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Kurzzusammenfassung
In dieser Arbeit untersuchen wir das Problem der Parameter-Inferenz für ergodische
Markov-Prozesse, die gegen einen stationären Zustand konvergieren, der nicht durch
die Boltzmann-Verteilung beschrieben wird. Unser Hauptergebnis ist, dass wir die Pa-
rameter verschiedener Modelle auf der Grundlage von unabhängigen Stichproben aus
dem stationären Zustand lernen können, obwohl wir die stationäre Wahrscheinlichkeits-
verteilung nicht kennen. Genauer: für die untersuchten Modelle in stetiger Zeit konnten
wir die Parameter bis auf einen Skalierungsfaktor inferieren, welcher die Zeitskala bes-
timmt, die natürlich nicht aus statischen Messungen ermittelt werden kann; bei Mod-
ellen in diskreter Zeit ist die Zeitskala bereits implizit durch die Diskretisierung gewählt
und wir konnten alle Parameter der untersuchten Modelle inferieren. Als Paradigma
für Nicht-Gleichgewichts-Prozesse untersuchen wir das asymmetrische Ising-Modell
mit Glauber-Dynamik. Es beschreibt binäre Spinvariablen mit asymmetrischen paar-
weisen Wechselwirkungen unter dem Einfluss äußerer Magnetfelder. Diese Magnet-
felder und Wechselwirkungsstärken wollen wir lernen. Zu diesem Zweck haben wir
in dieser Arbeit zwei verschiedene Inferenzmethoden entwickelt: die erste Methode
basiert auf der Berechnung von Magnetisierungen, sowie Zwei- und Dreipunkt-Spin-
Korrelationen, zum einen in einer selbstkonsistenten Form, die exakt ist, und zum an-
deren in einer geschlossenen Form innerhalb einer Molekularfeld-Näherung; die zweite
Methode beruht auf der Maximierung einer Funktion, die wir ”propagator likelihood”
nennen. Diese betrachtet fiktive Übergänge zwischen allen gemessenen Konfiguratio-
nen und ist verwandt mit der bekannten Log-Likelihood-Funktion für Gleichgewichts-
Systeme. Der Vorteil des Molekularfeld-Ansatzes ist sein vergleichbar geringer nu-
merischer Aufwand, während der Vorteil des ”propagator likelihood”-Verfahrens darin
besteht, dass es die gesamte empirische Verteilung verwendet und leicht auf jeden er-
godischen Markov-Prozess angewandt werden kann. Insbesondere wenden wir die ”prop-
agator likelihood”-Methode auf weitere bekannte Nicht-Gleichgewichtsmodelle aus der
Statistischen Physik und der Theoretischen Biologie an: den einfachen asymmetrischen
Exklusionsprozess (ASEP) in stetiger Zeit mit diskreten Konfigurationen, sowie die
Replikatordynamik in stetiger Zeit mit kontinuierlichen Konfigurationen. Die Allge-
meingültigkeit des ”propagator likelihood”-Ansatzes wird dadurch betont, dass er di-
rekt aus dem Prinzip hergeleitet werden kann, dass die gemessene Verteilung stationär
unter der Dynamik sein soll, das heißt wir minimieren die relative Entropie zwischen
der empirischen Verteilung und einer Verteilung, die durch eine Zeitentwicklung dieser
empirischen Verteilung erzeugt wird. Schließlich untersuchen wir noch eine etwas an-
dere Situation und zeigen wie die Inferenz im asymmetrischen Ising-Modell verbessert
werden kann, wenn wir mehrere Datensätze aus unabhängigen Stichproben von ver-
schiedenen stationären Zuständen haben, die durch kontrollierte Störungen der zugrunde
liegenden Modellparameter erzeugt werden.

i





Abstract
In this thesis we study the problem of inferring the parameters of ergodic Markov pro-
cesses that converge to a non-equilibrium steady state. Our main result is that for many
models, we can learn the parameters based on independent samples taken from the
steady state, even though we do not know the stationary probability distribution. To
be more precise: for the investigated models in continuous time, we could infer the pa-
rameters up to a factor that defines the time scale, which, naturally, cannot be determined
from static measurements; for the investigated models in discrete time, the time scale
is already chosen implicitly by the discretisation and we could infer all parameters. As
our main paradigm for non-equilibrium inference problems, we study the asymmetric
Ising model with Glauber dynamics. It consists of binary spins subject to external fields
and asymmetric pairwise spin-couplings, which we seek to infer. For this purpose we
have developed two different inference methods: the first method is based on computing
magnetisations, two- and three-point spin correlations, either in a self-consistent form
that is exact, or in a closed form within a mean field approximation; the second method
is based on maximising a “propagator likelihood”, which considers fictitious transitions
between all sampled configurations and is akin to the well-known log-likelihood func-
tion used for equilibrium systems. The advantage of the mean field approach is its
computational efficiency, while the advantage of the propagator likelihood method is
that it uses information from the full sampled distribution and can easily be applied to
any ergodic Markov process. In particular, we apply the propagator likelihood method
to other prominent non-equilibrium models from statistical physics and theoretical bi-
ology: (i) the asymmetric simple exclusion process (ASEP) in continuous time with
discrete configurations and (ii) replicator dynamics in continuous time with continuous
configurations. The generality of this approach is emphasised by the fact that we can
derive the propagator likelihood directly from the principle that the sampled distribution
should be stationary under the model dynamics: we minimise the relative entropy be-
tween the sampled distribution and a distribution generated by propagating the sampled
distribution in time. Finally, we investigate a slightly different setting: we show how in-
ference can be improved in the asymmetric Ising model by considering multiple sets of
independent samples taken from several steady states, which are generated by controlled
perturbations of the underlying model parameters.
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1Introduction
To begin at the beginning

Dylan Thomas

1.1 Thesis overview

This thesis addresses the problem of inferring the parameters of ergodic Markov
processes based on independent samples taken from the non-equilibrium steady
state.

In this first chapter, we recall the standard results on ergodic Markov pro-
cesses concerning the convergence to steady states and their classification into
equilibrium and non-equilibrium steady states. We then formulate our stochastic
inference problem and give a brief overview of established inference methods for
equilibrium steady states and for time-series data. First, we motivate the max-
imum likelihood method within the framework of Bayesian reasoning, before
briefly mentioning the equilibrium mean field approximation and the pseudo-
likelihood method. Second, we discuss inference based on maximum likelihood
for time series.

In chapter 2, we give some background on our main paradigm for non-
equilibrium inference problems: the asymmetric Ising model. We will introduce
Glauber dynamics and show that this dynamics converges to a non-equilibrium
steady state for the case of asymmetric couplings between spins; we motivate the
consideration of asymmetric couplings by briefly discussing the connection of
the asymmetric Ising model with neural networks. In the following, we describe
Callen’s identities characterising the spin moments, since they will be used for
inference in chapters 3 and 5. We discuss maximum likelihood inference based
on time-series data and present some minor results we found for inference in
sequential Glauber dynamics, before presenting the Gaussian mean field theory
of Mézard and Sakellariou (2011), which we will use for inference in chapter 5.

In chapter 3, we develop our first method for stochastic inference from snap-
shots of the steady state, which is based on fitting sampled observables to self-
consistent equations, which we derive as generalisations of Callen’s identities.
We show how these self-consistent equations can be used to infer model param-
eters by replacing steady state expectation values with sample averages. In the
following, we discuss how to approximately evaluate the self-consistent equa-
tions in a closed-form within an expansion around non-equilibrium mean field
theory. The presentation of this expansion was inspired by the work of Kappen
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1. INTRODUCTION

and Spanjers (2000), who developed the non-equilibrium mean field theory for
the asymmetric Ising model. Here, we provide a straightforward generalisation
of their theory and formulate it for a wider class of ergodic Markov processes.
Finally, we use these methods to address the stochastic inference problem for the
asymmetric Ising model.

In chapter 4, we develop our second inference method, based on maximis-
ing a function we call the propagator likelihood. We give a derivation of this
function based on minimising relative entropy and illustrate the method for sev-
eral toy models spanning the different classes of Markov processes, including
the Ornstein-Uhlenbeck process and the asymmetric simple exclusion process
(ASEP). Then we use the method to infer the parameters of more challenging
models: the asymmetric Ising model (again) and replicator dynamics.

In chapter 5, we consider a slightly different setting and investigate how in-
ference in the asymmetric Ising model can be improved by considering multiple
sets of independent samples, which are taken from several steady states gener-
ated by known perturbations of the underlying parameters. We begin with some
general considerations concerning the observables required for a well-defined
inference problem and discuss the different roles of perturbations of the external
fields and perturbations of the couplings. Next, we develop a simple inference
algorithm based on the expressions for magnetisations and two-point correla-
tions obtained in the non-equilibrium mean field theory of chapter 3 and discuss
some basic properties of the approach. We follow with a more powerful infer-
ence method based on the Gaussian mean field theory of Mézard and Sakellar-
iou (2011), which we use to derive self-consistent equations for the equal-time
two-point correlations. In the case of vanishing external fields, these equations
become linear in the couplings and allow for a computationally highly efficient
inference algorithm that can easily be scaled to large system sizes. We investi-
gate the performance of this method by considering an example where half of
the couplings is set to zero in the perturbation and compare the approach to the
setting considered chapters 3 and 4.

Finally, in chapter 6 we summarise and interpret our results in addition to
giving a perspective on possible future directions for research. Section 3.2, ap-
pendix B, and parts of appendix A were previously published in (Dettmer et al.,
2016); chapter 4 has appeared in (Dettmer and Berg, 2017).

1.2 Markov processes

A stochastic process {X(t)} is a sequence of random variables {X(t)}t∈I , where
the index t denotes time, which could be discrete, I = {0,1, . . . ,T}, or continu-
ous, I = [0,T ], with a possibly infinite time horizon T =∞. Examples for the ran-
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1.2. Markov processes

dom variables could be the continuous-time positions of a set of gas molecules,
the daily temperature at noon on the roof of Cologne Cathedral, or the weekly
draw of lottery numbers. Due to the randomness of the variables we cannot
make definite predictions about outcomes, but instead have to content ourselves
with statements about the probabilities of different outcomes. This probability
may be interpreted as a subjective belief concerning different events occurring
(Bayesian interpretation) or as their relative frequencies in the limit of a large
ensemble of copies of the process, each taking a different (random) realisation
(frequentist interpretation).

Figure 1.1: Andrei Andreye-
vich Markov, who researched the
stochastic processes nowadays
named after him, was less inter-
ested in physical applications of
these processes but instead pre-
ferred to use them for studying
poetry.

In general, there will be relationships con-
necting the different variables, e.g. given that
today the temperature at Cologne Cathedral is
21◦C, it is highly unlikely that tomorrow the
temperature will be −10◦C. These relation-
ships can be captured by conditional proba-
bilities, which tell us how the observed re-
alisation of the stochastic process until time
t1 influences the probability of some event
A taking place at a later time t2 > t1. The
inter-dependence of the random variables may
be arbitrarily complicated, however, for many
applications we can focus on classes of pro-
cesses with very simple relationships. The
simplest case is when the variables are statisti-
cally independent, e.g. knowledge of the past
draws of lottery numbers does not influence
the probabilities of particular numbers appear-
ing in next week’s draw. This case will not be
discussed in this thesis. For processes with
real inter-dependencies between the variables,
the simplest case is when the probability of
the future event A depends on the past history
of the process only via the present state X(t1),
i.e.

P(X(t2) ∈ A|{X(s)}s≤t1) = P(X(t2) ∈ A|X(t1)) ∀t2 > t1 , (1.1)

which is known as the Markov property. Sequences of random variables obey-
ing the Markov property are known as Markov processes, in recognition of
Andrei Markov who studied these processes for the purpose of extending the
weak law of large numbers to random variables that are not statistically inde-
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1. INTRODUCTION

pendent (Markov, 2006; Seneta, 2006). The reason for the widespread use of
Markov processes is not just their simplicity, but for many real-world processes
it can be argued that the Markov property should hold true with a high degree
of accuracy. For example, in the kinetic theory of gases (see e.g. Redner et al.
(2010)) the molecular chaos assumption argues that the trajectories (x(t),v(t))
of gas particles are effectively Markov processes, due to the great number of
particle collisions occurring on time-scales much shorter than the observation
time.

Of course not all real-world random processes are Markovian and whether
a process obeys the Markov property depends also on the choice of variables.
Consider a point-mass in classical mechanics described by its position x and
momentum p. We know that knowledge of the current position x(t) is not suffi-
cient to predict the future trajectory of the particle so the position process {x(t)}
does not obey the Markov property. However, adding the momentum p(t) yields
the necessary information and the joint process {(x(t), p(t))} is indeed a Markov
process1. In fact, many probabilistic models with memory can be made Markov
processes by adding auxiliary variables (see e.g. Lei et al. (2016)).

1.2.1 Discrete configurations: Markov chains

Markov processes can be classified by (i) whether time is discrete or continu-
ous, and (ii) whether the configuration space Ω � X(t) is discrete or continuous.
Markov processes with discrete configurations are called Markov chains. The
theory is simplest for these Markov chains and for this reason we pick them
as our starting point for an exposition of the standard results on Markov pro-
cesses (see e.g. Feller (1968); Gardiner (2009); Grimmett and Stirzaker (2001);
Klenke (2013); Levin and Peres (2008)) most pertinent to the framing our stochas-
tic inference problem.

1.2.1.1 Discrete time

We consider a set of n possible configurations Ω = {ω1, . . . ,ωn}, assumed by
the random variables X0,X1,X2, . . ., where Xt is a short-hand for X(t). As exam-
ples we can think of the energy levels assumed by a quantum harmonic oscilla-
tor, the number of particles present in a subsystem connected to a reservoir of
chemical potential µ . The discretisation of time could correspond to measure-
ments taking place at fixed time intervals. In this case, we can use the Markov

1A free point-mass would of course obey deterministic dynamics, which can be
considered a limiting case of random processes. By adding interactions with a heat
bath we can introduce randomness into the process and the same statement applies.
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1.2. Markov processes

property to iteratively rewrite the joint probability distribution of a set of ran-
dom variables X0,X1, . . . ,Xk in terms of the single-step conditional probabilities
P(Xt = xt |Xt−1 = xt−1) as

P(Xk = xk, . . . ,X0 = x0) =P(Xk = xk|Xk−1 = xk−1, . . . ,X0 = x0)

×P(Xk−1 = xk−1, . . . ,X0 = x0)

=P(Xk = xk|Xk−1 = xk−1)P(Xk−1 = xk−1, . . . ,X0 = x0)

= . . .= P(X0 = x0)
k

∏
t=1

P(Xt = xt |Xt−1 = xt−1) . (1.2)

The conditional probabilities P(Xt = xt |Xt−1 = xt−1) are also called transition
probabilities. The most commonly studied Markov chains are time-homogeneous

chains, where the transition probabilities do not depend on the time t of the tran-
sition. Hence, the process is fully described by the initial condition P(X0 = x0)
and the matrix of transition probabilities

Ti j := P(X1 = ω j|X0 = ωi) . (1.3)

In particular, by summing over intermediate time-steps, the distribution of the
random variable at time t, pi(t) := P(Xt = ωi), can be written as the matrix
product of the initial distribution p(0) and the transition matrix T taken to the
power t

pi(t) = [p(0)Tt ]i =
n

∑
j=1

p j(0)(Tt) ji . (1.4)

For the special case of deterministic initial conditions where the process starts in
a configuration x0 ∈ Ω, i.e. p j(0) = δω j,x0 , we reserve the notation

p(x, t|x0,0) := P(X(t) = x|X(0) = x0) , (1.5)

which is called the propagator, since it takes the probability distribution at time
0 (concentrated in configuration x0) and propagates this distribution forward in
time to create the probability distribution at time t. Due to the linearity of the
equations, we can write the solution for an arbitrary initial condition p(0) as a
sum over propagators

pi(t) =
n

∑
j=1

p(ωi, t|ω j,0)p j(0) . (1.6)

THE STEADY STATE AND CONVERGENCE OF THE MARKOV CHAIN

Under certain conditions on the transition matrix T , the single-time distribution
p(t) converges to a unique distribution π , called the steady state (or stationary
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1. INTRODUCTION

distribution), independent of the initial probability distribution p(0). We call
these chains ergodic. It is clear that the steady state has the property of remain-
ing unchanged when propagating the distribution with the transition matrix

π = πT , (1.7)

which we use as the definition of a steady state.
In some cases one or more steady states may exist, but the Markov chain

might not converge for arbitrary initial conditions. For chains with finite con-
figuration space, |Ω| < ∞, the existence and uniqueness of the steady state is
guaranteed by the condition of irreducibility, stating that the chain can reach
any configuration from any starting point in a finite number of steps with pos-
itive transition probability. These are the most studied chains and all Markov
chains considered in this thesis will be irreducible. Markov chains that are not
irreducible can be divided into irreducible sub-chains and then only the transi-
tions between the subclasses have to be accounted for additionally. For infinite
configuration spaces, |Ω| = ∞, irreducibility is not sufficient to ensure the ex-
istence of a normalisable steady state. In addition, we require that the average
time of return to any initial configuration is finite. These chains are called posi-

tive recurrent. The Markov chain actually converges to the unique steady state,
independent of the initial condition, if the chain is aperiodic. In an aperiodic
chain, the possible paths that start from an initial configuration and return to the
starting point must not have a common divisor to their number of steps. An ex-
ample for a periodic chain is the simple random walk on Z, where the chain hops
one place to the left or one place to to right in every time step, so the chain can
return to a configuration only after an even number of steps.

The results above on the convergence of Markov chains have been known for
a long time. More recently, people have studied how long the Markov chain ac-
tually takes to converge to the steady state and how this time depends on the size
of the configuration space; this field is known as Markov mixing times (Levin
and Peres, 2008).

EXAMPLE: BIASED RANDOM WALK ON N0

The biased random walk on N0 is most simply defined by a picture of the chain’s
configurations and transition probabilities (Fig. 1.2).

In each time step, the chain moves one place to the right with probability
r, or one place to the left with probability 1− r, except when the chain is in 0
where instead of moving to −1, the chain remains in 0. The chain is obviously
irreducible and aperiodic, since the chain can remain in 0 for an arbitrary number
of time steps. The chain therefore converges to a unique steady state if and
only if the chain is positive recurrent. We can check this condition by actually

6



1.2. Markov processes

r

0 1 21-r

1-r

r r

1-r 1-r

Figure 1.2: Schematic view of the transition rules for the biased random walk on N0.

computing the steady state. The steady state defining equation (1.7) becomes

rπi−1 +(1− r)πi+1 = πi , i = 1,2, . . . (1.8)
(1− r)π0 +(1− r)π1 = π0 . (1.9)

These equations can be solved iteratively and we obtain

πi =

(
r

1− r

)i

π0 . (1.10)

The steady state is normalisable if and only if r/(1− r)< 1 ⇔ r < 1/2:

1 =
∞

∑
i=0

πi =
∞

∑
i=0

(
r

1− r

)i

π0

r
1−r<1
=

1− r
1−2r

π0 . (1.11)

Thus, for r < 1/2 the chain is positive recurrent and we have a normalisable
steady state. It can be shown (Klenke, 2013) that (i) for r > 1/2 the chain is
transient and wanders off to infinity so any configuration is visited only finitely
many times; (ii) for r = 1/2 we have a null-recurrent chain, i.e. each configura-
tion is visited infinitely often, but the mean return time is infinite. �

1.2.1.2 Continuous time

Markov chains in continuous time have no memory of how long they have re-
mained in a certain configuration. The transitions are therefore described by in-
stantaneous transition rates Ki j(t), giving the probability that the chain jumps
from configuration ωi to configuration ω j within the infinitesimal time interval
[t, t +dt). We can define them as the limit

Ki j(t) := lim
δ t→0

P(X(t +δ t) = ω j|X(t) = ωi)/δ t . (1.12)

As for the discrete-time Markov chains, we focus on time-homogeneous chains
where the transition rates do not depend on time, Ki j(t) ≡ Ki j. The random
time τ that the chain remains in a given configuration ωi is then exponentially

7



1. INTRODUCTION

distributed with parameter λi = ∑ j 
=i Ki j > 0 and we can define a corresponding
transition matrix in discrete time as

Ti j =

{
Ki j/λi i 
= j
0 i = j

, (1.13)

where we count time in units of the (random) jump times T1,T2, . . . .
Let us consider how the single-time probability P(X(t)=ωi)=: pi(t) changes

within an infinitesimal time interval dt. First, the probability ∑ j 
=i pi(t)Ki jdt
flows out via the jumps from ωi to other configurations. Second, the probability
∑ j 
=i p j(t)Kjidt flows in due to jumps from other configurations to ωi. Adding
the two and dividing by dt we find the Master equation

d
dt

pi(t) =−∑
j 
=i

pi(t)Ki j +∑
j 
=i

p j(t)Kji , (1.14)

which is a set of ordinary differential equations describing the time-evolution of
the vector of single-time probabilities pi(t). Defining the new matrix

K̃i j :=

{
Ki j i 
= j
−λi i = j

, (1.15)

the Master equation can be written as d
dt p = pK̃ and the solution takes the form

pi(t) =
[

p(0)eK̃t
]

i
, (1.16)

analogous to the case of discrete time. We only take the matrix exponential rather
than the matrix power. Again, we define the propagator p(x, t|x0,0) = P(X(t) =
x|X(0) = x0) as the solution for the deterministic initial condition with the chain
starting in x0 ∈ Ω. In the steady state there should be no net flow of probability
in or out of any configuration. The steady state is therefore characterised by the
equation

πK̃ = 0 . (1.17)

Since the jumping times are continuous, the Markov chain is automatically ape-
riodic. The chain is irreducible if and only if P(X(t) = j|X(0) = i) > 0 for all
pairs i 
= j and any time t > 0, which is equivalent to the statement(

eK̃
)

i j
> 0 ∀ i 
= j . (1.18)

The existence of a normalisable steady state and convergence of the chain are
equivalent to the chain being positive recurrent, as in discrete time.

8



1.2. Markov processes

EXAMPLE: RANDOM TELEGRAPH PROCESS

In the random telegraph process, the Markov chain can take only two possible
configurations X(t) ∈ Ω = {0,1}. The chain jumps from 0 to 1 with rate α :=
K01 and from 1 to 0 with rate β := K10. The Master equation reads

d
dt

p0(t) =−α p0(t)+β p1(t) (1.19)

d
dt

p1(t) =−β p1(t)+α p0(t) . (1.20)

For α > 0 and β > 0 the process is irreducible and we know the chain must
converge to a steady state. We can compute the full time-dependent solution
for this simple process: due to normalisation we have p1(t) = 1− p0(t) and it
suffices to solve the single differential equation

d
dt

p0(t) =−α p0(t)+β [1− p0(t)] , (1.21)

which gives

p0(t) =
(

p0(0)− β
α +β

)
e−(α+β )t +

β
α +β

. (1.22)

For t → ∞ the probabilities (p0(t), p1(t) = 1− p0(t)) given by (1.22) converge
to the steady state π0 =

β
α+β ,π1 =

α
α+β . �

1.2.2 Continuous configurations

A second category of Markov processes describes the time-evolution of continu-
ous variables X(t) ∈ Ω ⊂ R

d . An example would be the positions and momenta
of N gas molecules in a box. In discrete time, we might consider the random
walk Xn = ∑n

i=1Yi with statistically independent, identically distributed incre-
ments Yi, which take continuous values. In the case where the increments have
an infinite variance, these random walks are called Lévy flights. In this thesis,
we will focus on processes in continuous time with continuous sample paths and
finite variance1, since they have a simple characterisation, which we describe
below.

1This restriction could be relaxed by including jump rates K(x′|x, t) =
limδ t→0 P(X(t +δ t) = x′|X(t) = x)/δ t analogous to the Markov chains in continuous
time.

9



1. INTRODUCTION

1.2.2.1 Brownian motion

The study of Markov processes with continuous configurations has been pio-
neered by the study of a particular process known as Brownian motion. Mathe-
matically, it was first studied by Louis Bachelier in the context of stock mar-
kets (Bachelier, 1900) and later by Albert Einstein (Einstein, 1905), Marian
Smoluchowski (von Smoluchowski, 1906) and Paul Langevin (Lemons and Gythiel,
1997) in the context of diffusing molecules, which we refer to as physical Brow-
nian motion. Today, Brownian motion forms a major pillar on which the theory
of more general continuous Markov processes is founded. Its mathematical basis
has been made rigorous by Norbert Wiener (Wiener, 1923).

In short, we can characterise the mathematical (one-dimensional) Brownian
motion as a Markov process {W (t)} that

• starts at the origin W (0) = 0 ,

• has continuous sample paths, and

• increments W (t + s)−W (t) that are statistically independent from the pro-
cess (W (τ))τ<t and normally distributed with zero mean and variance s.

A d-dimensional Brownian motion is simply defined as a vector with d compo-
nents that are independent one-dimensional Brownian motions.

There are two equivalent approaches to continuous Markov processes. The
first approach, known as Langevin equations, generalises the Newtonian equa-
tions of motion to include a random-force emanating from the dynamics of a
large number of unobserved microscopic degrees of freedom. The second ap-
proach directly describes the time-evolution of the probability density of config-
urations in terms of a partial differential equation: the Fokker-Planck equation.
We will explore both approaches and their connection in the following.

1.2.2.2 Langevin equations

Historically, Langevin’s development of his stochastic differential equations suc-
ceeded the treatment of Brownian motion by Einstein and Smoluchowski. How-
ever, because of its intuitive simplicity, we first take a look at Langevin’s equa-
tions. This simplicity was bought at the price of lacking mathematical rigour,
which was later provided by the stochastic calculus of Kiyosi Itô (Itô, 1944,
1946).

At its heart, Langevin’s treatment is based on the separation of variables
into slowly varying ones, which we track, and rapidly varying ones, which we
do not track explicitly. In the context of physical Brownian motion, the slow
variables are the position x and velocity v of a colloidal particle, which has a

10



1.2. Markov processes

size on the order of microns; the fast variables are the positions and velocities
of an immense number of water molecules, which have a size on the order of
angstroms. The collective effect of the collisions of water molecules with the
colloid is a random force, which can be separated into its deterministic mean F
and random fluctuations η̃ around the mean. The (one-dimensional) dynamics
of the Brownian particle are then described by the set of differential equations

dx
dt

= v(t) (1.23)

m
dv
dt

= F(x(t),v(t))+ η̃(t) . (1.24)

Figure 1.3: Paul Langevin, in-
ventor of stochastic differential
equations, is also known for his
work on paramagnetism, ultra-
sonic detection of submarines,
and creating the twin paradox
of special relativity. Besides his
courageous step into mathemat-
ically murky waters when de-
vising his stochastic differential
equations, he also boldly chal-
lenged the editor Téry to a duel
in response to the latter publi-
cising Langevin’s affair with his
former PhD supervisor’s widow,
Marie Curie. Luckily, no one
was hurt, since Téry retreated in
the last minute.

The first equation is simply the definition of
the particle position as the time-integral over
its velocity, the second equation is the gener-
alisation of Newton’s third law to a stochastic
differential equation known as Langevin equa-
tion.

THE OVERDAMPED LIMIT

In Langevin’s and Einstein’s treatment of
Brownian motion, the particle is assumed
to experience a viscous drag described by
Stokes’ law F(x,v) = F(v) =−ζ v, where for
spherical particles the drag coefficient is given
by ζ = 6πµa with µ the viscosity of the sol-
vent and a the radius of the Brownian particle.
In the limit m/ζ 
 1 inertia becomes negli-
gible compared to friction and the particle ve-
locity directly follows the random force η̃(t).
Formally, by setting mdv

dt = 0 in (1.24) we ob-
tain v = η̃(t)/ζ =: η(t) and therefore the par-
ticle position is described by

dx
dt

= η(t) . (1.25)

It is straightforward to generalise this argu-
ment to the case where the force has a sec-
ond, position-dependent component F(x,v) =
f̃ (x)−ζ v.

11



1. INTRODUCTION

The dynamics of the particle position is then described by the equation

dx
dt

=
f̃ (x)
ζ

+η(t) =: f (x)+η(t) . (1.26)

When the force derives from a potential, f̃ (x) = −∂xŨ(x), we define the cor-
responding effective potential U(x) = Ũ(x)/ζ that produces the effective force
f (x) =−∂xU(x).

Even though Langevin’s treatment includes the case of finite mass, when
diffusion or a Brownian particle are discussed, it is common to implicitly assume
the overdamped limit.

THE STOKES-EINSTEIN RELATION AND GAUSSIAN WHITE NOISE

The irregularity of the random fluctuating force η(t) makes this object some-
what pathological mathematically. While it is clear that the force must have zero
mean, 〈η(t)〉, due to its definition as fluctuation around the mean force, it turns
out that demanding that the force be uncorrelated from the Brownian particle po-
sition x(t) and at the same time produce a finite variance of the particle position,
its time-correlation should be a Dirac-Delta function

〈η(t)η(t ′)〉= σ2δ (t − t ′) . (1.27)

A random fluctuating force ξ (t)=η(t)/σ that has unit magnitude, i.e. 〈ξ (t)ξ (t−
t ′)〉 = δ (t − t ′), is known as Gaussian white noise. For a Brownian particle in
equilibrium, the magnitude σ of the fluctuations is determined by the equiparti-
tion theorem, 〈mv2〉= kBT . To this end, one can show that for a particle initially
at rest, v(0) = 0, the velocity solving (1.24) has zero mean and a variance given
by

〈v2(t)〉= σ2

2
ζ
m

(
1− e−2 ζ

mt
)
. (1.28)

Taking the limit t → ∞ and inserting the result into the equipartition theorem,
we obtain the Stokes-Einstein relation 1

2σ2 = kBT/ζ with absolute temperature
T and Boltzmann’s constant kB. In terms of the white noise and the result on
the magnitude of the random force, we can rewrite the overdamped Langevin
equation in its standard form involving Gaussian white noise

dx
dt

= f (x)+
√

2Dξ (t) , (1.29)

where we introduced the diffusion constant D= 1
2σ2 = kBT/ζ , since the solution

of (1.29) for a free Brownian particle, f (x) = 0, results in the mean squared dis-
placement increasing linearly in time with the proportionality constant defined
as twice the diffusion constant, 〈(x(t)− x(0))2〉= 2Dt.

