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Abstract 

Background  In the management of cancer patients, determination of TNM status is essential for treatment decision-
making and therefore closely linked to clinical outcome and survival. Here, we developed a tool for automatic three-
dimensional (3D) localization and segmentation of cervical lymph nodes (LNs) on contrast-enhanced computed 
tomography (CECT) examinations.

Methods  In this IRB-approved retrospective single-center study, 187 CECT examinations of the head and neck region 
from patients with various primary diseases were collected from our local database, and 3656 LNs (19.5 ± 14.9 LNs/
CECT, mean ± standard deviation) with a short-axis diameter (SAD) ≥ 5 mm were segmented manually by expert phy‑
sicians. With these data, we trained an independent fully convolutional neural network based on 3D foveal patches. 
Testing was performed on 30 independent CECTs with 925 segmented LNs with an SAD ≥ 5 mm.

Results  In total, 4,581 LNs were segmented in 217 CECTs. The model achieved an average localization rate (LR), 
i.e., percentage of localized LNs/CECT, of 78.0% in the validation dataset. In the test dataset, average LR was 81.1% 
with a mean Dice coefficient of 0.71. For enlarged LNs with a SAD ≥ 10 mm, LR was 96.2%. In the test dataset, the false-
positive rate was 2.4 LNs/CECT.

Conclusions  Our trained AI model demonstrated a good overall performance in the consistent automatic localiza‑
tion and 3D segmentation of physiological and metastatic cervical LNs with a SAD ≥ 5 mm on CECTs. This could aid 
clinical localization and automatic 3D segmentation, which can benefit clinical care and radiomics research.

Relevance statement  Our AI model is a time-saving tool for 3D segmentation of cervical lymph nodes on contrast-
enhanced CT scans and serves as a solid base for N staging in clinical practice and further radiomics research.

Key points   
• Determination of N status in TNM staging is essential for therapy planning in oncology.

• Segmenting cervical lymph nodes manually is highly time-consuming in clinical practice.

• Our model provides a robust, automated 3D segmentation of cervical lymph nodes.
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• It achieves a high accuracy for localization especially of enlarged lymph nodes.

• These segmentations should assist clinical care and radiomics research.

Keywords  Artificial intelligence, Deep learning, Lymph nodes, Neoplasm staging, Tomography (x-ray computed)

Graphical Abstract

• Determination of LN status in TNM 
staging is essential for therapy planning.

• Manual segmentation of cervical LNs is 
highly time consuming in clinical 
practice.

• Our model provides a robust, automated 
3D segmentation of cervical LNs within 
seconds, with a localization rate of 
81.1% on average and only 2.4 false 
positive LNs per CT scan.

• For LNs ≥ 10 mm, localization rate was 
96.2%.

Our AI model is a timesaving tool for 3D segmentation of cervical LNs on CE-CT, 
allowing N staging in clinical practice and fostering further radiomic research.
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Automated localization and 
segmentation of cervical lymph nodes 
on CECT using a 3D foveal fully CNN

Manual (left, blue) and AI-predicted (right, green) segmentations of LNs in 4 patients (a-d). 

Background
In oncology, the determination of lymph node (LN) 
involvement is crucial for assessing treatment options 
and consequently directly impacts the patient’s out-
come and overall survival [1]. Nodal involvement 
is often diagnosed based on computed tomography 
(CT) imaging, positron emission tomography or mag-
netic resonance imaging scans, sonography, and when 
appropriate biopsy confirmation [2, 3]. In cancers of 
the head and neck, confirmation of N0 staging status 
is especially crucial in decision-making for elective 
neck dissection [4]. While neck dissection can on the 
one hand prolong overall survival in various tumor 
entities, on the other hand, it can result in substantial 
morbidity, thus impairing the patient’s quality of life. 
Moreover, concerning radiation therapy, the second-
line treatment for locoregional control, the dosage is 

applied according to the likelihood of malignancy of 
LNs and adapted according to changes in size through-
out the course of therapy [5].

In clinical practice, nodal status is evaluated through 
imaging and biopsy, including measurement of the 
short-axis diameter (SAD) of LNs on axial contrast-
enhanced CT (CECT) scans. For initial tumor stag-
ing at the time of diagnosis and subsequent restaging, 
different standardized diagnostic criteria are applied 
depending on the tumor entity. While solid tumors are 
typically assessed using the revised response evalua-
tion criteria in solid tumors (RECIST) version 1.1 [6], 
for lymphomas, modified evaluation criteria such as 
the Lugano criteria [7] and the response evaluation 
criteria in lymphoma (RECIL) [8] have been proposed 
in recent years, emphasizing on bilateral rather than 
unilateral LN measurements.
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LNs with an SAD ≥ 10  mm on axial CT or magnetic 
resonance imaging scans as well as LNs with other radio-
logically detectable worrisome features such as necrosis 
are regarded as highly suspicious, as recently summarized 
in the Lymph Node Reporting and Data System (Node-
RADS) version 1.0 [9–11]. However, especially in head and 
neck cancer and melanoma, microscopic metastases may 
also be found in non-enlarged LNs [12, 13], so that it is also 
important to monitor the size of smaller LNs over time. 
Moreover, it has been reported that in patients with oral 
squamous cell carcinoma, overall LN volume, including 
enlarged and non-enlarged LNs, seems to be a risk factor 
for locoregional recurrence independent of pathological 
N classification [14]. These findings point to the fact that 
imaging as a sole basis for defining N status has significant 
limitations, and additional ultrasound-guided fine needle 
aspiration and sentinel node biopsy should be considered 
to increase sensitivity for pathologic LNs in patients with 
clinically negative (cN0) head and neck cancer [15].

