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Summary

Despite significant advances in mobility systems, they continue to perform ine”ciently, con-

tributing to a range of global challenges. To address these issues, many researchers predict that

the future of transportation will be characterized by shared, autonomous, and electric vehicles

(SAEVs). However, this transformation poses several managerial and societal challenges that

must be addressed to fully realize its potential benefits. This thesis highlights the potential

of research at the intersection of information systems and operations management to improve

the performance of next-generation mobility systems (Chapter 1). By integrating data-driven

decision models four research projects underscore this potential.

Chapter 2 studies the cooperative charging management of SAEVs to maximize profits and

service quality while accommodating uncertain demand, limited charging infrastructure, and

time-varying electricity prices. A distributed approach using cooperative multi-agent reinforce-

ment learning is proposed that outperforms centralized static charging strategies and provides

insights to improve the performance of SAEVs.

Chapter 3 explores the impact of emerging technologies on the physical world and their

interaction with user adoption behavior. Specifically, it evaluates a hybrid system that combines

autonomous and human-operated ride-hailing services. The study first identifies mobility user

preferences toward autonomous services, and using an agent-based model predict and analyze

the future of such hybrid service platforms, and evaluate potential changes. The agent-based

model enables analysis of the end-to-end impact of key factors, such as trust in the technology.

Chapter 4 proposes a method for leveraging data-driven digital twin frameworks to design

large-scale charging hubs. Such problem classes are di”cult to solve with traditional mathe-

matical programming optimization. This study shows how high-fidelity, data-driven simulation

environments coupled with reinforcement learning can achieve arbitrary scalability and high

modeling flexibility. The benchmark experiments show that the proposed model designs result

in superior cost and service-level performance under real-world operating conditions.

Chapter 5 supports the operational management of EVCHs through dynamic pricing. Draw-

ing on cutting-edge deep reinforcement learning algorithms, a model-free solution is provided to

find optimal pricing policies. The proposed pricing policy is a time-dependent function of the

service rate, called dynamic capacity-based pricing. Benchmark analysis shows that the pro-

posed model not only ensures high profits for EVCHs, but also successfully reshapes aggregated

demand as desired, even in environments with high variability in supply and demand.
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Chapter 1

Introduction – Integrating

Operations Management and

Information Systems to Harness the

Full Potential of Technological

Advancements in Transportation

Systems1

1.1 Motivation and Background

Technological advances continue to reshape modern society, driving significant change across

multiple sectors. Today, more than half of the world’s population lives in urban areas, and this

number is expected to grow significantly in the coming decades (Ritchie et al. 2024). This grow-

ing urbanization emphasizes the critical need to integrate emerging digital and technological

innovations to ensure sustainable growth and e”cient resource management. One of the most

impactful developments in this regard is the emergence of smart cities, where data-driven tech-

nologies improve urban life, drive economic progress, and promote sustainability (Batty et al.

2012, Albino et al. 2015). Among the most pressing challenges, urban mobility systems are

under increasing strain due to rapid urban expansion, rising population density, and growing

environmental concerns.
1In accordance with the rules of the Faculty of Management, Economics, and Social Science of the University

of Cologne regarding self-quotation in the introduction of a cumulative thesis, parts of Chapter 1 have been
adopted from the research articles.



2 IS-enabled Operations Management of Next-Generation Mobility Systems

Despite growing awareness of these challenges, global transportation networks remain dis-

connected, ine”cient, and environmentally harmful (Bruun and Givoni 2015). Conventional

travel options continue to drive climate change, produce harmful pollutants that threaten pub-

lic health (World Health Organization 2018), and contribute to systemic ine”ciencies (Cramton

et al. 2018, Cheng et al. 2020). The reliance on privately owned, petrol-powered vehicles esca-

late road congestion, rise CO2 emissions, and increase accident rates. In fact, the transportation

sector accounts for about 24% of global carbon emissions, with cities bearing the greatest eco-

nomic and social burden (Agency 2022). With estimates suggesting that 68% of the world’s

population will live in urban areas by 2050 (Nations 2018), the need for more sustainable and

resilient transport systems has never been more urgent.

Emerging technologies provide powerful tools to address these challenges and transform ur-

ban mobility. Smart cities use real-time data and digital platforms to coordinate infrastructure

and planning, enabling AI-driven tra”c control that optimizes flow by analyzing sensor data

from vehicles and road networks (Zheng et al. 2020, Wang et al. 2023b). Coordinated parking

solutions further reduce search times and emissions, while digital twin simulations allow planners

to test and refine mobility scenarios with greater precision (Qi and Tao 2018). At the same time,

innovations in electric vehicles (EVs), autonomous systems, the Internet of Things (IoT), and

artificial intelligence (AI) are creating cleaner, more adaptable, and more sustainable transporta-

tion options (Ketter et al. 2023). Among these advances, the Connected, Autonomous, Shared,

and Electric (CASE) paradigm has gained prominence for its potential to alleviate congestion,

reduce environmental impact, and provide fair and convenient mobility services (Sperling 2018b,

Zhang et al. 2022).

Each component brings benefits and has synergies with the others. EVs help mitigate the

impact on the climate change, especially as electricity generation becomes more reliant on re-

newable sources (Nanaki and Koroneos 2016). At the same time, shared mobility reduces the

total number of vehicles on the road compared to private ownership (Shaheen et al. 2016). Au-

tonomous vehicles (AVs) further drive the adoption of shared electric mobility by increasing

e”ciency, reducing costs, and removing barriers such as range anxiety (Pevec et al. 2020). By

integrating these benefits, shared autonomous electric vehicles (SAEVs) o!er on-demand mo-

bility services that improve safety, sustainability, and operational e”ciency (Qi et al. 2022).

Already, major urban centers - including San Francisco, Shanghai, Phoenix, Singapore, Tokyo,

and Moscow - are demonstrating the real-world feasibility of autonomous taxis through pilot

projects (Dong et al. 2022).

While the widespread adoption of SAEVs holds great promise for achieving a sustainable

and e”cient mobility system in the future, they also present new challenges. Technological

complexities, such as ensuring the reliability and cybersecurity of SAEVs, are compounded by

environmental considerations such as battery production and grid stability. Regulatory con-

straints and broader governance and societal issues, including trust in self-driving technology



1.2 Research Objective and Questions 3

and equitable mobility access, introduce additional uncertainty (Mahdavian et al. 2021, Shel-

don and Dua 2024). Moreover, inconsistent implementation of advanced SAEV solutions may

be counterproductive. As Sperling (2018a) warns, AVs risk aggravating tra”c congestion and

urban sprawl if not carefully integrated. As a result, system-level approaches that consider man-

agerial, technical, environmental, and social factors are critical to e!ectively harnessing these

innovations (Ketter et al. 2023).

1.2 Research Objective and Questions

Building on the emphasis within Information Systems (IS) and Operations Management (OM)

on the social and managerial dimensions of next-generation mobility, this work focuses on the

associated challenges. On the managerial side, key concerns include optimizing fleet operations,

e”ciently allocating scarce resources such as charging stations, and implementing dynamic pric-

ing strategies to improve overall performance. Social considerations are also critical and include

user acceptance, equitable access to services, and e!orts to bridge the digital divide. Address-

ing these multifaceted issues requires a comprehensive research agenda that integrates IS, data

analytics, modeling, and advanced decision-making techniques – such as agent-based modeling,

digital twins, and machine learning – to improve urban mobility (Rahman et al. 2021).

This research addresses critical challenges a!ecting the adoption and integration of shared,

autonomous, and electric mobility which require IS-enabled solutions due to the complex in-

teractions among various entities. The research objectives consist of two main areas: (a) the

operations management of shared electric autonomous fleets and the influence of user behavior

on their performance, and (b) the development of charging infrastructure through optimized

planning and operational decision-making.

In the context of SAEV operations management, the first research project addresses the

challenge of optimizing SAEV charging management. This issue is especially critical compared

to other operational decisions, such as vehicle repositioning, due to the limited availability of

charging infrastructure and the lengthy charging process. Therefore, the first research objective

(RO1) is to keep SAEVs adequately charged for mobility services while leveraging their connec-

tivity and cooperation to cope with charging infrastructure constraints. The adoption of SAEVs

also heavily depends on social factors such as mobility users’ reactions and public acceptance of

AVs. Therefore, the second research objective (RO2) is to analyze user preferences toward AVs

and assess their evolving impact on SAEV performance throughout the adoption period.

The second part of this thesis focuses on the development of charging infrastructure, a key

requirement for the widespread adoption of electric mobility. This research argues that centrally

operated, large-scale charging hubs—especially in workplaces and commercial areas—are crucial

in urban settings where home charging is not widely available. In this context, I examine the

operations management of large-scale charging facilities through optimizing two strategic and
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tactical decision-making problems. The primary goal is to facilitate charging infrastructure de-

velopment by improving the economic performance while considering system-level factors such

as power grid integration and sustainability. Accordingly, the third research objective (RO3)

focuses on investment planning decisions for large-scale charging hubs from a managerial perspec-

tive, incorporating user preferences, asset modeling, and system operations. Finally, recognizing

the pricing module as a crucial link between supply and demand, the fourth research objective

(RO4) is to develop a decision framework that enables charging operators to optimize both

economic and system-level performance through advanced dynamic pricing models, enhancing

profitability and sustainability. RO3 and RO4 are connected to both managerial and social chal-

lenges. Improving the economic performance of charging stations could lead to a well-distributed

and widely accessible charging network that plays a crucial role in EV adoption by alleviating

drivers’ range anxiety, one of the primary barriers to widespread adoption. Additionally, RO4

is closely tied to social challenges, as pricing serves as a key mechanism to influence EV users’

charging behavior which is an essential factor for the sustainable development of charging in-

frastructure, preventing strain on the power grid, and promoting the use of renewable energy

sources.

Figure 1.1 summarizes the key obstacles facing next-generation mobility solutions, along with

this dissertation’s research framework, objectives, and guiding questions aimed at addressing key

management and societal challenges. Note that all these problems need IS-enabled approaches

to deal with the complex relationship between di!erent entities. I explain the research questions

in the following.

A key priority for operators of shared autonomous fleets is to ensure that vehicles consis-

tently make e!ective operational decisions to maintain an adequate supply of mobility services.

The first study addresses these operational complexities in SAEVs, with a particular focus on

charging management. The goal is to establish a scalable, decentralized decision-making frame-

work that enables SAEVs to learn and adopt optimal operational policies toward a common

objective (e.g., fleet economic performance).

Research Question 1 How and to what extent can shared autonomous electric fleet operators

improve their performance through cooperative, decentralized charging

coordination?

While operations management is critical, socio-behavioral factors are equally influential in

shaping the future of next-generation mobility. Variations in user acceptance of SAEVs are par-

ticularly significant, prompting the second study to identify distinct user segments and explore

how changing attitudes a!ect ride-hailing platforms. To explore these dynamics, I propose two

sub-questions.

Research Question 2.a How do users di!er in their preference for autonomous versus human-

driven ride-hailing services, based on their trip and user characteris-

tics?
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Shifts in Urban Mobility: Electrification (E), Autonomous Driving (A), Shared Mobility (S)

Challenges and Adoption Barriers

Managerial: e.g.,
Infrastructure Development

Operational Decision-Making

Technological Policy and Regulatory Environmental

Social: e.g.,
Trust on AVs

Range Anxiety

RO1: Optimizing 
Operational Decision-

Making of SAEVs 

RO4: Managing 
EVCHs through 
Dynamic Pricing 

RO3: Optimizing 
Investment Planning 

for EVCHs

RO2: Predicting the 
Impact of User 

Behavior on SAEVs

RQ1: How and to what 
extent can shared 

autonomous electric fleet 
operators improve their 
performance through 

cooperative, decentralized 
charging coordination?

RQ4: How can a machine 
learning-based decision 

framework be designed to 
improve the economic 

performance of EV 
charging hubs while also 
shaping the aggregated 

load profile?

RQ3: How can digital twins 
in combination with 

machine learning methods, 
be harnessed to enhance 

multi-stage investment 
decisions for building 

large-scale EV charging 
hubs?

RQ2a: How do users differ 
in their preference for 
autonomous versus 

human-driven ride-hailing 
services, based on their 

trip and user 
characteristics?

RQ2b: How do anticipated 
shifts in user preferences 

influence ride-hailing 
platforms’ outcomes as 

they move from traditional 
human-driven to 

autonomous services?

Figure 1.1: Thesis Framework: Challenges in Next-generation Mobility Systems and Research
Objectives

Research Question 2.b How do anticipated shifts in user preferences influence ride-hailing

platforms’ outcomes as they move from traditional human-driven to

autonomous services?

In the field of electric mobility, accessible charging infrastructure is critical for widespread EV

adoption. Currently, home charging is the dominant approach in many markets (Lee et al. 2020,

Hoover et al. 2021). However, as more consumers without access to home charging switch to

EVs, there is a need to expand charging opportunities at workplaces, popular destinations (e.g.,

supermarkets), and fleet depots (Babar and Burtch 2024, Lee et al. 2020). We call these high-

density charging solutions EV Charging Hubs (EVCHs). In addition to encouraging broader

EV adoption, EVCHs can facilitate daytime charging that takes advantage of peak solar power

output - an opportunity not available with overnight charging (Lee et al. 2018). To support the

development of EVCHs, the third study in this thesis focuses on optimizing investment decisions

for the expansion of large-scale charging hubs.

Research Question 3 How can digital twins2, in combination with machine learning methods,

be harnessed to enhance multi-stage investment decisions for building

large-scale EV charging hubs?

While large-scale charging facilities are critical to advancing EV adoption, they can be eco-

nomically not viable and stress the power grid if not properly managed (Engel et al. 2018,

2A digital twin is a real-time virtual replica of a physical system that leverages sensor data, simulation, and
analytics to optimize performance and decision-making.
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Valogianni et al. 2020b). To encourage infrastructure investment while mitigating adverse elec-

tricity consumption patterns, the fourth study in this thesis proposes a decision framework to

help large-scale stations optimize both economic and system-level performance. By incorpo-

rating dynamic pricing strategies, EVCHs can improve profitability and make overall energy

demand more sustainable.

Research Question 4 How can a machine learning-based decision framework be designed to

improve the economic performance of EV charging hubs while also

shaping the aggregated load profile?

1.3 Problem Statement and Research Gaps

This section provides a comprehensive review of the literature on next-generation mobility sys-

tems, highlights key research gaps linked to the central questions of this thesis, and explains

why an interdisciplinary and multi-method approach is essential for e!ectively addressing these

gaps.

1.3.1 Current State of the Literature

This section provides an integrated review of key literature on the design, operation, and de-

ployment of next-generation mobility systems, with a particular focus on SAEVs and large-scale

EVCHs. The review covers five main research streams: (1) smart and sustainable mobility

systems, (2) operations management of shared autonomous electric fleets, (3) user behavior in

hybrid autonomous ride-hailing systems, (4) EVCH planning and operations, and (5) pricing

management of EVCHs through IS-enabled decision frameworks.

Smart and Sustainable Mobility Systems

Traditional mobility systems have led to negative impacts such as environmental damage, public

health hazards, and economic ine”ciencies due to congestion and excessive resource use (Pal

et al. 2023). As a result, improving the e”ciency and sustainability of transportation has

become a critical priority. A mobility system is considered smart and sustainable when it

uses digital technologies and data-driven strategies to balance user needs, organizational goals,

and environmental considerations. While the word smart refers to real-time information flows

and the use of new innovations such as CASE technologies for automation and coordination,

sustainability encompasses environmental responsibility as well as socio-economic factors such

as safety, resource e”ciency, and viable business models (Ketter et al. 2023). Related to this

thesis, researchers widely recognize the potential of the CASE paradigm to combine smartness

and sustainability to address current transportation challenges, with each dimension o!ering

unique benefits. However, the most significant benefits are realized when these dimensions are

integrated into a cohesive, data-driven framework (Sperling 2018a).
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The CASE paradigm has emerged as a key approach to addressing the environmental and

operational challenges of urban transportation. Each of its four components o!ers distinct

advantages while complementing the others. Connected (C) vehicles use communication tech-

nologies to facilitate data exchange and improve real-time information about tra”c conditions

and infrastructure status (Batty et al. 2012). Autonomous (A) capabilities enable vehicles to

operate with minimal or no human intervention, incorporating various levels of automation to

improve safety and e”ciency (Yurtsever et al. 2020). Shared (S) mobility optimizes resource

utilization by allowing multiple users to access a shared fleet of vehicles, thereby reducing con-

gestion and private vehicle ownership (Shaheen et al. 2016). Finally, Electric (E) propulsion,

including battery electric and fuel cell technologies, minimizes pollution and noise, especially

when integrated with renewable energy sources (Tran et al. 2012).

A prominent example of CASE mobility is shared autonomous electric vehicle fleets, often

referred to as SAEVs, which have attracted considerable interest in engineering, management,

and sociology (Narayanan et al. 2020, Dlugosch et al. 2020). SAEVs hold great promise for

reducing greenhouse gas emissions, reducing tra”c congestion, and improving resource utiliza-

tion. Several studies suggest that a single SAEV, if e”ciently operated and routed, can replace

multiple conventional vehicles (Chen et al. 2016, Fagnant and Kockelman 2014). However, chal-

lenges remain in scaling these systems, particularly in terms of infrastructure requirements, user

acceptance, and cost-e!ective operation (Mahdavian et al. 2021).

Building on the CASE paradigm, smart and sustainable mobility systems use digital tech-

nologies, data analytics, and innovative service models to address broader transportation chal-

lenges, including congestion, emissions, and equity of access. These systems often integrate

intelligent transportation technologies - such as sensors and vehicle-to-infrastructure communi-

cations - to optimize routing and tra”c management in real time, reducing travel time and fuel

consumption (Golbabaei et al. 2021). In addition, shared mobility services such as bike-sharing

and car-sharing can increase resource e”ciency by promoting multimodal travel and reducing

private vehicle ownership (Eren and Uz 2020).

Sustainability is at the core of this approach, with a growing emphasis on low-emission

vehicles (e.g., electric or hybrid) and infrastructure that supports non-motorized transportation

(e.g., bicycle lanes, walkable urban design) (Benevolo et al. 2016). These measures aim to

reduce both greenhouse gas emissions and local air pollutants, in line with broader climate

goals. In addition, the integration of big data analytics and machine learning enables proactive

policy interventions, such as dynamic tolling or congestion pricing, to nudge users toward more

sustainable modes of transportation (Shaheen et al. 2020).

Despite significant progress, several obstacles remain. Ensuring equitable access to advanced

mobility solutions, protecting privacy, and achieving interoperability across technologies and ju-

risdictions are among the major concerns. To address these issues, ongoing interdisciplinary

research focuses on harmonizing governance structures, standards, and technology deployment
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strategies. As part of these challenges, the following subsections review the operations man-

agement of SAEVs, the social factors and user behavior toward the acceptance of SAEVs, and

optimizing the investment and management of non-home charging facilities to ensure a rapid

adoption of EVs while aligning it with system preferences such as the capacity of the power grid

and resources.

Operations Management of Shared Autonomous Electric Fleets

Although SAEVs have the potential to greatly benefit urban mobility, they also present a number

of decision complexities at the strategic, tactical, and operational levels. At the strategic level,

scholars have examined the appropriate fleet size for SAEVs (Lokhandwala and Cai 2018, Levin

et al. 2019) and the associated charging infrastructure needs (Lokhandwala and Cai 2020).

Meanwhile, at the operational level, decisions about dynamic routing and vehicle assignment

are critical to aligning service availability with fluctuating demand (Dong et al. 2022, Ho et al.

2018). I focus on the operational aspects due to the focus of RQ1.

Previous literature on repositioning and charging in ride-hailing typically adopts either a cen-

tralized, fleet-centric model or an uncoordinated approach focused on driver incentives (Kullman

et al. 2021a). Centralized frameworks often face scalability barriers, while decentralized meth-

ods lack the cooperative mechanisms needed to optimize overall system performance. While

a non-cooperative decentralized model (a common model in the literature (e.g., Liang et al.

2020)) may be appropriate for e-taxi services (where individual drivers pursue their own profit),

it fails to reflect the priorities of a single fleet operator focused on maximizing profitability and

service quality. Another common oversight is the assumption of unlimited or uniform charging

infrastructure, which overlooks di!erences in station capacity and performance. Recent studies

(Guillet et al. 2022, Pantelidis et al. 2022, Froger et al. 2022) highlight how station capacity

constraints significantly a!ect scheduling decisions. Moreover, while several papers (e.g., He

et al. 2021, Iacobucci et al. 2019) discuss EV charging as a means to meet demand or reduce

energy costs, few consider both objectives simultaneously.

Compounding these challenges, simple rule-based charging strategies–such as always sending

low-battery vehicles to the nearest station–prove inadequate for real-world scenarios, underscor-

ing the need for large-scale, data-driven methods to decide which vehicles should charge, at

which station, and when (Kullman et al. 2021a, Liang et al. 2020). In this context, multi-agent

reinforcement learning (MARL) has emerged as a promising solution that allows for decentral-

ized coordination while still allowing vehicles to cooperate and anticipate future demand (Shou

and Di 2020). Building on these insights, I propose a decentralized cooperative framework that

identifies vehicles requiring charging and assigns them to limited, heterogeneous charging sta-

tions under time-varying energy prices, thereby jointly optimizing service quality and operating

costs.
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User Behavior in Hybrid Autonomous Ride-Hailing Systems

As fully autonomous fleets remain in development, recent research has explored hybrid mo-

bility systems where human-driven and AVs coexist. During the transition, large ride-hailing

services are expected to integrate both, raising challenges related to driver compensation, fleet

optimization, and user trust (Ao et al. 2024, Adam et al. 2022, Siddiq and Taylor 2022).

The success of AVs depends heavily on user acceptance, which remains uncertain (Ketter

et al. 2023). While AVs promise operational benefits (e.g., Yao et al. 2020, Chen et al. 2024b),

widespread skepticism may hinder their e!ectiveness. Studies highlight trust as a key barrier,

with users often preferring human interaction (Glikson and Woolley 2020, Gnewuch et al. 2023).

Research suggests that most people remain hesitant about fully driverless mobility, with only a

small fraction expressing confidence in such systems (Shari! et al. 2017). Technology adoption

is dynamic, evolving with user familiarity, societal influence, and advances in capabilities (Ko-

miak and Benbasat 2006, Venkatesh and Davis 2000). However, much research takes a static

perspective and overlooks the gradual nature of this change (e.g., Fagnant and Kockelman 2018,

Dong et al. 2022). A dynamic approach considers how hybrid fleets a!ect user preferences and

operational outcomes over time.

User perception is critical: while automation increases e”ciency, trust and perceived use-

fulness determine adoption (Dietvorst et al. 2014, Jabbari et al. 2022). Adoption varies across

demographics and is influenced by price sensitivity and openness to new technologies (D’Acunto

et al. 2019, Curtale et al. 2022). To model these behaviors, researchers use agent-based mod-

eling, which integrates user decisions with supply-side policies (Jing et al. 2020). Agent-based

modeling helps ride-hailing platforms anticipate responses to pricing, incentives, and operational

changes, facilitating a smoother transition to autonomous mobility. Future research should refine

adaptive strategies that foster user trust while ensuring profitability and operational e”ciency

in hybrid autonomous-human fleets.

Electric Vehicle Charging Hubs: Planning and Operations

The future of EV charging networks, particularly in urban areas where home charging is not

widely accessible, depends on high-density charging facilities, known as EV charging hubs

(EVCHs). EVCHs pose distinct operational and planning challenges due to their centralized

management and integration with the buildings to which they are attached. Unlike other charg-

ing use cases, EVCHs represent large, concentrated loads that often require network expansion

and load shaping (Lee et al. 2019). They also o!er opportunities to integrate on-site energy

generation (e.g., PV, storage) to reduce peak loads and operating costs (Nunes et al. 2016, Fer-

guson et al. 2018). In addition, user behavior at EVCHs varies significantly by facility type (e.g.,

workplace, shopping mall) which must be taken into account for planning investment decisions.

Unlike dispersed charging stations, all chargers in an EVCH are centrally located, allowing end-

to-end control of the parking and charging process through intelligent parking systems (Babic
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et al. 2022a). This enables optimized vehicle allocation and e”cient scheduling of charging

equipment (Ferguson et al. 2018).

Regarding EVCHs, most of the existing research concentrates on the operational decision-

making problems such as load management. Research on EVCH operations builds on extensive

work on smart charging and scheduling (see Mukherjee and Gupta (2015) for a review). However,

EVCHs introduce additional complexities, particularly the need to integrate charging manage-

ment with building energy loads and site-level constraints. For example, Huang and Zhou (2015)

proposes a mixed-integer optimization framework for workplace charging, while Wu et al. (2017)

develops a two-stage energy management system for o”ce buildings with EV charging. Nunes

et al. (2016) explore the coordination of solar-powered parking lot charging, and Ferguson et al.

(2018) propose an integrated load management approach that considers building base loads and

PV generation. Practical implementations of site-level load management have been demon-

strated by Jun and Meintz (2018). In addition, Lee et al. (2019) examine optimization-driven

approaches to EVCH operations, highlighting the complexity introduced by parallel-use charging

docks that require simultaneous allocation and charging decisions.

In the operations management of EVCHs, the design problem (e.g., planning and strategic

decisions) has received less attention. It is a multi-stage stochastic decision problem requir-

ing simultaneous infrastructure and operational decisions while accounting for interdependence

with heterogeneous user preferences. Traditional methods such as standard stochastic program-

ming and approximate dynamic programming approaches struggle with such complexity (Powell

2014, Hannah 2015). Simulation-based methods have been explored to address this challenge.

For example, Kazemi et al. (2016) use a genetic algorithm on a simplified simulation model to

determine the optimal EV parking lot size, and Babic et al. (2022a) use a greedy search approach

to configure the investment decisions for a large charging station. With a simplification assump-

tion, Li et al. (2020) develop a deterministic optimization framework for sizing and operating a

EV parking facility which could perform poorly in realistic cases where many components (e.g.,

EV drivers, on-site electricity generation, grid costs) follow stochastic patterns. The literature

shows that the few existing studies on EVCH design incorporate significant simplifications, such

as assuming a single-period design and neglecting building loads or the parallel use of charging

docks.

Addressing RQ3 fills the above mentioned gap in EVCH operations management research and

expands on the design challenge by optimizing investment planning decisions while accounting

for the interdependencies between asset modeling, demand preferences, and operational policies.

Unlike prior work, it incorporates detailed preference modeling using real-world parking and

charging data, allowing for preference-aware infrastructure sizing. Additionally, existing build-

ing load profiles are integrated into investment and operational decision-making, o!ering a more

holistic approach. The proposed model accounts for parallel charging infrastructure, enhancing

asset e”ciency despite increased operational complexity. Furthermore, by aligning infrastruc-
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ture provisioning with user preferences, this approach has significant social and sustainability

implications, ensuring e”cient and user-centric charging solutions.

Pricing Management of EVCHs through IS-enabled decision frameworks

Revenue management and dynamic pricing strategies can align economic incentives with sus-

tainability objectives, particularly in EV charging hubs (EVCHs). Such approaches adjust prices

based on real-time or forecasted demand, charging capacity, and electricity market signals. Tra-

ditional pricing models in the energy sector have explored auction mechanisms, time-of-use rates,

and subscription-based models (Hou et al. 2019, Valogianni et al. 2020a). More recent research

has introduced capacity-based and deadline-di!erentiated pricing, which tailors fees to service

availability or waiting times (Moradipari and Alizadeh 2019, Lin et al. 2023). Studies indicate

that dynamic pricing can not only increase revenue but also incentivize o!-peak charging, miti-

gating local grid stress (Lee and Choi 2021). Cui et al. (2021) propose an optimal pricing strategy

to balance demand across multiple EVCHs, while Luo et al. (2017) introduce a stochastic dy-

namic pricing model that accounts for uncertainty in charging demand and renewable energy

availability. Other studies have explored vehicle-to-grid (V2G) pricing strategies to utilize EV

batteries as storage systems (Mao et al. 2017) and competitive pricing schemes among multiple

EVCHs (Lu et al. 2018).

Several studies have linked pricing to service quality. For example, Lin et al. (2023) incorpo-

rate waiting time into dynamic pricing for fast-charging services to optimize queueing e”ciency

at public stations. Valogianni et al. (2015) propose a capacity-based pricing model aimed at re-

ducing peak demand from EV loads. Other research has explored menu-based pricing strategies

that take advantage of flexible charging demand, such as Moradipari and Alizadeh (2019), which

designs an optimal pricing mechanism that prioritizes users with urgent needs. Similarly, Zeng

et al. (2021) di!erentiates pricing for flexible and inflexible charging demands, assuming that

users choose between regular and priority services rather than changing their energy demands.

Lu et al. (2023) introduce a time-di!erentiated pricing model, o!ering discounts to users willing

to park longer to reveal their actual departure time.

Research study 4 enhances dynamic pricing for capacity-based EV charging by integrating

user behavior, acknowledging that charging at EVCHs is typically a secondary activity (e.g.,

during work or shopping) rather than the main reason for a trip (Daina et al. 2017, Lee et al.

2019). Unlike previous studies, it assumes that users modify their energy intake in response

to price signals but do not significantly change departure times. IS-enabled decision systems

can optimize operations by leveraging data-driven approaches and incorporating novel decision-

making algorithms such as deep reinforcement learning algorithms for sustainable energy and

mobility management (Watson et al. 2010, Seidel et al. 2013b, Ketter et al. 2023, 2018b).
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Summary and Research Gaps

From this review, several gaps become apparent:

• Cooperative Decision-Making Under Scale: Centralized models for routing or charg-

ing of SAEVs often fail to scale in realistic settings, while purely distributed approaches

neglect system-level benefits. There is a need for cooperative decentralized approaches such

as MARL-based frameworks that balance distributed execution with common objectives.

• Predicting the Impacts of Diverse User Preferences in Hybrid Autonomous

Mobility: Although there has been considerable research on SAEVs, few studies have

examined hybrid human-operated and autonomous fleets or the phase-in of full autonomy.

A deeper understanding of user adoption, trust, behavioral dynamics, and evolving system

impacts is essential.

• Preference-Aware Planning of EVCHs: Existing research on EVCH design often

reduces complexity by ignoring operational details, neglecting building energy interactions,

or simplifying stochastic user preferences. More robust, data-driven approaches –possibly

via digital twins– are needed to reflect real-world usage patterns and operational details.

• Operations Management of EVCHs through Dynamic Pricing: While existing

research has independently focused on optimizing EV charging station pricing for either

profit maximization or alleviating stress on the power grid, a scalable decision support

system is needed to simultaneously achieve high economic performance and system-level

objectives, such as peak shaving and load reshaping.

1.3.2 Need for Interdisciplinary Approaches

Addressing the challenges of next-generation urban mobility requires an integrated framework

that draws from operations management (OM), information systems (IS), data-driven methods,

and behavioral science. This dissertation adopts a multidisciplinary perspective by incorpo-

rating agent-based modeling, advanced machine learning and optimization (e.g., reinforcement

learning and mathematical programming), digital twin simulation, and user behavior analysis

to create robust decision support tools for operators, policy makers, and end users. Although

OM provides sophisticated optimization strategies for transportation, it often makes simplify-

ing assumptions about the interplay between mobility components, user demand, and decision

making. In contrast, IS research focuses on information exchange, interactions between system

components, technology adoption, and user behavior, providing essential socio-technical per-

spectives. The combination of these methods provides a powerful tool to address the complex

socio-technical challenges of new mobility systems (Ketter et al. 2023).

IS research typically revolves around using information technology (IT) to create value for

individuals and organizations. While IT may constitute the central focus, it is more impactful
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when designed for people/users and capable of delivering tangible economic or societal benefits.

Many successful IT applications in business, such as AI-driven analytics or digital platforms,

inherently involve operational tasks. This synergy has led to increasing interdependence between

IS and OM, with researchers contributing by either applying IS solutions to OM problems or

employing OM techniques to address IS questions (Kumar et al. 2018).

This thesis mainly focuses on incorporating IS-enabled solutions to solve operational decision-

making problems of next-generation mobility systems by o!ering beyond traditional optimiza-

tion techniques. Traditionally, IS have played a pivotal role in OM problems by providing the

data and insights necessary for improved operational decision making. This includes sharing

information across supply chain departments to optimize processes and decision making (e.g.,

Cachon and Fisher 2000, Demirezen et al. 2016), the technological transition in healthcare with

the adoption of electronic health records and the foundation of health information exchanges

(Yaraghi et al. 2015, Bhargava and Mishra 2014), and the advancement of multi-channel retail-

ing and recommendation systems (Kumar et al. 2019, Zhang et al. 2020a). In addition to supply

chain management, IS also plays a critical role in service operations, ranging from traditional

web-based interfaces for customer care to more advanced solutions involving artificial intelli-

gence and knowledge-based systems (Bensoussan et al. 2009, Setia and Patel 2013). Beyond

these traditional use cases, Kumar et al. (2018) highlights other cross-disciplinary applications,

including smart city management, healthcare operations, blockchain, Industry 4.0, and digital

platforms.

Next-generation mobility systems share characteristics with smart city initiatives, given

transportation serves as the backbone of modern societies, and with digital platforms, given

mobility-on-demand services use a digital layer to match supply and demand. In this data-rich

context, a multidisciplinary approach is critical to e!ectively monitor performance, streamline

processes, and enable real-time operational decisions. According to Yoo et al. (2010b), the digiti-

zation of mobility results in a layered modular architecture in which a digital coordination layer

is superimposed on the physical infrastructure. This layered design spans multiple stakeholders-

regulators, fleet operators, infrastructure providers, and users-each with di!erent responsibilities,

but all relying on an integrated socio-technical platform for cohesive coordination.

Research on IS-enabled cases in smart city management has been growing recently (Ismag-

ilova et al. 2019). Cranefield and Pries-Heje (2023) discuss IS as key enablers in smart city man-

agement, providing real-time data integration, advanced analytics, and collaborative platforms

that improve urban infrastructure and services. For example, Kahlen et al. (2018a) proposes a

virtual power plant system composed of EVs to illustrate how digital tools and OM method-

ologies can be combined to balance energy needs with profit opportunities. Valogianni et al.

(2020b) propose a dynamic pricing model that avoids additional peak loads from EVs. There is

also an intersection between digital platforms and intelligent mobility systems. Emerging issues

such as the on-demand and shared economy using digital tools pose various operational chal-
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lenges, as shown by recent studies on ride-hailing (Banerjee et al. 2022, Bai et al. 2019, Guda

and Subramanian 2019, Taylor 2018, Siddiq and Taylor 2022, Benjaafar et al. 2024).

Researchers in IS are uniquely qualified to tackle complex socio-technical mobility problems

for two main reasons. First, IS has a robust set of methods in its toolbox, ranging from algo-

rithmic and mechanism design (Bichler et al. 2010, Kahlen et al. 2024) to machine learning and

optimization techniques (Meyer et al. 2014, Abbasi et al. 2015, Barfar and Padmanabhan 2017,

Guo et al. 2019, Dlugosch et al. 2020, Zhang et al. 2024). Second, IS approaches combine these

computational competencies with deep-rooted experience in conducting large-scale behavioral

studies (Babar and Burtch 2020, Burtch et al. 2018, Oestreicher-Singer and Zalmanson 2013,

Osterwalder et al. 2005), enabled by a distinct socio-technical perspective (Sarker et al. 2019a).

This combination places IS professionals at the forefront of initiatives aimed at addressing major

social and environmental challenges (Ketter et al. 2023), as evidenced by the broad involvement

of IS research in sustainable energy (Dedrick 2010, Melville 2010a, Watson et al. 2010, Seidel

et al. 2013b, Ketter et al. 2018a) and emissions management (Corbett 2013).

The integration of information systems (IS) and operations management (OM) o!ers a robust

framework for addressing mobility challenges, which extend beyond environmental concerns

to social and economic factors such as tra”c disruptions and safety risks. Mobility requires

real-time coordination, where failures can disrupt services, delay transport, and pose safety

hazards. Additionally, diverse stakeholders with independent decision-making add complexity

to operations. IS-enabled tools help navigate these challenges. Agent-based modeling captures

human factors in policy decisions, improving estimates of shared autonomous electric vehicle

(SAEV) adoption (Haki et al. 2020). Machine learning, particularly reinforcement learning, has

proven e!ective in vehicle routing (Dong et al. 2022), SAEV charging (Ahadi et al. 2023), and

dynamic EV pricing (Lee and Choi 2021). Digital twins further enhance decision-making by

simulating EV charging hubs (EVCHs), integrating sensor data with behavioral modeling to

optimize investments and operations (Cimino et al. 2019, Jones et al. 2020, van der Valk et al.

2020).

Following Ketter et al. (2023) and Dhanorkar and Burtch (2022), this study underscores

the need for an IS-OM synergy to tackle mobility challenges, from equitable access to e”cient

resource allocation. By bridging human-technology interactions with advanced optimization, IS

research drives sustainable and socially inclusive urban transportation solutions.

1.4 Summary of Research Articles

Table 1.1 details the set of articles that support the research contributions and goals of this

dissertation. This table lists peer-reviewed conference papers, peer-reviewed journal articles,

and papers under review for journal publication. In the following chapters, only the content of

the journal articles is presented.
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RQ Chapter Bibliographic Data Publication
Status

1 Chapter 2
Ahadi, R., Ketter, W., Collins, J., & Daina, N.
(2023). Cooperative Learning for Smart Charging of
Shared Autonomous Vehicle Fleets. Transportation
Science, 57(3), 613–630.

Published
journal
article

Ahadi, R., Ketter, W., Collins, J., & Daina, N.
(2021). Siting and Sizing of Charging Infrastructure
for Shared Autonomous Electric Fleets. In Proceedings
of the 20th International Conference on Autonomous
Agents and MultiAgent Systems.

Published
conference
article

2 Chapter 3
Ahadi, R., Taudien, A., Ketter, W., & Gupta, A.
(2024). Adoption of Autonomous Vehicles in Ride-
Hailing Services: The Role of User Preferences. (1st-
round)

Under re-
view

Ahadi, R., Taudian, A., & Ketter, W. (2023). Hu-
man versus automated agents: how user preferences
a!ect future mobility systems. In Proceedings of the
European Conference on Information Systems.

Published
conference
article

3 Chapter 4
Schroer, K., Ahadi, R., Lee, T. Y., & Ketter, W.
(2024). “Data-driven Planning of Large-Scale Elec-
tric Vehicle Charging Hubs using Deep Reinforcement
Learning.” (2nd-round)

Under re-
view

Schroer, K., Ahadi, R., Lee, Y.T., Ketter, W. (2021).
“Preference-aware Planning and Operations of Elec-
tric Vehicle Charging Clusters: A Data-Driven Pre-
scriptive Framework.” In Proceedings of the SIG
GREEN Workshop 2021.

Published
conference
article

Schroer, K., Ahadi, R., Lee, Y.T., Ketter, W. (2021).
“Preference-Aware Planning and Operations of Elec-
tric Vehicle Charging Clusters: A Prescriptive Frame-
work.” In Workshop on Information Systems and
Technology (WITS) 2021.

Published
conference
article

4 Chapter 5
Ahadi, R., Valogianni, K., Schroer, K., & Ketter, W.
(2025). “A Pricing Decision Framework for Electric
Vehicle Charging Hubs.” (1st-round)

Under re-
view

Ahadi, R., Schroer, K., & Ketter, W. (2024). “Man-
aging Electric Vehicle Charging Hubs Through Dy-
namic Capacity-Based Pricing.” In Proceedings of the
European Conference on Information Systems.

Published
conference
article

Table 1.1: Research Articles
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1.4.1 Research Article 1

Research Objective

Chapter 2 focuses on how operators of shared autonomous electric fleets address day-to-day

operational challenges, particularly in handling charging tasks. The primary goal is to develop

scalable, cooperative strategies that allow the fleet to optimize charging schedules while dealing

with factors such as limited charging capacity, long charging times, demand uncertainty, and

fluctuating electricity prices.

Methodology

Drawing on agent-based modeling, a comprehensive simulation environment of SAEVs is mod-

eled and a cooperative multi-agent reinforcement learning framework is developed to facilitate

decentralized decision making. This approach allows SAEVs to communicate in real time to

share charging station resources and predict their energy needs, e!ectively synchronizing across

the fleet. A hierarchical decision framework improves the charging policy by organizing deci-

sions into multiple levels. At the top level, the system determines when vehicles should charge,

while the lower level decides where they should be routed for charging. These levels interact

dynamically to coordinate their respective decisions. In addition, reward-shaping strategies

are introduced to reinforce collaborative behaviors and promote overall resource e”ciency and

service reliability. The study examines how these strategies vary based on fleet size, vehicle

distribution, and di!erent demand conditions.

Contribution

This research introduces a decision framework that achieves higher profitability and operational

reliability than established approaches. Unlike traditional centralized models, it is significantly

more scalable by coordinating decentralized agents through information sharing. These agents

are trained in a simulation environment calibrated with real-world data, providing practical

guidance for SAEV adoption by fleet operators and policy makers. The results underscore

the e!ectiveness of decentralization and cooperation in addressing operational bottlenecks in

electrified urban mobility. In particular, the study shows that under this framework, SAEVs can

achieve profitability levels comparable to those of gasoline-powered shared vehicles, highlighting

their potential to support sustainable mobility in the future.

1.4.2 Research Article 2

Research Objective

Chapter 3 explores the user-oriented and societal challenges associated with the rise of AVs in

ride-hailing platforms. Specifically, it examines how individual di!erences influence a rider’s
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preferences for autonomous versus human-operated services, and assesses the implications of

these preferences for ride-hailing platforms as they transition to fully autonomous operations.

Methodology

This study presents a multi-method framework that integrates a discrete choice experiment

(DCE) with agent-based modeling, bridging behavioral research and design science. The stated

preference (SP) approach of the DCE identifies user preferences for AVs in shared mobility

and clusters users accordingly. Using these insights, along with empirical data and simulation

techniques, a behaviorally based agent-based modeling is developed to assess how di!erent user

behaviors influence hybrid autonomous ride-hailing services. Constructing a realistic simulation

for such a complex socio-technical system requires extensive domain expertise and empirical

validation.

Contribution

This study integrates behavioral and design science to advance research on hybrid autonomous

ride-hailing. It identifies four user segments based on preferences for autonomous versus human-

driven services, and shows that only one segment inherently favors AVs. However, price and wait

time significantly influence all segments, providing fleet operators with strategic levers to drive

AV adoption. A feature-rich, behaviorally-informed agent-based model is developed to simulate

hybrid fleets, incorporating both demand- and supply-side dynamics. User behavior, population

composition, and AV trust levels are derived from a discrete choice experiment, while historical

data calibrates travel demand. The supply-side model integrates autonomous and human-driven

fleets, validated by operations management rules and driver behavior modeling. The results show

that even a modest share of AVs can reduce CO2emissions and increase revenues, although adop-

tion remains constrained by trust issues. Increasing trust amplifies these benefits, underscoring

the need for targeted strategies to build user confidence. Fleet management measures, such as

AV ride discounts and optimized fleet sizing, further enhance system performance.

1.4.3 Research Article 3

Research Objective

Chapter 4 focuses on how to e!ectively plan large-scale EVCHs to support the growing popu-

lation of EVs. The goal is to determine the optimal size, resource allocation, and operational

strategies for EVCHs that both control investment costs and maintain high levels of user satis-

faction.
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Methodology

The multi-stage and stochastic nature of EVCH planning poses significant challenges to con-

ventional optimization methods. Ensuring tractability often requires simplifying the problem

by reducing planning horizons, using broader time intervals, or making deterministic assump-

tions. This work presents a novel approach that leverages the wealth of granular operational and

preference data now available through pervasive IoT sensor technologies. Specifically, parking

and energy datasets are integrated with high-resolution asset models and real-world operational

policies in a detailed simulation environment to form a nearly exact digital twin of the planned

EVCH. An actor-critical reinforcement learning framework then interacts iteratively with this

environment to learn an optimal configuration policy over multiple simulated epochs.

Contribution

Methodologically, it establishes a framework that combines reinforcement learning with large-

scale data-driven simulations (digital twins) to facilitate ex-ante risk management and decision

support in the design of service systems such as EVCHs. By circumventing common limitations

such as simplifying assumptions, our approach enables more realistic, data-driven modeling of

stochastic dynamics and operational details, provides computational scalability over traditional

optimization, and maintains a flexible structure for testing diverse operational policies. Through

extensive simulation experiments, the study demonstrates that the proposed method achieves

near-optimal scheduling solutions for EVCHs and outperforms alternative techniques in both

speed and scalability. In addition, it exploits the adaptability of the digital twin to evalu-

ate di!erent preference profiles and operating conditions, providing practitioners with multiple

domain-specific insights.

1.4.4 Research Article 4

Research Objective

Chapter 5 develops a dynamic pricing mechanism to improve the financial performance of EV

charging hubs while influencing overall energy consumption patterns to promote grid stability

and sustainable energy use.

Methodology

This study develops a decision support system that incorporates a deep reinforcement learning

approach to identify near-optimal dynamic pricing policies for EVCH operators. Traditional

optimization becomes intractable in such environments due to the curse of dimensionality and

is unable to incorporate uncertainties in demand and supply. Dynamic pricing in EVCHs re-

quires addressing three critical factors: (a) sequential decision making, which requires pricing
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decisions at each time step that a!ect subsequent decisions; (b) uncertainty about demand pref-

erences and supply constraints, with unknown probability distributions; and (c) the large scale

of EVCHs, which involve multiple interdependent components and processes. To address these

complexities, a deep reinforcement learning algorithm is introduced. In particular, a soft actor-

critical (SAC) model is used because it does not rely on explicit transition probabilities and can

handle continuous action spaces (i.e., price signals). By merging reinforcement learning with

deep learning, the algorithm can handle both large state and action spaces. Training takes place

within a detailed digital twin of an EVCH, which incorporates rich operational and behavioral

data to capture realistic system dynamics. This simulation, calibrated with unique real-world

data, enables the pricing agent to iteratively refine its decisions and maximize revenue.

Contribution

This study presents a machine learning-based decision support system that combines deep rein-

forcement learning with capacity-based pricing to help large EVCHs manage demand, maximize

profitability, and ensure stable grid usage. Specifically, an advanced reinforcement learning

algorithm identifies near-optimal pricing signals under realistic, stochastic, and large-scale con-

ditions, eliminating the need for extensive modeling assumptions. A detailed agent-based simu-

lation, calibrated with real-world data on arrivals, departures, and energy consumption, mimics

daily operations to train the learning algorithm and reveal user responses to pricing incentives.

Empirical results show that the proposed approach closely approximates optimal strategies and

significantly outperforms static pricing, providing crucial benefits such as peak shaving and

improved revenue. In practical terms, this decision framework can promote financially viable

EVCH operations, thereby accelerating the widespread adoption of EVs and reducing energy

infrastructure costs by mitigating peak loads.

1.5 Conclusion

This dissertation examines the operational, behavioral, and infrastructural challenges of shared

autonomous electric mobility and sustainable energy systems. Utilizing IS-enabled, data-driven

approaches-including multi-agent reinforcement learning, agent-based modeling, digital twins,

and dynamic decision making-it demonstrates how advanced tools combined with well-designed

information pipelines can e!ectively manage the increasing socio-technical complexity of next-

generation transportation systems. As it is illustrated in Figure 2.1, this thesis focus mostly

on the managerial and social challenges of shared autonomous electric mobility and the four

provided research projects divide into main two areas: (a) the operations management of shared

autonomous electric fleets and the reliance of the user acceptance and trust, and (b) facilitat-

ing the development of EVCHs by optimizing investment planning and pricing management. I

should point out that although the development of EVCHs is not directly related to the oper-



20 IS-enabled Operations Management of Next-Generation Mobility Systems

ations management of SAEVs, both fields contribute to overcoming the barriers in front of the

smart sustainable mobility systems. In the following, I summarize the research studies and their

relationships together.

A primary focus is on optimizing the day-to-day operations of shared autonomous fleets,

particularly the charging processes of SAEVs. Through cooperative, decentralized coordina-

tion, this research shows that fleets can achieve higher profits and more reliable service levels,

especially under constraints such as limited charging stations, uncertain travel demand, and fluc-

tuating energy costs. These findings underscore the value of real-time, adaptive decision-making

enabled by IS for managing electrified urban mobility at scale.

Yet the successful deployment of SAEVs is not only a matter of operational e”ciency; social

and behavioral factors play an equally important role. By identifying di!erent user segments

and analyzing trust in autonomous services, the dissertation highlights the conditions under

which users are likely to adopt or reject new mobility technologies. This behavioral perspective

provides ride-hailing platforms and public agencies with strategies to build trust, personalize

services, and more e!ectively promote the adoption of AVs.

In the design and operation of large-scale EV charging hubs (EVCHs), the dissertation

demonstrates the utility of combining digital twins with deep reinforcement learning. This inte-

grated approach is shown to handle the complexities of multi-stage, stochastic planning, provid-

ing a richer alternative to traditional optimization models that must often simplify real-world

conditions. By accurately modeling user behavior, building loads, and intermittent renewable

energy, digital twins shed light on investment decisions, site configuration, and long-term infras-

tructure needs.

