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Abstract

The increasing complexity of biostatistical research questions requires statistical meth-
ods that can effectively address multidimensional problems. This thesis addresses is-
sues arising from multidimensionality in statistical testing and modeling, with a focus
on model-based equivalence tests and hazard regression models. Specifically, it examines
three directions of multidimensionality: multivariate outcomes, model uncertainty, and
multidimensional covariate effects. Four contributions discuss the necessity of adapting
model-based equivalence tests and hazard regression models to account for these three
aspects of multidimensionality.

The first contribution extends model-based equivalence tests to multivariate, potentially
mixed-scale outcomes using generalized joint regression models. This approach overcomes
the limitations of a previous approach that is only capable of bivariate binary outcomes
and relies on the intersection-union principle leading to an overly conservative test, par-
ticularly for small sample sizes. In contrast, a new maximum of maxima approach is used
to increase the power in finite samples while maintaining asymptotic validity.

The second contribution addresses model uncertainty, a common issue in applied research
where often the true model is unknown. By incorporating model averaging to model-based
equivalence tests and deploying a confidence interval-based testing approach, the proposed
method offers a robust and numerically feasible alternative that retains the asymptotic
properties.

The third and fourth contributions shift the focus to multidimensional covariate effects. In
the third article, functional random coefficients are introduced to model heterogeneously
time-varying covariate effects. Such coefficients are not only capable of time-varying and
subgroup-specific covariate effects but also of covariate effects in which the time-variation
itself is heterogeneous. The functional random coefficients are constructed as tensor prod-
uct interactions of heterogeneity and time. While the third contribution introduces these
effects to generalized additive models, the fourth article discusses their applicability in
survival analysis by incorporating such effects into hazard regression models.

The methods are evaluated through simulations outlining their flexibility while either
retaining the asymptotic properties of the model-based equivalence test or the prevention
of overfitting of the regression models. The practical relevance of the proposed methods
is demonstrated using case studies from pharmacology, toxicology, and oncology. This
thesis thus contributes novel approaches that enhance the flexibility and applicability of
statistical methods in multidimensional biostatistical research.
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1 Introduction

In recent years, multidimensional and multivariate research questions have become in-
creasingly relevant in the field of biostatistics (Rahnenführer et al., 2023). However, nu-
merous statistical methods require further adaptation to be applicable in multidimensional
settings. This dissertation focuses on the development, enhancement, and application of
regression methods and regression-based tests capable of accommodating multidimen-
sionality. Concerning regression-based testing approaches, model-based equivalence tests
(Dette et al., 2018) will be considered, while in the field of regression modeling hazard
regression models will be investigated. Hence, the overarching topic of this thesis consists
of two subtopics: multidimensionality in model-based equivalence tests and multidimen-
sionality in hazard regression models.

In contrast to model-based equivalence tests, which will be investigated for classical data
types, such as binary and continuous variables, hazard regression models are designed for
a specific data type: time-to-event data, also referred to as survival data, which measures
the time until a specific event of interest, such as death, occurs. Time-to-event data is
different from other forms of data since it exhibits a time-dependent structure and usually
includes censored observations, i.e. cases for which either the event is not observed or the
exact event time is unknown (Klein and Moeschberger, 2005). Consequently, survival data
requires specialized statistical techniques, such as hazard regression models, to account
for censoring and the dynamic relationship between time and event risk.

There are several directions in which a modeling problem can be multidimensional and
this thesis investigates the following three directions:

1. The response variable can be multivariate, which leads to special requirements for
the modeling approach. Although modeling techniques for multivariate outcomes,
particularly generalized joint regression models (Radice and Marra, 2016; Filippou
et al., 2017; Marra and Radice, 2017; Klein et al., 2019), have already been devel-
oped, the adaptation of model-based tests remains underexplored.

2. The multidimensionality can also be inherent in the model itself. In applied research,
model uncertainty is often present, i.e. the true underlying model is unknown. In
addition, for a single modeling problem, there is often more than one reasonable
modeling approach and combining several models (e.g. via model averaging) might
be necessary. Model averaging has been extensively researched (e.g. Buckland et al.,
1997; Wasserman, 2000; Hjort and Claeskens, 2003; Schorning et al., 2016) but its
incorporation into model-based tests needs further research.

3. The effects of explanatory variables can be multidimensional. Here, multidimen-
sional varying coefficients are of special interest, i.e. coefficients that do not only
vary with respect to one variable but with respect to (non-linear) interactions of
variables. In this context, capturing heterogeneous time-variation in hazard regres-
sion models is of particular interest.

For each of these directions of multidimensionality, its effect on a statistical method
will be investigated and the necessary adaptations will be developed. While the first
two directions of multidimensionality will be investigated in the context of model-based
equivalence tests, the third one will be examined with regard to hazard regression models.
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Demonstrating equivalence between two groups is an important research question in
biostatistics, most prominently used in bioequivalence studies (Hauschke et al., 2007;
Möllenhoff et al., 2022) but also in other applications (see, e.g. Cade, 2011; MacKenzie
and Kendall, 2002; Dixon and Pechmann, 2005). The underlying null hypothesis is that
the difference of a parameter of interest between two groups is outside an equivalence re-
gion, which is determined by a pre-specified threshold value ε. In other words, this means
that the absolute value of this difference is larger or equal to ε. If the null hypothesis
is rejected, equivalence can be concluded. Hence, equivalence tests reverse the burden
of proof compared to a standard significance test making them promising in regulatory
settings (Hauschke et al., 2007).

Classical approaches (e.g. Schuirmann, 1987; Lakens, 2017) are based on testing the equiv-
alence of single quantities, e.g. the mean, the area under the curve (AUC), or other values
of interest. However, when differences depending on a particular covariate are observed,
e.g. dose-response relations, these approaches may not be very accurate (Dette et al.,
2018). Instead, considering the entire covariate range, describing for instance a time
window or a dose range, has recently been proposed by testing for equivalence of whole
regression curves. Such tests are typically based on the principle of confidence interval
inclusion (Liu et al., 2009; Gsteiger et al., 2011; Bretz et al., 2018). However, a more direct
approach applying various distance measures has been introduced by Dette et al. (2018),
which was observed to be more powerful. Based on this, many further developments e.g.
for different outcome distributions or specific model structures have been introduced (see,
e.g. Möllenhoff et al., 2020, 2021, 2024).

However, two topics merit further research: First, regarding the first direction of mul-
tidimensionality, the issue arises that some studies involve a joint comparison of more
than one response variable. This is particularly relevant for the comparison of two drugs
whenever both – efficacy and toxicity – need to be investigated. Möllenhoff et al. (2021)
developed an adaptation of the test of Dette et al. (2018) for the special case of bivariate
binary outcomes. However, this can necessitate the transformation of continuous vari-
ables to binary ones based on thresholds, which can result in a loss of information (see
the case study of Möllenhoff et al. (2021) for an explicit example). Therefore, this disser-
tation aims to introduce a more flexible approach allowing for other scales of measures
of the outcome variables, including mixed outcomes. This is achieved by deploying gen-
eralized joint regression models (GJRMs; Radice and Marra, 2016; Filippou et al., 2017;
Marra and Radice, 2017; Klein et al., 2019), which allow for the joint modeling of multi-
variate outcomes with arbitrary marginal distributions, as underlying regression models.
This also ensures that the proposed approach directly generalizes for outcome variables
with more than two dimensions. The approach of Möllenhoff et al. (2021) relies on the
intersection-union principle (Berger, 1982) to construct the test statistic, which results in
a test that is overly conservative for smaller sample sizes. Therefore, this thesis uses an
alternative test statistic, called maximum of maxima, in order to increase the power in
finite samples while retaining the same asymptotic properties.

Second, another issue arises from the second direction of multidimensionality: the test
of Dette et al. (2018) as well as all proposed adaptations of this test (e.g. Möllenhoff
et al., 2020, 2021, 2024) have one thing in common: they assume the true underlying
regression model to be known. In applied research, this assumption is frequently not
fulfilled. Usually, only a set of plausible models, also called candidate models, is known
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leading to model uncertainty. The model is then chosen either manually or based on
a model selection procedure (see Möllenhoff et al. (2018) for an example of the latter).
However, in both cases accidentally misspecifying the model can invalidate the test and
cause severe type I error inflation. Therefore, this dissertation aims to introduce model
averaging to the test of Dette et al. (2018) to overcome the model uncertainty. This can
lead to the issue that the test algorithm of Dette et al. (2018) may become numerically
infeasible due to the increased model complexity. Hence, an alternative testing procedure
is suggested which is similar to the one proposed by Bastian et al. (2024) and makes use
of the duality between confidence intervals and hypothesis testing.

While the first part of this thesis investigates these two directions of multidimensionality
in model-based equivalence tests, the second part addresses multidimensionality in hazard
regression models, which are specifically designed for time-to-event data. Hazard regres-
sion models play a crucial role in analyzing the effects of covariates on the survival time
by modeling the hazard function, which represents the instantaneous rate of occurrence
of the event at a given time, conditional on survival up to that time, as a function of time
and explanatory variables. Hence, they allow to assess the impact of various factors on
the hazard rate and enable the identification of significant effects. Besides the widely used
standard model, the Cox proportional hazards model (Cox, 1972), more flexible approaches
(e.g. Kneib and Fahrmeir, 2007; Hennerfeind et al., 2006; Bender et al., 2018) have been
developed more recently. While these approaches already introduce several flexible effects
including frailty and time-varying effects, heterogeneously time-varying covariable effects
remain underexplored. Such effects occur if the effect of a covariate is subgroup-specific,
time-varying and its time-variation is also subgroup-specific. This dissertation aims to
close this research gap by introducing functional random coefficients to hazard regression
models. These functional random coefficients are constructed as tensor products (Kneib
et al., 2019), i.e. the non-linear interaction of the two main effects – heterogeneity and
time-variation. The proposed approach allows for non-linear time effects due to being
based on penalized splines, which also prevents overfitting in case of the absence of such
effects, and uses an efficient random effects basis to model the heterogeneity.

An empirical example of a hazard regression model with functional random coefficients is
given in Figure 1, where the survival times of patients with brain tumors are investigated.
The patients are grouped with regard to their specific diagnoses. Here, the effect of
one of the explanatory variables – FGA – is diagnosis-specific, time-varying and this
time-variation is diagnosis-specific, too. Therefore, its effect is modeled by a functional
random coefficient leading to one non-linear smooth time effect for each of the groups.
This example will be discussed in more detail in Section 3.4.

Functional random coefficients are introduced to hazard regression models utilizing the
framework of piecewise exponential additive mixed models (PAMMs Bender et al., 2018).
The main advantage of PAMMs is that the model parameters can be estimated from
a generalized additive model (Hastie and Tibshirani, 1986) using standard estimation
techniques.
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Figure 1: The heterogeneously time-varying effect of FGA is modeled by a functional ran-
dom coefficient resulting in one smooth non-linear time effect for each of the six diagnosis
groups.

The remainder of this thesis is structured as follows: in Section 2, the methodological
background is introduced. Here, model-based equivalence testing is presented, copulae as
the theoretical foundation of GJRMs are outlined, survival analysis, including a general
introduction to time-to-event data, is discussed and generalized additive models are for-
mally introduced. In Section 3, four articles discussing the three research problems are
presented. In the first part of this thesis, adaptations of model-based equivalence tests
are discussed with regard to multivariate (mixed) outcomes in Section 3.1 and model
uncertainty in Section 3.2. In the second part, Section 3.3 introduces functional random
coefficients as an approach to model heterogeneously time-varying covariable effects, be-
fore they are applied to hazard regression models in 3.4. While the application in Section
3.3 is not from the field of biostatistics, it provides the theoretical basis for 3.4 and in-
troduces Bayesian estimation as an alternative to the frequentist inference in Section 3.4.
Finally, Section 4 closes with a discussion.
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2 Preliminaries

This section provides the theoretical foundations for the methods which will be discussed
in Section 3. In Section 2.1, model-based equivalence tests are introduced, and in Section
2.2 copulae as the theoretical foundation of GJRMs are outlined. With regard to the
second part of the thesis, Section 2.3 discusses survival analysis including a general intro-
duction to time-to-event data and generalized additive models are formally introduced in
Section 2.4.

2.1 Model-based equivalence tests

Classical significance tests, e.g. the t-test, aim to show significant differences by reject-
ing the null hypothesis of equality of some quantity µ between two groups versus the
alternative of inequality, i.e.

H0 : µ1 = µ2 vs. H1 : µ1 ̸= µ2.

However, when the null hypothesis cannot be rejected, equality can not be concluded as
the absence of evidence is not evidence of absence (Altman and Bland, 1995) of inequality.
In contrast, equivalence tests aim to show the equivalence of the quantities rather than
the difference. Here, equivalence is defined as equality up to a pre-specified threshold
which is usually interpreted as the threshold of practical irrelevance. The corresponding
hypothesis is given by

H0 : |µ1 − µ2| ≥ ε vs. H1 : |µ1 − µ2| < ε, (1)

where ε is the equivalence threshold. The null hypothesis in (1) is usually tested using the
two one-sided tests procedure proposed by Schuirmann (1987). However, this approach
is only capable of comparing scalar quantities. Therefore, when investigating differences
that depend on a particular covariate, such as dose-response relations, these approaches
require summarizing such relations to one single quantity, e.g. the mean or the area under
the curve (AUC). Therefore, they may not be very accurate for such studies.

Instead, considering the entire covariate range, describing for instance a time window or
a dose range, has recently been proposed by testing for equivalence of whole regression
curves. Such tests are typically based on the principle of confidence interval inclusion (Liu
et al., 2009; Gsteiger et al., 2011; Bretz et al., 2018). However, a more direct approach
applying various distance measures has been introduced by Dette et al. (2018), which
appeared to be particularly more powerful.

In order to introduce this test approach formally, first the underlying models need to be
defined. For compatibility with existing literature, especially Dette et al. (2018), the un-
derlying models will be introduced based on the typical notation of dose-response models.
This is motivated by the fact that comparing dose-response models is a typical applica-
tion of model-based equivalence tests in applied research. In pharmaceutical research,
dose-response models (see, e.g. Pinheiro et al., 2006) model the influence of the dose on
the response (e.g. the efficacy) based on a parametric regression model. Although simple
linear models can be used as well, most dose-response models are non-linear. Frequently
used examples are the Emax model, the exponential model, or the sigmoid Emax model
(Pinheiro et al., 2006; Duda et al., 2022). Figure 2 shows an overview of dose-response
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Figure 2: Common dose response models according to Duda et al. (2022).

models that Duda et al. (2022) consider to be common. For the two groups ℓ = 1, 2,
the response variable is given as yℓij, whre the index i = 1, ..., Iℓ denotes the dose levels,
j = 1, ..., nℓi denotes the observation index within each dose level and n = n1 + n2 is
the overall number of observations with nℓ =

∑I
i=1 nℓi, ℓ = 1, 2. A flexible dose-response

model is then given by

yℓij = mℓ(xℓi,θℓ) + eℓij, j = 1, ..., nℓi, i = 1, ..., Iℓ, ℓ = 1, 2,

where xℓi ∈ X ⊂ R is the dose level, i.e. the value of the deterministic explanatory
variable. The error terms eℓij are assumed to be independent, have expectation zero and
finite variance σ2

ℓ . The function mℓ models the effect of xℓi on yℓij via a potentially non-
linear regression curve with θℓ, ℓ = 1, 2 being its parameter vector. It should be noted
that there is an alternative notation omitting the index for the dose level which is used
in the first article, i.e. in Section 3.1.

Using this notation, the hypotheses of the test of Dette et al. (2018) are given as

H0 : d(θ1,θ2) ≥ ε vs. H1 : d(θ1,θ2) < ε, (2)

where d(θ1,θ2) := d(m1(x,θ1),m2(x,θ2)) is some distance measure of the difference curve
∆(x,θ1,θ2) = m1(x,θ1)−m2(x,θ2). Dette et al. (2018) propose to use either the maxi-
mum absolute deviation, also known as L∞ norm, leading to

d∞ = d∞(θ1,θ2) = max
x∈X

|m1(x,θ1)−m2(x,θ2)|, (3)

or the (squared) L2 norm, leading to

d2 = d2(θ1,θ2) =

∫

X
(m1(x,θ1)−m2(x,θ2))

2dx. (4)

In addition, Bastian et al. (2024) introduced the L1 norm

d1 = d1(θ1,θ2) =

∫

X
|m1(x,θ1)−m2(x,θ2)|dx (5)
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as an alternative. However, subsequent research (e.g. Möllenhoff et al., 2018, 2020, 2021)
predominately uses the maximum absolute deviation due to it being the most intuitive
measure and having a relatively simple interpretation. For the remainder of this section,
d is used as a general term for d∞, d2, and d1. The threshold value ε must be specified
depending on the choice of distance measure, as the measures differ in scale.

The test statistic d̂ is given by calculating the chosen distance, i.e. (3), (4) or (5), of the

observed difference curve ∆(x, θ̂1, θ̂2) resulting from the estimated models m1(x, θ̂1) and

m2(x, θ̂2). For d̂∞, the calculation of the test statistic is exemplarily shown in Figure 3.
Dette et al. (2018) propose to estimate these models using ordinary least squares (OLS)
optimization and show that the OLS parameter estimates converge in distribution to a
normal distribution. However, subsequent research (e.g. Möllenhoff et al., 2021) deploys
maximum likelihood (ML) estimation. This is justified by the fact that under regulatory
conditions the ML estimator also converges in distribution to a normal distribution (see,
e.g. Theorem 3.3 of Newey and McFadden, 1994). In addition, for linear models with
i.i.d. normally distributed responses, the OLS and ML estimators are identical as they
optimize the same objective function (see, e.g. Section 3.2.1 of Fahrmeir et al., 2022).

Dette et al. (2018) develop two test approaches, one conducting the test decision based
on the asymptotic distribution of the test statistic and one using a bootstrap approach.
Under regulatory assumptions (see the Appendix of Dette et al. (2018) for details), the

asymptotic distribution of the test statistic d̂2 is a normal distribution, i.e.

√
n(d̂2 − d2)

D−→ N(0,Vard2(θ1, θ2)),

with a closed form equation for the variance Vard2(θ1, θ2). Under the same assump-

tions, the distribution of d̂∞ converges towards a normal distribution if the maximum of
|∆(x,θ1,θ2)| is unique. However, the variance depends on the location of this maximum,
which in practice necessitates its precise estimation. In contrast, if the set of extremal
points has a cardinality larger than one, the asymptotic distribution is the distribution of
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Figure 3: Maximum absolute deviation d̂∞ of the estimated curves m1(x, θ̂1) and

m2(x, θ̂2). The shown example is taken from the simulation study of Dette et al. (2018),
where m1 is an Emax model and m2 is an exponential model.
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a maximum of dependent normally distributed random variables whose variances and de-
pendence structure depend on the location of the extremal points. Therefore, Dette et al.
(2018) suggest using a bootstrap-based test instead. In addition, for scenarios where the
asymptotic test is applicable, i.e. if the maximum of |∆(x,θ1,θ2)| is unique, their simu-
lation study indicates that the asymptotic test is overly conservative even for relatively
large sample sizes.

When using the test of Bastian et al. (2024), i.e. the test statistic d̂1, the asymptotic
distribution of the test statistic is an integral over Gaussian processes which depend on
the values of the set {x ∈ X |∆(x,θ1,θ2) = 0}. It should be noted that here the regulatory
assumptions (see the Appendix of Bastian et al. (2024) for details) are slightly stricter
than the ones of Dette et al. (2018). Due to the test performance being strongly dependent
on the precise estimation of the set {x ∈ X |∆(x,θ1,θ2) = 0}, the bootstrap test is also
recommended here.

Except for the test statistic, the bootstrap test is identical across the different distance
measures. It is based on generating a random sample from the distribution of the test
statistic under the null hypothesis. In the first step, a set of parameters is estimated that
optimizes the OLS or ML criterion under the side constraint of being on the edge of the null
hypothesis, i.e. d = ε. Then, a parametric bootstrap is conducted where data is sampled
using this set of parameters. Estimating the test statistic from the bootstrap data leads to
a random sample of the distribution of the test statistic under the null hypothesis. Hence,
the empirical quantile of the ordered sample can be used as an approximate quantile of
this distribution. The bootstrap procedure is outlined in detail in Algorithm 1, which
is similar to Algorithm 1 of Dette et al. (2018) but uses a notation closer to the one in
Sections 3.1 and 3.2 and provides more technical details.

Naturally, optimization under an equality side constraint is numerically challenging, es-
pecially for complex models. Therefore, for the L1 norm, Bastian et al. (2024) suggests an
alternative test approach which is based on the duality of tests and confidence intervals
and deploys a percentile bootstrap (for full details, see Algorithm 1 of Bastian et al.,
2024). In Section 3.2, this idea will be transferred to the L∞ norm-based test. Here, an
additional approach will be introduced that combines a bootstrap variance estimator with
the asymptotic normality.
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Algorithm 1: Parametric bootstrap algorithm of Dette et al. (2018).

1. Calculate parameter estimates θ̂ℓ, ℓ = 1, 2, either via OLS or ML estimation, and
estimate the variance using a consistent estimator σ̂ℓ, ℓ = 1, 2.

2. Calculate the test statistic d̂ = d(m1(x, θ̂1),m2(x, θ̂2)).

3. To approximate the null distribution, define estimators for parameter vectors θ(l),
ℓ = 1, 2, so that the corresponding curves fulfill the null hypothesis in (2). That is,

̂̂
θℓ =

{
θ̂ℓ if d̂ ≥ ε

θℓ if d̂ < ε
ℓ = 1, 2,

where θℓ, ℓ = 1, 2 maximizes the same objective function as θ̂ℓ, ℓ = 1, 2, but under
the constraint

d = ε.

Technically, the range X of the explanatory variable is discretized to make the
optimization feasible. The constrained problem can be solved using the augmented
Lagrangian minimization algorithm (Hestenes, 1969).

4. Execute the following steps:

(a) Obtain bootstrap samples under the null hypothesis in (2) by generating data

according to the model parameters
̂̂
θℓ, l = 1, 2. Under the assumption of

normality that is

y∗ℓij ∼ N(µ̂ℓi, σ̂
2
ℓ ), j = 1, ..., nℓi, i = 1, ..., Iℓ, ℓ = 1, 2,

where
µ̂ℓi = mℓ(xℓi, θ̂ℓ), i = 1, ..., Iℓ, ℓ = 1, 2.

Alternative distributions, e.g. the Bernoulli distribution for binary data, can
be used as well.

(b) From the bootstrap samples, calculate parameter estimates θ̂
∗
ℓ as in step 1 and

the test statistic
d̂∗ = d(m1(x, θ̂

∗
1),m2(x, θ̂

∗
2)).

(c) Repeat steps (a) and (b) B times to generate replicates d̂∗1, . . . , d̂
∗
B of d̂∗ and

let d̂∗(1) ≤ . . . ≤ d̂∗(B) denote the corresponding order statistic. The estimator of

the α-quantile of the distribution of d̂∗ is given by d̂∗(⌊Bα⌋).

5. At a significance level α, reject the null hypothesis in (2) and assess similarity if

d̂ < d̂∗(⌊Bα⌋).

Alternatively, obtain the p-value F̂B(d̂) =
1
B

∑B
i=1 1(d̂

∗
i ≤ d̂) and reject the null hy-

pothesis in (2) if F̂B(d̂) < α, where F̂B denotes the empirical cumulative distribution
function of the bootstrap sample.
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2.2 Copulae

Understanding and modeling dependencies between random variables is a fundamental
challenge in (bio-) statistics, particularly regarding the joint distribution of dependent
random variables. A typical example is the joint investigation of the efficacy and toxicity
of a drug, which are typically not independent of each other. Therefore, this dependency
needs to be taken into account when applying the dose-response models introduced in
Section 2.1 to such outcomes.

Copulae (Sklar, 1959) provide a flexible framework allowing the construction of multivari-
ate models with arbitrary marginals and complex dependencies. In addition, they allow
to separate the effect resulting from the dependence of the variables from the effect of the
marginal distributions in a joint distribution. Sklar’s theorem (Sklar, 1959) states that
for any d-dimensional multivariate cumulative distribution function (CDF) F (y1, . . . , yd)
with marginal CDFs F1(y1), . . . , Fd(yd), a copula C exists such that

F (y1, y2, . . . , yd) = C(F1(y1), . . . , Fd(yd)),

where C : [0, 1]d → [0, 1] is a multivariate CDF with uniform marginals and that C
is unique if F1(y1), . . . , Fd(yd) are continuous. This decomposition allows to specify the
marginal distributions independently from the dependence structure, facilitating model
construction in high-dimensional settings (Joe, 2015).

Almost all commonly used copulae belong to one of two families: Archimedean and el-
liptical copulae. Following the definition of McNeil and Nešlehová (2009), a copula is
considered to be an Archimedean copula if and only if it can be expressed as

C(u1, . . . , ud) = φ

(
d∑

i=1

φ−1(ui)

)
, (u1, . . . , ud) ∈ [0, 1]d,

where the continuous, convex and decreasing generator function φ : [0,∞) → [0, 1] sat-
isfies φ(0) = 1 and limx→∞ φ(x) = 0 and is strictly decreasing on [0, inf{x|φ(x) = 0}).
For d > 2, φ must additionally be d-monotone, which is satisfied if φ is d − 2 times
differentiable, each of the derivatives φ(d̃), d̃ = 1, ..., d − 2 satisfies (−1)d̃φ(d̃)(z) ≥ 0
∀ d̃ ∈ {1, ..., d−2}, z ∈ (0,∞) and the function (−1)d−2φ(d−2)(z) is decreasing and convex
on (0,∞) (McNeil and Nešlehová, 2009). It should be noted that some authors (e.g. Joe,
2015) define Archimedean copulae in terms of φ−1 rather than φ.

In contrast, elliptical copulae are derived from elliptical distributions, such as the multi-
variate normal and multivariate t distributions. Formally, an elliptical copula is defined
as

C(u1, . . . , ud) = F (F−1(u1), . . . , F
−1(ud),R), (u1, . . . , ud) ∈ [0, 1]d,

where F is the CDF of a multivariate elliptical distribution with correlation matrix R
and F−1 is a univariate quantile function (Fang et al., 2002; Mai and Scherer, 2017). The
most well-known representative of the class of elliptical copulae might be the Gaussian
copula, which is given by

C(u1, . . . , ud) = Φd(Φ
−1(u1), . . . ,Φ

−1(ud),R), (u1, . . . , ud) ∈ [0, 1]d,

where Φd is the CDF of the d-dimensional multivariate Gaussian distribution and Φ−1 is
the quantile function of the univariate Gaussian distribution (Mai and Scherer, 2017).
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In applied statistical modeling, copulae enable the construction of flexible multivariate dis-
tributions from known marginals. A prominent application are generalized joint regression
models (GJRMs; Radice and Marra, 2016; Filippou et al., 2017; Marra and Radice, 2017;
Klein et al., 2019), which provide regression methods to simultaneously model dependent
multivariate response variables by explicitly incorporating the dependencies. GJRMs will
be discussed in Article 1, i.e. in Section 3.1.

2.3 Survival analysis

The second part of this thesis discusses multidimensionality in the context of hazard
regression models, which are specifically developed for time-to-event data. This type of
data, also known as survival data, plays a crucial role in various research areas, particularly
in medical research. The primary interest is the time until an event of interest occurs,
which is often the participant’s death (hence, the name survival data) but could also be
any other event, e.g. disease recurrence or full recovery (Klein and Moeschberger, 2005).
As any other continuous distribution, the distribution of continuous event times t can
be characterized by the CDF F (t), which can be interpreted as the probability that the
event has occurred by time t, or the density f(t), which gives the instantaneous likelihood
of the event occurring at time t. However, the distribution of continuous event times is
frequently expressed in terms of the survival function S(t), the hazard function λ(t) or the
cumulative hazard function Λ(t), rather than in terms of the CDF or the density (Klein
and Moeschberger, 2005). The survival function

S(t) = P (T > t) = 1− F (t)

represents the probability that a subject survives beyond a given time t. It is monotoni-
cally decreasing and starts at S(0) = 1. The hazard function

λ(t) = lim
∆t→0

P (t ≤ T < t+∆t | T ≥ t)

∆t
=

f(t)

S(t)
(6)

represents the instantaneous rate of occurrence of the event at a given time t, conditional
on survival up to that time. The cumulative hazard function

Λ(t) =

∫ t

0

λ(u) du

provides a measure of total risk accumulated over time, where an increasing cumulative
hazard leads to exponentially decreases survival, i.e. S(t) = e−H(t).

Unlike other data types, time-to-event data is unique as it often includes censored ob-
servations, meaning that for some subjects the event is not observed or the exact time
of the event is unknown. The three primary types of censoring are right-censoring, left-
censoring, and interval-censoring (Klein and Moeschberger, 2005). Right-censoring is the
most common type and results from subjects who do not experience an event before either
leaving the study or the study ends (Collett, 2015). Left-censoring occurs when the event
of interest already happened before the subject enters the study but the exact timing
is unknown (Kalbfleisch and Prentice, 2011). Interval-censoring results from events for
which only a time interval in which the event happened but not the exact time is ob-
served, often due to event types that can only be observed by a medical examination or
a laboratory test (Sun, 2006).
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The presence of censoring necessitates specialized statistical techniques to conduct valid
inference. Most methods, e.g. the Kaplan-Meier estimator (Kaplan and Meier, 1958)
or the Cox proportional hazards model (Cox, 1972), assume the censoring to be non-
informative and random, which means that the censoring times result from some random
variable and that the distribution of survival times provides no information about the
distribution of censoring times and vice versa. However, methods for survival data that
is subject to informative censoring have been developed as well (see, e.g. Ibrahim et al.,
2014).

One of the major topics in survival analysis is analyzing the effect covariates have on
survival time. This is often encountered by hazard regression models, which estimate
the hazard function (6). By incorporating covariates, hazard regression models allow to
assess the impact of various factors on the hazard rate and, hence, to identify significant
effects. The widely used standard model is the Cox proportional hazards model (Cox,
1972), where the hazard rate of an observation i ∈ {1, ..., n} with corresponding covariate
vector xi is given by

λi(t) = λ0(t) exp(x
⊤
i β),

where β is the vector of regression coefficients. The assumption of proportionality of
the hazards results from the model being strictly split into the time-dependent baseline
hazard λ0(t) and the time-constant covariate effects exp(x⊤

i β). In addition, the Cox
model assumes the covariate effects to be (exp-transformed) linear effects.

These strict assumptions are often not fulfilled in practice (Li et al., 2015; Jachno et al.,
2019), which is often caused by non-proportional hazards, i.e. the covariates or their
effects are time-dependent. In addition, assuming all effects to be linear might also be
oversimplifying.

Therefore, several flexible extensions to the Cox model (see, e.g. Zucker and Karr, 1990;
Murphy and Sen, 1991; Gray, 1992; Hess, 1994; Vaupel et al., 1979; Ripatti and Palmgren,
2000; Therneau et al., 2003) have been introduced. In addition, several authors (see, e.g.
Kneib and Fahrmeir, 2007; Hennerfeind et al., 2006; Bender et al., 2018) propose new
flexible hazard regression frameworks in order to capture models of the form

λi(t|xi) = λ0(t) exp

(
K∑

k=1

fk(xi, t)

)
= exp

(
λ̃0(t) +

K∑

k=1

fk(xi, t)

)
,

where λ̃0(t) is the log-baseline hazard and fk can resemble different types of effects,
including time-varying, non-linear, and interaction effects. A comprehensive discussion
of these extensions and alternative frameworks will be given in Section 3.4. In contrast
to other frameworks, which require specific inference techniques, Bender et al. (2018)
propose piecewise exponential additive mixed models (PAMMs) whose parameters can
be estimated using standard generalized additive models (Hastie and Tibshirani, 1986)
inference.

2.4 Generalized additive models

Generalized additive models (GAMs; Hastie and Tibshirani, 1986) provide a flexible re-
gression framework that is capable of modeling response variables other than continuous
real-valued, e.g. binary or count data. This is achieved by relating the expected value
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of the response variable to explanatory variables through a link function g, analogous to
generalized linear models (GLMs). For an observation i ∈ {1, ..., n} with corresponding
covariate vector xi ∈ RP this results in the model

g(E(yi)) = η(xi) ⇔ E(yi) = h(η(xi)) (7)

where η(xi) is the predictor term and h = g−1 is called the response function (Fahrmeir
et al., 2022; Wood, 2017). Common link functions are for example the logit or probit
function for binary responses or the logarithm for count data.

In contrast to GLMs, where η(xi) is a linear predictor, i.e. η(xi) = x⊤
i β), GAMs are

able to account for complex covariable effects, such as non-linear, multivariate or random
effects which is achieved by deploying an additive predictor term in (7), i.e.

η(xi) =
K∑

k=1

fk(xi),

consisting of k = 1, ..., K effects terms fk(xi) each being potentially non-linear (Fahrmeir
et al., 2022; Wood, 2017). Each effect can depend on any subset of the covariate vector xi

since one covariable can be contained in more than one effect (e.g. main and interaction
effect) and one effect can consist of more than one variable (e.g. interaction effects).

In GAMs, covariable effects are often modeled as smooth functions, e.g. as B-splines,
which allows for the discovery of patterns in data without imposing strict parametric
forms, thereby also reducing the risk of model misspecification. Univariate smooth effects
are usually implemented in terms of basis function expansion as

fk(xi) =

Dk∑

dk=1

γkdkBkdk(xip)

where xip is the i-th observation of the p-th covariable, Bkdk(xip) are the basis functions,
γkdk are the basis coefficients, and Dk is the corresponding dimension (Fahrmeir et al.,
2022; Wood, 2017). Based on this basis function expansion, multivariate effects can be
construed as tensor product interactions (Kneib et al., 2019; Wood et al., 2013). Smooth
effects, basis function expansion, and tensor product interactions will be discussed in more
detail in Articles 3 and 4, i.e. in Sections 3.3 and 3.4.

Since the high flexibility can also lead to overfitting, usually penalized approaches, e.g.
penalized B-splines (P-splines ; Eilers and Marx, 1996; Lang and Brezger, 2004), are de-
ployed. In frequentist estimation, the penalization is usually implemented in terms of first
or second order differences (Eilers and Marx, 1996). For Bayesian approaches, the corre-
sponding analogs are first or second order random walk priors (Lang and Brezger, 2004).
Bayesian penalization is introduced in more detail in Section 3.3 while frequentist penal-
ization is extensively discussed in Section 3.4. In both cases, the extent of penalization is
controlled by a smoothing parameter.

In contrast to Bayesian approaches (e.g. Kneib et al., 2019), where for each smoothing
parameter a (hyper-) prior distribution is assigned and it is then estimated naturally
during the Markov Chain Monte Carlo estimation, their estimation is a challenging task
in frequentist inference. There are essentially three different approaches to this:
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1. A smoothness selection criteria, e.g. the Akaike information criterion (AIC) or, a
little more sophisticated, a generalized cross-validation can be deployed. Choosing
the optimal smoothing parameter is then either based on a grid search or a nested
iterative procedure. For more details see Section 6.2 of Wood (2017).

2. A mixed-model representation can be chosen where the smooth components are esti-
mated as if they were random effects in a generalized linear mixed model (GLMM).
The inference can then be conducted based on well-known restricted maximum like-
lihood methods for GLMMs. For more details see Section 6.8 of Wood (2017) and
Section 9.6.2 of Fahrmeir et al. (2022).

3. Wood (2011) proposes a more direct method that avoids the formal mixed-model
framework while still utilizing the random-effects perspective. The smoothing pa-
rameters are estimated directly from the restricted likelihood function without re-
quiring the specification of a full mixed-model structure. This is achieved by using a
direct Laplace approximation that integrates out the random effects, i.e. the spline
coefficients. Hence, this method optimizes a well-defined likelihood function directly
with respect to the smoothing parameters. Therefore, it bypasses the need to solve
the mixed-model equations.

Section 3.3 extensively discusses Bayesian estimation using Hamiltonian Monte Carlo
simulation (Hoffman and Gelman, 2014; Duane et al., 1987). Frequentist estimation
deploying the method of Wood (2011) is presented in Section 3.4.
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3 Articles

This section addresses the three identified research gaps, each resulting from one of the
three directions of multidimensionality. Sections 3.1 - 3.4 present four articles that will
develop the necessary adaptations. The first two articles focus on model-based equivalence
tests, while the latter two discuss heterogeneously time-varying covariable effects and their
application in hazard regression models.

Section 3.1 investigates the issues that arise when attempting to compare multidimen-
sional response variables through a model-based equivalence test. In previous research,
only the special case of bivariate binary outcomes has been addressed by Möllenhoff et al.
(2021). However, their approach does not directly generalize to other outcome distribu-
tions. Section 3.1 introduces a more flexible approach based on generalized joint regression
models, allowing for other scales of measures of the outcome variables, including mixed
outcomes. This approach also ensures direct generalizability for outcomes with more than
two dimensions. In contrast to the approach of Möllenhoff et al. (2021), whose test statis-
tic relies on the intersection-union principle, an alternative test statistic, called maximum
of maxima, is used, which resolves the problem of the test being overly conservative for
smaller sample sizes.

The applicability of model-based equivalence tests in the presence of model uncertainty is
discussed in Section 3.2. The test of Dette et al. (2018) as well as all methods based thereon
assume the true underlying regression model to be known. However, in applied research
often only a set of plausible models, also called candidate models, is known. Section 3.2
proposes to overcome the model uncertainty by introducing model averaging to the test of
Dette et al. (2018). This prevents model misspecification, which can otherwise invalidate
the test.

