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Abstract

Recent biomedical research has led to a deep level of understanding of biological mecha-
nisms we never reached before, enabling us to develop novel tests and cures for disease and
improve our lives. However, there are still many disease and mechanisms to be researched
and fully understood. One important element of this research are experiments with model
organisms.

Model organisms play a crucial role in biomedical research and thanks to their wide spread
use in science, we understand these organisms in a level of detail that was not reached for
any other organism yet. Researchers use model organisms in their experiments to study
disease like Alzheimer’s and cancer, to understand aging and sleep and its underlying
biomedical mechanisms. One model organism is the small roundworm Caenorhabditis
elegans (C. elegans). Proposed as model organism by Sidney Brenner in the 1960s it
quickly became a highly researched organism. The transparent body allows effortless
observations of in vivo organs and inner processes, especially when applying stains that at-
tach to specific biomolecules, highlighting them for improved observations. Using modern
technologies, scientists can introduce all kinds of genetic mutations into an organism e.g.
to understand the influence and interplay of specific genes in their experiments. Their
findings do not only help to understand C. elegans but bring insights in human biology.
Additionally, compared to other organisms C. elegans are easy to breed and cultivate
under laboratory conditions making it a cheap and practical model organism. These and
other factors result in C. elegans popularity in research and wide use in experiments.

One of the main parts of the experiments conducted with C. elegans is quantifying its
behavior. As behavior is an output of the organism’s neural network, it gives scientists
valuable insights and helps them to understand the effects of their experiments. Together
with the aforementioned benefits, behavior quantification of C. elegans enables broad
possibilities for analysis and research. Unfortunately, traditional quantification of behavior
is done by hand during time consuming observations of the nematodes under a microscope.
Therefore, there is the need to automate this process with the promise to speed-up
experiments, allowing scientists to spend more time on other tasks like interpretation of
the results, obtained by the automated analysis, and conducting more experiments.
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vi ABSTRACT

Recently, Machine Learning (ML) and Deep Learning (DL) methods specialized on
C. elegans have been proposed for tasks like detection, segmentation, tracking, pose
estimation and behavior quantization. At the same time, more and more high-resolution
recordings of C. elegans become available, thanks to the increased level of automatization
in science. Although recent methods are implementing automation in this domain with
increasing success, state-of-the-art approaches struggle when it comes to more challenging
poses of C. elegans like coiling and self-intersecting or complex behavior like mating and
aggregation. Additionally, many state-of-the-art approaches rely on hand-engineered
features, omitting one of DLs strongest abilities: to find robust, discriminating, and
possibly previously unknown features, suitable for the task. Based on this we see great
potential in additional research into behavior quantization using DL, to find solutions for
the aforementioned challenges and we aim to tackle them with this work.

Here, we present our work, focusing on closing the gap between high-resolution behavior
recording and time consuming and incomplete behavior quantification due to inaccessible
poses and behavior of C. elegans. We present our novel instance segmentation approach,
trained on synthetic data for segmentation of C. elegans in challenging scenes. We test
our method on video data including C. elegans with coiling and heavy bending poses,
as well as multiple individuals moving closely in parallel or overlapping each other. Ad-
ditionally, we designed a tracking algorithm to present the abilities of our contribution.
Our approach is capable of segmenting C. elegans in video frames depicting multiple
individuals in challenging scenarios where previous methods failed to retrieve correct
segmentation information. Our contribution allows for more detailed information required
in downstream tasks and therefore enables more precise quantification and studies of the
phenotype.

Next, we present our self-supervised representation learning method for behavior sequences.
By now, we focused on the spatial level of behavior by segmenting individual C. elegans
in image data to extract pose information on a pixel level. In this work, we include
the temporal component of behavior by learning how a pose changes in time using
video recordings of C. elegans. First, we train a contrastive learning network to embed
pose information without relying on curve or keypoint estimations. Second, we use the
pre-trained contrastive learning network to learn representations of behavior sequences.
We demonstrate the abilities of our approach by visualizing the embedding space and
coloring it using hand-engineered features computed by state-of-the-art methods. These
visualizations reveal that our network is able to capture hand-engineered features without
explicitly enforcing them during training. Thanks to the absence of explicit features, our
new approach is not limited to these but is rather able to capture properties previously
inaccessible. Additionally, as our method is self-supervised, it does not require pose or
behavior annotations and can directly be applied on videos of C. elegans, bridging the gap
between fast data acquisition and slow data labeling. Combining both approaches allows
to surpass the limitations of previous state-of-the-art methods and enables quantization
of challenging behavior that other methods left unsolved or only partially solved.
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Chapter 1

Introduction

1.1 Caenorhabditis elegans as a model organism

The term model organism is not clearly defined, but generally describes a non-human
organism which is widely used to study biomedical concepts and mechanisms. Ideally,
they are easy to maintain under laboratory conditions and the findings gained by their
studies are transferrable to other, possibly more complex, organisms like humans. The list
of model organisms spans from viruses to bacteria to plants, vertebrates and invertebrates.
Widely used model organisms include, but are not limited to [4]:

• Mus musculus (mouse)

• Rattus norvegicus (rat)

• Danio rerio (Zebrafish)

• Drosophila melanogaster (fruit fly)

• C. elegans (nematode)

• Arabidopsis thaliana (thale cress)

C. elegans is an important model organism in modern research that is used for all
kinds of biomedical topics, ranging from studies about aging to disease and toxicology
[5, 6, 7, 8]. Researching C. elegans not only brings insights into this model organism, but
results in a better understanding of various types of human diseases [9, 10, 11]. Compared
to other model organisms, C. elegans is a relatively simple organism. Thanks to this fact
and its wide spread use in research, it is the first organism to have its entire connectome
mapped [12] and the first multicellular organism whose entire genome was sequenced [13].
This can be compared to drawing the blueprint of a machine and handing it to a engineer,
who tries to understand its functionality. C. elegans has two sexes, hermaphrodite and
male, a high fertility and is easy to cultivate and to be kept in a laboratory environment.
It is maintained on Nematode Growth Medium (NGM) petri plates with multiple other
C. elegans and fed with Escherichia coli (E. coli). This allows scientists to breed organisms
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2 CHAPTER 1. INTRODUCTION

in high numbers which lowers the costs of experiments, enabling to record large amounts
of data for later analysis.

Contrary to other model organisms, the transparent body of C. elegans allows anatom-
ical observations in vivo under the microscope [5, 14], granting scientists important
insights, that other model organisms only offer using complicated techniques. When
using stains that attach to and highlight selected biomolecules, scientists obtain even
deeper insights into the organsim. Besides the strain N2 which is found in the wild
(also called wild-type), scientists have produced many other frequently used strains by
introducing mutations. These strains all come with different, unique properties that can
influence their behavior and help researchers understand biomedical mechanisms. To
speed up experiments further and to improve comparability, institutes like Caenorhabditis
Genetics Center (CGC) provide services for scientists to request and receive specific
strains, previously produced by other research groups, via mail for their own experiments
[14]. Additionally, compared to some other model organisms the use of C. elegans comes
with no ethical constraints [5]. These factors contribute to the wide spread use of this
nematode in different research domains.

1.2 Behavior as window into the organism

Behavioral phenotypes of organisms give scientists crucial insights into a model’s nervous
system. Quantifying behavior helps understanding the effects of genetic mutations or
the organism’s environment e.g. when screening drugs or toxins [7, 8, 15]. Conducting
such studies with C. elegans traditionally means time consuming observations of different
strains and individuals under the microscope. This labor-some process involves observing
a roundworm individually or in a setup with multiple organisms for extended time periods
under the microscope, while evaluating their behavior by e.g. quantifying their crawling
speed or bending behavior. Recent methods have introduced more automatization and
enabled broad systematic studies by publishing large amounts of behavior recordings and
enabling the comparison of different strains [11, 16, 17]. This not only speeds up research,
but also enables the development of novel methods bringing new insights. Early methods
used classical machine learning approaches in combination with hand-engineered features
[16, 18, 19]. The success of DL and Computer Vision (CV), alongside with the growing
amount of available data, resulted in the development and application of new methods to
data of C. elegans. In the following, we give an outline about different challenges and
our contributions, developing and applying DL methods to video data of C. elegans to
analyze their behavior.
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1.3 Challenges

CV methods such as classification, detection or segmentation build up on low level features
like colors or edges and combine them to more complex features like patterns. This is
common practice in CV and works well when applied to natural color images of humans,
animals or objects like cars and buildings. Objects in natural images often set off from the
background because of their separation. This is due to clean edges, different colors and
even distinct alignments, like horizontal or vertical lines. When working with biomedical
images, these properties are often not present and even the color setting is different.