12



1.2. Markov processes

ITÔ CALCULUS AND STOCHASTIC INTEGRALS

Mathematicians have made Langevin’s equations rigorous by “multiplying with
dt” , resulting in something called a (Itô) stochastic differential equation for the
process X(t):

dX(t) = f (X(t), t)dt +σ(X(t), t)dW (t) , (1.30)

where dW (t) = ξ (t)dt is an infinitesimal increment of the mathematical Brown-
ian motion, f is called the drift and σ the volatility. This equation is understood
in the sense that the process X(t) satisfies the integral equation

X(t) = X(0)+
∫ t

0
f (X(s),s)ds+

∫ t

0
σ(X(s),s)dW (s) . (1.31)

To interpret the random variable on the right-hand side, the stochastic integral
Y (t) :=

∫ t
0 σ(X(s),s)dW (s) has to be defined. The common definition is due to

Kiyoshi Itô and for this reason we speak of the Itô stochastic integral. Under
certain regularity conditions on the integrand σ(X(s),s), the stochastic integral
can be defined as the limit of a Riemann sum

∫ t

0
σ(X(s),s)dW (s) := lim

N→∞

N

∑
i=1

σ (X((i−1)t/N),(i−1)t/N)

× [W (it/N)−W ((i−1)t/N)] . (1.32)

This representation as a Riemann sum directly suggests a way to simulate the
process on a computer: draw a sequence of statistically independent standard
normal random variables and multiply then with the square root of a discrete time
step Δt; this creates the increments of the Brownian motion, which in turn can
be multiplied with the integrand σ(X(s),s) and finally added to the deterministic
motion. This algorithm is known as the Euler scheme.

For the mathematical properties of the stochastic integral, it is important that
the integrand is evaluated at the beginning of the sub-interval [(i−1)t/N , it/N)
so that the integrand is independent of the increment of the Brownian motion.
A different interpretation of the stochastic integral is the Stratonovich conven-

tion, where the integrand is evaluated at the mid-point (i−1/2)t/N of the sub-
intervals. This convention gives a different value of the integral and therefore the
stochastic differential equation (1.30) has to be augmented with the information
of how the stochastic integral should be evaluated.

There is no rule connecting the Itô and Stratonovich stochastic integrals for
general stochastic processes {X(t)}. For processes that are the solutions of a
stochastic differential equation, however, the two integrals can be easily trans-
formed into each other.

13



1. INTRODUCTION

Consider the Itô stochastic differential equation for a d-dimensional process
X(t) driven by an M-dimensional Brownian motion

dXi(t) = fi(X(t), t)dt +
M

∑
j=1

σi j(X(t), t)dWj(t) , (1.33)

with i = 1, . . . ,d and where fi is called the drift-vector and σi j the volatility
matrix. By using (1.33) to expand the integrand of the Stratonovich stochastic
integral, it can be shown that the equivalent Stratonovich stochastic differential
equation is given by

dXi(t)
(S)
=

[
fi − 1

2

d

∑
k=1

M

∑
j=1

σk j∂xkσi j

]
dt +

M

∑
j=1

σi j dWj(t) , (1.34)

with i= 1, . . . ,d and where we omitted the arguments of fi(X(t), t) and σi j(X(t), t).
Thus, both interpretations have the same volatility matrix but there is a cor-

rection to the drift vector. The conversion in the reverse direction from Stratonovich
convention to Itô convention is then given by adding 1

2 ∑d
k=1 ∑M

j=1 σk j∂xkσi j to the
drift vector.

The Stratonovich convention ensures that the rules of ordinary calculus apply
to variable transformations, i.e. dg(X(t)) = ∂xg(X(t))dX(t), while for the Itô
stochastic integral one has to apply Itô’s lemma for variable transformations

dg(X(t), t) =∂tg(X(t), t)dt +
d

∑
i=1

∂xi(X(t), t)

[
fi dt +

M

∑
j=1

σi j dWj(t)

]

+
1
2

d

∑
i, j=1

∂xi∂x jg(X(t), t)
M

∑
k=1

σik σ jk dt . (1.35)

CONVERGENCE TO THE STEADY STATE

We will consider only time-homogeneous processes, where the drift and volatil-
ity do not depend on time, fi(X(t), t)≡ fi(X(t)),σi j(X(t), t)≡σi j(X(t)). Whether
the Markov chain converges to a steady state with probability density π(x) is not
simple to ascertain for general processes. A special case are Martingales, charac-
terised by a vanishing drift term, i.e. dX(t) = σ(X(t))dW (t). If the Martingale is
a non-negative process, the process converges to an integrable random variable
X∞ with probability density π(x).
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1.2. Markov processes

U(x)=bx2/2

Figure 1.4: Schematic view of a system described by the Ornstein-Uhlenbeck process.
A particle with diffusion constant σ2/2 performs Brownian motion in an effective har-
monic potential U(x) = bx2/2. Superimposed in blue is the stationary distribution
π(x)∼ exp[−x2/(σ2/b)].

Figure 1.5: George E. Uhlenbeck is perhaps most famous for developing the idea of
the electron spin together with Samuel Goudsmit. He also made many contributions to
statistical mechanics. Uhlenbeck had a penchant for clarity and mathematical rigour.
As an undergraduate student, during his laboratory courses, he derived all the em-
ployed electromagnetic formulae directly from Maxwell’s equations. Later, he rejected
Einstein’s argument showing the existence of the Bose-Einstein condensation on the
grounds that Einstein had replaced finite sums with integrals. At the time, phase tran-
sitions had not been properly understood from the point of statistical mechanics. Years
later, it was Hendrik Kramers who pointed out that a phase transition could only occur
in the thermodynamic limit of infinitely large systems.

15
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EXAMPLE: ORNSTEIN-UHLENBECK PROCESS

The Ornstein-Uhlenbeck process is the solution of the simplest Langevin equa-
tion admitting a steady state. The process describes a single particle with volatil-
ity σ , diffusing in an effective one-dimensional harmonic potential U(x) = b

2x2

with b> 0 (see Fig. 1.4). A physical realisation is a colloid in solution being held
in place by optical tweezers and confined to a one-dimensional channel. The ef-
fective deterministic force acting on the particle is the gradient of the potential
f (x) =−∂xU(x) =−bx.

The dynamics of the particle position X(t) ∈ R in the overdamped limit is
then described by the Langevin equation

dX(t)
dt

=−bX(t)+σξ (t) , (1.36)

where the random force ξ (t) constitutes δ -correlated white noise interpreted in
the Itô convention, i.e. we have the equivalent Itô stochastic differential equation

dX(t) =−bX(t)dt +σdW (t) . (1.37)

This stochastic differential equation can be solved by applying Itô’s lemma to
the transformed variable Y (t) = X(t)ebt , which obeys the simpler Itô stochastic
differential equation

dY (t) = ebtσdW (t) (1.38)

with the solution

Y (t) = Y (0)+σ
∫ t

0
ebsdW (s) (1.39)

⇒ X(t) = X(0)e−bt + e−btσ
∫ t

0
ebsdW (s) . (1.40)

One can show that the resulting process is Gaussian, i.e. for any time points
0 ≤ t1 < t2 < .. . < tk, the joint probability distribution of X(t1),X(t2), . . . ,X(tk)
is a k-dimensional Gaussian with means

〈X(ti)〉= 〈X(0)〉e−bti (1.41)

and covariances

〈X(ti)X(t j)〉−〈X(ti)〉〈X(t j)〉= σ2

2b

(
e−b|ti−t j|− e−b(ti+t j)

)
. (1.42)

In particular, it follows that the process X(t) converges to a steady state described
by a Gaussian probability distribution π(x) with mean 0 and variance σ2/(2b),

π(x) =
1√

πσ2/b
e−x2/(σ2/b) . (1.43)

�
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1.2. Markov processes

1.2.2.3 Fokker-Planck equations

Figure 1.6: In his PhD thesis on Brownian motion, Adriaan Fokker derived the Fokker-
Planck equation for the orientational distribution of rotating dipoles in an electromag-
netic field; he later published the results in (Fokker, 1914). Today, his equation is com-
monly known as the Fokker-Planck equation because Max Planck was asked by col-
leagues to explain Fokker’s work, which he eventually did, but not without adding his
own version describing the velocity distribution of Brownian particles (Planck, 1917).
Before transferring to physics under the supervision of Hendrik Lorentz, Fokker briefly
studied engineering because ”my mother always wanted me to become an engineer, and
I never objected.”. Besides his contributions to physics, Adriaan Fokker also built the
31-tone equal-tempered Fokker organ. He did not, however, build the famous aeroplanes
- that was his cousin Anton Fokker.

The second approach to the description of continuous Markov processes consid-
ers the probability density p(x, t) of the variable X(t) and characterises it as the
solution of a partial differential equation known as the Fokker-Planck equation.
We can derive the Fokker-Planck equation from the principle of local probability
conservation

∂t p(x, t) =−∇ · j(x, t) ∀ (x, t) ∈ Ω× [0,∞) , (1.44)

where the probability current j(x, t) has one part arising from drift and a second
part associated with diffusion

ji(x, t) = ai(x, t)p(x, t)−
d

∑
j=1

∂
∂x j

[Di j(x, t)p(x, t)] (1.45)
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with drift vector ai and positive semi-definite diffusion matrix Di j . We will
consider only time-homogeneous processes, where the drift and diffusion co-
efficients do not depend on time, ai(x, t) ≡ ai(x),Di j(x, t) ≡ Di j(x). This hy-
perbolic partial differential equation has to be augmented with the initial con-
dition p(x,0) and appropriate boundary conditions. Two standard boundary
conditions are (i) absorbing boundary conditions: p(x, t) = 0 ∀ x ∈ ∂Ω, corre-
sponding to particles exiting the domain Ω without ever returning (e.g. consider
molecules crossing a membrane channel), and (ii) reflecting boundary conditions
j(x, t) ·n = 0 ∀ x ∈ ∂Ω, corresponding to particles being reflected at the domain
boundary and where n is the vector normal to the domain surface. Again, we de-
fine the propagator p(x, t|x0,0) as the solution for deterministic initial condition
p(x,0) = δ (x−x0) and the general solution for an arbitrary initial condition can
be found by integrating over the propagators

p(x, t) =
∫

Ω
dy p(x, t|y,0)p(y,0) . (1.46)

EQUIVALENCE TO THE LANGEVIN EQUATION

If we have the Itô stochastic differential equation (1.33) and consider the average
of an arbitrary function g(X(t), t): 〈g(X(t), t)〉= ∫

dxp(x, t)g(x, t), we can derive
the corresponding Fokker-Planck equation by applying Itô’s lemma (1.35) and
integrating by parts (Gardiner, 2009). We find that the Itô stochastic differen-
tial equation (1.33) and the Fokker-Planck equation (1.44) are connected by the
relations

ai(x, t) = fi(x, t) (1.47)

Di j(x, t) =
1
2

M

∑
k=1

σik(x, t)σ jk(x, t) . (1.48)

STEADY STATE AND CONVERGENCE

A steady state of the Fokker-Planck equation (1.44) is described by a probability
density π(x) satisfying

0 =−
d

∑
i=1

∂
∂xi

[ai(x)π(x)]+
d

∑
i, j=1

∂ 2

∂xi∂x j
[Di j(x)π(x)] . (1.49)

Whether the solution p(x, t) of the Fokker-Planck equation converges, for any
initial condition, to a unique steady state, must be answered by the theory of
partial differential equations. The absorbing boundary condition does in general
not support the existence of a steady state, since the probability of the domain
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1.2. Markov processes

PΩ(t) =
∫

Ω dx p(x, t) is not conserved. In the following section, we will discuss
conditions guaranteeing the existence of a steady state for the simple class of
equilibrium processes on infinite domains Ω = R

d .

EXAMPLE: DIFFUSION IN A GRAVITATIONAL FIELD

Similar to the Ornstein-Uhlenbeck process, we consider a particle with diffusion
constant D = σ2/2 = kBT/ζ performing overdamped Brownian motion in the
gravitational potential Ũ(x) = mgx with m,g > 0. The corresponding effective
potential is U(x) = mgx/ζ and the effective force is f (x) =−∂xU(x) =−mg/ζ .
The Fokker-Planck equation for the particle position x ∈ [0,∞) reads

∂
∂ t

p(x, t) = +
∂
∂x

mg
ζ

p(x, t)+
kBT

ζ
∂ 2

∂x2 p(x, t) . (1.50)

We seek the steady state distribution π(x) by solving

0 =− d
dx

j(x) =
mg
ζ

d
dx

π(x)+
kBT

ζ
d2

dx2 π(x) (1.51)

subject to the reflecting boundary condition at x = 0

0 = j(0) =−mg
ζ

π(0)− kBT
ζ

dπ
dx

(0) . (1.52)

The solution is given by

π(x) =
1
Z

e−mgx/kBT =
1
Z

e−Ũ(x)/kBT (1.53)

with the normalisation constant Z =
∫ ∞

0 dxe−mgx/kBT = kBT
mg . The reflecting bound-

ary condition is automatically fulfilled, since j(x)≡ 0. �

1.2.3 Equilibrium versus non-equilibrium steady states

Steady states come in two varieties: equilibrium steady states and non-equilibrium
steady states. Equilibrium steady states form a subset of steady states that is
characterised by some additional constraints, which make the stationary distri-
bution relatively easy to compute. It is no coincidence that all the simple ex-
amples for Markov processes with steady states, given above, have equilibrium
steady states. Non-equilibrium steady states are, as the name suggests, all steady
states that are not equilibrium steady states. Non-equilibrium steady states are
much harder to compute and analytical solutions are available mainly for one-
dimensional systems.
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1.2.3.1 Equilibrium and detailed balance

Loosely speaking, an equilibrium steady state is characterised by the property
that when watching a film of the system, you cannot tell whether the film is
played forwards or backwards. More formally, equilibrium is characterised by
the condition of detailed balance, demanding that the net probability flow be-
tween each pair of configurations vanishes in the steady state. In other words: in
the steady state any transition has the same probability as its time-reversed tran-
sition 1. For Markov chains with discrete configurations and time, the condition
of detailed balance corresponds to the steady state satisfying

πiTi j = π jTji ∀ i, j = 1, . . . , |Ω| . (1.54)

For Markov chains in continuous time, the corresponding equation has the same
form, with the transition probabilities Ti j replaced by the transition rates Ki j

πiKi j = π jKji ∀ i, j = 1, . . . , |Ω| . (1.55)

Thus, the probability flows between configurations balance each other pairwise
in the steady state. It is straightforward to verify that a vector π satisfying the
detailed balance condition (1.54) automatically fulfils the definition of a steady
state (1.7). Likewise, for continuous time (1.55) implies (1.17). The detailed
balance condition for Markov chains can be checked without actually comput-
ing the steady state. Kolmogorov’s criterion asserts that (for ergodic chains)
detailed balance is equivalent to the transition probability of any closed loop
being independent of the direction it is traversed in

Ti0,i1Ti1,i2 . . .Tin,i0 = Ti0,inTin,in−1 . . .Ti1,i0 ,∀ i0, i1, . . . , in ∈ {1,2, . . . , |Ω|} (1.56)

and likewise for the matrix of transition rates Ki j. For one-dimensional configu-
ration spaces, in a closed loop each transition has to occur also in the reverse di-
rection (unless periodic boundary condition are imposed); hence, Kolmogorov’s
criterion is trivially fulfilled. An example is the biased random walk on N0 dis-
cussed above.

For Markov processes with continuous configurations x ∈ Ω ⊂ R
d , we con-

sider the Fokker-Planck formulation, in which the steady state is characterised
by a vanishing divergence of the probability flow, ∇ · j(x)≡ 0. An equilibrium
steady state obeying detailed balance satisfies the stronger condition that the

1We consider only variables that are even under time-reversal. For variables chang-
ing sign when reversing time, like physical velocity, the detailed balance conditions have
to be modified slightly but take the same form.

20



1.2. Markov processes

probability current itself vanishes

0 ≡ ji(x) = ai(x)π(x)−
d

∑
j=1

∂
∂x j

[Di j(x)π(x)] ,∀i ∈ {1, . . . ,d} . (1.57)

In the following section, we will give sufficient conditions for the existence of an
equilibrium steady state with vanishing probability current. Again, these condi-
tions can be verified without actually computing the steady state. However, when
these conditions are met, we find a straightforward procedure for computing the
equilibrium steady state.

1.2.3.2 Energy functions and the Boltzmann distribution

The property of detailed balance is strongly linked with the existence of an en-
ergy function

E : Ω → R

x �→ E(x) , (1.58)

which we will characterise in more detail for different processes below.

DISCRETE CONFIGURATIONS

Since the steady state of an ergodic Markov chain has strictly positive weights,
π(ωi) > 0, we can write the detailed balance equation (1.55) in a slightly more
suggestive way 1

− lnπ(ω j) =− lnπ(ωi)+ ln
(

Tji

Ti j

)
. (1.59)

This form motivates the following construction of an energy function E(ωi) =
− lnπ(ωi) + const.: we start with some configuration ωk and assign to it an
arbitrary energy E0. Next, we define the energy of a neighbouring configuration2

ω j as E(ω j) = E0 + ln
(
Tji/Ti j

)
. We iterate this definition procedure until the

energies of all configuration have been defined (since the chain is irreducible, we
can reach all configurations). Kolmogorov’s criterion ensures that the procedure
described above gives an unambiguous definition of the configuration energy (up

1In the following, we consider discrete time. The same procedure can be carried
out for a continuous -time chain by replacing the transition probabilities Ti j with the
transition rates Ki j.

2We call configurations ω j neighbours of ωi, if they have a non-zero transition prob-
ability Ti j > 0
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to an additive constant given by the arbitrary choice of E0). It is simple to check
that the steady state is described by the (discrete) Boltzmann distribution

π(ωi) =
1
Z

e−E(ωi) , Z = ∑
ωi∈Ω

e−E(ωi) , (1.60)

where the normalising factor Z, is called the partition function. The Boltz-
mann distribution is well known from statistical mechanics as the distribution
describing the canonical ensemble. For physical systems, like a mono-atomic
gas in a container connected to a heat bath of temperature T , the energy function
in (1.60) corresponds to the physical energy measured in units of the thermal
energy kBT , i.e. here we set kBT ≡ 1. In analogy to statistical mechanics, we
define the thermodynamic potential called free energy

F =− lnZ (1.61)

and the configuration entropy

φ(ωi) = E(ωi)−F =− lnπ(ωi) . (1.62)

Another thermodynamic potential, Gibbs’ entropy1, is then defined as the mean
configuration entropy

S =− ∑
ωi∈Ω

π(ωi) lnπ(ωi) = ∑
ωi∈Ω

π(ωi)φ(ωi) = ∑
ωi∈Ω

πi(E(ωi)−F) = 〈E〉−F .

(1.63)
The usefulness of introducing these thermodynamic potentials in the context of
equilibrium inference will become clear in the next section, when we consider
how the energy function depends on a set of system parameters.

Example: biased random walk on N0

We consider again the biased random walk on N0 discussed above (see Fig.1.2).
Since the configuration space is one-dimensional, Kolmogorov’s criterion is ful-
filled and detailed balance holds. We define the energy function starting from
configuration 0 with E(0) = 0 and sequentially work our way up:

E(i+1) = E(i)+ ln
(

Ti+1,i

Ti,i+1

)
= E(i)+ ln

(
1− r

r

)
= i ln

(
1− r

r

)
. (1.64)

1This definition of entropy was derived by Willard Gibbs as an extension of Boltz-
mann’s definition of entropy S = −kB lnN valid for systems with uniform distribution
(the microcanonical ensemble). He considered a limit of configuration counting in an
ensemble of identical systems exchanging energy between them.
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1.2. Markov processes

Therefore, we have the equilibrium steady state

π(i) =
1
Z

e−E(i) =
1
Z

e−i ln( 1−r
r ) =

1
Z

(
r

1− r

)i

(1.65)

with partition function Z = ∑∞
i=0

( r
1−r

)i
=

( r
1−2r

)
. The linear energy function

E(i)∼ i shows that the biased random walk on N0 is in fact a discretised version
of diffusion in a gravitational field, discussed above in section 1.2.2.3. �

Vice versa, given the energy function E(ωi), we can define a steady state
in terms of the Boltzmann distribution (1.60) and find many different transi-
tion probabilities (or rates respectively) that are compatible with this Boltzmann
distribution as an equilibrium steady state. The conditions imposed on the tran-
sition probabilities are found by inserting the Boltzmann distribution (1.60) into
the detailed balance condition (1.54), yielding

Ti j

Tji
= eE(ωi)−E(ω j) . (1.66)

CONTINUOUS CONFIGURATIONS

In the case of continuous configurations x ∈ Ω ⊂ R
d , we find a similar rela-

tionship between the energy and the steady state. We begin by considering a
configuration-independent, isotropic diffusion matrix D = D�= (kBT/ζ )� and
a conservative effective force a(x) = −∇E(x)/ζ that derives from a potential
energy. Hence, we can rewrite the detailed balance condition (1.57) as

kBT
ζ

∇π(x) = a(x)π(x) =−∇E(x)
ζ

π(x) . (1.67)

The solution of this equation is given by the continuous version of the Boltzmann
distribution

π(x) =
1
Z

e−E(x)/kBT (1.68)

with the normalising partition function Z =
∫

Ω⊂Rd dx e−E(x)/kBT . Analogous to
the discrete case, we can define the free energy F =− lnZ and Gibbs’ entropy1

S =−
∫

Ω⊂Rd
dx π(x) lnπ(x) . (1.69)

1However, the continuous-configuration version of entropy loses the positivity prop-
erty of the discrete entropy.
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Example: Ornstein-Uhlenbeck process

Interpreting the Ornstein-Uhlenbeck process as describing a physical Brownian
particle diffusing in the potential Ũ(x) = κx2/2, the volatility is determined by
the diffusion constant σ2 = 2D= 2kBT/ζ and we can write the steady state (1.43)
in the well-known Boltzmann form (1.68)

π(x) =
1√

2πkBT/κ
e−κx2/2kBT =

1
Z

e−Ũ(x)/kBT . (1.70)

�

If the diffusion coefficient is anisotropic or configuration-dependent, things
get a little more complicated, but we can still find a generalised energy U(x)
such that the steady state is described by the Boltzmann distribution π(x) =
exp(−U(x))/Z. In any case, we can take this exponential form for the steady
state as an ansatz, since the steady state distribution of an ergodic Markov pro-
cess is strictly positive π(x)> 0. Inserting the Boltzmann form into the detailed
balance condition (1.57), we find the equation

d

∑
j=1

Di j(x)
∂U
∂x j

=−ai(x)+
d

∑
j=1

∂Di j

∂x j
=: λi(x) . (1.71)

Next, we assume an invertible diffusion matrix D to rewrite this equation as

∂U
∂xi

=
d

∑
j=1

D−1
i j (x)λ j(x) =: γi(x) . (1.72)

In a simply connected domain Ω ⊂ R
d this equation has a solution U(x), if and

only if the curl of the auxiliary vector γ(x) vanishes,

∂γi

∂x j
(x)≡ ∂γ j

∂xi
(x) , ∀i, j = 1, . . . ,d . (1.73)

This condition can be verified directly on the basis of the coefficients of the
Fokker-Planck equation, without the need of computing the steady state. Given
the generalised energy exists, we can write it as a line integral starting from an
arbitrary point x′ ∈ Ω:

U(x) =
∫ x

x′
dz · γ(z) . (1.74)

Again, the partition function must be chosen such that the steady state is nor-
malised, i.e.

Z =
∫

Ω⊂Rd
dx e−U(x) . (1.75)
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1.3. Stochastic inference

In summary, we have seen that equilibrium Markov processes, characterised
by dynamics obeying detailed balance, allow for an easy computation of the
steady state, at least in principle. The main difficulty in computing the steady
state and any derived observables lies in the computational complexity of com-
puting the partition function Z, which usually involves high-dimensional sums
or integrals. For example, consider a system consisting of N binary spin vari-
ables ω = (s1, . . . ,sN) ∈ {±1}N . The configuration space has a size |Ω| = 2N

that grows exponentially in the number spin variables. The partition function
Z = ∑ω∈Ω e−E(ω) = ∑s1=±1 . . .∑sN=±1 e−E(s1,...,sN) is hard to compute if the en-
ergy function contains interaction terms between different spin variables that
prevent a factorisation of the high-dimensional sum. In order to deal with this
computational problem, many different approximations to the equilibrium steady
state or its associated observables have been developed and a few of these will
be mentioned in the next section.

Non-equilibrium Markov processes, on the other hand, are much harder to
characterise even in principle. While we could still define a generalised potential
Φ(x) such that π(x) ∼ e−Φ(x), we do not have a general procedure to compute
this potential.

1.3 Stochastic inference

So far, we have suppressed in our notation that we are dealing with entire fam-
ilies of ergodic Markov processes with transition probabilities characterised by
a set of k parameters Θ ∈ Λ ⊂ R

k. Correspondingly, we will denote the steady
state belonging to a specific parameter set by π(x;Θ) and the propagators by
pΘ(x, t|y,0). In the examples above, we encountered the random walk on N0
with the single parameter Θ = r, the random telegraph process with parameters
Θ = (α,β ), the Ornstein-Uhlenbeck process with parameters Θ = (b,σ), and
diffusion in a gravitational field with parameters Θ = (mg/ζ ,kBT/ζ ).

Markov processes are frequently used to model real-world processes such as
the movement of particles in a molecular gas. The general form of the transi-
tion probabilities is based on qualitative modelling, which pins down a family of
models. The actual quantitative predictions derived from this model, however,
will depend on the numerical values of the free parameters Θ characterising the
model family. For example, we might want to make statements about some ob-
servable like the particle position in Brownian motion. Since the process mod-
elled is stochastic, these statements will be concerned with statistical quantities.
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Simple examples are single-time means of the process1

m(t;Θ) := 〈X(t)〉= ∑
x

xP(X(t) = x;Θ) , (1.76)

or time-correlations

C(t + τ, t;Θ) := 〈X(t + τ)X(t)〉= ∑
x,y

xyP(X(t + τ) = x,X(t) = y;Θ) . (1.77)

Since the distribution of X(t) depends on the values of the parameter Θ, it is clear
that our statistical predictions are also functions of the parameters Θ. A special
class of processes are stationary processes, where the process {Xt+s} shifted
by a time s > 0 has the same distribution, implying that the means become time-
independent, m(t;Θ) ≡ m(Θ) and time-correlations depend only on the time-
difference C(t + τ, t;Θ) ≡ C(τ,0;Θ). A stationary process can be created by
initialising with the steady state: P(X(0))= π(x;Θ). Similarly, a general ergodic
Markov process becomes asymptotically stationary in the long time limit, since

lim
t→∞

P(X(t) = x;Θ) = π(x;Θ) (1.78)

lim
t→∞

P(X(t + τ) = x,X(t) = y;Θ) = π(y;Θ)(T τ(Θ))yx , (1.79)

independent of the initial condition X0. The task of computing observable statis-
tics as functions of the parameters is called the statistical forward problem. In
some processes, the quantitative values of the parameters Θ are directly accessi-
ble experimentally. For the particle diffusing in a gravitational field for example,
we can directly measure the absolute temperature T , Boltzmann’s constant kB,
drag coefficient ζ , particle mass m and gravitational constant g by means of
separate experiments. In many other processes, however, the parameters might
not be easy to measure, or in the case where the model is only an effective de-
scription of the underlying process, impossible to measure independently of the
stochastic process, even in principle. Stochastic inference is concerned with the
inverse statistical problem of inferring the parameters Θ from some data set
D of observations sampled from the process. Solving this problem requires the
ability to solve the forward problem, so the statistical predictions made for some
fixed parameter values Θ may be compared to the observed statistics of the data
set D. In addition, it is necessary to find suitable observables that allow to cali-
brate their statistics to the data set D such that we obtain a unique model. In the
simplest cases, these observables might be means 〈X(t)〉 or (time-)correlations
〈X(t + τ)X(t)〉. A different approach is based on Bayes’ theorem, which uses
the full sampled distribution.

1We consider processes with discrete configurations. For continuous random vari-
ables, we replace the sums with integrals and the probabilities with probability densities.
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1.3. Stochastic inference

1.3.1 The Bayesian framework and maximum likelihood

A widely used framework for stochastic inference is based on Bayes’ theorem
and is hence called Bayesian inference (see e.g. Barber (2012); MacKay (2003)).
We will motivate the use of Bayesian inference by analysing a fictitious scene
described by Nassim Nicholas Taleb (Taleb, 2010), supposedly exhibiting the
superiority of street-smarts, represented by Brooklyn-born Fat Tony, over the in-
the-box thinking of science and engineering graduates, represented by Dr. John:

NNT [...]: Assume that a coin is fair, i.e., has an equal

probability of coming up heads or tails when flipped. I flip it

ninety-nine times and get heads each time. What are the odds of my

getting tails on my next throw?

Dr. John: Trivial question. One half, of course, since you

are assuming 50 percent odds for each and independence between draws.

NNT: What do you say, Tony?

Fat Tony: I’d say no more than 1 percent, of course.

NNT: Why so? I gave you the initial assumption of a fair coin,

meaning that it was 50 percent either way.

Fat Tony: You are either full of crap or a pure sucker to buy

that "50 pehcent" business. The coin gotta be loaded. It can’t

be a fair game. (Translation: It is far more likely that your

assumptions about the fairness are wrong than the coin delivering

ninety-nine heads in ninety-nine throws.)

NNT: But Dr. John said 50 percent.

Fat Tony [...]: I know these guys with the nerd examples from the

bank days. They think way too slow. And they are too commoditized.

You can take them for a ride.

What Taleb is asking of Dr. John and Fat Tony is to make a prediction about
the statistics of a random variable X100 ∈ {±1}, based on an observation of the
process D = {X1 = +1,X2 = +1, . . . ,X99 = +1}. The process is Markovian,
since we can reasonably assume statistically independent coin tosses. Their pre-
diction will depend on the value they assign to the parameter p, the probability
of the coin to show heads. The probability of the observed data set under Taleb’s
assumption of p = 1/2 is P(D|p = 1/2) = (1/2)99 ≈ 1.6× 10−30. Thus, we
have ample reason to doubt the validity of Taleb’s assumption and should switch
to a probabilistic description of p. We choose a simple model of our uncertainty
and model our prior information about p as an exponential probability density
P(p) symmetric around its peak at p = 1/2

P(p) =

⎧⎨
⎩

β
2(eβ/2−1)

eβ p 0 ≤ p ≤ 1/2
β

2(eβ/2−1)
eβ (1−p) 1/2 < p ≤ 1

, (1.80)
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where β > 0 quantifies our belief in Taleb’s hypothesis. This prior is shown for
different values of β in the left panel of Fig. 1.7.

Now in contrast to Dr. John, we should actually take into account the data D
and update our belief about p by conditioning on the observation of the data. We
do this with the help of Bayes’ theorem, which gives us the posterior probabil-

ity of p

P(p|D) =
P(D|p)P(p)

P(D)
(1.81)

in terms of the prior information P(p), the likelihood P(D|p) and the normalis-
ing factor P(D)=

∫ 1
0 dpP(D|p)P(p) called the evidence or marginal likelihood.

The first thing we have to do is solve the forward problem of computing P(D|p),
which is easy, since the different sample variables are statistically independent.
We find

P(D|p) = p99 . (1.82)
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Figure 1.7: Prior and posterior probability densities for the probability p of Taleb’s
coin showing heads.