Section 3.3 focuses on heterogeneously time-varying covariable effects, which occur if
the effect of a covariable is subgroup-specific, time-varying and its time-variation is also
subgroup-specific. To model such effects, functional random coefficients based on tensor
product interactions are proposed. The subsequent section, Section 3.4, discusses the
applicability of these functional random coefficients in survival analysis by incorporating
such effects into hazard regression models.
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3.1 Testing for similarity of multivariate mixed outcomes us-
ing generalized joint regression models with application to
efficacy-toxicity responses

In this article, the adaptation of model-based equivalence tests for the first direction of
multidimensionality, i.e. for multivariate potentially mixed-scale outcomes, is discussed.
An approach based on the generalized joint regression framework exploiting the Gaussian
copula is introduced. Compared to existing methods, this approach accommodates various
outcome variable scales including mixed outcomes in multi-dimensional spaces. Finite
sample properties are investigated through a simulation study and an efficacy-toxicity
case study highlights the practical relevance.
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A B S T R A C T  

A common pro b lem in clinical tri al s i s t o t es t whethe r the effect of a n exp l anatory v ari ab le on a respon s e of in te res t is simila r betw e en tw o groups, 
for exa mple, patie n t or tr ea tme n t gr oups. In this r egar d, similarity is defined as equivalence up to a pre-spec i fied thr eshold tha t denotes an ac c ept- 
a ble de viation betw e en the tw o groups . Thi s i ssue i s typically tackled by as s es sing if the exp l anatory v ari ab le’s effect on the respon s e is simil ar. 
This as s es sme n t is based on, for exa mple, confide nce in te rvals of diffe re nc es or a s uit able dist anc e betw e en tw o parametric re gre ssion mode ls. 
T ypically , the se approache s build on the assumption of a univ ari ate continuous or bin ary outc ome v ari ab le. How ev e r, m ultiva riat e out comes, 
especially beyond the case of bivariate binary respon s es, re main unde rexplored. This pa pe r in troduces a n a ppro ach b ased on a ge ne r aliz ed joint 
r egr e ssion frame work exploiting the Gaussian c opula. Compare d to exi sting method s, our approach ac c ommod ates v arious outcome v ari ab le 
scales, s uch as c on tin uous, bina ry, categorical, a nd ord inal, includ ing mixed outcomes in m ulti -dime nsional spaces. We de mons trate the val id ity 
of this approach through a simulation study and an efficacy-toxicity case study, hence highlighting its practical relevance. 

KEY W OR DS : boots tra p; copul a; dos e- re spon s e mode ls; mode l- base d e quivalenc e tests. 

1 I N T R O D U C T I O N 

A c ommon ch allenge in applied r esear ch, especially in clinical 
trial s, i s determining whether an exp l anatory v ari ab le’s effect on a 
respon s e v ari ab le is equiv ale n t or simila r across diffe re n t groups 
( se e, e g, Jhe e et al., 2004 ; Otto et al., 2008 ) . In this context, sim- 
ilarity is defined as equivalence up to a si mil ar ity thre sh old v alue. 
Equivale nce tes ts a re widely us ed in v a rious fields, pa rticula rly 
t o det er mine i f a tr ea tme n t h as c omparable effe cts in diffe re n t 
groups, based, for ins ta nce, on ge nde r, ag e, or tre atme n ts, jus t to 

me n tion a few. More ov e r, they a re c ommonly use d to inv es ti gate 
whethe r two form ulations of a drug h av e nearly the same effect 
a nd a re he nc e c onsidere d t o be int erchang e able, the key question 

of bioe quivalenc e studies ( e g, Möllenhoff e t al., 2022 ) . 
One usually as s es s es the question of similarity by testing 

whether the ( m argin al ) effe cts of cov ari ates on a respon s e v a ri - 
able are similar among the groups, either based on confidence in- 
terval inclusion ( Liu et al., 2009 ; Gs tei ge r et al., 2011 ; Bretz et al., 
2018 ) or using various distanc e meas ures as tes t s tatis tics ( Dette 
e t al., 2018 ; Möllenhoff e t al., 2018 ) . Thes e approaches as sume 
a univ ari ate con tin uous outcome va riable, which, as outlined by 
Möllenhoff e t al. ( 2021 ) , mi gh t not be a ppr opria te in ma ny a p- 
p lication s. On the one hand, the outcome mi gh t be, for exa mple, 
bin ary, cate gorical, or ordin al. On the other hand , mult iv ari ate 

( ofte n biva riat e ) out c omes arise, s uch as when analyzing the ef- 
ficacy and toxicity of a drug ( e g, Jhe e et al., 2004 ) , which cannot 
be ass ume d to be indepe nde n t of each othe r a nd, the r efor e, ne e d 

to be modeled jointly. 
The re a re diffe re n t a pproaches to join tly model m ultiva riate 

outcome v ari ab les bas e d on c opul ae ( Skl ar, 1959 ) . Tao e t al. 
( 2013 ) propos ed to us e Archime dean c opulae for s uch mod- 
els, whi le Möl lenhoff et al. ( 2021 ) su gge sted the Gumbel model 
( Murt au gh and Fi sher, 1990 ; Hei se and Myers, 1996 ) based 

on the Fa rlie-Gumbel -Morge ns te rn copula, which also belongs 
to the cl as s of Archime dean c opulae. In c on tras t, othe r authors 
e mplo yed elliptical copul ae, especi ally the Gaus si an, which w as 
adopted by de Leon and Wu ( 2011 ) for r egr e ssion mode ls with 

biv ari ate mixed outcomes, and Chiu and Crump ( 2012 ) for bi- 
v ari at e binary out c omes . The Gaus si an copul a is rather flexible 
for pra ctical modelin g: although it assumes linea r depe nde nce, 
it e asily g e ne r aliz es to more than two dimen sion s and neatly 
cha racte rizes m ultiva riate depe nde nce through the cov ari ance 
matrix ( Joe, 2015 ) . It also makes it pos sib le to combine sev- 
eral types of v ari ab les ( e g, c ontinuous, bin ary, cate gorical, c on- 
t inuous non-negat ive, and ordinal ) fo llowing v a rious dis tribu- 
tions. In diffe re n t a pplie d c ontexts, Radic e a nd Ma rra ( 2016 ) 
introduc e d biv ari ate models with binary margins, which were 

Re c eiv e d: Ja n ua ry 18, 2024; Revise d: June 5, 2024; Ac c epte d: July 24, 2024 
© The Author ( s ) 2024. P ublished b y Oxford Unive rsity Pre ss on be half of The In te rn ation al Biome tric Socie ty. All ri gh ts rese rv e d. For permis sion s, p leas e e-mail: 
journ als .permis sion s@oup.com 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/80/3/ujae077/7737908 by IBS M
em

ber Access user on 02 Septem
ber 2024

17



2 � Biometrics , 2024, Vol. 80, No. 3 

the n ge ne r aliz ed by Filippou et al. ( 2017 ) to the m ultiva riate 
( spec i fically, tr ivar iate ) case. Ma rra a nd Radice ( 2017 ) intro- 
duc e d biv ari ate copul a models with con tin uous ma rgins a nd 

Klein et al . ( 2019 ) addit ion ally dev elope d models for mixe d re- 
spon s es ( bina ry a nd con tin uous ) . The afore me n tioned mod - 
e ls be long to the cl as s of gen eralize d jo i nt r egr ession models im- 
ple me n ted in the R -packa ge GJRM ( M a rra a nd Radice, 2023 ) . 
Note that GJRM allows for many more modeling options than 

those me n tioned he re ( eg, Ma rra a nd Radice, 2020 ; Ma rra et al., 
2020 ) . 

To ge ne r aliz e a dis ta nc e-base d similarity test for as s oci ated bi- 
v ari a te binary r espon s es, Möllenhoff e t al. ( 2021 ) adopted a cop- 
ula approach to jointly model the efficacy and toxicity of a drug. 
How ev er, the method proposed in this pa pe r is more flexible, 
allowing for a rbitra ry dime n sion s and v arious types ( including 
mixe d ) of outc ome v ari ab les. The propos al is bas ed on the gen- 
er aliz ed joint r egr e ssion frame work with Gaus si an copul a and: 

� can be applied to multiv ari a te r espon s es of any size; � ac c ommod ates v arious outc ome types, including c on tin u- 
ous, binary, and ordinal; � adopts a nothe r type of tes t s tatis tic that leads to a hi ghe r 
s tatis tical powe r; a nd � addres s es the pro b lem of increasing type I error rates 
with increasing s amp le size, o bs erv e d by Möllenhoff et al. 
( 2021 ) . 

The pa pe r is s tructure d as follows: In Se ction 2 , the mod- 
e ling frame w ork, base d on ge ne r aliz e d joint re gre ssion mode ls 
with Gaus si an copul a, is s uc cinctly d isc usse d. In Se ction 3 , the 
ne w te s ting a pproach is in troduc e d . Type I and I I err or ra tes for 
thr ee r eleva n t a pp lied cas es ( biv ari ate b inary, b iv ari ate contin- 
uous, a nd biva riate mixed outcomes ) are studied in Section 4 . 
Section 5 i l lustrates the method using clinical trial data. 

2 CO P U L A  R E G R E S S I O N  M O D E L S  

2.1 Regres sion s tructures 
Let i = 1 , ..., n be the o bs erv a tion index, wher e n denotes the 
s amp le size. For a univ ari at e out come, the adopt ed modeling ap- 
pr oach r e lie s on the flexible r egr ession structur e 

μi = m (x i , θ) , 

where μi = E (y i ) , y i ∈ Y ⊆ R denote s the re spon s e v ari ab le 
within the s e t Y of all pos sib le outcomes, x i ∈ X ⊆ R is a de- 
te rminis tic exp l anatory v ari ab le, m (·) is a function modeling the 
effect of x i on y i via a r egr ession curve, and θ ∈ R 

dim ( θ) the re- 
lated pa ra mete r v e ctor. The function m (·) can be linear or non- 
linear, as i l lustrated in later s ection s. We as sume that m (·) is con- 
tinuous, con s eque n tly resulting in con tin uous dis ta nces a mong 
mode l curve s. 

In the following, we a re in te res ted in comparing the effect of 
the v ari ab le x i on y i for two separa te gr oups. This r equir es an 

add itional grou p index l = 1 , 2 . Con s eque n tly, we o bs erve out- 
comes y (l) 

i , i = 1 , . . . , n 

(l) , l = 1 , 2 , and r egr e ssion curve s 

μ
(1) 
i = m 

(1) (x (1) 
i , θ(1) ) and μ

(2) 
i = m 

(2) (x (2) 
i , θ(2) ) . 

For a m ultiva riat e out come y (l ) 
i = (y (l) 

i 1 , . . . , y 
(l) 
iK ) , this ge ne ral - 

izes to 

μ
(l) 
i = m 

(l) (x (l) 
i , θ(l) ) 

⇔ 

⎛ ⎜ ⎝ 

μ
(l) 
i 1 
. . . 

μ
(l) 
iK 

⎞ ⎟ ⎠ 

= 

⎛ ⎜ ⎝ 

m 

(l) 
1 (x (l) 

i , θ
(l) 
1 ) 

. . . 
m 

(l) 
K (x (l) 

i , θ
(l) 
K ) 

⎞ ⎟ ⎠ 

, l = 1 , 2 , 

with outcome dimension K ∈ N 

+ and group index l. In dose- 
re spon s e studies with efficacy-t oxicity out c omes, w e h av e th at 
K = 2 , the outcomes y (l) 

i 1 and y (l) 
i 2 express the efficacy and 

the toxicity, respe ctiv ely, and the exp l anatory v ari ab le x (l) 
i de- 

s cribes the dos e for patie n t i in group l, i = 1 , . . . , n 

(l) , l = 

1 , 2 . We thus h av e re gre ssion structure s m 

(1) 
1 (x (1) 

i , θ
(1) 
1 ) and 

m 

(1) 
2 (x (1) 

i , θ
(1) 
2 ) modeling the efficacy and toxicity for group 1, 

and m 

(2) 
1 (x (2) 

i , θ
(2) 
1 ) and m 

(2) 
2 (x (2) 

i , θ
(2) 
2 ) for gr oup 2, r e spec - 

tively. 
In ge ne ral, since the K respon s es are as s ume d to be depe nde n t, 

the models h av e to be estim ate d jointly as described in the fol- 
lowing s ection . 

2.2 Copul a e 
Copulae can be used to cha racte rize the m ultiva riate dis tribution 

of the respon s e v ari ab les y (l) 
i 1 , ..., y 

(l) 
iK , l = 1 , 2 . Spec i fically, for 

a K-d imensional d istribution with c umulative d istribution func- 
tion ( cdf ) F and univ ari ate m argin al c dfs F 1 , ..., F K following 
uni for ms on [0,1], the copula C : [0 , 1] K → [0 , 1] and F are 
linked as follows ( Sklar, 1959 ) 

F (y 1 , ..., y k ) = C{ F 1 (y 1 ) , ..., F K (y K ) } , 
wher e gr oup index l h as be en omitte d for simplicity. We refer to 

Joe ( 2015 ) and Triv e d i and Z immer ( 2007 ) , for c omprehensiv e 
introductions to copulae. 

Commonly used classes of copulae include the Archimedean 

c opulae ( which enc ompasses the Gumbel, Fra nk, a nd Clayton ) 
and the met a -e lliptical copulae ( which include s the Gaus si an ) . 
The choice of copula often depends on the spec i fic application 

and its modeling r equir ements. For the purpose of the prese n t 
w ork, w e adopt the Gaus si an copul a, which, as me n tioned in 

the In troduction, offe rs the r equir ed flexibility and generality in 

modeling the m ultiva riate depe nde nce s tructure of the va riables 
of in te res t ( Joe, 2015 ) . The Gaus si an copul a ca n be ge ne rically 
defined as 

F (y i 1 , ..., y iK ) = C{ F 1 (y i 1 ) , ..., F K (y iK ) } 
= �K [�−1 { F 1 (y i 1 ) } , ..., �−1 { F K (y iK ) } , �] , 

or, in the biv ari ate cas e, as 

F (y i 1 , y i 2 ) = �2 [�−1 { F 1 (y i 1 ) } , �−1 { F 2 (y i 2 ) } , ρ] , 

where �K is the cdf of the K dimensional multiv ari ate Gaus si an 

di stribution, �−1 i s the qua n t ile funct ion of the univ ari ate Gaus- 
sian, F 1 (y i 1 ) , ..., F K (y iK ) are the cdfs of the m argin al distribu- 
tion s, � = Co r (y i 1 , ..., y iK ) and ρ = Cor (y i 1 , y i 2 ) . Note that in 

the abov e, w e h av e s uppres s ed θk fr om the r ela te d m argin al c df 
for notational conve nie nce. 
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2.3 Log-li keli ho o ds 
The structure of the log-l ikel ihood function to e mplo y in model 
fitting depends on the m argin als c onsidere d in the an alysis . The 
ge ne r al lik elihood theory of the K-dimensional case i s g ive n b y 
Song et al. ( 2009 ) . How ev er, for simplicity of exposition, we re- 
port the functions c onsidere d in the applied cases of this pa pe r: 
biv ari ate binary, biv ari ate continuous, and biv ari ate mixed out- 
c omes . For the same reason, we drop index l and θ1 and θ2 from 

the m argin al c dfs . 
The log-l ikel ihood for biv ari ate con tin uous outcomes is given 

b y ( Ma rra a nd Radice, 2017 ) 

� ( θ1 , θ2 , ρ) = 

n ∑ 

i =1 

( log [ c { F 1 (y i 1 ) , F 2 (y i 2 ) } ] + log { f 1 (y i 1 ) } 

+ log { f 2 (y i 2 ) } ) , 
where the copula density is defined as 

c { F 1 (y i 1 ) , F 2 (y i 2 ) } = 

∂ 2 C{ F 1 (y i 1 ) , F 2 (y i 2 ) } 
∂F 1 (y i 1 ) ∂F 2 (y i 2 ) 

a nd f 1 a nd f 2 a re ma rginal de n sities. For biv ari ate mixed out- 
c omes, with y i 1 bin a ry a nd y i 2 con tin uous, the log-l ikel ihood is 
( Klein et al., 2019 ) 

� ( θ1 , θ2 , ρ) = 

n ∑ 

i =1 

[
(1 − y i 1 ) log { F 1 | 2 (0 | y i 2 ) } 

+ y i 1 log { 1 − F 1 | 2 (0 | y i 2 ) } + log { f 2 (y i 2 ) } 
]
, 

where 

F 1 | 2 ( 0 | y i 2 ) = 

∂C{ F 1 ( 0) , F 2 ( y i 2 ) } 
∂F 2 ( y i 2 ) 

and F 1 (0) = P (y i 1 = 0) . 
When both outcomes are binary, the log-l ikel ihood is ( Rad ice 

a nd Ma rra, 2016 ) 

� ( θ1 , θ2 , ρ) = 

n ∑ 

i =1 

{ y i 1 y i 2 log p 11 i + y i 1 (1 − y i 2 ) log p 10 i 

+ (1 − y i 1 ) y i 2 log p 01 i 

+ (1 − y i 1 )(1 − y i 2 ) log p 00 i } , 
where 

p 11 i = P (y i 1 = 1 , y i 2 = 1) = C( P (y i 1 = 1) , P (y i 2 = 1)) , 

p 10 i = P (y i 1 = 1) − P (y i 1 = 1 , y i 2 = 1) , 

p 01 i = P (y i 2 = 1) − P (y i 1 = 1 , y i 2 = 1) and 

p 00 i = 1 − { P (y i 1 = 1) + P (y i 2 = 1) − P (y i 1 = 1 , y i 2 = 1) } . 
As exp l ained ea rlie r, for this work, we spec i fy function C us- 
ing the Gaus si an copul a. Regarding the ma rgins, we e mplo y the 
Bernoull i d i stribution ( with log it , probit , or c-log link ) when the 
outcome is bina ry, whe reas the normal, log i s tic, or a nothe r dis- 
tribution can be utilized for a con tin uous respon s e. 

We achieve model fitting via the R -package GJRM ( Marra and 

Radice, 2023 ) whose pa ra mete r es t imat ion is based on an effi- 
cie n t a nd s tab le imp le me n tation of the trus t region al gorithm. 

3 T E ST I N G  F O R S I M I L A R I T Y  O F  

M U LT I VA R I AT E  N O N - I N D E P E N D E N T  

R E S  P O N S  E S  

3.1 Hypotheses 
One approach to as s es s simil arity of two curves, m 

(1) and m 

(2) in 

the univ ari ate cas e is bas e d on the m aximum abs o lute devi ation 

betw e e n the m. In this case, the hypothe se s are 

H 0 : max 
x ∈X 

| m 

(1) (x, θ(1) ) − m 

(2) (x, θ(2) ) | ≥ ε vs. 

H 1 : max 
x ∈X 

| m 

(1) (x, θ(1) ) − m 

(2) (x, θ(2) ) | < ε, ( 1 ) 

where ε is a prespec i fied threshold for similarity ( Dette et al., 
2018 ; Möllenhoff e t al., 2021 ) . Rej ecting the null hypothesis 
su gge sts that, for a given significanc e lev el, the curv es are simi- 
lar since their distance is lower than the threshold value. 

For m ultiva ria te r e sponse s, the re a re seve ral possibilities to for- 
mul ate hypothes es for ( j oint ) simil arity. An intuitive approach, 
which ge ne r aliz es the a pproach of Mölle nhoff et al. ( 2021 ) for 
the biv ari ate cas e, would be testing for ( j oint ) simil arity of all 
the curves as s oci ated with the K outc omes . Form ally, thi s lead s 
t o t e sting the hypothe se s 

H 0 : d k ≥ ε k for at least one k ∈ { 1 , ..., K} vs. 

H 1 : d k < ε k ∀ k ∈ { 1 , ..., K} , ( 2 ) 

where 

d k = max 
x ∈X 

| m 

(1) 
k (x, θ

(1) 
k ) − m 

(2) 
k (x, θ

(2) 
k ) | , k = 1 , ..., K , 

de notes the maxim um abs o lute devi ation be tw e en the curv es 
describing the kth respon s e and ε k the corresponding similarity 
threshold. Sinc e the altern ativ e hypothesis stated in Equation 2 

is expres s ed as a n in te rse ction of s ub-hypothe se s of similarity for 
each of the K outcomes, Möllenhoff et al. ( 2021 ) su gge st ed t o 

test all of these K sub-hypotheses 

H 

(1) 
0 : d 1 ≥ ε 1 vs. H 1 : d 1 < ε 1 

. . . 
H 

(K) 
0 : d K ≥ ε K vs. H 1 : d K < ε K 

( 3 ) 

individually. Ac c ording to the in te rsection union principle 
( Be rge r, 1982 ) , the global null hypothesis in Equation 2 is then 

reje cte d if all of these individual hypotheses are reje cte d. This 
proc e dure gua ra n tees a n α-leve l te st if all individual tes ts a re of 
size α. How ev er, s uch an approach is known to be quite con s er- 
vativ e, espe cially for sm all s amp le sizes or a la rge n umbe r of in- 
dividual tests, ie for a large K ( Möllenhoff et al., 2021 ) . 

To this end, we propose an altern ativ e testing proc e dure, 
which we wi l l cal l the m aximum of m axim a approa ch. This 
is based on a diffe re n t type of tes t s tatis tic, that is d max := 

max (d 1 , ..., d K ) . The basic idea of this approach is that if the 
la rges t diffe re nc e is s u ffic ie n tly small the n all the othe r diffe r- 
e nces a re small e nough too. This a pproach is simila r to the one 
us ed by Möllenhoff e t al. ( 2024 ) to j oin tly tes t for simila rity of 
more than one tran sition inten sity in a competing risks model. 
The corresponding hypotheses are then given by 

H 0 : d max ≥ ε vs. H 1 : d max < ε, ( 4 ) 
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where ε now re pre se n ts a global similarity threshold, denoted by 
ε = ε 1 = ... = ε K . The ne c es sity of a glo bal ε is due to the con- 
struction of the ne w te s t s tatis tic, which bundles the maximum 

dis ta nces d 1 , ..., d K into one single v alue d vi a taking their max- 
im um. In ge ne ral, the individual thresholds ε k , k = 1 , ..., K , 

may vary across the K outc omes . 
How ev e r, b y a ddin g a d ata tran sformation st ep t o the analy- 

si s, it i s sti l l pos sib le t o incorporat e unequal individual thresh- 
olds in many cases. For con tin uous outcomes, one can achieve 
this, for example, by l inear rescal ing. For K = 2 , a n exa mple of 
thi s i s g ive n b y y (l) 

1 being binary, y (l) 
2 being con tin uous a nd mea- 

s ure d in mi l li gra ms ( mg ) , ε 1 = 0 . 1 on a probability scale and 

ε 2 = 0 . 02 mg. We s e t ε = ε 1 and rescale y (l) 
2 by multiplying its 

value s with 

ε 1 
ε 2 

= 

0 . 1 
0 . 02 = 5 . Corre spondin gly, its units chan ge by 

a factor of ε 2 
ε 1 

= 

1 
5 . As a result, ε = ε 1 = ε 2 = 0 . 1 and y (l) 

2 is now 

meas ure d in fifths of mi l li gra ms ( mg 
5 ) . This proc e dure dire ctly 

ge ne r aliz es to the K-dimensional case as long as at most one re- 
spon s e v ari ab le is non-con tin uous. 

3.2 Test ing procedu re 
To test the hypotheses in Equation 4 , we propose a pa ra metric 
boots tra p a pproach simila r to Al gorithm 1 of Mölle nhoff et al. 
( 2021 ) and to the me thod of De tte e t al. ( 2018 ) . Fo llowing 
these pa pe rs, we a ppr oxima te the distribution under H 0 rather 
th an obtaining c onfidenc e intervals for d max in order to make use 
of the asymptotic properties outlined at the end of this s ection . 

Conducting pa ra metric boots tra p r equir es the simula tion of 
m ultiva ria te corr ela t ed out comes. For m ultiva riate bina ry out- 
come s, dat a ge ne ration is based on the algorithm of Emrich and 

Pie dmonte ( 1991 ) . For the c ontinuous case, one can just s amp le 
from a m ultiva riate normal distribution. For m ultiva riate mixed 

outc omes, w e e mplo y the al gorithm of De mirtas a nd Doga nay 
( 2012 ) . 

The te st pre sented in Algorithm 1 has an asymptotic level α
and i s consi stent. That i s, under the null hypothesis in Equa- 
t ion 4 , l im su p n →∞ 

P 

(̂ d max ≤ ̂ d 

∗
max, (� n boot α� ) 

) ≤ α and , under the 
altern ativ e, lim n →∞ 

P 

(̂ d max ≤ ̂ d 

∗
max, (� n boot α� ) 

) = 1 for any α ∈ 

(0 , 0 . 5) . A formal proof of this can be directly obtained by trans- 
ferring the proof given in Möllenhoff e t al. ( 2024 ) , who inves- 
ti gate the sa me type of tes t s tatis tic . Preci sely, it i s based on the 
fact that the MLE ̂

 θ
(l) 
k , k = 1 , . . . , K, l = 1 , 2 , obtaine d by m ax- 

imizing the log-l ikel ihood s g iven in Section 2.3 , converge weakly 
to a norm al distribution, s uch th a t the pr oof of the ge ne ral pro- 
c e dure of a c onstraine d bootstrap given in Dette et al. ( 2018 ) 
can be adapted as described by Möllenhoff et al. ( 2024 ) . We in- 
ves ti gate these properties for finite s amp le sizes in the following 
s ection . 

4 F I N I T E  S A M P L E  P R O P E RT I E S  

In this se ction, w e inv es ti gate type I e rror rates and power of the 
pr oposed appr oa ch usin g Al gorithm 1. The r efor e, we simula te 
biv ari at e efficacy-t oxicity out comes as a function of dose, mod- 
eled by dos e-respon s e curv es . 

For comparability with exist ing studies, part icul arly thos e in 

Möllenhoff e t al. ( 2021 ) , the simul ation s e tup for the biv ari ate 

Al go rithm 1: 

(1) Obtain, via MLE, ̂  θ
(l) 
k , l = 1 , 2 , k = 1 , ..., K, by 

maximizing for each group the releva n t log-l ikel ihood (see 
Section 2.3 ). The test stat ist ic is calculated as ̂ d max = max ( ̂  d 1 , ..., ̂  d K ) , 

where ̂ d k = max 
x ∈X 

| m 

(1) 
k (x, ̂  θ

(1) 
k ) − m 

(2) 
k (x, ̂  θ

(2) 
k ) | , 

k = 1 , ..., K . 

(2) To appr oxima te the n ull dis tribution, define es timators for 
pa ra mete r v e ctors θ(l) 

k , l = 1 , 2 , k = 1 , ..., K, so that the 
correspond ing c urves fulfil l the nul l hypothesis in 

Equation 4 . That is, 

̂ ̂ θ
(l) 

k = 

{ ̂ θ
(l) 
k if ̂ d max ≥ ε

θ
(l) 
k if ̂ d max < ε

l = 1 , 2 , k = 1 , ..., K , 

where θ
(l) 
k maximises the same obje ctiv e function as ̂ θ

(l) 
k , l = 1 , 2 , k = 1 , ..., K does, but under the constraint 

d max = ε. (5) 

Te chnically, w e dis cre tiz e the r ange, X , of the exp l anatory 
v ari ab le to make the opt imizat ion feasible. The c onstraine d 

pro b lem is s o lv e d using the augmented Lagrangian 

minimization algorithm via function auglag() in the R 

p ackage alab a ma (Va radha n, 2022 ). 
(3) Execute the following steps: 

(a) Obtain boots tra p sa mples unde r the n ull hypothesis in 

Equation 4 by generating data ac c ording to the model 

pa ra mete rs ̂  ̂ θ
(l) 

k , l = 1 , 2 , k = 1 , ..., K. This is 
achiev e d by obtaining pa ra mete r es timates for the 
m argin al distributions and corr ela tions and then 

fe e ding them into the data generation algorithms 
introduc e d abov e. 

(b) From the boots tra p sa mples, calculate the MLE ̂

 θ
(l) ∗
k 

as in step (1) and the test stat ist ic ̂ d 

∗
max = max ( ̂  d 

∗
1 , ..., ̂

 d 

∗
K ) , (6) 

where ̂ d 

∗
k = max 

x ∈X 

| m 

(1) 
k (x, ̂  θ

(1) ∗
k ) −m 

(2) 
k (x, ̂  θ

(2) ∗
k ) | , 

k = 1 , ..., K . 

(c) Re peat ste ps (a) and (b) n boot time s to ge ne rate 
r eplica tes ̂  d 

∗
max, 1 , . . . , ̂

 d 

∗
max, (n boot ) 

of ̂ d 

∗
max . Let ̂ d 

∗
max, (1) ≤ . . . ≤ ̂ d 

∗
max, (n boot ) 

denote the corresponding 
orde r s tatis tic . The estimator of the α-qua n tile of the 
distribution of ̂  d 

∗
max is given by ̂  d 

∗
max, (� n boot α� ) . 

Reject the null hypothesis in (4) and as s es s simil arity 
based on ̂ d max < 

̂ d 

∗
max, (� n boot α� ) . (7) 
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Al go rithm 1: Con tin ued. 
A lter n ativ e ly, obt ain the p-v alue bas ed on ̂ F n boot ( ̂  d max ) = 

1 
n boot 

∑ n boot 
i =1 1 ( ̂  d 

∗
max,i ≤ ̂ d max ) and reject 

the null hypothesis in (4) if ̂  F n boot ( ̂  d max ) < α for a 
pre-spec i fied signi ficanc e lev el α, whe re ̂  F n boot de notes 
the empirical cumulative distribution function of the 
boots tra p sa mple. 

binary case closely follows their sc en arios . This includes the data 
ge ne ra tion r outine and the levels of the exp l anatory v ari ab le x (l) 

i , 
s e t at spec i fic dose levels 0 , 0 . 1 , 0 . 2 , 0 . 5 , 1 , 1 . 5 a nd 2. The sim u- 
l ation invo lves s even dos e groups ( g = 1 , ..., 7 ) , with equal sam- 
ple sizes n 

(l) 
g ∈ { 7 , 14 , 21 , 28 , 50 } , resulting in total s amp le sizes 

from 49 to 350 per group. Note that we ge ne rate the data for each 

of the seven dose leve ls se parate ly due to the algorithms’ limita- 
tions in handling varying m argin al pro babilities/mean s, as de- 
tailed in Section 3.2 . 

We keep the corr ela tion pa ra mete r ρ cons ta n t within each 

group g , lea din g to a diffe re n t global corr ela tion of the com- 
bined data ( see Dunlap, 1937 , for details of the r ela tionship be- 
tw e e n group-wise a nd glo bal correl ation s ) . Furthermore, we as- 
sume ρ(1) = ρ(2) = ρ, a nd e mplo y the two diffe re n t simila rity 
thresho ld v alues, ε = 0 . 15 and 0.2, introduc e d by Möllenhoff
e t al. ( 2021 ) . G iv en the c omputation al c osts r ela t ed t o the aug- 
me n ted Lagra ngia n minimization al gorithm a nd the data ge ne ra- 
tion process, the study comprises 1000 simula tion r eplica tes and 

300 boots tra p repet it ions. 

4.1 B ivari ate binary outcome 
We adopt the same configurations as Möllenhoff et al. ( 2021 ) , 
e mplo ying Be rnoulli ma rg inal s with log it links for both efficacy 

and toxicity, and 

θ(l) = ( θ(l) 
1 , θ

(l) 
2 , ρ) = (β (l) 

01 , β
(l) 
11 , β

(l) 
02 , β

(l) 
12 , ρ) , l = 1 , 2 , 

where θ(1) = (−1 , 2 , −3 , 3 , ρ) . To sim ulate type I e rror 
rates, w e inv es ti gate (d 1 , d 2 ) ∈ { (ε , ε ) , (0 , ε ) } for both ε = 

0 . 15 a nd ε = 0 . 2 , he nce lea din g to four sc en arios . Re gard- 
ing the pow er, w e inv estigate the three sce na rios (d 1 , d 2 ) = 

(0 . 1 , 0 . 1) , (0 . 05 , 0 . 05) and (0 , 0) . The la t ter choice simulates 
the m aximum pow er of the testin g approa ch. The exa ct details of 
pa ra mete r c ombin ations c onsidere d are shown in Web Table 1 . 
Fin ally, w e inv es ti ga te thr ee differ ent levels of group-wise corre- 
l ation s, ρ = 0 . 1 , 0 . 2 and 0.3. 

Table 1 shows the simulated type I error rates of the test im- 
ple me n ted via Algorithm 1. We observe that, for d 1 = d 2 ≈ ε, 
type I err or ra tes ar e we ll be low or very close to the si gnifica nce 
level of α = 0 . 05 . For the sce na rios with min (d 1 , d 2 ) = 0 , we 
o bs e rve sli gh tly inflated type I error rates, up to a maximum of 
0.106 for the s malle st group size of n 

(l) 
g = 7 and ε = 0 . 2 . Ho w - 

ever, as the group size increases, the type I error rates decrease 
a nd a ppr oach the desir e d lev el of 0.05. Of note, the value of ρ
does not seem to be that influe n tial in this regard. 

In comparison to Möllenhoff et al. ( 2021 ) , where type I er- 
r or ra tes wer e pr e domin a n tly close to ze r o, the r esults for our 
a pproach ali gn more closely with the nomin al lev el. Thi s i s in 

line with the theoretical a rgume n ts of Section 3.1 : the proposal 
is les s con s erv a tive compar ed t o t esting based on the in te rsec- 
tion union principle. How ev er, for some c onfigurations with 

high corr ela t ion, Möllenhoff et al . ( 2021 ) observ e d an inflation 

of the type I err or ra tes as the s amp le size increas ed up to a 
value of 12 . 7% . In con tras t, the type I error ra tes decr ease for 
increasing s amp le sizes when using our approa ch. In a ddition, 
the maximum type I error rate is 10 . 6% for our approach, which 

is con siderab ly smalle r tha n the 12 . 7% o bs erved in Möllenhoff

TAB LE 1 Simulate d type I err or ra tes of the test proposed in Algorithm 1 for biv ari ate binary out- 
comes and two diffe re n t simila rity thresholds ε. 

ε θ(2) (d 1 , d 2 ) n 

(l ) 
g ρ = 0 . 1 ρ = 0 . 2 ρ = 0 . 3 

0.2 ( −2.4, 3.4, −1.8, 2.51, ρ) ( 0.2, 0.2 ) 7 0.031 0.037 0.038 
0.2 ( −2.4, 3.4, −1.8, 2.51, ρ) ( 0.2, 0.2 ) 14 0.012 0.012 0.018 
0.2 ( −2.4, 3.4, −1.8, 2.51, ρ) ( 0.2, 0.2 ) 21 0.013 0.006 0.012 
0.2 ( −2.4, 3.4, −1.8, 2.51, ρ) ( 0.2, 0.2 ) 28 0.007 0.006 0.005 
0.2 ( −2.4, 3.4, −1.8, 2.51, ρ) ( 0.2, 0.2 ) 50 0.006 0.009 0.004 
0.2 ( −1, 2, −1.8, 2.51, ρ) ( 0, 0.2 ) 7 0.072 0.106 0.106 
0.2 ( −1, 2, −1.8, 2.51, ρ) ( 0, 0.2 ) 14 0.084 0.100 0.089 
0.2 ( −1, 2, −1.8, 2.51, ρ) ( 0, 0.2 ) 21 0.082 0.088 0.078 
0.2 ( −1, 2, −1.8, 2.51, ρ) ( 0, 0.2 ) 28 0.064 0.070 0.078 
0.2 ( −1, 2, −1.8, 2.51, ρ) ( 0, 0.2 ) 50 0.054 0.066 0.058 
0.15 ( −2, 3.4, −2, 2.51, ρ) ( 0.15, 0.15 ) 7 0.057 0.051 0.058 
0.15 ( −2, 3.4,-2, 2.51, ρ) ( 0.15, 0.15 ) 14 0.032 0.022 0.026 
0.15 ( −2, 3.4, −2, 2.51, ρ) ( 0.15, 0.15 ) 21 0.021 0.022 0.020 
0.15 ( −2, 3.4, −2, 2.51, ρ) ( 0.15, 0.15 ) 28 0.012 0.013 0.007 
0.15 ( −2, 3.4, −2, 2.51, ρ) ( 0.15, 0.15 ) 50 0.013 0.010 0.008 
0.15 ( −1, 2, −2, 2.51, ρ) ( 0, 0.15 ) 7 0.089 0.097 0.088 
0.15 ( −1, 2, −2, 2.51, ρ) ( 0, 0.15 ) 14 0.085 0.077 0.087 
0.15 ( −1, 2, −2, 2.51, ρ) ( 0, 0.15 ) 21 0.075 0.081 0.082 
0.15 ( −1, 2, −2, 2.51, ρ) ( 0, 0.15 ) 28 0.062 0.068 0.088 
0.15 ( −1, 2, −2, 2.51, ρ) ( 0, 0.15 ) 50 0.067 0.083 0.073 
The nominal level is α = 0 . 05 . 
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FIG URE 1 Simul ate d pow e r of the tes t proposed in Al gorithm 1 for biva riate bina ry outcomes for diffe re n t sa mple sizes and ρ = 0 . 2 . The 
thr ee differ ent sc en arios are shown in terms of diffe re n t line types. The nominal level is α = 0 . 05 . 

et al. ( 2021 ) , although we use a less c onservativ e approach. This 
mi gh t su gge sts that the mode l b ased on the Ga us si an copul a out- 
performs the Gumbel model in this s e tting. 

