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Abstract

Further understanding of biological soil crust (BSC) response to climate change
requires BSC-climate models, which represent the relevant processes taking place in
the atmosphere and land surface. In this study, a modelling system for biological soil
crust and climate factors based on multi-datasets is developed in two approaches. The
effects of climate variability on the long temporal and large spatial distribution of BSC
are revealed by an improved BSC detection method and multiple linear regression. The
models can be used to explain the dominant climatic factors associated with BSC
changes. the short-term or long-term forecasts of regional-scale distribution of BSC,
the assessment for the potential effects of climate change on the availability of BSC
and the sustainable development of ecosystem, as well as the short-term or long-term

forecasts of regional-scale distribution of BSC.

The long-time and large-scale distribution of biological soil crust is obtained in the
study area. To this end, this study is divided into the following four steps: 1) Fusion of
MODIS and Landsat7 satellite data using the Sspatial and Temporal Adaptive
Reflectance Fusion Model (STARFM) to obtain multispectral data with high spatial
and temporal resolution; 2) Calculation of the BSC Index (BSCI) and the NDVI from
the fused satellite spectral data; 3) Extraction of the BSC for the study area based on
the BSCI thresholds obtained from previous studies, as well as considered with NDVI.
4) Analyzing the extracted BSC data from multiple perspectives. The analysis for 19a
shows that on the time scale, the BSC variations have an interannual periodicity,
peaking in March and October of each year, and almost zero in winter. On the spatial
scale, the BSC is mainly distributed in the desert-oasis transition zone, while the

distribution become gradually sparse toward to the desert hinterland.

Lag-correlation and partial correlation between BSC and climate variables is analyses.
In this study, five climatic variables (specific humidity, 10-meter wind speed, 2-meter
temperature, surface solar radiation and total precipitation) and their time lags were
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used as independent variables. The results show that in some areas the BSC is more
strongly correlated with time-lagged climate factors when the time lag is taken into
account, and this is most evident for specific humidity. The response of the BSC to this
is usually delayed by 1 to 2 months. In principle, the time lag between the BSC and the
climatic variables does not exceed three months. The BSC responds quickly to
temperature, with a correlation coefficient of 0.7. The BSC also responds quickly to
precipitation, while the correlation coefficient is relatively low at 0.46 and the
significantly correlated areas are mainly in the east and south. These correlation
analyses provide a good reference for the selection of variables for subsequent

modelling.

The models of biological soil crust and climate factors is constructed using two
approaches, in which the influence of time lag is considered. One approach is based on
fixed climate factors, and the other slides over the time series to select more appropriate
climate factors and coefficients for different time points. Multiple regression analysis
is applied to both models. Statistical parameters are used to estimation. The results
shows that the two approaches can explain about 40% and 75% of the BSC,
respectively. Then applied models to paleoclimate (Last Glacial Maximum and Mid-
Holocene) in the Gurbantunggut Desert and to historical climate in the Atacama Desert.
Changes in biological soil crust during different time periods are also compared and

analyzed.

In summary, the long-temporal and large-spatial distribution of BSC is obtained.
Benefiting from it, the correlation between BSC and climatic factors is analyzed. And
the model system developed captures well the climatological processes in the study
area. The BSC-climate model can appropriately predict the BSC in paleoclimate and

indicate the its response to the climate variables.
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Zusammenfassung

Um ein besseres Verstindnis der Reaktion biologischer Bodenkrusten (BSC) auf den
Klimawandel zu gewinnen, sind BSC-Klima Modelle erforderlich, die die relevanten
Prozesse in der Atmosphére und an der Landoberfléche abbilden. In dieser Studie wird
ein Modellierungssystem fiir biologische Bodenkrusten und Klimafaktoren auf der
Grundlage von Multi-Datensdtzen mit zwei Ansdtzen entwickelt. Durch eine
verbesserte BSC-Erkennungsmethode und eine multiple lineare Regression werden die
Auswirkungen der Klimavariabilitit auf die langfristige und groBrdumige Verteilung
der BSC aufgezeigt. Diese Modelle konnen verwendet werden, um die dominierenden
Klimafaktoren, die Verdnderungen der BSC beeinflussen, zu identifizieren, kurz- und
langfristige Prognosen zur regionalen Verteilung der BSC zu erstellen, die potenziellen
Auswirkungen des Klimawandels auf die Verfiigbarkeit der BSC und die nachhaltige
Entwicklung des Okosystems zu bewerten sowie regionale Prognosen der BSC-

Verteilung fiir unterschiedliche Zeitrdume zu ermoglichen.

In der Studie wird die langfristige und groBrdumige Verteilung der biologischen
Bodenkrusten im Untersuchungsgebiet bestimmt. Dazu wird die Studie in die
folgenden vier Schritte unterteilt: 1) Fusion von MODIS- und Landsat7-Satellitendaten
unter Verwendung des Sspatial and Temporal Adaptive Reflectance Fusion Model
(STARFM), um multispektrale Daten mit hoher rdumlicher und zeitlicher Auflosung
zu erhalten; 2) Berechnung des BSC Indikator(BSCI) und des NDVI aus den
fusionierten Satellitenspektraldaten; 3) Extraktion der BSC im Untersuchungsgebiet
auf Basis der aus fritheren Studien ermittelten BSCI-Schwellenwerte sowie unter
Beriicksichtigung des NDVI; 4) Analyse der extrahierten BSC-Daten aus
verschiedenen Perspektiven. Die Analyse der 19-jdhrigen Daten zeigt, dass die BSC-
Verdnderungen auf der Zeitskala eine jdhrliche Periodizitit aufweisen, mit

Spitzenwerten im Mérz und Oktober eines jeden Jahres und nahezu null im Winter. Auf
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der rdumlichen Skala ist die BSC hauptsichlich in der Ubergangszone zwischen Wiiste
und Oase verteilt, wobei die Verteilung in Richtung Wiisteninneres allméhlich

sparlicher wird.

Die Verzégerungskorrelation und Partialkorrelation zwischen BSC und Klimavariablen
wird analysiert. In dieser Studie werden fiinf Klimavariablen (spezifische Feuchtigkeit,
Windgeschwindigkeit in 10 Metern Hohe, Temperatur in 2 Metern Hohe,
Oberflachensonnenstrahlung und Gesamtniederschlag) sowie deren Zeitverzogerungen
als unabhingige Variablen verwendet. Die Ergebnisse zeigen, dass die BSC in einigen
Gebieten stirker mit zeitverzogerten Klimafaktoren korreliert ist, wenn die
Zeitverzogerung beriicksichtigt wird, was bei der spezifischen Feuchtigkeit besonders
deutlich ist. Die Reaktion der BSC auf die spezifische Feuchtigkeit erfolgt in der Regel
mit einer Verzogerung von 1 bis 2 Monaten. Grundsétzlich {iberschreitet die
Zeitverzogerung zwischen der BSC und den Klimavariablen nicht drei Monate. Die
BSC reagiert schnell auf Temperatur mit einem Korrelationskoeffizienten von 0,7.
Auch auf Niederschlag reagiert die BSC schnell, wobei der Korrelationskoeftizient
jedoch relativ niedrig ist 0,46 und die signifikant korrelierten Gebiete hauptsidchlich im
Osten und Siiden liegen. Diese Korrelationsanalysen liefern eine gute Grundlage fiir

die Auswahl der Variablen fiir die nachfolgende Modellierung.

Die Modelle fiir biologische Bodenkruste und Klimafaktoren werden unter
Beriicksichtigung der Zeitverzogerung mit zwei Ansdtzen entwickelt. Ein Ansatz
basiert auf festen Klimafaktoren, der andere gleitet iiber die Zeitreihe, um besser
geeignete Klimafaktoren und Koeffizienten fiir verschiedene Zeitpunkte auszuwahlen.
Beide Modelle verwenden multiple Regressionsanalysen, die durch statistische
Parameter bewertet werden. Die Ergebnisse zeigen, dass die beiden Ansétze etwa 40 %
bzw. 75 % der BSC-Verdnderungen erkldren konnen. AnschlieBend werden die
Modelle auf das Paldoklima (Letzteiszeitliches Maximum und Mittelholozén) in der
Gurbantunggut-Wiiste und auf das historische Klima in der Atacama-Wiiste
angewendet. Verdnderungen der biologischen Bodenkrusten in verschiedenen
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Zeitraumen werden ebenfalls verglichen und analysiert.

Zusammenfassend wird die langfristige und groBrdumige Verteilung der BSC
bestimmt. Auf dieser Grundlage wird die Korrelation zwischen BSC und
Klimafaktoren analysiert. Das entwickelte Modellsystem erfasst die klimatischen
Prozesse im Untersuchungsgebiet gut. Das BSC-Klima Modell kann die BSC im

Paldoklima angemessen vorhersagen und ihre Reaktion auf Klimavariablen aufzeigen.
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1 Introduction

Biological soil crust (BSC) is formed by soil microorganisms, algae, lichens, mosses
plants and soil forming an organic complex (Belnap et al., 1994; West, 1990). It is a
common phenomenon in the desert and semi-desert areas of the world, and its formation
makes the soil surface obviously different from loose sandy soil in physical, chemical
and biological properties, with strong wind erosion resistance and important ecological
and geological effects, which has become an important basis for the succession of
vegetation in desert areas (Zhang et al., 2005). Biological soil crusts are important
structure in the topological succession of soil in desert and semi-desert areas, which has
a significant effect on the improvement of soil erosion resistance, and is also the first
sign of sand fixation (Hu et al., 2000). Biological crusts can grow and reproduce in poor
conditions and influence and change the environment through their own activities,
which is of great importance and irreplaceable ecological significance (Chen et al.,

2003).

Remote sensing optical images (visible (VIS) to shortwave infrared (SWIR)) from
space-borne sensors have been widely used to monitor terrestrial ecosystem functions
due to their synoptic coverage of the land surface at fixed intervals. However,
monitoring drylands from satellite platforms has been quite challenging because arid
and semi-arid regions are usually only sparsely vegetated, and the observed spectral
signal is a mixture of soil, biocrusts and vascular plants (annuals and perennials)
(Rozenstein & Adamowski, 2017; Weber & Hill, 2016). Remote sensing images at high
spectral, temporal and spatial resolution are required to accurately map the spatial
distribution of the different dryland components from space (Karnieli et al., 1996, 1999,
2002; Zaady et al., 2007). High spectral resolution is helpful to separate the biocrust
unique spectral features from that of bare soils (Karnieli & Tsoar, 1995; Rozenstein &
Karnieli, 2015). A high temporal resolution can help in separating different land covers

because biocrusts and vascular plants have different phenological cycles. A high spatial
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resolution is expected to reduce spectral mixing effects in the VIS and infrared regions
(Qin et al., 2006), thus improving the characterization of the biocrust spatial distribution
when their fractional cover is low. Ground-based spectral measurements and
Normalized Difference Vegetation Index (NDVI)-derived values have also been used
to link semi-arid ecosystem phenology to biocrust CO2 fluxes in order to assess the
capability to detect biocrust activity from satellite (Burgheimer et al., 2006a, 2006b).
Therefore, using suitable spectral indices and satellite images to detect BSC from
background (rocks, bare soils or sand dunes) and map their distribution is critical to

quantify biological crusts interactions to ecosystem.

The spatial and temporal distribution of biological crusts contributes to the
understanding of the evolution trend of the ecological environment in desert areas and
its response to global changes. The distribution of biological crusts has selective
characteristics at different scales. At the landscape scale, well-developed biological soil
crusts are found in arid desert areas such as Ordos, Shapotou and Junggar in China. On
the other hand, in the Taklamakan Desert, which is also a temperate desert area, there
is no distribution of biological soil crusts. At the regional scale, as in the Junggar Basin,
the cover and distribution of biological soil crusts is much higher in the south than in
the central and northern regions (Zhang, 2005; Zhang et al., 2007). At the dune scale,
the cover and variety of biological soil crusts varied along the top, mid-slope, bottom
and base of the interdune line (Zhang et al., 2004; Chen et al., 2005, 2007). At the
microscale, for instance, at the meter and centimeter scales of homogeneity, lichen and
moss crusts are also distributed in discontinuous patches (Boeker et al., 2006). However,
current research lacks the study of the distribution of BSC over long temporal and
spatial scales. Hence, it is important to study the characteristics and patterns of the

spatial and temporal distribution of biological crusts.

Biological soil crust is a major component of desert ecosystems. The anatomical

structure of biological soil crusts is very simple, which is extremely sensitive to external



disturbances and changes in environmental conditions. It is able to manifest the impact
of climate change far ahead of vascular plants in desert ecosystems, and the most
sensitive indicator organisms in desert ecosystems of environmental and climate change
(Conti et al., 2001; Wu et al., 2002, 2003). As the earliest and most susceptible surface
system in desert ecosystems, biological soil crust microcosms are ideal information
carriers for studying the impacts of global change on desert ecosystems. At global and
regional scales, the distribution of biological soil crusts shows a positive correlation
with annual precipitation (Belnap et al., 2007), condensation and soil moisture content
(Schieferstein & Loris, 1992; Jacobs et al., 1999, 2000); the effect of temperature on
the distribution of biological soil crusts varies according to the species that make up the
biological soil crusts (Spier & Van Herk, 1997; Van Herk et al., 2002). On a small scale,
the distribution of biological soil crusts is limited by soil type, texture and nutrients
(Eldridge, 1996; Bowker et al., 2005). Therefore, the selection of climatic factors, such
as moisture and temperature, to carry out the changes in the distribution pattern of
biological soil crusts under different climatic factors and multi-factor coupling

conditions is an important issue to be addressed.

This study aims at developing a modelling system for biological soil crusts and climate
factors based on multi-datasets, with improved BSC detection method and machine
learning, to reveal the long-term and large spatial distribution of BSC and its interaction
with the climate variability. This model can be used to explain the effects of climatic
factors on biological crusts, the short-term or long-term forecasts of regional-scale
distribution of BSC, the assessment for the potential effects of climate change on the

availability of BSC and the sustainable development of ecosystem.

The objectives of this study are:
1. To obtain the long-time and large-scale distribution of biological soil crusts based on
satellite data and improved crust detection method, and to analyze their changing

patterns and characteristics.



2. To develop BSC-climate models using machine learning techniques and to evaluate
the performance of this model;

3. To understand how the climate factors in the model affect the variability of biological
soil crusts.

4. To apply the models to paleoclimate in Gurbantunggut Desert and modern climate in

Atacama Desert.

This thesis is divided into 6 chapters. In Chapter 2, a relevant research review and
motivation are presented. In Chapter 3, the spatiotemporal distribution of biological soil
crusts described along with the introduction of the study area and data processing. In
Chapter 4, a model of biological soil crusts and climate factors is constructed, in which
the influence of time lag is considered. Statistical parameters are used to evaluate and
select the model. Predictions are compared with observations in Gurbantunggut Desert
to determine the validity of the model. Further, the effects of climatic variables on BSC
are interpreted according to the model parameters. In Chapter 5, the BSC-climate model
is applied to paleoclimate (Last Glacial Maximum and Mid-Holocene) and the Atacama
Desert. Changes in biological soil crusts in different areas during different periods are
also compared and analyzed. In the last chapter, the discussion, conclusion, and outlook

are given.



2 Research review and motivation

2.1 Biological Soil Crust

2.1.1 Characteristics

The concept of biological crust is first mentioned by Fritsche (1907) in a study related
to tropical desert areas. Vascular plants in desert areas are usually low and sparse, with
large open spaces between individuals, and the amount of litter is relatively small,
which has a limited role in resisting soil wind erosion in arid and semi-arid areas, and
the role of BSC on soil stability is particularly important in this situation (Belnap, 2003).
Numerous studies have confirmed that BSC can enhance soil stability and improve soil
resistance to wind and water erosion (Eldridge, 2003; Eldridge & Leys, 2003;
Chaudhary et al., 2009; Bu et al., 2015). In arid and semi-arid regions, water is one of
the main factors limiting plant growth (Xiong et al., 2011), and the presence of BSC
can lead to soil water redistribution (Yair, 2003), and the structure of BSC and
physiological activities of microorganisms can change the aeration and permeability of
the topsoil, affecting the hydrological processes of precipitation infiltration, flow
production, and evapotranspiration (Warren, 2001; Belnap, 2006; Wu et al., 2002).
Algae, lichens, and mosses are primary producers with carbon sequestration functions
and are important contributors of organic carbon in arid ecosystems (Bowker et al. 2010;
Castillo-Monroy et al., 2011). Cyanobacteria in the BSC have nitrogen fixation function,
which can provide abundant nitrogen source for plant growth and contribute to soil
nitrogen input in desert ecosystems (Belnap, 2002; Billings et al., 2003; Su et al., 2011).
In addition, the presence of BSC also interacts with the surrounding vegetation and
affects the stability of sandy ecosystems (Bowker et al., 2014; Chen, 2007). China
researchers have carried out a lot of research work in the Gurbantunggut Desert, Mu Us
sandy land, Ningxia Shapotou and Loess Plateau, and most of the current research is

still in the stage of understanding the functions and roles of BSC (Li et al., 2009).



2.1.2 Distribution

Biological soil crusts are formed by soil particles tightly bound to algae, fungi, lichens,
and mosses in varying proportions, and are a common ground cover in arid and semi-
arid regions (Belnap et al., 2003; Belnap, 2006). In recent years, many studies in
Chinese deserts have shown that BSC have a certain distribution in the region and plays
an important role in preventing soil erosion and regulating hydrological processes

(Xiong et al., 2011; Zhang et al., 2013; Wang et al., 2017).

Biological soil crusts are widely distributed across terrestrial surfaces, extending
beyond arid and desert regions to semi-arid landscapes (Pickard, 1986; Blank &
Camero, 1966). Their presence is largely attributed to the low vegetation cover in these
ecosystems, where natural and semi-natural plant communities typically exhibit less
than 40% coverage, leaving substantial open ground available for BSC colonization
(Belnap et al., 1994). Additionally, the spatial heterogeneity and environmental
variability across these landscapes contribute to the ecological significance of BSCs,
making them a fundamental component of fragile ecosystems. The role of BSCs in
ecosystem stability is particularly significant, as they enhance soil carbon and nitrogen
fixation, improve fertility, and increase water infiltration capacity (Belnap & Lange,
2003). Given their ecological importance, a systematic analysis of BSC formation,
development, and spatial distribution in natural environments is essential, alongside
investigations into their successional dynamics and functional contributions to

ecosystem processes.

