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Abstract 
 

Further understanding of biological soil crust (BSC) response to climate change 

requires BSC-climate models, which represent the relevant processes taking place in 

the atmosphere and land surface. In this study, a modelling system for biological soil 

crust and climate factors based on multi-datasets is developed in two approaches. The 

effects of climate variability on the long temporal and large spatial distribution of BSC 

are revealed by an improved BSC detection method and multiple linear regression. The 

models can be used to explain the dominant climatic factors associated with BSC 

changes. the short-term or long-term forecasts of regional-scale distribution of BSC, 

the assessment for the potential effects of climate change on the availability of BSC 

and the sustainable development of ecosystem, as well as the short-term or long-term 

forecasts of regional-scale distribution of BSC.  

 

The long-time and large-scale distribution of biological soil crust is obtained in the 

study area. To this end, this study is divided into the following four steps: 1) Fusion of 

MODIS and Landsat7 satellite data using the Sspatial and Temporal Adaptive 

Reflectance Fusion Model (STARFM) to obtain multispectral data with high spatial 

and temporal resolution; 2) Calculation of the BSC Index (BSCI) and the NDVI from 

the fused satellite spectral data; 3) Extraction of the BSC for the study area based on 

the BSCI thresholds obtained from previous studies, as well as considered with NDVI. 

4) Analyzing the extracted BSC data from multiple perspectives. The analysis for 19a 

shows that on the time scale, the BSC variations have an interannual periodicity, 

peaking in March and October of each year, and almost zero in winter. On the spatial 

scale, the BSC is mainly distributed in the desert-oasis transition zone, while the 

distribution become gradually sparse toward to the desert hinterland. 

 

Lag-correlation and partial correlation between BSC and climate variables is analyses. 

In this study, five climatic variables (specific humidity, 10-meter wind speed, 2-meter 

temperature, surface solar radiation and total precipitation) and their time lags were 
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used as independent variables. The results show that in some areas the BSC is more 

strongly correlated with time-lagged climate factors when the time lag is taken into 

account, and this is most evident for specific humidity. The response of the BSC to this 

is usually delayed by 1 to 2 months. In principle, the time lag between the BSC and the 

climatic variables does not exceed three months. The BSC responds quickly to 

temperature, with a correlation coefficient of 0.7. The BSC also responds quickly to 

precipitation, while the correlation coefficient is relatively low at 0.46 and the 

significantly correlated areas are mainly in the east and south. These correlation 

analyses provide a good reference for the selection of variables for subsequent 

modelling. 

 

The models of biological soil crust and climate factors is constructed using two 

approaches, in which the influence of time lag is considered. One approach is based on 

fixed climate factors, and the other slides over the time series to select more appropriate 

climate factors and coefficients for different time points. Multiple regression analysis 

is applied to both models. Statistical parameters are used to estimation. The results 

shows that the two approaches can explain about 40% and 75% of the BSC, 

respectively. Then applied models to paleoclimate (Last Glacial Maximum and Mid-

Holocene) in the Gurbantunggut Desert and to historical climate in the Atacama Desert. 

Changes in biological soil crust during different time periods are also compared and 

analyzed. 

 

In summary, the long-temporal and large-spatial distribution of BSC is obtained. 

Benefiting from it, the correlation between BSC and climatic factors is analyzed. And 

the model system developed captures well the climatological processes in the study 

area. The BSC-climate model can appropriately predict the BSC in paleoclimate and 

indicate the its response to the climate variables. 
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Zusammenfassung 

 

Um ein besseres Verständnis der Reaktion biologischer Bodenkrusten (BSC) auf den 

Klimawandel zu gewinnen, sind BSC-Klima Modelle erforderlich, die die relevanten 

Prozesse in der Atmosphäre und an der Landoberfläche abbilden. In dieser Studie wird 

ein Modellierungssystem für biologische Bodenkrusten und Klimafaktoren auf der 

Grundlage von Multi-Datensätzen mit zwei Ansätzen entwickelt. Durch eine 

verbesserte BSC-Erkennungsmethode und eine multiple lineare Regression werden die 

Auswirkungen der Klimavariabilität auf die langfristige und großräumige Verteilung 

der BSC aufgezeigt. Diese Modelle können verwendet werden, um die dominierenden 

Klimafaktoren, die Veränderungen der BSC beeinflussen, zu identifizieren, kurz- und 

langfristige Prognosen zur regionalen Verteilung der BSC zu erstellen, die potenziellen 

Auswirkungen des Klimawandels auf die Verfügbarkeit der BSC und die nachhaltige 

Entwicklung des Ökosystems zu bewerten sowie regionale Prognosen der BSC-

Verteilung für unterschiedliche Zeiträume zu ermöglichen. 

 

In der Studie wird die langfristige und großräumige Verteilung der biologischen 

Bodenkrusten im Untersuchungsgebiet bestimmt. Dazu wird die Studie in die 

folgenden vier Schritte unterteilt: 1) Fusion von MODIS- und Landsat7-Satellitendaten 

unter Verwendung des Sspatial and Temporal Adaptive Reflectance Fusion Model 

(STARFM), um multispektrale Daten mit hoher räumlicher und zeitlicher Auflösung 

zu erhalten; 2) Berechnung des BSC Indikator(BSCI) und des NDVI aus den 

fusionierten Satellitenspektraldaten; 3) Extraktion der BSC im Untersuchungsgebiet 

auf Basis der aus früheren Studien ermittelten BSCI-Schwellenwerte sowie unter 

Berücksichtigung des NDVI; 4) Analyse der extrahierten BSC-Daten aus 

verschiedenen Perspektiven. Die Analyse der 19-jährigen Daten zeigt, dass die BSC-

Veränderungen auf der Zeitskala eine jährliche Periodizität aufweisen, mit 

Spitzenwerten im März und Oktober eines jeden Jahres und nahezu null im Winter. Auf 
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der räumlichen Skala ist die BSC hauptsächlich in der Übergangszone zwischen Wüste 

und Oase verteilt, wobei die Verteilung in Richtung Wüsteninneres allmählich 

spärlicher wird. 

 

Die Verzögerungskorrelation und Partialkorrelation zwischen BSC und Klimavariablen 

wird analysiert. In dieser Studie werden fünf Klimavariablen (spezifische Feuchtigkeit, 

Windgeschwindigkeit in 10 Metern Höhe, Temperatur in 2 Metern Höhe, 

Oberflächensonnenstrahlung und Gesamtniederschlag) sowie deren Zeitverzögerungen 

als unabhängige Variablen verwendet. Die Ergebnisse zeigen, dass die BSC in einigen 

Gebieten stärker mit zeitverzögerten Klimafaktoren korreliert ist, wenn die 

Zeitverzögerung berücksichtigt wird, was bei der spezifischen Feuchtigkeit besonders 

deutlich ist. Die Reaktion der BSC auf die spezifische Feuchtigkeit erfolgt in der Regel 

mit einer Verzögerung von 1 bis 2 Monaten. Grundsätzlich überschreitet die 

Zeitverzögerung zwischen der BSC und den Klimavariablen nicht drei Monate. Die 

BSC reagiert schnell auf Temperatur mit einem Korrelationskoeffizienten von 0,7. 

Auch auf Niederschlag reagiert die BSC schnell, wobei der Korrelationskoeffizient 

jedoch relativ niedrig ist 0,46 und die signifikant korrelierten Gebiete hauptsächlich im 

Osten und Süden liegen. Diese Korrelationsanalysen liefern eine gute Grundlage für 

die Auswahl der Variablen für die nachfolgende Modellierung. 

 

Die Modelle für biologische Bodenkruste und Klimafaktoren werden unter 

Berücksichtigung der Zeitverzögerung mit zwei Ansätzen entwickelt. Ein Ansatz 

basiert auf festen Klimafaktoren, der andere gleitet über die Zeitreihe, um besser 

geeignete Klimafaktoren und Koeffizienten für verschiedene Zeitpunkte auszuwählen. 

Beide Modelle verwenden multiple Regressionsanalysen, die durch statistische 

Parameter bewertet werden. Die Ergebnisse zeigen, dass die beiden Ansätze etwa 40 % 

bzw. 75 % der BSC-Veränderungen erklären können. Anschließend werden die 

Modelle auf das Paläoklima (Letzteiszeitliches Maximum und Mittelholozän) in der 

Gurbantunggut-Wüste und auf das historische Klima in der Atacama-Wüste 

angewendet. Veränderungen der biologischen Bodenkrusten in verschiedenen 
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Zeiträumen werden ebenfalls verglichen und analysiert. 

 

Zusammenfassend wird die langfristige und großräumige Verteilung der BSC 

bestimmt. Auf dieser Grundlage wird die Korrelation zwischen BSC und 

Klimafaktoren analysiert. Das entwickelte Modellsystem erfasst die klimatischen 

Prozesse im Untersuchungsgebiet gut. Das BSC-Klima Modell kann die BSC im 

Paläoklima angemessen vorhersagen und ihre Reaktion auf Klimavariablen aufzeigen. 
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1 Introduction 

 

Biological soil crust (BSC) is formed by soil microorganisms, algae, lichens, mosses 

plants and soil forming an organic complex (Belnap et al., 1994; West, 1990). It is a 

common phenomenon in the desert and semi-desert areas of the world, and its formation 

makes the soil surface obviously different from loose sandy soil in physical, chemical 

and biological properties, with strong wind erosion resistance and important ecological 

and geological effects, which has become an important basis for the succession of 

vegetation in desert areas (Zhang et al., 2005). Biological soil crusts are important 

structure in the topological succession of soil in desert and semi-desert areas, which has 

a significant effect on the improvement of soil erosion resistance, and is also the first 

sign of sand fixation (Hu et al., 2000). Biological crusts can grow and reproduce in poor 

conditions and influence and change the environment through their own activities, 

which is of great importance and irreplaceable ecological significance (Chen et al., 

2003). 

 

Remote sensing optical images (visible (VIS) to shortwave infrared (SWIR)) from 

space-borne sensors have been widely used to monitor terrestrial ecosystem functions 

due to their synoptic coverage of the land surface at fixed intervals. However, 

monitoring drylands from satellite platforms has been quite challenging because arid 

and semi-arid regions are usually only sparsely vegetated, and the observed spectral 

signal is a mixture of soil, biocrusts and vascular plants (annuals and perennials) 

(Rozenstein & Adamowski, 2017; Weber & Hill, 2016). Remote sensing images at high 

spectral, temporal and spatial resolution are required to accurately map the spatial 

distribution of the different dryland components from space (Karnieli et al., 1996, 1999, 

2002; Zaady et al., 2007). High spectral resolution is helpful to separate the biocrust 

unique spectral features from that of bare soils (Karnieli & Tsoar, 1995; Rozenstein & 

Karnieli, 2015). A high temporal resolution can help in separating different land covers 

because biocrusts and vascular plants have different phenological cycles. A high spatial 
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resolution is expected to reduce spectral mixing effects in the VIS and infrared regions 

(Qin et al., 2006), thus improving the characterization of the biocrust spatial distribution 

when their fractional cover is low. Ground-based spectral measurements and 

Normalized Difference Vegetation Index (NDVI)-derived values have also been used 

to link semi-arid ecosystem phenology to biocrust CO2 fluxes in order to assess the 

capability to detect biocrust activity from satellite (Burgheimer et al., 2006a, 2006b). 

Therefore, using suitable spectral indices and satellite images to detect BSC from 

background (rocks, bare soils or sand dunes) and map their distribution is critical to 

quantify biological crusts interactions to ecosystem. 

 

The spatial and temporal distribution of biological crusts contributes to the 

understanding of the evolution trend of the ecological environment in desert areas and 

its response to global changes. The distribution of biological crusts has selective 

characteristics at different scales. At the landscape scale, well-developed biological soil 

crusts are found in arid desert areas such as Ordos, Shapotou and Junggar in China. On 

the other hand, in the Taklamakan Desert, which is also a temperate desert area, there 

is no distribution of biological soil crusts. At the regional scale, as in the Junggar Basin, 

the cover and distribution of biological soil crusts is much higher in the south than in 

the central and northern regions (Zhang, 2005; Zhang et al., 2007). At the dune scale, 

the cover and variety of biological soil crusts varied along the top, mid-slope, bottom 

and base of the interdune line (Zhang et al., 2004; Chen et al., 2005, 2007). At the 

microscale, for instance, at the meter and centimeter scales of homogeneity, lichen and 

moss crusts are also distributed in discontinuous patches (Boeker et al., 2006). However, 

current research lacks the study of the distribution of BSC over long temporal and 

spatial scales. Hence, it is important to study the characteristics and patterns of the 

spatial and temporal distribution of biological crusts. 

 

Biological soil crust is a major component of desert ecosystems. The anatomical 

structure of biological soil crusts is very simple, which is extremely sensitive to external 
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disturbances and changes in environmental conditions. It is able to manifest the impact 

of climate change far ahead of vascular plants in desert ecosystems, and the most 

sensitive indicator organisms in desert ecosystems of environmental and climate change 

(Conti et al., 2001; Wu et al., 2002, 2003). As the earliest and most susceptible surface 

system in desert ecosystems, biological soil crust microcosms are ideal information 

carriers for studying the impacts of global change on desert ecosystems. At global and 

regional scales, the distribution of biological soil crusts shows a positive correlation 

with annual precipitation (Belnap et al., 2007), condensation and soil moisture content 

(Schieferstein & Loris, 1992; Jacobs et al., 1999, 2000); the effect of temperature on 

the distribution of biological soil crusts varies according to the species that make up the 

biological soil crusts (Spier & Van Herk, 1997; Van Herk et al., 2002). On a small scale, 

the distribution of biological soil crusts is limited by soil type, texture and nutrients 

(Eldridge, 1996; Bowker et al., 2005). Therefore, the selection of climatic factors, such 

as moisture and temperature, to carry out the changes in the distribution pattern of 

biological soil crusts under different climatic factors and multi-factor coupling 

conditions is an important issue to be addressed. 

 

This study aims at developing a modelling system for biological soil crusts and climate 

factors based on multi-datasets, with improved BSC detection method and machine 

learning, to reveal the long-term and large spatial distribution of BSC and its interaction 

with the climate variability. This model can be used to explain the effects of climatic 

factors on biological crusts, the short-term or long-term forecasts of regional-scale 

distribution of BSC, the assessment for the potential effects of climate change on the 

availability of BSC and the sustainable development of ecosystem. 

 

The objectives of this study are: 

1. To obtain the long-time and large-scale distribution of biological soil crusts based on 

satellite data and improved crust detection method, and to analyze their changing 

patterns and characteristics. 
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2. To develop BSC-climate models using machine learning techniques and to evaluate 

the performance of this model; 

3. To understand how the climate factors in the model affect the variability of biological 

soil crusts. 

4. To apply the models to paleoclimate in Gurbantunggut Desert and modern climate in 

Atacama Desert. 

 

This thesis is divided into 6 chapters. In Chapter 2, a relevant research review and 

motivation are presented. In Chapter 3, the spatiotemporal distribution of biological soil 

crusts described along with the introduction of the study area and data processing. In 

Chapter 4, a model of biological soil crusts and climate factors is constructed, in which 

the influence of time lag is considered. Statistical parameters are used to evaluate and 

select the model. Predictions are compared with observations in Gurbantunggut Desert 

to determine the validity of the model. Further, the effects of climatic variables on BSC 

are interpreted according to the model parameters. In Chapter 5, the BSC-climate model 

is applied to paleoclimate (Last Glacial Maximum and Mid-Holocene) and the Atacama 

Desert. Changes in biological soil crusts in different areas during different periods are 

also compared and analyzed. In the last chapter, the discussion, conclusion, and outlook 

are given. 
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2 Research review and motivation 

2.1 Biological Soil Crust 

2.1.1 Characteristics 

The concept of biological crust is first mentioned by Fritsche (1907) in a study related 

to tropical desert areas. Vascular plants in desert areas are usually low and sparse, with 

large open spaces between individuals, and the amount of litter is relatively small, 

which has a limited role in resisting soil wind erosion in arid and semi-arid areas, and 

the role of BSC on soil stability is particularly important in this situation (Belnap, 2003). 

Numerous studies have confirmed that BSC can enhance soil stability and improve soil 

resistance to wind and water erosion (Eldridge, 2003; Eldridge & Leys, 2003; 

Chaudhary et al., 2009; Bu et al., 2015). In arid and semi-arid regions, water is one of 

the main factors limiting plant growth (Xiong et al., 2011), and the presence of BSC 

can lead to soil water redistribution (Yair, 2003), and the structure of BSC and 

physiological activities of microorganisms can change the aeration and permeability of 

the topsoil, affecting the hydrological processes of precipitation infiltration, flow 

production, and evapotranspiration (Warren, 2001; Belnap, 2006; Wu et al., 2002). 

Algae, lichens, and mosses are primary producers with carbon sequestration functions 

and are important contributors of organic carbon in arid ecosystems (Bowker et al. 2010; 

Castillo-Monroy et al., 2011). Cyanobacteria in the BSC have nitrogen fixation function, 

which can provide abundant nitrogen source for plant growth and contribute to soil 

nitrogen input in desert ecosystems (Belnap, 2002; Billings et al., 2003; Su et al., 2011). 

In addition, the presence of BSC also interacts with the surrounding vegetation and 

affects the stability of sandy ecosystems (Bowker et al., 2014; Chen, 2007). China 

researchers have carried out a lot of research work in the Gurbantunggut Desert, Mu Us 

sandy land, Ningxia Shapotou and Loess Plateau, and most of the current research is 

still in the stage of understanding the functions and roles of BSC (Li et al., 2009). 
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2.1.2 Distribution 

Biological soil crusts are formed by soil particles tightly bound to algae, fungi, lichens, 

and mosses in varying proportions, and are a common ground cover in arid and semi-

arid regions (Belnap et al., 2003; Belnap, 2006). In recent years, many studies in 

Chinese deserts have shown that BSC have a certain distribution in the region and plays 

an important role in preventing soil erosion and regulating hydrological processes 

(Xiong et al., 2011; Zhang et al., 2013; Wang et al., 2017).  

 

Biological soil crusts are widely distributed across terrestrial surfaces, extending 

beyond arid and desert regions to semi-arid landscapes (Pickard, 1986; Blank & 

Camero, 1966). Their presence is largely attributed to the low vegetation cover in these 

ecosystems, where natural and semi-natural plant communities typically exhibit less 

than 40% coverage, leaving substantial open ground available for BSC colonization 

(Belnap et al., 1994). Additionally, the spatial heterogeneity and environmental 

variability across these landscapes contribute to the ecological significance of BSCs, 

making them a fundamental component of fragile ecosystems. The role of BSCs in 

ecosystem stability is particularly significant, as they enhance soil carbon and nitrogen 

fixation, improve fertility, and increase water infiltration capacity (Belnap & Lange, 

2003). Given their ecological importance, a systematic analysis of BSC formation, 

development, and spatial distribution in natural environments is essential, alongside 

investigations into their successional dynamics and functional contributions to 

ecosystem processes. 

 

Biological soil crusts have been widely studied across various habitats, with research 

focusing on their distribution, composition, diversity, and environmental interactions, 

providing key insights into their spatial patterns globally. In Australia, BSCs collected 

from 30 quadrats across three geomorphic types in a forest were analysed for their 

species composition, with a particular emphasis on lichens and bryophytes (Eldridge, 

1999). In North America, research has primarily focused on semi-arid and arid 
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landscapes. In the Colorado Plateau, USA, BSCs have been characterized at millimetre 

resolution, revealing their bacterial biomass, diversity, and vertical stratification 

(Garcia-Pichel et al., 2003). In the Mojave Desert, USA, BSCs were mapped and 

analysed using GIS techniques, surface feature extraction, and spatial statistics to 

examine their relationships with topographic and soil properties, contributing to a 

conceptual model of BSC spatial distribution (Williams et al., 2013). In Latin America, 

studies have emphasized BSC composition and ecological roles in semi-arid 

environments. In Mexico’s Tehuacán Valley, BSCs from 87 sample plots were 

examined to investigate the distribution and composition of algae, lichens, and 

bryophytes, highlighting their role in stabilizing desert soils (Rivera-Aguilar et al., 

2006). Across southwestern Africa, research has focused on regional-scale climatic 

influences on BSC diversity and distribution. A large-scale study assessed BSC 

diversity and distribution patterns at 29 observation stations along an 1800 km climatic 

transect, capturing biogeographical variations across multiple climate zones (Zedda et 

al., 2011). Studies in the Middle East have explored BSC formation and classification 

based on morphological characteristics. In the Negev Desert, Israel, BSCs were 

categorized into different types, and their spatial distribution patterns and formation 

mechanisms were systematically evaluated (Kidron et al., 2010). European research has 

focused on the role of environmental factors in BSC successional dynamics. In central 

Spain, BSCs within a nature reserve were analysed to determine the effects of 

environmental variables on post-successional distribution patterns, highlighting their 

ecological importance in Mediterranean landscapes (Ochoa-Hueso et al., 2011). These 

studies collectively illustrate the global variation in BSC distribution and composition 

across diverse ecosystems. 