Figure 1 disp l ays the simulated power as function of s amp le 
size for the diffe re n t sce na rios. As for the type I errors, the level of 
corr ela tion has lit tle effect on po wer, sho wn in detail for ρ = 0 . 2 

in Figure 1 ( comp le te results in Web Table 2 ) . Our testing ap- 
pr oach shows incr easing power with larger s amp le sizes, con- 
verging to one in all sc en arios . The highest pow er of 0.919 is ob- 
serv e d for (d 1 , d 2 ) = (0 , 0) with ε = 0 . 2 , ρ = 0 . 2 and n 

(l) 
g = 

50 ( see Figure 1 ) . For a medium s amp le size ( n 

(l) 
g ∈ { 21 , 28 } ) , 

the power is between 0.214 and 0.650 for ε = 0 . 2 , and be- 
tw e e n 0.095 a nd 0.384 for ε = 0 . 15 , respe ctiv ely. Fin ally, when 

c onsidering sm all s amp le size s ( n 

(l) 
g ∈ { 7 , 14 } ) , our mode l sti l l 

achiev es reason able pow er, with values from 0.128 to 0.334 for 
ε = 0 . 2 , and from 0.086 to 0.204 for ε = 0 . 15 . Compared to 

Möllenhoff e t al. ( 2021 ) , our me thod demon strates simil ar high 

power for l arge s amp les but con siderab ly higher power for small 
and medium s amp les ( exc e e ding in some cases by over 5-fold ) . 
This, again, hi ghli gh ts that the proposed approach is less con- 
s erv a tive r ela tive to approaches based on the in te rsection union 

principle. Of note, this po wer g ain can pro bab ly be exp l ained, 
at least in part, by the bet ter appr oxima tion of the significance 
level, which is not properly calibrated in the test proposed by 
Möllenhoff e t al. ( 2021 ) , as the simul a ted type I err ors ar e pr e- 
domina n tly close to zero. 

4.2 B ivari ate c ontinuou s outc ome 
In the case of biv ari at e continuous out c omes, w e adopt the s e t 
up of Bretz et al. ( 2018 ) , which is a linear dose- re sponse mode l 

m 

(1) 
k (x (1) 

i , θ
(1) 
k ) = β

(1) 
0 k + β

(1) 
1 k x (1) 

i 

for the first group, and a quadratic model 

m 

(2) 
k (x (2) 

i , θ
(2) 
k ) = β

(2) 
0 k + β

(2) 
1 k x (2) 

i + β
(2) 
2 k 

(
x (2) 

i 

)2 

for the se c ond group, i = 1 , . . . n l , l = 1 , 2 , k = 1 , 2 . The re- 
lated full pa ra mete r v e ctors are given by 

θ(1) = ( θ(1) 
1 , θ

(1) 
2 , σ, ρ) = (β (1) 

01 , β
(1) 
11 , β

(1) 
02 , β

(1) 
12 , σ, ρ) 

and 

θ(2) = ( θ(2) 
1 , θ

(2) 
2 , σ, ρ) 

= (β (2) 
01 , β

(2) 
11 , β

(2) 
21 , β

(2) 
02 , β

(2) 
12 , β

(2) 
22 , σ, ρ) . 

For consis te nc y w ith Se ction 4.1 , w e transform the model such 

that it applies to the dose range of x i ∈ [0 , 2] ; this is achiev e d by 
s e tting β

(1) 
0 k = 0 , β

(1) 
1 k = 1 , β

(2) 
0 k = 0 , β

(2) 
1 k = (1 − 2 d k ) and 

β
(2) 
2 k = d k , so that 

m 

(1) 
k (x (1) 

i , θ
(1) 
k ) = x (1) 

i and 

m 

(2) 
k (x (2) 

i , θ
(2) 
k ) = (1 − 2 d k ) x (2) + d k 

(
x (2) 

i 

)2 
, k = 1 , 2 , 

( 8 ) 

where d k is the corresponding dis ta nc e betw e en the curv es . This 
leads to θ(1) = (0 , 1 , 0 , 1 , σ, ρ) for all sc en arios . The curv es 
coincide at the bound ary dos es x (l) 

i = 0 and x (l) 
i = 2 , and the 

maxim um diffe re nce d k occ ur s at a middle dose of x (l) 
i = 1 ( an 

example of this is vis ualize d in Web Figure 1 ) . 
As in Se ction 4.1 , w e ass ume e qual c orr ela tion for both 

groups (ρ = ρ(1) = ρ(2) ) a nd equal va ria nces for the contin- 
uous v ari ab les acros s respon s es and gr oups, tha t is σ = σ

(1) 
1 = 

σ
(1) 

2 = σ
(2) 

1 = σ
(2) 

2 . The v ari anc e lev els a re chose n to be σ 2 = 

0 . 05 , 0 . 1 , 0 . 2 such that the ratios ε/σ are similar to the ones 
chose n b y Bretz et al. ( 2018 ) . We inves ti gate the sa me seve n 

sc en arios as in Section 4.1 , that is (d 1 , d 2 ) = (ε , ε ) and (0 , ε ) 
with ε = 0 . 15 , 0 . 2 for the type I err or ra te simula tion, and 

(d 1 , d 2 ) = (0 . 1 , 0 . 1) , (0 . 05 , 0 . 05) and (0 , 0) for the power 
simul ation s . The c omp le te pa ra mete r c ombin a tions ar e in We 
b Table 3 . 

Table 2 shows the simulated type I err or ra tes. As alr eady ob- 
serv e d for the bivariate binary case, the level of corr ela tion has 
little impact on the res ults; henc e, w e only report the type I er- 
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TAB LE 2 Simulate d type I err or ra t es of the t es t proposed in Al gorithm 1 for biva riate con tin uous outc omes spe c i fied in 

Equation 8 with ρ = 0 . 2 and two different similarity thresholds ε. 

ε θ(2) (d 1 , d 2 ) n 

(l ) 
g σ2 = 0 . 05 σ2 = 0 . 1 σ2 = 0 . 2 

0.2 (0 , 0 . 6 , 0 . 2 , 0 , 0 . 6 , 0 . 2 , σ, ρ) (0 . 2 , 0 . 2) 7 0.044 0.037 0.045 
0.2 (0 , 0 . 6 , 0 . 2 , 0 , 0 . 6 , 0 . 2 , σ, ρ) (0 . 2 , 0 . 2) 14 0.029 0.037 0.038 
0.2 (0 , 0 . 6 , 0 . 2 , 0 , 0 . 6 , 0 . 2 , σ, ρ) (0 . 2 , 0 . 2) 21 0.016 0.021 0.039 
0.2 (0 , 0 . 6 , 0 . 2 , 0 , 0 . 6 , 0 . 2 , σ, ρ) (0 . 2 , 0 . 2) 28 0.005 0.012 0.022 
0.2 (0 , 0 . 6 , 0 . 2 , 0 , 0 . 6 , 0 . 2 , σ, ρ) (0 . 2 , 0 . 2) 50 0.013 0.012 0.018 
0.2 (0 , 1 , 0 , 0 , 0 . 6 , 0 . 2 , σ, ρ) (0 , 0 . 2) 7 0.090 0.104 0.095 
0.2 (0 , 1 , 0 , 0 , 0 . 6 , 0 . 2 , σ, ρ) (0 , 0 . 2) 14 0.064 0.087 0.089 
0.2 (0 , 1 , 0 , 0 , 0 . 6 , 0 . 2 , σ, ρ) (0 , 0 . 2) 21 0.075 0.073 0.080 
0.2 (0 , 1 , 0 , 0 , 0 . 6 , 0 . 2 , σ, ρ) (0 , 0 . 2) 28 0.054 0.072 0.086 
0.2 (0 , 1 , 0 , 0 , 0 . 6 , 0 . 2 , σ, ρ) (0 , 0 . 2) 50 0.056 0.077 0.079 
0.15 (0 , 0 . 7 , 0 . 15 , 0 , 0 . 7 , 0 . 15 , σ, ρ) (0 . 15 , 0 . 15) 7 0.044 0.055 0.07 
0.15 (0 , 0 . 7 , 0 . 15 , 0 , 0 . 7 , 0 . 15 , σ, ρ) (0 . 15 , 0 . 15) 14 0.035 0.045 0.06 
0.15 (0 , 0 . 7 , 0 . 15 , 0 , 0 . 7 , 0 . 15 , σ, ρ) (0 . 15 , 0 . 15) 21 0.018 0.044 0.043 
0.15 (0 , 0 . 7 , 0 . 15 , 0 , 0 . 7 , 0 . 15 , σ, ρ) (0 . 15 , 0 . 15) 28 0.017 0.033 0.040 
0.15 (0 , 0 . 7 , 0 . 15 , 0 , 0 . 7 , 0 . 15 , σ, ρ) (0 . 15 , 0 . 15) 50 0.014 0.021 0.034 
0.15 (0 , 1 , 0 , 0 , 0 . 7 , 0 . 15 , σ, ρ) (0 , 0 . 15) 7 0.096 0.079 0.106 
0.15 (0 , 1 , 0 , 0 , 0 . 7 , 0 . 15 , σ, ρ) (0 , 0 . 15) 14 0.092 0.099 0.096 
0.15 (0 , 1 , 0 , 0 , 0 . 7 , 0 . 15 , σ, ρ) (0 , 0 . 15) 21 0.081 0.084 0.089 
0.15 (0 , 1 , 0 , 0 , 0 . 7 , 0 . 15 , σ, ρ) (0 , 0 . 15) 28 0.065 0.083 0.079 
0.15 (0 , 1 , 0 , 0 , 0 . 7 , 0 . 15 , σ, ρ) (0 , 0 . 15) 50 0.054 0.089 0.096 
The nominal level is α = 0 . 05 . 

r or ra tes for the me dium c orr ela tion level of ρ = 0 . 2 and r efer 
the reader to Web Tables 4 –5 for the comp le te s e t of res ults . For 
d 1 = d 2 ≈ ε, type I error rates closely align with the 5% level 
acr oss all configura tions. Similar to the findings in Section 4.1 , 
we note a sli gh t inflation in type I errors for (d 1 , d 2 ) = (0 , ε) , 
consis te n t in magnitude with the binary outcome s. Not ably, with 

lowe r va ria nce, type I e rr or ra t es t end t o decrease a nd ali gn with 

the desired 5% level as s amp le sizes increas e. We parti ally o b- 
serve a similar trend for higher v ari anc e lev els . 

Figure 2 disp l ays the simul ate d pow er. Again, the lev el of c or- 
r ela tion has lit tle influe nce; he nce, we focus on the medium 

corr ela tion level of ρ = 0 . 2 ( full results are in Web Tables 6 –
8 ) . T he proposal achie v es reason able pow e r. For ins ta nce, for a 
medium s amp le size ( n 

(l) 
g ∈ { 21 , 28 } ) , we find a pow er betw e en 

0.205 and 0.968 for ε = 0 . 2 , and betw e en 0.102 and 0.790 for 
ε = 0 . 15 . A t small s amp le sizes, n 

(l) 
g ∈ { 7 , 14 } , the a pproach s ti l l 

a chieves satisfyin g po wer, re a chin g values from 0.098 to 0.710 

for ε = 0 . 2 , and from 0.107 to 0.494 for ε = 0 . 15 . Finally, the 
pow er c onv erges to one for decreasing v ari ance and increasing 
s amp le size. 

4.3 B ivari ate mixed outcome 
For the case of bivariate mixed outc omes, w e focus on binary and 

con tin uous respon s es and combine the sce na rios conside red in 

Se ctions 4.1 –4.2 , c orresponding to a biv ari at e efficacy-t oxicity 
outcome. 

As in Section 4.2 , we assume ρ = ρ(1) = ρ(2) , σ = σ (1) = 

σ (2) , and the s ame v ari anc e lev els ( σ 2 = 0 . 05 , 0 . 1 and 0.2 ) . Dif- 
fe re n t to the biv ari ate binary and continuous cases, (d 1 , d 2 ) = 

(0 , ε) and (d 1 , d 2 ) = (ε, 0) are not equivalent for biv ari ate 
mixe d outc omes; henc e, w e h av e to inv es ti gate the m sepa rately. 
As a con s equence, we o bs erve nine diffe re n t configurations of 

θ(1) = ( θ(1) 
1 , θ

(1) 
2 , σ, ρ) = (β (1) 

01 , β
(1) 
11 , β

(1) 
02 , β

(1) 
12 , σ, ρ) 

and 

θ(2) = ( θ(2) 
1 , θ

(2) 
2 , σ, ρ) = (β (2) 

01 , β
(2) 
11 , β

(2) 
21 , β

(2) 
02 , β

(2) 
12 , σ, ρ) , 

inves ti gating (d 1 , d 2 ) = (ε , ε ) , (0 , ε ) and (ε , 0) for ε = 

0 . 15 , 0 . 2 for the type I error simul ation s and (d 1 , d 2 ) = 

(0 . 1 , 0 . 1) , (0 . 05 , 0 . 05) and (0 , 0) for the powe r sim ul ation s, 
with θ(1) cons ta n tly held as (0 , 1 , −1 , 2 , σ, ρ) . The comp le te 
pa ra mete r c ombin a tions ar e in Web Table 9 . 

Table 3 shows the simulated type I error rates for ρ = 0 . 2 and 

mirror findings from biv ari ate con tin uous outcomes, with d 1 = 

d 2 ≈ ε showing ali gnme n t with the 5% e rror level. Sli gh t infla- 
tion is o bs erv e d for (d 1 , d 2 ) = (0 , ε) and (ε, 0) . Va ria nce, af- 
fecting only one outcome, s eem s to have a reduced impact on the 
type I error rat es. Int erestingly, d 1 = 0 t ends t o produce sli gh tly 
hi ghe r type I err or ra tes, aligning with o bs erv ation s from Sec- 
tion 4.2 . Results for ρ = 0 . 1 and 0.2 are in Web Tables 10 –11 . 

Figure 3 shows the simulate d pow er values for ρ = 0 . 2 ( full 
r esults ar e in Web Tables 12 –14 ) with power ge ne rally increas- 
ing for smaller v ari ances and l arger s amp le sizes. We o bs erve 
the maximum power of 0.984 for (d 1 , d 2 ) = (0 , 0) , ε = 0 . 2 , 
and n 

(l) 
g = 50 . Medium s amp le sizes lead to power values rang- 

ing from 0.218 to 0.813 for ε = 0 . 2 , decreasing sli gh tly for ε = 

0 . 15 . Ev en with sm aller s amp le sizes, our approach maintains 
reas onab le power, r einfor cing the ro bustnes s of our approach. 

5 C A S E  ST U DY  

We i l lustra te the pr opos ed me thodo lo gy through a cas e study, 
in spired by Möllenhoff e t al. ( 2021 ) . The goal of this study 
was to inves ti gate de n tal pain reduction of a nons te roidal a n ti - 
inflammatory dru g a fte r the re moval of two or more impacted 

third mo l ar tee th . Spec i fically, in te res t was in assessing similarity 
with an already av ail ab le marke ted product with regard to a bi- 
v ari at e efficacy-t oxicity out come. For the purpose of the follo w - 
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FIG URE 2 Simul ate d pow e r of the tes t proposed in Al gorithm 1 for biva riate con tin uous outcomes for diffe re n t sa mple sizes a nd ρ = 0 . 2 . The 
diffe re n t va ria nc e lev els a re shown in te rm s of co lor s and the three d iffe re n t sce na rios a re shown in te r ms of di ffe re n t line types . The nomin al 
level is α = 0 . 05 . 

TAB LE 3 Simulate d type I err or ra t es of the t es t proposed in Al gorithm 1 for biva riate mixed outcomes with ρ = 

0 . 2 and two different similarity thresholds ε. 

ε θ(2) (d 1 , d 2 ) n 

(l ) 
g σ2 = 0 . 05 σ2 = 0 . 1 σ2 = 0 . 2 

0.2 (0 , 0 . 6 , 0 . 2 , −2 . 4 , 3 . 4 σ, ρ) ( 0.2, 0.2 ) 7 0.032 0.035 0.038 
0.2 (0 , 0 . 6 , 0 . 2 , −2 . 4 , 3 . 4 σ, ρ) ( 0.2, 0.2 ) 14 0.022 0.031 0.03 
0.2 (0 , 0 . 6 , 0 . 2 , −2 . 4 , 3 . 4 σ, ρ) ( 0.2, 0.2 ) 21 0.018 0.009 0.017 
0.2 (0 , 0 . 6 , 0 . 2 , −2 . 4 , 3 . 4 σ, ρ) ( 0.2, 0.2 ) 28 0.014 0.016 0.019 
0.2 (0 , 0 . 6 , 0 . 2 , −2 . 4 , 3 . 4 σ, ρ) ( 0.2, 0.2 ) 50 0.013 0.014 0.016 
0.2 (0 , 0 . 6 , 0 . 2 , −2 , 2 , σ, ρ) ( 0.2, 0 ) 7 0.067 0.076 0.083 
0.2 (0 , 0 . 6 , 0 . 2 , −2 , 2 , σ, ρ) ( 0.2, 0 ) 14 0.077 0.078 0.079 
0.2 (0 , 0 . 6 , 0 . 2 , −2 , 2 , σ, ρ) ( 0.2, 0 ) 21 0.070 0.071 0.103 
0.2 (0 , 0 . 6 , 0 . 2 , −2 , 2 , σ, ρ) ( 0.2, 0 ) 28 0.073 0.072 0.084 
0.2 (0 , 0 . 6 , 0 . 2 , −2 , 2 , σ, ρ) ( 0.2, 0 ) 50 0.049 0.057 0.069 
0.2 (0 , 1 , 0 , −2 . 4 , 3 . 4 , σ, ρ) ( 0, 0.2 ) 7 0.114 0.117 0.076 
0.2 (0 , 1 , 0 , −2 . 4 , 3 . 4 , σ, ρ) ( 0, 0.2 ) 14 0.082 0.075 0.070 
0.2 (0 , 1 , 0 , −2 . 4 , 3 . 4 , σ, ρ) ( 0, 0.2 ) 21 0.061 0.072 0.068 
0.2 (0 , 1 , 0 , −2 . 4 , 3 . 4 , σ, ρ) ( 0, 0.2 ) 28 0.059 0.055 0.062 
0.2 (0 , 1 , 0 , −2 . 4 , 3 . 4 , σ, ρ) ( 0, 0.2 ) 50 0.059 0.045 0.055 
0.15 (0 . 7 , 0 . 15 , −2 , 3 . 4 , 0 , σ, ρ) ( 0.15, 0.15 ) 7 0.037 0.036 0.051 
0.15 (0 . 7 , 0 . 15 , −2 , 3 . 4 , 0 , σ, ρ) ( 0.15, 0.15 ) 14 0.029 0.022 0.038 
0.15 (0 . 7 , 0 . 15 , −2 , 3 . 4 , 0 , σ, ρ) ( 0.15, 0.15 ) 21 0.023 0.024 0.034 
0.15 (0 . 7 , 0 . 15 , −2 , 3 . 4 , 0 , σ, ρ) ( 0.15, 0.15 ) 28 0.013 0.02 0.031 
0.15 (0 . 7 , 0 . 15 , −2 , 3 . 4 , 0 , σ, ρ) ( 0.15, 0.15 ) 50 0.018 0.009 0.019 
0.15 (0 . 7 , 0 . 15 , −2 , 2 , 0 , σ, ρ) ( 0.15, 0 ) 7 0.073 0.077 0.090 
0.15 (0 . 7 , 0 . 15 , −2 , 2 , 0 , σ, ρ) ( 0.15, 0 ) 14 0.075 0.077 0.082 
0.15 (0 . 7 , 0 . 15 , −2 , 2 , 0 , σ, ρ) ( 0.15, 0 ) 21 0.075 0.084 0.089 
0.15 (0 . 7 , 0 . 15 , −2 , 2 , 0 , σ, ρ) ( 0.15, 0 ) 28 0.048 0.069 0.084 
0.15 (0 . 7 , 0 . 15 , −2 , 2 , 0 , σ, ρ) ( 0.15, 0 ) 50 0.070 0.071 0.080 
0.15 (1 , 0 , −2 , 3 . 4 , 0 , σ, ρ) ( 0, 0.15 ) 7 0.097 0.091 0.092 
0.15 (1 , 0 , −2 , 3 . 4 , 0 , σ, ρ) ( 0, 0.15 ) 14 0.092 0.086 0.075 
0.15 (1 , 0 , −2 , 3 . 4 , 0 , σ, ρ) ( 0, 0.15 ) 21 0.076 0.099 0.076 
0.15 (1 , 0 , −2 , 3 . 4 , 0 , σ, ρ) ( 0, 0.15 ) 28 0.056 0.068 0.067 
0.15 (1 , 0 , −2 , 3 . 4 , 0 , σ, ρ) ( 0, 0.15 ) 50 0.045 0.051 0.073 
The nominal level is α = 0 . 05 . 

ing an alysis, w e use d a hypothe tical d ata s e t, simul ate d ac c ording 
to real data, due to confide n ti ality reas on s. 

Pain in te nsity is meas ure d on an ordinal scale at baseline, 
a nd seve ral time s a fte r the adminis tration of a single dose. Eve n 

though the original scale is ordinal, the average over the r epea ted 

measure me n ts ca n be modeled as a con tin uous va riable. Be side s 
the p l a ce bo, the re a re 4 dose levels for each drug ( g = 1 , ..., 5 ) , 
where the levels are 0.05, 0.20, 0.50, and 1 for the invest igat ional 
drug and 0.10, 0.30, 0.60, and 1 for the m arkete d pr oduct, r e- 
spe ctiv e ly. The actual dose s are scaled to lie within the [0, 1] 
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FIG URE 3 Simul ate d pow e r of the tes t proposed in Al gorithm 1 for biva riate mixed outcomes for diffe re n t sa mple sizes and ρ = 0 . 2 . The 
diffe re n t va ria nc e lev els a re shown in te rm s of co lor s and the three d iffe re n t sce na rios a re shown in te r ms of di ffe re n t line types . The nomin al 
level is α = 0 . 05 . 
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indicate the maximum dis ta nc e betw e en the curv es . 

in te rval to maintain confide n tiality. A total of n = 300 patie n ts 
a re eve nly allocat ed t o the fiv e dose lev els of the tw o drugs, 
resulting in n 

(l) 
g = 30 patie n ts pe r group. In order to incorpo- 

ra te differ ent similarity thr esholds ε 1 � = ε 2 into the analysis, 
we linearly rescale the average pain reduction as su gge sted in 

Section 3.1 . 
A binary toxicity v ari ab le indicates whe ther or not side effects 

( e g, n ausea and sedation after dosing ) occur. Thus, the outcome 
of in te res t is a biva riat e mixed out come ( con tin uous-bina ry ) . 
The approach of Möllenhoff e t al. ( 2021 ) is limit ed t o binary 
v ari ab les; hence, the authors cr ea ted a binary succes s v ari ab le 
for efficacy by comparing the average pain reduction to a clini- 
cal relevance threshold. Our approach is not restricted to binary 
efficacy outcomes so that we can consider the original average 
pain reduction on the con tin uous scale, allowing us t o bett er ex- 
ploit the available information in the analysis. Spec i fically, one 
ca n cons truct the d atas e t con sidered in Möllenhoff e t al. ( 2021 ) 
fr om our da taset by using 0.5 as the clinical relevance threshold 

for the rescaled efficacy variable. 

We fit two biv ari at e mixed out come models based on the 
Gaus si an copul a ( as introduc e d in Se ction 2.2 ) , one for the new 

product and the other for the m arkete d product. We assume a 
quadra tic dose-r espon s e curve for the con tin uous efficacy va ri - 
able and a logit model for the binary toxicity outcome. Figure 4 

shows the estim ate d dose- re sponse curve s with the corre spond- 
ing coefficie n ts es timates give n in Web Table 15 . For the toxic- 
ity outcome, our find ings al ign closely with those of Möllenhoff
et al. ( 2021 ) , su gge sting that our model does not depend s en si- 
tively on the copula used or the con tin uous modeling of efficacy. 
Thi s lead s to a maximum abs o lute dis ta nce of ∼0.0385 for toxi - 
city, o bs erv e d at the highest dose of 1. For the efficacy outcome, 
we o bs e rve the maxim um abs o lute dis ta nc e betw e en the curv es 
of ∼0.0958 at dose 0.35. Ac c ordingly, the m aximum of m axim a 
dis ta nce is given by ̂  d max = 

̂ d Efficacy ≈ 0 . 096 . 
To as s es s simil a rity, we a pply Al gorithm 1 t o t est the hy- 

pothe se s in Equation 4 for three diffe re n t choices of ε, namely 
0 . 2 , 0 . 15 and 0.1. This leads to ̂

 d 

∗
max, (� n boot α� ) being 0.144, 0.105, 

and 0.078, respe ctiv ely, and c orresponds to P -values given by 
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0.003, 0.023, a nd 0.136. He nce, for ε = 0 . 2 , 0 . 15 , w e reje ct the 
null hypothe sis, su gge sting similarity. How ev er, for ε = 0 . 1 , we 
cannot reject the null hypothe sis. The se findings mostly align 

with those of Möllenhoff et al. ( 2021 ) for ε = 0 . 2 and ε = 0 . 1 . 
Unli ke Möl lenhoff et al. ( 2021 ) , our approach allows reject- 
ing H 0 even at a more liberal threshold ( ε = 0 . 15 ) , indicating 
the benefit of using a continuous efficacy v ari ab le over a binary 
one. This aligns with our simulation study, which show e d higher 
power for biv ari at e mixed out comes as compared to binary ones. 
The incre ased po wer of the proposal is evidenc e d by the abil- 
ity to conclude tr ea tme n t simila rity at a 5% level for ε = 0 . 15 ; 
he nce, hi ghli gh ting its pote n ti al impact in clinical res earch . 

6 CO N C LU S I O N 

We introduc e d a nov e l mode l- base d e quivalenc e testing ap- 
proach for m ultiva ria te r e sponse s, leveraging the flexibility of 
generalize d jo i ne d r egr essio n models . T his method s ta nds out for 
its ver satil ity acros s v arious modeling pro b lem s, particul arly 
benefiting from the Gaus si an copul a’s capacity to gener aliz e to 

m ulti -dime n sional s e ttings . In c on tras t to exis ting a pproaches, 
our proposal is not limited to univ ari ate or biv ari ate outcomes 
allowing for m ultiva ria te r e sponse s of a rbitra ry dime n sion . It ac- 
commoda tes differ ent scales of measures of the outcome va ri - 
ables ( e g, c on tin uous, bina ry, ca tegorical, or or d inal ) . Add ition- 
ally, we propose an altern ativ e, less c onservativ e testing proce- 
dur e tha t con tras ts with the in te rs ection union princip le. 

The simulation study demonstra tes tha t our method effec- 
tiv ely m aintains the type I error rate at or below the 5% nomi- 
nal si gnifica nce level as s amp le sizes increas e, despite s ome in- 
fla tion a t s maller size s for any of the inve s ti gated types of out- 
c omes . This effe ct pa rticula rly occ ur s in sc en arios, which are on 

the boundary of the null hypothesis space but only because of 
one outc ome, th at is, if K = 2 , d 1 < ε, or d 2 < ε. The reason for 
thi s i s that for thes e s c en arios in finite s amp les, the upper bound 

of the type I error probability 

P 

(
type I error 

) ≤ max 
{ 

P H 0 ( ̂  d 1 < 

̂ d 

∗
max, (� n boot α� ) | ̂  d 1 ≥ ̂ d 2 ) , 

P H 0 ( ̂  d 2 < 

̂ d 

∗
max, (� n boot α� ) | ̂  d 2 ≥ ̂ d 1 ) 

} 

be c ome s le ss strict. How ev er, this effe ct disa ppea rs with increas- 
ing s amp le sizes, which is in line with the theore tical a rgume n ts 
giv en in Se ct ion 3.2 . Addit ion ally, w e achiev e reason ably pow er 
values that converge to one as s amp le sizes increase. Note that 
we do not o bs e rve type I e rr or ra tes as l arge as Möllenhoff e t al. 
( 2021 ) do, ev en though w e us e a les s con s erv at ive test ing proce- 
dure. For large sample sizes, both approa ches a chiev e reason able 
po wer. Ho wever, at small s amp le size s, our ne w appro ach out - 
performs the proc e dure of Möllenhoff et al. ( 2021 ) . 

Future pos sib le res earch includes extending the gener aliz ed 

joint r egr e ssion mode ls to more th an thre e dimen sion s, a limi- 
tation of the curre n t imple me n tation of the proposed approach. 
The s en sitivity of results to the as sumption of Gaus si an copul a in 

va rious con t exts, as well as alt ern ativ e c opul a option s, merits fur- 
ther exp loration . Addition ally, w e aim to adapt the testing pro- 
c e dure for less s ta nda rd dis tributions a nd explore spline-based 

r egr ession curve spec i fications. 

Fin ally, a much-ne e de d extension is the derivation of a power 
formula that allows pract it ioners to perform s amp le size calcu- 
l ation s at the design stage of a trial. Such a formula could be de- 
riv e d from the asymptotic distribution of the test stat ist ic or from 

simul ation s . We leav e a v alid ation a nd compa ris on of thes e two 

pr oposed appr oaches for futur e r esear ch. 

A  C K N O W L  E D  G M E N TS  

The authors would like to tha nk Hol ge r Dette for fruitful d isc us- 
sions during the early phase of developing the method proposed 

in this pa pe r. 

S U P P L E M E N TA  RY  M AT E R I A  L S  

Supple me n ta ry mate rial is available at Biometrics online. 
Web Tables and Figur es r efer enc e d in Se ctions 4.1 , 4.2 , 4.3 , and 

5 , along with codes, are av ail ab le with this pa pe r at the B iomet- 
rics website on Oxford Acade mic . The c odes use d for this pa- 
pe r a re als o av ail ab le at htt ps://g ithub.com/Niklas191/Testing 
_ f or _ similarity _ of _ multivariate _ mixed _ outcomes . 

F U N D I N G  

This w ork h as be en s upporte d b y the Resea r ch Training Gr oup 

“B ios tatis tical Methods for Hi gh-Dime nsional Data in Toxicol- 
ogy” ( RTG 2624, P7 ) funded by the Deutsche Forschungsge- 
mein s ch aft ( DFG, Germ an Res earch Found ation, Proj ect Num- 
ber 427806116 ) . 

CO N F L I C T  O F  I N T E R E ST  

None de clare d. 

DATA  AVA  I L A  B I L I T Y  

The data that support the findings in this pa pe r a re av ail ab le with 

this pa pe r at the Biometrics website on Oxford Acade mic . The 
da ta ar e also available at htt ps://g ithub.com/Niklas191/Testi 
ng _ f or _ similarity _ of _ multivariate _ mixe d _ outc omes . 

R E F E R E N C E S  

Be rge r , R. L. ( 1982 ) . Multipa ra mete r hypothesis testing and ac c e pt ance 
s amp ling. Techn om etrics , 24, 295–300. 

Bretz , F. , Möl lenhoff, K., Dette, H., Liu, W. and Trampisch, M. ( 2018 ) . 
As s es sing the simil arity of dos e respon s e a nd ta rge t dos es in two non- 
ove rla pping subgroups. Sta t is t ics in Me dici ne , 37, 722–738. 

Chiu , W. A. and Crump, K. S. ( 2012 ) . Using copulas to introduce depen- 
dence in dose- re sponse mode ling of m ultiple bina ry e ndpoin ts . Jou r- 
n a l of Agricu ltura l, B iolo gica l, an d E nviro nment a l St a t is t ics , 17, 107–127. 

de Leon , A. R. and Wu, B. ( 2011 ) . Copula - base d re gre ssion mode ls 
for a biv ari ate mixed dis cre te and c ontinuous outc ome. Sta t is t ics in 
Me dici ne , 30, 175–185. 

De mirtas , H. a nd Doga nay, B. ( 2012 ) . Sim ulta neous ge ne ration of bina ry 
and normal data with spec i fied marginal and as s oci a tion structur es. 
Jo urn a l of Bioph arm aceu t ic a l St a t is t ics , 22, 223–236. 

Dette , H. , Möl lenhoff, K., Volgushev, S. and Bretz, F. ( 2018 ) . Equivalence 
of r egr e ssion curve s. Jo urn a l of the Am erican S t atistica l Association , 113, 
711–729. 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/80/3/ujae077/7737908 by IBS M
em

ber Access user on 02 Septem
ber 2024

26



Biometrics , 2024, Vol. 80, No. 3 � 11 

Dunlap , J. W. ( 1937 ) . Combin ativ e properties of c orrelation c oefficie n ts. 
T he Jou rnal of Experimental Ed u c a t io n , 5, 286–288. 

Emrich , L. J. and Piedmonte, M. R. ( 1991 ) . A method for generating high- 
dime nsional m ultiva riate bina ry va riates. T he America n Sta t is t ici a n , 45, 
302–304. 

Filippou , P. , Marra, G . and Radice , R. ( 2017 ) . Pen alize d li keli hood es ti - 
mation of a tr ivar ia te additive pr obit mode l. B io st atistics , 18, 569–585. 

Gs tei ge r , S. , Bretz, F. and Liu, W. ( 2011 ) . Sim ulta ne ous c onfidenc e bands 
for nonlinear r egr e ssion mode ls with app lication to popul ation p har- 
m ac o kine tic analys es. Jo urn a l of Bioph arm aceu t ic a l St a t is t ics , 21, 708–
725. 

Heise , M. A. a nd Mye rs, R. H. ( 1996 ) . Optimal designs for biv ari ate lo- 
g i stic r egr es sion . Biom etrics , 52, 613–624. 

Jhee , S . S . , L yness, W. H., Rojas, P. B ., Leibowitz, M. T., Zarotsky, V. and 
Jaco bs en, L. V. ( 2004 ) . Similarity of insulin detemir ph arm ac okinet- 
ics, s afe ty, and to lerabi lity profiles in healthy Caucasia n a nd Ja pa nese 
Ame rica n s ubje cts . T he Jou rnal of Cl in ical Pha rmacology , 44, 258–264. 

Joe , H. ( 2015 ) . Depen dence M o deling with Copu las . 1st edn. New York and 
Boca Raton: Ch apm an & Hall and CRC Press. 

Klein , N. , Kneib, T., Marra, G ., Radice , R., Rok ick i, S. a nd McGove rn, M. 
E. ( 2019 ) . Mixed b inary- con tin uous copula r egr e ssion mode ls with 
a pplication to adve rse birth outcomes. Sta t is t ics in Me dici ne , 38, 413–
436. 

Liu , W. , Bretz, F., Hayter, A. J. and Wynn, H. P. ( 2009 ) . As s es sing non- 
super ior ity, noninfer ior ity, or e quivalenc e when c omparing tw o re- 
gre ssion mode ls over a restricte d c ov ari a te r egion . Biom etrics , 65, 
1279–1287. 

Ma rra , G. a nd Radice, R. ( 2017 ) . B iva riate copula additive models for 
location, scale a nd sha pe. Com put ation a l St atistics an d Dat a An a lysis , 
112, 99–113. 

Ma rra , G. a nd Rad ice, R. ( 2020 ) . Copula l ink-based add itive models for 
ri gh t-ce n s ored eve n t time data. Jo urn a l of th e Am erican S t atistica l Asso- 
cia t io n , 115, 886–895. 

Ma rra , G. a nd Radice, R. ( 2023 ) . GJRM: Ge ne ralised Join t Regression 
Modellin g. CRAN: Pa cka ge GJRM ( r -project.org ) . R packa ge version 
0.2-6.1. ww w.cran.r-project.org/w e b/pa ckages/GJRM . [21 D e c em- 
ber 2023]. 

Marra , G. , Radice, R. and Zimmer, D. ( 2020 ) . Est imat ing the binary en- 
dogenous effect of ins uranc e on doctor visits by copula - base d re gres- 
sion additive models. Jo urn a l of the Royal Sta t is t ic al Society Ser ie s C , 69, 
953–971. 

Mölle nhoff, K. , B inde r, N. a nd Dette, H. ( 2024 ) . Tes ting simila rity of 
pa ra me tric compe ting ri sks model s for ide n tifying pote n tial ly simi lar 
pa th ways in healthcare. arXiv: 2401.04490 [s ta t.ME] . 

Möllenhoff, K. , De t te, H. and Br etz, F. ( 2021 ) . Testing for similarity of 
binary efficacy-toxicity respon s es. Bio st atistics , 23, 949–966. 

Möllenhoff, K. , Dette, H., Kotzag iorg i s, E., Volgushev, S. and Collignon, 
O. ( 2018 ) . Regulatory asse ss me n t of drug dissolution profiles compa- 
rability via maximum devi ation . S tatistics in Medicine , 37, 2968–2981. 

Möllenhoff, K. , Loingeville, F., Be rtra nd, J., Nguyen, T . T ., Sha ra n, S., 
Zhao, L. et al. ( 2022 ) . Efficie n t model -base d bioe quivalenc e testing. 
Bio st atistics , 23, 314–327. 

Murt au gh , P. A. and Fisher, L. D. ( 1990 ) . Biv ari ate binary models of effi- 
cacy and toxicity in dose-ran gin g trials . Commu n ications in Sta t is t ics—
The o ry and Methods , 19, 2003–2020. 

Ott o , C . , Fuchs, I., Altmann, H., Klewer, M., Walter, A., Prelle, K. et al. 
( 2008 ) . Compa rative a nalysis of the uterine and m amm ary gland ef- 
fects of dr ospir e none a nd medr oxypr oges te r one aceta t e. Endocrino l- 
ogy , 149, 3952–3959. 

Radice , R. a nd Ma rra, G. ( 2016 ) . Copula r egr ession spline models for bi- 
n ary outc omes . Sta t is t ics and Co mpu t ing , 26, 981–995. 

Sk lar , A. ( 1959 ) . Fonct ions de répart it ion à n dimen sion s e t le urs marge s. 
Pub l ic a t io ns de l’Ins t itu t Sta t is t iq u e de l’Université de Paris , 8, 229–231. 

