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Zusammenfassung
Der Mangel an Spendernieren in Eurotransplant (ET) Ländern ist unumstritten,
weshalb die Entscheidung zur Verwerfung eines Organs nicht ohne driftigen Grund
getroffen werden sollte. Eine Evidenzbasis, insbesondere hisichtlich der Rolle von
nephropathologischen Einschätzungen, fehlt bislang. Mit zusätzlicher pathologi-
scher Evaluation verlängert sich die kalte Ischämiezeit, zudem ist sie nicht in allen
Transpalantationskliniken bzw. -zentren verfügbar.

Ziel dieser Arbeit war es daher, flexible klinisch-pathologische Scores zur Vorher-
sage der verzögerten Transplantatfunktion (DGF) und des einjährigen, todeszensierten
Transplantatverlusts (1y-tl) nach Nierentransplantation zu entwickeln, zu validieren
und zu vergleichen. Da das Modellierungsverfahren von der Menge vorausgewählter,
potenzieller Prädiktoren abhängt, bestand ein zweites Ziel darin, fünf statistische und
auf maschinellem Lernen basierende Variablenauswahlverfahren anzuwenden, und die
Ergebnisse hinsichtlich der Vorhersagekraft der abgeleiteten Modelle zu vergleichen.

Im Hinblick auf die Erstellung eines guten Vorhersagemodells waren die Metho-
den des maschinellen Lernens den klassischen statistischen Modellen bei der Auswahl
geeigneter Prädiktoren nicht überlegen. Es wurden zwei zweistufige Scores ent-
wickelt, welche, mit Einschränkungen, die derzeitige Praxis in sechs Eurotransplant
Ländern (Österreich, Belgien, Kroatien, Deutschland, Ungarn und die Niederlande)
widerspiegeln. Um auf die verlängerte kalte Ischämiezeit bei der nephropathologischen
Evaluation und einer mangelnden Verfügbarkeit dieser einzugehen, wurden Scores mit
optionaler Nephropathologie entwickelt. Bezüglich der Fähigkeit, Fälle von DGF zu
dikriminieren war der 2-Stufen Score den Modellen von Irish, Balaz und Chapal nicht
unterlegen. Ebenso wenig wie der 2-Stufen Score für 1y-tl den von Snoeijs, Port, De
Vusser und Miller.

Die entwickelten, flexiblen 2-Stufen Scores sollten gute Ergebnisse für die klinische
Praxis in Eurotransplant liefern und komplexeren Scores nicht unterlegen sein. Sie
können und sollten jedoch für den zunehmenden Einsatz von Perfusionspumpen und
die Spende nach Herztod, sowie bei der Risikogruppe von Spendern mit Nieren von
marginaler Qualität, angepasst und validiert werden.



Abstract
The shortage of donor kidneys in Eurotransplant (ET) countries is undeniable, which is
why the decision to discard an organ should not be made without solid reasoning. An
evidence base, particularly with regard to the role of nephropathogical assessments,
is still lacking. With additional pathological evaluation the cold ischaemia time is
prolonged, and it is not available in all transplantation clinics and centers. The
aim of this study was therefore to develop flexible clinico-pathological scores for the
predict delayed graft function (DGF) and one-year death-censored graft loss (1y-tl)
after kidney transplantation, to validate and compare them.

As the modelling procedure depends on the set of pre-selected potential predictors,
a second aim was to apply five statistical and machine-learning variable selection
methods and compare results in terms of predictive discriminative power of the derived
models. In terms of generating a good prediction model, machine learning methods
were not superior to classical statistical models in selecting adequate predictors.

Two two-step algorithms were developed which, with limitations, reflect the cur-
rent practice in six ET countries (Austria, Belgium Austria, Belgium, Croatia, Ger-
many, Hungary and the Netherlands). In order to address the prolonged cold ischaemia
time in nephropathological evaluation and a lack of availability of these, scores with
optional nephropathology were developed. With regard to the ability to discriminate
cases of DGF the 2-Step scores was not inferior to the models of Irish, Balaz and
Chapal. Neither was the 2-Step scores for 1y-tl inferior to that of Snoeijs, Port, De
Vusser and Miller.

The flexible 2-Step scores developed should provide good results for clinical prac-
tice in Eurotransplant and should not be inferior to more complex scores. However,
they can and should be adapted for the increasing use of perfusion pumps and do-
nation after cardiac death, as well as the risk group of donors with marginal quality
kidneys.
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Chapter 1

Introduction

1.1 Background
According to the European Renal Association, the prevalence among European cit-
izens (excluding Germany) in 2021 requiring kidney replacement therapy (krt) due
to chronic kidney disease was 1 per 1000 [1]. Based on data from statutory health
insurers, prevalence was in Germany with 1.2 per 1000 even higher [2]. For patients
with end-stage renal disease (ESRD), of whom most are in demand of dialysis, a
successful transplantation can significantly improve quality of live and the probability
of survival [3, 4].

Within the European Union, Eurotransplant is responsible for the national and
transnational allocation of deceased donor kidneys, livers, hearts, lungs, pancreas, and
intestine in a consortium of eight hereafter referred to as "ET countries" (Germany,
Austria, Belgium, Croatia, Hungary, Luxembourg, The Netherlands, and Slovenia). As
a a non-profit service organization, its objective is to “ensure optimal use of available
donor organs” by providing a common allocation system [5]. In 2021, Eurotransplant
reported that 1897 deceased donors were eligible for organ allocation 1 of which 1573
(83%) were kidney donors; about 50% (N=794) of all donors were from Germany
[6, page 10]. However, by the end of 2021, there were still 10269 (Germany: 6593;
64%) patients on the Eurotransplant kidney waiting list [6, page 23].

The demand for kidneys from both living and deceased donors is a major public
health challenge, especially as it is expected to increase in the future due to demo-
graphic changes. Furthermore, organs from older donors are associated with more
marginal functionality and availability of donor kidneys varies at national and also re-
gional levels, posing an additional challenge to allocation systems [7, 8, 9]. Allocation
itself can follow several principles which were categorized into four fundamental val-

1"Eurotransplant does not report on the number of Actual donors, where an organ has been
recovered for the purposes of transplantation, but not necessarily transplanted. The number of
Actual donors is slightly higher than the number of Utilized donors"[6, page 10]
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CHAPTER 1. INTRODUCTION

ues by medical ethicists [10]. The utility on balance includes, among others, recipient
survival and potential harmful consequences such as delayed graft function (DGF), a
common early complication, and premature transplant loss.

Although its definition varies amongst users, “most define DGF as an acute kidney
injury (AKI) that occurs in the first week after transplantation and requires a dialytic
treatment” [11]. As a consequence, patients often require longer hospital stays with
higher healthcare resource utilization and an increased risk of further complications
like hospital-acquired infections and acute rejection [12, 13]. In long-term, DGF was
found to be associated with decreased graft survival and graft function [14], also with
recipient death [15, 16]. Hence, DGF has been an important endpoint to predict
during the allocation process.

Several research groups have examined predictors of DGF and developed predictive
models. So far, outside the Eurotransplant consortium predictive scores were devel-
oped in North America (Irish, 2003 and 2010 [17]; Schold, 2005 [18]; Jeldres, 2009
[19]; Balaz, 2013 [20]; Kawakita, 2020 [21]), France (Chapal, 2014 [22]), Italy (Zaza,
2015 [23]), The United Kingdom (Moore, 2007 [24]) and China (Ding, 2018 [25];
Chen, 2020 [26]; Xue, 2021 [27]; Wang, 2022 [28]; Zhao, 2022 [29]) [30]. Decruye-
naere used data from the Ghent University Hospital, Belgium, to develop and compare
9 distinct predictive regression and machine-learning models in 2015 and published
a second paper in the same year, combining existing scores (Irish, 2010, and Zaza,
2015) in a meta-model [31, 32]. In the same year, Chaumont et al. published a
regression-based model derived from Eurotransplant data aiming to identify factors
that led to a decrease in the incidence of DGF in Belgium over the last three decades
[33]. In 1997, the European Multicenter Study Group used data from the Eurotrans-
plant registry to explore risk factors for DGF in cadaveric kidney transplantations
comparing single and multi-organ donors [34].

Apart from DGF, 1-year death-censored transplant loss (1y-tl) is another hitherto
less well-regarded short-term outcome discussed in the literature. Two popular scores
based on data from the USA (Port, 2002 [35]; Rao, 2009 [36]) have already considered
this endpoint. Trained on data from Eurotransplant, Miller developed and published
online available models in 2023 based on Cox regression to predict risk of transplant
loss and recipient survival at a user-selected time point after transplantation [37].

The scores already developed differ not only in terms of the outcomes studied
and the cohorts used for training, but also in terms of the influencing variables con-
sidered. Scores can base on clinical, composite clinical-histological or histological
variables available before transplantation. The mentioned scores by Jeldres [19] and
Zaza [23] are clinical; Wang [28] and Balaz [20], however, also include histologi-
cal information from procurement "harvest" biopsies performed before the period of
cold ischaemia. Miller’s models are also based exclusively on clinical donor data, but
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CHAPTER 1. INTRODUCTION

with optional recipient data. Histological findings are not taken into account be-
cause these are not regularly recorded by Eurotransplant. To be useful in a prediction
model, histological assessment needs to be done in a standardised way. In practice,
this is not necessarily the case. Mayor differences are related to the timing (procure-
ment vs. preimplantation), type (wedge, vs. needle vs. skin punch) and procession
method (frozen vs. paraffin-embedded) [38]. Further, the experience and availability
of the on-call nephropathologist evaluating and scoring the biopsy is another source
of variability one usually can not account for [38, 39].

Reproducibility of procurement biopsy findings was shown to be poor and the
benefit in the ability to predict the transplant outcome is controversial, although
inter-rater reliability among specialised nephropathologist was better on procurement
biopsies [40, 41, 42, 43]. Nevertheless, renal pathology offered as a "round-the-clock
service" is a scarce, costly resource in ET countries. Since clinical data relating to
donor, recipient and transplant procedure alone allow at least for a rough prediction of
both endpoints of interest, DGF and death-censored transplant loss within one year,
two flexible scores with optional histology are proposed that can be set up at the
ET-server as shown schematically in figure 1.1 [44]. Such a 2-step approach, allowing
the allocating physician to decide, whether to perform a histological evaluation to
improve accuracy of prediction while taking into account an possible increase in cold
ischaemia time, is new.

Figure 1.1: 2-Step algorithm with optional histology 1.1[44]

The steps to generate a predictive, medical score can be adapted from the CRoss
Industry Standard Process for Data Mining (CRISP-DM) reference model, which
represents a six-point circle: business understanding (what do we need?), data under-
standing (collection, description, exploration, quality assessment), data preparation
(selection, cleaning, integration, formatting), modelling, evaluation (success criteria,
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CHAPTER 1. INTRODUCTION

review) and deployment [45]. The data understanding and preparation phases are in
general most time consuming. Given the available data while taking into account ap-
plicable data protection guidelines like the EU’s General Data Protection Regulation
(GDPR, see: https://gdpr-info.eu), following these steps should provide the most
meaningful predictors to be included into the modelling step.

Statistical and machine-learning (ML) methods can support the data preparation
by reducing the number of candidate predictors without loss of information by pro-
viding information on variable importance [46, 47, 48]. However, there’s no guideline
on which method is best with regard to sample size, number of predictors and miss-
ing values, but there are recommendations on variable selection [49]. Therefore, five
methods for variable selection prior to actual score generation are applied and the
results are compared with regard to the selected predictors and the models’ perfor-
mance. Additionally, the ability of the final 2-Step scores to discriminate recipients
at increased risk was assessed on both the training and an independent validation
dataset and compared with established, more and less simple scores. This provides
additional external validation of the other scores.

In a population with an increasing prevalence of ESRD, the expectation of a
shrinking pool of kidneys from deceased donors exerts increasing pressure on the
health systems and in particular on those who make the decision on the acceptance
or rejection of a donor organ. In order to make the best use of this valuable resource
and support clinical decision makers such as transplant surgeons and nephrologists,
the first aim of this project was to develop a regression-based algorithm that estimates
the individual probabilities for the transplant complication DGF. The second endpoint
to be predicted before transplantation, 1y-tl, was chosen to avoid the increasing
influence of factors beyond the quality of the donor organ, such as recipients post-
transplantation behaviour and the transplantation procedure itself which cumulate
over the years after transplantation. As a histological evaluation in addition to a
macroscopic or donor clinical history based evaluation of the donors kidney quality
is neither available nor necessary in every case, the algorithms should be designed
to incorporate clinical variables with optional histology. Ultimately, evidence-based
scores should be created that can be integrated into the Eurotransplant database and
updated with new data in real time, as suggested by Donna Ankerst et al.[50], among
others, to assist in the decision to accept or reject an organ.
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CHAPTER 1. INTRODUCTION

1.2 Structure
Before providing detail about how the scores were created, I will first give an overview
of existing, established scores for predicting DGF and, respectively, transplant loss
within the first year after transplantation together with the allocation system as it is
currently used by Eurotransplant (Chapter 2). Next, the methodological background
section describes the statistical and machine learning methods for a) candidate predic-
tor preselection and b) two-step modelling in Chapter 3. In Chapter 4, the assessment
of the training and validation datasets is described. The results of the variable se-
lection and modelling are presented, supported by tables and figures, in the results
Chapter 5. A comprehensive discussion of the derived scores, the strengths and lim-
itations of the study and the importance of scores as a tool to support informed
decision-making are then presented in the discussions Chapter 6. To conclude, future
prospects are presented.

1.3 Sponsors
The thesis is based on the project "Entwicklung eines Scores für die Qualitäts-
beurteilung von Verstorbenenspendernieren in Eurotransplant" (BE 3801/2-1), which
was funded by the Deutsche Forschungsgemeinschaft (DFG) [Engl.: German Research
Foundation] and sponsored by the University Hospital of Cologne in collaboration with
Eurotransplant.

1.4 Software used
The statistical data analysis of the Eurotransplant, as well as the supplementary
histological data, which were both provided as Excel files, was performed exclusively
with the software R of the Comprehensive R Archive Network (cran.r-project.org)
in version 4.4.2 for Windows. The online Latex editor from the Digital Science UK
Limited "Overleaf" (de.overleaf.com) was used to create the dissertation. During the
writing process, the AI-based translator DeepL Pro Write (www.deepl.com) was used
for translation and spelling correction in English.
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Chapter 2

Published scores, evidence on
nephropathological findings and the
Eurotransplant allocation system

Scores and algorithms for predicting outcomes after deceased donor transplantation
have been modeled for more than 20 years. Various short- and long-term outcomes
are considered. Short-term outcomes include delayed graft function within 7-8 days
after transplantation, transplant loss, reduced graft function, and death within the
first year. In the long term, treatment adherence, transplant loss and reduced kidney
function, measured by estimated glomerular filtration rate (eGFR), and patient death
are of interest. As mentioned above, the scores have been developed and adapted in
different regions like US-America, Brazil, Europe (Eurotransplant, The UK, France),
China, and Oceania. In addition, the independent variables considered may vary with
regard to donor-, recipient-, transplant-specific predictors with and without histology.
There are other ways to categorize existing scores or the target group for which the
score is to be applied:

• Modelling method : classical statistical, based on binary logistic regression
(LR), Cox Regression, elastic net regression (EN) versus machine and deep
learning like support vector machines (SVM), random forests (RF), gradient
boosting (GB), extreme gradient boosting (XGB) and artificial neural networks
(ANN) versus meta-regression modelling.

• Data source: (nationwide) registries like Eurotransplant, the US United Net-
work for Organ Sharing (UNOS) and the Organ Procurement and Transplanta-
tion Network (OPTN), which is operated under contract with the U.S. Depart-
ment of Health and Human Services, the Australia and New Zealand Dialysis
and Transplant registry (ANZDATA) and the UK Renal Registry (UKRR), which
was established by the UK Renal Association, CRISTAL, which is the French
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organ transplant registry [51], Scandiatransplant [52] vs. clinic networks like the
French Données Informatisées et VAlidées en Transplantation (DIVAT) [English
translation: computerized and validated data in transplantation] vs. single or
multiple transplant centres.

• Donor and recipient characteristics: brain vs. cardiovascular deceased vs.
living donors, adult vs. pediatric donors or recipients, high vs. marginal risk
recipients, good vs. marginal quality kidneys.

• Model presentation: regression estimates including intercept or baseline haz-
ard function, nomograms, point-scores, trees and networks. The more complex
the associations between outcomes and predictors, as well as within predictors
are, the harder to interpretate are they. Algorithms derived by deep learning
and support vector machines, as well as regression trees are therefore usually
not published in papers but can be applied via online tools they’re linked to.

The following is an overview of existing scores for the outcomes DGF and one-
year (death-censored) transplant loss. Only those that were modelled with but not
solely for adult recipients with deceased donors are considered. Results are partly
from a systematic literature review conducted as part of a Cologne Fortune project
"Development of a Meta Score for the Quality Assessment of Kidneys from Deceased
Donors" [Project Nr. 268/2022 (account: 7103-9713-0005-01)].

Independent reviewers were A. Ernst and PD Dr. med. J. U. Becker. The search
and PICO (Participants, Intervention, Comparison, Outcome) terms used are found
in the supplemental Chapter 7.
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2.1 Scores and algorithms predicting delayed graft
function

A systematic literature search identified 30 publications published since 1998 on pre-
dictive models for the outcome DGF that were not explicitly generated for minor
recipients or living donors. As a template for data extraction and risk of bias assess-
ment of prediction models, the Checklist for critical Appraisal and data extraction for
systematic Reviews of prediction Modelling Studies (CHARMS) and Prediction model
Risk Of Bias Assessment Tool (PROBAST) were used [53]. The derived CHARMS
for DGF are described in tables 2.1, 2.2 and 2.3. Registries and networks were used
as the data source for 6 (UNOS/OPTN, N=5; DIVAT, N=1) publications, while the
remaining data came from single (N=18) or multiple clinics or transplant centres.
The relatively free access to registry data such as UNOS for research purposes allows
regular recalculations and recalibrations of the prediction models, which is reflected in
the large proportion of models from the USA (N=8). Ten models came from China,
five from Europe (France, Italy, Belgium, Czech Republic), and one each from Canada
and Brazil. In two cases (Konieczny, 2021 [54] and Moore, 2007 [24]), it was not
clear where the data came from. Although regression analysis is considered to be the
‘classic’ modelling method for deriving predictive models, artificial neural networks
were already used to predict DGF in the early work by Shoskes, 1998 [55], and Brier,
2003 [56]. Logistic regression was the main method of analysis in 21 papers, but
was also used in five others to be compared with machine learning algorithms. In
addition, the PROBAST tables on variable selection and modelling are presented in
Tables 2.4, 2.5 and 2.6. As discussed in more detail in Section 3.3.10, validation is
an integral part of assessing the quality of a predictive model. Internal validation by
cross-validation, bootstrapping or a randomly selected subset of the data was per-
formed in 15 publications, and the performance of nine other models was measured
on the full training dataset. Nine models were externally validated, although other
authors or groups of authors may have validated the models after publication. Valida-
tion information is missing completely in three publications (Santos, 2023[57]; Wang,
2022 [28]; Losappio, 2014 [58]). The most commonly used measure to assess discrim-
ination, with 25 publications, was the area under the receiver operating curve (ROC),
AUC, with graphical presentation; information on calibration and overall performance
was significantly less common (N=12 and N=6 publications, respectively).
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CHAPTER 2. PUBLISHED SCORES AND THE ETKAS

The observed AUC values vary less with the method of analysis than with the
ratio of the number of predictors used to the number of observations in the cohort.
Internally validated, but with a high (N=38, N=18, N=24) number of predictors in
the model, Konieczny’s random forests, Costa’s neural network and Decruyenaere’s
linear SVM from Decruyenaere achieved values of up to .92, .886 and .84, while the
neural network from Brier with 10 predictors only achieved .668. Fewer than 500
transplantations were performed in all four studies. Bae and Kawakita, who used
UNOS datasets with 97787 and 55044 observations respectively, provided regional
external validation of the results. Regression and machine learning methods with 39
and 26 predictors, respectively, yielded similar AUC values (Bae: LR .721, GB .723, RF
.717; Kawakita: LR .728, RF .735, EN .728, XGB .742, ANN .737). Results between
regression and machine learning models were also comparable in the paper by Brier and
Decruyenaere. Neural networks performed significantly better in a direct comparison
in Costa, although the final models contained a different number of predictors. Four
publications that used only logistic regression were externally validated. Here, a
similar picture emerges: models based on homogeneous cohorts and a small number
of centres resulted in AUCs ranging from .846 to .89, while the models based on
register data from Irish in 2003 and 2010 yielded AUCs of .703 and .704. The AUCs
of the models that were exclusively internally validated and trained on data from a few
centres varied considerably, although here, too, the ratio of the number of predictors
to events seems to correlate positively with the AUCs.
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CHAPTER 2. PUBLISHED SCORES AND THE ETKAS

Of particular interest for this work is the comparison of the performance of existing
scores that include histological predictors in addition to clinical and immunological
predictors. Histological scores come from Balaz, Zheng, Losappio, Wang and Luo.
While Balaz uses Banff lesion scores when assessing histology, Losappio, Wang and
Zheng used Remuzzi scores. The authors around Luo, on the other hand, were the first
to use deep learning algorithms in 2022 to extract features from whole-slide images
of pre-transplant biopsies using EfficientNet-B5, and to update the predictive model
created with clinical data. The combination of histological and clinical parameters
increased the AUC from .708 to .799. According to Balaz, BANFF ci and cv combined
in one score were significantly associated with DGF; Losappio generated a histological
Remuzzi score based on the assessment of four compartments glomeruli, tubules,
interstitium and vessels, supplemented by clinical parameters. Wang focused on acute
tubular injury (ATI) and compared outcomes between donor kidneys with low vs.
high ATI. Zheng also found that the AUC could be increased to .89 by including
histopathological Remuzzi scores combined with a donor score, ATI and terminal
resistance, compared to AUCs of .65 - .75, the values of the individual predictors.

Differences can be partly explained by different definitions of DGF. In most of
the cases, this was equivalent to the return to dialysis within the first week after
transplantation, which is the definition used here. There was a discrepancy in the
early publication by Shoskes (1998) and additionally in Sun (2018) and Quiao (2021).
In all three publications, conspicuous postoperative serum creatinine values were also
counted as DGF. Quiao’s study also extended the time to DGF to 14 days after
transplantation; Chaumont defined DGF as the need for dialysis after transplantation,
regardless of its duration, excluding recipients without interruption of dialysis.

Another difference lies in the applicability and quality of the scores and algorithms,
as measured by the PROBAST criteria. Here, models were considered to be applicable
with high concern due to the selection of the predictors, if they included variables
collected during or after transplantation, such as warm ischaemia time. This means
that they can no longer be used to support the decision for or against transplantation.
This was the case in three papers by Pan, Chen and Decruyenaere [73, 67, 31].

When selecting the cohort, it should be clearly defined. In particular underage
and living donors and underage recipients should be excluded. Uncertainty about
their exclusion prevailed in twelve cases [55, 24, 61, 58, 33, 77, 66, 67, 69, 73, 72,
76]. Applicability was also judged to be unclear in studies that used small cohorts for
training. A widely discussed rule of thumb in logistic regression is that there should be
approximately ten observed events in the cohort for each predictor in the model [78].
This ratio was frequently undercut, especially in studies using single-center cohorts, as
shown in Tables 2.4, 2.5 and 2.6. The modelling methods were generally appropriate.
However, there were limitations when the selection of variables for the final models
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Table 2.7: Risk of bias of models predicting DGF (PROBAST)

Risk of Bias (RoB) Applicability Overall
Author, Year Parti-

cipants Predictors Outcome Analysis Parti-
cipants Predictors Outcome RoB Applica-

bility
Brier, 2003 ? + + - - + + - -
Konieczny, 2021 ? + + + - + + ? -
Bae, 2020 + + + + + + + + +
Irish, 2003 + + + + + + + + +
Moore, 2007 - + + ? ? + + - ?
Jeldres, 2009 ? + + + ? + + ? ?
Irish, 2010 + + + + + + + + +
Balaz, 2013 ? + + ? ? + + ? ?
Chapal, 2014 + + + + + + + + +
Zaza, 2014 - + + ? - + + - -
Decruyenaere, 2015 + + + + + - + + -
Decruyenaere
(meta-model), 2015 + + + + + + + + +
Shoskes, 1998 ? + - + ? + ? - ?
Ding, 2017 - + + ? - + + - -
Sun, 2018 + + + - - + + - -
Chen, 2020 + + + ? + - + ? -
Zheng, 2020 + + + + ? + + + ?
Kawakita, 2020 + + + + - + + + -
Luo, 2022 ? + - ? - + - - -
Xue, 2021 + + + - - + + - -
Wang, 2022 - + + ? + + + - +
Zhao, 2022 + + + + ? + + + ?
Pan, 2021 ? + + ? - - + ? -
Costa, 2020 + + + + ? + + + ?
Losappio, 2014 + + + - ? + + - ?
Santos, 2023 + + + - ? + + - ?
Qiao, 2021 + + + + ? + + + ?
Chaumont, 2015 ? + + + + - + ? -
Jen, 2021 + + + - + + + - +
Ding, 2018 - + + + ? + + - ?
Abbreviations: +, high; -, low; ?, unclear

was based on univariate analyses or the method used to select the predictors was not
described. In some cases, model-based variable selection was omitted, resulting in
a large number of predictors. In practice, this has the disadvantage that predictive
accuracy also suffers when the probability of missing values is higher. A summary of
the assessment of applicability and risk of bias is given in Table 2.7.

2.2 Scores and algorithms predicting transplant loss
within one year after transplantation

For the outcome 1y-tl, nine publications of prediction models published since 2002
were identified that did not explicitly make predictions for underaged recipients or
living donors. In seven publications, registries (UNOS and the National Scientific
Transplant Registry database) were the data source, while the cohorts of the other
two publications came from individual clinics or transplant centres. Finally, eight
publications were from the USA and one from Iran. Study characteristics of the
published models predicting 1y-tl are shown in Table 2.8, including enrolment period,
study setting and some baseline characteristics. The latter were more likely to be
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missing in publications with the outcome 1y-tl compared to DGF.
As summarised in Tables 2.9 and 2.10, Cox regression was the main modelling

method in a publication by Port, 2002 [79] and was also used by Lin, 2008 [80] and
Paquette, 2022 [81] for comparison with machine learning. Deep learning (Bayesian
belief networks and Bayes net classifiers) and machine learning were used for the other
models by Schold, 2005 [82], Krikov, 2007 [83], Brown, 2012 [84], Naqvi, 2021 [85],
Shahmoradi, 2016 [86] and Li, 2010 [87].

Internal validation using cross-validation or a randomly selected subset of the data
was performed in seven papers, while the performance of one model was measured
on the entire training dataset. Brown was the only author to perform an external
validation with a temporally independent cohort. No information on any validation
procedure was provided in the paper by Port.

The ability to discriminate was indicated by means of AUC and graphical presen-
tation in the internal validation five times: in Krikov’s tree-based models (AUC=.63),
Paquette’s Cox model (AUC=.646), random survival forest (AUC=.644) and arti-
ficial neural networks (DeepSurv, AUC=.65; DeepHit, AUC=.661; RNN, AUC =.
659), Brown’s Bayesian Belief Network (AUC=.59), Naqvi’s logistic regression model
(AUC=.62), random forest (AUC=.70), SVM (AUC=.82) and neural networks (Ad-
aBoost, AUC=.78; ANN, AUC=.61) as well as by Lin’s logistic regression (AUC=.71),
single-output ANN (AUC=.73), multiple-output ANN (AUC=.61), Cox model with-
out time-varying effect (AUC=.65) and with time-varying effect (AUC=.72) and by
Shahmoradi, where the accuracy of three data-mining methods was given (classifica-
tion and regression tree =.89; ANN=.87; C5.0=.915).

Information on calibration and overall performance was, as with DGF, much less
common (N=2 and N=3 publications respectively). The AUCs and accuracy data
given are based on registry data from 5144 to 180141 observations, and a retrospective
cohort of 513 transplants in Shahmoradi. Schold stated that he had worked with
a training and test dataset, but no information was provided on the possibility of
discrimination and calibration. In the external validation cohort, with 55 out of 138
transplants lost in the first year after transplantation, the AUC for Brown’s model
was =.63.

