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Abstract
The dissertation at hand presents the main concepts and results derived from research

done as a doctoral student in Kasia Bozek’s group Data Science of Bioimages, and is
presented in this thesis as a collection of scientific papers. The thesis touches on several
themes, including the interpretation of deep models, multiple instance and federated
learning algorithms, and language modeling. These topics are not studied standalone
but boarded from the application of computer vision models in the automatic analysis
of histopathology images. Emphasis is put on predictive tasks associated with the med-
ical treatment of two diseases, namely, esophageal adenocarcinoma (EA) and cutaneous
squamous cell carcinoma (CSCC), which were my main doctoral projects.

The first of the presented works acts as an introduction to the discipline. It studies the
prediction of a pathological grading on microarrays of esophageal tissue stained to reveal
the presence of a known biomarker, the protein HER2, to identify good candidates for
targeted EA therapy. The approach adopted in this paper is the training of an attention-
based multiple instance learning classifier, and the explanation of its decision outputs
with the aid of saliency maps. This method is the cornerstone of the analyses done in
this thesis, and is refined in further chapters.

The upcoming chapters deal with the more challenging problem of prediction of ther-
apy effectiveness from pre-therapy biopsy images, in two different study cases: the re-
sponse to neoadjuvant radiotherapy in EA patients, and disease progression of CSCC
patients treated by tumor excision. Despite the radical differences in tumor biology
and therapy procedures, these two problems share many similarities. First of all, this
type of prognosis is not done by healthcare professionals, providing no human base-
lines, hypotheses, or plausible interpretation of results. In the second place, these tasks
lack known biomarkers to look for, therefore the tissue sections are stained to reveal
their general microscopic anatomy, providing fewer visual cues to learn from. Lastly,
from the image analysis standpoint, both problems can be addressed with the same
techniques. These two chapters extend the methodology presented in the first work by
employing a transformer model as classifier, and an explainability algorithm that suits
this new architecture. Additionally, a new analysis stage is added to investigate the cel-
lular composition of relevant image regions via cell nuclei semantic segmentation, feature
engineering, and statistical analysis.

The last two showcased works branch from studying the aforementioned disease-
specific applications, and explore visual aspects of learning from bioimages. The first of
these chapters investigates the impact of pre-training a transformer model with natural
language data before being applied to pathology slide classification, and how the visual
information in such images can be summarized into smaller representations. The last
work in this dissertation proposes a multiple instance learning algorithm incorporating
the fact that coarse patterns of tissue morphology and organization are composed of
smaller histological features.





Zusammenfassung
Die vorliegende Dissertation stellt die wichtigsten Konzepte und Ergebnisse aus der

Forschung vor, die als Doktorand in Kasia Bozeks Gruppe Data Science of Bioimages
durchgeführt wurde, und wird in dieser Arbeit als eine Sammlung wissenschaftlicher
Arbeiten präsentiert. Die Dissertation befasst sich mit mehreren Themen, darunter die
Interpretation von tiefen Modellen, Algorithmen für mehrstufiges und föderiertes Lernen
sowie Sprachmodellierung. Diese Themen werden nicht unabhängig voneinander unter-
sucht, sondern sind eingebettet in die Anwendung von Computer-Vision-Modellen bei
der automatischen Analyse von histopathologischen Bildern. Der Schwerpunkt liegt auf
prädiktiven Aufgaben im Zusammenhang mit der medizinischen Behandlung von zwei
Krankheiten, nämlich dem Adenokarzinom der Speiseröhre (EA) und dem Plattenep-
ithelkarzinom der Haut (CSCC), die meine wichtigsten Promotionsprojekte waren.

Die erste der vorgestellten Arbeiten dient als Einführung in diese Disziplin. Sie befasst
sich mit der Vorhersage einer pathologischen Einstufung auf Mikroarrays von gefärbtem
Speiseröhrengewebe, um das Vorhandensein eines bekannten Biomarkers, des Proteins
HER2, aufzudecken und gute Kandidaten für eine gezielte EA-Therapie zu identifizieren.
Der in dieser Arbeit verfolgte Ansatz ist das Training eines aufmerksamkeitsbasierten
Klassifikators mit mehreren Instanzen und die Erklärung seiner Entscheidungsergebnisse
mit Hilfe von Salienzkarten. Diese Methode ist der Eckpfeiler der in dieser Arbeit
durchgeführten Analysen und wird in weiteren Kapiteln verfeinert.

Die folgenden Kapitel befassen sich mit dem schwierigeren Problem der Vorhersage der
Therapiewirksamkeit anhand von Biopsiebildern vor der Therapie in zwei verschiedenen
Studienfällen: dem Ansprechen auf eine neoadjuvante Strahlentherapie bei EA-Patienten
und dem Fortschreiten der Erkrankung bei CSCC-Patienten, die durch Tumorexzision
behandelt werden. Trotz der radikalen Unterschiede in der Tumorbiologie und den Ther-
apieverfahren weisen diese beiden Probleme viele Gemeinsamkeiten auf. Erstens wird
diese Art der Prognose nicht von medizinischem Fachpersonal durchgeführt, so dass
es keine menschlichen Grundlagen, Hypothesen oder eine plausible Interpretation der
Ergebnisse gibt. Zweitens gibt es bei diesen Aufgaben keine bekannten Biomarker, nach
denen man suchen könnte, daher werden die Gewebeschnitte gefärbt, um ihre allge-
meine mikroskopische Anatomie zu zeigen, was weniger visuelle Anhaltspunkte bietet,
aus denen man lernen kann. Vom Standpunkt der Bildanalyse aus gesehen können beide
Probleme mit denselben Techniken angegangen werden. In diesen beiden Kapiteln wird
die in der ersten Arbeit vorgestellte Methodik erweitert, indem ein Transformatormodell
als Klassifikator und ein Erklärungsalgorithmus verwendet werden, der für diese neue
Architektur geeignet ist. Zusätzlich wird eine neue Analysestufe hinzugefügt, um die
zelluläre Zusammensetzung relevanter Bildregionen mittels semantischer Segmentierung
von Zellkernen, Feature Engineering und statistischer Analyse zu untersuchen.

Die letzten beiden vorgestellten Arbeiten gehen von der Untersuchung der oben genan-
nten krankheitsspezifischen Anwendungen aus und untersuchen visuelle Aspekte des Ler-



nens aus Biobildern. Das erste dieser Kapitel untersucht die Auswirkungen des Vortrain-
ings eines Transformationsmodells mit Daten aus der natürlichen Sprache, bevor es auf
die Klassifizierung von Pathologie-Objektträgern angewendet wird, und wie die visuellen
Informationen in solchen Bildern in kleineren Darstellungen zusammengefasst werden
können. In der letzten Arbeit dieser Dissertation wird ein Lernalgorithmus mit mehreren
Instanzen vorgeschlagen, der die Tatsache berücksichtigt, dass grobe Muster der Gewebe-
morphologie und -organisation aus kleineren histologischen Merkmalen zusammengesetzt
sind.
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Chapter 1

Introduction
Histopathology background

Histopathology is the area of medicine that studies the manifestation of diseases via
the microscopic examination of tissue samples. It is a fundamental discipline in medical
diagnostics, particularly in oncology, where it serves as the gold standard for confirmation
of presence or absence of disease, tumor staging and grading, or measurement of disease
progression. Histopathology images are the product of digitizing these tissue samples.

Tissue samples taken from the body must first be processed into thin sections that
can be mounted on glass slides and stained for microscopic analysis. An important step
in the process is tissue staining, as sections are nearly transparent under a microscope,
making it impossible to discern pathological features. The main steps in the preparation
process are described as follows:

Fixation. The first step in tissue preparation is fixation, where tissue specimens ob-
tained from biopsies, surgical resections, or autopsies are immersed in a fixative,
typically 10% neutral buffered formalin. This process preserves cellular structures
and prevents autolysis and degradation. Fixation times vary depending on tissue
type and size but typically range between 6 and 48 hours.

Grossing and processing. Before fixation, larger tissue samples undergo grossing,
where they are trimmed to appropriate sizes to fit into processing cassettes. Once
fixed, tissue samples are processed through a series of steps, including dehydration
via graded alcohol solutions, clearing with xylene, and paraffin infiltration. The
processed tissues are then embedded in paraffin to create paraffin-embedded tissue
blocks, which provide structural support for thin sectioning.

Most commonly, complete tissue sections are analyzed under the microscope or
digitized with scanners, however, when large-scale studies require multiple sam-
ples to be analyzed under identical conditions, tissue microarrays (TMAs) are
employed. TMAs consist of small cylindrical tissue cores arranged in an orga-
nized array within a recipient paraffin block, allowing efficient, high-throughput
histopathological examination. For their construction, small cylindrical cores (usu-
ally 0.62 mm in diameter) are extracted from donor paraffin blocks and arranged
into a pre-designed array pattern within a recipient paraffin block. This allows
multiple tissue samples to be analyzed on a single slide under uniform conditions.

Sectioning. Both standard tissue blocks and TMA blocks are sectioned using a micro-
tome, cutting tissue slices into ultra-thin sections of approximately 45 micrometers.
These sections are floated in a warm water bath to remove wrinkles and carefully
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2 Introduction

mounted onto glass slides. Proper adherence to the slide surface is essential for
downstream staining and analysis.

Deparaffinization and rehydration. Before staining, the paraffin must be removed
from the tissue sections. This is done through deparaffinization, where slides are
immersed in xylene to dissolve the paraffin. Following this, the slides are rehy-
drated by passing them through a graded series of alcohol solutions and rinsing in
distilled water to prepare the tissue for staining.

Staining. Staining enhances tissue contrast and enables visualization of cellular struc-
tures. Two primary staining techniques are employed:

• Hematoxylin and Eosin (H&E) staining: This widely used method pro-
vides general morphological details. Hematoxylin stains cell nuclei a deep blue
or purple, while eosin stains cytoplasmic and extracellular matrix components
in varying shades of pink.

• Immunohistochemistry (IHC) staining: IHC is used for detecting specific
proteins in tissue sections. This involves applying primary antibodies that
bind to the target antigen, followed by secondary antibodies conjugated to
an enzyme or fluorophore. Enzymatic reactions produce colorimetric signals
that highlight specific biomolecules, crucial for diagnosing diseases like cancer
by detecting markers such as HER2, Ki-67, and p53. IHC-stained samples
require an additional processing step to restore the accessibility of antigens
that may have been masked during fixation. This involves heating the slides
in a buffer solution or using enzymatic digestion to expose target epitopes for
antibody binding.

Slide drying, coverslipping, and imaging preparation. Once stained, slides are
dried and may be subjected to coverslipping using a mounting medium for long-
term preservation. Coverslipping protects the tissue section and enhances optical
clarity for microscopic examination. Properly prepared slides are then ready for
microscopic examination or digital scanning, enabling computational analysis and
remote diagnostics.

Once slides and microarrays are prepared, they must be digitized to enable computa-
tional analysis and digital pathology workflows. This process converts the physical glass
slides into high-resolution digital images. In the literature, digitized slides are commonly
referred as whole slide images (WSIs). The digitization of tissue samples is primarily
performed using scanners which operate based on brightfield microscopy principles. In
brightfield microscopy, light is transmitted through the stained tissue section, and dif-
ferences in light absorption create contrast, revealing cellular structures. High-quality
objective lenses are used during scanning to achieve the necessary magnification and
resolution. Standard magnifications include 20x and 40x, corresponding to approximate
pixel resolutions of 0.5 µm/pixel and 0.25 µm/pixel, respectively. These resolutions allow
pathologists and computational models to analyze minute cellular details effectively.
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Fig. 1.1: Examples of histopathology images and stains. A A H&E-stained WSI of cutaneous tissue.
B An IHC-stained TMA core of esophageal tissue, where brown pixels show expression of the HER2
protein.
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Slide scanners utilize high-resolution CCD (Charge-Coupled Device) or CMOS (Com-
plementary Metal-Oxide-Semiconductor) sensors to capture the images, technologies
used in consumer photographic cameras. Acquisition is done by capturing small, over-
lapping tissue regions, which are stitched together to form a single image. This method
of scanning requires dynamically adjusting the focal plane of the camera to compen-
sate for variations in tissue thickness or glass slide imperfections. Specific details in the
acquisition process are vendor-specific, and escape the scope of this dissertation.

Once scanned, digitized slides are stored in multi-resolution pyramidal formats (.tiff,
.ndpi, .svs, among others), where lower-resolution versions of the image are generated and
stored alongside the full-resolution scan. This enables efficient navigation and zooming
without requiring constant access to the highest-resolution data.

Automatic analysis

50
68

8 
px

23040 px 224 px @ 20x

1.6 mm 15 µm

A B

Fig. 1.2: Visual differences between histopathology images and natural images. A An H&E-stained
esophageal slide, comprising several tissue blobs in a clear, distinguishable white background. The
zoomed-in region reveals a speckled texture composed of diverse cell nuclei. B An image from the well-
known ImageNet dataset for visual recognition where the most salient characteristic is the presence of a
foreground "object" that belongs to one of the dataset’s categories. ImageNet classification models most
commonly process images resized to 224 pixels of side.

The availability of digital scans of slides and microarrays allows for the automatic
analysis of tissue samples with computer vision (CV) algorithms, including machine and
deep learning approaches. Deep models have been proven successful in dense visual tasks
such as the detection and segmentation of individual cell nuclei, or global image- and
patient-level tasks such as cancer subtype classification or therapy response prediction.
This thesis deals with problems of the latter category.

Histopathology imagery is very simple from a technical standpoint. Brightfield mi-
croscopy is the most basic form of optical microscopy, and scanners acquire images with
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Fig. 1.3: A generic 2-stage MIL pipeline. After scanning, the tissue regions of the sample are tessellated
into small image patches at a target magnification, and a feature extractor model computes their vector
representations. Subsequently, proper MIL classification takes place.

sensors similar to those found in consumer electronics and photographic cameras. How-
ever, histopathology images possess distinct traits that differentiate them from other
types of imagery.

The most prominent feature is their size: a routine slide scanned at ×40 magnifi-
cation can easily comprise several gigapixels of resolution. This makes the automatic
processing of histopathology images a computational challenge: a single, uncompressed,
square slide of 50.000 pixels of side represented in single precision would require 30GB
of memory just for its storage. This memory requirement does not take into account the
storage required by the image processing algorithm, such as the model’s parameters and
temporary gradient storage in neural algorithms. Additionally, considering that typical
image sizes used in CV algorithms are a couple of hundred pixels per side, just a single
slide represents a considerable amount of data to process.

Natural images typically consist of distinct foreground objects (people, animals, things)
placed in a background scene. Objects possess high-level visual features (structure,
shape, semantic saliency) that the human perception picks up naturally, but are chal-
lenging to automatically detect due to low contrast edges, shading and texture gradients,
occlusions, that do not create a clear boundary between foreground pixels and back-
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ground pixels. On the other hand, histopathology images are composed of tissue blobs,
placed on a very distinguishable white background (with no visual information at all),
whose main feature is their texture composed by the spatial repetition of cells.

The automatic classification of slide images has adopted the multiple instance learning
(MIL) framework. MIL is a type of weakly supervised learning, where labels are assigned
to bags of instances, instead of the individual instances themselves. The standard MIL
pipeline is illustrated in Fig. 1.3, and is commonly carried out in a pre-processing, offline
stage, followed by the training of the MIL classifier itself.

The process begins with the tesselation of the sample into smaller image patches
(the instances), at a desired magnification. The choice of magnification is a matter of
design, and domain knowledge can aid with this: dense tasks such as identifying slides
with metastasis, which manifests itself as a localized cluster of cancer cells, may require
40x or 20x magnification; for tasks such as cancer subtype classification, which can be
discriminated by overall tissue features, magnifications of 10x or 5x may suffice.

Empty patches are discarded, and the remaining patches are processed into their (in-
dividual) feature vector representations by some already pre-trained deep image model,
called the feature extractor. These models follow the standard computer vision ar-
chitectures, including convolutional neural networks and vision transformers. Feature
extractors can be applied following a transfer learning approach, for example, by pre-
training them with supervision on a large collection of natural images, as it has been
proven that representations learned this way can transfer successfully to other domains.
Alternatively, it is also possible to use feature extractors pre-trained with self-supervision
on large collections of unlabeled histopathology image data.

The final classification output is produced by the MIL classifier. The main task of
this model is to aggregate the complete set of feature vectors of a sample into a single
global representation vector, which can then be classified commonly with a learnable
linear classification layer. Although the aggregation could be done with any simple
pooling operation, like taking the average feature vector of the set, neural attention-
based models have been proven successful for this task. Currently, state-of-art MIL
classification resides in the use of transformer models, a neural architecture originally
developed for natural language processing tasks.

The following chapters explain MIL classification of WSIs and TMAs more compre-
hensively from various perspectives. The first three chapters focus on the application of
MIL classification in predictive tasks associated with the treatment of esophageal adeno-
carcinoma and cutaneous squamous cell carcinoma. Additionally, these chapters cover
topics that exceed the classification itself, namely, the explanation and interpretation
of classification results, and collaborative model training. The two chapters that follow
study algorithmic aspects of MIL classifiers, as well as the feature extraction of image
regions. The dissertation finishes with an overarching discussion.
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Chapter 2

Predicting the HER2 status in
oesophageal cancer from tissue
microarrays using convolutional neural
networks

The following work addresses the classification of IHC-stained TMAs with the ultimate
goal of identifying EA patients who qualify for personalized therapy. Tissue cores were
stained to reveal the expression of the epidermal growth factor receptor 2 (HER2) pro-
tein. HER2 is a well-established cancer biomarker, and its activation is associated with
angiogenesis and tumorigenesis. Various solid tumors display HER2 overexpression, and
targeted therapy has been shown to improve treatment outcomes. In this study, a neu-
ral model is trained to predict the presence of HER2 in two classification tasks: binary
classification of HER2 status (positive or negative overexpression) and multi-class clas-
sification based on an IHC scoring system that rates HER2 presence. These tasks, the
determination of HER2 status and IHC score, are commonly carried out by pathologists
(unlike the tasks in the two upcoming chapters) by visually inspecting the IHC-stained
tissue cores.

This paper is both the first of the works showcased in this dissertation and the first pa-
per written during my doctoral studies. It serves as an introduction to MIL algorithms
applied to histopathology. In this work, the cornerstone method for our approach to
analyzing histopathology images is developed: a MIL classifier is trained, and its clas-
sification decisions are explained through saliency maps, providing insights into disease
mechanisms. The classifier model in this work is a simple attention-based neural net-
work, and its decisions can be explained straightforwardly by visualizing the attention
scores each instance receives, presented as a heatmap. The two upcoming chapters
build on this approach, employing a different classifier model and a more sophisticated
explainability algorithm.
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ARTICLE OPEN

Molecular Diagnostics

Predicting the HER2 status in oesophageal cancer from tissue
microarrays using convolutional neural networks
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Kai Lawonn3, Felix C. Popp2,8 and Katarzyna Bozek 1,7,8✉
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BACKGROUND: Fast and accurate diagnostics are key for personalised medicine. Particularly in cancer, precise diagnosis is a
prerequisite for targeted therapies, which can prolong lives. In this work, we focus on the automatic identification of
gastroesophageal adenocarcinoma (GEA) patients that qualify for a personalised therapy targeting epidermal growth factor
receptor 2 (HER2). We present a deep-learning method for scoring microscopy images of GEA for the presence of HER2
overexpression.
METHODS: Our method is based on convolutional neural networks (CNNs) trained on a rich dataset of 1602 patient samples and
tested on an independent set of 307 patient samples. We additionally verified the CNN’s generalisation capabilities with an
independent dataset with 653 samples from a separate clinical centre. We incorporated an attention mechanism in the network
architecture to identify the tissue regions, which are important for the prediction outcome. Our solution allows for direct automated
detection of HER2 in immunohistochemistry-stained tissue slides without the need for manual assessment and additional costly
in situ hybridisation (ISH) tests.
RESULTS: We show accuracy of 0.94, precision of 0.97, and recall of 0.95. Importantly, our approach offers accurate predictions in
cases that pathologists cannot resolve and that require additional ISH testing. We confirmed our findings in an independent dataset
collected in a different clinical centre. The attention-based CNN exploits morphological information in microscopy images and is
superior to a predictive model based on the staining intensity only.
CONCLUSIONS: We demonstrate that our approach not only automates an important diagnostic process for GEA patients but also
paves the way for the discovery of new morphological features that were previously unknown for GEA pathology.