Finally, dynamic pricing emerges as a powerful mechanism for synchronizing economic per-

formance with sustainable energy goals. The proposed capacity-based pricing models, driven by

deep reinforcement learning, learn to manage peak demand, smooth energy consumption, and

ultimately increase the profitability of charging facilities. These results support the broader po-

tential of price signals to guide consumer behavior and orchestrate the interplay between supply

and demand in energy-constrained environments.

Taken together, the contributions of this dissertation form a cohesive framework for building

and managing smart mobility systems that are both user-centric and environmentally aware. By

weaving together methods from operations management, information systems, machine learning,

and behavioral science, the research underscores the critical need for interdisciplinary solutions

that integrate technical optimization with socio-technical insights. This work lays the ground-

work for further scientific and practical innovations that can make next-generation mobility

equitable, e”cient, and sustainable.
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1.5.1 Theoretical Implications

Theoretically, this dissertation extends the scientific discourse at the intersection of information

systems, operations management, and sustainable urban mobility. By employing cooperative

multi-agent reinforcement learning strategies, it goes beyond conventional single-agent or cen-

tralized optimizations and introduces a data-centric, decentralized framework for large-scale

decision making. This contribution adds a new dimension to existing theories of dynamic multi-

agent systems, especially in contexts where real-time coordination and adaptability are essential.

In addition, by introducing a new hierarchical design for making operational decisions at dif-

ferent levels, this work contributes to the solution of large-scale sequential stochastic decision

problems.

This dissertation advances the understanding of technology acceptance and behavioral oper-

ations by examining user behavior and trust in the adoption of autonomous mobility. By analyz-

ing how factors such as perceived safety and willingness to pay influence ride-hailing adoption,

it highlights the impact of di!erent user segments on system performance. This perspective ex-

tends traditional operational models by incorporating socio-technical factors into strategic and

tactical decision making. In addition, the integration of discrete choice experiments with agent-

based modeling provides a methodological contribution that enables the prediction of evolving

user behavior in autonomous mobility services.

In the field of infrastructure design, the application of digital twin and reinforcement learning

to the planning and operation of EVCHs provides a novel methodological perspective. The

integration of real-world data and high-fidelity simulations overcomes the limitations of static or

deterministic optimization techniques and enhances the robustness of multi-stage infrastructure

planning. This approach contributes to the theoretical literature on stochastic, data-driven

planning and reveals new ways to deal with uncertainty and resource allocation in complex

mobility and energy systems.

Finally, the introduction of dynamic pricing frameworks-particularly those focused on capacity-

based pricing-illustrates the interplay between market-based incentives and environmental goals,

and provides new theoretical insights into how revenue management can coexist with sustain-

ability goals. These findings underscore the feasibility of coordinating economic, social, and en-

vironmental interests through advanced pricing strategies that balance user demand with power

system constraints. Taken together, the contributions of this dissertation lay the groundwork for

further research on the socio-technical, operational, and environmental facets of next-generation

mobility systems.

1.5.2 Practical Implications

This dissertation o!ers valuable insights for fleet operators, policymakers, and urban planners

seeking to modernize transportation systems in a sustainable and user-centered manner. It

provides operational guidance for managing shared autonomous electric vehicle (SAEV) fleets,
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emphasizing decentralized, real-time coordination to improve economics and e”ciency under

uncertain travel demand and charging constraints. These findings inform strategic decisions

about vehicle deployment, charging infrastructure, and scheduling. In addition, the research

demonstrates that with proper management, SAEVs can e!ectively address the technological

challenges EV while maintaining service availability comparable to conventional vehicles.

Second, the user-focused analyses - especially those that reveal heterogeneous consumer

preferences - provide guidance for both public agencies and mobility platforms. Understanding

how factors such as cost, wait time, and trust in autonomous technologies influence passenger

choices enables more targeted marketing and service design. Such insights help mitigate potential

resistance to AVs, paving the way for broader adoption and a smoother transition to mixed

human and self-driving fleets. Key findings show that confidence in AVs should increase as they

become more prevalent in the market to ensure smooth adoption. In addition, even a small share

of AVs can significantly reduce carbon emissions and improve the performance of ride-hailing

platforms.

The introduction of digital twin-driven approaches to the design and operation of large-

scale EVCHs has significant implications for city planners and energy providers. By combining

high-fidelity simulations with deep reinforcement learning, this dissertation demonstrates how

to optimize charging infrastructure under realistic conditions, taking into account fluctuating

demand, renewable integration, and building energy loads. These data-driven methods support

policy decisions on zoning, grid expansion, and public-private partnerships, reducing investment

risk and improving long-term viability. The results suggest that standard chargers can ade-

quately meet EVCH demand, minimizing the need for fast charging, while smart operations

management can reduce costs and e!ectively integrate renewable energy sources.

Finally, the development and application of dynamic pricing techniques demonstrates how

EVCH operators can address both financial and system-level objectives. By shifting charging

demand away from peak periods and adjusting variable power supply, operators can reduce

grid stress while increasing revenues. These pricing models are particularly valuable in urban

contexts, where growing EV adoption and limited grid capacity require innovative strategies to

balance supply and demand.

Overall, the dissertation provides actionable insights that bridge technological solutions with

social and economic considerations. It underscores the value of interdisciplinary methods for

designing more resilient, profitable, and inclusive urban mobility systems-ultimately contributing

to a more sustainable and interconnected transportation ecosystem.

1.5.3 Limitations and Future Research

While this dissertation provides substantive advances in shared autonomous electric mobility,

limitations provide avenues for future work. First, although the simulation-based approaches

employed here allow for rich exploration of operational and behavioral complexities, real-world
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validation through pilot studies or field experiments remains limited. Future research could

integrate real-world metrics, user feedback, and partial implementations to refine the models

and validate their applicability.

Second, while the focus on social and managerial aspects is consistent with information sys-

tems and operations management, less attention is paid to the technical and policy dimensions-

for example, the technical requirements of vehicle-to-infrastructure communications, cybersecu-

rity challenges, or the nuances of multi-stakeholder regulatory frameworks. Collaboration with

engineering and policy researchers would deepen the understanding of how di!erent institutional

and technological forces shape SAEVs deployment at scale.

Third, the work emphasizes single-mode vehicle services (ride-hailing fleets or EV charging

hubs) without considering the interplay of multiple modes (e.g., public transit, micromobility)

in a more holistic ecosystem. Future research could explore how the integration of multimodal

transportation options could further optimize resource allocation, user accessibility, and envi-

ronmental impacts.

Fourth, the socio-technical transitions examined here are typically viewed at the city level,

yet mobility behavior and policy contexts can vary dramatically by region. Cross-comparative

studies or international collaborations would help assess the extent to which these findings

generalize to di!erent cultural, economic, or regulatory environments.

Finally, while the research highlights trust and behavioral factors as critical to user adop-

tion of autonomous services, more questions remain. For example, how might shifts in public

perceptions of safety or privacy a!ect SAEV adoption, or how will competitive dynamics among

multiple operators shape both pricing and sustainability outcomes? Addressing these and re-

lated questions may require deeper forays into behavioral economics, sociology, and market

design. By tackling these challenges, subsequent research can both extend and refine the lessons

learned from this dissertation and move us closer to resilient, equitable, and highly e”cient

urban mobility systems.

1.6 Declaration of Contributions

I (the author) would like to express my gratitude to the co-authors and collaborators who have

contributed, to varying extents, to the individual research projects (Chapters) presented in this

cumulative doctoral dissertation (the Thesis). Below, I outline my own contributions to these

projects and acknowledge the valuable roles my co-authors played in their development and

success.

Chapter 1: The author is the primary contributor to this chapter, having performed the

majority of the work. This includes conceptualizing the interdisciplinary IS-OM research frame-

work for next-generation mobility systems, defining the research objectives, and structuring the

overall narrative. The author also conducted a comprehensive review of the relevant literature,
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synthesized key theoretical and methodological findings, and positioned the research within the

broader academic discourse. In addition, the final manuscript was developed to provide a co-

hesive foundation for the dissertation, ensuring clarity in the articulation of the research vision

and objectives.

Chapter 2 : This chapter was written solely by the author of the dissertation and encompasses

the full scope of research, analysis, and writing. The work has greatly benefited from the

constructive feedback and guidance provided by Prof. Dr. Wolfgang Ketter, Dr. John

Collins, and Dr. Nicolò Daina throughout the writing and revision process. Their insights

helped to refine the research approach, strengthen the theoretical foundations, and improve the
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feedback and guidance of Prof. Dr. Wolfgang Ketter and Prof. Dr. Thomas Y. Lee,

who served as academic advisors on this project and provided valuable direction throughout its

development.
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Chapter 2

Cooperative Learning for Smart

Charging of Shared Autonomous

Vehicle Fleets1

2.1 Introduction

Transportation systems are evolving at a fast pace through electrification, automation, and busi-

ness model innovations brought by the sharing economy (Mahmassani 2016, Sperling 2018b).

Electric vehicles (EVs) promise better air quality in urban areas and mitigate the climate im-

pact of transport systems as electricity generation is increasingly decarbonized. Simultaneously,

shared mobility provides on-demand transport with fewer vehicles on the road than the tradi-

tional personal transportation paradigm based on private car ownership. Autonomous vehicles

(AVs) are prominent in stimulating shared electric mobility adoption by boosting e”ciency,

reducing operational costs, and mitigating electrification barriers such as range anxiety. Com-

bining the advantages, shared autonomous electric vehicles (SAEVs) allow mobility-on-demand

(MoD) fleets to streamline their services by improving safety, sustainability, and e”ciency (Qi

et al. 2022). SAEVs could also increase the long-term profitability of shared fleets due to elimi-

nating driver payments, which encourage ride-hailing platforms (e.g., Lyft and Uber) to employ

AVs in their fleets (Siddiq and Taylor 2022). Real-world use cases can be found in large cities

(e.g., San Francisco, Shanghai, Phoenix, Singapore, Tokyo, Moscow) deployed as autonomous

taxis (Dong et al. 2022).

1This Chapter has been published in its entirety in the following peer-reviewed academic journal:
Ahadi, R., Ketter, W., Collins, J., & Daina, N. (2023). Cooperative learning for smart charging of shared
autonomous vehicle fleets. Transportation Science, 57(3), 613-630.
Earlier versions of this Chapter have also appeared in a (non-copyrighted) peer-reviewed academic conference:
Ahadi, R., Ketter, W., Collins, J., & Daina, N. (2021, May). Siting and Sizing of Charging Infrastructure for
Shared Autonomous Electric Fleets. In Proceedings of the 20th International Conference on Autonomous Agents
and MultiAgent Systems (pp. 88-96).
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Despite the benefits, SAEVs bring multiple managerial challenges for fleet operators (Loeb

et al. 2018). This study sets out to support operational decision-making solutions for a fleet

operator, assuming higher-level decisions (e.g., fleet size and charging infrastructure) to be ex-

ogenously determined. The objective is to maximize service quality (the rate of served requests)

and profitability (profits from serving trips minus energy cost). We design a realistic compre-

hensive package of operations but zoom in on smart charging, which substantially challenges

the fleet managers of shared electric vehicles due to the technological challenges of EVs (e.g.,

long charging time and infrastructure scarcity) to which their non-EV counterparts are immune

(Pantelidis et al. 2022).

Recent works (e.g., Kullman et al. 2021a) address the dynamic and stochastic charging man-

agement of driver-based ride-hailing fleets; they mostly overlook the role of autonomous and

connected mobility by considering either a centralized control that is not scalable or a decentral-

ized model that does not exploit cooperation among vehicles. A decentralized approach without

cooperation suits fleets of e-taxis or (to a lesser extent) e-ride-hailing services, where drivers act

to maximize their profit: these are indeed the applications found in recent literature. However,

cooperation is crucial for a fleet that owns vehicles, and where what matters is the overall fleet

operator profit (and the quality of service provided to the clients to retain them). Another

common unrealistic core assumption of the existing research is an unlimited (i.e., charging sta-

tions (CSs) are available anytime) and/or homogeneous (i.e., the same capacity and power rate)

charging network. At the same time, Guillet et al. (2022), Pantelidis et al. (2022), and Froger

et al. (2022) demonstrate the significant impact of capacitated CSs on the charging scheduling

of electric fleets. Moreover, most researchers (e.g., He et al. 2021, Iacobucci et al. 2019) manage

the charging behavior of shared EVs to meet mobility demands or minimize energy costs but

fail to treat both goals simultaneously. To cover these gaps, we propose a decentralized, coop-

erative model that optimally identifies vehicles that need charging and assigns them to CSs in a

limited and heterogeneous charging network with time-varying energy prices. Overall, we show

that for addressing the charging management of SAEVs with capacitated CSs, it is not only

vital to jointly model the charging scheduling and CSs allocation problems but also beneficial

to learn optimal policies hierarchically (i.e., distinguishing decisions to di!erent levels). For

brevity, we term this problem as Cooperative Charging of Shared Autonomous Electric Vehicles

(SAEV-CC).

We define our main contributions as follows:

1. We relax common critical and unrealistic assumptions of most existing research by address-

ing SAEV-CC with capacitated charging infrastructure (i.e., a few CSs with heterogeneous

capacity and power rates) and time-varying energy prices, which leads to a joint charging

scheduling and resource allocation problem. CSs are privately managed, but because of

uncertain charging interruptions (flexibility of SAEVs) and new charging demand arrivals,

vehicles’ charging/waiting process takes stochastic periods. We demonstrate that correct-
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ing the unlimited charging network assumption alters optimal charging policies due to

interactions between proper charging time and location.

2. We propose a fully-cooperative and decentralized charging management model for SAEVs.

Although all vehicles belong to a single fleet (i.e., a central fleet management problem),

even cutting-edge central dynamic control approaches are computationally intractable for

nontrivial cases. Therefore, we decentrally model SAEV-CC as a Markov decision process

(MDP) and solve it using deep Q-network (DQN) algorithms. In contrast with recent

decentralized dynamic control in e-taxis and e-ride-hailing applications (e.g., Kullman

et al. 2021a, Liang et al. 2020), we address two major challenges by training agents to

cooperate and mitigating the non-stationarity issue in multi-agent control systems (i.e.,

agents changing their policies constantly). Instead of o!-the-shelf independent learning,

our multi-agent reinforcement learning (MARL) agents forgo selfishness with the aid of

reward-shaping techniques (Oroojlooyjadid et al. 2022). To mitigate an unstable environ-

ment, we apply mean-field approximation by which agents make adjusted decisions with

respect to a proxy of the system state.

3. Our model builds another methodological advantage by using hierarchical learning to dis-

tinguish decision levels while preserving interactions. We clarify that hierarchical models

have superior e”ciency for multi-level decisions as they scale down action spaces, ensure

an unbiased exploration of decision levels, and identify each level reward function.

In addition to our major contributions, we also deduce some managerial implications.

4. As our proposed model includes decomposition assumptions, we provide an upper bound

(a non-EV scenario) and two benchmark models (central reinforcement learning and online

reoptimization). Our decentralized model performs and behaves close-to-the central dy-

namic model while dominating the reoptimization model. Compared to the upper bound,

there is only a slight reduction in fleet performance, validating our model performance and

encouraging operators willing to electrify their fleets.

5. To evaluate policies, we simulate the mobility environment using an agent-based model

(ABM) calibrated by actual data from ShareNow (a leading carsharing platform) in Berlin,

Germany.

6. To provide further managerial insights, we conduct several sensitivity analyses on strategic

and tactical factors and show how the fleet size, charging infrastructure, and energy tari!s

a!ect fleet performance and charging policies.

The rest is organized as follows. Section 2.2 shortly reviews the related literature. We

describe SAEV-CC in Section 2.3. In Section 2.4, we propose our model to address the problem,

then apply it to real-world numerical examples and discuss results in section 2.5. Finally, Section

2.6 concludes the paper and presents limitations and future works.
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2.2 Related Work

This work contributes to two streams of literature: (1) operations management of shared elec-

tric mobility platforms and (2) distributed autonomous agent controllers applied to dynamic

decision-making of shared vehicles.

2.2.1 Decision Making for Shared Electric Vehicles

Many researchers expect that technological trends in mobility (sharing, automation, and elec-

trification) could dominate the future. On the one hand, Fagnant and Kockelman (2014), and

Chen et al. (2016) reveal that a shared autonomous vehicle (SAV) can replace up to 10 conven-

tional vehicles, while it is limited to 3.7-6.8 for an SAEV, relying on charging rate and battery

capacity. Their findings have motivated us to focus on the charging management of SAEVs

to mitigate the technological challenges of electrification. On the other hand, these promising

characteristics bring multiple operations management challenges at strategic, tactical, and oper-

ational levels. Strategically, Levin et al. (2019), and Lokhandwala and Cai (2018) study the fleet

sizing of SAEVs and carsharing systems, and (Lokhandwala and Cai 2020), and Ahadi et al.

(2021) study the impact of autonomous mobility on charging infrastructure development. Most

recently, Chen and Liu (2022) investigate the charging facility development and smart charging

management of autonomous carsharing platforms as a joint problem, where one of their key

findings approves that the deployment of both standard, and fast CSs can improve the fleet

performance.

Operationally, there is growing interest surrounding the dynamic vehicle routing problem

of SAEVs (Dong et al. 2022). Our problem resembles ride-hailing platforms that are recently

reviewed by Ho et al. (2018). Precisely, Hyland and Mahmassani (2018) explore matching

vehicles and requests; and Rossi et al. (2018), and Schroer et al. (2022) study the repositioning

of empty vehicles. Using EVs in MoD services presents recharging challenges, overlapping with

smart charging problems. From the power grid perspective, there are two modes of load control.

The first is top-down coordination, where a central operator directly controls charging loads, like

the model studied by Jian et al. (2017). The second is bottom-up coordination, where market

mechanisms incentivize users to charge in a desirable pattern employing various methods, such

as a mean-field game theoretic approach proposed by Zhu et al. (2016), a novel dynamic model

introduced by Valogianni et al. (2020b), and a two-stage mechanism design and charge scheduling

model proposed by Wu et al. (2022). In our work, we consider a combination. The grid operator

provides electricity with time-of-use (ToU) prices (indirect control), while the fleet operator

can directly control its EV charging loads. In another segment of smart charging literature

concerning demand side preference analysis, Daina et al. (2017) examine individual responses

to price signals while considering coupled travel and charging requirements. Integrating routing

and charging decisions, Sweda et al. (2017) find optimal CSs for an EV along a given path, and
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Florio et al. (2021), and Kullman et al. (2021b) address the uncertainty of CS availability and

queue status. We follow this research problem to find optimal policies for charging and routing

shared EVs to CSs by solving SAEV-CC.

With the growth of shared mobility, the average vehicle utilization and need for electrification

mushroomed. Therefore, recent works have examined recharging for shared mobility services.

Abdelwahed et al. (2020) optimize the charging of electric buses assuming perfect route schedules

information. For rental networks like free-floating carsharing with uncertain demand, He et al.

(2021) and Roni et al. (2019) address a joint charging infrastructure planning and operating

problem. Kahlen et al. (2018b) study electric fleets as virtual power plants to o!set the inflexi-

bility of renewable energy sources. However, less focus has been given to the smart charging of

SAEVs and ride-hailing systems. Iacobucci et al. (2019) optimize the (dis)charging of SAEVs

as well as rebalancing and assignment decisions, but they fail to deal with uncertain demands.

Zhang and Chen (2020) virtually generate a CS wherever a demand occurs and dynamically

schedule the charging events using heuristic approaches. Regarding the synergy of SAEVs and

microgrids, Qi et al. (2022) propose a time-space-energy network to explore how connected

SAEVs can enhance the self-su”ciency and resilience of future microgrids while modeling a very

abstract mobility system. In another work, Ma and Xie (2021) employ rule-based strategies to

determine vehicles needing for charging and separately develop an online reoptimization model

to assign vehicles to CSs. We consider their approach as a benchmark for our proposed model.

2.2.2 Reinforcement Learning Applications to Shared Mobility Systems

Reinforcement learning (RL) is a competing method recently applied to capture the dynamics

and uncertainties of shared fleet management problems. Qin et al. (2020) develop a MARL

model to assign vehicles to requests dynamically. The authors consider an event-based problem

and formulate it as a semi-MDP (Sutton et al. 1999), where decisions take stochastic time

steps to terminate. With a similar approach, Shou and Di (2020) study the repositioning of a

multi-driver MoD system. Since a direct application of MARL might lead to optimal policies

from the drivers’ perspective, they propose a reward design scheme (i.e., reward-shaping Devlin

and Kudenko (2011)) to achieve the desired equilibrium from a fleet perspective. They deploy a

mean-field RL approach to overcome the non-stationarity issue. The mean-field RL is introduced

by Yang et al. (2018) and applied in a ride-sharing order dispatching problem by Li et al. (2019),

in which agents are aware of an approximation of neighbors’ actions and states. In the present

study, we adapt these augmentations for SAEV-CC to stabilize our learning algorithms.

A smaller subset of studies regards mobility service fleets’ dynamic and stochastic charging

decisions. Dong et al. (2022) explore a dynamic vehicle allocation problem for SAEVs with

respect to vehicles’ energy levels and travelers’ requirements. However, similar to many other

related works, they use a rule-based (sending vehicles with low energy levels to the closest

CS) charging strategy to recharge vehicles. Al-Kanj et al. (2020a) use approximate dynamic
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programming to determine when a vehicle needs to charge and when it should relocate. To

match vehicles and trips while considering charging decisions, Shi et al. (2020) decentrally learn

state values using RL and solve a mathematical model to make operational decisions centrally.

Similarly, Liang et al. (2020) use independent deep RL agents for shared EVs to make rebalancing

and charging decisions. Although the mentioned works find the optimal policies determining

when vehicles should charge, they disregard optimizing the CS allocation problem as they assume

the nearest CS is always optimal. In the domain of e-taxis, Wang et al. (2020) also address the

joint charging and repositioning recommendation problem using hierarchical MARL, where the

manager and worker models act hierarchically. In their model, each taxi driver aims to maximize

his cumulative rewards, distinct from our problem, as taxi drivers do not cooperate for a joint

goal. Moreover, their model only recommends whether drivers charge their batteries or not

while not recommending the proper CS (i.e., a homogeneous charging facility assumption). In

a recent work sharing many similarities to ours, Kullman et al. (2021a) address operational

decision-making (assignment, rebalancing, and charging) for dynamic ride-hailing with EVs.

Their approach merges charging and rebalancing decisions, meaning that if a vehicle is not

assigned to a trip, it must relocate to a station. To do so, they develop a central RL agent to

find optimal policies and extend it to MARL for the sake of scalability.

We remark on a few works (e.g., Pantelidis et al. 2022, Froger et al. 2022) considering

capacitated CSs in other applications. The former solves the repositioning of shared cars for

a limited charging network (still, CSs have the same power) while disregarding the optimal

charging scheduling of vehicles (vehicles charge when their energy level is below 20%). The

latter addresses how to route EVs considering routes charging capacity and vehicle states to

mitigate charging facilities scarcity. Although they include a multitude of charging technologies

and modeling advanced (non-linear) charging constraints, they neglect to optimize the charging

schedules and restrict their mobility environment to a small number of predefined customers

with known requirements.

Overall, previous research in the charging management of shared vehicles develops either a

central control approach that is not applicable for realistically-sized problems or a multi-agent

control approach while disregarding agents’ cooperation (e.g., independent ride-hailing or taxi

drivers). Therefore, ours mark the first application of the dynamic charging management of non-

trivial SAEV fleets, bringing together cooperative multi-agent decision-making and considering

the charging decisions’ knock-on e!ects in anticipation of future mobility demands. Another

void in the literature is separating the problems of vehicles’ charging scheduling and allocating

to capacitated CSs. This separation is primarily considered in the literature in favor of an un-

realistic assumption of unlimited charging infrastructure. However, we signify a joint approach

that optimally schedules charging times and allocates vehicles to proper CSs. Another novelty

that singles out our methodology is the employment of hierarchical decision-making by which

agents make decisions at di!erent levels while preserving their interactions. This extension con-
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siderably builds up the scalability, breaking down an enormous action space into sub-action

spaces and stabilizing learned policies, which is a major challenge of learning algorithms. Fi-

nally, although our focus is narrowed on the charging management of SAEVs, our approach

is easily extensible for various stochastic and dynamic operational decision-making problems

dealing with distinguished decision levels.

2.3 Problem Description

We develop an operational decision support system for a fleet of SAEVs focusing on the smart

charging management over an operating period T . Although our focus is narrowed on developing

a dynamic charging management model, first, we describe the overall fleet operations and then

zoom in on the charging section. A big picture of the problem is summarized in Figure 2.1. The

fleet owns J = {1, 2, 3, ..., J} homogeneous EVs (the same size, energy consumption, and battery

capacity), fully automated (able to make/execute decisions), and connected (communicating

with the fleet operator and other vehicles). Vehicles provide MoD services for customers (i → I)
requesting a point-to-point trip within a geographical region. Based on spatio-temporal arrival

rates, requests arise randomly in multiple zones (z → #) across a given region, specified by an

origin (ui), a destination (di), a price (pi), and an uncertain patience time (bi).

Once a trip is requested, the fleet operator searches for an appropriate vehicle, during which

its traveler might cancel if the waiting time takes longer than the patience threshold (bi). Ve-

hicles are eligible to serve a request only if they are in the vicinity and have enough energy.

Therefore, to achieve higher performance, the operator must continuously check and rebalance

(charge and reposition) vehicles in anticipation of future demands. Ideally, the fleet operator

should make all decisions (assignment and rebalancing) jointly, considering decisions interactions

and vehicles cooperation. However, since the arrival rates of requests and their requirements

(destination and energy consumption) are dynamic and uncertain, a holistic decision-making

problem becomes computationally intractable for nontrivial cases, especially if precise micro
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decisions (e.g., charging scheduling and CSs allocation) are included. Therefore, to analyze the

details of operational decisions, we separate the assignment from rebalancing problems. Also,

to refine the scalability, we assume that vehicles cooperate to make distributed rebalancing de-

cisions. This is only a decomposition approach, and vehicles seek a joint goal, maximizing fleet

profitability (trip revenues minus operational costs) and service quality (acceptance rate).

Every idle vehicle should choose between charging, repositioning, and serving at every de-

cision time, which happens after completing a request or remaining idle longer than a decision

waiting threshold (ωidle). If the vehicle decides to serve, it will be assigned to a request when

a match happens; otherwise, it will relocate to a parking spot after a period. If the decision is

to charge or reposition, the vehicle relocates to a CS or a target zone. Note that vehicles can

stay idle in large parking spots within the service area and charge their batteries in restricted

charging facilities C = {1, 2, 3, ..., C} with identified location, capacity (number of docks), and

power rate.

Figure 2.2 depicts the operations of an individual vehicle and its connection to the fleet

operator (the fleet and vehicles have separate agents). The fleet agent constantly tracks the

system state (CSs, open requests, and vehicles) and is responsible for assigning vehicles to

requests. It periodically pools open requests and matches them with available vehicles using

an online optimization algorithm (details in Online Appendix A.3). Vehicle agents receive the

assigned requests requirements and start serving them accordingly. They also make rebalancing

decisions (charging, repositioning, and parking in order) while having complete access to the

fleet state and their individual information. From now on, we use the agent term to represent a

vehicle agent.

According to our focus, we provide precise information on the charging process. To make

charging decisions, agents cooperate to maximize fleet performance in anticipation of future

demands. The charging decision entails time and location; i.e., vehicles must decide when and

in which CS to charge. We assume the fleet operator privately manages CSs. They are limited

and distributed within the service region, which could vary in queue state, distance from vehicles,

charging rate, and location. Each CS manages its queue using a lowest-energy-highest-priority

strategy, meaning that low-energy vehicles get connected earlier than others even though they

arrive later. The CS operator charges connected vehicles with full available power. Finally, we

assume that waiting and charging vehicles in CSs can interrupt the process and serve urgent

mobility demands if they have enough energy (details in Online Appendix A).

2.4 Model

SAEV-CC is stochastic and sequential. The fleet state (including supply and demand) changes

continuously, and the operator (or vehicles) needs to make charging decisions accordingly while

accounting for subsequent states and decisions in addition to anticipating uncertain mobility
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demands. As a tangible example, if a vehicle decides to charge, the fleet might miss some

immediate trip requests; if not, it might face a lack of supply for expected future demands. With

perfect information relaxation, the operator can schedule charging decisions using deterministic

methods for trivial instances. In contrast, planning is peculiar in stochastic and real-size cases

and needs approximate solutions. Since the environment’s dynamics are unknown in SAEV-

CC, we use RL, a model-free approach, to learn optimal policies through interactions with the

environment.

Adopting a single decision-maker is infeasible for nontrivial fleets as the joint action space

becomes intractable. Therefore, we design a distributed strategy by which each vehicle (agent)

makes individual charging decisions (when and where to charge) while simultaneously learning

optimal policies. In our model, a decision epoch begins when a vehicle completes a request or

remains idle longer than the waiting threshold (ωidle = 15 minutes) from its last update. It leads

to a temporally abstracted and discrete event problem where decisions take stochastic time steps

to terminate. We formulate the problem as a semi-MDP to cope with this challenge.

Although vehicles make decisions individually, they jointly seek the fleet goal, leading to a

fully cooperative MARL problem. We use reward-shaping (i.e., penalizing responsible vehicles

for unserved trips) to nudge vehicles to cooperate. Also, to tackle the non-stationarity issue of

MARL (agents change their policies continuously), we employ a mean-field approximation to

stabilize the agents by improving the state space definition to encompass an approximation of

the fleet state. A charging decision includes a lower sub-action (determining the CS). Therefore,

we apply a hierarchical RL algorithm to make sub-decisions using distinguished but connected
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controllers. It helps define independent reshaped reward functions and scale down the action

space. Finally, we use deep learning to boost our model’s generalizability.

2.4.1 Multi-agent Reinforcement Learning Model

To decentrally address SAEV-CC, we develop a MARL model, capturing the agents’ coop-

eration. We model it as a partially observable MDP (Littman 1994), represented by a tu-

ple (S,O1,O2, . . . ,OJ ,A1,A2, . . . ,AJ , P,R1, R2, . . . , RJ , J, ε). S is the environment state space

(fleet state in SAEV-CC). J is the number of vehicle agents. Each agent has an action space

Aj (whether and where to charge) and a local observation space → Oj (time, mode, loca-

tion, state of charge (SoC)) as a part of the system state s → S, yielding joint observation

(O = O1 ↑O2 ↑ . . .↑OJ) and action (A = A1 ↑A2 ↑ . . .↑AJ) spaces. P : S ↑A↑ S ↓ [0, 1]

represents the state transition probability, Rj : S↑A↑S ↓ R is the reward function of the agent

j (accumulated profits), and ε is a discount factor. The agent j, given an observation oj → Oj

takes an action aj → Aj following a policy ϑj : Oj↑Aj . The system state transits to s
→ based on a

state transition probability P (s→|s, a), and the agent j receives a reward rj(s, a, s→). Since vehicles

are homogeneous we consider the same policy for all agents (i.e., ϑj = ϑ, ↔j → J ). The iden-

tification of a policy requires defining action-state values (Qω(s, a)) representing the expected

cumulative reward by taking action a in state s, and following policy ϑ, which can be represented

recursively using the Bellman equationQ
ω(s, a) = Es→↑P (.|s,a)[r(s, a, s

→)+εmaxa→↓A(s→)Q
ω(s→, a→)].

Finding optimal values (Q(s, a) = maxωQ
ω(s, a), ↔s → S, a → A(s)) identifies the optimal actions

(Sutton and Barto 2018b).

Applying Mean-field Approximation

Since other agents a!ect the environment, the Q-value function (Qj = Q(s, a)) relies on the

system (fleet) state s and the joint action a (charging decision of all SAEVs). This dependency

makes the learning process computationally intractable due to huge-sized state and action spaces

in addition to our problem’s asynchronous nature (i.e., varied and stochastic number of agents

take actions between two consecutive epochs). To overcome this, we simplify Q-values dependen-

cies on the joint state s and action a. Instead of an independent setting (Qj = Q(oj , aj)), we ap-

ply mean-field approximation to combat the non-stationarity issue (Yang et al. 2018, Wang et al.

2020). The idea is to simplify the interaction between the agent j and its neighbors by aggregat-

ing them to a virtual mean agent. Thus, we redefine Q-values as Qj(o, a) = Qj(oj , o↔j , aj , a↔j),

where o↔j and a↔j denote the joint observation and action of agents except the agent j, re-

spectively. Since the agent j majorly interacts with its neighbors, we denote them as Nj and

approximate the Q-values as Qj ↗ 1
|Nj |

)︄
n↓Nj

Qj(oj , on, aj , an). Further, we use a Taylor ex-
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pansion to simplify the Q-values to:

Qj ↗
1

|Nj |
[︄

n↓Nj

Qj(oj , on, aj , an) ↗ Qj(oj , ōj , aj , āj) ↗ Qj(oj , ōj , aj), (2.1)

where ōj , āj are respectively the proxies of neighbors’ states and actions. In our problem, the

mean observation ōj is a vector containing the number of open requests within the vehicle j

vicinity (local demand), the number of neighboring available vehicles (local supply), and CSs

status. The neighbors’ mean action (āj) is unknown and needs to be predicted in advance, which

is very uncertain. Hence, the agents do not regard it while making charging decisions. However,

the neighbors’ mean action (āj) a!ects the next state and consequently influence the estimated

Q-values. To simplify writing, we use the traditional form of Q-values Q(s, a) and define our

MDP’s components in the following.

States

We define the modified vehicle’s state as s = (st, sv, sl, sc). The state of time (time of the

day in minutes) is denoted by st. The vehicle state sv = (m,SoC, l) is a vector of: mode

(m → {idle, serve, reposition, queue, charge, en-route}) describing the current vehicle job, energy

status (SoC → [0, 1]) indicating the battery percentage, and location (l → #) representing the

zone where the vehicle is located. Note that job types idle, reposition, queue, and charge are

preemptable, meaning that they can be interrupted to serve urgent requests, whereas serving and

en-routing jobs are non-preemptable. The vehicle’s local state sl = (ns, nd) entails the number of

neighboring available vehicles/supply (ns) and the number of open requests/demands (nd) within

the vehicle’s vicinity. Finally, the CSs status sc = (q1, q2, ..., qC) indicates the number of vehicles

in each CS. All vehicles start an episode with an initial state s
0
v at time 0: a random location,

an idle mode, and a random SoC. They finally terminate the episode when the operations time

is over.

Actions

The action a → A(s) indicates a charging decision. At any epoch, each agent takes only a

single action. The action space (A(s) = {c1, c2, ..., cC , ↘}) entails charging at di!erent CSs

(e.g., a = cc → C) or doing nothing (a = ↘). Doing nothing means remaining available for

the upcoming demands. Some actions are not allowed. A vehicle is allowed to choose among

eligible CSs, which have at least one free parking spot (not necessarily a free charger) and are

energy-feasible, meaning that the energy consumption driving to the CS must be less than the

vehicle’s battery state minus a safety energy amount for unexpected events.
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Reward Function

To eliminate the credit assignment challenge of multi-agent models (i.e., distinguishing each

agent’s share out of a joint reward), we consider individual rewards for agents. The reward

r(s, a) corresponds to the accumulated revenues (positive rewards) and costs (negative rewards)

incurred during a subsequent epoch. Positive rewards are the revenues of serving trips (rs)

excluding their driving costs. Negative rewards account for charging costs (rc): the cost of

charged energy with a time-varying electricity tari!, driving costs (rd): the cost of relocating

to the assigned CS (proportional to distance), and waiting costs (rw): the parking costs is the

assigned CS, which is a function of queue time. The cost calculation details are in Online

Appendix A.4.

Considering individual vehicle rewards might not lead to a desirable equilibrium from the

fleet’s perspective due to vehicles’ selfishness (Shou and Di 2020). To tackle this challenge,

operators can modify/shape the reward function (Oroojlooyjadid et al. 2022). Therefore, we

include a penalty factor in the reward function to bypass selfishness. Since the objective is

to maximize profits and acceptance rate, we assign a penalty rp to agents once a trip remains

unsatisfied. The penalty rp also represents the acceptance rate in our reward function.

Penalizing all agents might mislead them as they do not receive a proper critic according

their individual action (i.e., they do not realize if their action caused the missed trip or not).

Thus, we define and only penalize the responsible agents for a missed trip, which are those

within the coverage area ($) of the missed trip that: a) had high SoC (set to 50%) and decided

to charge (to reduce unnecessary charging when the supply is low), or b) had low SoC (less than

covering the trip) and did not decide to charge (to incentivize vehicles with a lack of energy to

charge instead of seeking immediate profits). Assigning excessively penalties might yield sub-

optimal policies since it is possible to gain more profits from charging immediately (even with

high SoC) and serve more future demands. Therefore, we conduct simply a search to find a

balance between the profit and penalty components. We formulate the reward function as:

r(s, a) = wsrs ≃ wcrc ≃ wdrd ≃ wwrw ≃ wprp. (2.2)

Each reward component has a corresponding adjustable weight (w) that is quantified based on

the agent’s goal. Therefore, we set the weights of profit components to one, but empirically tune

the penalty weight (wp) to relate profits and service quality and achieve better performance.

Transition Function

A transition from one state to another is a function of the selected action a and its termination

duration ϖ . Since executing the action, the agent might have completed several jobs (e.g.,

charging, and serving trips). The selected action and the behavior of other agents until the

termination a!ect the system state. So, when an epoch starts (an agent makes a charging
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decision), we update the subsequent state s
→ by observing changes in the vehicle status (s→v),

time (s→t), nearby supplies (s→s) and demands (s→l), and CSs status (s→c). Note that the system

dynamics are unknown, and we use a simulation to track them.

2.4.2 Dealing with Temporal Abstraction

As epochs start at di!erent times in our problem (an event-based RL model), we face the chal-

lenge of temporal abstraction; i.e., actions take di!erent and stochastic time steps to terminate,

and the reward is distributed over this period. The easiest way to extend the RL framework

with temporal abstractions is to retain a semi-MDP (Sutton et al. 1999). The major di!erence

is an accumulated reward function that is discounted over the action duration time:

r̂ =
[︄

h↓H

ε
εeh (

rh

ϖoh
+ ε

rh

ϖoh
+ · · ·+ ε

εoh↔1 rh

ϖoh
) =

[︄

h↓H

ε
εeh

rh(ε
εoh ≃ 1)

ϖoh(ε ≃ 1)
. (2.3)

Agents receive multiple rewards for several tasks (e.g., charging and serving trips). After tak-

ing action, each task (h) takes a period to start (ϖeh) and a period to complete (ϖoh). We

split and discount each task’s reward over the time steps. Also, the action duration (ϖ) must

be considered while updating state values, which leads to Q(s, a) = Es→↑P (.|s,a)[r̂(s, a, s
→) +

ε
ε maxa→↓A(s→)Q

ω(s→, a→)].

2.4.3 Overview: Solving an MDP with Deep Q-learning

To identify optimal policies, we use a value-based method (Q-learning), learning the optimal

policy ϑ through updating state-action value Q(s, a). Therefore, each agent maps its state s to

values, takes an action a, moves to a new state s→, receives a reward r̂, and updates Q-values by:

Q(s, a) ⇐≃ Q(s, a) + ϱ[r̂(s, a, s→) + ε
ε
maxa→Q(s→, a→)≃Q(s, a)], (2.4)

where ϱ is a learning rate and 0 < ϱ ⇒ 1. We use a semi-MDP, where the next state-action

value is discounted based on the action duration time (ϖ). To eliminate the limitations of tabular

methods, we employ a deep Q-network (DQN) to estimate Q(s, a). We refer the readers to Mnih

et al. (2015) for more details. Generally, DQN uses a neural network with weights ς as a Q-

network (i.e., Q(s, a; ς) ↗ Q(s, a)) for approximation. To train, agents store transitions (state,

action, reward, duration) in a single memory (experience replay). The Q-network parameters

get updated using a random batch of transitions from the experience replay by minimizing the

loss value:

L(ς) = Es,a,s→ [(r̂(s, a, s
→) + ε

ε
maxa→Qϑ̄(s

→
, a

→)≃Qϑ(s, a))
2]. (2.5)
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Figure 2.3: Hierarchical Reinforcement Learning for SAEV-CC Problem

To compute the target (r(s, a, s→) + εmaxa→Qϑ̄(s
→
, a

→)), we use a target network with parameters

ς̄ that revamps the stability of DQN.

2.4.4 Extension to a Hierarchical Approach

SAEV-CC contains two decision levels (charging scheduling and allocating to CSs). After decid-

ing to charge, vehicles need to take a charging destination. Instead of including all CSs in the

same action space (see section 2.4.1), we use a hierarchical learning model, distinguishing reward

functions for each decision level, which stabilizes the learning process and reduces the action

space size significantly. Precisely, a high-level controller learns a policy over intrinsic sub-goals

(whether to charge), and a low-level controller learns a policy over atomic actions (where to

charge).

We develop a similar model to Kulkarni et al. (2016) (following the same terminology) and

present high-level and low-level decisions as sub-goals and actions, respectively. The meta-

controller takes a sub-goal, and the sub-controller takes the associated action (see Figure 2.3).
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The sub-controller state is sS = (st, sv, sl, sc) (the same as MARL agent state), while a redundant

component sd is included in the meta-controller state sM = (st, sv, sl, sc, sd), that is an estimated

charging destination. We consider sd to link controllers since the sub-controller policy changes

over time, and without knowing the current sub-policy, agents might take non-optimal actions.

The sub-goal (ameta → {c, ↘}) is among charging (c) and doing nothing (↘); and the atomic

action (asub =→ {c1, c2, .., cC}
]︄
{l}) is among CSs locations and the current vehicle location.

The extrinsic (sub-goal) reward rex is the same as in Equation (2.2). However, we adopt the

penalty term for the intrinsic (atomic action) reward rin slightly. Here, the responsible vehicles

are charging and waiting vehicles that: a) are within the missed trip coverage area ($) but

are not energy-feasible to serve the trip even after a long time (set to 30 minutes) since they

decided to charge, or b) were positioned in the missed trip coverage area ($) when decided to

charge, have enough energy to serve the trip but are located in a remote CS. A summary of the

Algorithm 1: Learning how to Make Charging Decisions

1 1: Initialize DM , DS , ςM , ςS , φM and φS ,
2 2: for i → episodes do
3 3: Initialize the environment and get the start sate sS and sM ,
4 4: Estimate the Q-value of current state using meta-controller for each sub-goal,
5 5: Take a sub-goal ameta using an φ≃ greedy approach,
6 6: if ameta = charging then
7 7: Estimate the Q-value of the current state using the sub-controller for each

action,
8 8: Determine a destination using an φ≃ greedy approach,
9 9: else the destination is the current location,

10 10: Execute the action asub, receive rewards (rex, rin) and obtain next states s→S and
s
→

M ,
11 11: if ameta = charging then
12 12: Store the transition (sS , asub, rin, s→S) and update ς

S using mini-batches from
DS ,

13 13: Store the transition (sM , ameta, rex, s
→

M ) and update ς
M using mini-batches from

DM .

learning process for the hierarchical-MARL (HMARL) model is represented in algorithm 1. For

controllers, we use separate neural networks (with parameters ςM , ςS) to make charging and

destination decisions, replay memories (DM , DS) to store observations, and exploration rates

(φM , φS) to explore the environment by making random decisions. For each episode, we initialize

the environment. Agents receive states sM and sS , estimate action-state values, and determine

a sub-goal using an φ ≃ greedy approach (i.e., taking a random action with a probability of

φ). The sub-controller determines a destination to fulfill the charging sub-goal by applying an

φ ≃ greedy policy over eligible stations (energy feasible with at least one free parking spot).

Whereas the destination is the current vehicle location for doing nothing sub-goals. The agent

executes the action and receives extrinsic rex and intrinsic rin rewards. In the case of charging,
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the agent stores the transition and updates the parameters of the meta-controller (ςM ) and sub-

controller (ςS); otherwise, it only saves the transition on the meta-memory (DM ) and updates

the associated network.

2.4.5 Benchmark and Upper Bound Models

Assessing the learned policies is essential since distributed approaches only guarantee sub-

optimal solutions. Due to a lack of optimal analytical solutions, we benchmark our proposed

model against two central decision-making models: a) a single RL agent and b) a reoptimization

strategy. Further, we consider an upper-bound scenario of non-EVs without technical charging

restrictions.

Single-agent Reinforcement Learning Benchmark Policy

Our multi-agent decision-making approach contains some decomposition assumptions: a) a de-

centralized cooperative MARL to enhance scalability, b) a mean-field approximation of the fleet

state to boost stability and break the tendency to overestimate, and c) a hierarchical decision-

making approach to de-escalate the action space. To relax them, we design a single-agent

dynamic charging (SADC) benchmark policy that makes operational decisions (charging, relo-

cating, and serving) centrally on behalf of the fleet operator. To test it for the default size of the

problem, we must make decisions for vehicles in multiple batches (e.g., 20 vehicles) and limit

the number of destination options. We assume that the number of idle vehicles rarely exceeds

the batch size.

We formulate the problem as an MDP. SADC is a discrete-time model that centrally makes

decisions at equal time steps. The state contains the day time, a vector of vehicle states (mode,

location, SoC, destination, expected task duration), a vector of associated vehicles in the decision

batch, a vector of open trips in all zones, and a vector of CSs status (number of charging and

waiting vehicles). For each vehicle in the decision batch, SADC takes action among serving,

relocating, charging in the closest CS, and charging in the closest fast CS. If there are more idle

vehicles than the batch size, SADC iteratively checks all of them. Here, we consider the reward

function exactly aligned with the fleet objective, which is maximizing profitability and service

quality (rSADC = rprofit ≃ rmissed), where rprofit is the accumulated fleet profit (served trips

profits minus all operational costs), and rmissed is the penalty for missed trips during the epoch.

We use DQN algorithm to train SADC.

Reoptimization Benchmark Policy

As another benchmark policy, we develop a consolidated rule-based, and reoptimization model

based on Ma and Xie (2021). Regarding highly uncertain mobility demands, to avoid arbitrary

assumptions of future revenue estimations, we employ a rule-based strategy to determine the
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charging demands. We modify their model by using an hourly charging threshold (see Online

Appendix B.3 for the temporal SoC threshold) to charge vehicles mostly when demands are

low. Vehicles with SoC below the threshold need to charge and will be allocated to CSs using

a mathematical programming model. From now on, we use REOPT to refer to the reoptimiza-

tion benchmark model. The objective is to allocate the possible number of vehicles (charging

demands) by considering a high penalty (↼Charging) for unserved demands while minimizing

the estimation of aggregated total charging time. Although this is not completely aligned with

the proposed model’s objective function, similar to models in the literature (Ma and Xie 2021,

Kullman et al. 2021a), we also consider a cost minimization objective function due to a lack of

revenue estimation as a function of charging decisions.

miny

[︄

c↓C,j↓JC

(tDriving
j,c + t

Charging
j,c + t

Queue
j,c ) +

[︄

j↓JC

(1≃
[︄

c↓C

yj,c)↼
Charging

. (2.6)

where C and JC respectively denote the set of CSs and charging vehicles. The decision variable

yj,c is a binary assignment variable, which is set to 1 if vehicle j allocates to CS c. Based

on assignment decisions, the model computes the estimated driving time tDriving
j,c , charging time

t
Charging
j,c , and waiting time tQueue

c,j for vehicle j and CS c. The parameters are as follows. ↼Charging

is a penalty rate if a charging demand remains unserved. ↽
Energy and ↽

T ime are respectively

the energy consumption and duration of time ratios which are direct proportional to driving

distances. Dj,c is the distance between vehicle j and CS c. SoCj is the vehicle j energy state.

Nc, ⇀
Charging
c , ⇀Parking

c , and ⇀
Power
c are respectively the current number of vehicles, chargers,

parking spots, and the charging rate of CS c. Regarding queue management in CSs, Zj,j→ , a

binary parameter, indicates the waiting priority of vehicle j over vehicle j
→ and only sets to one

if the energy level of vehicle j is lower than vehicle j
→. Finally, Nj,c indicates the number of

charging vehicles in CS c plus the number of waiting vehicles that have lower SoC than vehicle

j. We define the constraints as follows.

yj,cDj,c↽
Energy ⇒ SoCj⇀

Battery
, ↔j → JC , c → C, (2.7)

Nc +
[︄

j↓JC

yj,c ⇒ ⇀
Parking
c , ↔c → C, (2.8)

[︄

c↓C

yj,c ⇒ 1 , ↔j → JC , (2.9)

t
Driving
j,c = ↽

T ime
Dj,cyj,c , ↔j → JC , c → C, (2.10)
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t
Charging
j,c =

100%≃ SoCj

⇀Power
c

⇀
Battery

yj,c , ↔j → JC , c → C, (2.11)

t
Queue
j,c = yj,cmax{

Nj,c +
)︄

j→↓JC
yj→,c(1≃ Zj,j→)≃ ⇀

Charging
c

⇀
Charging
c

E/⇀
Power
c , 0} , ↔j → JC , c → C.(2.12)

Constraint (2.7) guarantees the energy feasibility for allocating vehicle j to CS c. The model

does not assign vehicles to CSs more than their parking capacities employing Constraint (2.8).