Radiomics is a novel promising tool for the extrac-
tion of additional information from medical images. 
There is evidence that deep learning (DL) in conjunction 
with radiomics may improve the detection of malignant 
lesions and the characterization of tumor tissue. Sev-
eral studies have also shown its potential in differentiat-
ing benign from malignant lesions. For example, Zhang 
et  al. [16] were able to distinguish Kimura disease from 
LN metastases by means of radiomics analysis on CECT 
scans. Kimura disease is a rare lymphoproliferative dis-
ease, which consists of painless subcutaneous soft tis-
sue masses and goes along with an enlargement of LNs 
in the head and neck region, therefore easily being con-
fused with LN metastases of an occult primary tumor. 
Seidler et al. [17] performed a texture analysis on cervi-
cal lymphadenopathy of dual-energy CT scans and could 
thereby differentiate between benign and pathologic nod-
ules, which were either histologically proven metasta-
ses, lymphoma, or inflammatory LNs. Hence, radiomics 
based on quantitative measurement of relevant imaging 
features, such as the roundness and heterogeneity in den-
sity of LNs, would enable assessment of the likelihood of 
macro- and micrometastases in LNs. However, prior to 
performing radiomics analysis, an accurate segmentation 
of both small and large LNs is crucial. Head and neck 
CT scans contain about 300 LNs [18]. Thus, manual seg-
mentations would be highly time-consuming and can in 
addition be subject to inter-reader variability. This is not 
feasible in clinical practice. Presumably to work around 
the time aspect, Seidler et  al. did two-dimensional (2D) 
segmentations by drawing a region of interest around the 
largest diameter of the LNs in the axial plane and only 
examined the LNs’ texture on that single CT slice. By 
doing so, they potentially missed out further information 

on other slides, which could have been taken into account 
by performing volumetric LN segmentations prior to the 
DL analyses [19–23].

Therefore, this study aimed to develop an AI model for 
automatic localization and volumetric segmentation of 
cervical LNs on CECT scans of the head and neck region.

Methods
CT imaging selection and dataset
Patient consent was waived due to the retrospective 
design of the study based on preexisting images by the 
Ethics Committee of the Faculty of Medicine, University 
of Cologne, reference number 19–1390/07.08.2019.

Our picture archiving and communication system 
(IMPAX EE, Agfa HealthCare, Bonn, Germany) was 
searched for CECT scans of the head and neck region 
between January and November 2017. Inclusion criteria 
were clinically indicated CT examinations of the head and 
neck region (covering the skull base to the lung apex) with 
venous contrast enhancement and patient age ≥ 18  years. 
We excluded unenhanced examinations and/or scans con-
taining most severe imaging artifacts (e.g., beam hardening 
caused by large metal hardware or dense intravascular con-
trast agent accumulation, n = 2), while less significant arti-
facts (e.g., due to dental implants) did not result in exclusion 
of the examination. Follow-up scans from the same patient 
were excluded as were scans for which no LNs ≥ 5 mm could 
be detected in the manual segmentation process (n = 4).

All scans were conducted supine in cranio-caudal 
direction after a bolus injection of 80  mL of iodinated 
contrast agent (Accupaque, 350  mg/mL; General Elec-
tric Healthcare, Chicago, USA) with an injection rate 
of 3.5  mL/s and a delay of 40  s after reaching a thresh-
old value of 150 HU in the descending aorta. Scans were 
performed on a dual detector layer CT scanner (IQon, 
Philips Healthcare, Amsterdam, the Netherlands) with 
the following scan parameters: tube voltage 120 kVp, 
tube current modulation (reference mAs 129, software 
DoseRight 3D-DOM, Philips Healthcare), collimation 
64 × 0.625 mm, rotation time 0.33 s, and pitch 1.23.

Conventional, polychromatic CT images were recon-
structed using a hybrid iterative reconstruction algorithm 
(iDose 4, filter B, level 3, Philips Healthcare) and a matrix 
of 512 × 512 in the axial plane with a slice thickness of 
0.5 mm or 1.0 mm and a section increment of 50%.

The collected CECT scans were then subdivided in a 
training, validation, and test dataset. The validation set 
was used to tune the algorithm and explore the influence 
of different augmentation strategies in the training.

Manual lymph node segmentation
For training, validation, and test datasets, all cervical LNs 
with an SAD of ≥ 5  mm were volumetrically segmented 
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by one radiologist with more than 2 years of experience 
in CT imaging and double-checked by a second inde-
pendent radiologist with more than 15  years of experi-
ence in CT imaging using the three-dimensional (3D) 
multimodal tumor tracking tool MMTT (originally avail-
able in IntelliSpace Portal, Version 12, Philips Healthcare) 
implemented in a dedicated research platform (IntelliS-
pace Discovery, ISD, Version 3.0, Philips Healthcare).

