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Abstract

The Hubbard model is a paradigmatic model in condensed matter physics, which provides a
rich playground for investigating the physics of a wide range of strongly correlated electronic
systems. The core principle of the Hubbard model is the competition between Coulomb repul-
sions and hoppings. An important limit in the model is the Mott insulating regime, which is
realized in the strong interaction limit. As a result, electrons get localized on single atomic sites
at half-filling. In this thesis, we investigate extensions of this idea to cluster Mott insulators.
These are special materials where electrons are now localized on clusters of sites. We use the
theoretical framework that we develop to explore the physics of real cluster Mott materials.

To that end, in a first study, we construct and study the cluster Hubbard model on a plethora
of different clusters. We propose a new selection rule, called the cluster Hund’s rule, which
provides guidelines as to which states qualify as ground states in the pure interaction limit
of the cluster Hubbard Hamiltonian. Using a combination of analytical insights and exact
diagonalization, we conducted a comprehensive investigation of the emergent degrees of freedom
in clusters of different geometries and fillings. This study helped us understand how these cluster
Mott degrees of freedom respond to the interplay of strong correlations and hopping.

In a second study, we investigated the cause of the observed magnetic signatures in Ba4LiIr3O12.
This material hosts iridium dimers, and was expected to be non-magnetic since it possesses com-
pletely filled shells. Using insights from our previous study, we were able to detect non-trivial
ground state degeneracies called non-Kramers doublets as the reason behind the observed mag-
netism of the material. Hence, we established Ba4LiIr3O12 as the first cluster Mott material
whose physics is driven by non-Kramers doublets.

Having constructed this theoretical framework so far, we used it in our third study to inves-
tigate real materials which host trimer clusters – hexagonal perovskites of the form A4BM3O12,
and considered different fillings of 3d to 5d transition-metal “M” ions. Through a systematic
treatment, we verified the observed magnetic moments for a wide variety of trimer materials.
In addition, we also obtained the composition of magnetic moments in different directions. We
use this study to propose ground state properties and phase diagrams for materials that are
likely to be synthesized in the future.
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Introduction

Chapter

1

Philip Anderson, being one of the physicists who revolutionized the study of strongly correlated
systems at large, also had many words of wisdom to impart, which perfectly and beautifully
encapsulated the essence and intuition behind many developments in condensed matter physics
in the latter half of the 20th century. One of the cornerstones of his contributions was towards
the concept of localization. In his Nobel lecture [1], he found inspiration in the unlikeliest of
sources, Lewis Carroll’s Alice in Wonderland – “Now here, you see, it takes all the running you
can do, to keep in the same place”. This sentence aptly captures why physicists are fascinated
with electrons in solids.

In fact, the Nobel Prize in Physics in 1977 was all about different figurative manifestations
of the phrase “all the running”, to keep electrons in the same place. On one hand, Anderson
pioneered the concept of Anderson localization [2], a phenomenon that exemplifies the vital
role of disorder in the movement of electrons, and has, over the decades, become ubiquitous in
a variety of condensed matter systems [3–15].

On the other hand, the second Nobel laureate of 1977, Sir Neville Mott, focused on a different
facet of “all the running”. He introduced the concept of a Mott insulating phase, a phenomenon
that exemplifies the role of interactions between electrons, in localizing them [16]. To close
the loop, the third Nobel laureate, John Van Vleck, studied their manifestations in terms of
magnetic signatures [17]. Ever since then, one of the major trajectories of condensed matter
physics has been to understand localization and its consequences in many-body problems.

While one half of the story in this thesis is about localization, especially of the nature that Sir
Mott championed, the second half of the story also finds motivation from another of Anderson’s
adages of wisdom: “More is different” [18]. In the spirit of Anderson’s essay, one can pose the
question: How can Mott insulators be used as a playground to study new physics?” What
would “more” mean in such a context? What would “different” mean in such a context?

The playground that a Mott insulator provides has previously been explored theoretically
and experimentally. This has led to many important developments, such as insights into the
Hubbard model on various lattices [19, 20], Kitaev physics and quantum spin liquids [21–26],
high-Tc superconductivity [27], charge density waves [28, 29], quantum criticality [30], and
valence bond solids [31], to name a few.

In this thesis, we study the newest addition to the playground, by exploring extensions to the

13



1 Introduction

concept of a Mott insulator: We add additional orbitals to every site, while also considering
clusters of sites embedded on a larger lattice. These “cluster” Mott insulators have been
subject to enthusiastic scrutiny, with various techniques such as RIXS [32–34] and DFT/DMFT,
among others [35], used to explore an ever-growing list of cluster Mott materials that are being
synthesized.

However, there exists very little theoretical perspective on the properties of cluster Mott
insulators and, more importantly, on the vastly different behaviors that materials in the same
family sometimes display [36–40]. Through the course of the thesis, we follow a bottom-up
approach to building an understanding of cluster Mott materials. We start with toy models
that capture core interactions within and between clusters in a material, and later apply them
in the context of real cluster Mott candidate materials, while also trying to understand some
new physics that emerges along the way. We employ a blend of theoretical and numerical
approaches to gain insights into the comprehensive study we embarked upon.

In Chapter 2, we provide a brief overview of localization and Mott insulators. We discuss
the factors that determine the pull and push of electrons in a real crystal. We will also briefly
touch upon how these can be denoted using different measures and languages, such as bonding
and oxidation states.

In Chapter 3, we discuss the core numerical machinery that went into the story – exact
diagonalization. In this chapter, we discuss the need for such a technique in the field of strongly-
correlated systems, and also explain how to mitigate the numerical obstacle of dealing with very
large eigenvalue problems.

Chapter 4 focuses on the concept of a cluster. We begin with a brief survey of different
clusters that are hosted by various materials, and various materials that have been synthesized
so far, which have hosted such clusters. We then establish some core theoretical foundations
for a cluster Mott insulator. Here, we construct the cluster Hamiltonian as an extension to
the conventional Hubbard Hamiltonian that governs a conventional Mott insulator. One of
the most important insights is the so-called “cluster Hund’s rule”, which helps us identify the
factors that need to be considered for a state to qualify as a ground state in the cluster Mott
context.

Having built an initial theoretical understanding of a cluster Mott insulator, we apply it to
the simple case of a single orbital Hubbard model on clusters of varying sizes and geometry in
Chapter 5. In addition to providing us with a better understanding of interactions in terms of
the orbital language, some non-trivial ground states emerge in some clusters, which have been
shown to host interesting physics.

In Chapter 6, we extend the idea to a multi-orbital Hubbard model. We combine the ana-
lytical and computational concepts introduced thus far in the thesis, to perform an exhaustive
study of the ground states of the multi-orbital cluster Hamiltonian across a range of cluster
sizes and geometries, and across different fillings on the cluster. In addition, we track how
the introduction of hoppings modifies the properties and quantum numbers of ground states in
different parameter regimes.

Having used toy models to understand cluster Mott physics so far, the next part of the thesis
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calls for its applications on real materials. Chapter 7 hence starts with a brief description of
the physical orbitals that any ion in a crystal possesses. This is followed by a detailed discussion
on how orbitals of various players in a crystal give rise to fields that potentially influence the
ground states of the material. We also discuss another crucial ingredient to any real material
– spin-orbit coupling. Having built this background knowledge of important factors at play in
crystals puts us in a good position to analyze cluster Mott candidate materials.

In Chapter 8, we discuss the work we carried out in collaboration with experimentalists
at McMaster University, Canada. It was observed that, the dimer material that they syn-
thesized, Ba4LiIr3O12, showed evidence of magnetism despite its structure pointing towards a
non-magnetic ground state. Relying on ab-initio studies for approximate parameter regimes
for this class of materials, we discovered the presence of non-trivial origins of the ground state
degeneracies observed in Ba4LiIr3O12. We were hence able to extract the properties and quan-
tum numbers of the ground state. We end this chapter with a short survey on the occurrence of
such non-trivial degeneracies in other classes of materials and the reason for their occurrence.

Chapter 9 is concerned with materials that host trimer clusters. Many such materials
have been synthesized but have not been subject to theoretical treatment yet. We start with a
survey of materials synthesized in this category so far, followed by a study of various limits of the
Hamiltonian governing them. We then combine this with the insight we gained of cluster Mott
materials from the previous chapters, to study different materials that host varying numbers of
electrons on trimer clusters. We also analyze their measured effective magnetic moments and
make predictions for materials in various parameter regimes, which are yet to be synthesized.

In Chapter 10, we summarize our results and discuss the outlook for the area of cluster
Mott insulators.
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Theoretical Foundations





Localization of electrons in solids

Chapter

2
In the business of studying various microscopic particles, numerous models are proposed across
different branches of physics. Some models successfully capture certain aspects of observed or
expected behavior of said subatomic particles, while others might address other aspects. In this
continual process of research spanning multiple decades, new physics emerges from the collective
contributions of various such models and theories, that not only deepen our understanding of
these particles but also make predictions for behavior yet to be observed.

Every branch of physics is rife with such models. Ever since the first quantum mechanical
principles were laid down in the 1900s, many theories and models that attempted to capture
various aspects of condensed matter systems have had their eras of successes and failures.
However, few have achieved the iconic status that the Hubbard model holds, more than half
a century after its conception [41–43]. This thesis focuses on understanding a specific class
of materials called cluster Mott insulators. However, any attempt to understand them has to
start from revisiting the Hubbard model.

In the subsequent chapters, we will take a more in-depth look at how the Hubbard model
serves as a platform to understand cluster Mott insulators better and vice versa. In this
chapter, however, we will try to give a more overarching picture of where we stand in terms of
understanding real materials and how the Hubbard model serves as a starting point.

The Hubbard model, in its earliest and simplest form, considers two ingredients as being
essential in describing how electrons on a lattice interact: the Hubbard interaction term U and
the hopping term t:

H = U
∑
i

ni↑ni↓ − t
∑
〈i,j〉,σ

c†iσcjσ + h.c. (2.1)

Despite this simplicity, the model has been analytically solved, and its ground state is known
only in one dimension, using the Bethe ansatz [44, 45]. A variety of analytical and computa-
tional studies have made strides in studying its higher dimensional versions, such as perturbative
expansions [46–48], mean-field theories and cluster expansions [49–51], slave Boson theory [52–
54], fermionic quantum Monte Carlo approaches [55–58], and tensor network approaches [59–
61], which mostly all lead to contradicting quantitative and even qualitative results [43]. But
these attempts have only enhanced our theoretical understanding of strongly correlated sys-
tems, since the Hubbard model has, throughout the years, proven to contain an incredibly rich
plethora of phases such as Mott insulating phases, quantum magnetism, possible connections
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2 Localization of electrons in solids

to high-temperature superconductivity, etc. The prospect of high-Tc superconductivity hosted
by the Hubbard model has prompted further theoretical and experimental research [62–66]. In
recent years, there has been a push towards the model’s realization. Since the presence of a
lattice on which electrons interact is an essential ingredient in the Hubbard model, there have
also been attempts to use optical lattices to simulate this atomic lattice [67–69].

Another consequence of the Hubbard model is the concept of localization. This can be seen
better when we consider different limits. Let us first consider the non-interacting limit of the
Hubbard model:

HTB =
∑
〈i,j〉

c†icj + h.c. (2.2)

This limit is called the tight-binding limit. A simple Fourier transform of this term gives us

H =
∑
i

ε(k)c†ikcik. (2.3)

Here, ε(k) is the single-particle spectrum, and its form depends on the lattice and the types
of hopping terms taken into consideration (that is, between nearest neighbors, next nearest
neighbors etc). This tight binding approximation for electrons in solids gives us a “band” to
fill electrons with, according to the Pauli exclusion principle, as shown in Fig. 2.1(a-b).

In the opposite limit, the hopping term will be zero, leaving us with just the Hubbard U -term

H = U
∑
i

ni↑ni↓. (2.4)

In this limit, we see that the term is just an on-site density term. Hence, in the absence of
hopping, the electrons are localized to a single site. Now, let us say an electron occupies some
energy level at εa; it would take an energy penalty U to place the next electron, and hence the
next energy level would be at εa + U . This leads to a “Hubbard staircase”, and is a standard
artifact of the atomic limit of the Hubbard model, as shown in Fig. 2.1(c).

This discrete energy level picture of the atomic limit is modified when hopping is introduced.
When both U and t are finite, the two energy levels develop a finite width W = 2zt, where z
is the number of nearest neighbors. This width is a function of the hopping. The two discrete
energy levels thus evolve into two bands of states of width 2zt, centered around εa and εa +U ,
respectively. These bands are called Hubbard sub-bands (Fig. 2.1(d)), with the lower one called
the lower Hubbard band (LHB) and the higher one called the upper Hubbard band (UHB).
When the Coulomb repulsion U � W , the electrons prefer to be localized instead of moving
around in the bands. At half-filling, this gives rise to a Mott insulator. A Mott-metal insulator
transition is obtained when we have the opposite scenario: when the W > U .

Even though the Hubbard model is a very successful description of how electrons behave
on a lattice, it is very far from capturing the sheer number of factors and degrees of freedom,
and the resulting complexity of the environment in which electrons operate in real materials.
Various additional phenomena in real materials might occur because of multiple shells of every
element in the material, for example: How the electrons belonging to one element (or a site, in
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2.1 Oxidation states and valency

Figure 2.1 – Various limits of the Hubbard model. (a-b) The non-interacting limit, shown here for a
metal. The filled levels are colored green. (c) The Hubbard staircase in the atomic limit. (c) In the presence
of both interactions and hopping, the discrete energy levels become Hubbard sub-bands, with the width of
these sub-bands being a function of hopping.

more theoretical terms), respond to the field that electrons from neighboring elements create,
and so on. The influence of the environment in a crystal is discussed in detail in Chapter 7.
However, it is equally essential to understand electronic movement across various sites, and its
consequences in a crystal.

2.1 Oxidation states and valency

It is a known fact that an atom usually possesses multiple electrons, but not all of them actively
participate in transport or bonding. Only the electrons in the valence shell are usually involved
in bonding; depending on what the valence shell is, the factors to be considered while studying
an ion and its environment in a crystal are very different.

The innermost shell has principal quantum number n = 1. It consists of only the s-orbital,
whose azimuthal quantum number l = 0, and can hold a maximum of 2 electrons. The next
shell with n = 2 consists of the s-orbital with l = 0 and p-orbital with l = 1; since the three p-
orbitals differ from each other in their mz quantum number, the p-orbitals can hold a maximum
of six electrons. The third shell with n = 3 consists of s, p, d orbitals, where the five d-orbitals
can hold 10 electrons in total, and the fourth shell with n = 4 consists of s, p, d, f orbitals and
so on. The shapes of different orbitals are shown in Fig. 2.2. It can be seen that, even in the
valence shell, there are various orbitals, all of which might or might not lend themselves to
bonding. In this thesis, we almost exclusively deal with metallic ions that have 3 or more shells
(called transition metal ion, or TMI); hence, the valence electrons in their d-orbitals and/or
f -orbitals are the most important electrons since they are not only involved in bonding, but
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2 Localization of electrons in solids

Figure 2.2 – Different possible orbitals in an atom. (a) An angular momentum quantum number of l = 0

corresponds to the s-orbital. (b) Three p-orbitals are obtained when l = 1, owning to different values of m.
(c) Similarly, five d-orbitals are obtained when l = 2.

are also the electrons whose localization we aim to study.

When we speak of bonding, metallic ions usually tend to lose electrons to a more electroneg-
ative element to attain the nearest inert configuration. This loss or gain is represented using
an oxidation number. These integer charge transfers follow a set of simple rules: firstly, the
charge of atoms in their elemental form is taken to be zero; when it approaches another atom
that can help reach the nearest fully filled configuration, charges are transferred between the
atoms such that the sum of oxidation states for all atoms in a given, stable material is zero,
to ensure electroneutrality. A loss of electrons is assigned a positive oxidation number and a
gain is indicated by a negative oxidation number. For example, halogen atoms such as chlorine,
fluorine, etc. gain an electron to become a halide ion: Cl−,F−. In the same way, the oxidation
number of oxygen is always -2, and so on. Transition metal ions are usually capable of having
multiple oxidation numbers because of their partially filled d-valence shells.

Beyond predicting the bonding outcomes and the stoichiometry of compounds, oxidation
states are also helpful in grossly predicting or determining physical properties. Tools such as
valence-shell electron-pair repulsion (VSEPR) theory make use of oxidation states to predict
structure [70]; crystal field theory helps predict other spectroscopic responses – this is espe-
cially important when studying transition metal ion complexes because every oxidation state
that a transition metal is capable of assuming usually has distinct spectroscopic and magnetic
signatures [71]. For example, transition metal ions whose oxidation states lead to fully filled
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2.1 Oxidation states and valency

orbitals usually have negligible magnetic moment, and this can be predicted without having to
measure the susceptibility.

2.1.1 Hybridization and coordination bonds

The oxidation state has another essential purpose: it also tells us how various positive and
negative ions are oriented in the crystal. When atoms transfer or share electronic charges, the
bond formed can be one of the following three main types [72, 73].

Localized valence bonds are formed when each participating atom contributes equally to
the bond formation, with the two electrons involved in bonding occupying a localized bonding
orbital. This is the conventional covalent bond that can be seen in, for example, a hydrogen or
nitrogen molecule, etc. Since these bonds are localized, resonance structures neither exist nor
do they need to be assumed. An example of this type of bonding is shown in Fig. 2.3(a).

The second class of bonds are linearly delocalized bonds, where the bonding orbitals that
electrons occupy are delocalized either over the entire molecule or part of the molecule. These
“resonance” bonds are quite common in organic compounds and metallic chain structures, an
example of which is shown in Fig. 2.3(b).

The third class of compounds are those in which the electrons for bonding are lent entirely by
one (metallic) ion. However, they are center-delocalized in three dimensions. Electronegative
ions, called ligands, that require the electrons lent by the metallic ion, arrange themselves
in space around the metallic ion such that they form several completely delocalized central-
atom ligand bonds in three dimensions. These bonds are called coordination bonds and such
compounds are called coordination compounds. An example of coordination bonding is shown
in Fig. 2.3(c). This distinct spatial requirement makes coordination compounds different from
typical donor-acceptor compounds. Another important ingredient is high-coordination: ligands
around the central metallic ion determine how the environment affects the physical properties
of the compound, via crystal field splitting (this is discussed in detail in Chapter 7). The nature
of delocalization in space and the crystal environment required to form coordination bonds can
only be realized via d or f orbitals because they have lobes that are differently oriented in
space. This is in contrast to s and p orbitals, which, by virtue of being planar, can only provide
localized or linearly delocalized orbitals. The s and p orbitals, could, at the most, hybridize to
increase the coordination number to a maximum of 4 (in the case of sp3 hybridization); however,
these are still localized due to hybridization. Many materials involving a d or f metallic element
are coordination compounds, such as organometallic compounds, crystals, alloys, and so on.
Transition metal elements are capable of forming coordination bonds with a variety of ligands,
and this determines the geometry of the crystal.

2.1.2 Mixed oxidation states

As mentioned previously, transition metal elements can usually assume different oxidation
numbers because they can donate electrons to the ligands from multiple orbitals. For example,
manganese can donate electrons either from its 3d orbital or from the 4s orbital; hence, it can
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2 Localization of electrons in solids

Figure 2.3 – Examples of different kinds of bonding. (a) In methane (CH4), one s-orbital and three
p-orbitals of carbon hybridize to give four sp3 orbitals, each of which forms a covalent bond with hydrogen
and mutually shares a pair of electrons. (b) In benzene (C6H6), the two of the three p-orbitals on each carbon
atom overlap, enabling the delocalization of a pair of electrons across the entire molecule. Figure taken from
[74]. (c) In [Co(NH3)4Cl2]+, the bond between cobalt and chloride ion is composed of electrons that come
entirely from cobalt. Molecule produced using [75].

assume oxidation states of +2, +3, +4,+6, or +7. The periodic table with all elements and
their possible oxidation numbers can be found in Appendix B.

However, these different oxidation numbers of the same element can sometimes be found
in the same material. These materials are called mixed-valence (MV) compounds. As we
will see in subsequent chapters, some cluster Mott materials also fall into this category. In
mixed-valence compounds, the transition metal ions can all be considered as having the same
oxidation state, except for one or two ions, which accommodate the excess electrons, causing
their oxidation state to differ from the uniform value. However, in this thesis, we instead choose
the second proposed mechanism for mixed valences, in which the electrons are considered to
be delocalized over all (or part) of the metallic ions displaying mixed valency.

The presence of mixed valence in a material, in some instances, also means that different
ligands might be attached to the transition metal ion. Hence, it is necessary to delineate
the relation between ligands and mixed valence metallic ions. The following classification was
provided by Robin and Day [73, 76, 77]:

1. Class I: In this class of MV compounds, the metal ions contributing to the mixed valence
are in ligand fields of varying symmetries and strengths. This also means the excess
electrons are strongly localized to specific ions.
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2.1 Oxidation states and valency

Figure 2.4 – Examples of mixed valence materials. (a) [Mn2(edta)(H2O)]n · nH2O is a class I MV com-
pound, where manganese is in two different oxidation states: Mn1+ and Mn2+. These two states have different
coordination numbers, with Mn1+ being hexa-coordinated and Mn2+ being hepta-coordinated. Adapted from
[78], Copyright (2011), with permission from Elsevier. (b) Mn(HPO3) is a class II MV compound, where
both Mn1+ and Mn2+ ions have the same coordination number but with each of them surrounded by octa-
hedral ligand fields that differ by a slight distortion. Adapted from [79], Copyright (2005), with permission
from Elsevier. (c) Al4/3Mo6S8 is a class III compound where Mo6S8 forms clusters in which all participating
molybdenum ions have the same oxidation state. Adapted from [80], Copyright (2018) American Chemical
Society.

2. Class II: In this class of MV compounds, the metal ions attach themselves to near-identical
ligands, with slight distortions, using which different valencies can still be distinguished.
All metal ions in the material, irrespective of the individual oxidation states, are sur-
rounded by ligand fields of near-identical symmetry.

3. Class IIIA: In this category, the metal ions are grouped into clusters in which they are
equivalent.

4. Class IIIB: This is the case where there is no mixed valence, and all metallic ions have
the same oxidation state throughout the material.

Examples of different mixed valence materials are shown in Fig. 2.4. In reality, there are
many factors that make the classification of MV compounds more difficult. Temperature can
be one such factor: for example, a phase transition in Fe3O4 brings in structural changes,
because of which the oxidation state of iron changes from Fe3+ to a charge ordering of +2 and
+3, which had been controversial for many years [70]. Similarly, high correlations also make it
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2 Localization of electrons in solids

challenging to study mixed valences, especially in f -electron coordination compounds.

2.2 Role of relativistic effects in the atom

Relativistic effects play an important role in shaping the physics of coordination compounds.
For this, one has to consider the Dirac equation, which is the generalization of the Schrodinger
equation in a relativistic setting. It is the underlying equation for all fermionic systems, since
it describes the intrinsic origin of the fermionic spin and its relativistic behavior, such as spin-
orbit coupling, from first principles. We start with the famous relation between energy and
momentum from relativity:

E =
√
(mc2)2 + p2c2, (2.5)

where the symbols hold their usual meaning. Using the correspondences E → ih̄∂/∂t and
p→ h̄∇/i, a preliminary “relativistic” form of the Schrodinger equation could be

ih̄
∂ψ

∂t
=
√

(mc2)2 − (h̄c)2∇2ψ. (2.6)

Now, if we make use of the expression for the differential operator [81]

D = βmc2 +
3∑

j=1

αjpjc, (2.7)

such that β, αj satisfy the relations

β2 = 1, βαj + αjβ = 0, αiαj + αjαi = 2δij , (i, j = 1, 2, 3) (2.8)

and consequently

D2 = (mc2)2 − (h̄c)2∇2, (2.9)

then the Dirac equation for a free particle of mass m is given by [82, 83]

ih̄
∂ψ

∂t
= (mc2β + cα · p)ψ. (2.10)

It can be shown that the Dirac equation for a particle of mass m and charge e in the presence
of an electromagnetic field can be given by:

ih̄
∂ψ

∂t
=
[
cα ·

(
p+

e

c
A
)
+ βmc2 + V (r)

]
ψ, (2.11)

where the coupling of the electron to the scalar potential is included via

V (r) = −eΦ(r) = −e
2

r
. (2.12)

Here, A is the external vector potential, and Φ is an electromagnetic scalar potential.
Now, if we consider
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2.2 Role of relativistic effects in the atom

H(0) =
p2

2m
+ V (2.13)

as the non-relativistic terms, then corrections to this can be derived by using A = 0 and
solving for the appropriate Hamiltonian H that acts on the spinor ψ. It is seen that the
resulting expression for the Hamiltonian H is given by [82, 84]

H = H(0) +Hrel +HSOC +HDarwin (2.14)

where

Hrel = −
p4

8m3c2
(2.15)

is the relativistic energy correction,

HDarwin =
h̄2

8m2c2
∇2V (2.16)

is the Darwin correction, and

HSOC =
1

2m2c2
1

r

dV

dr
L · S (2.17)

is the spin-orbit coupling. This term can be rewritten so that

HSOC = λL · S (2.18)

where the prefactor λ = e2

2m2c2
1
r3

determines the strength of spin-orbit coupling.
Spin–orbit coupling (SOC) is hence a relativistic effect that connects the spin angular mo-

mentum of the electron with the electrostatic potential of its environment. In a crystal, the
potential is dominated by the spherical atomic potential E = −∇V (r), and hence the atomic
nuclei form the largest contributors to spin-orbit coupling in such a case.

SOC holds importance across various areas of research in physics; for example, M. Goeppert-
Mayer and H. Jensen showed just how important spin-orbit coupling is in the physics of nuclear
structure, where the addition of spin-orbit coupling to the mean field of the nucleons success-
fully predicted nuclear magic numbers and stability of the nucleus [85, 86]. This work was
subsequently awarded the Nobel Prize in Physics in 1963. In recent years, SOC has also gained
considerable spotlight in condensed matter physics, an illustration of which we will see in sub-
sequent chapters.

In the context of transition metal complexes or coordination compounds, the most important
effect of the spin-orbit coupling is that it causes shifts in the electron’s atomic energy levels.
This, in competition with crystal fields formed by surrounding ligands and Coulomb repulsions,
determines the bandstructure of the material. This is discussed in more detail in Chapter 7.
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2 Localization of electrons in solids

2.2.1 Coupling schemes

It is worth mentioning that the extent to which SOC leads to energy level splitting varies
significantly with the atomic mass of the transition metal element. For light transition metal
elements (especially 3d transition elements), the splitting due to SOC is a lot smaller than
multiplet splitting (that is, energy differences between states in the same angular momentum in
a subshell, which arises from electron-electron repulsion). When relativistic SOC is introduced
as a perturbation, the multiplet terms 2s+1L split into

2s+1LJ , (2.19)

where each of these new levels is characterized by the total angular momentum J . This is called
the term symbol representation.

As discussed previously, L can take values of 0, 1, 2... and they are denoted in the term
symbol as letters S, P,D, F, .. respectively, with the spin-multiplicity (2s+1) denoted as the left
superscript. The total angular momentum is denoted as the right subscript. This perturbative
approach to SOC is called L − S coupling, and is usually used for lighter transition metal
elements. In L− S coupling, spin and angular momentum are considered as being a sum total
of all electrons involved. That is,

L =
∑
i

Li

S =
∑
i

Si.
(2.20)

This scheme is usually applied to 3d transition metal ions, where spin-orbit coupling is usually
weak or at best, moderate. Hence, the spin-orbit coupling term can then be written using the
L− S scheme as

H = λL · S (2.21)

This expression for spin-orbit coupling in the L − S scheme then combines spin and angular
momentum to give us the total angular momentum J = L+S. The energy contribution of the
SOC term is then given by the expectation value

〈L · S〉 = J(J + 1)−L(L+ 1)−S(S + 1). (2.22)

The expression for total angular momentum shows that it can take a range of values from
[|L − S|, |L − S + 1|, . . . , |L + S − 1|, |L + S|]. The introduction of SOC leads to states with
different J values also differ in their energies. The L − S coupling scheme for a two-electron
system is shown in Fig. 2.5(a).

However, as we move to heavier transition metal elements, especially 4d and 4f elements,
the strength of SOC also increases, and in the strong SOC regime, the L− S coupling scheme
is no longer a valid description. We instead use perturbation theory in the opposite direction:
we first calculate the splitting of energy levels under the influence of SOC, and then introduce
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2.2 Role of relativistic effects in the atom

Figure 2.5 – Types of coupling schemes. Here, they are illustrated for a p2 configuration, shown as the
SOC coupling strength λ increases. (a) L− S coupling applies in the lower SOC regime. (b) j − j coupling
applies in the strong SOC regime. Here, ∆ is the splitting between the J = 1 and J = 2 states. Illustration
adapted with permission from [87]. Copyright (2018) by the American Physical Society.

electron-electron repulsion as a perturbation. This approach is called the j− j coupling scheme
– the spin and angular momentum of each electron are first summed up, and the total angular
momentum for each electron is given by ji = li + si. The total angular momentum of the atom
is then expressed as a sum of those of all the constituent electrons: J =

∑
i ji. The j − j

coupling scheme for a two-electron system is shown in Fig. 2.5(b).
In practice, this only works for extremely heavy elements, where spin-orbit coupling is large

enough to almost neglect electron-electron repulsion. In most stable atoms, however, SOC is
sufficiently strong such that L−S coupling no longer holds, but is not strong enough to dominate
electron-electron repulsions. Hence, neither can be treated as a perturbation, and both have
to be considered on equal footing. This is called intermediate coupling. In the intermediate
coupling regime, the Hamiltonian has significantly lower symmetry compared to either of the
extreme limits. Hence, the energy levels can no longer be characterized by quantum numbers
unlike the L− S or j − j schemes.

2.2.2 Racah parameters

We saw previously that energy multiplets depend closely on how various terms in the Hamilto-
nian split these energy levels, and various coupling schemes were proposed to characterize some
of the resulting energy levels using different quantum numbers. In practice, it is also impor-
tant to quantify the splitting; for this, the conventional procedure is to start by constructing
eigenstates |L,M ;S,

∑
〉 of the angular momenta, which spans the multiplet term 2S+1L. This

can be done because the electron-electron repulsion is invariant under simultaneous inversion
and rotation of all electrons, while also being independent of spin. Given these basis states,
the energy corrections caused by electron repulsion can be calculated as matrix elements.

