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Genetic effects on molecular network states
explain complex traits
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Abstract

The complexity of many cellular and organismal traits results from
the integration of genetic and environmental factors via molecular
networks. Network structure and effect propagation are best
understood at the level of functional modules, but so far, no con-
cept has been established to include the global network state.
Here, we show when and how genetic perturbations lead to molec-
ular changes that are confined to small parts of a network versus
when they lead to modulation of network states. Integrating
multi-omics profiling of genetically heterogeneous budding and
fission yeast strains with an array of cellular traits identified a cen-
tral state transition of the yeast molecular network that is related
to PKA and TOR (PT) signaling. Genetic variants affecting this PT
state globally shifted the molecular network along a single-
dimensional axis, thereby modulating processes including energy
and amino acid metabolism, transcription, translation, cell cycle
control, and cellular stress response. We propose that genetic
effects can propagate through large parts of molecular networks
because of the functional requirement to centrally coordinate the
activity of fundamental cellular processes.
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Introduction

The genetic complexity of traits such as human body size and dis-

ease susceptibility has been well known for many years. Still there

is a lack of understanding about how the ensemble of trait-associated

genetic variants and environmental factors are integrated at the

molecular level. Recent work has proposed an “omnigenic” instead

of a “polygenic” model for the genetic architecture of complex traits

in humans, in principle stating that modulation of any gene that is

expressed will have effects on all traits associated with a given tissue

(Boyle et al, 2017). Central to the omnigenic model is the notion that

genetic variants can affect “peripheral genes” and, via mediation by

the cellular gene-regulatory network, ultimately affect trait-

determining “core genes” (Liu et al, 2019). However, the mechanistic

basis for the transmission of such effects across the network has

remained unclear. In contrast, work focusing on the modular

sub-structure of molecular networks favors the view that specific

sub-networks or network modules are associated with disease pheno-

types (Chen et al, 2008; Han, 2008; Schadt, 2009; Vidal et al, 2011;

Peters et al, 2017). Fundamental to the modularity of a molecular

network is the notion that cellular functions require particular stoichi-

ometries between molecular components. This concept facilitates

mechanistic understanding of the propagation of genetic variant

effects since members of a network module are often subject to co-

regulation. In this latter framework however, stoichiometry and co-

regulation appear largely confined to the boundaries of individual

network modules and consequently, variant effects would have lim-

ited reach. So far, no concept has been established that explains coor-

dination across separate functional modules as the basis for genetic

variant effects.

Here we propose a model that explains complex and far-reaching

genetic effects as alterations of cellular network states. We define a

network state as a particular molecular configuration of a cell, that

is, its specific composition of transcripts, proteins, other (small)

molecules, and their molecular states as defined by, for example,

protein post-translational modifications. By “network” we refer to

the entire ensemble of interactions occurring between these compo-

nents within a cell. Our model is based on the assumption that only

a small fraction of all theoretically possible network states are physi-

ologically feasible and favorable. The cellular network is globally

constrained by basic biophysical principles, such as the need to
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balance anabolic and catabolic activities to preserve homeostasis

and by cellular limits such as maximum proteome size, protein

cost, molecular crowding, or the availability of membrane space

(Molenaar et al, 2009; Frei et al, 2020; Hu et al, 2020; Mori et al,

2021; Kleijn et al, 2022). Similar to requirements acting within func-

tional modules, global constraints can result in coordinated changes

across the entire network. Such network behavior has been demon-

strated by studies on proteome allocation in Escherichia coli (You

et al, 2013; Basan et al, 2015; Mori et al, 2021; Wu et al, 2022).

Mechanisms that shift network states within the boundaries of

viability have evolved to provide efficient modulation of cellular

function. While environmental alterations may be a driving force to

establish network state regulation in microorganisms (Balakrishnan

et al, 2021), cells in adult multicellular organisms reside in relatively

stable environments. Still, these cells undergo elaborate develop-

mental paths during which cellular states have to be adjusted.

Importantly, basic biochemical pathways such as the carbohydrate

metabolism and developmental processes are functionally coupled

and subject to genetic variation (ERECTA; Keurentjes et al, 2008).

The circadian clock represents another network state-regulatory

mechanism (Sun et al, 2021), which is also modulated through

genetic variation (Kerwin et al, 2011; Jones et al, 2019).

Network states can change through sensing the cell’s environ-

ment or internal molecular state. Control mechanisms exemplified

by signaling pathways ensure that the network remains in a viable

state while adjusting a multiplicity of cellular functions to a particu-

lar environment. Genetic variants can shift network states within

the boundaries of viability and can act on network state-modifying

mechanisms in different ways: by affecting sensing or signaling, but

also by modifying the state of (intermediate) metabolites being

sensed. Using this concept as the basis for our model, we propose a

new classification of genetic effects: (i) variants affecting only a very

small part of a network, such as a single protein or protein complex

(subsequently called “local effects”), (ii) variants affecting single or

grouped modules of the network, such as individual signaling, regu-

latory or metabolic pathways (subsequently called “regional

effects”), and (iii) variants affecting the balance between network

modules that reside in regions of the network which are less

connected to each other by (macro)molecular interactions. The lat-

ter variants change particular aspects of the molecular configuration

of a cell, which require a far-reaching adjustment of the cellular

metabolism and corresponding module activities (subsequently

called “global effects”). Here, we present examples of all three types

of genetic variants.

We set out by applying this paradigm to a complex cellular phe-

notype, namely the ability of yeast to efficiently overcome tempo-

rary temperature stress. Heat stress is among the best-studied

perturbations in yeast (Gasch et al, 2000). Many aspects, such as

organization of the proteome into liquid phases (Wallace

et al, 2015), are conserved in human cells (Franzmann &

Alberti, 2019). Hence, it remains of great interest to understand how

genetic variation influences thermotolerance and cellular stress

resistance in general. Using a collection of yeast segregants, we

studied the genetic contribution to efficient outgrowth after tempo-

rary heat stress, which we refer to as “heat resilience.” Transcrip-

tomic, proteomic, and phosphoproteomic measurements were

employed to comprehensively chart the molecular network state in

each segregant strain (Grossbach et al, 2022). We found genetic

variants with effects on specific, heat-stress-related proteins and

others that determine resilience through a broad cellular program

that is closely related to PKA and TOR signaling. The network state

that results from these signaling activities (PKA/TOR-related or PT

network state) can be summarized as a single quantitative trait. We

characterize the global quantitative alterations of transcripts, pro-

teins, phosphorylation, and metabolic features that constitute

changes of this network state across a wide range of environmental

and genetic influences. Finally, we show that the PT network state

is conserved in fission yeast, which evolved aerobic alcohol fermen-

tation in parallel to budding yeast over an estimated evolutionary

distance of more than 200 million years (Rhind et al, 2011).

Results

Genetic and molecular mapping of heat resilience

Previous studies of thermotolerance in yeast found genetic determi-

nants that convey advantages for growth under persisting high tem-

perature (Steinmetz et al, 2002; Sinha et al, 2006, 2008; Yang

et al, 2013; Caspeta et al, 2016; Weiss et al, 2018; Abrams

et al, 2022) and for heat shock survival (Gibney et al, 2013; Jarolim

et al, 2013). Here, we aimed to understand which factors determine

the time required to re-establish maximum growth rates following a

short, sub-lethal heat stress episode (heat-induced lag).

To find genetic determinants of the thermotolerance trait, we

made use of a well-studied cross between isogenic haploid deriva-

tives of the common lab strain S288c, BY4716, and the vineyard iso-

late strain RM11-1a (BYxRM collection; Brem et al, 2002). We

exposed exponentially growing cultures of the parental strains and

of 100 segregants to transient heat stress at 45°C for 8 min, which

we confirmed to be sub-lethal (Fig EV1A). Following heat stress or

mock treatment, samples of the cultures were diluted into fresh

medium and growth curves were recorded (Fig 1A). From these

curves, strain-specific growth characteristics were inferred and used

to estimate the heat-induced lag (Fig 1B).

Both parental strains scored close to the median (66 min) of all

measurements of heat-induced lag across the collection (BY:

64 min, RM: 81 min, Fig EV1B), consistent with a transgressive pat-

tern of segregation and presumably, a polygenic basis. To localize

genetic factors that contribute to the variation of heat-induced lag,

we performed mapping of quantitative trait loci (hilagQTL) using a

Random Forest-based approach (Michaelson et al, 2010). QTL are

genomic loci (regions) whose genetic variation across a population

(here: the BYxRM cross) correlates with a quantitative trait (here:

heat-induced lag). Three loci passed a threshold of 15% FDR

(Fig EV1C) and showed variable effect directions with comparable

effect size (Fig 1C), partially accounting for transgressive segrega-

tion. An additive random-effects model based on the most signifi-

cant markers at these loci explained up to 35% (adjusted R2) of trait

variability across the strains. Based on the parental replicate mea-

surements, we estimated the heritability of heat-induced lag to be

46% (adj. R2), leaving about a quarter of the estimated heritability

unexplained by effects at these QTL. Regarding potential mediators

of the QTL effects, we noted that the locus on Chromosome XV

(hilagQTL3) contained IRA2, which is known to induce widespread

changes of transcriptional and cellular traits in this yeast cross
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Figure 1. Identification of genetic and molecular determinants of heat-induced lag.