Apart from Naqvi’s models, the performance between regression and machine
learning models was comparable. There, neural networks and SVMs performed signif-
icantly better in a direct comparison, although it was not clear how large the numbers
of predictors in the final models were. Li’s cohort consisted of 1228 transplants and
was validated internally on the entire training dataset.
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Table 2.11: Risk of bias of models predicting 1-year transplant loss (PROBAST)

Risk of Bias (RoB) Applicability Overall
Author, Year Parti-

cipants Predictors Outcome Analysis Parti-
cipants Predictors Outcome RoB Applica-

bility
Port, 2002 + + + - + + + - +
Schold, 2005 + + ? ? + + ? ? ?
Krikov, 2007 + + + + - + + + -
Paquette, 2022 + + + + - + + + -
Brown, 2012 + + + + + - + + -
Naqvi, 2021 + + + + + + + + +
Shahmoradi, 2016 ? + ? + - + + ? -
Li, 2010 + + + + ? - - + -
Lin, 2008 + + + + ? + + + ?
Abbreviations: +, high; -, low; ?, unclear

The comparison of scores or algorithms with and without consideration of histolog-
ical factors is not applicable, as all publications only included clinical and demographic
variables.

Differences in the definition of the outcome were mainly related to the treatment
of deceased recipients. Schold and Li did not report this, while Krikov, Paquette and
Lin censored deceased recipients and Shahmoradi, Brown, Port and Naqvi considered
them as surrogate markers of transplant loss. In none of the publications was death
independent of graft failure considered a competing risk and analysed accordingly.

As for the outcome DGF, models including predictors measured after or during
transplantation were considered to be of high concern regarding their applicability.
This applied to the model by Krikov who included immunosuppressive therapy at
time of hospital discharche, and Brown and Li who both included warm ischaemia
time. There were major concerns about applicability due to the inclusion of living
or paediatric donors or paediatric recipients in the cohorts by Krikov, Paquette and
Shahmoradi. Li and Lin did not report any such exclusion criteria. As described above,
the outcome definition by Schold and Li was not clear, which is why applicability is of
high concern. A summary of the assessment of applicability and risk of bias is given
in Table 2.11. In the absence of validation, the risk of bias was unclear with regard to
the analysis as it was the case in the Port paper, where follow-up duration was also
unclear.
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2.3 Nephropathological findings derived from pre-
transplantation biopsies: evidence so far

Including 47 studies published between 1994 and July 1, 2014 in their systematic
review on the utility of both procurement and implantation biopsies for predicting
posttransplant outcomes, Wang et. al. reported that "the most salient finding
(...) is that there were no consistent associations between donor biopsy findings
and posttransplant outcomes" [88]. However, according to the authors, the stud-
ies were characterised by inconsistencies in histological evaluation and interpretation
and other limitations. A subsequent review by Moeckli from 2019 on the evaluation
of donor kidneys prior to transplantation also concluded that "the current literature
fails to demonstrate the clinical utility of pretransplantation histological assessment
of grafts" [89]. Authors describe concerns regarding pretransplant histology:

1 lack of evidence of the clinical utility

2 missing consensus on the relative importance of each histological factor

3 increased material and personnel costs

4 difficulties in scoring of the biopsies by (on call) pathologists, especially in
centres without experienced nephropathologists which might lead to low repro-
ducibility with regard to the inter- and intrarater correlation of findings [90,
91]

5 an increase in cold ischaemia time, which itself is associated with worse trans-
plant outcomes

This may partly explain the limited availability of such an assessment and, con-
sequently, the irregular collection of this type of data. The scores quoted in Section
2.1 for predicting DGF, for example, all used data from single centres where histo-
logical evaluation is performed. Registries such as UNOS/OPTN, Eurotransplant,
ANZDATA, the UKRR and DIVAT collect data from a large number of transplant
centres and hospitals, not all of which are able to provide this information. How-
ever, the need to provide a platform for a systematic, standardised assessment has
been met: the OPTN Deceased Donor Registration Worksheet (available online at
https://unos.org/wp-content/uploads/DDR.pdf), last updated on September
14, 2023, now includes right and left kidney biopsy evaluation as a mandatory section.
A similar quality assessment is included in the quality-forms by the DSO.isys portal,
a system used by German transplant centres, hospitals and laboratories to coordinate
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transplantations (homepage: https://isysweb.dso.de). Section 2.4 lists the min-
imum data that must be reported to Eurotransplant prior to donor matching or the
allocation. Histological evaluation, however, is only required and evaluated in the case
of unexpected findings during the surgical examination of the donor [92]. According
to their dataset Specification, version 2023.3, the ANZDATA also collects histological
parameters including BANFF lesion scores [93]. Yet, histological parameters are not
included in the dataset by the UKRR, also known as CKD/AKI clinical dataset [94].

Tackling the first concern, standardisation how the biopsy is performed, the kid-
ney after transplantation stored and reporting of these is suggested. The use of
paraffin sections (PS) or frozen sections (FS) differs not only in the time and re-
sources they take, over 3 hours vs. half an our, but also in the possible histological
assessments that can be made with them. Also, one should describe which type
of biopsy is used: needle, punch or wedge, as the functional compartments e.g.
number of glomeruli, differ regarding this. After explantation, machine perfusion
or static cold storage are used before transplantation for organ storage and preser-
vation. Machine perfusion (hypothermic or normothermic) itself can be used for
assessment of organ quality as perfusion parameters like renovascular resistence are
shown to be associated with transplant outcome [89]. The European Society for
Organ Transplantation (ESOT) has also set itself the goal of standardising the per-
formance of pre-transplantation biopsies by formulating PICOS and, based on this, a
guideline. In 2023, it published the results in ‘European Society for Organ Transplan-
tation (ESOT)-TLJ 3.0 Consensus on Histopathological Analysis of Pre-Implantation
Donor Kidney Biopsy: Redefining the Role in the Process of Graft Assessment’ [39].
Also, prospective studies addressing the first concern are required. The National
Health Service has started a registry-based trial, "PITHIA", that aims to evaluate pre-
implantation kidney biopsies from donors aged over 60 years to increase the number
and quality of kidneys transplanted (trial homepage https://www.nhsbt.nhs.uk/
clinical-trials-unit/current-trials-and-studies/pithia/) [95]. During
the trial, 22 participating UK centres will have access to biopsy service. The results
are still pending, but should provide more evidence in the future on the question of
whether a histopathological evaluation before transplantation is even useful, as called
for by Wang and Moeckli in the conclusion of their reviews. With regard to reporting,
tools like the "Strengthening the Reporting of Observational Studies in Epidemiol-
ogy (STROBE) statement: guidelines for reporting observational studies" [96] were
developed to ensure reporting of information relevant to assess quality of the study.

The second concern could be tackled by evaluating well defined, composite histo-
pathological scoring systems rather than single parameters. Thereby, reported incon-
sistency in assessment could be reduced, when scored in a standardised manner, and
more or less important histological factors be identified. Known composite scoring
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systems are the Maryland Aggregate Pathology Index [97], the Charonic Allograft
Damage Index (CADI) [98], the Remuzzi score [99] and the Banff criteria [100]. Al-
though there is evidence of a significant association between these composite scoring
systems and transplant outcome, there are only few predictive models for the out-
comes DGF (Sections 2.1) and transplant and patient survival that include them [101,
102, 103, 57, 104, 105].

Lately, advances in digital pathology using deep learning showed promising progress
in the detection of pathological (glomerular or interstitial) abnormalities. Supportive
systems like this could, when implemented as a routine in the transplant centres or
clinics, augment the diagnostic process [106, 107, 108, 70]. This could improve con-
sistency of nephropathological findings and accelerate the evaluation process, thereby
reducing concerns 3 to 5 mentioned by Moeckli, among others. In wedge biopsies,
for example, the number of glomeruli counted might easily be more than one hun-
dred. Assessment of Banff Lesion scores of the vascular-glomerular compartment
and glomerular sclerosis in this case are very time-consuming and error-prone. Au-
tomated segmentation and classification could assisst by marking the glomeruli and
extraction of counts. Also, digital pathology is locally not bounded: biopsies could
be preprocessed and scanned at one clinic, and evaluated and scored in another.

Regardless of the results by the PITHIA trial or preferred method of taking a
biopsy and its evaluation, the optional assessment of histological parameters should
be reflected in the prediction models derived from and used by transplant registries
and centres to make best use of the available information.

The 2-step approach with optional histopathology, including assessment of the
Banff Lesion scores as described in section 3.3.8, is intended to address this issue.
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2.4 Eurotransplant Kidney Allocation System
Eurotransplant not only provides a register in which patients waiting for an organ
donation (in addition to the kidney, this also includes the liver, pancreas, heart, lungs
and intestines) are registered, but also offers guidelines according to which donor
organs are allocated to them 24/7. A follow-up register is also kept for monitoring
purposes to evaluate post-transplant results.

Standards of quality and safety are followed according to the Directive
2010/45/EU of the European Parliament and of the Council of 7 July 2010 [109].
This states, among other things, that before a potential donor is registered in and
allocated by Eurotransplant, a minimal amount of information must be reported before
Eurotransplant duty desk. This includes the registration date, center, ABO, HR, donor
type, sex, height, weight, date of birth and virology (HbsAg, HbcAb, HCV, HIV) [92].

According to chapter 4 of the Eurotransplant manual [92], kidneys of donors
<65 years are allocated according to the Eurotransplant Kidney Allocation System
(ETKAS, algorithm Figure 2.1) and to the Eurotransplant Senior Program (ESP, algo-
rithm Figure 2.2), otherwise. Before being allocated to ETKAS, special consideration
is given to recipients who are, due to a current and/or historical HLA-sensitization,
immunologically compromised by including them into the Acceptable Mismatch (AM)
program.

After 3 years in the AM program, patients not having received a donation have
the possibility to enter the ET desensitization program. In both the AM and ET
desensitization program, potential recipients that have an high urgency (HU) status
will be prioritised above non-high urgent patients. Also, these patients have priority
above ETKAS-selected patients.

In ETKAS, potential recipients of donors ≥ 18 years and < 65 yeas of age are
first identified using the AB0 blood group rule (A with A, B with B, 0 with 0 and AB
with AB). In case of deceased donors, AB0-incompatible kidney transplantations are
not allowed. This is followed by a point-score based ranking according to:

• age [age < 18 years: bonus of 100 points + double points given for HLA-
antigen mismatches, outside Germany additional points until the age of 30 are
given in a gradual system]

• waiting time [33.3 points/year]

• medical urgency [500 points in case of high urgency]

• HLA-A, -B and -DR mismatches (000 MM) [0 - 400 points]

• mismatch probability [0 - 100]
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• distance between donor and transplant center [0, 100 or 200 points]

• national [(highest import balance - recipient country balance)*30 points] and
regional (Austria only [(Austrian National Balance - Regional Balance)*0.25
points]) exchange balance

Figure 2.1: ETKAS allocation algorithm [92]

The mismatch probability, taking into account the ABO blood group rules and
vPRA, calculates the probability of receiving a kidney offer with 0 and 1 broad HLA-
A, -B or split DR mismatches based on 1000 kidneys offered. With regard to the
distance between donor and transplant center, national regulations are considered.
Bonus points are possible in case of kidney after other organ transplant (KAOO).

The ESP allocation algorithms first perform a patient-oriented kidney allocation to
local, regional, or national patients. Within the region/nation, highly urgent, followed
by KAOO patients, and patients with a longer waiting time (=dialysis time) are at
the top of the waiting list. In case of no match according to these criteria, rescue
allocation rules apply: first extended allocation followed by second- and third-line
rescue.

Patients can be included in the ESP or the ETKAS program. In Germany, patients
≥ 65 have to choose to be included in either program.

Special donor characteristics that must be taken into account before decision
making are, in addition to AB0-blood group, HLA-mismatches and age: virology
(-HBsAg, HBcAb, HCVAb), domino donor, sepsis, meningitis, malignant tumor, IV-
drug abuse, kidney en bloc, donation after circulatory vs. brain death and euthanasia.

Further information on the background of the allocation algorithms and the
point scores used can be found on the Eurotransplant homepage (https://www.
eurotransplant.org/allocation/).
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Chapter 3

Methodological Background

3.1 Adaptation of CRISP-DM reference model to
the medical score development

The CRISP-DM reference model was created at the end of 1996. It provides an
overview of the life cycle of a data mining project. The left side of Figure 3.1 displays
the life cycle of a data mining project as proposed by the CRISP-DM Consortium
[45]. Starting with business understanding, the focus is on "understanding the project
objectives and requirements". Next, data collection and first exploration should lead
to a good data understanding. Hypotheses regarding hidden information are generated
in this step. To test the set up hypotheses, data preparation, covering all activities
needed to construct the analysis dataset, is required. However, the sequence of the
steps is not rigid and it might be required to move one step back. Once the analysis
is prepared, the modelling can start (techniques are selected, parameters calibrated).
Developed models are then evaluated, also with regard to business issues that have
not been considered. The final model then needs to be presented and organised
in a way the desired customers can use it. As emphasised by the authors "even if
the analyst will carry out the deployment effort, it is important for the customer to
understand up front what actions need to be carried out in order to actually make
use of the created models" [45]. Although developed for industrial use, CRISP-DM is
also applied in medical decision making [110] and adapted to machine-learning [111].

In the field of medical statistics, Steyerberg and Vergouwe proposed a similar
seven step instruction for development of a predictive model [112]. As shown in
the right side of Figure 3.1, their first step "Consideration of research question and
initial data inspection", combines the first CRISP-DM steps. The research question
comes first, accompanied by a review on what is already know about predictors.
In this preparation step, the authors highlight the importance of a close interaction
between clinical researchers and statisticians. The second step describes the coding of
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Figure 3.1: Prediction modeling cycles [45]

predictors, aka data preparation. However, dichotomization of continuous predictors
in this step is not advised [113]. Before the final model is estimated in the fourth step,
"Estimation", predictors for inclusion in the prediction model are explored by model
specification. This step is challenging, particular in case of datasets with small sample
sizes, as the selection might be unstable. Given several different models, compatible
with a set of observations, Occam’s razor advises us to choose the simplest. Bayesian
inference automatically embodies Occam’s razor as "simple models tend to make
precise predictions. Complex models, by their nature, are capable of making a greater
variety of predictions [114]. Steyerberg and Vergouwe, as well, propose ,without
mentioning Bayesian inference, that "a simple, robust model may not fit the data
perfectly, but should be preferred to an overly fine-tuned model for the specific data
under study". After estimation of the model the quality need to be determined by
assessing discrimination and calibration in the "Model performance" step. The last
step before presenting and publishing the result is the validation. Internal validation
refers to the assessment of the model performance based on a validation that comes
from the same cohort the training was derived. External validation, an in general
stronger test for prediction models, refers to the generalizability of the model [112].
In the "Presentation" step, one needs to decide on the proper format, paper- or
electronic-based, appropriate for the user. However, despite comprehensive planning
and proper application of proposed steps, there’s no guarantee that the results are
practical and applicable and should therefore be presented. Validation can lead to a
revision of the initial hypothesis and return to the first step.

In this thesis, the development and validation of the DGF- and, respectively, 1y-
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tl-score, follow the statistical prediction modelling cycle.

3.2 Selection and exclusion of clinical predictors
based on availability and correlation

Preliminary, clinical variables were taken into consideration if correlation with either
DGF or 1y-tl was shown in the relevant literature and if they were contained in
the Eurotransplant database. Before applying variable selection via statistical and
machine-learning methods, variables were excluded from the initial selection in case
of:

• ≥ 40% missing values in the training dataset. Although missing values can be
imputed for analytical purposes, this method is generally not available to prac-
tising clinicians who have to make decisions based on the information available.
Therefore, in order to be applicable, only variables collected on a regular basis
were considered eligible for score building.

• (Near-) zero variance: relative to the number of samples, they have very few
unique values (< 20%) and the number of observations of the most common
value divided thru the number of the second most common value is large (>
20) [115].

• High correlation (correlation coefficient r > 0.8 [116]) with other variables.
This criterion should reduce the occurrence of multicollinearity. Multicollinear-
ity can lead to "ambiguity in estimation of regression coefficients and selection
of variables" [117]. As a result, regression coefficients may not be reasonably
interpretable. Also, highly correlated variables provide little independent infor-
mation [118, 119]. To deal with multicollinearity, the variance inflation factor
(VIF), which excludes highly correlated variables through a stepwise procedure,
can be used [120]. In a multivariable model, the V IFj for the jth predictor is
the factor by which the variance of its regression coefficient βj is inflated by
the existence of correlation among other independent variables in the model.

V IFj = 1
1 − R2

j

(3.1)

where the R2-value is obtained by regressing the jth predictor on the remaining
independent variables. In R, the function vif() from the package usdm ("Uncer-
tainty Analysis for Species Distribution Models") [121] can be used to obtain
the VIF based on the different correlation methods ’pearson’, ’spearman’ and
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’kendall’ and from the package car ("Companion to Applied Regression") [122]
for regression-based and (generalized) linear models.

NOTE: each study centre (aka country) represents one cluster of individuals within
the Eurotransplant region. Baseline outcome probabilities may vary between centres,
independent of available donor and recipient related covariables, due to systematic
differences in treatment policies. This can arise "confounding by cluster" (CBC)
caused by confounding of the exposure-outcome relationship [123]. Accounting for
these center-effects by including them as fixed or random covariables may be rea-
sonable to improve future predictions, however, due to sample size limitations and
deviations in the distributions from both independent and dependent variables, doing
so may induce bias. Study center was therefore not included in the analysis despite
its significant association with DGF.

3.3 Reduction of clinical candidate predictors based
on statistical and machine-learning methods

Throughout the thesis, the following definitions apply: the outcome vectors for
DGF and, respectively, 1y-tl are Y⃗DGF ∈ {DGF = 1, no DGF = 0} and Y⃗1y−tl ∈
{TX-loss = 1, no TX-loss = 0}. The matrix of the k candidate predictors with
NDGF and, respectively, N1y−tl number of observations is X={X⃗1, ..., X⃗k}, with
corresponding regression coefficients βT

X,YDGF
= {β1,YDGF

, ..., βk,YDGF
} and βT

X,Y1y−tl

= {β1,Y1y−tl
, ..., βk,Y1y−tl

} and constant baseline odds, aka intercepts, β0,Y1y−tl
and

β0,YDGF
.

3.3.1 Reference model: Logistic regression on multiple im-
puted dataset

Missing outcome or predictor data are a common phenomenon in medical research.
The prediction model building on such datasets can be challenging when complete
data is required for outcome prediction. The type of missing values can be subdi-
vided according to the underlying mechanisms or pattern into completely at random
(MCAR) i.e. independently of other, possibly unobserved values; at random (MAR)
and not at random (MNAR)[124, 125]. Several methods are proposed to account for
missing data in both a model building, but also validation setting. Complete case
(CC) analysis or multiple imputation (MI) approaches are most commonly used [124,
125, 116]. Although not advised as the uncertainty of the imputed values is not
fully taken into account in the estimation of the final model, single imputation (SI)
such as regression imputation (RI) or average imputation could also be applied [126,
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124]. Application of stochastic single imputation may additionally lead to less stable
point estimates [116]. However, in case of big datasets with more than 100 events or
datasets with relatively few missing values, the disadvantages of SI may be regarded
as less relevant and the advantage of a simplified analysis after imputation may dom-
inate [116]. With regard to the missing value pattern, preliminary, both stochastic
(regression) imputation and multiple imputation follow the assumption that data are
missing at random.

When working with data in the area of transplantation, missing information is more
likely to be observed with regard to the donor rather than the recipient or transplant
procedure information. This applies in particular to the donors medical history. A
donors diagnosis of diabetes or high blood pressure are two examples for conditions
which are associated with a decreased kidney function and are therefore collected in
the Eurotransplant database [127, 128]. As it was an aim to include these and other
variables despite their expected increased proportion of missing values in a prediction
model in this first step of the algorithm, multiple imputation, excluding imputation
of outcomes, was chosen assuming missing values to be MAR.

On each of the imputed datasets, the method chosen to reduce the number of
candidate variables was forward selection (p-value for inclusion αin=0.25) followed
by backward elimination (p-value for exclusion αex=0.1) using "classical" logistic
regression which is defined as follows. Given a random variable x the probability
density function π(x) of the logistic distribution is continuous with:

π(x) = ex

(1 + ex)2 (3.2)

The cumulative density function (CDF) of this is:

Π(x) =
∫ ∞

−∞
π(x)dx = ex

1 + ex
(3.3)

With inverse-logit function Π−1(x) = 1/(1 + e−x). According to Hosmer and
Lemeshow, "in any regression problem, the key quantity is the mean value of the
outcome variable, given the value of the independent variable" [129], called the con-
ditional mean E(Y |x). In case of the binary outcome DGF (Y⃗DGF ), for example,
the probability that an individual j has DGF, given its observed independent variables
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xj1, ..., xjk is expressed by

Π(xj) = E(yj,DGF |xj1, ..., xjk)

= P (yj,DGF = 1|xj1, ..., xjk)

= eβ0+β1xj1+...+βkxjk

1 + eβ0+β1xj1+...+βkxjk

= 1
1 + e−(β0+β1xj1+...+βkxjk)

= (1 − P (yj,DGF = 0|xj1, ..., xjk))

(3.4)

Via logit transformation g(x) in terms of Π(x), properties of a linear regression model
can be derived:

g(x) = ln

[
Π(x)

1 − Π(x)

]
= β0 + β1x1 + ... + βkxk (3.5)

To derive the estimates β̂X,Y of the unknown regression coefficients βX,Y , the sum
of differences of the observed yi and predicted ŷi are minimised (equation 3.6) by
maximising the likelihood of the observation.

β̂ = minimumβ0,β

1
2

N∑
i=1

yi − β0 −
k∑

j=1
xijβj

2
 (3.6)

The contribution of each individual observation (xi, yi) to the likelihood is the ex-
pression:

Π(xi)yi [1 − Π(xi)](1−yi) (3.7)

Assuming independence between individual observations, the likelihood function is
expressed as:

l(β|Y ) =
N∏

i=1
Π(xi)yi [1 − Π(xi)]1−yi (3.8)

Taking the natural logarithm of this likelihood function, the log likelihood function is
defined as:

L(β) = ln(l(β|Y )) =
N∑

i=1
{yiln(Π(xi)) + (1 − yi)ln(1 − Π(xi))} (3.9)

The values of β̂ derived by maximising L(β) are called maximum likelihood estimates.
Forward selection begins with fitting an "intercept only model" ignoring covariable

effects [129]. Next, univariable analyses are performed with all possible predictors.
The one predictor with the smallest p-value that is smaller than the defined inclusion
αin, if there’s any, is chosen as Xe1. Models including Xe1 and one of the remaining
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k-1 predictors Xj, j ̸= e1 are then fitted and the pair minimising the p-value p1
j

for the likelihood ratio chi-square statistic with regard to the log-likelihood of solely
considering Xe1, selected (Xj = Xe2). If p1

j is greater than αin, we stop. Otherwise,
all models including both Xe1 and Xe2 and one of the remaining Xj, j ̸= {e1, e2}
are fitted. This procedure continues until step m if no more variables are left to be
included (m = k) or the likelihood ratio chi-square statistic p(m−1)

m is greater than αin

for all variables Xj with j /∈ {e1, .., e(m − 1)}. Backward elimination, in contrast,
starts with the full model including all predictors and iteratively eliminates predictors
with p-values > αex [129]. Here, the variable with the smallest test statistic, inter
alia, highest p-value greater than the selected αex is removed first and the procedure
stopped, once all remaining variables are significantly associated with the outcome
of interest. For each of the variables Xi selected on each individual imputation set,
regression coefficients and their standard errors can be pooled into a single model
applying Rubin’s Rule, which accounts for both within and between-imputation vari-
ability, as follows [130, 131, 132]: given l imputed datasets, the overall point estimate
of each regression coefficient i, βi,Y , is the average of the m ≤ l estimates of β̂i,Y

from the imputed datasets
βi,Y = 1

m

m∑
j=1

β̂ij,Y (3.10)

The associated total variance Ti is derived by assessing the within Wi and between
Bi imputation variance by

Ti = Wi +
(

1 + 1
m

)
Bi (3.11)

with
Wi = 1

m

m∑
j=1

Ŵij (3.12)

and
Bi = 1

m − 1

m∑
j=1

(
β̂ij − βi

)2
(3.13)

Depending on the variable types (numeric, binary, categorical with ≥ 3 groups),
different multivariate significance tests for combining k different estimates{
β̂1,Y , ..., β̂k,Y

}
from m imputed datasets are available and described elsewhere [132,

133]. As a mix of all mentioned variable types was assumed to get selected, the
median P rule (MPR) method, which was originally developed for comparing predictive
performances of two methods in a cross-validation setting, was applied [134, 132].
Accordingly, reject the null hypothesis H0,i : βi = 0 on a given significance level α if:

p̃i = med(p1i, ..., pmi) ≤ α (3.14)
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For imputation of 50 datasets for each DGF and, respectively, 1y-tl, the R-package
with the function of the same name mice [135] "Multivariate Imputation by Chained
Equations" was used; Rubin’s rule to pool the logistic regression estimates was used
as implemented in the miceafter R-package [136](see Figure 3.2).

Figure 3.2: Steps: variable selection on multiple imputed datasets

3.3.2 Method 1: Logistic regression on unimputed, complete
case dataset

Analyses on multiple imputed datasets are significantly more complex and computa-
tionally intensive than those performed on a non-imputated "complete case" dataset.
The number of imputations, the method and variables chosen for replacing missing
values as well as the procedure for pooling the results could themselves lead to unnec-
essary distortions and bias. For this reason, the logistic regression as described in the
previous section was also performed on the unimputed DGF- and 1y-tl-datasets. As
in regression analyses only complete cases can be considered, the number of obser-
vations used to derive different models can vary depending on the included variables.
For variable selection, a stepwise forward and backward selection was conducted. To
avoid the selection of too complex models with many predictors, the Akaike Infor-
mation Criterion (AIC), penalising the logarithm of the likelihood function with the
number of variables k included in the model, was used [137]. This means that the
decision to include or exclude a variable is no longer based on a p-value or significance
level (αin and αex). The AIC with k independent variables is defined as [137]:

AIC(k) = −2ln(l(β|Y )) + 2k (3.15)
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The AIC allows the comparison of unnested models with different numbers of indepen-
dent variables by considering the model with the smallest AIC as better. To account
for differences in the number of observations n ≤ NDGF (respectively N1y−tl), the
Bayesian Information Criterion (BIC) can be used instead. This no longer penalises
complex models with the fixed factor of two, but with the logarithm of the number
of observations, which is stronger than the AIC from eight cases (ln(8) > 2).

BIC(k) = −2ln(l(β|Y )) + ln(n)k (3.16)

Without multiple imputation, fixed effect logistic regression and variable selection
can be done using the glm function "Generalized Linear Models" from the glmnet
package [138] followed by step from the stats package in R.

3.3.3 Method 2: Univariable p-value < 0.25
This method, for sake of simplicity from now on called "p-method", was described
by Hosmer & Lemeshow, [129, chapter 4] and is fairly simple. It bases on the idea
that all variables showing an univariable measured p-value < 0.25, along with those
of clinical importance, are candidates for a multivariable model. The proposed cutoff
of 0.25 bases on the work on linear regression by Bendel & Afifi [139] and logistic
regression by Mickey & Greenland [140]. The outcomes of interest are both binary,
non-time-dependent. For p-values to be comparable amongst candidate predictors
measured on different scales (nominal, ordinal, continuous), the following univariable
tests of significance are proposed: in the nominal or ordinal case with few (say m)
integer values, the likelihood ratio chi-square test with m-1 degrees-of-freedom or,
since it is asymptotically equivalent, the Pearson chi-square test are applicable. For
continuous, within each of the two outcome groups approximately normally distributed
predictors, the two-sample t-test and the univariable logistic regression are equivalent
at the univariable level and therefore applicable [141]. However, the most desirable
univariable analysis is the univariable logistic regression model. The p-method was
chosen in this thesis as it seems, from personal experience, to be a common practice
amongst clinicians.