Neural network preprocessing, architecture, training, 
and data augmentation
The following describes the training setup and the net-
work architecture. The resulting model for cervical head 
and neck LN segmentation was available as prototype in 
IntelliSpace Discovery (Version 3.0, Philips Healthcare).

Preprocessing
Before training the convolutional neural network (CNN), 
images were resampled to a homogeneous and iso-
tropic resolution of 1 mm3. To enhance the soft-tissue 
contrast of the LNs, image intensities were normalized 
from the window/level 395/10 HU to the interval [− 3, 
3]. This intensity window was determined automatically 
for whole-body LN localization by taking the mean and 
standard deviation of image intensities inside the LN seg-
mentations and their direct neighborhoods. The obtained 
interval is close to the CT soft tissue window/level of 
350/50 HU. In addition, images were cropped to the head 
and neck region in case a larger field of view was present. 
This was also done automatically by cropping the images 
to a minimum size of 200 × 200 × 250 mm, ensuring that 
all LN annotations were contained in this box and enlarg-
ing it when required.

Architecture
For the segmentation of the cervical LNs, a foveal neural net-
work architecture was chosen as it showed good performance 
previously for LN segmentation [24] as well as other tasks [25].

The idea behind the foveal neural network is to use 
image patches with different resolutions as input to 
the CNN, thereby mimicking the behavior of the eye, 
which has the highest resolution at the fovea centralis. 
Small image patches have a finer resolution to provide 
a detailed view of the structures of interest, while larger 
patches have a coarse resolution better demonstrating 
the anatomical context as is visualized in Fig. 1. The out-
put of the CNN is a map showing the probability of each 
voxel to represent LN tissue.

The employed network architecture has four resolution 
levels (see Fig.  1). Each resolution level extracts features 
from the corresponding patch at this resolution by three 
successive blocks of valid convolution with a kernel size 

of 3 × 3, followed by batch normalization and the rectified 
linear activation function: convolutional layer, batch nor-
malization layer, and rectified linear unit layer (CBR). The 
outputs of the different resolution levels are assembled in 
the feature integration pathway via CBR blocks followed 
by an upsampling of the lower resolution output: CBR fol-
lowed by upsampling layers (CBRU). Last, a softmax layer 
is applied to compute pseudo-probabilities representing 
the likelihood of each voxel belonging to an LN. By thresh-
olding this output, the final segmentation mask is obtained.

For more information on the F-net architecture, we 
refer the reader to Brosch et al. [25].

Training
Training was performed using Python (3.8) with PyTorch 
(version 1.11.0). Random patches of size 723  mm were 
drawn from the volumes and fed to the network. To cor-
rect for the class imbalance between foreground (i.e., 
LN voxels) and background (i.e., non-LN voxels), it was 
ensured that 50% of the patches contained foreground 
voxels. As loss, an equally weighted combination of the 
cross-entropy loss and the Dice coefficient loss [26] was 
chosen and optimized with the AdaDelta optimizer [27]. 
The CNN was trained for 2,000 epochs in minibatches 
where each minibatch contained 12 patches randomly 
drawn from different images.

Data augmentation
Three different augmentation strategies were explored 
during network training. All strategies were applied on 
the fly to the patches that were fed to the neural network. 
SimpleITK (version 2.02) was used for image manipula-
tion. First, as basic data augmentation, random scaling 
and rotation of patches were applied with a maximal scal-
ing factor of 1.2 and a maximum rotation of 10°. Param-
eters for the augmentation were drawn from a uniform 
distribution. Larger transformations showed a decline 
in performance and were therefore abandoned. Second, 
flipping along the sagittal plane with a probability of 0.5 
was added to account for the symmetry of the head and 
neck. Finally, the strongest augmentation was explored 
by locally distorting the image patches using B-spline 
transformations. Here, a grid of 5 × 5 × 5 control points 
per patch was defined. Deformation parameters for the 
grid points were drawn from a normal distribution with 
a standard deviation of 0.2. The patch was transformed to 
the deformed grid using B-splines of order 1.

Evaluation criteria
Prior to the evaluation, a connected component analysis 
was performed on the segmentation mask to separate the 
LNs. All connected components comprising less than 33 
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voxels were excluded from the analysis as they were con-
sidered being too small. For these components, the SAD 
was clearly below the envisioned 5 mm.

After filtering out the very small localizations, the perfor-
mance of the CNN was assessed using the following metrics: 
first, the percentage of correctly identified LNs (localization 
rate, LR) and the average number of false positives (FPs) per 
volume were assessed. Second, the global Dice was com-
puted per CT scan taking only the true positives (TPs) into 
account to get a measure of the segmentation accuracy.

When analyzing individual LNs, we refrained from 
computing the Dice coefficient and instead computed 
the segmentation sensitivity of each ground-truth LN, 
i.e., the ratio of correctly segmented LN tissue and LN 
volume. The reason for this is that we only had the con-
nected components and not the individual LN masks 
from the network prediction. In case predicted LNs 
were touching, they would form one connected com-
ponent and thus bias the Dice coefficient. For a more 
detailed evaluation, LNs were divided into SAD-depend-
ent groups: 5–10  mm, ≥ 10  mm and ≥ 15  mm, accord-
ing to RECIST 1.1 with LNs < 10 mm as physiological or 

unclear, ≥ 10  mm as suspected metastasis, and ≥ 15  mm 
as target lesions.