 

The primary focus of biological soil crust research in China has been on the 

Gurbantunggut Desert, the Tengger Desert, the Kubuqi Desert, and the Mu Us Sandy 

Land, etc., which are situated in low-altitude desertification-prone regions in northern 

China (Weber et al., 2016; Li et al., 2020; X. Zhou et al., 2020; H. Zhou et al., 2020).  
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In the Gurbantunggut Desert, BSCs are predominantly distributed in the southern 

region (Zhang et al., 2007). In the Tengger Desert, BSCs beneath Hedysarum scoparium 

and Calligonum mongolicum were analyzed through field and laboratory investigations, 

revealing that crust thickness decreased with increasing distance from plant roots, 

further highlighting the role of vegetation in BSC formation (R. Zhang et al., 2024). In 

the Kubuqi Desert, induced BSCs were found to vary in distribution with slope aspect, 

gradient, and plant canopy, with better crust development observed on north-facing 

slopes and in vegetated areas (X. Zhou et al., 2020). In the Mu Us Sandy Land, BSCs 

within Artemisia ordosica communities were reported to be prevalent, with 

significantly lower coverage in semi-fixed sand than in fixed sand, indicating the 

influence of surface stability on BSC development (Zhang et al., 2010). The spatial 

distribution of BSCs beneath Artemisia ordosica was further analyzed, showing strong 

associations with wind direction, wind speed, and plant-root proximity (Liu et al., 2014). 

Beyond these desert systems, slope-associated BSCs in Liudaogou, a transitional zone 

between wind and water erosion in the northern Loess Plateau, were investigated, 

revealing that crusts develop more extensively in sandy soils with gentle slopes, higher 

moisture availability, lower solar radiation, and reduced erosion intensity (Bu et al., 

2016). 

 

With the advancement of research, the study of BSCs has become increasingly 

multidimensional, with scholars identifying key environmental factors that influence 

their spatial distribution at different scales. At the micro-scale, microtopography plays 

a critical role in BSC formation and the maintenance of community diversity (Li et al., 

2010). At small to medium scales, factors such as atmospheric dust accumulation, light 

availability, soil moisture, and soil nutrients drive variations in BSC cover and diversity 

(Chen et al., 2007; Lan et al., 2015; Zhang et al., 2000; Zhang et al., 2015). At the 

landscape scale, precipitation serves as a dominant factor in determining the spatial 

distribution of BSCs, whereas at the regional scale, soil properties become the primary 

determinant of BSC status (Li et al., 2017). Additionally, at the sample site scale, 
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disturbances and vegetation cover influence the spatial patterns of BSCs (Li et al., 2017). 

 

2.1.3 Detection and Methodology 

Remote sensing plays a crucial role in mapping, classifying, and characterizing BSCs, 

as their patchy distribution across vast regions makes it challenging to accurately assess 

spatial patterns using only ground-based mapping techniques. Spectroscopy has been 

widely employed in BSC research, with insights from proximal sensing informing 

regional-scale remote sensing studies. Reflectance spectroscopy offers a superior 

alternative to conventional laboratory methods, as it is minimally invasive and enables 

the in situ detection of temporal changes in BSCs. 

 

The application of remote sensing in BSC studies has been explored since 1986, when 

optical imagery from the Landsat TM sensor was analyzed for this purpose (Green, 

1986; Wessels & Van Vuuren, 1986).  Two primary spectral domains have been 

identified for analyzing BSC properties: the reflective domain and the thermal infrared 

(TIR) domain, both extensively used in soil, vegetation, and land cover analysis 

(Rozenstein & Adamowski, 2017). Spectroscopy in the reflective domain, covering the 

visible (VIS), near-infrared (NIR), and shortwave infrared (SWIR) regions, relies on 

reflected solar illumination to provide detailed surface composition data. In contrast, 

TIR spectroscopy, operating primarily in the long-wave infrared (LIR) region, exhibits 

greater sensitivity to soil properties. Although its field application remains limited due 

to the high cost and restricted availability of instrumentation, TIR spectroscopy offers 

an advantage through inherent self-emission, enabling remote sensing under shaded 

conditions, cloud cover, and even at night (Eisele et al., 2012; Eisele et al., 2015). Over 

time, various techniques have been developed to improve BSC identification and 

mapping. Methods for BSC identification and extraction primarily include spectral 

index-based techniques that leverage BSC spectral properties and object-oriented 

approaches (Crucil & Van Oost, 2021). The distribution of BSCs has been mapped 

using spectral mixture analysis, integrating aerial photos with limited spectral 
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information and hyperspectral imagery (Hill et al., 1998; Hill et al., 2008). Spectral 

analysis of BSCs, bare soil, and vegetation provides critical insights into how BSC 

cover influences spectral response in heterogeneous landscapes, significantly affecting 

vegetation indices and surface albedo (Rodríguez-Caballero et al., 2015). In China’s 

Mu Us Sandy Land, remote sensing techniques have enabled the quantification of moss 

crusts, revealing a total coverage of approximately 6.43% (0.72 × 10⁴ km²) (Feng et al., 

2015). In addition, multi-source UAV imagery enables high-precision mapping (>80% 

accuracy) of vegetation, bare ground, and BSC components in dryland ecosystems, as 

demonstrated in central Spain (Blanco-Sacristán et al., 2021). These advancements 

underscore the increasing role of remote sensing technologies in improving the 

detection, classification, and large-scale monitoring of BSCs. 

  

NDVI has been widely used to estimate and map BSC coverage, as it effectively 

represents different vegetation types and their physiological conditions. However, for 

BSCs, both dry and wet states must be considered, as spectral reflectance varies with 

biological activity and surface moisture content. Escribano et al. (2010) demonstrated 

that chlorophyll significantly influences spectral reflectance in BSCs. NDVI is 

influenced by chlorophyll absorption, with spectral features around 680 nm correlating 

with chlorophyll content in cyanobacteria-, lichen-, and moss-dominated crusts (Weber, 

2008; Chamizo, 2012). NDVI values for wet BSCs are notably higher than those for 

dry BSCs. After six years of disturbance through soil redistribution, NDVI values of 

wet crusts reached 0.15 (Zaady et al., 2007). NDVI has been shown to vary significantly 

across different BSC types, with wet cyanobacteria-dominated crusts on sand reaching 

values of up to 0.22, while moss-dominated crusts exhibit even higher values of 0.3, in 

contrast to bare soil at 0.08 (Weber & Hill, 2016). These NDVI differences suggest that 

dry BSCs share spectral characteristics with bare soil, whereas wet BSCs display 

enhanced chlorophyll absorption and increased NIR reflectance, making their spectral 

response more comparable to that of vascular plants. The spectral similarity between 

BSCs and other land cover types, such as bare soil and sparse woody vegetation, often 
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leads to classification ambiguities when using NDVI. To address these limitations, 

alternative spectral indices have been developed over the past few decades to enhance 

the accuracy of BSC identification and differentiation. 

 

Numerous studies have explored the calculation methods for biocrust-related indices. 

Karnieli (1997) developed the spectral Crust Index (CI) as a remote sensing-based 

approach for detecting and mapping biological soil crusts in arid dune environments. 

This index was specifically designed to distinguish BSCs from bare sand and other land 

surface features by leveraging their unique spectral reflectance characteristics. Utilizing 

data from multispectral sensors, CI enhances the spectral contrast between crust-

covered and non-crust areas, providing a more effective method for large-scale BSC 

mapping. The study demonstrated the feasibility of satellite-based BSC detection, 

laying a foundation for subsequent advancements in remote sensing applications for 

dryland ecosystem monitoring. The Biological Soil Crust Index (BSCI) was developed 

based on Landsat ETM+ imagery, enabling the effective identification and extraction 

of lichen biocrusts in the Gurbantunggut Desert (Chen et al., 2005). The interpretation 

achieved a Kappa coefficient of 0.82, with an overall detection accuracy of 94.7% for 

the presence or absence of biocrusts. However, lichen crusts could only be effectively 

distinguished when biocrust coverage exceeded 33%. The CI and BSCI were evaluated 

using field spectra and Compact Airborne Spectrographic Imager (CASI) hyperspectral 

images, but both indices exhibited limitations in differentiating biocrusts from bare soil. 

When applying CI, roads devoid of biocrusts were erroneously classified as biocrust-

covered areas, whereas with BSCI, certain vegetation zones without biocrusts were 

misclassified as biocrusts. To address these issues, the Continuum Removal Crust 

Identification Algorithm (CRCIA) was developed, which, when applied in South Africa, 

achieved a Kappa index of 0.831 and demonstrated strong classification performance 

(Weber et al., 2008). Using CASI hyperspectral imagery, the support vector machine 

(SVM) classification method was shown to effectively differentiate bare soil, algal crust, 

lichen crust, green vegetation, and dry vegetation, while spectral mixture analysis 
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accurately quantified the proportion of each feature within a pixel (Rodríguez-

Caballero, 2014). The Thermal Crust Index (TCI) was developed based on the principle 

that variations in reflectivity and absorptivity induced by BSCs alter surface 

temperature. Designed to differentiate BSCs from bare sand in desert environments, the 

TCI demonstrates enhanced effectiveness when combined with the NDVI and the CI 

(Rozenstein & Karnieli, 2015). Applied to Sentinel-2 imagery, the Biocrust Greenness 

Index (BGI) and Maximum Vegetation Development Index (MVDI) enhance dryland 

ecosystem monitoring by capturing the greening dynamics of BSCs and vascular plants. 

These indices provide valuable insights into BSC responses to climatic variability, 

particularly precipitation, advancing the understanding of climate change impacts on 

BSCs and vegetation (Panigada et al., 2019). The Sandy Land Ratio Crust Index (SRCI) 

and the Desert Ratio Crust Index (DRCI) were employed to map moss-dominated crusts 

in the Mu Us Sandy Land, China. Compared to mapping without these indices, this 

approach improved the overall classification accuracy for sandy land and desert areas 

by 6% (Wang et al., 2022). The Fractional Biocrust Cover Index (FBCI) is derived from 

Sentinel-2 imagery with a 10 m spatial resolution, based on radiative transfer theory. 

The estimated fractional biocrust coverage exhibits a high level of agreement with field 

measurements, with a RMSE of 0.0774 and a systematic deviation of −4.05% (Sun et 

al., 2024). Spectral characterization methods provide a practical and efficient approach 

for monitoring the long-term spatiotemporal dynamics of biocrust distribution. 

However, it is important to note that their applicability is primarily limited to 

environments where BSC coverage exceeds 30% and vegetation cover remains below 

10% (Beaugendre et al., 2017). 

 

While remote sensing has advanced BSC classification and mapping, long-term 

monitoring and large-scale distribution analysis remain limited. Few studies have 

developed robust methodologies to assess the long-temporal dynamics of BSCs across 

large-scale spatial distributions using satellite observations, highlighting the need for 

further research. Additionally, BSCs are often analysed independently through either 
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qualitative descriptions or quantitative comparisons, hindered by spatial-temporal 

variability and environmental complexity. Bridging these gaps requires integrating 

diverse analytical approaches with advanced remote sensing techniques to improve the 

understanding of BSC dynamics. 

 

2.2 Satellite data processing 

In recent years, the research of spatial-temporal fusion models has gained extensive 

attention from scholars at home and abroad. According to the different principles of 

their algorithms, spatial-temporal fusion models can be mainly classified into three 

categories: spatial-temporal fusion models based on weight function, spatial-temporal 

fusion models based on hybrid image element decomposition and spatial-temporal 

fusion models based on dictionary pair learning (Dong & Meng, 2018). 

 

Among spatiotemporal fusion models based on weighting functions, the Spatial and 

Temporal Adaptive Reflectance Fusion Model (STARFM) was introduced to improve 

reflectance prediction. This model accounts for temporal and spatial distance as well as 

spectral similarity between similar image elements and target image elements, 

constructing a weighting function to determine their relative contributions. By 

integrating the high temporal resolution of MODIS remote sensing images with the 

high spatial resolution of Landsat remote sensing images, STARFM generates 

reflectance data that simultaneously retain both MODIS's temporal resolution and 

Landsat's spatial resolution (Gao et al., 2006). To enhance transient surface change 

detection, the Spatial Temporal Adaptive Algorithm for Mapping Reflectance Change 

(STAARCH) was introduced, allowing the extraction of relatively short-term surface 

change information (Hilker et al., 2009). The Enhanced Spatial and Temporal Adaptive 

Reflectance Fusion Model (ESTARFM) further improved the methodology by 

incorporating the temporal trend of surface reflectance and introducing the concept of 

correlation coefficients, thereby enhancing adaptability to complex surfaces (Zhu et al., 

2010). Additionally, the Spatial-Temporal Vegetation Index Image Fusion Model 
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(STVIFM) was developed to integrate the rate of change of vegetation indices across 

different growth periods, facilitating the construction of vegetation index time series 

(Liao et al., 2017). 

 

Among spatiotemporal fusion models based on hybrid image element decomposition, 

several approaches have been developed to improve reflectance prediction and surface 

change detection. The Spatial and Temporal Data Fusion Approach (STDFA) utilizes a 

hybrid image element decomposition method to extract temporal change information 

from time-series low-resolution imagery. An unsupervised classification method is then 

applied to classify image elements and construct spectral unmixing equations, thereby 

obtaining the average reflectance change for each category to enhance image prediction 

(Wu et al., 2012). The Spatial and Temporal Reflectance Unmixing Model (STRUM) 

was later introduced to directly decompose temporal changes in low-resolution image 

elements to estimate endmember variations. This approach incorporates Bayesian 

theory to constrain the estimation process, enhancing prediction accuracy (Gevaert et 

al., 2015). The Flexible Spatiotemporal Data Fusion (FSDAF) model employs a thin-

plate spline function to interpolate low-resolution data at the prediction moment, 

deriving the spatial component of surface information. The temporal component is then 

extracted using a hybrid image decomposition method, and the two components are 

combined to generate the final prediction. This method effectively captures surface type 

changes over time (Zhu et al., 2015). To further enhance STDFA, the Improved Spatial 

and Temporal Data Fusion Approach (ISTDFA) was developed. This model introduces 

a weighted hybrid image decomposition equation to address reflectance change 

volatility and applies a linear model to account for sensor discrepancies, thereby 

improving prediction accuracy (Wu et al., 2016). More recently, the Improved Flexible 

Spatiotemporal Data Fusion Model (IFSDAF) was proposed, integrating a constraint-

based least-squares method to combine temporal and spatial variations of surface 

information, enabling the generation of high-resolution spatiotemporal data with 

improved accuracy (Liu et al., 2019). 
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Compared to the previously discussed methods, spatiotemporal fusion models based on 

dictionary pair learning were developed relatively late. These models establish 

correspondences between high-resolution and low-resolution images by leveraging 

structural similarities, allowing them to capture key predictive features, including land 

cover changes. The Sparse-Representation-Based Spatiotemporal Reflectance Fusion 

Model (SPSTFM) was introduced to construct relationships between two pairs of high-

resolution and low-resolution images through dictionary pair learning, using the trained 

dictionary to predict high-resolution imagery (Song et al., 2012). Building upon 

SPSTFM, a modified spatiotemporal fusion model based on dictionary pair learning 

was proposed, requiring only a single pair of high-resolution and low-resolution images 

for dictionary training. This approach utilizes sparse coding technology to downscale 

the predicted low-resolution data before synthesizing the final high-resolution image 

(Song et al., 2013). In recent years, with advancements in deep learning algorithms, 

researchers have integrated these techniques into spatiotemporal fusion. Due to the 

computational complexity of such algorithms, their applicability remains largely 

confined to small-scale study areas. The Spatiotemporal Fusion Using Deep 

Convolutional Neural Network (STFDCNN) model applies convolutional neural 

networks (CNNs) to extract spatial and temporal information from large-scale trained 

remote sensing datasets, thereby improving prediction accuracy (Song et al., 2018). 

Additionally, the Deep Convolutional Spatiotemporal Fusion Network (DCSTFN) fully 

leverages CNNs to establish a complex yet direct nonlinear mapping between input and 

output images. This method not only enhances fusion accuracy but also exhibits greater 

robustness compared to traditional spatiotemporal fusion algorithms (Tan et al., 2018). 

 

2.3 Climate change and Biological Soil Crust response 

Biological soil crusts are widely distributed across global desert regions due to their 

remarkable resilience to desiccation, extreme temperatures (up to 70 °C), high pH, and 

salinity (Friedmann & Galun, 1974; Wessels & Van Vuuren, 1986; West, 1990; Zedda 

et al., 2011; Yu et al., 2022). Their distribution at global and regional scales is positively 
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correlated with precipitation (Belnap et al., 2007), condensate water availability (Jacobs 

et al., 1999, 2000), and soil moisture content (Schieferstein & Loris, 1992). The 

influence of temperature on BSC distribution varies depending on the species 

composition of the crusts (Spier & Van Herk, 1997; Van Herk et al., 2002). At local and 

landscape scales, as well as other finer spatial levels, BSC distribution is shaped by 

environmental factors, such as soil type (Eldridge, 1996; Bowker et al., 2005), texture 

(Duan et al., 2003), stability (Stovall et al., 2022), fertility (Bowker et al., 2006), 

vegetation cover (Seitz et al., 2017), topography (Su et al., 2020), and solar radiation 

exposure (Durham et al., 2018). The ecological functionality of BSCs is closely linked 

to their developmental stage, which follows a hierarchical succession from 

cyanobacteria-dominated crusts to lichen- and moss-dominated crusts. This 

successional trajectory is primarily driven by precipitation rates and, in some cases, by 

prevailing temperatures (Rozenstein & Adamowski, 2017; Weber & Hill, 2016; 

Maestre et al., 2011; Maestre et al., 2012). However, the role of vascular plants in BSC 

distribution remains inconclusive, with conflicting evidence on their impact (Maestre 

& Cortina, 2002; Bowker, 2007). Additionally, disturbance intensity significantly 

influences BSC dynamics, as moderate disturbance has minimal effects, whereas high-

intensity disturbances lead to structural degradation and functional decline, ultimately 

reducing BSC coverage (Wang et al., 2004, 2007). 

 

Understanding these factors is essential for predicting their ecological roles and 

responses to environmental change. Precipitation has long been recognized as a key 

determinant of BSC distribution, with increasing precipitation generally promoting 

lichen and moss crust cover, while algal crusts initially expand before declining as 

moisture availability increases (Eldridge & Tozer, 1997; Marsh et al., 2006; Büdel et 

al., 2009; Zhao et al., 2014). However, precipitation also stimulates vascular plant 

growth, and their canopy cover and litter accumulation can suppress BSC development 

(Bowker et al., 2005). Beyond total precipitation, seasonal patterns and event frequency 

play a crucial role, with winter precipitation and moderate rainfall events (5 mm) being 
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most conducive to BSC formation (Read et al., 2014), whereas frequent light rains (1.2 

mm) can hinder bryophyte crust survival (Chamizo et al., 2016; Jia et al., 2019). In 

hyper-arid environments like the Namib Desert, where precipitation is extremely scarce, 

lichen and bryophyte cover can still reach ~70%, primarily due to non-precipitation 

water sources such as fog and dew condensation, which facilitate atmospheric humidity 

retention (Eldridge et al., 2020; Kidron, 2019a; Li et al., 2021). Temperature further 

influences BSC distribution and species richness by modifying vegetation cover and 

soil pH (Eldridge and Delgado-Baquerizo, 2019), while elevated soil temperatures 

increase evaporation, creating conditions that limit biological colonization (Garcia-

Pichel, 2013). The influence of temperature on the structural composition of biological 

soil crust communities becomes increasingly pronounced when interacting with time 

and precipitation (Ferrenberg et al., 2015). Additionally, legacy effects of past climatic 

conditions, which shape contemporary ecological patterns, have been shown to 

influence both the distribution and community composition of biological soil crusts 

(Eldridge & Delgado-Baquerizo, 2019). Under projected future climate scenarios of 

reduced precipitation, rising temperatures, and increased drought frequency, BSC cover 

is expected to decline by approximately 25% - 40% by the end of the century, with 

communities shifting towards early-stage cyanobacterial crusts (Rodriguez-Caballero 

et al., 2018). In addition to precipitation and temperature, potential evapotranspiration 

plays a crucial role in shaping BSC composition and distribution. In the hot deserts of 

the southern United States, such as the Mojave and Chihuahuan Deserts, high 

evapotranspiration favours the dominance and widespread distribution of algal crusts. 