3.3.4 Method 3: LASSO
So far, only standard "traditional" logistic regression-based variable reduction methods
were described. Challenges using logistic regression were shown to arise in various
settings like the analysis of outcomes with low prevalences [142], datasets with highly
correlated variables (multicollinearity) [143] and small samples with more predictors
than observations k ≫ N [144]. To deal with the problem of k ≫ N or the difficulty
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in interpretation rising with a large number of predictors, Tibshirani R. proposed to
penalize regression coefficients by "shrinking some coefficients and setting others to
0" [145]. Compared to equation 3.6, the Least Absolute Shrinkage and Selection
Operator (LASSO) or l1 penalization solves the problem [144]:

β̂ = minimumβ0,β

1
2

N∑
i=1

yi − β0 −
k∑
j

xijβj

2

+ λ
k∑

j=1
|βj|

 (3.17)

In equation 3.17, λ is an additional tuning parameter balancing the tradeoff be-
tween the complexity, inter alia number of predictors, of the model and its goodness
of fit and can be derived by cross validation [144]. Once λ is fixed, equation 3.17 has
nonzero β̂ values on a subset of predictors. To select the most informative predictors
with regard to the regression coefficients β, data needs to get scaled in advance, par-
ticularly in case of variables measured on different scales. For a continuous or one-hot
encoded, categorical random variable Xi, scaling is applied with standard deviation
(std) σ utilising the following equation:

Xi,scaled = Xi − Xi

σi

= Xi − mean(Xi)
std(Xi)

(3.18)

One-hot encoding is a common technique applied before running a machine learning
algorithm for handling categorical data [146], transforming each categorical value of
a variable into a new column to a digital form with value 1 if the value was observed
and 0 otherwise. A categorical variable colour with three characteristics "green",
"red", "yellow", for example, would get transformed into three variables green, red
and yellow. When colour equals "green", green is assigned "1" and "0", otherwise.
Shrinkage leads to a less-extreme distribution of predictions, it addresses overfitting
and the derived model can be used for prediction [147, 148]. However, LASSO (or
penalized regression in general) does not produce as causal interpretable coefficients
and, as shown by Belloni and Chernozhukov, a model derived by applying ordinary
least squares (OLS) after a first-step LASSO, "performs at least as well as LASSO
in terms of the rate of convergence, and has the advantage of a smaller bias" [148,
149]. LASSO, therefore, was used as an alternative method to reduce the number of
optional predictors before step 1.

Figure 3.3 describes the steps to perform a LASSO regression with R, beginning
with the dummyVars function from the caret package [150] for encoding, followed by
scaling with the scale function and in the cv.glmnet function implemented algorithms
described by Tibshirani et. al. [151][138]. For cross-validation, two folds were used:
10 randomly selected subsets and, for comparison a center-based "leave one center
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out" cross-validation. As measure of loss to use in cross-validation the AUC was used.

Figure 3.3: Steps: LASSO regression

NOTE: in STATA "lassopack implements lasso, square-root lasso, elastic net,
ridge regression, adaptive lasso, and postestimation ordinary least squares" [148].

3.3.5 Method 4: CART
Tree-based models are said to be conceptually simple and easy to interpret, which
facilitates medical decision-making, and they have a sixty-year history of development.
The first regression tree algorithm was published by Morgan and Sunquist in 1963,
Classification And Regression Trees (CART was developed by Breiman et al. in 1984
[152, 153, 154]. Yet, so far, Decruyenaere and colleagues were the only group applying
CART for predicting DGF and this only to compare performance to other methods
(tree not published) [31]. While logistic regression and LASSO output regression
coefficients of an prediction equation, CART builds a tree with binary splits where
the outcome predictions, given the selected variables included in the root and nodes
of the tree, are displayed in the lowest level, called leaves (schematic presentation in
Figure 3.4). The outcome of interest can be categorical (classification trees [153])
but also continuous (regression trees [153]), counts (Poisson regression trees [154])
or estimate time-to event (survival trees [155, 156]). Additional scaling as before
LASSO is not necessary, however, several parameters can be set in advance allowing
a high degree of flexibility in modelling.

As the outcomes of interest, DGF and 1y-tl, are both binary, the focus in this
section is on binary classification.
At each node A (including the root) of the tree, the set S of observations Y⃗ can be
split at a candidate cutoff s into two subsets SL and "not SL" = SR with nL and nR

observations and proportions pL and pR, respectively (S = SL ∪ SR, n = nL + nR,
pL = nL/n, pR = nR/n). While in logistic regression one aims to maximise the
likelihood function, the goal of CART is to minimise the impurity of each node A in
way that the partaining left split SL and right split SR include only observations of
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Figure 3.4: CART: example

the same class k and k̃ defining its label (yi = k ∀ yi ∈ SL and yi ∈ k̃ ∀ yi ∈ SR,
respectively). If SL, for example, only includes patients without an event of interest
and SR only patients with event, the impurity function I(S) is minimised and no
further splitting steps are required. Out of a set of candidates s, splits are therefore
selected in a way that the information gain aka decrease in impurity ∆I(SL, SR) is
maximised where[153]:

∆I(s, S) = I(S) − pL ∗ I(SL) − pR ∗ I(SR) (3.19)

To measure this information gain for each optional split s, several functions de-
pending on the definition of the impurity function I(S) are proposed [157]. Given a
subset S with l observations and a splitting variable Xj = {x1,j, ..., xl,j} the fraction
pk of data points of class k (respectively k̃) is:

p(k|S) = 1
nS

∑
xi,j∈S

I(yi = k)

binary−−−−−−→
classification

1
nS

∑
xi,j∈S

I(yi = k) = 1 − p(k̃|S)
(3.20)

Accordingly, impurity functions include:

Misclassification error: IM(S) = 1 − max{p(k|S), p(k̃|S)}

= 1 − max{p(k|S), (1 − p(k|S))}

= min{p(k|S), (1 − p(k|S))}

(3.21)

40



CHAPTER 3. METHODOLOGICAL BACKGROUND

Gini index:IG(S) = p(k|S)(1 − p(k|S)) + p(k̃|S)(1 − p(k̃|S))

= 2p(k|S)p(k̃|S)
(3.22)

Deviance: ID(S) = −p(k|S)log(p(k|S)) − p(k̃|S)log(p(k̃|S)) (3.23)

As described by Breimann, both 3.22 and 3.23 give similar results [153]. However,
the Gini index is easier to compute which is why, for sake of simplicity, one should
prefer it over deviance. Each splitting step leads to at least equal or smaller impu-
rity, which is why one additionally has to define a stopping criterion to avoid overly
complex trees. Instead of just stopping to split up to a given minimum informa-
tion gain, Breimann proposed to build a complete tree Tmax and then apply minimal
cost-complexity pruning, a method that minimises the risk of misclassification while
accounting for the complexity (number of terminal nodes) of the tree.
Given a complexity parameter α ≥ 0, the number of terminal nodes |T̃ | of any subtree
T ≺ Tmax, the overall cost of misclassification R(T ) for each subtree, assuming equal
costs for misclassificating a class k object to k̃ and vice versa, one aims to minimise
the cost-complexity measure Rα(T ):

Rα(T ) = R(T ) + α|T̃ | (3.24)

Tree misclassification = R(T ) =
∑
S∈T̃

r(S)p(S)

=
∑
S∈T̃

R(S) = Sum of node misclassifications
(3.25)

R(S) = r(S)p(S)

r(S) = 1 − max{p(k|S), p(k̃|S)}

p(S) = probability that any case falls into node (subset) S

(3.26)

The product α|T̃ | can be regarded as penalty term comparable to LASSO equa-
tion 3.17, |T | is analogous to the degree of freedom in regression [158]. The optimal
α can be found via cross validation. Additionally to minimal cost-complexity prun-
ing, one can choose a minimal number of observations in the final leaves to reduce
complexity.
Besides being simple to interpret, CART, as implemented in the rpart routines in R,
can handle missing data by estimating surrogate values once a splitting variable Xj

and a split point s are selected [158]. A missing value of Xj, or more precisely the
class {k, k̃} the observation is to be assigned, is predicted using the other independent
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variables by re-applying the partitioning algorithm.
What particularly characterises CART and makes it especially interesting for this 2-
step approach is that interaction effects of order two and higher are naturally included
in the tree [147]. Only few of the available scores consider two-way interaction ef-
fects as regression-based models usually include main effects unless interactions are
specified. These include both scores by Irish et al. (2003 and 2010) for the outcome
DGF [60, 17]. A classification tree created in advance can provide indications of
possible interaction effects relevant in the first step of the logistic regression model.
A frequently cited disadvantage of CART, however, is the dichotomisation of the
independent variables, which leads to a loss of information [147] and the sensitivity
to minor changes in the data [157].
Several packages are available in R, offering algorithms and functions for recursive
partitioning, including rpart, tree, Weka, party, C50 and visualization of trees like
maptree, reflecting the wide range of applications (https://cran.r-project.org/
view=MachineLearning). In this analysis, the rpart-package was used with the in-
formation-splitting index IM(S) for building the tree applying 10-fold cross-validation.
The minimal number of observations per final leave was set to 8, the complexity pa-
rameter α derived was tested for a range of values between 0.01 and 0.1 for pruning
off splits that are not worthwhile. Prior probabilities for the outcomes DGF and 1y-tl
were chosen to be their prevalences in the analysis sets.

3.3.6 Method 5: VSURF
VSURF is actually the name of the R-package implementing an algorithm for Variable
Selection Using Random Forests [159]. This algorithm was proposed by Genuer et
al. [160, 161] in 2010 and bases on random forests (RF), a method introduced by
Breiman (who also defined CART) in 2001 [161]. With respect to CART, random
forests differ mainly in two steps [159]. First, a subset of candidate predictors is
randomly chosen and a maximal tree, like in CART, is created. Second, pruning,
which would now follow in CART, is not performed and all trees T of the forest
are maximal trees. Trees are then aggregated into a single random forest. A more
detailed explanation on random forests is given by Breiman [161].
The idea behind VSURF, as proposed by Genuer, is a two step approach: to first
use random forests to identify the variables highly related to the outcome variable
according to a statistical measure "preliminary elimination an ranking" and then,
secondly, to find a small number of variables which is sufficient enough for prediction
"variable selection".
The variable importance (VI) is defined for the random forest of the first step as follows
[159]: be T a single tree based on a bootstrap sample of observations and OOBT a
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out of bag sample of data not included in the bootstrap sample. Then errOOBT is
the out of bag error of a single tree T on OOBT , equalling the misclassification rate
(cf. 3.24) in case of a classification problem. errÕOBT,j is the error of the predictor
T after randomly permuting the values of Xj in the sample OOBT and nT is the
number of trees aggregated in the random forest. Then

V I(Xj) = 1
nT

∑
T

(errÕOBT,j − errOOBT ) (3.27)

is the variable importance of Xj sum up over all trees T of the random forest.
Having repeated this procedure for all candidate predictors Xj, variables of small im-
portance with regard to a threshold given by a CART model are eliminated and, say,
only m variables are left. For note: at the LASSO procedure, variables get scaled
in advance to select the most informative predictors with regard to their regression
estimates β, VSURF, however, doesn’t require this step.
Next, VSURF includes a variable selection step for a) interpretation and b) predic-
tion. In the interpretation step, nested random forests starting with k = 1 to the m

previously selected variables are created and the variables of the RF with the smallest
OOB error rate are selected.
For prediction, be m̃ ≤ m the number of variables in the random forest with the
smallest OOB error rate from the interpretation step, sorted in ascending order of
importance. Then, in a stepwise way, random forests are constucted including pre-
dictors if the OOB error decrease as long as their inclusion leads to a decrease in the
OOB error that is "significantly greater than the average variation obtained by adding
noisy variables" [159]. As in the case of logistic regression (Section 3.3.1), the final
model is based on the variables added up to the last step.

3.3.7 Score development, step 1: clinical data
Models for DGF and death-censored transplant loss within one year were trained with
stepwise logistic regression using the likelihood-ratio test on the subsets of eligible
predictors identified in previous Sections 3.3.3 to 3.3.6. As the reference model,
Section 3.3.1, and the complete case model of Section 3.3.2 already based on logistic
regression, no further modeling was necessary for step 1 of the score building.

Model performance of the derived multivariable logistic regression models was
assessed statistically and graphically by discrimination (C statistic, equivalent to the
area under the receiver operating characteristic curve, AUC), calibration (calibration
intercept and slope) and overall (Scaled Brier score, which is the Brier score scaled
by its maximum Brier score [Brierscaled = 1−Brier/Briermax])[162] and estimated
calibration index (ECI) for each model on the validation dataset. The decision on the
final model was based on these statistics and clinical judgement.
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Regression estimates of the independent variables βT
X,DGF and βT

X,1y−tl and base-
line intercepts β0,DGF and β0,1y−tl of the “final” models with m selected predictors
were then extracted and used to predict the individual probability of each outcome.
The calculated probabilities were then transformed into an integer point scale using
the "Framingham Study risk score function" [163, 164] as a template.

First of all, continuous variables Xi, i = {1, ..., l}, l ≤ m were transformed into
j = 1, ..., ki meaningful categories Cij and the mid-point of each category chosen as
a reference value Wij. One of the ki categories with midpoint Wi,ref was chosen a
reference Ci,ref .

Factor variables were recoded numerically and the reference value set to 0, e.g. in
case of the recipients CVM-IgG positivity, the "negative"-class was recoded to 0 and
"positive" to 1. Next, the distance between each category and the reference category
was calculated and weighted by the assigned regression coefficient: βi(Wij − Wi,ref ).

The set constant B, corresponding to one score point, was chosen to reflect the
increase in risk associated with a 4-hour increase of cold ischaemia time: B = βCIT ∗4.
To determine the points associated with each risk factor, the weighted distance was
divided by B: Pointsij = βi(Wij − Wi,ref )/B.

Given the sum of the points for each predictor Xj and the intercept, β0, risk
estimates can be derived using formula 3.4. Adding the values which are considered
the reference values for the continuous predictors Wi,ref , i = 1, ..., l multiplied by the
regression coefficients, the sum ∑p

i=0 βiXi can be approximated by β0 + ∑m
i=1 βiXi ≈

β0 + (∑l
i=1 βi,ref ∗ Wi,ref ) + B∗(Points total).

3.3.8 Histological evaluation
All biopsies included in this study were scored on two level sections by an experi-
enced nephropathologist (PD Dr. med. Jan Ulrich Becker, Institute of Pathology,
University Hospital of Cologne) according to Banff 2018 [100]. At the timepoint
of scoring, the nephropathologist was blinded for the outcomes after transplanta-
tion. The Banff lesion scores assess histopathological changes in the tree different
functional compartments of kidney biopsies: the interstitial, vascular-glomerular and
tubular compartiment. Each score has scales of four to six degrees of change, be-
ginning with "no change" and consider interstitial inflammation "i", tubulitis "t",
glomerulitis "g", intimal arteritis "v", peritubular capillaritis "ptc", total inflamma-
tion "ti", inflammation in area of interstitial fibrosis and tubular atrophy "i-IFTA",
staining for C4d, "C4d"), double contour "cg", mesangial matrix expansion "mm",
arteriolar hyalinosis "ah", hyaline arteriolar thickening "aah", vascular fibrous intimal
thickening "cv", interstitial fibrosis "ci" and tubular atrophy "ct". Combined with ad-
ditional diagnostic parameters, the Lesion Scores are extended to the Banff diagnostic
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categories like acute T cell-mediated rejection (TCMR) grade, active and BK-virus
nephropathy (ABMR). These are, however, not used here. Besides the Banff lesion
scores i, t, v, g, ptc, ci, ct, cv, cg, mm and ah, the number of glomeruli, the number
of globally (>50% of the tuft) sclerosed glomeruli, the ratio thereof, the presence of
thrombotic microangiopathy with platelet, fibrin or mixed thrombi in preglomerular
or glomerular location and acute tubular necrosis (ATN) with detached, cytoplasmic
fragments devoid of nuclei are assessed.

All scoring was done with whole slide images (WSIs) loaded into QuPath [165] on
a 24 inch Eizo screen (Eizo Europe, Mönchengladbach, Germany). For the number
of glomeruli, all sclerosed and non-sclerosed glomeruli and tufts dislodged from the
biopsy cores were counted, empty Bowman’s capsules (without any discernible cellular
or matrix tuft elements) were disregarded [30].

3.3.9 Score development, step 2: update with histological
findings

In the literature, several methods for model recalibration, updating and extending are
described [166, 167, 168]. Here, the assumptions are that 1. the models derived after
the first step are nested in the models from the second step and 2. the histological
variables used for extension are independent of the predictors included in the models
derived after step 1. In step 2, prior odds (β0,DGF +βT

X,DGF X and β0,1y−tl +βT
X,1y−tlX)

of the “final” models derived in step 1 together with the eligible histological parameters
were entered into a second multivariable stepwise logistic regression selection and
modelling step, as described by Grill et al. [166]. How to actually quantify the
value of a new biomarker, like the ones derived by histological findings, is a point
of discussion and depends on the application as well as the measure of the outcome
predicted. Performance measures include the already described changes in the AUC,
ROC curves or c-statistics (Section 3.3.7) to evaluate discrimination, changes in the
AIC or BIC (Section 3.3.2), which is related to changes in the likelihood function
and the (scaled) Brier score (Section 3.3.7) as a category-free measure. As the
outcomes DGF and 1y-tl are both binary, a measures of risk reclassification, the net
reclassification improvement (NRI) was estimated as an alternative [169].

Additionally to an update on the entire training dataset, subsets to define an
intermediate risk group were also considered as following: for the final models after
step one, the probabilities of DGF and 1y-tl were estimated for each recipient ac-
cording to equation 3.4. In the training dataset, the ordered predicted probabilities
of each outcome were divided into 20 percentiles. Pairwise combinations of the de-
rived cut-offs served as intervals defining a potential intermediate risk group on the
training dataset. Modelling was then done first on the full training datasets and then
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additionally on all subsets containing the training datasets’ prevalence of DGF and
1y-tl, respectively. If any histological predictor showed a statistically significant asso-
ciation with the outcome of interest on either a subset or the full training dataset,
the model from step 1 was updated. A graphical overview of the steps is given in
Figure 3.5[30]. Results of the two steps are given as logistic regression models and
simplified point-scores (Figures 5.24[30] and 5.25[30]).

Figure 3.5: Flow of modelling steps [30]

3.3.10 Validation
With regard to generalisability, validation of a predictive model is crucial. In validation,
a distinction is made between three scenarios: internal, internal-external and external
validation [170].

Internal validation refers to methods that use the same data available for model
development to predict performance on new observations from the same underly-
ing cohort [171]. It can be achieved in different ways. One method is by applying
bootstrapping, ideally in all steps (variable selection, modelling, assessment of dis-
crimination and calibration) of the modelling process. Particularly in datasets with
small sample sizes compared to number of candidate predictors, overfitting can be a
problem. Bootstrapping quantifies the optimism of the derived model [172].

A second option would be the split-sample validation [170]. Here, the given is
divided into a training and a test (hold out) dataset, e.g. by 50%/50% or 70%/30%.
However, this method is not recommended as it can only be used on very large
datasets, but then overfitting is not an issue and internal validation is not required.
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Lastly, apparent validation on the entire training can be applied. The performance
of a model, when being tested on the data the model was trained on, runs the risk
to be overly optimistic and is therefore not recommended.

The resulting models for both outcomes after both steps were validated after
derivation of the final models on an independent validation dataset. This was done
as described in section 3.3.7 first graphically by plotting both the ROC curves of the
predicted outcomes and the calibration plots of the predicted vs. observed probabilities
of each outcome. Second, calibration and discrimination were assessed by estimation
of the c-statistics (AUC), the scaled Brier scores and the estimated calibration index.

3.3.11 Comparison with established scores
As described in Chapter 2, several models to predict delayed graft function or, respec-
tively, transplant loss within one year after transplantations, were already published.
However, besides applicability, their prominence and acceptance varies. External val-
idation and recalibration on new cohorts is one method to check applicability and
gain confidence in the model. The scores by Irish (2003 [60] and updated 2010 [62])
for the outcome DGF were evaluated comparatively with the scores by Jeldres [61],
Chapal [64] and Zaza [39] from Decruyenare [32] and Kers [173] on Belgian cohorts,
and Zhang [174] in China. In each of the validation cohorts, generalisability was
declared to be best for the score by Irish (AUCs: .78; .761 and .737, respectively).
Further, the scores generalisability was explored by Grossberg in the area of Rhode
Island (USA), who compared mean nomogram values amongst recipients with and
without DGF (.45 vs. .40) [175]; Kaisar in Australia [176], Michalak in Belgium
[177], Ietto [178] in Italy, and Rodrigo in Spain [179] (AUCs: .76, .69, .693 and .704
respectively). Again, the scores by Irish performed best with regard to the AUC values
when other prediction models were also evaluated. These are just a few examples of
attempts to externally validate the Irish nomogram, but the results indicate a good
generalisability.

Here, the scores by Balaz [63], Irish (2010) [62], Chapal [64] and Jeldres [61] are
externally validated by assessing their accuracy with regard to prediction of DGF on
the training and validation datasets. Of note: with regard to missing variables in the
external validation dataset, it is advisable not to calculate a ‘reduced’ model with
the remaining variables and the coefficients of the complete model, as these were
adjusted for all of the other variables unless adjusted estimands of such sub-models
are provided [180]. This advice is usually neglected for the predictor ‘race’ in the
model of Irish, when validated in studies performed outside the USA. Accordingly, in
this study, the race for all recipients is set to ‘non-black’ for all recipients.

With regard to transplant loss within the first year, there is no such clear ac-
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ceptance or preference for any of the published models in Section 2.2, and external
validation is largely lacking. For this reason, existing regression-based models were
externally validated on our training and validation data and compared with the results
of the new 2-Step scores.

One prerequisite for an proper external validation is that the predictors used are
present in the data and that the models are adequately described. For example, in
a logistic regression model, the intercept should also be specified as the ‘baseline
probability’ in order to be able to correctly determine the outcome probabilities using
this and the regression coefficients. Although such a constant value does not have
an influence on the calculation of the AUC, the interpretation of the prediction is
ultimately only possible in relation to other observations and no longer absolutely.
Derivation of correct AUC values is more difficult in case of a missing baseline haz-
ard as a function over time in a Cox regression, if no parametric form is available.
Even more complicated is the external validation of machine-learning or deep-learning
based predictors, unless tools are provided by the developer for calculating risks given
complete datasets.

Yet, besides the score by Port [79], the hazard ratios of the recently published
KTOP score by Miller et. al. with optional recipient parameters [37], the Leuven
score by De Vusser et. al. [102] and the clinico-pathological score by Snoeijs [103]
predicting 5-year graft survival from old (> 60 years) donors are used for comparison
of the accuracy of 1y-tl prediction.
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datasets

4.1 Assessment of the training and external valida-
tion datasets

4.1.1 Sample size estimation
Based on the number of predictors used in published scores predicting DGF and,
respectively, graft loss and the variables Eurotransplant collects on regular basis, 30-
60 variables were expected to be included into the modelling step 1 [181, 182, 183,
184]. However, in order for the final model to be applicable in practice, and also to
avoid overfitting, the final model after step 2 should be restricted to no more than
10 predictors and their interactions. We expected the incidence of DGF within the
first seven days after transplantation to amount to 30%. Taking into account missing
values, according to the "10 events per variable rule of thumb", the minimal sample
size required to evaluate this number of variables in a multivariable binary logistic
regression analysis was 1000 biopsies [185]. According to the proposal submitted to
the DFG, the biopsies were to be provided in equal parts by the five study centres,
i.e. 200 per centre.

No separate sample size estimation was carried out for the second outcome of
interest, 1y-tl, or the external validation cohort.
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4.1.2 Source of training and external validation dataset
The training based on retrospectively collected data of five Eurotransplant centres
(Antwerp [Belgium], Cologne [Germany], Szeged [Hungary], Vienna [Austria], Zagreb
[Croatia]). First, pariffin-embedded zero-hour biopsies were compiled and scanned
with a NanoZoomer slide scanner of the manufacturer Hamamatsu Photonics Ger-
many with a x40 objective to a resolution of 0.23 µm per pixel in either Rotterdam,
the Netherlands, or Cologne, Germany [30]. Second, after a first screening for eligi-
bility by an experienced nephropathologist, the corresponding clinical donor, recipient
and transplant data were provided by Eurotransplant.

The validation was composed of two datasets. One collection of retrospectively
collected procurement biopsies along with donor and recipient data from deceased
donors with marginal kidney quality provided by the German Organ Procurement
Organization [German: Deutsche Stiftung Organtransplantation] (DSO-set)[186]. In
this sample, transplantations were performed from October 2008 onwards between
2008 and 2012 in several German centres. The second consists of prospectively
collected zero-hour biopsies from Ljubljana (Slovenia) and Cologne with corresponding
clinical data from Eurotransplant.

For both training and validation datasets, biopsies were eligible for screening if
the transplantation was performed between January 2008 and December 2019 and
if donors were deceased. Before screening, biopsies of tansplantations after cardiac
death or en block transplantations were excluded. If both kidneys from a single donor
have been transplanted into different recipients in one centre, the right kidney was
excluded from analysis; if the identification as right or left was not documented, both
were excluded. Also, only transplants from adult (≥ 18 years) donors with adult
recipients were accepted.

During screening, biopsies with insufficient tissue according to Banff 2018 [100],
i.e. less than 1 artery and/or 12 glomeruli, were excluded.
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Results

5.1 Assessment of training and validation dataset

5.1.1 Flow of training- and validation dataset definition
The training cohort based of 1034 offered zero-hour biopsies from 1034 donors. Of
these, 869 were eligible for screening, 165 cases met the exclusion criteria. Due to
deficiencies in the quality of the Periodic acid-Schiff (PAS) sections, 158 slides were
excluded. The remaining 711 biopsies were eligible for the modelling of the 1y-tl-score
(Fail-set). Delayed graft function status was available for 620 recipients defining the
DGF-score training dataset (DGF-set).

The first subset defining the validation cohort consisted of 115 zero-hour biopsies
prospectively collected in two study centres. Of these, 104 were eligible for screening
and, after screening, the analysis of 1y-tl. Due to missing DGF-status, 100 recipients
were included in the DGF validation dataset.

The second subset (DSO-set) based on 442 kidneys from 221 donors. Of these,
219 kidneys were not transplanted, in 92 cases no samples to assess histological
data was available. Due to predefined exclusion criteria, 72 more kidneys were ex-
cluded before screening. As a result, the prospectively collected procurement biopsies
were supplemented by procurement biopsies from 58 kidneys representing 47 different
donors. Overall, the validation dataset for 1y-tl contains of 162 samples (Fail-val);
the DGF-scores were validated on data of 158 recipients (DGF-val). Flow of donor
kidney exclusion see Figure 5.1[30].
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Figure 5.1: Flow of dataset creation [30]

5.1.2 Description of cohorts by centre and outcome
As shown in Table 5.1[30], although equal distributions of recipients amongst study
centres were planned, the final contributions varied between N=44 (6%) and N=442
(62%) in the seven centres contributing to the training dataset and N=6 (3.7%) and
98 (60.5%) in the three centres contributing to the validation dataset for the analysis
of 1y-tl.

Distributions were not proportional to the population figures of the countries
in which the centres are located. In the training dataset, prevalence of 1y-tl was
9% (N=61) whereas prevalence of DGF among the 620 recipients with available
DGF-status was 27% (N=166). The notification of a delayed graft function to the
Eurotransplant registry is obligatory. After contacting all transplant centres to update
this information, DGF-status was unavailable for N=91 (13%) of the recipients. In
the validation dataset, prevalences of DGF and 1y-tl did not differ significantly with
27% (46) and 7% (N=11), respectively. DGF-status was missing in 3% (N=4).

In the training dataset, not only the distribution of participants by study centre
varied, but also the outcomes, as is sum up in Table 5.1[30]. Compared to centre
no. 2, which was chosen as the reference with N=105 observations and 31 cases with
DGF (odds = 31:74), the odds for DGF in the first centre was significantly lower with
an odds ratio (OR) value of .1 and p = .002, while the OR of centre no. 5 was 1.91
compared to the reference. The odds for DGF, however, differed significantly only in
the first centre; the values for centres 3 and 4 (OR = .46 and .98 respectively) did
not differ significantly. Looking at the odds for transplant loss in the first year, there
were no significant differences between the values of centre no. 2 (odds = 11:101)
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and the other four centres.