In the special case of partially filled d-orbitals, a more compact way of expressing the total
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2 Localization of electrons in solids

repulsion and various contributions to it is in terms of Racah parameters A,B,C, which are
given by [73, 88]

A = F 0 − 49

441
F 4

B =
1

49
F 2 − 5

441
F 4

C =
35

441
F 4,

(2.23)

where F 0, F 2 and F 4 are Slater-Condon parameters1. Parameter A determines the energy of
destabilization due to an average electron interaction, which is usually an offset that can be
excluded by choosing a reference appropriately. Parameter B determines the effect of coor-
dination bond strength between the ligand and metallic ion, and hence becomes important
when crystal field is present. The parameter C is used when the energies of a set of states
differ in multiplicity from the ground state. Parameters B and C are obtained from empirical
spectroscopic data of free atoms and ions, though C is usually approximated as C ≈ (1/4)B.
Because of different charge distributions and spin orientations in different one-electron states,
and hence different inter-electron interactions, even states with same electronic configuration
can have different energies. Racah parameters are used to calculate the energies of each of these
configurations. For example, in Fig. 2.6, the interaction energies for different arrangements of
electrons for certain fillings in the d-orbital are shown. Let us consider d2, for example. We can
see that the term with the lowest energy is 3F : that is, with S = 1 and L = 3. This is the term
with the highest spin multiplicity ((2S + 1) = 3) and maximal allowed angular momentum
among all the terms with 2 electrons, confirming Hund’s rules. Hence, Hund’s rules can be
understood as a natural consequence of comparing various interaction energies, which can be
expressed in a compact way using Racah parameters. The use of Racah parameters also makes

1Consider two-electron interaction integrals of the type [73]

R(k)(abcd) = e2
∫ ∫

R∗
n(a)l(a)(r1)Rn(b)l(b)(r1)Kk(r1, r2)×R∗

n(c)l(c)(r2)Rn(d)l(d)(r2)r
2
1r

2
2dr1dr2, (2.24)

where a and b are one-electron functions of the first electron, while c and d are those of the second electron,
Kk is the exchange integral between two electrons, n and l are the principal and azimuthal quantum numbers
of the respective electrons. We then define

R(k)(aabb) = F (k)

R(k)(abba) = G(k),
(2.25)

where F (k) and G(k) are Slater-Condon parameters. These parameters are commonly used in the Hartree-
Fock method and in the construction of many-body wavefunctions. There are three primary types of integrals
referred to as Slater-Condon parameters. The integrals F (k) describe the average Coulomb repulsion between
electrons in different orbitals. When k = 0, it represents the direct Coulomb integral, which is the average
repulsion energy between two electrons in the same orbital. Higher-order parameters, which have k > 0,
describe the angular part of the electron-electron repulsion Similarly, the Slater-Condon parameter G(k),
describes the exchange interaction between electrons.
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2.3 Conclusion

Figure 2.6 – Racah parameters for a few of the possible fillings in d-orbitals. Energies of fillings d10−n

differ from those of dn by an offset. Terms that have the same L and S are distinguished by primes, for
example in the case of d3. Figure adapted from [73].

the understanding of level splittings in various regimes significantly easier and more intuitive
to understand, as will be shown in Chapter 7.

2.3 Conclusion

In this chapter, we have seen how the Hubbard model realizes localization in solids. In real
materials, however, many other factors play into localizing electrons; electrons can be shared,
donated, or localized at a site or within a group of sites. This led us to discuss oxidation states
and why they are important while studying materials with transition metal ions. Relativistic
effects such as spin-orbit coupling, combined with electron localization at and around various
centers in a crystal, together determine a variety of properties of the material, ranging from
observables such as specific heat, susceptibility, etc, to energy level splittings and phase transi-
tions. In the subsequent chapters, we will see how exactly this interplay determines the above
properties and how best to understand them in cluster Mott materials.
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Exact diagonalization

Chapter

3
Irrespective of the nature of the Hamiltonian, whether classical or quantum, a natural attempt
towards understanding the system it describes is to solve the Hamiltonian for its energies
and eigenstates. In the case of a quantum many-body problem, we would have to solve the
Schrödinger equation

H|ψ〉 = E|ψ〉. (3.1)

Being equipped with this knowledge, a variety of static or dynamic observables relevant
to the system can be computed, using exact diagonalization techniques. As is in the name,
exact diagonalization (ED) provides exact solutions to the Schrödinger equation for the given
Hamiltonian, up to machine precision. Hence is especially useful for providing highly accurate
results for systems with a relatively small number of particles, such as quantum dots, small
molecules, or clusters of atoms. Owing to the accuracy, solutions obtained through exact
diagonalization also serve as benchmarks for other numerical (usually) approximate methods.

However, owing to the many-body nature of the Hamiltonian, a few complications arise. The
no-frills approach of ED also means that the computer can only handle limited system sizes: for
a system with N particles, which each have m degrees of freedom, the Hilbert space grows as
mN . The Hilbert space thus grows exponentially with the size of the system, which at a certain
point would become impossible to handle for even the most powerful computers. One has to
thus take care of drawing any inferences of the thermodynamic limit from exact-diagonalization
studies.

One way to handle such large Hilbert spaces is to take advantage of the inherent symmetries
of the Hamiltonian. This allows us to break the Hilbert space into smaller sectors, which
can then be selectively looked at depending on which particulars of the Hamiltonian we are
interested in.

3.1 Constructing the Hamiltonian matrix

The most essential ingredient to building a Hamiltonian matrix in the first place is to ascertain
what basis we want to express it in. As mentioned before, depending on the symmetries and
the particular sectors we want to look at, we can use them as a starting point to build a set of
many-body basis states.
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3 Exact diagonalization

The key idea in expressing basis states is to use bit values to denote the degrees of freedom
– and this forms the fundamental building block for the list of many-body basis states. Let us
consider a linear N -site spinless fermionic chain as an example. Here, a site on the chain can
have one of the following possibilities: it can either contain a fermion, or be empty. A bit value
of 0 can be used to denote a state in which the site is unoccupied, and a bit value of 1 can be
used to denote a state in which the site is occupied. Note that this is merely a convention, and
it can very well also be the other way around.

The labels from 0 to 2N − 1 are used for the states, and the bit values of these integers
directly correspond to the arrangement of spins on the chain. Once we have these states, one
can construct the Hamiltonian in real space by iterating over all basis states and making a note
of how each operator in the Hamiltonian operates on the given sequence of fermions, or, in our
language, a sequence of 0’s and 1’s. Let us consider a simple tight-binding Hamiltonian

H =
∑
〈i,j〉

c†icj + h.c. (3.2)

as an example. A code snippet in Alg. 1 shows how respective entries in its corresponding
Hamiltonian matrix are updated. An operator (here, c†icj acts upon a state with integer label
a, on a bit level. In this way, one can directly deal with the actual sequence of fermions via the
integer labels. This operation leads to a resultant sequence (encoded in bits), and one has to
look up the integer label corresponding to the resultant state: let us assume it corresponds to
label b. The matrix entry H[a, b] is then updated with the prefactor that the operator carries
with it in the Hamiltonian.

There are a few observations to be made from Alg. 1. Note that the operator at hand by
definition is off-diagonal. It is because of this fact that we would have to look up the integer
index corresponding to the resultant state. We can very well also have operators (for example,
a density operator of sorts) that is diagonal – in that case, the diagonal entry H[a, a] would be
updated accordingly, without the need to look up a second b index.

Algorithm 1 ED for tight binding model (off-diagonal)
Require: H is Hermitian matrix of size N ×N,N > 0

Require: t is some tight-binding parameter
for a = 0 to 2N−1 do

state = binary(a)
if state[i] 6= state[j] then . we require that a neighboring site j of a site i

be unoccupied
newstate = bitflip(state, i, j) . Operator acts upon state: c†icj |state〉 =

|newstate〉
b = Integer(newstate)
H[a, b]← H[a, b] + 0.5t . Filling the relevant entries in the Hamiltonian

matrix

Now that we have familiarized ourselves with the scheme of labeling and operating upon
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3.2 Block diagonalization of the Hamiltonian matrix

many-body states, we can now take a closer look at how symmetry considerations would ease
computations.

3.2 Block diagonalization of the Hamiltonian matrix

In the previous subsection, we used a “default” basis to express our Hamiltonian in and iterated
over all possible states for the case of an N -site chain with spins on it. However, this is an issue
when the Hamiltonian grows exponentially with the number of sites and becomes increasingly
unfeasible computationally. Hence, symmetries should be used whenever possible/necessary.
This reduces the Hamiltonian to a block diagonal form, each block corresponding to a different
quantum number of the conserved quantity. These blocks are disjoint from one another and
hence can be diagonalized independently, as shown in Fig. 3.1. Based on the requirement, one
might sometimes not need all the blocks either. Thus, the block diagonal form significantly
reduces the computational cost of building and diagonalizing the Hamiltonian.

The simplest starting point is to consider particle number conservation. For the tight-binding
example at hand, the number operator nf =

∑
c†iσciσ commutes with the Hamiltonian. This

means the entire Hilbert space can be broken into various mutually exclusive sectors that are
each characterized by their unique value of nf (in the case of a spinful system, Sz conservation
plays a similar role):

H =
N⊕

nf=0

Hnf
. (3.3)

This already makes evaluating the Hamiltonian very convenient because, if we are only inter-
ested in studying, say nf < N fermions on an N−site chain, we need only consider basis states
that satisfy this condition (which constitute just a fraction of the entire Hilbert space), and use
them to construct the Hamiltonian matrix [89]. Extracting these select basis states from the
full list is relatively straightforward (for particle number conservation), as shown in Alg. 2.

Algorithm 2 Constructing basis for a particular particle number sector
Require: N ≥ 0

Ensure: y = xn

y ← 1

X ← x

N ← n

for a = 0 to 2N−1 do
state = binary(a)
if sum(state) == nf then . we add up all the bit values in the bit array to

infer how many sites are occupied
append(basis, a) . the integer a is now part of the list of basis

states

Another symmetry that can very often be exploited to break the Hamiltonian blocks to even
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Figure 3.1 – Schematic representation of block diagonalization. In the leftmost figure, the Hamiltonian
has no structure to it. Once we make use of a symmetry, the Hamiltonian acquires a structure in which it
is split into individual blocks, each of a different allowed quantum number (middle figure). More than one
symmetry can be used at a time, if the symmetries commute with each other. In such a case the Hamiltonian
acquires an even finer block-diagonal structure, such that each of the smallest blocks now pertain to a definite
permutation of the allowed quantum numbers of the symmetries used (rightmost figure).

smaller blocks is momentum conservation. The core idea is that in a particular momentum
sector, a state can be expressed in terms of a reference state and all its translations. That is,

|Ψ(k)〉 = 1√
N0

r=N−1∑
r=0

e−ikrT r|Ψ〉. (3.4)

With symmetries such as momentum, where there are several states which are essentially equiv-
alent to one another by virtue of the symmetry, the methodology of building a basis is different;
we not only check for which states lie in a specific momentum sector but also check if a state
can be a suitable representative for all the states that are obtained by performing translations
on it [90]. This is shown in Alg. 3. Similarly, other spatial symmetries of the problem can be
used to block diagonalize the Hamiltonian in different ways. Multiple symmetries can be used
simultaneously, given that they commute with each other. The implementation of any symme-
try follows a similar idea, where the corresponding operator is operated upon on a bit-level for
a certain state, and the resultant state decides which entry in the Hamiltonian matrix needs to
be updated.

While thus setting up the Hamiltonian in a convenient block-diagonal form, it is also essential
to revisit some technical subtleties that come along with expressing a chain of fermions in terms
of bit arrays and manipulating these bit arrays using various operators. This is required before
feeding the Hamiltonian matrix into a diagonalization routine.

3.2.1 Computer storage of states

In the previous section, we have seen how different routines can be used to take advantage of
symmetries and construct the Hamiltonian matrix. One of the main pillars of ED rests on how
basis states are stored and manipulated by various operators.

A state is stored as a string of bits in the computer. Hamiltonians, which are spinless, are
the easiest case: here, bit value “0” can be used to indicate an empty site, and a bit value “1”
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Algorithm 3 Check if a state lies in a given momentum sector
Require: N ≥ 0

Require: 0 ≤ k < N

phase← −1
representative← |oldlabel〉
|newlabel〉 ← |oldlabel〉
for j = 1 to N do do

|newlabel〉 = bit-translate(|oldlabel〉) . translations of spins in a state with a certain
integer label are carried out by moving the rel-
evant bits around

if |newlabel〉 < |oldlabel〉 then
representative = |newlabel〉 . here, the convention we have chosen is the

smallest integer would be the representative
else if |newlabel〉 =|oldlabel〉 then

phase = e−2iπkj/N . If a given state is not a representative, phase
tells us how many translations it takes to get
to the representative

can be used to indicate that a site is occupied by a fermion. Similarly, spin-1/2 models also
need only two building units: a bit value of “1” can indicate an up-spin, and a bit value of “0”
can indicate a down-spin. This is shown in Fig. 3.2(a). Depending on zero-based or one-based
indexing, the bits are either labeled starting from 0, in which case the length of a state goes
till N − 1, or from 1, in which case the string goes till N . To perform operations on specific
sites, a particular site can be singled out by simply using the same convention as used for an
array: One can obtain information on the occupation on site i, by simply using a[i].

Let us now marginally increase the complexity: let us say there are now three possible
occupations a site can have: a site can either be occupied by an up-spin or a down-spin or
be unoccupied. In such a case, we might need more than one bit to denote the occupation
information on a site: we now denote “00” as an unoccupied site, “01” to be occupied by an
up-spin, “10” to be occupied by a down-spin, and “11” to denote both up-spin and down-spin
on a site. The “11” bits would be excluded if we assume a hard-core condition and enforce
single-occupation. Hence, the bit string will now be twice as long as the previous case, with
each site now allotted two units, starting at 0 (or 1) and ending at 2(N − 1) (or 2N). This is
shown in Fig. 3.2(b).

Another factor that might increase the number of bits dedicated to a site is if it has more
underlying structures, such as multiple orbitals. If a site has multiple orbitals, each orbital can
hold two spins at the maximum. Assuming a site has m orbitals, we would then need 2m bits
per site to capture the occupation information on the site. This also means that to access any
position on the string, we would need information on its site index as well as its orbital index.
An example is shown in Fig. 3.2(c).

One need not necessarily use a binary base all the time. Another way of denoting occupation
information is by using a higher base instead of base 2: for example, if we adopt a base 3, we
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Figure 3.2 – How basis states can be stored in different ways, depending on the requirement. (a)
If we need to represent just two possible states using base 2, then one bit per site is sufficient. (b) If we need
to represent four states using base 2, then every site would need two bits. As a result, an N -site chain would
require 2N -bits. (c) Similarly, in a case where every site needs four bits, an N -site chain would then need
4N -bits.

could denote an unoccupied site by “0”, an up-spin by “1”, and a down-spin by “2” (assuming
hard-core condition). This makes handling a large number of sites easier. In this way, increasing
the degrees of freedom that are accommodated on a site further decreases the system sizes that
ED can ultimately handle.

3.3 Jordan-Wigner strings

So far, we have seen how to construct basis states with given symmetry considerations in terms
of bit sequences and how operators manipulate these bit sequences to ultimately populate the
Hamiltonian matrix accordingly. To that end, we considered an example of a simple tight-
binding model, which consisted of creation (c†i ) and annihilation (cj) operators.

One has to straighten out the subtle difference between the physics of the system and what the
computer makes of it – operators in any such algorithms are usually assumed by the computer
to be bosonic, even while we have a system of fermions at hand. This calls for a way of
reconciling the two, which is done by introducing Jordan-Wigner strings. The Jordan-Wigner
transformation is a mapping between a Hilbert space of spinless fermions and a Hilbert space
of “hard-core” bosons (that is, double occupancy on a site is not allowed). The idea can also be
extended to include the case of fermions with spin. If c†i (ci) are fermionic creation(annihilation)
operators and b†i (bi) are bosonic creation (annihilation) operators, then the Jordan-Wigner
transformation connecting the two reads
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3.3 Jordan-Wigner strings

cj = Fjbj

c†j = b†jFj ,
(3.5)

where

Fj = eiπ
∑

l<j nj (3.6)

holds information on the occupation of all sites preceding site j. In this way, one can see that
the Jordan-Wigner transformation essentially expresses a local operator in terms of non-local
operators by attaching a “string” to the bosons, as shown in Fig. 3.3.

In terms of the ED routine, factoring in these non-local Jordan-Wigner strings becomes
especially important in two instances. Firstly, they need to be accounted for when we have off-
diagonal operators. For example, considering the example of tight binding Hamiltonian again,
the tight-binding term when strings are accounted for, becomes [91]

c†icj + c†icj = a = b†iexp(iπ(ni+1ni+2 · · ·nj−1))bj + b†jexp(iπ(nj+1nj+2 · · ·ni−1))bi. (3.7)

Here we see that the string that counts is the one between sites i and j.
A second instance where these strings are important is when we are faced with periodic

boundary conditions: moving a fermion across the boundary also moves the string attached
to it around, and this requires book-keeping in the code. This is particularly important for
operators at the boundaries: terms such as c†1cN + c†Nc1. The Jordan-Wigner string, going
by Eq. (3.7), is (−1)N , where N is the total number of fermions. Hence, this boundary term
becomes:

c†1cN + c†Nc1 = −(−1)
N (b†1bN + b†Nb1). (3.8)

Since (−1)N can take only two values, +1 and −1, there exist two cases of the above expression.
When we are in the odd fermion sector, we get a Hamiltonian similar to what we started
with, despite the inclusion of Jordan-Wigner strings. However, in the even fermion sector, an
additional negative sign has to be taken into account when fermions hop across the boundary.

Once we have used the above techniques to reduce the complexity of our Hamiltonian matrix
and make it physically consistent, the next step is to perform the diagonalization. Since the
Hamiltonian matrix will still be quite sizable, it is very likely that the Hamiltonian would still
not lend itself very well to a straightforward routine diagonalization protocol. We instead take
advantage of the fact that one of the most important pieces of information usually relevant to
quantum many-body systems is the ground state energies – the entire spectrum is very often
not necessary. Hence, we use specialized diagonalization routines that help us extract to very
high accuracy, the first few eigenvalues and eigenstates based on our requirement. One of the
most popular of such routines is the Lanczos method.
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3 Exact diagonalization

Figure 3.3 – Jordan-Wigner transformation at play. A non-local Jordan-Wigner “string” is attached so
that the operators now obey fermionic commutation rules and thus describe a system of fermions accurately.
Illustration inspired by [92].

3.4 Krylov space techniques and the Lanczos method

Once the Hamiltonian is constructed by using various symmetries, the next logical step is to
diagonalize the Hamiltonian matrix. A standard matrix diagonalization is computationally
not feasible given that the matrices in ED are usually very large. Such large sparse matrix
eigenvalue problems appear in most applications of scientific computing. However, iterative
methods such as Krylov subspace methods can take advantage of sparseness, making them a
useful tool for solving large systems of linear and non-linear equations and, by extension, large
eigenvalue problems.

The main idea of a general iterative solver is the following: consider a system of linear
equations of the form

Ax = b, (3.9)

where A is a non-singular matrix and b is a vector. A general procedure to find its solution
involves starting from an initial guess x0, and finding a sequence xn which approximates x∗,
where x∗ is the solution to Eq. (3.9). Krylov subspace methods for solving such a system of
linear equations have the special feature that A need only be an operator: that is, for any N−
vector y, one must be able to compute the matrix-vector product Ay; so A may be given as a
function, operator, procedure, or subroutine.

There are several types of Krylov subspace solvers; however, any Krylov space solver starts
from some initial approximation x0 and the corresponding residual r0 := b − Ax0, and iterates
xn such that [93]

xn − x0 ∈ Kn(A, r0). (3.10)
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Here, Kn(A, r0) is called the nth Krylov subspace, where n ≤ N , generated by the non-singular
matrix A ∈ CN×N :

Kn := Kn(A, r0) := span(r0,Ar0, · · · ,An−1r0). (3.11)

r0 is the 0th residual, and a general residual rn satisfies [94]

rn ∈ r0 +AKn(A, r0) ⊆ Kn+1(A, r0), (3.12)

Here, we see that K1 ⊆ K2 ⊆ K3 · · · , and that the dimension of a Krylov subspace cannot
exceed N . However, it can be smaller than N when it is bounded by a ν such that ν satisfies

ν = min{n|A−1r0 ∈ Kn(A, r0)}, (3.13)

so that

dim Kn(A, r0) = min(n, ν). (3.14)

This upper bound now tells us how convergence might be defined. Let x∗ be the solution of
Eq. (3.9), and x0, r0 and ν hold their usual meanings. Then,

x∗ ∈ x0 +Kν(A, r0). (3.15)

Thus, the main idea behind Krylov subspace solvers is to generate sequences of approximate
solutions xn in a Krylov subspace Kn, so that the corresponding residuals rn ∈ Kn+1(A, r0)

converge to the zero vector. Here, convergence may also mean that after n steps rn = 0, so
that xn = x∗ and the process stops (finite termination). This is true when the residuals are
linearly independent. This is the ideal scenario.

In practice, however, this is not so: the vectors Ajr, j = 1, 2, · · · usually become almost
linearly dependent in a few steps; hence, methods relying on Krylov subspaces must involve
some orthogonalization scheme. One such method is the Arnoldi orthogonalization algorithm.
In the context of exact diaganolization of Hamiltonian matrices, which are Hermitian in nature,
a variant of the Arnoldi method, called the Lanczos method, is popularly used.

3.4.1 The Lanczos routine

In the Lanczos method, an orthogonal basis is constructed using linear combinations of the
Krylov space states Kn(H, v), n ≤ N , (where v is an arbitrary vector such that v ∈ CN ), such
that the Hamiltonian matrix H ∈ CN×N written in this basis is tridiagonal.

Thus, we obtain an orthonormal basis Vn, where Vn is composed of “Lanczos vectors”-
V = [v1,v2, · · · ,vn], such that [94]

V T
nHV n = T n. (3.16)
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Algorithm 4 the Lanczos routine
Require: H is a Hermetian matrix of size N ×N
Require: v1 ∈ CN be an arbitrary vector with Euclidean norm 1 .
Ensure: v1 is orthogonal to the ground state of H
a1 := 〈v1|H|v1〉/〈v1|v1〉
|w1〉 := Hv1−a1|v1〉
for j = 2, 3, · · ·n do

bj = ||wj−1||
if bj 6= 0 then

vj = wj−1/bj

else
Pick arbitrary vj ⊥ v1, v2, · · · , vj−1 such that ||vj || = 1

aj = 〈vj |H|vj〉/〈vj |vj〉
wj = Hvj − ajvj − bjvj−1

T n is the tridiagonal matrix

T n =



a1 b2 0

b2 a2 b3

b3 a3
. . .

. . . . . . bn−1

bn−1 an−1 bn

0 bn an


. (3.17)

The Lanczos routine is shown in Alg. 4. The eigenvalues of T n, (called Ritz values of H) play
an important role in the study of the convergence of Krylov subspace methods: as n increases,
the Ritz values increasingly approximate the eigenvalues of H [95].

Convergence of the Lanczos algorithm

Once the Lanczos routine is executed and allowed to run for a few hundred iterations, the lowest
eigenvalues of the trigonal matrix T n, provide an excellent approximation to the eigenvalues of
the original Hamiltonian. The approximate ground state eigenvector is given by [96]

|Ψ̃0〉 =
L∑

n=0

ψ̃0,n|vn〉, (3.18)

where |ψ̃0〉 is the ground state eigenvector of T n.
As mentioned earlier, an ideal convergence would be when the residual rn = 0 at the nth

iteration. If not, a cutoff Λ ≤ n for the iterative procedure can be explicitly set. However, the
larger H is, the more unlikely it is that we ever obtain the exact eigenspace. Despite that, we
encounter a situation in Lanczos where bn almost vanishes – but this also means that numerical
noise gets amplified. This makes |vn〉 have finite overlaps with all the other |vm〉, even though
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3.4 Krylov space techniques and the Lanczos method

Figure 3.4 – Convergence and over-convergence in a Lanczos iteration. In this plot, where the ground
state energies of anN = 8 Hubbard chain at half-filling are calculated, we see that after about 85-90 iterations,
the energy has converged well. (Inset) If we force the Lanczos routine to continue beyond that, the higher
excited states also converge to their exact values (shown in dashed lines) but begin collapsing to the ground
state after a point. These manifest themselves as ghost states. Image taken from [96].

they should have been mutually orthogonal in theory. This loss of orthogonality when we are in
the vicinity of the exact eigenvalue, manifests itself in the form of multiple copies of eigenvectors,
called ghost states, which are a numerical phenomenon and completely unrelated to the actual
degeneracies of the actual eigenspace, as shown in Fig. 3.4. This issue of orthogonality loss is
amplified when we have dense matrices. Hence, diagonalization subroutines like Lanczos work
best with sparse matrices.

3.4.2 Conclusion

In this Chapter, we discussed the central computational machinery we would be using for the
thesis. Lanczos and Arnoldi routines have now become part of a larger standard toolkit of
Krylov subspace methods in scientific computing. However, to use them for strongly correlated
systems, the real weight of the problem rests in expressing the Hamiltonian matrix in a way
that not only provides the necessary physical information but can also make use of the above-
mentioned diagonalization routines as efficiently as possible. We also saw some ways of doing
that, especially leveraging symmetries of the Hamiltonian.

There have been many advances in constructing the Hamiltonian matrix, for example, using
numerical linked-cluster expansions [97], or different kinds of configuration interaction tech-
niques such as selected configuration interaction [98]. One of the main motivations behind
these advances is to make better use of parallelization of the exact diagonalization routine, to
achieve higher efficiency.

Another strength of exact diagonalization lies in its ability to provide valuable insight into
various static and dynamic observables. such as specific heat, susceptibility, dynamic structure
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factor, etc despite only dealing with very small system sizes. For example, exact diagonaliza-
tion techniques were successfully used to study various lattice models such as Hubbard, t − J
model [99, 100] , SYK models [101, 102], etc. Apart from this, they are frequently used as a
benchmarking tool. Hence, exact diagonalization remains an indispensable tool while studying
strongly correlated systems.
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Part II

Building Blocks for Cluster Mott Insulators





Localization of electrons on clusters

Chapter

4
We have seen previously that strong electronic interactions are an essential ingredient for lo-
calization of electrons. We also saw that the Mott insulating phase is one of the most widely-
studied examples of how this localization of electrons leads to a rich playground for quantum
magnetism. Adding more degrees of freedom, such as multiple orbitals, and electronic charge,
makes the question of the character of ground states non-trivial to address. For example,
the local moments in spin-orbit entangled Mott insulators, including the jeff = 1/2 family of
compounds, are a combination of both spin and orbital degrees of freedom [103].

Such an interplay of multiple degrees of freedom in determining the ground states is where
the concept of a cluster Mott insulator comes into picture. In this chapter, we introduce cluster
Mott insulators, an extension to the notion of conventional Mott insulators. If a real material
hosts well-defined clusters of atoms, then an interplay of intra-cluster hopping, inter-cluster
hopping and interactions causes electrons to localize on these clusters rather than single atomic
sites. Cluster Mott insulators are likewise governed by the cluster Hubbard model. We will
discuss the form of the interactions and hoppings that govern this cluster localization.

In recent years, cluster Mott physics has been increasingly observed in a variety of materials,
which are shown to host a wide variety of ground states. In fact, the cluster Mott story
begins with experimental studies on several materials that hosted a plethora of clusters. In
this chapter, we will take a look at different functional units in different materials that are
typically seen to form clusters of varying sizes and geometries and how such clusters come
to be – whether they are built into the crystal structure beforehand or whether they emerge
spontaneously.

4.1 Cluster Mott materials

The main reason why the formation of clusters in lattices is interesting at all in the first place
stems from the fact that a wide variety of materials have displayed these clusters in their
lattice structure. Candidate cluster Mott insulator (CMI) materials contain clusters that are
typically formed by a collection of transition metal (TM) ions surrounded by oxygen ligands.
These clusters are distinctly characterized by short TM ion-TM ion distances and are usually
embedded on a larger lattice.

In coordination compounds, one has to ascertain which degrees of freedom play a role in
determining their properties. In the case of CMI materials, electronic charges are localized to
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4 Localization of electrons on clusters

a cluster, making them charge insulators. An important ingredient is multiple orbitals; this is
the main reason why clusters are formed with TM ions – TM ions have five d-orbitals to offer.
Their orientation with one another, as well as the strength of spin-orbit coupling in a material
determines which orbitals ultimately participate in cluster Mott physics in the material.

Given the vast zoo of transition metal compounds that might have clusters, it is essential to
distinguish these materials based on how clusters come to be, in them. One way of classifying
them is based on how clusters come to be in the material and how they respond to phase
transitions.

4.1.1 Structural clusters

In cluster Mott materials with structural clusters, TM ion clusters pre-exist in the crystal
structure itself, and the crystal does not undergo any structural phase transition. These clusters,
might be a collection of two ions (dimer), three ions (trimer/triangle), and so on, and will be
discussed in detail in Chapter 5. The simplest clusters are those with two ions: a dimer. Dimer
clusters have been observed in the M2O9 family of compounds, with M being a 4d or 5d-
transition metal ion. These dimer clusters are typically face-sharing octahedra, which form the
structural units of 6H perovskite class of compounds1 A3BM2O9.

The M2O9 family is one of the most extensively studied classes of cluster Mott materials, and
has contributed to a large part of the current understanding of cluster Mott physics. The filling
in the d-shell of the M ion hints at whether one might expect a magnetic or a non-magnetic
ground state; using that as the initial starting point, the interplay of various factors ultimately
determines the nature of the ground state. For example, the completely occupied d-shell of
the Ir5+ ion in the Iridate Ba3ZnIr2O9 hints at a possible Jeff = 0 insulating ground state
especially with strong spin-orbit coupling. However, substantial frustration due to the presence
of strong interdimer exchange interactions induce quantum fluctuations, suppressing long-range
magnetic order and leading to a spin-orbital liquid ground state. This was confirmed by heat
capacity and µSR studies, see Fig. 4.1 [105].

