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1. Zusammenfassung 

Obwohl es heute eine Vielzahl von Behandlungsmethoden für bösartige Erkrankungen gibt, 

ist Krebs nach wie vor eine der häufigsten Todesursachen weltweit. Neben chirurgischen 

Verfahren, Chemo- und Strahlentherapie haben immuntherapeutische Ansätze die 

Krebstherapie in den letzten Jahren revolutioniert. Allerdings profitiert nur ein Teil der 

Patientinnen und Patienten langfristig von einer solchen Therapie und es kommt häufig zu 

Resistenzentwicklung. Seit langem ist bekannt, dass Strahlentherapie neben der direkten 

Wirkung auf neoplastische Zellen auch die Immunogenität von Tumoren positiv beeinflusst 

und daher einen vielversprechenden Ansatz für kombinatorische Behandlungsschemata 

darstellt. Es ist bekannt, dass die immunmodulatorische Wirkung von Bestrahlung zu einem 

großen Teil auf Typ-I-Interferone zurückzuführen ist, welche durch Aktivierung des 

cGAS/STING-Signalwegs bei DNA-Schäden induziert werden. Das molekulare Chaperon 

HSP90 spielt eine zentrale Rolle bei der Stabilisierung von Proteinen, die an der Reparatur 

von DNA-Schäden beteiligt sind, sodass das Unterdrücken seiner Funktion Zellen anfälliger 

für Bestrahlung macht. In dieser Arbeit wurde der HSP90-Inhibitor TAS-116 mit nachfolgender 

Bestrahlung in vitro an verschiedenen murinen Tumorzelllinien getestet, um tumortyp-

spezifische Unterschiede in Bezug auf synergistische Effekte auf die Immunogenität von 

Tumoren herauszuarbeiten. Der Wirkstoff wurde vor allem murinen SCLC-, NSCLC- und 

Kolonkarzinomzellen in Konzentrationen verabreicht, von denen bekannt ist, dass sie für jede 

Zelllinie subtoxisch sind, und die Aktivierung des cGAS/STING-Signalwegs wurde quantifiziert. 

TAS-116 und Strahlentherapie zeigten ein synergistisches Potential bezüglich der Aktivierung 

des cGAS/STING-Signalwegs, welches bei Lungenkrebszellen stärker ausgeprägt war als bei 

Kolonkarzinomzellen. Dieses Potential einer verbesserten Immunogenität von Tumoren wurde 

anschließend in einem In-vitro-Ansatz zur Untersuchung der spezifischen Eliminierung von 

Tumorzellen durch CD8+ T-Lymphozyten weiter untersucht. Die kombinierte Behandlung mit 

HSP90-Inhibition und Strahlentherapie von tumortragenden Mäusen führte zu interessanten 

Ergebnissen in Bezug auf Veränderungen des T-Zell-Rezeptor-Repertoires von tumor-

infiltrierenden Lymphozyten, was zur weiteren vertieften Forschung in diesem Bereich anregt. 

Insgesamt gibt diese Arbeit Einblick in mögliche tumortypabhängige Unterschiede hinsichtlich 

einer Synergie von HSP90-Inhibition und Strahlentherapie. Die daraus gewonnenen Erkennt-

nisse sollten durch In-vivo-Behandlungsstudien weiter vertieft werden. Auch wenn die Studien-

hypothese nicht bestätigt werden konnte, bieten die in dieser Arbeit erzielten Ergebnisse 

ermutigende Aussichten für die weitere Forschung hinsichtlich des Einsatzes von HSP90-

Inhibition in Kombination mit Bestrahlung als vielversprechenden Ansatz zur Steigerung der 

Wirksamkeit immuntherapeutischer Ansätze und somit für bessere Therapiemöglichkeiten für 

viele Krebspatientinnen und -patienten in der Zukunft. 
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2. Abstract 

Although a variety of treatment modalities for malignant diseases are available today, cancer 

remains one of the leading causes of death worldwide. In addition to surgery, chemotherapy, 

and radiation therapy, immunotherapeutic approaches have revolutionized cancer therapy in 

recent years. However, durable benefits are confined to only a subset of patients and 

development of resistance is common. It has long been known that radiation therapy, in 

addition to its direct effects on neoplastic cells, also positively affects tumor immunogenicity 

and therefore represents a promising approach for combinatory treatment regimens. 

Immunomodulatory effects of radiation are known to be dependent on type-I interferon 

signaling resulting from activation of the cGAS/STING pathway upon DNA damage. The 

molecular chaperone HSP90 plays a pivotal role in stabilizing proteins involved in DNA 

damage repair mechanisms and its inhibition therefore renders cells more susceptible to 

irradiation. In this thesis, the HSP90 inhibitor TAS-116 was applied to various murine tumor 

cell lines with subsequent irradiation in vitro to elucidate tumor type-specific differences in 

terms of synergistic effects on tumor immunogenicity. The agent was administered primarily to 

murine SCLC, NSCLC, and colon carcinoma cells at concentrations known to be subtoxic to 

each cell line, and activation of the cGAS/STING pathway was quantified. TAS-116 and 

radiation therapy displayed synergistic potential to activate the cGAS/STING pathway, which 

was more pronounced in lung cancer cells than in colon carcinoma cells. This potential to 

improve tumor immunogenicity was subsequently further investigated in an in vitro approach 

examining specific killing of tumor cells by CD8+ T lymphocytes. Combined treatment with 

HSP90 inhibition and radiation therapy of tumor-bearing mice led to interesting results in terms 

of changes in the T cell receptor repertoire of tumor-infiltrating lymphocytes, encouraging 

future in-depth research in this area. Overall, this work provides insight into possible tumor 

type-dependent differences regarding synergy of HSP90 inhibition and radiotherapy. The 

knowledge acquired from these findings should be further expanded on through in vivo 

treatment studies. Even though the study hypothesis could not be confirmed hereby, the results 

obtained in this thesis offer encouraging prospects for further investigation of HSP90 inhibition 

in combination with radiation as a promising approach to enhance the efficacy of 

immunotherapeutic approaches and thus provide better therapeutic options for many cancer 

patients in the future. 
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3. Introduction 

3.1 Cancer 

Accounting for 9.7 million deaths in 2022, cancer remains one of the leading causes of death 

worldwide. While lung-, breast-, and colorectal cancers are the most common cancer types, 

lung-, colorectal, and liver cancer are the leading causes of death among cancer patients1. 

In 2000, Hanahan and Weinberg postulated six characteristics most malign cells have in 

common. These ‘hallmarks of cancer’ were later expanded to a total of eight core capabilities 

of cancer cells, namely “the acquired capabilities for sustaining proliferative signaling, evading 

growth suppressors, resisting cell death, enabling replicative immortality, inducing / accessing 

vasculature, activating invasion and metastasis, reprogramming cellular metabolism, and 

avoiding immune destruction”2 (Fig. 1).  

 

Figure 1: The hallmarks of cancer (D. Hanahan, 2022)3  

The hallmarks of cancer are eight core capabilities common to most tumor cells that enable 
growth and progression of malignancies. In addition, two enabling characteristics involved in 
the activation of cancer hallmarks have been defined: tumor-promoting inflammation, and 
genome instability and mutation. 

 

While genetic predisposition and environmental factors play a central role in the development 

of malignant diseases, spontaneous somatic mutations also occur in human cells during the 
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cell division process. Because such mutations are stochastic events, it is partly a matter of 

chance which genes gather which type of mutations at a given time in life4. Therefore, the 

accumulation of somatic mutations may eventually lead to activating mutations of oncogenes 

or inactivation of tumor suppressor genes, promoting uncontrolled proliferation of mutant cells 

and ultimately carcinogenesis5. However, cancer cells continue to undergo genetic changes 

even after complete malignant transformation, resulting in intratumoral genetic heterogeneity.  

The origin of most solid tumors can be traced back to a single cell that has been malignantly 

altered by a truncal mutation. Nevertheless, genetically distinct populations of subclones, 

starting from their common progenitor cell, evolve in parallel. This model of cancer 

development, termed ‘branched evolution’, inevitably results in high intratumoral heterogeneity 

and has been described for lung cancer, colon cancer, and melanoma, among others6. This is 

of high clinical relevance because patients with tumors of high genetic heterogeneity are more 

likely to develop resistance to cancer therapies due to expansion of certain preexisting 

subclonal populations under therapeutic pressure7.  

 

3.1.1. Lung cancer 

Accounting for 12.4% of all cancer cases and 18.7% of total cancer deaths in 20221, lung 

cancer is of immense importance to the medical system worldwide. With 90% of all cases 

attributable to tobacco use, smoking remains the most important modifiable risk factor for the 

development of lung cancer. However, as the prevalence of smoking generally declines, other 

factors such as air pollution, asbestos and radon exposure, as well as chronic lung disease 

are becoming increasingly important8. 

Histologically, 15% of total lung cancer cases can be classified as small cell lung cancer 

(SCLC)9. SCLC tumors originate from neuroendocrine cells in the lung epithelium10 and are 

characterized by rapid growth and a tendency to metastasize early. They are, however, 

considered curable if the cancer is still confined to one hemithorax at the time of diagnosis.  

The carcinogenesis of SCLC is primarily driven by bi-allelic inactivation of tumor protein p53 

(TP53) and retinoblastoma protein 1 (RB1). Loss of function of both proteins has been found 

to be mandatory for SCLC pathogenesis11. 

Treatment of SCLC at a limited stage consists of chemoradiotherapy with prophylactic cranial 

irradiation12. However, 2-year survival rates are low at only 14-15%13, as 70% of SCLC patients 

already have metastases at the time of diagnosis (stage IV)14. In recent years, management 

of extended-stage SCLC has advanced by approval of the checkpoint inhibitors atezolizumab 

and durvalumab, monoclonal antibodies against programmed death-ligand 1 (PD-L1). These 

checkpoint inhibitors, in combination with platinum-based chemotherapy as first-line treatment, 

resulted in an improved overall survival of 12.3 and 13.0 months, respectively, compared with 



14 
 

10.3 months for chemotherapy alone. This is independent of PD-L1 immunohistochemistry 

status15,16.  

Of the 85% of lung cancers classified as non-small lung cancer (NSCLC), the most common 

histologic subtypes are lung squamous cell carcinoma (LUSC) and lung adenocarcinoma 

(LUAD), the latter being the most frequently diagnosed type of lung cancer in non-smokers17. 

Both NSCLC subtypes are characterized by a high mutation rate and genomic complexity, but 

generally have a better prognosis than SCLC, with a 2-year survival rate of 42%13. While 

somatic mutations of TP53 are found in most LUSC tumors, the most common targetable 

mutations in LUAD, namely epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma 

virus (KRAS) mutations, are very rare in LUSC tumors, leading to marked differences in terms 

of treatment17.  

The first-line therapy of NSCLC diagnosed at stage I-II is complete surgical resection of the 

tumor, if possible. Adjuvant cisplatin-based chemotherapy regimens have resulted in a 5.4% 

total survival benefit at 5 years in patients with stage II or IIIa tumors after resection18. The 

phase III CheckMate 816 trial showed that neoadjuvant chemotherapy in combination with 

nivolumab treatment prolonged event-free survival by 10.8 months and improved the 

pathological complete response rate by 22% in patients with resectable stage Ib to IIIa NSCLC 

compared with neoadjuvant chemotherapy alone. Moreover, this benefit to patients did not 

negatively affect the occurrence of adverse events or the feasibility of surgery19. 

Complete resection generally has curative potential in the treatment of stage III NSCLC, if 

possible. However, at this stage the disease is often considered unresectable because large 

or invasive tumors cannot be removed without leaving a positive margin, or supraclavicular or 

contralateral lymph nodes are infested20. In these cases, definite chemoradiation with 

concurrent administration of chemotherapy and radiation therapy (RT) has been shown to be 

more effective than sequential treatment21. Furthermore, consolidation therapy with 

durvalumab after chemoradiotherapy improved overall survival and progression-free survival 

(PFS) in the phase III, placebo-controlled PACIFIC trial, establishing this treatment regimen as 

standard of care for patients with unresectable, stage III NSCLC22. 

On the other hand, patients with metastatic disease (stage IV) generally require systemic 

therapy. Before immunotherapeutic therapies became accessible, the standard treatment for 

these patients consisted of platinum-based chemotherapy23. However, molecular 

characterization of tumor samples and discovery of targetable mutations led to new therapeutic 

approaches. Targeted therapy of EGFR-mutated tumors with tyrosine kinase inhibitors (TKI) 

has been shown to reduce the risk of disease progression or death by 63% compared with 

patients receiving chemotherapy24. Nevertheless, 40-60% of patients who initially respond to 

treatment with EGFR TKIs develop resistance over time. For these patients, the TKI osimertinib 
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has been shown to target both EGFR and the missense mutation responsible for resistance 

development, leading to a disease control rate of 84%25.  

In recent years, immunotherapeutic approaches have contributed to immense changes in the 

treatment of NSCLC patients. The checkpoint inhibitor pembrolizumab, targeting programmed 

cell death protein 1 (PD-1), has been shown to prolong median PFS by 4.3 months in stage IV 

NSCLC patients with PD-L1 expression status greater than 50%, compared to patients 

receiving chemotherapy26. Combination therapy with pembrolizumab and platinum-based 

chemotherapy further improved PFS by 3.9 months in comparison to chemotherapy and 

placebo in patients with metastatic NSCLC27. Additionally, a recent study evaluating 

stereotactic irradiation of a single tumor site in patients with advanced NSCLC prior to 

treatment with pembrolizumab showed beneficial effects compared with pembrolizumab 

treatment alone28, displaying promising prospects for potential future combinatorial treatment 

regimens. 

 

3.1.2. Colrectal cancer 

In 2022, colorectal cancer (CRC) accounted for 9.6% of global cancer cases and 9.3% of 

cancer deaths1. Of all CRC cases, 39% develop in the proximal, 24% in the distal colon, and 

30% in the rectum with remaining cases classified as “not otherwise specified”29. Incidence 

rates double every five years up to the age of 50 and increase by approximately 30% in 

subsequent age groups. In both sexes, incidence rates for CRC have steadily declined since 

the 1980s. However, this decrease in incidence only reflects the trend in the older generation 

and is largely due to the rapid spread of colonoscopy screening. In contrast, incident rates in 

individuals younger than 50 years have increased since the 1990s, with an annual increase of 

1.8% in proximal and distal colon cancer in this group30. A study among cancer patients in the 

United States showed that about 54% of deaths from CRC were due to modifiable risk factors 

such as dietary habits, physical inactivity, alcohol consumption, smoking, and excess body 

weight31. 

Most CRCs develop in a stepwise process from normal to dysplastic to cancerous cells, known 

as the adenoma-carcinoma sequence. The most common mutation known to occur early in 

this sequence affects the adenomatous polyposis coli (APC) tumor suppressor gene. Germline 

mutations of the APC gene also underlie familial adenomatous polyposis (FAP), a hereditary 

disease characterized by the excessive occurrence of colorectal adenomas beginning in 

adolescence and inevitably leading to the development of CRC. Other genetic aberrations 

believed to occur early in the adenoma-carcinoma sequence include a gain-of-function 

mutation of KRAS, mutation or overexpression of TP53, and allelic loss of chromosomal 

regions 5q, 17p or 18q32.  
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However, 15% of CRC acquire genetic alterations due to DNA mismatch repair (MMR) 

deficiency. MMR-deficient cancers accumulate mutations in repetitive microsatellite DNA 

segments and therefore exhibit a phenotype termed high-level microsatellite instability (MSI). 

These MSI-high (MSI-H) CRC tumors differ from colon carcinomas following the adenoma-

carcinoma sequence in several ways, e.g., they are more frequently located in the proximal 

colon33, are characterized by a higher density of tumor-infiltrating lymphocytes34, and have a 

significantly better prognosis than their microsatellite stable (MSS) counterparts35. Moreover, 

Guinney et al. classified CRC tumors into four consensus molecular subtypes (CMS), namely 

CMS1 (14%, MSI immune), CMS2 (37%, canonical), CMS3 (13%, metabolic), and CMS4 

(23%, mesenchymal), based on genetic, epigenetic and transcriptomic characteristics, clinical 

features, and differences in the tumor microenvironment (TME)36. This allows for a better 

assessment of the prognosis of CRC patients as well as their response to specific 

therapies36,37.  

Patients with non-metastatic colon cancer usually undergo surgery in a curative attempt. For 

lymph node positive disease (stage III or higher), R0 resection, i.e., resection to microscopically 

tumor-free margins, should be followed by additional fluorouracil-based adjuvant therapy. 

However, regarding stage II colon carcinomas, such adjuvant chemotherapy should only be 

given to MSS tumors, as no benefit has been demonstrated for MSI-H tumors38.  

Patients with metastatic, unresectable CRC require systemic therapy and should preferably be 

treated with doublet chemotherapy in combination with targeted therapy using monoclonal 

antibodies against EGFR or vascular endothelial growth factor A (VEGF-A). However, because 

the efficacy of antibodies against EGFR has been shown to be confined to patients with rat 

sarcoma virus (RAS) gene wildtype (WT) status, they should not be used in patients with a 

RAS mutation39. 

In 2017, the checkpoint inhibitors pembrolizumab and nivolumab, blocking PD-1, were 

approved by the United States Food and Drug Administration (FDA) for MSI-H CRC after 

patients with this type of cancer were shown to benefit from such therapy in terms of prolonged 

PFS40,41. Recently, combination therapy with nivolumab and low-dose ipilimumab, a checkpoint 

inhibitor targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), as first-line therapy 

for patients with metastatic MSI-H CRC has demonstrated a disease control rate of 84% in a 

phase II study42. This suggests promising prospects for future combination treatment regimens 

for CRC. 
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3.2 The immune system 

The immune system is commonly divided into two groups (Fig. 2). Cells part of the innate 

immune system are responsible for the initial response against pathogen structures and 

include granulocytes, macrophages, eosinophils, basophils, natural killer cells (NK), and 

dendritic cells (DC). These cells are able to recognize pathogen-associated molecular patterns 

(PAMP) and damage-associated molecular patterns (DAMP) via toll-like receptors (TLR) on 

their surface. Upon recognition of such molecular patterns, cells are activated and produce 

pro-inflammatory cytokines and interferons (IFN).  

The second subsystem, adaptive immunity, follows this initial response with some delay. 

B lymphocytes mediate humoral immunity against extracellular targets by producing soluble 

antibodies that specifically bind to surface molecules of the invading pathogen. This effect, 

known as opsonization, marks pathogens for neutralization or phagocytosis by other immune 

cells or the complement system. The cellular immune response is directed against intracellular 

structures and is mediated by T cells. Depending on the type of receptors, or cluster of 

differentiation (CD), expressed on their surface, the latter can be divided into CD8+ cytotoxic 

T lymphocytes (CTL) and CD4+ helper T cells. 