Constraint (2.9) allocates each vehicle to at most one CS. Constraint (2.10) computes the driving

time as a function of Dj,c. Constraint (2.11) estimates the charging time of vehicle j at CS c

and constraint (2.12) estimates the waiting time for vehicle j in CS c (E is the average charging

demand). This applies a lowest-energy-highest-priority queue management. Vehicle j only needs

to wait for the charging vehicles and waiting vehicles with higher priority. Also, tQueue
j,c only gets

a non-zero value if the vehicle j is allocated to CS c (yj,c = 1) and the number of more prioritized

vehicles exceeds the capacity of CS c. We linearlize Constraint (2.12) using a big M trick (See

Online Appendix A.5).

Upper Bound

As an upper bound for the fleet performance, we consider a fleet of autonomous non-EVs,

assuming that they can refuel all over the service area (every zone has at least one gas station)

in a very marginal time. As we cannot access optimal solutions, this upper bound helps assess our

proposed algorithms more accurately. Moreover, it deduces some managerial insights regarding

the fleet performance of EVs and non-EVs.

2.5 Experiments

In this section, we apply the proposed models to a set of experimental instances, for training

and evaluating which we simulate the transportation environment.

2.5.1 Mobility Simulation

We develop an ABM to simulate the mobility environment, wherein vehicles, CSs, and the

fleet operator are interactive agents. We assume the system configuration (fleet size, charging

infrastructure, pricing scheme, and electricity tari!) to be exogenously determined. Figure

2.4 illustrates the simulation flowchart. At operational decision times (e.g., 15 minutes), all

idle vehicles run the operations module to make charging and repositioning decisions. Also,

at assignment time steps (e.g., two minutes), open requests are matched with available vehicles

using a reoptimization algorithm. Matched vehicles serve their assigned trip requests and follows
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the operations module to determine their next operational actions. For details, please see Online

Appendix A.

Initialization: SAEVs,
CSs, Parking spots

Update the Time

Operations

Run Operations Module

Assignment Assign Vehicles to Trips

Run Trip Module

t == T

Save the Results

End

yes

no no

no

yes

Figure 2.4: Agent-based Simulation Flowchart of SAEVs’ Operations

2.5.2 Experimental Setup

First, we adopt a discretization approach in the underlying spatio-temporal network. It divides

the service region into same-sized zones using hexagonal grids, leading to 89 hexagons (rep-

resented by #) with an edge length of 1.22 km. These zones have distinguished time-varying

arrival rates, origin-destination patterns, and specific charging capacities. Regarding time, each

episode takes five days (business days), assuming that vehicles get restarted during the weekend

when the demand is low. Also, each time step in our simulation equals a minute in the real

world.

A historical trip dataset of a leading free-floating carsharing company (ShareNow) from

Berlin, Germany, is used to generate trips. The data was collected from November 2019 until

February 2020, comprising 684,229 trips by 897 vehicles. Each observation consists of trip start

and end date, time, location (latitude and longitude), fuel level, and vehicle ID. We generate

trips for each zone (z → #) and time bucket (t → T ) using a Poisson distribution with arrival

rate (⇁t,z). After generating a request with origin ui at time ti, we specify its destination (di)

employing a multi-nominal distribution with di ⇑ Mult|!|(1, {%1, . . . ,%|!|}| ti → T , ui → #),

considering the possible destinations as outcome categories (%z). A spatial description of trip

origins is illustrated on the left side of Figure 2.5 as a heat map (the darker color, the higher

demands); trips mostly start from central areas. Also, we visualize an average of rentals for each
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hour of the day on the right side of Figure 2.5. From early working hours (7 a.m), the number

of rentals piles up and reaches a peak in the evening and drops o! over night hours.

Figure 2.5: Spatial Demand Pattern and Distribution of CSs (left), and Hourly Demand
Pattern (right)

To set up the charging infrastructure, we consider similar features as the results of Ahadi

et al. (2021). The locations and capacities of CSs are presented in the left plot of Figure 2.5,

where numbers denote CSs id and capacity, respectively. There are two types of chargers:

standard (11 kW) and fast (50 kW), the current charging technologies of public CSs in Berlin

(Open charge map 2020). To characterize the fleet, we use fewer SAEVs (e.g., 150, 200, and 300)

than conventional shared cars due to their high utilization. Vehicles are homogeneous similar to

Tesla Model 3 (Fuel economy guide 2020), which are initialized across the service area with an

arbitrary SoC between 70% and 80%. We assume that each vehicle has an approximate average

speed of 20 km/hr and travel costs of $0.53/km (Bösch et al. 2018). A summary of parameters

is provided in Table 2.1.

Parameter Value
Episode length 5 days
Number of zones/hexagons 89
Number of CSs (fast CSs) 16(5)
Charging rate (fast charging rate) 11(55) kW
SAEV battery capacity (energy consumption) 50 kWh (0.15 kWh/km)
Vehicle speed 20 km/hour
Trip request coverage area 10 km
Travel cost $0.53/km

Table 2.1: Instance Parameters

2.5.3 Experimental Results

We train our agents with the above-mentioned initialization. After comparing the policies

learned by four proposed algorithms, we assess our superior policy against the benchmark mod-

els (fleet performance and charging behavior) and the upper bound (only fleet performance).
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We measure the performance by two key indicators: (1) total fleet profit, trip revenues minus

operational costs (noted, we do not include the missed trips penalties as they are only virtual

costs), and (2) service quality, the ratio of accepted trips. For analyzing charging behaviors, we

consider three indicators: (1) a mean hourly utilization of all CSs to track the charging sched-

ules, (2) a mean utilization of each individual CS over the whole operations period to observe

charging allocations, and (3) an hourly SoC of vehicles to track the energy level.

Evaluating the Multi-Agent Charging Algorithms

Figure 2.6: Fleet Profitability (left) and Service Quality (right) for the Proposed MARL
Algorithms

We compare four modified MARL models (Hypermarameters of DQN are given in Online

Appendix B.1). These settings are as follows: (1) full-MARL, a single controller for each vehicle

considering full options of CSs, (2) full-HMARL, hierarchical controllers with full CSs, (3)

limited-MARL, a single controller considering limited options of CSs, and (4) limited-HMARL,

hierarchical controllers with limited CSs. By limited CSs, we mean a list entailing the closest,

the closest free, and the closest fast CS to the vehicle. We plot the fleet profitability and service

quality in Figure 2.6. All agents except full-MARL converge relatively to the same numbers for

both indicators. The poor performance of full-MARL is likely an artifact of considering all CSs in

a single action space, which makes a biased exploration and disables identified reward-shaping for

scheduling and allocating decisions. Among three other algorithms, limited-HMARL converges

faster due to a hierarchical setting (distinguished rewards) and less need for exploration. We

use limited-MARL for further analysis, and we call it multi-agent dynamic charging (MADC).

To ascertain that deep learning does not compromise the results, we retrain the agents with

a tabular solution, Q-learning (see Online Appendix B.5 for details). A comparison in Figure

2.7 ensures that both algorithms converge to the same objective values, while it takes longer for

Q-learning due to the need for experiencing all probable states and actions.
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Figure 2.7: Evaluating the Superior Policies against the Tabular Approach, Benchmark Mod-
els, and Upper Bound

Assessing against the Upper Bound and Benchmark Models

We assess our superior model with an upper bound (details in Online Appendix B.4) and two

benchmark models. The results of the upper bound scenario reveals that using non-EVs raises

profitability and service quality by approximately 6% and 2% (to $703,591 and 96%), respectively

(see Figure 2.7). In other words, even with non-EVs, there are still a few unserved trips caused

by a lack of supply or very low waiting thresholds of travelers. Also, the rise in profitability

is less than the increase in service quality, caused by a lower energy e”ciency of non-EVs and

higher petrol prices.

Figure 2.8: Cost Components for the Proposed and Benchmark Models

A comparison with SADC explains that using a central dynamic operational decision-making

could augment the fleet performance slightly. Although SADC achieves less than 1% higher

profitability and service quality (to $686,832 and %91, see Figure 2.7), it decreases the scalability

due to a giant joint action range. Precisely, SADC convergence time is approximately 12 times

(see Figure 7) of MADC and will increase for larger fleet sizes. Also, with the same computational

resources, the size of the joint action space is restricted roughly to a batch size of 20 vehicles,
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even if we limit the charging destination options to only two alternatives. This means that for

large fleet sizes (e.g., 500), we cannot assume that a joint action for only 20 agents can cover

the whole idle vehicles, yielding poor performances. However, compared to REOPT, MADC

increases service quality and profits roughly by 5% and 7% (84% ($628,879) for REOPT and

90% ($680,635) for MADC). This indicates that learned dynamic policies reduce energy costs in

addition to serving more requests.

We also illustrate the proposed and benchmark models’ waiting, driving, and charging costs

in Figure 2.8. As expected, SADC and MADC have very similar cost values; the only di!erence is

that the waiting costs for SADC are slightly higher. However, comparing the static and dynamic

models, the driving costs are lower using REOPT than MADC. This means that the number of

charging decisions is lower, and REOPT allocates vehicles to the closer CSs. Interestingly, the

charging costs of MADC are lower, highlighting that the dynamic model takes the advantage

of time-varying electricity prices, even though the number of served trips, and consequently,

consumed energy are higher for MADC (higher charging costs are expected with flat electricity

tari!s).

Figure 2.9: Individual CS Utilization for the Proposed and Benchmark Models

Regarding charging behaviors, Figure 2.9 illustrates that vehicles take similar allocating

(destination) decisions following either of these models. There is a gap between fast CSs and

standard CSs utilization, meaning all strategies allocate more vehicles to fast CSs (the gap is

smaller for REOPT). However, as Figure 2.10 displays, the average hourly utilization of CSs

follows unlike patterns for dynamic (MADC and SADC) and static (REOPT) models. With

MADC, CSs have higher utilization during the night and early morning (o!-peak hours); after

a reduction by noon, it continues to rise until midnight (vehicles have low SoC and need to

recharge in anticipation of future demands). SADC acts similar while the utilization during the

night is a bit higher. Using REOPT, CSs are not that utilized during o!-peak hours, and it

levels o! after 8 a.m until midnight.

Figure 2.11 compares the use of fast and standard CSs at di!erent times. Almost in all hours,

fast chargers are more utilized than standard ones following both learned and reoptimization
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Figure 2.10: Average Hourly Utilization of CSs for the Proposed and Benchmark Models

policies, while the learned policies take more advantage of fast chargers. Comparing the learned

policies, SADC prefers fast charging even during the night more than MADC. Regarding stan-

dard CSs, all models use standard chargers considerably during o!-peak hours. However, when

the mobility demand is high, the learned policies rarely allocate vehicles to standard CSs, unlike

REOPT.

Figure 2.11: Hourly Utilization of CSs (distinguished by charging rate) for the Proposed and
Benchmark Models

We also show how the smart charging models alter vehicles’ average SoC. With MADC,

vehicles have a lower battery level when they start the day; it reaches a peak of approximately

85% by early morning and drops gradually to around 30% until midnight. SADC acts very

similar while having a higher peak (roughly 90%), caused by more utilization of fast charging

during the o!-peak hours. Employing REOPT, the peak is limited to almost 70%, and after a

drop, the average SoC fluctuates around 50%. These results demonstrate that with dynamic

charging, vehicles charge less during the day when demands are high and mainly recharge their

batteries during o!-peak hours.
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Figure 2.12: Average SoC of Vehicles for the Proposed and Benchmark Models

Sensitivity Analysis

We analyze the proposed model’s responsiveness to strategic decisions. Here, we only present a

summary and refer to Online Appendix C.2 for details and visualizations. We exclude SADC due

to a very similar behavior to MADC, and compare the results with REOPT for only charging

infrastructure scenarios. Numerical results are provided in Table 2.2, summarizing the objective

function indicators and charging behavior (SoC of vehicles, fast charging occupancy (FCO),

and standard charging occupancy (SCO)), distinguished for various time-buckets regarding the

mobility demands (low/medium/high).

Scenarios Profit Service SoC(low/ FCO(low/ SCO(low/
USD Quality medium/high) medium/high) medium/high)

Full Charging Capacity 680,635 0.90 0.63/0.61/0.45 0.38/0.51/0.71 0.33/0.03/0.01
No Fast Charging 552,180 0.76 0.42/0.47/0.32 0.74/0.48/0.63 0.74/0.48/0.63
Half Charging Capacity 641,752 0.85 0.49/0.51/0.35 0.74/0.72/0.92 0.70/0.22/0.15
150 Vehicles 522,878 0.71 0.57/0.46/0.35 0.44/0.51/0.71 0.10/0.02/0.01
200 Vehicles 680,635 0.90 0.63/0.61/0.45 0.38/0.51/0.71 0.33/0.03/0.01
250 Vehicles 772,029 0.98 0.74/0.68/0.62 0.38/0.61/0.63 0.22/0.13/0.07
300 Vehicles 788,104 0.99 0.73/0.69/0.65 0.27/0.41/0.50 0.28/0.32/0.35
50 kWh Battery 680,635 0.90 0.63/0.61/0.45 0.38/0.51/0.71 0.33/0.03/0.01
75 kWh Battery 703,841 0.92 0.56/0.63/0.47 0.64/0.47/0.40 0.25/0.06/0.01
100 kWh Battery 723,648 0.94 0.55/0.60/0.49 0.72/0.41/0.35 0.29/0.07/0.01
Electricity Tari! 1 772,029 0.98 0.63/0.61/0.45 0.38/0.61/0.63 0.22/0.13/0.07
Electricity Tari! 2 759,043 0.98 0.68/0.62/0.48 0.22/0.53/0.57 0.27/0.20/0.11
Electricity Tari! 3 760,591 0.98 0.70/0.62/0.58 0.30/0.57/0.58 0.23/0.17/0.08

Table 2.2: Numerical Results for Di!erent Strategic Scenarios using MADC

First, we examine the charging infrastructure impact. Without fast charging, the service

quality (profits) drops significantly to 76% ($552,180) and 66% ($476,274) using MADC and

REOPT, respectively. The utilization gap between fast and standard CSs decreases, and the

average charging occupancy increases due to long charging sessions. Vehicles’ SoC distribution
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alters too; the peak drops and occurs later. However, a reduction in CSs capacity (half-sized)

marginally a!ects the fleet performance and charging behavior. The service quality (profits)

drops to 85% ($641,752) and 78% ($594,141) for MADC and REOPT, respectively.

Concerning fleet characteristics, larger fleet sizes of 150, 200, 250, and 300 SAEVs boost

the service quality non-linearly to 71%, 90%, 98%, and more than 99%. This rise flattens the

vehicles’ SoC as they have lower utilization and higher flexibility to charge. Also, with more

vehicles, fast CSs gain less attraction and the hourly CSs utilization variance reduces as well.

Regarding battery capacity, di!erent sizes of 50, 75, and 100 (kWh) lead to service quality of

90%, 92.5%, and 94%, while the charging behaviors are similar.

The final analysis is on electricity tari!s. We consider a flat tari! and two ToU tari!s (see

Online Appendix B.2). Di!erent tari!s do not change the fleet performance significantly but

change charging strategies slightly. With a flat tari! (Tari! 1), CSs utilization only follows the

mobility demand (high utilization in o!-peak hours and low utilization in peak hours). Using

a ToU tari! with relatively high prices in peak hours (Tari! 2) does not change the utilization

significantly, while super-peak prices (Tari! 3) shift some charging decisions to low-price hours.

Figure 2.13: Cost Components for Considered Sensitivity Analysis Scenarios using MADC

Figure 2.13 shows the cost components of sensitivity analysis scenarios. Regarding charging

infrastructure features, without fast charging, charging costs reduce due to the lower served

demands (lower energy consumption), and waiting costs increase due to the lower charging

power. These changes are similar for the half CS capacity scenario, while the growth in waiting

costs is more visible. Driving cost decreases in the no fast CS scenario as vehicles do not drive

longer for fast charging, but it increases in the half CS capacity scenario since vehicles select

remote areas or fast CSs to avoid long queues. Regarding fleet configurations, increasing the
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number of vehicles raises charging costs (more served demands) and decreases driving costs since

vehicles charge less frequently. Higher battery capacities lead to lower driving costs and higher

waiting costs as charging events occur less frequently but are more time-consumingly. Finally,

di!erent electricity tari!s do not change the costs components significantly, except for marginal

increases in charging costs for Tari!s 2 and 3 due to relatively higher electricity prices. We

consider 250 SAEVs for this comparison (see Online Appendix C.5).

2.6 Discussion and Future Work

We explore the dynamic smart charging management of SAEVs. Two major sub-problems are

determining proper charging time and selecting the best charging destination, which are coupled

and should be solved simultaneously. We formulate this stochastic dynamic decision-making

problem as a semi-MDP to cope with the temporal abstraction of actions and adopt a deep

RL approach to extract optimal charging policies. For scalability, we propose a decentralized

cooperative model in which vehicle agents make individual charging decisions while maximizing

fleet service quality and profitability. Further, to break the tendency of selfish policies, similar to

Shou and Di (2020), Oroojlooyjadid et al. (2022) we use reward-shaping techniques to penalize

the responsible agents for unserved demands. To robust the model against the changes in the

mobility environment, we adjust the state space by including an approximation of neighboring

agents’ observations. The other methodological contribution is identifying the decision levels

(high level: charging and low level: allocating to CSs) using hierarchical learning. It helps

define assorted reward functions for each level and augments the scalability by reducing the

action space size.

To evaluate the proposed models, we simulate the mobility platform using an advanced

ABM where the fleet operator, vehicles, and CSs are represented as interactive agents. We

calibrate the trip characteristics using historical rental data from a worldwide leading carsharing

company (ShareNow in Berlin, Germany). The key findings are as follows. Hierarchical learning

revamps the performance of the MARL model, specifically when the action space is enormous.

Also, the results of a tabular algorithm (Q-learning) show that using deep learning does not

diverge from the optimal policies. Moreover, we assess our proposed method (MADC) with

a centralized RL agent and a reoptimization strategy. Similar fleet performance and charging

policies using SADC and MADC ensure that our decentralized and hierarchical decision-making

assumptions of MADC do not yield sub-optimal policies. Note that SADC su!ers from the

curse of dimensionality and is not applicable for realistic problem sizes. The second benchmark

results declare that learned dynamic policies have superior performance. Due to the lack of

global optimum, we compare the learned policies with an upper-bound scenario (a fleet of non-

EVs). It declare that using our proposed model, fleet operators can tackle the technological

challenges of EVs and achieve comparable performance with non-EV fleets. Noted, our results
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do not guarantee that using petrol cars is more profitable in real-world cases as we disregard

the investment and maintenance costs.

To provide more managerial implications, we expound that fleet operators can adopt our

model under existing restricted CSs to build a profitable advantage by optimizing dynamic

charging policies even without the need for fleet expansion or massive charging facilities. Fur-

thermore, we explore the impacts of exogenous features. Although MADC accounts for charging

rate, fast charging technology dramatically impacts the fleet performance and charging behavior.

Fast CSs are preferred destinations if standard chargers might not meet future demands. Reduc-

ing the capacities of CSs does not change the charging patterns significantly. However, it causes

a marginal drop in the fleet’s service quality, which is in line with the results of Abouee-Mehrizi

et al. (2021).

Regarding fleet characteristics, increasing the number of vehicles has a non-linear positive

e!ect on fleet performance. It changes the optimal charging policies: the more vehicles, the less

need for fast charging. Adding vehicles could not be economically beneficial, but might reduce

the need for fast CSs. Enlarging battery capacities also positively impacts fleet performance but

is not as influential as the fleet size. There is still a high demand for fast charging, even with

big batteries. Finally, we demonstrate that the electricity tari! could be more important for

grid operators to design appropriate tari!s and encourage desired load profiles. From the fleet’s

perspective, since serving the trips is crucial, the marginal price di!erences in ToU tari!s would

not be encouraging to shape charging loads considerably and learned charging policies follow

mostly the mobility demand patterns. Finally, we show that limiting charging destinations

to more probable options could converge faster to similar policies. From a fleet operator’s

perspective, sending vehicles to remote CSs without an additional value is nonsense. However,

it could vary if we regard other perspectives such as a distribution system operator that aims

to shift charging loads to low-demand areas.

Our work is not free of limitations. Regarding the proposed model generalizability, we

employ function approximation and test di!erent fleet characteristics and charging infrastructure

scenarios. However, it still needs to be examined for other shared fleets and geographical areas.

The problem also could cover more aspects. We focus on the smart charging, which is not

optimally integrated with other operational decisions. Moreover, we assume a privately-managed

charging infrastructure, which is not always the case, as fleets might use public/shared CSs.

These limitations present opportunities for future works. To progress generalizability, optimal

policies can be smoothed by transfer learning approaches. Further, to approach more realistic

assumptions, one could consider shared CSs and analyze its e!ects on the optimal charging

policies. Finally, to integrate all operational decisions, agents could use a joint decision system

where they start from high decision levels (e.g., charging, relocating) and hierarchically make

the lower level decisions.
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2.7 Appendix

2.7.1 Agent-based Simulation

In this appendix, we explain the details of our multi-agent simulation for shared autonomous

electric vehicles (SAEVs). Each module of the simulation is described in the following.

Trip Module

Figure 2.14 shows the process of serving a trip. When a vehicle is assigned to a trip, it starts

relocating to the trip’s origin. Meanwhile, the traveler might cancel her request due to long

waiting time or urgent events. Thus, we consider the probability of trip cancellation, which

is a function of the driving distance between the trip’s origin and the assigned vehicle. Once

a traveler cancels her request, the assigned vehicle runs the parking module (explained later

on). Otherwise, the vehicle picks up the traveler, drives to the destination, and drops it o! (we

assume no cancellation during serving time). After serving the trip, the vehicle updates its state

and runs the operations module to take the best operational action.

Relocate to the
trip’s origin Cancellation Pick up Drop o!

Operation
Module

Parking Module
y

n

Figure 2.14: Trip Module of SAEVs: the Process of Serving a Trip after Matching to a Vehicle

Operations Module

The operations module comprises three sub-modules: charging, repositioning, and parking;

executed sequentially (see Figure 2.15). First, the vehicle checks whether it should charge or

not. If the decision is to charge, the vehicle must also choose a charging destination, relocate

to the selected CS, wait in a queue (if there is any), and start charging. Instead of having a

first-in-first-serve strategy, the CS prioritizes vehicles based on their SoC (the lowest SoC, the

highest priority). We also assume that charging and waiting vehicles with enough SoC can

be assigned to requests. We avoid interrupting charging/waiting processes if idle vehicles are

available to serve all open requests, which is considered in our matching strategy (see 2.7.1). If

the vehicle does not interrupt charging, it finishes the task and follows the repositioning module.

Also, when the vehicle decides not to charge, it checks the repositioning conditions.

The repositioning module distributes available vehicles according to supply and demand. We

use a simple decentralized heuristic approach to reposition vehicles. Each vehicle first compares
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Figure 2.15: Operations Module of SAEVs: the Process of Taking and Executing Operational
Decisions

the supply and demand for its current zone and neighbors. If the supply exceeds the forecasted

demand, the vehicle decides to relocate to the target zone; otherwise, it keeps its position.

The target zone is the closest among low-supply zones (for each, we determine a net supply by

considering all available vehicles and open requests within a certain radius of its center). If the

output of the repositioning module is no, the vehicle follows the parking module; otherwise, it

first relocates to the target zone and then follows the parking module. The parking strategy

in our framework is straightforward. Vehicles first cruise for a while, during which they can be

assigned to a trip. The algorithm calls the trip module for paired vehicle and trip if a match

occurs. Otherwise, it sends the vehicle to the closest free parking.

Matching Strategy

In this work, we consider a static system-centric matching strategy. A basic trick to tackle

stochastic demand and supply is to use time windows to pool vehicles and requests and match

them simultaneously. Long time windows could decrease pick-up distances but increase waiting

times for assignments. Thus, we quantify the length of time windows to two minutes to avoid

prolonged waiting times while reducing pick-up distances. After pooling all available vehicles and

open requests, we generate our dispatching policy by solving a mixed-integer linear programming
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model assigning vehicles to trips. We define the sets, parameters, and decisions to do so. The

set of available vehicles and the set of open requests are indicated by JS and IO, respectively.
The term ↽

Energy
Di,j represents energy that vehicle j needs to serve request i, Ci,j is the cost

of assigning vehicle j to trip i (a function of distance Di,j and the vehicle’s mode), Di,j is the

distance between vehicle j and the origin of trip i, Pi is the price of serving request i, SoCj is

the state of charge of vehicle j, ω is safety energy after serving requests. Finally, the decision

variable (xi,j) is a binary variable set to one if vehicle j is assigned to request i.

Maxx

[︄

j↓JS

[︄

i↓IO

xi,j(Pi ≃ Ci,j). (2.13)

The objective is to match vehicles with trips while maximizing total profits. Each trip’s

price varies according to its length and duration in addition to a base fair. Assigning a vehicle

to a trip entails di!erent costs, depending on the vehicle mode (e.g., charging, parked) and the

distance to the trip. A higher cost is designated to charging vehicles to allocate them with trips

only when there is a lack of supply and to reduce charging interruptions. The assignment costs

are set to be less than trip profits to only distinguish vehicles according to their distances with

trips and avoid a!ecting the acceptance rate (i.e., not rejecting trips if there is enough supply).

[︄

j↓JS

xi,j ⇒ 1, ↔i → Io, (2.14)

[︄

i↓IO

xi,j ⇒ 1, ↔j → JS , (2.15)

xi,j(↽
Energy

Di,j ≃ SoCj⇀
Battery
j ≃ ω) ⇒ 0, ↔j → JS , i → IO, (2.16)

xi,jDi,j ⇒ $, ↔j → JS , i → IO, (2.17)

xi,j → {0, 1}, ↔j → JS , i → IO. (2.18)

As we match vehicles and open requests simultaneously, the model must ensure to assign

each vehicle to at most one trip and each trip to at most one vehicle; guaranteed by Constraints

(2.14) and (2.15), respectively. Constraint (2.16) ensures that a vehicle can be assigned to a

trip only if it has enough energy to pick up the traveler, take her to the destination, and reach

a CS. As a simplification, we consider the same safety threshold throughout the business area,

assuming that CSs are evenly distributed. Moreover, to avoid prolonged waiting time after

assignments, we add Constraint (2.17) to only allow matching when driving distances to trips’
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origin is not too large. Although we aim to serve all trips in the earliest time window, sometimes

demands exceed supplies, and unassigned trips shift to the next time window.

Revenue and Costs

To calculate trip revenues, we use a base fare (2 USD) plus a variable fare, which is a linear

function of trip distance and duration. Other factors, such as the time of day and tra”c

congestion, are excluded for simplicity. Each trip also has a travel cost that must be taken into

account. We show the profit calculation for a trip in Equation (2.19), where ↪ is the revenue

per distance (1.3 USD/km), ↩ is the revenue per duration (0.35 USD/min), and ▷ is travel cost

per distance (0.53 USD/km). Note that the minimum charge for each trip is 5 USD (Taxi costs

in Berlin 2022).

TripProfit := min(BaseFare+↪ ⇓Distance+↩ ⇓Duration,MinimumFare)≃▷ ⇓Distance.

(2.19)

Regarding other costs, we calculate the charging cost based on an hourly energy fee:

ChargingCost =
[︄

t↓Tcharging

EnergyChargedt ⇓ EnergyPricet, (2.20)

Where Tcharging is the set of periods (minutes) during a charging session. It means that charging

costs are independent of charging rates, which are aligned with current electricity tari!s for large-

scale EV fleets (Lee et al. 2019). Moreover, the driving cost is a linear function of the distance

(DrivingCost = ▷ ⇓ Distance), and the waiting cost is also based on a fixed ratio per time

(WaitingCost = % ⇓WaitingT ime), where % is the parking cost per hour (3 USD/hr).

Linearizing Queue Management of the Reoptimization Benchmark Policy

To linearize the waiting constraint of the reoptimization benchmark, we use a big M trick.

Therefore, we can replace the nonlinear constraint as follows.

t
Queue
j,c ⇔ max{

Nj,c +
)︄

j→↓JC
yj→,c(1≃ zj,j→)≃ ⇀

Charging
c

⇀
Charging
c

E/⇀
Power
c , 0} , ↔j → JC , c → C,(2.21)

t
Queue
j,c ⇒ M

Queue
yj,c , ↔j → JC , c → C.(2.22)

This pair of constraints guarantees that the waiting time of vehicle j in charging station c only

could get a non-zero value if vehicle j is allocated to CS c (i.e., yj,c = 1).

2.7.2 Configuration Data

In this subsection, we quantify the mobility environment parameters in addition to the charging

agents’ hyperparameters.
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Hyperparameters

Here, we specify the hyperparameters of smart charging agents and additional details regarding

the training and implementation of MARL and HMARL agents. Hyperparameters, chosen based

on di!erent experiments, are given in Table 2.3. The HMARL agent has two separate networks

(high-level and low-level), and the MARL agent has one network with the same structure and

hyperparameters as the high-level network of the HMARL agent.

Parameter High-level Low-level
Optimizer (learning rate) Adam(0.001) Adam(0.001)
Loss function MSE MSE
Discount factor ε 0.99 0.99
Memory capacity 1,000,000 1,000,000
Steps prior to learning 1000 500
Training frequency 50 20
Batch size 32 32
Initial φ 0.6 0.6
Final φ 0.01 0.05
Target network update frequency 1000 1000
DQN activation functions ReLU ReLU
Number of hidden layers (nodes) 2 (256, 512) 2 (256, 512)

Table 2.3: Agents’ Hyperparameters

Energy Price

We use an actual EV-focused time-of-use (ToU) electricity tari! (Tari! 2 in Table 2.4), that is

used by Southern California Edison (SCE) and in recent related works (e.g., Lee et al. 2019).

In addition, we test two other tari!s in this paper. The first is a flat tari! (Tari! 1), where

electricity prices are the same for all hours of the day. The second one (Tari! 3) is similar to

Tari! 2 with a larger price variation, where the price in super on-Peak hours is costly.

Tari! 1 Tari! 2 Tari! 3
Super O!-Peak (9pm-6am) 0.23 USD/kWh 0.08 USD/kWh 0.08 USD/kWh
O!-Peak (6am-4pm) 0.23 USD/kWh 0.08 USD/kWh 0.23 USD/kWh
On-Peak (4pm to 6pm) 0.23 USD/kWh 0.23 USD/kWh 0.23 USD/kWh
Super on-Peak (6pm to 9pm) 0.23 USD/kWh 0.23 USD/kWh 0.50 USD/kWh

Table 2.4: Time-of-use Tari! for Large-scale EV Charging Customers

1 2 3 4 5 6 7 8 9 10 11 12
SoC threshold % (morning) 0.45 0.60 0.65 0.62 0.58 0.55 0.52 0.50 0.40 0.40 0.40 0.40
SoC threshold % (afternoon) 0.38 0.35 0.32 0.25 0.25 0.20 0.20 0.25 0.27 0.35 0.35 0.40

Table 2.5: Hourly Charging Threshold for the Reoptimization Benchmark Policy
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SoC Thresholds of the Reoptimization Benchmark Model

To make charging decisions using REOPT, we determine vehicles needing to charge using an

hourly SoC threshold. Whenever a vehicle’s energy level falls below this threshold, it is marked

as a charging demand. We consider an hourly threshold with the opposite pattern of mobility

demands; i.e., when the demand is low (e.g., during the night), the threshold is high, meaning

that more vehicles will charge. The values are provided in Table 2.5.

Details of the Upper Bound Scenario

For the upper bound scenario, we use the Audi 3 with a fuel e”ciency of 7.29 liter/km Fuel

economy guide (2020), and consider the average price of gasoline in Germany in 2021 ($1.8)
Global petrol prices (2021) to compute energy costs (i.e., the driving cost of petrol vehicles

equals $0.13/km).

Modification for Tabular Solutions

We compare our proposed model (MADC) with a tabular version (Q-learning) to ensure that

deep learning does not compromise the learned policies. Therefore, we discretize the state space;

hexagons and hours represent locations and time, respectively, SoC is divided into ten levels

(10%, 20%, ..., 100%), and local supply and demand are categorized into three levels (low,

medium, and high). Low/medium/high supply means less than 3/between 3 and 10/more than

10 available SAEVs within the coverage area of the vehicle (10 km radius). Low/medium/high

demand means that there are less than 5/between 5 and 10/more than 10 open requests within

the coverage area of the vehicle (10 km radius). We also identify the CSs with at least one free

spot using binary variables and restrict the action space to only limited charging destinations.

2.7.3 Results and Sensitivity Analysis of Strategic Factors

This subsection provides detailed results of the scenario analyses using the proposed models.

The Impact of Fast Charging

We resolve SAEV-CC assuming there is ”no” fast charging technology. The results show that

without fast charging, the fleet performance decreases by 14% and 24% using MADC and RE-

OPT, respectively. We display vehicles’ SoC in Figure 2.16. The disparity between MADC and

REOPT is wider when there is ”no” fast charger, which can be seen from the gap between the ve-

hicles’ SoC. Comparing the results with the fast charging scenario, vehicle batteries have lower

energy since they need more time to charge, during which they might interrupt the charging

process to meet urgent mobility demands.
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Regarding the charging strategy, Figure 2.17 shows that there is no longer a significant gap

between the fast CSs and standard CSs occupancy (CSs locations cause the di!erence). Another

change occurs in the hourly utilization of CSs, which is visualized in Figure 2.18. As can be seen,

although both strategies follow the same pattern, the average utilization is higher compared to

the fast charging scenario due to longer charging sessions.

Figure 2.16: No Fast Charging Scenario: Average SoC of Vehicles for the Proposed and
Benchmark Models

Figure 2.17: No Fast Charging Scenario: Individual CS Utilization for the Proposed and
Benchmark Models

Figure 2.18: No Fast Charging Scenario: Hourly CSs Utilization for the Proposed and Bench-
mark Models
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The Impact of Charging Infrastructure Capacity

Another influential charging-related factor is the size of each CS. The more charging capacity,

the higher fleet performance since vehicles have more resources to charge their batteries. Results

show that with half of the charging capacity, service quality reduces by 5% and 12% for MADC

and REOPT, respectively, while vehicle SoC patterns do not change significantly (see Figure

2.19). The shape of SoC curves is the same. However, the peaks drop and occur later compared

to the full charging capacity scenario. We also plot the utilization of CSs in Figure 2.20, where

still fast chargers are more attractive for both charging strategies. Figure 2.21 depicts a very

similar occupancy pattern for both strategies while the values are almost doubled.

Figure 2.19: Half Charging Capacity Scenario: Average SoC of Vehicles for the Proposed and
Benchmark Models

Figure 2.20: Half Charging Capacity Scenario: Individual CS Utilization for the Proposed and
Benchmark Models

The Impact of Fleet Size

One critical factor in shared autonomous fleet performance is the number of SAEVs. It gains

more importance when the fleet is electric, and vehicles need more time to refuel their batteries.

We test our proposed charging strategy (from now on, we will only analyze results using MADC

and exclude REOPT) for four di!erent fleet sizes (150, 200, 250, and 300 SAEVs). By increasing

the number of SAEVs, the service quality increases, but not linearly (71%, 90%, 98%, and more
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Figure 2.21: Half Charging Capacity Scenario: Hourly CSs Utilization for the Proposed and
Benchmark Models

than 99%, respectively, for the mentioned fleet sizes). Finding the optimal fleet size is beyond

the scope of this paper; we merely aim to show its impacts on performance and charging policies.

Therefore, if the goal is maximizing fleet performance, it makes no sense to facilitate more than

250 SAEVs to cover demands for this case. In more detail, vehicles’ SoC is illustrated in Figure

2.22 and what is clear is that by increasing the number of vehicles, the SoC distribution gets

flatter (i.e., there is no such a gap between the vehicles’ SoC in the early morning and evening

when there are 300 SAEVs), which is caused by the low utilization of vehicles.

Figure 2.22: Di!erent Fleet Sizes Scenario: Average SoC of Vehicles for Four using the Pro-
posed Model

More importantly, di!erent fleet sizes alter the learned charging strategies. Figure 2.23

demonstrates that the smaller fleet sizes, the more fast charging demands. Indeed, when the

number of vehicles is low, MADC takes the fast CSs as the best destination to ensure enough

SoC for providing high service quality. On the other hand, the utilization distribution gets flat

when there are many SAEVs (i.e., there is no need for urgent charging sessions). Regarding

the hourly utilization, a rise in the number of vehicles creates a peak during midday hours
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(Figure 2.24). This needs to be interpreted cautiously as many factors might be influential, like

electricity price, mobility demand, and charging capacity.

Figure 2.23: Di!erent Fleet Sizes Scenario: Individual CS Utilization using the Proposed
Model

Figure 2.24: Di!erent Fleet Sizes Scenario: Hourly Utilization of CSs using the Proposed
Model

The Impact of Battery Capacity

Another impactful fleet configuration is the vehicles’ battery capacity. We test MADC for three

di!erent battery sizes (50 kWh, 75 kWh, and 100 kWh), yielding service levels of 90%, 92.5%,

and 94%, respectively. It shows that a bigger battery size could increase fleet performance and is

worth considering (further analysis and the cross e!ects with fleet size could also be interesting,
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which is beyond the scope of this study). Figure 2.25 shows that the SoC of vehicles with smaller

batteries reaches a higher peak occurring earlier than the case of larger batteries (due to the

shorter charging time). Figure 2.26 displays that fast CSs are still more popular destinations

for di!erent battery sizes. Thus, larger batteries do not remove the need for fast chargers in our

case. Hourly patterns are also similar. However, increasing the battery capacity decreases the

reduction rate (from the peak during night hours until the valley during day hours) as it takes

longer to charge the batteries (see Figure 2.27).

Figure 2.25: Di!erent Battery Capacity Scenario: Average SoC of Vehicles using the Proposed
Model

Figure 2.26: Di!erent Battery Capacity Scenario: Individual CS Utilization using the Pro-
posed Model

Figure 2.27: Di!erent Battery Capacity Scenario: Hourly Utilization of CSs using the Proposed
Model
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The Impact of Electricity Tari!

We check three di!erent tari!s to understand how electricity prices a!ect charging behaviors

(See Table 2.4). We consider 250 vehicles for this comparison to avoid the bias of supply scarcity

(i.e., with lower supply than demand, the charging behavior only follows the mobility demand

and disregards the electricity price). Figure 2.28 illustrates that vehicles increase their SoC

during the night using the flat tari! (Tari! 1), and that it will drop relatively until the end

of the peak hours. On the other hand, vehicles’ SoC for two other tari!s (peak and o!-peak

prices) have periodic levels. Vehicles recharge mainly during the night (due to the low electricity

price and mobility demand) and exactly before high price hours. This is more visible for Tari!

3, which has higher prices during super-peak hours (18-21).

Figure 2.28: Di!erent Electricity Tari! Scenario: Average SoC of Vehicles using the Proposed
Model

Figure 2.29: Di!erent Electricity Tari! Scenario: Hourly Utilization of CSs using the Proposed
Model



Symbol Description Unit
Sets & Spaces
T Set of operations time with index t set
# Set of hexagonal zones within the service region with index z set
H Set of tasks while executing an operational decision with index h set
C Set of charging stations with index c set
I Set of all trip requests over the operations horizon with index i set
IO Set of open trip requests at the current time with index i set
J Set of all vehicles (vehicle agents) with index j set
JS Set of available vehicles for serving trip requests with index j set
JC Set of vehicles with the need for charge with index j set
Nj Set of neighboring vehicle agents to vehicle j set
S The state space of the whole system with index s space
Oj The observation space of of agent j with index oj space
A The joint action space of all agents with index a space
Aj The action space of agent j with index aj space
Parameters
ϱ Learning rate of Q-learning ratio
ε Reward discount rate ratio
φ Probability of taking a random action using an φgreedy policy ratio
ς Parameter of action-value function approximations (neural network) float
ω Minimum safety energy threshold for reaching the closest CS kWh
ω
idle The maximum waiting time for vehicles before checking their status minutes
$ The maximum coverage area of trip request or SAEVs km
E Average charging demand of vehicles kWh
↼
Charging Penalty for an unassigned charging vehicle to CSs USD

↽
Energy Energy consumption per driving distance kWh/km

↽
Time Driving time per driving distance minute/km

SoCj State of charge of vehicle j %
Nc Number of present vehicles in CS c unit
Nj,c Number of vehicles in CS c with lower SoC than vehicle j unit
⇀
Power
c

/⇀Parking
c

Maximum charging power/number of parking spots of CS c kW/unit
⇀
Charging
c

Maximum number of charging docks in CS c unit
⇀
Battery

j
Maximum battery capacity of vehicle j kWh

Dj, i/Dj, c Driving distance between vehicle j and request i/ CS c km
ws/wc/wd/ww/wp Weight for reward of serving/charging/driving/waiting/penalty float
ui/di/pi/bi Information of trip request i (origin/destination/price/patience-time) mixed
Zj,j→ A binary indicator if vehicle j has lower SoC of vehicle j

→ boolean
Variables
SoC/m/l Energy/mode/location of the corresponding vehicle %/integer/integer
s General state of the system regarding the corresponding vehicle mixed
st/sv/sl/sc State of time/vehicle/local supply & demand/CSs mixed
ns/nd Number of local supply/demand around the corresponding vehicle integer
qc Number of waiting vehicles in CS c integer
cc Decision variable of charging the corresponding vehicle in CS c boolean
rs/rc/rd/rw/rp Reward of serving/charging/driving/waiting/penalty of a vehicle USD
rprofit/rmissed Reward of profits and missed trips penalty of the fleet USD
ϖ Termination duration of an operational action period
ϖeh Period between triggering and starting task h period
ϖoh Period between starting and finishing task h period
a General operational action (charging and allocating to CS) of vehicles integer
ameta Action of the meta controller (charging or not) integer
asub Action of the sub controller (which CS) integer
t
Driving

j,c
Driving time between CS c and vehicle j period

t
Charging

j,c
Charging time of vehicle j at CS c period

t
Queue

j,c
Waiting time of vehicle j at CS c period

yj,c Indicator whether vehicle j is assigned to CS c boolean
xi,j Indicator whether vehicle j is assigned to trip request i boolean

Table 2.6: A Summary of Notations





Chapter 3

Adoption of Autonomous Vehicles in

Ride-Hailing Services: The Role of

User Preferences1

3.1 Introduction

Socio-economic and technological advancements in transportation systems play a pivotal role

in shaping the development of smart cities. With the rise of the sharing economy, ride-hailing

companies such as Uber and Lyft are transforming mobility-on-demand services worldwide by

connecting travelers with drivers through digital platforms (Wei et al. 2022). Despite growing

demand, these platforms face challenges of profitability and supply uncertainty, largely due

to their reliance on human drivers (Heineke et al. 2021). To address these issues, companies

are investing substantially in autonomous vehicles (AVs) (Siddiq and Taylor 2022, Chen et al.

2024b). AVs promise lower labor costs and higher fleet utilization through full-time, driverless

operations (Al-Kanj et al. 2020b), while their electric nature o!ers potential reductions in carbon

emissions (Zhuge and Wang 2021, Zhang and Chen 2020).

Whether investments in AVs will deliver on their promises remains unclear, particularly from

a user adoption perspective (Ketter et al. 2023). While research highlights potential operational

improvements for platform providers (e.g., Yao et al. 2020, Chen et al. 2024b), these gains

ultimately depend on users’ willingness to embrace the new technology. If a significant proportion

of users are hesitant or unwilling to use autonomous services, the anticipated benefits for ride-

hailing platforms could be compromised. Prior studies have shown that users often struggle to

trust new autonomous technologies, especially when the technology is perceived as imperfect

1This Chapter is currently under review at a leading peer-reviewed academic journal.
Earlier versions of this Chapter have also appeared in a (non-copyrighted) peer-reviewed academic conference:
Ahadi, R., Taudien, A., & Ketter, W. (2023). Human versus automated agents: How user preferences a!ect
future mobility systems. ECIS 2023 Research Papers, 382.
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(Glikson and Woolley 2020). In the context of autonomous services, users generally prefer that

at least some aspects of the service involve human interaction (Gnewuch et al. 2023). Initial

studies on user attitudes toward AVs suggest that the majority remain skeptical about relying

on driverless mobility, with only a small minority showing trust in these systems (Shari! et al.

(2017)).

Given this backdrop, understanding variations in user preferences for AVs across di!erent

groups is essential for addressing adoption barriers. Identifying these di!erences can help ride-

hailing platforms target user groups that are hesitant to AV adoption. Moreover, analyzing

the conditions under which certain users may hesitate or refuse to switch to AVs can provide

strategic insights for platforms as they transition to autonomous fleets. We, therefore, aim

to explore heterogeneity in user preferences for human-driven versus autonomous ride-hailing

services and evaluate the resulting impacts on platform performance, including profitability,

service quality, and environmental outcomes. We pose the following research question (RQ):

RQ1: How do users di!er in their preferences for autonomous versus human-driven ride-

hailing services considering trip and user characteristics?

In addition to understanding current user preferences, it is essential to recognize that both

technology adoption and user attitudes are dynamic and evolve over time. The transition from

human-driven to fully autonomous fleets is likely to occur gradually. Previous research has

often adopted a static perspective, overlooking the potential implications of a phased transition

from human to autonomous services (e.g., Fagnant and Kockelman 2018, Dong et al. 2022). In

contrast, our study adopts a dynamic approach, acknowledging that the coexistence of human

and autonomous services during this transition will influence both user behavior and platform

outcomes. As AVs become more prevalent, user preferences are likely to evolve, shaped by

factors such as increased familiarity with the technology (Komiak and Benbasat 2006), societal

influences (Venkatesh and Davis 2000), and ongoing technological advancements. Understanding

how these preferences evolve and their implications for the adoption of autonomous services is

crucial for predicting the long-term success of AV adoption in ride-hailing fleets. This requires a

thorough examination of how the interplay of evolving user preferences and technology adoption

a!ects the profitability and operational e”ciency of ride-hailing platforms. This leads to our

second research question:

RQ2: How does the likely evolution of user preferences a!ect ride-hailing platforms’ out-

comes during the transition from purely human to autonomous services?

To answer these questions, we employ a novel multi-method approach that combines a dis-

crete choice experiment (DCE) and agent-based modeling, connecting behavioral and design

science research. The DCE captures current heterogeneity in user preferences, while the ABM

simulates dynamic interactions between users, services, and their characteristics. Given the lim-

ited actual deployment of AVs, particularly outside pilot zones (e.g., San Francisco, Phoenix),

field data remains scarce. A stated preference (SP) approach, such as DCE, allows us to over-
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come this limitation by presenting participants with hypothetical scenarios. In these scenarios,

participants choose between alternatives (human-driven vehicles (HVs) or AVs), with each op-

tion defined by specific attributes. This method allows us to estimate utility functions and

predict user trade-o!s between attributes, o!ering key insights into future decisions (Hensher

et al. 2005). DCEs are widely used in transportation (e.g., Li and Kamargianni (2020)) and

behavioral research (Schlereth and Skiera 2017, Ćwiakowski et al. 2016), making them a robust

tool for this study.

To predict the performance of autonomous ride-hailing platforms and assess the impact of

user characteristics, it is essential to control for factors such as user population composition, trust

in technology, and service features (e.g., the proportion of AVs and operational policies). These

factors interactively influence the system’s dynamics; for instance, users’ decisions depend on

vehicle availability and can alter the spatio-temporal distribution of vehicles within the service

area. To address this complexity, we use an ABM, which allows for modeling the relationships

between di!erent entities in the mobility environment while controlling for various counterfactual

variables. ABM enables the computational simulation of socio-technical systems by designing

interactive agents that represent entities of the environment (e.g., ride-hailing users), with the

aim of predicting and evaluating complex phenomena (Miller and Page 2009). In mobility-on-

demand platforms, ABM o!ers a cheaper, faster, and safer (i.e., risk-free) alternative to methods

like field experiments. It also provides the flexibility to isolate and explore the impact of multiple

factors (e.g., trust and penetration of user clusters). Particularly, given the limited use cases of

AVs, a method capable of predicting the comprehensive impacts of anticipated system changes

is crucial.

By combining behavioral and design science, we make primary contributions to the literature.

First, we analyze user preferences for autonomous versus human-driven ride-hailing services.

We find four distinct groups of users, of which only one prefers AVs over human-driven ride-

hailing services. However, factors such as price and waiting time influence user preferences in all

classes, o!ering platform providers an important tool to encourage users to use their autonomous

services.