On the other hand, an odd number of electrons leads to a variety of ground states, with
both high or low effective spin degrees of freedom. Let us consider mixed valence ruthenate
dimers Ba3MRu2O9 as an example. Ruthenates in which M = Y, In show significant orbital
hybridization, resulting in one spin-1/2 moment distributed equally over the two Ruthenium
sites [106]. However, Ba3LaRu2O9 has a ground state with an unusual molecular spin-3/2
degrees of freedom, which corresponds to neither the high spin nor low spin limits [107], as
shown in Fig. 4.2. Some of these materials also displayed strong deviations from Curie-Weiss
behavior, which was shown to be due to field-induced mixing of different multiplets, leading to

1A conventional oxide perovskite is a material with the formula AMO3, where A is a larger cation and M is
a smaller metallic ion [104]. A hexagonal perovskite has a hexagonal symmetry, in contrast to the cubic
symmetry of conventional oxide perovskites. Hexagonal symmetry allows for the existence of face-sharing
MO6 octahedra. This is an important factor that allows for cluster formation in hexagonal perovskites.
Structural layers in a unit cell are described by a number, indicating the number of layers, followed by a
letter that indicates the type of stacking. Hence, “6H” means the material has 6 layers with a hexagonal
stacking. Similarly, “R” indicates rhombohedral stacking, and “C” indicates cubic stacking.
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Figure 4.1 – Specific heat capacity measurements for Ba3ZnIr2O9. (a) Temperature dependence of
specific heat. Note that there is no peak or anomaly, indicating the absence of any structural and/or long-
range magnetic phase transition (b) Magnetic heat capacity after subtracting the lattice contribution. There
is a broad peak at around 15K. Fitting it to Cm = γT + βT 2 indicates a strong T-linear contribution of
γ = 25.9mJ/molK2. Plots adapted with permission from [105], Copyright(2016) by the American Physical
Society.

additional contributions such as Van Vleck terms and a nontrivial temperature dependence of
the magnetic susceptibility [108, 109].

Similar to their dimer cousins, trimer clusters of the form M3O12 form the structural units of
the 12H perovskite class of compounds. In contrast to the dimer case, the M transition metal
ion can be either 3d, 4d, or 5d. It should also be noted that while most materials have either t2g
or eg orbitals constituting the ground state, for rare instances such as Ba4NbMn3O12, all five
d-orbitals have to be taken into consideration. Moreover, Ba4NbMn3O12 is also an interesting
example of a geometrically frustrated Mott insulator where the formation of molecular orbitals
is not observed [110, 111], as opposed to other materials in the M3O12 trimer family, which are
cluster Mott insulators.

An essential ingredient that is common among all the materials mentioned so far seems to be
short metal-metal distances, which lead to the clustering of TM ions within their lattices in the
first place. This is facilitated by face-sharing of metal-oxygen octahedra in a wider family of
hexagonal oxide perovskites [112]. Apart from dimer and trimer clusters, a variety of materials
with longer linear clusters, such as tetramers and heptamers, has been synthesized, as well as
materials which contain more than one type of cluster [112, 113], as shown in Fig. 4.3. Different
structural cluster units can be achieved with the same TM ions by changing the ratios of TM
ions and ligand ions in the material, or in other words, tuning the oxidation states of the TM
ions and ligands.

Apart from the hexagonal perovskite family, another interesting family of compounds is those
with Mo3O8 clusters. These compounds typically contain stacked anisotropic kagome layers, on
which the [Mo3O13]

15+ clusters form a triangular lattice, as shown in Fig. 4.4. There has been
considerable debate over the microscopic nature of magnetism in such materials. For example,
magnetic susceptibility and heat capacity measurements for LiZn2Mo3O8 [115] indicated that it
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Figure 4.2 – Susceptibility measurements for Ba3LaRu2O9.(a) Inverse susceptibility 1/χ plotted against
temperature. The Curie-Weiss fit is shown in red. (b) Temperature dependence of the product of suscep-
tibility and temperature, χT . The saturation value is close to that of S = 3/2, which is shown as a green
dashed line. Plots adapted with permission from [107]. Copyright (2020) by the American Physical Society.

Figure 4.3 – Zoo of hexagonal perovskites with structural clusters. (a) Crystals can either have clusters
with uniform geometry, or they can also host clusters with diverse geometries. For example, we see in the 16H
and 21R materials that dimer/trimer clusters coexist along with tetrahedral clusters in the same material. (b)
One can also achieve clusters of varying geometries or sizes in the same compound by tuning the oxidation
numbers of the TM ion. Shown here are different types of BaMnO3−x structures. Images adapted with
permission from [112], Copyright (2021) American Chemical Society.
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Figure 4.4 – Illustrative crystal structures of materials in the Mo3O8 family. (a) Crystal structure
of Li2InMo3O8. Figure taken from [114]. Copyright (2021) by Springer Nature. (b) Top-down view of an
Mo3O8 layer. One can see the triangular clusters formed by the molybdenum ions (in green). Oxygen ions are
shown in red. Illustration taken with permission from [115]. Copyright (2012) by Springer Nature. (c-d) Two
different ways in which the kagome layers can be stacked along the c-axis. Here, blue and pink correspond
to different layers. Li2InMo3O8 and Li2ScMo3O8 correspond to the dd-stacking, and LiZn2Mo3O8 displays
an cdcdcd-stacking. Figure taken from [114]. Copyright (2021) by Springer Nature.

exhibits geometric magnetic frustration between S = 1/2 magnetic clusters, with two-thirds of
the spins condensing into singlets below approximately T = 96K. This absence of static singlets
indicated that LiZn2Mo3O8 hosts a resonating valence-bond state. Attempts at a theoretical
explanation have ranged from an emergent honeycomb lattice [116], to the material hosting
a U(1) quantum spin liquid state [117]. However, this theory could not explain features of a
fellow material in the same family, Li2InMo3O8, where magnetic moments were well localized
on triangular clusters [118, 119]. This motivated a closer look at possible extensions of the
Hubbard model on the anisotropic kagome lattice [114, 120].

4.1.2 Emergent clusters

Clusters need not always pre-exist in a lattice. In some materials, clusters tend to emerge as a
result of phase transitions. A large class of spinel compounds2 have been observed to exhibit
this tendency. An example is the group of AB2X4 spinels, in which A is a tetrahedral cationic
site, and B is an octahedral cationic site. Similar to how the mixed-valence of transition metal
ions that participate in cluster formation gave rise to cluster Mott physics in materials with
structural clusters, mixed-valence B-site cations also lead to unusual properties. The thiospinel
compound CuIr2S4 is an interesting case, which is known to undergo a metal-insulator transition
at 230K accompanied by a loss of localized magnetic moments. Crystallographic studies [121]
revealed that CuIr2S4 undergoes a simultaneous charge ordering of both Ir3+ and Ir4+ iridium

2Spinels are a class of materials with formula AB2X4, where A and B are cations, and X is an anion, usually
oxygen. If X is any other chalcogenide such as sulphur, selenium or tellurium, then the material is called a
thiospinel.
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Figure 4.5 – Structure of CuIr2S4. (a) The low-temperature crystal structure of CuIr2S4. Red and blue
octahedra correspond to the presence of Ir3+ and Ir4+ , respectively, at the centres, and sulphur ligands
at the corners. In the case of Ir4+ octahedra, the dimerized iridium bonds are indicated with light-blue
cylinders. Image reproduced from [121], with permission from Springer Nature. (b) Charge and orbital
ordering in CuIr2S4. The octamer cluster is shown by green and blue thick lines, and short singlet bonds
are shown by double lines. Image reprinted with permission from [122]. Copyright (2005) by the American
Physical Society.

ions into isomorphic octamers of Ir3+
8 S24 and Ir4+

8 S24. Further, Ir4+ chains undergo spin-
dimerization, as shown in Fig. 4.5. There have been various claims regarding the nature of
its ground state, ranging from a proposed spin-singlet state [122] to that of an exotic spin
glass-like state below 100 K [123]. Another prominent example of a spinel showing emergent
clusters is Al2V2O4. A number of studies on the cluster-formation process below its 700K
charge ordering transition have been carried out, which have proposed V17+

7 heptamer clusters
[124, 125]. Between 700K-1100K, these heptamer clusters are conjectured to break into pairs
of spin-singlet V9+

3 trimers and V8+
4 tetramers [126].

However, spinels are just one class of compounds where clusters are seen to emerge; other
examples include certain silicate pyroxenes3 such as NaTiSi2O6, which consists of characteristic
one-dimensional chains of edge-sharing TiO6 octahedra. X-ray scattering studies showed a
dimerization of Ti-Ti clusters along the chain below Tc = 230K [127].

A common feature of materials with emergent clusters is the phenomenon of dimensionality
reduction [128]: we saw in CuIr2S4 that a spinel crystal structure exhibited dimers below the
metal-insulator transition temperature, which is a cluster of lower dimensionality. Similarly,
Al2V2O4 lowered its dimensionality from hosting heptamer clusters to trimers and tetramers.
One of the main reasons is the spatial orientation of orbitals in the crystal – electrons are
able to hop from a certain orbital to certain orbitals more easily than others owing to physical
proximity. This leads to strong anisotropy of many physical properties, leading to a reduction
of dimensionality in materials with emergent clusters.

3Pyroxenes are materials with a general formula XY(Si,Al)2O6, where X and Y can represent a range of cations.
Common ones are calcium, sodium, aluminum, iron, manganese, etc.
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4.2 Hamiltonian considerations

In the previous section, we saw that materials with a huge variety of clusters have been syn-
thesized, with a commensurately fascinating variety of ground states. Irrespective of whether
clusters are structural or emergent, their presence indicates a pattern of electron localization
that is in need of theoretical treatment. As we have seen, materials in the same class of com-
pounds can have vastly different properties. Though there have been many focused theoretical
studies attempting to explain certain observations in specific materials, the world of clusters in
materials is still in need of an overarching theoretical framework that might attempt to capture
most, if not all, of their essential physics. Hence, we try to formulate a blueprint to study these
clusters in this section.

As we saw in Chapter 2, the single-orbital Hubbard model is given by

H = +U
∑
i

ni↑ni↓ − t
∑
〈i,j〉,σ

(c†iσcjσ + h.c), (4.1)

where c†iσ(ciσ) creates (annihilates) an electron with spin σ ∈ {↑, ↓} on site i, and hopping takes
place between all pairs of neighboring sites 〈i, j〉. The Mott insulating phase is obtained at
half-filling, i.e., one electron per site, when U � t, that is, in the strong interaction limit of the
Hubbard Model. In this limit, the Hamiltonian can be split as

H = H0 + V, (4.2)

where H0 is the on-site Hubbard term, and the hopping term between sites is treated as a
perturbation V . We first need to find the possible ground states of H0 to be able to perform
perturbation theory. Since it is a sum of single-site terms, it suffices to study just a single
site. Fig. 4.6 indicates the possible electron fillings nf for a single site and the corresponding
energies of H0. While a singly-occupied site has zero energy, adding an extra electron generates
a large energy penalty of U , making the singly-occupied state the lower energy state. Extending
this to the full lattice, the ground states at half-filling consist of all states with precisely one
electron per site. Thus, there is a localized effective S = 1/2 degree of freedom at each site.
Note that the localized electrons in the case of the Mott insulator carry a purely spin character.
Once the ground states of H0 are determined, one can derive an effective Heisenberg model
perturbatively in the hopping V , and this effective Hamiltonian correctly captures the magnetic
physics of the Mott insulating phase.

Now, we would like to extend the above idea to a “cluster Hubbard” Hamiltonian. A cluster,
for the purposes of writing down the Hamiltonian, is just a collection of sites in a lattice,
arranged in a certain geometry. The language now changes from classifying terms in Eq. (4.1)
in terms of “on-site” and “inter-site” terms, to the language of clusters, where we now have
terms classified as being “on-cluster” and “inter-cluster” :

H =
∑
C

HC +
∑

〈C,C′〉

HCC′ , (4.3)

53



4 Localization of electrons on clusters

Figure 4.6 – Spectrum of the Hubbard model for a single site. A singly occupied, that is, half-filled site,
is of lower energy (i.e, zero) than a doubly occupied one, which comes with a huge cost of U in the strongly
interacting limit. Note that the trivial case of nf = 0 also has zero energy.

where HC is the collection of “on-cluster” terms, which we will henceforth refer to as the intra-
cluster Hamiltonian, containing electronic interactions and hopping between sites within cluster
C. Similarly, HCC′ is the collection of “inter-cluster” terms. The inter-cluster Hamiltonian
contains interactions and hopping between sites belonging to neighboring clusters C and C ′.

Similar to how localization of electrons on every site was essential to realizing a Mott in-
sulating ground state, in the cluster case, it is essential that electrons are localized on every
cluster. This can be achieved if all intra-cluster terms are large enough compared to inter-cluster
terms so as to prevent electrons from leaving the cluster. Hence, we split the Hamiltonian in
Eq. (4.3) into an unperturbed Hamiltonian H0 =

∑
C HC , which is nothing but the intra-cluster

Hamiltonian summed over all clusters, and then treat the inter-cluster terms as perturbations,
V =

∑
CC′ HCC′ . The way forward again proceeds with the same two steps as in the more fa-

miliar single site single orbital case discussed above. First, we need to find the possible ground
states of H0. Since this is a simple sum over clusters, it suffices to study just a single cluster.
The ground states determine the potential localized degrees of freedom available. Once the
ground states of H0 are determined, an effective Hamiltonian can be derived perturbatively in
V , which links clusters together.

In this work, we study the ground states of the intra-cluster cluster Hamiltonian H0, de-
termining the different potential localized degrees of freedom. As we will see in subsequent
sections, the combination of cluster filling, cluster geometry, and the interplay between vari-
ous parameters in the Hamiltonian gives rise to an incredibly rich variety of ground states of
distinct character.

4.2.1 Intra-cluster hopping and molecular orbitals

The intra-cluster Hamiltonian HC can be split into two parts: the non-interacting part and
the interaction part. In this study, the non-interacting part contains only hopping terms. The
potential impact of other non-interacting terms relevant to many materials, such as crystal-field
splitting or spin-orbit coupling, will be discussed in Chapter 7. For the single orbital case, we
consider the simplest intra-cluster hopping Hamiltonian as

Hnon-int = −t
∑
〈i,j〉,σ

(c†iσcjσ + h.c). (4.4)

For many real materials, however, there is an additional degree of freedom involved along with
the existing spin and charge degrees of freedom – that is, multiple orbitals. The non-interacting
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4.2 Hamiltonian considerations

Figure 4.7 – Hopping mechanisms in Hnon-int. (a) tm hops an electron from one orbital on site i to the
same kind of orbital on site j. (b) tmn hops an electron from one orbital on site i to a different kind of orbital
on site j. (c) Another way of understanding the two kinds of hopping is that tm (shown in orange) hops
spins in the same “orbital plane”, whereas tmn hops spins across different orbital planes (shown in green).

Hamiltonian for such materials is typically constructed using knowledge of the orbitals involved
(including surrounding ligands), the point group symmetry of the cluster, and the relevant
Slater-Koster parameters. Here, as we are aiming for a simpler, more overarching perspective,
we consider a simplified form of intra-cluster hopping as

Hnon-int = −tm
∑
〈i,j〉

∑
m,σ

(c†imσcjmσ + h.c)− tmn

∑
〈i,j〉

∑
m6=n,σ

(c†imσcjnσ + h.c),

where tm corresponds to diagonal, intra-orbital hopping, tmn to off-diagonal, inter-orbital hop-
ping and the operator c†imσ(cimσ) creates (annihilates) an electron with spin σ in atomic orbital
m on site i. This form of hopping is illustrated in Fig. 4.7.

We refer to the energy levels of the non-interacting Hamiltonian as molecular orbitals. The
symmetries of the molecular orbital levels have two contributions. The first contribution comes
from the spatial symmetry of the cluster. As we will be agnostic regarding the spatial char-
acteristics of the orbitals, open chains, including the dimer, trimer, and tetramer clusters, are
assumed to have only inversion symmetry and hence designated as belonging to an “i” point
group, with [+] and [−] indicating even or odd under inversion respectively. The point groups
of the other clusters are indicated in Fig. 5.2.

The second contribution comes from the internal symmetry among the orbitals. In the
absence of the off-diagonal hopping tmn, the hopping Hamiltonian has an enlarged SU(2) and
SO(3) orbital symmetry for the case of two and three orbitals respectively. However, finite
tmn breaks these symmetries, with the two-orbital case reduced to a C2 orbital point group
(corresponding to swapping of the two orbitals), and the three-orbital case reduced to a C3v

orbital point group (corresponding to cyclic permutations of the orbitals and swapping of any
two). We will use a shorthand [GC , GO] notation4, with GC referring to the spatial point

4Not to be confused with a commutator.
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4 Localization of electrons on clusters

group of the cluster and GO referring to the orbital symmetry group. Finally, the Hamiltonian
is time-reversal symmetric, meaning that all single-particle levels possess a two-fold Kramers
degeneracy.

Note that since we are, for all practical purposes, studying a toy model to capture the core
physics of cluster Mott insulating ground states, we obscure all details of the environment of
these clusters, including crystal fields and spin-orbit coupling. This also means some of the
symmetry groups of these clusters in a real material might be different from what is considered
here.

4.2.2 Intra-cluster interactions

In the case of multiple orbitals, it can be shown that the most general interaction term is a
screened Coulomb interaction Vc, with matrix elements [129, 130]

Amnpq
ijkl =

∫
drdr′φ∗imσ1

(r)φ∗jnσ2
(r′)Vc(r, r

′)φkpσ3(r
′)φlqσ4(r), (4.5)

where φ(r) is some localized Wannier basis, i, j, k, l are site indices, m,n, p, q are orbital indices,
and σ1, σ2, σ3, σ4 are spin indices. We will consider only local on-site terms and hence drop site
indices in the remainder of this section.

The on-site interaction between electrons in a single orbital, that is, the Hubbard interaction
U , is obtained when we set m = n = p = q, and σ1 6= σ2:

U =

∫
drdr′φ∗mσ1

(r)φ∗mσ2
(r′)Vc(r, r

′)φ∗mσ1
(r)φ∗mσ2

(r′). (4.6)

A similar interaction would be an on-site term between electrons in different orbitals. If we set
m = q, n = p we get

U ′ =

∫
drdr′φ∗mσ1

(r)φ∗nσ2
(r′)Vc(r, r

′)φ∗mσ1
(r)φ∗nσ2

(r′), (4.7)

where a change of variable p → n is used. Similarly, we get two more interaction terms that
are non-diagonal in orbital space, which are the J-interactions

J1 =

∫
drdr′φ∗mσ1

(r)φ∗nσ2
(r′)Vc(r, r

′)φmσ1(r
′)φnσ2(r),

J2 =

∫
drdr′φ∗mσ1

(r)φ∗mσ2
(r′)Vc(r, r

′)φnσ1(r
′)φnσ2(r) (σ1 6= σ2).

(4.8)

If we choose φm(r) to be real, we get J1 = J2 = J [131]. In the second quantized form, the
interactions (4.6), (4.7) and (4.8) combine to give the Hubbard-Kanamori Hamitonian [129,
132]
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4.2 Hamiltonian considerations

HHK = U
∑
m

nm↑nm↓ + U ′
∑
m6=n

nm↑nn↓

+ (U ′ − J)
∑

m 6=n,σ

nmσnnσ − J
∑
m6=n

c†m↑c
†
n↓cm↓cn↑

+ J
∑
m 6=n

c†m↑c
†
m↓cn↓cn↑,

(4.9)

where the operator c†mσ(cmσ) creates (annihilates) an electron with spin σ in atomic orbital m.
In the above equation, the first three terms are density-density interactions: U governs the

repulsion between opposite spins in the same orbital, U ′ between opposite spins in different
orbitals and U ′ − J being between parallel spins on different orbitals. The J-terms are Hund’s
terms, governing inter-orbital exchange and pair-hopping terms. The mechanisms for all terms
in Eq. (4.9) are illustrated in Fig. 4.8.

It is important to note that the parameters in Eq. (4.9) are not independent of one another,
and relations among them are dictated by symmetry considerations. It was shown in various
works using different approaches that in order for the Hamiltonian in Eq. (4.9) to be invariant
under rotations in spin, charge, and orbitals, one needs to impose [133, 134]

U ′ = U − 2J, (4.10)

along with the existing J1 = J2 criterion. Though U ′ and J take different values in terms
of Racah Parameters [135] for different number of orbitals, U is independent of the choice of
orbitals. As a result, Eq. (4.10) holds for any number of orbitals, irrespective of the angular
momentum. For example, in the three orbital case, this relation holds if we consider a partially
quenched orbital angular momentum from l = 2 for the entire d-shell, down to l = 1. However,
in the most general case, Eq. (4.10) does not hold; there would exist terms in addition to U,U ′

and J which might not vanish by symmetry. In that case, the Hubbard-Kanamori Hamiltonian
would only be approximate.

For the intra-cluster interaction Hamiltonian, we consider the standard multi-orbital Hubbard-
Kanamori Hamiltonian on each site, with the resulting total Hamiltonian given by

Hint =
∑
i

(
U
∑
m

nim↑nim↓ + U ′
∑
m6=n

nim↑nin↓ + (U ′ − J)
∑

m6=n,σ

nimσninσ

− J
∑
m 6=n

c†im↑c
†
in↓cim↓cin↑ + J

∑
m6=n

c†im↑c
†
im↓cin↓cin↑

)
.

(4.11)

We will henceforth use Eq. (4.11) in the cluster context, with the additional criterion given by
Eq. (4.10). In the case of a single orbital, only the first term survives.

4.2.3 Cluster Hund's rules

It is possible to rewrite the Hubbard-Kanamori Hamiltonian in a more compact form [136]. We
define orbital operators for the two and three orbital cases as
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4 Localization of electrons on clusters

Figure 4.8 – Nature of interactions governed by various terms of the Hubbard-Kanamori Hamil-
tonian. (a) The on-site U term, (b) density term for opposite spins in orbitals m and n, (c) density term for
parallel spins in orbitals m and n, (d) two opposite spins on orbitals m and n are flipped at the same time,
(b) a pair of spins, initially on orbital m, hop at the same time to orbital n.

Two-orbitals: Tα
i =

1

2

∑
σ

∑
mm′

c†imστ
α
mm′cim′σ,

Three-orbitals: Lm
i =

∑
σ

∑
m′m′′

εmm′m′′c†im′σcim′′σ,
(4.12)

where τα are the Pauli matrices. The spin operator similarly defined as

Sα
i =

1

2

∑
m

∑
σσ′

c†imστ
α
σσ′cimσ′ . (4.13)

Using these expressions, we can write the full interaction Hamiltonian as

Hint =
(U − 3J)

2

∑
i

N2
i − 2J

∑
i

( ~S2
i +Q2

i ) + αnf , (4.14)

where Qi is an orbital operator that depends on the number of orbitals, Qi = T y
i and Qi = ~Li/2

in the two and three-orbital cases, respectively. αnf is akin to a chemical potential: nf is the
number of electrons on the cluster, and

Two-orbitals: α = (7J − U)/2,

Three-orbitals: α = (8J − U)/2.
(4.15)

Let us try to understand how Eq. (4.14) determines which states should constitute the ground
states in different parameter regimes. We consider an example of a dimer cluster with three
orbitals per site and eight electrons on the cluster. Let us focus on the first term (see Fig. 4.9(a)
for an illustrative example). When U � J , then the

∑
iN

2
i term, which is the sum of the

number of electrons on each site of the cluster, has to be minimized so as to lower the energy.
This is possible when the electrons are distributed as uniformly as possible, across the cluster
sites. In the opposite regime, when J � U , the opposite holds true: a distribution of electrons
where they are arranged as unevenly as possible across the cluster sites is energetically favored.
The first term thus determines how many electrons every site of the cluster should hold. The
term U − 3J is sometimes referred to as an effective interaction. Typically, only the U > 3J
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4.2 Hamiltonian considerations

Figure 4.9 – Example of cluster Hund’s rules at play. Here, we consider an example of a dimer cluster
with 3 orbitals per site, and 8 electrons on the cluster. (a) How the first term chooses the ground state. (b)
How the second term chooses the ground state. To show this, we have assumed we are in the U � J regime.
The second term is the conventional Hund’s rule.

regime is physically relevant to cluster materials. However, there are cases, such as rare-earth
nickelates [132, 137], where certain mechanisms have been proposed that realize the U < 3J

regime. In Chapter 6, we will explore the full U, J parameter space along with hoppings in
order to gain a more complete picture of the underlying physics at play.

Now, let us assume the first term is fixed, and focus on the second term, akin to the case
of a single-site Mott insulator. This term governs the configuration of electrons on the orbital
level on each site and hence determines the quantum numbers of the spin and orbital operators.
Due to the negative sign before the second term, states with maximal ~S2

i and maximal Q2
i are

favored. This is what we observe in Fig. 4.9(b). This is nothing but a reflection of Hund’s first
two selection rules. This fact is also evident, for example, in Fig. 6.14, where the quantum
numbers and energies for a single site with three orbitals are given. For, say nf = 2, the state
with the lowest energy is the one with maximal spin ~S2

i and maximal angular momentum ~L2
i .

In a CMI, the individual Ni are not fixed. Only the total electron number nf =
∑

iNi on
the cluster is fixed. In this case, the N2

i term in Eq. 4.14 typically dominates the energy (the
eigenvalues of N2

i are typically much larger than that of ~S2
i and Q2

i ). As a result, one gets
an additional “cluster Hund’s rule” which must first be satisfied. In the physically relevant
regime of U > 3J , one must first minimize

∑
iN

2
i , and then, as usual, maximize

∑
i
~S2
i , and

finally
∑

iQ
2
i . On the other hand, when U < 3J , competition between the different terms

may arise, potentially resulting in a more complex selection process. Minimal
∑

iN
2
i favors

a uniform spread of electrons across the cluster. Conversely, maximal
∑

iN
2
i favors a more
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4 Localization of electrons on clusters

skewed distribution of electrons. We will discuss these points in more detail in the examples
that follow, in Chapter 6.

A natural question arises – is there any regime where the normal Hund’s rules fail and a
cluster Hund’s rule has to be compulsorily considered? It turns out that the conventional
Hund’s rules, by default, hold in the region where U � J . This is also the regime where

∑
iN

2
i

is minimal, and hence, both the first and second terms in Eq. (4.14) contribute in determining
the ground state. As a result, the conventional Hund’s rules, which are the second term, are
also involved. In the J � U region,

∑
iN

2
i is maximal, and hence in this regime, conventional

Hund’s rules are not sufficient because
∑

iN
2
i is the major factor determining the ground state.

4.3 Conclusion

In this chapter, the concept of cluster Mott insulators was introduced and we discussed how
these clusters are realized in materials. Irrespective of whether clusters are structural or emer-
gent, their presence indicates a pattern of electron localization that is in need of theoretical
treatment. Materials in the same class of compounds are seen to have vastly different proper-
ties. Hence, the world of clusters in materials is in need of an overarching theoretical framework
that might capture most, if not all, of their essential physics. In an attempt to do the same,
we constructed a cluster Hamiltonian and studied its nature. We discovered in our work that
one of the core concepts governing interactions is the “cluster Hund’s rule”, which selects the
ground states of the intra-cluster Hamiltonian in different parameter regimes.

There have been studies on classes of candidate cluster Mott materials, such as transition
metal compounds with Mo3O8 clusters, where a single-orbital Hubbard model on the cluster
was assumed, and it was shown that performing second-order perturbation theory resulted in
a Heisenberg-like Hamiltonian, with the effective coupling having a complex dependence on
different interaction terms and crystal fields [114]. The generalization of these results and their
extension to multiorbital models, though beyond the scope of this project, remains an exciting
potential direction within the area of cluster Mott insulators.
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Single orbital Hubbard model

Chapter

5
In the previous chapter, we introduced the concept of clusters and the Hubbard-Kanamori
Hamiltonian. The single orbital Hubbard model is a special case of the more generalized
Hubbard-Kanamori Hamiltonian of Eq. (4.11), where the inter-orbital terms U ′ and J vanish
by virtue of there being just one orbital per site. Nevertheless, this provides insight into using
the language of the molecular orbital basis. In addition, the single orbital Hubbard model on
various clusters has been demonstrated as being a starting point for introducing inter-cluster
terms. This, in turn, opens up a zoo of multiple insulating phases arising from an interplay
of inter-cluster and intra-cluster hoppings, and lattice geometries. Some examples include
insulating phases on decorated lattices whose low-energy effective theories include the spin-1/2
Heisenberg model on the kagome lattice and the spin-1/2 and spin-1 Heisenberg models on the
honeycomb lattice [138, 139].

5.1 Molecular orbital levels

In the case of a single orbital, there is no question of inter- or intra-orbital hopping. Hence, we
have just one type of hopping, as in Eq. (4.4). The molecular orbitals for different clusters are
shown in Fig. 5.2. Since each site has just a single orbital, an N -site cluster has N two-fold
degenerate levels. For clusters with a well-defined CN -fold rotational symmetry, such as the
dimer, triangular, and square clusters, molecular orbital basis operators for an N -site cluster
can be easily defined as

b†lσ =
1√
N

∑
i

c†iσe
i(2πl/N)xi , (5.1)

where l ∈ [1, N ] denotes the quantum number corresponding to rotations of the cluster along
the N -fold axis of symmetry, and hence, in this case, denotes the different molecular orbitals,
and xi ∈ [1, N ] is a site-index [138]. In this basis, the hopping Hamiltonian can be trivially
diagonalized and becomes

Hnon-int = −2t
∑
lσ

cos(2πl/N)b†lσblσ. (5.2)

One has to be mindful of the fact that the assumption of space groups of clusters in Fig. 5.2
is a gross simplification solely done for the purpose of capturing the core physics using such a
toy model. In real materials, however, the environment of the cluster sites considered plays an
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5 Single orbital Hubbard model

essential role in determining the geometry of the cluster. We briefly saw this in Chapter 2, but
we will discuss it in more detail in Chapter 7.

5.1.1 Interaction Hamiltonian

As with the hopping, U ′ and J terms in the Hubbard-Kanamori Hamiltonian vanish, owing
to the presence of a single orbital, thus leaving us with only the Hubbard interaction. For
clusters with a well-defined CN -fold rotational symmetry, the molecular orbital operators can
be expressed as in Eq. (5.1). The interaction terms in the Hamiltonian can hence be written in
this operator basis. The density-density term associated with U in the molecular orbital basis
is given as

ni↑ni↓ =
1

N

∑
lpq

b†l↑bp↓b
†
q↓b(l+q−p)↓, (5.3)

where l, p, q label different molecular orbitals. Now, we can define a molecular orbital spin
operator as

Sα
mo,l =

1

2

∑
σσ′

b†lστ
α
σσ′blσ′ (5.4)

Along with Ntot =
∑

lσ nlσ, this finally gives us an expression for the single-orbital interaction
Hamiltonian in the molecular orbital basis as [138]

Hint =−
U

N
~S2

mo +
U

4N
N2

tot +
U

2N
Ntot −

U

N

∑
l

nl↑nl↓

+
U

N

∑
l 6=p

b†l↓b
†
l↑bp↑b(2l−p)↓

+
U

N

∑
l 6=p 6=q

b†q↓b
†
l↑bp↑b(l+q−p)↓

(5.5)

Even though this is an expression for the single orbital case, parallels can be drawn between
Eq. (5.5) and the cluster Hund’s rules that emerged from rewriting the Hubbard-Kanamori
Hamiltonian in Eq. (4.14). Firstly, we see that the N2

tot term is positive and the ~S2
mo term is

negative, giving rise to similar selection rules as Eq. (4.14). In addition, of the two four-operator
terms, the first is a “pair-clumping” term if 2l 6= p. This mechanism is shown in Fig. 5.1(a),
where the (2l− p)th orbital is indicated by q. If 2l = p, then this term becomes a pair-hopping
term, as shown in Fig. 5.1(b). Similarly, the second of these terms, if l + q 6= p, makes two
electrons of opposite spin and in different orbitals hop simultaneously to two different empty
orbitals, respectively. This is shown in Fig. 5.1(c). If l+ q = p, this becomes a “pair-spreading”
term, which is the mechanism opposite of pair-clumping. This is shown in Fig. 5.1(d).