Song , P. X.-K. , Li, M. a nd Yua n, Y. ( 2009 ) . Join t r egr ession analysis of cor- 
r ela ted da ta using Gaussian c opulas . Biometrics , 65, 60–68. 

Tao , Y. , Liu, J., Li, Z., Lin, J., Lu, T. and Yan, F. ( 2013 ) . Dose-finding 
bas ed on biv ari at e efficacy-t oxicity out c ome using Archime dean c op- 
ul a. PLoS On e , 8, 1–6. 

Triv e di , P. K. a nd Zimme r, D. M. ( 2007 ) . Copula modeling: a n in troduc- 
t ion for pract it ioners . Fou nda t io ns and Trends in Eco no metrics , 1, 1–
111. 

Va radha n , R. ( 2022 ) . alaba ma: Cons trained Nonlinea r Opt imizat ion. R 

package version 2022.4-1. https://cran.r-project.org/we b/pa ckages/ 
alabama/ . [Ac c es s ed 10 July 2023]. 

Re c eiv e d: Ja n ua ry 18, 2024; Revise d: June 5, 2024; Ac c epte d: July 24, 2024 
© The Author ( s ) 2024. P ublished b y Oxford Unive rsity Pre ss on be half of The In te rn ation al Biome tric Socie ty. All ri gh ts rese rv e d. For permis sion s, p leas e e-mail: j ourn als .permis sion s@oup.com 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/80/3/ujae077/7737908 by IBS M
em

ber Access user on 02 Septem
ber 2024

27



Supplementary material for ”Testing for similarity of multivariate

mixed outcomes using generalised joint regression models with

application to efficacy-toxicity responses“ by Niklas Hagemann,

Giampiero Marra, Frank Bretz and Kathrin Möllenhoff

Web Table 1: Parameter scenarios used for the simulation of the bivariate binary outcomes.

No. θ(1) θ(2) (d1, d2)

1 Null hypothesis (−1, 2,−3, 3, ρ) (−2.4, 3.4,−1.8, 2.51, ρ) (0.2,0.2)

2 Null hypothesis (−1, 2,−3, 3, ρ) (−1, 2,−1.8, 2.51, ρ) (0,0.2)

3 Null hypothesis (−1, 2,−3, 3, ρ) (−2, 3.4,−2, 2.51, ρ) (0.15,0.15)

4 Null hypothesis (−1, 2,−3, 3, ρ) (−1, 2,−2, 2.51, ρ) (0,0.15)

5 Alternative (−1, 2,−3, 3, ρ) (−1.5, 2.2,−3.6, 3.2, ρ) (0.1,0.1)

6 Alternative (−1, 2,−3, 3, ρ) (−1.2, 2,−3.3, 3.1, ρ) (0.05,0.05)

7 Alternative (−1, 2,−3, 3, ρ) (−1, 2,−3, 3, ρ) (0,0)
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Web Table 2: Simulated power for bivariate binary outcomes and two different similarity thresholds

ε.

ε θ(2) (d1, d2) n
(l)
g ρ = 0.1 ρ = 0.2 ρ = 0.3

0.2 (−1.5, 2.2,−3.6, 3.2, ρ) (0.1, 0.1) 7 0.151 0.130 0.128

0.2 (−1.5, 2.2,−3.6, 3.2, ρ) (0.1, 0.1) 14 0.178 0.182 0.177

0.2 (−1.5, 2.2,−3.6, 3.2, ρ) (0.1, 0.1) 21 0.202 0.204 0.214

0.2 (−1.5, 2.2,−3.6, 3.2, ρ) (0.1, 0.1) 28 0.295 0.290 0.299

0.2 (−1.5, 2.2,−3.6, 3.2, ρ) (0.1, 0.1) 50 0.426 0.462 0.473

0.2 (−1.2, 2,−3.3, 3.1, ρ) (0.05, 0.05) 7 0.166 0.202 0.179

0.2 (−1.2, 2,−3.3, 3.1, ρ) (0.05, 0.05) 14 0.293 0.268 0.291

0.2 (−1.2, 2,−3.3, 3.1, ρ) (0.05, 0.05) 21 0.424 0.425 0.417

0.2 (−1.2, 2,−3.3, 3.1, ρ) (0.05, 0.05) 28 0.522 0.529 0.526

0.2 (−1.2, 2,−3.3, 3.1, ρ) (0.05, 0.05) 50 0.777 0.781 0.808

0.2 (−1, 2,−3, 3, ρ) (0, 0) 7 0.219 0.208 0.222

0.2 (−1, 2,−3, 3, ρ) (0, 0) 14 0.334 0.305 0.306

0.2 (−1, 2,−3, 3, ρ) (0, 0) 21 0.495 0.481 0.502

0.2 (−1, 2,−3, 3, ρ) (0, 0) 28 0.621 0.634 0.650

0.2 (−1, 2,−3, 3, ρ) (0, 0) 50 0.906 0.919 0.914

0.15 (−1.5, 2.2,−3.6, 3.2, ρ) (0.1, 0.1) 7 0.100 0.098 0.107

0.15 (−1.5, 2.2,−3.6, 3.2, ρ) (0.1, 0.1) 14 0.095 0.096 0.086

0.15 (−1.5, 2.2,−3.6, 3.2, ρ) (0.1, 0.1) 21 0.095 0.102 0.096

0.15 (−1.5, 2.2,−3.6, 3.2, ρ) (0.1, 0.1) 28 0.098 0.099 0.129

0.15 (−1.5, 2.2,−3.6, 3.2, ρ) (0.1, 0.1) 50 0.141 0.155 0.148

0.15 (−1.2, 2,−3.3, 3.1, ρ) (0.05, 0.05) 7 0.117 0.135 0.140

0.15 (−1.2, 2,−3.3, 3.1, ρ) (0.05, 0.05) 14 0.161 0.164 0.151

0.15 (−1.2, 2,−3.3, 3.1, ρ) (0.05, 0.05) 21 0.212 0.200 0.196

0.15 (−1.2, 2,−3.3, 3.1, ρ) (0.05, 0.05) 28 0.261 0.281 0.267

0.15 (−1.2, 2,−3.3, 3.1, ρ) (0.05, 0.05) 50 0.434 0.448 0.439

0.15 (−1, 2,−3, 3, ρ) (0, 0) 7 0.131 0.167 0.159

0.15 (−1, 2,−3, 3, ρ) (0, 0) 14 0.168 0.204 0.173

0.15 (−1, 2,−3, 3, ρ) (0, 0) 21 0.296 0.288 0.271

0.15 (−1, 2,−3, 3, ρ) (0, 0) 28 0.375 0.384 0.382

0.15 (−1, 2,−3, 3, ρ) (0, 0) 50 0.636 0.627 0.639
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Web Table 3: Parameter scenarios used for the simulation of the bivariate continuous outcomes.

No. θ(1) θ(2) (d1, d2)

1 Null hypothesis (0, 1, 0, 1, σ, ρ) (0, 0.6, 0.2, 0, 0.6, 0.2, σ, ρ) (0.2,0.2)

2 Null hypothesis (0, 1, 0, 1, σ, ρ) (0, 1, 0, 0, 0.6, 0.2, σ, ρ) (0,0.2)

3 Null hypothesis (0, 1, 0, 1, σ, ρ) (0, 0.7, 0.15, 0, 0.7, 0.15, σ, ρ) (0.15,0.15)

4 Null hypothesis (0, 1, 0, 1, σ, ρ) (0, 1, 0, 0, 0.7, 0.15, σ, ρ) (0,0.15)

5 Alternative (0, 1, 0, 1, σ, ρ) (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1)

6 Alternative (0, 1, 0, 1, σ, ρ) (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05)

7 Alternative (0, 1, 0, 1, σ, ρ) (0, 1, 0, 0, 1, 0, σ, ρ) (0,0)

Web Table 4: Simulated type I error rates for bivariate continuous outcomes with ρ = 0.1 and two

different similarity thresholds ε.

ε θ(2) (d1, d2) n
(l)
g σ2 = 0.05 σ2 = 0.1 σ2 = 0.2

0.2 (0, 0.6, 0.2, 0, 0.6, 0.2, σ, ρ) (0.2,0.2) 7 0.026 0.046 0.063

0.2 (0, 0.6, 0.2, 0, 0.6, 0.2, σ, ρ) (0.2,0.2) 14 0.019 0.036 0.042

0.2 (0, 0.6, 0.2, 0, 0.6, 0.2, σ, ρ) (0.2,0.2) 21 0.013 0.029 0.029

0.2 (0, 0.6, 0.2, 0, 0.6, 0.2, σ, ρ) (0.2,0.2) 28 0.013 0.018 0.026

0.2 (0, 0.6, 0.2, 0, 0.6, 0.2, σ, ρ) (0.2,0.2) 50 0.013 0.011 0.012

0.2 (0, 1, 0, 0, 0.6, 0.2, σ, ρ) (0,0.2) 7 0.082 0.096 0.077

0.2 (0, 1, 0, 0, 0.6, 0.2, σ, ρ) (0,0.2) 14 0.079 0.088 0.077

0.2 (0, 1, 0, 0, 0.6, 0.2, σ, ρ) (0,0.2) 21 0.061 0.086 0.095

0.2 (0, 1, 0, 0, 0.6, 0.2, σ, ρ) (0,0.2) 28 0.067 0.069 0.078

0.2 (0, 1, 0, 0, 0.6, 0.2, σ, ρ) (0,0.2) 50 0.045 0.060 0.079

0.15 (0, 0.7, 0.15, 0, 0.7, 0.15, σ, ρ) (0.15,0.15) 7 0.037 0.043 0.093

0.15 (0, 0.7, 0.15, 0, 0.7, 0.15, σ, ρ) (0.15,0.15) 14 0.030 0.040 0.062

0.15 (0, 0.7, 0.15, 0, 0.7, 0.15, σ, ρ) (0.15,0.15) 21 0.022 0.034 0.035

0.15 (0, 0.7, 0.15, 0, 0.7, 0.15, σ, ρ) (0.15,0.15) 28 0.008 0.028 0.036

0.15 (0, 0.7, 0.15, 0, 0.7, 0.15, σ, ρ) (0.15,0.15) 50 0.012 0.004 0.029

0.15 (0, 1, 0, 0, 0.7, 0.15, σ, ρ) (0,0.15) 7 0.090 0.091 0.112

0.15 (0, 1, 0, 0, 0.7, 0.15, σ, ρ) (0,0.15) 14 0.076 0.087 0.086

0.15 (0, 1, 0, 0, 0.7, 0.15, σ, ρ) (0,0.15) 21 0.080 0.089 0.068

0.15 (0, 1, 0, 0, 0.7, 0.15, σ, ρ) (0,0.15) 28 0.079 0.092 0.074

0.15 (0, 1, 0, 0, 0.7, 0.15, σ, ρ) (0,0.15) 50 0.063 0.066 0.087
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Web Table 5: Simulated type I error rates for bivariate continuous outcomes with ρ = 0.3 and two

different similarity thresholds ε.

ε θ(2) (d1, d2) n
(l)
g σ2 = 0.05 σ2 = 0.1 σ2 = 0.2

0.2 (0, 0.6, 0.2, 0, 0.6, 0.2, σ, ρ) (0.2,0.2) 7 0.033 0.047 0.055

0.2 (0, 0.6, 0.2, 0, 0.6, 0.2, σ, ρ) (0.2,0.2) 14 0.018 0.041 0.050

0.2 (0, 0.6, 0.2, 0, 0.6, 0.2, σ, ρ) (0.2,0.2) 21 0.024 0.030 0.040

0.2 (0, 0.6, 0.2, 0, 0.6, 0.2, σ, ρ) (0.2,0.2) 28 0.014 0.030 0.029

0.2 (0, 0.6, 0.2, 0, 0.6, 0.2, σ, ρ) (0.2,0.2) 50 0.017 0.018 0.030

0.2 (0, 1, 0, 0, 0.6, 0.2, σ, ρ) (0,0.2) 7 0.090 0.092 0.098

0.2 (0, 1, 0, 0, 0.6, 0.2, σ, ρ) (0,0.2) 14 0.069 0.085 0.088

0.2 (0, 1, 0, 0, 0.6, 0.2, σ, ρ) (0,0.2) 21 0.059 0.072 0.096

0.2 (0, 1, 0, 0, 0.6, 0.2, σ, ρ) (0,0.2) 28 0.049 0.081 0.077

0.2 (0, 1, 0, 0, 0.6, 0.2, σ, ρ) (0,0.2) 50 0.059 0.069 0.082

0.15 (0, 0.7, 0.15, 0, 0.7, 0.15, σ, ρ) (0.15,0.15) 7 0.051 0.050 0.083

0.15 (0, 0.7, 0.15, 0, 0.7, 0.15, σ, ρ) (0.15,0.15) 14 0.033 0.051 0.058

0.15 (0, 0.7, 0.15, 0, 0.7, 0.15, σ, ρ) (0.15,0.15) 21 0.034 0.044 0.049

0.15 (0, 0.7, 0.15, 0, 0.7, 0.15, σ, ρ) (0.15,0.15) 28 0.017 0.021 0.042

0.15 (0, 0.7, 0.15, 0, 0.7, 0.15, σ, ρ) (0.15,0.15) 50 0.016 0.023 0.044

0.15 (0, 1, 0, 0, 0.7, 0.15, σ, ρ) (0,0.15) 7 0.084 0.090 0.091

0.15 (0, 1, 0, 0, 0.7, 0.15, σ, ρ) (0,0.15) 14 0.070 0.094 0.090

0.15 (0, 1, 0, 0, 0.7, 0.15, σ, ρ) (0,0.15) 21 0.076 0.085 0.072

0.15 (0, 1, 0, 0, 0.7, 0.15, σ, ρ) (0,0.15) 28 0.061 0.077 0.088

0.15 (0, 1, 0, 0, 0.7, 0.15, σ, ρ) (0,0.15) 50 0.069 0.077 0.090
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Web Table 6: Simulated power for bivariate continuous outcomes with ρ = 0.1 and two different

similarity thresholds ε.

ε θ(2) (d1, d2) n
(l)
g σ2 = 0.05 σ2 = 0.1 σ2 = 0.2

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 7 0.257 0.126 0.118

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 14 0.526 0.237 0.159

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 21 0.689 0.395 0.215

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 28 0.851 0.515 0.280

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 50 0.982 0.792 0.452

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 7 0.412 0.207 0.140

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 14 0.712 0.399 0.208

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 21 0.887 0.579 0.340

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 28 0.974 0.694 0.387

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 50 0.999 0.938 0.668

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 7 0.406 0.242 0.155

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 14 0.749 0.457 0.232

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 21 0.907 0.636 0.333

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 28 0.959 0.739 0.444

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 50 0.999 0.930 0.670

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 7 0.119 0.111 0.110

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 14 0.180 0.123 0.098

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 21 0.244 0.139 0.108

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 28 0.315 0.186 0.125

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 50 0.506 0.28 0.182

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 7 0.232 0.146 0.112

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 14 0.373 0.241 0.162

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 21 0.590 0.318 0.161

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 28 0.729 0.394 0.249

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 50 0.952 0.666 0.382

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 7 0.277 0.168 0.161

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 14 0.488 0.263 0.169

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 21 0.671 0.377 0.208

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 28 0.775 0.487 0.267

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 50 0.964 0.736 0.477
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Web Table 7: Simulated power for bivariate continuous outcomes with ρ = 0.2 and two different

similarity thresholds ε.

ε θ(2) (d1, d2) n
(l)
g σ2 = 0.05 σ2 = 0.1 σ2 = 0.2

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 7 0.281 0.167 0.098

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 14 0.512 0.257 0.174

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 21 0.719 0.412 0.205

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 28 0.842 0.535 0.276

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 50 0.983 0.800 0.472

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 7 0.403 0.241 0.141

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 14 0.710 0.383 0.222

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 21 0.885 0.598 0.281

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 28 0.962 0.723 0.396

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 50 0.998 0.940 0.658

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 7 0.431 0.246 0.144

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 14 0.745 0.453 0.236

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 21 0.887 0.623 0.332

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 28 0.968 0.735 0.446

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 50 0.999 0.935 0.684

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 7 0.119 0.111 0.107

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 14 0.171 0.113 0.132

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 21 0.255 0.149 0.102

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 28 0.334 0.173 0.144

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 50 0.483 0.296 0.155

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 7 0.229 0.136 0.125

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 14 0.390 0.235 0.145

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 21 0.606 0.306 0.184

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 28 0.745 0.378 0.228

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 50 0.961 0.693 0.377

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 7 0.255 0.159 0.132

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 14 0.494 0.260 0.161

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 21 0.667 0.368 0.209

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 28 0.790 0.461 0.280

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 50 0.965 0.731 0.453
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Web Table 8: Simulated power for bivariate continuous outcomes with ρ = 0.3 and two different

similarity thresholds ε.

ε θ(2) (d1, d2) n
(l)
g σ2 = 0.05 σ2 = 0.1 σ2 = 0.2

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 7 0.288 0.152 0.132

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 14 0.553 0.278 0.155

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 21 0.722 0.400 0.220

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 28 0.853 0.527 0.297

0.2 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 50 0.982 0.786 0.493

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 7 0.390 0.221 0.141

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 14 0.730 0.367 0.237

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 21 0.883 0.609 0.299

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 28 0.970 0.699 0.372

0.2 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 50 0.999 0.948 0.671

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 7 0.413 0.209 0.149

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 14 0.713 0.451 0.242

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 21 0.897 0.631 0.355

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 28 0.962 0.732 0.451

0.2 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 50 1.000 0.928 0.690

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 7 0.125 0.103 0.095

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 14 0.193 0.129 0.112

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 21 0.244 0.171 0.116

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 28 0.332 0.209 0.147

0.15 (0, 0.8, 0.1, 0, 0.8, 0.1, σ, ρ) (0.1,0.1) 50 0.497 0.286 0.197

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 7 0.234 0.139 0.12

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 14 0.424 0.207 0.133

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 21 0.591 0.319 0.174

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 28 0.726 0.433 0.220

0.15 (0, 0.9, 0.05, 0, 0.9, 0.05, σ, ρ) (0.05,0.05) 50 0.953 0.693 0.393

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 7 0.257 0.175 0.155

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 14 0.500 0.266 0.163

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 21 0.680 0.375 0.238

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 28 0.806 0.488 0.282

0.15 (0, 1, 0, 0, 1, 0, σ, ρ) (0,0) 50 0.967 0.748 0.429
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Web Table 9: Parameter scenarios used for the simulation of bivariate mixed outcomes.

No. θ(1) θ(2) (d1, d2)

1 Null hypothesis (0, 1,−1, 2, σ, ρ) (0, 0.6, 0.2,−2.4, 3.4, σ, ρ) (0.2, 0.2)

2 Null hypothesis (0, 1,−1, 2, σ, ρ) (0, 0.6, 0.2,−1, 2, σ, ρ) (0.2, 0)

3 Null hypothesis (0, 1,−1, 2, σ, ρ) (0, 1, 0,−2.4, 3.4, σ, ρ) (0, 0.2)

4 Null hypothesis (0, 1,−1, 2, σ, ρ) (0, 0.7, 0.15,−2, 3.4, σ, ρ) (0.15, 0.15)

5 Null hypothesis (0, 1,−1, 2, σ, ρ) (0, 0.7, 0.15,−1, 2, σ, ρ) (0.15, 0)

6 Null hypothesis (0, 1,−1, 2, σ, ρ) (0, 1, 0,−2, 3.4, σ, ρ) (0, 0.15)

7 Alternative (0, 1,−1, 2, σ, ρ) (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1)

8 Alternative (0, 1,−1, 2, σ, ρ) (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05)

9 Alternative (0, 1,−1, 2, σ, ρ) (0, 1, 0,−1, 2, σ, ρ) (0, 0)
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Web Table 10: Simulated type I error rates for bivariate mixed outcomes with ρ = 0.1 and two different

similarity thresholds ε.

ε θ(2) (d1, d2) n
(l)
g σ2 = 0.05 σ2 = 0.1 σ2 = 0.2

0.2 (0, 0.6, 0.2,−2.4, 3.4, σ, ρ) (0.2, 0.2) 7 0.039 0.036 0.041

0.2 (0, 0.6, 0.2,−2.4, 3.4, σ, ρ) (0.2, 0.2) 14 0.021 0.022 0.027

0.2 (0, 0.6, 0.2,−2.4, 3.4, σ, ρ) (0.2, 0.2) 21 0.016 0.021 0.017

0.2 (0, 0.6, 0.2,−2.4, 3.4, σ, ρ) (0.2, 0.2) 28 0.012 0.013 0.014

0.2 (0, 0.6, 0.2,−2.4, 3.4, σ, ρ) (0.2, 0.2) 50 0.009 0.011 0.008

0.2 (0, 0.6, 0.2,−1, 2, σ, ρ) (0.2, 0) 7 0.084 0.081 0.083

0.2 (0, 0.6, 0.2,−1, 2, σ, ρ) (0.2, 0) 14 0.097 0.081 0.098

0.2 (0, 0.6, 0.2,−1, 2, σ, ρ) (0.2, 0) 21 0.058 0.074 0.069

0.2 (0, 0.6, 0.2,−1, 2, σ, ρ) (0.2, 0) 28 0.079 0.087 0.088

0.2 (0, 0.6, 0.2,−1, 2, σ, ρ) (0.2, 0) 50 0.065 0.056 0.068

0.2 (0, 1, 0,−2.4, 3.4, σ, ρ) (0, 0.2) 7 0.104 0.097 0.089

0.2 (0, 1, 0,−2.4, 3.4, σ, ρ) (0, 0.2) 14 0.085 0.078 0.067

0.2 (0, 1, 0,−2.4, 3.4, σ, ρ) (0, 0.2) 21 0.053 0.079 0.077

0.2 (0, 1, 0,−2.4, 3.4, σ, ρ) (0, 0.2) 28 0.051 0.079 0.075

0.2 (0, 1, 0,−2.4, 3.4, σ, ρ) (0, 0.2) 50 0.044 0.066 0.060

0.15 (0, 0.7, 0.15,−2, 3.4, σ, ρ) (0.15, 0.15) 7 0.050 0.037 0.065

0.15 (0, 0.7, 0.15,−2, 3.4, σ, ρ) (0.15, 0.15) 14 0.017 0.025 0.038

0.15 (0, 0.7, 0.15,−2, 3.4, σ, ρ) (0.15, 0.15) 21 0.024 0.027 0.025

0.15 (0, 0.7, 0.15,−2, 3.4, σ, ρ) (0.15, 0.15) 28 0.011 0.016 0.036

0.15 (0, 0.7, 0.15,−2, 3.4, σ, ρ) (0.15, 0.15) 50 0.017 0.007 0.026

0.15 (0, 0.7, 0.15,−1, 2, σ, ρ) (0.15, 0) 7 0.078 0.074 0.072

0.15 (0, 0.7, 0.15,−1, 2, σ, ρ) (0.15, 0) 14 0.070 0.090 0.071

0.15 (0, 0.7, 0.15,−1, 2, σ, ρ) (0.15, 0) 21 0.079 0.091 0.087

0.15 (0, 0.7, 0.15,−1, 2, σ, ρ) (0.15, 0) 28 0.061 0.094 0.066

0.15 (0, 0.7, 0.15,−1, 2, σ, ρ) (0.15, 0) 50 0.068 0.057 0.071

0.15 (0, 1, 0,−2, 3.4, σ, ρ) (0, 0.15) 7 0.103 0.092 0.088

0.15 (0, 1, 0,−2, 3.4, σ, ρ) (0, 0.15) 14 0.085 0.067 0.061

0.15 (0, 1, 0,−2, 3.4, σ, ρ) (0, 0.15) 21 0.070 0.069 0.062

0.15 (0, 1, 0,−2, 3.4, σ, ρ) (0, 0.15) 28 0.065 0.059 0.065

0.15 (0, 1, 0,−2, 3.4, σ, ρ) (0, 0.15) 50 0.048 0.058 0.055
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Web Table 11: Simulated type I error rates for bivariate mixed outcomes with ρ = 0.3 and two different

similarity thresholds ε. For some of the given scenarios data with ρ = 0.3 does not exist because

ρ = 0.3 lies outside of the range of feasible correlations resulting from the marginal distributions (see

Demirtas and Doganay, 2012, for details on these feasiblity ranges). This is indicated by a asterisk in

the corresponding cells.

ε θ(2) (d1, d2) n
(l)
g σ2 = 0.05 σ2 = 0.1 σ2 = 0.2

0.2 (0, 0.6, 0.2,−2.4, 3.4, σ, ρ) (0.2, 0.2) all * * *

0.2 (0, 0.6, 0.2,−1, 2, σ, ρ) (0.2, 0) 7 0.087 0.094 0.093

0.2 (0, 0.6, 0.2,−1, 2, σ, ρ) (0.2, 0) 14 0.068 0.088 0.071

0.2 (0, 0.6, 0.2,−1, 2, σ, ρ) (0.2, 0) 21 0.077 0.070 0.071

0.2 (0, 0.6, 0.2,−1, 2, σ, ρ) (0.2, 0) 28 0.066 0.070 0.093

0.2 (0, 0.6, 0.2,−1, 2, σ, ρ) (0.2, 0) 50 0.049 0.053 0.065

0.2 (0, 1, 0,−2.4, 3.4, σ, ρ) (0, 0.2) all * * *

0.15 (0, 0.7, 0.15,−2, 3.4, σ, ρ) (0.15, 0.15) all * * *

0.15 (0, 0.7, 0.15,−1, 2, σ, ρ) (0.15, 0) 7 0.066 0.084 0.080

0.15 (0, 0.7, 0.15,−1, 2, σ, ρ) (0.15, 0) 14 0.078 0.087 0.077

0.15 (0, 0.7, 0.15,−1, 2, σ, ρ) (0.15, 0) 21 0.060 0.086 0.089

0.15 (0, 0.7, 0.15,−1, 2, σ, ρ) (0.15, 0) 28 0.078 0.085 0.086

0.15 (0, 0.7, 0.15,−1, 2, σ, ρ) (0.15, 0) 50 0.052 0.080 0.074

0.15 (0, 1, 0,−2, 3.4, σ, ρ) (0, 0.15) all * * *
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Web Table 12: Simulated power for bivariate mixed outcomes with ρ = 0.1 and two different similarity

thresholds ε.

ε θ(2) (d1, d2) n
(l)
g σ2 = 0.05 σ2 = 0.1 σ2 = 0.2

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 7 0.186 0.148 0.113

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 14 0.327 0.216 0.147

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 21 0.398 0.321 0.217

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 28 0.514 0.407 0.296

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 50 0.709 0.657 0.494

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 7 0.269 0.213 0.162

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 14 0.460 0.366 0.238

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 21 0.611 0.536 0.343

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 28 0.712 0.655 0.448

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 50 0.925 0.911 0.752

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 7 0.33 0.215 0.164

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 14 0.482 0.409 0.275

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 21 0.700 0.581 0.389

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 28 0.827 0.718 0.534

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 50 0.971 0.961 0.783

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 7 0.098 0.088 0.095

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 14 0.118 0.100 0.085

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 21 0.149 0.105 0.092

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 28 0.190 0.131 0.088

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 50 0.273 0.191 0.136

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 7 0.181 0.124 0.099

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 14 0.258 0.208 0.158

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 21 0.354 0.252 0.205

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 28 0.469 0.353 0.231

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 50 0.673 0.599 0.396

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 7 0.177 0.152 0.114

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 14 0.313 0.245 0.18

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 21 0.426 0.327 0.199

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 28 0.526 0.447 0.295

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 50 0.808 0.741 0.535
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Web Table 13: Simulated power for bivariate mixed outcomes with ρ = 0.2 and two different similarity

thresholds ε.

ε θ(2) (d1, d2) n
(l)
g σ2 = 0.05 σ2 = 0.1 σ2 = 0.2

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 7 0.176 0.155 0.111

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 14 0.325 0.214 0.144

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 21 0.431 0.336 0.218

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 28 0.500 0.413 0.279

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 50 0.712 0.679 0.439

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 7 0.274 0.193 0.152

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 14 0.452 0.368 0.250

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 21 0.619 0.503 0.363

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 28 0.737 0.664 0.460

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 50 0.902 0.894 0.702

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 7 0.275 0.214 0.160

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 14 0.506 0.405 0.269

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 21 0.693 0.591 0.382

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 28 0.813 0.719 0.523

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 50 0.984 0.956 0.791

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 7 0.085 0.091 0.092

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 14 0.144 0.091 0.094

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 21 0.162 0.116 0.094

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 28 0.189 0.134 0.104

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 50 0.296 0.216 0.166

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 7 0.147 0.137 0.122

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 14 0.260 0.185 0.150

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 21 0.372 0.293 0.188

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 28 0.466 0.338 0.210

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 50 0.630 0.616 0.415

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 7 0.208 0.143 0.138

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 14 0.332 0.268 0.176

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 21 0.413 0.328 0.237

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 28 0.526 0.464 0.297

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 50 0.807 0.763 0.548
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Web Table 14: Simulated power for bivariate mixed outcomes with ρ = 0.3 and two different similarity

thresholds ε.

ε θ(2) (d1, d2) n
(l)
g σ2 = 0.05 σ2 = 0.1 σ2 = 0.2

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 7 0.207 0.149 0.108

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 14 0.356 0.240 0.166

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 21 0.411 0.345 0.231

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 28 0.538 0.411 0.279

0.2 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 50 0.727 0.657 0.514

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 7 0.270 0.213 0.171

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 14 0.441 0.356 0.251

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 21 0.625 0.525 0.342

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 28 0.766 0.673 0.456

0.2 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 50 0.919 0.918 0.763

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 7 0.281 0.231 0.161

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 14 0.512 0.436 0.262

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 21 0.679 0.617 0.41

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 28 0.815 0.746 0.536

0.2 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 50 0.982 0.960 0.769

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 7 0.105 0.106 0.088

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 14 0.157 0.112 0.095

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 21 0.179 0.136 0.091

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 28 0.214 0.135 0.097

0.15 (0, 0.8, 0.1,−1.5, 2.2, σ, ρ) (0.1, 0.1) 50 0.298 0.199 0.159

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 7 0.177 0.136 0.127

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 14 0.278 0.205 0.144

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 21 0.378 0.284 0.202

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 28 0.468 0.396 0.247

0.15 (0, 0.9, 0.05,−1.2, 2, σ, ρ) (0.05, 0.05) 50 0.667 0.595 0.402

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 7 0.196 0.151 0.119

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 14 0.318 0.237 0.185

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 21 0.437 0.327 0.252

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 28 0.555 0.482 0.323

0.15 (0, 1, 0,−1, 2, σ, ρ) (0, 0) 50 0.821 0.769 0.514
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Web Table 15: Coefficient estimates for the case study.

Marketed product New product

Efficacy

Intercept 0.303 0.259

Dose 0.715 0.416

Dose2 -0.369 0.062

Toxicity
Intercept -2.492 -2.136

Dose 1.797 1.263
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Web Figure 1: Visualisation of the curves for the two groups l = 1, 2, where the maximum distance

dk = 0.2 is observed for x = 1 and corresponds to the length of the arrow.
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3.2 Overcoming model uncertainty – how equivalence tests can
benefit from model averaging

This article discusses how to adapt model-based equivalence tests to be capable of the
second direction of multidimensionality, i.e. model uncertainty. A solution to this problem
is proposed by flexibly extending model-based equivalence tests using model averaging in
order to enable its applicability under model uncertainty. Precisely, model averaging is
based on smooth BIC weights and a testing procedure that makes use of the duality
between confidence intervals and hypothesis testing is introduced. The validity of the
approach is demonstrated by means of a simulation study and its practical relevance is
illustrated by a time-response case study with toxicological gene expression data.
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Status: Published
Journal: Statistics in Medicine
DOI: 10.1002/sim.10309

43

http://www.doi.org/10.1002/sim.10309


Statistics in Medicine

RESEARCH ARTICLE OPEN ACCESS

Overcoming Model Uncertainty — How Equivalence Tests
Can Benefit From Model Averaging
Niklas Hagemann | Kathrin Möllenhoff

Institute of Medical Statistics and Computational Biology (IMSB), Faculty of Medicine, University of Cologne, Cologne, Germany

Correspondence: Kathrin Möllenhoff (kathrin.moellenhoff@uni-koeln.de)

Received: 23 May 2024 | Revised: 24 October 2024 | Accepted: 2 December 2024

Funding: This work has been supported by the Research Training Group “Biostatistical Methods for High-Dimensional Data in Toxicology” (RTG 2624, P7)
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, Project Number 427806116).

Keywords: bootstrap | dose–response models | gene expression | model averaging | model-based equivalence tests | time-response models

ABSTRACT
A common problem in numerous research areas, particularly in clinical trials, is to test whether the effect of an explanatory
variable on an outcome variable is equivalent across different groups. In practice, these tests are frequently used to compare the
effect between patient groups, for example, based on gender, age, or treatments. Equivalence is usually assessed by testing whether
the difference between the groups does not exceed a pre-specified equivalence threshold. Classical approaches are based on testing
the equivalence of single quantities, for example, the mean, the area under the curve or other values of interest. However, when
differences depending on a particular covariate are observed, these approaches can turn out to be not very accurate. Instead, whole
regression curves over the entire covariate range, describing for instance the time window or a dose range, are considered and tests
are based on a suitable distance measure of two such curves, as, for example, the maximum absolute distance between them. In this
regard, a key assumption is that the true underlying regression models are known, which is rarely the case in practice. However,
misspecification can lead to severe problems as inflated type I errors or, on the other hand, conservative test procedures. In this
paper, we propose a solution to this problem by introducing a flexible extension of such an equivalence test using model averaging
in order to overcome this assumption and making the test applicable under model uncertainty. Precisely, we introduce model
averaging based on smooth Bayesian information criterion weights and we propose a testing procedure which makes use of the
duality between confidence intervals and hypothesis testing. We demonstrate the validity of our approach by means of a simulation
study and illustrate its practical relevance considering a time-response case study with toxicological gene expression data.

1 | Introduction

In numerous research areas, particularly in clinical trials [1, 2], a
common problem is to test whether the effect of an explanatory
variable on an outcome variable is equivalent across different
groups. Equivalence is usually assessed by testing whether the
difference between the groups does not exceed a pre-specified
equivalence threshold. The choice of this threshold is crucial

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

© 2024 The Author(s). Statistics in Medicine published by John Wiley & Sons Ltd.

as it resembles the maximal amount of deviation for which
equivalence can still be concluded. One usually chooses the
threshold based on prior knowledge, as a percentile of the range
of the outcome variable or resulting from regulatory guidelines.
Equivalence tests provide a flexible tool for plenty of research
questions. For instance, they can be used to test for equivalence
across patient groups, for example, based on gender or age,
or between treatments. Moreover, they are a key ingredient of
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bioequivalence studies [3, 4], investigating whether two for-
mulations of a drug have nearly the same effect and are hence
considered to be interchangeable.

Classical approaches [5, 6] are based on testing the equivalence
of single quantities, for example, the mean, the area under the
curve (AUC) or other values of interest. However, when differ-
ences depending on a particular covariate are observed, these
approaches can turn out to be not very accurate. Instead, con-
sidering the entire covariate range, describing for instance the
time window or a dose range, has recently been proposed by test-
ing equivalence of whole regression curves. Such tests [7–9] are
typically based on the principle of confidence interval inclusion.
However, a more direct approach applying various distance mea-
sures has been introduced by Dette et al. [10] which turned out
to be particularly more powerful. Based on this, many further
developments [11–14], for example, for different outcome dis-
tributions, specific model structures and/or responses of higher
dimensions, have been introduced.

All these approaches have one thing in common: they base on the
assumption that the true underlying regression model is known.
In practice this usually implies that the models need to be cho-
sen manually, either based on prior knowledge or visually. Hence,
these approaches [15, 16] might not be robust with regard to
model misspecification and, consequently, suffer from problems
like inflated type I errors or reduced power. One idea to tackle
this problem is implementing a testing procedure which explic-
itly incorporates the model uncertainty. This can be based on a
formal model selection procedure, see, for example, Möllenhoff
et al. [17] who propose conducting a classical model choice pro-
cedure prior to preforming the equivalence test.

An alternative to this is the incorporation of a model averag-
ing approach into the test procedure. As outlined by Bornkamp
[18] model selection has some disadvantages compared to model
averaging. Particularly, model selection is not stable in the sense
that minor changes in the data can lead to major changes in the
results [19]. This also implies that model selection is non-robust
with regard to outliers. In addition, the estimation of the distri-
bution of post model selection parameter estimators is usually
biased [20, 21]. Model averaging is omnipresent whenever model
uncertainty is present, which is, besides other applications, often
the case in parametric dose response analysis. Besides practi-
cal applications, there are also several methodological studies
regarding model averaging in dose–response studies [22–24] and
Bornkamp et al. [25] incorporated model averaging as an alterna-
tive to model selection in their widely used dose-finding method
MCPMod.