B and T lymphocytes originate in the bone marrow. While B cells remain there, T cells migrate 

to the thymus in the course of their development. Here, in a complex process of rearrangement 

of different DNA segments, T cell receptors (TCR) are formed that specifically recognize 

different antigens when presented via major histocompatibility complex (MHC) molecules. 

Positive selection ensures that only T cells that do not recognize self-antigens leave the thymus 

and migrate to the lymph nodes.  

If a specific pathogen persists after the first line of defense of the innate immune system, 

macrophages and DCs, also known as antigen-presenting cells (APC), phagocytose pathogen 

debris and present corresponding peptides via MHC-I (intracellular pathogens) or MHC-II 

(extracellular pathogens) receptors on their surface. After APCs have migrated to local lymph 

nodes, peptides presented via MHC receptors can be recognized by naïve T cells via their 

TCR, which initiates the priming process. In addition, complete activation of T cells also 

requires co-stimulatory signals mediated by molecules on APCs and T cells, respectively, as 

well as another CD4+ T cell-dependent priming step. In the absence of this last step, CD8+ 

T cells exhibit an ‘exhausted’ phenotype characterized by impaired cytotoxicity, cellular 

migration, and invasive potential. Upon activation, CD8+ T cells bind to cells presenting their 

cognate peptide in the periphery, causing cell death of the target. Meanwhile, CD4+ T cells 

assist in either the activation of additional CTLs or the B cell-mediated antibody response43,44. 

Regulatory T cells (Treg) represent an anti-inflammatory subtype of CD4+ T lymphocytes. These 

cells exert an immunosuppressive activity through various mechanisms, including CTLA-4 



18 
 

mediated suppression of APC function, production of immunosuppressive cytokines, and 

elimination of effector cells via secretion of granzyme and perforin45. 

 

Figure 2: Common cells of the immune system (McComb et al., 2019)43 

Cells of the immune system are classified into two groups: Innate immune cells form the first 
line of defense against invading pathogens and include macrophages, dendritic cells, natural 
killer cells, neutrophils, basophils, and eosinophils. B and T lymphocytes as well as NK-T cells 
are part of adaptive immunity and are capable of eliciting an antigen-specific immune 
response. 

 

3.3 Tumor immunogenicity 

The term tumor immunogenicity describes “the ability of a tumor to induce an immune response 

that can prevent its growth”46. In 1909, Paul Ehrlich was among the first scientists to establish 

that the immune system is capable of eliminating cells in the process of malignant 

degeneration, thus preventing cancer development47. However, this concept of ‘cancer 

immune surveillance’ soon proved to be inadequate, as malignant transformations arise even 

in immunocompetent host organisms. It is known today that while immune cells can recognize 

and possibly eliminate tumor cells, they exert not only host-protective but also potential tumor-

promoting effects. This process of the immune system shaping tumor immunogenicity has 

been termed cancer immunoediting and proceeds in three discrete steps: elimination, 

equilibrium, and escape48. 
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The elimination phase involves the process of recognition and subsequent eradication of 

neoplastic cells by the immune system. Innate immune cells primarily involved in this process 

include NK cells, NK1.1+ / CD3+ (NKT), and γδ T cells. NKT cells are a population of αβ T cells 

that also express some NK-specific receptors. They are therefore capable of eliminating cells 

via TCR recognition as well as killing NK-sensitive targets and are present in most tissues 

where T cells are found. On the other hand, T cells carrying the γδ TCR reside either in 

peripheral blood or within epithelial tissues. They differ from their αβ-counterparts primarily in 

their ability to recognize tumor-specific antigens without the precondition of antigen processing 

and presentation via conventional MHC molecules. Moreover, they express receptors normally 

found on NK cells, providing them with additional effector mechanisms49,50.  

Upon recognition of malignantly transformed cells, NK, NKT, and γδ T cells are stimulated to 

release IFNγ, which exerts multiple tumor suppressive effects. Apart from its direct 

antiproliferative effect on the developing tumor, IFNγ promotes the recruitment of immune 

effector cells, which in turn cause tumor cell death through various mechanisms. Cell debris is 

then transported by DCs to local lymph nodes, leading to priming of tumor-specific CD4+ and 

CD8+ T cells (Fig. 3)48. 

 

Figure 3: The cancer-immunity cycle (D.S. Chen and Mellman, 2013)51 

Antigens released by cancer cells can be processed by APCs and presented to naïve T cells 
in lymph nodes. Following priming, activation, and differentiation, effector T cells infiltrate the 
tumor and trigger cell death of cancer cells upon recognition of their corresponding antigen. 
This leads to a renewed release of antigens and thus to a self-reinforcing cyclic process. 
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While mutations in the genome of neoplastic cells are mainly responsible for promoting and 

maintaining tumorigenesis, they also result in the expression of altered proteins. After 

processing of these proteins, tumor-specific peptides, called neoantigens, are presented on 

the tumor cell surface via MHC class I molecules, where they can be recognized by TCRs on 

CTLs and thus initiate a CD8+ T cell-mediated immune response52.   

In case of tumor cell clones surviving the elimination phase, they enter a state of equilibrium 

with host immune cells. This equilibrium is likely to present the longest phase of the 

immunoediting process, with proliferating tumor cells being kept in check by the host immune 

system. This state of persisting yet clinically nonprogressive neoplastic disease is referred to 

as cancer dormancy53. At this point, the effector functions of the adaptive immune system are 

able to prevent the spread of tumor cells but cannot eliminate them completely. As a result of 

selection pressure on surviving cancer cells with consecutive genomic mutations, tumor cells 

can thus develop mechanisms that allow them to completely evade the immune system. This 

is referred to as tumor immune escape48. 

Tumor immune escape mechanisms are the result of a variety of genetic and epigenetic 

alterations. For example, loss or downregulation of human leukocyte antigen (HLA) class I 

molecules has been described in several tumor entities, including melanoma and CRC. This 

renders the corresponding tumor cells undetectable to CTLs, but at the same time more 

susceptible to NK-mediated lysis. There are several possible explanations for why tumors 

exhibiting loss of HLA class I molecules are nevertheless not consistently eliminated by NK 

cells alone. Pathways resulting in activation of NK cells include binding of natural killer 

group 2D (NKG2D) receptors to the stress-induced ligands MHC class I polypeptide-related 

sequence A and B (MICA/B). Therefore, simultaneous downregulation of these ligands as well 

as certain co-stimulatory molecules on tumor cells may impede NK activation. In addition, 

stimulatory interleukins and type I IFNs play a crucial role in NK activation in inflamed tissues 

but are not necessarily present in the TME, which further impairs NK-mediated tumor cell 

killing54. 

A similar escape mechanism resulting in impaired recognition of tumor cells by CTLs is the 

loss of tumor-specific antigens. ‘Immunodominance’ is a concept referring to an immune 

response that targets a single or very few antigens on malignant cells. Cell clones lacking the 

immunodominant antigen are therefore advantaged in tumor progression, resulting in tumor 

cell populations evading recognition by TCRs55. 

During immunosurveillance, death receptor signaling pathways play a central role in the 

initiation of apoptosis in tumor cells. Defects can occur at multiple sites in these pathways, 

such as downregulation and loss of Fas or TNF-related apoptosis-inducing ligand (TRAIL) 

receptors, promoting tumor immunoresistance54. In addition, several tumor entities, including 

lung carcinomas, melanomas, and colon carcinomas, have been found to express functional 
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Fas ligands and therefore may be capable of inducing apoptosis themselves in Fas+ cells, 

including T cells56-58. 

The identification of tumor immune escape mechanisms represents an important topic in 

cancer research because it could lead to a better understanding of why immunotherapeutic 

approaches fail in some cancer patients.  

 

3.4 Immunotherapy 

As described previously, our immune response to cancer is dependent on T cells recognizing 

neoplastic cells via cancer-associated antigens. However, the activation and effector functions 

of immune cells that would normally attack malignant cells and potentially lead to tumor 

regression are impaired by specific molecular pathways triggered by receptor to ligand 

interactions. The first checkpoint receptors to be discovered were PD-1 and CTLA-4, and the 

idea of blocking these immune checkpoints to enable the immune system to fight malignancies 

more effectively has since led to new approaches that have revolutionized cancer therapy59. 

The first immunotherapeutic agent approved by both the FDA and the European Medicines 

Agency (EMA) in 2011 was the anti-CTLA-4 monoclonal antibody ipilimumab after it 

demonstrated prolonged survival in patients with metastatic melanoma60. 

Apart from TCRs recognizing their cognate antigen, provided it is presented via MHC 

molecules, the activation of T lymphocytes also depends on certain co-stimulatory signals. 

One important co-stimulatory receptor is CD28, which is expressed by all human CD4+ and 

around 50% of human CD8+ T cells. Interaction of CD28 with its ligands CD80 and CD86 on 

APCs results in T cell expansion and differentiation, promoting an antigen-specific T cell-

mediated immune response. Within 48 hours of T cell activation, CTLA-4 expression is 

upregulated on the T cell surface61. Just as CD28, CTLA-4 functions as a receptor to CD80 

and CD86 but has a higher affinity to these ligands62. Thus, it out-competes CD28 signaling, 

resulting in opposing effects, i.e., attenuation and inhibition of T cell activation. Several other 

inhibitory mechanisms mediated by CLTA-4 have been proposed, including secretion of 

soluble CTLA-4, indoleamine 2,3-dioxygenase (IDO) production, involvement of Tregs, and 

depletion of CD80 and CD86 by trans-endocytosis63,64. 

While CTLA-4 signaling is mainly localized in the secondary lymphoid organs where T cell 

activation occurs, clinical approaches using PD-1/PD-L1 blockade take effect directly in the 

TME. This is due to PD-L1 being expressed on several solid tumors, including lung-, colon 

cancer, and melanoma. Additionally, PD-1 expression is upregulated on tumor-infiltrating 

T lymphocytes65. Interaction of PD-1 and PD-L1 is known to inhibit TCR-mediated proliferation 

of activated T cells. This effect has been shown to vary depending on TCR and co-stimulatory 

signaling strength, leading to the possibility that TCR or CD28 signaling may antagonize 
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PD-1-mediated immunosuppressive effects66. Additionally, PD-L1 was found to bind to CD80 

in cis on the same cell67, preventing PD-1/PD-L1 interaction and thus inhibiting T cell-mediated 

effects. Since this type of in cis interaction occurs mainly on DCs, they play a pivotal role in 

immunotherapeutic approaches that block the PD-L1/PD-1 pathway. Therefore, it has been 

proposed that antibodies targeting PD-L1 exert additional effects in comparison to anti-PD-1 

agents by disrupting not only the PD-L1/PD-1 interaction between tumor and T cells but also 

PD-L1/CD80 in cis binding on DCs. In this way, CD80 could be liberated for interaction with 

CD28, resulting in enhanced T cell proliferation and activation68. 

Checkpoint inhibitors targeting PD-1 (nivolumab, pembrolizumab) or PD-L1 (atezolizumab, 

avelumab, durvalumab) have been approved for a variety of cancers and have led to 

unprecedented improvement in patient outcomes. Nevertheless, only a minority of patients 

experience complete remission of tumor disease or benefit long-term69. Therefore, as research 

moves toward personalized cancer therapy, it is essential to identify factors predicting an 

individual patient’s response to immunotherapy. The seemingly most intuitive predictive 

biomarker for response to checkpoint blockade, i.e., tumor expression of PD-L1, proved to be 

inadequate. Thus, nivolumab has been approved for the treatment of advanced NSCLC 

regardless of PD-L1 expression status70,71. 

One biomarker that is generally considered predictive of the response to immune checkpoint 

blockade agents is the tumor mutational burden (TMB), i.e., the number of mutations within a 

megabase of tumor genome72. Since high TMB results in expression of neoantigens, predictive 

value can also be attributed to the latter. High TMB has been found to correlate with prolonged 

overall survival in melanoma patients treated with ipilimumab or tremelimumab, targeting 

CTLA-4,73 as well as in patients with NSCLC tumors treated with pembrolizumab74. However, 

both studies also identified tumors that displayed high TMB but did not respond well to therapy. 

Thus, even though TMB seems to be predictive overall, it is not sufficient to impart a good 

response to immune checkpoint blockade on its own.  

 

3.5 Radiation therapy 

Alongside surgery and chemotherapy, RT remains one of the most important modalities in 

cancer treatment. Approximately 50% of all cancer patients receive RT, which contributes to 

about 40% to curative treatment. Different types of cancer, however, differ significantly in their 

sensitivity to RT75. Research suggests that tumor radiosensitivity depends, inter alia, on the 

cells’ antioxidant capacity76, alterations in onco- and tumor suppressor genes, DNA damage 

repair (DDR) mechanisms, regulatory mechanisms regarding cell cycle arrest, cancer stem 

cell formation, tumor metabolism, autophagic regulation, and changes in the TME77. Treatment 

regimens using RT as a monotherapeutic approach, whether external beam radiation or 
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brachytherapy, primarily exploit the direct effects of ionizing radiation, i.e., induction of DNA 

damage with consecutive cell cycle arrest and cell death78.  

Ionizing radiation can either directly damage DNA by causing mutations and base 

modifications as well as DNA single- or double-stand breaks79, or attack tumor cells by inducing 

chromosomal instability, plasma membrane or subcellular organelle damage77. While direct 

effects result from energy deposition on DNA, irradiation also generates reactive oxygen 

species (ROS) that induce oxidative stress with accompanying alterations in cell proteins and 

lipids. This can lead to disruptions in various signaling pathways80. 

In addition to the effects on the tumor cells themselves, ionizing radiation also induces a 

mutagenic response in cells that are not directly exposed to it but are situated in close 

proximity81. These reactions are called bystander or off-target effects and are most likely 

exerted via long-lived radicals82, nitric oxide83, and transmission of damage signals via gap 

junctions84. As a result, neighboring cells experience oxidative stress as well as changes in 

gene expression and epigenetics85. 

Types of cell death that commonly result from irradiation include necrosis, autophagy-

dependent cell death, and most importantly mitotic catastrophe and apoptosis. Apoptosis, or 

programmed cell death, is characterized by chromatin condensation, nuclear and DNA 

fragmentation, as well as blebbing of and formation of apoptotic bodies in the cell membrane86. 

Radiation-induced apoptosis has been shown to be closely related to the expression of p53 in 

the tumor cell. Depending on the extent of DNA damage, activation of p53 can either promote 

cell survival through growth arrest and DNA repair or trigger cell death by apoptosis. Thus, p53 

expression may represent a prognostic marker for radiosensitivity, with cells that suppress p53 

activation being largely resistant to RT. Moreover, p53 activation after RT activates 

transcription of several proapoptotic genes, some of which play critical roles in triggering the 

intrinsic, or mitochondrial, apoptosis signaling pathway, leading to permeabilization of the outer 

mitochondrial membrane87. As a result, several proteins are released from mitochondria into 

the cytosol, including cytochrome c. The latter forms a complex with cytosolic apoptotic 

protease-activating factor 1 (Apaf-1). This complex, called the apoptosome, then induces 

autoactivation of pro-caspase 9. Activated caspase 9 thereafter initiates a cascade of other 

caspase proteins that eventually induces apoptosis88.  

Apart from apoptosis, mitotic catastrophe resulting from impaired mitosis represents another 

important form of cell death induced by ionizing radiation. Due to disturbed chromosome 

segregation and cell division, cells undergoing mitotic catastrophe form envelopes around 

individual clusters of missegregated chromosomes. These micronuclei can be identified under 

a light microscope, allowing the cells to be easily distinguished from apoptotic tumor cells. Most 

malignant cells harbor mutations in genes involved in cell cycle checkpoints. As a result, 

damaged cells are no longer prevented from entering mitosis, so that mutations driving 
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carcinogenesis may in fact also promote cell death through mitotic catastrophe89. Furthermore, 

irradiation of tumor cells causes prolongation of S and G2 phases, resulting in premature 

initiation of mitosis and ultimately promoting mitotic catastrophe90.   

However, some tumor cells do not undergo cell death despite severe external and internal 

stress, but instead enter a senescent state with complete cell cycle arrest characterized by a 

unique gene expression pattern. Interestingly, some of these genes also play an important role 

in cancer development itself, leading to an ambivalent perception of senescence in cancer 

therapy91. In this context, the proinflammatory secretory phenotype of senescent cells has 

been found to cause or exacerbate side effects of chemotherapy such as fatigue, bone marrow 

suppression, as well as cardiac dysfunction, and may even promote cancer recurrence92. 

Cancer therapies involving RT depend heavily on the aforementioned deleterious effects on 

tumor cells. Additionally, RT is known to have an impact on tumor immunogenicity. For 

example, it has been found that both the expression of MHC-I molecules on the cell surface 

and presentation of neoantigens are increased after irradiation93. Furthermore, RT contributes 

to a pro-immunogenic TME by promoting DC activation and priming of effector T cells94, as 

well as enhancing the expression of NKG2D ligands on tumor cells, rendering them susceptible 

to NK cells95. Additionally, the expression of vascular adhesion molecules is augmented upon 

γ-irradiation, resulting in recruitment of tumor-specific T cells to the TME and differentiation of 

macrophages toward their tumoricidal M1 phenotype96. High-dose irradiation enhances 

antitumor immunity through increased infiltration of CD8+ T cells and depletion of myeloid-

derived suppressor cells (MDSC)97, which normally contribute to the immunosuppressive 

network in cancer by inhibiting antigen-specific T cells via direct cell-cell contact98. Hence, 

tumor regression following ablative radiation has even been found to be dependent on CD8+ 

T cell activity99. 

 

3.6 The cGAS/STING pathway 

Regarding the immunomodulatory effects of RT, the cGAS/STING pathway is of utmost 

importance as its activation by cytosolic DNA ultimately leads to secretion of type I IFNs, which 

are known to mediate most of the effects explained above101,102. In 2008, Ishikawa and Barber 

identified a molecule that induces expression of type I IFNs (IFNα and IFNβ) in cells infected 

with DNA viruses. This molecule, residing primarily in the endoplasmic reticulum, has been 

termed stimulator of interferon genes (STING) and, in the presence of cytosolic DNA, activates 

transcriptional pathways via nuclear factor kappa B (NF-κB) as well as interferon regulatory 

factor 3 (IRF3). In STING-knockout mice, plasmid DNA vaccination failed to elicit an effective 

innate immune response, highlighting the importance of STING protein in regulating the type I 

IFN-dependent immune response mediated by intracellular DNA103,104. 
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The exact mechanism of how cytosolic DNA triggers STING-mediated effects remained 

unclear until the discovery of cyclic-GMP-AMP synthase (cGAS) in 2013. Predominantly 

localized in the cytosol, cGAS catalyzes the synthesis of cyclic guanosine monophosphate-

adenosine monophosphate (cGAMP) from adenosine triphosphate (ATP) and guanosine-5’-

triphosphate (GTP) upon binding to DNA but not RNA105. In turn, newly synthesized cGAMP 

binds directly to STING and triggers downstream signaling cascades106. Moreover, cGAMP 

can be transferred between adjacent cells via gap junctions, causing STING activation in 

neighboring cells as well107. 