For the single-orbital case, operating in the molecular orbital basis can hence give us an
intuition for ground state selection, similar to cluster Hund’s rules. However, in the multi-
orbital case, we not only have different types of hopping but many interaction terms, as is
encapsulated in the Hubbard-Kanamori Hamiltonian. Hence, expressing all these terms in the
molecular orbital basis for a multi-orbital case is not particularly favored.
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5.1 Molecular orbital levels

Figure 5.1 – Various hopping mechanisms in Hint for a single orbital per site. (a) pair-clumping, (b)
pair-clumping becomes pair-hopping when p = 2mn−n. (c) Two spins hop simultaneously from two orbitals
to two other orbitals. (d) This becomes pair-spreading when q = m+ p− n.

5.1.2 Results

The results for the single-orbital case are shown in Fig. 5.2, where the ground state degeneracy
(GSD) is listed for each combination of the choice of cluster and electron filling nf . For each
combination, the GSD is the same for all finite values of U (the non-interacting GSDs are shown
in square brackets when they differ from the interacting case).

Linear clusters

One of the first observations is that for linear chains such as dimer and trimer, every orbital
level is two-fold degenerate due to Kramer’s degeneracy. The ground state for the case of all
even fillings is unique; this makes sense since the respective orbital is completely filled. The
trimer chain differs in structure (and consequently, its molecular orbitals) in the sense that
the trimer chain has crystallographically two kinds of sites: the sites on the edge and the site
in the middle, in contrast to the dimer where the two sites are equivalent to one another. In
addition, it is also plausible that clusters are formed in materials, such that the clusters are
constituted of elements with different individual oxidation states [112]. We will see examples
of such clusters in Chapter 9.

Rotationally symmetric clusters

The C3v symmetry of the triangle cluster is reflected in its non-interacting bandstructure, which
has an A1 level as the ground state and a two-fold E level as its excited state. Filling up the
A1 level is very similar to what we saw in the case of dimer and trimer chains, where a fully
filled level gives rise to a unique ground state when nf = 2. However, this is not the case when
nf = 4. This corresponds to placing two spins on the E levels. In the non-interacting case,
it has a six-fold degeneracy, which is constituted of three singlet states (with Stot = 0) and
a triplet state(with Stot = 1). When interaction is added, it chooses the triplet state as the
ground state, in accordance to Hund’s rules. The ground state degeneracy when nf = 3 is the
same as when nf = 5, because while the former amounts to placing one spin on the E levels
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5 Single orbital Hubbard model

Figure 5.2 – Effective degrees of freedom for a single orbital per site Hubbard model. This figure
shows the non-interacting molecular orbital levels and the GSDs for the full Hamiltonian for all electron
fillings for two, three and four site clusters. The numbers in square brackets in the GSD row indicate the
GSD in the absence of interaction U . When square brackets are not indicated, it means the GSD is identical
for the non-interacting and interacting limits.

(with completely filled A levels), the latter can be observed by placing a hole in the E levels.

In the case of a square cluster, as with the triangle, the molecular orbitals reflect the C4v

symmetry of the cluster. The ground state degeneracies of nf = x electrons, say, are the
same as that of the nf = 8 − x sector (since the cluster can accommodate a maximum of
eight electrons). The nf = 4 sector has a six-fold degeneracy in the non-interacting limit, but
when interactions are added, a unique Stot = 0 ground state is chosen. This has interesting
implications, as we will see in the next subsection.

The tetrahedral cluster is the only cluster among those considered, which has a triply de-
generate energy level. Because of this, we see that nf = 2 is the only even filling in which
the ground state is unique, irrespective of the presence or absence of interactions. The ground
state degeneracies are also, in general, higher, especially at higher fillings, due to presence of
the triply degenerate level. In the nf = 5 sector, we observe a mechanism similar to what we
saw in case of the nf = 4 sector in the triangle cluster: in the absence of interactions, there
is a high degeneracy, but when a small interaction is added, the degeneracy reduces to being
four-fold. This corresponds to all three levels of the [T1] state being singly occupied by an
electron, resulting in an Stot = 3/2 ground state.
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5.2 Conclusion

Mott atomic limits

The half-filled sector in the square lattice (that is, four electrons) is of particular significance
because it hosts a non-trivial ground state when a small interaction is introduced. If we
assume the square cluster to have a C4 symmetry, then the ground state transforms in the
B representation of the point group; if we assume a C4v symmetry, then the ground state at
half-filling transforms in the B1 irreducible representation.

Non-trivial ground states at even-fillings have recently garnered interest in the context of
topological quantum chemistry. In a recent work, Soldini et al. [140] reasoned that the ma-
chinery of topological quantum chemistry (TQC) is limited to non-interacting systems and, as
a result, can only successfully employ single-particle formulations. Hence, they developed an
interacting TQC formalism to incorporate interacting states. To that end, they made use of
a class of reference states that are used to extend the principle of “atomic limits” in TQC to
“n-Mott atomic limits”. These Mott atomic limits are constructed using n-entangled electrons
that sit at certain Wyckoff positions on the cluster. The simplest example of such an n-Mott
atomic limit is a single-orbital per site Hubbard model on the square cluster, at half-filling.

The three requirements for such a ground state are: the cluster should have an even filling,
the ground state should be unique in the presence of interactions, and it should transform
in a non-trivial irreducible representation. As mentioned previously, we exhaustively tracked
ground state degeneracies at all fillings, both in the presence and in the absence of interactions
for a range of clusters (see Fig. 5.2). It turns out that the case of a square cluster at half-filling
is the only instance of a non-trivial ground state. Other examples of Mott atomic limits, which
have not been dealt with in this chapter, are the single-orbital per site Hubbard model on a
diamond cluster at half-filling, a checkerboard cluster at half-filling, as well as the star of David
cluster with 12 electrons on the cluster [140]. In all these cases, the ground state transforms
non-trivially, in the B representation.

Though non-trivial ground states were not observed in any single-orbital clusters in our work
so far (except for the square case), these clusters are nevertheless capable of hosting non-trivial
ground states. Hence, we highlight singly degenerate, non-trivial ground states for various
point groups that are dealt with in this chapter, in Appendix A.

5.2 Conclusion

In this chapter, we focused on the single-orbital Hubbard model as a starting point to under-
stand the physics of cluster Mott insulators. The molecular orbital basis provided us with a way
of rewriting the Hubbard interaction, such that it looked similar to the cluster Hund’s rules.
Even though a large number of cluster materials are transition metal coordination compounds,
which have multiple orbitals per site, the single-orbital picture still holds significance and has
been, for example, used to derive effective Hamiltonians governing Mo3O8 cluster materials
[114]. We also saw that they can serve as playgrounds to explore ways in which interacting
states can be incorporated into the topological quantum chemistry framework. In the next
chapter, we use the insight and understanding we gained from this chapter, to study phase
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diagrams of cluster Mott insulators.
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Chapter

6
We extend the ideas introduced in the previous chapter, to the case of multiple orbitals per site.
An added factor to consider is that the bandstructures of the multi-orbital case are governed
by a combination of the cluster’s spatial symmetry as well as the symmetry of the orbitals. In
this chapter, we only consider the cases of two and three orbitals per site. This would include
the case of most real materials since the transition metal ions involved in cluster formation very
often have either two (eg) or three (t2g) orbitals that constitute the ground state.

This chapter is largely based on publication [P1], to which the author of this dissertation
has contributed the major part, namely all numerical simulations, all figures, and all the text
(excluding the introduction and discussion sections of the publication). The technical description
of the results in this chapter is, therefore, partly adopted from the publication.

6.1 Two orbitals per site

The two-orbital per site Hubbard model is the governing model for all transition metal coordi-
nation compounds that have eg ground states, for example, manganites, niobium halides, and
some quasi-1D materials [141–147]. There have also been various theoretical studies done to un-
derstand the two-orbital Hubbard model, such as dynamical mean field theory [148], t-DMRG
methods to understand spin-orbit separation [149], or using novel methods such as traveling
cluster approximation to incorporate thermal effects [150], among others [151–153]. In this
section, we will study the governing interacting and non-interacting terms in the two-orbital
case and their interplay in clusters of different geometries and at different electron fillings.

6.1.1 Molecular orbital levels

In the two-orbital case, the non-interacting Hamiltonian Hnon-int of Eq. (4.5) is given by:

Hnon-int = −
∑
〈i,j〉,σ

c†iσ

(
tm tmn

tmn tm

)
cjσ (6.1)

where c†iσ = (c†imσ, c
†
inσ). As we saw in section 4.2, the off-diagonal hopping tmn breaks SU(2)

orbital symmetry, with the orbital character of the bands labeled only by the irreducible rep-
resentations of C2, A or B (symmetric or anti-symmetric under exchange of the two orbitals).
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6 Multiorbital Hubbard model

Figure 6.1 – A single site with two orbitals: Summary of the two-orbital per site interaction Hamiltonian
given in Eq. (6.2) for a single site. The number indicated in square brackets are the quantum number for
T 2
x + T 2

z .

As these are both singly degenerate, there is no possibility of a non-trivial localized degree of
freedom protected solely by orbital symmetry in this two-orbital case.

6.1.2 Interaction Hamiltonian

We saw in Section 4.2.2 that the interaction Hamiltonian for the two-orbital case is given by

Hint =
(U − 3J)

2

∑
i

N2
i − 2J

∑
i

[~S2
i + (T y

i )
2] +

(7J − U)

2
nf . (6.2)

A prominent feature to note here is that only (T y
i )

2 appears in the Hamiltonian, thus orbital
isospin ~T 2

i is not conserved. The spectrum of the Hamiltonian for a single site is given in
Fig. 6.1. Here, we see that the ground state degeneracy and quantum numbers are the same for
the nf = 1 and nf = 3 case, and that the S = 1 triplet forms the ground state when nf = 2.

6.1.3 Some select phase diagrams

We carried out an exhaustive study across all fillings on the clusters discussed in this section.
Here, we present results from some select fillings, in which there was a particularly diverse
variety of phases.

Dimer, nf = 3

Fig. 6.2(a) shows the non-interacting molecular orbital levels of a dimer cluster with two orbitals
per site. The presence of both inter- and intra-orbital hopping gives rise to two regimes:
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6.1 Two orbitals per site

Figure6.2 – Different limits for a dimer cluster with two orbitals per site. (a) Non-interacting molecular
orbital levels. (b) Single-particle levels with energies and labels indicated: In the label [GC , GO], GC and
GO indicate the irreducible representations of the cluster’s spatial and orbital symmetries respectively. (c)
U − J phase diagram of Hint only for nf = 3, i.e. in the absence of hopping.

tmn/tm < 1 and tmn/tm > 1. The dimer cluster has a spatial i point group symmetry, and its
orbitals have a C2 symmetry, which, as mentioned earlier, we denote as [i, C2]. We consider
here the nf = 3 sector. In the non-interacting limit, filling the single-particle levels with 3
electrons gives rise to a two-fold GSD with an effective S = 1/2 degree of freedom.

Let us now consider the pure interaction limit. In accordance with cluster selection rules,
there are two possible ways electrons can be distributed among two sites: two electrons on one
site and one on the other site, that is, a (2 + 1) configuration, or, three electrons on one site
and none on the other site, that is, a (3 + 0) configuration. From Eq. (6.2), we see that a
(2 + 1) configuration is favored in the large-U limit since this minimizes the

∑
iN

2
i term with

a value 22 + 12 = 5, and the (3 + 0) configuration is favored in the large-J limit with a value
32 + 02 = 9. This is shown in the pure-interaction phase diagram in Fig. 6.2(c). Consider the
configuration of (2 + 1) electrons when U > J . From Fig. 6.1, we see that the energetically
favored combination is the presence of an S = 1 triplet on one site and an S = 1/2 on the
second site. The result of this is an effective S = 3/2 degree of freedom in region I in Fig. 6.2(c).
The (3 + 0) configuration constitutes the ground state when U < J , with an S = 1/2 on one
site and an S = 0 on the other, resulting in a two-fold ground state degeneracy in region II in
Fig. 6.2(c).

Fig. 6.3 shows phase diagrams for nf = 3 in the presence of both interactions and hopping,
with phase boundaries indicated. The choices of hoppings tmn = 0.5 and tmn = 1.5 are based
on the two hopping regimes marked in Fig. 6.2(a). We see remnants of the pure interaction
limit even when hopping is switched on: the two configurations of electrons being favored in
different parameter regimes is seen in Fig. 6.3(c,e), but the areas encompassed by

∑
iN

2
i values

derived from the pure interaction limit have changed due to an interplay of interactions and
hopping. This plot is used as a reference to label different regions in the GSD plots in Fig. 6.3:
for example, the purple region in Fig. 6.3(a) gets the label ‘I’ because

∑
iN

2
i ≈ 5 corresponding

to that region in Fig. 6.3(b); this is the same value as that of region I in the pure interaction
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plot of Fig. 6.2(c). Similarly, the orange lower-triangular area in Fig. 6.3(a) gets the label ‘II’
because

∑
iN

2
i ≈ 9 in Fig. 6.3(b) for that area, and this is the same value as that of region II in

Fig. 6.2(c). This labeling convention shall be used in GSD plots for all clusters discussed in the
rest of the examples. In addition, the U = J phase boundary remains as is, and the effective
spin-degrees of freedom in regions I and II in Fig. 6.2(a) also follow from the respective regions
in Fig. 6.2(c).

When we have non-zero interactions and non-zero hopping, we obtain phase diagrams as
shown in Fig. 6.3. In general, we see that the region I shrinks with the introduction of hopping,
and the two-fold GSD occupies a larger area. In addition, the U = J line shifts away from
the origin when hopping increases (Fig. 6.3(d)). The non-interacting limit (that is, the origin
in the plot: U = 0, J = 0) favors a more delocalized distribution of electrons, hence smoothly
connecting to the region where a (2 + 1) configuration forms the ground state. It also favors
a lower total spin since the lowest energy levels get filled sequentially, as opposed to a higher
effective spin degree of freedom favored in the pure interaction limit (due to Hund’s rules). As a
result, there is a competition between favoring a higher effective spin and a lower effective spin
when U > J . As hopping is further increased, there is a tendency of the system to approach
the behavior of the non-interacting limit, hence shrinking the region with higher effective spin.

Trimer, nf = 5

Fig. 6.4(a) shows the non-interacting molecular orbital levels of a trimer cluster with two
orbitals per site. We see two regimes: tmn/tm < 1 and tmn/tm > 1. The trimer cluster has a
[i, C2] symmetry. A distinct feature of the trimer molecular orbital levels are the zero-energy
[−, A] and [−, B] levels. These levels are protected by inversion symmetry of the trimer cluster.
Though dimer and trimer cases are quite similar, the main difference is the presence of these
zero energy levels in the trimer, which can be attributed to there being two kinds of sites on the
trimer: a site with one neighbor (edge site), and a site with two neighbors (middle site). We
have chosen to show the nf = 5 sector as an example for the trimer case. In the non-interacting
limit, filling the single-particle levels with five electrons gives rise to a four-fold ground state
degeneracy, with an effective S = 1/2 degree of freedom.

In the pure interaction limit, there are many possible ways in which five electrons can be
distributed across three sites of the trimer. Among these configurations, we see from Eq. (6.2)
that a (2 + 2+ 1) configuration is favored in the large-U limit (since this minimizes the

∑
iN

2
i

term) and the (4 + 1 + 0) configuration is favored in the large-J limit. This is shown in the
pure-interaction plot of Fig. 6.4(c).

Fig. 6.5 shows the phase diagrams for nf = 5 in the presence of both interactions and
hopping (tmn = 0.5 and tmn = 1.5), with phase boundaries indicated. In Fig. 6.5(a), there are
a variety of phases. Firstly, we note remnants from the pure interaction limit: in addition to
the U = J phase boundary, the electronic configurations being favored in different parameter
regimes can be seen in Fig. 6.5(b), although the areas corresponding to regions I and II from
the pure interaction limit have now shrunk due to an interplay of interactions and hopping.
Secondly, as hopping is introduced, we see a new region with S = 3/2 opening up around
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6.1 Two orbitals per site

Figure 6.3 – U − J phase diagrams for a dimer cluster with two orbitals per site and nf = 3. The
first row shows the (a) ground state degeneracies (b)

∑
i N

2
i and (c) gap plots for (tm, tmn) = (1.0, 0.5). The

second row shows the (d) ground state degeneracies (e)
∑

i N
2
i and (f) gap plots for (tm, tmn) = (1.0, 1.5).

The GSD plots indicate the GSD, effective spin degree of freedom, and, in square brackets, the inversion
quantum number. The dotted boundaries shown in all plots are obtained from the peaks in the second
derivative of the ground state energy with respect to U and J .

Figure 6.4 – Various limits for a trimer cluster with two orbitals per site.(a) Non-interacting molecular
orbital levels. (b) Single-particle levels with energies indicated, ordered assuming tmn < tm. (c) U −J phase
diagram of Hint only for nf = 5, i.e. in the absence of hopping.
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Figure 6.5 – U − J phase diagrams for a trimer cluster with two orbitals per site and nf = 5. The
first row shows the (a) ground state degeneracies (b)

∑
i N

2
i and (c) gap plots for (tm, tmn) = (1.0, 0.5). The

second row shows the (d) ground state degeneracies (e)
∑

i N
2
i and (f)gap plots for (tm, tmn) = (1.0, 1.5).

the U = J line, corresponding to the (3 + 1 + 1) configuration (orange region in Fig. 6.5(e)).
Note an interesting pattern: in the presence of both interactions and hopping, we generally
expect ground state degeneracies to decrease; but the pockets with higher degeneracies and
spin seemed to be favored at higher interactions. This is because of the interplay between
hopping and interactions. As hopping is increased, the pockets with high GSD, which are
remnants of the interaction regime, find higher and higher values of interaction parameters so
as to overpower hopping.

Triangle, nf = 7

Fig. 6.6(a) shows the non-interacting molecular orbital levels of a triangle cluster with two
orbitals per site. The triangular cluster has a [C3v, C2] symmetry. A distinct feature of the
triangle molecular orbital levels is the two-fold degenerate [E,A] and [E,B] levels. These levels
are protected by the C3 symmetry of the triangular cluster. We consider the nf = 7 sector here
as an example. In the non-interacting limit, filling the single-particle levels with 7 electrons
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6.1 Two orbitals per site

gives rise to a four-fold ground state degeneracy when tmn/tm < 1 and a two-fold ground state
degeneracy when tmn/tm > 1.

In the pure interaction limit, we see the electrons arrange themselves among the sites of the
cluster in two ways. A (3 + 2 + 2) configuration is favored in the large-U limit (since this
minimizes the

∑
iN

2
i term) and a (4 + 3 + 0) configuration is favored in the large-J limit, as

shown in the pure-interaction plot of Fig. 6.6(c). Consider first the region I. From Fig. 6.1, we
see that the energetically favored combination is the presence of an S = 1 triplet on the two
sites with two electrons, and an S = 1/2 on the third site (in accordance with Hund’s rules).
The result of this is an overall effective S = 5/2 degree of freedom. Similarly, in region II, an
S = 1/2 on one site and an S = 0 on the other two results in an overall S = 1/2 degree of
freedom.

Fig. 6.7 shows the phase diagrams for nf = 7 with both interactions and hopping. In
Fig. 6.7(a), we see a variety of phases in region I and II. Different configurations of electrons
being favored in different parameter regimes is seen in the

∑
iN

2
i plot in Fig. 6.7(b), although

the areas encompassed by values close to those of the pure interaction limit have changed due
to an interplay of interactions and hopping. Another remnant of the pure interaction limit is
the U = J phase boundary; in addition, the effective spin degrees of freedom in region I (pink
area) and region II also follow from their respective pure interaction counterparts in Fig. 6.6(c).
Note that while the degeneracy is purely due to the spin degree of freedom in the pink area
of region I, the GSD in other areas and regions arise due to a combination of spin and spatial
symmetries.

As we increase hopping to tmn/tm > 1, we see that region I shrinks, and region II expands
(Fig. 6.7(d)). In addition, the U = J line shifts away from the origin, and the non-interacting
limit (that is, the origin in the plot: U = 0, J = 0) smoothly connects to the new area with
an S = 1/2 degree of freedom, in tune with the preferred ground state in the non-interacting
limit. We hence observe a tendency of the system trying to approach this limit, in the lower
left area of Fig. 6.7(d).

Figure 6.6 – Various limits for a triangular cluster with two orbitals per site. (a) Non-interacting
molecular orbital levels. (b) Single-particle levels with energies indicated, ordered assuming tmn < tm. (c)
U − J phase diagram of Hint only for nf = 7, i.e. in the absence of hopping.
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Figure 6.7 – U − J phase diagrams for a triangular cluster with two orbitals per site and nf = 7.
The first row shows the (a) ground state degeneracies (b)

∑
i N

2
i and (c) gap plots for (tm, tmn) = (1.0, 0.5).

The second row shows the (d) ground state degeneracies (e)
∑

i N
2
i and (f)gap plots for (tm, tmn) = (1.0, 1.5).

The quantum number indicated in square brackets corresponds to rotation about the cluster’s C3 axis.

Tetramer, nf = 7

Fig. 6.8(a) shows the non-interacting molecular orbital levels of a tetramer cluster with two
orbitals per site. The presence of both inter- and intra-orbital hopping gives rise to three
regimes: tmn < 1/

√
5, 1/

√
5 < tmn < 1, and tmn/tm > 1. Of these, only the second and

third regimes are highlighted (for reasons discussed below). The tetramer cluster has a [i, C2]

symmetry. We show here nf = 7 as an example. In the non-interacting limit, filling the single-
particle levels with 7 electrons gives rise to a doubly degenerate ground state with an effective
S = 1/2 degree of freedom.

In the absence of hopping, among all the different ways that 7 electrons can be distributed
among four sites, the (2 + 2 + 2 + 1) configuration is favored in the large-U limit, and the
(4 + 3 + 0 + 0) configuration is favored in the large-J limit, as shown in the pure-interaction
plot of Fig. 6.8(c).

We now switch on U and J and study how these ground states evolve. In the first regime
of tmn < 1/

√
5, there is a uniform two-fold degeneracy arising from an effective S = 1/2
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6.1 Two orbitals per site

Figure 6.8 – Different limits for a tetramer cluster with two orbitals per site. (a) Non-interacting
molecular orbital levels. (b) Single-particle levels with energies indicated, ordered assuming tmn < tm. (c)
U − J phase diagram of Hint only for nf = 7, i.e. in the absence of hopping.

everywhere. Hence, plots for this regime are not shown. Fig. 6.9 shows the phase diagrams for
nf = 7, with phase boundaries indicated. The choices of hoppings tmn = 0.8 and tmn = 1.5 are
based on the two hopping regimes of Fig. 6.8(a).

In Fig. 6.9(a), there are a variety of phases in regions I and II, either with a two-fold or a four-
fold GSD. The two regions of different electronic configurations are confirmed by Fig. 6.9(b),
although the areas encompassed by a “pure” (2 + 2 + 2 + 1) configuration (region I) and a
“pure” (4 + 3 + 0 + 0) configuration (region II) have changed.

When tmn is increased, we see that region I shrinks, and that the area of two-fold degeneracy
(region II) expands. In addition, the U = J line shifts away from the origin (Fig. 6.9(d)), with
the non-interacting limit now smoothly connected to the GSD = 2 region.

Tetrahedron, nf = 6

Fig. 6.10(a) shows the non-interacting molecular orbital levels of a tetrahedral cluster with
two orbitals per site. Note that the tetrahedral cluster is the only three-dimensional cluster
considered, whereas all the other clusters are either linear chains or planar. The tetrahedral
cluster has a [Td, C2] symmetry. A distinct feature of these molecular orbital levels is the [T,A]

and [T,B] levels, with a three-fold degeneracy each. We show here nf = 6 as an example. In the
non-interacting limit, filling the single-particle levels with 6 electrons gives rise to a fifteen-fold
ground state degeneracy, with individual states that can have either S = 0 or S = 1 effective
degrees of freedom.

In the opposite limit of pure interactions, in accordance with applying cluster Hund’s rules to
distribute six electrons on a tetrahedron, the (2+2+1+1) configuration is favored in the large-U
limit, and the (4 + 2 + 0 + 0) configuration is favored in the large-J limit. The (2 + 2 + 2 + 0)

configuration is favored in the intermediate regime. This is shown in the pure-interaction plot
of Fig. 6.10(c).

Fig. 6.11 shows the phase diagrams for nf = 6 in the intermediate regime of both interactions
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Figure 6.9 – U −J phase diagrams for a tetramer cluster with two orbitals per site and nf = 7. The
first row shows the (a) ground state degeneracies (b)

∑
i N

2
i and (c) gap plots for (tm, tmn) = (1.0, 0.5). The

second row shows the (d) ground state degeneracies (e)
∑

i N
2
i and (f)gap plots for (tm, tmn) = (1.0, 1.5).

Figure 6.10 – Various limits for a tetrahedral cluster with two orbitals per site. (a) Non-interacting
molecular orbital levels. (b) Single-particle levels with energies indicated, ordered assuming tmn < tm. (c)
U − J phase diagram of Hint only for nf = 6, i.e. in the absence of hopping.
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6.1 Two orbitals per site

Figure 6.11 – U − J phase diagrams for a tetrahedral cluster with two orbitals per site and nf = 6.
The first row shows the (a) ground state degeneracies (b)

∑
i N

2
i and (c) gap plots for (tm, tmn) = (1.0, 0.5).

The second row shows the (d) ground state degeneracies (e)
∑

i N
2
i and (f)gap plots for (tm, tmn) = (1.0, 1.5).

and hopping. Note that while the degeneracy is purely due to spin degrees of freedom in region
II and region III in Fig. 6.11(a), the ground state in region I is a spin singlet and its two-fold
GSD is instead due to spatial symmetry of the cluster.

As we increase hopping, region II expands and now has a unique ground state (Fig. 6.11(d)).
In addition to the cluster’s Td symmetry protecting the two-fold GSD in region I, we also see
a spatial contribution to the GSD in region III, which when combined with the S = 1 spin
contribution, results in an overall nine-fold degeneracy. This is an example where a unique,
non-trivial ground state is found in region II, transforming in the A2 irreducible representation.
We also observe that although the non-interacting point is not smoothly connected to any
neighboring regions, adding a small U or a small J to this point gives an S = 0 ground state,
and ground states with higher effective spin degrees of freedom can only be realized at larger
J .
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Figure 6.12 – Various limits for a square cluster with two orbitals per site. (a) Non-interacting
molecular orbital levels for a square cluster with two orbitals per site. (b) Single-particle levels with energies
indicated, ordered assuming tmn < tm. (c) U − J phase diagram of Hint only for nf = 11, i.e. in the absence
of hopping.

Square, nf = 11

Fig. 6.12(a) shows the non-interacting molecular orbital levels of a square cluster with two
orbitals per site. The square cluster has a [C4v, C2] symmetry. A distinct feature of the square
molecular orbital levels is the zero-energy [E,A] and [E,B] levels. These levels can be split by
breaking the cluster C4v down to C2v. We have chosen to show nf = 11 here as an example.
In the non-interacting limit, filling the single-particle levels with 11 electrons gives rise to an
eight-fold ground state degeneracy with an effective S = 1/2 degree of freedom.

In the pure interaction limit, a (3 + 3 + 3 + 2) configuration is favored in the large-U limit
and a (4 + 4 + 3 + 0) configuration is favored in the large-J limit. The intermediate region
has a (4 + 3+ 2+ 2) configuration as its ground state, as shown in the pure-interaction plot of
Fig. 6.12(c).

Fig. 6.13 shows the phase diagrams for nf = 11, with both interactions and hoppings switched
on. As with the other cases, we see remnants from the pure interaction limit even though hop-
pings are now introduced: that is, regimes where different electronic configurations constitute
the ground state, as seen in Fig. 6.13(b), although the areas encompassed have shifted. Note
that while the degeneracy is purely due to the spin degree of freedom in region II and region
III in Fig. 6.13(a), the GSD in region I arises due to a combination of spin symmetry and the
C4 rotational symmetry of the cluster.

As we increase hopping, there are a few observations to make: regions I and III gradually
shrink, whereas there is a very slight increase in the area of region II. The non-interacting point
is distinct from the surrounding regions; however, adding a small U or J leads to a four-fold
ground state degeneracy, with different effective spin degrees of freedom.
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6.1 Two orbitals per site

Figure 6.13 – The U −J phase diagrams for a square cluster with two orbitals per site and nf = 11.
The first row shows the (a) ground state degeneracies (b)

∑
i N

2
i and (c) gap plots for (tm, tmn) = (1.0, 0.5).

The second row shows the (d) ground state degeneracies (e)
∑

i N
2
i and (f)gap plots for (tm, tmn) = (1.0, 1.5).

The quantum number indicated in square brackets corresponds to rotation about the cluster’s C4 axis.
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6.2 Three orbitals per site

The three-orbital per site Hubbard model is the governing model for all transition metal co-
ordination compounds that have t2g levels as their ground state. This includes a majority of
cluster materials that we saw in Chapter 4. Of particular interest are hexagonal perovskites
with dimer and trimer clusters since a zoo of them have been synthesized and have been subject
to extensive experimental and theoretical studies over the years. Those with trimer clusters will
be dealt with in entirety in Chapter 9. In this section, we will study the governing interacting
and non-interacting terms in the three-orbital case and their interplay in clusters of different
geometries and at different electron fillings.

