Ward & Hohmann, 
1988). Here are Maxwell's equations in their differential forms: 

𝛻𝛻 ⋅ 𝑩𝑩 = 0  (2.1) 

𝛻𝛻 ⋅ 𝑫𝑫 = 𝑞𝑞  (2.2) 

𝛻𝛻 × 𝑬𝑬 = −
𝜕𝜕𝑩𝑩
𝜕𝜕𝜕𝜕

  (2.3) 

𝛻𝛻 × 𝑯𝑯 = 𝒋𝒋 +
𝜕𝜕𝑫𝑫
𝜕𝜕𝜕𝜕

  (2.4) 

 

Table 2.1: Basic physical parameters and their symbols used in EM fields. 

Symbol Property SI Units 

𝑬𝑬 electric field intensity  V/m 
𝑫𝑫 electric flux density  As/m2 

𝑩𝑩 magnetic flux density  T = Vs/ m2 
𝑯𝑯 magnetic field intensity  A/m 
𝒋𝒋 current density  A/m2 

𝒒𝒒 electric charge  As/m3 

𝜺𝜺 = 𝜺𝜺𝟎𝟎𝜺𝜺𝒓𝒓 electrical permittivity As/Vm 
𝜺𝜺𝟎𝟎 = 𝟖𝟖.𝟖𝟖𝟖𝟖𝟖𝟖 ⋅ 𝟏𝟏𝟏𝟏−𝟏𝟏𝟏𝟏 permittivity of free space As/Vm 

𝜺𝜺𝒓𝒓 
relative dielectric 
permittivity 

non-dimensional 

𝝁𝝁 = 𝝁𝝁𝟎𝟎𝝁𝝁𝒓𝒓 magnetic permeability  Vs/Am 
𝝁𝝁𝟎𝟎 = 𝟒𝟒𝟒𝟒 ⋅ 𝟏𝟏𝟏𝟏−𝟕𝟕 permeability of free space  Vs/Am 

𝝁𝝁𝒓𝒓 relative permeability non-dimensional 
𝝈𝝈 electric conductivity  S/m = A/Vm 
𝝆𝝆 electrical resistivity  Ωm = Vm/A 
𝒇𝒇 frequency  Hz = 1/s 

𝝎𝝎 = 𝟐𝟐𝟐𝟐𝟐𝟐 angular frequency  Rad/s 
 

The quantities of Maxwell’s equations are listed in Table 2.2. Equation 2.1 represents 
Gauss’s law for magnetism and states that Magnetic flux through a closed surface is 
zero (no magnetic monopoles). Gauss’s law for electricity is expressed in equation 2.2 
and shows that the electric field is the result of the distribution of electric charges. 



Chapter 2  EM Methods in Applied Geophysics 

10 
 

Equation 2.3 represents Faraday’s law which indicates that the induced electric field is 
equal to the time rate of change of the magnetic field. Ampère’s law is given in equation 
2.4 and it relates the magnetic field with the electric current density and the electric 
displacement field. 

In order to apply Maxwell’s equations to Earth models and understand how the Earth 
responds to electric and magnetic fields, it is necessary to define the relationships 
between the displacement field (𝑫𝑫) and the electric field (𝑬𝑬), as well as the magnetizing 
field (𝑯𝑯) and the magnetic field (𝑩𝑩). These relationships are described by constitutive 
equations. To simplify these equations, two basic assumptions are made: (i) all media 
are linear, isotropic, and homogeneous, and their electrical properties are independent 
of time, temperature, and pressure; and (ii) the magnetic permeability has the same 
value as in free space (𝜇𝜇 = 𝜇𝜇0). 

The constitutive relations can be written as: 

𝑩𝑩 = 𝜇𝜇 𝑯𝑯  (2.5) 

𝑫𝑫 = 𝜀𝜀 𝑬𝑬  (2.6) 

𝒋𝒋 = 𝜎𝜎 𝑬𝑬  (2.7) 

Equation 2.7 is known as Ohm’s law. In general, μ, ε and σ are tensors, but in isotropic 
media they are reduced to scalar quantities.  

2.2.1 Telegraph and Helmholtz Equations 

Telegraph or wave equations are derived following the assumptions that no free charges 
exist outside of external sources and in regions of homogeneous conductivity (𝛻𝛻 ⋅ 𝑬𝑬 =
0), and the current density is source-free in homogeneous regions (𝛻𝛻 ⋅ 𝒋𝒋 = 0 ). Using 
these assumptions, we can perform a transformation of the Maxwell equations by taking 
the curl of Faraday’s law (2.3) and 𝑩𝑩 is eliminated using constitutive relation (2.5) and 
subsequently 2.4, resulting in a second order differential equation for the electric field 
(𝑬𝑬). An identical equation is derived for the magnetic field (𝑯𝑯) in a similar way (Ward 
& Hohmann, 1988). Finally, considering the vector identity 𝛻𝛻 × 𝛻𝛻 × 𝓕𝓕 = 𝛻𝛻(𝛻𝛻 ⋅ 𝓕𝓕) − ∆𝓕𝓕 
and 𝛻𝛻 ⋅ 𝓕𝓕 = 0, the telegraph equation can be stated as 

∆𝓕𝓕 − 𝜇𝜇𝜇𝜇
𝜕𝜕𝓕𝓕
𝜕𝜕𝜕𝜕

− 𝜇𝜇𝜇𝜇
𝜕𝜕2𝓕𝓕
𝜕𝜕𝜕𝜕

= 0                       𝓕𝓕 ∈ {𝑬𝑬,𝑯𝑯} (2.8) 

The telegraph equation can be transformed into a frequency domain by applying a 

Fourier transformation, rewriting the time derivative as 𝜕𝜕𝓕𝓕
𝜕𝜕𝜕𝜕

= 𝑖𝑖𝑖𝑖𝓕𝓕. This leads to the 
Helmholtz equation: 
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∆𝓕𝓕 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝓕𝓕�����
conduction

+ 𝜇𝜇𝜇𝜇𝜔𝜔2𝓕𝓕�����
displacement

= 0                       ℱ ∈ {𝑬𝑬,𝑯𝑯}   (2.9) 

with the wavenumber k, which implies the physical properties of the media: k2 =
μεω2 − iωμσ. 

2.2.2 Quasi-Static Approximation 

In most earth material conductivities and the period range used in MT applications, 
the conduction currents (𝜎𝜎𝑬𝑬) are much larger than the displacement currents (𝜕𝜕𝜕𝜕𝑫𝑫). 
Therefore, we have the quasi-static approximation: 

𝜔𝜔𝜔𝜔𝜔𝜔
𝜇𝜇𝜇𝜇𝜔𝜔2 =

𝜎𝜎
𝜀𝜀𝜀𝜀

≫ 1  (2.10) 

In this case, the Telegraph equation (2.8) and Helmholtz equation (2.9) are reduced to: 

∆𝓕𝓕 − 𝜇𝜇𝜇𝜇
𝜕𝜕𝓕𝓕
𝜕𝜕𝜕𝜕

= 0                       𝓕𝓕 ∈ {𝑬𝑬,𝑯𝑯} (2.11) 

∆𝓕𝓕 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝓕𝓕 = 0                       𝓕𝓕 ∈ {𝑬𝑬,𝑯𝑯}   (2.12) 

which is known as the diffusion equation in time and frequency domain. In the quasi-
static approximation, the wavenumber is: 

𝑘𝑘 = �−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (1 − 𝑖𝑖)�
𝜇𝜇𝜇𝜇𝜇𝜇

2
(2.13) 

We can solve the telegraph equations (2.11) by assuming a plane wave solution. This 
assumes that voltage and current vary sinusoidally with position and time, which is 
common in EM field applications. The solution is a positive downward decaying EM 
field with a harmonic time dependence 𝑒𝑒𝑖𝑖ωt in a uniform conductor with conductivity 
𝜎𝜎 (Ward & Hohmann, 1988): 

𝓕𝓕(z, t) = 𝓕𝓕0
+𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖                

                                              = 𝓕𝓕0
+𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑖𝑖

�𝜇𝜇𝜇𝜇𝜇𝜇2  𝑧𝑧𝑒𝑒−
�𝜇𝜇𝜇𝜇𝜇𝜇2  𝑧𝑧   𝓕𝓕 ∈ {𝑬𝑬,𝑯𝑯} (2.14)

 

𝓕𝓕0
+ is the initial amplitude of the EM field and the wavenumber k is given in equation 

(2.13). 

With equations (2.13) and (2.14), we can define the skin depth (denoted as 𝛿𝛿) that 
refers to the distance into a conductor at which an electromagnetic wave's amplitude 

decays to 1
𝑒𝑒
 (about 37%) of its value at the surface. It measures how far an 

electromagnetic wave can penetrate into a conductor before significant attenuation 
occurs. 

𝛿𝛿𝐹𝐹𝐹𝐹 = �
2

𝜇𝜇0𝜎𝜎𝜎𝜎
     𝑜𝑜𝑜𝑜    𝛿𝛿𝐹𝐹𝐹𝐹(in km) ≈ 0.5 ⋅ �𝜌𝜌 (Ωm) ⋅ 𝑇𝑇 (s) (2.15) 
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This is referred to as the frequency domain skin depth. 

 

2.3 Magnetotelluric (MT) Method 

Electromagnetic (EM) methods are widely used in geophysics to investigate the 
subsurface's electrical properties. Two common EM techniques are Magnetotellurics 
(MT) and Transient Electromagnetics (TEM). Each technique has unique advantages 
and applications depending on the survey objectives and geological context. MT is a 
passive EM technique that measures natural variations in the Earth's magnetic and 
electric fields to determine the electrical conductivity structure of the subsurface. The 
principle of the MT method was first described independently by Tikhonov (1950) and 
Cagniard (1953). Over the decades, continuous advancements in technology and 
methodology have enhanced the MT method's accuracy and broadened its applications, 
making it a crucial tool in modern geophysical exploration. It is typically measured in 
the frequency range of 10-4 to 105 s. It can be particularly useful for deep investigations, 
ranging from a few hundred meters to several hundred kilometers depending on the 
resistivity of the structure and frequency contents of the EM field (Chave & Jones, 
2012; Simpson & Bahr, 2005; Vozoff, 1990). The ability of MT to penetrate deep into 
the Earth's crust makes it a powerful tool for exploring geothermal systems, as it can 
reveal the distribution of conductive and resistive zones associated with geothermal 
fluids/heat source and host rocks, respectively.  

Natural Source Fields of MT Signals 

Natural electromagnetic (EM) signals originate from various sources, spanning from 
the Earth's core to distant galaxies, and are the result of diverse processes (Vozoff, 
1990). The spectrum of EM field variations used in MT is very wide, covering 
frequencies from 104 to 10-5 Hz. Within this frequency range, two significant source 
regions are observed:  

• Global lighting activity at frequencies higher than 1 Hz, including the so-called 
Schumann resonances.  

• Interactions between the solar wind and the Earth’s magnetosphere which 
generate current systems in the auroral ionosphere, which in its turn produce 
major EM signals globally at frequencies lower than 1 Hz. 

A frequency range spanning approximately 0.5–5 Hz lies the so-called dead-band at 
which natural electromagnetic fluctuations are of low intensity, and it leads to 
significantly lower signal-to-noise ratios (Simpson & Bahr, 2005). 
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In the MT method, the sources of the EM fields are assumed to be laterally uniform 
across the region of interest, which allows the signals to be described as vertically 
propagating plane waves. However, it can be violated in auroral areas where the MT 
signal may be distorted by polar electro-jet currents, which can introduce significant 
anomalies in the data (Hill, 2020). 

2.3.1 The MT Transfer Functions 

The primary objective of the MT field campaign is to obtain the MT transfer function, 
which provides critical information about the subsurface electrical conductivity over a 
hemispherical volume centered at the MT site. MT transfer functions describe the 
relationship between naturally occurring variations in the Earth's electromagnetic fields 
and the electrical conductivity structure of the Earth's subsurface. These transfer 
functions are derived from the ratio of electric and magnetic field components recorded 
at the surface and are used to infer information about subsurface conductivity. 

Impedance Tensor (𝒁𝒁) 

The primary transfer functions in MT are composed of the impedance tensor (𝒁𝒁) and 
the vertical magnetic transfer function (also known as the tipper, 𝑻𝑻). The basic MT 
response, 𝒁𝒁, is a complex matrix that relates the horizontal electric field (𝑬𝑬) to the 
horizontal magnetic field (𝑯𝑯) (Cagniard, 1953; Tikhonov, 1950). Thus, it can be 
formulated as 

�
𝑬𝑬𝑥𝑥
𝑬𝑬𝑦𝑦
� =  �

𝒁𝒁𝑥𝑥𝑥𝑥 𝒁𝒁𝑥𝑥𝑥𝑥
𝒁𝒁𝑦𝑦𝑦𝑦 𝒁𝒁𝑦𝑦𝑦𝑦

� �
𝑯𝑯𝑥𝑥
𝑯𝑯𝑦𝑦

�  (2.16) 

Each element of the tensor (𝒁𝒁𝑥𝑥𝑥𝑥,𝒁𝒁𝑥𝑥𝑥𝑥,𝒁𝒁𝑦𝑦𝑦𝑦,𝒁𝒁𝑦𝑦𝑦𝑦) is frequency-dependent and complex, 
meaning it has both a real and an imaginary part. The 𝒁𝒁𝑥𝑥𝑥𝑥 and 𝒁𝒁𝑦𝑦𝑦𝑦 called diagonal 
elements represent the direct coupling of the electric and magnetic fields in the same 
direction. On the other hand, the 𝒁𝒁𝑥𝑥𝑥𝑥 and 𝒁𝒁𝑦𝑦𝑦𝑦 called off-diagonal elements represent 
the cross-coupling of the electric and magnetic fields and typically the primary focus in 
MT interpretation because they contain the most information about the subsurface 
resistivity. 

The tensor 𝒁𝒁 can be more effectively interpreted by examining derived quantities such 
as the apparent resistivity (𝜌𝜌𝑎𝑎) derived from the magnitude of the off-diagonal elements 
and the phase (𝜙𝜙), which is the argument of the off-diagonal elements. The 𝜌𝜌𝑎𝑎 and 𝜙𝜙 
can be expressed as (Berdichevsky & Dmitriev, 2008; Chave & Jones, 2012; Simpson & 
Bahr, 2005): 

𝜌𝜌𝑎𝑎,ij =
1
𝜔𝜔𝜇𝜇0

�
𝑬𝑬i
𝑯𝑯𝑗𝑗
�
2

=
�𝒁𝒁ij(𝜔𝜔)�

2

𝜔𝜔𝜇𝜇0
, 𝑖𝑖, 𝑗𝑗 ∈  [𝑥𝑥,𝑦𝑦] (2.17) 
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𝜙𝜙ij = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �
𝐼𝐼𝐼𝐼 �𝒁𝒁ij(𝜔𝜔)�

𝑅𝑅𝑅𝑅 �𝒁𝒁ij(𝜔𝜔)�
� , 𝑖𝑖, 𝑗𝑗 ∈  [𝑥𝑥,𝑦𝑦] (2.18) 

where x and y are directed northwards and eastwards respectively. 

Vertical Magnetic Transfer Function (Tipper) 

In addition to the impedance, further information about lateral changes in subsurface 
conductivity structure can be obtained from the vertical magnetic transfer function or 
tipper (𝑻𝑻). It is particularly useful for identifying 3D structures and detecting anomalies 
that might not be evident from the impedance tensor alone (Berdichevsky & Dmitriev, 
2008). The concept of tipper (𝑻𝑻) was independently discovered by Parkinson (1959, 
1962) and Wiese (1962) and can be formulated as: 

𝑯𝑯𝑧𝑧 = �𝑻𝑻𝑧𝑧𝑧𝑧 𝑻𝑻𝑧𝑧𝑧𝑧� ⋅ �
𝑯𝑯𝑥𝑥
𝑯𝑯𝑦𝑦

� (2.19) 

Where 𝑯𝑯𝑥𝑥, 𝑯𝑯𝑦𝑦 and 𝑯𝑯𝑧𝑧 are the magnetic field components and  𝑻𝑻𝑧𝑧𝑧𝑧 and 𝑻𝑻𝑧𝑧𝑧𝑧 represent 
the components of the tipper.  

A widely used method to visualize tippers is through the use of induction arrows. A 
complex tipper, also known as an induction arrow, comprises both real and imaginary 
tippers (or real and imaginary induction arrows). There are two conventions regarding 
the direction of the real tipper: the Wiese convention, where the real tipper points away 
from areas of higher conductivity, and the Parkinson convention, in which it points 
toward regions of higher conductivity. This thesis adopts the Parkinson convention. The 
magnitude of the arrows reflects the intensity of the current concentrations associated 
with the anomaly, providing a visual indication of the strength of these anomalies 
(Jones & Price, 1970). The arrows’ direction is particularly important, as they are 
oriented perpendicular to the regional geoelectric strike. This characteristic can be used 
to verify and delineate the strike direction of subsurface geological features, enhancing 
the accuracy of resistivity models (Berdichevsky & Dmitriev, 2008). 

The length of the induction arrows is utilized from the tipper components, such as  

𝑅𝑅𝑅𝑅(𝑻𝑻) = �𝑅𝑅𝑅𝑅(𝑻𝑻𝑥𝑥)2 + 𝑅𝑅𝑅𝑅�𝑻𝑻𝑦𝑦�
2

, (2.20) 

and their direction is given by 

𝛼𝛼 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �
𝑅𝑅𝑅𝑅�𝑻𝑻𝑦𝑦�
𝑅𝑅𝑅𝑅(𝑻𝑻𝑥𝑥)�  (2.21) 

where 𝛼𝛼 is measured clockwise from geomagnetic north. It is important to note that 
the geomagnetic transfer functions, or tippers (𝑻𝑻) are less susceptible to galvanic 



2.3  Magnetotelluric (MT) Method 

15 
 

distortion compared to the impedance tensor (𝒁𝒁). Galvanic distortion arising from near 
surface inhomogeneities can significantly alter the impedance tensor, leading to 
inaccuracies in the derived resistivity models. In contrast, tippers are more robust 
against such distortions. As a result, incorporating tippers into a joint inversion scheme, 
which simultaneously inverts both impedance tensor and tipper data, can mitigate the 
effects of static shifts. This approach enhances the reliability of geo-electrical 
conductivity models by providing a more accurate representation of the subsurface 
conductivity structure (Berdichevsky et al., 2003; Siripunvaraporn & Egbert, 2009). 

Phase tensor 

Understanding the MT transfer function, specifically the impedance tensor, poses a 
significant challenge due to the distortion of the electric field caused by near-surface 
heterogeneities. The introduction of the phase tensor by Caldwell et al. (2004) and 
Bibby et al. (2005) marked a significant development in distortion analysis. The phase-
tensor analysis is valuable in identifying and displaying the unaffected portions of the 
response function, such as regional strike in the presence of local 3D effects. Assessing 
the dimensionality and regional strike is crucial as an initial step in the MT data 
modeling process. The phase tensor (𝚽𝚽) is defined as the ratio of the real and imaginary 
parts of the complex impedance tensor: 

𝚽𝚽 = 𝜲𝜲−1𝒀𝒀 (2.22) 

where 𝜲𝜲 and 𝒀𝒀 are the real and imaginary parts of the 𝒁𝒁. This operation essentially 
removes distortion effects associated with galvanic distortions that can affect the real 
part of the impedance tensor.  

The MT phase tensor is characterized by a direction and three scalar coordinate 
invariants, which are intrinsic properties of the tensor and remain unchanged by the 
coordinate system or the presence of galvanic distortion. The direction of the phase 
tensor refers to the geoelectric strike, which is the orientation of the major axis of the 
phase tensor ellipse. The geoelectric strike angle (𝜃𝜃) is determined by the principal 
directions of the phase tensor. It provides crucial information about the alignment of 
subsurface structures, such as faults, lithological boundaries, or other conductive 
anomalies. The three invariants are typically defined as maximum (𝚽𝚽max) and minimum 
(𝚽𝚽max) tensor values and the skew angle (𝛽𝛽), and they can be used to infer properties 
about subsurface dimensionality and the complexity of resistivity structures. The phase 
tensor can be written as a product of its invariants, 𝚽𝚽max, 𝚽𝚽min, and 𝛽𝛽: 

𝚽𝚽 = 𝑹𝑹𝑇𝑇(𝛼𝛼 − 𝛽𝛽) �𝚽𝚽max 0
𝟎𝟎 𝚽𝚽min

�𝑹𝑹(𝛼𝛼 + 𝛽𝛽) (2.23) 

where 𝑹𝑹(𝛼𝛼 + 𝛽𝛽) is the rotation matrix: 
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𝑹𝑹(𝛼𝛼 + 𝛽𝛽) = � cos(𝛼𝛼 + 𝛽𝛽) sin(𝛼𝛼 + 𝛽𝛽)
− sin(𝛼𝛼 + 𝛽𝛽) cos(𝛼𝛼 + 𝛽𝛽)� (2.24) 

Both angles 𝛼𝛼 and 𝛽𝛽 can be expressed as: 

𝛼𝛼 =
1
2

arctan�
𝚽𝚽xy + 𝚽𝚽yx

𝚽𝚽xx − 𝚽𝚽yy
� (2.25) 

𝛽𝛽 =
1
2

arctan�
𝚽𝚽xy − 𝚽𝚽yx

𝚽𝚽xx + 𝚽𝚽yy
� (2.26) 

The phase tensor can be graphically represented as an ellipse, as shown in Fig. 2.2. The 
major and minor axes of the ellipse represent the principal values of the tensor with 
the orientation of the major axis specified by the angle 𝛼𝛼 − 𝛽𝛽. In the case of 1-D 
subsurface structure, the phase tensor ellipse is nearly circular and 𝚽𝚽max = 𝚽𝚽min. In a 
2-D environment, the ellipse becomes elongated, with a clear major axis indicating the 
dominant direction of resistivity contrast (the geoelectric strike). For a 3-D resistivity 
structure, the ellipse may become skewed, meaning it is tilted or asymmetric, and the 
skewness increases (𝛽𝛽 ≠ 0) as the structure becomes more complex and involves lateral 
changes in conductivity in multiple directions (Caldwell et al., 2004). 

 
Figure 2.2: Graphical representation of the phase tensor. The three invariants (𝜱𝜱𝑚𝑚𝑚𝑚𝑚𝑚, 𝜱𝜱𝑚𝑚𝑚𝑚𝑚𝑚, and 𝛽𝛽) are 
used to infer properties about subsurface dimensionality and the complexity of resistivity structures. 
Figure redrawn from Caldwell et al. (2004). 
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2.3.2 Dimensionality 

In a 1-D subsurface structure, isotropic layered Earth (i.e., the conductivity changes 
only with depth), the diagonal components of the impedance tensor, which correspond 
to the horizontal electric and magnetic fields, are both zero (𝒁𝒁𝑥𝑥𝑥𝑥 =  𝒁𝒁𝑦𝑦𝑦𝑦 = 0). Due to 
the absence of lateral conductivity variations, the off-diagonal components are equal in 
magnitude but have opposite signs in order to maintain the right-hand rule (𝒁𝒁𝑥𝑥𝑥𝑥 =
 −𝒁𝒁𝑦𝑦𝑦𝑦). The phase tensor is graphically represented with a circle (𝚽𝚽max = 𝚽𝚽min) and 
the tipper components equal to zero (𝑻𝑻𝑧𝑧𝑧𝑧 =  𝑻𝑻𝑧𝑧𝑧𝑧 = 0).  

 
Figure 2.3: Simple 2-D model to illustrate the EM fields decoupled into two modes, known as E-
polarization and B-polarization. Figure taken from Thiel (2008).  

In a 2-D Earth, in which resistivity varies with depth and along one horizontal direction 
(i.e., in the strike direction), the diagonal components of the impedance tensor are equal 
in magnitude but with different sign (𝒁𝒁𝑥𝑥𝑥𝑥 =  −𝒁𝒁𝑦𝑦𝑦𝑦) and the off-diagonal elements do 
not have the same value (𝒁𝒁𝑥𝑥𝑥𝑥 ≠  𝒁𝒁𝑦𝑦𝑦𝑦). For the ideal 2-D case, as shown in Figure 2.3, 
electric and magnetic fields are perpendicular to each other. When electric fields (𝑬𝑬𝑥𝑥) 
parallel to the strike direction, they induce magnetic fields perpendicular to the strike 
(𝑯𝑯𝑦𝑦, 𝑯𝑯𝑧𝑧 or 𝑩𝑩𝑦𝑦, 𝑩𝑩𝑧𝑧). Conversely, when magnetic fields (𝑯𝑯𝑥𝑥 or 𝑩𝑩𝑥𝑥) are parallel to the 
strike direction, they only induce electrical fields in the vertical plane perpendicular to 
the strike (𝑬𝑬𝑦𝑦, 𝑬𝑬𝑧𝑧) (Chave & Weidelt, 2012). Under these conditions, Maxwell’s 
equations can be decoupled into two modes. One mode, which describes electric currents 
flowing parallel to the strike direction (i.e., in the x-direction), is known as the 
Transverse Electric (TE) Mode or E-Polarization and can be represented as follows: 
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𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐵𝐵𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜇𝜇0𝜎𝜎𝐸𝐸𝑥𝑥

𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

= −𝑖𝑖𝑖𝑖𝐵𝐵𝑦𝑦
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝑖𝑖𝑖𝑖𝐵𝐵𝑧𝑧

       

⎭
⎪⎪
⎬

⎪⎪
⎫

 𝐸𝐸 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) (2.27) 

The other mode, which describes currents flowing perpendicular to the strike direction, 
is called the Transverse Magnetic (TM) Mode or B-Polarization: 

𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝑖𝑖𝑖𝑖𝐵𝐵𝑥𝑥

𝜕𝜕𝐵𝐵𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝜇𝜇0𝜎𝜎𝐸𝐸𝑦𝑦

−
𝜕𝜕𝐵𝐵𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝜇𝜇0𝜎𝜎𝐸𝐸𝑧𝑧

       

⎭
⎪⎪
⎬

⎪⎪
⎫

 𝐵𝐵 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) (2.28) 

If the impedance tensor is not aligned with the electrical strike coordinates, which is 
typically the case for most recorded MT data, the TE and TM modes will be mixed in 
the tensor. In this case, the 2-D impedance tensor needs to be rotated into the strike 
direction through: 

  
𝒁𝒁2D = 𝑹𝑹𝜃𝜃𝒁𝒁𝑜𝑜𝑜𝑜𝑜𝑜𝑹𝑹𝜃𝜃𝑇𝑇 (2.29) 

where 𝒁𝒁𝑜𝑜𝑜𝑜𝑜𝑜 is the recorded impedance tensor in the observational reference frame, and 
𝑹𝑹𝜃𝜃 is the rotation matrix: 

𝑹𝑹𝜃𝜃 = � cos 𝜃𝜃 sin𝜃𝜃
− sin 𝜃𝜃 cos 𝜃𝜃�

(2.30) 

The rotation angle 𝜃𝜃 can be estimated as follows (Swift, 1967): 

𝜃𝜃Swift =
1
4

tan−1 �
2 ⋅ 𝑅𝑅𝑅𝑅 ��𝑍𝑍𝑥𝑥𝑥𝑥 − 𝑍𝑍𝑦𝑦𝑦𝑦�

∗
�𝑍𝑍𝑥𝑥𝑥𝑥 + 𝑍𝑍𝑦𝑦𝑦𝑦��

�𝑍𝑍𝑥𝑥𝑥𝑥 − 𝑍𝑍𝑦𝑦𝑦𝑦�
2
−�𝑍𝑍𝑥𝑥𝑥𝑥 + 𝑍𝑍𝑦𝑦𝑦𝑦�

2 � (2.31) 

It helps rotate the impedance tensor to a new coordinate system where the off-diagonal 
components of the tensor are maximized, providing a more unambiguous indication of 
the subsurface resistivity structure. 

Finally, if the conductivity distribution varies in all three directions (𝜎𝜎(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)), the 
problem becomes three-dimensional (3-D). In this case, decoupling into two separate 
modes is no longer applicable, and the determination of four elements of the full 
impedance tensor is required. Moreover, all components of the impedance tensor are 
different, and nonzero values (i.e., 𝒁𝒁𝑥𝑥𝑥𝑥 ≠  𝒁𝒁𝑦𝑦𝑦𝑦, and 𝒁𝒁𝑥𝑥𝑥𝑥 ≠  𝒁𝒁𝑦𝑦𝑦𝑦). The ellipse of the MT 
phase tensor is asymmetrical, and the skew angle increases (𝛽𝛽 ≠ 0). 
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2.3.3 Distortions and Static Shift 

Distortions of the Magnetotelluric (MT) signal can occur due to a variety of factors, 
both natural and anthropogenic, leading to inaccurate interpretations of the Earth's 
subsurface resistivity structure. These distortions in the measured EM fields can 
generally be classified into galvanic and inductive effects. Inductive effects alter both 
the electric and magnetic fields, typically at lower frequencies, and are often associated 
with large-scale geological inhomogeneities (e.g., ore bodies and salt domes) or extensive 
conductive materials like seawater. Induced currents primarily cause the distortion 
effects due to the time-varying magnetic fields interacting with conductive bodies, 
which in turn generate secondary EM fields (Chave & Jones, 2012; Jiracek, 1990). 

The galvanic distortions result from local charge accumulation at small-scale, near-
surface inhomogeneities features, which directly distort the electric field but typically 
leave the magnetic field unaffected (Jiracek, 1990; Sternberg et al., 1988). These 
distortions are often frequency-independent, meaning they affect all frequencies in a 
similar way. When near-surface heterogeneities are more conductive than the geological 
background, the measured electric field decreases, while it increases when the 
heterogeneities are more resistive. 

Considering a small anomaly below an MT station, the measured electric field 𝑬𝑬 is 
given by: 

𝑬𝑬 = 𝑫𝑫𝑫𝑫𝑅𝑅 = 𝑫𝑫(𝒁𝒁𝑅𝑅𝑩𝑩𝑅𝑅) = (𝑫𝑫𝒁𝒁𝑅𝑅)𝑩𝑩 (2.32) 

Where 𝑫𝑫 is a distortion tensor, 𝑬𝑬𝑅𝑅, 𝒁𝒁𝑅𝑅, and 𝑩𝑩𝑅𝑅 are the regional electric field, impedance 
tensor, and magnetic field in the absence of the anomaly, respectively. Because the 
horizontal magnetic field components are not severely affected, the distortion in the 
magnetic field can be neglected (𝑩𝑩 = 𝑩𝑩𝑅𝑅). Thus, the observed impedance is also 
distorted: 

𝒁𝒁 = 𝑫𝑫𝑫𝑫𝑅𝑅 (2.33) 

The galvanic effects are also produced by topography, which can cause the so-called 
galvanic topographic effect. This effect occurs when the primary electric field is 
perpendicular to the trend of the topography. The topographic distortions can produce 
both galvanic and inductive effects, influenced by the terrain's roughness and 
measurement periods. In mountainous regions like in the Al-Lith area, the apparent 
resistivity values may appear higher on the slopes and lower in the valleys (Jiracek, 
1990). While topographic effects predominantly impact the electric field, they can also 
influence the magnetic field, especially when significant elevation changes exist between 
measurement points. 
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The most common manifestation of galvanic distortions is static shift, where the 
apparent resistivity curves are shifted vertically without changing their shape. This 
shift is frequency-independent, meaning it does not affect the phase curve of the 
impedance tensor, resulting in either an underestimation or an overestimation of 
subsurface resistivity. This property highlights the need for careful correction of static 
shifts to ensure the accurate representation of the subsurface conductivity structure 
(Árnason et al., 2010; Jiracek, 1990; Jones, 1988; Sternberg et al., 1988).  