 

Figure 4. cGAS/STING pathway (Q. Chen et al., 2016)100 

DNA acts as a PAMP when it enters the cytosol from the nucleus, e.g., because of DNA 
damage by RT. It binds to and activates cGAS, triggering synthesis of cGAMP, which then 
binds to STING. STING activates TBK1, which in turn phosphorylates STING. IRF3 is recruited 
for phosphorylation by TBK1 and migrates to the nucleus, where it initiates the expression of 
type I interferons. 

 

Upon binding to cGAMP, the STING protein changes its conformation toward a closed 

homodimer. After release of the C-terminal tail, which belongs to the transmembrane domain 

of the molecule, closed STING molecules form polymers stabilized by disulfide bridges. This 

process occurs in the endoplasmic reticulum and precedes translocation of ligand-bound 

STING polymers to the Golgi108. Following activation by cGAMP, STING polymers recruit and 

form a complex with TANK binding kinase 1 (TBK1), which in return phosphorylases STING. 
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Remarkably, the conformation of the STING/TBK1 complex renders contact of the 

phosphorylation site Ser366 of the STING molecule with the active site of bound TBK1 

impossible. Thus, the STING molecule phosphorylated by TBK1 is not the one that binds TBK1 

directly, but its neighboring molecule within the STING polymer, while at the same time TBK1 

dimers phosphorylate each other by trans-autophosphorylation. The phosphorylated motif in 

STING subsequently provides a binding site for IRF3 to recruit IRF3 for phosphorylation by 

TBK1. In addition to Ser366, Leu374 at the C-terminus of STING has also been found to be 

indispensable for IRF3 activation109,110. After its phosphorylation and dimerization, IRF3 

translocates to the nucleus, where it functions as a transcription factor and initializes the 

production of type I IFNs111 (Fig. 4). 

On the one hand, the immune response triggered by activation of the cGAS/STING pathway 

is part of the first line of defense against pathogens. On the other hand, persistent transcription 

of innate immune genes can cause pathologic inflammation and must be prevented by 

negative feedback mechanisms. To this end, another kinase, UNC-51-like kinase (ULK1), is 

also activated by cGAS and subsequently re-phosphorylates STING at Ser366 to mark it for 

degradation, thereby inhibiting STING-dependent IRF3 activity112,113. 

Cytosolic DNA, which leads to cGAS/STING activation and ultimately promotes the immune 

response via induction of type I IFNs, arises as a result of DNA damage in the nucleus. 

Moreover, micronuclei formed during mitosis following double-stranded DNA (dsDNA) breaks 

are also recognized by cGAS, thus triggering cGAS/STING pathway activation114.  

The importance of the cGAS/STING pathway regarding tumorigenesis or tumor suppression, 

respectively, is clearly demonstrated by its role in the immune evasion of TP53 mutated 

tumors. It was shown that mutant p53 interacts with TBK1, thus impeding the secretion of type I 

IFNs following initial pathway activation115. WT TP53, on the other hand, was found to trigger 

activation of the cGAS/STING pathway by promoting degradation of three prime repair 

exonuclease 1 (TREX1), resulting in enhanced occurrence of cytosolic DNA116.  

 

3.7 Heat shock protein 90 

Since cytosolic DNA occurs as a result of DNA damage and ultimately leads to improved tumor 

immunogenicity, interfering with DDR mechanisms may provide a potential means to further 

enhance this effect. A recent study confirmed that inhibition of DDR indeed causes release of 

DNA to the cytosol in tumor cells, which in turn triggers activation of the cGAS/STING 

pathway117. 

A promising therapeutic target to impair DDR is the molecular chaperone heat shock protein 90 

(HSP90), named according to its specific weight in gel electrophoresis. Molecular chaperones 

are proteins involved in the folding and assembly process of their structurally labile target 
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proteins, called clients118. Their activity is important for maintaining cell homeostasis under 

constantly changing conditions, including stress conditions. Major stress response pathways 

are the heat shock response (HSR) in reaction to proteome stress in the cytoplasm and the 

unfolded protein response following protein damage in the endoplasmic reticulum119. 

The HSR is induced by binding of damaged proteins in the cytosol to chaperones such as 

HSP90, which prevents the stabilization of heat shock transcription factor 1 (HSF1) monomers 

by HSP90. As a result, HSF1 trimerizes, translocates to the nucleus, and eventually promotes 

transcription of genes encoding molecular chaperones and proteolytic enzymes, among 

others120,121. The HSR therefore plays a critical role in maintaining cell integrity. 

Additionally, HSF1 controls a transcriptional program that influences, for example, the cell 

cycle, regulation of apoptotic cell death, cellular adhesion molecules, and immune-associated 

signaling. Accordingly, continuous activation of the HSR was found to correlate with poor 

prognosis in breast-, colon-, and lung cancer patients122 while also promoting neoplastic growth 

in stromal cells123. 

HSP90 facilitates protein folding, assembly of multiprotein complexes, and binding of clients 

to their respective ligands124, but unlike other heat shock proteins, it is hardly involved in de 

novo folding of proteins125. These effects are dependent on binding and hydrolysis of ATP126. 

HSP90 forms homodimers and recruits client proteins that can no longer be released after ATP 

binding and subsequent conformational changes of the HSP90/client complex. Activation and 

release of client proteins is then triggered by ATP hydrolysis. This process is further modified 

by post-translational modifications as well as by interactions with co-chaperones127. 

Despite its abundant presence in normal cells, HSP90 is a possible target protein in cancer 

therapy due to distinct differences of the HSP90 phenotypes between neoplastic and healthy 

cells. First, upregulation of HSP90 expression by HSF1 is said to be indispensable for tumor 

cell survival under challenging microenvironmental conditions. Moreover, mutation and 

deregulation in the cancer phenotype result in higher affinity for client proteins, rendering 

HSP90 more susceptible to pharmaceutical inhibitors in tumor tissue128. HSP90, however, may 

facilitate oncogenesis by contributing to the maintenance of driver mutations. This is due to 

proteins with functional mutations being particularly unstable129.  
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Figure 5: DNA damage repair signaling pathways (Dubrez et al., 2020)  

DNA single-strand lesions, e.g., due to ROS or replication mistakes, activate mismatch repair 
(MMR), base excision repair (BER), or nucleotide excision repair (NER, not shown). DNA 
double-strand breaks, which can be induced by RT, additionally activate non-homologous end 
joining (NHEJ) and homologous recombination (HR). HSP90 plays a central role in the function 
of these pathways.  

 

Apart from its intracellular effects, HSP90 can be secreted by normal cells under stress. Cancer 

cells, on the other hand, secrete HSP90 permanently, resulting in enhanced chaperoning of 

extracellular proteins. Thus, when secreted via exosomes, extracellular HSP90 mediates 

activation of matrix metalloproteinase 2 (MMP-2), human epidermal growth factor (HER-2), 

and plasmin, promoting tumor migration, invasion, and angiogenesis130,131. In addition, HSP90 

also functions as a tumor antigen following incorporation into the plasma membrane132. 

The list of HSP90 clients includes over 200 different proteins133. Apart from many proteins 

involved in various signaling pathways, e.g., kinases and transcription factors134, these include 

molecules involved in DDR mechanisms such as MMR, base excision repair (BER), non-

homologous end joining (NHEJ), and homologous recombination (HR) (Fig. 5). Inhibition of 

HSP90 therefore impairs said DDR mechanisms due to impaired stabilization and activation 

of said proteins135. It was found that, first, low HSP90 expression is associated with longer 

survival in NSCLC patients, and second, in vitro treatment with an HSP90 inhibitor displays 

antiproliferative activity in NSCLC cells136. 

One challenge in implementing HSP90 inhibition in cancer therapy is the simultaneous 

induction of the HSR due to HSF1 also being a client of HSP90. This may be a possible 

explanation for the rather disappointing effects of HSP90-inhibiting drugs in the past. Further 

limiting factors include suppression of immune functions by HSP90 inhibition and toxicity to 

healthy cells137,138. Because these factors drastically limit the maximum applicable dose of 

HSP90 inhibitors, monotherapeutic approaches have not proven effective enough in clinical 
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trials139. Combined treatment regimens including HSP90 inhibition, RT, and immunotherapy 

are therefore an emerging field in cancer research. 

 

3.8 TAS-116 

Preclinical studies investigating the therapeutic effects of early HSP90 inhibitors yielded 

promising results in terms of reduced tumor cell proliferation rates. However, various severe 

adverse events that occurred in clinical trials highlighted the limitations of HSP90 inhibition as 

a monotherapeutic approach in cancer treatment140.  

In this thesis, the HSP90 inhibitor 3-ethyl-4-[4-[4-(1-methylpyrazol-4-yl)imidazol-1-yl]-3-

propan-2-ylpyrazolo[3,4-b] pyridin-1-yl]benzamide (TAS-116) was used in various 

experimental setups. In contrast to first-generation HSP90 inhibitors, TAS-116 specifically 

inhibits cytosolic HSP90α and β, but not HSP90 paralogs such as GRP94 or TRAP1 in the 

endoplasmic reticulum or mitochondria, respectively. Because TAS-116 does not inhibit 

Cytochrome P450 (CYP450), an enzyme involved in the metabolism of many pharmaceutical 

agents, within the effective concentration range, a low drug-drug interaction potential allows 

for combined administration with other compounds. Additionally, TAS-116 has been found to 

accumulate in tumor tissue, providing a better side effect profile141.  

The first in-human phase I study of TAS-116 was conducted from 2014 to 2017142. This trial 

enrolled 61 patients with advanced solid tumors in Japan and the United Kingdom who were 

no longer responding to standard treatment. TAS-116 was administered orally either daily for 

5 days per week followed by 2 days without treatment, or every other day in doses of 160 mg/d 

or 340 mg/d, respectively. The most frequently reported treatment-related adverse events were 

diarrhea (83.6%), creatinine increase (55.7%), anorexia (50.8%), nausea (42.6%), eye 

disorder (32.8%), transaminase increase (32.8% for aspartate transaminase; 29.5% for 

alanine transaminase), and fatigue (29.5%). Serious adverse events occurred in 9.8% of 

patients. However, all of these resolved after interruption, dose reduction, or discontinuation 

of treatment.  

At 38.9%, the best disease control rate was achieved in patients who received the 5 days on / 

2 days off treatment scheme. Therefore, this regimen with a dose of 160 mg/d was further 

investigated in a phase II study involving 41 Japanese patients between 2016 and 2017143. All 

patients suffered from gastrointestinal stromal tumors (GIST) refractory to the TKIs imatinib, 

sunitinib, and regorafenib. Although no patient in this study experienced complete or partial 

response, it should be noted that TAS-116 was herein administered as a fourth-line treatment 

or even later. Therefore, the median PFS of 4.4 months suggests important clinical activity. By 

comparison, phase II trials evaluating the HSP90 inhibitors ganetespib and luminespib in a 

third-line setting showed a PFS of 2.7 months and 3.9 months, respectively144,145. 
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The efficacy of TAS-116 as a monotherapeutic approach in the fourth-line setting in patients 

with GIST was confirmed in a randomized, double-blind phase III study, which showed that it 

prolonged median PFS by 1.4 months and overall survival by as much as 6.2 months 

compared to placebo. However, the extension of overall survival may also be partly due to 

treatment with TKIs following study treatment146. These results led to the first approval of 

TAS-116, under the name pimitespib, for treatment of GIST after progression under 

chemotherapy in Japan in 2022147. 

To date, pimitespib has not received approval from either the FDA or the EMA. Despite its 

clinical efficacy as a fourth-line therapy for GIST patients, there remains great potential for 

pimitespib to be of benefit to patients suffering from other cancers as well as to be effective as 

an earlier treatment approach. For the reasons described above, this increase in efficacy could 

be achieved by combination of pimitespib with immunotherapy and/or RT. 

Combinatory treatment regimens involving pimitespib have already been the subject of several 

studies. In combination with sunitinib, pimitespib was found to be effective on imatinib-resistant 

cell lines and murine xenograft models148. In a phase I trial, pimitespib in combination with 

nivolumab demonstrated promising antitumor activity, especially in MSS-CRC patients149. 

Response to the study treatment was found to correlate with upregulation of the G2M 

checkpoint pathway and mutations of the DNA polymerase epsilon catalytic subunit (POLE) 

gene150. The latter, however, is likely due to nivolumab treatment, as POLE mutations were 

shown to be associated with the effectiveness of anti-PD-1 monotherapy151. Another phase I 

study, investigating the effect of pimitespib in combination with imatinib in patients with GIST, 

is currently underway152. 

 

3.9 Rationale 

Although immunotherapeutic approaches currently represent a large field of cancer research 

and have contributed to remarkable improvements in the treatment of some cancer patients, 

the administration of immune checkpoint inhibitors is still associated with many limitations. 

While response rates are generally low in some common cancers, most patients who initially 

respond develop resistance over time153. Because RT has been shown to improve tumor 

immunogenicity, combined treatment regimens that include both radiation and immunotherapy 

may be a way to overcome the limitations of immunotherapy alone.  

The immunomodulatory effects of RT are predominantly mediated by type I IFNs after 

activation of the cGAS/STING pathway154. Since the cGAS/STING pathway is triggered by the 

recognition of cytosolic dsDNA following DNA damage in the nucleus, such as in response to 

RT, inhibition of DDR mechanisms is a promising target to further enhance this effect. 
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In 2019, a study by Sen et al. confirmed that DDR inhibition in SCLC cells does indeed lead to 

increased cytosolic DNA appearance in vitro and that this results in activation of the 

cGAS/STING pathway and subsequent induction of IFNβ secretion. In addition to the induction 

of various chemokines and recruitment of CD8+ T cells, the authors of this study also found 

upregulation of PD-L1 expression on the tumor cell surface upon DDR inhibition. The clinical 

implication of these findings was further underlined by demonstrating that the combination of 

DDR inhibition and anti-PD-L1 checkpoint blockade mediated synergistic anti-tumor benefits 

in SCLC in vivo models117. Therefore, DDR inhibition represents a promising means to 

enhance cGAS/STING-mediated immunomodulatory effects after RT in a synergistic manner, 

thereby improving tumor susceptibility to immunotherapeutic approaches such as PD-1/PD-L1 

checkpoint blockade. To further illuminate this synergy in this thesis, the HSP90 inhibitor 

TAS-116 was applied to various murine tumor cell lines in vitro.  

HSP90 clients include many proteins involved in DDR mechanisms135, and HSP90 inhibition 

has previously been shown to sensitize tumor cells to the effects of RT155. Combined treatment 

regimens with HSP90 inhibition and RT should thus increase tumor susceptibility to immune 

checkpoint blockade through increased activation of the cGAS/STING pathway.  

In Japan, the drug pimitespib (TAS-116) is already approved for the treatment of refractory 

GIST tumors. However, tumor type-specific differences regarding treatment with TAS-116, 

especially in combination with RT, have been insufficiently investigated so far. 

In this work, TAS-116 was therefore administered in combination with RT to various murine 

tumor cell lines in vitro to investigate cancer type-specific differences in terms of 

immunomodulatory effects. This may provide the basis for improved efficacy of 

immunotherapeutic approaches for a larger group of patients by maximizing the synergistic 

effects of HSP90 inhibition, RT, and immune checkpoint blockade.  
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4. Materials and methods 

4.1 Materials 

4.1.1. Devices 

Equipment Company 

Cell culture centrifuge HERMLE Labortechnik GmbH 

Cell culture incubator Axon Labortechnik GmbH 

Cytoflex S Beckman Coulter 

Fluorescence Microscope AXIO 
Vert.A1 

Zeiss 

Fluorescence microscope IX83 Olympus  

(Center for Molecular Medicine Cologne – Microscopy Facility) 

Heating and magnetic stirrer Carl Roth 

Laminar airflow cabinet 
(Biowizard Golden Line) 

LMS 

Light microscope CKX41SF Olympus 

Linear accelerator (SLi20) Elekta 

(Klinik und Poliklinik für Radioonkologie, Cyberknife- und 
Strahlentherapie – Universitätsklinikum Köln) 

Precision X-Ray MultiRad 160  Faxitron 

Tabletop centrifuge LMS 

Vortex LMS 

 

4.1.2. Laboratory and cell culture material 

Material Company 

1, 2, 5, 10 ml syringes BD 

1.5, 2 ml microcentrifuge tubes VWR 

15, 50 ml polypropylene tubes Corning 

5, 10, 25 ml serological pipettes Sarstedt 

6-, 12-, 24-, 96-well cell culture plates Corning 

60, 100 mm cell culture dishes Corning 

70 μm cell strainer  VWR 

Coverslips VWR 

LS columns Miltenyi 

Magnetic holder Miltenyi 

Neubauer chamber Glaswarenfabrik Karl Hecht 

Pipette 0.2-2 μl Gilson 
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Pipette 0.5-10 μl Gilson 

Pipette 100-1,000 μl Gilson 

Pipette 10-100 μl Gilson 

Pipette tips VWR / Sarstedt 

Sterile filter pipette tips Sarstedt 

Vacuum filtration system 0.2 μm VWR 

 

4.1.3. Solutions 

Solution Ingredients Volume / Concentration 

cDMEM DMEM 417 ml 

 FBS 10% 

 L-glutamine 6 ml 

 NEAA 6 ml 

 Sodium pyruvate 6 ml 

 Sodium bicarbonate 6 ml 

 Penicillin/Streptomycin 1% 

 β-Mercaptoethanol 0.00168% 

MACS buffer PBS (w/o Ca, Mg) 500 ml 

 BSA 0.5% 

 EDTA 2 mM 

Mowiol mounting medium ddH2O 6 ml 

 TRIS-HCl pH 8.5 (2 M) 24% 

 Glycerol 12% 

 Mowiol 4-88 9.8% 

 

4.1.4. Reagents 

Reagent Company 

7-AAD viability staining solution (7-amino-actinomycin D) BioLegend 

Accutase cell detachment solution BioLegend 

ACK lysing buffer Lonza 

Ammonium chloride Sigma-Aldrich 

Anti-mouse PD-1 (RMP1-14) BioXCell 

BSA (bovine serum albumin) VWR 

CD8α microbeads Miltenyi 

Collagenase type IV  Gibco 
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DAPI solution (diamidino-2-phenylindole) Thermo Scientific 

DMEM (Dulbecco’s modified eagle medium) Gibco 

DMSO (dimethyl sulfoxide) AppliChem 

DNase I from bovine pancreas AppliChem 

DPBS (Dulbecco’s phosphate-buffered saline, with Ca, 
Mg) 

Gibco 

EDTA (ethylenediaminetetraacetic acid) Sigma-Aldrich 

FBS (fetal bovine serum) Gibco 

Geneticin (G418 sulfate) Bertin Pharma 

Glycerol Carl Roth 

Hoechst 33342 solution in water Invitrogen 

Isoflurane Piramal 

Ketamine Zoetis Inc. 