Some of the properties that make C. elegans interesting for researchers, like its
transparent body or the fact of being kept in high numbers in petri dishes, result in
challenging conditions for CV. When observing C. elegans with a bright-field microscope
in a petri dish, the color contrast between the background and the objects of interest can be
relatively low. This makes it difficult for CV approaches to detect and separate individuals.
Further, crawling C. elegans can leave traces when crawling on a bacterial lawn resulting
in an uneven background. Another challenge is posed by dirt or even markings on the petri
dish lid resulting in visible artifacts in the image data. As invertebrates, C. elegans can
take on challenging poses like tightly coiling, heavy bending or self-intersection, resulting
in movement and flexibility largely differing from those of vertebrates. Additionally, they
express social behavior like aggregation, male mating, or social feeding [20, 21, 22]. Social
behavior can cause overlaps of two or more individuals or worms lying in parallel to
each other, making it challenging to tell them apart (see Fig. 1.1). Additionally, missing
keypoints like joints or entire limbs exclude many of the exiting pose estimation methods
as they where developed with focus on organisms featuring these properties [23, 24, 25].
These effects can lead to False Negatives (FNs), False Positive (FP) detections, faulty
segmentation and pose estimations, limiting the success of quantifying an individual’s
behavior using DL methods.

Figure 1.1: C. elegans in challenging setups like overlapping and crawling in close parallel
contact. Fine traces are visible where individuals crawled (images taken from [3]).
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1.4 Related Work

Baek et al. [26] proposed a behavior quantification method tracking and recording
individual C. elegans under the microscope. Using classic CV methods like connected-
components, binarization, morphological operations [27] and skeletonization, the object
of interest is segmented from the background for the following feature calculation. The
individual is represented by a curve describing its body pose. The method computes
features of that curve, such as the worm size or the movement speed, using the recorded
video data to get temporal information. Additionally, the proposed method facilitates
the CART algorithm [28] to classify strains based on their locomotion. Swierczek et
al. [29] proposed Multi-Worm Tracker to quantify behavior of multiple C. elegans in
video data. For detection and tracking of individuals, the method applies thresholding
to find foreground objects considered to be worms. These objects are then segmented
using flood-fill and, if passing a specified size threshold, are considered as C. elegans.
Objects are tracked through the video by defining a rectangular search area in each frame,
depending on the position of the object in the previous frame. Multi-Worm Tracker
calculates different features, e.g. average curvature, covered area, speed and angular
speed. While this approach already adds important improvements like real-time capability
and tracking of multiple C. elegans, it struggles when it comes to challenging conditions
like overlapping individuals as their identities get lost in this case. Stephens et al. [30]
discovered that around 95% of total variance in angles along the C. elegans approximated
center-line are captured by four eigenvalues. The work introduces the term eigenworms
to describe these "templates" of possible poses. Eigenworms are a widely used measure
to quantify pose and behavior of tracked worms. Javer et al. [18, 19] proposed Tierpsy,
a multi-worm tracking software. Like previous methods, C. elegans are segmented from
the background by thresholding. The foreground object is skeletonized to estimate the
center-line. Based on this curve, Tierpsy calculates hand-engineered features, describing
pose and motion of C. elegans. While this method gives scientist an easy-to-use software,
it is not able to quantify challenging poses like coiling or track worms with overlapping
behavior. While previous methods focused on tracking multiple organisms in a single
petri dish, Barlow et al. [31] introduced a setup consisting of an array of six cameras,
able to record C. elegans on a 96-well plate with high resolution, allowing behavioral
studies. This approach is able to record video data in large scale and therefore speeds up
phenotypic studies.

Previous methods applied threshold-based approaches to segment C. elegans from
the background. While this is a relative simple but effective way to tackle the task of
segmentation, it comes with many downsides. As illumination or background can change
in recordings, the threshold needs to either be adapted by hand or using an algorithm.
Additionally, this approach is sensitive to imperfect set threshold values, as already small
changes can result in over- or under-segmentation, meaning that either too much is
considered as foreground or the object of interest is cut off and not fully extracted from
the background. While thresholding approaches like Otsu’s method [32] can automatically
determine a suiting threshold value, some general downsides of thresholding algorithms
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still persist. Artifacts or other objects in the image, like dirt or marks on the petri
dish lid can not be distinguished from C. elegans using thresholding if they have similar
pixel values. Finally, thresholding alone is not able to separate overlapping or touching
individuals of same appearance as it only allows binary segmentation. Therefore, scientist
searched for alternative approaches to accurately segment individuals. The rise of CV
and widely available video data of C. elegans sparked the development of new methods
resulting in more accurate segmentation and tracking of challenging poses and behavior.
Compared to classic ML algorithms, CV often takes more context into consideration,
resulting in a higher accuracy.

Banerjee et al. [33] presented a DL-based detection and tracking approach. The
method first detects C. elegans using YOLOv5 [34] before passing the detected areas to
a thresholding algorithm for segmentation and StrongSORT [35] for tracking. Hebert
et al. [36] published a ResNet-based [37] approach that allows estimating coiling poses
of individual C. elegans. Using video data with center line annotations for frames prior
to challenging coiling poses, the method is able to estimate pose information for these
challenging behavior. For training, the authors facilitate synthetically generated images
of C. elegans with different bending behavior. To resolve different center-line predictions
by the network, caused by a swapped head/tail estimation, the approach is trained to
predict two possible center-lines. Using the same synthetic image generation approach
that also generated the training dataset, images of artificial C. elegans are generated for
each predicted center-line. During evaluation, these images are then compared to the
true input image to find the best predicted center-line. Alonso et al. [38] presented a
pose estimation and tracking method for slender and overlapping bodies like C. elegans.
The method is tested on swimming C. elegans in dense scenes. For training, the authors
generate data using a physics-based model to avoid labeling data by hand. Their method
estimates a center-line for each individual and tracks it in a frame using information of
the adjacent frames. As this approach focuses on swimming worms, Weheliye et al. [39]
build up on it and proposed DeepTangleCrawl for pose estimation and tracking of the
more complex behavior of crawling C. elegans. They adapt the approach by Alonso et
al. [38] to more challenging coiling and self-intersecting poses and train the method with
new video data, containing annotations computed by Tierpsy [18, 19] and hand-made
annotations for challenging poses. While this method accurately tracks swimming and
crawling C. elegans and enables their phenotypic screening, the method still struggles
when it comes to individuals persistently coiling tightly or worms in persistent tight
parallel contact.

Based on the success of previous DL methods and motivated by the still existing
challenges posed by coiling and overlapping C. elegans in dense scenes, we focused on
researching new approaches to segment individual worms and extract behavior information.
In the following section, we will highlight our contributions presented in this work.
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1.5 Contributions

1.5.1 Instance segmentation of C. elegans

To quantify the behavior of an individual we need to extract spatial and temporal
information from video data. The spatial component hereby is mainly the worm’s body
pose. Here [1], we decided to extract the pose of C. elegans on a pixel level by applying an
instance segmentation approach, rather than estimating a curve or keypoints. We apply a
combination of the Swin Transformer [40] together with the Hybrid Task Cascade (HTC)
network architecture [41] and train it with a synthetic dataset. Generating our own
synthetic dataset allowed us to create challenging conditions by artificially overlapping
individual C. elegans. Further, this enabled us to reduce the amount of data that needs
to be labeled by hand. The hierarchical feature maps of Swin Transformer use small-sized
patches which allow to focus on smaller features and result in a more detailed predictions
compared to other Vision Transformers (ViTs) [40]. We evaluate our approach on different
real (non-synthetic) datasets and compare it to other methods. Source code1, model
weights [42], datasets and annotations generated [3] in this work are available online.

1.5.2 Representation learning of C. elegans behavior

We present a self-supervised representation learning approach, combining contrastive
learning and a Transformer-encoder architecture [43] to learn pose and behavior sequence
embeddings. Since our approach is self-supervised, it does not require any hand-labeled
ground-truth data. First, we apply VICReg [44] combined with ResNet-18 [37] to learn
pose embeddings from video frames. We construct sequences of twelve pose embeddings
of consecutive frames and mask the last five elements, similar to Masked Language
Modeling (MLM) [45]. Using a Transformer encoder architecture similar to those used in
Natural Language Processing (NLP) [45], we predict the masked elements to learn behavior
sequence embeddings. To evaluate our approach, we reduce the pose and the behavior
embedding space to three dimensional (3D) using Uniform Manifold Approximation and
Projection (UMAP) [46] and color it using features calculated by Tierpsy [18, 19].

In the upcoming chapters we highlight our individual contributions in more detail,
starting with describing our instance segmentation approach in chapter 2 followed by
chapter 3 describing the representation learning approach. We conclude this work in
chapter 4 with a summary and future work. Source code is available online2.