As evapotranspiration decreases further north, in regions such as the Colorado Plateau, 

Great Basin Desert, and Columbia Plateau, lichen and moss crusts gradually replace 

algal crusts, increasing in both distribution and coverage (Rosentreter & Belnap, 2003). 

Beyond climatic factors, spatial heterogeneity and dispersal limitations of propagules, 

such as fungal spores and cyanobacteria, play a crucial role in the establishment and 

composition of biological soil crusts (Garcia-Pichel et al., 2013). Soil texture has 

traditionally been considered a key determinant, with finer particles thought to facilitate 
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BSC development (Williams et al., 2013; Belnap et al., 2014). However, this 

assumption has been challenged, as some studies suggest that dust and fine-grained 

soils are not essential for BSC formation (Kidron, 2019b). Additionally, soil parent 

material influences surface weathering and water retention capacity, thereby shaping 

BSC distribution patterns (Bowker & Belnap, 2008). A comprehensive review of 

experimental studies further indicates that bryophyte- and lichen-dominated crusts are 

more prevalent on gypsum and calcareous soils (Elbert et al., 2012), whereas 

cyanobacterial crusts tend to dominate sandy substrates (Root & McCune, 2012). 

 

In recent years, extensive research has examined the environmental factors influencing 

the growth and development of biological soil crusts in northern China. Higher plants 

have been found to have minimal impact on BSC degradation in interplant spaces, 

whereas the thickness and coverage of plant litter play a crucial role in crust degradation 

both beneath litter and in general (Zhang et al., 2008). Changes in the physical and 

chemical properties of BSCs and the underlying topsoil are influenced by vegetation 

type and crust development, with vegetation promoting crust formation and soil 

improvement in sandy areas (Zhao et al., 2009). In the Mu Us Sandy Land, BSCs in 

early developmental stages are highly influenced by vegetation presence. Light grazing 

disturbance has no significant effect on BSC cover or thickness, whereas moderate 

grazing disturbance leads to a substantial reduction in BSC cover. Additionally, BSCs 

in semi-fixed sandy lands are more sensitive to grazing disturbances (Zhang, 2014). On 

the Loess Plateau, BSC development varies significantly across different vegetation 

types in terms of crust thickness, shear strength, and bulk density. Moreover, slope 

aspect has been identified as a key factor affecting BSC development (Meng et al., 

2011). In the agricultural-pastoral transition zone of northern China, plant litter plays a 

significant role in promoting BSC growth. In habitats with poor soil texture, vegetation 

facilitates crust formation; however, as environmental conditions improve, this 

relationship becomes significantly negative. Different plant communities exert varying 

effects on BSC cover, with the highest coverage observed in the Xinjiang Salsola 
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community, followed by the Artemisia capillaris + Xinjiang Salsola community, and 

the lowest in the Artemisia capillaris community. Furthermore, disturbance negatively 

impacts BSC cover, with the highest coverage found in core areas (complete enclosure), 

followed by edge areas (seasonal enclosure), and the lowest in peripheral areas (control 

area) (Lu et al., 2007). A survey conducted on the slopes of the Liudaogou small 

watershed in the Loess Plateau identified solar radiation, erosion, soil texture, and 

secondary soil properties as the four key factors influencing BSC development (Zhang 

et al., 2015). Among environmental factors, slope aspect and disturbance have the most 

significant direct impact on BSC cover, whereas slope position, vegetation height, plant 

species diversity, and litter cover exert indirect effects through other mediating factors 

(Wang, 2011). 

 

Collectively, these studies demonstrate the diverse environmental drivers shaping BSC 

distribution across arid and semi-arid landscapes. However, variations in BSC 

distribution patterns across different study areas, each with distinct ecological and 

geomorphological conditions, suggest that findings may not always be consistent (Guo 

et al., 2012). Therefore, a comprehensive approach integrating ecological conditions, 

distribution patterns, and developmental processes across multiple scales is essential 

for a systematic and realistic assessment of BSC dynamics. Such an approach can 

provide deeper insights into the current status and functional roles of biological crusts 

in desert ecosystems. 

 

2.4 Motivation 

BSC play a significant role to assure the regular functioning of desert ecosystem, such 

as involvement in the process of formation, stability and fertility of soil, prevention of 

soil erosion caused by water or wind, augment of vascular plant colonization, and 

stabilization of sand dunes (Belnap, 2003; Belnap et al., 2001; Eldridge & Greene, 

1994). BSC have been recommended as the top management priority in desert regions 



20 
 

(Belnap, 2003), especially under recent conditions in which desert regions are 

experiencing global warming and increasing human activity. 

 

Many typical problems in the interrelationship between human activities and the natural 

environment in semi-arid and arid sandy areas (Zhou et al., 2022). The multiple 

ecological functions of BSC are closely related to the ecosystem's ability to 

simultaneously maintain a variety of functions and services such as nutrient cycling, 

hydrological cycling, and material export, especially in arid ecosystems where vascular 

plant growth is restricted, and the role played by BSC should not be underestimated. 

Up to now, most of the studies on BSC are at the sample site scale, which could only 

reflect the distribution of BSC in local areas, and there is a lack of understanding of the 

distribution of BSC at a large scale. A regional-scale study on the distribution of BSC 

would help us better understand the distribution of BSC in the desert, which is of great 

significance in the assessment of the ecological function of BSC and the scientific 

management of BSC resources. Therefore, taking into account the actual situation of 

arid ecosystems in China, conducting regional-scale studies to understand the 

distribution and growth of BSC in the Gurbantunggut Desert as well as the response of 

BSC to climatic factors at the bioclimatic level is not only a useful supplement to the 

existing research work, but also provides a reference to comprehensively assess the 

relationship between BSC and the environmental system. In addition, in the context of 

global change, understanding the relationship between BSC and climatic variables is 

not only conducive to a comprehensive understanding of the global environment and 

ecosystem impacts on biomes, but also conducive to scientifically combining BSC with 

other biological resources for ecosystem conservation, so that they can give full play to 

their ecological benefits and better serve human beings. 

 

Hence, a modelling system for biological soil crusts and climate factors based on multi-

datasets is required to bridge the gap between the long-term and large spatial 

distribution of BSC and its interaction with the climate variability. In this study, two 
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models with improved BSC detection method and machine learning are constructed. 

These models can be used to explain the effects of climatic factors on biological crusts, 

the short-term or long-term forecasts of regional-scale distribution of BSC, the 

assessment for the potential effects of climate change on the availability of BSC and 

the sustainable development of ecosystem. 
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3 Study area description and data processing 

3.1 Introduction to the studied desert 

3.1.1 Gurbantunggut Desert 

The Gurbantunggut Desert, the study area of this research, is analyzed for the 

distribution of biological soil crusts (BSCs) and serves as the basis for constructing 

BSC-climate models. Geographically, it is located between 44º11′–46º50′N and 84º31′–

90º00′E, positioned at the center of the Junggar Basin in the Xinjiang Uygur 

Autonomous Region, China. Covering an area of 48,800 km², it is the second-largest 

desert in China and the largest fixed and semi-fixed desert in the country (Fig. 3-1). The 

southern boundary of the Gurbantunggut Desert transitions into alluvial and floodplain 

fan margins formed by sediments from the Tianshan Mountains, shaping the natural 

vertical zonation from the northern slopes of the Tianshan Mountains to the basin floor. 

 

 
 

Fig. 3-1 Study area (a) and its land type (b). 

 

The Gurbantunggut Desert is characterized by a temperate continental desert climate, 

shaped by the "rain shadow effect" of the Himalayas, which prevents humid air currents 

from the Indian Ocean from reaching the region, resulting in an extensive arid 

landscape. Annual precipitation ranges from 150 to 250 mm, with only 70–100 mm 

occurring in the desert hinterland. Precipitation is slightly higher in spring and summer 

compared to autumn and winter, while annual evaporation far exceeds precipitation, 

ranging from 2,000 to 2,800 mm. The annual mean temperature is 6–10°C, with 

extreme values exceeding 40°C in summer and dropping below −40°C in winter. The 

(a) (b) 
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region exhibits a climatic pattern of low rainfall with high evapotranspiration (Li et al., 

2001; Zhang et al., 2005; Liu et al., 2023). During winter, snow depth generally ranges 

between 10 and 30 cm, with snow accumulation beginning in November and persisting 

until mid-March of the following year. Snowmelt contributes 30%–50% of the annual 

precipitation. Surface runoff is nearly absent, and the water table is relatively deep, 

exceeding 5 m at the edges and 16 m in the hinterland of the desert (Qian et al., 2007; 

Jian et al., 2019). Fig. 3-2 illustrates the monthly variations in temperature and 

precipitation in the Gurbantunggut Desert. In general, biological soil crusts (BSCs) 

remain dormant or fail to grow when temperatures fall below 0°C (Piao et al., 2006). 

Therefore, this study primarily focuses on analyzing the spatiotemporal distribution 

patterns and dynamics of BSCs during the growing season (March to November), 

encompassing spring, summer, and autumn. 

 

 
 

Fig. 3-2 The monthly average temperature and monthly precipitation changes in the 
Gurbantunggut Desert. 

 

The geomorphology of the Gurbantunggut Desert exhibits distinct east-west and north-

south variations, characterized by a low-elevation trend in the east-west direction and 

higher elevations along the north-south axis (Fig. 3-3a). Sand ridges oriented east-west 

are distributed in a disordered manner, exhibiting significant variability in 
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geomorphological types. The relative heights of these ridges range from 10 to 50 m, 

with ridge lengths varying from several hundred meters to over a dozen kilometers. In 

contrast, north-south-oriented landforms are predominantly composed of chain, 

crescent, and beehive-shaped ridges. The geomorphological diversity is relatively low, 

with fixed and semi-fixed dunes dominating the landscape (Qian et al., 2007; Wang et 

al., 2015). Fixed and semi-fixed sand dunes account for approximately 87% of the total 

desert area, with dunes generally aligned along a northwest-southeast orientation. The 

majority of dunes range between 15 and 20 m in height, with vegetation cover on dune 

surfaces varying between 15% and 55%. Among these, fixed sand dunes support 

vegetation cover of 40%–55%, while semi-fixed dunes exhibit a lower vegetation cover 

of 15%–25%. The summits of dunes in the Gurbantunggut Desert are predominantly 

composed of windswept sandy soils, whereas saline soils and intermountain gravelly 

soils are primarily found in interdune areas. The sandy substrate mainly consists of 

medium to fine sands, contributing to the region’s overall sedimentary characteristics. 

 

The Gurbantunggut Desert exhibits a vegetation cover of less than 30%, yet it harbors 

a diverse assemblage of plant species. Its floristic composition includes elements from 

Central Asia, the Mediterranean, and the Caspian-Kazakhstan-Mongolian region. 

Recognized as one of the most species-rich temperate deserts globally, the 

Gurbantunggut Desert is a typical region characterized by high plant species diversity 

and genetic resources. The vegetation is predominantly composed of sandy and 

drought-tolerant species with a diverse composition (Fig. 3-3b), including Stipa 

glareosa, Agriophyllum squarrosum, Ephedra distachya, Calligonum mongolicum, and 

Reaumuria soongorica. Additionally, sandy ephemeral species such as Rudbeckia 

soongorica, Eremurus inderiensis, and Ceratocarpus arenarius contribute to the 

region’s seasonal plant dynamics. Among the most dominant and ecologically 

significant species are Haloxylon persicum and Haloxylon ammodendron, which 

characterize vast stretches of the desert landscape (Zhang & Chen, 2001; Song & Hu, 

2011). Compared to other deserts, the Gurbantunggut Desert supports relatively high 
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biological diversity and hosts well-preserved desert plant communities, making it 

China’s only designated desert vegetation nature reserve. The prevalence of extensive, 

densely packed semi-fixed sand dunes contributes to stable soil moisture conditions. 

Precipitation is relatively evenly distributed throughout the year, with winter and spring 

rainfall supporting the development of short-lived and short-lived-like plant species. 

The surface soils of the Gurbantunggut Desert exhibit distinct coloration patterns, 

ranging from black and dark brown to white and yellowish-green, reflecting variations 

in moisture availability, biological composition, and soil development stages. 

Additionally, the desert surface is rich in biological soil crusts, with lichen-dominated 

BSCs being the most prevalent, alongside moss-dominated BSCs. These BSCs exhibit 

peak growth during cool, humid periods in autumn and early spring, when dew, fog, 

and temporary rainfall serve as critical moisture sources that sustain species involved 

in BSC formation (Kidron et al., 2002). Overall, the Gurbantunggut Desert is a species-

rich temperate desert ecosystem, characterized by diverse drought-tolerant vegetation, 

extensive semi-fixed sand dunes that help stabilize soil moisture, and biological soil 

crusts that thrive during cool, humid periods. 

 

 
 

Fig. 3-3 Elevation (a) and vegetation communities (b) in the Gurbantunggut Desert. 
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3.1.2 Atacama Desert 

The Atacama Desert is another area where BSC-climate model applied in this study. 

The Atacama Desert located along the western border of South America, which runs 

nearly 1000 km along the Pacific coast of South America from 30°S to 20°S, with a 

temperate desert climate. This region has an annual mean temperature of 14 - 16 °C 

(McKay et al., 2003). It is known for its arid to hyper-arid climate (Dunai et al., 2005; 

Clarke, 2006). Average annual rainfall is less than 200mm. Rainfall is concentrated in 

summer (January to February), with almost no rainfall recorded during the rest of the 

year (Eshel et al., 2021). The distinctive climate of this region is the result of a complex 

interplay of factors. These include the presence of subtropical high-pressure zones, the 

influence of the cold coastal Humboldt Current, the offshore winds (Clarke, 2006), the 

Andean rain shadow effect and the latitudinal position of the region (Houston & Hartley, 

2003). The constant temperature inversion due to the cool north- flowing Humboldt 

Current and the presence of the strong Pacific anticyclone (Rundel et al.,1991; Miller, 

1976). The position of the Pacific anticyclone is generally stable with a small shift of a 

few degrees south in the summer (Trewartha, 1961). Geological and soil mineralogical 

evidence suggests that extreme arid conditions have persisted in the Southern Atacama 

for 10–15 million years (Ericksen, 1983; Houston & Hartley, 2003; Clarke, 2006) 

making it one of the oldest deserts on Earth. 

 

The diversity, occurrence, and distribution of microbial life in the Atacama Desert are 

shaped by multiple environmental factors, including salinity, ultraviolet (UV) radiation, 

water availability, and temperature. Among the microbial communities in this extreme 

environment, lichenized fungi are particularly dominant, representing a significant 

source of fungal diversity. Early research on fungi in the Atacama Desert provided 

comparative insights into lichenized fungal species from the coastal Atacama region 

and Baja California, Mexico (Rundel, 1978). Subsequent studies expanded the 

understanding of microbial diversity in this desert ecosystem. For example, two new 

species of lichenized fungi—Lecanographa azurea and Roccellina ochracea—were 
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described (Follmann, 2008). More recently, a survey along two altitudinal transects in 

Alto Patache identified 77 lichenized fungal species, further highlighting the region’s 

microbial richness (Vargas Castillo et al., 2017). 

 

The flora and vegetation distribution of the Atacama Desert is shaped by three distinct 

topographic units. The first is the Coastal Range, a faulted escarpment that rises 

abruptly along the coast. Atmospheric conditions under stable subtropical high-pressure 

systems create a mild yet arid climate. The northern Chilean coastline is frequently 

covered by stratocumulus cloud layers, which are blocked by the Coastal Range, 

leading to the formation of fog-dependent plant communities known as Lomas. These 

Lomas ecosystems are distributed across approximately 50 sites in the Atacama Desert, 

primarily along the north-central Coastal Range at elevations of 600–1100 m. The 

second unit is the Central Valley, which represents the core of the Atacama Desert. In 

El Niño years, these localized oases can expand to cover up to 5,000 km². Extreme 

drought conditions dominate this region, particularly north of 26°S, where vegetation 

is almost entirely absent, except for oases and riparian plant communities along river 

channels. The third unit is the western slope of the Andes, which is stratified into four 

distinct vegetation zones based on altitude. The unique geographical and climatic 

conditions of the region have led to the development of a specialized biological 

structure and the occurrence of highly localized Lomas plant communities. Therefore, 

among the 550 documented desert plant species in the Atacama Desert, more than 60% 

are endemic, underscoring the region’s exceptional biodiversity (Dillon & Hoffmann, 

1997). 

 

3.2 Satellite data 

3.2.1 Datasets 

This study uses multi-satellite datasets from 2000 to 2018: 1) Landsat 7 (Enhanced 

Thematic Mapper, ETM) Level 2 surface reflectance data at 30 m resolution acquired 

from United States Geological Survey (USGS). Landsat scenes the Earth Explorer 
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(http://earthexplorer.usgs.gov/) archive are processed by the USGS with Standard 

Terrain Correction. These images contain 4 visible and near-infrared (VNIR) bands and 

2 short-wave infrared (SWIR) bands processed to orthorectified surface reflectance, 

and one thermal infrared (TIR) band processed to orthorectified surface temperature. 

The data provides systematic radiometric and geometric accuracy by incorporating 

ground control points while employing a digital elevation map (DEM) for topographic 

accuracy. In order to reduce the impact of clouds, only selected clear sky (cloud 

coverage is less than 10%) data. 2) MOD09A1 

(https://ladsweb.nascom.nasa.gov/search) provides MODIS (Moderate Resolution 

Imaging Spectroradiometer) band 1-7 surface reflectance at 500 m resolution. It is a 

level-3 composite of 500 m resolution MOD09GA. Each product pixel contains the best 

possible L2G observation during an 8-day period as selected on the basis of high 

observation coverage, low view angle, absence of clouds or cloud shadow, and aerosol 

loading. 3) In the case study of extreme dust events, the FY-3 meteorological satellite 

(http://satellite.nsmc.org.cn/PortalSite/Default.aspx), as the second generation of polar-

orbiting meteorological satellites in China, carries a Visible and Infra-Red Radiometer 

(VIRR) that can provide dust monitoring daily data with a resolution of 1km. 

 

3.2.2 Satellite data fusion 

BSC monitoring require high resolution remote sensing imagery in both time and space 

- a requirement that cannot currently be satisfied by any single Earth observing sensor 

in isolation. The MOD09A1 provides daily global observations at 500m spatial 

resolution. While imagery from coarse resolution sensors such as MODIS are typically 

superior to finer resolution data in terms of their revisit frequency, they lack spatial 

detail to capture surface features for many applications. The Landsat satellite series 

provides medium spatial resolution (30m) imagery which is well suited to capturing 

surface details, but a long revisit cycle (16-day) has limited its use in describing daily 

surface changes. Therefore, this study used data fusion to utilize observations from 

multiple sensors. Fig. 3-4 shows the flow chart of satellite data fusion. At first, selecting 
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the Landsat 7 images containing the study area, a total of four scenes (Path: 142-143, 

Row: 28-29). Since the Scan Line Corrector (SLC) failed the Landsat 7 images 

collected after May 31, 2003 have data gaps (Landsat 7 ETM+ SLC-off), but are still 

useful and maintain the same radiometric and geometric corrections as data collected 

prior to the SLC failure. The data gaps are filled based on Geospatial Data Abstraction 

Library (GDAL) in this study. Then, the MOD09A1 data needs to be reprojected, 

clipped and resampled to have the same characteristics as the Landsat data. At last, from 

one Landsat image and two MOD09A1 images, a fusion image with high spatial-

temporal resolution can be obtained. 

 

 
 

Fig. 3-4 Flow chart of satellite data fusion. 

 

3.2.3 BSC detection method 

Chen et al. (2005) developed Biological Soil Crusts Index (BSCI) to detect BSC for 

each pixel when the BSC coverage rate is 33% or more and determined lower and upper 

detection thresholds of BSCI of Landsat 7 sensor experimentally, which is 3.69-6.59 in 

Gurbantunggut desert. The Biological Soil Crust Index (BSCI) is calculated using the 
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reflectance values of different spectral bands, incorporating an empirical parameter to 

enhance its sensitivity to biocrust detection. The formula is defined as: 

 

𝐵𝑆𝐶𝐼 =
1 − 𝐿 × ห𝑅௥௘ௗ − 𝑅௚௥௘௘௡ห

𝑅ீோேூோ
௠௘௔௡ (3-1) 

where: 

 𝑅௥௘ௗ and 𝑅௚௥௘௘௡ represent the reflectance values in the red and green spectral 

bands, respectively. 

 𝑅ீோேூோ
௠௘௔௡  is the mean reflectance of the green and near-infrared (NIR) bands. 

 𝐿 is an empirical parameter, which adjusts the sensitivity of the index based on 

the spectral characteristics of biological soil crusts. In this study, the empirical 

parameter 𝐿 is set to 2. 