There are several approaches available for correcting the static shift in MT data. 
Sternberg et al. (1988) and Pellerin and Hohmann (1990) for example, proposed the 
use of TEM soundings to address static shift effects. TEM data are relatively unaffected 
by galvanic distortions, making them a useful tool for this purpose. The approach 
involves using 1D TEM data to iteratively adjust the invariant of the MT data towards 
the TEM response. This is based on the assumption that the TEM response accurately 
reflects the actual 1D conductivity of the subsurface (Árnason et al., 2010). The method 
of using TEM data for static shift corrections works by aligning the apparent resistivity 
curves from MT data with those derived from TEM surveys. Since TEM measurements 
are less susceptible to near-surface inhomogeneities, they provide a reliable reference. 
This iterative process continues until the MT data invariant matches the TEM 
response, ensuring the static shift is mitigated effectively. However, the effectiveness of 
this method can vary depending on the geological context.  

Cumming & Mackie (2010) pointed out that TEM might be ineffective for correcting 
MT static shift in areas where the surface is predominantly covered by thick and 
resistive rocks. These conditions can impede the TEM method's ability to provide an 
accurate shallow subsurface resistivity profile, leading to suboptimal corrections. Later, 
Watts et al. (2013) highlighted the limitations of correcting MT static shifts using TEM 
data, as it can produce misleading results. They emphasized that, with modern broad-
band MT instrumentation, comprehensive modeling of the topography is more likely to 
yield an accurate image of the subsurface. Static shift corrections and the inclusion of 
topography in inversion cannot be applied simultaneously. Correcting static shifts using 
TEM data, while also incorporating topography would account twice for shifts due to 
topography (Árnason, 2015). 

 

2.4 Transient Electromagnetic (TEM) Method 

The Transient Electromagnetic (TEM), also known as the Time-Domain 
Electromagnetic (TDEM), is an active EM method used to investigate the electrical 
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conductivity of the subsurface by measuring the earth's response to time-varying 
electromagnetic fields. Unlike MT, which uses natural EM variations, TEM employs a 
controlled source to generate primary EM fields, making it a highly versatile tool for 
near-surface to mid-depth investigations. TEM technique has been developed and 
refined most intensively since the mid-1980s (Christiansen et al., 2009). There are 
various configurations utilized for conducting time domain electromagnetic (TDEM) 
measurements. For shallow investigations, a loop source is commonly used instead of a 
grounded wire. Receivers such as a magnetometer, an induction coil, or a wire loop can 
be used to record the vertical component of the magnetic field (or its time derivative). 
When the receiver is positioned in the center of the transmitter loop, it is referred to 
as a central loop or in-loop; when placed outside, it is called a separate loop. Soundings 
conducted with a loop source are known as SHOTEM (short offset transient 
electromagnetic method) or simply TEM. 

The TEM technique has several key advantages, such as achieving relatively large 
investigation depths using relatively small transmitter loop sizes. In addition, no 
galvanic ground coupling is required, allowing for a fast deployment and setup of a 
TEM sounding station. The response is measured without the primary field, meaning 
that the investigation depth depends on the transmitter moment (transmitter size and 
current) and acquisition time. TEM is also highly sensitive to conductive targets 
(Dentith & Mudge, 2014; Goldman & Neubauer, 1994). 

2.4.1 Basic Principle and Measuring Technique 

The fundamental principle behind the TEM method is electromagnetic induction, 
governed by Faraday's Law of Induction. When an alternating or time-varying current 
flows through a conductor, it generates a changing magnetic field. If the current is 
turned off suddenly, the collapse of the magnetic field induces eddy currents in nearby 
conductive materials. These eddy currents generate their own magnetic fields, which 
decay over time. These currents form closed loops, which resemble the shape of a 
"smoke ring" when visualized in cross-section. Figure 2.4a depicts the outcome of the 
current flow beneath the transmitter loop, referred to as a “smoke ring”. In a uniform 
half-space, as depicted in Figure 2.4b, the induced current quickly diffuses downward 
at an angle of around 30 degrees (Dentith & Mudge, 2014; Nabighian, 1979; Nabighian 
& Macnae, 1991). 

After turning off the current in the transmitting loop, the current in the ground will 
initially be concentrated near the surface, and the recorded signal will mainly reflect 
the conductivity of the upper layers. At later times, the current will penetrate deeper 
into the ground, and the recorded signal will provide insights into the conductivity of 
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the underlying layers. Measuring the current in the receiving coil allows for the 
information of conductivity at different depths, which is often referred to as a sounding. 
It is important to note that a single transient in a TEM sounding is typically impacted 
by noise. Conducting multiple measurements can improve the signal-to-noise (S/N) 
ratio. When employing a log-gating technique, the S/N ratio is directly proportional to 
the square root of the number of measurements in the stack. Since it's assumed that 
the noise conforms to a Gaussian distribution, doubling the number of measurements 
in the stack enhances the S/N ratio by a factor of 1.41 (Christiansen et al., 2009). 

 
Figure 2.4: (a) System of equivalent current filaments over conductive layers at various times after 
current switch-off in the transmitter loop. (b) Magnetic field lines and equivalent current filament for 
one particular time over a conducting half-space after current switch-off. Both figures taken from Blanco-
Arrué (2024). 

 

2.4.2 Solution for a Uniform Half-Space 

The TEM method in uniform conducting half-space scenario provides a simplified 
model to understand the subsurface conductivity response. The model assumes that 
the earth is made of a homogeneous, isotropic, and conductive medium. In this case, 
when an electromagnetic field is applied to the half-space, the field propagates in a 
predictable manner, allowing the formulation of an analytical solution for the transient 
response. According to Ward and Hohmann (1988), with an assumption of a horizontal 
loop with radius 𝑎𝑎 and current 𝐼𝐼 located at 𝑧𝑧 =  0, the vertical component of the 
magnetic field 𝐻𝐻𝑧̇𝑧 at the center of the loop is given by: 

𝐻̇𝐻𝑧𝑧 =
−𝐼𝐼

𝜎𝜎𝜇𝜇0𝑎𝑎3
�3 erf(Θ𝑎𝑎) −

2
√𝜋𝜋

Θ𝑎𝑎(3 + 2Θ2𝑎𝑎2)𝑒𝑒�Θ2𝑎𝑎2�� (2.34) 
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where Θ is 

Θ =
1

√2𝛿𝛿𝑇𝑇𝑇𝑇
= �

𝜎𝜎𝜇𝜇0
4𝑡𝑡

(2.35) 

The Gauss’ error function is defined as: 

𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) =
2
√𝜋𝜋

� 𝑒𝑒−𝜏𝜏2
𝑥𝑥

0
𝑑𝑑𝑑𝑑 (2.36) 

In TEM method, the electromagnetic response is divided into two-time regimes: early-
time and late-time approximations. These approximations relate the decay of the EM 
field to the subsurface conductivity structure at different depths and also reduce 
equation (2.34) to simple relations between 𝐻̇𝐻𝑧𝑧 and the subsurface resistivity 𝜌𝜌.  

The early-time approximation corresponds to the initial moments after the 
transmitter current is switched off (𝑡𝑡 → 0,Θ → ∞). In this regime, the decay of the 
electromagnetic signal is dominated by the near-surface layers, and the eddy currents 
are concentrated near the surface. In other words, the Gauss’ error function approaches 

unity and 𝑒𝑒�Θ2𝑎𝑎2� vanishes. Thus, the equation 2.34 is reduced to: 

𝐻̇𝐻𝑧𝑧,𝑒𝑒𝑒𝑒 = −
3𝐼𝐼
𝜎𝜎𝑎𝑎3

 (2.37) 

Equation 2.37 is then rearranged to define the early time apparent resistivity (𝜌𝜌𝑎𝑎,𝑒𝑒𝑒𝑒): 

𝜌𝜌𝑎𝑎,𝑒𝑒𝑒𝑒 = −
𝑎𝑎3

3𝐼𝐼
 𝐻̇𝐻𝑧𝑧,𝑒𝑒𝑒𝑒 (2.38) 

The second approximation, the so-called late-time approximation, corresponds to 
the later moments after the transmitter current is switched off. In this regime, the eddy 
currents have diffused to greater depths, and the response reflects the conductivity of 

deeper subsurface layers. For 𝑡𝑡 → 0 and Θ → ∞, the error-function vanishes and 𝑒𝑒�Θ2𝑎𝑎2� 
approaches unity. Thus, 

𝐻̇𝐻𝑧𝑧,𝑙𝑙𝑙𝑙 = −
𝐼𝐼𝑎𝑎2

20√𝜋𝜋
(𝜎𝜎𝜎𝜎)

3
2𝑡𝑡−

5
2 (2.39) 

And the late time apparent resistivity (𝜌𝜌𝑎𝑎,𝑙𝑙𝑙𝑙) is obtained by rearranging equation 2.39: 

𝜌𝜌𝑎𝑎,𝑒𝑒𝑒𝑒 = −�
𝐼𝐼𝑎𝑎3

20√𝜋𝜋
�

2
3

 𝑡𝑡−
2
3 𝜇𝜇0𝐻̇𝐻𝑧𝑧,𝑙𝑙𝑙𝑙

−23 (2.40) 

Beyond the near and far zone ranges, the apparent resistivity no longer accurately 
represents the true earth resistivity (Spies & Frischknecht, 1991). Nonetheless, both 
transformations are valuable as they allow for a preliminary understanding of the 
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resistivity structure and serve as an initial estimate for the inversion process (Raiche, 
1983). 

2.4.3 Depth of Investigation 

When using diffusive methods such as ground-based electromagnetic techniques, it is 
important to determine the depth at which the resistivity structure of the ground can 
be reliably characterized. This necessitates establishing a specific depth of investigation 
(DOI) that represents the desired level of information for the model. A common DOI 
for central loop transient electromagnetic (TEM) soundings using the late time 
approximation (near zone) was proposed by Spies (1989): 

𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑 ≈ 0.55 �
𝐼𝐼𝐴𝐴𝑇𝑇𝑇𝑇𝜌̅𝜌
𝜂𝜂𝑣𝑣

�
1
5

 (2.41) 

where 𝐼𝐼 is the transmitter current in A unit, 𝐴𝐴𝑇𝑇𝑇𝑇 is the size of the transmitter loop in 

m2, and 𝜂𝜂𝑣𝑣 is the voltage noise level and its value is typically 0.5 𝑛𝑛𝑛𝑛
𝑚𝑚2. The 𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑 depends 

directly on the average resistivity 𝜌̅𝜌 with 𝑧𝑧 ≤  𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑: 

𝜌̅𝜌 =
1
𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑

� 𝜌𝜌(𝑧𝑧)𝑑𝑑
𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑

𝑧𝑧=0
 (2.42) 

Before a field campaign, equation (2.39) can be utilized to estimate appropriate 
configuration parameters, such as transmitter size and current.  The 𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑-value may 
also be used to estimate the lower depth bound of the 1-D inversion models. Then, the 
noise level 𝜂𝜂𝑣𝑣 was measured at each sounding and corresponded to the induced voltage 
value of the last recorded time point. However, there is a limitation on the 𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑, that is 
easily overestimated. For instance, if a poorly resolved deep layer shows large 
resistivities, the average resistivity (𝜌̅𝜌) also becomes large. Therefore, the 𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑-value is 
considered a rough and additional estimate. Following an example discussed by Spies 
(1989) and to prevent overestimation, only 70% of 𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑 is considered as the depth of 
exploration (Blanco-Arrué, 2024; Yogeshwar, 2014). Specifically, for frequency domain 
soundings, Spies (1989) suggested that 1.5 · 𝛿𝛿𝐹𝐹𝐹𝐹 is a reasonable estimate of the doi, 
where 𝛿𝛿𝐹𝐹𝐹𝐹 is the skin depth in Equation 2.15. 
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Chapter 3  
Inversion Theory of EM Data 

 

In applied electromagnetic (EM) geophysics, an inversion scheme is used to infer the 
subsurface electrical properties, such as electrical conductivity or resistivity, from 
surface or airborne electromagnetic data. The goal is to translate the electromagnetic 
responses measured at the surface into a model of the Earth's subsurface, describing 
how these properties vary with depth and sometimes laterally. This chapter explains 
the inversion theory of the different algorithms used for the inversion of MT and TEM 
field data measured in Al-Lith, western Saudi Arabia. The two common inversion 
techniques, the Levenberg-Marquardt and the Occam inversion schemes, are presented, 
which are used to invert TEM field data. Both methods are implemented in the utilized 
1D inversion algorithm EMUPLUS (Scholl, 2005). The first method employs a minimal 
number of model parameters to interpret the data, while the second method seeks to 
identify a subsurface model with a smooth structure. The Non-Linear Conjugate 
Gradient (NLCG) is also described, which is used in the ModEM algorithm for the 3D 
inversion of MT data. Many of the described inversion theoretical principles are found 
in  Meju (1994),  Menke (2012), and Rodi & Mackie (2012). 

 

3.1 Formulation of the Inverse Problem 

The inverse problem of EM data seeks to estimate the subsurface conductivity 
distribution (or its reciprocal resistivity) from observed data, such as electric and 
magnetic field measurements (Meju, 1994). In the acquired dataset, i.e. the induced 
voltages at a specific location and time (or frequency) can be stored as components of 
an N-dimensional data vector 𝒅𝒅, with the corresponding data errors represented in an 
error vector 𝒆𝒆 (Rodi & Mackie, 2012).  

𝒅𝒅 = (𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑁𝑁)𝑇𝑇 (3.1) 

𝛿𝛿𝒅𝒅 = (𝛿𝛿𝛿𝛿1,𝛿𝛿𝛿𝛿2, … , 𝛿𝛿𝛿𝛿𝑁𝑁)𝑇𝑇 (3.2) 

The model parameters 𝒎𝒎 can be stored in the same way as components in an M-
dimensional model parameter: 

𝒎𝒎 = (𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑀𝑀)𝑇𝑇 (3.3) 
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The inversion process aims to find a model 𝒎𝒎 that explains the observed data 𝒅𝒅 within 
their errors 𝛿𝛿𝒅𝒅. According to this notation, the inverse problem can be written as: 

𝒅𝒅 = 𝑭𝑭(𝒎𝒎) + 𝛿𝛿𝒅𝒅 (3.4) 

where 𝑭𝑭 is the forward operator which denotes the transformation from model space to 
data space with the model vector as its argument. In cases where the inverse of 𝑭𝑭 exists 
and 𝛿𝛿𝒅𝒅 = 0, the solution of the forward problem is simply expressed as 𝒎𝒎 =  𝑭𝑭−1(𝒅𝒅), 
and the model parameters can be derived by finding the inverse of 𝑭𝑭. However, in most 
scenarios, this solution does not exist, necessitating the need to make an estimation for 
𝒎𝒎. 

3.1.1 Well and Ill-Posed Problems 

In the context of a simple linear relationship 𝒅𝒅 =  𝑭𝑭 𝒎𝒎 between the forward operator 
and the model parameters, the solution 𝒎𝒎 =  𝑭𝑭−1𝒅𝒅 is feasible only if the problem is 
well-determined with 𝑁𝑁 =  𝑀𝑀 and there exists a unique solution. In this scenario, a 
model can be obtained through direct inversion. When there is more data or 
information available than unknown model parameters, resulting in an over-
determined problem (𝑁𝑁 >  𝑀𝑀), a unique solution is typically not achievable. In such 
cases, the goal is to find a model that best explains the available data. Conversely, an 
under-determined problem with 𝑁𝑁 <  𝑀𝑀 results in an infinite number of models that 
can explain the data. If the inverse problem is to a certain degree overdetermined and 
to another degree underdetermined, i.e. some parameters are better resolved than 
others, the problem becomes mixed-determined, which is commonly encountered in 
geophysical data sets. These problems are called ill-posed and require some type of 
constraint to stabilize the solution.  

Essentially, the inversion aims to minimize the misfit between measured data 𝒅𝒅 and 
the calculation of the model response 𝑭𝑭(𝒎𝒎). In a least-square sense, the function to 
minimize is described as a minimization of a data misfit functional or cost-function: 

𝚽𝚽𝑑𝑑(𝒎𝒎) = �𝒅𝒅 − 𝑭𝑭(𝒎𝒎)�
𝑇𝑇
𝑾𝑾𝑑𝑑

2�𝒅𝒅 − 𝑭𝑭(𝒎𝒎)� = 𝝐𝝐𝑇𝑇𝑾𝑾𝑑𝑑
2𝝐𝝐 (3.5) 

where �𝒅𝒅 − 𝑭𝑭(𝒎𝒎)� is called the residual vector (𝝐𝝐) and  𝑾𝑾𝑑𝑑 denotes the diagonal error 
weighting matrix: 

𝑾𝑾𝑑𝑑 =

⎝

⎜
⎛

1
𝛿𝛿𝛿𝛿1

0

⋱

0
1
𝛿𝛿𝛿𝛿𝑁𝑁⎠

⎟
⎞

 (3.6) 
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For a Gaussian process, the least square estimator is known to be optimal. Hence a 
measure of data fit is estimated through: 

𝜒𝜒 = �𝚽𝚽𝑑𝑑

𝑁𝑁
= �

1
𝑁𝑁
��

�𝒅𝒅𝑖𝑖 − 𝑭𝑭𝑖𝑖(𝒎𝒎)�
𝛿𝛿𝛿𝛿𝑖𝑖

�
2𝑁𝑁

𝑖𝑖=1

(3.7) 

In this thesis, note that the root mean square (RMS) is also termed as 𝜒𝜒. An RMS or 
𝜒𝜒 value of 1 indicates an optimal fit, meaning that the model fits the data within the 
level of data error. Values < 1 correspond to overfitted data, where the mean deviation 
between observed and calculated data is smaller than the data error. If the RMS is 
significantly > 1, it suggests a poor fit, where the model is not capturing the data well, 
and there are large discrepancies between the observed and predicted values. A high 
RMS value can also indicate underfitting, where the model is too simple to capture the 
complexity of the data (Menke, 2012). 

3.1.2 The Unconstrained Linearized Least Square Problem 

The theory of linear inverse problems is a well-established area with a wide range of 
analytical and numerical methods. However, EM problems – like most applied 
geophysical problems – are associated with a forward operator that depends on 
nonlinear system equations (Meju, 1994). This nonlinearity arises from the product of 
electric conductivity and the electric field in the Maxwell equations. Nonlinear inverse 
problems pose greater theoretical and numerical challenges compared to linear ones. 
The most common approach for dealing with nonlinear problems involves leveraging 
linear methods through the consideration of a linearized version of the inverse problem. 
Linearization is accomplished by expanding the functional 𝑭𝑭(𝒎𝒎) using Taylor 
approximation of first order for small model perturbations ∆𝒎𝒎𝒌𝒌 = 𝒎𝒎−𝒎𝒎𝒌𝒌 with a given 
model 𝒎𝒎𝒌𝒌: 

𝑭𝑭(𝒎𝒎) �
𝑚𝑚𝑘𝑘

≈ 𝑭𝑭(𝒎𝒎𝒌𝒌) +
𝜕𝜕𝑭𝑭
𝜕𝜕𝒎𝒎

�
𝑚𝑚𝑘𝑘

(𝒎𝒎−𝒎𝒎𝒌𝒌) = 𝑭𝑭(𝒎𝒎𝒌𝒌) + 𝑱𝑱 �
𝑚𝑚𝑘𝑘

∆𝒎𝒎𝒌𝒌 (3.8) 

where  𝑱𝑱 = 𝜕𝜕𝑭𝑭𝑖𝑖(𝒎𝒎𝑘𝑘)
𝜕𝜕𝒎𝒎𝑗𝑗

 is the 𝑁𝑁 ×  𝑀𝑀 matrix of partial derivatives of the forward functionals 

with respect to a small perturbation in the model parameters, known as the Jacobian 
or sensitivity matrix, and the higher-order terms in Taylor approximation are neglected.  

By replacing 𝑭𝑭(𝒎𝒎) in equation (3.5) with the linearized forward operator yields: 

𝚽𝚽𝑑𝑑(∆𝒎𝒎𝑘𝑘) = (𝒅𝒅 − 𝑭𝑭(𝒎𝒎𝑘𝑘) − 𝑱𝑱∆𝒎𝒎𝑘𝑘)𝑇𝑇𝑾𝑾𝑑𝑑
2(𝒅𝒅 − 𝑭𝑭(𝒎𝒎) − 𝑱𝑱∆𝒎𝒎𝒌𝒌) (3.9) 
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To find the minimum of the cost-function, the derivative of equation 3.9 with respect 
to the model update ∆𝒎𝒎𝒌𝒌 is computed and set to zero. Therefore, the least-square 
solution for the model update is: 

∆𝒎𝒎𝑘𝑘 = (𝑱𝑱𝑇𝑇𝑾𝑾𝑑𝑑
2  𝑱𝑱)−1 𝑱𝑱𝑇𝑇𝑾𝑾𝑑𝑑

2�𝒅𝒅 − 𝑭𝑭(𝒎𝒎𝑘𝑘)� (3.10) 

In order to achieve the updated model 𝒎𝒎𝑘𝑘+1, the model perturbation is added to the 
model from the previous step 𝑘𝑘, e.g. the starting model 𝑘𝑘 =  0. Then, on each iteration 
𝑘𝑘, the model update ∆𝒎𝒎𝒌𝒌 is determined and the current iteration model is updated: 

𝒎𝒎𝑘𝑘+1 = 𝒎𝒎𝑘𝑘 + ∆𝒎𝒎𝑘𝑘 (3.11) 

The iterative inversion process is repeated until a model adequately fits the data or a 
desired number of iterations is reached. This method is commonly known as the 
unconstrained iterative least squares fitting or the Gauss-Newton method. It is 
important to note that the convergence of this technique may be slow due to the strong 
dependence on a suitable initial model, and if the eigenvalues of the Jacobian are close 
to zero, the matrix 𝑱𝑱𝑇𝑇𝑾𝑾𝑑𝑑

2  𝑱𝑱 may become singular or close to singular, resulting in an ill-
conditioned matrix where Equation 3.10 would not have a solution. To avoid potential 
solution instability or ill-posed problems, the Gauss-Newton method is modified by 
imposing additional constraints to minimize the cost function in Equation 3.10. 

 

3.2 Occam Inversion 

Occam inversion introduced by Constable et al. (1987) is designed to solve the 
geophysical inverse problem, which is often ill-posed and non-unique. This inversion 
technique imposes a smoothness constraint on the model and balances data misfit with 
model simplicity through regularization, ensuring stable, interpretable solutions while 
avoiding overfitting. Therefore, the objective function 𝚽𝚽(𝒎𝒎) to minimize has the 
following form: 

𝚽𝚽(𝒎𝒎) = 𝚽𝚽𝑑𝑑(𝒎𝒎) + λ𝚽𝚽𝑚𝑚(𝒎𝒎) (3.12) 

where 𝚽𝚽𝑑𝑑(𝒎𝒎) and 𝚽𝚽𝑚𝑚(𝒎𝒎) are the data misfit and the model regulation term, 
respectively, and λ is the Tikhonov regularization parameter. 

The regularization parameter (λ) serves as a trade-off between data fit and the 
smoothness of the resulting model. For large λ values, the model tends to be smoother, 
albeit with a greater data misfit. In contrast, a small λ value (λ → 0) prioritizes data 
fit during the inversion process. At each iteration, a λ that minimizes data misfit is 
sought (Constable et al., 1987). In practice, a higher initial λ value is chosen, which is 
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then gradually decreased throughout the inversion iterations. However, this reduction 
should be limited between iterations to prevent introducing additional structure into 
the model (Farquharson & Oldenburg, 2004). In this context, Scholl (2005) incorporated 
a restriction on A within the EMUPLUS software. This constraint makes the results 
highly sensitive to the initial value of λ (Scholl, 2005).  

Occam scheme imposes a stabilization term as a measure of the model roughness 𝑹𝑹 of 
the model 𝒎𝒎. Considering a linearized inverse problem, Equation (3.12) can be 
rewritten as: 

𝚽𝚽(𝒎𝒎𝑘𝑘) = (𝒅𝒅 − 𝑭𝑭(𝒎𝒎𝑘𝑘) − 𝑱𝑱∆𝒎𝒎𝑘𝑘)𝑇𝑇𝑾𝑾𝑑𝑑
2(𝒅𝒅 − (𝑭𝑭(𝒎𝒎) + 𝑱𝑱∆𝒎𝒎𝒌𝒌)) + λ𝒎𝒎𝑇𝑇𝑹𝑹1,2

𝑇𝑇 𝑹𝑹1,2𝒎𝒎 (3.13) 

Constraints in the form of roughness are defined as the derivative of the first (𝑹𝑹1) and 
second (𝑹𝑹2) order of 𝜌𝜌(𝑧𝑧) with respect to depth. However, in the 1D case, 𝜌𝜌(𝑧𝑧) is not 
continuous, and therefore the discrete form is given: 

𝑹𝑹1 = �(𝜌𝜌𝑖𝑖 − 𝜌𝜌𝑖𝑖−1)2
𝑀𝑀

𝑖𝑖=2

 (3.14) 

𝑹𝑹2 = �(𝜌𝜌𝑖𝑖+1 − 2𝜌𝜌𝑖𝑖 + 𝜌𝜌𝑖𝑖−1)2
𝑀𝑀−1

𝑖𝑖=2

 (3.15) 

Considering the forward operator presented in Equation 3.8, the model update (∆𝒎𝒎𝒌𝒌) 
derived from Equation 3.13 concerning the model parameters leads to the linearized 
problem: 

∆𝒎𝒎𝑘𝑘 = �𝑱𝑱𝑇𝑇𝑾𝑾𝑑𝑑
2  𝑱𝑱 + λ𝑹𝑹1,2

𝑇𝑇 𝑹𝑹1,2�
−1

 �𝑱𝑱𝑇𝑇𝑾𝑾𝑑𝑑
2�𝒅𝒅 − 𝑭𝑭(𝒎𝒎𝑘𝑘)� − λ𝑹𝑹1,2

𝑇𝑇 𝑹𝑹1,2𝒎𝒎𝑘𝑘� (3.16) 

Occam 𝑹𝑹1, representing first-order roughness, corresponds to the first derivative of 𝜌𝜌 
with respect to depth 𝑧𝑧, capturing the differences between neighboring model 
parameters. Occam 𝑹𝑹2, on the other hand, reflects the second-order derivative and 
penalizes changes in the gradient among model parameters. In simpler terms, when 
applying roughness 𝑹𝑹1, the inverse model typically exhibits a very smooth profile. In 
contrast, the application of 𝑹𝑹2 results in a slight curvature of the model parameters, 
indicating a uniform resistivity contrast.  

 

3.3 Levenberg-Marquardt Algorithm 

Levenberg (1944) introduced a damped least squares method to address the instability 
and non-convergence associated with the solution to the normal equation 3.10. 
Marquardt (1963) later adopted this approach to develop nonlinear least squares 
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algorithms, which are widely used in geophysical data inversion (Meju, 1994). To 
stabilize the cost function, a tradeoff parameter—also known as the damping 
parameter—is incorporated into the length of the model update ∆𝒎𝒎𝑘𝑘. The total cost 
function is expressed in the following form: 

𝚽𝚽(𝒎𝒎𝑘𝑘) = (𝒅𝒅 − 𝑭𝑭(𝒎𝒎𝑘𝑘) − 𝑱𝑱∆𝒎𝒎𝑘𝑘)𝑇𝑇𝑾𝑾𝑑𝑑
2�𝒅𝒅 − (𝑭𝑭(𝒎𝒎𝑘𝑘) + 𝑱𝑱∆𝒎𝒎𝑘𝑘)� + 𝛽𝛽2(∆𝒎𝒎𝑘𝑘

𝑇𝑇∆𝒎𝒎𝑘𝑘) (3.17) 

For minimization, the extended cost function is derived with respect to ∆𝒎𝒎𝑘𝑘, equated 
to zero and subsequently solved for the model update: 

∆𝒎𝒎𝑘𝑘 = (𝑱𝑱𝑇𝑇𝑾𝑾𝑑𝑑
2  𝑱𝑱 + 𝛽𝛽2𝑰𝑰)−1𝑱𝑱𝑇𝑇𝑾𝑾𝑑𝑑

𝑇𝑇𝑾𝑾𝑑𝑑�𝒅𝒅 − 𝑭𝑭(𝒎𝒎𝑘𝑘)� (3.18) 

Here, 𝑰𝑰 is the identity matrix and the 𝛽𝛽 is a Lagrange multiplier and weights between 
the data misfit term and the model update term.  

This approach is known as Levenberg-Marquardt inversion or damped least squares 
inversion. This method implemented in the EMUPLUS algorithm is typically conducted 
with a minimal number of layers, particularly when 𝑁𝑁 >  𝑀𝑀. However, a drawback of 
the Levenberg-Marquardt inversion scheme is that the results are highly sensitive to 
the chosen starting model. 

3.3.1 Singular Value Decomposition (SVD) 

In order to calculate the inverse of equation 3.18, a singular value decomposition (SVD) 
is often utilized. Any 𝑁𝑁 ×  𝑀𝑀 matrix with 𝑁𝑁 data entries and 𝑀𝑀 model parameters can 
be decomposed using SVD as (Menke, 2012): 

𝑮𝑮 = 𝑼𝑼𝑼𝑼𝑽𝑽𝑇𝑇 (3.19) 

With the following matrices: 

• The matrix 𝑼𝑼 ∈ ℝ𝑁𝑁×𝑁𝑁 is an orthogonal matrix that spans the data space, 
providing insights into how changes in a data point will affect the model. The 
columns of 𝑼𝑼 consist of the individual eigenvectors of 𝑮𝑮𝑮𝑮𝑇𝑇.  

• The orthogonal matrix 𝑽𝑽 ∈ ℝ𝑀𝑀×𝑀𝑀 spans the model space and contains the 
eigenvectors of 𝑮𝑮𝑇𝑇𝑮𝑮. These eigenvectors represent linear combinations of 
independently resolved model parameters. 