Biological soil crusts have been widely studied across various habitats, with research
focusing on their distribution, composition, diversity, and environmental interactions,
providing key insights into their spatial patterns globally. In Australia, BSCs collected
from 30 quadrats across three geomorphic types in a forest were analysed for their
species composition, with a particular emphasis on lichens and bryophytes (Eldridge,

1999). In North America, research has primarily focused on semi-arid and arid
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landscapes. In the Colorado Plateau, USA, BSCs have been characterized at millimetre
resolution, revealing their bacterial biomass, diversity, and vertical stratification
(Garcia-Pichel et al., 2003). In the Mojave Desert, USA, BSCs were mapped and
analysed using GIS techniques, surface feature extraction, and spatial statistics to
examine their relationships with topographic and soil properties, contributing to a
conceptual model of BSC spatial distribution (Williams et al., 2013). In Latin America,
studies have emphasized BSC composition and ecological roles in semi-arid
environments. In Mexico’s Tehuacan Valley, BSCs from 87 sample plots were
examined to investigate the distribution and composition of algae, lichens, and
bryophytes, highlighting their role in stabilizing desert soils (Rivera-Aguilar et al.,
2006). Across southwestern Africa, research has focused on regional-scale climatic
influences on BSC diversity and distribution. A large-scale study assessed BSC
diversity and distribution patterns at 29 observation stations along an 1800 km climatic
transect, capturing biogeographical variations across multiple climate zones (Zedda et
al., 2011). Studies in the Middle East have explored BSC formation and classification
based on morphological characteristics. In the Negev Desert, Israel, BSCs were
categorized into different types, and their spatial distribution patterns and formation
mechanisms were systematically evaluated (Kidron et al., 2010). European research has
focused on the role of environmental factors in BSC successional dynamics. In central
Spain, BSCs within a nature reserve were analysed to determine the effects of
environmental variables on post-successional distribution patterns, highlighting their
ecological importance in Mediterranean landscapes (Ochoa-Hueso et al., 2011). These
studies collectively illustrate the global variation in BSC distribution and composition

across diverse ecosystems.

The primary focus of biological soil crust research in China has been on the
Gurbantunggut Desert, the Tengger Desert, the Kubuqi Desert, and the Mu Us Sandy
Land, etc., which are situated in low-altitude desertification-prone regions in northern

China (Weber et al., 2016; Li et al., 2020; X. Zhou et al., 2020; H. Zhou et al., 2020).



In the Gurbantunggut Desert, BSCs are predominantly distributed in the southern
region (Zhang et al., 2007). In the Tengger Desert, BSCs beneath Hedysarum scoparium
and Calligonum mongolicum were analyzed through field and laboratory investigations,
revealing that crust thickness decreased with increasing distance from plant roots,
further highlighting the role of vegetation in BSC formation (R. Zhang et al., 2024). In
the Kubugqi Desert, induced BSCs were found to vary in distribution with slope aspect,
gradient, and plant canopy, with better crust development observed on north-facing
slopes and in vegetated areas (X. Zhou et al., 2020). In the Mu Us Sandy Land, BSCs
within Artemisia ordosica communities were reported to be prevalent, with
significantly lower coverage in semi-fixed sand than in fixed sand, indicating the
influence of surface stability on BSC development (Zhang et al., 2010). The spatial
distribution of BSCs beneath Artemisia ordosica was further analyzed, showing strong
associations with wind direction, wind speed, and plant-root proximity (Liu et al., 2014).
Beyond these desert systems, slope-associated BSCs in Liudaogou, a transitional zone
between wind and water erosion in the northern Loess Plateau, were investigated,
revealing that crusts develop more extensively in sandy soils with gentle slopes, higher
moisture availability, lower solar radiation, and reduced erosion intensity (Bu et al.,

2016).

With the advancement of research, the study of BSCs has become increasingly
multidimensional, with scholars identifying key environmental factors that influence
their spatial distribution at different scales. At the micro-scale, microtopography plays
a critical role in BSC formation and the maintenance of community diversity (Li et al.,
2010). At small to medium scales, factors such as atmospheric dust accumulation, light
availability, soil moisture, and soil nutrients drive variations in BSC cover and diversity
(Chen et al., 2007; Lan et al., 2015; Zhang et al., 2000; Zhang et al., 2015). At the
landscape scale, precipitation serves as a dominant factor in determining the spatial
distribution of BSCs, whereas at the regional scale, soil properties become the primary

determinant of BSC status (Li et al., 2017). Additionally, at the sample site scale,



disturbances and vegetation cover influence the spatial patterns of BSCs (Li et al., 2017).

2.1.3 Detection and Methodology

Remote sensing plays a crucial role in mapping, classifying, and characterizing BSCs,
as their patchy distribution across vast regions makes it challenging to accurately assess
spatial patterns using only ground-based mapping techniques. Spectroscopy has been
widely employed in BSC research, with insights from proximal sensing informing
regional-scale remote sensing studies. Reflectance spectroscopy offers a superior
alternative to conventional laboratory methods, as it is minimally invasive and enables

the in situ detection of temporal changes in BSCs.

The application of remote sensing in BSC studies has been explored since 1986, when
optical imagery from the Landsat TM sensor was analyzed for this purpose (Green,
1986; Wessels & Van Vuuren, 1986). Two primary spectral domains have been
identified for analyzing BSC properties: the reflective domain and the thermal infrared
(TIR) domain, both extensively used in soil, vegetation, and land cover analysis
(Rozenstein & Adamowski, 2017). Spectroscopy in the reflective domain, covering the
visible (VIS), near-infrared (NIR), and shortwave infrared (SWIR) regions, relies on
reflected solar illumination to provide detailed surface composition data. In contrast,
TIR spectroscopy, operating primarily in the long-wave infrared (LIR) region, exhibits
greater sensitivity to soil properties. Although its field application remains limited due
to the high cost and restricted availability of instrumentation, TIR spectroscopy offers
an advantage through inherent self-emission, enabling remote sensing under shaded
conditions, cloud cover, and even at night (Eisele et al., 2012; Eisele et al., 2015). Over
time, various techniques have been developed to improve BSC identification and
mapping. Methods for BSC identification and extraction primarily include spectral
index-based techniques that leverage BSC spectral properties and object-oriented
approaches (Crucil & Van Oost, 2021). The distribution of BSCs has been mapped
using spectral mixture analysis, integrating aerial photos with limited spectral
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information and hyperspectral imagery (Hill et al., 1998; Hill et al., 2008). Spectral
analysis of BSCs, bare soil, and vegetation provides critical insights into how BSC
cover influences spectral response in heterogeneous landscapes, significantly affecting
vegetation indices and surface albedo (Rodriguez-Caballero et al., 2015). In China’s
Mu Us Sandy Land, remote sensing techniques have enabled the quantification of moss
crusts, revealing a total coverage of approximately 6.43% (0.72 x 10* km?) (Feng et al.,
2015). In addition, multi-source UAV imagery enables high-precision mapping (>80%
accuracy) of vegetation, bare ground, and BSC components in dryland ecosystems, as
demonstrated in central Spain (Blanco-Sacristan et al., 2021). These advancements
underscore the increasing role of remote sensing technologies in improving the

detection, classification, and large-scale monitoring of BSCs.

NDVI has been widely used to estimate and map BSC coverage, as it effectively
represents different vegetation types and their physiological conditions. However, for
BSCs, both dry and wet states must be considered, as spectral reflectance varies with
biological activity and surface moisture content. Escribano et al. (2010) demonstrated
that chlorophyll significantly influences spectral reflectance in BSCs. NDVI is
influenced by chlorophyll absorption, with spectral features around 680 nm correlating
with chlorophyll content in cyanobacteria-, lichen-, and moss-dominated crusts (Weber,
2008; Chamizo, 2012). NDVI values for wet BSCs are notably higher than those for
dry BSCs. After six years of disturbance through soil redistribution, NDVI values of
wet crusts reached 0.15 (Zaady et al., 2007). NDVI has been shown to vary significantly
across different BSC types, with wet cyanobacteria-dominated crusts on sand reaching
values of up to 0.22, while moss-dominated crusts exhibit even higher values of 0.3, in
contrast to bare soil at 0.08 (Weber & Hill, 2016). These NDVI differences suggest that
dry BSCs share spectral characteristics with bare soil, whereas wet BSCs display
enhanced chlorophyll absorption and increased NIR reflectance, making their spectral
response more comparable to that of vascular plants. The spectral similarity between

BSCs and other land cover types, such as bare soil and sparse woody vegetation, often
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leads to classification ambiguities when using NDVI. To address these limitations,
alternative spectral indices have been developed over the past few decades to enhance

the accuracy of BSC identification and differentiation.

Numerous studies have explored the calculation methods for biocrust-related indices.
Karnieli (1997) developed the spectral Crust Index (CI) as a remote sensing-based
approach for detecting and mapping biological soil crusts in arid dune environments.
This index was specifically designed to distinguish BSCs from bare sand and other land
surface features by leveraging their unique spectral reflectance characteristics. Utilizing
data from multispectral sensors, CI enhances the spectral contrast between crust-
covered and non-crust areas, providing a more effective method for large-scale BSC
mapping. The study demonstrated the feasibility of satellite-based BSC detection,
laying a foundation for subsequent advancements in remote sensing applications for
dryland ecosystem monitoring. The Biological Soil Crust Index (BSCI) was developed
based on Landsat ETM+ imagery, enabling the effective identification and extraction
of lichen biocrusts in the Gurbantunggut Desert (Chen et al., 2005). The interpretation
achieved a Kappa coefficient of 0.82, with an overall detection accuracy of 94.7% for
the presence or absence of biocrusts. However, lichen crusts could only be effectively
distinguished when biocrust coverage exceeded 33%. The CI and BSCI were evaluated
using field spectra and Compact Airborne Spectrographic Imager (CASI) hyperspectral
images, but both indices exhibited limitations in differentiating biocrusts from bare soil.
When applying CI, roads devoid of biocrusts were erroneously classified as biocrust-
covered areas, whereas with BSCI, certain vegetation zones without biocrusts were
misclassified as biocrusts. To address these issues, the Continuum Removal Crust
Identification Algorithm (CRCIA) was developed, which, when applied in South Africa,
achieved a Kappa index of 0.831 and demonstrated strong classification performance
(Weber et al., 2008). Using CASI hyperspectral imagery, the support vector machine
(SVM) classification method was shown to effectively differentiate bare soil, algal crust,

lichen crust, green vegetation, and dry vegetation, while spectral mixture analysis
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accurately quantified the proportion of each feature within a pixel (Rodriguez-
Caballero, 2014). The Thermal Crust Index (TCI) was developed based on the principle
that variations in reflectivity and absorptivity induced by BSCs alter surface
temperature. Designed to differentiate BSCs from bare sand in desert environments, the
TCI demonstrates enhanced effectiveness when combined with the NDVI and the CI
(Rozenstein & Karnieli, 2015). Applied to Sentinel-2 imagery, the Biocrust Greenness
Index (BGI) and Maximum Vegetation Development Index (MVDI) enhance dryland
ecosystem monitoring by capturing the greening dynamics of BSCs and vascular plants.
These indices provide valuable insights into BSC responses to climatic variability,
particularly precipitation, advancing the understanding of climate change impacts on
BSCs and vegetation (Panigada et al., 2019). The Sandy Land Ratio Crust Index (SRCI)
and the Desert Ratio Crust Index (DRCI) were employed to map moss-dominated crusts
in the Mu Us Sandy Land, China. Compared to mapping without these indices, this
approach improved the overall classification accuracy for sandy land and desert areas
by 6% (Wang et al., 2022). The Fractional Biocrust Cover Index (FBCI) is derived from
Sentinel-2 imagery with a 10 m spatial resolution, based on radiative transfer theory.
The estimated fractional biocrust coverage exhibits a high level of agreement with field
measurements, with a RMSE of 0.0774 and a systematic deviation of —4.05% (Sun et
al., 2024). Spectral characterization methods provide a practical and efficient approach
for monitoring the long-term spatiotemporal dynamics of biocrust distribution.
However, it is important to note that their applicability is primarily limited to
environments where BSC coverage exceeds 30% and vegetation cover remains below

10% (Beaugendre et al., 2017).

While remote sensing has advanced BSC classification and mapping, long-term
monitoring and large-scale distribution analysis remain limited. Few studies have
developed robust methodologies to assess the long-temporal dynamics of BSCs across
large-scale spatial distributions using satellite observations, highlighting the need for

further research. Additionally, BSCs are often analysed independently through either
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qualitative descriptions or quantitative comparisons, hindered by spatial-temporal
variability and environmental complexity. Bridging these gaps requires integrating
diverse analytical approaches with advanced remote sensing techniques to improve the

understanding of BSC dynamics.

2.2 Satellite data processing

In recent years, the research of spatial-temporal fusion models has gained extensive
attention from scholars at home and abroad. According to the different principles of
their algorithms, spatial-temporal fusion models can be mainly classified into three
categories: spatial-temporal fusion models based on weight function, spatial-temporal
fusion models based on hybrid image element decomposition and spatial-temporal

fusion models based on dictionary pair learning (Dong & Meng, 2018).

Among spatiotemporal fusion models based on weighting functions, the Spatial and
Temporal Adaptive Reflectance Fusion Model (STARFM) was introduced to improve
reflectance prediction. This model accounts for temporal and spatial distance as well as
spectral similarity between similar image elements and target image elements,
constructing a weighting function to determine their relative contributions. By
integrating the high temporal resolution of MODIS remote sensing images with the
high spatial resolution of Landsat remote sensing images, STARFM generates
reflectance data that simultaneously retain both MODIS's temporal resolution and
Landsat's spatial resolution (Gao et al., 2006). To enhance transient surface change
detection, the Spatial Temporal Adaptive Algorithm for Mapping Reflectance Change
(STAARCH) was introduced, allowing the extraction of relatively short-term surface
change information (Hilker et al., 2009). The Enhanced Spatial and Temporal Adaptive
Reflectance Fusion Model (ESTARFM) further improved the methodology by
incorporating the temporal trend of surface reflectance and introducing the concept of
correlation coefficients, thereby enhancing adaptability to complex surfaces (Zhu et al.,

2010). Additionally, the Spatial-Temporal Vegetation Index Image Fusion Model
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(STVIFM) was developed to integrate the rate of change of vegetation indices across
different growth periods, facilitating the construction of vegetation index time series

(Liao et al., 2017).

Among spatiotemporal fusion models based on hybrid image element decomposition,
several approaches have been developed to improve reflectance prediction and surface
change detection. The Spatial and Temporal Data Fusion Approach (STDFA) utilizes a
hybrid image element decomposition method to extract temporal change information
from time-series low-resolution imagery. An unsupervised classification method is then
applied to classify image elements and construct spectral unmixing equations, thereby
obtaining the average reflectance change for each category to enhance image prediction
(Wu et al., 2012). The Spatial and Temporal Reflectance Unmixing Model (STRUM)
was later introduced to directly decompose temporal changes in low-resolution image
elements to estimate endmember variations. This approach incorporates Bayesian
theory to constrain the estimation process, enhancing prediction accuracy (Gevaert et
al., 2015). The Flexible Spatiotemporal Data Fusion (FSDAF) model employs a thin-
plate spline function to interpolate low-resolution data at the prediction moment,
deriving the spatial component of surface information. The temporal component is then
extracted using a hybrid image decomposition method, and the two components are
combined to generate the final prediction. This method effectively captures surface type
changes over time (Zhu et al., 2015). To further enhance STDFA, the Improved Spatial
and Temporal Data Fusion Approach (ISTDFA) was developed. This model introduces
a weighted hybrid image decomposition equation to address reflectance change
volatility and applies a linear model to account for sensor discrepancies, thereby
improving prediction accuracy (Wu et al., 2016). More recently, the Improved Flexible
Spatiotemporal Data Fusion Model (IFSDAF) was proposed, integrating a constraint-
based least-squares method to combine temporal and spatial variations of surface
information, enabling the generation of high-resolution spatiotemporal data with

improved accuracy (Liu et al., 2019).
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Compared to the previously discussed methods, spatiotemporal fusion models based on
dictionary pair learning were developed relatively late. These models establish
correspondences between high-resolution and low-resolution images by leveraging
structural similarities, allowing them to capture key predictive features, including land
cover changes. The Sparse-Representation-Based Spatiotemporal Reflectance Fusion
Model (SPSTFM) was introduced to construct relationships between two pairs of high-
resolution and low-resolution images through dictionary pair learning, using the trained
dictionary to predict high-resolution imagery (Song et al., 2012). Building upon
SPSTFM, a modified spatiotemporal fusion model based on dictionary pair learning
was proposed, requiring only a single pair of high-resolution and low-resolution images
for dictionary training. This approach utilizes sparse coding technology to downscale
the predicted low-resolution data before synthesizing the final high-resolution image
(Song et al., 2013). In recent years, with advancements in deep learning algorithms,
researchers have integrated these techniques into spatiotemporal fusion. Due to the
computational complexity of such algorithms, their applicability remains largely
confined to small-scale study areas. The Spatiotemporal Fusion Using Deep
Convolutional Neural Network (STFDCNN) model applies convolutional neural
networks (CNNs) to extract spatial and temporal information from large-scale trained
remote sensing datasets, thereby improving prediction accuracy (Song et al., 2018).
Additionally, the Deep Convolutional Spatiotemporal Fusion Network (DCSTFN) fully
leverages CNNs to establish a complex yet direct nonlinear mapping between input and
output images. This method not only enhances fusion accuracy but also exhibits greater

robustness compared to traditional spatiotemporal fusion algorithms (Tan et al., 2018).

2.3 Climate change and Biological Soil Crust response

Biological soil crusts are widely distributed across global desert regions due to their
remarkable resilience to desiccation, extreme temperatures (up to 70 °C), high pH, and
salinity (Friedmann & Galun, 1974; Wessels & Van Vuuren, 1986; West, 1990; Zedda

etal., 2011; Yuetal., 2022). Their distribution at global and regional scales is positively
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correlated with precipitation (Belnap et al., 2007), condensate water availability (Jacobs
et al., 1999, 2000), and soil moisture content (Schieferstein & Loris, 1992). The
influence of temperature on BSC distribution varies depending on the species
composition of the crusts (Spier & Van Herk, 1997; Van Herk et al., 2002). At local and
landscape scales, as well as other finer spatial levels, BSC distribution is shaped by
environmental factors, such as soil type (Eldridge, 1996; Bowker et al., 2005), texture
(Duan et al., 2003), stability (Stovall et al., 2022), fertility (Bowker et al., 2006),
vegetation cover (Seitz et al., 2017), topography (Su et al., 2020), and solar radiation
exposure (Durham et al., 2018). The ecological functionality of BSCs is closely linked
to their developmental stage, which follows a hierarchical succession from
cyanobacteria-dominated crusts to lichen- and moss-dominated crusts. This
successional trajectory is primarily driven by precipitation rates and, in some cases, by
prevailing temperatures (Rozenstein & Adamowski, 2017; Weber & Hill, 2016;
Maestre et al., 2011; Maestre et al., 2012). However, the role of vascular plants in BSC
distribution remains inconclusive, with conflicting evidence on their impact (Maestre
& Cortina, 2002; Bowker, 2007). Additionally, disturbance intensity significantly
influences BSC dynamics, as moderate disturbance has minimal effects, whereas high-
intensity disturbances lead to structural degradation and functional decline, ultimately

reducing BSC coverage (Wang et al., 2004, 2007).