We develop a feature-rich, and behaviorally informed ABM of hybrid autonomous ride-hailing

services. Designing an accurate simulation tool for such a complex socio-technical environment

requires in-depth domain knowledge and empirical analysis. Specifically, we must intricately

design both the supply and demand sides and their interactions. On the demand side, our DCE

analysis informs user behaviors, population composition, and trust in autonomous mobility,

while historical travel data calibrates demand generation in our ABM. On the supply side, we

implement validated operations management of the ride-hailing fleet and model the behavior

of human drivers to produce reliable results. Thus, we build upon prior studies that simulate

and/or optimize the performance of autonomous ride-hailing platforms (e.g., Fagnant et al. 2015,

Dlugosch et al. 2022). These works mostly focus on the fleet management and often overlook the
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gradual adoption of AVs in shared mobility which yields hybrid autonomous services. This work

is one of the first studies of predicting end-to-end impacts of heterogeneous user characteristics

and their likely evolving behaviors on hybrid ride-hailing systems. We also demonstrate the

usefulness of ABM to explore the impacts of specific factors on the adoption of AVs while

controlling for counterfactual variables which is often very di”cult to conduct analytically or

experimentally (Zhang et al. 2020a).

Furthermore, we utilize our ABM to systematically evaluate and predict the longitudinal dy-

namics of ride-hailing platforms, focusing on how user interactions influence system performance

over time. Predicting the end-to-end impacts of AV adoption within shared mobility platforms,

as well as evolving user characteristics, necessitates a design science approach, as autonomous

services are not yet widely implemented (Hevner et al. 2004). Even when such a system ex-

ists, assessing the impact of demand characteristics by controlling user preferences (e.g., trust

in AVs) would be prohibitively expensive, if not impossible, through field experiments. Our

findings show that, given user characteristics from our DCE analysis, even a small proportion of

AVs in a ride-hailing fleet can significantly reduce CO2 emissions and increase provider revenues.

Despite these benefits, user acceptance rates remain relatively low, even with a high AV pene-

tration rate that should ensure high service availability. This indicates that the deployment of

AVs alone is insu”cient to fully optimize service quality. Our further analysis demonstrates that

increasing trust in AVs can amplify these positive outcomes, emphasizing the importance for

platforms to foster trust in their AV services. Notably, the impact of trust varies across di!erent

user groups, suggesting that service providers should target trust-sensitive users and focus on

improving safety measures and educating users to boost confidence in AVs. Additionally, our

supply-side analysis highlights that e!ective fleet management—such as o!ering AV discounts

and optimizing fleet size—can further enhance system performance.

The rest of paper is structured as follows. We position our paper within the existing literature

of information systems (IS) and shared mobility. Next, we provide an in-depth explanation of

our research approach, and finally present results and discuss our managerial insights.

3.2 Literature Review

While mobility provides benefits for our society,it also creates environmental, social, and eco-

nomic challenges (Whittle et al. (2019)). These challenges, inherent in socio-technical systems

as complex as transport, are often classified as wicked problems (Ketter et al. (2016)). The

mobility transformation - driven by the sharing economy, electrification, and automation - has

the potential to address these issues (Dlugosch et al. (2022)). As part of the sharing economy,

ride-hailing platforms leverage digitally-enabled business models (de Reuver et al. 2018), creat-

ing a digital layer atop traditional physical mobility systems and interweaving transportation

with IS (Yoo et al. 2010a). While digital platforms are grounded in technical infrastructure, IS
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literature emphasizes their socio-technical dimensions and the importance of considering their

functionalities within a broader social context (Bonina et al. 2021). In the following, we re-

view related literature on AVs in shared mobility and the interaction of users with autonomous

technologies.

3.2.1 Next-Generation Urban Mobility Systems

The future of urban mobility is forecasted to be shared, electric, and autonomous (Sperling

2018b). Shared mobility systems, in particular, have drawn research attention (e.g., Rhee et al.

2022, Kahlen et al. 2024) due to their transformative impacts on transportation and the potential

enhancements derived from the integration with theoretical studies. Shared mobility platforms

are categorized into two types: (i) business-to-customer vehicle sharing platforms that privately

own and manage their resources, and (ii) consumer-to-consumer ride-sharing platforms that

coordinate private drivers with travel requests. Both face operations management challenges,

from strategic issues like fleet sizing to operational decisions like rebalancing policies (Gansterer

et al. 2022). The use of autonomous vehicles (AVs) can enhance the performance of both ride-

hailing and carsharing systems by lowering costs associated with driver payments (in ride-hailing

fleets) and service worker expenses (in carsharing fleets) (Dong et al. 2022). As a result, large

mobility service providers (e.g., Lyft (2019), Uber (2019)) are working toward the adoption of

AVs, converging on the concept of shared autonomous electric vehicles (SAEVs) (Siddiq and

Taylor 2022).

Recent studies increasingly explore various aspects of SAEV integration, including opera-

tional management, environmental impact, and societal factors such as user adoption. For de-

tails, we refer to a comprehensive review provided by Narayanan et al. (2020). Many works such

as Fagnant and Kockelman (2014), Chen et al. (2016), Loeb and Kockelman (2019) evaluate the

use of SAEVs under di!erent circumstances and show that relying on technological capacities,

SAEVs can replace multiple HVs if operated correctly. Dhanorkar and Burtch (2022) examine

both the advantages and drawbacks of SAEVs, emphasizing how improper use can exacerbate

tra”c congestion. Simoni et al. (2019) suggest a pricing strategy to mitigate unwilling driving

mileage issues, and Wei et al. (2022) explore the integration of SAEVs with public transportation

to reduce unnecessary trips. Methodologically, ABM is frequently employed to capture complex

relationships in mobility systems (Jing et al. 2020). In the design phase, Lokhandwala and

Cai (2018), Zhang and Chen (2020) study the optimal fleet sizing and charging infrastructure

development of SAEVs, respectively. From an operational perspective, Ahadi et al. (2023) ex-

amine the dynamic allocation and charging strategies for SAEVs, Chen and Liu (2022) propose

integrated approaches for planning and operations, while Siddiq and Taylor (2022) investigate

the profitability of competitive ride-hailing platforms adopting AVs and analyze the societal and

economic impacts of shared AVs on drivers and the community.



72 Hybrid autonomous ride-hailing services

As highlighted in the studies mentioned above, a diverse research community, encompass-

ing fields such as operations management and economics, acknowledges the pressing need for

academic research on SAEVs. However, except some recent works (Babar and Burtch 2020,

Dlugosch et al. 2022, Zhang et al. 2020b, Rhee et al. 2022, Kahlen et al. 2024) the IS com-

munity has not reacted enough to these socio-technical mobility systems. Therefore, this work

responds to the call by Ketter et al. (2023) to explore the potential of SAEVs using data-driven

and IS-enabled techniques. Moreover, a domain void in transportation literature is studying

an anticipated hybrid human-driven and autonomous shared mobility system (Ao et al. 2024).

This gradual transition phase has not been explored enough since most researchers assume a

fully automated fleet. IS community is well-suited to address this gap by exploring the interac-

tions of users and hybrid autonomous mobility platforms and the adoption of AI-enabled new

technologies.

3.2.2 User Behavior and Human-AI Interactions

As AVs are introduced into ride-hailing platforms, they create what Rai et al. (2019) term

next-generation digital platforms, where interactions occur between humans and AI. While fleet

operators provide the technical infrastructure, user acceptance ultimately determines the success

of these developments. Factors influencing user acceptance in IS literature include the perceived

usefulness (Davis 1989), ease of use (Venkatesh et al. 2012) and trust (Glikson and Woolley

2020). Research highlights that while users may benefit from autonomous systems, adoption is

often accompanied by challenges, such as psychological barriers and a need for control (Rijsdijk

and Hultink 2003). Studies in transportation on the adoption of AVs align with these findings.

AVs are expected to be a more radical and less familiar prospect than shared and electric vehicles

for the majority of people (Whittle et al. 2019). This is reflected in a lack of user trust due to

safety (Jabbari et al. 2022) and security concerns (Wali et al. 2021). These findings are in line

with literature stressing that trust in technology automation may be hard to establish (Lee and

See (2004)) or can easily be lost after seeing systems fail (Dietvorst et al. 2014).

User behavior towards autonomous systems is heterogeneous, with some groups more willing

to adopt technology than others (D’Acunto et al. 2019). Early research on user perceptions

of SAEVs reveal that willingness to use these services varies across demographic and psycho-

logical factors, such as price sensitivity (Jabbari et al. 2022) and performance expectations

(Curtale et al. 2022). Most studies, however, assume an abrupt transition to autonomous sys-

tems, overlooking the likely interim phase where human-driven and autonomous systems coexist.

In contrast, Adam et al. (2022) emphasize the importance of studying user behavior in such hy-

brid scenarios, finding that user intentions can shift across di!erent stages of interaction with

autonomous systems. In the following we address the gap of studying user behavior in a hybrid

autonomous transportation system in a dynamic environment.
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3.3 Research Method

The primary objective of this paper is to examine the preferences of mobility users within

hybrid autonomous ride-hailing systems and to develop an IS-enabled simulation that aids shared

mobility platforms in predicting the impact of important factors such as AV adoption and

user characteristics. Our research approach, illustrated in Figure 3.1, consists of two main

components: a) analyzing and modeling user behavior within shared mobility systems, and

b) modeling hybrid autonomous ride-hailing systems to assess system performance. Given the

limited implementation of AVs and the scarcity of empirical data on user preferences, we conduct

an online DCE to identify and analyze ride-hailing users’ preferences for autonomous versus

human-driven mobility services. For other user characteristics such as arrival time and origin-

destination distributions, we perform empirical analysis on observational taxi trip data. Using

our ABM, we simulate a hybrid autonomous ride-hailing system, incorporating insights from

our DCE and empirical analysis to calibrate mobility user agents realistically. By integrating

real-world data, survey experiments, and rigorous software testing and validation, we ensure

that the simulation artifact accurately reflects real-world settings. Finally, we design simulation

experiments to examine the interactions between heterogeneous user behavior and the gradual

adoption of AVs in ride-hailing services.

Shared Mobility Demand Hybrid Autonomous Ride-haling

Survey Experiment Analysis (RQ1)

• Conducting an online survey analysis 
• Analyzing user preferences toward 

autonomous versus human-driven shared 
mobility 

Simulation Development and Validation

• Developing agents and their interactions
• Defining service and operational processes
• Calibrating the simulation parameters
• Validating and testing the software

Demand 
Characteristics

Agent-based 
Simulation Model

Empirical Data Analysis

• Finding spatio-temporal distributions of 
ride-hailing patterns

• Estimating the availability of human drivers

Simulation Experiment Analysis (RQ2)

• Defining structured scenarios based on the 
research questions

• Running simulation experiments
• Analyzing and discussing the results

Figure 3.1: Research Process
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3.3.1 Shared Mobility Demand

Survey Overview

To analyze user preferences towards autonomous mobility, we conducted an online choice exper-

iment as part of a larger survey. The survey was administered via Prolific, an online platform

that provides access to a diverse participant pool with quality filters (Peer et al. 2017). Par-

ticipants were required to have prior experience using ride-hailing services to ensure they could

meaningfully engage with the choice scenarios. The survey began with an explanation of ride-

hailing services, followed by questions about participants’ most recent ride-hailing trip, including

its purpose and timing. This information was used to customize the scenarios and make them

relatable, minimizing response bias (Papu Carrone et al. 2020). Participants were then intro-

duced to the experimental task, imagining they were using a ride-hailing app to select from two

available vehicle options (i.e., an AV or a HV). An example scenario was provided, along with

a detailed explanation of the vehicle types and attributes which are included in the Appendix.

An attention check was included to ensure participants understood the task before proceeding.

The survey concluded with questions on participants’ environmental concerns (Haboucha et al.

2017), trust in AVs (Yagoda and Gillan 2012), general interest in technology (Haboucha et al.

2017), familiarity with AVs, ride-hailing frequency, and demographic information.

Design of the Discrete Choice Experiment

The DCE is an econometric method used to elicit consumer preferences and predict choice

behavior (Ben-Akiva and Lerman 1985, Liu et al. 2018). Typically, participants are presented

with a set of product choices (in our case ride-hailing options) and shall decide which option they

prefer. The options di!er in their attribute levels, requiring subjects to make trade-o!s between

the options (Liu et al. 2018). Based on related literature, we included attributes identified as

most important for consumers’ travel and ride-hailing choices: price (Whittle et al. 2019, Hong

et al. 2020), trip length, waiting time (Hong et al. 2020), and the vehicle’s propulsion (electric

or petrol powered). A pilot study with 29 participants confirmed the relevance of the selected

attributes and their levels, ensuring realistic and comprehensible scenarios. Table 1 summarizes

the attributes and levels used in the DCE.

Attribute Levels
Autonomous Vehicle Human-driven Vehicle

Duration of the trip (min) 10, 20, 30
Price -20%, -10%, 1 1, +10%, +20%

Waiting time (min) 5, 7, 10
Power Electric Electric, Petrol

Table 3.1: Overview of Attributes and Levels used in DCE



3.3 Research Method 75

To reduce cognitive load, we applied a D-optimal design, which minimizes the D-error and

improves the e”ciency of parameter estimates compared to classic orthogonal designs (Caussade

et al. 2005). The final design included 54 scenarios split into nine blocks, with each participant

randomly assigned to one block. Each block contained seven scenarios, including one consistency

check to ensure reliability. A separated dual response (SDR) approach was implemented to

address potential biases. After completing the initial scenarios, participants were shown the

same scenarios with the option to choose ”none of the above.” This approach reduces extreme

response behavior and improves the ability to capture participants’ willingness to pay (Schlereth

and Skiera 2017).

Discrete Choice Model

Data from the DCE were analyzed using random utility theory (Liu et al. 2018, McFadden

1972). Based on the assumption that individuals maximize their utility when making choices,

we estimate an individual’s utility for a ride-hailing service as a function of the attribute levels

of that service (Liu et al. 2018, Leitham et al. 2000). The utility (U) that an individual i assigns

to choice scenario j takes the following form:

U ij = V ij + φij. (3.1)

with

V ij = ↽0ALTERNATIV Eij + ↽1PRICEij + ↽2WAIT ij+

↽3DURATION ij + ↽4ALTERNATIV Eij ↑ TRUST i.

(3.2)

We estimate Vij as the utility’s deterministic element using a latent class approach. This

allows us to address potential heterogeneity in subjects’ choices regarding autonomous compared

to HVs for ride-hailing. The idea behind latent class models (LCM) is that individual behavior

depends on observable attributes as well as latent heterogeneity varying with factors unobserved

by the researcher (Greene and Hensher 2003). LCMs incorporate heterogeneity through distinct

preference classes and generate probability estimates for included attribute parameters that

vary by class (McFadden 1972). Within a class, the correlation across an individual’s choices

are all attributed to the class membership. After conditioning upon the class, all responses are

considered independent across choice pairs (McFadden 1972). Essentially, the conditional logit

model is a regression model for choice data which determines the probability that an individual i

selects alternative j from choice set k (McFadden 1972). Further, as subjects evaluated multiple

scenarios, our data have a panel structure.
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Empirical Mobility-on-Demand Data Analysis

To accurately analyze the impact of user behavior on hybrid autonomous ride-hailing systems,

it is essential first to estimate shared mobility demand distributions realistically. We empirically

analyze historical trip data that includes comprehensive information of mobility requests, such as

origin and destination locations, start and end times, price, vehicle ID, and energy consumption.

In line with related works (e.g., Shortle et al. 2018, Demircan et al. 2022), we assume that demand

for ride-hailing services within the service area follows exponential spatio-temporal distributions.

To determine the distribution parameters, we divide the geographical service area into uniform

hexagonal-shaped zones, referred to as hexagons, each with a radius of approximately 1.3 km, and

segment the day into hourly time intervals. For each time bucket t → T (the set of time intervals)

and hexagon h → H (the set of zones), we model the inter-arrival time between successive ride

requests using an exponential distribution with the rate parameter ⇁t,h. We use these parameters

to generate trip requests in our ABM. Each trip request i includes an origin oi, an arrival time

ti, and a destination di. To determine the destination di, we use origin-destination patterns by

drawing from a multinomial distribution, di ⇑ Mult|H|(1, {p1, . . . , p|H|} | t → #, o → H), where

the possible destinations (ph) are treated as outcome categories.

3.3.2 Agent-Based Simulation for Hybrid Autonomous Ride-Hailing

To examine the temporal dynamics of a hybrid autonomous ride-hailing system, we use an ABM,

where all entities (e.g., mobility users, vehicles, and the ride-hailing operator) are represented

as interactive agents. This approach is particularly suitable for our study because the limited

adoption of autonomous ride-hailing fleets precludes field experiment analysis. Additionally,

ABM allows us to predict the impact of specific factors while controlling others, enabling shared

mobility platforms to proactively prepare for and integrate autonomous mobility into their sys-

tems. Agent-based systems are also cost-e”cient, low-risk, and ideal for studying non-existent

environments, such as shared autonomous fleets (Miller and Page 2009). ABM has been used

in the social-science community to model complex dynamic systems (Zhang et al. 2020a). In

the IS literature, Haki et al. (2020) presents an ABM to explore the evolution of information

systems architecture, focusing on how di!erent agents interact and influence the development

and adaptation of system structures over time. Bapna et al. (2008) use ABM to simulate in-

teractions between auctioneers and bidders within auction mechanisms; Ren and Kraut (2014)

model online communities to study how design factors influence their success; Ketter et al. (2016)

simulate the uncertain environment of trading agents, demonstrating the value of competitive

benchmarking in addressing complex socio-technical challenges; and (Zhang et al. 2020a) high-

lights the advantages of ABM for analyzing the performance of recommender systems over time

under diverse conditions.

Inspired by Ketter et al. (2023), Dlugosch et al. (2022), digitalized transportation system

problems such as evaluating autonomous ride-haling fleets are considered wicked problems where
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we need to consider the interaction between mobility users, vehicles, infrastructure resources and

road networks. For such complex problems, ABMs that employ self-operated agents with an

bottom-up approach are appealing to quantitatively study the system performance under di!er-

ent scenarios of platform design, fleet configurations, and user characteristics (Yao et al. 2020,

Fagnant and Kockelman 2018). Below, we outline the di!erent components of our simulation

framework, which integrates digital and physical layers to model the interactions required for

on-demand mobility services.

Input Service Region Demand Configurations

Simulation
Framework Fleet Agent

Charging Facilities
Total Supply

Total Demand

Passenger Agents

Origin
Destination

Energy Requirement
Preference

Vehicle Agents

Autonomous
SoC
Job

Location

Human-Driven
Job

Location
Electric

Output Fleet Profit Service Quality CO2 
Emissions

Serve Passengers (5)

Trips Info (1)

Vehicle Options (2)

Rebalancing 
Decisions (5) Selected Vehicle (3)

Vehicles Info (1)

Matched Trips (4)

Figure 3.2: A Framework for Hybrid Autonomous and Human-driven Ride-hailing Fleets

Drawing inspiration from the architecture of MatSim (W. Axhausen et al. 2016), a renowned

agent-based urban transportation simulation framework, we structure our model around three

main components: the user’s perspective (demand side), the operator’s perspective (supply side),

and the underlying mobility infrastructure. We focus on a hybrid ride-hailing fleet of AVs and

HVs, operated by a single provider delivering on-demand mobility services to di!erent types of

users. We model a complete package of both demand and supply sides while zooming in on the

user characteristics to answer our research questions regarding the influence of user behaviors

on the adoption of AVs in shared mobility platforms.

Figure 3.2 presents an abstract of our proposed ABM, highlighting its primary components

and their interactions. Our model’s inputs include service region, demand characteristics, and

fleet configuration, to initiate the simulation environment. A service region defines the geo-

graphical boundaries where the fleet provides services. The business area is divided into uniform

zones with identical demand distributions and infrastructure capacity. The fleet configuration

includes details such as the total number of vehicles, the proportion of autonomous and electric

vehicles, driver availability, infrastructure resources (e.g., charging stations), and operational

strategies like trip matching and rebalancing policies. The third input component is demand

characteristics, encompassing arrival patterns, origin-destination probabilities, and users’ mode
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choice preferences, which are derived from our empirical and DCE analysis. Our ABM supports

multiple agents: a fleet operator, vehicles (AVs and HVs), charging stations (CSs), and users,

with individual attributes and decision-making/executing models. The arrows in the simulation

framework box in Figure 3.2 indicate the flow of information between agents and the sequence of

execution. Central to the simulation is the fleet agent, which systematically gathers all relevant

information at each decision time step to oversee fleet management. This involves matching

available vehicles with ride-hailing requests and making decisions related to fleet rebalancing. It

identifies AVs that require charging, assigns them to CSs, and communicates this information to

charging agents. The fleet agent matches vehicles with users by presenting each passenger with

two vehicle options. The user agent selects one based on its mode choice preference and receives

service from the chosen vehicle. This process repeats throughout the simulation’s operational

period, recording key outputs such as aggregated data on served and canceled requests, vehicle

utilization, and charging infrastructure status. Analyzing the logged data enables the quan-

tification of key metrics, including fleet revenue, service quality (acceptance rate), and carbon

emissions.

Supply Side

We assume a hybrid mobility supply of AVs and HVs, with AV penetration increasing gradually

over time until it fully replaces HVs. In order to narrow our focus on examining the interac-

tion of user behavior and AV penetration in ride-hailing systems, we fix the fleet size (total

number of vehicles) and charging resources over time. While all AVs are electric (reflecting the

synergy between electrification and automation), only a portion of HVs is electric, with this

share increasing alongside technological advancements. All electric vehicles (EVs) are permit-

ted to charge in the fleet’s privately-managed charging facilities, which are restricted in terms

of parking capacity and charging power to consider the challenges of mobility electrification.

AVs are always available for mobility services, with the exception of recharging or relocating

periods. In contrast, as highlighted by Zwick et al. (2022), human drivers are only available

partially. To account for driver availability, our model adjusts the actual number of HVs based

on a distribution of driver shift hours, which is derived from historical trip data.

To match vehicles with trip requests, the fleet agent pools all open requests and available

vehicles between two consecutive decision time slices (e.g., one minute), following the first-come-

first-serve priority. For each request, the fleet suggests at most two vehicles (one AV and one

HV) within the trip coverage boundary, maximum driving distance (e.g., 5 km). Depending

on the system status, trips might receive two, one, or no options. If they receive at least one

ride-hailing option, based on their preferences, they can choose one or reject the o!er. However,

due to the lack of supply, some trips might not be served in the current time window and will

shift to the next one. We assume a patience time threshold for passengers, after which they will

cancel their requests.
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For service prices, we use a base fare plus a variable fare, which is a linear function of trip

distance and duration. Other factors, such as the time of day, tra”c congestion, and dynamic

pricing, are excluded for simplicity. We show the price calculation for a trip in Equation (3.3),

with ↪ as the revenue per distance, and ↩ as the revenue per duration. We consider a minimum

price for all trips and assume that AV prices are relatively lower (reduced by ϱ) than that of

HVs due to the elimination of driver payments.

TripPrice := min(BaseFare+ ↪ ⇓Distance+ ↩ ⇓Duration,MinimumFare). (3.3)

The fleet operator also centrally makes rebalancing decisions for all AVs, but HVs individually

decide when and where to charge or relocate. Regarding charging decisions, all AVs with an

energy level below a certain threshold (see Table 3.2) need to charge. The threshold has an

opposite pattern compared to the average temporal demand of all zones, derived from Ahadi

et al. (2023). All CSs use the same technology and have the same charging rate. Thus, each

vehicle that needs to charge is assigned to the closest CS with at least one free charger (inspired

by queuing theory extensions). The fleet operator also relocates the AVs in order to achieve a

better spatial supply and demand balance. It first compares the supply and demand for each

idle AV for its current zone and neighbors. If the supply exceeds the anticipated demand, the

vehicle relocates to a target zone (the closest low-supply hexagon).

1 2 3 4 5 6 7 8 9 10 11 12
Charging threshold % (morning) 0.45 0.60 0.65 0.62 0.58 0.55 0.52 0.50 0.40 0.40 0.40 0.40
Charging threshold % (afternoon) 0.38 0.35 0.32 0.25 0.25 0.20 0.20 0.25 0.27 0.35 0.35 0.40

Table 3.2: Hourly Charging Threshold for Determining Charging Vehicles

Demand Side

The demand factory in our ABM generates trips using estimated spatio-temporal exponential

distributions derived from observational trip datasets. At each time step, ride-hailing requests

are generated in parallel for each hexagon, with destinations assigned based on multi-nomial

origin-destination patterns. The simulation then determines the user class according to their

mode choice behavior. User classes, identified from our survey experiment analysis, are used to

cluster users, with their penetration rates factored in. Each user class has distinct parameters

for the mode-choice utility function, leading to varied mode-choice behavior. For instance, given

the same AV and HV options, a user from class A might choose the AV, while a user from

another class might choose the HV or reject both options. We assume that the penetration

rates of user classes are consistent across all hexagons and time buckets. Users receive at most

two ride-hailing options and can choose of them or reject both. Sometimes, in rush hours or

when the local demand is higher than local supply, users might not receive any ride-hailing o!er
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from the fleet. We assume individual waiting time threshold (e.g., 10 minutes) of users after

which they cancel their request (Yao et al. 2020).

As explained in Section 3.1.3, we assume that users are aware of their utility for each option

and choose the vehicle with the highest utility. To calculate the utility we consider the length

of the trip, alternative-specific factors including the price and waiting-time as well as a constant

and the trust on AVs. Therefore in the simulation, whenever a user receives mobility service

options, first, we calculate the utility for each option based on the aforementioned variables,

and second, we use a Logit model (Hensher and Greene 2003) to calculate the probability of

choosing one alternative over the other, according to the utilities:

Pij =
exp(Uij))︄
i exp(Uij)

(3.4)

The probability Pij shows the likelihood of choosing alternative i for user j in a stochastic

way. For example, if the probability of choosing AV is 75% for one trip, it does not mean that AV

is certainly chosen (which may be the case in a deterministic process). In a stochastic process,

there is 75% likelihood of having an AV trip and 25% likelihood of other choices.

3.3.3 Key Performance Indicators

To compare results across di!erent user behavior scenarios, we quantify system performance

in a way to cover our multiple objectives. For economic metrics, we measure the fleet’s total

revenue, which includes:

FleetRevenue =
[︄

r↓RA

(pr(1≃ ϱ)) +
[︄

r↓RH

pr◁, (3.5)

Revenues consist of serving requests using AVs and HVs, where RA and RH represent

the sets of requests served by AVs and HVs, respectively. If an AV serves a trip, the total

price (pr(1 ≃ ϱ)) is directly assigned to the fleet. It is important to note that the price of

ride-hailing autonomous services is assumed to be marginally lower than that of human-based

services due to the absence of driver payment. In order to account for this di!erence, we include

a reduction of ϱ% of the price that users must pay for services from HVs. When a human

driver serves a trip, only a portion of the trip price (pr◁) is assigned to the fleet, and the

driver receives her share directly from the user’s payment. In addition to fleet revenue, we

measure service quality through two metrics: the fraction of fulfillment requests (acceptance

rate) (ServiceQuality = |ServedRequests|
|Requests| ) and average WaitingT ime for all served requests.

The WaitingT ime for each request is the summation of the assignment and pick-up duration.

From an environmental perspective, we track overall CO2Emissions, distinguishing between

green transportation modes (EV) and non-electric vehicles. In other words, CO2Emissions per

driving distance di!ers for electric and petrol cars.
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3.3.4 Technical Implementation and Simulation Validation

For the technical implementation of the simulation we use SimPy, a Python package based on

object-oriented programming to develop discrete-time and discrete event stochastic simulation

processes. The digital representation of the environment is defined on this simulation platform,

allowing us to define multiple interactive agents. Agents execute parallel processes whenever an

event occurs, triggering the subsequent process. For instance, when a user selects an AV from the

available ride-hailing options, the fleet operator agent initiates a request serving event, passing

it to the chosen AV. This action triggers the AV’s serving process, which includes sub-processes

such as relocating to the user’s origin, picking up the user, and driving to the destination. The

vehicle’s status updates with each new task, preventing it from being assigned other tasks. For

example, a vehicle that is charging cannot serve a mobility request unless an exception interrupts

the charging process and triggers a di!erent task. We also consider a sequential job queue in

certain scenarios. For example, when matching vehicles and requests, we include not only idle

vehicles but also AVs currently serving other requests that will soon be free and are near the

matching user’s origin. If a serving AV matches with another user, it adds this new task to

its job queue, beginning the new task after completing the current one (e.g., dropping o! the

current user).

The simulation platform must closely mirror reality, ensuring that only feasible actions and

decisions are allowed. To achieve a realistic simulation, we use real-world taxi trip data from the

City of Chicago to estimate user arrival times at various locations and their likely destinations.

For user preferences regarding autonomous versus HVs, we incorporate findings from our DCE.

Additionally, to model the adoption rate of AVs, we rely on results from existing literature and

industry reports (Talebian and Mishra 2018). To ensure the accuracy of the software platform,

we implement validation techniques recommended by Sargent (2010) to guarantee a bug-free

simulation. First, we trace all agents to avoid infeasible circumstances. For example, if a vehicle

has a negative energy level, its location is outside the service area, or it’s executing in parallel

processes (e.g., serving two users or charging and relocating simultaneously) the simulation will

abort with an error. Additionally, we conduct extreme condition tests. For instance, if the fleet

lacks access to CSs, its performance rapidly declines as many vehicles run out of energy and

cannot serve trip requests. To validate the simulation software further, we perform sensitivity

analyses; for example, increasing the fleet size exponentially improves the acceptance rate and

reduces average waiting time, but these benefits plateau beyond a certain point. Finally, we

compare the simulated ride-hailing demand with observational trip data to ensure they exhibit

similar patterns. Demand distributions are very similar. The only di!erence is that the generated

trips by simulation have less spatio-temporal variance compared to the empirical data.
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3.4 Simulation Experiment Setup

To discretize the spatio-temporal network, we divide the service region (city of Chicago) into

117 hexagons with an edge length of approx. 1.3 km. These zones are characterized by distinct

hourly arrival rates, origin-destination patterns, and limited charging facilities. Each simulation

time step corresponds to one minute in the real world, and each simulation experiment represents

one business day.

We use observational taxi trip data from the City of Chicago to feed the simulation and

generate realistic mobility requests. The dataset includes 6.38M trip observations from January

2022 to December 2022. Each observation specifies a trip start date/time and end date/time,

origin location (latitude and longitude), destination location, distance, fuel consummation, pay-

ment details, and vehicle ID. This allows us to find the hourly arrival rates of each hexagon (⇁h,t)

by fitting a Poisson distribution for trips originating from hexagon h at time t. The hourly-

origin-destination probabilities are calculated as an average fraction of trips from hexagon i at

time h that ends at hexagon j. Figure 3.3 visualizes the frequencies of demand origins on the

left side and an hourly demand distribution on the right side. For the origin hexagons, a heat

map compares the arrival rate of all hexagons within the service area. A darker color indicates

higher arrival rates. As it shows, trips mostly start from central areas, whereas suburbs have

considerably lower arrival rates with some exceptions such as trips started from the airport.

Trip destinations follow the same pattern such that we do not visualize them here. Concerning

the temporal distribution, we compute an average of rentals for each hour among all hexagons.

The boxplot on the right side of Figure 3.3 shows that demand is deficient from midnight to

early morning. Still, from the start of working hours in the morning, the average and variance of

rentals pile up and peak in the evening and drop o! during night hours. Variance in the boxplot

reflects fluctuations across di!erent days.

Figure 3.3: Demand Distribution for Mobility-on-Demand Services in the city of Chicago
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Another outcome of the empirical analysis of observational trip data is the availability of

drivers at di!erent times of the day. To identify these patterns, we track drivers using their

vehicle identifiers in the historical data to generate hourly availability data across the entire

time horizon. We consider a driver active or available for a time slot if they serve a trip within

a time window that overlaps with that slot. Conversely, drivers are marked as idle during slots

when they do not serve any trips. It is assumed that drivers go o&ine if they remain idle for

a while. Using the estimated availability data, we can describe the actual fleet size of HVs in

di!erent time slots. Figure 3.4 shows the estimated hourly patterns of the proportion of active

drivers compared to the total number of vehicles. As illustrated, the actual fleet size closely

mirrors the hourly trip patterns, with higher numbers in the afternoon and lower numbers

during the night and early morning hours. For each hour, we fit a normal distribution to the

observed fleet size and use this distribution in the simulation to approximate driver behavior

accurately.

Figure 3.4: Hourly Driver Availability Distribution Driven from Observational Trip Data

To initiate the charging infrastructure, we consider 16 CSs distributed in di!erent locations

of the service region based on the trip demands. We sort the hexagons based on the demand and

locate these 16 CSs in those with the highest mobility demand. All chargers are homogeneous

with 20 number of fast charging (55 kW) connectors. To characterize the fleet, we consider a

fixed number of 500 hybrid AVs and HVs. It should be noted that the determination of the

fleet size and the number of CSs is conducted manually in order to ensure an acceptable level of

mobility service quality. It is therefore evident that the aforementioned parameters do not a!ect

the validity of the main findings if they are selected in a reasonable manner. As described before,

over time, the penetration of AVs will increase but the overall fleet size remains the same (see

section 5.2 for details). AVs are homogeneous and similar to Tesla Model 3 (Fuel economy guide

2020), which are allocated at the beginning of the simulation time across the service area with
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an energy level between 50% and 70% of their battery capacity (50 kwh). However, HVs are

heterogeneous in terms of vehicle brand, size, and fuel type. Regarding trip price components,

we consider a base fare of 3.25 USD, a revenue per distance of 2.25 USD/mile, and a revenue

per duration of 0.33 USD/min. Note that the minimum charge for each trip is 5 USD (Taxi

costs in Berlin 2022). Concerning the di!erences between autonomous and human services, we

consider a 10% price reduction (ϱ) for AVs and a driver share of 75% (◁) from the trip price.

We assume that each vehicle has an approximate average speed of 20 km/hr for moving in the

road network in the simulation. Finally, we quantify the CO2 emissions of EVs and non-EVs

to 75gr/km and 241gr/km, respectively (Transportation & Environment 2022). A summary of

parameters is provided in Table 2.1.

Parameter Value Parameter Value
Simulation length 1 day Number of zones/hexagons 117
Number of charging stations 16 Total fleet size 500
Charging power rate 55 kW EV battery capacity (energy consumption) 50 kWh (0.20 kWh/km)
EV (non-EV) CO2 emission 75 (241) gr/km Vehicle speed 20 km/hour
Driving cost 0.43 USD/km AV price reduction 10%
Driver revenue share (1-◁) 75%

Table 3.3: A Summary of the Key Parameters of Agent-Based Simulation

3.5 Results

We first analyze the outcomes of our DCE to estimate the utility function of ride-hailing users,

allowing us to understand how users choose among the available services. Additionally, we

investigate the heterogeneity in user preferences for AVs and HVs, identifying di!erent user

groups with distinct characteristics. Finally, we incorporate the results of our DCE analysis into

our ABM to calibrate user behavior and investigate the impact of heterogeneous preferences

on the environmental and economic outcomes of ride-hailing providers as the penetration of

autonomous ride-hailing services grows over time.

3.5.1 Latent Class Model of DCE

In total, we recruited 595 subjects for the DCE of which 59 were excluded for selecting the

dominated alternative in the choice set (i.e., an option inferior in all attributes) (Liu et al.

2018). This left a final sample of 536 participants: 52% identified as female, 47% as male, and

1% as diverse. The average age was 29 years (SD = 8). We provide the details in the online

appendix.

Table 3.4 shows the results of our latent class model with four user classes. The reference

category in our model is the opt-out option, representing participants choosing another mode of

transportation or not taking the trip. The coe”cients reflect how a given attribute a!ects the

utility of a transportation mode, holding all other attributes constant. We find that subjects
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Class 1 Class 2 Class 3 Class 4

AV Skeptical: AV Enthusiasts Trip Conscious AV Skeptical:

Trust Insensitive Trust Sensitive

Price -0.30*** -0.31*** -1.25*** -0.20***

(0.05) (0.07) (0.29) (0.04)

Waiting time -0.09* -0.52*** -0.62*** -0.20**

(0.05) (0.10) (0.04) (0.04)

Power -0.82*** -0.53 -0.05 -0.09

(0.28) (0.56) (0.35) (0.17)

Trip duration 0.16*** 0.03 1.18 0.09***

(0.04) (0.06) (0.85) (0.03)

Constant AV -1.91** 8.57*** 1.44 -3.44***

(0.84) (1.89) (8.43) (0.73)

Constant HV 2.10*** 7.13*** 8.22 5.26***

(0.57) (1.12) (8.21) (0.55)

Constant AV ↑ Trust 0.68*** 0.13 1.28*** 1.65***

(0.12) (0.22) (0.30) (0.14)

Constant -0.48** -0.66*** -0.46*** 0.00

(0.20) (0.19) (0.17) (0.00)

Share of subjects 0.22 0.19 0.23 0.36

Notes: * p < 0.1; ** p < 0.05; *** p < 0.01; Power is a binary variable with 0 =
electric, 1 = combustion engine. Standard errors are in parentheses.

Table 3.4: Latent Class Conditional Logit Model

vary in their preferences regarding AVs and HVs, as well as the importance they place on

di!erent attributes, since the coe”cients of the mode-specific constants and attributes di!er

between classes. In all classes, the coe”cients for price and waiting time are significant and

negative. This indicates that subjects experience a lower utility from an option with increasing

price and waiting time, which is to be expected. However, the magnitude of change in utility

di!ers between the classes, indicating that the user classes value them di!erently. Below, we

describe the classes based on their most prominent characteristics.

Class 1 (AV Skeptical: Trust Insensitive) is the only class with a statistically sig-

nificant coe”cient for power (↽ = -1.13, p < 0.05). Subjects in this class prefer EVs over

conventional vehicles, suggesting they are more conscious of the environmental aspects of a ride-

hailing option. They also derive higher utility from trips with an increasing trip duration (↽ =

0.16, p < 0.05), indicating a preference for ride-hailing for longer trips, while for shorter trips,

they might prefer a di!erent mode of transportation. Importantly, they derive a negative utility

from AVs in general (↽ = -1.91, p < 0.05). Increasing trust in AVs also increases their utility

from AVs but with a comparably small magnitude (↽ = 0.68, p < 0.01). Subjects in Class 2

(AV Enthusiasts) are the only ones in our sample who prefer autonomous over HVs. This

class is the smallest of all classes, comprising 19% of our sample. Class 3 (Trip Conscious)
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exhibits the highest price and waiting time sensitivity of all classes, with the largest absolute

coe”cient for price (↽ = -1.25, p < 0.01) and waiting time (↽ = -0.62, p < 0.01). This indicates

that subjects in this class are highly sensitive to cost and waiting time, and these factors greatly

influence their utility. Subjects in Class 4 (AV Skeptical: Trust Sensitive), which is the

largest of all classes (36%), experience the most negative utility from AVs in general of all classes

(↽ = -3.44, p < 0.01). As such, they would only choose an AV over a HV if the price and wait-

ing time are very high for HVs, or if their trust in AVs is established (↽ = 1.65, p < 0.01). As

shown, the preferences of users regarding autonomous mobility are highly diverse, influenced by

factors such as service characteristics (e.g., price) and trust in technology. This heterogeneity,

combined with the complexity of the system, makes it challenging to conduct a comprehensive

analysis. To address this, an agent-based simulation approach is essential, allowing for flexible

exploration of the temporal e!ects of various factors while maintaining control over others.

3.5.2 Simulation Analysis Results

We evaluate the performance of hybrid ride-hailing systems over 10 phases of increasing AV pen-

etration, following the S-curve pattern identified by Talebian and Mishra (2018). This pattern

is defined by slow growth during the initial and final phases, with rapid, exponential growth

in the middle stages. To isolate the influence of individual factors, we maintain all other vari-

ables constant within a baseline scenario. Separate scenarios are then constructed to assess

the impact of specific factors, such as trust in AVs. Table 3.5 outlines the parameters for the

baseline and other scenarios. In the baseline scenario, user behavior and fleet configuration

remain unchanged throughout all phases. Additionally, trust in AVs and user class penetration

are determined based on the DCE results specific to each user class. In Scenario A, trust in AVs

increases for all user groups over time in alignment with the growth of AV adoption. In Scenarios

B-E, we examine the impact of user group penetration within the population by analyzing how

fleet performance changes when the entire population is assumed to belong to a single user class.

Figure 3.5 represents the results for the baseline scenario. Revenue and service quality

(measured as acceptance rate) improve substantially during the early phases when only a small

percentage of the fleet is replaced with AVs. Several factors contribute to this growth. First,

AVs are operational full-time, except during charging periods, which greatly increases supply

availability even with limited AV penetration. Second, ride-hailing with AVs is more cost-

e!ective than with HVs, potentially attracting more users to accept ride-hailing mobility services.

Third, some users inherently prefer autonomous services, and a mixed fleet helps improve overall

acceptance rates. Lastly, AVs generate higher revenue for ride-hailing platforms since all trip

earnings are retained without needing to pay drivers. After phase two, corresponding to the

onset of exponential growth in AV penetration, revenue and service quality spike initially but

plateau or decline beyond phase four. From phases five through ten, daily revenue shows a
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Phase 1 2 3 4 5 6 7 8 9 10
Baseline Scenario

AV Adoption 0.02 0.05 0.15 0.42 0.70 0.85 0.91 0.95 0.98 1.00
AV Trust [4.45, 4.76, 4.81, 4.00] ” ” ” ” ” ” ” ” ”

User Share (%) [0.25, 0.23, 0.19, 0.33] ” ” ” ” ” ” ” ” ”
Scenario A

AV Trust +0.06 +0.15 +0.44 +1.26 +2.09 +2.55 +2.7 +2.82 +2.91 +3.0
Scenario B

User Share (%) [1.0, 0.0, 0.0, 0.0] ” ” ” ” ” ” ” ” ”
Scenario C

User Share (%) [0.0, 1.0, 0.0, 0.0] ” ” ” ” ” ” ” ” ”
Scenario D

User Share (%) [0.0, 0.0, 1.0, 0.0] ” ” ” ” ” ” ” ” ”
Scenario E

User Share (%) [0.0, 0.0, 0.0, 1.0] ” ” ” ” ” ” ” ” ”

Table 3.5: Phase-Dependent Parameters

Figure 3.5: Hybrid Autonomous Ride-hailing Fleets Performance for Baseline Scenario

slight upward trend, but of particular interest is the decline in acceptance rate observed after

phase four. This indicates that despite the anticipated increase in the acceptance of AVs due

to their high availability and lower costs, we observe a contrasting trend as some users remain

skeptical of AVs (see results in Table 3.4). Revenue continues to grow even when the acceptance

rate decreases over the phases, as the majority of trips are now served by AVs, which are more

profitable for ride-hailing fleets. The figure also shows an exponential reduction in CO2 emissions

as the fleet transitions from conventional to fully automated vehicles. This reduction underscores



88 Hybrid autonomous ride-hailing services

the environmental significance of adopting AVs, even in the initial phases where user acceptance

rates are lower. Regarding the average waiting times, there is a consistent decline throughout

the phases, inversely mirroring AV penetration rates. Notably, the reduction in waiting times

becomes more pronounced after phase three and continues at a slower rate through phase ten.

Figure 3.6: The Impact of Increasing Trust Along with AV Adoption Rate on Fleet Perfor-
mance (Scenario A)

In Scenario A, we examine whether the fleet performance changes if users’ trust in AVs

increases over time, considering the same AV adoption rate as in the previous analyses. In each

phase, user trust in AVs increases proportionally to AVs penetration, reaching its maximum

when HVs are completely replaced (phase ten). The results for Scenario A are illustrated in

Figure 3.6. Unlike the baseline scenario, service quality (acceptance rate) continues to rise

beyond phase four as growing trust reduces user skepticism. However, even with maximum

trust, the fleet cannot reach very high acceptance rates, which shows that other factors such

as price, waiting time, and user types play an important role in the decision-making process of

travelers. This figure also shows that the increase in revenue is higher if trust in AVs is growing

compared to the baseline scenario, yielding almost 18% higher revenue.

1

Figure 3.7: The Impact of User Penetration on Fleet Performance (Scenario B-E)
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To further analyze the impact of user characteristics on the performance of hybrid au-

tonomous ride-haling fleets, we simulate the system for each user class separately. As scenarios

are shown in Table 3.5, in each scenario we generate all travelers from one user class. Each sce-

nario associates with a specific user class (e.g., scenario B examines the user class 1). Figure 3.7

shows the acceptance rate for these scenarios under two conditions: steady trust in AVs and in-

creasing trust over time. Here we only focus on requests acceptance rate since it explicitly shows

the behavior of each user class. In the steady trust condition, di!erences in acceptance rates

are significant during early phases when AV penetration is low, with acceptance rates increasing

for all scenarios until phase four. Afterwards, acceptance rates for classes 2 (AV Enthusiasts)

and 3 (Trip Conscious) continue to rise, while more users from classes 1 (AV Skeptical: Trust

Insensitive) and 4 (AV Skeptical: Trust Sensitive) refuse ride-hailing o!ers after high adoption

of AVs. This behavior aligns with the findings from the DCE analysis, where classes 1 and 4

exhibited AV skepticism. However, users from Class 2, identified as AV enthusiasts, may still

reject autonomous ride-hailing o!ers due to other factors, such as price or trip characteristics.

This results show the importance of using simulation experiments to analyze the user behavior

impacts. Increasing trust in AVs over time alters the results. Still, the performance of the

fleet is maximized when the majority of the population is from user Class 4, but interestingly, it

surges along with the AV adoption. The reason could be the comparably high coe”cient of trust

in AVs in their utility function, which becomes more important when trust is increasing. For

other scenarios, the fleet performance is almost merging to the same value, particularly when

the penetration of AVs is high. It means that the positive e!ect of increasing trust in AVs covers

other factors and more users would accept autonomous ride-hailing services.

Figure 3.8: The Impact of Trust Level on AV Skeptical: Trust Sensitive Users

Given that previous results show user Class 4 (AV Skeptical: Trust Sensitive) is more respon-

sive to an increase in trust to AVs compared to other groups, we conduct a more detailed analysis

of this interaction. Figure 3.8 illustrates the outcomes for di!erent baseline trust levels under

steady and increasing trust scenarios. For steady trust, acceptance rates vary significantly across

trust levels. Low trust leads to a steep decline in acceptance rates after phase three, reaching
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only 25% in a fully autonomous fleet. Medium trust results in approximately 50% acceptance,

while high and very high trust levels enable the majority of ride-hailing o!ers to be accepted

in later phases. Conversely, when trust in AVs increases over time, acceptance rates rise across

all baseline trust levels. Except for the low-trust scenario, all other cases converge to nearly

identical values, underscoring the critical role of trust-building initiatives for AV adoption.

To investigate other factors influencing fleet performance, we conducted an analysis on the

supply-side determinants. For all supply-side analysis, we use the the baseline scenario configu-

ration (see Table 3.5). Specifically, we focus on waiting time and price as these are two factors

that can be adjusted by the ride-hailing platform operator. Note that we cannot directly control

waiting time in our simulation experiments, so we need to analyze its e!ects through other vari-

ables. Since a higher number of available vehicles decreases average waiting time, we indirectly

examine the impact of waiting time by running simulation experiments with di!erent fleet sizes.

Figure 3.9 shows the results, indicating that larger fleets improve acceptance rates, particularly

in early phases with low AV penetration. Revenues do not increase as much as the acceptance

rate in early phases, because most requests are served by HVs that impose high driver payment

costs. In later phases, a higher number of vehicles also increases revenue and service quality,

but this improvement is generally limited. In other words, after a certain level of availability,

fleet performance does not change significantly. Therefore, ride-hailing operators cannot simply

maximize performance by expanding fleet size alone.

Figure 3.9: The Impact of Fleet Size on the Fleet Performance

Regarding pricing, Figure 3.10 shows that reducing AV prices has minimal impact in early

phases due to the limited number of AVs but increases acceptance rates and lowers revenues in

later phases. Interestingly, revenues are highest during the middle phases when AVs and HVs

are equally distributed and AV rides are discounted by (10%).

Finally, we examine the impact of communicating with users. In the primary configuration

of the hybrid autonomous ride-hailing system, it is assumed that the platform will o!er both

autonomous and human-driven services when available. The results in Figure 3.11 compares

scenarios where users are o!ered either the closest vehicle (AV or HV) or two options (one AV
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Figure 3.10: The Impact of Price Reduction of Autonomous Services

and one HV). In the initial and concluding stages of the analysis, no discernible di!erences are

observed, as the majority of the fleet comprises either HVs or AVs. However, in the middle

phases, when both vehicle types are widely available, o!ering two options increases acceptance

rates by accommodating diverse user preferences. This is because users who have di!erent prefer-

ences for autonomous and human-based services would accept an o!er with a higher probability.

However, the revenue impact is smaller, as HV trips generate less profit for the platform.