A Growth curves recorded for BY4716 and RM11-1a after transient heat stress treatment (45°C, 8 min) and dilution into fresh growth medium.
B Quantification of growth parameters. Heat-induced lag is calculated as the difference in lag duration (k) between heat-treated (HS, 45°C, 8 min) and mock-treated

samples for each strain (error bars indicate mean � SD; n = 3 biological replicates, Student’s t-test; **P < 0.01).
C Distribution of hilag measurements for strains carrying opposing parental alleles at significant loci identified by QTL mapping (15% FDR, see Fig EV1C).
D Mapping of heat-induced lag to protein abundances and overview of corresponding pQTL. 37 proteins passing a 20% FDR threshold as predictors of heat-induced lag

are shown. The top row shows correlation of the protein’s abundance with heat-induced lag. Fields in all other rows show allelic effects (difference in mean protein
abundance between strains carrying the RM allele compared to the BY allele at the indicated loci) and asterisks indicate significant pQTL-target relations as described
in (Grossbach et al, 2022). Columns or proteins were ordered according to hierarchical clustering. Abundance scaling of Ola1p and YHR020W (marked by “(�)”) was
inverted across the segregants for clustering. h.QTL, hilagQTL.

Source data are available online for this figure.
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(Smith & Kruglyak, 2008; Nguyen Ba et al, 2022). Replacing IRA2 by

the RM allele in the BY background indeed approximated the effect

of the QTL (Fig EV1D).

To identify molecular mechanisms mediating the effects of

genetic variation on the heat stress trait, we compared protein abun-

dances recorded for each strain (Grossbach et al, 2022) to trait dif-

ferences across the collection. Specifically, we trained a Random

Forest model predicting heat-induced lag as a function of protein

abundance. Setting a permutation-based false-discovery rate (FDR)

threshold of 20%, we identified 37 predictive proteins (“hilag pre-

dictor proteins”; Fig 1D). This protein set contained candidates that

are well-known contributors to heat shock survival, such as Hsp104

(Cherkasov et al, 2013) and Ctt1 (Davidson et al, 1996). We further

asked which genetic loci would be associated with variation in these

37 hilag predictor proteins. We mapped protein abundance QTL

(pQTL) for this set of proteins, which revealed loci with strong

effects on few, individual proteins. For example, a pQTL on Chro-

mosome XII affected levels of Hsp104, presumably in cis, since it

was found close to the HSP104 locus. Mog1, a nucleotide-release

factor for the Ran GTPase Gsp1 that participates in the osmotic

stress response (Lu et al, 2004), was the sole significant target of a

pQTL on Chromosome X.

On the other hand, a subset of 30 out of the 37 hilag predictor

proteins exhibited highly correlated changes across the strain collec-

tion (red cluster in Fig 1D), 28 of which shared a significant pQTL at

the IRA2 locus (hilagQTL3). We further noticed that genetic loci

often had opposing allelic effects across many of these proteins.

Notably, the strains with the RM allele at hilagQTL3 had elevated

levels of these proteins, whereas the RM alleles at the loci

hilagQTL1 and hilagQTL2 reduced levels of the same proteins.

These effects were consistent with the effect directions of the three

hilagQTL on heat-induced lag (Fig 1C).

Taken together, our mapping results suggested that differences in

the extent of heat-induced lag and its transgressive segregation

in this cross can be explained both by variants that change the abun-

dance of individual proteins such as Hsp104, as well as by variants

that affect a broader spectrum of proteins. In particular, mapping the

trait to protein abundances indicated that the IRA2 locus impacted a

set of proteins with coordinated expression, which was additionally

modulated by hilagQTL1, hilagQTL2, and potentially other loci.

Quantification of a PKA/TOR-related program of gene expression

The IRA2 locus (coinciding with hilagQTL3) is a pQTL hotspot, that

is, a genomic region affecting the levels of significantly more pro-

teins than expected by chance (Grossbach et al, 2022). Our analysis

above suggested that target proteins of this locus are subject to a

common regulatory program. In order to corroborate this notion, we

tested for coordinated expression of all 225 IRA2 target proteins

(pQTL targets at 10% FDR) within groups of strains defined by their

allele at the IRA2 locus. Thus, we removed effects of the IRA2 allele

and partially removed effects of neighboring variants in linkage dis-

equilibrium (LD). We speculated that, if IRA2 target proteins were

commonly affected by additional loci, there should be a remaining

correlation that is greater than random. This was indeed the case, as

abundance-matched but otherwise random sets of proteins exhibited

lower average pair-wise correlations (mean R2 = 0.06) than targets

of the IRA2 locus (mean R2 = 0.16, empirical P-value < 1E�3,

Fig EV2A) after removing effects of the IRA2 locus itself. We applied

the same test for coordination among their targets to 11 other

hotspots of protein abundance regulation (Fig EV2B). The degree of

coordination among targets of the IRA2 hotspot was larger than for

4 other hotspots with more than 100 targets (Fig EV2C). In sum,

hotspots often affected network modules that remained coordinated

across multiple genetic perturbations. However, the IRA2-related

program encompassed an exceptionally large set of strongly coordi-

nated proteins.

Ira2 is a GTPase-activating protein (GAP) that negatively regu-

lates Ras1/2, which are upstream regulators of the PKA signaling

pathway. The RM allele of IRA2 encodes a protein with higher activ-

ity compared to the BY allele (Smith & Kruglyak, 2008; Nguyen Ba

et al, 2022). Hence, the effects of the IRA2 locus on protein abun-

dances likely result from genetic influence on PKA activity. The

remaining coordination among IRA2 targets in strains with identical

alleles at this locus suggested that more loci could affect the same

set of proteins. For example, a region on Chromosome XIII, which

includes the BUL2 gene, had strong and opposite effects across

many IRA2 targets (“ChrXIII:1,” Fig 1D). Bul2 is involved in the

endocytosis of amino acid permeases (Abe & Iida, 2003; Merhi &

Andre, 2012) and thereby likely affects TORC1 signaling (here

referred to as TOR signaling for simplicity; Kwan et al, 2011). Strong

crosstalk between the TOR and PKA pathways has been shown

repeatedly (Chen & Powers, 2006; Soulard et al, 2010; Ramachan-

dran & Herman, 2011; Zhang et al, 2011). They also converge on

common downstream effectors such as Rim15 (Reinders et al, 1998;

Pedruzzi et al, 2003; Swinnen et al, 2006; Lee et al, 2013) and a

range of transcription factors (Reinders et al, 1998; Pedruzzi

et al, 2003; Swinnen et al, 2006; Lippman & Broach, 2009; Lee

et al, 2013; Kunkel et al, 2019).These observations led us to hypoth-

esize that a large part of the protein abundance changes explaining

the extent of heat-induced lag was under the common control of the

PKA and TOR pathways.

In order to corroborate the relevance of PKA and TOR signaling

in this context, we compared our collection-wide protein abundance

data to transcript abundance changes following chemical inhibition

of the PKA and TOR pathways (Kunkel et al, 2019). Indeed, we

observed that the effect of the RM allele of IRA2 in our dataset was

highly correlated to the effect of chemical PKA and TOR inhibition

(Pearson’s r = 0.75 and 0.60, respectively, both significant at

P < 1E�15, Fig 2A). We next sought to quantify the status of PKA/

TOR (PT) signaling in a given population of yeast cells. We there-

fore conceived a score that summarizes overlapping outcomes of

PKA and TOR activity (“PT score”) based on a set of 47 PT-induced

and 44 PT-repressed marker genes selected by thresholding and fil-

tering the chemical inhibition data (see Materials and Methods). We

then made use of the overlap between these markers and our prote-

omic data for the BYxRM cross to select 18 and 22 abundance

markers for induced and repressed PKA/TOR activity, respectively.

The PT score is the difference between the median abundance of

proteins in the PT-induced set and the median abundance of those

in the PT-repressed set in a specific yeast strain (Fig 2A). This score

quantifies relative differences in PT activity between strains.

To further establish the PT score as a measure of combined activ-

ities of the PKA and TOR pathways, we compared it to a similar

score based on the changes in molecular configuration of the cell

that occur at the shift from glucose to ethanol consumption (diauxic
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A Comparison of the effects of chemical inhibition of PKA (left) and TOR (right, both after treatment for 20 min, data from Kunkel et al, 2019) on transcripts to
difference according to parental IRA2 allele on the corresponding protein abundances in the BYxRM collection. Assignment of transcripts to PT-induced and PT-
reduced sets is indicated by green and blue dots, respectively. The PT score is calculated as the difference between the medians of marker protein abundance (scaled
and centered across the BYxRM collection) in the two sets.

B Comparison of a score based on transcript level changes during the diauxic shift (Brauer et al, 2005) to the PT score for all strains of the BYxRM collection.
C PCA of proteomic data for BY4742 grown on different carbon sources (Paulo et al, 2016). Coloring by PT score for each sample, calculated based on protein

abundances after scaling and centering across conditions, yielding a comparison to the global mean for the studied range of carbon sources. Fractions of total
variance explained by each PC are indicated.