British Journal of Cancer (2023) 128:1369–1376; https://doi.org/10.1038/s41416-023-02143-y

BACKGROUND
Gastroesophageal adenocarcinoma (GEA) is the seventh most
common cancer worldwide, with an increasing number of cases in
the western hemisphere. Despite multimodal therapies with
neoadjuvant chemotherapy/chemoradiation before surgery, med-
ian overall survival does not exceed 4 years [1–5]. Epidermal
growth factor receptor 2 (HER2) encodes a transmembrane
tyrosine kinase receptor and is present in different tissues, e.g.,
epithelial cells, mammary gland, and the nervous system. It is also
an important cancer biomarker. HER2 activation is associated with
angiogenesis and tumorigenesis. Various solid tumours display
HER2 overexpression, and targeted HER2 therapy improves their
treatment outcomes [6]. Clinical guidelines for GEA recommend
adding Trastuzumab—a monoclonal antibody binding to

HER2—to the first-line palliative chemotherapy for HER2-positive
cases. HER2 targeting drugs are also currently investigated in the
curative therapy for GEA [7].
Accurate testing for the HER2 status is a mandatory prerequisite

for the application of targeted therapies. The gold standard for
determining the HER2 status is an analysis of the immunohisto-
chemical (IHC) HER2 staining by an experienced pathologist, if
necessary followed by an additional in situ hybridisation (ISH). The
pathologist examines the immunohistochemistry staining of
cancer tissue slides for HER2 and determines the IHC score
ranging from 0 to 3. According to expert guidelines [8], the factors
determining the score include the staining intensity, the number
of connected positive cells, and the cellular location of the staining
(Supplemental Table 1). The IHC scores 0 and 1 define patients
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with a negative HER2 status that are not eligible for targeted anti-
HER2 therapy. An IHC score of 3 designates a positive HER2 status,
and these patients receive Trastuzumab. A score of 2 is equivocal.
In this case, an additional in situ hybridisation (ISH) assay resolves
the IHC score 2 as a positive or negative HER2 status. However,
both manual scoring and additional ISH testing are time-
consuming and costly.
Automated IHC quantification can support pathologists and is

one of the challenges in digital pathology and Convolutional
Neural Network (CNN)-based approaches currently offer the
highest accuracy in this task [9]. Tewary and Mukhopadhyay
using patch-based labelling created a three-level HER2 classifier
with an accuracy of 0.93 [10]. Han et al. combined a patch-level
classifier with a second one predicting HER2 score of a whole slide
image [11] achieving an accuracy of 0.94. The limitation of these
methods is the need for patch-level labelling, which is not typically
done in clinical evaluation. Annotations of individual patches are
not available in clinical datasets and thus require additional
manual work while patch-level predictions require developing
aggregation strategies to generate a prediction for the entire slide.
Additionally, all of the automated methods to date focus on breast
tumours, which have high prevalence and offer several large
public datasets. HER2 is however an important biomarker in other
cancers, notably oesophageal carcinoma.
Here, we ask whether CNNs can directly predict the HER2 status

from IHC-stained tissue sections without additional ISH testing. We
investigate which image features the neural network learns to
make the prediction—whether it uses only the colour intensity or
additional morphological features. We explore a large tissue
microarray (TMA) with 1602 digitised images stained for HER2. We
use this image dataset as a training set to train two different CNN
classification models. We test these models on an independent
test dataset of 307 TMA images from an unrelated patient group
from the same centre. We also further validate the HER2 status
prediction accuracy of our approach on a patient cohort from a
different clinical centre. If successful, CNNs could assist patholo-
gists in evaluating IHC stainings and, therefore, save time and
expenses related to the ISH analysis.

METHODS
Tumour sample and image preparation
For training the CNNs, we used a multi-spot tissue microarray (TMA) with
165 tumour cases and a single-spot TMA with 428 tumour cases, as
described elsewhere [12]. We additionally prepared an independent single-
spot TMA with 307 tumour cases as the test dataset. The test set consisted
of tumour cases that occurred at a later time point compared to the
training set cases. This dataset construction strategy mimics how such a
model would be developed and deployed in a clinical routine.
Coincidentally, our test set does not include tumour cases with an IHC
score of 1. The multi-spot TMA was composed of eight tissue cores (1.2 mm
diameter) of each tumour—four cores punched on the tumour margin and
four in the tumour centre. To construct the single-spot TMA, we punched
one tissue core per patient from the tumour centre. The cores were
transferred to TMA receiver blocks. Each TMA block contained 72 tissue
cores. Subsequently, we prepared 4 µm-thick sections from the TMA blocks
and transferred them to an adhesive-coated slide system (Instrumedics
Inc., Hackensack, NJ).
We used a HER2 antibody (Ventana clone 4B5, Roche Diagnostics,

Rotkreuz, Switzerland) on the automated Ventana/Roche slide stainer to
perform immunohistochemistry (IHC) on the TMA slides. HER2 expression
in carcinoma cells was assessed according to staining criteria listed in
Supplemental Table 1. Scores 0 and 1 indicated negative HER2 status, and
score 3 indicated positive HER2 status. Immunohistochemical expression
evaluation was assessed manually by two pathologists (A.Q. and H.L.)
according to [13]. Discrepant results, which occurred only in a small
number of samples, were resolved by consensus review. Spots with a score
of 2 were analysed by fluorescence ISH to resolve the HER2 status. The ISH
analysis evaluated the HER2 gene amplification status using the Zytolight
SPEC ERBB2/CEN 17 Dual Probe Kit (Zytomed Systems GmbH, Germany)

according to the manufacturer’s protocol. A fluorescence microscope
(DM5500, Leica, Wetzlar, Germany) with a 63× objective was used for
scanning the tumour tissue for amplification hotspots. We counted the
signals in randomly chosen areas of homogeneously distributed signals.
Twenty tumour cells were evaluated by counting green HER2 and orange
centromere-17 (CEN17) signals. The reading strategy followed the
recommendations of HER2/CEN17 ratio ≥ 2.0 or HER2 signals ≥ 6.0 for
HER2 positive and a HER2/CEN17 ratio <2.0 for HER2-negative samples.
We digitised the slides with a slide scanner (NanoZoomer S360,

Hamamatsu Photonics, Japan) with 40-times magnification and used
QuPath’s [14] TMA dearrayer to slice the digitised slides into individual
images (.jpg files, 5468 × 5468 pixels). After discarding corrupted images,
this procedure yielded 1281 images for training, 321 validation, and 307
images for testing. The test set is from the same hospital as the train set
but was sampled in a time interval disjoint from and following the time
interval when the training dataset was collected. This study design not
only reflects potential real life clinical scenarios in which incoming patient
data is analysed with a model trained on data collected at an earlier time
point, but also it follows the guidelines formulated by Kleppe et al. [15].
To study the capability of the CNNs to generalise, we performed a

stringent evaluation of the model performance on an external cohort with
653 samples from a different, geographically separate clinical centre [16].
The same antibody was used to perform the HER2 staining, but the slides
showed certain deterioration due to aging. Each image was labelled with
the IHC score (0, 1, 2, or 3) and the HER2 status (0 or 1) that was
determined by the pathologists or by ISH analysis in equivocal cases. This
methodology corresponds to the gold standard, and we used this labelling
as ground truth.

Classification models
We implemented a method that allows training neural networks on large
images at their original resolution by exploiting weakly supervised
Multiple-instance learning (MIL) [17]. In the weakly supervised multiple-
instance-learning approach, each slide is considered as a bag of smaller
tiles (instances) whose respective individual labels are unknown. To make a
bag-level prediction, image tiles are embedded in a low-dimensional
vector space, and the embeddings of individual tiles are aggregated to
obtain representation of the entire image. This representation is used as
input of a bag-level classifier.
For the aggregation of the tile embeddings, we used the attention-

based operator proposed by Ilse et al. [18]. It consists of a simple feed-
forward network that predicts an attention score for each of the
embeddings. These scores indicate how relevant each tile is for the
classification outcome, and are used to calculate a weighted sum of the tile
representations as the aggregation operation. Weights of a bag sum to
one, this way the bag representation is invariant to bag size. Finally, the
bag vector representation is used as the input of a feed-forward neural
network to perform the final classification.
In this approach, non-overlapping tiles of 224 × 224 pixels were

extracted from each slide, and their embeddings were derived from a
ResNet34 model. Empty tiles were discarded beforehand. As in the fully
supervised approach, the MIL classifier was trained separately to predict
IHC score and HER2 status.
To test the importance of image resolution in prediction we used a

ResNet34 architecture [19] for prediction of IHC score and HER2 status. The
network was trained as a four class IHC score classifier and separately as a
binary classifier of the HER2 status. Given the large resolution of the tissue
images (5468 × 5468 pixels), this approach required scaling them down by
5.34 to the size of 1024 × 1024 pixels to allow the network to train within
our hardware memory limits.
We also constructed a method for predicting IHC score and

HER2 status based on the staining intensity of the slides, a feature that
is conventionally used by automatic IHC scoring software. This method
was constructed to compare how predictive the single feature of
staining intensity is compared to the higher level features learned by our
CNN models. To extract the IHC staining expression from the images we
used colour deconvolution [20]. From the staining channel, non-
overlapping tiles of 224 × 224 pixels were extracted and the average
staining intensity was calculated for each tile. The staining intensity of
each slide was then calculated as the maximum of the average
intensities of its tiles. The proposed slide descriptor was used as input
in two logistic regression classifiers to predict IHC score and HER2 status
separately. This approach can also be seen as a multiple-instance
classification formulation where the feature extracted for each instance
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is its average staining intensity value, and the bag is aggregated using
the maximum operator.

Network training
The dataset showed an unbalanced distribution of the IHC score
(Supplemental Fig. 1) reflecting the frequency of HER2 expression in the
population [21]. To obtain representative training and validation sets, we
split images of each IHC score in 80-20 proportions. For the samples with
score 2, the 80-20 split was done separately for those with positive status
and those with negative status. During training, we performed a weighted
sampling of the images of each score such that each of the IHC scores is
equally represented during training. We performed random horizontal and
vertical flips as data augmentation.
We used Adam optimiser in training [22], with weight decay of 1 × 10–8

and betas of 0.9 and 0.999. The learning rates as well as their schedulers
were chosen based on a hyperparameter search. The ResNet classifiers
were trained using a learning rate 1 × 10–5, which was reduced by a factor
of 0.1 if the accuracy of the validation set does not improve after 20 epochs
of training. The MIL classifier was trained using a learning rate of 5 × 10–9,
decreasing it by a factor of 0.3 if the accuracy of the validation set does not
improve after 40 epochs. We used a batch size of 32 in the ResNet classifier
and a batch size of only one full resolution image with a bag size
depending on the amount of extracted tiles in the MIL classifier.
Our study is compliant with the guidelines summarised by Kleppe et al.

[15]. We perform data augmentations, our test set is disjoint in time from
the train set, and we demonstrate the method’s performance on an
external validation set. Our primary analysis was predefined and we report
balanced accuracy metrics throughout this study.
Computational work was performed on the CHEOPS high performance

computer, on nodes equipped with 4 NVIDIA V100 Volta graphics
processing units (GPUs). We used PyTorch (version 1.8.1) [23] for data
loading, creating models, and training.

RESULTS
IHC score prediction
First, we implemented a multiple-instance-learning (MIL) [17]
method allowing us to make the classification of the images at
their highest resolution. Using this technique, the images are split
into smaller tiles, encoded into their numeric embeddings and
ranked using the attention mechanism as proposed by Ilse et al.
[18]. The attention mechanism allows for automatic identification
of areas in the image that are important for the predicted score,
this way providing means to inspect and interpret the prediction
outcomes of the network.

This technique has shown a balanced accuracy of 0.8249,
precision of 0.9470 and recall of 0.9185 (Fig. 1: left, Table 1). Given
the score imbalance and the lack of samples with an IHC score 1 in
the test set, the reported performance metrics were calculated in a
balanced manner as an average of the metric of each individual
label weighted by their number of samples of that given label.
Most notably, the outermost classes 0 and 3 were predicted with
the highest accuracy while ~ 33% of score 2 images were
incorrectly predicted.
We next examined whether a simpler CNN-based classification

approach allows for predicting the IHC score from the TMA
images. In order for these images to fit within our hardware
constraints, we downsampled them by a factor of 5.34 to a size of
1024 × 1024 pixels. We trained classification architecture ResNet34
[19] on the rescaled dataset and analysed it on the test set of
images adjusted correspondingly. This approach resulted in
balanced accuracy of 0.8536, precision of 0.9544 and recall of
0.8859. The almost equal accuracy and precision of this model
suggests that relatively large visual details visible at a lower
resolution are sufficient for the most accurate prediction.

HER2 status prediction
We next addressed the question whether the HER2 status can be
predicted from the IHC-stained images directly, without additional
ISH testing. Images in our dataset with IHC score of 0 or 1 are HER2
negative, those with a score of 3 are positive. Those with a score of
2 were additionally resolved using ISH resulting in the following
positive/negative HER2 status split: 77/33% in the train set, 53/
47% in the test set. Out of 15 IHC score 2 images in the test set,
there were eight HER2 positive and seven HER2 negative. The
train-validation split was done in such a way that all the score and
status combinations are distributed equally in both sets.
The MIL classifier resulted in performance with balanced

accuracy of 0.9429, precision of 0.9705 and recall of 0.9478 (Fig. 1
and Table 1). As in the IHC score prediction task, the results were
calculated as a weighted average of the individual metrics for class
0 (HER2 negative) and class 1 (HER2 positive) to take account of
the class imbalance. Within both the HER2-negative and HER2-
positive classes, less than 7% of images were misclassified
resulting in balanced precision and recall >0.94. To better
understand the errors of the model, we additionally inspected
the HER2 status prediction accuracy within images of different IHC
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Fig. 1 Confusion matrices of the IHC score and status prediction. Score prediction evaluated on the test set is shown on the left, and
HER2 status prediction evaluated on the test set and on the external cohort are shown in the middle and on the right, respectively.

Table 1. Results of the Attention-Based MIL method on the tasks of IHC score prediction and HER2 status prediction.

Task Balanced acc. Precision Recall F1 score

IHC score prediction 0.8249 0.9470 0.9185 0.9302

HER2 status prediction 0.9429 0.9705 0.9478 0.9551
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scores (Table 2). With ~27% false-positive and ~7% false-negative
predictions, the highest error rate occurred in images with the IHC
score of 2. The higher proportion of false positives among the
score 2 images could be due to the underrepresentation of
samples with this IHC score and negative HER2 status in the
training set in the score 2 images. In images with IHC scores 0 and
3, the prediction error was below 4%. The difference in
performance between the 4-class and the binary classifiers
suggests that the inter-score differences are more subtle than
the ones differentiating the two HER2 statuses.

Performance on external cohort
Even if independently, our train and test datasets were collected
and prepared within one hospital. To verify how the performance
of our model is dependent on the aspects related to the data
preparation, we evaluated our models on an independent cohort
from a different clinical centre [16]. In particular, we aimed to
investigate whether HER2 status prediction is indeed possible
using IHC-stained images only. The external cohort included 653

tissue samples belonging to 297 patients with the following IHC
score distribution: 416/186/14/37 samples of scores 0/1/2/3
respectively. Out of the score 2 samples, 12 showed a negative
HER2 status and 2 samples showed positive HER2 status.
Given the different colour distribution and potential staining

quality deterioration due to the sample age, we applied a
preprocessing step to these images. We used Macenko’s method
for stain estimation [24] together with colour deconvolution/
convolution [20] to match the staining to our in-house dataset.
The MIL classifier yielded a balanced accuracy of 0.8688, precision
of 0.9490 and recall of 0.8908 (Fig. 1). These results support the
applicability of our approach in an important clinical context
where the distinction of HER2 status is key for further treatment.

Insights into the learning process of the MIL classifier
The ResNet and the MIL classifiers achieved almost identical accuracy
on our in-house test set in both the IHC score and the HER2 status
prediction. However, the advantage of the more compute-intensive
weakly supervised MIL approach is the possibility to inspect the
visual features that the network utilises in the classification process.
The embeddings and attention scores assigned to individual
224 × 224 pixel tiles can provide insights into the key visual features
used by the MIL approach in the classification.
First, we examined via t-distributed stochastic neighbour embed-

ding (t-SNE) dimensionality reduction method [25] the embeddings
of the image tiles in the test set generated by the IHC score
prediction network (Fig. 2). In this visualisation, spatial proximity of
tiles reflects the similarity of their embeddings. Although the
network was trained on the IHC score, it also correctly separates
the HER2 status of the parent TMA image. HER2-negative tiles with a

Table 2. Cross-tabulation of true IHC score and predicted HER2 status
of the test dataset. ‘2–’ and ‘2+’ scores stand for IHC score 2 and HER2-
negative and -positive status, respectively.

True IHC score

Predicted HER2 status 0 2- 2+ 3

Negative 273 3 1 0

Positive 11 4 7 8

t-SNE of patch embeddings

Score 0
Score 2–
Score 2+
Score 3

t-
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nt
 2

t-SNE component 1

Fig. 2 t-SNE visualisation of tile embeddings produced by the IHC score MIL classifier on the test set images, with the vectors coloured
according to the score of their respective slides. Visual similarity of the tiles is reflected in their neural network-derived representations and
the embeddings of similar tiles are close in the learned vector space. Coincidentally, there are no TMA images with a score of 1 in the test set
because the test set consisted of the consecutive tumour cases that followed the training set cases.
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score of 2 (2–) group together with score 0 tiles, and HER2-positive
tiles with a score of 2 (2+) group together with score 3 tiles.
Additionally, neighbouring tiles in the t-SNE projection show

visual similarity. Most strikingly, tiles grouped together show a
similar staining intensity and this intensity gradually changes
along the 2D projection of the embeddings. Staining intensity is,
however, not the only visual feature determinant of the
HER2 scoring, which also takes additional morphological features
into account (potentially such as those listed in Supplemental
Table 1). We expect these morphological features to also be
encoded in the learned vector space.
Next, we inspected the attention values of the MIL classifier and

their distribution within the tissue slides. The attention value reflects
the importance of a given image tile for the final prediction score
and this way provides information on spatial distribution of the visual
features in the tissue that the network is exploiting in the prediction.
Since the IHC staining is insufficient to resolve the HER2 status if the
tissue IHC score is 2, we inspected which visual features are exploited

by the network in resolving the HER2 status of the score 2 tissue
slides (Fig. 3). Strikingly, the attention of the MIL classifier for the
HER2 status focuses on areas of high staining intensity and
corresponds to the mean intensity of the tiles at first sight.
Given the relationship of the embeddings as well as attention

value to the staining intensity, we tested the accuracy of a
predictive model based on the staining intensity only. Similar to
the tiling approach of the MIL classifier, we split the tissue slides in
224 × 224 pixel tiles and averaged the staining intensity in each of
the tiles. We, then, used the maximum of the average intensities
across the tiles of an image as the quantitative descriptor of the
entire image. We trained two logistic regression models to predict
IHC score and HER2 status, respectively. The stain intensity-based
model showed a balanced accuracy of 0.6876 in the prediction of
the IHC score, markedly lower compared to the MIL classifier with
a balanced accuracy of 0.8249. The major difference in perfor-
mance between these models is in images with an IHC score of 2
(Fig. 4). In the task of predicting the HER2 status, the balanced
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values do not match staining intensity.
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accuracy of the staining intensity-based model reached 0.8457
compared to 0.9429 of the MIL classifier.
These results suggest that not only the staining intensity but

also additional morphological features are considered by the
deep-learning models in the classification. These features are
particularly important for correct recognition of images belonging
to the intermediate IHC score 2. We indicate examples of such
features in Fig. 3 and Supplemental Fig. 2. Even though attention
value and staining intensity largely match, the heatmaps in Fig. 3
demonstrate prominent exceptions where features of high
attention do not show high staining intensity.

Comparison to existing classifiers
Several computational toolboxes currently allow for training
predictive models on whole slide images (WSIs) stained using
hematoxylin and eosin (H&E) [26–29]. We compared the results of
our approach against CLAM [26], a publicly available pipeline for
WSI classification. This pipeline extends the attention-based deep
MIL proposed in [18] by including a clustering performed on the
embedding space during training, which improves prediction.
Similar to our approach, CLAM performs weighted sampling of
images to overcome the class imbalance bias. Training and testing
CLAM on the same data as our method resulted in balanced
accuracy of 0.7166 (precision of 0.9479, recall of 0.7394) in the
score prediction task and balanced accuracy of 0.8997 (precision
of 0.9611, recall of 0.9218) in the status prediction task, markedly
lower compared to our approach.