• 𝜦𝜦 ∈ ℝ𝑁𝑁×𝑀𝑀 is a diagonal eigenvalue matrix containing the non-zero eigenvalues 
(λ1, . . . , λN), which is called singular values of 𝑮𝑮. They are typically sorted in 
decreasing order, emphasizing the influence of the linear combinations on the 
model outcome. 
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The SVD is applied to the weighted Jacobian 𝑱𝑱𝑤𝑤 = 𝑾𝑾𝑑𝑑𝑱𝑱 and equation 3.18 can be 
expressed as (Lines & Treitel, 1984): 

∆𝒎𝒎𝑘𝑘 = 𝑽𝑽 (𝜦𝜦2 + 𝛽𝛽2𝑰𝑰)−1𝜦𝜦𝑇𝑇𝜦𝜦�����������
𝑸𝑸

 𝜦𝜦−1𝑼𝑼𝑇𝑇𝑾𝑾𝑑𝑑�𝒅𝒅 − 𝑭𝑭(𝒎𝒎𝑘𝑘)� (3.20) 

where the damping matrix 𝑸𝑸 is a diagonal matrix and has the following values: 

𝑸𝑸𝑖𝑖𝑖𝑖 =
𝜆𝜆𝑖𝑖2

𝜆𝜆𝑖𝑖2 + 𝛽𝛽2
 (3.21) 

If λ𝑖𝑖 is nearly zero, a positive 𝛽𝛽 will prevent the singularity problem. A singular value 
with λ𝑖𝑖 = 𝛽𝛽 will be damped by a factor of 𝑸𝑸𝑖𝑖𝑖𝑖 = 0.5. In this thesis, the 1D inversion 
algorithm EMUPLUS employs a default normalized singular value threshold of 1%. 
This means that singular values that are less than 1% of 𝑸𝑸𝑖𝑖𝑖𝑖 will be damped by a factor 
of 0.5. 

3.3.2 Equivalent Models 

Equivalent models refer to different models that all fit the observed data to a similar 
response within a certain error-bound (Spies & Frischknecht, 1991). This concept 
highlights one of the fundamental challenges of inversion theory: many different 
distributions of model parameters can yield very similar (or identical) predictions for 
the measured data, making it difficult to identify a single unique solution. Considering 
data errors, several models may fit the data similarly within the error bars. Additionally, 
poorly resolved parameters are not supported by the data and typically result in 
significant equivalence. The equivalence principle can theoretically be derived from the 
thin sheet solution for an inductive source, as discussed in Nabighian & Macnae (1991). 

In the 1D inversion scheme EMUPLUS, a Hybrid Marquardt Monte Carlo scheme is 
implemented to generate equivalent models (Scholl, 2005). Typically, model parameters 
are randomly perturbed within a specified percentage range, and the equivalent results 
are compared against one another. This process yields several Marquardt inversion 
models, all of which demonstrate a sufficiently low data misfit. Consequently, these 
equivalent models serve to assess the resolution of the model parameters. If the 
equivalent models exhibit significant variability within a model parameter, it indicates 
that the model parameter is not well resolved. Conversely, when the equivalent models 
show minimal variability, it suggests that the corresponding parameter is well resolved. 
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3.4 Nonlinear Conjugate Gradient (NLCG) Inversion 

The Non-linear Conjugate Gradient (NLCG) method is an iterative optimization 
technique that minimizes a non-linear objective function commonly encountered in 
large-scale geophysical problems like EM. NLCG was first proposed by  Fletcher & 
Reeves (1964) and later improved by Polak & Ribiere (1969). It extends the linear 
conjugate gradient (CG) method to non-linear problems, finding solutions without 
explicitly forming the Hessian (second derivative) matrix, which is advantageous for 
high-dimensional, computationally intensive problems. It has been implemented to 
solve the inversion problem in both 2D (Rodi & Mackie, 2001) and 3D (Kelbert et al., 
2014; Newman & Alumbaugh, 2000) MT data.  

Numerical tests have demonstrated that NLCG is more efficient than Gauss-Newton 
methods in terms of computational requirements (Rodi & Mackie, 2012). The NLCG 
approach is nearly twice as fast as evaluating the full Jacobian matrix 𝑱𝑱 required by 
Newton-type methods (Avdeev, 2005). Despite this significant improvement in speed, 
implementing the NLCG method still necessitates either a massively parallel computing 
architecture (Newman et al., 2002; Newman & Alumbaugh, 2000) or the use of a 
message passing interface (MPI) running on PC clusters (Mackie et al., 2001). Since 
the NLCG method is closely related to the linear conjugate gradient (CG) method, CG 
will be explained before the NLCG scheme is described. 

The conjugate gradient (CG) method 

The normal equations (e.g., equation 3.18) can be rewritten in matrix vector notation 
as: 

𝑨𝑨𝑨𝑨 = 𝒃𝒃 (3.22) 

where 𝐴𝐴 = (𝑱𝑱𝑇𝑇𝑾𝑾𝑑𝑑
2  𝑱𝑱 + 𝛽𝛽2𝑰𝑰), 𝔁𝔁 = ∆𝒎𝒎𝑘𝑘, and 𝒃𝒃 = 𝑱𝑱𝑇𝑇𝑾𝑾𝑑𝑑

2𝑾𝑾𝑑𝑑�𝒅𝒅 − 𝑭𝑭(𝒎𝒎𝑘𝑘)�. The system of 
equations presented in equation 3.22, which is real, symmetric, and positive definite, 
can be solved using a standard equation system solver. Equation system solvers can be 
broadly categorized into two main types: direct and iterative solvers. Direct solvers 
include methods such as Cholesky and LU decompositions. An example of an iterative 
solver for the inversion problem is the conjugate gradient method (CG). To solve the 
system of equations in equation 3.22, CG generates a sequence of approximated 
solutions by iteratively minimizing the quadratic form: 

𝚽𝚽(𝔁𝔁) =
1
2
𝔁𝔁𝑇𝑇𝑨𝑨𝑨𝑨 − 𝒃𝒃𝑇𝑇𝔁𝔁 (3.23) 

along a sequence of conjugate search directions 𝒑𝒑, starting from 𝒑𝒑0  =  0 as the initial 
guess, the next search direction is obtained using: 
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𝒑𝒑𝑘𝑘+1  =  𝒈𝒈𝑘𝑘+1 − 𝛾𝛾𝑘𝑘𝒑𝒑𝑘𝑘 (3.24) 

where 𝒈𝒈𝑘𝑘+1 is the gradient of equation 3.23 and given by: 

𝒈𝒈𝑘𝑘+1 =
𝜕𝜕
𝜕𝜕𝔁𝔁𝑘𝑘

�
1
2
𝔁𝔁𝑘𝑘𝑇𝑇𝑨𝑨𝔁𝔁𝑘𝑘� = 𝑨𝑨𝔁𝔁𝑘𝑘 − 𝒃𝒃 (3.25) 

Increment 𝑘𝑘 and repeat until the residual 𝒈𝒈𝑘𝑘 is below a pre-defined tolerance, or the 
maximum number of iterations is reached. 

The scalar 𝛾𝛾𝑘𝑘 is calculated as: 

𝛾𝛾𝑘𝑘 =
𝒈𝒈𝑘𝑘+1𝑨𝑨𝒑𝒑𝑘𝑘
𝒑𝒑𝑘𝑘𝑇𝑇𝑨𝑨𝒑𝒑𝑘𝑘

(3.26) 

This scalar (𝛾𝛾𝑘𝑘) ensures that the search direction 𝒑𝒑𝑘𝑘 is conjugated to all other previous 
search directions. The solution 𝔁𝔁𝑘𝑘+1 which ensures that 𝚽𝚽(𝔁𝔁) in its minimum is: 

𝔁𝔁𝑘𝑘+1 = 𝔁𝔁𝑘𝑘 − 𝜷𝜷𝑘𝑘+1𝒑𝒑𝑘𝑘+1 (3.27) 

where 𝜷𝜷𝑘𝑘+1 is the scalar step size and given by: 

𝜷𝜷𝑘𝑘+1 =
𝒑𝒑𝑘𝑘+1𝑇𝑇 𝒈𝒈𝑘𝑘+1
𝒑𝒑𝑘𝑘+1𝑇𝑇 𝑨𝑨𝒑𝒑𝑘𝑘+1

(3.28) 

In the CG scheme, the primary computational tasks involve the matrix-vector 
multiplications 𝑨𝑨𝒑𝒑 as outlined in equations 3.26 and 3.28. Rodi & Mackie (2001) 
demonstrated that this multiplication can be achieved at the expense of two pseudo-
forward modeling computations. Furthermore, there is no need to compute and store 
the sensitivity matrix. The CG scheme is typically implemented within an outer 
iterative loop that minimizes the objective function 𝚽𝚽 as specified in equation 3.12. 
The flowchart for the algorithm to solve the normal equations using CG could be 
represented in Figure 3.1: 
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Figure 3.1: The flow chart for the CG algorithm scheme to solve the linearized normal equation. 
Modified from Meqbel (2009). 

 

Nonlinear conjugate gradients (NLCG) method 

NLCG are closely related to the linear conjugate gradient method previously discussed, 
particularly in the context of solving the linearized inverse problems. Unlike the linear 
CG method, however, the NLCG technique directly tackles minimization problems that 
are not quadratic and avoids the iterative linearized inversion procedure commonly 
used in Gauss-Newton style inversion (Rodi & Mackie, 2001). The NLCG method 
essentially employs the same fundamental computational steps as those used to solve 
the linearized problem through a CG approach. In implementing the NLCG, it is 
essential to evaluate the gradient of equation 3.12 with respect to the model parameters 
(𝒎𝒎). Additionally, one must consider the nonlinear form of 𝚽𝚽𝑑𝑑 in equation 3.5. In this 
context, we can express: 

𝛁𝛁𝛁𝛁 = 𝛁𝛁𝛁𝛁𝑑𝑑 + λ𝚽𝚽𝑚𝑚 (3.29) 

Considering the function 𝚽𝚽𝑚𝑚 = ‖𝑳𝑳𝒎𝒎2‖, it leads to: 

𝛁𝛁𝚽𝚽𝑚𝑚 = 2𝑳𝑳𝑇𝑇𝑳𝑳𝑚𝑚 (3.30) 

And the gradient of equation 3.5 is calculated as: 
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𝛁𝛁𝚽𝚽𝑑𝑑 = −2𝑱𝑱𝑇𝑇𝑾𝑾𝑑𝑑
2(𝒅𝒅 − 𝑭𝑭(𝒎𝒎)) (3.31) 

In a uniform grid, the term 𝑳𝑳𝑚𝑚 refers to the Laplacian of the model parameters, which 
describes the variations between adjacent model parameters (Rodi and Mackie, 2001). 
Consequently, the NLCG scheme aims to minimize the cost function 𝚽𝚽 but with respect 
to the step size 𝜷𝜷. 

The minimization problem is given by: 

𝚽𝚽𝑑𝑑(𝒎𝒎𝑘𝑘 + 𝜷𝜷𝑘𝑘𝒑𝒑𝑘𝑘) = 𝑚𝑚𝑚𝑚𝑚𝑚�
𝜷𝜷

 𝚽𝚽 (𝒎𝒎𝑘𝑘 − 𝜷𝜷𝒑𝒑𝑘𝑘) (3.32) 

The NLCG scheme generates a sequence of models that are determined: 

𝒎𝒎𝑘𝑘,𝑗𝑗 = 𝒎𝒎𝑘𝑘 + 𝜷𝜷𝑘𝑘,𝑗𝑗𝒑𝒑𝑘𝑘 (3.33) 

where the step size 𝜷𝜷 is defined as: 

𝜷𝜷𝑘𝑘,0 = 0,𝑎𝑎𝑎𝑎𝑎𝑎 𝜷𝜷𝑘𝑘,𝑗𝑗+1 = 𝜷𝜷𝑘𝑘,𝑗𝑗+1 −
𝒈𝒈𝑘𝑘,𝑗𝑗
𝑇𝑇 𝒑𝒑𝑘𝑘

𝒑𝒑𝑘𝑘𝑇𝑇𝑯𝑯�𝑘𝑘,𝑗𝑗𝒑𝒑𝑘𝑘
 (3.34) 

The approximate Hessian matrix is calculated as 𝑯𝑯� = 2𝑱𝑱𝑇𝑇𝑾𝑾𝑑𝑑
2 + 2𝜆𝜆𝑳𝑳𝑇𝑇𝑳𝑳 and the vector 

gradient is given by 𝒈𝒈 = −2𝑱𝑱𝑇𝑇𝑾𝑾𝑑𝑑
2�𝒅𝒅 − 𝑭𝑭(𝒎𝒎)� + 2𝜆𝜆𝑳𝑳𝑇𝑇𝑳𝑳𝒎𝒎. The conjugate gradient 

direction 𝒑𝒑𝑘𝑘 is determined by the steepest descent direction: 

𝒑𝒑0 = −𝑪𝑪0𝒈𝒈0       
             𝒑𝒑𝑘𝑘 = −𝑪𝑪𝑘𝑘𝒈𝒈𝑘𝑘 + 𝛾𝛾𝑘𝑘𝒑𝒑𝑘𝑘−1 (3.35) 

The scalar 𝛾𝛾𝑘𝑘 is calculated using the Polak-Ribiere technique (Polak, 1971): 

𝛾𝛾𝑘𝑘 =
𝒈𝒈𝑘𝑘𝑇𝑇𝑪𝑪𝑘𝑘(𝒈𝒈𝑘𝑘 − 𝒈𝒈𝑘𝑘−1)
𝒈𝒈𝑘𝑘−1𝑇𝑇 𝑪𝑪𝑘𝑘−1𝒈𝒈𝑘𝑘−1

 (3.36) 

where 𝑪𝑪𝑘𝑘 is the preconditioner, and it’s defined as: 

𝑪𝑪𝑘𝑘 = (𝜂𝜂𝑘𝑘𝑰𝑰 + λ𝑳𝑳𝑇𝑇𝑳𝑳)−1 (3.37) 

with term 𝜂𝜂𝑘𝑘 is a specified scalar. The use of the preconditioner effectively guides the 
gradient vector towards a more productive search direction (Rodi & Mackie, 2001). The 
NLCG algorithm keeps track of the best model found during the line search: 

𝒎𝒎𝑘𝑘,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝒎𝒎𝑘𝑘 + 𝜷𝜷𝑘𝑘,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝒑𝒑𝑘𝑘 (3.38) 

And the final result of the k-th line search is taken as the best model 𝒎𝒎𝑘𝑘+1 = 𝒎𝒎𝑘𝑘,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 

Therefore, a starting model 𝒎𝒎0 is provided, and the subsequent model 𝒎𝒎𝑘𝑘+1 is 
determined using the step size 𝜷𝜷𝑘𝑘,𝑗𝑗 in the search direction 𝒑𝒑𝑘𝑘. Because of the non-
linearity of the problem, a line search process is implemented, as opposed to merely 
identifying the step length parameter, as is done in the Conjugate Gradient (CG) 
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method. This line search process helps to circumvent the need to compute a large 
Hessian matrix (𝑯𝑯�  in equation 3.34). However, a noted drawback of the NLCG scheme 
is that it tends to require more iterations for convergence. As previously mentioned, 
the NLCG and CG methods are closely related; their primary distinction lies in the 
fact that the CG method is designed for minimizing quadratic cases (e.g., equation 
3.23), while the NLCG method addresses non-quadratic scenarios. Both algorithms 
avoid the explicit computation of the Jacobian matrix, instead only requiring a product 
of 𝑱𝑱 or 𝑱𝑱𝑇𝑇 with an arbitrary vector. Similar to the NLCG, a preconditioner can also be 
utilized in the CG method to enhance the performance of the algorithm. 
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Chapter 4  
Overview of Geothermal Energy Resources 
 

Geothermal energy is a renewable and sustainable energy source with significant 
potential to contribute to the global energy transition. It is derived from the Earth's 
internal heat, which has an immense reserve. This vast and largely untapped resource 
is concentrated in specific regions, primarily at the boundaries of tectonic plates, where 
volcanic and seismic activities are prevalent. These high-temperature geothermal 
reservoirs make it possible to efficiently harness geothermal energy for power generation 
and direct heating applications. This energy form is essential in mitigating the carbon 
dioxide emissions produced by oil, coal, and other fossil fuels, which are principal 
contributors to global warming—one of the most pressing existential threats facing 
humanity today. There is an increasing agreement among experts that a swift decrease 
in greenhouse gas emissions is essential to avert the severe consequences associated with 
climate change. To achieve climate objectives, it is imperative to enhance energy 
efficiency and to transition from fossil fuels, coal, and other environmentally harmful 
energy sources to renewable and sustainable energy alternatives. Therefore, geothermal 
energy is one of the geo-resources that serve as a critical foundation for facilitating 
reductions in greenhouse gas emissions (Herrington, 2021; Younger, 2014). In addition 
to electricity generation, geothermal energy has diverse applications, including district 
heating, greenhouse agriculture, industrial processes, and thermal energy storage. 

Geothermal energy has several advantages over other renewable energy sources. Unlike 
solar, wind, or hydropower, it is a stable and reliable resource that is generally 
unaffected by geography, climate, or season. Additionally, geothermal energy can be 
utilized continuously, as long as the upper limit of geothermal utilization is properly 
controlled, ensuring the long-term sustainability of the resource (Zhang et al., 2019). 
Globally, geothermal activity is concentrated in areas exhibiting relatively high heat 
flow, which is a consequence of extensive magmatism and/or crustal thinning (Elders 
& Moore, 2016; Jolie et al., 2021). At present, there are several hundred geothermal 
power plants of various types and capacities generating electricity in the world, and the 
vast majority of them are located in areas of high seismic activity near the boundaries 
of the tectonic plates (Figure 4.1). This is because the geothermal gradients are higher 
in tectonically and volcanically active regions where heat transfer is controlled by 
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convection. This happens because the Earth's crust is thinner and more heat flows to 
the surface (Elders & Moore, 2016; Stimac et al., 2015). However, despite its 
advantages, geothermal energy development faces several challenges, such as high 
upfront costs, resource exploration risks, and limited accessibility in some regions. 
Addressing these barriers through advancements in exploration technologies, enhanced 
geothermal systems (EGS), and improved drilling techniques is essential to unlocking 
the full potential of geothermal energy as a cornerstone of a sustainable energy future. 

 

Figure 4.1: Geothermal fields established globally within a plate tectonic framework. Overview of key 
geothermal power plants, focusing on their relation to major fault zones and tectonic boundaries. Figure 
taken from Moeck (2014). 

In recent years, the installed geothermal capacity worldwide has grown significantly, 
driven by advancements in production engineering and a multi-disciplinary effort to 
make geothermal energy a more competitive renewable energy resource. Geothermal 
energy holds significant potential, with recent estimates suggesting that around 43 × 
10^15 GJ of energy is stored at a depth of 3 km from the Earth's surface (DiPippo, 
2012). The commercial application of geothermal energy resources has been recorded 
for more than 100 years, and it is expected that geothermal energy will play an 
increasingly important role in global power generation, with a forecast contribution of 
more than 8.3% of the world's power generation by 2050. Total geothermal power 
generation reached 116,000 GWh in 2018 and can be extended to 282,000 GWh by 2030 
(Ghoddousi et al., 2021). This growth is further reflected in the direct use of geothermal 
energy for thermal applications, which reached approximately 141 TWh in 2021, 
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including around 128 TWh attributed to direct geothermal heat utilization (Lund & 
Toth, 2021). As the global community strives to achieve net-zero emissions by mid-
century, the strategic development of geothermal energy resources will be crucial for 
decarbonizing power generation, district heating, and industrial processes. 

 

4.1 Geothermal System Overview 

The geothermal system, a complex and dynamic phenomenon, can be understood 
through a conceptual model that represents its components and their intricate 
interactions. Such a model provides insights into the processes of heat formation, 
storage, and heat-mass transport, essential for sustainable geothermal resource 
development. Regardless of the type of geothermal resources, which is explained in the 
next sub-chapter, a general geothermal system conceptually involves the presence of a 
heat source, a permeable reservoir, a recharge mechanism, and an impermeable rock 
known as a clay cap (Berktold, 1983; Cumming, 2009; Muñoz, 2014). 

A typical geothermal system includes four main elements: a heat source, a permeable 
reservoir, a recharge mechanism, and an impermeable caprock. The heat source is 
typically a magmatic intrusion or deep-seated geothermal gradient from radioactive 
decay, particularly prevalent in tectonically active or volcanic regions. The heat source 
provides the necessary thermal energy to heat the surrounding rock and any 
groundwater present. The next critical component is the permeable reservoir where the 
hot groundwater or other fluids circulate through permeable rock formations.  
Depending on the composition, reservoirs can be liquid-dominated (≥60% water), 
vapor-dominated (≥60% vapor, typically at ≥200°C), or mixed-phase (Williams et al., 
2011). These reservoirs are key for energy extraction due to their heat transport 
properties. 

The recharge mechanism is the process by which the geothermal reservoir is replenished 
with new heated fluid, either from the surrounding groundwater system or from the 
deep circulation of fluids. The clay cap, also known as the caprock, is a layer of 
impermeable clay or shale that overlies the geothermal reservoir and prevents the escape 
of the geothermal fluid, ensuring the sustainability of the resource.  The clay cap forms 
through prolonged reactions between thermal fluids and surrounding rocks, creating a 
clay alteration layer. This alteration can occur over a wide temperature range, typically 
from under 100 °C to over 200 °C (Essene & Peacor, 1995). The presence of a clay cap 
typically results in a low resistivity signature, which is indicative of geothermal systems. 
This signature allows for the identification of high-temperature areas beneath the 
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surface. However, in some high-temperature geothermal systems, especially those 
associated with volcanic activity, a clay cap may be absent due to their unique 
geological conditions (Muñoz, 2014; Patro, 2017). 

 

4.2 Classification of Geothermal Resources 

Geothermal resources can be classified based on several criteria such as temperature, 
geological setting, and assessment confidence, reflecting the evolving understanding of 
their characteristics and applications. These classifications aid exploration, 
development, and decision-making for stakeholders like investors and developers 
(Furqan et al., 2016; Rybach, 2015; Williams et al., 2011).  Although no universal 
classification system exists, several widely used methods provide insights tailored to 
specific objectives and contexts (Jalilinasrabady, 2022). Among these, three key 
classification approaches have gained prominence and been widely used. 

4.2.1 Temperature Classification 

Temperature plays a critical role in determining the quality of geothermal resources 
and is the primary factor in most classification systems. Temperature-based 
classification is widely used due to its simplicity and the consensus among scientists 
regarding its significance. The most commonly recognized categories are low-
temperature, intermediate-temperature, and high-temperature geothermal resources. 
However, there is no universally accepted standard for the specific temperature 
boundaries of each category (Jalilinasrabady, 2022; Moeck, 2014; Williams et al., 2011). 
Various researchers have proposed different classification systems, leading to some 
variations in the defined temperature ranges. For instance, some classifications may set 
the threshold for high-temperature resources at 150°C, while others may consider it to 
begin at 200°C. Table 4.1 summarizes the temperature classification of geothermal 
resources according to different researchers. 

Table 4.1: Classifications of geothermal resources by temperature. 

Enthalpy 
Muffler and 
Cataldi 
(1978) 

Haenel et al. 
(1988) 

Hochstein 
(1990) 

Benderitter 
and Cormy 
(1990) 

Low < 90 °C < 150 °C < 125 °C < 100 °C 
Intermediate 90 – 150 °C - 125 – 225 °C 100 – 200 °C 
High > 150 °C > 150 °C > 225 °C > 200 °C 
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Later, Sanyal (2005) also proposed a new temperature classification method for 
geothermal resources into seven distinct classes: 

• Class 1 (non-electrical grade): Below 100 °C 
• Class 2 (very low temperature): 100 °C to <150 °C 
• Class 3 (low temperature): 150 °C to 190 °C 
• Class 4 (moderate temperature): 190 °C to <230 °C 
• Class 5 (high temperature): 230 °C to <300 °C 
• Class 6 (ultra-high temperature): Above 300 °C 
• Class 7 (steam fields): Approximately 240 °C with steam as the only mobile 

phase 

While temperature classification is a straightforward method for understanding 
geothermal resources, it does not consider other critical parameters, such as pressure 
and geological environment, which are essential for a more accurate assessment of 
geothermal resource potential. As a result, additional classifications may be necessary 
to fully evaluate geothermal resources (Jalilinasrabady, 2022). 

4.2.2 Exergy Classification 

The classification of geothermal resources has traditionally been based on temperature 
or enthalpy, as previously explained. However, temperature or enthalpy alone may not 
provide a comprehensive understanding of the resource's potential. To address this 
limitation, researchers have proposed using the concept of exergy, which refers to the 
maximum amount of work that can be extracted from a system as it approaches 
equilibrium with the environment, offering a more comprehensive understanding of 
resource quality and potential (Jalilinasrabady & Itoi, 2013; Lee, 2001). The first 
application of exergy analysis to a geothermal power plant was reported in the late 
1970s, as researchers sought to develop more efficient methods of harnessing this 
renewable energy source (Bodvarsson & Eggers, 1972). In the modern days, the exergy 
method has been applied to classify the geothermal resources in many countries, such 
as Japan (e.g. Jalilinasrabady & Itoi, 2013), Turkey (e.g. Etemoglu & Can, 2007), and 
Indonesia (e.g. Mohammadzadeh Bina et al., 2018). 

In practice, geothermal resources can be classified as low, medium, and high-quality 
resources with reference to their specific exergy indices (SExI), which can be calculated 
by dividing the total exergy of the geothermal resource by its mass flow rate, providing 
a measure of the exergy content per unit of mass flow rate. SExI of 0.5 is the lower 
limit for the high-quality geothermal resources, while low-quality resources would have 
an SExI below 0.05, and medium-quality resources would fall in between (Lee, 2001). 
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A study conducted in Japan examined the exergy-based classification of 18 operational 
geothermal power plants (Jalilinasrabady & Itoi, 2013). The results showed that six 
geothermal fields had high-exergy resources, with specific exergy indices exceeding 0.5, 
while the remaining fields were classified as medium-quality resources (Figure 4.2).  

 

Figure 4.2: Distribution of an exergy-based classification of geothermal fields in Japan according to 
calculated SExI values: SExI ≥ 0.5 (high exergy), 0.5 < SExI ≥ 0.05 (medium exergy), and SExI < 0,05 
(low exergy). Figure taken from Jalilinasrabady & Itoi (2013). 

Exergy-based geothermal classification has some advantages, as it offers a more nuanced 
measurement of geothermal potential compared to temperature and enthalpy alone and 
allows for evaluating how effectively geothermal fluids can be utilized for energy 
production. However, it does not incorporate geological and hydrogeological elements 
such as geological settings, fluid flow controls, fluid chemistry, and mineral precipitation 
impacts, which are crucial for energy production and economic viability. The exergy 
method also relies on temperature and pressure estimates from the wellhead, meaning 
it can only be implemented post-drilling, limiting its applicability for pre-drilling 
assessments. These limitations highlight the necessity for a more integrated approach 
that includes geological factors, ensuring the catalog is helpful for both pre-drilling 
assessments and sustainable resource management (Moeck, 2014). 

4.2.3 Geologic Classification 

The geological setting of a geothermal system fundamentally determines the resource's 
characteristics and potential. Regions with active tectonic processes, such as subduction 
zones, rift valleys, and volcanic arcs, often host high-temperature geothermal resources 
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due to the proximity of magma bodies. These systems benefit from enhanced heat flow 
and greater resource availability. In contrast, areas without active tectonics may host 
low-temperature geothermal resources. These are often found in sedimentary basins or 
regions with substantial insulation from underlying heat sources, limiting their 
utilization for energy production or direct-use applications. The geological, structural, 
and tectonic characteristics of a geothermal resource heavily influence its efficiency and 
economic viability, making a thorough understanding of these factors essential for 
effective exploration and utilization (Hoteit et al., 2023; Jalilinasrabady, 2022; Moeck, 
2014). 

Geothermal resources can be broadly classified into two major categories based on their 
heat transfer mechanisms and geological settings: convection-dominated systems and 
conduction-dominated systems. Convection-dominated geothermal systems typically 
occur in areas with active volcanism and tectonic activity, where the Earth's internal 
heat is efficiently transported to the surface by circulating groundwater (Moeck, 2014). 
These systems are typically shallow (< 3 km depth) with high temperature or enthalpy 
and characterized by surface manifestations such as hot springs, geysers, fumaroles, and 
boiling mud pots, all fed by the heated groundwater (Moeck, 2013). The formation of 
a viable convection-dominated geothermal system requires three essential conditions: 
an underground heat source, a heat transfer medium (often in the form of circulating 
groundwater), and a heat conducting channel that allows the heated fluids to reach the 
surface. 

In contrast, conduction-dominated geothermal plays are found in regions with low to 
moderate levels of tectonic activity, where the heat from the Earth's interior is primarily 
transported through the surrounding rock by thermal conduction (Moeck, 2014). These 
systems are typically devoid of surface manifestations, and the geothermal energy is 
often stored as high-temperature, high-pressure fluids deep underground, such as in 
large sedimentary basins. Harnessing the energy from conduction-dominated plays often 
requires deeper drilling (> 2 km depth) to reach the geothermal reservoirs, which can 
be technologically and economically challenging. 

Both convection-dominated and conduction-dominated types of geothermal systems can 
be subdivided into three sub-types based on the specific characteristics of the geological 
settings, as summarized in Table 4.2. The classification of the convection-dominated 
geothermal system can be subdivided into three geologic settings: magmatic-volcanic, 
magmatic-plutonic and non-magmatic or extensional type. While the conduction-
dominated geothermal systems contain three settings: the intracratonic basin type, the 
orogenic belt type, and the basement/crystalline rock type.  
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Table 4.2: Summary of the geologic-based classification of geothermal resources, modified from Moeck 
(2014). 

Convection-dominated geothermal systems (CV) 
Resources type Geological settings Temperature Host rock 
Magmatic – Volcanic Mid-oceanic ridges, 

volcanic arc regions, 
and mantle plumes 
(hot spots) 

70 – 320 °C Rhyolites, 
andesites, and 
basalt 

Magmatic – Plutonic Decrescent volcanism 
at young orogenic 

100 – 350 °C Sediments 
Granite and 
Gabbro 

Non-magmatic Metamorphic core 
complexes, back-arc 
basins, pull-apart 
basins and 
intracontinental rifts 

150 – 240 °C Volcanic 
sedimentary 
rock 

Conduction-dominated geothermal systems (CD) 
Resources type Geological settings Temperature Host rock 
Intracratonic basin Rift basins and 

passive margin basins 
< 150 °C High–low 

permeability 
fluvial 
sediments 

Orogenic belt Fold-and-thrust belts 
and foreland basins 

< 160 °C High–low 
permeability 
marine 
sediments 

Basement/crystalline 
(hot dry rock) 

Intercontinental 
intrusion in flat 
terrain 
 

150 – 320 °C Granite rock 
with high 
radiogenic 
heat  

 

Magmatic – Volcanic Type 

Volcanic geothermal plays are among the most productive and well-known types of 
geothermal systems, largely due to their association with active volcanic regions. These 
systems are characterized by shallow heat sources in the form of magma chambers, 
which provide intense thermal energy to the surrounding rock and fluids, as illustrated 
in Figure 4.3a. Volcanic geothermal systems are often found near volcanic features such 
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as calderas, craters, and lava flows. The proximity of magma to the Earth's surface in 
these regions ensures that circulating water or steam reaches very high temperatures, 
making volcanic geothermal plays particularly suited for electricity generation. The 
high heat flow and availability of steam in these systems allow for the efficient operation 
of geothermal power plants. For example, Iceland's geothermal power industry thrives 
on volcanic systems, with locations such as the Reykjanes Peninsula and Krafla 
providing abundant geothermal resources (Pope et al., 2016; Wang et al., 2022). The 
Kamojang power plant in Wests Java, Indonesia, is another example of volcanic 
geothermal fields that produce substantial amounts of electricity (Dwikorianto & Zuhro, 
2010; Suryadarma et al., 2010). 