D Comparison of sample scores on PC1 (panel C) to the PT score. Dashed red line shows the linear regression model.
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Source data are available online for this figure.
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shift). Further, we applied the PT score to yeast samples grown on a

range of carbon sources. Both scenarios involve concerted changes

in the PKA and TOR pathways (Pedruzzi et al, 2003; Broach, 2012).

First, we extracted a set of markers based on transcript abundance

changes during the diauxic shift (31 diauxic shift-induced and 30

shift-reduced proteins; Brauer et al, 2005). The difference in

medians between these marker sets showed almost perfect correla-

tion with the PT score across BYxRM segregants (Fig 2B, r = �0.95,

P < 1E�15). Next, we analyzed a proteomic dataset generated for a

strain derived from the common lab strain S288c (BY4742) grown

on 10 different carbon sources (Paulo et al, 2016). We calculated PT

scores for each condition based on the abundances of 40 and 39 pro-

teins that overlapped with the PT-induced and PT-reduced marker

sets, respectively. As expected, the highest scores were attributed to

populations grown on glucose, sucrose, and fructose (Paulo

et al, 2016), while other carbon sources led to lower PT scores. To

analyze the extent to which proteomic changes under these different

carbon sources correlated with PT activity, we performed principal

component analysis (PCA), which reduced the complexity of the

proteomic changes to a low-dimensional space (Fig 2C). We then

compared PT scores calculated for the individual growth conditions

to their respective placement along the first principal component

(PC1). We observed a strong correlation between the positioning of

the growth conditions along PC1 and their PT scores. The predictive

accuracy of the PT score for PC1 scores in a linear model across con-

ditions reached up to 93% (adj. R2, P < 1E�5, Fig 2D). Since PC1

explained more than 60% of the proteome variation in the data,

changes of PT activity under these conditions are associated with a

major reorganization of the proteome. A noticeable exception was

the sample grown on oleate, which deviated most from the observed

correlation between PC1 and the PT score. Comparison of the prote-

omic state in this sample to the results of chemical inhibition of

PKA and TOR still showed good agreement (linear model adj.

R2 = 0.28, P < 1E�25, Fig EV2D). However, proteins annotated for

fatty acid oxidation (GO:0019395) were more strongly increased

than expected. Together with the deviation of this sample from the

global trend, this suggests that growth on lipids could result in an

alternative cellular configuration, which is not entirely captured in

the PT score. Taken together, these comparisons indicate that the

PT score captures a mode of cellular re-configuration that is related

to the diauxic shift and to the changes occurring between a broad

range of carbon sources, which agrees with the known roles of PKA

and TOR signaling.

Consistent with the direction of effect of the IRA2 allele

(hilagQTL3, the less active allele in BY increases PKA activity,

Fig 1C), the PT score was positively correlated with heat-induced

lag and explained up to 18% variability of this trait (linear model

adjusted R2, P < 1E�5, Fig 2E), exceeding the effect of any single

hilagQTL, including the IRA2 locus itself. Further, the PT score and

heat-induced lag were still correlated even after correcting for all

three hilagQTL (partial correlation R’ = 0.19, P = 0.06) indicating

that additional variability in the molecular network that determines

heat-induced lag was captured by the PT score. As noted above, we

observed inverse effects of the other hilagQTL on IRA2 targets. Con-

sistently, hilagQTL1 and hilagQTL2 had significant and inverse

effects on the PT score (mean difference between RM and BY allele-

carrying strains: +0.59 and +0.67, respectively, both P < 0.05) as

compared to hilagQTL3 (�1.19, P < 1E�5).

We next asked to what extent the PT score was predictive for

proteome differences caused by genetic variation. We found that

the PT score correlated with a major fraction of overall proteome

variation in the BYxRM collection. For example, the PT score

strongly correlated with the first dimension in a PCA of the

BYxRM proteomes (Fig 2F). Overall, linear models using the PT

score reached proteome-wide significance (FDR <0.05) for 622 of

1,862 (33%) protein abundances, explaining on average up to

22% of their total variation (mean adj. R2 in a linear model).

Beyond protein abundance, the PT score was also predictive for

substantial variation in transcriptome and phospho-proteome data

from the same strain collection (Fig 2F). Hence, the PT score cap-

tured major parts of molecular differences across the BYxRM col-

lection in a single quantitative value. Conversely, the

configuration of the cellular molecular network was shifted along

an axis defined by this scalar, which we refer to as the “PT net-

work state” in the following.

Effect of PT network state differences on functional modules

The analyses above were consistent with the coordination of a large

diversity of cellular processes by the PKA/TOR-related regulatory

program. In order to characterize the association between the PT

score and cellular processes and functions, we first assigned pro-

teins in our dataset for the BYxRM collection and corresponding

phosphopeptides to a curated set of Gene Ontology (GO) slim terms

(Cherry et al, 2012). We then correlated the individual proteins and

peptides in each of these GO terms with the PT score. Each GO term

is represented by an individual pie chart that shows the proportion

of significantly predicted proteins and is positioned according to the

average direction and accuracy of prediction by the PT score across

the members of the term (Fig 3). When applied to protein abun-

dance data, the PT score was a significant linear predictor

(FDR <0.05) for more than half of the assigned proteins in close to a

third of all tested GO terms (29 of 95 terms with at least 3 members;

Fig 3A). Strong and highly directional correlations with the PT score

comprised well-known targets of PKA and TOR. Hence, our analysis

confirms that a great diversity of cellular processes is affected by

alterations in PT signaling (Conrad et al, 2014).

This conclusion was further corroborated by correlating the PT

score with protein phosphorylation data obtained for the same

strain collection (Fig 3B). Intensity changes of phosphopeptides in

proteomics data may result from two phenomena: either the abun-

dance of the “host protein” containing the phosphopeptide may

change or the phosphorylation rate of the respective residue

may change. In order to distinguish those two cases, we have used

two different measures to quantify protein phosphorylation: first

the “raw” abundance measurement of a phosphopeptide and sec-

ond protein abundance-corrected residuals (“phospho-residuals,”

Grossbach et al, 2022). Although the former reflects a combination

of protein abundance changes and changes in protein phosphoryla-

tion, the latter measure is corrected for changes in protein abun-

dance and hence solely quantifies changes in phosphorylation.

When several phosphopeptides were measured per protein, we

considered the peptide that was best predicted by the PT score

(highest adj. R2) to reflect the functional state of the corresponding

protein (see Material and Methods for a discussion of potential

bias).
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Appendix Text 1 contains an extensive discussion of the

observed correlations of cellular processes with PT network differ-

ences elicited by natural genetic variation. Dataset EV1 contains

data for individual transcripts, proteins, and phosphopeptides in our

dataset. These alterations span large distances in the molecular net-

work and affect a diversity of cellular processes, including but not
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limited to well-known targets of PKA and TOR signaling such as

cytoplasmic translation, ribosome biogenesis, oxidative phosphory-

lation, and stress responses as illustrated in Fig 3.

Genetic variants affecting the PT network state have global
network effects

The analysis above revealed strong influence of PT network state

alterations on the molecular configuration of strains in the BYxRM

collection. Consequently, we sought to identify genetic variants that

affected the PT network state. No segregant showed a PT score

that fell between those of the parental strains (BY: �0.68, RM:

�0.69), indicating highly transgressive segregation of this trait.

Remarkably, the composition of the proteome and phosphopro-

teome of the parental strains also showed little difference after

dimension reduction (Fig 2F). We performed QTL mapping as above

(Fig EV1C) using the PT score as a target trait and detected three

regions containing predictive markers (PTQTL at 15% FDR, Fig 4A).

The RM allele at PTQTL3 on Chromosome XV, which was close to

IRA2 (< 10 kb), was associated with a lower mean PT score (�1.41,

Student’s t-test P < 1E�8). This is consistent with the known role of

Ira2 in Ras/PKA signaling and the stronger PKA-inhibitory effect

of the RM variant (Smith & Kruglyak, 2008), suggesting that IRA2

mediated the effect at this locus. The allelic effect of PTQTL3 was

counteracted by the effects of PTQTL1 and PTQTL2 (PTQTL1:

+0.58, PTQTL2: +0.63, P < 0.05). PTQTL1 on Chromosome XII coin-

cided with BUL2 (Kwan et al, 2011). The PTQTL2 region contains

known variants in MKT1 and SAL1, which contribute to mitochon-

drial genome instability and consequently, a higher proportion of

petite cells in populations of BY compared to RM (Dimitrov

et al, 2009). There was considerable epistatic interaction between

these PTQTL, which underlines the complexity of the PT network

state (Fig 4B). Specifically, the effect size of PTQTL1 (close to BUL2)

was stronger in strains carrying the RM allele at PTQTL3 (close to

IRA2, +1.10) than in strains carrying the BY allele (+0.21, P < 0.05

for the interaction term), whereas the effect size of PTQTL2 (close

to MKT1/SAL1) was stronger in strains carrying the BY allele

(+1.14) than in those carrying the RM allele (+0.24, P < 0.05 for the

interaction term) at PTQTL3. Potentially related interactions

between major pleiotropic effect loci in determining cellular fitness

traits have been described recently (Nguyen Ba et al, 2022).