Table 5.1: Outcomes and study centres by training and vali-
dation dataset for recipients with available 1y-tl (Fail-set and
Fail-val)[30]

Variables Overall Training
Fail-set

Validation
Fail-val p

N 873 711 162
1y-tl [Yes] (N(%)) 72 (8.2) 61 (8.6) 11 (6.8) .556
DGF (N(%))1

No 566 (64.8) 454 (63.9) 112 (69.1) .624
Yes 212 (24.3) 166 (23.3) 46 (28.4)
Unknown 95 (10.9) 91 (12.8) 4 (2.5)
Study centre (N(%))
Centre 1 50 (5.7) 50 (7.0) 0 (0.0) NA
Centre 2 210 (24.1) 112 (15.8) 98 (60.5)
Centre 3 63 (7.2) 63 (8.9) 0 (0.0)
Centre 4 442 (50.6) 442 (62.2) 0 (0.0)
Centre 5 44 (5.0) 44 (6.2) 0 (0.0)
Centre 6 58 (6.6) 0 (0.0) 58 (35.8)
Centre 7 6 (0.7) 0 (0.0) 6 (3.7)

Abbreviations: DGF, delayed graft function; 1y-tl, death-
censored transplant loss within one year

1 P-value estimation excluding cases with unknown DGF-status

The ORs were between .30 (centre 3, p=.126) and .99 (centre 4, p=.976),
whereby the absolute values of the observed cases were very low at < 5, particularly in
centres 1, 3 and 5. As expected from the literature, both the odds for transplant loss
within one year after transplantation and death within the same period were positively
associated with DGF (ORs [95%-CI] = 4.2 [2.36-7.49], p<.001 and 2.08 [.91-4.59],
p=.073, respectively). As defined in the introduction, recipients dying within the first
year after transplantation are regarded as "censored at the time point of death" in the
analysis of transplant loss within the first year. However, if death within the first year
is seen as the outcome variable, the 30 observed cases were significantly associated
with previous transplant loss OR [95%-CI] = 12.69 [5.87-27.46], p<.001.
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Table 5.2: Odds ratios of transplant outcomes by recipient survival and transplant
centre in the training dataset [30]

Variable No DGF DGF Univariable OR
(95% CI, p)

1y-tl
= no

1y-tl
= yes

Univariable OR
(95% CI, p)

N 454 166 650 61
Deceased within
one year (N(%)) 15 (3.3) 11 (6.6) 2.08 (0.91-4.59,

p=.073) 15 (2.3) 15 (24.6) 12.69 (5.87-27.46,
p<.001)

1y-tl
= yes (N(%)) 23 (5.1) 33 (19.9) 4.20 (2.36, 7.49,

p<.001)
Study centre (N(%))

Centre 1 48 (10.6) 2 (1.2) 0.10 (0.02-0.35,
p=.002) 48 (7.4) 2 (3.3) 0.38 (0.06-1.50,

p=.223)
Centre 2 74 (16.3) 31 (18.7) 1 101 (15.5) 11 (18.0) 1
Centre 3 52 (11.5) 10 (6.0) 0.46 (0.20-0.99,

p=.055) 61 (9.4) 2 (3.3) 0.30 (0.05-1.17,
p=.126)

Centre 4 260 (57.3) 107 (64.5) 0.98 (0.61-1.60,
p=.942) 399 (61.4) 43 (70.5) 0.99 (0.51-2.08,

p=.976)
Centre 5 20 (4.4) 16 (9.6) 1.91 (0.87-4.17,

p=.104) 41 (6.3) 3 (4.9) 0.67 (0.15-2.28,
p=.557)

Abbreviations: OR, odds ratio; y, year; p, p-value; CI, confidence interval; DGF, delayed graft function;
1y-tl, death-censored transplant loss within the first year

NOTE: The odds ratio as a result of, for example, logistic regressions and case-
control studies, and the relative risk aka. risk ratio, are not to be used interchangeably.
As an example, Table 5.3 shows a simple 2x2 cross-table of an outcome (alive vs.
deceased) by treatment vs. control. The odds for being deceased after treatment are
d/c, after control b/a. Odds, therefore, can range from 0 to ∞. The risk for being
deceased after treatment, however, is d/(c+d) and after control b/(a+b). Risks
obviously can range from 0 to 1. If only a single predictor is analysed, the odds can
be converted to the risk by "risk = odds/(1+odds)", which is the average relative
risk. Given the odds ratio of dying in the treatment vs. control group, one further
needs the baseline risk in the control group (probability p0 of dying in the control
group) to derive the risk ratio "relative risk = odds ratio/(1-p0+(p0*odds ratio))".

However, in multivariable adjusted logistic regression, with more than one inde-
pendent variable of interest, averaging of the risk is more complicated. To calculate
individual risks ("marginal effects"), given a logistic regression model, the R package
"effects" [187] can be used.

Group Alive Deceased Sum
Control a b a+b

Treatment c d c+d
Sum a+c b+d a+b+c+d

Table 5.3: Example: 2x2 cross-table
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5.2 Baseline characteristics of donors, recipients and
nephropathological evaluation by training and
validation data set

5.2.1 Donors
As sum up in Table 5.4[30], median donor age in the training cohort was 54 years (IQR:
44-64), 46% were female and the mean (SD) BMI before transplantation amounted to
26.6 (4.3) kg/m2. Status of diabetes mellitus and hypertension were known for 72%
and 79% of the donors. Amongst them, prevalences were 8% and 47%, respectively.
Type of brain death (primary vs. secondary) was identifiable for 79% with a majority
of them (N=555; 87%) showing primary brain death. The most common known
causes of death were cerebrovascular accidents (69%), followed by traumatic brain
injuries (N=93, 17%). At the last measurement before explantation, serum creatinine
levels averaged to mean = 0.9 (SD=0.34) mg/dl, while mean (SD) of eGFR according
to Cockroft-Gault amounted to 110.28 (51.6) ml/min.

Compared to the training cohort, donors of the validation cohort showed a sig-
nificantly increased median age (60 years, IQR: 45-70) and mean BMI (28 kg/m2).
Before transplantation, average last serum creatinine levels significantly increased
(1.5 mg/dl, SD=1.43), while mean Cockroft-Gault eGFR decreased (88.5 ml/min,
SD=54.8). Grouping of cause of death in the DSO-set differed from how causes are
sum up in Eurotransplant.

No cases of apnea, bacterial meningitis, drug suicide and primary brain tumor
were observed in the validation dataset while there were no cases of subarachnoid
haemorrhage in the training data set. About 50% of the donors cause of death
(primary vs. secondary and causes of death) were missing. Most of the observed
deaths were caused by cerebrovascular accidents (N=54, 68%).
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Table 5.4: Donor characteristics of training and validation dataset for recipients with
available 1y-tl (Fail-set and Fail-val)[30]

Variables Overall Training
Fail-set

Validation
Fail-val p

N 873 711 162
Donor age [y] (median [IQR]) 55 [44, 65] 54 [44, 64] 60 [45, 70] .003*
Donor sex [female] (N(%)) 410 (47.0) 329 (46.3) 81 (50.0) .441
Donor BMI [kg/m2]
(mean (SD)) 26.49 (4.81) 26.20 (4.34) 27.76 (6.36) <.001

Donor diabetes mellitus (N(%))
No 541 (62.0) 470 (66.1) 71 (43.8) <.001
Yes 62 (7.1) 42 (5.9) 20 (12.3)
Unknown 270 (30.9) 199 (28.0) 71 (43.8)
Donor hypertension (N(%))
No 331 (37.9) 298 (41.9) 33 (20.4) <.001
Yes 339 (38.8) 262 (36.8) 77 (47.5)
Unknown 203 (23.3) 151 (21.2) 52 (32.1)
Donor creatinine,
last [mg/dl] (mean (SD)) 1.04 (0.79) 0.94 (0.49) 1.50 (1.43) <.001

Donor Cockcroft-Gault eGFR,
last [ml/min] (mean (SD)) 106.23 (52.84) 110.28 (51.58) 88.51 (54.78) <.001

Type of brain death (N(%))
Primary 555 (63.6) 479 (67.4) 76 (46.9) <.001
Secondary 86 (9.9) 80 (11.3) 6 (3.7)
Unknown 232 (26.6) 152 (21.4) 80 (49.4)
Cause of death (N(%))
Apnea 17 (1.9) 17 (2.4) 0 (0.0)
Bacterial meningitis† 4 (0.5) 4 (0.6) 0 (0.0) NA
Cardiac arrest 33 (3.8) 31 (4.4) 2 (1.2) .098
Cerebrovascular
accident 433 (49.6) 379 (53.3) 54 (33.3) <.001

Drug suicide† 2 (0.2) 2 (0.3) 0 (0.0) NA
Primary brain tumor† 1 (0.1) 1 (0.1) 0 (0.0) NA
Subarachnoid
haemorrhage† 14 (1.6) 0 (0.0) 14 (8.6) <.001

Trauma 32 (3.7) 23 (3.2) 9 (5.6) .235
Traumatic brain injury 94 (10.8) 93 (13.1) 1 (0.6) <.001
Unknown 243 (27.8) 161 (22.6) 82 (50.6) <.001

Abbreviations: eGFR, estimated glomerular filtration rate; SD, standard deviation; BMI,
body-mass-index; IQR, interquartile range; p, p-value

* Non-parametric Mann-Whitney U-test
† Excluded before variable selection
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5.2.2 Recipients
In the training cohort, recipients’ median age was 55 (IQR: 45-64) years, 36%
(N=257) were female and the mean (SD) BMI was 26.2 (4.98) kg/m2 (Table 5.5[30]).
About 10% (N=68) of the recipients had previous kidney transplantations, 39%
(N=277) of the recipients were positive for CMV antibodies IgG (CMV IgG). How-
ever, this status was unknown in 41% (39% in recipients with known DGF status).
The median dialysis vintage was 3.1 years (IQR 1.9-4.9). Most recipients were diag-
nosed with “glomerulonephritis (GN) or acquired glomerulopathy” (N=175, 25%) as
primary disease responsible for ESRD. Due to their small number of observed cases,
“Congenital dysplasia/ hypoplasia/ malformation with/ without urinary tract malfor-
mation”, “Drug-induced/toxic”, “Nephrocalcinosis/ nephrolithiasis”, "Subarachnoid
haemorrhage" and “Tumour/trauma/ surgery” were excluded from the analyses after
dummy encoding ESRD. The number of unknown or missing information about an
ESRD was high, with 22% and 23%, each.

In the validation cohort, recipient median age (58 years, IQR: 50-67), median
dialysis vintage (8.8 years) and prevalence of CMV IgG positivity (60.5%) differed
significantly. 37% of the recipients were female, slightly more than in the training
data set. The mean BMI was almost identical (25.7 kg/m2). With 37% and, re-
spectively, 51%, the percentage of unknown and missing information on ESRD was
high. In both the training and validation cohort, most diagnoses were related to
the glomerular compartiment. The percentage of recipients with "genetic nephropa-
thy/ glomerulopathy non-focal segmental glomerulosclerosis (FSGS)" was 15.6% and
14.2%, for "glomerulonephritis (GN) /acquired glomerulopathy" 25% and 24%, re-
spectively.
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Table 5.5: Recipient characteristics of training and validation dataset for recipi-
ents with available 1y-tl (Fail-set and Fail-val)[30]

Variables Overall Training
Fail-set

Validation
Fail-val p

Recipient age [y]
(median [IQR])

55
[46, 65]

55
[45, 64]

58
[50, 67] .004*

Recipient sex [female] (N(%)) 317 (36.3) 257 (36.1) 60 (37.0) .903
Recipient BMI [kg/m2]
(mean (SD)) 26.10 (4.99) 26.21 (4.98) 25.69 (5.03) .238

Dialysis vintage [y]
(median [IQR])

3.61
[2.02, 5.94]

3.13
[1.86, 4.85]

8.77
[4.61, 13.32] <.001*

Previous transplantations
[yes] (N(%)) 78 (8.9) 68 (9.6) 10 (6.2) .225

Recipient CMV IgG (N(%))
Negative 197 (22.6) 142 (20.0) 55 (34.0) <.001
Positive 375 (43.0) 277 (39.0) 98 (60.5)
Unknown 301 (34.5) 292 (41.1) 9 (5.6)
Recipient PRA
peak historic (median [IQR])

0
[0, 4]

0
[0, 5]

0
[0, 3] .093*

ESRD (N(%))
Congenital dysplasia
/hypoplasia/malformation
with/without urinary tract
malformation†

8 (0.9) 7 (1.0) 1 (0.6) NA

Diabetic nephropathy 115 (13.2) 98 (13.8) 17 (10.5) .323
Drug-induced/toxic† 7 (0.8) 7 (1.0) 0 (0.0) 0.435
FSGS 31 (3.6) 25 (3.5) 6 (3.7) >.900
Genetic nephropathy/
Glomerulopathy non-FSGS 134 (15.3) 111 (15.6) 23 (14.2) .741

GN/Acquired
Glomerulopathy 213 (24.4) 175 (24.6) 38 (23.5) .835

Hypertensive nephropathy 54 (6.2) 50 (7.0) 4 (2.5) .046
Nephrocalcinosis 2 (0.2) 1 (0.1) 1 (0.6) .814
Pyelonephritis/Interstitial
nephritis/obstructive uropathy/
reflux uropathy

47 (5.4) 41 (5.8) 6 (3.7) .237

Renal vascular disease 28 (3.2) 24 (3.4) 4 (2.5) .731
TMA/Systemic sclerosis 11 (1.3) 9 (1.3) 2 (1.2) >.900
Tumour/trauma/surgery† 5 (0.6) 5 (0.7) 0 (0.0) .622
Unknown cause† 218 (25.0) 158 (22.2) 60 (37.0) <.001
Subarachnoid haemorrhage† 14 (1.6) 0 (0.0) 14 (8.6) <.001
Trauma 32 (3.7) 23 (3.2) 9 (5.6) .235
Traumatic brain injury 94 (10.8) 93 (13.1) 1 (0.6) <.001
Unknown 243 (27.8) 161 (22.6) 82 (50.6) <.001

Abbreviations: CMV IgG, cytomegalovirus antibody IgG; PRA, panel reactive
antibody; ESRD, end-stage renal disease; SD, standard deviation; BMI, body-mass-
index; IQR, interquartile range; FSGS, focal segmental glomerulosclerosis; TMA,
thrombotic microangiopathy; p, p-value

* Non-parametric Mann-Whitney U-test
† Excluded before variable selection
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5.2.3 Transplantation
As already mentioned in Section 2.4 on the Eurotransplant allocation system, in
addition to the blood group, the HLA-A, -B and DR mismatches in particular are
taken into account when assigning donor organs to potential recipients. Accordingly,
the number of missing values (N=1) is low among these influencing factors. Most
frequently observed in both the training and validation data sets was a single mismatch
among the HLA-A, -B, and -DR typings. These accounted for 53% and 49% and
55% in the training dataset and 54% and 57% and 52% in the validation cohort,
respectively. The sum of the HLA-A, -B and -DR mismatches ranged from 0 to 6 and
was approximately symmetrical around the three, which was observed in about 30%
of the donor-recipient combinations. Significant differences in distribution between
the training and validation cohorts were only observed for HLA-A and -DR, where
a significantly higher proportion of two mismatches was observed in the validation
data set. The median cold ischaemia time was comparable between the cohorts at
approximately 11 and 10 hours, respectively while the warm ischaemia time in the
validation dataset was significantly longer, at 36 to 32 min. As the warm ischaemia
time is not available at the time of allocation, this variable was excluded before
variable selection based on statistical methods began. Results are sum up in Tables
5.6 and 5.7 [30].

Table 5.6: Transplant characteristics of training (N=711) and valida-
tion (N=162) dataset (Fail-set and Fail-val, part 1)[30]

Variables Overall Training
Fail-set

Validation
Fail-val p

N 873 711 162
HLA mismatches A (N(%))
None 271 (31.0) 229 (32.2) 42 (25.9) .247
One 460 (52.7) 373 (52.5) 87 (53.7)
Two 141 (16.2) 108 (15.2) 33 (20.4)
Unknown 1 (0.1) 1 (0.1) 0 (0.0)
HLA mismatches B (N(%))
None 156 (17.9) 137 (19.3) 19 (11.7) .106
One 444 (50.9) 351 (49.4) 93 (57.4)
Two 272 (31.2) 222 (31.2) 50 (30.9)
Unknown 1 (0.1) 1 (0.1) 0 (0.0)

Abbreviations: HLA, humane leucozyte antibody; p, p-value.
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Table 5.7: Transplant characteristics of training (N=711) and validation
(N=162) dataset (Fail-set and Fail-val, part 2)[30]

Variables Overall Training
Fail-set

Validation
Fail-val p

HLA mismatches DR (N(%))
None 244 (27.9) 207 (29.1) 37 (22.8) .021
One 477 (54.6) 393 (55.3) 84 (51.9)
Two 151 (17.3) 110 (15.5) 41 (25.3)
Unknown 1 (0.1) 1 (0.1) 0 (0.0)
HLA mismatches [sum] (N(%))
0 82 (9.4) 73 (10.3) 9 (5.6) .08
1 67 (7.7) 60 (8.4) 7 (4.3)
2 156 (17.9) 125 (17.6) 31 (19.1)
3 270 (30.9) 216 (30.4) 54 (33.3)
4 192 (22.0) 159 (22.4) 33 (20.4)
5 78 (8.9) 59 (8.3) 19 (11.7)
6 27 (3.1) 18 (2.5) 9 (5.6)
Unknown 1 (0.1) 1 (0.1) 0 (0.0)
Cold ischaemia time [h]
(median [IQR])

11
[0, 15.78]

11.27
[0, 16.03]

10.37
[6.25, 14.07] .245*

Warm ischaemia time [min]
(median [IQR])†

33
[0, 45]

32
[0, 45]

36
[22, 45.75] .012*

Abbreviations: HLA, humane leucozyte antibody; h, hours; IQR, interquartile
range; p, p-value; min, minutes.

* Non-parametric Mann-Whitney U-test
† Excluded before variable selection

5.2.4 Nephropathological evaluation
As described in section 2.3, nephropathological evaluation and scoring was done ac-
cording to Banff 2018 [100] by a single, experienced nephropathologist. Results of
the scoring and evaluation is sum up in Tables 5.9 and 5.8 [30].

The number of missing values was zero for all Banff lesion scores as availability of
the biopsies was one of the inclusion criteria. In case of peritubular capillaritis (ptc)
and intimal arteritis (v), no lesions were observed, so all biopsies were scored as pct0
and v0. Only eight cases with tubulitis, scored as t1 "foci with one to four leukocytes
per tubular cross-section (or 10 tubular cells)" were observed in the validation data
set, t0 otherwise. This was similar for Banff cg, double contour, with tree cases
of cg1b "double contours affecting 26–50% of peripheral capillary loops in the most
affected glomerulus" in each the training and validation dta set. Inflammation was
observed solely in the validation dataset with one case of inflammation in 26–50%
of unscarred cortical parenchyma (i2) and seven cases with inflammation in 10-25%
(i1). Variation of percentage of lesions was higher in Banff g, ci, ct, cv, mm and
ah where the whole range of scores was observed. Distributions in the training and
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validation cohort were significantly different for vascular fibrous intimal thickening
(cv), glomerulitis (g) and mesangial matrix expansion (mm) with more lesions in the
validation data set. The percentage of biopsies with microthrombi was also higher in
the validation dataset 4.9% vs. 2.3% as compared to the training data set.

Due to the small absolute number, this difference was not significant. Acute
tubular necrosis, however, was significantly more often observed in the training dataset
(48.4% vs. 38.3%, p = .049). The median [IQR] number of arteries and glomeruli
varied significantly, with more arteries is the validation dataset 3 [2, 6] vs. 3 [2, 4], p
= .005, and more glomeruli in the training dataset 29 [21, 36] vs. 27 [13, 29], p <
.001. The mean ratio of globally sclerosed glomeruli was compareable with 3% in the
training and 4% in the validation data set. Overall, one can say that the quality of
kidneys donated was, according to the histological evaluation, worse in the validation
dataset as compared to the training cohort.

This might be a result of including the DSO data into the validation cohort, as
the sampling was based on donors with marginal kidneys. [186].

Table 5.8: Histological characteristics of training (N=711) and validation (N=162)
dataset (Fail-set and Fail-val, part 1)[30]

Variables Overall Training
Fail-set

Validation
Fail-val p

Banff ah (N(%))
ah0 342 (39.2) 276 (38.8) 66 (40.7) .053
ah1 376 (43.1) 314 (44.2) 62 (38.3)
ah2 120 (13.7) 89 (12.5) 31 (19.1)
ah3 35 (4.0) 32 (4.5) 3 (1.9)
No. of arteries [median (IQR)] 3 [2, 4] 3 [2, 4] 3 [2, 6] .005*
No. of glomeruli [median (IQR)] 26 [20, 35] 29 [21, 36] 27 [13, 29] <.001*
No. of glomeruli with
GSG [mean (SD)] 1.96 (3.99) 1.93 (3.57) 2.10 (5.48) .627

Ratio number of glomeruli with
GSG to all [median (IQR)]* 0.04 [0, 0.09] 0.03 [0, 0.09] 0.04 [0, 0.11] .426*

Microthrombus (N(%))
No 848 (97.1) 694 (97.6) 154 (95.1) .151
Yes 24 (2.7) 16 (2.3) 8 (4.9)
Unknown 1 (0.2) 1 (0.1) 0 (0)
Acute tubular necrosis (N(%))
No 465 (53.3) 365 (51.3) 100 (61.7) .049
Yes 406 (46.5) 344 (48.4) 62 (38.3)
Unknown 2 (0.2) 2 (0.3) 0 (0)

Abbreviations: SD, standard deviation; GSG, globally sclerosed glomeruli; no., num-
ber; IQR interquartile range; p, p-value

* Non-parametric Mann-Whitney U-test
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Table 5.9: Histological characteristics of training (N=711) and valida-
tion (N=162) dataset (Fail-set and Fail-val, part 1) [30]

Variables Overall Training
Fail-set

Validation
Fail-val p

N 873 711 162
Banff i (N(%))†
i0 865 (99.1) 711 (100.0) 154 (95.1) <.001
i1 7 (0.8) 0 (0.0) 7 (4.3)
i2 1 (0.1) 0 (0.0) 1 (0.6)
Banff t (N(%))†
t0 865 (99.1) 711 (100.0) 154 (95.1) <.001
t1 8 (0.9) 0 (0.0) 8 (4.9)
Banff v [v0] (N(%))† 873 (100.0) 711 (100.0) 162 (100.0) NA
Banff g (N(%))†
g0 850 (97.4) 699 (98.3) 151 (93.2) <.001
g1 13 (1.5) 4 (0.6) 9 (5.6)
g2 8 (0.9) 7 (1.0) 1 (0.6)
g3 2 (0.2) 1 (0.1) 1 (0.6)
Banff ptc [ptc0] (N(%))† 873 (100.0) 711 (100.0) 162 (100.0) NA
Banff ci (N(%))†
ci0 768 (88.0) 628 (88.3) 140 (86.4) .169
ci1 84 (9.6) 63 (8.9) 21 (13.0)
ci2 19 (2.2) 18 (2.5) 1 (0.6)
ci3 2 (0.2) 2 (0.3) 0 (0.0)
Banff ct (N(%))
ct0 540 (61.9) 430 (60.5) 110 (67.9) .195
ct1 313 (35.9) 262 (36.8) 51 (31.5)
ct2 18 (2.1) 17 (2.4) 1 (0.6)
ct3 2 (0.2) 2 (0.3) 0 (0.0)
Banff cv (N(%))
cv0 321 (36.8) 272 (38.3) 49 (30.2) .031
cv1 166 (19.0) 129 (18.1) 37 (22.8)
cv2 180 (20.6) 135 (19.0) 45 (27.8)
cv3 205 (23.5) 174 (24.5) 31 (19.1)
Unknown 1 (0.1) 1 (0.1) 0 (0.0)
Banff cg (N(%))†
cg0 867 (99.3) 708 (99.6) 159 (98.1) .069
cg1b 6 (0.7) 3 (0.4) 3 (1.9)
Banff mm (N(%))
mm0 858 (98.3) 707 (99.4) 151 (93.2) <.001
mm1 10 (1.1) 2 (0.3) 8 (4.9)
mm2 2 (0.2) 1 (0.1) 1 (0.6)
mm3 3 (0.3) 1 (0.1) 2 (1.2)

Abbreviations: p, p-value; N, number.
† Excluded before step 1 of the variable selection (Sections 3.3.1 to 3.3.6)
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5.3 Pre-selection of potential clinical predictors

5.3.1 Selection based on completeness, correlation (VIF) and
variance

Comparing predictors correlating with either DGF or 1y-tl with variables listed in
the Eurotransplant database, thirty-five donor-, recipient- and transplant procedure-
related variables were considered based on prior knowledge. Dummy encoding of
the recipient’s primary diagnosis (13 categories) and the donor’s cause of death (9
categories) increased this number to fifty-five potential predictors.

Pre-transplantation donor and recipient variables included age in years (y), sex
(male vs. female), body mass index (BMI) [kg/m2] and IgG and IgM anti-cytomegalo-
virus (CMV) antibody. Donor history of diabetes mellitus and hypertension, serum
creatinine [mg/dl], Cockroft-Gault eGFR [ml/min] and cause of death, as well as
recipient dialysis vintage [years], previous transplantations, panel reactive antibody
(in %) and end-stage renal disease along with their number of human leucocyte
antigens HLA-A, -B and -DR mismatches were extracted from the Eurotransplant
database.

Variables were excluded according to the criteria described in Section 3.2 and ad-
ditionally, if they were not available before the decision to transplant was made. Both
cold and warm ischaemia time were available. Despite its strong association with
transplant outcome, warm ischaemia time was not included because this information
is usually not known at the time of allocation. The variables donor and recipient
CMV IgM - positivity and donor CMV IgG - positivity were excluded due to a high
number of missing values (>40%). There was too little variance or observed cases for
the dummy-encoded donor causes of death "bacterial meningitis", "primary brain tu-
mour" and "subarachnoid haemorrhage", recipient end-stage renal disease "congenital
dysplasia/hypoplasia/malformation with/without urinary tract malformation", "drug-
induced/toxic", "tumour/trauma/surgery" and "subarachnoid haemorrhage".

As mentioned in Section 5.2, the Banff lesion scores i, t, v, ptc and cg showed
(almost) zero variance. Therefore, the variables and additionally, due to the high
correlation between this and Banff ct (ct0 and ct1 vs. ct2 and ct3) in the dichotomised
versions, the variable Banff ci (ci0 and ci1 vs. ci2 and ci3), were excluded.

Both of donor serum createnine and donor eGFR, the first, last and highest mea-
sures were available. As these repeated measures were correlated according to their
VIFs listed in Table 5.10, only the variable of the last measurement was retained,
each. The same was true for the donors and recipients weight and height, which
correlated with BMI and type of brain death (primary, secondary, unknown) when the
donors cause of death was due to a cerebrovascular accident or traumatic brain injury.
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Table 5.10: Variables with generalized variance inflation factors (VIFs)
above 5 in multivariable generalized linear models with outcomes DGF
and 1y-tl

Predictors included in
multivariable modelling
(selection of VIFs > 5)

Outcome: DGF Outcome: 1y-tl
Generalized
VIFs with

all predictors*

Generalized VIFs
after exclusion of
corr. predictors

Generalized
VIFs with

all predictors*

Generalized VIFs
after exclusion of
corr. predictors

Type of brain death 32225810 excluded 30175310 excluded
Cause of death:

cerebrovascular accident 5707932 3.29 13991820 2.61
Cause of death:

traumatic brain injury 2438771 2.17 3945182 1.59
Recipient weight 30.54 excluded 198.99 excluded

Donor weight 124.13 excluded 137.64 excluded
Recipient BMI 22.26 1.23 112.12 1.25

Donor BMI 92.55 1.65 108.33 1.52
Recipient height 12.35 excluded 69.65 excluded

Donor height 41.84 excluded 48.04 excluded
Donor eGFR, max 9.76 excluded 30.07 excluded

Donor serum
creatinine, highest 16.72 excluded 19.60 excluded
Donor eGFR, first 6.40 excluded 18.66 excluded

Donor serum
creatinine, first 13.27 excluded 15.38 excluded

Donor eGFR, last 7.39 3.73 12.87 2.50
Donor serum

creatinine, last 7.18 3.60 8.35 2.52
Recipient PRA, max 3.22 3.07 6.92 4.65
Abbreviations: eGFR, estimated glomerular filtration rate; PRA, panel reactive antibody; corr,
correlating; VIF, variance inflation factor; max, maximum; DGF, delayed graft function; 1y-tl,
death-censored transplant loss within one year.