Magmatic – Plutonic Type 

Plutonic geothermal plays are closely related to volcanic systems but differ in terms of 
their heat sources (see Figure 4.3b). These systems are associated with large intrusive 
bodies of igneous rock, known as plutons, that were emplaced deep within the Earth's 
crust. While these plutonic bodies may have been associated with volcanic activity in 
the past, they are no longer linked to active volcanism. Instead, the heat within plutonic 
geothermal plays is derived from the residual thermal energy retained by the slowly 
cooling plutonic rock. Plutonic geothermal systems are typically found at greater depths 
than volcanic systems. They are characterized by high-temperature rocks that can still 
provide significant geothermal energy, despite the absence of active magma. These 
systems are often located in tectonically active regions, where the cooling of large 
igneous intrusions has created long-lasting reservoirs of heat. Plutonic geothermal 
systems can be used for both electricity generation and direct heat applications. 
However, because they tend to be located deeper within the Earth's crust, tapping into 
these resources often requires more advanced drilling techniques and higher initial 
investment costs. Nevertheless, the potential for long-term energy production makes 
plutonic geothermal systems an attractive option for sustainable energy development. 
The geysers in California, USA, are famous examples of plutonic geothermal fields that 
produce substantial amounts of electricity from recent magmatism (Peacock et al., 
2020). 

Non-Magmatic Type 

Non-magmatic or extensional geothermal plays represent a distinct category of 
convection-dominated geothermal systems that are not directly associated with 
magmatic activity. Instead, these systems rely on the Earth's natural geothermal 
gradient, which causes heat to rise from the Earth's interior toward the surface. Non-
magmatic geothermal systems are often found in regions of extensional tectonics, where 
the Earth's crust is being stretched and thinned, allowing heat to rise more easily 
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through fractures and faults, as illustrated in Figure 4.3c. These systems are widespread 
and can be found in various geological settings, including sedimentary basins and rift 
zones. For example, the Basin and Range Province in the western United States and 
the Rhine Graben in Europe are both regions with significant non-magmatic geothermal 
potential (Faulds & Coolbaugh, 2010; Frey et al., 2022; McKenna & Blackwell, 2004). 
Unlike volcanic and plutonic systems, non-magmatic geothermal plays generally 
produce lower-temperature fluids, making them more suitable for direct heat 
applications rather than electricity generation. However, in some cases, low-
temperature geothermal electricity generation is possible, especially when enhanced 
geothermal systems (EGS) are employed. 

 

Figure 4.3: Conceptual model of (a) a magmatic – volcanic type, (b) a magmatic – plutonic type, and 
(c) a non-magmatic type of geothermal systems. Figures from Moeck (2013, 2014). 
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Intracratonic Basin Type 

Intracratonic basins are large, stable sedimentary basins that form within continental 
interiors, often far from tectonic plate boundaries. These basins are characterized by 
thick sequences of sedimentary rocks that have accumulated over millions of years with 
minimal tectonic disturbance. Intracratonic basins are often found in regions with 
ancient cratonic shields, where the Earth’s crust is thick and stable. Examples of these 
basins include the North Dakota Basin in the United States, the Williston Basin in 
Canada, and the Nort German Basin (Hartig, 2018; I. Moeck et al., 2009). The primary 
heat source in intracratonic basins is the natural geothermal gradient, which results 
from the slow conduction of heat from the Earth's interior through the sedimentary 
rock layers. While these basins generally exhibit lower geothermal gradients compared 
to volcanic regions, the thick sedimentary sequences can act as insulators, allowing heat 
to accumulate over time. Furthermore, the high porosity and permeability of some 
sedimentary rock layers can enhance the ability to store and transfer geothermal heat. 

Orogenic Belt Type 

Orogenic belts, also known as mountain belts, are regions of the Earth's crust that have 
been significantly deformed by tectonic processes such as the collision of continental 
plates. These regions are characterized by complex geological structures, including 
folded and faulted rock layers, as well as the presence of metamorphic and igneous 
rocks. Orogenic belts often contain large quantities of stored thermal energy due to the 
thickened crust and the thermal insulation provided by the overlying rock layers. The 
heat in orogenic belt geothermal systems is conducted through the thickened crust, 
which results from tectonic compression and uplift during mountain-building processes. 
These regions may contain significant geothermal potential, particularly in areas where 
deep crustal rocks are exposed to elevated temperatures. However, due to the 
complexity of the geological structures in orogenic belts, the development of geothermal 
resources can be challenging. Drilling and exploration require a detailed understanding 
of the subsurface geology to identify areas with sufficient heat and permeability. One 
example of geothermal potential in an orogenic belt is the Molasse Basin in Germany 
(Cacace et al., 2013). 

Basement/Crystalline Rock Type 

Basement or crystalline rock geothermal systems are found in areas where the Earth's 
crust is composed primarily of ancient, stable crystalline rocks, such as granite or gneiss. 
These rocks are typically found in the lower crust and are exposed at the surface in 
many stable continental regions, such as shield areas or regions with deeply eroded 
terrain. The heat in basement geothermal systems is derived from the natural 
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geothermal gradient, as well as from the decay of radioactive isotopes within the 
crystalline rock. These rocks, particularly granite, often contain significant amounts of 
uranium, thorium, and potassium, which generate heat through radioactive decay. This 
makes crystalline rock geothermal systems a potential source of long-term, sustainable 
heat. However, one of the main challenges with basement geothermal systems is the low 
permeability of crystalline rocks. Unlike sedimentary rocks, which often have natural 
porosity and permeability, crystalline rocks are typically impermeable and lack natural 
fluid pathways. To exploit these systems, enhanced geothermal systems (EGS) are often 
employed. 
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Figure 4.4: Conceptual model of (a) intracratonic basin type with different temperature ranges 
depending on the geothermal gradient, (b) orogenic belt type, and (c) basement/crystalline rock type of 
the conduction-dominated geothermal systems. Figures taken from Moeck (2013, 2014). 
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4.3 Geothermal Resources and Explorations in Saudi 
Arabia 

The Kingdom of Saudi Arabia is located on the Arabian Plate, bordered to the west 
by the tectonically active Red Sea Rift. This rift marks a divergent boundary where 
the Arabian Plate is moving away from the African Plate, resulting in crustal thinning, 
elevated heat flow, and volcanic activity—favorable conditions for geothermal energy 
development. The western region of Saudi Arabia, particularly the volcanic fields of 
Harrat Rahat, Harrat Khaybar, and Harrat Lunayyir, has experienced recent volcanic 
activity, indicating the presence of potential heat sources from magmatic intrusions. In 
addition to volcanic features, several hot springs, such as those in Al-Lith and Jizan, 
provide surface evidence of geothermal activity, further supporting the potential for 
subsurface heat reservoirs. Figure 4.5 shows a geothermal favorability map developed 
as part of a geothermal resources database for Saudi Arabia (Aboud et al., 2021). This 
map highlights the western region as a particularly promising area for geothermal 
exploration. This area is characterized by shallow Curie depths, high heat flow, the 
presence of volcanic vents, and notable seismic activity. These factors underscore the 
necessity for further studies to facilitate geothermal exploration in these regions. 

According to several research studies, e.g. Hussein et al. (2013), Lashin & Al Arifi 
(2014), Lashin et al. (2014), and Ashadi et al. (2024), among several regions in western 
Saudi Arabia, the Al-Lith area is considered as one of the most prominent sites of Saudi 
Arabia's geothermal resources, with the occurrence of four hot springs (see Table 4.3). 
The Ain Al-Harrah hot spring, one of the hot springs, was observed to have the highest 
temperature exceeding 96 °C, indicating the presence of well-seated geothermal 
reservoirs. It has become the main geothermal target in the region and may be used to 
provide clean power energy on a long-term basis. Although geothermal energy 
utilization for power generation is not yet economically viable, some direct-use 
applications of low-grade geothermal resources have already been implemented, such as 
the Hot Spring Park near the Ain Al-Harrah hot spring, featuring amenities such as 
steam baths and swimming pools, and recreational facilities like children’s playgrounds, 
demonstrating the potential for geothermal resources to support local tourism and 
community services. Further exploration and feasibility studies are necessary to assess 
the full potential of the Al-Lith geothermal systems for power generation and to develop 
technologies that can make geothermal energy a more viable component of Saudi 
Arabia’s renewable energy mix. 
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Figure 4.5: The map of geothermal potential favorability in Saudi Arabia. Figure taken from Aboud et 
al. (2021). 

 

Table 4.3: Four hot springs in the Al-Lith area and their respective reported information. 

Hot 
Spring 

Latitude Longitude 

Lashin et al. (2020) Al-Douri et al. 
(2019) 

Lashin et al. (2012) 

Reservoir 
Temp. 
(°C) 

Surface 
Temp. 
(°C) 

Surface 
Temp. 
(°C) 

Flow 
rate 
(kg/s) 

Discharge 
Enthalpy 
(Kj/Kg) 

Heat 
Flow 
(nW/M2) 

Ain Al-
Harrah 40.471 N 20.461 E 185 96 79 

0.064–
0.08 

218.96 182.79 

Bani 
Hilal 

40.705 N 20.303 E 120 45 46 0.0048 193.74 159.63 

Wadi 
Markub 

40.156 N 20.528 E 120 56 46 0.0048 193.30 159.23 

Al-
Darakah 

40.039 N 20.671 E 105 41 40 0.0016 169.21 136.93 

 

Geothermal studies in the Al-Lith region began five decades ago. Stieltjes (1974) was 
the pioneer, conducting geochemical analysis on water samples from several hot springs 
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in Al-Lith and Jizan. The author found that the Al-Lith area has promising geothermal 
resources. Later, Al-Dayel (1988) reviewed the geothermal prospects not only in the 
hot springs of Al-Lith and Jizan, but also in the volcanic fields of Khaybar and Rahat, 
through geochemical analysis of water samples from the hot spring. Al-Dayel (1988) 
concluded that Al-Lith has a high temperature of circulated aquifer, exemplified by the 
90 °C temperature at the Ain Al-Harrah hot spring. Khiyami et al. (2012) conducted a 
biodiversity analysis of the geothermal springs in Al-Lith and Jizan to study the water 
samples' physical and chemical analysis. Their findings suggested that all Al-Lith water 
samples exhibited low bacteria counts. Furthermore, the prominent bacteria identified 
in this area were similar to those found in other geothermal habitats worldwide. 

Lashin et al. (2012) and later followed by Hussein et al. (2013) were the first to conduct 
limited shallow 2-D electrical resistivity tomography (ERT) surveys in Al-Lith, along 
with remote sensing and geochemical analysis. Their studies concluded that Al-Lith 
region, particularly the Ain Al-Harrah hot spring, is the most promising geothermal 
resources in Saudi Arabia. The region exhibits high surface temperatures of up to 96°C, 
reservoir temperature of more than 135 °C, good discharge enthalpy of more than 215 
kJ/kg, and a high heat flow of 183 mW/m2. The geothermal power potential was 
estimated to be 26.99 MWt which could support a medium scale power plant for the 
Al-Lith region. 

Lashin et al. (2014) conducted more comprehensive geological and geochemical 
investigations on the hot springs in the same region. They estimated that the 
temperature of the geothermal reservoir exceeded 200 °C, circulating within granitic 
formations. These granites were estimated to produce 120 × 106 TWh electricity, with 
the power plant’s operational lifespan exceeding 30 years. Subsequently, Lashin et al.  
(2015) presented preliminary results of the subsurface’s structure, conducting MT and 
seismic reflection imaging studies at Ain Al-Harrah. Their findings suggested that the 
geothermal reservoir is categorized as shallow at a depth of 2.5 km, with complex 
fractures observed in the shallow layers. Further studies by Lashin et al. (2015), Al-
Douri et al. (2019), Lashin et al. (2020), and Aboud et al. (2021) focused on 
consolidating and reviewing previous research findings, which collectively advanced the 
understanding of the geothermal potential in the Al-Lith region. 

The most recent geothermal exploration in Al-Lith was conducted by Ashadi et al. 
(2024). They performed a high-quality MT survey along a 7.8 km profile crossing the 
main hot spring of Ain Al-Harrah in Al-Lith. This survey's 2D MT inversion results 
provided critical insights into the geothermal system (see Appendix A). They imaged 
the geothermal reservoir at depths below 800 m and identified heat sources below 3.5 
km. Ashadi et al. (2024) suggested that Al-Lith’s geothermal source can be classified 
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as a high-temperature volcanic-associated geothermal system. This classification is 
supported by the absence of a highly conductive clay cap in the 2D resistivity model, 
a feature typically associated with volcanic geothermal systems. However, the study 
acknowledged limitations in the 2D inversion results. The MT soundings were 
conducted along with the major geological strike, and dimensionality analysis indicated 
the presence of a 3D conductivity structure at longer periods. This suggests that a 3D 
inversion approach would be more appropriate for accurately characterizing the 
subsurface conductivity and provide a more detailed understanding of the geothermal 
system. Despite these limitations, the results were geologically significant, contributing 
valuable information for future geothermal exploration and guiding further 
investigations in the Al-Lith region.
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Chapter 5  
Field Survey and Geological Background 
 

5.1 Geological Settings 

Saudi Arabia’s geological setting is complex due to its location at the intersection of 
the Arabian, African, and Eurasian tectonic plates, significantly influencing the region's 
geological features and geothermal potential. The western region is dominated by the 
Arabian Shield, a vast plateau primarily composed of metamorphic and igneous rocks. 
This shield is part of the Precambrian basement complex, which has been subjected to 
multiple tectonic events, leading to a rich and varied geological history. Wadi (valley) 
Al-Lith, located in the western part of Saudi Arabia, is a significant catchment area 
that exemplifies complexity.  The region, situated along the western coast of the Red 
Sea, encompasses a diverse and dynamic landscape that spans from the coastal plains 
to the high mountains in the east (Hussein et al., 2013; Monged et al., 2018). The 
survey area is located in steep mountains with an altitude difference of approximately 
600 m. 

The geological history of Wadi Al-Lith spans from the Precambrian to the Quaternary 
periods, showcasing a diverse range of rock types and formations. The Precambrian 
rocks of the Arabian Shield in Wadi Al-Lith include granites, gneisses, and schists, 
which have been intruded by younger igneous bodies and significantly metamorphosed. 
Overlying these are sedimentary rocks from various ages, disrupted by faults and folds, 
reflecting the region's dynamic tectonic history. The Quaternary period saw the 
deposition of alluvial sediments, shaping the varied landscape of valleys, plateaus, and 
coastal plains. 

The major rock units covering the Al-Lith catchment area are summarized from oldest 
to youngest as follows: 

(a) Baish and Baha groups: The Baish group, classified as Ablah intrusive, is 
exposed in the southern part of the basin (Figure 5.1) and includes gabbro, 
tonalite, quartz diorite, granodiorite and monzodiorite. These rocks are 
characterized by hornblende-rich basic varieties and felsic members enrich with 
biotite, potash feldspars, and large pyrite crystals (Fleck et al., 1976). It has 
been suggested by Hussein et al. (2013) that rocks from the undivided Baish 
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and Bahah groups, such as basalt, amphibolite, and dacite, crop out in the 
eastern part of the Al-Lith basin, covering approximately 23% of the area. 
 

(b) Lith Suite and Equivalents: This suite, a prominent rock unit in the Al-Lith 
catchment including the Khasrah complex, diorite, and gabbro, is composed 
primarily of mafic and metavolcanic rocks, intruded by various plutonic rocks. 
It forms an extensive NE-trending belt across the western part of the basin, 
covering more than 35% of the area. 
 

(c) Tectonic Granitic Rocks: The less prominent Proterozoic intrusive rocks, 
including plutons, dikes, and ring dikes, are prevalent throughout of the basin 
and extend along the entire western margin of the Arabian Shield from Midyan 
to Jizan (Lashin et al., 2014). It has been estimated by Hussein et al. (2013) 
that these intrusive rocks cover about 13% of the basin area. 
 

(d) Quaternary Formation: Sand, gravel, silt, and sabkhah deposits (Figure 5.1) 
represent 18% of the Al-Lith area (Hussein et al., 2013; Lashin et al., 2014). 
These deposits are characterized by horizontal bedding and are poorly 
consolidated, typically averaging around 2 km in thickness, though they rarely 
exceed 10 m (Pallister, 1986). 
 

(e) Other Rock Units: These units constitute about 9% of the basin in the study 
area and include various rock types, such as metagabbro, gabbro dikes, 
granodiorite, syntectonic granitic rock, and some granite (Hussein et al., 2013). 
Numerous gabbro dikes are present in the northwest Al-Lith, aligning parallel 
to the Red Sea axis and associated with Red Sea tectonism. These younger dikes 
have K–Ar ages of approximately 19–27 Ma (Bosworth et al., 2005). 
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Figure 5.1: Geological map of the Al-Lith area showing the different rock units and geological features 
present in the region (modified from Hussein et al. (2013) and Aldaajani & Furlong (2022)). 

 

5.2 Data Acquisition 

The geothermal exploration in Al-Lith, western Saudi Arabia, was performed in two 
stages of field campaigns: the first stage was carried out in May 2022 and the second 
stage was from December 2022 to January 2023. During the first stage, a couple of MT 
measurement tests and 15 real MT soundings were measured, with 13 sounding of them 
are oriented along a North–South transect inside a valley filled with quaternary fluvial 
deposits and partly water flooded crossing the hot springs. Toward both sides of the 
valley, steep mountains are present with an altitude difference of approximately 600 m. 
A 2-D resistivity section was produced from the first stage of MT measurement and 
successfully imaged the main geothermal features, such as the heat source, the fracture 
zone and its role in the convection pattern, and the groundwater system as part of the 
Ain Al-Harrah geothermal system (Ashadi et al., 2024). The 2D geo-electrical model 
can be seen in Appendix A (Appendix Figure A-2). 
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Figure 5.2: Topographic map of the study area showing the locations of all 50 MT soundings (green 
squares). The blue circle indicates the 14 MT sites where the vertical magnetic field component was 
measured. The black squares represent the location of the TEM soundings. The red octagon marks the 
location of the Ain Al-Harrah hot spring. 

Following the 2-D result, the second stage of the field survey was carried out, with 35 
MT stations and 13 TEM soundings measured in order to generate a 3-D resistivity 
model that would be more appropriate for accurately characterizing the subsurface 
conductivity. In total, there are 50 MT, and 13 TEM soundings measured in the study 
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area. The coordinates of the soundings are listed in Appendix B (Table B-1). The 
average spacing between neighboring MT stations was approximately 400 m, ensuring 
adequate spatial resolution for the survey. Due to logistical constraints and the 
challenging terrain of the study area, the magnetic field vertical component was only 
measured at 14 sites. The distribution of MT stations was strategically planned 
considering the proximity to the Ain Al-Harrah hot spring and the conductive anomaly 
identified by Ashadi et al. (2024). Figure 5.2 shows the topographic map depicting 
the distribution of all measured MT and TEM sites. 

5.2.1. MT Measurements 

The 50 broad-band MT soundings were conducted over the period range of 0.001-512 s 
around the main hot spring in Al-Lith. The MT data were collected using KMS-820 
acquisition system (kmstechnologies.com) along with two or three low frequency 
induction coils (LEMI-120) and four non-polarizable electrodes (LEMI-701) with 
horizontal dipoles lengths varied from 40 to 100 m, depending on site-specific 
conditions/obstacles (Fig. 5.3). The recording duration at each MT station ranged from 
6 to 8 hours, with data sampled at three different frequencies (4 kHz, 1 kHz, and 40 
Hz). The detailed duration for each sampling frequency is listed in Table 5.1. To ensure 
high-quality data, we measured the ground resistances before and after each MT 
measurement to maintain good electrode contact and improve the signal-to-noise ratio 
in the electric field recordings (Ashadi et al., 2022, 2024). All induction coils were 
carefully oriented, leveled, and buried to minimize environmental noise and ensure 
accurate measurements. The cables used to connect the sensors to the acquisition 
system were also buried to minimize the recorded noise during the acquisition. In 
addition, wet bentonite was used in each electrode to lower the ground resistance, as 
advocated by some MT practitioners. The distribution of MT stations was strategically 
planned considering the proximity to the Ain Al-Harrah hot spring and the conductive 
anomaly identified by Ashadi et al. (2024). 

Table 5.1: Sequence task index used during MT acquisitions. The duration of each sampling frequency 
is determined. 

Task Index Sampling Frequency Duration 
0 4 kHz 00:26:15 
1 1 kHz 01:44:55 
2 40 Hz 08:00:00 (max) 
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Figure 5.3: MT scheme layout used in this study, with three induction coils and two pairs of electrodes 
(left), and a picture of the MT deployment and installation on the field (right).  

 

5.2.2. TEM measurements 

The TEM data acquired using the ABEM WalkTEM time-domain ground EM system 
took place in January 2023 during the winter season. A total of 13 TEM soundings 
were conducted using a central-loop configuration. Each sounding employed a 40x40 
m2 transmitter loop with an inner RC-5 receiver antenna. The soundings were placed 
in various geological settings to ensure reasonable wide spatial coverage, despite 
logistical constraints that prevented a more extensive survey. Each measurement utilizes 
a dual-moment script with a maximum time (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) of 10 ms and 32 gates to capture a 
broad range of subsurface responses. In addition to the noise measurement, the 
WalkTEM system operated in dual acquisition modes to enhance data quality and 
depth penetration:  

• Low Moment (LM): Used for acquiring early-time data, this mode captures 
signals from shallow subsurface layers.  

• High Moment (HM): Used for recording late-time data, this mode is capable of 
imaging deeper subsurface structures.  

To further improve data quality, a 200 Ω damping resistor was connected in parallel 
with the transmitter loop during each measurement. This configuration helped to 
prevent rapid signal decay caused by less resistivity near the surface. The dual-moment 
acquisition allowed for a comprehensive analysis of the subsurface, with early-time data 
providing detailed information about shallow layers and late-time data offering insights 
into deeper geological formations. 
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Figure 5.4: Scheme layout using a central loop TEM configuration, with a 40 X 40 m2 transmitter and 
an RC-5 receiver loop (left), and a picture of the TEM installation on the field (right). 
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Chapter 6  
Data Processing and Analysis 
 

This chapter deals with the field data processing and analysis. First, all the steps 
applied to MT data in order to estimate the transfer functions are explained. A detailed 
explanation of the used robust processing scheme is given. Regarding the TEM data, 
all the procedures applied before the subsequent 1D inversion are described in this 
chapter. Finally, the dimensionality analysis and static shift effect of the MT data is 
discussed. 

 
Figure 6.1: Example of unfiltered time series recorded at MT09 highlighting the correlation between 
𝐵𝐵𝑦𝑦 and 𝐸𝐸𝑥𝑥 components and the anti-correlation between 𝐵𝐵𝑥𝑥 and 𝐸𝐸𝑦𝑦. The sensor model and the serial 
number of each induction coil, which is related to the calibration factors, are also visible. 

 

6.1 MT Data Processing 

To estimate the MT transfer functions, including impedances and tippers, the measured 
MT data were processed using a robust statistical technique developed by Smirnov 
(2003). This technique employs a robust regression proposed by Siegel (1982), which 
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utilizes a repeated median algorithm with a high breakdown point of 50%. In addition 
to the robust regression technique, a notch filter was applied during data processing to 
eliminate narrow frequency bands of interference, such as the 60 Hz noise from power 
lines, while leaving the remaining spectrum unchanged. Before data processing, pre-
processing steps, including data quality assurance and quality control, were performed. 
Any potential data loss due to possible field acquisition errors can be prevented. 
Spectrum and coherency analysis were also conducted in this stage. Figure 6.1 shows 
the time series of MT data at station MT09 for the sampling frequency of 40 Hz, 
highlighting the correlation between 𝐵𝐵𝑦𝑦 and 𝐸𝐸𝑥𝑥 components and the anti-correlation 
between 𝐵𝐵𝑥𝑥 and 𝐸𝐸𝑦𝑦. The sensor model and the serial number of each induction coil are 
also visible, which is related to the calibration factors. 

In the processing, I distinguished between high frequency (HF) with sampling rates of 4 
kHz and 1 kHz, and low frequency (LF) with sampling rates of 40 Hz. The high 
frequency bands are contaminated by cultural periodic noise, such as 60 Hz powerline 
noise and its higher harmonics. Figure 6.2 shows the spectra of the observed MT data 
at station MT01 for the sampling frequency of 4 kHz as an example. Notable spikes 
indicate the presence of 60 Hz noise and their harmonics generated by power lines, 
along with Schumann resonances characterized by a base frequency of 7.8 Hz and their 
harmonics. These significant anthropogenic noise sources are subsequently removed 
during data processing by applying digital filters (e.g. notch filter). A Fast Fourier 
Transform (FFT) window length of 65,536 samples was used to handle both sampling 
frequency rates of 4 kHz and 1 kHz. For the low frequency (LF) range, with sampling 
rates of 40 Hz which fall below power line noise, a cascade decimation processing 
method was employed using short FFT windows of 16, 32, and 64 samples. The 
decimation step involves low-pass filtering of the time-series with a recursive filter. After 
the Fourier transformation, a correction by the instrument calibration factor is done  
(Ashadi et al., 2024; Smirnov, 2003; Wight & Bostick, 1980). 
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Figure 6.2: Example of spectrum visualization from sounding MT01with sampling frequencies of 4 kHz. 
The Schumann resonances and the periodic noise of 60 Hz due to the power line can be distinguished. 

The processing steps applied to the MT field data are summarized as follows (Ashadi 
et al., 2024; Smirnov, 2003): 

1. Data quality assurance process was done using KMS-820 Acquisition software 
(kmstechnologies.com) to prevent potential data loss due to possible field 
acquisition errors. It includes visual inspection of the raw time-series to ensure 
that all channels were properly recorded. 
 

2. Data quality control is then performed to check the quality of the raw data, 
conduct spectrum analysis, and examine the coherency in order to evaluate the 
relationship between orthogonal and parallel fields.  
 

3. Impedance tensor estimations were carried out using KMSProMT program 
(kmstechnologies.com), employing the robust statistical technique introduced 
by Smirnov (2003). In practice, the impedance estimation steps can be 
summarized as follows:  

1) The recorded time series are subdivided into sets of segments  
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2) An autoregressive (AR) model is used to eliminate and remove 
obvious outliers and fill short gaps in the time domain before the main 
processing steps 

3) Multiplying each segment with a Hanning window function in order 
to reduce the bias of spectral estimation 

4) Decimation step involving low-pass filtering of the time-series with a 
recursive filter is applied 

5) Fourier transformation is carried out into the segments. 
6) A coherence threshold is used to remove highly noisy segments 
7) Calculation of auto- and cross-spectral densities  
8) Estimation of the MT transfer functions and their errors. 

 
4. The data sampled at low (40 Hz), and high (1 kHz and 4 kHz) frequencies were 

processed separately with distinct parameter settings.  
 

5. Finally, the multiple impedance tensor results are further processed using 
KMSProTF to apply robust averaging, plotting, and extraction of the final 
transfer function data. At this stage, all available partial estimates for a 
particular site are averaged together (including different frequency bands and 
possibly from different instruments) to produce the final estimation. Averaging 
is performed with a robust M-estimator and following bootstrap confidence 
limits. In this thesis, all MT transfer functions are estimated to have 7 
frequencies per decade with a smoothing factor of 2. 

 

6.1.1 Robust MT Processing Theory 

As mentioned previously, the MT data field was processed using KMSProMT software, 
a new advanced robust MT processing algorithm after Smirnov (2003). This technique 
utilizes a robust scheme proposed by Siegel (1982), which its calculations are based on 
a repeated median algorithm with a high breakdown point of 50%. This implies that 
nearly half of the data could be outliers, yet the solution will still produce a reasonable 
result, demonstrating its effectiveness in handling datasets with a significant amount of 
noise. Smirnov (2003) has successfully tested this on both noise-free and highly noisy 
MT field data. The results demonstrate enhanced stability and reduce average misfit 
across all data components, regardless of the noise levels present in the field data. 

Previously, robust MT processing commonly employed an M-estimator (Huber, 2011), 
which has lower breakdown points approaching 30% (Hampel et al., 1986). However, 
M-estimators are much less sensitive to outliers than standard Least-Square estimators 
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(Chave, 2012, 2017; Chave & Thomson, 2004). It is well known that the breakdown 
point of the Least Squares estimation is zero, indicating that even a small amount of 
noise can strongly influence the final estimate. First, a brief explanation of Siegel’s 
estimator is given. Then, how the transfer functions were estimated is explained. 

Siegel’s Repeated Median Estimator 

Siegel’s repeated median estimator is a robust statistical method particularly useful for 
regression in scenarios with a high level of outliers, which can be described as follows. 
First, a simple linear regression model can be written as 

𝑦𝑦𝑖𝑖 = Θ1 + Θ2𝑥𝑥𝑖𝑖 + 𝑒𝑒𝑖𝑖,  𝑖𝑖 = 1, … ,𝑀𝑀, (6.1) 

where 𝑦𝑦𝑖𝑖 represents the predicted value for the 𝑖𝑖th observation of a p-dimensional vector 
𝑥𝑥𝑖𝑖, while 𝑒𝑒𝑖𝑖 denotes the prediction error for that observation. The symbol Θ signifies 
the p-dimensional vector of unknown regression parameters that need to be estimated. 
Siegel’s repeated median estimator for a set of n-observations denoted as 
(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖), … , (𝑥𝑥𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖), is defined as follows. The 𝑗𝑗th component of Θ, referred to as 𝑇𝑇(𝑗𝑗), 
is: 

𝑇𝑇𝑛𝑛
(𝑗𝑗) =  med

𝑖𝑖1
  �.  .  .   �med

𝑖𝑖𝑝𝑝−1
�med

𝑖𝑖𝑝𝑝
�Θ(𝑗𝑗)�𝑖𝑖1, … , 𝑖𝑖𝑝𝑝��� �  .  .  . � (6.2) 

where the median is taken over all indices 𝑖𝑖𝑚𝑚 =  1, … ,𝑛𝑛. 