DISCUSSION
Automated and accurate image-based diagnostics help to
accelerate medical treatment and decrease the work burden of
the medical personnel. Here, we demonstrate that deep-learning-
based prediction of the IHC score (0–3) and the HER2 status
(negative or positive) is generally possible with a balanced
accuracy of ~0.85 and ~0.94, respectively. Among the scores,
IHC score 2 images show the highest proportion of misclassified
samples. These score 2 images cannot be unequivocally classified
regarding their HER2 status by the pathologists and need further
ISH-based evaluation. While it is considered that it is not possible
to resolve the HER2 status based on the IHC staining of the IHC
score 2 images, our models correctly predict the HER2 status of
73% of these images in our test dataset. Notably, score 2 samples
are strongly underrepresented in our datasets. We expect that
with more training samples of the underrepresented scores this
prediction accuracy will improve.
Several computational toolboxes currently allow for training

predictive models on WSIs. These multipurpose pipelines for
digital pathology are crucial to the research community because
they produce good results, allow for quick insights in the data with
an enormous ease of use. Our comparison with an existing,
publicly available WSI classification toolbox CLAM [26], suggests
however that problem-tailored approaches such as ours offer
refined control over parameterisation and data formatting, which
allows to achieve higher accuracy and computational efficiency.
Dedicated, problem-specific computational solutions might also
be easier to further develop into clinical tools.
One of our key findings is that not only staining intensity—

conventionally used in automated prediction tools—but also
additional morphological properties are taken into account by the
neural networks in the classification. We identified multiple
images in which the attention maps of the MIL classifier do not
match the staining intensity (Fig. 3). Additionally, prediction based
on the intensity yields markedly lower accuracy suggesting that
the CNN uses morphological features of the image beyond mere
staining intensity. This additional information is key for the CNN to
correctly predict the equivocal cases with HER2 score 2.
Identification of the specific morphological signatures of HER2

not captured by the staining will require pathologists’ as well as
computational analysis of the high-attention and low stain
intensity regions (Supplemental Fig. 2).
Neural networks for quantification of tumour morphology,

especially in the H&E stainings, emerge as a novel approach for
detecting tumour features invisible to the human eye, such as
those corresponding to DNA mutations. Kather et al. predict
microsatellite instability in gastrointestinal tumours directly from
H&E stainings [30]. Couture et al. predict various breast cancer
biomarkers, including the oestrogen receptor status, with an
accuracy > 0.75 [31]. The authors suggest the presence of
morphological features indicative of the underlying tumour
biology in H&E images accessible to deep-learning methods. Lu
et al. predict the HER2 status directly from H&E WSIs in breast
cancer using a graph representation of the cellular spatial
relationship [32] yielding an area under the receiver operator
curve (AUROC) of 0.75 on an independent test set.
While inferring information imperceptible to the human eye

from H&E stained tumour slides is a powerful approach pushing
the boundaries of digital pathology, we use IHC-stained images in
our study. Compared to H&E images, IHC stainings directly
visualise the molecular HER2 expression and thus present more
specific and interpretable data for pathologists. Our approach
explores this information to an extent beyond human perception
and staining intensity producing an AUROC curve of 0.91 (see
Fig. 4). While leaving a clinical decision up to an automated
method is not practiced due to its associated ethical questions,
our IHC-based MIL approach could readily be used to assist
pathologists. The attention maps could point clinicians to the
relevant regions in the IHC images and thus save time and manual
workload of clinicians.
In this study, our data is in the form of TMA, our approach is

however readily applicable to WSIs and expandable to different
file formats. Processing optimisations, such as precalculating tile
embeddings prior to inference, might be needed if the volume of
WSIs exceed the hardware memory limitations. Our results on the
external test set suggest that with appropriate image normal-
isation our model can generalise to other datasets.
Unexpectedly, the classifiers based on low- (1024 × 1024 pixel)

and high- (5468 × 5468 pixel) resolution images achieve matched
accuracy. Potentially, the lower resolution used in this study is
sufficient to encode the key morphological features of the images.
This resolution was the highest that still allowed for training
ResNet within our hardware memory. Notably decreasing the size
of the images further to 512 × 512 pixel size resulted in the
decrease of the model balanced accuracy to 0.8200 for the
prediction of IHC score. Unlike in this study, WSIs instead of TMAs
are used in the diagnostic pathological assessment. The WSI size is
several orders of magnitude larger than the images in our dataset,
which does not allow for using simple classification architectures
such as ResNet and MIL approaches are typically used instead. Our
results suggest however that reducing image resolution even
5-fold does not affect the deep-learning model performance,
which could accelerate model training and reduce computational
costs of models built on WSIs without compromising their
accuracy.
Given the class imbalance of our datasets, we report the balanced

accuracy and weighted recall, precision and F1 metrics, as the
unbalanced and unweighted metrics may be misleading in
describing performance of the models. As an example, if
unbalanced, the accuracy score of an IHC score classifier that
always predicts score 0 would be 0.92 in our dataset, and an
analogous HER2 status classifier would achieve accuracy of 0.94. The
unbalanced precision (and subsequently, F1) of our HER2 status
classifiers would be similarly inaccurate. If we take, for example, the
MIL HER2 status classifier, its unbalanced precision score is 0.51,
while its false-positive rate is only 0.04. For these reasons we
calculate our accuracy metrics in a balanced manner.
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We propose that artificial intelligence-based HER2 status
evaluation represents a valuable tool to assist clinicians. In
particular, the attention map generated by the MIL classifier can
aid the pathologists in their daily work by indicating the image
areas of high information content for the evaluation. This
approach could facilitate and speed up the manual analysis of
large tissue images. The IHC score determination network can
easily be transferred to any IHC staining other than HER2, further
paving the way for digital pathology. We additionally demonstrate
the capacity of our method to perform on samples from external
clinical centres with similar prediction accuracy. We expect the
power and generalisability of our deep-learning model to increase
with larger, multi-centre datasets.
Finally, the high performance of our models in predicting the

HER2 status of score 2 samples for which the status is considered
as unresolvable based on the IHC staining, suggests that there
exist visual features predictive of the HER2 status in these images.
While identification of these features would require more IHC
score 2 image data than available in our dataset, we expect that
further deployment of the MIL models might lead to the discovery
of novel morphological signatures improving image-based
diagnostics.

CONCLUSION
We demonstrate that it is possible to automatically predict HER2
overexpression directly from IHC-stained images of gastroesopha-
geal cancer tissue, an important diagnostic process in the
treatment of GEA patients. CNNs not only replicate the IHC
scoring system used by pathologists, but can directly predict
HER2 status in cases where it is considered not possible to resolve
this condition by IHC staining alone.
Interestingly, staining intensity is not the only predictive feature

for HER2 overexpression in the IHC images. Deep-learning
algorithms can capture complex molecular features like the
HER2 status from the tissue morphology. The attention map of
the MIL classifier identifies key morphological features beyond
staining intensity that might be important indicators to assess
individual tumour biology.
We conclude that deep-learning-based image analysis repre-

sents a valuable tool both for the development of useful digital
pathology applications and the discovery of visual features and
patterns previously unknown to traditional pathology.
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Chapter 3

Neural networks predict the pathological
response to neoadjuvant
radiochemotherapy in esophageal cancer
from primary biopsies

This chapter continues the case study of EA, focusing more specifically on patients
with adenocarcinoma of the gastroesophageal junction (AGEJ). It addresses the more
challenging problem of predicting therapy response directly from WSIs of pre-therapy
biopsies. AGEJ patients are commonly treated with perioperative chemotherapy or
neoadjuvant radiochemotherapy, yet the response rates for both therapies remain mod-
erate. Here, we investigate the feasibility of reliably identifying patients who are likely
to respond positively to neoadjuvant radiotherapy by classifying biopsy slides taken at
the very beginning of their medical care, thus enabling the selection of personalized
treatment. In contrast to the previous chapter, this case involves no known biomarker
that could serve as a target, and the task of predicting therapy response is not per-
formed through visual inspection by histopathologists. Consequently, the biopsy slides
are stained with H&E, revealing only the general microscopic anatomy of the tissue,
with no specific visual cues to guide the learning process.

The methodology in this work builds upon the one presented in the previous chapter.
The attention-based classifier is replaced by a transformer model, and the saliency maps
are generated using an XAI algorithm known as Integrated Gradients, which is applicable
to any gradient-based architecture. Additionally, a further analysis step is introduced,
involving feature engineering and statistical analysis of the cell nuclei present in the
image patches identified as relevant for the classification decision by the XAI algorithm.

At the time of writing, this chapter corresponds to the first draft of a scientific paper
in preparation.
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Abstract 

The current treatment for locally advanced adenocarcinoma of the gastroesophageal junction 

(GEJ) typically involves multimodal approaches, with perioperative chemotherapy or 

neoadjuvant radiochemotherapy demonstrating improved outcomes in clinical trials. However, 

only about half of the patients respond to neoadjuvant therapy. Personalized treatment 

strategies could improve response rates and survival outcomes if the likelihood of response could 

be accurately predicted. 

This study explores the use of artificial intelligence (AI) to advance personalized therapy selection 

for GEJ cancer patients. Specifically, we hypothesize that neural networks can predict individual 

responses to preoperative radiochemotherapy administered according to the CROSS protocol. 

Using a deep learning approach, we predict therapy response to CROSS therapy—assessed by 

the Becker tumor regression grade—using H&E-stained tissue slides from primary GEJ tumor 

biopsies. Our model achieves 82% accuracy on an independent test set. Through slide 

segmentation and interpretability techniques, we identify key features that differentiate CROSS 

responders from non-responders. 

By identifying patients likely to achieve pathological complete or major response, which 

correlates with improved survival, this AI-driven method has the potential to guide treatment 

decisions for GEJ cancer patients in the future. This personalized approach could optimize 

outcomes by selecting patients most likely to benefit from radiochemotherapy. 
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Introduction 

The incidence of adenocarcinoma of the gastroesophageal junction (GEJ) is rising worldwide. 

Patients with locally advanced GEJ cancer typically undergo a multimodal treatment approach 

guided by pivotal trials demonstrating improved outcomes with neoadjuvant radiochemotherapy 

(preoperative radiotherapy with carboplatin plus paclitaxel - CROSS) or perioperative 

chemotherapy with fluorouracil, leucovorin, oxaliplatin, and docetaxel (FLOT). Clinical trials such 

as Neo-AEGIS and ESOPEC have been conducted to compare these regimens, but they did not 

employ the latest therapy regimes. In the Neo-AEGIS trial demonstrating no difference between 

neoadjuvant radiochemotherapy and chemotherapy, most patients received chemotherapy with 

inferior efficacy compared to FLOT (EOX, ECX). This limitation hampers the practical application 

of the trial's findings in clinical decision-making. The ESOPEC study demonstrated an advantage 

for perioperative chemotherapy (FLOT); however, patients who received radiochemotherapy did 

not receive subsequent adjuvant immunotherapy, which is standard today. Additionally, only 

about 50% of patients responded to perioperative chemotherapy, and 56% responded to 

radiochemotherapy. According to the ESOPEC study, all patients would receive FLOT 

chemotherapy. However, since the overall response rates for both FLOT and CROSS therapies are 

moderate, CROSS could be a personalized treatment choice for patients whose response to 

CROSS can be reliably predicted. 

Combination of deep learning methods and diagnostic hematoxylin and eosin (H&E)-stained 

histopathology images represents a promising way to extract clinically relevant insights from 

tumor tissue specimens. These insights include not only tumor presence and its type, which is a 

typical use of the images in histopathology-based diagnostics, but also molecular phenotypes for 

which there are no known visual biomarkers.1,2 Similar to the detailed molecular phenotypes of 

cancer, there are no known visual features in the H&E slides predictive of patient outcomes. 

Nevertheless, the combination of histopathological images with clinical information was recently 

shown to allow the prediction of the survival of gastric cancer patients.3 These studies effectively 

broaden the applications of H&E-stained tissue slides from their conventional role in tumor 

diagnosis and subtyping to discovery of novel morphological biomarkers for predicting molecular 

alterations and patient outcomes. 
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Figure 1. Our WSI-based response prediction workflow. In a first step, we train a transformer CROSS 

response prediction model. Next, we identify relevant slide regions using a post-hoc gradient-based 

explainability algorithm, and a nuclei segmentation model is applied to characterise their cellular 

compositions. We analyze several engineered features on these regions to understand the cellular factors 

that are associated with therapy response. 

 

Here, we present our approach for predicting esophageal adenocarcinoma patients’ response to 

preoperative radiotherapy based on diagnostic slides of primary tumor samples (Fig. 1). We 

measure the treatment response with the Becker tumor regression grade (TRG) and define 

responders as patients with pathological complete response and major response (<10% vital 

tumor cells). Our model predicts responders with balanced accuracy of 80.74%. Using our 

interpretability pipeline which combines integrated gradients with nuclei segmentation and 

classification, we find that image regions predictive of non-response contain more heterogenous 

cell populations, as well as slightly different nuclear morphology. Identification of patients who 

do not benefit from treatment is important to offer them alternative therapies and for 

establishing a personalized approach to treatment of gastroesophageal tumors.  
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Methods 

Dataset, Tumor sample, and image preparation 

We collected primary biopsies from gastroesophageal junction (GEJ) cancer patients who 

underwent surgery at the University Hospital of Cologne. The majority of the biopsies were 

originally obtained externally. We requested the corresponding tissue blocks from the respective 

pathological institutions and performed standardized hematoxylin and eosin (H&E) staining 

according to standard protocols centrally at the University Hospital of Cologne. The H&E stained 

slides were digitized using a NanoZoomer S360 slide scanner (Hamamatsu Photonics, Japan) at 

20x magnification. We used the resulting whole slide images (WSI) of 312 primary biopsies of 193 

GEJ cancer patients to train the neural network. All patients underwent CROSS therapy after 

surgery. The surgical specimens were used to determine the pathological tumor regression grade 

(TRG) according to Becker based on the percentage of vital residual tumor cells (VRTCs). The VRTC 

number separates the patients into four TRG categories. 1a = complete pathological regression 

without residual tumor; 1b < 10 % residual tumor, corresponding to major pathologic regression; 

2 = 10–50% residual tumor, i.e., partial pathologic regression; and 3 > 50% residual tumor cells, 

corresponding to no tumor regression. Complete and major pathologic response is associated 

with a significant improvement in overall survival compared to no response or minor pathologic 

changes after neoadjuvant therapy in gastroesophageal cancer. Thus, we combined grades 1a 

with 1b to define responders and 2 with 3 to define non-responders for the training of the neural 

network (NN).  

Out of the 193 patients, 83 patients (114 slides) were labeled as responders, and 113 patients 

(198 slides) as non-responders. For training and evaluation of the predictive model, we split the 

data in a stratified fashion on the patient level, making 65-15-20 splits for training, validation, 

and testing, respectively. 

This retrospective study was conducted in compliance with the ethical guidelines approved by 

the ethics committee of the University Hospital of Cologne, Germany. 
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Classification model 

In a pre-processing stage, the WSIs were tiled into patches of 256×256 pixels at ×20 

magnification. Patches without tissue were discarded, and the remaining patches were 

processed with a CTransPath model to compute their feature vector representations.4 Each WSI 

was treated as a collection of feature vectors corresponding to its non-empty image patches. 

Patients with multiple slides were treated as a single set of image patches, consisting of the union 

of the set of patches of their different slides.  

The classification was done with a transformer encoder classifier.5 The embedding vectors from 

the last layer of the transformer encoder were averaged and fed to a linear layer for the final 

classification. We trained our model for 2 epochs with the Adam optimizer algorithm, using a 

learning rate of 2.5e-4, weight decay of 5e-5, and batch size of 16. These hyperparameters were 

selected based on the best validation set AUROC.  

 

Interpretability 

Beyond mere therapy response prediction, we investigated the biological features that drive our 

NN classifier’s decision. Our process was threefold: we detected relevant image regions 

responsible for the model’s decision; we computed handcrafted features of the cellular 

composition of the image regions; and we performed the data analysis itself. This approach is 

described in detail below. 

 

Input attributions 

We used Integrated Gradients (IGs) to identify regions of a whole slide image (WSI) that play a 

role in the classifier’s prediction.6 IGs is a deep learning explainability algorithm that attributes 

the prediction of an NN to its input features. We applied IGs to our GEJ progression prediction 

model, to assign a positive score to image patches that contribute to the prediction of the correct 

class, and a negative score to patches that contribute to the prediction of the opposite outcome.  
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Patch description and feature engineering 

We applied a StarDist model on the image patches located within manually delimited tumor 

regions of the slides of our test dataset.7 The model was fine-tuned on the Lizard dataset of 

colonic nuclear segmentation,8 which proves highly transferable to our cohort. The 

morphological similarities between colorectal adenocarcinoma and oesophageal 

adenocarcinoma ensures reliable tumor cell detection, and the model effectively identifies 

immune and stromal cells, as their appearance remains consistent across different tumor types.  

Additionally, all detections were checked by experienced pathologists to ensure proper 

segmentation and classification of cell nuclei. The Segmentation model classifies cells into six 

types: six classes: epithelial cells, eosinophils, plasma cells, connective cells, neutrophils, and 

lymphocytes.  Once the cells in a patch were identified, we computed a total of 524 features that 

summarize the patch into a single feature vector. These features included: 

- Cell type populations and ratios. 

- Descriptive statistics (mean, median, variance, skewness, kurtosis, minimum, maximum) 

of nuclei morphology, such as the mean nuclei eccentricity of a given cell type, or the 

variance of its area. These features were computed with the `skimage.measure` Python 

package.9 

- Descriptive statistics of distances between cell nuclei of different types, such as e.g. the 

median distance between connective cells and lymphocytes. 

- Average Nearest Neighbor Ratio (ANNR) and Join Count (JC) analysis for each cell type. 

The ANNR and JC features were used to quantify the spatial arrangement of cells within a patch, 

and they capture two different aspects of it.  

ANNR was used to quantify the observed pattern of distances between cell nuclei in a patch: 

𝐴𝑁𝑁𝑅	 = 	𝐷'	/	𝐷)  , 

where 	𝐷'	 is the observed mean distance between each cell and its closest neighbor, and 𝐷)  is 

the expected mean distance between each cell and its closest neighbor if the cells were placed 

randomly:  

𝐷) 	=
*.,
-.//

 , 
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where 𝑛 is the number of cells in a patch and 𝐴 is the patch area. An ANNR<1 indicates dense cell 

grouping (meaning, cells in the patch are closer than a random pattern of cells), and an ANNR>1 

indicates a dispersed or evenly-spread pattern of cell nuclei. We computed the ANNR for each 

cell type in a patch. 

JC analysis provides a measure of spatial autocorrelation: it describes how the values of a variable 

at neighboring spatial locations are similar to each other. In our case, the variable of interest is 

the cell type, where a positive spatial autocorrelation means that neighboring cells belong to the 

same type, and a negative spatial autocorrelation that neighboring cells belong to different 

classes. Spatial autocorrelation is complementary to ANNR, it quantifies neighboring cell nuclei 

types disregarding how close or far apart they are. 

Our JC analysis was computed for each cell type individually, in the following way: 

1. A patch was partitioned into a Voronoi tessellation, using the nuclei centroids as seeds 

for the regions. 

2. The regions were binary-labeled. Given a cell type, a positive label was assigned to all the 

cell nuclei belonging to that class, and a negative label was assigned to the remaining 

regions. 

3. The different types of joins were then counted. Two neighboring cells make a black-black 

(BB) join if they both have the positive label (i.e. the cell type being currently analyzed); a 

black-white (BW) join is formed between two cells of opposite labels; and a white-white 

(WW) join happens when two cells of the negative label neighbor each other. 

This procedure was done for each cell type independently, assigning the positive label (black) to 

the analyzed cell type and the negative label (white) to all the other cell types. Our measure of 

spatial autocorrelation is given by: 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙	𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	 = (	𝐽>> 	−	𝐽>@)	/	𝐽B, 

where JBB ,  JBW , and  JT are the number of BB joins, the number of BW joins, and the total number 

of joins, respectively. This equation is positive when the majority of joins in a patch are BB joins, 

indicating a positive spatial autocorrelation, and is negative when the majority of joins are BW 

joins, indicating negative spatial autocorrelation.  

Data analysis 
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We applied IGs to all the patients in the test set and described their corresponding image patches 

with the features explained above. We used the patches coming from manually delimited tumor 

regions in the test set samples in this analysis. From all test set patches, we formed two groups: 

a “positive group” of image patches coming from responder patients, which were detected to be 

predictive of this condition based on IGs; and a “negative group” of patches coming from non-

responder patients, which were detected to be predictive of this condition based on IGs.  

To enhance the predictive signal and avoid over-representing patients with larger tumors, we 

used the top 10% IGs-scored patches in a slide, and limited their number  to 200 image patches 

per slide. We compared values of each feature individually between the two groups of patches. 

We guide our analysis by focusing on features whose values differed between the two groups 

with an Effect Size bigger than random. We used the Common Language Effect Size (CLES),10 or 

probability of superiority, as it has no assumptions about the data distribution, and is 

straightforward to understand: 

𝐶𝐿𝐸𝑆	 = 	𝑃(𝑋 > 𝑌), 

is the probability that a value sampled from group X is bigger than a value sampled from group 

Y. In our case, the two groups were the positive and the negative groups previously described, 

and we computed the CLES for each feature with brute force, by exhaustively comparing each 

value of one group with all the values of the same feature in the other group. 
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Results 

Classification model predicts therapy response based on primary biopsies 

We predict patient response to preoperative radiochemotherapy using pre-treatment 

histopathological images of primary biopsies. To assess therapy response, we used the Becker 

tumor regression grade (TRG) defined by vital residual tumor cells. A pathological complete 

response (pCR, no vital tumor cells) and major response (mPR, <10% vital tumor cells) are 

associated with a significant improvement in overall survival in gastroesophageal cancer. We 

categorized patients as therapy responders by combining those with pCR and mPR, while 

considering the remaining patients as non-responders. This classification resulted in the 

establishment of two distinct classes. We split the 312 images of 193 GEJ patients into a training 

set (n = 123), a validation set (n = 31), and an independent test set (n = 39). Patient-level data 

splitting prevented bias by ensuring that multiple slides from one patient were grouped in the 

same dataset.  

Our classification model achieved AUROC of 0.80 on the test set (Fig. 2). We observed robust 

performance metrics when evaluating the test set. with sensitivity of 70.59%, and the specificity 

of 90.91%. We found the precision to be 85.71%, indicating a reliable likelihood of identifying 

responders. Correspondingly, the negative predictive value (NPV) was 80.00%, affirming the 

network's ability to exclude non-responders (see Figure 2). In summary, our network exhibits 

suitable sensitivity, specificity, and predictive values, supporting its effectiveness in accurately 

identifying responders and non-responders to CROSS treatment. The evaluation in the validation 

set yielded a similar performance, measuring AUROC of 0.82, sensitivity of 76.92%, specificity of 

88.89%, precision of 83.33%, and NPV of 84.21%. 

We presented the network with 79 images of patients who underwent FLOT treatment. The 

network accurately identified 20.00% of the responder cases, with a precision of 80.00%. This 

suggests that our model is indeed CROSS-specific and shows a strong capability to distinguish 

CROSS responders while making conservative decisions for FLOT response. 
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Figure 2. a) ROC curves of our response prediction model. b) Confusion matrices of our response 

prediction model. 