Therefore, in this paper, we propose an approach utilizing model
averaging rather than model selection. There are frequentist as
well as Bayesian model averaging approaches. The former almost
always use the smooth weights structure introduced by Buckland
et al. [26] These weights depend on the values of an informa-
tion criterion of the fitted models. Predominantly, the Akaike
information criterion (AIC) [27] is used but other information
criteria can be used as well. While only few of the Bayesian
approaches perform fully Bayesian inference (see, e.g., Ley and
Steel [28]), the majority makes use of the fact that the poste-
rior model probabilities can be approximated by weights based

on the Bayesian information criterion (BIC) [29] that have the
same smooth weights structure as the frequentist weights [30].
Despite the prevalence of the AIC and BIC, other information
criteria are sometimes used as well: Price et al. [31] suggested
to use the deviance information criterion (DIC) [32], which is
the Bayesian analog to the AIC. Hence, it bases on the samples
of a Markov chain Monte Carlo simulation rather than on the
log-likelihood. Hjort and Claeskens [33] introduced model aver-
aging based on the focused information criterion (FIC) [34]. In
contrast to other information criteria, the FIC does not aim for
the best overall fit but focuses directly on a parameter of primary
interest (e.g., the mean, the median or a specific quantile). There-
fore, it favors models which lead to the best estimated precision
with regard to this focus parameter. Occasionally, model averag-
ing also bases on cross-validation, for example, jackknife model
averaging [35], or machine learning methods, for example, ran-
dom forests or boosting [36]. Alternatively, rather simple model
averaging approaches with fixed model weights exist as well, for
example, using equal weights. However, the performance of such
approaches strongly depends on prior knowledge and can eas-
ily lead to (partial) model missspecification. For a more general
introduction to model averaging techniques the reader is referred
to, for example, Fletcher [37] or Claeskens and Hjort [38] and an
overview specifically focusing on dose–response models is given
by Schorning et al. [22]

In this paper, we propose an equivalence test incorporating
model-averaging and hence overcoming the problems caused by
model uncertainty. Precisely, we first make use of the duality
between confidence intervals and hypothesis testing and propose
a test based on the derivation of a confidence interval. By doing
so, we both guarantee numerical stability of the procedure and
provide confidence intervals for the measure of interest.

We demonstrate the usefulness of our method with the example
of toxicological gene expression data. In this application, using
model averaging enables us to analyze the equivalence of
time–response curves between two groups for 1000 genes of
interest without the necessity of specifying all 2000 correct mod-
els separately, thus avoiding both a time-consuming model selec-
tion step and potential model misspecifications.

The paper is structured as follows: In Section 2, dose–response
models and the concept of model averaging are succinctly dis-
cussed. In Section 3, the testing approach is introduced, propos-
ing three different variations. Finite sample properties in terms
of Type I and II error rates are studied in Section 4. Section 5
illustrates the method using the toxicological gene expression
example before Section 6 closes with a discussion.

2 | Model Averaging for Dose–Response
Models

2.1 | Dose–Response Models

We consider two different groups, indicated by an index 𝑙 = 1, 2,
with corresponding response variables 𝑦lij with 𝑌 ⊆ 𝑅 denoting
the set of all possible outcomes. There are 𝑖 = 1, . . . , 𝐼𝑙 dose levels
and 𝑗 = 1, . . . , 𝑛li denotes the observation index within each dose
level. For each group the total number of observations is 𝑛𝑙 and 𝑛

2 of 14 Statistics in Medicine, 2025
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is the overall number of observations, that is, 𝑛𝑙 =
∑𝐼𝑙

𝑖=1𝑛li and 𝑛 =
𝑛1 + 𝑛2. For each group we introduce a flexible dose–response
model

𝑦lij = 𝑚𝑙
(
𝑥li, 𝜃𝑙

)
+ 𝑒lij, 𝑗 = 1, . . . , 𝑛li, 𝑖 = 1, . . . , 𝐼𝑙, 𝑙 = 1, 2,

where 𝑥li ∈  ⊆ ℝ is the dose level, that is, the deterministic
explanatory variable. We assume the error terms 𝑒lij to be inde-
pendent, have expectation zero and finite variance 𝜎2

𝑙 . The func-
tion 𝑚𝑙(⋅) models the effect of 𝑥li on 𝑦lij via a regression curve with
𝜃𝑙 ∈ 𝑅dim(𝜃𝑙) being its parameter vector. We assume 𝑚𝑙(⋅) to be
twice continuously differentiable. In dose–response studies, as
well as in time-response studies, often either a linear model

𝑚𝑙
(
𝑥, 𝜃𝑙

)
= 𝛽𝑙0 + 𝛽𝑙1𝑥 (1)

a quadratic model

𝑚𝑙
(
𝑥, 𝜃𝑙

)
= 𝛽𝑙0 + 𝛽𝑙1𝑥 + 𝛽𝑙2𝑥

2 (2)

an emax model

𝑚𝑙
(
𝑥, 𝜃𝑙

)
= 𝛽𝑙0 + 𝛽𝑙1

𝑥
𝛽𝑙2 + 𝑥

(3)

an exponential (exp) model

𝑚𝑙
(
𝑥, 𝜃𝑙

)
= 𝛽𝑙0 + 𝛽𝑙1

(
exp

(
𝑥
𝛽𝑙2

)
− 1

)
(4)

a sigmoid emax (sigEmax) model

𝑚𝑙
(
𝑥, 𝜃𝑙

)
= 𝛽𝑙0 + 𝛽𝑙1

𝑥𝛽𝑙3
(
𝛽𝑙2

)𝛽𝑙3 + 𝑥𝛽𝑙3
(5)

also known as Hill model or 4pLL-model, or a beta model

𝑚𝑙
(
𝑥, 𝜃𝑙

)
= 𝛽𝑙0 + 𝛽𝑙1

( (
𝛽𝑙2 + 𝛽𝑙3

)𝛽𝑙2+𝛽𝑙3
(
𝛽𝑙2

)𝛽𝑙2 + (
𝛽𝑙3

)𝛽𝑙3
)(𝑥

𝑠

)𝛽𝑙2(
1 − 𝑥

𝑠

)𝛽𝑙3
(6)

where 𝑠 is a fixed scaling parameter, is deployed [39–42]. These
models strongly vary in the assumed underlying dose–response
relation, for example, in terms of monotonicity, and consequently
in the shape of their curves. Therefore, choosing a suitable
dose–response model is crucial for all subsequent analyses.

However, in practical applications the true underlying model
shape is in general unknown. Thus, it might not always be clear
which functional form of (1–6) should be imployed. A possible
answer to this is implementing model averaging which, as out-
lined in Section 1, has several advantages over the simpler alter-
native of model selection.

2.2 | Model Averaging

As outlined before, frequentist as well as Bayesian model aver-
aging approaches usually both use the same smooth weights

structure introduced by Buckland et al. [26] and Wasserman
[30], respectively. Accordingly, by leaving out the group index
𝑙 = 1, 2 for better readability the averaged model is given by

𝑚(𝑥, 𝜃) ≔ 𝐾∑
𝑘=1

𝑤𝑘𝑚𝑘

(
𝑥, 𝜃𝑘

)
(7)

where the 𝑚𝑘

(
𝑥, 𝜃𝑘

)
, 𝑘 = 1, .., 𝐾, correspond to the 𝐾 candidate

models,

𝑤𝑘 =
exp(−0.5𝐼

(
𝑚𝑘

(
𝑥, 𝜃𝑘

))

∑𝐾
𝑘̃=1 exp

(
−0.5𝐼

(
𝑚𝑘̃

(
𝑥, 𝜃𝑘̃

))) (8)

are the corresponding weights and 𝐼(⋅) is an information criterion
with smaller values corresponding to better model fit. All infor-
mation criteria considered here are based on the calculation of
a penalized log-likelihood for each candidate model. Usually the
AIC is used for frequentist model averaging, while the BIC is
usually deployed for Bayesian model averaging [22]. A notable
special case arises when the number of parameters is the same for
all candidate models: the smooth AIC and smooth BIC weights
are exactly equal in this situation, as the penalty term vanishes
from Equation (8). In this case the weights only depend on the
value of the respective log-likelihood.

2.3 | Inference

As the parameter estimation is conducted for each of the can-
didate models separately, it is not influenced by the subsequent
model averaging. Therefore, here the index 𝑘 is left out. Inference
can be based on an ordinary least squares (OLS) estimator, that
is, minimizing

𝐼𝑙∑
𝑖=1

𝑛li∑
𝑗=1

(
𝑦lij − 𝑚𝑙

(
𝑥li, 𝜃𝑙

))2, 𝑙 = 1, 2

In general, no distributional assumption is needed regarding the
error terms, they just need to be independent, have expectation
zero and finite variance 𝜎2

𝑙 as outlined in Section 2.1. However,
by making a distributional assumption, a maximum likelihood
estimator can also be deployed. Usually, normality of the error
terms, that is

𝑒lij
iid∼ 𝑁

(
0, 𝜎2

𝑙

)
, 𝑙 = 1, 2

with log-likelihood

𝓁
(
𝜃𝑙, 𝜎

2
𝑙
)
= −

𝑛𝑙
2 ln

(
2𝜋𝜎2

𝑙
)
− 1

2𝜎2
𝑙

𝐼𝑙∑
𝑖=1

𝑛li∑
𝑗=1

(
𝑦lij − 𝑚𝑙

(
𝑥li, 𝜃𝑙

))2, 𝑙 = 1, 2

(9)

is assumed but other distributions can be considered as well.
Under normality both approaches are identical and, hence, lead
to the same parameter estimates 𝜃𝑙. From (9) a maximum likeli-
hood estimator for the variance

𝜎2
𝑙 = 1

𝑛𝑙

𝐼𝑙∑
𝑖=1

𝑛li∑
𝑗=1

(
𝑦lij − 𝑚𝑙

(
𝑥li, 𝜃𝑙

))2
, 𝑙 = 1, 2 (10)

can be derived as well. In R inference is performed with the
function fitMod from the package DoseFinding [25, 41] which
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performs OLS estimation. The value of the log-likelihood needed
for the AIC or BIC is then calculated by plugging the OLS
estimator into the log-likelihood (9).

Even though smooth AIC and smooth BIC weights share the
same structure, there are differences regarding their asymp-
totic properties. As outlined by several authors [33, 38, 43], the
asymptotic distribution of model average estimators is in gen-
eral no longer a normal distribution due to being a non-linear
transformation of normal distributions. An exception to this is
model averaging with fixed weights: due to the weights being
non-random, the asymptotic distribution of the model average
estimator is a linear combination of normal distributions and,
hence, also a normal distribution.

Wang et al. [43] investigated asymptotic properties for smooth
AIC and smooth BIC weights explicitly. Under regulatory
assumptions, the asymptotic distribution of the model average
estimator using smooth AIC weights is in general non-normal.
In contrast, using smooth BIC weights leads to the asymptotic
distribution of the model average estimator being a normal dis-
tribution. With regard to our study, it will turn out that this is an
important advantage of smooth BIC weights, as asymptotic nor-
mality is used in order to show the asymptotic validity of the test-
ing approach introduced in Section 3. In addition, the BIC-based
weights provide additional interpretability due to being approxi-
mately equal to the posterior model probabilities.

Comparing the different information criteria, we can summa-
rize that smooth BIC weights are advantageous in terms of
their ability to be integrated into the framework of model-based
equivalence testing. For smooth BIC weights, there is sufficient
asymptotic theory to justify the asymptotic validity of the test.
In contrast, smooth AIC weights do not provide the necessary
asymptotic properties to guarantee a theoretical justification.
Smooth DIC weights are not applicable because frequentist infer-
ence is performed. Smooth FIC weights are problematic because
there is no focus parameter and one searches for the overall
best fitting curves. Asymptotic theory is not (yet) available for
most cross-validation or machine learning methods. Finally, fixed
weights depend on prior knowledge and can lead to (partial) mis-
specification of the model. Therefore, we will use smooth BIC
weights for the rest of this paper.

3 | Model-Based Equivalence Tests Under
Model Uncertainty

3.1 | Equivalence Testing Based on Confidence
Intervals

Model-based equivalence tests [10, 44] have been introduced in
terms of the 𝐿2-distance, the 𝐿1-distance or the maximal abso-
lute deviation (also called 𝐿∞-distance) of the model curves.
Although all of these approaches have their specific advantages
and disadvantages as well as specific applications, subsequent
research [11, 12, 14, 17] is predominately based on the maximal
absolute deviation due to its easy interpretability. Accordingly, we
state the hypotheses

𝐻0 ∶ 𝑑 ≥ 𝜀 vs. 𝐻1 ∶ 𝑑 < 𝜀 (11)

of equivalence of regression curves with respect to the maximal
absolute deviation, that is

𝑑 = max
𝑥∈

|||𝑚1
(
𝑥, 𝜃1

)
− 𝑚2

(
𝑥, 𝜃2

)|||
is the maximal absolute deviation of the curves and 𝜀 is the
pre-specified equivalence threshold, meaning that a difference of
𝜀 is believed not to be clinically relevant. The test statistic is given
as the estimated maximal deviation between the curves

𝑑 = max
𝑥∈

|||𝑚1

(
𝑥, 𝜃1

)
− 𝑚2

(
𝑥, 𝜃2

)|||. (12)

As the distribution of 𝑑 under the null hypothesis is in general
unknown, it is usually either approximated based on a paramet-
ric bootstrap procedure or by asymptotic theory. In Dette et al.
[10], the asymptotic validity of both approaches is proven, but
the corresponding simulation study shows that the bootstrap
test outperforms the asymptotic test in finite samples. For the
bootstrap test several studies [10, 11, 17] show reasonable results
for finite samples across applications.

However, in light of practical application, this approach can have
two disadvantages: First, it does not directly provide confidence
intervals (CI) which provide useful information about the pre-
cision of the test statistic. Further, they would have an impor-
tant interpretation analogously to their interpretation in classi-
cal equivalence testing known as TOST [5] (two one-sided tests),
where the bounds of the confidence interval are typically com-
pared to the confidence region of [−𝜀, 𝜀].

Second, it requires the estimation of the models under the con-
straint of being on the edge of the null hypothesis, that is, the
maximal absolute deviation being equal to 𝜀 (see Algorithm 1
in Dette et al. [10]). Technically, this is usually conducted using
augmented Lagrangian optimisation. However, with increasing
model complexity, this becomes numerically challenging. In the
context of model averaging, these numerical issues are particu-
larly relevant since all models would need to be estimated jointly
as they need to jointly fulfill the constraint. This leads to a poten-
tially high dimensional optimisation problem with a large num-
ber of parameters. In addition, for model averaging the side con-
straint has a highly complex structure because with every param-
eter update not only the model curves change but also the model
weights do.

As an alternative to approximating the distribution under the
null hypothesis, we propose to test hypotheses (11) based on the
well-known duality between confidence intervals and hypothesis
testing [45]. This testing approach is similar to what Bastian
et al. [44] introduced for the 𝐿1-distance of regression mod-
els. Therefore, let (−∞, 𝑢] be a one-sided lower (1 − 𝛼)-CI for 𝑑
which we can rewrite as [0, 𝑢] due to the non-negativity of 𝑑,
that is

ℙ(𝑑 ≤ 𝑢) = ℙ(𝑑 ∈ (−∞, 𝑢]) = ℙ(𝑑 ∈ [0, 𝑢]) ≥ 1 − 𝛼

According to the duality between CI and hypothesis testing, we
reject the null hypothesis and conclude equivalence if

𝜀 > 𝑢 (13)

4 of 14 Statistics in Medicine, 2025
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ALGORITHM 1 |

1. Obtain parameter estimates 𝜃lk, 𝑘 = 1, . . . , 𝐾𝑙, 𝑙 = 1, 2, for the candidate models, either via OLS or maximum likelihood optimi-
sation (see Section 2.3). Determine the averaged models from the candidate models using Equation (7), that is, by calculating

𝑚𝑙

(
𝑥, 𝜃𝑙

)
=

𝐾𝑙∑
𝑘=1

𝑤lk𝑚lk

(
𝑥, 𝜃lk

)
, 𝑙 = 1, 2,

with weights (8) as well as the variance estimator 𝜎2
𝑙 , 𝑙 = 1, 2 from Equation (10). Alternatively, use fixed weights instead of weight-

ing scheme (8).

2. Calculate the test statistic (12).

3. Execute the following steps:
a. Obtain bootstrap samples by generating data according to the model parameters 𝜃𝑙 =

(
𝜃𝑙1, . . . , 𝜃lK

)
, 𝑙 = 1, 2, and the weights

𝑤𝑙1, . . . , 𝑤lK, 𝑙 = 1, 2, obtained in step 1. Under the assumption of normality, that is

𝑦∗lij ∼ 𝑁
(
𝜇li, 𝜎

2
𝑙

)
, 𝑗 = 1, . . . , 𝑛li, 𝑖 = 1, . . . , 𝐼𝑙, 𝑙 = 1, 2

where

𝜇li = 𝑚𝑙

(
𝑥li, 𝜃𝑙

)
=

𝐾𝑙∑
𝑘=1

𝑤lk𝑚lk

(
𝑥li, 𝜃lk

)
, 𝑖 = 1, . . . , 𝐼𝑙, 𝑙 = 1, 2

Alternative distributions with corresponding mean and variance can be used as well.
b. From the bootstrap samples, estimate the models 𝑚𝑙

(
𝑥li, 𝜃∗𝑙

)
, 𝑙 = 1, 2 as in step (1) and the test statistic

𝑑∗ = max
𝑥∈

|||𝑚1

(
𝑥, 𝜃∗1

)
− 𝑚2

(
𝑥, 𝜃∗2

)|||. (15)

c. Repeat steps (3.a) and (3.b) 𝑛boot times to generate replicates 𝑑∗
1 , . . . , 𝑑

∗
𝑛boot

of 𝑑∗. Let 𝑑∗
(1) ≤ . . . ≤ 𝑑∗

(𝑛boot)
denote the corresponding

order statistic.

4. Calculate the CI using one of the following approaches:
a. Percentile CI: Obtain the estimated right bound of the percentile bootstrap CI as the (1 − 𝛼) -quantile of the bootstrap sample

𝑢̂ = 𝑞∗(1 − 𝛼) = 𝑑∗
(⌊𝑛boot(1−𝛼)⌋).

b. Hybrid CI: Obtain the estimator for the standard error of 𝑑 as ŝe(𝑑) =
√

V̂ar
(
𝑑∗

1 , . . . , 𝑑∗
𝑛boot

)
and the estimated right bound of

the hybrid CI as
𝑢̂ = 𝑑 + ŝe(𝑑)𝑧

5. Reject the null hypothesis in (11) and assess equivalence if

𝜀 > 𝑢̂

This testing procedure is an 𝛼-level test as

ℙ𝐻0
(𝜀 > 𝑢) ≤ ℙ(𝑑 > 𝑢) = 1 − ℙ(𝑑 ≤ 𝑢) ≤ 1 − (1 − 𝛼) = 𝛼

However, as the distribution of 𝑑 is in general unknown, obtain-
ing 𝑢 is again a challenging problem. It is obvious from (13) that
the quality of the testing procedure crucially depends on the qual-
ity of the estimator for 𝑢. If the CI is too wide the test procedure
is conservative and lacks power. In contrast, a too narrow CI can
lead to type I error inflation due to not reaching the desired cov-
erage probability 1 − 𝛼. We propose three different possibilities to
calculate the CI, namely

1. CI based on a parametric percentile bootstrap,

2. asymptotic CI based on the asymptotic distribution of 𝑑
derived by Dette et al. [10], and

3. a hybrid approach using the asymptotic normality of 𝑑 but
estimating its standard error based on a parametric boot-
strap.

One-sided CIs based on a parametric percentile bootstrap can be
constructed in the same way Möllenhoff et al. [17] proposed for
two-sided CIs. In order to do so, they obtain parameter estimates
(either via OLS or maximum likelihood optimisation), generate
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bootstrap data from these estimates and calculate the percentiles
from the ordered bootstrap sample. The resulting test is similar to
what Bastian et al. [44] derived for the 𝐿1-distance of regression
models. That is [

0, 𝑞∗(1 − 𝛼)
]
,

where 𝑞∗(1 − 𝛼) denotes the (1 − 𝛼)-quantile of the ordered boot-
strap sample.

Asymptotic CIs can be derived directly from test (5.4) of Dette
et al. [10] and are given by

⎡⎢⎢⎣
0, 𝑑 +

√
V̂ar(𝑑)

𝑛
𝑧
⎤⎥⎥⎦

(14)

where 𝑧 is the (1 − 𝛼)-quantile of the standard normal distribu-
tion and V̂ar(𝑑) is the closed-form estimator for the variance of 𝑑
given by equation (4.7) of Dette et al. [10] However, the asymp-
totic validity of this variance estimator is only given under the
assumption that within there is only one unique value𝑥0 where
the absolute difference curve attains its maximum, that is, 𝑥0 =
argmax𝑥∈ |||𝑚1

(
𝑥, 𝜃1

)
− 𝑚2

(
𝑥, 𝜃2

)||| and, moreover, that this value
𝑥0 is known. This does not hold in general as Dette et al. [10]
give two explicit counterexamples in terms of two shifted emax
or exponential models. In addition, in practical applications 𝑥0
is in general not known and needs to be estimated. If the abso-
lute deviation along 𝑥 is small, the estimation of 𝑥0 can become
unstable leading to an unstable variance estimator. Moreover, as
mentioned before, the simulation study of Dette et al. [10] shows
that for finite samples the bootstrap test is superior to the asymp-
totic test.

Given the disadvantages of the asymptotic CI and especially of the
underlying variance estimator, we introduce a hybrid approach
which is a combination of both approaches. It is based on the
asymptotic normality of 𝑑 but estimates the standard error of 𝑑
based on a parametric bootstrap leading to

[0, 𝑑 + ŝe(𝑑)𝑧]

where the estimator ŝe(𝑑) of the standard error of 𝑑 is the empir-
ical standard deviation of the bootstrap sample.

Under the assumptions introduced by Dette et al. [10] all three
approaches are asymptotically valid. For the test based on the
asymptotic CI, this follows directly from Dette et al. [10] This also
applies to the hybrid CI-based test due to ŝe(𝑑) being an asymptot-
ically unbiased estimator for the standard error of 𝑑 as outlined
by Efron and Tibshirani [46]. The asymptotic validity of the per-
centile approach follows from Dette et al. [10] (Appendix: proof
of Theorem 4). The finite sample properties of the three methods
are compared in Section 4.1.

3.2 | Model-Based Equivalence Tests
Incorporating Model Averaging

We now combine the model averaging approach presented in
Section 2.2 with the CI-based test introduced in Section 3.1. For
the asymptotic test, that is, estimating 𝑚𝑙

(
𝑥, 𝜃𝑙

)
, 𝑙 = 1, 2 using

Equation (7) with model weights (8) and then calculating the test
statistic (12). Subsequently, the asymptotic CI (14) can be deter-
mined using the closed form variance estimator given by Dette
et al. [10]. Using this CI, the test decision is based on decision
rule (13).

The testing procedure of the percentile and hybrid approach is
shown in Algorithm 1, where the first two steps are essentially
the same as for the asymptotic test. The percentile test is con-
ducted by performing Algorithm step 4a, while conducting step
4b instead leads to the hybrid test. In the following we will refer
to this as Algorithm 1a and Algorithm 1b, respectively.

The asymptotic validity discussed at the end of Section 3.1 only
transfers to averaged models if the asymptotic distribution of the
model average estimator is normal. As outlined in Section 2.3,
this is given for smooth BIC weights as well as for fixed weights.

4 | Finite Sample Properties

In the following we investigate the finite sample properties of
the proposed tests by a simulation study. In order to ensure com-
parability, we reanalyze the simulation scenarios given by Dette
et al. [10] The dose range is given by  = [0, 4] and data is
observed for dose levels 𝑥 = 0, 1, 2, 3 and 4 with equal number
of observations 𝑛li =

𝑛𝑙
5 for each dose level. All three simulation

scenarios use the same three variance configurations
(
𝜎2

1 , 𝜎
2
2
)
∈

{(0.25, 0.25), (0.25, 0.5), (0.5, 0.5)} as well as the same four dif-
ferent sample sizes

(
𝑛1, 𝑛2

)
∈ {(10, 10), (10, 20), (20, 20), (50, 50)}

and the same significance level of 𝛼 = 0.05.

In the first simulation scenario the equivalence of an emax model
and an exponential model is investigated. The other two simu-
lation scenarios consist of testing for equivalence of two shifted
models, either both being emax models or both being exponen-
tial models. In contrast to the first scenario where the absolute
deviation of the models is observed at one unique 𝑥0, this is not
the case for the latter two scenarios. Here, the deviation of both
models is constant across the whole dose range  = [0, 4], that is

|||𝑚1
(
𝑥, 𝜃1

)
− 𝑚2

(
𝑥, 𝜃2

)||| = 𝑑 ∀ 𝑥 ∈ 
as 𝑚1, 𝑚2 are just shifted.

Hence, for these two scenarios the asymptotic test is not applica-
ble as its close form variance estimator bases on the uniqueness of
𝑥0. Therefore, only simulation Scenario 1 is used to compare the
three CI-based tests to each other as well as to the results observed
by Dette et al. [10] Subsequently, all three scenarios are used to
compare the performance of the test using model averaging to
the one based on the correct specification of the models as well
as under model misspecification.

4.1 | Finite Sample Properties of Confidence
Interval-Based Equivalence Testing

Prior to the investigation of the effect of model averaging onto the
finite sample properties, we first inspect the performance of the
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CI-based testing approach, denoted by (13), itself. For the asymp-
totic test, the CI is defined by (14). For the percentile as well
as the hybrid approach, the tests are conducted as explained in
Section 3.1 which is formally defined by setting 𝐾1 = 𝐾2 = 1 in
Algorithm 1.

As outlined before, simulation scenario 1 of Dette et al. [10] is
given by tesing for the equivalence of an emax model (3) with
𝜃1 =

(
𝛽10, 𝛽11, 𝛽12

)
= (1, 2, 1) and an exponential model (4) with

𝜃2 =
(
𝛽20, 𝛽21, 𝛽22

)
=
(
𝛽20, 2.2, 8

)
. It consists of 60 sub-scenarios

resulting from the three different variance configurations each
being combined with the four different sample sizes and five
different choices of 𝛽20 ∈ {0.25, 0.5, 0.75, 1, 1.5}, leading to the
corresponding deviations of the regression curves being 𝑑 ∈
{1.5, 1.25, 1, 0.75, 0.5}. The test is conducted for 𝜀 = 1 such that
the first three deviations are under the null hypothesis and, there-
fore, used to investigate the type I error rates. The latter two devi-
ations correspond to the alternative and are used to estimate the
power of the tests.

As the type I error rates are always smaller than the nominal
level of 𝛼 = 0.05 for all three approaches (see Table S1 of the
Supporting Information for exact values), that is, all testing
approaches always hold the nominal level, the following analysis
focuses on the power of the tests. Figure 1 shows the power for
all three tests for all sub-scenarios under the alternative as well
as the corresponding power of the tests of Dette et al. [10] In
each sub-scenario we observe that the hybrid test has superior
power compared to the other two CI-based tests. In addition, one
can observe that the power achieved by the hybrid test is quite
similar to the one Dette et al. [10] observed for their bootstrap test
and, therefore, is also superior to the power of their asymptotic
test. The power of the test based on the percentile CI is con-
siderably smaller which indicates that the test might be overly
conservative in finite samples. The test based on the asymptotic
CI leads to nearly the same results as the asymptotic test of Dette
et al. [10] which is not surprising as it is directly derived from it.

Consequentially, the lack of power that Dette et al. [10] observed
for their asymptotic test in comparison to their bootstrap test is
also present for the test based on the asymptotic CI.

In conclusion, the hybrid approach which provides numerical
advantages compared to the bootstrap test of Dette et al. [10]
and also leads to additional interpretability due to providing CIs,
achieves nearly the same power as the bootstrap test while hold-
ing the nominal level.

4.2 | Finite Sample Properties Under Model
Uncertainty

We now investigate the finite sample properties under model
uncertainty. Due to the clear superiority of the hybrid approach
observed in Section 4.1, only the hybrid test is used for this anal-
ysis. We compare the performance of the test using model aver-
aging to the one based on the correct specification of the models
as well as under model misspecification. We use Bayesian model
averaging with smooth BIC weights due to its theoretical advan-
tages outlined in Section 3.2. However, as both candidate models
have the same number of parameters, smooth BIC and smooth
AIC weights are exactly equal as discussed in Section 2.2. For
comparison, we additionally conduct the test based on model
averaging with fixed equal weights, that is, 𝑤𝑙1 = 𝑤𝑙2 = 0.5, 𝑙 =
1, 2. The corresponding equivalence tests are conducted using
Algorithm 1b.

4.2.1 | Comparison of an Emax With an Exponential
Model

First, we again investigate the first simulation scenario intro-
duced in Section 4.1 but now under model uncertainty where it
is unclear if an emax or an exponential model applies for each
of the groups implying 𝐾1 = 𝐾2 = 2 and leading to one correct
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FIGURE 1 | Comparison of the power of the CI-based testing approaches to the testing approaches proposed by Dette et al. [10] with 𝜀 =
1. The results are shown for two distances of the regression curves 𝑑 ∈ {0.5, 0.75} and three different combinations of variances

(
𝜎2

1 , 𝜎
2
2
)
∈

{(0.25, 0.25), (0.5, 0.5), (0.25, 0.5)}.
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specification, as well as three misspecifications. Figure 2 shows
the corresponding type I error rates for all sub-scenarios under
the null hypothesis, that is, for 𝑑 ∈ {1, 1.25, 1.5} and

(
𝜎2

1 , 𝜎
2
2
)
∈

{(0.25, 0.25), (0.25, 0.5), (0.5, 0.5)} for the correct specification,
the three misspecifications as well as under model averaging.

One can observe that falsely specifying the same model for both
responses leads to highly inflated type I error rates which, in addi-
tion, even increase for increasing sample size. The highest type I
errors are present if an exponential model is specified for both
responses leading to type I error rates being as large as 0.410
which is observed for 𝜎2

1 = 𝜎2
2 = 0.25 and 𝑛1 = 𝑛2 = 50. If an emax

model is specified for both responses, the type I error inflation is
smaller but still present and reaches up to 0.187 which is observed
for 𝜎2

1 = 𝜎2
2 = 0.25 and 𝑛1 = 𝑛2 = 50. The third misspecification

under investigation is that specifying the models the wrong way
round, that is, an exponential model for the first group and an
emax model for the second one. In comparison to the other two
misspecifications, this leads to less extreme results but type I error
inflation is still observable. This results from the fact that using
one convex (exponential) and one concave (emax) model usually
leads to a larger maximal absolute deviation than using two con-
vex or two concave models and, therefore, in general to fewer
rejections of the null hypothesis.

Compared to these results, the type I errors resulting from
model averaging with smooth BIC weights are closer to the
nominal level of the test. However, for two out of the 36 inves-
tigated sub-scenarios (𝜎2

1 = 𝜎2
2 = 0.25 and 𝑛1 = 𝑛2 = 20 as well

as 𝑛1 = 𝑛2 = 50) the type I errors still exceeds the nominal level
but to a much lesser extent compared to model misspecification,
reaching a maximum of 0.061. In contrast, using model averaging
with equal weights leads to a high type I error inflation similar
to the one observed under model misspecification. As expected,
when using the true underlying model, the test holds the nom-
inal level of 𝛼 = 0.05. Comparison of the power of the tests is

not meaningful as some of them are not holding the nominal
level. However, the estimated power is shown in Table S2 of the
Supporting Information.

4.2.2 | Comparison of Two Shifted Emax Models

We continue by investigating the fine sample properties for the
case of two shifted emax models, that is, model (3) now applies
for both groups, where 𝜃1 =

(
𝛽10, 𝛽11, 𝛽12

)
=
(
𝛽10, 5, 1

)
and 𝜃2 =(

𝛽20, 𝛽21, 𝛽22
)
= (0, 5, 1), which implies 𝑑 = 𝛽10. The levels of 𝑑

under investigation are 1, 0.75, 0.5, 0.25, 0.1 and 0. The test is con-
ducted for 𝜀 = 0.5 such that the first three deviations are under
the null hypothesis and, therefore, used to investigate the type I
error rates. The latter three deviations are under the alternative
and used to estimate the power of the tests.

We only observe few type I error rates which are non-zero and
these are still much smaller than the nominal level of 𝛼 = 0.05,
reaching a maximum of only 0.003 (all values can be found in
Table S3 of the Supporting Information). Hence, the analysis
focuses on the power of the tests which is shown in Figure 3.

One can observe falsely specifying one of the models to be an
exponential model leads to the power being constantly equal
to zero even for sub-scenarios which are quite far under the
alternative. For misspecification in terms of using an exponential
model for both responses, the power loss is not that extensive but
still occurs for smaller sample sizes, which is especially visible for
𝜎2

1 = 𝜎2
2 = 0.25 due to the estimation uncertainty being the small-

est. In contrast, model averaging with smooth BIC weights results
in nearly the same power as using the true model. This also leads
to the fact that in some cases the black line is even hardly visual
as it is nearly perfectly overlapped by the green one. The use of
model averaging with equal weights leads to high power, even
exceeding the power obtained by using the true models. There-
fore, this high number of rejections of the null hypothesis may
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FIGURE 2 | Comparison of the type I error rates of the test using the true model, the model averaging-based test with smooth BIC weights
(MA: BIC), the model averaging-based test with equal weights (MA: equal weights) and the tests under model misspecification in scenario 1.
The results are shown for 𝜀 = 1, three distances of the regression curves 𝑑 ∈ {1,1.25,1.5} and three different combinations of variances

(
𝜎2

1 , 𝜎
2
2
)
∈

{(0.25, 0.25), (0.25, 0.5), (0.5, 0.5)}.
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FIGURE 3 | Comparison of the power of the test using the true model, the model averaging-based test with smooth BIC weights (MA:
BIC), the model averaging-based test with equal weights (MA: equal weights) and the tests under model misspecification in scenario 2. The
results are shown for 𝜀 = 0.5, three distances of the regression curves 𝑑 ∈ {1, 1.25, 1.5} and three different combinations of variances
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(
𝜎2

1 , 𝜎
2
2
)
∈

{(0.25, 0.25), (0.25, 0.5), (0.5, 0.5)}.

not be caused by the model fitting the data well, but by forcing
the data into a (partly) wrong model, similar to what can be
observed in some scenarios when using two exponential models.

4.2.3 | Comparison of Two Shifted Exponential
Models

The third simulation scenario is given by two shifted exponen-
tial models, that is, model (4) now applies for both groups,
where 𝜃1 =

(
𝛽10, 𝛽11, 𝛽12

)
=
(
𝛽10, 2.2, 8

)
and 𝜃2 =

(
𝛽20, 𝛽21, 𝛽22

)
=

(0, 2.2, 8) which implies 𝑑 = 𝛽10, resulting in the same values for

𝑑 as in Section 4.2.2. The test is conducted for 𝜀 = 0.5 such that
the first three deviations are under the null hypothesis and, there-
fore, used to investigate the type I error rates. The latter three
deviations are under the alternative and used to estimate the
power of the tests.

As previously observed in Section 4.2.2 only few type I error rates
are non-zero and these exceptions are still much smaller than
the nominal level of 𝛼 = 0.05, reaching a maximum of only 0.009
(all values can be found in Table S4 of the Supporting Infor-
mation). Hence, the analysis focuses on the power of the tests
which is shown in Figure 4. The loss of power resulting from
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model misspecification is not as large as in Section 4.2.2 but still
present. Especially if one of the models is falsely specified to be
an emax model but the other one specified correctly, we observe
a notable loss of power not only compared to using the true
model but also compared to using model averaging. Moreover,
this effect is increasing with increasing sample size. In contrast
to Section 4.2.2, the power resulting from using model averag-
ing with smooth BIC weights is notably smaller than the one
observed when using the true model. However, compared to two
out of the three misspecifications, the loss in power is extensively
reduced. Similar to Section 4.2.2, using model averaging with
equal weights leads to a high power even exceeding the power
which results from using the true models. As in Section 4.2.2, this
might be caused by forcing the data into a (partly) wrong model
rather than by the model fitting the data well. In conclusion, if the
models are misspecified we observe either type I error inflation
or a lack of power, both often of substantial extend, in all three
scenarios. Using model averaging with smooth BIC weights con-
siderably reduces these problems, often leading to similar results
as knowing and using the true underlying model.

5 | Case Study

We illustrate the proposed methodology through a case study
analyzing the equivalence of time-response curves (also known
as exposure duration-response curves) using data which was orig-
inally published by Ghallab et al. [47] The study aims to investi-
gate dietary effects onto the gene expression. The dataset consists
of two groups of mice which were fed with two different diets and
then sacrificed at different time points. The first one is a high-fat
or “Western” diet (WD) while the other one is a standard diet
(SD). As no data has been collected in the first 3 weeks, they are
not included into our analysis. Consequentially, the beginning
of the study (𝑡 = 0) resembles week 3 of the actual experiment.
Data is then observed at 𝑡 = 0, 3, 9, 15, 21, 27, 33, 39, and 45 for
the Western diet and at 𝑡 = 0, 3, 27, 33, 39, and 45 for the stan-
dard diet with sample sizes 5, 5, 5, 5, 5, 5, 5, 4, 8 and 7, 5, 5, 7, 3, 5,
respectively. For each group, the gene expression of 20 733 genes
is measured in terms of gene counts. For our analysis, we focus on
the 1000 genes Ghallab et al. [47] classified as especially interest-
ing due to high activity. Although gene expression is measured as
count data, it is treated as continuous due to the very high number
of counts. The raw count data is preprocessed in terms of the gene
count normalization conducted by Ghallab et al. [47] and subse-
quent log2-transformation of the normalized counts as suggested
by Duda et al. [42, 48]

Using this data, we aim to investigate the equivalence of the
time-gene expressions curves between the two diets at a 5%
significance level. From Ghallab et al. [47] it is known that there
are quite large differences between the diets, such that for the
majority of the genes we expect not to conclude equivalence.
However, precisely for this reason it is of interest for which genes
equivalence can be concluded nevertheless. As we are interested
in the results for each gene separately and are not aiming for a
global conclusion, we do not adjust for multiple testing.