For each point (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖), the median Θ2𝑖𝑖 is defined as the median of the 𝑛𝑛 − 1 slopes of 
the lines connecting this point to every other point in the set. The repeated median 
slope estimate Θ2∗  is then determined as the median of the multiset (Θ2𝑖𝑖): 

Θ2∗ = med 
𝑖𝑖1

med
𝑗𝑗≠𝑖𝑖

𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

(6.3) 

To ensure the robustness of outliers, the intercept Θ1 can be estimated either separately 
from Θ2, as 

Θ1∗ = med 
𝑖𝑖

med
𝑗𝑗≠𝑖𝑖

𝑦𝑦𝑖𝑖𝑥𝑥𝑗𝑗 − 𝑦𝑦𝑗𝑗𝑥𝑥𝑖𝑖
𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖

(6.4) 

or hierarchically, as 

Θ1∗ = med 
𝑖𝑖

{𝑦𝑦𝑖𝑖 − Θ1∗𝑥𝑥𝑖𝑖} (6.5) 

In the bivariate linear regression model used to solve the impedance linear system, we 
have the equation: 

𝑦𝑦1 =  Θ1𝑥𝑥1𝑖𝑖 + Θ2𝑥𝑥2𝑖𝑖 +  𝑒𝑒𝑖𝑖 (6.6) 
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where 𝑝𝑝 = 2. The repeated median estimate is computed in a similar way. When the 
unknown parameter is represented as a complex vector, the equation is split into two 
independent equations for the real and imaginary parts, which are then solved 
separately. The components of the vector parameter Θ are estimated individually; for 
instance, for Θ1, we have: 

Θ1∗ = med 
𝑖𝑖

med
𝑗𝑗≠𝑖𝑖

𝑦𝑦𝑖𝑖𝑥𝑥2𝑗𝑗 − 𝑦𝑦𝑗𝑗𝑥𝑥2𝑖𝑖
𝑥𝑥1𝑖𝑖𝑥𝑥2𝑗𝑗 − 𝑥𝑥1𝑗𝑗𝑥𝑥2𝑖𝑖

(6.7) 

Specifically, for each 𝑖𝑖th observation, the median of combinations with all 𝑗𝑗 observations 
are first calculated. And then the overall median of these 𝑛𝑛 − 1 medians form the final 
estimation. 

Spectral Transformation 

We begin by transforming the raw time series data in the time domain into the spectra 
in the frequency domain. Time-series for the horizontal electromagnetic components 
are represented as 𝑒𝑒𝑥𝑥, 𝑒𝑒𝑦𝑦, ℎ𝑥𝑥, ℎ𝑦𝑦 and their corresponding Fourier transforms denoted 
as 𝐸𝐸𝑥𝑥, 𝐸𝐸𝑦𝑦, 𝐻𝐻𝑥𝑥, 𝐻𝐻𝑦𝑦, respectively. The linear relations to be evaluated are 

�
𝑬𝑬𝑥𝑥
𝑬𝑬𝑦𝑦
� =  �

𝒁𝒁𝑥𝑥𝑥𝑥 𝒁𝒁𝑥𝑥𝑥𝑥
𝒁𝒁𝑦𝑦𝑦𝑦 𝒁𝒁𝑦𝑦𝑦𝑦

� �
𝑯𝑯𝑥𝑥
𝑯𝑯𝑦𝑦

�  (6.7) 

where �
𝒁𝒁𝑥𝑥𝑥𝑥 𝒁𝒁𝑥𝑥𝑥𝑥
𝒁𝒁𝑦𝑦𝑦𝑦 𝒁𝒁𝑦𝑦𝑦𝑦

� represents the impedance tensor (𝒁𝒁). 

The original time series is subdivided into sets of segments to perform the spectral 
analysis. The decimation process involves low-pass filtering of the time series using a 
recursive filter, followed by a factor decimation of 2. Depending on the number of 
available data points, the degree of overlapping can vary from 0 to 50 percent.  

Using 𝑖𝑖 =  0, 1, . . . ,𝑁𝑁 −  1 as the time index within a segment, we removed the long 
period trends and means by applying a first difference filter. This process, in the case 
of 𝑒𝑒𝑥𝑥, generate new series 𝑒̅𝑒𝑥𝑥[𝑖𝑖] = 𝑒𝑒𝑥𝑥[𝑖𝑖] − 𝑒𝑒𝑥𝑥[𝑖𝑖 − 1]. To minimize the bias in spectral 
estimation, each segment is also tapered using a Hanning window, yielding 

𝑒̃𝑒𝑥𝑥[𝑖𝑖] = 𝑒̅𝑒𝑥𝑥[𝑖𝑖]ℎ[𝑖𝑖];  ℎ[𝑖𝑖] =
1
2
�1 − 𝑐𝑐𝑐𝑐𝑐𝑐

2𝜋𝜋𝜋𝜋
𝑁𝑁 − 1

�  (6.8) 

A Fourier transform of 𝑒̃𝑒𝑥𝑥[𝑖𝑖] is then performed, yielding the Fourier coefficients 𝐸𝐸𝑥𝑥[𝑗𝑗], 

where 𝑗𝑗 =  1, 2, . . . , 𝑁𝑁
2
 represents the frequency index. The Fourier transforms X, Y, and 

Z denote any of the field components, are combined into non-smoothed auto and cross-
spectral values: 

𝑆𝑆𝑋𝑋𝑋𝑋𝑛𝑛 [𝑗𝑗] =
1
𝑁𝑁
𝑋𝑋∗[𝑗𝑗]𝑌𝑌∗[𝑗𝑗] (6.9) 
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where 𝑋𝑋∗ and 𝑌𝑌∗ are the complex conjugate of 𝑋𝑋 and 𝑌𝑌, respectively. 

Subsequently, coherence sorting is employed to eliminate segments with a high level of 
noise from further processing. Coherence values range from 0 to 1, with an ideal 
coherence equal to one. Accordingly, a coherence threshold (e.g. 0.8) is established, and 
thus, all events that do not meet this threshold are discarded. Criteria are the two 
partial coherences that refer to the orthogonal electric and magnetic components: 

𝐶𝐶𝑜𝑜𝐸𝐸𝑥𝑥𝐻𝐻𝑦𝑦⋅𝐻𝐻𝑥𝑥
2 =

�𝑆𝑆𝐸𝐸𝑥𝑥𝐻𝐻𝑦𝑦⋅𝐻𝐻𝑥𝑥�
2

𝑆𝑆𝐸𝐸𝑥𝑥𝐸𝐸𝑥𝑥⋅𝐻𝐻𝑥𝑥𝑆𝑆𝐻𝐻𝑦𝑦𝐻𝐻𝑦𝑦⋅𝐻𝐻𝑥𝑥
(6.10) 

𝐶𝐶𝑜𝑜𝐸𝐸𝑦𝑦𝐻𝐻𝑥𝑥⋅𝐻𝐻𝑦𝑦
2 =

�𝑆𝑆𝐸𝐸𝑦𝑦𝐻𝐻𝑥𝑥⋅𝐻𝐻𝑦𝑦�
2

𝑆𝑆𝐸𝐸𝑦𝑦𝐸𝐸𝑦𝑦.𝐻𝐻𝑦𝑦𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑥𝑥.𝐻𝐻𝑦𝑦
(6.11) 

where 𝑆𝑆𝑋𝑋𝑋𝑋⋅𝑍𝑍 = 𝑆𝑆𝑋𝑋𝑋𝑋 −
𝑆𝑆𝑍𝑍𝑍𝑍𝑆𝑆𝑋𝑋𝑋𝑋
𝑆𝑆𝑍𝑍𝑍𝑍

. Figure 6.3 plots the coherence values for station MT08 with 

1 kHz sampling rate as an example.  

 

Figure 6.3: Coherence values for MT08 with 1 kHz sampling rate to evaluate the relationship between 
orthogonal and parallel E and B-field components. 

As a result of this spectral transformation step, we now have M non-smoothed auto- 
and cross-spectral values from a selected set of segments for each frequency, which can 
be denoted as 𝑆𝑆𝐸𝐸𝑥𝑥𝐻𝐻𝑥𝑥𝑖𝑖

𝑛𝑛 , 𝑆𝑆𝐸𝐸𝑥𝑥𝐻𝐻𝑦𝑦𝑖𝑖
𝑛𝑛 , 𝑆𝑆𝐸𝐸y𝐻𝐻𝑥𝑥𝑖𝑖

𝑛𝑛 , 𝑆𝑆𝐸𝐸𝑦𝑦𝐻𝐻𝑦𝑦𝑖𝑖
𝑛𝑛 , 𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑦𝑦𝑖𝑖

𝑛𝑛 , 𝑆𝑆𝐸𝐸𝑥𝑥𝐸𝐸𝑥𝑥𝑖𝑖
𝑛𝑛 , 𝑆𝑆𝐸𝐸𝑦𝑦𝐸𝐸𝑦𝑦𝑖𝑖

𝑛𝑛 , 𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑥𝑥𝑖𝑖
𝑛𝑛 , and 𝑆𝑆𝐻𝐻𝑦𝑦𝐻𝐻𝑦𝑦𝑖𝑖

𝑛𝑛 , 

with 𝑖𝑖 =  0, 1, . . . ,𝑀𝑀. 
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Estimation of Transfer Functions 

To adapt Siegel’s concept of robust estimator to the MT problem, the original system 
of equations 6.7 is rewritten in terms of auto- and cross-spectral densities: 

𝑆𝑆𝐸𝐸𝑥𝑥𝐻𝐻𝑥𝑥 = 𝒁𝒁𝑥𝑥𝑥𝑥𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑥𝑥 + 𝒁𝒁𝑥𝑥𝑥𝑥𝑆𝑆𝐻𝐻𝑦𝑦𝐻𝐻𝑥𝑥
 𝑆𝑆𝐸𝐸𝑥𝑥𝐻𝐻𝑦𝑦 = 𝒁𝒁𝑥𝑥𝑥𝑥𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑦𝑦 + 𝒁𝒁𝑥𝑥𝑥𝑥𝑆𝑆𝐻𝐻𝑦𝑦𝐻𝐻𝑦𝑦 (6.12) 

𝑆𝑆𝐸𝐸𝑦𝑦𝐻𝐻𝑥𝑥 = 𝒁𝒁𝑦𝑦𝑦𝑦𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑥𝑥 + 𝒁𝒁𝑦𝑦𝑦𝑦𝑆𝑆𝐻𝐻𝑦𝑦𝐻𝐻𝑥𝑥
𝑆𝑆𝐸𝐸𝑦𝑦𝐻𝐻𝑦𝑦 = 𝒁𝒁𝑦𝑦𝑦𝑦𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑦𝑦 + 𝒁𝒁𝑦𝑦𝑦𝑦𝑆𝑆𝐻𝐻𝑦𝑦𝐻𝐻𝑦𝑦 (6.13) 

where 𝑆𝑆𝑋𝑋𝑋𝑋 denotes smoothed spectral densities. For example, in the case of 𝑍𝑍𝑥𝑥𝑥𝑥, the 
impedance tensor can be estimated as follows: 

𝑍𝑍𝑥𝑥𝑥𝑥 =
𝑆𝑆𝐸𝐸𝑥𝑥𝐻𝐻𝑦𝑦𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑥𝑥 − 𝑆𝑆𝐸𝐸𝑥𝑥𝐻𝐻𝑥𝑥𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑦𝑦
𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑥𝑥𝑆𝑆𝐻𝐻𝑦𝑦𝐻𝐻𝑦𝑦 − 𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑦𝑦𝑆𝑆𝐻𝐻𝑦𝑦𝐻𝐻𝑥𝑥

 (6.14) 

The repeated median estimator can be derived considering the estimates of the 
impedance tensor components from the two systems, equations 6.12 and 6.13, which 
are unequivocally defined by the two independent realizations of spectral values. 

The Siegel estimator for the spectral densities of the real part of the 𝑍𝑍𝑥𝑥𝑥𝑥 component is 
expressed by the following equation: 

𝑅𝑅𝑅𝑅�𝑍𝑍𝑥𝑥𝑥𝑥�𝒮𝒮 = med 
𝑖𝑖

med
𝑗𝑗≠𝑖𝑖

 𝑅𝑅𝑅𝑅 �
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𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑥𝑥 𝑖𝑖𝑖𝑖𝑆𝑆𝐻𝐻𝑦𝑦𝐻𝐻𝑦𝑦 𝑖𝑖𝑖𝑖 − 𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑦𝑦 𝑖𝑖𝑖𝑖𝑆𝑆𝐻𝐻𝑦𝑦𝐻𝐻𝑥𝑥 𝑖𝑖𝑖𝑖

� (6.15) 

where the indices 𝑖𝑖, 𝑗𝑗 =  1, . . . ,𝑀𝑀. The imaginary part is separately estimated in an 
analogous manner. And the first median operator of equation 6.15 is given by 

𝑅𝑅𝑅𝑅�𝑍𝑍𝑥𝑥𝑥𝑥�𝑖𝑖
𝑀𝑀

= med
𝑗𝑗≠𝑖𝑖

 𝑅𝑅𝑅𝑅 �
𝑆𝑆𝐸𝐸𝑥𝑥𝐻𝐻𝑦𝑦 𝑖𝑖𝑖𝑖𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑥𝑥 𝑖𝑖𝑖𝑖 − 𝑆𝑆𝐸𝐸𝑥𝑥𝐻𝐻𝑥𝑥 𝑖𝑖𝑖𝑖𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑦𝑦 𝑖𝑖𝑖𝑖

𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑥𝑥 𝑖𝑖𝑖𝑖𝑆𝑆𝐻𝐻𝑦𝑦𝐻𝐻𝑦𝑦 𝑖𝑖𝑖𝑖 − 𝑆𝑆𝐻𝐻𝑥𝑥𝐻𝐻𝑦𝑦 𝑖𝑖𝑖𝑖𝑆𝑆𝐻𝐻𝑦𝑦𝐻𝐻𝑥𝑥 𝑖𝑖𝑖𝑖

�  (6.16) 

where the median is taken over all 𝑀𝑀 − 1 values of 𝑗𝑗. 

As an option, unrealistic partial estimates �𝑍𝑍𝑥𝑥𝑥𝑥�𝑖𝑖
𝑀𝑀

 can be excluded by using the phase 

of the off-diagonal impedance elements as criteria, since these phases should lie within 
the limits. For 1D and 2D structures and in the free-noise, the phases of the 𝑍𝑍𝑥𝑥𝑥𝑥 
component should be in the first quadrant, i.e. 0° < 𝑎𝑎𝑎𝑎𝑎𝑎�𝑍𝑍𝑥𝑥𝑥𝑥� < 90°, while the phases 
of 𝑍𝑍𝑦𝑦𝑦𝑦 in the third quadrant, i.e. 180° < 𝑎𝑎𝑎𝑎𝑎𝑎�𝑍𝑍𝑥𝑥𝑥𝑥� < 270° (Weidelt & Kaikkonen, 
1994). If the estimate 𝑍𝑍𝑥𝑥𝑥𝑥 (or 𝑍𝑍𝑦𝑦𝑦𝑦) is excluded, then the respective estimate 𝑍𝑍𝑥𝑥𝑥𝑥 (or 
𝑍𝑍𝑦𝑦𝑦𝑦) is also excluded. There are instances where the phase may appear in a different 
quadrant, particularly when the original time series data is significantly affected by 
noise (Chouteau & Tournerie, 2000), due to 3D conductive bodies (Ichihara & Mogi, 
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2009; Piña-Varas & Dentith, 2018; Thiel et al., 2009), electrical anisotropy (Heise & 
Pous, 2003) or galvanic distortion (Lilley & Weaver, 2010). 

This robust MT data processing method has been evaluated using both ‘noise-free’ and 
‘noisy’ MT data. The results for the ‘noise-free’ site demonstrate good agreement 
between both the least squares (LS) and robust techniques, with consistent alignment 
across the entire period range. The advantages of this algorithm become particularly 
evident when processing data from a ‘noisy’ site, which was contaminated by significant 
noise levels. Coherence sorting greatly enhanced data quality, and a subsequent robust 
procedure effectively eliminated most of the residual noise, ultimately resulting in a 
realistic estimate of the impedance tensor (Smirnov, 2003). 

6.1.2 MT Transfer Functions 

Results of the robust processing scheme as impedance tensor elements are shown in 
Figure 6.4 to illustrate the data quality. Apparent resistivity and phase curves of the 
off-diagonal impedance tensor elements are displayed. The individual transfer functions 
of each MT station are shown in Appendix C. The MT transfer functions are observed 
smoothly and consistently. The apparent resistivity values range between 25 Ωm and 
2000 Ωm. It is evident that both apparent resistivity and phase curves exhibit 
scattering, which may be attributed to near surface inhomogeneities, target anomalies, 
or topographic effects. These phenomena, known as galvanic distortions, are generally 
considered to have a weak impact on the MT phase. However, significant scattering is 
observed in the phase data, which, although uncertain, is possibly related to large-scale 
geological structures with strong conductivity contrasts or topographic influences 
(Jiracek, 1990).  

To facilitate a quick analysis of the spatial pattern in the observed MT data, color-
coded maps of the apparent resistivity and the phase for the XY components of the 
impedance tensors are presented in Figures 6.5 and 6.6, respectively. In Figure 6.5, the 
apparent resistivity maps reveal a conductive anomaly expected to be visible at shallow 
depth (at 0.004 s). This anomaly appears to enlarge at intermediate depths (from 0.25 
s to 2 s) before diminishing in size at greater depths (at 16 s). Figure 6.6 presents the 
phase maps, which indicate the general subsurface structure is more resistive at shallow 
depths (at 0.004 s), except in areas where conductive anomaly is indicated in Figure 
6.5. At intermediate depths (at 0.25 s to 2 s), the subsurface becomes less resistive, 
while at deeper depths (at 16 s), the resistivity increases again. This resistivity pattern 
aligns with the expectation of varying geological structures and conductivity contrasts 
at different depths. 

The geomagnetic transfer function (tipper) responses for 14 of the 50 MT sites are 
displayed as induction arrows in Figure 6.7. The Parkinson convention (Parkinson, 
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1959) is used in this study to represent the induction arrows, which point towards more 
conductive zones. At short periods of 0.088 and 0.353 s, the induction arrows show a 
substantial alignment with the fault direction indicated in Figure 5.1, as they are 
orthogonal to it. The vectors for these short periods indicate a possible NW-SE-oriented 
conductive region, aligning with the geological structure and fault direction. As the 
period increases (T ≥ 2), the direction of most induction vectors shifts towards the 
southwest. 

 
Figure 6.4: Cloud plot showing apparent resistivity (top) and phase (bottom) for all MT sites. The 
phase values have been adjusted to the [0°, 90°] quadrant. Red dots represent XY elements, and blue 
dots represent YX elements. 
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Figure 6.5: Spatial distribution of apparent resistivities for the XY components at four different periods: 
0.004 s, 0.25 s, 2 s, and 16 s. White circles indicate locations where data is unavailable. 
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Figure 6.6: Spatial distribution of phases for the YX components at four different periods: 0.004 s, 0.25 
s, 2 s, and 16 s. White circles indicate locations where data is unavailable. 
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Figure 6.7: Tipper responses represented by arrows at four different periods: 0.0884 s, 0.3536 s, 2 s, 
and 16 s for the 14 MT sites. At longer periods, the tippers consistently point towards the source of 
conductive anomalies, following the Parkinson convention. 

 

6.2 TEM Data Processing 

Each sounding of the exported raw TEM data consists of 32 sweeps, categorized into 
three distinct parts: 15 sweeps for the low-moment (LM) part with a low current (~ 1 
A), 14 sweeps for the high-moment (HM) part with a high current (~ 7 A), and the 
final 3 sweeps (no current) which are recorded as noise. These three parts are designated 
as different channels in the sweep header. The entire dataset is then adjusted using a 
field shift factor and time delay to ensure consistency. To produce a single transient of 
each TEM sounding, a robust stacking scheme was applied, utilizing Gaussian error 
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statistics to estimate data error (e.g., Blanco-Arrué et al., 2021). The transmitter ramp 
function, which influences early time data, required careful consideration; hence, the 
LM ramp time of 3E-6 s was selected. After processing, data points suitable for further 
inversion process were meticulously chosen. As an illustrative example, Figure 6.8 
displays the raw, stacked, and selected data points for TEM stations 26 and 27, which 
corresponds to the location of MT26 and MT27. This numbering allows for a direct 
comparison between MT and TEM despite the smaller number of TEM soundings. The 
data points selection for remaining TEM soundings can be shown in Appendix D. Data 
points below the noise level were discarded, and saturated sections at early times were 
also excluded from the selected data. 

 
Figure 6.8: Stacked and selected data points of (a) TEM – 26 and (b) TEM – 27 soundings. The 
magenta circles represent the selected transient data used for further inversion. The stacked data for the 
low-moment (LM), high-moment (HM), and noise level are shown in blue, green, and black lines, 
respectively. 
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6.3 MT Data Analysis 

Information of dimensionality and regional strike are fundamental steps in preliminary 
analysis in any dimension of MT data modeling. In this study, the MT phase tensor 
with its skew angle is analyzed to indicate the effects of 1D, 2D, or 3D conductivity 
structure at each site. Phase tensor analysis of the MT impedance is beneficial for 
dimensionality studies, as galvanic distortion effects are discarded (Bibby et al., 2005; 
Caldwell et al., 2004).  

6.3.1 Dimensionality Analysis 

To investigate the effects of a regional conductivity structure (1-D, 2-D, or 3-D) at each 
site, the MT phase tensor with its associated skew were analyzed. The MT phase tensor 
is derived from the observed impedance tensor (𝒁𝒁) and provides a unique mathematical 
solution that, unlike invariants, is not influenced by galvanic distortion (Bibby et al., 
2005; Caldwell et al., 2004). The distortion-free approach allows the accurate 
characterization of strike and dimensionality, which can be quantified by the skew angle 
(𝛽𝛽) and the ellipticities of the phase tensor. When the skew angle (𝛽𝛽) approaches zero, 
the subsurface conductivity structure is indicative of either 1-D or 2-D configurations, 
depending on the tensor’s ellipticity. Specifically, a circular (symmetric) phase tensor 
represents a 1-D structure, while an elliptical (non-symmetric) shape points to a 2-D 
structure. In the case of a 2-D structure, the principal axis of the ellipse aligns either 
perpendicular or parallel to the regional strike direction. Conversely, when the phase 
tensor is elliptical, and the skew angle is significantly large, it suggests a 3-D regional 
conductivity distribution (Bibby et al., 2005; Caldwell et al., 2004; Chave & Jones, 
2012). 

Figure 6.9 presents the MT phase tensor ellipses, color-coded according to their skew 
angles, across all stations for four different periods. At a period of 0.044 s, the skew 
angles of the phase tensor approach zero, manifesting in two distinct ellipticities: 
circular and elliptical. The circular shape indicates a 1-D subsurface conductivity 
structure, while the elliptical shape suggests a 2-D structure. As the period extends to 
0.7 and 4 s, most of the phase tensors are represented by ellipses with relatively uniform 
skew angles. This consistency in skew angles points to a predominant change in the 
geoelectric structure to a 2-D configuration. At a longer period of 16 s, most skew 
angles exceed ± 4⁰, indicating a predominant 3-D structure. This shift in skew angles 
and tensor shapes across periods highlights the complexity and variability of the 
subsurface conductivity, transitioning from simpler 1-D and 2-D structures at shorter 
periods to more intricate 3-D structures at longer periods. 
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Figure 6.9: MT phase tensor ellipses for four different periods: (a) 0.044 s, (b) 0.707 s, (c) 4 s, and (d) 
16 s. The color scale represents the skew angle (𝛽𝛽). 

 

6.3.2 Static Shift Corrections 

The static shift effects can obscure the actual subsurface conductivity structure, 
complicating the accurate interpretation of MT data. The static shift effect manifests 
as a parallel shift in the apparent resistivity curves of an MT sounding, characterized 
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by a scale factor. This shift is frequency-independent, meaning it does not affect the 
phase curve of the impedance tensor, but it alters the magnitude of the electric field 
components, leading to incorrect resistivity estimates. This property highlights the need 
for careful correction of static shifts to ensure the accurate representation of the 
subsurface conductivity structure (Árnason et al., 2010; Jiracek, 1990; Jones, 1988; 
Sternberg et al., 1988).  

There are several approaches available for correcting the static shift in MT data. 
Sternberg et al. (1988) and Pellerin and Hohmann (1990) for example, proposed the 
use of TEM soundings to address static shift effects. TEM data are relatively unaffected 
by galvanic distortions, making them a useful tool for this purpose. The approach 
involves using 1D TEM data to iteratively adjust the invariant of the MT data towards 
the TEM response. This is based on the assumption that the TEM response accurately 
reflects the actual 1D conductivity of the subsurface (Árnason et al., 2010).  

The method of using TEM data for SSC works by aligning the apparent resistivity 
curves from MT data with those derived from TEM surveys. Since TEM measurements 
are less susceptible to near-surface inhomogeneities, they provide a reliable reference. 
This iterative adjustment continues until the MT data invariant matches the TEM 
response, ensuring the static shift is mitigated effectively. However, the effectiveness of 
this method can vary depending on the geological context. Cumming & Mackie (2010) 
pointed out that TEM might be ineffective for correcting MT static shift in areas where 
the surface is predominantly covered by thick and resistive rocks. Such conditions can 
impede the TEM's ability to provide an accurate shallow subsurface resistivity profile, 
resulting in suboptimal corrections. In the Al-Lith area, the surface is mainly covered 
by sand and sabkhah deposits, which generally do not exhibit high resistivities. 

To correct the static shift at the corresponding MT site, the TEM data were utilized 
through 1-D joint inversion using ZondMT software (zond-geo.com). This approach was 
also employed to support the correction of the nearest MT site, provided it was placed 
on the same geological formation. Figure 6.10 shows the static shift correction for 
station MT05, where the responses from 1-D TEM and MT joint inversion are plotted. 
The corrected apparent resistivity for the XY component was shifted by a factor of 
0.112, and the YX component by a factor of 0.295. These static shift factors, all being 
less than 1, indicate that the static shift effects in the survey area were not severe. After 
applying the SSC to the MT transfer functions, the subsequent inversion is performed 
without incorporating topography, assuming a flat surface field area. It is important to 
note that the optimal results in this study, which were used as preferred models, were 
obtained by incorporating topography in the starting model without applying any static 
shift corrections to the MT data. This approach and its implications will be discussed 
in detail in Section 8.2. 
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Figure 6.10: Example of static shift correction for station MT05. The apparent resistivity and phase 
curves for the XY (red) and YX (blue) elements of MT data are shown before static shift correction (left 
panel) and after applying the static shift correction (right panel). The black solid line represents the 
response from the 1-D joint inversion. 
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Chapter 7  
3D Synthetic Modeling and Inversion Studies 
 

This chapter discusses the 3D Magnetotellurics (MT) synthetic modeling studies with 
the help of ModEM algorithm (Kelbert et al., 2014). There are several reasons that 
make synthetic modeling studies an important tool in the MT method. Synthetic 
modeling helps assess how sensitive the MT method is to specific features in the 
subsurface of the study area; by testing different scenarios, we can identify which 
features are detectable with MT and at what depth, as well as which areas of the model 
are less resolved or ambiguous. In areas with complex geological structures (e.g., 
mountainous regions like the Al-Lith area), MT data interpretation can be challenging 
due to distortions and anisotropy. Synthetic modeling helps account for these 
complexities by simulating realistic scenarios, leading to more accurate subsurface 
resistivity interpretations. Furthermore, synthetic modeling is not only valuable for 
deriving insights into the interpretation of MT inversion data, but it also serves as a 
powerful tool for optimizing regional survey design (Kirkby & Doublier, 2022). In 
addition, forward modeling can support the development of MT inversion techniques 
and algorithms. Testing new inversion approaches on synthetic data from forward 
models allows geophysicists to improve MT methods (Candansayar & Tezkan, 2008). 

In summary, synthetic modeling is a fundamental tool in MT studies. It provides the 
framework for interpreting field data, refining geological models, and enhancing our 
understanding of the Earth’s subsurface. It allows geophysicists to iteratively develop 
models that fit observed data, optimize survey parameters, and validate geological 
hypotheses, ultimately leading to more accurate and reliable results in MT studies 
(Erdoğan & Candansayar, 2017). In these regards, modeling studies were conducted to 
explore the detectability of geothermal anomalies using MT technique in the Al-Lith 
study area. Given the area's mountainous terrain, the influence of topography was also 
examined. Additionally, the effects of input parameters for the 3D MT inversion using 
ModEM software were assessed through the analysis of synthetic data. 
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7.1 The Finite Difference Algorithm  

MT Forward modeling aims to solve Maxwell’s equations in order to simulate electric 
and magnetic field distribution in the subsurface based on a given conductivity 
distribution across various periods or frequencies. Over the past four decades, various 
methods have been developed for this purpose. In 1-D models, analytic solutions exist 
for calculating impedances at layer boundaries, using techniques like the Wait recursion 
formula (Wait, 1954). Analytic solutions have also been found for certain 2-D and 3-D 
models (Porstendorfer, 1975; Weaver, 1999), typically used to validate numerical 
solutions. 

The most common methods for solving Maxwell’s equations are differential equation 
methods, which discretize the entire earth model into rectangular cells (2D) or cubes 
(3D) with assigned constant conductivity values. Maxwell’s equations are solved for 
each cell or cube. While these methods offer flexibility in model construction, they 
require significant computational resources due to fine discretization, leading to large 
systems of linear equations (Meqbel, 2009). Solutions to the second-order partial 
differential equations are obtained using either Finite Differences (FD) or Finite 
Element (FE) methods, with FE offering more design flexibility due to non-rectangular 
shapes. However, ModEM utilizes the FD approach for accurate 3D forward modeling 
of complex subsurface conductivity structures (Siripunvaraporn et al., 2002; Kelbert et 
al., 2014). 

Solving the electromagnetic induction problem in 3D is more complex due to the 
Earth's conductivity varying in three spatial directions 𝜎𝜎(𝑥𝑥,𝑦𝑦, 𝑧𝑧). Furthermore, the 3D 
induction theory allows for arbitrary geometry, which significantly influences the 
solution, especially in large earth models where horizontal and uniform field 
assumptions are no longer valid (Weaver, 1999). However, for simplicity, it’s assumed 
that only conductivity varies in three directions while keeping the source field horizontal 
and uniform. In frequency domain (assuming a time dependence of 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖), the solution 
of Maxwell’s equations in 3D can be formulated in terms of the electric fields1 as: 

∇ × ∇ × 𝑬𝑬 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑬𝑬 = 0 (7.1) 

or can also be obtained in terms of magnetic fields from: 

∇ × 𝜌𝜌∇ × 𝑯𝑯 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑯𝑯 = 0 (7.2) 

To solve equation 7.1 numerically in three dimensions, the ModEM algorithm utilizes 
a finite difference (FD) approximation on a staggered grid with dimensions 

 
1 If displacement currents are neglectable. 
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𝑁𝑁𝑥𝑥  ×  𝑁𝑁𝑦𝑦  ×  𝑁𝑁𝑧𝑧, as depicted in Figure 7.1 (Siripunvaraporn et al., 2002; Smith, 1996; 
Yee, 1966). Here, 𝑁𝑁𝑥𝑥, 𝑁𝑁𝑦𝑦, and 𝑁𝑁𝑧𝑧 denote the discretization along the x, y, and z axes, 
respectively. In the staggered grid formulation, the components of the discretized 
electric field vector are defined at the edges of the cube while the magnetic field 
components are defined on the faces of the cube (Figure 7.1). In this case, a solution 
for 𝑬𝑬 is derived from equation 7.1, followed by obtaining the secondary magnetic field 
derived from 𝑬𝑬 using Faraday’s law (equation 2.3). The staggered grid, known as the 
Yee-Grid, was introduced by Yee (1966) to solve boundary value problems of Maxwell’s 
equations. This type of numerical grid was later utilized by Siripunvaraporn et al. 
(2005) and Egbert (2006) for 3D Magnetotellurics (MT). 