Inserting the likelihood (1.82) and the prior (1.80) into Bayes’ theorem (1.81),
we can compute the evidence (by numerical integration) and posterior probabil-
ity density P(p|D), which is shown in the right panel of Fig. 1.7 for different
values of our trust β in Taleb’s hypothesis of p = 1/2. We find that even for very
high degrees of belief in Taleb’s hypotheses, the data convincingly suggests that
p is very close to 1. The probability of the coin showing tails at the next toss, is
obtained via the law of total probability in terms of the average over the posterior
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1.3. Stochastic inference

density

P(X100 =−1|D) =
∫ 1

0
dpP(X100 =−1|D, p)P(p|D) =

∫ 1

0
dp(1− p)P(p|D)

= 1−
∫ 1

0
dp pP(p|D) , (1.83)

which is roughly 10−13 for β = 50 (high trust in Taleb). So in fact our street-
smart Fat Tony is having an incredible faith in the information Taleb gave him
about the coin. Well, to be fair, he only gave an upper bound claiming P(X100 =
−1|D)≤ 1%, however, had Dr. John been trained in Bayesian inference, he could
have made a much better estimate! �

The procedure we have followed in this coin tossing example is in fact the
general reasoning in Bayesian inference. Given some data D and some prior in-
formation P(Θ) about the model parameters Θ, we seek to compute the statistics
of some observable O({X(t)}) given some data, by averaging over the posterior
probability

P(Θ|D) =
P(D|Θ)P(Θ)

P(D)
. (1.84)

The mean, for example, would be given by

〈O({X(t)})|D〉=
∫

dΘ〈O({X(t)})|Θ〉P(Θ|D) , (1.85)

where 〈O({X(t)})|Θ〉 denotes the average of the observable, given a fixed set of
parameters Θ.

In practice, the models are far more complicated than independent coin tosses,
having many different parameters. Computing the high-dimensional integrals
over the posterior density or computing the evidence becomes infeasible. In
the particular case studied in this thesis, the data consists of snapshots of the

steady state, i.e. D = {xµ}M
µ=1 with the samples xµ drawn independently from

the steady state distribution π(x;Θtrue) (the other case of interest is time-series
data, which is discussed below). The likelihood

P(D|Θ) = exp

(
M

1
M

M

∑
µ=1

π(xµ ;Θ)

)
M→∞≈ exp(M〈π(X ;Θ)〉) (1.86)

scales exponentially in the number of samples M and becomes sharply peaked in
the limit M → ∞. If the prior is sufficiently smooth and is non-zero around this
maximum, the likelihood dominates the posterior probability (1.84), which also
becomes sharply peaked around roughly the same value. Therefore, the integral
over the posterior can be approximated by taking only the parameter value at the
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peak of the likelihood (more formally, we make a saddle-point-approximation of
the integral), yielding the maximum likelihood estimate of the parameters

ΘML = argmax
Θ

P(D|Θ) . (1.87)

Due to the exponential scaling of the likelihood for independent samples, the
log-likelihood function

L(Θ;D) :=
1
M

lnP(D|Θ) =
1
M

M

∑
µ=1

lnπ(xµ ;Θ) (1.88)

is considered instead. The log-likelihood has the same maximiser ΘML, since
the logarithm is a monotonic function.

Interestingly, for Markov chains with discrete configuration space, the likeli-
hood maximisation principle has a connection to information theory: maximis-
ing the likelihood is equivalent to minimising the relative entropy, or Kullback-
Leibler divergence (Kullback and Leibler, 1951), between the sampled distri-

bution, characterised by the probability mass function

p̂(x) =
1
M

M

∑
µ=1

δx,xµ , (1.89)

and the steady state distribution π(x;Θ),

DKL( p̂(x)||π(x;Θ)) = ∑
x∈Ω

p̂(x) ln
(

p̂(x)
π(x;Θ)

)
= ∑

x∈Ω
p̂(x) ln p̂(x)− ∑

x∈Ω
p̂(x) lnπ(x;Θ)

=−S( p̂(x))− 1
M

M

∑
µ=1

lnπ(xµ ;Θ)

=−S( p̂(x))−L(Θ;D) , (1.90)

where the Gibbs entropy (or Shannon entropy in the terminology of information
theory) of the sampled distribution S( p̂(x)) =−∑x p̂(x) ln p̂(x) does not depend
on the model parameters. Thus, we can think of the maximum likelihood ap-
proach as trying to minimise a distance measure1 between the model distribution

1Note that relative entropy DKL(p||q) is not a true metric. While it is non-negative
and zero only if the two distributions are identical, it is neither symmetric, nor does it
obey the triangle inequality.
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and the sampled one. The link between the maximum likelihood approach and
minimising relative entropy is also of practical utility: due to the non-negativity
of relative entropy, the log-likelihood function has the negative Shannon entropy
as an upper bound, which is saturated if and only if the sampled distribution and
the test steady state π(x;Θ) are identical (which we can only expect to hold in
the limit M → ∞, due to sampling errors for finite M).

For equilibrium processes, the steady state is characterised by the energy
function E(x;Θ) [cp. Eq.(1.58)] and we can maximise the likelihood (or min-
imise the relative entropy), at least in principle. However, the computation of the
partition function Z(Θ) = ∑x e−E(x;Θ), required in the evaluation of the likeli-
hood, is too costly for most models, which has led to the development of various
computationally efficient approximations.

For most non-equilibrium processes, on the other hand, we lack an explicit
characterisation of the steady state π(x;Θ) and the maximum likelihood ap-
proach is infeasible. However, the variational principles and approximations
used for equilibrium inference can be modified in a way that allows us to solve
also the non-equilibrium inference problem. For this reason, we will continue
with a short overview of the methods used in equilibrium inference. For a
comprehensive review of equilibrium inference in the Ising model (and non-
equilibrium inference from time-series) see Nguyen et al. (2017).

1.3.2 Equilibrium inference from snapshots of the steady state

For equilibrium systems, the steady state is described by the Boltzmann distri-
bution π(x;Θ) = 1

Z(Θ)e
−E(x;Θ) (recall that we measure the energy in units of the

thermal energy, i.e. we set kBT ≡ 1, since in stochastic inference the overall
energy scale and temperature of the system cannot be inferred separately). In-
serting the Boltzmann distribution into the log-likelihood function (1.88), we
find

L(Θ;D) =− lnZ(Θ)− 1
M

M

∑
µ=1

E(xµ ;Θ)

= F(Θ)−〈E(Θ)〉p̂ , (1.91)

which becomes difficult to evaluate for a high-dimensional configuration space
Ω ⊂ R

N , N � 1, due to the computation of the free energy F(Θ) = − lnZ(Θ)
involving high-dimensional sums. For this reason, it becomes necessary to find
suitable approximations for the free energy. To this end, our framing of the
inference problem in terms of minimising relative entropy becomes useful in
providing a framework for measuring the quality of such approximations. For
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a fixed value of parameters Θ, we approximate the free energy F(Θ) by the
variational free energy (cp. (1.63))

F [q] = 〈E〉q −S(q) = ∑
x

q(x)E(x;Θ)+∑
x

q(x) lnq(x) (1.92)

evaluated for distributions q ∈ Q in particular families Q, for which we can ac-
tually calculate the free energy. Particular choices are factorising distributions,
which lead to mean field theory, or distributions factorising into one- and two-
point marginals, which lead to the Bethe-Peierls approximation (Bethe, 1935;
Peierls, 1936). From the set Q of tractable distributions, we choose the distribu-
tion q∗ with the smallest relative entropy to the Boltzmann distribution π(x;Θ)

F(Θ)≈ F [q∗(Θ)] (1.93)
q∗(Θ) = argmin

q∈Q
D(q||π(x;Θ))

= argmin
q∈Q

{
∑
x

lnq(x)+∑
x

q(x)E(x;Θ)+ lnZ(Θ)

}
= argmin

q∈Q
{F [q]−F(Θ)} . (1.94)

The true free energy F(Θ) gives a lower bound on the variational free energy
F [q] and this bound is saturated if and only if the test distribution q(x) equals the
Boltzmann distribution π(x;Θ). Furthermore, the minimisation of the variational
free energy does not require the (often intractable) computation of the true free
energy F(Θ).

1.3.2.1 Equilibrium mean field theory

There is a large class of approximation methods usually grouped in the category
of mean field theory (see e.g. Opper and Saad (2001)). Their common theme is
using distributions that factorise into simpler distributions that are tractable. In
the simplest form of mean field theory, the different components of the configu-
ration x ∈ Ω ⊂ R

N are assumed statistically independent so the distribution q(x)
factorises into one-dimensional distributions

q(x) =
N

∏
i=1

q(i)(xi) , (1.95)

where
q(i)(xi) = ∑

{x j, j 
=i}
q(x1, . . . ,xN) , (1.96)
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is the marginal distribution of the component xi of configuration x. This factori-
sation allows a simple computation of the variational free energy of the mean
field distribution

F [q] = ∑
x

q(x)E(x;Θ)+∑
x

q(x) lnq(x)

=

(
N

∏
i=1

∑
xi

q(i)(xi)

)
E(x;Θ)+

N

∑
i=1

∑
xi

q(i)(xi) lnq(xi)

=

(
N

∏
i=1

∑
xi

q(i)(xi)

)
E(x;Θ)+

N

∑
i=1

S[q(i)] . (1.97)

EXAMPLE: BINARY VARIABLES

For a system described by binary variables x = (x1, . . . ,xN) ∈ {±1}N , the one-
dimensional marginals can be parametrised by their means

q(i)(xi) =
1+mixi

2
, (1.98)

with
mi = ∑

x
xi q(x) = ∑

xi

xi q(i)(xi) = q(i)(+1)−q(i)(−1) . (1.99)

This parametrisation allows a straightforward computation of the mean field
values of Gibbs’ entropy

S[q({mi})] =
d

∑
i=1

[(
1+mi

2

)
ln
(

1+mi

2

)
+

(
1−mi

2

)
ln
(

1−mi

2

)]
(1.100)

and the average energy

E[q({mi})] =
(

d

∏
i=1

∑
xi=±1

q(i)(xi)

)
E(x;Θ) = E({mi},Θ) , (1.101)

which together give the mean field variational free energy. Next, we have to
minimise the free energy over the parameters mi by solving

0 =
∂

∂mi
F [q({mi})] = ∂E[q({mi})]

∂mi
− ∂S[q({mi})]

∂mi
, (1.102)

which gives the mean-field equations

atanh(mi) =− ∂E
∂mi

({m∗
i },Θ) . (1.103)
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For the equilibrium Ising problem, the parameters are the magnetic fields {hi}
and pairwise interactions {Ji j} j>i and the energy would be E(x;Θ) =−∑i hixi−
∑i< j Ji jxix j, giving the mean-field energy

E[q({mi})] =−∑
i

himi −∑
i< j

Ji jmim j , (1.104)

yielding the self-consistent mean field equations

atanh = hi +∑
j 
=i

Ji jm j

⇔

mi = tanh

(
hi +∑

j 
=i
Ji jm j

)
. (1.105)

However, since the factorising mean field distribution is fully characterised by
the vector of means mi, it generally does not have enough degrees of freedom
to fully describe the steady state. To reconstruct the original model parameters,
more elaborate techniques must be used to find non-trivial predictions for the
correlations 〈xix j〉, as can be done by exploiting linear response relations (Kap-
pen and Rodrı́guez, 1998) or by expanding the free energy or its Legendre trans-
forms (called variational thermodynamic potentials) around the factorising dis-
tribution (see e.g. Georges and Yedidia (1991); Plefka (1982)). �

1.3.2.2 Pseudolikelihood

A different approach to inference in the Ising model (and other models) that
is not based on Bayes’ theorem is called the pseudolikelihood method (Besag,
1974). Originally, Besag conceived of a a random vector X , where the differ-
ent components Xi are associated with positions on a lattice with direct interac-
tions between the variables restricted to neighbouring lattice sites. For the Ising
model, the components would be individual spin variables Xi ∈ {±1}, which
could, for example, sit on a 2D square lattice and interact only with their four
nearest neighbours. However, the restriction to a lattice structure with nearest-
neighbour interactions is not crucial and the method can be used even in infinite-
dimensional models where all variables interact. The idea is to approximate the
distribution of the random vector X as a product of distributions of the variables
Xi conditioned on the values x j of the neighbouring variables. Hence, instead of
maximising the log-likelihood function (1.88) one aims to maximise a quantity
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1.3. Stochastic inference

called the (log-)pseudolikelihood

LPseudo(D;Θ) =
1
M

M

∑
µ=1

ln
N

∏
i=1

πΘ(Xi = xµ
i |{Xj = xµ

j } j 
=i)

=
N

∑
i=1

1
M

M

∑
µ=1

lnπΘ(Xi = xµ
i |{Xj = xµ

j } j 
=i) . (1.106)

The advantage of using the pseudolikelihood is that the conditional distribution
πΘ(Xi|Xj( j 
= i)) is relatively easy to compute, since its partition function is only
a one-dimensional sum. Hence, computing the pseudolikelihood requires only
N one-dimensional sums, i.e. a number of computational steps polynomial in N,
rather than computing a single N-dimensional sum involving a number of steps
growing exponentially in N.

1.3.3 Non-equilibrium inference from time-series data

If we have time-series data of the process, the inference becomes simpler than for
the case of independent samples taken from the steady state (equilibrium or non-
equilibrium). For a Markov process in discrete time, the data might consist of M
independent trajectories of L time-steps, D = {xµ(0),xµ(1), . . . ,xµ(L)}M

µ=1. For
sufficiently long trajectories, we can neglect the probability of the starting point
and consider only the transitions. Then, the trajectories need not even be sam-
pled from a stationary process and we do not need to compute the steady state
distribution, since we can directly write down and maximise the (log-)likelihood
of the trajectories

L(D;Θ) =
1
M

1
L

lnP(D|Θ)

=
1
M

M

∑
µ=1

1
L

lnPΘ(X(L) = xµ(L), . . . ,X(1) = xµ(1)|X(0) = xµ(0))

=
1
M

M

∑
µ=1

1
L

L−1

∑
t=0

ln pΘ(xµ(t +1), t +1|xµ(t), t) , (1.107)

where the single-step propagators pΘ(xµ(t+1), t+1|xµ(t), t) define the Markov
process and are easily available.

Similarly, for processes in continuous time, we might have measurements of
the process for discrete times 0,Δt,2Δt, ...,LΔt and compute the (log-)likelihood

35



1. INTRODUCTION

of the time-series

L(D;Θ) =
1
M

M

∑
µ=1

1
L

L−1

∑
n=0

ln pΘ(xµ((n+1)Δt),(n+1)Δt|xµ(nΔt),nΔt) .

In continuous-time processes, the propagators pΘ(xµ(n+1),(n+1)Δt|xµ(nΔt),nΔt)
are not directly available, but for sufficiently short measurement time-intervals
Δt 
 1 we can approximate them as

pΘ(xµ(n+1),(n+1)Δt|xµ(nΔt),nΔt)≈ Δt
∂ pΘ
∂ t

(xµ(nΔt),nΔt) , (1.108)

where the infinitesimal generators ∂
∂ t pΘ(x, t) define the Markov process and are

easily available.

EXAMPLE: BIASED RANDOM WALK ON N0

We return to the example of the biased random walk on N0. The propagator is
particularly simple:

pr(x, t +1|y, t) = rδx,y+1 +(1− r)δx,y−1 +(1− r)δx,yδy,0 . (1.109)

Defining the fraction of observed jumps to the right r̂ = 1
M

1
L ∑µ,t δxµ (t+1),xµ (t)+1,

the log-likelihood of the time-series becomes

L(D|r) = r̂ ln(r)+(1− r̂) ln(1− r) ,

which gives the maximum likelihood estimate

rML = argmax
r

L(D;r) = r̂ . (1.110)

Note that the maximum likelihood inference from time-series data is possible
even in the case r ≥ 1/2, where no steady state exists. �

Since the evaluation of the likelihood of the time-series is easy and does not
require knowledge of the steady state π(x;Θ), it is the first choice for inferring
the parameters of a Markov process. However, for many systems, classical as
well as quantum, time series data is not available. An extreme case is whole-
genome single-cell gene expression profiling, where cells are destroyed by the
measurement process. In such cases, we have only independent samples as data
from which to infer the model parameters. This brings us to the problem of infer-
ring the parameters of an ergodic Markov process based on independent samples
taken from the non-equilibrium steady state π(x;Θ), which is unknown. We will
address this problem by looking at specific models, with the asymmetric Ising
model being the main paradigm, which we introduce in the following chapter
before turning to the actual inference methods in chapters 3, 4, and 5.
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2The asymmetric Ising model
The most successful elaboration of
technique in statistical mechanics
exists in connection with the Ising
model.

Gregory Hugh Wannier

In this chapter, we give some background on our main paradigm for Markov pro-
cesses with a non-equilibrium steady state, the asymmetric Ising model. While the infer-
ence problem for the Ising model has been discussed extensively in the equilibrium case
and also in the non-equilibrium case with time-series data, the problem of inferring the
parameters from snapshots of the non-equilibrium steady state has not been addressed
so far. We begin by giving a short overview of the model’s history, before introduc-
ing Glauber dynamics and showing that this dynamics converges to a non-equilibrium
steady state for the case of asymmetric couplings between spins. After briefly discussing
the connection of the asymmetric Ising model with neural networks, which motivates
the consideration of asymmetric couplings, we describe Callen’s identities characteris-
ing the spin moments, since they will be used for inference in chapters 3 and 5. In the
following, we present some minor results we found for the maximum likelihood infer-
ence based on time-series data for sequential Glauber dynamics, before discussing the
Gaussian mean field theory of Mézard and Sakellariou (2011), which we will use for
inference in chapter 5.

2.1 The model and its history

Jijsi

hi

Figure 2.1: Schematic view of the Ising model. Binary spins si interact via pairwise
couplings Ji j and are subject to external magnetic fields hi.
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2. THE ASYMMETRIC ISING MODEL

The Ising model consists of a set of N binary spin variables S = (S1, . . . ,SN) ∈
Ω = {±1}N , which interact with each other via couplings Ji j and are subject to
external fields hi (see Fig. 2.1). The model was developed by Wilhelm Lenz (Lenz,
1920) for the purpose of explaining ferromagnetism and first solved in one di-
mension by Ernst Ising (Ising, 1925), showing that no phase transition exists.
That we nowadays primarily associate Ising’s name with the model is attributed
to Rudolf Peierls (Peierls, 1936). Later, Heisenberg (Heisenberg, 1928) gave
the quantum mechanical interpretation of the binary variables as atomic spins
and the couplings Ji j as emanating from exchange interactions. For a two-
dimensional square lattice, the Ising ferromagnet was solved by Lars Onsager (On-
sager, 1944), while in three and higher dimensions, the ferromagnetic model
remains unsolved. Later, non-uniform interactions were considered in order to
model disordered spin glasses (Sherrington and Kirkpatrick, 1975). These Ising
models used to model magnetic materials are equilibrium systems characterised
by the Boltzmann distribution

π(sss;h,J) =
1

Z(h,J)
e−E(s;h,J)/kBT (2.1)

with energy function

E(sss;h,J) =−
N

∑
i=1

hisi − 1
2

N

∑
i, j=1

Ji jsis j , (2.2)

with a symmetric coupling matrix Ji j without self-interactions, i.e. Jii ≡ 0, and
a factor 1/2 ensuring that the bonds (i, j) are not counted twice. The stochastic
element of the model arises from energy exchange with a heat bath of tempera-
ture T , i.e. the Ising model is considered in the canonical ensemble. From now
on, we will measure the energy in units of the thermal energy kBT and subsume
the factor 1/kBT into the external fields and couplings.

2.2 Glauber dynamics

We have seen that we can define many different dynamics that have the Boltz-
mann distribution (2.1) as an equilibrium steady state. One common choice is
sequential Glauber dynamics (Glauber, 1963): a spin i is chosen in each time
step and its value si(t +1) updated according to the probability distribution

p(si(t +1)|sss(t)) := p(Si(t +1) = si(t +1)|S(t) = sss(t))

=
exp{si(t +1)ψi(t)}

2cosh(ψi(t))
, (2.3)
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2.2. Glauber dynamics

Figure 2.2: Ernst Ising, who was born 1900 in Cologne, studied his now famous model
(originally developed by his PhD supervisor Wilhelm Lenz) in his PhD thesis, of which
an excerpt was published in ”Zeitschrift für Physik” (Ising, 1925). Ironically, this re-
mained his only scientific publication, since he quit academia and, after a short stint at
AEG, took several different positions as school teacher. Later, himself a Jew, he became
the headmaster of a Jewish boarding school close to Potsdam, which was destroyed in
the ”Kristallnacht”. However, Ising managed to escort his students home safely and a
short while later he emigrated to Luxembourg, not without first being ”interviewed” be
the Gestapo. On his fortieth birthday, Ernst Ising got a surprise party of the very un-
pleasant kind: Luxembourg was invaded by the Nazis and in turn Ernst Ising became a
forced labourer dismantling rail-roads on the Maginot line. After the war, he emigrated
to America, where in 1947 he finally heard of the interest his model had attracted, when,
looking for a job at a physics convention in Boston, he was asked whether he was the
Ising of the ”Ising model”. Later, he became a physics professor at Bradley University
in Peoria. In this position he did not carry out any research, but instead excelled at
teaching with his charming motto that a lecture had failed if the students did not laugh
at least once.
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2. THE ASYMMETRIC ISING MODEL

where the effective local field at time t is

ψi(t) = hi +
N

∑
j=1

Ji jS j(t) . (2.4)

For a symmetric coupling matrix without self-couplings, the sequential Glauber
dynamics (2.3) converges to the equilibrium state characterised by the Boltz-
mann distribution (2.1) as can be easily verified by inserting the transition rule (2.3)
and Boltzmann distribution (2.1) with Hamiltonian (2.2) into the detailed bal-
ance condition (1.54).

In parallel Glauber dynamics, all spins are updated simultaneously accord-
ing to (2.3), so we find

p(sss(t +1)|sss(t)) =
N

∏
i=1

exp{si(t +1)ψi(t)}
2cosh(ψi(t))

. (2.5)

The parallel Glauber dynamics (2.5) converges to a different equilibrium steady
state (Peretto, 1984), characterised by the Boltzmann distribution with the en-
ergy function

Ẽ(sss;h,J) =−
N

∑
i=1

hisi −
N

∑
i=1

ln

{
2cosh

(
hi +

N

∑
j=1, j 
=i

Ji js j

)}
. (2.6)

2.2.1 Interaction symmetry and detailed balance

Besides its classical application in the study of the magnetic properties of solids,
the Ising model has also been used to model gene regulatory and neural net-
works (Bailly-Bechet et al., 2010; Coolen, 2000a,b; Derrida et al., 1987; Hertz
et al., 1991). In this biological context, there is no reason to assume symmetric
couplings in the effective local fields (2.4). For example, a gene A might produce
a protein that regulates the gene expression of another gene B, but this does not
imply that gene B necessarily also regulates gene A. For asymmetric couplings,
both sequential and parallel Glauber dynamics (2.3) converge to non-equilibrium
steady states, which lack detailed balance and are hard to characterise (Coolen,
2000a). Since this statement is not directly obvious, we recall below the argu-
ment for sequential Glauber dynamics given by Coolen (2000a).

For checking the detailed balance condition (1.54), we consider an arbi-
trary configuration sss and a spin-flip leading to the new configuration sss′ = Fksss :=
(s1, . . . ,sk−1,−sk,sk+1, . . . ,sN), where we defined the spin-flip operator Fk, which
flips spin k but leaves the remaining spins unchanged1. The detailed balance

1All possible transitions can be described by a single spin-flip operator, since the
transition probabilities in sequential Glauber dynamics are non-zero only for single spin-
flips.
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2.2. Glauber dynamics

condition for the spin-flip transition sss → sss′ and its reverse transition sss′ → sss reads

p(sss′ = Fksss|sss)π(sss;h,J) = p(sss|sss′ = Fksss)π(sss′ = Fksss;h,J) , (2.7)

which must be satisfied for any spin configuration sss ∈ {±1}N and flipped spin
k ∈ {1, . . . ,N}. Since the sequential Glauber dynamics (2.3) is obviously er-
godic, all states have a non-zero probability in the steady state and without loss
of generality we may write the steady state distribution in an exponential form

π(sss;h;J) = exp

{
∑

i
hisi +

1
2 ∑

i
= j
Ji jsis j +K(sss)

}
(2.8)

with some unknown function K(sss). Inserting this ansatz into the detailed balance
condition (2.7) we find that the transition probabilities must satisfy

0 = ln
(

p(sss′|sss)π(sss;h,J)
p(sss|sss′)π(sss′;h,J)

)
=K(sss)−K(sss′)+

1
2 ∑

i
= j
Ji j(sis j − s′is

′
j)+∑

i
hi(si − s′i)

+(s′kψk(sss)− skψk(sss′))+ ln
2cosh(ψk(sss′))
2cosh(ψk(sss))

. (2.9)

Since the transition involves only a single spin-flip, s′k =−sk and s j = s′j ∀ j 
= k,
and since we excluded self-couplings, the effective local fields of the forward and
reverse transition are identical, ψk(sss) = ψk(sss′), and the expression (2.9) simpli-
fies to

0 = K(sss)−K(Fksss)+∑
j
(Jjk + Jk j)sks j +2hksk −2skψk(sss)

= K(sss)−K(Fksss)+∑
j
(Jjk + Jk j)sks j −2∑

j
Jk jsks j

= K(sss)−K(Fksss)+∑
j
(Jjk − Jk j)sks j . (2.10)

It is easy to see from (2.10) that for symmetric couplings, Jjk = Jk j, detailed bal-
ance is fulfilled with K(sss) = const., which becomes the equilibrium free energy.
In order to see that symmetry is not only sufficient but also a necessary condition
for detailed balance, we sort the spin-flip operator Fk and coupling terms to the
two sides of the equation

(Fk −1)K(sss) = ∑
j
(Jjk − Jk j)s jsk . (2.11)
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2. THE ASYMMETRIC ISING MODEL

Applying a second spin-flip to a spin i 
= k we find

(Fi −1)(Fk −1)K(sss) = (Jik − Jki)sisk . (2.12)

Since the left-hand side is symmetric under the permutation of i and k, the
right-hand side must also be, implying symmetric interactions if detailed bal-
ance holds.

2.2.2 Callen’s identities

Even though the non-equilibrium steady state of the asymmetric Ising model
is hard to characterise, we can derive exact self-consistent relationships, called
Callen’s identities (Callen, 1963) by averaging over the transition probabilities
(2.3) for sequential Glauber dynamics or (2.5) for parallel Glauber dynamics.
These will turn out to be useful in mean field theories of the Ising model. We be-
gin by considering parallel Glauber dynamics, since the equations take a slightly
simpler form than for sequential dynamics.

PARALLEL GLAUBER DYNAMICS

First, we define the time-dependent magnetisation as

mi(t) := 〈Si(t)〉= ∑
sss∈{±1}N

p(S(t) = sss)si . (2.13)

This expectation value can be rewritten by conditioning on the value of the spin
variables at time t −1, which expresses the magnetisation in terms of an average
over the effective local field at the previous time-step ψi(sss(t −1)

mi(t) = ∑
sss∈{±1}N

∑
sss′∈{±1}N

p(S(t) = sss|S(t −1) = sss′)p(S(t −1) = sss′)si (2.14)

= ∑
sss′∈{±1}N

{
∑

si=±1
si

exp{siψi(sss(t −1))}
2cosh(ψi(sss(t −1))

}
p(S(t −1) = sss′) (2.15)

= ∑
sss′∈{±1}N

tanh(ψi(sss′))p(S(t −1) = sss′)

= 〈tanh(ψi(S(t −1))〉 . (2.16)

Next, we define the fluctuations of a spin variable around its mean δSi(t) :=
(Si(t)−mi(t)) and consider correlations of these fluctuations. The equal-time
two-point connected correlations Ci j(t) = 〈δSi(t)δS j(t)〉 (i < j) can be com-
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puted by the same conditioning procedure as for the magnetisations and we ob-
tain

Ci j(t) := 〈δSi(t)δS j(t)〉
=

〈
[tanh(ψi(S(t −1)))−mi(t)] [tanh(ψ j(S(t −1)))−m j(t)]

〉
. (2.17)

Similarly, we the time-shifted connected correlations are given by

Di j(t) := 〈δSi(t +1)δS j(t)〉=
〈
[tanh(ψi(S(t))−mi(t)]δS j(t)]

〉
. (2.18)

More generally, we can define n-point connected correlations

Ci1,i2,...,in(t) := 〈δSi1(t)δSi2(t) · · ·δSin(t)〉

=

〈
n

∏
k=1

[tanh(ψik(S(t −1))−mik(t)]

〉
, (2.19)

where {i1 < .. . < in}⊂ {1, . . .N} is a subset of n spins.
In the steady state these expectation values become time-independent and we

find the self-consistent expressions of the spin statistics

mi = 〈Si〉= 〈tanh(ψi)〉=
〈

tanh

(
hi +∑

j
Ji jS j

)〉
(2.20)

Ci j =

〈[
tanh

(
hi +∑

k
JikSk

)
−mi

][
tanh

(
h j +∑

l
J jlSl

)
−m j

]〉
, (2.21)

Di j =

〈[
tanh

(
hi +∑

k
JikSk

)
−mi

]
δS j

〉
, (2.22)

where the expectation values 〈.〉 are taken with respect to the steady state distri-
bution π(sss;h,J).