1https://github.com/bozeklab/worm-swin
2https://github.com/bozeklab/worm-behavior

https://github.com/bozeklab/worm-swin
https://github.com/bozeklab/worm-behavior


Chapter 2

Instance segmentation of C. elegans

The model organism C. elegans is often kept and observed in a petri dish with multiple
organisms. Separating individuals accurately in recorded image data is crucial to enable
uninterrupted (automated) analysis like phenotype studies. The worm’s ability to bend,
coil and overlap with other individuals makes this a challenging task. In the follow-
ing publication [1], we present a vision transformer based approach to apply instance
segmentation on bright-field microscopy frames from video data. We demonstrate the
performance of our method by applying it on images depicting challenging behavior like
overlapping C. elegans. Additionally we test the abilities of our approach when combined
with a tracking algorithm.
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WormSwin: Instance segmentation 
of C. elegans using vision 
transformer
Maurice Deserno 1,2,4* & Katarzyna Bozek 1,2,3

The possibility to extract motion of a single organism from video recordings at a large-scale provides 
means for the quantitative study of its behavior, both individual and collective. This task is particularly 
difficult for organisms that interact with one another, overlap, and occlude parts of their bodies 
in the recording. Here we propose WormSwin—an approach to extract single animal postures of 
Caenorhabditis elegans (C. elegans) from recordings of many organisms in a single microscope well. 
Based on transformer neural network architecture our method segments individual worms across a 
range of videos and images generated in different labs. Our solutions offers accuracy of 0.990 average 
precision ( AP

0.50
 ) and comparable results on the benchmark image dataset BBBC010. Finally, it 

allows to segment challenging overlapping postures of mating worms with an accuracy sufficient to 
track the organisms with a simple tracking heuristic. An accurate and efficient method for C. elegans 
segmentation opens up new opportunities for studying of its behaviors previously inaccessible due to 
the difficulty in the worm extraction from the video frames.

Behaviour is the external output of an animal’s nervous system. The possibility to systematically observe, extract, 
and quantify an animal’s motion is a prerequisite to investigate and ultimately understand its behavioral reper-
toire. Alterations to an organism’s natural behavior is a phenotypic readout of the neural and other molecular 
changes that are causing them. To fully understand the functioning of neural mechanisms it is therefore essential 
to dissect their effect on an animal’s behavior.

Capturing behavior requires video acquisition systems allowing to either view or infer an entire posture of an 
organism and its change in time. One of the main challenges in obtaining complete and precise posture measure-
ments are the occlusions of animal body parts in a 2D video recording, especially if more than one individual 
is being imaged. To resolve this, extensive 3D motion capture systems have been  developed1 as well as methods 
that allow to impute the occluded parts of the  posture2.

These challenges have not yet been resolved for the model organism C. elegans. While imaging the nematode’s 
behavior is less complex than imaging of larger organisms and massively parallel recording systems allow to 
capture thousands of worms at a  time3,4, there are currently no end-to-end methods that resolve their postures 
when occlusions occur. The quantification of C. elegans strains’ behavior and characterization of their phenotypes 
is therefore based on segments of worm motion in which it does not coil or intersect with another worm. As a 
result, a large portion of the worm behavior, including its group behavior, cannot be quantitatively analyzed.

Here we propose an automated method for C. elegans posture extraction from 2D video recordings. Based 
on deep learning transformer architecture and a classical instance segmentation training objective, our solution 
allows to correctly infer an outline of an individual worm body in overlapping and occluded configurations. We 
train the neural network on randomly generated image data, obtaining a solution that generalizes to various real 
datasets. With the segmentation outputs of our method we are able to correctly infer worm trajectories with a 
simple position matching heuristics. WormSwin opens up new opportunities to study the full repertoire of C. 
elegans behavior including behaviors such as mating that were previously inaccessible to quantitative analysis.
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Related work
Over the past years different methods for C. elegans detection and segmentation have been proposed, either as 
part of a general approach to tracking and behavioral studies, or as a stand-alone method.

One of the first methods for automated worm tracking and behavior quantification was proposed by Baek 
et al.5. The method used a computer-controlled tracker for single worms, recording grayscale videos. The gray-
scale frames of a video were binarized based on the mean and standard deviation of pixel intensities and a pre-
defined threshold. The method computes features such as the area of foreground or the movement between two 
frames in the binarized videos and uses them as input to the  algorithm6 for classification of different C. elegans 
strains. Swierczek et al.7 proposed a tracking approach called Multi Worm Tracker. The method calculates a 
background estimate using pixel intensity values. Moving objects are found by searching for pixels darker than 
the background by a specific threshold. In the next frame, the objects are searched for in the vicinity of their 
previous location.

The arrival of deep learning offered new opportunities to build more accurate methods for worm segmenta-
tion and tracking. Javer et al.8 developed a multi-object tracking framework able to track C. elegans as well as 
fish and drosophila larvae. The method requires manual tuning of segmentation parameters to best perform 
with the given recorded data and comes with a graphical user interface for the ease of use and evaluation of the 
results. Using the motion data, the framework extracts a large number of features characterizing worm move-
ment. Hebert et al.9 proposed a pose estimation method for videos of single moving C. elegans in challenging 
poses like coiling. Using a  ResNetV210-like architecture the centerline of worms is predicted. With the help of 
temporal information the head and tail position is determined. Wählby et al.11 proposed a phenotype analysis 
toolbox based on the open-source  CellProfiler12 project. To untangle clusters of worms the authors describe 
them as a mathematical graph and, using a learned model of worm postures, search for the best representation 
of true worms. The worm posture model is based on a training dataset of isolated single C. elegans shapes and on 
computed angle-based shape descriptors. One of the downsides of this approach is that unexpected phenotypes 
are likely to be discarded as debris. Banerjee et al.13 introduced a deep learning C. elegans tracking method in 
which the detection is based on  YOLOv514 and tracking on Strong SORT  algorithm15. For each detected object 
the method outputs its bounding box, then threshold-based segmentation and skeletonization are applied to 
infer shapes of the detected objects. Fudickar et al.16 developed a two-shot segmentation method based on Mask 
R-CNN17 with ResNet-10118 backbone, to segment C. elegans imaged in petri-dishes with a low-cost image cap-
turing system. However, the method did not solve the problem of segmenting overlapping worms and segments 
them as one object. Mais et al.19 developed a proposal-free instance segmentation method, called PatchPerPix, 
based on a convolutional neural network (CNN) trained to predict the shape of a C. elegans in a small patch 
of the whole image (local shape patches). The method uses a modified U-Net20 deep neural network and patch 
affinity graphs to reconstruct individual worm shapes. For each pixel the method predicts which shape patch it 
belongs to and, using a patch affinity graph, merges the patches to form complete instance shapes. Lalit et al.21 
proposed an embedding-based instance segmentation method for 2D and 3D microscopy data, called EmbedSeg. 
The method is based on ERF-Net22, predicting spatial embeddings of pixels. These embeddings are then clus-
tered into object instances. To train this method, an additional step of pre-processing the dataset is required to 
generate object-centered image patches for every object. The method was tested on different datasets including 
the C. elegans BBBC010 dataset.

Among the methods described above there are one- and two-shot detectors. One shot-detector architectures 
like  YOLO23 detect objects in one step. Pre-defined boxes (also called anchors) are placed onto a grid, laid over 
the image. For each box, the network predicts if the box contains an object. On the other hand, two-shot detectors 
consist of a region proposal network (RPN) proposing regions of interest (RoI) to a second network, refining 
these proposals to form the actual predictions. One-shot object detection methods  (like13) are in general less 
computationally expensive compared to two-shot approaches (e.g.16), although the latter ones achieve a higher 
precision especially in more challenging scenes. This is one of the reasons for the high popularity of two-shot 
networks such as Mask R-CNN in the domain of instance segmentation.

Usually more than one box is predicted per object. To only keep the best matching box, many methods apply 
non-maximum suppression (NMS). This approach consists of removing from the predicted highly overlapping 
bounding boxes those with lower probability values as potential false positive detections of the same object. 
However, NMS can lead to removal of correct detections, especially in dense scenes, where many objects in the 
image overlap.

In this paper we address the problem of segmenting objects in dense scenes by combining the well established 
architecture of two-shot detectors with state of the art vision transformer. To avoid the pitfalls of the NMS algo-
rithm, we apply Soft Non Maximum Suppression (Soft-NMS)24.

Methods
Datasets. CSB-1 dataset. The CSB-1 dataset consists of 56 videos with a length of ∼ 1.5 min, a frame rate 
of 5 Hz and frame size of 912× 736 px which were generated to describe the new C. elegans csb-1  strain25. We 
annotated 10 of those videos, where nine videos were reserved for training and one for testing. The videos do not 
contain any visible petri-dish edges, have different backgrounds and varying numbers of worms. We extracted 
frames from the videos using FFmpeg (https:// ffmpeg. org) and used them to generate our synthetic training 
dataset described below.

Worms were annotated individually with a binary mask labelling foreground pixels, resulting in one mask 
image per worm per frame. These separate masks allow to mark all the worms also in cases where pixels of 
individual C. elegans overlap. The labeled CSB-1 dataset contains more than 60,500 individual worm masks. C. 
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elegans at the image borders are ignored during the labelling process. Our data is available under https:// doi. org/ 
10. 5281/ zenodo. 74568 03 as a rich resource to develop better methods for animal tracking.

Synthetic dataset. For training the model we generated a synthetic dataset using the nine annotated videos 
from the CSB-1 dataset described above. We automatically cut out foreground objects from the original gray-
scale images, according to their polygon annotations and created patches with a worm in the foreground and 
transparent background. Additionally, we created background images as templates by removing all foreground 
objects using standard graphics software and filled them with patches of background, taken from the same 
background images.