When combining these three PTQTL together with the PT score

in a linear model, we still observed significant partial correlation

between the PT score and the abundance of many proteins. Specifi-

cally, 511 proteins showed significant partial correlation with the PT

score in the combined linear model as compared to 622 proteins that

correlated with the PT score alone (FDR <0.05). Taken together

with the previous analysis of cellular processes (Fig 3), this suggests

that other genetic variants altering the PT network state also cause a

widespread reorganization of cellular physiology: in order to main-

tain cellular homeostasis yeast cells seem to adapt multiple pro-

cesses that are under the common control of PKA and TOR

signaling. Thus, a variant changing one process may cause coordi-

nated change of another process that is distant in the molecular net-

work, if that process needs to be adapted to maintain cellular

homeostasis. Based on this notion, we are proposing a classification

of genetic variants into “local,” “regional” and “global” effects.

Genetic effects are defined as “local” if they pertain to single pro-

teins (or complexes) and as “regional” if the effect spreads across

individual or strongly related functional “modules.” Genetic effects

are called “global” if they lead to coordinated change of distant

functional modules to meet, for example, basic molecular or evolu-

tionary constraints. The IRA2 locus in the BYxRM cross serves as a

paradigmatic example of global effects. Importantly, we do not

claim that such global network effects are limited to alterations of

the PT signaling state. Instead, alterations of other central signaling

pathways may also exert effects on a broad range of coordinated cel-

lular functions.

To test this proposed classification, we aimed to assess the

spread of genetic variant effects by comparing distances of pQTL tar-

get proteins in a physical protein interaction network (STRING,

Szklarczyk et al, 2021). As a proof-of-concept, we focused on a

pQTL hotspot on Chromosome X (“ChrX:1”), which did not show

a significant PT score difference (�0.18, P = 0.5, Fig EV3A). Among

20 proteins with a significant pQTL linking to this hotspot, several

were reported to be targets of the zinc-responsive transcription fac-

tor Zap1 (Adh4, Tsa1 and Lap3; Lyons et al, 2000; Wu et al, 2008).

ZAP1, which coincided with the hotspot, contains 9 missense vari-

ants between BY and RM. The hotspot hence likely affected a func-

tional module related to the sensing of zinc while PKA and TOR

signaling remained unaffected. To quantify the spread of these

genetic effects, we computed distances between all pairs of target

proteins of the IRA2 and ZAP1 loci as the shortest path by which

these proteins are connected in the interaction network (Fig 4C).

These distances were measured as the number of “edges” or

reported protein–protein interactions. Network distances between

targets of the ZAP1 locus were on average shorter (3.02 edges per

pair, 153 pairs) than those between targets of the IRA2 hotspot

(3.46, 19,503 pairs, P < 0.01 assuming a Poisson distribution for

inter-node distances, Fig 4C). Thus, although variants at the ZAP1

locus affected many proteins, those effects remained confined to a

specific network module and were therefore classified as “regional.”

Since the spread of the effect of a genetic variant across the net-

work might be related to effect strength or the number of targets,

we next compared pair-wise distances for the targets of 265 pQTL

clusters across the genome (see Materials and Methods) to the

respective number of targets. Additionally, we determined the distri-

bution of network distances by repeatedly drawing random samples

◀ Figure 3. Correlation between PT score and functional modules (GO slim terms).

A Illustration of linear model properties using the PT score as predictor for protein abundances, separated by GO slim terms (Saccharomyces Genome Database). The
size of each circle represents the number of proteins per GO term (logarithmic scaling) as indicated. Red and blue segments correspond to the proportion of proteins
for which the PT score is or is not a significant linear predictor (FDR < 0.05), respectively. Diagram created using R package “scatterpie.”

B Same representation of slim GO terms as in A but based on best predicted phosphopeptide (left panel) or phosphopeptide-residual (right panel) for each GO-
annotated protein (see text for details). The GO term “oligosaccharide metabolic process” was moved inside the diagram boundaries for visibility. Some terms were
moved outside of grouped term boundaries for clarity, as indicated.
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of various sizes (Fig 4D). The average network distance for all 7

clusters with more than 50 targets (except IRA2) fell below the

median of the distribution of average network distance for the

respective random sample size. This is consistent with

the expectation that the targets of an individual QTL are functionally

related and therefore should be comparably close to each other in a
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network. However, the cluster containing the IRA2 locus was an

exception: the mean network distance among its 165 targets was

3.36 edges, which was greater than expected based on random sam-

ples of the same size (0.95 percentile for 10,000 samples: 3.28

edges). Hence, consistent with its classification as “global,” the

IRA2 locus affected distant parts of the molecular network.

The opposite was true for all other clusters with many targets: We

concluded that, as expected, most pQTL hotspots affected proteins

in relatively close proximity, prompting classification of their effects

as “regional.”

On the other hand, 8 of 12 pQTL hotspots (as detected in Gross-

bach et al, 2022) showed significant PT score differences (P < 0.05,

Student’s t-test) and their proteome-wide effects often correlated

with the effects of chemical inhibition of PKA and TOR (Fig EV3A).

Hence, significant shifts of the PT network state and other central

signaling pathways may result as a secondary consequence of these

strong perturbations. Particularly striking in this regard was the

MKT1/SAL1 locus (PTQTL2). The average network distance among

320 targets of the respective pQTL cluster was only 2.86 edges (0.05

percentile of random samples: 3.07). The higher PT score in strains

carrying the RM allele (+0.63) at this locus was expected to result in

a lower abundance of mitochondrial proteins (cf. GO slim term “cel-

lular respiration,” Fig 3A) but instead, it was accompanied by a rela-

tive increase (Fig EV3C). This prompted us to split the proteins

affected by this locus into “PT-consistent” and “PT-inconsistent”

groups (Fig EV3D). The PT-inconsistent targets were located in

closer proximity in the network than PT-consistent targets (Fig 4C),

suggesting a primary regional effect on mitochondria and a second-

ary global effect via PKA/TOR signaling. The proteomic differences

observed at this pQTL hotspot are further detailed in Appendix Text

2 and Fig EV3C and D.

Next, we asked whether global effects were limited to strong per-

turbations, that is, loci with many molecular targets. To address this

question, we quantified the spreading of effects in the network

emerging from genetic perturbations with small effect sizes. When

the FDR threshold of the QTL mapping was relaxed to 0.42 five loci

with low numbers of pQTL could be identified (“PT4” - “PT8,”

Fig 4A). Even after grouping similar markers with almost identical

alleles across the individual strains (grouping markers in Linkage

Equilibrium above 0.8), no more than six proteins were found to be

significantly associated with any of these loci. Thus, PT4 - PT8 can

be regarded as small effect loci. However, subtle changes across the

proteome were elicited by allelic differences at PT4 - PT8 and these

were found to be correlated with the effects of chemical inhibition

of PKA and TOR (Fig EV3B). This suggested that these loci affected

a similar set of proteins as the IRA2 PTQTL, albeit in a more subtle

manner. We computed the average network distance between a var-

iable number of most affected proteins (top 50, 100, 200, or 320;

irrespective of their statistical significance) at each locus. As illus-

trated in Fig 4D, the average distance between these proteins mostly

fell above the median for random samples of the same size (16 of 20

data points) and it exceeded the 0.95 percentile in two cases (50

most affected proteins at PT5 and PT7). The average distances

among targets of pQTL hotspots (7 clusters with more than 50 tar-

gets, except IRA2) were significantly lower than the average dis-

tances between PT4 - PT8 target proteins (P < 0.01 for individual

Student’s t-tests performed for each “top N”). Together, this indi-

cates that loci with low or moderate effects on the PT score can have

subtle, but “global” effects on the molecular network.

The global character of PTQTL effects suggested that two pro-

teins that are under the common control of the PT network state

can be correlated even if they are only distantly related in the net-

work. To test this, we computed pair-wise correlations among all

proteins and binned all pairs by network distance. Next, we quanti-

fied to what extent a correlated pair of proteins (|r| > 0.5) was under

the control of (or associated with) the PT network state. To quantify

this, the correlation of the individual proteins with the PT score was

calculated. For anti-correlated pairs, one of the correlation coeffi-

cients was sign-inverted. Finally, the absolute value of the mean of

both individual correlations served as a measure of “compatibility”

with PT network state alteration as a driver of the correlation for

each protein pair. This analysis revealed that correlated protein

pairs falling into low distance bins (bins 1–3) were less correlated

with the PT score (|mean (sign-corrected) r of individual (paired)

proteins with PT score| > 0.5 for 46% of 48,722 pairs) than protein

pairs in higher distance bins (71% of 10,892 pairs, P < 1e�15, Fish-

er’s exact test). Furthermore, anti-correlated protein pairs were

more often associated with PT score differences than correlated

◀ Figure 4. Genetic effects on the PT score and network state changes.

A QTL mapping of the PT score (blue curve) and overlay of the number of pQTL targets by marker (gray curve; rolling average of pQTL number across windows
comprising 20 genetic markers). Dashed red line represents 15% FDR threshold for QTL mapping and dashed gray line represents the 42% FDR threshold applied for
selection of PT4–PT8. Other PTQTL falling below this threshold were excluded by setting a threshold on the number of pQTL (0.67 percentile of the rolling average of
pQTL, see panel A). Known variants are indicated.