The evaluation metrics is reported on the training and 
validation data to assess the quality of the model and on 
the test dataset to explore how well the model performs 
on unseen data.

Statistical analysis
Data regarding patients’ age, runtime, LR, and differences 
in SAD between FP and annotated LNs are presented as 
mean ± standard deviation.

Statistical analysis was performed using Python (3.7) 
with SciPy Stats package (version 1.7.3). Before the sta-
tistical analysis, the age information was grouped into 
five groups (< 40, 40–51, 53–59, 60–69, > 70  years) as 
well as the number of annotated LNs (< 7, 7–13, 14–20, 
21–34, > 34 LNs). Due to the lack of normality of the data, 
a Kruskal–Wallis analysis was performed, considering a 
p-value 0.01 as threshold for significance. Furthermore, 
Pearson correlation was used to assess the correlation 
between SAD and global Dice. Point biserial correlation 
was used to assess if localization was correlated to SAD. 

Fig. 1  Illustration of the foveal neural network architecture. The network takes patches centered at the same location but with different size 
and resolution as input. It consists of several blocks of convolutional layers with kernel size of 3 × 3, batch normalization, and the rectified linear 
activation function (CBR). In the last column, the outputs of the CBR blocks are assembled and followed by an upsampling layer (CBRU). The final 
layer yields a probability map which is thresholded to obtain the final segmentation result. C Convolutional layer; CBR Convolutional layer, batch 
normalization layer, and rectified linear unit layer; CBRU Convolutional layer, batch normalization layer, rectified linear unit layer, and upsampling 
layers; k Kernel; px Pixel
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A t-test was performed to evaluate the differences in 
SAD between FP and annotated LNs. We applied no cor-
rection for multiple testing.

Results
Study population
In total, 217 CECT scans of the head and neck 
region from patients with various primary diseases 
were collected from our local database. Thirty of 
these scans with at least one clinically enlarged LN 

were put aside as test dataset. The remaining 187 
CECT scans were randomly divided into independ-
ent scans for training (n = 150) and validation (n = 37, 
1/5 of the data). In the training and validation data-
set, 83 patients were female and 104 male, with an 
average age of 57.5 ± 15.5  years (females 58.1 ± 15.8, 
males 57.1 ± 15.1  years), while in the test dataset, 13 
were female and 17 were male, with an average age of 
61.5 years ± 14.9 years (females 58.7 ± 15.0 years, males 
63.6 ± 15.0), as shown in Fig. 2.

Fig. 2  Gender and age distribution in the training plus validation and test dataset. Box and whiskers plot showing the age distribution in years 
on the training plus validation and test dataset (a) and bar chart showing the gender distribution in the training plus validation and test dataset (b)

Fig. 3  Derived ethnicities in the training plus validation and test dataset. Bar chart showing the derived ethnicities in the training plus validation 
and test dataset according to Flanagin et al. [28]
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Since we only included scans from our local data-
base, most patients were from the region around our 
institution, thus from a North European background. 
A further subdivision of the derived ethnicities in our 
dataset based on Flanagin et al. [28] is shown in Fig. 3.

We included the scans independently of the under-
lying indication, resulting in a heterogeneous dataset 
with 202 cancer patients and 15 patients with a non-
cancer indication for the CT scan as specified in Fig. 4. 
A further subdivision of the non-cancer indications as 
well as the types of cancer is shown in Supplementary 
Fig. S1.

Manual lymph node segmentation
In the training and validation dataset, 3,656 LNs were 
segmented, yielding an average of 19.5 LNs per patient. 
The SAD was in a range between 2.68 and 43.8  mm. 

Examples for manually segmented LNs on some train-
ing cases are shown in Fig.  5. All segmented LNs were 
included in training, except for 570 inadvertently seg-
mented LNs with an SAD < 5 mm. In the test dataset, 925 
LNs with an SAD of ≥ 5 mm were segmented, yielding an 
average of 30.8 LNs per patient.

Runtime
For a standard head-neck CT scan with a size of 
512 × 512 × 400 voxels and an isotropic spacing of 
approximately 0.5 mm, the runtime accounts to 6.8 ± 0.1 s 
(average over 10 runs) on a nvidia GeForce GTX 1080 
graphics processing unit. The time needed for manual 
segmentations strongly depends on the size of the scan 
and LN involvement. Here, scans with bulky disease pose 
the strongest challenge. While the effort of manually 
segmenting LNs in patients with mild LN involvement 

Fig. 4  Distribution of pathologies amongst the training plus validation and test dataset. Bar chart showing the distribution of cancer 
and non-cancer diagnoses amongst the training plus validation and test dataset. GI Gastrointestinal tract

Fig. 5  Example cases for manual lymph node segmentation. Renderings of the segmented lymph nodes on some exemplary training cases 
showing the variability in terms of number, size, and location of lymph nodes. Bones are rendered in gray for anatomical orientation
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ranged from 30  min to 3  h, it could take up to several 
hours in patients with bulky disease such as CLL.