The following pipeline was applied to create each image of the synthetic dataset: 

1. Randomly select 5–30 foreground objects and a background template
2. Randomly flip and rotate foreground objects and their corresponding annotations
3. Apply blurring to foreground objects by averaging the pixel values using a 2× 2 px kernel
4. Place foreground object patches on background image: 

(a) In 20% cases: place a foreground object on top of another one
(b) In 80% cases: place a foreground object randomly on the background image

The generated training dataset consists of 10,000 grayscale images with a size of 912× 736 px and more than 
175,000 labeled C. elegans and additional 1000 images for testing (see Fig. 1a). We randomly added grayscale 
rings of random sizes surrounding the center of the images (see Fig. 1b) to make the network robust against 
similar artifacts (e.g. petri-dish edges) in other test datasets. Foreground objects might overlap with the artificial 
petri-dish edges, but are only placed on the inside of the rings. Using the object masks of the original data, for 
each foreground object we generated a binary mask corresponding to its artificially generated location and shape. 
These masks are used as ground truth for model training and testing on this dataset. Our synthetic training 
dataset is available at https:// doi. org/ 10. 5281/ zenodo. 74568 03.

BBBC010. The “BBBC010—C. elegans live/dead assay”26 (BBBC010) dataset consists of 200 images, divided 
into 100 bright-field and 100 green fluorescent protein (GFP) microscopy images of the same scene. The images 
have a size of 696× 520 px and are saved as 16-bit grayscale TIFF files. For our experiments we converted the 
images to 8-bit grayscale PNG images. The images contain a black border surrounding the region of interest 
(ROI) with the C. elegans in the center (Fig. 1c) which makes up around 50% of the image. Ground truth con-
sists of binary foreground/background images for each worm separately, allowing to disentangle the overlapping 
shapes.

The images show C. elegans exposed to Enterococcus faecalis with a negative control group containing dead 
worms and a positive control group, which was treated with ampicillin and includes alive worms. While the alive 
C. elegans have the natural curved shapes (Fig. 1c), the negative control group appear rod-like with an uneven 
texture (Fig. 1d).

Mating dataset. The mating dataset (MD) was created from a 10 min. long video with a frame rate of 25 Hz and 
a frame size of 3036× 3036 px. It contains freely moving worms as well as mating ones. Mating behavior is par-
ticularly difficult to segment as the two individuals are strongly overlapping and parallel to one another (Fig. 1e). 
This dataset represents therefore the most challenging segmentation task for our method.

We downsampled the video to 5 Hz and selected 50 frames randomly for annotation and testing of our 
approach. More than 3900 individual worm postures were labeled in this dataset. The labeling includes only 
mature C. elegans, worms touching the image boundary were ignored. We split the frames into 450 images with 
a size of 1012× 1012 px without overlap. The grayscale images show C. elegans in a petri-dish with the edges 
visible (see example patch in Fig. 1f).

Network architecture
To predict bounding boxes and instance segmentation masks we use the Hybrid Task Cascade (HTC)27 neural 
network architecture, combined with Swin  Transformer28 as backbone (similar  to28).

Swin Transformer is a Vision Transformer (ViT)-based backbone  architecture29, which can be applied to 
different vision-related tasks (e.g. classification, detection or segmentation). Previous ViTs divided the input 
image into relatively large patches and computed self attention among them. ViTs showed lower computational 
complexity, but did not account for small details in large images. To tackle this problem Swin Transformer intro-
duced a Shifted Window approach to reduce the computational complexity of standard multi-head self attention 
(MSA) modules. Additionally, Swin Transformer builds hierarchical feature maps, merging image patches in 
deeper layers, enabling small-sized patches, leading to more detailed predictions. We chose Swin-L architecture 
variant in our study which was pre-trained on ImageNet-21K30 with an image size of 384× 384 px (similar  to28).

HTC improves the architecture of Cascade Mask R-CNN31 by introducing interleaved bounding box regres-
sion and instance segmentation mask prediction. The information flow is optimized by adding direct connections 
between the individual mask branches (Fig. 2). Additionally, a semantic segmentation branch is added to the 
original architecture to help to distinguish between foreground and background. In our experiments we do not 
use this additional semantic segmentation branch.

10 CHAPTER 2. INSTANCE SEGMENTATION OF C. ELEGANS
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To further improve the accuracy when training on small batches, we exchanged the default Batch Normali-
zation (BN)32 with Group Normalization (GN)33 and Weight Standardization (WS)34 in HTC (similar  to34). We 
also replaced the Shared 2 Fully-Connected Bounding Box heads (Shared2FC) by Shared 4 Convolution + one 

(a) (b)

(c) (d)

(e) (f)

Figure 1.  Example images from the datasets used in this study: (a) synthetic dataset example with added ring, 
(b) synthetic dataset without ring, (c) BBBC010 dataset example with mostly alive C. elegans, (d) BBBC010 
dataset patch with mostly dead C. elegans, (e) mating dataset with petri-dish ring, (f) zoomed-in mating dataset 
patch with many overlaps.
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Fully-Connected Bounding Box head (Shared4Conv1FC) (as described  in33). To suppress low quality detections 
but keep high quality predictions in dense and overlapping scenes we use Soft-NMS instead of the traditional 
NMS algorithm for the R-CNN during test time (see HTC++28).

Training. We used multi-scale training with a size between 480 and 800 px for the shorter side and 1333 px 
at most for the longer side,  AdamW35 as optimizer, Cosine Annealing Learning Rate  Scheduler36 and Linear 
Warm-Up37 (similar  to28). The learning rate was set to 2.5e-5 and weight decay to 0.1. The number of warm-up 
iterations of the linear warm-up and learning rate scheduler was set to 1000, warm-up ratio to 0.1 and mini-
mum learning rate ratio to  1e-5. During training and testing the NMS threshold for the RPN was set to 0.7, the 
Soft-NMS of the R-CNN was set to 0.5 during test time. We used random flipping with a probability of 0.5 and 
 AutoAugment38 for multiscale resizing and cropping. Additionally, we used the pre-trained weights for the Swin 
backbone, trained on ImageNet-21K with an image size of 384× 384 px (similar  to28). We tested our approach 
on three different datasets: the publicly available BBBC010 dataset, MD and CSB-1 datasets. During testing all 
images were resized to 800 px on the short side and to no more than 1333 px on the longer side, preserving the 
original ratio. We excluded all instances touching image borders as incomplete C. elegans instances.

In all our experiments we used the MMDetection  framework39. Our code and network configuration file for 
the MMDetection framework are available at https:// github. com/ bozek lab/ worm- swin.

WormSwin was trained using 4 Nvidia Tesla V100-SMX2 32 GB GPUs, 6 cores of an Intel Xeon Gold 6248 
CPU @ 2.50 GHz and 100 GB of RAM. With a batch size of four (one image per GPU) and two workers per GPU, 
training for 36 epochs took ∼ 19 h. Evaluation on the test set runs at a speed of 2.7 images/s.

Results
We trained WormSwin on data synthetically generated based on the CSB-1 dataset. The procedure of data gen-
eration allows us to control the degree of overlap among individuals and to train the network on a large number 
of images containing overlapping worms to improve segmentation of dense scenes. Once trained, we evaluated 
the model on a synthetic test set (see Table 1) as well as on three independent datasets: BBBC010, MD and CSB-
1. These datasets come from different labs, show visual variability, and contain different number and degree 
of overlapping C. elegans. We report our results mostly as COCO Average Precision (AP)40 calculated using 
pycocotools (https:// github. com/ cocod ataset/ cocoa pi). For the BBBC010 dataset, we report our results as DSB 
AP for comparison to other methods. AP is the area under the precision-recall curve and its values are between 
0 and 1, with a higher AP representing better performance. Precision and recall of the detection is calculated for 
instances that show intersection over union (IoU) with the ground truth above a predefined threshold. DSB mAP 
calculates a mean Jaccard Index by using different IoU thresholds. COCO mAP uses a more complex approach: 
detections are sorted by descending confidence score. The calculation iterates over all detections in this order, 
marks them as True Positive (TP) or False Positive (FP) and adds them to calculate the precision until a recall 
of 1.0 is reached or iterated over all detections. Different IoU thresholds are used to label detections as TP or FP.

We report our results mostly for two IoU thresholds: 0.5 and 0.75 as well as a mean AP (mAP) for thresholds 
from 0.5 to 0.95 with a step size of 0.05. One of the most challenging parts for instance segmentation of C. elegans, 
as well as other biological systems, are overlapping objects in dense configurations. To measure the accuracy of 
our approach explicitly for overlapping objects, we added a dedicated AP metric. We defined overlapping objects 
as those whose ground truth bounding boxes overlap by more than 25% or whose segmentation masks that any 
overlap (>0% IoU). We report the AP for all objects as well as for the overlapping objects separately (Table 2).