   

This index is designed to distinguish biological soil crusts from bare soil by leveraging 

the differences in spectral reflectance among vegetation and non-vegetated surfaces, 

particularly focusing on the reflectance contrast between the red and green bands while 

normalizing using the green and NIR bands. The Landsat BSCI shows higher values 

for the presence BSC, relative to the background of bare sand and dry plant material. 

The higher the BSC percent coverage, the higher the BSCI value would be expected. 

 

Biological soil crusts (BSCs) exhibit peak growth during wet and cool periods, relying 

on dew, fog, or temporary rainfall as primary water sources (Zhang et al., 2009). At the 

onset of these favorable conditions, BSC signals are most prominent, as annual plants 

have not yet germinated, and perennials remain dry. Under these circumstances, BSCI 

values for BSCs—particularly moss-dominated BSCs—can be similar to those of dry 

plants, whereas the Normalized Difference Vegetation Index (NDVI) values show 

greater differentiation. Furthermore, land cover data (Fig. 3-1b) indicate that nearly 50% 

of the Gurbantunggut Desert consists of grassland, where vascular plants such as 

mosses exhibit higher NDVI values, potentially leading to misclassification with BSCs. 
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Neglecting these spectral characteristics may result in erroneous interpretations of 

vegetation phenology. To address this issue, NDVI is introduced as an additional 

indicator, alongside land cover classification and the Kappa index (Cohen, 1960), to 

refine Chen’s method and enhance the discrimination between BSCs and vascular 

plants. The formula for the NDVI is expressed as: 

 

𝑁𝐷𝑉𝐼 =
(𝑅ேூோ − 𝑅௥௘ௗ)

𝑅ேூோ + 𝑅௥௘ௗ)
(3-2) 

 

where: 

 𝑅ேூோ represents the reflectance in the near-infrared (NIR) band. 

 𝑅௥௘ௗ represents the reflectance in the red band. 

 

The Kappa index (𝐾෡), also known as Cohen’s Kappa coefficient, is a statistical measure 

widely used in remote sensing, land cover classification, and ecological studies to 

assess the reliability and accuracy of classification results. It is computed using the 

following formula: 

 

𝐾෡ =  
𝑝௢ − 𝑝௖

1 −  𝑝௖

(3-3) 

 

where: 

 𝑝௢  (Observed agreement) represents the proportion of actual agreement 

between the classification and the reference data. 

 𝑝௖  (Chance agreement) represents the expected agreement due to random 

chance. 

 For further details, see Appendix 7.1. 

 

The Kappa index ranges from -1 to 1: 

𝐾෡ = 1 indicates perfect agreement between classification and reference data. 
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𝐾෡ > 0 indicates better-than-random agreement, with higher values indicating stronger 

reliability. 

𝐾෡ = 0 indicates that the agreement is no better than random chance. 

𝐾෡ < 0 indicates worse-than-random classification performance, suggesting systematic 

disagreement. 

𝐾෡ = −1 indicates the classification is entirely incorrect compared to the reference data. 

 

Higher NDVI values indicate dense, healthy vegetation, while lower values correspond 

to sparse or non-vegetated surfaces, such as bare soil or water. Similar to BSCI, NDVI 

also requires an appropriately defined threshold to ensure accurate application. To 

determine the optimal NDVI thresholds, values were selected based on those yielding 

the highest Kappa index, using validation points for accuracy assessment. NDVI values 

were evaluated through a confusion matrix, which served as a prerequisite for Kappa 

index calculation. The NDVI range of 0.15–0.22 was identified as achieving the highest 

Kappa index (0.93), indicating a strong agreement between classification results and 

ground truth data. 

 

3.2.4 Gridding satellite data 

Applying the aforementioned improved detection method to the satellite fusion imagery 

enables the long-term, large-scale assessment of BSC coverage across the study area. 

To facilitate comparative analysis and modelling, the satellite-derived BSC data are 

aggregated into the same grid system as the climate data (Fig. 3-5). The BSC coverage 

fraction for each grid cell is computed as the ratio of BSC-classified pixels to the total 

number of pixels within the grid cell. After applying a masking procedure, the study 

area contains 55 valid grid points, which are sequentially numbered from left to right 

and top to bottom. These gridded datasets serve as the basis for subsequent BSC-climate 

modelling, ensuring data format consistency between satellite-derived BSC coverage 

and climatic variables. 
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Fig. 3-5 Data grid schematic. The grey grid divides the study area into 55 grid 
points. The red numbers are examples of grid point numbers, showing that the 

grid point numbering sequence is from left to right and top to bottom. 
 

3.3 Climate data 

The formation of biological soil crusts is driven by a complex interplay of interrelated 

causes and effects, broadly categorized into natural and anthropogenic factors (Belnap, 

2006; Belnap et al., 2016). Numerous studies have demonstrated that natural drivers 

play a dominant role, particularly at large and medium temporal scales (Belnap & Lange, 

2003). In the context of global climate change, climatic factors have become a central 

focus of research, as BSC development is highly dependent on specific climatic 

conditions. While climate serves as a background factor, the formation and persistence 

of BSCs occur only under certain combinations of climatic variables. To investigate 

BSC-climate relationships, this study selects five key long-term climatic variables that 

are closely associated with BSC dynamics: specific humidity (SH) (kg/kg), 10-meter 

wind speed (WS) (m/s), 2-meter temperature (TMP) (K), surface solar radiation 

downward under clear-sky conditions (SR) (W/m²), and total precipitation (PRE) 

(mm/day). Additionally, time-lag effects of these climatic factors are considered. To 

ensure comparability and consistency, the spatial resolution and units of all climate 

datasets are standardized. Temporally, climate data begin in 1999, one year earlier than 



35 
 

BSC data (2000), to account for lagged responses of BSC formation to climatic 

variations. Furthermore, to enhance the analysis of the water balance in the 

Gurbantunggut Desert, evapotranspiration data are incorporated into the Section 3.5 

analysis, although they are not included in the BSC-climate modelling framework. 

 

3.3.1 ERA5 data 

ERA5 (https://cds.climate.copernicus.eu/) reanalysis data is the fifth generation 

European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis for the 

global climate and weather for the past 4 to 7 decades. Radiative inversion using the 

RRTM rapid radiative transfer model. Data is available from 1940 onwards. In this 

study, the ERA5 data covers a total of 20 years from 1999-2018 with a spatial resolution 

of 0.25° x 0.25°. The specific humidity is obtained from ERA5 hourly data on pressure 

levels from 1940 to present, selected at 1000hPa near the ground surface; other data is 

from ERA5 hourly data on single levels from 1940 to present, where the 10-meter wind 

speed is calculated from the components in the 𝑢  (eastward) and 𝑣  (northward) 

directions. In terms of temporal resolution, all climate data are processed as monthly 

data for constructing the BSC-climate model. 

 

3.3.2 CMIP6 data 

Coupled Model Intercomparison Project Phase 6 (CMIP6) is a project coordinated by 

the Working Group on Coupled Modelling (WGCM) as part of the World Climate 

Research Programme (WCRP). In order to apply BSC-climate model to paleoclimate, 

Monthly average data from three periods under three scenarios from CMIP6 are 

selected (Table 3-1). The global attribute of AWI and MPI is “r1i1p1f1” and of MIROC 

is “r1i1p1f2”, where “r” is realisation, “i” is initialisation method, “p” is physics and 

“f” is forcing. "1" represents Initial conditions taken from a prior simulation. “2” As 

"1", but with an additional random perturbation applied to the initial state of the 

atmosphere. 
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Table 3-1 Scenario of CMIP6 data 

Scenario AWI-ESM-1-1-LR MPI-ESM1-2-LR MIROC-ES2L 

Spatial resolution 250km 250km 500km 

Time scale Historical (1999-2014), LGM, Mid-Holocene 
 

 

Climate models exhibit systematic error (biases) due to the limited spatial resolution, 

simplified physics and thermodynamic processes, numerical schemes or incomplete 

knowledge of climate system processes. Hence, it is important to bias-correct the raw 

climate model outputs in order to produce climate projections that are better fit for 

modelling. The CMIP6 data are bias-corrected using the ERA5 data as reference data. 

The method of bias correction will be described in detail in Section 4.2.2. 

 

3.4 Distribution of BSC in Gurbantunggut Desert 

3.4.1 Variability of BSC coverage 

Fig. 3-6 illustrates the temporal distribution, annual cycle, and anomaly of monthly 

BSC coverage in the Gurbantunggut Desert from 2000 to 2018. Throughout the year, 

BSC coverage exhibits a bimodal pattern, with peaks occurring in March and October, 

indicating that BSCs experience their highest growth during wet, cool periods (early 

spring and autumn). However, some anomalies deviate from this overall trend. In 2012 

and 2013, a weaker summer peak was observed, whereas in 2002 and 2016, the early 

spring peak was less pronounced, possibly due to snow cover at high latitudes in early 

March of those years (Hui et al., 2019; Zhou et al., 2009). BSCI has limitations in 

distinguishing biological soil crust from snow cover, which may have contributed to 

this pattern. Over the 19-year period, the overall trend of BSC coverage is increasing. 

Notably, in 2000, 2001, 2010, and 2015, BSC coverage was below the annual average, 

whereas in 2013, 2017, and 2018, it was above the annual average. In other years, 

fluctuations remained relatively minor. During winter (December, January, and 

February), BSCs enter dormancy, making their detection via remote sensing nearly 
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impossible. Consequently, this study excludes winter BSC analysis from further 

discussion. 

 

 
 

Fig. 3-6 Temporal distribution of the BSC fraction from 2000 to 2018: (a) The 
monthly temporal distribution (blue line) and the annual cycle (red line); (b) The 

anomaly. 
 

Fig. 3-7 illustrates the spatial distribution of BSC fraction and its standard deviation in 

the Gurbantunggut Desert from 2000 to 2018. Overall, BSC coverage is relatively high 

in the northwestern and southern regions, with the southern area exhibiting particularly 

dense BSC coverage (70–80%). This pattern corresponds to the grassland distribution 

observed in the land cover classification (Fig. 3-1b), as BSCs often develop beneath 

vascular plants (Eldridge & Greene, 1994). Despite this broad similarity, notable 

differences exist between the two high-BSC regions. In the northwest, the standard 

deviation of BSC coverage is large, indicating greater temporal variability. In contrast, 

BSCs in the south exhibit more stability, with a lower standard deviation. This stability 

may be attributed to more favorable moisture and temperature conditions in the 

interdunal lowlands of the southern desert, which create a more suitable 

microenvironment for BSC persistence. Additionally, the southern region hosts a 
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greater diversity of plant species, potentially contributing to the enhanced stability of 

BSC communities (Zhang et al., 2002). 

 

 

 

 
Fig. 3-7 Monthly spatial distribution (a) and standard deviation (b) of BSC fraction 

from 2000 to 2018 in the Gurbantunggut. 

 

Fig. 3-8 shows the probability of BSC occurrence in the Gurbantunggut Desert during 

2000-2018. It is calculated for each pixel using the following formula: 
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𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦௠௢௡௧௛ =  
𝑁௢௖௖௨௥௥௘௡௖௘,௠௢௡௧௛

𝑁௧௢௧௔௟

(3-4) 

where: 

𝑁௢௖௖௨௥௥௘௡௖௘,௠௢௡௧  represents the number of years in which BSC was detected in a given 

𝑚𝑜𝑛𝑡ℎ. 

𝑁௧௢௧௔௟ is 19 in this study, denotes the total number of years considered in the analysis 

(2000–2018). 

 

The colors in the figure represent the probability of BSC occurrence, with yellow 

indicating a probability of 1, signifying areas where BSCs are consistently present 

throughout the study period. This suggests that in these regions, BSCs enter a dormant 

state during the undetectable winter months rather than undergoing senescence or dying 

off. Spatially, BSC occurrence is highest in the southern and central regions, followed 

by the northern region, with the lowest occurrence in the western region. The higher 

probability of BSC occurrence near the oasis-desert transition zone is likely influenced 

by the favorable environmental conditions at the oasis edge, where sufficient moisture 

and moderate climatic conditions create an optimal microenvironment for BSC 

development. Temporally, BSC occurrence during winter (December–January) is low 

(0–20%), primarily due to sub-zero winter temperatures in the Gurbantunggut Desert. 

Consequently, the subsequent analyses focus on the distribution of BSCs during the 

growing season (March–November). Notably, the areas with a probability of 1 are 

larger in March and October than in other months. Additionally, the higher BSC 

occurrence in the northern part of the desert in March may be attributed to water 

availability from the nearby Ulungur River in early spring. 
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Fig. 3-8 Probability of BSC occurrence in the Gurbantunggut Desert over the period 
2000–2018. 

 

Fig. 3-9 shows the changes in BSC coverage fraction during the growing season from 

2000 to 2018 relative to 2000. BSC coverage fraction in Fig. 3-9 is defined as the 

proportion of pixels with detected BSC presence relative to the total number of pixels 

within the study area. Based on the BSC coverage fraction data from 2000, changes in 

BSC presence or absence were analyzed at the pixel level. For each pixel, if the BSC 

detection value transitioned from 0 to 1 (from absence to presence) in a given year 

relative to its 2000 status, indicating newly detected BSC coverage, it was classified as 

an increase. Conversely, if the detection value changed from 1 to 0 (from presence to 

absence), indicating BSC loss, it was categorized as a decrease. Pixels that remained 

unchanged relative to their 2000 status—either consistently 0 (absence) or 1 

(presence)—were classified as stable (no change). Finally, the annual proportions of 

increased, decreased, and stable (no change) pixels were computed to quantify long-

term BSC dynamics over the study period. The blue section of the bar graph represents 

the area where BSC coverage remained unchanged since 2000, indicating relatively 

stable BSC presence. This suggests that these areas have maintained long-term BSC 

coverage in the corresponding months. The green section represents areas where BSCs 
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were newly detected in regions that lacked BSC coverage in 2000, while the yellow 

section denotes areas where BSC coverage has declined relative to 2000. For instance, 

in March 2018, there was a net gain of approximately 20% in BSC cover in certain 

areas, while a net loss of about 4% occurred in other regions of the Gurbantunggut 

Desert, resulting in an overall net increase of approximately 16% in BSC coverage over 

this period. The solid black line represents the average annual change in BSC coverage, 

enabling comparisons of BSC coverage variations for a given month across consecutive 

years. For example, the annual average BSC coverage in May 2018 was approximately 

48%, while in May 2017, it was around 43%. Based on this, the decrease in BSC 

coverage in May 2018 relative to May 2017 can be determined to be approximately 5%. 

The dashed line illustrates the long-term trend in BSC coverage, indicating an overall 

increase from March to November between 2000 and 2018. 

 

 

 
Fig. 3-9 Changes in BSC coverage fraction during the growing season from 2000 to 
2018 (baseline: 2000). The yellow, blue, and green regions represent the proportion 

of pixels where BSC coverage fraction has increased, remained unchanged, and 
decreased, respectively. The black solid line indicates the annual average change in 
BSC coverage fraction, while the dashed line represents the overall trend over time. 
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Fig. 3-10 highlights the relatively stable BSC areas extracted from Fig. 3-9 (blue 

regions) in the Gurbantunggut Desert. The dark green regions represent pixels where 

relatively stable BSCs were detected, while the gray areas indicate either the absence 

of BSCs or high variability in BSC coverage. The proportion of relatively stable BSC 

coverage from March to November is 23.7%, 16.9%, 12.5%, 16.2%, 20.7%, 21.4%, 

26.7%, 31.9%, and 11.3%, respectively. The stable BSC area is most extensive in March 

and October, predominantly located in the southern and northwestern regions of the 

desert, aligning with the land cover classification (Fig. 3-1b). The presence of 

grasslands in these regions likely facilitates BSC formation. Additionally, the southern 

desert is characterized by widespread sand dunes, where fine sand dominates the 

interdunal lowlands. In these areas, the silt and clay content significantly increases, 

affecting soil porosity, bulk density, water retention, permeability, and cohesion. The 

finer the soil particles and poorer the sediment sorting, the lower the permeability, 

which in turn enhances conditions for BSC establishment. The presence of fine-grained 

materials reduces soil porosity, forming a barrier that limits water infiltration, thereby 

promoting moisture retention—a crucial factor for BSC growth and development (Chen 

et al., 2005). Moreover, the low-lying interdunal terrain provides an ideal 

microenvironment for BSC colonization, as temporary water accumulation is common 

during spring snowmelt and summer precipitation, fostering biological reproduction 

and vegetative growth (Anderson, 1983). In the southeastern part of the desert, where 

grasslands and barren land coexist, some relatively stable BSCs are also observed, 

suggesting that land type heterogeneity plays a role in BSC distribution and persistence. 
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Fig .3-10 Relatively stable BSC area from 2000 to 2018 (baseline: 2000). 
 

Fig. 3-11 presents slope of BSC fraction variability from 2000 to 2018, derived using 

Sen's method (see Appendix 7.2) and the Mann-Kendall significance test (see Appendix 

7.3). In the context of BSC fraction variability, Sen’s slope represents the rate of change 

in BSC coverage over time (2000–2018). A positive slope indicates an increase in BSC 

coverage, while a negative slope signifies a decline. The steeper the slope, the greater 

the rate of change. Combined with the Mann-Kendall significance test, it helps 

determine whether these trends are statistically significant, distinguishing between 

natural fluctuations and long-term directional changes. In Fig. 3-11, a comparative 

analysis with Fig. 3-10 shows that Sen's slope values indicate largely stable BSCs in 

the southern part of the desert, characterized by minimal slope values and little change 

in coverage over time. In contrast, while relatively stable BSCs are also present in the 

northwest, they exhibit notably higher variability, as reflected by greater slope values, 

indicating more pronounced fluctuations in BSC coverage. 
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Fig. 3-11 Sen’s slope of BSC fraction variability from 2000 to 2018. 

 

3.4.2 Case study: Changes in BSC cover after an extreme dust event 

Although BSC has a certain degree of mechanical resistance and sand fixation, the dust 

event will still affect the distribution of BSC. The FY-3 satellite detected a strong dust 

event on April 27, 2015 (Fig. 3-12). From the figure, there is a high concentration of 

dust in the eastern of the study area. Combined with related news reports 

(http://www.cma.gov.cn/), it can be confirmed that the source area of dust in this event 

is Gurbantungut Desert. 
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Fig. 3-12 Dust event on April 27, 2015. 
 

Fig. 3-13 presents a comparison of BSC spatial distribution before (a, 2015-04-23) and 

after (b, 2015-05-01) the dust event on April 27, 2015. In Fig. 3-13a, a distinct stitching 

line is visible in the central part of the desert, resulting from the edge alignment of the 

satellite image during the stitching process. The figure illustrates the changes in BSC 

coverage before and after the dust event, showing a significant reduction in BSC 

coverage in the central part of the desert, whereas BSCs in the southeastern region 

remain largely unchanged. Considering Fig. 3-10, the BSCs significantly affected by 

the dust event in the central Gurbantunggut Desert tend to be less stable. In contrast, 

the BSCs in the southern desert, which exhibited little change, align with previously 

identified stable BSC areas, suggesting that dust events have a greater impact on 

unstable BSCs while having minimal effects on more stable ones. Another potential 

explanation for the observed differences between the central and southern regions is 

variation in BSC composition. While previous studies suggest that the southern desert 

is dominated by lichen-dominated BSCs (Chen et al., 2005), limited research has been 

conducted on BSC composition in other regions of the desert. Further studies are 

needed to better understand the distribution and resilience of different BSC types across 

the Gurbantunggut Desert. 
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Fig. 3-13 The Changes of BSC spatial distribution before (a) and after (b) the dust 

event. Green indicates BSC coverage. 

 

3.5 Spatiotemporal variability of climatological processes 

In the previous section, the distribution and variability of BSC in the Gurbantunggut 

Desert were described. Numerous studies have demonstrated that BSCs are highly 

sensitive to changes in abiotic factors, such as temperature and humidity (Maestre et al., 

2013; Shen et al., 2015; Wang et al., 2016). This section analyses changes in various 

climatic factors in the Gurbantunggut Desert from 2000 to 2018. The analysis is 

conducted using the same temporal and spatial resolution as the BSC grid data to 

investigate the spatiotemporal variability of climatic processes in the desert and their 

correlations. 

 

3.5.1 Hydrologic features 

(1)  Precipitation 

 

It is important to examine the spatial and temporal patterns of precipitation over the 

desert, as BSCs are highly sensitive to this critical environmental input. Fig. 3-14 

illustrates the seasonal mean precipitation from 2000 to 2018 within the Gurbantunggut 

Desert. In this figure, precipitation is measured in millimeters per day to account for 

the varying number of days across the four seasons, ensuring consistency in comparison. 
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Fig. 3-14 Seasonal spatial distribution of precipitation in the Gurbantunggut Desert 

from 2000 to 2018. 