* NOTE: variables excluded for other reasons than correlation, as described in Section 3.2, were
not included in the multivariable models.

5.3.2 Logistic regression on multiple imputed dataset
After step 1, the imputation, 50 complete datasets with N=620 observations for
the outcome DGF and N=711 observations for the outcome 1y-tl were available.
In the subsequent modeling using logistic regression, the minimal model with cold
ischaemia time as the only influencing variable for each of the outcomes was defined.
The full models with all possible influencing variables could now also include those
that were excluded before imputation due to their missing values (tables describing
donor, recipient and transplant variables and Section 5.3.1).

Applying Rubin’s rule to combine the regression models generated on each im-
puted dataset, the resulting model for DGF after forward selection included besides
cold ischaemia time: donor and recipient BMI, donor and recipient CMV IgG-status,
recipients PRA at time of transplantation, end-stage renal disease caused by hyperten-
sive nephropathy or FSGS or "pyelonephritis/interstitial nephritis/obstructive uropa-
thy/reflux uropathy" or "drug-induced/toxic" or "genetic nephropathy/glomerulo-
pathy non-FSGS", dialysis vintage, previous transplantations, donors death caused by
bacterial meningitis and the number of HLA-DR mismatches.

Respectively, variables identified to be associated with the outcome 1y-tl by for-
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Table 5.11: Multivariable logistic regression model for outcome DGF
generated on multiple imputed dataset [RefMod for DGF, Figure 3.5]

Predictor for DGF beta OR (95%-CI) p-value
Intercept -4.901 0.007 (0.001-0.04) <.001
Donor BMI (kg/m2) 0.064 1.07 (1.02-1.11) 0.003
Recipient BMI (kg/m2) 0.046 1.05 (1.01-1.09) 0.017
Dialysis vintage (years) 0.092 1.1 (1.02-1.18) 0.012
HLA-DR mismatches: one 0.318 1.37 (0.87-2.16) 0.168
HLA-DR mismatches: two 0.867 2.38 (1.36-4.16) 0.002
Cold ischaemia time (hours) 0.031 1.03 (1.01-1.06) 0.014
ESRD: hypertensive nephropathy -0.769 0.46 (0.2-1.06) 0.069

Abbreviations: CI, confidence interval; OR, odds ratio; ESRD, end-
stage renal disease; HLA, humane leucozyte antibody; DGF, delayed
graft function.

ward selection were: donor age, donor history of hypertension, recipients with previous
transplantations or one of the end-stage renal diseases "drug-induced/toxic", "Con-
genital dysplasia/hypoplasia/malformation with/without urinary tract malformation",
"TMA/systematic sclerosis" or "genetic nephropathy/glomerulopathy non-FSGS" and
the sum of HLA-A, -B and -DR mismatches. The final models after backward selec-
tion are displayed in Table 5.11 and Table 5.12. In addition to cold ischaemia time,
donor and recipient BMI, dialysis vintage and two HLA-DR mismatches were signif-
icantly associated with DGF, when beiing adjusted for hypertensive nephropathy as
the recipients end-stage renal disease. Validation on the unimputed validation dataset
revealed an AUC of .688 for prediction of DGF.

Table 5.12: Multivariable logistic regression model for outcome
1y-tl generated on multiple imputed dataset [RefMod for 1y-tl,

Figure 3.5]

Predictor for 1y-tl beta OR (95%-CI) p-value
Intercept -4.662 0.009 (0.003-0.033) <0.001
Donor age (years) 0.03 1.031 (1.011-1.051) 0.002
Cold ischaemia time (hours) 0.051 1.053 (1.017-1.089) 0.003

Abbreviations: CI, confidence interval; OR, odds ratio; 1y-tl,
death-censored transplant loss within the first year.
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Surprisingly, donor age is the only other variable besides cold ischaemia time
that is sufficient to achieve an AUC of .724 when predicting 1y-tl on the validation
dataset. Receiver operating characteristic curves are displayed in Figure 5.2. The
calibration plot with the corresponding intercept and slope of the predicted DGF-
values indicate a general underestimation of the risk (intercept = -.64, slope =.77)
on the validation dataset 5.3. Consequently, the scaled Brier score was with 0.01
very poor. The estimated calibration index (ECI) for DGF was 1.79, a value to be
compared to other ECIs of models predicting DGF on the validation dataset. Looking
at the calibration plot for 1y-tl, Figure 5.4, one will notice the better calibration as
the curve is much closer to the diagonal (intercept = -.37, slope = 1.54). However,
the predicted probabilities only assume values between 0% and 35%, which again
indicates an underestimation of the risk. Taking the scaled Brier score of .05 into
account, the overall calibration was very poor while the ECI is rather good.

Figure 5.2: ROC of models trained on multiple imputed datasets for prediction of
DGF and 1y-tl on the corresponding validation datasets
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Figure 5.3: Calibration plot and statistics (ECI = estimated calibration index,
C(ROC) = AUC, CL = 95% confidence limits) of the logistic regression model
trained on the multiple imputed dataset for prediction of DGF on the validation

dataset.

Figure 5.4: Calibration plot and statistics (ECI = estimated calibration index,
C(ROC) = AUC, CL = 95% confidence limits) of the logistic regression model
trained on the multiple imputed dataset for prediction of 1y-tl on the validation

dataset
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5.3.3 Logistic regression on unimputed, complete case dataset
Without prior variable selection and imputation of missing values, the number of po-
tential influencing factors can be reduced to the most relevant ones using algorithms
such as forward, backward and stepwise selection. Using a stepwise procedure with
a smallest model including only the cold ischaemia time to predict DGF, the donor
and recipient variables BMI and CMV-IgG positivity, as well as dialysis vintage, ESRD
("Pyelonephritis/Interstitial nephritis/Obstructive uropathy/Reflux uropathy" or "Hy-
pertensive nephropathy" or "Genetic nephropathy/Glomerulopathy non FSGS") and
the sum of HLA-DR mismatches were selected. However, on a significance level
of 5%, donor CMV-IgG and ESRD ("Pyelonephritis/Interstitial nephritis/Obstructive
uropathy/Reflux uropathy" and "Genetic nephropathy/Glomerulopathy non FSGS")
were not statistically significant (Table 5.13). Also, in the presence of a quadratic
term, an increased recipients BMI in kg/m2 was associated with a decreased odds of
DGF (OR [95%-CI]= .688 [.472-1.000]). Compared to other ESRDs, the presence
of a hypertensive nephropathy was also associated with a decreased odds of DGF.
The inclusion of statistically insignificant variables can be explained by the AICs close
relationship to the likelihood ratio test. Under the χ2 distribution with one degree
of freedom, variable selection by the Akaike information criterion corresponds to a
significance level of p = .157 [188]. Compared to the reference model for DGF (Table
5.11), four additional variables, related to the ERSD and the CMV IgG status, were
selected despite a lower number of observations.

As a result, an overfitting of the regression model to the training data cannot
be ruled out. The validation of this extensive model on the validation dataset has
shown a significantly poorer ability to discriminate between cases with and without
DGF (AUC = .509, Figure 5.5), which also suggests overfitting. The calibration plot
with the corresponding intercept and slope of the predicted DGF- values indicate a
stronger underestimation of the risk (intercept = -1.53, slope =.00) on the validation
dataset as compared to the reference model (Figure 5.6). Consequently, the scaled
Brier score was with -.78 very poor, just like the estimated calibration index which was
with 7.88 much higher. However, the ECI value must be compared with the values of
other models for predicting the DGF using the validation dataset for interpretation.
A similar result was found when comparing the model for outcome 1y-tl (Table 5.14)
with the corresponding reference model (Table 5.12). Besides cold ischaemia time
and donor age, which were selected before, the recipients sex, the donors history of
hypertension and age as quadratic term (age in years2), and the HLA-B and -DR
mismatches were identified as potential predictors of 1y-tl.
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Table 5.13: Multivariable logistic regression model for outcome DGF
generated on complete case dataset [M1 = Model 1 for DGF, Figure

3.5]

Predictor for DGF beta OR (95%-CI) p-value
Intercept -0.197 – 0.94
Cold ischaemia time (h) 0.042 1.043 (1.015, 1.072) 0.002
Donor BMI (kg/m2) 0.079 1.082 (1.034, 1.134) <0.001
(Recipient BMI (kg/m2))^2 0.007 1.008 (1.001, 1.015) 0.03
Recipient BMI (kg/m2) -0.374 0.688 (0.472, 1.000) 0.05
Dialysis vintage (y) 0.082 1.086 (1.001, 1.178) 0.05
Donor CMV IgG
Negative (ref) – – –
Positive 0.354 1.425 (0.931, 2.205) 0.11
Recipient CMV IgG
Negative (ref) – – –
Positive 0.737 2.090 (1.194, 3.768) 0.01
Unknown 0.346 1.413 (0.788, 2.590) 0.25
ESRD: Genetic nephropathy/
Glomerulopathy non FSGS -0.489 0.613 (0.330, 1.094) 0.11

ESRD: Pyelonephritis/Interstitial
nephritis/ Obstructive uropathy/
Reflux uropathy

-0.745 0.475 (0.152, 1.228) 0.15

ESRD: Hypertensive nephropathy -1.127 0.324 (0.107, 0.801) 0.03
HLA-DR mismatches
None (ref) – – –
One 0.309 1.362 (0.839, 2.249) 0.22
Two 0.670 1.954 (1.055, 3.633) 0.03

Abbreviations: CI, confidence interval; OR, odds ratio; ESRD, end-stage
renal disease; y, years; h, hours; CMV IgG, cytomegalovirus antibody IgG;
FSGS, focal segmental glomerulosclerosis; HLA, humane leucozyte anti-
body; DGF, delayed graft function.

However, on a significance level of 5%, none of these additional variables were
significantly associated with the odds of 1y-tl. Also, in the presence of the quadratic
term, an increasing donor age in years was associated with a decreased odds of 1y-tl.

In contrast to the outcome DGF, the addition of further influencing variables led
to an improvement in the AUC on the validation dataset (AUC = .762, Figure 5.5)
compared to the reference model. Looking at the calibration plot for 1y-tl, Figure
5.7, one will notice a worse calibration compared to the reference model as the curve
is less close to the diagonal (intercept = -.52, slope = .78). However, the predicted
probabilities now also include values between 0% and > 60%, which indicates a lower
underestimation of the potential risks. Taking the scaled Brier score of -.02 into
account, the overall calibration was very poor while an ECI of .50 is again rather
good.
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Table 5.14: Multivariable logistic regression model for outcome 1y-tl
generated on complete case dataset [M1 = Model 1 for 1y-tl, Figure

3.5]

Predictor for 1y-tl beta OR (95% CI) p-value
Intercept -2.022 – 0.17
Cold ischaemia time (hours) 0.052 1.053 (1.017, 1.091) 0.004
Donor history of hypertension
No (ref) – – –
Yes 0.609 1.838 (0.971, 3.584) 0.07
Unknown -0.775 0.461 (0.149, 1.190) 0.14
(Donor age (years))2 0.001 1.001 (1.000, 1.002) 0.05
Donor age (years) -0.087 0.916 (0.828, 1.025) 0.11
HLA-B mismatches
None (ref) – – –
One -0.161 0.851 (0.361, 2.141) 0.72
Two 0.517 1.677 (0.722, 4.186) 0.24
HLA-DR mismatches
None (ref) – – –
One 0.349 1.417 (0.707, 2.988) 0.34
Two 0.025 1.025 (0.402, 2.567) 0.96
Recipient sex
Male (ref) – – –
Female 0.373 1.452 (0.829, 2.526) 0.19

Abbreviations: CI, confidence interval; OR, odds ratio; ref, reference;
HLA, humane leucozyte antibody; 1y-tl, death-censored transplant loss
within one year.

Figure 5.5: ROC of models trained on complete case datasets for prediction of DGF
and 1y-tl on the corresponding validation datasets
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Figure 5.6: Calibration plot and statistics (ECI = estimated calibration index,
C(ROC) = AUC, CL = 95% confidence limits) of the stepwise logistic regression

model from the complete case dataset for prediction of DGF on the validation
dataset

Figure 5.7: Calibration plot and statistics (ECI = estimated calibration index,
C(ROC) = AUC, CL = 95% confidence limits) of the stepwise logistic regression

model from the complete case dataset for prediction of 1y-tl on the validation
dataset
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5.3.4 Univariable p-value < 0.25
Results of the univariable analyses for the outcomes DGF and 1y-tl are listed for donor
variables in Table 5.16, for recipient and transplant variables in Table 5.17 and for
histological variables in Tables 5.32 and 5.33.

Regarding DGF, the donors age (y), BMI and history of hypertension, along with
the recipients age (y), BMI, dialysis vintage (y), number of previous pregnancies,
CMV IgG status, PRA at transplantation and the end-stage renal diseases "hyperten-
sive nephropathy", "Pyelonephritis/Interstitial nephritis/obstructive uropathy/reflux
uropathy", "FSGS" and "diabetic nephropathy" were associated. Also, the number of
HLA-DR mismatches, sum of HLA A-, B- and DR- mismatches and the cold ischaemia
time were associated with an increased odds of DGF.

Regarding 1y-tl, the donors age (y), history of diabetes mellitus or hypertension
and last Cockcroft-Gault eGFR, along with the recipients age (y), sex and previ-
ous transplantations were associated. Also, besides the HLA-DR mismatches, all
transplantation related variables including cold ischaemia time were associated with
death-censored transplant loss within the first year after transplantation.

Table 5.15: Multivariable logistic regression model for the outcome
DGF based on variables with univariable p-value < .25 [Model 2 for

DGF, Figure 3.5]

Predictor for DGF beta OR (95% CI) p-value
Intercept -0.162 – 0.95
Cold ischaemia time (h) 0.040 1.041 (1.014, 1.070) 0.003
Donor BMI [kg/m2] 0.074 1.077 (1.029, 1.127) 0.001
ESRD: hypertensive nephropathy -1.094 0.335 (0.111, 0.823) 0.03
HLA-DR mismatches
None (ref) – – –
One 0.360 1.433 (0.885, 2.364) 0.15
Two 0.836 2.307 (1.264, 4.239) 0.007
Recipient CMV-IgG
Negative (ref) – – –
Positive 0.767 2.154 (1.233, 3.876) 0.008
Unknown 0.433 1.542 (0.865, 2.816) 0.15
Dialysis vintage (years) 0.066 1.069 (0.985, 1.158) 0.11
Recipient BMI [kg/m2] -0.369 0.692 (0.478, 1.001) 0.05
(Recipient BMI [kg/m2])2 0.008 1.008 (1.001, 1.014) 0.03
ESRD: FSGS 0.870 2.386 (0.930, 6.126) 0.07

Abbreviations: CI, confidence interval; OR, odds ratio; ref, reference; h,
hours; HLA, humane leucozyte antibody; ESRD, end-stage renal disease;
FSGS, focal segmental glomerulosclerosis; DGF, delayed graft function.

Based on the univariable selection two multivariable logistic regression models were
derived applying stepwise selection. Variables age and BMI were included as linear
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and quadratic terms, interaction between recipients age and the sum of HLA-A, -B
and -DR mismatches was also considered but not selected. As displayed in Table
5.15, adjusted for dialysis vintage, which was not significantly associated with DGF,
an increased cold ischaemia time, donor and recipient BMI, a positive recipients CMV-
IgG status or FSGS as end-stage renal disease, as well as two HLA-DR mismatches
increased odds for DGF. Recipients with hypertensive nephropathy, at the other hand,
showed an decreased odds for DGF. Table 5.18 displays the multivariable model for
the outcome 1y-tl. Here, the number of HLA-B mismatches, recipients previous
transplantations and a donors history of hypertension were included but at a level
of 5% not statistically significant. An increased cold ischaemia time and donor age,
however, were associated with higher odds for 1y-tl. Both models were validated on
their validation datasets.

Table 5.16: Donor characteristics by outcomes DGF and 1y-tl, univariable analyses
Outcome DGF (left)
and 1y-tl (right) Overall No DGF DGF p Overall No TXP-loss TXP-loss

within 1y p

N 620 454 166 711 650 61
Donor age [y]
(median [IQR])

54.00
[43.00, 64.00]

54.00
[42.00, 63.00]

55.00
[45.25, 66.50] .045 54.00

[44.00, 64.00]
54.00

[43.00, 63.00]
62.00

[52.00, 71.00] .001
Donor sex (N(%))
Male 332 (53.5) 242 (53.3) 90 (54.2) .912 382 (53.7) 354 (54.5) 28 (45.9) .251
Female 288 (46.5) 212 (46.7) 76 (45.8) 329 (46.3) 296 (45.5) 33 (54.1)
Donor BMI [kg/m2]
(median [IQR])

25.71
[23.37, 27.78]

25.69
[23.15, 27.78]

26.15
[24.22, 29.24] .005 25.71

[23.36, 27.99]
25.71

[23.31, 27.98]
26.01

[24.07, 28.70] .313
Donor diabetes mellitus (N(%))
No 404 (65.2) 297 (65.4) 107 (64.5) .975 470 (66.1) 424 (65.2) 46 (75.4) .194
Yes 37 (6.0) 27 (5.9) 10 (6.0) 42 (5.9) 38 (5.8) 4 (6.6)
Unknown 179 (28.9) 130 (28.6) 49 (29.5) 199 (28.0) 188 (28.9) 11 (18.0)
Donor hypertension (N(%))
No 251 (40.5) 193 (42.5) 58 (34.9) .119 298 (41.9) 279 (42.9) 19 (31.1) <.001
Yes 233 (37.6) 160 (35.2) 73 (44.0) 262 (36.8) 225 (34.6) 37 (60.7)
Unknown 136 (21.9) 101 (22.2) 35 (21.1) 151 (21.2) 146 (22.5) 5 (8.2)
Donor creatinine, first
[mg/dl] (median [IQR])

0.84
[0.69, 1.07]

0.84
[0.69, 1.09]

0.83
[0.69, 1.05] .946 0.83

[0.69, 1.07]
0.83

[0.69, 1.06]
0.84

[0.67, 1.09] .945
Donor creatinine, last
[mg/dl] (median [IQR])

0.81
[0.66, 1.06]

0.81
[0.66, 1.05]

0.82
[0.65, 1.10] .312 0.81

[0.65, 1.07]
0.81

[0.64, 1.06]
0.80

[0.67, 1.09] .833
Donor creatinine, highest
[mg/dl] (median [IQR])

0.96
[0.77, 1.24]

0.93
[0.77, 1.23]

0.99
[0.76, 1.31] .607 0.94

[0.76, 1.24]
0.94

[0.77, 1.25]
0.89

[0.69, 1.16] .154
Donor Cockcroft-Gault eGFR,
first (median [IQR])

99.84
[78.11, 128.71]

100.43
[78.45, 128.25]

96.78
[77.64, 128.96] .943 100.35

[78.07, 127.33]
101.00

[78.87, 128.61]
92.36

[75.56, 120.21] .124
Donor Cockcroft-Gault eGFR,
last (median [IQR])

101.85
[75.59, 136.29]

103.13
[76.73, 136.44]

98.33
[70.52, 134.80] .264 102.69

[76.39, 135.70]
103.27

[76.73, 136.18]
89.58

[69.33, 126.81] .157
Donor Cockcroft-Gault eGFR,
highest (median [IQR])

87.82
[67.34, 112.54]

89.00
[68.20, 112.52]

83.90
[61.75, 112.37] .348 88.02

[67.84, 112.85]
88.06

[68.00, 112.96]
85.11

[67.16, 111.64] .745
Donor CMV IgG (N(%))
Negative 227 (36.6) 172 (37.9) 55 (33.1) .521 256 (36.0) 235 (36.2) 21 (34.4) .935
Positive 384 (61.9) 276 (60.8) 108 (65.1) 446 (62.7) 407 (62.6) 39 (63.9)
Missing 9 (1.5) 6 (1.3) 3 (1.8) 9 (1.3) 8 (1.2) 1 (1.6)
Donor CMV IgM (N(%))
Negative 450 (72.6) 323 (71.1) 127 (76.5) .392 522 (73.4) 472 (72.6) 50 (82.0) .242
Positive 7 (1.1) 5 (1.1) 2 (1.2) 9 (1.3) 8 (1.2) 1 (1.6)
Missing 163 (26.3) 126 (27.8) 37 (22.3) 180 (25.3) 170 (26.2) 10 (16.4)
Donor HCVAB (N(%))
Negative 616 (99.4) 452 (99.6) 164 (98.8) .575 707 (99.4) 646 (99.4) 61 (100.0) .828
Positive 2 (0.3) 1 (0.2) 1 (0.6) 2 (0.3) 2 (0.3) 0 (0.0)
Missing 2 (0.3) 1 (0.2) 1 (0.6) 2 (0.3) 2 (0.3) 0 (0.0)
Type of brain death (N(%))
Primary 411 (66.3) 301 (66.3) 110 (66.3) .8 479 (67.4) 436 (67.1) 43 (70.5) .799
Secondary 71 (11.5) 54 (11.9) 17 (10.2) 80 (11.3) 73 (11.2) 7 (11.5)
Unknown 138 (22.3) 99 (21.8) 39 (23.5) 152 (21.4) 141 (21.7) 11 (18.0)
Cause of death (N(%))
apnea 16 (2.6) 14 (3.1) 2 (1.2) .308 17 (2.4) 16 (2.5) 1 (1.6) > .900
bacterial meningitis 3 (0.5) 3 (0.7) 0 (0.0) .692 4 (0.6) 4 (0.6) 0 (0.0) > .900
cardiac arrest 27 (4.4) 18 (4.0) 9 (5.4) .572 31 (4.4) 28 (4.3) 3 (4.9) > .900
cerebrovascular accident 329 (53.1) 239 (52.6) 90 (54.2) .835 379 (53.3) 343 (52.8) 36 (59.0) .437
drug suicide 2 (0.3) 2 (0.4) 0 (0.0) .955 2 (0.3) 2 (0.3) 0 (0.0) > .900
primary brain tumor 1 (0.2) 1 (0.2) 0 (0.0) > .900 1 (0.1) 1 (0.2) 0 (0.0) > .900
trauma 21 (3.4) 17 (3.7) 4 (2.4) .574 23 (3.2) 21 (3.2) 2 (3.3) > .900
traumatic brain injury 76 (12.3) 56 (12.3) 20 (12.0) > .900 93 (13.1) 86 (13.2) 7 (11.5) .849
Unknown 145 (23.4) 104 (22.9) 41 (24.7) .676 161 (22.6) 149 (22.9) 12 (19.7) .694

Abbreviations: eGFR, estimated glomerular filtration rate; IQR, interquartile range; CMV IgG and IgM, cytomegalovirus antibody IgG and IgM; TXP,
transplant; HCVAB, hepatitis C virus antibody-positive; DGF, delayed graft function; 1y-tl, death-censored transplant loss within one year.
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Receiver operating curves of the predicted outcomes are displayed in Figure 5.8.
Like on the multiple imputed data, the AUC for 1y-tl was with a value of .822 higher
than for DGF, which reached an AUC of .661.

Table 5.17: Recipient and transplant characteristics by outcomes DGF and 1y-tl,
univariable analyses
Outcome DGF (left)
and 1y-tl (right) Overall No DGF DGF p Overall No TXP-loss TXP-loss

within 1y p

N 620 454 166 711 650 61
Recipient age [y]
(median [IQR])

55.0
[45.0, 64.0]

54.0
[45.0, 63.0]

55.50
[45.25, 65.0] .19 55.0

[45.0, 64.0]
54.0

[45.0, 63.75]
60.00

[48.0, 67.0] .014
Recipient sex (N(%))
Male 393 (63.4) 284 (62.6) 109 (65.7) .537 454 (63.9) 420 (64.6) 34 (55.7) .215
Female 227 (36.6) 170 (37.4) 57 (34.3) 257 (36.1) 230 (35.4) 27 (44.3)
Recipient BMI [kg/m2]
(median [IQR])

25.41
[22.88, 29.02]

25.51
[22.83, 28.71]

25.25
[23.23, 30.46] .208 25.52

[22.96, 29.04]
25.47

[22.87, 28.74]
26.00

[23.14, 30.34] .358
Dialysis vintage [y]
(median [IQR])

3.11
[1.79, 4.90]

3.01
[1.65, 4.49]

3.43
[2.13, 5.38] .006 3.13

[1.86, 4.85]
3.12

[1.86, 4.83]
3.58

[1.86, 4.92] .731
Recipient no. of previous
pregnancies (median [IQR])

0.00
[0.00, 0.00]

0.00
[0.00, 0.00]

0.00
[0.00, 0.00] .019 0.00

[0.00, 0.00]
0.00

[0.00, 0.00]
0.00

[0.00, 0.00] .783
Previous transplantations (%)
No 564 (91.0) 415 (91.4) 149 (89.8) .634 643 (90.4) 591 (90.9) 52 (85.2) .225
Yes 56 (9.0) 39 (8.6) 17 (10.2) 68 (9.6) 59 (9.1) 9 (14.8)
Recipient CMV IgG (N(%))
Negative 124 (20.0) 99 (21.8) 25 (15.1) .111 142 (2.0) 133 (20.5) 9 (14.8) .524
Positive 254 (41.0) 177 (39.0) 77 (46.4) 277 (39.0) 253 (38.9) 24 (39.3)
Missing 242 (39.0) 178 (39.2) 64 (38.6) 292 (41.1) 264 (40.6) 28 (45.9)
Recipient CMV IgM (N(%))
Negative 281 (45.3) 201 (44.3) 80 (48.2) .532 320 (45.0) 294 (45.2) 26 (42.6) .275
Positive 15 (2.4) 10 (2.2) 5 (3.0) 15 (2.1) 12 (1.8) 3 (4.9)
Missing 324 (52.3) 243 (53.5) 81 (48.8) 376 (52.9) 344 (52.9) 32 (52.5)
Recipient PRA at transplantation
(median [IQR]) 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.134 0.0 [.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] .758
Recipient PRA peak historic
(median [IQR]) 0.0 [0.0, 5.0] 0.0 [0.0, 5.0] 0.0 [0.0, 5.75] .599 0.0 [0.0, 5.0] 0.0 [0.0, 5.0] 0.0 [0.0, 8.0] 0.654
ESRD (N(%))
Congenital dysplasia/hypoplasia/
malformation with/without urinary
tract malformation