Understanding these factors is essential for predicting their ecological roles and
responses to environmental change. Precipitation has long been recognized as a key
determinant of BSC distribution, with increasing precipitation generally promoting
lichen and moss crust cover, while algal crusts initially expand before declining as
moisture availability increases (Eldridge & Tozer, 1997; Marsh et al., 2006; Biidel et
al., 2009; Zhao et al., 2014). However, precipitation also stimulates vascular plant
growth, and their canopy cover and litter accumulation can suppress BSC development
(Bowker et al., 2005). Beyond total precipitation, seasonal patterns and event frequency

play a crucial role, with winter precipitation and moderate rainfall events (5 mm) being
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most conducive to BSC formation (Read et al., 2014), whereas frequent light rains (1.2
mm) can hinder bryophyte crust survival (Chamizo et al., 2016; Jia et al., 2019). In
hyper-arid environments like the Namib Desert, where precipitation is extremely scarce,
lichen and bryophyte cover can still reach ~70%, primarily due to non-precipitation
water sources such as fog and dew condensation, which facilitate atmospheric humidity
retention (Eldridge et al., 2020; Kidron, 2019a; Li et al., 2021). Temperature further
influences BSC distribution and species richness by modifying vegetation cover and
soil pH (Eldridge and Delgado-Baquerizo, 2019), while elevated soil temperatures
increase evaporation, creating conditions that limit biological colonization (Garcia-
Pichel, 2013). The influence of temperature on the structural composition of biological
soil crust communities becomes increasingly pronounced when interacting with time
and precipitation (Ferrenberg et al., 2015). Additionally, legacy effects of past climatic
conditions, which shape contemporary ecological patterns, have been shown to
influence both the distribution and community composition of biological soil crusts
(Eldridge & Delgado-Baquerizo, 2019). Under projected future climate scenarios of
reduced precipitation, rising temperatures, and increased drought frequency, BSC cover
is expected to decline by approximately 25% - 40% by the end of the century, with
communities shifting towards early-stage cyanobacterial crusts (Rodriguez-Caballero
et al., 2018). In addition to precipitation and temperature, potential evapotranspiration
plays a crucial role in shaping BSC composition and distribution. In the hot deserts of
the southern United States, such as the Mojave and Chihuahuan Deserts, high
evapotranspiration favours the dominance and widespread distribution of algal crusts.
As evapotranspiration decreases further north, in regions such as the Colorado Plateau,
Great Basin Desert, and Columbia Plateau, lichen and moss crusts gradually replace
algal crusts, increasing in both distribution and coverage (Rosentreter & Belnap, 2003).
Beyond climatic factors, spatial heterogeneity and dispersal limitations of propagules,
such as fungal spores and cyanobacteria, play a crucial role in the establishment and
composition of biological soil crusts (Garcia-Pichel et al., 2013). Soil texture has

traditionally been considered a key determinant, with finer particles thought to facilitate
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BSC development (Williams et al.,, 2013; Belnap et al., 2014). However, this
assumption has been challenged, as some studies suggest that dust and fine-grained
soils are not essential for BSC formation (Kidron, 2019b). Additionally, soil parent
material influences surface weathering and water retention capacity, thereby shaping
BSC distribution patterns (Bowker & Belnap, 2008). A comprehensive review of
experimental studies further indicates that bryophyte- and lichen-dominated crusts are
more prevalent on gypsum and calcareous soils (Elbert et al., 2012), whereas

cyanobacterial crusts tend to dominate sandy substrates (Root & McCune, 2012).

In recent years, extensive research has examined the environmental factors influencing
the growth and development of biological soil crusts in northern China. Higher plants
have been found to have minimal impact on BSC degradation in interplant spaces,
whereas the thickness and coverage of plant litter play a crucial role in crust degradation
both beneath litter and in general (Zhang et al., 2008). Changes in the physical and
chemical properties of BSCs and the underlying topsoil are influenced by vegetation
type and crust development, with vegetation promoting crust formation and soil
improvement in sandy areas (Zhao et al., 2009). In the Mu Us Sandy Land, BSCs in
early developmental stages are highly influenced by vegetation presence. Light grazing
disturbance has no significant effect on BSC cover or thickness, whereas moderate
grazing disturbance leads to a substantial reduction in BSC cover. Additionally, BSCs
in semi-fixed sandy lands are more sensitive to grazing disturbances (Zhang, 2014). On
the Loess Plateau, BSC development varies significantly across different vegetation
types in terms of crust thickness, shear strength, and bulk density. Moreover, slope
aspect has been identified as a key factor affecting BSC development (Meng et al.,
2011). In the agricultural-pastoral transition zone of northern China, plant litter plays a
significant role in promoting BSC growth. In habitats with poor soil texture, vegetation
facilitates crust formation; however, as environmental conditions improve, this
relationship becomes significantly negative. Different plant communities exert varying

effects on BSC cover, with the highest coverage observed in the Xinjiang Salsola
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community, followed by the Artemisia capillaris + Xinjiang Salsola community, and
the lowest in the Artemisia capillaris community. Furthermore, disturbance negatively
impacts BSC cover, with the highest coverage found in core areas (complete enclosure),
followed by edge areas (seasonal enclosure), and the lowest in peripheral areas (control
area) (Lu et al., 2007). A survey conducted on the slopes of the Liudaogou small
watershed in the Loess Plateau identified solar radiation, erosion, soil texture, and
secondary soil properties as the four key factors influencing BSC development (Zhang
etal., 2015). Among environmental factors, slope aspect and disturbance have the most
significant direct impact on BSC cover, whereas slope position, vegetation height, plant
species diversity, and litter cover exert indirect effects through other mediating factors

(Wang, 2011).

Collectively, these studies demonstrate the diverse environmental drivers shaping BSC
distribution across arid and semi-arid landscapes. However, variations in BSC
distribution patterns across different study areas, each with distinct ecological and
geomorphological conditions, suggest that findings may not always be consistent (Guo
et al., 2012). Therefore, a comprehensive approach integrating ecological conditions,
distribution patterns, and developmental processes across multiple scales is essential
for a systematic and realistic assessment of BSC dynamics. Such an approach can
provide deeper insights into the current status and functional roles of biological crusts

in desert ecosystems.

2.4 Motivation

BSC play a significant role to assure the regular functioning of desert ecosystem, such
as involvement in the process of formation, stability and fertility of soil, prevention of
soil erosion caused by water or wind, augment of vascular plant colonization, and
stabilization of sand dunes (Belnap, 2003; Belnap et al., 2001; Eldridge & Greene,

1994). BSC have been recommended as the top management priority in desert regions
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(Belnap, 2003), especially under recent conditions in which desert regions are

experiencing global warming and increasing human activity.

Many typical problems in the interrelationship between human activities and the natural
environment in semi-arid and arid sandy areas (Zhou et al., 2022). The multiple
ecological functions of BSC are closely related to the ecosystem's ability to
simultaneously maintain a variety of functions and services such as nutrient cycling,
hydrological cycling, and material export, especially in arid ecosystems where vascular
plant growth is restricted, and the role played by BSC should not be underestimated.
Up to now, most of the studies on BSC are at the sample site scale, which could only
reflect the distribution of BSC in local areas, and there is a lack of understanding of the
distribution of BSC at a large scale. A regional-scale study on the distribution of BSC
would help us better understand the distribution of BSC in the desert, which is of great
significance in the assessment of the ecological function of BSC and the scientific
management of BSC resources. Therefore, taking into account the actual situation of
arid ecosystems in China, conducting regional-scale studies to understand the
distribution and growth of BSC in the Gurbantunggut Desert as well as the response of
BSC to climatic factors at the bioclimatic level is not only a useful supplement to the
existing research work, but also provides a reference to comprehensively assess the
relationship between BSC and the environmental system. In addition, in the context of
global change, understanding the relationship between BSC and climatic variables is
not only conducive to a comprehensive understanding of the global environment and
ecosystem impacts on biomes, but also conducive to scientifically combining BSC with
other biological resources for ecosystem conservation, so that they can give full play to

their ecological benefits and better serve human beings.

Hence, a modelling system for biological soil crusts and climate factors based on multi-
datasets is required to bridge the gap between the long-term and large spatial

distribution of BSC and its interaction with the climate variability. In this study, two
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models with improved BSC detection method and machine learning are constructed.
These models can be used to explain the effects of climatic factors on biological crusts,
the short-term or long-term forecasts of regional-scale distribution of BSC, the
assessment for the potential effects of climate change on the availability of BSC and

the sustainable development of ecosystem.
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3 Study area description and data processing

3.1 Introduction to the studied desert

3.1.1 Gurbantunggut Desert

The Gurbantunggut Desert, the study area of this research, is analyzed for the
distribution of biological soil crusts (BSCs) and serves as the basis for constructing
BSC-climate models. Geographically, it is located between 44°11'—46°50'N and 84°31'—
90°00'E, positioned at the center of the Junggar Basin in the Xinjiang Uygur
Autonomous Region, China. Covering an area of 48,800 km?, it is the second-largest
desert in China and the largest fixed and semi-fixed desert in the country (Fig. 3-1). The
southern boundary of the Gurbantunggut Desert transitions into alluvial and floodplain
fan margins formed by sediments from the Tianshan Mountains, shaping the natural

vertical zonation from the northern slopes of the Tianshan Mountains to the basin floor.
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Fig. 3-1 Study area (a) and its land type (b).

The Gurbantunggut Desert is characterized by a temperate continental desert climate,
shaped by the "rain shadow effect" of the Himalayas, which prevents humid air currents
from the Indian Ocean from reaching the region, resulting in an extensive arid
landscape. Annual precipitation ranges from 150 to 250 mm, with only 70-100 mm
occurring in the desert hinterland. Precipitation is slightly higher in spring and summer
compared to autumn and winter, while annual evaporation far exceeds precipitation,
ranging from 2,000 to 2,800 mm. The annual mean temperature is 6—10°C, with
extreme values exceeding 40°C in summer and dropping below —40°C in winter. The
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region exhibits a climatic pattern of low rainfall with high evapotranspiration (Li et al.,
2001; Zhang et al., 2005; Liu et al., 2023). During winter, snow depth generally ranges
between 10 and 30 cm, with snow accumulation beginning in November and persisting
until mid-March of the following year. Snowmelt contributes 30%—50% of the annual
precipitation. Surface runoff is nearly absent, and the water table is relatively deep,
exceeding 5 m at the edges and 16 m in the hinterland of the desert (Qian et al., 2007;
Jian et al., 2019). Fig. 3-2 illustrates the monthly variations in temperature and
precipitation in the Gurbantunggut Desert. In general, biological soil crusts (BSCs)
remain dormant or fail to grow when temperatures fall below 0°C (Piao et al., 2006).
Therefore, this study primarily focuses on analyzing the spatiotemporal distribution
patterns and dynamics of BSCs during the growing season (March to November),

encompassing spring, summer, and autumn.
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Fig. 3-2 The monthly average temperature and monthly precipitation changes in the
Gurbantunggut Desert.

The geomorphology of the Gurbantunggut Desert exhibits distinct east-west and north-
south variations, characterized by a low-elevation trend in the east-west direction and
higher elevations along the north-south axis (Fig. 3-3a). Sand ridges oriented east-west

are distributed in a disordered manner, exhibiting significant variability in
24



geomorphological types. The relative heights of these ridges range from 10 to 50 m,
with ridge lengths varying from several hundred meters to over a dozen kilometers. In
contrast, north-south-oriented landforms are predominantly composed of chain,
crescent, and beehive-shaped ridges. The geomorphological diversity is relatively low,
with fixed and semi-fixed dunes dominating the landscape (Qian et al., 2007; Wang et
al., 2015). Fixed and semi-fixed sand dunes account for approximately 87% of the total
desert area, with dunes generally aligned along a northwest-southeast orientation. The
majority of dunes range between 15 and 20 m in height, with vegetation cover on dune
surfaces varying between 15% and 55%. Among these, fixed sand dunes support
vegetation cover of 40%—55%, while semi-fixed dunes exhibit a lower vegetation cover
of 15%—25%. The summits of dunes in the Gurbantunggut Desert are predominantly
composed of windswept sandy soils, whereas saline soils and intermountain gravelly
soils are primarily found in interdune areas. The sandy substrate mainly consists of

medium to fine sands, contributing to the region’s overall sedimentary characteristics.

The Gurbantunggut Desert exhibits a vegetation cover of less than 30%, yet it harbors
a diverse assemblage of plant species. Its floristic composition includes elements from
Central Asia, the Mediterranean, and the Caspian-Kazakhstan-Mongolian region.
Recognized as one of the most species-rich temperate deserts globally, the
Gurbantunggut Desert is a typical region characterized by high plant species diversity
and genetic resources. The vegetation is predominantly composed of sandy and
drought-tolerant species with a diverse composition (Fig. 3-3b), including Stipa
glareosa, Agriophyllum squarrosum, Ephedra distachya, Calligonum mongolicum, and
Reaumuria soongorica. Additionally, sandy ephemeral species such as Rudbeckia
soongorica, Ervemurus inderiensis, and Ceratocarpus arenarius contribute to the
region’s seasonal plant dynamics. Among the most dominant and ecologically
significant species are Haloxylon persicum and Haloxylon ammodendron, which
characterize vast stretches of the desert landscape (Zhang & Chen, 2001; Song & Hu,

2011). Compared to other deserts, the Gurbantunggut Desert supports relatively high
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biological diversity and hosts well-preserved desert plant communities, making it
China’s only designated desert vegetation nature reserve. The prevalence of extensive,
densely packed semi-fixed sand dunes contributes to stable soil moisture conditions.
Precipitation is relatively evenly distributed throughout the year, with winter and spring
rainfall supporting the development of short-lived and short-lived-like plant species.
The surface soils of the Gurbantunggut Desert exhibit distinct coloration patterns,
ranging from black and dark brown to white and yellowish-green, reflecting variations
in moisture availability, biological composition, and soil development stages.
Additionally, the desert surface is rich in biological soil crusts, with lichen-dominated
BSCs being the most prevalent, alongside moss-dominated BSCs. These BSCs exhibit
peak growth during cool, humid periods in autumn and early spring, when dew, fog,
and temporary rainfall serve as critical moisture sources that sustain species involved
in BSC formation (Kidron et al., 2002). Overall, the Gurbantunggut Desert is a species-
rich temperate desert ecosystem, characterized by diverse drought-tolerant vegetation,
extensive semi-fixed sand dunes that help stabilize soil moisture, and biological soil

crusts that thrive during cool, humid periods.
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Fig. 3-3 Elevation (a) and vegetation communities (b) in the Gurbantunggut Desert.
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3.1.2 Atacama Desert

The Atacama Desert is another area where BSC-climate model applied in this study.
The Atacama Desert located along the western border of South America, which runs
nearly 1000 km along the Pacific coast of South America from 30°S to 20°S, with a
temperate desert climate. This region has an annual mean temperature of 14 - 16 °C
(McKay et al., 2003). It is known for its arid to hyper-arid climate (Dunai et al., 2005;
Clarke, 2006). Average annual rainfall is less than 200mm. Rainfall is concentrated in
summer (January to February), with almost no rainfall recorded during the rest of the
year (Eshel et al., 2021). The distinctive climate of this region is the result of a complex
interplay of factors. These include the presence of subtropical high-pressure zones, the
influence of the cold coastal Humboldt Current, the offshore winds (Clarke, 2006), the
Andean rain shadow effect and the latitudinal position of the region (Houston & Hartley,
2003). The constant temperature inversion due to the cool north- flowing Humboldt
Current and the presence of the strong Pacific anticyclone (Rundel et al.,1991; Miller,
1976). The position of the Pacific anticyclone is generally stable with a small shift of a
few degrees south in the summer (Trewartha, 1961). Geological and soil mineralogical
evidence suggests that extreme arid conditions have persisted in the Southern Atacama
for 10—15 million years (Ericksen, 1983; Houston & Hartley, 2003; Clarke, 2006)

making it one of the oldest deserts on Earth.

The diversity, occurrence, and distribution of microbial life in the Atacama Desert are
shaped by multiple environmental factors, including salinity, ultraviolet (UV) radiation,
water availability, and temperature. Among the microbial communities in this extreme
environment, lichenized fungi are particularly dominant, representing a significant
source of fungal diversity. Early research on fungi in the Atacama Desert provided
comparative insights into lichenized fungal species from the coastal Atacama region
and Baja California, Mexico (Rundel, 1978). Subsequent studies expanded the
understanding of microbial diversity in this desert ecosystem. For example, two new

species of lichenized fungi—Lecanographa azurea and Roccellina ochracea—were
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described (Follmann, 2008). More recently, a survey along two altitudinal transects in
Alto Patache identified 77 lichenized fungal species, further highlighting the region’s

microbial richness (Vargas Castillo et al., 2017).

The flora and vegetation distribution of the Atacama Desert is shaped by three distinct
topographic units. The first is the Coastal Range, a faulted escarpment that rises
abruptly along the coast. Atmospheric conditions under stable subtropical high-pressure
systems create a mild yet arid climate. The northern Chilean coastline is frequently
covered by stratocumulus cloud layers, which are blocked by the Coastal Range,
leading to the formation of fog-dependent plant communities known as Lomas. These
Lomas ecosystems are distributed across approximately 50 sites in the Atacama Desert,
primarily along the north-central Coastal Range at elevations of 600—-1100 m. The
second unit is the Central Valley, which represents the core of the Atacama Desert. In
El Nifo years, these localized oases can expand to cover up to 5,000 km?. Extreme
drought conditions dominate this region, particularly north of 26°S, where vegetation
is almost entirely absent, except for oases and riparian plant communities along river
channels. The third unit is the western slope of the Andes, which is stratified into four
distinct vegetation zones based on altitude. The unique geographical and climatic
conditions of the region have led to the development of a specialized biological
structure and the occurrence of highly localized Lomas plant communities. Therefore,
among the 550 documented desert plant species in the Atacama Desert, more than 60%
are endemic, underscoring the region’s exceptional biodiversity (Dillon & Hoffmann,

1997).

3.2 Satellite data

3.2.1 Datasets

This study uses multi-satellite datasets from 2000 to 2018: 1) Landsat 7 (Enhanced
Thematic Mapper, ETM) Level 2 surface reflectance data at 30 m resolution acquired

from United States Geological Survey (USGS). Landsat scenes the Earth Explorer
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(http://earthexplorer.usgs.gov/) archive are processed by the USGS with Standard
Terrain Correction. These images contain 4 visible and near-infrared (VNIR) bands and
2 short-wave infrared (SWIR) bands processed to orthorectified surface reflectance,
and one thermal infrared (TIR) band processed to orthorectified surface temperature.
The data provides systematic radiometric and geometric accuracy by incorporating
ground control points while employing a digital elevation map (DEM) for topographic
accuracy. In order to reduce the impact of clouds, only selected clear sky (cloud
coverage is less than 10%) data. 2) MODO09A1
(https://ladsweb.nascom.nasa.gov/search) provides MODIS (Moderate Resolution
Imaging Spectroradiometer) band 1-7 surface reflectance at 500 m resolution. It is a
level-3 composite of 500 m resolution MODO9GA. Each product pixel contains the best
possible L2G observation during an 8-day period as selected on the basis of high
observation coverage, low view angle, absence of clouds or cloud shadow, and aerosol
loading. 3) In the case study of extreme dust events, the FY-3 meteorological satellite
(http://satellite.nsmc.org.cn/Portal Site/Default.aspx), as the second generation of polar-
orbiting meteorological satellites in China, carries a Visible and Infra-Red Radiometer

(VIRR) that can provide dust monitoring daily data with a resolution of 1km.