 

As shown in Fig. 3-14, precipitation within the desert generally decreases from 

southeast to northwest. Across all four seasons, regions with higher precipitation are 

concentrated in the southern and southeastern parts of the desert, particularly in the 

northern region of the Hutubi River and the desert-oasis ecotone. The annual 

precipitation pattern is characterized by the highest rainfall occurring in summer, 

though this difference is not statistically significant compared to spring. In contrast, the 

lowest precipitation is recorded in winter. 

 

Similarly, the spatially averaged monthly mean precipitation from 1999 to 2018 is 

presented in Fig. 3-15, along with its relative contributions to annual precipitation. The 

20-year average annual precipitation is 132.97 mm. Within the desert, precipitation 

during the growing season (March to November, generally covering spring, summer, 

and autumn) accounts for approximately 85% of the total annual precipitation. 
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Fig. 3-15 Mean monthly precipitation amount (Pmonthly) in the Gurbantunggut Desert, 
and the corresponding percentage to annual precipitation (Pmonthly/Pannual). 

 

(2) Evapotranspiration 

 

Evapotranspiration (ET) is defined as the total flux of water transferred from the land 

and ocean surface to the atmosphere through evaporation and plant transpiration. In the 

following analysis, land evapotranspiration is calculated as the sum of contributions 

from three evaporation components: direct evaporation from bare soil, evaporation of 

precipitation intercepted by the vegetation canopy, and vegetation transpiration. 

 

The seasonal mean evapotranspiration from 2000 to 2018 and its spatial distribution 

within the desert are presented in Fig. 3-16. Similar to precipitation, evapotranspiration 

is highest in summer and lowest in winter in the Gurbantunggut Desert. Spatially, 

evapotranspiration increases southeastward across the desert. The lowest 

evapotranspiration occurs in the northwestern region, whereas the highest values are 

observed in the interdune lowlands at the southern desert margin. Although the potential 

annual evaporation in the Gurbantunggut Desert approaches 2000 mm, the actual 

annual evapotranspiration is limited to 100–200 mm due to soil moisture constraints 



49 
 

and low precipitation. Fig. 3-16 presents evapotranspiration in millimetres per day. 

 

 

 
Fig. 3-16 Seasonal spatial distribution of evapotranspiration in the Gurbantunggut 

Desert from 2000 to 2018. 

 

The mean monthly evapotranspiration from 2000 to 2018 is spatially averaged over the 

desert and presented in Fig. 3-17, which decomposes evapotranspiration into 

contributions from bare soil evaporation, plant transpiration, and canopy interception 

evaporation. Based on the bar heights corresponding to these components, 

evapotranspiration from canopy interception accounts for the largest fraction, 

significantly exceeding that from bare soil, while vegetation transpiration remains 

negligible. This finding suggests that monthly variations in canopy-intercepted 

evapotranspiration play a crucial role in arid ecosystems, which are typically 

characterized by sparse vegetation cover. Zhang et al. (2018) demonstrated that the 

monthly variability of canopy evapotranspiration is closely linked to the vegetation 

growth cycle in the Gurbantunggut Desert. 

 

The red line in Fig. 3-17 indicates that evapotranspiration peaks in summer (June–

August), contributing 52% of the total annual evapotranspiration. Evapotranspiration 
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in spring exceeds that in autumn, accounting for 36% and 11% of annual 

evapotranspiration, respectively. The significant decline in evapotranspiration during 

autumn is attributed to reduced precipitation, which limits soil moisture infiltration and 

causes water to remain near the surface. Although temperatures remain high and 

potential evapotranspiration is elevated, soil moisture is not adequately replenished, 

leading to water stress and subsequently lower evapotranspiration rates. 

 

 
 

Fig. 3-17 Mean monthly evapotranspiration amount (Emonthly) in the Gurbantunggut 
Desert with the amounts for various components, and the percentage of monthly to 

annual evapotranspiration (Emonthly/Eannual). 

 

(3) Relationship between precipitation and evapotranspiration  

 

Precipitation and evapotranspiration are the primary components of water input and 

loss in natural desert ecosystems and play a crucial role in regulating their water balance. 

 



51 
 

 

 
Fig. 3-18 Seasonal distribution of evapotranspiration as a percentage of precipitation 

in the Gurbantunggut Desert from 2000 to 2018. 

 

As shown in Fig. 3-18, the seasonal distribution of evapotranspiration as a percentage 

of precipitation in the Gurbantunggut Desert is approximately balanced in spring. In 

summer, evapotranspiration is nearly twice the amount of precipitation, whereas in 

autumn, evapotranspiration is lower than precipitation and is proportionally higher in 

the south than in the north. Winter, as a non-growing season, is characterized by 

minimal evapotranspiration and precipitation, both approaching zero. 

 

Fig. 3-19 illustrates that in January, February, November, and December, despite some 

precipitation, evapotranspiration remains negligible due to the dormancy or wilting of 

biocrusts and vegetation, as well as low temperatures. During the growing season, 

evapotranspiration falls below precipitation in April and October. Precipitation during 

these months not only fully meets evapotranspiration demand but also partially 

replenishes soil moisture storage, providing a water source for subsequent BSC growth 

phases. Since soil retains moisture, evapotranspiration increases significantly in March. 

Additionally, evapotranspiration reaches peak values in June and July, coinciding with 

higher rainfall. However, throughout the growing season, Emonthly/PREmonthly typically 
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remains below 100%, indicating that precipitation alone cannot fully meet 

evapotranspiration demands. All precipitation is consumed through evapotranspiration, 

and soil water storage is required to compensate for the evapotranspiration deficit. 

 

 
 

Fig. 3-19 Mean monthly evapotranspiration (Emonthly) and Precipitation (PREmonthly) in 
the Gurbantunggut Desert, and evapotranspiration as a percentage of precipitation 

(Emonthly/PREmonthly). 

 

3.5.2 Humidity 

Specific humidity, also referred to as moisture content, is defined as the ratio of the 

mass of water vapor to the total mass of an air parcel (Byers, 1965). The Gurbantunggut 

Desert is an extremely arid region characterized by low precipitation, sparse vegetation 

cover, and low specific humidity. Fig. 3-20 illustrates a pronounced seasonal trend in 

specific humidity, with the highest values occurring in summer and the lowest in winter. 

As autumn and spring serve as transitional seasons, the average specific humidity 

during these periods falls between winter and summer, with autumn exhibiting slightly 

higher values than spring. Spatially, specific humidity increases from the northeast to 

the southwest, reaching its maximum in the desert-oasis transition zone along the 

southern desert margin. Overall, the annual specific humidity in the Gurbantunggut 

Desert remains low, ranging from 1 to 7 × 10⁻³ kg/kg. 
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Fig. 3-20 Seasonal spatial distribution of specific humidity in the Gurbantunggut 

Desert from 2000 to 2018. 

 

The correlation between monthly hydrological variables—precipitation, 

evapotranspiration, and specific humidity—in the Gurbantunggut Desert from 2000 to 

2018 is examined. Fig. 3-21(a) illustrates that there is no significant linear correlation 

between the monthly average precipitation and specific humidity. The coefficient of 

determination (R²) is 0.22, with numerous data points falling outside the 95% 

confidence interval, indicating that a linear model is unsuitable for describing the 

relationship between precipitation and specific humidity. In other words, these two 

variables exhibit minimal collinearity. Similarly, Fig. 3-21(b) shows that although the 

linear fit between evapotranspiration and specific humidity yields an R² value of 0.65, 

many data points still lie outside the confidence interval, suggesting that the relationship 

between the two remains weak and lacks strong collinearity. 
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Fig. 3-21 The correlation between monthly precipitation (a) and evapotranspiration 

(b) and specific humidity from 2000 to 2018 in the Gurbantunggut Desert. 

 

3.5.3 Temperature 

The seasonal spatial distribution of temperature in the Gurbantunggut Desert from 2000 

to 2018 is presented in Fig. 3-22. The seasonal temperature pattern follows the order: 

summer > spring > autumn > winter. The annual temperature variation is substantial, 

with a difference exceeding 40°C between the highest and lowest recorded temperatures. 

Spatially, temperatures in spring, summer, and autumn exhibit a strong correlation with 

elevation, as depicted in Fig. 3-3. From north to south and east to west, temperature 

increases as elevation decreases. However, in winter, the spatial pattern differs, with 

higher temperatures in the east and lower temperatures in the west. 
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Fig. 3-22 Seasonal spatial distribution of temperature in the Gurbantunggut Desert 

from 2000 to 2018. 
 

As shown in Fig. 3-23(a), the correlation between monthly specific humidity and 

temperature in the Gurbantunggut Desert follows a non-linear relationship, with a 

coefficient of determination (R²) of 0.89 and a significance level of p < 0.05. In Fig. 3-

23(b), the linear correlation between wind speed and temperature is less pronounced, 

with an R² value of 0.63 and a greater degree of scatter. 

 

 
 

Fig. 3-23 The correlation between monthly specific humidity (a) and wind speed (b) 
and temperature from 2000 to 2018 in the Gurbantunggut Desert. 
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3.5.4 Wind speed 

The Gurbantunggut Desert is influenced by westerly winds year-round. In winter, the 

Siberian-Mongolian high-pressure system dominates, resulting in northwesterly and 

westerly winds. In summer, subtropical high-pressure systems prevail, generating 

predominantly westerly winds. As shown in Fig. 3-24, average wind speed is higher in 

summer and autumn, ranging from 3.5 to 4.5 m/s, and lower in winter, particularly in 

the southwestern part of the desert, where it averages around 2 m/s. Overall, wind 

speeds in the interior of the desert are higher than those in the surrounding areas. 

Additionally, high wind speeds are observed along the northeastern and southeastern 

desert margins. 

 

 

 
Fig. 3-24 Seasonal spatial distribution of 10-meter wind speed in the Gurbantunggut 

Desert from 2000 to 2018. 
 

The wind speed distribution in the Gurbantunggut Desert, as depicted in Fig. 3-25, 

indicates that 97% of recorded wind speeds are below 8 m/s. Wind tunnel experiments 

(Wang et al., 2004) have demonstrated that the threshold friction velocity for bare sand 

in this desert is 8.42 m/s. When wind speed exceeds 18 m/s, surface wind erosion occurs 

under most disturbance conditions, except in areas with undisturbed algae, algal-lichen 
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crusts, or lichen crusts with less than 20% damage. This suggests that, in most cases, 

wind speed is not the primary factor influencing biological crust dynamics in the 

Gurbantunggut Desert. 

 

 

 
Fig. 3-25 The frequency histogram of wind speed in the Gurbantunggut Desert from 

2000 to 2018. 
 

This section analysed the temporal and spatial distribution of climate variables in the 

Gurbantunggut Desert and their interrelationships. The climatic processes in the 

Atacama Desert are discussed in the model application chapter (see Section 5.2.1 for 

details). 
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4 Construction of the BSC-Climate model 

4.1 Lag-correlation between BSC and climate variables 

4.1.1 Temporal effects of each climatic factor 

Dust events in Asia predominantly occur in the Southern Xinjiang Basin, Mongolian 

Plateau, and Hexi Corridor, while strong sand and dust events are relatively rare in the 

Gurbantunggut Desert. Therefore, the impact of local environmental factors on BSC is 

primarily considered in this study. To evaluate the temporal effects of climatic factors 

on BSC, we applied linear regression to each climatic variable separately (Eq. 4-1): 

 

𝐵𝑆𝐶௧,௚௥௜ௗ = 𝛽௧,௚௥௜ௗ × 𝐶𝑙𝑖𝑚𝑎𝑡𝑒௧ି௜ + 𝛼௧,௚௥௜ௗ           (4-1) 

 

where α and β are regression coefficients, 𝑡 represents time, 𝑖 ranges from 0 to 3 (𝑖 = 0 

represents no time lag, while 𝑖 = 1 to 3 represents a one- to three-month lag), and grid 

ranges from 1 to 55 (corresponding to the climate data grid points introduced in Section 

3.2.4). Climate represents the climatic variables, including specific humidity (SH), 10-

meter wind speed (WS), 2-meter temperature (TMP), surface downward solar radiation 

under clear-sky conditions (SR), and total precipitation (PRE). By testing different 

values of 𝑖, we comprehensively assess the temporal effects of climate variables. The 

correlation coefficient is used to determine the optimal lag time (𝑖) for the best model 

fit. 
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Fig. 4-1 Lag-correlation between BSC and climate variables during 2000-2018 with 

the time window of 8 days. 
 

The lag correlation between BSC and climatic variables from 2000 to 2018, using an 

8-day time window, is presented in Fig. 4-1. By calculating the sliding correlation 

coefficient, we identified the climatic variables most strongly correlated with BSC and 

their corresponding time lags. In Fig. 4-1, the horizontal axis represents the grid point 

number, the left vertical axis denotes the time lag (days), and the right vertical axis 

indicates the correlation coefficient. The lengths of the red and black lines illustrate the 

dominant time lag for each climatic variable at each grid point. The red and black solid 

points represent the correlation coefficient corresponding to that dominant time lag, 

where red indicates statistical significance and black represents non-significance. 

Among the climatic variables, BSC exhibits the fastest response to temperature, 

typically within 0–8 days. Although precipitation correlations are relatively low 

(around 0.5), the time lag between significant grid points and BSC dynamics is minimal 

or absent. Overall, the time lags of all significant climatic variables do not exceed 64 

days, and the corresponding correlation coefficients are generally above 0.5. 

 

Fig. 4-2 illustrates the spatial distribution of time lags across the study area. Along the 
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southern desert-oasis boundary, the response of BSC to all climatic variables is 

relatively rapid, with correlation coefficients exceeding 0.7. The longest time lag for 

specific humidity occurs in the northern part of the desert, exceeding 56 days. A similar 

pattern is observed for solar radiation, where the lag generally ranges from 24 to 32 

days, but extends beyond 40 days in the northern desert region. The spatial distribution 

of time lags for wind speed and precipitation exhibits a similar band-like pattern, with 

a zero-time lag zone extending from northwest to southeast. In contrast, the time lag for 

temperature does not exceed 16 days across the desert, with the longest lag occurring 

in the central hinterland and the northern bare soil region. 

 

 
Fig. 4-2 Distribution of lags between BSC and climate variables during 2000-2018 

with the time window of 8 days. 
 

Fig. 4-3 presents the lagged correlation between BSC and climatic variables from 2000 

to 2018, using a monthly time window. This figure follows a similar pattern to Fig. 4-

1, but with an extended time window designed for modeling based on monthly data. 

The time lag for specific humidity and solar radiation is primarily 1–2 months, while 

for wind speed and temperature, it is 0–1 month. For precipitation, the lag is effectively 

zero. Most of the significant correlation coefficients exceed 0.5, aligning with the 

results obtained from the 8-day dataset. 

 



62 
 

 

 
Fig. 4-3 Lag-correlation between BSC and climate variables during 2000-2018 with 

the time window of month 
 

The spatial distribution of time lags for climatic variables in Fig. 4-4 is consistent with 

that in Fig. 4-2. Time lags are shorter in the southern and northwestern regions of the 

desert compared to the central and northeastern areas. 

 

 
 

Fig. 4-4 Distribution of lags between BSC and climate variables during 2000-2018 
with the time window of month 
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At this stage, we can infer that climatic factors exert time-lagged effects on BSC growth. 

In the Gurbantunggut Desert, where BSC survival is constrained by climatic variability, 

fluctuations in climate conditions have a significant impact on BSC coverage. The 

results indicate that the time-lag effect at a monthly scale is generally shorter than one 

quarter, aligning with previous research (Anderson et al., 2010; Chen et al., 2014; Ivits 

et al., 2016; Rundquist and Harrington, 2000; Vicente-Serrano et al., 2013; Wu et al., 

2015). Consequently, this study considers time-lag effects up to a maximum of 3 

months. 

 

4.1.2 Partial correlation analysis of climate variables and BSC 

To identify the dominant climatic factors driving BSC variation during the growing 

season, while accounting for time-lag effects, we perform partial correlation analysis 

between BSC and individual climatic variables. This analysis controls for the influence 

of other climatic factors, ensuring that the observed relationships reflect independent 

effects. 

 

Table 4-1 Time lag (months) across different land types. 

 Mean Standard deviation 

SH WS TMP SR PRE SH WS TMP SR PRE 

Whole aera 1.70 2.04 0.60 0.82 1.09 0.78 0.75 0.63 0.71 0.81 

Barren 1.65 2.20 0.59 0.75 0.81 0.86 0.64 0.60 0.64 0.80 

Grassland 1.74 1.93 0.60 0.91 1.40 0.91 0.93 0.68 0.76 0.83 

 

Specific humidity exhibited a 1.70 ± 0.78 (meanௗ±ௗstandard deviation) month lag in the 

whole area (Table 4-1). The time lag is consistently two months throughout the desert, 

except at the southwestern and northeastern edges (Fig. 4-5). In terms of correlation, 

values exceed 0.5 across the study area, except in the central hinterland (Fig. 4-6), 

where the time lag is two months and specific humidity correlation remains low. 

Notably, at the southern edge, the correlation exceeds 0.8, which may be related to 
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agricultural land, roads, livestock production, and other human activities in the vicinity, 

all of which are known to contribute to biocrust disturbance (Zaady et al., 2016). 

 

Although BSC enhances surface roughness, thereby increasing frictional resistance to 

wind-driven sand movement, it becomes vulnerable when wind speed exceeds its 

threshold. Across the region, wind speed has a mean lag of 2.04 ± 0.75 months (Table 

4-1). In terms of land use, most grid points with significant wind speed effects are 

located in grassland areas. Overall, BSC responds slowly to wind speed, with a three-

month lag in the northwestern desert (Fig. 4-5). Furthermore, correlations are very low, 

approaching zero, with some areas even displaying a negative correlation (Fig. 4-6). 

This suggests that wind speed exerts a weak and negative influence on BSC dynamics, 

primarily because wind speeds in the Gurbantunggut Desert generally remain below 6 

m/s, insufficient to exceed the frictional threshold required to degrade BSC. 

 

Temperature exhibits an average time lag of 0.60 ± 0.71 months (Table 4-1), with 

minimal variation across different land types. The temperature lag is consistently zero 

across most of the desert, except at the northeastern and northwestern fringes (Fig. 4-

5). In grassland areas, the correlation is significantly higher than in other regions, 

reaching 0.5 (Fig. 4-6). These findings suggest that temperature plays a crucial role in 

shaping BSC distribution in the Gurbantunggut Desert. 

 

The time lag for solar radiation is 0.82 ± 0.63 months (Table 4-1). Its spatial distribution 

closely resembles that of 2-meter temperature, with a near-zero lag throughout most of 

the desert. However, unlike temperature, the solar radiation time lag abruptly increases 

to three months in the southwest. Similarly, the spatial correlation distribution of solar 

radiation mirrors that of temperature, with higher correlations (~0.4) in grassland areas 

(Fig. 4-6). In contrast, north of the central desert hinterland, the correlation is close to 

zero with a one-month lag. 
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Precipitation exhibits an average lag of 1.09 ± 0.81 months (Table 4-1), with its most 

significant effects occurring at the desert edges. The western edge shows no lag, the 

southern edge exhibits a one-month lag, and the northeastern edge experiences a 2–3 

month lag. In terms of correlation, most areas show low values, except for grassland at 

the southern edge, where the correlation coefficient is approximately 0.3. Two possible 

explanations exist for this pattern: (1) The arid climate and low precipitation levels in 

the Gurbantunggut Desert result in rainfall amounts that are insufficient to surpass 

evapotranspiration, thereby limiting BSC growth. (2) Reanalysis data may fail to 

accurately capture the variability of low-magnitude rainfall events, leading to 

discrepancies when compared to observational datasets (Guo et al., 2024). 

 

 
 

Fig. 4-5 Time lag across the entire study area for different climate variables. 
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Fig. 4-6 Partial coefficient coefficients across the entire study area for different 
climate variables. 

 

By employing partial correlation for analysis, the lag times and correlation coefficients 

obtained differ from those derived using Pearson's correlation (as discussed in Section 

4.1.1). This difference arises because partial correlation removes the linear effects of 

other variables. In certain cases, Pearson's correlation may not accurately capture the 

true relationship between independent and dependent variables due to multicollinearity. 

 

4.2 Identification of model variables 

The climate data used for both training and testing the model are sourced from the 

ERA5 dataset. Given that the model will be applied to the Last Glacial Maximum (LGM) 

and the Mid-Holocene in future research, paleoclimate data from the CMIP6 dataset 

will be required. Therefore, all variables must first be normalized, followed by bias 

correction for the CMIP6 data. 