As time-response studies are relatively rare, no spe-
cific time-response models have been developed. Hence,
dose–response models are deployed for time-response relations

as well. Methodological review studies [49] do also not distin-
guish between dose–response and time-response studies. In
addition, it seems intuitive that the effects of the high-fat diet
accumulate with increasing time of consumption in a similar
manner as the effects in dose response-studies accumulate with
increasing dose.

As outlined by Ghallab et al. [47] the dose–response relations
vary across genes such that there is no single model which fits to
all of them and, hence, model uncertainty is present. In addition,
the models cannot be chosen manually due to the high number
of genes. We introduce model averaging using BIC-based weights
and the equivalence tests are performed using hybrid CI, that is,
by conducting Algorithm 1b. We deploy the set of candidate mod-
els suggested by Duda et al. [42], that is, a linear model (1), a
quadratic model (2), an emax model (3), an exponential model
(4), a sigmoid emax model (5), and a beta model (6). This set of
candidate models can capture quite diverse effects, as it includes
linear and nonlinear, increasing and decreasing, monotone and
non-monotone as well as convex, concave and sigmoid curves.

The ranges of the response variables, that is, the ranges of log2
(normalized counts), are not comparable across different genes.
Hence, different equivalence thresholds are needed for each of
the genes. As such thresholds can not be chosen manually due
to the high number of genes, we determine the thresholds as a
percentile of the range of the response variable. For a gene 𝑔 ∈
{1, . . . , 1000}, that is

𝜀𝑔 = 𝜀̃
(

max
𝑙,𝑖

(
𝑦gli

)
− min

𝑙,𝑖

(
𝑦gli

))

where 𝜀̃ ∈ (0, 1) is the corresponding percentile and 𝜀̃ = 0.2 or
0.25 would be typical choices. Alternatively, one can proceed the
other way around, calculate

𝑢̃𝑔 =
𝑢𝑔

max𝑙,𝑖
(
𝑦gli

)
− min𝑙,𝑖

(
𝑦gli

)

and directly compare 𝑢̃𝑔 to 𝜀̃, that is, the decision rules 𝜀𝑔 > 𝑢𝑔
and 𝜀̃ > 𝑢̃𝑔 are equivalent.

Figure 5a,b show boxplots of the model weights for both diets.
It can be observed that less complex models, the linear and
quadratic model, have higher weights for the standard diet com-
pared to the Western diet. In contrast, for the two most com-
plex models, the beta and sigEmax model, the opposite can be
observed: they have higher weights for the Western diet com-
pared to the standard diet.

In addition, Figure 5c,d show histograms of the highest model
weight per gene. It can be observed that for the Western diet the
model weights tend to be larger compared to the standard diet. In
addition, for the Western diet there are notably many genes for
which the highest model weight is very close to one, that is, the
averaged model consists nearly fully of only one of the candidate
models.

Figure 5e shows the number of genes for which equivalence of
the time-gene expression curves of both diets can be concluded,
that is, the number of genes for which 𝐻0 can be rejected depend-
ing on the choice of 𝜀̃. For very small choices of 𝜀̃ (e.g., 0.05, 0.06,

10 of 14 Statistics in Medicine, 2025

 10970258, 2025, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10309, W
iley O

nline L
ibrary on [22/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

53



lin
ea

r

qu
ad

ra
tic

em
ax ex
p

si
gE

m
ax

be
ta

0.0

0.2

0.4

0.6

0.8

1.0

SD: Model weights

lin
ea

r

qu
ad

ra
tic

em
ax ex
p

si
gE

m
ax

be
ta

0.0

0.2

0.4

0.6

0.8

1.0

WD: Model weights SD: Highest weight per gene

Highest weight

Fr
eq

ue
nc

y

0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

WD: Highest weight per gene

Highest weight
Fr

eq
ue

nc
y

0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

50

100

150

Number of genes for which the null hypothesis is rejected

�~

N
um

be
r o

f g
en

es

FIGURE 5 | Subfigures (a) and (b) show boxplots of the model weights for each of the two diets. Subfigures (c) and (d) show histograms of the
highest model weight per gene for both genes. Subfigure (e) shows the number of genes for which equivalence between the time-gene expression curves
of the two diets can be concluded in dependence of the equivalence threshold 𝜀̃.

0 10 20 30 40

6

7

8

9

ENSMUSG00000095335

time

lo
g 2

(n
or

m
al

is
ed

 c
ou

nt
s)

SD
WD

0 10 20 30 40

9.5

10.0

10.5

11.0

ENSMUSG00000024589

time

lo
g 2

(n
or

m
al

is
ed

 c
ou

nt
s)

SD
WD

0 10 20 30 40

7

8

9

10

11

ENSMUSG00000029816

time

lo
g 2

(n
or

m
al

is
ed

 c
ou

nt
s)

SD
WD

lin
ea

r

qu
ad

ra
tic

em
ax ex
p

si
gE

m
ax

be
ta

M
od

el
 w

ei
gh

ts

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lin
ea

r

qu
ad

ra
tic

em
ax ex
p

si
gE

m
ax

be
ta

M
od

el
 w

ei
gh

ts

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lin
ea

r

qu
ad

ra
tic

em
ax ex
p

si
gE

m
ax

be
ta

M
od

el
 w

ei
gh

ts

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIGURE 6 | Results for three exemplary genes. The first row of figures shows the data for both diets as well as the fitted models. The second row of
figures shows the corresponding model weights.

11 of 14

 10970258, 2025, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10309, W
iley O

nline L
ibrary on [22/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

54



or 0.07) equivalence cannot be concluded for any gene and for
𝜀̃ = 0.1 only five genes would be assessed as equivalent. For more
typical choices of 𝜀̃ being 0.2, 0.25, or 0.3, equivalence could be
concluded for 50, 85, and 147 genes, respectively. With further
increasing 𝜀̃ the number of rejections also further increases
and approaches 1000. However, this is not shown for 𝜀̃ > 0.3 as
performing an equivalence test with a threshold larger than 30%
of the range of the response variable might not have practical
relevance.

Figure 6 shows the results for three exemplary genes. For ENS-
MUSG00000095335 it can be observed that both time-response
curves are extremely close to each other and that the maximum
absolute deviation of the curves is quite small. This leads to
𝑢̃ ≈ 0.084. Regarding the model weights it can be observed that
both time-response curves consist essentially of the same models.
For ENSMUSG00000024589 we observe that both time-response
curves have a similar shape both being emax-like, although their
model weights are not as similar as before. However, their dis-
tance is larger than for ENSMUSG00000095335 which leads to
𝑢̃ ≈ 0.303. Hence, the curves are not equivalent for typical choices
of 𝜀̃ being, for example, 0.2 or 0.3 but only for extremely lib-
eral choices of 𝜀̃, for example, for 𝜀̃ = 0.35. For the last example
ENSMUSG00000029816 we observe that the two curves are com-
pletely different with regard to both, shape and location. For
the standard diet an almost constant curve is present while for
the Western diet a typical emax shape is observable. This is also
reflected by the model weights where models which have high
weights for one curve, have small ones for the other one and vise
versa, the only exempt to this is the emax model which has a
medium large weight for both of the groups. Due to the large max-
imum absolute deviation between the curves given by 𝑑 ≈ 3.891,
similarity cannot be concluded for any reasonable equivalence
threshold.

6 | Conclusion

In this paper, we introduced a new approach for model-based
equivalence testing which can also be applied in the presence of
model uncertainty — a problem which is usually faced in practi-
cal applications. Our approach is based on a flexible model aver-
aging method which relies on information criteria and a testing
procedure which makes use of the duality of tests and confidence
intervals rather than simulating the distribution under the null
hypothesis, providing a numerically stable procedure. Due to the
advantages of theoretical validity based on asymptotic theory, we
chose to use the BIC as the information criterion. Moreover, our
approach leads to additional interpretability due to the provided
confidence intervals while retaining the asymptotic validity and a
similar performance in finite samples as the bootstrap based test
proposed by Dette et al. [10].

Precisely, we investigated the finite sample properties of the
proposed method by reanalysing the simulation study of Dette
et al. [10] and observed similar results for the CI-based test com-
pared to their test. In the presence of model uncertainty, model
misspecification frequently led to either type I error inflation
or a lack of power, both often of substantial extend. In contrast,
our approach considerably reduced these problems and in many

cases even achieved similar results as knowing and using the
true underlying model. In direct comparison, a simpler model
averaging method, that is, using fixed equal weights, was not
able to prevent high type I error inflation. Therefore, we strongly
recommend to use information criteria-based model averaging.
The presented case study outlines the practical usefulness of the
proposed method based on a large data application where choos-
ing the models manually would be time-consuming and could
easily lead to many model misspecifications. Hence, introducing
model averaging here is essential to test for the equivalence of
time-gene expression curves for such large numbers of genes,
typically occurring in practice.

Future possible research includes extending the presented
method for other model averaging techniques, for example, cross
validation-based model averaging. In addition, transferring this
approach to other model classes (e.g., survival models) as well as
to multidimensional responses, that is, multiple endpoints, mer-
its further exploration.
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S 1: Comparison of the type I error rates of the CI-based testing approaches to the testing approaches proposed

by Dette et al. (2018) with ε = 1. The results are shown for two distances of the regression curves d ∈ {0.5, 0.75}
and three different combinations of variances (σ2

1 , σ
2
2) ∈ {(0.25, 0.25), (0.5, 0.5), (0.25, 0.5)}.

hybrid percentile asymptotic Dette et al. (2018) Dette et al. (2018)

β20 d σ2
1 σ2

2 n1 n2 CI CI CI bootstrap asymptotic

0.25 1.50 0.25 0.25 10 10 0.000 0.000 0.000 0.001 0.000

0.25 1.50 0.25 0.25 10 20 0.000 0.000 0.000 0.000 0.000

0.25 1.50 0.25 0.25 20 20 0.000 0.000 0.000 0.000 0.000

0.25 1.50 0.25 0.25 50 50 0.000 0.000 0.000 0.000 0.000

0.25 1.50 0.25 0.50 10 10 0.000 0.000 0.000 0.000 0.000

0.25 1.50 0.25 0.50 10 20 0.000 0.000 0.000 0.000 0.000

0.25 1.50 0.25 0.50 20 20 0.000 0.000 0.000 0.000 0.000

0.25 1.50 0.25 0.50 50 50 0.000 0.000 0.000 0.000 0.000

0.25 1.50 0.50 0.50 10 10 0.001 0.000 0.000 0.001 0.000

0.25 1.50 0.50 0.50 10 20 0.001 0.000 0.000 0.002 0.000

0.25 1.50 0.50 0.50 20 20 0.000 0.000 0.000 0.000 0.000

0.25 1.50 0.50 0.50 50 50 0.000 0.000 0.000 0.000 0.000

0.50 1.25 0.25 0.25 10 10 0.004 0.000 0.000 0.005 0.001

0.50 1.25 0.25 0.25 10 20 0.005 0.004 0.001 0.004 0.000

0.50 1.25 0.25 0.25 20 20 0.001 0.000 0.000 0.001 0.000

0.50 1.25 0.25 0.25 50 50 0.000 0.000 0.000 0.000 0.000

0.50 1.25 0.25 0.50 10 10 0.006 0.001 0.002 0.006 0.000

0.50 1.25 0.25 0.50 10 20 0.000 0.000 0.002 0.005 0.001

0.50 1.25 0.25 0.50 20 20 0.001 0.000 0.000 0.000 0.001

0.50 1.25 0.25 0.50 50 50 0.000 0.000 0.000 0.000 0.000

0.50 1.25 0.50 0.50 10 10 0.005 0.001 0.000 0.011 0.001

0.50 1.25 0.50 0.50 10 20 0.005 0.000 0.001 0.013 0.005

0.50 1.25 0.50 0.50 20 20 0.002 0.000 0.000 0.004 0.000

0.50 1.25 0.50 0.50 50 50 0.000 0.000 0.000 0.000 0.000

0.75 1.00 0.25 0.25 10 10 0.029 0.007 0.005 0.045 0.012

0.75 1.00 0.25 0.25 10 20 0.041 0.008 0.015 0.045 0.019

0.75 1.00 0.25 0.25 20 20 0.044 0.016 0.015 0.034 0.011

0.75 1.00 0.25 0.25 50 50 0.040 0.016 0.027 0.051 0.016

0.75 1.00 0.25 0.50 10 10 0.035 0.004 0.005 0.036 0.003

0.75 1.00 0.25 0.50 10 20 0.030 0.005 0.009 0.028 0.009

0.75 1.00 0.25 0.50 20 20 0.037 0.009 0.010 0.048 0.009

0.75 1.00 0.25 0.50 50 50 0.026 0.008 0.014 0.058 0.012

0.75 1.00 0.50 0.50 10 10 0.018 0.001 0.002 0.037 0.005

0.75 1.00 0.50 0.50 10 20 0.025 0.002 0.001 0.046 0.006

0.75 1.00 0.50 0.50 20 20 0.038 0.003 0.005 0.038 0.036

0.75 1.00 0.50 0.50 50 50 0.031 0.010 0.010 0.059 0.015

2
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S 2: Comparison of the power of the test using the true model, the model averaging-based tests and the tests un-

der model misspecification in scenario 1. The results are shown for ε = 1, three distances of the regression curves

d ∈ {1, 1.25, 1.5} and three different combinations of variances (σ2
1 , σ

2
2) ∈ {(0.25, 0.25), (0.25, 0.5), (0.5, 0.5)}.

β20 d σ2
1 σ2

2 n1 n2 true model MA: BIC MA: EW emax & emax exp & exp exp & emax

1.0 0.75 0.25 0.25 10 10 0.152 0.173 0.296 0.190 0.293 0.133

1.0 0.75 0.25 0.25 10 20 0.177 0.213 0.385 0.239 0.383 0.173

1.0 0.75 0.25 0.25 20 20 0.252 0.283 0.539 0.359 0.553 0.246

1.0 0.75 0.25 0.25 50 50 0.462 0.508 0.937 0.693 0.932 0.659

1.0 0.75 0.25 0.50 10 10 0.095 0.107 0.204 0.112 0.193 0.096

1.0 0.75 0.25 0.50 10 20 0.156 0.168 0.305 0.190 0.284 0.135

1.0 0.75 0.25 0.50 20 20 0.175 0.215 0.386 0.260 0.379 0.152

1.0 0.75 0.25 0.50 50 50 0.341 0.408 0.800 0.593 0.784 0.462

1.0 0.75 0.50 0.50 10 10 0.058 0.071 0.143 0.078 0.129 0.071

1.0 0.75 0.50 0.50 10 20 0.085 0.099 0.204 0.105 0.204 0.107

1.0 0.75 0.50 0.50 20 20 0.119 0.143 0.283 0.157 0.290 0.127

1.0 0.75 0.50 0.50 50 50 0.283 0.338 0.662 0.445 0.689 0.336

1.5 0.50 0.25 0.25 10 10 0.254 0.316 0.575 0.363 0.589 0.576

1.5 0.50 0.25 0.25 10 20 0.306 0.387 0.658 0.435 0.700 0.727

1.5 0.50 0.25 0.25 20 20 0.431 0.506 0.850 0.597 0.889 0.917

1.5 0.50 0.25 0.25 50 50 0.824 0.847 0.995 0.930 0.997 0.999

1.5 0.50 0.25 0.50 10 10 0.135 0.177 0.371 0.214 0.345 0.323

1.5 0.50 0.25 0.50 10 20 0.216 0.293 0.530 0.340 0.536 0.544

1.5 0.50 0.25 0.50 20 20 0.312 0.375 0.699 0.462 0.724 0.725

1.5 0.50 0.25 0.50 50 50 0.652 0.690 0.974 0.839 0.974 0.994

1.5 0.50 0.50 0.50 10 10 0.061 0.097 0.226 0.108 0.214 0.183

1.5 0.50 0.50 0.50 10 20 0.119 0.177 0.327 0.201 0.349 0.332

1.5 0.50 0.50 0.50 20 20 0.203 0.289 0.536 0.326 0.571 0.551

1.5 0.50 0.50 0.50 50 50 0.525 0.552 0.912 0.698 0.930 0.961
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S 3: Comparison of the type I error rates of the test using the true model, the model averaging-based

tests and the tests under model misspecification in scenario 2. The results are shown for ε = 0.5, three

distances of the regression curves d ∈ {1, 1.25, 1.5} and three different combinations of variances (σ2
1 , σ

2
2) ∈

{(0.25, 0.25), (0.25, 0.5), (0.5, 0.5)}.
β10 = d σ2

1 σ2
2 n1 n2 true model MA: BIC MA: EW emax & exp exp & exp exp & emax

0.50 0.25 0.25 10 10 0.001 0.000 0.000 0.000 0.000 0.000

0.50 0.25 0.25 10 20 0.001 0.001 0.000 0.000 0.000 0.000

0.50 0.25 0.25 20 20 0.003 0.003 0.005 0.000 0.000 0.000

0.50 0.25 0.25 50 50 0.001 0.001 0.002 0.000 0.000 0.000

0.50 0.25 0.50 10 10 0.001 0.000 0.000 0.000 0.000 0.000

0.50 0.25 0.50 10 20 0.001 0.000 0.005 0.000 0.000 0.000

0.50 0.25 0.50 20 20 0.001 0.001 0.003 0.000 0.000 0.000

0.50 0.25 0.50 50 50 0.001 0.001 0.001 0.000 0.000 0.000

0.50 0.50 0.50 10 10 0.000 0.000 0.000 0.000 0.000 0.000

0.50 0.50 0.50 10 20 0.000 0.000 0.000 0.000 0.000 0.000

0.50 0.50 0.50 20 20 0.000 0.000 0.002 0.000 0.000 0.000

0.50 0.50 0.50 50 50 0.000 0.000 0.002 0.000 0.000 0.000

0.75 0.25 0.25 10 10 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.25 0.25 10 20 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.25 0.25 20 20 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.25 0.25 50 50 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.25 0.50 10 10 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.25 0.50 10 20 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.25 0.50 20 20 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.25 0.50 50 50 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.50 0.50 10 10 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.50 0.50 10 20 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.50 0.50 20 20 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.50 0.50 50 50 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.25 10 10 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.25 10 20 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.25 20 20 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.25 50 50 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.50 10 10 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.50 10 20 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.50 20 20 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.50 50 50 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.50 0.50 10 10 0.000 0.000 0.001 0.000 0.000 0.000

1.00 0.50 0.50 10 20 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.50 0.50 20 20 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.50 0.50 50 50 0.000 0.000 0.000 0.000 0.000 0.000
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S 4: Comparison of the type I error rates of the test using the true model, the model averaging-based

tests and the tests under model misspecification in scenario 3. The results are shown for ε = 0.5, three

distances of the regression curves d ∈ {1, 1.25, 1.5} and three different combinations of variances (σ2
1 , σ

2
2) ∈

{(0.25, 0.25), (0.25, 0.5), (0.5, 0.5)}.
β10 = d σ2

1 σ2
2 n1 n2 true model MA: BIC MA: EW emax & exp emax & emax exp & emax

0.50 0.25 0.25 10 10 0.005 0.002 0.007 0.000 0.000 0.000

0.50 0.25 0.25 10 20 0.005 0.002 0.006 0.001 0.002 0.000

0.50 0.25 0.25 20 20 0.005 0.006 0.010 0.002 0.006 0.000

0.50 0.25 0.25 50 50 0.001 0.001 0.001 0.000 0.002 0.000

0.50 0.25 0.50 10 10 0.002 0.000 0.003 0.002 0.001 0.000

0.50 0.25 0.50 10 20 0.009 0.003 0.011 0.001 0.003 0.000

0.50 0.25 0.50 20 20 0.002 0.001 0.006 0.000 0.003 0.000

0.50 0.25 0.50 50 50 0.000 0.000 0.001 0.001 0.001 0.000

0.50 0.50 0.50 10 10 0.002 0.001 0.002 0.000 0.001 0.001

0.50 0.50 0.50 10 20 0.001 0.001 0.002 0.000 0.000 0.000

0.50 0.50 0.50 20 20 0.003 0.002 0.004 0.000 0.001 0.000

0.50 0.50 0.50 50 50 0.003 0.001 0.004 0.002 0.003 0.000

0.75 0.25 0.25 10 10 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.25 0.25 10 20 0.000 0.000 0.001 0.000 0.001 0.000

0.75 0.25 0.25 20 20 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.25 0.25 50 50 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.25 0.50 10 10 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.25 0.50 10 20 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.25 0.50 20 20 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.25 0.50 50 50 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.50 0.50 10 10 0.000 0.000 0.000 0.000 0.000 0.000

0.75 0.50 0.50 10 20 0.001 0.000 0.001 0.000 0.000 0.000

0.75 0.50 0.50 20 20 0.001 0.000 0.001 0.000 0.000 0.000

0.75 0.50 0.50 50 50 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.25 10 10 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.25 10 20 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.25 20 20 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.25 50 50 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.50 10 10 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.50 10 20 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.50 20 20 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.25 0.50 50 50 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.50 0.50 10 10 0.000 0.000 0.001 0.000 0.001 0.000

1.00 0.50 0.50 10 20 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.50 0.50 20 20 0.000 0.000 0.000 0.000 0.000 0.000

1.00 0.50 0.50 50 50 0.000 0.000 0.000 0.000 0.000 0.000
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3.3 Dynamic Heterogeneity in Discrete Choice Experiments

This article discusses the third direction of multidimensionality, i.e. multidimensional
covariate effects. Here, heterogeneously time-varying covariable effects are addressed by
developing functional random coefficients. Such effects occur when a covariate influences
the response variable not only in a heterogeneous and time-varying manner but its time-
variation is also heterogeneous. This article can also be seen as preliminary work for
Section 3.4, which is based on the methodologies developed in this section. In addition,
this article introduces Bayesian estimation of such effects as an alternative to the fre-
quentist inference which will be used in Section 3.4. The proposed model is applied to
conditional logit models, a class of models commonly used in marketing research, but
it directly generalizes to other GAMs. A case study, also from the field of marketing
research, outlines the demand for such models in applied research. The flexibility of the
approach as well as its superiority with regard to benchmark models is demonstrated
through a simulation study.
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Abstract

In choice-based conjoint experiments, a special type of choice experiment, respon-
dents’ choice decisions are studied based on repeated tasks in an experimental setting.
Especially when conducting longer sequences of choice tasks to increase the overall
amount of information, effects such as learning or fatigue may come into play that
affect the identification of the effects of choice task attributes. These effects may
be exacerbated by customer-specific heterogeneity. We introduce Bayesian multino-
mial logit models with heterogeneously time-varying coefficients constructed as tensor
products of random effects and penalized splines to capture both time variation (non-
linear dynamics) and customer-specific heterogeneity (cross-sectional heterogeneity).
In an empirical application on a local public good, we use the developed method and
find evidence for the presence of heterogeneously time-varying effects. The proposed
approach further outperforms competing benchmark models that account for only
cross-sectional heterogeneity or dynamics in fit and especially predictive accuracy,
which is also demonstrated through a simulation study.

Keywords: Choice experiments; Functional random effects; Multinomial logit model; Pe-
nalized splines; Tensor products

∗The authors thank Craig Broadbent (Brigham Young University, Rexburg, Idaho, USA) for the per-
mission to use the data he originally collected for Broadbent et al. (2010).

1

64



1 Introduction

When analyzing repeated measurements on the same observational units in choice data, one

challenge is disentangling different potential sources of heterogeneity. While it is nowadays

standard to include random effects that reflect static, i.e., time-invariant cross-sectional

heterogeneity of the observational units (e.g. Jain et al. 1994, Keane 1997, Elshiewy et al.

2017, for an overview of such models in the context of marketing applications), heterogene-

ity along the time dimension usually receives less attention. For longer series of repeated

events, purely dynamic heterogeneity can, for example, be accounted for by including a

vector autoregressive process (see, e.g. Kim et al. 2005) or a penalized spline estimate (see,

e.g., Guhl et al. 2018) reflecting an overall time trend. Both approaches can also easily

be combined in an additive model specification, but this crucially relies on the assumption

of no interaction between cross-sectional heterogeneity of the observational units and dy-

namic heterogeneity. Finally, random intercepts, as well as temporal trends, are usually

not interacted with covariate effects of interest.

In this paper, we focus on exactly this situation where covariate effects (as well as

the overall intercept) in a regression model can be heterogeneously time-varying. More

precisely, our research is motivated by choice-based conjoint (CBC) experiments (see, e.g.

Rao 2014) in which each of the i = 1, . . . , n respondents face t = 1, . . . , T choice tasks.

In each of these choice tasks, the respondent chooses one option out of a given set of

alternatives r = 1, . . . , c + 1 that are characterized by different attributes (e.g., price,

product attributes, etc. in case of a marketing-related experiment). An outside option

(alternative c+ 1) is typically included in each choice task to account for primary demand

effects. CBC experiments are particularly popular in marketing research when analyzing

preference structures for a product or service and the determinants of these preferences,

but there are also other fields of application (e.g., transportation, psychology, health, and
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economics) as we will see later when analyzing preferences for a public good in this paper.

Choices in CBC are commonly modeled by a multinomial logit (MNL) model (McFad-

den 1973) with predictors ηitr = x′
itrβ, r = 1, . . . , c where xitr comprises information on

the alternative-specific attributes while the regression coefficients β are constant across

the alternatives. The latter is the default setting for unlabeled alternatives with generic

attributes, implying that the position of alternatives within a given choice task is arbitrary

and differences in positions have no meaning. Only the outside option as the reference

category c+ 1 has a constant position, serving as a baseline for the analysis (Rao 2014).

Just as in other empirical studies, the accuracy of the results crucially depends on the

overall amount of information represented by the total number of observations n ·T , and a

cost-efficient way to increase the sample size is to increase the number of choice tasks T per

respondent. This also facilitates modeling heterogeneity across respondents using random

effect specifications or hierarchical models. Indeed, as mentioned above, accounting for

cross-sectional heterogeneity is nowadays state-of-the-art in academic research or industry

applications of CBC (Allenby & Ginter 1995, Baumgartner & Steiner 2007, Kamakura &

Wedel 2004, Elshiewy et al. 2017), and literature on constructing choice experiments also

includes heterogeneity in optimal choice designs (Kessels et al. 2009). However, increasing

T (i.e., presenting more choice tasks to the respondent) can have the disadvantage that

respondents get fatigued or bored (e.g. Day et al. 2012, Savage & Waldman 2008), which

may bias the results. In addition, learning effects (e.g. Day et al. 2012, Hess et al. 2012) are

usually present in conjoint experiments, especially for more complex tasks. Recently, Li

et al. (2022) showed that asking “too many” questions can even decrease external validity.

The literature on preference dynamics typically assumes that only the means of the

heterogeneous parameter distributions vary over time (e.g. Liechty et al. 2005, Kim et al.

2005, Lachaab et al. 2006, Guhl et al. 2018). While this seems reasonable in applications

of discrete choice models for market data, where seasonal effects or marketing-related ef-
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forts of firms at the aggregate level (e.g., advertising or price changes) affect all customers,

individual-level dynamics could also be relevant in choice experiments. In particular, the

marketing literature argues that there is a lack of methods to account for preference dy-

namics in conjoint models and calls for more work on this topic (Netzer et al. 2008). Only a

few papers have addressed this issue so far. E.g., DeSarbo et al. (2005) analyze preference

evolution in “traditional” conjoint analysis using a Bayesian dynamic linear model (e.g.

Frühwirth-Schnatter et al. 2004), where the dependent variable is a continuous measure

of preference. Hence, the data contains more information than our discrete choice data

and can be analyzed using a linear regression framework. Dew et al. (2020) introduced a

model using Gaussian processes to account for individual-level dynamic heterogeneity. The

authors apply their model to choice data from a consumer panel that spans six years. The

average number of purchases per individual is much larger than the number of choice tasks

T in typical CBC applications; therefore, it is unclear if this approach would work in an

application with choice experiments. Including flexible utility functions in choice models to

address non-linear effects of variables on utility using semi- and non-parametric approaches

is well established (see, e.g. Abe 1999, Briesch et al. 2010, Kim et al. 2007). Baumgartner

et al. (2018) and Guhl et al. (2018) introduce penalized splines for modeling time-varying

(average) effects in choice models for panel data.

We combine both strands of the literature and introduce a Bayesian MNL model with

heterogeneously time-varying coefficients that takes respondent (i.e., cross-sectional) het-

erogeneity into account by including respondent-specific random effects and also allows for

(potentially non-linear) time-varying effects (representing, for example, fatigue, learning,

or task-adaptation effects), as well as their interaction, such that dynamic effects may

vary heterogeneously across respondents. In contrast to Dew et al. (2020), who use Gaus-

sian processes for a similar aim, we rely on penalized splines (Eilers & Marx 1996, Lang &

Brezger 2004) for the time-varying effects while the interaction of random and time-varying
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effects will be cast into the general framework of tensor product interactions (Kneib et al.

2019). Inference will be conducted in a Bayesian framework based on MCMC simulation

techniques, and the penalized spline specification allows us to take advantage of sparse

matrix structures in the involved precision matrices and work with a moderately large

number of basis coefficients. In addition, overfitting of the splines is implicitly countered

by imposing roughness penalty terms (hence P-splines), and the amount of smoothness of

a spline is determined simultaneously with all other parameters estimates in the Bayesian

estimation framework (Lang & Brezger 2004, Aschersleben & Steiner 2022). To the best

of our knowledge, this is the first CBC study introducing a fully Bayesian approach to

estimate individual-level dynamic heterogeneity using penalized splines.

The rest of this paper is structured as follows: Section 2 introduces the modeling theory,

including the modeling problem in Section 2.1, the underlying theory in Section 2.2, the

adaptation of the theory to the modeling problem in Sections 2.3 and 2.4 and fit and

predictive performance measures for model comparison in Section 2.5. Section 3 outlines the

Bayesian inference used for model estimation. Section 4 provides an empirical application

example. In Section 5, a simulation study is conducted to better understand the results

from our empirical application and to ensure that the superior performance of the proposed

approach is not due to overfitting. Section 6 summarizes the previous chapters, highlights

the main conclusions, and gives an outlook on topics for future research.

2 Dynamic Heterogeneity in MNL Models

2.1 Multinomial Choice Model

As a foundation for the remainder of this section, we first introduce the notation for the

CBC MNL model in more detail. Let i = 1, . . . , n index the respondents facing t = 1, . . . , T

choice tasks with r = 1, . . . , c+1 alternatives, including the outside option c+1 as reference
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category. Alternatives are characterized by attributes xitr for alternative r presented to

customer i in choice task t while the actual choice made by the respondent is denoted as

yit ∈ {1, . . . , c + 1}. Assuming i.i.d. Extreme Value (EV) type I distributed error terms

and utility maximizing respondents, the resulting MNL model with predictors ηitr is

P(yit = r) =
exp(ηitr)∑
s exp(ηits)

. (1)

In their simplest parametric form with homogeneous and time-constant effects, we have

ηitr = x′
itrβ, r = 1, . . . , c (2)

and ηit,c+1 = 0 to ensure identifiability. To account for time variation and respondent

heterogeneity, we are interested in a model where

ηitr = x′
itrβi(t) (3)

i.e., the covariate effects are heterogeneous both concerning the respondent and over time.

As special cases, this model also comprises time-invariant (static) but respondent-specific

heterogeneity for βi(t) ≡ βi and purely dynamic heterogeneity for βi(t) ≡ β(t).

2.2 Anisotropic Tensor Product Interactions

To represent respondent-specific time-varying parameters βi(t), we rely on the framework

of tensor product interactions as a general means of constructing interaction effects in

generalized additive models (Kneib et al. 2019, Fahrmeir et al. 2013, Wood 2017). Consider

a regression predictor η = . . .+xβ(z1, z2)+ . . . where, in a varying-coefficient type fashion,

the effect of covariate x varies according to two interaction variables z1 and z2. We can

then interpret β(z1, z2) as a bivariate surface and utilize tensor product basis function

approaches for representing it. Let therefore β1(z1) and β2(z2) be “main effects” which are

represented in terms of basis function expansions as

β1(z1) =

D1∑

d1=1

γ1d1B1d1(z1), β2(z2) =

D2∑

d2=1

γ2d2B2d2(z2).
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A tensor-product interaction is then obtained as

β(z1, z2) =

D1∑

d1=1

D2∑

d2=1

γd1d2Bd1d2(z1, z2), where

Bd1d2(z1, z2) = B1d1(z1)B2d2(z2)

are the tensor product basis functions resulting from pairwise interactions of the main effect

basis functions. While this approach is mostly used in the context of estimating bivariate

interaction surfaces for two continuous covariates, often as a building block in smoothing

spline analysis of variance-type models, each of the two main effects can be one of the

model terms of structured additive regression models, including spatial and random effects

(Kneib et al. 2019). We will use the tensor product interaction framework for interacting

random effects and penalized splines to represent respondent-specific heterogeneity and

time variation, respectively.

Since not only the main effects themselves but, in particular, the resulting tensor prod-

uct interaction comprise a larger number of basis coefficients, some form of regularized

estimation is necessary. We implement a Bayesian form of regularization by constructing

informative priors for the tensor product. For this, we again start from the main effects,

where (partially improper) multivariate Gaussian priors:

p(γj|τ 2j ) ∝
(

1

τ 2j

) rk(Kj)

2

exp

(
− 1

2τ 2j
γ ′
jKjγj

)
, j = 1, 2

are applied to the vectors of basis coefficients γj = (γj1, . . . , γjDj
)′ with precision matrixKj

and variance parameter τ 2j that determine the exact form and strength of regularization,

respectively. Specific choices for functional random effects will be discussed in the next

section.

The resulting prior for the tensor product parameters γ = (γ11, . . . , γ1D2 , . . . , γD11, . . . ,

γD1D2)
′ is then of the same multivariate normal form but with precision matrix

1

τ 21
(K1 ⊗ ID2) +

1

τ 22
(K2 ⊗ ID1) (4)

7

70



and two variance parameters τ 2j , j = 1, 2 that determine the regularization along the two

axes defined by the main effect covariates. Effectively, this prior precision matrix implies

that 1
τ21
K1 is applied in z1-direction while 1

τ22
K2 is applied in z2-direction. The ratio of

τ 21 and τ 22 implies the relative importance of the two priors. Their overall magnitude

relative to the error variance specifies the absolute impact of the prior on the estimated

interaction effect. Including two separate variance parameters enables anisotropic forms

of regularization, which is particularly important when interaction effects of very different

nature, as in our application on functional random effects, are included.

2.3 Functional Random Effects

In contrast to common models with random intercepts and random slopes, in functional

random effects models the whole nonlinear curves of continuous covariate effects are group-

specific. The resulting functional random effect is then of the form βi(z), where i ∈

{1, . . . , n} denotes the grouping index while z is the continuous covariate of interest. In

our application, we will focus on time as the continuous covariate of interest and will also

consider functional random coefficients of the form xβi(t), where the effect of covariate x

varies over time in a respondent-specific manner. In the following, we will show how func-

tional random effects can be cast into the generic framework of tensor product interactions

introduced in the previous section.

For heterogeneous, group- or, in our case, respondent-specific effects, we consider i.i.d.

random effects for the first main effect. Here, the basis function representation is given by

βi =

D1∑

d1=1

γ1d1B1d1(i) =

D1∑

d1=1

γ1d11(i = d1) = γ1i

i.e., the D1 = n basis functions are indicator functions for the group membership. For

standard assumption of an i.i.d. Gaussian prior for the random effects, i.e. γ1i
iid∼ N(0, τ 21 ),

we set K1 = ID1 resulting in a proper, multivariate normal distribution.
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For time-varying effects β(t), we rely on Bayesian forms of P-splines (Lang & Brezger

2004) where B-spline basis functions are employed in combination with first- or second-

order random walk priors. The precision matrix is then of the form K2 = D′D where D

is a first or second order difference matrix of dimension D2. The resulting prior can be

considered as an approximation to the integrated squared first or second-order derivative

penalty commonly assumed in smoothing spline approaches (Fahrmeir et al. 2013). Unlike

with random effects, the resulting prior is partially improper since the precision matrix

K2 is rank-deficient with the rank deficiency given by the order of the random walk. An

in-depth introduction to (P-)splines is available in Eilers & Marx (2021).

2.4 Heterogeneously Time-Varying Coefficients

We now integrate the tensor product-based functional random coefficients framework with

the MNL model (1). Let therefore βil(t) be one of the l = 1, . . . , L heterogeneously time-

varying effects in (3) associated with covariate xitrl for respondent i in choice task t and

characterizing alternative r. We then specify a functional random coefficient for each βil(t).

For interpretation, it is helpful to decompose the overall effect of xitrl as

xitrlβl + xitrlβil(t),

i.e. to remove the overall population- and time-constant effect from the functional random

effect, which then only comprises deviations from this overall effect. Using this decompo-

sition, we can express our model with L covariates as

ηitr = β0 + βi0(t) + (β1 + βi1(t)) xitr1 + . . .+ (βL + βiL(t))xitrL

= x′
itrβ + x′

itrβi(t) r = 1, . . . , c (5)

and, as before, ηit,c+1 = 0 for identification.

As competitors to our fully flexible functional random coefficient specification (5) (re-

ferred to as model M0), we will also consider the following benchmark models M1–M4:
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• Homogeneous model (M1): A model without any form of heterogeneity in the effects.

• Time-constant heterogeneity only (M2): Removing the time-dependency in the func-

tional random coefficients yields xitrlβl+xitrlβil with i.i.d. respondent-specific random

effects βil reflecting time-constant heterogeneity of the respondents. This benchmark

model in CBC analyses enables us to compare our results to a model that only cap-

tures cross-sectional heterogeneity while fully ignoring time effects.