7 (1.1) 5 (1.1) 2 (1.2) .675 7 (1.0) 7 (1.1) 0 (.0) .621

Diabetic nephropathy 81 (13.1) 54 (11.9) 27 (16.3) .195 98 (13.8) 89 (13.7) 9 (14.8) .971
Drug-induced/toxic 7 (1.1) 7 (1.5) 0 (0.0) .238 7 (1.0) 7 (1.1) 0 (0.0) .892
FSGS 21 (3.4) 11 (2.4) 10 (6.0) .052 25 (3.5) 22 (3.4) 3 (4.9) .796
Genetic nephropathy/
Glomerulopathy non-FSGS 96 (15.5) 75 (16.5) 21 (12.7) .292 111 (15.6) 105 (16.2) 6 (9.8) .265
GN/Acquired Glomerulopathy 146 (23.5) 103 (22.7) 43 (25.9) .466 175 (24.6) 157 (24.2) 18 (29.5) .44
Hypertensive nephropathy 46 (7.4) 41 (9.0) 5 (3.0) .018 50 (7.0) 47 (7.2) 3 (4.9) .679
Nephrocalcinosis 1 (0.2) 1 (0.2) 0 (0.0) > .900 1 (0.1) 1 (0.2) 0 (0.0) >.900
Pyelonephritis/Interstitial nephritis/
obstructive uropathy/reflux uropathy 35 (5.6) 30 (6.6) 5 (3.0) .128 41 (5.8) 37 (5.7) 4 (6.6) > .900
Renal vascular disease 21 (3.4) 14 (3.1) 7 (4.2) .66 24 (3.4) 21 (3.2) 3 (4.9) .744
TMA/Scleroderma 9 (1.5) 6 (1.3) 3 (1.8) .945 9 (1.3) 9 (1.4) 0 (0.0) .744
Tumour/trauma/surgery 5 (0.8) 4 (0.9) 1 (0.6) > .900 5 (0.7) 5 (0.8) 0 (0.0) > .900
Unknown cause 145 (23.4) 103 (22.7) 42 (25.3) .566 158 (22.2) 143 (22.0) 15 (24.6) .761
HLA mismatches A (N(%))
None 194 (31.3) 144 (31.7) 50 (30.1) .911 229 (32.2) 215 (33.1) 14 (23.0) .208
One 332 (53.5) 241 (53.1) 91 (54.8) 373 (52.5) 340 (52.3) 33 (54.1)
Two 93 (15.0) 68 (15.0) 25 (15.1) 108 (15.2) 94 (14.5) 14 (23.0)
Missing 1 (0.2) 1 (0.2) 0 (0.0) 1 (0.1) 1 (0.2) 0 (0.0)
HLA mismatches B (N(%))
None 119 (19.2) 89 (19.6) 30 (18.1) .895 137 (19.3) 128 (19.7) 9 (14.8) .04
One 305 (49.2) 221 (48.7) 84 (50.6) 351 (49.4) 328 (50.5) 23 (37.7)
Two 195 (31.5) 143 (31.5) 52 (31.3) 222 (31.2) 193 (29.7) 29 (47.5)
Missing 1 (0.2) 1 (0.2) 0 (0.0) 1 (0.1) 1 (0.2) 0 (0.0)
HLA mismatches DR (N(%))
None 177 (28.5) 139 (30.6) 38 (22.9) .029 207 (29.1) 193 (29.7) 14 (23.0) .702
One 338 (54.5) 249 (54.8) 89 (53.6) 393 (55.3) 357 (54.9) 36 (59.0)
Two 104 (16.8) 65 (14.3) 39 (23.5) 110 (15.5) 99 (15.2) 11 (18.0)
Missing 1 (0.2) 1 (0.2) 0 (0.0) 1 (0.1) 1 (0.2) 0 (0.0)
HLA mismatches [sum] (N(%))
0 61 (9.8) 47 (10.4) 14 (8.4) .143 73 (10.3) 68 (10.5) 5 (8.2) .152
1 52 (8.4) 42 (9.3) 10 (6.0) 60 (8.4) 58 (8.9) 2 (3.3)
2 105 (16.9) 75 (16.5) 30 (18.1) 125 (17.6) 117 (18.0) 8 (13.1)
3 194 (31.3) 141 (31.1) 53 (31.9) 216 (30.4) 201 (30.9) 15 (24.6)
4 137 (22.1) 105 (23.1) 32 (19.3) 159 (22.4) 139 (21.4) 20 (32.8)
5 53 (8.5) 30 (6.6) 23 (13.9) 59 (8.3) 50 (7.7) 9 (14.8)
6 17 (2.7) 13 (2.9) 4 (2.4) 18 (2.5) 16 (2.5) 2 (3.3)
Missing 1 (0.2) 1 (0.2) 0 (0.0) 1 (0.1) 1 (0.2) 0 (0.0)
Cold ischaemia time [h]
(median [IQR])

12.28
[6.00, 16.99]

12.00
[5.74, 16.00]

13.69
[7.97, 19.00] .015 11.27

[0.00, 16.03]
11.00

[0.00, 16.00]
15.00

[9.00, 19.00] .001
Warm ischaemia time [min]
(median [IQR])/(mean (SD))

35.00
[0.00, 46.25]

34.00
[0.00, 45.00]

39.00
[0.00, 52.75] .021 28.46 (25.19) 27.57 (24.75) 37.92 (28.02) .002

Abbreviations: IQR, interquartile range; TXP, transplant; HLA, humane leucozyte antibody; CMV IgG and IgM, cytomegalovirus antibody IgG and IgM;
h, hours; min, minutes; SD, standard deviation; FSGS, focal segmental glomerulosclerosis; TMA, thrombotic microangiopathy; ESRD, end-stage renal
disease; PRA, panel reactive antibody; DGF, delayed graft function; 1y-tl, death-censored transplant loss within one year.
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Table 5.18: Multivariable logistic regression model for
the outcome 1y-tl based on variables with univariable

p-value < .25 [Model 2 for 1y-tl, Figure 3.5]
Predictor for 1y-tl beta OR (95% CI) p-value
Intercept -1.803 – 0.21
Cold ischaemia time (h) 0.047 1.048 (1.013, 1.087) 0.008
Donor history of hypertension
No (ref) – – –
Yes 0.622 1.862 (0.986, 3.623) 0.06
Unknown -0.738 0.478 (0.154, 1.233) 0.15
HLA-B mismatches
None (ref) – – –
One 0.035 1.036 (0.470, 2.469) 0.93
Two 0.637 1.891 (0.867, 4.483) 0.12
Donor age (y) -0.091 0.913 (0.825, 1.020) 0.09
(Donor age)2 (y)2 0.001 1.001 (1.000, 1.002) 0.04
Previous transplantations = yes 0.628 1.873 (0.796, 4.027) 0.13

Abbreviations: OR, odds ratio; CI, confidence interval; HLA, humane
leucozyte antibody; ref, reference; y, years.

Figure 5.8: ROC of models based on univariable p < .25 for prediction of DGF and
1y-tl on the corresponding validation datasets

The calibration plot with the corresponding intercept and slope of the predicted
DGF-values indicate a general underestimation of the risk (intercept = -.53, slope
=.61) on the validation dataset 5.9. Consequently, the scaled Brier score was with -
0.01 very poor. The estimated calibration index (ECI) for DGF was 1.65, a value to be
compared to other ECIs of models predicting DGF on the validation dataset. Looking
at the calibration plot for 1y-tl, Figure 5.10, one will notice a similar calibration
compared to previous models predicting this outcome (intercept = -.55, slope =
1.39). However, the predicted probabilities only assume values between 0% and 45%,
which again indicates an underestimation of the risk. Taking the scaled Brier score
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of .09 into account, the overall calibration was again very poor while an ECI of .23 is
rather good.

Figure 5.9: Calibration plot and statistics (ECI = estimated calibration index,
C(ROC) = AUC, CL = 95% confidence limits) of the logistic regression model

based on univariable p-values < .25 for prediction of DGF on the validation dataset

Figure 5.10: Calibration plot and statistics (ECI = estimated calibration index,
C(ROC) = AUC, CL = 95% confidence limits) of the logistic regression model

based on univariable p-values < .25 for prediction of 1y-tl on the validation dataset
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5.3.5 LASSO
Since LASSO does not allow factor variables with more than two levels, those with
more than two levels had to be dichotomised using dummy coding. Missing values
were imputed. Subsequently, leave-one-centre-out cross-validation was used to de-
termine the penalisation parameter lambda using the AUC as measure of goodnes
of fit. Results for different values of lambda are displayed in Figure 5.11 and Fig-
ure 5.12. Selection of the smallest lambda with yet high AUC resulted in λDGF =
0.02363172 for DGF and λ1y−tl = 0.03442374 for 1y-tl. The corresponding numbers
of the selected independent variables (NLASSO(DGF) = 13 and NLASSO(1y-tl) = 2)
can also be seen in the figures and are listed with the penalized regression coefficients
in Table 5.19. One variable that was previously excluded due to missing values, but
was now considered relevant for both DGF and 1y-tl after imputation, was a previous
diagnosis of hypertension in the donor. The same applied to the CMV-IgG positivity
of the recipient, which was also included in the LASSO model with DGF. The models
derived by LASSO were validated on the independent validation set. Prediction of
DGF had an accuracy of 0.734 (95% CI: .658 - .801) with sensitivity and specificity
of .696 and .750, given a threshold of 0.373, respectively. Prediction of 1y-tl had an
accuracy of 0.879 (95% CI: .801 - .934) with sensitivity and specificity of .444 and
.918, given a threshold of 0.098, respectively.

Figure 5.11: LASSO: cross-validation to estimate lambda λDGF for the outcome DGF
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Figure 5.12: LASSO: cross-validation to estimate lambda λ1y−tl for the outcome 1y-tl

Table 5.19: Multivariable LASSO penalized models for the outcome DGF and 1y-tl
[M3 for DGF and 1y-tl, Figure 3.5]

Variables and penalized coefficients
for outcome DGF, λDGF = 0.02363

Variables and penalized coefficients
for outcome 1y-tl, λ1y−tl = 0.02918

(Intercept) -3.1277 (Intercept) -2.5352

Donor age (years) 0.0026 Donor history of
hypertension = No -0.1064

Donor BMI (kg/m2) 0.0355 Cold ischaemia time (h) 0.0056
Donor history of hypertension 0.0169 HLA-B mismatches = 2 0.0078
Donor serum creatinine, last mg/dl 0.0877 Donor age (years) 0.0030
Recipient BMI (kg/m2) 0.0174
Dialysis vintage (years) 0.0422
Recipient CMV-IgG 0.2550
ESRD: Hypertensive nephropathy -0.5307
ESRD: FSGS 0.3015
ESRD: Pyelonephritis/Interstitial nephritis/
obstructive uropathy/reflux uropathy -0.1113

ESRD = Genetic nephropathy/
Glomerulopathy non FSGS -0.0042

Nr. of HLA-DR mismatches = 0 -0.0632
Nr. of HLA-DR mismatches = 2 0.3086
Cold ischaemia time (hours) 0.0139

Abbreviations: HLA, humane leucozyte antibody; CMV IgG, cytomegalovirus antibody
IgG; FSGS, focal segmental glomerulosclerosis; ESRD, end-stage renal disease; λ, penalty
parameter; h, hours.
DGF model: accuracy=.743 (95% CI: .658 - .801); sensitivity=.696; specificity=.750
1y-tl model: accuracy=.879 (95% CI: .801 - .934); sensitivity=.444; specificity=.918
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Table 5.20: Multivariable logistic regression model based on variables
derived by LASSO penalization for the outcome DGF [Model 3 for DGF,

Figure 3.5]

Predictor for DGF beta (SE) OR (95% CI) p-value
Intercept -0.044 (3.231) – 0.99
(Recipient BMI)2 (kg/m2)2 0.009 (0.005) 1.009 (1.000, 1.018) 0.05

(Donor age)2 (years2) 0.00014
(0.00009)

1.00014
(0.99997, 1.00032) 0.11

Donor BMI (kg/m2) 0.055 (0.031) 1.057 (0.995, 1.124) 0.07
Recipient BMI (kg/m2) -0.407 (0.244) 0.666 (0.412, 1.081) 0.1
Donor serum creatinine,
last mg/dl 0.734 (0.286) 2.084 (1.207, 3.711) 0.01

Dialysis vintage (years) 0.106 (0.048) 1.112 (1.011, 1.223) 0.03
ESRD: Hypertensive
nephropathy -2.273 (1.044) 0.103 (0.006, 0.524) 0.03

Recipient CMV-IgG = positive 0.659 (0.302) 1.932 (1.084, 3.553) 0.03
ESRD = Genetic nephropathy/
Glomerulopathy non FSGS -1.031 (0.431) 0.357 (0.143, 0.791) 0.02

Cold ischaemia time (hours) 0.023 (0.017) 1.023 (0.988, 1.059) 0.2
Abbreviations: OR, odds ratio; CI, confidence interval; ESRD, end-stage
renal disease; FSGS, focal segmental glomerulosclerosis; SE, standard error.

Table 5.21: Multivariable logistic regression model based on variables derived by
LASSO penalization for the outcome 1y-tl [Model 3 for 1y-tl, Figure 3.5]

Predictor for 1y-tl beta (SE) OR (95% CI) p-value
Intercept -5.037 (0.658) – <0.001
Cold ischaemia time (hours) 0.053 (0.018) 1.054 (1.019, 1.092) 0.003
Donor history of hypertension = yes 0.760 (0.302) 2.137 (1.195, 3.930) 0.01
HLA-B mismatches
None (ref)
One 0.333 (0.456) 1.395 (0.597, 3.665) 0.465
Two 0.932 (0.451) 2.540 (1.102, 6.619) 0.038

Abbreviations: OR, odds ratio; CI, confidence interval; HLA, humane leucozyte
antibody; SE, standard error; ref, reference.

The calibration plot with the corresponding intercept and slope of the predicted
DGF-values indicate a general underestimation of the risk (intercept = -1.3, slope
=.58) on the validation dataset 5.13. Consequently, the scaled Brier score was with
-0.08 very poor, like the ECI which equalled 5.42. Looking at the calibration plot for
1y-tl, Figure 5.14, one will notice a similar calibration compared to previous models
predicting this outcome (intercept = -.37, slope = 1.79). However, the predicted
probabilities only assume values between 0% and 30%, which again indicates an
underestimation of the risk. Taking the scaled Brier score of .05 into account, the
overall calibration was again very poor while an ECI of .17 is rather good.
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Figure 5.13: Calibration plot and statistics (ECI = estimated calibration index,
C(ROC) = AUC, CL = 95% confidence limits) of the logistic regression model

based on LASSO for prediction of DGF on the validation dataset

Figure 5.14: Calibration plot and statistics (ECI = estimated calibration index,
C(ROC) = AUC, CL = 95% confidence limits) of the logistic regression model

based on LASSO for prediction of 1y-tl on the validation dataset
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Figure 5.15: ROC of models based on LASSO variable selection for prediction of
DGF and 1y-tl on the corresponding validation datasets

5.3.6 CART
As shown in figure 5.16, after pruning (complexity parameter = 0.0164), the recipients
and donors BMI were amongst the most important predictors for DGF, along with
cold ischaemia time. The odds for DGF in the group of recipients with a BMI ≥ 31.9
kg\m2 and cold ischaemia time ≥ 14.28 hours were amongst the ones with highest
odds (leave H, Odds=17:9) for DGF. In the subset of recipients with BMI < 31.9
kg\m2, an increased donor BMI ≥ > 30.8 kg\m2 was also associated with DGF odds.
When the donors in this subgroup also showed last serum creatinine values before
transplantation ≥ 1.52 mg/dl, odds for DGF was 10:1 (leave F). Odds for DGF where
reduced to 2:44 in the subset of recipients and donors with low BMI when additionally
the recipients end-stage renal disease was one of the following: drug-induced or toxic,
nephrocalcinosis, hypertensive nephropathy or tumor/trauma/surgery (leave A, odds
= 2:44). Even when the donors BMI and recipients age were increased (> 30.8 kg\m2
and > 40.5 years), odds for DGF was reduced to 4:33 when the donors last serum
creatinine value and age were in the lower subset (< 1.52 mg/dl and < 69.5 years).
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Figure 5.16: CART for outcome DGF [Model M4, Figure 3.5]]

According to the results of the CART algorithm, the three recipient-related vari-
ables BMI, age and ESRD, the donor-related variables BMI, age and serum creatinine,
and cold were most strongly associated with DGF. When CART was used to anal-
yse the outcome 1y-tl, as displayed in Figure 5.17, the variables that seemed to be
important were, besides cold ischaemic time, primarily donor-related. Odds for 1y-tl
were with 6:3, leave I, highest in the subset of donors in the age ≥ 66.5 with a BMI
≥ 23.4 kg\m2 and last serum creatinine ≥ 1.24 mg/dl when the cold ischaemia time
was ≥ 4.83 and the recipients end-stage renal disease was none of the following:
tumor/ trauma/ surgery, diabetic nephropathy, pyelonephritis/ interstitial nephritis/
obstructive uropathy/ reflux uropathy or genetic nephropathy/ glomerulopathy non-
FSGS. No 1y-tl was observed in older donors, however, when their BMI was < 23.4
kg\m2 (Leave E, odds = 0:23) or further down the branches accounting for ESRD in
leaves F, odds=0:12 and, additionally cold ischaemia time in leave G, odds = 0:10.
In the subset of donors in the age < 45.5 years with a transplants cold ischaemia
time ≥ 19.8 hours and a recipients ESRD which is neither drug-induced/toxic, nor
Congenital dysplasia/hypoplasia/malformation with/without urinary tract malforma-
tion, pyelonephritis/interstitial nephritis/obstructive uropathy/reflux uropathy or tu-
mor/trauma/surgery, the odds for 1y-tl was also increased to 5:3.
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Figure 5.17: CART for outcome death-censored transplant loss within one year [Model
M4, Figure 3.5]]

Predictive accuracy, sensitivity and specificity of the trees generated by CARD were
measured based on confusion matrixes for both DGF and 1y-tl on the training and
validation dataset and are sum up in Table 5.22. In any case, the specificity was high
(> .80), while sensitivity was low (< .35) indicating that the rates of false negative
predictions are higher than the false negative ones. Overall accuracy, however, was
very good for predictions of 1y-tl (training set: .953, validation set: .905) but only
okay for DGF (training set: .779, validation set: .627).

Table 5.22: Sensitivity, Specificity and predictive accuracy of trees generated by
the CART algorithm for both DGF and 1y-tl
Observed outcome Observed outcome

Training set DGF Specificity/Sensitivity Training set 1y-tl Specificity/Sensitivity
Predicted No DGF DGF .954/.302 Predicted No loss Loss .994/.114
No DGF 433 116 Accuracy (95%-CI) No loss 644 50 Accuracy (95%-CI)
DGF 21 50 .779 (.744, .811) Loss 6 11 0.921 (.899, .94)
Validation set DGF Specificity/Sensitivity Validation set 1y-tl Specificity/Sensitivity
Predicted No DGF DGF .813/.174 Predicted No loss Loss .953/.200
No DGF 91 38 Accuracy (95%-CI) No loss 141 8 Accuracy (95%-CI)
DGF 21 8 .627 (.546, .702) Loss 7 2 .905 (.848, .946)

Abbreviations: DGF, delayed graft function; 1y-tl, death-censored transplant loss within one year; CI, confidence
interval

Looking at the tree in Figure 5.16 for DGF, two leaves stand out in which a
better sensitivity for DGF could be achieved by further splitting. These are located
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in particular in branches with opposing splits: low recipient and donor BMI but un-
favourable ESRD and high BMI of the recipient with a short cold ischaemia time.
The splitting could possibly be improved by less pruning or by taking other factors,
especially histological variables, into account in these subgroups. However, a tech-
nical implementation of an automated update with additional variables to improve
the prediction accuracy based on the leaves of a pre-specified regression tree is not
known. Accordingly, further research into the implementation of the 2-step procedure
with regression trees would be of interest. It is similar with the tree in Figure 5.17
for the prediction 1y-tl, where the subsets in the leaves A and H could also be further
split or updated with further, yet not included variables.

Table 5.23: Multivariable logistic regression model for the outcome DGF
based on variables identified by CART [Model 4 for DGF, Figure 5.24]

Predictor for DGF beta (SE) OR (95% CI) p-value
Intercept -3.821 (0.776) – <0.001
Cold ischaemia time (h) 0.025 (0.015) 1.025 (0.996, 1.055) 0.09
Recipient ESRD
Others (ref) – – –
Drug-induced/toxic or
hypertensive nephropathy or
nephrocalcinosis or
tumour/trauma/surgery

-1.374 (0.455) 0.253 (0.094, 0.575) 0.003

Donr BMI (kg\m2) 0.057 (0.025) 1.059 (1.008, 1.113) 0.02
(Recipient BMI)2 (kg\m2)2 0.001 (0.000) 1.001 (1.000, 1.002) 0.07
Donor age (years) 0.012 (0.008) 1.012 (0.997, 1.027) 0.13

Abbreviations: SE, standard error; CI, confidence interval; OR, odds ratio;
h, hours; ESRD, end-stage renal disease; ref, reference.

In order to take into account the results of the CART analysis for DGF, the variable
ESRD with its 13 groups was first dichotomised according to the tree. The variables
of the tree and additionally the dichotomised ESRD variable, possible interactions
that can be inferred from the tree structure (donor and recipient BMI) and quadratic
terms of the continuous age and BMI variables were then considered in the regression
model. The final regression model is shown in Table 5.23. Although prolonged cold
ischaemia time was still associated with an increased incidence of DGF, this was no
longer significant when taking into account the donor BMI and age, the recipient BMI
and dichotomised ESRD. It was shown again that the model generated on the training
data tended to underestimate the DGF risk on the validation dataset (calibration
intercept = -.7; slope = .53). The AUC was better than for model 1, but worse than
in model 2, with a value of .595. The average squared difference of the predicted
probabilities with the estimated observed probabilities (ECI = 2.18) was so far the
second highest after the one of model 1 and the scaled Brier score even negative -.12.
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As for the reference model, donor age (squared) was the only independent predictor
for 1y-tl besides cold ischaemia time. Calibration measures were therefore similar:
AUC = .736, intercept = -.50, slope = 1.47. Overall measures were also comparable
with ECI = .34 and a scaled Brier score of .05. Despite the high slope, the model
tends to underestimate the risk of 1y-tl up to a predicted probability of 22%. Again,
possible interactions of now donor age and donor BMI were included as well as two
slightly different dichotomised versions of the recipients ESRD, none of which were
significantly associated with 1y-tl in the binary logistic regression model.

Table 5.24: Multivariable logistic regression model for the outcome 1y-tl
based on variables identified by CART [Model 4 for 1y-tl, Figure 5.24]

Predictor for 1y-tl beta (SE) OR (95% CI) p-value
Intercept -4.661 (0.708) – <0.001
Cold ischaemia time (h) 0.050 (0.020) 1.052 (1.012, 1.095) 0.01
(Donor age)2 (years2) 0.0003 (0.0001) 1.0003 (1.0001, 1.0005) 0.002

Abbreviations: SE, standard error; OR, odds ratio; CI, confidence interval

Figure 5.18: ROC of models based on variables identified by CART for prediction of
DGF and 1y-tl on the corresponding validation datasets
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Figure 5.19: Calibration plot and statistics (ECI = estimated calibration index,
C(ROC) = AUC, CL = 95% confidence limits) of the logistic regression model based

on variables identified by CART for prediction of DGF on the validation dataset

Figure 5.20: Calibration plot and statistics (ECI = estimated calibration index,
C(ROC) = AUC, CL = 95% confidence limits) of the logistic regression model based

on variables identified by CART for prediction of 1y-tl on the validation dataset
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5.3.7 VSURF
In the first step "thresholding", VSURF selected 22 of the dummy-encoded variables,
followed by 5 variables at the "interpretation" and "prediction" step regarding the
outcome DGF, each. The final variables were recipient and donor BMI (kg/m2),
dialysis vintage, cold ischaemia time and donors last measure of the eGFR (mg/dl).
The resulting misclassification rate (out-of-bag error) of the random forest was 19.8%
with average variable importance (VI) < .006. The donors last measure of eGFR
(mg/dl) was then removed in the logistic regression modelling by the stepwise selection
(Table 5.25).

With regard to 1y-tl, 27 dummy-encoded variables were selected in the "threshold-
ing", followed by 5 variables in the "interpretation" and 4 variables in the "prediction"
step. These variables were the donors type of brain death, donors last serum cre-
atinine values (mg/dl), the donors last measure of eGFR (mg/dl) and the sum of
HLA-A, -B and -DR mismatches. The resulting misclassification rate (out-of-bag er-
ror) of the random forest was 8.4% with average variable importance (VI) < .006. As
cold ischaemia time was not selected by VSURF, it was forced into the model when
developing the final logistic regression-based model, adjusted for the four selected
variables. Finally, besides cold ischaemia time only the sum of HLA-A, -B and -DR
mismatches was selected (Table 5.26).

Table 5.25: Multivariable logistic regression model for the outcome DGF
based on variables identified by VSURV [Model 5 for DGF, Figure 5.24]

Predictor for DGF beta (SE) OR (95% CI) p-value
Intercept -0.221 (2.478) 0.929
Cold ischaemia time (h) 0.030 (0.013) 1.030 (1.005, 1.057) 0.020
Donor BMI (kg/m2) 0.076 (0.022) 1.079 (1.033, 1.128) <0.001
(Recipient BMI) 2 (kg/m2)2 0.006 (0.003) 1.006 (1.000, 1.013) 0.06
Dialysis vintage (years) 0.081 (0.039) 1.084 (1.004, 1.170) 0.037
Recipient BMI (kg/m2) -0.300 (0.183) 0.740 (0.516, 1.045) 0.101

Abbreviations: h, hours; SE, standard error; CI, confidence interval; OR,
odds ratio.

The calibration plot with the corresponding intercept and slope of the predicted
DGF-values indicate a general underestimation of the risk (intercept = -.53, slope
=.62) on the validation dataset (Figure 5.22). Consequently, the scaled Brier score
was with -0.01 very poor. The estimated calibration index (ECI) for DGF was 1.42.
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Table 5.26: Multivariable logistic regression model for the outcome
1y-tl based on variables identified by VSURV [Model 5 for 1y-tl,

Figure 5.24]

Predictor for 1y-tl beta (SE) OR (95% CI) p-value
Intercept -3.781 (0.415) <0.001
Cold ischaemia time (h) 0.056 (0.018) 1.058 (1.022, 1.096) 0.001
Sum of HLA-A, -B and
-DR mismatches 0.252 (0.095) 1.286 (1.072, 1.555) 0.008

Abbreviations: HLA, humane leucozyte antibody; SE, standard error;
CI, confidence interval; OR, odds ratio.

Looking at the calibration plot for 1y-tl, Figure 5.23, one will notice a similar cali-
bration compared to previous models predicting this outcome (intercept = -.36, slope
= 2.7). The model tends to underestimate risks below the cohorts prevalence (9%)
and overestimates risks above this threshold. However, the predicted probabilities
only assume values between 0% and 20%, which again indicates an underestimation
of the risk. Taking the scaled Brier score of .06 into account, the overall calibration
was again very poor while an ECI of .26 is rather good.

Figure 5.21: ROC of models based on variables identified by VSURF for prediction
of DGF and 1y-tl on the corresponding validation datasets
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Figure 5.22: Calibration plot and statistics (ECI = estimated calibration index,
C(ROC) = AUC, CL = 95% confidence limits) of the logistic regression model based

on variables identified by VSURF for prediction of DGF on the validation dataset

Figure 5.23: Calibration plot and statistics (ECI = estimated calibration index,
C(ROC) = AUC, CL = 95% confidence limits) of the logistic regression model based

on variables identified by VSURF for prediction of 1y-tl on the validation dataset
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5.3.8 Summary: pre-selection of potential clinical predictors
Before the study began, the minimum required sample size for the analysis of the
outcome DGF, as well as the distribution of observations by study centre, was de-
termined in the study plan. In addition, the sources for the training and external
validation datasets were defined. A large proportion of the validation cohort came
from a sample of the German Organ Procurement Organization that consisted of
marginal quality organs. A comparison of the distributions of the donor-, recipient-
and transplant-specific variables had shown that the organs in the validation cohort
tended to be of poorer quality based on these factors. Donors in the validation cohort
were significantly older, had a higher prevalence of diabetes mellitus and hypertension,
higher BMI and serum creatinine values and a lower eGFR rate. The recipients in
the validation cohort were also significantly older, had been on dialysis for longer and
were more often positive for CMV IgG. Regarding transplant-specific variables, the
number of HLA-DR mismatches was also higher in the validation cohort. Although
warm ischaemia time was not considered in the score development, it was longer by
a median of 4 minutes. This imbalance was subsequently reflected in the validation
of the models generated in Sections 5.3.2 to 5.3.7. The systematic underestimation
of the predicted risks on the validation dataset shows the need for a recalibration of
the models with regard to this bias.

Due to missing values in the fewer than planned datasets collected, and a subse-
quent change in the participation of the study centres, cuts had to be made in the
planned modelling. In Sections 5.3.2 to 5.3.7, several methods were used to reduce
potential predictors and, based on this, binary logistic regression models were cre-
ated using stepwise variable selection. As a reference model to evaluate the effect of
missing values, a multiple imputed was created in Section 5.3.2 and a binary logistic
regression model developed for each outcome.