 

Interpretation of the predictive model 

In contrast to tumor detection and subtyping, there are no known visual biomarkers predictive 

of GEJ cancer patient response to treatment. Given the high accuracy of our predictive model we 

next devised an interpretability pipeline to unravel which morphological and tissue structure 

features are predictive of patient response to CROSS therapy. Briefly, we identified which WSI 

patches are most important for prediction using Integrated Gradients, we also segmented and 

classified all cell nuclei within tumor regions in our test set (Fig. 3). Using segmentation results 

we quantified  524 features describing cell and tissue morphology and organization and 

compared these features between two groups of image patches: those strongly predictive of 

response and of the lack of response in the two patient groups, respectively. We ranked features 

based on the effect size in this comparison.  

This analysis revealed distinct cellular and structural differences between patches predictive of 

response and predictive of lack of response. We found that the most discriminant feature is the 

composition of cell populations. Patches predictive of response contained fewer lymphocytes 

and connective cells, but more tumor cells compared to those predictive of non-responders (Fig. 

4a-c). This aspect is also reflected in the spatial autocorrelation of tumor cells, with non-

responder patches having more interactions between tumor and other cell types (Fig. 4d). In 

contrast, in patches predictive of responders there is an elevated number of interactions 
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Figure 3. Slide, attribution heatmap, Delimited region of interest, and nuclei segmentation output. a) 

Responder. b) Non-responder. 

 

between tumor cells, suggesting their spatial clustering. When inspecting the complete tumor 

regions of the complete dataset, we find a similar pattern in the populations of lymphocytes and 

tumor cells (Suppl. Fig. 2). Additionally, we find that connective and tumor cells are slightly more 

eccentric in responder-predictive patches (Fig. 4e,f). Representative patches of these findings are 

shown in Fig. 4g,h.  

Additional violin plots of features computed on predictive patches are shown in Suppl. Fig. 1. 

Interestingly, there is no statistical difference in the tumor cell count between patches predictive 

or response and no-response. Connective cells are more eccentric and slightly bigger in 

responder-predictive patches. Distances between lymphocytes show a smaller range in 

responder patches. Consistently with the positive spatial autocorrelation of tumor cells in 

responders, lymphocytes and connective cells in non-responders have a lower spatial 

autocorrelation indicating higher interactions with other cell types. 
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Figure 4. a-f) Violin plots of features which differ between the most predictive patches of responders and 

non-responders. g,h) Representative patches of both groups. All shown features are statistically significant 

according to a two-sample Mann-Whitney U-test with p<0.0005. 
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Discussion 

While deep learning models have reached human-level performance in diagnostic pathology 

tasks such as tumor detection and subtyping, the problem of image-based prediction of therapy 

response is a remarkably more challenging task. In our study, we leverage advances in machine 

vision to address the critical challenge of predicting therapy response to radiochemotherapy 

according to the CROSS  protocol for patients with GEJ adenocarcinoma using H&E-stained WSIs 

obtained pre-treatment during routine diagnostic workup. While for this hard-to-treat tumor, 

perioperative chemotherapy following the FLOT protocol is becoming the standard of care, 

radiochemotherapy remains a viable alternative. Given the moderate response rates to both 

treatments, a personalized therapy approach with the CROSS protocol could significantly benefit 

patients - provided the therapy response can be reliably predicted. 

Here, we introduce a deep-learning approach for identifying gastroesophageal junction (GEJ) 

adenocarcinoma patients who respond to CROSS treatment. Our method achieves an AUROC of 

0.80 on an independent test set, demonstrating high sensitivity and specificity. Notably, the 

model trained to predict tumor regression following CROSS treatment exhibits significantly lower 

performance when predicting responses to FLOT therapy. This discrepancy highlights the distinct 

mechanisms underlying the two treatments and underscores the need to develop dedicated 

prediction models tailored to FLOT therapy.  

Together with the predictive model, we have developed a comprehensive and quantitative 

interpretability pipeline that translates model predictions into interpretable morphological and 

tissue organization features. We discover that tissue regions predictive of CROSS response have 

a more homogeneous cell population consisting mainly of tumor cells, showing a positive spatial 

autocorrelation and having less interactions with other cell types. On the other hand, tumors 

with more dispersed structures, which are intermixed with immune cells represent an 

environment where CROSS therapy has limited efficacy.  

The size of our dataset is limited and calls for further validation with larger, multi-center cohorts. 

Nevertheless, our results suggest that prediction of GEJ cancer patient response to 

radiochemotherapy based on the primary biopsy is indeed possible. A systematic approach to 
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interpretation of the predictive model can point to key morphological features that distinguish 

the two patient groups and allow them to undergo alternative treatments.  
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Chapter 4

Explainable, federated deep learning
model predicts disease progression risk
of cutaneous squamous cell carcinoma

The following work builds upon the methodology presented in the previous chapter,
now with the goal of predicting progression risk in patients with cutaneous squamous
cell carcinoma. This disease is routinely treated with surgical excision to remove the
malignant tumor, a procedure that is successful in most cases. However, a minority of
patients experience local recurrence or metastasis, and current risk stratification systems
cannot accurately predict these outcomes.

This paper presents two main differences compared to the previous chapter. First,
the MIL model is trained using Federated Learning, a method for collaborative model
training in which data remains within its originating medical center. Second, the MIL
classifier is a transformer model pre-trained on a large corpora of text data to model
languagea model that will be described in detail in the next chapter.

At the time of writing, this work is currently under review by a scientific journal.
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Abstract 

Predicting cancer patient disease progression is a key step towards personalized medicine and 

secondary prevention. The ability to predict which patients are at an elevated risk of 

developing local recurrences or metastases would allow for tailored surveillance of these high-

risk patients as well as enhanced and timely interventions.  

We developed a deep learning transformer-based approach for prediction of progression of 

cutaneous squamous cell carcinoma (cSCC) patients based on diagnostic histopathology slides 

of the tumor. Our model, trained in a federated manner on patient cohorts from three clinical 

centers, reached an accuracy of AUROC=0.82, surpassing the predictive power of clinico-

pathological parameters used to assess progression risk. We conducted an interpretability 

analysis, systematically comparing a broad range of spatial and morphological features that 

characterize tissue regions predictive of patient progression. Our findings suggest that 

information located at the tumor boundaries is predictive of patient progression and that 

heterogeneity of tissue morphology and organization are characteristic of progressive cSCCs. 

Trained in a federated fashion exclusively on standard diagnostic slides obtained during 

routine care of cSCC patients, our model can be deployed and expanded across other clinical 

centers. This approach thereby offers a potentially powerful tool for improved screening and 

thus better clinical management of cSCC patients.  
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Introduction 

Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent type of non-

melanoma skin cancer that is diagnosed in 1 million patients in the USA every year.1 In the last 

decades, the incidence of cSCC has risen sharply and is projected to increase further.2 Even 

though the majority of cSCCs can be removed by surgical excision, a relevant fraction of 

patients experience disease progression by local recurrence or metastases to lymph nodes or 

other body sites, which is associated with poor prognosis and increased risk of death.3–6 Due 

to the high incidence of cSCC, this poses a significant public health concern. Reliable predictors 

are thus needed to decide which patients will benefit from enhanced secondary prevention 

e.g. by more frequent follow-up care or additional treatments such as immuno-, chemo- or 

radiotherapy. Current cSCC staging systems like the American Joint Committee on Cancer 

(AJCC), the Brigham Women’s Hospital (BWH), or the National Comprehensive Cancer 

Network (NCCN) staging systems aim to provide guidance on risk stratification and clinical 

management of cSCC patients.7,8 However, they fall short of reliably identifying patients at 

high risk of disease progression. Recently, multi-gene expression signatures have been used 

to predict metastasis risk of cSCCs.9,10 While these signatures help to predict metastasis risk, 

they have not yet been used to predict local recurrences. In addition, they require 

measurement of gene expression from patient samples, which limits their potential for 

translation into clinical routine use. 

 

In addition to clinical parameters such as immunosuppression, several pathological tumor 

features such as perineural involvement, tumor size, and invasion depth have been associated 

with increased risk of cSCC progression.4–6 Moreover, specific histological subtypes e.g. 

desmoplastic cSCC have been linked to higher recurrence and/or metastasis risk.6 Morphology 

in histological specimens thus holds information on progression risk, but has not yet been 

exploited systematically. Since deep learning has matched human experts in cancer detection 

and classification,11 computational pathology methods hold promise to extract information on 

patient progression from histopathology image data. Building robust models that offer high 

predictive power across data independent of their source, requires multi-institutional data 

sets for model training. Obtaining such data sets poses challenges regarding data governance 

and raises concerns about patient privacy. Federated Learning (FL) is a strategy that limits the  
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Figure 1: We propose a WSI-based cutaneous Squamous Cell Carcinoma (cSCC) progression prediction 

model, trained on data from three medical centers using Federated Learning. Beyond prediction, we 

investigate underlying biological features that influence our classifier. We do so by computing cellular-

level features with aid of a nuclei segmentation model. We analyze these features in image regions 

detected as relevant for prediction outcome by Integrated Gradients, an input attribution algorithm 

for explainable deep neural networks. 

 

logistic overhead and reduces privacy concerns in training a multi-center-based model.12,13 

Moreover, FL simplifies the inclusion of new patients and cohorts for further model training, 

which in turn facilitates model update, continuous improvement, and clinical applicability.  

 

Here, we present a multiple instance learning transformer-based deep learning model for 

prediction cSCC progression risk using Hematoxylin-Eosin-(HE-) stained histopathology images 

acquired during routine care (Fig. 1).14,15 Our model, trained in a federated manner on cohorts 

from three clinical centers, achieved high accuracy in predicting patients at risk of disease 

progression, which corresponds to significant differences in progression-free survival. We 

developed explainability methods on our model which provide insights into the tissue areas 

and cell features associated with increased progression risk. Overall, we present a powerful 

WSI-based prediction
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approach that improves risk-stratification of cSCC patients and offers insights into the 

underlying cancer biology.   
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Results 

Deep learning on histopathology images predicts cSCC progression risk 

Currently, it is not clear if the progression risk of a cSCC can be inferred from a histopathology 

slide and if so, which elements of the tumor and its microenvironment are decisive of disease 

progression. To fill this gap, we used a multiple instance learning, transformer-based classifier 

for the task of progression prediction from Whole Slide Images (WSIs). We trained the model 

in a federated manner, leveraging data from three different medical centers (Fig. 1).14,15  

 

Initially, we trained our model on the Cologne cohort only (n=157 patients, 214 WSIs), 

achieving cSCC progression status classification accuracy of 0.92 AUROC (95% CI=[0.83-1.00]) 

in a held-out test set from Cologne (Fig. 2A). In comparison, a multivariable logistic regression 

model incorporating clinico-pathological parameters associated with risk of disease 

progression (Suppl. Fig. 1) achieved an AUROC of 0.64 (95% CI=[0.52-0.75]) in the same 

prediction task and cohort (Fig. 2B). To test the robustness of our deep learning model we 

assembled two additional cohorts from dermatology departments at the University Hospital 

Bonn (Bonn cohort, n=35 patients, 133 WSIs) and the Technical University Munich (Munich 

cohort, n=51 patients, 113 WSIs). While the model trained on the Cologne cohort performed 

well on the Bonn cohort (AUROC=0.90, 95% CI=[0.71-0.97]), it failed to generalize to the 

Munich cohort (AUROC=0.46, 95% CI=[0.30-0.63]; Fig. 2A). This highlights that variation 

induced by e.g. technical procedures or distribution shift and domain adaptation problems 

may hamper generalizability of models trained on a single-center cohort.  

 

Federated learning improves generalizability of image-based classification 

To improve performance across cohorts, it is crucial to train deep learning models on large 

and diverse datasets. However transfer of patient data and histological slides across hospitals 

carries important logistic complexity and poses potential privacy threats. We therefore 

trained our model in an FL scheme on all three cohorts (Fig. 1).12 FL overcomes the data 

sharing hurdles by reducing the organizational overhead of combining different patient 

cohorts, since patient data can remain in the respective hospital. Model training is performed 

locally and only model parameters are shared between the hospitals. Moreover, it enables 

dynamic patient enrollment and facilitates inclusion of additional centers, which in turn  
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Figure 2: ROC curves of the classifiers. A: WSI-based classifier trained exclusively on the Cologne cohort 

and tested on Munich and Bonn cohorts (AUROC = Area under the receiver operator curve). B: 

Multivariate logistic regression model based on clinico-pathological parameters associated with 

progression risk in univariate analysis. Model trained and evaluated on the Cologne cohort. C: 

Federated WSI-based classifier. 

 

increases its flexibility and the opportunities for clinical deployment. Training on the multi-

institutional cohorts using the FL framework did indeed improve model performance. While 

AUROC on Cologne and Bonn decreased at most by 2%, performance on the Munich cohort 

increased by 63%, leading to prediction accuracy of AUROC=0.82 (95% CI=[0.69-0.95]) in the 

complete dataset (Fig. 2C). This highlights that prediction of disease trajectories is indeed 

possible for cSCC patients and can be achieved with a deep learning model trained on different 

cohorts in a federated manner. Such prediction opens possibilities for clinical translation of 

the model as a tool for the identification of patients at high recurrence risk that may benefit 

from increased surveillance.  

 

Explainability analyses highlight factors associated with cSCC progression 

In addition to stratifying patients according to their disease progression risk, we assessed 

which parts of the histological images are predictive of disease progression. We used 

Integrated Gradients (IGs) attributions to infer which areas in the WSIs are the most relevant 

for the prediction of the respective patient as progressor/non-progressor.16 Additionally, we 

leveraged a pipeline we recently established specifically for cSCC, which performs nuclei 

segmentation and classification of cells into one of six cell types (granulocyte, lymphocyte, 

plasma, stroma, tumor, and epithelial cell).17 We used the cell type detection and classification  

WSI classifier Federated WSI Classifier

Cologne, AUROC = 0.92
Bonn, AUROC = 0.84
Munich, AUROC = 0.46

Cologne, AUROC = 0.90
Bonn, AUROC = 0.83
Munich, AUROC = 0.75
All, AUROC = 0.82

A CClinical parameters classifier

AUROC = 0.63

B

False Positive Rate False Positive RateFalse Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Tr
ue

 P
os

iti
ve

 R
at

e

Tr
ue

 P
os

iti
ve

 R
at

e



 

8 
 

Figure 3: Slides and heatmaps of the patches’ classifier attribution score, tumor cell ratio, and stroma 

cell ratio. A: Slide of a progression patient, showing that the WSI-based classifier assigns higher 

importance to the region outside the tumor area (indicated by the tumor cell ratio heatmap). B: Slide 

of a non-progression patient, where the high attribution area coincides with the tumor-cell populated 

areas. Colorbar indicates the slide-normalized heatmap values. 

A

B
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to analyze the WSI regions with the highest predicted power as attributed by IGs. In the WSI 

regions with high IGs attribution score we calculated various features of nuclei morphology, 

cell type composition and spatial distribution (Suppl. Table 1).  

We next performed statistical analyses of these features to gain insights into the determinants 

of cSCC progression. Interestingly, many of the predictive tiles with the highest attribution 

score for disease progression were outside of the tumor region (Fig. 3A). In fact, attribution 

scores were low in areas with high tumor cell density, as determined using our cell type 

classification pipeline (Fig. 3A, bottom left & middle).17 Instead, they were high at the tumor 

border and frequently in areas where the most common cell type was stroma (Fig. 3A, bottom 

right, Suppl. Fig. 2).  

In contrast, for patients without disease progression, the most predictive tiles were located 

within the tumor and in areas with high tumor cell density.  Areas outside the tumor border 

were, in the case of these patients, not of high value for prediction of non-progression (Fig. 

3B). This highlights that different parts of histological sections contain information that 

distinguishes patients at high vs. low risk of disease progression and that such patient 

stratification needs to be based not only on the tumor but also its surroundings for adequate 

predictions. 

  

Additionally, we systematically compared the cell-based features between the tiles that were 

regarded as most predictive for disease progression or non-progression according to their IGs 

scores. Numerous parameters with significantly different distributions between the two 

groups were detected, Fig. 4 shows a subset of the tumor-cell-related features. Non-

progressors e.g. showed higher values in Average Nearest Neighbor Ratio (ANNR), indicating 

a higher uniformity in the way tumor cells were distributed (Fig. 4A, p<0.0001), while 

progressors had more intermixing of tumor cells with other cell types, i.e. more heterogeneity 

in tissue composition (Fig. 4C, p<0.0001). Moreover, tumor cells of non-progressors showed 

differences in their morphology compared to progressors such as larger nucleus size (Fig. 4B, 

p<0.0001) and lower nuclear eccentricity (Fig. 4D, p<0.0001).  In addition, tumors of patients 

that later experienced disease progression showed higher degrees of nuclear dysmorphia and 

pleomorphism compared to non-progressors. Tumor cells from non-progressors have larger 

values of morphological solidity and extent (larger median, negatively-skewed distributions,  
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Figure 4: Four of the features of the tumor cells used in the analysis. A,B,C,D show violin plots and 

segmented image patches that illustrate these values. In general, progression-associated tumor cells 

cluster together (A), interface with other cell types (B), and have smaller (C), eccentric nuclei (D). These 

effects are not just local to image patches, but they occur in larger regions, as shown in E,F. The 

displayed CLES (Common Language Effect Size) values are indicated for the group with the largest 

mean. All features are significantly different in both groups, with p-values < 0.0001 using Mann-

Whitney U test. 

 

Suppl. Fig 3A-D, Suppl. Table 1), while morphological extent has a larger variance in tumor 

cells from progressors (Suppl. Fig 3E, Suppl. Table 1).  
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We next tested whether our cell-based features are sufficient to predict the progression/non-

progression of patients based on their respective image tiles using a tree-based classification 

algorithm XGBoost.18 Interestingly, using the cell-based features as input resulted in high 

prediction accuracy (Suppl. Fig. 4, AUROC=0.98, 95% CI=[0.97-0.99]). This highlights that these 

features, which we computed using an independent pipeline, do indeed capture relevant 

biological parameters and variation associated with progression risk of patients. Thus the 

cellular and morphological features are making explicit the morphological and structural 

components of the tissues and cells that the deep learning model learned implicitly. 

 

Overall, our explainability analyses indicate that tumor cell-intrinsic properties as well as 

composition of the microenvironment and growth patterns of the tumor are associated with 

the difference in prognosis and are captured by our deep learning model to accurately predict 

progression risk.   

 

Image-encoded information has higher discriminative power than clinical variables 

Several clinico-pathological parameters have been associated with increased risk of disease 

progression, such as immunosuppression, perineural involvement, tumor size, and invasion 

depth.4,6 Similarly, desmoplastic cSCC histology has been linked to higher recurrence and/or 

metastasis risk.6 We used the clinico-pathological parameters available for the Cologne cohort 

to test their associations with survival and to compare their predictive power with the 

accuracy of the deep learning model. In this experiment, we used the logit output of the deep 

learning model as a progression risk score. Among clinico-pathological parameters, perineural 

invasion and beyond subcutaneous invasion were significantly associated with shorter 

progression free survival in univariate analyses (Suppl. Fig. 5A, B). Other parameters such as 

thickness >6mm, ulceration, and higher grade showed trends towards shorter survival, but did 

not reach significance (Suppl. Fig. 5A). Even among high-risk patients with perineural invasion 

or invasion beyond subcutaneous tissue not all patients developed disease progression, i.e. 

recurrence or metastasis. On the other hand, among the patients with one of those risk factors 

our deep learning model correctly separated those who progressed from those who did not 

based on their predicted progression risk (Fig. 5A). Similarly, deep learning-based predicted 

risk scores were higher for patients that experienced disease progression independent of  
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Figure 5: Comparison of deep learning-based classification with clinico-pathological parameters. A: 

Comparison of deep learning-based progression risk scores in Cologne patients with or without cSCC 

progression stratified by presence of invasion beyond subcutaneous tissue (top) or perineural invasion 

(bottom). Shown are median and median absolute deviation. p-values calculated by t test. B: 

Progression free survival of patients classified as high vs. low progression risk based on deep learning-

based risk prediction. (Threshold determined by Youden index). Hazard ratio (HR) between groups 

calculated using univariate Cor regression model. C: Multivariable Cox regression model for n=132 

Cologne patients with available data combining deep-learning based risk category with clinical 

parameters associated with progression free survival in univariate analyses. Shown are Hazard ratios, 

95% Confidence intervals (CIs) and multivariate p-values.  

 

tumor thickness and across histological grades (Suppl. Fig. 5C). The model thus allows further 

differentiation of patients compared to clinico-pathology-based risk factors. Without explicitly 

measuring these risk factors our model encodes information allowing to differentiate the two 

groups of patients with increased accuracy.  
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We next inspected the relationship of predicted risk of progression to patient survival. Using 

only the deep learning model’s predicted progression risk score to classify patients as high- vs. 

low-risk, stratifies patients with short from those with long survival (median PFS 20.1 months 

vs. not reached in high vs. low risk, respectively; Fig. 5B). The risk of progression was 14 times 

higher for high- compared to low-risk patients (Hazard ratio 14.4, p<0.0001; Fig. 5B). Similarly, 

dividing patients into risk groups based on tertiles of the deep learning-based progression risk 

scores reaches similar performance (Suppl. Fig. 5D).  