6.2.1 Molecular orbital levels

In the three-orbital case, the non-interacting Hamiltonian Hnon-int is given by:

Hnon-int = −
∑
〈i,j〉,σ

c†iσ

 tm tmn tmn

tmn tm tmn

tmn tmn tm

 cjσ (6.3)

where c†iσ = (c†imσ, c
†
inσ, c

†
ipσ). As already mentioned, the inter-orbital hopping tmn breaks the

continuous SO(3) orbital symmetry down to a discrete C3v symmetry. In addition to its singly-
degenerate irreducible representations, A1 and A2, C3v also contains a two-fold degenerate
irreducible representation, E. In stark contrast to the two-orbital case, this thus allows for the
possibility of a non-Kramers doublet protected purely by orbital symmetry.

6.2.2 Interaction Hamiltonian

From Section 4.2.2 we saw that the Hubbard-Kanamori Hamiltonian for a cluster with three
orbitals per site is given by

Hint =
(U − 3J)

2

∑
i

N2
i − 2J

∑
i

[~S2
i +

(
~Li/2

)2
] +

(8J − U)

2
nf (6.4)

The spectrum of this Hamiltonian for a single site is shown in Fig. 6.14 [132]. Note here that
the angular momentum at each site, ~L2

i , is conserved, in contrast with the two-orbital case.

6.2.3 Some select phase diagrams

We carried out an exhaustive study across all fillings on dimer and trimer clusters. Here, we
present results from some select fillings, in which there was a remarkably diverse variety of
phases. As mentioned in section 4.1, dimer and trimer clusters are of particular interest from
a material perspective, since a wide range of hexagonal perovskite materials are shown to host
them.
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6.2 Three orbitals per site

Figure 6.14 – A single site with three orbitals: Summary of the three-orbital per site interaction Hamil-
tonian given in Eq. (6.4), for a single site. The energies given in square brackets correspond to the nf given
in square brackets.

Figure 6.15 – Various limits for a dimer cluster with three orbitals per site. (a) Non-interacting
molecular orbital levels for a dimer cluster with three orbitals per site. (b) Single-particle levels with energies
indicated, ordered assuming tmn < tm. (c) U − J phase diagram of Hint only for nf = 8, i.e. in the absence
of hopping.
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Dimer, nf = 8

Fig. 6.15(a) shows the non-interacting molecular orbital levels of a dimer cluster with three
orbitals per site. As always, there is the tmn/tm < 1 and tmn/tm > 1 regimes. The dimer
cluster has a [i, C3v] symmetry. A distinct feature of these molecular orbital levels is the [±, E]

levels. These levels are protected by the orbital C3 symmetry (Fig. 4.7(c)). We show here
nf = 8 as an example. In the non-interacting limit, filling the single-particle levels with 8
electrons gives rise to a six-fold ground state degeneracy, with individual states that can either
have an S = 0 or S = 1 effective degree of freedom.

In the pure interaction limit, for nf = 8, there are only three possible ways the electrons
can be distributed among the two sites of the cluster. Of these, it can be shown that the
(4+4) configuration is favored in region I, the (6+2) configuration in region II, and the (5+3)

configuration in region III (see Fig. 6.15(c)).
Fig. 6.16 shows the phase diagrams for nf = 8, with both interactions and hoppings. Note

that while the degeneracy is purely due to the spin degree of freedom in region III in Fig. 6.16(a),
the GSD in regions I and II have different origins: the two-fold GSD in region I is protected
entirely by the C3v symmetry of the orbitals, whereas the GSD in region II arises due to a
combination of both spin and orbital symmetry.

As the hopping increases, regions I and II shrink, region III expands, and the U = J line
shifts away from the origin (see Fig. 6.16(d)). The non-interacting limit smoothly connects to
the region with GSD = 3. As with the previous cases, we observe that, as hopping is increased,
the system tends to approach the behavior of the non-interacting limit.

Trimer, nf = 7

Fig. 6.17(a) shows the non-interacting molecular orbital levels of a trimer cluster with three
orbitals per site, with again the distinct tmn/tm < 1 and tmn/tm > 1 regimes. The trimer
cluster has a [i, C3v] symmetry. A distinct feature of the molecular orbital levels is the two-fold
degenerate [+, E] levels and the zero-energy [−, A], [−, E] levels. The [+, E] bands are protected
by the orbital C3 symmetry. The zero-energy [−, A] and [−, E] levels are protected by inversion
symmetry. We have chosen to show nf = 7 as an example. In the non-interacting limit, filling
the single-particle levels with 7 electrons gives rise to a six-fold degenerate ground state with
an S = 1/2 degree of freedom.

In the pure interaction limit, for nf = 7, the configurations shown in the pure-interaction plot
of Fig. 6.17(c) are favored in the respective parameter regimes. Switching on U and J , Fig. 6.18
shows the phase diagrams for nf = 7, with phase boundaries indicated. In Fig. 6.18(a), we see
that many new regions have emerged. Moreover, the configurations being favored are confirmed
by Fig. 6.18(b), with the (3+2+2) (region I), (3+3+1) (region II), and (6+1+0) (region III)
configurations visible in the values of

∑
iN

2
i . Note that the GSD in region I and part of region

III arises due to a combination of spin and orbital symmetries of the cluster. In contrast, GSD
elsewhere arises purely due to spin.

As we increase hopping, we see that the region with S = 3/2 has drastically shrunk, and a
larger area of the plot is occupied by different regions having an S = 1/2 degree of freedom. In
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6.2 Three orbitals per site

Figure 6.16 – U −J phase diagrams for a dimer cluster with three orbitals per site and nf = 8. The
first row shows the (a) ground state degeneracies (b)

∑
i N

2
i and (c) gap plots for (tm, tmn) = (1.0, 0.5). The

second row shows the (d) ground state degeneracies (e)
∑

i N
2
i and (f)gap plots for (tm, tmn) = (1.0, 1.5).

Indicated in square brackets in (a) and (d) is the inversion quantum number.

Figure 6.17 – Different limits for a three orbitals per site trimer cluster. (a) Non-interacting molecular
orbital levels for a trimer cluster with three orbitals per site. (b) Single-particle levels with energies indicated,
ordered assuming tmn < tm. (c) U − J phase diagram of Hint only for nf = 7, i.e. in the absence of hopping.
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6 Multiorbital Hubbard model

Figure 6.18 – U −J phase diagrams for a trimer cluster with three orbitals per site and nf = 7. The
first row shows the (a) ground state degeneracies (b)

∑
i N

2
i and (c) gap plots for (tm, tmn) = (1.0, 0.5). The

second row shows the (d) ground state degeneracies (e)
∑

i N
2
i and (f)gap plots for (tm, tmn) = (1.0, 1.5).
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addition, the U = J line has very slightly shifted away from the origin.

6.3 Conclusion

In this chapter, we combined analytical insights on the ground state selection rules in different
parameter regimes that we saw in Chapter 4, with the computational machinery of exact
diagonalization that we encountered in Chapter 3. This helped us perform an exhaustive study
of clusters of all geometries that have been observed in real materials so far across all possible
fillings. We observed how cluster Hund’s rules were obeyed in various clusters: in some cases,
we had a binary pure-interaction phase diagram, but increasing the number of sites in the
cluster and/or the number of orbitals per site paved the way for more diverse phases. There
was an overall decrease in the ground state degeneracies across the board owing to broken
symmetries that accompanied the introduction of hopping. Nevertheless, each of these regions
behaved differently with the introduction of hopping: while some regions smoothly connected to
the non-interacting limit, regions with higher spins were pushed to higher values of interaction
parameters, illustrating the interplay between the two.

Tracking the way regions of varying character behave with the tuning of various parameters
gives us some foundation to build our understanding of real cluster materials. It is still one
step removed from giving us direct insight into candidate cluster Mott materials since material-
specific factors like spin-orbit coupling and crystal field splitting have not yet been accounted
for. In the next section, this is what we will address; we will survey and study various candidate
cluster Mott materials, especially dimer and trimer cluster materials, and try to understand
their physics.

85





Part III

Candidate Cluster Mott Insulator Materials





The transition metal ion

Chapter

7
In the previous chapters, we introduced the cluster Hubbard Hamiltonian to study the effects an
added orbital degree of freedom would have on cluster Mott insulating ground states for various
fillings and cluster geometries. In reality, however, these orbitals are not entirely equivalent
to one another: they have different orientations in space, and depending on which orbitals
are close to those of neighboring ions, this can have a profound effect on the geometry of the
crystal, and ultimately, the ground states of the material we are studying. There are many
ways in which various orbitals in any atom can be distinguished. The most prominent ones are
the principal quantum number, n, and the azimuthal quantum number (or the orbital angular
momentum quantum number), l. To briefly recapitulate these concepts, the principal quantum
number n is used to indicate the shell of the atom. The value of n ranges from 1 to the shell
containing the outermost electrons of that atom. The azimuthal quantum number l is used to
indicate the sub-shell within a certain shell and groups various orbitals within a shell that have
the same orbital angular momentum, which is related to l as

L2|l,ml〉 = h2l(l + 1)|l,ml〉. (7.1)

Orbitals with l = 0 are called s-orbitals, orbitals with l = 1 are called p-orbitals, those with
l = 2 are called d-orbitals, orbitals with l = 3 are called f -orbitals, and so on. The value of l
for a given n ranges from 0 to (n−1), so that the number of orbitals per shell is fixed. Orbitals
with a certain l are all degenerate in energy.

Now, we must establish how many orbitals with a certain azimuthal quantum number exist
in a given shell. The magnetic quantum number is used for that purpose – it labels all the
specific orbitals that have a given l, which all differ from one another by the projection of the
orbital angular momentum along a specified axis, usually the z-axis:

Lz|l,ml〉 = mlh̄|l,ml〉. (7.2)

The value of ml ranges from −l to +l; hence, there is one orbital with l = 0, three orbitals with
l = 1, five orbitals with l = 2 and so on.

Transition metal compounds have a d-valence shell or an f -valence shell; In this thesis, we will
mostly be dealing with transition metal ions which have d-valence shells. Hence, it is essential to
take a closer look at the geometries and behavior of these orbitals when the transition metal ion
is part of a crystal. The five d-orbitals are as shown in Fig. 7.1. They are: dxy, dyz, dxz, dx2−y2
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7 The transition metal ion

Figure 7.1 – The five d-orbitals. dxy, dyz, dzx orbitals are similar in structure to the three p-orbitals. Figure
taken from [154].

and dz2 . Irrespective of whether it is d-orbitals or any other orbitals, they all possess spherical
symmetry by virtue of being atomic orbitals in an isolated transition metal ion.

7.1 Crystal field splitting

The environment of a transition metal ion need not always be spherically symmetric. When
the transition metal ion is placed in an environment of anions (or ligands), the five d-orbitals
are destabilized. In addition, the arrangement of anions now determines the local point group
symmetry of the crystal. By virtue of their shape and orientation, the five d-orbitals interact
differently with ligands, and hence, along with the breaking of spherical symmetry, the five-fold
degeneracy is also broken. The splitting that thus occurs due to the electrostatic field generated
by ligands is called crystal field splitting. Depending on the type of ligands surrounding the
transition metal ion, the splitting might be of various kinds, some of which we will come across
in this chapter. Hence, the total consequence of the presence of ligands around a transition
metal ion is a sum of two effects: destabilization and splitting [71, 73].

7.1.1 Octahedral crystal fields

The most common ligand in the context of cluster Mott materials is the oxygen ligand. Eight
oxygen ligands often arrange themselves around the transition metal ion, giving rise to an
octahedral geometry, as shown in Fig. 7.2(a). The oxygen ligand ions are shown in purple, and
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7.1 Crystal field splitting

the central transition metal ion is the black dot in the center. This arrangement of ligands
lowers the spherical symmetry of the ion and gives rise to an Oh geometry.

Due to this arrangement of oxygen ligands around the TM ion, there is repulsion between the
electrons in the p-orbitals of the oxygen ions and the d-orbitals of the TM ion. This rearranges
the electron density in the five d-orbitals of the TM ion’s valence shell, as shown in Fig. 7.3.
The lobes of the 3dz2 and 3dx2−y2 orbitals are oriented directly towards the p-orbital lobes of
the oxygen ion; because of this, these orbitals experience maximum Coulomb repulsion. On
the other hand, one can see that the lobes of dxy, dxz and dyz are oriented such that each of
their lobes lies between two lobes of the ligand orbitals. As a result, the Coulomb repulsion
that they experience is weaker. Because of this difference in response, the latter three orbitals
are lower in energy, and the remaining two are higher in energy. In other words, the l = 2

d-orbitals split as [73]

D → T2g + Eg, (7.3)

according to the Mulliken notation1. Here, the letter of the irreducible representation indicates
its dimensionality, and its subscript indicates how it changes under spatial inversion. Hence,
“Eg” indicated a doubly degenerate state which is even with respect to spatial inversion, and
“T2g” indicates a triply degenerate state which is also even under spatial inversion. However,
these are only two of the ten irreducible representations of Oh, as shown in the Oh character
tables of Fig. 7.2(b). Note the distinction in nomenclature of these irreducible representations:
single-electron states are denoted by lowercase letters, whereas many-electron states of the same
symmetry are denoted by the corresponding uppercase letters.

In the Hamiltonian, crystal field is an on-site term, since it only has to do with the response
of one TM ion to ligands in its vicinity. In this way, the full spherical symmetry is broken down
to a local Oh point group symmetry due to the surrounding ligands.

Trigonal distortions

In some cases, however, even the t2g orbitals might not be fully degenerate. The crystal could
physically be distorted along different directions, depending on which the degeneracy between
t2g orbitals is lifted in different ways. Distorted octahedral complexes are usually described
by an axis along which a compression, elongation, or other changes may occur. Possibilities
are a tetrahedral distortion (along a C4 axis), a trigonal distortion (along a C3), or a diagonal
distortion (along a C2). These axes are indicated in Fig. 7.2(a).

One of the most common is a trigonal distortion along the local [111] direction. When this
happens, the t2g levels split into a singlet, a1g, and a doublet, eg (nomenclature is, again, based
on the character table of Oh, refer to Fig. 7.2(b). These wavefunctions for a1g and eπg levels in
terms of the original t2g orbital wavefunctions are [155]:

1Details on the Mulliken notation can be found in Appendix A.
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7 The transition metal ion

Figure 7.2 – The octahedral crystal point group. (a) The octahedral field created by the six oxygen
ligands (shown in purple). Various symmetry planes are also shown. The number of axes of rotation/planes
of symmetry is indicated in parenthesis. (b) Character tables for the Oh point group.

|a1g〉 =
1√
3
(|xy〉+ |xz〉+ |yz〉),

|eπg 〉 = ±
1√
3
(|xy〉+ e±2πi/3|xz〉+ e∓2πi/3|yz〉).

(7.4)

The crystal field Hamiltonian can now be restricted to a trigonal term:

HCF = −
∑
i

c†iσ

 0 ∆ ∆

∆ 0 ∆

∆ ∆ 0

 ciσ, (7.5)

with
c†iσ = (c†xy, c

†
yz, c

†
xz)iσ. (7.6)

One can understand the nature of the new a1g and eπg orbitals by looking at their interaction
with the surrounding oxygen ligands. The |a1g〉 orbital has two lobes, and is aligned along
[111], the axis of trigonal distortion, which is also the local z−axis. However, Eq. (7.4) shows
that the two eπg orbitals are complex in nature: their shape is that of a torus with the axis
being [111], the axis of distortion. When there is a trigonal contraction, three oxygen ions
lying along the axis of distortion move away from each other, reducing the Coulomb repulsion
between them and the a1g orbital, which lies along [111]. As a result, the a1g orbital would
have a lower energy than the eπg doublet, as shown in Fig. 7.4(c).

On the other hand, in the case of a trigonal elongation, three oxygen ions are pulled closer
to one another, increasing the Coulomb repulsion between them and the a1g orbital, which lies
along the [111] direction. Hence, a trigonal elongation results in the eπg doublet forming the
ground state.
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7.1 Crystal field splitting

Figure 7.3 – How the p-orbital lobes of the oxygen ligand align close to various d-orbital lobes of
the transition metal ion. Proximity of ligand orbital lobes redistributes charges in the transition metal
orbitals, shown here are orange lobes for positively charged and green lobes for negatively charged orbitals.

Other crystal distortions

Though trigonal distortions are the ones we will predominantly use in the future chapters, there
could very well be crystal distortions along other directions.

Consider, for example, the deformation of the octahedron along its C4 axis, [001], also called
tetrahedral distortions. In case of a tetrahedral elongation, the distance between the oxygen
ions lying along the axis of distortion (that is, the global C4 axis) and the TM ion increases,
decreasing the Coulomb repulsion between the ligands and the orbitals whose lobes are oriented
entirely or partially along the C4 axis. As a result, the energy of |xz〉 and |yz〉 orbitals decreases,
whereas the energy of |xy〉 orbital increases. There is also a split in the eg levels due to
this reason, and hence the |z2〉 orbital would have a lower energy than the |x2 − y2〉 orbital
(Fig. 7.4(b)). Conversely, when there is a tetragonal compression, the order of energy level
splittings is reversed. Similarly, the crystal can also undergo a diagonal distortion, deforming
along the C2 axis.

7.1.2 Tetrahedral crystal fields

Tetrahedral crystal fields arise when a central metal ion is surrounded by ligands arranged in
a tetrahedral geometry. This arrangement is characterized by four ligands positioned at the
corners of a tetrahedron around the central metal ion.

The action of tetrahedral crystal fields on d-orbital splitting is distinct from that of octahedral
crystal fields: in fact, it is the opposite of the action of octahedral fields. In the tetrahedral
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7 The transition metal ion

Figure 7.4 – Effect of distortions in the octahedral ligand fields, on energy levels. (a,d) This is the
structure of the energy levels in the presence of an octahedral crystal field, which splits a five-fold degenerate
ground state into triply degenerate t2g and doubly degenerate eg levels. (b,e) Tetrahedral distortion along the
C4 axis. Elongation splits the t2g levels in the manner shown, and compression switches the order of levels.
(c,f) Trigonal distortion along the C3 axis. Trigonal contraction splits the levels as shown, and elongation
leads to the same splitting but with the ordering reversed.
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7.1 Crystal field splitting

Figure 7.5 – Splitting of energy levels in a tetrahedral vs octahedral field. The crystal field in the
octahedral case ∆oct is larger than the tetrahedral case ∆tet because of higher number of ligand ions leading
to mutual repulsion.

case, the t2g orbitals are oriented in such a way that their lobes are closer to the four ligands
than the eg orbitals. Hence, t2g orbitals experience a much stronger Coulomb repulsion than
eg orbitals, increasing their energy. In the Mulliken notation, this is expressed as [73]

D→E + T2. (7.7)

A comparison of energy splittings in the tetrahedral and octahedral cases is shown in Fig. 7.5.
We also observe that the tetrahedral crystal field is generally smaller than the octahedral crystal
field; this is due to differences in the geometry and symmetry of the ligand arrangement around
the central metal ion. In the octahedral case, the ligands directly face the central metal ion,
in contrast to the tetrahedral case. As a result, the d−orbitals experience stronger Coulomb
repulsion from ligands in an octahedral field. In addition, there are more ligand ions in the
octahedral case (six), compared to four ligands in the tetrahedral case, further enhancing the
energy difference in splitting in the two cases.

Though octahedral and tetrahedral fields are two of the most common crystal fields, the
electronegativity of ligand ions and the number of ligand ions can also lead to different ligand
fields in the crystal. For example, in a cubic crystal field, the five-fold degenerate state splits
into a lower eg pair and t2g set of states. On the other hand, in a square planar crystal field,
the splittings are very different: the five-fold degenerate state splits into a lower eg, followed
by singly degenerate a1g, b2g, and b1g states.
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7 The transition metal ion

7.1.3 Effect of ligand fields in multi-electron systems

Real materials often have cases where there might be more than one valence electron in the
d-shell of the transition metal ion. In such a case, the d-electrons are influenced by repulsion not
only from the neighboring p-electrons of the ligands but also by repulsion amongst themselves.
This complicates the determination of energy levels and their splitting. Bethe [156] classified
electronic splittings observed in transition metal compounds as being a result of the interplay
between three main factors:

1. Weak ligand fields – when the ligand is weaker than both interelectron and spin–orbital
interactions.

2. Intermediate ligand fields – when ligand fields are weaker than interactions, but stronger
than spin-orbit coupling

3. Strong ligand fields – when ligand fields are stronger than both interactions and spin-orbit
coupling.

In this section, we will take a look at how the strength of ligand fields influences electronic
splittings.

Weak ligand fields

This is the limit where the central transition metal ion experiences weak ligand fields. This
might either be entirely due to the nature of the ligand itself, or it can be due to screening
from the ligand field by the outer s, p and d electrons. The screening effect is more prevalent
in transition metal ions with an f -valence shell, and as a result, experiences weak ligand fields
by default.

If the ligand fields are weak, then the influence of the ligands can be treated as a perturbation.
As a result, the L− S coupling scheme for multi-electron systems still holds, and Hund’s rules
are used to determine the ground states. Since Hund’s rules pick the states with the highest
spin-multiplicity as the ground state, the complexes with weak ligand fields are also called
high-spin complexes.

The energy splittings can be calculated for multi-electron d-shell systems using perturbation
theory [73, 157], with the important assumption that the crystal (or ligand) fields are sufficiently
small compared to d-electron repulsions. The splittings, for a d2-system (with 2 electrons), are
shown in Fig. 7.6(a). For complexes with crystal distortions that lower the Oh symmetry,
degenerate levels are subject to further splitting, the effects of which have been discussed
previously.

The qualitative picture of energy-level splittings for electronic configurations with more than
2 electrons can be similarly derived using perturbation theory. We also take advantage of the
complementary rule2 for a higher number of electrons, taking care of the fact that using the

2According to this principle, the configuration with n equivalent electrons has the same types of terms as the
configuration N−n, where N is the number of electrons in the closed shell under consideration. The rule is
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7.1 Crystal field splitting

(a)Weak-field limit (b) Strong-field limit
Figure 7.6 – Splitting of energy levels in the presence of a weak octahedral crystal field vs strong

crystal field, for two electrons in the d-orbitals. In (a) the weak field limit, (i) indicates the d-orbital
energy level. (ii) When electrons are added, it causes mutual electron repulsion. (iii) The possible electronic
arrangements– atomic terms (see Fig. 2.6). (iv) Ligand field destabilization. (v) Crystal field splitting as
a function of ∆. In (b) the strong field limit, (i) indicates the d-orbital energy level. (ii) Ligand field
destabilization. (iii) Crystal field splitting as a function of ∆. (iv) Inter-electron repulsion. (v) Electron
interaction splitting. A,B,C are Racah parameters. Figures inspired by [73].

hole picture also means reversing the signs of various terms involved – repulsive ligand fields
become attractive in the hole picture and vice versa.

Strong ligand fields

In the other limit is the case of a strong ligand field, which surpasses both interaction terms and
spin-orbit coupling in terms of strength. In such a case, the d-electrons choose their orientation
entirely based on the ligand field. Hence, one has to take into account the distinction between
the t2g and the eg states. If t2g states are lower in energy, d-electrons prefer to completely
occupy all available t2g orbitals first (which can accommodate six electrons in total), and then
proceed to occupy the eg orbitals starting from the seventh electron.

To illustrate the effect of strong ligand fields, consider again a d2-system (Fig. 7.6). Two
electrons can be accommodated among the five d-orbitals in the following ways: they can both
be placed on t2g orbitals (t22g), or they can each be placed on a t2g and an eg (t12ge1g) or they
can both be placed on eg orbitals (e2g). Based on the reasons above, the order of these three

also valid for half-filled shells for which all the orbital states are occupied . This means that for d4 one can
use the configurations of d5−d4 = d1 (d5 is a half-filled shell), for d6, one can use that of d10−d6 → d4 → d1,
and so on. Hence all the terms of dn configurations can be reduced to those of d1 and d2 [73, 88].

97
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configurations energetically would be t22g < t12ge
1
g < e2g. The energy spacing can be expressed

using Racah parameters [157, 158].

Since strong ligand fields cause sequential filling of t2g and eg orbitals, the spin multiplicity of
the ground state is always lower in the strong-field limit than in the weak-field limit. Therefore,
the complexes with strong ligand fields are called low-spin complexes, in contrast to high-spin
complexes in the weak-field limit.

Spectrochemical series

We have seen in this section, so far, that the strength of the ligand field plays a crucial role in
ultimately determining how energy-level splitting occurs and what spin multiplicity the ground
state might potentially have. There is also a regularity in the trend of crystal field strength
of various ligands, with semi-empirical rules governing them. For instance, the ligand field
strongly increases with the oxidation state of the transition metal ion: the ligand field for
TM2+ < TM3+ < TM4+ and so on. Second, for a given oxidation state, ligand field strength
increases as we go down a column in the periodic table: that is, ∆ for a TMI in 3d < 4d < 5d

and so on. This gives rise to the spectrochemical series [155]

I− < Br− < S2− < Cl− < NO3
− < F− < OH− < O2− < H2O < NH3 < NO2

− < CN− < CO.
(7.8)

One should note here that the spectrochemical series does not take into account the hybridiza-
tion of p-orbitals of the ligand and the d-orbitals of the TMI. Different ligands can be arranged
in a similar series when other criteria are taken into consideration; for example, they can also
be arranged based on their absorption spectra, etc. In cluster Mott materials, the ligand field
is almost always that of a chalcogenide or a halide. For example, if we are in the perovskite
family of materials (of the form M2O9 or M3O12), then we usually see an oxygen ligand field. In
AB2X4 spinels [36], the transition metal ions are surrounded by chalcogen ligand fields, usually
selenium or tellurium. In Nb3X8 cluster materials [142], the ligand fields are those of either
chlorine, bromine, or iodine. Referring back to the spectrochemical series, one can see that
cluster materials therefore have ligand fields whose strength lies in the intermediate range.

7.2 Spin-orbit coupling

As we saw in Chapter 2, spin-orbit coupling is another very important factor that plays a role
in determining the energy-level splitting in transition metal compounds. It couples the intrinsic
spin angular momentum of the electron and its orbital angular momentum as it moves in an
electromagnetic field, which is expressed as
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HSOC = λ
∑
i

Li · Si

= λ
∑
i

Lix ⊗ Six + Liy ⊗ Siy + Liz ⊗ Siz

= λ
i

2

∑
i

εαnlc
†
inστ

α
σσ′cilσ′ ,

(7.9)

where the sum goes over all transition metal ions. The above equation holds if both the spin
and angular momentum are written in the same coordinates.

The role of spin-orbit coupling becomes important in the case of partially filled d-shells
of transition metal ions. The interplay of spin-orbit coupling and crystal fields decides how
the energy levels are split into various multiplets. The Hubbard-Kanamori Hamiltonian is
rotationally invariant, with both L and S being conserved and hence good quantum numbers.
The crystal field term, however, is not rotationally invariant, and mixes different L terms.
Lastly, the SOC term mixes states of different crystal-field levels (t2g and eg in our case), and
terms of different L levels as well.

As we saw in the previous section, 3d, 4d, and 5d systems, including cluster Mott materials,
fall under the strong and intermediate ligand field range of Bethe’s classification, where spin-
orbit coupling is typically the weakest force governing energy splittings. As a result, the effects
of intermixing of t2g and eg levels caused by spin-orbit coupling can be neglected. A consequence
of this is that SOC for t2g levels can be treated separately.

7.2.1 T-P equivalence

This calls for a revisit to the definition of angular momentum for d-electron systems. The matrix
elements of orbital angular momentum L for a single site in the d-orbital basis, {dxy, dyz, dxz, dz2 , dx2−y2}
are [159]:

Lx =


0 0 0 −

√
3i −i

0 0 i 0 0

0 −i 0 0 0√
3i 0 0 0 0

i 0 0 0 0

 , Ly =


0 0 −i 0 0

0 0 0
√
3i −i

i 0 0 0 0

0 −
√
3i 0 0 0

0 i 0 0 0

 , Lz =


0 i 0 0 0

−i 0 0 0 0

0 0 0 0 2i

0 0 0 0 0

0 0 −2i 0 0

 .

(7.10)
We compare these to the the angular momentum components for p−orbitals written in the
{px, py, pz} basis:

Lpx =

0 0 0

0 0 −i
0 i 0

 , Lpy =

 0 0 i

0 0 0

−i 0 0

 , Lpz =

0 −i 0

i 0 0

0 0 0

 . (7.11)

By comparing the matrix elements of the angular momentum pertaining to t2g states with those
of p-orbitals, we arrive at a mapping between the two:

99



7 The transition metal ion

Lt2g = −Lp. (7.12)

This relation is called the T-P equivalence, which shows that the orbital angular momentum
of the t2g states in the presence of low spin-orbit coupling or strong crystal fields, is quenched
from L = 2 down to L = 1. Hence, the full spin-orbit coupling matrix for a single transition
metal site in the d-orbital basis is of the form [159]

HSOC = λc†Ac, (7.13)

where

A =



0 −i i
√
3 −1

i 0 −1 −i
√
3 −i

−i −1 0 0 −2i 0√
3 i
√
3 0 0 0

−1 i 2i 0 0

0 i i −
√
3 1

−i 0 1 −i
√
3 −i

0 −i 1 0 0 2i

−
√
3 i
√
3 0 0 0

1 i −2i 0 0



. (7.14)

Note the absence of off-diagonal elements, reiterating the fact that the effects of SOC on t2g−eg
orbitals are ignored. However, this quenching does not hold when SOC is so strong that there
is significant mixing of t2g and eg orbitals, that is, in the presence of off-diagonal elements.

If we employ local coordinates for orbital definitions, as mentioned in previous chapters, then
the spin operator for each atom will have to be modified accordingly so that it is defined in
terms of local coordinates. Let us say Si is the standard spin operator for site i and S′

i is the
spin operator for site i in its respective local coordinate system. Then S′

i = RiSi, where Ri is
the rotation matrix which defines local coordinates of site i in the global basis:

S′
i = RiSi

=⇒

S′
x

S′
y

S′
z


i

= Ri

SxSy
Sz


i

=⇒ S′
iα = RiαβS

β
i .

(7.15)

Using the above, the spin-orbit coupling term in the local coordinates is hence given by:

HSOC =
∑
i

Li · S′
i

=
i

2

∑
i

εαnlRiανc
†
inστ

ν
σσ′cilσ′ .

(7.16)
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Figure 7.7 – Splitting of energy levels in the presence of spin-orbit coupling.