Figure 3.11: The Impact of Interactive Communication with Users

3.6 Discussion

We investigate how the adoption of AVs into ride-hailing fleets a!ects their economic, envi-

ronmental, and service outcomes under heterogeneous user preferences using a multi-method

approach. First, we conduct a DCE to assess current user preferences for AVs and HVs under

varying attribute levels, including price, waiting time, and trip length. We also examine the

influence of user trust in AVs on mode choices. Second, we develop a multi-agent simulation of

a hybrid ride-hailing fleet, where AVs and HVs serve a heterogeneous user population through



92 Hybrid autonomous ride-hailing services

a digital platform. The simulation parameters are calibrated using real-world taxi trip data

from Chicago and the results of DCE. This approach allows us to control for counterfactual

variables while analyzing the impact of user behavior on the performance of hybrid fleets during

the transition to fully autonomous systems.

The DCE results reveal that ride-hailing users have heterogeneous preferences for AVs versus

HVs. We identify four distinct user groups of which the majority (>80%) generally prefers HVs

over AVs when attribute levels are not considered. However, all user groups exhibit sensitivity

to price and waiting time, o!ering providers opportunities to adjust these factors to make au-

tonomous services more appealing. Additionally, most users (>80%) do not consider the power

source of a vehicle (electric or gasoline) as a key determinant in their mode choice. Hence, while

being electric is one advantage AVs can bring for the environment (Ketter et al. 2023), it does

not seem to be an influencing factor for most of users’ mode choices in a hybrid ride-hailing sys-

tem. Still, even considering the existing user groups, introducing even a small proportion of AVs

(15%) into a fleet can reduce its CO2 emissions by nearly 40% compared to a non-automated

fleet. In terms of economic outcomes, we find that ride-hailing providers’ revenues increase

logarithmically with AV penetration, assuming a 10% price reduction for AV rides compared

to HVs. This price reduction aligns with forecasts suggesting that AVs can be o!ered at lower

costs due to reduced operating expenses (Heineke et al. 2022). However, under the existing user

preferences, ride-hailing providers need to make a trade-o! between revenues and acceptance

rate of users in later stages of AV adoption (AV penetration ⇔40%). While revenues increase,

service quality (acceptance rate) decreases as there remains a proportion of users who refrain

from using AVs in general. Hence, even though providers’ revenues may increase due to reduced

operating costs of AVs (Al-Kanj et al. 2020b), they may loose a share of customers if little or

no HVs are o!ered. Yet, it should be noted that these findings are based on current user prefer-

ences in a state in which subjects only had some experience with AVs. Of our subject pool, 70%

stated that they were slightly familiar with AVs. As AV penetration increases, user familiarity

and trust in AVs are expected to grow (Whittle et al. 2019), potentially reducing skepticism.

However, similar to other automation technologies, the development of trust may be slow (Lee

and See 2004, Ge et al. 2021) and may be undermined by visible system failures(Dietvorst et al.

2014). We, thus, analyze a further scenario in which we consider incrementally increasing user

trust in AVs. We find that if user trust is increasing along with the AVs penetration, not only

revenues but also the acceptance rate show a positive trend in later stages of AV adoption. As

such, even in these stages, the provider could achieve increasing acceptance rates making trust

an important factor for customer retention if ride-hailing fleets transition towards being purely

autonomous.

Our results have implications for academic research, shared mobility providers, and city plan-

ners. One major challenge in encouraging AV adoption is building user trust, consistent with

prior research (e.g., Shari! et al. (2017)). If ride-hailing providers proceed with the implemen-
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tation of AVs into their fleet too fast such that user trust is still behind, this could lead to users

refraining from using their services. Thus, providers should conduct market research to monitor

trust levels during the transition to AVs. Fleet performance also varies significantly based on

the user population’s composition. User groups highly di!er in their perception of AVs and

willingness to use them. Therefore, platform providers should carefully think about customizing

their communication strategy to certain customer groups. Potentially, for those users with low

trust in AVs, stressing their safety benefits may at least mitigate some fears of users and lead to

a higher acceptance rate. Alternatively, to address environmentally conscious users, platforms

could display the CO2 emissions of each vehicle type to nudge them towards taking an AV or an

electric human-driven car and reduce their carbon footprint. From an operations management

perspective, we show that a larger fleet at early phases increases the fleet performance due to

the higher availability of vehicles that leads shorter waiting time, while not a!ecting the service

quality at later phases. Additionally, price reductions for AV rides can boost acceptance rates,

but operators must balance these discounts with revenue optimization. Dynamic pricing schemes

that account for vehicle availability and demand fluctuations could enhance fleet profitability.

However, indiscriminate price reductions may attract users away from public transportation,

with potentially adverse e!ects on urban mobility. City planners should therefore regulate AV

pricing to align with sustainability goals. Finally, platform providers should not only invest

in the development of AVs but also in the application technology which connects customers

to vehicles. We have demonstrated that through a simple change of operation mode, namely

o!ering two vehicle options, the fleet provider’s profitability can improve even when a share

of customers is technologically skeptical. This change in the platform’s customer communica-

tion design outperforms the status quo design of current ride-hailing platforms regarding its

profitability.

To our knowledge, this study is the first to incorporate user behavior toward AVs into the

analysis of their phased introduction in ride-hailing fleets. By doing so, we extend research on

user behavior and interaction with AI occurring on the next generation of digital platforms (Rai

et al. 2019). Further, we establish a simulation environment which serves as a testbed for a

range of variations in future ride-hailing markets. Thus, we also contribute to the literature on

mobility transition and green IS. However, our work does not come without limitations. The

current simulation does not account for varying types of charging infrastructure or fluctuating

fleet sizes. In reality, the speed and availability of charging infrastructure can significantly impact

fleet performance, as EV range remains a key limitation (Al-Kanj et al. 2020b). Furthermore,

while AVs reduce operating costs, providers must initially invest in their acquisition (Heineke

et al. 2022), which we did not include in our analysis. Future research should explore the

implications of these initial costs on the profitability of an autonomous ride-hailing fleet. We

also assume that drivers behave in a uniform and predictable manner by accepting all customers’

requests. In practice, drivers may reject requests based on factors such as the distance to the
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pick-up point or the expected fare. We encourage future research to shed light on the influence

of driver behavior on ride-hailing platforms transitioning towards autonomous services.
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3.7 Appendix

3.7.1 Design of the Discrete Choice Experiment

Subjects were instructed that they should imagine they plan to go on a trip similar to their most

recent ride-hailing trip. They were told that they were using their ride-hailing app to find the

nearest car available and two options were o!ered to them which are the only options available

for the presented trips. Subjects’ task was to choose one of the options o!ered.

Explanation of Vehicle and Trip Attributes

Each scenario was described by the duration of the trip which is the same for both of the

options. Additionally, the proposed vehicle options possess attributes which may di!er between

them (price, waiting time, power).

Vehicle Options

Human-driven vehicle: The car will be driven by a human driver registered at the ride-

hailing provider.

Autonomous vehicle: Autonomous vehicles can drive by themselves. No human driver

will be present in the car, and you will not be able to drive the car yourself.

Scenario-related descriptions

Trip duration: This attribute describes the time (in minutes) the ride will take from your

origin to your destination.

Option-related descriptions:

Price: Shows the costs for the proposed vehicle option in US$. Please imagine you would

need to spend your own money for the trip.

Waiting time: Shows the time (in minutes) that it will take until your chosen vehicle option

will arrive to pick you up at your origin.

Power: Shows how the vehicle o!ered to you for the trip will be powered. It can take one

of two options:

a) Electric: The vehicle is solely powered by electricity, using a battery

b) Gasoline: The vehicle is solely powered by gasoline and has an internal combustion engine

Choice Set Design

Depicted in Figure 1 is an example of a choice set. Subjects were asked to choose one of

the alternatives. We combined the choice sets using d-e”ciency as a criterion and show all

combinations in Table 1.

Block Choice Set Preis Waiting time Power Trip duration Mode

1 1 8.8 5 0 10 AV

1 1 12.1 5 0 10 HV
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Block Choice Set Preis Waiting time Power Trip duration Mode

1 2 12.0 5 0 20 AV

1 2 15.0 5 0 20 HV

1 3 9.9 7 0 10 AV

1 3 12.1 7 1 10 HV

1 4 20.0 5 0 30 AV

1 4 25.0 5 0 30 HV

1 5 22.5 7 0 30 AV

1 5 27.5 5 0 30 HV

1 6 13.5 7 0 20 AV

1 6 15.0 7 1 20 HV

2 7 13.5 5 0 20 AV

2 7 16.5 7 1 20 HV

2 8 13.5 10 0 20 AV

2 8 16.5 5 1 20 HV

2 9 9.9 5 0 10 AV

2 9 12.1 7 1 10 HV

2 10 9.9 10 0 10 AV

2 10 12.1 5 1 10 HV

2 11 22.5 5 0 30 AV

2 11 30.0 7 0 30 HV

2 12 25.0 5 0 30 AV

2 12 25.0 10 0 30 HV

3 13 15.00 5 0 20 AV

3 13 16.50 7 0 20 HV

3 14 13.50 7 0 20 AV

3 14 18.00 5 0 20 HV

3 15 22.50 5 0 30 AV

3 15 27.50 5 1 30 HV

3 16 11.00 5 0 10 AV

3 16 12.10 7 0 10 HV

3 17 22.50 7 0 30 AV

3 17 25.00 7 1 30 HV

3 18 9.90 7 0 10 AV

3 18 13.20 5 0 10 HV

4 19 15.00 7 0 20 AV

4 19 15.00 10 1 20 HV

4 20 12.00 5 0 20 AV
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Block Choice Set Preis Waiting time Power Trip duration Mode

4 20 18.00 10 1 20 HV

4 21 25.00 10 0 30 AV

4 21 25.00 5 1 30 HV

4 22 25.00 7 0 30 AV

4 22 30.00 5 0 30 HV

4 23 11.00 7 0 10 AV

4 23 12.10 10 1 10 HV

4 24 8.80 5 0 10 AV

4 24 13.20 10 1 10 HV

5 25 11.00 10 0 10 AV

5 25 12.10 5 0 10 HV

5 26 15.00 10 0 20 AV

5 26 18.00 7 1 20 HV

5 27 15.00 10 0 20 AV

5 27 15.00 5 0 20 HV

5 28 25.00 7 0 30 AV

5 28 27.50 10 1 30 HV

5 29 20.00 10 0 30 AV

5 29 30.00 5 1 30 HV

5 30 11.00 10 0 10 AV

5 30 13.20 7 1 10 HV

6 31 8.80 7 0 10 AV

6 31 12.10 5 1 10 HV

6 32 8.80 10 0 10 AV

6 32 12.10 7 0 10 HV

6 33 12.00 7 0 20 AV

6 33 16.50 5 1 20 HV

6 34 12.00 10 0 20 AV

6 34 15.00 7 0 20 HV

6 35 20.00 7 0 30 AV

6 35 30.00 10 0 30 HV

6 36 20.00 5 0 30 AV

6 36 27.50 10 1 30 HV

7 37 8.80 7 0 10 AV

7 37 13.20 7 0 10 HV

7 38 8.80 10 0 10 AV

7 38 12.10 10 1 10 HV
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Block Choice Set Preis Waiting time Power Trip duration Mode

7 39 12.00 7 0 20 AV

7 39 18.00 7 0 20 HV

7 40 12.00 10 0 20 AV

7 40 16.50 10 1 20 HV

7 41 20.00 7 0 30 AV

7 41 25.00 7 1 30 HV

7 42 20.00 10 0 30 AV

7 42 27.50 7 0 30 HV

8 43 11.00 7 0 10 AV

8 43 12.10 10 0 10 HV

8 44 9.90 5 0 10 AV

8 44 12.10 10 0 10 HV

8 45 15.00 7 0 20 AV

8 45 16.50 10 0 20 HV

8 46 13.50 5 0 20 AV

8 46 15.00 10 0 20 HV

8 47 25.00 5 0 30 AV

8 47 30.00 7 1 30 HV

8 48 25.00 10 0 30 AV

8 48 27.50 7 0 30 HV

9 49 11.00 5 0 10 AV

9 49 13.20 5 1 10 HV

9 50 9.90 10 0 10 AV

9 50 13.20 10 0 10 HV

9 51 15.00 5 0 20 AV

9 51 18.00 5 1 20 HV

9 52 13.50 10 0 20 AV

9 52 18.00 10 0 20 HV

9 53 22.50 10 0 30 AV

9 53 30.00 10 1 30 HV

9 54 22.50 10 0 30 AV

9 54 25.00 10 0 30 HV

Table 3.6: Experimental Design Table
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Figure 3.12: Exemplary Choice Set

3.7.2 Descriptive Statistics Discrete Choice Experiment

Variables

Age

Mean 29.40

Standard Deviation 8.69

Trust

Mean 4.38

Standard Deviation 1.29

Technology Interest

Mean 4.10

Standard Deviation 0.96

Environmental Friendliness

Mean 4.14

Standard Deviation 0.71

Table 3.7: Demographics and Questionnaire Variables (Continuous)
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Variables Shares

Gender

Female 53.28%

Male 45.55%

Diverse 0.17%

Preferred not to report 0.67%

Ride-hailing frequency (past 12 months)

0 times 3.03%

1-3 times 22.35%

4-6 times 22.02%

7-9 times 13.45%

10 times or more 39.16%

Car owner

Yes 58.99%

No 41.00%

Education

Less than high school 0.17%

High school graduate 14.62%

College 17.98%

Bachelor’s degree 45.55%

Master’s degree 18.32%

Professional degree 1.85%

Doctorate 1.18%

Preferred not to report 0.34%

Income

Less than $10,000 32.10%

$10,000 - $19,999 22.86%

$20,000 - $29,999 13.78%

$30,000 - $39,999 8.57%

$40,000 - $49,999 5.04%

$50,000 - $59,999 3.36%

$60,000 - $69,999 1.85%

$70,000 - $79,999 1.85%

$80,000 - $89,999 0.84%

$90,000 - $99,999 0.67%

More than $100,000 2.18%

Prefer not to report 6.89%
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Variables Shares

Table 3.8: Demographics and Questionnaire Variables (Categorical)





Chapter 4

Data-driven Planning of Large-Scale

Electric Vehicle Charging Hubs

using Deep Reinforcement Learning1

4.1 Introduction

With the proliferation of electric vehicle (EVs) arises the need for charging infrastructure that

enables users to make the switch to EVs with minimal impact on lifestyle and behavior. Policy-

makers have traditionally assumed that users would primarily charge their EVs overnight and

at home. Indeed, home charging is currently the preeminent charging use case in many markets

(Lee et al. 2020, Hoover et al. 2021). As more and more consumers without access to residential

charging adopt EVs, charging opportunities at the workplace, at popular destinations such as

supermarkets, and at fleet depots are needed (Jun and Meintz 2018, Lee et al. 2019, 2020). We

refer to the systems that a!ord such high-density EV charging use cases as EV Charging Hubs

(EVCHs). Apart from enabling widespread EV adoption, EVCHs can also play an important

systems integration role by enabling daytime charging that takes advantage of high solar energy

production, which is unavailable when charging overnight (Lee et al. 2018)2. EVCHs constitute

a novel (and under-researched) operational system class with cross-system interfaces (e.g., with

attached buildings or the electricity grid) and a large number of strategic and operational de-

1This Chapter is currently under review (second round) at a leading peer-reviewed academic journal.
Parts of this Chapter have appeared in the following (non-copyrighted) peer-reviewed academic conferences and
workshops: Schroer, K., Ahadi, R., Lee, T. Y., & Ketter, W. (2021). Preference-aware Planning and Operations
of Electric Vehicle Charging Clusters : A Data-Driven Prescriptive Framework. In Proceedings of the SIG
GREENWorkshop (pp. 1–10).
Schroer, K., Ahadi, R., Lee, Y.T., & Ketter, W. (2021). Preference-Aware Planning and Operations of Electric
Vehicle Charging Clusters: A Prescriptive Framework. In Workshop on Information Systems and Technology
(WITS) 2021 (Austin, TX).

2This is particularly relevant for energy systems with high solar energy share such as California or Germany
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cision variables (size and configuration of charging stations, on-site storage, charging decisions,

etc.) that result in a highly complex planning challenge (Ferguson et al. 2018).

Operations managers traditionally approach the strategic planning of operational systems

like EVCHs via mathematical programming methods (e.g., He et al. 2017, for on-demand vehicle

sharing service region design) or queuing models (e.g., Wang et al. 2016, for last-mile delivery

networks). However, the multi-stage and stochastic nature of the EVCH planning challenge

makes it notoriously challenging for optimization-based methods (Powell 2014, Hannah 2015).

Computational tractability in the traditional frameworks is only achieved at the expense of detail

and scope of the planning problem. For example, shorter planning horizons, coarser temporal

discretization, simplified operational detail or deterministic parameter assumptions are adopted

to significantly reduce problem sizes.

This work develops a novel method that makes use of the fine-grained operational and

preference data that has become abundant in this age of pervasive IoT3 sensor technology. As

such it responds to calls from the Operations Management (OM) community to incorporate

such data into OM frameworks (Qi and Shen 2018, Cohen 2018, Choi et al. 2022) and data-

driven decision support systems (Ketter et al. 2023). Specifically, we leverage fine-grained sensor

data from parking lots and energy consumption and production data and combine it with high-

resolution asset models and real-world operational policies into a detailed simulated environment.

This environment is a close-to-exact digital representation – i.e., a Digital Twin (DT) (Choi et al.

2022, Grieves and Vickers 2017) – of the EVCH that is to be planned. We then develop an actor-

critic reinforcement learning (RL) framework that interacts with this environment to learn an

optimal planning configuration policy by iterating over many simulated epochs.

Our work o!ers a number of contributions. Methodologically, we propose a framework for

the e!ective use of RL in combination with large-scale data-driven simulation frameworks (i.e.,

DTs) for ex-ante de-risking and decision support in the design phase of service systems such as

EVCHs. Our method circumvents the need for simplification and problem size reduction, among

other theoretical benefits. These include (1) more realistic, data-driven modeling of stochasticity

and operational detail of the EVCH, (2) computational scalability compared to mathematical

optimization, and (3) flexible model setup that allows for easy evaluation of many di!erent

operational policies. In extensive simulation experiments, we show that our method achieves

near-optimal EVCH planning results. We also show that it outperforms alternative candidate

solution approaches such as DQN and DDPG in terms of solution speed and scalability. Finally,

we make use of the flexible nature of the DT to evaluate di!erent preference and operational

regimes, thus deriving numerous novel domain-specific insights for practitioners.

The remainder of this work is structured as follows. In Section 4.2, we review the relevant

literature to our work. We then set up and parameterize our model for data-driven planning of

Electric Vehicle Charging Hubs using actor-critic RL (Section 4.3). In Section 4.4 we evaluate

3Internet of Things
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our model in terms of its ability to converge to the global optimum solution and its scalability

and performance characteristics versus other candidate solutions, such as Deep Q-Learning.

We then use the evaluated model to run comprehensive scenario analyses (Section 4.5) to (1)

demonstrate flexibility benefits and (2) to obtain interesting and actionable policy insights. We

end with a discussion of implications and contributions to theory and practice (Section 4.6).

Operations managers traditionally approach the strategic planning of operational systems

like EVCHs via mathematical programming methods (e.g., He et al. 2017, for on-demand vehicle

sharing service region design) or queuing models (e.g., Wang et al. 2016, for last-mile delivery

networks). However, the multi-stage and stochastic nature of the EVCH planning challenge

makes it notoriously challenging for optimization-based methods (Powell 2014, Hannah 2015).

Computational tractability in the traditional frameworks is only achieved at the expense of detail

and scope of the planning problem. For example, shorter planning horizons, coarser temporal

discretization, simplified operational detail or deterministic parameter assumptions are adopted

to significantly reduce problem sizes.

This work develops a novel method that makes use of the fine-grained operational and

preference data that has become abundant in this age of pervasive IoT4 sensor technology. As

such it responds to calls from the Operations Management (OM) community to incorporate

such data into OM frameworks (Qi and Shen 2018, Cohen 2018, Choi et al. 2022) and data-

driven decision support systems (Ketter et al. 2023). Specifically, we leverage fine-grained sensor

data from parking lots and energy consumption and production data and combine it with high-

resolution asset models and real-world operational policies into a detailed simulated environment.

This environment is a close-to-exact digital representation – i.e., a Digital Twin (DT) (Choi et al.

2022, Grieves and Vickers 2017) – of the EVCH that is to be planned. We then develop an actor-

critic reinforcement learning (RL) framework that interacts with this environment to learn an

optimal planning configuration policies by iterating over many many simulated epochs.

Our work o!ers a number of contributions. Methodologically, we propose a framework for

the e!ective use of RL in combination with large-scale data-driven simulation frameworks (i.e.,

DTs) for ex-ante de-risking and decision support in the design phase of service systems such as

EVCHs. Our method circumvents the need for simplification and problem size reduction, among

other theoretical benefits. These include (1) more realistic, data-driven modeling of stochasticity

and operational detail of the EVCH, (2) computational scalability compared to mathematical

optimization, and (3) flexible model setup that allows for easy evaluation of many di!erent

operational policies. In extensive simulation experiments, we show that our method achieves

near-optimal EVCH planning results. We also show that it outperforms alternative candidate

solution approaches such as Deep Q-Learning in terms of solution speed and scalability. Finally,

we make use of the flexible nature of the DT to evaluate di!erent preference and operational

regimes, thus deriving numerous novel domain-specific insights for practitioners.

4Internet of Things
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The remainder of this work is structured as follows. In Section 4.2, we review the relevant

literature to our work. We then set up and parameterize our model for data-driven planning of

Electric Vehicle Charging Hubs using actor-critic RL (Section 4.3). In Section 4.4 we evaluate

our model in terms of its ability to converge to the global optimum solution and its scalability

and performance characteristics versus other candidate solutions, specifically Deep Q-Learning.

We then use the evaluated model to run comprehensive scenario analyses (Section 4.5) to (1)

demonstrate flexibility benefits and (2) to obtain interesting and actionable policy insights. We

end with a discussion of implications and contributions to theory and practice (Section 4.6).

4.2 Background

Our work draws from three main bodies of literature, which we briefly review here. First, we

discuss the problem class of EVCH planning and review traditional OM planning approaches.

Second, we discuss reinforcement learning (RL) methods and their potential benefits for complex,

multi-stage, stochastic planning problems like EVCH planning. Third, we review the extant work

on DTs and their use for OM decision support.

4.2.1 Electric Vehicle Charging Hubs (EVCHs)

EV charging operations environments and use cases vary from fully distributed on-street charg-

ing, highway charging, and private home charging to charging in large-scale high-density parking

lots. In this work, we focus on the latter use case, which we refer to as an EV charging hub

(EVCH). EVCHs exhibit several unique features that distinguish them from other charging use

cases. First, EVCHs typically represent large locally concentrated loads that may require sig-

nificant local electricity grid extension making load shaping necessary (Lee et al. 2019). Second,

integration with behind-the-meter loads (buildings) and generation units (PV, storage) may be

desirable (Nunes et al. 2016) to reduce induced peak loads, drive sustainability and reduce costs

(Ferguson et al. 2018). Third, EVCHs typically experience di!erent user behavior compared to

other charging use cases such as home charging, and this user behavior can vary substantially

depending on the use case of the attached facility (workplace, mall, etc.). Fourth, siting of

individual charging stations is of no concern in an EVCH context as all chargers will be located

in the same space with users being largely indi!erent between them. Finally, EVCHs allow

for end-to-end control of the full vehicle-level parking and charging journey through what is

sometimes referred to as smart EV-capable parking lots (Babic et al. 2022a). This enables the

assignment of vehicles to chargers and central control over the charging process. It, thus, o!ers

new scope for optimization, e.g., by leveraging parallel or sequential use of charging equipment

in an optimal manner (Ferguson et al. 2018).

We briefly review state-of-the-art OM approaches in the realms of (1) operating and (2)

planning EVCHs. In terms of EVCH operations, we acknowledge the extensive work on electric
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vehicle charging scheduling and smart charging (see e.g., Mukherjee and Gupta (2015) for a

recent review) on which most operations-focused EVCH research is based. A notable di!er-

entiator from the traditional smart charging literature is the inclusion of building/cluster-level

constraints and optimization opportunities. Early examples include Huang and Zhou (2015)

who develop a mixed-integer optimization framework for workplace charging strategies taking

into account di!erent eligibility levels and Wu et al. (2017) who propose a two-stage energy

management framework for o”ce buildings with workplace EV charging. Nunes et al. (2016)

investigate how charging processes can best be coordinated to use parking lots for EV solar-

charging. Ferguson et al. (2018) propose an integrated load management approach to optimize

EV charging processes for minimum cost taking into account the building base load and PV gen-

eration. A similar approach to site-level load management was implemented in practice by Jun

and Meintz (2018). Finally, Lee et al. (2019) explore several optimization-driven approaches to

operational issues in charging hubs. Note that the inclusion of parallel-use charging docks that

allow for simultaneous charging significantly complicates that EVCH management problem. In

addition to the usual charging decisions, an assignment decision of vehicles to charging stations

is required. Our notion of EVCHs considers this complication.

The design/planning of EVCH systems has received less attention. EVCH design is a multi-

stage stochastic decision problem that requires large decisions (e.g., the number of charging

docks to be installed at each stage in the planning horizon) and small decisions (e.g., charging

individual vehicles) to be taken simultaneously. Such problems are notoriously di”cult and

cannot be solved e”ciently with standard stochastic programming or even approximate dynamic

programming (Powell 2014, Hannah 2015). Some research resolves the ensuing complexity using

simulation-based approaches. For example, in Kazemi et al. (2016) the authors use a genetic

search algorithm on top of a simplified simulation model to derive the optimal size of an EV

parking lot. Babic et al. (2022a) also use a greedy search over a simulation of a parking lot

to derive optimal infrastructure decisions. Naturally, optimality cannot be guaranteed with

simple search approaches. Li et al. (2020) propose a mathematical deterministic programming

framework for the joint optimization of the size and operations of a parking lot capable of 100

electric vehicles. Neither of these simulation- or optimization-based studies use high-granularity

demand and/or operational data. In addition, extant EVCH design work exhibits relies on

significant simplifications. For example, the studies cited here focus on a single planning period

only, which reduces the problem to a single-stage planning challenge. In addition, the EVCH

system scope tends to be considerably simplified (e.g., no consideration of attached building

loads, single-use charging docks only, etc.).

Our work addresses several important gaps in the charging hub literature. We are the

first to use detailed preference modeling in an extensive and novel set of real-world parking

and charging data to ensure preference-aware sizing. In doing so, we explore the sensitivity of

planning decisions to changes in user preferences, a point that has been completely neglected
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by existing work. In addition we consider existing building load profiles in the operations and

investment decision, taking a more comprehensive view compared to previous research. Our

model also allows for parallel use of charging infrastructure which can significantly boosts asset

e”ciency at the expense of higher operational complexity. Finally, our work has important

social and sustainability implications insofar as it proposes a model for e”cient provisioning of

charging infrastructures that is aligned with customer preferences.

4.2.2 Reinforcement Learning and its Application to Planning Problems

Reinforcement learning (RL) represents a distinct class of machine learning that seeks to find an

optimal policy which governs the behavior of an agent in an (emulated) environment such that

a given objective is maximized (Sutton 2019). RL relies on the Markov property, meaning that

future states in a stochastic process only depend on the current state (Sutton 2019). Popular

examples of RL include an agent playing the game of Go (Silver et al. 2016) or Atari games

(Mnih 2013). A policy, the goal of RL, can be understood as a function that takes an observed

environment state as input and returns an action given the observed state. That policy is learned

iteratively by interacting with the emulator through actions and observing the e!ect of these

actions.

RL has received significant interest as a possible approach for dynamic optimization prob-

lems (Fu et al. 2015). Indeed, the method boasts several potential advantages over traditional

mathematical programming approaches. First, RL does not require a model but instead relies

on a simulated environment to interact with and learn from. This can be a major advantage,

particularly in complex multi-stage settings (like EVCH planning) where developing a mathe-

matical model that accurately reflects the behavior of physical assets, operational policies and

individual preferences is impossible or extremely hard. This also means that RL requires fewer

assumptions. In mathematical programming simplifying assumptions (e.g., coarser discretiza-

tion, simplified operations, removing stochasticity of inputs, etc.) are often needed to achieve

tractability resulting in a problem formulation that may not reflect reality accurately enough.

Second, RL is flexible and readily adapts to changes in environmental conditions. Third, RL

generally deals better with the curse of dimensionality and can scale to real-sized problems well

beyond the tractability limits of optimization frameworks (van Hezewijk et al. 2022). RL also

has disadvantages, most notably a lack of optimality guarantee. The real-world applicability of

the RL solution will also have strong dependence on the quality of the emulator that is used for

training.

RL has successfully been applied to a range of operational and strategic planning problems

(Gijsbrechts et al. 2022). For example, van Hezewijk et al. (2022) examine the applicability of

Proximal Policy Optimisation (PPO), a deep RL algorithm, to the stochastic capacitated lot

sizing problem and show that the algorithm converges close to the global optimum and readily

scales to problem sizes that are out of scope for traditional dynamic programming. Ahadi
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et al. (2023) study the charging management of shared autonomous electric vehicles using a

cooperative multi-agent reinforcement algorithm to simultaneously learn optimal scheduling and

resource allocation policies. In a similar vein, Xie et al. (2023) consider a hybrid ride-hailing fleet

of autonomous vehicles and conventional drivers and optimise the relocation polices using a two-

sided deep RL design where the fleet operator makes central relocation decisions for autonomous

vehicles and individual driver agents learn their non-cooperative relocation strategies.

There are two distinct routes for estimating the optimal policy in RL: (1) value-based ap-

proaches and (2) policy-based approaches. Value-based approaches estimate the total value

associated with an action assuming the agent follows a given policy forever (e.g., the greedy

policy of always selecting the action with the highest value). A value-based algorithm that has

seen significant adoption is Deep Q-Learning (Gao et al. 2020). Deep Q-Learning uses Deep Q

Networks (DQN) to estimate state-action values in a discrete action space. For a given state

the DQN returns a Q-value for every possible action and the agent will pick a random (in the

exploration phase) or the highest-valued action (in the exploitation phase). It is easy to see

that DQN (and other value-based methods) can run into issues of scalability, especially if the

action space is very large or even continuous, corresponding to a potentially infinite number of

permutations of actions that each need to be evaluated for a given state (Dulac-Arnold et al.

2015). Policy-based methods, such as policy gradient-based algorithms can circumvent this issue

and can work well in continuous action spaces (Sutton 2019). These methods estimate the pol-

icy function directly (typically using gradient descent-based optimization) without the need to

evaluate each possible state-action pair. However, they tend to be ine”cient and are susceptible

to local optima as well as high variance (Sutton 2019). Actor-citric RL approaches combine

value-based and policy-based approaches bringing together the benefits of both. Actor-critic

algorithms consist of two main parts. First, the actor that takes decisions based on a learned

policy function (policy-based). Second, the critic that determines the quality of the action using

a value function (value-based). This actor-critic setup allows the actor to improve its policies

more e”ciently compared to pure policy-based methods. In this work, we use SAC (soft actor-

critic) (Haarnoja et al. 2018), an actor-critic framework, which we adapt to work with large

discrete action spaces (Dulac-Arnold et al. 2015).

4.2.3 Digital Twins (DTs) and their use in Operations Management

As mentioned, RL frameworks require a simulated environment (or simulator) to interact with

and learn from. The closer this simulation comes to reality, tthe more likely the RL-derived

solution is generalize to real-world conditions. Hence, researchers have called for the use of real-

world system data to achieve more accurate representations of real-world conditions (Panzer

and Bender 2022). Digital Twins (DTs), a form of data-driven simulation, provide an attractive

solution. DTs have been hailed as a disruptive trend in OM of the IoT and Industry 4.0 era (Choi

et al. 2022). At its most basic level, a DT is a digital representation of a specific physical asset
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or system. DTs can be used as a decision support tool along the entire life cycle of that asset:

from design, operations, and maintenance to disposal (Schleich et al. 2017). For the purpose

of this research, we highlight several characteristics that we consider key and distinguish DTs

from, e.g., traditional simulation frameworks used in OM (Boschert and Rosen 2016) and RL.

The reader is referred to Jones et al. (2020) or Cimino et al. (2019) for comprehensive reviews.

First and foremost, DTs represent a close to the real-world representation of the physical

system at a granular level using high-fidelity interconnected physical models of system com-

ponents (Glaessgen and Stargel 2012). Note that this does not necessarily require identical

accuracy but can also mean partial accuracy if this is su”cient for the DT to fulfill its intended

use (van der Valk et al. 2020). Second, a DT is data-driven, meaning that it primarily relies on

real-world operational data input acquired directly from sensors of the device and the intended

application environment (van der Valk et al. 2020). It is often not the case that raw data on all

required parameters is available. In such cases, synthetic data from statistical models or simu-

lation frameworks can be used to supplement the data requirements (Sierla et al. 2018). Third,

there is eventual synchronization of the DT and the physical asset. This can be achieved via

one-directional (physical world to DT) or bi-directional data flows (Tao et al. 2018). DTs have

been successfully applied in the use phase of operational systems (Jones et al. 2020). Examples

include asset status and health monitoring (Glaessgen and Stargel 2012), asset optimization,

maintenance planning (Cimino et al. 2019), and sta! training (Choi et al. 2022).

As argued previously, a core feature of DTs is their reliance on real-world sensor data for asset

and process representation in the virtual world. Use of real-world environmental context data

and benchmark infrastructure sensor data is also useful for design/configuration applications of

assets and service systems (Attaran and Celik 2023). Indeed, high-granularity data on many

aspects of the intended application environment as well as on typical machine/process behavior

is likely to already be available. This means that pre-use-phase DTs can be fed with live as well

as realistic historic data (Boschert and Rosen 2016).

In this work, we leverage the DT concept to create a high-resolution, data-driven simulation

environment that resembles real-world conditions as closely as possible. Wherever available,

we leverage historic sensor data to model system dynamics. For example, we use real-world

charging data, parking data, building data and photovoltaic production data to achieve granular

patterns of expected power production and consumption in the EVCH. For system components

where real-world sensor data is not available, we rely on close-to-exact simulations of their

physical behavior in line with asset specification sheets and/or research findings. For example,

to model the physical properties of an on-site battery storage asset, we draw on research by

Ghiassi-Farrokhfal et al. (2016) to parameterize battery charge and discharge e”ciency as well

as minimum and maximum (dis-)charge rates. Hence, we follow Sierla et al. (2018) to supplement

our DT simulation with data from simulation frameworks to fulfill our data requirements.



4.2 Background 111

We show that DTs, in combination with scalable RL algorithms, can circumvent many of the

model simplifications and problem reduction measures unavoidable in traditional mathematical

programming or brute-force search strategies.

Our work addresses several important gaps in the charging hub literature. We are the

first to use detailed preference modeling on an extensive and novel set of real-world parking and

charging data to ensure preference-aware sizing. In doing so we explore the sensitivity of planning

decisions to changes in user preferences, a point that has been completely neglected by existing

work. In addition we consider existing building load profiles in the operations and investment

decision, taking a more comprehensive view compared to previous research. Our model also

allows for parallel use of charging infrastructure which can significantly boosts asset e”ciency

at the expense of higher operational complexity. Finally, our work has important societal and

sustainability implications insofar as it puts forward a model for e”cient provisioning of charging

infrastructures that is aligned with customer preferences.

4.2.4 Reinforcement Learning and its Application to Planning Problems

Reinforcement learning (RL) represents a distinct class of machine learning that seeks to find an

optimal policy which governs the behavior of an agent in an (emulated) environment such that

a given objective is maximized (Sutton 2019). RL relies on the Markov property, meaning that

future states in a stochastic process only depend on the current state (Sutton 2019). Popular

examples of RL include an agent playing the game of Go (Silver et al. 2016) or Atari games

(Mnih 2013). A policy, the goal of RL, can be understood as a function that takes an observed

environment state as input and returns an action given the observed state. That policy is learned

iteratively by interacting with the emulator through actions and observing the e!ect of these

actions.

RL has received significant interest as a possible approach for dynamic optimization prob-

lems (Fu et al. 2015). Indeed, the method boasts several potential advantages over traditional

mathematical programming approaches. First, RL does not require a model but instead relies

on a simulated environment to interact with and learn from. This can be a major advantage,

particularly in complex multi-stage settings (like EVCH planning) where developing a mathe-

matical model that accurately reflects the behavior of physical assets, operational policies and

individual preferences is impossible or extremely hard. This also means that RL requires fewer

assumptions. In mathematical programming simplifying assumptions (e.g., coarser discretiza-

tion, simplified operations, removing stochasticity of inputs, etc.) are often needed to achieve

tractability resulting in a problem formulation that may not reflect reality accurately enough.

Second, RL is flexible and readily adapts to changes in environmental conditions. Third, RL

generally deals better with the curse of dimensionality and can scale to real-sized problems well

beyond the tractability limits of optimization frameworks (van Hezewijk et al. 2022). RL also

has disadvantages, most notably a lack of optimality guarantee. The real-world applicability of
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the RL solution will also have strong dependence on the quality of the emulator that is used for

training.

RL has successfully been applied to a range of operational and strategic planning problems

(Gijsbrechts et al. 2022). For example, van Hezewijk et al. (2022) examine the applicability of

Proximal Policy Optimisation (PPO), a deep RL algorithm, to the stochastic capacitated lot

sizing problem and show that the algorithm converges close to the global optimum and readily

scales to problem sizes that are out of scope for traditional dynamic programming. Ahadi

et al. (2023) study the charging management of shared autonomous electric vehicles using a

cooperative multi-agent reinforcement learning to simultaneously learn optimal scheduling and

resource allocation policies. In a similar vein, Xie et al. (2023) consider a hybrid ride-hailing fleet

of autonomous vehicles and conventional drivers and optimise the relocation polices using a two-

sided deep RL design where the fleet operator makes central relocation decisions for autonomous

vehicles and individual driver agents learn their non-cooperative relocation strategies.

There are two distinct routes for estimating the optimal policy in RL: (1) value-based ap-

proaches and (2) policy-based approaches. Value-based approaches estimate the total value

associated with an action assuming the agent follows a given policy for ever (e.g., the greedy

policy of always selecting the action with the highest value). A value-based algorithm that has

seen significant adoption is Deep Q-Learning (Gao et al. 2020). Deep Q-Learning uses Deep

Q Networks (DQN) to estimate state-action values in discrete action space. For a given state

the DQN returns a Q-value for every possible action and the agent will pick a random (in the

exploration phase) or the highest-valued action (in the exploitation phase). It is easy to see

that DQN (and other value-based methods) can run into issues of scalability, especially if the

action space is very large or even continuous, corresponding to a potentially infinite number of

permutations of actions that each need to be evaluated for a given state (Dulac-Arnold et al.

2015). Policy-based methods, such as policy gradient-based algorithms can circumvent this issue

and can work well in continuous action spaces (Sutton 2019). These methods estimate the pol-

icy function directly (typically using gradient descent-based optimization) without the need to

evaluate each possible state-action pair. However, they tend to be ine”cient and are susceptible

to local optima as well as high variance (Sutton 2019). Actor-citric RL approaches combine

value-based and policy-based approaches bringing together the benefits of both. Actor-critic

algorithms consist of two main parts. First, the actor that takes decisions based on a learned

policy function (policy-based). Second, the critic that determines the quality of the action using

a value function (value-based). This actor-critic setup allows the actor to improve its policies

more e”ciently compared to pure policy-based methods. In this work, we use SAC (soft actor-

critic) (Haarnoja et al. 2018), an actor-critic framework, which we adapt to work with large

discrete action spaces (Dulac-Arnold et al. 2015).
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4.2.5 Digital Twins (DTs) and their use in Operations Management

As mentioned, RL frameworks require a simulated environment (or simulator) to interact with

and learn from. The closer this simulation comes to reality, the better the RL-derived solution

is likely to generalize to real-world conditions. Hence, researchers have called for the use of real-

world system data to achieve more accurate representations of real-world conditions (Panzer

and Bender 2022). Digital Twins (DTs), a form of data-driven simulation, provide an attractive

solution. DTs have been hailed as a disruptive trend in OM of the IoT and Industry 4.0 era (Choi

et al. 2022). At its most basic level, a DT is a digital representation of a specific physical asset

or system. DTs can be used as a decision support tool along the entire life cycle of that asset:

from design, operations, and maintenance to disposal (Schleich et al. 2017). For the purpose

of this research, we highlight several characteristics that we consider key and distinguish DTs

from, e.g., traditional simulation frameworks used in OM (Boschert and Rosen 2016) and RL.

The reader is referred to Jones et al. (2020) or Cimino et al. (2019) for comprehensive reviews.

First and foremost, DTs represent a close to the real-world representation of the physical

system at a granular level using high-fidelity interconnected physical models of system com-

ponents (Glaessgen and Stargel 2012). Note that this does not necessarily require identical

accuracy but can also mean partial accuracy if this is su”cient for the DT to fulfill its intended

use (van der Valk et al. 2020). Second, a DT is data-driven, meaning that it primarily relies on

real-world operational data input acquired directly from sensors of the device and the intended

application environment (van der Valk et al. 2020). It is often not the case that raw data on all

required parameters is available. In such cases, synthetic data from statistical models or simu-

lation frameworks can be used to supplement the data requirements (Sierla et al. 2018). Third,

there is eventual synchronization of the DT and the physical asset. This can be achieved via

one-directional (physical world to DT) or bi-directional data flows (Tao et al. 2018). DTs have

been successfully applied in the use phase of operational systems (Jones et al. 2020). Examples

include asset status and health monitoring (Glaessgen and Stargel 2012), asset optimization,

maintenance planning (Cimino et al. 2019), and sta! training (Choi et al. 2022).

As argued previously, a core feature of DTs is their reliance on real-world sensor data for asset

and process representation in the virtual world. That does not, however, disqualify DTs from

the use in design/configuration applications of assets and operational systems that are yet to be

built. Indeed, high-granularity data on many aspects of the intended application environment

as well as on typical machine/process behavior is likely to already be available. This means that

pre-use-phase DTs can be fed with live as well as realistic historic data (Boschert and Rosen

2016).

In this work, we leverage the DT concept to create a high-resolution, data-driven simulation

environment that resembles real-world conditions as closely as possible. We show that DTs,

in combination with scalable RL algorithms, can circumvent many of the model simplifications



114 EV Charging Hub Planning: A Scalable and Data-Driven Approach

and problem reduction measures unavoidable in traditional mathematical programming or brute-

force search strategies.

4.3 Model

We now describe our model. A conceptual overview of its core elements and their interactions is

shown in Figure 4.1. In this Section we describe the setup of the model starting with a definition

of the planning problem including state boundaries, action space and objective followed by a

description of the environment simulator (DT) and the SAC RL framework.

Digital Twin (DT)
Simulation of EVCH

RL Agent

ϑ(·) : sh ↓ ah

Preferences Asset ModelsOperations

Reward rhState sh Actions ah

Figure 4.1: Overview of Core Model Elements, Inputs and Interactions

4.3.1 Defining the EVCH Planning Scope

We define an EVCH as an EV charging-capable parking lot, depot, or garage that is typically

attached to an existing building with a given baseload. Both the building and the EVCH receive

power from the same grid connection point, which is constrained to the capacity of the on-site

substation. The integrated facility may have additional on-site behind-the-meter generation

(e.g., photo-voltaic (PV)) and storage (e.g., Lithium-Ion battery). Crucially, charging docks can

have multiple connectors that a!ord parallel charging of vehicles from a single charging dock.

A simplified view of the EVCH components and system boundary is depicted in Figure 4.2.

We formulate the EVCH configuration challenge as a feasibility problem that aims to satisfy

all or a specified amount of total charging demand in the most resource-e”cient manner while

considering any exogenous rate, space, and total capacity constraints. The problem then be-

comes a cost minimization planning with the objective to jointly minimize investment costs (C”)

and operations cost (C#) over all stages h → H contained in the planning horizon while ensuring

a pre-defined service level 0h (typically 100% in the following simulations and benchmarks). As
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Candidate point (parking spot) k ↑ K Charge dock (i=AC) installed at k Charge dock (i=DC) installed at k

n connector(s) attached to i at k System boundary

Figure 4.2: EVCH Service System Layout and Asset Components in Planning Stage h

we lay out the variables and parameters of our model please refer to Table 4.1 for an overview

of nomenclature used throughout this paper.

Formally, the objective function f(#) (where # is the system configuration) can be expressed

as follows:

Min![C
”(xi,nk,h, ω

Trafo
h ,⇀

PV
h , φ

Bat
h ) + C

#(↪k,j,h,▷k,j,h,t,↽
Charge
h,t ,↽

Discharge
h,t , e

G
h,t)] (4.1)

Table 4.1: Nomenclature

Symbol Description Unit

Sets

H Set of planning stages in planning horizon with index h set

I Set of charging dock types with index i (I = {AC,DC}) set

Jh Set of unique EVs entering the EVCH during the planning period

h with index j

set

K Set of charging dock candidate points (i.e., parking spots) with

index k

set

N Set of charging dock connector options N = {1, 2, 4} with index n set

T Set of time periods per each stage in planning horizon with index t set

’ Set of decision variables set

# Full configuration of EVCH system set

Parameters
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Aj,s Arrival time of vehicle j in stage h period t

↽
max,

↽
min

Maximum charge and maximum discharge rate of energy storage kW

c
i,n
h Cost per EV charging dock of type i with n connectors in stage h USD

c
Trafo
h Cost per kW of grid connection (i.e., transformer) in stage h USD/kW

c
PV
h Cost per kWp of PV in stage h USD/kW

c
Bat
h Cost per kWh of energy storage (battery) in stage h USD/kWh

ωj Duration of stay of vehicle j hours

$t Duration of a single planning period t hours

Dj,h Departure time of vehicle j in stage h period t

e
d
j Total energy requested by vehicle j over duration of stay kWh

0
(dis)charge Charge/discharge e”ciency of energy storage ratio

0
Inv AC-DC inversion e”ciency ratio

0
Serv
h Target service level expressed as ratio of fulfilled vs. actual demand ratio

f
PV
h,t Avg. PV load factor in period t of stage h ratio

⇀
i Maximum power per charging dock of type i kW

⇀
Grid
0 Existing facility substation capacity kW

⇀
Trafo Standard size of transformer that can be installed kW

laxj Laxity of vehicle j hours

lh,t Base load of attached facility during period t in stage h kW

l
↗

h Maximum expected base load of attached facility in stage h kW

M big-M constraint (for linearization) kW

µ
Maint Cost ratio for maintenance (as share in total capital stock) ratio

R Maximum installable PV capacity (space constraint) kWp

SoC
max Maximum energy storage level %

SoC
min Minimum energy storage level %

L Space limitation in number of parking spots count

T
p
h Cost of induced power peak per accounting period (i.e., demand

charge) in stage h

USD/kW

T
e
h,t Cost of energy in period t of stage h as per TOU tari! USD/kWh

Uj,h,t Indicator of whether vehicle j is present during period t in stage h boolean

Variables

↽
Charge
h,t Charge rate of EVCH battery storage kW

↽
Discharge
h,t Discharge rate of EVCH battery storage kW

↽
Direction
h,t Indicator of whether the battery is charging or discharging boolean

ω
Trafo
h Number of additional transformers installed in stage h integer

C
” Total normalized investment cost for the EVCH over planning hori-

zon

USD
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C
# Total cost of operating the EVCH over the planning horizon USD

C
$ Penalty for not serving charging demand USD

e
S
j,h,t Net energy supplied to vehicle j during period t of stage h kWh

e
Grid
h,t Net energy supplied from grid during period t of stage h kWh

φ
Bat
h Installed energy storage capacity in stage h kWh

⇀
PV
h Installed PV capacity in stage h kW

p
↗

h Induced max peak attributable to EVCH operations during stage

h

kW

▷k,j,h,t Charge rate of vehicle j connected to charging dock k during period

t of stage h

kW

SoCh,t State variable that tracks state of charge of energy storage kWh

wk,j,h Indicator for whether a vehicle j is connected to charging dock k in

stage h

boolean

x
i,n
k,h Indicator whether dock (type i, n connectors) is installed at k in

stage h

boolean

The EVCH infrastructure decision space determining C
” extends over a large set of deci-

sion variables, which we briefly describe here. First, decisions on the charging infrastructure

configuration and scale-up over the investment horizon H are required. We allow full flexibility

regarding the type of EV charging docks (22kW AC or 50kW DC docks) and the number of

connectors per dock (ranging from single-connector setups to up to four connectors per dock).