3.2.2 Satellite data fusion

BSC monitoring require high resolution remote sensing imagery in both time and space
- a requirement that cannot currently be satisfied by any single Earth observing sensor
in isolation. The MODO09A1 provides daily global observations at 500m spatial
resolution. While imagery from coarse resolution sensors such as MODIS are typically
superior to finer resolution data in terms of their revisit frequency, they lack spatial
detail to capture surface features for many applications. The Landsat satellite series
provides medium spatial resolution (30m) imagery which is well suited to capturing
surface details, but a long revisit cycle (16-day) has limited its use in describing daily
surface changes. Therefore, this study used data fusion to utilize observations from

multiple sensors. Fig. 3-4 shows the flow chart of satellite data fusion. At first, selecting

29



the Landsat 7 images containing the study area, a total of four scenes (Path: 142-143,
Row: 28-29). Since the Scan Line Corrector (SLC) failed the Landsat 7 images
collected after May 31, 2003 have data gaps (Landsat 7 ETM+ SLC-off), but are still
useful and maintain the same radiometric and geometric corrections as data collected
prior to the SLC failure. The data gaps are filled based on Geospatial Data Abstraction
Library (GDAL) in this study. Then, the MODO09A1 data needs to be reprojected,
clipped and resampled to have the same characteristics as the Landsat data. At last, from
one Landsat image and two MODO09AI1 images, a fusion image with high spatial-

temporal resolution can be obtained.

Landsat 7 surface reflectance data MODO09A1 8days data
Filling gap (GDAL/OGR) Reprojection
Clipping (to save computing time) Clipping (same image

l size as Landsat)
For comparison date l
l For comparison ‘
Spatial and Temporal Adaptive date (= Resample

Reflectance Fusion Model (STARFM) — ‘
(Gao,2006 & Gao, 2015) ¢——= gotr prediction ’
ate

Synthetic-8days/Monthly-
Landsat like data (single scene)

Fig. 3-4 Flow chart of satellite data fusion.

3.2.3 BSC detection method

Chen et al. (2005) developed Biological Soil Crusts Index (BSCI) to detect BSC for
each pixel when the BSC coverage rate is 33% or more and determined lower and upper
detection thresholds of BSCI of Landsat 7 sensor experimentally, which is 3.69-6.59 in

Gurbantunggut desert. The Biological Soil Crust Index (BSCI) is calculated using the
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reflectance values of different spectral bands, incorporating an empirical parameter to

enhance its sensitivity to biocrust detection. The formula is defined as:

1-LXx |Rred - Rgreen|

(-1
RERNIR

BSCI =

where:
Ryeq and Rgreen represent the reflectance values in the red and green spectral

bands, respectively.

RIkNIr 1s the mean reflectance of the green and near-infrared (NIR) bands.

L is an empirical parameter, which adjusts the sensitivity of the index based on
the spectral characteristics of biological soil crusts. In this study, the empirical

parameter L is set to 2.

This index is designed to distinguish biological soil crusts from bare soil by leveraging
the differences in spectral reflectance among vegetation and non-vegetated surfaces,
particularly focusing on the reflectance contrast between the red and green bands while
normalizing using the green and NIR bands. The Landsat BSCI shows higher values
for the presence BSC, relative to the background of bare sand and dry plant material.

The higher the BSC percent coverage, the higher the BSCI value would be expected.

Biological soil crusts (BSCs) exhibit peak growth during wet and cool periods, relying
on dew, fog, or temporary rainfall as primary water sources (Zhang et al., 2009). At the
onset of these favorable conditions, BSC signals are most prominent, as annual plants
have not yet germinated, and perennials remain dry. Under these circumstances, BSCI
values for BSCs—particularly moss-dominated BSCs—can be similar to those of dry
plants, whereas the Normalized Difference Vegetation Index (NDVI) values show
greater differentiation. Furthermore, land cover data (Fig. 3-1b) indicate that nearly 50%
of the Gurbantunggut Desert consists of grassland, where vascular plants such as

mosses exhibit higher NDVI values, potentially leading to misclassification with BSCs.
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Neglecting these spectral characteristics may result in erroneous interpretations of
vegetation phenology. To address this issue, NDVI is introduced as an additional
indicator, alongside land cover classification and the Kappa index (Cohen, 1960), to
refine Chen’s method and enhance the discrimination between BSCs and vascular

plants. The formula for the NDVI is expressed as:

R —R
NDVI = (N”?—red) (3-2)

Ryir + Rrea)

where:
Ryr represents the reflectance in the near-infrared (NIR) band.

R,.q represents the reflectance in the red band.

The Kappa index (K), also known as Cohen’s Kappa coefficient, is a statistical measure
widely used in remote sensing, land cover classification, and ecological studies to
assess the reliability and accuracy of classification results. It is computed using the

following formula:

(3-3)

where:
po, (Observed agreement) represents the proportion of actual agreement
between the classification and the reference data.
p. (Chance agreement) represents the expected agreement due to random
chance.

For further details, see Appendix 7.1.

The Kappa index ranges from -1 to 1:

-

K =1 indicates perfect agreement between classification and reference data.
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K > 0 indicates better-than-random agreement, with higher values indicating stronger
reliability.

K = 0 indicates that the agreement is no better than random chance.

K < 0 indicates worse-than-random classification performance, suggesting systematic

disagreement.

K = —1 indicates the classification is entirely incorrect compared to the reference data.

Higher NDVI values indicate dense, healthy vegetation, while lower values correspond
to sparse or non-vegetated surfaces, such as bare soil or water. Similar to BSCI, NDVI
also requires an appropriately defined threshold to ensure accurate application. To
determine the optimal NDVI thresholds, values were selected based on those yielding
the highest Kappa index, using validation points for accuracy assessment. NDVI values
were evaluated through a confusion matrix, which served as a prerequisite for Kappa
index calculation. The NDVI range of 0.15-0.22 was identified as achieving the highest
Kappa index (0.93), indicating a strong agreement between classification results and

ground truth data.

3.2.4 Gridding satellite data

Applying the aforementioned improved detection method to the satellite fusion imagery
enables the long-term, large-scale assessment of BSC coverage across the study area.
To facilitate comparative analysis and modelling, the satellite-derived BSC data are
aggregated into the same grid system as the climate data (Fig. 3-5). The BSC coverage
fraction for each grid cell is computed as the ratio of BSC-classified pixels to the total
number of pixels within the grid cell. After applying a masking procedure, the study
area contains 55 valid grid points, which are sequentially numbered from left to right
and top to bottom. These gridded datasets serve as the basis for subsequent BSC-climate
modelling, ensuring data format consistency between satellite-derived BSC coverage

and climatic variables.
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Fig. 3-5 Data grid schematic. The grey grid divides the study area into 55 grid
points. The red numbers are examples of grid point numbers, showing that the
grid point numbering sequence is from left to right and top to bottom.

3.3 Climate data

The formation of biological soil crusts is driven by a complex interplay of interrelated
causes and effects, broadly categorized into natural and anthropogenic factors (Belnap,
2006; Belnap et al., 2016). Numerous studies have demonstrated that natural drivers
play a dominant role, particularly at large and medium temporal scales (Belnap & Lange,
2003). In the context of global climate change, climatic factors have become a central
focus of research, as BSC development is highly dependent on specific climatic
conditions. While climate serves as a background factor, the formation and persistence
of BSCs occur only under certain combinations of climatic variables. To investigate
BSC-climate relationships, this study selects five key long-term climatic variables that
are closely associated with BSC dynamics: specific humidity (SH) (kg/kg), 10-meter
wind speed (WS) (m/s), 2-meter temperature (TMP) (K), surface solar radiation
downward under clear-sky conditions (SR) (W/m?), and total precipitation (PRE)
(mm/day). Additionally, time-lag effects of these climatic factors are considered. To
ensure comparability and consistency, the spatial resolution and units of all climate

datasets are standardized. Temporally, climate data begin in 1999, one year earlier than
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BSC data (2000), to account for lagged responses of BSC formation to climatic
variations. Furthermore, to enhance the analysis of the water balance in the
Gurbantunggut Desert, evapotranspiration data are incorporated into the Section 3.5

analysis, although they are not included in the BSC-climate modelling framework.

3.3.1 ERAS data

ERAS (https://cds.climate.copernicus.eu/) reanalysis data is the fifth generation
European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis for the
global climate and weather for the past 4 to 7 decades. Radiative inversion using the
RRTM rapid radiative transfer model. Data is available from 1940 onwards. In this
study, the ERAS data covers a total of 20 years from 1999-2018 with a spatial resolution
0f 0.25° x 0.25°. The specific humidity is obtained from ERAS hourly data on pressure
levels from 1940 to present, selected at 1000hPa near the ground surface; other data is
from ERAS hourly data on single levels from 1940 to present, where the 10-meter wind
speed is calculated from the components in the u (eastward) and v (northward)
directions. In terms of temporal resolution, all climate data are processed as monthly

data for constructing the BSC-climate model.

3.3.2 CMIP6 data

Coupled Model Intercomparison Project Phase 6 (CMIP6) is a project coordinated by
the Working Group on Coupled Modelling (WGCM) as part of the World Climate
Research Programme (WCRP). In order to apply BSC-climate model to paleoclimate,
Monthly average data from three periods under three scenarios from CMIP6 are

selected (Table 3-1). The global attribute of AWI and MPI is “rlilp1f1” and of MIROC

) 31
T 1

is “rlilp1f2”, where is realisation, is initialisation method, “p” is physics and
“f” is forcing. "1" represents Initial conditions taken from a prior simulation. “2” As
"1", but with an additional random perturbation applied to the initial state of the

atmosphere.

35



Table 3-1 Scenario of CMIP6 data

Scenario AWI-ESM-1-1-LR  MPI-ESM1-2-LR MIROC-ES2L
Spatial resolution 250km 250km 500km
Time scale Historical (1999-2014), LGM, Mid-Holocene

Climate models exhibit systematic error (biases) due to the limited spatial resolution,
simplified physics and thermodynamic processes, numerical schemes or incomplete
knowledge of climate system processes. Hence, it is important to bias-correct the raw
climate model outputs in order to produce climate projections that are better fit for
modelling. The CMIP6 data are bias-corrected using the ERAS data as reference data.

The method of bias correction will be described in detail in Section 4.2.2.

3.4 Distribution of BSC in Gurbantunggut Desert

3.4.1 Variability of BSC coverage

Fig. 3-6 illustrates the temporal distribution, annual cycle, and anomaly of monthly
BSC coverage in the Gurbantunggut Desert from 2000 to 2018. Throughout the year,
BSC coverage exhibits a bimodal pattern, with peaks occurring in March and October,
indicating that BSCs experience their highest growth during wet, cool periods (early
spring and autumn). However, some anomalies deviate from this overall trend. In 2012
and 2013, a weaker summer peak was observed, whereas in 2002 and 2016, the early
spring peak was less pronounced, possibly due to snow cover at high latitudes in early
March of those years (Hui et al., 2019; Zhou et al., 2009). BSCI has limitations in
distinguishing biological soil crust from snow cover, which may have contributed to
this pattern. Over the 19-year period, the overall trend of BSC coverage is increasing.
Notably, in 2000, 2001, 2010, and 2015, BSC coverage was below the annual average,
whereas in 2013, 2017, and 2018, it was above the annual average. In other years,
fluctuations remained relatively minor. During winter (December, January, and

February), BSCs enter dormancy, making their detection via remote sensing nearly
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impossible. Consequently, this study excludes winter BSC analysis from further

discussion.
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Fig. 3-6 Temporal distribution of the BSC fraction from 2000 to 2018: (a) The
monthly temporal distribution (blue line) and the annual cycle (red line); (b) The
anomaly.

Fig. 3-7 illustrates the spatial distribution of BSC fraction and its standard deviation in
the Gurbantunggut Desert from 2000 to 2018. Overall, BSC coverage is relatively high
in the northwestern and southern regions, with the southern area exhibiting particularly
dense BSC coverage (70—-80%). This pattern corresponds to the grassland distribution
observed in the land cover classification (Fig. 3-1b), as BSCs often develop beneath
vascular plants (Eldridge & Greene, 1994). Despite this broad similarity, notable
differences exist between the two high-BSC regions. In the northwest, the standard
deviation of BSC coverage is large, indicating greater temporal variability. In contrast,
BSCs in the south exhibit more stability, with a lower standard deviation. This stability
may be attributed to more favorable moisture and temperature conditions in the
interdunal lowlands of the southern desert, which create a more suitable

microenvironment for BSC persistence. Additionally, the southern region hosts a
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greater diversity of plant species, potentially contributing to the enhanced stability of

BSC communities (Zhang et al., 2002).
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Fig. 3-7 Monthly spatial distribution (a) and standard deviation (b) of BSC fraction
from 2000 to 2018 in the Gurbantunggut.

Fig. 3-8 shows the probability of BSC occurrence in the Gurbantunggut Desert during

2000-2018. It is calculated for each pixel using the following formula:
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Noccurrence,month

Probability,ontn = (3-4)

N total
where:

Noccurrencemont  represents the number of years in which BSC was detected in a given
month.
Niotar 18 19 in this study, denotes the total number of years considered in the analysis

(2000-2018).

The colors in the figure represent the probability of BSC occurrence, with yellow
indicating a probability of 1, signifying areas where BSCs are consistently present
throughout the study period. This suggests that in these regions, BSCs enter a dormant
state during the undetectable winter months rather than undergoing senescence or dying
off. Spatially, BSC occurrence is highest in the southern and central regions, followed
by the northern region, with the lowest occurrence in the western region. The higher
probability of BSC occurrence near the oasis-desert transition zone is likely influenced
by the favorable environmental conditions at the oasis edge, where sufficient moisture
and moderate climatic conditions create an optimal microenvironment for BSC
development. Temporally, BSC occurrence during winter (December—January) is low
(0-20%), primarily due to sub-zero winter temperatures in the Gurbantunggut Desert.
Consequently, the subsequent analyses focus on the distribution of BSCs during the
growing season (March—November). Notably, the areas with a probability of 1 are
larger in March and October than in other months. Additionally, the higher BSC
occurrence in the northern part of the desert in March may be attributed to water

availability from the nearby Ulungur River in early spring.
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Fig. 3-8 Probability of BSC occurrence in the Gurbantunggut Desert over the period
2000-2018.

Fig. 3-9 shows the changes in BSC coverage fraction during the growing season from
2000 to 2018 relative to 2000. BSC coverage fraction in Fig. 3-9 is defined as the
proportion of pixels with detected BSC presence relative to the total number of pixels
within the study area. Based on the BSC coverage fraction data from 2000, changes in
BSC presence or absence were analyzed at the pixel level. For each pixel, if the BSC
detection value transitioned from 0 to 1 (from absence to presence) in a given year
relative to its 2000 status, indicating newly detected BSC coverage, it was classified as
an increase. Conversely, if the detection value changed from 1 to 0 (from presence to
absence), indicating BSC loss, it was categorized as a decrease. Pixels that remained
unchanged relative to their 2000 status—either consistently 0 (absence) or 1
(presence)—were classified as stable (no change). Finally, the annual proportions of
increased, decreased, and stable (no change) pixels were computed to quantify long-
term BSC dynamics over the study period. The blue section of the bar graph represents
the area where BSC coverage remained unchanged since 2000, indicating relatively
stable BSC presence. This suggests that these areas have maintained long-term BSC

coverage in the corresponding months. The green section represents areas where BSCs
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were newly detected in regions that lacked BSC coverage in 2000, while the yellow
section denotes areas where BSC coverage has declined relative to 2000. For instance,
in March 2018, there was a net gain of approximately 20% in BSC cover in certain
areas, while a net loss of about 4% occurred in other regions of the Gurbantunggut
Desert, resulting in an overall net increase of approximately 16% in BSC coverage over
this period. The solid black line represents the average annual change in BSC coverage,
enabling comparisons of BSC coverage variations for a given month across consecutive
years. For example, the annual average BSC coverage in May 2018 was approximately
48%, while in May 2017, it was around 43%. Based on this, the decrease in BSC
coverage in May 2018 relative to May 2017 can be determined to be approximately 5%.
The dashed line illustrates the long-term trend in BSC coverage, indicating an overall

increase from March to November between 2000 and 2018.
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Fig. 3-9 Changes in BSC coverage fraction during the growing season from 2000 to
2018 (baseline: 2000). The yellow, blue, and green regions represent the proportion
of pixels where BSC coverage fraction has increased, remained unchanged, and
decreased, respectively. The black solid line indicates the annual average change in
BSC coverage fraction, while the dashed line represents the overall trend over time.
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Fig. 3-10 highlights the relatively stable BSC areas extracted from Fig. 3-9 (blue
regions) in the Gurbantunggut Desert. The dark green regions represent pixels where
relatively stable BSCs were detected, while the gray areas indicate either the absence
of BSCs or high variability in BSC coverage. The proportion of relatively stable BSC
coverage from March to November is 23.7%, 16.9%, 12.5%, 16.2%, 20.7%, 21.4%,
26.7%, 31.9%, and 11.3%, respectively. The stable BSC area is most extensive in March
and October, predominantly located in the southern and northwestern regions of the
desert, aligning with the land cover classification (Fig. 3-1b). The presence of
grasslands in these regions likely facilitates BSC formation. Additionally, the southern
desert is characterized by widespread sand dunes, where fine sand dominates the
interdunal lowlands. In these areas, the silt and clay content significantly increases,
affecting soil porosity, bulk density, water retention, permeability, and cohesion. The
finer the soil particles and poorer the sediment sorting, the lower the permeability,
which in turn enhances conditions for BSC establishment. The presence of fine-grained
materials reduces soil porosity, forming a barrier that limits water infiltration, thereby
promoting moisture retention—a crucial factor for BSC growth and development (Chen
et al., 2005). Moreover, the low-lying interdunal terrain provides an ideal
microenvironment for BSC colonization, as temporary water accumulation is common
during spring snowmelt and summer precipitation, fostering biological reproduction
and vegetative growth (Anderson, 1983). In the southeastern part of the desert, where
grasslands and barren land coexist, some relatively stable BSCs are also observed,

suggesting that land type heterogeneity plays a role in BSC distribution and persistence.
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Fig .3-10 Relatively stable BSC area from 2000 to 2018 (baseline: 2000).

Fig. 3-11 presents slope of BSC fraction variability from 2000 to 2018, derived using
Sen's method (see Appendix 7.2) and the Mann-Kendall significance test (see Appendix
7.3). In the context of BSC fraction variability, Sen’s slope represents the rate of change
in BSC coverage over time (2000-2018). A positive slope indicates an increase in BSC
coverage, while a negative slope signifies a decline. The steeper the slope, the greater
the rate of change. Combined with the Mann-Kendall significance test, it helps
determine whether these trends are statistically significant, distinguishing between
natural fluctuations and long-term directional changes. In Fig. 3-11, a comparative
analysis with Fig. 3-10 shows that Sen's slope values indicate largely stable BSCs in
the southern part of the desert, characterized by minimal slope values and little change
in coverage over time. In contrast, while relatively stable BSCs are also present in the
northwest, they exhibit notably higher variability, as reflected by greater slope values,

indicating more pronounced fluctuations in BSC coverage.
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Fig. 3-11 Sen’s slope of BSC fraction variability from 2000 to 2018.