After grid discretization, the application of FD to equation 7.1 results in a system of 
equations for a given period or frequency, 

𝑺𝑺𝑺𝑺 =  𝒃𝒃 (7.3) 

where 𝒆𝒆 represents the unknown internal electric fields, and 𝒃𝒃 contains terms related to 
boundary electric fields. The coefficient matrix 𝑺𝑺 is large, sparse, symmetric, and 
complex, requiring significantly more computational time. For 3-D problems, 𝑺𝑺 becomes 
very large and challenging to solve directly (Streich, 2009). Therefore, it is often 
necessitating iterative methods like the bi-conjugate gradient (BiCG) technique (Smith, 
1996), the quasi-minimum residual (QMR) method (Siripunvaraporn et al., 2002), and 
the minimum residual (MRM) method (Mackie et al., 1994). A divergence correction 
(see Mackie et al., 1994; Smith, 1996) is sometimes applied in these solvers, especially 
for long period responses, leading to the derivation of surface impedance responses after 
determining the interior electric fields (Siripunvaraporn, 2012). 
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Figure 7.1: The numerical grid used in the finite difference method for the 3-D MT forward problem. 
The primary electric field components are defined along the edges of the cube and the secondary magnetic 
field components are defined on the cell faces. Figure taken from Siripunvaraporn et al. (2002). 

 

7.2 Influence of Topography  

The influence of topography on Magnetotelluric (MT) data has long been discussed in 
literature. Early studies highlighted significant distortions in MT transfer functions, 
leading to misinterpretations of resistivity models (e.g., Berdichevsky & Dmitriev, 1976; 
Ku et al., 1973). Subsequent research focused on methods to correct or minimize the 
influence of topography in MT data (e.g., Groom & Bahr, 1992). As discussed in section 
2.3, topographic distortions can have both galvanic and inductive effects, which can 
alter electromagnetic (EM) fields and distort MT transfer functions (Jiracek, 1990; 
Vozoff, 1991). Topographic distortions can manifest as galvanic effects, due to charge 
accumulation on slopes, and inductive effects, which alter current density based on 
terrain features. Inductive effects are most pronounced at short periods, distorting 
amplitude and phase, while galvanic distortions dominate at long periods, resulting in 
static shifts (Käufl et al., 2018). This complexity makes it challenging to separate 
topographic effects from subsurface responses. 

2-D numerical modeling indicates that surface topography affects the TM mode more 
significantly than the TE mode, where effects quickly diminish if topographic features 
are small relative to subsurface skin depth (Baba & Seama, 2002; Wannamaker et al., 
1986). In 3-D scenarios, both galvanic and inductive effects occur in any polarization 
(Nam et al., 2008), complicating the response further. For accurate MT interpretation, 
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topographic effects can be integrated into interpretation processes through either 
incorporation into an earth model during inversion or correcting distortions prior to 
inversion (Schwalenberg & Edwards, 2004). Inductive effects, particularly at shorter 
periods, are challenging to mitigate and may exceed a typical uncertainty equivalent to 
a 5 percent impedance error floor, commonly used in MT inversions. Including 
topography in the initial model improves inversion outcomes and reduces 
misinterpretation risks (Käufl et al., 2018). In summary, galvanic distortions due to 
topography can be significant and need to be accounted for. Inversions that do not 
account for topography may introduce artifacts in resistivity models (e.g., Mörbe, 
2020), misrepresenting subsurface features as being influenced by elevation-induced 
effects. 

 
Figure 7.2: A resistivity model with 100 Ωm homogeneous half-space used to test the effect of 
topography in the study area. (a) and (b) presenting a plan view and a cross-section of the 3D model, 
respectively. The black cones indicate the distribution of the MT stations. The white color zones in (a) 
indicate the valley with lower elevation. 

The study area is located in steep mountainous terrain, featuring an altitude difference 
of approximately 600 m, as discussed in Chapter 5. Consequently, a topographic effect 
on the MT field data was anticipated. In this regard, a forward-modeling investigation 
has been conducted to validate this effect. The forward calculation utilized a synthetic 
model composed of a 100 Ωm homogeneous half-space, incorporating topographic data 
from the Al-Lith area (refer to Figure 7.2). A total of 133 MT stations were positioned 
along seven distinct east-west profiles, with a separation of 500 m between each station. 
The 3D finite difference grid employed for model discretization covers an expanse of 82 
km in the north-south (x) direction, 85 km in the east-west (y) direction, and reaches 
a depth of 455 km (z). The model mesh consists of 109 x 114 x 150 nodes in the x, y, 
and z directions, respectively. In the central region of the mesh, the cells are 100 m on 
each side. The first 100 vertical layers of the mesh maintain a uniform thickness of 10 
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m, with subsequent layers increasing by a factor of 1.2. The four components of the 
impedance tensors were calculated for 42 periods, ranging from 0.001 to 1000 seconds. 

Figure 7.3 illustrates the MT responses from forward calculations represented as 
apparent resistivity (𝜌𝜌𝑎𝑎) and phase (𝜙𝜙) for stations S-25, S-27, S-30, and S-33, which 
were selected to represent various locations as shown in Figure 7.2. In a flat area, the 
apparent resistivity should accurately reflect the true subsurface resistivity, which is 
100 Ωm in this instance, while the phase should ideally be 45° for a homogeneous half-
space model. However, topographic distortions significantly impact the transfer 
function response at the S-25 station, where the inductive topographic effects are most 
pronounced due to its positioning at the top of the hill (see Fig. 7.2). These inductive 
topographic effects also influence S-27 and S-33, though to a lesser extent, particularly 
noticeable at shorter periods up to 0.1 s. In contrast, at longer periods, galvanic 
distortions prevail, resulting in static shifts, affecting only the apparent resistivities. 
This clearly demonstrates that topography can affect both galvanic and inductive 
distortions. The least distorted responses are observed at the S-30 station, where the 
influence of the topography is minimal. This is attributed to S-30's location within the 
valley, an area that is relatively flat and situated at a considerable distance from the 
hills. 

To illustrate the importance of incorporating topography during inversion, the forward 
calculated data was then inverted using a homogeneous half-space of 50 Ωm under two 
different scenarios: one that included topography and another that assumed a flat 
surface without topography. A 5% Gaussian noise was added to the synthetic dataset 
and prior to the inversion process an error floor was set to 5% of the mean of the 
complex off-diagonal impedances |𝒁𝒁𝑥𝑥𝑥𝑥 ∗ 𝒁𝒁𝑦𝑦𝑦𝑦|1/2 for the impedance tensor elements. 
Figure 7.4 presents the inversion results; the model accounting for topography 
successfully retrieved the original 100 Ωm background resistivity with RMS of 1, 
whereas the model that excluded topography displayed a considerably higher RMS and 
exhibited artifacts as expected. Notably, these artifacts are clearly visible in the shallow 
subsurface up to ≈ 400 m, matching the fact that the strongest inductive effects of 
topography appear at low to medium periods. This forward calculation and inversion 
test underscore that even in regions like the Al-Lith area, which possess only moderate 
topography, the inclusion of topography in the model is essential to avoid possible 
misinterpretation risks. 
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Figure 7.3: Transfer functions represented as apparent resistivity 𝜌𝜌𝑎𝑎 and phase 𝜙𝜙 obtained after forward 
calculation at four stations: S-25, S-27, S-30, and S-33. The phase values have been adjusted to the [0°, 
90°] quadrant. Red dots represent XY elements, and blue dots represent YX elements. 
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Figure 7.4: Inversion results, derived from the forward-calculated data within the study area, 
demonstrating an inversion model with and without topography. The inversion model that incorporates 
topography (top panel) achieved an RMS of 1, significantly outperforming the model that excluded 
topography (bottom panel). Additionally, it is noteworthy that inversion artifacts were observed in the 
model without topography. 

 

7.3 Conceptual Model of Geothermal Systems 

As described in Chapter 4, regardless of the type of geothermal resources, a general 
geothermal system conceptually involves the presence of a heat source, a permeable 
reservoir, a recharge mechanism, and an impermeable rock known as a clay cap 
(Berktold, 1983; Cumming, 2009; Muñoz, 2014).  In a simple hydrothermal context, 
the geothermal system can be conceptualized with the model of Figure 7.5a (Pellerin 
et al., 1996), characterized by the following features: the shallow part of the geothermal 
system is built by a resistive surface layer, represented as zone 1 in Figure 7.5a. 
Underneath is a highly conductive clay cap (Figure 7.5a, zone 2), which is located above 
the more resistive reservoir (Figure 7.5a, zone 3). The presence of a clay cap typically 
results in a low resistivity signature, which is indicative of geothermal systems. 
However, in certain high-temperature geothermal systems—particularly those 
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associated with volcanic activity—a clay cap may be absent due to their unique 
geological conditions (Muñoz, 2014; Patro, 2017). In the case of clay cap absence, the 
conceptual model can be illustrated in Figure 7.5b. 

 
Figure 7.5: Sketch of the generalized conceptual model of a geothermal system in the case of (a) the 
presence and (b) the absence of a highly conductive clay cap. Zone 1 represents a resistive shallow layer, 
2 is a conductive clay cap, and 3 is a reservoir. Figure modified from Pellerin et al. (1996). 

 

7.3.1. 3D Forward Modeling Scenarios 

To analyze two different forward modeling scenarios given the uncertainty of a clay 
cap's presence, two 3D resistivity models, Model A and Model B, have been developed. 
Model A, depicted in Figure 7.6, includes a 5 Ωm clay cap positioned over a 25 Ωm 
reservoir, which is situated within a 500 Ωm half-space resistivity background. The 
dimensions of the clay cap are 3.2 x 4.6 x 0.5 km, while the reservoir measures 2.5 x 
2.5 x 4.1 km. On the other hand, Model B, illustrated in Figure 7.7, consists of two 
distinct protrusions (25 Ωm) above a 15 Ωm geothermal reservoir, also within a 500 
Ωm subsurface resistivity background. These protrusions act like pathways for 
geothermal fluids to migrate, either to the surface or to the near subsurface, which may 
result in active geothermal surface manifestations such as hot springs. The protrusions 
measure 1 x 0.8 x 2 km, while the dimensions of the reservoir are 3 x 4.2 x 5 km in the 
model. 

Model A consists of 91 MT stations, which are distributed along seven different E-W 
profiles, with a separation of 0.5 km and 1 km between each station, as shown in Figure 
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7.6. In Model B, due to the larger size of the anomaly, there are 77 MT stations spaced 
0.8 km and 1 km apart, also arranged along seven different E-W profiles, as illustrated 
in Figure 7.7. The 3D finite difference grid used for model discretization contains 79 x 
109 x 80 nodes for Model A and 49 x 78 x 86 nodes for Model B, corresponding to the 
x, y, and z directions, respectively. The grid for both models is centered at the midpoint 
of the study area, located at a latitude of 20.469 °N and a longitude of 40.482 °E. 
Topography has also been incorporated into both models. Afterward, a 3D MT forward 
modeling approach was applied to the two described models. The four components of 
the impedance tensor, along with the two VTF components (Tipper data), were 
calculated for 24 periods ranging from 0.001 s to 500 s for both models. A 5% Gaussian 
noise was added to the synthetic dataset. 

 
Figure 7.6: Model A representing a 3D model used to conceptualize the geothermal system with the 
presence of a highly conductive clay cap. MT site locations are marked with black dots. (a) plan view of 
the clay cap, (b) plan view of the geothermal reservoir, and (c) vertical cross-section of the profile A-A’. 
Topography is included in the model. 
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Figure 7.7: Model B represents a 3D model conceptualizing the geothermal system with the absence of 
a highly conductive clay cap. MT site locations are marked with black dots. (a) plan view of the 
individual protrusions above the reservoir, (b) plan view of the geothermal reservoir, and (c) vertical 
cross-section of the profile A-A’. Topography is included in the model. 

 

7.3.2. 3D Inversion of Synthetic Dataset 

The calculated synthetic data of both models was then used to perform 3D MT 
inversion in order to see its capability. Prior to the inversion process, data errors were 
set to 5% of the mean of the complex off-diagonal impedances |𝒁𝒁𝑥𝑥𝑥𝑥 ∗ 𝒁𝒁𝑦𝑦𝑦𝑦|1/2 for the 
impedance tensor elements and a constant value of 0.05 for the tipper data. A 
homogeneous half-space of 100 Ωm was utilized as a starting model for the inversion 
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for both models. The result of the Model A’s 3D inversion can be seen in Figures 7.8 
and 7.9 as resistivity depth slices and a vertical cross section, respectively. While 
Figures 7.10 and 7.11 are Model B’s inversion results. Both inversion models achieved 
an overall RMS of 1, indicating that both models fit the data within the level of data 
error. 

 
Figure 7.8: 3D inversion results of Model A displayed as resistivity depth slices, with projected surface 
MT site locations marked by black dots. White lines indicate the actual position of the clay cap and 
reservoir. 



7.3  Conceptual Model of Geothermal Systems 

91 
 

 
Figure 7.9: Cross section AA’ extracted from the inversion results of Model A (left panel). The red 
dashed line shows the projection of section AA’ onto the plan view (right panel). The positions of the 
MT stations are marked with black dots, while the white lines indicate the actual positions of both the 
clay cap and the reservoir. 

In the case of the clay cap’s presence in a geothermal system, the 3D MT inversion 
proves to be highly effective in accurately identifying the clay cap structure. However, 
it is important to note that the delineation of the geothermal reservoir, particularly in 
its lower section, remains inadequately defined, as illustrated in Figures 7.8 and 7.9. 
Furthermore, the impact of the conductive clay cap can still be observed in certain 
areas of the upper section of the reservoir, indicating that the clay cap does influence 
the overall conductivity of the reservoir's geometry. Despite these challenges, the MT 
method successfully maps the conductive clay cap and delineates the transition to the 
geothermal reservoir, providing valuable insights for geothermal exploration.  

In another scenario where a conductive clay cap is absent, the 3D MT inversion 
demonstrates significantly enhanced coverage of both the geothermal reservoir and its 
associated protrusions, as depicted in Figures 7.10 and 7.11. The 3D MT inversion 
technique effectively reveals the intricate structural details of both protrusions in Model 
B. In addition, the MT method more effectively delineates the structure of the 
geothermal reservoir in Model B (without a clay cap) compared to Model A (with a 
clay cap). This modeling study demonstrates the capability of the MT method to 
characterize geothermal anomalies. Furthermore, its proficiency in accurately imaging 
the clay cap and the protrusion above the reservoir is critical for identifying inflow and 
outflow areas, ultimately aiding in the selection of optimal drilling sites. 



Chapter 7  3D Synthetic Modeling and Inversion Studies 

92 
 

 

Figure 7.10: 3D inversion results of Model B displayed as resistivity depth slices, with projected surface 
MT site locations marked by black dots. White lines indicate the actual position of the conductive 
anomaly. 
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Figure 7.11: Cross section AA’ extracted from the inversion results of Model B (left panel). The red 
dashed line shows the projection of section AA’ onto the plan view (right panel). The locations of MT 
stations are marked with black dots. The white lines indicate the actual position of the conductive 
anomaly. 

 

7.4 Input Parameters of the 3D MT inversion 

As previously discussed, a common issue faced with Electromagnetic (EM) geophysical 
data inversion is that it is a strongly ill-posed problem, resulting in non-linear and non-
uniqueness solutions. Due to the limitations of the data and the presence of noise, 
numerous models can fit the data within a specified tolerance threshold. Therefore, this 
section explores the impact of the input parameters used in the 3D inversion software 
ModEM. In this context, several inversion trials were conducted, employing various 
initial resistivity models, different values for the model covariance (α), and diverse error 
settings. The discussion will focus on how these chosen parameters influence the 
inversion models. In light of recent discoveries regarding the geothermal systems in Al-
Lith, western Saudi Arabia, Model B from section 7.3— which represents the conceptual 
geothermal system model without a highly conductive clay cap— will be employed in 
subsequent synthetic studies. The 3D synthetic model consists of two distinct 
protrusions (25 Ωm) above a 15 Ωm geothermal reservoir, embedded in a 500 Ωm half-
space (Figure 7.6). Topography was incorporated into the model, and a total of 77 MT 
stations were deployed. Afterwards, the calculated data was used to perform 3D 
inversion trials with different input parameters. 
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7.4.1 Initial Resistivity Model 

Selecting an appropriate prior or initial resistivity model is crucial in the 3D inversion 
scheme, as it serves as the initial point for optimization and establishes the penalty 
function (Meqbel et al., 2014). A good initial model provides a reasonable starting point 
that prevents drastic changes in resistivity during iterations, which can destabilize the 
inversion. Starting from an initial model close to the true resistivity distribution reduces 
the number of iterations required for the inversion to converge, thereby lowering 
computational demands (Zhdanov, 2015). For this reason, four distinct initial resistivity 
models were tested: 1, 10, 100, and 1000 Ωm. 

 

Figure 7.12: Overall RMS values and the total number of NLCG iterations required for 3D inversion 
tests of four different initial models.  

The analysis of the inversion tests revealed that each inversion test required a different 
number of NLCG iterations as shown in Figure 7.12. The actual position of the 
conductive anomaly is represented with white lines. Among the four different inversion 
tests conducted, the initial resistivity model of 100 Ωm achieved the fastest iterations 
and also yielded the optimal overall RMS. In contrast, the 1 Ωm starting model suffered 
the longest iteration process and highest overall RMS. While the differences in RMS 
values among the four initial models were not significant, the distinctions between the 
inverse models were quite pronounced, as seen in Figure 7.13. A comparison of the 
inversion subsurface models reveals that the 100 Ωm initial resistivity model produced 
the most reasonable and reliable results. This suggests that the most efficient iterations 
and the smallest overall RMS values are obtained when the initial model resistivities 
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are close to the regional average resistivity. Therefore, different starting models should 
be tested and examined on the MT field dataset to obtain the most reliable result. 

 

Figure 7.13: Vertical cross-sections of the 3D inversion test with four different starting models. The 
white lines indicate the actual positions of the conductive anomaly. 
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Figure 7.14: 3D inversion models presented as vertical cross-sections for the four different smoothing 
parameters. The actual position of the conductive anomaly structure is represented with the white lines. 

 

7.4.2 Model Covariance Parameter (α) 

In ModEM 3D MT Inversion, the model covariance parameter plays a crucial role in 
the regularization process. It determines the degree of model smoothness and can be 
defined independently in three different directions: x, y, and z. The spatial smoother 
implemented is a recursive auto-regressive covariance operator with a quasi-Gaussian 
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smoothing kernel (Kelbert et al., 2014). ModEM simplifies the specification of the 
model covariance by using directional smoothing weights and trade-off parameters, 
rather than requiring direct input of the covariance matrix. This parameter ranges from 
0 to 1 (Tietze, 2012), with higher values leading to stronger smoothing in the 
corresponding direction. A more detailed explanation of the covariance matrix and its 
parameters will be provided in Section 8.1. To assess the impact of the smoothing 
parameter, trials were conducted on Model B using α values of 0.1, 0.3, 0.5, and 0.7.  

The inversion results from all four trials are displayed in Figure 7.14 as vertical cross-
sections. The differences between the inverse models, influenced by the chosen 
smoothing parameter, are notorious. Specifically, the inversion model with a smoothing 
parameter of α = 0.1 reveals primarily local conductive bodies near the MT stations, 
as evidenced by the two protruding structures. In contrast, the model with α = 0.3 
achieves sufficient smoothness to connect the parameters of the cells, thereby 
encompassing the entire structure. With a smoothing parameter of α = 0.5, the 
conductive bodies appear larger and deeper due to the increased smoothing value. 
Meanwhile, the inversion model with α = 0.7 reveals a much larger dimension, especially 
on the reservoir conductive structure. In terms of RMS values, the inversion models for 
α = 0.1, 0.3, and 0.5 achieved an optimal value of 1, whereas the model for α = 0.7 
yielded a higher RMS of 1.6. It is essential to find a balance between data misfit and 
model smoothness; thus, α = 0.3 was selected as it demonstrated an acceptable RMS 
along with reasonable model smoothness. 

 

7.4.3 Data Error Settings 

In the following part, the influence of different error settings on the 3D inversions is 
studied, as the data error settings also represent a crucial input parameter that must 
be systematically assessed to identify the most appropriate configuration for the given 
dataset. To achieve this, data errors were determined relative to the mean of the off-
diagonal elements |𝒁𝒁𝑥𝑥𝑥𝑥 ∗ 𝒁𝒁𝑦𝑦𝑦𝑦|1/2 for the impedance tensor components and constant 
values for the VTF or tipper elements (Meqbel, 2009; Patro & Egbert, 2011; Tietze, 
2012). Accordingly, trials were conducted on Model B with different data errors, ranging 
from 1% to 20% of |𝒁𝒁𝑥𝑥𝑥𝑥 ∗ 𝒁𝒁𝑦𝑦𝑦𝑦|1/2 for impedance tensor components and from 0.01 to 
0.2 for tipper data. The 3D inversion was performed using the off-diagonal elements 
and tipper data. Identical inversion input parameters were maintained across all 
inversion runs, including a smoothing parameter of 0.3 and a starting model of 100 Ωm.  
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Figure 7.15: Inversion results utilizing different error settings presented as vertical cross-sections. The 
actual position of the conductive anomaly structure is indicated by the white lines. 

Figure 7.15 displays the influence of the error level on the resolution of the anomaly 
and the RMS values throughout the inversion model. The actual position of the 
conductive anomaly is indicated by distinct white lines for clarity. It is clear that the 
structure is better retrieved when data errors are set to 1%. However, this setting 
produces significantly lower resistivities than the actual values, particularly in the upper 
structure of the anomaly. On the other hand, both the location and resistivity values 
of the reservoir (lower part) and its associated protrusions anomaly (upper part) can 
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be reasonably detected with data errors of 5% in impedance. With the increasing error 
level, the error-weighted sensitivity gets smaller, and the resistivity value and shape of 
the anomaly are less well retrieved. At an error level of 20%, the ability to accurately 
resolve either the location or resistivity value of the anomaly is severely compromised, 
with neither aspect being effectively captured in the model. 

 

7.5 Influence of Different Data Components 

In this sub-chapter, a comprehensive investigation of various inversion scenarios based 
on different data components was carried out to assess their reliability and data misfit. 
The initial focus was on performing 3D inversion using different elements of the 
impedance tensor. Specifically, inversions that utilized only the off-diagonal elements 
against those that employed the full impedance tensor (which includes both off-diagonal 
and diagonal elements) were examined and compared. Following this, the effect of 
integrating tipper data into the 3D inversion process was investigated. This inclusion 
allowed us to compare the results of inversions that utilized both datasets against those 
that relied solely on the impedance tensor, providing insights into the advantages and 
limitations of each approach in capturing the complexities of the subsurface. 

7.5.1 Full Impedance Tensor and Off-Diagonal Tensor Elements 

3D MT inversion can be performed by inverting only the off-diagonal elements of the 
impedance tensor, 𝒁𝒁𝑥𝑥𝑥𝑥 and 𝒁𝒁𝑦𝑦𝑦𝑦, which couple orthogonal electric and magnetic field 
components. Alternatively, the inversion can include the full impedance tensor 
comprising the diagonal elements 𝒁𝒁𝑥𝑥𝑥𝑥 and 𝒁𝒁𝑦𝑦𝑦𝑦, which are parallel electric and magnetic 
fields. Various studies have examined the reliability and effectiveness of each tensor 
data element. For instance, Siripunvaraporn et al. (2005) emphasized the significance 
of incorporating the diagonal impedance elements 𝒁𝒁𝑥𝑥𝑥𝑥 and 𝒁𝒁𝑦𝑦𝑦𝑦 in the 3D inversion 
process. These elements are strongly influenced by structures off the profile, making 
their inclusion vital for producing a more accurate model near the data transect, 
especially when significant off-profile structures are present. In contrast, Newman et al. 
(2008) observed that the diagonal elements (𝒁𝒁𝑥𝑥𝑥𝑥 and 𝒁𝒁𝑦𝑦𝑦𝑦) exhibit significantly lower 
magnitudes and, consequently, lower signal-to-noise ratios in comparison to the off-
diagonal elements (𝒁𝒁𝑥𝑥𝑥𝑥 and 𝒁𝒁𝑦𝑦𝑦𝑦). This discrepancy tends to degrade the performance 
of the inversion process. However, it is important to highlight that neither of the studies 
considered topographic terrain, as is not the case in the Al-Lith area. Therefore, both 
scenarios will be evaluated and explored in this study. 
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Figure 7.16: Inversion results presented as vertical cross-sections (ZY-slice) and horizontal views (XY-
slice) utilizing different data tensor elements. The actual position of the conductive anomaly structure is 
marked with white lines. 

Figure 7.16 shows the inversion results of both full impedance tensors (Full Z) and off-
diagonal tensor elements (Off Z) applied to the calculated data of Model B. The starting 
model and the inversion parameters used remained the same across both tests, ensuring 
a level of consistency in the approach. Notably, both scenarios achieved an optimal 
RMS value of 1 and yielded satisfactory results. The anomaly structure was successfully 
retrieved in both inversion tests; however, there is a slight variation in the coverage. 
The upper part of the anomaly is better resolved when the full impedance tensor is 
selected compared to the off-diagonal elements model. But, for the lower part of the 
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anomaly (reservoir), the inversion model utilizing off-diagonal elements demonstrates 
better coverage (i.e., reaching a similar size to the actual dimension), whereas the full 
impedance tensor model primarily images the center of the anomaly. In the specific 
case of the Al-Lith area, both the full impedance tensor and the off-diagonal tensor 
elements are applicable for inversion, each with its own advantages and disadvantages 
in some parts. Further testing of both scenarios on actual MT field data is necessary. 

7.5.2 Inclusion of Tipper Data 

In addition to the impedance tensor, valuable insights into lateral variations in 
subsurface conductivity structure can be obtained from the tipper data. The tipper, 
also known as the vertical magnetic transfer function (VTF), exhibits a high sensitivity 
to lateral conductivity contrasts (e.g., boundaries of conductive and resistive regions). 
It is particularly useful for identifying 3D structures and detecting anomalies that might 
not be evident from the impedance tensor alone (Berdichevsky & Dmitriev, 2008). 
While the impedance tensor addresses horizontal field interactions, the tipper includes 
vertical field responses, making it complementary for 3D inversion. Since tipper data 
are primarily influenced by magnetic fields, they are less susceptible to the galvanic 
effects that can significantly distort impedance tensor measurements, allowing for a 
more reliable assessment of subsurface conductivity structures2. 

Several studies have compared the two approaches and demonstrated that incorporating 
tipper data alongside the impedance tensor enhances the reliability of the subsurface 
model. Berdichevsky et al. (2003) explored tipper data through analytical and modeling 
approaches and concluded that incorporating these additional induction transfer 
functions can substantially enhance the reliability of geoelectrical models. 
Siripunvaraporn & Egbert (2009) proposed that a joint inversion of tipper and 
impedance tensor data can effectively constrain subsurface structures, as demonstrated 
in both synthetic and real data examples. Additionally, inclusion of tipper data 
improved the sensitivity at depth and obtained the lateral constraints (Čuma et al., 
2017). In straightforward cases where structures are already well resolved by impedance 
data, the contribution of tipper data to the inverse solution may be minimal. However, 
in more complex scenarios, incorporating tipper data leads to significant adjustments 
in the inverse solution. Since the joint inversion model accommodates both datasets, it 
is likely to yield more reliable results. Moreover, this approach effectively combines the 
high spatial resolution of the full impedance tensor with the superior depth sensitivity 
of the tipper (Čuma et al., 2017; Pace et al., 2022). 

 
2 When galvanic distortions are present. 
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Figure 7.17: Inversion results of two scenarios: with and without tipper (VTF) data, presented as vertical 
cross-sections (ZY-slice) and horizontal views (XY-slice). The actual position of the conductive anomaly 
structure is marked with white lines. 

The inversion of full impedance tensors, both with and without the inclusion of tipper 
data, was carried out on the synthetic Model B. The comparison of the results of both 
scenarios is displayed in Figure 7.17. Notably, both scenarios achieve an impressive 
overall RMS value of 1, suggesting that even without tipper data, it is capable of 
effectively delineating the underlying anomaly structure. However, a closer examination 
of the results indicates that incorporating tipper data leads to notable enhancements, 
particularly regarding the dimension size of the anomaly. Specifically, the model that 
included tipper data offers a more accurate representation of the protrusions, 
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demonstrating superior coverage and detail. Furthermore, for the deeper part of the 
anomaly—identified as a reservoir—the resistivity values derived from the model with 
tipper data were closer to the actual value, suggesting that this additional data 
contributes to a more reliable inversion outcome. Therefore, it is recommended to 
incorporate tipper data alongside the impedance tensor, as it enhances the reliability 
of the subsurface model. Nonetheless, the extent of improvement may vary depending 
on the complexity of the actual model. 

 

7.6 Summary of 3D Synthetic Modeling Studies 

The 3D synthetic modeling studies conducted provided valuable insights into the 
application of the Magnetotellurics (MT) method in geothermal exploration, as well as 
various parameters that can influence or potentially hinder the effectiveness of the 3D 
MT inversion process. To fully assess the capabilities of 3D MT inversion for geothermal 
exploration, two scenarios were analyzed: one with a highly conductive clay cap and 
the other without. Prior to this, the effects of topographic variations within the study 
area were also analyzed. The findings of this chapter can be summarized as follows: 

• The topography of the Al-Lith area caused significant inductive and galvanic 
distortions on the MT transfer function data. Therefore, incorporating topography 
into the initial model is crucial to mitigate the risks of misinterpretation. 
 

• In geothermal systems with a conductive clay cap, the MT method effectively maps 
the conductive clay cap and delineates the transition to the geothermal reservoir. 
This provides valuable insights for geothermal exploration. Conversely, in systems 
without a clay cap, 3D MT inversion demonstrates considerably enhanced coverage 
of the geothermal reservoir and its associated protrusions, which act as pathways 
for geothermal fluids to migrate, either to the surface or the near subsurface. 

 
• Selecting an appropriate prior or initial resistivity model is vital for the 3D MT 

inversion. A well-chosen initial model serves as a solid starting point that avoids 
dramatic resistivity variations during iterations, which could destabilize the 
inversion. The most efficient iterations and the lowest overall RMS values are 
achieved when the initial model is close to the regional average resistivity. 

 
• All input parameters for the 3D MT inversion must be systematically tested to 

identify the most suitable ones for the specific data set, particularly the smoothing 
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parameter and data errors, as they have a significant influence on the inversion 
output.  

 
• 3D MT inversion can be performed by inverting only the off-diagonal elements of 

the impedance tensor or by including the full impedance tensor, which consists of 
both the diagonal and off-diagonal elements. Each approach has its own advantages 
and disadvantages, and further testing on actual MT field data is necessary to 
determine the best scenario. 

 
• Finally, it is recommended to incorporate tipper data alongside the impedance 

tensor, as this enhances the reliability of the subsurface model. However, the extent 
of improvement may vary depending on the complexity of the actual geological 
model. 
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Chapter 8  
3D Inversion of MT Field Data 
 

As demonstrated in Chapter 6, the dimensionality analysis of the MT phase tensor and 
its skew calculations reveals the complexity and variability of the subsurface 
conductivity in the study area, transitioning from simpler 1D and 2D structures at 
shorter periods to more intricate 3D structures at longer periods, particularly at longer 
periods of ≥16 s. In response to these findings, 3D MT data inversion was carried out 
using the well-established 3D modular EM inversion algorithm ModEM (Egbert & 
Kelbert, 2012; Kelbert et al., 2014).  