SEQUENTIAL GLAUBER DYNAMICS

For sequential updates, we have to take into account that any given spin has only
a chance of 1/N to be flipped in a specific time-step, hence

mi(t) =
1
N
〈tanh(ψi(S(t −1))〉 +

N −1
N

mi(t −1) , (2.23)
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Ci j(t) =
1
N

〈
[tanh(ψi(S(t −1))−mi(t)]δS j(t −1)

〉
+

1
N

〈
δSi(t −1)

[
tanh(ψ j(S(t −1))−m j(t)

]〉
+

N −2
N

Ci j(t −1) , (2.24)

Di j(t) =
1
N

〈
[tanh(ψi(S(t))−mi(t)]δS j(t)]

〉
+

N −1
N

Ci j(t) , (2.25)

Ci1,i2,...,in =

〈
n

∏
k=1

[
tanh

(
hik +∑

l
JiklSl

)
−mik

]〉
. (2.26)

In the steady state these expectation values become time-independent and sim-
plify to

mi = 〈Si〉= 〈tanh(ψi)〉=
〈

tanh

(
hi +∑

j
Ji jS j

)〉
(2.27)

Ci j =
1
2

〈[
tanh

(
hi +∑

k
JikSk

)
−mi

]
δS j

〉

+
1
2

〈
δSi

[
tanh

(
h j +∑

l
J jlSl

)
−m j

]〉
, (2.28)

Di j =
1
N

〈[
tanh

(
hi +∑

k
JikSk

)
−mi

]
δS j

〉
+

N −1
N

Ci j , (2.29)

Ci1,i2,...,in =
1
n

n

∑
k=1

〈(
n

∏
j=1, j 
=k

δSi j

)[
tanh

(
hik +∑

l
JiklSl

)
−mik

]〉
. (2.30)

2.3 Connection with neural networks

Having mentioned that the Ising model has been used to model neural networks,
we now want to shortly elucidate this connection for the purpose of motivating
the consideration of asymmetric couplings. In a simplistic, physicist-style view,
the brain may be considered as consisting of a large number of identical build-
ing blocks - the neurons. These are connected by synapses that transfer electrical
signals from one neuron to another. A neuron’s configuration may be classified
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Figure 2.3: A simplistic view of neural computation as an Ising model.

by whether it is active (producing electrical signals - the action potential) or in-
active. In this simplistic model, we may represent the configuration of the brain
by a vector sss(t) of Ising spins. At the lowest level, information processing in the
brain is performed by the individual neurons, which execute a nonlinear trans-
formation of incoming electrical signals transferred via the synapses from other
neurons. The result of this transformation is a decision whether the neuron itself
becomes active active and sends electrical signals. Non-linearity is an essential
feature, since it produces much richer and complexer behaviour than linear dy-
namics. A simple way to model this non-linearity is to use a step function, i.e.
the neuron fires when the incoming signals exceed a certain threshold (corre-
sponding to the local fields hi). Modelling time in discrete steps, which should
be sufficiently short so we can assume that only one neuron updates its con-
figuration at a time, we may describe neural computation by the deterministic
dynamics

Si(t +1) = sgn

(
N

∑
j=1, j 
=i

Ji jS j(t)+hi

)
=

{
1 if ∑ j Ji jS j(t)>−hi

−1 if ∑ j Ji jS j(t)≤−hi
. (2.31)

The neural couplings Ji j may be of varying strength with a positive sign cor-
responding to a stimulative synapse and a negative sign corresponding to an
inhibitory one. In the context of modelling associative memory, this Markov
process is known as the Hopfield model when the neural couplings are chosen
symmetrically according to the Hebbian learning rule (Hertz et al., 1991)

Ji j =
1
p

p

∑
ν=1

ξ (ν)
i ξ (ν)

j , (i 
= j) , (2.32)
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2. THE ASYMMETRIC ISING MODEL

where the configurations ξ ν ∈ {±1}N are neural patterns that should be learned.
In the Hopfield model, a learned configuration corresponds to an attractor of the
dynamics (2.31). If not too many patterns are to be stored, there exist separate
basins of attractions, i.e. the Ising spin system initialised to a configuration
similar to a stored configuration ξ ν , will converge to this attractor, i.e. the pattern
is recalled (Hertz et al., 1991).

Since biological systems are intrinsically noisy, we should add a random
force η to the incoming signal. Choosing a random force with probability
density p(z) = (1− tanh2(z)) recovers sequential Glauber dynamics (2.3) (for
a proof see Coolen (2000a)). For symmetric couplings the resulting Markov
process is known as a Boltzmann machine (Ackley et al., 1985).

2.4 Stochastic inference from time-series data

We now seek to infer the parameters Θ = ({hi},{Ji j}) from some data set D.
The inference problem for independent samples taken from the steady state
has been successfully addressed for equilibrium systems, characterised by sym-
metric couplings and detailed balance. A comprehensive review can be found
in Nguyen et al. (2017). Next, we sketch the state-of-the art inference meth-
ods for non-equilibrium inference in the asymmetric Ising model, which rely
on time-series data (see also Nguyen et al. (2017) for a review). We will add
some simple results we found for the maximum likelihood inference in the case
of discrete time sequential Glauber dynamics and discuss the Gaussian mean
field theory of Mézard and Sakellariou (2011) and the role of higher-order cor-
relations. These higher-order correlations will become important for our work
addressing the inference problem when only snapshots of the steady state are
available, which will be discussed in chapters 3 and 4. Additionally, in chapter 5
we will adapt the Gaussian mean field theory in order to infer the parameters
based on independent samples drawn from several steady states generated by
perturbing the couplings.

2.4.1 Maximum likelihood of time-series

As discussed in section 1.3.3, inferring the parameters of a Markov process is a
comparatively easy task when we can observe time series of consecutive config-
urations of the system sss(t),sss(t +1),sss(t +2), . . .. Using the dynamical rule (2.3),
the probability of a particular trajectory ∏t p(sss(t +1)|sss(t)) can be written down
explicitly and be maximised with respect to the couplings and fields in polyno-
mial time in N and the length of the trajectory. This is easiest for parallel Glauber
dynamics and was done by Roudi and Hertz (2011).
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2.4. Stochastic inference from time-series data

2.4.1.1 Paralell Glauber dynamics

We consider time-series data consisting of M trajectories of length L, D= {sssµ(0),sssµ(t =
1), . . .sssµ(t =L)}M

µ=1. With the dynamical rule (2.5) we can write the log-likelihood
of the time-series (1.107) as

L(D;h,J) =
1
M

M

∑
µ=1

1
L

L−1

∑
t=0

ln ph,J(sssµ(t +1)|sssµ(t)))

=
1
M

M

∑
µ=1

1
L

L−1

∑
t=0

N

∑
i=1

ln

(
exp{sµ

i (t +1)ψi(sssµ(t))}
2cosh(ψi(sssµ(t))

)

=
1
M

M

∑
µ=1

1
L

L−1

∑
t=0

N

∑
i=1

[
sµ

i (t +1)ψi(sssµ(t))− ln2cosh(ψi(sssµ(t))
]
.

(2.33)

The likelihood (2.33) is concave with respect to the parameters h,J, so it has a
unique maximum, which can be found by simply climbing up the gradient (Roudi
and Hertz, 2011). For equilibrium Ising models, this gradient ascent procedure
is known as Boltzmann machine learning. The trial fields hi and couplings Ji j
are updated by increments

δhi ∼ ∂L(D;h,J)
∂hi

= 〈Si(t +1)〉D −
〈

tanh

(
hi +∑

j
Ji jS j(t)

)〉
D

(2.34)

and

δJi j ∼ ∂L(D;h,J)
∂Ji j

=
〈
Si(t +1)S j(t)

〉
D −

〈
S j(t) tanh

(
hi +∑

j
Ji jS j(t)

)〉
D

, (2.35)

where the average 〈 f (S)〉D = 1
M

1
L ∑M

µ=1 ∑L−1
t=0 f (sssµ(t)) is taken over the sampled

time-series data D and the proportionality constant is known as the learning rate.
These learning steps have a nice intuitive interpretation: the fields hi are deter-
mined such that Callen’s identities (2.16) for the magnetisations mi(t + 1) are
fulfilled in the sample average and the couplings Ji j are determined such that
Callen’s identities (2.16) for the time-shifted correlations Di j(t) are fulfilled in
the sample average.

2.4.1.2 Sequential Glauber dynamics

For sequential Glauber dynamics the procedure is slightly more complicated,
since only one (random) spin is updated in a given time-step. If the updated
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2. THE ASYMMETRIC ISING MODEL

spin is not flipped, then one has no way to know which spin was chosen for
updating. The problem for sequential Glauber dynamics in continuous time was
thoroughly treated by Zeng et al. (2013). In this thesis we consider discrete-time
Glauber dynamics. We find that the likelihood (2.33) can be split into a part LF ,
involving time-steps where a spin was flipped, and a part LU , involving time-
steps where no spin was flipped; both parts are required for a correct maximum
likelihood estimate of the parameters h and J. Interestingly, we found that the
antisymmetric part of the coupling matrix Jas

i j = (Ji j−Jji)/2 can be inferred from
LF alone, which suggests different roles of the symmetric and antisymmetric
part in controlling the dynamics of spin-flips (see Fig. 2.4).

We define F as the set of time-steps (µ, t) in which a spin was flipped and
U as the set of time-steps where no spin was flipped. Further, we decompose
F into subsets Fi consisting of time-steps where spin i was updated. With these
definitions we write the log-likelihood function (1.107)

L(D;h,J) = ∑
(t,µ)∈F

lnP(sssµ(t +1)|sssµ(t))

︸ ︷︷ ︸
=:LF

+ ∑
(t,µ)∈U

lnP(sssµ(t +1)|sssµ(t))

︸ ︷︷ ︸
=:LU

, (2.36)

In the case where no spin was flipped, we simply take a uniform average over all
the N spins that could have been updated, yielding the learning steps

δhi ∼ ∂
∂hi

L(D;h,J)

= ∑
(µ,t)∈D

φ µ
i (t)

[
sµ

i (t +1)− tanh

(
hi +∑

j
Ji js

µ
j (t)

)]
(2.37)

δJi j ∼ ∂
∂Ji j

L(D;h,J)

= ∑
(µ,t)∈D

φ µ
i (t)

[
sµ

i (t +1)sµ
j (t)− tanh

(
hi +∑

k
Jiksµ

k (t)

)
sµ

j (t)

]
(2.38)

where we defined the auxiliary quantity

φ µ
i (t) =

⎧⎪⎨
⎪⎩

1 (t,µ) ∈ Fi

qµ
i (t) (t,µ) ∈U

0 (t,µ) ∈ F \Fi

(2.39)

and where

qµ
i (t) =

exp(sµ
i (t +1)ψµ

i (t))
2cosh(ψµ

i (t))

(
N

∑
k=1

exp(sµ
k (t +1)ψµ

k (t))

2cosh(ψµ
k (t))

)−1

(2.40)
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2.4. Stochastic inference from time-series data

denotes the probability that spin i was updated but not flipped in step t → t + 1
of trajectory µ , given that no spin was flipped.

In Fig. 2.4 we show numerical results for the coupling inference in an asym-
metric version of the Sherrington-Kirkpatrick-Model, i.e. Ji j and Jji are indepen-
dent quenched random variables drawn form a normal distribution with mean 0
and variance 1/N.
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Figure 2.4: Coupling reconstruction from maximising the likelihood of time-series in
sequential Glauber dynamics. LF denotes the likelihood of all time-steps where a spin
was flipped, LU denotes the likelihood of all time-steps where no spin was flipped. The
underlying couplings were quenched random variables drawn form a normal distribu-
tion with mean 0 and variance 1/N with full asymmetry, i.e. Ji j and Jji were drawn
independently without self-couplings (Jii ≡ 0). The system consisted of 10 Ising spins
and the data set consisted of 100 trajectories of 105 time-steps each.

An estimate of the couplings and fields that can be computed even faster
has been derived using different variations of mean field theory involving the
computation of time-shifted correlations Di j = 〈δSi(t + 1)δS j(t)〉 (Mézard and
Sakellariou, 2011; Roudi and Hertz, 2011). In the following, we will take a
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2. THE ASYMMETRIC ISING MODEL

closer look at the Gaussian mean field theory that becomes exact in the thermo-
dynamic limit for the completely asymmetric Sherrington-Kirkpatrick-model.
The reasons for this are twofold: first, we will adapt the theory in chapter 5 in
order to infer the parameters from independent samples taken from several, per-
turbed steady states; second, we will show that three-point correlations are small
compared to magnetisations and two-point correlations, which explains the main
difficulty in inferring the full coupling matrix from independent samples taken
from the steady state (see chapter 3).

2.4.2 The Gaussian mean field theory and time-shifted correla-
tions

The Gaussian mean-field theory was developed by Mézard and Sakellariou (2011)
for the asymmetric Ising model with parallel Glauber dynamics. The theory al-
lows to compute the averages in the right-hand sides of Callen’s identities for the
magnetisations (2.20) and time-shifted correlations (2.22) in a way that is exact
in the thermodynamic limit for the fully asymmetric Sherrington-Kirkpatrick-
Model. This model is characterised by couplings Ji j that are quenched random
variables with Ji j and Jji drawn independently from a Gaussian with zero mean
and variance β/N, where β describes the interaction strength. The intuition is
that the effective local fields ψi = hi+∑N

j=1 Ji jS j become Gaussian random vari-
ables in the limit N → ∞. While there is only a heuristic argument but no proof
of the applicability of a central limit theorem, empirically, the effective fields
become normally distributed in the thermodynamic limit. When the asymmetry
is broken by correlating the entries Ji j and Jji, the theory can still be used as a
reasonable approximation (Sakellariou et al., 2012). In fact, the term mean field
theory is a bit of a misnomer, since the full distribution of the effective fields
ψi is considered and not just their means. However, in the literature (including
the original paper) this approach is commonly referred to simply as ”mean field
theory”. Hence, we make a compromise and add the prefix ”Gaussian”, in order
to distinguish it from the standard mean field theory.

The theory proceeds by decomposing the effective fields ψi into their deter-
ministic mean gi and a Gaussian fluctuation xi around this mean

ψi = gi + xi , xi ∼N(0,Δi) (2.41)

where the mean is given by

gi = 〈ψi〉= hi +∑
j

Ji jm j (2.42)
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and the variance by

Δi = 〈(ψi −gi)
2〉= ∑

j,k
Ji jJik〈δS jδSk〉

≈ ∑
j

J2
i j(1−m2

j) , (2.43)

where the expectation values are taken in the steady state and we have used
that the last double-sum is dominated by the diagonal entries, since equal-time
pairwise spin-correlations scale as 1/

√
N and hence become small in the ther-

modynamic limit (Mézard and Sakellariou, 2011).
Since the magnetisations are determined solely by the statistics of their cor-

responding effective field, they can be obtained by integrating over the Gaussian
fields

mi = 〈tanh(ψi)〉=
∫ ∞

−∞

dy√
2π

e−y2/2 tanh
(

gi + y
√

Δi

)
. (2.44)

For the time-shifted correlations (2.22)

Di j = 〈[tanh(ψi)−mi]δS j〉 , (2.45)

we need the distribution of δS j, which can be expressed in terms of the field
statistics by multiplying the equation with the coupling matrix

∑
j

Jk jDi j =

〈
[tanh(ψi)−mi]∑

j
Jk jδS j

〉
= 〈[tanh(gi + xi)−mi]xk〉 . (2.46)

In order to evaluate this average, we approximate the joint distribution of xi and
xk as a two-dimensional Gaussian with correlation

ρik =
〈xixk〉√
Δi
√

Δ j
=

〈
∑ j Ji jδS j ∑l JklδSl

〉
√

Δi
√

Δ j
=

(JCJT )ik√
Δi
√

Δ j
. (2.47)

Since the correlations are of order 1/
√

N, the density of the joint distribution can
be expanded to first order in the correlations ρik

P(xi,xk) =
1

2π
√

ΔiΔk
exp

{
− x2

i
2Δi

− x2
k

2Δk
+ρik

xixk√
Δi
√

Δk

}

≈ 1
2π

√
ΔiΔk

exp
{
− x2

i
2Δi

− x2
k

2Δk

}(
1+ρik

xixk√
Δi
√

Δk

)
. (2.48)

Equipped with the joint distribution (2.48), we compute the average on the right-
hand side of (2.46)
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〈[tanh(gi + xi)−mi]xk〉=
∫ ∞

−∞

dy√
2π

∫ ∞

−∞

dz√
2π

[tanh(gi + y
√

Δi)−mi]z
√

Δk

× e−y2/2e−z2/2 (1+ρikyz)

=ρik
√

Δk

∫ ∞

−∞

dy√
2π

e−y2/2y[tanh(gi + y
√

Δi)−mi]

=ρik
√

Δk
√

Δi

∫ ∞

−∞

dy√
2π

e−y2/2[1− tanh2(gi + y
√

Δi)] .

(2.49)

Inserting this result and the expression (2.47) for ρik into (2.46) we find

(DJT )ik = λi(JCJT )ik , (2.50)

or equivalently by multiplying with (JT )−1 from the right (J is invertible with
probability one)

Di j = λi(JC)i j , (2.51)

where we defined the auxiliary quantity

λi :=
∫ ∞

−∞

dy√
2π

e−y2/2[1− tanh2(gi + y
√

Δi)] . (2.52)

SOLVING THE INVERSE PROBLEM WITH TIME-SERIES DATA

Given time-series data from a stationary Ising model with parallel Glauber dy-
namics, we can compute the empirical estimates of the magnetisations mi, equal-
time connected correlations Ci j and time-shifted correlations Di j. In the first or-
der mean field approximation of Roudi and Hertz (2011), we would obtain an
equation identical to (2.51) with λi = 1−m2

i , so we could directly invert (2.51)
to obtain the coupling matrix J. In the Gaussian inference, a direct inversion is
possible only for the case of vanishing fields and magnetisations. In the more
general case, λi is a non-linear function of the couplings and external fields and
we need to jointly solve (2.51) and (2.44) by an iteration procedure (Mézard and
Sakellariou, 2011).

HIGHER ORDER CORRELATIONS

As the inference procedure described above requires the time-shifted correla-
tions Di j, we require time-series data for this method. If we have only indepen-
dent samples taken from the steady state, magnetisations mi and correlations Ci j
are not sufficient for inferring an asymmetric coupling matrix Ji j (see chapter 3
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2.4. Stochastic inference from time-series data

for a detailed discussion). For this reason, we would be interested in comput-
ing higher-order correlations. Unfortunately, however, the Gaussian mean-field
theory as described above is not able to compute non-trivial higher-order corre-
lations. For example, consider the three-point connected correlations (3.53)

Ci jk = 〈δSiδS jδSk〉= 〈[tanh(ψi)−mi][tanh(ψ j)−m j][tanh(ψk)−mk]〉 . (2.53)

Above, we assumed a joint Gaussian distribution for a pair of effective fields
ψi,ψ j to compute the time-shifted correlation Di j. If we also assume a joint
Gaussian distribution for the triplet of effective fields ψi,ψ j,ψk, it is easy to
see that the average (2.53) becomes zero. Similarly, four-point correlations will
be formed by linear combinations of the two-point correlations so no additional
information is gained. Since the Gaussian mean field theory is exact up to order
O(1/N), this shows that the three-point correlations are of order o(1/N). Hence,
in order to infer the asymmetric coupling matrix from snapshots of the steady
state, we need to consider corrections of order o(1/N) to the spin-correlations.
We will do this in chapter 3 within the mean field expansion of Kappen and
Spanjers (2000) and show that the three-point correlations are in fact of order
O(1/N2).
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3Self-consistent equations and
non-equilibrium mean field theory

Elegance should be left to
shoemakers and tailors.

Ludwig Boltzmann

In this chapter, we develop our first method for stochastic inference from snapshots
of the steady state, which is based on self-consistent equations that link the model pa-
rameters to observable statistics. We begin by showing how to derive the self-consistent
equations, which can be considered generalisations of Callen’s identities (cp. sec-
tion 2.2.2), for the different classes of Markov processes. Next, we describe how the
obtained expressions can be used to infer model parameters from independent samples
taken from the steady state by replacing the steady state expectation values with sam-
ple averages and fitting the self-consistent equations to the data. In the following, we
show how the self-consistent expressions can be evaluated approximately in a closed-
form within a non-equilibrium mean field theory, thus yielding a computationally more
efficient inference algorithm. The presentation of the non-equilibrium mean field theory
was inspired by the work of Kappen and Spanjers (2000), who suggested how to extend
the equilibrium free energy expansion of Plefka (1982) to the non-equilibrium case of
the asymmetric Ising model and computed the magnetisations and two-point correla-
tions to second order in the couplings, corresponding to the equilibrium TAP equations.
Here, we provide a straightforward generalisation of their approach and formulate the
theory for a wider class of ergodic Markov processes.

As an application, we consider inferenence in the asymmetric Ising model with se-
quential Glauber dynamics. First, we argue that for a successful inference, three-point
correlations are needed in addition to the magnetisations and two-point correlations. We
recall the relevant Callen identities for the magnetisations, two- and three-point correla-
tions, which we will to fit to the data. Next, we turn to their mean field approximation
and retrace the calculations of Kappen and Spanjers (2000) to compute the magnetisa-
tions and two-point correlations in a mean field expansion to second order in the cou-
plings, before continuing with an expansion of the three-point correlations to second
order in the couplings. Analysing the symmetries exhibited by the mean field equations,
we argue that the expansion needs to be continued to third order in the couplings in or-
der to successfully infer the model parameters. Hence, we also compute the third order
corrections for the magnetisations, two-point, and three-point correlations. Finally, we
use the two approaches of exact sample averaging and mean field approximation to infer
the external fields and couplings of a fully asymmetric Sherrington-Kirkpatrick model
consisting of N = 10 spins and show that we can distinguish the steady states generated
by parallel and sequential Glauber dynamics based on the three-point correlations.
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THEORY

3.1 The general theory

We consider a family of ergodic Markov processes characterised by the param-
eters Θ ∈ Λ ⊂ R

k and (non-equilibrium) steady state distributions π(x;Θ) on a
configuration space Ω. The problem is that we do not know the steady state
distribution but want to infer the parameters Θtrue underlying a specific pro-
cess based on samples D = {xµ}M

µ=1, which were drawn independently from
the steady state.

3.1.1 Deriving self-consistent equations

In contrast to equilibrium inference, the steady state is not described by the
Boltzmann distribution, hence we do not have an explicit expression for the
likelihood to maximise. Instead, we compute steady state statistics of differ-
ent observables like means mi = 〈Xi〉π and link them to the model parameters.
Since we do not know the steady state distribution π(x;Θ), we cannot determine
this link directly. The idea is to use self-consistent equations, like Callen’s iden-
tities for the Ising model (cp. section 2.2.2). In the following, we show how
these self-consistent equations can be obtained for the different types of Markov
processes and give toy examples, before explaining how these equations can be
used for inferring the model parameters.

3.1.1.1 Discrete-time Markov chains

For the asymmetric Ising model, we saw in section 2.2.2 that self-consistent
equations can be derived by averaging over the transition probabilities, giving us
Callen’s identities. These can be in the time-dependent form or in their simpler
steady state version. Since we are interested in inference from snapshots of the
steady state, we focus on single-time averages in the steady state. Generalising
the approach of averaging over the single-step transition probabilities, we can
derive a self-consistent equation for the steady state mean of an observable O(X)

〈O(X)〉π = ∑
x

O(x)π(x;Θ) = ∑
x

∑
y

O(x)pΘ(x|y)π(y;Θ)

= ∑
y

G(y,Θ)π(y;Θ) = 〈G(y,Θ)〉π =: g(Θ) (3.1)

for some function G(y;Θ) =∑x O(x)pΘ(x|y) that involves the model parameters.
For example, in the asymmetric Ising model with sequential Glauber dynamics,
we considered the magnetisation of spin i, O(X) = Xi and found the correspond-
ing function was G(y;h,J) = tanh(hi +∑ j Ji jy j).
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3.1.1.2 Continuous-time Markov chains

In continuous-time Markov chains, the derivation of self-consistent equations is
not quite as straightforward, but follows the same procedure. In the steady state,
the mean of an observable O(X(t)) should become time-independent, hence

0 = lim
t→∞

d
dt
〈O(X(t))〉= lim

t→∞∑
x

O(x)
d
dt

P(X(t) = x)

= lim
t→∞∑

x
O(x)∑

y
K̃yx(Θ)P(X(t) = y) = ∑

y
∑
x

O(x)K̃yx(Θ)π(y;Θ)

= 〈G(y;Θ)〉π := g(Θ) (3.2)

with some function G(y;Θ) = ∑x O(x)K̃yx(Θ) and the transition rate matrix K̃ as
defined in (1.15). Note that, in contrast to the discrete-time chains, we have not
self-consistently re-expressed the mean of the observable O(x), but instead found
the relationship 0 = 〈G(y;Θ)〉π for some different observable G. Nonetheless,
these relationships are similarly useful.

EXAMPLE: RANDOM TELEGRAPH PROCESS

In the random telegraph process from section 1.2.1.2, we can consider the mean

m(t) = 〈X(t)〉= p1(t) (3.3)

and its stationarity

0 = lim
t→∞

d
dt

m(t) = lim
t→∞

d
dt

p1(t) = lim
t→∞

d
dt
(−β p1(t)+α(1− p1(t))

=−βπ1 +α(1−π1) = α − (α +β )m . (3.4)

3.1.1.3 Markov processes with continuous configurations

For the purpose of deriving the self-consistent equations for Markov processes
with continuous configurations, it is most natural to consider the Langevin for-
mulation (in the Itô convention)

d
dt

Xi(t) = fi(X(t), t;Θ)+∑
j

σi j(X(t), t;Θ)ξ j(t) . (3.5)

Again, the observable means are independent of time in the steady state. For
example, considering that the mean mi(t) := 〈Xi(t)〉 should become stationary,
we may write
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0 = lim
t→∞

d
dt

mi(t) = lim
t→∞

〈
d
dt

Xi(t)
〉

= 〈 fi(X ;Θ)〉π =: g(Θ) . (3.6)

More generally, we can do the same for any observable O(X(t)), by considering
limt→∞

d
dt 〈O(X(t))〉= 0 and applying Itô’s lemma (1.35) to compute d

dt O(X(t)).

EXAMPLE: DIFFUSION IN A NON-CONSERVATIVE FORCE-FIELD I

For illustration, we consider a particle diffusing with unit diffusivity in a non-
conservative force-field. It is described by the simple two-dimensional system
of Langevin equations

d
dt

X1(t) =−
(

X1(t)− e−J[X2(t)]2
)
+ξ1(t) =: f1(X1(t),X2(t))+ξ1(t) (3.7)

d
dt

X2(t) =−
(

X2(t)− e−J[X1(t)]2
)
+ξ2(t) =: f2(X1(t),X2(t))+ξ2(t) , (3.8)

with J ≥ 0 and independent white noise random forces ξ1(t) and ξ2(t).
We are considering a non-equilibrium system, since the detailed balance con-

dition (1.73) reduces to
∂ f1

∂x2

?
=

∂ f2

∂x1
, (3.9)

which is obviously not fulfilled for J > 0. Furthermore, we cannot determine the
steady state distribution analytically for J > 0. As described above, for finding
self-consistent relationships, we consider that the means become stationary

0 = lim
t→∞

d
dt

m1(t) = lim
t→∞

〈
d
dt

X1(t)
〉
= 〈X1〉π −〈e−J(X2)

2〉π (3.10)

0 = lim
t→∞

d
dt

m2(t) = lim
t→∞

〈
d
dt

X2(t)
〉
= 〈X2〉π −〈e−J(X1)

2〉π . (3.11)

Hence, we have found the self-consistent characterisations of the means

〈X1〉π = 〈e−J(X2)
2〉π =: g1(J) (3.12)

〈X2〉π = 〈e−J(X1)
2〉π =: g2(J) (3.13)

�
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3.1.2 Exact inference based on direct sample averages of the self-
consistent equations

At first, these self-consistent equations do not appear to be of much use, since
we do not know the steady state distribution π(x;Θ) required to compute the av-
erages. However, in the context of stochastic inference, we have M independent
samples D = {xµ}M

µ=1 drawn from the steady state and may replace the average
over the steady state distribution with the average over the samples1. In the limit
M → ∞ this replacement becomes exact. Our problem now reduces to finding
a sufficient number of these self-consistent equations relating the sample statis-
tics to the model parameters. Then we can numerically compute the parameter-
dependent functions gk(Θ) (k = 1, . . . ,K) by averaging over the samples and fit
the functions gk(Θ) to the directly observable means they characterise (it is clear
that for a well-posed problem we should have at least as many self-consistent
equations as there are parameters to infer).

EXAMPLE: DIFFUSION IN A NON-CONSERVATIVE FORCE-FIELD I: EXACT INFER-
ENCE

The two-dimensional diffusion example discussed above is particularly simple,
since it is described by the single parameter J. We can determine J from numer-
ically solving the equation for g1(J)

〈X1〉D = 〈e−JX2
2 〉D

⇔ 1
M

M

∑
µ=1

xµ
1 =

1
M

M

∑
µ=1

e−J(xµ
2 )

2
. (3.14)

If we have sufficiently many samples, the empirical mean of X1 should be close
to the empirical mean of e−JX2

2 , hence we can assume that the left-hand side
of (3.14) lies in (0,1). Since the right-hand side of (3.14) is monotonic in J
and approaches zero for J → ∞, while approaching one for J → 0, there exists a
unique value of J such that (3.14) holds. �

For more complicated models, we will have many different self-consistent
equations that depend on several model parameters. The self-consistent equa-
tions will in general be non-linear in the parameters. Thus, we have to solve a

1Using the sample average instead of the steady state average is reminiscent of the
pseudolikelihood method for equilibrium inference. However, we do not know the
pseudo-likelihood function to maximise and hence it is unclear which observables to
match. Instead, we have to make an ad hoc choice of the observables we want to cali-
brate.
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non-linear optimisation problem. Many efficient optimisation algorithms exist,
however, the problem becomes harder when the number of parameters increases
and the functions must be evaluated many times before convergence is achieved.
The sample averaging approach is associated with a considerable computational
cost, since the evaluation of the right-hand side functions g(Θ) requires O(M)
computational steps. While this is still much better than the exact computation
of the free energy in equilibrium problems, which scales exponentially in the di-
mension of the configuration space, we might want to reduce the computational
effort in evaluating the functions g(Θ). For this we turn to non-equilibrium mean
field theory.

3.1.3 Expanding the self-consistent equations with
non-equilibrium mean field theory

We consider the case of random variables X with several components Xi (i =
1, . . . ,N), which are correlated. These correlations generally prevent analytical
computations of observable expectation values like the means mi(Θ)= 〈Xi〉π(x;Θ)

or correlations Ci j(Θ) = 〈(Xi − mi)(Xj − m j)〉π(x;Θ). Hence, we need to find
approximations for these expectations in order to obtain a closed form for the
self-consistent functions gk(Θ) described above. For this purpose, we compute
the expectations in a series expansion around a factorising steady state distribu-
tion, i.e. the case where the components Xi are statistically independent. This
approach is the non-equilibrium extension of Plefka’s expansion (Plefka, 1982)
of the equilibrium free energy. This extension was proposed for the asymmet-
ric Ising model by Kappen and Spanjers (2000). Inspired by their approach,
we will describe a straightforward generalisation of their non-equilibrium mean
field theory to other Markov processes. We begin by characterising the family
of factorising distributions used to approximate the steady state, before invoking
the principle of minimising relative entropy in order to pin down the optimal fac-
torising distribution, which will be used as the starting point of the expansion.
Finally, we show how to expand the self-consistent expressions gk(Θ) around
this optimal factorising distribution.