A summary of the model performance is given in the Table 5.27. In the first
model, Section 5.3.3, the preselection was omitted. As a result, a relatively high
number of variables (11 and 7) were included for both DGF and 1y-tl, which led to
overfitting and ultimately poor performance (high ECI, low AUC) on the validation
dataset.

When considering only the outcome DGF, the models performed best after pres-
election using the univariate P-value (Section 5.3.4: AUC = .661, ECI = 1.65) and
LASSO (Section 5.3.5: AUC = .753, ECI = 5.42), with 9 and 10 predictors included,
respectively. The univariable P-value and LASSO were also the best methods for
reducing variables when predicting 1y-tl (AUC = .822; ECI = .23 and AUC = .753;
ECI = .17, respectively). The prevalence of transplant loss in the first year after
transplantation is generally lower than that of DGF, which is 27% here, at around
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9% in the dataset. Accordingly, a larger number of cases would have been needed for
modelling than for DGF. According to the 10 events per predictor rule of thumb, no
more than 6 independent clinical and histopathological variables should be considered
for the 1y-tl outcome. The final Models 2 and 3 for predicting 1y-tl include 6 and 3
clinical variables, respectively, which is still within the scope of the rule of thumb.

The advantage of CART became particularly apparent when factor variables with
more than four levels were included. This applied to the 17 levels of the ESRD and the
10 levels of the donor’s cause of death. Some of these were only weakly expressed and
were combined into variables with fewer subgroups in CART. This made it possible
to determine which illnesses or causes of death could be statistically combined to
make a more accurate prediction. However, there was a high proportion of unknown
diagnoses for both variables, which is why the variables combined on the basis of the
data are considered susceptible to bias. The subgroups were already categorised on
the basis of medical expertise, which is more relevant than statistical power for future
prediction. In subsequent modelling steps, the combined variables were therefore not
considered further.

When considering the results of all logistic regression models, it must be taken
into account that the cold ischaemia time had to be included as a predictor. This was
done for the reason that the effect of a potential reduction of this in hours should be
taken into account when calculating the point scores. As the methods of preselection
(CART, P-value < .25, and LASSO) have shown, cold ischaemia time is associated
with DGF and 1y-tl, independently of confounding variables. Nevertheless, it may
be possible to generate models with better performance if multivariate adjustment
makes the cold ischaemia time less significant.

Ultimately, a few variables emerged as the most relevant in all the models, and
these were used for the final modelling of Step 1.
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Table 5.27: Summary of model performances with
model names according to Figure 5.24

Outcome Method Model

No. of
predictors

(excl.
intercept)

AUC /
Accuracy*

Calibration
intercept /

slope
Scaled
Brier ECI

DGF RefMod 6 0.688 -0.64 0.77 0.01 1.79
1y-tl

Logistic regression on multiple
imputed dataset RefMod 2 0.724 -0.37 1.54 0.05 0.41

DGF M1 =
Model 1 11 0.509 -1.53 0 -0.78 7.88

1y-tl
Logistic regression with stepwise
variable selection M1 =

Model 1 7 0.762 -0.52 0.78 -0.02 0.5
DGF Model 2 9 0.661 -0.53 0.61 -0.01 1.65
1y-tl

Logistic regression for variables
with univariable p-value <.25 Model 2 6 0.822 -0.55 1.39 0.09 0.23

DGF M3 13 0.743*
1y-tl LASSO M3 4 0.879*
DGF Model 3 10 0.753 -1.3 0.58 -0.08 5.42
1y-tl

Logistic regression
after LASSO Model 3 3 0.753 -0.37 1.79 0.05 0.17

DGF M4 7 0.627*
1y-tl CART M4 6 0.905*
DGF Model 4 5 0.595 -0.7 0.53 -0.12 2.18
1y-tl

Logistic regression
after CART Model 4 2 0.736 -0.5 1.47 0.05 0.34

DGF Model 5 5 0.662 -0.53 0.62 -0.01 1.49
1y-tl

Logistic regression
after VSURF Model 5 2 0.8 -0.36 2.7 0.06 0.26

Colors: red/orange = worst measures by outcome; green/turkish green = best measures by outcome
Abbreviations: ECI, estimated calibration index; AUC, area under the receiver operating curve; LASSO,
Least Absolute Shrinkage and Selection Operator; CART, Classification And Regression Tree; VSURF,
Variable Selection Random Forest.
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5.4 Score development, step 1: clinical data score
Based on existing knowledge about possible influencing factors from the literature
(Sections 2.1 and 2.2) and our own previous variable selections (Sections 5.3.2 to
5.3.7), the number of variables to be included in the modeling of the clinical score
could be reduced. For DGF, the relevant variables identified were the donor and
recipient BMI, the recipient CMV-IgG status, the number of HLA-DR mismatches,
dialysis vintage and cold ischaemia time. With regard to 1y-tl, besides cold ischaemic
time, the age of the donor and the sum of the HLA-A, -B and -DR mismatches were
considered most relevant. The resulting logistic regression models are sum up in Table
5.28 and Table 5.29 and can be expressed as:

LogitS1[DGF ] = log
(

P [DGF ]
(1−P [DGF ])

)
= -5.66 + .035 (Cold ischaemia time [h]) +

.809 (HLA-DR mismatches = two) + .332 (HLA-DR mismatches = one) + .071
(Donor BMI [kg/m2]) + .045 (Recipient BMI [kg/m2]) + .099 (Dialysis vintage [y])
+ .756 (Recipient CMV-IgG = positive).

Here, the coefficient for unknown recipient CMV-IgG status was left out since it
was not significant (p > 0.05). Also, in practice, an "unknown" status is not con-
sidered to be informative. Respectively, for the outcome 1y-tl the probability can be
estimated by:

LogitS1[1y − tl] = log
(

(P [1y−tl])
(1−P [1y−tl])

)
= -4.97 + 0.053 (Cold ischaemia time [h])

+ 0.026 (Donor age [y]) + 0.186 (Sum of HLA-A, -B, and -DR mismatches).

To calculate the predictive probability P of each outcome, the models can be
represented in the following form:
P[DGF] = exp(LogitS1[DGF ])

(1+exp(LogitS1[DGF ])) and
P[1y-tl] = exp(LogitS1[1y−tl])

(1+exp(LogitS1[1y−tl])) , respectively.
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Table 5.28: Multivariable logistic regression model for the outcome DGF:
final model after step 1 [Figure 5.24]

Predictor for DGF beta (SE) OR (95% CI) p-value
Intercept -5.556 (0.890) - <0.001
Cold ischaemia time (h) 0.035 (0.013) 1.035 (1.009, 1.063) 0.009
HLA-DR mismatches
None (ref) - -
One 0.332 (0.242) 1.393 (0.872, 2.262) 0.17
Two 0.799 (0.295) 2.224 (1.249, 3.982) 0.007
Recipient BMI (kg/m2) 0.042 (0.020) 1.043 (1.004, 1.085) 0.03
Donor BMI (kg/m2) 0.071 (0.022) 1.073 (1.028, 1.121) 0.001
Dialysis vintage (y) 0.096 (0.039) 1.101 (1.019, 1.189) 0.01
Recipient CMV-IgG positivity
Negative (ref) - -
Positive 0.754 (0.283) 2.126 (1.236, 3.766) 0.008
Unknown 0.418 (0.292) 1.518 (0.865, 2.728) 0.15

Abbreviations: HLA, humane leucozyte antibody; SE, standard error; CI,
confidence interval; OR, odds ratio; y, years.

Table 5.29: Multivariable logistic regression model for the outcome
1y-tl: final model after step 1 [Figure 5.24]

Predictor for 1y-tl beta (SE) OR (95% CI) p-value
Intercept -4.978 (0.644) <0.001
Donor age (y) 0.026 (0.010) 1.026 (1.006, 1.047) 0.01
Sum of HLA-A, -B and
-DR mismatches 0.186 (0.096) 1.205 (1.002, 1.460) 0.05

Cold ischaemia time (h) 0.053 (0.018) 1.054 (1.019, 1.092) 0.003
Abbreviations: HLA, humane leucozyte antibody; SE, standard error;
CI, confidence interval; OR, odds ratio; h, hours; y, years.

As described in the methods Section 3.3.7, given the logistic regression estimates,
integer-based risk scores were estimated. Cold ischaemia time (cutoffs = 2, 6, 10,
14 and 18 hours), donor and recipient BMI (cutoffs = 18.5, 25, 30 kg/m2) and the
dialysis vintage (cutoffs = 1, 3, 4, 6 years) were transformed into categorical variables
for developing a point score for prediction of DGF. To build a point score for prediction
of 1y-tl, donor age was grouped by cutoffs 30, 40, 50 and 60 years, sum of HLA-A,
-B and -DR mismatches by cutoffs = 0, 1, 2, 3, 4, 6 and cold ischaemia time as in
the case of DGF. Templates for calculating point-based risk scores for DGF and 1y-tl,
already including results of the second score development step, are given in Figures
5.24 and 5.25[30].
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Figure 5.24: Point scoring tool to estimate risk of DGF[30]. For each expected
prolongation of the cold ischaemia time by 4 (2 to 6) hours, one additional score
point must be added to the "Total score" when number of glomeruli and Banff cv
are taken into account.
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Figure 5.25: Point scoring tool to estimate risk of one-year transplant loss (1y-tl)[30].
For each expected prolongation of the cold ischaemia time by 4 (2 to 6) hours, one
additional score point must be added to the "Total score" when Banff ct is taken
into account.
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5.5 Score development, step 2: clinical and histo-
logical data

As displayed in Tables 5.32[30] and 5.33[30], there was no histological variable signif-
icantly univariable associated with DGF and only few with 1y-tl. Amongst the ones
associated with 1y-tl were Banff ci (ci2 vs. ci0, OR [95%-CI] = 3.45 [.95-10.07],
p=.035) and, with almost identical values, Banff ct, along with the ratio of the
number of globally sclerosed glomeruli and all glomeruli (OR [95%-CI] = 10.94 [1.06-
89.89], p=.032). As the number of observations with the highest lesion scores were
in general low, Banff cv and ci were dichotomised before medelling to cv0 & cv1 &
cv2 vs. cv3 and ci0 & ci1 vs. ci2 & ci3. The regression models derived in step 1,
Section 5.4, are then updated by including both their logit functions of the predicted
probabilities for DGF (LogitS1[DGF ]) and, respectively, 1y-tl (LogitS1[1y − tl]) and
the histological variables into a new logistic regression model. As there were no uni-
variable associations between any histological variable described in Tables 5.32[30]
and 5.33[30] and DGF, expectations were low to find any multivariable association.

Plotting the histograms of the predicted probabilities of DGF separated by ob-
served DGF, one would expect a bimodal distribution with a valley at the point
best separating DGF cases from non-cases. This probability would also be the best
threshold according to the AUC. Yet, after the first step, the histogram (Figure 5.26)
showed a rather unimodal (normal) distribution of the probabilities with a strong over-
lap around the observed DGF-prevalence (black vertical line) in the training set. As
none of the histological variables was selected when multivariable adjusting for either
each of the predictors separately from the final model of step 1, nor the score derived,
models were additionally trained on subsets of observations based on the predicted
probabilities. In some of these subsets (intervals including the prevalence of DGF),
histological variables showed a significant association with DGF. The interval with
the widest range including significant histological predictors (predicted probability >
0.18 and ≤ 0.36, adding number of glomeruli and dichotomised Banff cv) was then
chosen as relevant for updating and recalibration of the model derived in step 1.

Although an update with Banff ct and simultaneous recalibration of the model
derived by step 1 for the outcome 1y-tl was possible on the entire training dataset,
additional analyses were performed on subsets defined as in the case of DGF. Yet,
besides Banff ct no further histological variable was associated with 1y-tl.
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Figure 5.26: Predicted probabilities of DGF after step 1 on training and validation
dataset. The vertical, black line represents the DGF prevalence values.

The resulting logistic regression models are sum up in Table 5.30 and Table 5.31
and can be expressed as:
IF
LogitS1[DGF ] < 0.18 OR LogitS1[DGF ] > 0.36
THEN
LogitS2[DGF ] = LogitS1[DGF ]
ELSE
LogitS2[DGF ] = .38 LogitS1[DGF ] + .74 (Banff cv = cv3) - .035 (Number of
glomeruli) +.035*(expected prolongation of cold ischaemia time [h]).

Table 5.30: Multivariable logistic regression model for the
outcome DGF: final model after step 2 for subset of cohort
with values of LogitS1[DGF ] between .18 and .36 [Figure

5.24]

Predictor for DGF beta (SE) OR (95% CI) p-value
Intercept -0.31 (0.44) 0.49
LogitS1[DGF ] 0.38 (0.82) 1.46 (0.29, 7.35) 0.65
Banff cv
cv0, cv1 or cv2 (ref)
cv3 0.74 (0.33) 2.10 (1.08, 4.02) 0.03
Number of glomeruli -0.04 (0.01) 0.96 (0.94, 0.99) 0.01

Abbreviations: SE, standard error; CI, confidence interval;
OR, odds ratio.
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Respectively, for the outcome 1y-tl the probability can be estimated by:

LogitS2[1y − tl] = -2.6 + 0.98 (LogitS1[1y − tl]) + 1.26 (Banff ct = ct2 or ct3)
+ .053*(expected prolongation of cold ischaemia time [h]).

Table 5.31: Multivariable logistic regression model for the
outcome 1y-tl: final model after step 2 [Figure 5.24]

Predictor of 1y-tl beta (SE) OR (95% CI) p-value
Intercept -2.60 (0.16) <0.001
LogitS1[1y − tl] 0.99 (0.21) 2.68 (1.79, 4.09) <0.001
Dichotomised Banff ct
ct0 or ct1 (ref) - -
ct2 or ct3 1.26 (0.56) 3.51 (1.06, 10.04) 0.03

Abbreviations: SE, standard error; CI, confidence interval; OR,
odds ratio.

Of note: as displayed in Figure 5.27, there was a strong correlation between the
dichotomised variables Banff ci and Banff ct, and the ration of the number of globally
sclerosed glomeruli and the total number of glomeruli, which is why these variables
can be considered to be interchangeable when included in a prediction mode.

Figure 5.27: Correlation between dichotomised Banff ci and Banff ct, and the ratio
of the globally sclerosed glomeruli and all glomeruli
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Table 5.32: Variables derived by histopathological evaluation (part 1)[30].

Variable No DGF DGF Univar. OR
(95% CI)

No
TXP-loss

Loss
within 1y

Univar. OR
(95% CI)

N 454 166 650 61
Banff i [i0] (N(%))† 454 (100.0) 166 (100.0) NA 650 (100.0) 61 (100.0) NA
Banff t [t0] (N(%))† 454 (100.0) 166 (100.0) NA 650 (100.0) 61 (100.0) NA
Banff v [v0] (N(%))† 454 (100.0) 166 (100.0) NA 650 (100.0) 61 (100.0) NA
Banff g (N(%))†
g0 450 (99.1) 164 (98.8) 1 639 (98.3) 60 (98.4) 1

g1 1 (0.2) 1 (0.6) 2.74 (0.11-69.65,
p=.476) 4 (0.6) 0 (0.0) NA

g2 2 (0.4) 1 (0.6) 1.37 (0.06-14.41,
p=.797) 6 (0.9) 1 (1.6) 1.77 (0.09-10.63,

p=.598)
g3 1 (0.2) 0 (0.0) NA 1 (0.2) 0 (0.0) NA
Banff ptc [ptc0] (N(%))† 454 (100.0) 166 (100.0) NA 650 (100.0) 61 (100.0) NA
Banff ci (%)
ci0 399 (87.9) 150 (90.4) 1 580 (89.2) 48 (78.7) 1

ci1 44 (9.7) 11 (6.6) 0.66 (0.32-1.28,
p=.244) 55 (8.5) 8 (13.1) 1.76 (0.74-3.72,

p=.166)

ci2 10 (2.2) 4 (2.4) 1.06 (0.29-3.23,
p=.918) 14 (2.2) 4 (6.6) 3.45 (0.95-10.07,

p=.035)

ci3 1 (0.2) 1 (0.6) 2.66 (0.10-67.55,
p=.490) 1 (0.2) 1 (1.6) 12.08 (0.47-308.77,

p=.080)
Banff ct (N(%))†
ct0 280 (61.7) 101 (60.8) 1 395 (60.8) 35 (57.4) 1

ct1 163 (35.9) 60 (36.1) 1.02 (0.70-1.48,
p=.915) 241 (37.1) 21 (34.4) 0.98 (0.55-1.71,

p=.954)

ct2 10 (2.2) 4 (2.4) 1.11 (0.30-3.40,
p=.864) 13 (2.0) 4 (6.6) 3.47 (0.94-10.43,

p=.037)

ct3 1 (0.2) 1 (0.6) 2.77 (0.11-70.54,
p=.472) 1 (0.2) 1 (1.6) 11.29 (0.44-289.54,

p=.089)
Banff cv (N(%))
cv0 167 (36.8) 61 (36.7) 1 249 (38.3) 23 (37.7) 1

cv1 86 (18.9) 29 (17.5) 0.92 (0.55-1.53,
p=.760) 120 (18.5) 9 (14.8) 0.81 (0.35-1.75,

p=.610)

cv2 90 (19.8) 28 (16.9) 0.85 (0.50-1.42,
p=.542) 120 (18.5) 15 (24.6) 1.35 (0.67-2.67,

p=.387)

cv3 110 (24.2) 48 (28.9) 1.19 (0.76-1.87,
p=.437) 160 (24.6) 14 (23.0) 0.95 (0.46-1.87,

p=.878)
NA 1 (0.2) 0 (0.0) 1 (0.2) 0 (0.0)
Banff cg (N(%))†
cg0 452 (99.6) 166 (100.0) 1 647 (99.5) 61 (100.0) 1
cg1a 1 (0.2) 0 (0.0) NA 1 (0.2) 0 (0.0) NA
cg1b 1 (0.2) 0 (0.0) NA 2 (0.3) 0 (0.0) NA

Abbreviations: Univar., univariable; OR, odds ratio; CI, confidence interval; NA, not available; y, year.
* Non-parametric Mann-Whitney U-test
† Excluded before variable selection.

100



CHAPTER 5. RESULTS

Table 5.33: Variables derived by histopathological evaluation (part 2)[30].

Variable No DGF DGF Univar. OR
(95% CI)

No
TXP-loss

Loss
within 1y

Univar. OR
(95% CI)

N 454 166 650 61
Acute tubular necrosis
(N(%))†
No 224 (49.3) 88 (53.0) 1 329 (50.6) 36 (59.0) 1

Yes 228 (50.2) 78 (47.0) 0.87 (0.61-1.24,
p=0.447) 319 (49.1) 25 (41.0) 0.72 (0.42-1.21,

p=0.220)
Unknown 2 (0.4) 0 (0.0) 2 (0.3) 0 (0.0)
Banff mm (N(%))†
mm0 451 (99.3) 166 (100.0) 1 646 (99.4) 61 (100.0) 1
mm1 1 (0.2) 0 (0.0) NA 2 (0.3) 0 (0.0) NA
mm2 1 (0.2) 0 (0.0) NA 1 (0.2) 0 (0.0) NA
mm3 1 (0.2) 0 (0.0) NA 1 (0.2) 0 (0.0) NA
Banff ah (N(%))
ah0 178 (39.2) 64 (38.6) 1 257 (39.5) 19 (31.1) 1

ah1 199 (43.8) 74 (44.6) 1.03 (0.70-1.53,
p=0.866) 284 (43.7) 30 (49.2) 1.43 (0.79-2.64,

p=0.243)

ah2 57 (12.6) 20 (12.0) 0.98 (0.54-1.73,
p=0.935) 82 (12.6) 7 (11.5) 1.15 (0.44-2.73,

p=0.755)

ah3 20 (4.4) 8 (4.8) 1.11 (0.44-2.57,
p=0.810) 27 (4.2) 5 (8.2) 2.50 (0.78-6.82,

p=0.090)
No. of arteries
(median [IQR])

3
[2, 4]

3
[2, 4]

1.00 (0.91-1.09,
p=0.933)

3
[2, 4]

3
[2, 4]

1.04 (0.92-1.17,
p=0.507)

No. of glomeruli
(median [IQR])

28
[21, 36]

26
[21, 35]

0.99 (0.98-1.01,
p=0.266)

28
[21, 35]

32
[20, 37]

1.01 (0.99-1.03,
p=0.195)

No. of GSG
(median [IQR])†

1
[0, 2]

1
[0, 2]

0.98 (0.92-1.03,
p=0.494)

1
[0, 2]

1
[0, 3]

1.04 (0.97-1.09,
p=0.206)

Ratio of the number
of GSG to all
glomeruli (median [IQR])

0.03
[0, 0.09]

0.04
[0, 0.09]

0.49 (0.06-3.23,
p=0.478)

0.03
[0, 0.09]

0.05
[0, 0.12]

10.94 (1.06-89.89,
p=0.032)

Microthrombus (N(%))
No 446 (98.2) 162 (97.6) 1 634 (97.5) 60 (98.4) 1

Yes 7 (1.5) 4 (2.4) 1.57 (0.41-5.28,
p=0.474) 15 (2.3) 1 (1.6) 0.70 (0.04-3.57,

p=0.737)
Unknown 1 (0.2) 0 (0.0) 1 (0.2) 0 (0.0)

Abbreviations: IQR, interquartile range; Univar., univariable; No., number; GSG, globally sclerosed glomeruli; CI,
confidence interval; OR, odds ratio; y, year; NA, not available; TXP, transplant.

* Non-parametric Mann-Whitney U-test
† Excluded before variable selection

In order to estimate the effect of bias due to missing values when obtaining the
estimators, the two steps of score generation were repeated on the multiple imputed
dataset. It was shown that the estimators for the outcome 1ytl were practically
identical, which is partly due to the low number of missing values of the included
variables (Figure 5.28[30]). In the evaluation of the models for DGF, the model for
the variables selected in step 1 was again calculated first. Subsequently, on the subset
of the cohort whose predicted risk was in the same interval (18% - 36%), the model
was updated and recalibrated with the histological variables Banff cv and number of
glomeruli. The estimators of the individual variables included in the modelling of step
2 are shown in Figure 5.29[30]. There was a tendency to underestimate the odds for
DGF in the number of HLA-DR mismatches (2 vs. 0) and the CMV-IgG status of the
recipient, while at the same time overestimating high Banff cv scores in the training
compared to the multiple imputed data.
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Figure 5.28: Regression estimates of 2-Step score for 1y-tl on imputed vs. non-
imputed dataset[30].
Abbreviations: CIT, cold ischaemia time; y, years; HLA-A, B and DR, human leu-
cocyte antigens A, B and DR

Figure 5.29: Regression estimates of DGF-score including histology on imputed vs.
non-imputed dataset. Model trained on subset of observations with DGF-predictions
in the range of .18 - .36 which based on the final models after step 1[30].
Abbreviations: CIT, cold ischaemia time; D-BMI, donor BMI; R-BMI, recipient BMI;
R. CMV-IgG, recipient cytomegalovirus antibodies IgG
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When the histograms of predicted probabilities for DGF are plotted again using
the score from step 2, separated according to the actual observed outcome, an im-
provement in the separation can be seen in the training (Figure 5.30[30]). This was
also observed by the net reclassification index, where a significant increase in the NRI
for non-events NRInon−event = .504 (95%-CI: .393 to .616) at a simultaneous de-
crease of the NRI for events NRIevent=-.244 (95%-CI: -.454 to -.034) was observed
at the subset of recipients with intermediate risk. Overall, a NRI of .260 (95%-CI:
.023 - .498) was observed. Measured on the entire dataset, the NRI was less strong
pronounced with values of NRInon−event = .319 (95%-CI: .227 - .411), NRIevent =
-.111 (95%-CI: -.269 to .046) and overall NRI = .208 (95%-CI: .025 - .390). After
the second step, the overall AUC and scaled Brier improved slightly from .669 to .695
and .072 to .092 on the training data. As displayed in Figure 5.32[30], calibration
intercept and slope were very good (close to 0 and 1), which is expected as the models
were trained on the data.

Recalibration and updating did not improve accuracy on the validation dataset,
where there were fewer observations in the range between 18% and 36% of the
predicted probability. Respectively, the overall NRI on the subset was NRI = .008
(95%-CI: -.659 to .676) and the entire validation NRI = .062 (95%-CI: -.282 to
.406). After the second step, the overall AUC and scaled Brier became slightly
worse as they decreased from .700 to .692 and .028 to .001 on the validation data.
Calibration intercept (-.641 and -.669) and slope (.780 and .620) were rather bad and
indicate a severe underestimation of the risk, which can also be observed in Figure
5.32.

For outcome 1y-tl, on the other hand, there was still no clear separation of the
predicted probabilities in the histogram (Figure 5.31[30]) on the training after step 2.
The AUC after step 2 equalled .707, calibration was, as for DGF, very good (intercept
= .005, slope = 1.003, ECI = .047), which can be observed in Figure 5.33[30]. The
scaled Brier score, as for other models, was with .041 rather low.

On the validation dataset, the observed transplant losses were significantly more
frequently to the right of the vertical line marking the prevalence as compared to the
training data. However, there was only a single observation where Banff ct was in ct2
or ct3. Therefore, no significant differences between the prediction after step 1 and
step 2 could be expected on the validation which is why the estimation of the NRI
is rather useless. The AUC (=.765) was better than on the training data, which was
also the case for the scaled Brier score (=.052). Calibration was, as expected, worse
(intercept = -.379, slope = 1.452, ECI = .207), with a strong underestimation of the
risk below the populations prevalence (9%) and overestimation for higher predicted
probabilities.
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Figure 5.30: Predicted probabilities of DGF after step 2 on training and validation
dataset. The vertical, black line represents the DGF prevalence values, grey lines
show the interval between .18% and .36%.

Figure 5.31: Predicted probabilities of 1y-tl after step 2 on training and validation
dataset. The vertical, black line represents the prevalence of death-censored trans-
plant losses within the first year after transplantation.
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Figure 5.32: Calibration plots and statistics (ECI = estimated calibration index,
C(ROC) = AUC, CL = 95% confidence limits) of DGF after step 1 and 2 on training
and validation datasets. [30].
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Figure 5.33: Calibration plots and statistics (ECI = estimated calibration index,
C(ROC) = AUC, CL = 95% confidence limits) of death-censored transplant loss
within one year after step 1 and 2 on training and validation datasets. [30].
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5.6 Comparison of performance between established
and the new 2-Step scores

As already described in detail in Chapter 2, there are several scores that can be used to
predict DGF and 1y-tl. To compare the performance as measured by the AUC of the
2-Step DGF-score, the well-known scores from Irish (KDRI, version 2010 [62]), Balaz
[63] and Chapal [64] were used. Balaz presented two scores called "CIV", which bases
on Banff ci and Banff cv, and "CIV + donor age + donor cause of death", adding the
donors age and cause of death to "CIV". The performance of the developed 2-Step
1y-tl-score was compared with the established ones by Snoeijs [103], Port [79], and De
Vusser (Leuven score [102]), as well as the recently on Eurotransplant data generated
KTOP-score from Miller [37]. In case of the solely on Banff lesion scores based score
by Snoeijs, the "Snoeijs, score", as a sum of cg+mm+ct+cv+ah+(fraction sclerosed
glomeruli*3) was chosen rather than the Remuzzi score, with cutoff of ≤ 3 vs. >
3 defining a dichotomised version "Snoeijs, binary". The AUC was chosen, because
it is independent of the calibration (with regard to intercept and slope). Therefore,
even if the intercept of a regression-based score is not published, the AUC can still be
correctly estimated. As the cohorts of the training and validation datasets differed in
terms of donor and recipient risk profiles, validation was performed on both datasets.
In addition to transplant loss within the first year after transplantation, 3-, 5-, and 10-
year transplant survival were also evaluated for the Leuven score and 5-year transplant
survival for the scores by Snoeijs and Miller (Figure 5.36[30]). These scores base
on Cox-regression models with time-dependent baseline hazard functions instead of a
constant intercept term and were created to preliminarily predict long-term outcomes.
Three of the scores (Balaz, Snoeijs, De Vusser) also considered zero-hour biopsies,
the others were based purely on clinical factors. In all studies, the entire population
of recipients of a clinic or registry was always included, with the exclusion of minors.
They are therefore not calibrated for any specific risk group.