Crucially, for charging docks with multiple connectors, we allow for simultaneous charging of

EVs, meaning the rated power per dock can be shared dynamically and flexibly by all connected

vehicles. This is di!erent from the more prevalent single-server docks, which either possess just

a single connector or multiple connectors that may only be operated sequentially. A multi-server

setup has the advantage of higher utilization (vehicles that have completed their charging cycle

do not block charging docks) (Ferguson et al. 2018). We capture EV charging infrastructure

decisions via a set of binary indicator variables of form x
i,n
k,h, indicating whether a dock of type

i → {22kW, 50kW} with number of connectors n → {1, 2, 4} is to be installed at candidate point

k → K during planning stage h → H. The total number of docks and connectors is naturally

bounded by the size of the facility (i.e., number of parking spaces) L. Second, the initial size

and expansion pathway of possible on-site generation (PV) and/or storage assets (Li-Ion bat-

tery) must be defined. We assume that PV generation ⇀
PV
s can be scaled close-to continuously

across all stages h in the planning horizon and that it is limited only by local facility space con-

straints R (e.g., roof space). In terms of on-site storage, we consider Li-Ion battery technology

whose energy capacity ⇀
Bat
s (in kWh) can be scaled continuously over H. Finally, a decision

is required on whether, by how much and by when the existing substation capacity should be

extended to accommodate the desired level of charging service. Note that substations can be

purchased in standard sizes (⇀Trafo) only. Consequently, the grid connection can only be scaled
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step-wise in multiples ω
Trafo
h of ⇀Trafo, where ω

Trafo
h is an integer value denoting the number

of transformer modules to be added to the facility’s substation in state h
5. Given the physical

size of substations and the fact that local grid conditions may not allow for an unconstrained

scale-up of the existing grid connection, we impose a maximum G on the final size of the sub-

station. In sum, total investment cost over the planning horizon is determined as follows: C” =
)︄

h↓H(c
Trafo
h ω

Trafo
h +

)︄
k↓K

)︄
i↓I

)︄
n↓N c

i,n
h x

i,n
k,h+c

PV
h ⇀

PV
h +c

Bat
h φ

Bat
h )(1+(|H|≃h)µMaint)). Note

that this includes the maintenance costs incurred over the planning horizon, which is captured

by the factor (|H|≃ h)µMaint). The parameters cTrafo
h , ci,nh , cPV

h and c
Bat
h are stage-dependent

cost parameters that take into account expected technology cost trajectories over the planning

horizon.

Underlying these higher-level infrastructure choices are smaller operational decisions, which

determine the operational cost C
#. Naturally, the operational scope is constrained by the in-

stalled infrastructure highlighting the two-way interdependencies between both sets of decisions.

Operations decisions focus on the assignment of a vehicle j to a connector k upon arrival (cap-

tured by ↪k,j,h) and the periodic charging decisions over the duration of stay (▷k,j,h,t). Finally,

the on-site battery state is controlled via ↽
Charge
h,t and ↽

Discharge
h,t , two booleans that control

the rate of charge/discharge. We consider PV generation and building baseload to be exoge-

nous parameters that cannot be actively controlled by the EVCH operator. Given the di!erent

sources of power (battery, PV, grid), the operator also needs to decide on the power mix per

each period t. This involves setting the desired energy drawn from the grid per period in each

state e
Grid
h,t . Note that e

Grid
h,t is typically accounted for based on a two-part tari! including a

time-of-use-dependent energy charge T
e
h,t and a monthly demand charge T

p
h that is a function

of the maximum induced power p
↗

h in that month. Operational costs are formally defined as

follows: C# =
)︄

h↓H(
)︄

t↓T T
e
h,te

Grid
h,t + T

p
hp

↗

h).

4.3.2 Parameterizing the Digital Twin Simulator

We now set up the environment with which the RL agent will interact. The goal is to create a

close-to-exact digital representation (i.e., a DT) of the EVCH, which is made up of three core

components: (1) physical assets, (2) operational policies that define how the physical assets are

operated, and (3) preference/demand characteristics, i.e., the external requests and usage pat-

terns that the service system needs to fulfill. In this section, we lay out these three components.

Note that the EVCH DT operates on a discrete-time basis. To reduce any issues/inconsistencies

related to discretization, we use period lengths of just one minute. Wherever practical the DT

is fed with real-world sensor data to achieve a highly accurate representation of the physical

5We consider any interaction e!ects with the upstream electrical distribution grid to be out of scope for
this problem. Specifically, we assume that the distribution grid is unconstrained and able to accommodate any
additional load from the EVCH, provided su”cient substation capacity (i.e., transformers) is installed for voltage
regulation.
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world. Simulation is used in areas where data are not available. For an overview of data sources

and digitalization approaches per DT component refer to Table 4.5 in Appendix D.

Digital EVCH Asset Models

Figure 4.2 provides an overview of the physical EVCH asset classes that are to be represented

digitally in the DT environment. We draw on asset spec sheets along with real-world machine

data to represent the physical EVCH components and the context they operate in as accurately

as possible.

Local Substation We model the local substation as an integrated system consisting of trans-

formers, circuit breakers, and other peripheral equipment that connect the site to the higher

voltage levels of the distribution grid. The substation capacity is determined by the sum of rated

transformer capacities. Although typically very low, we account for transformer losses using an

e”ciency factor of 1-0Trafo=2%.

On-site Electricity Generation Assets (PV Panels) For electricity generation, we assume

photovoltaic (PV) modules, a natural supplement to EV charging hubs due to their production

patterns that are highly correlated with occupancy profiles (and thus charging demand) of most

parking lots. PV generation is non-dispatchable, i.e., it cannot be actively controlled. PV power

is therefore consumed on-site (by EVs, battery storage, building, etc.), or fed back into the

grid. Note that PV installations require DC-AC conversion via inverters. The e”ciency losses

of DC-AC conversion are accounted for via an inversion e”ciency factor of 1-0Inv=4%. We use

real-world PV load factors (fPV
h,t ) to model PV production from the regions corresponding to the

intended EVCH facility locations. Load factors are a measure of real PV panel power output

as a ratio of installed capacity (⇀PV
h ) and depend on local solar irradiation conditions6. PV

production at time t (excluding DC-AC conversion losses) is then given by f
PV
h,t ⇀

PV
h .

Electricity Storage Assets We model electricity storage as a lithium-ion battery with in-

stantaneous ramp time. To avoid excessive battery degradation, we allow the state of charge to

vary over the interval of [5%, 95%], thus avoiding deep discharging and over-charging that are

particularly strenuous for battery hardware. Setting upper and lower energy content bound-

aries is a common approach in storage management (Ghiassi-Farrokhfal et al. 2016). We also

assume symmetric charge and discharge e”ciency of 0charge = 0
discharge = 95%. Battery op-

erations are simulated using what is sometimes referred to as a C/C/C model7. In addition,

we implement typical battery constraints related to a maximum charge and discharge rate ⇀
Bat

6This data is available via local transmission system operators (TSOs) and generally comes in 15-minute
intervals.

7C/C/C models assume constant battery charge/discharge e”ciencies, constant energy content upper and
lower bounds, and constant voltage (Kazhamiaka et al. 2019)
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(symmetric). ⇀
Bat is dependent on the size of the battery and is set such that the battery can

be charged/discharged to/from full charge within one hour.

Peripheral Building We use real-world building consumption data to model site baseload

(ls,t) that is served by the same grid connection, thus influencing total available grid capacity

at any given period t (see Figure 4.2). Contrary to EV loads, we assume ls,t to be exogenous,

i.e., it cannot be dynamically managed or even curtailed. Given the absence of smart energy

management hardware in most existing building stock, this is a reasonable assumption. Note

that granular consumption data is widely available for commercial buildings above a certain

consumption threshold since these consumer classes are typically exposed to time-of-use tari!s

as well as demand charges for induced peak load. Our 1-year dataset records peak building loads

and consumption at a 15-minute resolution.

EV Charging Docks and Connectors We model two di!erent types of charging docks that

mainly di!er in terms of maximum charging rates ⇀. Specifically, we allow for AC fast chargers

with maximum charging capacity ⇀
i=AC=22kW and DC super-fast chargers with maximum

charging capacity ⇀
i=DC=50kW. For each charger type i → [AC,DC] we allow for di!erent

connector configurations with n → [1, 2, 4] connectors per dock. We assume that ⇀ can be shared

dynamically and flexibly between all connectors per dock. This means that connected EVs can

be served both sequentially and simultaneously via the same dock. Losses related to AC-DC

conversion are modeled using an e”ciency factor of 1-0Inv=4%8.

EVCH Operational Policies

We also implement a range of realistic operational policies that simulate real-world operations

in the DT environment. These policies are inspired by standard operational practices currently

used in EV charging operations as well as recent algorithms proposed in the EV charging litera-

ture (e.g., Lee et al. 2019, Ferguson et al. 2018). Given that we allow for multi-connector charging

docks with simultaneous charging capability, the initial assignment of vehicles to charging sta-

tions becomes important due to heterogeneous energy demand and flexibility characteristics.

Clearly, since EVs cannot be readily relocated while parked, the initial assignment to a connec-

tor influences future available charging capacities for the EV in scope as well as for current and

future arrivals that are to be served by the same charge dock.

Vehicle Routing Algorithms Vehicles j → J are routed/assigned to a connector k upon

entry into the EVCH (captured by ↪k,j,h). We implement two heuristic routing algorithms of

varying levels of sophistication and varying information requirements.

8For AC charging, the AC-DC inverter is integrated with the vehicle charger unit, whereas for DC charging
the inverter sits inside the charging dock
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– Lowest-utilization-first (LUF): This strategy operates on a sorting basis. At each

new arrival, the algorithm sorts all available docks based on free capacity. New arrivals

are routed to docks with low utilization first. In the case of a tie, the algorithm selects

randomly between the charging docks it is indi!erent between. An advantage of the lowest-

utilization-first approach over other sorting methods (such as lowest-occupancy-first) is

that it considers the di!erent charging capacities of AC vs. DC docks in the assignment

process.

– Lowest-laxity-to-highest-capacity matching (LLHC): This strategy not only con-

siders the state of individual charging docks but also that of the vehicle that is to be

assigned. Specifically, it sorts arriving vehicles into baskets of low, medium, and high lax-

ity (using bins obtained from historical data). Low-laxity vehicles are then matched with

charging docks that have a high free capacity and vice versa, thus implicitly provisioning

for future arrivals.

Vehicle Charging Algorithms Vehicle-level charging schedules are re-computed in an online

manner every five minutes allowing for updating of pre-computed schedules as new information

becomes available. We implement a selection of sorting-based algorithms and optimization-

based approaches to periodically determine the charge rate per connector k, vehicle j, and time

t ▷k,j,h,t:

– First-come-first-served (FCFS): Charging requests are served on a first-come-first-

served basis at full charging dock capacity until the available power capacity (on-site

generation, storage, and grid) is exhausted. This algorithm is largely consistent with

standard o!-the-shelve load management tools available in the market today.

– Least-laxity-first (LLF): Equivalent to a first-come-first-served algorithm but using a

least-laxity-first priority rule meaning that least flexible vehicles are charged first. The

algorithm, therefore, explicitly considers the current state of a vehicle in the charging

decision.

– Optimal: Optimal operations uses mathematical optimization to periodically (re-)compute

cost-optimal charging schedules that satisfy charging demand for the planning period ωt

in scope. We implement a standard cost-optimal charging framework (e.g., Ferguson et al.

2018). In our simulations, we plan ωt = 12 periods ahead. We also implement a smoothing

constraint by limiting the maximum charging ramp rate and considering the parallel use

of docks. Since future arrivals and their preference vectors are unknown at the time of

planning, we use a carefully tuned safety margin to be able to accommodate these in future

periods. Further details are provided in 4.7.1.
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Electricity Storage Operational Algorithms The third and final system component re-

quiring active operational management is the on-site energy storage system. We implement

a heuristic approach that has been demonstrated to perform well under real-world conditions

(Gust et al. 2021). We update battery-specific decision variables ↽
Charge
s,t and ↽

Discharge
s,t every

five minutes9:

– Temporal arbitrage (TA): The algorithms exploit the structure of the underlying time-

of-use electricity tari!. During o!-peak hours the battery is charged at a constant rate

until the upper bound of the allowable energy content is reached. During on-peak periods,

the battery is discharged at a constant rate to reduce the amount of electricity purchased

at the higher on-peak price.

EVCH Preference Data

We populate the simulation’s base architecture consisting of the above-described asset models

and operational policies with an EVCH-specific high-resolution model of parking and charging

preferences. EVCH user preferences (of an individual j) are described by the three-dimensional

vector vj = (Aj , ωj , e
d
j ) where Aj is the time of arrival, ωj the duration of stay and e

d
j the

requested energy. ωj and e
d
j define what is referred to as laxity (laxj = ωj ≃

edj
ϖi ) (Lee et al. 2019).

laxj = 0 means that a vehicle j needs to charge at the maximum available rate ⇀i for the entirety

of its stay, while higher laxity values indicate more room for active charging management. Time

of entry Aj determines the earliest planning period by which a certain charging event needs to

be initiated. We start by building a model of current archetypical parking patterns. We do

this in order to understand what typical parker types exist and how the user base composition

can vary across facilities. A taxonomy of parker types can also be useful for building synthetic

user population datasets based on assumed parker type shares wherever real-world data is not

available.We leverage a unique, large-scale transaction-level parking dataset that was provided by

a major European real-estate investor and includes transactions from seven large-scale parking

garages 10. We use a full year of data to capture daily, weekly and yearly seasonality. 2019 is

chosen as a reference year to filter out pandemic-related e!ects. In total, our data comprises

3.84M parking events. We cluster parking events j based on Aj and ωj , the two core parameters of

interest at this modeling stage. All details related to data pre-processing, selection of clustering

algorithms, and robustness tests are provided in e-companion 4.7.2. In Table 4.2 we summarize

our results. The largest proportion of parking events in our dataset is made up of three short-

term parker types (Morning Short, Afternoon Short and Evening Short). These users enter a

parking lot in the morning, afternoon, or evening respectively and typically stay for periods of 1-2

hours. We also observe a Business cluster, which comprises parking events that commence in the

9Note that battery decisions are made after the previously described charging decisions are made and that
the available battery capacity at the start of each planning period is available for EV charging.

10Each row in this dataset represents a single parking event j with corresponding arrival and departure pref-
erence information. For privacy reasons, individual users cannot be identified
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Figure 4.3: Occupancy profiles per parker type (three archetypical parking facilities)

early morning (7:26 am on average) and last for an average of 8 hours. Two additional segments

comprise longer-term parking events. These are Overnight parkers, which enter the parking lot

in the late afternoon and stay until the next morning (typically 15.8 hours on average), and

Long-term parkers that stay for periods longer than 24h on average.

We then look at the distribution of parker types across the di!erent facilities in our dataset.

Three archetypical facilities can be identified: The first facility type is a typical workplace facility

that caters mostly to Business parkers. The second facility type is a destination facility. Apart

from a small proportion of business users, such facilities mostly host short-term parkers. Finally,

we also observe facilities with less conclusive usage patterns experiencing strong demand from

all segments. We term these mixed-use facility11. Typical occupancy profiles for each of the

three facility types are shown in Figure 4.3.

Finally, we focus on the third required preference input variable: the requested energy per

vehicle e
d
j . We employ a recently published real-world dataset by Lee et al. (2019) containing

>25,000 charging transactions for the year 2019. Per each charging transaction the full preference

vector vj = (Aj , ωj , e
d
j ) is available. We blend the charging data (which only contains served

sessions that are constrained by the available infrastructure) with our parking dataset (which

contains all parking requests per facility) using techniques from collaborative filtering. We

train a prediction model on the labeled Lee et al. (2019) dataset and use the resulting model

to predict charging demand in the parking dataset. We obtain an exponentially distributed

charging demand across the entire population of EVs with an average demand of 26.46 kWh (1

= 17.20 kWh) per parking session12. The distributional shape of charging demand is consistent

11The example shown in Figure 4.3 (right panel) is a large-scale inner-city parking facility that caters to
workers, visitors, and residents.

12We also apply some limited post-processing by limiting edj to a realistic maximum bounded by the typical size
of batteries (100 kWh) and feasible energy transfer over the duration of stay assuming 50kW maximum charge
rate.
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with the one seen in other empirical EV charging settings (e.g., Ferguson et al. 2018). Crucially,

however, Table 4.2 highlights important implications for charge management resulting from the

di!erent compositions of parker types in a facility. As can be seen, the average laxity varies

significantly across parker types. Thus, parking facilities with a high proportion of high-laxity

parkers (e.g., Business, Long-term) benefit from considerably higher flexibility characteristics

with higher scope for optimization through intelligent charge management and parallel charging

at lower rates.

Table 4.2: Preference characteristics per parker type

Cluster Size Characteristics
(avg & std. in parentheses)

k Name N share Aj ωj laxj
13

1 Business 671,384 17.47% 7:26am (1.43h) 7.92h (2.73h) 6.29h (2.84h)
2 Morning Short 1,279,646 33.30% 11:10am (1.33h) 2.12h (1.90h) 1.31h (1.75h)
3 Afternoon Short 985,710 25.65% 3:03pm (1.00h) 1.73h (1.35h) 1.08h (1.30h)
4 Evening Short 744,753 19.38% 6:17pm (1.84h) 1.47h (1.30h) 1.11h (1.35h)
5 Overnight 129,273 3.36% 5:22 pm (4.01h) 15.84h (4.02h) 12.65h (4.40h)
6 Long-term 32,241 0.84% 2:28pm (4.94h) 37.04h (6.70h) 35.80h (6.98h)

Combining Asset Models, Operational Algorithms and Preferences into an EVCH

Digital Twin

Combining asset models, operational algorithms, and charging demand preferences yields a

high-resolution DT of the envisioned EVCH system. Figure 4.4 and 4.5 highlight the internal

mechanics of the DT environment14. Figure 4.4 represents the demand side and visualizes load

curves for the various load sinks in the EVCH (EV charging, building baseload, battery storage

charging) over the simulation horizon. Building load curves follow a recurring daily pattern

ramping up during the day and down again during the night. Loads are slightly lower on the

weekend (especially on Sunday). Note also the battery storage load, which reflects the temporal

arbitrage strategy.

The power requested by the above-described load sinks is supplied by the grid, the on-site

generation unit (PV), or the on-site electricity storage. The behavior of the supply side is shown

in Figure 4.5. Note how the exact supply mix heavily depends on the time of day (e.g., no PV

generation after sunset, battery disc) and even weather conditions (note the considerably higher

PV output in the middle of the week).

13assuming 22kW max. charge rate
14Shown here for a random week in a mixed-use facility using Lowest-laxity-to-highest-capacity routing, optimal

charging and temporal arbitrage storage operations
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Figure 4.4: Power supply by load sink over one-week simulation horizon (Monday to Sunday,
Mixed-use facility)

Figure 4.5: Power supply by load source over one-week simulation horizon (Monday to Sunday,
Mixed-use facility)
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4.3.3 Setting up the SAC RL Framework

Defining the design objective and the DT environment now allows us to address the system

design challenge over multiple stages in an e!ort to obtain a (near-optimal15) solution.

For the case at hand and given that planning decisions are made over multiple stages h

in planning horizon H, the problem can be framed as a stochastic sequential decision-making

problem. This decision process can be cast as a Markov Decision Process (MDP). An episodic

task emerges, which starts at the beginning of the planning horizon (h = 0) and runs through

the last investment stage h = |H|, with the epochs being the individual decision stages (e.g.,

beginning of each year).

The MDP is formulated as a tuple (S,A,P,R, ε), where the elements represent the state

space, action space, transition probability, reward function, and the discount factor respectively.

The state s = (h, schargers, sgrid, sPV
, s

storage) is defined as a vector of the time (i.e., the planning

stage h) and the infrastructure which is accumulated over all previous stages. Actions are

described by the vector a = (achargers, agrid, aPV
, a

storage) and comprise planning decisions, such

as the number of fast/slow docks with a specified number of plugs, the number of transformers,

the PV capacity and storage to be installed. In line with the planning objective defined in Step ✁,

we define the reward for moving from state sh to sh+1 as r = r(s, a) = ≃(C”+C
#+C

$), which

includes the investment cost, the operational costs, and C
$ which represents a penalty related

to unserved charging demand. Note that the reward is the negative value of costs. Despite a

deterministic state transfer function, exact reward functions are stochastic and unknown. In

other words, given a decision, the next state is known, while the expected reward is unknown

unless the state is evaluated in the EVCH DT environment. Therefore, we employ model-free

reinforcement learning to find an optimal EVCH configuration policy ϑ
↗. The facility investment

policy ϑ : S ↑A ≃↓ [0, 1] maps the state of the environment to an investment decision for each

planning time step. Note that the output of the policy is standardized for all action components

to be between 0 and 1. Furthermore, each action component is individually scaled based on the

associated lower and upper bounds.

To find the optimal policy, two classes of RL algorithms have been proposed in the literature

(Sutton and Barto 2018a): (1) value-based algorithms which learn the state/action-state values

by interactions and shape the optimal policy using the learned values, and (2) policy-based

algorithms which directly evaluate and improve the current policy until converging to near-

optimal solutions.

As mentioned, value-based models such as Q-learning can run into issues of tractability in

large state-action space environments like EVCH sizing. Therefore, we opt for a soft actor-critic

(SAC) model which combines value-based and policy-based concepts. SAC is an o!-policy actor-

critic deep RL algorithm that works based on the maximum entropy learning framework (see

Appendix C.1 for the di!erences between traditional actor-critic and SAC). In other words, the

15Note that global optimality cannot be guaranteed for most learning or search methods.
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actor of SAC aims to learn a policy ϑ(ah|sh) that maximizes expected reward (negative values

of costs) while also maximizing entropy to improve the exploration which is vital for large-scale

problems. Therefore, the objective of learning the policy is defined as follows:

J(ϑ) =
H[︄

h=0

Esh,ah↑ϱω [r(sh, ah) + ϱH(ϑ(.|sh))] (4.2)

Where ↼ω denotes the marginal of the trajectory distribution induced by policy ϑ(ah|sh). The

temperature parameter ϱ adjusts the importance of the entropy term against the reward, and

thus controls the stochasticity of the optimal policy. A key strength of SAC, setting it apart

from other RL algorithms, is its powerful exploration capability. First, the policy is inherently

stochastic, adding randomness to action selection. Second, the algorithm includes an entropy

term in its objective function, promoting the exploration of less-visited policies. By adjusting the

weight of this entropy term, SAC e!ectively balances exploration and exploitation. Additionally,

random noise is introduced to the actions to prevent the model from getting stuck in local optima.

For a detailed explanation of the SAC algorithm, we refer to Haarnoja et al. (2018).

To overcome the curse of dimensionality we use deep neural networks to represent both critic

(value network) and actor (policy network). The value network evaluates the value of the current

policy through interaction with the environment and the policy network makes decisions based on

the current state of the system. Each network is fully connected and includes multiple (4) hidden

layers with di!erent number of nodes (256, 512, 512, 256) (See Appendix 4.7.3 for details). We

train both networks from the agent’s past experience using temporal-di!erence algorithms. This

means that each experience in bu!er contains one interaction with the environment, including

state, action, immediate reward, and next state. To improve stability of the critic network, we

also use a target network that gets updated less frequently and to increase the chance of more

comprehensive exploration we add extra noise to the output of our policy network in the training

phase.

In problems with multi-dimensional action spaces, using continuous-to-discrete mapping sig-

nificantly enhances the scalability of the model compared to discrete action space models (e.g.,

Christodoulou 2019), which must account for all possible action combinations. This scalabil-

ity is crucial for addressing large-scale problems in real-world scenarios. We will illustrate this

advantage by conducting a scalability analysis of our proposed model and comparing it with

traditional discrete action space models. Our MDP contains discrete integer actions which may

be better suited for discrete RL models at first glance. However, even state-of-art deep learning

function approximation approaches do not easily scale to the number of action combinations (58

alternatives for each decision step) encountered in this problem. Alternatively, making use of

integer relaxation, we can employ a continuous SAC model which is considerably more scalable

than discrete (value-based) alternatives. Similar to Dulac-Arnold et al. (2015), our model first

takes actions within a continuous space and then maps them to a discrete action set. We will
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define:

fϑω : S ≃↓ RD
, fϑω(s) = â (4.3)

fϑω is a function parameterized by ς
ω (the policy network parameters), mapping from the state

space S to the continuous action space RD, where D is the dimensionality of the action space.

The output of this function (â) is likely not a valid set of actions for the environment as it

will contain non-integer values that might violate the physical constraints of the environment.

Therefore we define a mapping function as follows:

g : RD ≃↓ A (4.4)

g(s, â) = argmin

[︄

D

(ad ≃ âd)
2 (4.5)

ad → Z+ ↖ {0} ↔d → D (4.6)

sd + ad ⇒ ud ↔d → D (4.7)

g is a mapping function from a continuous space to a discrete space, constrained by the physical

capacities of the environment.

Based on findings of Dulac-Arnold et al. (2015), although the architecture of our policy is

not fully di!erentiable, we can nevertheless train our policy by following the policy gradient of

fϑω . To do so we define a simpler policy ϑϑ = g↙fϑω . In this initial case we can consider that

the policy is fϑω and that the e!ects of g are a deterministic aspect of the environment. This

allows us to adopt a standard policy gradient approach to train fϑω on its output â, e!ectively

interpreting the e!ects of g as environmental dynamics. In addition to this, we include the

physical restriction of each action component using constraint (7), whereby unfeasible actions

are prevented. As an example of this, the number of installed PVs cannot exceed the area

capacity of the EVCH. The addition of the continuous-to-discrete layer in the agent’s policy

is the primary modification compared to traditional SAC models. In order to ensure that the

integer relaxation does not cause our model to converge to a local optimum, we benchmark the

SAC model results with a deep Q-network agent which uses a discrete action space as well as with

a perfect-information mathematical model. The DQN model does not rely on integer relaxation

while the mathematical model represents the optimal solution under perfect information. The

details of this comparison are provided in Section 4 and o!er reassuring evidence that divergence

to a local optimum is unlikely an issue in our experiments.

4.4 Performance Evaluation and Benchmark

We now evaluate our SAC-based RL model. We first present the convergence and optimality

characteristics of our approach in comparison to traditional optimization methods, as well as
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Figure 4.6: Convergence and optimality characteristics of our proposed model as compared
to DQN and mathematical programming - Values resampled to minimum out of 10 consecutive
episodes

popular reinforcement learning techniques, including the value-based Deep Q-Network (DQN)

and the actor-critic Deep Deterministic Policy Gradient (DDPG) algorithms. Subsequently,

we analyze the scalability properties of our SAC-based reinforcement learning model. All ex-

periments are performed on a research workstation with an AMD Ryzen Threadripper 3970X

32-Core processor and 256GB of RAM. To achieve tractability of the mathematical program-

ming benchmark, we introduce several simplifications across the three modeling approaches to

ensure a fair comparison. First, we limit the problem size to 200 parking spots. Second, facility

operations are assumed to be optimal (optimal vehicle placement and charging) and stochastic-

ity is neglected (i.e., assuming perfect foresight). Third, we reduce the operational detail of the

EVCH simulation by adopting an hourly temporal resolution.

4.4.1 Evaluating Convergence and Optimality Properties

In Figure 4.6 we present convergence and optimality characteristics of our main model, the

SAC-based RL framework, as compared against the optimal solution derived using mathematical

programming. We also include two additional RL-based benchmark models in the comparison.

First, we implement a value-based DQN reinforcement learner based on the algorithm presented

in Van Hasselt et al. (2016) and used extensively in extant OM research. Second, we imple-

ment an alternative actor-critic method, the DDPG algorithm, based on Lillicrap (2015). This

approach is more closely aligned with our proposed model, which utilizes the SAC algorithm.

Details on all four models are presented in Appendix 4.7.3.
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In our experiments, SAC achieves a near-optimal solution in just 400 episodes, significantly

outpacing DQN and DDPG, which converge after approximately 700 and 550 episodes, respec-

tively. The optimality gap of the SAC model is significantly lower than that of the DQN and

DDPG approaches (10% for SAC vs. 19% for DQN, and 22% for DDPG). We attribute these

superior convergence and optimality gaps characteristics of SAC compared to DQN to the large

state-action space of the given problem (8 discrete decision with 5 options each). Scalability

to large state-action spaces is a well-known drawback of value-based approaches such as DQN

which require more and more exploration to train larger and larger deep-Q networks (number

of output nodes equals the number of actions that can be taken (Dulac-Arnold et al. 2015)).

Indeed, this is confirmed in our experiments with larger/real-sized problem instances, where the

DQN fails to converge in a reasonable amount of time (48h). SAC can handle highly-dimensional

problem spaces significantly better than DQN. This is due to the core “actor” component learn-

ing the policy function directly without the need to evaluate all possible actions per state.

Instead, the actor returns actions directly in a continuous space, resulting in a smaller network.

While DDPG leverages both actor and critic networks, it struggles with the trade-o! between

exploration and exploitation. The DDPG algorithm employs a deterministic policy and relies

only on action noise added to the policy output for exploration. Our results demonstrate that

in complex environments with high-dimensional action spaces, the SAC algorithm outperforms

traditional actor-critic models like DDPG (Haarnoja et al. 2018).

4.4.2 Evaluating Scalability to Real-Sized Problems

We now run several additional experiments aimed at understanding scaling performance of the

SAC-based planning approach and its performance against benchmark algorithms for smaller

and larger problem sizes.

First, we explore whether SAC has advantages when it comes to scaling to practical problem

sizes, i.e., EVCHs significantly larger than the previously explored 200 parking spots. To this

end we iteratively increase the problem size from an initial facility size of just 20 parking spots

to up to 1000 over the course of six experimental runs. 1000 parking spots is a size that

is representative of a large parking lot (see Section 4.3.2). Results are shown in Table 4.3.

Solution time as a function of EVCH facility size increases exponentially for the mathematical

programming framework. The model requires just 4s to solve a 20 parking spot EVCH planning

problem to optimality, but 5,937s to reach an optimal solution for a facility 10 times the size (200

parking spots). No convergence is achieved for problem sizes significantly larger than that (e.g.,

500 parking spots and upward) meaning mathematical programming is not a practical option

for many real-sized EVCH planning scenarios. Our SAC framework, on the other hand, exhibits

significantly more favorable scaling and tractability properties. It achieves solution times 64%

lower than mathematical programming for a 200 parking spot facility. It also scales to problem

sizes of 1,000 parking spots for which convergence is reached in just under 12h. SAC converges
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very closely to the global optimum reaching optimality gaps between 4% to 15% across our

experiments. Notably this is also reflected in the specific planning decision derived by SAC,

which closely resemble optimal planning decisions. Please refer to Appendix E for a deeper

analysis of individual planning decisions for all benchmark models.

Our results also highlight the scalability advantages of our proposed model (SAC) compared

to value-based (DQN) and traditional actor-critic (DDPG) algorithms. While both DQN and

DDPG perform close to optimal solutions for small facility sizes, their performance significantly

deteriorates for sizes exceeding 200, and neither converges even after 1000 episodes. For DQN,

convergence is slower even for small problems, and for larger facilities (e.g., 500 and 1000),

the algorithm struggles to find good solutions due to the curse of dimensionality, as the action

space becomes excessively large. Similarly, DDPG requires more time to converge compared to

SAC, and the gap widens for large facilities. In such cases, DDPG fails to converge, primarily

due to its reliance on insu”cient exploration mechanisms, which is a limitation of traditional

actor-critic models like DDPG (Colas et al. 2018).

Table 4.3: Evaluation of scalability and optimality

EVCH facility size 20 50 100 200 500 1000
t gap t gap t gap t gap t gap t gap

Mathematical program 4 0.00 248 0.00 842 0.00 5,937 0.00 no solution no solution
DQN 932 0.05 1,950 0.35 5,420 0.14 18,582 0.19 no solution no solution
DDPG 343 0.05 1,330 0.13 1,780 0.12 2,474 0.22 no solution no solution
SAC 174 0.04 396 0.15 990 0.11 2,115 0.10 15,919 - 42,714 -

Notes: Problem size given by number of parking spots in facility, t indicates the solution/convergence
time in seconds (excluding time needed for hyperparameter tuning); gap indicates the optimality gap;
DQN: Deep Double Q-Networks RL model, DDPG: Deep Deterministic Policy Gradient RL model,
SAC: Soft Actor-Critic RL model

As noted above, for reasons of comparability, these benchmark results are for an abstracted

version of the EVCH sizing problem (perfect foresight, low temporal granularity and simplified

operational detail). An additional benefit of adopting SAC versus mathematical optimization lies

in the fact that operational and temporal detail do not increase the problem size and thus do not

significantly impact solution time. This is because the modeling of operations is relegated to the

DT simulation. Consequently, simulating real-sized EVCH systems in close to full operational

detail, real-time (e.g., 1 minute discretization) and over large sets of sensor data (e.g., months

or even years) become possible. SAC-derived solutions can therefore be expected to generalize

better to real-world stochastic conditions compared to the optimization-derived solutions. Note

that stochastic and/or robust optimization approaches have not been explored in this work due

to their significantly higher computational requirements compared to deterministic approaches

which exacerbate scalability concerns.
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4.5 Scenario Analyses

Finally, we use our SAC model in conjunction with the DT simulator to run extensive sensi-

tivity testing under close-to real-world conditions. Aspects of particular interest here are: user

preference scenarios and operational policy choices and their impact on planning decisions. For

illustrative purposes, we report configurations achieved in the final planning state (h=9) only,

i.e., we neglect the scale-up pathway until that state is reached. Details on parameterization are

provided in Appendix 4.7.4.

4.5.1 Impact of Variations in User Preferences

In Figure 4.7 we compare SAC-derived infrastructure investment decisions for three archetypical

EVCH facilities (Destination, Mixed-use, Workplace). The results reveal significant sensitivity

of optimal physical layout decisions to user preferences. Recall that Destination facilities are

primarily used for short-term parking (large proportion of Morning Short, Afternoon Short and

Evening Short parkers), Mixed-use facilities exhibit a heterogeneous user pool, while Workplace

facilities are primarily used by commuters with long stays (see Table 4.2 and Figure 4.3). Conse-

quently, average laxity characteristics vary considerably across facility types. For example, the

average laxity of parkers in a Destination facility is considerably lower than that of a Workplace

facility where users remain parked for prolonged periods. We see these preference di!erences

reflected in the derived EVCH configurations across the three facilities. Specifically, for the

facility with the lowest average laxity (Destination facility), the RL algorithm chooses to pro-

vision primarily single-connector AC docks along with a small number of single-connector fast

chargers. A single-connector setup ensures that the full charging power is available at all times

but comes at the risk of vehicles blocking an entire dock even after completing a charging cycle.

The latter issue seems to be less problematic in a destination parking setting, where users do not

stay long on average. At the other end, the infrastructure setup for a Workplace facility tends to

favor multi-connector docks, particularly AC double-connector docks, thus taking advantage of

the higher laxity of the underlying user population that a!ords longer charging cycles at lower

rates. The third facility type (Mixed-use) falls somewhat in the middle between the previous

two extremes. This is consistent with its laxity profile that lies between that of the Destination

and Workplace facilities. It is noteworthy that DC charging plays a minor role in any scenario.

EVCH charging use cases can mostly be satisfied at lower charging rates.

In terms of power supply infrastructure, the Destination facility requires an additional 200kW

transformer versus the other scenarios to achieve the target service level and satisfy low-laxity

charging requests at higher charging rates. Some PV and battery storage is installed in all

scenarios.
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Figure 4.7: RL-derived system configuration decisions for three archetypical EVCH facilities

Figure 4.8: RL-derived system configuration and performance against objective for di!erent
routing policies and a mixed-use facility
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Figure 4.9: RL-derived system configuration and performance against objective for di!erent
charging policies and a mixed-use facility

4.5.2 Impact of Operational Policy Choices

Next, we leverage the flexibility characteristics of the DT approach by investigating the impact

of di!erent operational policies on the sizing decisions and the system’s cost performance. As

mentioned, such analyses would mean major model reformulation for optimization frameworks

but are easily implemented in a DT-based model. In Figure 4.8, we explore the impact of routing

decisions for a Mixed-use facility, assuming FCFS charging operations.

We find that the planning outcome is sensitive to the choice of routing strategy, as is the

cost performance of the derived system. The more sophisticated routing strategy (LLHC) relies

on more multi-connector docks and requires fewer alternative power sources (PV and storage)

in an optimal setup compared to the same facility operated with LUF routing. Total system

cost savings amount to 8.4%.

We perform a similar sensitivity analysis for the choice of charging strategy. Figure 4.9

displays RL-derived infrastructure decisions and system cost performance for the same Mixed-use

facility, assuming LLHC routing. We observe a largely similar picture here. Planning decisions

are sensitive to the choice of charging strategies (e.g., more multi-dock chargers, more PV, and

more battery with optimal strategy), as is cost performance (i.e., the best performance of the

system with optimal charging with savings of 1.7 to 3.2% against the alternative strategies).

In sum, we show that the physical EVCH configuration (() is highly sensitive to %, the

EVCH operational policy. In general, the more sophisticated the operational policies, the lower

the total infrastructure requirements and the better the overall cost performance of the system.

Thus, in order to obtain optimal planning decisions, operations managers need alignment on

how they intend to operate the service system. Di!erent operational strategies require di!erent

infrastructure layouts to achieve optimal performance and result in di!erent total system costs.

In sum, we show that the physical EVCH configuration (() is highly sensitive to %, the

operational policies that the EVCH operates on. In general, the more sophisticated the oper-

ational policies, the lower the total infrastructure requirements and the better the overall cost
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performance of the system. Thus, in order to obtain optimal planning decisions, operations man-

agers need alignment on how they intend to operate the service system. Di!erent operational

strategies require di!erent infrastructure layouts to achieve optimal performance and result in

di!erent total system costs.

4.6 Discussion

In this work we consider the problem of planning large-scale electric charging hubs (EVCHs). We

define EVCHs as locally concentrated and centrally operated clusters of charging infrastructure

that are typically integrated with on-site generation, storage and adjacent building infrastruc-

ture. Examples include workplace parking facilities, EV-enabled inner city parking garages or

EV fleet depots. Planning these complex operational systems over a multi-year investment hori-

zon represents a high-dimensional, dynamic and stochastic decision problem. Such planning

problems have traditionally been approached by means of mathematical programming (e.g.,

Kazemi et al. 2016, Li et al. 2020). These frameworks are subject to computational challenges

(e.g., NP-hardness) that can limit scalability to practical system sizes. As a result, simplifying

assumptions related to, for example, temporal granularity, operational detail, system size, deci-

sion horizon or stochasticity are required to achieve tractability. This can come at the expense

of generalizability to real-world conditions and does not take advantage of the wealth of granular

operational data that has become increasingly abundant (Choi et al. 2022).

We develop and evaluate an alternative data-driven solution approach to the EVCH plan-

ning challenge, thus responding to calls from the scientific community and real-world sectors

to develop methods that make use of and incorporate granular operational and preference data

into OM frameworks (Qi and Shen 2018, Cohen 2018, Choi et al. 2022, Ketter et al. 2023).

The proposed solution – the core contribution of this work – leverages modern reinforcement

learning (RL) (specifically soft actor-critic (SAC) RL) in combination with fine-grained data-

driven simulation, also referred to in this work as Digital Twin (DT). SAC, a policy-based RL

method, is better suited for the significant size of the action combinations in EVCH planning

(e.g., wide variety of asset classes such as di!erent EV charger types, PV, on-site battery,

transformers, etc. each with large set of discrete options over multiple investment periods)

compared to value-based deep learning function approximations. This is primarily due to the

continuous nature of the action space in a SAC model. To adapt the continuous SAC model to

the discrete action space of EVCH planning, our model first takes actions within a continuous

space and then maps them to a discrete action set. We show that, for the case of EVCH,

the proposed SAC-based model delivers on the key theoretical and practical benefits of RL:

(1) scalability, (2) incorporation of operational detail and large-scale stochastic preference data,

and (3) modeling flexibility. We also demonstrate that concerns around the lack of optimality

guarantee are largely unfounded with our model converging closely to the global optimum across
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all our experiments despite the integer relaxation adopted in our approach. We provide further

details on these key results in the following.

In terms of scalability, we demonstrate experimentally that using soft actor-critic RL in

combination with a data-driven simulation environment is scalable to real-world EVCH system

sizes of 1,000 parking spots for which the model converges in under 12h. Optimization methods

(similar to the one proposed in Li et al. (2020)) only scale to EVCH facility sizes of approx.

200 parking spots and fail to converge (within the 48h time constraint) for larger problems. An

important caveat is the need for significant modeling simplifications, such as coarser temporal

discretization, less operational detail and deterministic realization of normally uncertain param-

eters (e.g., arrival times, charging demand) to achieve tractability for these problem sizes with

mathematical programming. Scalability (and optimality gap performance) of our SAC-based

method also compares very favorably against alternative RL approaches, specifically the popu-

lar value-based DQN approach. For the 200 lot benchmark problem SAC converges within 400

episodes versus 700 episodes for DQN and achieves an optimality gap of just 10% versus 19%

for DQN.

Another theoretical benefit of RL that we are able to exploit for this work on EVCHs and

that distinguishes our method from extant optimization-based planning frameworks is the fact

that RL scales almost independently of operational detail and data set size, due to the frame-

work’s reliance on a simulation rather than a mathematical model to capture system dynamics.

This allows us to leverage data on preferences, operations and asset characteristics in great detail

(e.g., 1 minute intervals) and over long periods of operational data (e.g., months). For example,

we use real-time parking and charging data to develop a novel taxonomy of parker types along

and their charging preferences. We show that parking events can be classified into one of six

categories (e.g., business parkers, overnight parkers, etc.) and that archetypical facility types

(e.g., a workplace facility) exhibit very distinct parker population patterns. These data-driven

and very granular preference models power our EVCH simulation and allow us to align our

simulation with real-world conditions as much as possible. We posit that this will result in bet-

ter performance of the target system under real-world conditions. Indeed, using high-detailed

simulation environments both in terms of temporal granularity and preference granularity pro-

vides significant and quantifiable value. Our experiments reveal better cost performance of the

derived planning decision vs. models where we either use coarser time periods (approximately

20% cost increase vs. the benchmark case as we increase modeling granularity to 2h) or where

we use distributional assumptions of preferences instead of real-world sensor data (significant

45% drop in service level compared to the benchmark case). While traditional stochastic or

robust optimization approaches can be specified to account for uncertainty in future realizations

of parameters, this comes at the cost of larger models and associated performance penalties ren-

dering these alternatives impractical for the large-scale multi-stage stochastic EVCH planning

problem.



4.6 Discussion 137

As an added benefits of relying on a simulator rather than a mathematical model of the

physical EVCH environment, the proposed method is extremely flexible. The key benefit of this

modeling flexibility is the ability to conduct extensive scenario analyses regarding user prefer-

ences, operational policy choices, asset configurations and cost assumptions that have practical

use for operations managers looking to make data-driven EVCH planning decisions. This can

be achieved without requiring extensive model reformulation. We explore how infrastructure re-

quirements change as asset operations become more sophisticated highlighting the value of such

operational policies (see Section 4.5). We are also able to model complex interactions between

a wide variety of di!erent loads (building, EV charging, battery charging) and power sources

(grid supply, PB, on-site battery storage), which sets this work apart from extant EVCH re-

search (e.g., Kazemi et al. 2016, Li et al. 2020, Babic et al. 2022a). These scenario analyses yield

several interesting findings that have practical implications for EVCH operations management.

For example, we find that integrating generation (PV) and storage (on-site) assets into the EV

charging hub is beneficial in most cases, but varies by facility type and the adopted charging and

routing policies. We also demonstrate that the use of multi-server chargers is cost e!ective and

can improve EVCH economics, especially if active vehicle routing and smart charging strategies

are adopted and if the user population has high average laxity as would be the case in a typical

workplace facility. Another interesting finding is that, in many scenarios, no significant invest-

ment in DC fast charging is required to achieve the desired service level. Opportunities to build

on, expand and tailor these scenario analyses while leveraging our RL approach abound and we

leave them for future work.

There are also several limitations of RL which we have explored extensively in this work and

which we lay out here.

First, RL does not guarantee optimality (Sutton and Barto 2018a). This concern may be

further exacerbated by the need for integer relaxation of several discrete decision variables in

the proposed SAC framework. To provide evidence to the contrary, we run extensive simulation

experiments on di!erent EVCH system sizes to explore how closely to the global optimum our

solution converges. We show that the solutions obtained in these experiments can be considered

near-optimal (gaps between 4% and 15%).

It should also be considered that despite the highly detailed nature of the DT simulation,

it is still an abstraction of reality that is subject to several limitations and simplifications. For

example, we consider routing and charging decisions separately instead of jointly. We also do

not allow for vehicle-to-grid operations and consider loads of the attached building loads to be

exogenous, among other simplifications. Such limitations represent exciting avenues for follow-

up work, and we leave them for future research.

Finally, our method is data hungry, meaning that it requires large amounts of granular op-

erational data. We argue, that with the emergence of inexpensive sensor technology, ubiquitous

computing, and mobile connectivity such data tends to be increasingly available (Choi et al.
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2022). While the above-mentioned benefits of RL should warrant these data and implementa-

tion these costs there is an additional argument in favor of the proposed method: as opposed

to traditional OM planning models, the simulation environment (DT) used as part of the RL

framework is not single-use. Indeed, the DT can be readily bridged-over into the use phase of

the EVCH by simply replacing historical sensor data streams with real-time data flows (Boschert

and Rosen 2016). In the system’s use phase, the DT then a!ords real-time system monitoring

and optimization. We aim to exploit this multi-use characteristic in future work by leveraging

the developed DT simulation in the development of novel high-performing learning algorithms

for real-world EVCH operations.

In sum, our framework o!ers a novel practical method for OM practitioners to incorporate

data-driven, high-fidelity simulators (i.e., DTs) combined with state-of-the-art reinforcement

learning methods in the design phase of large-scale EVCH systems. The method yields near

optimal planning solutions, scalability to real-world systems, the ability to incorporate and

account for large-scale stochastic user and systems behavior as well as modeling flexibility.

In terms of scalability, we demonstrate experimentally that using soft actor-critic RL in

combination with a data-driven simulation environment is scalable to real-world EVCH system

sizes of 1,000 parking spots for which the model converges in under 12h. Optimization methods

(similar to the one proposed in Li et al. (2020)) only scale to EVCH facility sizes of approx.

200 parking spots and fail to converge (within the 48h time constraint) for larger problems. An

important caveat is the need for significant modeling simplifications, such as coarser temporal

discretization, less operational detail and deterministic realization of normally uncertain param-

eters (e.g., arrival times, charging demand) to achieve tractability for these problem sizes with

mathematical programming. Scalability (and optimality gap performance) of our SAC-based

method also compares very favorably against alternative RL approaches, specifically the popu-

lar value-based DQN approach. For the 200 lot benchmark problem SAC converges within 400

episodes versus 700 episodes for DQN and achieves an optimality gap of just 10% versus 19%

for DQN.

Another theoretical benefit of RL that we are able to exploit for this work on EVCHs and that

distinguishes our method from extant optimization-based planning frameworks is the fact that

RL scales almost independently of operational detail and data set size, due to the framework’s

reliance on a simulation rather than a mathematical model to capture system dynamics. This

allows us to model preferences, operations and asset characteristics in great detail (e.g., 1 minute

intervals) and over long periods of operational data (e.g., months). For example, we use real-time

parking and charging data to develop a novel taxonomy of parker types along and their charging

preferences. We show that parking events can be classified into one of six categories (e.g.,

business parkers, overnight parkers, etc.) and that archetypical facility types (e.g., a workplace

facility) exhibit very distinct parker population patterns. These data-driven and very granular

preference models power our EVCH simulation and allow us to align our simulation with real-
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world conditions as much as possible. We posit that this will result in better performance of the

target system under real-world conditions. While traditional stochastic or robust optimization

approaches can be specified to account for uncertainty in future realizations of parameters,

this comes at the cost of larger models and associated performance penalties rendering these

alternatives impractical for the large-scale multi-stage stochastic EVCH planning problem.

As an added benefits of relying on a simulator rather than a mathematical model of the

physical EVCH environment, the proposed method is extremely flexible. The key benefit of this

modeling flexibility is the ability to conduct extensive scenario analyses regarding user prefer-

ences, operational policy choices, asset configurations and cost assumptions that have practical

use for operations managers looking to make data-driven EVCH planning decisions. This can

be achieved without requiring extensive model reformulation. We explore how infrastructure re-

quirements change as asset operations become more sophisticated highlighting the value of such

operational policies (see Section 4.5). We are also able to model complex interactions between

a wide variety of di!erent loads (building, EV charging, battery charging) and power sources

(grid supply, PB, on-site battery storage), which sets this work apart from extant EVCH re-

search (e.g., Kazemi et al. 2016, Li et al. 2020, Babic et al. 2022a). These scenario analyses yield

several interesting findings that have practical implications for EVCH operations management.

For example, we find that integrating generation (PV) and storage (on-site) assets into the EV

charging hub is beneficial in most cases but varies by facility type and the adopted charging and

routing policies. We also demonstrate that the use of multi-server chargers is cost e!ective and

can improve EVCH economics, especially if active vehicle routing and smart charging strategies

are adopted and if the user population has high average laxity as would be the case in a typical

workplace facility. Another interesting finding is that in many scenarios no significant invest-

ment in DC fast charging is required to achieve the desired service level. Opportunities to build

on, expand and tailor these scenario analyses while leveraging our RL approach abound and we

leave them for future work.

There are also several limitations of RL which we have explored extensively in this work and

which we lay out here.