B Distribution of PT scores for strains carrying indicated combinations of parental alleles at significant QTL for the PT score.
C Distribution of network distances (shortest path; STRING database physical interaction-based graph) for all pair-wise combinations of targets (or target subgroups as

indicated) of the indicated pQTL hotspots. Some targets of pQTL hotspot ChrXV:1 (close to IRA2) could not be connected on this graph (indicated by a line at the top
of the plot) and were assigned the highest distance of other pairs (8). A two-sided Poisson test was applied to evaluate differences between the distributions of net-
work distances (confidence levels: **P < 0.01, ***P < 0.001).

D Comparison of network distances for all pair-wise combinations of targets of 265 clustered pQTL (see Materials and Methods) to the number of targets. In some cases,
clusters had identical numbers of targets as well as mean network distance. For these clusters, “empty” circles with slight variation on the y-axis were added for illus-
tration. Dashed blue lines show the distribution of average pair-wise network distances for random samples of various sizes (0.05, 0.5, and 0.95 percentile). The dashed
red line represents the mean distance of all protein pairs in the network (3.188). Red data points represent network distances among variable numbers of most
affected proteins (top N = 50, 100, 200, or 320) of the loci PT4 to PT8. T-tests were applied to test for a significant difference at each “top N” against averages of net-
work distance among targets of 7 clusters with more than 50 targets (right of the dashed vertical line, but excluding IRA2; **P < 0.01).

E (Upper panel) Comparison of individual correlations of proteins in correlated protein pairs with the PT score across the BYxRM collection and their distribution across
network distance bins (distances greater than 6 were collapsed into the 6th bin). Protein pairs were selected for correlation (|r| > 0.5) and split according to the sign of
the correlation as indicated. A high (absolute and sign-corrected) mean correlation of the individual proteins in a pair with the PT score indicates association of the
protein pair with the PT network state. (Lower panel) Proportion of correlated versus anti-correlated protein pairs (|r| > 0.5) across individual network bins.

F Proposed classification of genetic variant effects according to the network position of affected molecules.
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protein pairs and anti-correlation was more prominent in higher net-

work distance bins than in lower network distance bins (Fig 4E).

Hence, the proportions of correlation and anti-correlation among

targets of a QTL might be helpful to characterize genetic effects in

terms of their spread across the network.

In sum, we were able to differentiate the effects of pQTL

according to the relatedness or distance of their targets in a physical

interaction network. Specifically, comparison of the network locali-

zation of proteome-wide effects to changes in the PT network state

allowed us to develop mechanistic hypotheses for the occurrence of

global as compared to regional and local network effects caused by

genetic variation (Fig 4F). We concluded that substantial changes of

the PT score were associated with changes in diverse functional

modules and a re-organization of many basic cellular functions

(Fig 3). This re-organization was in part due to anti-correlated

changes among distant protein pairs (Fig 4E).

Gene–environment interactions shape the PT network state

Previous studies have noted widespread gene–environment interac-

tion for variants that influence gene expression in the BYxRM cross

(Smith & Kruglyak, 2008). To evaluate environmental influences on

network effects of genetic variation, we investigated PT score

changes in the BYxRM cross across two extreme growth conditions:

growth on glucose against growth on ethanol.

First, we re-analyzed transcriptome data generated previously for

strains of the BYxRM collection grown on glucose and on ethanol

(Smith & Kruglyak, 2008) and calculated a PT score based on marker

transcripts (see Materials and Methods) for each of 109 strains in

both conditions. Across 99 strains for which proteome data was

available in our own dataset, PT scores showed good agreement

(Spearman’s q = 0.57, P < 1E�9, Fig 5A), confirming that the PT

score was consistent across independent studies and different molec-

ular modalities. Notably, PT scores of strains grown in glucose and

ethanol were mostly positive and negative, respectively, indicating a

strong effect of the growth condition (Fig 5B), while PT scores of the

same strains were correlated between the two conditions (q = 0.52,

P < 1E�9). Further, transcriptome variability was correlated with

the PT score under both growth conditions: PCA analysis of tran-

scriptomes across 109 strains revealed a strong correlation between

PC1 scores and PT scores in glucose (adj. R2 = 0.91, Fig 5C). The

correlation was slightly reduced for strains grown on ethanol (adj.

R2 = 0.86) and PC1 reflected a smaller proportion of total transcrip-

tome variance (Fig 5C), in line with the PT scores spanning a smaller

range compared to the glucose condition (Fig 5B).

We next performed QTL mapping for PT scores of strains grown

on glucose and ethanol as above. The locus close to the IRA2

hotspot harbored a significant PTQTL in both conditions (Fig 5D).

However, its effect was significantly weaker during growth on etha-

nol (P < 0.01 for the interaction term in a combined linear model),

consistent with previous reports (Smith & Kruglyak, 2008). Another

PTQTL for strains grown on glucose was found within 3 kb to the

FLO8 gene on Chromosome V that carries a null mutation in the BY

progenitor strain S288c (Liu et al, 1996). Several PTQTL for strains

grown on ethanol were close to genes that are known to be relevant

for PKA or TOR signaling and cellular fitness, especially in condi-

tions of nutrient scarcity. These include the GPA2 gene on Chromo-

some V and WHI2, CYT1, and NRT1 on Chromosome XV (Fig 5D).

Whi2 negatively regulates TORC1 and Ras/PKA activity under nutri-

tional stress (Leadsham et al, 2009; Chen et al, 2018; Teng & Hard-

wick, 2019), cytochrome C1 (gene CYT1) is essential for respiration

and finally, NRT1 encodes a high-affinity nicotinamide riboside

transporter (Belenky et al, 2008). In sum, this analysis demonstrated

that the PT score correlated with molecular network effects of

genetic variation in multiple growth media in a condition-dependent

manner and that large-scale transcriptome variation was associated

with the PT score under those conditions.

The PKA/TOR network state correlates with an anabolic pattern
in kinase KO strains

Our analysis of proteomic changes associated with PT state differ-

ences indicated strong links to the central energy and amino acid

(AA) metabolism (Fig 3A), which aligns with the known functions of

PKA and TOR signaling. PKA activity is subject to sensing of external

and internal metabolic cues, most notably the levels of glucose and

cAMP, respectively (Conrad et al, 2014), whereas the activity of TOR

is strongly dependent on the sensing of intracellular and extracellular

AA levels (Hara et al, 1998; Shimobayashi & Hall, 2016; Gonzalez &

Hall, 2017). In order to further investigate associations between the

PT network state and the metabolic configuration of the cell, we re-

analyzed proteomic and metabolomic data for 22 kinase KO strains

(datasets 2 and 3 in Zelezniak et al, 2018) and compared PT scores

calculated based on proteomic data to metabolite levels (Fig 5E). We

observed that 15 out of the 18 proteinogenic AAs measured showed

positive correlation with the PT score, with notable exceptions being

the levels of glutamate (Glu, q = � 0.31) and glutamine (Gln, q = �
0.22). This may seem surprising, since addition of Gln promotes

strong activation of TOR signaling (Duran et al, 2012; Oliveira

et al, 2015). However, our analysis differs from studies employing the

addition or removal of extracellular Gln as a nitrogen source in that it

investigates the metabolic state across strains in which PKA and TOR

activity differ due to genetic perturbation. Since Glu and Gln are

essential nitrogen donors for the synthesis of both nucleotides and

AAs, they will be rapidly used in highly proliferating cells. Thus, in

this setting, intracellular concentrations of Gln and Glu might be

lower in strains with high PT scores due to more active proliferation.

Our observation is also consistent with earlier reports that TOR activ-

ity represses Glu and Gln biosynthesis via inhibition of the retrograde

signaling pathway (Dilova et al, 2004). A particularly strong

correlation was observed between the PT score and fructose-1,6-

bisphosphate (q = +0.48), which is in line with the decisive regula-

tory role of this metabolite for Ras/PKA and as an indicator of glyco-

lytic flux (Peeters et al, 2017; Zhang & Cao, 2017; Tanner et al, 2018).

Finally, we observed positive correlation of the PT score with all inter-

mediates of the pentose phosphate pathway (q = +0.15 to +0.28). In

sum, our analysis confirmed a tight association between the PT net-

work state and cellular metabolism. In particular, PT activity seemed

to be linked to an anabolic and proliferative state of the cell.

The PKA/TOR network state explains molecular and phenotypic
diversity in distantly related yeast species

We next asked whether a similar network state exists in different

species and focused first on the distantly related fission yeast Schiz-

zosaccharomyces pombe. We previously observed differences in
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stress resistance and longevity between a natural isolate, Y0036

(Y0) and the common S. pombe lab strain Leupolds968 (L9)

(Clement-Ziza et al, 2014). We also noticed increased stress resis-

tance across several conditions in the industrial strain DBVPG2812

(DB, unpublished observation). To explore the genetic underpinning

of that phenotypic diversity, we established a three-way cross

between these parents (R1 = Y0 × L9, R2 = L9 × DB, and

R3 = DB ×Y0) with 43–45 segregants per cross and collected

glucose ethanol
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transcriptomic data for the parental strains and each segregant dur-

ing exponential growth on standard medium. Furthermore, we also

collected these data for populations grown in the presence of

0.5 mM hydrogen peroxide (H2O2) for 1 h. Oxidative stress consti-

tutes a naturally occurring stress that plays a decisive role for the

network state re-organization at the transition to respiratory growth

(Tran et al, 2019).