L-glutamine solution Lonza 

Methanol Carl Roth 

Mowiol 4-88 Sigma-Aldrich 

NEAA (non-essential amino acid) solution Lonza 

Paraformaldehyde Merck 

PBS (w/o Ca, Mg) Gibco 

Penicillin/Streptomycin Gibco 

Pharm Lyse lysing buffer BD 

Propidium Iodide solution BioLegend 

Purified anti-CD3e BioLegend 

Purified anti-mouse CD28 BioLegend 

Recombinant mouse IL-2 (carrier-free) BioLegend 

RPMI (Roswell Park Memorial Institute) medium Gibco 

Sodium bicarbonate solution Biozym 

Sodium pyruvate Thermo Scientific 

Tag-it violet proliferation and cell tracking dye BioLegend 

TAS-116 Taiho Pharmaceutical Co., 
Ltd. 

TRIS hydrochloride (Tris-aminomethane) Carl Roth 

Triton X-100 Sigma-Aldrich 

Trypan blue solution Sigma-Aldrich 

Trypsin-EDTA (10x) Gibco 

Tween 20 Carl Roth 

Xylazine Bayer 
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Zombie green fixable viability kit BioLegend 

Zombie NIR fixable viability kit BioLegend 

β-Mercaptoethanol Sigma-Aldrich 

 

4.1.5. Antibodies 

(1) Antibodies for flow cytometry 

Target Clone Fluorophore Company 

CD4 RM4-5 BV650 BioLegend 

CD45 30-F11 FITC BioLegend 

CD8α 53-6.7 BV510 BioLegend 

CD8α 53-6.7 FITC BioLegend 

PD-L1 10F.9G2 PE/Dazzle BioLegend 

PD-L2 TY25 APC BioLegend 

TCR Vα11.1, 11.2  RR8-1 PE BioLegend 

TCR Vα2  B20.1 Alexa-700 BioLegend 

TCR Vα3.2(b,c)  RR3-16 PE BioLegend 

TCR Vα8.3  KT50 PE BioLegend 

TCR Vβ11 KT11 PerCp-Cy5.5 BioLegend 

TCR Vβ11  RR3-15 PE BioLegend 

TCR Vβ12  MR11-1 PE BioLegend 

TCR Vβ13  MR12-4 PE BioLegend 

TCR Vβ2  B20.6 Alexa Fluor 647 BioLegend 

TCR Vβ5.1, 5.2  MR9-4 PE-Cy7 BioLegend 

TCR Vβ6  RR4-7 APC BioLegend 

TCR Vβ7  TR310 PE BioLegend 

TCR Vβ8.1, 8.2  KJ16-133.18 Alexa Fluor 647 BioLegend 

TCR Vβ8.3  1B3.3 PE BioLegend 

TCR Vβ9  MR10-2 PE BioLegend 

 

(2) Antibodies for immunofluorescence staining 

Antibody Clone Company 

Alexa Fluor 488 donkey anti-mouse IgG ab150105 Abcam 

Alexa Fluor 555 donkey anti-rabbit IgG Poly4064 BioLegend 

Alexa Fluor 647 donkey anti-rabbit IgG Poly4064 BioLegend 
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dsDNA mouse  35I9 DNA  Abcam 

IFN beta rabbit  PA5-20390 Invitrogen 

Phospho-histone H2A.X (Ser139) rabbit 20E3 Cell Signaling 

Phospho-STING (Ser365) rabbit D1C4T Cell Signaling 

 

4.1.6. Software 

Software Version 

CytExpert 2.3.1.22 

EndNote X9.3.3 

GraphPad Prism 9.4.1 

Image J 1.53k 

Microsoft Office 2209 

 

4.2 Methods 

4.2.1. Cell lines 

Tumor cells were cultured on 100 mm sterile polystyrene Petri dishes in 10 ml full cell culture 

medium containing 1% Penicillin/Streptomycin and 10% fetal bovine serum (FBS). Cells 

adherent to plastic were washed with phosphate-buffered saline (PBS) prior to detachment 

with 5 ml trypsin or accutase for five minutes at 37°C. All cells were cultured at 37°C and 

5% CO2. Cell counting for all experiments was performed using a counting chamber after 

suspension in trypan blue. 

 

(1) Small cell lung cancer – RP157.8 

RP157.8 is a murine SCLC cell line driven by both RB1 and Trp53 knockout. Since these cells 

were derived from a liver metastasis, they grow adherently and therefore require detachment 

with accutase or trypsin. This cell line was kindly provided by the group of Prof. Dr. Dr. Roland 

Ullrich. 

 

(2) Non-small cell lung cancer – ACF135.10 

The murine ACF135.10 (KP135.10) NSCLC cell line harbors a Trp53 knockout as well as a 

KRAS mutation. The cells are adherent to plastic and were cultured as described above. This 

cell line was kindly provided by the group of Prof. Dr. Christian Reinhardt. 
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(3) Colon carcinoma – MC38 

MC38 is a murine adenocarcinoma cell line of the colon derived from a C57BL/6 mouse. Since 

MC38 cells are of epithelial origin, they grow adherently to plastic. This cell line was kindly 

provided by PD. Dr. Hans Schlösser’s group. 

 

(4) Melanoma – B16F10 

B16F10 is a metastatic clone of the spontaneous murine melanoma cell line B16F0. B16F10  

cells do not express the tumor suppressor proteins p16Ink4a and p19Arf due to a deletion of exons 

1α, 1β and 2 of the Ink4a/Arf locus156. The cells are adherent to plastic and have an epithelial 

morphology. This cell line was kindly provided by the group of Prof. Dr. Dr. Roland Ullrich. 

 

(5) Lymphoma – E.G7 

The E.G7 cell line is a derivate of the EL4 lymphoma cell line induced in a C57BL/6 mouse by 

9,10-dimethyl-1,2-benzanthracene. EL4 cells were transfected with a plasmid containing a 

cDNA copy of chicken-derived ovalbumin mRNA, the human β-actin promoter, and the 

neomycin resistance gene. Thus, the E.G7-OVA line continuously synthesizes and secretes 

ovalbumin and the peptide OVA242-285
 is subsequently presented on the cell surface via MHC-I 

molecules157. Selection of transfected cells was ensured by supplementing 0,4 mg/ml G418 

(Geneticin) to the cell culture medium. This cell line was kindly provided by PD. Dr. Hans 

Schlösser’s group. 

 

4.2.2. OT-I mice 

Transgenic OT-I mice originate from a C57BL/6 background and are genetically modified to 

express the TCRs Vα2 and Vβ5, which are designed to recognize the ovalbumin peptide 

OVA257-264
158. These mice produce CD8+ T lymphocytes specific for the OVA257-264 peptide when 

presented via MHC class I H-2Kb molecules. They also show a greater proportion of CD8+ 

T cells to total T lymphocytes than non-transgenic animals159 and can be used to study CD8+ 

T cell-mediated immune responses. 

Mice were kept in groups of two to five animals per cage in a 12-hour dark/light cycle with 

unrestricted access to food and water under specific pathogen-free conditions. All animal 

experiments were performed in accordance with the animal experiment guidelines of the 

German Animal Welfare Act according to a protocol approved by the District Government of 

Cologne (Animal Experiment Application 81-02.04.2019.A179). Appropriate measures were 

taken to minimize pain or discomfort. Individual evaluation forms were completed and signed 

daily for each mouse.  
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4.2.3. Isolation and activation of T cells 

CD8+ T cells were isolated from splenocytes of OT-I transgenic mice. To obtain a single-cell 

suspension, the dissected spleen was triturated through a 70 µm cell strainer, rinsed with 

MACS buffer, and centrifuged at 500 g for five minutes. Splenocytes were suspended in 500 µl 

MACS buffer and magnetically labeled with 20 µl of CD8 microbeads for 30 minutes on ice. 

Cells were then added to 20 ml MACS buffer, centrifuged at 500 g for five minutes at 4°C, 

resuspended in 5 ml MACS buffer, and the suspension was filtered through a cell strainer to 

prevent clumping in subsequent steps. The cell suspension was applied to an LS MACS 

column previously moistened with 5 ml MACS buffer in a magnetic field and unlabeled cells 

were flushed out of the column with 8 ml of MACS buffer. The column was then removed from 

the magnetic field and CD8+ T cells were collected by washing twice with 5 ml MACS buffer. 

After centrifugation at 500 g for five minutes at 4°C, the isolated T cells were resuspended in 

complete Eagle’s minimal essential medium (cDMEM) supplemented with 1000 U/ml 

recombinant mouse interleukin-2 (IL-2) and anti-mouse CD28 (1:100) to induce differentiation 

into cytotoxic CD8+ T lymphocytes. The cell suspension was transferred onto a 24-well plate 

that had been coated 24 hours prior with anti-CD3e (1:100 in PBS) and cells were then stored 

at 37°C for three days. 

On the third day after activation, CD8+ T cells were harvested, centrifuged at 500 g for 

five minutes at 4°C, and resuspended in cDMEM supplemented with 1000 U/ml IL-2. The cell 

suspension was then transferred to a new plate and stored at 37°C. The CD8+ OT-I T cells 

were used five days after isolation and activation. 

 

4.2.4. TAS-116 

TAS-116 (Taiho Pharmaceutical Co., Ltd.) was dissolved in dimethyl sulfoxide (DMSO) at a 

concentration of 20 mM and stored at -20°C. Working solutions were stored at -4°C for a limited 

time. For intraperitoneal injection in mice, the application volume was adjusted by diluting the 

stock solution in 95% PBS and 5% Tween 20. 

 

4.2.5. TAS-116 cytotoxicity assay 

The tumor type-dependent cytotoxicity of the HSP90 inhibitor TAS-116 was determined by 

titration of the reagent and measurement of consecutive cell death by staining with 7-amino-

actinomycin D (7-AAD), a fluorescent DNA-binding agent that intercalates between cytosine 

and guanine bases but is excluded by intact cells160. 

For this purpose, cells were transferred to a 96-well plate at a density of 105 cells per well in 

100 µl cell culture medium containing 1% Penicillin/Streptomycin and 10% FBS, and adherent 
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cells were allowed to settle overnight. Cells were then treated with the reagent TAS-116 in 

concentrations ranging from 0.01 µM to 10,000 µM or the diluent DMSO, respectively. 

Cells growing in suspension were centrifuged at 500 g for five minutes at 4°C 24 hours after 

treatment. Adherent cells were incubated with trypsin for five minutes at 37°C and transferred 

to a new plate prior to centrifugation. After washing once with 1% bovine serum albumin (BSA) 

in PBS, cells were centrifuged again at 500 g for five minutes at 4°C and resuspended in 

1% BSA in PBS containing 1.5 µl 7-AAD per well. Staining was performed for 30 minutes at 

4°C in the dark. Cells were then washed once with PBS and resuspended in 100 µl PBS for 

subsequent flow cytometric analysis. 

 

4.2.6. Viability assay after TAS-116 treatment and irradiation 

To quantify the susceptibility of cells to cell death induced by irradiation alone and in 

combination with TAS-116 treatment, a viability assay was performed for each cell line.  

Cells were transferred to 24-well plates at a density of 3x104 cells per well in 500 µl cell culture 

medium containing 1% Penicillin/Streptomycin and 10% FBS and allowed to settle overnight. 

The next day, cells were treated with concentrations of TAS-116 known to be subtoxic to each 

cell line tested, i.e., 0.5 µM and 10 µM, or the diluent DMSO, respectively. One hour after 

treatment, cells were irradiated with 2, 4, 8, 10, and 12 Gy using an X-ray irradiation system 

(MultiRad 160 by Faxitron®). Irradiation was performed at 160 kV with a tube current of 25 mA 

at 1.9 Gy/s. 

Six hours after irradiation, cell culture plates were centrifuged at 500 g for five minutes at 4°C 

and the medium containing TAS-116 was carefully removed. Fresh medium containing 

1% Penicillin/Streptomycin and 10% FBS was added, and the cells were maintained at 37°C 

until the fifth day post irradiation.  

Propidium Iodide (PI) at a dilution of 1:100 and Hoechst 33342 diluted 1:10,000 were added 

to the cell culture medium 72 hours after irradiation and incubated for 30 minutes at 37°C in 

the dark. Similar to 7-AAD, the nuclear stain PI can be used to assess cell viability because it 

does not stain cells with an intact plasma membrane161. Hoechst 33342, on the other hand, 

binds to adenine-thymine-rich regions of DNA and, due to its ability to penetrate the cell 

membrane, stains live cells as well162.  

After staining, cells were centrifuged at 500 g for five minutes at 4°C to attach dead cells to the 

bottom of the plate, and the proportion of PI positive cells, i.e., cells that had undergone cell 

death, was examined using a fluorescence microscope (Zeiss AXIO Vert.A1). The total number 

of cells per image was determined by counting the cell nuclei in the blue channel 

(Hoechst 33342), and the percentage of cells that were also positive for PI staining was 

calculated. For each condition, an average of approximately 170 cells were counted. 
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4.2.7. Analysis of cGAS/STING pathway activation 

(1) DNA double-strand breaks - γH2AX 

To analyze the induction of DNA double-strand breaks by combination therapy with TAS-116 

and RT, immunofluorescence staining was performed for phosphorylated histone H2AX 

(γH2AX). Histone H2AX is phosphorylated at ser139 within seconds of inducing of DNA double-

strand breaks and subsequently forms foci, each representing a single double-strand break163.  

Cells were transferred to coverslips in 24-well plates at a density of 3x104 cells per well in 

500 µl cell culture medium containing 1% Penicillin/Streptomycin and 10% FBS and allowed 

to settle overnight. One hour after treatment with 0.5 µM, 10 µM TAS-116, or the diluent DMSO, 

the next day, cells were irradiated as described above.  

Fixation by incubation in 4% paraformaldehyde (PFA) solution for 15 minutes at room 

temperature was performed three hours after irradiation to not only assess the induction of 

DNA double-strand breaks, but also to distinguish the extent of DDR. The coverslips were then 

transferred to new 24-well plates and stored in 1 ml PBS each until immunofluorescence 

staining. 

To block unreacted formaldehyde groups and reduce background fluorescence, cells were 

quenched with 50 mM ammonium chloride (NH4Cl) for 15 minutes at room temperature and 

then washed with PBS for five minutes. Cells were permeabilized with 0,1% Triton-X100 for 

ten minutes at room temperature, washed once with PBS and blocked with 5% BSA in PBS 

for two hours at room temperature. The primary antibody targeting γH2AX was diluted 1:1,000 

in 1% BSA in PBS and applied to the samples overnight at 4°C in a wet chamber. 

The next day, samples were washed three times with 1% BSA in PBS, and the secondary 

antibody Alexa Fluor 647 anti-rabbit (1:250 in 1% BSA-PBS) was applied for one hour in a wet 

chamber at room temperature in the dark. Finally, cells were washed twice in PBS, stained 

with 1 µg/ml diamidino-2-phenylindole (DAPI) for five minutes in the dark, washed with PBS 

and once with double-distilled water (ddH2O) and mounted with Mowiol. 

 

(2) Cytosolic double-stranded DNA 

It has been previously described that irradiation-induced DNA damage leads to an increased 

occurrence of cytosolic dsDNA101. To determine whether HSP90 inhibition exacerbates this 

effect, immunofluorescence staining for cytosolic dsDNA was performed. 

Cells were transferred to coverslips in 24-well plates at a density of 3x104 cells per well in 

500 µl cell culture medium containing 1% Penicillin/Streptomycin and 10% FBS and allowed 

to settle overnight. The next day, cells were treated with 0.5 µM, 10 µM TAS-116, or the diluent 

DMSO, respectively, and irradiated one hour later as described above.  

Fixation of samples was performed as described above three hours after irradiation. 
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To block unreacted formaldehyde groups and reduce background fluorescence, cells were 

quenched with 50 mM ammonium chloride for 15 minutes at room temperature and then 

washed in PBS for five minutes. Cells were permeabilized with 0,02% Tween20 in PBS for 

15 minutes at room temperature to prevent the primary antibody from entering the nucleus164. 

Samples were washed once in PBS and blocked with 5% BSA in PBS for two hours at room 

temperature. The primary antibody against dsDNA was diluted 1:1,000 in 1% BSA in PBS and 

applied to the samples overnight at 4°C in a wet chamber. 

The next day, the samples were washed three times with 1% BSA in PBS, and the secondary 

antibody Alexa Fluor 488 anti-mouse (1:1,000 in 1% BSA in PBS) was applied for one hour in 

a wet chamber at room temperature in the dark. Lastly, cells were washed twice in PBS, 

stained with 1 µg/ml DAPI for five minutes in the dark, washed with PBS and once with ddH2O 

and mounted with Mowiol. 

 

(3) STING phosphorylation 

To quantify the activation of the cGAS/STING pathway induced by irradiation and HSP90 

inhibition, immunofluorescence staining for phosphorylated STING protein (pSTING) was 

performed for each cell line. 

Preparation, treatment with TAS-116, and irradiation were carried out as described above, and 

cells were fixed using 4% PFA eight hours after irradiation. Immunofluorescence staining was 

performed according to the previously mentioned protocol with slight differences in terms of 

permeabilization of the tumor cells, which was achieved by incubating the samples in ice-cold 

methanol on ice for ten minutes165. After blocking with 5% BSA in PBS the primary antibody 

targeting pSTING (1:400 in 1% BSA in PBS) was applied overnight at 4°C in a wet chamber. 

The protocol was then continued as described above, using Alexa Fluor 647 anti-rabbit diluted 

1:250 in 1% BSA in PBS as the secondary antibody. 

 

(4) IFNβ 

Because HSP90 is also known to stabilize the protein kinase TBK1, which is involved in the 

cGAS/STING pathway166, the possibility of incomplete pathway activation despite STING 

phosphorylation was ruled out by analyzing IFNβ secretion as one of the main effects of 

complete cGAS/STING pathway activation167. 