3.4.2 Case study: Changes in BSC cover after an extreme dust event

Although BSC has a certain degree of mechanical resistance and sand fixation, the dust
event will still affect the distribution of BSC. The FY-3 satellite detected a strong dust
event on April 27, 2015 (Fig. 3-12). From the figure, there is a high concentration of
dust in the eastern of the study area. Combined with related news reports
(http://www.cma.gov.cn/), it can be confirmed that the source area of dust in this event

is Gurbantungut Desert.
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Fig. 3-12 Dust event on April 27, 2015.

Fig. 3-13 presents a comparison of BSC spatial distribution before (a, 2015-04-23) and
after (b, 2015-05-01) the dust event on April 27, 2015. In Fig. 3-13a, a distinct stitching
line is visible in the central part of the desert, resulting from the edge alignment of the
satellite image during the stitching process. The figure illustrates the changes in BSC
coverage before and after the dust event, showing a significant reduction in BSC
coverage in the central part of the desert, whereas BSCs in the southeastern region
remain largely unchanged. Considering Fig. 3-10, the BSCs significantly affected by
the dust event in the central Gurbantunggut Desert tend to be less stable. In contrast,
the BSCs in the southern desert, which exhibited little change, align with previously
identified stable BSC areas, suggesting that dust events have a greater impact on
unstable BSCs while having minimal effects on more stable ones. Another potential
explanation for the observed differences between the central and southern regions is
variation in BSC composition. While previous studies suggest that the southern desert
is dominated by lichen-dominated BSCs (Chen et al., 2005), limited research has been
conducted on BSC composition in other regions of the desert. Further studies are
needed to better understand the distribution and resilience of different BSC types across

the Gurbantunggut Desert.
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Fig. 3-13 The Changes of BSC spatial distribution before (a) and after (b) the dust
event. Green indicates BSC coverage.

3.5 Spatiotemporal variability of climatological processes

In the previous section, the distribution and variability of BSC in the Gurbantunggut
Desert were described. Numerous studies have demonstrated that BSCs are highly
sensitive to changes in abiotic factors, such as temperature and humidity (Maestre et al.,
2013; Shen et al., 2015; Wang et al., 2016). This section analyses changes in various
climatic factors in the Gurbantunggut Desert from 2000 to 2018. The analysis is
conducted using the same temporal and spatial resolution as the BSC grid data to
investigate the spatiotemporal variability of climatic processes in the desert and their

correlations.

3.5.1 Hydrologic features

(1) Precipitation

It is important to examine the spatial and temporal patterns of precipitation over the
desert, as BSCs are highly sensitive to this critical environmental input. Fig. 3-14
illustrates the seasonal mean precipitation from 2000 to 2018 within the Gurbantunggut
Desert. In this figure, precipitation is measured in millimeters per day to account for

the varying number of days across the four seasons, ensuring consistency in comparison.
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Fig. 3-14 Seasonal spatial distribution of precipitation in the Gurbantunggut Desert
from 2000 to 2018.

As shown in Fig. 3-14, precipitation within the desert generally decreases from
southeast to northwest. Across all four seasons, regions with higher precipitation are
concentrated in the southern and southeastern parts of the desert, particularly in the
northern region of the Hutubi River and the desert-oasis ecotone. The annual
precipitation pattern is characterized by the highest rainfall occurring in summer,
though this difference is not statistically significant compared to spring. In contrast, the

lowest precipitation is recorded in winter.

Similarly, the spatially averaged monthly mean precipitation from 1999 to 2018 is
presented in Fig. 3-15, along with its relative contributions to annual precipitation. The
20-year average annual precipitation is 132.97 mm. Within the desert, precipitation
during the growing season (March to November, generally covering spring, summer,

and autumn) accounts for approximately 85% of the total annual precipitation.
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Fig. 3-15 Mean monthly precipitation amount (Pmontiy) in the Gurbantunggut Desert,
and the corresponding percentage to annual precipitation (Pmonthly/Pannuat).-

(2) Evapotranspiration

Evapotranspiration (ET) is defined as the total flux of water transferred from the land
and ocean surface to the atmosphere through evaporation and plant transpiration. In the
following analysis, land evapotranspiration is calculated as the sum of contributions
from three evaporation components: direct evaporation from bare soil, evaporation of

precipitation intercepted by the vegetation canopy, and vegetation transpiration.

The seasonal mean evapotranspiration from 2000 to 2018 and its spatial distribution
within the desert are presented in Fig. 3-16. Similar to precipitation, evapotranspiration
is highest in summer and lowest in winter in the Gurbantunggut Desert. Spatially,
evapotranspiration increases southeastward across the desert. The lowest
evapotranspiration occurs in the northwestern region, whereas the highest values are
observed in the interdune lowlands at the southern desert margin. Although the potential
annual evaporation in the Gurbantunggut Desert approaches 2000 mm, the actual

annual evapotranspiration is limited to 100-200 mm due to soil moisture constraints
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and low precipitation. Fig. 3-16 presents evapotranspiration in millimetres per day.
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Fig. 3-16 Seasonal spatial distribution of evapotranspiration in the Gurbantunggut
Desert from 2000 to 2018.

The mean monthly evapotranspiration from 2000 to 2018 is spatially averaged over the
desert and presented in Fig. 3-17, which decomposes evapotranspiration into
contributions from bare soil evaporation, plant transpiration, and canopy interception
evaporation. Based on the bar heights corresponding to these components,
evapotranspiration from canopy interception accounts for the largest fraction,
significantly exceeding that from bare soil, while vegetation transpiration remains
negligible. This finding suggests that monthly variations in canopy-intercepted
evapotranspiration play a crucial role in arid ecosystems, which are typically
characterized by sparse vegetation cover. Zhang et al. (2018) demonstrated that the
monthly variability of canopy evapotranspiration is closely linked to the vegetation

growth cycle in the Gurbantunggut Desert.

The red line in Fig. 3-17 indicates that evapotranspiration peaks in summer (June—

August), contributing 52% of the total annual evapotranspiration. Evapotranspiration
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in spring exceeds that in autumn, accounting for 36% and 11% of annual
evapotranspiration, respectively. The significant decline in evapotranspiration during
autumn is attributed to reduced precipitation, which limits soil moisture infiltration and
causes water to remain near the surface. Although temperatures remain high and
potential evapotranspiration is elevated, soil moisture is not adequately replenished,

leading to water stress and subsequently lower evapotranspiration rates.
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Fig. 3-17 Mean monthly evapotranspiration amount (Emonthty) in the Gurbantunggut
Desert with the amounts for various components, and the percentage of monthly to
annual evapotranspiration (Emonthly/Eannual)-

(3) Relationship between precipitation and evapotranspiration

Precipitation and evapotranspiration are the primary components of water input and

loss in natural desert ecosystems and play a crucial role in regulating their water balance.
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Fig. 3-18 Seasonal distribution of evapotranspiration as a percentage of precipitation
in the Gurbantunggut Desert from 2000 to 2018.

As shown in Fig. 3-18, the seasonal distribution of evapotranspiration as a percentage
of precipitation in the Gurbantunggut Desert is approximately balanced in spring. In
summer, evapotranspiration is nearly twice the amount of precipitation, whereas in
autumn, evapotranspiration is lower than precipitation and is proportionally higher in
the south than in the north. Winter, as a non-growing season, is characterized by

minimal evapotranspiration and precipitation, both approaching zero.

Fig. 3-19 illustrates that in January, February, November, and December, despite some
precipitation, evapotranspiration remains negligible due to the dormancy or wilting of
biocrusts and vegetation, as well as low temperatures. During the growing season,
evapotranspiration falls below precipitation in April and October. Precipitation during
these months not only fully meets evapotranspiration demand but also partially
replenishes soil moisture storage, providing a water source for subsequent BSC growth
phases. Since soil retains moisture, evapotranspiration increases significantly in March.
Additionally, evapotranspiration reaches peak values in June and July, coinciding with

higher rainfall. However, throughout the growing season, Emonthty/ PREmontmiy typically
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remains below 100%, indicating that precipitation alone cannot fully meet
evapotranspiration demands. All precipitation is consumed through evapotranspiration,

and soil water storage is required to compensate for the evapotranspiration deficit.
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Fig. 3-19 Mean monthly evapotranspiration (Emontiy) and Precipitation (PREmonthly) in
the Gurbantunggut Desert, and evapotranspiration as a percentage of precipitation
(Emonthly/ PREmonthly) .

3.5.2 Humidity

Specific humidity, also referred to as moisture content, is defined as the ratio of the
mass of water vapor to the total mass of an air parcel (Byers, 1965). The Gurbantunggut
Desert is an extremely arid region characterized by low precipitation, sparse vegetation
cover, and low specific humidity. Fig. 3-20 illustrates a pronounced seasonal trend in
specific humidity, with the highest values occurring in summer and the lowest in winter.
As autumn and spring serve as transitional seasons, the average specific humidity
during these periods falls between winter and summer, with autumn exhibiting slightly
higher values than spring. Spatially, specific humidity increases from the northeast to
the southwest, reaching its maximum in the desert-oasis transition zone along the
southern desert margin. Overall, the annual specific humidity in the Gurbantunggut

Desert remains low, ranging from 1 to 7 x 1072 kg/kg.
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Fig. 3-20 Seasonal spatial distribution of specific humidity in the Gurbantunggut
Desert from 2000 to 2018.

The correlation between monthly hydrological variables—precipitation,
evapotranspiration, and specific humidity—in the Gurbantunggut Desert from 2000 to
2018 is examined. Fig. 3-21(a) illustrates that there is no significant linear correlation
between the monthly average precipitation and specific humidity. The coefficient of
determination (R?) is 0.22, with numerous data points falling outside the 95%
confidence interval, indicating that a linear model is unsuitable for describing the
relationship between precipitation and specific humidity. In other words, these two
variables exhibit minimal collinearity. Similarly, Fig. 3-21(b) shows that although the
linear fit between evapotranspiration and specific humidity yields an R? value of 0.65,
many data points still lie outside the confidence interval, suggesting that the relationship

between the two remains weak and lacks strong collinearity.
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Fig. 3-21 The correlation between monthly precipitation (a) and evapotranspiration
(b) and specific humidity from 2000 to 2018 in the Gurbantunggut Desert.

3.5.3 Temperature

The seasonal spatial distribution of temperature in the Gurbantunggut Desert from 2000
to 2018 is presented in Fig. 3-22. The seasonal temperature pattern follows the order:
summer > spring > autumn > winter. The annual temperature variation is substantial,
with a difference exceeding 40°C between the highest and lowest recorded temperatures.
Spatially, temperatures in spring, summer, and autumn exhibit a strong correlation with
elevation, as depicted in Fig. 3-3. From north to south and east to west, temperature
increases as elevation decreases. However, in winter, the spatial pattern differs, with

higher temperatures in the east and lower temperatures in the west.
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Fig. 3-22 Seasonal spatial distribution of temperature in the Gurbantunggut Desert
from 2000 to 2018.

As shown in Fig. 3-23(a), the correlation between monthly specific humidity and
temperature in the Gurbantunggut Desert follows a non-linear relationship, with a
coefficient of determination (R?) of 0.89 and a significance level of p < 0.05. In Fig. 3-
23(b), the linear correlation between wind speed and temperature is less pronounced,

with an R? value of 0.63 and a greater degree of scatter.

-3
x10 5 — Linear fit, R?=0.63, p<0.05
S | — Fitted curve, R?=0.89, p<0.05 --- 95% prediction band
v --- 95% prediction band 4.5
58 e
= E
ey °
5 835
o
= & 3
£4 °
o =25
g2 =,
Q. I
@ b
B 1.5 - ( )
250 260 270 280 290 300 250 260 270 280 290 300
Temperature (K) Temperature (K)

Fig. 3-23 The correlation between monthly specific humidity (a) and wind speed (b)
and temperature from 2000 to 2018 in the Gurbantunggut Desert.
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3.5.4 Wind speed

The Gurbantunggut Desert is influenced by westerly winds year-round. In winter, the
Siberian-Mongolian high-pressure system dominates, resulting in northwesterly and
westerly winds. In summer, subtropical high-pressure systems prevail, generating
predominantly westerly winds. As shown in Fig. 3-24, average wind speed is higher in
summer and autumn, ranging from 3.5 to 4.5 m/s, and lower in winter, particularly in
the southwestern part of the desert, where it averages around 2 m/s. Overall, wind
speeds in the interior of the desert are higher than those in the surrounding areas.

Additionally, high wind speeds are observed along the northeastern and southeastern

desert margins.
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Fig. 3-24 Seasonal spatial distribution of 10-meter wind speed in the Gurbantunggut
Desert from 2000 to 2018.

The wind speed distribution in the Gurbantunggut Desert, as depicted in Fig. 3-25,
indicates that 97% of recorded wind speeds are below 8 m/s. Wind tunnel experiments
(Wang et al., 2004) have demonstrated that the threshold friction velocity for bare sand
in this desert is 8.42 m/s. When wind speed exceeds 18 m/s, surface wind erosion occurs

under most disturbance conditions, except in areas with undisturbed algae, algal-lichen
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crusts, or lichen crusts with less than 20% damage. This suggests that, in most cases,

wind speed is not the primary factor influencing biological crust dynamics in the

Gurbantunggut Desert.
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Fig. 3-25 The frequency histogram of wind speed in the Gurbantunggut Desert from

2000 to 2018.

This section analysed the temporal and spatial distribution of climate variables in the

Gurbantunggut Desert and their interrelationships. The climatic processes in the

Atacama Desert are discussed in the model application chapter (see Section 5.2.1 for

details).
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4 Construction of the BSC-Climate model

4.1 Lag-correlation between BSC and climate variables

4.1.1 Temporal effects of each climatic factor

Dust events in Asia predominantly occur in the Southern Xinjiang Basin, Mongolian
Plateau, and Hexi Corridor, while strong sand and dust events are relatively rare in the
Gurbantunggut Desert. Therefore, the impact of local environmental factors on BSC is
primarily considered in this study. To evaluate the temporal effects of climatic factors

on BSC, we applied linear regression to each climatic variable separately (Eq. 4-1):

BSCt,grid = ﬂt,grid X Climate,_; + Ut grid (4-1)

where a and f are regression coefficients, t represents time, i ranges from0to3 (i =0
represents no time lag, while i = 1 to 3 represents a one- to three-month lag), and grid
ranges from 1 to 55 (corresponding to the climate data grid points introduced in Section
3.2.4). Climate represents the climatic variables, including specific humidity (SH), 10-
meter wind speed (WS), 2-meter temperature (TMP), surface downward solar radiation
under clear-sky conditions (SR), and total precipitation (PRE). By testing different
values of i, we comprehensively assess the temporal effects of climate variables. The
correlation coefficient is used to determine the optimal lag time (i) for the best model

fit.
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Fig. 4-1 Lag-correlation between BSC and climate variables during 2000-2018 with
the time window of 8 days.

The lag correlation between BSC and climatic variables from 2000 to 2018, using an
8-day time window, is presented in Fig. 4-1. By calculating the sliding correlation
coefficient, we identified the climatic variables most strongly correlated with BSC and
their corresponding time lags. In Fig. 4-1, the horizontal axis represents the grid point
number, the left vertical axis denotes the time lag (days), and the right vertical axis
indicates the correlation coefficient. The lengths of the red and black lines illustrate the
dominant time lag for each climatic variable at each grid point. The red and black solid
points represent the correlation coefficient corresponding to that dominant time lag,
where red indicates statistical significance and black represents non-significance.
Among the climatic variables, BSC exhibits the fastest response to temperature,
typically within 0-8 days. Although precipitation correlations are relatively low
(around 0.5), the time lag between significant grid points and BSC dynamics is minimal
or absent. Overall, the time lags of all significant climatic variables do not exceed 64

days, and the corresponding correlation coefficients are generally above 0.5.

Fig. 4-2 illustrates the spatial distribution of time lags across the study area. Along the
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southern desert-oasis boundary, the response of BSC to all climatic variables is
relatively rapid, with correlation coefficients exceeding 0.7. The longest time lag for
specific humidity occurs in the northern part of the desert, exceeding 56 days. A similar
pattern is observed for solar radiation, where the lag generally ranges from 24 to 32
days, but extends beyond 40 days in the northern desert region. The spatial distribution
of time lags for wind speed and precipitation exhibits a similar band-like pattern, with
a zero-time lag zone extending from northwest to southeast. In contrast, the time lag for
temperature does not exceed 16 days across the desert, with the longest lag occurring

in the central hinterland and the northern bare soil region.
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Fig. 4-2 Distribution of lags between BSC and climate variables during 2000-2018
with the time window of 8 days.

Fig. 4-3 presents the lagged correlation between BSC and climatic variables from 2000
to 2018, using a monthly time window. This figure follows a similar pattern to Fig. 4-
1, but with an extended time window designed for modeling based on monthly data.
The time lag for specific humidity and solar radiation is primarily 1-2 months, while
for wind speed and temperature, it is 0—1 month. For precipitation, the lag is effectively
zero. Most of the significant correlation coefficients exceed 0.5, aligning with the

results obtained from the 8-day dataset.
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Fig. 4-3 Lag-correlation between BSC and climate variables during 2000-2018 with
the time window of month

The spatial distribution of time lags for climatic variables in Fig. 4-4 is consistent with
that in Fig. 4-2. Time lags are shorter in the southern and northwestern regions of the

desert compared to the central and northeastern areas.
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At this stage, we can infer that climatic factors exert time-lagged effects on BSC growth.
In the Gurbantunggut Desert, where BSC survival is constrained by climatic variability,
fluctuations in climate conditions have a significant impact on BSC coverage. The
results indicate that the time-lag effect at a monthly scale is generally shorter than one
quarter, aligning with previous research (Anderson et al., 2010; Chen et al., 2014; Ivits
et al., 2016; Rundquist and Harrington, 2000; Vicente-Serrano et al., 2013; Wu et al.,
2015). Consequently, this study considers time-lag effects up to a maximum of 3

months.

4.1.2 Partial correlation analysis of climate variables and BSC

To identify the dominant climatic factors driving BSC variation during the growing
season, while accounting for time-lag effects, we perform partial correlation analysis
between BSC and individual climatic variables. This analysis controls for the influence
of other climatic factors, ensuring that the observed relationships reflect independent

effects.

Table 4-1 Time lag (months) across different land types.

Mean Standard deviation

SH WS T™P SR PRE SH WS TMP SR PRE

Whole aera 1.70 2.04 0.60 0.82 1.09 0.78 0.75 0.63 0.71 0.81
Barren 1.5 220 059 075 081 086 0.64 060 0.64 0.80
Grassland 1.74 193 0.60 091 140 091 093 068 0.76 0.83

Specific humidity exhibited a 1.70 = 0.78 (mean =+ standard deviation) month lag in the
whole area (Table 4-1). The time lag is consistently two months throughout the desert,
except at the southwestern and northeastern edges (Fig. 4-5). In terms of correlation,
values exceed 0.5 across the study area, except in the central hinterland (Fig. 4-6),
where the time lag is two months and specific humidity correlation remains low.

Notably, at the southern edge, the correlation exceeds 0.8, which may be related to
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agricultural land, roads, livestock production, and other human activities in the vicinity,

all of which are known to contribute to biocrust disturbance (Zaady et al., 2016).