Network performance in training and validation
The use of different augmentation strategies resulted in 
a Dice coefficient at training of 0.83 to 0.85 and at vali-
dation of 0.70 to 0.76 over all patients. Detailed results 
of the different augmentation strategies, as described in 
the section “data augmentation,” are shown in Table  1. 
Stronger augmentation led to a better generalization of 
the models, i.e., while the performance degraded with 
stronger augmentation on the training data, it improved 
on the validation data especially with respect to the Dice. 

Table 1  Performance of the networks trained with different augmentation strategies on the training and validation data

Shown are the average localization rate per volume in percent (LR), the average false positives per volume (FP/V), and the average global Dice similarity coefficient 
(DSC) per volume taking only the true positives into account

Augmentation strategy Training Validation

LR (%) FPs/V DSC LR (%) FPs/V DSC

Affine 88.5 1.4 0.85 65.5 5.4 0.70

Affine + mirror 86.0 3.9 0.84 72.6 7.6 0.73

Affine + B-spline 84.1 3.9 0.84 71.2 7.6 0.72

Affine + mirror + B-spline 86.8 7.8 0.83 78.0 10.7 0.76

Fig. 6  Exemplary renderings of the lymph node segmentations for four patients. Renderings of the lymph node segmentations for four patients 
(a–d) showing the manual annotations (left, blue) and the predicted segmentations (right, green). Bones are rendered in gray for anatomical 
orientation. Overall, a good agreement between ground truth and prediction was achieved. Some subclavicular lymph nodes in the mediastinum 
(b, arrow) and some very small lymph nodes (c, arrow) were segmented by the model, which had not been manually annotated (see the section 
“False-positive review”). For some of the larger lymph nodes (c, d, arrowhead), segmentation accuracy could be improved

Table 2  Performance of the networks trained with different 
augmentation strategies on the test data

Shown are the average localization rate (LR) per scan in percent, the average 
false positives per volume (FP/V), and the average global Dice similarity 
coefficient (DSC) per scan taking only the true positives into account

Test

LR (%) FPs/V DSC

Affine 66.4 4.9 0.66

Affine + mirror 75.3 6.4 0.69

Affine + B-spline 73.3 6.1 0.69

Affine + mirror + B-spline 81.1 9.3 0.71



Page 9 of 15Rinneburger et al. European Radiology Experimental            (2023) 7:45 	

Overall, an average LR per volume of 78% was achieved 
on the validation data with an average Dice of 0.76. The 
FP rate also increased with stronger augmentation. Many 
of these “false positives” were either LNs which were 
rather small and were therefore not annotated or were 
located in the adjacent mediastinal region (see also below 
the “False-positive review” section for a detailed evalua-
tion in the test data).

Network performance on the test dataset
Visual impressions of the predicted segmentations in 
comparison with the manual segmentations for exem-
plary cases from the test dataset can been seen in 
Fig.  6. The visual inspection shows good performance 
independent of location and size of LNs; only for a few 
very large LNs, the segmentation accuracy could be 
improved.

On the independent test dataset, the LR ranged 
from 66.4 to 81.1% and Dice between 0.66 and 0.71, 
depending on the augmentation strategy. In line with 
the results on the validation data, we also found an 
improvement with stronger augmentation, as given in 
Table 2. The LR improved from 66.4% with simple affine 
deformations to 81.1% using all tested augmentation 
strategies. The same applies to the segmentation accu-
racy, which improved from 0.66 to 0.71.

The statistical analysis (Kruskal–Wallis test) showed 
that for the variables global Dice and LR, there were no 
significant differences concerning sex (Dice, p = 0.095; 
LR, p = 0.050), age (Dice, p = 0.551; LR: p = 0.234), or 
the total number of annotated LNs (Dice, p = 0.910; LR, 
p = 0.022). For the global Dice, there were significant dif-
ferences between the cohort groups (p = 4.671 × 10−11, 
Fig.  7a), and a more detailed analysis showed that 
there were significant differences between the train-
ing and test group (p = 1.201 × 10−6) as well as the train-
ing and validation group (p = 1.217 × 10−7), but not 

between the validation and test group (p = 0.920). For 
the LR, there were also significant differences between 
the cohort groups (p = 1.099 × 10−7, Fig.  7b), while 
there were significant differences (p = 0.001) for the LR 
between the validation (LR = 0.88 ± 0.17) and the test 
group (LR = 0.81 ± 0.12) as well as between the train 
(LR = 0.93 ± 0.09) and the test group (p = 3.987 × 10−8), 
but no statistically significant differences between LR in 
the train and the validation group (p = 0.032), as can be 
seen in Fig. 7b.

Analysis of the false positives
For the FPs, Kruskal–Wallis analysis showed no sig-
nificant differences concerning age (p = 0.273) and 
total number of annotated LNs (p = 0.304). How-
ever, there were significant differences concerning sex 
(p = 5.644 × 10−5). A more detailed analysis showed 
that these differences were only significant in the train 
group (p = 1.822 × 10−6), meaning that in the validation 
(p = 0.166) and test groups (p = 0.236), there were no sig-
nificant differences between men and women.