The PT score for each segregant strain was calculated based on

orthologs of the budding yeast PT score marker genes, during

both unperturbed growth and in the presence of H2O2. The range

of the PT score varied strongly between the individual pair-wise

crosses (R2 > R1 � R3). Segregants in the R2 cross were assigned

the highest median PT score (1.57) in the unstressed condition

but the lowest median score (�1.27) in the H2O2 stress

condition (Fig 6A). As previously observed in budding yeast, the

PT score correlated with segregant scores along PC1 of the tran-

scriptome in both conditions (adj. R2 = 0.72 and 0.82, both

P < 1E�15, Fig 6B).

Next, we performed QTL mapping to identify genetic determi-

nants of the PT network state in fission yeast. In the unstressed con-

dition, the strongest QTL was detected at an FDR of 0.15

(Fig EV4A). We investigated this locus and found a polymorphism

at position 1,073 in the pka1 allele of the DB parent that led to an

amino acid exchange from cysteine to phenylalanine (C358F) com-

pared to the other parents. Indeed, swapping the pka1 allele in the

lab strain L9 for the DB allele resembled the effects of this locus on

the transcriptome (r = 0.49, P < 1E�15, Fig 6C). We still observed

strong correlation between the PT score and segregant scores along

PC1 in the group of segregants with the DB allele (adj. R2 = 0.63,

P < 1E�8). Hence, additional genetic variants likely contributed to

variation of the PT network state in the unstressed condition but

were beyond our limit of detection. QTL mapping in the H2O2 stress

condition revealed significant signals in six distinct regions

(Fig EV4A). One of these QTL coincided with the pka1 locus and

consistently, the pka1 allele swap also partially reproduced the

effects of this QTL across the transcriptome in the presence of H2O2

(R = 0.25, P < 1E�15). The strongest signal for PT score changes in

H2O2 was attributed to a region on Chromosome I, within a large

genomic inversion in the Y0 parental strain. The Y0 allele at the

most significant marker led to higher PT scores in the presence of

H2O2 (+1.43, P < 1E�6), but not during unperturbed growth (+0.13,

P = 0.4) and contributed to the dominance of PT score-related dif-

ferences in global transcriptome variability of R1 segregants specifi-

cally in the H2O2 condition (Fig EV4B). This effect again illustrated

the importance of gene–environment interactions underlying PT net-

work state differences.

To evaluate the relevance of the PT score for cellular fitness in

fission yeast, we recorded growth efficiency (final OD after 36 h of

growth in unperturbed conditions) for 114 strains across the col-

lection. This measure correlated significantly with both the strains’

PT scores in unperturbed growth conditions as well as with PT

scores for strains grown in the presence of H2O2 (Fig 6D, adj.

R2 = 0.10 and 0.09, respectively, both P < 1E�3). We further eval-

uated the predictive capacity of PT scores in fission yeast using

stationary phase viability measurements obtained in a previous

study for the R1 cross (Clement-Ziza et al, 2014). As for the previ-

ous trait, we compared these measurements to PT scores from the

unperturbed and oxidative stress conditions. In contrast to growth

efficiency, we observed a strong negative correlation between sta-

tionary phase viability and the PT scores calculated from popula-

tions grown in the presence of H2O2 (adj. R2 = 0.38, P < 1E�5)

but only weak correlation with the PT scores based on unper-

turbed samples (adj. R2 = 0.06, P = 0.06). As described above, we

detected a major QTL that dominated PT score differences among

strains in the R1 cross exclusively in the presence of H2O2. We

speculate that such condition-specific effects of genetic variance

can contribute to fitness differences by eliciting PT network state

differences. Such effects would be limited to fitness traits that are

related to the conditions in which the genetic variant effects are

penetrant.

Motivated by the successful application of the PT score as a pre-

dictor of cellular fitness traits in fission yeast, we applied it to repli-

cative lifespan measurements recorded for 75 wild isolate strains of

the yeast species Saccharomyces paradoxus and S. cerevisiae

(Kaya et al, 2021). Based on the same sets of markers derived

from chemical inhibition experiments as before, we calculated PT

scores using the reported transcriptomic data and compared these

scores to the replicative lifespan of the corresponding strains (Fig 6E).

Indeed, PT scores were weakly, but significantly predictive of replica-

tive lifespan (adj. R2 = 0.09, P < 0.01) across these wild isolates.

We conclude that the PT network state explains long-range net-

work effects and fitness consequences of genetic variants across a

range of growth conditions and in distantly related species of yeast.

Discussion

In this study, we have investigated changes of “multi-omics” molec-

ular network states as a result of genetic variation in three yeast spe-

cies during exponential growth across different environmental

conditions. We observed that substantial fractions of transcriptome,

proteome, and phospho-proteome variability among genetically dif-

ferent yeast strains were correlated to a score based on markers of

PKA and TOR pathway activity (PT score). The proteomic composi-

tion of strains with variable PT scores illustrated the widespread

reorganization of the cellular molecular network by these central

◀ Figure 5. The PT network state is subject to gene–environment interaction.

A Comparison of PT score based on our proteome data and PT score based on transcriptome data from (Smith & Kruglyak, 2008) for 99 strains grown on glucose and
present in both datasets.

B Distribution of PT scores for 109 strains grown in glucose (left) or ethanol (right) based on transcriptome data from (Smith & Kruglyak, 2008).
C PCA of transcriptome variability for 109 strains grown in glucose or ethanol as indicated. Calculation of Eigenvalues, coloring by PT score, and labeling as in Fig 2A.
D QTL mapping of PT score for 99 strains grown in glucose (blue) and ethanol (orange). 15% FDR threshold indicated by dashed red line.
E Correlation of PT score based on proteomic data for several kinase KO strains with metabolite measurements (Zelezniak et al, 2018).

Source data are available online for this figure.
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Figure 6. PT score explains molecular variability and cellular fitness traits in distant yeast species.

A Range of PT score values across pair-wise crosses (R1 = Y0 × L9; R2 = L9 × DB; R3 = DB × Y0) and in two conditions. Parental strains highlighted as indicated.
B PCA based on transcriptome variability for 127 segregants and 3 parental strains as indicated, in unstressed (left) or H2O2-stressed condition (right). Coloring by PT

score and labeling as in Fig 2A.
C Comparison of pka1 DB-allele effect in an L9 allele-swapped strain to differences due to the DB allele at the PTQTL on Chromosome II in the 3-way cross for all tran-

scripts detected in both settings.
D Correlation between growth efficiency and PT scores for 114 strains (upper panels) and comparison between stationary phase viability and PT scores for strains in the

R1 cross (lower panels). PT scores were determined for samples of each strain grown either in the presence or absence of H2O2. Coloring by cross and parental strains
enlarged as indicated.

E Comparison between median replicative lifespan and PT score for 75 wild isolate yeast strains based on data from (Kaya et al, 2021).

Source data are available online for this figure.
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signaling pathways. We studied the genetic basis of the PT network

state in combination with the network distance between QTL target

proteins. This analysis showed that genetic variants associated with

PT score differences caused (global) changes to distant parts of the

network. Our work suggests a rationale for the conditions under

which genetic effects have long-range consequences in molecular

networks: whenever distant network modules require a specific bal-

ance to maintain cellular homeostasis, long-range effects can ensue.

This concept will aid future genetic mapping and association studies

because it provides a mechanistic explanation for why certain

genetic effects are pleiotropic. Notably, our concept differentiates

between pleiotropy in terms of effect size and pleiotropy in terms of

the spread of genetic effects across the network. Although the state

of PT signaling was the dominant network state alteration in the

yeast crosses analyzed here, we do not imply that it would be

the only regulatory mechanism explaining global effects of genetic

variants.

PKA and TOR signaling have been established as central switches

in cellular physiology across most eukaryotes (Gonzalez

et al, 2020). In yeast, the PKA and TORC1 signaling pathways jointly

coordinate the transition from fermentative to respiratory metabo-

lism and regulate the activity of a wide range of cellular functions

beyond growth, including intermediate and energy metabolism,

transcription, mitochondrial and cytoplasmic translation, spore for-

mation, and autophagy (Pedruzzi et al, 2003; Conrad et al, 2014;

Workman et al, 2016; Gonzalez et al, 2020; Plank, 2022). Earlier

studies have already provided examples for genetic variants that

affect the PKA/TOR-dependent metabolic balance during exponen-

tial growth, including mutations in fission yeast pyruvate kinase

(Kamrad et al, 2020), but have not systematically explored its

genetic basis. We did not specifically investigate the role of TORC2

(Plank, 2022) or AMPK/Snf1 signaling (Zaman et al, 2009; Kings-

bury et al, 2015; Malecki et al, 2020) for the program reflected by

the PT score but do not exclude a potential influence. Our analysis

of the association of different cellular functions (GO terms) with the

PT network state at the proteome and phosphoproteome level con-

firmed the coordinated adjustment of a wide range of functional

modules to the metabolic state of the cell. Importantly, here we did

not study the targets of a specific pathway or perturbation but rather

correlations with a global network state, shifted by natural genetic

variation.