3.1.3.1 Approximating the steady state with a factorising distribution

We assume that the parameters can be divided into two sets Θ = (Θh,ΘJ) ∈ Λ,
where the parameters ΘJ model the interactions between the different compo-
nents Xi, i.e. setting ΘJ = 0 makes the different components of the random
vector X statistically independent. Further, we assume that the ergodicity of the
Markov process is preserved when setting ΘJ = 0. As factorising approxima-
tions q(x) to the steady state π(x), we consider the family Q of steady states
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produced by processes without interactions

Q= {q(x;Θh) = π(x;Θh,ΘJ = 0) | (Θh,0) ∈ Λ} . (3.15)

In general, the family Q consists of many factorising distributions, charac-
terised by the parameters Θh, and we need to ask ourselves which distribution
out of this family should be used to approximate the steady state distribution
π(x;Θh,ΘJ). As proposed by Kappen and Spanjers (2000), we take an infor-
mation theoretic approach and seek the distribution q∗ ∈ Q that minimises the
relative entropy between the factorising distribution and the steady state

q∗ := argmin
q∈Q

DKL(π(x;Θh,ΘJ)||q(x)) = q(Θq
h[Θh,ΘJ]) . (3.16)

The minimising condition usually translates into specific observables that should
be reproduced exactly with the factorising distribution, thus fixing the parameter
values Θq

h, characterising q∗, as functions of the original parameters Θh and ΘJ .

EXAMPLE: DIFFUSION IN A NON-CONSERVATIVE FORCE-FIELD II: THE OPTIMAL

FACTORISING DISTRIBUTION

We modify our previous example by including two additional parameters h1 >
0,h2 > 0 and write the Langevin equations as

d
dt

X1(t) =− 1
h1 + J

(
X1(t)− e−J[X2(t)]2

)
+ξ1(t) (3.17)

d
dt

X2(t) =− 1
h2 + J

(
X2(t)− e−J[X1(t)]2

)
+ξ2(t) . (3.18)

Again, the choice J = 0 results in two independent Ornstein-Uhlenbeck pro-
cesses. Hence we have Θh = (h1,h2) and ΘJ = J and the family Q of factorising
distributions is characterised by the parameters Θq

h = (hq
1,h

q
2)

q(x1,x2;hq
1,h

q
2) := π(x1,x2;h1 = hq

1,h2 = hq
2,J = 0)

=

⎛
⎝exp

{−(x1 −1)2/hq
1
}√

πhq
1

⎞
⎠

⎛
⎝exp

{−(x2 −1)2/hq
2
}√

πhq
2

⎞
⎠ .

(3.19)

Next, we seek the optimal distribution q∗ and determine hq
1 and hq

2 by minimising
the relative entropy between the factorising distribution q(x1,x2;hq

1,h
q
2) and the
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steady state π(x1,x2;h1,h2,J). For the relative entropy we find

DKL(π(x)||q(x))[hq
1,h

q
2]) =

∫
dx1

∫
dx2 π(x1,x2;h1,h2,J) ln

(
π(x1,x2;h1,h2,J)

q(x1,x2;hq
1,h

q
2)

)
=〈lnπ(x1,x2;h1,h2,J)〉π −

〈
lnq(x1,x2;hq

1,h
q
2)
〉

π

=−S[π(x)]−
〈

1
2

ln(πhq
1)+(X1 −1)2/hq

1

〉
π

+

〈
1
2

ln(πhq
2)+(X2 −1)2/hq

2

〉
π
, (3.20)

with the Shannon entropy of the steady state S[π(x)] =−〈lnπ(x1,x2)〉π .
The parameter values hq

1,h
q
2 are then fixed by demanding that the gradient of

the relative entropy vanishes

0 =
∂DKL

∂hq
1

=
1

2hq
1
− 1

(hq
1)

2 〈(X1 −1)2〉π (3.21)

0 =
∂DKL

∂hq
2

=
1

2hq
2
− 1

(hq
2)

2 〈(X2 −1)2〉π , (3.22)

which fixes hq
1 and hq

2 in terms of steady state expectation values

hq
1 = 2〈(X1 −1)2〉π (3.23)

hq
2 = 2〈(X2 −1)2〉π . (3.24)

Since we do not know the steady state distribution π(x1,x2;h1,h2,J), we cannot
directly determine the right-hand sides of (3.23) and (3.24) as functions of h1,h2,
and J. Instead, we compute them in a series expansion around the factorising
distribution q∗, which leads to self-consistent equations that fix the parameters
hq

1 = hq
1(h1,h2,J) and hq

2 = hq
2(h1,h2,J). �

3.1.3.2 Expanding around the factorising distribution

As seen in the example above, after having identified the observables that should
be matched exactly, we are still at a loss how to compute the parameters Θq

h
as functions of the actual parameters Θh,ΘJ , since we cannot evaluate the ob-
servable means in the actual steady state distribution π(x;Θh,ΘJ). The solution
is to compute these means self-consistently in an expansion around the opti-
mal factorising distribution q∗. Formally, we use self-consistent relations as de-
rived in section 3.1.1 to express the expectation value of an observable O(X)
in terms of the expectation value of a function G(X ,Θh,ΘJ) involving the pa-
rameters and then expand its expectation value g(Θh,ΘJ) = 〈O(X)〉π(x;Θh,ΘJ) =
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〈G(X ,Θ)〉π(x;Θh,ΘJ) around the parameters (Θh = Θq
h,ΘJ = 0). To this end,

we introduce an expansion parameter λ and consider the model parameters
Θh(λ ) = Θq

h +λδΘh,ΘJ(λ ) = λΘJ with δΘh = Θh −Θq
h(Θh,ΘJ). Hence, we

can smoothly interpolate from the factorising distribution q∗, characterised by
λ = 0, to the steady state distribution π , characterised by λ = 1, and write the
function g(Θh,ΘJ) as a Taylor series in λ

g(Θh,ΘJ)
!
=

∞

∑
k=0

1
k!

dk

dλ k g(Θq
h +λδΘh,λΘJ)

∣∣∣
λ=0

(3.25)

= g(Θq
h,0)+

∂g
∂Θh

(Θq
h,0)δΘh +

∂g
∂ΘJ

(Θq
h,0)ΘJ + . . .

=: g
∣∣∣
q∗
+

∂g
∂Θh

∣∣∣
q∗

δΘh +
∂g

∂ΘJ

∣∣∣
q∗

ΘJ + . . . . (3.26)

For the means that should be matched exactly, the resulting equations can be
solved for Θq

h = Θq
h(Θh,ΘJ). This is done successively for each expansion order,

yielding closed expressions for the observable means as functions of the original
parameters Θ = (Θh,ΘJ).

EXAMPLE: DIFFUSION IN A NON-CONSERVATIVE FORCE-FIELD II: MEAN-FIELD EX-
PANSION AND PARAMETER INFERENCE

Recalling our last example, we have the family of factorising distributions de-
scribed by the probability density (3.19) and the self-consistent expressions for
the first moments

m1(h1,h2,J) = 〈e−J(X2)
2〉π(h1,h2,J) (3.27)

m2(h1,h2,J) = 〈e−J(X1)
2〉π(h1,h2,J) . (3.28)

In addition, we need self-consistent expressions for the second moments α1(h1,h2,J)=
〈(X1)

2〉π and α2(h1,h2,J) = 〈(X2)
2〉π , in order to determine the free parameters

hq
1 = hq

1(h1,h2,J),h
q
2 = hq

2(h1,h2,J) of the factorising distribution from condi-
tions (3.23) and (3.24). By considering limt→∞

d
dt 〈X2

i (t)〉 = 0 we find the self-
consistent expressions

α1(h1,h2,J) =
h1 + J

2
+

〈
X1e−J(X2)

2
〉

π(h1,h2,J)
(3.29)

α2(h1,h2,J) =
h2 + J

2
+

〈
X2e−J(X1)

2
〉

π(h1,h2,J)
. (3.30)
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We perform the expansion to first order in λ and begin by considering the first
moment

m1(h1,h2,J)≈ m1(h
q
1,h

q
2,0)+

∂m1

∂h1

∣∣∣
q∗

δh1 +
∂m1

∂h2

∣∣∣
q∗

δh2 +
∂m1

∂J

∣∣∣
q∗

J . (3.31)

The first term is simply the mean in the factorising approximation

m(hq
1,h

q
2,0) =

∫
dx1

∫
dx2 q(x1,x2;h1,h2)x1 = 1 , (3.32)

where we used expression (3.19) for the factorising distribution. The derivatives
can be computed from the self-consistent expressions. For m1 (3.27) we find

∂m1

∂J

∣∣∣
q∗
=

∂
∂J

∣∣∣
q∗

∫
dx1

∫
dx2 π(x1,x2;h1,h2;J)e−J(x2)

2

=
∫

dx1

∫
dx2

{
∂π
∂J

∣∣∣
q∗

e−0(x2)
2
+q(x1,x2;hq

1,h
q
2)

∂
∂J

∣∣∣
q∗

e−J(x2)
2
}

=
∫

dx1

∫
dx2

{
∂π
∂J

∣∣∣
q∗
+q(x1,x2;hq

1,h
q
2)(−(x2)

2e0(x2)
2
)

}
=

∂
∂J

∣∣∣
q∗

{∫
dx1

∫
dx2 π(x1,x2;h1,h2,J)︸ ︷︷ ︸

=1

}
−〈(X2)

2〉q∗

=−〈(X2)
2〉q∗ =−〈(X2 −1+1)2〉∗q =−(1+hq

2/2) . (3.33)

With the same procedure we find ∂m1
∂h1

∣∣∣
q∗
= ∂m1

∂h2

∣∣∣
q∗
= 0. Hence, in total we arrive

at

m1(h1,h2,J)≈ 1−
(

1+
hq

2
2

)
J. (3.34)

By symmetry, we also find

m2(h1,h2,J)≈ 1−
(

1+
hq

1
2

)
J. (3.35)

Next, we expand α1(h1,h2,J)

α1(h1,h2,J)≈ α1(h
q
1,h

q
2,0)+

∂α1

∂h1

∣∣∣
q∗

δh1 +
∂α1

∂h2

∣∣∣
q∗

δh2 +
∂α1

∂J

∣∣∣
q∗

J . (3.36)

The first term is again easily computed in the factorising distribution q∗

α1(h
q
1,h

q
2,0) = 〈(X1)

2〉∗q = 〈(X1 −1+1)2〉∗q
= 1+hq

1/2 (3.37)
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For the derivative with respect to J, we need the derivative of m1 with respect to
J, which we have already computed

∂α1

∂J

∣∣∣
q∗
=

1
2
+

∂
∂J

∣∣∣
q∗

∫
dx1

∫
dx2 π(x1,x2;h1,h2;J)x1e−J(x2)

2

=
1
2
+

∫
dx1

∫
dx2

∂π
∂J

∣∣∣
q∗

x1e−0(x2)
2
+

∫
dx1

∫
dx2 q(x1,x2;hq

1,h
q
2)x1

∂
∂J

∣∣∣
q∗

e−J(x2)
2

=
1
2
+

∂
∂J

∣∣∣
q∗

{∫
dx1

∫
dx2 π(x1,x2)x1︸ ︷︷ ︸

=m1(h1,h2,J)

}
−〈X1(X2)

2〉q∗︸ ︷︷ ︸
=1+hq

2/2

=
1
2
+

∂m1

∂J

∣∣∣
q∗
− (1+hq

2/2) =
1
2
− (1+hq

2/2)− (1+hq
2/2) =−3

2
−hq

2 .

(3.38)

For the other derivatives we proceed similarly and find in total

α1(h1,h2,J)≈ 1+
h1

2
−

(
3
2
+hq

2

)
J . (3.39)

By symmetry we also find

α2(h1,h2,J)≈ 1+
h2

2
−

(
3
2
+hq

1

)
J . (3.40)

Now we can determine hq
1 and hq

2 (to first order in λ ) from inserting the
expansion into (3.23) and (3.24)

hq
1 = 2〈(X1 −1)2〉π = 2α1 −4m1 +2 ≈ h1 + J

hq
2 = 2〈(X2 −1)2〉π = 2α2 −4m2 +2 ≈ h2 + J . (3.41)

Inserting hq
1(h1,h2,J) and hq

2(h1,h2,J) back into (3.34) and (3.35), we obtain the
closed form expressions (to first order in λ ) for the first moments as functions of
the original model parameters

m1(h1,h2,J)≈ 1−
(

1+
hq

2
2

)
J = 1−

(
1+

h2 + J
2

)
J (3.42)

m2(h1,h2,J)≈ 1−
(

1+
hq

1
2

)
J = 1−

(
1+

h1 + J
2

)
J . (3.43)

Similarly, by inserting hq
1 and hq

2 into (3.39) and (3.39), we obtain the second
moments

α1(h1,h2,J)≈ 1+
h1 −3J

2
−hq

2J = 1+
h1 −3J

2
− (h2 + J)J (3.44)

α2(h1,h2,J)≈ 1+
h2 −3J

2
−hq

1J = 1+
h2 −3J

2
− (h1 + J)J . (3.45)
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Now we can return to the inference problem: given sample estimates α̂1 =
1
M ∑M

µ=1(x
µ
1 )

2, α̂2 =
1
M ∑M

µ=1(x
µ
2 )

2, m̂1 =
1
M ∑M

µ=1 xµ
1 , m̂2 =

1
M ∑M

µ=1 xµ
2 we can in-

vert the closed expressions (3.42), (3.43), (3.44), and (3.45) to solve for the
parameters h1,h2,J (for this particular system the equations are so simple that
we can invert analytically), giving the (first order) estimates

Jinf =

(
α̂1 − α̂2

m̂1 − m̂2
−2

)−1

(3.46)

hinf
1 = 2(1− m̂2)/Jinf − Jinf −2 (3.47)

hinf
2 = 2(1− m̂1)/Jinf − Jinf −2 (3.48)

In principle, this expansion can be continued to higher orders, which would re-
sult in an increased accuracy in the reconstruction. �

Having illustrated the general theory for toy examples, we now apply the
same methods to the more challenging problem of inferring the parameters of
our main paradigm - the asymmetric Ising model.

3.2 Inference in the asymmetric Ising model

We consider the asymmetric Ising model consisting of N binary spins sss=(s1, . . . ,sN)
introduced in chapter 2. Already elementary arguments show that, unlike in
the equilibrium inverse Ising problem, pairwise spin-correlations are insuffi-
cient to infer the model parameters: the matrix of pairwise correlations 〈sis j〉
is symmetric and has only N(N − 1)/2 independent entries, whereas there are
N(N − 1) entries of the asymmetric coupling matrix Ji j to be determined (self-
interactions Jii 
= 0 are excluded). Thus we expect that at least three-point corre-
lations 〈sis jsk〉 are required. On the other hand, the information one can extract
from single-time measurements in the non-equilibrium steady state π(sss;h,J) is
limited to the frequencies of the 2N different spin configurations. Taking into
account the normalisation constraint, there are thus at most 2N −1 independent
observables available to determine the N(N − 1) +N parameters of couplings
and external fields. This implies that the parameters can only be inferred for
N ≥ 5.

3.2.1 Callen’s identities and their mean field expansion

In the following reconstruction, we will use Callen’s identities (cp. section 2.2.2)
for the magnetisations mi = 〈si〉, two-point connected spin-correlations Ci j =
〈δ siδ s j〉 (i< j) , and three-point connected spin-correlations Ci jk = 〈δ siδ s jδ sk〉
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(i < j < k) in sequential Glauber dynamics

mi = 〈tanh(ψi)〉 ≡ ∑
sss

π(sss|h,J) tanh

(
hi +∑

j
Ji js j

)
, (3.49)

Ci j =
1
2
〈δSi[tanh(ψ j)−m j]〉+ 1

2
〈δS j[tanh(ψi)−mi]〉 , (3.50)

Ci jk =
1
3
〈δSiδS j[tanh(ψk)−mk]〉+ 1

3
〈δSiδSk[tanh(ψ j)−m j]〉

+
1
3
〈δS jδSk[tanh(ψi)−mi]〉 , (3.51)

and in parallel Glauber dynamics

Cpar
i j = 〈[tanh(ψi)−mi][tanh(ψ j)−m j]〉 , (3.52)

Cpar
i jk = 〈[tanh(ψi)−mi][tanh(ψ j)−m j][tanh(ψk)−mk]〉 . (3.53)

Next, we consider the mean field expansion of Callen’s identities for sequen-
tial Glauber dynamics, which was originally developed by Kappen and Spanjers
(2000), who performed the expansion up to second order in the couplings for
the magnetisations and two-point spin-correlations. In the following, we will re-
trace the steps of Kappen and Spanjers (2000), going a little more into detail, for
illustrating how the calculations work, before adding the expansion of the three-
point correlations and third order corrections, which are required for inference.
We also derived the corresponding expansions for parallel Glauber dynamics,
which are given in appendix A.

3.2.1.1 The optimal factorising distribution

The distribution factorises in the different spin variables if we set J = 0. Since
the spins are binary variables, the factorising distribution q∗ can be characterised
in terms of the means mq

i = 〈si〉q∗ as

q∗(sss) = q(sss;hq) =
N

∏
i=1

(
1+mq

i (h
q
i )si

2

)
. (3.54)

The choice h = hq,J = 0 makes the effective local fields ψi = hq
i deterministic,

hence the magnetisations under q∗ are connected to the external fields hq
i via the

relation
mq

i = tanh(hq
i ) . (3.55)
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In equilibrium statistical physics, this distribution is the well-known mean field
ansatz. As described above in section 3.1.3.1, the mean field hq is fixed by
demanding that it minimises the relative entropy between the factorising distri-
bution q∗(sss) = q(sss;hq) and the actual steady state π(sss) = π(sss;h,J)

hq = argmin
h̃q

DKL(π(sss)||q(sss; h̃q))

= argmin
h̃q

{
−S[π(sss)]−∑

sss
π(sss)

N

∑
i=1

ln

(
1+mq

i (h̃
i
q)si

2

)}
. (3.56)

By differentiating with respect to h̃q
i we find

0 = ∑
sss

π(sss)
(

si

1+mq
i (h

q
i )si

)
dmq

i

dh̃q
i
(hq

i )

=

{
π(si =+1)

1
1+mq

i
− (1−π(si =+1))

1
1−mq

i

}
(1− (mq

i )
2)

= mq
i (h

q
i )−〈si〉π = mq

i (h
q
i )−mi(h,J) . (3.57)

Hence, as in equilibrium mean field theory, the external fields hq characterising
the mean-field distribution are chosen such that the mean-field distribution yields
the same magnetisations as the original model with couplings J and fields h.

3.2.1.2 Expanding Callen’s identities around the optimal factorising distribu-
tion

As described above in section 3.1.3.2, we introduce the expansion parameter λ
and consider external fields hq +λδh and couplings λJ with δh = h−hq, such
that the choice λ = 0 corresponds to the factorising distribution and λ = 1 to the
steady state, which we want to approximate. Next, we expand Callen’s identities
for the magnetisations and correlations in powers of λ

m(h,J) =
∞

∑
k=0

1
k!

dk

dλ k m(hq +λδh,λJ)
∣∣∣
λ=0

(3.58)

Ci j(h,J) =
∞

∑
k=0

1
k!

dk

dλ kCi j(hq +λδh,λJ)
∣∣∣
λ=0

(3.59)

Ci jk(h,J) =
∞

∑
k=0

1
k!

dk

dλ kCi jk(hq +λδh,λJ)
∣∣∣
λ=0

. (3.60)

The external fields hq = hq(h,J) characterising the factorising distribution q∗
are fixed by setting mi(h,J) = mq

i (hq) = tanh(hq
i ), i.e. hq is determined from
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the expansion of m(h,J). Inserting hq(h,J) into the expansions (3.58)-(3.60),
the expansion in λ in fact becomes an expansion in the couplings J. In the
following, the diagonal couplings are always understood to be zero, Jii = 0.

EXPANSION OF THE MAGNETISATIONS TO SECOND ORDER IN λ

For keeping track of the different terms in the expansion (3.58) of the magneti-
sations, we introduce some notation and write the second order expansion of
component mi as

mi(h,J) =mq
i +

N

∑
j=1

∂mi

∂h j

∣∣∣
q∗

δh j +
N

∑
j,k=1

∂mi

∂Jjk

∣∣∣
q∗

Jjk +
1
2

N

∑
j,k=1

∂ 2mi

∂h j∂hk
δh jδhk+

+
N

∑
j,k,l=1

∂ 2mi

∂h j∂Jkl
δh jJkl +

1
2

N

∑
j,k,l,n=1

∂ 2mi

∂Jjk∂Jln
JjkJln + . . .

=:mq
i +mh

i +mJ
i +

1
2

mhh
i +mhJ

i +
1
2

mJJ
i + . . . (3.61)

For actually computing the derivatives, we consider the self-consistent equa-
tion (3.49) and start by considering the derivative with respect to the external
fields

∂mi

∂hk

∣∣∣
q∗
=

∂
∂hk

∣∣∣
q∗ ∑sss

π(sss|h,J) tanh

(
hi +∑

j
Ji js j

)

=∑
sss

∂π(sss|h,J)
∂hk

∣∣∣
q∗

tanh

(
hi +∑

j
Ji js j

)∣∣∣
q∗

+∑
sss

π(sss|h,J)
∣∣∣
q∗

∂ tanh
(
hi +∑ j Ji js j

)
∂hk

∣∣∣
q∗

=
∂

∂hk

∣∣∣
q∗ ∑sss

π(sss|h,J)︸ ︷︷ ︸
=1

tanh
(
hq

i
)
+∑

sss
q∗(sss)︸ ︷︷ ︸
=1

(1− tanh2(hq
i ))︸ ︷︷ ︸

=(1−m2
i )

δi,k

=(1−m2
i )δi,k . (3.62)

Hence, we find

mh
i =

N

∑
k=1

∂mi

∂hk

∣∣∣
q∗

δhk = (1−mi)
2δhi . (3.63)

69



3. SELF-CONSISTENT EQUATIONS AND NON-EQUILIBRIUM MEAN FIELD

THEORY

Next, we consider the derivative with respect to the couplings

∂mi

∂Jkl

∣∣∣
q∗
=

∂
∂Jkl

∣∣∣
q∗ ∑sss

π(sss|h,J) tanh

(
hi +∑

j
Ji js j

)

=∑
sss

∂π(sss|h,J)
∂Jkl

∣∣∣
q∗

tanh

(
hi +∑

j
Ji js j

)∣∣∣
q∗

+∑
sss

π(sss|h,J)
∣∣∣
q∗

∂ tanh
(
hi +∑ j Ji js j

)
∂Jkl

∣∣∣
q∗

=
∂

∂Jkl

∣∣∣
q∗ ∑sss

π(sss|h,J)︸ ︷︷ ︸
=1

tanh
(
hq

i
)
+∑

sss
q∗(sss)(1− tanh2(hq

i ))δi,ksl

=(1−m2
i )δi,kml , (3.64)

which gives

mJ
i =

N

∑
k,l=1

∂mi

∂Jkl

∣∣∣
q∗

Jkl = (1−mi)
2

N

∑
j=1

Ji jm j . (3.65)

If we truncated the expansion at the first order in λ , we would have mi = mq
i +

mh
i +mJ

i and since the optimal factorising distribution reproduces the magneti-
sations exactly, mq

i = mi, we can find hq (to first expansion order) by solving

0 = mi −mq
i ≈ mh

i +mJ
i = (1−m2

i )

{
δhi +

N

∑
j=1

Ji jm j

}
(3.66)

for hq
i = hi −δhi , which yields

hq
i ≈ hi −δhnMF

i = hi +
N

∑
j=1

Ji jm j , (3.67)

where we have defined the shorthand

δhnMF
i =−

N

∑
j=1

Ji jm j , (3.68)

since it will turn up quite often in the rest of the expansion.
The resulting magnetisations expanded to first order are then given by

mi = tanh(hq
i )≈ tanh

(
hi +

N

∑
j=1

Ji jm j

)
, (3.69)
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which is the same result as the well-known mean field equations of the equilib-
rium Ising model.

For the second order corrections, we compute the double derivative with
respect to the external fields

∂ 2mi

∂hkhl

∣∣∣
q∗
=

∂ 2

∂hkhl

∣∣∣
q∗ ∑sss

π(sss|h,J) tanh

(
hi +∑

j
Ji js j

)

=∑
sss

∂ 2π(sss|h,J)
∂hk∂hl

∣∣∣
q∗

tanh
(
hq

i
)
+∑

sss
π(sss|h,J)

∣∣∣
q∗

∂ 2 tanh
(
hi +∑ j Ji js j

)
∂hk∂hl

∣∣∣
q∗

+∑
sss

∂π(sss|h,J)
∂hk

∣∣∣
q∗

∂ tanh
(
hi +∑ j Ji js j

)
∂hl

∣∣∣
q∗
+∑

sss

∂π(sss|h,J)
∂hl

∣∣∣
q∗

∂ tanh
(
hi +∑ j Ji js j

)
∂hk

∣∣∣
q∗

=0+∑
sss

q∗(sss)(−2) tanh(hq
i )(1− tanh2(hq

i ))δi,kδi,l

+
∂

∂hk

∣∣∣
q∗ ∑sss

π(sss;h,J)︸ ︷︷ ︸
=1

(1− tanh2(hq
i ))δi,l +

∂
∂hl

∣∣∣
q∗ ∑sss

π(sss;h,J)︸ ︷︷ ︸
=1

(1− tanh2(hq
i ))δi,k

=−2mi(1−m2
i )δi,kδi,l , (3.70)

hence

mhh
i =

N

∑
k,l=1

∂ 2mi

∂hk∂hl

∣∣∣
q∗

δhkδhl =−2mi(1−mi)
2(δhi)

2 . (3.71)

The mixed derivative with respect to the external field hk and coupling Jln is
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given by

∂ 2mi

∂hkJln

∣∣∣
q∗
=

∂ 2

∂hkJln

∣∣∣
q∗ ∑sss

π(sss|h,J) tanh

(
hi +∑

j
Ji js j

)

=∑
sss

∂ 2π(sss|h,J)
∂hk∂Jln

∣∣∣
q∗

tanh
(
hq

i
)
+∑

sss
π(sss|h,J)

∣∣∣
q∗

∂ 2 tanh
(
hi +∑ j Ji js j

)
∂hk∂Jln

∣∣∣
q∗

+∑
sss

∂π(sss|h,J)
∂hk

∣∣∣
q∗

∂ tanh
(
hi +∑ j Ji js j

)
∂Jln

∣∣∣
q∗

+∑
sss

∂π(sss|h,J)
∂Jln

∣∣∣
q∗

∂ tanh
(
hi +∑ j Ji js j

)
∂hk

∣∣∣
q∗

=
∂ 2

∂hkJln

∣∣∣
q∗

tanh(hq
i )+∑

sss
q∗(sss)(−2) tanh(hq

i )(1− tanh2(hq
i ))δi,kδi,lsn

+
∂

∂hk

∣∣∣
q∗ ∑sss

π(sss;h,J)(1− tanh2(hq
i ))δi,lsn

+
∂

∂Jln

∣∣∣
q∗ ∑sss

π(sss;h,J)(1− tanh2(hq
i ))δi,k

=0−2mi(1−m2
i )mnδi,kδi,l +(1−m2

i )δi,l
∂mn

∂hk

∣∣∣
q∗
+0

=(1−m2
i )

{−2mimnδi,kδi,l +(1−m2
n)δi,lδn,k

}
. (3.72)

We see that this result involves the first order derivative ∂mn
∂hk

∣∣∣
q∗

, which we have

already calculated1. Summing, we find

mhJ
i = ∑

k,l,n

∂ 2mi

∂hkJln

∣∣∣
q∗

δhkJln = (1−m2
i )

(
2miδhnMF

i δhi +∑
j

Ji j(1−m2
j)δh j

)
.

(3.73)
Proceeding similarly, we also find

mJJ
i =−2(1−m2

i )

(
N

∑
j=1

[Ji j(1−m2
j)δhnMF

j ]+mi
(
δhnMF

i
)2

+mi

N

∑
j=1

J2
i j(1−m2

j)

)
.

(3.74)

1This happens quite frequently in the expansion. The expressions of the higher order
derivatives involve lower order derivatives and similarly, the derivatives of correlations
involve the derivatives of the magnetisations. Hence, the expansion has a hierarchical
structure
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Now, we can determine the fields hq
i to second expansion order by solving

0 = mi −mq
i ≈ mJ

i +mh
i +

1
2

mhh
i +mhJ

i +
1
2

mJJ
i , (3.75)

which yields hq
i = hi −δhi with

δhi ≈ δhnMF
i +mi

N

∑
j=1

J2
i j(1−m2

j) =: δhTAP
i (3.76)

and hence the second order magnetisations as derived by Kappen and Spanjers
(2000) are given by

mi = tanh(hq
i )≈ tanh

(
hi −δhTAP

i
)

= tanh

(
hi +

N

∑
j=1

Ji jm j −mi

N

∑
j=1

J2
i j(1−m2

j)

)
. (3.77)

Surprisingly, the magnetisations (3.77) computed to second order in λ agree with
the TAP equations for the equilibrium magnetisations of a spin glass (Thouless
et al., 1977). This agreement appears to be a coincidence; our result for the
magnetisations to third order in λ (see Eq. (A.1) in appendix A) does not agree
with the corresponding third order result found via Plefka’s expansion of the
equilibrium free energy (Georges and Yedidia, 1991; Plefka, 1982).

EXPANSION OF THE TWO-POINT CORRELATIONS TO SECOND ORDER IN λ

For the two-point correlations in sequential Glauber dynamics, we consider Callen’s
identity (3.50). Due to symmetry, it is sufficient to expand the auxiliary quanti-
ties

χi j :=

〈
δSi

[
tanh

(
h j +

N

∑
k=1

JjkSk

)
−m j

]〉
. (3.78)

Analogous to (3.61), we define the short-hands χh
i j =∑k

∂ χi j
∂hk

∣∣∣
q∗

δhk, χJ
i j =∑k,l

∂ χi j
∂Jkl

∣∣∣
q∗

Jkl ,

etc. and write the second order expansion of the (asymmetric) auxiliary quanti-
ties χi j as

χi j = χh
i j +χJ

i j +
1
2

χhh
i j +χhJ

i j +
1
2

χJJ
i j + . . . , (3.79)

where χi j

∣∣∣
q∗
= 0, since q∗ is a factorising distribution. From this we obtain the

expansion of the symmetric two-point correlations as

Ci j =
1
2

χi j +
1
2

χ ji =: Ch
i j +CJ

i j +
1
2

Chh
i j +ChJ

i j +
1
2

CJJ
i j + . . . . (3.80)
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For the derivative with respect to the external field hk we find

∂ χi j

∂hk

∣∣∣
q∗
=

∂
∂hk

∣∣∣
q∗ ∑sss

π(sss;h,J)(si −mi)

[
tanh

(
h j +

N

∑
l=1

Jjlsl

)
−m j

]

=∑
sss

∂ {π(sss;h,J)(si −mi)}
∂hk

∣∣∣
q∗

[
tanh

(
hq

j

)
−m j

]
︸ ︷︷ ︸

=0

+∑
sss

q∗(sss)(si −mi)
∂

∂hk

∣∣∣
q∗

{[
tanh

(
h j +

N

∑
l=1

Jjlsl

)
−m j

]}

=

〈
δSi

∂
∂hk

∣∣∣
q∗

[
tanh

(
h j +∑

l
J jlSl

)
−m j

]〉
q∗

=〈δSi〉q∗︸ ︷︷ ︸
=0

([
1− tanh2

(
hq

j

)]
δ j,k −

∂m j

∂hk

∣∣∣
q∗

)

= 0 . (3.81)

Similarly, we find that all higher order derivatives involving only external fields
vanish, since we can always factor out terms like 〈δSi〉 or [tanh(hq

j)−m j] that
are zero.