 

4.2.1 Normalization 

To eliminate the influence of magnitude on the model, all data must be normalized. For 

CMIP6 data, the normalization of AWI, MPI, and MIROC model data is performed 

using the maximum and minimum values from the ERA5 dataset. This ensures that the 
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training and prediction sets remain independent and identically distributed. The 

normalization process is conducted separately for each grid point, as the regression 

model is independently established for each grid point. 

 

4.2.2 Bias correction 

The comparison of the annual cycle and standard deviation between the ERA5 and 

CMIP6 datasets is presented in Fig. 4-7 and Fig. 4-8. Solar radiation and temperature 

exhibit similar patterns, with only minor differences. However, specific humidity and 

wind speed show noticeable discrepancies in their mean values. Precipitation, in 

particular, exhibits significant differences, with AWI and MPI values in summer being 

much lower than those of ERA5. Additionally, the standard deviation distribution of 

precipitation is even opposite in trend. Therefore, bias correction based on ERA5 data 

is essential when using ERA5 as the sole dataset for statistical model training. 

 

 
 

 Fig. 4-7 The comparison of annual cycle among ERA5 and CMIP6 datasets for 
1999-2014. 
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Fig. 4-8 The comparison of standard deviation among ERA5 and CMIP6 datasets for 

1999-2014. 
 

The general form of the bias correction method (Eq. 4-2) is applied to climate variables 

other than precipitation. This method adjusts not only the mean values but also the 

temporal variability of the model output to align with observations (Hawkins et al., 

2013; Ho et al., 2012): 

 

𝑀஻஼(𝑡) =  𝑂ோாி
തതതതതത + (

ఙ೚ೃಶಷ

ఙಾೃಶಷ

) ∗ (𝑀ோ஺ௐ(𝑡)  −  𝑀ோாி
തതതതതതത)                (4-2) 

 

In this equation, 𝑂ோாி represents the ERA5 data for the historical reference period, 

𝑀ோாி   denotes the CMIP6 output from the historical reference period, and 𝑀ோ஺ௐ 

corresponds to the raw CMIP6 output for the historical, future, or paleo period. 𝑀஻஼  

is the bias-corrected CMIP6 output. Additionally, 𝜎௢ೃಶಷ
  and 𝜎ெೃಶಷ

  represent the 

standard deviations of the observations and daily CMIP6 output in the reference period, 

respectively. 

 

Precipitation is a stochastic variable in the study area and requires a more sophisticated 

approach for bias correction. To accurately bias-correct CMIP6 output for monthly 
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totals and wet-day frequency while maintaining realistic daily and interannual 

variability, the Equiratio Cumulative Distribution Function (EQCDF) matching method 

(Eq. 4-3) (Wang & Chen, 2014) is implemented in this study. The EQCDF technique 

removes systematic biases in CMIP6 simulations and accounts for biases in all 

statistical moments. However, as with all statistical downscaling approaches, it is 

assumed that biases relative to historical observations remain constant in the projection 

period. Precipitation values below 0.01 mm/day are set to 0 (dry-day) during the 

correction process. 

 

𝑀஻஼ = 𝑀ோ஺ௐ ∗
ிೀ

షభ[ிೃಲೈ(ெೃಲೈ)]

ிೃಶಷ
షభ [ிೃಲೈ(ெೃಲೈ)]

, 𝑀஻஼_௔ௗ௝ = 𝑀஻஼ ∗
ெೀതതതതത

ெಳ಴തതതതതത
        (4-3) 

 

In this equation, Fraw represents the Cumulative Distribution Function (CDF) of the 

model for a future projection period, while 𝐹ை
ିଵand 𝐹ோாி

ିଵ  denote the quantile functions 

for observations and the model in the reference period, respectively. 

 

For both bias correction methods, ERA5 data is used as the observational dataset. The 

reference period is 1999–2006, and the output period is 2007–2014. The results of 

applying Eq. 4-2 and Eq. 4-3 are presented in Table 4-2, Table 4-3, Fig. 4-9, and Fig. 4-

10. 

 

Table 4-2 Correlation coefficient between biased CMIP6 data and ERA5 data. 

 Temperature Solar 

radiation 

Specific 

humidity 

Wind 

speed 

Precipitation 

AWI 0.980 0.999 0.936 0.869 0.32 

MPI 0.982 0.999 0.934 0.868 0.31 

MIROC 0.978 0.999 0.917 0.861 0.19 
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Table 4-3 RMSE between biased CMIP6 data and ERA5 data. 

 Temperature Solar 

radiation 

Specific 

humidity 

Wind 

speed 

Precipitation 

AWI 3.05 2.20 0.00075 0.34 0.31 

MPI 2.96 2.16 0.00076 0.34 0.33 

MIROC 3.21 2.42 0.00086 0.35 0.34 

 

For temperature, the correlation coefficients between the bias-corrected outputs of each 

climate model and the observed data exceed 0.97, with lower dispersion in summer 

(standard deviation between 0 and 2) and a root mean square error (RMSE) of 

approximately 3 K. For solar radiation, the correlation coefficient is close to 1, with a 

standard deviation ranging between 0.5 and 3, and an RMSE of about 2 W/m². For 

specific humidity, the correlation coefficient is approximately 0.93, and the bias-

corrected model data are slightly lower than the ERA5 data. Dispersion is higher than 

that of ERA5 in October and November, with an RMSE of 0.0008 kg/kg. For wind 

speed, the correlation coefficient is 0.86, and the RMSE is 0.34 m/s. The dispersion of 

AWI and MPI data is highest in November and May, respectively. For precipitation, the 

correlation coefficients between the bias-corrected outputs of each climate model and 

the observed data are relatively low, and the standard deviations also vary due to the 

stochastic nature of precipitation events, with an RMSE of 0.31 mm/day. From an 

annual cycle perspective, the error between the bias-corrected data and ERA5 data is 

significantly reduced. 
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Fig. 4-9 Annual cycle of climate variables after bias correction. 
 

 

 

Fig. 4-10 Standard deviation of climate variables after bias correction. 
 

The results above indicate that the bias-corrected climate model exhibits strong 

simulation capabilities for temperature, solar radiation, relative humidity, wind speed, 

and precipitation in the Gurbantunggut Desert. Furthermore, the corresponding model 
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performance evaluation confirms that, for each climate variable, the bias-corrected 

CMIP6 data outperform the uncorrected data (Xu et al., 2012). Therefore, the corrected 

dataset enhances the reliability of future climate change projections in the 

Gurbantunggut Desert to a certain extent. 

 

4.2.3 Climate variables selection 

Two approaches are employed to select the model variables influencing biological soil 

crust (BSC) variation in the study area. Climatic variables and their time lags are 

considered in both approaches. 

 

The first approach is static selection, in which climatic factors are incorporated using 

adjusted time series with the optimal time-lag coefficient, as identified by Eq. 4-1. For 

each grid point, the climate variables used in the models remain fixed. 

 

The second approach is best subset selection. Starting with the null model, different 

combinations of features are fitted, and one of the best models is selected from each 

subset—ranging from a single-feature model to an n-feature model. The optimal model 

is then chosen from a total of n+1 models based on prediction accuracy. The features 

configured in this optimal model are the final selected variables. 

 

Three methods are used in this study to evaluate prediction accuracy. They are:  

 

1) Adjusted r-squared (Ezekiel, 1930):  

 

Rୟୢ୨
ଶ =  1 − ( 1 − Rଶ)

(n −  1)

(n −  k −  1)
(4-4) 

 

Where 𝑅ଶ represents the coefficient of determination (regular R-squared) and 

was first introduced by Pearson (1896). 𝑛 denotes the number of observations 

(sample size), and 𝑘 refers to the number of independent variables (predictors) 
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in the model. This improves upon R2 preventing it from increasing with each 

additional predictor. Using this metric, the best model is the one with the 

highest 𝑅௔ௗ௝
ଶ  . Maximizing 𝑅௔ௗ௝

ଶ   is equivalent to minimizing the standard 

error. 𝑅௔ௗ௝
ଶ  is an effective method for selecting predictors, particularly when 

comparing models with different numbers of predictors. 

 

2) Schwarz’s Bayesian Information Criterion (BIC) (Schwarz, 1978): 

 

𝐵𝐼𝐶 = 𝑇𝑙𝑜𝑔 ൬
𝑆𝑆𝐸

𝑇
൰ + (𝑘 + 2) log(𝑇) (4-5) 

 

Minimizing the Bayesian Information Criterion (BIC) is intended to identify the 

optimal model. The model selected by BIC is either the same as that chosen by 

the Akaike Information Criterion (AIC) (Akaike, 1973, 1974) or a more 

parsimonious one. This occurs because BIC imposes a stronger penalty on the 

number of parameters compared to AIC. For large values of 𝑇, minimizing BIC 

closely approximates leave-𝑣-out cross-validation, where 𝑣 = 𝑇[1 −
ଵ

୪୭୥(்)ିଵ
]. 

 

3) Mallows's 𝐶௣ (Mallows, 1973): 

 

𝐶௣ =  
𝑆𝑆𝐸௣

𝑆ଶ
− (𝑁 − 2𝑝) (4-6) 

 

Where 𝑆𝑆𝐸௣ = ∑  ே
௜ୀଵ (𝑌௜ − 𝑌෠௣௜)

ଶ is the error sum of squares for the model with 

p predictors (including the intercept), Ypi is the predicted value of the ith 

observation of Y from the p predictors, S2 is the estimation of residuals variance 

after regression on the complete set of K predictors and can be estimated by 

ଵ

ேି௄
= ∑  ே

௜ୀଵ (𝑌௜ − 𝑌෠௜)
ଶ, and N is the sample size. 
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After the initial reduction of multicollinearity among climate variables based on 

correlation analysis, the appropriate models are selected using the three measures 

mentioned above. For different months at each grid point, the model incorporates 

varying climate factors with corresponding time lags. 

 

4.3 BSC-climate model based on fixed variables 

To quantify the contribution of climate change to BSC variation, a multiple linear 

regression model is constructed to analyze the relationship between BSC and five 

climatic factors (Eq. 4-7): 

 

𝐵𝑆𝐶௩௔௥ = ෍ 𝛽௩௔௥ × 𝐶𝑙𝑖𝑚𝑎𝑡𝑒௩௔௥

ହ

௩௔௥ୀ

+ 𝜀 (4-7) 

 

where β represents regression coefficients and ε denotes the error term. The variable 

var ranges from 0 to 5, representing different climatic factors. These climatic factors 

incorporate the time-lag effects identified by Eq. 4-1. 

 

Based on the identified time-lag effects that best predict BSC responses to climate, a 

multiple linear regression model is established to examine the relationship between 

climatic factors and BSC variation. Figure 4-11 presents the determination coefficients 

of the multiple linear regression models for the entire season. In terms of spatial 

distribution (Fig. 4-11a), the model provides a better explanation for the southern and 

western regions of the study area, where the determination coefficient exceeds 80%. In 

contrast, in the central and northern regions, the model's explanatory power is weaker, 

with determination coefficients around 20%. On average (Fig. 4-11b), climatic factors 

account for 40% of the variation in BSC when considering both time-lag and 

accumulation effects. 
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Fig. 4-11 Distribution (a) and box plot (b) of r-squared. The red line in the box plot 
indicates the average value of the data. 

 

4.4 BSC-climate model based on machine learning 

4.4.1 Statistical evaluation and model selection 

Considering the quality and size of the dataset, three machine learning methods are 

selected for model development: multiple linear regression (MLR) (Draper & Smith, 

1998), support vector regression (SVR) with a linear kernel (Drucker et al., 1997), and 

support vector regression with a radial basis function (RBF) kernel (Smola & Schölkopf, 

2004). During the machine learning process, 80% of the data is allocated as the training 

dataset, which also serves as the validation dataset due to the use of k-fold cross-

validation. The remaining 20% of the data is set aside as the testing dataset to evaluate 

the model’s performance. To identify the best-performing model among these three 

approaches, three predictive accuracy metrics and two interpretability measures are 

applied for model selection (Table 4-4). 
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Table 4-4 Measures for model selection 

This table presents the accuracy and interpretability measures used for model evaluation. The 

accuracy metrics include Root Mean Squared Error (𝑅𝑀𝑆𝐸 ), Standard Error (𝑆𝐸 ), and 

Correlation Coefficient ( 𝑅 ), while the interpretability measures include Determination 

Coefficient (𝑅ଶ) and Adjusted R-squared (𝑅௔ௗ௝
ଶ ). 

Accuracy 

Root Mean Squared Error 𝑅𝑀𝑆𝐸 = ඨ
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑒𝑑௜ − 𝐴𝑐𝑡𝑢𝑎𝑙௜)ଶே

௜ୀଵ

𝑁
 

Standard Error 
𝑆𝐸 =

RSS

௦௤௥௧(௡)
, 𝑅𝑆𝑆 =  ∑(𝐴𝑐𝑡𝑢𝑎𝑙௜ −

𝑃𝑟𝑒𝑑𝑖𝑐𝑡௜)
ଶ 

Correlation Coefficient 𝑅 =
∑  ௡

௜ୀଵ (𝑋௜ − 𝑋
_

)(𝑌௜ − 𝑌
_

)

ට∑  ௡
௜ୀଵ (𝑋௜ − 𝑋

¯

)ଶට∑  ௡
௜ୀଵ (𝑌௜ − 𝑌

¯

)ଶ

 

   

Interpretability 

Determination Coefficient 𝑅ଶ = 1 −
∑(𝐴𝑐𝑡𝑢𝑎𝑙௜ − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡௜)

∑(𝐴𝑐𝑡𝑢𝑎𝑙௜ − 𝐴𝑐𝑡𝑢𝑟𝑎𝑙_𝑚𝑒𝑎𝑛)
 

Adjusted R-squared 𝑅௔ௗ௝
ଶ =  1 − ( 1 − 𝑅ଶ)

(𝑛 −  1)

(𝑛 −  𝑘 −  1)
 

Note. 𝑁 = total number of observations. 𝐴𝑐𝑡𝑢𝑎𝑙௜, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡௜ = predicted and actual values 

for the 𝑖-th observation. 𝑅𝑆𝑆 (Residual Sum of Squares) = ∑(𝐴𝑐𝑡𝑢𝑎𝑙௜ − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡௜)ଶ. 𝑛 = 

total number of observations. 𝑋௜, 𝑌௜ = predicted and actual values for the 𝑖-th observation. 

𝑋
_

, 𝑌
_

 = mean of the predicted and actual values. 𝐴𝑐𝑡𝑢𝑟𝑎𝑙_𝑚𝑒𝑎𝑛 = mean of actual observed 
values. 𝑘 = number of predictors, including the intercept. 

 

By calculating the values of the above five measures on both monthly and yearly scales, 

it is found that Multiple linear regression is the best performing model in relative terms. 

The performance and selection of the three modelling approaches for each indicator is 

shown in the Table 4-5 (See the Section 7.4 for more information.). Sometimes more 

than one approach performs well under a measure, for example, multiple linear 

regression and SVR with RBF kernel are close in performance on the standard error 

and adjusted r2. Therefore, the multiple regression approach is chosen to model the 

relationship between the BSC and climate variables. it's worth noting that the multiple 
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regression model trained based on machine learning has different climate variables at 

each grid point, which is different from the fixed climate variable multiple regression 

model in Section 4.3. 

 

Table 4-5 Performance of three machine learning models in the study area 
 

Multiple linear 

regression 

SVR with 

linear kernel 

SVR with 

RBF kernel 

RMSE 0.058 0.078 0.085 

SE 0.020 0.020 0.024 

Correlation Coefficient 0.334 0.312 0.162 

Determination Coefficient 0.704 0.597 0.666 

Adjusted R-squared 0.500 0.543 0.566 

Units: RMSE and SE have the same unit as the BSC fraction (%). Correlation Coefficient, 

Determination Coefficient (R²), and Adjusted R-squared (𝑹𝒂𝒅𝒋
𝟐 ) are dimensionless. 

4.4.2 Model validation 

Fig. 4-12 illustrates the determination coefficient between observed and predicted 

values. The model exhibits better interpretability from spring to autumn compared to 

winter, explaining over 75% of the variation in BSC. Thus, in terms of interpretability, 

this model outperforms the one based on the selection of fixed climate variables 

presented in Section 4.3. 
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Fig. 4-12 Determination coefficient between observation and prediction. 

  

4.5 Model reliability on the CMIP6 dataset 

As the models are intended for application to the LGM and Mid-Holocene, ensuring 

the reliability of the CMIP6 paleoclimate dataset is crucial for subsequent model 

applications. This section evaluates the reliability of the corrected CMIP6 data in both 

the fixed-variable selection model and the machine learning model. 

 

4.5.1 In the fixed-variable model 

The prediction results of the CMIP6 data using the fixed-variable model are presented 

in Fig. 4-13 and Fig. 4-14. The predictions closely align with satellite observations on 

an annual cycle. While the standard deviation is lower than that of the satellite data, the 

linear variation trends remain consistent, with peaks occurring in March and November. 

However, the MIROC data exhibit an additional peak in September. Regarding the 

seasonal spatial distribution, the predicted values from the model generally match those 

from satellite observations. Despite the overall similarity, the CMIP6 data differ in that 

they predict lower values in the south-central part of the desert during spring and 
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summer. In winter, BSC is essentially unobservable due to vegetation dormancy. 

 

 

Fig. 4-13 Annual cycle (a) and standard deviation (b) of the prediction results of the 
regression model and compared with satellite data.  

 

 

Fig. 4-14 Seasonal distribution of BSC fraction in the Gurbantunggut Desert in 
historical. 

 

4.5.2 In the machine learning model 

Fig. 4-15 presents the annual cycle and standard deviation of the machine learning 
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model's prediction results, compared with satellite data. Consistent with the satellite 

observations, the BSC fraction begins to increase significantly in March and peaks in 

October during the annual cycle. The standard deviation of the model predictions is 

generally lower than that of the observations, with the largest difference occurring in 

September. 

 

 

Fig. 4-15 Annual cycle (a) and standard deviation (b) of the prediction results of the 
regression model and compared with satellite data. 

 

The seasonal distribution in Fig. 4-16 aligns with the annual cycle in Fig. 4-15. The 

BSC fraction values are generally lower than those observed in the satellite data, 

particularly in the southwestern region of the desert and along its southern edge. 
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Fig. 4-16 Seasonal distribution of BSC fraction in the Gurbantunggut Desert in 

historical. 

 

In summary, the outputs of both the fixed-variable model and the machine learning 

model, trained using ERA5 data as input, closely match the satellite-observed BSC data 

when the corrected and normalized CMIP6 data are used as input for prediction. This 

suggests that the regression model trained with ERA5 data can be reliably applied to 

the corrected AWI, MPI, and MIROC model data. 

 

4.6 Interpretation the effects of climatic variables on BSC 

For the linear trend analysis, changes in BSC, specific humidity, wind speed, 

temperature, solar radiation, and precipitation are first estimated through linear fitting, 

incorporating the identified optimal time lags (p < 0.05). Subsequently, regions 

exhibiting significant BSC changes are compared with those experiencing significant 

climate changes, allowing for the identification of dominant climatic factors in regions 
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where BSC variations are most pronounced. 

 

Based on the spatial patterns of linear trends, regions with significant changes in both 

BSC and climate variables accounted for 70% of the areas with significant BSC changes 

from 2000 to 2018 (Fig. 4-17). Panel (a) of Fig. 4-17 illustrates the climatic factors 

most strongly correlated with significant BSC changes, with temperature emerging as 

the dominant driver. In contrast, only a few areas along the northwestern edge are 

primarily influenced by precipitation. Panel (b) of Fig. 4-17 depicts the second most 

influential climatic factor when BSC changes significantly. A comparison with panel (a) 

reveals that in the western region, specific humidity serves as the primary driver, while 

precipitation acts as the secondary driver. Additionally, in the northern half of the desert, 

the roles of temperature and precipitation as driving factors have been reversed. These 

findings indicate that temperature, specific humidity, and precipitation are key drivers 

of major BSC changes. 

 

 

 
Fig. 4-17 Areas with significant changes in both BSC and climatic factors from 2000 

to 2018. (a) Primary climatic drivers; (b) Secondary climatic drivers. 
 

Fig. 4-18 presents the partial correlation analysis of BSC and climate factors with time 

lag, based on the model described in Section 4.3. The partial correlation coefficients 

between BSC and time-lagged climate factors over 19 years are calculated at the grid 

scale with a monthly time unit, and a significance test is performed. 