Immunofluorescence staining according to the known protocol was therefore conducted again 

for each cell line after treatment with TAS-116 and irradiation with doses up to 12 Gy. Fixation 

was performed 48 hours after irradiation. Tumor cells were permeabilized by incubation in 

0.1% Triton-X100 for ten minutes at room temperature. The primary antibody targeting IFNβ 
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was diluted 1:50 in 1% BSA in PBS and, after overnight incubation, conjugated with the 

secondary antibody Alexa Fluor 555 anti-rabbit at a dilution of 1:300 in 1% BSA in PBS.  

 

(5) Quantification of fluorescence signal intensity 

Images of cells stained for γH2AX, dsDNA, pSTING, and IFNβ were acquired using a 

fluorescence microscope (Olympus IX83), and signal intensity analysis was performed using 

ImageJ software. First, regions of interest (ROI) were defined for each nucleus in the blue 

channel (DAPI). For this purpose, the blue channel was converted to a binary black and white 

image and a threshold for DAPI staining intensity was set. Next, the existing “convert to mask” 

and “watershed” commands were applied to best distinguish individual nuclei. Particles with a 

minimum size of 1,000 pixels and minimum circularity of 0.2 were defined as ROIs and 

fluorescence parameters of these nuclei were measured. The ROIs were then transferred as 

an overlay to the respective channel, i.e., the magenta (γH2AX, pSTING), green (dsDNA) or 

red channel (IFNβ), and the fluorescence parameters for the respective staining were also 

measured.  

To quantify γH2AX staining in the nuclei, the mean integrated density of ROI in the magenta 

channel was analyzed. Analysis of dsDNA, pSTING, and IFNβ staining required measurement 

of staining intensity in the cytosol, which is not included in the ROI. Therefore, cells in each 

channel were outlined by freehand selection. The integrated density of the nucleus, i.e., the 

ROI, was then subtracted from that of the corresponding whole cell, and the mean integrated 

density within the cytosol was normalized to an untreated control sample for each staining. An 

average of 16 cells per condition was analyzed. 

 

4.2.8. CD8+ T cell-mediated killing assay 

It has been previously shown that the anti-tumor immune response following DNA damage and 

activation of the cGAS/STING pathway is mainly mediated by the recruitment of CD8+ 

T lymphocytes117. To assess whether a combination treatment of HSP90 inhibition and RT 

could enhance this effect, a CD8+ T cell cytotoxicity assay was performed. To this end, 

RP157.8 SCLC and ACF133.3 cells, another subset of the previously used ACF135.10 NSCLC 

cell line, were transfected to secrete ovalbumin as described above for the E.G7 lymphoma 

cell line.  

RP157.8-OVA and ACF133.3-OVA cells were transferred to 6-well plates at a density of 

2x105 cells per well in cell culture medium containing 1% Penicillin/Streptomycin and 10% FBS 

as well as 0,4 mg/ml G418 to maintain positive selection. The next day, cells were treated with 

0.5 µM, 10 µM TAS-116, or the diluent DMSO, respectively, and irradiated with 8 Gy one hour 

later as previously described. Cells were kept on ice during irradiation, and the non-irradiated 
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control group was likewise kept on ice for the same time. Immediately after irradiation, the 

medium was carefully removed and replaced with fresh cell culture medium supplemented as 

described above. 

Two days after irradiation, cells were incubated in 1 ml 5 µM Tag-it-violet in PBS for 20 minutes 

at room temperature in the dark. After the tagging process was terminated by adding 5 ml of 

cell culture medium, cells were centrifuged at 500 g for five minutes at 4°C and transferred to 

a 96-well plate at a density of 104 cells per well in medium supplemented as described above.  

72 hours post irradiation, 3x105 OT-I CD8+ T cells in cDMEM supplemented with 1000 U/ml 

IL-2 as well as 10 µg/ml anti-PD1 antibody were added to the tumor cells. Cells were co-

cultured at 37°C for five hours before the supernatant containing CD8+ T cells was transferred 

to a new 96-well plate. Tumor cells were washed with 50 µl of PBS before detachment with 

50 µl of accutase per well for seven minutes at 37°C. They were then again transferred to the 

CD8+ T cells and co-cultured cells were centrifuged at 500 g for five minutes at 4°C and washed 

once with 200 µl per well 1% BSA in PBS. Cells were then resuspended in 50 µl per well 

1% BSA in PBS containing 1.5 µl of 7-AAD and anti-CD8α FITC antibody 1:100 and stained 

for 30 minutes at 4°C in the dark. After staining, cells were washed once in PBS, resuspended 

in 100 µl per well of PBS and analyzed by flow cytometry.  

The same procedure was performed on tumor cells without co-cultured CD8+ T cells. These 

cells were not stained with 7-AAD but were incubated for 30 minutes at 4°C in the dark in 50 µl 

per well 1% BSA in PBS containing anti-PDL1 PE/Dazzle and anti-PDL2 APC antibodies, each 

at a dilution of 1:200, prior to flow cytometric analysis. 

 

4.2.9. Analysis of TCR clonality 

ACF135.10 NSCLC cells were harvested from cell culture plates as previously described and 

washed once with PBS. Cell density was adjusted to 5x107 cells/ml in PBS and 100 µl of the 

cell solution was injected subcutaneously into both flanks of C57BL/6 WT mice anesthetized 

with isoflurane. 

Once the tumors had grown to approximately 300 mm3, the mice were treated with 16 mg/kg 

TAS-116 by intraperitoneal injection and irradiated one hour later. Animals were anesthetized 

by intraperitoneal injection of ketamine (100 mg/kg) and xylazine (10 mg/kg) before irradiation. 

Cream was applied to protect the mice’ eyes from drying out during anesthesia and animals 

were kept under observation until awakening.  

Mice received a single dose of 8 Gy per tumor delivered by a linear electron accelerator (Elekta 

SLi20). To increase the radiation dose at the skin surface, the tumor region was covered with 

a 5 mm wax bolus. Irradiation was performed at a dose rate of approximately 3.5 Gy/min at 

15 MeV.  
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The mice were terminated one hour after irradiation, and the tumors and spleen were 

dissected. Blood was collected from the heart and diluted 1:10 in Pharm Lyse before incubation 

in a water bath at 37°C for 15 minutes. After centrifugation at 400 g for four minutes at room 

temperature, the cell pellet was resuspended in 1 ml PBS and stored on ice until staining. 

The tumors were cut into pieces and digested in 1 ml / 100 mg tissue of pre-warmed Roswell 

Park Memorial Institute medium (RPMI) containing 10% FBS, collagenase IV 1:1,000, and 

deoxyribonuclease (DNase) 1:200 for 50 minutes in a water bath at 37°C. The tumor pieces 

were then triturated through a 70 µm cell strainer and rinsed twice with 5 ml RPMI containing 

10% FBS. Cells were centrifuged at 500 g for five minutes at 4°C, resuspended in 5 ml PBS, 

and stored on ice until staining. 

The spleen was likewise passed through a cell strainer and rinsed twice with 5 ml PBS. 

Following centrifugation at 500 g and 4°C for five minutes, the cells were resuspended in 1 ml 

lysing buffer and incubated at room temperature for five minutes. After addition of 5 ml PBS, 

splenocytes were centrifuged again at 500 g and 4°C for five minutes, then resuspended in 

5 ml PBS and stored on ice until staining. 

 

Figure 6: Flow cytometry panel for TCR staining 

Samples were stained with Zombie Nir 1:500 in PBS for 30 minutes at room temperature in 
the dark. All other antibodies were diluted 1:40 in PBS and staining was performed for 20 
minutes at 4°C in the dark. 

 

Prior to staining, all samples were centrifuged at 500 g and 4°C for five minutes. Splenocytes 

and blood cells were resuspended in 100 µl, tumor samples were resuspended in 500 µl 

Zombie Nir 1:500 in PBS and incubated for 30 minutes at room temperature in the dark. After 

washing once with PBS, blood and tumor samples were resuspended in 6 ml, splenocytes in 

2 ml of PBS. All samples were aliquoted at 40 µl per well onto a 96-well plate. To each well, 
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10 µl of PBS containing 0.25 µl of each antibody was added according to the panel in Fig. 6, 

and incubation was performed for 20 minutes at 4°C in the dark. Staining was then terminated 

by addition of 100 µl PBS, cells were centrifuged for five minutes at 500 g and 4°C, washed 

once with 200 µl PBS, resuspended in 100 µl PBS, and measured by flow cytometry.  
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5. Results 

5.1 Cell line specific cytotoxicity of TAS-116 

To administer the HSP90 inhibitor TAS-116 in effective yet subtoxic concentrations in the 

following experiments, the tumor type-specific cytotoxicity of the compound was determined 

for ACF135.10 NSCLC, RP157.8 SCLC, MC38 colon carcinoma, B16F10 melanoma, and E.G7 

lymphoma cells (Fig. 7). For this purpose, cells were treated with concentrations ranging from 

0.01 μM to 10,000 μM TAS-116, or the diluent DMSO, respectively. FACS analysis of 7-AAD 

positive, i.e., dead cells, was performed 24 hours after treatment. While no effect was observed 

in any cell line when treated with the lowest concentration (0.01 μM), all cells underwent cell 

death within 24 hours of treatment with 10,000 μM. Thus, it was confirmed that the 

concentration range in this experimental design was sufficiently chosen to evaluate cytotoxicity 

for each cell line included in this study.  

Survival curves and IC50 values, i.e., cell line-specific concentrations of TAS-116 that induce 

cell death in 50% of the original cell population, were calculated using a non-linear regression 

model. IC50 values were comparable for ACF135.10 (115.1 μM; Fig. 7A), RP157.8 (168.4 μM; 

Fig. 7B), B16F10 (147.3 μM; Fig. 7D), and E.G7 cells (103.8 μM; Fig. 7E). However, with a 

more than 10-fold higher IC50 value, MC38 colon carcinoma cells were found to be much more 

resistant to TAS-116-induced cell death (1964 μM; Fig. 7C).  

Remarkably, most cell lines, with the exception of MC38, displayed a plateau phase at 

concentrations between 0.01 μM to 0.5 μM, and the first marked effects on cell viability were 

observed following treatment with 1 μM TAS-116. RP157.8 SCLC cells appeared to respond 

differently in this regard, as the percentage of cells that suffered cell death increased noticeably 

by 4.79% after treatment with 0.2 μM compared to 0.1 μM. For all other cell lines except 

ACF135.10, the increase in this concentration range was less than 1%. However, this is difficult 

to assess for the latter because of the rather high standard deviation at this point of 

measurement (19.62% ± 10.74%). Although the cell death inducing effect in RP157.8 cells 

started at lower concentrations, they still exhibited the second highest IC50 value, owing to a 

flatter ascent of the curve at higher concentrations.  

The first concentration used in the following experiments was set at 0.5 μM in synopsis of these 

results, on the assumption that this concentration would have stronger effects in RP157.8 cells 

than in the other cell lines. For comparison, cells were also treated with 10 μM TAS-116, as 

this concentration was found to affect cell viability but was still at least one power of ten below 

the IC50 value of each cell line.   
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Figure 7: Cytotoxicity of TAS-116 

ACF135.10 (A), RP157.8 (B), MC38 (C), B16F10 (D), and E.G7 (E) cells were treated with rising 
concentrations of TAS-116 for 24 hours. Cells were stained with 7-AAD and the IC50 was 
determined (F) using a non-linear regression model. Mean with SEM; n=3 
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5.2 Viability after TAS-116 treatment and irradiation 

The aim of this study is to analyze the effects of TAS-116 administration in combination with 

RT on different tumor cell lines. Therefore, it is essential to investigate not only the cytotoxicity 

of TAS-116 itself, but foremost the toxic effects of TAS-116 and RT in combination. 

ACF135.10, RP157.8, MC38, and B16F10 cells were thus treated with 0.5 µM and 

10 µM TAS-116, and irradiated one hour later with doses up to 12 Gy. To assess cell death 

induced by this treatment, tumor cells were stained with Hoechst 33342 and PI 72 hours after 

RT and observed under a fluorescent microscope. Dead, i.e., PI positive cells, were 

subsequently counted and set into relation to the total number of cells per image. 

Consistent with the previously mentioned results, MC38 cells were found to be relatively 

resistant to the study treatment, with no statistically significant increase in cell death under any 

condition (Fig. 8C; Fig. 11). At each irradiation dose (except 4 Gy, which is most likely due to 

an artifact), there was a slight trend toward increased cell death after treatment with 

10 µM TAS-116, but no visible effect was induced by 0.5 µM TAS-116 up to 8 Gy irradiation. 

Unexpectedly, no consistent effects of combination of TAS-116 with RT on cell viability were 

detected in B16F10 cells, either (Fig. 8D; Fig. 12). 

 

Figure 8: Cell viability following RT and TAS-116 treatment 

Tumor cells were treated with 0.5 and 10 µM TAS-116, and irradiated one hour later. Cells 
were stained with PI 72 hours after irradiation. PI positive cells were counted and are illustrated 
for AF135.10 (A), RP157.8 (B), MC38 (C), and B16F10 (D) cells. Mean with SEM; n=3 
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On the other hand, there was a trend toward enhanced cell death induction in both lung cancer 

cell lines. In ACF135.10 cells, the percentage of PI positive cells was slightly increased after 

HSP90 inhibition and RT with doses of at least 8 Gy compared to RT only (Fig. 8A; Fig. 9). 

Interestingly, the ability of the combined treatment with TAS-116 and RT to induce cell death, 

as suggested by the observed trend, apparently reached its maximum in cells that received 

10 µM TAS-116 and 8 Gy RT, as higher treatment conditions did not exceed the effect 

observed in this group. It should be noted, however, that the mean percentage of PI positive 

ACF135.10 cells did not exceed 15% in any group.   

In contrast, the proportion of PI positive RP157.8 cells treated with 10 µM TAS-116 gradually 

increased across all radiation doses, yet this effect was not statistically significant (Fig. 8B; 

Fig. 10). This trend, however, was not observed following treatment with 0.5 µM, except for a 

slight tendency toward an increase in the 10 and 12 Gy groups, respectively. 

Overall, neither RT or TAS-116 alone, nor the combined treatment resulted in a statistically 

significant increase of PI positive cells in any cell line. Both lung cancer cell lines, however, 

seemed to be somewhat more susceptible to the study treatment than MC38 and B16F10 cells, 

with a trend toward a synergistic effect in RP157.8 cells even at very low doses of radiation. 

The following experiments were therefore conducted on ACF135.10, RP157.8 and MC38 cells 

only. 
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Figure 9: Propidium Iodide staining of ACF135.10 cells 

ACF135.10 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and 
stained with Hoechst (blue) and PI (red) 72 hours after irradiation. Single color images for 
untreated cells (A), and for cells treated with 12 Gy and 10 µM TAS-116 (B) are shown. One 
exemplary multicolor image is shown for every condition (C-T). Scale bar in B accounts for all 
images in A-B; Scale bar in T accounts for C-T. Scale bars c     p       2  μ . 
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Figure 10: Propidium Iodide staining of RP157.8 cells 

RP157.8 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and stained 
with Hoechst (blue) and PI (red) 72 hours after irradiation. Single color images for untreated 
cells (A), and for cells treated with 12 Gy and 10 µM TAS-116 (B) are shown. One exemplary 
multicolor image is shown for every condition (C-T). Scale bar in B accounts for all images in 
A-B; Scale bar in T accounts for C-T.  c    b    c     p       2  μ . 



52 
 

 

Figure 11: Propidium Iodide staining of MC38 cells 

MC38 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and stained 
with Hoechst (blue) and PI (red) 72 hours after irradiation. Single color images for untreated 
cells (A), and for cells treated with 12 Gy and 10 µM TAS-116 (B) are shown. One exemplary 
multicolor image is shown for every condition (C-T). Scale bar in B accounts for all images in 
A-B; Scale bar in T accounts for C-T.  c    b    c     p       2  μ . 
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Figure 12: Propidium Iodide staining of B16F10 cells 

B16F10 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and stained 
with Hoechst (blue) and PI (red) 72 hours after irradiation. Single color images for untreated 
cells (A), and for cells treated with 12 Gy and 10 µM TAS-116 (B) are shown. One exemplary 
multicolor image is shown for every condition (C-T). Scale bar in B accounts for all images in 
A-B; Scale bar in T accounts for C-T.  c    b    c     p       2  μ . 
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5.3 Induction of DNA double-strand breaks 

In reaction to DNA damage, as caused by RT for example, histone H2AX is phosphorylated 

and thus serves as a marker for DNA double-strand breaks. One hypothesis of this work is that 

TAS-116 impairs mechanisms for repair of radiation-induced DNA damage by inhibiting 

HSP90, resulting in enhanced γH2AX signal.  

Phosphorylation of histone H2AX occurs within seconds upon DNA double-strand breaks. 

However, staining for γH2AX was not performed immediately after treatment with TAS-116 

and RT, but three hours later to analyze the extent of residual DNA damage after repair 

mechanisms should normally have already started.  

Since phosphorylation of histone H2AX occurs at every DNA double-strand break, the latter 

are normally quantified by counting the γH2AX foci. However, the experimental setup for this 

thesis resulted in DNA damage on a scale that rendered counting impossible (Fig. 14; Fig. 15; 

Fig. 16). This problem was overcome by alternatively quantifying H2AX phosphorylation by 

measuring the integrated density of γH2AX staining signal for each cell and normalizing to the 

untreated control.  

 

Figure 13: DNA double-strand breaks following RT and TAS-116 treatment 

Tumor cells were treated with 0.5 and 10 µM TAS-116, and irradiated one hour later. Cells 
were stained for γH2Ax three hours after irradiation. Normalized γH2Ax signal per cell is 
illustrated for ACF135.10 (A), RP157.8 (B), and MC38 (C) cells. Mean with SEM; n=3 

 

TAS-116 did not exhibit a tendency to cause DNA double-strand breaks by itself in any cell 

line. In ACF135.10 cells, there was a trend toward increased H2AX phosphorylation by RT 
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alone in a dose-dependent manner (Fig. 13A; Fig. 14). The addition of 10 µM TAS-116 mildly 

enhanced this effect at radiation doses of 4 Gy and above, whereas the lower concentration 

did not result in any visible augmentation up to an irradiation of 10 Gy. 