For the outcome DGF, in addition to the 2-Step score, only Irish’s model achieved
an AUC value of > 60% on the training (AUC [95%-CI] = 62.7 [55.2-70.3]%), followed
by Chapal (AUC [95%-CI] = 59.6 [54.3 - 64.9]%) and the two scores by Balaz, both
of which only achieved AUCs just above 50%. Although none of the models were
specifically trained on high-risk cohorts, the AUC’s on the validation dataset were
higher in all cases, but still below 70% as shown in Figure 5.34[30]. In particular,
Balaz’s model, which had a AUC of 60.6% when only Banff ci and cv were considered
as compared to when donor age and cause of death were also taken into account
(AUC = 51.8%), was surprising. On the training dataset, a similar picture emerged
for transplant loss within the first year, with KTOP (recipient score AUC [95%-CI] =
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65 [57.3-72.7]% vs. recipient and donor score AUC [95%-CI] = 66.2 [59-73.3]%) and
Leuven (AUC [95%-CI] = 64.4 [56.3-72.5]%) performing best following the 2-Step
score, as shown in Figure 5.35[30]. The AUC of Snoeijs’ dichotomized score indicated
that the prediction was barely better than a coin toss AUC [95%-CI] = 50.8 [44.4-
57.2]%, while the continuous score still had an AUC of 54.6 [46.7-62.4]%. Port’s
score was comparable to that of Leuven with AUC [95%-CI] of 62.8 [53.5-71.7]%.

Apart from Snoeijs’ continuous score, the AUCs improved in all models on the
validation dataset, but with a significant widening of the 95% confidence intervals.
KTOP again performed best after the 2-Step score with AUC [95%-CI] = 72.6 [60-
85.2]% when both donor and recipient variables were considered.

Figure 5.34: AUC values of scores predicting DGF (Balaz, Irish, Chapal, 2-Step)[30].
"Balaz, CIV" bases on Banff ci and Banff cv; "Balaz, CIV + d. age + death" adds
the weighted donors age and cause of death to "Balaz, CIV"
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The fact that Snoeijs’ score, which based purely on Banff lesion scores, performs
the worst is hardly surprising, as it has already been shown that the Banff lesion scores
in this dataset were univariate only slightly associated with 1y-tl, and continue to do
so when sum up. When looking at transplant loss at a later point in time, KTOP
continued to perform best for the five years, at least on the training set (AUC =
67.8% and 67.6% without and with recipient information).

On the validation dataset, the prediction by KTOP was comparable to a coin
toss in terms of risk discrimination. Snoeijs’ score again performed worst (AUC =
51.2%), with a slight improvement on the validation data (AUC = 56.4%). For 5-year
transplant loss (5y-tl), De Vusser’s Leuven Score performed slightly worse than the
KTOP, on both training and validation datasets. Three-year transplant loss (3y-tl)
was only determined for the Leuven Score. The AUC for the training data was the
same as for 5y-tl (64.5% and 65%, respectively) and for the validation data as for
10y-tl (61.5% and 61.2%, respectively).

In summary, it can be said that scores based purely on clinical parameters showed
comparable results with those that also took the Banff lesion scores into account.
The Snoeijs score, which was based exclusively on histological parameters, performed
worst across the board. The KTOP, which was also trained with Eurotransplant
data, showed comparable results to the 2-Step scores, although the training cohort
for KTOP was significantly larger.
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Figure 5.35: AUC values of scores predicting 1y-tl (by Miller "KTOP", Snoeijs, Leu-
ven, Port, 2-Step)[30]. KTOP is based on recipient "KTOP, recipient" or recipient,
transplant and donor variables "KTOP, recipient & donor". "Snoeijs, score", is a sum
of cg+mm+ct+cv+ah+(fraction sclerosed glomeruli*3), with cutoff ≤ 3 vs. > 3 it
defines a dichotomised score "Snoeijs, binary".
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Figure 5.36: AUC values of scores predicting 3-, 5- and 10-year transplant loss (by
Leuven, Snoeijs, Miller "KTOP)[30]. KTOP is based on recipient "KTOP, recipient"
or recipient, transplant and donor variables "KTOP, recipient & donor". "Snoeijs,
binary", is a sum of cg+mm+ct+cv+ah+(fraction sclerosed glomeruli*3), with cutoff
≤ 3 vs. > 3 defining a dichotomised score.
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Discussion and Conclusion

6.1 Summary of findings
Before the actual development of the score began, a systematic literature review of
existing scores that predict DGF or one-year (death-censored) graft loss was con-
ducted. As a result of this search, thirty prediction models for the outcome DGF were
identified, five of which were based on both clinical and histological factors. None of
the 9 scores that predict 1y-tl take into account results from zero-hour or procurement
biopsies. However, one-year graft survival could also be predicted with models that
take into account a longer observation period after transplantation, provided that
appropriate methods, such as Cox regression with the baseline hazard specified at
one year, are used in the modelling as with KTOP. Models that consider histological
examination as an option have not existed so far. What is new for kidney transplan-
tation is already established and integrated into guidelines in other areas, particularly
in oncology and cardiology diagnostics [189, 190, 191].

The available training and validation dataset was then described in terms of the
distribution of the possible influencing variables and outcomes. This showed that the
donors and recipients in the validation dataset, in terms of their characteristics, were
comparatively at higher risk for DGF and the death-censored transplant loss within
the first year.

The actual steps in score development were described in Sections 5.3 to 5.5.
Finally, a group of recipients at intermediate risk of DGF was identified, for whom
an additional histological examination may be useful to predict the outcome. In
contrast, an additional histological evaluation to predict later outcomes, such as the
1y-tl, seemed to lead to an improvement in accuracy in every case.

Score building was followed by a validation and a comparison with predictions
based on other established scores in Section 5.6. This revealed the negative effects of
the different cohorts used for training and validation with regard to the distributions

112



CHAPTER 6. DISCUSSION AND CONCLUSION

of the risk factors. In general, the risks for DGF and 1y-tl were underestimated in
the validation cohort, which was clearly visible in the calibration curves of the 2-Step
scores. AUCs were, however, sometimes higher in the validation cohort than in the
training dataset, even for the comparison scores. This clarifies how important it is
to consider the distribution of influencing factors in a cohort if you want to apply
trained risk scores to new populations. In particular, if you use very heterogeneous
cohorts, as is the case within the Eurotransplant region, one should take into account
different regional or risk-based clusterings within these cohorts in order to generate
results that are more specific and thus more correct.

6.2 Strengths and limitations
One strength is certainly that the data used come from several countries of the
Eurotransplant region, representing a variety of healthcare systems in which differ-
ent medical-technical, transplant-political and logistical conditions prevail. In total,
transplant centres from six countries were involved. What can be seen as a strength
in this project has also shown limitations. With a significantly lower number of cases
than planned in the application, and an unbalanced distribution among the centres,
centre effects in the form of baseline probabilities for the two outcomes could not
be taken into account as planned. The number of observations per centre in the
training dataset varied between 44 and 442, with DGF rates between 4% and 44%
and 1y-tl rates between 3.3% and 9.8%, clearly indicating that the cohorts are not
representative and that the baseline estimates are biased. It is even more surpris-
ing that inter-centre differences in terms of the relative frequency of outcomes were
not taken into account in any risk score to date. When the KTOP score was cre-
ated, based on more than 32.000 Eurotransplant transplants from eight countries and
modelled using Cox regression, at least the predictive accuracy was calculated on a
leave-one-country-out basis [37].

As there is a recent but ongoing debate about the ability of nephropathological
parameters to predict the transplant outcome, it is a strength of this work that these
factors were included in the study data in addition to clinical variables. Biopsies were
provided by the participating centres and evaluated by an experienced nephropathol-
ogist specifically for the purpose of the study. As a result, the histopathological
variables were almost complete. The situation was different for variables that did not
need to be reported to Eurotransplant for identification and allocation. Variables with
> 40% missing values were directly excluded from the analysis, but even lower pro-
portions, if they occur in many variables, can lead to distorted results and are a source
of systematic bias. As a result, missing data can be considered a major weakness and
limiting factor in the modelling, despite the possibility of replacing them using multi-
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ple imputation, and the existence of modelling methods, such as random forests, that
do not rely on completeness to include them in the analysis. However, analyses on
the multiple imputed dataset yielded comparable estimates except for the number of
HLA-DR mismatches where the OR for DGF (2 vs. 0 mismatches) was higher in the
imputed data (0.23 vs. 0.15). Also, the role of the number of glomeruli, a frequently
assessed histological feature, is unclear. The number of glomeruli may instead be a
proxy for glomerular density in the cortex and should be evaluated accordingly as it is
highly dependent on the type of biopsy used (needle, wedge, punch). The observed
negative association between the number of glomeruli and post- transplantation may
be biased if transplant centres with a low DGF or 1y-tl rate have preferably used al-
ternatives to needle biopsy. Further research on this issue and on how best to assess
glomerular density (in 2-dimensional slides or the 3-dimensional cortex) is needed.

An interesting question which cannot be answered by the study design used, is
that of the organs discarded within the Eurotransplant region due to quality concerns,
which would still be considered good quality according to the new scores. To collect
data on organ quality, Eurotransplant introduced organ quality forms which include
information on the quality of the organ, procurement and packaging [92]. According
to chapter 9 of the ET Manual, "findings on anatomic abnormalities, possible iatro-
genic and packaging and/or transportation related injuries should be indicated" [92].
Eurotransplant has not only committed itself to register the reason for the rejection
of a potential transplant, but it also takes the consent of the Eurotransplant duty
office to discard an organ from the allocation list, as it could be placed on the rescue
allocation list instead.

With access to the information regularly collected by Eurotransplant on all trans-
planted organs with recipient data, and additional clinical and histopathological infor-
mation on the quality of the rejected organs, the proportion of rejected organs with
the same quality as a comparable, transplanted graft could be quantified. The reli-
ability of the nephropathological assessment according to the Banff criteria was also
not recorded, although it was planned to do so. Before a medical device is approved,
it is tested for reliability. Similarly, the ability to correctly apply scores to classify
pathological abnormalities should be ensured. The Banff scheme of classification was
first proposed in 1991 by an international group of pathologists, nephrologists and
surgeons and has since then been regularly revised, reviewed and expanded [192].
However, in clinical practice, where decisions about organ quality have to be made
on short notice and sometimes by less experienced nephrologists, pathologists and
surgeons, the reliability of the Banff classification has been questioned [193, 194,
195]. As a result, the potential impact of pathological abnormalities on transplant
outcome could be mitigated by measurement error. In the age of digital pathology
and AI-based image analysis, it was also decided to form a separate Banff Digital
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Pathology Working Group with the following objectives to "establish a digital pathol-
ogy repository; develop, validate, and share models for image analysis; and foster
collaborations" [196]. With the support of such new tools (a decision based solely on
AI is explicitly not advocated here), accuracy could be improved and correlations with
transplant outcome could be more precisely determined. Outside this working group,
other research groups are working on measuring reliability and how deep learning and
semi-supervised learning can support quality measurement and is already underway
as a continuation of this project [197].

One medical-technical example in which ET-countries differ are perfusion ma-
chines which are not yet widely used in Germany for the storage of transplants prior
to transplantation, although the DSO is planning and recommending their increased
use. Instead, the kidneys are mainly stored in static cold storage. In the Nether-
lands, on the other hand, the techniques of normothermic regional perfusion (NRP)
and hypothermic machine perfusion (HMP) are widely accepted and have become
the standard, even for kidneys at increased risk of failure after transplantation [198].
Several advantages of machine perfusion have been reported in the literature: lower
DGF and transplant loss rates [199, 200], additional information on organ quality
through real-time monitoring, cost savings [200], immunomodulation and renal repair
[201]. However, the logistical requirements of NRP are significantly more demanding
than for alternative methods and the protocols used vary widely between transplant
centres [202]. Additional costs should be justified by better outcomes after transplan-
tation. However, cost-benefit analyses need to be carried out individually for each
region to take account of local health systems and are therefore difficult to estimate.
However, a recent Cochrane review showed that compared with static cold storage,
hypothermic machine perfusion reduces the rate of DGF and transplant loss, while
studies from the USA and Europe have shown that it is cost-saving for kidneys from
deceased donors [200]. Despite this existing evidence, information on cold storage
versus machine perfusion was not included in the analysis, which is another limitation.

The decision on who is accepted as a potential donor is made by the ET countries
on an individual basis, taking into account international conventions such as the
Declaration of Istanbul on Organ Trafficking and Transplant Tourism [203]. There
are also differences between countries in this respect. The cause of death of the donor,
i.e. whether it is brain death (DBD donors) or merely circulatory death (DCD donors)
according to the Maastricht categories 1 to 4, or even imminent death [204], plays a
role. Austria, Belgium and the Netherlands were the first countries to accept kidneys
from DCD donors 20 years ago. Germany was one of the 8 European countries, and
the only one in Eurotransplant, to accepted mainly organs from DBD donors [205]. A
comprehensive discussion of the potential of donation after circular death was already
given by Snoeijs et al. in 2007 [206] and was further discussed by Wind et al. in
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2013 [207] amongst others, while Potter et al. [204] discuss the potential benefits
of imminent death donations. Besides those of young age or with missing biopsies,
donors without diagnosis of brain death were excluded in this project. As, according
to the Eurotransplant Annual Report of 2022, approximately 50% of deceased donors
in the Netherlands and Belgium were DCD, the exclusion of such a number of donors
represents a significant limitation in the generalisability of the results. Therefore,
future studies based on ET data should include both DCD and DBD donors.

Established binary logistic regression was chosen as the modelling method. One of
the strengths of regression models is that they are easy to interpret and apply to new
data, as the result of such a model is an additive scoring system. As shown in chapter
2, most of the prediction models for DGF and 1y-tl are based on regression, which
once again emphasises the acceptance of this method in medical statistics when it
comes to risk prediction. However, it must also has to be emphasized that in most of
the available regression-based scores, the baseline outcome probability also known as
"intercept", has not been published, making it impossible to use it them as prediction
tool for new data. Regression models are also known to be adaptable in a way that
they can be calibrated, updated or fusioned [208], flexible enough to include inter-
actions, nominal and ordinal variables with more than two characteristics, cardinally
scaled variables including polynomials and splines. The two-step approach required
a statistical or machine learning method that allows recalibration and updating of
all or a identified subset of observations for which the accuracy of the clinical- and
transplant-based variables was possible. Using logistic regression in the first step and
updating of the resulting predictions in a second step by entering histopathological
variables resulted in two explainable 2-Step scores, which is a strength of the results.

6.3 Informed decision-making

The whole is greater than the
sum of its parts

Aristotle
384-322 b.C.

Nephrologists and transplant surgeons who assess the quality of the kidney are
certainly at the forefront of the decision to release an organ for donation. Policies,
guidelines and centre- or hospital-specific specifications must be taken into account
individually to meet the needs of those involved, but experience and confidence in
one’s own abilities also play an important role.

Ultimately, the recipient must also agree to the transplant after being informed
of the potential risks and weighing up the benefits and alternatives. A 2011 survey
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of 104 patients and 62 transplant surgeons in the United States compared what
clinicians consider relevant information with what patients need to make decisions
[209]. The quality of the donor kidney was the most important factor for both groups.
Donor age, which is associated with organ quality, and matching difficulties were
primarily important to surgeons, while the expected duration of organ preservation
after transplantation and similarity to the donor were important to recipients in terms
of matching criteria.

Informed decision making describes the process of making decisions based on
an understanding of the available information. It involves gathering, analysing and
interpreting data to assess potential risks and benefits, alternatives and uncertainties.
Figure 6.1 shows some of the pieces of the puzzle that go into the decisions of different
stakeholders.

Figure 6.1: Informed decision making: puzzle of stakeholders needs

The system-of-systems approach, which is already widely used in the industry and
the social sciences and has been proposed by Dzieran et al. for transplant acceptance,
is an approach that is designed to take into account precisely this multidimensionality
of decision making [210, 211]. To paraphrase Aristotle’s much-quoted sentence "the
whole is greater than the sum of its parts”. Consequently, the experience of the
transplant surgeon, established risk scores (including predicted time to next offer,
probability of death before next offer, short and long term transplant outcomes), the
literature, clinical and nephropathological factors, medical and technical options for
transplant preservation, should all be considered and weighted at the same time and
a decision made on this basis.

With regard to the importance of guidelines, a survey of 19 nephrologists in
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Australia has shown that confidence in the CARI (Caring for Australasians With Renal
Impairment) guideline applied there is quite high [212]. CARI covers the areas of
“chronic kidney disease”, “dialysis” and “transplantation”, with transplantation also
including donor suitability [213]. Evidence-based guidelines were generally found to
be helpful there, also for decision-making. Another survey amongst clinicians in the
USA also indicated the wish for standardization and quality control in how biopsies
are performed and findings are interpreted [214].

There is no consensus and little evidence, particularly in the Eurotransplant region,
on whether or when to perform renal biopsies and what weight they should have in
decision-making. Although there is an ESOT guideline on how to perform a biopsy
and what parameters should be taken into account, there are still no guidelines from
Eurotransplant or the ESOT on when to do it [39]. However, in chapters 7-10 of
the 8th edition of the "Guide To The Quality And Safety Of Organs For Transplanta-
tion", the European Directorate for the Quality of Medicines and HealthCare describes
kidney-specific evaluation and selection criteria including kidney biopsies, which are
not recommended to be performed systematically [215]. In the case of macroscopic
findings indicating marginal or bad quality (e.g. tumour, space-occupying lesions),
additional imaging and biopsy may be recommended. If a procurement biopsy is per-
formed, it is recommended to follow the Banff classification. With regard to graft
acceptance, grafts with low Banff lesion scores (< 2), which are considered to be
mild histopathological changes, may be accepted when harvested from older donors
or donors with cardiovascular risk factors [215].

The fact that the reliability of the histopathological evaluation of a kidney biopsy
is generally considered to be rather low is often criticised in the literature and has been
demonstrated several times [216]. In the USA, the proportion of kidneys rejected on
the basis of histopathological examination was around 20% in 2019 [217]. Accordingly,
there has been and continues to be a critical discussion about the weighting in the
decision-making process. Although a survey including 41 kidney transplant surgeons
and 27 transplant nephrologists in the USA suggests that good biopsy results increase
the acceptance of kidneys with acute kidney injury or of low serum creatinine donor
offers, the same study showed that overall more kidneys were discarded than accepted
when biopsy findings were available [217]. Another survey of 40% of US kidney
transplant centres on deceased donor procurement practices by Lentine et al., 2022,
also found that favourable biopsy results could increase acceptance of "marginal"
kidneys while increasing the rejection of standard criteria kidneys [218].
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6.4 Steps for technical implementation
Ultimately, this project aimed to develop a tool that can be directly integrated into
the Eurotransplant database system. As all factors used in the score development
are already available in a standardised form in the Eurotransplant database system,
and the 2-Step scores represent simple additive models, such an integration would
be technically feasible. The implementation of the 2-Step scores should not only
provide an evidence-based tool for estimating post-transplant risks, but also reduce the
number of rejected organs. As a result, it can be used by all to make an evidence-based
decision to accept or reject a transplant. To return to the CRISP-DM data mining
process from Section 3.1, the first five steps of creating a prognostic model have
already been covered in this project. The model has already been validated internally
and presented at conferences (see supplemental material) and in a publication [30].
Validation has shown that the model has weaknesses in calibration when applied to
a systematically different cohort. Accordingly, it should be considered whether a new
modeling with the first five steps should be carried out for specific subgroups before
the current 2-Step scores are included in impact studies.

Implementation would then only be successful if

1 Impact studies were successful with regard to

◦ the cost-effectiveness and clinical effectiveness

◦ the rate of rejected or discarded organs that should get reduced and

◦ the post-transplant risk that should not increase

◦ the population for which the score is best suited for prediction has been identified
as no score fits all (e.g. children, sensitised or older patients)

2 The scores are considered and accepted as a decision-making tool by those who
are ultimately involved in the transplantation process and

3 Scores are updateable, e.g. by Bayes theorem, to account for changes in the
population and to include new marker.

The KDPI, the KDRI and the Estimated Post Transplant Survival (EPTS) calcu-
lator have already been incorporated into UNOS and are regularly updated, to take
into account new observations. The first two are even used as part of the OPTN
allocation system. A comparison of the by the 2-Step scores predicted risks for DGF
and 1y-tl of transplanted and rejected or discarded organs is pending but is already
being planned. If the proportion of rejected organs with a low calculated risk is sig-
nificantly higher than for comparable, successfully transplanted kidneys, this might
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be an indication that the number of transplantable organs can be further increased.
If modelling, validation and implementation were successful, one could identify and
close potential donor detection gap in clinics.

6.5 Ethical considerations
It is widely accepted that there is a chronic shortage of donor organs worldwide, but
also in the Eurotransplant region. Accordingly, the fair distribution of the few donated
organs is essential, as well as the maximum utilization concerning a possible rejection.
Distribution in the Eurotransplant region is regulated by the allocation system there,
as described in Section 2.4. This already takes into account the subgroup of older
patients who have a lower chance of receiving a donor organ due to increased risks after
transplantation. Donor and recipient age are recognized risk factors that often appear
in risk scores. If high-risk results in systematically not receiving an organ, despite
being at the top of the transplant list, this would be a form of discrimination. In the
USA, for example, the Organ Procurement and Transplantation Network (OPTN) is
proposing to refit the KDRI, which is an integral part of UNOS, without inclusion to
the race factor [219]. "Race" is likely to be a proxy for a genetic variation (APOL1)
that is more common in black Americans and is associated with poorer transplant
outcomes. A high KDRI is a reason for refusal of transplantation in the USA, which
puts this population group at a disadvantage. A comparison between American and
French rates of organ acceptance has shown that the proportion of rejected kidneys
with a higher risk according to KDRI was significantly higher in the USA than in
France, which indicates a low risk appetite, but may also indicate a limited predictive
accuracy of the KDRI if the rates of poor transplant outcomes are not lower at the
same time [220]. An example about why transparency in how a score was developed
is important was given by the UK liver transplantation allocation system in 2022
which uses the Transplant Benefit Score (TBS) (https://transplantbenefit.
org). Researchers found "implausible predictions that simulated patients with chronic
liver disease survive longer if they develop cancer. In so doing, the algorithm actively
deprioritized simulated patients with cancer" [221]. What counts here is not only
the scientific basis, the quality of the data, and the methods used to develop the
score, but also the transparent communication of the weaknesses of the score and the
weighting of the results in the decision-making process. The weaknesses and potential
strengths of the 2-Step scores were discussed in Section 6.2.

When it comes to the question of who receives an organ, sicker patients are clearly
at the top of the waiting list. However, this system could also be exploited and is
also subject to errors. A transplant scandal that came to light in Germany in 2012
exploited precisely this type of waiting list prioritisation. It was found that patients
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had been classified as sicker at several transplant clinics in order to move them higher
up the list. In the US, however, "A racially biased test kept thousands of Black people
from getting a kidney transplant" [222] because they appeared to be healthier than
they actually were.

Eurotransplant is already working to reduce ethical concerns about fairness and
possible discrimination and to maximize the use of the donor organ pool, not only by
offering special programs for patients with a low chance of receiving a transplant, but
also by implementing a rescue allocation system whereby organs that are considered
by a centre to be unsuitable for their recipient or of insufficient quality are given a
second or even third chance of being transplanted. The 2-Step score is intended to
support these efforts by re-evaluating the quality of organs that would be rejected
on the basis of purely clinical, macroscopic observations, or that fall into a medium
to high risk group with an unclear outcome, using additional histological markers.
Ultimately, it can also be considered unethical to completely ignore the findings of
nephropathology if this could save more organs. To quote Marie-Francois Xavier
Bichat (1771-1802) at this point:

‘The more one observes diseases (...), the more one is convinced of the
necessity to consider local diseases not from the perspective of complex
organs, but from the perspective of individual tissues’ [223].

6.6 Conclusion
Finally, despite a limited observational cohort, it was shown that, taking into account
clinical parameters, the additional consideration of histological parameters can im-
prove the accuracy of prediction of both DGF and 1y-tl. Furthermore, a knowledge gap
in statistics and machine learning methods was revealed, which needs to be addressed
by further research. Although the observed effects of additional nephropathology were
relatively weak, this project provided an impetus for further follow-up projects with
large, possible multinational, cohorts. It was also possible to illustrate how important
the impetus supplied by medical issues is for the further development of mathematical
methods. Nevertheless, the potential ethical, economic, stakeholder, and transplant
surgeon concerns of new methods must not be ignored, and the consequences of im-
plementing such two-stage models in clinical decision-making should be investigated
accordingly.
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Search strategy and PICOS: systematic literature
review

For outcome = delayed graft function (DGF)
((((("kidney"[MeSH Terms] OR "kidney"[All Fields] OR "renal"[All Fields]) AND
"transplant*"[Title/Abstract]) OR (("transplants"[MeSH Terms]
OR "transplantation"[MeSH Terms] OR "graft*"[Title/Abstract]
OR "allograft*"[Title/Abstract] OR "allotransplant*"[Title/Abstract]
OR "deceased don*"[Title/Abstract] OR "grafting"[All Fields]) AND "kidney*"[MeSH Terms]))
AND 2000/01/01:3000/12/12[Date - Publication] AND "delayed graft function"[MeSH Terms]
AND ((("predict*"[Title/Abstract] OR "prognos*"[Title/Abstract] OR "risk"[Title/Abstract]
OR "probabilit*"[Title/Abstract]) AND ("tool*"[Title/Abstract] OR "calculat*"[Title/Abstract]
OR "model*"[Title/Abstract] OR "scor*"[Title/Abstract])) OR "nomogram"[Title/Abstract]))
NOT (("liver"[Title/Abstract] OR "heart"[Title/Abstract] OR "pancreas"[Title/Abstract]
OR "lung"[Title/Abstract]) AND "transplant*"[Title/Abstract]))
NOT ("living donors"[MeSH Terms]
OR "genes"[Title/Abstract] OR "living donor*"[Title/Abstract] OR "pediatrics"[MeSH Terms]
OR "living donation"[Title/Abstract] OR "child"[MeSH Terms])

For outcome = transplant loss
((((("kidney"[MeSH Terms] OR "kidney"[All Fields] OR "renal"[All Fields])
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OR "transplantation"[MeSH Terms] OR "graft*"[Title/Abstract]
OR "allograft*"[Title/Abstract] OR "allotransplant*"[Title/Abstract]
OR "deceased don*"[Title/Abstract] OR “grafting”[All Fields])
AND "kidney*"[MeSH Terms]))
AND ("graft survival"[MeSH Terms] OR (("graft"[Title/Abstract]
OR "allograft"[Title/Abstract] OR "transplant"[Title/Abstract])
AND ("failure"[Title/Abstract] OR "loss"[Title/Abstract] OR "survival"[Title/Abstract]
OR "outcome"[Title/Abstract])))AND ((("predict*"[Title/Abstract] OR
"prognos*"[Title/Abstract] OR "risk"[Title/Abstract]
OR "probabilit*"[Title/Abstract]) AND ("tool*"[Title/Abstract]
OR "calculat*"[Title/Abstract] OR "model*"[Title/Abstract]
OR "scor*"[Title/Abstract])) OR "nomogram"[Title/Abstract]
OR “scoring system”[Title/Abstract])
AND 2000/01/01 : 3000/12/12[Date - Publication])NOT ("living donors"[MeSH Terms]
OR "living donor*"[Title/Abstract]
OR "living donation"[Title/Abstract] OR "child"[MeSH Terms] OR "children"[Title/Abstract]
OR "pediatrics"[MeSH Terms] OR "gene"[Title/Abstract] OR "genes"[Title/Abstract]
OR "animals"[MeSH Terms] OR "pediatr*"[Title/Abstract] OR "antibodies"[MeSH Terms]
OR "treatment failure"[MeSH Terms]))
NOT
(("liver"[Title/Abstract] OR "heart"[Title/Abstract] OR "pancreas"[Title/Abstract]
OR "lung"[Title/Abstract]) AND "transplant*"[Title/Abstract])
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