 

The response of BSC to specific humidity exhibits spatial variability, with both positive 
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and negative correlations. The partial correlation coefficients between BSC and specific 

humidity, while controlling for other conditions, range from -0.2 to 0.3, with an average 

partial correlation coefficient of 0.16. Notably, in the northwestern desert, two adjacent 

grids display high correlations, yet one is positive and the other negative. The spatial 

distribution of partial correlation coefficients for temperature and solar radiation in 

these grids resembles that of specific humidity. In particular, in grids where solar 

radiation is positively correlated with BSC, specific humidity and temperature tend to 

show negative correlations. When analyzed alongside elevation maps (Fig. 3-3a), these 

grids coincide with areas exhibiting large changes in elevation slope (e.g., the tops and 

bottoms of dunes or the edges of mountain ranges), where shadowing and shading may 

promote water evaporation and retention (D. Zhang et al., 2024). 

 

Wind speed demonstrates an approximately equal split between positive and negative 

correlations with BSC across most parts of the desert. A negative coefficient suggests 

that higher wind speeds cause greater damage to the surface crust. Meanwhile, 

temperature exhibits a positive correlation with BSC in most areas, except for the desert 

hinterland, where a negative correlation is observed. This may be attributed to the hot 

and arid conditions in the hinterland, where BSC growth is stressed due to increased 

potential evapotranspiration driven by enhanced solar radiation (Belnap et al., 2001). 

 

The correlation between precipitation and BSC in the study area is generally low, 

fluctuating around zero, with a negative correlation observed along the southern edge 

of the desert. This suggests that higher temperatures may lead to increased surface 

evaporation and greater water depletion, which is not sufficiently compensated by 

precipitation. Conversely, in grids exhibiting a positive correlation, BSC growth is 

limited by decreasing precipitation and promoted by increasing precipitation. The low 

overall correlation may also be explained by the wetting effects surrounding BSC on 

rainy days and the low vegetation cover, which buffer BSC variation from climatic 

fluctuations (Belnap et al., 2001). 
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Fig. 4-18 Partial correlation analysis of BSC and climate factors with time lag. 

 

To evaluate the effect of climatic factors on BSC variability using the fixed-variable 

model, the climate factors with the largest regression coefficients and the signs of these 

coefficients are analyzed. The results are presented in Fig. 4-19. The color bar labels 

indicate climate factors with time lags: q represents specific humidity, si10 denotes 10-

meter wind speed, t2m corresponds to 2-meter temperature, ssrdc refers to surface solar 

radiation downward (clear-sky conditions), and tp indicates total precipitation. 

Subscript numbers denote time lags, where zero indicates no lag. Across the desert 

region, temperature without a time lag emerges as the dominant climatic factor 

influencing BSC variability, exhibiting a consistently positive effect, which aligns with 

the findings in Section 4.1.1. In contrast, for temperature with a one-month lag, the 

regression coefficient is negative in the central desert hinterland, suggesting that 

prolonged high temperatures continue to suppress BSC growth. This finding reinforces 

the idea that temperature acts as a major limiting factor for BSC development. The 

second most influential factor is solar radiation, which primarily affects the sandy 

regions in the northeastern desert. The third key factor is specific humidity, which 

predominantly influences the grasslands in the central desert and some bare soil areas 

in the northeast. 
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Fig. 4-19 (a) The most important variables in the fixed-variable model; 

(b) the positivity or negativity of their contribution. 

 

A similar approach as described above is used to identify the climate factors with the 

largest (Fig. 4-20a) and second-largest (Fig. 4-20b) regression coefficients in the 

machine learning regression model. The longer the color bar, the greater the spatial 

influence of that climate factor across the desert. As winter temperatures in the 

Gurbantunggut Desert generally fall below freezing, making BSC growth nearly 

impossible, the analysis focuses on the regression results from March to November. 

 

For March and April, solar radiation is the dominant climate variable, contributing the 

largest share of regression coefficients. This is because early spring remains cold and 

requires the continuous influence of solar radiation. This also explains the observed 

time lag in solar radiation's dominant effect during these months. Additionally, 

sufficient solar radiation facilitates BSC photosynthesis. As for the second-largest 

climatic factor, specific humidity has the highest share, suggesting that early spring is 

not yet overly dry, and the moisture in the air promotes BSC growth. Overall, solar 

radiation and specific humidity are the key climatic factors influencing BSC variation 

in March and April. 

 

A similar pattern is observed in May, October, and November, where no single climatic 

factor is overwhelmingly dominant. In May, solar radiation, specific humidity, and 

temperature all have high regression coefficients, and their spatial distributions appear 
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more sporadic. In October and November, solar radiation, temperature, specific 

humidity, and wind speed are unevenly distributed, indicating that the desert's climatic 

conditions are more complex during these months. Additionally, BSC peaks in October, 

which results from the combined effects of multiple climatic variables. 

 

From June to September, temperature plays a significantly larger role, particularly in 

July, when almost the entire desert's BSC variation is influenced by temperature. 

Secondary variables are primarily specific humidity, with some localized areas also 

affected by wind speed. This pattern highlights the critical role of temperature in BSC 

variation from late spring to early autumn. 

 

Additionally, the influence of precipitation and wind speed remains spatially limited 

throughout these months. This is because the Gurbantunggut Desert experiences low 

and highly sporadic precipitation, while wind speeds rarely exceed 6 m/s, which is 

insufficient to reach the friction velocity required to disturb BSC surfaces. 

 

 

 
Fig. 4-20 The climate variables with the largest (a) and second largest (b) effects on 

machine learning regression models in different grid points in different months. 
 

The spatial distribution of climate variables exerting the largest and second-largest 

influences in the machine learning regression model is presented in Fig. 4-21. In 
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February, the dominant climatic factor in the bare sand regions of the western and 

northeastern deserts is specific humidity with no lag. In contrast, in the grassland areas 

of the central and southwestern desert, precipitation with no time lag and solar radiation 

with a three-month lag serve as the primary drivers. From March to May, solar radiation 

with a two- to three-month lag emerges as the primary driver in the southern and 

western desert, while temperature and solar radiation with shorter time lags act as 

secondary drivers. In other parts of the desert, the climatic influences are more complex. 

Between June and September, temperature dominates as both the primary and 

secondary driver across most of the desert, though with varying time lags. The effects 

of precipitation and specific humidity are scattered and spatially variable. From October 

to December, the distribution of climatic influences becomes increasingly 

heterogeneous, though broad patterns can be identified: solar radiation and temperature 

in October, specific humidity and temperature in November, and solar radiation and 

specific humidity in December. 
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Fig. 4-21 The spatial distribution of climate variables with the largest (a) and second 
largest (b) effects on machine learning regression model. 

 

4.6 Conclusion 

This chapter first analyzes the time-lag and partial correlations between BSC and 

climate variables. It then introduces data normalization and bias correction methods. 

The selection of variables for the model is conducted using adjusted R-squared, BIC, 

and Mallows' Cp. Finally, a fixed-variable model and a machine learning model are 

developed. The main climatic factors affecting BSC are examined based on the 

regression coefficients of the model, and the reliability of the model on other datasets 

is assessed. The main findings are as follows: 
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1) Correlation analysis reveals that in some areas, BSC exhibits a stronger 

correlation with time-lagged climate factors when the time lag is considered, 

with specific humidity being the most pronounced. The BSC response to 

specific humidity typically lags by one to two months, and in principle, the time 

lag between BSC and climatic variables does not exceed three months. BSC 

responds rapidly to temperature, with a correlation coefficient of 0.7. Similarly, 

BSC responds quickly to precipitation, though the correlation coefficient is 

relatively low (0.46), with significant correlations primarily observed in the east 

and south. 

 

2) The corrected climate model demonstrates strong simulation capabilities for 

temperature, solar radiation, relative humidity, wind speed, and precipitation in 

the Gurbantunggut Desert. The calibrated CMIP6 model effectively simulates 

precipitation, temperature, and solar radiation, meeting the study’s requirements. 

Following bias correction, the discrepancies between climate model outputs and 

observed data are significantly reduced, leading to a notable improvement in the 

simulation performance of each climate model. 

 

3) BSC-climate models are constructed using two approaches, both incorporating 

time lag effects. The first approach is based on fixed climate factors, while the 

second approach slides over the time series to dynamically select more 

appropriate climate factors at different time points. Multiple regression analysis 

is applied to both models, and statistical parameters are used for evaluation. The 

results indicate that the two approaches explain approximately 40% and 75% of 

BSC variability, respectively. 

 

4) Climatic factors account for 70% of BSC variation, indicating that climate 

change significantly affects most areas where BSC changes occur. The 

remaining unexplained BSC variation may be attributed to other factors, such 
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as atmospheric CO₂ levels and nitrogen deposition (Nemani et al., 2003; Zhu et 

al., 2016), human activities, and natural disturbances (Lehmann et al., 2014; 

Peng & Li, 2018). 

 

5) Due to spatial and temporal variability, it is challenging to derive a consistent 

conclusion regarding the influence of climatic factors on BSC solely from 

model coefficients. This variability arises because the dominant climatic factors 

and their time lags differ across grid points and months. However, in general, 

the key climatic factors influencing BSC are relative humidity, temperature, and 

solar radiation. 
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5 Application of the BSC-Climate model 

In the previous chapters, a fixed-variable regression model and a machine learning 

regression model were developed, and the reliability of the AWI, MPI, and MIROC 

scenario data in CMIP6 for these two models was validated. In this chapter, these two 

models are applied in two ways. The first application utilizes paleoclimate data from 

CMIP6 to investigate and compare the temporal and spatial distribution of BSC in the 

Gurbantunggut Desert during the Last Glacial Maximum (LGM, 21 ka) and the Mid-

Holocene (6 ka). The second application extends the model to the Atacama Desert in 

Chile, where modern climate data from the Atacama Desert are used to predict the 

temporal and spatial distribution of BSC and compare the results with NDVI data. 

 

5.1 Paleo Gurbantunggut Desert  

This section first analyzes the spatiotemporal distribution of climate variables in the 

Gurbantunggut Desert during the Last Glacial Maximum (LGM) and the Mid-Holocene. 

Then, data from three CMIP6 climate scenarios are applied to the fixed-variable 

regression model and the machine learning regression model to derive the BSC 

distribution in the Gurbantunggut Desert under paleoclimatic conditions. Finally, the 

distribution and variations of BSC across different paleoclimatic periods are examined 

by comparing the differences in climatic factors between the two periods and 

integrating the discussion of key climatic drivers from the previous chapters. 

 

5.1.1 Spatiotemporal variability of climatological processes 

From the discussions in the previous chapters, it is evident that the main climatic factors 

influencing the distribution of BSC in the Gurbantunggut Desert are moisture, 

temperature, and solar radiation. Therefore, the spatial distribution of these three 

environmental variables is analyzed. 

 

Fig. 5-1 presents the seasonal spatial distribution of specific humidity. In both 
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paleoclimatic periods, specific humidity gradually increases from northeast to 

southwest, which is inverse to the elevation gradient in the Gurbantunggut Desert (Fig. 

3-3a), meaning that humidity levels are lower at higher elevations. Regarding seasonal 

variations, in both paleoclimate periods, temperature is highest in summer, similar in 

spring and autumn, and lowest in winter. Across different climate scenarios, the AWI 

scenario simulates the highest specific humidity, followed by MPI, while MIROC 

exhibits the lowest values. For both periods, specific humidity during the LGM is lower 

than that of the Mid-Holocene, particularly in summer, with a difference of 

approximately 0.001 kg/kg. This suggests that the Mid-Holocene was a wetter period, 

which aligns with the findings of Xu et al. (2023), based on research on the southern 

desert margin profile, and Liu et al. (2020), based on Mg/Ca analysis from Baluk Cave. 

 

 

 
Fig. 5-1 Spatial distribution of specific humidity in Gurbantunggut Desert during 

LGM (a) and Mid-Holocene (b). 
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Fig. 5-2 presents the spatial distribution of temperature throughout the seasonal cycle. 

In both paleoclimatic periods, temperature gradually increases from northeast to 

southwest, which is inverse to the elevation gradient in the Gurbantunggut Desert (Fig. 

3-3a), meaning that higher elevations correspond to lower temperatures. Across 

different seasons, temperature is highest in summer and lowest in winter in both periods. 

In the LGM, spring temperatures are higher than those in autumn, whereas in the Mid-

Holocene, spring and autumn temperatures are similar. The simulated temperature 

values from different climate scenarios are generally consistent. In both paleoclimatic 

periods, summer temperatures during the LGM are significantly lower than those in the 

Mid-Holocene, with a difference of nearly 10 K. The summer temperature in the Mid-

Holocene is approximately 290 K, aligning with the findings of Zhao et al. (2017). 

 

 
 

Fig. 5-2 Spatial distribution of temperature in Gurbantunggut Desert during LGM (a) 
and Mid-Holocene (b). 
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Fig. 5-3 presents the spatial distribution of solar radiation. In both paleoclimatic periods, 

the distribution of solar radiation across the desert is relatively uniform, with no 

significant spatial variations. Across different seasons, in both periods, solar radiation 

is highest in summer, followed by spring, then autumn, and lowest in winter. Regarding 

different climate scenarios, the AWI and MPI values are relatively similar, whereas 

MIROC exhibits higher values, particularly in summer. For both periods, solar radiation 

is slightly lower in the LGM than in the Mid-Holocene, with a more pronounced 

difference in summer. In the Mid-Holocene, summer solar radiation is approximately 

350 W/m², which differs significantly from the findings of Xu et al. (2023), who 

reported that summer solar radiation at 45°N could reach 500 W/m². However, the 

winter solar radiation, at approximately 120 W/m², aligns with the results of Xu et al. 

(2023). 

 

 
 

Fig. 5-3 Spatial distribution of solar radiation in Gurbantunggut Desert during LGM 
(a) and Mid-Holocene (b). 
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Fig. 5-4 presents the annual cycle of climate variables across three CMIP6 scenarios. 

Specific humidity follows a unimodal distribution in interannual variability, peaking in 

July, with the MIROC scenario exhibiting the lowest values during the same period. In 

the LGM, the annual cycle of the AWI scenario closely resembles that of the Mid-

Holocene, whereas the MPI and MIROC scenarios display significantly lower values. 

 

Wind speed follows a less pronounced bimodal distribution over the annual cycle, with 

peaks in May and September. A minor trough occurs in July, except for the MIROC 

values in the Mid-Holocene. The mean wind speed in the Mid-Holocene is 

approximately 1 m/s lower than in the LGM. 

 

The annual cycles of temperature and solar radiation exhibit similar patterns. However, 

temperature is lower in the LGM than in the Mid-Holocene from May to October, 

whereas mean solar radiation levels remain comparable between the two periods. 

 

The annual cycle of precipitation is highly irregular. Apart from the winter months, 

which have low rainfall, two troughs are observed: one in May and another in 

September, with notably low values in September. Precipitation peaks occur in April, 

July, and October, with the highest value recorded in April, reaching approximately 

0.57 mm/day. 
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Fig. 5-4 Temporal distribution of climate variables in Gurbantunggut Desert in LGM 
and Hid-Holocene. 

 

Since the Mid-Holocene, increased winter solar radiation has led to higher evaporation 

rates in upwind regions, such as the Mediterranean (Chen et al., 2008, 2019). The 

melting of ice in high-latitude areas of the Northern Hemisphere, the rising sea surface 

temperature in the North Atlantic, and the increased evaporation have provided 

sufficient water vapor for the Gurbantunggut Desert (Chen et al., 2016; Dyke, 2004; 

Praetorius et al., 2008; Jin et al., 2012). On the other hand, the weakening of summer 

solar radiation has caused a southward shift in subtropical high pressure, leading to 

reduced evaporation within the desert and an increase in atmospheric moisture content. 

Additionally, the solar radiation gradient between mid- and high latitudes has gradually 

increased, contributing to a corresponding intensification of the westerlies (Chen et al., 

2016, 2019). Therefore, the combination of abundant water vapor sources and strong 

westerly winds has resulted in higher precipitation in the study area. This aligns with 

the findings of this study, which indicate that specific humidity was higher, and wind 

speed was lower in the Mid-Holocene compared to the LGM. 
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5.1.2 Fixed-variables model 

Fig. 5-5 illustrates the application of the fixed-variable model in paleoclimatology. 

During the LGM, spring BSC is primarily distributed in the western and southeastern 

regions of the Gurbantunggut Desert, with fewer occurrences in the north. In summer, 

BSC is mainly concentrated along the southeastern edge of the desert. In autumn, BSC 

is more evenly distributed across the desert, with a relatively higher abundance in the 

west. In winter, BSC levels are very low, with only a few occurrences in the west and 

along the southeastern edge. Across different climate scenarios, the AWI and MPI 

predictions are highly similar, while the MIROC predictions are generally lower. 

However, MIROC exhibits higher values in localized areas, particularly along the 

southwestern edge and central east during summer, and along the southern edge during 

autumn. 

 

During the Mid-Holocene, spring BSC is primarily distributed in the southeastern 

region of the Gurbantunggut Desert, with fewer occurrences in the north. In summer, 

BSC levels are generally low and are mainly concentrated in the southern part of the 

desert and along the southeastern edge. The autumn BSC distribution is similar to that 

of summer, but with higher values. In winter, BSC is mainly distributed in the southern 

and western parts of the desert. The spring and winter BSC predictions are relatively 

consistent across different climate scenarios. In summer, the MIROC prediction yields 

the highest values, followed by AWI, while MPI has the lowest values. In autumn, the 

AWI and MPI predictions are similar, whereas MIROC predicts significantly higher 

values in the southern region of the desert. 
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Fig. 5-5 Seasonal spatial distribution of BSC fraction predicted by the fixed-variables 
model in the LGM (a) and mid-Holocene (b). 

 

Fig. 5-6a illustrates the difference in BSC between the LGM and the Mid-Holocene. In 

spring, the BSC fraction in the LGM is lower than in the Mid-Holocene for most grids, 

whereas the opposite trend is observed in summer. In autumn, the results vary across 

different climate scenarios. In the AWI and MPI scenarios, the BSC fraction is higher 

in the LGM for most parts of the desert, whereas the MIROC scenario shows the 

opposite trend. In winter, the difference in BSC is close to zero. 

 

Fig. 5-6b presents the annual cycle of BSC across different scenarios and paleoclimatic 

periods. The BSC annual cycle exhibits bimodal characteristics, with peaks in April and 

October. Within the same climate scenario, the BSC fraction in the LGM is consistently 

lower than in the Mid-Holocene, aligning with the analysis of Fig. 5-5. 
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Fig. 5-6 Comparison of the distribution of BSC between the two paleo-periods: (a) 
Spatial distribution of the difference (LGM minors mid-Holocene) in BSC fraction; 

(b) Annual cycle of BSC fraction. 
 

5.1.3 Machine learning model 

Fig. 5-7 illustrates the application of the machine learning model in paleoclimatology. 

During the Last Glacial Maximum (LGM), spring BSC is primarily distributed in the 

southeastern region of the Gurbantunggut Desert, with fewer occurrences in the 

northern part. In summer, BSC is mainly concentrated along the southwestern and 

southeastern edges of the desert. In autumn, BSC is evenly distributed across the desert, 

with relatively higher concentrations in the southeastern region. In winter, BSC levels 

are very low, and the specific locations of BSC occurrence vary across different 

scenarios. Across different climate scenarios, the MPI and MIROC predictions are 

highly similar, whereas the AWI predictions yield lower values, particularly in the 

southern part of the desert during summer. MPI exhibits higher values in the 
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northwestern part of the desert in autumn, while AWI shows higher values in the west-

central region in winter. MIROC predicts higher values in the eastern part of the desert 

and along the southeastern edge during winter. 

 

During the Mid-Holocene, spring BSC is primarily distributed in the southeastern 

region of the Gurbantunggut Desert, with fewer occurrences in the north. In summer, 

BSC is mainly concentrated along the southern edge of the desert. In autumn, BSC is 

evenly distributed, with relatively higher concentrations in the central-southern and 

central-western regions. In winter, BSC is also present in small but relatively evenly 

distributed patches across the desert. The BSC distribution patterns remain similar 

across different climate scenarios. 

 

 
 

Fig. 5-7 Seasonal spatial distribution of BSC fraction predicted by the machine 
learning model in the LGM (a) and mid-Holocene (b). 
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Fig. 5-8a illustrates the difference in BSC between the LGM and the Mid-Holocene. In 

spring, the BSC fraction in the LGM is lower than in the Mid-Holocene across most 

grid cells. In summer, higher LGM values are primarily observed in the central and 

northern regions of the desert. In autumn, BSC values are higher in the southern desert 

during the LGM, whereas the northern desert exhibits higher values in the Mid-

Holocene. In winter, the difference in BSC is close to zero. 

 

Fig. 5-8b presents the annual cycle of BSC across different climate scenarios and 

paleoclimatic periods. The BSC annual cycle features a distinct peak in October. In May, 

the Mid-Holocene BSC fraction exhibits a small peak, whereas the LGM BSC fraction 

reaches a trough. 