For the derivative with respect to the coupling Jkl we find

∂ χi j

∂Jkl

∣∣∣
q∗
=

∂
∂Jkl

∣∣∣
q∗ ∑sss

π(sss;h,J)(si −mi)

[
tanh

(
h j +

N

∑
n=1

Jjnsn

)
−m j

]

=∑
sss

∂ {π(sss;h,J)(si −mi)}
∂Jkl

∣∣∣
q∗

[
tanh

(
hq

j

)
−m j

]
︸ ︷︷ ︸

=0

+∑
sss

q∗(sss)δ si
∂

∂Jkl

∣∣∣
q∗

[
tanh

(
h j +

N

∑
n=1

Jjnsn

)
−m j

]

=

〈
δSi

[
(1−m2

j)δ j,kSl −
∂m j

∂Jkl

∣∣∣
q∗

]〉
q∗

= δ j,k
〈
δSi(1−m2

j) [Sl −ml]
〉

q∗ = δ j,k(1−m2
j)〈δSiδSl〉q∗

= δ j,kδi,l(1−m2
i )(1−m2

j) , (3.82)

where 〈δSiδSl〉q∗ is non-zero only for i = l, since the distribution q∗ factorises.
Summing over the couplings, we find

χJ
i j = (1−m2

i )(1−m2
j)Jji , (3.83)

74



3.2. Inference in the asymmetric Ising model

and hence by symmetry we have

CJ
i j = (χJ

i j +χJ
ji)/2 = (1−mi)

2(1−m2
j)(Ji j + Jji)/2 . (3.84)

Proceeding similarly, we find

ChJ
i j =−2mi(1−m2

i )(1−m2
j)

Ji j + Jji

2
(miδhi +m jδh j) (3.85)

and

CJJ
i j =mi(1−m2

i )(1−m2
j)
{

2(Ji j + Jji)(miδhnMF
i +m jδhnMF

j )+2mim j(J2
i j + J2

ji)

+∑
k 
=i

J jk
Jik + Jki

2
(1−m2

k)+ ∑
k 
= j

Jik
J jk + Jk j

2
(1−m2

k)
}
. (3.86)

Inserting the individual terms (3.84)-(3.86) into (3.80), we find the second order
expansion of the two-point correlations given by Kappen and Spanjers (2000)

Ci j = (1−m2
i )(1−m2

j)

(
Jsym

i j +mim j
(
J2

i j + J2
ji
)

+
N

∑
k=1
k 
=i

J jkJsym
ik + JikJsym

jk

2
(1−m2

k)

)
, (3.87)

where Jsym = 1
2(J + JT ) and Jasym = 1

2(J − JT ) are the symmetric and antisym-
metric parts of the coupling matrix respectively.

EXPANSION OF THE THREE-POINT CORRELATIONS TO SECOND ORDER IN λ

Since they are needed for parameter inference, we now derive the second order
expansion of the connected three-point correlations (3.51) in sequential Glauber
dynamics

Ci jk =Ch
i jk +CJ

i jk +
1
2

Chh
i jk +ChJ

i jk +
1
2

CJJ
i jk + . . . . (3.88)

By symmetry, is is sufficient to consider the expansion of the auxiliary quantities

Li jk :=

〈
δSiδS j

[
tanh

(
hk +∑

l
JklSl

)
−mk

]〉
(3.89)

and then compute the symmetric connected correlations as

Ci jk = (Li jk +L jki +Lki j)/3 . (3.90)
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For the same reasons as explained for the two-point correlations, we have Li jk

∣∣∣
q∗
= 0

and all derivatives involving only the external fields vanish

0 =
∂Li jk

∂hl

∣∣∣
q∗
=

∂ 2Li jk

∂hl∂hn

∣∣∣
q∗
= . . . . (3.91)

For the first order derivative with respect to the couplings we find

∂Li jk

∂Jln

∣∣∣
q∗
=

∂
∂Jln

∣∣∣
q∗ ∑sss

π(sss;h,J)δ siδ s j

[
tanh

(
hk +∑

p
Jkpsp

)
−mk

]

=∑
sss

∂π(sss;h,J)δ siδ s j

∂Jln

∣∣∣
q∗

[
tanh(hq

k)−mk
]︸ ︷︷ ︸

=0

+∑
sss

q∗(sss)δ siδ s j
∂

∂Jln

∣∣∣
q∗

[
tanh

(
hk +∑

p
Jkpsp

)
−mk

]

=

〈
δSiδS j

(
[1− tanh2(hq

k)]δk,lSn − ∂mk

∂Jln

∣∣∣
q∗

)〉
q∗

=(1−m2
k)δk,l

〈
δSiδS jδSn

〉
q∗ (3.92)

=0 , (3.93)

since q∗ factorises and there will be at least one unpaired spin-fluctuation δS.
Similarly, we find

∂ 2Li jk

∂Jln∂hp

∣∣∣
q∗
= 0 (3.94)

for the mixed derivative, since we again end up with an expectation value over
q∗ involving at least one unpaired spin-fluctuation δS.

The first non-zero term in the expansion is found by considering the double
derivative with respect to the couplings

∂ 2Li jk

∂Jln∂Jvr

∣∣∣
q∗
=

∂ 2

∂Jln∂Jvr

∣∣∣
q∗ ∑sss

π(sss)δ siδ s j

[
tanh

(
hk +∑

p
Jkpsp

)
−mk

]

=∑
sss

∂
{

π(sss)δ siδ s j
}

∂Jln

∣∣∣
q∗

∂
∂Jvr

∣∣∣
q∗

[
tanh

(
hk +∑

p
Jkpsp

)
−mk

]
+(ln)↔ (vr)

+∑
sss

q∗(sss)δ siδ s j
∂ 2

∂Jln∂Jvr

∣∣∣
q∗

[
tanh

(
hk +∑

p
Jkpsp

)
−mk

]

=
∂

∂Jln

∣∣∣
q∗
(1−m2

k)δk,v
〈
δSiδS jδSr

〉
π +(ln)↔ (vr)

−2mk(1−m2
k)δk,lδk,v

〈
δSiδS jSnSr

〉
q∗ . (3.95)
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Since
〈
δSiδS jδSr

〉
q∗ = 0 and ∂Ci jr

∂Jln

∣∣∣
q∗
= 0, the first term gives a non-zero contri-

bution only if r = i or r = j. The second term gives a non-zero contribution only
if there is no unpaired spin fluctuation, i.e. i = n and j = r, or i = r and j = n.
Hence, we find

∂ 2Li jk

∂Jln∂Jvr

∣∣∣
q∗
=(1−m2

k)δk,v
∂

∂Jln

∣∣∣
q∗

[
δi,r

〈
δS2

i δS j
〉

π +δ j,r
〈
δSi(δS j)

2〉
π
]
+(ln)↔ (vr)

−2mk(1−m2
k)δk,lδk,v[δi,nδ j,r +δi,rδ j,n]〈SiδSi〉q∗

〈
S jδS j

〉
q∗

=(1−m2
k)δk,v

∂
∂Jln

∣∣∣
q∗
[δi,r(−2miCi j)+δ j,r(−2m j)Ci j]+ (ln)↔ (vr)

−2mk(1−m2
k)δk,lδk,v[δi,nδ j,r +δi,rδ j,n](1−m2

i )(1−m2
j)

=(1−m2
k)δk,v

[
δi,r

(
−2mi

∂Ci j

∂Jln

∣∣∣
q∗

)
+δ j,r

(
−2m j

∂Cji

∂Jln

∣∣∣
q∗

)]
+(ln)↔ (vr)

−2mk(1−m2
i )(1−m2

j)(1−m2
k)δk,lδk,v[δi,nδ j,r +δi,rδ j,n] .

(3.96)

Since we already computed ∂Ci j
∂Jln

above, we can now sum up to find

LJJ
i jk = ∑

l,n,v,r

∂ 2Li jk

∂Jln∂Jvr

∣∣∣
q∗

JlnJvr

=2(1−m2
k)(−2miJki −2m jJk j)CJ

i j −4mk(1−m2
k)(1−m2

i )(1−m2
j)
(
JkiJk j

)
=2(1−m2

k)(−2miJki −2m jJk j)(1−m2
i )(1−m2

j)(Ji j + Jji)/2

−4mk(1−m2
k)(1−m2

i )(1−m2
j)
(
JkiJk j

)
. (3.97)

Hence, by considering

Ci jk = (Li jk +L jki +Lki j)/3 =
1
2
(LJJ

i jk +LJJ
jki +LJJ

ki j)/3+ . . . , (3.98)

we find the expansion of the connected three-point correlations to second order
in the couplings

Ci jk =
1
3(1−m2

i )(1−m2
j)(1−m2

k)× (3.99)
[−6Ai jk(Jsym,m)−2Ai jk(Jasym,m)] ,

where
Ai jk(J,m) = Ji jJk jm j + JjiJkimi + JjkJikmk , (3.100)

again with the definitions of Jsym = 1
2(J + JT ) and Jasym = 1

2(J − JT ) as the
symmetric and antisymmetric parts of the coupling matrix.
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SYMMETRIES OF THE MEAN FIELD EXPRESSIONS FOR THE CORRELATIONS

In this expansion, the spin correlations exhibit particular symmetries, which
affect the reconstruction of model parameters. Already the two-point correla-
tions (3.87) depend, to first order in J, only on the symmetric part of the cou-
pling matrix. However, also the three-point correlations show a symmetry; (3.99)
is unchanged when the coupling matrix is replaced with its transpose so Jasym

transforms to −Jasym, since Ai jk(J,m) is quadratic in the couplings. Thus jointly
solving (3.87) and (3.99) for the coupling matrix J either yields the reconstruc-
tion of the original coupling matrix, or its transpose. This binary symmetry is
lifted only at third order in the couplings, see Eq. (A.9) in appendix A. Therefore,
the third order terms of the expansion (3.58)-(3.60) give not only a quantitative
improvement on the second order expressions, but are in fact necessary for suc-
cessful inference. Since calculating the third order terms of the expansion (3.58)-
(3.60) is straightforward but tedious, we give only the results in appendix A.

3.2.2 Parameter inference for sequential Glauber dynamics

Given empirical samples from the non-equilibrium steady state π we can now
solve the inverse problem in two ways: (i) exact inference. We jointly solve the
self-consistent equations (3.49)-(3.51) for the couplings J and external fields h

(the approach from section 3.1.2). (ii) mean-field inference. We jointly solve the
explicit correlation expressions (3.87) and (3.99) (taken to third order in λ ) for
the coupling matrix J. Subsequently solving the magnetisation equations (3.77)
(also taken to third order in λ ) for the external fields h completes the parameter
reconstruction.

To test these inference schemes, we numerically simulated a system of N =
10 spins with random asymmetric couplings. Off-diagonal entries of the matrix
of couplings were chosen independently from a Gaussian distribution with zero
mean and standard deviation β/

√
N (self-interactions were excluded: Jii ≡ 0),

and external fields independently from a Gaussian distribution with zero mean
and standard deviation β . Samples of the spin configurations sss under sequential
Glauber dynamics (2.3) were recorded at each update after an initial settling-in
period of 105N updates to reach the steady state. Based on these measurements,
we reconstructed the parameters by fitting the self-consistent equations to the
data. Specifically, we minimised the sum of the relative squared prediction errors
of the magnetisations, two- and three-point correlations by using the Levenberg-
Marquardt algorithm (for details on the inference algorithm see appendix B).

Figure 3.1 shows the reconstruction of the couplings for different numbers
of samples and coupling strengths. Three-point correlations are small and as a
result the inference is affected by sampling noise. For the exact inference, the re-
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construction improves significantly with the number of samples (left hand plots).
For the mean-field inference, the correlations (3.87)-(3.99) computed to finite or-
der in the couplings become inaccurate in the limit of strong couplings, which
can also limit the reconstruction quality. As a result, the mean-field reconstruc-
tion performs best for intermediate coupling strengths (right hand plots). Also,
the reconstruction error for the symmetric part of the couplings Jsym is smaller
than for the antisymmetric part Jasym, since the former is primarily determined
by the connected two-point correlations (3.87), which are considerably larger
than the three-point correlations. For this reason, fewer samples are required for
the accurate inference of the symmetric part of the couplings. The reconstruc-
tion of the external fields exhibits a similar behaviour, although at much lower
errors, and is shown in Fig. 3.2.

3.2.3 Model selection

Beyond estimating the parameters of a particular dynamical model, an important
question is what type of dynamics produced a particular steady state. In infer-
ence, this question is known as the model selection problem. Here, we com-
pare three different dynamics: (i) Glauber dynamics with sequential updates,
(ii) Glauber dynamics with parallel updates, and (iii) equilibrium dynamics (se-
quential updates with Jasym = 0). We start by taking independent samples from
the steady state produced by a model with sequential Glauber dynamics as de-
scribed above and calculate magnetisations and correlations. Next, we solve
the exact self-consistent equations for the magnetisations, two- and three-point
correlations for the different dynamics by minimising the relative prediction er-
ror as above. This gives the model parameters for a particular dynamics that
best reproduce the sampled correlations. In Fig. 3.3 we compare the three-point
correlations predicted by these best fits of the three different dynamical mod-
els with the sampled correlations. Indeed, the sequential model shows the best
match with the sampled data, leading to the conclusion that out of the three al-
ternatives, the data was indeed most likely produced by a model with sequential
Glauber dynamics. We find analogous results for samples generated by paral-
lel updates (2.5), see Fig. 3.4. This shows that one can distinguish the different
types of dynamics based on independent samples from their steady state.
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Figure 3.1: Couplings inferred from the non-equilibrium steady state. We consider
a system of N = 10 spins with random asymmetric couplings under Glauber dynam-
ics (2.3), see text. We plot the relative root-mean-squared reconstruction error ε between
the inferred and the true couplings against the coupling strength β for different numbers
of samples M. (a) and (b) show the reconstruction errors for the exact inference. (c) and
(d) show the reconstruction errors for the mean-field inference. The symmetric part of
the couplings Jsym = (J+JT )/2 [(a) and (c)] generally has a lower reconstruction error
than the antisymmetric part Jasym = (J− JT )/2 [(b) and (d)].
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Figure 3.2: External fields inferred from the non-equilibrium steady state. We con-
sider a system of N = 10 spins with random asymmetric couplings under Glauber dy-
namics (2.3), see text. We plot the relative root-mean-square reconstruction error ε
between the inferred and true external fields against the coupling and external field
strength β for the exact inference (a) and the mean-field inference (b).
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Figure 3.3: Detecting sequential dynamics on the basis of three-point correlations.
We sample configurations from the non-equilibrium steady state of Glauber dynamics
with sequential updates, see text. Next, we reconstruct the model parameters from the
magnetisations, two- and three-point correlations, assuming the data was generated
by Glauber dynamics with sequential updates (circles), parallel updates (triangles),
or equilibrium dynamics (squares). The deviations ΔCi jk = Ci jk(h,J)−Csampled

i jk of the
three-point correlations predicted by these three models from the corresponding corre-
lations seen in the original samples are plotted against the sampled correlations. The
relative root-mean-squared prediction errors ‖ΔCi jk‖2/‖Csampled

i jk ‖2 are 0.003, 0.06, and
0.13 for the sequential, parallel, and equilibrium dynamics respectively, clearly favour-
ing the dynamics with sequential updates. The horizontal line is a guide to the eye
representing a perfect fit. We used N = 10 spins, a coupling and external field strength
of β = 0.2 and M = 1010N samples.
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Figure 3.4: Detecting parallel dynamics on the basis of three-point correlations.
We sample magnetisations and correlations from the non-equilibrium steady state of
Glauber dynamics with parallel updates (2.5) in the same way as was done for se-
quential updates, see text. Again model parameters are obtained under the three alter-
native models with parallel (circles), sequential (triangles), and equilibrium dynamics
(squares). Their predictions for the three-point correlations Ci jk are compared to those
observed in the original data. Shown are the deviations ΔCi jk = Ci jk(h,J)−Csampled

i jk
of the predicted correlations from the sampled correlations against the sampled corre-
lations. The relative prediction errors ‖ΔCi jk‖2/‖Csampled

i jk ‖2 are 0.10, 0.25, and 0.41
for parallel, sequential, and equilibrium dynamics respectively, showing that indeed
parallel dynamics best describes the data. The horizontal line is a guide to the eye rep-
resenting a perfect fit. We used a coupling and external field strength of β = 0.2 and
M = 1010N samples.
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4The propagator likelihood
The drive to propagate our race
has also propagated a lot of other
things.

Georg Christoph Lichtenberg

In this chapter, we introduce an inference method that is closely linked to the max-
imum likelihood approach used in equilibrium inference. We propose to maximise a
function, which we call propagator likelihood, that considers fictitious transitions be-
tween all sampled configurations. First, we give an intuitive justification of our func-
tion, before we derive it from an information theoretic argument by minimising rela-
tive entropy. Second, we illustrate the features of the propagator likelihood approach
by inferring the model parameters for simple toy models that span the different cate-
gories of Markov processes. We begin with Markov chains in discrete time and consider
a simple two-state model before proceeding to the asymmetric simple exclusion pro-
cess (ASEP), representing Markov chains in continuous time. Next, we consider the
Ornstein-Uhlenbeck process as an example of Markov processes with continuous con-
figurations that are slightly more complicated to treat. Finally, we apply the propagator
likelihood method to solve the more challenging inference problems for the asymmetric
Ising model and replicator dynamics.

4.1 The concept

As in the last chapter, we consider a family of ergodic Markov processes with
configurations x ∈ Ω and propagators pΘ(x,τ|y,0) characterised by a set of pa-
rameters Θ such that the process converges to a steady-state π(x;Θ), which
in general will be a non-equilibrium steady state. We are given samples D =
{xµ}M

µ=1 drawn independently from a steady state distribution π(x;Θtrue) and
want to infer the underlying parameter Θtrue. Suppose we knew the functional
dependence of the steady-state distribution π(x;Θ) on the model parameters Θ.
Then a standard approach would be to maximise the (log-) likelihood of the
samples (cp. section 1.3.1),

L(Θ;D) =
1
M

M

∑
µ=1

logπ(xµ ;Θ) = ∑
x

p̂(x) logπ(x;Θ) , (4.1)
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where the set of sampled configurations characterises the empirical distribution
p̂(x) with probability mass function

p̂(x) =
1
M

M

∑
µ=1

δxµ ,x . (4.2)

δxµ ,x denotes a Kronecker-δ .
However, in non-equilibrium systems we frequently do not know the steady-

state distribution. Non-equilibrium systems lack detailed balance, so the steady
state is not described by the Boltzmann distribution, and lacks a simple char-
acterisation. Our solution to this inference problem in such cases is based on
exploiting one elementary fact: since the distribution π(x;Θ) is stationary, it re-
mains unchanged if we propagate forward in time by an arbitrary time τ . Thus,
we can replace the steady-state distribution π(x;Θ) in the log-likelihood function
(4.1) with a version propagated in time, ∑y pΘ(x,τ|y,0)π(y;Θ). The propagator
pΘ(x,τ|y,0) is the conditional probability of observing the system in configura-
tion x at time t = τ , given it was in configuration y at time t = 0. By further
replacing the unknown steady-state distribution π(y;Θ) with the empirical dis-
tribution p̂(y), we arrive at the propagator likelihood

PL(Θ,τ;D) = ∑
x

p̂(x) log∑
y

pΘ(x,τ|y,0) p̂(y)

=
1
M

M

∑
µ=1

log

(
1
M

M

∑
ν=1

pΘ(xµ ,τ|xν ,0)

)
. (4.3)

In this way, we have moved the parameter-dependence from the (unknown)
steady-state distribution π(x;Θ) to the (known) propagator pΘ(x,τ|y,0). Al-
though using only configurations sampled independently with no sense of tem-
poral order, the propagator likelihood effectively considers fictitious transitions
xν τ→ xµ between all pairs of sampled configurations. For models with continu-
ous configurations, pΘ(xµ ,τ|xν ,0) is the transition probability density.

4.1.1 Minimising relative entropy

We rephrase the inference problem as finding a set of parameters Θ such that
the propagator pΘ(x,τ|y,0) is compatible with the empirical distribution p̂ being
stationary (see Fig. 4.1). Demanding stationarity corresponds to requiring that
p̂ is in some sense close to a distribution qΘ,τ generated by propagating the
empirical distribution for an arbitrary time τ ,

qΘ,τ(x) = ∑
y

pΘ(x,τ|y,0) p̂(y) . (4.4)
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Figure 4.1: The concept of the propagator likelihood. The independent samples
{xµ}M

µ=1 define the empirical distribution p̂ define by equation (4.2), shown on the left.
We fix an arbitrary time τ and use the known transition probabilities pΘ(x,τ|y,0) to
propagate p̂ in time and generate a new distribution qΘ,τ (see Eq.(4.4)), shown on the
right. Demanding stationarity of the model, we can estimate the underlying parameters
Θtrue by finding the parameters Θinf that minimise the distance between p̂ and qΘ,τ as
measured with relative entropy. This is equivalent to maximising the propagator likeli-
hood (see main text).

To quantify this notion of closeness for discrete configurations, we use the rela-
tive entropy or Kullback-Leibler divergence Kullback and Leibler (1951)

DKL( p̂‖qΘ,τ) = ∑
x

p̂(x) log
p̂(x)

qΘ,τ(x)
. (4.5)

Inserting the probability mass function qΘ,τ(x) defined by (4.4) into the relative
entropy, we find that the relative entropy can be written as the negative sum of
the Shannon entropy of the empirical distribution, S( p̂) =−∑x p̂(x) log p̂(x) and
the propagator likelihood (4.3):

DKL( p̂‖qΘ,τ) =−S( p̂)−PL(Θ;τ) . (4.6)

The first term depends only on the sampled configurations and is independent of
the model parameters; thus minimising the relative entropy over Θ is equivalent
to maximising the propagator likelihood. Furthermore, due to the positivity of
relative entropy, the propagator likelihood is bounded from above by the negative
Shannon entropy, and this bound will be saturated only for a perfectly stationary
model.

For models with continuous configurations, the relative entropy (4.5) cannot
be defined, since the propagated distribution qΘ,τ(x) is continuous, while the
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empirical distribution p̂(x) is discrete. However, the propagator likelihood (4.3)
is well-defined for both discrete and continuous state spaces.

For long propagation times τ , the propagator likelihood converges to the
standard log-likelihood (4.1), since limτ→∞ qΘ,τ(x)≡ pΘ(x) for ergodic systems.
However, in general the complexity of calculating the propagator increases with
τ . For models with discrete time, the single-step propagator takes the form of a
(usually high-dimensional) matrix, from which propagators for longer times can
in principle be computed by taking powers of this matrix.

4.2 Stochastic inference

4.2.1 Models with discrete configurations (Markov chains)

4.2.1.1 Discrete time: a simple two-configuration model

To illustrate the propagator likelihood with a toy example, we consider a system
with only two configurations, denoted by 0 and 1 (see inset of Fig. 4.2). At
each time step, if the system is in configuration 1, it moves to configuration
0. If it is in configuration 0, it moves to configuration 1 with probability r ∈
(0,1) or remains in configuration 0 with probability 1− r. In this simple model,
the steady-state distribution is easily computed, giving pr(0) = 1/(1+ r) and
pr(1) = 1− pr(0) = r/(1+ r).

We are now given samples {xµ}M
µ=1 ∈ {0,1}M taken independently from the

steady state and want to infer the model parameter r. The empirical distribu-
tion is given by the frequencies of the two configurations, p̂(0) = 1

M ∑M
µ=1 δ0,xµ

and p̂(1) = 1− p̂(0). In this case, since we know the steady state, we can in-
fer r from the relationship 〈 p̂(0)〉 = 1/(1+ r), yielding rinf = (1− p̂(0))/p̂(0).
For comparison, we also use the propagator likelihood (4.3) with the single-step
propagator pr(x,τ = 1|y,0) = δy,1δx,0 +δy,0(rδx,1 +(1− r)δx,0), giving

PL(r;1) = p̂0 log((1− r) p̂0︸ ︷︷ ︸
0→0

+ p̂1︸︷︷︸
1→0

)+ p̂1 log( r p̂0︸︷︷︸
0→1

)

= p̂0 log(1− r p̂0)+(1− p̂0) log(r p̂0) . (4.7)

Maximising this propagator likelihood analytically with respect to r, by set-
ting dPL

dr (rinf) = 0, we recover the same result as obtained above from analysing
the known steady-state distribution. Indeed, for uneven propagation times, the
propagator likelihood shows a unique maximum at the correct value rinf = 1−p̂0

p̂0
and approaches the log-likelihood for increasing τ , as expected (see Fig. 4.2).
For even propagation times, however, a second (global) maximum occurs at the
boundary r = 1: since the choice r = 1 makes the two configurations simply ex-
change their probabilities in each step, any distribution becomes stationary over
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Figure 4.2: The propagator likelihood for a simple two-configuration system. The inset
shows the single-step dynamics of the system with configurations 0 and 1, controlled by
the hopping probability r ∈ (0,1). In the main figure, the solid lines show the propaga-
tor likelihood for varying propagation times τ . The dashed line shows the log-likelihood
(4.1), which corresponds to an infinite propagation time. The maximum likelihood esti-
mate of the hopping probability, rinf = 1−p̂(0)

p̂(0) , is marked on the top axis and coincides
with the maximum for all propagator likelihoods with an uneven number of time steps τ
(see the main text for an explanation of even numbers of time steps).

an even number of time steps and the system loses its ergodicity. Canonically,
we use the single-step propagator for inferring system parameters in models with
discrete time; therefore such periodicity issues cannot arise.

4.2.1.2 Continuous time: the asymmetric simple exclusion process (ASEP)

As an example of a model with continuous time, we consider the asymmetric
simple exclusion process (ASEP) on a ring with asynchronous updates (see inset
of Fig. 4.3). The ASEP is a simple model of a driven lattice gas and has been
applied to traffic flow, surface growth, and directed paths in random media (Der-
rida, 1998; Evans, 1997; Krug and Ferrari, 1996).

The steady-state distribution in 1D can be calculated analytically in terms of
matrix products (Derrida, 1998; Evans, 1997). In higher dimensions, however,
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there is no such systematic approach and, to the best of our knowledge, the
steady-state distribution is unknown.
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Figure 4.3: Reconstruction of hopping rates in the asymmetric simple exclusion process
(ASEP). The inset schematically shows the dynamics: K particles move on a periodic
one-dimensional lattice with N > K lattice sites, see text. In the main figure, we plot
the relative mobilities µ̂ inf

i inferred using the propagator likelihood versus the underly-
ing relative mobilities µ̂ true

i = µ true
i /∑ j µ true

j that were used to generate the data. We
simulated K = 10 particles hopping on a lattice with N = 15 sites and took M = 1010

samples independently from the steady state. The underlying mobilities µi were drawn
independently from a uniform distribution on the unit interval (0,1).

The model consists of K particles moving on a periodic one-dimensional
lattice with N > K lattice sites. Each lattice site can be occupied by at most one
particle. Particles labelled i = 1, . . . ,K independently attempt to jump one step
in the clockwise direction at a rate µi called their intrinsic mobility or hopping
rate. Transitions between different configurations occur at discrete random times
T1,T2, . . . , and the waiting time between the jumps is exponentially distributed
with parameter µ1 +µ2 + . . .+µK .

The configuration of the system can be characterised by the number of free
lattice sites in front of each particle, n = (n1, . . . ,nK) ⊂ (N0)

K , with the restric-
tion that all lattice sites are occupied: n1 + n2 + . . .+ nK = N −K. The easiest
way of stating the propagator is in terms of the numbers of such free lattice sites.

Since the steady-state distribution pµ(n) itself is not associated with a time
scale, we need to eliminate one parameter by rescaling time. We choose to mea-
sure time in units such that µ1+µ2+ . . .+µK = 1. The steady-state distribution
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is then determined only by the relative hopping rates µ̂i := µi/∑ j µ j. In the
propagator likelihood we consider the distribution of the next configuration n′
that is visited by the process after starting in configuration n. The transition
probabilities are then determined by the relative hopping rates µ̂i. Alternatively,
in the general framework of propagators, we choose as the propagation time the
(random) instant of the first jump, τ = T1, when a (random) particle I attempts
to move one step in the clockwise direction. This random variable T1 varies
jointly with the configurations n(t) over different realisations of the process and
its marginal distribution is irrelevant. Choosing τ = T1 simply corresponds to
conditioning on the event that exactly one (attempted) jump has taken place.
The single-step propagator is then defined as the probability that this first jump
leads to a transition from configuration n = (n1, . . . ,nK) to a new configuration
n′ = (n′1, . . . ,n

′
K).

We use the law of total probability to decompose the propagator into the
contributions from different particles that may attempt a jump at T1, giving

pµ̂(n
′,T1|n,0) =

K

∑
i=1

pµ̂(n
′,T1|n,0, I = i)P(I = i) . (4.8)

The probability that a specific particle i attempts to jump is equal to its rela-
tive hopping rate

P(I = i) =

(
µi

∑K
j=1 µ j

)
. (4.9)

Given that particle i attempts to jump, two things can happen: if the place in
front of particle i is already occupied (ni = 0), the jump is unsuccessful and
the system remains in the same configuration, n′ = n. Otherwise, the jump is
successful and particle i hops one place forward to a free lattice site, decreasing
the gap in front of it by one, ni → ni−1, and increasing the gap behind it by one,
ni−1 → ni−1+1 (we define n0 ≡ nK due to the periodic boundary condition). All
other gaps remain unaffected. The resulting propagator is

pµ̂(n
′,T1|n,0, I = i) =

δni,0 ∏
j

δn′j,n j
+δn′i,ni−1δn′i−1,ni−1+1 ∏

j 
=i,i−1
δn′j,n j

. (4.10)

We use this result to evaluate the propagator likelihood (4.3) and infer the
relative mobilities µ̂i of K = 10 particles hopping on N = 15 lattice sites. The
particle mobilities µi are drawn uniformly from the interval (0,1). We generate
M = 1010 Monte Carlo samples, recorded every 10 jumps after an initial settling
time of 105 jumps to reach the steady state. We then maximise the propagator
likelihood numerically with the sequential least squares programming algorithm,
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as implemented in the SciPy library (Jones et al., 2001–). In Fig. 4.3 we plot the
inferred relative mobilities versus the relative mobilities used to generate the
samples.