Irradiation alone likewise exhibited a tendency to increase γH2AX staining in RP157.8 cells 

(Fig. 13B; Fig. 15). Consistent with the cytotoxicity results, a trend toward an increase in 

γH2AX foci was observed in RP157.8 cells after TAS-116 administration at both 

concentrations, even at the lowest radiation dose. While no difference was observed between 

the different concentrations of the drug in cells irradiated with 2 and 4 Gy, the 10 µM group 

outperformed the 0.5 µM group in terms of induction of DNA damage after RT with 8 and 

10 Gy, respectively, yet this was not statistically significant. Unexpectedly, this trend reversed 

in the 12 Gy group, and γH2AX foci seemingly decreased after treatment with TAS-116 

compared to cells that received RT only.  

Irradiation also showed the tendency to slightly increase induction of γH2AX foci in MC38 colon 

carcinoma cells in a dose-dependent manner up to 10 Gy (Fig. 13C; Fig. 16). The addition of 

TAS-116 demonstrated a tendency to enhance this effect only in cells irradiated with 8 Gy. 

Summing up, there was only a moderate trend toward RT- and TAS-116-mediated enhanced 

induction of γH2AX foci for every cell line, and the results did not reach statistical significance.  
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Figure 14:              c  c               γH2 X       135.1  c     

ACF135.10 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and 
stained with DAPI (blue) and anti-γH2 X         x        6 7 (       ) three hours after 
irradiation. Single color images for untreated cells (A), cells treated with 12 Gy and 10 µM TAS-
116 (B), and for untreated cells stained without the secondary antibody (C) are shown. One 
exemplary multicolor picture is shown for every condition (D-U). Scale bar in B accounts for all 
images in A-C; Scale bar in U accounts for D-U. Sc    b    c     p       2  μ . 
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Figure 15:              c  c               γH2 X      157.8 c     

RP157.8 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and stained 
with DAPI (blue) and anti-γH2 X         x        6 7 (       ) three hours after irradiation. 
Single color images for untreated cells (A), cells treated with 12 Gy and 10 µM TAS-116 (B), 
and for untreated cells stained without the secondary antibody (C) are shown. One exemplary 
multicolor picture is shown for every condition (D-U). Scale bar in B accounts for all images in 
A-C; Scale bar in U accounts for D-U.  c    b    c     p       2  μ . 
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Figure 16:              c  c               γH2 X      38 c     

MC38 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and stained 
with DAPI (blue) and anti-γH2 X         x        6 7 (       ) three hours after irradiation. 
Single color images for untreated cells (A), cells treated with 12 Gy and 10 µM TAS-116 (B), 
and for untreated cells stained without the secondary antibody (C) are shown. One exemplary 
multicolor picture is shown for every condition (D-U). Scale bar in B accounts for all images in 
A-C; Scale bar in U accounts for D-U.  c    b    c     p       2  μ . 
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5.4 Analysis of cGAS/STING pathway activation 

As previously explained, activation of the cGAS/STING pathway is induced via sensing of 

dsDNA in the cytosol by cGAS which eventually leads to phosphorylation of STING protein. 

Cytosolic dsDNA and pSTING can therefore serve as markers to assess cGAS/STING 

pathway activation. In this thesis, however, cGAS/STING pathway activation was induced via 

inhibition of HSP90. TBK1, a kinase whose function is indispensable for complete pathway 

activation, is one of many HSP90 client proteins. Inhibition of HSP90 could thus also result in 

incomplete activation of the cGAS/STING pathway which would not be detected via 

quantification of pSTING alone. Secretion of IFNβ was therefore included as another marker 

to assess not only pathway activation but also achievement of its final effects.  

To ensure the experimental setup to assess cGAS/STING pathway activation was correct, 

immunofluorescence staining for dsDNA, pSTING, and IFNβ was performed on RP157.8 

SCLC cells at various time points following preincubation with either 0.5 or 10 μM TAS-116 

one hour prior to RT with 8 Gy. 

 

Figure 17: cGAS/STING pathway activation by RT and TAS-116 

RP157.8 cells were treated with 0.5 and 10 µM TAS-116, and irradiated one hour later. Cells 
                    N  ( ), p   N  ( ),       Nβ ( )    v            p                       . 
Normalized immunofluorescence signal is illustrated for every staining. n=1 

 

As dsDNA in the cytosol is known to occur directly following irradiation-induced DNA damage, 

which was quantified three hours after RT in this study, staining of dsDNA was performed three 

and four hours after irradiation with 8 Gy with or without TAS-116 preincubation (Fig. 17A). 
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Immunofluorescence signal for dsDNA in the cytosol was analyzed for individual cells and 

normalized to an untreated control. Irradiation alone resulted in a 2.5-fold increase of cytosolic 

dsDNA signal within three hours and this effect prevailed until four hours after treatment. 

Whereas TAS-116 further enhanced this effect in a concentration-dependent manner in cells 

fixed for staining three hours after RT, no such increase could be observed anymore one hour 

later. 

To find the time point best suited to assess upregulation of STING phosphorylation, RP157.8 

cells were first irradiated with 8 Gy without TAS-116 preincubation and immunofluorescence 

staining for pSTING was performed at various time points ranging from three to 48 hours after 

RT. There was an incremental upregulation of STING phosphorylation between four and 

24 hours, but this effect seemed to cease within 48 hours of RT (data not shown). The same 

staining was therefore repeated four, eight, and 24 hours after irradiation with 8 Gy and 

preceding administration of TAS-116 (Fig. 17B). While pSTING signal per cell increased up to 

24 hours in line with the previous experiment, enhancement of this effect by TAS-116 was 

observed only in cells that were fixed for staining eight hours after treatment. 

Because secretion of IFNβ results from cGAS/STING pathway activation only after the 

pathway has run down completely, I hypothesized that this effect could be best assessed within 

several days following study treatment. SCLC cells were therefore fixed 24, 48, and 72 hours 

after treatment as described above and stained for IFNβ (Fig. 17C). Interestingly, RT alone did 

not increase IFNβ secretion further than 1.3-fold in cells fixed both 24 and 48 hours after 

irradiation compared to the untreated control. At 72 hours following irradiation with 8 Gy, on 

the other hand, IFNβ signal per cell was enhanced 2.8-fold. In contrast to the earlier time 

points, IFNβ signal quantified 72 hours after RT was not further amplified by TAS-116 

administration but even seemed to decrease. A concentration-dependent enhancement of 

IFNβ secretion caused by HSP90 inhibition was most distinct in cells stained 48 hours after 

irradiation. 

In synopsis of these results, tumor cells were hereafter fixed three hours after RT for dsDNA, 

eight hours for pSTING, and 48 hours for IFNβ staining, respectively. 

 

5.4.1. Cytosolic double-stranded DNA 

The presence of dsDNA in the cytosol is essential for the activation of the cGAS/STING 

pathway and occurs as a consequence of DNA damage in the nucleus. 

Consistent with the aforementioned results regarding the induction of DNA double-strand 

breaks by RT alone, there was a similar trend toward a dose-dependent increase of dsDNA in 

the cytosol throughout all radiation doses in ACF135.10 NSCLC and RP157.8 SCLC cells 

(Fig. 18A, B). In MC38 colon carcinoma cells, however, cytosolic dsDNA signal only seemingly 

intensified up to 4 Gy RT and stayed at a plateau thereafter (Fig. 18C).  



61 
 

 

Figure 18: dsDNA in the cytosol following RT and TAS-116 treatment 

Tumor cells were treated with 0.5 and 10 µM TAS-116, and irradiated one hour later. Cells 
were stained for dsDNA three hours after irradiation. Normalized cytosolic dsDNA signal per 
cell is illustrated for ACF135.10 (A), RP157.8 (B), and MC38 (C) cells. Mean with SEM; n=3 

 

In every cell line, there was a tendency toward increased dsDNA staining signal mediated by 

treatment with TAS-116 alone in a concentration-depenent manner. Moreover, the lung cancer 

cell lines ACF135.10 and RP157.8 displayed a steady trend toward enhanced occurrence of 

dsDNA following both 0.5 and 10 μM TAS-116 treatment prior to RT, with greater effects gained 

by the higher concentration (Fig. 18A, B; Fig. 19; Fig. 20). However, integrated density for 

cytosolic dsDNA signal seemed to decrease in RP157.8 cells following 12 Gy RT in the same 

manner as was already observed for γH2AX staining. 

In MC38 cells, the addition of 10 μM TAS-116 did not further increase the RT-mediated 

response at radiation doses lower than 8 Gy (Fig. 18C; Fig. 21). Effects following pretreatment 

with 0.5 μM TAS-116 were only observed in the 12 Gy group. However, these effects did not 

prove to be statistically significant.   
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Figure 19: Immunofluorescence staining for dsDNA on ACF135.10 cells 

ACF135.10 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and 
stained with DAPI (blue) and anti-dsDNA with Alexa Fluor 488 (green) three hours after 
irradiation. Single color images for untreated cells (A), cells treated with 12 Gy and 10 µM TAS-
116 (B), and for untreated cells stained without the secondary antibody (C) are shown. One 
exemplary multicolor picture is shown for every condition (D-U). Scale bar in B accounts for all 
images in A-C; Scale bar in U accounts for D-U.  c    b    c     p       2  μ . 
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Figure 20: Immunofluorescence staining for dsDNA on RP157.8 cells 

RP157.8 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and stained 
with DAPI (blue) and anti-dsDNA with Alexa Fluor 488 (green) three hours after irradiation. 
Single color images for untreated cells (A), cells treated with 12 Gy and 10 µM TAS-116 (B), 
and for untreated cells stained without the secondary antibody (C) are shown. One exemplary 
multicolor picture is shown for every condition (D-U). Scale bar in B accounts for all images in 
A-C; Scale bar in U accounts for D-U. Scale b    c     p       2  μ . 
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Figure 21: Immunofluorescence staining for dsDNA on MC38 cells 

MC38 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and stained 
with DAPI (blue) and anti-dsDNA with Alexa Fluor 488 (green) three hours after irradiation. 
Single color images for untreated cells (A), cells treated with 12 Gy and 10 µM TAS-116 (B), 
and for untreated cells stained without the secondary antibody (C) are shown. One exemplary 
multicolor picture is shown for every condition (D-U). Scale bar in B accounts for all images in 
A-C; Scale bar in U accounts for D-U. Scale bar  c     p       2  μ . 
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5.4.2. STING phosphorylation 

Next, activation of the cGAS/STING pathway was analyzed by measuring pSTING eight hours 

after RT with or without TAS-116 preincubation one hour prior (Fig. 22). 

TAS-116 treatment without subsequent irradiation resulted in a trend toward augmented 

STING phosphorylation in all cell lines. With a 3.5-fold increase in cells treated with 

10 μM TAS-116 compared to untreated cells, this effect was most pronounced in MC38 cells 

(Fig. 22C; Fig. 25).  

 

Figure 22: STING phosphorylation following RT and TAS-116 treatment 

Tumor cells were treated with 0.5 and 10 µM TAS-116, and irradiated one hour later. Cells 
were stained for pSTING eight hours after irradiation. Normalized pSTING signal per cell is 
illustrated for ACF135.10 (A), RP157.8 (B), and MC38 (C) cells. Mean with SEM; n=3 

 

Increment of STING phosphorylation following 2 Gy RT in the absence of TAS-116 was most 

distinct in MC38 cells as well, being 3.2-fold higher than in the untreated control. Neither 

increasing the radiation dose nor addition of TAS-116, however, resulted in a notable further 

enhancement of pSTING signal in colon carcinoma cells. 

ACF135.10 cells behaved similarly, with a 1.8-fold increase following 2 Gy irradiation and a 

slight dose-dependent ascent with higher radiation doses (Fig. 22A; Fig. 23). However, 

combination with HSP90 inhibition hardly seemed to enhance STING phosphorylation.  

A distinct trend toward synergism of TAS-116 treatment and RT to increase pSTING signal 

was only observed in RP157.8 cells (Fig. 22B; Fig. 24). Whereas RT alone was not able to 
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increase STING phosphorylation in the SCLC cell line, there was a visible effect following 

preincubation with TAS-116 for every radiation dose. With a 1.8-fold increase from cells that 

received RT alone to cells preincubated with 10 μM TAS-116, this tendency was most 

prominent in the 10 Gy group. Regardless of the applicated TAS-116 concentration, pSTING 

signal in RP157.8 cells decreased following 12 Gy RT to approximately the level of cells that 

had received 10 Gy RT only. Once more, none of the effects observed for this staining were 

statistically significant in any cell line. 
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Figure 23: Immunofluorescence staining for pSTING on ACF135.10 cells 

ACF135.10 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and 
stained with DAPI (blue) and anti-pSTING with Alexa Fluor 647 (magenta) eight hours after 
irradiation. Single color images for untreated cells (A), cells treated with 12 Gy and 10 µM TAS-
116 (B), and for untreated cells stained without the secondary antibody (C) are shown. One 
exemplary multicolor picture is shown for every condition (D-U). Scale bar in B accounts for all 
images in A-C; Scale bar in U accounts for D-U.  c    b    c     p       2  μ . 
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Figure 24: Immunofluorescence staining for pSTING on RP157.8 cells 

RP157.8 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and stained 
with DAPI (blue) and anti-pSTING with Alexa Fluor 647 (magenta) eight hours after irradiation. 
Single color images for untreated cells (A), cells treated with 12 Gy and 10 µM TAS-116 (B), 
and for untreated cells stained without the secondary antibody (C) are shown. One exemplary 
multicolor picture is shown for every condition (D-U). Scale bar in B accounts for all images in 
A-C; Scale bar in U accounts for D-U. Sca   b    c     p       2  μ . 
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Figure 25: Immunofluorescence staining for pSTING on MC38 cells 

MC38 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and stained 
with DAPI (blue) and anti-pSTING with Alexa Fluor 647 (magenta) eight hours after irradiation. 
Single color images for untreated cells (A), cells treated with 12 Gy and 10 µM TAS-116 (B), 
and for untreated cells stained without the secondary antibody (C) are shown. One exemplary 
multicolor picture is shown for every condition (D-U). Scale bar in B accounts for all images in 
A-C; Scale bar in U accounts for D-U. Scale b    c     p       2  μ . 
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5.4.3. IFNβ secretion 

To assess whether induction of the cGAS/STING pathway by RT and HSP90 inhibition would 

indeed result in completion of the whole pathway, secretion of IFNβ was measured 48 hours 

after treatment as described above (Fig. 26). 

 

Figure 26:   Nβ     c                         -116 treatment 

Tumor cells were treated with 0.5 and 10 µM TAS-116, and irradiated one hour later. Cells 
                   Nβ  8                        . N      z     Nβ        p   c                   
for ACF135.10 (A), RP157.8 (B), and MC38 (C) cells. Mean with SEM, n=3 

 

Both TAS-116 treatment and RT alone exhibited a trend toward a concentration- and dose-

dependent increase of IFNβ secretion in ACF135.10 cells, respectively (Fig. 26A; Fig. 27). 

Moreover, HSP90 inhibition showed a tendency to further enhance the RT-induced response 

at radiation doses of at least 4 Gy in this cell line. 

In RP157.8 cells, TAS-116 treatment seemed to mildly increase IFNβ secretion only at a 

concentration of 10 μM, whereas there was a dose-dependent trend toward enhanced staining 

mediated by RT alone throughout all groups. Mild additive effects of combined treatment were 

only observed in cells irradiated with 4, 8, and 10 Gy in combination with 10 μM TAS-116 

(Fig. 26B; Fig. 28). In line with the results obtained from the previous experiments, this trend 

did not proceed in the 12 Gy group. 

MC38 colon carcinoma cells, however, were not found to visibly increase IFNβ secretion 

following either treatment with TAS-116 or RT with doses lower than 8 Gy alone (Fig. 26C; 
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Fig. 29). TAS-116 at a concentration of 10 μM showed a tendency to increase IFNβ secretion 

in MC38 cells only when combined with 12 Gy irradiation. In accordance with the previous 

experiments, the results did not reach statistical significance in any group. 
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Figure 27:              c  c                 Nβ       135.1  c     

ACF135.10 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and 
stained with DAPI (blue) and anti-IFNβ with Alexa Fluor 555 (red) 48 hours after irradiation. 
Single color images for untreated cells (A), cells treated with 12 Gy and 10 µM TAS-116 (B), 
and for untreated cells stained without the secondary antibody (C) are shown. One exemplary 
multicolor picture is shown for every condition (D-U). Scale bar in B accounts for all images in 
A-C; Scale bar in U accounts for D-U. Scale bars c     p       2  μ . 
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Figure 28: Immunofluorescence staining for   Nβ      157.8 c     

RP157.8 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and stained 
with DAPI (blue) and anti-IFNβ with Alexa Fluor 555 (red) 48 hours after irradiation. Single 
color images for untreated cells (A), cells treated with 12 Gy and 10 µM TAS-116 (B), and for 
untreated cells stained without the secondary antibody (C) are shown. One exemplary 
multicolor picture is shown for every condition (D-U). Scale bar in B accounts for all images in 
A-C; Scale bar in U accounts for D-U. Scale bars c     p       2  μ . 
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Figure 29:              c  c                 Nβ      38 c     

MC38 cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and stained 
with DAPI (blue) and anti-IFNβ with Alexa Fluor 555 (red) 48 hours after irradiation. Single 
color images for untreated cells (A), cells treated with 12 Gy and 10 µM TAS-116 (B), and for 
untreated cells stained without the secondary antibody (C) are shown. One exemplary 
multicolor picture is shown for every condition (D-U). Scale bar in B accounts for all images in 
A-C; Scale bar in U accounts for D-U. Scale bars corr  p       2  μ . 
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5.4.4. Summary of cGAS/STING pathway analysis 

Contrary to the previously described hypothesis on which this thesis is based, it can be stated 

that combinatory treatment of RT and HSP90 inhibition did not significantly increase activation 

of the cGAS/STING pathway in vitro. Nevertheless, trends with distinct differences between 

tumor cell lines could be observed.  

Both HSP90 inhibition and RT up to 12 Gy individually displayed a tendency to induce 

cGAS/STING pathway activation in ACF135.10 NSCLC cells in a concentration- and dose-

dependent manner, as was shown by immunofluorescence staining for cytosolic dsDNA, 

pSTING, and IFNβ, respectively. A trend toward synergism of the combined treatment was 

observed for dsDNA and IFNβ yet not for pSTING staining. 