 

 
 

Fig. 5-8 Comparison of the distribution of BSC between the two paleo-periods: (a) 
Spatial distribution of the difference (LGM minors mid-Holocene) in BSC fraction; 

(b) Annual cycle of BSC fraction. 
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5.2 Atacama Desert 

In this section, the generalisability of the model is tested by applying the fixed-variable 

regression model and the machine learning regression model to the Atacama Desert. 

The Atacama Desert is located in the Southern Hemisphere, where the seasons are 

reversed compared to the Northern Hemisphere. Therefore, in subsequent research, 

only the month is used to describe the spatiotemporal distribution. 

 

5.2.1 Spatiotemporal variability of climate variables 

Fig. 5-9 presents the temporal distribution of climate variables in the Atacama Desert, 

derived from the ERA5 dataset. The annual cycles of specific humidity, temperature, 

solar radiation, and evapotranspiration exhibit a consistent pattern, with lower values 

mid-year and higher values at the beginning and end of the year. Among these variables, 

specific humidity and temperature follow the same trend throughout the year, peaking 

in February and reaching their lowest levels in July. This pattern indicates that an 

increase (or decrease) in solar radiation and temperature leads to a corresponding 

increase (or decrease) in evapotranspiration, which subsequently results in a rise (or 

decline) in atmospheric water vapor and an associated change in specific humidity. 

Additionally, since water vapor is a greenhouse gas, its increase (or decrease) further 

amplifies temperature variations. Wind speeds remain low throughout the year, 

reaching their lowest levels in June and July at less than 1 m/s, and peaking in January 

and December, yet still remaining below 2 m/s. In contrast, the annual cycle of 

precipitation differs significantly from other climatic variables. This is due to the 

Atacama Desert's persistently high temperatures and minimal rainfall, with some years 

experiencing no precipitation at all. Consequently, the annual cycle is not a reliable 

reference. Appendix 7.5 provides station data on precipitation in the Atacama Desert 

for 2018, further illustrating the scarcity and unpredictability of rainfall in this extreme 

environment. 
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Fig. 5-9 Annual cycle distribution of climate variables in the Atacama Desert. 
 

Fig. 5-10 presents the spatial distribution of climate variables in the Atacama Desert, 

based on the ERA5 dataset. Areas near the coastline exhibit higher specific humidity 

and lower temperatures, while the central region of the desert experiences stronger 

winds and higher precipitation levels. Solar radiation is relatively uniform across the 

desert, whereas evapotranspiration is higher in the northern region. 
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Fig. 5-10 Spatial distribution of climate variables in the Atacama Desert from 2000 to 

2018. 
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5.2.2 Model selection 

The model is trained separately for each grid point when modelling Gurbantunggut 

Desert data. As a result, each grid point is assigned a different regression model. In the 

fixed-variable model, only the regression coefficients differ, whereas in the machine 

learning regression model, both the selected variables and regression coefficients vary 

for each grid point. Therefore, to apply the model trained in the Gurbantunggut Desert 

to the Atacama Desert, selecting an appropriate regression model is crucial. 

 

The Gurbantunggut Desert consists of 55 grid points, while the Atacama Desert has 35 

grid points. The objective of this section is to select a suitable prediction model for each 

Atacama Desert grid point by comparing the climate data of both deserts. The primary 

method used is the k-nearest neighbour (KNN) algorithm (Cover & Hart, 1967). The 

model corresponding to the nearest climate variable lattice point, identified through this 

method, is applied as the prediction model for the Atacama Desert. The results are 

presented in Fig. 5-11. 

 

Fig. 5-11a shows the selected month for applying the model to the Atacama Desert. The 

horizontal axis represents the months in the Atacama Desert, while the numbers inside 

the rectangular frames indicate the corresponding months in the Gurbantunggut Desert. 

The vertical axis represents the number of grid points assigned to each month. For 

example, the climatic conditions in January in the Atacama Desert (x-axis) are most 

similar to those in June in the Gurbantunggut Desert (indicated by the number 6 in the 

rectangular frame), reflecting the seasonal differences between the Northern and 

Southern Hemispheres. Multiple numbers appearing in the stacked bars indicate that 

the climate at each of the 35 grid points in the Atacama Desert is individually compared. 

For instance, in March, the climate of 28 grid points in the Atacama Desert is similar to 

May in the Gurbantunggut Desert, whereas the remaining 7 grid points align more 

closely with August. 
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Fig. 5-11b illustrates the selected grid points for applying the model to the Atacama 

Desert. The horizontal axis represents the months in the Atacama Desert, while the 

numbers inside the rectangular frames indicate the corresponding grid points in the 

Gurbantunggut Desert. The vertical axis represents the number of grid points assigned 

to each month. The colour coding differentiates land cover types: green represents 

grassland, while beige denotes barren land in the Gurbantunggut Desert. The grid points 

are associated with specific months. For example, in December, 22 grid points in the 

Atacama Desert correspond to the first grid point in the Gurbantunggut Desert in June. 

Additionally, 4, 1, 3, 1, 1, and 3 grid points correspond to the 4th, 11th, 16th, 20th, 39th, 

and 45th grid points, respectively, with the corresponding month also being June (as 

indicated in Fig. 5-11a). 
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Fig. 5-11 (a) Month and (b) grid point corresponding to the most suitable model. 

Green represents grassland, while beige denotes barren land in the Gurbantunggut 
Desert. 

 

Fig. 5-12 presents the spatial distribution corresponding to Fig. 5-11b. By comparing 

climatic conditions and considering the correspondence between months with similar 

climates in the Atacama Desert and the Gurbantunggut Desert (Fig. 5-11a), it is evident 

that most areas in the central and southern Atacama Desert during January, June, July, 

October, November, and December exhibit climatic similarities to the barren land in 



108 
 

the Gurbantunggut Desert. In February, the climate in central Atacama more closely 

resembles the grassland in the Gurbantunggut Desert, while the southern region remains 

closer to barren land. During the remaining months, the central and southern parts of 

the Atacama Desert share similar climatic conditions with the grassland in the 

Gurbantunggut Desert. The northern region of the Atacama Desert remains relatively 

stable, consistently corresponding to the grassland in the Gurbantunggut Desert. 

 

 
 

Fig. 5-12 Spatial distribution of grid point corresponding to the most suitable model. 
Green represents grassland, while beige denotes barren land in the Gurbantunggut 

Desert. 

 

5.2.3 Results of model application 

After selecting the appropriate model according to the previous section, the ERA5 

climate data from 2000 to 2018 are used to predict the BSC fraction in the Atacama 

Desert. The results using the fixed-variables model and the machine learning model are 

shown in Fig. 5-13 and Fig. 5-14 respectively. 

 

The two models produce similar predictions, with BSC primarily distributed in the 

northern part of the Atacama Desert, which aligns with the findings of Wang et al. 

(2024). The BSC fraction values are higher from January to April. However, unlike the 

fixed-variable model, the machine learning model's predictions indicate that BSC is 

also present in the central and southern parts of the Atacama Desert during January, 
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March, and September. 

 

 

Fig. 5-13 BSC fraction predicted by the fixed-variables model in the Atacama Desert. 
 

 

Fig. 5-14 BSC fraction predicted by the machine learning model in the Atacama 
Desert. 

 

Fig. 5-15 presents the annual cycle of BSC fraction predicted by the fixed-variable 

model and the machine learning model in the Atacama Desert. The two models 

produced similar results, with relatively high values from January to April, peaking in 

March, while the lowest value occurs in June. The main difference between the two 

models is that the machine learning model predicts a small peak in September. When 

evaluated alongside Fig. 5-13 and Fig. 5-14, this peak appears to be influenced by the 

divergent predicted values around 22°S. Similarly, the March peak in the fixed-variable 
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model is lower than that in the machine learning model, likely due to the predicted 

values around 22.5°S. 

 

 
Fig. 5-15 Annual cycle of BSC fraction predicted by the fixed-variables model and the 

machine learning model in the Atacama Desert. 

 

As there is no directly comparable data on BSC distribution in the Atacama Desert, 

NDVI is used as a reference indicator. Fig. 5-16 presents the spatial distribution and 

annual cycle of NDVI in the Atacama Desert. The NDVI values are higher in the 

northern region (approximately 0.2–0.5) and lower in the southern region (around 0.1–

0.15). This pattern aligns with the findings in Fig. 5-13 and Fig. 5-14, which indicate a 

positive correlation between higher NDVI values and increased BSC coverage. 

Additionally, when compared with Fig. 5-15, the annual cycle of NDVI exhibits a 

generally consistent trend with the model predictions, with relatively high values from 

January to April, peaking in February. 
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Fig. 5-16 Spatial distribution and annual cycle of NDVI in Atacama Desert from 2000 
to 2018. 

 

5.3 Conclusion 

In this chapter, the fixed-variable model and the machine learning regression model are 

applied in two ways, as summarized below: 

 

1) The spatiotemporal distribution of BSC in the Gurbantunggut Desert during the 

Last Glacial Maximum (LGM, 21 ka) and the Mid-Holocene (6 ka) is predicted 

using paleoclimate data from CMIP6. The results indicate that BSC is more 

abundant along the southern edge of the desert, and the BSC fraction is higher 

in the Mid-Holocene than in the LGM. 

 

2) The temporal and spatial distribution of BSC in the Atacama Desert is predicted 

using modern climate data from the region. The results suggest that BSC in the 

Atacama Desert is primarily distributed in the northern part of the desert, with 

higher BSC fractions from January to April. 

 

3) The predicted BSC distribution in the Atacama Desert is compared with NDVI 
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data, revealing consistent annual cycle variations. Assuming the NDVI value of 

BSC is approximately 0.2, the spatial distribution of NDVI closely aligns with 

the predicted BSC distribution. 
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6 Conclusion and outlook 

6.1 Conclusion 

A comprehensive understanding of the response of the biological soil crust to climate 

change requires BSC-climate models that represent the relevant processes in the 

atmosphere and on the land surface. In this study, a modelling system for BSC and 

climate drivers based on multi-datasets is developed in two approaches. The effects of 

climate variability on the long temporal and large spatial distribution of BSC are 

revealed by an improved BSC detection method and multiple linear regression. This 

model can be used to explain the dominant climatic factors associated with changes in 

BSC, the short- or long-term prediction of regional-scale distribution of BSC, the 

assessment of potential impacts of climate change on BSC availability and sustainable 

ecosystem development. Key outcomes include: 

 

1) The long-term and large-scale distribution of biological soil crust (BSC) in the 

investigated area is determined through a four-step approach: (i) fusion of 

MODIS and Landsat 7 satellite data using the Spatial and Temporal Adaptive 

Reflectance Fusion Model (STARFM) to obtain high spatial and temporal 

resolution multispectral data; (ii) calculation of BSCI and NDVI from the fused 

satellite spectral data; (iii) extraction of BSC in the study area based on BSCI 

thresholds derived from previous studies, with additional consideration of 

NDVI; and (iv) analysis of the extracted BSC data from multiple perspectives. 

The 19-year analysis reveals that, on a temporal scale, BSC variations exhibit 

interannual periodicity, with peaks in March and October and near-zero values 

in winter. On a spatial scale, BSC is predominantly distributed in the desert-

oasis transition zone, with its presence becoming increasingly sparse toward the 

desert hinterland. 

 

2) Lag correlation and partial correlation between BSC and climate variables are 

analyzed. In this study, five climatic variables—specific humidity, 10-meter 
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wind speed, 2-meter temperature, surface solar radiation, and total 

precipitation—along with their time lags, are used as independent variables. The 

results indicate that in some areas, BSC exhibits a stronger correlation with 

time-lagged climate factors when the time lag is considered, with this effect 

being most pronounced for specific humidity. The BSC response to specific 

humidity is typically delayed by 1 to 2 months, and in principle, the time lag 

between BSC and climatic variables does not exceed three months. BSC 

responds rapidly to temperature, with a correlation coefficient of 0.7, while its 

response to precipitation is also relatively fast but has a lower correlation 

coefficient of 0.46, with significantly correlated areas mainly located in the east 

and south. These correlation analyses provide a valuable reference for the 

selection of variables in subsequent modeling efforts. 

 

3) Models of biological soil crust and climate factors are constructed using two 

approaches, both of which account for the influence of time lag. The first 

approach is based on fixed climate factors, while the second employs a sliding 

time series method to select the most appropriate climate factors at different 

time points. Multiple regression analysis is applied to both models, and 

statistical parameters are used for estimation. The results indicate that the two 

approaches explain approximately 40% and 75% of BSC variation, respectively. 

The primary climatic drivers influencing BSC distribution are temperature, 

specific humidity, and solar radiation. 

 

4) The models are applied to paleoclimate scenarios (the Last Glacial Maximum 

and the Mid-Holocene) in the Gurbantunggut Desert and to historical climate 

conditions in the Atacama Desert. Changes in BSC distribution across different 

time periods are compared and analyzed. The results indicate that BSC is more 

abundant along the southern edge of the Gurbantunggut Desert, with the Mid-

Holocene exhibiting a higher BSC fraction than the LGM. In the Atacama 
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Desert, BSC is primarily distributed in the northern region, with higher BSC 

fractions observed from January to April. 

 

 

6.2 Outlook 

Based on the results of this study, future research should focus on the following aspects: 

 

1) Improving prediction accuracy through dataset selection can be achieved in two 

ways. The first approach is to incorporate multi-model ensemble (MME) data, 

which can help mitigate biases introduced by individual models. The second is 

downscaling, where higher-resolution data can better capture geographical and 

climatological features, leading to more accurate model predictions. 

 

2) Enhancing model calibration by utilizing existing BSC distribution datasets 

from literature and measured data can improve regional adaptability and 

predictive accuracy. Future work should focus on refining the model using these 

datasets to ensure greater reliability across different environments. 

 

3) Expanding the spatial and temporal scope of the model could provide broader 

insights. If computational resources and memory capacity allow, the model 

could be extended globally and applied to past or future climate scenarios. 

Unlike existing static models, the approach used in this study generates a 

continuous time series of BSC fraction. Scaling up the application of this model 

could contribute to the development of a more comprehensive dataset of BSC 

distributions. 

 

 

  



116 
 

 

 

 



117 
 

7 Appendix 

7.1 Kappa index 

Assume that n samples are distributed into 𝑘ଶ cells, here each sample is assigned to 

one of k categories in the map (usually the rows), and independently to one of the 

same 𝑘 categories in the reference data set (usually the columns). Let 𝑛௜௝ denote the 

number of samples classified into category 𝑖 (𝑖 =  1, 2, … , 𝑘) in the map and 

category 𝑗 (𝑗 =  1, 2, … , 𝑘) in the reference data set (Fig. 7-1) (Congalton & Green, 

2019). 

 

 

Fig. 7-1 Mathematical Example of an Error Matrix 

 

Let 𝑝௜௝ denote the proportion of samples in the 𝑖௧௛, 𝑗௧௛ cell, corresponding to 𝑛௜௝, 

which 

𝑝௜௝ =  
𝑛௜௝

𝑛
 

 

Then let 𝑝௜ା and 𝑝ା௝ be defined by 

𝑝௜ା =  ෍ 𝑝௜௝

௞

௝ୀଵ
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and 

𝑝ା௝ =  ෍ 𝑝௜௝

௞

௜ୀଵ

 

 

Let 

𝑝௖ =  ෍ 𝑝௜ା𝑝ା௝

௞

௜ୀଵ

 

be the actual agreement, and 

𝑝ା௝ =  ෍ 𝑝௜௝

௞

௜ୀଵ

 

be the chance agreement. 

 

Assuming a multinomial sampling model, the maximum likelihood estimate of 

Kappa is given by 

𝐾෡ =  
𝑝௢ − 𝑝௖

1 −  𝑝௖

(7-1) 

 

7.2 Sen’s Slope 

Sen’s slope is a non-parametric statistical estimator used to quantify the magnitude of 

trends in a time series. Unlike simple linear regression, Sen’s method is robust to 

outliers and non-normally distributed data, making it efficient and resistant to 

measurement errors and anomalies. This robustness makes it well-suited for detecting 

long-term trends in environmental and climate-related datasets. 

 

Sen’s slope is defined as: 

 

𝑆𝑒𝑛ᇱ𝑠 𝑠𝑙𝑜𝑝𝑒 = 𝑀𝑒𝑑𝑖𝑎𝑛 ቄ
௫ೕି௫೔

௝ି௜
: 𝑖 < 𝑗ቅ            (7-2) 

 

A 1– 𝛼 confidence interval for Sen’s slope can be calculated as (lower, upper), where: 
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𝑁 = 𝐶(𝑛, 2), 

𝑘 = 𝑠𝑒 ∙ 𝑧௖௥௜௧, 

𝑙𝑜𝑤𝑒𝑟 =  𝑚ேିଶ
ଶ

, 

𝑢𝑝𝑝𝑒𝑟 =  𝑚ேାଶ
ଶ

ାଵ
. 

 

Here, N = the number of pairs of time series elements (𝑥௜ , 𝑥௝), where 𝑖 <  𝑗 and 𝑠𝑒 

is the standard error for the Mann-Kendall Test. Also, 𝑚௛ is the ℎ௧௛ smallest in the 

set {(xj–xi)/(j–i): i < j} and 𝑧௖௥௜௧t is the 1 −
ఈ

ଶ
 critical value for the normal distribution. 

 

7.3 Mann-Kendall Test 

Mann-Kendall is a non-parametric test method. Compared with other parametric test 

methods, it does not require the sample to follow a certain distribution, is less disturbed 

by outliers, and is more suitable for ordinal variables. The Mann-Kendall test has been 

successfully used in a large number of studies related to hydrological and 

meteorological trend changes to determine the significance of trends in runoff, 

precipitation, climate, etc. 

 

The Mann-Kendall Test is used to determine whether a time series has a monotonic 

upward or downward trend. It does not require that the data be normally distributed or 

linear. It does require that there is no autocorrelation. 

 

The null hypothesis for this test is that there is no trend, and the alternative hypothesis 

is that there is a trend in the two-sided test or that there is an upward trend (or downward 

trend) in the one-sided test. For the time series 𝑥ଵ, … , 𝑥௡ , the MK Test uses the 

following statistic: 
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𝑆 = ෍ ෍ 𝑠𝑖𝑔𝑛൫𝑥௝−𝑥௜൯
௡

௝ୀ௜ାଵ

௡ିଵ

௜ୀଵ
(7-3) 

 

Note that if S > 0 then later observations in the time series tend to be larger than those 

that appear earlier in the time series, while the reverse is true if S < 0. 

 

The variance of S is given by 

 

𝑣𝑎𝑟 =  
1

18
൥𝑛(𝑛 − 1)(2𝑛 + 5) − ෍ 𝑓௧(𝑓௧ିଵ)(2𝑓௧ + 5)

௧

൩ (7-4) 

 

where t varies over the set of tied ranks and 𝑓௧  is the number of times (i.e., frequency) 

that the rank t appears. 

 

The MK Test uses the following test statistic: 

 

𝑧 = ൞

ௌିଵ

௦௘
, 𝑆 > 0

        0, 𝑆 = 0
ௌାଵ

௦௘
, 𝑆 < 0

                     (7-5) 

 

where 𝑠𝑒 is the square root of var. If there is no monotonic trend (the null hypothesis), 

then for a time series with more than 10 elements, 𝑧 ~ 𝑁(଴,ଵ), i.e., 𝑧 has a standard 

normal distribution. 

 

7.4 Supplementary figures to Table 4-5 

Fig. 7-2 as the supplement to Table 4-5, the monthly box plots for the three machine 

learning models on different evaluation metrics is shown. The evaluation indicators of 

the linear regression demonstrate superiority in comparison to both the linear kernel 

and the RBF kernel support vector regression (SVR) during the growing season. 
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Fig. 7-2 Performance of three machine learning models in the study area. The blue, 

black and magenta boxes indicate the evaluation indicators for linear regression, 

linear kernel SVR and RBF kernel SVR, respectively. 

 

7.5 Precipitation station data for the Atacama Desert in 2018 

The stations data of Fig. 7-3 is from station C2 of SFB1211 "Earth Evolution at the 

dry Limit" (Hoffmeister, 2018). Stations 1.1, 1.2 and 1.3 are located in the middle of 

the desert, and stations 2.1, 2.2 and 2.3 are located in the north of the desert. As can be 

seen in the figure, even stations in proximity area to each other still have very 

different precipitation levels. Majority of the stations have very low monthly 

precipitation. There are many rainy months throughout the year at station 1.3, with 

higher precipitation in August and September. Station 2.2 has a higher precipitation 

event in November. This is a supplement to Fig. 5-9 and further illustrates the low and 

random precipitation in the Atacama Desert. 
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Fig. 7-3 Stations data of precipitation in the Atacama Desert in 2018. (a) Station 

location (red dot); (b) Monthly precipitation. 
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