• Heterogeneously varying effects with linear time trends (M3): In addition to respon-

dent-specific heterogeneity, a heterogeneously varying linear time trend is added to

the model, leading to xitrlβl + xitrlβ0il + xitrlβ1ilt where both β0il and β1il are i.i.d.

random effects. In this model specification, dynamic effects are restricted to linear

shapes. This model can capture cross-sectional heterogeneity and linear heteroge-

neous time variation, i.e., individual linear time trends. Thus, this benchmark model

allows for investigation of the difference in model performance between our flexible

semiparametric approach and the less complex but also less flexible linear approach.

• Additive heterogeneity and homogeneous time variation (M4): Rather than adding a

heterogeneous yet linear time trend, this model specification features nonlinear yet

homogeneous time variation, i.e. xitrlβl+xitrlβ0il+xitrlβl(t) with βl(t) being specified

as a penalized spline. This model was developed by Guhl et al. (2018), and its time-

varying coefficients are based on the approach of Biller & Fahrmeir (2001). It can be

used to investigate whether or not modeling time-variation heterogeneously with our

proposed approach can further improve the model performance compared to modeling

the time-variation as well flexibly but globally (i.e., as the same across respondents).

While we discussed the specification of functional random coefficients for covariate ef-

fects, the same can, of course, also be applied to the intercept. If the reference category of

an MNL model is chosen meaningfully, the corresponding intercept also has an interesting
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interpretation: The intercept parameter is added for all categories except for the reference

category and, therefore, is the same as if it would be interacted with “not-the-reference-

category” dummy 1(r ̸= c+ 1). This is a direct consequence of restricting ηit,c+1 = 0.

In analogy, this also applies to the heterogeneously time-varying intercept. Therefore,

higher values of the functional random intercept imply a higher probability of not choosing

this outside option, given all covariates and their effects. This means that the time-varying

intercept can capture general time-dependent tendencies unrelated to the covariates (e.g.,

learning or fatigue effects of respondents during an experiment).

2.5 Performance Measures

Several fit measures are used to evaluate the model performance following the arguments of

Guhl et al. (2018) and Kneib et al. (2007). These are the Brier score as well as the spherical

score, and the log-likelihood (log-Lik). Due to the different properties of these measures,

there is no single best measure, hence it is reasonable to include multiple measures to assess

the model performance reliably (Guhl et al. 2018). The measures are defined as

log-Lik =
n∑

i=1

T∑

t=1

log
(
P̂(yit = r∗)

)
,

Brier score = −
n∑

i=1

T∑

t=1

c+1∑

s=1

(
1(yit = s)− P̂(yit = s)

)2
,

Spherical score =
n∑

i=1

T∑

t=1

P̂(yit = r∗)√
∑c+1

s=1

(
P̂(yit = s)

)2 ,

where r∗ denotes the alternative that is chosen by person i at time t (Kneib et al. 2007).

In addition, the percentage of correct in-sample predictions (Correct-%)

Correct-% =
100%

nT

n∑

i=1

T∑

t=1

1(yit = ŷit)

is used as an easy-to-understand fit measure.
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In contrast to the other three fit measures, the percentage of correct predictions only

considers the predicted choice and not the (un-)certainty with which this prediction is made.

Therefore, it contains less information than the other ones but has a simple interpretation.

The out-of-sample predictive accuracy is estimated based on an information criterion.

As explained by Vehtari et al. (2017) and Gelman et al. (2014) the Watanabe-Akaike infor-

mation criterion (WAIC; Watanabe 2010) has advantages (e.g., averaging over the posterior

distribution instead of using a point estimate) over other information criteria, especially the

Akaike information criterion (AIC; Akaike 1974) and the deviance information criterion

(DIC; Spiegelhalter et al. 2002). We use WAIC to estimate the out-of-sample predictive

accuracy.

3 Bayesian Inference using Hamiltonian Monte Carlo

Recall the prior density

p(γ|τ 21 , τ 22 ) ∝
(

1

τ 2

) effdim(γ)
2

exp

(
− 1

2τ 2
γ ′Kγ

)
1(Aγ = 0)

for the tensor product basis coefficients where

1

τ 2
K =

1

τ 21
(K1 ⊗ ID2) +

1

τ 22
(K2 ⊗ ID1)

=
1

τ 21
(ID1 ⊗ ID2) +

1

τ 22
((D′D)⊗ ID1)

and A implies constraints needed to make the model identifiable (Kneib et al. 2019). To

avoid conditioning on an event with probability zero, this should not be seen as a condition

in the probabilistic sense but as a projection. The effective dimension, effdim(γ) changes

due to the constraint and fulfills 0 < effdim(γ) < dim(γ) if at least one nontrivial constraint

is applied (Kneib et al. 2019).

Since there is not much prior information about τ1, τ2, a weakly-informative prior dis-
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tribution will be used. As shown by Gelman (2006) the (positive) half-normal distribution

τ1, τ2
iid∼ HN+(στ )

is a weakly-informative prior if the variance σ2
τ

(
1− 2

π

)
of the half-normal is large enough.

For a clearer notation, we will relabel τ1 as τ (i) and τ2 as τ (t) not meaning that these

variances vary along the corresponding index variable but just indicating to which direction

they belong. Since all variables are modeled with time-varying coefficients, we will use a

double index, e.g., τ
(i)
0 for the standard deviation in i direction of the intercept.

Bayesian inference is then conducted by using the No-U-Turn sampler (NUTS, Hoff-

man & Gelman 2014), which is a variant of Hamiltonian Monte Carlo (Duane et al. 1987)

also known as hybrid Monte Carlo or HMC. Using HMC, a single proposal is computation-

ally more costly than using the Metropolis algorithm. However, since proposals are more

efficient, the acceptance rate is much higher, and fewer samples are needed to describe

the posterior distribution (McElreath 2020). The superiority of the effectiveness of HMC

applies especially to highly complex models (Hoffman & Gelman 2014).

Estimation is implemented using the R package brms (Bürkner 2017). P-splines and

tensor products are built using the R package mgcv (Wood 2021), and the Bayesian inference

is based on the mixed model representation from the package gamm4 (Wood & Scheipl 2020).

brms uses RStan (Stan Development Team 2020) to perform statistical inference, and RStan

is an R interface to the Stan programming language, using HMC and NUTS.

4 Empirical Application

4.1 Data and Research Question

In the following, the proposed flexible model with time-varying coefficients will be applied

to the CBC setting described in Section 1. The choice experiment was originally conducted
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by Broadbent et al. (2010). In contrast to classical conjoint experiments in marketing, this

study does not focus on consumer products or services but on a local public good. This

local good are forest restoration activities of post-wildfire areas, which are performed by

removing non-native highly flammable trees and planting native vegetation in exchange.

Although the public good is local and all respondents were given an instructional period,

this type of product/good is still relatively complex.

Each choice set contains three alternatives: Two real restoration alternatives and the

outside option. There are three (metric) explanatory variables:

• non-native: the number of non-native trees to be removed (levels: 10, 14, and 17),

• native: the number of native trees to be planted (levels: 1, 4, and 7).

• donation: the voluntary donation for supporting the restoration activities (levels (in

USD): $5, $8, and $14),

where the donation variable can be interpreted as a price variable. Since the donation

variable is not expressed in terms of the total amount needed for the restoration activity

but as the average donation needed per person, the number of non-native and native trees is

also measured per person. This ensures that the numbers are reasonable for a respondent.

All n = 35 respondents faced the same 20 choice sets in the same order, however four

choice sets (choice sets 15, 17, 18 and 20) were only included in the original experiment

in order to test for transitivity and stability of preferences. Like Broadbent et al. (2010),

we exclude these four “control-questions” such that our dataset used for model estimation

includes 16 choice sets with T = 19. Note that the flexibility of our proposed approach

allows us to easily incorporate varying distances in time between observations, which arise

after excluding the four choice sets in the last quarter of the conjoint exercise.

Having the same choice sets in the same order across all respondents further ensures

that dynamic heterogeneity is not caused by differences in the sequence of choice sets but
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only by cross-sectional and temporal differences between the respondents, i.e., by individual

preferences, learning, and fatigue. For more details about the sample and data collection

process, we refer to Broadbent et al. (2010). We chose this application as it seems reasonable

to expect respondent-level dynamics here, as learning effects especially occur for highly

complex and unusual products, and fatigue occurs especially for large T (e.g., T ≥ 16).

Chosen alternative

1 2 Outside
option
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Number of

 non−native (=exotic) 
 trees to be removed

Number of native 
 trees to be planted

5 8 14 10 14 17 1 4 7
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All
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Notes: Actual choice shares for the two “real” alternatives and the outside option (left-hand subplot).
Shares for the number of times an attribute level was chosen (in green) versus it was presented (in blue)
to respondents across choice sets (middle and right-hand subplots). In a perfectly balanced choice task,
all attribute levels would appear equally often (dashed line).

Figure 1: Descriptive statistics.

Figure 1 shows that the choice task design was quite well (yet not perfectly) balanced

(subplots 2-4, blue bars). Considering this, it can be concluded that the respondents tended

to choose higher numbers of trees and lower donations. This coincides with the expectation

that the demand function should be downward-sloping in donations and upward-sloping in

the number of trees. In addition, it can be seen from the first subplot that both “real”

alternatives (positions 1 and 2) were chosen nearly equally often, which can be expected

in the case of a well-balanced design. In contrast, the outside option was chosen less often

(with a share of only about 10%), indicating that the study’s design (i.e., the levels for the

attributes) was well-chosen.
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4.2 Model Specification

The model in which all effects are modeled with heterogeneously time-varying coefficients,

i.e., model (5), can be expressed for our empirical application as

ηitr =β0 + β0i(t) + (β1 + β1i(t)) non-native itr

+ (β2 + β2i(t)) native itr + (β3 + β3i(t)) donation itr, r = 1, . . . , c. (6)

The time effects, i.e., the main effect in t direction, are modeled with B-spline basis

functions of degree 2 with 5 knots and a random walk prior of order 1. The number of

knots is low for a penalized model, but it ensures that there are data points between any

two knots. The hyperprior for the smoothness parameters is a half-normal distribution

τ
(i)
0 , . . . , τ

(i)
3 , τ

(t)
0 , . . . , τ

(t)
3

iid∼ HN+(στ = 100)

such that the variance equals 1002(1 − 2
π
) ≈ 3634. Due to this large variance, the half-

normal hyperprior is weakly informative as explained in Section 3. A Gaussian prior

β0, . . . , β3
iid∼ N(0, 5)

is used for the global effects.

The reference models are fitted using the same prior distributions. Also, the same

weakly informative half-normal distribution, which we use as hyperprior for the smoothing

variances, is used as the prior distribution for the parametric random effects variances.

Convergence of the MCMC estimation is investigated visually using trace plots and

based on convergence diagnostics, namely R̂ and the effective sample size (ESS). The

corresponding results are included in the supplementary materials (Appendix A). Neither

the visual analysis nor the convergence diagnostics indicate any issues.
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4.3 Results

Estimates: The estimation results of our proposed model M0, i.e., model eq. (6), are

given in Table 1 (Appendix C shows the full estimation result for all models with hetero-

geneity). The posterior mean point estimates for the global parameters (intercept, non-

native, native, and donation) show the expected signs and are all significantly different from

zero (in the sense that their 95% credible intervals do not contain zero). This result aligns

with the general results of the MNL model in Broadbent et al. (2010) (see also Appendix

B for further details regarding comparing model M1 with the original model specification).

The lower boundaries of the 95% credible intervals for the smoothness/variance parame-

ters τ̂
(i)
l , l = 0, . . . , 3, representing cross-sectional heterogeneity between respondents, are

clearly positive for both the three covariate effects and the intercept which indicates that

cross-sectional heterogeneity is an issue in the data. The lower boundary of the credible

interval for the smoothness parameter of the donation variable in t-direction τ̂
(t)
3 is clearly

different from zero as well, suggesting quite a lot of time variation in the effect of the dona-

tion variable (τ̂
(t)
3 ). In contrast, the lower boundaries of the corresponding credible intervals

for the native variable and the intercept (τ̂
(t)
0 , τ̂

(t)
2 ) are rather close to zero and extremely

close to zero for the non-native variable (τ̂
(t)
1 ). Therefore, it is at least doubtful whether

time variation in the effect of the number of non-native trees to be removed is actually an

issue. In addition, the time variation in the effects of the intercept and the native variable

seems to be quite small. Since a weakly informative prior is used, it is ensured that these

outcomes are not a result of the prior but the data.

Individual Curves: The estimated individual curves for the intercept and the three

covariate coefficients are visualized in Figure 2. We included the fixed effects (i.e., time-

constant effects at the population level, eq. (5)) in the plots to simplify the interpretation of

(individual) deviations in the time and respondent directions (red dashed horizontal lines).
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Table 1: Estimation results of the proposed model M0.

Mean SD 95%-CI

Fixed Effects:

Intercept (β0) 3.250 1.573 [0.427, 6.683]

Non-native (β1) 0.324 0.115 [0.117, 0.565]

Native (β2) 0.859 0.158 [0.597, 1.208]

Donation (β3) −0.432 0.099 [−0.652, −0.263]

Smoothness Parameters:

Heterogeneity:

τ
(i)
0 29.704 9.845 [13.945, 52.427]

τ
(i)
1 2.772 0.653 [1.715, 4.273]

τ
(i)
2 2.254 0.654 [1.132, 3.693]

τ
(i)
3 1.859 0.593 [0.722, 3.107]

Dynamic:

τ
(t)
0 2.566 2.036 [0.088, 7.496]

τ
(t)
1 0.146 0.116 [0.005, 0.443]

τ
(t)
2 0.554 0.332 [0.043, 1.279]

τ
(t)
3 0.646 0.218 [0.262, 1.118]

Notes: Point estimates based on the posterior means, posterior standard
deviations (SD), and the 95% credible intervals (CI).

A considerable amount of cross-sectional heterogeneity between respondents is visible

for all four coefficients, as represented by the different anchorings of the splines on the

y-axis. The comparably large estimate for τ
(i)
0 further explains the much larger cross-

sectional heterogeneity for the intercept compared to the three covariates (see the scaling

on the y-axis), implying very different individual (status-quo) utilities and choice shares

for the outside-good across the respondents. Interestingly, we observe both positive and

negative signs for the non-native coefficient across respondents, meaning some respondents

prefer removing non-native trees while others do not. In contrast, coefficients (except for

one respondent in some choice sets) are positive and less heterogeneous across respondents

for the native effect, implying a quite clear positive number of respondents in favor of

planting native trees. Finally, the negative sign for the donation effects makes sense since

we could expect a lower preference for higher donations. Respondents are nevertheless very
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heterogeneous, i.e., differently donation-sensitive.
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Figure 2: Individual marginal curves of model M0.

As could already be expected from the estimation results shown in Table 1, there is

almost no variation over time for the non-native covariate effect; respondents’ preferences

are highly stable over choice sets here, as the splines appear as almost constant (horizontal)

lines for the majority of respondents. The absence of a significant within-respondent vari-

ation along the time dimension implies the absence of an interaction effect because there

cannot be an interaction if one of both main effects is missing. This coincides with the

result that the lower bound of the 95% credible interval of τ̂
(t)
2 is extremely close to zero. A

similar pattern with missing dynamics is observed for many respondents with regard to the

intercept; however, we here see noticeable exceptions for other respondents, with different

shaped trends for these respondents. This indicates that the interaction effect between

cross-sectional and time heterogeneity is still present for the intercept.

More dynamic heterogeneity can be observed for the native effect, where we find evi-

dence for both crossover and diverging patterns for a number of respondents (Dew et al.
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2020). The curves for these respondents are highlighted curves in the lower left subplot of

Figure 2. Crossover means that a respondent’s curve crosses over the time-constant pop-

ulation mean (red dashed line), indicating that the respondent started out with a higher

preference for planting native trees compared to other respondents and then moved to a

below-average valuation towards the end of the choice experiment (or vice versa). Crossover

coincides with a strong change in a respondent’s preferences over time and implies dynamic

heterogeneity at the individual respondent level but relatively stable trajectories across in-

dividuals. Diverging means that an individual’s preference moves away from near the

population mean initially to the extremes of the preference distribution for this attribute

the longer the choice experiment lasts (cf. Dew et al. 2020, p. 66). Diverging also implies

a relatively strong change of preferences at the individual level. It would be very difficult

to capture these patterns in a model without individual-level dynamics.

The splines have the most diverse shapes for the donation variable, suggesting different

non-linear dynamics at the individual respondent level. In other words, one can observe a

distinct cross-sectional heterogeneity between respondents (as the anchorings of the splines

are very different), non-linear dynamic heterogeneity (non-linear preference evolution for

respondents), and their interaction (as the shapes of the splines vary a lot between different

respondents). As a result, we see that some respondents stay relatively stable in the

donation effect, while others reveal strongly non-linear increasing or decreasing donation

sensitivities along the choice experiment. The fact that all respondents faced the same

choice tasks in the same order excludes the possibility that differences between respondents

may result from differences in the sequence of presented choice sets.

Different explanations for the evidence of dynamic heterogeneity (i.e., the evolution of

a respondent’s preferences) in the choice experiment are possible. Increasing curves for the

native and non-native effects indicate an increasing personal valuation of the utility con-

tribution for planting and removing trees over the choice tasks. Decreasing curves, on the

20

83



other hand, imply the opposite effect. Increasing (decreasing) curves could result from an

initial undervaluation (overvaluation) of the respective effect due to a lack of initial experi-

ence and knowledge and a subsequent correction of this underestimation (overestimation)

due to learning effects from being confronted with repeated choice situations. An increasing

curve for the intercept parameter may mean that holding all other conditions constant (ce-

teris paribus), the preference not to choose the outside option increases. This might most

likely be a learning effect. The opposite effect, i.e., an increasing preference for the outside

option, is likely to be caused by fatigue or boredom or, more generally, by simplifying one’s

answering behavior. For the donation variable, a decreasing curve indicates an increasing

price sensitivity, while an increasing curve indicates a decreasing price sensitivity. It can

be observed that at the end of the first half of the choice sets (approx. between t = 7 and

t = 10), the heterogeneity in the donation effect between respondents is comparably small.

A plausible reason for this could be that, at this point, learning effects may already have

almost completely occurred, but fatigue and boredom have not yet. Fatigue or boredom

reduces respondents’ attention in later choice tasks and can lead to biased effect estimates.

Model Comparison: The statistical performance of our proposed model M0 in compar-

ison to the four benchmark models (M1–M4) is evaluated along the performance measures

introduced in Section 2.5. It can be observed from the results summarized in Table 2,

the largest improvement across all measures results from accommodating cross-sectional

heterogeneity (model M2) compared to the simplest MNL model that excludes any form

of heterogeneity (model M1). This coincides with our visual impression from Figure 2 that

revealed cross-sectional heterogeneity as the supposedly stronger dimension in our data.

Compared to model M2, accounting additionally for dynamic heterogeneity via individ-

ual linear time trends (model M3) or via a global (homogeneous across respondents) but

possibly non-linear time trend (model M4), both come with a noticeable further improve-
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ment regarding all performance measures. According to the spherical score, Brier score,

and log-Lik, heterogeneous linear trends (M3) lead to a slightly better model fit than the

more flexible but global dynamic model (M4). Since more complex models tend to have a

better model fit, we further computed the WAIC as a penalized fit measure and also as an

estimator for the out-of-sample predictive accuracy. While the Correct-% measure favors

the flexible model (M4), the WAIC confirms the slightly better performance for the linear

trend model (M3). However, the differences between all five performance measures are very

close for these two models.

Table 2: Comparison of models M0–M4.

Model Correct-% Spherical score Brier score log-Lik WAIC

M1 70.0 420 −241 −424 857

M2 86.4 498 −109 −193 539

M3 88.4 508 −93 −165 510

M4 88.6 505 −98 −174 516

M0 90.5 516 −79 −147 489

The proposed model with cross-sectional and individual non-linear dynamic hetero-

geneity (M0) comes with an additional improvement in model performance for all five

performance measures. Note that the better WAIC indicates that the improvements in fit

(in-sample) are not due to overfitting. Except for Correct-%, the improvement compared

to model M4 is even larger than from model M2 to model M4. This means allowing for an

individual and a flexible non-linear preference evolution, i.e., decoupling cross-sectional and

non-linear dynamic heterogeneity, improves the model compared to one where dynamic het-

erogeneity is also accommodated non-linearly (via splines) but assumed to be homogeneous

across respondents (M4). This coincides with observing very differently shaped individual

splines for the donation variable in Figure 2. The improvement in model performance of

model M0 compared to the model with heterogeneous but linear time trends (M3) is also

noticeable. Again, referring to Figure 2, this might also be attributed primarily to the
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donation variable, where complex and different non-linear shapes are observed across the

respondents. Overall, the higher complexity of our proposed model, in which the dynamic

heterogeneity is decoupled from the cross-sectional heterogeneity and modeled non-linearly,

seems to pay off, at least for the data at hand.

Summary: Our new modeling approach can capture individually different nonlinear pref-

erence evolutions over time, hence decoupling cross-sectional and non-linear dynamic het-

erogeneity. In addition, by using penalized splines as a nonparametric technique, no as-

sumptions about the functional form of the individual preference evolution patterns are

necessary; compared to parametric modeling, the functional shapes can be extracted di-

rectly from the data. Note that all benchmark models are nested in M0. For instance, if

dynamic effects were completely absent, the model degenerates to model M2 with cross-

sectional heterogeneity only; similarly, if only linear time trends would exist for all or only

some covariates, decreasing or increasing linear effects can be obtained as special cases of

splines for these covariates. Finally, the different dynamics for the three covariate effects

and the intercept rule out that the dynamics are due to time-varying scale heterogeneity.

4.4 Practical Relevance

So far, this section has outlined that our modeling approach can represent more complex ef-

fects in the empirical data than competing models (i.e., better model performance) without

overfitting (i.e., robust results based on penalized splines). However, a remaining question

is whether this better model performance has practical relevance.

To investigate the practical relevance, we analyze 1) the acceptance probability, i.e.,

the probability that a person decides to donate, as well as the expected donations of the

different models for a given forest restoration policy, and 2) the willingness-to-pay (WTP)

for planting native trees and removing non-native trees.
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Outcomes of a Policy: We chose as an example a relatively controversial policy in

which many of the highly flammable non-native trees are removed (non-native = 17) while

only a few native trees are planted (native = 1) in exchange. Such a policy may be able to

prevent wildfires quite well in the short term but might not have a large effect in the long

term. The donation is set to the middle of its range, i.e., $9.50.
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Figure 3: Acceptance probabilities for the heterogeneous models.

We compute the acceptance probability of this policy, i.e., the choice probability of

the policy vs. the outside option. While for model M1, the acceptance probability is

constant across respondents and estimated to be 0.61, for the other models, the estimated

distribution of the acceptance probability is shown in Figure 3 (we use the posterior mean of

the avg. parameter value for each reposed and model). Given that our model can represent

the true effects most precisely, it follows that the models M2–M4 overestimate the number

of respondents with low acceptance probabilities (≤ 0.2) by 17.1, 20.0, and 22.9%-points,

respectively. In addition, the models M2–M4 underestimate the number of respondents

with large acceptance probabilities (≥ 0.8) by 14.3, 5.7, and 14.3%-points, respectively.

Consequently, all competing models also have lower average acceptance probabilities of

0.66 (M2), 0.70 (M3), and 0.65 (M4) (see dashed lines in Figure 3), compared to the value

of 0.80 of the M0 model. These differences also lead to relatively large differences in the

expected donations per capita. Specifically, while models M1–M4 have values of $5.83,
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$6.29, $6.62, and $6.15, the expected donation based on model M0 is with $7.56 higher (on

a relative scale, between 12% and 18%). This relatively large difference in the expected

donation can potentially change the decision of whether to start the donation campaign.

Therefore, the better performance of M0 is of theoretical interest and practical relevance.

Willingness-To-Pay: Next, we calculate WTP values by dividing the model intercept

and the slope parameters for removing non-native trees and planting native trees by the

donation parameter. Representing utilities in monetary units is more intuitive for practi-

tioners and decision-makers. However, it also allows us to better understand the dynamic

heterogeneity as we now can easily compare WTP results across respondents or time, which

can be problematic using utility parameters as they are not scale-invariant. Please note

Figure 2 revealed that the donation parameter varied the most over choice sets at the re-

spondent level. Hence, we expect all WTP values to also vary over the choice set. Before

analyzing WTP dynamics, we first present aggregate values for each model.

Table 3: Median WTP of the heterogeneous models.

Model Intercept Non-native Native

M2 $8.46 $0.52 $2.14
M3 $9.54 $0.67 $2.38
M4 $10.88 $0.66 $2.56

M0 $9.82 $0.76 $2.35

Table 3 summarizes median WTP values across (the mean value of) the respondents

as a robust measure for the potential large values (Sonnier et al. 2007). The results show

that there are notable differences across models. First, the model with heterogeneity but

ignoring any dynamics (M2) has the lowest median WTP values. Second, M0 shows the

highest WTP for removing (a) non-native tree ($0.76), but a value between the lowest value

(M2, $2.14) and the highest value (M4, $2.56) of $2.35. Third, all the intercept values (i.e.,

the baseline WTP for the inside good) are close to the avg. shown donation values of $9,

25

88



reflecting a reasonable tradeoff between utility and donations in the experiment.1 Third,

models M0 and M3 appear to have more similar WTPs compared to the other models,

which is reasonable as those models both account for dynamics heterogeneity.

8.5

9.0

9.5

10.0

10.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 19

Choice Set

W
T

P
 (

in
 $

)

Intercept

Non−native (=exotic)

Native

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 19

Choice Set
W

T
P

 (
in

 $
)

Non−native (=exotic) and Native

Figure 4: Median WTP values for model M0 per choice task.

Next, we focus on the dynamic aspects of WTP. As in Table 3, Figure 4 also show the

median WTP values for model M0, but now for each choice task separately. The figure

reveals interesting patterns. After a slight decrease for the first four choice tasks, the WTP

for the intercept has an inverted U-shape, with a minimum of $8.70 (similar to M2) and

a maximum close to $10.50 (similar to M4). The WTP for removing non-native trees also

has an inverted U-shape, with a maximum value of $0.80 (choice set 11) and a minimum

below $0.50 at the end of the experiment. The WTP for planting new native trees is mostly

declining across the 19 choice tasks, with values from $2.48 at the start to $1.73 at the end.

These differences in WTP over choice sets are economically relevant as the length of the

experiments clearly affects the results at the aggregate level. The results raise the question

of whether the dynamics of the median WTP values reflect the respondent-level results.

Our M0 model allows such an analysis as we can easily compute respondent-level WTPs

1This is not the case for the model without heterogeneity (M1), with a negative baseline WTP value of

$−0.27. However, the WTP value for removing a non-native tree appears to be comparable ($0.63) to the

other models, but the WTP value for planting a native tree is much lower ($1.88). See Appendix B for a

detailed WTP analysis of model M1, incl. a comparison with the results in Broadbent et al. (2010).
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for each choice set. We do not show the individual results for all respondents, but a subset

of respondents that are typical for groups of respondents in the sample in Figure 5.
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Figure 5: WTP values for model M0 per choice task of selected respondents.

In addition to different levels for the WTP values that reflect purely cross-section het-

erogeneity, we also see different shapes across choice sets. For example, respondents 1,

27, and 35 have (inverted) U-shaped WTP values for planting native trees. On the other

hand, respondents 18 and 34 have an increasing pattern, whereas the WTP of respondent

25 declines over choice sets. We also see very heterogeneous patterns in WTP for removing

non-native trees, but given their lower magnitudes, the dynamics appear less prominent.

Respondent 18 is also interesting, as the WTP values cross each other over time. At the

beginning of the experiment, the person shows a lower (even negative) WTP for planting

native trees compared to removing non-native trees. However, after choice set 8, this order

is reversed, and at the end of the experiment, the WTP for planting native trees is almost

twice as large as the one for removing non-native trees. Note that this outcome would not

be possible in models without dynamic heterogeneity (e.g., model M3). The variation in

WTP trajectories also questions whether dynamic patterns only occur because of learning
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or fatigue. Most likely, such causes exist simultaneously across respondents, showing the

importance of our M0 model, which can account for this.

To summarize, the results in this section have shown that the outcomes of the mod-

els differ. Even at the aggregate level (e.g., acceptance probabilities, median WTP), it

appears important to account for preference heterogeneity and dynamics. Furthermore,

WTP patterns across choice tasks vary considerably at the aggregate and respondent lev-

els, highlighting the practical value of model M0.

5 Simulation Study

We conduct a simulation study to reveal whether or not the heterogeneously time-varying

coefficient model captures complex time effects better than the other models. Specifically,

we focus on the heterogeneous models M2 (no dynamics), M4 (agg. dynamics), and M0

(dynamic heterogeneity). We used each model as a generating process (DGP), sampled

new observations from the corresponding multinomial distribution, fitted the models to

each new dataset, and evaluated the results using measures introduced in Section 2.5. As

the Bayesian model estimation has high computational costs, 100 simulation repetitions

are used as a trade-off between the accuracy and feasibility of the simulation.

The boxplots in Figure 6 show the log-Lik and WAIC results for each DGP and model

combination. As in the empirical application, our model (M0) is superior to the other

models when the true DGP is also M0 (higher median log-Lik and smaller median WAIC).

As the empirical results of model M0 reported in Figure 2 do not clearly show any aggregate

level dynamics, it is unsurprising that the WAIC of models M2 and M4 are almost the same.

However, there is an indication of an overfitting of the M4 model as the log-Lik value is

slightly higher than that of M2. Similarly, when M2 is the true DGP (i.e., no dynamics at

all), both models with dynamics fit the data better in-sample, but this is not true for the
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Figure 6: Simulation results.

out-of-sample predictive accuracy in terms of WAIC. Lastly, when M4 is the true DGP,

both models with dynamics fit comparably well in-sample, with almost identical median

log-Lik values, but M4 is clearly better out-of-sample. Note that this makes intuitive sense,

as M0 is more flexible and can also deal with aggregate level preference dynamics, but at

the price of an unnecessarily complex model.

To summarize, our new model (M0) handles individual and aggregate-level dynamics

well while avoiding overfitting due to the penalization. The WAIC correctly identifies the

correct model for each DGP, even in an application with a conservative amount of dynamic

heterogeneity. Thus, we suggest using our model for preference measurement as a default

and comparing it against simpler alternatives (M2 or M4) using fit measures and the WAIC.
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6 Conclusion

We presented how the concept of anisotropic tensor product interactions can be used to

construct highly flexible group-specific spline curves and, based on this, heterogeneously

time-varying coefficients. The choice of priors and hyperpriors introduces regularization

and, therefore, ensures that the flexibility of the approach does not lead to overfitting.

In Section 4, an exemplary application is presented, which outlines that heterogeneous

time variation exists in the empirical data for at least some of the variables. In addition, it

highlights that in cases where heterogeneous time variation is absent, the model does not

lead to overfitting due to the penalized estimation. Investigating several fit measures shows

that our approach captures the effects in the data better than any of the four competitive

models M1-M4. Precisely, the WAIC implies that this better model fit does not result

from overfitting. In addition, Section 4.4 outlines that this better model fit is not only of

theoretical interest but has practical relevance. Finally, the simulation study conducted in

Section 5 underlines the findings from the empirical application.

In conclusion, the presented modeling approach can capture highly complex time vari-

ations in the data. As demanded in the literature (especially by Guhl et al. (2018)) and

shown in the application, this is helpful in the context of CBC studies, especially for a large

number of repetitions T (20 choice sets in our application) and/or for complex products

(e.g., public goods). In addition, as the model results in one curve per respondent for each

variable, it also comes with good interpretability.

Some topics remain for future research: Further research is needed to investigate the

transferability of this approach to less structured applications, e.g., customer purchase

datasets. In such applications, the number of observations per respondent, as well as the

time between observations, usually vary between respondents, and for some respondents,

the data might be quite scarce between observations. In addition, (considerably) larger
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datasets might occur in other applications than CBC, e.g., scanner data where thousands

of respondents/households are included. For analyzing these datasets, it might be useful to

transfer this modeling approach into a frequentist framework. Even though the Bayesian

approach has theoretical advantages, it might not be feasible for much larger datasets due

to the high computational costs.
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SUPPLEMENTARY MATERIAL

Appendix A

Table 4 summarizes diagnostic information about the sampler for the estimation of model

M0 (see, e.g., Vehtari et al. 2021, for details about the computation and interpretation).

All R̂ are clearly smaller than 1.05, indicating that the Markov chains have mixed well and

convergence has been achieved. Furthermore, the effective sample size values (bulk and

tail) are reasonably large for reliable posterior inference.

Table 4: R̂ and effective sample size (ESS) of the estimation.

R̂ Bulk ESS Tail ESS

Fixed Effects:

Intercept (β0) 1.00 3342 4399

Non-native (β1) 1.00 1828 2564

Native (β2) 1.00 1888 3097

Donation (β3) 1.00 2298 3181

Smoothness Parameters:

Heterogeneity:

τ
(i)
0 1.00 1692 3171

τ
(i)
1 1.00 1778 2666

τ
(i)
2 1.00 2248 2856

τ
(i)
3 1.00 781 512

Dynamic:

τ
(t)
0 1.00 1899 3304

τ
(t)
1 1.00 1855 3119

τ
(t)
2 1.00 1178 2170

τ
(t)
3 1.00 981 1631

Figure 7 shows trace plots for all the parameters and chains of model M0. Visual

inspection of the trace plots confirms convergence and good mixing of the sampler.
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Figure 7: Trace plots of the estimation.
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Appendix B

Table 5 shows the estimation results of model M1. While the last column (labeled Bayes)

shows the results used in the paper’s main part, the first two columns summarize the results

using MLE. The model in the first column also differs w.r.t. the number of intercepts. We

present these results to show a) that our results closely replicate the original results in

Broadbent et al. (2010, Table 3) and b) that our preferred specification using one intercept

instead of two alternative-specific intercepts leads to almost identical results.

Table 5: Comparison of model M1 with and without alternative-specific intercepts.

MLE Bayes

Two intercepts One intercept One intercept

Intercept A (β0A) −0.177
[−0.947, 0.594]

Intercept B (β0B) −0.022
[−0.760, 0.716]

Intercept AB (β0) −0.033 −0.046
[−0.774, 0.708] [−0.781, 0.682]

Non-native (β1) 0.112 0.105 0.107
[0.064, 0.159] [0.058, 0.152] [0.061, 0.152]

Native (β2) 0.312 0.313 0.316
[0.253, 0.371] [0.255, 0.372] [0.258, 0.377]

Donation (β3) −0.172 −0.169 −0.171
[−0.210, −0.133] [−0.207, −0.130] [−0.212, −0.132]

log Lik −423.52 −424.42 −424.43

Notes: Brackets report 95 %-confidence or -credible intervals for the frequentist
or Bayesian estimation, respectively. For the model estimated using Bayesian
estimation, the log-likelihood value is evaluated at the posterior means of the
estimates to facilitate comparability.

All estimated intercepts are not statistically different from zero, and, therefore, the

difference between the intercepts of the model in column one (as used in Broadbent et al.

2010) is not significant. Indeed, a likelihood-ratio test between the models in the first

two columns shows that the model with two intercepts does not fit significantly better
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(χ2 = 1.789, df = 1, p = 0.1811). The small differences between the models’ estimates

also do not affect the substantive results. As in Broadbent et al. (2010), we computed

the WTP for removing non-native trees or planting native trees by dividing the respective

parameters by −β3 and used the delta method to obtain standard errors. The WTP value

for the model M1 with 2 intercepts is $0.66 (0.15) and $1.84 (0.22) for non-native and native

trees, respectively. The corresponding values for the model with one combined intercept

for both alternatives are $0.63 (0.15) and $1.88 (0.23). Hence, both variants of model M1

yield almost the same results. The estimation method also does not affect the WTP results,

as a comparison with the reported values in the paper shows. We conclude that we can

closely replicate the estimates in Broadbent et al. (2010) in the case without heterogeneity.

Furthermore, using the more parsimonious version of the model with one intercept neither

affects model fit nor substantive results.

Appendix C

Table 6 shows the full estimation results for all heterogeneous models (i.e., M2, M3, M4,

and M0). The results for the fixed effects are quite similar across models in terms of the

sign and magnitude of the effects. However, we need to be careful when interpreting utility

parameters from different models (for the same data set), as the estimates are also affected

by the scale of the model. Indeed, the magnitude of model M0 is slightly larger, which can

be explained by the superior fit of the model (and hence a smaller error variance).
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Table 6: Estimation results.