Although BSC enhances surface roughness, thereby increasing frictional resistance to
wind-driven sand movement, it becomes vulnerable when wind speed exceeds its
threshold. Across the region, wind speed has a mean lag of 2.04 = 0.75 months (Table
4-1). In terms of land use, most grid points with significant wind speed effects are
located in grassland areas. Overall, BSC responds slowly to wind speed, with a three-
month lag in the northwestern desert (Fig. 4-5). Furthermore, correlations are very low,
approaching zero, with some areas even displaying a negative correlation (Fig. 4-6).
This suggests that wind speed exerts a weak and negative influence on BSC dynamics,
primarily because wind speeds in the Gurbantunggut Desert generally remain below 6

m/s, insufficient to exceed the frictional threshold required to degrade BSC.

Temperature exhibits an average time lag of 0.60 £ 0.71 months (Table 4-1), with
minimal variation across different land types. The temperature lag is consistently zero
across most of the desert, except at the northeastern and northwestern fringes (Fig. 4-
5). In grassland areas, the correlation is significantly higher than in other regions,
reaching 0.5 (Fig. 4-6). These findings suggest that temperature plays a crucial role in

shaping BSC distribution in the Gurbantunggut Desert.

The time lag for solar radiation is 0.82 + 0.63 months (Table 4-1). Its spatial distribution
closely resembles that of 2-meter temperature, with a near-zero lag throughout most of
the desert. However, unlike temperature, the solar radiation time lag abruptly increases
to three months in the southwest. Similarly, the spatial correlation distribution of solar
radiation mirrors that of temperature, with higher correlations (~0.4) in grassland areas
(Fig. 4-6). In contrast, north of the central desert hinterland, the correlation is close to

zero with a one-month lag.
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Precipitation exhibits an average lag of 1.09 = 0.81 months (Table 4-1), with its most

significant effects occurring at the desert edges. The western edge shows no lag, the

southern edge exhibits a one-month lag, and the northeastern edge experiences a 2—3

month lag. In terms of correlation, most areas show low values, except for grassland at

the southern edge, where the correlation coefficient is approximately 0.3. Two possible

explanations exist for this pattern: (1) The arid climate and low precipitation levels in

the Gurbantunggut Desert result in rainfall amounts that are insufficient to surpass

evapotranspiration, thereby limiting BSC growth. (2) Reanalysis data may fail to

accurately capture the variability of low-magnitude rainfall events, leading to

discrepancies when compared to observational datasets (Guo et al., 2024).
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By employing partial correlation for analysis, the lag times and correlation coefficients
obtained differ from those derived using Pearson's correlation (as discussed in Section
4.1.1). This difference arises because partial correlation removes the linear effects of
other variables. In certain cases, Pearson's correlation may not accurately capture the

true relationship between independent and dependent variables due to multicollinearity.

4.2 Identification of model variables

The climate data used for both training and testing the model are sourced from the
ERAS dataset. Given that the model will be applied to the Last Glacial Maximum (LGM)
and the Mid-Holocene in future research, paleoclimate data from the CMIP6 dataset
will be required. Therefore, all variables must first be normalized, followed by bias

correction for the CMIP6 data.

4.2.1 Normalization

To eliminate the influence of magnitude on the model, all data must be normalized. For
CMIP6 data, the normalization of AWI, MPI, and MIROC model data is performed

using the maximum and minimum values from the ERAS dataset. This ensures that the
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training and prediction sets remain independent and identically distributed. The
normalization process is conducted separately for each grid point, as the regression

model is independently established for each grid point.

4.2.2 Bias correction

The comparison of the annual cycle and standard deviation between the ERAS and
CMIP6 datasets is presented in Fig. 4-7 and Fig. 4-8. Solar radiation and temperature
exhibit similar patterns, with only minor differences. However, specific humidity and
wind speed show noticeable discrepancies in their mean values. Precipitation, in
particular, exhibits significant differences, with AWI and MPI values in summer being
much lower than those of ERAS. Additionally, the standard deviation distribution of
precipitation is even opposite in trend. Therefore, bias correction based on ERAS data

is essential when using ERAS as the sole dataset for statistical model training.
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The general form of the bias correction method (Eq. 4-2) is applied to climate variables
other than precipitation. This method adjusts not only the mean values but also the
temporal variability of the model output to align with observations (Hawkins et al.,

2013; Ho et al., 2012):

Mpc(t) = Oggr + (

0o R
REE) % (Mpaw(t) — Mggr) 4-2)
MREF

g

In this equation, Ogrgr represents the ERAS data for the historical reference period,
Mper denotes the CMIP6 output from the historical reference period, and Mgy,
corresponds to the raw CMIP6 output for the historical, future, or paleo period. Mg,

is the bias-corrected CMIP6 output. Additionally, and oy, represent the

GOREF
standard deviations of the observations and daily CMIP6 output in the reference period,

respectively.

Precipitation is a stochastic variable in the study area and requires a more sophisticated

approach for bias correction. To accurately bias-correct CMIP6 output for monthly
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totals and wet-day frequency while maintaining realistic daily and interannual
variability, the Equiratio Cumulative Distribution Function (EQCDF) matching method
(Eq. 4-3) (Wang & Chen, 2014) is implemented in this study. The EQCDF technique
removes systematic biases in CMIP6 simulations and accounts for biases in all
statistical moments. However, as with all statistical downscaling approaches, it is
assumed that biases relative to historical observations remain constant in the projection
period. Precipitation values below 0.01 mm/day are set to 0 (dry-day) during the

correction process.

_ F5 ' [Fraw (Mraw)] L Mo )
Mpc = Mgaw * P [Fraw (Mraw)]’ Mpc qaj = Mpc * ac (4-3)

In this equation, F.» represents the Cumulative Distribution Function (CDF) of the
model for a future projection period, while F;and Fgzr denote the quantile functions

for observations and the model in the reference period, respectively.

For both bias correction methods, ERAS data is used as the observational dataset. The
reference period is 1999-2006, and the output period is 2007-2014. The results of
applying Eq. 4-2 and Eq. 4-3 are presented in Table 4-2, Table 4-3, Fig. 4-9, and Fig. 4-

10.
Table 4-2 Correlation coefficient between biased CMIP6 data and ERAS data.
Temperature Solar Specific Wind Precipitation
radiation humidity speed
AWI 0.980 0.999 0.936 0.869 0.32
MPI 0.982 0.999 0.934 0.868 0.31
MIROC 0.978 0.999 0917 0.861 0.19
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Table 4-3 RMSE between biased CMIP6 data and ERAS data.

Temperature Solar Specific Wind Precipitation
radiation humidity speed
AWI 3.05 2.20 0.00075 0.34 0.31
MPI 2.96 2.16 0.00076 0.34 0.33
MIROC 3.21 242 0.00086 0.35 0.34

For temperature, the correlation coefficients between the bias-corrected outputs of each
climate model and the observed data exceed 0.97, with lower dispersion in summer
(standard deviation between 0 and 2) and a root mean square error (RMSE) of
approximately 3 K. For solar radiation, the correlation coefficient is close to 1, with a
standard deviation ranging between 0.5 and 3, and an RMSE of about 2 W/m?. For
specific humidity, the correlation coefficient is approximately 0.93, and the bias-
corrected model data are slightly lower than the ERAS data. Dispersion is higher than
that of ERAS in October and November, with an RMSE of 0.0008 kg/kg. For wind
speed, the correlation coefficient is 0.86, and the RMSE is 0.34 m/s. The dispersion of
AWI and MPI data is highest in November and May, respectively. For precipitation, the
correlation coefficients between the bias-corrected outputs of each climate model and
the observed data are relatively low, and the standard deviations also vary due to the
stochastic nature of precipitation events, with an RMSE of 0.31 mm/day. From an
annual cycle perspective, the error between the bias-corrected data and ERAS data is

significantly reduced.
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Fig. 4-10 Standard deviation of climate variables after bias correction.

The results above indicate that the bias-corrected climate model exhibits strong
simulation capabilities for temperature, solar radiation, relative humidity, wind speed,

and precipitation in the Gurbantunggut Desert. Furthermore, the corresponding model
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performance evaluation confirms that, for each climate variable, the bias-corrected
CMIP6 data outperform the uncorrected data (Xu et al., 2012). Therefore, the corrected
dataset enhances the reliability of future climate change projections in the

Gurbantunggut Desert to a certain extent.

4.2.3 Climate variables selection

Two approaches are employed to select the model variables influencing biological soil
crust (BSC) variation in the study area. Climatic variables and their time lags are

considered in both approaches.

The first approach is static selection, in which climatic factors are incorporated using
adjusted time series with the optimal time-lag coefficient, as identified by Eq. 4-1. For

each grid point, the climate variables used in the models remain fixed.

The second approach is best subset selection. Starting with the null model, different
combinations of features are fitted, and one of the best models is selected from each
subset—ranging from a single-feature model to an n-feature model. The optimal model
is then chosen from a total of n+1 models based on prediction accuracy. The features

configured in this optimal model are the final selected variables.

Three methods are used in this study to evaluate prediction accuracy. They are:

1) Adjusted r-squared (Ezekiel, 1930):

(n—-1)

2. =1 — —R2)——~— 7
Rig = 1 = (1-R)

(4-4)
Where R? represents the coefficient of determination (regular R-squared) and
was first introduced by Pearson (1896). n denotes the number of observations

(sample size), and k refers to the number of independent variables (predictors)
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2)

3)

in the model. This improves upon R’ preventing it from increasing with each

additional predictor. Using this metric, the best model is the one with the
highest RZ,;. Maximizing Rj,; is equivalent to minimizing the standard

2

error. Rgg;

is an effective method for selecting predictors, particularly when

comparing models with different numbers of predictors.

Schwarz’s Bayesian Information Criterion (BIC) (Schwarz, 1978):
SSE
BIC = Tlog (T) + (k + 2) log(T) (4-5)

Minimizing the Bayesian Information Criterion (BIC) is intended to identify the
optimal model. The model selected by BIC is either the same as that chosen by
the Akaike Information Criterion (AIC) (Akaike, 1973, 1974) or a more
parsimonious one. This occurs because BIC imposes a stronger penalty on the

number of parameters compared to AIC. For large values of T, minimizing BIC

1

closely approximates leave-v-out cross-validation, where v = T[1 — o8 (T)—1]'
Mallows's C,, (Mallows, 1973):
SSE,
Cp = 72— (N = 2p) (4-6)
Where SSE, = N, = ?pi)z is the error sum of squares for the model with

p predictors (including the intercept), Y, is the predicted value of the ith
observation of Y from the p predictors, S is the estimation of residuals variance

after regression on the complete set of K predictors and can be estimated by

ﬁ = YN, (Y; = ¥)?, and N is the sample size.
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After the initial reduction of multicollinearity among climate variables based on
correlation analysis, the appropriate models are selected using the three measures
mentioned above. For different months at each grid point, the model incorporates

varying climate factors with corresponding time lags.

4.3 BSC-climate model based on fixed variables

To quantify the contribution of climate change to BSC variation, a multiple linear
regression model is constructed to analyze the relationship between BSC and five

climatic factors (Eq. 4-7):

5
BSC,qr = z Brar X Climate,,, + € 4-7)

var=

where S represents regression coefficients and & denotes the error term. The variable
var ranges from 0 to 5, representing different climatic factors. These climatic factors

incorporate the time-lag effects identified by Eq. 4-1.

Based on the identified time-lag effects that best predict BSC responses to climate, a
multiple linear regression model is established to examine the relationship between
climatic factors and BSC variation. Figure 4-11 presents the determination coefficients
of the multiple linear regression models for the entire season. In terms of spatial
distribution (Fig. 4-11a), the model provides a better explanation for the southern and
western regions of the study area, where the determination coefficient exceeds 80%. In
contrast, in the central and northern regions, the model's explanatory power is weaker,
with determination coefficients around 20%. On average (Fig. 4-11b), climatic factors
account for 40% of the variation in BSC when considering both time-lag and

accumulation effects.
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Fig. 4-11 Distribution (a) and box plot (b) of r-squared. The red line in the box plot
indicates the average value of the data.

4.4 BSC-climate model based on machine learning

4.4.1 Statistical evaluation and model selection

Considering the quality and size of the dataset, three machine learning methods are
selected for model development: multiple linear regression (MLR) (Draper & Smith,
1998), support vector regression (SVR) with a linear kernel (Drucker et al., 1997), and
support vector regression with a radial basis function (RBF) kernel (Smola & Schélkopf,
2004). During the machine learning process, 80% of the data is allocated as the training
dataset, which also serves as the validation dataset due to the use of k-fold cross-
validation. The remaining 20% of the data is set aside as the testing dataset to evaluate
the model’s performance. To identify the best-performing model among these three
approaches, three predictive accuracy metrics and two interpretability measures are

applied for model selection (Table 4-4).

75



Table 4-4 Measures for model selection

This table presents the accuracy and interpretability measures used for model evaluation. The
accuracy metrics include Root Mean Squared Error (RMSE ), Standard Error (SE), and
Correlation Coefficient (R ), while the interpretability measures include Determination

Coefficient (R?) and Adjusted R-squared (R% 4 -

N . . . . 2
Root Mean Squared Error  ppfSg = izi(Predictied; — Actual;)

N
= Ris , RSS = Y.(Actual; —
Accuracy Standard Error sqre(n)
Predict;)?

Y, X —X)—Y)

R =
JZ, - x5, -1y

Correlation Coefficient

Y.(Actual; — Predict;)
Y.(Actual; — Actural_mean)

Determination Coefficient  R? =
Interpretability

n-1)

Adjusted R-squared Regj=1-(1 —Rz)_(n —k - 1)

Note. N = total number of observations. Actual;, Predict; = predicted and actual values
for the i-th observation. RSS (Residual Sum of Squares) = Y.(Actual; — Predict;)?. n =
total number of observations. X;, Y; = predicted and actual values for the i-th observation.

X, Y =mean of the predicted and actual values. Actural_mean = mean of actual observed
values. k = number of predictors, including the intercept.

By calculating the values of the above five measures on both monthly and yearly scales,
it is found that Multiple linear regression is the best performing model in relative terms.
The performance and selection of the three modelling approaches for each indicator is
shown in the Table 4-5 (See the Section 7.4 for more information.). Sometimes more
than one approach performs well under a measure, for example, multiple linear
regression and SVR with RBF kernel are close in performance on the standard error
and adjusted 12. Therefore, the multiple regression approach is chosen to model the

relationship between the BSC and climate variables. it's worth noting that the multiple
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regression model trained based on machine learning has different climate variables at
each grid point, which is different from the fixed climate variable multiple regression

model in Section 4.3.

Table 4-5 Performance of three machine learning models in the study area

Multiple linear SVR with SVR with

regression linear kernel ~ RBF kernel
RMSE 0.058 0.078 0.085
SE 0.020 0.020 0.024
Correlation Coefficient 0.334 0.312 0.162
Determination Coefficient 0.704 0.597 0.666
Adjusted R-squared 0.500 0.543 0.566

Units: RMSE and SE have the same unit as the BSC fraction (%). Correlation Coefficient,

Determination Coefficient (R?), and Adjusted R-squared (Rﬁdj) are dimensionless.

4.4.2 Model validation

Fig. 4-12 illustrates the determination coefficient between observed and predicted
values. The model exhibits better interpretability from spring to autumn compared to
winter, explaining over 75% of the variation in BSC. Thus, in terms of interpretability,
this model outperforms the one based on the selection of fixed climate variables

presented in Section 4.3.
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Fig. 4-12 Determination coefficient between observation and prediction.

4.5 Model reliability on the CMIP6 dataset

As the models are intended for application to the LGM and Mid-Holocene, ensuring
the reliability of the CMIP6 paleoclimate dataset is crucial for subsequent model
applications. This section evaluates the reliability of the corrected CMIP6 data in both

the fixed-variable selection model and the machine learning model.

4.5.1 In the fixed-variable model

The prediction results of the CMIP6 data using the fixed-variable model are presented
in Fig. 4-13 and Fig. 4-14. The predictions closely align with satellite observations on
an annual cycle. While the standard deviation is lower than that of the satellite data, the
linear variation trends remain consistent, with peaks occurring in March and November.
However, the MIROC data exhibit an additional peak in September. Regarding the
seasonal spatial distribution, the predicted values from the model generally match those
from satellite observations. Despite the overall similarity, the CMIP6 data differ in that

they predict lower values in the south-central part of the desert during spring and
78



summer. In winter, BSC is essentially unobservable due to vegetation dormancy.
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Fig. 4-14 Seasonal distribution of BSC fraction in the Gurbantunggut Desert in

historical.

4.5.2 In the machine learning model

Fig. 4-15 presents the annual cycle and standard deviation of the machine learning
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model's prediction results, compared with satellite data. Consistent with the satellite
observations, the BSC fraction begins to increase significantly in March and peaks in
October during the annual cycle. The standard deviation of the model predictions is

generally lower than that of the observations, with the largest difference occurring in

September.
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Fig. 4-15 Annual cycle (a) and standard deviation (b) of the prediction results of the
regression model and compared with satellite data.

The seasonal distribution in Fig. 4-16 aligns with the annual cycle in Fig. 4-15. The
BSC fraction values are generally lower than those observed in the satellite data,

particularly in the southwestern region of the desert and along its southern edge.
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In summary, the outputs of both the fixed-variable model and the machine learning
model, trained using ERAS data as input, closely match the satellite-observed BSC data
when the corrected and normalized CMIP6 data are used as input for prediction. This
suggests that the regression model trained with ERAS data can be reliably applied to
the corrected AWI, MPI, and MIROC model data.

4.6 Interpretation the effects of climatic variables on BSC

For the linear trend analysis, changes in BSC, specific humidity, wind speed,
temperature, solar radiation, and precipitation are first estimated through linear fitting,
incorporating the identified optimal time lags (p < 0.05). Subsequently, regions
exhibiting significant BSC changes are compared with those experiencing significant

climate changes, allowing for the identification of dominant climatic factors in regions
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where BSC variations are most pronounced.

Based on the spatial patterns of linear trends, regions with significant changes in both
BSC and climate variables accounted for 70% of the areas with significant BSC changes
from 2000 to 2018 (Fig. 4-17). Panel (a) of Fig. 4-17 illustrates the climatic factors
most strongly correlated with significant BSC changes, with temperature emerging as
the dominant driver. In contrast, only a few areas along the northwestern edge are
primarily influenced by precipitation. Panel (b) of Fig. 4-17 depicts the second most
influential climatic factor when BSC changes significantly. A comparison with panel (a)
reveals that in the western region, specific humidity serves as the primary driver, while
precipitation acts as the secondary driver. Additionally, in the northern half of the desert,
the roles of temperature and precipitation as driving factors have been reversed. These

findings indicate that temperature, specific humidity, and precipitation are key drivers

of major BSC changes.
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Fig. 4-17 Areas with significant changes in both BSC and climatic factors from 2000
to 2018. (a) Primary climatic drivers; (b) Secondary climatic drivers.

Fig. 4-18 presents the partial correlation analysis of BSC and climate factors with time
lag, based on the model described in Section 4.3. The partial correlation coefficients
between BSC and time-lagged climate factors over 19 years are calculated at the grid

scale with a monthly time unit, and a significance test is performed.