It is remarkable that the molecular patterns of the two parental

strains in the BYxRM collection are very similar despite widespread

effects of the IRA2 locus. Our analysis shows that other pQTL

hotspots including BUL2 and variants with smaller effects together

balance the effect of the IRA2 locus. This observation provides excit-

ing testable hypotheses for future research: drugs (such as rapa-

mycin) should be able to balance global effects as caused by the

IRA2 variant and therefore reverse a great diversity of genetic effects

and possibly even disease phenotypes. Our model helps explaining

the joined effect of multiple genetic variants and quantification of

the PT network state even enabled the prediction of outcomes

of genetic configurations without pinpointing individual variants.

For example, a large, poorly resolved genetic region led to PT net-

work state differences in a fission yeast cross (Y0036 × L968) under

oxidative stress. PT network state differences in turn mediated the

effects of genetic variation on a wide spectrum of cellular traits,

including stress resistance (heat stress, oxidative stress) and

replicative lifespan. This provides a new perspective on the integra-

tion of metabolic regulation with other cellular functions in the con-

text of genetic variability, which has become a major focus of

studies in the field of proteostasis and aging (Ottens et al, 2021).

We were able to discriminate between loci that caused changes

to distant parts of the molecular network by modifying the PT net-

work state and loci that had more confined consequences. Examples

for the latter type of loci included pQTL with local effects on the

abundance of individual proteins such as the effect on Hsp104 and a

pQTL hotspot with regional effects on several downstream targets of

the Zap1 transcription factor but without concomitant reorganiza-

tion of multiple functional modules. The average distance across the

molecular network between proteins regulated by genetic hotspots

was in most cases smaller than observed in random samples, consis-

tent with the expectation that most hotspots have strong effects on

specific functional modules. In contrast, the PT network state serves

as an example of a—genetically controlled—network state associ-

ated with a global re-organization of the cell. We detected several

loci with comparably weak effects (showing a low number of signifi-

cantly affected protein targets) but detectable differences in the PT

network state. The most affected proteins at these loci displayed

larger network distances than the targets of most hotspots. Hence,

weak effects can be pleiotropic in the sense that they result in

changes in distant parts of the molecular network. Effect size and

network spread are therefore not strictly coupled.

Among proteins whose abundance correlated with the PT net-

work state, anti-correlation was more frequent than among proteins

which correlated independently of the PT network state. Network-

based statistics such as “betweenness” could further serve as quan-

tifiable criteria to determine the type of genetic effects in an a priori

manner when individual variants and hence, variant genes can be

identified. Unfortunately, the genetic resolution of our data was

insufficient to confidently assign sufficient numbers of QTL to indi-

vidual variants or genes to allow further analysis in this direction. It

is also important to note that there may be no objective, quantifiable

boundaries separating local from regional and regional from global

effects. Instead, we expect a continuum of network changes and the

terms “local,”, “regional,”’ and “’global”’ should help to conceptual-

ize the different nature of QTL effects on molecular networks. For

example, we propose that far-reaching genetic effects, such as those

postulated in the concept of “omnigenic inheritance” (Boyle

et al, 2017), may originate from adjustments in cellular physiology,

caused by genetic variants with global effect components.

Our work provides a schema for causally linking genetic

variation to general physiological programs: it begins with the iden-

tification and quantification of network states that serve as low-

dimensional, biologically interpretable representations of complex

cellular states, proceeds by characterizing their cellular function,

analyzing genetic and environmental mechanisms affecting them,

and ultimately synthesizing that information to explain differences

between individuals. By developing molecular signatures that faith-

fully capture a particular network state, we will be able to interpret

transcriptomic data (such as those collected by the GTEx consor-

tium) in quantitative physiological terms and to explain the conver-

gence of hitherto seemingly unrelated genetic variation on more

general regulatory programs. Exemplarily, we confirmed conserva-

tion of the PT network state between Saccharomyces cerevisiae and

Schizzosaccharomyces pombe despite millions of years and different
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paths of evolution that separate these species (Rhind et al, 2011). In

mammalian cells, the transition between respiratory and glycolytic

metabolism is known as the “Warburg effect” (Liberti & Locasale,

2016), which was first observed in carcinogenesis but has since

been described in many other circumstances such as cellular differ-

entiation (Zhang et al, 2018; Bhattacharya et al, 2020) and aging-

associated disease (Traxler et al, 2022). For example, we have

recently detected an association between ERK signaling (the mam-

malian equivalent of the PKA pathway) and the co-occurrence of

aging-associated diseases (Fraser et al, 2022). Here, we have shown

the utility of quantifying network states for explaining the conse-

quences of genomic variability for cellular traits. We propose to test

other regulatory mechanisms that exert developmental or metabolic

control for network state-regulating properties and to chart their nat-

ural genetic variation. This framework will help to better under-

stand (i) the polygenicity of complex traits, (ii) the propagation of

genetic effects in molecular networks, and thereby (iii) pleiotropic

effects.

Materials and Methods

Heat-stress experiments

The BYxRM yeast strain collection was originally derived from a

cross between the two parental strains BY4716, an S288C derivative

(MATa lys2D0) and RM11-1a (MATa leu2D0 ura3D0 ho::KAN; Brem

et al, 2002). Experiments to determine thermotolerance were

performed for a subset of 100 segregants, which were selected based

on non-flocculent growth and by the availability of genotype data

from our previous study (Grossbach et al, 2022), and for the paren-

tal strains. Experiments on the parental strains were performed

alongside segregant experiments on three separate days to assure

consistent results over the entire course of the experiments. Pre-

cultures in synthetic complete medium with 2% glucose (FORME-

DIUM) were inoculated from YPD plates grown for 3 days after

thawing of yeast stocks. Over-night cultures in the same medium

were inoculated from the pre-cultures and were grown with con-

stant shaking at 30°C in glass flasks. Heat treatment was applied to

samples of cells taken at OD600 between 0.7 and 0.8 in PCR tubes in

a PCR cycler. Temperature was increased from 25 to 45°C by 0.1 K/s

with subsequent incubation at 45°C for 8 min. As a control, samples

from the same cultures were incubated at 25°C. 60 ll of the

samples were then diluted 1:30 into fresh medium in 24-well plates.

Growth curves following dilution after mock or heat treatment were

recorded in a Thermo Fisher Varioskan Flash instrument with fur-

ther incubation and shaking at 30°C. Growth curves were fitted

using the R package “grofit” (Kahm et al, 2010) with a parametric fit

following a Richard’s law model to infer growth characteristics.

QTL mapping and trait mapping based on molecular data in
budding yeast

QTL mapping to identify genetic determinants of heat-induced lag

and the PT score in budding yeast was performed using Random

Forest (RF)-based machine learning as described previously (R

package “RFQTL” and Grossbach et al, 2022). We used a similar

procedure to determine protein abundances that have predictive

power for heat-induced lag. In brief, scaled protein abundance

values were used as continuous predictor variables to grow RF

models of heat-induced lag measurements from 102 strains,

including averaged triplicate measurements for the parental strains.

Statistical significance of the results was assessed by permutation of

heat-induced lag measurements across the strains to generate a null

distribution of variable importance for each predictor. P-values were

adjusted for multiple testing using a Benjamini-Hochberg procedure.

QTL mapping of the PT score based on data reported in (Smith &

Kruglyak, 2008) was performed on a set of 99 segregants, which we

previously genotyped based on our own RNA-Seq data (Grossbach

et al, 2022).

PT score calculation

We defined sets of PT-regulated transcripts by setting a threshold of

at least two standard deviations for the effects of chemical inhibition

(Kunkel et al, 2019). Here, we included data at both the 20 and

150 min time points for both PKA and TOR inhibition. After exclu-

sion of transcripts that changed abundance in the opposite direction

in any of these treatments, we retained 47 (of 65) transcripts as a

PT-induced set and 44 (of 90) transcripts as a PT-reduced set. In our

data, abundance measurements for 22 and 18 corresponding pro-

teins were available. A PT score was then calculated for each of 112

strains for which proteomic data was available (Grossbach et al,

2022) as the difference between the median abundance of proteins

in the induced set to the median in the reduced set using protein

abundances after normalization and centering across all strains.

Thus, a higher PT score corresponds to higher median abundance of

PT-induced proteins relative to PT-reduced proteins. The same pro-

cedure was applied to calculate PT scores for 109 segregants based

on transcript abundance data reported in (Smith & Kruglyak, 2008),

for 96 kinase KO strains based on proteome data reported in (Zelez-

niak et al, 2018) and for transcriptome data for 133 strains from our

three-way cross in fission yeast.