There were also significant differences between the 
different groups (p = 2.541 × 10−11). A detailed analysis 
showed significant differences between the test group 
and train group (p = 7.585 × 10−11) as well as the test 
group and validation group (p = 2.975 × 10−9), but not 
between the train and validation (p = 0.071). In the test 
group, there were significantly less FPs (< 10 FPs/scan) 
than in the other two groups (> 20 FPs/scan).

False‑positive review
For the best-performing model, a review of the FPs was 
performed on the test dataset. For this analysis, all con-
nected findings of the prediction were taken into account 
regardless of their size. The aim was to get a good impres-
sion of what the CNN considers to be an LN.

Fig. 7  Box and whisker plots of the global Dice similarity score (a) and localization rate (b) for the training, validation, and test dataset
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A total of 459 findings were analyzed. We found that 
the vast majority (n = 268) of these findings were true-
positive LNs, which had not been manually annotated 
due to their small size < 5 mm (Fig. 6c), and 36 of the find-
ings were true LN but were located in the mediastinal 
region (Fig. 6b), for which no manual segmentations were 
available. For another 13 findings, it was not fully clear 
if they represented a real LN or soft or scar tissue. Con-
sequently, the remaining 142 findings were considered 
as FPs. In these cases, the model marked other round-
shaped structures such as soft tissue, muscles (e.g., the 
scalene muscles), or vessels. A diagram illustrating these 
results is shown in Fig. 8.

After exclusion of the identified TPs, the average num-
ber of FPs initially reported in Table 2 reduced from 9.3 
to 2.4 FPs on average.

In line, the t-test showed a significant difference 
between the SAD of the initially reported FPs with a 
mean SAD of 3.2 mm, thus below 5 mm, compared to the 
annotated LNs (p < 0.001).

Network performance relative to lymph node size
In the previous sections, we evaluated all metrics on a CT 
scan level. In this section, we want to have a closer look 
and evaluate the performance on a per LN level. Please 
note that in Tables 1 and 2, the average LR per CT scan 
and not per LN was reported.

Overall, regarding the localization of individual 
LNs, our model was able to identify 93.3% of the 

Fig. 8  Bar chart showing the distribution of the different types of initially marked false positives. FP False positive, TP True positive, TP Mediastinum 
True positive in the mediastinum

Table 3  Lymph node localization rate according to dataset and 
lymph node size

Shown are the localization rate in the training, validation, and test dataset 
according to four lymph node size groups as well as the absolute numbers of 
LNs detected by the AI algorithm compared to the absolute number of manually 
segmented LNs

Dataset 5–10 mm  ≥ 10 mm  ≥ 15 mm Overall

Training 93.1
2,008/2,157

94.9
(225/237)

92.7
(38/41)

93.3
2,233/2,394

Validation 92.1
(592/643)

95.9
(47/49)

87.5
(7/8)

92.3
(639/692)

Test 84.4
(691/819)

96.2
(102/106)

95.0
(19/20)

85.7
(793/925)

Table 4  Sensitivity of lymph node localization in the different 
datasets in relation to lymph node size

Shown is the sensitivity of lymph node segmentation performed by the AI 
model compared to manual segmentations in the training, validation, and 
test dataset according to four lymph node size groups. Data are given as 
mean ± standard deviation

Dataset 5–10 mm  ≥ 10 mm  ≥ 15 mm Overall

Training 0.74 ± 0.24 0.77 ± 0.21 0.83 ± 0.17 0.74 ± 0.24

Validation 0.72 ± 0.26 0.61 ± 0.32 0.52 ± 0.29 0.70 ± 0.28

Test 0.77 ± 0.22 0.64 ± 0.28 0.47 ± 0.26 0.75 ± 0.23
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manually segmented LNs in the training dataset 
(Table  3). Moreover, LRs were analyzed for sub-
groups of smaller LNs with an SAD between 5 and 
10  mm and enlarged LNs with an SAD of ≥ 10  mm 
and ≥ 15 mm. In the training dataset, the LR reached 
similar results for the three subgroups with 93.1% 
for LNs with an SAD of 5–10  mm, 94.9% for LNs 
with an SAD of ≥ 10 mm, and 92.7% for LNs with an 
SAD ≥ 15  mm. In the validation dataset, the model 
detected 92.1% of LNs with an SAD between 5 and 
10  mm and 95.9% of LNs with an SAD ≥ 10  mm. 
When looking at the subgroup of LNs with an 
SAD ≥ 15  mm in the validation dataset, it detected 
87.5%. However, it is of note that this size group 
consisted of eight LNs only out of which the model 
detected seven LNs and missed one.

Regarding the performance in the independent test 
dataset, our model reached an overall LR of 85.7%. When 
we examined the individual size groups in the test data-
set, an LR of only 84.4% was reached for the smaller LNs. 
However, for the enlarged LNs with an SAD of ≥ 10 mm 
and ≥ 15 mm, the LR was 96.2% and 95.0%, respectively.