4.2.2 Models with continuous configurations

Markov processes with continuous configurations pose an additional challenge:
Finite-time propagators are generally not known explicitly. Instead, they are
characterised indirectly as the solution of a Fokker-Planck equation. Rather than
solving a Fokker-Planck equation, which for systems with a large number of
degrees of freedom is generally infeasible, we proceed by approximating the
propagator for short times τ via a linearisation of the corresponding Langevin
equation that describes the stochastic dynamics of the model.

Again, we illustrate this procedure for a toy model. We consider one of
the simplest processes with continuous configurations, the Ornstein-Uhlenbeck
process, which we already encountered in section 1.2.2.2. Note that, again, for
this particular case the steady-state distribution is known exactly, so we could
infer the model parameters using the standard maximum likelihood approach.
Nonetheless, we infer the parameters of the Ornstein-Uhlenbeck process us-
ing the propagator likelihood before turning to more complex models where the
likelihood-based approach is not feasible.

4.2.2.1 The Ornstein-Uhlenbeck process

We consider a single particle diffusing in a one-dimensional harmonic potential
U(x) = b

2x2 with diffusion constant σ2. A physical realisation of this model is a
colloidal particle in solution being held in place by optical tweezers and confined
to a one-dimensional channel. The dynamics of the particle is modelled by the
Langevin equation

dx
dt

=−bx+σξ (t) , (4.11)

where the random force ξ (t) is described by δ -correlated white noise interpreted
in the Itô convention.

As for the exclusion process, we must eliminate one parameter by rescaling
time, since the steady-state distribution is time-independent. We consider the
dimensionless time t ′ = tσ2 such that the particle has unit diffusivity. To calcu-
late the propagator likelihood for short times τ 
 1, we linearise the Langevin
equation (4.11) in time

x(τ)≈ x(0)− b
σ2 x(0)τ +

∫ τ

0
dt ′ξ (t ′) . (4.12)
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Figure 4.4: Parameter inference in the Ornstein-Uhlenbeck process. (a) We show the
relative reconstruction error ε = |Θinf −Θtrue|/Θtrue of the parameter Θ = b/σ2 (char-
acterising the steady state) versus the dimensionless propagation time τ used in the
propagator for sample sizes M = 103 (�), M = 104 (�), and M = 105 (•). The solid lines
with markers show the reconstruction errors for the approximate short-time propagator,
the dashed lines indicate the reconstruction errors for the exact finite-time propagator.
(b) shows the estimated rate of change of the inferred parameter with respect to the prop-
agation time used as computed with the forward difference quotients: |∂Θinf/∂τ(τi)|≈
|Θinf(τi +Δτ)−Θinf(τi)|/Δτ , shown on the vertical axis for the differentiation step size
Δτ = 10−3. The minimal rate of change corresponds to the optimal choice of the prop-
agation time (see main text).
The data was generated by independent sampling from the stationary distribution, i.e.
a centred Gaussian with variance σ2/(2b) = 1/4. In order to remove fluctuations be-
tween different sample sets {xµ}M

µ=1 and demonstrate the dependence of the average
error on the sample size M and propagation time τ , the results were averaged over 50
independent sample sets. The equivalence of the minima of the reconstruction error and
the rate of change hold true on the level of individual sample sets, while the position of
the minima may vary between different sample sets.
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Since the integrated white noise
∫ τ

0 dt ′ξ (t ′) is normally distributed with mean 0
and variance τ , we obtain the approximate Gaussian propagator

pb/σ2(x,τ|y,0)≈ exp
(−[x− x]2/2τ

)
√

2πτ
, (4.13)

where x = y− (b/σ2)yτ is the most likely future position of the particle.
Such a Gaussian form of the propagator emerges for any linearised Langevin

equation with white noise and is not specific to the Ornstein-Uhlenbeck pro-
cess. For coloured, multiplicative noise, ξ (t)→ f (x(t), t)η(t), where f is some
function and the random force η(t) has a finite correlation time, we can pro-
ceed similarly. In this case, the normal distribution of the integrated white noise
is replaced with the appropriate distribution of the integrated coloured noise∫ τ

0 dt ′ f (x(t ′), t ′)η(t ′)≈ f (x(0),0)
∫ τ

0 dt ′η(t ′).
After inserting the approximated propagator (4.13) into the propagator likeli-

hood (4.3), we perform a one-dimensional maximisation of the propagator like-
lihood to infer the parameter Θ = b/σ2. In Fig. 4.4(a) we plot the relative recon-
struction errors versus the dimensionless propagation time τ for various sample
sizes, both for the approximate short-time propagator and for the exact finite-
time propagator, which is known for the Ornstein-Uhlenbeck process. The non-
monotonic behaviour of the error for the short-time propagator shows that the
optimal choice for τ involves a trade-off between the error made in approximat-
ing the propagator (increasing with τ) and the error due to the finite distances
between the sampled configurations that are typically crossed in the propagation
time, accompanied by numerical instabilities in the exponentially damped tails
of the Gaussian propagators (decreasing with τ). Indeed, as the sample size is
increased, resulting in lower typical distances between individual samples, both
the optimal value of τ and the total reconstruction error decrease. The exact
finite-time propagator suffers only from the numerical instabilities in the tails
and therefore the error decreases monotonically with τ , converging to the maxi-
mum likelihood estimate as expected. Note that the results for the approximate
and exact propagators do not converge for τ → 0, since the relative difference of
the propagators converges to 0 only for the peak x = y, even though the absolute
difference converges to 0 for all values of x.

CHOOSING THE OPTIMAL PROPAGATION TIME

The non-monotonic behaviour of the reconstruction error ε = |Θinf−Θtrue|/Θtrue

raises the question how to choose the optimal propagation time without prior
knowledge of the underlying parameter Θtrue. We find an answer by assum-
ing that the error is a smooth function of the propagation time: we seek the
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minimal error by demanding 0 = ∂ε/∂τ = sgn(Θinf−Θtrue)
|Θtrue|

∂Θinf

∂τ ∼ ∂Θinf/∂τ . Re-

alistically, we will not achieve a perfect fit, i.e. Θinf 
= Θtrue and therefore
sgn(Θinf −Θtrue) = ±1. Thus, the error derivative will become small only for
∂Θinf/∂τ → 0. The latter quantity can be estimated directly from the data by re-
peating the inference for a set of propagation times {(τi,τi+Δτ)} and computing
the forward difference quotients ∂Θinf/∂τ(τi) ≈ [Θinf(τi +Δτ)−Θinf(τi)]/Δτ .
Since estimating the derivative from the data will incur numerical errors, we re-
lax the condition 0 = ∂Θinf/∂τ and demand only that |∂Θinf/∂τ| is minimal. In
Fig. 4.4(b) we show that these minima indeed coincide with the optimal choice
of τ as judged from the reconstruction error shown in Fig. 4.4(a).

4.2.3 Non-equilibrium models in statistical physics and theoreti-
cal biology

We now turn to non-equilibrium applications where the standard maximum like-
lihood approach is not feasible, as the steady-state distribution is unknown.

4.2.3.1 The asymmetric Ising model

We consider again the asymmetric Ising model from section 2 that consists of a
set of N binary spins si =±1, which interact with each other via couplings Ji j and
are subject to external fields hi. In section 3.2 we have shown how the spin cou-
plings Ji j and external fields hi can be inferred from independent samples taken
from the steady state by fitting couplings and fields to match the magnetisations,
two-, and three-point correlations sampled in the data. In this section we demon-
strate that the couplings can be inferred even more accurately with the propaga-
tor likelihood (4.3), which uses information from the full empirical distribution.
We insert the single-step propagator (2.3) into the propagator likelihood (4.3)
and maximise the propagator likelihood with respect to the external fields hi
and off-diagonal couplings Ji j (we consider a model without self-interactions:
Jii = 0). For the last step, we use the Broyden-Fletcher-Goldfarb-Shanno algo-
rithm as implemented in the SciPy library (Jones et al., 2001–), and initialise
the algorithm with the naive mean-field parameter estimates as described in ap-
pendix B. In Fig. 4.5, we compare the relative errors of coupling reconstruc-
tion ε = ‖Jinf−Jtrue‖2/‖Jtrue‖2 using the single-step propagator likelihood with
those of fitting finite spin moments up to three-point correlations.

It turns out that parameter inference in the asymmetric Ising model requires
more samples than in the equilibrium inverse Ising problem. To achieve a rel-
ative reconstruction error of 10−2 for an equilibrium system of N = 10 spins,
the pseudolikelihood method requires of the order of 106 samples (Aurell and
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Ekeberg, 2012). In the non-equilibrium model, we require at least 108 samples
for a similar reconstruction accuracy (see Fig. 4.5). The reason for this is that, in
the asymmetric Ising model, couplings are not uniquely determined by pairwise
correlations. Instead, many different models can reproduce the same pairwise
correlations. For this reason, we need information from higher order spin corre-
lations, which require more samples to determine them accurately.
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Figure 4.5: The inference of couplings in the asymmetric Ising model. In the main
figure we plot the relative errors of couplings ε = ‖Jinf − Jtrue‖2/‖Jtrue‖2 versus the
number of independent samples used for inference, using (i) finite spin moments up
to three-point correlations (•) and (ii) the single-step propagator likelihood (�). Both
methods are exact, so the relative error decreases with the sample size as ε ∼M−1/2. The
propagator likelihood (which uses the full set of configurations sampled) performs only a
little better than the fit to the first three moments, showing that most information required
for reconstruction is already contained in the first three moments. The underlying off-
diagonal couplings were drawn independently from a Gaussian distribution with mean
0 and standard deviation 1/

√
N (we excluded self-interactions, Jii = 0), the external

fields were drawn independently from a Gaussian distribution with mean 0 and standard
deviation 1. The system size was N = 10 spins.

SPARSE NETWORKS

We consider a particular situation, where the parameter inference requires fewer
samples. We consider sparse coupling matrices and assume that the topology of
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the couplings is known, and only the values of the couplings are needed. Specif-
ically, we consider the asymmetric Ising model with sparse couplings (so most
interactions are zero) and assume as prior knowledge the pairs (i, j) that have
a non-zero coupling between them, i.e. Jtrue

i j 
= 0 or Jtrue
ji 
= 0, regardless of the

direction of the coupling. The problem has been addressed for undirected equi-
librium systems like Ising models with ferromagnetic or binary couplings (Au-
rell and Ekeberg, 2012; Bento and Montanari, 2009). We apply the propagator
likelihood to a network of N = 10 spins, where each possible directed link Ji j
from spin i to spin j is non-zero with probability p = 0.2. The non-zero cou-
plings are again drawn independently from a Gaussian distribution with mean
0 and variance 1/N. Self-interactions are excluded and the external fields hi
drawn independently from a Gaussian distribution with mean 0 and variance 1.
Figure 4.6 shows that the directed couplings can be inferred with slightly fewer
samples when the topology of the couplings is known.
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Figure 4.6: Coupling inference in the sparse asymmetric Ising model. In the main figure,
we plot the relative errors of couplings ε = ‖Jinf − Jtrue‖2/‖Jtrue‖2 versus the number
of independent samples. The underlying off-diagonal couplings were chosen sparsely:
they were set to zero with probability 1− p = 0.8, and with probability p = 0.2 were
drawn independently from a Gaussian distribution with mean 0 and variance 1/N (we
excluded self-interactions, Jii = 0 ). The external fields were drawn independently from
a Gaussian distribution with mean 0 and variance 1. The system size was N = 10 spins.
The couplings were inferred by maximising the single-step propagator likelihood over
the set of couplings between directly interacting spin pairs (i, j), i.e. there is at least
one true non-zero coupling between the spin pair, Jtrue

i j 
= 0 or Jtrue
ji 
= 0, regardless of the

direction.
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INCREASING THE PROPAGATION TIME

So far we have restricted ourselves to the single-step propagator (τ = 1). Next,
we address the question whether the inference can be improved by increas-
ing the propagation time. Intuitively, we expect that the single-step propaga-
tor is optimal when all configurations have been sampled, since this implies
that all transitions over longer propagation times consist of single-step transi-
tions that have already been probed by the single-step propagator likelihood:
xν τ→ xµ = ∑x1,x2,...,xτ−1 xν τ=1→ x1

τ=1→ x2 . . .
τ=1→ xτ−1

τ=1→ xµ . Indeed, the exam-
ples with discrete time considered so far in this article fall into this category and
our numerical evidence confirms that increasing the propagation time does not
improve the inference. If, however, the configuration space is undersampled,
some of the trajectories considered by the longer-time propagator will involve
intermediate configurations that are not present in the sample and are therefore
not considered by the single-step propagator. In this case, we find that increas-
ing the propagation time does improve the inference for a fixed sample size. In
Fig. 4.7 we consider a kinetic Ising model where only a small fraction of sys-
tem configurations is present in the sample. Increasing the propagation time
from τ = 1 to τ = 3 improves the inference markedly, however, the reconstruc-
tion error is considerably smaller for the symmetric part of the coupling matrix
[shown in Fig. 4.7(a)] than for the antisymmetric part [shown in Fig. 4.7(b)].
This is because the symmetric part of the couplings is governed by the pairwise
spin-correlations, while the antisymmetric part is dominated by higher-order
spin-correlations, which require more samples for an accurate computation. The
benefit of increasing the propagation time is also larger for the symmetric part,
suggesting that the reconstruction of the antisymmetric part of the couplings is
mainly limited by the sample size and that increasing the propagation time even
further will not lead to an accurate reconstruction.

4.2.3.2 Replicator dynamics

The replicator model describes the dynamics of self-replicating entities, for in-
stance genotypes, different animal species, RNA-molecules, or an abstract strat-
egy in the game-theoretic problem. The replicator model has been used in pop-
ulation genetics, ecology, prebiotic chemistry, and sociobiology (Schuster and
Sigmund, 1983).

We consider a population consisting of N different species and denote by xi
the fraction of species i in the total population (scaled for convenience by a factor
on N so ∑i xi = N). The growth rate of species i, called its fitness, is denoted by
fi. The population fraction change in time depends on the growth rate fi and the
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Figure 4.7: Increasing the propagation time in the undersampled asymmetric Ising
model. (a) shows the reconstructed symmetric part of the coupling matrix Jsym

i j =
(Ji j + Jji)/2 for inference with the single-step propagator likelihood (�) and for infer-
ence with the longer propagation time τ = 3 (•). (b) shows the reconstructed antisym-
metric part of the coupling matrix Jasym

i j = (Ji j −Jji)/2 for inference with the single-step
propagator likelihood (�) and for inference with the longer propagation time τ = 3 (•).
The underlying off-diagonal couplings were drawn independently from a Gaussian dis-
tribution with mean 0 and standard deviation 0.5/

√
N (we excluded self-interactions,

Jii = 0), the external fields were drawn independently from a Gaussian distribution with
mean 0 and standard deviation 0.5. The system size was N = 16 spins and M = 104N
samples were used. As a result, less than a third of the 216 system configurations were
present in the sample.

average growth rate of the population f

dxi

dt
= xi(t)( fi(x, t)− f (x, t)) , (4.14)

with f (x, t) = 1
N ∑N

j=1 x j(t) f j(x, t). The set of equations (4.14) defines the repli-
cator model. The average fitness f enters to ensure that the fractions remain
normalised such that ∑i xi(t) = N for all times.

We consider a fitness which for each species i depends linearly on the popu-
lation fractions of the other species

fi(x(t)) =
N

∑
j 
=i

Ji jx j(t) . (4.15)

The inter-species interactions Ji j are quenched random variables with mean u
(corresponding to a cooperation pressure) and standard deviation 1/

√
N. There

are no self-interactions, i.e. Jii = 0.
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For symmetric interactions, Ji j = Jji, the fitness vector can be written as the
gradient of a Lyapunov function. This implies that the system converges to an
equilibrium steady state, which can be characterised by methods from statistical
physics (Diederich and Opper, 1989). In the socio-biological context, however,
there is no reason for the interactions to be symmetric, or in fact to assume de-
terministic dynamics. Assuming an asymmetric matrix Ji j and allowing random
fluctuations σξi(t) in the reproduction of species i leads to a set of Langevin
equations

dxi

dt
= xi(t)( fi(x(t))+σξi(t)−λ (x, t)) , (4.16)

where the ξi(t) are N independent sources of white noise interpreted in the
Stratonovich convention, the parameter σ > 0 controls the overall noise strength,
and the factor λ (x(t), t) = 1

N ∑ j x j(t)( f j(x(t))+σξ j(t)) ensures normalisation,
i.e. ∑i xi(t) = N for all times. This dynamics converges to a non-equilibrium
steady state. Its characteristics for typical realisations of the matrix of couplings
have been studied in the limit of a large number of species using dynamical mean
field theory (Opper and Diederich, 1992).

We now turn to the problem of inferring the couplings Ji j of the replicator
model from a set of configurations {xµ}M

µ=1 taken independently from the non-
equilibrium steady state. For simplicity, we focus on the so-called cooperative
regime, in which all species survive in the long-time limit, i.e. limt→∞ xi(t) >
0 ∀i. This regime is characterised by a sufficiently large value of the cooperation
pressure u (Opper and Diederich, 1992). Our results can be generalised to the
case where species go extinct by restricting the transitions xν → xµ considered
in the propagator likelihood to those between configurations with the same set
of surviving species.

Again, to make time dimensionless, we rescale time t ′ = tσ2, resulting in
a noise-term with unit magnitude. The steady state and the propagator depend
only on the rescaled couplings Ĵi j ≡ Ji j/σ2. By linearising the Langevin equa-
tion (4.16) for short times and eliminating xN via the normalisation constraint,
xN = N −∑N−1

i=1 xi, we arrive at an approximate Gaussian propagator

p(x,τ|y,0)≈ 1√
2πτN−1√

DetΣ
×

exp

{
− 1

2τ

N−1

∑
i, j=1

(xi − yi −µiτ)Σ−1
i j

(
x j − y j −µ jτ

)}
(4.17)
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Figure 4.8: Reconstruction of the inter-species interactions in replicator dynamics.
(a) The inset schematically shows the dynamical model of different species competing
for fractions of the total population size. The population moves on a N-dimensional
simplex defined by the normalisation ∑i xi = N, xi ≥ 0. In the main figure, we plot the
inferred rescaled inter-species interactions Ĵinf

i j ≡ Jinf
i j /σ2 versus the rescaled underlying

interactions Ĵtrue
i j = Jtrue

i j /σ2 for the propagation time τ = 5.0×10−6. (b) shows how the
propagation time was chosen. An arbitrary parameter (in this case Ĵ12) is chosen and its
inferred value plotted for several different propagation times τi. For large τ , the error
in the linearisation of the Langevin equations becomes large and the inference becomes
unstable, as signalled by the erratic changes in the value of the inferred parameter. For
small values of τ , most transition probabilities are damped exponentially and the nu-
merical inaccuracies in the evaluation of these exponentials results in a saturation of
the parameter value. Reasonable propagation times must lie between those two regimes
and we choose a propagation time (marked by the red circle) that lies in the centre of
this transition region (marked by the dashed lines). The other parameters (not shown)
show a similar behaviour with the same transition region.
The system consisted of N = 3 species, the noise strength was set to σ = 0.1, and the
underlying interactions Jtrue

i j were quenched random variables chosen independently
from a Gaussian with mean u = 2.0 and standard deviation 1/

√
N (no self-interactions:

Jii = 0). We used an Euler discretisation of the Langevin equation (4.16) with time steps
of length Δt = 10−6/σ2 and a total of M = 103 samples were taken every 104 steps after
an initial settling time of 109 steps.
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with drift 1

µi = yi( f̂i(y)− f̂ (y))− yi

N

(
yi − 1

N

N

∑
j=1

y2
j

)

(4.18)

and covariance matrix Σ = AAT ∈ R
N−1×N−1 with

Ai j = yi(y j/N −δi, j) . (4.19)

We denote by f̂i(y) the fitness (4.15) calculated with the rescaled variables Ĵi j =

Ji j/σ2, instead of the original interactions Ji j, and by f̂ (y) = 1
N ∑ j y j f̂ j(y) its

species-weighted average.
To reconstruct the rescaled interactions Ĵi j, we insert the approximate prop-

agator (4.17) into the propagator likelihood (4.3) and maximise it using the
Broyden-Fletcher-Goldfarb-Shanno algorithm (see Fig. 4.8). As for the Ornstein-
Uhlenbeck process, the reconstruction error depends non-monotonically on the
choice of the dimensionless propagation time τ , due to the tradeoff between the
error from linearising the Langevin equation and the error from the numerical
evaluation of the exponentially damped propagators. Unfortunately, the sim-
ple procedure we used for the Ornstein-Uhlenbeck process, i.e. minimising the
parameter derivative |∂Θinf/∂τ|, cannot easily be generalised to higher dimen-
sions. The reason is that the derivative of the reconstruction error ∂ε/∂τ is
a linear combination of the individual parameter entries (∂Θinf

i /∂τ)K
i=1, which

can cancel each other without vanishing individually (here K =N(N−1) denotes
the number of model parameters). To see that not all individual derivatives can
vanish simultaneously, we remind ourselves that the inferred parameters must
satisfy 0 ≡ ∂PL

∂Θi
(Θinf(τ),τ) , i = 1, . . . ,K. Additionally demanding ∂Θinf

i /∂τ =

0, i= 1, . . . ,K, corresponds to solving the system of equations {∂PL
∂Θi

= 0, ∂ 2PL
∂Θi∂τ =

0}K
i=1 for the K +1 variables (Θi,τ). This system of 2K nonlinear equations for

K + 1 variables will in general have no solution for K > 1. Instead, we can
find a good propagation time by plotting a single inferred parameter versus the
propagation time τ used for inference [see Fig. 4.8(b)]. The regime where the
inference is dominated by the error from the linearisation for large values of τ
is characterised by an erratic change of the value of the inferred parameter. The
regime dominated by the error from the exponential damping for small values
of τ is characterised by a saturation of the inferred parameter. These regimes
are connected by a transition region, from which the propagation time should

1The second term in the drift arises from the difference between the Itô and
Stratonovich convention in the Langevin equation.
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be chosen. We choose a propagation time that lies in the centre of this tran-
sition region and find this produces a good (although not necessarily optimal)
reconstruction quality.
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5Learning from perturbations in the
asymmetric Ising model

If your experiment needs statistics,
you ought to have done a better
experiment.

Ernest Rutherford

In this chapter, we consider a setting slightly different from the one in chapers 3
and 4; we show how the parameters of the asymmetric Ising model can be inferred
from samples drawn from several steady states that are generated by perturbing the cou-
plings (or external fields). First, we define the problem of perturbation inference for the
asymmetric Ising model by stating exactly what data is considered and how it is linked
to the model parameters. We continue with some simple considerations about when
we can infer the parameters from magnetisations and two-point spin-correlations alone,
thus avoiding the difficult sampling of the three-point correlations (or higher moments).
Next, we consider how the mean field theory from chapter 3 can be used to infer the
couplings and external fields from these additional samples generated by couplings with
added perturbations. For this purpose, we give a very simple algorithm for inference
using the first order mean field equations for the magnetisations and two-point corre-
lations. We follow up by considering the more powerful Gaussian mean field theory
presented in section 2.4.2 and use it to derive self-consistent equations for the two-point
spin-correlations that are exact in the thermodynamic limit. We employ these equations
two infer the couplings of a fully asymmetric Sherrington-Kirkpatrick model without
external fields and compare this method to the propagator likelihood inference from
chapter 4.

5.1 General setting and considerations

We consider the asymmetric Ising model with sequential Glauber dynamics (2.3)
without self-interactions. We are given a data set D consisting of K subsets
D = D1 ∪D2 ∪ . . .∪DK , with each subset Dk = {sssµ,k}Mk

µ=1 consisting of Mk sam-
ples drawn independently from a steady state πk(sss) = π(sss;h(k),J(k)). We as-
sume the first data set D1 is drawn from the steady state described by model
parameters (h(1),J(1)) = (h,J), which we want to infer. The other parameter
sets (h(k) = h+δh(k),J(k) = J +δJ(k)) are known transformations of the origi-
nal parameters; we call them perturbed parameters. The scenario we considered
in sections 3.2 and 4.2.3.1 corresponds to a single data set, i.e. K = 1.
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The motivation for considering such a setting comes from the field of pertur-

bation biology. A long standard qualitative approach to identify the functions of
genes is to observe what happens when the gene is artificially deactivated; this
experimental technique is known as gene-knockout. On the more quantitative
side, cellular signalling networks of cancer cells have been inferred by perturb-
ing the cells with the application of targeted drugs (singly and in combination)
and measuring the resulting change in protein levels etc. (Molinelli et al., 2013).

For K = 1, a parameter counting argument showed that N magnetisations
mi and N(N −1)/2 two-point spin-correlations Ci j are not sufficient to infer the
N external fields hi and N(N − 1) off-diagonal couplings Ji j of the asymmetric
Ising model, hence we need to consider at least three-point correlations. How-
ever, since the three-point correlations are small and therefore difficult to sam-
ple, we would like to be able to infer the parameters without them. For the case
K ≥ 2, the KN magnetisations and KN(N − 1)/2 two-point correlations could
be sufficient, at least in principle. However, we have to carefully consider how
to perturb the parameters. It is intuitively clear and confirmed by the explicit
mean field expressions from section 3.2 that the connected spin-correlations do
not depend directly on the external fields hi

1. Hence, a data set from a steady
state where only the external fields were perturbed, will add at most N new
equations, namely those of the magnetisations. Thus, for K < N the inference
problem would remain ill-defined when we restrict ourselves to magnetisations
and two-point spin-correlations. For this reason, we will focus on steady states
with perturbed couplings and for simplicity restrict ourselves to the case where
one or more couplings were set to zero. This particular choice is motivated
by perturbation biology: the gene regulatory interaction between two genes for
example can effectively be turned off by adding molecules that bind a certain
transcription factor, thus preventing this transcription factor from binding to the
DNA and influencing gene expression.

5.2 Mean field inference

We begin by considering the parameter inference using the mean field theory of
chapter 3. For simplicity, we consider the mean field equations expanded to first
order in the couplings

1They do so only indirectly via the magnesations mi(h,J).
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m(k)
i = tanh

(
h(k)i +∑

j
J(k)i j m(k)

j

)
, (i = 1, . . . ,N) (5.1)

C(k)
i j =

(
1− (m2

i )
(k)

)(
1− (m2

j)
(k)

)(
J(k)i j + J(k)ji

)
/2 , (N ≥ i > j ≥ 1) , (5.2)

where m(k)
i = 〈Si〉πk and C(k)

i j = 〈δSiδS j〉πk are the magnetisations and two-
point spin-correlations computed from the steady state πk(sss) = π(sss;h(k),J(k)).
For the purpose of inference, we will compute the magnetisations and correla-
tions as averages over the samples Dk drawn from the steady state πk(sss). The
structure of these equations is particularly simple and allows a straightforward
algorithm for inferring the model parameters:

1. Generate K = 1+N(N −1)/2 data sets: the first with the original param-
eters and additionally N(N − 1)/2 sample sets, with a single coupling Ji j
from the upper triangular part of the coupling matrix (i > j) set to zero (so
that all couplings from the upper triangular part were set to zero exactly
once).

2. To determine the couplings Jinf
i j from the lower triangular part of the cou-

pling matrix (i < j), select the data set k = k[i, j] in which the opposite
coupling was set to zero, i.e. J(k)ji = 0,J(k)i j = Ji j. From (5.2) it is clear that
the coupling can be estimated as

Jinf
i j =

2C(k[i, j])
ji(

1− (m2
i )

(k[i, j])
)(

1− (m2
j)
(k[i, j])

) . (5.3)

3. Determine the couplings Jinf
i j from the upper triangular part (i > j) by in-

serting the inferred couplings of the upper triangular part into the two-
point correlations (5.2) of the original data set k = 1, which yields

Jinf
i j =

2C(1)
i j(

1− (m2
i )

(1)
)(

1− (m2
j)
(1)

) − Jinf
ji

=
2C(1)

i j(
1− (m2

i )
(1)

)(
1− (m2

j)
(1)

) − 2C(k[ j,i])
i j(

1− (m2
i )

(k[i, j])
)(

1− (m2
j)
(k[i, j])

) .

(5.4)
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4. Determine the external fields from the magnetisation equations (5.1) of the
original data set

hinf
i = artanh(m(1)

i )−∑
j

Jinf
i j m(1)

j . (5.5)

Alternatively, we may choose to generate only one perturbed data set (K = 2),
in which all the upper triangular couplings are set to zero J(2)i j ≡ 0 ( j > i) (more
generally, one of the two couplings between each pair (i, j) must be set to zero).
Then all couplings can be inferred from the same data set k[i, j]≡ 2.

The strength of this inference algorithm its computational simplicity, how-
ever, it requires specific perturbations and will probably not make optimal use of
the data. We can improve on the statistical efficiency of this algorithm in several
ways. First, we could include the magnetisation equations (5.1) for the other
data sets k = 2, . . . ,K, which we have not used in the algorithm described above.
Second, we could include higher order terms of the mean field expansion. As
can be seen from the second equations (3.87), including higher expansion orders
would result in multiple two-point correlations being linked to the perturbation
of a single coupling, in contrast to the case above where only a single correlation
was altered. Third, we could directly evaluate Callen’s identities for the magneti-
sations (3.49) and two-point correlations (3.50) by averaging over the respective
sample sets Dk. This would also link multiple correlations to the perturbed cou-
pling and have the additional advantage that we avoid truncating the mean field
expansion [Eqs. (3.58) and (3.59)] at a finite order. However, in all these cases,
we face a system of coupled non-linear equations that are much harder to solve
than the linear equations encountered in the simple algorithm described above.
For the fully asymmetric Sherrington-Kirkpatrick model, however, we can use
the Gaussian mean field theory discussed in section 2.4.2. The Gaussian mean
field theory combines the advantages of being exact (in the thermodynamic limit)
and at the same time producing a system of linear equations from which to infer
the couplings (in the case of vanishing external fields).

5.3 Inference with the Gaussian mean field theory

We consider the particular asymmetric Ising model, for which the Gaussian
mean-field theory discussed in section 2.4.2 becomes exact: the fully asym-

metric Sherrington-Kirkpatrick model, characterised by quenched random
couplings Ji j with Ji j and Jji drawn independently from a Gaussian with zero
mean and variance 1/N. However, in contrast to the time-series of parallel
Glauber dynamics (2.5) considered in section 2.4.2, we consider samples taken
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independently from the steady state produced by sequential or parallel Glauber
dynamics (2.3). Hence, we cannot sample the time-shifted correlations Dpar

i j =

〈δSi(t + 1)δS j(t)〉. However, in the following we will show that we can use
the distribution of the effective local fields ψi = hi +∑ j Ji jS j derived by Mézard
and Sakellariou (2011) to find a self-consistent characterisation of the equal-time
correlations Ci j = 〈δSi(t)δS j(t)〉 ≡ 〈δSiδS j〉 in the steady state.