 

Lastly, we joined the informative factors of our clinico-pathological parameters with the deep 

learning model’s output to predict survival using a multivariable model. To this end we 

combined the deep learning model’s predicted risk scores and clinico-pathological parameters 

that showed a p-value below 0.1 in univariate analyses (perineural invasion, invasion beyond 

subcutaneous tissue, thickness >6mm, ulceration and differentiation grade >1) in a 

multivariable Cox regression model. This combined model showed that the image data carries 

more information than the clinico-pathological variables (global p<0.0001, Fig. 5C). In fact, 

high-risk classification based on the deep learning model carries a hazard ratio of 28.3 

(multivariable p<0.0001). In contrast, only perineural invasion remains significant with a 

hazard ratio of 5.8 (multivariable p=0.02), while the other variables are non-significant (Fig. 

5C).  

Considering that only a fraction of patients is positive for perineural invasion and that clinico-

pathological information is frequently incomplete, these analyses highlight the potential of 

our image-based model to reliably identify patients at high risk of disease progression for 

intensified clinical follow-up.  
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Discussion 

Deep learning has enabled automation of the analysis of large histopathology images. These 

digital pathology methods not only provide fast and detailed insights into the cellular 

composition of massive WSIs,19,20 but also allow to identify patterns and anomalies that may 

be imperceptible to the human eye.21 Here we present an approach that combines both: a 

model that detects complex, imperceptible morphological features of a tumor sample that are 

predictive of patient outcome with an explainability procedure to disentangle what these 

features are. While patient outcomes might be influenced by multifactorial clinical variables 

and span variable development trajectories, we demonstrate that, in case of cSCC, prediction 

of patient progression is possible based on histological images of their tumor samples alone. 

Via a comprehensive and quantitative analysis of predictive regions of the tumor samples we 

point to consistent and repetitive patterns in tumor and tumor microenvironment 

morphology and organization that characterize progression and non-progression patient 

groups. Our model offers unmatched accuracy compared to the prediction based on clinico-

pathological features that were the gold standard up till now. 

 

Our analysis combined data from three academic clinical centers: Cologne, Munich, and Bonn. 

The model trained on a single cohort resulted in an uneven accuracy on the remaining two 

cohorts, ranging from random predictions to 0.84 AUROC. While digital pathology models 

require large and multi-center data for better generalization, clinical data sharing carries 

important administrative hurdles and data protection risks. Here we demonstrate that these 

difficulties can be overcome by employing an FL training scheme resulting in a model with high 

accuracy across all cohorts while circumventing cross-center data sharing. Our model 

development strategy allows for easy incorporation of additional clinical centers in the future 

which could potentially improve the prediction accuracy further. 

  

Deep learning models have achieved human expert-level accuracy in standard diagnostic tasks 

such as tumor metastases detection and cancer subtyping.22–24 These tasks involve detecting 

patterns that, while sometimes local, subtle, and difficult to notice, are known and described 

in pathology textbooks. In contrast, prediction of patient progression based on WSIs is a more 

challenging task as there are no known visual biomarkers that reliably indicate disease 
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advancement. Numerous studies address prediction of cancer progression based on HE-

stained samples of tumors across diverse tissue types,25–30 however rarely reaching accuracy 

> 0.80 AUROC. Notably, combining image with clinical data has improved prediction accuracy 

in some studies still barely exceeding 0.80 AUROC.31–33 In cSCC research, the work of Coudray 

et al. addresses the prediction of disease outcome from WSIs using a bag of visual words 

classifier, achieving AUROC=0.689 .34 These examples demonstrate that prediction of patient 

progression is indeed difficult, and that the accuracy of our model is among the best achieved 

so far.  

 

Strikingly, progression risk of a patient could be predicted based on histology images alone, 

exceeding by far the accuracy achieved by a model trained on clinico-pathological features. 

Unlike clinical parameters,7,8 or gene expression measurements,9,10 which in different clinical 

centers might follow different standards, be done selectively for some patients only, and come 

with a high cost, histology is routinely performed in cSCC diagnosis. The fact that tissue slides 

are available for every patient and that prediction is fast and free of additional costs, 

considerably increases the facility and potential of our model for clinical use. Moreover, by 

obviating the need for data sharing, FL greatly facilitates further model training and 

refinement and its extension to additional centers. 

 

Unlike prediction based on clinical parameters, which are numeric and unambiguous, 

prediction based on image data is not easy to interpret. Commonly, multiple instance learning 

models are interpreted using qualitative inspection of image regions with high attention 

scores.22–24 Here we adopt a fully quantitative and systematic approach to model 

interpretation in which we filter predictive patches of each patient group and statistically 

compare over 524 cell-based features between the two groups. Our features are based on a 

segmentation model specifically designed for this tumor type and capture a broad range of 

aspects of sample cell composition, spatial organization of the tissue, as well as nuclei 

morphology.17 We point to several noticeable differences in tumor morphology between 

progressing and non-progressing patients.  

Interestingly, the most predictive patches of disease progression were located outside of the 

tumor region. In contrast, in patients without disease progression, the predictive patches were 
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inside the tumor according to our IGs-based analysis. On the level of cellular morphology and 

tissue architecture, tumors from patients with disease progression exhibited a higher degree 

of heterogeneity. Parameters quantifying nuclear morphology showed higher variability and 

in these patients, cells in the tumor tissues showed a less uniform distribution. Different areas 

in and around the cSCC tumor, as well as features of cellular morphology may play distinct 

roles in the propensity for local recurrence and/or metastatic spread. Future studies in 

additional cohorts, ideally together with genomic and transcriptomic experiments will be 

instrumental to further validate our model and infer cause-and-effect relationships between 

morphological findings and risk of disease progression.  

 

In summary, our study presents an explainable, federated deep learning model that reliably 

stratifies cSCC patients at high risk of disease progression and identifies their characteristic 

morphological features. The accuracy, interpretability, and federated implementation of our 

model hold great promise to better understand the disease and to advance the management 

of cSCC patients in the future. 
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Methods 

Patient cohorts 

For the initial training cohort, all patients with a primary cSCC diagnosed and treated by 

excision at the Department of Dermatology at the University Hospital Cologne (Cologne 

cohort) between January 2009 to May 2019 were collected. For these patients we used clinico-

pathological parameters based on medical records and pathology reports and performed 

active follow-up regarding disease progression status. In the cohort, 96 patients experienced 

disease progression (metastasis and/or local recurrence), out of which histological specimens 

from the primary tumor for 54 patients were available. For the deep learning classification, all 

available progressors were used together with a random sample of primary tumors from 

patients without disease progression. Local recurrence or lymph-node/distant metastasis 

within 2 years after initial diagnosis was considered a progression event. Hematoxylin-Eosin 

(HE) stained slides obtained during routine work-up of surgical samples were available for 162 

patients (progress n=54, non-progress n=108). From the University Hospital Bonn (Bonn 

cohort) patients diagnosed and treated for cSCC between March 2012 and September 2021 

were included. Tumors were excised at the Department of Dermatology or the Department of 

Oral and Maxillo-facial Surgery and worked up histologically following standard procedures.  

We identified 23 primary cSCC cases with eventual disease progression 

(recurrence/metastasis) and randomly selected a group of  primary cSCCs without disease 

progression. Of those, HE slides were available for 39 patients (progress n=23, non-progress 

n=16). For the cohort from the Department of Dermatology, Technical University Munich (TU 

Munich, Munich cohort) we identified patients with a primary cSCC and disease progression 

and assembled a random cohort of primary cSCCs without disease progression. Of those, HE 

slides were available for 51 patients (progress n=21, non-progress n=30). Patient inclusion and 

analysis was approved by the institutional review boards (Ethic vote numbers 187/16, 21-

1500,  20-1082 and 22-1330-retro).  
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Analysis and classification of whole slide images 

Datasets: Whole-slide images (WSIs) were acquired from HE slides using a NanoZoomer Slide 

Scanner (Hamamatsu) at 40x resolution. In total, we collected 219 WSIs of 162 patients from 

the University Hospital Cologne, 291 WSIs of 39 patients from the University Hospital Bonn, 

and 129 WSIs of 51 patients from TU Munich. We filtered out slides without any tumor tissue 

according to the Segmenter model described by Sancéré et al. The final dataset used for 

training of the federated deep learning model comprises 214 slides from 157 patients from 

the University Hospital Cologne, 133 slides from 35 patients from the University Hospital Bonn 

and 113 slides from 51 patients from TU Munich. From this dataset, 228 slides are from 

patients showing cSCC progression, and 232 slides are from patients showing no cSCC 

progression. Data splitting is done in a stratified fashion on patient level, making 65-15-20 

splits for training, validation, and testing, respectively. 

Pre-processing: Each WSI is tiled into patches of 256x256 pixels at x20 magnification. Patches 

without tissue are discarded, and the remaining patches are processed with an ImageNet pre-

trained EfficientNet-v2-L,35  to compute its feature vector representations. 

Classification: Each WSI is treated as the sequence of feature vectors corresponding to its non-

empty image patches. We use the multiple instance learning classification model described by 

Pisula and Bozek.36 Following an approach similar to Lu et al.,37 a transformer model initialized 

with language-modeling pre-training weights is used for classification. We use a RoBERTa 

transformer encoder,38 and perform parameter-efficient fine-tuning by only training its 

normalization layers.37,39 To reduce compute and memory footprint, we apply multi-head 

attention pooling at the input to shorten the length of the patch sequence. The embedding 

vectors from the last layer of the transformer encoder are averaged and fed to a linear layer 

for the final classification. 

Each WSI is classified independently during model training. During inference, in cases where 

there are multiple slides per patient, we evaluate the model on each one and take the 

prediction corresponding to the slide with the biggest activation in the positive class output 

neuron. 

Model training: We train our model with a Federated Averaging strategy for 50 rounds.12 

Adam is used as the optimizer algorithm, with a learning rate of 1.e-4, weight decay of 5.e-5, 
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and batch size of 4. Model selection is done based on weighted validation AUROC of the three 

cohorts. 

 

Classification explanation and analysis 

Beyond mere disease progression prediction with a deep network classifier, we investigate 

the biological features that drive our classifier’s decision. Our process is threefold: we detect 

relevant image regions responsible for the model’s decision; we compute handcrafted 

features of the cellular composition of the image regions; and we perform the data analysis 

itself. This approach is described in detail below. 

Input attributions 

We use Integrated Gradients (IGs) to identify regions of a WSI that play a role in the classifier’s 

progression prediction.16 IGs is a deep learning explainability algorithm that attributes the 

prediction of a deep network to its input features. We apply IGs to our cSCC progression 

prediction model, to assign a positive score to image patches that contribute to the prediction 

of the correct class, and a negative score to patches that contribute to the prediction of the 

opposite outcome. By arranging the IGs attribution scores of the patches in their 

corresponding spatial locations in the slides, it is possible to visualize these values as 

heatmaps, as shown in Fig. 3.  

Patch description and feature engineering 

We use the HoverNet nuclei segmentation model described by Sancéré et al. on the WSI image 

patches to identify their cell composition.17,19 The model detects and classifies cell nuclei into 

granulocytes, lymphocytes, plasma cells, stroma cells, tumor cells, and non-neoplastic 

epithelial cells. Once the cells in a patch have been identified, we compute a total of 524 

features that summarize the patch into a single feature vector. These features include: 

- Cell type populations and ratios. 

- Descriptive statistics (mean, median, variance, skewness, kurtosis, minimum, 

maximum) of nuclei morphology, such as the mean tumor cells nuclei eccentricity, or 

the variance in plasma cells nuclei area. These features were computed with the 

`skimage.measure` Python package.40  

- Descriptive statistics of distances between cell nuclei, such as the median distance 

between stroma cells and tumor cells. 



 

20 
 

- Average Nearest Neighbor Ratio (ANNR) and Join Count analysis for each cell type. 

The features from the last item are used to quantify the spatial arrangement of cells within a 

patch, and they capture two different aspects of it.  

ANNR is used to quantify the observed pattern of distances between cell nuclei in a patch: 

𝐴𝑁𝑁𝑅	 = 	𝐷'	/	𝐷)  , 

where 	𝐷'	is the observed mean distance between each cell and its closest neighbor, and 𝐷)  

is the expected mean distance between each cell and its closest neighbor if the cells were 

placed randomly:  

𝐷) 	=
*.,
-.//

 ,  

where 𝑛 is the number of cells in a patch, and 𝐴 is the patch area. An ANNR<1 indicates 

clustering (meaning, cells in the patch are closer than a random pattern of cells), and an 

ANNR>1 indicates a dispersed or regular pattern of cell nuclei. We compute the ANNR for each 

cell type in a patch. 

Join Count analysis gives a measure of spatial autocorrelation: it describes how the values of 

a variable at neighboring spatial locations are similar to each other. In our case, the variable 

of interest is the cell type, where a positive spatial autocorrelation would mean that 

neighboring cells belong to the same type, and a negative spatial autocorrelation would mean 

that neighboring cells belong to different classes. Spatial autocorrelation is complementary to 

ANNR, it quantifies neighboring cell nuclei types disregarding how close or distanced they are. 

Our Join Count analysis is computed for each cell type individually, in the following way: 

- A patch is partitioned into a Voronoi tessellation, using the nuclei centroids as seeds 

for the regions. 

- The regions are binary-labeled. Given a cell type, a positive label is assigned to all the 

cell nuclei belonging to that class, and a negative label is assigned to the remaining 

regions. 

- The different types of joins were then counted. Two neighboring cells make a black-

black (BB) join if they both are from the positive label (i.e. the cell type being currently 

analyzed); a black-white (BW) join is formed between two cells of opposite labels; and 

a white-white (WW) join happens when two cells of the negative label neighbor each 

other. 
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This procedure is done for each cell type independently, assigning the positive label (black) to 

the analyzed cell type and the negative label (white) to all the other cell types. Our measure 

of spatial autocorrelation is given by: 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙	𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	 = (	𝐽>> 	−	𝐽>@)	/	𝐽B  , 

where 𝐽>> , 	𝐽>@ , and 	𝐽B  are the number of BB joins, the number of BW joins, and the total 

number of joins, respectively. This equation is positive when the majority of joins in a patch 

are BB joins, indicating a positive spatial autocorrelation, and is negative when the majority of 

joins are BW joins, indicating negative spatial autocorrelation.  

Data analysis 

We apply IGs to all the patients in the test set, and describe their corresponding image patches 

as previously explained. We use in this analysis the patches coming from tumor regions 

detected by the Segmenter model described by Sancéré et al.,17,41 plus a surrounding tissue 

stripe of approximately 800μm of width next to the tumor border. From the totality of 

patches, we form two groups: A “positive group” of image patches coming from progression 

patients, which were detected to be explainable of this condition with IGs; and a “negative 

group” of patches coming from non-progression patients, which were detected to be 

explainable of this condition with IGs.  

To enhance the predictive signal and avoid over-representing patients with bigger tumors, we 

take a slide's top 10% IGs-scored patches, and limit this quantity to 200 image patches per 

slide. We compare values of each feature individually between the two groups of patches. We 

guide our analysis by focusing on features whose values differ between the two groups with 

an Effect Size bigger than random. We use the Common Language Effect Size (CLES),42 or 

probability of superiority, as it has no assumptions about the data distribution, and is 

straightforward to understand: 

𝐶𝐿𝐸𝑆	 = 	𝑃(𝑋 > 𝑌) , 

is the probability that a value sampled from group X is bigger than a value sampled from group 

Y. In our case, the two groups are the positive and the negative groups previously described, 

and we compute the CLES for each feature with brute force, by exhaustively comparing each 

value of one group with all the values of the same feature in the other group.  

In addition to comparing the feature distributions in both groups, we tested whether the 

individual patches’ feature vectors were sufficient to predict the progression status of their 
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respective patients using an XGBoost classifier.18 The patches under analysis were split into 

80-20 train and test sets, and model selection was done with 3-fold cross-validation on the 

train set. 

 

Statistical analysis of clinico-pathological variables 

Associations of clinico-pathological variables with disease progression and survival were done 

for all patients with available data. Association with disease progression risk was calculated 

using logistic regression and reported as odds ratios. Association with survival was done using 

the Kaplan-Meier method with log-rank test as well as Cox proportional hazard models and 

reported as hazard ratios with 95% confidence intervals. For multivariable analyses, variables 

with p<0.1 in univariate analysis were combined. Analyses were done in R statistical 

environment (v4.3.0).  
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Chapter 5

Efficient WSI classification with
sequence reduction and transformers
pre-trained on text

In the previous chapter, a neural network that was pre-trained to model language in
a large text dataset was used to predict progression risk from pathology slide images of
CSCC patients. While this approach may sound flawed, given that the pre-training data
is out of domain (and out of modality!), there exists an astounding hypothesis: text-
pre-trained transformers can transfer well to other tasks outside the world of natural
language processing.

This chapter explores the classification of histopathology WSIs with pre-trained lan-
guage models. A natural challenge arises given that WSIs constitute a prohibitively
large input to deep attention models whose time and space complexity is O(n2). An
attention-based layer to pool visual information into a compact sequence is then devel-
oped, allowing the processing of arbitrarily large pathology slides with any deep trans-
former model. The memory footprint of the algorithm is reduced even more by only
training the normalization layers of the model.
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Efficient WSI classification 
with sequence reduction and 
transformers pretrained on text
Juan I. Pisula1,2 & Katarzyna Bozek1,2,3

From computer vision to protein fold prediction, Language Models (LMs) have proven successful in 
transferring their representation of sequential data to a broad spectrum of tasks beyond the domain 
of natural language processing. Whole Slide Image (WSI) analysis in digital pathology naturally 
fits to transformer-based architectures. In a pre-processing step analogous to text tokenization, 
large microscopy images are tessellated into smaller image patches. However, due to the massive 
size of WSIs comprising thousands of such patches, the problem of WSI classification has not been 
addressed via deep transformer architectures, let alone via available text-pre-trained deep transformer 
language models. We introduce SeqShort, a multi-head attention-based sequence shortening 
layer that summarizes a large WSI into a fixed- and short-sized sequence of feature vectors by 
removing redundant visual information. Our sequence shortening mechanism not only reduces the 
computational costs of self-attention on large inputs, it also allows to include standard positional 
encodings to the previously unordered bag of patches that compose a WSI. We use SeqShort to 
effectively classify WSIs in different digital pathology tasks using a deep, text pre-trained transformer 
model while fine-tuning less than 0.1% of its parameters, demonstrating that their knowledge about 
natural language transfers well to this domain.

Tranformers1 have brought several breakthroughs to the disciplines of natural language processing (NLP) and 
computer vision (CV). Their capacity to link information across sequences of vector embeddings, representing 
either visual features or vectorized words, allowed to capture the structure and meaning necessary for machine 
translation2–5, question-answering6–9, image classification10–12 and segmentation11,13, and even multi-modal 
tasks such as text-to-image generation14,15.

Concurrently in the field of digital pathology, the popularization of Multiple Instance Learning (MIL)16,17 
approaches for Whole Slide Image (WSI) analysis allowed for the fast adoption of transformer models in this 
domain. By considering each WSI as a set of feature vectors of smaller tissue patches, this type of data is a 
natural input to transformer architectures. However, although transformer-based, these methods are typically 
modified and adapted to the idiosyncrasies of MIL and histopathology. Given gigapixel image size, out-of-the-
box Vision Transformers (ViTs)10 are excessively memory-demanding. Diverse shapes of WSIs and removal of 
patches consisting of background, artifacts, such as pen marker lines, require tailored implementation of local or 
windowed attention18,19. Novel positional encoding methods have been proposed to replace fixed and learnable 
positional embeddings commonly found in NLP transformers or ViTs20–25. To overcome the challenges of WSI 
processing, we base our work on the two observations below.

•  The redundancy of information present in full-sequence self-attention operations can be exploited to reduce the 
computational cost of large inputs in deep transformer models. Wang et al.26 base their Linformer model on 
the observation that an attention matrix can be approximated with a matrix of lower rank. The works of Liu 
et al.11 and Dai et al.27 propose to construct hierarchical representations instead of maintaining full-length, 
token-level resolution. The observations made by Clark et al.28 about the importance of the [SEP] token and 
neighboring tokens have inspired several methods of local and sparse attention29–32. Comprising thousands 
of image patches, a WSI representation in a MIL approach is a prohibitively long sequence of vector embed-
dings. We hypothesise that such findings in the transformer literature are valid to histopathology data as well, 
and techniques for attention matrix reduction are necessary to allow for processing of massive in size WSIs 
with the use of transfomers.
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• Text pre-trained transformers have been proven successful in non-language related tasks. Recent works have 
shown that language models pre-trained on large unstructured text corpora not only perform strongly in 
various downstream NLP tasks, but in several tasks outside of this domain, ranging from solving math prob-
lems33, to lossless image and audio compression34. We refer to35 for an extensive enumeration of such works. 
In the context of CV, Ilarco et al.36 showed that text representations of frozen language models are predic-
tive of visual representations of their corresponding object. More recently, Lu et al.37 demonstrated that pre-
trained language models show high performance in image classification, numerical computation, and pro-
tein fold prediction when less than 0.1% of their parameters are fine-tuned. Language-based pre-training can 
therefore be leveraged to perform different, out-of-domain tasks, which however has never been demonstrated 
in WSI classification.