M2 M3 M4 M0

Fixed Effects:
Intercept 2.328 2.723 2.509 3.250

[0.224, 4.824] [0.293, 5.795] [0.031, 5.568] [0.427, 6.683]

Non-native 0.242 0.303 0.256 0.324
[0.087, 0.415] [0.118, 0.516] [0.062, 0.463] [0.117, 0.565]

Native 0.631 0.741 0.776 0.859
[0.459, 0.835] [0.53, 1.004] [0.566, 1.031] [0.597, 1.208]

Donation −0.342 −0.418 −0.357 −0.432
[−0.502, −0.209] [−0.613, −0.249] [−0.524, −0.217] [−0.652, −0.263]

Smoothness Parameters:
Heterogeneity:

τ
(i)
0 4.117 5.204 4.763 29.704

[1.751, 7.28] [2.298, 9.177] [2.213, 8.255] [13.945, 52.427]

τ
(i)
1 0.397 0.435 0.472 2.772

[0.257, 0.582] [0.253, 0.691] [0.309, 0.701] [1.715, 4.273]

τ
(i)
2 0.360 0.347 0.404 2.254

[0.211, 0.561] [0.056, 0.678] [0.238, 0.628] [1.132, 3.693]

τ
(i)
3 0.341 0.435 0.337 1.859

[0.213, 0.516] [0.312, 0.835] [0.203, 0.520] [0.722, 3.107]

Dynamic:

τ
(t)
0 0.079 3.477 2.566

[0.003, 0.238] [0.068, 18.205] [0.088, 7.496]

τ
(t)
1 0.011 0.171 0.146

[0.001, 0.027] [0.003, 0.852] [0.005, 0.443]

τ
(t)
2 0.023 1.981 0.554

[0.002, 0.053] [0.294, 6.885] [0.043, 1.279]

τ
(t)
3 0.019 0.442 0.646

[0.002, 0.04] [0.021, 1.835] [0.262, 1.118]

Notes: Posterior means and the corresponding 95 %-credible intervals. For each model, τ
(i)
l and

τ
(t)
l measure for variable l the amount heterogeneity and dynamic, respectively. However, the
values are not always directly comparable across models, particularly for the dynamic compo-
nent.
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3.4 Capturing heterogeneous time-variation in covariate effects
in non-proportional hazard regression models

This article discusses multidimensional covariate effects, i.e. the third direction of multidi-
mensionality, within the context of survival data. Here, the functional random coefficients
introduced in Section 3.3 are applied to hazard regression models to capture the effect of
covariates that influence the survival time in a heterogeneously time-varying manner. In
contrast to Section 3.3, frequentist inference is used for numerical reasons. The superiority
of this approach in comparison to competitors is demonstrated by means of a simulation
study. Finally, the practical relevance of the proposed method is outlined by presenting
a brain tumor case study.
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Abstract

A central focus in survival analysis is examining how covariates influence survival time. These
covariate effects are often found to be either time-varying, heterogeneous – such as being specific
to patients, treatments, or subgroups – or exhibit both characteristics simultaneously. While the
standard model, the Cox proportional hazards model, allows neither time-varying nor heterogeneous
effects, several extensions to the Cox model as well as alternative modeling frameworks have been
introduced. However, no unified framework for incorporating heterogeneously time-varying effects
of covariates has been proposed. Such effects occur when a covariate influences survival not only
in a heterogeneous and time-varying manner, but when the time-variation is also heterogeneous.

We propose to model such effects by introducing heterogeneously time-varying coefficients to
piecewise exponential additive mixed models. We deploy functional random effects, also known
as factor smooths, to model such coefficients as the interaction effect of heterogeneity and time-
variation. Our approach allows for non-linear time-effects due to being based on penalized splines
and uses an efficient random effects basis to model the heterogeneity. Using a penalized basis
prevents overfitting in case of absence of such effects. In addition, the penalization mostly solves
the problem of choosing the number of intervals which is usually present in unregularized piece-
wise exponential approaches. We demonstrate the superiority of our approach in comparison to
competitors by means of a simulation study. Finally, the practical application and relevance are
outlined by presenting a brain tumor case study.

1 Introduction

One of the major topics in survival analysis is analyzing the effect covariates have on the survival time.
Frequently, the effects of these covariates can be observed to be either time-varying, heterogeneous,
i.e. patient-, treatment- or subgroup-specific, or even both. If the goal is to analyze the effects of
covariates on the survival time, hazard regression models play a critical role. They estimate the
hazard function, which represents the instantaneous rate of occurrence of the event at a given time,
conditional on survival up to that time. By incorporating covariates, hazard regression models allow
to assess the impact of various factors on the hazard rate and, hence, to identify significant effects.
The widely used standard model is the Cox proportional hazards model (Cox, 1972) where the hazard
rate of an observation i ∈ {1, ..., n} with corresponding covariate vector xi is given by

λi(t) = λ0(t) exp(x
⊤
i β),
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where β is the vector of regression coefficients. The assumption of proportionality of the hazards
results from the model being strictly split into the time-dependent baseline hazard λ0(t) and the time-
constant covariate effects exp(x⊤i β). In addition, the Cox model assumes the covariate effects to be
(exp-transformed) linear effects.
These strict assumptions are often not fulfilled in practice (Li et al., 2015; Jachno et al., 2019).
Frequently, this is caused by non-proportional hazards, i.e. the covariates or their effects are time-
dependent. In addition, in many cases the effects might not be linear but of a more complex form.
In particular, heterogeneity in terms of treatment-specific, subgroup-specific (e.g. gender-specific) or
individual effects might be present which cannot be captured properly by linear effects. Therefore,
several flexible extensions to the Cox model have been introduced. On the one hand, such extensions
relax the proportional hazards assumption: The most commonly used may be the stratified Cox model
in which for each level of a categorical variable a separate baseline hazard is fitted. Alternatively,
several studies (see, e.g., Zucker and Karr, 1990; Murphy and Sen, 1991) propose to include time-
varying coefficients in order to capture time-dependent covariate effects. In addition, Andersen and
Gill (1982) introduced an approach to include time-dependent covariates.
On the other hand, extensions of the Cox model have been introduced to allow for more complex
effects: Gray (1992) added non-linear smooth spline-based covariate effects and Hess (1994) uses
such effects to express covariate effects as a function of time. Regarding the heterogeneity, again the
stratified Cox model can be mentioned, where the baseline hazard can be group-specific. However,
a more natural way to account for heterogeneous effects, which also allows for more general types of
heterogeneity, is to introduce random effects leading to frailty models (Vaupel et al., 1979; Ripatti and
Palmgren, 2000; Therneau et al., 2003).
In contrast to adding specific extensions to the Cox model, several recent studies have aimed to
introduce a new flexible hazard regression framework: Kneib and Fahrmeir (2007) introduce Cox-type
structured hazard regression models

λi(t|xi) = λ0(t) exp

(
K∑

k=1

fk(xi, t)

)
= exp

(
λ̃0(t) +

K∑

k=1

fk(xi, t)

)
, (1)

where λ̃0(t) is the log-baseline hazard and fk can resemble different types of effects, e.g. linear effects,
smooth (spline-based) effects, time-varying effects or random effects/frailty. The inclusion of time-
varying effects allows for explicit modeling of non-proportional hazards. This approach was further
investigated by Hofner et al. (2011, 2013). The corresponding inference is conducted by mixed model-
based penalized likelihood estimation. However, the log-likelihood involves an integral over the hazard
rate. Hence, the estimation relies on numerical integration which is computationally costly and can
be subject to impreciseness. Alternatively, Hennerfeind et al. (2006) proposed a Bayesian estimation
scheme for such models. However, this approach is based on the same log-likelihood and, therefore,
shares these disadvantages.
Another approach to introduce models of the form (1) is given by piecewise exponential additive mixed
models (PAMM; Bender et al., 2018; Bender and Scheipl, 2018) which generalizes the concept of
piecewise exponential models (PEM; Friedman, 1982) from linear to additive predictor terms. The
underlying idea is to divide the time axis into a finite number of intervals and assume the hazard
rate to be piecewise constant within these intervals. While manually choosing the interval cut-off
points is a challenging task and a frequent source of criticism for PEMs, PAMMs avoid the arbitrary
choice of cut-off points by using a penalized approach providing a sufficiently good fit while preventing
overfitting. Under the assumption of piecewise constant hazard rates, restructuring the data leads to
the likelihood of the survival model being proportional to the one of a Poisson regression model (see
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Section 2 of Bender et al. (2018) for details). Hence, both models are equivalent with respect to their
maximum likelihood estimators and the model parameters are estimated based on the Poisson model.
Therefore, estimation can make use of existing methods and implementations for generalized linear
models (GLMs) in the case of PEMs and generalized additive (mixed) models (GAMs/GAMMs) in
the case of PAMMs.
While these approaches propose several flexible effects such as non-linear, time-varying and random
effects, none of them include heterogeneously time-varying effects of covariates. Such effects occur if
a covariate influences the survival time not only in a heterogeneous and time-varying manner, but the
time-varying effect is heterogeneous, too. A typical example would be that the effect of a covariate is
treatment specific, time-varying and that its time-variation is also treatment-specific, e.g., decreasing
for an intervention but increasing for a placebo. To the best of our knowledge, this study is the first
to propose heterogeneously time-varying covariate effects in hazard regression models.
Based on the framework of PAMMs, we introduce these heterogeneously time-varying coefficients as

fkg(t) · xik,

where g ∈ {1, ..., G} is the grouping variable. Besides treatments, the grouping can also correspond
to characteristics of the participants (e.g. gender or subdiagnoses), characteristics of the study (e.g.
centers in multicenter studies) or even individual heterogeneity. We propose to model such heteroge-
neously time-varying coefficients based on functional random effects (FRE; Kneib et al., 2019). This
leads to functional random coefficients, which Hagemann et al. (2024) recently proposed to use to cap-
ture heterogeneous time-variation in covariate effects. Their study focuses on conditional logit models,
a class of models commonly used in marketing research, but the approach is directly generalizable to
other GAMs and can therefore be applied to PAMMs as well. Functional random effects are also
known as factor smooth interactions or random wiggly curves (Wood, 2017) and are essentially tensor
product interactions of smooth effects and random effects.
This paper is structured as follows: In Section 2, piecewise exponential hazard regression models
including the corresponding inference are succinctly discussed. In Section 3, we introduce subgroup-
specific time variation in covariate effects using functional random coefficients. A simulation study is
conducted in Section 4 to show the ability of our approach to capture these effects as proposed. In
addition, the simulations demonstrate that the penalized approach prevents overfitting in the absence
of such effects. Section 5 illustrates the method and outlines its practical relevance by investigating
the effect of fraction genome altered as a predictor of survival time in patients with brain tumors.
Finally, Section 6 closes with a discussion.

2 Piecewise exponential hazard regression models

2.1 Piecewise exponential models

Piecewise exponential models (PEM; Friedman, 1982) are an alternative to classical approaches in
survival regression, especially to the Cox model. Their main advantage is that the corresponding
inference can be based on a Poisson model and, hence, can make use of existing tools for generalized
linear models (GLMs) and generalized additive models (GAMs). They require the partition of the
time axis into a finite number of intervals and assume the hazard rate to be constant within each
interval. The piecewise exponential model is defined as

λi(t|xi) = λ0(tj) exp(η(xi, tj)) ∀ t ∈ (κj−1, κj ], (2)
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where η(xi, tj) is the predictor term, (κj−1, κj ], j = 1, ..., J are the intervals for which the hazard
rate is assumed to be constant, κ0 = 0 and κJ = max(t). There are different ways of choosing
tj , j = 1, ..., J , i.e. the time values at which the hazard function 2 is evaluated. The two most
frequently used approaches are interval end-points tj = κj ∀ t ∈ (κj−1, κj ] and interval mid-points
tj = 0.5(κj + κj−1) ∀ t ∈ (κj−1, κj ].
In order to make use of the piecewise exponential approach, it is convenient to restructure the data as
outlined by Friedman (1982) and Bender et al. (2018). Therefore, let Ti denote the true survival time
and Ci the (non-informative) censoring time for subject i ∈ {1, ..., n} such that ti := min(Ti, Ci) is its
observed right-censored time under risk. The data is then restructured, such that for each subject i
there is a row for each interval j in which it was under risk. These rows contain tij , an interval-specific
event indicator δij , formally being defined by

δij =

{
1 if ti ∈ (κj−1, κj ] and ti = Ti,
0 else,

as well as an offset value oij = log(tij) that gives the log-transformed time under risk and will be
needed for the model estimation.
Friedman (1982) proposed a linear time-constant predictor η(xi, tj) = x⊤

i β implying a proportional
hazards model. However, this easily generalizes to more complex effects, including time-varying effects,
which implies a non-proportional hazards model. This leads to the class of piecewise exponential
additive mixed models (PAMM; Bender et al., 2018; Bender and Scheipl, 2018).

2.2 Piecewise exponential additive mixed models

Using PAMMs, a structured additive hazard regression model of the form (1) can be constructed as

λi(t|xi) = exp

(
λ̃0(tj) +

K∑

k=1

fk(xi, tj)

)
, ∀ t ∈ (κj−1, κj ].

where xi denotes the covariate vector for subject i. The above notation slightly deviates from the one
of Bender et al. (2018) as we do not include different effect types explicitly but implicitly as special
cases of fk(xi, tj). Typical examples are, among others, linear effects fk(xi, tj) = βp ·xip, time-constant
non-linear effects fk(xi, tj) = fk(xi), linearly time-varying effects fk(xi, tj) = βp · xip · tj as well as
frailty/random effects. In addition, this can be easily generalized to time-varying covariates xipt.
However, since time-varying covariates are not our focus, we omit them here for notational simplicity
and refer the reader to section 3.4 of Bender et al. (2018).
In contrast to classical PEMs, for which Friedman (1982) suggested a step function as baseline hazard,
Bender et al. (2018) propose to use a penalized regression spline as baseline hazard for PAMMs. This
eliminates the problem of manually selecting the interval cutoff points, which is a challenging task
and a common criticism of PEMs. By deploying a penalized approach, the number of cut-off points
just needs to be large enough to provide a sufficiently good fit while overfitting is prevented due to
the penalization. Hence, the standard choice of cut-off points for PAMMs is using all unique observed
survival times. For sufficiently large datasets with relatively dense and precisely measured survival
times (leading to only few ties) this usually leads to very narrow intervals. Therefore, the assumption
of constant hazard rates is not very strict in practice, as it only applies for quite short intervals. In
addition, in many applications this makes the choice of tj within the interval mostly irrelevant as there
are no large differences. Hence, interval end points, i.e. tj = κj , are often just chosen for simplicity.

4

108



2.3 Poisson-likelihood based inference and software implementation

As outlined by Bender et al. (2018) the main advantage of PAMMs is that their likelihood is propor-
tional to the one of a Poisson regression model

E(δij |xi) = exp(λ̃0(tj) + η(xi, tj) + oij). (3)

Hence, both models are equivalent with respect to their parameters and the corresponding estimation
can be conducted based on the Poisson model. Therefore, the inference can be based on existing
methods and one can make use of the methodological and algorithmic advances in the estimation of
GAMs. This includes both, frequentist (e.g. Wood, 2011) as well as Bayesian methods (e.g. Kneib
et al., 2019). While the Bayesian approach may have theoretical and interpretive advantages in many
cases, it is often not numerically feasible because the data transformation discussed in Section 2.1 can
strongly enlarge the datasets leading to very high computational costs.
Estimating the smoothing parameters is a challenging task in frequentist inference. Besides other al-
ternatives (see, e.g. Fahrmeir et al. (2022) or Wood (2017) for an overview), Wood (2011) proposes a
method utilizing a random effects perspective while avoiding the formal mixed model framework. The
smoothing parameters are estimated directly from the restricted likelihood function without requiring
the specification of a full mixed model structure. This is achieved by using a direct Laplace approxima-
tion that integrates out the random effects, i.e. the spline coefficients. Hence, this method optimizes
a well-defined likelihood function directly with respect to the smoothing parameters. Therefore, it
bypasses the need to solve mixed-model equations.
As discussed by Wood (2017), this method is advantageous compared to smoothness selection criterion-
based and full mixed model-based approaches in terms of convergence, precision and numerical sta-
bility.

3 Capturing heterogeneous time-variation in covariate effects using
functional random coefficients

Within the framework of PAMMs several effect types have already been introduced, including smooth,
linearly time-varying effects tj · fk(xik), linear, smoothly time-varying effects fk(tj) · xik, smooth,
smoothly time-varying effects fk(xik, tj) (see table 3 of Bender et al. (2018) and table 1 of Bender
and Scheipl (2018) for a complete overview) as well as random effects (in terms of log-normal frailty).
However, heterogeneously time-varying effects of covariates have not yet been considered. They can
be denoted as

fkg(t) · xik,
where g ∈ {1, ..., G} is the grouping variable. Formally, g also has an index i but we omit that here
to avoid double indices. These effects go one step further as they are not only heterogeneous and
time-varying but the time-variation is potentially heterogeneous, too.
We model these effects by functional random coefficients, which have been recently proposed by
Hagemann et al. (2024). They are constructed by using functional random effects (FRE; Kneib
et al., 2019) as varying coefficients. For better readability, we will leave out the effect index k for the
remainder of this section. By using such FREs, we can model whole nonlinear time curves of continuous
covariate effects group-specifically. FREs are essentially two-dimensional anisotropic tensor product
interactions, that is fg(t) := f(g, t), of a random effect and a smooth time effect.
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In order to introduce anisotropic tensor product interactions formally, we first express the two main
effects f1(g) and f2(t) in terms of basis function expansion as

f1(g) =

D1∑

d1=1

γ1d1B1d1(g), f2(t) =

D2∑

d2=1

γ2d2B2d2(t),

where B1d1(g) and B2d2(t) are the basis functions, γ1d1 and γ2d2 are the basis coefficients and D1 and
D2 are corresponding dimensions. For an introduction to univariate basis function expansions the
reader is refereed to Fahrmeir et al. (2022) or Wood (2017). Their tensor product interaction is then
given by

f(g, t) =

D1∑

d1=1

D2∑

d2=1

γd1d2Bd1d2(g, t),

where the tensor product basis functions

Bd1d2(g, t) = B1d1(g)B2d2(t)

result from pairwise interactions of the main effect basis functions.
While such tensor product interactions are mainly used to construct interaction surfaces of continuous
variables, we can also use them to interact smooth effects with random effects by choosing the basis
functions correspondingly. Hence, we consider i.i.d. random effects, i.e. log-normal frailty, for the first
main effect. As outlined by Kneib et al. (2019) and Hagemann et al. (2024), the corresponding basis
function representation is given by

f(g) =

D1∑

d1=1

γ1d1B1d1(g) =

G∑

d1=1

γ1d11(g = d1) = γ1g (4)

with the D1 = G basis functions being indicator functions for the group membership. The time-
varying effect, i.e. the second main effect, can be modeled using P-splines (Eilers and Marx, 1996).
That is, using B-spline basis functions in combination with a discrete, usually a first- or second-order,
penalty. Accordingly, the univariate penalty matrix of the random effect is given as a unit matrix IG
of dimension G and that of the P-spline as D⊤

D2
DD2 where DD2 is a first or second order difference

matrix of dimension D2. Alternatively, other forms of penalized splines can be used as well, e.g. thin
plate splines (Wood, 2003).
There are different ways of implementing penalties for tensor product interactions: it can be based on
a straight forward combination of univariate penalty matrices (see Kneib et al. (2019) for such an ap-
proach). Alternatively, Wood et al. (2013) developed an approach which is not such a straight forward
combination of univariate penalty matrices but is numerically advantageous, especially when conduct-
ing frequentist inference. This construction is based on reparameterizing the univariate smooths into
fixed and random effects using an eigendecomposition of the penalty matrix. This leads to splitting
the smooths into components that are not penalized, e.g. constant or linear terms, and components
that are subject to penalization. The model matrix for the tensor product smooth is then constructed
by calculating row-wise Kronecker products of these components. This results in each component
being subject to at most one penalty which makes estimation numerically stable. For the detailed
step-wise construction procedure see section 3 of Wood et al. (2013).
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4 Simulations

In this simulation study, we investigate the performance of the proposed approach with regard to two
critical aspects: achieving superior fit when heterogeneous time-variation is present and preventing
overfitting in its absence.

4.1 Software implementation

The data transformation discussed in Section 2.1 can be conducted in R by using the function as ped

from the package pammtools (Bender and Scheipl, 2018).
Frequentist estimation of the Poisson model is implemented in in the R package mgcv: the method of
Wood (2011) can be used via the function gam with method="REML".
The tensor product constructor proposed by Wood et al. (2013), which is discussed in Section 3, is
implemented in the R package mgcv as function t2. In addition, based on t2, a numerically optimized
implementation of the FRE is given by s(bs = "fs"). The FRE can then be deployed as varying
coefficient by linearly interacting it via the by argument leading to a functional random coefficient.
Using this numerically optimized version, we can implement a functional random coefficient for a
variable x as

s(g, t, by = x, bs = "fs", xt = list(bs = "ps"), m = c(3, 1)),

where g is the grouping variable encoded as factor, t is the time variable and a cubic P-spline with
first order penalty is used.

4.2 Data generating processes and models

In order to generate survival data, both parts of the simulation study use the hazard function

λi(t|x1i, x2i) = exp (3t+ 3xi1 + f(xi2, t, g)) , (5)

which depends on three explanatory variables: x1, x2 and g, the grouping variable with 4 levels. In the
first part, referred to as scenario (I), heterogeneous time variation is deployed for the effect of x2, i.e.
f(x2i, t, g) = fg(t) · x2i. We then compare the fit of the model using the functional random coefficient
for x2, referred to as model (i), to the one of competing models, which are given by model (ii) including
heterogeneity (as random effect) and time-variation but not their interaction, model (iii) including only
heterogeneity, and model (iv) including only time-variation. Hence, the three competitors contain less
flexible nested effects and, therefore, are suspected to have an inferior model fit. In order to investigate
the prevention of overfitting, the second part of the simulation study uses these three cases as data
generating processes (DGP) and again fits the four models, leading to simulation scenarios (II)-(IV).
The resulting four simulation scenarios are summarized in Table 1.

Table 1: Overview over the four simulation scenarios, their DGPs and the models corresponding to
these DGPs.

Scenario Effect of x2 in the DGP Model

(I) Heterogeneous time-variation (i)
(II) Heterogeneity & time-variation but no interaction (ii)
(III) Heterogeneity only (iii)
(IV) Time-variation only (iv)
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Figure 1: Effect of x2 in the DGPs of the four scenarios. The first subplot (from the left) shows
scenario (I), i.e. heterogeneous time-variation, the second one scenario (II), i.e. the combination of
heterogeneity and time-variation (without interaction), the third one scenario (III), i.e. heterogeneity
only, and the last one scenario (IV), i.e. time variation only.

Figure 1 shows the effect of x2 that is deployed in the DGP of each of the four scenarios. It can be
observed that in scenario (IV) all subjects follow the curve that applies for group 1 in scenario (I).
The effect of scenario (II) results from adding up 1

2 of the effect of scenario (III) and 1
2 of the effect of

scenario (IV).
The simulation is conducted with three different sample sizes, n = 200, 400 and 800 observations,
equally distributed among the four groups. This leads to 50, 100 and 200 observations per group,
respectively. The explanatory variables x1 and x2 are sampled from a uniform distribution, i.e.

x1, x2
i.i.d.∼ U [0, 1]

and the survival times are then sampled from 5 using the algorithm of Bender et al. (2005). Censoring
is introduced with exponentially distributed censoring times, leading to an average censoring rate of
10.5%. The in-sample model fit is evaluated based on the log-likelihood and the integrated Brier score
(IBS; Graf et al., 1999), also known as the cumulative in-sample prediction error. Hence, a smaller IBS
is associated with a better model fit. The out-of-sample predictive accuracy is approximated based
on an information criterion, namely the Akaike information criterion (AIC). The effective degrees of
freedom, which is needed to compute the AIC of penalized models, is calculated according to Wood
et al. (2016).

4.3 Results

The simulation is carried out with 1000 repetitions and it can be observed that the results are almost
the same across the different sample sizes. Therefore, only the results for the medium sample size,
which are shown in Figure 2, are discussed here. The outcomes for the small and large sample sizes
are shown in Figures S1 and S2 of the supplementary materials.
It can be observed that, in the presence of heterogeneous time-variation, model (i) leads to a better
model fit than the less flexible approaches (ii)-(iv). In addition, the difference between model (i) and
the still quite flexible model (ii) is considerably larger than the difference between model (ii) and
models (iii) and (iv). The fact that this also applies with regard to the AIC implies that this might
not be caused by overfitting, but by modeling the underlying DGP more accurately.
Regarding the fit of the models in scenarios (II) and (IV), we can observe the desired behavior. Here,
the fit of model (i) and the model resembling the DGP, i.e. model (ii) and (iv) respectively, is almost
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Figure 2: Results of the simulation study with n = 400 in terms of the three fit measures. For each of
the scenarios (I) - (IV) there is one block of consisting of four boxplots, one for each model (i) - (iv).
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equal for all three fit measures. This strongly indicates that model (i) is penalized towards the true
(less complex) model, as desired. In contrast, in scenario (III) we can observe model (i) to fit slightly
better than model (iii), which resembles the underlying DGP. However, when looking at the estimated
models visually (visualizations for the first 100 simulation repetitions are uploaded together with the
R code), it is, with few exceptions, clearly observable that there might most likely be no time-varying
effect. In addition, it should be noted that the problem of slight overfitting also applies for model (ii).
In conclusion, the simulation study shows that the proposed functional random coefficient approach
can flexibly capture heterogeneous time-variation within the covariable effects. In addition, if the
time-variation is homogeneous, our proposed model does not lead to overfitting due being penalized
towards the true model. Only if time-variation is fully absent, slight overfitting can be observed.
However, in these cases, it is usually easy to visually recognize that there might not be any time
variation in the data. Therefore, model selection should always involve a visual inspection and should
not be based solely on fit measures. These results are mostly unaffected by the sample size.

5 Brain tumor case study

We apply the proposed approach to a brain tumor survival example based on data from Ceccarelli et al.
(2016). This dataset includes patients with a glioma divided into five different diagnoses: anaplastic
astrocytoma, astrocytoma (other), anaplastic oligodendroglioma, oligodendroglioma (other), glioblas-
toma and mixed glioma. After removing 37 patients due to missing values, the total number of
participants is n = 1094, of which 593 are non-censored and 501 are censored. Survival times were
recorded exact to the day and for 3 persons, who died already on their admission day, the survival
time is set to half a day. We introduce an end-of-study, i.e. an administrative censoring, after 8 years
because only 28 patients remain at this time. In addition to the five diagnoses, the age and sex of the
patients and fraction genome altered (FGA) are recorded.
The FGA is commonly used in cancer research and represents the proportion of a tumor’s genome that
is affected by gains or losses of DNA segments, e.g. amplifications or deletions. Previous studies (see,
e.g. Mehta et al., 2005) show that a higher FGA can be an indicator for aggressive tumor behavior
and Dhital and Rodriguez-Bravo (2023) even state that a high FGA is an independent predictor for
a reduced overall survival.
We suspect that the effect of the FGA might be time-varying and diagnosis-specific and that the
time-variation might also be heterogeneous between diagnoses. Therefore, we model this effect by a
functional random coefficient. This leads to the final model being a PAMM with a P-spline based
baseline hazard, the diagnosis-specifically time-varying effect of FGA, a linear effect for sex and age
and a fixed effect for the diagnosis. For both, the log-baseline hazard and the functional random effect,
we choose cubic P-splines with first order penalty and 9 inner knots, such that each of the intervals
corresponds to one year.
The estimated regression coefficients are shown in Table 2. A higher age significantly increases the
hazard rate, which is an expected result as age usually increases the risk of death. In contrast, the
effect of sex is not significant at a 5%-level. Compared to the anaplastic astrocytoma, which is the
reference category, all other diagnoses significantly influence the hazard function. While the risk of
death is increased for the glioblastoma, it is reduced for the other three diagnoses.
The non-linear baseline hazard as well as the effect of the FGA is shown in Figure 3. Both effects are
significant with regard to the test of Wood (2012). The baseline hazard increases nearly linearly for
the first year and a half, then decreases slightly for another year and a half, and then remains nearly
constant for the next three years before increasing again. With regard to the effect of FGA, our main
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Table 2: Results for the fitted model: for the linear effects the estimated coefficients (Coef.), the
standard error (SE) and the p-value, resulting from a z-test, is shown. For the smooth terms the
p-value corresponds to the test of Wood (2012).

Linear effects: Coef. SE p-value

Age 0.0401 0.0033 < 0.0001
Sex: male 0.1481 0.0849 0.0811
Diagnosis: astrocytoma (other) -1.4830 0.4424 0.0008
Diagnosis: mixed glioma -0.8081 0.2617 0.0020
Diagnosis: anaplastic oligodendroglioma -0.8842 0.2868 0.0020
Diagnosis: oligodendroglioma (other) -1.5816 0.3347 < 0.0001
Diagnosis: glioblastoma 0.9002 0.1670 < 0.0001

Smooth terms: p-value

log-baseline: f(t) < 0.0001
FGA: fDiagnosis(t)· FGA 0.0002

Table 3: Fit measures for the proposed functional random coefficient and its competitors including a
simple linear effect. The fit is measured in terms of the log-likelihood (logLik), the integrated Brier
score (IBS) and the AIC.

logLik IBS AIC

Heterogeneous time-variation -4099.36 0.1162 8238.87
Heterogeneity and time-variation -4108.27 0.1174 8250.03
Heterogeneity only -4111.04 0.1185 8250.50
Time-variation only -4111.00 0.1184 8251.44
Linear effect -4111.01 0.1184 8251.20

focus, we can indeed observe that the effect of FGA strongly varies over time as well as between the
diagnoses and that the time variation is also quite different between the diagnoses. While there are no
major differences in the first year and a half, the curves differ considerably thereafter. While the effect
decreases over time for glioblastoma, it increases for the other four diagnoses. Hence, these effects
might cancel out if the time-variation is not modeled diagnosis-specific. This outlines the practical
relevance of our approach.
We compare the model fit to the competitors introduced in Section 4 as well as a model deploying a
simple linear effect of FGA, which is shown in Table 3. It can be observed that modeling the time-
varying effect of FGA diagnoses specifically leads to the best model fit. This also agrees with the
visual impression from Figure 3. Including only random effects or only time variation does not lead
to a notable increase in model fit compared to the linear effect. In addition, even the model including
heterogeneity as well as time-variation only slightly increases the model fit compared to the increase
that is achieved by using the functional random coefficient. This coincides with the impression from
Figure 3, indicating that the time-variation might cancel out if it is not modeled diagnoses specifically.
The fact that this also applies to the AIC indicates that this does not result from overfitting.
In conclusion, in this application, the use of a functional random coefficient allowed us to capture
diagnosis-specific time variation in the effect of FGA on survival. In addition, the individual curves
shown in Figure 3 can improve the understanding of FGA as a predictor of survival.
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Figure 3: Estimated Smooth effects for the log-baseline function and the functional random coefficient
of FGA.

6 Conclusion

In this paper, we introduced heterogeneously time-varying covariable effects to hazard regression
models. This provides an appropriate model for cases in which the effect of a covariable is not only
time-varying and subgroup-specific but its time-variation is subgroup specific, too.
The proposed method makes use of the existing framework of PAMMs which enables us to deploy an
efficient Poisson model-based inference. Our approach allows for non-linear time-effects due to being
based on penalized splines and uses an efficient random effects basis to model the heterogeneity. In
addition, the penalization mostly prevents our method from overfitting in absence of heterogeneous
time-variation. The corresponding simulation study only shows slight overfitting if time-effects are
fully absent. However, it is easy to visually assess such cases. On the other hand, in presence of
heterogeneous time-variation, the simulation study outlines the superior fit of your approach.
We apply this model to a brain tumor case study. Here, the effect of the FGA varies over time and this
time-variation is highly diagnosis-specific. Therefore, modeling FGA with a diagnosis-specific time-
varying effect not only greatly improves the model fit, but also prevents the effects from canceling each
other out. This provides additional interpretability and may lead to a better understanding of FGA
as a risk predictor. Thus, this case study outlines the practical relevance of the proposed method.
Future possible research includes introducing this type of effect to Bayesian survival models. This
is mainly a matter of computational efficiency since in a Bayesian setting, for both – the piecewise
exponential approach and the direct approach involving an integral over the hazard rate – estimating
a FRE might lead to very high computational costs. In addition, other applications, such as use in
multicenter studies, should be explored.

Supplementary Material

Supplementary material is available online.
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4 Discussion

In this thesis, four articles discuss three different aspects of multidimensionality in bio-
statistics. While the former two articles investigate the effects of multidimensionality
on model-based equivalence tests, the latter two examine multidimensionality in hazard
regression models as well as the underlying generalized additive regression models.

The first contribution focuses on multivariate dependent outcome variables in model-based
equivalence tests. This is motivated by a dose-response study where the effects on efficacy
and toxicity are jointly investigated. It discusses the previous work of Möllenhoff et al.
(2021) and its limitations: their approach is only applicable to bivariate binary responses.
In contrast, the approach suggested in this article is flexible concerning the dimensions
of the outcome as well as its marginal distributions, including mixed outcomes. This
method is based on generalized joint regression models as a flexible framework to model
such outcomes. It deploys the Gaussian copula due to being flexible for practical modeling
which is also supported by previous studies. Based on this model, a testing algorithm
is developed. It is similar to the one of Möllenhoff et al. (2021) but proposes to use the
maximum of maxima test statistic rather than the one based on the intersection-union
principle, which was observed to be overly conservative for smaller sample sizes. This aims
for an increased power for small sample sizes while retaining the asymptotic properties.
In fact, the extensive simulation study shows a considerable power increase for small and
medium sample sizes, exceeding in some cases by over 5-fold. The case study reanalyzes
the dataset from Möllenhoff et al. (2021) but without the need to transform one of the
responses from a continuous to a binary variable due to the more flexible method. In
contrast to Möllenhoff et al. (2021), equivalence can be concluded for a threshold value
of ε = 0.15 which can be reasoned by both, not losing information by avoiding the data
transformation or the more powerful test. Therefore, the case study outlines the practical
relevance of the proposed approach.

The second contribution discusses the issue of model uncertainty: the test of Dette et al.
(2018) as well as all further developments based thereon rely on the assumption of knowing
the true underlying model. However, this is usually not the case in applied research. To
overcome the model uncertainty, this article proposes a flexible model averaging method
which relies on the BIC. This ensures that the asymptotic properties of Dette et al. (2018)
are retained. Using model averaging increases the estimation complexity leading to the
problem that in many cases the testing algorithm of Dette et al. (2018) is no longer numer-
ically feasible. Therefore, an alternative testing procedure is used that utilizes the duality
of tests and confidence intervals rather than simulating the distribution under the null
hypothesis and provides a numerically stable procedure. Moreover, this approach leads
to additional interpretability due to the provided confidence intervals. The simulation
study outlines that model misspecification can lead to either type I error inflation or a
lack of power, both often to a substantial extent. Model averaging considerably reduced
these problems and in many cases achieved results similar to those obtained using the
true underlying model. The case study shows that this approach is essential in order to
test for the equivalence of time-gene expression curves for a large number of genes. This
results from the fact that in this application there is no strong prior knowledge about
the underlying models and choosing the models manually would be time-consuming and
could easily lead to many model misspecifications.

123



In the third contribution, the necessity of developing heterogeneously time-varying co-
variable effects for generalized additive models is discussed. This is motivated by discrete
choice experiments, a popular study type in marketing research, in which respondent-
specific time-variation is suspected. Such effects are captured by functional random co-
efficients, which are constructed as anisotropic tensor product interactions of the main
effects, i.e. time-variation and heterogeneity. While random effects are used as the main
effect for the heterogeneity, a penalized spline is deployed for the time effect. Bayesian
estimation using Hamiltonian Monte Carlo is suggested, where the choice of priors and
hyperpriors introduces regularization and thus ensures that the flexibility of the approach
does not lead to overfitting. The presented case study outlines the practical relevance in
terms of the presence of the suspected effect as well as an increased model fit in com-
parison to competing models. In addition, the WAIC implies that the increased model
fit does not result from overfitting. A simulation study underlines both – the model’s
capability to flexibly capture heterogeneous time-variation whenever it is present and its
ability to prevent overfitting in case of the absence of the supposed effect due to the
penalized estimation.

In contrast to the third article, the fourth contribution considers time-to-event data and
investigates the adaptation of heterogeneously time-varying covariable effects for this type
of data. Therefore, the concept of functional random coefficients is transferred to hazard
regression models. The proposed method makes use of the existing framework of PAMMs
and hence deploys an efficient Poisson model-based inference. Unlike the third article,
frequentist inference is conducted due to numerical reasons. The simulation study shows
that the penalization mostly prevents overfitting in the absence of heterogeneous time-
variation. Only if time effects are fully absent, which is easy to visually assess, slight
overfitting can be observed. On the other hand, in the presence of heterogeneous time-
variation, the simulation study outlines the superior fit of the proposed approach. The
brain tumor case study outlines the practical relevance of the proposed method: the effect
of FGA, one of the covariables, is modeled with a diagnosis-specific time-varying effect,
leading to a considerable improvement of the model fit and preventing the effects from
canceling each other out. This also provides additional interpretability and thus may
allow a better understanding of FGA as a risk predictor.

In conclusion, one method is developed for each of these three different aspects of multidi-
mensionality. The new methods introduce additional flexibility while either retaining the
asymptotic properties of the model-based equivalence test or the prevention of overfitting
of the regression models. In each of the four articles, a simulation study shows that the
issue under consideration was successfully resolved and the four case studies outline the
practical relevance of the proposed methods.

Future possible research includes the individual extensions mentioned in the four articles.
For the first article, this includes implementing generalized joint regression models with
more than three dimensions, investigating alternative copula options, adapting the test-
ing procedure for less standard distributions as well as the derivation of a power formula.
With regard to the second article, further research is needed in order to develop methods
for other model averaging techniques, e.g. cross validation-based model averaging. In-
vestigating the transferability of the approach to less structured applications is the most
relevant extension of the third contribution. Transferring the approach to other applica-
tions, particularly multicenter studies, is also a remaining topic of the fourth article. In
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addition, introducing this type of effect to Bayesian survival models also merits further
research. Additional topics for future research also result from the combination of the
methods, e.g. the introduction of model averaging to the model-based equivalence test for
multivariate responses. In addition, with regard to multidimensionality in biostatistics
in general, there are also remaining research questions that are either related to another
direction of multidimensionality, e.g. equivalence tests with high-dimensional explana-
tory variables like images, or to other statistical methods, e.g. multivariate responses in
non-parametric tests.
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veröffentlichten Werken dem Wortlaut oder dem Sinn nach entnommen wurden, sind als
solche kenntlich gemacht. Ich versichere an Eides statt, dass diese Dissertation noch keiner
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