7.2.2 Energy splitting due to SOC

T-P equivalence is important in the case of d-orbital systems because the quenched orbital
angular momentum is used to define the total angular momentum, which is the only good
quantum number in the presence of SOC. SOC breaks total spin conservation and angular
momentum conservation. Hence, with SOC present, L and S are no longer good quantum
numbers. However, it conserves total angular momentum, J , given by

J = L+ S. (7.17)

Here, we have used L = Leff , where Leff = Lp = −Lt2g , owing to T-P equivalence. Hence,
the definition of J is also modified accordingly: J = S+Lt2g = S−Leff . Henceforth, we shall
use the shorthand L̃ to refer to the quenched orbital angular momentum and J̃ to refer to the
total angular momentum which takes angular momentum quenching into account.

We have studied how crystal fields cause energy splitting in the previous sections. In a
similar fashion, spin-orbit coupling is also another important factor that causes splitting. In
the presence of SOC, the t2g levels split into j̃1/2 and j̃3/2 levels, corresponding to s − l̃ and
s+ l̃ with s = 1/2 and l̃ = 1. Here, the j̃3/2 states form the ground states, as shown in Fig. 7.7.

This splitting is valid in the single-particle case; similarly, in the two-electron sector, we have
s = 1 and l̃ = 1, and we get J̃ = 2, 1, 0, with J̃ = 2 being the ground state. Hence, we see that
the state with maximal J̃ forms the ground state. However, when the t2g sub-shell is more than
half-filled, the scenario is reversed – the state with minimal J̃ forms the ground state. This is
because of the extra negative sign that factors into the angular momentum as a consequence
of T-P equivalence.

7.2.3 Effect of SOC on magnetic moments

Since transition metal coordination compounds ultimately involve an intricate interplay of
various factors (as discussed) which influence the electrons in the crystal, magnetic susceptibility
measurements are a very common, yet important diagnostic tool to assess the magnetic nature
of such materials. This is done by applying an external magnetic field and measuring how the
material behaves. The magnetic susceptibility χ is related to the applied field as:
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µ0M = χB. (7.18)

This relates the material’s magnetization, M and the strength of the applied field, B.
The magnetization M of a material is determined by the magnetic moments µ. For a free

electron, the magnetic moment associated with its spin is given by [73, 160]

µs =
eh̄

mc
S, (7.19)

whereas the magnetic moment associated with its orbital motion is given by

µL =
eh̄

mc
L. (7.20)

In the presence of a small spin-orbit coupling, or in the L−S coupling scheme limit, the effective
magnetic moment has both a spin and an angular momentum contribution:

µeff = µB(gS
√
S(S + 1) + gL

√
L(L+ 1)), (7.21)

where we have set µB = eh̄/mc; this quantity is called the Bohr magneton. gS = 2, gL = 1 are
the Landé g factors due to pure spin and pure orbital angular momentum, respectively. When
a transition metal ion is placed in a ligand field, the contribution of the orbital part becomes
zero. This is because of the way ligand fields split degenerate energy levels. The magnetization
due to orbital contributions arises due to the free orientation of the orbital magnetic moment
along the direction of the external field. In the absence of crystal fields, this free orientation
is possible because there is no fixed direction for the orbital moment. When ligand fields are
introduced, degenerate energy levels are split, and the orbital moment of the ground state gets
restricted in orientation. As a result, though the orbital angular momentum might be non-zero,
it has difficulty manifesting fully in the magnetic behavior of the electrons, since the orbital
magnetic moment cannot freely follow the direction of the external field. Hence, in the presence
of ligands, the effective magnetic moment is as if the orbital contribution vanished [73]:

µeff ≈ µBgS
√
S(S + 1). (7.22)

In the limit of strong SOC or when the j − j scheme is used, then, as discussed previously,
the total angular momentum is considered. In such a case, we can also associate a magnetic
moment µJ to the total angular momentum J , by taking the projection of µ on J and keeping
in mind 〈J2〉 = J(J + 1):

µJ = µBg
√
J(J + 1), (7.23)

where the Landé g factor is given by

g = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (7.24)
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7.2.4 Contributions to the susceptibility

As mentioned before, the susceptibility is a measure of how susceptible a material is to the
presence of an external magnetic field. Due to the presence of varied types of local moments,
they also contribute differently to the total response of the material to an external field. In
1927-28, Van Vleck derived a formula which encapsulated all these contributions to the total
susceptibility per unit volume, in the zero field limit [161–164]. Neglecting nuclear contributions
and contributions due to inter-electron repulsion, the total susceptibility is given by [165]

χ = χβ + χV v + χLa. (7.25)

Here, χLa is called the Larmor term, which is purely diamagnetic in nature. This is generated
by the quadratic part of the Zeeman Hamiltonian:

Hquad =
e2

2mc2

∑
i

(
B × ri

2

)2

, (7.26)

where B = Bek is the external constant magnetic field and ri stands for the position vector of
the i-th electron. On the other hand, the Van Vleck susceptibility χV v is purely paramagnetic
in nature, and is generated by the linear part of the Zeeman Hamiltonian

Hlin = µB(gLL+ gSS) ·B. (7.27)

The χLa + χV v part of the total susceptibility is independent of temperature. It can be shown
that the first order correction to the energy of the jth-state due to Van Vleck and Larmor
contributions is given by [165]

E
(1)
j = µB〈j|gLL+ gSS|j〉, (7.28)

and the second order corrections are given by

E
(2)
j = −N e2

6mc2

∑
i

〈j|(ri × ek)
2|j〉+ 2µ2B

∑
l 6=j

|〈j|(L+ g0S) · ek|l〉|2

Ej − El
. (7.29)

Since the above terms are temperature-independent contributions, we make use of the first
order corrections to the ground state (j = 0) energy as given by Eq. (7.28), to calculate zero
temperature effective moments in our exact diagonalization routine [109].

The temperature-dependent part, χβ, is given by

χβ =
NA

3kT
µeff(T )

2. (7.30)

In typical cases where ligand fields eliminate any low-lying excited multiplets, or when the
spin-orbit coupling is small, the µeff in Eq. (7.30) takes the form of Eq. (7.22); in this scenario,
Eq. (7.30) reduces to a pure Curie-Weiss law [166].
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7.3 Conclusion

In this chapter, we saw that the properties of transition metal coordination compounds, includ-
ing cluster Mott materials, are determined by an intricate interplay of various factors, some of
the most important for our purpose being ligand fields and spin-orbit coupling. These factors
affect the various degrees of freedom that are available, such as spins, lattice, orbitals, etc.
Understanding the influence of these factors on energy level splittings helps us diagnose the
origin of the observed ground state degeneracies, and also helps us in understanding observed
properties, such as how a given material responds to an external magnetic field, etc. These
ingredients are an extremely essential addition to our existing theoretical framework for cluster
materials, and which will, as we will see in the next chapters, help us apply our framework
directly to real cluster Mott candidate materials that have recently been synthesized and await
a theoretical treatment.
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Non-Kramers doublets in
Ba4LiIr3O12

Chapter

8

In this chapter, we discuss the results of our collaboration with Qiang Chen at McMaster,
Canada. We introduce the material Ba4LiIr3O12, synthesized by Chen, a cluster Mott material
which was initially expected to be non-magnetic, but showed magnetic signatures in its observ-
ables. We were able to demonstrate that Ba4LiIr3O12 hosts “non-Kramers doublets” and with
this, the material became the first cluster Mott candidate to host such non-trivial degeneracies.
We also further discuss how other materials, such as other potential cluster Mott materials and
pyrochlores, might host these non-Kramers doublets.

8.1 The dimer compound Ba4LiIr3O12

The motivation behind the synthesis of the material Ba4LiIr3O12 by Qiang Chen et. al was
two-fold: Firstly, prior studies on M2O9 cluster compounds, and secondly, their interest in
studying rich physics of iridate materials in general. When one operates in a regime where
the strengths of interactions, crystal fields, and spin-orbit coupling are comparable, various
interesting physics is observed. For instance, it was conjectured that the double perovskite
Sr2YIrO6 might exhibit long-range magnetic order. A mechanism where electron hopping
between neighboring sites led to an exchange interaction that could compete with the onsite
spin-orbital singlet was responsible for the observed local moments. Such anomalous moments
have also been observed in a variety of materials, such as A2YIrO6 (A = Sr and Ba) and
R2Os2O7 [167–170]. It was shown in various works that extrinsic factors such as impurities
and lattice defects play a significant role in the magnetism of such materials. For example, it
was shown that the observed susceptibilities of Sr2YIrO6 were due to paramagnetic impurities
without long-range magnetic ordering. In addition to paramagnetic impurities [171], lattice
defects were also observed to be contributing factors for Ba2YIrO6 [172].

However, the above materials contain transition metal configurations that are pentavalent.
For both 4d and 5d transition metal ions, with four electrons in the valence shell, the ground
state is expected to be non-magnetic irrespective of the strength of correlations, as shown in
Fig. 8.1(c). In the strong interactions (or L − S coupling) limit, Hund’s rules are at play,
which maximize both spin and angular momentum, leading to a total S = 1 and total L = 1,
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8 Non-Kramers doublets in Ba4LiIr3O12

Figure 8.1 – Ba4LiIr3O12. (a) Crystal structure of Ba4LiIr3O12. (b) Zooming in to reveal the iridium dimer,
we see the iridium ions surrounded by oxygen ligands in an octahedral crystal field. The third iridium and
lithium share the same position, as shown. (c-d) For 8 electrons on the dimer, both L−S and j− j coupling
limits point towards a non-magnetic Jeff = 0 ground state. (e) Mechanism proposed by Chen to realize a
Jeff = 2 ground state. Illustration taken from [173].

with SOC treated as a weak perturbation. With the introduction of strong spin-orbit coupling,
this ultimately leads to a non-magnetic state with a local J = 0 on every site. In the weak
interactions (or j − j coupling) limit, the t2g shell is split into j = 3/2 and j = 1/2 levels, in
which the j = 3/2 levels are fully filled. This again leads to a non-magnetic ground state, as
shown in Fig. 8.1(d).

The material at hand, Ba4LiIr3O12, is distinct from the iridates mentioned so far because
of the conspicuous presence of iridium dimer clusters, which automatically facilitates strong
intra-dimer hopping. Qiang Chen et. al [173] synthesized this material and gathered a wide
range of experimental observations by combining X-ray diffraction, magnetic susceptibility,
heat capacity, muon spin relaxation, resonant inelastic X-ray scattering (RIXS), and X-ray
absorption (XAS) studies.

The material Ba4LiIr3O12 (Fig. 8.1(a)) is a curious one. It is a perovskite compound be-
longing to the P63/mmc space group. It consists of three iridium ions; X-Ray absorption
spectroscopy measurements were carried out to ascertain the valency of iridium in the mate-
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8.1 The dimer compound Ba4LiIr3O12

rial; this would, in turn, tell us how many electrons are present, in total, among the three
iridium atoms, and which of them participate in cluster formation. These studies showed
that the iridium ions are pentavalent in nature; combined with structural information of the
Ba4LiIr3O12 crystal, this tells us there are 8 electrons on the Ir2O9 iridium dimer, whereas the
third iridium does not participate in cluster formation.

The iridium dimer clusters have a D3h point group symmetry. They are composed of two face-
sharing IrO6 octahedra, in which each octahedron consists of a central iridium ion surrounded
by six oxygen ligands. This shortens the distance between the two iridium ions, which facilitates
direct Ir-Ir orbital hopping, in turn giving rise to strong intra-dimer interactions. On the other
hand, the isolated octahedra that form a quasi-2D triangular lattice are occupied by a mixture of
lithium and iridium atoms in a 3:1 ratio. Of all the iridium present in this material, a significant
portion of it participates in cluster formation, with the ratio of iridium on dimer sites to those
on the triangular lattice sites being 8:1. Hence, each formula unit of Ba4LiIr3O12 consists of
4/3 units of iridium atoms as dimers and 1/3 units of the rest of the iridium (Fig. 8.1(b)).

8.1.1 Experimental observations

Fig. 8.2(a) shows the magnetic susceptibility χ (as M/H) for Ba4LiIr3O12 plotted against a
temperature range of 2K – 350K. A linear fit to 1/χ gives the Weiss-temperature Θ = −523 K
and effective moment µeff = 4.17µB, as is shown in the figure. This signature is uncharacteristic
of a material expected to have a non-magnetic singlet ground state, since it has fully occupied
shells in the ground state.

Specific heat and muon-spin relaxation measurements were also carried out to investigate
the non-zero magnetic moment further, and probe whether this magnetic moment indicated
an onset of any long-range magnetic order in the material. The temperature dependence of
the specific heat in Fig. 8.2(b) shows a transition at ≈ 78 K, in agreement with long-range
magnetic order in this material. They also inferred the magnetic entropy, and it was seen to
saturate at a value of 16.2 J/mol-FU.K.

To explain how different iridium ions in the material might have contributed to the observed
magnetic moment, Chen et. al proposed that [173]

µeff =

√
4

3
µ21 +

1

3
µ22, (8.1)

where µ1 and µ2 are the moments of Ir1, iridium ions that participate in cluster formation, and
Ir2, iridium ions that do not participate in cluster formation, respectively. Since the second
iridium ion is assumed to be non-magnetic, they set µ2 = 0. Hence, making use of the standard
relation

µ1 = gJ
√
J(J + 1) (8.2)

and
gJ = 1 +

J(J + 1) + S(S + 1)−L(L+ 1)

2J(J + 1)
, (8.3)
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Figure 8.2 – Observables for Ba4LiIr3O12. (a) Susceptibility measurements as a function of temperature. A
Curie-Weiss fit gives a µeff = 4.17µB . (b) Specific heat measurements as a function of temperature. The red
curve presents a fit of the lattice contribution to the specific heat. The entropy release per formula unit of
Ba4LiIr3O12 saturates at a value of 16.2 J/mol-FU.K. The entropy release value of 17.8 J/mol-FU.K for a
conjectured Jeff = 2 phase is also shown. Images adapted from [173].

they arrived at µ1 = 3.67µB, and µeff = 4.24µB/f.u., which is close to the experimental value
of µeff = 4.17µB. This calculated value can be arrived at when Jeff = 2. The mechanism as
to how a Jeff = 2 could be achieved was also proposed, as shown in Fig. 8.1(e). Hence, they
conjectured that an S = 1, L = 1 state on the iridium dimer, resulting in Jeff = 2 for the iridium
dimer and a Jeff = 0 for the third, non-magnetic iridium, could explain the observed effective
magnetic moment. The magnetic entropy for the iridium dimer would be S = 4/3Rln5 = 17.8

J/mol-FU.K, which is close to the experimental value of 16.2 J/mol-FU.K, also shown in the
specific heat plots.

8.2 Kramers vs non-Kramers degeneracies

The material Ba4LiIr3O12, as we saw in the previous section, hosts iridium dimers that consist
of eight electrons per dimer. With fully filled levels, one would expect the material to be non-
magnetic. However, measurements of various observables proved otherwise. Hence, we briefly
review where this might originate from.

In Chapter 6, we saw that ground state degeneracies are protected by various factors. There
might be cluster symmetries such as inversion symmetry for dimer clusters, or a C3v rotational
symmetry for triangular clusters, and so on. Similarly, there might also be orbital symmetries
by virtue of being in a multi-orbital setting. We also saw in Chapter 7 that when SOC is added
to a non-interacting bandstructure, the spin and orbital degrees of freedom intertwine with
each other, and as a result, real space and spin space are tied together. Crystal fields were also
an additional factor, in the presence of which the available symmetries that protect ground
states are broken further.
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This prompts the question: Are there any degeneracies that are not broken in the end?
The answer lies in Kramers theorem. According to Kramers theorem, the degeneracy cannot
be entirely lifted when the system possesses time-reversal symmetry and a half-integer total
spin. As a result, any energy levels or ground states of any material are at least two-fold
degenerate when there is an odd number of electrons. This degeneracy is robust to crystal
fields and spin-orbit coupling, and can only be lifted in the presence of an external magnetic
field. Hence, in any material, a two-fold degenerate ground state in the absence of an external
field immediately implies a Kramers degeneracy. For an even number of electrons, since this
amounts to an integer total spin, the ground state is unique.

However, when a material consists of a degenerate ground state in the presence of an even
number of electrons, it cannot be attributed to a Kramers origin. Hence, such degeneracies are
aptly called “non-Kramers” degeneracies. Unlike Kramers doublets, non-Kramers doublets are
an artifact of the crystal’s symmetry, and hence can be broken by a strong crystal distortion
in addition to the presence of crystal fields.

8.2.1 Interpreting degeneracies in the presence of SOC

Consider the character table of a point-group G of any crystal. The left-most column indicates
all irreducible representations of G, and the top row indicates all the symmetry operations (a
detailed introduction to character tables can be found in Appendix A). The numbers that fill
the table, that is, characters, essentially indicate how a particular irreducible representation
behaves under a given symmetry operation. Of particular interest is the identity operation, E.
The characters under this operation directly indicate the degeneracy of a particular irreducible
representation. Hence, an Eg state is two-fold degenerate, Ag is singly degenerate, T2g is triply
degenerate, and so on. More importantly, the identity operation also indicates a 2π rotation,
which leaves the states unchanged.

In the presence of SOC, the stationary states of the system are classified by the quantum
number J = L+S, the total angular momentum of the total momentum, since this is the con-
served quantity, in contrast to spin and orbital angular momentum of the system. J can take a
range of values, J = L+ S,L+ S−1, ..., |L−S|. In the case of an odd number of electrons, S is
a half-integer, and hence J is also commensurately a half-integer. In accordance with Dirac’s
relativistic description, it follows that half-integer angular momentum values are described not
by simple functions, but by four-component bispinors, which are reduced to two-component
spinors in quasirelativistic settings. Under symmetry operations, the two-component spinors,
unlike simple functions, transform in a special way by realizing the so-called two-valued rep-
resentations. As a result, for symmetry descriptions of molecular and solid-state electronic
systems with half-integral angular momentum states, two-valued representations are needed in
addition to conventional symmetry groups. Bethe [174] circumvented these difficulties by using
groups 2G of twice the order of the ordinary crystallographic groups G.

Let us now take a closer look at how this can be done. Taking into account the way a spinor
transforms under direct or inverse rotations, corresponding to the identity E of the single group
there will be in the double group two operations E and Ē. The operator Ē changes only the sign
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Figure 8.3 – Schematic representation of double group operators. Illustration inspired by [178].

of the spinor. Similarly, each operation Q gives rise to the two operations: Q and Q̄ = ĒQ [175,
176]. By applying the operation E, that is, a rotation through 2π, we do not return to identity
but obtain a change in the sign of the spinor. An additional rotation of 2π, thus a total rotation
of 4π brings us back to the identity E In particular, Cn

n = Ē, C2n
n = E, σ2 = Ē, σ4 = E, and

so on [73]. As a result, considering the standard symmetry operators and the groups that can
be constructed from them, we are led to the concept of double groups. Each crystallographic
point group has a double group associated with it; hence, we have 32 double groups.

One can obtain the double group of G by using G as a starting point [177]. The relation
between a pure rotation and its double group counterpart (or “barred” counterpart) can be
visualized as shown in Fig. 8.3. It is set up in such a way that a 2π rotation of the diagram
implies a physical rotation of 4π. This also means that a rotation of say R, supplemented with
a π rotation in the diagram, results in its barred counterpart. Note that these operations still
preserve the relationship RR−1 = I and R̄R̄−1 = I [178].

Hence, the core difference between an ordinary point group and a double group is the identity
element E, which now means different things: Either a 2π rotation in the case of integer angular
momentum and a 4π rotation for half-integer angular momentum. In such cases, irreducible
representations of the double group corresponding to a crystal’s point group are used to label
non-interacting energy levels of the crystal.

An example of a double group that is very common in transition metal crystals is the D3h

double group (Fig. 8.4(a)). The subscripts in E1/2, E3/2, and E5/2 irreducible representations
indicate the total angular momentum – the half-integer value implies the presence of an unpaired
electron. Hence, these three irreducible representations are used in the case of odd electron
fillings on a cluster, in the context of a cluster Mott insulator, for example, to label the non-
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Figure 8.4 – (a) The D3h double group. The part highlighted in red consists of irreducible representations
with a half-integer total angular momentum, indicated in their respective subscripts. (b) Double group
irreducible representations are used to label energy levels in the non-interacting bandstructure of M2O9

dimers. Illustration taken with permission from [108]. Copyright (2020) by the American Physical Society.

interacting levels with [108], as shown in Fig. 8.4(b). When there are no unpaired electrons –
that is, in the case of an even number of electrons on the cluster, the doubly degenerate E′ and
E′′ irreducible representations indicate non-Kramers doublets.

8.3 Non-Kramers degeneracies in Ba4LiIr3O12

Though Chen et. al proposed a mechanism to realize a state with non-zero total angular mo-
mentum, these were conjectures. The origin of magnetic signatures in Ba4LiIr3O12 was still
not known. The collaboration between their group at McMasters and us came about to verify
the source of magnetism in this cluster material, which was expected to have a non-magnetic
ground state owing to its containing 8 electrons on the cluster. Using exact diagonalization
and tracking the evolution of ground states over a wide parameter range, we concluded that
the source of magnetism in Ba4LiIr3O12 is the presence of non-Kramers doublets.

In our analysis, we took into account the proposed range for Coulomb interaction U , Hund’s
coupling Jh and spin-orbit coupling λ as derived from various ab-initio studies for iridium
cluster materials [179–181]. Using these ab-initio parameters as a reference, we conducted an
intensive search for a doubly-degenerate ground state over a mesh of around 6× 107 parameter
values, which, along with the quantities mentioned above, also took crystal fields and hoppings
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8 Non-Kramers doublets in Ba4LiIr3O12

Figure 8.5 – Ũ − λ̃ phase diagrams which show the values of µeff. These are shown as a function of
intra-orbital hopping t̃m and crystal field splitting ∆̃. Here, we have set J̃h = 0.25Ũ . In the parameter range
relevant to iridium cluster materials, the regions hosting non-Kramers doublets are substantial for negative
values of intra-orbital hoppings and crystal fields.

into consideration.

We find that there does exist an area of the parameter space that hosts non-Kramer’s dou-
blets. These doublets belong to the E′ irreducible representation of the D3h point group. To
track how the non-Kramers area varies, we considered some cuts in the parameter space, of
which we have shown some of them here. Fig. 8.5 shows non-Kramers areas in terms of µeff

values, on Ũ − λ̃ phase diagrams, and how the area varies with hopping and crystal fields (here,
all parameters have been scaled with respect to the inter-orbital hopping, tmn. This is shown
by a tilde over all parameters.) Note that, for these cuts, we used the parameter-space sweep to
zero in on which values of spin-orbit coupling, crystal fields, and Hund’s couplings to consider,
at which a substantial non-Kramers area could be shown. We observed from the extensive
parameter sweep that the areas of non-Kramers doublets occupy substantial parameter space
when hoppings are of opposite sign and for non-positive crystal fields; hence, these are the areas
of choice to choose our fixed quantities from.

There are a few key observations to make here. Firstly, we see that a large region has
µeff ≈ 0; these are non-magnetic regions where the ground state is unique. The regions where
the magnetic moment is non-zero are those that host non-Kramers doublets. Secondly, we
see that in the doubly degenerate region, the magnetic moment takes a range of values. The
expected window of around µeff ≈ 3.4 − 4.0 forms a small part of the region; this area lies
especially close to the phase boundary between the GSD = 1 and the GSD = 2 regions. At
this phase boundary, the effective moment peaks and then saturates to a lower value before
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Figure 8.6 – Composition of the obtained magnetic moments. (a) Of the ≈ 2 × 107 parameter points
that host non-Kramers doublets, we see that very few of them have a µeff close to the experimental value
of µeff ≈ 3.4 − 4.0. We also see that for those that do lie in the range, the µab value shoots up, while its
contribution is almost zero for the rest of the non-Kramers doublets. (b-c) This is further corroborated by
tracking how muc and muab change, in the respective phase diagrams. The material might hence lie on the
very narrow strip in (c) where µab is substantial.

further decreasing to the lower right of the doubly degenerate region. Thus, the region we
are looking for might precariously lie on the phase boundary between a magnetic and a non-
magnetic region.

Next, we take a look at the composition of the magnetic moment. Fig. 8.6(a) shows contri-
butions of µc and µab, the components along and perpendicular to the crystallographic c-axis,
respectively, to the effective moment. We observe that for a large number of non-Kramers pa-
rameter points, the contribution from µab is negligible, and all the observed magnetic moment
comes from the part along the crystallographic c-axis. We use the phase diagrams Fig. 8.6(b-c)
to find out where in the parameter space the region of negligible µab might lie. We observe
that µab is negligible in the large non-Kramers region away from the phase boundary. However,
near the phase boundary, it is the significant increase of the µab component that increases the
overall effective moment. This also corroborates our observations in Fig. 8.5.

The second observation is that the doubly degenerate area has a spin S ≈ 2, and an angular
momentum L ≈ 1, as seen in the phase diagrams for 〈S2〉 and 〈L2〉 in Fig. 8.7(a-b). Using
these values and Eq. (8.2), we conclude that the ground state of Jeff ≈ 1 would be a more
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Figure 8.7 – Quantum numbers for the non-Kramers region. (a-b) Tracking spin and angular momentum
for the non-Kramers regions. We see that S ≈ 2, L ≈ 1. (c) Mechanism to realize a Jeff ≈ 1 ground state,
starting from an S ≈ 2 state in the zero SOC limit.

suitable candidate for the ground state. Using these values for S,L, J and using Eq. (8.2) and
Eq. (8.3), we get µ1 = 3.535 and, in turn, µeff = 4.0824. This is in very close agreement with
the experimental value of µeff = 4.17µB.

We also proposed a mechanism for how a Jeff = 1 might have been achieved, as shown in
Fig. 8.7(c). On the left of this figure, we present a single-particle, non-interacting bandstructure
with the given values of crystal fields and hoppings, in the absence of spin-orbit coupling. This
would be a good description for energy levels in the low SOC region of the phase diagram.
In the absence of SOC, a high-spin S = 2 pocket exists in the intermediate Hund’s coupling
region, as we saw in Fig. 6.16(a). With the introduction of spin-orbit coupling, this region hosts
non-Kramers doublets, with J ≈ 1 being nominally achieved by placing a hole each on the j1/2
bonding level, two j3/2 antibonding levels, and the highest j1/2 bonding level. Here, we have
made use of the j1/2 − j3/2 eigenstates to denote the energy levels in the presence of spin-orbit
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coupling.
Using the value of Jeff ≈ 1 for the ground state, the magnetic entropy would be S =

(4/3)Rln3 = 12.1784 J/mol-FU.K, which is smaller than the experimental value of 16.2 J/mol-
FU.K. This might indicate that the third iridium ion, assumed to be completely non-magnetic
due so far, might not be so after all.

8.4 Non-Kramers degeneracies in other materials

Figure 8.8 – non-Kramers doublets in pyrochlores. (a) Structure of a pyrochlore material. Image taken
from [182]. (b) Character table of D3d point group. Table taken from [183]. (c) Types of crystal field
doublets in rare-earth pyrochlores. Note the difference in notation of doublets between this figure and the
D3d character tables. Figure adapted with permission from [182], Copyright (2010) Annual Reviews, Inc.

Through our collaborative work, we have thus demonstrated that non-Kramers degeneracies
serve as sources of observed magnetism in Ba4LiIr3O12. With this, Ba4LiIr3O12 has become
the first cluster Mott material to host non-Kramers doublets. However, while the occurrence
of non-Kramers doublets is novel and new in the context of cluster Mott materials, they have
been previously observed and investigated in other classes of materials. The dimer material
Ba4LiIr3O12 has a D3h symmetry; another class of materials with a similar point group, which
also hosts non-Kramers doublets, are pyrochlore rare-earth materials.

Frustrated and highly anisotropic rare-earth pyrochlores hence lend themselves to closer
scrutiny in this section. The pyrochlore crystal structure consists of atoms that are arranged
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8 Non-Kramers doublets in Ba4LiIr3O12

to form a lattice of tetrahedra joined at each corner (Fig. 8.8(a)). In this case, the hierarchy
of competing interactions is very clear-cut, with Coulomb interactions dominating over spin-
orbit coupling, which, in turn, dominates over crystal fields. As per the rules and mechanisms
discussed in Chapter 7, this means that spin-orbit coupling splits the energy manifold into
levels with different total angular momenta. The crystal field splits the levels further, till we
are left with a two-fold degenerate ground state. In case of an integer-J , the only way a doublet
ground state can be realized in the presence of crystal fields and SOC is if it is non-Kramers
in nature [182].

This becomes clear when we take a closer look at the pyrochlore lattice. The pyrochlore
case corresponds to the D3d site symmetry. In the non-interacting limit, we are mostly left
with doublets in the bandstructure. Each of these doublets can be classified in terms of the
irreducible representations of D3d and its double group. Using Fig. 8.8(b), we can deduce
that three distinct types of these doublets are possible: Eg, E1/2,∗ and

⊕
r
rE3/2,∗ (where

∗ ∈ {u, g}, r ∈ {1, 2}), with the first being non-Kramers and the rest being Kramer’s doublets.
These doublets are shown in Fig. 8.8(c). Note that the third doublet is built using two one-
dimensional irreducible representations.

In the same vein, another group of materials that are similar in structure to the dimer material
Ba4LiIr3O12 are materials of the type Ba2MOsO6. These materials are double perovskites, and
hence lie in the larger perovskite class of materials. They were shown to be d-orbital based
single-atom Mott insulators, which host antiferromagnetically coupled 5d2 Os6+ ions decorating
a face-centered cubic(fcc) lattice. Given a perfectly cubic lattice, the ground state of these
materials is a non-Kramers Eg doublet, which hosts quadrapole and octapole moments [184–
188].