First and foremost, RL does not guarantee optimality (Sutton and Barto 2018a). This

concern may be further exacerbated by the need for integer relaxation of several discrete decision

variables in the proposed SAC framework. To provide evidence to the contrary, we run extensive

simulation experiments on di!erent EVCH system sizes to explore how closely to the global

optimum our solution converges. We show that solutions obtained in these experiments can be

considered near-optimal (gaps between 4% and 15%).

It should also be considered that despite the highly detailed nature of the DT simulation,

it is still an abstraction of reality that is subject to several limitations and simplifications. For

example, we consider routing and charging decisions separately instead of jointly. We also do

not allow for vehicle-to-grid operations and consider loads of the attached building loads to be
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exogenous, among other simplifications. Such limitations represent exciting avenues for follow-

up work, and we leave them for future research.

Finally, our method is data hungry, meaning it requires large amounts of granular operational

data. We argue, however, that with the emergence of inexpensive sensor technology, ubiquitous

computing, and mobile connectivity such data tends to be increasingly available (Choi et al.

2022). While the above-mentioned benefits of RL should warrant these data and implementation

these costs there is an additional argument in favor of the proposed method: as opposed to

traditional OM planning models, the simulation environment (DT) used as part of the RL

framework is not single-use. Indeed, the DT can be readily bridged-over into the use phase of

the EVCH by simply replacing historical sensor data streams with real-time data flows (Boschert

and Rosen 2016). In the system’s use phase, the DT then a!ords real-time system monitoring

and optimization. We aim to exploit this multi-use characteristic in future work by leveraging

the developed DT simulation in the development of novel high-performing learning algorithms

for real-world EVCH operations.

In sum, our framework o!ers a novel practical method for OM practitioners to incorporate

data-driven, high-fidelity simulators (i.e., DTs) combined with state-of-the-art reinforcement

learning methods in the design phase of large-scale EVCH systems. The method yields near

optimal planning solutions, scalability to real-world systems, the ability to incorporate and

account for large-scale stochastic user and systems behavior as well as modeling flexibility.
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4.7 Appendix

4.7.1 Operational Modeling and Algorithms

Optimal Charging Approach

Our charging model reconsiders the charging rate for connected vehicles at the beginning of each

planning interval, thus following an online optimization paradigm.

The objective is to minimize the energy costs while meeting the charging demand of all

connected vehicles (up to a predefined service level) over the look ahead planning window T #.

As we consider an uncertain case where the perfect information of upcoming vehicles is not

available to the decision model, we make this conservative assumption to ensure that the service

level is fulfilled.

First, the planning horizon must be chosen carefully due to its significant e!ect on model

performance. In our simulations, we limit it to 6 hours, which, given a planning interval $#

of 15 minutes, breaks down to 24 decision steps (i.e., charging rates are re-computed every 15

minutes of simulation time). We term the set of decision steps T #

Second, we consider a flexibility margin µt to accommodate future, yet unknown demand.

Although this model outputs a vector of charging rates for each vehicle, we only use the first

charging rate and reconsider decisions in the next charging time step based on the updated

system state including the new arrived vehicles.

Min%
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t↓T !

T
e
t e

Grid
t + T
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p
↗ (4.8)

The grid energy consumption e
Grid
t accounts for the charging of vehicles (variables) as well as

the storage (dis)charging, PV generation and building loads (storage rate is given as parameter

before charging management). Constraint Eq. (10) guarantees that the grid energy consumption

does not exceed the grid capacity minus the safety threshold we consider for the following time

steps. We compute the induced peak in Eq. (11).

e
Grid
t =

[︄

j↓J

[︄

k↓K

$t(▷k,j,t + ↽
Charge
t ≃ ↽

Discharge
t ≃ f

PV
t

[︄

ε=0

⇀
PV
ε + lt) ↔t → T # (4.9)

e
Grid
t

$t
⇒ p

Grid
t ≃ µt ↔t → T # (4.10)

p
↗ ⇔ e

Grid
t

$t
≃ l

↗ ↔t → T # (4.11)

We also ensure that all vehicles receive at least 0 percentage of their charging demands (Eq.

(12)). Constraint Eq. (13) ensures that vehicle can only charge when they are physically present

in the EVCH. Finally, Constraint Eq. (14) restricts the parallel charging of vehicles that are

connected to charging dock k to its charging capacity.
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4.7.2 Preference Modeling

In this Section we provide details on the clustering routine and robustness test employed to

identify parking archetypes. We cluster parking events j based on Aj and ωj , the two core

parameters of interest at this modeling stage. To account for the circular nature of arrival time

Aj , which is not captured accurately by any distance-based clustering algorithm (for example,

entries at 23:59h and 0:00h would be considered furthest apart despite their obvious proximity),

we create two circular features A
sin
j = sin(2ϑ(Aj/24)) and A

cos
j = cos(2ϑ(Aj/24)). This yields

the following vector of clustering variables vclustj = (Asin
j , A

cos
j , ωj), which we normalize.

Given the size of our dataset (3.84M observations) we limit our algorithm search to clustering

algorithms that are su”ciently scalable. We run initial tests with three clustering algorithms: k-

means++, a centroid-based algorithm, Gaussian Mixture Models (GMM) and BIRCH, a scalable

density-based clustering algorithm. Overall, we find k-means++ to perform best in terms of

runtime and stability. While GMM yields relatively similar results, BIRCH performs very poorly,

yielding unstable and non-cohesive clusters suggesting that relative density may not be a good

identifier of clusters for the given dataset. We thus focus on fine tuning k-means++. A major

challenge in the application of k-means++ is to select the number of centroids (clusters) k that

are to be initialized and optimized for. To identify good candidate choices for k, We initially test

integer values over an interval of reasonable values [0, 20] and compute Calinski-Harabasz scores

per each clustering outcome (Calinski and Harabasz 1974). These analyses suggest k = 5 or k = 6

to be good choices. To validate and further narrow down our choice for k, we perform silhouette

analyses for both candidate choices (Rousseeuw 1987). We obtain the highest average silhouette

coe”cient H̄ for k = 6 (H̄ = 0.420). Finally, taking k = 6 as the best performing choice across

the above described internal validity measures, we conduct extensive cross-validation to assess

cluster outcome robustness. We iteratively perform 2-1 splits of the data and re-run k-means++

on the larger dataset, then use the fitted algorithm to predict the labels of the smaller (test)

dataset. We find our clustering results to be stable with observations in the test set having

the same label 99.14% (1 = 0.51 %, 100 replications) of the time. We run an additional set

of robustness analyses, this time focusing on the amount of preference data that is required to

identify parker types reliably. This analysis draws on Gri”n and Hauser (1993) who looked at

the question of how many customer interviews were required for reliable insights. Clearly, there

is a benefit to prospective EVCH planners if the need for data was smaller than the full one
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Figure 4.10: Distribution of clustering variables per each cluster

year period we have considered thus far. We run tests for 2 weeks, 4 weeks and 12 weeks of data

per each facility and check the robustness of the clustering results as compared to the clusters

obtained on the full one-year facility dataset. We find that high quality clustering results can be

obtained with just three weeks of data (95.28%, 1 = 3.49 %) accuracy vs. full one-year facility

dataset). Beyond this threshold the value of additional data appears to diminish. At six weeks

of data, for example, we obtain very similar accuracy (95.85% (1 = 1.95 %)), albeit slightly

lower variance. In addition to internal validity and robustness of our clustering results we look

at interpretability (or external validity). For this purpose, we presented our final clustering

results (for k = 6) to a range of practitioners and discussed their implications. The clusters

were deemed consistent with the domain experts’ experience. In sum, we obtain six parker

types that are supported both by internal criteria and real-world observation and can be readily

identified with just three weeks of data. Figure 4.10 shows the distributions of the two clustering

variables per each final cluster.
4.7.3 Solution Frameworks and Models

In the following, we present the specifications of the model architectures developed and used in

this research.

The common hyperparameters between the RL models are specified in Table 4.4. Model-

specific parameters are explained separately. For each EVCH facility size, we tune the hyperpa-

rameters using a brute-force grid search, focusing on learning rate, batch size, training frequency,

and hidden layers. The goal of the grid search is to find the best set of hyperparameters that con-

verges to the highest objective function after training. Here we show the final hyperparameters

for the main configuration used in the model benchmarking (200 parking spaces).
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Table 4.4: Hyperparameter Configuration for Reinforcement Learning Algorithms

Parameter DQN DDPG SAC
Optimizer (learning rate) Adam (0.001) Adam (0.0001) Adam (0.0001)
Loss function MSE MSE MSE
Discount factor (ε) 0.99 0.99 0.99
Memory capacity 1,000,000 1,000,000 1,000,000
Steps prior to learning 1024 256 256
Training frequency 10 10 10
Batch size 64 256 256
Exploration strategy Epsilon decay Action noise Entropy maximization
Target network update rate (ϖ) 0.01 0.01 0.05
Hidden layer activation function ReLU ReLU ReLU
Number of hidden layers (nodes) 3 (256, 512, 256) 4 (256, 512, 512, 256) 4 (256, 512, 512, 256)

Main Model: Soft Actor-Critic Reinforcement Learner

Actor-Critic and Soft Actor-Critic models are reinforcement learning algorithms designed to

identify optimal policies for sequential decision-making problems, but they di!er significantly in

their approaches and objectives. Generally, Actor-Critic models consist of two key components:

the actor, which defines the policy function responsible for selecting actions, and the critic,

which evaluates the actor’s actions using a value function (Konda and Tsitsiklis 1999). This

framework aims to enhance policy performance by reducing variance in policy gradients through

value-based feedback. SAC extends this model by including an entropy term in the objective

function, encouraging the agent to balance exploration and exploitation by optimizing a trade-o!

between maximizing expected returns and policy entropy (Haarnoja et al. 2018). This objective

improves training stability and sample e”ciency, especially in environments with continuous or

large action spaces. Additionally, SAC employs an o!-policy approach, utilizing a replay bu!er

for more e”cient data usage, whereas traditional Actor-Critic methods are often on-policy and

require fresh data for updates (though not all Actor-Critic models are strictly on-policy). These

characteristics make SAC particularly well-suited for complex, high-dimensional tasks requiring

robust exploration and stability, such as the problem addressed in our study.

We utilize identical network architectures for both the actor and critic. We experiment with

various hyperparameters for the actor and critic networks but found no significant impact on

their performance, except for doubling the grid search size. The only contrast between the two

is that we use a Tanh activation function in the final layer of the actor network, which yields

a value between -1 and 1 for each sub-action and must be proportionally scaled based on the

sub-action range. The SAC model utilizes Adam with a learning rate of 0.0001 to update the

networks while implementing a batch size of 256. An automatic entropy tuning feature is also

employed which is critical for SAC to minimize the impact of entropy in the objective function

in order to achieve stable policies (Haarnoja et al. 2018). As suggested by existing literature
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(Haarnoja et al. 2018), a constant additional noise is applied during the training phase to enable

the model to su”ciently explore the environment and mitigate the risk of local optima. The

noise function follows a normal distribution with a mean of zero and variance of 0.05. We use

Kaiming uniform initialization (also known as He initialization), which is the default weight

initialization for a fully connected (feedforward) neural network (FNN) layer. This initialization

is well suited for layers with ReLU or similar activation functions, as Kaiming initialization helps

to maintain the variance of activations across layers. In addition, our model set the initial values

of the biases to zero.

Benchmark RL Model: DQN Reinforcement Learner

We use deep double Q-networks as the benchmark model in our study. For further details,

please refer to Van Hasselt et al. (2016). The rationale behind Double Q-learning is to mitigate

overestimation by breaking down the maximum operation in the target into action selection

and evaluation. This results in the usage of two networks, one each for action selection and

evaluation purposes. The action evaluation network is termed target network and undergoes

lesser updates compared to the main network. To adjust the parameters of the target network,

we adopt soft update, which is implemented as follows:

ς
→ ⇐≃ (1≃ ϖ)ς→ + ϖς (4.15)

Where ς
→ represents the target network parameters, ς represents the main network parame-

ters, and ϖ is the soft update weight, which ranges from zero to one. The hyperparameter grid

search, as shown in Table 1, indicates that DQN requires a higher learning rate, lower batch size,

and smaller hidden layers compared to SAC. Our exploration strategy employs an epsilon-decay

algorithm, where random actions are chosen with decreasing probability of epsilon during the

training process. In our model, epsilon begins at 0.3 and decreases to 0.01 after 600 episodes,

and remains unchanged thereafter.

Benchmark RL Model: Deep Deterministic Policy Gradients

Deep Deterministic Policy Gradients (DDPG) is a model-free, o!-policy reinforcement learning

algorithm designed for continuous action spaces Lillicrap (2015). It combines the strengths of

both Q-learning and policy gradient methods. Similar to SAC, DDPG utilizes an actor-critic

architecture, where the actor network learns a deterministic policy to map states to actions, and

the critic network evaluates the Q-value of the state-action pairs. Inspired by Deep Q-Networks

(DQN), DDPG uses a replay bu!er to store experiences and sample mini-batches for training,

ensuring decorrelated updates and improved stability. Additionally, we employ target networks

for both the actor and critic to stabilize training by providing a slowly updated, consistent set
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of parameters. To encourage exploration in deterministic policies, we add noise to the actions

during training. Although DDPG is designed for continuous action spaces, we adapt it to the

integer action space of our problem using the same modifications applied to our proposed SAC

model.

Upper Bound Benchmark: Mathematical Programming Model

A Mathematical Programming Model acts as upper bound in our benchmarks and is used to

compute optimality gaps of RL-based models. We formulate the decision challenge as a feasibility

problem which aims to satisfy all or a specified amount of total charging demand most resource

e”ciently while considering rate, space, and total capacity constraints. In doing so we expand

on and adapt extant EVCH planning models (e.g., Li et al. 2020).

In line with the planning objective, we frame the problem as a cost minimization planning

with the goal to jointly minimize the investment cost (C”) and the operations cost (C#) of the

EVCH while ensuring a certain service level 0Servh . Formally, the objective can be expressed as

follows:

Min%[(C
”(xi,nk,h, ω

Trafo
h ,⇀

PV
h , φ

Bat
h ) + C

#(↪k,j,h,▷k,j,h,t,↽
Charge
h,t ,↽

Discharge
h,t )] (4.16)

Both cost items are defined as follows. The investment cost (C”) is the sum of the grid expansion

cost (if any), the cost of charging infrastructure plus any installed PV and battery capacity over

the full investment horizon H. The operations cost (C#) is defined as the total sum of electricity

costs over the investment horizon, where costs are only incurred on the electricity retrieved from

the grid with e
Grid
h,t . Formally:
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Note that e
Grid
h,t is accounted for on the basis of a two-part tari! charging for both the use of

electricity from the grid (excl. PV generation and possible battery discharge ↽
Discharge
h,t ) and

demand charges arising from the induced peak load attributable to EVCH operations. Demand

charges T p
h are designed to incentivize e”cient utilization of the grid (Gust et al. 2021) and are

typically based on the monthly peak load induced by the facility. We therefore define p
↗ as the

excess of the expected base facility peak load l
↗ (excl. EVCH operations) for state h (Eq. (20)).

e
Grid
h,t =

[︄

j↓Jh

[︄

k↓K

$t(▷k,j,h,t + ↽
Charge
h,t ≃ ↽

Discharge
h,t ≃ f

PV
h,t

h[︄

ε=0

⇀
PV
ε + lh,t) (4.19)
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h ↔h → H, t → T(4.20)
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The optimization is subject to additional operational and physical constraints.

[︄
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h e
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First and foremost, service level is guaranteed in Eq. (21). Note that the summation is

bounded by set T , meaning that we consider the total supplied energy at the time of departure.

This important constraint ensures that adequate infrastructure is provisioned despite the cost

minimization objective.

EV charging infrastructure decisions and operations are controlled by means of decision

variables x
i,n
k,h, ↪k,j,h (both binary indicators, see Eq. 22) and ▷k,j,h,t. First, the number of

charging docks and associated connectors is restricted by the space constraints L of the facility

(Eq. (23)). Similarly, Eq. (24) ensures that candidate points can only be equipped with chargers
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once and that this decision cannot be changed over the planning period, i.e., they cannot be

removed once installed.

In terms of routing and charging operations, the model assigns vehicles to chargers upon

arrival (one-o! decision) and periodically adjust the charging power over the duration of their

visit. Constraint Eq. (25) allocates vehicle j to spot k during stage h only if k is equipped with

a charging dock and only if j is present in the EVCH (captured via Uj,h,t). Eq. (28) ensures

that each vehicle connects to at most one charging dock. Constraint Eq. (27) guarantees that

vehicle j receives non-negative energy (bounded by the maximum power of the specific dock in

Eq. (28)) from charging dock k only if it is connected to k.

Battery and on-site generation constraints are set as follows. We assume PV generation to

be non-controllable meaning no constraints are necessary to model their operations (in-feed is

an exogenous parameter). We simply limit the maximum installable PV capacity
)︄

h↓H ⇀
PV

to the available on-site space (such as rooftop space) R (see Eq. (29)). Eq. (30) through (35)

implement various battery-related constraints. Constraint Eq. (30) incrementally updates the

battery state of charge SoCh,t. Constraint Eq. (31) ensures that the battery SoC remains within

a certain interval. Note that we neglect e”ciency losses and assume battery depreciation to be

independent of operations(Sharifi et al. 2020). We realize that these are simplifications, yet

these are necessary to retain tractability of our model. We assume symmetric charge/discharge

rate limits which are enforces through constraint Eq. (32) and (33), where ↽
max ⇔ 0. These

constraints also ensure that the battery cannot be charged and discharged at the same time.

Our model ensures that the EVCH’s base load as well as EV and battery charging loads

cannot exceed the total grid capacity (existing and extension) plus current PV generation,

which is enforced by Eq. (36). Note that if the battery was discharging (negative ↽
Bat
t ) this

would increase the available capacity.

4.7.4 Experimental Setup

In this Section we provide details on the experimental setup and parameterization of the Digital

Twin (DT) simulation environment. Table 4.5 provides details on the key components of the DT

environment and the digitalization approach adopted (real-world sensor data vs. simulation).

Note that we rely on real-world sensor data to model system dynamics wherever available

and resort to simulations informed by research papers and/or asset specification sheets in all

other cases (following Sierla et al. (2018)). In addition, we impose several physical constraints

inherent to the various components of the EVCH system. These are summarized in Table 4.6.

Table 4.7 summarizes the core investment-related parameters (costs and space constraints)

used in the benchmark experiments over the investment horizon (10 states s → S). Energy

costs are based on real-world electricity tari!s from the same region in which the charging data

were gathered (i.e., California). Table 5.4 gives an overview of the tari! structure that is used

throughout all experiments.
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Table 4.5: Digital Twin (DT) components and associated datasets

DT Compo-
nent

Type Digitalization
approach

Description Source

Local Substa-
tion

Physical
Asset

simulated Transformation
losses and physical
limit

assumptions as detailed in
Table 4.6

On-site Elec-
tricity Gener-
ation Assets
(PV Panels)

Physical
Asset

real-world sen-
sor data

PV load factors
(power output as
percentage of in-
stalled capacity)

Open Power System Data
provided by Neon Neue
Energieökonomik and
Technical University of
Berlin and ETH Zürich
and DIW Berlin (2024)

Electricity
Storage Assets

Physical
Asset

simulated (dis-)charging ef-
ficiency curves,
physical constraints
(min/max state of
charge)

Ghiassi-Farrokhfal et al.
(2016); assumptions as de-
tailed in Table 4.6

EV Charging
Docks and
Connectors

Physical
Asset

simulated AC-DC conversion
losses, maximum
charging capacity

assumptions as detailed in
Table 4.6

Peripheral
Building Elec-
tricity Con-
sumption

Preference
Pattern

real-world sen-
sor data

Peak load in KW and
consumption in kWh
per 15-min interval

Unique real-world meter
data provided by a ma-
jor European real-estate
investor; includes peak
building loads and con-
sumption at 15-minute
resolution across thirteen
facilities with di!erent us-
age profiles

Parking De-
mand

Preference
Pattern

real-world sen-
sor data

Vehicle-level time of
arrival and duration
of stay obtained from
parking garage sen-
sors

Unique transaction-level
parking dataset provided
by a major European
real-estate investor; in-
cludes transactions from
seven large-scale parking
garages catering to dif-
ferent parking use cases
(o”ce building, destina-
tion parking, mixed-use)

Charging De-
mand

Preference
Pattern

real-world sen-
sor data

Requested energy
per charging session
in kWh

Real-world dataset by Lee
et al. (2019) containing
>25,000 charging transac-
tions for the year 2019

16All cost parameters include cost of installation and peripheral equipment (e.g., inverters for battery, PV and
DC chargers)

1722kW, single connector
1850kW, single connector
19Assuming sales share equals penetration for given facility
20Cost of transformer, cabling and contribution to upstream grid upgrades; assuming 5% yearly cost increase
21Assuming 500m2 roof space and PV energy density of 0.2kWp/m2
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Table 4.6: Operational Constraints and Parameters

Symbol Value Unit
Substation transformation e”ciency 0

Trafo 98 %
PV DC-AC inversion e”ciency 0

Inv 96 %
EV charging e”ciency 0

EV 95 %
Energy storage charging/discharging e”ciency 0

Bat 95 %
Energy storage minimum storage SoC SoC

Min 5 %
Energy storage maximum storage SoC SoC

Max 95 %
Energy storage maximum charging rate ⇀

Bat dependent on battery size kW
Standard size of a transformer ⇀

Trafo 200 kW
Initial capacity of the grid connection ⇀

Grid
0 250 kW

Table 4.7: Parameterization of benchmark experiments

Parameter16 Unit s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 Source

Battery cost
(cBat

s
)

USD/
kWh

575 507 441 391 352 321 295 273 255 239 Lazard,
Bloomberg
NEF

AC charger
cost17

(cEV SE

s,AC
)

USD/
unit

4500 4322 4151 3986 3828 3677 3531 3391 3257 3128 industry
quotes

DC charger
cost18

(cEV SE

s,DC
)

USD/
unit

50000 49000 47060 45196 43406 41687 40037 38451 36928 35466 California
Energy
Com-
mission

Connector
cost AC

USD/
unit

250 250 250 250 250 250 250 250 250 250 assumption

Connector
cost DC

USD/
unit

2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 assumption

EV share19

(1EV
s

)
% 5 8 12 18 27 37 42 49 56 65 Bloomberg

NEF

Grid cost20

(cGrid
s

)
USD/
kW

250 276 304 335 369 407 449 495 546 602 industry
quotes

PV cost
(cPV

s
)

USD/
kWp

2125 2041 1960 1882 1808 1736 1668 1601 1538 1477 Lazard,
IEA

Max. PV
capacity21

(R)

kWp 100 100 100 100 100 100 100 100 100 100 -

Number
of parking
spots (S)

units 200 200 200 200 200 200 200 200 200 200 -
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Table 4.8: Time-of-use tari! and demand charge for large-scale EV charging customers (> 500
kW)

Summer Winter
(Jun - Sep) (all other months)

Super O!-Peak (8am-4pm) 0.08 USD/kWh 0.06 USD/kWh
On-Peak (4pm to 9pm) 0.23 USD/kWh 0.23 USD/kWh
O!-Peak (9pm-8am) 0.08 USD/kWh 0.08 USD/kWh
Demand Charge (monthly) 15.48 USD/kW

Figure 4.11: Investment decision derived by the upper limit mathematical programming model

4.7.5 Supplemental Results

Investment decision by time period

In this Section we take a closer look at the dynamics of the investment decisions derived by

the four decision frameworks implemented in this work (optimal, DQN, DDPG, SAC). This

supplements the benchmark results shown in Section 4. It allows us to analyze the di!erences

in planning decisions between the di!erent planning algorithms in much more detail. Figures

4.11 through 4.14, show the investment plans for charging infrastructure (left) and power supply

infrastructure (right) derived via mathematical programming (optimal), DQN, DDPG and SAC,

respectively. Note that in order to achieve comparability with the benchmark mathematical

model, the experiments run in Section 4 do not consider on-site storage, hence storage is not

being built in any planning period.

There are a few very interesting insights to be taken from this analysis. First, the plan-

ning decisions made by SAC are very close to the optimal decisions. Under both investment

plans charging demand is primarily served through AC charging using 4 connectors per charger.

Although the scale up path is slightly di!erent for the supply side, both decision algorithms

ultimately arrive at the same end state (100kw PV plus 200kW of grid extension). This further

underlines the robust and near-optimal performance of SAC. DDPG achieves the same sup-
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Figure 4.12: Investment decision derived by DQN

Figure 4.13: Investment decision derived by DDPG

ply decisions. However, it relies on significantly more charging infrastructure including a large

amount of single-server AC chargers yielding suboptimal cost performance vs. the upper limit

optimal investment plan and SAC.

DQN takes a notably di!erent set of planning decisions compared to the other decision

frameworks. This applies both to the number of charging docks that are being installed and to

the investments in power supply. DQN installs the smallest number of docks and is the only

framework to install DC chargers in significant numbers. Although this charging infrastructure

may be able to serve the charging demand (primarily by providing higher average charge rates),

this comes at the expense of significantly higher combined peak loads. As a result, the charging

cluster configuration suggested by the DQN algorithm requires roughly twice the amount of grid

updates to serve these loads compared to the other benchmark algorithms. This is suboptimal

from a total cost perspective and highlights the value of multi-server charging docks and lower

charging rates.



Figure 4.14: Investment decision derived by SAC





Chapter 5

A Pricing Decision Framework for

Electric Vehicle Charging Hubs1

5.1 Introduction

Transportation systems are a major contributor to climate change (Pal et al. 2023). A crucial

step in reducing their environmental footprint is the widespread adoption of EVs (Nanaki and

Koroneos 2016). Ensuring accessible and convenient charging at key locations such as workplaces

and shopping centers is essential to accelerating EV adoption (Egbue and Long 2012). This not

only reduces range anxiety for EV users, but also facilitates smart charging strategies that

help balance grid demand and provide additional grid services (Kahlen et al. 2024). As a

result, significant investment in large-scale non-residential charging infrastructure is needed,

particularly in urban areas where many residents lack access to home charging (Lee et al. 2019).

We define these high-density EV charging clusters as EV Charging Hubs (EVCHs).

Expanding charging infrastructure faces financial challenges due to high upfront costs (Engel

et al. 2018). Pricing management can enhance profitability and attract investment (Lin et al.

2023). Utilities often use ToU pricing, where electricity rates vary by time of day, but this

can shift demand to lower-priced periods, creating new peak loads and raising operational costs

(Yang et al. 2021). Dynamic pricing o!ers a more e!ective solution by adjusting prices in real

time based on supply and demand (Valogianni et al. 2020a). Unlike fixed or ToU rates, dynamic

pricing provides precise price signals, encouraging users to optimize energy consumption, im-

proving grid stability, and enabling more flexible load management. These benefits will become

even more important as EV adoption and renewable energy integration increase, bringing new

challenges to the system such as supply uncertainty and new significant loads.

1This Chapter is currently under review at a leading peer-reviewed academic journal.
Parts of this Chapter have appeared in the following (non-copyrighted) peer-reviewed academic conference: Ahadi,
R., Schroer, K., & Ketter, W. (2024). Managing electric vehicle charging hubs through dynamic capacity-based
pricing. ECIS 2024 Proceedings, 38.
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We aim to support EVCH managers in enhancing both economic outcomes and system

e”ciency (e.g., peak load reduction) through dynamic pricing management2. EVCHs are profit-

oriented entities, generating revenue by fulfilling charging requests while incurring energy costs

and system-related expenses associated with grid stability disturbances and ine”cient consump-

tion patterns. Therefore, maximizing profits for EVCHs requires a balance between increasing

energy sales at competitive prices and optimizing power consumption to reduce costs. Con-

sequently, designing e!ective dynamic pricing strategies for EVCHs is challenging, given the

complex interactions among EV users, charging operators, and the power grid, compounded by

uncertainties on both demand (e.g., EVCH occupancy, and individual charging demand), and

supply (e.g., local generation, electricity prices). To address this, we propose a machine learning-

enhanced decision support system (DSS) that dynamically adapts to system conditions, helping

managers optimize performance. Our model not only boosts EVCH profitability but also pro-

motes sustainability by facilitating EV adoption and managing charging loads to prevent costly

grid expansions. Additionally, we consider price caps to ensure a!ordability for users.

Our research lies within the field of energy informatics (Watson et al. 2010), which combines

energy systems and information technology to improve the e”ciency, sustainability, and relia-

bility of energy systems through computational methods. In a branch of this field, researchers

develop decision frameworks to determine pricing strategies for profit maximization and demand

response management (e.g., Bichler et al. 2023, Valogianni et al. 2020a). In particular, in the

area of EV charging management, researchers have developed pricing DSSs and optimization

models as a means to reduce peak loads (Flath et al. 2014, Chen et al. 2024a), address uncer-

tainties in energy demand and renewable energy production (Soares et al. 2017), and increase

the profitability of charging services in parking lots (Zanvettor et al. 2022). Recent research has

explored advanced pricing models for EV charging. For instance, Lu et al. (2023) show that

menu-based pricing3 could surpass traditional pricing models for charging station management.

We build on this research stream by proposing a machine learning-based DSS to optimally man-

age the charging demand of EVCHs. Our proposed model is one of the first pricing management

solutions for charging services that not only maximizes profits by adjusting prices based on EV

users’ time-dependent demand preferences (e.g., price sensitivity), but also optimizes total en-

ergy consumption to achieve system-level goals such as peak shaving and reshaping consumption

patterns. Accordingly, we define our research question as follows:

How can a machine learning-based DSS be designed to enhance the economic performance of

EV charging facilities and simultaneously shape aggregated load curve?

The increasing availability of data, combined with advancements in computational power

and the Internet of Things (IoT), enables seamless communication between EV charging hub

(EVCH) components. This allows operators to leverage data-driven and machine learning tools

2Although our approach is applicable to public charging stations, this study focuses on EVCHs due to their
pivotal role in the future energy landscape.

3Menu-based pricing allows users to choose lower-cost charging options by extending their stay.
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to enhance decision-making (Provost and Fawcett 2013, Babic et al. 2022b). We propose a

deep reinforcement learning (DRL) algorithm that learns e”cient dynamic pricing policies by

interacting with real-world and simulated environments, optimizing both the profitability and

sustainability of EVCHs. Our results show that the proposed DSS, powered by machine learning,

outperforms traditional pricing models for charging services. Beyond profitability, EVCHs must

consider system-level sustainability factors, such as peak load reduction and grid integration.

Neglecting these aspects can lead to ine”cient charging behaviors, such as excessive electricity

peaks, increasing costs for both the grid and charging providers. Our DSS mitigates these

risks by using capacity-based dynamic pricing signals to shape electricity consumption patterns,

avoiding high peaks and aligning demand with renewable energy production.

To solve the pricing management of EVCHs, traditional optimization models can become

intractable due to the curse of dimensionality, even in deterministic settings. Dynamic pricing

for EVCHs involves three key aspects: a) Sequential decision making - at each time step, the

DSS must set price signals that influence the system and a!ect future decisions; b) Stochastic

nature - the parameters of the problem, such as demand preferences and supply capacities,

are uncertain and their distributions are largely unknown; and c) Large scale - EVCHs consist

of numerous interconnected components (e.g., multiple charging vehicles, various operational

processes) that must work in coordination. To address these challenges, we develop a DRL

algorithm that combines reinforcement learning (RL) algorithms with deep learning techniques

suitable for solving large-scale stochastic sequential decision problems (Sutton and Barto 2018b).

Specifically, we use soft actor-critical (SAC) models, which do not require mathematical models

of system dynamics (e.g., transition probabilities) and are capable of managing continuous action

spaces (price signals) while converging to stable policies. The proposed DRL agent is trained

using a simulated digital representation of an EVCH, including detailed operational and user

behavioral characteristics, which allows the agent to interact with the environment and learn how

to dynamically adjust price signals to maximize profits and system-level e”ciency. We employ

agent-based modeling (ABM) to capture the complex interactions between various components

(e.g., EV users, EVCH, and the power grid interface) and enhance the simulation with unique

real-world data for actionable insights.

We o!er the following theoretical and practical contributions.

• We present a novel machine learning-based DSS to help EVCH operators maximize eco-

nomic performance while e!ectively managing aggregated charging demand through inter-

actions with EV users. Our DSS consists of two key components: a DRL algorithm that

learns optimal decision-making policies, and a capacity-based pricing model that enables

operators to better influence charging requests (Valogianni et al. 2024). In capacity-based

model, costs are tied to charging power4, with higher power demands resulting in higher

4charging power refers to the rate at which energy is delivered to a device or system during charging, typically
measured in watts (W) or kilowatts (kW)



158 Decision Framework for Dynamic Pricing Management of EV Charging Hubs

prices. This approach is particularly beneficial for large-scale EVCHs, where uncontrolled

charging from numerous EVs can cause significant power spikes.

• We develop a DRL algorithm to optimize pricing policies under realistic conditions, con-

sidering stochastic demand, large-scale charging facilities, grid and charging constraints,

supply volatility from on-site renewable energy generation, and fluctuating building energy

consumption5. Therefore, to optimize pricing decisions we need a model that is able to

track a wide range of variables such as the state of EVCH, charging schedules and grid

information. DRL has demonstrated strong performance in solving large-scale sequential

and stochastic decision problems (Wang et al. 2023a). In our problem, several pricing

parameters vary continuously, making it well-suited for a soft actor-critical (SAC) algo-

rithm. SAC is model-free, with no need for prior knowledge of system dynamics, which is

particularly useful given the complexity and high cost of estimating demand patterns.

• To train our DRL agent, we develop an advanced ABM of large-scale EVCHs, creat-

ing a high-fidelity simulation that captures the interactions between EVCH components,

EV users, and the power grid. On the supply side, an operator agent manages pricing

strategies, charging operations, and system constraints, including grid capacity, renewable

energy production, and station availability. On the demand side, each EV is modeled as

an individual agent with unique preferences. To provide actionable managerial insights,

we calibrate our ABM with real-world data, accurately representing user arrival/departure

patterns and energy demand. A realistic training environment is also essential for e”cient

agent deployment in real-world scenarios (Zhao et al. 2020).

• We assess our DSS by benchmarking it against an optimal pricing policy under per-

fect information (serving as an upper-bound), traditional dynamic pricing models, and

a ToU pricing model. Our results indicate that despite incorporating non-optimal charg-

ing management—reflecting real-world charging behaviors—our learned policies achieve

near-optimal performance and significantly outperform traditional dynamic and ToU pric-

ing strategies. These findings demonstrate the e!ectiveness of our DRL-enhanced DSS for

demand shaping and revenue management, particularly for EVCHs operating under peak

electricity penalties or high renewable energy integration.

• In practice, our proposed DSS enables EVCH operators to maximize profitability, which

is critical to overcoming financial barriers to charging station development and ensuring

widespread EV adoption. In addition, because our DSS is highly e!ective at peak shaving,

it benefits utilities by significantly reducing the peak consumption of EV demand, thereby

helping to avoid the extremely high investment costs associated with grid expansion.

5EVCHs are often integrated with workplaces or commercial centers with variable energy usage.
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In the forthcoming sections, we contextualize our paper within the existing literature and

conduct a review of related studies. We then provide a concise description of the problem and

our proposed model. Finally, we present numerical examples and thoroughly discuss our results.

5.2 Literature Review

This study contributes to two streams of literature: (i) Information Systems (IS) and sustainable

electric mobility systems, and (ii) electric vehicle charging facility operations management. We

demonstrate how our proposed DSS contributes to sustainability and solving stochastic decision-

making problems by optimally using available information and learning hidden information of

its environment. We also examine the management of operations at large-scale charging stations

with an emphasis on service pricing.

5.2.1 Information Systems and Sustainable Electric Mobility Systems

Companies significantly contribute to climate change and must balance sustainability with prof-

itability to minimize their environmental impact while maintaining economic viability (Böttcher

et al. 2024). Emerging startups demonstrate that environmental responsibility and financial suc-

cess can coexist. For example, Octopus Energy6 utilizes a digital platform to make sustainable

energy more a!ordable. Our proposed IS-enabled DSS, integrated with digital technologies,

assists large-scale charging platforms in mitigating unsustainable outcomes within their busi-

ness models. Traditionally, IS research has examined economic and ecological transformations

separately, and in this paper we aim to couple them together.

From an economic standpoint, several studies in the IS domain have investigated the rela-

tionship between information systems and profitability. Mithas et al. (2016) emphasize the role

of user satisfaction in optimizing IT investments, demonstrating their contribution to increased

profitability. Haki et al. (2024) explore how the complexity of market opportunities and the

design of platform mechanisms influence partners’ engagement with B2B innovation platforms,

ultimately a!ecting the profitability of innovations for incumbents and their partners. Regarding

pricing strategies, Aloysius et al. (2013) analyze how technological advancements enable sellers

to implement sequential pricing models, facilitating price discrimination based on customers’

revealed purchasing preferences.

Research on ecological sustainability within the IS domain, often referred to as Green IS, is

relatively recent (Watson et al. 2010, Malhotra et al. 2013, Melville 2010b). Green IS aims to

harness the potential of IS to promote an environmentally sustainable society (vom Brocke et al.

2013). There are two main orientations of Green IS research: one follows a solution-oriented or

design science framework, while the other adopts a behavioral science perspective. Our work

falls into the first category, focusing on the design of an IS artifact to help EVCHs improve

6https://octopusenergy.com
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their e”ciency by identifying and implementing improved decision strategies. In this context,

Seidel et al. (2013a) outlines key design principles for sustainability transformations through

a sensemaking support system, while Hilpert et al. (2013) develops a system for promoting

sustainable logistics practices by tracking gas emissions.

More specifically, our research aligns with the field of energy informatics (Watson et al.

2010), which leverages IS expertise to improve energy e”ciency. Energy informatics focuses on

optimizing energy supply and demand by analyzing and designing energy systems, collecting

and processing energy data to enhance energy distribution networks. For instance, Brandt et al.

(2018) present an IS framework that identifies synergies between EVs and renewable energy

sources, improving grid stability and sustainability. Similarly, Ketter et al. (2016) introduce a

simulation platform that addresses societal challenges, including environmental sustainability

and smart grid stabilization, through competitive benchmarking. Beyond the energy sector,

transportation systems also require significant improvements to ensure more sustainable urban

mobility. The call to action by Ketter et al. (2023) underscores the necessity for greater IS

community involvement in the development of intelligent, sustainable transportation systems.

Our research examines a socio-technical challenge at the intersection of sustainable energy and

smart mobility, requiring both technical algorithmic methodologies and large-scale behavioral

insights provided by IS approaches (Sarker et al. 2019b). Relevant studies include decision

support systems for demand response activation and load shifting in electricity markets (Fridgen

et al. 2016), data-driven microgrid operations (Gust et al. 2021), and decentralized management

of EV charging processes (Valogianni et al. 2020a).

Our work contributes to the Green IS field by focusing on EV integration and adoption, a

critical driver of sustainability in the transportation sector. At the same time, we address press-

ing challenges such as the extreme peak load increase in power grids caused by the uncontrolled

charging demand of a growing EV fleet. Specifically, we propose a DSS for optimal pricing of

capacity-based charging services at EVCHs (e.g., workplaces, shopping malls, depots), taking

into account heterogeneous user behavior. Our research falls within the computational and opti-

mization domain of IS, as outlined by Rai (2017). The integration of data analytics and artificial

intelligence techniques also links our study to the broader field of Information Technology (IT)

engineering (Jenkin et al. 2011, Valogianni et al. 2024). Indeed, we position our research at the

intersection of Green IS and IT engineering, developing a DSS that leverages IT solutions to

promote sustainability by facilitating the widespread adoption of EVs. Our approach employs

machine learning techniques and ABM, both of which have recently been applied in IS to address

complex socio-technical problems (Haki et al. 2020). We provide a detailed agent-interactive

simulation of EVCHs, calibrate our ABM using empirical data analysis, and model service pric-

ing decisions as a dynamic learning problem. Our study bridges Green IS and Economic IS by

optimizing both economic and environmental objectives, and introduces a novel pricing DSS for

EVCHs.
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5.2.2 Management of Electric Vehicle Charging Hubs

EVCHs exhibit several unique features that distinguish them from other charging use cases.

First, EVCHs typically represent large, locally concentrated loads that may require significant

local electricity grid extensions and load management (Lee et al. 2019). Second, integration

with building loads and generation units (renewable energy production, storage) may be possi-

ble/desirable (Nunes et al. 2016) to reduce induced peak loads. Third, they experience di!erent

user (i.e., charging) behavior compared to other charging use cases. User behaviors can vary

substantially depending on the use case of the attached facility (workplace, mall, etc.).

We review state-of-the-art operations management approaches in the realms of (1) smart

charging and (2) pricing EVCHs. In terms of EVCH operations, we acknowledge the extensive

work on EV smart charging (see e.g., Mukherjee and Gupta (2015) for a review) that most

EVCH operations-focused research is based on. A key di!erentiator from traditional smart

charging literature is the inclusion of building/cluster-level constraints and optimization oppor-

tunities. Early examples include the development of a mixed-integer optimization framework

for workplace charging strategies that takes into account di!erent eligibility levels (Huang and

Zhou 2015), and coordinated charging management models with solar energy production (Lee

et al. 2019).

EV charging pricing is being studied in depth to integrate EV loads into the grid. Auction

mechanisms have been used to coordinate EV charging (Hou et al. 2019). Pricing mechanisms are

attracting more attention because they are easier to implement and are preferred by customers

(Valogianni et al. 2020a). (Cui et al. 2021) propose a charging price optimization to coordinate

the demand between multiple EVCHs. To integrate the uncertainty of the charging demand,

Luo et al. (2017) propose a stochastic dynamic pricing that also deals with the volatility of the

renewable energy generation. Mao et al. (2017) propose a vehicle-to-grid pricing regulation to

use the EV batteries as storage systems in EVCHs. Lu et al. (2018) consider the competition

among multiple EVCHs while designing a pricing scheme. Also, due to high uncertainty and

computational complexity, many dynamic pricing related works employ DRL algorithms to

enable the implementation of their works in large-scale problems (Lee and Choi 2021).

In more similar works, researchers design more advanced pricing models as a function of

service quality. For example, Lin et al. (2023) include the waiting time to dynamically deter-

mine the price for fast charging services in public charging stations, optimizing the queue for

limited resources. Valogianni et al. (2024) develop a capacity-based pricing model from the

grid operator’s perspective with the goal of reducing the additional peak from EV loads. Some

closer related works study the menu-based EV charging services to utilize the flexibility of EV

charging demands. For example, Moradipari and Alizadeh (2019) investigate optimal pricing

mechanism to assign users with higher priority to charging stations with lower waiting time in

order to maximize social welfare. Lu et al. (2023) design a deadline di!erentiated (i.e., users

get a discount if they park longer) dynamic pricing model to reveal the real departure time of
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EV users. To extend on the existing literature, we have developed interrelated dynamic pricing

models for capacity-based charging services. In the case of EVCHs, where users are engaged in

other activities (e.g., work and shopping), it is unlikely that they will wait for charging services

or alter their plans (departure time) based on marginally varying prices Daina et al. (2017), Lee

et al. (2019). We assume that EV users would rather adjust their energy demand according to

the price signals based on their preferences. Our work is one of the first studies to design dy-

namic capacity-based pricing for charging services when the price is a function of energy request

and dwell time. We use DRL algorithms that do not require prior information about EV users’

utility functions (price responsiveness) while providing scalability and computational advantages

for large-scale problems. This allows us to analyze heterogeneous utility functions for EV users

as the model learns the optimal pricing policies by interacting with the EVCH environment.

5.3 Model

We develop a model to optimize EVCH performance through dynamic pricing management, fo-

cusing on profit maximization from the operator’s perspective–service revenue minus operating

costs. Our model contains two main decision problems: first, the EV user’s single-period energy

demand adjustment, and second, the EVCH operator’s multi-period price management. In gen-

eral, the overall problem can be framed as a single-leader, multi-follower optimization problem.

At a higher level, the EVCH operator sets the pricing parameters at each time step, while at a

lower level, EV users arriving at the charging station within the current time window determine

how much to charge based on the service price and their actual demand. In the next section, we

show that since the EV users’ decision problem can be solved analytically, the closed-form solu-

tion for the follower level can be applied. This allows us to transform the bilevel optimization

model into a single-level problem, making it easier to solve.

Like other EV charging providers, EVCHs purchase electricity from the distribution grid

and sell charging services to EV users. Consistent with the literature, we model EV users as

price-sensitive, adjusting their energy requests based on the service price and user characteristics

(Lin et al. 2023, Lehmann et al. 2022). On the supply side, we consider real-world scenarios

(e.g., current California rates7) where electricity tari!s for EVCHs include per-unit energy costs

and additional sustainability fees (e.g., costs for high peak consumption). These fees aim to

discourage undesirable consumption behaviors, like high peak demand. Alignment with preferred

consumption patterns is expected to grow more critical as EVs impose additional grid loads

and time-dependent energy sources (e.g., renewable energy sources) increase in use (Gilleran

et al. 2021, Alam et al. 2020). This incentivize grid operators to design tari!s for large charging

stations to discourage unwanted consumption, such as significant local peak loads (Ansarin et al.

7https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/infrastructure/transportation-
electrification/electricity-rates-and-cost-of-fueling
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2022). As a result, the pricing model must increase revenues and avoid high energy consumption

peaks to maximize profitability.

On the demand side, we assume that EV users are rational price takers who adjust their

energy demand based on the published pricing parameters of the EVCH, as commonly assumed

in the literature (e.g., Valogianni et al. 2020a, Huang and Kockelman 2020, Lu et al. 2023). Like

many other studies (e.g., Limmer 2019, Abdalrahman and Zhuang 2020), we also assume that

EV users who charge their vehicles at EVCHs, such as those located at workplaces or shopping

malls, may adjust their charging demand based on the prices set by EVCHs, influenced by their

preferences. All parameters and decision variables related to the EV user decision problem and

EVCH pricing optimization are summarized in Appendix 5.8.

5.3.1 EV User Problem

At the arrival time, users receive the price signals and adjust their energy request accordingly.

Each user has an objective function and aims to minimize all costs of charging and inconvenience

(Eq. (5.1)). This is a single-period decision problem where users make their decisions after

arriving at the EVCH and receiving the price parameters. Once the charging price is set at the

time of arrival (e.g., $0.7/kWh), it remains fixed for that user, even if the price parameters change

during their stay. We define the utility function for EV users, including both charging costs and

dissatisfaction terms, following standard formulations in the academic literature on EV charging

(Limmer 2019). Charging costs are determined by the unit price of energy p(x, ω), which depends

on the energy requested x and the length of stay ω for the user. Building on the charging cost

considerations discussed in Han et al. (2012) and Limmer (2019), we propose a quadratic model

to represent user dissatisfaction. This model uses (x ≃ D)2 to quantify the squared di!erence

between the requested energy x and the user’s maximum energy demand D, ensuring a non-

negative value8. This implies that any energy request below or above the maximum demand

will result in dissatisfaction. In addition, the requested energy must be greater than or equal to

zero and cannot be greater than the maximum energy demand (Constraint 5.2).

min f(x) = p(x, ω)x+ ↽(x≃D)2 (5.1)

0 ⇒ x ⇒ D (5.2)

EV users exhibit di!erent charging behaviors characterized by their duration of stay (ω),

willingness to charge (↽), and maximum energy demand required to fully charge their battery

(D). Users are assumed to behave rationally, seeking to minimize their charging costs while

considering a penalty for any unmet energy demand upon departure. This creates a trade-o!

between cost optimization and demand satisfaction. Users with higher charging willingness (↽)

8While this utility function is commonly used in the literature, in practice users may respond di!erently. Our
proposed model-free approach is able to capture these di!erent behaviors.
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are willing to pay more to satisfy their full energy demand, while users with lower charging

willingness adjust their energy demand to minimize costs.

5.3.2 Pricing Problem with Perfect Information

The primary goal of EVCH price management is to maximize profits, a complex task due to

the interactions between multiple decision-makers and uncertainties on both the supply and

demand sides. To formulate a mathematical model, we initially make the following assumptions:

(a) deterministic parameters—where user information (arrival time, willingness to pay, and

dwell time), renewable generation patterns, and building loads are known, (b) homogeneous

chargers with optimal load allocation by the operator, and (c) no grid capacity constraints.

These assumptions provide a foundational framework for model development. However, in our

proposed machine learning-based DSS, we relax these constraints to more accurately capture

real-world dynamics.

Employing Capacity-Based Pricing

Regarding the energy price function, we adopt a capacity-based model (Valogianni et al. 2024),

defined as Price = p
0+ϱ

x
ς , with two key parameters: (1) a fixed price per energy unit (p0) and

(2) a positive coe”cient (ϱ) that adjusts the price based on the average power of the charging

request. Valogianni et al. (2024) demonstrate the e!ectiveness of this model for reshaping private

EV charging loads. We apply a modified version of this pricing model to EVCHs to optimize

profits while mitigating extreme consumption peaks.