To assess the segmentation quality, we computed the 
sensitivity, i.e., ratio of correctly segmented LN tissue (see 
Table  4). As can be seen there, the segmentation accu-
racy declined for larger LNs. While LNs with an SAD of 
5–10 mm had a sensitivity of 0.77 on average on the test 
set, it reduced to 0.64 for enlarged LNs (SAD ≥ 10 mm) 
and accounts to 0.47 for the subgroup of even larger LNs 
with an SAD ≥ 15  mm. However, the sample size was 
rather low, and statistical analysis showed that there was 
no correlation between the SAD and sensitivity (r = 0.018, 
Pearson correlation), which points out that the AI seg-
mentation model is working independently of the size 
of the LNs. Point biserial correlation between sensitivity 

and LR was very low (rpb =-0.026), meaning that there is 
no correlation between LN size and LR.

Figure 9 shows that although some LNs were only par-
tially segmented, in many cases, the LN segmentation 
was quite accurate.

Discussion
In cancer management, it is essential to determine TNM 
status for therapy decisions, which thus directly affects 
the patient’s outcome. Assessment of nodal burden is 
often based on CECT, which allows accurate localiza-
tion and measurement of LNs in the head and neck and 
facilitates evaluation of change over time. Complete 
determination of N status through thorough evaluation 
of a CECT scan is a very time-consuming task for radi-
ologists in clinical routine and is subject to considerable 
inter-reader variabilities. A volumetric segmentation of 
LNs should enhance clinical care. It would also enable the 
development and application of advanced tools, such as 
radiomics, which may prove useful for further characteri-
zation of LNs, for example, to estimate the probability of 
active metastatic disease and the degree of therapeutic 
response.

Here, we aimed to develop a 3D DL model for robust 
LN localization and 3D segmentation in CECT scans of 
the head and neck region. Our AI model performed well 
and reached an overall LR of 85.7% on the independ-
ent test dataset compared to the manual segmentations. 
When comparing enlarged to non-enlarged LNs in the 
test dataset, the LR of 96.2% was even higher for the 
clinically suspicious LNs with an SAD ≥ 10  mm, which 
are considered worrisome for metastatic involvement 
in solid cancers according to RECIST 1.1 [6]. For tar-
get lesions according to RECIST 1.1, thus LNs with an 
SAD ≥ 15 mm, LR was 95.0%. Here, the slightly lower LR 

Fig. 9  Overlay of segmentations in example cases which contain both good and poor artificial intelligence-conducted segmentations. Areas 
segmented both manually and by the AI model are marked in white, areas segment manually only are marked in cyan, and areas segmented 
only by the AI model are marked in red. To avoid confusion of axially cut vessels and LNs, vessels are marked with “v.”
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might be due to the small number of 20 LNs in that size 
group, out of which the model detected 19 and missed 
one. Since smaller LNs can also harbor micrometastases, 
we also analyzed the performance of our model for LNs 
with an SAD between 5 and 10  mm, for which the LR 
was 84.4%. Regarding segmentation accuracy, the model 
reached a Dice of 0.71 when compared to the manual 
segmentations. When looking at sensitivity of single LN 
segmentations, the algorithm showed a decline from 0.77 
on average for LNs with an SAD between 5 and 10 mm to 
0.64 for LNs ≥ 10  mm and 0.47 for LNs ≥ 15  mm. How-
ever, statistical analysis showed no correlation between 
SAD and sensitivity, so these findings might be due to the 
small number of cases in these subgroups.

For LN algorithm development, 2D approaches have 
been published based on the measurement of the axial 
SAD as used in the classification systems mentioned above 
[29, 30]. However, Mueller et al. [31] found that in the head 
and neck region, the 2D segmentation method tends to 
overestimate the LN volume. Using a 3D approach based 
on the perimeter, they found a closer correlation to the 
true LN volume determined after neck dissection.

In the head and neck region, only few prior investi-
gations have been published for automatic LN segmen-
tation, mostly relying on an atlas-based approach [32, 
33]. One DL-based study concentrated on LN metas-
tasis from thyroid cancer [34], and another included 
patients with oral squamous cell carcinoma [35]. In 
contrast, we included patients with various pathologies 
as well as normal nodal status to ensure a heterogene-
ous cohort for training and testing and to reflect broad 
applicability for clinical usage. Ariji et  al. [35] focused 
on oral squamous cell carcinoma using the neural net-
work “DetectNet.” They achieved a lower LR of 73% for 
metastatic LNs and 53% for nonmetastatic LNs in their 
test dataset compared to our results. Lee et  al. [34] 
focused on thyroid cancer and evaluated eight deep 
CNN models. Of the eight models, ResNet50 was the 
best-performing model for the validation dataset, with 
an area under the ROC curve (AUROC) of 0.953. The 
sensitivity, specificity, and accuracy of the ResNet50 
model were all 90.4%, respectively, in the test dataset. 
Here, it is important to note that the model was trained 
not only for localization but also for discrimination 
between benign and malignant LNs, making the sensi-
tivity of their model more comparable to our localiza-
tion of large LNs, where we achieved a LR of 96.2% in 
the test dataset.

Further investigation of the performance of our model, 
which was developed using a mixed patient cohort, could 
be performed for specific head and neck malignancies, 
such as thyroid cancer or oral squamous carcinoma. LN 
metastases from these tumors are often cystic or with 

central necrosis, making them distinct from those from 
other cancers, such as melanoma with more homoge-
nous LN metastases [36]. The lower LR achieved by Ariji 
et al. who concentrated on oral squamous cell carcinoma 
and the higher LR in the specific training on metastatic 
lesions by the group working on thyroid cancer might 
point to this necessity.