8.5 Conclusion

In conclusion, we studied the character and origin of the observed non-zero magnetic moment
in Ba4LiIr3O12. Through a vast parameter sweep, it was seen that there is a finite area of
non-Kramers doublets, but only a small portion of the parameter space we considered hosted
doublets whose effective magnetic moment was close to the experimental value. Moreover, this
region lay very close to a phase boundary and was marked by an enhanced moment perpendic-
ular to the crystallographic c-axis. Experimental measurement of µab would hence serve as a
good diagnostic tool to confirm whether the material indeed lies close to such a phase boundary.
If µab is not as large as our studies expect, this would also indicate that the material might lie
outside the parameter space we have considered. Since all experimental measurements so far
have been done using a powder sample, measuring µab might not be straightforward. As an
outlook, the availability of single crystals of the material will pave the way to a better agreement
between observations and theory. We also suspect that there might be additional contributions
to the magnetic entropy from the third iridium ion. Experiments that can concretely estimate
the role of this iridium ion in the material would also bring about a better understanding of
the ground states of Ba4LiIr3O12.
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8.5 Conclusion

We briefly surveyed pyrochlores rare-earths, an adjacent class of materials that can also host
non-Kramers doublets. Similar to how these doublets were responsible for a large magnetic
moment in Ba4LiIr3O12, they are responsible for the quadrupolar moments observed in py-
rochlores. Non-Kramers doublets were also shown to respond differently to structural disorder
in certain pyrochlores. Such non-Kramers degeneracies have been a long-standing subject of
early theoretical and experimental studies [189–193], but they have also found renewed interest
ever since having been recently observed in a variety of materials, such as cage compounds
[194–198], triangular lattice antiferromagnets [199, 200], and pyrochlores [182, 201], among
others [202, 203]. The discovery of non-Kramers doublets in Ba4LiIr3O12 opens the doors to
exploring their fingerprints in many more such cluster materials in the future.
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Properties of materials with M3O12
trimer clusters

Chapter

9

In the previous chapters, we have made progress on understanding cluster Mott insulators using
a bottom-up approach. Firstly, we set out to understand what cluster Mott insulators are from
a material and theoretical perspective in Chapter 4, and secondly, we studied how the interplay
between various terms in the governing Hamiltonian results in the observed phase diagrams
for various fillings, and thus established some essential building blocks for the same in Chapter
6. In Chapter 7, we also introduced ingredients such as crystal field splitting and spin-orbit
coupling, that are essential for the observed physics of cluster Mott candidate materials.

In this chapter, we study cluster Mott materials with trimer clusters, most of which have
been synthesized, but not much theoretical work exists on them as of now. We shall combine
the framework we have built so far with material-specific factors, to gain some insight into their
ground states.

This chapter is based on publication [U1], which is currently a work in progress at the time
of writing. The parts for which the author of this thesis is responsible are presented below.

9.1 Survey of materials

Trimer cluster materials synthesized so far are generally 12H hexagonal perovskites of the form
A4BM3O12. Here, M is the transition metal ion, which can range from being 3d to 5d. While
the A cation in materials so far has been barium, B can be any rare-earth ion. The trimers are
made of three face-sharing M3O12 octahedra. While the stacking sequence of different layers
in the material determines magnetic interaction paths, the size of the B cation contributes to
the extent of distortion of the crystal.

The earliest trimer cluster materials were synthesized by Shimoda et al. [204], which had
ruthenium trimers in combination with a range of lanthanides. For lighter lanthanides (B
= La−Gd) the crystals have a monoclinically distorted cell, whereas for heavier lanthanides,
the materials have a hexagonal unit cell, as shown in Fig. 9.1. It was found that for B = Ce, Pr
and Tb, the B cation is tetravalent, and the ruthenium ion was also tetravalent in nature; while
no magnetic anomaly was observed in Ba4CeRu3O12 down to 0.5K (due to the nonmagnetic
ground state (J = 0) of the Ru3O12 trimer), it was seen that trimer materials with Pr and Tb
(that is, Ba4PrRu3O12 and Ba4TbRu3O12) displayed antiferromagnetic ordering.
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9 Properties of materials with M3O12 trimer clusters

Figure 9.1 – Crystal structure of different ruthenium trimer materials. (a) Materials with heavier lan-
thanide ions have a hexagonal unit cell, whereas (b) materials with lighter lanthanide ions have a monoclinic
unit cell. Images adapted with permission from [204]. Copyright(2008) American Chemical Society.

However, the valency of the transition metal ion and the B cation can also take other values,
resulting in different observed physical and ground-state properties. For example, Shimoda
et al. also later synthesized the Ba4EuM3O12 group of materials with M=Ir, Ru, where the
B=Eu cation was found to be trivalent in nature [205]. This commensurately also changed
the oxidation states of the transition metal ions as well: it was seen that the M ion is in a
mixed-valence state between +4 and +5, and that its average oxidation state is +4.33. Though
these two compounds have a virtually identical crystal structure, they display different magnetic
properties. In the case of Ba4EuIr3O12, experimental measurements of magnetic susceptibilities
pointed towards the possibility of the presence of tiny amounts of paramagnetic impurities,
because the Curie constant C was found to be significantly smaller than the theoretical value
(0.375 emu/mol) for a localized system of spins with S = 1/2 [205]. This led to the conjecture
that the ground state of the Ir3O12 trimer might be nonmagnetic. On the other hand, with
a non-zero magnetic moment of µeff = 1.18µB, the magnetic interactions between ruthenium
trimers in Ba4EuRu3O12 showed indications of being antiferromagnetic in nature.

A significant progress on the experimental front was made when Cava et al. synthesized
the Ba4NbM3O12 class of materials [111, 206], and by doing so, showed that the B cation
need not have to be a lanthanide for the material to host transition metal trimer clusters in
such perovskite materials [110, 207–210]. These materials have a rhombohedral structure, in
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9.1 Survey of materials

contrast to the family of materials Ba4LnM3O12 with a tetravalent lanthanide cation, syn-
thesized by Shimoda et al. However, the individual NbO6 octahedra and M3O12 trimers in
these Ba4NbM3O12 phases alternate along the c-axis to generate the 12-layer stacking sequence
similar to the lanthanide case.

Figure 9.2 – Comparison of low-temperature molar heat capacities divided by temperature. It is
shown here for (a) Ba4NbIr3O12. The upturn, marked in red, at a field of 1 T suggests that it might be
a candidate spin liquid. This is in contrast to that of (c) Ba4NbRh3O12. Molar heat capacities have been
plotted against temperature for the two materials in (b) and (d). Images adapted with permission from [211].
Copyright (2019) by the American Physical Society.

Synthesis of trimer materials with a niobium cation opened up yet another possible valency
for both the B cation and the transition metal ions, with the niobium cation in these materials
being pentavalent (Nb5+) and non-magnetic in nature. The average valence of the transition
metal ion (Rh/Ir) is +3.67 without the presence of any fractional valence in these materials,
which is also a feature distinct from the lanthanide case. However, materials in which the
transition metal ion had the same oxidation state behaved differently. For example, specific
heat studies of the materials Ba4NbIr3O12 and Ba4NbRh3O12 showed widely different outcomes,
as is evident in Fig. 9.2. The specific heat curve for the rhodium case shows at least some
signatures of magnetic ordering down to 1.5K. In contrast, the upturn of specific heat in the
case of iridium is suppressed by the applied field, a signature of lack of magnetic ordering which
has been displayed by spin liquid candidate materials in the past [119, 212, 213]. Hence, the
iridium trimer material was proposed as a promising spin liquid candidate [211].
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9 Properties of materials with M3O12 trimer clusters

Another recent spin liquid candidate is the rhodium trimer material Ba4NbRh3O12. Sus-
ceptibility measurements show it has an effective moment of µeff = 0.73−0.8µB/Rh, and even
though there are considerable antiferromagnetic interactions between these local rhodium mo-
ments, specific heat measurements show an absence of magnetic ordering down to 50 mK.
Moreover, temperature dependent magnetic specific heat measurements also indicate the pres-
ence of a spinon Fermi surface [209].

However, spin liquid ground states are not the only ground states that these trimer materials
are conjectured to host. A recent experimental study on the trimer material Ba4Nb1−xRu3+xO12,
where |x| < 0.2, was carried out for various concentrations of the B cation and the transition
metal ion by Cao et al. [214]. Combining insights from specific heat, susceptibility, resistivity
and conductivity measurements, they conjectured the discovery of an unusual spinon Fermi
surface made of charge-neutral spinons, that underpins both a heavy-fermion strange metal
and a quantum spin liquid.

Drastically different behavior is observed when 4d or 5d transition metal ions are replaced by
manganese, a 3d transition metal ion. Compared to the entire family of trimer materials, which,
like most transition metal compounds, have considerable spin-orbit coupling, the manganese
trimer material Ba4NbMn3O12 has negligible spin-orbit coupling. Studies showed the material
might consist of ferromagnetic manganese trimer layers, stacked antiferromagnetically. It was
shown that the intra-cluster interactions are not strong enough to localize the electrons on these
trimers, and that it might be better described as a conventional Mott insulator where electrons
are localized on individual manganese ions [110, 111].

In general, trimer materials lend themselves to hosting a wide variety of ground states, similar
to their cousin, the M2O9 dimer family. Extensive experimental and theoretical work has been
done regarding these dimers, and one of the defining features of M2O9 dimers is that there is a
higher likelihood of the net magnetic moment of these dimers being zero. For example, in the
case of S = 1/2 on each site, Sdimer = S1 + S2 = 0. Unlike the dimer case, the net magnetic
moment of individual M3O12 trimers in this case cannot vanish, that is Strimer = S1+S2+S3 6= 0,
and hence we might expect to see an even wider range of physical properties in M3O12 trimer
materials [215].

The sheer number of trimer materials that have been synthesized and await a more systematic
analysis is the primary motivation behind this work. Here, we first look into the structure of
the single particle, non-interacting part of the Hamiltonian governing these materials. We use
insights from it to explore the phase diagrams for some of these materials.

9.2 Structure and Hamiltonian particulars

Fig. 9.3 shows the structure of a trimer functional unit. The trimer unit is formed of three
transition metal ions, which are surrounded by oxygen ligands. The oxygen ions give rise to
an octahedral ligand field, as a result of which the trimer cluster consists of three face-sharing
octahedra stacked on top of each other, with the transition metal ions in the center of each
of these octahedra. This gives rise to a D3h point group symmetry for the trimer, though the
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9.2 Structure and Hamiltonian particulars

individual atoms themselves have a D3d symmetry. The two outer metal ions, shown in orange,
are equivalent. The middle ion, shown in blue, transforms trivially under inversion, in contrast
to the outer ions. The local coordinates for the outer ions are defined in the basis of the global
coordinates as:
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2 −1/

√
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whereas the local coordinates for the middle ion is defined as
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Figure 9.3 – Structure of Ba4NbM3O12 materials. (a) Crystal structure of Ba4NbM3O12. The trimer units
are shown in grey. The red balls denote oxygen ligands, whereas the B cation is shown in dark green. The A

cation, usually Barium, is shown as light green balls. Image adapted with permission from [181]. Copyright
(2020) by the American Physical Society. (b) Trimer unit zoomed in. It consists of three M ions, with the
outer ions shown in orange and the middle ion shown in blue. Local coordinates for each ion is also shown.

9.2.1 Interactions and hopping

The governing Hamiltonian consists of four essential parts:

H = Hint +Hhop +HCF +HSOC , (9.3)

where Hint is the Hubbard-Kanamori interaction Hamiltonian
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Hint =
∑
i

(
U
∑
m

nim↑nim↓ + U ′
∑
m 6=n

nim↑nin↓ + (U ′ − J)
∑

m 6=n,σ

nimσninσ

− J
∑
m6=n

c†im↑c
†
in↓cim↓cin↑ + J

∑
m 6=n

c†im↑c
†
im↓cin↓cin↑

)
.

(9.4)

Here, i labels the sites, m,n ∈ {xy, yz, zx} label the physical t2g orbitals. The terms hold their
usual meanings as discussed in Chapters 4 and Chapter 6. With regards to the hopping, the
hopping Hamiltonian Hhop is given by

Hhop = Hhop
xyz = −tm

∑
imσ

c†imσcjmσ − tmn

∑
iσ,m6=n

c†imσcjnσ, (9.5)

where
c†iσ = (c†xy, c

†
yz, c

†
xz)iσ. (9.6)

To make the mechanism of tm and tmn more explicit, let us write it out in matrix form. Eq. (9.5)
would hence read as

Hhop
xyz =

∑
iσ

−c†iσ

tm 0 0

0 tm 0

0 0 tm

 cjσ − c†iσ

 0 tmn tmn

tmn 0 tmn

tmn tmn 0

 cjσ. (9.7)

As we saw in Chapter 7, local trigonal distortions split the t2g levels into a1g and eg lev-
els. Consequently, single particle energy levels in literature, especially in ab-initio studies, are
generally labeled in terms of these irreducible representations of the resulting local crystal sym-
metry, which is D3h in our case, and the hoppings are also expressed in this basis. Hence, it is
necessary to draw a correspondence between the two.

The hopping Hamiltonian in the {a1g, eg1, eg2} basis is:

Hhop
a1g−eg = c̃†iσ

tσ 0 0

0 tπ 0

0 0 tπ

 c̃jσ, (9.8)

where
c̃†iσ = (c†a1g , c

†
eg1 , c

†
eg2)iσ. (9.9)

Here, tσ is the hopping between a1g orbitals of site i and j, and tπ is the hopping between the
two eg orbitals of site i and j. In contrast to the hoppings in the t2g basis, which consisted
of a diagonal component (intra-orbital hopping) and an off-diagonal component (inter-orbital
hopping), we see that hoppings in the a1g− eg basis are entirely diagonal: there is no mixing of
a1g and eg orbitals. We obtain (tm, tmn) in terms of (tσ, tπ) when we do a basis transformation
to go from {a1g, eg1, eg2} basis to {xy, yz, xz}. We thus get
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Hhop
xyz =

1

3
c†iσ

(2tπ + tσ) (tσ − tπ) (tσ − tπ)
(tσ − tπ) (2tπ + tσ) (tσ − tπ)
(tσ − tπ) (tσ − tπ) (2tπ + tσ)

 cjσ. (9.10)

Comparing Eq. (9.5) and Eq. (9.10), we get

tm = −(2tπ + tσ)

3
, tmn =

(tπ − tσ)
3

. (9.11)

The hopping Hamiltonian in the {a1g, eg1, eg2} basis in terms of tm and tmn will now look like:

Hhop
a1g−eg = c̃†iσ

(2tmn + tm) 0 0

0 tm − tmn 0

0 0 tm − tmn

 c̃jσ. (9.12)

From here we can see that

tσ = (2tmn + tm), tπ = (tm − tmn). (9.13)

9.2.2 Crystal fields and spin-orbit coupling

We have seen previously that the trimer consists of an octahedral crystal field. Trimer materials
usually possess a trigonal distortion. Hence, the crystal field term is restricted to the trigonal
form:

HCF = −
∑
iσ

c†iσ

 0 ∆ ∆

∆ 0 ∆

∆ ∆ 0

 cinσ. (9.14)

Note that the crystal fields remain unaltered irrespective of the basis in which they are ex-
pressed.

As mentioned in section 7.2, in order to express spin-orbit coupling in terms of local orbital
definitions, it is necessary to transform the spin operator Si written in global coordinates on
each site, to local coordinates, S′

i. We recall from Eq. (7.16), that the spin-orbit coupling then
takes the form

HSOC =
∑
i

Li · S′
i

=
i

2

∑
i

εαnlRiανc
†
inστ

ν
σσ′cilσ′ ,

(9.15)

where the rotation matrices for the three sites are given by Eq. (9.1) and Eq. (9.2).
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9.2.3 Parameter selection

Motivated by the synthesis and experimental observations of M3O12 trimers with niobium,
Khomskii et al. carried out ab-initio calculations of the electronic structures of iridium, rhodium
and manganese trimer materials [181]. Our selection of the parameter space in this work is
based on the values given by these ab-initio studies. The parameter choice we work with is
given below:

Test Material Ũ range J̃h λ̃ range ∆̃m ∆̃o t̃m

Mn-like 0.0 - 30.0 0-10.0 0.0 -0.15 -0.1 0.125

Rh-like 0.0 -15.0 0.2U 0.0 -1.5 0.7 0.0 -0.2

Table 9.1 – Final choice of sample parameters used in the chapter, for different trimer materials.
Note that this is all in the {xy, yz, xz} basis. These quantities have all been scaled by the inter-orbital
hopping tmn, and this is indicated by the hats on top of all parameters.

There are a few observations to make here. There exist two broad “categories” of materials:
In rhodium-like materials (which encompass materials with rhodium, ruthenium or iridium
trimers), the spin-orbit coupling is substantial. Hence, it plays an important role in determining
ground state properties in these materials. This is in contrast to the manganese case, where,
by virtue of being a 3d transition metal, spin-orbit coupling plays a negligible role. Hence, the
properties of manganese materials are determined largely by interactions rather than spin-orbit
coupling. The second distinction is in the crystal fields: in the rhodium case, only the middle
site in the trimer experiences crystal fields, whereas the outer sites are unaffected; this is in
contrast to the manganese case, where all three trimer sites experience similar magnitudes of
crystal fields. This, as we will see in the subsequent sections, will impact how the non-interacting
energy levels in both cases split.

9.3 Single-particle sector andmolecular orbitals

While analyzing the single-particle non-interacting limit of the Hamiltonian, we take into ac-
count the fact that every atom constituting the trimer possesses a D3d symmetry. Hence, the
non-interacting energy levels are labeled according to the irreducible representations of the D3d

point group. The character table for D3d can be found in Appendix A.

9.3.1 Zero SOC

In the absence of SOC, the local trigonal crystal field splits the t2g orbitals present on each
site into a singly degenerate a1g and doubly degenerate eg levels (see Fig. 9.4). As seen in the
last section, the hoppings in the {xy, yz, xz} basis consist of a diagonal part (intra-orbital tm)
and an off-diagonal part (inter-orbital tmn). However, hoppings are diagonal in the {a1g − eg}
basis (as shown in Eq. (9.8)). Because of this purely diagonal hopping, the a1g and eg levels
on the three sites of the trimer give rise to bonding, anti-bonding, and non-bonding molecular
orbitals on the cluster, as shown in Fig. 9.4(b). Note that the atomic t2g orbitals are written
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9.3 Single-particle sector and molecular orbitals

in the {a1g − eg} basis to understand the resultant molecular orbitals better, though there are
no crystal field terms explicitly introduced to split the t2g atomic orbitals into a1g and eg.

The non-bonding molecular orbitals are special in that only the outer sites (denoted by “o”)
are involved in their formation, whereas all three sites participate in the formation of bonding
and anti-bonding orbitals. The main feature which distinguishes the trimer from a dimer cluster
is that the dimer sites are identical to each other (with respect to the physics). However, the
addition of an extra site now gives rise to two kinds of sites on the trimer: the middle site, and
the outer site. It is the combination of contributions from these two types of sites that results
in bonding, anti-bonding, and non-bonding molecular orbitals. Because of the nature of the
two types of sites on the trimer, they respond differently to the application of crystal fields,
which can be seen in Table 9.1.

Another interesting feature to note is that the a1g orbitals on each of the sites result in one
bonding, one anti-bonding and one non-bonding A1g molecular orbital, and similarly, the eg
orbitals on each of the sites result in one pair of bonding, one pair of anti-bonding and one pair
of non-bonding Eg molecular orbitals. This is, again, because the hoppings are diagonal in the
{a1g − eg} basis. To distinguish them from their atomic counterparts, the molecular orbitals
are denoted in uppercase. This convention is similar to that mentioned in section 7.1.

Note the similarities and differences between Fig. 9.4(a) and Fig. 9.4(b): while the former
is written in the {xy, yz, xz} basis, the latter is written in the {a1g − eg} basis. The splitting
in the energy levels in the former is due to the presence of a non-zero tmn, without which
we would have three energy levels, each of which are three-fold degenerate. The splitting in
energy levels in the latter is due to the fact that the inter-site tσ hopping between a1g orbitals
is different from the inter-site tπ hopping between eg orbitals. The split in the energy levels is
hence proportional to the difference between the two, that is tσ− tπ. However, we can see from
Eq. (9.13) that this difference is nothing but tmn.

Figure 9.4 – Non-interacting limit for the trimer cluster in the absence of SOC. (a) Non-interacting
bandstructure. (b) The trigonal crystal field splits the three degenerate levels on each of the sites, and they
combine to give rise to bonding, anti-bonding and non-bonding levels of the trimer cluster.
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9 Properties of materials with M3O12 trimer clusters

9.3.2 Non-zero SOC

On the other limit, let us look at the non-interacting energy levels of the trimer in the presence
of SOC but in the absence of hopping. SOC splits the levels into six j3/2 energy levels and
three j1/2 energy levels.

When spin-orbit coupling is added, the energy levels rearrange themselves as λ is increased.
Fig. 9.5 shows the evolution of energy levels as a function of λ̃ = λ/tmn. In the previous
section, we saw that a majority of M3O12 trimer materials can be either categorized as being
“Rh-like”, or “Mn-like”. Hence, these energy levels are shown for a choice of physically relevant
non-interacting parameters taken from Table 9.1.

There are a few observations to make in Fig. 9.5. Since the crystal fields are of opposite
signs for the two classes of materials, this also affects the ground state – in the Rh-like case,
the doubly degenerate eg levels form the ground state, whereas in the Mn-like case, the a1g
level forms the ground state. Energy level crossings in both cases are also indicated, and we
will see that they will become relevant when we consider phase diagrams of real materials in
the next section. Though there are level crossings beyond a certain value of SOC, say λ̃ = 4.0,
the energy levels are more or less parallel to each other.

The Rh-like case

Since the Rh-like case is where spin-orbit coupling is essential, we will take a closer look at
its non-interacting levels. In the presence of SOC, it is more convenient to describe the single
particle levels in terms of the doublet j1/2 (with S = 1/2, Leff = 1, Jeff = 1/2) and quadruplet
j3/2 (S = 1/2, Leff = 1, Jeff = 3/2) levels. This is shown in Fig. 9.6. Intra-dimer hopping leads
to the mixing of these j-levels and also the formation of bonding/anti-bonding/non-bonding
combinations. As a result, there are two levels each, of bonding, anti-bonding and non-bonding
levels with a j3/2 character, and one level each, of bonding, anti-bonding and non-bonding
levels with a j1/2 character. The character of these states is dynamic, and evolves with the
SOC strength. However, at large values of SOC, each level settles at a certain character entirely.
These are the levels shown on the right hand side in Fig. 9.6.

Note that the character and ordering of these levels are an outcome of certain fixed values of
hoppings and crystal fields, as mentioned in Table 9.1. This is subject to change, based on the
values of these parameters considered. The character of a certain level is also subject to change
based on the filling and the strength of SOC. For example, consider the solid blue line, which
pertains to either having the eleventh or the twelfth electron on the solid line. The change in
the character of this level can be tracked based on where there are level crossings. From the
figure, we see that its character changes from being jn1/2 before the first crossing, to the first
j∗3/2 level between two level crossings, and ultimately settling at the second j∗3/2 level.

9.4 Phase diagrams and effective moments for select fillings

Having studied the non-interacting limit in detail, we now switch on interactions. In this
section, we study the interplay of interactions and spin-orbit coupling for select fillings on the
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Figure 9.5 – Non-interacting bandstructure for the trimer cluster, in the presence of SOC. (a)
For Rh-like materials, and (b) for Mn-like materials. Level crossings are marked by pink circles. Values
pertaining to the two categories of materials are as given in Table 9.1.

trimer, which all pertain to those of trimer materials that have been synthesized so far.

9.4.1 nf = 11 electrons

Fig. 9.7 shows the phase diagrams for the case of 11 electrons on the trimer cluster. We see that
there are three principal regions in the phase diagram. In the region of low spin-orbit coupling
(region I), an S ≈ 1/2 ground state is present, smoothly connected to the non-interacting limit.
In the non-interacting limit, we see from Fig. 9.4(b) that the presence of an unpaired electron
on a1g non-bonding or on either of the eg non-bonding levels leads to an S = 1/2 ground state,
which remains robust with the introduction of interaction. Since this partially occupied single
particle level has a predominantly jn1/2 character, we also refer to this state as having a total
Jeff = 1/2.

In the non-interacting bandstructure in Fig. 9.6, when filled with 11 electrons, we see that
the corresponding partially filled level undergoes a energy level crossing at λ̃ = 0.9. Beyond
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Figure 9.6 – Evolution of non-interacting levels for Rh-like materials, in presence of SOC. Single
particle levels pertaining to a filling of 11 or 12 electrons are highlighted in blue. Similarly, those pertaining
to a filling of 13 or 14 electrons are highlighted in red, and the level pertaining to 15 or 16 electrons is
highlighted in purple. Energy level crossings are shown as yellow circles, and the corresponding value of λ̃
at specific crossings are also shown. (Right) Single particle levels can be expressed in the j1/2 − j3/2 basis
when SOC is substantial. A level with no superscript denotes bonding; a level with superscript “*” denotes
anti-bonding; a level with superscript n denotes non-bonding.

this point, we see that the character of the partially occupied single particle level also changes
due to reordering of the levels; hence, its character changes from being jn1/2 previously to now
being j∗3/2. This is also observed in the full phase diagram of Fig. 9.7(a), where there is a phase
transition at this point.

There is another region, region III, in the upper right corner of the phase diagram. The phase
boundary seems to indicate that this region might also connect smoothly to a non-interacting
limit at some large spin-orbit coupling. We again look to the non-interacting band structure
for any other level crossings. Indeed, we observe another crossing at λ̃ = 2.4. Though this
value of λ̃ lies beyond the limits of the full phase diagrams and also beyond the range of any
of the materials we have so far considered, we conjecture that region III in the phase diagram
might indeed smoothly connect to the non-interacting limit at this point.

Magnetic moments

In Fig. 9.7(b), we show the phase diagram pertaining to the zero temperature limit of the
effective magnetic moment per trimer, µeff(0)/µB, as a function of interactions and spin-orbit
coupling. In region I, we see that the effective moment has a spin-only value of

√
3, which agrees

with the jn1/2 character of the unoccupied non-interacting level. In region II, this is completely
quenched in the non-interacting limit. This is because the level now has a j∗3/2 character; the
projection of the magnetic moment onto the j3/2 subspace is zero. This quenching is also
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Figure 9.7 – Phase diagrams for an Rh-like trimer material with 11 electrons on the cluster. Plots
are shown here as a function of Ũ and λ̃. Parameter ranges and values for the phase diagrams used are given
in Table 9.1.

observed in both the longitudinal and transverse components of the magnetic moment, shown
in Fig. 9.7(c) and Fig. 9.7(d). When interactions are added, the transverse component is still
quenched, but this is lifted in the longitudinal component. These contributions also show up
in the total effective moment, which becomes non-zero in region II, the farther we move away
from the non-interacting limit. Some distinct features are the bright lines in the µc/µB and
µab/µB phase diagrams. These lines do not correspond to any phase transition. Hence, they
are still an open question, subject to further investigation.

The regions corresponding to real materials are also shown in Fig. 9.7(b). A low spin-orbit
coupling of λ̃ = 0.4 − 0.6 corresponds to ruthenium trimer materials in which the ruthenium
ions have a mixed valence of +4.33, and host 11 electrons per trimer. Most of the ruthenium
materials in this regime have B cations that are also magnetic. Hence, it is essential to take into
account their contributions while calculating the magnetic moment of the material. Fig. 9.8
shows the calculated and measured zero-temperature effective moments of ruthenium trimers
for a range of trivalent cations, by Hinatsu [215]. The measured free-ion magnetic moments
of the B cations are also shown in the figure. In addition, they assumed an S = 1/2 ground
state for ruthenium trimers, and the effective moments calculated under this assumption agreed
closely with the measured effective moments in most materials. Our phase diagrams confirm
that there indeed exists a large region in the phase diagram with S ≈ 1/2.
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9 Properties of materials with M3O12 trimer clusters

Figure 9.8 – Effective magnetic moments of Ba4LnM3O12. These measurements were carried out by by
Hinatsu et al. for a range of lanthanide cations (Ln) [215]. When M =Ru, the materials host 11 electron per
trimer. When M =Ir, the materials host 14 electrons per trimer. Table of values adapted from [215].

In Fig. 9.9, a vertical cut of the magnetic moment phase diagrams pertaining to real materials
is shown. Note that the different regions in these plots follow a color scheme that connects the
regions to those in Fig. 9.7(a). Hence, region I would be a light yellow, region II is pink,
and so on. In Fig. 9.9(a), which is within the range for ruthenium trimer materials, we see
that the magnetic moment is completely isotropic and has a pure spin value, in the absence of
interactions. The addition of a small interaction already introduces anisotropy in the magnetic
moments, such that µab > µc. There is a phase transition at Ũ ≈ 5.0, where we cross from
region I to region II. Increasing interactions beyond this phase boundary not only flips the
anisotropy (µc > µab), but also completely quenches µab. We expect that ruthenium trimers
would fall into the former category.

In Fig. 9.9(b), which shows magnetic moments within the range of iridium trimers, we see
that µab is uniformly completely quenched. Iridium trimer materials, which host 11 electrons
per trimer, have not yet been synthesized. Our analysis hence provides a reference for any
trimer material with a 4d transition metal ion, which might potentially be synthesized in the
future.

9.4.2 nf = 13 electrons

Fig. 9.10 shows the phase diagrams for 13 electrons per trimer. There are three principal
regions, separated by well-defined phase boundaries. In region I, the unpaired electron occupies
the doubly degenerate eg anti-bonding levels (see Fig. 9.4(b)), thus resulting in an S ≈ 1/2

ground state. This region is smoothly connected to the non-interacting limit. Since the partially
occupied energy level has a predominantly j∗3/2 character in this limit, we consider this region
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9.4 Phase diagrams and effective moments for select fillings

Figure 9.9 – Cuts from the phase diagrams for the case of 11 electrons on the trimer. They show
the evolution of zero-temperature magnetic moments with increasing Ũ , for physically relevant values of λ̃.
(a) low SOC (b) high SOC.

as having a total Jeff = 3/2 ground state.
As with the previous case, a phase transition is observed at λ̃ = 0.9. Region II is also smoothly

connected to the non-interacting limit, at which the ground state now has a jn1/2 character owing
to the reordering of energy levels (Fig. 9.6). The third region does not smoothly connect to
the non-interacting limit; however, the phase boundaries seem to suggest it might do so, at a
larger spin-orbit coupling. Referring back to Fig. 9.6, one can observe an energy level crossing
at λ̃ ≈ 1.6. Beyond this value, there is again a reordering of energy levels, and the partially
occupied level now has a j1/2 character. We expect region III to hence smoothly connect to the
non-interacting limit, and we can characterize the ground state in region III as j1/2.

Magnetic moments

In Fig. 9.10(b), we show the zero temperature limit of the effective magnetic moment per
trimer as a function of interactions and spin-orbit coupling. Region I is entirely non-magnetic,
since the ground state has a j∗3/2 character. This non-magnetic phase is also robust to the
addition of interactions. Region II displays a pure spin-1/2 value of

√
3, and this is because

the ground state now has a jn1/2 character. However, region III, despite also having a j1/2
character, shows a departure from the pure spin-1/2 value. This can be attributed to stronger
spin-orbit coupling, and presence of low-lying excited multiplets – these result in additional
contributions to the magnetic moment. As with the previous case, the magnetic moments in
this case, especially µc/µB, have some bright lines in the phase diagram that do not correspond
to any phase transition. Their origin is hence yet to be investigated.