Substituting the capacity-based pricing model into the objective function of the EV user’s

problem (Eq.( 5.1)), we obtain the following:

min f(x) = (p0 + ϱ
x

ω
)x+ ↽(x≃D)2 (5.3)

0 ⇒ x ⇒ D (5.4)

To find the optimal solution, it is not necessary to constrain the requested energy to less than the

maximum demand (D), since such a constraint would not yield an optimal result (see Appendix

5.7.2). We analytically find the closed-form optimal solution for the requested energy, which is

x
↗ = max( (2φD↔p0)ς

2(φς+↼) , 0) (see Appendix 5.7.1). Finding the closed-form solution to the EV user’s

one-shot energy adjustment decision problem allows us to separate if from the pricing problem.
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Mathematical Model for Perfect Information Model

Using the closed-form solution for the EV user’s decision-making problem, we can express the

mathematical formulation of the pricing problem as follows.

Max g(p0t ,ϱt, zi, yi,t) =
[︄

i,t

(p0t + ϱt
xi,t

ωi
)xi,tzi ≃ C

# (5.5)

Revenues include the summation of fulfilled requested energy (xi,t) of all vehicles (i → I) at

all time steps (t → T ) multiplied by the charging price corresponded to each individual vehicle.

Note that the charging price for each vehicle is based on its requested power (xi
ςi
) and, once

determined, will remain constant for the duration of the user’s stay. The costs (C#) consist of

electricity purchasing costs from the power grid and peak consumption penalties further defined

in the below constraints.

Revenues include the sum of the fulfilled requested energy (xi,t) of all vehicles (i → I) at all
time steps (t → T ) multiplied by the charging price corresponding to each individual vehicle.

Note that the charge price for each vehicle is based on its requested power (xi
ςi
) and, once

determined, remains constant for the duration of the user’s stay. The cost (C#) consists of the

cost of buying electricity from the grid and the penalty for peak consumption, as defined in the

constraints below. Without loss of generalizability, we use a realistic electricity tari! for large

EV charging stations from California. See Appendix 5.9.3 for details.

xi,t = max(
(2↽iDi ≃ p

0
t )ωi

2(↽iωi + ϱt)
Ai,t, 0) ↔i → I, t → T (5.6)

C
# =

[︄

i,t

e
Grid
t C

e
t + C

p
p
↗ (5.7)

e
Grid
t =

[︄

i

$t(yi,t ≃ f
PV
t ⇀

PV ) ↔t → T (5.8)

yi,t ⇒ ziUi,tR ↔i → I, t → T (5.9)
[︄

t

yi,t$t ⇔
[︄

t

xi,t ↔i → I, t → T (5.10)

[︄

i

ziUi,t ⇒ ⇀ ↔i → I, t → T (5.11)

p
↗ ⇔ e

Grid
t

$t
≃ l

↗ ↔t → T (5.12)

Constraint (6) guarantees that the requested energy of vehicle i at time t can only be greater

than zero if the vehicle arrives at the charging station at this time slot (Ai,t = 1). The parameter

Ai,t is a boolean variable indicating whether the vehicle i arrives at time t. The requested energy

(xi,t) at the arrival time of vehicle i corresponds to the closed-form solution of the EV user’s

decision problem derived in the previous section9. The cost consists of the energy consumption

9The maximum function can be linearized using the Big-M trick.
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from the grid multiplied by the temporal electricity prices (Ce
t ), along with the penalties for

exceeding the peak threshold (Constraint (7)). In Constraint (8), the grid consumption at time

t (eGrid
t ) is defined as the total power consumed for all charging processes (yi,t) minus the on-

site generation power at each time step (fPV
t ⇀

PV , where ⇀PV is the maximum PV capacity and

f
PV
t is the generation e”ciency at time t). Constraint (9) allows charging only if the vehicle is

assigned to a charger and is present at the EVCH. zi is a binary variable that takes the value

1 if vehicle i is assigned to a charger, and 0 otherwise. Ui,t is a boolean parameter indicating

the presence of vehicle i at time t in the EVCH. It also ensures that the charging power does

not exceed the maximum charging rate of the chargers (R)10. Constraint (10) ensures that each

vehicle receives at least as much energy as it requested, and to avoid infeasible solutions, we

assume that there is no grid power constraint 11. The maximum number of vehicles connected to

chargers is set to the capacity of the EVCH (⇀), which is considered in constraint (11). We do not

allow vehicles to be moved after they arrive at the station–if there is no charger available when

vehicle i arrives, the request will be missed. Finally, Constraint (12) calculates the exceeded

peak (p↗) from the expected peak threshold (l↗).

5.3.3 Proposed Method: Learning Near-Optimal Dynamic Capacity-Based

Pricing Policies

The actual dynamic pricing management of EVCHs is very complex with multiple stochastic

parameters, such as EV user preferences and renewable energy production patterns. Therefore,

the previous mathematical model for the perfect scenario is only built to jointly formulate the

pricing and user decision problems, and later used as an upper-bound to validate our proposed

solutions. Here, we show how to solve the real stochastic problem for large-scale EVCHs without

prior knowledge of the dynamics of the environment. To achieve this, we design a DSS that uses

machine learning to solve the pricing problem for EVCHs. These models account for expected

future demand and other uncertainties, and are scalable to large-scale EVCHs.

Our proposed approach is illustrated in Figure 1. The goal is to develop a DSS capable of

determining near-optimal dynamic capacity-based pricing strategies, where prices vary based on

charging power, for EVCHs under real-world stochastic conditions. At the core of our model

is a DRL agent that learns e!ective pricing policies by issuing capacity-based price signals

and observing feedback (profits) from the environment. This feedback depends on EV users’

responses to pricing, as well as dynamic factors such as grid costs and physical constraints.

During the training phase, before real-world deployment, the DRL agent learns by interacting

with a simulation model of the EVCH, receiving feedback on each action. The DSS is initialized

with key inputs, including the objective function, physical constraints, demand patterns, and

facility configurations, derived from observational data and operator expertise. This setup allows

10We consider EV chargers to be homogeneous with the same maximum charging power for all
11this assumption will be relaxed later in our proposed model
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Figure 5.1: A Decision Framework: Learning Capacity-Based Pricing Policies for EVCHs

EVCH operators to interact with the DSS, verifying how pricing models influence profitability,

demand, and facility configurations (e.g., on-site electricity generation capacity).

Once trained, the pricing agent can operate as a fully automated system, making real-time

dynamic pricing decisions in simulations and real-world scenarios while continuously adapting

through environmental interactions. Additionally, our DSS o!ers o&ine pricing policies that

function independently of the agent, providing high-level managerial insights. For instance,

EVCH operators can evaluate the impact of capacity-based pricing under di!erent conditions.

Finally, we analyze the learned pricing policies, comparing them to existing pricing models and

conducting sensitivity analyses to assess the e!ects of user price elasticity and EVCH configu-

rations.

The dynamic pricing decision for charging services is a sequential stochastic decision prob-

lem. Each decision has an impact on the next system state and depends on previous actions

(pricing parameters) and expected load demands, which are a!ected by the service price. In

addition to stochastic EV user arrival times and demand preferences, there are other sources of

uncertainty such as renewable energy production patterns. The outcome of pricing decisions also

depends on other operational strategies, including load management of charging vehicles. These

complexities make it too di”cult to track the dynamics of the environment and calculate the

expected outcome. Therefore, we formulate the problem as a Markov Decision Process (MDP)

and use model-free algorithms to determine near-optimal pricing policies.



168 Decision Framework for Dynamic Pricing Management of EV Charging Hubs

Markov Decision Process

As the pricing decisions are made centrally by the EVCH operator, the entire environment is

visible to the learning agent, which guarantees a fully observable MDP definition. The pricing

problem is also an episodic problem where the agent makes pricing decisions at each decision

time step until the end of the operational horizon (T ). The problem is symmetric with equal

time windows (e.g., 15 minutes) and the agent receives immediate feedback before taking the

next action. The components of the MDP are as follows.

State: To represent the state of the EVCH comprehensively, we define the state at time t

as st = {t, Ce
t , p

↗
t , f

PV
t ⇀

PV
,⇀

Grid
t , Ēt, P̄ t}. This includes the time step t, the purchase price of

electricity from the grid (Ce
t ), the current peak demand threshold (p↗t ), the current renewable

electricity production (fPV
t ⇀

PV ), the current grid capacity (⇀Grid
t ), the current average energy

(Ēt) and power demand (P̄ t)12.

Time is one of the most critical state components because it helps the DRL agent anticipate

demand and supply values, which significantly a!ects the payo! of the policy. To interact with

the grid, the agent needs to track the current price of electricity, since the EVCH purchases

electricity under a ToU contract. Another key factor a!ecting grid costs is the peak threshold:

when electricity consumption exceeds this threshold, a peak charge is applied. On the supply

side, a dynamic component is current on-site generation, which varies over time and a!ects

grid costs and capacity constraints. The facility is also constrained by a given grid capacity,

meaning that total energy consumption, including EV charging and building load, must not

exceed this capacity. The agent should take this into account to e!ectively optimize price

signals. Similarly, current demand (both energy and power) a!ects the availability of supply

resources and influences grid costs, which are also included in the state vector13.

Action: The action is a vector of the capacity-based term and the power-free term of the

pricing function a = (p0,ϱ). The action space is continuous and bounded between zero and the

cap for each component. Multidimensional continuous action space MDPs present significant

challenges due to the infinite combination of possible actions (Manna et al. 2022, Khetarpal

et al. 2022). Exploring this vast space and achieving stable policies requires advanced DRL

algorithms and careful hyperparameter tuning, making these problems particularly complex.

Reward: We consider the same objective function as defined in the previous section (Eq.

(5.5)), which is the maximization of EVCH profits. Therefore, for consistency, the reward

function is formulated as Eq. (5.13), which represents the profit earned between two successive

decision time steps. The profit of choosing action a in state s is the revenue from selling

12The operator has access to all connected EV information, including their unserved energy demand and
departure time. However, to avoid overfitting problems, we use aggregated information from charging vehicles to
define the state of our pricing agent.

13we normalize the state space to prevent any single state component from exerting a biased influence and to
account for the periodic nature of the time component.
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electricity to EVs, which depends on the published price, minus grid costs, including the cost of

buying electricity from the grid and additional peak charges (if applicable).

rt(a, s) =
[︄

i

(p0t + ϱt
xi,t

ωi
)xi,tzi ≃ C

#
t ≃ C

M
t (5.13)

As discussed, we design the reward function to minimize delayed feedback and thereby im-

prove the learning process. Consequently, the reward for the time window t includes the revenue

from EVs that arrive during this period and connect to a charger (i.e., users pay upon arrival).

Note that only vehicles that request charging and find an available charger are accommodated,

otherwise their entire charging demand is not satisfied (zi = 0). A shortage of chargers is not

the only reason for unmet charging demand; other constraints, such as grid capacity, also play

a role. Therefore, some charging demand may remain unmet when vehicles depart. To ac-

count for unmet demand, we impose a penalty cost, CM
t = ◁i

)︄
i

)︄t
ε=0(xi ≃ yi,t)Dei,t. Thus,

in the time window t, we penalize the missed energy requests for vehicles departing during

this period (Dei,t = 1) and ensure that the penalty rate exceeds the service price for vehicle i

(◁i > p
0
t + ϱt

xi,t

ςi
). Finally, the charging cost C

#
t is simply the cost of electricity to meet the

charging demand from the grid and any peak load costs.

Transition Function: A transition from one state to another, along with the receipt of a

given reward, is inherently a stochastic function in our dynamic pricing problem. In other words,

when the pricing agent takes action a in state s, the reward and the subsequent state are highly

dependent on the unknown arrival of EVs and their responses to published price parameters

and other operational decisions, such as EV charging management. Estimating these transition

probabilities is very complex, so we use a simulation to monitor the state of the system. This

simulation approach allows us to model the randomness and uncertainty associated with EV

behavior and system dynamics, providing a practical means to analyze and optimize the pricing

strategy.

Solution: Deep Reinforcement Learning

Optimizing a pricing policy within an MDP framework is feasible using policy or value itera-

tion when the dynamics of the environment are known and can be mathematically modeled.

However, in dynamic capacity-based pricing for EVCHs, estimating user behavior distributions

and transition probabilities is both costly and highly dynamic, making it impractical to rely on

predefined models. To overcome this challenge, we adopt a model-free DRL approach that al-

lows the agent to learn optimal policies through direct interaction with the environment without

requiring prior knowledge of stochastic elements.

Given the large state space of our problem, traditional tabular RL methods are inadequate.

Instead, we apply function approximation techniques to generalize the state space, enabling

e”cient learning in large-scale settings. In RL, function approximation uses parameterized
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models, such as neural networks, to estimate value functions or policies in high-dimensional or

continuous action spaces where tabular methods fail. Neural networks help approximate the

action-value function for complex decision problems.

A widely used value-based RL algorithm is the deep Q-network (DQN), which learns state-

action values while exploring the environment. However, DQN is limited to discrete action

spaces. In continuous action spaces, where actions must be selected from an infinite range,

more sophisticated methods are required. These methods must approximate the best action

for any given state, which increases computational complexity. In such cases, the agent must

represent policies over a continuous domain, typically using Gaussian distributions, which require

optimization during training –introducing additional complexity and potential instability.

We use actor-critic models, which are well suited for multidimensional continuous action

space problems (Grondman et al. 2012). Unlike actor-only (policy-based) methods, which di-

rectly optimize a parameterized policy but su!er from high variance in gradient estimates,

actor-critic methods combine the advantages of both policy-based and value-based approaches.

The actor e”ciently computes continuous actions without requiring direct value function opti-

mization, while the critic provides low-variance feedback that stabilizes and accelerates learning.

This approach increases training e”ciency and ensures robust pricing strategies for EVCHs.

Traditional actor-critic models may struggle with multidimensional problems like dynamic

pricing, often leading to inadequate exploration of the state-action space. This can result in

limited system information discovery, slowing down learning and reducing the e!ectiveness of

feedback for complex decision-making tasks. Therefore, we adopt the Soft Actor-Critic (SAC)

algorithm that enhances exploration-exploitation balance through entropy regularization.

The SAC agent is responsible for determining pricing decisions based on the current state of

the environment. It consists of two main components: the actor (policy) network and the critic

(value) networks. The actor network, a neural network, maps states to actions and outputs

a stochastic policy ϑ(a|s), representing a probability distribution over possible actions for a

given state. A key feature of SAC is its entropy-based policy, which promotes exploration by

encouraging diverse action selection. The policy is parameterized by ς. To evaluate action

values, SAC employs two critic networks that estimate the expected return of taking an action

in a given state, represented as Q(s, a). These networks are parameterized by ↩1 and ↩2. Using

two critics helps reduce overestimation bias by selecting the minimum value predicted, leading

to more stable learning.

Entropy regularization is a crucial part of SAC, encouraging the policy to maintain a certain

level of randomness. This is controlled by an entropy term ϱ
RL in the objective function,

which balances exploration (high entropy) and exploitation (low entropy). The entropy term is

included in the loss functions of both the actor and the critic networks.
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The main objective function is to maximize the expected reward while also maximizing

entropy. This can be expressed as:

J(ϑ) =
T[︄

t=0

E(st,at)↑ϱω

⌊︄
r(st, at) + ϱ

RLH(ϑ(·|st))
⌋︄

(5.14)

where ↼ω represents the state-action distribution under the policy ϑ, r(st, at) is the reward

function, H(ϑ(·|st)) = ≃Ea↑ω[log ϑ(a|st)] is the entropy of the policy at state st, and ϱ
RL is the

temperature parameter that determines the relative importance of the entropy term.

Actor Loss The actor network is updated to maximize both the expected return and the

entropy of the policy. The policy objective can be rewritten using the soft Q-function, leading

to the following loss function for the actor:

Jω(ς) = Est↑DRL

⌊︄
ϱ
RL log ϑϑ(at|st)≃Q↽(st, at)

⌋︄
(5.15)

where D
RL is the replay bu!er (a container to save the experiences), ϱRL is the entropy coef-

ficient, and Q↽ is the minimum value from the two critic networks. This loss encourages the

policy to maximize the expected return while maintaining high entropy.

Critic Loss The critic networks are updated to minimize the Temporal Di!erence (TD) error.

The soft Q-value can be defined as:

Q
ω(st, at) = r(st, at) + εEst+1↑ϱω [V

ω(st+1)] (5.16)

where V ω(s) = Ea↑ω[Qω(s, a)≃ϱ
RL log ϑ(a|s)] is the soft state value function. The loss function

for each critic is:

JQ(↩i) = E(st,at,rt,st+1)↑D[(Q↽i(st, at)≃

(rt + εEst+1↑ϱω [V↽̄(st+1)]))
2] (5.17)

where ε is the discount factor, ↼ω is the state distribution, and V↽̄ is the target value function.

The discount factor links the state value at the next time step to the current time and is always

a value between zero and one, indicating that the immediate reward is relatively more important

than the value of the next state. Critic target networks are used to stabilize training. They are

periodically updated using a moving average of the weights of the critic networks. Finally, the

replay bu!er stores transitions (st, at, rt, st+1) that the agent has experienced. This allows the

agent to learn from past experience and break the correlation between successive samples.
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By leveraging the SAC algorithm, we can develop robust, adaptive policies for dynamic

pricing in EVCHs, ensuring e!ective real-time decision-making in complex and variable environ-

ments.

5.3.4 Simulation Environment

As previously mentioned, we need to build a digital simulation of EVCHs to train the DRL

pricing agent and evaluate the performance of the proposed DSS. Below, we will first outline the

input data and information required to simulate realistic scenarios, followed by the development

of our ABM.

5.3.5 Input and Data Preparation

The three main data inputs are EV user information (arrival time, duration of stay, and de-

mand preferences), building energy consumption patterns, and on-site solar photovoltaic (PV)

production.

Parking and Charging Behavior

To realistically generate demand characteristics in our scenarios, we need to model parking and

charging behavior of users in EVCH based on historical data. User preferences (of an individual

i) in an EVCH context are described by the four-dimensional vector vi = (Ai, ωi, Di,↽i). The

four individual components are: (1) time of arrival (Ai), (2) duration of stay ωi, (3) maximum

energy demand (Di), and (4) willingness to charge (↽i).

To model the demand characteristics of our simulation, we take advantage of a unique ob-

servational parking data set provided by a major European real estate investor, which includes

transactions from seven large parking garages (capacities ranging from 275 to 2200 spaces).

A mix of workplace, downtown, and shopping center facilities are available. Each row in this

dataset represents a single parking event (user i) with corresponding arrival and departure pref-

erence information. For privacy reasons, individual users cannot be identified. We use a full

year of data to capture daily, weekly, and annual seasonality. The year 2019 is chosen to filter

out the e!ects of the pandemic. In total, our data includes 3.84M parking events. For details,

see the appendix 5.9.1.

In Figure 5.2, we present key population characteristics for a representative facility over the

course of a week. These plots generally support our hypothesis that dynamic pricing could be

beneficial for EVCHs. The distribution of vehicle arrival times indicates significant variability

in arrival frequencies throughout the day. Arrival rates peak at the beginning of the workday,

gradually decline until early evening, and significantly drop after late evening. The other two

graphs show that users arriving at di!erent times of day may have di!erent demand preferences.

For example, users arriving early in the morning or late in the evening tend to have higher
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energy demands but also longer dwell times. These patterns create a highly uneven demand

distribution over time, highlighting that users arriving at di!erent times may respond di!erently

to pricing signals.

Figure 5.2: Parking and Charging Characteristics of Electric Vehicle Users

Base-Load Energy Consumption Patterns

Since EVCHs are often integrated with buildings like workplaces or shopping malls, considering

the building’s base load is essential. Without a separate grid connection for charging stations,

the building’s energy consumption directly impacts real-time grid capacity and peak demand.

We use real-world building consumption data to model the base load of EVCHs. Unlike EV

loads, we treat building load as exogenous, assuming it cannot be actively managed or curtailed,

a reasonable assumption given the lack of smart energy management in most existing buildings.

Electricity (PV) Production Patterns

Given the synergy between EV energy storage and renewable energy sources, EVCHs are likely

to incorporate on-site renewable generation. Solar PV is particularly well-suited for urban areas,

though its output varies with weather conditions. To model PV generation, we use real-world

PV load factors from facility locations. These load factors represent the actual power output

of PV panels as a ratio of installed capacity, influenced by local solar irradiation. We calculate

them by dividing real PV infeed by the total installed PV capacity at each site. This data,

provided by local transmission system operators.

5.3.6 Agent-based Modeling of EVCHs

We present the ABM of EVCHs’ digital representation, incorporating supply and demand

specifics.
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Supply Side

We describe the EVCH equipment and the operational processes including charging dock al-

location and power management. An EVCH is a parking lot, depot, or garage equipped with

EV charging stations, typically sharing a grid connection with an adjacent building, which may

also have on-site PV generation and battery storage. The EVCH can feature di!erent types of

charging docks (22kW or 50kW) with single or multi-connector setups, allowing simultaneous

charging for greater flexibility and utilization. On-site storage using Li-Ion batteries can further

optimize energy use, with PV generation constrained by local space and weather-dependent

availability. For details see Appendix 5.9.2.

Charging Hub Operational Decisions

We implement operational decision policies that model real-world processes in our EVCH simu-

lation environment. There are three di!erent operational decision modes: a) pricing, b) charger

allocation, and c) load control. Service pricing is a critical component of EVCH operational

management, as price signals can indirectly adjust charging demand and significantly impact

profits. Our system supports multi-connector charging docks with simultaneous charging capa-

bility, making the initial assignment of vehicles to charging stations an important factor. This

allocation a!ects not only the available charging capacity for the EV, but also for current and

future arrivals at the same dock. Since EVs cannot be moved while connected to a charging dock,

well-informed initial allocation decisions are essential. Managing the charging of connected ve-

hicles impacts demand satisfaction and grid consumption patterns, which directly impacts costs.

Typically, routing and charging decisions are made separately for simplicity, as noted by Fergu-

son et al. (2018), and we follow this approach as routing is not the focus of our paper. Finally,

when a storage system is present, charging and discharging decisions for purposes such as peak

shaving and electricity arbitrage play an important role in the revenue management of EVCHs.

In the following sections, we describe algorithms for each of these operational decisions.

Pricing Scheme The EVCH operator needs to communicate the service price to EV users,

which can be done in several ways. The simplest strategy is a fixed price regardless of time and

service rate, or a ToU tari! where the charge price is published in advance for a period of time

(e.g. daily). A more complicated scheme is dynamic pricing, where the service price is published

at each updating time step and users do not know the price for the next time steps. To account for

the service rate (i.e., the charging power), there are several options: a) o!ering discrete charging

powers with di!erent prices, known in the literature as menu-based pricing, where e.g. standard

and fast charging have di!erent prices, and b) a capacity-based pricing function, where the price

is a continuous function of the charging power (see section 5.3.2 for details). We combine both

dynamic and capacity-based strategies, adjusting the power term of the pricing function at each

decision time step. By implementing dynamic, capacity-based pricing, the operator can achieve

various objectives, such as maximizing profits and reducing peak usage. We assume that the
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operator wants to maximize profits. We must consider that there is a trade-o! between prices

and demand, where higher prices reduce demand. In addition, it is worth noting that EVCH has

a ToU electricity contract, which includes peak charges. Therefore, determining optimal prices

for di!erent charging levels is a complex problem due to stochastic charging demand patterns,

including arrival times, length of stay and price sensitivity, as well as time-based electricity costs.

Charging Station Assignment Algorithms Vehicles are assigned to a connector when

they enter the EVCH. We evaluated several heuristic routing algorithms with di!erent levels

of sophistication, including fill-one-after-the-other and lowest-occupancy-first. However, the

lowest-occupancy-to-highest-laxity matching algorithm provided the best service level. This

strategy takes into account the condition of both the loading docks and the vehicle prior to

allocation. It categorizes incoming vehicles as low, medium, or high laxity (using bins derived

from historical data) and then matches low laxity vehicles to docks with high remaining capacity

and vice versa. In this way, the strategy implicitly prepares for future arrivals that may require

more or less charging capacity.

Charging Adjustment Algorithms The charging loads of vehicles being serviced at the

EVCH need to be controlled, as there are power capacity constraints and economic incentives

to adjust charging rates. In our simulation model, the charging operator updates the charging

rate for all connected vehicles every certain time step (e.g., five minutes) as new information

becomes available. There are a variety of sorting-based and optimization-based algorithms to

periodically determine the charging rate for each vehicle. Due to the focus of our work, which

is on pricing models, and for the sake of scalability and realistic modeling, we use sorting-based

algorithms. We use two methods: a) equal-sharing: in this model, the charging power of each

vehicle is the average requested power of that vehicle (xi
Ti
), and in cases where the cumulative

consumption load is greater than the grid capacity, this model reduces the charging power

of all vehicles equally, b) least-laxity-first (LLF): this model uses the least-laxity-first priority

rule, which means that the least flexible vehicles are charged first if the charging station has

a grid usage restriction. Thus, the algorithm explicitly considers the current state of a vehicle

(remaining energy demand and departure time) in the charging decision.

Demand Side

In the simulation, we model EVs entering and exiting the EVCH according to a schedule driven

by real-world sensor data. Upon arrival, EV users are presented with the pricing function

(including parameters) and prompted to estimate their intended duration of stay and the desired

amount of energy (if any) to charge during that period. Note that we assume that users do not

change their departure time based on the charging prices and that their duration of stay depends

only on their activity (e.g., working and charging), but they might adjust their requested energy

based on their needs and the service price. These are common assumptions in the literature (Lee

et al. 2019, 2018). In most studies, users are assumed to stay for the duration they indicated
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at the beginning, although this assumption is not necessary for our model. Upon arrival, and

only if they wish to charge, the operator connects the EVs to the designated receptacle. It is

important to note that EVs cannot be moved or relocated during their stay, and will occupy both

the parking space and the connector assigned to them for the entire period, even if the charging

process has already been completed. Once EVs reach their scheduled stay, any charging in

progress is terminated, the connector is released, and the parking space is vacated and becomes

available for the next period. See Section 3.1 for details on EV user charging demand decisions.

5.4 Simulation Experiments

We perform benchmark and sensitivity analyses to illustrate how our DSS helps EV charging

providers improve their profitability and system-level impacts (e.g., peak load reduction). In

addition, we evaluate the benefits of integrating capacity-based and dynamic pricing strategies

for EVCHs. To validate the e!ectiveness of our proposed model, we compare its performance

to a globally optimal upper-bound. This upper-bound represents a mathematical programming

model with perfect information, as derived in Subsection 5.3.2. The goal of this validation

analysis is to ensure that our DRL approach yields near-optimal solutions. In further evaluation

of robustness, we compare our proposed model to the upper-bound under various scenarios,

considering di!erent facility sizes, user price sensitivity levels, and electricity tari!s. Finally, we

conduct a comparative benchmark analysis to demonstrate that our model outperforms existing

pricing models in the literature. The benchmark pricing policies include traditional dynamic

pricing (power-free), dynamic menu-based pricing, and ToU pricing models.

We select a commercial facility with attached parking, for which we have access to both

building load data and transaction-level parking and estimated charging demand. We consider a

facility with 200 parking spaces, a 65% EV adoption rate, and 100 single-plug DC fast chargers

(50 kW). We use lowest-occupancy-highest-laxity equal sharing for load control of charging

requests (defined in subsection 5.3.6). Energy costs are calculated using California electricity

tari!s, the same region where the charging data was collected. Table 5.4 provides an overview

of the tari! structure used in all experiments. This is a ToU tari! where the cost of electricity is

higher during peak hours ($0.23/kWh) and lower during o!-peak hours ($0.08/kWh). According

to this tari!, the charging operator will be penalized if the peak consumption exceeds a certain

threshold. We consider a peak consumption threshold of 500 kW, above which the EVCH

operator must pay an additional charge for excess power consumption.

Regarding the user price sensitivity characteristics we use uniform random distributions to

parameterize the utility function of EV users (see Eq. (5.1)). This is a common assumption

in the literature as EV users have heterogeneous preferences for the prices of charging services

with di!erent charging speeds (Babic et al. 2022a). The willingness to charge to the maximum

demand (↽) is uniformly generated between 0.1 and 0.3.
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5.4.1 Hyperparameters of SAC Model

For finding the closest-to-optimal dynamic pricing policies, we use a grid search to set the

hyperparameters of our DRL algorithm. For the above-mentioned simulation the grid search

leads to a learning rate of 10↔3 using Adam optimizer, 512 batch size, and a fully-connected

neural network with 2 hidden layers of (512, 256, 512) number of nodes for both actor and critic

networks. We exclude the replay bu!er size and soft update parameter from the grid search and

set them to 105, and 10↔2 as suggested by the pre-trained agents.

5.4.2 Upper-Bound Benchmarking Experiments

DRL algorithms do not guarantee optimality. Therefore, to properly evaluate our proposed

machine learning-based pricing model we compare the results to a theoretical upper-bound

generated using the mathematical programming model from Section 5.3.2.

Upper-Bound: Perfect Information Model

To compute the upper-bound using a mathematical programming model, we make some as-

sumptions. Since we seek an optimal solution, we assume that all parameters (e.g., demand

information) are deterministic and known to the model (i.e., perfect information scenario). To

achieve the computational intractability of the perfect information model, we limit the size of

the problem to 200 parking spaces and assume that there are enough charging stations to serve

all EV users. With this assumption, we can remove the assigning variable (zi), since all vehicles

receive a charger, and convert the model to simple nonlinear optimization. Finally, instead of

optimal charging management, we use equal sharing load control in the mathematical model

(this model is explained in Section 3.6.2). This leads to a better comparison since we use the

same load management models for both machine learning-based and perfect-information models.

The modified mathematical model is shown below:

Max g(p0t ,ϱt) =
[︄

i,t

(p0t + ϱt
xi,t

ωi
)xi,t ≃ C

# (5.18)
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Evaluation Results

To assess the optimality gap of our proposed decision model, we compare its performance against

the upper-bound case with perfect information, as described earlier. To ensure the robustness of

the optimality gap across various numerical settings (i.e., the stability of our model across dif-

ferent scenarios), we evaluate its performance under di!erent parameter combinations, including

price sensitivity, facility size, and peak penalty in the electricity tari!. We consider three levels

of EV user price sensitivity, where the values for low, medium, and high sensitivity are ran-

domly drawn from the intervals [0.03, 0.1], [0.05, 0.2], and [0.1, 0.3], respectively. Additionally,

we incorporate two facility sizes (100 and 200 parking spaces) and two peak penalty cost levels

($15.89/kW and $47.67/kW).

Table 5.1 shows the results for all possible combinations. As can be seen, the DRL performs

very well, coming quite close to the optimal perfect information scenario with an average opti-

mality gap of only 16%. Given the complexity of the problem and the uncertainties in supply

and demand, this is a relatively small optimality gap compared to a perfect information model.

A second observation from the results is that for higher peak costs, the gap becomes slightly

larger, which could be caused by the high negative reward for exceeding the peak threshold,

which creates extreme gradients and makes the training process more di”cult for the agent. In

addition, as the price sensitivity of users decreases, they tend to accept higher prices, which in-

creases the profits for EVCHs and slightly reduces the optimal gap. Also, increasing the facility

size does not significantly a!ect the gap, demonstrating that our proposed machine learning-

based model is not only applicable to large problem sizes, but also ensures high performance for

large charging hubs.

Small Facility Large Facility

Profits (Optimally Gap) Low Peak Cost High Peak Cost Low Peak Cost High Peak Cost

High Price Sensitivity $1172 (17%) $1139 (19%) $2198 (19%) $2213 (19%)
Medium Price Sensitivity $1945 (16%) $1906 (19%) $3566 (17%) $3450 (19%)
Low Price Sensitivity $4470 (12%) $4482 (12%) $7612 (13%) $6950 (15%)

Table 5.1: Optimally gap between the perfect information and the proposed model

5.4.3 Benchmark Pricing Policies

We compare its performance to two benchmark policies: a traditional dynamic pricing policy

and a menu-based dynamic pricing policy. To see the performance of these models under more

realistic conditions, we include building load and PV generation. The building baseload, derived

from historical data, is scaled based on the size of the parking facility and is limited to between

75 kW and 250 kW. We consider a maximum of 500 kW of installed PV as an onsite energy

generation source that varies at di!erent times. Finally, to make these models comparable, we
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limit the maximum charging price to $1.5. This also ensures that the model takes into account

the preferences of EV users and does not significantly increase the cost of charging.

Traditional Dynamic Pricing

To demonstrate the impact of capacity-based pricing, we first use a traditional dynamic pricing

model as a benchmark policy (e.g., Cui et al. 2023, Zhao and Lee 2021). By traditional dynamic

pricing, we mean that the pricing function depends only on the energy unit parameter (p0),

which can be changed in time. For this, we need to modify and solve the EV user decision

problem by excluding the capacity-based from the pricing function, which leads to the following

problem:

minf(x) = P0x+ ↽(x≃D)2 (5.24)

The optimal solution for this problem is x
↗ = 2φD↔p0

2φ . To train a pricing agent with the

traditional dynamic model, we update the EV users’ decisions in the simulation. Due to the

high complexity of the dynamic decision problem, and also for the sake of model comparability,

we use a modified version of the DRL algorithm to find near-optimal traditional dynamic pricing

policies. We consider the same state space and reward function, but the action space is di!erent,

at = (p0t ), and contains only the power-free pricing parameter.

Dynamic Menu-based Pricing

In recent advances in pricing management for charging services (e.g., Abdalrahman and Zhuang

2020, Lu et al. 2022), researchers optimize the price of di!erentiated charging services. For

example, Abdalrahman and Zhuang (2020) considers di!erent prices for di!erent charging classes

(i.e., charging speed) to avoid over-utilization of scarce facilities, and Lu et al. (2022) considers

a deadline di!erentiated dynamic price menu that o!ers multiple choice-pairs of deadlines and

charging prices. Similarly, we also consider a menu-based pricing model where the operator

o!ers two options of charging power (11 and 50 kW) with di!erent prices14. To solve this, we

use a similar DRL model, but with a di!erent action space consisting of two di!erent elements

at = (a11t , a
50
t ).

To solve the decision problem regarding the energy requested by EV users, we adopt the same

objective function as in the traditional dynamic pricing model (Eq. (5.24)). Since users make

discrete choices, it is not possible to solve the EV decision optimization problem analytically.

Therefore, we assume that EV users choose the option that minimizes their individual costs.

Based on this assumption, we compute costs for four di!erent energy demand levels: x = 0,

x = 11ω, x = 55ω, and x = D. These values correspond to the amount of energy requested by

a user based on their choices, where ω represents the length of stay and D represents the user’s

maximum demand. For example, a user may decline all charging options (x = 0) or choose a

14Finding the optimal number of options and charging speed for each of them is a challenge for this model, but
we choose these options similarly to practice where charging facilities might o!er slow and fast charging options.
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slow charge and request x = 11ω units of energy. This discrete approach ensures that users do

not request more energy than their maximum demand, as this would increase their costs and

dissatisfaction. Additionally, if the price is too high and charging is not urgent, users may forgo

charging altogether and request zero energy.

Time of Use Pricing

First, we consider a ToU pricing model that follows the pattern of electricity costs. Similar to

other benchmark policies, the maximum price for the ToU strategy is set at $1.50. Thus, during
periods of high peak electricity costs, the charge price is $1.50 and decreases during periods of

lower electricity costs.

Benchmark Results

Figure 5.3 shows the learning curves of the proposed model compared to the benchmark al-

gorithms. As shown, all three RL-based dynamic algorithms reach convergence after several

hundred episodes. Notably, our proposed DSS achieves the highest objective function after

training, providing a profit increase of approximately 33% and 86% compared to other dynamic

pricing models and the ToU model, respectively. While menu-based pricing models are expected

to outperform traditional dynamic pricing by better accommodating heterogeneous user demand

through multiple service o!erings, they do not in this case due to the penalty costs incurred.

Finally, our results are consistent with previous research (Lin et al. 2023) indicating that static

pricing schemes, such as the ToU model, may not provide su”cient profitability for charging

services.

Figure 5.3: Benchmark of Dynamic Capacity-Based Pricing against State-of-Art Models
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To demonstrate that our DSS can meet sustainability goals while ensuring profitability, we

examine the energy consumption patterns of the proposed and benchmark models. Figure 5.4

shows the energy supply from di!erent sources. During the day, the EVCH benefits from on-

site energy production, which peaks around noon. All three dynamic models were successful

in attracting high charging demand during these hours, likely by lowering prices. However, the

total load for the ToU model remains lower than the other models during these periods because

the cost of electricity does not match the solar energy production curves. In terms of peak

control, our proposed dynamic capacity pricing model is the only one that keeps grid usage

below the 500 kW threshold set by the electricity tari!. This is achieved by the capacity term

in the pricing function, which encourages users to reduce their energy demands during periods

of high demand. The other models show nearly double the peak consumption compared to the

capacity-based model, underscoring the advantage of our approach in managing peak demand

and coordinating with renewable energy production.

Figure 5.4: Electric Supply Sources Over Simulation Horizon

5.5 Discussion and Conclusion

We present a machine learning-based DSS designed to optimize the operational management of

large-scale EVCHs through dynamic capacity-based pricing. Our goal is to promote sustainable
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mobility by providing EVCH operators with a DSS that enhances profitability while improving

system-level performance, such as alleviating grid stress by reshaping aggregated charging loads.

To achieve this, we integrate DRL with a dynamic capacity-based pricing model to derive time-

varying pricing policies. Our approach accounts for diverse user preferences and attributes,

including price sensitivity, and the stochastic nature of arrival times and energy demands. By

incorporating demand uncertainty and user heterogeneity, our pricing model increases EVCH

profitability while maintaining operational e”ciency.

To optimally determine dynamic capacity-based pricing policies, we build a DRL agent that

is able to learn from the stochastic environment. To train and evaluate our agent, we build a

realistic simulation that closely mimics the real world. An important feature of the real world

is stochasticity, which we model using an agent-based model calibrated with empirical data.

Pricing decisions have time dependencies, as each decision a!ects the demand for charges at the

next decision step and consequently a!ects the pricing decision. We define the problem as a

Markov decision process. Since obtaining information about the dynamics of the environment

is impractical (e.g., estimating the behavior of EV users is costly and varies over time), we use

a model-free approach (DRL) to approximate the optimal pricing policies. By interacting with

the environment, these models learn the policies over multiple episodes. Therefore, we create a

digital representation of the EVCH environment using ABM and calibrate the charging demand

using real-world parking and charging observations. A realistic and detailed simulation is essen-

tial for deriving actionable insights and mitigating the challenges associated with transferring

RL agents from a simulated environment to real-world applications.

We demonstrate that our proposed decision support system (DSS) outperforms all bench-

mark policies, including traditional dynamic pricing, dynamic menu-based pricing, and time-of-

use (ToU) pricing, achieving approximately 33% higher profits. Beyond profitability, our model

enhances the overall performance of EV charging hubs (EVCHs) by e!ectively reducing peak

electricity consumption and optimizing the utilization of fluctuating renewable energy sources

throughout the day. This approach is particularly beneficial in future scenarios where high EV

adoption and increased reliance on renewables could strain the power grid, leading to new peak

loads and greater supply uncertainty. By incorporating a power-dependent pricing function and

a powerful DRL agent that can learn near-optimal policies in complex environments, our model

allows EVCH operators to exert greater control over aggregated charging demand, mitigating

peak loads while maximizing the use of green energy more e!ectively than traditional pricing

strategies.

Our study also shows that EVCH profits are significantly a!ected by user characteristics

such as the cost of their alternative charging options and their willingness to fully charge.

Although accurate measurements of user behavior were not obtained in our research, our model-

free approach eliminates the need for user input in real-world implementation and instead learns
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through environmental interactions. Therefore, the discussed assumption about user behavior

serves only to analyze our model and o!er managerial insights for EVCH and grid operators.

Finally, our findings o!er insights for EVCH operators and energy providers. A well-designed

dynamic pricing model can incentivize investment in EVCHs, which are crucial for widespread

EV adoption and integration into power grid systems—without requiring extensive grid expan-

sions or major system modifications. Additionally, our decision support platform serves as a

powerful tool, enabling EVCH operators to determine near-optimal pricing strategies for var-

ious configurations. It also allows them to assess the value of potential investments, such as

on-site renewable generation and large-scale energy storage, across di!erent user segments and

operational settings.

Our research has certain limitations. Methodologically, we decouple the load scheduling

and pricing problems, addressing them separately. This separation allows us to focus on pricing

management, which is the primary objective of this study. Moreover, pricing decisions operate on

a di!erent scale and complexity compared to load scheduling, further justifying this distinction.

Future research could explore the potential benefits of training both scheduling and pricing

agents simultaneously, allowing them to interact dynamically. Additionally, we plan to validate

our assumptions regarding user price sensitivities through survey experiments. We anticipate

that this validation will enhance the robustness of our sensitivity analyses.
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5.6 Appendix

This appendix presents proofs for the analytical solution of EV user decision-making and provides

additional details on the development of an agent-based model (ABM) for EV charging hubs

(EVCHs).

5.7 Analytical Solutions for EV User Decision-Making Problem

Since the mathematical programming model for EV user decision-making involves a nonlinear

objective function with simplex constraints, a closed-form solution for the optimal requested

energy can be derived using Lagrangian methods. Additionally, we demonstrate that it is un-

necessary to impose an explicit upper bound on the requested energy, as the optimal solution

inherently remains within the user’s maximum energy demand.

5.7.1 Solving the optimization problem using the Lagrangian method

We introduce a Lagrange multiplier ⇁ for this inequality constraint. The Lagrangian function

becomes:

L(x,⇁) =
⌈︄
p0 + ϱ

x

ω

⌉︄
x+ ↽(x≃D)2 ≃ ⇁x

We write the first partial derivative of the Lagrangian function

• Derivative with respect to x:

2L
2x

= p0 + 2ϱ
x

ω
+ 2↽(x≃D)≃ ⇁ = 0

• Derivative with respect to ⇁:
2L
2⇁

= ≃x = 0

This implies x ⇔ 0, and when x = 0, the constraint is active. Afterwards, we solve the system

of equations.

• If the constraint x ⇔ 0 is inactive (meaning x > 0), then ⇁ = 0.

• If x = 0, the constraint is active, so ⇁ ⇔ 0.

To find the critical points we employ the first derivative condition.

p0 + 2ϱ
x

ω
+ 2↽x≃ 2↽D = 0

x =
(2↽D ≃ p0)ω

2ϱ+ 2↽ω



5.8 Mathematical Programming Notations 185

If the critical point is positive and within the allowable range x ⇔ 0, it is a candidate for the

maximum. If the critical point results in x < 0, then the maximum occurs at x = 0.

We also need to mention that the utility function always has a minimum, since the second

derivative is always positive.

f
→→(x) =

dx

d

⌈︄
p0 + 2ϱ

x

ω
+ 2↽(x≃D)

⌉︄

f
→→(x) =

2ϱ

ω
+ 2↽

5.7.2 The optimal requested energy can not be greater than the raw demand

In the following we proof that the optimal requested energy cannot be larger than the raw

demand (D):
(2↽D ≃ p0)ω

2(↽ω + ϱ)
⇒ D

We first multiply both sides by 2(↽t+ϱ). Since 2(↽t+ϱ) is positive, multiplying both sides by

this term gives:

2↽Dω ≃ p0ω ⇒ 2↽Dω + 2ϱD

We then simplify the inequality by removing the common term 2↽Dω from both sides:

≃p0ω ⇒ 2ϱD

We divide the inequality by ≃ω. Since ω > 0, dividing both sides by ≃ω reverses the inequality:

p0 ⇔ ≃2ϱD

ω

We bring all parameters to one side of the inequality:

≃2ϱD

ω
≃ p0 ⇒ 0

Note that this inequality always holds since all parameters are non-negative.

5.8 Mathematical Programming Notations

To enhance the readability of our mathematical models, we present all the indexes used in this

paper. We define the sets, variables, and parameters of the mathematical model in Table ??.
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Symbol Description
Sets

T Set of decision-making time windows
I Set of EVs parking in the EVCHs over the time horizon T

Variables
p
0
t Fixed component of the pricing function at time t

ϱt Power-dependent component of the pricing function at time t

yi,t Continuous variable for the charging rate of vehicle i at time t

zi Boolean variable indicating whether vehicle i is assigned to a charger
xi,t Continuous variable representing the energy requested by vehicle i at time t

p
↗ Continuous variable representing the excess peak electricity consumption

e
Grid
t Continuous variable for the energy drawn from the grid at time t

Ēt Average energy demand of EVs in the EVCH at time t

P̄ t Average power demand of EVs in the EVCH at time t

Parameters
C

e
t Electricity cost at time t

C
p Peak demand charge

$t Duration of each time window
l
↗ Peak threshold set by the electricity tari!
R Maximum charging power of all stations
⇀ Number of charging docks in the EVCH
f
PV
t ⇀

PV Power generated from PV at time t

Ui,t Boolean parameter indicating the presence of vehicle i at time t in the EVCH
Ai,t Boolean parameter indicating if vehicle i arrives at time t

Dei,t Boolean parameter indicating if vehicle i departs at time t

Di Maximum energy demand of user i
↽i User i’s willingness to charge up to maximum demand
ωi Duration of stay of user i
◁i Penalty for unmet energy demand of user i

Table 5.2: Notation Used in the Mathematical Programming Model

5.9 Additional Information for Agent-Based Modeling of EVCHs

In this section, we provide some details of input prepreation and information about the physical

equipments of EVCHs.

5.9.1 Estimating charging demand

For estimating the requested energy per vehicle e
d
i . We employ a recently published real-world

dataset by Lee et al. (2019) containing >25,000 charging transactions for the year 2019. Per

each charging transaction the full preference vector vi = (Ai, ωi, e
d
i ) is available. We combine

the charging data (which only contains served sessions that are constrained by the available

infrastructure) with our parking dataset. We train a prediction model on the labeled dataset

(Lee et al. 2019) and use the resulting model to predict charging demand in the parking dataset.
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Symbol Description
ϑ Policy of the RL agent
rt Reward of the RL agent at time t

st State of the RL agent at time t

at Action of the RL agent at time t

C
M
t Cost of missed demand at time t

J Objective function of the RL agent
↼ω State-action distribution under policy ϑ

H Entropy of the RL agent’s policy
ϱ
RL Entropy temperature parameter of the RL agent

D
RL Replay bu!er of the RL agent

ς Parameter of the actor network in the RL agent
↩ Parameter of the critic network in the RL agent
Q Action-state value function of the RL agent
V State-value function of the RL agent

Table 5.3: Notation Used in the Reinforcement Learning Model

Specifically, we train a kNN-model on the charging transaction dataset using the set of clustering

variables from before as predictors and the requested energy in kWh as outcome variable. Cross-

validation reveals k=12 neighbors to be a good value. We use the fitted kNN-model to predict

charging demand per transaction in our unlabeled parking dataset. Using this approach, we

obtain an exponentially distributed charging demand across the entire population of EVs with

average demand of 26.46 kWh (1 = 17.20 kWh) per parking session.The distributional shape of

charging demand is consistent with the one seen in other empirical EV charging settings (e.g.,

Ferguson et al. 2018).

5.9.2 EVCH physical equipments

We define an EVCH as an EV charging-capable parking lot, depot or garage that will typically

be attached to an existing building. Both the building and the EVCH receive power from the

same grid connection point, which is constrained to a certain capacity. The integrated facility

may have additional on-site behind-the-meter generation (e.g., PV), and battery storage.

The EVCH could be with di!erent types of EV charging docks (22kW AC or 50kW DC

docks) and the number of connectors per dock (ranging from single-connector setups to up to

four connectors per dock). Crucially, for charging docks with multiple connectors, we allow for

simultaneous charging of EVs meaning the rated power per dock can be shared dynamically

and flexibly by all connected vehicles. This is di!erent from the more prevalent single-server

docks which either posses just a single connector, or multiple connectors that can only be used

sequentially (i.e,, one after the other). A multi-connector setup o!ers important theoretical

advantages over single connector and/or sequential dock architectures. These include higher

potential utilization (vehicles that have completed their charging cycle do not block charging
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docks) (Ferguson et al. 2018) and more flexibility of charge cycles over the full parking duration

of each connected vehicle. We assume that PV generation can be scaled and is limited by local

facility space constraints, such as roof space. Naturally, the actual available PV capacity at

any given time will depend on local weather and solar irradiation conditions, which we capture

by means of a time-dependent load factor. The agent-based simulation could incorporate on-

site storage utilizing Li-Ion battery technology and regulate the storage system’s charge and

discharge processes.

5.9.3 Electricity Tari! for EVCH

Summer Winter
(Jun - Sep) (all other months)

Super O!-Peak (8am-4pm) 0.08 USD/kWh 0.06 USD/kWh
On-Peak (4pm to 9pm) 0.23 USD/kWh 0.23 USD/kWh
O!-Peak (9pm-8am) 0.08 USD/kWh 0.08 USD/kWh
Peak Charge (monthly) 15.48 USD/kW

Table 5.4: Time-of-use Tari! and Demand Charge for Large-scale EV Charging Customers (>
300 kW)
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