The results obtained from HSP90 inhibition alone were less distinct in RP157.8 SCLC cells for 

every staining. RT seemed to mildly enhance staining signal for dsDNA and IFNβ but not for 

pSTING. Regarding the outcome of the combined study treatment, application of 

0.5 μM TAS-116 exhibited a trend to increase RT-induced upregulation of cytosolic dsDNA 

and pSTING for doses up to 10 Gy but barely enhanced the effects on IFNβ secretion mediated 

by RT alone. TAS-116 at a concentration of 10 μM, however, exhibited a tendency to increase 

IFNβ secretion when administered prior to RT with 4, 8, or 10 Gy, respectively. In terms of 

dsDNA and pSTING induction, treatment with 10 μM of the active ingredient resulted in greater 

effects than 0.5 μM with the differences between the concentrations becoming more distinct, 

yet not statistically significant, with rising radiation doses. Interestingly, the mentioned trends 

were only observed in RP157.8 cells for radiation doses up to 10 Gy. Neither 

immunofluorescence signal for dsDNA, pSTING nor IFNβ displayed a tendency to intensify 

further following 12 Gy irradiation but even decreased. 

In line with the TAS-116 cytotoxicity assay, MC38 colon carcinoma cells hardly displayed a 

tendency to respond to the study treatment. Whereas HSP90 inhibition alone demonstrated a 

trend toward amplified dsDNA and pSTING staining signal, this was not the case for IFNβ. The 

observed tendency of RT to induce enhancement of immunofluorescence signal eventually 

reached a plateau for every staining and addition of TAS-116 seemed to overcome this state 

only at high radiation doses. Although administration of 10 μM TAS-116 seemed to result in 

enhanced occurrence of cytosolic dsDNA at a minimum radiation dose of 8 Gy, the lower 

concentration of the compound could not intensify staining signal up to 12 Gy. When analyzing 

induction of STING phosphorylation and IFNβ secretion, respectively, a trend toward additive 

effects of the combined treatment could be observed only in the 12 Gy group. 
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5.5 CD8+ T cell-mediated killing 

Upregulation of the cGAS/STING pathway by combined treatment with TAS-116 and RT was 

investigated under the assumption that it would ultimately improve tumor immunogenicity and 

therefore CD8+ T cell-mediated killing of tumor cells. To confirm this hypothesis, ACF133.3 

NSCLC cells transduced to present the ovalbumin peptide SIINFEKL via MHC-I molecules on 

their surface were irradiated with 8 Gy either on ice or at room temperature. Cells were then 

given into co-culture together with OT-I derived CD8+ T cells at various time points following 

RT in effector to target ratios ranging from 2.5:1 to 30:1. The percentage of dead tumor cells 

was assessed five hours later via flow cytometry.   

 

Figure 30: CD8+ T cell-mediated killing at different timepoints after RT 

ACF133.3 cells were irradiated with 8 Gy at room temperature and on ice, respectively, and 
co-cultured with varying numbers of CD8+ T cells for five hours. Co-culture was set 24 (A), 48 
(B), or 72 hours (C) after irradiation. The percentage of surviving tumor cells is illustrated. n=1 

 

OT-I CD8+ T cells were not able to induce cell death of ACF133.3 cells when the co-culture 

was set up 24 hours after the tumor cells had received RT (Fig. 30A). T cell-mediated killing 

was, however, improved when cells were co-cultured either 48 or 72 hours after RT with 

effector to target cell ratios between 30:1 to 10:1 (Fig. 30B, C). Because this effect was slightly 

more distinct after 72 hours with cells irradiated on ice, this setup was maintained for the 

following experiments.  

Killing assays were therefore conducted again as described above with ACF133.3 and OVA-

transduced RP157.8 SCLC cells at an effector to target cell ratio of 30:1. CD8+ T cell-mediated 
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killing of ACF133.3 cells seemed to be slightly improved by RT alone, resulting in an 

approximately 10% reduction of surviving tumor cells (Fig. 31A). TAS-116 showed a tendency 

to improve CD8+ T cell-mediated killing at both concentrations tested in non-irradiated cells. 

However, only the higher concentration of 10 μM led to a mild enhancement of cell death 

induction in tumor cells that received 8 Gy irradiation. The proportion of 7-AAD positive tumor 

cells preincubated with 10 μM TAS-116 was approximately 12% higher in comparison to cells 

that received irradiation with 8 Gy alone, yet this was not statistically significant. 

 

Figure 31: CD8+ T cell-mediated killing of tumor cells 

Tumor cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and co-
cultured with CD8+ T cells for five hours. Co-culture was set both with and without PD-1 
blockade. CD8+ T cell-mediated tumor cell killing for ACF133.3 (A, B) and RP157.8 (C, D) is 
shown. Mean with SEM; n=4 

 

In RP157.8 cells, on the other hand, administration of 0.5 μM TAS-116 resulted in improved 

CD8+ T cell-mediated killing neither for the irradiated nor the non-irradiated group (Fig. 31C). 

Preincubation with 10 μM TAS-116, however, obtained a similar trend as was observed in 

ACF133.3 cells. 

Under the assumption that HSP90 inhibition would lead to upregulation of PD-L1 expression 

on tumor cells and blockade of PD-1/PD-L1 interaction would therefore further amplify CD8+ 

T cell-mediated killing, an antibody targeting PD-1 was added to the co-culture at a 

concentration of 10 μg/ml. This treatment, however, did not further enhance the observed 

effects in either cell line (Fig. 31B, D). 
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Because blockade of PD-1/PD-L1 interaction did not, as expected, result in improved CD8+ 

T cell-mediated killing in the previous experiment, I scrutinized whether PD-L1 and PD-L2 

were, in fact, upregulated following the study treatment. To this end, ACF133.3 and RP157.8 

cells were treated and irradiated as described before, and flow cytometric analysis for PD-L1 

and PD-L2 expression on the tumor cell surface was performed approximately 77 hours after 

irradiation. 

Irradiation with 8 Gy alone displayed a tendency to augment the expression of PD-L1 and 

PD-L2 in ACF133.3 cells by 1.2- and 1.3-fold, respectively. Whereas 0.5 μM TAS-116 

preincubation did not alter this effect, there was a trend toward further upregulation of ligand 

expression upon treatment with 10 μM (Fig. 32A, B). 

 

Figure 32: PD-L1 and PD-L2 expression following RT and TAS-116 treatment 

Tumor cells were treated with 0.5 and 10 µM TAS-116, irradiated one hour later, and stained 
for PD-L1 and PD-L2 approximately 77 hours later. Normalized PD-L1 and PD-L2 expression 
is shown for ACF133.3 (A, B) and RP157.8 (C, D) cells. Mean with SEM; n=5; *p<0.05 

 

Alterations of PD-L1 expression on RP157.8 cells following RT were comparable to NSCLC 

cells. However, 8 Gy RT did not result in upregulation of PD-L2 expression on the tumor cell 

surface (Fig. 32C, D). Whereas preincubation with 0.5 μM, again, did not surpass the RT-

mediated effects regarding PD-L1 expression, the latter was significantly increased following 

treatment with 10 μM TAS-116 by 1.6-fold compared to cells treated with the drug at a 

concentration of 0.5 μM. There was a trend toward enhanced expression of the ligand following 

treatment with 10 μM TAS-116 one hour prior to irradiation with 8 Gy as well, yet this was not 
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statistically significant. The only time the lower concentration of TAS-116 displayed a mild 

effect in this experiment was upon analysis of PD-L2 expression on RP157.8 cells that also 

received RT. Increase of the TAS-116 concentration seemingly further magnified this 

upregulation. 

It was therefore shown that there was a trend toward upregulation of both PD-L1 and PD-L2 

expression following HSP90 inhibition and RT on ACF133.3 NSCLC and RP157.8 SCLC cells 

in vitro. This effect was statistically significant in non-irradiated RP157.8 cells that had received 

TAS-116 at the higher concentration. It would be worthwhile testing different concentrations of 

the antibody for future experiments as well as assessing the best time point for administration.  

 

5.6 Analysis of TCR clonality 

Finally, since the cytotoxic activity of CD8+ T lymphocytes depends on target cell recognition 

via TCRs, it was investigated whether RT with and without prior TAS-116 treatment would 

affect the TCR clonality of infiltrating T lymphocytes in vivo. To this end, WT mice bearing 

ACF135.10 flank tumors received 8 Gy irradiation per tumor either alone or following treatment 

with TAS-116 one hour prior. Mice were sacrificed seven days after RT, and TCR expression 

on CD4+ and CD8+ T lymphocytes obtained from the spleen, blood, and tumor tissue was 

assessed by flow cytometry.   

In CD4+ T cells derived from the spleen, neither RT alone nor in combination with HSP90 

inhibition obtained any effect regarding TCR clonality (Fig. 33B). CD4+ T lymphocytes 

infiltrating the tumor tissue, however, displayed upregulation of six TCRs (Vα3.2, Vα8.3, 

Vα11.1/11.2, Vβ8.3, Vβ11[  3-15], Vβ13) following TAS-116 treatment and RT (Fig. 33A). Of 

those, only Vα8.3 and Vβ11[  3-15] were likewise upregulated on T helper cells obtained 

from the blood, whereas Vβ13 was found to be downregulated in blood CD4+ lymphocytes 

(Fig. 33C). 

Regarding CD8+ T cells, on the other hand, the study treatment resulted in upregulation of four 

TCRs (Vα11.1/11.2, Vβ5.1/5.2, Vβ7, Vβ12) on cells obtained from the spleen (Fig. 33D), of 

which Vα11.1/11.2 and Vβ5.1/5.2 were likewise upregulated on blood CD8+ lymphocytes 

(Fig. 33F). While these two TCRs, however, were not distinctly altered on tumor infiltrating 

cytotoxic T cells, Vβ7 and Vβ12 TCRs were here found to be inversely downregulated 

(Fig. 33E).  

Interestingly, several TCR clones, especially on tumor infiltrating CD8+ T cells, seemed to be 

upregulated by RT alone but not so much following combined treatment with the HSP90 

inhibitor TAS-116 (Vα3.2, Vα8.3, Vα11.1/11.2, Vβ2, Vβ8.3, Vβ9, Vβ11[  3-15]). Moreover, 

the only TCR clones identified to be upregulated in both tumor infiltrating CD4+ and CD8+ 

T cells were Vβ8.3 and Vβ13. However, these results need further validation.  
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Figure 33: T cell receptor expression 

WT mice bearing ACF135.10 flank tumors were treated with TAS-116 and irradiated with 8 Gy 
per tumor one hour later. Mice were sacrificed seven days after irradiation. Cells obtained from 
tumors, spleen, and blood were stained for CD4, CD8, and T cell receptor clones. TCR 
expression on CD4+ (A, B, C) and CD8+ (D, E, F) T cells is illustrated. n=1 
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6. Discussion 

The aim of this thesis was to investigate the possible synergistic effects of HSP90 inhibition 

and RT on tumor immunogenicity. Therefore, activation of the cGAS/STING pathway by the 

HSP90 inhibitor TAS-116 in combination with RT in various dosing regimens was analyzed. 

To elaborate tumor type-specific differences, this thesis mainly focused on MC38 colon 

carcinoma, RP157.8 SCLC, and ACF135.10 NSCLC cells. 

 

6.1 Effects of HSP90 inhibition and RT on MC38 cells 

The murine MC38 colon adenocarcinoma cell line is widely used in preclinical immuno-

oncology models. RT was previously found to yield substantial benefits on MC38 tumor growth 

in vivo only in rather high doses. However, mice bearing subcutaneous MC38 tumors 

responded well to moderate radiation doses in combination with checkpoint blockade168. 

Regardless of RT seldom being of importance in the treatment of colon carcinoma patients 

clinically, the MC38 cell line was thus included in this work due to its favorable responsiveness 

toward combinatory treatment regimens including RT and immunomodulatory approaches.  

Regarding cytotoxicity of TAS-116, MC38 cells displayed a substantially greater resistance to 

the drug with an IC50 value more than ten-fold higher than the other cell lines tested (Fig. 7). 

Said resistance was confirmed via staining with PI 72 hours after treatment where 

administration of 0.5 µM TAS-116 was found to not induce cell death in MC38 cells, whereas 

application of 10 µM TAS-116 showed a tendency to do so (Fig. 8C). Moreover, MC38 cells 

displayed only a very mild sensitivity toward RT in this experiment. RT with 12 Gy resulted in 

detection of 17.7% more PI positive cells compared to non-irradiated cells. While this effect 

was dose-dependent it only represented a rather flat ascent with no increase from 4 to 8 Gy 

and 10 to 12 Gy, respectively. Preincubation with 10 µM TAS-116 one hour prior to RT further 

enhanced the percentage of PI positive cells for every radiation dose in line with its toxicity on 

colon carcinoma cells by itself, yet this was not statistically significant. Application of the lower 

concentration, however, did not yield synergistic effects regarding induction of cell death when 

combined with RT in doses up to 8 Gy. For irradiation with 10 and 12 Gy, respectively, the 

proportion of PI positive cells observed following pretreatment with 0.5 µM TAS-116 exceeded 

that of non-treated cells yet still did not reach the effect of the 10 µM group. 

The results observed upon analysis of DNA double-strand breaks in MC38 cells induced by 

RT alone mimicked the results previously mentioned in that there was an overall trend toward 

dose-dependent induction of DNA double-strand breaks but no visible effect between cells 

irradiated with 4 and 8 Gy or 10 and 12 Gy, respectively (Fig. 13C). In terms of γH2AX staining, 

MC38 cells seemingly neither reacted to TAS-116 monotreatment nor was there any trend 

toward a synergistic induction of DNA double-strand breaks upon combination with RT. 
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However, induction of apoptosis or necrosis by the HSP90 inhibitor TAS-116 should be due to 

its impairment of DDR mechanisms. Therefore, DNA damage is bound to precede the cells’ 

uptake of PI and the results obtained from γH2AX staining are most likely owing to a sub-

optimal experimental setup. It has previously been shown that phosphorylation of histone 

H2AX indicating DNA double-strand breaks sets in within seconds of tumor irradiation in vivo 

and already decreases within two hours169. It is thus not surprising that while there was a trend 

toward ascension of γH2AX signal with rising radiation doses three hours after RT in each cell 

line, this was not very prominent. Unexpectedly, there were no statistically significant 

alterations in γH2AX staining signal by concomitant HSP90 inhibition, either. By fixing the cells 

three hours after RT, I aimed at differentiating the extent of DNA double-strand breaks in cells 

with impaired DDR from cells with such mechanisms intact. In that regard, the HSP90 inhibitor 

TAS-116 has already been shown to increase phosphorylation of histone H2AX in human 

cervical carcinoma cells (HeLa cells) irradiated with 2 Gy and this effect prevailed up to 

24 hours after RT170. The experimental setup differed from this thesis in so far as HeLa cells 

were preincubated with 1 µM TAS-116 for 24 hours prior to RT and the active ingredient was 

washed out directly afterward. This way, the authors achieved a cell cycle arrest in the G2/M 

phase which has been shown to render cells most susceptible to RT171. Considering this, 

preincubation with TAS-116 for only one hour is likely to result in upregulation of γH2AX foci 

to a lesser extent. Another influencing factor might be the method of analysis. Because one 

γH2AX focus in the nucleus is equivalent to one DNA double-strand break172 the latter are 

usually quantified via counting of foci. This method, however, reaches practical limits when 

high radiation doses are applied due to the vast number of foci that would need to be counted 

per nucleus. Instead, global γH2AX phosphorylation levels were quantified in this study by 

measuring the integrated density, i.e., the sum of all fluorescence pixel values, within the 

nucleus. Whereas measurement of total γH2AX phosphorylation levels per cell has been 

described before as an alternative to foci counting, there are known shortcomings to this 

method. It was found, for example, that the number of γH2AX foci in hamster ovarian cells 

irradiated with 2 Gy decreased faster than the global γH2AX signal173. The authors suggest an 

increase in the size of the remaining foci, higher phosphatase activity within the foci, or a 

redistribution of γH2AX in chromatin as possible explanations for this finding. It can thus not 

be ruled out that the assay performed for this thesis yielded questionable results as the number 

of foci in cells that did not undergo HSP90 inhibition might have decreased further than in 

treated cells, yet this was not detectable by the method of analysis. 

Next, activation of the cGAS/STING pathway was analyzed via quantification of dsDNA in the 

cytosol, STING phosphorylation, and IFNβ secretion. Administration of TAS-116 showed a 

concentration-dependent tendency to increase the occurrence of cytosolic dsDNA and 

pSTING alike in MC38 cells (Fig. 18C, Fig. 22C). Likewise, irradiation with 2 Gy resulted in 
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enhanced dsDNA and pSTING signal, yet this was not statistically significant. Rising radiation 

doses further enhanced this effect only mildly. A trend toward synergistic potential for 

enhancement of cytosolic dsDNA in colon carcinoma cells was seen for TAS-116 at a 

concentration of 10 µM and radiation doses of at least 8 Gy while administration of 0.5 µM did 

not exceed the level of cells that received RT alone up to 12 Gy. This observed trend, however, 

was even less pronounced regarding STING phosphorylation.  

In accordance with TAS-116 only displaying a tendency to slightly induce phosphorylation of 

STING protein individually in MC38 cells, it did not result in complete cGAS/STING pathway 

activation as measured by IFNβ secretion, either. Additionally, the cells’ reaction to RT in this 

regard was likewise delayed and overall weaker with an ascent from 8 Gy on (Fig. 26C). This 

phenomenon is most likely due to impaired stabilization of TBK1 which is a client protein of 

HSP90 and therefore affected by the latter’s inhibition166. As previously described, TBK1 is 

essential for STING phosphorylation which in turn is indispensable for completion of the 

pathway and ultimately for secretion of type I IFNs. Thus, impairment of TBK1 activity could 

explain the attenuated and delayed signal increase in the immunofluorescence staining 

performed here. The further downstream of the cGAS/STING pathway an effect occurs, the 

more intensive treatment regimens are necessary to enhance it.  

 

6.2 Effects of HSP90 inhibition and RT on RP157.8 cells 

Even though treatment options have advanced in recent years, prognosis for patients bearing 

SCLC tumors is still poor with a 2-year survival of 14-15%13. New treatment approaches, such 

as combination regimens utilizing RT and immunotherapeutic agents, are thus of utmost 

clinical importance. The SCLC cell line RP157.8, which is driven by both RB1 and Trp53 

knockout, the most commonly found mutations in SCLC tumors overall11, was therefore 

included in this thesis. 

RP157.8 cells proved to be a lot more susceptible toward treatment with TAS-116 than MC38 

colon carcinoma cells, as was shown in the cytotoxicity assay (Fig. 7B). I therefore assumed 

that the lower concentration of 0.5 µM TAS-116 would yield greater effects in this cell line. 

While treatment with 0.5 µM had resulted in an increase in 7-AAD positive cells in the 

cytotoxicity assay by 17%, no such effect was observed upon staining with PI 72 hours after 

treatment (Fig. 8B). One explanation for this observation could lie within the different incubation 

times, i.e., 24 hours for the cytotoxicity assay and seven hours for PI staining. There was a 

visible trend upon treatment with 10 µM of the active ingredient, however. Irradiation alone 

displayed a tendency to induce cell death from 4 Gy on in a dose-dependent manner. 