CSB-1 dataset. Although trained on synthetically generated data, our method generalizes fairly well to 
the real video data with a mAP of 0.819 and 0.585 for the bounding box and mask respectively, lower by only 
∼ 0.09 mAP compared to the synthetic data. The same metric on the overlapping worms in the CSB-1 dataset 
are 0.551 and 0.527. While the mAP is lower for the overlapping C. elegans compared to the results on the entire 
dataset, the AP0.50 of the bounding box and mask on the overlapping worms are 0.883 and 0.975, respectively. 
This result suggests that the worms are detected correctly in principle but there exist errors in mask prediction. 
What these mask prediction errors are, is however not clear at a first glance. Despite the difference between the 
AP0.50 and AP0.75 in the overlapping worms, we found that the segmentation masks align in general well with 
the ground truth (Fig. 3), however pixels on the edges of each object tend to be imprecisely segmented. Due to 

Figure 2.  Network architecture based on Swin-L backbone and HTC. Batch norm (BN) layers in HTC are 
replaced by group norm (GN) + weight standardization (WS). Bounding box heads are changed from the 
original Shared2FC architecture to Shared4Conv1FC.
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(a) (b) (c)

Figure 3.  Example from the CSB-1 dataset (box and mask colors are selected randomly). (a) Ground truth 
annotations, (b) predicted bounding boxes and masks, (c) TP (green), FP and FN (red) pixels.

Table 1.  Test results on all instances. “Box” and “mask” refer to the accuracy of detection of the bounding 
box and segmentation mask, respectively. PatchPerPix ppp+dec refers to the network variant, introduced  by19. 
(*Multi-scale testing, †additional training data).

AP0.50 AP0.75 mAP0.50:0.95

CSB-1

 WormSwin (box) 0.990 0.976 0.819

 WormSwin (mask) 0.990 0.675 0.585

Synthetic

 WormSwin (box) 0.989 0.978 0.909

 WormSwin (mask) 0.977 0.918 0.679

BBBC010

 PatchPerPix ppp+dec (mask) 0.939 0.891 0.775

 WormSwin (box)† 0.985 0.949 0.823

 WormSwin (mask)† 0.954 0.801 0.622

 WormSwin (mask)*, † 0.964 0.815 0.629

MD

 WormSwin (box)† 0.990 0.968 0.832

 WormSwin (mask)† 0.980 0.551 0.542

Table 2.  Test results for overlapping worms only (* multi-scale testing, †additional training data).

AP0.50 AP0.75 mAP0.50:0.95

CSB-1

 WormSwin (box) 0.883 0.643 0.551

 WormSwin (mask) 0.975 0.409 0.527

Synthetic CSB-1

 WormSwin (box) 0.983 0.958 0.853

 WormSwin (mask) 0.959 0.821 0.613

BBBC010

 WormSwin (box) † 0.911 0.821 0.661

 WormSwin (mask) † 0.873 0.565 0.488

 WormSwin (mask)*, † 0.895 0.573 0.501

MD

 WormSwin (box)† 0.822 0.633 0.505

 WormSwin (mask)† 0.893 0.079 0.355
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the small size of a worm mask with ∼ 500 px, errors at the edges of the predicted masks represent ∼ 30% of all 
foreground pixels.

To test the hypothesis that most error occur on the mask edges, we implemented an alternative version of the 
IoU: if a pixel in either ground-truth or predicted mask is at the border of an object (when the 4-way neighbor-
hood is not fully foreground) then it is set to the value of the pixel at this position in the other mask. This way, 
object border pixels which otherwise would be considered as false negative (FN) or false positive (FP) do not 
influence the IoU calculation in a negative way. Using this calculation, the mean IoU on the test subset raised 
from 0.827 to 0.961 (+13.4% increase) on the CSB-1 dataset.

BBBC010 dataset. Because of the very limited number of training samples (50 images) the predictions 
of the network trained on BBBC010 were of poor quality. Therefore, we used the network pre-trained on our 
synthetic data and fine-tune it on 50 randomly selected images from the BBBC010 dataset. We compared the 
performance of our approach to two existing methods:  PatchPerPix19 and  EmbedSeg21. To enable this compari-
son, instead of the COCO AP metric (see Table 1) we used (Data Science Bowl) DSB AP (https:// www. kaggle. 
com/ compe titio ns/ data- scien ce- bowl- 2018/ overv iew/ evalu ation) as accuracy evaluation on this dataset which 
was used in the original EmbedSeg method  publication21 (see Table 3).

We used the alternative IoU calculation already used for the CSB-1 dataset, to calculate the DSB accuracy 
without considering object edges. With the IoU defined this way, using the DSB metric we achieve 0.769 mAP 
(+0.233), 0.929 AP0.50 (+0.012) and 0.823 AP0.80 (+0.487) (compare to Table 3).

Mating dataset. Finally, we tested WormSwin on the MD dataset using weights pre-trained on our syn-
thetic dataset. In this dataset we annotated 50 images, which are larger in size and contain a higher number of C. 
elegans compared to the BBBC010 dataset. Further, we split them into patches of size 1024× 1024 px. We report 
our results in Table 1). Despite the challenging configurations of worms in this dataset, our method correctly 
identifies the segmented objects, as indicated by the AP0.50 which is comparable to the AP0.50 in other data-
sets. However the AP0.75 and mAP0.50:0.95 suggest that, while correctly detected, the segmentation masks of the 
detected objects are imprecise. Similar to other datasets, we hypothesise that these errors occur on the bounda-
ries of the segmentation masks (Fig. 4) as well as are due to the very challenging object overlaps in this dataset.

Tracking. To test if our segmentation results are sufficiently accurate to allow for worm tracking and fur-
ther behavioral analysis, we implemented a simple IoU-based matching method (Fig. 5) and applied it on our 
predicted instance segmentation masks in the CBS-1 test set. Between two consecutive frames, objects with the 
highest overlap in mask are matched into a trajectory. Iterating the matching procedure over all video frames 
results in object trajectories. In this simple approach, if an object is not detected in a frame but detected in a 
subsequent frame its trajectory is disrupted and two separate trajectories are created instead. We attempt to 
reconnect such trajectories in a post-processing step: for 10 frames after loosing an object, starting points of 
new trajectories are compared with the endpoint of the lost trajectory. If the segmentation masks at these points 
overlap with at least 50%, the trajectories are reconnected. In the frames with missing segmentation masks the 
positions of C. elegans can be interpolated between two ends of reconnected trajectories.

While a tracking method is outside of the scope of this study, our simple approach allows to build trajectories 
of interacting mating worms (Fig. 5). Tracking these challenging C. elegans interactions opens up new possibili-
ties of studying its behavior.

Discussion
In this work we present WormSwin, a deep learning approach for instance segmentation of microscopy images 
of C. elegans. Our method combines several recent improvements in deep learning and instance segmentation 
(Transformer Networks, HTC, Group Normalization, Weight Standardization, Soft-NMS) into a single approach 
trained end-to-end. WormSwin does not require any pre-processing of the image data, enabling researchers to 
directly apply it on their video or image data.

Together with our method we provide a large dataset of C. elegans images with instance mask annotations to 
help researchers develop better segmentation approaches in the future. The new dataset is by an order of magni-
tude larger compared to the BBBC010 dataset, enabling training deeper network architectures.

The small size of the BBBC010 benchmark dataset is a limiting factor to extensively train and test our method 
on this dataset. The accuracy of our method is lower on this dataset compared to the CSB-1 which might be 

Table 3.  Test results using DSB metric (* multi-scale testing, †additional training data, ‡alternative IoU 
without object edges, mAP for IoUs in range 0.5–0.95, step size 0.05).

AP0.50 AP0.60 AP0.70 AP0.80 AP0.90 mAP

BBBC010

 PatchPerPix ppp+dec19 0.930 0.905 0.879 0.792 0.386 0.727

  EmbedSeg21 0.965 0.934 0.896 0.762 0.326 –

 WormSwin (mask)*, † 0.917 0.884 0.785 0.336 0.005 0.536

 WormSwin (mask)*, †, ‡ 0.929 0.920 0.890 0.823 0.483 0.769
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attributed to the differences in the color intensities, size and appearance of C. elegans between the two datasets. 
Since retraining of WormSwin on a small amount of BBBC010 images improved the methods performance, we 
suggest that to accurately segment datasets differing from CSB-1 characteristics, a similar retraining is necessary.

Notably, our method shows a decrease in AP in the higher IoU threshold categories (e.g. Table 3AP0.80 ). 
Despite this precision drop, the segmentation masks appear overall correct (Figs. 3, 4). We therefore hypothesize 
that the major errors in the segmentation masks occur on the boundaries of the foreground area and further 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.  Results on the Mating Dataset (box and mask colors are selected randomly). (a,c,e,g) Segmentation 
results, (b,d,f,h) TP (green), FP and FN (red) pixels.
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substantiate this by calculating accuracy metric that does not take into account boundary pixels. The reason for 
this type of error might be e.g. variation in human-generated labeling. We introduce blurring in the synthetic 
training data which might additionally change the appearance of the object contours. Despite these errors, 
individual C. elegans poses are captured by the predicted segmentation masks and can be subject to further 
quantitative analysis.

As a major future improvement of this work we see models exploring temporal information to improve 
segmentation of overlapping objects. Information on how C. elegans individuals arrive in a specific configura-
tion is of great help in disentangling their postures. Previous work by Fontaine et al.41 model C. elegans using 
planar curves and Central Difference Kalman Filter (CDKF) to track multiple worms. This approach shows good 
results even when occlusion occurs. Similarly, Alonso et al.42 proposed a deep learning approach for detection 
and tracking in high density microscopy data, based on splines as shape descriptors. They test their approach 
on different dataset including videos of C. elegans and achieve high accuracy in dense scenes with a high degree 
of occlusion. Such methods are a step towards combining segmentation with tracking in a single training objec-
tive. While generating training datasets for multi-object tracking is a massive work burden, the accuracy of our 
segmentation approach allows to build preliminary trajectories in an automated fashion.