The response of BSC to specific humidity exhibits spatial variability, with both positive

82



and negative correlations. The partial correlation coefficients between BSC and specific
humidity, while controlling for other conditions, range from -0.2 to 0.3, with an average
partial correlation coefficient of 0.16. Notably, in the northwestern desert, two adjacent
grids display high correlations, yet one is positive and the other negative. The spatial
distribution of partial correlation coefficients for temperature and solar radiation in
these grids resembles that of specific humidity. In particular, in grids where solar
radiation is positively correlated with BSC, specific humidity and temperature tend to
show negative correlations. When analyzed alongside elevation maps (Fig. 3-3a), these
grids coincide with areas exhibiting large changes in elevation slope (e.g., the tops and
bottoms of dunes or the edges of mountain ranges), where shadowing and shading may

promote water evaporation and retention (D. Zhang et al., 2024).

Wind speed demonstrates an approximately equal split between positive and negative
correlations with BSC across most parts of the desert. A negative coefficient suggests
that higher wind speeds cause greater damage to the surface crust. Meanwhile,
temperature exhibits a positive correlation with BSC in most areas, except for the desert
hinterland, where a negative correlation is observed. This may be attributed to the hot
and arid conditions in the hinterland, where BSC growth is stressed due to increased

potential evapotranspiration driven by enhanced solar radiation (Belnap et al., 2001).

The correlation between precipitation and BSC in the study area is generally low,
fluctuating around zero, with a negative correlation observed along the southern edge
of the desert. This suggests that higher temperatures may lead to increased surface
evaporation and greater water depletion, which is not sufficiently compensated by
precipitation. Conversely, in grids exhibiting a positive correlation, BSC growth is
limited by decreasing precipitation and promoted by increasing precipitation. The low
overall correlation may also be explained by the wetting effects surrounding BSC on
rainy days and the low vegetation cover, which buffer BSC variation from climatic

fluctuations (Belnap et al., 2001).
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Fig. 4-18 Partial correlation analysis of BSC and climate factors with time lag.

To evaluate the effect of climatic factors on BSC variability using the fixed-variable
model, the climate factors with the largest regression coefficients and the signs of these
coefficients are analyzed. The results are presented in Fig. 4-19. The color bar labels
indicate climate factors with time lags: g represents specific humidity, si/0 denotes 10-
meter wind speed, £2m corresponds to 2-meter temperature, ssrdc refers to surface solar
radiation downward (clear-sky conditions), and #p indicates total precipitation.
Subscript numbers denote time lags, where zero indicates no lag. Across the desert
region, temperature without a time lag emerges as the dominant climatic factor
influencing BSC variability, exhibiting a consistently positive effect, which aligns with
the findings in Section 4.1.1. In contrast, for temperature with a one-month lag, the
regression coefficient is negative in the central desert hinterland, suggesting that
prolonged high temperatures continue to suppress BSC growth. This finding reinforces
the idea that temperature acts as a major limiting factor for BSC development. The
second most influential factor is solar radiation, which primarily affects the sandy
regions in the northeastern desert. The third key factor is specific humidity, which
predominantly influences the grasslands in the central desert and some bare soil areas

in the northeast.
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Fig. 4-19 (a) The most important variables in the fixed-variable model,;

(b) the positivity or negativity of their contribution.

A similar approach as described above is used to identify the climate factors with the
largest (Fig. 4-20a) and second-largest (Fig. 4-20b) regression coefficients in the
machine learning regression model. The longer the color bar, the greater the spatial
influence of that climate factor across the desert. As winter temperatures in the
Gurbantunggut Desert generally fall below freezing, making BSC growth nearly

impossible, the analysis focuses on the regression results from March to November.

For March and April, solar radiation is the dominant climate variable, contributing the
largest share of regression coefficients. This is because early spring remains cold and
requires the continuous influence of solar radiation. This also explains the observed
time lag in solar radiation's dominant effect during these months. Additionally,
sufficient solar radiation facilitates BSC photosynthesis. As for the second-largest
climatic factor, specific humidity has the highest share, suggesting that early spring is
not yet overly dry, and the moisture in the air promotes BSC growth. Overall, solar
radiation and specific humidity are the key climatic factors influencing BSC variation

in March and April.

A similar pattern is observed in May, October, and November, where no single climatic
factor is overwhelmingly dominant. In May, solar radiation, specific humidity, and

temperature all have high regression coefficients, and their spatial distributions appear
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more sporadic. In October and November, solar radiation, temperature, specific
humidity, and wind speed are unevenly distributed, indicating that the desert's climatic
conditions are more complex during these months. Additionally, BSC peaks in October,

which results from the combined effects of multiple climatic variables.

From June to September, temperature plays a significantly larger role, particularly in
July, when almost the entire desert's BSC variation is influenced by temperature.
Secondary variables are primarily specific humidity, with some localized areas also
affected by wind speed. This pattern highlights the critical role of temperature in BSC

variation from late spring to early autumn.

Additionally, the influence of precipitation and wind speed remains spatially limited
throughout these months. This is because the Gurbantunggut Desert experiences low
and highly sporadic precipitation, while wind speeds rarely exceed 6 m/s, which is

insufficient to reach the friction velocity required to disturb BSC surfaces.
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Fig. 4-20 The climate variables with the largest (a) and second largest (b) effects on
machine learning regression models in different grid points in different months.

The spatial distribution of climate variables exerting the largest and second-largest

influences in the machine learning regression model is presented in Fig. 4-21. In
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February, the dominant climatic factor in the bare sand regions of the western and
northeastern deserts is specific humidity with no lag. In contrast, in the grassland areas
of the central and southwestern desert, precipitation with no time lag and solar radiation
with a three-month lag serve as the primary drivers. From March to May, solar radiation
with a two- to three-month lag emerges as the primary driver in the southern and
western desert, while temperature and solar radiation with shorter time lags act as
secondary drivers. In other parts of the desert, the climatic influences are more complex.
Between June and September, temperature dominates as both the primary and
secondary driver across most of the desert, though with varying time lags. The effects
of precipitation and specific humidity are scattered and spatially variable. From October
to December, the distribution of climatic influences becomes increasingly
heterogeneous, though broad patterns can be identified: solar radiation and temperature
in October, specific humidity and temperature in November, and solar radiation and

specific humidity in December.
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Fig. 4-21 The spatial distribution of climate variables with the largest (a) and second
largest (b) effects on machine learning regression model.

4.6 Conclusion

This chapter first analyzes the time-lag and partial correlations between BSC and

climate variables. It then introduces data normalization and bias correction methods.

The selection of variables for the model is conducted using adjusted R-squared, BIC,

and Mallows' Cp. Finally, a fixed-variable model and a machine learning model are

developed. The main climatic factors affecting BSC are examined based on the

regression coefficients of the model, and the reliability of the model on other datasets

is assessed. The main findings are as follows:
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1)

2)

3)

4)

Correlation analysis reveals that in some areas, BSC exhibits a stronger
correlation with time-lagged climate factors when the time lag is considered,
with specific humidity being the most pronounced. The BSC response to
specific humidity typically lags by one to two months, and in principle, the time
lag between BSC and climatic variables does not exceed three months. BSC
responds rapidly to temperature, with a correlation coefficient of 0.7. Similarly,
BSC responds quickly to precipitation, though the correlation coefficient is
relatively low (0.46), with significant correlations primarily observed in the east

and south.

The corrected climate model demonstrates strong simulation capabilities for
temperature, solar radiation, relative humidity, wind speed, and precipitation in
the Gurbantunggut Desert. The calibrated CMIP6 model effectively simulates
precipitation, temperature, and solar radiation, meeting the study’s requirements.
Following bias correction, the discrepancies between climate model outputs and
observed data are significantly reduced, leading to a notable improvement in the

simulation performance of each climate model.

BSC-climate models are constructed using two approaches, both incorporating
time lag effects. The first approach is based on fixed climate factors, while the
second approach slides over the time series to dynamically select more
appropriate climate factors at different time points. Multiple regression analysis
is applied to both models, and statistical parameters are used for evaluation. The
results indicate that the two approaches explain approximately 40% and 75% of

BSC variability, respectively.

Climatic factors account for 70% of BSC variation, indicating that climate
change significantly affects most areas where BSC changes occur. The

remaining unexplained BSC variation may be attributed to other factors, such

&9



90

5)

as atmospheric CO: levels and nitrogen deposition (Nemani et al., 2003; Zhu et
al., 2016), human activities, and natural disturbances (Lehmann et al., 2014;

Peng & Li, 2018).

Due to spatial and temporal variability, it is challenging to derive a consistent
conclusion regarding the influence of climatic factors on BSC solely from
model coefficients. This variability arises because the dominant climatic factors
and their time lags differ across grid points and months. However, in general,
the key climatic factors influencing BSC are relative humidity, temperature, and

solar radiation.



5 Application of the BSC-Climate model

In the previous chapters, a fixed-variable regression model and a machine learning
regression model were developed, and the reliability of the AWI, MPI, and MIROC
scenario data in CMIP6 for these two models was validated. In this chapter, these two
models are applied in two ways. The first application utilizes paleoclimate data from
CMIP6 to investigate and compare the temporal and spatial distribution of BSC in the
Gurbantunggut Desert during the Last Glacial Maximum (LGM, 21 ka) and the Mid-
Holocene (6 ka). The second application extends the model to the Atacama Desert in
Chile, where modern climate data from the Atacama Desert are used to predict the

temporal and spatial distribution of BSC and compare the results with NDVI data.

5.1 Paleo Gurbantunggut Desert

This section first analyzes the spatiotemporal distribution of climate variables in the
Gurbantunggut Desert during the Last Glacial Maximum (LGM) and the Mid-Holocene.
Then, data from three CMIP6 climate scenarios are applied to the fixed-variable
regression model and the machine learning regression model to derive the BSC
distribution in the Gurbantunggut Desert under paleoclimatic conditions. Finally, the
distribution and variations of BSC across different paleoclimatic periods are examined
by comparing the differences in climatic factors between the two periods and

integrating the discussion of key climatic drivers from the previous chapters.

5.1.1 Spatiotemporal variability of climatological processes

From the discussions in the previous chapters, it is evident that the main climatic factors
influencing the distribution of BSC in the Gurbantunggut Desert are moisture,
temperature, and solar radiation. Therefore, the spatial distribution of these three

environmental variables is analyzed.

Fig. 5-1 presents the seasonal spatial distribution of specific humidity. In both
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paleoclimatic periods, specific humidity gradually increases from northeast to
southwest, which is inverse to the elevation gradient in the Gurbantunggut Desert (Fig.
3-3a), meaning that humidity levels are lower at higher elevations. Regarding seasonal
variations, in both paleoclimate periods, temperature is highest in summer, similar in
spring and autumn, and lowest in winter. Across different climate scenarios, the AWI
scenario simulates the highest specific humidity, followed by MPI, while MIROC
exhibits the lowest values. For both periods, specific humidity during the LGM is lower
than that of the Mid-Holocene, particularly in summer, with a difference of
approximately 0.001 kg/kg. This suggests that the Mid-Holocene was a wetter period,
which aligns with the findings of Xu et al. (2023), based on research on the southern

desert margin profile, and Liu et al. (2020), based on Mg/Ca analysis from Baluk Cave.
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Fig. 5-1 Spatial distribution of specific humidity in Gurbantunggut Desert during
LGM (a) and Mid-Holocene (b).
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Fig. 5-2 presents the spatial distribution of temperature throughout the seasonal cycle.
In both paleoclimatic periods, temperature gradually increases from northeast to
southwest, which is inverse to the elevation gradient in the Gurbantunggut Desert (Fig.
3-3a), meaning that higher elevations correspond to lower temperatures. Across
different seasons, temperature is highest in summer and lowest in winter in both periods.
In the LGM, spring temperatures are higher than those in autumn, whereas in the Mid-
Holocene, spring and autumn temperatures are similar. The simulated temperature
values from different climate scenarios are generally consistent. In both paleoclimatic
periods, summer temperatures during the LGM are significantly lower than those in the
Mid-Holocene, with a difference of nearly 10 K. The summer temperature in the Mid-

Holocene is approximately 290 K, aligning with the findings of Zhao et al. (2017).
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Fig. 5-2 Spatial distribution of temperature in Gurbantunggut Desert during LGM (a)
and Mid-Holocene (b).
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Fig. 5-3 presents the spatial distribution of solar radiation. In both paleoclimatic periods,
the distribution of solar radiation across the desert is relatively uniform, with no
significant spatial variations. Across different seasons, in both periods, solar radiation
is highest in summer, followed by spring, then autumn, and lowest in winter. Regarding
different climate scenarios, the AWI and MPI values are relatively similar, whereas
MIROC exhibits higher values, particularly in summer. For both periods, solar radiation
is slightly lower in the LGM than in the Mid-Holocene, with a more pronounced
difference in summer. In the Mid-Holocene, summer solar radiation is approximately
350 W/m?, which differs significantly from the findings of Xu et al. (2023), who
reported that summer solar radiation at 45°N could reach 500 W/m?. However, the
winter solar radiation, at approximately 120 W/m?, aligns with the results of Xu et al.

(2023).
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Fig. 5-3 Spatial distribution of solar radiation in Gurbantunggut Desert during LGM
(a) and Mid-Holocene (b).
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Fig. 5-4 presents the annual cycle of climate variables across three CMIP6 scenarios.
Specific humidity follows a unimodal distribution in interannual variability, peaking in
July, with the MIROC scenario exhibiting the lowest values during the same period. In
the LGM, the annual cycle of the AWI scenario closely resembles that of the Mid-

Holocene, whereas the MPI and MIROC scenarios display significantly lower values.

Wind speed follows a less pronounced bimodal distribution over the annual cycle, with
peaks in May and September. A minor trough occurs in July, except for the MIROC
values in the Mid-Holocene. The mean wind speed in the Mid-Holocene is

approximately 1 m/s lower than in the LGM.

The annual cycles of temperature and solar radiation exhibit similar patterns. However,
temperature is lower in the LGM than in the Mid-Holocene from May to October,

whereas mean solar radiation levels remain comparable between the two periods.

The annual cycle of precipitation is highly irregular. Apart from the winter months,
which have low rainfall, two troughs are observed: one in May and another in
September, with notably low values in September. Precipitation peaks occur in April,
July, and October, with the highest value recorded in April, reaching approximately

0.57 mm/day.
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Fig. 5-4 Temporal distribution of climate variables in Gurbantunggut Desert in LGM
and Hid-Holocene.

Since the Mid-Holocene, increased winter solar radiation has led to higher evaporation
rates in upwind regions, such as the Mediterranean (Chen et al., 2008, 2019). The
melting of ice in high-latitude areas of the Northern Hemisphere, the rising sea surface
temperature in the North Atlantic, and the increased evaporation have provided
sufficient water vapor for the Gurbantunggut Desert (Chen et al., 2016; Dyke, 2004;
Praetorius et al., 2008; Jin et al., 2012). On the other hand, the weakening of summer
solar radiation has caused a southward shift in subtropical high pressure, leading to
reduced evaporation within the desert and an increase in atmospheric moisture content.
Additionally, the solar radiation gradient between mid- and high latitudes has gradually
increased, contributing to a corresponding intensification of the westerlies (Chen et al.,
2016, 2019). Therefore, the combination of abundant water vapor sources and strong
westerly winds has resulted in higher precipitation in the study area. This aligns with
the findings of this study, which indicate that specific humidity was higher, and wind

speed was lower in the Mid-Holocene compared to the LGM.
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5.1.2 Fixed-variables model

Fig. 5-5 illustrates the application of the fixed-variable model in paleoclimatology.
During the LGM, spring BSC is primarily distributed in the western and southeastern
regions of the Gurbantunggut Desert, with fewer occurrences in the north. In summer,
BSC is mainly concentrated along the southeastern edge of the desert. In autumn, BSC
is more evenly distributed across the desert, with a relatively higher abundance in the
west. In winter, BSC levels are very low, with only a few occurrences in the west and
along the southeastern edge. Across different climate scenarios, the AWI and MPI
predictions are highly similar, while the MIROC predictions are generally lower.
However, MIROC exhibits higher values in localized areas, particularly along the
southwestern edge and central east during summer, and along the southern edge during

autumn.

During the Mid-Holocene, spring BSC is primarily distributed in the southeastern
region of the Gurbantunggut Desert, with fewer occurrences in the north. In summer,
BSC levels are generally low and are mainly concentrated in the southern part of the
desert and along the southeastern edge. The autumn BSC distribution is similar to that
of summer, but with higher values. In winter, BSC is mainly distributed in the southern
and western parts of the desert. The spring and winter BSC predictions are relatively
consistent across different climate scenarios. In summer, the MIROC prediction yields
the highest values, followed by AWI, while MPI has the lowest values. In autumn, the
AWI and MPI predictions are similar, whereas MIROC predicts significantly higher

values in the southern region of the desert.
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Fig. 5-5 Seasonal spatial distribution of BSC fraction predicted by the fixed-variables
model in the LGM (a) and mid-Holocene (b).

Fig. 5-6a illustrates the difference in BSC between the LGM and the Mid-Holocene. In
spring, the BSC fraction in the LGM is lower than in the Mid-Holocene for most grids,
whereas the opposite trend is observed in summer. In autumn, the results vary across
different climate scenarios. In the AWI and MPI scenarios, the BSC fraction is higher
in the LGM for most parts of the desert, whereas the MIROC scenario shows the

opposite trend. In winter, the difference in BSC is close to zero.

Fig. 5-6b presents the annual cycle of BSC across different scenarios and paleoclimatic
periods. The BSC annual cycle exhibits bimodal characteristics, with peaks in April and
October. Within the same climate scenario, the BSC fraction in the LGM is consistently

lower than in the Mid-Holocene, aligning with the analysis of Fig. 5-5.
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Fig. 5-6 Comparison of the distribution of BSC between the two paleo-periods: (a)
Spatial distribution of the difference (LGM minors mid-Holocene) in BSC fraction;
(b) Annual cycle of BSC fraction.

5.1.3 Machine learning model

Fig. 5-7 illustrates the application of the machine learning model in paleoclimatology.
During the Last Glacial Maximum (LGM), spring BSC is primarily distributed in the
southeastern region of the Gurbantunggut Desert, with fewer occurrences in the
northern part. In summer, BSC is mainly concentrated along the southwestern and
southeastern edges of the desert. In autumn, BSC is evenly distributed across the desert,
with relatively higher concentrations in the southeastern region. In winter, BSC levels
are very low, and the specific locations of BSC occurrence vary across different
scenarios. Across different climate scenarios, the MPI and MIROC predictions are
highly similar, whereas the AWI predictions yield lower values, particularly in the
southern part of the desert during summer. MPI exhibits higher values in the
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northwestern part of the desert in autumn, while AWI shows higher values in the west-
central region in winter. MIROC predicts higher values in the eastern part of the desert

and along the southeastern edge during winter.

During the Mid-Holocene, spring BSC is primarily distributed in the southeastern
region of the Gurbantunggut Desert, with fewer occurrences in the north. In summer,
BSC is mainly concentrated along the southern edge of the desert. In autumn, BSC is
evenly distributed, with relatively higher concentrations in the central-southern and
central-western regions. In winter, BSC is also present in small but relatively evenly
distributed patches across the desert. The BSC distribution patterns remain similar

across different climate scenarios.
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Fig. 5-7 Seasonal spatial distribution of BSC fraction predicted by the machine
learning model in the LGM (a) and mid-Holocene (b).
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Fig. 5-8a illustrates the difference in BSC between the LGM and the Mid-Holocene. In
spring, the BSC fraction in the LGM is lower than in the Mid-Holocene across most
grid cells. In summer, higher LGM values are primarily observed in the central and
northern regions of the desert. In autumn, BSC values are higher in the southern desert
during the LGM, whereas the northern desert exhibits higher values in the Mid-

Holocene. In winter, the difference in BSC is close to zero.