Comparable to MC38 cells, no significant synergistic effects were observed for any treatment 

condition and the trend following preincubation with TAS-116 at the lower concentration was 
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only observed for the 10 and 12 Gy groups, whereas 10 µM TAS-116 exceeded the non-treated 

cells for every radiation dose. While this response grew more pronounced with rising radiation 

doses in MC38 cells, the difference between cells that had received RT alone and RP157.8 

cells pretreated with 10 µM TAS-116 remained relatively constant throughout all groups. 

Similar to the colon carcinoma cell line, monotreatment with TAS-116 did not significantly 

enhance the γH2AX staining signal in RP157.8 cells, although the radiosensitivity results were 

consistent with the counted PI positive cells from the previous experiment (Fig. 13B). 

Furthermore, there was a mild trend toward synergistic induction of DNA double-strand breaks 

for radiation doses ranging from 2 to 10 Gy after preincubation with either concentration of the 

compound. In cells irradiated with 8 and 10 Gy, results achieved by administration of 

10 µM TAS-116 overtook the lower concentration. Unexpectedly, γH2AX signal seemed to 

decline in cells irradiated with 12 Gy and preincubated with either concentration of TAS-116. 

Because this trend was also observed in all subsequent immunofluorescence stainings of 

RP157.8 cells, but administration of TAS-116 had shown a trend toward an increased 

percentage of dead cells in the 12 Gy group, I first hypothesized that DNA damage from this 

combined treatment may have exceeded the DDR capability of the cells and therefore the cells 

had already undergone cell death at the time of staining. 

Moreover, phosphorylation of histone H2AX is known to be mediated by different kinases 

depending on the triggering factor. While ataxia telangiectasia mutated kinase (ATM) is 

primarily responsible for H2AX phosphorylation in response to DNA double-strand breaks 

following RT, phosphorylation of H2AX during apoptosis is solely mediated by DNA-dependent 

protein kinase (DNA-PK)174. ATM is a client protein of HSP90α, and inhibition of the latter has 

been shown to promote its proteasomal degradation175. Additionally, ATM is responsible for 

phosphorylation of nuclear HSP90α directly after RT and this process correlates with histone 

H2AX phosphorylation176. In accordance, γH2AX formation following RT was reduced in 

HSP90α deficient cells regardless of HSP90β levels in the same study. Another study had 

demonstrated before that silencing of HSP90α impaired maintenance of γH2AX foci, yet not 

total γH2AX levels, after RT but treatment of the same cells with the HSP90α inhibitor 

17-allylamino-17-demethoxy-geldanamycin (17-AAG) did not yield the same effect177. The 

authors thus suggest that while DNA repair mechanisms mediated by HSP90α are inhibited 

by 17-AAG, phosphorylation of the chaperone is not. Likewise, DNA-PK is a known client of 

HSP90α as well, and downregulation of the latter therefore reduces DNA-PK-mediated γH2AX 

formation in apoptotic cells178. Significantly in this context, the γH2AX distribution pattern in 

cells undergoing apoptosis, e.g., due to severe DNA damage, is distinctly different from γH2AX 

foci representing DNA double-strand breaks. Nuclei of early apoptotic cells display an annular 

γH2AX staining, referred to as the apoptotic ring, which later propagates to a pan-nuclear 

staining pattern179. As was already discussed earlier on, the method of γH2AX staining analysis 
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in this thesis does not allow to distinguish with certainty between foci, pan-nuclear staining or 

cells possibly marked by both patterns. With respect to the results indicating a decline of 

γH2AX staining intensity in RP157.8 cells treated with TAS-116 and irradiated with 12 Gy, it is 

thus possible that phosphorylation of histone H2AX in this setting is downregulated due to 

impaired stabilization of ATM and DNA-PK by HSP90α. The non-functional form of the 

chaperone might still be phosphorylated upon inhibition at first. However, it seems likely that 

extensive inhibition of HSP90α and henceforth ATM and DNA-PK will forestall phosphorylation 

of HSP90α and therefore γH2AX foci formation above a certain threshold.  

Regarding activation of the cGAS/STING pathway, administration of TAS-116 resulted in a 

concentration-dependent trend toward upregulation of both dsDNA and pSTING in RP157.8 

cells (Fig. 18B, 22B). However, the lower concentration of 0.5 µM did not seem to influence 

the induction of IFNβ secretion at all (Fig. 26B). In contrast, irradiation alone showed a 

tendency to gradually increase the intensity of dsDNA and IFNβ but not pSTING staining. In 

line with these results, a synergistic tendency for pathway activation up to the STING 

phosphorylation step was observed using radiation doses up to 10 Gy with both concentrations 

of the active ingredient, yet only preincubation with 10 µM TAS-116 resulted in possible 

completion of the pathway as quantified by IFNβ secretion. None of the observations 

mentioned reached statistical significance. 

 

6.3 Effects of HSP90 inhibition and RT on ACF135.10 cells 

The final cell line included in this study was the Trp53/KRAS driven ACF135.10 NSCLC cell 

line. Even though the IC50 value determined for this cell line in the cytotoxicity assay was 

comparable to that of RP157.8 cells (115.1 and 168.4 µM, respectively; Fig.7A, B), results 

obtained from PI staining seemed to display some differences (Fig. 8A). 

While for most cell lines tested the percentage of PI positive cells ascended to values between 

approximately 49 and 59% following the most intense treatment regimen, the maximum 

observed proportion of PI positive ACF135.10 cells was only approximately 15%. Possible 

explanations for this phenomenon lay within the design of the assay. The nuclear and 

chromosome counterstain PI intercalates into the DNA upon entering the nucleus and is 

commonly used to identify necrotic and late apoptotic cells. It is prevented from entering the 

cell as long as the cellular membrane is intact and therefore does not stain viable or early 

apoptotic cells161. A study using human HCT116 colon carcinoma cells demonstrated that 

HSP90 inhibition enforced RT-induced apoptosis and accelerated transit into necrosis in a 

concentration-dependent manner in vitro180. The same study deployed radiation doses up to 5 

Gy and found that, while nearly 100% of treated cells entered apoptosis within 48 hours of 

irradiation, the percentage of necrotic or late apoptotic, i.e., PI positive cells, was still ascending 
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after 72 hours, rendering them clearly distinguishable to untreated cells. For this thesis, 

irradiation was applied in doses as high as 12 Gy. I therefore assumed that treatment-mediated 

differences regarding the induction of cell death could be best quantified via PI staining 

72 hours following RT. However, it cannot be ruled out that the ideal setup or time point of 

measurement, respectively, could be different depending on the cell line. Apart from 

KRAS/Trp53 mutated lung cancer cells displaying high resistance to RT in general181 another 

possible explanation for the apparent relative unresponsiveness of ACF135.10 cells in this 

experiment could thus be that transition to necrosis, including permeabilization of the cellular 

membrane, might take longer in these cells. In this regard, it is worth considering whether 

staining at another time point might have yielded significant results in the other cell lines as 

well. 

Nevertheless, there was still an apparent trend toward induction of cell death by TAS-116 

treatment at a concentration of 10 µM visible for this cell line. While RT alone yielded no effect 

in this regard for doses up to 10 Gy, the number of PI positive cells counted increased following 

RT with 12 Gy, although not significantly. Interestingly, even though TAS-116 had displayed 

slightly higher cytotoxicity on ACF135.10 than RP157.8 cells in the first experiment, the trend 

observed in NSCLC cells regarding their responsiveness toward combined treatment with RT 

in the PI staining assay was less marked than in SCLC cells. The proportion of dead cells 

showed a tendency to rise dose-dependently only for RT doses of at least 8 Gy with the 0.5 µM 

approaching the 10 µM group when combined with irradiation of 10 and 12 Gy, respectively. 

However, as previously mentioned, these results are to be interpreted with caution due to the 

overall low percentage of PI positive cells for this cell line. 

Regarding immunofluorescence staining for γH2AX, no effect following TAS-116 treatment 

alone was observed for either concentration, whereas γH2AX staining signal was incrementally 

upregulated by all radiation doses individually, although this was not statistically significant 

(Fig. 13A). A trend toward synergism of RT and HSP90 inhibition seemingly set in at 4 Gy 

irradiation for the higher and at 10 Gy for the lower TAS-116 concentration, respectively. 

Both TAS-116 and RT individually exhibited a tendency toward a concentration- and dose-

dependent augmentation of the staining signal for dsDNA, pSTING, and IFNβ (Fig. 18A, 22A, 

26A). Whereas both 0.5 and 10 µM TAS-116 preincubation displayed a tendency to enhance 

RT-mediated upregulation of cytosolic dsDNA in all groups, this trend was hardly visible for 

STING phosphorylation. However, a synergistic tendency of HSP90 inhibition and RT was 

again perceived for radiation doses of at least 4 Gy in cells stained for IFNβ.  
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6.4 Effects of HSP90 inhibition and RT on CTL-mediated killing of 

tumor cells 

Next, I was interested whether combination of HSP90 inhibition and RT would result in 

enhanced tumor cell killing by CD8+ T cells. As I observed trends toward enhanced secretion 

of IFNβ in both lung cancer cell lines yet not in MC38 cells, the killing assay was conducted 

solely with OVA-transduced RP157.8 and ACF133.3 cells, another subset of the ACF135.10 

cell line. 

There was a weak trend toward enhanced CD8+ T cell-mediated killing of NSCLC cells 

following administration of both 0.5 and 10 µM TAS-116 but the lower concentration did not 

yield such an effect on RP157.8 cells (Fig. 31). Rather unexpectedly, the tendency to enhance 

tumor cell killing by irradiation with 8 Gy was slightly more pronounced in ACF133.3 than 

RP157.8 cells, even though NSCLC cells had displayed a trend toward upregulation of IFNβ 

secretion to a somewhat lesser extent. Combined treatment of HSP90 inhibition and RT with 

8 Gy conveyed a trend toward synergism of CD8+ T cell-mediated killing only with TAS-116 at 

a concentration of 10 µM in both cell lines.  

Hence, the effects displayed in this study were only mild and not statistically significant. Yet it 

has been published before that HSP90 inhibition does improve tumor cells’ response to CTL-

mediated lysis. Whereas CD8+ T cell-mediated killing of human melanoma cells was enhanced 

following treatment with ganetespib for 24 hours182, another study stated that induction of 

differentiating antigens, ultimately leading to increased T cell recognition of melanoma cells in 

vitro even required continuous inhibition of HSP90 for 48 hours183. While the enhancement of 

effector functions of CTLs was traced back to an upregulation of IFN response genes in the 

first study by Mbofung et al.182, another study on sarcoma cells found proteasomal degradation 

of antigens to be improved upon administration of the HSP90 inhibitor 

17-Dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), ultimately leading to 

prolonged recognition of tumor cells by CD8+ T cells in vitro and in vivo184. Contrary to these 

results, however, it has been reported that HSP90 inhibition, even though not affecting 

synthesis, does inhibit peptide loading onto MHC-I molecules, therefore impeding antigen 

presentation as well as cross-priming185. 

Furthermore, RT evidentially sensitizes tumor cells toward CD8+ T cell-mediated killing in vitro. 

Two studies found that murine MC38 and human CRC cells were more susceptible toward 

CTL-mediated killing when co-cultured with antigen specific CD8+ T cells for 18 hours 24 or 

72 hours after RT, respectively186,187. The effector to target cell ratios in these studies ranged 

from 12.5:1 up to 100:1 with MC38 cells displaying statistically significant differences 

compared to non-irradiated cells only when co-cultured with T cells at the highest ratio. 

Interestingly, Chakraborty et al.187 found the death receptor Fas to be upregulated in MC38 

cells upon RT with 20 Gy and blocking its interaction with the respective ligand on T cells 
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reversed RT-mediated sensitization toward cytolysis. However, whereas the study by Garnett 

et al.186 likewise observed Fas upregulation, CTL-mediated killing was apparently not 

dependent on this effect. Another study conducted similarly to the aforementioned, yet co-

culturing tumor and T cells for four to five hours only, uncovered that human CRC cells were 

sensitized toward CD8+ T cell-mediated killing only when at least one of the co-stimulatory 

molecules OX-40 ligand (CD134L) or 4-1BBL (CD137L) were upregulated following RT188. 

Both ligands belong to the TNF family of T cell co-stimulators and, upon interaction with their 

respective receptors on T cells, promote T cell proliferation and cytokine production189. 

Whereas 4-1BBL was found to be expressed on human lung cancer cells yet not healthy lung 

tissues190, OX-40L seems to be expressed on both SCLC and NSCLC cells only rarely191,192. 

Apart from said sensitizing effects, however, RT can impede antitumor immunity, as well. 

Secretion of Type I IFNs following RT-mediated activation of the cGAS/STING pathway has 

been shown to induce expression of SERPINB9, an inhibitor of granzyme B. With the latter 

being an important mediator of T cell cytotoxicity, RT can thus contribute to tumor cell 

resistance toward T cell-mediated killing193. 

Next, it was analyzed whether PD-1/PD-L1 checkpoint blockade would enhance CD8+ T cell-

mediated killing of ACF133.3 and RP157.8 cells in this experimental setup. Surprisingly, this 

was not the case for either cell line even though PD-L1 expression was significantly 

upregulated upon treatment with 10 μM TAS-116 in RP157.8 cells. Moreover, there was a 

trend toward PD-L1 and PD-L2 upregulation both by RT and TAS-116 treatment alone as well 

as by combined treatment (Fig. 32). This is in accordance with a study that found enhanced 

CTL-mediated lysis of murine breast and pancreatic cancer cells following RT even with an 

effector to target cell ration as low as 1:10 yet no enhancement by administration of an anti-

PD-L1 antibody regardless of PD-L1 upregulation on the tumor cells194. The authors 

hypothesize that CD8+ T cells in their setting had already been activated maximally and 

blocking of PD-1/PD-L1 interaction therefore yielded no further effect. In contrast, PD-L1 

blockade has been shown to improve tumor cell killing by itself as well as in combination with 

inhibitors of poly ADP ribose polymerase (PARP) in vitro195,196. Noteworthy, however, both 

studies used antibodies targeting PD-L1 which have been shown to be more effective than 

PD-1 antibodies, as used in this work197.  

 

6.5 Effects of HSP90 inhibition and RT on TCR clonality 

By enhancing and preserving DNA damage in irradiated tumor cells, TAS-116 bears the 

potential of improving the presentation of neoantigens. However, not all neoantigens ultimately 

promote a tumor-specific T cell response. Rather than addressing this hypothesis directly, 

tumor immunogenicity is therefore better analyzed by quantification of the immune response 
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itself. As T cell-mediated effects are dependent on recognition of antigens via TCR on 

lymphocytes, TCR clonality can yield valuable information on the anti-tumor immune response 

following RT and TAS-116 treatment. 

Sequencing of tumor-infiltrating lymphocytes in early-stage SCLC tumors unraveled a ‘cold’ 

TCR repertoire, meaning high TCR heterogeneity which was correlated with low overall 

survival198. Interestingly, while this intratumoral heterogeneity was not correlated with clonal 

neoantigen burden in SCLC, another study found that early-stage LUAD with high neoantigen 

burden displayed greater homogeneity than samples with a low burden and that this resulted 

in better overall survival as well as an improved response to pembrolizumab treatment199. In 

accordance, genomic intratumoral heterogeneity of LUAD was shown to result in higher TCR 

heterogeneity and increased relapse risk200. On the other hand, TCR clonality depends on the 

number of genomic mutations that are unique to the tumor as well, and this seems to correlate 

with PD-1 expression status. Moreover, T cell clonality was shown to be primarily driven by 

clonal expansion of CD8+ T cells201. This is in line with the finding that most lymphocytes 

infiltrating NSCLC tumors that received neoadjuvant treatment with nivolumab are CD8+ T cells 

specific for neoantigens202. In contrast, few neoantigen-specific infiltrating T cells were found 

in human lung and CRC tumors, and these exhibited a resident memory phenotype203.  

When assessing the influence of TAS-116 on T cell-mediated effects, it must be considered 

that HSP90 inhibition has also been found to impede secretion of IL-2, expression of the IL-2 

receptor as well as proliferation of stimulated T cells204. Additionally, processes involved in 

T cell priming, such as antigen processing, MHC-I peptide loading, and antigen presentation 

by APCs are likewise known to be dependent on functional HSP90205. These effects, however, 

are presumably less severe following administration of TAS-116, as it selectively inhibits the 

cytosolic isoforms HSP90α and HSP90β but not GRP94 in the endoplasmic reticulum which 

has been implicated in antigen loading onto MHC-I molecules206. Moreover, inhibition of 

HSP90 has been linked to downregulation of CD4 protein, co-stimulatory molecules, and 

αβ receptors on T lymphocytes207. 

Therefore, examining the TCR receptor status does not allow assessment of the induction of 

neoantigens alone. It could, however, be an elegant way to evaluate the overall treatment 

effects. The results of the TCR clonality analysis in this thesis suggest alterations in TCR 

clonality following RT and TAS-116 treatment but require further validation. In this regard, it 

would be of added value to repeat the in vivo experiments using Nur77GFP reporter mice. In 

these transgenic mice, green fluorescent protein (GFP) is linked to expression of Nur77, a 

gene upregulated early following TCR activation. This way, it is possible to assess not only 

T cell clonality but also TCR signaling strength208. 
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6.6 Conclusion 

Taken together, the hypothesis on which this work is based, i.e., RT and HSP90 inhibition 

enhance tumor immunogenicity via induction of IFNβ and therefore render tumor cells more 

susceptible toward combined treatment with immune checkpoint blockade, could not be 

confirmed by the experiments conducted for this thesis. Previously published data as well as 

trends observed in the results herein suggest a synergistic potential of HSP90 inhibition and 

RT, nevertheless. 

The fact that most of the results did not reach statistical significance may be explained by 

various shortcomings in the experimental designs. Moreover, HSP90 inhibition, by means of 

DDR inhibition, might not enhance cGAS/STING pathway activation as much as prolong it. It 

may therefore be of interest to monitor some of the pathway-dependent effects for a period of 

time using the dosing regimens that displayed a tendency to elicit a response herein. The 

experimental setups established for this work should therefore be further expanded to explore 

possible cell line-specific differences regarding preservation of DNA damage with subsequent 

prolonged cGAS/STING pathway signaling. 

Additionally, ultimate effects in terms of tumor immunogenicity and enhanced susceptibility to 

immune checkpoint blockade should be examined further in in vivo treatment studies on 

various tumor entities.   
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