Data availability
The datasets (except for the BBBC010 dataset) generated during and/or analysed during the current study are 
available in the Zenodo—WormSwin: C. elegans Video Datasets repository, https:// doi. org/ 10. 5281/ zenodo. 74568 
03. The BBBC010 dataset is available at https:// bbbc. broad insti tute. org/ BBBC0 10. Source code and configuration 
files are available at https:// github. com/ bozek lab/ worm- swin.
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Chapter 3

Representation learning of C. elegans
behavior

Quantifying an organism’s behavior is an important part of scientific experiments, helping
to understand complex biological mechanisms like effects of toxins, pharmaceuticals and
even disease. Previous methods focus on computing hand-engineered features, based
on a predicted center-line along C. elegans body. Here we present our deep learning
approach [2] for self-supervised learning of C. elegans poses and behavior sequences. We
project the learned embeddings into 3D space by applying UMAP [46] and color the
embeddings by hand-engineered features to visualize similarities and patterns in the
learned features. Using this method we are able to capture the same hand-engineered
features other approaches compute, but without limiting our method to those features.
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ABSTRACT

Caenorhabditis elegans (C. elegans) is an important model system for studying molecular mechanisms in disease and aging.
The nematode can be imaged in highly parallel phenotypic screens resulting in large volumes of video data of the moving worm.
However converting the rich, pixel-encoded phenotypical information into meaningful, quantitative description of behavior is a
challenging task. There is a range of methods for quantification of the simple body shape of C. elegans and the features of its
motion. These methods however are often multi-step and fail in the case of highly coiled and self-overlapping worms. Motivated
by the recent development of self-supervised deep learning methods in computer vision and natural language processing, we
propose an unbiased, label-free approach to quantify worm pose and motion from video data directly. We represent worm
posture and behavior as embedding vectors and visualize them in a unified embeddings space. We observe that the vector
embeddings capture meaningful features describing worm shape and motion, such as the degree of body bend or the speed of
movement. Importantly, using pixel values directly as input, our method captures coiled worm behaviors which are inaccessible
to methods based on keypoint tracking or skeletonization. While our work focuses on C. elegans, the ability to quantify behavior
directly from video data opens possibilities to study organisms without rigid skeletons whose behavior is difficult to quantify
using keypoint-based approaches.

1 Introduction
Behavior is a window to an animal’s nervous system. Precise quantification of behavior allows to determine fine phenotypic
effects of genetic mutations or pharmacological interventions and, eventually, their underlying neural mechanisms. Keypoint
tracking methods and motion tracking imaging systems have enabled acquiring precise information on animal posture and its
change in time in natural settings1–3. It is however unclear how to quantitatively measure behavior of invertebrate species with
flexible bodies and appendages. Organisms such as worms lack natural skeletons and hence distinct keypoints on their bodies.
The shape of C. elegans is typically represented as its central body line and reduced to eigenworms4 that enable quantification
e.g. of the motion features and dynamics. However, this approach fails in the case of coiled or self-intersecting poses of C.
elegans and current solutions apply multi-step approaches5 to resolve these shapes.

Here we present a method for quantification of C. elegans motion based on video recordings directly. Unlike keypoint- or
central body line-based approaches our method does not estimate the body structure but quantifies the behavior from the raw
pixel values. Our method does not require any annotations but relies on self-supervised learning approach to learn sequence
representations. This combination of self-supervision and keypoint-free pose estimation enables to forgo skeletonization and
feature engineering which allows studying the full repertoire of C. elegans poses and behavior in a comprehensive manner.

2 Related Work
Previous tracking and pose estimation methods for C. elegans enabled a quantitative, automated analysis and a better under-
standing of its poses and behavior4, 6–11. These methods allowed to comprehensively analyze worm behavior and to better
understand phenotypic effects of genetic mutations, disease, or aging.
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Stephens et al.4 tracked C. elegans in microscopy videos and approximated their pose with a curve. They found that
approximately 95% of the total variance in angles along the curve is represented by four eigenvalues. Based on these findings
they introduced the term eigenworms as "templates" to describe the C. elegans poses. Javer et al.9 developed a widely used
single- and multiworm tracking software called Tierpsy. The software segments C. elegans and estimates their outlines and
the skeleton. Additionally, it computes several hand-engineered features characterizing pose and motion of an individual
e.g. the 6 eigenworms4, the maximum amplitude of the skeleton’s major axis, the degree of bend of different body segments,
different body size measurements (such as length and width) or the motion mode (backward or forward). Both the eigenworms
quantification and Tierpsy are based on classical computer vision approaches and do not allow to quantify coiled or overlapping
poses of the worm. These poses are inaccessible to these methods.

Several methods address the challenge of accurate estimation of coiled and (self-)intersecting poses. WormPose5 is a
Residual Network12(ResNet)-based method applying a multi-step approach that allows for estimating poses of coiling worms.
To estimate the center line using equidistant keypoints, the method relies on video data with detected/annotated center lines (e.g.
by Tierpsy) for frames prior to the occurrence of coiling behavior. The authors train their network with synthetically generated
images of C. elegans to avoid time-consuming human labeling. The network learns to predict the two different centerlines
resulting from different head/tail orientations. During evaluation a synthetic image is generated for each predicted centerline.
By comparing the generated images to the input the best prediction is determined. Recent methods like DeepTangle by Alonso
and Kirkegaard13 and its extension DeepTangleCrawl14 by Weheliye et al. enable robust skeletonization and tracking of C.
elegans with overlaps and on a noisy background and allow better phenotypic screening. Still these methods fail when C.
elegans are very tightly coiled or individuals lie parallel to each other over an extended time.

3 Methods
3.1 Datasets
All data we used for our experiments are publicly available on Zenodo15 in the Open Worm Movement Database9. The data
was downloaded using a python script filtering for specific parameters such as strain. For accessing the repository, we used the
Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH). We created two datasets grouping genetic strains and
long-term recordings of single individuals, respectively. The first dataset consists of seven genetic strains with one of them
being the wild type. In the following we refer to this set as strain dataset.

This dataset includes a total of 165 videos of the following strains:

• N2

• AQ2932 (nca-2(gk5)III; unc-77(gk9)IV; nzIs29[punc-17::rho-1(G14V); punc-122::GFP])

• AQ2934 (nca-2(gk5);nzIs29[punc-17::rho-1(G14V); punc-122::GFP])

• TQ225 (trp-1(sy690)III)

• DG1856 (goa-1(sa734)I)

• DA609 (npr-1(ad609)X)

• VC731 (unc-63(ok1075)I)

• CB1141 (cat-4(e1141)V)

The second set consists of 71 videos of three strains with the same individuals recorded every day for multiple days (between
15 to 24 days per individual) during their adulthood. We call this last set the aging dataset. This dataset includes following
genetic strains:

• AQ2947 (CGC N2 (Bristol, UK))

• OW940 (zgIs128[P(dat-1)::alpha-Synuclein::YFP])

• OW956 (zgIs144[P(dat-1)::YFP])

The data consists of video frames with masked background. Video data was recorded with frame rates varying between 25
frames per second (fps) and 32 fps. The videos of both sets have a length of almost 15 minutes each. Using Tierpsy9, 16 we
calculated features of poses and motion in all our recordings. These features together with the worm genetic strain and age
represent the metadata we use for interpretation of the image and sequence representations we developed in this study.

2/10
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Figure 1. Processing pipeline and behavior representation. (a) Processing pipeline overview. We use a large set of video data
of worm genetic strains and employ a contrastive learning approach to encode individual poses of the worm directly from the
video frames. We next inspect these pose embeddings using their visualization in a 3D scatter plot. The trained pose
embedding network is used to embed each video frame which is next an input to the sequence embedding network. Similarly to
pose embeddings, we inspect the embedding space of worm behaviors using visualization techniques and motion features
quantified with Tierpsy. (b) Visualization of the strain dataset behavior embedding space colored by the underlying genetic
strain. (c) Visualization of the aging dataset behavior embedding space, illustrating the behavioral change with age in the
direction of the arrow moving from young (blue) to old (red).
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3.2 Data pre-processing
The background of the C. elegans images downloaded from Zenodo15 is masked with black pixels. In some images the masking
contains errors with background objects not masked out. Here we apply a combination of different methods including connected
components and morphological operations to filter out smaller foreground blobs and to better match the background mask to
the worm shape (similar to5). As a result we remove the errors and limit the foreground to one object only - the worm (see Fig.
2 "Data Preprocessing"). Further, we change the background mask pixel value from black (0) to gray (127). Next, we crop
the foreground in the image, pad and resize it to a common image size of 128×128 pixels. This way, we remove excessive
background pixels and center the object in the middle of the image while preserving its relative size. In the final step, we apply
Principal Component Analysis (PCA) to rotate the object to a vertical orientation (Fig. 2).

We store the degree of rotation in addition to the strain and the day of adulthood in the aging dataset as the metadata. The
metadata is not used in model training but in the model interpretation and visualization. We split the dataset into train, validation
and test subsets with the proportions 0.76, 0.10, 0.14 and save the video frames as PyTorch17 tensors in a .pt file per subset.