In this work we use deep transformer architectures to classify WSI data. To allow for processing of thousands 
of image patches from a single slide, we propose SeqShort, a multi-head attention (MHA) input layer that 
reduces long input sequence to a fixed-size short sequence that can be processed by any transformer model. 
Furthermore, we show that classification performance is increased when the transformer classifier is pre-trained 
with a language modeling task compared to training it from scratch, and that only fine-tuning less than 0.1% of 
its weights is necessary. This way, we construct a deep, yet computationally inexpensive model that requires a 
reduced set of trainable parameters, and performs well in digital pathology tasks.

Results
We compress the visual information of WSIs with our sequence reduction technique and use transformer models 
trained from scratch or pre-trained on text data to solve several WSI classification tasks. We train multiple 
transformer architectures and find that text pre-training improves classification performance in deep transformer 
models. In our approach the input is in a form of an ordered sequence, instead of an unordered collection of 
image patches as commonly done in other MIL algorithms. We further show that positional information that 
we add to the ordered sequences is taken into account by the transformer classifier and improves its prediction 
accuracy.

We then examine how our SeqShort layer works to better understand how visual information in the WSIs is 
aggregated. We find that only a small subset of image patches per WSI is relevant to produce their compressed 
sequence representations, corroborating our hypothesis about information redundancy in WSIs. Although 
these representations act as potentially lossy summaries of the WSIs, an extension of the attention rollout 
algorithm38 can trace the output of the transformer classifiers back to each individual image patch, providing an 
interpretability mechanism for the classification outcome.

WSI classification
We measure the performance of our method on three different classification tasks: Lymph Node Metastases 
(LNM) classification (Normal vs Metastases); Invasive Breast Carcinoma (IBC) subtype classification (Invasive 
Ductal Carcinoma vs Invasive Lobular Carcinoma); and Renal Cell Carcinoma (RCC) subtype classification 
(Papillary Cell Carcinoma vs Chromophobe Cell Carcinoma vs Clear Cell Carcinoma). For the LNM classification 
task we use the dataset provided by the CAMELYON16 grand challenge  ( h t t p s : / / c a m e l y o n 1 6 . g r a n d - c h a l l e n g e . o 
r g / ) , keeping 10% of the training samples as a validation set, and evaluating on the grand challenge test set. For 
the cancer subtyping tasks, we use WSIs collected from The Cancer Genome Atlas (TCGA)  ( h t t p s : / / w w w . c a n c e 
r . g o v / t c g a ) , and follow the same stratified 10-fold cross-validation as40,44.

We use 256×256 image patches cropped from the WSIs both at ×10 and ×20 magnification. As a data 
scarcity ablation, we train the models using the complete datasets or just 25% of the samples. Area under ROC 
curve (AUROC) is used as classification performance metric. We compare our method against several state-
of-art weakly supervised architectures. All networks are compared using a single magnification at a time, and 
are agnostic of how their input features vectors were produced. We use an EfficientNetV2-L43 pre-trained on 
ImageNet45 as patch-level feature extraction network in this work. As our best performing model we use a frozen 
RoBERTa-base8 model as MIL classifier, and only fine-tune its normalization layers. Results of this experiment 
are shown in Table 1, and additional results of LNM and IBC classification using a CTransPath46 feature extractor 
are shown in the Supplementary Table 1.

Although 99.9% of the parameters in our model were trained solely on text data, it surpasses WSI-specific 
methods in most LNM and IBC experiments, while demonstrating competitive AUROC in RCC classification. 
The experiments utilizing the CTransPath feature extractor generally enhance the performance of all models, 
with a slight performance decline for our model only in the LNM task when using 25% of the data.

Pre-training on text improves WSI classification
We explore the use of popular NLP transformer architectures that can be trained in a single GPU for sequence 
classification in the WSI classification task. Such architectures have not been applied before in weakly-supervised 
histopathology tasks given the computational cost of handling thousands of instances in a single WSI. The 
sequence shortening method that we introduce in this study allows us to overcome the computational cost 
problem.

Inspired by the success of pre-trained language models in different tasks outside the NLP, we propose the use 
of a frozen, language-modeling pre-trained transformer as MIL classifier. This is motivated by the hypothesis 
that the multi-head self-attention (MHSA) layers of a transformer language model learn to capture the 
interdependencies among the elements of sequences, independent of the original data modality or domain. We 
follow37 and only fine-tune the normalization layers of the model, reducing the amount of trainable parameters 
in our transformer encoder from 85M to 36K (only 0.04% of the total amount).
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An important question is if text pre-training does play a role in classification performance. We compare 
the performance of a baseline transformer encoder trained from scratch with different frozen text-pre-trained 
transformers. Given our GPU memory constrains, the SeqShort layer was required in order to train these 
models. All the tested models have 12 layers of 12 attention heads and 768 hidden units, resulting in comparable 
transformer size across all models, except for Llama3-8B49. Llama3-8B is a larger, 8 billion parameter model 
comprising 32 layers of 32 attention heads and 4096 hidden units. The model was fine-tuned with 8-bit model 
weights to fit it in our hardware. The baseline model, BERT-base, and RoBERTa-base have identical architecture 
and only differ in text-pre-training dataset and language modeling task.

This experiment was done at ×20 magnification, using the IBC dataset. Except for ALBERT-base7, every 
model outperforms the baseline (Table 2) indicating that pre-training on large corpus of text data does influence 
model performance in other domains including digital pathology.

The role of positional information
In our approach, we consider a WSI to be an unordered bag of image patches, and SeqShort provides positional 
information for free by reducing it to an ordered, fixed-length sequence of feature vectors. This enables the 
adding of the fixed-size set of learnable positional embeddings which is common practice in transformer 
architectures of CV and NLP tasks to the output of SeqShort.

Different positional encodings based on patch location have been proposed to address the problem of varying 
WSI shapes and sizes20–25, and their inclusion is compatible with our method. In this section, we repeat the IBC 
subtyping experiment to investigate the effect of positional information on classification performance. In this 

Language Model AUROC

Baseline 0.784 ± 0.082

XLNet-base47 0.819 ± 0.090

GPT2-small48 0.827 ± 0.079

BERT-base6 0.849 ± 0.058

ALBERT-base7 0.747 ± 0.118

Llama3-8B49 0.810 ± 0.070

RoBERTa-base8 0.863 ± 0.047

Table 2. Performance of different Language Models in IBC subtype classification, at ×20 magnification.

 

Method

x10 magnification x20 magnification

25% train set 100% train set 25% train set 100% train set

 Lymph Node Metastases classification

 ABMIL39 0.501 0.664 0.516 0.616

 CLAM40 0.511 0.692 0.516 0.673

 DS-MIL41 0.468 0.695 0.441 0.640

 TransMIL20 0.529 0.629 0.470 0.723

 Wagner et al.42 0.465 0.778 0.501 0.778

 Ours 0.627 0.772 0.642 0.865

Invasive Breast Carcinoma subtype classification

 ABMIL39 0.542 ± 0.107 0.571 ± 0.088 0.551 ± 0.103 0.554 ± 0.107

 CLAM40 0.811 ± 0.055 0.850 ± 0.039 0.697 ± 0.056 0.791 ± 0.082

 DS-MIL41 0.779 ± 0.075 0.892 ± 0.045 0.711 ± 0.084 0.819 ± 0.082

 TransMIL20 0.864 ± 0.063 0.896 ± 0.048 0.782 ± 0.094 0.856 ± 0.064

 Wagner et al.42 0.687 ± 0.202 0.854 ± 0.069 0.739 ± 0.099 0.824 ± 0.077

 Ours 0.874 ± 0.052 0.901 ± 0.049 0.765 ± 0.099 0.863 ± 0.047

 Renal Cell Carcinoma subtype classification

 ABMIL39 0.724 ± 0.077 0.795 ± 0.040 0.697 ± 0.077 0.758 ± 0.044

 CLAM40 0.965 ± 0.013 0.969 ± 0.025 0.961 ± 0.013 0.974 ± 0.010

 DS-MIL41 0.941 ± 0.047 0.971 ± 0.001 0.926 ± 0.025 0.963 ± 0.001

 TransMIL20 0.962 ± 0.015 0.980 ± 0.001 0.971 ± 0.010 0.980 ± 0.001

 Wagner et al.42 0.960 ± 0.020 0.979 ± 0.009 0.971 ± 0.011 0.984 ± 0.007

 Ours 0.942 ± 0.019 0.974 ± 0.011 0.952 ± 0.017 0.977 ± 0.013

Table 1. Performance of different MIL algorithms in the different slide-level classification tasks using 
EfficientNet features43. Best and the second best classification results are in bold and italics, respectively.
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experiment, we enhance our classifier with the patch location positional encoding used in23 previous to the 
SeqShort input, in addition to the standard BERT positional embedding used before the transformer classifier.

The results of the experiment are shown in Table 3. In the unordered bag of patches formulation, the ordered 
output sequence of SeqShort carries positional information that can be exploited by adding positional encoding, 
increasing AUROC by 0.017 at ×10 magnification and by 0.038 at ×20 magnification. Positional encoding of 
the patches based on their 2D spatial location also improves performance, and the best results are achieved when 
both types of positional encoding are employed.

Insights into sequence summarization
We probe the SeqShort layer to examine how a WSI is summarized. We calculate the Kullback-Leibler (KL) 
divergence between the attention distributions produced by the different learned query vectors in SeqShort and 
a uniform attention distribution. Values close to zero indicate that such queries pay overall the same amount 
of attention to all the input patches, whereas higher KL divergence values suggest that such queries pay more 
attention to a reduced subset of image patches. We do this measurement with every sample of one of the IBC test 
sets at ×20 magnification, and average the results.

The KL divergence values are shown in Fig. 2, as well as an example WSI and the attention heatmaps produced 
by three different learned query vectors. The individual heatmaps demonstrate that indeed some patches receive 
more attention than the others. However across the three heatmaps, even though the attention distributions are 
spread over various-sized image areas, the same patches receive high-attention.

We confirm this visual insight by calculating the Spearman’s rank correlation coefficients between pairs of 
different learned query vectors’ ranking of patches (within a single WSI). For the WSI in Fig. 2 and the three 
examined query vectors, the correlation coefficients are above 0.96, and when considering the complete set of 
256 query vectors, the mean rank correlation coefficient value is 0.99 (with a minimum value of 0.76). Among all 
the WSIs in the test set, 99.7% of the total pairs of rankings show a correlation coefficient > 0.7.

Explanation of classification outcome
Attention heatmaps from the previous experiment illustrate the functioning of the SeqShort layer of our model: 
they provide insights into how the individual patches of a WSI are weighed to synthesize the intermediate output 
of our method.

Given how the model aggregates the patch representations throughout its forward pass, we apply attention 
rollout38 to generate heatmaps that provide insights into the overall attention the model assigns to each patch 
in its decision process. We modify the base case of the recursive definition of attention rollout to take into 
consideration that SeqShort is the first layer of the complete model. Our modified attention rollout is then 
defined as:

 
Ãi =

{
Ai · Ãi−1 if i > 0[ 0
Ai

]
if i = 0,

 (1)

where Ai is the attention matrix of layer i, and 0 is the zero vector in row space, to take into account that 
the [CLS] token was not present in the MHA operation of SeqShort. Example heatmaps are shown in Fig. 3. 
Hence, while allowing to process large WSIs, the SeqShort mechanism does not limit the interpretability of the 
predictive model.

Discussion
In this work we use a text pre-trained transformer model for WSI classification. Such pre-training has been 
shown to transfer to other modalities, and we corroborate this finding in three digital pathology tasks. To do so, 
we use a standalone layer for sequence reduction aimed to overcome common challenges in WSI classification 
with transformer architectures, and to reduce the compute budget required for processing large inputs with deep 
self-attention-based architectures.

Magnification

Pos. embedding AUROC

WSI Seq.

×20

No No 0.825 ± 0.052

No Yes 0.863 ± 0.047

Yes No 0.865 ± 0.044

Yes Yes 0.866 ± 0.064

×10

No No 0.884 ± 0.062

No Yes 0.901 ± 0.049

Yes No 0.916 ± 0.046

Yes Yes 0.917 ± 0.035

Table 3. Effect of including positional information on classification performance of IBC subtyping.
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Our SeqShort layer was developed with the hypothesis that there is redundant visual information in the 
full sequence of patches of a WSI, similar to the redundancy in text sequences previously explored in the 
NLP literature26–32. Our results in section 2.4 show that high-attention patches are preserved throughout the 
different learned queries, indicating their importance for the prediction. Indeed 99.7% of the pairs of patch 
rankings based on different query vectors show correlation coefficient > 0.7. These results suggest that there is 
redundancy in the full sequence of patches, as certain patches are consistently more important than others, and 
that classification is possible by aggregating them into a shorter sequence. Moreover, in section 2.3, we show that 
classification performance is increased between 0.017 and 0.038 when the downstream classifier is augmented 
with positional embeddings that encodes the sequential order in the output generated by the SeqShort layer. For 
the sake of simplicity, most of our experiments are done considering a WSI to be an unordered bag of image 
patches. However, including patch location positional encoding is compatible with our approach, producing a 
further performance boost.

Text pre-trained transformers have been proven successful in non-language related tasks33,35–37. In section 
2.2 we show that classification performance can be increased by up to 0.079 AUROC points just by fine-tuning 
less than 0.1% of the parameters of a deep transformer that was pre-trained on a large text dataset, compared to 
the same model trained from scratch. The best performing model in our experiments is RoBERTa-base, which 
outperformed BERT-base in the WSI classification, reflecting these models’ performance difference in several 
NLP tasks. Notably, these models have the same architecture but differ in the pre-training objective and dataset 
size. Only the ALBERT-base LM was outperformed by the model trained from scratch. In contrast to the rest of 
the models in this experiment, ALBERT-base contains a single fully trainable layer whose parameters are reused 
in the subsequent layers, which might explain its lower capacity of transferring to other domains. These results 
suggest that both the transformer size and text corpus volume play a role in the model performance in a WSI 
classification task.

Our primary goal is not to design a novel MIL algorithm that surpasses state-of-the-art, but rather to 
demonstrate that out-of-the-box LMs can transfer their representations of sequential data to the field of digital 
pathology. Models designed for this discipline are very performant, have a parameter count orders of magnitude 
smaller than LMs, and inference time considerably faster. We consider it a reasonable decision to employ WSI 
MIL classifiers instead of models that were designed and trained for NLP. In section 2.1 our LM-based approach 
outperforms the WSI-dedicated methods in most LNM and IBC experiments, and showing competitive 
AUROC in RCC classification. The experiments using the CTransPath feature extractor show a general increase 
of performance for all models, and is only detrimental for our model when using 25% of the data in the LNM 
task. These results show that LMs are competitive WSI classifiers, outperforming MIL models in some of the 
tasks, and suggesting that this direction of research in digital pathology is worth exploring further.

The scope of this work is limited to “base” LMs that comprise 80 million parameters, and are possible to fit 
in a single GPU. We included an experiment with Llama3-8B49 in table 2. With 8 billion parameters, we could 
only fine-tune it using 8-bit quantized model weights, making this experiment not directly comparable to the 
rest of the models in the comparison. A natural extension of our study is to do further experiments with Large 
Language Models such as OPT-175B, with 175 billion parameters50, or the rest of the Llama family of models 
that comprise up to 405 billion parameters49.

Methods
Sequence shortening
Existing methods11,27,51 for sequence reduction are not suitable for MIL WSI problems. Since there is no spatial 
information about instances in an unordered bag, concatenating neighboring feature vectors or taking their 
strided average is meaningless, as the order of the patches in a bag is arbitrary. Methods that employ a linear 
projection for dimensionality reduction after instance concatenation or sequence reshaping are not applicable to 
WSIs either, as they require a fixed and known input shape.

Here we propose using MHA for sequence shortening. Similar ideas have been explored in text-vision 
multi-modal understanding tasks52–54, and is reminiscent of how object queries are used in transformer object 
detection55, with the advantage of not requiring object-level annotations.

Given X ∈ RM×d the sequence of M  d-dimensional feature vectors of non-overlapping WSI tiles, we 
introduce our SeqShort input layer that generates a new sequence XS ∈ RS×h with an MHA layer:

 

XS = MHA (Q = Ql, K = X, V = X) + Ql

= Concat (head1, ..., headk)W O + Ql,
 (2)

with

 

headi = Attention
(
Q = QlW

Q
i , K = XW K

i , V = XW V
i

)
,

Attention (Q, K, V ) = softmax (QKT /
√

dh)V,
 (3)

where Ql ∈ RS×h is a learnable sequence of S h-dimensional query vectors, the matrices W  are learnable 
linear projections, dh is a scaling factor commonly set as the layer’s hidden dimension, and k is the number of 
attention heads of the layer. Both S and h are hyperparameters independent of the shape of the original sequence 
X , and it is S which defines the output sequence length of the MHA operation in SeqShort.
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This MHA operation has a sorting effect: independent of the arrangement of the patch feature vectors in X , the 
first row of XS  aggregates the instances that the first query vector in Ql agrees with the most; the second row 
of XS  aggregates the instances that the second query vector in Ql agrees with the most, and so on. This enables 
to incorporate positional information in our model based on a new interpretation: instead of thinking of the 
original arrangement of instances in the WSI 2D space, we consider the order of the rows of XS  as the available 
positional information possible to encode.

The resulting time complexity of the MHA operation performed by our input layer is O(n) because of 
the fixed-size Ql, and since SeqShort is a single layer, the main compute load lies in the subsequent deeper 
transformer model in our pipeline. Although our method does not change the computational complexity 
of the MHSA layers of the transformer itself, by performing sequence reduction, the amount of FLOPs and 
memory it requires becomes constant with respect to the original number of WSI patches. The result is an overall 
considerable reduction of computational cost. Fig. 1c visualizes how the required FLOPs per forward pass scale 
better when using the SeqShort layer. For example, the average WSI in the IBC dataset comprises 7690 patches, 
which takes 734ms to be processed with a BERT-base encoder using our hardware. This time is reduced to 14ms 
when SeqShort is used as input layer.

Fig. 1. Proposed method. (a) From bottom upwards: after a typical MIL pre-processing step (tiling, feature 
extraction), our SeqShort layer using a pre-defined number of query vectors (colored circles) summarises the 
long list of patches into a small, ordered sequence of feature vectors (colored squares) which are then classified 
by a deep transformer model that was pre-trained on an extensive text corpus. Different patches are in varying 
proportion part of the resulting feature vectors which is symbolically represented by their color intensity. 
(b) Detailed view of the SeqShort layer, where a set of learnable vectors (colored squares) query the relevant 
information in the WSI patches via a multi-head attention operation. (c) The computational cost of a forward 
pass of a deep transformer classifier is considerably reduced when our SeqShort layer is used (measured with 
the fvcore library by FAIR1).
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Transformer models
In our experiments we find that a BERT-base encoder6 pre-trained with the masked language modeling task of 
Robustly optimized BERT pre-training Approach (RoBERTa)8 on a corpora of more than 160GB of uncompressed 
text comprised by BookCorpus56, CC-News57, OpenWebText58 and Stories59 yields the best results. We discard 
the vocabulary embeddings lookup table of RoBERTa-base as it is not needed for weakly supervised image 
classification.

Complete pipeline
Our pipeline is illustrated in Fig. 1. As a pre-processing step, we extract non-overlapping tissue tiles of 
256 × 256 pixels from each WSI. Tissue segmentation is done as in60. We use ×20 and ×10 magnification in 
different experiments. We generate the instance-level feature vectors using an EfficientNetV2-L43 pre-trained on 
ImageNet45.

The complete weakly supervised architecture that performs classification on the bag of instance vectors is 
composed of the SeqShort layer and a transformer language model. We set the vector embedding dimension 
of SeqShort to h = 768 (the hidden dimension of the used transformers), and k = 4 attention heads. For the 
lymph node classification task we set the output length of SeqShort to S = 511, and for the cancer subtyping 
tasks, to S = 256. A learnable [CLS] token is concatenated to the output of SeqShort, and added a sequence of 
learnable positional embeddings. The last hidden representation of [CLS] is the input of a multilayer perceptron 
(MLP) classification head. Altogether, our model comprises a total of 3.3M trainable parameters.

Fig. 2. WSI summarization. A WSI, and attention heatmaps (A–C) produced by three different query vectors 
in SeqShort are shown. Although different queries show attention distributed over a broader or narrower set 
of patches, the most important instances agree among the heatmaps. The bottom left plot shows the Kullback-
Leibler divergence from the attention distributions of the learned queries to uniform attention, and the values 
that correspond to the heatmaps are indicated with dashed lines. Values are sorted for ease of visualization, 
higher values correspond to uneven distribution of attention among patches.
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Implementation and training
The method was implemented in Python, using PyTorch61 as deep learning back-end. The pre-trained weights of 
EfficientNetV2-L and RoBERTa were downloaded from Torchvision62 and HuggingFace63, respectively. Training 
of our models was done with the aid of PyTorch-Lightning64, on a single NVIDIA Tesla V100 GPU. The code of 
this project is available at https://github.com/bozeklab/lmagp/.

All our models were trained for 200 epochs. For the lymph node classification task the first 5 epochs were 
used as learning rate warm-up stage, followed by one cycle of a cosine schedule, with a maximum learning rate 
of 1 × 10−4, and batch size of 16. For the cancer subtyping tasks, the warm-up stage lasted 10 epochs, followed 
by two cycles of a cosine schedule, with a maximum learning rate of 5 × 10−5, and batch size of 32. Adam65 was 
used as optimization algorithm.