Inversion serves as a mathematical tool designed to transform observed or collected 
data into a more meaningful model structure. Due to the non-uniqueness of inversion, 
it is possible for the same dataset, accompanied by identical error bars, to produce 
multiple models that adequately fit the data (Siripunvaraporn, 2012). To address this 
challenge, extensive 3D MT inversion tests were conducted. These tests varied several 
parameters, including the type of data inverted, smoothing factors, static-shift 
corrections, topography incorporation, and initial resistivity model adjustments. This 
systematic test aimed to evaluate the robustness and reliability of the resulting 3D 
models.  

The 1D resistivity model derived from TEM shallow data was also integrated into the 
starting model to optimize the 3D MT inversion process. Following the inversion, 
sensitivity studies were conducted to determine the depth of investigation and to assess 
the detected structures’ reliability. The most reasonable inversion model, validated 
through these tests, was then used for further interpretation and correlated with the 
geological data from the study area. This chapter begins with a theoretical overview of 
the inversion algorithm used, providing context for the methodology and ensuring a 
clear understanding of its application to the study. 

 

8.1 ModEM Inversion Scheme 

ModEM is a widely used software package that includes both forward and inversion 
schemes for EM geophysical data. The inversion scheme implemented is based on the 
non-linear conjugate gradient (NLCG) method (e.g., Rodi & Mackie, 2001), which has 
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been described in chapter 3. In order to recover an Earth conductivity model, ModEM 
considers regularized inversion through gradient-based minimization of a penalty 
functional of the form: 

𝚽𝚽(𝒎𝒎,𝒅𝒅) = �𝒅𝒅 − 𝑭𝑭(𝒎𝒎)�
𝑇𝑇
𝑪𝑪𝑑𝑑−1�𝒅𝒅 − (𝑭𝑭(𝒎𝒎)� +  λ(𝒎𝒎−𝒎𝒎0)𝑇𝑇𝑪𝑪𝑚𝑚−1(𝒎𝒎−𝒎𝒎0) (8.1) 

where 𝒅𝒅 is the observed data, 𝑭𝑭(𝒎𝒎) describes the forward problem, 𝑪𝑪𝑑𝑑 is the covariance 
matrix of data errors, 𝒎𝒎0 is a set of prior or first guess model parameters, λ is the so-
called trade-off parameter, and 𝑪𝑪𝑚𝑚 is the model covariance or regularization term which 
describes the model smoothness. This model regularization 𝑪𝑪𝑚𝑚 removes excessively 
rough solutions and/or those that significantly deviate from the prior model by 
imposing an additional constraint on the data fit. The trade-off parameter λ controls 
the balance between data fit and model smoothness. Initially, the inversion process is 
primarily driven by model smoothness; as it progresses, the focus shifts to minimizing 
data misfit while gradually reducing the smoothness constraint by decreasing λ . The 
NLCG inversion scheme iteratively solves for the subsurface model by searching for the 
steepest gradient of the penalty function (equation 8.1) at each iteration. 

In the ModEM algorithm,  the data covariance 𝐶𝐶𝑑𝑑 is represented as a diagonal matrix 
containing the inverse of the squared data errors for each data point:  

𝐶𝐶𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 � 1
𝑒𝑒𝑖𝑖2
� (8.2) 

 The model covariance matrix 𝐶𝐶𝑚𝑚 is constructed as a sequence of 1D smoothing and 
scaling operators: 

𝐶𝐶𝑚𝑚 =  𝑐𝑐𝑥𝑥𝑐𝑐𝑦𝑦𝑐𝑐𝑧𝑧𝑐𝑐𝑧𝑧𝑇𝑇𝑐𝑐𝑦𝑦𝑇𝑇𝑐𝑐𝑥𝑥𝑇𝑇 (8.3) 

The 1D smoothing operators are block-diagonal and have the form (e.g. for the x-
direction): 

𝑐𝑐𝑥𝑥 =  
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 (8.4) 

with one block corresponding to each x-yz cell pair of the model mesh with 𝑁𝑁𝑁𝑁 and 𝑁𝑁𝑁𝑁 
cells in 𝑦𝑦- and 𝑧𝑧-directions, respectively. Each block 𝑐𝑐𝑗𝑗𝑗𝑗𝑥𝑥  is constructed by an 
autoregression scheme: 

𝑐𝑐𝑗𝑗𝑗𝑗𝑥𝑥 =  
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 (8.5) 
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The parameter 𝛼𝛼𝑥𝑥 governs the level of model smoothness in x-direction, and similarly, 
smoothing is set up for y- and z-directions, where the parameter ranges from 0 to 1 
(Tietze, 2012). To evaluate the quality of the inversion result, the normalized root 
means square misfit (RMS) is calculated using equation 3.7 (𝑅𝑅𝑅𝑅𝑅𝑅 = χ), with 𝑁𝑁 is the 
number of responses at all MT sites and all periods. 

The ModEM modules are organized in three layers, illustrated in Figure 8.1. The basic 
layer on the left focuses on the discretization and numerical solution for the forward 
problem, while the right-side features generic routines for various EM inverse problems. 
The central interface layer conceals the implementation details, ensuring modularity 
and usability. Each layer contains modules that, like the inversion algorithms, remain 
independent of data types and discretization. The ModEM package is coarsely 
parallelized to enhance efficiency by distributing forward modeling and sensitivity 
calculations across multiple processors, reducing memory use and run times. Maximum 
efficiency is achieved by distributing the modeling task over 2 × 𝑁𝑁𝑁𝑁 processors, with 
𝑁𝑁𝑁𝑁 is the number of periods used. The parallelization development of ModEM3DMT 
is detailed in Meqbel (2009), and a description of the implementation of MT transfer 
functions and phase tensor can be found in Tietze (2012). 

 

Figure 8.1: Schematic overview of the ModEM system. Boxes represent modules organized in three 
layers, with dependencies defined by arrows. Figure modified from Egbert & Kelbert (2012). 
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8.2 Inclusion of SSC and Implementation of Topography 

The study area, located in a mountainous region, exhibits moderate to extreme 
topographic variations, as shown in Figure 5.2. As described in Section 7.2, topographic 
distortions can significantly impact MT data, manifesting both galvanic and inductive 
effects, leading to erroneous interpretations of subsurface resistivity structures. The so-
called galvanic distortions, induced by topography or near-surface heterogeneities, are 
known as static shift effects (Jiracek, 1990; Sternberg et al., 1988). According to some 
researchers (e.g. Árnason, 2015; Árnason et al., 2010; Ledo et al., 2002), static shift 
effects must be corrected from the data before the inversion process, with transient 
electromagnetic (TEM) soundings commonly used for this purpose (Pellerin & 
Hohmann, 1990; Sternberg et al., 1988). However, Watts et al. (2013) highlighted the 
limitations of correcting MT static shifts using TEM data in the area with significant 
topographic variations, as it can produce misleading results. They emphasized that, 
with modern broad-band MT instrumentation, comprehensive modeling of the 
topography is more likely to yield an accurate image of the subsurface.  

Static shift corrections (SSC) and the incorporation of topography in inversion cannot 
be implemented simultaneously, as correcting static shifts using TEM data while also 
incorporating topography would lead to double counting the shifts due to topography 
(Árnason, 2015). Therefore, in this section, two different inversions were examined: the 
first, with SSC and assuming a flat surface—referred to as the “SSC – Flat” model. The 
second model includes topography without applying any static shift corrections—
termed the “No SSC – Topography” model. The high-resolution digital topographic data 
was extracted from the Shuttle Radar Topography Mission (SRTM), featuring a spatial 
resolution of approximately 30 meters. This high-resolution topographic data ensures 
that the inversion process accurately accounts for the terrain variations. It is important 
to note that both 3D inversion approaches utilize the full impedance tensor and tipper 
data. 

Figure 8.2 presents the models generated by the two different approaches shown as 
vertical cross-sections (ZY-slice) and horizontal views (XY-slice). The most notable 
distinction between the two models occurs in shallow structures, extending to 
approximately 3 km in depth. In contrast, for deeper structures, both models exhibit a 
high degree of similarity. This indicates that the SSC effectively resolved the galvanic 
effects of topography which dominate at long periods, but not the inductive effects 
which are more pronounced at shorter periods. A detailed discussion on the influence 
of topography can be found in Section 7.2. Regarding the overall RMS values, the 
Topography – no SSC model achieved a lower value of 2.09, compared to 2.31 for the 
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SSC – Flat model. Consequently, the model incorporating topography without static 
shift corrections was chosen for further interpretation and analysis. This approach is 
also justified by the capabilities of the ModEM 3D inversion code, which compensates 
for minor galvanic distortions by introducing a sufficiently fine parameterization in the 
uppermost part of the starting model (Meqbel et al., 2014; Tietze & Ritter, 2013).  

 
Figure 8.2: The results of both the SSC – Flat and No SSC – Topography inversion models illustrated 
as vertical cross-sections (ZY-slice) and horizontal views (XY-slice). The models achieved final RMS 
values of 2.31 for SSC – Flat model and 2.09 for No SSC – Topography model. The most significant 
difference between the two models is observed in shallow structures, extending to approximately 3 km 
in depth. 
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8.3 Selection of Inversion Parameters 

ModEM is highly customizable, enabling users to adjust a variety of parameters to 
optimize inversion results. Therefore, in this study, an extensive series of 3D inversion 
tests were conducted to systematically assess the robustness of the results and select 
the most suitable model for further interpretation. Tested parameters included the 
initial resistivity models, the discretization of cell sizes, the smoothness, and data error 
settings. These parameters were selected based on the latest literature findings and 
adapted to our particular dataset and site conditions.  

8.3.1 Initial Resistivity Models 

As explained in Subsection 7.4.1, selecting an appropriate initial resistivity model has 
an important role in the 3D inversion scheme. To identify the most suitable starting 
model for further interpretation, inversion runs are conducted on the MT field data 
using various starting models. In this study, inversion tests were performed with four 
distinct homogeneous resistivity values of 10, 100, 250, and 500 Ωm. Four components 
(𝒁𝒁𝑥𝑥𝑥𝑥, 𝒁𝒁𝑥𝑥𝑥𝑥, 𝒁𝒁𝑦𝑦𝑦𝑦, and 𝒁𝒁𝑦𝑦𝑦𝑦) of impedance tensor and the tipper data were used in the 
inversion runs. At this stage, the topography was incorporated into the initial models 
due to the result with topography being better than the one applying static shift 
correction and without topography.  

 

Figure 8.3: Graphic showing (a) initial RMS and (b) final overall RMS values from the 3D inversion 
trial with four different starting models. The total number of NLCG iterations required for each inversion 
trial is also plotted. 

Figure 8.3 shows the initial and final overall RMS values resulting from four distinct 
3D inversion tests, indicating that the starting resistivity model of 100 Ωm achieved 
the lowest RMS misfit, both initially and upon completion. In order to compare the 
effects of different initial models, Figure 8.4 presents the resistivity slices at a depth of 
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∼ 6 km from the four inversion trials. The inversion model based on the 100 Ωm initial 
resistivity value exhibits the most significant contrast between the conductive anomaly 
and the surrounding host geology. Therefore, due to this pronounced contrast and the 
lowest RMS value, a resistivity of 100 Ωm was selected as the starting model for 
subsequent analyses and interpretation. 

 

Figure 8.4: Results of the 3D inversion test with four different starting models presented as horizontal 
resistivity slices  at depths of ∼ 6 km. The locations of the MT sites are displayed as black dots. 
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8.3.2 Grid Discretization 

It’s recommended to run a couple of inversions with different grid resolutions to assess 
the impact on results, since improper grid discretization can generate errors in the 
results (Siripunvaraporn, 2012). Please note that the grid must extend sufficiently far 
beyond the area of interest to avoid boundary effects on the computed EM fields. At 
the same time, avoid excessively fine grids that increase memory and runtime 
requirements without significantly improving resolution. When designing the grid, 
consider skin depth, MT stations separation, and target anomaly structure. Some 
guidelines for designing a satisfactory grid can be found in Simpson and Bahr (2005). 
For this purpose, three different vertical (z) grid configurations were tested: (1) 60 
layers or nodes, extending to a maximum depth of 153 km; (2) 62 layers with a 
maximum depth of 265 km; and (3) 65 layers with a maximum depth of 381 km. The 
dimensions in the other directions were kept constant with 35 km in the N-S (x) 
direction and 34 km in the E-W (y) direction.  

The mesh uses a 3D finite difference grid comprising 98 nodes in the x direction, 88 
nodes in the y direction, and three distinct nodes in the z direction. The mesh is 
centered on the midpoint of the study area, located at a latitude of 20.4685°N and a 
longitude of 40.4821°E. The horizontal cell dimension is 109 m x 109 m. To accumulate 
the boundary effects, 17 padding cells are added in each horizontal direction, with their 
size increasing by a factor of 1.2. The first 20 vertical layers of the mesh have a uniform 
thickness of 25 m each. Beyond these, the thickness of subsequent layers increases by a 
factor of 1.2 until the total number of vertical layers is reached. 

The results of three different inversion runs are illustrated in Figure 8.5, showcasing 
horizontal resistivity slices along with their corresponding overall RMS values. The 
differences among the models tested are minimal, primarily noticeable in the size of the 
detected anomalies. The fundamental structure of these anomalies shows a remarkable 
similarity across all models. Among the models tested, the one utilizing 60 vertical 
layers resulted in a slightly smaller diameter of the anomaly. In contrast, the inversion 
models employing 62 and 65 vertical layers yielded anomalies of comparable sizes. The 
analysis of the RMS values highlights that the 60-layer model achieved the highest 
RMS value, exceeding 2.8, indicating a lower fit to the data. Both the 62- and 65-layer 
models, however, demonstrated more comparable RMS values, maintaining a range of 
2.2. Ultimately, the model with 62 vertical layers was selected for further analysis, as 
it provided a balanced combination of reasonable results and a favourable RMS value, 
coupled with faster iteration times compared to the model with 65 layers. 
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Figure 8.5: Horizontal resistivity slices at depths of ∼ 6 km extracted from the 3D inversion trials with 
(a) 60 layers, (b) 62 layers, and (c) 65 layers of vertical z-grid discretizations. (d) The final RMS values 
of the 3D inversion trials corresponding to the total number of NLCG iterations required. 

 

8.3.3 Smoothing Parameter (α) 

As outlined in Subsection 7.4.2, it’s important to test various smoothing parameters 
(α) to achieve an optimal balance between data misfit and model smoothness. Trials 
were conducted on the MT field data using three different α values of 0.1, 0.3, and 0.5. 
The smoothing parameter 0.7 was excluded, as it did not yield a satisfactory RMS 
value during the synthetic modeling studies discussed in Chapter 7. The inversion 
results from all three trials are presented in Figure 8.6 as horizontal slices at ∼ 2 km 
depth. The differences among the inverse models, influenced by the chosen smoothing 
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parameter, are significant. Specifically, the inversion model with a smoothing parameter 
of α = 0.1 reveals a larger area of the conductive anomaly, yet it achieved the smallest 
overall RMS value. However, it required more than 180 iterations, which makes it 
impractical. In contrast, the model utilizing α = 0.3 yielded a more focused 
representation of the conductive anomaly with a reasonable RMS value. This 
concentrated appearance of the conductive anomaly suggests the individual protrusions 
occurring at shallower depths. On the other hand, the model with α = 0.5 is deemed 
unreliable, as the resistive structure dominates nearly the entire layer, and its RMS is 
also higher. For these reasons, α = 0.3 is selected, as it demonstrates an acceptable 
RMS alongside reasonable model smoothness and iteration time. 

 
Figure 8.6: 3D inversion models displayed as horizontal resistivity slices at depths of ∼ 2 km for various 
smoothing parameters: (a) α = 0.1, (b) α = 0.3, and (c) α = 0.5. (d) The final RMS values of the 3D 
inversion trials correspond to the total number of NLCG iterations required. 
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8.3.4 Error Floor Settings 

As demonstrated in the modeling investigation outlined in Subsection 7.4.3, data error 
settings are an essential input inversion parameter that should be systematically tested 
to identify the most appropriate option for the given dataset. In this thesis, error floors 
were determined relative to the mean of the off-diagonal elements |𝒁𝒁𝑥𝑥𝑥𝑥 ∗ 𝒁𝒁𝑦𝑦𝑦𝑦|1/2 for the 
impedance tensor components and constant values for the VTF or tipper elements 
(Meqbel, 2009; Patro & Egbert, 2011; Tietze, 2012). Three different error floor settings 
are tested by inverting the off-diagonal elements of the impedance tensor: 1%, 5%, and 
10%. The larger error settings are excluded because their ability to accurately resolve 
the anomaly is severely compromised, as demonstrated in the synthetic studies 
(Chapter 7). Since the MT field data contains its original error, the associated error 
was established as the greater value between the original error and the error floor. 

Figure 8.7 displays the influence of the error level on the anomaly’s imaging, presented 
as vertical cross-sections. Accompanying this figure, Table 8.1 summarizes the overall 
RMS values along with the total number of NLCG iterations required for each scenario. 
Upon analyzing three distinct error floors, it becomes evident that the inversion models 
exhibit only minor differences. These variations are primarily observed in the resolution 
of the shallower protrusions (less than 2.5 km) and the deeper conductive structures 
(greater than 7 km). Despite these slight discrepancies, the overall structural 
characteristics of the anomalies remain consistent across the different error levels. The 
RMS values show only modest fluctuations yet correspond to varying iteration times 
required for convergence. Notably, all three error floors are viable options for 3D 
inversion. However, the 5% error floor is the most advantageous choice, delivering the 
lowest RMS values and the shortest iteration times. This makes it the preferred option 
for achieving optimal results in the inversion process. 
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Figure 8.7: Vertical cross-sections extracted from the 3D inversion trials with (a) 1%, (b) 5%, and (c) 
10% of error floor settings. (d) The projection of the profile sections onto the plan view. The locations 
of the MT stations are indicated by black dots, while the red diamond marks the position of the Ain Al-
Harrah hot spring. 

 

Table 8.1: Initial and final RMS values of the inversion trials with different error floor settings.  

Error Floor Initial RMS Final RMS NLCG Iterations 

1%  10.61 2.08 117 
5%  10.51 2.03 108 
10%  10.53 2.05 131 
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8.4 Inversion with Different Data Components 

This section investigates various inversion scenarios using different tensor elements from 
the MT field data. The initial focus is on performing 3D inversion by integrating tipper 
data alongside the impedance tensor.  Subsequently, 3D inversions employing different 
impedance tensor elements are explored. Specifically, inversions that utilized only the 
off-diagonal elements against those that employed the full impedance tensor (which 
includes both off-diagonal and diagonal elements) are examined and compared. To 
ensure consistency throughout the inversion tests, the starting model is set at 100 Ωm, 
and the inversion parameters remain identical across inversion runs. These parameters 
include a smoothing parameter of 0.3, an initial damping parameter (λ) of 1, and a 5% 
error floor. 

8.4.1 Inclusion of Tipper Data  

It is recommended to incorporate tipper data alongside the impedance tensor, as it 
enhances the reliability of the subsurface model, as discussed and demonstrated in 
Section 7.5. However, the extent of improvement may vary depending on the complexity 
of the actual geological model. In some cases where structures are already well resolved 
by impedance data, the contribution of tipper data to the inverse solution may be 
minimal. In this thesis, two scenarios—one with and one without the inclusion of tipper 
data—are examined using MT field data. The inversion process was carried out on full 
impedance tensors, with results analyzed for both cases. 

The comparative analysis of the two inversion scenarios is depicted in Figure 8.8, 
showcasing horizontal depth slices. Notably, the inversion model that included tipper 
data achieved a slightly improved RMS error of 2.09, in contrast to 2.10 for the model 
without it. While this difference may appear minor, it indicates a trend where the 
incorporation of tipper data contributes positively to model quality. Particularly at a 
depth of ∼ 1 km, the individual geological features appear more distinctly defined in 
the model that utilized tipper data, suggesting that its inclusion indeed enhances the 
granularity of the output model. Nevertheless, it’s important to highlight that this 
improvement was not overwhelmingly substantial, primarily due to the limited 
availability of tipper data in this study. As a routine procedure, the tipper data used 
for inversion underwent visual inspection to identify and exclude clearly erroneous 
responses. After assessing the data quality, 13 out of 14 MT sites that included tipper 
data were deemed suitable for further detailed analysis, ensuring the robustness of the 
results obtained. Although the improvement was minimal, the inversion model 
incorporating tipper data is favored for subsequent analysis and interpretation. 
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Figure 8.8: The results of two inversion scenarios—one excluding (Full Z) and the other including tipper 
data (Full Z & T), presented as horizontal resistivity slices at depths of ∼ 1 and ∼ 6 km. The locations 
of the MT sites are displayed as black dots. 

 

8.4.2 Off-Diagonal Element and Full Impedance Tensors 

As discussed in the 3D Synthetic Modeling Studies (Section 7.5), both the off-diagonal 
tensor elements and the full impedance tensor are applicable for 3D inversion as both 
achieved an optimal RMS value and yielded satisfactory results. However, it is 
important to recognize that each approach presents its own set of advantages and 
disadvantages. Consequently, further testing on actual MT field data is essential to fully 
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assess their performance. Figure 8.9 shows horizontal depth slices derived from the 
inversion results, with both approaches—using the full impedance tensors and the off-
diagonal tensor elements—being compared. Tipper data was included in both 
approaches. To maintain consistency throughout the study, the starting model and 
inversion parameters were identical across both inversion runs.  

 
Figure 8.9: The results of two inversion scenarios—one incorporating the full impedance tensor along 
with tipper data (Full Z & T), and the other utilizing the off-diagonal elements with tipper data (Off Z 
& T), presented as horizontal resistivity slices at depths of ∼ 1 and ∼ 5 km. The locations of the MT 
sites are displayed as black dots. 

Notably, the inversion model utilizing off-diagonal elements (Off-Z & T) achieved a 
better overall RMS of 2.03, compared to 2.09 for the full impedance tensor model (Full 
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Z & T). At a depth of ∼ 1 km, the individual conductive anomalies revealed by the Off 
Z & T model are notably more distinct and well-defined when compared to those 
identified by the Full Z & T model. Additionally, at a depth of ∼ 5 km, the off-diagonal 
(Off Z & T) model presents a single dominant conductive anomaly with a larger 
diameter than that observed in the full impedance tensor (Full Z & T) results. For 
these reasons, the inversion of the off-diagonal tensor elements is preferred for the MT 
field data measured in this study, resulting in a more clearly defined model with a lower 
RMS, which enhances the overall reliability of the findings. 

 

8.5 Inversion with TEM Data As A Priori Information 

An additional inversion process was conducted by integrating the TEM model as a 
priori information. TEM data can be utilized not only to correct static shifts in the MT 
data but also to enhance the optimization of the 3D MT inversion (e.g. Ruiz-Aguilar 
et al., 2020). In this section, strategies for incorporating information derived from TEM 
data are discussed. Prior to that, a description of the 1D inversion of TEM data is 
provided. 

8.5.1 1D Inversion of TEM Data 

The processed TEM data were then inverted using the EMUPLUS code developed by 
the University of Cologne (Scholl, 2005) to generate a suitable resistivity model. Τwo 
different 1D inversion techniques were employed: the smoothness-constraint Occam 
inversion scheme (Constable et al., 1987) and the Levenberg-Marquardt technique 
(Menke, 2018; Scholl, 2005). The Occam inversion method calculates a multi-layered 
resistivity model using a first order (R1) smoothness constraint, aiming to produce 
models with minimal contrasts between adjacent layers by imposing a slight vertical 
resistivity gradient. This smoothness constraint helps in creating a continuous 
resistivity profile that is less sensitive to abrupt changes, which might not be justified 
by the data resolution. In contrast, the Marquardt technique is designed to obtain a 
simpler earth model characterized by a limited number of layers with distinct layer 
interfaces, making it useful for interpreting data in terms of discrete geological layers 
and interfaces. A homogeneous initial resistivity model of 100 Ωm with 30 
logarithmically spaced layers was used for the Occam inversion. The resulting model 
from the Occam inversion model served as a reference and starting model for the 
Levenberg-Marquardt algorithm, as the latter’s results are highly dependent on the 
initial model input. In addition to generating resistivity models, the uncertainties of 
the models were derived using equivalent models. These equivalent models provide 
additional insights into the resolution of the resistivity and thickness of each layer 
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(Menke, 2018; Yogeshwar et al., 2020). To assess the quality of the inversion, the data 
misfit was estimated according to Equation 3.7. 

Figure 8.10 presents exemplary TEM inversion models and their corresponding data 
fits for stations TEM26 and TEM27. Similar results were obtained at the rest of the 
TEM soundings, as seen in Appendix E. The 1D inversion models reveal three main 
layers: (1) a conductive layer in the first few meters depth, characterized by low 
resistivity, indicating high water content likely due to infiltrated rainwater from a recent 
precipitation event, as the TEM survey was conducted during the winter season; (2) a 
resistive layer extending to a depth of approximately 120 m, probably composed of hard 
rock or other geologically resistant materials, with high resistivity suggesting dry or les 
porous formations; and (3) a layer below 120 m depth exhibiting decreasing resistivity, 
likely associated with sediments saturated with groundwater, indicating the transition 
to more porous and water-bearing formations at greater depths. Other TEM soundings 
in the survey area exhibited a similar three-layer structure, with slight variations in 
resistivity values and depth, attributed to local geological differences and the 
heterogeneous nature of subsurface materials. 

 
Figure 8.10: 1D inversion results obtained from stations (a) TEM26 and (b) TEM27 with different 
algorithms: Levenberg-Marquardt (red lines), Occam with a first-order smoothness constraint (magenta 
lines), and the equivalent model (grey lines). Induced voltage decay over time for observed and calculated 
TEM data for each inversion approach at stations (c) TEM26 and (d) TEM27. 

 

8.5.2 3D Inversion with A Priori Information from TEM 

The resistivity model derived from the Occam inversion of the TEM data was 
incorporated into the initial model used as a starting point for 3D MT inversion. Figure 
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8.11 shows the resistivity slices at four different depths, demonstrating how the 1D 
TEM model was integrated into the initial model for the 3D MT inversion. The model 
parameters were not fixed, and the TEM information was only used as a priori. Due to 
data quality considerations, 10 out of 13 TEM soundings were incorporated into the 
starting model. The 3D model, which leveraged a priori information from TEM results, 
achieved a lower overall RMS of 1.96 after 113 iterations. In comparison, the 
unconstrained inversion model recorded a slightly higher RMS of 2.03 after 125 
iterations. Thus, in terms of RMS, the model that incorporated a priori information 
from the TEM data resulted in better RMS and allowed for faster convergence. 

 

Figure 8.11: Illustration of how the information obtained from the 1D TEM model was incorporated 
into the starting model used for the 3D MT inversion. The color-coded squares indicate resistivity 
variations extracted from the 1D TEM model at four different depths. The black dots represent the 
locations of the MT sites.  
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Figure 8.12: Horizontal view of the 3D MT models resulting from the unconstrained inversion and the 
inversion with a priori information at two different depths (∼ 1 km and ∼ 4 km). The locations of the 
MT sites are displayed as black dots, while the red diamond marks the position of the Ain Al-Harrah 
hot spring. 
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Figure 8.13: Vertical cross-sections extracted from the 3D models resulted from the unconstrained 
inversion and the inversion with priori information. The projection of the profile sections onto the plan 
view is shown in the lowest panel.  

Figure 8.12 displays the results of both the unconstrained inverse model and the 
inversion with a priori information, presented as horizontal slices at shallow (∼ 1 km) 
and medium (∼ 4 km) depths. As expected, each inverse model reveals slightly different 
resistivity distribution, given that 3D MT inversion is categorized as an ill-posed 
problem. At shallow depths of ∼ 1 km, the individual pathways identified in the 
inversion with a priori information are more clearly defined. Furthermore, at a depth 
of ∼ 4 km, the inversion model that includes priori information reveals a main 
conductive anomaly with a slightly larger diameter than that observed in the 
unconstrained model. The results from both the unconstrained inversion and the 
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inversion with priori information are further illustrated as cross sections in Figure 8.13. 
The principal difference between the two models lies in the distinctiveness of individual 
protrusion; the model utilizing priori information presents this feature in a more defined 
manner than the unconstrained model. This protrusion is particularly interesting 
because it likely serves as a pathway for geothermal fluids as it ascends toward the 
surface. This upward movement has the potential to create active geothermal hot 
springs, as indicated by the red diamond in the figure. Overall, the incorporation of 
TEM data as a priori information appears to enhance the 3D inversion results. 

Figure 8.14 provides data fitting to evaluate how well the model's predicted responses 
match the observed data at stations MT33 and MT35, which were selected due to their 
significant differences. The data fit for all MT stations can be found in Appendix F. 
Overall, the inversion with priori information exhibits better data fitting at both 
soundings. The inclusion of priori information from the TEM model enhances the 
resolution and accuracy of the resistivity pathways, especially at shallower depths, 
where near-surface heterogeneities play a crucial role. This improvement is evident in 
the clearer definition of conductive and resistive structures in the inversion results. 
Thereby, it is selected as a preferred model, and it will be used for subsequent 
interpretations.  

 

Figure 8.14: Data fit comparison of observed versus predicted MT transfer functions from the 
unconstrained inversion (dashed curve) and the inversion with a priori information from TEM data (solid 
curve) at stations MT33 and MT35. The individual dots represent the observed XY (red) and YX (blue) 
components of the MT tensor. 
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8.6 Model Assessment 

To test the robustness of the generated model, a model assessment known as squeeze 
test was performed to determine the maximum depths at which the inverse model 
remains sensitive to the data (Allen & Tromp, 2005). This was achieved by replacing 
the inverse model parameters with fixed resistivity values below specific depths and 
then calculating the forward response. The RMS value between the original inverse 
model and the response from the fixed resistivities model was assessed to evaluate the 
influence of such constraints. For the squeeze test, the parameters of the preferred 
inverse model were fixed to a background resistivity value of 100 Ωm at depths of 9.8 
km, 5.6 km and 2.7 km. These specific depths were selected based on the variations in 
the features observed in the inverse model. The squeeze test helps to validate the depth 
of investigation of the inversion model and ensures that the features detected at these 
depths are not artifacts of the inversion process. This method provides a way to verify 
the reliability of the inverse model, particularly in complex geological settings where 
depth-related sensitivity can significantly impact the interpretation of subsurface 
resistivity structures.  