Following the data pre-processing, we train our deep learning approach, which includes two parts. The first part consists of
a contrastive learning method to represent spatial poses of C. elegans based on their images. The second part is a Transformer
encoder architecture that uses the learned pose representations to predict masked parts of a spatiotemporal sequence. In the
following, we describe the two parts in detail.

3.3 Contrastive Learning for pose representations
We apply contrastive learning to learn representations of poses from C. elegans image data. It is a self-supervised approach that
does not require labels. Specifically, we use a version of VICReg18 adapted to our task. As backbone we chose ResNet18 over
ResNet50 originally used in VICReg because of its smaller size. Our experiments suggested that the results do not improve
using a larger feature extractor. We use a modified set of augmentations to ensure the network focuses on the important pose
differences and learns to embed them rather than embedding the differences in e.g. lightning conditions or size of individuals.
The output dimensionality was set to 64 with a hidden network dimensionality of 128.

To avoid having many similar poses in the training set, we subsample video frames by a factor of 10. We train the network
using a batch size of 512 for 80 epochs on a NVIDIA Tesla V100-SXM2 with 32 GB of memory. As optimizer we chose
AdamW19 with a learning rate of 0.001. Additionally we use Cosine Annealing20 as learning rate scheduler. The loss is
calculated the same way as proposed by the authors of VICReg18: a weighted combination (compare with 1) of variance v,
invariance s and covariance c loss with weights set to µ = 25.0, λ = 25.0 and ν = 1.0.

ℓ(Z,Z′) = λ s(Z,Z′)+µ[v(Z)+ v(Z′)]+ν [c(Z)+ c(Z′)] (1)

3.4 Transformer encoder for sequence data imputation
To integrate the temporal component of behavior into the learned embeddings we employ a Transformer encoder neural network
architecture21–23. The Transformer encoder consists of a multi-head attention block and a feed-forward network. This type of
architecture has been used primarily in natural language processing (NLP) (e.g. by BERT22) and was later adapted to images
(e.g. in Vision Transformer23). We attach the pre-trained pose representation network (see 3.3) as backbone to the Transformer
network and freeze this backbone. We add a linear projection network to the last layer of the Transformer encoder network that
infers embeddings of individual poses in the sequence.

During training, we input 12 ordered video frames as a sequence into the pre-trained pose representation network to generate
pose embeddings. Here, we downsample the videos by a factor of 5 which is sufficient to capture the worm’s motion in a
smooth manner. With frame rates between ∼ 25−32 fps (see section 3.1) this results in a sequence covering between ∼ 2 - 1.6
seconds in real time. We store the ordered pose embeddings generated by the pose backbone as ground truth information for
later evaluation.

Next, we construct sequences of 12 consecutive frame embeddings and attach frame rotation information generated during
pre-processing. We mask the last 5 sequence elements by replacing them with zeroes (similar to22, 24) before passing the
sequence to the transformer network. We add sine-cosine positional encoding21 and masked position encoding to the pose
embeddings. The masked position encoding is a vector, indicating if a sequence element (frame) is masked (value 1 in the
vector) or is not masked (value 0 in the vector)24. This vector is embedded and then added the same way as the positional
encoding25 (see Fig. 2). The pose embeddings together with positional and mask embeddings are the input to the transformer
encoder. The Transformer network is trained to impute the missing values in the sequence. Using the linear projection network,
pose embeddings and their rotations are predicted for each of the masked positions. We calculate the Mean Squared Error
(MSE) loss between the embeddings generated by the pose representation network and the predictions of the linear projection
network.
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Pose representations have a dimensionality of 64 (see 3.3). The transformer uses a hidden dimensionality of 128 and
consists of one encoding block and two heads. For training we use AdamW19 as optimizer with a learning rate of 0.0005 for 250
epochs with a batch size of 64. The network was trained and tested on a NVIDIA Tesla V100-SXM2 with 32 GB of memory.

Figure 2. Data preprocessing and network architecture. 1) Data preprocessing pipeline: Artifacts are removed keeping only
the worm as foreground object. We change the background to gray, crop the image to keep the worm centered and resize it to
128×128px. Finally, we rotate the worm to a vertical orientation. 2) A contrastive learning network is trained with images in
random order to learn pose embeddings. 3) Using the ResNet-18 trained in (2) we embed sequences of 12 frames of moving C.
elegans. Rotation information is concatenated with the encoded sequences and the last 5 frame embeddings are masked out. A
Transformer-encoder learns behavior embeddings by imputing the masked sequence elements.

3.5 Visualization of pose and motion embeddings
To inspect the C. elegans pose and sequence embeddings we use the dimensionality reduction technique Uniform Manifold
Approximation and Projection (UMAP)26. By applying UMAP, we reduce the embeddings to three dimensions to visualize
them as scatter plots. We used the python implementation1 of UMAP with the parameters n_neighbors=30, min_dist=0.25,
n_components=3 and random_state=42 for the pose embedding space and for the behavior sequence embedding space.

4 Results
4.1 Pose representations
We first inspected the embeddings of individual worm poses. We project the embeddings in 3D using UMAP and inspect
whether the embedding space reflects Tierpsy-based9, 16 pose features, as well as worm genetic strain. Figure 3a illustrates the
pose embedding space of the strain datasets (see 3.1). This space shows a clear spatial ordering of poses according to their
degree of bending (see Fig. 3a). While one end of the point cloud consists of strongly coiled worms, the opposite end clusters
worms with poses close to a straight line. The points are colored according to the maximum amplitude of the bend along the
worm body line. The straight poses have a low amplitude value, the more bent ones a higher one. There is a clear gradient
of this value along the point cloud. However, the coiled worm shapes are missing this feature value (marked in gray color in
Fig. 3a) as Tierpsy cannot resolve these poses9, 16. This reveals an advantage of our approach: it allows to capture all worm
poses, from straight to strongly coiled ones, in a uniform and smooth embedding space. Our approach groups coiling and
bending poses together with a clear transition between them, whereas an important fraction of worm poses is not possible to
quantify with skeletonization-based methods. Since our approach does not require any skeleton or keypoint estimations, it is
robust against coiling and self-intersecting postures. A large number of embeddings in the gray area in Fig. 3a belongs to C.
elegans of the AQ2934 strain.

4.2 Sequence representations
We next trained a Transformer-based approach to embed sequences of worm postures captured in a video recording. The
Transformer network takes as input sequences of pose embeddings where the second half of each sequence is masked. The

1https://github.com/lmcinnes/umap
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(a)

(b) (c) (d) (e)

Figure 3. Visualization of the pose embedding space. (a) We reduced the embedding space to 3D using UMAP and colored it
with the Tierpsy max_amplitude feature. Dark gray dots indicate poses for which this feature could not be quantified using
Tierpsy. There is a gradient in coloring suggesting that similar poses occupy neighboring parts of the embedding space.
Example images of poses are shown with an indication of their position in the embedding space. Strongly coiled and almost
straight worms occupy opposite ends of the point cloud. (b-e) Pose embedding space colored according to their eigenworm 1 to
4 values.
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network is trained to infer the masked part of the sequence as well as the rotation angle of the worm in the video. The MSE
of the masked pose estimation in the strain dataset is 0.106 while of the rotation angle 0.0129, which represents an error of
∼ 20.47°. Via this self-supervised approach the network learns representations of the sequences that encode worm posture, its
change in time, and the dynamics of this motion in a comprehensive manner. Similar to the pose embeddings, we visualize the
embedding space of C. elegans short-term behaviors in 3D (Fig. 4a).

This visualization shows a clear separation of sequences of the strain AQ2934 (labeled in orange) from sequences of the
other strains. This separation was also present in the pose embedding space, and reflects the frequent and heavy coiling behavior
of the AQ2934 strain. Behavior sequences of strain DA609 (marked in brown) are also grouped together in the embedding
space. This strain is known for aggregating and burrowing behavior27, 28. Next to the DA609 cluster is a larger area where
behavior sequences of different strains mix. This likely occurs since most strains share common behaviors such as simple
forward locomotion.

To further interpret the behavior embedding space, we colored it according to motion speed features quantified with Tierpsy
(Fig. 4ab-c). We observed that sequences with faster movement are more frequent in the center of mass of the embedding space.
This confirms our observation that crawling behavior, common to most of the strains, is located in this part of the embedding
space.

(a)

(b) (c)

Figure 4. Behavior embedding space of the strain dataset. (a) Embedding space colored by strain. Worm images above
correspond to 1st, 6th and 12th frame of three example sequences. (b) Embeddings space colored by tail tip speed and (c) head
speed. Gray dots in (b) and (c) indicate sequences for which these Tierpsy features are missing.