Datasets
Lymph node metastases classification
For this task we used the dataset provided by the CAMELYON16 grand challenge  ( h t t p s : / / c a m e l y o n 1 6 . g r a n d - c 
h a l l e n g e . o r g / ) which comprises 400 Hematoxylin and Eosin (H&E) stained WSIs of sentinel lymph nodes of 
breast cancer patients, scanned by 3DHISTECH and Hamamatsu scanners at ×40 at the Radboud University 
Medical Center and the University Medical Center Utrecht, Netherlands. The grand challenge dataset is divided 
in a train set of 270 WSIs (160 normal slides, and 110 slides containing metastases), and a test set of 129 WSIs 
(80 normal slides, 49 slides containing metastases). In our experiments, we divided the provided train set in 
90%/10% stratified splits for training and validation, respectively.

Fig. 3. Attention rollout heatmaps. Left: original WSIs. Right: their corresponding attention rollout heatmaps. 
Although the SeqShort layer reduces the number of feature vectors that the downstream transformer has to 
process, it is still possible to backtrack the contribution of each individual image patch to the classification 
decision using this most common transformer explainability method.
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Invasive breast carcinoma subtype classification
We use a subset of 1,038 H&E stained WSIs from the TCGA-BRCA project within The Cancer Genome Atlas 
repository (https://www.cancer.gov/tcga). Out of the 1,038 slides, 889 were of patients with Invasive Ductal 
Carcinoma, and 149 were of patients with Invasive Lobular Carcinoma. We follow the study design in40,44 and 
evaluate the models using stratified 10-fold cross-validation on patient level.

Renal cell carcinoma subtype classification
We use 918 H&E stained WSIs of Renal Cell Carcinoma cases from the TCGA repository. Out of these samples, 
289 were of Chromophobe Cell Carcinoma patients, 118 were of Papillary Cell Carcinoma patients, and 498 
were of Clear Cell Carcinoma patients, coming from the TCGA-KICH, TCGA-KIRP and TCGA-KIRC projects, 
respectively. We follow the same study design as in the IBC subtype classification task, and evaluate the models 
using stratified 10-fold cross-validation on patient level.

Data availibility
Data used in this article comes from The Cancer Genome Atlas (https://portal.gdc.cancer.gov/) and the  C A M E L 
Y O N 1 6 Grand Challenge (https://camelyon16.grand-challenge.org/).
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Chapter 6

Fine-tuning a Multiple Instance
Learning Feature Extractor with Masked
Context Modelling and Knowledge
Distillation

While the previous chapters dealt with the classification task in a MIL pipeline, the
final work in this dissertation focuses on the feature extraction step. Feature extrac-
tor models are pre-trained to produce meaningful representations of their image input,
and a MIL model is trained to generate useful representations of their task-specific,
multiple-instance input. This work proposes to link these two aspects by considering
a fundamental visual characteristic of WSIs: the image patches derived from a tissue
scan are not isolated entities but are instead highly correlated with their surrounding
neighborhoods.
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Abstract. The first step in Multiple Instance Learning (MIL) algo-
rithms for Whole Slide Image (WSI) classification consists of tiling the
input image into smaller patches and computing their feature vectors pro-
duced by a pre-trained feature extractor model. Feature extractor models
that were pre-trained with supervision on ImageNet have proven to trans-
fer well to this domain, however, this pre-training task does not take into
account that visual information in neighboring patches is highly corre-
lated. Based on this observation, we propose to increase downstream MIL
classification by fine-tuning the feature extractor model using Masked
Context Modelling with Knowledge Distillation. In this task, the feature
extractor model is fine-tuned by predicting masked patches in a bigger
context window. Since reconstructing the input image would require a
powerful image generation model, and our goal is not to generate re-
alistically looking image patches, we predict instead the feature vectors
produced by a larger teacher network. A single epoch of the proposed task
suffices to increase the downstream performance of the feature-extractor
model when used in a MIL scenario, even capable of outperforming the
downstream performance of the teacher model, while being considerably
smaller and requiring a fraction of its compute.

Keywords: Multiple Instance Learning · Masked Context Modelling ·
Knowledge Distillation

1 Introduction

In Digital Pathology, specimen slides are digitised into high resolution Whole
Slide Images (WSIs) of several gigapixels. This has led to the popularisation of
Multiple Instance Learning (MIL) [12, 33] algorithms for automatic WSI classi-
fication tasks. In these algorithms, the typical pre-processing step involves tes-
selating the WSI into smaller image patches, or instances, and computing their
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Fig. 1: a) A cutout of a Breast Carcinoma HE slide, where a highlighted image patch
shows a cluster of cells. When inspecting its neighborhood, it is seen that this cluster is
not an isolated pattern, but part of a mammary lobe. Masked Context Modelling with
Knowledge Distillation aims to improve downstream performance by including context
information in the feature extraction step. b) Comparison (number of parameters,
FLOPs per forward pass, downstream MIL classification task AUROC) of ImageNet
pre-trained feature extraction models: EfficientNetV2-L, ResNet18, and ResNet18 fine-
tuned with our method using the EfficientNetV2-L as teacher. CLAM was used as MIL
classification model, and performance is visualized relative to the EfficientNetV2-L
model.

feature vector representations using a pre-trained feature extractor neural net-
work. To compute patch representations a popular choice is to use models pre-
trained with supervision on ImageNet [37]. Following this step, a MIL model is
trained to produce a slide-level prediction using the complete set of instances of
the WSI.

As noted in [3], the common characteristic in image data is that neighboring
pixels are highly correlated, and this fact extends to neighboring image patches
in histology slides. A cutout of a Breast Carcinoma Hematoxylin and Eosin (HE)
slide is shown in Fig. 1a), with a highlighted image patch of 220µm or 224 pixels
side length at 10× magnification level (approximately 1µm/pixel), showing a
cluster of cells. HE image patches of these dimensions can capture fine-grained
histology features like individual cell nucleus morphology, cell conglomerates,
and small functional structures such as glands and blood vessels. These pat-
terns tend to extend for several patches, and coarse-grained features, such as
distribution and density of cell populations, arrangement of functional struc-
tures, tissue interfaces, overall tissue morphology and architecture, are revealed
when examining a broader context. In a MIL pipeline, although a pre-trained
feature extractor model can produce useful instance-level representations, it is
the downstream MIL classifier that should detect and make sense out of the
histological patterns that take more image area than a single patch.
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Fig. 2: Proposed pipeline. During the feature extractor fine-tuning stage (left), a pre-
trained feature extractor model is fed with image patches coming from a larger context
window. A random subset of the patches’ feature vector representations is masked, and
a Transformer encoder with a predictor network is used to predict the masked instances’
feature vector representations produced by a frozen teacher network, minimizing an l1
loss. For the downstream task training stage (right), the Transformer and the predictor
networks are discarded, and the fine-tuned feature extractor can be used in any Multiple
Instance Learning pipeline.

In this work we propose to improve downstream MIL classification by fine-
tuning the feature extractor model, such that representations of neighboring
patches are predictive of one another. Drawing inspiration from reconstruction-
based algorithms in the Self-Supervised Learning (SSL) literature [11,19,35,36,
46–48], we propose the Masked Context Modelling (MCM) task: individual image
patches from a bigger context window are masked, and the feature extractor
model is fine-tuned to predict the missing patches based on the visible ones.

As described above, the MCM task is challenging as there are multiple bio-
logically plausible ways to fill the missing image patches in the masked context.
Additionally, synthesizing such image patches would require an image genera-
tion model, such as a Variational Autoencoder [27], a Generative Adversarial
Network [15], or a Diffusion Model [23, 41]. This image generation task is sec-
ondary, as our goal is not to produce realistically looking image patches but to
learn useful representations. We propose therefore to predict instead of images,
the feature vectors of a larger, pre-trained, teacher network and using them as
a proxy of the visual information of the masked images.

The contributions of this work can be summarised as follows:

– We introduce the Masked Context Modelling with Knowledge Distillation
(MCM+KD) task to fine-tune the feature extractor model used in a MIL
pipeline by using a larger pre-trained model as teacher.

– This task can be trained even for a single epoch, between the feature extrac-
tor pre-training stage and the final training of the MIL model, improving
downstream performance in two Cancer Subtype Classification tasks and a
Lymph Node Metastases Detection task.

– We show that the fine-tuned student does not learn to copy the teacher’s
output. Furthermore, the student model can result in higher downstream
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performance than the teacher, while having fewer parameters and needing
less computation to process input images (Fig. 1b).

2 Related Work

2.1 Pre-training and Fine-tuning

It is empirically proven that transfer learning from ImageNet can improve clas-
sification performance and speed up convergence in medical image analysis ap-
plications [1, 16, 20]. In MIL algorithms for Digital Pathology, frozen ImageNet
pre-trained models are commonly used in the feature extraction step [4,28,30,39].
This is partially due to the fact that in a MIL problem, the lack of instance-level
labels prevents the fine-tuning of a feature extractor model with supervision.

A different line of research investigates how the domain shift between natural
images and medical images could be alleviated by algorithms that require no
labels. For example, [2] proposes to do SSL with in-domain medical data on
ImageNet pre-trained models, prior to supervised fine-tuning. We refer to [18]
for a comprehensive survey on Domain Adaptation in the medical image field,
including unsupervised methods.

2.2 Reconstruction-based Algorithms

Training models without supervision – by masking a part of their input and
teaching them to reconstruct it – has achieved great success both in Computer
Vision (CV) and Natural Language Processing (NLP). Pioneering works in CV
include Denoising Autoencoders [46] and Context Encoders [35]. In the former,
masking is applied as noise corruption, where in the latter, a region of the input
image is explicitly zeroed out.

With the advent of the Transformer architecture [45], Masked Language Mod-
elling (MLM) [11] and Causal Language Modelling [36] became the dominant SSL
algorithms in NLP. MLM has inspired a plethora of SSL works in CV, yielding
the Masked Image Modelling (MIM) family of algorithms [19, 47, 48], although
these methods are restricted to Vision Transformer (ViT) architectures [13].

2.3 Knowledge Distillation

Knowledge Distillation (KD) consists of training a student neural network to pre-
dict outputs produced by a teacher model. It was originally proposed by [22] as
a model compression method, by using the prediction outputs of a larger model
as soft label targets to train a smaller model. Several variants have been pro-
posed, including the prediction of the teacher’s intermediate activations, confi-
dence maps for pose estimation [49], or the use of a special token for distillation in
Transformer models [44]. Notably, these model compression techniques have been
applied in non-MIL image classification tasks in Digital Pathology [6,25,26,32].

Knowledge Distillation has become increasingly popular in the SSL literature
with Self-Distillation (SD) algorithms, where the pre-trained teacher network is
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replaced by an Exponential Moving Average (EMA) of the student [5, 9, 17, 50].
Recently in Digital Pathology, [43] has proposed the use of an additional SD-
based loss for training supervised MIL classifiers.

3 Methodology

We now introduce our Masked Context Modelling with Knowledge Distillation
task, designed to fine-tune the feature extractor network from the pre-processing
step of a MIL pipeline. This fine-tuning step is performed before training of the
WSI classification MIL model, and is independent of this model’s architecture.
The proposed pipeline is illustrated in Fig. 2, and described below.

Context Window. Given a MIL pipeline where a WSI is processed as a set
of square image patches of side p at a specified magnification objective, we crop
large square patches of side P = s · p at the same magnification objective. The
large image patches act as context windows, and are tessellated into s · s square
patches of side p.

Student and Teacher. The feature extractor network f to be fine-tuned
acts as a student network. f converts the image patches of a context window into
the sequence of feature vectors x ∈ Rs·s×df , where df is the latent dimension of
the model. Similarly, the same image patches are converted into the sequence of
feature vectors y ∈ Rs·s×dt by the network t, a frozen and pre-trained teacher
model with latent dimension dt. Feature vectors from the sequence y are used
later as prediction targets.

Masked Context Modelling. Following the masking strategy of [19,48], a
random subset of instances from x is sampled using a uniform distribution, and
each of the sampled instances is replaced by a learnable mask token. We add
learnable positional embeddings to this sequence and feed it to a Transformer
encoder model, which outputs the latent sequence representation of the masked
context window, xL ∈ Rs·s×df .

Predictor Network and Objective. A predictor network predicts the
feature vector sequence y produced by the teacher, from the latent representation
of the masked context, xL. The whole pipeline is trained to minimize the l1 loss
as in SimMIM [48]:

L =
1

Ω(yM )
∥yM − y′

M∥1, (1)

where y′ ∈ Rs·s×dt is the output of the predictor network, the subscript M
denotes the set of feature vectors that correspond to masked instances, and Ω(·)
is the number of elements.

Once f is fine-tuned, the Transformer encoder and the predictor network are
discarded. Then f can be used as feature extractor network in the pre-processing
step of the downstream MIL task.



6 J.I. Pisula and K. Bozek

4 Experiments

4.1 Datasets and Pre-processing

We evaluate our method in the tasks of Breast Carcinoma Subtype Classification
(BCSC), Lung Carcinoma Subtype Classification (LCSC), and Lymph Node
Metastases Detection.

Breast Carcinoma Subtype Classification. This dataset consists of 500
HE-stained WSIs from the TCGA-BRCA project within The Cancer Genome
Atlas repository (https://www.cancer.gov/tcga). Out of the 500 slides, 351 come
from Invasive Ductal Carcinoma cases, and 149 come from Invasive Lobular
Carcinoma cases. Evaluation was done in a train-val-test fashion, using patient-
level stratified data splits of 80%-10%-10%.

Lung Carcinoma Subtype Classification. This dataset consists of 500
HE-stained WSIs from the TCGA-LUAD and TCGA-LUSC projects within The
Cancer Genome Atlas repository. Out of the 500 slides, 250 come from Lung Ade-
nocarcinoma cases, and 250 come from Lung Squamous Cell Carcinoma cases.
Same evaluation protocol as in the BCSC task was used.

Lymph Node Mestastases Detection. This dataset is provided by the
CAMELYON16 Grand Challenge (https://camelyon16.grand-challenge.org/). The
training dataset comprises 270 HE-stained WSIs of sentinel lymph nodes (160
normal slides, and 110 slides containing metastases), and the test set 129 WSIs
(80 normal slides, 49 containing metastases). The slides were scanned by 3DHIS-
TECH and Hamamatsu scanners at ×40 magnification objective at the Radboud
University Medical Center and the University Medical Center Utrecht, Nether-
lands. In our experiments, we divided the provided train set in 90%-10% stratified
data splits for training and validation.

During pre-processing, the slides were tiled into large crops of 1792×1792
pixels at a single magnification objective (×20 for the LNMD task and ×10 for
the BCSC and LCSC tasks), and images with less than 60% of tissue were re-
moved. These crops acted as context windows for the MCM+KD task, and were
subsequently subdivided into image patches of 224×224 pixels. In the down-
stream classification task, MIL models were trained considering all the 224×224
image patches of a single slide as an individual sample.

4.2 Experimental Setup

Throughout all the experiments we use an ImageNet pre-trained ResNet18 [38]
as MIL feature extractor model and ImageNet pre-trained EfficientNetV2-L [42]
as teacher model in the MCM+KD task. We take the activations before the last
classification layer as feature vectors in both networks.

The Transformer encoder was parametrized with input size of 512 (the same
as the ResNet18 feature vectors), 8 Multi-head Attention layers of 4 attention
heads, and MLPs with hidden dimension of 3072. The predictor model is a 2-layer
MLP with 1280 hidden units and output units (the same as the EfficientNetV2-L
feature vectors), with a GELU [21] hidden activation layer.
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We used MCM+KD for a single epoch to fine-tune the pre-trained ResNet18
in all experiments. AdamW optimizer [29] and batch size of 8 context windows
were used. The learning rates were searched individually for each dataset, to
maximize downstream CLAM [30] classification, yielding the learning rates of
0.0001, 0.001, 0.0005 for the LNMD, BCSC, and LCSC tasks, respectively, and
for the other optimizer hyperparameters we kept PyTorch default values. The
percentage of masked patches in a context was selected in a similar manner,
masking 60% of the patches of a context window in the LNMD task, and 50%
of the patches in a context window in the BCSC and LCSC tasks.

Downstream MIL classifiers were trained for 100 epochs, using a batch size
of 1 WSI per batch, and accumulating gradients for 8 optimization steps. The
models were optimized with AdamW, learning rate was searched for each dataset
and classifier independently, and model selection was done based on validation
loss. We report the macro-averaged AUROC as main performance metric.

The method was implemented in Python, using PyTorch [34] and PyTorch-
Lightning [14]. The ImageNet pre-trained weights of the feature extractor models
were downloaded from Torchvision [31]. Implementation of SSL methods was
taken from the solo-learn library [10]. Training was done on a single NVIDIA
Ampere A100 GPU. The code of this project is available at https://github.
com/bozeklab/mcm.

4.3 WSI Classification Results

Our main experiment is the comparison of downstream MIL classification per-
formance of a baseline ImageNet pre-trained ResNet18 used as feature-extractor
model, against the same feature-extractor model, fine-tuned with MCM+KD
for a single epoch. For the comparison, we include the downstream performance
of MIL models that used the pre-trained EfficientNetV2-L teacher as feature
extractor model.

We compare downstream classification of three popular MIL algorithms:
Attention-Based Deep Multiple Instance Learning (ABDMIL) [24], which pop-
ularised the use of the attention mechanism in MIL; CLAM [30], an improve-
ment over ABDMIL that incorporates a clustering loss in the latent space of
instances; and TransMIL [39], a BERT-like Transformer encoder designed for
Digital Pathology MIL tasks.

The results are shown in Tables 1-3. Our method increases the downstream
performance of the ResNet18 feature extractor model across all performed com-
parisons, even surpassing the EfficientNetV2-L teacher model in some scenarios.

4.4 Self-Distillation Scenario

As suggested in [2], a possible solution to the domain shift problem when using
ImageNet pre-trained models in medical image analysis is the use of SSL algo-
rithms with in-domain data. In this experiment we use self-distillation where the
pre-trained teacher model is replaced by an Exponential Moving Average (EMA)
of the student network.
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Table 1: Breast Carcinoma Subtype Classification results.

Feature extraction ABDMIL CLAM TransMIL

ResNet18 0.75 0.82 0.85
ResNet18 (MCM+KD) 0.76 0.92 0.89

EfficientNetV2-L (teacher) 0.72 0.86 0.94

Table 2: Lung Carcinoma Subtype Classification results.

Feature extraction ABDMIL CLAM TransMIL

ResNet18 0.83 0.86 0.68
ResNet18 (MCM+KD) 0.91 0.90 0.77

EfficientNetV2-L (teacher) 0.82 0.91 0.82

We compare this Self-Distillation version of the MCM task (denoted MCM+SD)
against other SSL algorithms that make use of an EMA teacher: BYOL [17],
DINO [5], MOCOv3 [9], and ReSSL [50]. We include SimCLR [7] and SimSiam [8]
for comparison as well, although these methods are not from the Self-Distillation
family.

This experiment was evaluated using CLAM downstream classification, and
hyperparameters were kept the same as in the previous experiment. For the
Self-Distillations algorithms, including MCM+SD, we use an EMA τ of 0.999.

The results in Table 4 show that our MCM+SD method was the only one
improving the results over the baseline pre-trained ResNet18 for the BCSC and
LCSC tasks. However, none of the tested methods improved LNMD classifica-
tion. Although the compared methods are well established for self-supervised
pre-training, our results highlight the role of the pre-trained teacher for fine-
tuning a feature extractor model with the limited compute budget of a single
epoch.

4.5 Ablation Study

Here we perform an ablation study to analyze individual components of MCM+KD
(Table 5). In our experiment denoted as MCM, we fine-tune the feature extractor
model by predicting the pixels of the masked image patches from the context
window, omitting the knowledge distillation task. We also investigate the need
of the MCM task: we omit the masking of patches and the Transformer en-
coder, and use a simple Knowledge Distillation (KD) approach instead. The KD
consists of directly predicting the feature vectors of the teacher model.

Finally, we do an experiment (denoted by CM + KD) where the context
modelling Transformer, predictor network, and teacher network are kept, but
the patches are not masked. This test was performed to verify the need of such
design choice. In contrast to an image reconstruction task, in the knowledge
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Table 3: Lymph Node Metastases Detection results.

Feature extraction ABDMIL CLAM TransMIL

ResNet18 0.58 0.79 0.69
ResNet18 (MCM+KD) 0.69 0.84 0.76

EfficientNetV2-L (teacher) 0.76 0.75 0.76

Table 4: Comparison of downstream MIL classification using CLAM when doing pre-
processing fine-tuning with different SSL methods, and a Self-Distillation version of
the Masked Context Modelling task.

Method BCSC LCSC LNMD

Baseline 0.82 0.86 0.79
BYOL 0.70 0.66 0.62
DINO 0.50 0.54 0.60
MOCOv3 0.82 0.82 0.67
ReSSL 0.62 0.71 0.50
SimCLR 0.79 0.84 0.65
SimSiam 0.51 0.47 0.61
MCM+SD 0.88 0.89 0.65

MCM+KD 0.92 0.90 0.84

distillation scenario our model is not at risk of learning the identity function or
memorizing the input data.

The ablation study was done with a CLAM downstream classifier, keeping
the previous hyperparameters. For the MCM experiment, the MLP predictor was
replaced by a single linear layer, as an MLP as described in 4.2 with 224×224×3
hidden units is infeasible. Our results show that only our complete pipeline
can improve the downstream CLAM performance over the baseline pre-trained
ResNet18 feature extractor.

Table 5: Ablation study results.