5.3.1 Self-consistent equations for the two-point correlations.

For sequential Glauber dynamics (2.3), we consider Callen’s identities for the
parallel time-shifted correlations Dpar

i j (2.22) and for the sequential equal-time
correlations Cseq

i j (2.28) and notice that they are linked by the relation

Cseq
i j

i
= j
= (Dpar

i j +Dpar
ji )/2 . (5.6)

Inserting expression (2.51) into (5.6), we find

Cseq
i j

i
= j
=

λi

2
(JCseq)i j +

λ j

2
(CseqJT )i j , (5.7)

with λi = 〈1− tanh2(ψi)〉 as defined in (2.52).
For parallel Glauber dynamics (2.5), we evaluate Callen’s identity (2.21)

Cpar
i j = 〈tanh(ψi) tanh(ψ j)〉−mim j by integrating over the joint distribution (2.48)

of the local fields (ψi,ψ j) = (gi + xi,g j + x j), which yields

Cpar
i j

i
= j
=

∫ dxi√
2πΔi

∫ dx j√
2πΔ j

exp

{
− x2

i
2Δi

− x2
j

2Δ j

}(
1+ρi j

xix j√
Δi
√

Δ j

)

× tanh(gi + xi) tanh(g j + x j)−mim j

=ρi j

(∫ dyi√
2π

e−y2
i /2 yi tanh(gi + yi

√
Δi)

)(∫ dy j√
2π

e−y2
j y j tanh(g j + y j

√
Δ j)

)

=ρi j
√

Δi
√

Δ j

(∫ dyi√
2π

e−y2
i /2 [1− tanh2(gi + yi

√
Δi)]

)

×
(∫ dy j√

2π
e−y2

j/2 [1− tanh2(g j + y j
√

Δ j)]

)
=(JCparJT )i jλiλ j . (5.8)

In the statistical forward problem, we may solve (5.7) (sequential Glauber dy-
namics) or (5.8) (parallel Glauber dynamics) for the correlation matrix C =
C(h,J), given the coupling matrix J and external fields h (in the general case,
the equations are non-linear, since the λi = λi(h,J;m(h,J),C(h,J)) depend on
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C). In the inverse statistical problem, we cannot solve for the couplings Ji j given
the correlations Ci j, since the equation system is under-determined. Hence, we
need to consider perturbations.

5.3.2 Inference from perturbations in sequential Glauber dynam-
ics

In the following, for simplicity we will only consider sequential Glauber dynam-
ics and vanishing external fields hi ≡ 0. This leads to vanishing magnetisations
mi ≡ 0 and makes the variance (2.43) of the effective local fields uniform (in the
thermodynamic limit) Δi ≡ 1 (Bachschmid-Romano and Opper, 2015). Thus,
also the λi (2.52) are independent of the couplings

λi ≡ λ =
∫ ∞

−∞

dx√
2π

e−x2/2(1− tanh2(x))≈ 0.605706 . (5.9)

This simplifies our self-consistent expression (5.7) to

Ci j
i
= j
=

λ
2
(
(JC)i j +(CJT )i j

)
=

λ
2

(
∑
k

JikCjk + JjkCik

)
. (5.10)

We can use these equation to infer the couplings from the sample sets Dk in the
following way: we compute the sample averages C(k)

i j = 〈δSiδS j〉Dk for the data
sets generated by the steady states πk(sss) = π(sss;h(k) = 0,J + δJ(k)) and insert
them into (5.10), which yields a system of KN(N−1)/2 linear equations, which
we want to solve for the N(N − 1) off-diagonal couplings Ji j. For K = 1 this
system is under-determined, for K ≥ 2 the system could be under-determined,
well-determined, or over-determined, depending K and the nature of the pertur-
bations used. Since we are dealing with a set of linear equations, we can find
the solution with the Moore-Penrose pseudoinverse, or even faster with compu-
tationally very efficient linear least squares algorithms. For the case of non-zero
external fields, the auxiliary variables λi will depend on the external fields and
couplings, thus destroying the linearity of the Gaussian self-consistent correla-
tion equations. However, this happens in a benign way that allows simple itera-
tive algorithms to solve the full correlation equations (5.7) also for large system
sizes (Mézard and Sakellariou, 2011).

5.3.2.1 Gaussian inference by deleting upper triangular couplings

For concreteness, we consider one additional data set (K = 2) generated by set-
ting all couplings of the upper triangular part of the original coupling matrix to
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zero, i.e.

J(2)i j =

{
Ji j i > j
0 i ≤ j

. (5.11)

We distribute a total number of M = M1 +M2 samples evenly among the two
data sets D1 and D2 and compute the connected correlations C(1)

i j = 〈δSiδS j〉π(J)

and C(2)
i j = 〈δSiδS j〉π(J(2)) with J(2) as in (5.11).

To generate the samples ,we run Monte Carlo simulations of the sequential
Glauber dynamics (2.3) for a system consisting of N spins, once for the original
couplings Ji j and once for the perturbed couplings J(2)i j . We let the dynamics run
for 107N initial spin updates to reach the steady state and then collect samples
every 100 N spin updates.

To infer the coupling matrix from the data we solve

C(1)
i j =

λ
2

(
N

∑
k=1

JikC
(1)
jk + JjkC

(1)
ik

)
(1 ≤ i < j ≤ N) (5.12)

C(2)
i j =

λ
2

(
i−1

∑
k=1

JikC
(2)
jk +

j−1

∑
k=1

JjkC
(2)
ik

)
(1 ≤ i < j ≤ N) (5.13)

for the coupling matrix Ji j.
The inference results for varying system sizes N and number of samples M

are shown in Fig. 5.1. For small sample sizes, the error decreases with the sample
size as expected. For large sample sizes, the error saturates at a finite value due
to the error of the Gaussian theory for finite system size N. Consequently, the
saturation level decreases with N. Numerically, we find that the equation system
has full rank, hence, there seems to be no significant overlap between the two
data sets D1 and D2, which would hinder an accurate coupling reconstruction.

Importantly, with this perturbation inference we are able to accurately recon-
struct the couplings from sample sizes that are orders of magnitude smaller than
in the case of inference from the unperturbed steady state alone, where we re-
quired at least 106N samples (see sections 3.2 and 4.2.3.1). In the following, we
will take a closer look at the differences between the two inference approaches.
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Figure 5.1: Inference from perturbations with the Gaussian mean field theory. Shown
are the relative errors ε = ‖Jinf − Jtrue‖2/‖Jtrue‖2 of the reconstructed couplings Jinf

relative to the underlying couplings Jinf versus the total number of samples per spin
M/N for different system sizes N. The couplings were inferred by a linear least-squares
solution of the Gaussian self-consistent equations (5.12) and (5.13) for two data sets
D1,D2 consisting of M/2 samples each. The data set D2 was generated by a coupling
matrix where the upper triangular part of the original couplings Jtrue

i j was set to zero.
The samples were generated by a Monte Carlo simulation of the sequential Glauber
dynamics (2.3) for the fully asymmetric Sherrington-Kirkpatrick model with couplings
Ji j chosen independently from a Gaussian with mean 0 and variance 1/N, in the absence
of external fields, hi ≡ 0.

COMPARISON WITH INFERENCE BASED ON THE STEADY STATE ONLY

We ask ourselves how the Gaussian inference approach described above, based
on the two-point spin-correlations from the two data sets D1 and D2, compares to
the propagator likelihood method applied to data sampled from the unperturbed
steady state only. To this end, we consider a system consisting of N = 10 spins
and two different sample sizes M = 103N and M = 106N. For the perturbation
inference we distribute the samples evenly among the two data sets D1 and D2
described above, so each data set consists of M/2 samples. Moreover, we con-
sider a second case where we distribute the same perturbations across not one
but three additional data sets (K = 4), i.e. for generating D̃2 we set only the first
third of the upper triangular couplings to zero, in D̃3 the second third, and in
D̃4 the last third and each sample set consists of M/4 samples. For inference
with the propagator likelihood, we draw all M samples from the steady state
generated by the unperturbed parameters. Then we infer the couplings Ji j with
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5.3. Inference with the Gaussian mean field theory

(i) the Gaussian perturbation method by solving (5.12) and (5.13), (ii) the Gaus-
sian perturbation method with three additional data sets by equations analogous
to (5.12) and (5.13), and (iii) the propagator likelihood method as described in
section 4.2.3.1.

The results of the coupling inference are shown in Fig. 5.2. The perfor-
mance of the Gaussian perturbation inference relative to the propagator likeli-
hood depends on the sample size and is determined by different contributions:
the Gaussian perturbation inference uses the additional information provided by
the perturbations, i.e. for the data sets generated with perturbations, it has prior
knowledge concerning the couplings. However, it considers only two-point cor-
relations and thus neglects the additional information contained in higher mo-
ments of the sampled distribution. The propagator likelihood inference without
perturbations, on the other hand, effectively uses this information contained in
the higher moments by considering the full sampled distribution, but it does not
benefit from the information contained in the perturbations 1. For small sam-
ple sizes, most of the information contained in a sample is already captured by
the two-point correlations, thus the Gaussian inference does not neglect much
information, but benefits form the perturbation information and hence outper-
forms the propagator likelihood [Fig.5.2(a)]. For larger sample sizes, there is
more additional information contained in the higher moments and the propaga-
tor likelihood outperforms the Gaussian perturbation inference, which becomes
limited by errors of the Gaussian theory for finite system size N [Fig.5.2(b)]. By
distributing the perturbations over three instead of one additional data set, the in-
formation contained in the perturbations is increased and the Gaussian inference
performance is increased, but remains limited by errors due to the finite system
size [Fig.5.2(c) and (d)].

Finally, we notice that it is easier to scale up the Gaussian inference from
perturbations to larger system sizes, as compared to the the propagator likelihood
approach. This is due to the linearity of equations (5.12) and (5.13) and due to
the fact that the sample average of the two-point correlations Ci j needs to be
computed only once with MN(N −1)/2 steps, in contrast to the sample average
of the propagator likelihood which needs to be performed in every iteration step
of the nonlinear optimisation algorithm and takes on the order of M2 elementary
computations.

1Of course we could also apply the propagator likelihood method to the perturbation
data sets, thus using not only the information contained in the higher moments but also
the information contained in the perturbations. This approach should perform at least as
well as the Gaussian perturbation inference, but is not so easily scalable to larger system
sizes.
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Figure 5.2: Coupling inference from perturbations with the Gaussian mean field theory
versus the propagator likelihood. We consider a fixed number of samples M and con-
sider three scenarios: (i) all samples are taken from the unperturbed steady state and the
couplings Jinf

i j are inferred with the propagator likelihood method from section 4.2.3.1
(�), (ii) the samples are split evenly among two data sets (K = 2) with one set of sam-
ples taken from the unperturbed steady state and the second set taken from a steady
state generated by deleting all upper triangular couplings (Ji j = 0 for j > i) (•), (iii)
the samples are split evenly among four data sets (K = 4) where the same perturba-
tions of case (ii) are distributed across three additional data sets instead of one (see
text) (�). Shown are the inferred couplings Jinf

i j versus the underlying, unperturbed cou-
plings Jtrue

i j that generated the data, once for M = 103 samples per spin [(a) and (c)]
and once for M = 106 samples per spin [(b) and (d)]. The samples were generated by
a Monte Carlo simulation of the sequential Glauber dynamics (2.3) for the fully asym-
metric Sherrington-Kirkpatrick model consisting of N = 10 spins, with couplings Ji j

chosen independently from a Gaussian with mean 0 and variance 1/N, in the absence
of external fields, hi ≡ 0.
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6Conclusions and Outlook
If all statisticians in the world were
laid head to toe, they wouldn’t be
able to reach a conclusion.

George Bernard Shaw

To summarize, we have developed two different methods to solve the prob-
lem of inferring model parameters of ergodic Markov processes based on in-
dependent samples taken from their non-equilibrium steady state, which is not
accessible to the standard equilibrium inference algorithms, since it is not de-
scribed by a Boltzmann distribution. In particular, we successfully inferred the
parameters of our main paradigm, the asymmetric Ising model, and showed
that the developed inference algorithms could be extended to infer the param-
eters of other ergodic Markov processes such as Ornstein-Uhlenbeck processes,
the asymmetric simple exclusion process, or replicator dynamics. Finally, we
showed that the couplings in the asymmetric Ising model can be inferred even
more efficiently by distributing a fixed number of samples across several steady
states, which are linked by perturbations of the parameters controlled by the
experimenter.

SELF-CONSISTENT EQUATIONS AND NON-EQUILIBRIUM MEAN FIELD THEORY

Our first method is based on computing exact self-consistent relations that hold
true in the steady state and link observable statistics to model parameters, like
the well-known Callen identities for the magnetisations 〈si〉= 〈tanh(hi + Ji jsi)〉
in the Ising model. In the spirit of the pseudolikelihood method for equilibrium
inference, these can be evaluated exactly (for the number of samples tending to
infinity) by replacing the expectation value over the steady state distribution with
the sample average. Fitting sufficiently many of these equations to the sampled
observable statistics lead to a successful parameter reconstruction in different
models. In contrast to the pseudolikelihood method, however, there is no asso-
ciated function that is maximised, since the steady state is not described by the
Boltzmann distribution and unknown to us. Therefore, the choice of the observ-
ables that should be fitted is not determined by a (pseudo-)likelihood function (as
are the magnetisations and two-point spin-correlations in the equilibrium Ising
model), but instead have to be chosen in an ad hoc way. While this method is
computationally more efficient than exact likelihood maximisation for equilib-
rium systems, which requires an exponential time for computing the normalising
partition function, the computation of the self-consistent equations still requires
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a time proportional to the number of samples due to the averaging procedure.
Since the parameter fitting, in general, constitutes a non-linear optimisation
problem, the equations have to be evaluated many times over several iterations
of the optimisation algorithm. A way to compute the self-consistent equations
even faster and in closed form is to use mean field theory. To this end, we ex-
tended the non-equilibrium mean field theory of Kappen and Spanjers (2000),
developed originally for the asymmetric Ising model, to more general Markov
processes and showed how it can be used to compute the self-consistent equa-
tions in a series expansion around a factorising distribution. In particular, for
the asymmetric Ising model we argued that magnetisations and two-point spin-
correlations cannot be sufficient to infer the full coupling matrix and external
fields, but showed that including three-point correlations is already sufficient for
parameter reconstruction. For this purpose we computed the three-point spin-
correlations to third order in the couplings within the non-equilibrium mean
field theory and added third order correction terms to the results for the mag-
netisations and two-point correlations obtained by Kappen and Spanjers (2000).
Interestingly, it turned out that the mean-field expressions obeyed particular sym-
metries that required the expansion to be carried out to third order for successful
parameter inference. Of course, there may be observables that are better suited
to the inference of couplings and external fields in the asymmetric Ising model,
however, the three-point correlations seem a canonical choice. Unfortunately, a
very large number of samples is required for reconstructing the parameters of the
asymmetric Ising model. This can be understood quite easily, since compared to
the equilibrium, symmetric Ising model, the non-equilibrium, asymmetric Ising
model has roughly twice as many free parameters that need to be inferred. While
the couplings of the equilibrium Ising model can be uniquely determined from
pairwise spin-correlations, the asymmetric Ising model requires at least three-
point correlations which are smaller and thus harder to sample.

THE PROPAGATOR LIKELIHOOD METHOD

Our second method avoids the ad hoc choice of observables to be fitted and uses
the full sampled distribution for inference. It is based on maximising a function
we call propagator likelihood, which considers the likelihood of fictitious transi-
tions between all pairs of sampled configurations, even though the configurations
were sampled without sense of temporal order. We showed that the propagator
likelihood could be derived from a measure for stationarity of the process: we
minimised relative entropy between the sampled distribution and a distribution
generated by propagating this sampled distribution in time. Further, we illus-
trated the wide applicability of this method and used it to infer the model param-
eters not only of our non-equilibrium paradigm, the asymmetric Ising model, but
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also for various models with both discrete and continuous time and configura-
tions, such as the asymmetric simple exclusion process and replicator dynamics.
For Markov chains with discrete configurations, considering single-step tran-
sitions turned out to be sufficient (and optimal) if the configuration space was
fully sampled. In particular, we showed that for the asymmetric Ising model,
maximising the single-step propagator likelihood provided a parameter estimate
that was slightly better than fitting only magnetisations, two- and three-point cor-
relations. In case that the configuration space is undersampled, we found that the
inference could be improved by increasing the propagation time, however, at the
price of a more costly computation of the propagators. An interesting open ques-
tion is whether there exists an optimal propagation time that should be used. The
answer could possibly be linked to the time needed by the chain to converge to
the steady state, which is investigated by the theory of Markov mixing times. For
Markov processes with continuous configurations, there exists an optimal propa-
gation time due to a trade-off between, on the one hand, the error from linearising
the Langevin equation that increases with the propagation time, and on the other
hand, the error from numerical instabilities in the exponentially damped tails
of the propagators that become important when the propagation time becomes
small. For one-parameter models like the one-dimensional Ornstein-Uhlenbeck
process, we showed how the optimal propagation time could be inferred from
the data, for more complex models, however, we could only give a rough guide
to finding suitable propagation times. It would be interesting to find out whether
there is a general procedure for choosin an optimal propagation time also in high-
dimensional models. For large sample sizes, the propagator likelihood method is
even more costly than our first approach based on an exact evaluation of the self-
consistent equations: evaluating the propagator likelihood in general requires a
time that is proportional to the square of the number of samples. For systems
with discrete configurations, this can be reduced to a time linear in the samples,
provided there are only a small number of neighbouring configurations that can
be reached in a single step with non-zero transition probability. In the future, it
would be interesting to find approximations that allow for a more efficient com-
putation of the propagator likelihood, thus making parameter inference with this
method feasible for larger systems.

COMPARISON WITH MINIMUM PROBABILITY FLOW LEARNING

Our propagator likelihood method bears some resemblance to an equilibrium in-
ference method called minimum probability flow learning (Sohl-Dickstein et al.,
2011). The similarity is that in minimum probability flow learning one also
seeks to minimise the relative entropy between the sampled distribution and a
distribution that is generated by propagating the sampled distribution in time.
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However, minimum probability flow learning is only concerned with equilib-
rium inference problems described by the Boltzmann distribution. Instead of
using a Markovian dynamics intrinsic to the system, an artificial, deterministic
continuous-time dynamics is constructed that obeys detailed balance such that it
produces the desired Boltzmann distribution as a steady state (as noted in sec-
tion 1.2.3.1 there are many choices one can make). This artificial dynamics is
then run for an infinitesimal time and the relative entropy between the propa-
gated distribution and the sampled distribution minimised. The authors show, by
a Taylor expansion in time, that this is equivalent to minimising the probability
current out of the sampled configurations (it is assumed that the configuration
space is undersampled). This trick allows to circumvent the costly computation
of the equilibrium partition function. However, this method is not directly ap-
plicable to non-equilibrium steady states, since they are in fact characterised by
non-vanishing probability currents and a lack of detailed balance. Our approach,
on the other hand, uses the actual Markovian dynamics of the system and runs
it for a finite propagation time (although we used a linearised approximation for
continuous-time dynamics).

CAN WE ALWAYS INFER ALL PARAMETERS?

In the particular models we studied, we managed to infer all model parameters
for the discrete time models and for the continuous time models we could in-
fer all parameters apart from a single parameter that determined the time scale.
However, this will not hold true in general cases. A priori, it is not clear whether
all model parameters actually enter the steady state distribution or in which com-
binations they do. As an example, consider a system of N independent Ornstein-
Uhlenbeck processes dXi =−biXidt +σidW (t). The steady state factorises into
N independent Gaussian distributions, each with zero mean and variance σ2

i /2bi.
Thus, of the originally 2N parameters only N (transformed) parameters deter-
mine the steady state. In this light, it is a non-trivial result that we could infer
all parameters of the asymmetric Ising model from independent samples of the
steady state alone.

LEARNING FROM PERTURBATIONS IN THE ASYMMETRIC ISING MODEL

We showed how to use independent samples from several steady states gener-
ated by perturbed couplings to infer the underlying couplings in the asymmetric
Ising model. To this end, we considered the non-equilibrium mean field theory
from chapter 3 in addition to deriving self-consistent equations for the equal-
time two-point correlations within the Gaussian mean field theory of Mézard
and Sakellariou (2011). By distributing the independent samples evenly among
the unperturbed steady state and a perturbed steady state generated by deleting
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half of the original couplings, we could use these self-consistent equations to
infer the underlying couplings with a sample size that was order of magnitudes
smaller than for inference from the unperturbed steady state alone (as was done
in chapters 3 and 4). The reason is the following: by considering magnetisations
and two-point spin-correlations for several steady states, we could find enough
equations to determine the couplings without recourse to higher order correla-
tions. Hence, we avoided the estimation of the small three-point (and higher
order) correlations, which requires many samples. In principle, the statistical
efficiency of the Gaussian inference approach used in chapter 5 could be im-
proved even further by evaluating the exact Callen identities for magnetisations
and n-point spin-correlations via sample averaging, or by computing the propa-
gator likelihood of the different data sets. However, for the practically relevant
case of large systems and small sample sizes, we do not expect a significant gain
in efficiency that would justify the immense increase in the computational com-
plexity of the inference algorithm. In contrast, the Gaussian inference method
based on the two-point correlations from perturbed steady states has the great
advantage that it is easily scalable to larger system sizes. Since we investigated
only one single kind of perturbation, it would be interesting to further explore the
full space of possible perturbations and their combinations in order to identify
the optimal way to distribute a fixed number of samples across several perturbed
data sets - subject of course to the constraint imposed by experimental limita-
tions in creating the perturbations.

FUTURE RESEARCH DIRECTIONS

The work presented in this thesis could be extended in several directions. One
interesting question would be how ergodicity breaking may effect the inference,
i.e. what happens the process explores only a limited region of the configuration
space on experimentally accessible time scales? Is it still possible to infer the
model parameters? For the equilibrium inverse Ising problem, for example, it
is known that even with an exact theory for the statistical forward problem, the
inference can be hindered by the emergence of multiple thermodynamic states
at low temperatures. In order to successfully infer the parameters, one has to
cluster the samples and evaluate the averages of magnetisations and correlations
separately for each cluster (Nguyen and Berg, 2012).

A question motivated by biological applications is how inferred coupling
topologies in sparse models differ between equilibrium Ising models and non-
equilibrium Ising models, i.e. do equilibrium models mostly describe only effec-
tive interactions that are not due to physical interactions and can an asymmetric
Ising model better explain these connections?

Another interesting line of inquiry would be to ask how the methods de-
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veloped in this thesis could be extended to non-Markovian processes that are
described by an explicit memory kernel or to Markov processes with hidden
variables.

Finally, it would be interesting to see the development of novel inference
methods completely different from the ones considered in this thesis. Since we
were the first to address the problem of inferring the parameters of the asymmet-
ric Ising model based on independent samples taken from the non-equilibrium
steady state, it seems likely that our methods might be considered only a start-
ing point and we can expect that potentially better methods will be developed
in the future. For comparison, the equilibrium inverse Ising problem has been
addressed since the seventies and still new insights emerge, new methods are
developed, and older ones improved (the latest results are as recent as this year).
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AFurther mean field equations for the
asymmetric Ising model
A.1 Magnetisations to third order

Continuing the mean-field expansion for the magnetisations (3.58) to third order
inthe couplings, we find

mi = tanh

(
hi +

N

∑
j=1

Ji jm j −miai +
2
3
(1−3m2

i )bi −mici

)
, (A.1)

where we defined the auxiliary quantities

ai = ∑N
j=1 J2

i j(1−m2
j) (A.2)

bi = ∑N
j=1 J3

i jm j(1−m2
j) (A.3)

ci = ∑N
j,k=1
j 
=k

Ji j(1−m2
j)Jik(1−m2

k)J
sym
jk (A.4)

and Jsym
i j = (Ji j + Jji)/2 denotes the entry of the symmetric part of the coupling

matrix.

A.2 Correlations under sequential Glauber dynamics

Here we give the results of expanding the two- and three-point correlations (3.59),(3.60)
for sequential Glauber dynamics to third order in the couplings and for the con-
nected four-point correlations to second order in the couplings.

We denote the two- and three-point correlations computed to second order
by CTAP

i j and CTAP
i jk , respectively. Their expressions are given by Eqs.(3.87) and

(3.99).
For the third order correction to the two-point correlations we obtain

Ci j −CTAP
i j =(1−m2

i )(1−m2
j)× (A.5){

1
3

J3
i j(1−3m2

i )(1−3m2
j)+2mim jJi jA ji

− 1
2

Ji j(1−m2
i )ai +

1
2

miFi j +
1
2

Ei j

}

+(i ↔ j),
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where we defined the auxiliary quantities

Ai j =
N

∑
k=1
k 
=i

Jsym
ik J jk(1−m2

k) (A.6)

Ei j =
N

∑
k=1
k 
=i

Aik +Aki

2
Jjk(1−m2

k) (A.7)

Fi j =
N

∑
k=1
k 
=i

(J2
ik + J2

ki)Jjk(1−m2
k)mk (A.8)

with ai as defined in (A.2).
For the third order correction to the three-point correlations we find

Ci jk −CTAP
i jk =

(1−m2
i )(1−m2

j)(1−m2
k)

3
× (A.9){

− Jsym
i j

[
4JkiJk jmim jmk +4mk(J2

kim
2
i )
]

+2Jkimi

[
(1−3m2

k)JkiJk j

−mim j(J2
i j + J2

ji)−Ai j

]
−2mk

N

∑
l=1

l 
=i, j

Jkl(1−m2
l )JkiJ

sym
jl

+
N

∑
l=1

l 
=i, j

Jkl

2

(
CTAP

i jl

(1−m2
i )(1−m2

j)

)}

+permutations of (i, j,k).

For the connected four-point correlations Ci jkl with i < j < k < l we find to
lowest non-vanishing order

CTAP
i jkl =(1−m2

i )(1−m2
j)(1−m2

k)(1−m2
l )

×
(

Jsym
i j Jsym

kl + Jsym
ik Jsym

jl + Jsym
il Jsym

jk

)
(A.10)
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A.3. Correlations under parallel Glauber dynamics

A.3 Correlations under parallel Glauber dynamics

To second order in the couplings, we find that the connected two-point correla-
tions Cp

i j (i < j) are given by

Cp,TAP
i j = (1−m2

i )(1−m2
j)

N

∑
k=1

JikJjk(1−m2
k) , (A.11)

and their third order correction reads

Cp
i j −Cp,TAP

i j = (1−m2
i )(1−m2

j)∑
l

JilJ jl2ml(1−m2
l )(miJil +m jJjl) . (A.12)

For the connected three-point correlations Cp
i jk with i < j < k we find to lowest

non-vanishing order

Cp
i jk = (1−m2

i )(1−m2
j)(1−m2

k)
N

∑
l=1

JilJ jlJkl(−2ml)(1−m2
l ) . (A.13)
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BDescription of the moment-matching
inference algorithm
In order to reconstruct the model parameters of the asymmetric Ising model, we
consider Callen’s identities for the magnetisations (3.49), two- and three-point
correlations ((3.50) and (3.51) for sequential dynamics, (3.52) and (3.53) for
parallel dynamics, and solve them for the couplings and external fields. Our
goal is to minimise the relative squared error between the magnetisations and
correlations predicted by Callen’s identities for a particular set of parameters
and the sampled averages, which leads us to define the cost function

E(h,J) = ‖mexact(h,J)−msampled‖2
2

‖msampled‖2
2

(B.1)

+
‖Cexact

i j (h,J)−C
sampled
i j ‖2

2

‖C
sampled
i j ‖2

2

+
‖Cexact

i jk (h,J)−C
sampled
i jk ‖2

2

‖C
sampled
i jk ‖2

2
,

and its mean-field approximation

EMF(J) =
‖CMF

i j (J)−C
sampled
i j ‖2

2

‖C
sampled
i j ‖2

2
(B.2)

+
‖CMF

i jk (J)−C
sampled
i jk ‖2

2

‖C
sampled
i jk ‖2

2
,

where the l2-norm ‖.‖2 for the symmetric correlation tensors is defined as sum
over the squared independent entries ‖Xi j‖2

2 = ∑i< j X2
i j and ‖Xi jk‖2

2 = ∑i< j<k X2
i jk

and the indices exact and MF denote the exact self-consistent equations averaged
over the samples, and the explicit mean-field expressions for the magnetisations
(A.1) and correlations (A.5),(A.9) for sequential dynamics and (A.12),(A.9) for
parallel dynamics.

These cost functions are non-negative functions of the model parameters,
they are zero when the connected two- and three-point correlations (and mag-
netisations for the exact inference) exactly match the empirically measured cor-
relations (and magnetisations). The mean-field cost function only depends on
the coupling matrix J since the reconstruction of the fields is independent from
the coupling inference, and is done by solving the magnetisation equation (A.1)
with the reconstructed couplings. The cost functions (B.1) and (B.2) can be
viewed as formal energies to be minimised by some algorithm.
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B. DESCRIPTION OF THE MOMENT-MATCHING INFERENCE ALGORITHM

Our inference problem can now be restated as finding

(h∗,J∗)exact = argmin
h,J

E(h,J) (B.3)

for the exact inference, or

J∗MF = argmin
J

EMF(J) , h∗
MF = m−1(J∗MF) (B.4)

for the mean-field inference.
Since this requires solving a system of nonlinear equations, this cannot be

done analytically. We use the Levenberg-Marquardt algorithm (Levenberg, 1944;
Marquardt, 1963) as implemented in the Python library SciPy (Jones et al.,
2001–) as a numerical solver. We find that the energy landscapes exhibit many
local minima. For that reason it is not sufficient to use a single starting point
for the solver. Instead we use 100 random starting points centred around the
naive mean field estimate of external fields and symmetric couplings (which can
be computed analytically). For each of these starting points, the Levenberg-
Marquardt algorithm finds a local minimum and of these candidates we choose
the one with the lowest energy.
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Köln, August 2017

Simon Lee Dettmer

Teilpublikationen:

1. S. L. Dettmer and J. Berg. “Inferring the parameters of a Markov pro-
cess from snapshots of the steady state”. preprint https://arxiv.org/

abs/1707.04114v1 (2017)

2. S. L. Dettmer, H. C. Nguyen, and J. Berg. “Network inference in the
nonequilibrium steady state”. Phys. Rev. E 94, 052116 (2016)