4.3 Worm behavior changes with age
We next inspected the behavior embedding space of the aging dataset. This dataset contains 71 individuals that were recorded
over their adulthood, for time span of up to 24 days. We employed our approach to inspect which parts of the embedding space
those individuals occupy as they age (Fig. 5a). Young individuals appear to display a wide range of behaviors, while as they
age their behavior repertoire reduces. Markedly, the patterns of aging in behavior are consistent among individuals. This can
be seen in the embedding space labeled by day of adulthood (see Fig. 5a). Behaviors of individuals from day 1 to 10 span
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a wide area in the space, while embeddings for day 10 to 15 cover much more limited areas at the bottom part of the point
cloud. From day 15 onward the embeddings almost only form outlying groupings. The reason for these behaviors to localize
on the outside of the embedding space can be two-fold. On the one hand these individuals move slower and assume fewer
different poses which differ from those of more agile younger individuals with their typical crawling/swimming locomotion
and coiling behaviors. On the other hand, old individuals are not included in the strain dataset on which the Transformer was
trained. Although the strain dataset and the aging dataset were recorded in similar ways, the behaviors of older individuals were
never seen by the network.

Additionally to the age color-coded embedding space, we plotted the trajectory in the embedding space of one individual of
strain AQ2947 (Fig. 5b). This trajectory links behaviors of this worm as it ages. It illustrates the broad variety of the behavior
of this individual up to day 15 after which the its behaviors are limited to the bottom part of the embedding space.

(a) (b)

Figure 5. Behavior embedding space of the strain and aging datasets combined. (a) Embedding space colored by age. With
age we refer to the day of adulthood of an individual C. elegans. Gray color indicates missing age data of worms from the
strain dataset. (b) Behaviors of one individual linked over the course of its aging. Starting with blue at the last day of the L4
stage, progressing to red until the last recorded day (23) of adulthood.

5 Discussion
In this work, we presented a deep learning-based approach for representation learning of C. elegans poses and behavior
sequences from bright-field microscopy videos without human annotations. Our method uses a combination of Contrastive
Learning and a Transformer architecture originally developed for self-supervised learning in computer vision and NLP22. We
draw inspiration from these methods to demonstrate that the pose and motion of C. elegans can be quantified in a meaningful
manner without the use of labels. Contrary to previous approaches, our method does not require worm skeletonization, keypoints
definition, or any pose or behavior categories. Our approach allows to embed all worm poses and pose sequences, from straight
ones to the challenging poses of tightly coiling and strongly bending C. elegans. We demonstrate that, even though our methods
are based exclusively on image pixel values, the resulting image and video embeddings reflect quantitative features describing
the worm shape and its motion, such as degree of bend, eigenworms and speed of motion. We apply our method to the video
data of different genetic strains as well as aging worms and illustrate the differences in behavior of worms of various strains and
ages.

To summarize, the advantages of our approach are:

1. Embedding challenging poses without relying on annotations.

2. Quantifying previously inaccessible behaviors.

3. Capturing hand-engineered features without explicitly calculating them.
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4. Ability to capture in a comprehensive manner properties of poses and behavior.

One limitation of our approach is the inability to distinguish between the head and tail of the worm. Head and tail
movements are important elements of the worm behavior. Since C. elegans typically move head-first, the head/tail orientation
can be estimated based on their direction of movement. However, for strains that frequently move backward, this rule would not
apply and the head/tail orientation would need to be estimated based on their visual features. While this remains a challenging
task, future work should incorporate predicted head/tail orientation as input to the network in our approach. Alternatively, video
frames could be adjusted so that C. elegans always face head-up, rather than simply aligning all worms to a vertical orientation
without considering head/tail direction.

While our approach offers many advantages over methods based on hand-engineered features, one drawback is its lower
direct interpretability. For example, a feature such as head speed provides straightforward, low-level behavioral insights,
whereas our embedding space visualizations combine all characteristics of the worm motion and are therefore more difficult to
interpret, similar to eigenworm features4. On the other hand, the comprehensive motion embeddings derived from our method
are a powerful representation for downstream tasks such as behavior or strain classification, reaching beyond analyses based
individual motion features.

In this work we focused on behaviors spanning two seconds. Future experiments could explore embedding sequences with
different time spans. Extending the length of the input video to four or eight seconds may allow to capture additional behaviors,
from brief actions to prolonged activities such as mating. Longer videos can be incorporated in various ways, such as adjusting
the step size between frames or increasing the sequence length.

Since pixel-based approaches like ours do not rely on skeleton or keypoints definition, they can be applied to any body
form. This ability to quantify behavior directly from pixels opens possibilities to study a wide range of organisms, including
cephalopods29 or single-celled organisms with flagella or cilia30, 31 in a comprehensive manner.
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Chapter 4

Conclusion

In this work, we presented our contributions to automate behavior quantification of
C. elegans using state-of-the-art Deep Learning (DL) methods. First, we presented an
instance segmentation approach to extract pixel-level pose information in dense scenes [1].
The synthetic training data contains hard samples like coiling and overlapping individuals
for which previous methods struggled to estimate accurate pose information. Compared
to skeletonization and keypoint-based approaches that struggle when it comes to tightly
coiling individuals, our approach is able to segment them with high accuracy. We tested
our method on different challenging datasets and showed its capabilities when combined
with a tracking approach.

Second, we presented a behavior representation learning approach capable to embed
previously inaccessible behavior of C. elegans [2]. Since we based our method on self-
supervised learning, it does not require any hand-labeled pose or behavior annotations.
Not requiring any labels allowed us to choose freely what data we like to use for training
and testing our approach. We chose to train our method on videos of wild-type (N2)
C. elegans and seven mutant strains. For testing, we used the hold-out data of the
same dataset used for training. Additionally, we evaluated our approach on a dataset of
aging C. elegans. For this dataset the nematodes were recorded every day during their
adulthood until they die. This data enables us to analyze how behavior changes with
age. Visualizing the learned embedding space and coloring the embeddings based on
various features computed by Tierpsy [18, 19] revealed clusters and color gradients in the
data. Especially when looking at the embedding data of aging worm behavior, it becomes
visible that young worms express a much higher behavior repertoire than older worms.
The amount of different body poses they take on declines over time and, latest at the
15th day of adulthood, the speed at which this repertoire shrinks, speeds up drastically.
The clusters and gradients that become visible when coloring the embeddings by features
computed with Tierpsy [18, 19], demonstrate that our approach is able to capture these
hand-engineered features. As our approach is not explicitly trained to learn these features,
it is able to discover different properties including novel ones, not captured by previously
hand-engineered features.

31
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With our research, we further closed the gap between automated high-throughput
data acquisition and incomplete behavior quantification due to previously inaccessible
poses and behavior. Our contributions have shown the potential of DL methods in pose
estimation and behavior quantification for ethological studies.

Additional to the future work mentioned in chapter 2 and 3, our method could be
applied to more strains of C. elegans that express challenging behavior and compare the
results to wild-type strain to get a map of shared, similar and unique behavior comparable
to the work of Brown et al. [17]. Mapping phenotypic relations helps scientists to
understand the influence of different genetic mutations.

Another area of future work is to use our methods for downstream tasks like strain
classification, action recognition and forecasting, as well as generation of synthetic data.
Strain classification can be an entry point, since the data we used for training comes with
strain labels usable to train a classification head. Action recognition would likely require
additional labeled data, making it more challenging to start with. Nevertheless action
recognition has great potential as it could be used to generate comprehensible behavior
descriptions. As described in chapter 3, the repertoire of behavior of C. elegans declines
with age. Based on the assumption, that this is a general property of all genetic strains,
a DL approach can be trained to predict a fitness score for an individual nematode. This
score can be used to describe how mobile an individual, or even a strain, is compared to
the wild-type or other individuals of the same strain. Using this mobility estimate, a live
span prediction could be made [47].

As our behavior representation method (see chapter 3) is trained to impute the masked-
out end of a behavior sequence, it can be used as a forecasting model for C. elegans
behavior. This type of network can be combined with segmentation and tracking, as
forecasting the next moves of an individual does help locating it in the next frames,
especially in crowded scenes. By changing the network to give a probabilistic output,
forecasting could be further improved. This idea is similar to the functionality of a
Kalman filter [48] which is widely used in tracking approaches [49, 50]. Probabilistic
approaches are also used in recent keypoint-based pose estimation methods, applied to
human and animal image data [51, 52]. From forecasting we could move on to synthetic
data generation. Inputting a pose or short behavior sequence as starting point, the network
could generate synthetic behavior data to train other networks. Generating images for
behavior sequences can be solved by training a decoder network together with our pose
embedding network (see chapter 3). The decoder network can be trained to predict the
image, fed into the pose embedding network, based on embedding vector output (see e.g.
Variational autoencoders (VAEs) [53]). This way, generated behavior embeddings could
be decoded to image sequences. Additionally, the behavior representation network could
be trained with behavior sequences annotated with strain class or action labels. This
would enable us to choose a specific behavior style e.g. coiling, mating, or even wild-type
behavior, to be generated by the network. Behavior data generated by such a method
would come with action/activity labels and could in turn be used as synthetic training
dataset for other methods, to avoid time-consuming hand labeling.
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With novel DL methods and researchers applying them to study model organisms like
C. elegans, we can expect improving results in the coming years. Today, DL methods
are already able to automate many processes that were previously carried out manually.
This automatization saves time that can be used to conduct more experiments or spend
more time on interpreting the results. Speeding up biomedical research helps scientists to
understand biological effects in less time and find cures for some of the worst disease of
today.
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