Model LNMD LCSC

Baseline 0.79 0.86
MCM 0.42 0.72
KD 0.76 0.86
CM + KD 0.56 0.82
MCM + KD 0.84 0.90
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4.6 Qualitative Results

The aim of this experiment is to visually evaluate the effect that our method
has on the feature vectors of the ResNet18 feature extractor, independent of the
downstream MIL classifier. We take slides from the CAMELYON16 test split
which contain annotated metastases regions. We select a patch within a metas-
tasis region and compute the cosine similarity of its feature vector and the feature
vectors of the rest of the patches in the slide. We show these cosine similarity
values as heatmap visualizations. We do this procedure with the feature vectors
obtained by the baseline ResNet18, the ResNet18 fine-tuned with MCM+KD,
and the EfficientNetV2-L teacher.

Fig. 3 shows heatmaps of a WSI with metastases. These heatmaps depict that
our method decreases the similarity between feature vectors of metastases and
feature vectors of normal tissue. The better visual discrimination between biolog-
ically different tissue regions in the heatmaps of the baseline and our fine-tuned
ResNet18 models is consistent with the performance increase in the downstream
MIL tissue classification task. The difference in the heatmaps of the teacher
and the student models is consistent with the results in Sec. 4.5 showing that
downstream performance is not achieved by copying the teacher’s output.

5 Discussion and Conclusion

In this paper we demonstrate how downstream MIL classification can be im-
proved by fine-tuning the feature extractor model using our proposed Masked
Context Modelling with Knowledge Distillation task. This algorithm can be
trained for a single epoch and is agnostic of the MIL model used in the down-
stream task. All our experiments were done using an EfficientNetV2-L teacher
to fine-tune a ResNet18 feature extractor, with both networks being pre-trained
with supervision on ImageNet.

Our results show that across the datasets and MIL models, our method im-
proves the downstream performance. It is worth noting that although the teacher
model is considerably bigger, computationally more expensive, and outperforms
the ResNet18 in the original ImageNet classification pre-training task, the fea-
ture vectors it produces do not always result in better downstream performance.
Nevertheless, the teacher model is still effective for distilling its knowledge to
the student.

Using the same experimental setup, we fine-tuned the same ResNet18 with
different SSL algorithms. These training scenarios did not however improve the
results over the baseline ImageNet-pre-trained ResNet18. Our self-distillation
version of the MCM task was not successful in the LNMD dataset, but it did
improve the results in the BCSC and LCSC tasks, although not matching the
results of MCM+KD with an EfficientNetV2-L teacher. This experiment sug-
gests that even though SSL algorithms and self-distillation are effective in a full
pre-training scenario, knowledge distillation from a larger pre-trained teacher is
very useful in a single epoch of fine-tuning.
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Fig. 3: Heatmap visualizations of the cosine similarity between the feature vector of a
patch from a metastasis region and the rest of the feature vectors of the slide.

In our ablation study, we show that the individual components of our method
do not work in a standalone setting, and the success of our method comes from
the proper combination of these algorithms and principles. Our results show that
the performance of our method is not explained solely by knowledge distillation,
and we verify this by visual examination of cosine similarity heatmaps. The
prediction of masked instances plays an essential role in our algorithm, and we
leave exploring more sophisticated masking policies, such as adversarial masking
[40], for future work.

Altogether, we indicate the importance of context in achieving the best rep-
resentations of WSI patches. Our masking and KD approach allows to efficiently
encode this context and to make use of it in the further WSI analysis tasks.
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Chapter 7

Discussion
Each chapter of this cumulative thesis includes its own discussion in the context of

its specific study. Therefore, this section does not seek to reiterate previously covered
points but instead focuses on commenting on additional dimensions of this research.

7.1 Chapter 2: Predicting HER2 overexpression from IHC-
stained TMAs

As mentioned, this work represents the first project carried out during my doctoral
studies, serving as both an introduction to the discipline and a foundational step in my
education. It shares common characteristics with real-world, medical machine-learning
projects. For instance, the class distribution of the data is highly imbalanced, with only
5% of the cases belonging to the positive class that overexpresses HER2. Consequently,
it is easy to (mis)train a classifier to predict only the negative class if an improper
metric is optimized, resulting in a high medical cost, as true positive therapy candidates
might go undetected. In this context, having a rationale behind the model’s decisions
is crucial, as explainability and trustworthiness are essential in medical applications.
Additionally, the dataset presents geographical biases, mainly manifested as batch effects
in the appearance of images from different cohorts, potentially due to differences in tissue
processing, and sample aging.

Certain aspects of this work, however, simplify the task compared to the other study
cases presented in this dissertation. First, the images analyzed here are tissue cores with
a side length of 5468 pixels — smaller than the WSIs utilized in the subsequent chap-
ters. As a result, the MIL pipeline could be trained end-to-end, performing background
removal and feature extraction "on the fly" instead of relying on an offline pre-processing
stage. This streamlined the development of the algorithm and allowed the feature ex-
tractor to be trained under the supervision of the classification signal, learning image
features optimized for this specific task.

Second, the task explored here is one that histopathologists routinely perform by
visually inspecting IHC-stained TMAs. Unlike the therapy response tasks studied later,
we know what to look for in these images, and there are experts capable of solving this
task through visual examination. This fact is reflected in the study’s results in multiple
ways. The task can be solved with high performance metrics, as all trained machine
learning models achieved good results (with varying degrees of success). Notably, the
highest error rate occurred in images with an IHC score of 2 —equivocal cases that
require an in-situ hybridization test for resolution, as they cannot be classified solely
through visual inspection. Furthermore, the t-SNE plot in Fig. 2 suggests that the
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data distribution lies along a one-dimensional manifold despite being embedded in a
two-dimensional space, and visual inspection of the image patches reveals that the most
prominent distinguishing feature is the IHC staining, essentially forming an IHC stain
spectrum.

One challenge that first emerged during the development of this work was the external
cohort evaluation of the model. Inter-center variability is a common issue in the quanti-
tative analysis of histopathology images, stemming from differences in tissue processing
steps such as staining duration, reagent concentrations, or sample storage conditions.
Moreover, staining quality can deteriorate as samples age. In the CSCC study case, this
issue is mitigated by including data from different cohorts during model training, while
preserving patient privacy and adhering to data governance requirements through Feder-
ated Learning. In this work, however, we employed Macenko’s color stain normalization
algorithm. This approach was later refined through the use of neural networks in Ka-
jetan Husiatyński’s Master’s thesis, Neural Style Transfer Methods for Histopathological
Image Analysis, carried out in our lab as part of this project [1].

7.2 Chapters 3 and 4: Predicting therapy response from
biopsy slides in AGEJ patients and CSCC patients

The technical similarities and biological differences between these two projects present
an opportunity to discuss them together. AGEJ is an aggressive disease, with symp-
toms typically appearing at advanced stages, making early detection difficult. Moreover,
available treatments, whether based on radiotherapy or chemotherapy, have limited suc-
cess rates. In contrast, CSCC tumors can often be surgically removed, and in most
cases, this treatment is definitive. However, it remains unclear why a minority of pa-
tients later experience recurrence or metastasis. While the prediction performance in
the AGEJ study reached an AUROC of 0.80, CSCC progression could be predicted with
an AUROC of up to 0.92 (in the local training scenario). There appears to be a positive
correlation between the ease of treatment and classification performance: outcomes in
the more aggressive disease are harder to predict. It goes without saying that, although
different neural models were employed in these projects, every design choice was guided
by the goal of achieving the highest possible level of reliability and effectiveness.

A key objective shared by these projects was not merely training a black-box classifi-
cation algorithm but also gaining insights into the underlying disease mechanisms that
may influence treatment response. Consequently, considerable emphasis was placed on
model explainability. This was relatively straightforward in the HER2 study, where the
models attention mechanism assigned a score to each image patch, making the classifier
inherently interpretable by design. In contrast, the AGEJ and CSCC projects employed
transformer classifiers, where the number of attention scores scales quadratically with
the number of image patches and is further multiplied by the number of layers and atten-
tion heads. Moreover, attention scores are not the sole factors driving the classification
decisions of transformers. These models require ad hoc explainability techniques to shed
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light on their internal decision-making processes. We therefore opted for the Integrated
Gradients algorithm, which can be applied to arbitrary neural architectures and assigns
a single scalar value to each input instance, producing one heatmap per slide as desired.

Algorithmic explanation has a fractal nature: we strive to interpret a model, by means
of an explainability algorithm, whose results need to be interpreted themselves. At
some point, human judgment needs to step in. We did this latter interpretation in two
complementary ways. First, we quantified the high attribution patches on a cellular level,
with the aid of nuclei instance segmentation models and feature engineering. Second,
since this approach is limited to quantifying image patches in isolation, we visually
analyzed the attribution heatmaps to identify potential patterns.

While a single handcrafted feature can carry a clear, intuitive meaning, the complete
set of 500 computed features is not easily interpretable. A more refined curation and
selection of illustrative features was therefore necessary. Given our large populations
(of image patches), most of the features differed significantly between the two groups,
including those that had nearly identical distributions. The Common Language Effect
Size turned out to be a very handy tool to guide our analysis.

Interestingly, in both diseases, image patches associated with positive outcomes tend
to exhibit tumor cell populations with higher spatial autocorrelation than those linked
to negative outcomes. However, while highly eccentric tumor cells are associated with
therapy response in AGEJ, they are linked to disease progression in CSCC. A counter-
intuitive observation in the AGEJ case is that non-responder-associated patches contain
fewer lymphocytes than those associated with therapy response. Closer examination
revealed that this pattern is present throughout the dataset, not just in regions of high
attribution.

The CSCC study posed the additional challenge of working with a dataset composed of
multiple cohorts. In the HER2 case, this issue was addressed by training a local model
and applying stain color normalization to the external data. In the CSCC project,
however, we tackled this problem by training the classifier with Federated Learning.
This approach was later studied by Jakub Zacharczuk in his Master’s thesis, Federated
Learning for Decentralized Model Training in Skin Cancer Histopathology, conducted in
our laboratory [2].

7.3 Chapter 5: WSI classification with language models

This chapter is, admittedly, a somewhat convoluted combination of ideas and ob-
servations, as outlined in its introduction. Its origins, however, were inspired by the
wave of open-source models, collaborative research, and modular design that flourished
within the NLP community following the popularization of the transformer architecture,
particularly the Bidirectional Encoder Representations from Transformers (BERT) [3].
The development of numerous open-source models based on BERT (including the vision
transformer) provided NLP researchers and practitioners with an unprecedented level of
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flexibility, enabling them to take, modify, fine-tune, and interchange models with ease.
This openness accelerated the field’s progress by shifting the focus from the tedious
task of neural network construction to experimentation and application. The primary
motivation behind this work was to replicate that level of experimental freedom with
transformer models in the context of WSI classification. The improvement gained from
text-based pre-training came (almost) for free: if we can readily test different trans-
former architectures, why not apply those already pre-trained on text? This decision
was not arbitrary. While the idea of using language pre-training to enhance performance
in non-text domains may seem unconventional, it has been and continues to be explored
in deep learning research [4].

At the time of writing, there are expectations from part of the AI community to
produce artificial general intelligent agents based on large language models — mod-
els trained on text datasets and transformer architectures orders of magnitude larger
than those explored in this work [5]. The core hypothesis of these efforts is that large
transformers, if pre-trained on language, could do any type of intelligent task beyond
routine text processing, including tasks that involve reasoning and planning. There is
a conceptual similarity between this hypothesis and the ideas explored in our work,
yet the goals are fundamentally different. We do not seek to endow our models with
broad, human-like intelligence; rather, we aim to leverage the structural patterns present
in natural language data to pre-train more effective visual classifiers. We believe that
the patterns learned while modeling language can transfer to other data modalities, in-
cluding histopathology images. In this sense, the linguistic nature of the data is both
essential and, paradoxically, incidental. One possible alternative could be, for example,
pre-training the transformer classifier with synthetic data [6].

Enabling WSI processing with deep transformers posed significant computational chal-
lenges, primarily due to the poor scaling of memory and compute requirements with
increasing input size. The growing prominence of large language models has sparked
interest in developing techniques for more efficient training and fine-tuning, now com-
monly referred to as parameter-efficient fine-tuning. These methods make it possible
to adapt large transformers, pre-trained on high-performance computing infrastructure,
using computational resources more readily available to individual researchers, such as
a single GPU. In our case, we exploited the observation that the relevant visual infor-
mation within a tissue slide can be condensed into a representation far smaller than the
full set of image patches. Additionally, we took advantage of the fact that re-training
only the normalization layers is often sufficient to successfully alter a models behavior,
even in randomly initialized neural networks [7].

The following and final chapter of this dissertation continues along the line of in-
corporating domain-specific knowledge of visual patterns to improve digital pathology
algorithms.



7.4 Chapter 6: Masked Context Modelling and Knowledge Distillation 95

7.4 Chapter 6: Masked Context Modelling and Knowledge
Distillation

There are many fundamental concepts in vision, both human and machine, which
consistently reappear in the design of algorithms, and they are valid for histopathology
imagery as well. The high resolution of WSIs makes them naturally suited for pyramidal
representations [8], a strategy already employed by the codecs of their image formats.
Multiple instance learning leverages "bag-of-words" representations [9]. Visual signals
tend to be redundant, and the previous chapter takes advantage of this fact which
applies to tissue slides as well [10]. Here, we designed an algorithm that exploits the
information in the context of individual image patches, based on the spatial continuity
of tissue along large image regions. It is intriguing to continue the study of how visual
information processing can be incorporated into digital histopathology algorithms.

In this work, we propose an additional feature extractor fine-tuning stage with a novel
task. It is useful to draw a parallel with multi-stage training of large visual-language
models [11]. Training of such models begins with general image-text prediction tasks such
as transcribing text from images, and they grow in abstraction as training progresses,
finalizing with a high-level, domain-specific task, such as visual question-answering from
corporate documents. Although the data always consists of paired images and text,
this sequential approach bridges the semantic gap between the initial pre-training stage,
which learns broad image-text patterns from abundant web-scale datasets, and the final
fine-tuning stage, which relies on smaller, curated datasets for a specific domain. We
observe a similar phenomenon in the MIL framework: the feature extractor is initially
pre-trained on a large dataset to produce general-purpose image representations, while
the MIL algorithm is subsequently trained on a task-specific histopathology dataset.
The proposed MCM task is intended to mitigate this domain gap.

An indication that this project is going in the right direction is the surprising result is
that the fine-tuned ResNet18 outperforms the larger EfficientNetV2-L teacher in some
MIL tasks. This suggests that context-aware fine-tuning does not just copy teacher
embeddings but learns a compressed, task-specific representation. This is aligned with
our goal of improving the representations of the feature extractor in the context of
specific downstream MIL tasks. Knowledge distillation is a fascinating topic in DL and
it is still not understood in depth. While it is commonly used as a method of model
compression, our motivation here is to avoid doing the context modeling task in pixel
space.

7.5 Conclusion and outlook

The body of research presented in this dissertation demonstrates the potential of
deep learning methods for histopathology image analysis, more specifically showcasing
applications of biomarker prediction and therapy response assessment, as well as algo-
rithmic strategies and novel approaches to address the unique challenges posed by this
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domain. In the application chapters, deep learning techniques are employed for a variety
of purposes: automating histopathologists’ routine work, gaining insights into the inner
mechanisms of diseases, or overcoming patient privacy and data governance drawbacks.
Our work underlines the importance of domain-specific considerations, from data prepa-
ration to model explainability, and highlights how insights derived from these models
can potentially support clinical decision-making.

In medical practice, it is a must to integrate data from different sources and modali-
ties in order to make an accurate patient profile and tailor their treatment. This thesis,
being about histopathology images, puts a strong emphasis on the processing of their
visual signals. A promising direction that emerges from the presented works and their
discussion is forging a closer dialogue in this interdisciplinary research. Just like the
application of machine vision can aid in cancer research, posing meaningful, biological
questions that can be answered by visual information processing can make these com-
putational methods thrive. If we root our algorithms in clinically significant questions,
that are simultaneously grounded in the application of these algorithms, we can open
new pathways toward more accurate diagnoses, personalized treatments, and a deeper
understanding of cancer.
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Predicting the HER2 status in oesophageal cancer from tissue 
microarrays using convolutional neural networks 

Juan I. Pisula, Rabi R. Datta, Leandra Börner Valdez, Jan-Robert Avemarg, Jin-On Jung, Patrick 

Plum, Heike Löser, Philipp Lohneis, Monique Meuschke, Daniel Pinto dos Santos, Florian 

Gebauer, Alexander Quaas, Christiane J. Bruns, Axel Walch, Kai Lawonn, Felix C. Popp and 

Katarzyna Bozek 
Supplemental Table 1. Staining patterns used by pathologists to assess the IHC score of HER2 

stainings in biopsies. This analysis method was used because TMAs resemble biopsies more than 

whole slides. 

Score Pattern of IHC staining for HER2  HER2 status 

0 No reactivity or membranous reactivity in any (or 

<5) tumor cell(s) 

 negative 

1 Tumor cell cluster with a very weak membranous 

reactivity (at least 5 tumor cells) 

 negative 

2 Tumor cell cluster with a weak to moderate 

complete, basolateral or lateral only membranous 

reactivity (at least 5 tumor cells) 

 equivocal (ISH 

assessment 

required) 

3 Tumor cell cluster with a strong complete, 

basolateral or lateral only membranous reactivity (at 

least 5 tumor cells) 

 positive 



Supplemental Figure 1.  IHC score distribution of our in-house datasets (with score 2 separated 

by positive and negative HER2 status). 
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Suppl. Fig. 1. Additional selected features, split by their category. 



Suppl. Fig. 2. Tumor cell and lymphocytes counts computed on complete tumor regions 
instead of highly attributed patches. 
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Suppl. Figure 1: Association of clinico-pathological parameters with cSCC progression risk calculated 

using logistic regression for Cologne patients with available data. Shown are Odds ratios (ORs) with 

95% Confidence intervals (CIs) and univariate p-values.  

 

Suppl. Figure 2: Percentage of relevant patches (as detected by IGs) of individual patients inside the 

tumor regions. On average, non-progressors have more relevant patches inside the tumor compared 

to progressors.   
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Suppl. Figure 3: Violin plots of 5 tumor cell nuclei morphological features. Non-progressors have larger 

values of morphological solidity and extent (larger median, negatively-skewed distributions, A-D), 

while morphological extent has a larger variance in tumor cells from progressors (E). All features are 

significantly different in both groups, with p-values < 0.0001 using Mann-Whitney U test. 

 

 

 
Suppl. Figure 4: ROC curve of the XGBoost patch-level progression status classifier using cell-

based features as input. 
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Suppl. Figure 5: A: Univariate association of clinico-pathological parameters derived from medical 

records & pathology reports with progression free survival of Cologne cSCC patients. Shown are Hazard 

ratio (HR) with 95% confidence interval (CI) based on Cox proportional hazard models. N indicates 

number of patients with available data per category. B: Kaplan-Meier curves for Cologne patients with 

or without invasion beyond subcutaneous tissue (top) or perineural invasion (bottom). C: Comparison 



 

4 
 

of deep learning-based progression risk scores in Cologne patients with or without cSCC progression 

stratified by pathological grade (top) or tumor thickness >6mm (bottom). Shown are median and 

median absolute deviation. p-values calculated by t test. D: Progression free survival of patients 

grouped into tertiles of the deep learning-based progression risk score.   

 

Suppl. Table 1 

Top 100 features with the largest CLES, or probability of superiority, between the groups. To avoid 

displaying redundant features, pairs of features with a Pearson correlation coefficient bigger than 0.9 

are grouped together, and a single feature from the group is shown. The rows are sorted in descending 

order of CLES for each feature type. The “Higher in” column indicates the group with larger feature 

values. The fraction of image patches that do not show any value for the features are shown, and 

features missing in more than 90% of the patches are not displayed. All the features in the table are 

significantly different in both groups with p<0.0001 using Mann-Whitney U test. Description of nuclei 

morphology features can be found in the documentation of `skimage.measure` (https://scikit-

image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops). 
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Supplementary Table 1: Performance of different MIL algorithms in LNM
and IBC classification tasks using CTransPath features [6]. Best and second
best classification results are in bold and underlined, respectively.

Method
x10 magnification x20 magnification

25% train set 100% train set 25% train set 100% train set

Lymph Node Metastases classification

ABMIL [1] 0.881 0.910 0.938 0.971
CLAM [3] 0.695 0.928 0.717 0.953
DS-MIL [2] 0.541 0.744 0.521 0.934
TransMIL [4] 0.634 0.870 0.654 0.935
Wagner et al. [5] 0.663 0.928 0.757 0.974
Ours 0.512 0.783 0.448 0.957

Invasive Breast Carcinoma subtype classification

ABMIL [1] 0.868 ± 0.062 0.896 ± 0.066 0.690 ± 0.298 0.893 ± 0.057
CLAM [3] 0.921 ± 0.065 0.929 ± 0.033 0.895 ± 0.051 0.937 ± 0.300
DS-MIL [2] 0.913 ± 0.056 0.934 ± 0.037 0.903 ± 0.050 0.934 ± 0.036
TransMIL [4] 0.890 ± 0.060 0.934 ± 0.043 0.882 ± 0.061 0.924 ± 0.042
Wagner et al. [5] 0.903 ± 0.059 0.935 ± 0.035 0.881 ± 0.061 0.927 ± 0.052
Ours 0.860 ± 0.087 0.928 ± 0.043 0.860± 0.062 0.914 ± 0.057
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