Recently, Courot et  al. [37] published a study similar 
to the present study, on the automatic detection of cer-
vical lymphadenopathy in CT scans independently of 
the underlying malignancy. They combined three CNNs 
based on a three-dimensional version of an originally 
two-dimensional fully convolution network, U-Net, 
architecture. They reported a Dice of 0.63 for the evalu-
ation dataset, which is lower than ours. However, they 
stated that the public dataset they used for training was 
poorly annotated due to time limits and consisted of only 
117 CT scans. In contrast, we performed thorough man-
ual segmentations for the complete dataset on a larger 
number of scans. Moreover, they only focused on lym-
phadenopathies and did not annotate non-enlarged LNs 
so that this model would not be suitable for research on 
characteristics for micrometastases.

To our knowledge, there is no other working group that 
developed an AI algorithm for volumetric segmentation 
of both enlarged and non-enlarged LNs in the head and 
neck region based on a heterogeneous cohort. A system-
atic literature search delivered no results of other studies 
on a mixed population but only investigations on cancer-
specific cohorts such as the ones mentioned before.

When comparing the performance of our model for 
segmentation of the head and neck region to other 
body regions, we achieved a higher accuracy rate than 
reported by Iuga et  al. [24] in the thorax where the LR 
was reported to be 69.9%. This might partially be due to a 
larger number of included CECT scans in our study with 
187 CTs for training and validation, compared to 89 CTs 
in the study by Iuga et al. Moreover, both mediastinal and 
axillary LNs were localized by the thorax AI model, so 
the anatomical heterogeneity of these regions compared 
to the head and neck anatomy might have impacted seg-
mentation accuracy.

In this work, we aimed to develop a robust and broadly 
usable AI model for potential clinical implementation. 
Therefore, we used a heterogeneous dataset and did not 
exclude scans with conglomerate LNs or bulky lesions 
even though this likely impacts sensitivity. Moreover, we 
did not exclude scans with metal artifacts from dental 
implants (apart from two images with severe artifacts). 
These artifacts are known to be a common challenge 
in analysis of CECT scans from head and neck can-
cer patients and are reported to be present in 73.6% of 
patients [38].
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Several limitations of this study merit consideration. 
First, manual segmentation was performed by only one 
radiologist. This radiologist was well-trained, and the 
segmentations were double-checked by an experienced 
radiologist with more than 15  years of experience in a 
consensus approach. However, inter-reader agreement 
on LN segmentations has not been evaluated in this 
study and should therefore be further investigated in 
a subsequent study. Secondly, while we do have a large 
number of segmented LNs compared to other studies, 
all scans were acquired on the same scanner. Increasing 
the number of cases through a multi-scanner, multiv-
endor and (international) multicenter approach would 
probably lead to an improvement in the LR and would 
make the model more generalizable in clinical practice. 
We used a local dataset for testing, whereas an external 
dataset might provide a better estimate of accuracy in 
a real-world clinical setting. Though our study did not 
specifically focus on different LN regions, this exten-
sion might be especially helpful to obtain an estimate 
of LR for underrepresented anatomic regions, e.g., the 
retropharyngeal space, where LN metastases may be 
associated with a higher likelihood of distant metasta-
sis [39]. Finally, we only segmented LNs with an SAD 
above 5 mm and did not consider smaller LNs, and our 
model showed a reduced performance on smaller nod-
ules compared to larger ones. This could result in miss-
ing out clinically inconspicuous nodules, which can still 
harbor micrometastases and thus erroneously diagnos-
ing a metastasized head and neck cancer as cN0. Here, it 
is again of note that measurement of LN size in the axial 
plane alone has proven not to be a sufficient criterion in 
determination of N status, but other aspects such as the 
LNs’ configuration, border, and shape need considera-
tion as well, as reflected by Node-RADS version 1.0 [9].

The aim of our work was to provide a time-saving tool 
for a solid volumetric segmentation of both enlarged 
and non-enlarged LNs to enable AI-based research on 
these and potentially further characteristics to improve 
the accuracy of nodal status determination based on 
CECT scans. By reducing segmentation time from 
hours for manual segmentation to seconds for segmen-
tations conducted by the AI model, it could not only 
serve as a base for research purposes but in a further 
step also enable integration of these potential findings 
into clinical practice.

Future work will aim at improving the LR of our algo-
rithm. To secure segmentation accuracy for clinical 
applicability in terms of SAD measurements, also fur-
ther improvement of the Dice and segmentation sensi-
tivity are eligible. This might be achieved by increasing 
the training dataset, a time-consuming task, and the 
application of further data augmentation strategies. 

The use of AI-supported annotations with manual 
expert correction is a possible strategy. A larger train-
ing dataset would also facilitate the development and 
application of radiomics models for a variety of cancers 
affecting LNs of the head and neck region [40].

In conclusion, we developed and validated a 3D DL-
based model that reliably localizes and volumetrically 
segments LNs in CECT scans of the head and neck 
region within seconds. Our approach can serve as a basis 
for further research on characteristics of nodal involve-
ment especially in head and neck cancer patients but also 
other tumor entities and diseases affecting cervical LNs.
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