In the phase diagrams, parameter regimes corresponding to real materials are indicated.
The low spin-orbit coupling regime corresponds to ruthenium trimer materials, which have a
mixed valence of +3.67 per ruthenium ion, and 13 electrons on the ruthenium trimer in total.
The only trimer material which has been synthesized so far with 13 electrons on the trimer
is Ba4Nb(5+)Ru3(+3.67)O12 [206], where niobium is pentavalent and non-magnetic in nature.

133



9 Properties of materials with M3O12 trimer clusters

Figure 9.10 – Phase diagrams for an Rh-like trimer material with 13 electrons on the cluster. Plots
are shown here as a function of Ũ and λ̃. Parameter ranges and values for the phase diagrams used are given
in Table 9.1.

Hence, the niobium cation does not contribute to the magnetic moment. Cava et al. carried
out susceptibility measurements, and the zero temperature magnetic moment for the material
was measured to be µeff = 2.59µB/f.u [206]. In the phase diagram, we see that there is a region
which corresponds to the observed magnetic moment.

In Fig. 9.11(a), we show a vertical cut of the magnetic moment at low spin-orbit coupling.
The color scheme is similar to the previous case: the color scheme connects the regions to those
in Fig. 9.10(a). Hence, region I would be a light yellow, region II is orange, and region III is
purple. We see that region I hosts a non-magnetic state, where Ũ < 0.5. Upon increasing Ũ ,
we encounter region II, where an anisotropy in observed, with µc being suppressed much more
strongly than µab. In Fig. 9.11(b), we show magnetic moments as a function of interactions
for high spin-orbit coupling. This corresponds to the parameter regime for 5d transition metal
trimers, such as those of iridium, though trimer materials in the strong SOC regime with 13
electrons on the trimer have not yet been synthesized. In Fig. 9.11(b), the magnetic moment
is isotropic in the absence of interactions, and its value is that of a pure spin-1/2. Addition of
a small interaction not only induces a phase transition, but also introduces a large anisotropy
such that µab > µc. The trend is uniform post the phase-transition, where µab decreases and
µc uniformly increases.
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Figure 9.11 – Cuts from the phase diagrams for the case of 13 electrons on the trimer. They show
the evolution of zero-temperature magnetic moments with increasing Ũ , for physically relevant values of λ̃.
(a) low SOC (b) high SOC.

9.4.3 nf = 14 electrons

Fig. 9.12 shows the phase diagrams for the case of 14 electrons on the trimer. There are
four principal regions. In region I, in the non-interacting limit, all the energy levels are fully
occupied, resulting in a low-spin regime of S = 0 ground state. However, as interactions are
increased, the electrons now occupy the eg anti-bonding levels such that a high-spin S = 1

forms the ground state. The spin-orbit coupling term completely quenches both spin and
orbital angular momentum, whereas addition of a small Ũ lifts this quenching. At finite λ̃ and
Ũ , these cases are smoothly connected, such that there is no sharp phase transition for a small
spin-orbit coupling, on increasing Ũ . This is indicated by a red circle in Fig. 9.12(a). We also
observe that Stot also evolves continuously from the low spin to the high spin limit, since it is
no longer a good quantum number for finite SOC. Going by the single-particle levels in Fig. 9.6,
region II might smoothly connect to the non-interacting limit, whereas regions III and IV are
interaction-driven phases.

Region IV is especially interesting, since it is realized only in the presence of strong interac-
tions. It is also the only region in the phase diagram which non-zero effective moment; in fact,
µeff ≈ 3.48 in region IV. While the origin of this relatively high magnetic moment is an open
question, its value corresponds to an S ≈ 2, L ≈ 1 state.

Iridium and rhodium trimer materials have been synthesized, which contain 14 electrons on
the trimer cluster [216]. The trimer can host 14 electrons, provided iridium/rhodium ions have
a mixed valence of +4.33 in the material. This oxidation state can be realized in materials
of the form Ba4B(Ir,Rh)3(+4.33)O12, where the B cation is trivalent, usually a lanthanide,
as shown in Fig. 9.8. In these materials, the measured magnetic moment of the material was
observed to be entirely due to the B cation, implying that the trimer cluster is non-magnetic
[216]. This is also vindicated in our phase diagrams, where a large area has a zero effective
magnetic moment.
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9 Properties of materials with M3O12 trimer clusters

Figure 9.12 – Phase diagrams for an Rh-like trimer material with 14 electrons on the cluster, as a function of
Ũ and λ̃. Parameter ranges and values for the phase diagrams used are given in Table 9.1.

9.4.4 nf = 15 electrons

Fig. 9.13 shows the phase diagrams for the case of 15 electrons on the trimer. In region I, the
unpaired electrons nominally occupy the eg anti-bonding levels, resulting in a S ≈ 1/2 ground
state. In the non-interacting limit of region I, the unpaired electron occupies a level which
possesses a j∗1/2 character. Region II does not smoothly connect to the non-interacting limit
in the phase diagram per se, but we see in Fig. 9.6 that there is an energy level crossing at
λ̃ ≈ 1.6. Thus, we expect that region II meets the non-interacting axis not very far from the
range shown in the phase diagram. Moreover, reordering of single-particle energy levels also
results in the partially occupied level now having a j1/2 character.

Magnetic moments

Fig. 9.13(b) shows the zero temperature limit of the magnetic moment plotted as a function of
interactions and spin-orbit coupling. In region I, the magnetic moment is slightly less than the
pure-spin value of

√
3, which can be attributed to additional Van Vleck-like contributions. In

region II, the pure spin value of
√
3 is attained in the non-interacting limit, which also remains

robust to the introduction of interactions.
The parameter regions pertaining to real materials that have 15 electrons per trimer are

also indicated in the phase diagram. Rhodium trimers, which are tetravalent, fall into the low
spin-orbit coupling regime. In the rhodium trimer class of materials of the form Ba4BRh3O12,
the rhodium ions have a 4+ oxidation state when the B cation is also tetravalent in nature.
Hinatsu et al. [216] computed the magnetic moments of various materials in this category
assuming a pure spin value of µeff =

√
3 for the rhodium trimer, and they matched closely with

the observed magnetic moments, as shown in Fig. 9.14. In particular, in the cerium material
Ba4CeRh3O12, the contribution of the Ce4+ ion towards the magnetic moment of the material
is zero. In this case, the observed magnetic moment exactly matches the calculated value. In
our phase diagram, we see that there are indeed regions with low spin-orbit coupling, where
these materials might lie. Though trimer materials with other 4d transition metal ions like
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Figure 9.13 – Phase diagrams for an Rh-like trimer material with 15 electrons on the cluster. Here,
the plots are shown as a function of Ũ and λ̃. Parameter ranges and values for the phase diagrams used are
given in Table 9.1.

Figure 9.14 – Effective magnetic moments of Ba4LnM3O12. These measurements were carried out by
Shimoda et al. for a range of lanthanide cations (Ln) [216]. When M = Ir or Rh, the materials host 15
electrons per trimer. Table of values adapted from [216].
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9 Properties of materials with M3O12 trimer clusters

Figure 9.15 – Cuts from the phase diagrams for the case of 11 electrons on the trimer.. They show
the evolution of zero-temperature magnetic moments with increasing Ũ , for physically relevant values of λ̃.
(a) low SOC (b) high SOC.

ruthenium, containing 15 electrons on the trimer, have not yet been synthesized, we expect
them to also lie in the same parameter regime as marked.

Iridium trimers with a tetravalent iridium ion belong to the high spin-orbit coupling region.
These materials are also of the form Ba4BIr3O12, where the B cation is tetravalent. The same
can be said of iridium trimer materials as with rhodium – an assumption of µeff =

√
3 yielded

results in close agreement with experimental values. We see that region II in our phase diagram
is a vast area which encapsulates not only 4d trimers in the low spin-orbit coupling region, but
also 5d trimers like those of iridium in the high spin-orbit coupling region.

Fig. 9.15 shows zero-temperature magnetic moments for these two spin-orbit coupling limits
relevant to the respective materials. In Fig. 9.15(a), there is a sharp jump when going from
region I to region II, owing to a phase transition. However, the anisotropy caused by the
presence of interactions remains uniform throughout, with µc > µab. In Fig. 9.15(b), there is
an anisotropy even in the absence of interactions. The phase transition takes place with the
addition of a small interaction, and µab, which was strongly suppressed, becomes non-zero.

9.4.5 Manganese, nf = 10 electrons

Fig. 9.16 shows the phase diagrams for the manganese case with 10 electrons per trimer. The
phase diagrams shown here are distinctly different from the previous cases in that there is no
spin-orbit coupling shown here. This is because the physics of 3d transition metal cluster ma-
terials, such as those with manganese, is driven more by interactions rather than the negligible
spin-orbit coupling [181].

In Fig. 9.16(a), we observe a rich phase diagram: there are six distinct regions. Of them, we
can see that region I has S = 0, and we commensurately see that region being non-magnetic in
Fig. 9.16(b). The non-interacting levels are also shown within the phase diagram: we see that
filling them with 10 electrons would amount to placing two electrons on a pair of degenerate
energy levels, thus giving rise to a triplet ground state. As a result, region VI, where S = 1, is
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9.5 Conclusion

Figure 9.16 – Phase diagrams for a manganese trimer material with 10 electrons on the cluster.
Plots are shown here as a function of Ũ and J̃h. Parameter ranges and values for the phase diagrams used
are given in Table 9.1. Note the absence of SOC, since maganese is a 3d transition metal.

smoothly connected to the non-interacting limit of Ũ = 0, J̃h = 0.
There has been only one manganese trimer material synthesized so far, Ba4NbMn3O12, by

Cava et al. [111]. The experimentally measured magnetic moment for this material was 4.82
µB/f.u. This value is close to 4.89, which is the spin-only value of effective magnetic moment
when an S = 2 ground state is assumed. Hence, we look into region III in our phase diagram,
where S = 2. The magnetic moment in region III was found to be around 6.93, which is very
far from the experimentally measured value of the magnetic moment. Moreover, we found no
region in the entire phase diagram where the magnetic moment lie in a window between 4.0 and
6.0. This points to one of the two possibilities. We might either have considered a parameter
window which is out of range for the material at hand, or it could be possible that a minuscule
spin-orbit coupling is indeed essential in understanding the physics of the material.

9.5 Conclusion

This chapter was a culmination of the story we have built of cluster Mott insulators. Equipped
with understanding of the methodology of studying cluster Mott insulators so far, we applied
it to the context of real M3O12 trimer materials that have been synthesized. Using ab-initio
parameter range proposals, we began our analysis with studying the non-interacting bandstruc-
ture for different categories of trimer materials that have been synthesized so far. This gave us
insight of the character of various single particle energy levels, which we leveraged to study the
origin of magnetic moments in the non-interacting limit. We subsequently considered different
fillings on the trimer, all corresponding to cases of real trimer materials. With the help of our
phase diagrams, we were able to propose parameter ranges in which various materials might
lie. We have summarized our main results in Fig. 9.17. Through a systematic treatment, we
were able to verify the observed magnetic moments for a wide variety of materials, across dif-
ferent fillings. In addition, we also obtained the composition of magnetic moments in different
directions. This is an outlook that can be verified experimentally only when single crystals of
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these materials can be grown in the future. We also proposed what the ground state and its
magnetic moments should be, for classes of materials that are yet to be synthesized.

Figure 9.17 – Summary of trimer materials that have been considered in the chapter. We were able
to explain experimental observations in most cases, except the 3d trimer material with manganese. This
might mean we either have to take into account a finite but minuscule SOC for the material, or that the
material lies outside the proposed parameter range.

However, this is just part of the story for trimer cluster Mott insulators. With conjectures
growing of new and exotic ground states for new trimer materials that are continually being
synthesized, theoreticians and experimentalists have their hands full with exciting prospects
ahead for understanding trimer cluster materials in their entirety.
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Chapter

10
In this thesis, the story of cluster Mott insulators comes full circle. We started by briefly
discussing the concept of localization in solids, both from a theoretical standpoint and from
the perspective of a material. We built the foundation required for the thesis further by
introducing exact diagonalization, and explaining the central role that very large-scale sparse
matrix eigenvalue problems play when dealing with strongly correlated systems. It is hence
vital to learn how best to extract useful information from such matrices. We then introduced
the concept of clusters and their presence in coordination compounds. An important principle
that the thesis established was the cluster Hund’s rule, which provided us with intuition on
how the ground states of an interacting cluster Hamiltonian are chosen. Using this, we were
able to track how ground states evolved in different parameter regimes, with the addition of
hoppings.

However, we have touched only the tip of the iceberg; what we did was to obtain a microscopic
view of clusters in strongly correlated materials. In these materials, we saw that some of the
main ingredients for realizing clusters are the presence of Hubbard and Hund’s interactions,
combined with short metal-metal distances. These are not the only materials that can host
clusters; the concept of clusters is ubiquitous. Hence, if we want to look for clusters outside
of the coordination compound context, we must ensure that the above requirements are met
in some form. For example, van der Waals interactions play a significant role in condensing
clusters of Rydberg atoms. These clusters can have a variety of geometries, ranging from
planar to octahedral and tetragonal, which aggregate further into stacks or clouds [217]. Such
Rydberg matter has found wide applications, including optics and energy production [218,
219]. Similarly, colloidal clusters and complex plasmas are used as platforms to study the
dynamics of charged clusters and their interactions. Complex plasmas are realized by localizing
strongly interacting particles in potential traps, which can be manipulated to create one, two, or
three-dimensional Coulomb clusters [220]. Coulomb clusters are also the precursors to Wigner
crystals, which are shown to host a vast range of interesting physics and applications [221–224].

In the latter half of the thesis, we applied our theoretical framework to real transition-metal
coordination compounds that are cluster Mott candidates. We reviewed some of the most
important ingredients to consider, crystal fields and spin-orbit coupling, and how they affect
the ground state degeneracies of a crystal. We began the application of our understanding to
materials by studying Ba4LiIr3O12, a material synthesized by our collaborators at McMaster,
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Canada. This project gave us insight into the presence and role of non-trivial ground state
degeneracies in cluster Mott materials. Though non-Kramers doublets have been detected in
various materials, Ba4LiIr3O12 is the first cluster Mott material whose physics is driven by
these doublets. This provides us with new avenues in exploring the consequences of non-trivial
degeneracies in a variety of cluster materials, for example, in those with weaker spin-orbit
coupling than in iridates.

The final chapter of the thesis was concerned with carrying out a systematic study of trimer
materials. We considered a vast range of materials where the trimer clusters hosted different
numbers of electrons. This cluster filling was determined by the oxidation numbers of the
transition metal and the other cations involved in the material. We also considered a range
of spin-orbit coupling strengths. For example, materials with 3d transition metals, such as
manganese, have negligible spin-orbit coupling, and materials with 4d transition metals, such
as ruthenium and rhodium, have low-to-intermediate spin-orbit coupling. Trimer materials with
iridium have the highest spin-orbit coupling. We carried out a study of the ground states and
magnetic moments for all these cases. While our numerics matched experimental observations
for materials that had already been synthesized, we were also able to discover interesting phases
such as purely interaction-driven magnetic moments, and parameter regimes where magnetic
moments had non-Curie contributions. In addition, since our study covered a vast expanse of
parameter space, we could also read off what the character and magnetic moments would be for
materials in spin-orbit coupling regimes that have not been synthesized yet. Thus, our study
of trimer materials provided a dictionary of sorts for trimer cluster materials.

The central idea of a cluster Mott insulator arises from the presence of distinct clusters in a
material, and their formation may be driven by any combination of various players such as SOC,
crystal fields, Coulomb interactions etc., as long as electrons are localized within the clusters.
We hence saw in Chapter 9 that cluster Mott insulating phases may also be realized in materials
with low or intermediate spin-orbit coupling. It is worth mentioning another class of materials
where spin-orbit coupling plays a significant role: spin-orbit entangled Mott insulators. These
materials have a very strong spin-orbit coupling, the primary factor stabilizing the Mott state
[225]. Non-trivial interactions between the spin-orbit entangled J = 1/2 pseudo-spins led to
the proposal that the Kitaev model could potentially be realized on edge-sharing honeycomb
lattices made of these pseudo-spins [226]. In a similar vein, we made use of the character of
single-particle levels in describing ground states of cluster materials with high SOC, in Chapter
9. In fact, one can also consider cluster Mott insulators as consisting of two kinds of “sites”:
Atomic sites and orbital sites, with hoppings, interactions, and crystal fields described in a
special way. For instance, crystal fields act only on orbital sites and not atomic sites, and
so on. From this perspective, the distinction between a cluster Mott insulator and a spin-
orbit entangled Mott insulator is blurred. Hence, an interesting prospect for the future would
be to pursue this distinction between the two, both from a theoretical and an experimental
perspective.

The work we carried out so far, as described in the thesis, is a crucial advancement in
understanding the local cluster physics of cluster Mott insulators. The next logical step in
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the story of cluster Mott insulators is to consider the many-body picture, by factoring in the
inter-cluster Hamiltonian. An effective spin model for a single orbital per site scenario has
already been derived for Mo3O8 cluster materials [114]. However, given the sheer number of
parameters to consider, arriving at effective Hamiltonians that apply to most, if not all, multi-
orbital cluster materials, will be a challenge. Nevertheless, this is a critical piece of the puzzle
and will undoubtedly pave the way for novel ground states and a more exhaustive exploration
using many-body numerical methods.

Another perspective worth pursuing would be to vary filling for a fixed parameter set and
track the ground states – that is, introduce doping. Adding or removing an electron from a
cluster would be more dramatic than doing the same for a single site, because in the case of a
cluster, this would mean completely altering the effective degree of freedom associated with the
cluster. Research along similar lines has recently been pursued [227–229], where doping was
introduced to a ladder of dimers at half-filling. However, the prospect of introducing doping
specifically in cluster Mott materials remains an open trajectory of future research.

In conclusion, this thesis has provided a first step towards exploring the local physics of
clusters in the world of cluster Mott materials. Cluster Mott insulators provide a great arena
to explore the consequences of the interplay of various factors on the localization of electrons
on clusters. While new cluster materials with fascinating properties continue to be synthesized,
the existing classes of cluster Mott candidates await theoretical exploration from various per-
spectives, some of which have been outlined above. From the rich variety of physics that cluster
Mott materials display to the sheer range of exciting directions that the area might potentially
take, cluster Mott insulators stand true to what Anderson famously said: More is different.
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Group theory essentials and
character tables

Appendix

A

In dealing with materials in condensed matter physics or any other branch of physics, we
invariably come across a crystal of some kind. We have seen many examples of this in the main
body of the thesis. Every crystal possesses some symmetries, which also manifest themselves
as symmetries of the ground states of a Hamiltonian on a crystal lattice. Hence, there is a
need to classify and express these crystal symmetries in a quantitative, yet compact way. This
is the main reason we use character tables corresponding to the point group of the crystal in
question.

Before we get to reading and interpreting character tables, it would be useful to briefly
recapitulate some main background knowledge to keep in mind.

A.1 Groups and crystal point groups

A prerequisite to understand the “point group” of a crystal is to understand what a group is.
A group is a non-empty set G, along with an operation “·”, such that its elements a, b, c, ... ∈ G
satisfy the following axioms:

• Closure: for any a, b ∈ G, a · b ∈ G.

• Associativity: for any a, b, c ∈ G, (a · b) · c = a · (b · c).

• Existence of an identity element: There exists an element e ∈ G such that for any
a ∈ G, we have e · a = a · e = a.

• Existence of an inverse: For every a ∈ G, there exists an element a′ ∈ G such that
a · a′ = a′ · a = e.

• Commutativity (Only for Abelian groups) : For a, b ∈ G, we have a · b = b · a.

An important aspect of a group is applying an operation between its elements. Hence,
it is convenient to tabulate the products between elements in the form of a multiplication
table or Cayley table. Note that here, by “multiplication”, we mean being operated upon by
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(Z4,+4) 0 1 2 3

0 0 1 2 3

1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Table A.1 – Cayley table for (Z4,+4).

the operation “·”. As a simple example, consider the group (Z4,+4), where the operation is
addition modulo 4. The Cayley table for this group would be expressed as:

The Cayley table is read in the following way: 2 +4 1 = 3, 3 +4 2 = 1, 2 +4 2 = 0, and so on.
From here, it is easy to read out which elements are the inverses of other elements, and how
the different elements are being operated upon.

A.1.1 Point groups

We now extend this idea to the case of a crystal: here, every element can be considered a
symmetry operation. A symmetry operation on a crystal is any operation that leaves the
crystal unchanged. Some standard symmetry operations are as follows:

• Identity: this operation is does nothing to the crystal. This is similar to the identity
element that we came across earlier. As a symmetry operation, it is denoted as E.

• (Proper) n−fold rotation axis: This is an axis of rotation such that, one rotation
about this axis rotates the crystal by 2π/n. Hence, rotating a crystal about this axis n
times leaves the crystal unchanged. Such a rotation operation is denoted by Cn.

• Mirror plane: This is a plane of reflection about which the crystal is divided into
two, and can be mirrored. The way in which this plane is defined is based on how
one divides the crystal: horizontal mirror planes are perpendicular to the principal axis,
vertical planes are parallel to the principal axis, and so on. The corresponding reflection
operations are denoted by σh, σv etc.

• Centre of inversion: a point about which the crystal can be inverted. The correspond-
ing operation is denoted as i.

• Improper rotation axis: This is a combination of a n-fold rotation axis and a mirror
plane that is perpendicular to it. The corresponding operation, Sn, hence executes both
rotation and reflection.

Once these elements, or operations, are hence defined for a crystal, a point group is a group
of symmetry operations under the multiplication operation. As an example, let us write out
the Cayley table for a point group C2v, whose elements are {E,C2, σv, σ

′
v}:

Such a table for symmetry operations can be read similar to the earlier case: for example, a
C2 rotation followed by another C2 rotation amounts to a total of 2π rotation, hence resulting
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C2v E C2 σv σ′v

E E C2 σv σ′v

C2 C2 E σ′v σv

σv σv σ′v E C2

σ′v σ′v σv C2 E

Table A.2 – Cayley table for the C2v point group, under multiplication.

in the identity element. A reflection σv along a vertical axis followed by a C2 rotation of the
axis is the same operation as a reflection σ′v along the second vertical axis, and so on. Hence,
needless to say, symmetry operations such as rotations and reflections follow the usual group
axioms mentioned above.

A.2 Representations of groups

In the previous section, we saw that the set all symmetries in a crystal can be expressed in
the language of group theory. We also saw that these symmetry operations are defined with
respect to a point or an axis. Hence, these operations are, in practice, represented as some
linear transformations with respect to a coordinate system. Hence, every symmetry element
in a point group, for example, those in Table A.2, is a matrix in itself. Under the group
operation of multiplication, these matrices satisfy the relations defined in the respective point
group’s Cayley table. In other words, the matrix assigned to every symmetry operation is a
representation of that symmetry group.

There is some flexibility in constructing matrix representations of a symmetry operation.
The bottom line is that they have to satisfy the Cayley table of the point group. Hence,
these matrices are not unique. Given a matrix representation {D(e), D(a), D(b), ...} of ele-
ments {e, a, b, c...} ∈ G, we can obtain a new set of matrix representations by some matrix
transformation (for example a change of basis) {BD(e)B−1, BD(a)B−1, BD(b)B−1, · · · }. New
matrix representations can also be obtained as a sum of two or more representations. Let us
say we have representations {D(e), D(a), D(b), ...}, each of dimension m, and representations
{D′(e), D′(a), D′(b), ...}, each of dimension n. We can obtain representations of dimension
m+ n by constructing a block diagonal matrix corresponding to each element in the following
way [230]: {(

D(e) 0

0 D′(e)

)
,

(
D(a) 0

0 D′(a)

)
,

(
D(b) 0

0 D′(b)

)}
. (A.1)

Each of the new matrices thus constructed is called as being a direct sum of the corresponding
m and n dimensional matrices, and the new representation is written as [230]:

{D(e)⊕D′(e), D(a)⊕D′(a), D(b)⊕D′(b), · · · }. (A.2)

There is also flexibility in such constructions: new representations can, in theory, be constructed
out of such building units ad infinitum.
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Conversely, given such a representation, it can be expressed as a direct sum of two or more
representations of lower dimensionality. Hence, such a representation is called a reducible repre-
sentation. Representations that cannot be expressed in terms of those with lower dimensionality
are called irreducible representations.

A.3 Characters of a representation

Given the non-uniqueness of all the different representations of symmetry group elements, it
is important to note that there is one property that is unchanged, which is the trace of a
representation [230]

tr(D(a)) =

n∑
i=1

D(a)ii. (A.3)

The trace is invariant under a transformation of a representation:

tr(D(a)) = tr(BD(a)B−1). (A.4)

In many applications of group theory, for example, in the context of crystallographic point
groups, the details of the representations of symmetry operations are, very often, not required.
This also makes sense because these matrices are not unique. However, we exploit the invariance
of the trace, and use the trace to express the corresponding symmetry operation. The trace of
a matrix representation is called the character of the operation. When using the symmetries
of a crystal, what we use instead of a Cayley table of a point group, is the character table of
the group. The general layout of a character table is given in Table A.3.

G C1 = E C2 · · · Cj · · · Cn

Γ(1) χ(1)(C1) χ(1)(C2) · · · χ(1)(Cj) · · · χ(1)(Cn)

Γ(2) χ(2)(C1) χ(2)(C2) · · · χ(2)(Cj) · · · χ(2)(Cn)
...

...
... . . . ...

Γ(i) χ(i)(C1) χ(i)(C2) χ(i)(Cj) χ(i)(Cn)
...

...
... . . .

Γ(n) χ(n)(C1) χ(n)(C2) · · · χ(n)(Cj) · · · χ(n)(Cn)

Table A.3 – General layout of a character table. The topmost row lists all the symmetry operations Cj in a
point group G, whereas the leftmost column lists all the irreducible representations. Table adapted from
[231].

In Table A.3, we see that the character table contains, at the outset, all the irreducible
representations of the symmetry operations in a given point group. Γ(i) denotes the ith irre-
ducible representation, Cj denotes the jth symmetry operation. Hence, the character of the
ith irreducible representation of Cj is given by χ(i)(Cj).
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A.3.1 Nomenclature of irreducible representations: Mulliken notation

The leftmost column of any character table, as we saw in the last section, enumerates irreducible
representations. Mulliken proposed a useful shorthand to denote an irreducible representation,
using a notation which gave information on the dimension of the representation and how the
representation transformed under certain symmetry operations. This shorthand, called the
“Mulliken notation”, is now used as a standard part of writing character tables for any point
group. The convention is as follows [232]:

• Base/Main letter: denotes the dimension of an irreducible representation. A (or B)
denotes singly degenerate representation, and E, T,G,H denote representations of di-
mensions 2, 3, 4, 5, · · · respectively. Note that the E here is used to denote a doubly
degenerate representation, and appears on the leftmost column of a character table. This
is different from the identity symmetry operation E, which appears in the topmost row
of a character table, along with other symmetry operations.

• Distinction between uni-dimensional representations: The irreducible representa-
tion A transforms symmetrically around the principal axis, whereas B transforms asym-
metrically.

• Subscripts : subscripts g and u are used to denote symmetry and anti-symmetry with
respect to a center of inversion, respectively. Subscripts 1 and 2 denote symmetry/anti-
symmetry with respect to rotation about a non-principal axis.

• Superscripts: single prime (′) is used to denote symmetry with respect to σh, the
horizontal plane of reflection. Similarly double prime (′′) denotes anti-symmetry with
respect to σh.

A.4 Character tables of point groups

We now have the prerequisites to read the character table of any point group. Though there are
a total of 32 crystallographic point groups, we present here the character tables of only those
point groups that appear in the main body of the thesis. In Fig. A.1, we present character
tables for point groups we come across in Chapter 5 and Chapter 6. We have also marked
the non-trivial ground states – that is, uni-dimensional representations that do not transform
trivially under all symmetry operations, in red. In Fig. A.2, we present character tables of
point groups we come across in Chapter 7, Chapter 8 and Chapter 9.
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Figure A.1 – Character tables of different point groups that we come across in Chapter 5 and Chapter 6.
Here, we have shown tables for (a)Ci, (b) C2v, (c) C3v,(d) C4v and (e) Td. Singly degenerate, non-trivial
degeneracies are highlighted using a red box. Tables adapted from [232].
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Figure A.2 – Character tables of different point groups that we come across in Chapter 7,8 and 9. Here, we
have shown tables for (a)D3h, (b) D3d, and (c) Oh. Tables adapted from [183].
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Figure B.1 – Periodic table of elements along with their known oxidation states.
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The Hubbard model is a paradigmatic model in condensed matter physics, which provides a rich 
playground for investigating the physics of a wide range of strongly correlated electronic systems. The core 
principle of the Hubbard model is the competition between Coulomb repulsions and hoppings. An 
important limit in the model is the Mott insulating regime, which is realized in the strong interaction limit. 
As a result, electrons get localized on single atomic sites at half-filling. In this thesis, we investigate 
extensions of this idea to cluster Mott insulators. These are special materials where electrons are now 
localized on clusters of sites. We use the theoretical framework that we develop to explore the physics of 
real cluster Mott materials. 

To that end, in a first study, we construct and study the cluster Hubbard model on a plethora of different 
clusters. We propose a new selection rule, called the cluster Hund's rule, which provides guidelines as to 
which states qualify as ground states in the pure interaction limit of the cluster Hubbard Hamiltonian. Using 
a combination of analytical insights and exact diagonalization, we conducted a comprehensive investigation 
of the emergent degrees of freedom in clusters of different geometries and fillings. This study helped us 
understand how these cluster Mott degrees of freedom respond to the interplay of strong correlations and 
hopping. 

In a second study, we investigated the cause of the observed magnetic signatures in . This 
material hosts iridium dimers, and was expected to be non-magnetic since it possesses completely filled 
shells. Using insights from our previous study, we were able to detect non-trivial ground state degeneracies 
called non-Kramers doublets as the reason behind the observed magnetism of the material. Hence, we 
established  as the first cluster Mott material whose physics is driven by non-Kramers doublets. 
  
Having constructed this theoretical framework so far, we used it in our third study to investigate real 
materials which host trimer clusters – hexagonal perovskites of the form , and considered 
different fillings of   to  transition-metal “M” ions. Through a systematic treatment, we verified the 
observed magnetic moments for a wide variety of trimer materials. In addition, we also obtained the 
composition of magnetic moments in different directions. We use this study to propose ground state 
properties and phase diagrams for materials that are likely to be synthesized in the future.
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