Fig. 5-8b presents the annual cycle of BSC across different climate scenarios and
paleoclimatic periods. The BSC annual cycle features a distinct peak in October. In May,
the Mid-Holocene BSC fraction exhibits a small peak, whereas the LGM BSC fraction

reaches a trough.
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Fig. 5-8 Comparison of the distribution of BSC between the two paleo-periods: (a)
Spatial distribution of the difference (LGM minors mid-Holocene) in BSC fraction;
(b) Annual cycle of BSC fraction.
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5.2 Atacama Desert

In this section, the generalisability of the model is tested by applying the fixed-variable
regression model and the machine learning regression model to the Atacama Desert.
The Atacama Desert is located in the Southern Hemisphere, where the seasons are
reversed compared to the Northern Hemisphere. Therefore, in subsequent research,

only the month is used to describe the spatiotemporal distribution.

5.2.1 Spatiotemporal variability of climate variables

Fig. 5-9 presents the temporal distribution of climate variables in the Atacama Desert,
derived from the ERAS dataset. The annual cycles of specific humidity, temperature,
solar radiation, and evapotranspiration exhibit a consistent pattern, with lower values
mid-year and higher values at the beginning and end of the year. Among these variables,
specific humidity and temperature follow the same trend throughout the year, peaking
in February and reaching their lowest levels in July. This pattern indicates that an
increase (or decrease) in solar radiation and temperature leads to a corresponding
increase (or decrease) in evapotranspiration, which subsequently results in a rise (or
decline) in atmospheric water vapor and an associated change in specific humidity.
Additionally, since water vapor is a greenhouse gas, its increase (or decrease) further
amplifies temperature variations. Wind speeds remain low throughout the year,
reaching their lowest levels in June and July at less than 1 m/s, and peaking in January
and December, yet still remaining below 2 m/s. In contrast, the annual cycle of
precipitation differs significantly from other climatic variables. This is due to the
Atacama Desert's persistently high temperatures and minimal rainfall, with some years
experiencing no precipitation at all. Consequently, the annual cycle is not a reliable
reference. Appendix 7.5 provides station data on precipitation in the Atacama Desert
for 2018, further illustrating the scarcity and unpredictability of rainfall in this extreme

environment.
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Fig. 5-9 Annual cycle distribution of climate variables in the Atacama Desert.

Fig. 5-10 presents the spatial distribution of climate variables in the Atacama Desert,
based on the ERAS dataset. Areas near the coastline exhibit higher specific humidity
and lower temperatures, while the central region of the desert experiences stronger
winds and higher precipitation levels. Solar radiation is relatively uniform across the

desert, whereas evapotranspiration is higher in the northern region.
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Fig. 5-10 Spatial distribution of climate variables in the Atacama Desert from 2000 to
2018.
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5.2.2 Model selection

The model is trained separately for each grid point when modelling Gurbantunggut
Desert data. As a result, each grid point is assigned a different regression model. In the
fixed-variable model, only the regression coefficients differ, whereas in the machine
learning regression model, both the selected variables and regression coefficients vary
for each grid point. Therefore, to apply the model trained in the Gurbantunggut Desert

to the Atacama Desert, selecting an appropriate regression model is crucial.

The Gurbantunggut Desert consists of 55 grid points, while the Atacama Desert has 35
grid points. The objective of this section is to select a suitable prediction model for each
Atacama Desert grid point by comparing the climate data of both deserts. The primary
method used is the k-nearest neighbour (KNN) algorithm (Cover & Hart, 1967). The
model corresponding to the nearest climate variable lattice point, identified through this
method, is applied as the prediction model for the Atacama Desert. The results are

presented in Fig. 5-11.

Fig. 5-11a shows the selected month for applying the model to the Atacama Desert. The
horizontal axis represents the months in the Atacama Desert, while the numbers inside
the rectangular frames indicate the corresponding months in the Gurbantunggut Desert.
The vertical axis represents the number of grid points assigned to each month. For
example, the climatic conditions in January in the Atacama Desert (x-axis) are most
similar to those in June in the Gurbantunggut Desert (indicated by the number 6 in the
rectangular frame), reflecting the seasonal differences between the Northern and
Southern Hemispheres. Multiple numbers appearing in the stacked bars indicate that
the climate at each of the 35 grid points in the Atacama Desert is individually compared.
For instance, in March, the climate of 28 grid points in the Atacama Desert is similar to
May in the Gurbantunggut Desert, whereas the remaining 7 grid points align more

closely with August.
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Fig. 5-11b illustrates the selected grid points for applying the model to the Atacama
Desert. The horizontal axis represents the months in the Atacama Desert, while the
numbers inside the rectangular frames indicate the corresponding grid points in the
Gurbantunggut Desert. The vertical axis represents the number of grid points assigned
to each month. The colour coding differentiates land cover types: green represents
grassland, while beige denotes barren land in the Gurbantunggut Desert. The grid points
are associated with specific months. For example, in December, 22 grid points in the
Atacama Desert correspond to the first grid point in the Gurbantunggut Desert in June.
Additionally, 4, 1, 3, 1, 1, and 3 grid points correspond to the 4th, 11th, 16th, 20th, 39th,
and 45th grid points, respectively, with the corresponding month also being June (as

indicated in Fig. 5-11a).
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Fig. 5-11 (a) Month and (b) grid point corresponding to the most suitable model.
Green represents grassland, while beige denotes barren land in the Gurbantunggut
Desert.

Fig. 5-12 presents the spatial distribution corresponding to Fig. 5-11b. By comparing
climatic conditions and considering the correspondence between months with similar
climates in the Atacama Desert and the Gurbantunggut Desert (Fig. 5-11a), it is evident
that most areas in the central and southern Atacama Desert during January, June, July,

October, November, and December exhibit climatic similarities to the barren land in
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the Gurbantunggut Desert. In February, the climate in central Atacama more closely
resembles the grassland in the Gurbantunggut Desert, while the southern region remains
closer to barren land. During the remaining months, the central and southern parts of
the Atacama Desert share similar climatic conditions with the grassland in the
Gurbantunggut Desert. The northern region of the Atacama Desert remains relatively

stable, consistently corresponding to the grassland in the Gurbantunggut Desert.
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Fig. 5-12 Spatial distribution of grid point corresponding to the most suitable model.
Green represents grassland, while beige denotes barren land in the Gurbantunggut
Desert.

5.2.3 Results of model application

After selecting the appropriate model according to the previous section, the ERAS
climate data from 2000 to 2018 are used to predict the BSC fraction in the Atacama
Desert. The results using the fixed-variables model and the machine learning model are

shown in Fig. 5-13 and Fig. 5-14 respectively.

The two models produce similar predictions, with BSC primarily distributed in the
northern part of the Atacama Desert, which aligns with the findings of Wang et al.
(2024). The BSC fraction values are higher from January to April. However, unlike the
fixed-variable model, the machine learning model's predictions indicate that BSC is

also present in the central and southern parts of the Atacama Desert during January,
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March, and September.
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Fig. 5-13 BSC fraction predicted by the fixed-variables model in the Atacama Desert.
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Fig. 5-14 BSC fraction predicted by the machine learning model in the Atacama
Desert.

Fig. 5-15 presents the annual cycle of BSC fraction predicted by the fixed-variable
model and the machine learning model in the Atacama Desert. The two models
produced similar results, with relatively high values from January to April, peaking in
March, while the lowest value occurs in June. The main difference between the two
models is that the machine learning model predicts a small peak in September. When
evaluated alongside Fig. 5-13 and Fig. 5-14, this peak appears to be influenced by the

divergent predicted values around 22°S. Similarly, the March peak in the fixed-variable
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model is lower than that in the machine learning model, likely due to the predicted

values around 22.5°S.

18

=—Fixed-variable model
——=Machine learning model
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& & ® o D =

(5]

0
Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Fig. 5-15 Annual cycle of BSC fraction predicted by the fixed-variables model and the
machine learning model in the Atacama Desert.

As there is no directly comparable data on BSC distribution in the Atacama Desert,
NDVI is used as a reference indicator. Fig. 5-16 presents the spatial distribution and
annual cycle of NDVI in the Atacama Desert. The NDVI values are higher in the
northern region (approximately 0.2—0.5) and lower in the southern region (around 0.1—
0.15). This pattern aligns with the findings in Fig. 5-13 and Fig. 5-14, which indicate a
positive correlation between higher NDVI values and increased BSC coverage.
Additionally, when compared with Fig. 5-15, the annual cycle of NDVI exhibits a
generally consistent trend with the model predictions, with relatively high values from

January to April, peaking in February.
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Fig. 5-16 Spatial distribution and annual cycle of NDVI in Atacama Desert from 2000
to 2018.

5.3 Conclusion

In this chapter, the fixed-variable model and the machine learning regression model are

applied in two ways, as summarized below:

1) The spatiotemporal distribution of BSC in the Gurbantunggut Desert during the
Last Glacial Maximum (LGM, 21 ka) and the Mid-Holocene (6 ka) is predicted
using paleoclimate data from CMIP6. The results indicate that BSC is more
abundant along the southern edge of the desert, and the BSC fraction is higher

in the Mid-Holocene than in the LGM.

2) The temporal and spatial distribution of BSC in the Atacama Desert is predicted
using modern climate data from the region. The results suggest that BSC in the
Atacama Desert is primarily distributed in the northern part of the desert, with

higher BSC fractions from January to April.

3) The predicted BSC distribution in the Atacama Desert is compared with NDVI
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data, revealing consistent annual cycle variations. Assuming the NDVI value of
BSC is approximately 0.2, the spatial distribution of NDVI closely aligns with
the predicted BSC distribution.
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6 Conclusion and outlook

6.1 Conclusion

A comprehensive understanding of the response of the biological soil crust to climate

change requires BSC-climate models that represent the relevant processes in the

atmosphere and on the land surface. In this study, a modelling system for BSC and

climate drivers based on multi-datasets is developed in two approaches. The effects of

climate variability on the long temporal and large spatial distribution of BSC are

revealed by an improved BSC detection method and multiple linear regression. This

model can be used to explain the dominant climatic factors associated with changes in

BSC, the short- or long-term prediction of regional-scale distribution of BSC, the

assessment of potential impacts of climate change on BSC availability and sustainable

ecosystem development. Key outcomes include:

1)

2)

The long-term and large-scale distribution of biological soil crust (BSC) in the
investigated area is determined through a four-step approach: (i) fusion of
MODIS and Landsat 7 satellite data using the Spatial and Temporal Adaptive
Reflectance Fusion Model (STARFM) to obtain high spatial and temporal
resolution multispectral data; (ii) calculation of BSCI and NDVI from the fused
satellite spectral data; (iii) extraction of BSC in the study area based on BSCI
thresholds derived from previous studies, with additional consideration of
NDVI; and (iv) analysis of the extracted BSC data from multiple perspectives.
The 19-year analysis reveals that, on a temporal scale, BSC variations exhibit
interannual periodicity, with peaks in March and October and near-zero values
in winter. On a spatial scale, BSC is predominantly distributed in the desert-
oasis transition zone, with its presence becoming increasingly sparse toward the

desert hinterland.

Lag correlation and partial correlation between BSC and climate variables are

analyzed. In this study, five climatic variables—specific humidity, 10-meter
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3)

4)

wind speed, 2-meter temperature, surface solar radiation, and total
precipitation—along with their time lags, are used as independent variables. The
results indicate that in some areas, BSC exhibits a stronger correlation with
time-lagged climate factors when the time lag is considered, with this effect
being most pronounced for specific humidity. The BSC response to specific
humidity is typically delayed by 1 to 2 months, and in principle, the time lag
between BSC and climatic variables does not exceed three months. BSC
responds rapidly to temperature, with a correlation coefficient of 0.7, while its
response to precipitation is also relatively fast but has a lower correlation
coefficient of 0.46, with significantly correlated areas mainly located in the east
and south. These correlation analyses provide a valuable reference for the

selection of variables in subsequent modeling efforts.

Models of biological soil crust and climate factors are constructed using two
approaches, both of which account for the influence of time lag. The first
approach is based on fixed climate factors, while the second employs a sliding
time series method to select the most appropriate climate factors at different
time points. Multiple regression analysis is applied to both models, and
statistical parameters are used for estimation. The results indicate that the two
approaches explain approximately 40% and 75% of BSC variation, respectively.
The primary climatic drivers influencing BSC distribution are temperature,

specific humidity, and solar radiation.

The models are applied to paleoclimate scenarios (the Last Glacial Maximum
and the Mid-Holocene) in the Gurbantunggut Desert and to historical climate
conditions in the Atacama Desert. Changes in BSC distribution across different
time periods are compared and analyzed. The results indicate that BSC is more
abundant along the southern edge of the Gurbantunggut Desert, with the Mid-

Holocene exhibiting a higher BSC fraction than the LGM. In the Atacama



Desert, BSC is primarily distributed in the northern region, with higher BSC

fractions observed from January to April.

6.2 Outlook

Based on the results of this study, future research should focus on the following aspects:

1)

2)

3)

Improving prediction accuracy through dataset selection can be achieved in two
ways. The first approach is to incorporate multi-model ensemble (MME) data,
which can help mitigate biases introduced by individual models. The second is
downscaling, where higher-resolution data can better capture geographical and

climatological features, leading to more accurate model predictions.

Enhancing model calibration by utilizing existing BSC distribution datasets
from literature and measured data can improve regional adaptability and
predictive accuracy. Future work should focus on refining the model using these

datasets to ensure greater reliability across different environments.

Expanding the spatial and temporal scope of the model could provide broader
insights. If computational resources and memory capacity allow, the model
could be extended globally and applied to past or future climate scenarios.
Unlike existing static models, the approach used in this study generates a
continuous time series of BSC fraction. Scaling up the application of this model
could contribute to the development of a more comprehensive dataset of BSC

distributions.

115



116



7 Appendix

7.1 Kappa index

Assume that n samples are distributed into k? cells, here each sample is assigned to
one of k categories in the map (usually the rows), and independently to one of the
same k categories in the reference data set (usually the columns). Let n;; denote the
number of samples classified into category i (i = 1,2, ..., k) in the map and
category j (j = 1,2,...,k) in the reference data set (Fig. 7-1) (Congalton & Green,
2019).

Jj = Columns

(Reference)

Row
1 2 k Total

Ny

1 nqq Ny Ny nyy

i = Rows n - n -
(Classification) 1 2 e s
k Ny Ny, Nk Ny,
Column
Total ngq n,, n,p n
n+]-

Fig. 7-1 Mathematical Example of an Error Matrix

Let p;; denote the proportion of samples in the iz, ji cell, corresponding to n;j,

which

Then let p;; and p,; be defined by
K
bi+ = Zpij
j=1
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and

Let
k
Pc = Z Pi+DP+j
i=1
be the actual agreement, and
k
P+j = Z Dij
i=1

be the chance agreement.

Assuming a multinomial sampling model, the maximum likelihood estimate of
Kappa is given by
Po — Pc

K=—"—= (7-1)
1_pc

7.2 Sen’s Slope

Sen’s slope is a non-parametric statistical estimator used to quantify the magnitude of
trends in a time series. Unlike simple linear regression, Sen’s method is robust to
outliers and non-normally distributed data, making it efficient and resistant to
measurement errors and anomalies. This robustness makes it well-suited for detecting

long-term trends in environmental and climate-related datasets.

Sen’s slope is defined as:

xj—x

iﬂi<ﬁ (7-2)

Sen's slope = Median{

A 1-a confidence interval for Sen’s slope can be calculated as (lower, upper), where:
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N =C(n,2),
k = se " Z.pit)

lower = mpy—2,
2

upper = m .
PP Ntz

Here, N = the number of pairs of time series elements (x;,x;), where i < j and se

is the standard error for the Mann-Kendall Test. Also, m,, is the h*"* smallest in the

set {(xj—x;)/(j—i): i <j}and Z.pjiisthe 1 — % critical value for the normal distribution.

7.3 Mann-Kendall Test

Mann-Kendall is a non-parametric test method. Compared with other parametric test
methods, it does not require the sample to follow a certain distribution, is less disturbed
by outliers, and is more suitable for ordinal variables. The Mann-Kendall test has been
successfully used in a large number of studies related to hydrological and
meteorological trend changes to determine the significance of trends in runoff,

precipitation, climate, etc.

The Mann-Kendall Test is used to determine whether a time series has a monotonic
upward or downward trend. It does not require that the data be normally distributed or

linear. It does require that there is no autocorrelation.

The null hypothesis for this test is that there is no trend, and the alternative hypothesis
is that there is a trend in the two-sided test or that there is an upward trend (or downward
trend) in the one-sided test. For the time series xq,...,%,, the MK Test uses the

following statistic:
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n—-1 n
S= Z z sign(xj—xi) (7-3)
i=1 &=d j=i+1

Note that if S > 0 then later observations in the time series tend to be larger than those

that appear earlier in the time series, while the reverse is true if S <0.

The variance of S is given by

1
var = -2 [n(n -1)(@2n+5) - th(ft—l)(zft +5) (7-4)

where t varies over the set of tied ranks and f; is the number of times (i.e., frequency)

that the rank t appears.

The MK Test uses the following test statistic:

1l s>0
e

7 = 0' S = O (7'5)

2 s<0

se
where se is the square root of var. If there is no monotonic trend (the null hypothesis),
then for a time series with more than 10 elements, z ~ Ng 1), i.€., Z has a standard

normal distribution.

7.4 Supplementary figures to Table 4-5

Fig. 7-2 as the supplement to Table 4-5, the monthly box plots for the three machine
learning models on different evaluation metrics is shown. The evaluation indicators of
the linear regression demonstrate superiority in comparison to both the linear kernel

and the RBF kernel support vector regression (SVR) during the growing season.
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Fig. 7-2 Performance of three machine learning models in the study area. The blue,

black and magenta boxes indicate the evaluation indicators for linear regression,

linear kernel SVR and RBF kernel SVR, respectively.

7.5 Precipitation station data for the Atacama Desert in 2018

The stations data of Fig. 7-3 is from station C2 of SFB1211 "Earth Evolution at the

dry Limit" (Hoffmeister, 2018). Stations 1.1, 1.2 and 1.3 are located in the middle of

the desert, and stations 2.1, 2.2 and 2.3 are located in the north of the desert. As can be

seen in the figure, even stations in proximity area to each other still have very

different precipitation levels. Majority of the stations have very low monthly

precipitation. There are many rainy months throughout the year at station 1.3, with

higher precipitation in August and September. Station 2.2 has a higher precipitation

event in November. This is a supplement to Fig. 5-9 and further illustrates the low and

random precipitation in the Atacama Desert.
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Fig. 7-3 Stations data of precipitation in the Atacama Desert in 2018. (a) Station
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location (red dot); (b) Monthly precipitation.
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