Analysis of phospho-proteome correlations

Since in many cases several phosphopeptides were measured per

protein, we considered the peptide that was best predicted by the

PT score (highest adj. R2) to reflect the functional state of the corre-

sponding protein. This decision introduces a bias for proteins with

high numbers of phosphopeptides and might in some cases overesti-

mate the “net correlation” between a specific protein and the PT

score. To mitigate the second and potentially more severe bias, we

tested each protein for inconsistent predictions by the PT score. For

97 proteins that contained more than one significantly predicted

peptide (FDR < 0.05), inconsistent predictions were found in only

13 cases (13.4%). This fraction was only slightly affected by the

choice of the FDR threshold (15.8% inconsistent among 120 pro-

teins at FDR < 0.25). We did not exclude these proteins from the fol-

lowing analysis, since they are unlikely to affect correlations across

entire GO terms.

Network distance analysis and clustering of pQTL

To evaluate the distance of a pair of proteins across the molecular

network, we applied network graph analysis using the R package
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“igraph” (version 1.4.2, Csardi & Nepusz, 2006). The network graph

was based on STRING database physical interactions at medium

confidence level (score > 0.400; Szklarczyk et al, 2021). The graph

was simplified by removal of multiple edges. Shortest path distances

between protein pairs were calculated using the “distances” func-

tion from the igraph package. For the comparison of target network

distances to the number of targets across pQTL, an adjacency-

restricted clustering algorithm described in (Ambroise et al, 2019)

as implemented in the R package “adjclust” (version 0.6.6), was

used to group pQTL. The number of clusters (k = 294) was chosen

to result in an LD of 0.9 or higher within each cluster. Lead markers

were defined for each cluster based on the number of targets

assigned to each marker within the cluster. Clusters were further

merged if the LD between any lead marker between two adjacent

clusters exceeded 0.9. This resulted in a final set of 265 clusters.

Generation of a three-way fission yeast cross

Parental strains for the three-way cross in fission yeast were chosen

based on differences in their resistance to oxidative stress in prelimi-

nary experiments. The three parental strains were JB50, a strain

closely related to the reference strain JB22 (Leupolds968, L968),

JB759 (Y0036), a strain with increased sensitivity to oxidative stress

compared to JB50, and JB760 (DBVPG2812), a strain that is more

resistant to oxidative stress than JB50. We used a double selection

strategy to obtain diploid hybrids between each pair of parental

strains. Specifically, we deleted the ade6 locus in each

parental strain and differentially replaced it with resistance genes

for either kanamycin (KAN, in JB50) nourseothricin (NAT, in

JB759) or hygromycin B (HB, in JB760). Plates containing both fun-

gicides corresponding to a pair of parental strains were used to

select for diploid hybrids carrying both resistance genes. F1 haploid

recombinants were obtained straight from the selected diploid

hybrids by tetrad analysis. F2 haploid recombinants were obtained

by performing tetrad analysis of F2 diploid hybrids obtained from a

mass mating among F1 haploid segregants. The cross included 150

strains in total.

RNA-seq analysis of fission yeast strains

Samples for transcriptomic analysis were grown in 50 ml YES

medium to an OD595 of 0.4–0.5 at 32°C. These samples were either

harvested before or after the exposure to 0.5 mM H2O2 for 1 h. In

total, the transcriptomes of 286 samples, corresponding to 130

strains in two conditions were quantified. RNA isolation, library

preparation, and sequencing were performed as described previ-

ously (Clement-Ziza et al, 2014). We mapped reads against the Schi-

zosaccharomyces pombe reference genome using Bowtie with the

following parameters: -C -n 3 -e 100 -best (v.0.12.7, Langmead et al

(2009)). Read group information was added, and BAM files were

sorted using Picard utilities (http://broadinstitute.github.io/picard).

Further processing of the RNA-seq data was performed with the

GATK pipeline (v3.4-46-gbc02625), according to best practice guide-

lines (Van der Auwera et al, 2013). Variants at the polymorphic sites

were then called with UnifiedGenotyper. If the GATK score for a

given site was below 20, the position was considered as unknown.

We excluded polymorphic sites for which (i) the samples of the

parental strains could not be called, (ii) or more than 50% of

the segregants could not be called, or (iii) the minor allele frequency

was less than 10% in our cross. We also excluded genetic markers if

they were called differently than both closest neighbors (i.e. the

nearest upstream marker and the nearest downstream marker) and

those markers were within 50 kb. When possible, missing geno-

types were inferred through the neighboring markers if they had an

identical segregation patterns and were within 50 kb. In these cases,

the marker was assigned the same allele as the two flanking

markers. VCFs were converted to strain-specific FASTA files using

the GenomeGenerator tool (Clement-Ziza et al, 2014).

For quantification, we mapped reads with Bowtie (v.0.12.7,

Langmead, 2010) against the strain-specific genomes we generated

based on the RNA-seq data using the following options: -C --best -m

1. Genes to which no reads were mapped in at least 50% of samples

were dismissed. To correct for differences in library size, we com-

pute a correction factor for each sample. We determined the 20%

and 80% quantiles for each sample i and computed the median Mi

for all counts between these quantiles. The counts for gene j and

sample i were then multiplied with the ratio of the median of the

counts for this subset of genes and the mean of these medians

across all samples to correct for different library sizes. For replicate

measurements, counts were averaged.

Growth profiling of fission yeast strains

Growth profiling of 150 strains of the three-way fission yeast cross

was performed using the bioLector system (m2p-labs, Germany) as

described previously (Clement-Ziza et al, 2014). The growth of each

sample was determined by light scattering in 3-min intervals for at

least 25 h and then converted to optical densities with a linear

model. Growth efficiency was calculated as the difference between

the initial and final OD. The strains were distributed over 28

batches. We corrected for batch effects by subtracting the mean of

all measurements for the batch from each of these measurements.

Afterwards, we employed a step-wise procedure to remove batches

that showed much more variation than the rest of the batches. First,

we computed the variance of all trait values per batch. Second, if

any batch had a variance that was 2.5 times as large as the average

variance of all batches, we removed the batch with the highest vari-

ance. Then we repeated this step until the variance for no batch

exceeded the set threshold above the variance of the remaining

batches. We removed four batches with this procedure, resulting in

at least one measurement of growth efficiency for 114 strains.

Repeated measurements per strain were averaged for analysis.

Generation of a pka1 allele-replacement strain in fission yeast
strain JB50

To investigate the effects of the polymorphism in pka1 (C358F

between JB50 and JB760), we generated an allele replacement

strain. This strain was identical to JB50 aside from position 1,073 in

the coding sequence of pka1, changing the respective codon from

UGU, coding for cysteine, to UUU, coding for phenylalanine. The

strain was generated using a CRISPR/Cas9 method as described

before (Rodriguez-Lopez et al, 2016) using the primer pair 50-
acataacctgtaccgaagaaAGCAACTGTTGTACTCTTTGgttttagagctagaaat-

agc-30 (forward) and 50-gctatttctagctctaaaacCAAAGAGTACAA-
CAGTTGCTttcttcggtacaggttatgt-30 (reverse). The replacement strain
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is referred to as PKA1Rep in the following. We used Sanger sequenc-

ing to validate successful introduction of the JB760-allele of pka1 in

the JB50-background. To measure the effects of the pka1 allele-

replacement on the transcriptome and proteome, we grew three rep-

licates each of JB50 and PKA1Rep under normal growth conditions

and three replicates, for each strain, which were exposed to

increased oxidative stress (0.5 mM H2O2) for 1 h before the samples

were harvested. Each sample was separated into a fraction for RNA

extraction and one for protein quantification. The fraction for pro-

tein quantification was centrifuged and the pellets washed with cold

PBS and snap-frozen in liquid nitrogen for transport.

Transcriptome quantification for the JB50 pka1 replacement
strain

RNA was extracted with the hot phenol method described in (Lyne

et al, 2003). RNA was further purified with Qiagen RNAeasy col-

umns, and DNAse treatment was performed in the columns (as

suggested by manufacturer) prior to library preparation. RNA qual-

ity was assessed with a Bioanalyzer instrument (Agilent, United

States), and all samples had a RIN (RNA Integrity Number) > 9.

cDNA libraries were prepared with the Illumina TruSeq stranded

mRNA kit, according to the manufacturer’s specifications, by the

Cologne Centre for Genomics (CCG) facility. The samples were

sequenced on a single lane of an Illumina Hiseq4000 to produce

stranded 2 × 75 bp reads. Reads were trimmed with Trimmomatic

(v0.36, Bolger et al, 2014), with the following parameters differing

from default settings: LEADING:0 TRAILING:0 SLIDING-

WINDOW:4:15 MINLEN:25. The reference genome was indexed

with bowtie2-build with default settings. Paired reads were aligned

to the reference genome using bowtie2 with default settings

(v2.3.4.1, Langmead & Salzberg, 2012). In the case of the allele

replacement strain, the reference genome was edited to reflect the

base substitution within pka1. Aligned reads were counted using

intersect from the bedtools package (v2.27.1, Quinlan & Hall, 2010),

with the parameters -wb -f 0.55 -s -bed. Identical reads were only

counted once. Read counts were tested for differential expression

between strains using DESeq2 v1.18.1 with default settings (Love

et al, 2014). We tested differential expression between strains sepa-

rately with or without addition of H2O2.

Data availability

RNA sequencing data for the three-way cross in fission yeast are

available at the ArrayExpress repository with accession E-MTAB-

12930 (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-

12930).

Expanded View for this article is available online.
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