Figure 8.15 shows some selected profiles extracted from the unconstrained model and 
from the models with fixed resistivities at various depths. The change in RMS for the 
15 selected sites across different models is depicted in Figure 8.16 as a bar diagram. 
Based on these results, for the shallow depth of 2.7 km and the medium depth of 5.6 
km, the RMS values significantly diverge from those obtained from the unconstrained 
model at all MT stations. The absolute RMS differences from the unconstrained 
inversion reach up to 1.1 on average for the shallow depth and more than 10.0 for the 
medium depth, indicating that deeper structures are sensitive to the observed data. At 
a deeper depth of 9.8 km, certain stations (MT04, MT10, MT20, MT24, MT31, and 
MT35) display significant RMS differences greater than 0.5, suggesting that deeper 
structures are necessary to fit the data from these soundings. However, some other MT 
stations (MT01, MT14, MT19, MT37, and MT41) exhibit RMS differences approaching 
the data misfit levels obtained with the unconstrained model, indicating that these sites 
are not sensitive to the deeper structures. The longer period data from these sites were 
primarily removed due to noise. Consequently, structures deeper than 10 km will not 
be interpreted in this study, as the data do not reliably constrain them. 
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Figure 8.15: Selected vertical slices extracted from four different models: (a) unconstrained inverse 
model, (b) inverse model with fixed resistivity at below 9.8 km, (c) inverse model with fixed resistivity 
below 5.6 km, and (d) inverse model with fixed resistivity below 2.7 km. 
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Figure 8.16: Comparison of RMS values obtained from the unconstrained inversion and the inversion 
runs with fixed resistivity models. 

 

8.7 Preferred 3D Resistivity Models 

As it was previously explained, the 3D inversion model incorporating a priori 
information from the TEM model produced more reliable results, indicated by a lower 
RMS value. Therefore, this resultant model has been selected as the preferred 3D 
inversion model for further analysis.  Figure 8.17 presents horizontal slices from the 3D 
inversion model at various depths, with projected surface MT site locations indicated 
by black dots. At the shallowest depth (-0.200 to -0.175 km), there is a complex pattern 
of high and low conductivity zones, with high conductivity areas (warmer colors) 
interspersed with regions of lower conductivity (cooler colors). The slice from 0.000 to 
0.025 km shows a more heterogeneous distribution, featuring several high conductivity 
zones surrounded by lower conductivity regions. At an intermediate depth (from 1.480 
to 1.801 km), the conductivity values form more distinct zones, with a few high 
conductivity spots suggesting potential geothermal activity or fluid pathways. Deeper, 
from 2.648 to 3.203 km, two major high conductivity bodies are visible, indicating 
significant transition subsurface features. At a depth of 4.667 to 5.626 km, a prominent 
high conductivity zone likely signifies a major geothermal reservoir or a large area of 
highly conductive materials. The deepest slice, from 9.812 to 11.800 km, shows a more 
uniform conductivity distribution, with less pronounced high conductivity zones 
compared to shallower depths, indicating a more stable and homogeneous geological 
structure at these depths. Overall, the slices reveal a complex and varied subsurface 
conductivity structure, with significant heterogeneity and several key features indicative 
of geothermal activity. 
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Figure 8.17: Horizontal slices from the preferred 3D resistivity model at six various depths, with 
projected surface MT site locations indicated by black dots. 

Figure 8.18 presents vertical slices from the preferred 3-D inversion model along profiles 
A-A’, B-B,’ and C-C’, with the yellow star indicating the location of the Ain Al-Harrah 
hot spring. In profile A-A’, a near-surface localized low-resistivity zone (C0), with an 
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average thickness of less than 300 m, is interpreted as sediments fully saturated with 
freshwater. In the same profile, several low-resistivity zones (C1, C2, C3) are identified 
as potential pathways for geothermal fluids. A prominent deep low-resistivity body 
(C5), extending from ∼ 2 km to 8 km depth, indicates a significant geothermal reservoir. 
Profile B-B’ highlights two notable shallow low-resistivity zones (C1 and C4), likely 
indicating fluid pathways or fractures. The extensive low-resistivity body (C5), also 
observed here, spans depths of ∼ 2.5 km to 8 km, further supporting the presence of a 
geothermal reservoir beneath the study area. Profile C-C’ similarly reveals shallow low-
resistivity zones (C2 and C4), interpreted as possible fluid pathways. The deep low-
resistivity body (C5), consistent across all profiles, extends from ∼ 2.5 km to 8 km 
depth, confirming the existence of a substantial geothermal feature. The map view in 
Figure 8.18(d) shows the study area layout, with the yellow star denoting the Ain Al-
Harrah hot spring, black dots representing MT site, and red dashed lines outlining the 
vertical slice locations. In summary, the vertical slices reveal a complex subsurface 
resistivity structure, characterized by several shallow low-resistivity zones (C1, C2, C3 
and C4), identified as potential pathways for geothermal fluids, and a deep low-
resistivity (C5), strongly suggesting the presence of a significant geothermal reservoir. 
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Figure 8.18: Vertical cross-sections extracted from the preferred 3D model along A-A’ (a), B-B’ (b), 
and C-C’ (c). The red dashed lines show the projection of the three profiles on the top view section (d). 
The location of Ain Al-Harrah hot spring visualized as a yellow star. 

 

8.8 Interpretation of the 3D Models 
Geothermal resources can be categorized based on temperature, reservoir 
characteristics, and geological control. One fundamental classification is based on their 
connection to magma activity. Magmatic geothermal systems encompass convectional 
hydrothermal systems, either hot water or steam-dominated, hot dry rock (HDR) 
systems, and partial melt systems. These systems are typically found in regions with 
high geothermal gradients, such as volcanic and tectonically active areas. The heat in 
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these systems is directly linked to magmatic processes, which makes them highly 
productive and suitable for power generation. In contrast, non-volcanic geothermal 
resources are typically associated with hot fluids in sedimentary basins or crystalline 
formations (Meju, 2002; Moeck, 2014). These systems rely on conductive heat transfer 
from deeper heat sources and are less directly linked to magmatic activity. Although 
they generally have lower geothermal gradients, non-volcanic systems can still provide 
viable geothermal resources, particularly for direct-use applications such as district 
heating, greenhouse heating, or aquaculture. Among these classifications, hydrothermal 
systems are the most frequently utilized and economically viable. Their accessibility, 
relatively high temperatures, and natural permeability make them suitable for 
electricity generation and direct-use applications. 

A typical hydrothermal system transfers heat through groundwater circulation, either 
in liquid or vapor form via convection. Conceptually, such systems are composed of 
three key components: a heat source, typically a magma body or deep-seated pluton; a 
groundwater system that transports and occasionally stores heat in a reservoir located 
above the heat source; and a clay cap, a conductive layer formed by hydrothermal 
alteration that traps heat and fluid within the system (Cumming, 2009; Muñoz, 2014). 
However, in some high-temperature geothermal systems, especially those associated 
with volcanic activity, the clay cap may be absent due to unique geological conditions, 
such as rapid fluid flow, high permeability, or specific mineralogical compositions that 
inhibit clay formation (Muñoz, 2014; Patro, 2017). In the Al-Lith geothermal system, 
the heat source, convection pattern, and groundwater system are likely to have formed 
in conjunction, reflecting the interconnected nature of geothermal processes. However, 
the clay cap, commonly absent in some high-temperature volcanic-associated 
geothermal fields, appears not clearly delineated in the 3D model results.  

In summary, the 3D inversion results, presented in Figures 8.17 and 8.18, reveal four 
noteworthy features:  

1. A near-surface conductive zone with resistivity around ∼ 50 Ωm extends across 
almost the entire study area up to 300 m depth. This zone likely represents 
sedimentary deposits with high water content, facilitating efficient heat 
transfer. These sediments are often crucial in geothermal systems as they can 
act as both a reservoir and a pathway for the movement of geothermal fluids. 
The presence of this permeable aquifer suggests a well-developed groundwater 
system capable of supporting geothermal activity and sustaining the 
geothermal system's recharge mechanism. 
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2. A low-resistivity anomaly with values less than 20 Ωm observed at depths 
greater than 2.5 km likely indicates the presence of a geothermal reservoir. The 
low resistivity in this context likely indicates the presence of hot, mineralized 
fluids or molten rock, marking it as the primary source of thermal energy. This 
feature is critical for geothermal energy extraction, as it represents the main 
resource base. Identifying its precise location and extent is essential for 
estimating potential energy output, economic viability, and designing targeted 
exploration and development strategies. 

 
3. Individual protrusions extending upward from the reservoir are identified as 

possible pathways for geothermal fluids. These features facilitate fluid 
migration to the surface or the near subsurface and may be associated with 
active geothermal surface manifestations, such as hot springs.  

 
4. Zones with high resistivity values exceeding 200 Ωm are associated with hard-

rock geological formations.  These formations are significant for several reasons: 
they often act as barriers to fluid migration, helping to contain the geothermal 
reservoir, and they can affect the overall heat flow and reservoir dynamics. 
Knowing the location and characteristics of these hard-rock formations is 
crucial for the design and drilling of geothermal wells, as they influence drilling 
conditions and the structural stability of the geothermal system. 
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Chapter 9  
Conclusion and Outlook 
 

Electromagnetic (EM) techniques are becoming increasingly important for exploring 
and characterizing geothermal reservoirs due to their ability to effectively map the 
subsurface electrical properties and identify key features, such as heat sources, faults, 
and fluid pathways. Among various EM methods, the Magnetotelluric (MT) technique 
is the most widely used and potent tool for investigating geothermal resources due to 
its relatively low cost, high effectiveness, and deep subsurface penetration. In addition 
to MT, the Transient Electromagnetic (TEM) method is also used in geothermal 
exploration, albeit less frequently. TEM can be utilized not only to correct static shifts 
in the MT data but also to enhance the optimization of the 3D MT inversion. 

The Al-Lith area in western Saudi Arabia is notable for its geothermal surface 
manifestations, such as hot springs, and is considered one of the most significant sites 
for geothermal resources in the country. Its geothermal reserve holds a significant 
promise for providing clean power energy sustainably over the long term. Although 
geothermal energy utilization for power generation is not yet economically viable, some 
direct-use applications of low-grade geothermal resources have already been 
implemented. To date, only a limited number of geophysical measurements have been 
conducted in this region, aimed at enhancing the understanding of the geothermal 
system. This research comprehensively examines the potential of geothermal resources 
in the Al-Lith area utilizing EM methods, particularly MT and TEM techniques. A 
total of 50 broadband MT stations were deployed, covering a time range of 0.001 to 
512 seconds, in addition to 13 TEM soundings. The average spacing between 
neighboring MT stations was around 400 m, ensuring adequate spatial resolution for 
the survey. Due to logistical limitations and the challenging terrain of the study area, 
the vertical component of the magnetic field was measured at only 14 locations.  

The acquired MT data were processed using a well-validated, robust statistical 
technique to estimate transfer functions for each sounding. Dimensionality analyses 
using phase tensor and skew calculations revealed a complex subsurface conductivity 
structure, characterized by predominantly 1D/2D geoelectric behavior at short periods 
(< 2 sec) and transitioning to a more complex 3D structure a longer period. Prior to 
the inversion of the MT data, 3D MT synthetic modeling and inversion studies were 
carried out to assess the detectability of geothermal anomalies, optimize survey 
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parameters, and evaluate the sensitivity of various inversion inputs. To fully assess the 
capabilities of 3D MT inversion for geothermal exploration, two scenarios were 
analyzed: one with a highly conductive clay cap and the other without. In geothermal 
systems with a conductive clay cap, the MT method effectively maps the conductive 
clay cap and delineates the transition to the geothermal reservoir. Conversely, in 
systems without a clay cap, 3D MT inversion significantly enhances the coverage of the 
geothermal reservoir and its associated protrusions, which serve as pathways for 
geothermal fluids to migrate toward the surface or near subsurface layers.  

Given that the study area is situated in steep mountainous terrain, a thorough 
examination of the influence of topography was conducted. This topographic effect 
poses considerable challenges for MT studies in the region, resulting in significant 
inductive and galvanic distortions in the MT transfer functions. To effectively mitigate 
these distortions, it is crucial to integrate topography into the initial model, which 
ultimately helps to minimize the risk of misinterpretation. In such scenarios, applying 
static shift corrections to the data should be avoided, as this could result in accounting 
for shifts more than once, potentially leading to erroneous interpretations. Selecting an 
appropriate initial resistivity model is crucial, as it can greatly influence the accuracy 
of the 3D inversion results. The most effective iterations and the lowest overall RMS 
values are typically achieved when the initial model closely aligns with the regional 
average resistivity. Furthermore, all input parameters for the 3D MT inversion should 
be systematically tested to determine the most suitable ones for the specific data set, 
particularly focusing on the smoothing parameter and data errors, as these have a 
substantial impact on the inversion output. 

3D MT inversion can be performed by either inverting solely the off-diagonal elements 
of the impedance tensor or by including the full impedance tensor, which comprises 
both diagonal and off-diagonal elements. In this study, the preference is for inverting 
the off-diagonal tensor elements (𝒁𝒁𝑥𝑥𝑥𝑥 and 𝒁𝒁𝑦𝑦𝑦𝑦), leading to a model that is more clearly 
defined and exhibits a lower RMS, thereby enhancing the overall reliability of the 
results. This preference may stem from the significantly lower magnitudes of the 
diagonal elements (𝒁𝒁𝑥𝑥𝑥𝑥 and 𝒁𝒁𝑦𝑦𝑦𝑦), which can adversely affect the inversion performance. 
Additionally, incorporating tipper data alongside the impedance tensor is 
recommended, as it can improve the reliability of the subsurface model. However, it is 
important to note that this enhancement was not overwhelmingly substantial, largely 
due to the limited availability of tipper data in this study.  

The TEM data were inverted using the EMUPLUS code to generate a suitable 1D 
resistivity model. Τwo different techniques were employed: the smoothness-constraint 
Occam inversion scheme and the Levenberg-Marquardt technique. The 1D inversion 
models from TEM data reveal three main layers: (1) a conductive layer in the first few 
meters depth, characterized by low resistivity, which likely indicates high water content 
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resulting from recent rainwater infiltration; (2) a resistive layer extending to a depth of 
approximately 120 m, probably composed of hard rock or other geologically resistant 
materials, with high resistivity suggesting dry or les porous formations; and (3) a layer 
below 120 m depth exhibiting decreasing resistivity, likely associated with sediments 
saturated with groundwater, indicating the transition to more porous and water-
bearing formations at greater depths. The resistivity model derived from the TEM data 
was subsequently incorporated into the initial model as a priori information to optimize 
the 3D MT inversion process. This integration led to more reliable outcomes. 
Consequently, the resulting model was chosen as the preferred final 3D inversion model. 

The integration of MT and TEM measurements in the Al-Lith area has revealed a 3D 
electrical resistivity distribution around the main hot spring, confirming the promising 
geothermal energy potential of the region. The final 3D resistivity model, with an error-
weighted RMS of 1.96 after 113 iterations, successfully images key geothermal features 
in the study area, including the heat source, convection patterns, and groundwater 
system associated with the Al-Lith geothermal system. However, the clay cap is not 
imaged in the 3D model, which is common in the high-temperature geothermal systems 
associated with volcanic activity. The individual protrusions identified in the model 
indicate pathways for geothermal fluids, either to the surface or to the near subsurface, 
potentially leading to active surface manifestations (hot springs) of the geothermal 
activity. The geothermal reservoir, indicated by a conductive zone with resistivity 
around 10 Ωm, is shallow, located at a depth of approximately 2.5 km to over 8 km 
depths, and spans a diameter of more than 4 km.  

Future research should focus on expanding the MT and TEM surveys to increase spatial 
coverage and enhance the resolution of the 3D resistivity model. A denser dataset would 
improve the delineation of fluid pathways, fracture zones, and heat sources, providing 
a more comprehensive understanding of the geothermal system. Incorporating full 
tensor MT data, including tipper measurements, would further refine the inversion 
process and enhance sensitivity to lateral resistivity variations, which are crucial for 
characterizing the deep geothermal reservoir. Integrating geophysical results with 
seismic and geochemical data would strengthen interpretations of subsurface structures 
and fluid dynamics. Seismic tomography could help identify fault networks and 
permeability variations, while geochemical analysis of thermal waters would provide 
insights into fluid origins, circulation patterns, and reservoir temperatures. A multi-
disciplinary approach would significantly improve the accuracy of geothermal resource 
assessments and reduce exploration uncertainties. 

Exploratory drilling remains a critical next step in validating geophysical 
interpretations. Drilling would provide direct measurements of temperature, 
permeability, and reservoir composition, confirming the depth and characteristics of the 
geothermal resource. Temperature logging and rock core analysis would allow for 
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further refinement of the resistivity model and help assess the economic feasibility of 
geothermal energy extraction. Beyond the Ain Al-Harrah study, the methodologies and 
workflows developed in this research can be applied to other prospective geothermal 
regions. Integrating MT and TEM methods, combined with advanced inversion 
techniques, provides a robust framework for future geothermal exploration efforts. As 
Saudi Arabia transitions toward renewable energy under Vision 2030, further studies 
should explore additional geothermal sites to support sustainable energy development 
and diversify the country's energy portfolio. 

In conclusion, the results presented in this thesis provide crucial insights into the 
characterization and complexity of the geothermal system in the Al-Lith region of 
western Saudi Arabia, confirming its significant potential for sustainable energy 
development. The derived 3D resistivity model successfully visualizes the key 
geothermal features, providing a detailed subsurface image that improves our 
understanding of the geothermal system's structure and dynamics. The findings 
contribute to Saudi Arabia’s Vision 2030 by advancing knowledge on geothermal 
resources and supporting the transition toward renewable energy. Further 
investigations, including additional geophysical surveys and drilling programs, are 
necessary to assess the region's feasibility of geothermal energy extraction fully.  
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Appendix 
 

A. 2D MT Inversion Model 

The fifteen (15) MT locations from the first stage of the MT survey are shown in Figure 
A-1. The MT soundings are arranged along a North-South transect within a valley 
filled with Quaternary fluvial deposits, which are partially flooded with water and 
intersect the Ain Al-Harrah hot spring. On either side of the valley, steep mountains 
rise, featuring an altitude difference of approximately 700 meters.   

 
Appendix Figure A-1: A topographic map showing the locations of the 15 MT soundings (indicated 
by red squares) acquired during the first stage of the MT survey. The yellow star marks the location of 
Ain Al-Harrah's hot spring. Additionally, the MT layout is displayed in the top right corner of the figure. 
Figure taken from Ashadi et al. (2024). 

Figure A-2 shows the 2D inversion result of the determinant of the impedance tensor 
of TM- and TE-mode data during the first stage of the MT survey. After 40 iterations, 
the data achieved an overall error-weighted RMS of 4.0. However, the fit is not optimal 
within the data error bounds, likely due to the influence of 3D resistivity structure, 
galvanic effects, and dimensionality challenges. However, the resulting 2D resistivity 
model is consistent and geologically meaningful, effectively imaging the main 
geothermal features. It clearly depicts the heat source, the fracture zone and its role in 
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the convection pattern, and the groundwater system within the Ain Al-Harrah 
geothermal system (Ashadi et al., 2024). 

 
Appendix Figure A-2: The interpreted 2D geoelectrical model along a 7.8 km long profile, generated 
from the first stage of MT fieldwork. Modified from Ashadi et al. (2024). 

The result of the 2D inversion reveals four noteworthy features or units that can be 
interpreted in the context of the geothermal anomaly (Ashadi et al., 2024): 

1. A low resistivity C1 unit (80–200 Ω.m), which represents the uppermost layers 
of the model, can be interpreted as Quaternary deposits that are saturated or 
partially saturated with freshwater at the surface. 
 

2. A medium to high resistivity, C2 unit (150–900 Ω.m), appears as a laterally 
discontinuous resistivity pattern, indicating a fractured or fault zone that serves 
as a pathway for geothermal fluids to migrate to the near subsurface, potentially 
leading to active geothermal surface manifestations such as hot springs. 
 

3. A lower resistive C3 unit (< 50 Ω.m), located in the bottom layers of the model, 
can be interpreted as the heat source situated beneath a depth of 5 km. 
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4. The high resistivity body (> 1000 Ω.m) is identified in both the northern and 
southern parts of the basin, associated with the basement structures in the study 
area. 
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B. Station Coordinates 

In the following Appendix, the stations coordinates are displayed.  

Appendix Table B-1: Location of the MT soundings used in this thesis. Whether the vertical induction 
coil (tipper data) is present and whether the TEM sounding was installed in the corresponding MT 
station are listed in columns 5 and 6. 

Station Latitude Longitude Elevation 
(m) 

Tipper TEM 

MT01 20.44896 40.50845 197.60 ☑ ☑ 
MT02 20.46324 40.47006 165.60 ⮽ ⮽ 
MT03 20.46304 40.46642 171.00 ⮽ ⮽ 
MT04 20.49071 40.45579 184.00 ⮽ ⮽ 
MT05 20.45560 40.49601 204.00 ⮽ ☑ 
MT06 20.46705 40.46473 170.10 ⮽ ⮽ 
MT07 20.47158 40.46382 166.50 ⮽ ⮽ 
MT08 20.47644 40.45998 170.00 ⮽ ⮽ 
MT09 20.48015 40.45734 177.20 ☑ ⮽ 
MT10 20.48571 40.45687 175.80 ⮽ ⮽ 
MT11 20.49773 40.45597 183.60 ⮽ ⮽ 
MT12 20.44587 40.47351 161.10 ☑ ⮽ 
MT13 20.44042 40.47439 146.90 ⮽ ⮽ 
MT14 20.45530 40.46906 161.90 ⮽ ⮽ 
MT15 20.47231 40.46318 164.50 ⮽ ⮽ 
MT16 20.45867 40.46648 177.63 ⮽ ⮽ 
MT17 20.45660 40.46751 158.47 ☑ ⮽ 
MT18 20.45143 40.47087 159.82 ⮽ ⮽ 
MT19 20.44839 40.47168 158.49 ☑ ⮽ 
MT20 20.44296 40.47473 160.00 ⮽ ⮽ 
MT21 20.45055 40.47551 162.81 ⮽ ⮽ 
MT22 20.45385 40.47946 165.00 ⮽ ⮽ 
MT23 20.48248 40.48688 208.22 ⮽ ⮽ 
MT24 20.48044 40.48103 193.47 ⮽ ⮽ 
MT25 20.47839 40.47378 181.74 ☑ ⮽ 
MT26 20.45648 40.48529 184.07 ☑ ☑ 
MT27 20.45622 40.48837 181.99 ⮽ ☑ 
MT28 20.45547 40.49066 184.72 ⮽ ☑ 
MT29 20.45164 40.49549 175.85 ⮽ ☑ 
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MT30 20.44906 40.49434 182.66 ☑ ⮽ 
MT31 20.44603 40.49395 173.53 ⮽ ⮽ 
MT32 20.44280 40.49291 168.96 ⮽ ⮽ 
MT33 20.43931 40.48648 174.93 ☑ ⮽ 
MT34 20.43991 40.48314 163.81 ⮽ ☑ 
MT35 20.44268 40.48868 169.86 ⮽ ⮽ 
MT36 20.44150 40.48600 168.75 ⮽ ⮽ 
MT37 20.44791 40.48965 184.98 ☑ ⮽ 
MT38 20.44653 40.48479 171.32 ⮽ ⮽ 
MT39 20.44453 40.48143 159.78 ⮽ ☑ 
MT40 20.45296 40.48408 180.25 ☑ ⮽ 
MT41 20.46593 40.48239 185.15 ☑ ☑ 
MT42 20.46631 40.47892 179.01 ⮽ ☑ 
MT43 20.46825 40.47288 170.08 ⮽ ☑ 
MT44 20.47349 40.47765 179.77 ⮽ ⮽ 
MT45 20.47133 40.48194 189.91 ☑ ⮽ 
MT46 20.46073 40.48879 186.88 ⮽ ☑ 
MT47 20.46354 40.48697 182.66 ⮽ ☑ 
MT48 20.46020 40.47735 169.93 ☑ ⮽ 
MT49 20.45326 40.47447 163.43 ⮽ ⮽ 
MT50 20.46450 40.47639 185.28 ⮽ ⮽ 
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C. MT Transfer Functions 

 
Appendix Figure C-1: MT transfer functions obtained after data processing for stations MT01 to 
MT04. The red color represents the XY components, while the blue indicates the YX components. 
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Appendix Figure C-2: MT transfer functions obtained after data processing for stations MT05 to 
MT09. The red color represents the XY components, while the blue indicates the YX components. 
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Appendix Figure C-3: MT transfer functions obtained after data processing for stations MT10 to 
MT13. The red color represents the XY components, while the blue indicates the YX components. 
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Appendix Figure C-4: MT transfer functions obtained after data processing for stations MT14 to 
MT17. The red color represents the XY components, while the blue indicates the YX components. 
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Appendix Figure C-5: MT transfer functions obtained after data processing for stations MT18 to 
MT21. The red color represents the XY components, while the blue indicates the YX components. 
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Appendix Figure C-6: MT transfer functions obtained after data processing for stations MT22 to 
MT25. The red color represents the XY components, while the blue indicates the YX components. 
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Appendix Figure C-7: MT transfer functions obtained after data processing for stations MT26 to 
MT29. The red color represents the XY components, while the blue indicates the YX components. 
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Appendix Figure C-8: MT transfer functions obtained after data processing for stations MT30 to 
MT33. The red color represents the XY components, while the blue indicates the YX components. 
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Appendix Figure C-9: MT transfer functions obtained after data processing for stations MT34 to 
MT37. The red color represents the XY components, while the blue indicates the YX components. 
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Appendix Figure C-10: MT transfer functions obtained after data processing for stations MT38 to 
MT41. The red color represents the XY components, while the blue indicates the YX components. 
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Appendix Figure C-11: MT transfer functions obtained after data processing for stations MT42 to 
MT45. The red color represents the XY components, while the blue indicates the YX components. 
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Appendix Figure C-12: MT transfer functions obtained after data processing for stations MT46 to 
MT49. The red color represents the XY components, while the blue indicates the YX components. 
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Appendix Figure C-13: MT transfer functions obtained after data processing for station MT50. The 
red color represents the XY components, while the blue indicates the YX components. 
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D. TEM Data Selections 

Following the processing step, TEM data points suitable for further inversion process 
were meticulously chosen. The following figures display the raw, stacked, and selected 
data points for the remaining TEM soundings. Data points below the noise level were 
eliminated, and saturated sections at early times were also excluded from the selected 
data. 

 

Appendix Figure D-1: Stacked and selected data points of (a) TEM – 01 and (b) TEM – 05 soundings. 
The magenta circles represent the selected transient data used for further inversion. The stacked data 
for the low-moment (LM), high-moment (HM), and noise level are shown in blue, green, and black lines, 
respectively. 
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Appendix Figure D-2: Stacked and selected data points of (a) TEM – 28 and (b) TEM – 29 soundings. 
The magenta circles represent the selected transient data used for further inversion. The stacked data 
for the low-moment (LM), high-moment (HM), and noise level are shown in blue, green, and black lines, 
respectively. 
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Appendix Figure D-3: Stacked and selected data points of (a) TEM – 42 and (b) TEM – 43 soundings. 
The magenta circles represent the selected transient data used for further inversion. The stacked data 
for the low-moment (LM), high-moment (HM), and noise level are shown in blue, green, and black lines, 
respectively. 
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Appendix Figure D-4: Stacked and selected data points of (a) TEM – 46 and (b) TEM – 47 soundings. 
The magenta circles represent the selected transient data used for further inversion. The stacked data 
for the low-moment (LM), high-moment (HM), and noise level are shown in blue, green, and black lines, 
respectively. 
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E. 1D TEM Inversion Models 

The following figures display 1D inversion models and their corresponding data fits for 
the rest of the TEM soundings. 

 
Appendix Figure E-1: 1D inversion results obtained from stations TEM01 and TEM05 with different 
algorithms: Levenberg-Marquardt (red lines), Occam with a first-order smoothness constraint (magenta 
lines), and the equivalent model (grey lines) shown in the left panel. The right panel illustrates the 
induced voltage decay over time, comparing both observed and calculated TEM data for each inversion 
approach. 

 
Appendix Figure E-2: 1D inversion results obtained from stations TEM29 and TEM42 with different 
algorithms: Levenberg-Marquardt (red lines), Occam with a first-order smoothness constraint (magenta 
lines), and the equivalent model (grey lines) shown in the left panel. The right panel illustrates the 
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induced voltage decay over time, comparing both observed and calculated TEM data for each inversion 
approach. 

 
Appendix Figure E-3: 1D inversion results obtained from stations TEM43 and TEM46 with different 
algorithms: Levenberg-Marquardt (red lines), Occam with a first-order smoothness constraint (magenta 
lines), and the equivalent model (grey lines) shown in the left panel. The right panel illustrates the 
induced voltage decay over time, comparing both observed and calculated TEM data for each inversion 
approach. 

 
Appendix Figure E-4: 1D inversion results obtained from stations TEM28 and TEM47 with different 
algorithms: Levenberg-Marquardt (red lines), Occam with a first-order smoothness constraint (magenta 
lines), and the equivalent model (grey lines) shown in the left panel. The right panel illustrates the 
induced voltage decay over time, comparing both observed and calculated TEM data for each inversion 
approach.  
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F. 3D Inversion Data Fit 

This Appendix shows the data fit between calculated and observed data from the 
preferred 3D MT inversion model, which incorporating the TEM data as a priori 
information.  

 

Appendix Figure F-1: Comparison of observed versus predicted MT transfer functions from the 
preferred model at stations MT01 to MT04. The red color represents the XY components, while the blue 
indicates the YX components. 
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Appendix Figure F-2: Comparison of observed versus predicted MT transfer functions from the 
preferred model at stations MT05 to MT09. The red color represents the XY components, while the blue 
indicates the YX components. 
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Appendix Figure F-3: Comparison of observed versus predicted MT transfer functions from the 
preferred model at stations MT10 to MT13. The red color represents the XY components, while the blue 
indicates the YX components. 
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Appendix Figure F-4: Comparison of observed versus predicted MT transfer functions from the 
preferred model at stations MT14 to MT17. The red color represents the XY components, while the blue 
indicates the YX components. 
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Appendix Figure F-5: Comparison of observed versus predicted MT transfer functions from the 
preferred model at stations MT18 to MT21. The red color represents the XY components, while the blue 
indicates the YX components. 
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Appendix Figure F-6: Comparison of observed versus predicted MT transfer functions from the 
preferred model at stations MT22 to MT25. The red color represents the XY components, while the blue 
indicates the YX components. 
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Appendix Figure F-7: Comparison of observed versus predicted MT transfer functions from the 
preferred model at stations MT26 to MT29. The red color represents the XY components, while the blue 
indicates the YX components. 
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Appendix Figure F-8: Comparison of observed versus predicted MT transfer functions from the 
preferred model at stations MT30 to MT33. The red color represents the XY components, while the blue 
indicates the YX components. 
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Appendix Figure F-9: Comparison of observed versus predicted MT transfer functions from the 
preferred model at stations MT34 to MT37. The red color represents the XY components, while the blue 
indicates the YX components. 
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Appendix Figure F-10: Comparison of observed versus predicted MT transfer functions from the 
preferred model at stations MT38 to MT41. The red color represents the XY components, while the blue 
indicates the YX components. 
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Appendix Figure F-11: Comparison of observed versus predicted MT transfer functions from the 
preferred model at stations MT42 to MT45. The red color represents the XY components, while the blue 
indicates the YX components. 
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Appendix Figure F-12: Comparison of observed versus predicted MT transfer functions from the 
preferred model at stations MT46 to MT49. The red color represents the XY components, while the blue 
indicates the YX components. 
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Appendix Figure F-13: Comparison of observed versus predicted MT transfer functions from the 
preferred model at station MT50. The red color represents the XY components, while the blue indicates 
the YX components. 
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